

The Making of Information Systems

The Making of Information
Systems

Software Engineering and Management
in a Globalized World

Karl E. Kurbel

ISBN: 978-3-540-79260-4 e-ISBN: 978-3-540-79261-1

DOI: 10.1007/978-3-540-79261-1

Library of Congress Control Number: 2008925552

© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Product liability: The publisher cannot guarantee the accuracy of any information about dosage and
application contained in this book. In every individual case the user must check such information by
consulting the relevant literature.

Cover design: WMX Design GmbH, Heidelberg

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Karl Kurbel holds the Chair of Business Informatics at the European University Viadrina Frankfurt
(Oder) in Germany

European University Viadrina Frankfurt (Oder)
Chair of Business Informatics
15230 Frankfurt (Oder), Germany
kurbel.BI@uni-ffo.de

Hungary, based software company

Brandon Ulrich

Madach ter 3, Em. III
1075 Budapest, Hungary
bulrich@b2international.com

Prof. Dr. Karl E. Kurbel

B2 International Ltd.

Chapter 9 was contributed by Brandon Ulrich, Managing Director of B2 International, a Budapest,

Preface

Information systems (IS) are the backbone of any organization today.
Practically all major business processes and business functions are
supported by information systems. It is inconceivable that a business
firm – or any other non-trivial organization – would be able to operate
without powerful information systems.

This book deals with the question: Where do these information
systems come from? In previous decades, the answer seemed fairly
obvious: An organization would have their IT (information technology)
group, and these people would develop information systems when the
need arose. Most of the early books on business information systems
started from this premise.

While inhouse IS development still has its role in large organizations,
the number of options to obtain an information system has significantly
grown. For example, an organization may choose to contract an external
partner for the development. They may outsource their complete infor-
mation systems development, or even their entire IT department, to such
a partner. The partner can be located onshore or offshore. Many organi-
zations establish captive centers, or they collaborate with offshore soft-
ware companies in India, South America and Eastern Europe. Managing
projects with globally distributed partners today creates additional chal-
lenges for the making of information systems.

Another significant change is that a good deal of large-scale informa-
tion systems development (ISD) has moved from organizations whose
core business is not software to those whose business is software. Fewer
companies than previously actually develop individual information sys-
tems any more. In the business domain, large software vendors such as
SAP, Oracle and Microsoft are providing standard software that already
solves large portions of the problems for which individual information
systems were developed before.

Preface

VI

Since standard software never meets an individual organization's
requirements one hundred percent, the customization of this software
and its implementation in the organization have become major chal-
lenges. This means that much of the effort, time and money spent previ-
ously on information systems development now goes into customizing
the standard software and adapting the organization to the software.

Taking into consideration an increasing number of already existing
information systems, most organizations are facing the problem that any
new system needs to be integrated into the existing IS landscape so that
it smoothly collaborates with the other systems.

With the aforementioned factors in mind, this book examines and
discusses the question of how information systems come into existence
today. Chapter 1 describes typical information systems in a modern
enterprise and which options in the making of information systems an
organization faces. Chapter 2 discusses management issues and deci-
sions regarding the launching of a project, inhouse or external develop-
ment, outsourcing, offshoring as well as the costs and benefits of infor-
mation systems.

The information systems architectures and platforms presented in
chapter 3 play a pivotal role today. Since a new information system will
most likely need to fit with the existing IS, an architecture may either be
prescribed or to some extent need to be developed within the project.
Flexible architectures have recently received much attention with the
emergence of the SOA (service-oriented architecture) approach. Plat-
forms provide the infrastructure for developing and running information
systems.

In the fourth chapter, process models for information systems devel-
opment are presented. Our investigation starts with the waterfall model
and passes on to evolutionary development, prototyping, RUP (Rational
unified process) and agile methodologies such as XP (extreme program-
ming). Special attention is paid to the needs of off-shoring projects.

Chapter 5 focuses on two of the major stages in any development
effort: analysis and design. Hardly any other area has received as much
attention in research and practice as analysis and design. A vast body of
methods and tools are available. We focus on the essential tasks to be
solved in these stages, on modeling with the help of UML (unified
modeling language) and on tools supporting the analysis and design
activities.

In chapter 6, two more important stages are discussed: implemen-
tation and testing. In today's information systems development, these
stages are largely based on automated tools such as IDEs (integrated
development environments), program libraries and testing tools. There-

Preface

VII

fore we discuss not only principles and methods but also typical tool
support.

Chapter 7 covers the problem of selecting, customizing and imple-
menting standard software in an organization. Since this standard soft-
ware must collaborate with other software in one way or another, inte-
gration issues are discussed in a section on EAI (enterprise application
integration). A particular problem in this context is integration with so-
called legacy software – i.e. information systems that are not based on
current software technology but must nevertheless continue to operate.

Like many business efforts, the making of an information system is
usually done in the form of a project. The eighth chapter discusses pro-
ject issues, in particular project management and project organization.
Special consideration is given to the fact that many projects are just one
out of many in a project portfolio, and that they may be performed by
globally distributed teams.

Up-to-date tools for professional information systems development
today are presented and evaluated in the final chapter. This includes
tools that support the work of distributed project teams which have team
members collaborating on several projects at the same time.

Before I started to work on this book, it seemed to be a clearly de-
fined and overseeable project. However, as the work progressed, practi-
cally all topics revealed an abundance of facets asking for investigation.
An empirical observation made in many ISD projects came true in this
book project as well: "It takes longer than expected and costs more than
expected."

I would not have been able to complete this book within a finite time
without many people helping me. With sincere apologies to those whom
I might have forgotten, my special thanks go to the following people:

Anna Jankowska developed a template for the layout and formatting
of the manuscript and wrote many intricate Word macros to make it
look like what the reader sees today.

Elvira Fleischer spent months of her life creating figures for the
book and fighting with the template while formatting most of the chap-
ters.

Brandon Ulrich deserves special thanks for many roles, including his
roles as a contributor of essential ideas covered in the book, author of
chapter 9, reviewer of the manuscript and proofreader as well.

Francesca Olivadoti was a valuable help in improving my English
writing. Being actually a student of political science in the UK, she may
have turned into an IS specialist after proofreading the manuscript
twice.

Preface

VIII

Ilja Krybus helped me with various aspects of process models, mod-
eling with UML and several tools to create reasonable examples (and
figures) in chapters 4, 5 and 6.

Armin Boehm created among other things Visio diagrams and screen-
shots to illustrate standard software implementation and project
management.

Ivo Stankov contributed his creativity in formatting several chapters
using Anna's template and editing figures for the final layout.

Finally I would like to thank my wife Kirti Singh-Kurbel, not only
for her patience and the time I could not spend with her during the past
two years, but also because she contributed practical insights and
experiences from large-scale software development, including project
organization, project management and ISD offshoring, in many
discussions at home.

Berlin, April 2008 Karl Kurbel

Table of Contents

1 THE DIGITAL FIRM 1

 1.1 The Role of Information Systems 3
 1.2 Information Systems in the Enterprise 6
 1.2.1 Enterprise Resource Planning 8
 1.2.2 Supply Chain Management 11
 1.2.3 Customer Relationship Management 13
 1.2.4 Database Management 15
 1.2.5 Electronic Commerce and Electronic Business 17
 1.3 The Role of Information Systems Development 20
 1.3.1 Technological Infrastructure of Information Systems 20
 1.3.2 What Happened to ISD? 21
 1.3.3 Scenarios for Information Systems Development Today 22

2 MANAGING THE MAKING OF INFORMATION SYSTEMS 27

 2.1 Creating the Idea 28
 2.2 Management Decisions 32
 2.2.1 The Role of Specifications and Documents 38
 2.2.2 Milestones and Deliverables 42
 2.2.3 Buy, Build or Rent? 44
 2.3 Global Options: Outsourcing and Offshoring 48
 2.3.1 Offshoring Strategy 51
 2.3.2 Offshoring Projects 54
 2.3.3 Benefits, Pitfalls and Risks of Offshoring 55
 2.3.4 The Costs of Offshore Outsourcing 62
 2.3.5 Special Issues of ISD Offshoring 66
 2.4 The Business Value of IS: Costs and Benefits 69
 2.4.1 Benefits from Information Systems 69
 2.4.2 The Cost of Making Information Systems 71
 2.4.3 Cost Estimation Methods 74
 2.4.4 Cost-benefit Analysis 89

Table of Contents X

3 INFORMATION SYSTEMS ARCHITECTURE 95

3.1 What is an Architecture? 95
 3.2 Common Architectural Patterns 98
 3.2.1 Flashback to System Structures 98
 3.2.2 Three-Tier and Multi-Tier Architectures 101
 3.3 Service-oriented Architecture (SOA) 105
 3.3.1 Web Services 107
 3.3.2 Web Services as Building Blocks of a SOA 112
 3.4 Enterprise Service-oriented Architecture 116
 3.4.1 Enterprise Services 116
 3.4.2 Key Features of Enterprise SOA (ESOA) 118
 3.5 Platforms 122
 3.5.1 Java Platform 123
 3.5.2 Microsoft .NET Platform 136
 3.5.3 IBM WebSphere 142
 3.5.4 SAP NetWeaver 147
 3.5.5 LAMP 152

4 DEVELOPING INFORMATION SYSTEMS 155

 4.1 Starting with a Problem Specification 156
 4.2 Process Models and ISD Paradigms 158
 4.2.1 Sequential Process Model (Waterfall Model) 159
 4.2.2 Evolutionary Process Models and Prototyping 165
 4.2.3 Model-driven Information Systems Development 175
 4.3 Rational Unified Process (RUP) 184
 4.3.1 Phases 187
 4.3.2 Disciplines 192
 4.3.3 Best Practices 197
 4.4 Non-conventional Approaches to Information Systems
 Development 205
 4.4.1 Agile Development and Extreme Programming 205
 4.4.2 Reuse-oriented Process Models 216
 4.4.3 Open-source Software Processes 219
 4.5 Offshoring Process Models 223
 4.5.1 The Offshorer's Perspective 224
 4.5.2 An Offshore Software Company's Perspective 232

5 ANALYSIS AND DESIGN 235

 5.1 Requirements Engineering 236
 5.1.1 What are Requirements? 237
 5.1.2 Major Tasks of Requirements Engineering 239
 5.1.3 Use-case Modeling and Other RE Methods 244

Table of Contents XI

 5.1.4 More UML: Sequence Diagrams and Class Diagrams 252
 5.1.5 Other Approaches to Requirements Engineering 259
 5.2 Design 275
 5.2.1 Architectural Design 278
 5.2.2 Designing the Objects (Design Model) 287
 5.2.3 Designing the User Interface 309
 5.2.4 Designing the Database 319
 5.2.5 Other Approaches to Design: SD/CD 333
 5.3 Upper CASE 340
 5.3.1 Automating Diagrams 341
 5.3.2 An Example: Modeling with a CASE Tool 344
 5.3.3 On to Implementation 350

6 IMPLEMENTATION AND TESTING 353

 6.1 Implementing the Design 354
 6.1.1 Programming 355
 6.1.2 Implementing the Database 366
 6.1.3 Implementing the User Interface 368
 6.2 Lower CASE 378
 6.2.1 Integrated Development Environments (IDEs) 378
 6.2.2 Connecting Upper and Lower CASE 382
 6.2.3 Program Libraries and APIs 383
 6.3 Testing 386
 6.3.1 Establishing Trust: Validation and Verification 387
 6.3.2 Testing Principles and Test-case Design 390
 6.3.3 Test-driven Development (TDD) 403
 6.3.4 Testing Levels and Scope 407
 6.3.5 Debugging with a Lower CASE Tool 420

7 IMPLEMENTING STANDARD SOFTWARE 427

 7.1 Standard vs. Individual Software 428
 7.2 Process Models for Standard Software Implementation 431
 7.2.1 Selecting the Vendor and the Product 432
 7.2.2 A Generic Process Model 437
 7.2.3 A Vendor-specific Process Model 443
 7.3 Customizing Standard Software 445
 7.3.1 Adjusting Standard Software 446
 7.3.2 Extending Standard Software: User Exits 450
 7.3.3 APIs and the Hollywood Principle 452
 7.4 Integrating Standard Software into the Information Systems
 Landscape 457
 7.4.1 Enterprise Application Integration (EAI) 458
 7.4.2 Patterns for Enterprise Application Integration 465

Table of Contents XII

 7.5 Legacy Systems 466
 7.5.1 Characteristics of Legacy Systems 466
 7.5.2 Integrating with Legacy Systems 467
 7.5.3 Reengineering Legacy Systems 469

8 SOFTWARE PROJECT MANAGEMENT 473

 8.1 Project Management Overview 474
 8.1.1 Tasks and Processes of Project Management 474
 8.1.2 Project Management Topics 477
 8.1.3 Special Aspects of ISD Project Management 479
 8.2 Project Planning 483
 8.2.1 Activity and Time Planning 484
 8.2.2 Planning the Project Organization 492
 8.2.3 Project Planning with a Project Management
 System (PMS) 506
 8.3 Project Execution and Control 510
 8.3.1 Monitoring and Controlling Project Work 510
 8.3.2 PMS Support for Project Controlling 515
 8.4 Multi-project Management 518
 8.4.1 Levels and Tasks of Multi-project Management 519
 8.4.2 PMS Support for Multi-project Management 520
 8.5 Managing Globally Distributed Projects 524
 8.5.1 Managing Global vs. Managing Local Projects 524
 8.5.2 Organization of Globally Distributed Projects 527

9 TOOLING SUPPORT FOR ISD 533
 (by Brandon Ulrich)

 9.1 Fundamental Tools 534
 9.1.1 Software Version Control Systems 534
 9.1.2 Issue and Defect Tracking Systems 539
 9.1.3 Load-testing Tools 542
 9.2 Combining Fundamental Tools 543
 9.2.1 Release Engineering Tools 543
 9.2.2 Quality Control Tools 545
 9.2.3 Continuous Integration Tools 550
 9.3 Project-wide Tools 555
 9.3.1 Task-focused Development Tools 555
 9.3.2 Context-based Development 561
 9.3.3 Process-focused Automation and Tooling 563
 9.4 Summary and Outlook 565

References 567
Index 583

The basic question we will answer in this book is: How can an
organization today obtain the information systems it needs? What does
it take to ensure that those systems are of a good quality and that they
work together properly, supporting the needs of the organization?

The type of organization we have in mind is a business firm. How-
ever, the fundamental principles, methods and technologies for creating
information systems discussed in this book are applicable to other
organizations such as nonprofit organizations, government offices, and
municipal authorities.

Initially, information systems development was mainly technical. It
has since evolved into an activity with strong management involvement.
Managerial-level decisions are required throughout the entire process.
One reason for this is that many different ways to obtain an information
system exist today. Managers have to decide which one to follow. For
example, an organization may choose to:

Focus on
business firms

The
Digital
Firm

1 The Digital Firm

2

1. develop the system inhouse if it has an IT department with a soft-
ware development group,

2. contract an external partner, a software firm, to develop the sys-
tem,

3. buy or license standard software and implement it within the
organization, provided that standard software matching the firm's
requirements is available on the market,

4. buy or license standard software if it satisfies at least some
essential requirements, and extend that software with internally-
developed components,

5. search the open-source market for complete information systems
or for suitable components, and adapt that software to the needs of
the organization,

6. search for web services available on Internet servers that would
fulfill the desired tasks, and embed those services as part of a an
overall solution tailored to the needs of the organization.

Many more variations and diversifications of these approaches are
possible, as are combinations of these approaches. One observation
from the real world is that standard software rarely addresses the exact
information needs of a particular organization. While the software is
standardized, organizations are not. This is why standardized software
must usually be customized to the organization – entailing minor or
major changes to the software. Some important functionalities may be
missing, while other features provided by the standard-software
developers are superfluous to the implementing organization's needs.

Adapting standard software to the requirements of an individual
organization is called customization. Customizing standard software has
become a common approach to obtaining individual information sys-
tems in most companies today. Different approaches for customization
are in use, e.g. parameterization and APIs (application programming
interfaces). These approaches will be discussed in chapter 7.

An even more fundamental management decision with long-term
consequences is to entirely or partially outsource information systems
development. This is a strategic decision because it influences the
organization's future options on how to obtain new information systems
and run them. Outsourcing means to contract out business functions or
business processes to a different organization – in the context of this
book usually to a software firm – or to a subsidiary.

Management
decisions

Software may be
standardized, but
organizations are

not

Customization

Outsourcing

1.1 The Role of Information Systems

3

When the outsourcing partner is located in a different country or con-
tinent, then this type of outsourcing is called offshoring. Transferring
work to low-wage countries in general, and in the IT (information tech-
nology) field in particular, has recently received substantial attention.
Many organizations hope to benefit from the global distribution of work
by offshoring because it cuts costs. India, China and Eastern Europe are
the preferred locations for offshoring IT work today. In chapter 2, out-
sourcing and offshoring with regard to information systems develop-
ment are discussed in more detail.

1.1 The Role of Information Systems

Information systems are the foundation of doing business today. Most
business firms would not be able to operate without their information
systems. In a similar way, nonprofit organizations, educational institu-
tions, governments, public administrations and many other entities also
rely on information systems.

The term information system (IS) derives from the fact that such a
system deals with information – processing and producing information
and making it available to people or other information systems that need
the information to do their work. The information systems discussed in
this book are used within organizations to support human task solving,
automating some of this work where possible. In business informatics,
information systems are often defined as socio-technical systems, or as
"man – machine – task" systems. These terms indicate that an IS is a
technical solution to a task in which human beings in an organization
are involved, using the information produced, or providing information
to be processed by the system.

Definitions of the term "information system" vary. Depending on the
backgrounds and viewpoints of the authors, some focus more on the
technical perspective, others on the organizational and management
aspects. In the field of management information systems (MIS), for
example, an information system has been defined as a set of interrelated
components that collect (or retrieve), process, store and distribute infor-
mation to support decision making and control in an organization
[Laudon 2007, p. 14].

Offshoring

Businesses rely
on information
systems

Many definitions
of the term
"information
system"exist

1 The Digital Firm

4

In order to balance technical, organizational and management per-
spectives of IS, we give the following definition:

An information system (IS) is a computer-based system that
processes inputted information or data, stores information,
retrieves information, and produces new information to solve
some task automatically or to support human beings in the
operation, control and decision making of an organization.

The notion of a system implies that there are interrelated elements. In an
information system, these elements may be programs or program mod-
ules, databases, data structures, classes, objects, user-interface forms or
similar entities, depending on the perspective and on the abstraction
level of the viewer. Taking a broader view, organizational units and
hardware components may be included as well.

In this book, we will consider information systems primarily as sys-
tems composed of software elements that are developed by and operate
within organizations. The modeling and development of information
systems, for example, will be discussed from the viewpoint that it is
people who develop the software and use abstract models to do so.
Therefore the final outcome is software that will be used by people in an
organization.

Narrowing the perspective to some extent, we can say that an
information system is a software system. Sometimes the two terms will
be used interchangeably in this book. However, not every software
system qualifies as an information system. Purely technical systems that
do not have any organizational impact – for example software switching
data packets in a GPRS (general packet radio service) network, a com-
piler or a cache manager – are not considered information systems even
though computer scientists tend to call purely technical systems such as
the last one "managers" or "management" systems.

Information systems are playing an increasingly important role in
most organizations today. In many industries, companies depend heavi-
ly on their information systems. Information-intense industries such as
insurance, banking and telecommunications could not survive without
information systems. Some industries would not exist without IS, and
electronic commerce would not have been invented. Firms such as
Amazon, Yahoo, Travelocity, Hotels.com etc. would simply not have
been created without powerful supporting information systems.

Also in traditional industries such as manufacturing and retail, there
is a growing dependence on information systems. Firms need IS for
every part of their business – for their daily operations, for controlling
and reporting, for their strategic planning, and for maintaining their

Definition:
information
system

IS are composed
of software
elements and
operate within
organizations

All industries
depend on
information
systems

1.1 The Role of Information Systems

5

supplier and customer relationships. It would be inconceiveable that
General Motors, Siemens, Wal-Mart, Metro etc. are doing business
today without efficient information systems.

Another reason why information systems are so important is that
information technology (IT) accounts for a significant share of capital
investment in modern economies. In the US, for example, investment in
IT has become the largest single component of capital investment – 35
% of private business investment, and more than 50 % in information-
intense industries such as the financial sector [Laudon 2007, pp. 5-6].

It is a well-known fact that efficient usage of information technology
presupposes information systems able to utilize and exploit the features
of the technology. Business productivity can increase substantially and
firms can achieve strategic advantage over their competition by deploy-
ing information systems that support their strategic goals.

However, the importance of information technology as a differentiat-
ing factor in organizational performance has been challenged by Nicho-
las Carr in a famous article entitled "IT doesn't matter" [Carr 2003] and
in his subsequent book "Does IT matter? Information technology and
the corrosion of competitive advantage" [Carr 2004]. Carr argues that
information technology may be bought by any company in the market-
place, so competitive advantage obtained through IT can be easily
copied. Therefore, IT has become a commodity rather than a strategic
factor.

Carr's theses have stirred-up an intensive discussion in the IS and
management communities. Most IS experts disagreed with Carr's
theses, yet one effect of the discussion was the significantly increased
pressure on IT departments to justify the return on information-technol-
ogy investments.

With the question: "Does software matter?" Carr continued his argu-
ment and also classified software as a commodity that will mostly be
developed in software factories in low-wage countries, bought off the
shelf, or obtained as a service on a plug-and-pay basis [Carr 2005].

While some of Carr's observations are certainly correct, the situation
in typical organizations around the world is more nuanced. Complete
off-the-shelf software packages are suitable for standardizable products
such as office programs but not for the heavyweight enterprise systems
managing the business processes of a firm. Even if some components
are purchased as ready-to-install modules or developed in India or
Bangladesh, they still need to be integrated into and adjusted to the
diversified information systems landscape in the organization.

Nicholas Carr:
"IT doesn't
matter"

"Does software
matter?"

1 The Digital Firm

6

The situation is as outlined in the beginning of this chapter: Some IS
may be developed inhouse, some bought off the shelf, and others
purchased and customized. We definitely agree with one point of Carr's
arguments: Typical business firms whose core business is not software
have reduced the volume of internally developed corporate software
dramatically, sometimes to the extent that they do not develop new
software at all any more. The role of information systems development
has changed – from developing entire new business solutions inhouse to
implementing what others have developed, integrating that with the rest
of the information systems in the organization, and perhaps developing
some supplementary components.

1.2 Information Systems in the Enterprise

In the early times of business computing, most information systems
were designed to solve specific problems or support a particular func-
tion, such as MRP (materials requirements planning), payroll or finan-
cial accounting. These were stand-alone systems, developed only to
solve or support the task at hand. They were "islands" not connected
with one another.

A typical enterprise today uses a large number of information
systems. These systems tend to be integrated so that they can work
together. All major business processes are represented in and operated
with the help of information systems. Fewer and fewer companies use
systems that they developed themselves. Instead they work with
standard software, customized and extended to their needs.

With standard software, also called standard packages, we denote a
software system that was developed with the aim of being used by many
organizations. Standard software exists for many problem areas: office
programs, database management systems, enterprise resource planning
etc. When business problems are underlying the software, the terms
business software or application package are sometimes used.

A typical configuration of information systems in an enterprise
comprises at least three large systems as figure 1-1 illustrates: An ERP
(enterprise resource planning) system, an SCM (supply chain manage-
ment) system and a CRM (customer relationship management) system.

Developing IS is
not the core
business

Stand-alone
information
systems

Integrated
information
systems

Standard
software,
application
package

Core information
systems: ERP,
SCM, CRM

1.2 Information Systems in the Enterprise

7

All are built on top of one or more database management systems
(DBMS) – ideally using the same logically integrated database.

__

Figure 1-1 Core information systems in a typical enterprise

Enterprise resource
planning (ERP)

Supply chain
management

(SCM)

Customer
relationship

management
(CRM)

Technical IS, manufacturing
automation & control

Database
management

(DBMS)

Enterprise resource
planning (ERP)

Supply chain
management

(SCM)

Customer
relationship

management
(CRM)

Technical IS, manufacturing
automation & control

Database
management

(DBMS)

The ERP, SCM and CRM systems are usually standard software that
have been customized according to the requirements of the individual
organization. Nowadays these three types of systems tend to be integrat-
ed: An SCM module, for example, will have access to information
available in the ERP system.

If the company is a manufacturing firm, then technical information
systems and software for manufacturing automation and control will
form an equally significant share of the corporate software as the busi-
ness systems. Ideally, technical systems such as CAD (computer aided
design), CAP (computer aided planning), CAM (computer aided manu-
facturing) and CNC (computerized numerical control) will be well-inte-
grated with the business systems, using the same logical database.

Information systems such as the above are designed to be accessed
by many users at the same time. Previously these systems were run on

CAD, CAP, CAM,
CNC

IS on a network

1 The Digital Firm

8

one computer, usually a large mainframe, and users were connected
through terminals. Nowadays most processing is distributed to various
computers connected by a network. Users access IS functionality as
clients from personal computers, workstations, terminals and other end
devices over the network. This means that the desired functionality must
be available on network servers.

A server providing access to information systems functionality is
called an application server. Before the web age, that term referred to a
server in a client-server based system. Nowadays application and web
functionalities have become closely related. Therefore application ser-
vers and web servers are partly sharing the work, with some overlap,
and many application servers are becoming web based. Well-known
products include BEA WebLogic, Borland AppServer and IBM Web-
Sphere Application Server. Open-source application servers are Apache
Geronimo and JBoss.

Organizations use more information systems than those depicted in
figure 1. Dedicated systems for particular problem areas can be found in
vast numbers. Yet the ones contained in the figure may be regarded as
the core information systems on which today's companies operate. In-
formation systems development today normally means development a-
round those systems. The core systems are already there, limiting the
degree of freedom for new systems or making additional systems un-
necessary because the functionality is available in the standard software.
What can be done and what has to be done is often determined or con-
strained by the requirements of the core systems. Any additional system
must collaborate with the existing ones, in many cases providing data as
input or processing information produced as output by the core systems.

1.2.1 Enterprise Resource Planning
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The most fundamental information system in most organizations is the
enterprise resource planning (ERP) system. An ERP system is a com-
prehensive information system that collects, processes and provides
information about all parts of an enterprise, partly or completely auto-
mating business processes and business rules within and across business
functions [Kurbel 2005]. ERP systems cover all major business func-
tions and processes. They have reached a high degree of maturity

Application
servers

IS development
means develop-
ment around the
core systems

An ERP system
is an
organization's IS
backbone

1.2 Information Systems in the Enterprise

9

because they have been around for many years. ERP systems often
originated from former MRP II (manufacturing resource planning) and
MRP (material requirements planning) systems that go back as far as
the late 1960s and early 1970s.

ERP systems are very large systems, so the question may arise
whether an ERP system is actually one information system or many.
ERP systems cover many areas and thus contain many modules.
Originally these modules were more or less separate. A synonym for
standard software was "modular program" because modules covering
certain business functions were only loosely coupled and could be
implemented separately. In this case, we might say that each module is
an information system of its own.

Nowadays the degree of integration between the modules of an ERP
system is so high that the systems appear as one system. For the user, an
ideal ERP system will behave like one enterprise-wide information
system with one database and one common user-interface. Therefore we
consider an ERP system as one information system. Nevertheless such a
system may be composed of many subsystems and many databases, as
long as they are well integrated.

The most common ERP system worldwide is SAP ERP (formerly
SAP R/3). Its wide range of functionalities are illustrated in figure 1-2.
Five comprehensive areas are covered by SAP ERP:

– Analytics (support for strategic enterprise management and for re-

porting, planning, budgeting, analyzing most other areas)
– Financials (financial and managerial accounting)
– Human capital management (employee management, transactions

involving employees, payroll etc.)
– Operations (logistics and production planning and control, inventory

and warehouse management, procurement, sales etc.)
– Corporate services (services supporting employees in real estate

management, incentive and commission management, travel man-
agement and more)

Figure 1-2 shows only the top-level domains supported by SAP ERP.
Each section can be decomposed into many further sublevels. At the
lowest sublevels, very detailed functions for each step of each business
process are provided.

On the market there are many ERP products offering similar func-
tionalities although they may be arranged in different ways. However,
their market shares are rather small. The big players are, after a round of

Is an ERP
system a single
system?

Market leader in
ERP

ERP application
domains

SAP, Oracle,
Microsoft and
open-source

1 The Digital Firm

10

mergers and acquisitions at the beginning of the 21st century, SAP,
Oracle (comprising former PeopleSoft and J.D. Edwards) and Micro-
soft. A number of ERP systems are available as open-source, including
Compiere, ERP5, Openbravo ERP and OFBiz [Serrano 2006].

__

Figure 1-2 Application domains and modules of SAP ERP [SAP 2007b]

© SAP AG

Analytics Strategic Enterprise
Management

Financial
Analytics Operations Analytics Workforce

Analytics

Financials Financial Supply
Chain Management

Financial
Accounting

Management
Accounting

Corporate
Governance

Human Capital
Management Talent Management Workforce Process Management Workforce Deployment

Procurement
and Logistics

Execution

Procure-
ment

Supplier
Collaboration

Inventory and
Warehouse

Management

Inbound and
Outbound
Logistics

Transportation
Management

Product
Development

and
Manufacturing

Production
Planning

Manufacturing
Execution

Enterprise Asset
Management

Live-Cycle Data
Management

Sales and
Services

Sales Order
Management

Aftermarket
Sales

and Service

Incentive and
Commission
Management

Global Trade
Services

Corporate
Services

Product
Development

Professional-
Service
Delivery

Real Estate
Manage-

ment

Enterprise
Asset

Manage-
ment

Project
and Portfolio
Management

Environment,
Health and

Safety

Quality
Manage-

ment

Global
Trade

Services

Travel
Manage-

ment

Analytics Strategic Enterprise
Management

Financial
Analytics Operations Analytics Workforce

Analytics

Financials Financial Supply
Chain Management

Financial
Accounting

Management
Accounting

Corporate
Governance

Human Capital
Management Talent Management Workforce Process Management Workforce Deployment

Procurement
and Logistics

Execution

Procure-
ment

Supplier
Collaboration

Inventory and
Warehouse

Management

Inbound and
Outbound
Logistics

Transportation
Management

Product
Development

and
Manufacturing

Production
Planning

Manufacturing
Execution

Enterprise Asset
Management

Live-Cycle Data
Management

Sales and
Services

Sales Order
Management

Aftermarket
Sales

and Service

Incentive and
Commission
Management

Global Trade
Services

Corporate
Services

Product
Development

Professional-
Service
Delivery

Real Estate
Manage-

ment

Enterprise
Asset

Manage-
ment

Project
and Portfolio
Management

Environment,
Health and

Safety

Quality
Manage-

ment

Global
Trade

Services

Travel
Manage-

ment

© SAP AG

Analytics Strategic Enterprise
Management

Financial
Analytics Operations Analytics Workforce

Analytics

Financials Financial Supply
Chain Management

Financial
Accounting

Management
Accounting

Corporate
Governance

Human Capital
Management Talent Management Workforce Process Management Workforce Deployment

Procurement
and Logistics

Execution

Procure-
ment

Supplier
Collaboration

Inventory and
Warehouse

Management

Inbound and
Outbound
Logistics

Transportation
Management

Product
Development

and
Manufacturing

Production
Planning

Manufacturing
Execution

Enterprise Asset
Management

Live-Cycle Data
Management

Sales and
Services

Sales Order
Management

Aftermarket
Sales

and Service

Incentive and
Commission
Management

Global Trade
Services

Corporate
Services

Product
Development

Professional-
Service
Delivery

Real Estate
Manage-

ment

Enterprise
Asset

Manage-
ment

Project
and Portfolio
Management

Environment,
Health and

Safety

Quality
Manage-

ment

Global
Trade

Services

Travel
Manage-

ment

Analytics Strategic Enterprise
Management

Financial
Analytics Operations Analytics Workforce

Analytics

Financials Financial Supply
Chain Management

Financial
Accounting

Management
Accounting

Corporate
Governance

Human Capital
Management Talent Management Workforce Process Management Workforce Deployment

Procurement
and Logistics

Execution

Procure-
ment

Supplier
Collaboration

Inventory and
Warehouse

Management

Inbound and
Outbound
Logistics

Transportation
Management

Product
Development

and
Manufacturing

Production
Planning

Manufacturing
Execution

Enterprise Asset
Management

Live-Cycle Data
Management

Sales and
Services

Sales Order
Management

Aftermarket
Sales

and Service

Incentive and
Commission
Management

Global Trade
Services

Corporate
Services

Product
Development

Professional-
Service
Delivery

Real Estate
Manage-

ment

Enterprise
Asset

Manage-
ment

Project
and Portfolio
Management

Environment,
Health and

Safety

Quality
Manage-

ment

Global
Trade

Services

Travel
Manage-

ment

Since most systems provide the functionality required for enterprise re-
source planning, businesses usually do not develop information systems
for ERP any more. However, if a company finds that some "standard"
solution provided by the chosen ERP system does not reflect its
individual requirements appropriately, then that company is likely to
look for its own solution. This could be by developing or purchasing a
dedicated information system for the specific problem, extending the
ERP system, modifying its programs, or in other ways working its way
"around" the ERP system.

The new solution has to meet technological restrictions that are set
by the ERP system. These restrictions could be the platform on which it
runs, the programming language (if program code has to be modified),
the database management system etc.

Restrictions set
by the ERP
system

1.2 Information Systems in the Enterprise

11

While the focus of ERP is to support internal business processes,
business activities do not end at the boundaries of the company. Going
beyond these limits is the task of supply chain management (SCM).

1.2.2 Supply Chain Management
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The second of the core information systems is an SCM system. Organi-
zations are collaborating in supply chains, creating networks of suppli-
ers and customers over many levels, including the suppliers' suppliers
and the customers' customers, as shown in figure 1-3.

__

Figure 1-3 Supply-chain processes [SCC 2006]

Plan

Plan

Return
Return Return Return Return Return Return

Source DeliverMake Source Make DeliverDeliverMakeDeliver Source Source

Return

Plan

DeliverSource MakeDeliverMakeSource Source Make Deliver SourceDeliver

ReturnReturnReturnReturn Return Return Return Return

Suppliers'
Supplier

Supplier

Internal or External
Your Company

Customer

Internal or External

Customer's
Customer

Plan

Plan

Return
Return Return Return Return Return Return

Source DeliverMake Source Make DeliverDeliverMakeDeliver Source Source

ReturnReturn

Plan

DeliverSource MakeDeliverMakeSource Source Make Deliver SourceDeliver

ReturnReturnReturnReturnReturn ReturnReturn Return Return Return

Suppliers'
Supplier

Supplier

Internal or External
Your Company

Customer

Internal or External

Customer's
Customer

Businesses have become increasingly specialized. They concentrate on
their core competencies, outsource secondary activities and purchase
assemblies rather than manufacture them themselves. Consequently,
effective supplier-customer networks have become crucial for success.
The performance of a firm depends heavily on the smooth functioning
of the supply chains to which it belongs. No matter how efficient
internal processes and the supporting ERP system are, if the supplier of
a critical component, or that supplier's supplier, or a supplier further up
in the chain fails to deliver properly, the company will not be able to
perform as it thought it could. This effect is illustrated by figure 1-3.

Organizations
collaborate in
supply chains

A firm's perfor-
mance depends
on its supply
chains

1 The Digital Firm

12

Therefore, a natural extension of ERP is supply chain management
[Ayers 2001]. SCM considers the organization's business partners, in
particular the suppliers and their suppliers. In addition, many method-
ological and technical shortcomings of ERP have been removed or at
least improved in SCM. These improvements are known as APS (ad-
vanced planning and scheduling) [Meyr 2002] and are implemented in
SCM solutions by SCM vendors.

__

Figure 1-4 Relationship between SCM and ERP [Corsten 2001]

Su
pp

ly
ch

ai
n

pl
an

ni
ng

Su
pp

ly
ch

ai
n

co
nt

ro
l

• Procurement
planning

• Production
planning

• Distribution
planning

• Transport
planning

• Sales planning

.

.

.

• Order
management

• Shop-floor
control

• Distribution
control

• Transport
control

.

.

.

ERP system

SCM system

Su
pp

ly
ch

ai
n

pl
an

ni
ng

Su
pp

ly
ch

ai
n

co
nt

ro
l

• Procurement
planning

• Production
planning

• Distribution
planning

• Transport
planning

• Sales planning

.

.

.

• Order
management

• Shop-floor
control

• Distribution
control

• Transport
control

.

.

.

ERP system

SCM system

SCM looks at the
business
partners

1.2 Information Systems in the Enterprise

13

Supply chain management and enterprise resource planning are closely
connected. This is due to two facts: In a supplier-customer network,
many results provided by ERP are needed as input for the SCM system
and vice versa. Secondly, the same functions are sometimes needed in
both systems. There is a natural overlap between ERP and SCM
functionality. In closely coupled solutions (e.g. SAP SCM [SAP 2005b]
and SAP ERP), the SCM system may even invoke functions of the ERP
system.

Like ERP systems, SCM systems support all levels of planning and
control, from long-term strategic planning (such as setting up a supplier-
customer network) to execution of daily operations. Figure 1-4 shows
the relationship between ERP and SCM systems on the mid-range
planning and control level. Dedicated planning functions are found in
the SCM system, whereas control functions are often the same as in the
ERP system. In addition, there is close interaction between the two
systems because they often use the same data.

1.2.3 Customer Relationship Management
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The most recent member of a typical business information systems suite
is a customer relationship management (CRM) system. CRM is an
integrated approach to identifying, acquiring and retaining customers
[Siebel 2006]. Some authors consider good customer relations the most
valuable asset of a business firm. While marketing and management
have always placed high importance on customer relationships, the
business's information systems have not supported this view until the
late 1990s. Previously, valuable customer information was distributed
and maintained in various information systems – in the ERP system, in
e-commerce, call-center, customer-service systems, and more.

The need to place the focus on customer relationships arose when
marketing, sales and service departments developed new channels be-
yond traditional ones such as retail stores and field sales: websites (elec-
tronic shops), e-mail ordering, call centers, mobile commerce, push
services etc. The number of sources of customer information grew. It
became increasingly difficult to find, maintain and update customer in-
formation efficiently and consistently. Analyzing customer data for
marketing in a unified way, in order to generate more value for the firm,

SCM and ERP
are connected

Planning and
control levels in
SCM

CRM: identifying,
acquiring and
retaining
customers

Managing
customer
interactions

1 The Digital Firm

14

was not possible. By enabling organizations to manage and coordinate
customer interactions across multiple channels, departments, lines of
business and geographical regions, CRM helps organizations increase
the value of every customer interaction and improve corporate perform-
ance.

__

Figure 1-5 Sources and uses of customer information [Siebel 2006]

Customer Relationship Management

Website
E-mail

Call center

Field staff

Partners

Customers Customers
information

Analytics

Back office

Operations:
SFA, EMA, CSS

Customer Relationship Management

Website
E-mail

Call centerCall center

Field staffField staff

Partners

Customers Customers
information

AnalyticsAnalytics

Back office

Operations:
SFA, EMA, CSS

A CRM system is an information system that is used to plan, schedule
and control the presales and postsales activities in an organization
[Finnegan 2007, p. 4]. The goal of CRM is to improve long-term
growth and profitability through a better understanding of customer be-
havior. CRM includes all aspects of dealing with current and prospec-
tive customers: call center, sales force, marketing, technical support,
field service etc. All customer information from these sources is collect-
ed and maintained in a central database as illustrated in figure 1-5.
Marketing, sales and service departments access the same information.

Definition of a
CRM system

1.2 Information Systems in the Enterprise

15

A typical "back office" system the CRM system is connected to is
the company's ERP system. CRM systems are sometimes called "front
office" systems because they are the interface with the customer.

CRM systems are composed of operational and analytical parts.
Operational CRM includes in the first place support for:

– SFA (sales force automation – e.g. contact/prospect information,

product configuration, sales quotes, sales forecasting etc.)
– EMA (enterprise marketing automation – e.g. capturing prospect and

customer data, qualifying leads for targeted marketing, scheduling
and tracking direct-marketing etc.)

– CSS (customer service and support – e.g. call centers, help desks,
customer support staff; web-based self-service capabilities etc.).

Analytical CRM consolidates the data from operational CRM and uses
analytical techniques to examine customer behavior, identify buying
patterns, create segments for targeted marketing, identify opportunities
for cross-selling, up-selling and bundling, and separate profitable and
unprofitable customers. This is done with business intelligence tech-
niques such as OLAP (online analytical processing) and data mining,
based on a data warehouse.

In addition to operational and analytical customer relationship man-
agement, many CRM systems include components for ERM (employee
relationship management) and PDM (partner relationship management).
This is due to the fact that employee performance and partner (e.g.
dealer) performance are closely related with customer relationships.

Connections between CRM and various parts of enterprise resource
planning are quite tight. That is why ERP vendors also provide CRM
systems which interoperate with their respective ERP systems. It is not
surprising that the long-time market leader in CRM, Siebel Systems
[Siebel 2006], was bought by Oracle in 2006.

1.2.4 Database Management
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

All of the above information systems handle large amounts of data.
Only in the early days of business information processing were these
data stored in program-related data files. Early MRP (material require-

"Back office" and
"front office"
systems

Operational
CRM: SFA, EMA,
CSS

Analytical CRM

ERM, PDM

1 The Digital Firm

16

ments planning) systems, for example, had quite sophisticated file or-
ganization systems. However, today all non-trivial business information
systems store their data in databases.

The roots of database management systems go back to the 1960s and
1970s, so it is not surprising that today's systems have reached a high
level of maturity. The functionality of a modern DBMS comprises a lot
more than just storing and retrieving data. For example, database
schemata can be generated automatically from models. Visual tools for
semantic data modeling, for creating graphical user-interfaces and for
querying the database, as well as a workflow management system and
much more are provided. In fact, Oracle's entire ERP functionality is
largely based on tools around Oracle's database management system.
This is not surprising as Oracle Corp. is one of the world's largest
DBMS vendors.

A DBMS is an information system that handles the organization,
storage, retrieval, security and integrity of data in a database. It accepts
requests from programs or from end-users, processes these requests and
returns a response, e.g. transferring the requested data.

Most of today's database management systems are relational systems
(RDBMS). With the emergence of object-oriented analysis, design and
programming, RDBMS were extended to accommodate not only data
records but also objects, thus realizing object persistence. Notwithstand-
ing the existence of dedicated object-oriented DBMS, the majority of
business information systems use RDBMS.

There are many relational database management systems on the
market. Oracle (Oracle Database), IBM (DB2), Microsoft (SQL Server)
and Sybase (Adaptive Server Enterprise) have the largest market shares.
MySQL and PostgreSQL are popular open-source products. A widely
used DBMS for end-users, but not for large professional business
systems, is Microsoft Access.

A major achievement of more than four decades of business informa-
tion processing was the decoupling of application systems and database
management systems. In earlier times the programs of an MRP II or
ERP system, for example, referenced the DBMS directly. Since each
vendor's DBMS implementation had its own extensions and modifica-
tions of the SQL (structured query language) standard, the application
system and the database management system were tightly coupled.
Portability of a database – and thus of an entire ERP system, for exam-
ple – was a difficult, sometimes impossible task.

Nowadays an RDBMS supports common interfaces with standard
access methods. Programs now invoke operations provided by the
interfacing technology instead of directly accessing the database

Definition:
database
management
system

Most DBMSs are
relational

Database
management
systems on the
market

Interfacing with
an RDBMS

1.2 Information Systems in the Enterprise

17

management system. Portability has significantly improved in this way.
Standard technologies and access methods are:

– ODBC (open database connectivity), providing access to databases

on a network for Windows programs,
– JDBC (Java database connectivity), allowing Java programs to

access a relational database via the SQL language,
– Java EE/EJB (Java enterprise edition/Enterprise JavaBeans), giving

higher-level access to a database than JDBC, using EJB entity beans,
– XML (eXtensible markup language) enabling, providing standard

access methods for navigation and queries in XML. Data are extract-
ed from a database and put into XML documents and vice versa.

The functionality of a professional DBMS is provided on a server. Like
an application server for the business functionality, a database server is
connected to a network. ERP, SCM and CRM functions access the
server over the network. Human users such as database administrators
and end-users also reach the server over the network.

1.2.5 Electronic Commerce and Electronic Business
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

With the explosive growth of the Internet, organizations began to em-
ploy the web to do business. Many organizations developed web-based
systems to present themselves and to advertise and sell their products.

This posed a major problem since web technology is quite different
from the conventional information systems technology the back-office
systems are based on. Web-based systems are written in HTML (hyper-
text markup language) and in software technologies extending HTML,
whereas a typical ERP system is written in a language such as Java, C,
C++, Cobol etc. and strongly relies on a database management system.

Two lines of development emerged: 1) dedicated web-based infor-
mation systems and 2) web-based front-ends for the core back-office
systems. In the beginning, web-based systems were stand-alone sys-
tems, not integrated with the business processes and the ERP/CRM
systems of the company. This was not only a technological problem but
also an organizational one.

Web technology
is different from
conventional IS
technology

1 The Digital Firm

18

Electronic commerce (e-commerce) refers to the process of buying
and selling products or services over a digital network. Usually it is
assumed that this network is the Internet and that the products or
services are offered via the World Wide Web. An electronic shop (or a
web shop) is an information system that presents products and services
in a product catalog. It lets customers add products to a shopping cart
and complete the purchase with a financial transaction. Product config-
uration, personalization and many more features may be included.

A fundamental problem in the development of an electronic shop is
that most of the data involved are available in the company's database or
have to be stored in that database. Therefore, the shop system needs to
access the database. Technologies to access a database from an HTML
based user interface are available, for example invoking stored proced-
ures of the database from ASP (Active Server Pages) or JSP (JavaServ-
er Pages) scripts. Yet the script code is likely to contain redundant data-
related functions that are implemented in the ERP system anyway. If the
ERP system and the electronic shop are not integrated, this redundancy
cannot be avoided. Many more problems may arise from the lack of
integration.

Until today, e-commerce systems were often developed as individual
solutions, without employing standard software. Ready-made shop
solutions with tools for adaptation to company specific features are
available, yet many organizations prefer tailor-made systems developed
inhouse or by a web design agency.

Electronic business (e-business) takes the concepts and technologies
of e-commerce into the inside of the business firm and into the business
relations with partners. E-business is business performed with the help
of digital networks, based on Internet, intranet, and web technology. E-
business comprises all the business processes in the company, including
processes for the internal management of the firm and for coordination
with suppliers, customers and other business partners. E-commerce is a
part of e-business.

One of the implications of e-business for information systems and
their relationships is that system communication and interaction with
users are now increasingly based on Internet protocols and languages
instead of proprietary communication mechanisms. For example, a
typical graphical user interface (GUI) of an ERP system in the past was
based on forms that were generated with a tool provided by the ERP
vendor. Using web technology in e-business now means that the user
interface will not be created in a proprietary GUI technology but written
in HTML or created with a tool that generates HTML forms. Likewise,
data communication between systems or system modules is moving to

Electronic
commerce

Data redundancy
between ERP
and e-commerce
systems

Electronic
business

1.2 Information Systems in the Enterprise

19

Internet technologies. Data are increasingly transferred in XML format,
not only between web-based systems but also for accessing databases.

Another implication is that organizations provide portals for their
employees, for business partners such as customers and suppliers, and
for the general public. An enterprise portal is a website that serves as a
single entry point or gateway to a company's information and knowl-
edge base for employees and possibly for customers, suppliers, partners,
or the general public. In modern architectures, access to the functional-
ity and data resources of the core business information systems is also
provided through portals. This means that systems for ERP, SCM, CRM
etc. have to be coupled with a portal – another challenge where web
technology and conventional software technology meet.

Since electronic commerce and electronic business usually employ
web technology, the basic pattern of client requests and server responses
applies. This means that e-commerce/e-business information systems
need a web server. If they are integrated with the core information sys-
tems that run on an application server, then both a web server and an
application server will be present. The two servers communicate with
respect to application functions and data. Since the functionalities of
web and application servers are overlapping, a division of labor between
the two has to be established.

E-commerce and e-business started as approaches employing cable-
based networks and desktop computers. With the emergence of wireless
networks and end devices capable of receiving, displaying, and trans-
mitting data at reasonable speeds – mobile phones, PDAs (personal dig-
ital assistants), pocket PCs – a performance similar to that available on
stationary computers was desired for mobile workers and their mobile
devices.

 Mobile commerce (m-commerce) and mobile business (m-business)
are the counterparts of e-commerce and e-business when the respective
activities are based on the use of mobile appliances and wireless
network technologies. Such technologies are, for example, UMTS (uni-
versal mobile telecommunication system), i-mode (an NTT DoCoMo
technology [NTT 2006]), GPRS (general packet radio service), HSCSD
(high speed circuit switched data) and GSM (global system for mobile
communication).

Implementations of mobile-commerce and mobile-business systems
vary significantly, depending on the type of network, the protocols
available on the mobile devices, and the computing power of the
devices. While early mobile phones were more or less "dumb"
terminals, just capable of displaying simple data on WML (wireless
markup language) cards, many modern phones have XHTML MP

Coupling ERP,
SCM, CRM with
an enterprise
portal

Web server and
application
server

Mobile
commerce,
mobile business

1 The Digital Firm

20

(eXtensible HTML mobile profile) browsers or are Java enabled. This
means, for example, that they can serve as "fat" clients and execute Java
programs themselves.

__
1.3 The Role of Information Systems Development

Summing up the discussion in the previous sections, the environments
of business information systems are quite diversified. We start the
examination of the role of IS development today with a discussion of
the technological infrastructure of information systems.

1.3.1 Technological Infrastructure of Information Systems
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Typical features that many organizations share are summarized in figure
1-6. While the back-ends are more or less similar, the front-ends differ
substantially. The core information systems of an enterprise are usually
built on top of a database management system. DBMS functionality is
available on servers on a network. The business functionality of a firm's
information systems is provided by application servers that are also
accessible over the network. If the network is the Internet and web
technology is used, then web servers talking to the application servers
have to be integrated.

Users access information systems from end devices, typically over a
network. If the network is a stationary one, then TCP/IP (transmission
control protocol/Internet protocol) and HTTP (hypertext transfer proto-
col) for Internet/intranet and web based systems, or proprietary proto-
cols for conventional systems are used. In the wireless networks
mentioned above, data are transported via HTTP, WAP (wireless access
protocol) or Java ME (Java mobile edition) technology between the
end-user's device and the web server.

Network
protocols

1.3 The Role of Information Systems Development

21

__

Figure 1-6 Technological infrastructure of information systems

1.3.2 What Happened to ISD?
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

After the previous discussion, one might be tempted to ask: What is left
of information systems development (ISD) if "everything is there?"
Information systems development used to be a classical discipline and
an integral part of business informatics, computer science and informa-
tion systems programs. Doesn't ISD matter any more?

"Does ISD
matter?"

1 The Digital Firm

22

The answer is that the focus of ISD has shifted. In the past, the study
of and approaches to the development of information systems started
from the assumption that "nothing is there." Or more precisely, the basic
assumption was that the organization either did not have an IT based
solution, or that it had an old information system and wanted to replace
it with a new one. In the first case, the organization would start its
development efforts from scratch; in the latter case, it would develop a
new and better system based on an analysis of the old one.

The "everything is there" view in fact needs a closer look. First,
where does "everything" come from? Of course, there are professional
organizations that still develop large-scale standard software such as an
enterprise resource planning system, a database management system
and others.

Second, not really "everything" is there. There are gaps in the stan-
dard solutions provided by the vendors of application packages. The
gaps have to be filled by individual information systems. Likewise,
additional IS are needed when new requirements arise. For example,
organizational requirements may change with business strategies, mar-
keting needs, emerging new technologies etc.

1.3.3 Scenarios for Information Systems Development Today
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Obviously the situation regarding information systems development is
different in organizations whose core business is not software, and in
those whose core business is software.

User organizations

One characteristic of the first category (user organizations) is that the
development of new information systems has significantly decreased.
Nowadays, organizations develop fewer systems on their own, or none
at all any more. Instead, they employ standard software and technolo-
gies as summarized in figures 1-1 and 1-6, and adapt and extend the
standard software. New, more powerful, and perhaps better versions of
the software can be obtained when the vendor provides a new release,
and if the organization decides to buy and implement that release.

More precisely, five idealistic scenarios for ISD can be distinguished.

The "nothing is
there" hypothesis

Is everything
there?

1.3 The Role of Information Systems Development

23

Scenario 1: Patchwork and niches

An organization licenses and implements standard software and cus-
tomizes that software with the help of the customization tools available
for the software, e.g. parameterization or model-based generation. Miss-
ing features are added via APIs (application programming interfaces).
This means that some parts of the overall solution are developed specifi-
cally for the individual organization, either inhouse, by a software firm,
or by the vendor of the standard software.

If an entire problem area relevant to the organization is not covered
by the standard software, then a complete information system will be
developed either inhouse or by a partner (see scenario 4), or purchased
from a different vendor. This new system has to fit the rest of the
company's information systems, not only regarding technology but also
integration on a logical level. Restrictions and requirements for the new
IS are set by the organization's information systems architecture. If the
new system does not match those restrictions and requirements, bridges
have to be built to make the new and the existing systems compatible
("bridge programming"). Connecting software products from different
sources or vendors can be a non-trivial development problem.

New releases of the standard software may create problems for add-
on systems so that those systems need to be modified.

Scenario 2: Personal information management

Definitely not all tasks at all individual workplaces in an organization
are supported by standard business information systems, yet most
people today use a personal computer for their daily work. Almost all
white-collar workers do, as do many blue-collar workers as well. Many
workplace related tasks, on the personal level, are solved with the help
of office programs.

While simple problems may be addressed using those tools directly,
more complicated tasks require the development of programs (often
called "macros") or entire information systems. With end-user oriented
tools and languages, workers can develop themselves, or have someone
develop for them, quite powerful information systems based on Micro-
soft Excel and Access, for example. Excel and Access support end-user
development through visual tools and the VBA (Visual Basic for Appli-
cations) language. As the level of IT education in the business world is
increasing, adept professionals may also develop larger solutions for

Customizing

Extending
standard
software

Development by
end-users
through visual
tools and IDEs

1 The Digital Firm

24

their individual tasks in a convenient IDE (integrated development
environment) such as Visual Studio .NET.

Typical examples of personal information management are end-user
systems for data analysis. Using data provided by one of the standard
business systems, an information system in Excel based on pivot tables
may be employed at the workplace to analyze the data and create nice-
looking charts. Many ERP, SCM, and CRM systems today provide
download and upload features and interfaces for office programs such
as Excel, Access, and Outlook. SAP and Microsoft even developed a
common software (called Duet; http://www.duet.com) to enhance inte-
gration of SAP application software (such as SAP ERP) with personal
information management (based on MS Office Professional).

Software organizations

By software organizations we denote professional software firms that
live off producing and selling software, as well as IT departments, soft-
ware development groups and subsidiaries of large organizations whose
primary task is to produce and maintain software for their parent organ-
izations. A special type of software organization, with blurry edges, are
loose networks of developers that create open-source software.

Scenario 3: Large-scale development

Entire information systems such as ERP, SCM or CRM systems are
usually created by organizations that have the financial power to invest
large amounts of money in standard software development and receive
the returns only after some years.

Although this type of development is not constrained by an existing
inhouse IS landscape like a user organization has, development rarely
starts from "nothing is there" either. Unless the problem domain is a
completely new one, some older system or at least some modules are
likely to exist already. If an ERP vendor, for example, decides to set up
a new ERP system, then that company probably has experience in the
field from selling such a system. Since not all parts of the old system
will be obsolete – a bill-of-materials processor, for example, will always
process bills of materials in the same way – some of the old program
code is likely to survive into the new system.

Upgrading an existing system is more common than developing an
entirely new system from scratch. New versions or releases are prod-
uced based on the existing system, adding new features and revising and
improving old features. This limits the degree of freedom rather heavily.

A typical
example is data
analysis

Development of
standard soft-
ware rarely starts
from scratch

Existing systems
limit the degree
of freedom

1.3 The Role of Information Systems Development

25

The new release has to run in the user organization's social and technol-
ogical environments, often in identical environments as the old releases.

New systems and releases are often subject to the constraint that
interfaces for industry-standard systems in adjacent areas have to be
provided. An ERP system, for example, needs interfaces for Siebel
CRM, and any non-ERP system will require interfaces for SAP ERP.

Scenario 4: Custom information systems

Although really large information systems are usually standard software
(scenario 3), this software may need to be substantially extended for an
individual organization. Likewise, entirely new, individual information
systems may be needed to fill gaps not covered by the standard soft-
ware. These types of development are often contracted to professional
software organizations. That organization will carry out the develop-
ment, working together with employees of the user organization at
various levels and stages.

If the user organization has their own IT staff, a typical division of
labor is that these people do the requirements engineering and produce a
requirements specification document (cf. section 2.2.1). The software
vendor will design the system, develop it and deliver it to the customer.
There it will be tested and evaluated by business and IT staff.

Scenario 5: Open-source development

Open-source software (OSS) is software that is available as source code
to the public free of charge. All types of software exist as open-source:
operating systems, database management systems, web servers, office
programs, and even business information systems such as ERP and
CRM systems.

The development of OSS comes in many variations. OSS is typically
developed around a nucleus – a software system – that was initially cre-
ated by an organization or individual and then made available to who-
ever is interested in the code. Many developers around the world revise
the code and contribute additional code. Some OS systems started out
from hobbyist programming by individuals who wanted to do good to
the world (or perhaps bad to capitalist organizations exploiting the
world through costly software). Other OSS was initially created by pro-
fessional organizations and then made available to the rest of the world.
The primary reason for doing so is normally not altruism but to earn
money from services and software based on the OSS.

Software
company and
user organization
working together

Sources of OSS
systems

1 The Digital Firm

26

Open-source development goes on in an incremental and iterative
way. Since many people or organizations are involved, revising and
contributing code, there are usually rules of how new versions of the
software become public – sometimes strict rules, sometimes loose rules,
sometimes practically no rules. Nevertheless, anyone interested in OSS
may download the code, use it, incorporate it in their own systems, and
build new systems based on that code. Legal obligations may have to be
fulfilled when revenue is earned from the new systems (see section 4.6).

Outlook

All five scenarios are simplified abstractions of real-world situations,
yet they are useful to distinguish different types of information systems
development.

Scenario 4 is the one that comes closest to what was underlying clas-
sical ISD. Scenario 2 will not be covered in this book. Scenario 1 is the
dominating scenario for most user organizations today. Many of the
methods and tools discussed in this book apply to large-scale develop-
ment by software organizations (scenarios 3 and 4) as well as to devel-
opment around standard software (scenario 1).

While pure OSS projects (developing open-source software within
the OSS community) are not the focus of this book, the use of OSS
systems or modules within large-scale professional systems (scenario 3)
and within custom information systems (scenario 1) is an increasingly
important aspect.

Open-source
development is
incremental and
iterative

The making of an information system is subject to management deci-
sions. Managers are involved in different stages and at different times,
making decisions before and during the project. Speaking of "manage-
ment" in the context of making information systems, at least two levels
of management decisions have to be distinguished: senior management
and operational management decisions.

Senior management decisions

Senior managers decide whether an information systems project should
be started or not. They set the overall framework for the project in terms
of budget, resource allocation, staffing, time limits etc.

Managing
the
Making
of IS

2 Managing the Making of Information Systems 28

Management decisions may also need to be made in the course of the
project. Should more resources be allocated if the project is late or if the
results so far are not good enough? Should we continue with the project
or cancel it before more money goes down the drain? Decisions like
these have to be based on examinable intermediate results and points in
time, so-called milestones.

Starting, continuing and cancelling a project are highly critical
management decisions since the failure risk is rather high. According to
industry surveys, only about 30 % of all application software develop-
ment projects are considered successful [Standish 2004]. Close to 20 %
are failures, i.e. they are cancelled prior to completion or completed but
never used. The remaining 50 % are challenged – not delivered on time,
with cost overruns, lacking features, or not meeting expectations.
Notably almost half of the challenged projects exceed their budgets.

Operational management decisions

Operational managers, in particular project managers, are the ones who
run a project once it has been decided. Their tasks include project
planning, allocating and assigning personnel, scheduling activities using
appropriate techniques (e.g. network planning techniques, Gantt charts),
controlling costs and time, and more. Project managers also need
milestones to help them do their jobs efficiently, e.g. to control time and
costs. Usually, their milestones are fine-grained whereas for senior
management, milestones are on a higher aggregation level.

In this chapter we will focus on decisions that involve the senior
management of a firm although there is certainly some overlap with the
tasks of operational managers. (Project management will be discussed
in a separate chapter later in this book.)

2.1 Creating the Idea

Where does the initiative for a new information system come from? A
generic textbook answer to that question is: Someone detected a prob-
lem or an unsatisfactory situation and is looking for a (better) solution

Examples of
management
decisions

High project-
failure risk

Project
management

(Better) solutions
desired

2.1 Creating the Idea 29

which can be supported or provided by an information system.
Examples of such problems or situations are:

• The marketing department feels that the company is reacting far too

slowly to changing customer demands, mainly because it does not
receive consolidated sales figures by products and sales regions in
real-time. Successful competitors perform better because they
apparently have efficient customer response systems that provide
such information.

• A business process in the organization is not flowing smoothly. The
problem is not the business process because that was just recently
reengineered. The problem seems to be that the existing informa-
tion systems do not support the new workflows smoothly.

• New strategic opportunities open up with the emergence of new
technologies. For example, to be able to sell products over the
Internet requires significant extensions of the conventional informa-
tion systems landscape.

• Target groups demand new product or service features. Imagine the
rise of a new fad: Young career-orientated business professionals
will suddenly only wear tailor-made clothes, yet bought off the
shelf. Fashion stores will immediately need powerful "configura-
tors", translating measurements automatically into production
orders and NC (numerical control) programs, and powerful logistics
systems that deliver the clothes within an hour or two to the shop.

• Business software vendors create, or jump onto a new trend, prom-
ising significant benefits to their customers and offering solutions
for the underlying problems. Companies fearing to miss the train
join-in.

• Industry associations address problems and propose new approach-
es, solutions or information systems to their members. This is often
the case with small and medium-size enterprises that do not have
the manpower and/or knowhow to observe the information systems
market and technological trends.

Another starting point for partly new or entirely new information
systems is when new technologies for software or hardware are
introduced to the market. Gradually the hardware or software vendors
the firm is depending on will increase pressure upon them to migrate to
the new technology, because eventually they will not support the old
platforms any more.

New
technologies
trigger new IS

2 Managing the Making of Information Systems 30

For the user organization this means that existing systems have to be
ported to the new hardware or software environment. Since some pro-
gramming will be involved in that process anyway, modifications of the
old programs to cope with new requirements might be added at the
same time.

An even more typical situation is that software vendors offer not only
new technology but also new solutions based on that technology. That
is, they provide new and better information systems than the old ones,
using the new technology. For example, when SAP introduced the
NetWeaver platform, a new IS architecture (ESOA – enterprise service
oriented architecture) and new solutions to business problems that were
not available before (xAPPS – SAP's version of packaged composite
applications [Woods 2006]) were also introduced. User organizations
that decide to migrate to the new technology can benefit from those new
solutions.

Setting up an information system project costs money, and justifi-
cation of that money is demanded throughout the project. Management
involvement in a project is considered a critical success factor. The
better the senior management's understanding of the project is, the better
the expected results can be. A management standpoint like "I don't
understand that technical stuff anyway" is not unusual but problematic
for any IT project.

Creating awareness and justification can be difficult for the promo-
tors of a project. If there is no clear understanding of the potentials and
restrictions of information technology, then expectations are bound to
be vague and sometimes exaggerated. Competing interest groups in the
organization may try to influence the decisions of senior management
regarding project acceptance, funding and planning in their respective
directions.

Tasks to be solved and obstacles to be overcome in the process of
obtaining project approval and funding depend on the degree to which
senior management and departmental management were involved in
creating the initiative for the project. A somewhat simplified differen-
tiation of tasks is the following, as summarized in figure 2-1.

1. The project idea was launched by senior management. In this case

there is no need to create awareness of the problematic situation
nor to convince the management of the necessity of the new sys-
tem. However, before a project is agreed to, a cost-benefit analy-
sis and estimates regarding expected project costs and duration
will still be requested.

New
technologies
enable new
solutions

Management
involvement

Project idea is
created by ...

Senior
management

2.1 Creating the Idea 31

2. The project idea was born in a department of the business firm –
or looking at a software company, by the marketing department
looking for new business opportunities. In this case the senior
management needs to be convinced of the project idea. A project
proposal for the management will be produced in addition to a
cost-benefit analysis and cost and time estimates.

3. The project idea originated in the IT department. This case has
more obstacles to overcome. In the first place, the potential users
in the company department(s) and their departmental managers
 have to be convinced. When the department's management is be-
hind the project, then the senior management can be tackled. Pro-
ject proposals may be needed for both the departmental manage-
ment and the senior management. Costs, benefits and duration
have to be assessed as in the above cases.

__

Figure 2-1 Levels of project approval and tasks involved

4. The idea for a new information system comes from a software
vendor. This is basically the situation when a vendor seeks to sell
a new product. Assuming that the user organization has an IT
department, the first step might be to bring the CIO (chief infor-
mation officer) and the IT managers on the vendor's side. IT per-
sonnel may have reservations about new systems and technologies

Business
department

IT department

Software vendor

2 Managing the Making of Information Systems 32

because they are used to the current situation and would require
additional training. On the other hand, IT personnel tend to be
interested in new technologies, so fewer problems can be expect-
ed from this side. Once the IT department is in line, the further
steps are the same as in point (3).

2.2 Management Decisions

Typical decisions made by senior management are the decisions a) to
set up a project, b) to redefine project goals and conditions after some
time, and c) to continue or cancel a project, if it is not successful or for
other reasons. In this section, the underlying decision problems are
discussed.

Along with the decision to set up a project, management may be
faced with another question: How and perhaps where should the project
be done – develop the system inhouse, let a software firm develop, or
buy from a software vendor? These questions will be addressed in
section 2.3.

a) Setting up a project

Unless the initiative for a project was born by the senior management
itself, the decision makers have to be convinced of the necessity of the
project an/or the expected benefits. A common way to start the approval
process is to write a project proposal. Such a proposal describes the
objectives, the expected benefits, costs, risks, and the time frame of the
project.

Management will evaluate the proposal against the business goals.
Does the proposed information system match the firm's business strat-
egy? Does it support the critical success factors? Which goals are better
achieved if the project is successfully completed? Methods and tech-
niques to answer those questions are available. Common approaches
that have been used in practice for many years are business systems
planning and information strategy planning.

Project proposal

2.2 Management Decisions 33

Business systems planning (BSP) was initially developed by the IBM
Corporation in the late 1960s and since then it has been continuously
improved and extended [Zachman 1982]. The underlying idea is that
information systems cannot be developed and operated in isolation.
They need to be integrated into an enterprise-wide information systems
architecture.

BSP provides a methodology to describe all data resources and all
business processes of an organization and how they are interrelated.
From such a description, individual information systems are derived and
specified in terms of data and processes to be covered by the respective
systems. While BSP is an approach to specifying the entire information
systems landscape of an enterprise, the outcomes of a BSP study can
later be used to evaluate a project proposal and determine the fitting of a
new information system.

Information strategy planning (ISP) is a part of information engi-
neering, a methodology that James Martin made popular in the early
1990s. Information engineering is a very comprehensive approach to the
planning, analysis, design and construction of information systems on
an enterprise-wide basis applying semi-formal techniques and auto-
mated tools [Martin 1989].

Information strategy planning is the first of four information-engi-
neering stages which finally lead to an interlocking set of running infor-
mation systems in an enterprise. ISP covers the top management goals,
the critical success factors, and how technology can be used to create
new opportunities or competitive advantages. The outcome of ISP is a
high-level specification of the enterprise's information needs and how
they are related with the goals and the critical success factors. This
specification can be used, like a BSP study, as a measure to evaluate a
project proposal.

Comprehensive methodological approaches such as BSP and infor-
mation engineering started more or less from the "nothing is there"
assumption, modeling the entire organization in terms of information
technology concepts. However, with the dissemination of even more
comprehensive standard software, the "nothing is there" assumption is
not valid any more, thus decreasing the importance of BSP and infor-
mation engineering substantially. Nevertheless, for an evaluation of
how well a proposed information system would match the company's
goals and critical success factors, it is extremely helpful if a high-level
model of the respective relationships like an ISP model is available!

Another senior management decision in many cases is the "make or
buy" decision. In such a case the project proposal will contain argu-
ments both in favor of and against either one of the options.

Business
systems planning
(BSP)

Information
strategy planning
(ISP)

BSP and ISP
start from scratch

2 Managing the Making of Information Systems 34

Portfolio analysis

The option to produce a system inhouse may be subject to a portfolio
analysis. A project portfolio is a tool to effectively identify, assess,
select and manage a collection of projects. Portfolio analysis is particu-
larly important for software organizations.

These organizations live off the returns from projects and may have
many projects going on at the same time. Taking a new project into the
portfolio is then based on a rating and an evaluation of all projects. One
reason for this is that the company's resources have to be shared among
the projects. For example, resources may need to be shifted from other
projects to a project that has an urgent demand. Strategic factors playing
an important role in the decision whether to start a new project or not
are market share, market growth, project complexity, risk, expected
cash flow etc.

__

Figure 2-2 A project portfolio [Laudon 2007, p. 563]

Pr
oj

ec
t r

is
k High

Low

Avoid
Examine
cautiously

Routine
projects

Identify and
develop

Low High

Benefits from project

Pr
oj

ec
t r

is
k High

Low

Avoid
Examine
cautiously

Routine
projects

Identify and
develop

Low High

Benefits from project

If the organization is a user organization, there may also be several
parallel IS projects competing for limited resources. Criteria that can be
applied in a portfolio analysis are, for example, the risks of the projects,
their benefits, how they match the firm's strategy, and how they fit the
enterprise-wide information systems architecture [Cash 1992]. "High

Project portfolio

Criteria for
portfolio analysis

2.2 Management Decisions 35

benefit/low risk/good strategy fit/good architecture fit" projects are the
ideal projects; however, there may be other reasons and restrictions why
non-ideal projects have to be included in the portfolio as well.

Figure 2-2 shows a simple project portfolio with the two dimensions
"project risk" and "benefits from project". Projects in the lower right
quadrant are the favorable ones. The organization should intensify
and/or identify such projects. However, projects with high risk often
promise high benefits as well, so they should also be taken into consid-
eration and carefully examined.

Scoring models

When it is preferred either to buy an information system or to have it
developed by a software company instead of developed inhouse, or
more generally, when different alternatives are available, then so-called
scoring models are a common way to arrive at a decision. A scoring
model allows the decision makers to allocate importance to a criteria list
by assigning weights to the criteria.

The problem underlying the example of figure 2-3 is the choice
between two ERP systems. The company's decision makers did agree,
for example, on higher weighting for order-processing related functions
and on somewhat lower weighting for warehousing functions.

The % columns indicate how well the systems under discussion satis-
fy the company's requirements regarding the criteria list. For example,
system A satisfies the requirements for order processing by 67 %, so A's
score for that criterion is 268 (weight 4 x percent 67) while B gets a
score of 292 (4 x 73). Assessing all criteria in the same way yields a
total score of 3,128 for ERP system A and 3,300 for ERP system B, so
B appears to be the better one for the organization.

Compared to real-life scoring models, figure 2-3 contains only a very
simple model. ERP systems, for example, have hundreds of functions,
so the list of criteria is usually much longer. A difficult task is to find
and agree on the really relevant criteria. Not only are the functional
structures of different ERP systems quite different; what different
people consider relevant criteria may also vary. Often far too many
criteria are considered and given high importance. This is because it is
difficult to image in advance what functions of a future system will
really be needed unless the decision makers have thorough experience
with systems similar to the ones under discussion.

Another problem with scoring models is created by qualitative fac-
tors. Agreeing on the criteria to be applied and on appropriate weights
for the criteria is a difficult problem.

Project risk vs.
project benefits

Criteria and
weights

Criteria and
weights

Problem:
agreeing on
criteria

Problem:
qualitative factors

2 Managing the Making of Information Systems 36

__

Figure 2-3 Example of a scoring model [Laudon 2007, p. 564]

Criteria Weight
ERP

System A
%

ERP
System A

Score

ERP
System B

%

ERP
System B

Score

1.0 Order
 processing
1.1 Online order entry 4 67 268 73 292

1.2 Online pricing 4 81 324 87 348

1.3 Inventory check 4 72 288 81 324

1.4 Customer credit
check 3 66 198 59 177

1.5 Invoicing 4 73 292 82 328

Total order
processing 1,370 1,469

2.0 Inventory
management

2.1 Production
forecasting 3 72 216 76 228

2.2 Production
planning 4 79 316 81 324

2.3 Inventory
control 4 68 272 80 320

2.4 Reports 3 71 213 68 207

Total inventory
management 1,017 1,079

3.0 Warehousing

3.1 Receiving 2 71 142 75 150

3.2 Picking/
packing 3 77 231 82 246

3.3 Shipping 4 92 368 89 356

Total
warehousing 741 752

Grand total 3,128 3,300

2.2 Management Decisions 37

Weights are the result of a decision process in which different stake-
holders may pursue different interests. Similarly, determining the per-
centage to which a functional requirement is fullfilled may depend on
highly subjective judgements.

Therefore, scoring models are used to support decision makers in
their decision process rather than to substitute the decision as such.

b) Redefining a project

In the course of a project many unexpected things could happen: Cost or
time may overrun, new technologies may emerge, a customer's require-
ments or priorities may change, the business strategy may shift, a syst-
em similar to the one under development may become available on the
market, etc. Many projects eventually have to face a situation that they
are challenged after some time.

A significant number of real-world projects are either delayed with
respect to the project schedule, more expensive than expected, or both.
The parties interested in the project and the project management are
then under pressure to justify what has been achieved so far, to explain
why it took longer or why it cost more than planned or both, and to
argue for budget and/or time extensions. Decisions regarding the budget
and the time frame are the senior management's responsibility. Based on
project experience and reassessment of the risks, an adjusted cost and
time plan will have to be approved.

c) Cancelling a project

The pressure to justify an ongoing project may be so strong that the
project stakeholders face the question: "Should the project be
cancelled?" This is a difficult decision since time, money and human
resources have been invested in the project. If the project is shut down
then this investment, good will and trust in the developing organization
are lost, and expected benefits will not be realized. The costs and lost
opportunities of shutting down the project have to be assessed against
the expected costs and benefits if the project is continued. It is again the
senior management's responsibility to decide whether a project is
continued or cancelled. Portfolio analysis can help to reach such a
decision if the organization has several projects going on at the same
time.

Projects
exceeding time
and budget

Continue or
cancel?

2 Managing the Making of Information Systems 38

2.2.1 The Role of Specifications and Documents
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Management decisions are based on documents and financial figures.
Documents play an important role not only for senior management
decisions but also for operational decisions and project management.
Written documents are the points of reference for agreements with
contractors, for the justification of project results, for assigning work to
the project team, for project controlling and reporting, and for many
more purposes. Important documents that serve as a basis for decisions
by senior and operational management include the project proposal, the
requirements specification, and various analysis and design models.

Project proposal

The purpose of writing a project proposal is to provide senior manage-
ment with a comprehensive evaluation of the project to help them make
their decision. Such a proposal should state:

– what needs to be done,
– why, when and how it should be done,
– who is responsible and who is going to do the work,
– how much will it cost,
– what are the benefits,
– what are alternatives,
– what are the risks?

Although the structure and contents of a project proposal depend on the
specific problem situation and on the organization's requirements, a
typical proposal may contain an executive summary and sections like
the following [EFC 2006]:

• Needs statement: It should be a concise, yet convincing overview of

the needs the organization wants to address with the project. The
reader should get a complete picture of the scope of the problem.
How important is the project, and what are the consequences if the
project is not carried out?

Documents are
the point of
reference

Contents of a
project proposal

Needs statement

2.2 Management Decisions 39

• Goals and objectives: This section should make clear to the senior
management which business goals and critical success factors will
be supported by the new information system. It will also define the
specific goals of the project (e.g. reduce inventory costs by x %)
and the objectives, i.e. specific, tangible and measurable outcomes
that should be achieved within a specified period of time.

• Approach and timetable: How and when are the project's objectives
going to be achieved and by whom are the primary questions
addressed in this part of the document. It comprises a proposal
regarding the "make or buy" decision, or an evaluation of these two
alternatives. The "how" question is further refined by a rough
project plan composed of the major sections of the project. Each
section is terminated by a milestone ("milestone plan"). The human
resources involved in each section are specified.

• Cost-benefit analysis: The costs caused by the project are specified,
and expected benefits are elaborated. Benefits can either be short-
term or long-term. Some benefits can be measured in financial
figures (e.g. 10 % savings in transportation costs, 15 % additional
revenue from faster delivery to retail stores) while others are quali-
tative benefits requiring causal analysis and argumentation (e.g.
better service level).

• Project budget: A budget summary states the duration of the
project and the total project cost, as well as any already available
income. There are different ways to structure a budget depending
on the type of the project and on the organizations's requirements.
However, almost every budget includes items like: project person-
nel, software costs (licenses etc.), additional hardware requirements
and other equipment, traveling, meetings, training the future users,
and overhead costs such as project administration.

• Project risks: A description of the major risks of the proposed pro-
ject is an essential part of the document. Project risks can originate
from the task to be solved (e.g. too complex, too many departments
involved), from project management (e.g. vague time estimates, in-
appropriate development tools), from the project team (e.g. com-
petencies, knowledge level, experience etc. of team members, team
size), from the IT infrastructure, from the implementation process
in the organization (e.g. acceptance by users), and also from senior
management (e.g. lack of support inside the organization).

Goals and
objectives

Approach and
timetable

Cost-benefit
analysis

Project budget

Project risks

2 Managing the Making of Information Systems 40

• Project controlling and evaluation: This section should state how
the progress – success or failure – in reaching the stated objectives
is measured. Who will conduct the evaluation, when will it be
performed, and how will the reporting be done?

• Future costs: A statement of the financial and human resources
needed in the operation of the information system once the project
is completed and the system is implemented should be included in
the document, e.g. resources for maintenance of the system, for user
support and training, for software upgrades etc.

The project proposal has to be convincing because the main purpose is
to obtain approval for the project by the decision makers. Equally
important is the budget and/or the allocation of resources to be granted
for the project. Often the approval and the budget are limited to some
initial project stages. The decision to continue the project will be made
at a later time, based on results achieved or insights gained by that time.
Milestones serve the purpose of evaluating project progress and
deciding whether to continue, cancel or reshape the project and whether
to re-allocate resources.

Requirements specification

Once the project is approved, the requirements that the information
system is expected to satisfy have to be elaborated in more detail. This
is the subject of the requirements engineering stage in the course of the
project. Requirements determine the outcome of the project. If the
requirements are not right then the resulting information system will not
do what the stakeholders expected. Requirements engineering is a par-
ticularly critical stage in most projects and known to be difficult. It has
evolved into a discipline of its own that will be discussed in chapter 5.

The outcome of requirements engineering is again a document (or a
collection of documents). It is called either a requirements specification,
requirements document, or software requirements specification (SRS).

This document may serve as a reference for different purposes and
for different types of users. In the "buy" case, requests for quotations
may be issued, and quotations received may be evaluated based on that
document. Likewise an agreement with an external contractor to build
the system will refer to the requirements specification. If the system is
built inhouse, then the specification is the document that is given to the
system-development group as the starting point for their design consid-
erations [Sommerville 2007, p. 137].

Project
controlling and
evaluation

Future costs

Requirements
engineering

Requirements
specification
document

Point of
reference

2.2 Management Decisions 41

In the implementation and testing stages, the requirements specification
is used by the test group to develop validation tests for the information
system, and to test the system against initial requirements. Even in the
later operations and maintenance stages, the requirements specification
can be used by support and maintenance personnel to better understand
the system and the relationships between its parts.

__

Figure 2-4 A requirements specification§

Chapter Description

Preface Define the expected readership of the document and describe its
version history.

Introduction
Describe the need for the system. Describe its functions and explain
how it will work with other systems. Describe how the system fits into
the overall business or strategic objectives of the organization
commissioning the software.

Glossary Define the technical terms used in the document. Do not make
assumptions about the experience or expertise of the reader.

User
requirements
definition

Describe the services provided for the user and the non-functional
system requirements − in natural language, diagrams or other
notations that are understandable by customers. Define the user
interface (forms, menu structure, navigation). Product and process
standards which must be followed should be specified.

System
architecture

Present a high-level overview of the anticipated system architecture
showing the distribution of functions across system modules.
Architectural components that are reused should be highlighted.

System
requirements

Describe the functional and non-functional specification require-
ments in more detail. If necessary, further detail may also be added
to the non-functional requirements, e.g. interfaces to other systems.

System
models

Set out one or more system models showing the relationships be-
tween the system components and the system and its environment
(e.g. object models, data-flow models, semantic data models).

System
evolution

Describe the fundamental assumptions on which the system is
based and anticipated changes due to hardware evolution, changing
user needs, etc.

Appendices
Provide detailed, specific information which is related to the applica-
tion which is being developed. Examples are hardware and data-
base descriptions (e.g. minimal and optimal configurations for the
system).

Index
Several indexes to the document may be included. As well as a
normal alphabetic index, there may be an index of diagrams, an
index of functions, etc.

§ Adapted from: Sommerville 2007, p. 139.

2 Managing the Making of Information Systems 42

Guidelines on how to create a good requirements specification are
provided by professional societies, software organization, consultancies
etc. An often cited document is the "IEEE recommended practice for
software requirements specifications" (IEEE standard 830-1998) by the
Institute of Electrical and Electronics Engineers, Inc. (IEEE). Unfortu-
nately this document is provided only for IEEE members. Guidelines
are also found in most books on software or requirements engineering.
An example adapted from Sommerville's book is given in figure 2-4.

More documents and models are used in later stages of a project. In
the design stage, for example, models play an important role as specifi-
cations and reference documents for software developers. (Modeling
techniques are discussed in detail in chapter 5.) In the testing stage, test
plans are created and documented in formal test specifications (cf.
section 6.3.2).

2.2.2 Milestones and Deliverables
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

For controlling a project's progress and for judging whether the project
is on the right track regarding its objectives and schedule, appropriate
information is indispensable. Managers facing requests for more
resources or having to decide on whether to continue or cancel a project
need tangible results as a basis for their decision.

Milestones are distinct points in a project where a project activity or a
work package ends. Major milestones include the end of each logical
stage in the project according to the underlying process model. When
the milestone "design stage completed" is reached, for example, the
activities of the next stage (implementation) can be launched. Typically,
once a milestone is achieved, it is set out in a document – the milestone
report – and associated with some sort of decision about the future of
the project. An example of milestones that a software company might
define for the later stages of a standard-software development project is
given in figure 2-5.

Achievements expected at a major milestone should be specified in
the project proposal already. In this way senior management can see
what the potential breakpoints in the project are. It is important to define
milestones that are operational, i.e. successful completion of the respec-
tive activity must be measurable or at least demonstrable. A milestone

IEEE standard
830-1998

Project
milestones

Milestones
should be
operational

2.2 Management Decisions 43

like "90 % of the code is ready" is useless since plain code volume says
nothing about the time needed to accomplish a working system.

Figure 2-5 Milestones for second-half project stages [Rothman 1997]

Milestone Criteria

Feature freeze
All required features of the system are known and the detailed
design has uncovered no more. No more features are
inserted into the product.

Code freeze Implementation of the design has stopped. Some testing of
the features has occurred.

System test freeze Integration testing is complete. Code freeze for system test to
start.

Beta ship The date the Beta software ships to Beta customers.

Product ship The date the product ships to the general customer base.

For work-assignment and project-management purposes, milestones can
be broken down into mini-milestones. While the major milestones
reflect high-level activities of several weeks or months duration, mini-
milestones take less than one or two days effort and are measured in
hours. The advantages are improved status reporting, fine-grain control
of knowing if a mini-milestone is missed, improved motivation because
every day or so a mini-milestone is achieved, and reduced schedule risk
[Perks 2003].

Deliverables are intermediate or final project results that are handed
over to the person or organization that gave the order for the project,
e.g. the customer (external) or the organization's management (internal).
Typical deliverables are documents produced at the end of a project
stage or a work package such as a design specification, a system proto-
type or a test report.

Milestones and deliverables are related but not identical. Milestones
may be associated with deliverables. Deliverables are results intended
for the people the project manager (or another person in a position of
responsibility) is reporting to. Milestones are points where major steps
are completed. Results may, but not necessarily, be of interest to cus-
tomers or top managers. Some results are important just for the project
management, serving as internal milestones within the project.

Mini-milestones

Deliverables

Milestones ≠
deliverables

2 Managing the Making of Information Systems 44

2.2.3 Build, Buy or Rent?
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

As we pointed out at the beginning of this book, there are many ways to
obtain an information system, i.e. building the system inhouse, buying
and customizing standard software, having a domestic or foreign (e.g.
Indian) software firm develop the system, obtaining desired system ser-
vices on demand, etc. Deciding which of the different ways to choose is
the senior management's responsibility.

All options have advantages and disadvantages, sometimes beyond
the information system needs at hand. For example, it may be cheaper
to give the order to develop the system to an external software firm, yet
this also means that expertise gained in the development process will
not be inside the company but outside. If this path is repeatedly chosen,
then less and less development knowledge and knowhow will be
retained internally. As a consequence, the company will depend on
external software firms for future developments as well.

Being able to choose among alternatives requires, of course, that the
mentioned alternatives are available to the organization. A small or
medium-size enterprise (SME) that has no software development per-
sonnel obviously does not have an option to develop the system
inhouse. Therefore it is large companies that can select from the full
range of possibilities. However, small and medium-size companies that
develop their own software also exist, in particular if they are highly
specialized and need specialized software.

Below we will discuss the options of developing, buying and renting
an information system. In the case that the system is not bought off the
shelf but has to be developed, we can distinguish further who is in
control of the development process.

1. Developing inhouse

Inhouse personnel developing the complete system has been the con-
ventional way through which many information systems have come into
existence. Traditional approaches to ISD have mostly assumed that the
system under consideration is built inhouse. Models and methods avail-
able for this case are discussed in chapters 4 to 6.

Many ways to
obtain an IS

SMEs have
fewer options

Conventional
information
systems
development

2.2 Management Decisions 45

2. Developing with external partners

Instead of developing inhouse, the company may decide to have either
the entire or parts of the system built by an external contractor. Usually
the contractor is a professional software firm whose core business is
software. Reasons to place an external order are manifold: The user
company may not have the manpower to develop the system; technical
knowhow may be lacking; the software firm is known to have
experience in a specific field; external development is less expensive
than internal; and more.

Large projects may be split up into parts. In this case, some parts can
be built inhouse while others are ordered from one or more external
partners. In the past, the conventional way of placing an order was to
commission a domestic software firm. Today, in a globalized world,
competitors from different countries and continents are offering their
services. When the contractor resides in a different country, in particular
in a low-wage country, then the development order falls into the
category of offshoring (see below).

Overall control of the development process and the external orders
remains with the user organization. Since a division of labor between
the company placing the order and the company completing the contract
is involved, a clearcut interface between the two is needed. A typical
interface is the requirements specification as described in section 2.2.1.
This means that the initial work is done by the user organization – in
particular defining the information system's scope, elaborating require-
ments, and describing the requirements in a document. The require-
ments specification is used to evaluate intermediate and final results
provided by the contractor, and to accept or reject the delivered system.

External partners may also be commissioned in later stages of a large
project. Sometimes the system design is made by the user organization,
in addition to the requirements specification, but the implementation
according to the design specification is given to a software firm with
expertise in the software technology required for the coding. Some
organizations even give the testing of a software system to external
companies that are known system testing specialists.

3. Ordering an individual turnkey solution

While in the previous case the user organization remains in full control
of the total process, an organization may prefer to be relieved of that
burden. This can be the case, for example, in small and medium-size

Working with a
software firm

Requirements
specification as
an interface

Design specifica-
tion as an
interface

External partner
has complete
responsibility

2 Managing the Making of Information Systems 46

companies where the knowhow and manpower to perform an IS project
are not available. Under the assumption that an individual solution is
necessary and standard software is not available for the problem at
hand, such a company would rather have an external specialist do the
entire development process.

In this case, the initial project steps also have to be taken by the
contractor. In particular, creating an initial project document will be a
task of the contractor. This document should contain topics similar to a
project proposal, as far as that they are applicable, such as objectives,
timetable, milestones, costs, benefits and future costs. The requirements
engineering process will also be conducted by the contractor. This
means that people from the software firm will go into the company,
study processes and documents, interview employees to elicit user
requirements etc., in order to create a requirements specification.

It should be noted that an external contractor is in a similar situation
as the initial company in which the information system need arose. The
contractor may develop the ordered (sub-) system inhouse or
commission subcontractors for parts of that system. In large projects
subcontracting is a common practice.

4. Buying, customizing and extending standard software

A common way for a user organization to obtain an information system
is to buy or license standard software which is available for many
business problems. This approach is discussed in detail in chapter 7. It is
quite popular because standard software has many advantages. A major
one is that standard software is usually cheaper than the development of
an entirely new information system from scratch.

As pointed out earlier, standard packages rarely meet all individual
requirements of a particular organization. In general, they have to be
adapted to the organization's needs (customization). Missing features,
i.e. functionality that is not contained in the standard package, must be
provided. Additional information systems or add-ons to the standard
software have to be developed for that purpose – by the package vendor,
by the company itself, or by external contractors.

5. Employing an application service provider (ASP)

Application service providing is a business model in which a company,
the application service provider (ASP), makes computer-based services
available to other companies (customers). Application service providing
can be seen as a value-adding continuation of the outsourcing of hard-

Subcontracting

Adaptations and
extensions

2.2 Management Decisions 47

ware resources and operations to dedicated partners. Formerly hardware
outsourcing meant that instead of maintaining hardware capacity within
an individual organization, a remote computing center operated by a
specialized provider is employed. The customer would then run their
programs on the provider's hardware.

In the ASP model, not only are customers provided with hardware or
computing power in the narrow sense, but they are also provided with
services. Such services are wide ranging, from specialized functions like
invoicing, tax calculations, online payment and credit card processing
via all-in-one coverage of the IS needs of a particular industry or profes-
sion (e.g. lawyers) to comprehensive information system support for
small and medium-size businesses. Complete application packages for
financial management, enterprise resource planning, customer relation-
ship management etc. are available from ASPs. Collaborating with an
ASP can be an attractive option because the company does not need to
install, operate and maintain complex information systems itself in
order to receive a guaranteed service and support level.

In the marketplace, there are thousands of ASPs for a large number
of application problems. ASPstreet.com, for example, a web portal for
application service providing, lists about 4,100 ASPs [ASPstreet 2006].
Big players like IBM, SAP and Microsoft are engaged in application
service providing.

IBM, for example, has offered business services for a long time in
areas such as financial, human-resources, supply-chain and customer
relationship management. As an application service provider, IBM
makes software from Oracle, SAP, Peoplesoft etc. available to other
companies. SAP targets the small and medium-size enterprise market
with its All-in-One software and SAP business partners acting as ASPs.
Microsoft, as another example, offers its Commerce Manager software
for creating online stores to small businesses. A well-known ASP in the
field of customer relationship management and related areas is
Salesforce.com [Salesforce 2006].

Customers of an ASP pay for the use of the software, not for a
license. Since the provider serves many customers with the same soft-
ware, individual fees for employing the service can be quite low. A
number of different payment schemes are in use, for example subscrip-
tion based (e.g. monthly fee) or per transaction.

The ASP model works well if software exactly fitting the organiza-
tion's needs is available. Since this is rarely the case for complex busi-
ness problems, customization needs can be a major obstacle. The ASP
is more likely to customize its software for large customers than for a
variety of potential small customers. Another problem is integration

Importing
computing
services

ASP examples

Customers pay
for software
usage

ASP software
does not fit all

2 Managing the Making of Information Systems 48

with the customers's other information systems. If the software provided
by the ASP requires data, for example, that are distributed in the
company's database, then that company has to fill the gap by bridge
programs retrieving and preparing the data in the required format.

__

2.3 Global Options: Outsourcing and Offshoring

Software development is not the core business of most companies, it
requires expertise and manpower, and above all it is rather costly.
Therefore it is not surprising that many organizations prefer to use other
companies which are experienced in software development.

Since development costs are significantly lower in Asian, Latin
American and Eastern European countries than in the United States and
in Western Europe, many software orders have gone to vendors in these
regions. While price has been the driving factor for many years, other
reasons have also emerged in the recent past. For example, the know-
how and maturity levels of professional software companies in India are
on average higher than in the US and Western Europe.

Nowadays, organizations that do develop software – user organiza-
tions and software companies as well – have several choices. They can
choose between inhouse and external development. If external develop-
ment is the preferred option, the next question is whether the external
partner should be domestic or foreign. In the case of a multinational
company, another choice is between developing at home vs. developing
in a location abroad where that company has a branch and where soft-
ware development is more cost-effective. It is the management's task to
decide which of the various alternatives to choose.

A number of terms have been coined for the modes of information
systems development abroad, including offshoring, nearshoring, and
offshore outsourcing. We will start with a brief look into some terms
related to the location of development.

Outsourcing

Outsourcing is a business practice that became popular when a general
reorientation of business strategies took place in the 1990s. Many

Driving factors
are price and
quality

Domestic and
global options

Started in the
1990s

2.3 Global Options: Outsourcing and Offshoring 49

companies put a stronger focus on their core competencies and trans-
ferred non-core activities from internal business units to external
organizations such as subcontractors specializing in those activities.
One of the first spectacular outsourcing deals in information technology
was the Eastman Kodak deal, which resulted in that company's entire
data center operations being outsourced to IBM, Digital Equipment and
Businessland in 1990.

This example shows that outsourcing is not a specific practice for
software development but possible for any non-core business function.
In the IT field, outsourcing deals cover a wide range, from software
development via processing transactions in dedicated application areas
(e.g. banking, insurance, flight reservations) to outsourcing the com-
pany's complete IT infrastructure.

Offshoring

The notion of offshoring is mostly used in the context of information
technology although its general meaning is just to do something "off"
one's own "shore". With respect to software development, three related
terms are onsite, onshore and offshore development. While onsite
means development at the organization's location, onshore stands for
development at a different place in the same country (e.g. by a domestic
contractor), and offshore stands for development in a different country.

Offshoring is a concept that comprises several operational models for
all kinds of IT-related activities. A task force of the ACM (Association
for Computing Machinery) distinguished between six different types of
work sent offshore [Aspray 2006, p. 19]:

1. Programming, software testing, and software maintenance
2. IT research and development
3. High-end work such as software architecture, product design,

project management, IT consulting and business strategy
4. Physical product manufacturing (semiconductors, computer com-

ponents, computers)
5. Business process outsourcing (e.g. insurance claim processing,

accounting, bookkeeping) and IT enabled services (e.g. financial
analysis, reading x-rays)

6. Call centers and telemarketing

With regard to the topic of this book, information systems development,
the first and the third categories are the ones to consider. Looking at the

Offshore,
onshore and
onsite

Types of work
sent offshore

Organization of
offshoring

2 Managing the Making of Information Systems 50

companies offshoring software-related work today, the following
models can be identified:

a) Captive centers: Many multinational companies employ local

branches in low-wage countries for software development or set up
specific development centers. SAP, for example, develops signi-
ficant parts of its business software in its Bangalore branch in India.
American Express, Citibank, Dell, Continental and many other big
companies run captive IT centers abroad.

b) Joint ventures: The company interested in offshoring and an out-
sourcing provider enter into a joint venture regarding IT services.
The two parties set up a new firm that will carry out development
projects.

c) Offshore outsourcing: A third party – usually a software firm in a
low-wage country providing outsourcing services to other compa-
nies – is contracted by a customer to develop one or more informa-
tion systems (or for other IT services). Novices in offshoring can
seek help from domestic firms offering brokerage services.

d) Global IT partners: Large IT companies in offshore countries have
entered the world market, offering their services onshore. This
means that a customer outsources work to a domestic branch of the
foreign IT company who in turn sends parts of the work to their
development centers at home. Indian companies such as TCS (Tata
Consultancy Services), Infosys, Wipro and Satyam have become
important players on the world market in this way.

Big offshoring deals covered in the media usually involve a captive
center or a joint venture. On the other hand, outsourcing to a different
offshore company, without face-to-face contact and physically sepa-
rated by thousands of kilometers, is not a widely used practice. How-
ever, outsourcing information systems development to an external
partner is a viable mode in the following:

– Global IT firms offer their services onshore (case 'd' above)
– When the customer has a branch in the offshore country
– When the offshore company has a country office based onshore
– When a reliable broker is available

Nearshoring

Nearshoring is a variant of offshoring in which the "shore" is nearer
than India or China. Nearshoring means relocation of activities to

Captive centers
and joint
ventures are the
most common
forms

2.3 Global Options: Outsourcing and Offshoring 51

lower-cost foreign locations, but in close geographical proximity. For
the US, typical destinations of nearshoring are Mexico and Canada; for
Western European countries, Eastern Europe is a favorite location.

Reasons why nearshoring is preferred over offshoring include
cultural closeness and sometimes fewer language problems. Germans,
for example, may feel more comfortable working with people from
Slovakia or Hungary than with people from China because cultural
differences are smaller, and they might even be able to communicate in
German.

It should be noted that the borders between offshore, nearshore,
onshore and even onsite are blurring. Offshoring and nearshoring pro-
viders are moving into the domestic markets with their own branches.
The goal of such a move is to enhance the provider's competitive
position. An offshoring provider with a branch in Germany, the UK or
the US can present itself as a domestic software company in that coun-
try – with a significant cost advantage over their competition because
they can give labor-intense work to the mother company in India or
China.

Likewise it has been observed that offshoring providers have opened
branches "near shore". Knowing that many user organizations prefer
nearshoring over offshoring ("farshoring"), the provider opens a branch
or establishes a joint venture either near the US, UK or Germany. In this
way the offshoring provider can act as a nearshoring provider and
attract customers that are willing to outsource nearshore but not
farshore.

2.3.1 Offshoring Strategy
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

In this section, the aims, mechanisms, benefits, risks and costs of
offshoring are discussed. Most organizations that have partially or
completely offshored their information systems development consider
offshoring a long-term strategy and not a one-off occurrence conducted
for the sake of a single information system. Establishing this strategy is
the first step before all other activities can begin. This includes a
number of subtasks. While the first subtask occurs in all four types of
offshoring, the second one is specific to offshore outsourcing. The third
subtask described below refers to captive centers and joint ventures.

Cultural
differences are
smaller

Global IT service
providers

Nearshore "front-
ends" to
offshoring

2 Managing the Making of Information Systems 52

I. Selecting the country

This is an important decision because capabilities, risks and benefits
differ between countries. Different countries may be suitable for differ-
ent aims and purposes. Factors to consider are political stability, infra-
structure, size and quality of the IT labor pool, language and cultural
issues, data security, protection of intellectual property rights, software
piracy and government support.

India is by far the market leader in offshore IT work, followed by
China, Canada, Mexico, Ireland, Malaysia, South Africa, Israel, Russia
and the Philippines [Aspray 2006, pp. 52-54]. More than half of the
offshoring deals worldwide reported go to India. Eastern European
countries are increasingly considered for nearshoring by companies in
Western Europe.

India's predominance is based on several facts, including an educa-
tion system that has placed great emphasis on computer science and
mathematics, generating a large number of graduates in the field of
information technology every year. Although English is not the mother-
tongue of most Indians, it is widely used in higher education. Most
computer science and business graduates speak fluent English, so the
language barrier for communication with customers in English language
countries is low.

Since IT services and outsourcing have been big business in India for
many years, the number of qualified providers exceeds by far the
numbers in other countries. The level of knowledge and experience is
very high. More Indian software companies are certified as levels 3 and
higher in the capabilities maturity model (CMMI)§ than in any other
country, including the US and Europe. One reason for this is that the
Indian government started to strongly support the IT industry in the
1990s, including deregulation and liberalization, and providing numer-
ous incentives such as tax exemption for IT enabled services.

Due to the high Indian maturity level, offshore costs have risen, and
other countries are becoming more competitive. It has been reported

§ CMMI, originally the SEI-CMM (capability maturity model) was developed

by the Software Engineering Institute (SEI) at Carnegie Mellon University. It
is a framework for evaluating and measuring the maturity of the software de-
velopment process of an organization on a scale of 1 to 5. Those levels de-
scribe stages on an evolutionary path from an ad hoc, immature process to a
mature, disciplined process. Key practices are defined in the CMM, intended
to improve the ability of organizations to meet goals for cost, schedule,
functionality and product quality. The SEI substituted the CMM by CMMI
(capability maturity model integration) in 2000 [SEI 2007].

India is the
market leader

Qualified Indian
IT graduates

CMMI levels 3
and higher

2.3 Global Options: Outsourcing and Offshoring 53

that Indian IT companies are now subcontracting software firms in
Bangladesh, Sri Lanka and Nepal due to lower costs.

II. Selecting the vendor

In the case of offshore outsourcing, an appropriate partner in the
offshore country has to be selected. This involves the following steps
[EBS 2006]:

a) Examining the vendor landscape: In countries providing offshoring

services, there are usually a large number of potential partners. If no
previous experience with any of those partners is available, screen-
ing criteria have to be employed, for example experience, domain
expertise, cost, quality and financial stability.

b) Determining the cooperation model: The best-fit model for the
cooperation has to be selected. Mature outsourcing providers offer
not only information system development but also other services,
for example support, helpdesk and even operating the system
afterwards.

c) Narrowing down the vendors: Criteria may include years in
business, scale of operation, range of services, geographic span,
delivery model options, industry focus and cultural fit. Experienced
outsourcing specialists recommend visiting each vendor to person-
ally assess each key performance criterion that is considered impor-
tant to the company.

d) Negotiating contract and relationship: The company finally has to
negotiate and attempt to build a relationship with the selected
vendor. Since this is a strategic relationship that might be difficult
to exit later, taking the time to negotiate suitable terms and condi-
tions is very important.

III. Establishing an offshore center

Different steps are necessary when the offshoring provider is a captive
center or a joint venture. In this case, the strategic division of tasks
between the organization at home and the offshore center has to be
decided: Which tasks will be sent offshore, which ones will remain
onshore? These questions are discussed below (cf. critical issues).

As in the offshore outsourcing case, contractual relationships
between the onshore and offshore organizations have to be established –
for example: How will the offshore center accept work (via quotation,

Criteria

Negotiations

Captive centers,
joint ventures

2 Managing the Making of Information Systems 54

statement of work, order, contract)? How will the internal cost be
allocated and charged (e.g. who will invoice whom, how will internal
service charges be determined)?

Critical issues

Apart from vendor selection, there are critical issues to be considered in
the strategy stage. Organizations with existing development teams have
to prepare the transition to offshoring very carefully. Onsite developers
may fear the loss of their jobs and refuse to cooperate. Offshore person-
nel will then fail to receive necessary information which is needed in
order to understand the customer's processes and requirements, and
mixed onsite-offshore teams will not work well. Expected benefits of
offshoring will not be realized in such a case.

Intellectual property rights may be a serious concern for some
companies. "What if source code developed for me is also sold to my
competitors? What if an employee of the service provider steals code
and sells it to my competitors?" are two of the questions asked [Tatva-
soft 2006a]. Appropriate legal provisions and technical measures to
prevent violation of intellectual property have to be established.

2.3.2 Offshoring Projects
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Information systems development projects that are most suitable for
offshoring are projects that automate well-documented business func-
tions or processes where little day-to-day interaction is required. An
ideal development task would be one that is completely specified in
terms of the process steps, inputs and outputs. In such a case, a specifi-
cation could be "thrown over the fence" (i.e. handed over to the off-
shoring partner) and an information system will be delivered as a result
of the project.

Unfortunately most projects are not of that nature and require a lot of
interaction. Therefore project teams have to be set up in a way that on-
site and offshore personnel communicate intensely. Most projects have
offshore personnel working onsite for that reason.

Process models also have to be adapted to offshoring requirements.
Process models for offshoring projects will be discussed in section 4.5.

Transition to
offshore

Intellectual
property
concerns

Onsite and
offshore
personnel must
cooperate

2.3 Global Options: Outsourcing and Offshoring 55

Critical issues

Offshore software companies often hire people (e.g. freelancers) for
new projects, or subcontract other software development firms. The
customer may also have their own development staff involved in the
project. All these different people have to work together smoothly.
Since staff turnover in the booming offshoring industry in India is high,
new people may have to be integrated into the team rather frequently.
These issues create significant challenges for project management.

Different time zones may generate problems and frustration in
communication. When the customer in New York City, for example,
sends an urgent change request at lunchtime to the development team in
Pune, India, it is almost midnight there, and the request is not likely to
be processed until the next day. Some offshore companies try to cope
with this situation by working according to the customer's hours or at
least ensuring communication 24 hours a day.

Maintaining, changing and enhancing the information system once
the project is completed (i.e. the system is installed and running at the
customer's site) must also be planned on time. Offshore developers may
no longer be available, having moved on to other projects or employers.
Having onshore developers working in the project team can therefore
help to reduce after-project problems, because these developers will
have the same knowledge about the system as the offshore developers.

2.3.3 Benefits, Pitfalls and Risks of Offshoring
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Offshoring has become a common option for software development
since significant benefits are associated with it. On the other hand,
failures have also been reported, and many organizations are hesitant to
start offshoring because of the risks. These advantages, problems and
risks are discussed below.

Benefits

1. Cost savings: Most companies that started offshoring projects
were initially attracted by obvious cost savings. Salaries of skilled
software developers in India some years ago were about 20 % of

Manpower
turnover

Different time
zones

Offshore
developers not
available later

Cost savings

2 Managing the Making of Information Systems 56

the salaries in the US and Western Europe. Having people with 80
% lower pay work on a project does not mean, however, that the
savings will be 80 % compared to an onsite or onshore project.
Additional and hidden costs accrue, so that the total savings are a
lot lower. Offshoring projects report total cost reductions of 15 to
40 % compared to onsite projects, which is nevertheless a signifi-
cant saving [Davison 2003].

2. Quality: In established offshoring locations the quality level has
risen quite high. The quality of the information systems obtained
is another and increasingly important factor why offshore out-
sourcing is practiced. India, for example, is loosing its cost advan-
tage because of rapidly growing IT salaries. However, profes-
sional Indian IT companies are on average capable of producing
higher quality software than domestic software firms – at least
regarding certification according to the ISO 9000 standards and
the CMMI levels. Customers in Europe and America appreciate
the high quality they get.

3. Availability of IT skills: Offshore IT companies and captive
centers can provide well-trained software developers experienced
 in cutting-edge technologies that may not be available onsite.
Building up knowledge and expertise inhouse may be much more
expensive than employing knowledge and expertise of personnel
provided by an offshore company. Time-to-market is shorter
when experienced staff are available.

4. Resources: Organizations lacking manpower for software
development can overcome their shortages through outsourcing
projects. Outsourcing permits an organization to free resources
and appoint available personnel to high-priority or greater-value
adding activities.

5. Customer orientation: Nowadays, offshoring providers have to
withstand stronger competition. The offshoring portal Off-
shoreXperts.com lists more than 50,000 offshoring providers in
the IT field [Offshore 2008]. Therefore it is not surprising that
most offshoring providers have a sound customer orientation.

6. Working morale: Being customer-oriented, outsourcing providers
may be more willing to satisfy the customer than an internal
development group might be. Higher flexibility, desire to meet
deadlines, and quick responses to customer requests can be seen.
"For last minutes changes, we don't turn the light off at five" is a
slogan on the website of an outsourcing provider [Tatvasoft

Higher quality

Availability of IT
skills

Availability of
resources

Customer
orientation

Working morale

2.3 Global Options: Outsourcing and Offshoring 57

 2006c]. Captive centers in an offshore country also enjoy the
 working morale common for that country.

Pitfalls and risks of offshore outsourcing

While some critical offshoring issues were mentioned before, we now
look at the problems and risks of offshoring in more detail. Particular
attention will be given to offshore development projects in the next
subsection. Immediate and hidden costs of offshoring will be discussed
in the section 2.3.4.

Offshoring strategies and/or projects can fail, yet there is no indica-
tion that offshore projects show a greater failure rate than onshore pro-
jects. What exactly is considered a failure depends on a priori expecta-
tions. Assumptions regarding the cost savings, for example, may not be
fullfilled because they were unrealistic. The table of risks shown in
figure 2-6 is headed by erroneous cost expectations. The list was pub-
lished by Meta Group (now part of Gartner Group) as a top 10 list of the
risks related to offshore outsourcing. Figure 2-6 gives a summary of
those risks.

Underestimating the complexity of setting up and managing an
offshore project is another pitfall. Not only the geographical distribution
but also cultural and language differences can make an offshoring
project difficult to manage. Even if the customer's language is the same
as the outsourcing company's, misunderstandings and problems occur
because of social, religious and behavioral differences. The legal
environment, civil rights, bureaucracy and an unstable political situation
in the offshoring country are further sources of risk.

Interfacing the offshoring provider with the remaining organization,
in particular with inhouse software developers, is a serious management
challenge. Those who "survive" the partial outsourcing of software
development might still not be supportive of the deal and resist coopera-
tion.

When more stages of the software life cycle are outsourced, more
people in the organization are affected. When coding and testing are
outsourced, ordinary programmers become dispensible. When design is
also outsourced to the offshoring provider, software architects are
affected. When requirements analysis and definition are outsourced,
systems analysts are not needed to the same extent as before.

Outsourcing life-cycle activities does not mean that all onsite
personnel who previously did the respective jobs are laid off. People
closer to coding and testing are affected more than personnel further up
in the life cycle.

Unrealistic a
priori
expectations

Impact on
inhouse
personnel

2 Managing the Making of Information Systems 58

Figure 2-6 Risks of offshore outsourcing [Davison 2003]

Top 10 Risks of Offshore Outsourcing

1. Cost-reduction
 expectations

Executives assume that labor arbitrage will yield savings
comparable to salary differences without regard for the hidden
costs. In reality, most organizations save 15 % - 25 % during the
first year; by the third year, cost savings often reach 35 % - 40 %
as companies go up the learning curve.

2. Data security/
 protection

The vendor might not have sufficiently robust security practices or
might not be able to meet the company's internal security
requirements. Security breaks, intellectual property and privacy
violations may occur.

3. Process discipline
 (CMM)

The company is lacking internal process model maturity. Meta
Group observes that appr. 70 % of IT organizations are at CMM
level 1 while many offshore vendors' characteristic is level 5. This
will undermine potential cost savings.

4. Loss of business
 knowledge

Most organizations have business knowledge that resides within
the developers of applications. In some cases, this expertise may
be a proprietary or competitive advantage. Companies must
carefully assess business knowledge and determine if moving it
offshore will compromise company practices.

5. Vendor failure to
 deliver

A common oversight is a contingency plan − what happens if the
vendor, all best intentions and contracts aside, simply fails to
deliver. The organization should assess the implications of vendor
failure (i.e., does failure have significant business performance
implications?).

6. Scope creep
Most projects change by 10 - 15 % during the development cycle.
Organizations are surprised that the vendor expects to be paid for
incremental scope changes.

7. Government
 oversight/
 regulation

Organizations facing government oversight (e.g. healthcare) must
ensure that the offshore vendor is sensitive to industry-specific
requirements; able to comply with government regulations; and
accountable during audits.

8. Culture

A representative example: although English is one official language
in India, pronunciation and accents can vary tremendously. Cultural
differences include religions, modes of dress, social activities, and
even the way a question is answered. Executives should not
assume that cultural alignment will be insignificant or trivial.

9. Turnover of key
 personnel

Rapid growth of outsourcing vendors has created a dynamic labor
market with high demand for key personnel. Turnover levels are in
the 15 % - 20 % range. The impact of high turnover has an indirect
cost, increasing the time spent on knowledge transfer and training
new individuals.

10. Knowledge
 transfer

The time and effort to transfer knowledge to the vendor is a cost
rarely accounted for. We observe that most organizations
experience a 20 % decline in productivity during the first year of an
agreement, largely due to time spent transferring both technical
and business knowledge to the vendor.

2.3 Global Options: Outsourcing and Offshoring 59

Project managers, for example, are still needed, yet the focus of their
activities is shifted from cordinating technical staff and detailed devel-
opment activities to coordinating onsite and offshore activities and
people.

The management's challenge is to communicate the benefits of off-
shoring for the company's competitiveness to their staff and to manage
the transformation process from inhouse to offshore development. In
offshoring projects, there is still plenty of work left to be done in the
customer's organization. Yet this work is different, because it is focused
on the business and departmental level.

An example is preparing projects to make them ready for offshoring
and identifying new opportunities for IS solutions. Personnel further
down the development cycle may be qualified to take on work higher in
the life cycle, closer to the business problems, or in the coordination of
onsite and offshore activities. Such activities are discussed in more
detail in section 4.5.1.

Many companies fail to manage risks. A proper risk assessment and
mitigation plan should be prepared in advance [Morrison 2005].
Infosys, a leading Indian outsourcing provider, includes a detailed plan
for risk identification, monitoring and mitigation as part of project
planning. This plan covers risk identification, prioritization and miti-
gation options. The status of the risks is continuously tracked and
reviewed using a monthly milestone mechanism [Infosys 2008].

The bottom line is: As organizations consider the vast benefits and
allure of offshoring, they must also balance the risks and uncertainties
with the potential for labor arbitrage [Davison 2003].

Risks of offshore development projects

Any offshore software development bears a number of risks, no matter
whether it has been outsourced to a different organization, a captive
center or a joint venture under the control of the customer. Among the
risk factors are the following [Sakthivel 2007]:

• Coordination of collaborative work: Teams composed of onshore

and offshore staff need to collaborate effectively over large dis-
tances. Face-to-face interaction and meetings have to be substituted
by online collaboration tools (groupware, project repository, video-
conferencing etc.). Problems can arise due to the shortcomings of
the tools, incompatibilities between different tools and lack of
acceptance by the project members. The less powerful and the less

Shift of skill
profiles required

Risk
management is
important

Collaboration
management and
tools

2 Managing the Making of Information Systems 60

integrated the tools are, the more face-to-face interaction will be
required, implying time-consuming journeys, costs and delays.

• Quality of requirements and design specifications: Requirements
engineering is based on interaction with the stakeholders, and
likewise, deriving a good design needs interaction with and feed-
back from the requirements engineers. These things are difficult to
do over a distance, with the help of electronic means only. Creating
and communicating appropriate requirements and design specifica-
tions in this way bears a significant risk of misunderstanding and
misinterpretation. When onsite personnel create the specifications,
these documents should be clear and unambiguous. However, from
requirements engineering we know how difficult precise require-
ments specifications are.

• Cost estimation and effort planning: The risks of inappropriate pro-
ject schedules and underestimated budgets is high in conventional
projects and higher in offshoring projects. Established methods for
cost estimation and effort planning of offshoring projects are not
available. The well-known approaches assume work in collocated
places. They need to be adapted, refined and extended for onshore
and offshore distribution of work.

• Quality of development process: An appropriate, well-defined
development process is necessary to be able to address problems
and risks occurring in the development (e.g. incorrect requirements,
lack of domain knowledge, design flaws, technological problems).
Both partners have to adhere to this process. The risk of miscom-
munication is high if the onshore and offshore teams use different
sets of methods and tools, or if they follow different process
templates. Even worse is the case that the partners are at different
levels of process maturity (e.g. different CMMI levels).

• Project management: Offshoring projects are more difficult to
manage than onsite projects. Additional factors such as communi-
cation, coordination and management across countries and cultures
need to be considered.

More detailed discussions of the risks in offshore software development
are provided in the offshoring literature [e.g. Aspray 2006, pp. 182-
212].

The level of risk in an offshoring project depends on the type of
system to be developed and on the organization of offshoring [Sakthivel
2007, pp. 72-75]. The spectrum of systems with different risk levels
shows strategic information systems on the one end and routine systems

Quality of
documents

Cost estimation
is uncertain

Process quality

2.3 Global Options: Outsourcing and Offshoring 61

on the other end, with several variants in between. Strategic information
systems involving new technologies, new business processes, and
possibly evolving requirements bear high risks whereas routine systems
with stable requirements have rather low risks.

The organizational form of offshoring as discussed in the beginning
of section 2.3 can also be associated with higher or lower risks. This
implies a trade-off between costs and risks (cf. figure 2-7). Setting up a
captive center (subsidiary) exhibits significantly lower risks for an or-
ganization than working with a single offshore vendor and having to
depend solely on them. However, the costs of setting up a captive center
and communication infrastructure are much higher than the costs of
finding and collaborating with a vendor who already has the necessary
infrastructure. Figure 2-7 shows that the risk level and the costs, on the
spectrum between these two extreme forms, are inversely proportional.

Figure 2-7 Offshoring risks and costs§

High

High

Low

C
os

ts

Low

x

x

x

x

x

x

Packed software in a subsidiary

ISD in a subsidiary

ISD with a strategic partner

ISD in a joint venture

ISD with multiple vendors

ISD with a single vendors

Risk

High

High

Low

C
os

ts

Low

x

x

x

x

x

x

Packed software in a subsidiary

ISD in a subsidiary

ISD with a strategic partner

ISD in a joint venture

ISD with multiple vendors

ISD with a single vendors

x

x

x

x

x

x

Packed software in a subsidiary

ISD in a subsidiary

ISD with a strategic partner

ISD in a joint venture

ISD with multiple vendors

ISD with a single vendors

Risk

§ Adapted from: Sakthivel 2007, p. 73.

Risks and costs
depend on the
organization of
offshoring

2 Managing the Making of Information Systems 62

2.3.4 The Costs of Offshore Outsourcing
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Not all costs of an offshoring project are immediately visible. Obviously
the cost of a deal agreed upon with the offshore-services provider,
whether fixed-rate or hourly, is known or can be estimated, but cost
factors such as knowledge transfer and transition are easily overlooked.
Such hidden costs show when a detailed analysis of the project is per-
formed. In this section we will take a closer look at obvious and hidden
costs. Since more empirical data are available for offshore outsourcing
and hardly any for offshoring to a captive center, we illustrate the costs
to be considered by focusing on offshore outsourcing.

Cost factors can be distinguished in different ways. Siemens AG,
among other things one of the largest software development organiza-
tions in the world, created a method for assessing offshore project
candidates with the help of a comprehensive list of cost factors. This
method is called TCP because it analyzes projects from a technical, a
commercial (or business), and a process-related perspective. It is a gen-
eral method for project assessment, not a specific method for informa-
tion systems development. However, many of the considered cost fac-
tors occur in ISD projects as well as in other types of projects. Fur-
thermore, TCP is focused on working with external partners and not on
giving work to subsidiaries offshore (captive centers).

Cost factors are divided into one-off and recurring costs and differen-
tiated according to technical, business, and process perspectives, as
shown in figure 2-8 [Amberg 2005]:

Costs from a technical perspective

• Task or process selection – finding the right ISD task or the right
business process for offshoring, from a technical point of view (e.g.
required technical skills).

• Knowledge transfer – company knowledge required for the devel-
opment has to be transferred to the offshoring provider, e.g. by
training offshore personnel either at the customer's site (onsite) or at
the provider's site (offshore), or by sending company experts off-
shore to work with the provider for the duration of the project.

Obvious and
hidden costs

TCP project
assessment

2.3 Global Options: Outsourcing and Offshoring 63

• Project specifications – required not only in the beginning but also
in every step of the process model. Creating specifications may be
costly for complex systems due to integrity requirements and the
level of detail.

Costs from a business perspective

• Provider selection – costs of preselecting possible outsourcing
providers based on market data, narrowing down the list by
evaluating detailed information, and onsite auditing of the remain-
ing candidates. This process has been reported to cost an additional
1 to 10 % of the annual cost of an offshoring deal, taking from six
months to a year [Overby 2003].

__

Figure 2-8 Cost factors of IT offshore outsourcing [Amberg 2005]

 Technical
perspective

Business
perspective

Process
perspective

Non-
recurring
costs

Task or process
selection

Knowhow transfer

Outsourcing
provider selection

Contract management

Process
synchronization

Transition

Recurring
costs Project specification Labor

Risk management
Cooperation

Perfomance
measurement

• Contract management – costs of inviting bids, evaluation of quota-

tions, contract negotiations, setting up and concluding the contract;
monitoring adherence with the contract, change-request manage-
ment, conflict management, invoicing, charging cost centers etc. in
the course of the project. Additional costs range from 6 to 10 per-
cent per year [Overby 2003].

• Labor – since software development is a labor-intense process, the
cost of labor is the major cost portion. In outsourcing projects it is
usually included in the contracted totals, but in captive offshore
centers the labor cost is likely to be explicitly calculated, and made
visible to the mother company. A loss in productivity may have to
be considered in the beginning, because offshore personnel have to
get acquainted with the task and processes, due to cultural differ-
ences, and for similar reasons.

2 Managing the Making of Information Systems 64

• Risk management – costs of analyzing and evaluating risk factors,
monitoring and keeping track of risks, developing and applying
measures to minimize or avoid risks, etc.

Costs from a process perspective

• Process synchronization – costs of synchronizing the processes of
the project partners, regular process auditing, reporting mecha-
nisms, processes for early feedback, technical audits at the supplier
site and common development guidelines.

• Transition – costs of what is required in order to hand the work
over to the offshoring provider. This includes onsite visits to famil-
iarize offshore developers with the processes, technology and archi-
tecture of the customer before these developers can begin the actual
work in their home country. An adequate IT infrastructure with
specific software and hardware and broadband data communication
may need to be set up at the offshore site.

• Cooperation – costs of sustaining cooperation through meetings,
traveling, communication, trouble shooting etc

• Performance measurement – costs of defining adequate perform-
ance metrics and monitoring the provider's performance in the
course of the project.

Figure 2-9 Additional offshore outsourcing costs [Overby 2003]

15.2%
57%

Total hidden costs
Best case
Worst case

0.2 - 2%
2 - 3%
3 - 5%
3 - 27%
1 - 10%
6 - 10%

Selecting a vendor
Transition
Laying off employees, severance, retention
Lost productivity & cultural issues
Improving development processes
Managing the contract

RangesCost factors

15.2%
57%

Total hidden costs
Best case
Worst case

0.2 - 2%
2 - 3%
3 - 5%
3 - 27%
1 - 10%
6 - 10%

Selecting a vendor
Transition
Laying off employees, severance, retention
Lost productivity & cultural issues
Improving development processes
Managing the contract

RangesCost factors

2.3 Global Options: Outsourcing and Offshoring 65

Cost figures from practical experiences in large projects are illustrated
by Overby in an article on the hidden costs of offshore outsourcing
[Overby 2003]. It is assumed that offshoring is a long-term activity, so
the annual cost of an offshoring deal as agreed upon with the contractor
are known and can be used as a reference. Additional costs are esti-
mated as a percent of the annual contracted cost in the ranges shown in
figure 2-9. In the best case, these costs are 15.2 %. In the worst case,
they add up to 57 %.

A sample computation based on these ranges is given in figure 2-10.
It is assumed that the company's total value of offshore outsourcing
contracts is $16.2 million per year (this happens to be the average value
of offshore outsourcing contracts determined in a survey of 101 com-
panies quoted by the author).

__

Figure 2-10 Total cost of offshore outsourcing [Overby 2003]

$ 25.4 MWorst case =$ 18.7 MTotal cost of outsourcing (TCO) Best case =

$ 16.2 M+$ 16.2 M+Original contract value

$ 9.2 M57 % =$ 2.5 M15.2 % =Total hidden costs

$ 1.6 Mx .10 =$ 912 Kx .06 =6. Managing the contract

$ 1.6 Mx .10 =$ 162 Kx .01 =5. Improving development
processes

$ 4.4 Mx .27 =$ 486 Kx .03 =4. Lost productivity/cultural
issues

$ 810 Kx .05 =$ 486 Kx .03 =3. Layoffs and retention

$ 486 Kx .03 =$ 324 Kx .02 =2. Transitioning the work

$ 324 Kx .02 =$ 16.2 M$ 32.4 Kx .002 =$ 16.2 M1. Vendor selection

Worst Case

Contract value

Best Case

Contract value

Hidden Costs

$ 25.4 MWorst case =$ 18.7 MTotal cost of outsourcing (TCO) Best case =

$ 16.2 M+$ 16.2 M+Original contract value

$ 9.2 M57 % =$ 2.5 M15.2 % =Total hidden costs

$ 1.6 Mx .10 =$ 912 Kx .06 =6. Managing the contract

$ 1.6 Mx .10 =$ 162 Kx .01 =5. Improving development
processes

$ 4.4 Mx .27 =$ 486 Kx .03 =4. Lost productivity/cultural
issues

$ 810 Kx .05 =$ 486 Kx .03 =3. Layoffs and retention

$ 486 Kx .03 =$ 324 Kx .02 =2. Transitioning the work

$ 324 Kx .02 =$ 16.2 M$ 32.4 Kx .002 =$ 16.2 M1. Vendor selection

Worst Case

Contract value

Best Case

Contract value

Hidden Costs

The costs of vendor selection are annualized in the table over 5 years
from an initial cost of 1 - 10 %. The large span in the cost category "lost
productivity/cultural issues" is caused by widely varying factors such as
the maturity of the offshore provider, understanding of cultural differ-
ences among onshore and offshore workers, the turnover rate among
offshore workers, and the length of the contract.

Hidden costs of
offshore
outsourcing

2 Managing the Making of Information Systems 66

2.3.5 Special Issues of ISD Offshoring
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Offshoring is not only practiced in software development but across
business functions and processes. Infrastructure services, operative
business processes, research and development, and many more activities
are being performed offshore.

Many articles and reports discuss procedures, benefits, disadvantages
and pitfalls of offshoring in a rather general manner, not distinguishing
between different domains of work. However, offshoring a call center
or flight-reservations processing is obviously quite different from off-
shoring information systems development. Even within the IT field, off-
shoring can mean quite different things. It makes a difference whether
operations (e.g. processing bank transactions), a function such as run-
ning a computing center, or processes such as maintaining legacy sys-
tems and developing information systems are outsourced.

An excellent exception to the bulk of literature treating everything
alike is the above mentioned offshoring study prepared by an ACM task
force [Aspray 2006]. This study focuses clearly on offshoring software-
related activities, and it makes clear differentiations between different
types of work sent offshore.

Since the focus of this book is the making of information systems,
we will point out some special characteristics of offshoring which are
related to information systems development. ISD is usually done in the
form of projects. A project is by definiton a unique undertaking and will
not re-occur in the same form again. So an immediate question is:
Should the offshoring cover only this one project? This would be a rare
case, contrary to observed business practices. As we discussed earlier,
offshoring is more a business strategy than a one-time activity, requiring
a relatively long phase of preparation. Going through this just for one
project might not be worth the effort.

The work of setting up an ISD offshoring project depends on the
complexity of the problems to be solved and on the level of abstraction.
The closer the outsourced work is to the coding stage, the lesser the
effort is to get the project on track, because code is less vague than
requirements or a statement of the business problem.

Offshoring has
many variants

Offshoring study
by an ACM task
force

Offshoring just
one project?

2.3 Global Options: Outsourcing and Offshoring 67

Outsourcing in projects

Looking at things bottom up, we can identify generic levels of difficulty
in offshoring information systems development. Figure 2-11 summa-
rizes these levels.

1. Outsourcing the coding and testing of a system from the domestic

organization to an offshore organization is relatively simple, pro-
vided that the client delivers clear and precise system/module
specifications. Unfortunately this simple precondition is not so
 simple to meet. Specifications are often ambiguous and incom-
plete, leaving room for (mis-) interpretation by offshore develop-
ers. Nevertheless, a coding project is easier to handle than the
scenarios mentioned subsequently.

__

Figure 2-11 Scope of ISD offshore outsourcing

Requirements specification,
System specification & design,
module specifications,
implemented & tested modules,
running information system

Project & problem
scope, problem
description

Application
problem

System specification & design,
module specifications,
implemented & tested modules,
running information system

Requirements
specification

System design,
module design,
coding & testing

Module specifications,
implemented & tested modules,
running information system

System specification
& design divided
into modules

Module design,
coding & testing

Running information system
Module specifications,
system specification,
test cases

Coding &
testing

Outsourced
activities

Input by
customer

Output by
offshore provider

Difficulty
of project

Requirements specification,
System specification & design,
module specifications,
implemented & tested modules,
running information system

Project & problem
scope, problem
description

Application
problem

System specification & design,
module specifications,
implemented & tested modules,
running information system

Requirements
specification

System design,
module design,
coding & testing

Module specifications,
implemented & tested modules,
running information system

System specification
& design divided
into modules

Module design,
coding & testing

Running information system
Module specifications,
system specification,
test cases

Coding &
testing

Outsourced
activities

Input by
customer

Output by
offshore provider

Difficulty
of project

Outsourcing
starts with ...

Coding

2 Managing the Making of Information Systems 68

2. Outsourcing module design, coding and testing means that the
client provides an architectural specification of the entire system
 and of what modules are expected to be there. Detailed module
specifications are prepared by the offshore company and dis-
cussed with the client. Based on these specifications the system
 is programmed and tested.

3. Outsourcing system design, module design, coding, and testing
can be considered if the client's requirements are clear and well-
specified. That is, requirements engineering is performed by the
client. The offshore organization starts from the given require-
ments specification, developing an architecture if an architecture
is not provided by the client. However, if the client creates a
requirements specification only on paper, without a working sys-
tem prototype, there is a high risk that this specification will not
be correctly understood. Paper specifications are often ambiguous,
imprecise and incomplete, increasing the need for extensive
communication between onsite and offshore personnel.

4. "Outsourcing the problem" means that responsibility for all
activities related to the development of an information system is
given to the offshore organization. Provided that the client has de-
fined the project scope and decided that the information system
will be built, the offshore organization starts by elaborating
requirements and creating the requirements specification, fol-
lowed by design, coding and testing. This is obviously the most
challenging outsourcing situation with regard to communication
 requirements between the client's staff and offshore personnel.

Offshoring strategy

Looking at the offshoring of information systems development as a
long-term business strategy, general policies and regulations beyond a
particular project are needed.

The enterprise's management has to decide where to draw the line.
What will remain onsite, and what will go offshore? More precisely,
which activities (or stages in the ISD process model) will be outsourced
to an offshore location? Should they be outsourced completely, or will
equal activities continue to be performed inside the company? For
example, will all coding be outsourced in the future, or will onsite
programmers continue to develop code as well? If onsite and offsite
personnel work on the same system, integration becomes an even more
challenging issue.

Module design

System design

Requirements

Where to draw
the line is a
strategic decision

2.4 The Business Value of IS: Costs and Benefits 69

The management of offshoring projects will be revisited in chapter 8
of this book which focuses on project management issues.

__

2.4 The Business Value of IS: Costs and Benefits

Many IT investments in the past have been justified by the alleged
strategic implications of information systems that give organizations a
competitive advantage. More often, operational benefits such as faster
workflows and cost savings due to improved work efficiency have
stimulated ISD projects. On the other hand, investments in new
information systems are under pressure because they usually cost large
amounts of money.

The fundamental question asked by top management – are the costs
justified by the benefits? – has to be answered before a new project will
be given the green light. The same question may be asked again later in
the project if the need arises to redefine the project or to decide whether
to cancel or continue with the project.

In this section, we will discuss the benefits and costs of information
systems and the methods to evaluate the benefits and the costs.

2.4.1 Benefits from Information Systems
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Benefits from information systems can be classified into tangible and
intangible benefits. Tangible benefits can be quantified and measured.
Intangible benefits cannot be quantified immediately, however, they
may lead to long-term quantifiable advantages.

Tangible benefits, for example, are higher sales figures. Consider a
new information system capable of predicting customer demand in a
certain region a longer time ahead and more precisely than before. Due
to the system's predictions, production can then be adjusted faster,
stores can be supplied with the appropriate quantities and therefore sell

Tangible benefits

2 Managing the Making of Information Systems 70

more, and storage costs for shelf warmers will be reduced. All these
factors can be measured and assessed in monetary terms. Many tangible
benefits are actually cost savings as shown in figure 2-12.

The problem with benefits from information systems is that the most
interesting ones, those interesting for top management, are mostly
intangible. For example, the strategic advantage which can be obtained
with the help of an information system will eventually be seen when the
organization reaches a larger market share or a higher level of customer
satisfaction. This advantage is difficult to assess in advance because it is
not certain to what extent the competitive advantage will be reached or
that it will be reached at all. To some extent it depends on what the
competition does. Maybe they are developing a similar or a better infor-
mation system. On the other hand, the organization might suffer from a
severe competitive disadvantage if it does not have such a system in the
future but the major competitor does.

Figure 2-12 Benefits from information systems [Laudon 2007, p. 566]

Tangible Benefits (Cost Savings)

Increased productivity
Lower operational costs
Reduced workforce
Lower computer expenses
Lower outside vendor costs
Lower clerical and professional costs
Reduced rate of growth in expenses
Reduced facility costs

Intangible Benefits

Improved asset utilization
Improved resource control
Improved organizational planning
Increased organizational flexibility
More timely information
More information
Increased organizational learning
Legal requirements attained
Enhanced employee goodwill
Increased job satisfaction
Improved decision making
Improved operations
Higher client satisfaction
Better corporate image

Strategic
advantage and
other intangible
benefits

2.4 The Business Value of IS: Costs and Benefits 71

Although the thesis that IS provides organizations with competitive
advantages was seriously challenged by Carr in his article "IT doesn't
matter", as we pointed out in section 1.1, there are many examples of
strategic benefits that have been reached with the help of information
systems.

Henning Kagermann, CEO of SAP AG, and Hubert Österle, director
of the Institute of Information Management at the University of St.
Gallen (Switzerland), wrote a book on business models that is full of
such examples [Kagermann 2006]. The authors express clearly that the
true benefits of information systems come from value-adding business
concepts and business models and not from information systems as
such.

However, information systems are the means through which value-
adding concepts can be implemented. Many of today's innovative busi-
ness models could not be realized without powerful information sys-
tems. The benefits expected from new business models often depend on
the availability of information systems supporting the models.

2.4.2 The Cost of Making Information Systems
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

To know how much an information system will cost is important not
only for the decision to develop or order one but also for project
planning and control. The cost of buying an information system seems
to be obvious. In this case, at least one major cost item, the licensing
cost, is known as a hard fact. Unfortunately, this cost is only one part of
the total cost.

The cost of developing an information system is much more difficult
to predict because this cost depends primarily on the effort that the
development process will require. In a project, the earlier this cost has to
be calculated, the less exact the estimate will be. Or vice versa: The
later this cost is calculated, the better the understanding is of what needs
to be done, how much time it will take, and how much it will cost.

In this section, the major cost factors of making information systems
are identified. Methods to predict the costs will be discussed in the sub-
sequent section. For the analysis of cost factors, we differentiate accord-
ing to the various ways in which an IS can be obtained (explained in
section 2.2.3).

Value-adding
business
concepts require
powerful
information
systems

Early cost
estimates are
difficult

2 Managing the Making of Information Systems 72

1. Inhouse development

The major cost factor of developing an information system inhouse is
human labor, in particular software development personnel. However,
this is not all. A closer look reveals a list of cost factors:

» Software development staff (e.g. programmers, systems analysts,

requirements engineers, software/IS architects, testers)
» Project management staff
» Support staff (e.g. secretaries, accountants, technicians, cleaners)
» Buying/licensing and installing IT infrastructure if not available

(workplaces, networking, communication devices; development
tools, e.g. an integrated development environment – IDE) and util-
izing that infrastructure

» Providing office space, heating, electricity etc.
» Traveling, meetings, communication
» Training software developers in new software technologies and

tools
» Training users in the functionalities and handling of the IS before

and after the system is installed
» Lost productivity of non-development personnel (e.g. from inter-

views and discussions with end-users in requirements engineering)
» Implementation and conversion

A rough estimate is that the overhead on top of the core software devel-
opment personnel amounts to about the same as the total salaries of
those developers [Sommerville 2007, p. 614]. If a software developer is
paid €12,000 per month and 5 developers work on the same project, the
total cost of the project will add up to €120,000 per month.

2. Developing with external partners

In addition to the costs mentioned above, costs for those tasks or parts
of the system that are provided by external partners have to be taken
into account. Additional effort from the organization demanding an
information system is required because it needs to specify operational
interfaces with external partners, communicate with those partners, and
integrate externally developed components into the overall information
system.

Software
developers and
more

External software
and collaboration
costs

2.4 The Business Value of IS: Costs and Benefits 73

If the external partner resides in a different country, then both the
obvious and hidden costs of offshore outsourcing as discussed in section
2.3.4 (e.g. vendor selection and transition) have to be included.

3. Ordering an individual turnkey solution

This case is operationally simpler for the customer since the main cost is
the contracted price of the new information system. This cost is deter-
mined in a process starting with an invitation for bids and ending with
awarding the contract to the selected vendor. Additional costs include:

– Traveling, meetings, communication
– Lost productivity of non-development personnel
– Training of users before and after installation of the system
– Implementation and conversion
– Necessary hardware and networking equipment if that equipment

was not included in the turnkey solution.

4. Buying, customizing and extending standard software

In the past, many organizations opting for standard software were mis-
led by the hope that the cost would only be the license cost of the soft-
ware. This erroneous assumption lead to the adoption of the total cost of
ownership (TCO) concept for software. In general, the total cost of own-
ership of an asset is considered to be the purchase price plus the addi-
tional costs of operation. For standard software, TCO components
include the following cost factors:

– Software license according to the contracted license model
– Customizing the software (either with the help of the package

vendor, specialized consultants or inhouse staff)
– Extending the software if important features are missing
– Integrating the standard package with the rest of the company's

information systems
– Installation of the system on the company's hardware, networks and

system software
– User training before and after installation of the system
– Implementation and conversion (often with the help of external con-

sultants)

Main cost:
contracted price

Total cost of
ownership (TCO)

2 Managing the Making of Information Systems 74

– Hardware, software and network upgrades depending on the require-
ments of the new information system

It should be noted that in many practice projects the software license
costs account for not more than 20 - 30 % of the TCO. The full cost of
employing standard software packages is three to five times higher!
Additional costs occur for customizing, extending and integrating the
standard package. These activities may call for a project of their own,
with cost factors as in points 1. to 3. above.

5. Employing an application service provider (ASP)

Cost factors are fairly simple to identify when an application service
provider is employed. In this case the major cost factor is the price paid
to the provider, according to the agreed payment scheme. However,
there are other costs inside the organization to consider as in the above
cases, in particular the costs of training users, implementing new pro-
cedures in the organization related to the ASP's software, and conver-
sion from the old processes to the new ones.

2.4.3 Cost Estimation Methods
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Since reliable cost figures are extremely important both for the decision
to set up a project and for the allocation and control of the project
budget, a significant number of methods to estimate that cost was devel-
oped in the past.

Although there is a wide variety of methods, the common goal of
most methods is to estimate the effort or the time it takes to achieve the
result of the project, i.e. a functioning, implemented and running
information system. Conventional estimation methods are aimed at a
situation where an organization is doing the development itself (i.e. case
1. above).

An assumption underlying many methods is that the effort required
for the development (measured in person months) is proportional to the
size of the future information system. If a size estimate is available, this
number can be multiplied by a cost coefficient or used in an estimation
function to yield the total cost of the development project.

License costs are
only 20 - 30 % of
the TCO

Estimating the
effort needed to
achieve the
project result

Assumption:
effort is
proportional to
system size

2.4 The Business Value of IS: Costs and Benefits 75

An immediate question follows from this: How to measure the size
of an information system? Common approaches are:

• Lines of code: The traditional unit of measurement for software has

been the lines of code (LOC) of the proposed system. Usually
source-code lines are used, but machine-code instructions are used
as well. Many authors and practicioners have argued that LOC is a
questionable measure. A line of code in an assembler language is
not comparable with a line of code in a third or fourth-generation
language. Therefore projects can only be directly compared when
they use the same language, and cross-language figures are mean-
ingless. With the emergence of CASE tools, the lines of code be-
came increasingly irrelevant because those tools often generate an
abundance of code lines – much more than a human programmer
would write. Nevertheless the lines of code have been the most
used measure of system size.

• Function points: Due to the weakness of the lines-of-code measure,
IBM introduced function points as an alternative measure in 1979.
This measure is based on the system's functionality and not on its
low-level implementation (code). Function points are given for pro-
gram functions as the programmer sees them, e.g. input, output,
data retrieval, external interfaces and related functions.

• Object points: A higher abstraction level than function points is
assumed when system objects are used as a measure of size.
Objects in this approach are not identical with objects in object-
oriented programming. The term stands for screens, reports and
code modules that have to be developed. These are typical pro-
gramming objects when a fourth-generation language is used.

Most cost estimation methods that are based on the predicted size of an
information system use one of these three measures of size.

A common drawback of LOC, function and object points, and of
estimation methods employing these measures is that they require a fair-
ly detailed understanding of the design and the module structure of the
future information system. Such understanding is hardly available
before the project has started and requirements, architecture, interfaces
have been specified etc. Obviously estimation methods using size meas-
ures are not appropriate for the time before the project starts but only for
later stages. In the course of the project they can provide valuable
information for project management, controlling and budgeting.

Nevertheless, cost figures are indispensable for the management
decision to set up a project, but where do they come from? Other

Lines of code
(LOC)

Function points

Object points

Estimation based
on size
measures is not
appropriate in
early project
stages

2 Managing the Making of Information Systems 76

approaches that do not employ the system size and require less detail
are available, but they provide results that are less precise.

__

Figure 2-13 Characteristics of cost estimation methods

Method Description

Analogy-based

Previously completed similar projects are selected and compared with
the current project. Actual data from the completed projects are used
to estimate the requirements, duration, size etc. of the new project.
Conclusions for the cost of the new project are drawn by analogy.

Case-based
reasoning
(CBR)

CBR is an automated artificial-intelligence approach using similarity
and analogy. Information and knowledge about completed projects
are stored with descriptors in a case knowledge base. A new project
is checked against old projects for similarity. Costs and other
properties of the closest old project are adapted to the characteristics
of the new project.

Expert
judgement

Experts on software cost estimation and/or the application domain
and/or the required software technology are consulted. Those experts
use their experience and understanding of the new project to arrive at
a cost estimate. Several iterations or Delphi techniques may be
applied to reach a consensus.

Percentage
shares

This is a model used primarily to divide up the budget and/or human
resource allocation according to project stages. Shares for the stages
can be determined based on experiences from previous projects of
the organization, or based on industry figures§.

Fixed budget

The project budget is set autonomously, for example based on what
the top management provides for the project or what the customer is
willing to pay. The estimated cost is not based on a detailed
examination of the required system functionality but on what the
budget allows.

Function point
method

This is a size-based method which uses function points to estimate
the size of the system, qualitative factors to include the levels of
difficulty and complexity into account, and historical data (function-
point curve) plotting function points against effort in person months.

Cocomo II

The Constructive Cost Model (Cocomo) is based on empirical data
from many software development projects. Cocomo II provides
formulae for different types of application systems that are used to
estimate the effort for the new system in person months.

Typical approaches to predict the costs of developing an information
system include the following:

§ A historical note: A rule-of-thumb often applied in conventional projects was

the "40-20-40 rule", meaning that 40 % of the total effort goes into the early
project stages up to system specification, 20 % goes into programming, and 40
% goes into testing, implementation and conversion.

2.4 The Business Value of IS: Costs and Benefits 77

− Analogy-based methods
− Case-based reasoning (CBR)
− Expert judgement
− Percentage shares
− Fixed budget

It is worth mentioning that combinations of different approaches are
often used. For example, a fixed budget is stipulated by the manage-
ment based on analogies of former projects and/or expert judgement.
This budget is then divided into portions for major project phases. Con-
sequently, the size and functionality of the future information system is
not only determined by market or user requirements, but also restricted
by the given budget.

Figure 2-13 summarizes the main characteristics of a number of cost
estimation methods. Apart from case-based reasoning (CBR), these are
the most widely used approaches in practice. Despite this, CBR is an
interesting method of artificial intelligence (AI) [Kurbel 1992]. The
function-point method and the Cocomo model are discussed subse-
quently.

Function-point method

The function-point (FP) method was originally developed within IBM
in 1979 [Albrecht 1983]. It is one of the few actual "methods" for soft-
ware cost estimation that has been accepted and used by many organiza-
tions. This method relies on the assumption that the effort to develop an
information system depends primarily on three factors: the functions of
the future system, the difficulty of those functions, and the complexity
of the project. The system's functions are evaluated, weighted, and the
resulting points are summed up. The total number of function points is
used to obtain the estimated effort from an empirical curve which is
based on experiences from former projects. Figure 2-14 illustrates the
major components of the method.

"Functions" in the FP terminology are functions on the programming
level that were typical for early third-generation languages. They are
assigned to the following categories:

1. Input functions (dialog input, batch input etc.)
2. Output functions (screens, forms, reports etc.)
3. Inquiries (user interactions requiring a response)
4. File manipulation
5. Interfacing other systems

Combined
approaches

Effort depends
on amount and
difficulty of
functions, and on
system
complexity

Programming-
level functions

2 Managing the Making of Information Systems 78

__

Figure 2-14 Components of function-point method

Current Project

Project
Characteristics

Functions of the
Information System

Evaluate project
characteristics

Sum up project
characteristics (Tc)

Compute project
assessment factor (A)

Evaluate system functions
function points

Sum up function
points (Tu)

Get effort for current
project from FP curve

Adjust total function
points (Ta = Tu * A)

Former Projects

Evaluate former projects
effort-FP pairs

Update project base
after each project

Create FP curve by
regression analysis

Current Project

Project
Characteristics

Functions of the
Information System

Evaluate project
characteristics

Sum up project
characteristics (Tc)
Sum up project
characteristics (Tc)

Compute project
assessment factor (A)
Compute project
assessment factor (A)

Evaluate system functions
function points

Sum up function
points (Tu)

Get effort for current
project from FP curve

Adjust total function
points (Ta = Tu * A)

Former Projects

Evaluate former projects
effort-FP pairs

Update project base
after each project

Create FP curve by
regression analysis

The complete system has to be specified in terms of such functions.
This is the first step, requiring a decomposition of the system into mod-
ules, programs and functions. Clearly such a decomposition cannot be
done with sufficient accuracy before the system has been specified and
designed in detail. This shows that the FP method is not an appropriate
method for pre-project or initital project stages but for later stages. In an
early project stage, at best rough function estimates can be used.

In the next step, each function is evaluated according to its level of
difficulty. Weights for each type of function and each level of difficulty
are predefined, based on previous experience. Let cij = weight of a
function of category i and difficulty level j, and xij = function count for
category i and difficulty level j, with j ∈ {simple, average, difficult}.
The function points for category i are then obtained by adding the
products cij * xij for category i.

System must be
decomposed into
functions first

2.4 The Business Value of IS: Costs and Benefits 79

For example, a dialog-input function that checks the plausibility of
user input by searching the system's database, provides context-sensitive
user menus, and lets the user go back and forth between screens is con-
sidered difficult. A similar function that checks only whether the user
input is numeric or not, provides only fixed standard menus, and allows
no forward and backward navigation is considered simple. The difficult
function will be weighted with 6, the simple one with 2 (and an average
function, for example, would be weighted with 4). If there are 50 diffi-
cult, 20 average and 40 simple input functions in the prospective
system, then the total function points for input functions are:

 50*6 + 20*4 + 40*2 = 460

Function weights for the other types may have different ranges. For
example, file-handling functions have often been considered more
difficult, with ranges from 5 to 20.

The total number of function points Tu summed up over all functions
of all categories is then:

 Tu = ΣΣ cij * xij

When the sum of the function points is computed in this way, this
sum is weighted according to characteristics which reflect the com-
plexity and the environment of the project. Such characteristics include
the development platform, the degree of distributed processing, the
amount of reuse, the required performance (e.g. response times), experi-
ence of the development team, degree of user involvement, and so on.
The project characteristics are mapped to an assessment factor A that
raises or lowers the initial total function points Tu in a range of ± 30 %.

More precisely, each characteristic is weighted with a value between
0 and 5. A value of 0 means that this characteristic has no influence in
the current project whereas a value of 5 indicates very strong influence.
The weighted characteristics are added up, yielding a value around 100.

When Tc is the sum of project characteristics, the project assessment
factor A reflecting project characteristics is computed as

 A = 0.7 + Tc /100

Weighting the unadjusted function points total Tu with A finally
results in the adjusted total Ta:

 Ta = A * Tu

Provided that the organization has collected experiences from earlier
projects (i.e. assessed the projects according to the FP method), then the
function points from those projects can be plotted against the effort

Example: a
"difficult" and
"simple" function

Sum of function
points weighted
with the project's
complexity

Total function
points

Function-point
curve

2 Managing the Making of Information Systems 80

needed in each project, yielding a set of points scattered in a two-dimen-
sional space. By regression analysis a curve can be constructed through
these points (FP curve) as in figure 2-15. The expected effort of the new
project is then obtained by reading the effort (person months) corre-
sponding to the Ta value of the new project from the FP curve.

The function-point method has the advantage that it uses more objec-
tive measures than just gut level analogies or judgements. Nevertheless
it involves subjective factors as well. Different people have different
opinions of what makes a function simple or difficult, and of what
makes a project complex and more/less problematic to handle.

Figure 2-15 Function-point curve

Ta

Person months

1000

2000

3000

4000

100 200 300 400 500

Ta

Person months

1000

2000

3000

4000

100 200 300 400 500

Other drawbacks come from the fact that the FP method is rather old. It
is a suitable method for data-processing systems with a significant share
of input/output handling, designed in a function-oriented way, for exam-
ple with an appoach such as SA/SD (Structured Analysis/Structured
Design [DeMarco 1978]). Today's information systems have different

Subjective
factors

Modern IS are
not function-
oriented

2.4 The Business Value of IS: Costs and Benefits 81

characteristics, e.g. graphical user interfaces (GUI) that did not exist
when the FP method was invented. They use database management
systems instead of files, they are often event-driven, and usually they
are designed as object-oriented systems.

The FP method has been extended and refined to cover new system
types and development approaches. The International Function Point
Users Group (IFPUG), a non-profit organization whose mission is to
promote the effective management of application software development
through the use of function points, included rules for counting GUI
based systems in their manual [IFPUG 2005]. The IFPUG claims that
the FP method can be used for object-oriented systems as well and
demonstrated this with a case study.

Cocomo II

The best-known cost-estimation model today is Cocomo II. This is a
very complex model, created by Barry Boehm and his research group at
USC-CSE, the University of Southern California's Center for Software
Engineering. Its predecessor, called Cocomo (Constructive Cost Mod-
el), had been developed by Boehm during his time as Chief Scientist of
the Defense Systems Group at TRW, a Californian consulting firm.

Cocomo was based on empirical project data from a large set of pro-
jects at TRW. The original model was first published by Boehm in his
famous book "Software Engineering Economics" in 1981 [Boehm
1981]. Cocomo II is seen by the authors as a model that evolved from
the original Cocomo, accounting for changes in software-engineering
methodology and technology, rather than as a replacement or with-
drawal of the earlier concepts. To distinguish the original model from
the upgraded model, the former one is now referred to as Cocomo 81.

Cocomo 81 was a suitable model for large software systems built to
specification according to a linear development model such as the
waterfall model (cf. section 4.2.1) and implemented with third-genera-
tion languages. However, business systems, object-oriented software
and new approaches that became popular in the late 1980s and the
1990s – such as prototyping, composing solutions from off-the-shelf
components, evolutionary and incremental development etc. – did not
fit Cocomo 81 well.

An upgraded version of the model, Cocomo II, was created by
Boehm and his group and published in 1995 [Boehm 1995a]. Cocomo
II addresses the previously mentioned topics. It provides three sub-
models targeted towards different types of systems and different stages
of a project:

International
Function Point
Users Group
(IFPUG)

Barry Boehm is
the father of
Cocomo

Cocomo II's
predecessor was
Cocomo 81

Cocomo II
submodels

2 Managing the Making of Information Systems 82

 Application composition model: This model is for systems that are
developed with the help of tools connecting interoperable compo-
nents. Those components are created, for example, with GUI
builders, distributed-processing middleware or database managers,
or selected from domain-specific packages.

 Early design model: This model can be used before the system's
architecture and design have been completed, i.e. in early project
stages.

 Post-architecture model: When the architecture is specified and
more details are known, the cost of the system can be estimated on
a fine-grained level with the help of the post-architecture model.

Application composition model

The application composition model is recommended for prototyping
projects and for software that can be put together from existing com-
ponents.

This model employs object points as a measure of size rather than
lines of code or function points. An initial object count is obtained from
the estimated number of screens, reports and third-generation language
modules. Each such object is weighted according to its classification as
simple, medium or difficult. Finally the reuse rate and the developer's
productivity are taken into account. Boehm et al. propose a seven step
procedure to arrive at the expected effort in person months [Boehm
1995b]:

1. Assess object counts, i.e. estimate the number of screens, reports

and 3GL components that will constitute this application.
2. Classify each object instance into simple, medium and difficult

complexity levels depending on values of characteristic dimen-
sions. What makes a screen simple, medium or difficult, for ex-
ample, are the number of data tables where the data comes from,
the distribution of those tables between servers and clients,
 and the number of views contained in the screen. For reports, the
same criteria regarding sources of data are considered plus the
number of sections the report has. 3GL modules are generally
considered difficult.

3. The weights associated with simple, medium and difficult objects
as shown in figure 2-16 are then employed to reflect the relative
effort required to implement an instance of that complexity level.

Object points are
used as a size
measure

Seven step
procedure

Classifying
objects

Assigning
weights

2.4 The Business Value of IS: Costs and Benefits 83

4. Determine object points: Add all the weighted object instances to
get one number, the object-point count OP.

__

Figure 2-16 Object weights for application composition model§

3
8

10

2
5

1
2

Screen
Report
3 GL component

difficultmediumsimple

Complexity weight
Object type

3
8

10

2
5

1
2

Screen
Report
3 GL component

difficultmediumsimple

Complexity weight
Object type

5. Estimate the percentage of screens, reports and 3GL modules ex-
pected to be reused in the project (%reuse). Compute the new
 object points NOP as:

 NOP = OP (100 - %reuse)/100.
6. Determine a productivity rate, PROD = NOP/person month, from

the scheme given in figure 2-17. (The productivity rates in the
 figure were derived from an empirical analysis of project data.)

Figure 2-17 Productivity in application composition model#

Developers'
experience
and capability

 very low low nominal high very high

ICASE maturity and
capability very low low nominal high very high

PROD (NOP/person
month) 4 7 13 25 50

§ Boehm 1995b.
Boehm 1995b.

Determining OP
count

Estimating reuse

Determining
productivity

2 Managing the Making of Information Systems 84

7. Compute the estimated effort for the project in person months
(PM) as:

 PM = NOP/PROD

Early design model

As the name suggests, this model is used early in or before the design
phase. At this stage of the system development, not enough is known
for a fine-grained cost estimation. The early design model uses a rela-
tively small set of cost drivers compared with the post-architecture
model. Those cost drivers are the ones that can be reasonably assessed
at an early point of development.

The early design model uses unadjusted function points (Tu) and
source lines of code (SLOC) for estimating the size of the system.
Functions points for the system under consideration are determined in a
similar way as in the function-point method above. The unadjusted
function points Tu are converted into source lines of code. Further
computations are based on SLOC. Cocomo II provides detailed criteria
of what is counted as a source line of code and what not.

The basic estimation equation in the early design model yields the
effort PM as:

 PM = A * SB * EA

where A is a constant calibrated with empirical data. It is proposed to be
in the range between 2.5 and 3. S is the size of the system in KSLOC
(kilo SLOC = thousand SLOC). EA is a multiplier for effort adjustment
based on the cost drivers considered at this level.

B is an exponential factor that reflects increased or decreased effort
as the size of the project increases (economies or diseconomies of
scale). If B < 1, the project exhibits economies of scale. If the system's
size is doubled, the project effort is less than doubled. For small
projects, fixed startup activities such as tailoring tools and setup of
standards can be a source of economies of scale. Scale factors are:

– Precedentedness (how familiar is the project?)
– Development flexibility (rigorous vs. general goals)
– Architecture/risk resolution (well-specified interfaces, extent of risk

analysis carried out)
– Team cohesion (difficult vs. seamless interaction in the team)
– Process maturity (according to capabilities maturity model – CMMI)

Computing
person months

Early design
model is used
early in or before
the design phase

Function points
and lines of code
are used as a
size measure

Basic estimation
equation

Scale factors

2.4 The Business Value of IS: Costs and Benefits 85

Each factor is rated with a weight Wj from 5 (very low) to 0 (very high).
Boehm et al. recommend setting the exponent B as follows:

 B = 1.01 + 0.01 Σ Wj

The effort adjustment multiplier EA is computed as the product of the
numerical values obtained for seven cost drivers that are considered in
the early design model:

– RCPX (required software reliability, database size, system complex-

ity, documentation)
– RUSE (additional effort for required reusability)
– PDIF (platform difficulty)
– PERS (personnel capability)
– PREX (personnel experience)
– FCIL (facilities, e.g software tools, multi-site development)
– SCED (required development schedule)

Each cost driver is weighted on a scale from 1 (very low) to 6 (very
high). The product of the weighted cost drivers yields the effort adjust-
ment multiplier:

 EA = RCPX * RUSE * PDIF * PERS * PREX * FCIL * SCED

As an example, consider a development project with system size SLOC
= 12,000, an exponential factor B = 1.1 and A = 2.95. If no cost driver
has any upwards or downwards effect (i.e. all cost drivers are 1), then
the basic estimated equation yields a total effort of:

 PM = 2.95 * 121.1 * 1 = 45.4 person months

Suppose the product of the cost drivers EA is different from 1, e.g. 1.4,
then the total effort of the project is calculated as:

 PM = 2.95 * 121.1 * 1.4 = 63.5 person months.

Code generation and reuse

Nowadays significant portions of code may be generated with auto-
mated tools (e.g. ICASE tools). The productivity in terms of SLOC is
much higher than for manually created code. Therefore the effort
required for generated code may be computed separately and added to
the effort for manually written code. Let

PMa = additional effort for using code generation,

Cost drivers

Effort adjustment
multiplier

An estimation
example

Generated code

2 Managing the Making of Information Systems 86

PM = effort for manually generated code as in the
 basic stimation equation above
PMm = total effort for such a mixed system,
ASLOC = number of automatically generated source code
 lines,
AT = percentage of the total system code generated
 automatically,
ATPROD = productivity level for this type of code creation.

The estimated effort for the automated part is computed as [Sommer-
ville 2007, p. 629]:

 PMa = (ASLOC * AT/100) / ATPROD

Then the total effort taking manually and automatically produced parts
of the system into account is:

 PMm = PM + PMa

Code reuse is another characteristic of modern software develop-
ment. Cocomo II considers reused code in such a way that it computes
an equivalent number of lines of new source code (ESLOC) based on
the number of reusable lines of code in the components that have to be
adapted (ASLOC). The estimated project effort is then based on the
equivalent. The formula for ESLOC takes into account the effort
required to understand the software, to make changes to the reused code
and to make changes to the system to integrate the new code [Boehm
1995b]:

 ESLOC = ASLOC * ((AA + SU)/100 + 0.4 * DM + 0.3 * CM +
 0.3 * IM)

AA (assessment and assimilation), SU (software understanding), DM
(percentage of design modification), CM (percentage of code modifica-
tion) and IM (percentage of integration effort) are called increments and
are rated on scales with different ranges [see Boehm 1995b for details].

Post-architecture model

The post-architecture model uses the same PM estimation equation as
the early design model, but there are more cost drivers which are more
detailed than in the former model.

The code size in this model is determined by estimating three compo-
nents:

1. the total number of lines of new code to be developed,

Reused code

More cost drivers
and more details
than in the early
design model

2.4 The Business Value of IS: Costs and Benefits 87

2. the number of equivalent source lines of code (ESLOC) consider-
ing reuse,

3. the number of lines of code to be modified because of require-
ment changes,

and adding these components.
The cost drivers are grouped into four categories: product factors

reflecting characteristics of the new system, hardware-platform factors
constraining the project, personnel factors taking experience and
capabilities of the project workers into account, and project factors
reflecting project characteristics such as the software technology used.

Figure 2-18 summarizes the cost drivers for the post-architecture
model. Each cost driver is rated on a scale from very low to extra high.
Detailed criteria for this rating are available. The weights determined in
the rating are mostly numbers between 0.8 and 1.3 (some ranges have
end points as low as 0.67 and as high as 1.67).

Judging the cost drivers is not free from subjective elements.
Sommerville demonstrates the effects of the multipliers by a small
example in which the initial value of B is 1.17. The cost drivers RELY,
CPLX, STOR, TOOL and SCED are considered with values ≠ 1, and
the resulting development effort is 730 person months [Sommerville
2007, p. 634]. If the five cost drivers are set to their maximum values,
the result is 2,306 person months. This is more than three times the
initial estimate. If the minimum values are taken, then the effort is 295
person months or 40 % of the initial estimate.

This variation in the results highlights that the people responsible for
cost estimation need thorough experience with the Cocomo II model to
arrive at reasonable estimates. This experience cannot be easily trans-
ferred from one project type or application domain to another. Cocomo
II requires many details that need to be elaborated and calibrated for
each user organization separately. Sommerville's bottom line is that "...
it is an extremely complex model to understand and use ... In practice,
however, few organisations have collected enough data from past pro-
jects in a form that supports model calibration. ... for the majority of
companies, the cost of calibrating and learning to use an algorithmic
model such as the Cocomo model is so high that they are unlikely to
introduce this approach" [Sommerville 2007, p. 634].

Cocomo II has additional features supporting the calculation of
hardware cost (target hardware), platform cost, manpower cost and the
duration of the project.

The total duration of a project depends on many factors. Since a short
time-to-market may give the company a competitive advantage, manag-
ers tend to demand short development times. Putting more personnel

Cost drivers

Calibrating a
Cocomo II model
Result is highly
sensitive to
multiplier values

Additional
Cocomo II
features

2 Managing the Making of Information Systems 88

into a project does not necessarily mean that the project will be complet-
ed faster. In particular, if a project is behind schedule, more people may
cause more problems. "Adding manpower to a late project makes it
later" is an often quoted phrase by Frederick Brooks, a software engi-
neering pioneer [Brooks 1995, p. 25]. Although more staff does not al-
ways mean slowing down the project, it is obvious that more people
have to spend more time communicating and specifying their interfaces.

Figure 2-18 Cost drivers in the post-architecture model [Boehm 1995a]

Product factors

RELY
DATA
CPLX
RUSE
DOCU

Required system reliability
Size of database used
Complexity of system modules
Required percentage of reusable components
Extent of documentation required

Platform factors

TIME
STOR
PVOL

Execution time constraint
Main memory constraints
Volatility of development platform

Personnel factors

ACAP
PCAP
AEXP
PEXP
LTEX
PCON

Capability of project analysts
Capability of programmers
Analyst experience in the application domain
Platform experience
Language and tool experience
Personnel continuity

Project factors

TOOL
SCED
SITE

Use of software tools (weak, powerful, ...)
Required development schedule (tight, comfortable, ...)
Multisite operations (collocated, distributed, international, ...)

The project's duration TDEV can be derived from the computed effort
figure PM. The exponent in the estimation formula accounts for the
diverse factors that may influence the elapsed time:

Duration
estimate

2.4 The Business Value of IS: Costs and Benefits 89

 TDEV = 3 * PM(0.33 + 0.2 * (B-1.01))

In case the project schedule has been compressed (or expanded)
compared to the initial schedule, the percentage of the compression or
expansion can be considered through a factor PSCED:

 TDEV = 3 * PM(0.33 + 0.2 * (B-1.01)) * PSCED/100

To illustrate the computation of TDEV, consider the above development
project with system size SLOC = 12,000, an exponential factor B = 1.1,
A = 2.95, and EA = 1.4. PM = 63.5 person months was yielded by the
estimation equation.

Assuming that the project schedule was compressed to 80 % (PSCED
= 80), the duration of the project is computed as:

 TDEV = 3 * 63.5(0.33 + 0.2 * (1.1-1.01)) * 80/100 = 10.2 months.

It should be noted that Cocomo II is not an academic or scientific
approach but based on observations and data from real projects. The
values of cost drivers, weights, scale factors etc. have been calibrated
and adjusted over the years. We might say that Cocomo II is a "tuned
model" based on real-world observation rather than an analytic model.

2.4.4 Cost-benefit Analysis
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Will a new information system be worth making? Managers like to base
their decisions on financial figures. Spending money on an asset that
will hopefully produce returns in the future is an investment. Trans-
lating the question into management terminology results in something
like: will we earn money from investing in the making of the new
system? Or in other words: what is the return on the investment if we
buy or develop that system?

In the field of capital budgeting, a variety of methods are available to
assess the profitability of an investment. Common methods are:

» Payback period
» Accounting rate of investment (ROI)
» Cost-benefit ratio
» Net present value
» Profitability index
» Internal rate of return (IRR)

Cocomo II is a
"tuned model"

Capital-
budgeting
methods

2 Managing the Making of Information Systems 90

These methods are based on cash flows associated with buying or
creating an asset. Money for the investment is spent in the beginning
(cash outflow). Benefits from the investment are obtained later in the
form of net cash inflows. Capital-budgeting methods weigh the cash
flows going out of the company against the cash flows coming into the
company, yielding a measure of the profitabilty of the proposed
investment.

The main problem with capital-budgeting methods is that costs and
benefits have to be expressed in financial numbers. Our discussion in
the previous sections showed that predicting the costs of a new informa-
tion system is already difficult, yet it is still easier than grasping the
benefits. Costs tend to be tangible, and the major part of the costs occurs
in the near future. Benefits are often intangible, achieved later, and
cannot be expressed directly in financial figures.

Therefore it is helpful to distinguish between two scenarios, depend-
ing on whether cash flows are certain or uncertain.

Scenario 1: Certainty regarding cash flows

Scenario 1 comprises IS projects where reliable estimates of cash
inflows and outflows are available. Consider, for example, a retail chain
selling fashion clothes totaling €120,000,000 per year in their stores in
several countries. Sales are reported to the company's headquarters at
the end of each month. The marketing department found that the com-
pany could sell 20 % more in the next four years if they had real-time
sales data available. In this case, production, procurement and delivery
could be adjusted quickly to respond to changing customer behavior.
An appropriate information system would be able to collect, evaluate
and aggregate real-time data and make the needed information available
to the production and sales managers.

20 % of €120,000,000 is easy to calculate (€24,000,000). Assuming
that the additional cost of operations is €19,000,000 in the first year and
€15,000,000 per year afterwards, the net benefits are €5,000,000 in the
first year and €9,000,000 in each of the following three years (cash
inflows).

A suitable information system offered by a vendor of standard busi-
ness software has been selected. The total cost of ownership amounts to
€15,500,000 in the first year and €2,900,000 in the following years. In
the TCO, new hardware, software and network components are in-
cluded as well as support, maintenance and software licenses. Figure 2-
19 summarizes the example data.

Cash inflows and
outflows

Reliable
estimates of cash
inflows and
outflows

2.4 The Business Value of IS: Costs and Benefits 91

Figure 2-19 Cash flows of an IS project (example)

2,900,000
9,000,000
6,100,000

2,900,000
9,000,000
6,100,000

2.900,000
9,000,000
6,100,000

15,500,000
5,000,000

-10,500,000

Costs
Benefits
Net cash flow

4321Year

2,900,000
9,000,000
6,100,000

2,900,000
9,000,000
6,100,000

2.900,000
9,000,000
6,100,000

15,500,000
5,000,000

-10,500,000

Costs
Benefits
Net cash flow

4321Year
Cash flow

Given the above data, a capital-budgeting method can be used to
support the decision making. Since cash inflows that will occur in the
future are not of the same value to the company as money that is
available today, the cash flows have to be discounted.

A method that takes the time value of money into account is the net
present value (NPV) method. The net present value of an investment is
computed as the sum of the expenditure in the first period (negative
value) plus the discounted cash flows from future periods. Let xi be the
cash flow in period i, p the interest rate, and n the number of periods in
which cash flows will occur, then the net present value of the invest-
ment is:

 n
 NPV = Σ xi / (1+p)i
 i = 0

with x0 = initial investment (or net expenses in the first period). An
investment is considered favorable if the net present value is positive. If
NPV < 0 the conclusion is that investing the money in the project will
result in a loss. The investor would get a better return if the money was
invested elsewhere at an interest rate of p %, for example buying bonds
in the capital market with an effective yield of p %.

Assuming an interest rate of 5 % and applying the NPV formula to
the above example, the net present value of the new system is:

NPV = 6,111,812.98

This NPV means that the company will earn an equivalent of
€6,111,812.98 (today's value) from the new information system; i.e. the
decision should be in favor of the system.

Net present
value (NPV)

2 Managing the Making of Information Systems 92

It should be noted, however, that this conclusion is only true if the
future sales are really 20 % higher than at present (€24,000,000). If they
grow only by 18 % (€ 21,600,000), the net benefits will be €2,400,000
lower than expected, i.e. €2,600,000 in the first year and €6,600,000 in
the following years (assuming that operational costs remain the same).
Now the net present value comes out negative, meaning that the
investment will result in a loss:

 NPV = -2,823,982.29

This example shows that results of the NPV method, just as results of
other capital-budgeting methods, are only trustworthy if the underlying
assumptions are satisfied, in particular that the cash flows can be pre-
dicted with certainty.

Scenario 2: Uncertainty regarding cash flows

Unfortunately the benefits of most information systems do not lend
themselves easily to quantification and measurement in units of money.
Rather they are intangible, for example improving the firm's planning
and decision-making infrastructure, streamlining business processes, or
opening up new business opportunities. Capital-budgeting methods do
not help much in those cases.

The making of information systems is not so much different from
other situations where management decisions are required but reliable
figures are not available. Managers use qualitative judgement and ex-
perience, consider cause-effect relations, and weigh market opportuni-
ties against risks to arrive at a decision. Qualitative approaches such as
scenario techniques, balance of arguments and cause-effect chains can
be used to support decision making when crisp numbers are not in sight.

Cause-effect chains or networks, for example, put intangible benefits
into a logical order, exhibiting implications of one benefit on other
benefits. At the end there should be an effect that represents a financial
goal or can easily be translated into such a goal. Figure 2-20 illustrates a
cause-effect chain of benefits for a project similar to the one discussed
in scenario 1.

If such a cause-effect chain is sufficiently convincing and an accept-
able cost of the new information system can be predicted with sufficient
accurateness, the decision will be in favor of the system.

As we pointed out before (see section 2.1), the forces stimulating
new information systems are often market driven. When an IS might
help to open new business opportunities or to satisfy important target
groups demanding new services from the firm, qualitative benefits have

Intangible
benefits

Cause-effect
chains

2.4 The Business Value of IS: Costs and Benefits 93

a good chance of being convincing enough. The management decision
to obtain such a system is likely to be based on "fuzzy" expectations
rather than on precise cash-flow figures that are not available at this
point anyway. In the absence of reliable figures, a typical decision
situation is characterized by:

– a stated requirement from the market,
– a commitment to satisfy that requirement,
– the assignment of a project leader,

Figure 2-20 Cause-effect chain of a proposed information system

Real-time feedback from retail stores

Better information for sales, procurement,
and production department

Just-in-time delivery of materials by supplier

Reduced inventory costs for inbound materials

Shorter time-to-market of new products

Satisfying customer demand better

Fewer shelf warmers and returns from retail
stores

Higher revenues

Real-time feedback from retail storesReal-time feedback from retail stores

Better information for sales, procurement,
and production department

Better information for sales, procurement,
and production department

Just-in-time delivery of materials by supplierJust-in-time delivery of materials by supplier

Reduced inventory costs for inbound materialsReduced inventory costs for inbound materials

Shorter time-to-market of new productsShorter time-to-market of new products

Satisfying customer demand betterSatisfying customer demand better

Fewer shelf warmers and returns from retail
stores

Fewer shelf warmers and returns from retail
stores

Higher revenuesHigher revenues

2 Managing the Making of Information Systems 94

– a project budget,
– a deadline when the system is expected to be operational.

When the decision to obtain the IS is made under uncertainty and with
incomplete information, the budget and the deadline will only by chance
be appropriate to meet the intended project goals. What happens when
the project exceeds the budget or hits the deadline? Again a manage-
ment decision will be made regarding a possible extension of the budget
and/or the deadline, a reduction of the project goals or the cancellation
of the project as discussed in section 2.2 above.

Management
decisions

3.1 What is an Architecture?

"Architecture" is a popular term, yet different people use it for different
things and with different meanings. In the 1980s and 1990s, architecture
was close to becoming a buzzword. Apart from computer architecture,
terms like enterprise architecture, information architecture, application
architecture, communication architecture and more appeared to be
trendy.

The discussion in chapter 1 showed the need for quite a number of
different elements to work together smoothly. Depending on the level of
abstraction, such elements may be entire information systems such as a
CRM system, web and application servers, database management sys-

Different
elements working
smoothly
together

Information
Systems
Architecture

3 Information Systems Architecture 96

tems, browsers etc. In a fine-grained view, elements may be programs
or program modules, databases, data structures, classes, objects, user-
interface forms or similar entities. Elements have to be arranged in a
meaningful and effective way. The ease of adding new elements to the
system and removing existing ones is important.

What exactly is an architecture? An architecture has very much to do
with system structure. "Structure matters," is a key statement in a well-
known book on software architecture [Bass 2003, p. 44]. An architec-
ture defines the elements of a system, what they are meant to do, and
their interrelations. Every non-trivial system has an architecture,
whether it is implicit or explicit. A building has an architecture, a com-
puter has an architecture, and software has an architecture. Booch calls
a software architecture intentional if it has been explicitly identified and
implemented, whereas "an accidental architecture emerges from the
multitude of individual design decisions that occur during development
[Booch 2006, p. 9]."

The study of software architecture as "... the principled understand-
ing of the large-scale structures of software systems" [Shaw 2006, p.
31] emerged in the late 1980s. Since that time, intensive research in the
field has made software architecture an essential part of system design
and construction. An overview of the evolution of software architecture
is given by Kruchten and coauthors [Kruchten 2006].

When discussing architecture, it is important to define the scope: Are
we taking an organization-wide view, or are we talking about one infor-
mation system? Hence a common distinction in the past was between an
enterprise-wide architecture and an information system's architecture
(sometimes called software architecture). While the latter is limited to
the elements of just one system, the former represents a framework for
all information systems in the organization.

At present we consider this distinction reasonable because different
systems with different structures do coexist in reality. They all have
their individual architectures: SAP ERP has its architecture, Microsoft
Dynamics has its architecture, Siebel CRM has its architecture, etc. Any
information system built around any of these systems must match the
respective architecture.

Yet we believe that in the future the distinction between an enter-
prise-wide architecture and an information system's architecture will be-
come obsolete. With the emergence of enterprise-wide software plat-
forms, standard software vendors will place all their systems on such
platforms. Likewise, user organizations will base individual new infor-
mation systems on the same platform as the rest of their information
systems. Using the same software infrastructure will have a standardiz-

"Structure
matters"

Enterprise-wide
architecture vs.
information
system
architecture

Different
architectures can
coexist

3.1 What is an Architecture? 97

ing effect on all information systems. In section 3.5, software platforms
and their relationship with architecture will be discussed.

Stressing an organization-wide integrative view of systems and
business needs, the term enterprise architecture has been coined. An
enterprise architecture describes how business processes, data, programs
and technologies come together. Enterprise architects make all these
parts fit together and fit into the governing principles of the enterprise
[ASUG 2006, p. 9]. Enterprise architects take a holistic perspective.

For the above reason, we give just one generic definition of the term
information systems architecture, extending the definition of software
architecture by Bass et al. [Bass 2003]. The definition comprises the
architecture of a single information system as well the architecture of an
enterprise-wide set of IS.

An information systems architecture is the architecture of a usu-
ally large information system that may contain subsystems. Archi-
tecture refers to the structure or structures of the system, which
comprise the elements of the system, the externally visible proper-
ties of those elements, and the relationships among them.

Referring to the externally visible properties of the elements implies that
an architecture is an abstraction using the encapsulation principle [Par-
nas 1972a].

Since structure depends on the perspective of the viewer and on the
type of relationship between the elements relevant for the viewer, a sys-
tem can have more than one structure. Often one structure dominates,
but others may be present. Note that "properties" is not being used here
in the narrow object-oriented sense which describes only static attrib-
utes, but in a general sense which includes behavior. Thus the externally
observable behavior of the elements is part of the architecture.

What makes an architecture a "good" architecture? Fundamental
attributes of a quality architecture are:

– Robustness
– Stability
– Flexibility

An architecture is robust if structural changes can be performed without
disturbing the entire architecture. Stability means that the architecture
can survive for a significant period of time. A stable and robust archi-
tecture will allow for changes but basically remain the same over time.
New versions of software products, for example, will not require the
architecture to be redesigned.

Enterprise
architecture

Definition:
information
systems architec-
ture

A system can
have more than
one structure

3 Information Systems Architecture 98

Architectural flexibility is a very important attribute today. In a dy-
namic world, software elements are changing rapidly. The architecture
must allow the exchange of existing elements and the integration of new
elements without major efforts. This calls for consistent application of
the abstraction, information-hiding and encapsulation principles that go
back all the way to the early 1970s [Parnas 1972b].

3.2 Common Architectural Patterns

In this section, we will discuss common architectural patterns, starting
with a look at how the study of software architecture has emerged
during the past decades.

3.2.1 Flashback to System Structures
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Information hiding, hierarchy and layers of abstraction are the pillars on
which architectures are built. Like information hiding, the concept of
hierarchy was defined by Parnas in another famous article: "On a 'Buzz-
word': Hierarchical Structure" [Parnas 1974]. Parnas insisted that "struc-
ture" is a meaningful term only if there is a precise understanding of the
type of relationship between the elements.

Parnas proposed the "uses relation" for that purpose. For a software
system decomposed into modules, the uses relation is defined as
follows: Module A uses module B if correct execution of B may be
necessary for A to complete the task described in its specification
[Parnas 1979, p. 131]. The uses relation was an appropriate relationship
type for the development of individual software systems underlying the
discussion at that time.

Abstraction layers in information systems development were
discussed for the first time in the 1970s. A famous operating system
developed by Edsger Dijkstra, the T.H.E. system, served as a model
[Dijkstra 1968b]. The elements of that system were arranged in layers.

Flexibility is an
important
attribute of a
system's
architecture

"Structure" is a
buzzword unless
the relationship
type is defined

"Uses relation"
(Parnas)

Abstraction
layers

3.2 Common Architectural Patterns 99

Layers were encapsulated following the concept of virtual machines.
Lower layers provided abstractions of their respective functionalities to
higher layers.

Transporting this concept from operating-system to application-sys-
tem development was not straightforward and did not reach widespread
practical use. However, the basic idea of a layered system structure
returned and gained wide acceptance many years later when layered
architectures emerged.

The 1980s brought workstations and personal computers with
graphical user interfaces (GUIs). These computers were not only used
as stand-alone machines but also as front-ends to business information
systems. Since GUIs need their own processing logic, this logic was
isolated and assigned to a dedicated layer as in figure 3-1. One layer
contains the graphical user interface and another layer contains the
actual system logic.

Figure 3-1 Separation of concerns in business information systems

Presentation logic

Business logic

Presentation logic

Business logic

Information systems are usually built on databases. Preparing access to
the database and accessing the database comprises a significant portion
of an information system's code. Therefore a further division of labor
appeared appropriate following the advances of the 1980s. GUI related
tasks, database related tasks, and the actual logic of the underlying
business problem were separated and assigned to different layers.
According to this separation of tasks, a common pattern for business
information systems contains three layers as shown in figure 3-2:

– Presentation layer
– Business logic or application layer
– Database layer

GUI and
business-logic
layers

Three layers of a
business
information
system

3 Information Systems Architecture 100

Since the tasks on the three layers have often been assigned to dedicated
servers that can be accessed by clients, the term "client-server comput-
ing" was invented.

Figure 3-2 Three-layered structure of a business information system

Presentation layer

Business logic layer

Database layer

Presentation layer

Business logic layer

Database layer

The client-server model is a model for distributed computing that
divides processing between clients and servers. Clients request services
from servers, and servers provide those services. While the client-server
model is actually a software model which can be implemented on any
configuration of hardware, a common way is to assign servers and
clients to separate computers. That is why many people associate hard-
ware components with the terms servers and clients, and actually con-
sider the client-server model a hardware model.

In the field of business software, SAP was one of the first companies
to use this new model, introducing its R/3 enterprise resource planning
system as a client-server system in 1990. Subsequently, most business
information systems developed in the 1990s used the client-server
model, applying the basic principles of forming layers and separating
concerns into layers.

Modifications were now much easier than in monolithic systems,
such as when introducing new GUI versions. Changing the application
logic was also simplified as the overhead from user-interface code and

Client-server
model

3.2 Common Architectural Patterns 101

database access no longer applied. That overhead often accounted for
the largest share of an information system's code.

In a client-server system, work can be divided up among clients and
servers in many ways. If most tasks are assigned to the server(s) and
little work is left for the clients, such clients are called thin clients. They
do not require much computing power, so the client software may run
on simple computers – at the end of the spectrum even on "dumb" ter-
minals. In the opposite direction, if the clients perform a significant
share of the work, they are called fat clients. Such clients obviously
require more powerful computers.

Client-server systems with thin clients are easier to administer
because most of the software is centralized on a few dedicated servers.
Likewise, security hazards are easier to control on a server than on
many clients. Fat clients are more convienent for the user because some
tasks are executed directly at the user's computer, avoiding network
traffic and slow responses.

With web-based front-ends for information systems and web brows-
ers as the dominating user interface technology, clients have become
rather thin. This development, however, created problems for systems
requiring intensive user interaction beyond clicking on links, such as
typical business information systems today.

Nowadays a trend to bring more system functionality back to the
client can be observed, making clients fatter again. Rich client is a term
used for a client that provides more functionality than a simple browser-
based client. On a rich client some of the processing can already be
done, avoiding interaction with the server. Current technologies used for
this purpose include AJAX (Asynchronous JavaScript and XML) and
Eclipse RCP (Rich Client Platform).

3.2.2 Three-Tier and Multi-Tier Architectures
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

As the idea of dividing systems into layers spread throughout the 1990s,
the term architecture became popular. Layers were now called "tiers." A
system structure as in figure 3-3 was called a three-tier architecture.

Thin and fat
clients

Rich clients,
AJAX, RCP

Three-tier
architectures

3 Information Systems Architecture 102

Figure 3-3 Three-tier architecture

Graphical user interface

Application processing

Data management

Presentation tier

Business tier

Data tier

Graphical user interface

Application processing

Data management

Presentation tier

Business tier

Data tier

Three-tier architectures became the dominating paradigm for many
years, yet new requirements made further separations of tasks and layers
necessary. In particular, electronic commerce and electronic business
created new requirements, such as access to information systems via
Internet and web browsers. In such a case, the presentation tier is actu-
ally represented by the browser, but now a web server and an applica-
tion server had to be integrated into the architecture.

In this way, four-tier and multi-tier architectures came into existence.
SAP, for example, introduced an architecture for an Internet-enabled
R/3 release in 1997 that was composed of four tiers (or six, depending
on the interpretation of tier division) as shown in figure 3-4. In addition
to the three common tiers, an Internet tier was embedded. That tier con-
tained a web server and functionality supporting Internet technology.
The business or application tier was subdivided into R/3 core applica-
tion functionality and Internet application functionality. These compo-
nents communicate via SAP's BAPI (business application programming
interface) mechanism.

Another reason to extend the three-tier model was the emergence of
mobile commerce and mobile business, and the variety of end devices
that employees and business partners use to access a firm's information
systems.

Multi-tier
architectures

End-devices in
mobile business

3.2 Common Architectural Patterns 103

Figure 3-4 Internet enabled multi-tier SAP R/3 architecture [SAP 1997]

Presentation tier

Internet tier

Application tier

Database tier

Web browser

R/3 Internet application
components

Web server

Internet enabling
layer

BAPI

Database services

BAPI

R/3 core functionality

BAPI

Presentation tier

Internet tier

Application tier

Database tier

Web browser

R/3 Internet application
components

Web server

Internet enabling
layer

BAPI

Database services

BAPI

R/3 core functionality

BAPI

Examples are simple mobile phones with WAP and WML; more pow-
erful ones with HTTP and XHTML MP or with Java ME; PDAs, palm-
tops and pocket PCs with XHTML or HTML etc. It is a long way from
the firm's database via the business tier to the user's device-specific
browser. Device-independent data has to be converted on the way from
the business tier to the user and vice versa. In addition, data has to be
adjusted to the properties of the respective end device, such as display
size, graphics formats, available device memory etc.

An architecture for mobile business systems is shown in figure 3-5.
Compared with a conventional three-tier architecture, additional com-
plexity is introduced by the tasks necessary to establish an appropriate
user interface. These tasks are rather voluminous, involving interpreta-
tion and conversion of data in either direction. For this reason, a sepa-
rate tier for the complex presentation logic is introduced, while the pres-
entation as such remains on the top tier, realized by device-dependent
browsers.

Presentation
logic tier

3 Information Systems Architecture 104

Figure 3-5 Four-tier architecture for mobile information systems

Browser-based user interfacePresentation tier

Application processing

Data management

Business tier

Data tier

Content interpretation and conversion
Presentation logic tier

Browser-based user interfacePresentation tier

Application processing

Data management

Business tier

Data tier

Content interpretation and conversion
Presentation logic tier

Multi-tier architectures essentially impose a clear static structure onto a
software system. Each system element belongs to a particular tier. The
elements are interconnected according to one or more relationship
types.

The overall structure of the system is static in the sense that the
system is formed by the collection of all present elements. The logical
view is that of one self-contained system, even though the system ele-
ments may reside at different physical locations, e.g. on different serv-
ers and clients connected by a network. (We could call such a system a
"monolith", on a high abstraction level, if the term "monolithic system"
had not been coined in the old times to describe non-modular systems.)
The elements are static parts of the system, intended to remain what
they are and where they are.

The perspective of conventional architectures such as a three-tier or
multi-tier architecture is that a software system is composed of modules.
Such modules may be procedures, forms, objects etc. – i.e., pieces of

Tiers impose a
clear static
structure on a
software system

3.3 Service-oriented Architecture (SOA) 105

program code are regarded as elements of the system. A completely
different view is taken when services (instead of software modules) are
considered the constituents of an architecure.

3.3 Service-oriented Architecture (SOA)

In a service-oriented architecture (SOA), a system is regarded as a
collection of services. The SOA perspective of architecture is thus on a
higher abstraction level. Just as in real life, where people and businesses
are increasingly interested in obtaining services instead of just products
(objects), both the developer and the user of a software system will
attach higher importance to getting the specified work done (i.e. obtain-
ing a service) than to knowing which software module or modules are
performing that work.

While software modules of a conventional system are invoked
through method or procedure calls, a service exchanges messages with
other services. That is, the interface of a service is constituted by the
messages defined for communication with other services. Of course
there must be software modules behind a service interface doing the re-
quested work, yet these modules are completely hidden. Services
exhibit strong information hiding.

In contrast to a conventional system, a system with a service-oriented
architecture is not monolithic – neither physically nor logically. The
opposite is true. Services may be obtained from anywhere. There is no
need for the code implementing the service to be on a local server nor
inside the organization at all. The service may be invoked via the In-
ternet from anywhere in the world. The same service may be used in
different information systems, ideally by different organizations inde-
pendent of their geographic location.

Before proceeding further, the terms service and service-oriented
architecture (SOA) have to be defined.

The notion of a software service is actually adopted from the notion
of services in a business context. Customers or clients demand services
from businesses, e.g. getting a quotation, booking a flight or opening a
bank account. Likewise, a software service provides some functionality
that is useful to software clients. A service provides a function that is

Service-oriented
architecture
(SOA)

Services
exchange
messages

Services may be
obtained from
anywhere in the
world

3 Information Systems Architecture 106

well-defined, self-contained and does not depend on the context or state
of other services [Barry 2003, p. 18]. A service accepts requests and
returns responses through a well-defined, standard interface as illustrat-
ed by figure 3-6.

A formal definition of the term service was given by the W3 Consor-
tium [W3C 2004]:

A service is an abstract resource that represents a capability of
performing tasks that form a coherent functionality from the
point of view of provider entities and requester entities. To be
used, a service must be realized by a concrete provider agent.

__

Figure 3-6 Service request and response

Service
consumer

Service
provider

Service request

Service response

Service
interface

Service
implementation

Service
consumer

Service
provider

Service request

Service response

Service
interface

Service
implementation

A service-oriented architecture is essentially a collection of services that
are capable of communicating with each other. The communication can
involve either simple data passing or it could involve two or more
services coordinating some activity [Barry 2003, p. 18]. A more formal
definition is as follows:

A service-oriented architecture (SOA) is a software architecture
that defines the use of services to solve the tasks of a given
software system. These services can be employed by other ser-
vices in a standardized way. Services interoperate based on a

Definition:
service

Definition:
service-oriented
architecture
(SOA)

3.3 Service-oriented Architecture (SOA) 107

formal definition which is independent from the underlying plat-
form and programming language.

The services that constitute a particular architecture may be integrated
with the help of technical infrastructure components such as a service
bus and a service repository.

It may be noted that the term service-oriented architecture is often
defined and used in a rather general way, not referring to an "architec-
ture" in the actual sense, but calling SOA a "methodology" or a "design
style" for interoperable systems, for example.

3.3.1 Web Services
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The basic idea of a service-oriented architecture is independent of a
particular software technology. However, the popularity of SOA at the
beginning of the 21st century coincided with the emergence of web ser-
vices as a new interoperation technology that is based on standard Inter-
net protocols. The SOA paradigm as such is not an entirely new para-
digm. It was already proposed earlier in the 1990s, but nowadays ser-
vice-oriented architecture is often directly associated with web services.

Based on the W3 Consortium's definition [W3C 2004], we will use
the term web service in the following sense:

A web service is a software component designed to support
interoperable machine-to-machine interaction over a network. It
has an interface described in a machine-processable format
(specifically WSDL). Other software components interact with
the web service in a manner prescribed by its interface
description using SOAP messages.

Web services are self-contained and loosely coupled software

entities. They can be published, located and invoked across the web.
Web services offer mechanisms for building interoperable, distributed,
platform and language-independent systems. They lend themselves
naturally to incorporation into the SOA paradigm. Their features satisfy
immediately the requirements that services in a service-oriented archi-
tecture should satisfy.

Definition: web
service

Web services are
self-contained
and loosely
coupled

3 Information Systems Architecture 108

The web services framework specifies how distributed components
(services) communicate in order to use other services' functionality via
the Internet. Communication is based on message exchange. A web ser-
vice receives a message containing a request. It will process the request
and send a response message back to the requester.

The entire communication infrastructure uses XML based standards:
SOAP (formerly an acronym for simple object access protocol, now
considered a name), WSDL (web services description language), and
UDDI (universal description, discovery and integration).

SOAP

SOAP defines a common syntax for data exchange assuring syntactic
interoperability [W3C 2003]. Any web application, independent of the
underlying programming language, can send a SOAP message with the
service name and input parameters via the Internet and will in return
obtain another SOAP message with the results of this remote call.

SOAP provides an "envelope" for wrapping and sending service re-
quests and responses. SOAP messages are represented in XML format,
blowing up even simple requests and responses into many lines of XML
code. Fortunately it is not the programmer who has to write this code.
Software tools and IDEs (integrated development environments)
normally generate XML messages from higher-level service interfaces.

Figure 3-7 shows a SOAP message containing a request for product
information. The service consumer wishes to check how many units of
the product with ID A-1088 are available in stock and to receive details
of this product (e.g. description, price, description, quantity). The code
was generated by a development tool (Oracle JDeveloper 10g). The
actual request is to invoke the "getProductInfo" operation exposed by
the "MasterDataService" web service with a "productID" parameter
value of "A-1088" (all printed in bold italics in figure 3-7).

The web service returns the result in another SOAP message as
shown in figure 3-8: the "name" ("racing bike"), the "description"
("low-end racing bike for upward mobile professionals"), the "price"
("230.99"), and "13" as the "quantityAvailable" (all printed in bold
italics in figure 3-8). The names of these elements are defined in the
web service's interface.

The XML code was actually generated by the development tool from
Java source code such as:

 public Product getProductInfo(String productID){
 ...
 }

Web services
communicate
through
messages

XML-based
standards

SOAP provides
an "envelope" for
requests and
responses

SOAP request
example

SOAP response
example

3.3 Service-oriented Architecture (SOA) 109

Figure 3-7 Web service request as a SOAP message

//SOAP Request

<?xml version = '1.0' encoding = 'UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getProductInfo xmlns:ns1="MasterDataService"
 SOAP-ENV:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/">
 <productID xsi:type="xsd:string">A-1088</productID>
 </ns1:getProductInfo>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 3-8 Web service response (SOAP message)

//SOAP Response

<?xml version = '1.0' encoding = 'UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getProductInfoResponse xmlns:ns1="MasterDataService"
 SOAP-ENV:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/">
 <return xmlns:ns2="http://Products/IMasterDataService1.xsd"
 xsi:type="ns2:Products_Product">
 <id xsi:type="xsd:string" xsi:nil="true"/>
 <name xsi:type="xsd:string">racing bike</name>
 <description xsi:type="xsd:string">
 low-end racing bike for upward mobile professionals
 </description>
 <price xsi:type="xsd:double">230.99</price>
 <quantityAvailable xsi:type="xsd:int">13
 </quantityAvailable>
 </return>
 </ns1:getProductInfoResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In this code, the "getProductInfo" method returns a "Product" type
object. "Product" is a class declared in the Java program, containing the
fields "productID", "name", "description" etc. These are the names that
were used in the generation of the SOAP code.

3 Information Systems Architecture 110

WSDL

An immediate question is: how does the service consumer know what to
send in the request, i.e. the name of the operation ("getProductInfo" in
our example) and the respective parameters that are expected and re-
turned ("productID", "name" etc.)? This information is contained in the
web service's public interface, specified in WSDL.

The W3 Consortium defines WSDL as "... an XML format for de-
scribing network services as a set of endpoints operating on messages.
The operations and messages are described abstractly, and then bound
to a concrete network protocol and message format to define an end-
point" [W3C 2001].

Every web service has a WSDL description specifying how to com-
municate with the web service. Any service consumer (client) – or more
precisely, any developer of a program invoking the web service – needs
to know this specification in order to employ the web service correctly
in his/her program.

The WSDL description is also processed by the tool that generates
the SOAP messages. When the web service is actually invoked, i.e. at
runtime, the SOAP request message is sent directly to the service pro-
vider's site. The WSDL file is not needed at that time any more.

Figure 3-9 contains some selected excerpts of the WSDL file for the
above example. The WSDL description is a lot more blown up than the
SOAP message. Fortunately this code is generated, so it is not the pro-
grammer who has to write down all the details in XML format.

The "MasterDataService" web service exposes three operations, "get-
ProductInfo", "getProductDetails", and "getQuantity". The parameter to
be provided in the request invoking "getProductInfo" (in the message
part) is "productID". The result provided as response from the web
service is an object of type "Products_Product", with the name "return".
This type is declared as a complex type in the upper part of figure 3-9.

UDDI

How does the service consumer know where to send the request, i.e.
who is providing the web service? There are two answers to this ques-
tion. The first one is: The service consumer, or more precisely, the
developer of the client program, just knows the service provider's
address. SOAP messages are sent to web addresses or URLs (uniform
resource locators). If the system is developed within the organization, a
place to store the web services will be defined, e.g. a project repository.

W3C's definition
of WSDL

Clients needs to
know the WSDL
specification

Inhouse web
services

3.3 Service-oriented Architecture (SOA) 111

Figure 3-9 WSDL description for "MasterDataService" webservice

//WSDL

<?xml version = '1.0' encoding = 'UTF-8'?> <!-- Generated by
 Oracle JDeveloper 10g Web Services WSDL Generator -->
<definitions
 name="MasterDataService"
 ...
 <types>
 <schema
 ...
 <complexType name="Products_Product" ...>
 <all>
 <element name="id" type="string"/>
 <element name="name" type="string"/>
 <element name="price" type="double"/>
 <element name="description" type="string"/>
 <element name="quantityAvailable" type="int"/>
 </all>
 </complexType>
 </schema>
 </types>

 <message name="getProductInfo0Request">
 <part name="productID" type="xsd:string"/>
 </message>
 <message name="getProductInfo0Response">
 <part name="return" type="ns1:Products_Product"/>
 </message>
 ...

 <binding name="getProductBinding" type="tns:getProductPortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="getProductInfo">
 <soap:operation soapAction="" style="rpc"/>
 <input name="getProductInfo0Request">
 <soap:body use="encoded" namespace="MasterDataService"
 encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output name="getProductInfo0Response">
 <soap:body use="encoded" namespace="MasterDataService"
 encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>

 <operation name="getProductDetails">
 ...
 </operation>
 <operation name="getQuantity">
 ...
 </operation>
 </binding>

 <service name="MasterDataService">
 <port name="getProductPort" binding="tns:getProductBinding">
 <soap:address location="http://..."/>
 </port>
 </service>
</definitions>

3 Information Systems Architecture 112

The developer will then address this location to invoke the web service.
Most web services today are used in this way, since the majority of
SOA based systems are still inhouse systems.

The second answer is: The developer will look up the provider in
something like the Yellow Pages. The general idea underlying web ser-
vices is to make such services available to anyone interested in the ser-
vice via the Internet. For this purpose, a common point of reference, or a
directory (or many directories), is required. Assuming that such a point
of reference is available, developers can look up who provides the web
service they need for their work.

UDDI (universal description, discovery and integration) is one ap-
proach to making web services publicly known and accessible. UDDI
defines a way to publish and discover information about web services. It
is a platform-independent, open framework for describing services, dis-
covering businesses and integrating business services using the Internet
[Newcomer 2004, ch. 3]. The UDDI approach relies upon a distributed
registry of organizations and their service descriptions implemented in a
common XML format.

UDDI registries can be public or private registries. A private registry
is only accessible within a single organization or by a well-defined set
of users. The public registries were originally intended as a logically
centralized, physically distributed service that replicate data with each
other on a regular basis. When an organization registers with a single
instance of a public UDDI registry, the data is automatically shared with
other public UDDI registries and becomes freely available to anyone
who needs to find web services. Any organization may look up services
in a public registry using a SOAP call and will obtain a list of services
that meet the given criteria.

In the beginning of the SOA age, a number of public UDDI registries
were set up. Eventually most of them discontinued to operate as the
UDDI service was integrated into commercial products such as devel-
opment tools, IDEs, platforms and servers.

3.3.2 Web Services as Building Blocks of a SOA
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Providers may register their services in a registry. The simple scheme of
requests and responses as shown in figure 3-6 has to be extended when

Yellow Pages

UDDI: making
web services
publicly known

Public and
private UDDI
registries

Decline of public
UDDI registries

Find, bind and
execute

3.3 Service-oriented Architecture (SOA) 113

a service consumer first has to search for suitable web services on the
Internet. If both the consumer and the provider agree on the terms, the
consumer can then use a registered service. This triangle has been called
a "find, bind and execute" paradigm. It is illustrated in figure 3-10. Six
entities are involved [McGovern 2003, p. 37]: the service consumer, the
service provider, the service registry, a service contract, a service proxy
and the service lease.

Figure 3-10 SOA entities and "find-bind-execute" paradigm§

Service consumer

Service
provider

Implementation
code

Service
Proxy

Bind & execute

Registry

Find Register

Contract
Service consumer

Service
provider

Implementation
code

Service
Proxy

Bind & execute

Registry

Find Register

Contract

– The service consumer is a software component (e.g. another service)
that requests a service. The consumer looks up the service in the
registry, finds out about the terms of use and the location of the
service, and initiates the process of binding to the service and
executing the requested operation.

– The service provider is a network-addressable component that
accepts and executes requests from consumers. The provider pub-
lishes a service contract in the registry that potential service consum-
ers have to comply with.

– The service registry is a directory on the network that stores infor-
mation about web services (such as name, description, provider,
WSDL file and contracts) from service providers and displays this
information to any interested party.

– A service contract is a specification describing the interactions be-
tween a service provider and a consumer. It may also specify pre-

§ Cf. McGovern 2003, pp. 37, 39.

SOA entities

3 Information Systems Architecture 114

and postconditions for service execution or quality of service (QoS)
levels. For example, a QoS attribute may be the time it takes to
execute a service method.

– The service lease restricts the time for which a contract is valid, i.e.
the time from the beginning of the contract to the time specified by
the lease.

– A service proxy is an additional entity that helps the consumer
execute a service by calling a proxy function instead of accessing the
service directly.

These entities describe a general framework for web service consumers,
providers and registries. However, most web services used today are
services that are known beforehand (e.g. developed in the same
organization or by business partners). They are invoked directly by the
service consumer, so a registry is not involved and contracts and leases
don't need to be considered explicitly.

Web services are interoperable, supporting different platforms and
languages, usually coarse-grained, and network addressable. The flexi-
bility of a service-oriented architecture comes largely from the fact that
web services are modular, composable, location-transparent, self-con-
tained, dynamically bound and loosely coupled. Modular and compos-
able means that services can be aggregated into composite services or
into a larger solution with a limited number of known dependencies.

The concept of loose coupling aims at the minimization of dependen-
cies between modules of a system. Loose coupling is an important
quality attribute of any software architecture. In a SOA loose coupling
is accomplished through the concepts of bindings and contracts
[McGovern 2003, p. 49]. When a consumer wishes to use a web ser-
vice, it binds the request message to a transport type that the service
accepts and sends the message over the transport to the service provider.
The provider executes the requested function and returns a message
whose format is specified in the service description (WSDL). The
coupling is loose because the only dependency between the provider
and the consumer is the binding to the service based on the interface
specification in the WSDL description.

In a service-oriented architecture, a middleware functioning as a
mediator between service consumers and service providers can be used.
This middleware – an enterprise service bus (ESB) – facilitates the
invocation of services. It provides additional functionality such as trans-
forming message formats between consumers and providers, converting
protocols, and routing requests to the correct service provider [Endrei

Most web
services today
are not
registered

Web services are
loosely coupled

Middleware:
enterprise
service bus
(ESB)

3.3 Service-oriented Architecture (SOA) 115

2004, p. 41]. An enterprise service bus is usually based on a messaging
system.

Figure 3-11 Service-oriented architecture with an enterprise service bus

Service
registry

Service
provider 1

Service
provider 3

Service
provider 2

Enterprise service bus

Register

Invoke
service

Return
result

Service
consumer 1

Information
system 1

Request Response

Service
consumer 4

Information
system 3

Information
system 2

Service
consumer 2

Service
consumer 3

Service
registry

Service
provider 1
Service
provider 1

Service
provider 3
Service
provider 3

Service
provider 2
Service
provider 2

Enterprise service bus

Register

Invoke
service

Return
result

Service
consumer 1

Information
system 1

Request Response

Service
consumer 4

Information
system 3

Information
system 2

Service
consumer 2

Service
consumer 3

Figure 3-11 illustrates the middleware concept. Ideally the service
consumers – different information systems, modules of one system, or
other services – communicate only with the enterprise service bus,
giving requests to the service bus and taking responses from the bus.
Finding appropriate services, if such services are not known beforehand,
and perhaps agreeing on terms with the provider's organization is still
left to the developers creating the service consumers.

Web services tend to be fairly atomic, exposing relatively low-level
functions – as opposed to the business functions or business-process
steps the services are intended to automate. This means that either
services on a higher abstraction level, which is closer to the business
application, should be provided or that low-level web services have to

Web services
tend to expose
low-level
functions

3 Information Systems Architecture 116

be aggregated, i.e. combined into composite services. Composing web
services, also called web services orchestration (WSO), is an aspect of
software reuse that will be discussed in section 4.4.2 on reuse-oriented
process models. Providing higher-level services is discussed in the next
section.

3.4 Enterprise Service-oriented Architecture

An enterprise SOA (ESOA) is a service-oriented architecture on an
abstraction level which is closer to the business problems. An ESOA
makes use of enterprise services.

3.4.1 Enterprise Services
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Enterprise services are services that automate business problems. The
term enterprise service existed before web services became popular, in
particular in the context of enterprise messaging systems and the enter-
prise-service-bus concept [Chappell 2004]. Nowadays, enterprise ser-
vices stand for a type of web services, namely web services on the busi-
ness level. This meaning of the term has been particularly stressed by
SAP since they introduced the SOA approach for their new products.

While web services are often fine-grained, exposing some functional-
ity delivered by a single information system or a module of such a
system, enterprise services ideally are abstractions of business activities,
not of software systems or modules. Enterprise services are defined at a
granularity where they can be understood by business analysts, and
therefore not require a developer to translate. Since business activities
are part of business processes and processes often go across business
functions, an enterprise service is likely to employ functionality from
different information systems, modules or web services.

Enterprise
services are
abstractions of
business activi-
ties

3.4 Enterprise Service-oriented Architecture 117

Enterprise services use web-service technology (XML, WSDL,
SOAP etc.), therefore they can be looked at as web services on the
business level. Being on a higher abstraction level means also that enter-
prise services are more powerful than web services, often composed of
other enterprise services and/or web services. Enterprise services are
defined by SAP as "an aggregation of fine-grained web services in
combination with simple business logic" [SAP 2007a, p. 2].

SAP's concept of enterprise services is that these services can be
combined to form composite applications. A composite application
composes functionality and information from existing systems to sup-
port new business processes or scenarios [SAP 2005a, p. 3]. The con-
ceptual level of enterprise services is intended to be such that a business
analyst can "assemble" enterprise services into composite applications
that enable new business scenarios [SAP 2004a, p. 16].

The difference between a web service, on the single-system level,
and a business-level enterprise service can be demonstrated by the
following scenario [SAP 2006b, p. 7]:

Consider a business-process step such as cancelling an order that
originated in the finance department in response to a customer's credit
standing. Carrying out the task takes more than the single deletion of the
order record in the sales management system. From a business perspec-
tive, several activities across business functions and across information
systems are needed, including sending a confirmation to the customer,
removing the order from the production plan, releasing materials allo-
cated to the order, notifying the invoicing department, and changing the
order status to "inactive" or deleting it from various systems.

For each of these activities, a single web service might be offered
from the different systems (or from the modules of the company's ERP
system) involved. If just these web services are provided, an employee
responsible for the cancellation of the order will have to go to each
system or module, i.e. start a screen, and carry out the necessary action.

An enterprise service would combine the tasks solved by the various
web services and the employee's steps into one service. The employee
would just initiate the process, e.g. start a screen that leads to invocation
of the enterprise service "Cancel order".

Complex end-to-end solutions like this can be composed with the
help of enterprise services, both in the development of new and the
reuse of existing information systems. Enterprise services can be reused
in different contexts. Thus they are the building blocks for creating
larger solutions, based on existing and on new components. They can be
assembled to compose new systems and enable new business processes.
Being platform and language independent, they can also be used to

Enterprise
services are web
services on a
business level

Composite
application

Enterprise
service example

Enterprise
services can be
used as building
blocks for larger
solutions

3 Information Systems Architecture 118

communicate business logic between software systems running on
disparate platforms [SAP 2006b, p. 8].

3.4.2 Key Features of Enterprise SOA (ESOA)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

SAP calls ESOA its blueprint of a service-oriented architecture (SOA) –
"a business-driven, enterprise-level approach to service-oriented archi-
tecture that offers increased adaptability, flexibility and openness" [SAP
2007a, p. 2]. At the heart of ESOA are enterprise services. ESOA ex-
tends the SOA concept just as enterprise services enhance web services,
raising them to a higher level, i.e. to the business level.

Since business systems are mostly taking a process-oriented view,
the enterprise service-oriented architecture goes hand in hand with busi-
ness processes. Enterprise services are the building blocks in modeling,
designing and implementing new business processes and changing
existing processes. Taking into account that solutions for many business
processes and process steps already exist, hard-wired within conven-
tional information systems, a goal of ESOA is to decouple business pro-
cesses from the underlying systems so that process steps can be added,
removed or changed – even without interrupting daily operations.

In other words, an enterprise service provides a high-level interface
isolating the functionality interesting for a service consumer from the
service's implementation. This abstraction is helpful to combine and
recombine functionality from different applications as needed – and
without having to pull existing solutions apart and start all over [SAP
2006b, p. 8].

A typical architecture of an ESOA based information system has four
layers as illustrated in figure 3-12. The bottom layer contains the com-
pany's existing information systems such as an ERP system and a CRM
system. These systems expose reusable functionality as enterprise ser-
vices with the help of SAP's NetWeaver platform (see section 3.5).

Composite applications

Enterprise services are aggregated into so-called composite applica-
tions. A composite application is defined by SAP as making use of data
and functions provided as services by underlying systems.

ESOA is an
enterprise-level
approach to SOA

Abstraction from
the service's
implementation

Architecture of
an ESOA based
information
system

ES aggregated
into composite
applications

3.4 Enterprise Service-oriented Architecture 119

__

Figure 3-12 Enterprise service-oriented architecture (ESOA)

Users

Composite
application

Enterprise
services

Process
step1

… Process
stepk

ES1 ESn

SAP Netweaver

BIS1 BISm… Business
information
systems

Platform

Users

Composite
application

Enterprise
services

Process
step1

… Process
stepk

ES1 ESn

SAP Netweaver

BIS1 BISm… Business
information
systems

Platform

A composite application combines functions and data into a coherent
business scenario, supported by its own business logic and specific user
interfaces. Such a composite application may use functionalities from
many modules of the underlying information systems, e.g. SAP sys-
tems, third-party systems and inhouse legacy systems. Enterprise ser-
vices manage and control the flow of information from one information
system to the next, and from one department to the next.

As an example of a composite application, SAP outlines the automa-
tion of a business process regarding a product change request (PCR).
The following description is adopted from [SAP 2004a, p. 11].

A PCR process is initiated when an important part of the product
needs to be changed. Reasons for this can be that the design, the materi-
als used to build the product, the needs of a particular customer, or
regulatory requirements have changed. In all cases, the entire manufac-
turing process must be examined, and many reviewers are involved. The
standard operating procedure for PCRs at most firms is paper based.
Each reviewer examines the PCR document and gathers information

Example: product
change request
(PCR)

3 Information Systems Architecture 120

from the underlying information systems, entering and reentering data
as needed. In the end, the required approvals are all obtained.

A composite application for PCR based on enterprise services would
replace the paper request with a set of interactive forms. The reviewers
enter the required information into such forms. The forms are submitted
and the information is automatically transferred into the underlying
information systems. Much of the information in the forms is automati-
cally populated with data from the underlying systems. Some of it has
been entered by previous reviewers further up the approval chain,
avoiding additional entry and reentry of data. Enterprise services move
the data back and forth from the many different systems needed to
populate one form. All of the information moves intact from one
approver to the next.

In an architecture like the one in figure 3-12, service consumers and
service providers are typically – but not necessarily – within one organi-
zation. Finding services and terms of use (contract) are not an issue in
this case, so a registry is not needed. Many business processes go across
an organization's boundaries, extending to suppliers or customers. In
this case, the bottom layer of the architecture includes information sys-
tems of business partners as well, just as some of the enterprise services
may be provided by the business partners.

Since SAP has many installations and customers, it can be expected
that SAP's enterprise service-oriented architecture will be widely dis-
seminated. Not only is SAP migrating their own standard software onto
that architecture; customers are encouraged to build their custom sys-
tems around the SAP software with the help of ESOA technology as
well. Enterprise SOA is intended to become the architecture for a cus-
tomer's entire information systems landscape.

The strong promotion of enterprise services includes assistance for
developers with a so-called "inventory" of enterprise services. Develop-
ers can take the smaller services available in the inventory and link them
together to create new systems, e.g. end-to-end enterprise services that
support complete processes.

Eventually an enterprise services registry will be provided for se-
lected partners and customers. The abstraction level is supposed to be
raised eventually to a level on which business analysts are able to create
enterprise services themselves – with the help of a high-level modeling
tool that enables them to link services, without the need for program-
mers [SAP 2006b, p. 11].

A composite
application for
PCR

Developers can
create end-to-
end enterprise
services

3.4 Enterprise Service-oriented Architecture 121

Benefits of ESOA

The benefits of an enterprise service-oriented architecture extend the
advantages obtained from a service-oriented architecture (SOA). With
enterprise services built on top of existing information systems, these
systems can be used in a flexible way and reused for newly configured
solutions in the future. Because of their high abstraction level, it is
easier for business analysts to understand and model enterprise services
than plain web services.

Another advantage of an enterprise service-oriented architecture is
that developers do not need to deal with the semantic interoperability
between web services created on different systems. ESOA tools resolve
the data and process disparities between different web services.

Information hiding is ensured just as in web services. Composite
applications that use an enterprise service are not affected by changes in
the underlying information systems. This is contrary to a conventional
system architecture. When an individual piece of application functional-
ity in such an architecture is changed, all interfaces and applications that
touched the component have to be changed as well.

The most important benefits of ESOA promised by SAP are speed
and flexibility through efficient aggregation and reuse of IS functional-
ity.

Many innovations in business models and business concepts are only
possible if customized IS solutions supporting the innovation are avail-
able. However, a standard software package is unlikely to provide just
that piece of functionality that is needed for the specific innovation.
Therefore new solutions are often developed from scratch.

Building new, customized solutions that support innovation is expen-
sive and time-consuming because some of the functionality of the exist-
ing package will probably be rebuilt. Later, as the innovation becomes a
standard practice, the custom-built solution has to be integrated with, or
migrated into, the standard package. However, because the custom
solution and the package are usually based on different platforms, the
transition tends to be a costly and lengthy process. The consequence is
that conventional IS solutions stimulated by an innovation cannot be
delivered at an appropriate speed and cost [SAP 2005a, pp. 1-2].

New solutions based on an enterprise service-oriented architecture,
on the other hand, benefit from reusable services and, perhaps more
importantly, from immanent integration of these services with the
existing information systems. Instead of building the custom solution
from scratch, isolated from the company's other back-office systems,

Information
hiding in
enterprise
services

Building new,
individual
solutions from
scratch is
expensive

3 Information Systems Architecture 122

and with partly redundant functionality, the new solution will be based
on the same technology and seamlessly integrated in the overall
information systems architecture of the organization.

3.5 Platforms

A platform provides the technological infrastructure for an organiza-
tion's information systems. While an architecture prescribes a general
pattern for the arrangement of the elements of information systems and
for the interaction of these elements, a platform defines how and
through which kinds of software the computer hardware is operated. A
platform provides tools and mechanisms to develop programs and to
execute programs. There are several levels on which the term platform
is used:

• A hardware platform is the set of hardware components that make

up a specific type of computer system for which basic operating-sys-
tem software is written. Examples of hardware platforms are PCs
with Intel processors, Sun SPARC workstations and IBM AS/400
midrange computers. Any hardware platform requires specific sys-
tems software to make use of the hardware components.

• A hardware and software platform is composed of a hardware plat-
form and the system software (operating system, networking compo-
nents, graphical user interface components etc.) written for that
hardware. For users of the platform, the system software determines
what application software can run on the platform and how this is
done. Examples of hardware and software platforms are PCs with
Windows; Sun workstations with Solaris; and Apple computers with
OS X. This type of platform is losing importance, since operating
systems and hardware systems are increasingly being decoupled.

• A software platform is the set of basic software components that
determines how other software can be developed, executed and pro-
vided to users. A software platform runs on top of a hardware plat-
form, completely abstracting from any particular hardware. An ex-
ample of a software platform is the Java platform. It runs on differ-
ent hardware and software platforms.

Platforms provide
the technological
infrastructure for
information
systems

Hardware
platform

Hardware and
software platform

Software
platform

3.5 Platforms 123

With regard to software, the term platform is actually used on different
abstractions levels. For example, an application server is called a plat-
form because it provides the basic infrastructure for developing and
deploying network-based multi-user software systems. Java EE, a set of
higher-level Java components, is called a platform because it comprises
all the functionality needed to create and run enterprise information
systems.

In the context of making information systems, software platforms
play an important role. The available platform defines which techno-
logical features can be used and what the restrictions are. In particular,
the platform determines the way in which an architecture can be
implemented; which tools are available for the development,
deployment and operation of information systems (e.g. IDEs, version
control tools, application servers); and how components of the
architecture can be added and removed.

Although there are a variety of software platforms (and numerous
products called platforms), some may be considered more important
than others for the majority of today's organizations. They are funda-
mental in the sense that they prescribe certain ways of developing,
integrating, and executing software. Important platforms today include
the following:

– Java platform
– Microsoft .NET
– SAP NetWeaver
– IBM WebSphere
– LAMP (Linux; Apache, MySQL; Perl, Python, PHP)

3.5.1 Java Platform
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The Java platform is a very comprehensive platform. It comes in three
variants which are called editions:

– Java ME (micro edition)
– Java SE (standard edition)
– Java EE (enterprise edition)

A software
platform defines
technological
features and
restrictions

Important
platforms today

3 Information Systems Architecture 124

Before 2006, the editions were known as J2ME, J2SE and J2EE (J2 =
Java 2 platform). Java ME is used on small devices such as cellular
phones, PDAs and pagers. Java SE comprises the essential tools for
developing, deploying and running web-based and conventional infor-
mation systems in Java. Java EE is an extension of Java SE supporting
distributed multi-tier enterprise systems.

The Java platform determines how Java programs are developed and
executed. Located between the user's Java program and the underlying
hardware and software, the main parts of the platform are the Java vir-
tual machine (Java VM) and the Java application programming inter-
face (Java API). These parts are shown in figure 3-13 in a simplified
view:

Figure 3-13 The role of the Java platform [Campione 2001, p. 4]

myProgram.java

Java application programming interface (API)

Java virtual machine (VM)

Hardware & software platform

Java
platform

myProgram.java

Java application programming interface (API)

Java virtual machine (VM)

Hardware & software platform

Java
platform

The Java VM is a "virtual" computer that can translate and execute Java
programs. The Java API consists of a large collection of ready-made
software components, grouped into libraries and/or packages of related
classes and interfaces. Examples are packages for the development of
graphical user interface (GUI), applets, concurrent programs etc.

The Java platform is independent of hardware and operating systems,
i.e. it can run on different hardware and software platforms. This inde-
pendence is achieved through a two-level process in which Java pro-
grams are translated twice. Figure 3-14 illustrates these steps. A Java
compiler translates the Java program into an intermediate language, so-
called Java bytecode. This bytecode is independent of a hardware
and/or software platform.

Former names:
J2ME, J2SE and
J2EE

Translating the
Java programs

3.5 Platforms 125

The Java launcher tool then translates the bytecode and runs it with
an instance of the Java virtual machine. Java VMs are available for all
major platforms. Each VM can take the same bytecode, translate it for
the respective hardware and execute it on that hardware. Java bytecode
can be interpreted or compiled. Launchers include optimization features
which first compile bytecode into native code and then adaptively opti-
mize the native code according to the runtime characteristics of the
program.

Figure 3-14 Compiling and launching Java programs§

10
11

1.
..

myProgram.classmyProgram.class

CompilerCompiler

Java Program

myProgram.javamyProgram.java

LauncherLauncher

bytecode

LauncherLauncherLauncherLauncher

0110110001... 0110001...

My
Program

My
Program

My
Program

PC/Windows Sun/Solaris Apple/OS X

10
11

1.
..

myProgram.classmyProgram.class

CompilerCompiler

Java Program

myProgram.javamyProgram.java

LauncherLauncher

bytecode

LauncherLauncherLauncherLauncher

0110110001... 0110001...

My
Program

My
Program

My
Program

PC/Windows Sun/Solaris Apple/OS X

Java SE (Java platform, standard edition)

The standard edition comprises a large number of programming inter-
faces, providing tool support for the development, deployment and exe-
cution of Java programs. In Sun's official documents for the Java
platform, these tools together with the Java language constitute the Java
development kit (JDK). The set of software tools forming the JDK is
sometimes also called the Java platform.

In figure 3-15, the JDK for the Java platform, standard edition (offi-
cial name: "Java™ Platform, Standard Edition 6") is outlined. Accord-
ing to Sun's numbering scheme, the JDK is referred to as "Java™ SE

§ Adapted from Campione 2001, p. 4.

Java
development kit
(JDK)

Components of
the Java platform

3 Information Systems Architecture 126

Development Kit 6" (or "JDK 1.6.0"). A subset of the JDK is the Java
runtime environment (JRE). In figure 3-15, the application program-
ming interfaces are combined into the "Java SE API". As shown in the
figure, the Java platform includes:

– the Java language,
– development tools and APIs (e.g. compiler, launcher),
– deployment technologies (e.g. web-based deployment),
– user interface toolkits,
– integration and other libraries,
– language and utilities libraries,
– the Java virtual machine (VM).

Figure 3-15 Java platform, standard edition [Sun 2006b]

Java virtual machine

lang & util base libraries

Other base libraries

Integration libraries

User interface toolkits

Deployment technologies

Development tools & APIs

Java language

Solaris Windows Linux Other

Java SE
API

JREJDK

Platforms

Java virtual machineJava virtual machine

lang & util base librarieslang & util base libraries

Other base librariesOther base libraries

Integration librariesIntegration libraries

User interface toolkitsUser interface toolkits

Deployment technologiesDeployment technologies

Development tools & APIsDevelopment tools & APIs

Java language

Solaris Windows Linux Other

Java SE
API

JREJDK

Platforms

(It should be noted that the terms APIs, toolkit and technology are
sometimes used interchangeably in Sun's documents.) Details of all
tools comprised in the JDK can be found in the JDK documentation
[Sun 2006b].

Java EE (Java platform, enterprise edition)

Most heavy-weight real-world business information systems today are
distributed systems with a multi-tier architecture, allowing access and
processing transactions by many users at the same time. The Java plat-

3.5 Platforms 127

form supports the development and deployment of such systems with
components that go beyond the Java SE components.

Java EE, better known by its former name J2EE ("Java 2 platform,
enterprise edition"), comprises all components of the standard edition
plus additional components for heavy-weight distributed multi-tier
enterprise systems. Java EE assumes that information systems have a
four-tier architecture as shown in figure 3-16.

Figure 3-16 Example of two Java EE-based IS [Jendrock 2007, ch. 1]

Java EE information
system 1

Java EE information
system 2

Client tierApplication client Dynamic HTML
pages

Client
machine

Web tier

Business tier

JSP pages

Enterprise Java
Beans

Enterprise Java
Beans

Java EE
server

Database Database EIS tier Database
server

Java EE information
system 1

Java EE information
system 2

Client tierApplication client Dynamic HTML
pages

Client
machine

Web tier

Business tier

JSP pages

Enterprise Java
Beans

Enterprise Java
Beans

Java EE
server

Database Database EIS tier Database
server

This logical architecture is often reduced to a physical architecture of
three tiers because the web-tier and the business-tier components usu-
ally reside on one machine (Java EE server). The client-tier components
run on the client computer, and the components of the so-called EIS tier

Java EE
assumes a four-
tier IS
architecture

3 Information Systems Architecture 128

run on a database server and perhaps other servers. EIS stands here for
"enterprise information systems", including databases and so-called
legacy systems (i.e. systems not based on Java EE technology).

In figure 3-16, information system 2 is a web-based system with a
browser front-end (HTML), using JSP (JavaServer Pages) technology to
generate dynamic page content. Information system 1 has a graphical
user interface created with Java technology (Swing, AWT etc.). Typical
technologies in a web-based system used on and between the four tiers
are shown in figure 3-17.

Figure 3-17 Common technologies in a Java EE four-tier architecture

Client tier

Web tier

Business tier

Data tier

HTML, XML/XSLT,
JavaScript, VBScript,
Java (applets)

Database server

Non-Java EE server

HTML
XML

SOAP
IIOP
JRMP

JDBC
JCA

Browser

JSP, servlets,
Web services, JSF, Struts

Web server

EJB (Enterprise JavaBeans)
JMX (Java management extensions)

Application server

Client tier

Web tier

Business tier

Data tier

HTML, XML/XSLT,
JavaScript, VBScript,
Java (applets)

Database server

Non-Java EE server

Database server

Non-Java EE server

HTML
XML

SOAP
IIOP
JRMP

JDBC
JCA

Browser

JSP, servlets,
Web services, JSF, Struts

Web server

EJB (Enterprise JavaBeans)
JMX (Java management extensions)

Application server

3.5 Platforms 129

• Client tier: A browser visualizes static and dynamic web page con-

tent described in a markup language, either created by client-side
technologies such as HTML, XML/XSLT (eXtensible stylesheet
language transformations), JavaScript, VBScript and Java (for app-
lets) or prepared on the web server by server-side technologies.

• Web tier: A web server accepts requests from the client and prepares
responses with the help of server-side technologies such as JSP
(JavaServer Pages), servlets, web services, JSF (JavaServer Faces)
or Struts. JSF and Struts are frameworks for separating logic and
data on the web tier. Although any Java EE-compatible web server
may be used, the most common web server in Java EE-based sys-
tems is Apache Tomcat [Apache 2006c].

• Business tier: An application server contains the business logic
which is usually implemented with the help of EJBs (Enterprise
JavaBeans). Common application servers used with Java EE are
IBM WebSphere, BEA WebLogic and JBoss Application Server.

• Data tier (database tier, EIS tier): A database server stores data sent
from the business tier in a database and retrieves data from the
database upon requests by the business tier. Data exchange with
non-Java EE systems is supported.

The client tier communicates with the web tier in HTML or XML. The
web tier talks to the business tier with the help of middleware such as
web services, CORBA (common object request broker architecture
[OMG 2007]) and RMI (remote method invocation [Sun 2004]).
CORBA uses the IIOP (Internet inter-ORB protocol), RMI uses JRMP
(Java remote method protocol) and IIOP, and web services use SOAP.
The database tier has no specific Java EE components, but an interface
is provided via JDBC (Java database connectivity). Any database man-
agement system can be connected provided that it has a JDBC driver.
Non-Java EE systems (e.g. an ERP or CRM system with a different
technology) can be connected with the help of JCA (Java connector
architecture).

Java EE supports the development, deployment and execution of
information systems with a four-tier architecture such as the one shown
in figure 3-17.

For the client tier, the web tier and the business tier of such an archi-
tecture, component models are available. Component models provide
program libraries for application development. Developers use the
respective predefined classes and interfaces to create their particular

Client tier

Web tier

Business tier

Data tier
(database tier,
EIS tier)

Communication
between tiers

Component
models

3 Information Systems Architecture 130

application components. The Java EE specification defines the follow-
ing component models:

– Client-tier components: Java application clients and applets
– Web-tier components: JavaServer Pages (JSP) and servlets
– Business-tier components: Enterprise JavaBeans (EJBs)

Java EE programs are made of components. These components are
written in Java and are compiled in the same way as any other program.
The difference between components and "standard" Java classes is that
Java EE components have to conform to specific rules and conditions.
They are assembled into a Java EE-based information system, are
verified to be well formed and in compliance with the Java EE
specification, and are deployed to production, where they are run and
managed by the Java EE server [Jendroch 2007, ch. 1].

An application client is a Java program running on a client machine.
Typically an application client is used for tasks that require more
functionality and interaction than can be provided by a markup
language. It has a graphical user interface created with Java technology
(Swing, AWT packages).

An applet is a Java program that is executed by the Java virtual
machine installed within the web browser on the client computer.

Servlets are server-side Java programs that dynamically process
requests and build responses on the web server. Servlets are a means to
enable dynamic content in a static markup document.

JavaServer Pages (JSPs) are text-based files that include markup
text, Java code and JavaBean components. (JavaBeans are also compo-
nents but not considered Java EE components.) JSPs are an extension of
the servlet components facilitating the creation of static content. When a
JSP page is requested by the client, the web server compiles it into a
servlet. The browser then invokes this servlet that creates the content to
be sent back to the client.

Enterprise JavaBeans (EJBs) are the most powerful components for
developing business information systems. EJBs provide a distributed
component model for developing secure, scalable, transactional and
multi-user components. EJBs are reusable software entities containing
business logic. They also isolate the business logic from lower-level
tasks such as transaction management and security authorization, thus
the developer can concentrate on the business problem and is relieved of
system programming. From a technical point of view, EJBs are
standardized and allow any component complying with the rules of the
EJB specification to run on any Java EE application server.

Java EE
components
have to conform
to specific rules
and conditions

Application client

Applet

Servlet

JavaServer
Pages (JSP)

Enterprise Java
beans (EJBs)

3.5 Platforms 131

There are several types of EJBs: session beans (stateless and stateful
session beans), entity beans and message-driven beans.

Session beans are associated with client sessions. This means that the
lifespan of a session bean ends when the session is terminated.
Depending on how object states are treated, beans can be stateful or
stateless. A stateful session bean holds the state of the client across
invocations. This means that data (i.e. values of instance variables) are
preserved between different calls of a method. A stateless bean, on the
other hand, does not preserve data between method calls. Once a
method has been executed, the data associated with that particular
method call is lost.

Entity beans represent persistent data objects stored in a database.
They provide an object-oriented mapping of the rows of a database table
to corresponding objects of a Java program. Examples of entity beans
are objects such as customers, invoices, accounts, machines, employees
etc. Entity beans are called by session beans. For example, a session
bean "order entry" will probably call an entity bean "customer order".

Message-driven beans play an important role in today's message-
oriented systems. Not only web services but also other service-oriented
systems send messages, e.g. via a service bus that is based on a
messaging system. Messages are asynchronous by their nature whereas
method invocations are usually synchronous. A session bean that is
expected to do something may not be running when a message
requesting the functionality arrives, so a message-driven bean has to
activate the session bean or create one. Message-driven beans are not
invoked by method calls but only by sending them messages.

An example of how the different types of beans interact is presented
in figure 3-18. Session beans may be invoked by any web-tier
component or client that needs business-tier functionality. A message-
based request coming from a messaging client is processed by a
message-driven bean which in turn invokes a session bean. Persistent
data are finally stored in and retrieved from a database, therefore entity
beans are called by the session beans to access these data.

Components are not run by themselves but instead within so-called
containers. The motivation for using containers is that thin-client multi-
tier applications are in fact hard to write. They involve rather compli-
cated code to handle transaction and state management, multi-threading,
resource pooling and other complex low-level details [Jendrock 2007,
ch. 1]. Containers provide prefabricated solutions to all those problems,
relieving the developer from writing intricate low-level code.

Session beans

Entity beans

Message-driven
beans

Example of
beans interacting

Components run
within containers

3 Information Systems Architecture 132

Containers are the interface between a component and the low-level
platform-specific functionality that supports the component. Before a
Java EE component can be executed, it must be assembled into a Java
EE module and deployed into its container. Containers are defined for
the following components:

– An applet container manages the execution of applets. It consists of

a web browser and a Java plug-in running together on the client.
– An application-client container is used for executing standard Java

application clients. Both the application client and the container run
on the client.

Figure 3-18 Java EE components, servers and tiers (example)

Data tier

Business tier

Web tier

Client tier

Database server

Application server

EJB message-
driven bean

EJB session
bean

EJB session
bean

EJB session
bean EJB entity bean EJB entity bean

Web server

Servlet JSP

Messaging
client

C++
client

Java
application
client

Messaging CORBA/
IIOP

RMI-
IIOP

RMI-
IIOP

RMI-
IIOP

JDBC JCA

Data tier

Business tier

Web tier

Client tier

Database server

Application server

EJB message-
driven bean

EJB session
bean

EJB session
bean

EJB session
bean EJB entity bean EJB entity bean

Web server

Servlet JSP

Messaging
client

C++
client

Java
application
client

Messaging CORBA/
IIOP

RMI-
IIOP

RMI-
IIOP

RMI-
IIOP

JDBC JCA

Containers pro-
vide an interface
to low-level
platform-specific
functionality

Container types

3.5 Platforms 133

– A web container hosts JavaServer Pages and servlets. It manages the
execution of these components. The container and the components
run on the web server.

– An EJB container hosts the EJB components. EJBs and their con-
tainer run on the application server. The main advantage of using an
EJB container is that container services are available for component
pooling, bean lifecycle management, client session management,
database connection pooling, transaction management, persistence,
authentication and access control (for details see [Singh 2002, pp.
135-136]).

Java EE components and their containers are summarized in figure 3-
19. The browser on the client is responsible for both executing applets
and displaying pages created by servlets and JSPs. EJBs are called by
servlets, JSPs and application clients.

Figure 3-19 Java EE containers and components [Jendrock 2007, ch. 1]

Database

Client machine

Browser

Applet

Applet container

Application
client

Application-
client

container

Servlet JSP page

Web container

Java EE server

Enterprise
JavaBean

Enterprise
JavaBean

EJB container

Database

Client machine

BrowserBrowser

AppletApplet

Applet container

Application
client

Application-
client

container

Servlet JSP page

Web container

Java EE server

Enterprise
JavaBean

Enterprise
JavaBean

EJB container

3 Information Systems Architecture 134

Java IDEs

Integrated development environments (IDEs) are available for Java just
as for other common programming languages or platforms. They
facilitate the development of Java programs through powerful tools.
However, since the Java platform is very comprehensive and Java is a
rather heavy-weight language, IDEs are also heavy-weight products.
Ease of use is not quite the same as for simpler programming languages.

Both commercial and open-source IDEs are available. Some open-
source IDEs were originally developed and sold by companies like IBM
and Sun Microsystems and later made available freely. Well-known
IDEs for Java include the following:

– NetBeans (originally developed by Sun Microsystems, in 2000 made

open-source; http://www.netbeans.org)
– Sun Java Studio (also by Sun Microsystems, formerly known as

"Sun Forte")
– Visual J# (as part of Visual Studio .NET; see section 3.5.2)
– JBuilder (by Borland; http://www.borland.com)
– Eclipse (originally developed by IBM, in 2001 made open-source;

http://www.eclipse.org)
– WebSphere Studio Application Developer (part of IBM WebSphere

Studio)

Many professional Java developers use JBuilder, Eclipse or NetBeans.
While JBuilder is a commercial product that has evolved through many
versions over more than a decade, Eclipse and NetBeans are popular
open-source IDEs. Eclipse is nowadays governed by a consortium of
members firms, among them IBM, Oracle, SAP and Borland.

Specifics of IS development in Java EE

The above brief outline of the comprehensive Java platform shows that
this platform is not only very powerful but that it also sets clear stan-
dards and restrictions regarding further application development. A
four-tier architecture as laid out in the figures 3-16 and 3-17 is presup-
posed, the tools and APIs are oriented towards such an architecture, and
the component models guide system designers and implementers in a
certain manner, restricting significantly flexibility and allowing only
EJB specification-compliant constructs. The EJB container controls all
invocations of EJB components, interposing itself between each method

IDEs for Java

Java EE
enforces a
certain
architecture and
software
technology

3.5 Platforms 135

call. In other words, the container puts itself between the caller and the
EJB method called. As a conclusion, information system projects based
on Java EE have only limited choices regarding software architecture
and technology.

Projects using the Java platform are in some ways different from
conventional development projects.

First and obviously, there is no decision to be made about what might
be the best programming language for the problem – there is only one
on that platform. In addition, building up knowledge and expertise in
using the Java platform takes significant efforts. Once proficient Java
architects, designers and programmers are available, the organization is
likely to put its future development projects on the same platform.

Perhaps a choice regarding the appropriate IDE is left, yet the impact
of this decision is less severe than the choice of the programming
language. Having experience with one IDE may mean that the same
IDE is also used in the future and therefore other, better IDE options are
not explored.

On the other hand, IDEs are products that compete on the market
with new versions to attract developers. If a new feature useful for the
current project is available in the next version of some other IDE but not
contained in the IDE the organizations has used up to now, switching to
that new IDE may take place.

Second, developing in Java implies to a significant extent the use of
prefabricated solution modules (classes, interfaces, patterns etc.) and ex-
tending or adapting these modules. Frequently modules created by the
developers are not built from scratch, because a lot of functionality is
already available (derived from superclasses). However, it is difficult to
know all the things that are already available and where to find them,
i.e. which libraries, packages, classes, APIs etc. do already exist. The
risk that the wheel is reinvented is therefore not negligible.

Third, the degree of freedom left to the developer is substantially less
than in other languages. The Java platform imposes a strict corset on
designers and implementers. Java EE prescribes a specific architecture
and its component models force the developers to proceed in a certain
way. Some pressure restricting the freedom is caused by the large
offering of prefabricated solutions. When such a solution is available, it
is attractive to use it instead of developing a new one that will cost time
and money.

Fourth, some parts of Java programs are very compact, incorporating
an abundance of functionality in a few lines of code. While Java experts
are used to this compactness, newcomers find it difficult to understand.

No choice of
programming
language

Reinventing the
wheel in Java?

The Java
platform imposes
a strict corset on
designers and
implementers

3 Information Systems Architecture 136

Finally, the emerging trend of Java becoming "the" platform for
heavy-weight information systems in all areas has a remarkable side
effect: Solutions to many types of problems developed worldwide are
published and can be found on the Internet. Java programmers often
copy code from the Internet and paste it into their own programs. Pro-
ject managers need to observe this type of "copy and paste" program-
ming carefully because it can create problems regarding the software
quality and copyright issues.

3.5.2 Microsoft .NET Platform
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

When .NET was announced in 2000, Microsoft called it an "initiative".
For some time it remained unclear what .NET really was – a product, an
architecture, a framework, or a platform? In fact, .NET became a brand
for an integrated set of different Microsoft technologies, some of them
entirely new, some updates of former technologies or products. From a
technical point of view, .NET can be considered a platform because it
provides an interlocking set of tools and mechanisms to develop pro-
grams and to execute programs. (In a quite similar way, IBM introduced
the brand name WebSphere as a collection of products with a platform
at its core; cf. section 3.5.3.)

When .NET was advertised and introduced into the market, the goal
was to provide a common platform for developing and running enter-
prise-wide and Internet-based information systems. The specific objec-
tives of .NET were to support:

– Distributed computing and to simplify the development of client-

server and other distributed systems, based on open Internet stan-
dards (HTTP, XML, SOAP etc.).

– Componentization, i.e. building systems from software components
(reuse) in a simpler way than before.

– Internet interoperability, in particular through the use of software
components that reside on servers somewhere on the Internet (web
services).

– Language independence; this means that components can be written
in different programming languages, are easily integrated, and work
smoothly together.

"Copy and paste"
programming

Objectives of the
.NET platform

3.5 Platforms 137

– Language integration on the programming level; for example, a class
written in one language can inherit from a class written in a different
language.

– Reliability, i.e. programs under .NET are supposed to contain fewer
errors than conventional programs.

– Security by providing a security infrastructure. Security is an in-
creasingly important problem in today's web-based environments
allowing access to computers and information systems from outside
via the Internet.

The .NET platform has the following parts:

1. The .NET framework
2. Developer tools
3. A set of servers
4. Client software

The core of .NET, the .NET framework, will be discussed in a subsec-
tion below. The premium tool for developers is Visual Studio .NET, a
very powerful and convenient-to-use IDE for developing information
systems under .NET. Servers include MS Windows server, a database
server (SQL server), and a server for web-based information systems
(BizTalk server). Clients run under Windows XP or Windows Vista, for
example.

.NET framework

The .NET framework is the core of the platform supporting information
systems development in the highly distributed environment of the
Internet. According to Microsoft's documentation, its objectives are
[Microsoft 2007c]:

– To provide a consistent object-oriented programming environment

regardless of whether the object code is stored and executed locally,
executed locally but Internet-distributed, or executed remotely.

– To provide a code-execution environment that minimizes software
deployment and versioning conflicts; guarantees safe execution of
code, including code created by an unknown or semi-trusted third
party; and eliminates the performance problems of scripted or
interpreted environments.

Objectives of the
.NET framework

3 Information Systems Architecture 138

– To let developers work in the same way across widely varying types
of application systems, such as Windows-based and web-based
systems.

– To build all communication on industry standards to ensure that
code based on the .NET framework can integrate with any other
code.

The .NET framework is composed of two major parts as illustrated in
figure 3-20, the common language runtime and set of class libraries.

The common language runtime (CLR) is the foundation of the .NET
framework. It manages code at execution time, providing core services
such as memory management, thread management, code safety verifica-
tion, compilation and other system services. The CLR is the basis for
language independence and language integration. These are achieved
through an intermediate-language concept.

Figure 3-20 Components of the .NET framework

Windows operating system

.NET Framework ClassLibrary

.NET Framework

SQL ADO.NET XML XSLT ASP.NET ...

IO String NET Security Threading ...

Windows forms Web forms Web services

Data and XML classes

Base framework classes

.NET framework class library

Common language runtime (CLR)
(Type checking, debugging, exceptions, JIT compilers etc.)

Windows operating system

.NET Framework ClassLibrary

.NET Framework

SQL ADO.NET XML XSLT ASP.NET ...

IO String NET Security Threading ...

Windows forms Web forms Web services

Data and XML classes

Base framework classes

.NET framework class library

Common language runtime (CLR)
(Type checking, debugging, exceptions, JIT compilers etc.)

The .NET platform supports many programming languages. Next to
Microsoft's core languages, Visual Basic .NET and C#, only a few more
(J#, so-called "Managed C++", and JScript .NET) were available at the
beginning. Today the list is long. In the MSDN (Microsoft developers
network) documentation, 24 languages are listed, including APL,

The CLR is the
foundation of the
.NET framework

.NET supports
many
programming
languages

3.5 Platforms 139

Cobol, Eiffel, Fortran, Java, Pascal, Perl and Smalltalk [Microsoft
2007b].

Most modern programming languages are based on similar principles
and provide similar constructs. There is a common understanding in
software engineering of what makes a "good" programming language
(e.g. control structures from "structured programming", data types, ob-
jects, classes, inheritance etc.). But in actual fact, all programming lan-
guages look completely different due to their syntax. Some use end
statements to close blocks (end if, end sub etc.), some use curly braces;
some terminate statements with a certain character, some by the end of
the line; etc. These syntactical differences are not really important, yet
the semantics of the constructs certainly are. The idea behind an inter-
mediate language – between the source language and the machine lan-
guage – is to provide a common implementation of the semantics under-
lying all source languages.

Code that is in conformance with the CLR specifications is called
managed code, while code that does not target the runtime is known as
unmanaged code. All managed code is compiled into an intermediate
language, MSIL (Microsoft intermediate language). Compilers for
.NET languages translate source code into MSIL. Before the MSIL
code can actually be executed, it has to be translated into machine-
specific binary code ("native code"). As shown in figure 3-21, this is
done by a "just in time" (JIT) compiler. The name JIT compiler comes
from the fact that the translation is done when the respective method is
called for the first time.

Figure 3-21 Translating managed code

Compilation

Source
code

Language
compiler

MSIL code
and metadata

Execution

Native
code

JIT
compiler

First time
each method
is called

Compilation

Source
code

Language
compiler

MSIL code
and metadata

Execution

Native
code

JIT
compiler

First time
each method
is called

Syntactical
differences
between pro-
gramming
languages are
not important

MSIL (Microsoft
intermediate
language), JIT
("just in time")
compiler

3 Information Systems Architecture 140

The CLR/intermediate-language approach is similar to the Java
VM/Java bytecode as discussed in section 3.5.1. Although the Java
world and .NET world are rather separate worlds (and will probably
remain so), both follow the same fundamental principles and concepts.
Just as Java programs can run on any hardware and software platform
that has a Java virtual machine, programs in any of the .NET languages
can run on any platform that has the .NET framework. However, up
until now, these have been almost exclusively Windows platforms.

The .NET framework class library, the second main component of
the .NET framework, is a comprehensive, object-oriented collection of
reusable classes that are tightly connected with the CLR. The base
framework classes provide types based on .NET's common type system
(CTS). These types are used by all .NET languages that produce man-
aged code. In addition to standard types such as integers, floating-point
types, arrays etc., types supporting string management, data collection,
database connectivity, file access etc. are available in the data and XML
classes. The class library further includes types that can be used for the
development of graphical user interfaces (Windows forms), web pages
created with ASP .NET (Web forms) and web services.

Visual Studio .NET

Visual Studio .NET is a comprehensive IDE for creating any kind of
software component that can run on the .NET platform, e.g. GUI forms,
web forms, code modules, classes, data access components, XML files,
stylesheets and more. It contains a complete set of development tools
for building web-based systems with ASP .NET as well as conventional
desktop-oriented systems, web services and mobile solutions.

For most types of components, code is partly or completely gener-
ated from the developer's input. For example, GUI components can be
entirely created by "visual programming", dragging and dropping
graphical icons onto the GUI design pane. Properties of components can
be set or changed in a table (properties window), access methods for
user-defined classes are generated automatically, and database access
(connectors, adapters, queries etc.) is provided via prefabricated classes.

For web services, SOAP messages and WSDL files are created auto-
matically from the respective language classes. Explorers and browsers
help to keep track of the logical structure ("class view", "object brows-
er") and the physical structure of development projects ("solution ex-
plorer") including the servers involved ("server explorer").

The core languages included with Visual Studio are Visual
Basic .NET, Visual C++ .NET, Visual C# .NET, and Visual J# .NET.

.NET framework
class library

Most code is
generated

Programming
languages

3.5 Platforms 141

All languages share the same set of tools. In this way, access to key
.NET technologies and the creation of mixed-language solutions are
facilitated.

Compared to IDEs for other languages and platforms, Visual Studio
.NET is not only a very powerful development environment but also
one of the most convenient ones available on the market. Microsoft con-
siders it as its flagship in the .NET world. Software developers working
with Visual Studio can benefit from very powerful tools.

.NET servers

A number of Microsoft servers are available on the .NET platform,
supporting important areas such as database management, electronic
commerce and business process management. The .NET servers include
the following products [Microsoft 2007a]:

• BizTalk server facilitates the exchange of information among diverse

information systems running on different hardware and software
platforms. It is a business process management (BPM) server that
enables companies to automate business processes. BizTalk server
contains tools to design, develop, deploy and manage processes and
to integrate processes across disparate information systems, both
within the organization (enterprise application integration, EAI) and
between organizations (business-to-business, B2B). BizTalk server
includes mechanisms for connecting to legacy systems and to typical
business packages for ERP and CRM (e.g. SAP, Siebel, PeopleSoft,
Oracle and JD Edwards). A messaging engine provides a way to
define and exchange XML-based documents among systems.

• Commerce server: E-commerce websites have many things in com-
mon. Instead of building everything from scratch, organizations can
use the commerce server's packaged components to deploy person-
alized portals. Commerce servers provide features such as order pro-
cessing, merchandising and catalog management with integrated
search capabilities.

• SQL server is Microsoft's RDBMS for distributed information sys-
tems. Clients can send queries to a database server, and the server
returns the results over the network. SQL server provides enterprise
data management with integrated tools for business intelligence (BI),
analysis, reporting and notification.

• Exchange server, the Microsoft messaging and collaboration server,
enables users to send and receive electronic mail and other forms of
interactive communication through computer networks. Exchange

BizTalk server

Commerce
server

SQL server

Exchange server

3 Information Systems Architecture 142

server interoperates with Microsoft Outlook, Outlook Express and
other e-mail client systems.

• Content management server is an enterprise web content manage-
ment system that enables companies to build, deploy and maintain
highly dynamic Internet, intranet and extranet Web sites.

Other servers include the host integration server (for interoperation of
Windows-based systems with IBM hosts), application center server
(supporting scalability, managing replicated server applications), ISA
server (Internet security and acceleration server, providing firewall and
proxy services), and the speech server (for deploying and managing
distributed speech applications).

Specifics of IS development on the .NET platform

For developers, the .NET platform unfolds its power best when Visual
Studio .NET is available as IDE. Visual Studio suggests an event-driven
programming style, making the creation of graphical user interfaces
very easy. For this reason, Visual Studio is also a powerful tool for
requirements prototyping (see section 4.4.2).

Working with Visual Studio is very comfortable compared to other
IDEs. The developer does not need to leave Visual Studio because
everything needed in the development process is there. No matter
whether a desktop-oriented information system, a web front-end, a web
service, an XML file or an XML schema have to be created, Visual
Studio assists the developer through tools generating code and checking
whatever new code is written.

Implementation is largely controlled by Visual Studio. Developers
continue to add items to the system under development, Visual Studio
generates some of the code, and the developer completes the code
manually. Testing and debugging are also done with the help of tools
embedded in the IDE.

3.5.3 IBM WebSphere
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

WebSphere is a widely used platform for developing, deploying and
running Java-based electronic-business systems. It comprises applica-

Content
management
server

Development
under .NET takes
place within
Visual Studio

Java-based
e-business
systems

3.5 Platforms 143

tion servers, tools for Java development, connectivity mechanisms, and
many more products. In fact, WebSphere is a brand name for a long
series of IBM products that are related to web-based information
systems, yet many people associate with the name WebSphere the best-
known of these products, the WebSphere application server (WAS).

WebSphere products can be divided into runtime tools and develop-
ment tools. Runtime tools, next to the WebSphere application server
(see further below), include the following [IBM 2008]:

– WebSphere message queuing (MQ, formerly known as IBM

MQSeries) – enables programs to communicate with one another
across a network in a messaging and queuing style: Messages sent
by programs to be processed by other programs are placed in storage
queues, allowing the programs to run independently of each other, at
different speeds and times, in different locations, and without being
connected [IBM 2003, p. 3].

– WebSphere enterprise service bus (ESB) – an abstraction layer on
top of messaging, providing a connectivity infrastructure for inte-
grating systems and services. ESB routes messages between ser-
vices, converts transport protocols and message formats between
requester and service, and handles business events from disparate
sources.

– WebSphere commerce – an e-commerce platform that supports
doing business directly with consumers (business-to-consumer) or
with businesses (business-to-business), and indirectly through chan-
nel partners. At the core is an online selling environment that en-
ables companies to offer personalized, cross-channel shopping.

– WebSphere portal – provides a single access point to web content
and IS, personalized to each user's needs; supports workflows,
content management, security mechanisms and scalability.

Developments tools in and around WebSphere can be distinguished into
two lines. One is WebSphere Studio (see further below), the other one is
a suite from former Rational Software (now IBM): Rational application
developer (RAD), Rational web developer (RWD), and Rational
software architect (RSA).

WebSphere application server (WAS)

The WebSphere application server is typical middleware that connects
the presentation tier and the business tier in e-business systems where
clients and servers are distributed on the Internet. Clients send requests

WebSphere
runtime tools

WebSphere
message
queuing

WebSphere
enterprise
service bus
(ESB)

WebSphere
commerce

WebSphere
portal

WAS connects
presentation and
business tiers

3 Information Systems Architecture 144

over the web. Responses are established based on business information
systems (like ERP or CRM) or database management systems hosted by
the WAS.

Since the web is the network on which responses and requests are
transported, a web server is employed to work with the application serv-
er. In many cases this is the Apache web server, but the WAS works
with other web servers, too.

In addition to HTTP requests, EJBs, web services and messages can
also invoke the application server as shown in figure 3-22. Correspond-
ingly, the WAS architecture provides containers and engines to accept
and process the respective tasks, including a web container, an EJB con-
tainer, JCA services, a messaging engine and a web services engine
[Sadtler 2005, p. 21]:

Figure 3-22 WebSphere application server [Sadtler 2005, pp. 7, 21]

Web services

Messaging

Java

Web browser

Clients

Web services
engine

Messaging
engine

JCA
services

EJB
container

Web
container

WebSphere
application
server

...

Web
server

Message
queue

Message
queue

Web
services

(provided)

Business
information

systems

Web services

Messaging

Java

Web browser

Clients

Web services
engine

Web services
engine

Messaging
engine

Messaging
engine

JCA
services

JCA
services

EJB
container

EJB
container

Web
container

WebSphere
application
server

...

Web
server
Web
server

Message
queue
Message
queue

Message
queue
Message
queue

Web
services

(provided)

Web
services

(provided)

Business
information

systems

Business
information

systems

WAS containers
and engines

3.5 Platforms 145

– The web container processes HTTP requests, servlets and JSPs
(JavaServer Pages).

– The EJB container provides all runtime services that are needed to
deploy and manage Enterprise JavaBeans.

– The JCA (Java EE connector architecture) services provide connec-
tion management for access to business information systems. JCA
specifies how connections are administered and how transactions
have to be performed.

– The messaging engine handles and stores messages. It provides a
connection point where clients can produce messages and from
which clients can receive messages.

– With the help of the web services engine, the WebSphere application
server can act as both a web service provider and as a requester. In
the first case, it hosts web services that may be invoked by clients. In
the latter case, it sends requests from its own information systems
that need services from other locations.

The overview scheme in figure 3-22 illustrates the basic functionality of
a single application server. This corresponds to a stand-alone server that
hosts one or more information systems. Even though several application
servers may run on one machine, they will still be stand-alone servers.

In heavy-duty environments, centrally managed distributed servers
have advantages over stand-alone servers, including workload manage-
ment, scalability, failover capabilities and thus high availability. The
WebSphere application server also supports distributed server configu-
rations.

WebSphere Studio

WebSphere Studio comprises a family of IDE products for develop-
ment, testing, debugging and deploying web-based information systems
[Takagiwa 2002, p. 4]. It provides support for each stage of the develop-
ment life cycle. WebSphere Studio is the follow-on toolset for IBM's
former Java IDE, Visual Age for Java.

The WebSphere Studio products are based on the Eclipse workbench.
This is an open-source toolset originally designed by IBM, later
released as open-source, and nowadays managed by the Eclipse.org
consortium (http://www.eclipse.org). The Eclipse workbench provides
frameworks, services and tools for building tools. Any independent
software vendor can use the same APIs as IBM to create their own tools
that can be plugged into the Eclipse workbench.

Distributed
servers

WebSphere
Studio is based
on Eclipse

3 Information Systems Architecture 146

The products of the WebSphere Studio family provide support for a
wide range of development tasks, from medium-complex websites to
heavy-weight Java EE information systems based on the MVC (model-
view-controller) pattern. In the middle of the range is the WebSphere
Studio application developer – the toolset that most people associate
with the name WebSphere Studio. It includes the following basic tools
[Takagiwa 2002, pp. 13-18]:

– Web development tools – to create HTML pages, JSPs servlets and

other resources
– Relational database tools – to create and manipulate the data design

of a project in terms of relational database schemas
– XML tools – to build DTDs (data type definitions), XML schemas

and XML files
– Java development tools – an IDE (integrated development environ-

ment) for Java
– Web services development tools – to build and deploy web services-

enabled systems across software and hardware platforms, based on
UDDI, SOAP and WSDL

– Team collaboration tools – to allow individual developers to work
on a team project, share their work with others as changes are made,
and access the work of other developers as the project evolves

– Integrated debugger – to detect and diagnose errors in programs
running locally or remotely

– Server tools for testing and deployment – to test JSPs, servlets,
HTML files and EJBs

– EJB development tools – to develop and deploy enterprise Java
Beans

– Performance profiling tools – to test the performance of a system
under development

– Plug-in development tools – to develop plug-ins for the Eclipse
workbench

Many Java developers around the world use IBM WebSphere tools
and/or Eclipse as an IDE. One remarkable feature of WebSphere is that
it has interfaces with SAP NetWeaver's application platform (see imme-
diately below).

WebSphere
Studio applica-
tion developer

3.5 Platforms 147

3.5.4 SAP NetWeaver
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

As an example of a business-oriented, proprietary, high-level platform,
SAP NetWeaver is presented in this section. NetWeaver is an integration
and application platform both for building new, custom information
systems based on SAP's technological infrastructure and for integrating
an organization's existing information systems using different infra-
structures. For many SAP users such a platform makes sense not just
because their core information systems are based on that platform. Since
the core systems dominate the organization's IT landscape, any integra-
tion or development project will have to meet the restrictions and re-
quirements of these heavy-weight systems. This is certainly easier if all
systems are using the same platform.

Business challenges and requirements that led to the development of
the NetWeaver platform, according to SAP, include the following [SAP
2003]: Enterprises expect their IT departments or IT organizations to
make their contribution towards competitiveness, cost reduction and in-
creasing shareholder value. Heterogeneous IT environments prevent
such contributions or make them at least very difficult.

On the other hand, it is a fact that many organizations have disparate
information systems and they wish to continue operating these systems
in the future. No single vendor can deliver all the solutions that an
enterprise needs, including SAP. A growing trend is, for example, that
SAP's customers run SAP systems for their specific business processes
and also use IBM and Microsoft technologies for their e-commerce
solutions and office work. This means that SAP systems must be able to
import, export and interoperate effectively with systems based on the
.NET, Java, and WebSphere platforms. Business partners of the firm
also have information systems, and since more and more business trans-
actions are done online, integrating with those systems has be taken into
account.

Interoperability between heterogeneous IT environments has become
a major issue because the cost of IT is largely determined by how well
disparate information systems can be integrated. Nowadays, end-users
expect seamless integration of different systems and transparent access
to information from these systems, no matter where the data is actually

A proprietary,
high-level
platform

Motivation for
SAP NetWeaver

Interoperability
between
heterogeneous
IT environments

3 Information Systems Architecture 148

stored. According to SAP, the lion's share of the integration effort in
large businesses occurs between SAP systems and other custom busi-
ness systems. Consequently integration became the major challenge to
be tackled when the NetWeaver platform was designed.

In a simplified view, SAP NetWeaver is described as an "integration
and application platform to unify and align people, information, and
business processes across technologies and organizations." [SAP 2003,
p. 6] In fact, NetWeaver integrates a number of technologies for differ-
ent purposes: mobile, portal, collaboration, knowledge-management,
business-intelligence, master data-management, business process-man-
agement, integration-broker and application-server technologies [SAP
2004b, p. 5].

NetWeaver is used to integrate information from different sources
via open standards such as XML, SOAP, UDDI, WSRP (Web services
for remote portlets) and WSBPEL (Web services business execution
language). It is the basis for SAP's enterprise service-oriented architec-
ture (ESOA) and the composite applications which are discussed in
section 3.4. SAP's core products in the SAP business suite (including
SAP ERP) are based on the NetWeaver platform as well as all new
modules available from SAP partners around the world.

An overview of SAP NetWeaver as given by SAP is shown in figure
3-23. This overview focuses on the integration goal ("integrating peo-
ple, information and business processes" [SAP 2003, p. 6]), exhibiting
most major components of NetWeaver. The following description is
based on SAP documents [SAP 2006a, SAP 2004b, SAP 2003].

People integration

People integration stands for bringing together the right information (i.e.
the appropriate system functionality) and the right persons. NetWeaver
includes four components for this purpose:

• Enterprise portal – provides a complete platform infrastructure

along with knowledge management and collaboration software.
Under a unified user interface, workers get personalized, role-based
access to heterogeneous IT environments. Information can be
extracted from SAP and non-SAP systems, data warehouses, web
pages etc. and received from web services.

• Collaboration – supports communication among teams and commu-
nities. This includes real-time and virtual collaboration tools such as
news forum, instant messaging, collaboration room, chat, team
calendars, shared documents and tools etc.

SAP NetWeaver
is an integration
and application
platform

SAP: "integrating
people,
information, and
business
processes"

Enterprise portal

Collaboration

3.5 Platforms 149

• Mobile infrastructure/multichannel access – permits access to enter-
prise systems using mobile devices and voice systems, so people can
stay connected any place where their business is conducted. Con-
nections can be based on HTTP, WAP (wireless application proto-
col), WLAN (wireless LAN), Bluetooth, GSM (global system for
mobile communications), UMTS (universal mobile telecommunica-
tions system), Voice over IP and other technologies.

Figure 3-23 Overview of SAP NetWeaver [SAP 2003, p. 6]

C
om

po
si

te
ap

pl
ic

at
io

n
fra

m
ew

or
k

SAP NetWeaver

S
olution m

anager/life-cycle
m

anagem
ent

People integration

Mobile infrastructure/multichannel access

Enterprise portal Collaboration

…

 .
ne

t
W

E
B

Sp
he

re

Information integration

Business intelligence Knowledge
management

Master data management

Process integration

Exchange infrastructure
Business process
management

Application platform

Java EE ABAP

DB & OS abstraction

C
om

po
si

te
ap

pl
ic

at
io

n
fra

m
ew

or
k

SAP NetWeaver

S
olution m

anager/life-cycle
m

anagem
ent

People integration

Mobile infrastructure/multichannel access

Enterprise portal Collaboration

…

 .
ne

t
W

E
B

Sp
he

re

Information integration

Business intelligence Knowledge
management

Master data management

Process integration

Exchange infrastructure
Business process
management

Application platform

Java EE ABAP

DB & OS abstraction

Information integration

In this category, both structured and unstructured information are made
available in a consistent and accessible manner. Functionality is
provided in the following areas:

Mobile infrastruc-
ture/multichannel
access

3 Information Systems Architecture 150

• Knowledge management – manages and makes accessible text and
audio files, slide shows etc. Search features, content management,
information classification and distribution, integration of external
content etc. are included.

• Business intelligence – helps to identify, integrate and analyze dis-
parate business data from heterogeneous sources. Tools support
enterprise modeling, data warehousing and data mining, queries,
simulation, decision making and creating interactive reports.

• Master data management – promotes information integrity across
the business. Consolidation, harmonization, and central master-data
management are provided, including business partner information.

Process integration

The goal of process integration is to enable efficient business processes
across heterogeneous IT environments both within the boundaries of an
enterprise and beyond. NetWeaver supports:

• Exchange infrastructure – providing integration technologies that

support process-centric collaboration among SAP and non-SAP sys-
tem components. Messages and service requests are handled based
on open standards such as XML, SOAP and WSDL. Special adapt-
ers for business-to-business integration are available (i.e. processes
integrating business partners).

• Business process management – permitting existing information
systems as well systems under planning to be combined into end-to-
end business processes spanning the entire value chain. Modeling,
execution and controlling of processes and workflows are supported.

Application platform

The application platform provides a development and runtime environ-
ment for both Java EE and ABAP based software, including abstrac-
tions from the underlying operating and database management systems
and a web application server as a development and deployment platform
for web-based systems and web services.

More components and tools are available with the NetWeaver
platform. As the time goes on, SAP provides new tools and components
and realigns existing ones with new names or into new arrangements.

Knowledge
management

Business
intelligence

Master data
management

Exchange
infrastructure

Business
process
management

Development
and runtime
environment for
Java EE and
ABAP based
software

3.5 Platforms 151

The composite application framework is a development environment
for building composite applications as discussed in section 3.4.2. The
framework contains design tools, methodologies, services, processes, an
abstraction layer for objects and user interface patterns.

The solution manager (formerly life-cycle management) provides
comprehensive tools for all stages of the software life cycle: design,
development, deployment, implementation, versioning, testing and on-
going operations such as administration and change management.

The Auto-ID infrastructure provides middleware which connects
automated communication and sensing devices such as RFID readers
and printers, Bluetooth devices, embedded systems and bar-code
devices. RFID data can be captured, stored and transmitted so that they
can be interpreted by information systems.

As mentioned in the beginning of this section, integration with IBM
and Microsoft systems is considered a crucial requirement. Following
this need, the importance of interoperability of SAP systems on the one
hand and IBM and Microsoft systems on the other hand is not only
stressed on a business level but also supported on a technology infra-
structure level. This means that NetWeaver components for people, in-
formation and process integration as well as the application platform
have counterparts in the IBM WebSphere and Microsoft .NET plat-
forms.

For example, the Java classes offering access to SAP interfaces are
integrated into IBM's WebSphere Studio application developer
(WSAD), and modules developed in WSAD are compatible with the
runtime environment of SAP's web application server. This means that
components developed in WebSphere can run under the SAP web
application server.

Another example is the SAP .NET connector. Using this connector,
SAP systems can be extended with components developed for the
Microsoft .NET platform. An SAP system can access and integrate
.NET services, and at the same time .NET based information systems
can access SAP modules.

On the integration levels, correspondences between NetWeaver
components on the one hand and WebSphere and .NET components on
the other hand are established. For example, IBM's Lotus suite with
powerful collaboration and information management features can be
accessed from SAP systems and vice versa. A business information
system running on SAP Netweaver can be integrated with an informa-
tion system running on IBM WebSphere (applying JMS using
MQSeries). Likewise, a Microsoft .NET solution can be connected via a
MSMQ (Microsoft message queuing) adapter. In this way, user com-

Composite
application
framework

Solution
manager

Auto-ID
infrastructure

Interoperability
with IBM and
Microsoft
systems

Connecting with
Websphere
components

Connecting with
.NET
components

3 Information Systems Architecture 152

panies can manage an IT landscape in which SAP, IBM and Microsoft
systems coexist.

This is an attractive perspective for information systems develop-
ment by user organizations. In many organizations, more knowledge
and experience are available in general development technologies such
as Java IDEs or Visual Studio .NET than in SAP specific technologies.
Through the interoperability with IBM WebSphere and Microsoft
.NET, organizations can easily extend and enhance their heavy-weight
SAP information systems by light-weight components developed with
the help of common software technologies.

3.5.5 LAMP
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

LAMP is a popular platform composed of open-source software. In fact,
LAMP is not a unified platform like the above ones but a bundle of
tools that are often used together. The name is an acronym that stands
for:

L = Linux
A = Apache
M = MySQL
P = Perl/Python/PHP

It is attributed to Michael Kunze, who recommended this

combination of products as an alternative to commercial and proprietary
platforms in a German computer magazine in 1998 [Kunze 1998].

L = Linux is an open-source operating system similar to Unix. It was
originally developed by a Finnish student, Linus Torvalds, in the early
1990s and given to the open-source community. Professional software
firms have adopted and extended Linux, offering services and support
for user organizations. Those who wish to handle Linux themselves can
still download and run it for free.

A = Apache has become a generic name for a variety of open-source
software products, yet the original product was the Apache HTTPD web
server [Apache 2006b]. One powerful feature of this server is that it
supports loadable extension modules that enhance its base functionality.
Many such modules are available for many purposes. Especially for
web application development, an interpreter for one of the "P" lan-

Integration with
non-SAP
solutions

LAMP is a
bundle of tools
that are often
used together

Linux

Apache

3.5 Platforms 153

guages can be embedded into the web server to enhance the power of
the server. Apache HTTPD is considered to be an easy to install and
configure web server that needs little attention once it is running.

M = MySQL is a widely used open-source relational database
management system. It works closely together with PHP as a scripting
language, i.e. many websites written in PHP have an underlying
MySQL database. PHP is a recursive abbreviation of PHP hypertext
preprocessor (originally named "personal home page tool" by its crea-
tor, Rasmus Lerdorf, in 1995 [Achour 2006]).

P = Perl and Python (in addition to PHP) are other scripting lang-
uages that have been in use since the web began. Early web servers had
CGI (common gateway interface) built in. With the help of Perl, Python
and PHP, it was possible to use CGI to exchange data between the
client's web browser and the server.

When Linux is distributed the other components usually come with it
as a bundle. That is why the four components are often used in combi-
nation and can be seen as platform. In this sense, the "platform"
comprises a web server (Apache HTTPD), a database management
system (MySQL) and a scripting language (Perl, Python and/or PHP).
The compatibility of these components has grown and been extended
over the years.

LAMP's combination of a web server, a DBMS and a scripting lan-
guage suggests that typical e-business systems using web technology
and databases can be based on LAMP. A well-known example of a
large system on this platform is Wikipedia, the free encyclopedia on the
Internet (http://wikipedia.org). It runs under Linux, with content stored
in a MySQL database and provided to clients by an Apache HTTPD
web server.

LAMP is more limited than the platforms discussed earlier. The
combination of the four components basically provides a development
and runtime environment for web-based systems. However, since all
components are open-source, developers and projects around the world
have created a large number of additional components. Among these are
content management systems (CMS), application servers and many
more.

Application servers that can be used together with the LAMP compo-
nents have been developed both in ASF (Apache Software Foundation)
and other open-source projects. The Tomcat [Apache 2006c] and
Geronimo [Apache 2006a] servers, for example, were developed by the
Apache Software Foundation, a non-profit corporation in the United
States. They add application-server functionality to the web-server func-
tionality of Apache HTTPD. The goal of Geronimo is to provide full

MySQL

Perl/Python/PHP

Wikipedia runs
under LAMP

Tomcat and
Geronimo

3 Information Systems Architecture 154

application server support for information systems based on Java EE
[Apache 2006a].

Since LAMP has become such a success, similar platforms with
slightly different combinations of components emerged, for example,
with Windows or BSD Unix as operating system, PostgreSQL as
DBMS and IIS as web server. The most prominent acronyms are the
following [Jupitermedia 2005]:

LAPP – Linux, Apache, PostgreSQL, Perl/Python/PHP
WAMP – Windows, Apache, MySQL, Perl/Python/PHP
MAMP – Macintosh, Apache, MySQL, Perl/Python/PHP
BAMP – BSD, Apache, MySQL, Perl/Python/PHP
WIMP – Windows, IIS, MySQL, Perl/Python/PHP
AMP – Apache, MySQL, Perl/Python/PHP

The AMP combination has no specific operating system. This indicates
that Apache, MySQL and Perl/Python/PHP are actually the important
components. The benefits of using them together will show on any
operating system. However, Linux is open-source and the other
components are often bundled with Linux; therefore this combination is
the most popular one.

Similar platforms

In this and the following chapters, we will discuss different approaches
concerning how an organization can obtain its information systems once
the decision in favor of a system has been made.

While chapter 7 will deal with buying and introducing software that
was developed by others, in particular standard software, the focus in
this chapter is on how to build completely new information systems or
new modules that extend existing information systems within an organi-
zation. By "new modules" we mean that significant development effort
is required in order for the project to pass all stages of the software
development process.

In contrast to this, limited extensions of a running information sys-
tem are considered part of the maintenance and support stages. Adding
functionality to a new standard software system will be discussed in
chapter 7, as part of the customizing process.

The perspective taken in this chapter is that the starting point for the
development effort is an approved project proposal (cf. section 2.2.1);

Developing
Information
Systems

4 Developing Information Systems 156

i.e., a managerial level decision to launch a project for building a system
inhouse has been made. If no restrictions existed, we could say that the
project starts from scratch. In the real world, however, such restrictions
often limit the degrees of freedom substantially.

__

4.1 Starting with a Problem Specification

Constraints that a new information system development effort may need
to observe include the following:

– The existing information systems landscape has to be considered.

Most likely the new system will need to be interfaced with the
company's ERP system and other information systems.

– The platform on which the new system will run is probably outside
the scope of the project. If the company's existing systems are all
based on IBM WebSphere, for example, then it is unlikely that a
different platform will be chosen for a new system which needs to
be integrated.

– Depending on how closely the system is to be connected with exist-
ing systems, its architecture may already be predetermined, i.e., it
may have to match the architecture of the other systems.

– Many projects have to run under a tight budget and meager staffing,
limiting the possibilities of what can be done.

Despite these constraints, the development of new information systems
offers a wide array of options and fewer limitations than customization
projects.

Any development project needs a specification of the problems to be
tackled. The project proposal contains a problem description, but this
description is usually just a written text for the approval process, too
coarse and not operational enough to identify relevant development
tasks. For this purpose, a more formalized high-level specification of the
future system is required.

Several approaches to define such high-level specifications have
emerged in the past. With business processes nowadays being the
dominating paradigm for running organizations, this high-level descrip-

Constraints
limiting the
degrees of
freedom

Project proposal
is not operational

Business
process model –
a high-level
description

4.1 Starting with a Problem Specification 157

tion of the IS needs is usually a description of a business process or a
sub-process.

The process specification could simply be a textual description of the
major process steps and the resources involved. Since semi-formal
specifications have advantages over text, various graphical notations to
specify a business process on a high level have come into existence over
the years, including the following:

» Context diagrams in SA (structured analysis) [Yourdon 1989, p.

339]
» Activity and use-case diagrams in UML (unified modeling lan-

guage)
» Event-driven process chains in ARIS (architecture of integrated

information systems) [Scheer 2005]
» Business process diagram in BPMN (business process manage-

ment notation)

Figure 4-1 High-level business process (example)

order
received

check
feasibility

sales
engi-

neering

feasible

not
feasible

sales

confirm
order

plan
production

notify
customer

manu-
facture
product

production production dispatching

order
completed

sales

deliver
order

notify
customer

order
received

order
received

check
feasibility

check
feasibility

salessales
engi-

neering
engi-

neering

feasible

not
feasible

salessales

confirm
order

confirm
order

plan
production

plan
production

notify
customer

notify
customer

manu-
facture
product

manu-
facture
product

productionproduction productionproduction dispatchingdispatching

order
completed

order
completed

salessales

deliver
order

deliver
order

notify
customer

notify
customer

Figure 4-1 shows just one possible way of visualizing a business pro-
cess. As many notations for business-process modeling exist, the
graphical constructs vary. Besides high-level diagrams, all approaches
comprise a suite of graphical symbols with appropriate semantics as
well as methods and tools for different aspects of modeling and con-
struction. As a process is increasingly refined, more symbols and more
meanings are added to the high-level representation. Since methods and

Graphical
notations for
business process
modeling

4 Developing Information Systems 158

tools will be discussed in the following chapter, we do not introduce
more notations at this point.

4.2 Process Models and ISD Paradigms

Assuming that an operational problem specification has been created,
development of the information system can start. There are many ways
to conduct the development effort. Templates arranging development
activities into a specified order are called software process models.
(Note that the term "process" refers here to software development
activities and not to business processes as above.) This term can be
defined as follows:

A software process model is an ordered set of activities with asso-
ciated results that are conducted in the production and evolution
of software. It is an abstract representation of a type of software
process.

In a formal view, a software process model can be regarded as a de-
scription of a software process at the type level. A particular process is
an instantiation of the process model. However, a process model is
usually normative ("how things should be done") whereas process
instances are actually what happens in reality.

A large number of software process models have been proposed
since the beginning of software engineering, categorized in many ways,
and described by attributes such as:

– linear vs. iterative development,
– sequential vs. incremental development,
– plan-driven vs. agile development,
– model-driven vs. evolutionary development.

Decades of discussion about the best approach to software development
have gone by, and method wars have been fought over what might be
the best methodology. Most approaches survived, so a variety still exists

Definition:
software process
model

ISD paradigms

4.2 Process Models and ISD Paradigms 159

today. In addition, new organizational forms in the IT industry require
new approaches beyond the traditional ones; for example, offshoring
and open-source development have to be taken into account.

Out of the variety of old and new approaches, we will discuss the
established standard practices from the past, as well as current develop-
ments and issues. In the subsequent sections, the following approaches
to information systems development will be discussed:

– sequential (waterfall)
– prototyping and evolutionary, RAD
– model-driven
– RUP
– agile
– reuse oriented (web service/orchestration, componentware, COTS)
– offshoring
– open-source

These approaches are not free of overlapping. In fact, most real-world
ISD projects have features of more than one category. This means that
the software processes in practice rarely follow just exactly one
approach but rather include features of other approaches as well.

4.2.1 Sequential Process Model (Waterfall Model)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The sequential process model is based on the idea that the development
process can be divided into distinct stages with specified inputs and
outputs. The next stage starts when the previous one is completed.
Results cascade from one stage downwards to the next stage, just like a
waterfall. The flow of work is sequential and basically unidirectional as
illustrated in figure 4-2.

The waterfall model was the first process model in software
engineering. Its goes back to a systems engineering model that was
adapted to software development by Winston Royce [Royce 1970].
Since it was "the" process model for a long time, it has also been called
software life cycle model (SLC model). Still today, this term is often
used to refer to the waterfall model, although many different types of
software life cycles have come into existence in the meantime.

Approaches to
ISD in this book

First process
model in
software
engineering

4 Developing Information Systems 160

In Royce's original model, seven distinct phases were identified:
system requirements, software requirements, analysis, program design,
coding, testing and operations. The original model has been extended
and adapted by many authors who introduced new phases or arranged
phases in a different way, so the number and the names of the phases
vary. For example, the design stage is often divided into two stages:
preliminary design and detailed design. A widely used version of the
waterfall model goes back to Barry Boehm [Boehm 1981, pp. 35-41].

Each stage has a specified result − usually one or more documents
that have to be approved before the next stage begins. In principle, the
next stage should only start when the result of the previous stage is
accepted. For example, the outcome of the requirements analysis stage
is a requirements specification as discussed in section 2.2.1. The next
stage, design, needs this document as an input. It should not start before
the requirements specification is stable and approved.

The fundamental stages of a software life cycle model are illustrated
in figure 4-2. The main tasks assigned to the stages are as follows:

– Requirements analysis and definition: In this stage, the desired func-

tionality of the information system is specified. Requirements of the
stakeholders, in particular of the principals and future users, are elic-
ited and analyzed in detail. Requirements analysis is often divided
into analysis of:

» system requirements and
» software requirements.

System requirements refer to all components of the information
system (i.e. hardware, communication channels, networks, people,
organizational units, etc.) whereas software requirements address
the desired functionality of the software system. The focus in ISD
is usually on the latter aspect§.

As a result of the analysis process, a software requirements
specification is derived. Finding out and describing the require-
ments correctly and completely is a difficult task, yet crucial for
the success of an information systems project. Therefore, require-

§ The terms "system requirements", "system engineering", and "systems analy-

sis" in non-business contexts usually refer to technical systems where the soft-
ware is only one of several constituent components, e.g. radar, cruise-control,
and telecommunications systems. Electronic, mechanical, electrical, and per-
haps other subsystems are equally important as the software coordinating the
technical components. Business information systems, on the other hand, focus
on information and people. Technical components involved do not carry the
same importance as in the before mentioned systems.

Original model
has been
extended and
adapted in many
ways

Requirements
analysis and
definition

4.2 Process Models and ISD Paradigms 161

ments engineering has emerged as its own discipline. Section 5.1
explains requirements engineering in more detail.

– Preliminary design: The major components of the information
system are identified. If an overall system architecture already
exists, then the components are placed into this architecture. Other-
wise the system architecture is developed first. An architecture is
likely to be prescribed if the new system has to work closely
together with existing systems.

__

Figure 4-2 Waterfall model (software lifecycle model)

Requirements
analysis & definition

Preliminary design

Detailed design

Implementation &
module testing

Integration & system
testing

Documentation

Operation &
maintenance

Requirements
analysis & definition

Requirements
analysis & definition

Preliminary designPreliminary design

Detailed designDetailed design

Implementation &
module testing

Implementation &
module testing

Integration & system
testing

Integration & system
testing

DocumentationDocumentation

Operation &
maintenance
Operation &
maintenance

Preliminary
design

4 Developing Information Systems 162

For example, if the new system will provide an enterprise service
in a larger IS landscape with a service oriented architecture, then
the new system has to be designed based on SOA principles.

– Detailed design: The major components identified before are speci-
fied in more detail and refined into smaller components according to
the design paradigm or the particular approach being used in the
project. The component interfaces and the interactions between the
components are specified. Coarse program logic, workflow and
database structures are established.

– Implementation and module testing: The system components speci-
fied in the design stage are implemented as programs or program
modules. Each module is examined through testing if it works
properly, i.e. according to its specification. Errors that are detected
during testing are removed (debugging). While the original SLC
model considered only programs in this stage, further components of
the information system also need to be implemented, e.g. the
database, forms, reports and workflows.

– Integration and system testing: The individual components of the
system are integrated and tested together to ensure that the entire
system works according to the requirements specification. Just as the
requirements may include system and software requirements, both
the system requirements and the software requirements may have to
be validated after integration.

– Documentation: An important task is documenting the new informa-
tion system. Depending on the users of the documentation, different
types of documents have to be produced. Typical documentations
include:
» end-user documentation (how to use the system),
» system-administrator documentation (how to run the system),
» maintenance documentation (how to make changes to the sys-

tem),
» API documentation (how to use the application programming

interfaces, if provided).
The last two types of documentation are for developers. Since
maintenance programmers usually need to understand the program
logic, both the interfaces and the program code have to be
described. API documentations basically contain detailed interface
specifications. Some information systems may require more types
of documentation than the ones listed above.

Detailed design

Implementation
and module
testing

Integration and
system testing

Documentation

4.2 Process Models and ISD Paradigms 163

– Operation and maintenance: After the information system has been
tested and documented, it is delivered to the internal or external
customer. The system is installed in the production environment (i.e.
on the computer system it is supposed to run on in practice) and put
into operation. It is an empirical observation that from the time the
system is put into operation errors are observed and new or changed
requirements have to be realized. Since maintenance and operation
are overlapping activities, they are usually considered together as
one rather long stage.

The drawbacks and advantages of the waterfall model have been exten-
sively discussed for many years. Most authors agree that the assumption
of distinct phases performed in strict sequential order does not conform
to what happens in practical projects. It is often unrealistic to expect that
one phase can be definitely completed with a correct result before the
next phase starts.

For example, an empirical observation is changing requirements.
When a system is built for a customer, quite often the requirements are
modified and/or new requirements are formulated by the customer later
in the project. This is due to the fact that beforehand, not enough
knowledge about the future system existed. Therefore, requirements
cannot be specified in detail. As knowledge of the system increases in
the course of the project, requirements become clearer and are likely to
be adapted at a later stage. In particular, when customers see what they
will get (i.e. a running system or at least part of it), requirements may
appear in a different light and therefore be redefined.

Other problems with separating life cycle phases occur during
design. Sometimes, specified requirements turn out to be difficult or
impossible to transform into a design using reasonable effort, making a
revision of the requirements specification necessary. During coding
some features of the design may prove difficult to implement unless the
design is changed. Likewise, design errors and flaws in the require-
ments specification are often detected in the implementation stage,
requiring repetition of some of the work which was done in earlier
stages.

There are many examples of such situations where work in the next
stage has an impact on results of one or more of the previous stages. To
cope with these real-world circumstances, modifications of the waterfall
model that include revisiting earlier stages were proposed.

Figure 4-3 illustrates the underlying ideas. One immediate variant is
that information from the next stage flows back to the previous stage,
causing earlier results to be revised. Larger iterations are induced when
the need to return to an early stage arises. For example, if contradicting

Operation and
maintenance

Drawbacks of the
waterfall model

Changing
requirements

Problematic
requirements
and/or designs

Information from
the next stage
flows back

4 Developing Information Systems 164

requirements are not detected until integration and system testing, then
the requirements specification has to be corrected at a rather late point
in time, and all the in-between stages have to be executed again. Part of
the work that was done before has to be done again. The high cost of
improving results of earlier stages late in the process is considered a
major drawback of process models which are based on the waterfall
model.

Figure 4-3 Software life cycle model with iterations

Operation and
maintenance

Requirements
analysis & definition

Preliminary design

Detailed design

Implementation &
module testing

Integration &
system testing

Documentation

Operation and
maintenance

Operation and
maintenance

Requirements
analysis & definition

Requirements
analysis & definition

Preliminary designPreliminary design

Detailed designDetailed design

Implementation &
module testing

Implementation &
module testing

Integration &
system testing
Integration &

system testing

DocumentationDocumentation

Although the waterfall model and its extensions are often discussed in a
negative undertone, there are strong advocates of these models. Large
organizations have established versions of the model for their own
projects because this model provides a structured approach which is
easy to understand and to use in communication between development
personnel and managers. Having distinct phases also means that

Waterfall model
has strong
advocates

4.2 Process Models and ISD Paradigms 165

milestones and deliverables can immediately be attached to the phases,
providing crisp points in the project for management control and action.
Contracts with external software firms can be based on deliverables that
are a result of a stage in the waterfall model.

Putting emphasis on completing early stages such as requirements
analysis and design before proceeding further makes sense. Having a
complete and consistent set of requirements before the design is created
and the software is coded helps to save money. If analysis-and-design
mistakes are detected in the coding and testing stage, then a lot of the
earlier work has to be re-done.

The software life cycle model is considered useful for large projects
where reliable requirements can be specified in advance. This is the
case, for example, when the problem domain is well-known, when the
project team has experience with similar IS development projects and
when customers are not directly involved in the project (e.g. developing
shrink-wrapped standard software).

4.2.2 Evolutionary Process Models and Prototyping
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The obvious drawbacks of the sequential approach stimulated a differ-
ent approach to thinking about reasonable software processes. This new
way of thinking already began in the 1970s and was very strong in the
1980s. In fact, Winston Royce in his often cited 1970 article had not
actually advocated the waterfall model but pointed out its shortcomings.
Consequently he proposed an iterative approach similar to the one
illustrated in figure 4-3 [Royce 1970, p. 9].

The fundamental disadvantage of the waterfall model and its exten-
sions is the sequential flow of information and results from one stage to
the next. Even in its iterative variants, the main process is a sequential
one. Iterations essentially correct flaws and improve specification and
design features that were badly done before, either because of a lack of
knowledge or because of mistakes.

We pointed out before the difficulties to establish correct, complete
and consistent requirements and to design system components on an
abstract level without a line of code written. These difficulties lead to
different approaches that intermingle analysis, design and implementa-

Advantages

Appropriate
when
requirements are
clear

A new way of
thinking

SLC iterations
essentially
correct flaws

Abstract
specifications are
difficult

4 Developing Information Systems 166

tion of an information system and let users see early what the final sys-
tem will be like.

An often displayed cartoon in the software engineering literature
illustrates the dilemma of the waterfall model (see figure 4-4): A long
period of time goes by between when a project’s requirements specifi-
cation is produced and when the customer sees the final product. If the
requirements specification did not mirror exactly what the customer
actually wanted, this divergence will only show when the product is
delivered − and much money has already been spent.

To overcome these drawbacks of the waterfall model, two guiding
principles that are fundamentally different from the sequential approach
were established:

1. Making software development an evolutionary process
2. Building prototypes

__

Figure 4-4 "What the user wanted"

As proposed by the
project sponsor

As specified in the
project request

As designed by the
senior analyst

As produced by
the programmers

As installed at
the user's site

What the user wanted

As proposed by the
project sponsor

As specified in the
project request

As designed by the
senior analyst

As produced by
the programmers

As installed at
the user's site

What the user wanted

While most systems evolve after they have been installed (i.e. they grow
and change), evolutionary development means that system growth and
changes are already embedded as integral parts in the development
process. Iterations in the software lifecycle model serve this purpose to

4.2 Process Models and ISD Paradigms 167

some extent, but they are considered a necessary evil rather than a
welcome process feature.

In a truly evolutionary process model, the premise is that the infor-
mation system comes into existence through evolution: Starting with
incomplete and perhaps insufficient knowledge about what the final
information system has to be like, a limited subsystem is created in the
beginning. Continuing from this subsystem, an enhanced, extended,
and/or better subsystem is created. This subsystem may include new or
better components than the previous subsystem. The process continues
until a satisfactory and complete information system has evolved.

Evolutionary development has various incarnations. Many authors
have proposed approaches that create a sequence of running subsystems
until the final system is established. The most important ones are:

– Iterative enhancement: Requirements are specified as objectives in
the beginning. Some requirements are then selected and realized in
three phases: design, implementation and analysis. The goal of the
analysis phase is to evaluate the subsystem created and perhaps
modify the design. In the next step, the subsystem is extended by
selecting and realizing more requirements etc. The process ends
when all requirements have been dealt with [Basili 1975]. Whereas
design changes and extensions are part of the methodology, major
changes of the requirements are not. This means that iterative
enhancement is suited for projects where the requirements are more
or less stable from the beginning onwards.

– Incremental development: The overall system is developed as a se-
quence of increments [Mills 1980]. Customers set priorities regard-
ing their requirements for the system. Subsystems are identified that
realize a subset of the requirements. After the overall system archi-
tecture has been designed, a subsystem fulfilling the most important
requirements is designed in detail, implemented, tested, delivered
and evaluated by the developers and the users. This might lead to
new insights about the requirements that are taken into consideration
when the next increment is developed. This increment undergoes the
same development process. After its integration with the previous
increment(s), the new system is evaluated, and the next increment is
developed, etc.

Advantages of incremental development include that the cus-
tomer gets a running system after a shorter time and does not have
to wait until the entire system is completed. The shortcomings of
the initial increments can be avoided in later increments, so the
overall system quality is enhanced.

IS comes into
existence in an
evolutionary
process

Iterative
enhancement

Incremental
development

Advantages and
disadvantages of
incremental
development

4 Developing Information Systems 168

The major disadvantage is that it is not easy to split up a system
into distinct subsystems if no overall design is made. Services or
modules needed by all subsystems are difficult to identify before-
hand. In addition, if the increments are developed in completely
separate subprojects, there is a risk that the subsystems will be
heterogeneous and not behave in the same way, which would
adversely affect the user-friendliness of the system.

– Versioning: The final system evolves from a sequence of preceding
versions. While there is no sharp distinction from iterative enhance-
ment and incremental development, versioning implies that more or
less the same functionality is available in the successive versions.
Yet the next version represents a better implementation than the pre-
vious one, be it through an enhanced architecture or design, through
better coding or through improved requirements.

Taking the most severe problem of the waterfall model into account −
i.e. capturing the requirements in a correct, complete, and consistent
manner – we believe that the most important progress when using an
evolutionary approach, as opposed to a sequential one, is the embedding
of the requirements definition into the evolution loops. This means that
the requirements document is not established only once and for the
entire project, at an early point in time when many things about the new
system are not clear yet, but that requirements can be refined and
revised throughout the project.

This is certainly not compatible with a sequential process model in
which all subsequent stages depend entirely on a definite requirements
specification. Consequently, the design and implementation stages must
be flexible in the sense that a system design which has only been
established once may need to be changed, and the code written for the
old design should be easy to modify in the next loop. Ease of change is
a (non-functional) requirement that can be substantially supported by
automated tools.

Taking the evolution of the requirements specification as well as the
underlying ideas of iterative enhancement, incremental development
and versioning into consideration, a generic process model for evolu-
tionary information systems development can be described through the
following steps:

1. Start with an analysis of the problem and an provisional set of

requirements for the project.
2. Create a preliminary specification of the requirements as input to

the first development cycle.

Versioning

Requirements
are part of the
evolution

Ease of change
is required

A generic
process model

4.2 Process Models and ISD Paradigms 169

3. Establish a preliminary system design based on the current
requirements specification.

4. Select those requirements or functionalities that should be actual-
ized next.

5. Develop a detailed design of the system version or the subsystem
defined in the previous step.

6. Implement, test and debug the current system version or sub-
system.

7. Evaluate the current system version or subsystem (involve both
developers and customer/users in the evaluation).

8. Continue with step 4 until a satisfactory solution to the problem is
obtained; i.e., revise the requirements specification and subse-
quently the design based on the evaluation.

Figure 4-5 summarizes the process model. To keep the figure simple,
not all possible branches have been explicitly indicated. For example,
an intermediate version or a functioning subsystem providing value to
the customer may be installed and implemented before the complete
system is available, if that subsystem can run by itself. In addition, a
bypass of the design stage is possible because design revisions are only
necessary if modified requirements call for a design change.

The system undergoes several development cycles in which the
requirements are continuously reformulated, refined and/or improved.
The loop comes to an end when all development objectives are fulfilled.
By objectives we mean 1) the requirements stated, 2) the desired soft-
ware quality, and 3) a satisfactory solution to the actual problem that
initially caused the customer to start the project. Three to four iterations
are typically observed in mid-size practical projects.

Although an evolutionary process model has many advantages over a
sequential process model, disadvantages should also be noted. When a
system is intended to evolve continuously, it is difficult to establish in-
struments for management control such as milestones and deliverables.
Since the result of a development cycle is based on a preceding evalua-
tion and the result of the previous cycle, it is not possible to predict
what will be the result of the next cycle and when that result will be
available. Likewise, contracts with external providers are difficult to
formulate if crisp deliverables cannot be specified.

Furthermore, as the system undergoes continuous change, the final
system structure may degenerate into an architectural patchwork,
making maintenance and future extensions costly.

Several
development
cycles

Disadvantages of
evolutionary
development

Structure suffers
from "patchwork"

4 Developing Information Systems 170

__

Figure 4-5 Evolutionary process model

Problem & requirements
analysis

Requirements
specification

System design

Definition of version/
subsystem

Detailed design

Implementation & test

Evaluation of
current system

All
objectives

met?

Delivery & installation

Operation &
maintenance

no

yes

Problem & requirements
analysis

Requirements
specification

System design

Definition of version/
subsystem

Detailed design

Implementation & test

Evaluation of
current system

All
objectives

met?

Delivery & installation

Operation &
maintenance

no

yes

4.2 Process Models and ISD Paradigms 171

As mentioned before, automated tools can significantly enhance devel-
opment productivity. Since change is inherent to evolutionary devel-
opment, tools that generate code are particularly helpful. On the other
hand, the pressure to use such tools creates tool dependencies which
may be counter-productive in the long-run. For example, a different
toolset may turn out to be better suited for the next cycle. However, it
will be difficult to adopt the new tool if system components meant to
remain in the next version are bound to the old toolset.

Prototyping

Building system prototypes is a well-established practice in engineering.
When a new product is under development, working prototypes are
built first in order to study design and manufacturing options or cus-
tomer acceptance. Prototypes in information systems development serve
similar purposes. IS prototypes are running subsystems that help devel-
opers or users to gain insights into the future system. These insights
would not be available if only abstract paper documents describing the
system were created.

Prototyping in information systems development can be used in two
fundamentally different ways:

– Throw-away prototyping
– Evolutionary prototyping

The main purpose of a throw-away prototype is to provide an object of
study to developers or users that they can explore and gain experiences
with. The prototype is only used for that purpose and later discarded (cf.
figure 4-6). Since it does not constitute a part of the final system that
will be delivered to the customer, throw-away prototypes are often
created in a "quick and dirty" manner; i.e. software quality is not given
high priority.

Powerful tools are needed to create prototypes fast. Although a
prototype could be written in a conventional programming language, the
speed factor calls for high-level tools. Such tools can aid a quick crea-
tion of a prototype through drag-and-drop features and code generation,
which requires only little hand-coding. In particular, the creation of
graphical user interfaces should be facilitated by tools.

The term rapid prototyping has also been coined for this approach.
Rapid development does not necessarily imply that the prototype will be
thrown away afterwards.

Evolutionary prototyping means that an initial prototype will be ab-
sorbed into the next one and so on, as illustrated in figure 4-6. The final

Tool
dependencies

Prototyping is an
established
engineering
practice

Throw-away
prototyping

Powerful
software tools
are needed

Evolutionary
prototyping

4 Developing Information Systems 172

system will contain code that has evolved from the previous prototypes.
This process was discussed above under the topic evolutionary process
models. The project will follow such a process model when prototype
evolution is the approach of choice.

__

Figure 4-6 Throw-away vs. evolutionary prototyping

Evolutionary prototypes Throw-away prototype

Prototype 1

Prototype n
= final system

Prototype 2

Prototype 1
Requirements

analysis &
definition

Preliminary
design

Detailed
design

...

...

Evolutionary prototypes Throw-away prototype

Prototype 1Prototype 1

Prototype n
= final system
Prototype n
= final system

Prototype 2Prototype 2

Prototype 1
Requirements

analysis &
definition

Preliminary
design

Detailed
design

...

...

As opposed to evolutionary prototyping, throw-away prototypes are
mostly used within a software life cycle stage, to support core activities
of this stage. From this viewpoint, prototyping variants include the
following:

– Requirements prototyping as part of the requirements analysis and

definition stage is the most widely used form of prototyping. The
aim here is to assist the project staff to elicit and to validate user re-
quirements. Prototypes are built to give the customer and/or the
users an idea of what the implementation of their requirements will
be like. A prototype helps them to make vague or fuzzy require-
ments explicit so that they can be mapped on to information system
functionality. Section 5.1 discusses requirements engineering in
more detail.

Requirements
prototyping

4.2 Process Models and ISD Paradigms 173

– User-interface prototyping is similar to requirements prototyping in
that those parts of the system representing the system's interface to
the user, i.e. the graphical user interface (GUI), are developed quick-
ly. The purpose of user-interface prototyping is to demonstrate the
look-and-feel of the future system to the customer and/or the users.
The prototype is likely to be a mock-up; i.e. functionality behind the
GUI is not implemented yet. A powerful GUI builder tool such as
Visual Studio .NET (for Windows based systems) or JBuilder (for
Java based systems) is essential for user-interface prototyping.

– Design prototyping is an approach supporting the design stage(s). It
is different from the previous ones in that it targets the developers
and not the users. Design decisions can affect the ease or difficulty
of implementation and maintenance and thus effect future costs posi-
tively or negatively. If design consequences are not immediately ob-
vious, building prototypes to try out one or more design options
helps to assess implications of the options. In this case, the prototype
will not contain a sophisticated GUI but rather a complete imple-
mentation of a small part of the overall functionality.

The advantages of prototyping are manyfold. Evolutionary prototyping
is a means to accelerate delivery of the system to the customer. Stable
subsystems can be installed for practical use before the entire system is
completed. In today's fast-changing business environment, the speed of
delivery can be a critical factor with regard to the competitiveness of an
enterprise.

Prototyping helps to make things clear early. Customers and/or end-
users see at an early stage of the project what the final system will be
like. In particular, a prototype can help to derive and formulate require-
ments for the subsequent development phases. To both developers and
customers, the size of the final system becomes more transparent, facili-
tating time and cost estimation. Design prototypes can provide helpful
insights regarding the expected effort. In fact, prototypes are sometimes
built especially to support cost estimation.

Obvious disadvantages on the other hand have prevented many
organizations from adopting prototyping, in particular evolutionary
prototyping, as a general approach to information systems development.
Some of these problems we discussed above, in the context of evolu-
tionary process models, such as management and contractual problems,
software quality and tool dependencies. Further problems related with
the use of prototypes have been identified as the

– "normative force of facts",
– pressure to release,

User-interface
prototyping

Design
prototyping

Prototyping
makes things
clear early

Disadvantages of
prototyping

4 Developing Information Systems 174

– uncontrollable growth of requirements,
– lack of project management methodology.

 "Normative force of facts": The rationale of prototyping is to enable
exploration and gaining of experience so that the solution or the next
prototype will be better than the current one. In contrast to this, devel-
opers tend to "save" their work and reuse it in subsequent versions.
Inappropriate solutions will survive in this way. Likewise, the percep-
tion of users may be prejudiced by the current prototype. As they are
not aware of alternative solutions to the problem, the exemplary imple-
mentation is considered "the" solution, no matter if a better solution
exists or not. Tool restrictions and peculiarities may further narrow the
solution space. Due to these factors, the example (i.e. the prototype)
determines the final product, which is not the idea of prototyping.

 Pressure to release: Customers, end-users and managers are usually
not IT experts. When they see a running prototype, they may not be
aware that it is still a long way to go from the prototype to a stable,
robust and efficient production system ("it works, why can't we release
it?"). It may be difficult to explain to non-experts why still three times
the already elapsed time will be needed until the final system is avail-
able, and that ignoring software quality now will increase maintenance
costs later.

 Uncontrollable growth of requirements: A fundamental assumption
in most forms of prototyping is that customers and/or end-users are
involved in the development process. As the project progresses, things
become clearer and the state of knowledge about the problem and its
solution increases. In many cases this leads not only to requirements
changes but also to new requirements, implying more work for the
development team. Negative consequences can be: frustration on the
developers' side because of a higher workload and having to throw
away results of their previous work; difficulty staying on schedule and
budget; and delay of delivery, the latter leading to customer dissatis-
faction. Project managers have to keep an eye on balancing growing
user requirements with the project schedule and budget. If changes have
not been provided for in the initial agreement, conditions and terms may
need to be renegotiated.

 Lack of project management methodology: While the waterfall model
is accompanied by a widely used set of project management methods,
such a common and accepted methodology does not exist for prototyp-
ing. In many organizations, evolutionary prototyping is considered
inappropriate for practical projects. A major reason for this is that an
evolutionary process model does not provide crisply defined points for

"Normative force
of facts"

Pressure to
release

Uncontrollable
growth of
requirements

Lack of project
management
methodology

4.2 Process Models and ISD Paradigms 175

management control and action as a sequential process model does. It
should be noted, however, that project management methodologies for
evolutionary prototyping are available. They are just not as common as
the standard SLC based methodologies. (This author already developed
a project management methodology for evolutionary prototyping in
1987 [Kurbel 1987, Kurbel 1990].)

4.2.3 Model-driven Information Systems Development
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Models play an important role in information systems development.
They can be used in various phases of the development cycle. For
example, the entity-relationship model (ERM) is often employed to cap-
ture the essential data for an information system and their interrelations
as input for the creation of a database.

However, consistent use of models throughout the development
stages was not a common approach in practice; rather models were
created subsequently on paper for the documentation, when the devel-
opment was already finished. Nowadays modeling is supported by
powerful tools that will be discussed in detail in chapter 5.

Model-driven information systems development (mdISD) has a
stronger orientation towards business information systems than the pre-
viously discussed process models§. While these models are rather gen-
eral, targeting technical software in engineering as well (or in the first
place), mdISD supports primarily business problems. There are two
fundamental ideas on which mdISD relies:

1. the use of models at all stages of development,
2. the automated transformation of models into code or other models.

While automatic code generation from formal specifications had
been a dream of computer scientists since the early times of program-
ming, this dream largely did not come true. Only when semi-formal
methods and diagramming techniques matured and the automated tools

§ We use the term "model-driven information systems development" (mdISD)

instead of other terms such as "model-driven development/model-driven archi-
tecture" (MDD/MDA) to express the specific focus on (business) information
systems development.

Models were for
documentation

mdISD is
business
oriented

4 Developing Information Systems 176

supporting these techniques became available in the early 1990s, did
model-based information systems development become a serious
approach for large-scale practical projects.

Information engineering (IE)

A pioneer in the field of model-driven information systems develop-
ment was James Martin who established the discipline of information
engineering (IE). This was a comprehensive approach to enterprise-
wide modeling of all aspects of information systems and transforming
the models into running systems. Martin defined information engineer-
ing as:

"The application of an interlocking set of formal techniques for
the planning, analysis, design, and construction of information
systems on an enterprise-wide basis or across a major sector of
the enterprise." [Martin 1989, p. 1]

IE is supported by "an interlocking set of automated techniques in
which enterprise models, data models, and process models are built up
in a comprehensive knowledge base and are used to create and maintain
data processing systems." [Martin 1989, p. 1]

The comprehensive information-engineering view covers all stages
of IS planning and development, starting from strategic planning down
to technical construction of programs and databases. The focus of IE is
not on a single information system but on enterprise-wide information
processing as a whole. Separate views of information systems are inte-
grated. According to the state-of-the-art at that time, these views are
data, functions and processes − all analyzed and modeled within a com-
mon framework.

Information engineering consists of four main stages, as illustrated
by the pyramid view in figure 4-7:

– ISP (information strategy planning) is the top stage where strategic

goals, critical success factors and information requirements of all
major parts of the enterprise are determined. The result of informa-
tion strategy planning is a global model of the enterprise and its
division into business areas.

– On the second level, BAA (business area analysis) is performed
within one or more major sectors of the enterprise. Data models (e.g.
entity-relationship diagrams), process models (e.g. decomposition
diagrams) and other models are developed here, and desirable infor-
mation systems within the business areas are defined.

James Martin – a
pioneer of mdISD

Definition:
information
engineering

Focus on
enterprise-wide
information
processing

ISP (information
strategy
planning)

BAA (business
area analysis)

4.2 Process Models and ISD Paradigms 177

– SD (system design) is the third stage where procedures, data struc-
tures, screen layouts, windows, reports etc. are specified.

– In the fourth stage, construction, programs and data structures are
implemented, tested and integrated.

Figure 4-7 Information engineering pyramid [Martin 1989, p. 4]

Information strategy
planning

Business area
analysis

System design

ConstructionData Activities

Information strategy
planning

Business area
analysis

System design

Construction

Information strategy
planning

Information strategy
planning

Business area
analysis

Business area
analysis

System designSystem design

ConstructionConstructionData Activities

Although the idea of capturing and modeling an entire organization's
information systems needs is independent of tools, turning this impres-
sive approach into running systems is not possible without powerful
tools at all stages. A major objective of IE is to generate code from
models automatically. In fact, James Martin with his IE approach was a
major promoter of I-CASE (integrated CASE), because information

SD (system
design)

Construction

IE needs power-
ful CASE tools

4 Developing Information Systems 178

engineering without integrated CASE tools was just not possible§. Well-
known toolsets supporting IE in the 1990s were ADW (Application
Development Workbench) and IEF (Information Engineering Facility)
[Stone 1993].

Model and tool integration as well as code generation require a cen-
tral storage place or repository. In IE it is called the encyclopedia. All
the information collected during the stages of information engineering is
transformed into a common representation format and stored in the
encyclopedia.

One of the heavily used figures in IE is the so-called knowledge
coordinator, an avatar that has the encyclopedia in its head. Figure 4-8
shows this view of the encyclopedia. (It should be noted that the mean-
ing of the term "knowledge" is not the same as in artificial intelligence.
A more appropriate term for the IE artifacts would be "information.")

The comprehensive information engineering approach was very pop-
ular among business informatics academics because it satisfied a major
requirement – integration of processes, functions and data – that had
been demanded in theory for a long time. In practice, IE unfortunately
did not gain the same level of acceptance for two reasons.

Firstly, extremely powerful CASE tools were needed. Tool manu-
facturers were not capable of providing such efficient tools that would
satisfy the heavy demands posed by the theoretical concepts. One of the
largest failures in software engineering was IBM's repository manager
project within AD/Cycle. AD/Cycle was an equally comprehensive ap-
proach as information engineering, based on a repository (the term "re-
pository" was actually coined by IBM in that project). After more than
ten years of development effort and hundreds of person-years spent, the
repository manager was finally withdrawn by IBM. The problem was
just too difficult, and it turned out to be impossible to create a repository
that could work with acceptable performance.

Secondly, code generation from the activities-oriented models was
cumbersome. IE tools in general were nicely integrated, able to ex-
change information and adapt representation formats smoothly. Gener-
ating database structures from data models was fairly straightforward,
but generating program code was a rather awkward and error-prone
procedure. A lot of manual work not much different from ordinary 3GL
programming had to be done to make code generation really work.

Thirdly, the dissemination of standard business software in the late
1990s, especially for enterprise resource planning and related areas,
made enterprise-wide information modeling somewhat redundant. The

§ CASE tools will be discussed in section 5.3.

IE encyclopedia

"Knowledge
coordinator"

Sufficiently
powerful CASE
tools were not
available

Cumbersome
code generation

4.2 Process Models and ISD Paradigms 179

purpose of modeling is to finally obtain running information systems.
When information systems for ERP, SCM, CRM etc. are already there,
then the modeling was performed by the software vendors before and
there is no point in doing it once more.

Figure 4-8 Repository in information engineering [Martin 1989, p. 15]

Encyclopedia

Goals Strategies

Specifications Data
models

Process
models

Data
structures

Program
structures Rules

Screen
designs

Report
designs

Knowledge
coordinator

4 Developing Information Systems 180

Model-driven architecture (MDA)

The model-based approach was revived in the beginning of the 21st
century through the concept of a model-driven architecture (MDA)
introduced by the Object Management Group (OMG). The aim of MDA
is to separate business and application logic from underlying platform
technology. A complete MDA specification consists of a definitive
platform-independent base model, plus one or more platform-specific
models (PSM) and sets of interface definitions, each describing how the
base model is implemented on a different middleware platform [OMG
2006]. Application systems based on MDA consist of a definitive PIM,
plus one or more PSMs and complete implementations, one on each
platform that has to be supported.

According to the OMG, a major advantage of a model-driven archi-
tecture is that "... it is not necessary to repeat the process of defining an
application or system's functionality and behavior each time a new tech-
nology (web services, for example) comes along. Other architectures are
generally tied to a particular technology. With MDA, functionality and
behavior are modeled once and only once. Mapping from a PIM
through a PSM to the supported MDA platforms is being implemented
by tools, easing the task of supporting new or different technologies"
[OMG 2006].

Having observed the difficulties of IE tool providers with automated
model transformations, we do not completely share the optimism ex-
pressed in the last sentence. Indeed, the OMG admits that today's tools
typically automate only 50% to 70% of the PIM-to-PSM transforma-
tion, leaving the rest to be manually coded and adapted [OMG 2006].
However, automation of the PSM-to-code transformation is said to be
near 100%.

Along with the MDA, a development life cycle model was intro-
duced. It is not completely different from other software life cycle mod-
els, because it consists of the same or similar stages as other models.
However, the outputs and inputs of some stages differ in that models are
explicitly defined as the results that connect stages. As figure 4-9
shows, the result of the analysis stage is a platform-independent model
(PIM). This model is input into the design stage in which a platform-
specific model (PSM) is developed, or more of such models if more
than one platform is targeted. Coding and testing is, of course, platform
specific. Iterations are part of the MDA life cycle model.

OMG introduced
MDA

Functionality and
behavior are
modeled only
once

50% to 70% of
PIM-to-PSM
transformation
automated

Outputs and
inputs of stages
are models

4.2 Process Models and ISD Paradigms 181

Methods and tools for MDA are closely connected with UML. Al-
though not formally required, UML is a key enabling technology for the
model-driven architecture and the basis of 99% of MDA development
projects [OMG 2006].

Figure 4-9 MDA software life cycle [Kleppe 2003, p. 17]

Deployment

Requirements

Analysis

Low-level design

Coding

Testing

Iterations
Mostly text

PIM

PSMs

Code

Code

DeploymentDeployment

RequirementsRequirements

AnalysisAnalysis

Low-level designLow-level design

CodingCoding

TestingTesting

Iterations
Mostly text

PIM

PSMs

Code

Code

ARIS (architecture of integrated information systems)

A working example of an mdISD approach is ARIS (architecture of
integrated information systems). ARIS started in the beginning of the
1990s as an approach to enable the development of integrated informa-
tion systems. It was created by a distinguished business informatics
professor, August-Wilhelm Scheer, and established as a suite of com-
mercial tools by IDS Scheer AG in Saarbruecken, Germany. Similar to
information engineering, several views of information systems were
considered: data, functions, organization and control [Scheer 2000]. In

UML is an
enabler for MDA

Created by
business infor-
matics professor
A.-W. Scheer

4 Developing Information Systems 182

contrast to IE, ARIS did not require an enterprise-wide top-down
approach across the whole enterprise; it was suited for individual infor-
mation systems as well.

All of the mentioned views were supported by specific methods.
With the exception of event-controlled process chains, most methods in
ARIS were not new. Instead, established methods were used and ar-
ranged in a comprehensive framework, for example entity-relationship
modeling, decomposition diagrams, organizational charts and sequence
diagrams.

The focus of ARIS later shifted more towards business process
modeling (BPM) and tooling support for this purpose. Based on the
concept of event-controlled process chains, a set of tools for BPM was
developed. The core components of an event-controlled process chain
(EPC) are events and functions (process steps). Events trigger functions
and the execution of a function usually terminates in an event that may
trigger another one or more functions.

Today, ARIS is a market leader and in Europe considered a quasi-
standard for business process modeling. SAP users often apply ARIS to
model their processes before customizing the SAP systems they are
going to implement in their organization. The ARIS toolset provides
tools all the way down to the construction stage, supporting code gener-
ation to a significant extent. The underlying methods are either based on
UML or developed specifically for ARIS.

The initial process model for information systems development in
ARIS contained simply the following stages: business problem, require-
ments definition, design specification and implementation. These stages
corresponded to what was called "levels of description", i.e. abstraction
levels for describing the problem, the requirements, the design and the
implementation. Models were created on the problem, the requirements
and the design levels. Abstraction levels mapped quite easily onto
development stages, because obviously models of the business problem
are created first, then requirement models, then design models, finally
followed by the implementation in code.

With increasing focus on business process modeling and tools, the
process model for ARIS nowadays contains three major levels as
illustrated in figure 4-10: modeling, generation and implementation.
Models created in the business-process-analysis and requirements-
analysis stages are independent of both specific architectures and spe-
cific platforms. System design is done for a particular architecture, and
the generated code is obviously platform-dependent.

In the business-process-analysis stage, business processes are primar-
ily modeled with the help of event-controlled process chains. For

Event-controlled
process chain
(EPC)

Market leader in
business process
modeling

ARIS abstraction
levels

Modeling,
generation and
implementation

4.2 Process Models and ISD Paradigms 183

requirements analysis, UML modeling techniques are provided. In order
to derive a UML based model of requirements from EPC based results
of business process analysis, the latter ones have to be mapped to UML
constructs, e.g. use cases (cf. section 5.1.3).

Figure 4-10 ARIS model-driven process model [Andres 2006, p. 3]

M o d e l i n g

Business process analysis

Requirements analysis

System design

G e n e r a t i o n

Code generator

Application family

Templates

I m p l e m e n t a t i o n

Application

System architecture
& UML profile

Architecture
specific

Architecture
independent

Platform
specific

M o d e l i n g

Business process analysis

Requirements analysis

System design

G e n e r a t i o n

Code generator

Application family

Templates

I m p l e m e n t a t i o n

Application

System architecture
& UML profile

Architecture
specific

Architecture
specific

Architecture
independent

Platform
specific

For code generation later on, certain parameters regarding the selected
type of information system (application family) must already be provid-
ed in the system-design stage. The code generator can then, with the
help of more information about the application family, convert the
design model into source code and other artifacts.

Templates of the application family determine what code is actually
generated from the design [Andres 2006]. The final implementation
usually requires manual completion and adaption of the generated code.

4 Developing Information Systems 184

4.3 Rational Unified Process (RUP)

Good and bad experiences from other process models were taken into
consideration when RUP was born. RUP was created in a joint effort by
three well-known experts in object-oriented analysis and design, Ivar
Jacobson, Grady Booch and James Rumbaugh. Each of them had estab-
lished a proven object-oriented methodology by the time they joined
Rational Software Corp. to create a unified approach based on the three
parallel predecessors. The major outcomes of this effort are RUP (Ra-
tional unified process) and UML (unified modeling language).

RUP is a process model, a framework to create process models, and a
methodology to develop software systems. As a process model, it sup-
ports incremental development, dividing large projects into smaller sub-
projects. Characteristics are iterations and increments, strong involve-
ment of all stakeholders (developers, architects, end-users, managers,
customers etc.) at all stages, and built-in quality assurance. Although
some authors say that RUP is requirements-driven, others state explicit-
ly that it is not. It is a matter of perspective. Requirements certainly play
an important role; yet they are not defined just once and for all times at
the beginning, but evolve during the process [Kruchten 1996, p. 14].

The process model can be used "as is", but usually it is adapted to the
organization's or the project's specific needs and characteristics. That is
why RUP is also an adaptable framework for deriving and tailoring spe-
cific process models. Being closely connected with UML, RUP pro-
vides a methodology for developing software systems that is supported
by various UML constructs.

The process model is two-dimensional. The dimensions are phases
and disciplines (originally called workflows). Phases extend in time,
and disciplines expand into activities (cf. figure 4-11). The phases are
called:

» Inception
» Elaboration
» Construction
» Transition

Ivar Jacobson,
Grady Booch and
James Rum-
baugh

RUP: process
model, frame-
work and
methodology

RUP phases

4.3 Rational Unified Process (RUP) 185

Workflows were originally distinguished into core process workflows
and core supporting workflows. Since the renaming of workflows to
disciplines in 2001, a further subdivision is not common any more.
Thus the disciplines are:

» Business modeling
» Requirements
» Analysis and design
» Implementation
» Test
» Deployment
» Configuration and change management
» Project management
» Environment

Figure 4-11 RUP lifecycle − phases and disciplines§

The hump-chart diagram in figure 4-11 is one of the landmarks of RUP.
It expresses several things quite clearly:

§ Ambler 2005a, p. 2.

RUP disciplines

4 Developing Information Systems 186

1. Disciplines extend across phases. This means that typical activi-
ties such as modeling, analysis, design, implementation and test
are not confined to one phase but are ongoing activities during the
entire life cycle.

2. The humps in the curves indicate how much effort will be needed
at what times. For example, most of the analysis and design effort
occurs in the elaboration phase, whereas the implementation curve
has its highest point in construction.

3. Iterations occur within phases. Examples of iterations are given at
the bottom of figure 4-11: Inception has only one iteration in this
example; the elaboration, construction and transition phases con-
sist of two, three and two iterations, respectively.

Iterations are intended for all phases, yet only within a phase. The
phases as such are sequential. For example, the construction phase starts
when elaboration is over. However, activities within a phase (e.g. analy-
sis, design, implementation and test) may be performed repeatedly until
a satisfactory outcome is obtained. In this way, RUP combines sequen-
tial and iterative process aspects in one process model ("serial in the
large, iterative in the small" [Ambler 2005a, p. 1]).

The hump chart shows how typical projects behave regarding the
workload of disciplines and phases. Although all projects are different,
they exhibit similar distributions. It should be noted, however, that
effort and time (schedule) are not identically distributed. Typical distri-
butions are outlined in figure 4-12. The reason why effort and schedule
have slightly different numbers is because the manpower utilization
which is underlying the effort criterion usually varies across phases.

A complete pass through the four phases is called a development
cycle. Since RUP is based on the rationale that a software system
evolves over time, the process does not end with the "final" release
delivered to the customer. New environmental factors, requirements or
technologies may call for substantial extensions or modifications.

Figure 4-12 Typical effort and time allocation [West 2003, p. 4]

Phase Inception Elaboration Construction Transition

Effort 5% 20% 65% 10%

Schedule 10% 30% 50% 10%

Disciplines
extend across
phases

Iterations occur
within phases

"Serial in the
large, iterative in
the small"

Hump chart
shows the
workload

RUP develop-
ment cycle and
evolution

4.3 Rational Unified Process (RUP) 187

This means that the cycle starts over again: inception → elaboration →
construction → transition. Since an existing software system is already
available, the new cycle does not need to begin from scratch. Thus the
inception phase may be considerably shorter or even omitted. In the
latter case, the first full phase of the new cycle would be elaboration.

Figure 4-13 Evolution cycles [Ambler 2005a, p. 12]

Inception Elaboration Construction Transition Production

initial development cycle Production release 1

...

Inception Elaboration Construction Transition Production
development cycle 2 Production release 2

Inception Elaboration Construction Transition Production

development cycle n Production release n

Inception Elaboration Construction Transition Production

initial development cycle Production release 1

...

Inception Elaboration Construction Transition Production
development cycle 2 Production release 2

Inception Elaboration Construction Transition Production

development cycle n Production release n

Figure 4-13 shows the evolution of a software system through its cycles.
New cycles may become necessary throughout the lifetime of the sys-
tem, as long as the stakeholders find the system worthy to be kept alive
and enhanced.

4.3.1 RUP Phases
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The phases divide a project into four major sections that are performed
sequentially. Each section is terminated by a milestone supporting
management controlling. Figure 4-14 shows the major milestones of
RUP: life cycle objectives (LCO), life cycle architecture (LCA), initial
operational capability (IOC) and product release (PR).

Phases are
terminated by
milestones

4 Developing Information Systems 188

Milestones are points for go/no-go decisions. The stakeholders assess
what has been and what can be achieved, and they decide how to pro-
ceed forward.

The four phases are briefly described below, following Rational Soft-
ware's white paper on RUP [Rational 1998, pp. 3-7] and Ambler's sum-
mary of phases [Ambler 2005a, pp. 3-5].

Figure 4-14 RUP milestones

Phases

Mile-
stones

Inception

Initial
operational
capability

(IOC)

Lifecycle
objectives

(LCO)

Lifecycle
architectures

(LCA)

Product
release

(PR)

Elaboration Construction TransitionPhases

Mile-
stones

InceptionInception

Initial
operational
capability

(IOC)

Lifecycle
objectives

(LCO)

Lifecycle
architectures

(LCA)

Product
release

(PR)

ElaborationElaboration Construction TransitionTransition

Inception phase

The goal of the inception phase is to achieve a stakeholder consensus
regarding the objectives of the project and to obtain funding. The busi-
ness case for the system is established and the project scope is delim-
ited. The business case includes success criteria, risk assessment, esti-
mates of the resources needed and a phase plan showing dates of major
milestones. For this purpose, a high-level requirements model and per-
haps a user-interface prototype are built.

The outcome of the inception phase includes: a "vision document",
i.e. a general vision of the core requirements, key features and main
constraints; an initial use-case model; an initial business case, which
includes business context, success criteria and financial forecast; an
initial risk assessment; a project plan, showing phases and iterations;
and one or several prototypes.

The life cycle objectives (LCO) milestone at the end of the inception
phase is the point where the stakeholders must agree on:

– the scope of the project,

Go/no-go
decisions

Outcome of the
inception phase

LCO milestone

4.3 Rational Unified Process (RUP) 189

– identification of the initial requirements, without much detail at this
point,

– credibility of the cost/schedule estimates, priorities and risks,
– credibility that risk management is properly handled,
– the project plan is realistic,
– the software development process is appropriately tailored,
– the architectural prototype is pertinent.
A go/no-go decision is made based on the evaluation of these points.
The project may be cancelled or considerably re-thought if it fails to
pass the milestone.

Elaboration phase

The major objectives of the elaboration phase are to analyze the prob-
lem domain, establish a sound architectural foundation, develop the pro-
ject plan and eliminate the highest risk elements of the project.

Requirements and architecture are two important issues in this phase.
Requirements must be specified in greater detail, although they will
continue to evolve later. Decisions about the architecture have to be
made with an understanding of the whole system: its scope, major func-
tional and non-functional requirements such as performance require-
ments. They are based on an executable architectural prototype that at
least addresses the critical use cases identified in the inception phase,
which typically expose the major technical risks of the project.

The elaboration phase activities have to ensure that the architecture,
requirements and plans are stable enough, and that the risks are suffi-
ciently mitigated, so that it is possible to predictably determine the cost
and schedule for the complete development process.

The major outcome of the elaboration phase is a comprehensive use-
case model with descriptions of most use cases, supplemented by the
non-functional requirements and any requirements that are not associ-
ated with a specific use case − or in other words, a software require-
ments specification. In addition, an operational description of the soft-
ware architecture and an executable architectural prototype are created.
The risk list, the business case and the development plan for the overall
project, in revised versions, is a further outcome.

The elaboration phase ends with the life cycle architecture (LCA)
milestone. This is the point where the stakeholders must agree on:

– a realistic project vision and chance to succeed,
– a stable architecture,

Requirements
and architecture

Outcome of
elaboration
phase: a use-
case model

LCA milestone

4 Developing Information Systems 190

– the requirements for the project,
– risks being properly managed and under control,
– current expenditures being acceptable,
– reasonable estimates for future costs,
– a sufficiently detailed iteration plan for the construction phase and
– the up-to-date overall project plan.

Again a decision to continue or cancel the project is required. The
project may be aborted or considerably re-thought if it fails to pass this
milestone.

Construction phase

During the construction phase, the system is developed to the point
where it can be deployed. All remaining components and application
functionality are developed, integrated and thoroughly tested. Require-
ments have to be prioritized, completely specified and analyzed. Based
on the analysis, the solution is designed in detail, coded and tested. User
feedback is obtained and taken into consideration for the final solution.

In large projects, parallel construction increments can be initiated to
accelerate the availability of deployable releases. However, such incre-
ments increase the complexity of resource management and work syn-
chronization.

The outcome of the construction phase is a software system ready for
deployment with the necessary documentation (user manual, description
of current release).

The third major milestone in the project is the initial operational
capability (IOC) milestone at the end of construction. The stakeholders
decide if the software, the installation and user sites, and the users are
ready to go operational, without exposing the project to high risks. They
must agree that:

– software and documentation are acceptable to be deployed,
– stakeholders are ready for the system to be deployed,
– risks are managed and under control,
– current expenditures are acceptable,
– estimates for future costs are realistic,
– the iteration plan for the transition phase is acceptable, and
– the up-to-date overall project plan is realistic.

Another go/no-go decision is due at this point. Although it is unlikely
(yet not impossible) that the project will be entirely cancelled, transition

Software system
is made ready for
deployment

Initial operational
capability (IOC)
milestone

4.3 Rational Unified Process (RUP) 191

may have to be postponed by another release if the project fails to reach
this milestone.

Transition phase

The focus of the transition phase is on delivering the system to produc-
tion. This step requires first testing by both system testers and end-
users, and any corresponding reworking and fine tuning. Operational
databases have to be converted or connected to the new system. Before
the software can be placed into the hands of the users (end-users,
support and operations staff), these persons have to be trained in the
new system. Typically, transition includes several iterations with beta
releases, general availability releases as well as bug-fix and enhance-
ment releases. The outcome of this phase is a running and working
information system ready for productive use.

At the end of the transition phase is the product release (PR) mile-
stone where the stakeholders assess the state of the project. They must
agree that:

– the software system, including supporting documentation and

training, is ready for production; this includes the requirement that
the system can be operated and that it can be supported appropriately
once it is in production,

– current expenditures are acceptable,
– estimates for future costs are realistic, and
– the final system is complete and consistent with the project's vision.

The RUP life cycle incorporates many characteristics of evolutionary
development and prototyping that were proposed when these alterna-
tives to a conventional waterfall model came into existence. Example of
such characteristics are [Ambler 2005a, p. 5]:

– Work products – models, plans, source code, documents – evolve

throughout the life cycle. Work products are not finished until the
system is released into production.

– The project is planned in a rolling wave. This means that planning is
detailed for immediate issues and less detailed for future issues. As
the project progresses and tasks get closer, detailed planning for
these tasks is done.

– Each phase ends with a go/no-go decision. Only if the stakeholders
agree to move forward into the next phase is the project continued.

Delivering the
system to
production

Product release
(PR) milestone

Features of
evolutionary
development and
prototyping

4 Developing Information Systems 192

This may entail reworking the strategy for running the project. A
project may be cancelled due to various reasons including quality
concerns, lack of appropriate documentation, high deployment
and/or support costs, or a shift in the strategic direction for the
company.

– Risk management is built into RUP. Risks are documented and
managed explicitly throughout the life cycle.

4.3.2 RUP Disciplines
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Activities within the phases take place in so-called iterations. An itera-
tion is a part of the project that addresses a portion of the entire system
being developed. The result of an iteration, especially in the construc-
tion stage, is an increment or a subsystem which could conceivably be
deployed to users as a release.

Within an iteration, the so-called disciplines are performed. (Disci-
plines were called workflows before. Neither of the two terms is truly
appropriate. Since the actual project work is done here, "activity" or
"task" might have been a better term.) In principle, all nine disciplines
are relevant for each of the four phases. A typical view of an iteration is
that a portion of the requirements is selected, analyzed, designed, coded,
tested and integrated with the subsystem from earlier iterations.

The following description of the RUP disciplines is based on [Ra-
tional 1998, pp. 10-14] and [Ambler 2005a, pp. 6-9].

Business modeling

The goal of business modeling is to create a common understanding of
the business (or that part of the business that is relevant to the system
being developed). Otherwise a frequently observed problem may occur:
Business people and software developers do not speak the same lan-
guage. They perceive problems from their respective points of view,
describe them differently, and have their particular expectations how the
problem should be solved. As a consequence, output from business
engineering is not used properly as input to software development and
vice versa.

An iteration
addresses a
portion of the
entire system

Actual project
work takes place
in "disciplines"

Goal: Creating a
common
understanding of
the problem

4.3 Rational Unified Process (RUP) 193

In order to avoid this shortcoming, business modeling as a RUP
discipline involves both parties. The business people and the software
developers document the relevant business processes with the help of
business uses cases ensuring a common understanding among the stake-
holders. Potentially, they can also identify ways for reengineering busi-
ness processes. The result of business modeling is a domain model
reflecting the relevant subset of the business.

Business modeling is a very important task for business information
systems development, yet not necessarily relevant for other types of
software development.

Requirements

The goal of the requirements discipline is to define what the system
should do, i.e. the scope of the system. To achieve this, the desired func-
tionality and constraints are elicited, evaluated and documented. Use
cases are the primary means of describing the requirements found. Use
cases represent the behavior of the system. Actors are identified, repre-
senting the users and any other system that may interact with the system
being developed. The use-case description shows how the system inter-
acts with the actors and what the system is supposed to do. Non-func-
tional requirements are described in supplementary specifications.

In the iterations and phases of RUP, requirements continue to evolve.
As new or changed requirements are identified, they may have to be pri-
oritized. The use-case model developed in the requirements discipline is
also used in other disciplines, e.g. during analysis and design, and test.

Analysis and design

In this step, the requirements are analyzed and a solution is designed.
The meaning of "analysis" in RUP is somewhat different from other
process models. Normally this term is used in the sense of "analyzing
the problem in order to derive requirements". In RUP it means "analyz-
ing the identified requirements" that were defined in the preceding dis-
cipline. A thorough understanding of the requirements is very important
for the design of the new system.

The outcome of analysis and design is a design model. This is a
"blueprint" of how the source code is structured. It is based on an
architecture which is elaborated and validated in the iterations. The de-
sign model exhibits components, subsystems, packages and classes. It

Business
modeling
involves both
parties

Use cases and
actors

Analyzing the
identified require-
ments

Outcome is a
design model

4 Developing Information Systems 194

also contains descriptions of how the objects will collaborate within the
use cases. Design comprises not only system functions but also net-
work, user interface and database design.

Implementation

The goal of implementation is to transform the design model into exe-
cutable code. Source code in a programming language is written (or
generated) for the classes and objects of the design model. Since writing
code units and testing this code go hand in hand, unit testing is part of
the implementation discipline. Code developed by different persons or
teams has to be integrated into an executable system before a system
test (see next discipline) can be performed. Integration is also done
during implementation, involving more testing.

Test

In the testing discipline, proper working of the information system is
investigated with the aim of achieving a high system quality. This in-
cludes finding and fixing errors in the programs, validating that the sys-
tem works as designed, and verifying that the requirements are satisfied.

System testing has to be planned, organized and documented. Test
cases have to be specified and implemented. Strategies for automating
tests may be defined. Testing is a comprehensive effort in all IS devel-
opment projects. It will be discussed in more detail in section 6.3. RUP
supports an iterative approach, which means that testing is done
throughout the project. The goal is to find defects as early as possible,
which significantly reduces the cost of fixing the defect. Testing sup-
ports primarily three quality dimensions: reliability, functionality and
performance.

Deployment

The goal of deployment is to plan for the delivery of the system and to
make the system available to the end-users. Since delivery normally
refers to product releases, such releases have to be produced and
shipped in the deployment discipline. Deployment covers a wide range
of activities including the production of external releases; packaging,
distributing and installing the software; and providing help and support
to users. Deployment may also include activities such as planning and
conducting beta tests, migration of existing data and formal acceptance
by the customer.

Transforming the
design model
into executable
code

Planning test
cases and
strategies

Delivering the
system and
making it avail-
able to the end-
users

4.3 Rational Unified Process (RUP) 195

Obviously the deployment activities are mostly taking place in the
transition phase, yet many of the activities require preparation in pre-
ceding disciplines. Thus the deployment discipline is also spread across
several phases, as the other disciplines are.

Configuration and change management (CM)

In any software development process, a large number of work products
("artifacts") are created. Use cases, design models and code modules are
some of them. During the RUP iterations, different versions of these
work products come into existence. One version of a module could be
included in a customer release, while another is in test, and the third one
is still in development. If problems are found in any one of the versions,
fixes need to be propagated between them.

Critical activities of the configuration and change management (CM)
discipline are centered around tracking versions and releases and man-
aging and controlling changes in order to avoid confusion that leads to
costly fixes and rework.

An important task of the CM discipline is to define how to manage
parallel development, development done at multiple sites, and how to
keep an audit trail on why, when and by whom any artifact was
changed. CM also covers change request management, including how to
report defects, manage them through their lifecycle, and how to use
defect data to track progress and trends. It is very difficult, sometimes
even impossible, to manually keep track of the large number of changes
and requests. Therefore automated tools play an important role for
configuration and change management.

Project management

Since project management and the software development process are
closely connected, project management is integrated in RUP as one of
its disciplines. Project management has to balance competing objec-
tives, manage risk and overcome constraints to successfully deliver a
product which meets the needs of both customers and users. Activities
include scheduling, estimating effort, assigning tasks to people, moni-
toring work processes and results, tracking progress, controlling the
budget, coordinating with stakeholders and many more.

The fact that many practical projects fail or are challenged is an
indicator of the difficulty of the project management discipline. Project
management is covered in detail in chapter 8.

How to manage
parallel activities,
change requests,
defect reports
etc.

Project
management is
integrated in
RUP

4 Developing Information Systems 196

Environment

The purpose of the environment discipline is to provide the project team
with an appropriate software development environment – including both
processes and software tools.

In many cases the standard process (unified process) needs to be
tailored to the needs of the organization or the project. RUP provides
guidelines on how to customize the unified process to fit the specific
needs of the adopting organization or project. Tools for tailoring the
process are available, e.g. RMC (Rational method composer) [Kroll
2005] and EPF (Eclipse process framework) [Eclipse 2006].

Software tools include CASE tools such as an IDE or a collection of
matching tools which support the major activities of the RUP disci-
plines, e.g. modeling, code generation, documentation, collaboration,
configuration and change management. A suitable software environ-
ment has to be selected and installed for the project team.

Iterations

Disciplines as the steps of the iterations are not performed in a strictly
sequential manner. In fact, activities often overlap. While the "natural"
sequence: requirements → analysis → design → code → test etc. still
exists, one activity does not need to be finalized before the next one can
start. A more common approach is to take a subset of the requirements,
do some analysis, go back to rework some of the requirements, proceed
to analysis and design, rework requirements again, start coding, go back
to design, etc. [Ambler 2005a, pp. 10-11].

Iterations should be planned according to risk. This means that
higher priority risks are addressed in earlier iterations and lower priority
risks are addressed later. Likewise, immediate iterations are planned in
greater detail while iterations which are parts of later phases are planned
rather coarsely.

RUP perspectives

Disciplines in the iterations of RUP reflect the technical perspective of
the process whereas phases approach the same process from a manage-
ment perspective. The technical perspective deals with software engi-
neering, quality and methodology aspects. The management perspective
focuses on the commercial, financial, strategic and human aspects
[Kruchten 1996, pp. 11-12]. Phases allow for management control and

Software
development
environment

Customizing the
unified process

Disciplines are
not strictly
sequential

Management
perspective vs.
technical
perspective

4.3 Rational Unified Process (RUP) 197

action while iterations allow for evaluation of technical artifacts, e.g.
system releases and executable products.

Figure 4-15 RUP perspectives [Kruchten 1996, p. 12]

Management Perspective

Technical Perspective

Inception Elaboration Construction Transition Evolution

Time

Preliminary
iteration

Iteration
2 …

Iteration
n+1

Iteration
1

Iteration
m+1

Iteration
…

Iteration
m

Iteration
m+2…

Management Perspective

Technical Perspective

InceptionInception ElaborationElaboration ConstructionConstruction TransitionTransition EvolutionEvolution

Time

Preliminary
iteration

Iteration
2 …

Iteration
n+1

Iteration
1

Iteration
m+1

Iteration
…

Iteration
m

Iteration
m+2…

Preliminary
iteration

Iteration
2 …

Iteration
n+1

Iteration
1

Iteration
m+1

Iteration
…

Iteration
m

Iteration
m+2…

The management perspective and the technical perspective are not
isolated but are aligned at the end of the phases. Since iterations are
embedded in phases, a phase is over when the last iteration of the phase
is completed. Figure 4-15 illustrates this way of synchronizing the
management and the technical perspectives of RUP.

4.3.3 Best Practices
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The Rational unified process was derived from successfully practiced
approaches to software development that have been used by many

Successful
approaches

4 Developing Information Systems 198

organizations. The creators of RUP called these approaches "best prac-
tices". RUP puts the best practices into an operational framework struc-
tured by phases and iterations. Best practices have been parts of RUP
from the beginning on. With the need to adapt them to changing cir-
cumstances, the set of best practices was redefined in 2005 (see below).

A key best practice proposed by Rational has always been to develop
software iteratively. The underlying rationale for this best practice is
that for today's sophisticated software systems it is not possible to
sequentially first define the entire problem, design the entire solution,
build the software and then test the product at the end. An iterative ap-
proach instead allows an increasing understanding of the problem
through successive refinements, and an effective solution to grow incre-
mentally over multiple iterations [Rational 1998, p. 2].

Managing requirements throughout the process implies a systematic
approach to eliciting, organizing, communicating and managing the
changing requirements. The goal of this best practice is to reduce costs
and delays [Kruchten 2001]. Use cases are the major instrument to
describe requirements.

Using component-based architectures is a RUP best practice that ac-
commodates change and promotes effective reuse, including a methodi-
cal, systematic way to design, develop and validate the architecture.

Visually modeling software focuses on the use of graphical tools and
visual abstractions ("graphical building blocks" [Rational 1998, p. 2]).
The visual language for this is UML.

Verifying software quality throughout the process refers both to prod-
uct and process quality, building quality assessment into the process.

Finally, controlling changes to software is the ability to manage
change, including making certain that each change is acceptable, and
monitoring and keeping track of the changes.

As mentioned above, these six best practices have been the basis for
RUP and thus for many organizations applying RUP. After a decade of
experience and business-driven evolution, the six best practices have
been re-thought and formally re-articulated in 2005 by the right-holders
of RUP, IBM Rational (formerly Rational Software Corporation). The
updated best practices are now:

1) Adapt the process
2) Balance competing stakeholder priorities
3) Collaborate across teams
4) Demonstrate value iteratively
5) Elevate the level of abstraction
6) Focus continuously on quality

Developing
software
iteratively

More best
practices

Updated best
practices (2005)

4.3 Rational Unified Process (RUP) 199

They are subsequently described, based on the official presentation by
IBM Rational's management [Kroll 2005].

1) Adapt the process

Projects, organizations and people are different, so one process size
does not fit all [Ambler 2005a, p. 13]. Instead the software development
process needs to be tailored to meet the present situation. This best prac-
tice calls for adapting the process to the size and distribution of the
project team, to the complexity of the application, and to the need for
compliance. The latter may change during the development life cycle.

In the beginning of a project, uncertainty is typical, so creativity is
desired and should be encouraged by a lean process. "More process
typically leads to less creativity, not more, so you should use less pro-
cess in the beginning of a project where uncertainty is an everyday
factor." [Kroll 2005, p. 2]

Figure 4-16 Factors driving the amount of process discipline§

How much process is necessary?

Strength of process

Simple upgrades
R&D prototypes
Static web applications

Dynamic web applications
Packaged applications
Component based (J2EE, .Net)

Legacy upgrades
Systems of systems
Real-time, embedded
Certifiable quality

When is less appropriate?
• Co-located teams
• Smaller, simpler projects
• Few stakeholders
• Early life-cycle phases
• Internally imposed constraints

When is more appropriate?
• Distributed teams
• Large projects (teams of

teams)
• Many stakeholders
• Later life-cycle phases
• Externally imposed constraints

(standards, contractual and
legal requirements)

How much process is necessary?

Strength of process

Simple upgrades
R&D prototypes
Static web applications

Dynamic web applications
Packaged applications
Component based (J2EE, .Net)

Legacy upgrades
Systems of systems
Real-time, embedded
Certifiable quality

When is less appropriate?
• Co-located teams
• Smaller, simpler projects
• Few stakeholders
• Early life-cycle phases
• Internally imposed constraints

When is more appropriate?
• Distributed teams
• Large projects (teams of

teams)
• Many stakeholders
• Later life-cycle phases
• Externally imposed constraints

(standards, contractual and
legal requirements)

§ Kroll 2005, p. 2.

One process size
does not fit all

"More process
leads to less
creativity"

4 Developing Information Systems 200

In later iterations, however, more control may be preferred, such as
change control boards, to remove undesired creativity and associated
risk for late introduction of defects. The process will be more regulated
and controlled.

Likewise, for smaller projects with collocated teams and known tech-
nology, the process should be more lightweight. As a project grows in
size, becomes more distributed, uses more complex technology, has
more stakeholders, or needs to adhere to more stringent compliance
standards, the process will become more disciplined. Project and soft-
ware characteristics versus process discipline are plotted in figure 4-16.

Adapting the process also means to continuously improve the
process. An assessment at the end of each iteration and each project
should be done to capture the lessons learned, and leverage that knowl-
edge to improve the process. Finally, project plans and associated
estimates should be balanced with the uncertainty of a project. This
means that in the initial stages of a project when uncertainty typically is
high, coarse-grained plans and associated estimates will suffice rather
than plans and estimates of exaggerated precision. Early development
activities should aim at driving out uncertainty to gradually enable
increased precision in planning.

2) Balance competing stakeholder priorities

Different stakeholders – end-users, business management, operations
staff, enterprise architects, external customers etc. – have different
needs and priorities. Balancing these priorities, particularly when they
often change in the course of the project, is a difficult task for the pro-
ject manager.

As an example, most stakeholders would like to have a system that
does exactly what they want it to do, while others insist on minimizing
development cost and schedule time. These priorities are often conflict-
ing. By using packaged software, for example, it is possible to deliver a
solution faster and at a lower price, but only at the cost of trading off
requirements. On the other hand, if an organization chooses to build the
system from scratch, it may be able to address every single requirement,
but both the budget and project completion date can be pushed beyond
what is deemed acceptable.

Therefore it is important to understand the business processes and
link them to projects and software capabilities. Based on this under-
standing, the business and stakeholder needs and subsequently the soft-
ware requirements can be prioritized effectively. As the understanding

Lightweight
smaller projects

Continuously
improving the
process

Balancing
conflicting
priorities is a
difficult task

4.3 Rational Unified Process (RUP) 201

of the system and the stakeholder needs evolve, the priorities may be
modified in the course of the project.

This best practice demands that development activities are centered
around stakeholder needs. The project team must accept the fact that the
stakeholders' needs will evolve during the project, just as the business is
changing. In this process, the stakeholders develop a better understand-
ing of the system's capabilities and which capabilities are the truly im-
portant ones to the business and the end-users. The development pro-
cess needs to accommodate these changes.

An important aspect of understanding how the stakeholders' needs
can be satisfied is to understand what assets are available and to balance
asset reuse with stakeholder needs. Such assets are, for example, legacy
systems, services, reusable components and patterns. Reuse of assets
can in many cases lead to reduced cost and higher quality.

Just as the above mentioned packaged software does, reusable assets
may require a trade-off between costs and satisfying requirements. If
reusing a component could lower development costs by 80 percent, but
that component addresses only 75 percent of the requirements, the
potential cost savings must be balanced with the stakeholder needs.
Effective reuse may require such balancing in all phases of the project.

3) Collaborate across teams

The goal here is integrated collaboration across business, software-
development and operation teams. As information systems become
increasingly critical to running businesses today, close collaboration
between those stakeholders deciding how to run the business, those
developing the supporting information systems, and those running IT
operations is indispensable.

In order to enhance team productivity and quality of results, people
must be motivated to communicate and collaborate closely, and to
actively learn new skills from their co-workers and other sources. Com-
plex systems require the activities of different stakeholders with varying
skills − business people, analysts, architects, developers, testers and op-
erations staff. These people must be willing and interested in collaborat-
ing with one another across functions.

Motivating individuals on the team to perform at their best is an
important first step. It includes "... making a team commit to what they
should deliver and then providing them with the authority to decide on
all the issues directly influencing the result" [Kroll 2005, p. 4]. The

Stakeholders'
needs will evolve
during the project

Reusing assets

"Making a team
commit to what
they should
deliver"

4 Developing Information Systems 202

motivation of the team members is strengthened when they know that
they are truly responsible for the end result. Each member needs to
understand the mission and vision of the project.

Collaborative work environments are a supportive means of fostering
collaboration, including both software tools and physical workplaces
and locations. Examples of software tools are tools for sharing work
products, shared project rooms as well as tools for information, configu-
ration and change management. Having developers and business people
work together in close proximity, or even in the same room(s), is pro-
posed as a means to foster collaboration [Ambler 2005a, p. 14].

4) Demonstrate value iteratively

It is a good idea to deliver working software to the stakeholders early in
the project to demonstrate the value of the new information system and
to enable early and continuous feedback. This is done by dividing the
development activities into iterations, each containing some require-
ments, design, implementation and testing, thus producing a deliverable
that is one step closer to the final solution. End-users and other stake-
holders see early what they will get. In some cases, they can use the
software directly and provide fast feedback on the system's value and
usability. It is not unlikely that they will realize that some requirements
were forgotten, not correctly implemented, or just not meant the way
they were interpreted by the designers.

Obtaining feedback early enables the project manager and the stake-
holders to adapt the project plan. Most IS today are too complex to
allow perfect alignment of the requirements, design, implementation
and test in the first round. Instead, an effective development methodol-
ogy has to embrace the inevitability of change [Kroll 2005, p. 6]. While
traditional developers tend to dislike changing requirements once they
have been defined, the unified process calls for development teams that
embrace change and manage the change in the process.

The underlying idea is that any requirements change, no matter how
late in the life cycle, is welcome if it increases the information system's
value, for example if it provides a competitive advantage to the com-
pany. It is beneficial to seek feedback early, and then adjust plans
accordingly to ensure that the stakeholders will get what they actually
need. Through early and continuous feedback, the development team
learns how to improve the system, and the iterative approach provides
the opportunity to implement those changes incrementally.

Underlying this best practice is also the need to drive out key risks
early in the life cycle. This is illustrated in figure 4-17 comparing risk

Collaborative
work
environments

Stakeholders see
early what they
will get

Development
teams should
embrace change

Seeking
feedback to
adjust plans

Continuously
assessing risks

4.3 Rational Unified Process (RUP) 203

reduction in RUP and in the waterfall model. While in the latter one the
majority of risks become obvious and can be treated only late in the
process at a high cost, RUP makes it possible to address the major tech-
nical, business and programmatic risks early. This is done by continu-
ously assessing what risks are still there, and addressing the top remain-
ing risks in the next iteration. The major stakeholders should be in-
volved in the risk assessment, in particular in the early iterations.

__

Figure 4-17 Risk reduction profiles [Kroll 2005, p. 6]

Iterative
model

Waterfall
model

Risk reduction

R
is

k

Time

Iterative
model

Waterfall
model

Risk reduction

R
is

k

Time

5) Elevate the level of abstraction

Working on a low abstraction level and using inefficient tools is a major
obstacle to productivity. For example, writing all program code in a
conventional programming language and creating a large database by
hand-coding database structures directly in the DBMS's data definition
language is cumbersome, time-consuming and error-prone. In fact, non-
trivial IS today cannot be efficiently developed in this way.

Elevating the level of abstraction means to reduce the amount of hu-
man coding through higher-level models, tools and languages. This is
the same goal as in model-driven information systems development dis-
cussed in section 4.2.3. Appropriate design and construction tools, for
example, facilitate moving from high-level constructs to working code
through automating or semi-automating design, construction and test
tasks, and embedding integration and testing as seamless development

Reducing the
amount of human
coding

4 Developing Information Systems 204

activities in the process. In RUP, the models, tools and languages of
preference are quite naturally those provided by UML (cf. chapter 5).

By using higher-level models and automated tools capable of gener-
ating lower-level models and/or code, developers can focus on more
important issues like the system's architecture and quality. When the
architecture is established early, a skeleton structure for the system is
available, making it easier to manage complexity as more people, com-
ponents, capabilities and code are added to the project.

Reusing existing assets, such as reusable components, legacy sys-
tems, existing business processes, patterns or open-source software is
also a means of raising the abstraction level. Reusable components, for
example, can be considered black boxes to be used as they are. There is
no need for the developers to deal with the component's internal com-
plexity because the component is only accessed through its interface.

6) Focus continuously on quality

Quality has a very high priority in RUP. Quality is the responsibility of
the entire team, not just the testing team. Therefore, testing and valida-
tion is prevalent throughout the process. Every discipline includes re-
views, either formal or informal, of the generated work products, and
testing activities are critical to the implementation and test disciplines.

Team responsibility means that all team members contribute to
enhancing the quality in all parts of the life cycle. Analysts have to make
sure that requirements are testable. Developers need to make designs
with testing in mind, and must be responsible for testing their code.
Managers must ensure that the right test plans are in place, and that the
right resources are in place for building the test environment and
performing the tests. Testers are the quality experts. They guide the rest
of the team in understanding software quality, and they are responsible
for functional, system and performance-level testing.

In RUP the most important system capabilities are implemented
early in the project. Towards the end of the project, the most essential
software may have been in use and running for months, and it is likely
to have been tested for months. Therefore an increase in quality is a
primary tangible result of many RUP based projects [Kroll 2005, p. 8].

Building the testing environment goes hand in hand with building the
system; i.e., the testing environment is also being developed incremen-
tally. As the system is designed, consideration should be given to how it
can be tested. Automating some (or finally all) of the testing activities is
a goal pursued by the RUP community, and a key concern in agile
development discussed in section 4.4.1.

Reusing existing
assets

Quality is the
responsibility of
the entire team

All team
members
contribute to
quality

Building a testing
environment
incrementally

4.4 Non-conventional Approaches to ISD 205

The opposite of incremental testing throughout the iterations is to
complete all unit testing before integration testing is done, which makes
bug fixing and improving system quality a lot harder and costlier. This
is typically the case when the process follows a waterfall-like model
where testing is deferred to a separate phase late in the process.

__

4.4 Non-conventional Approaches to Information
Systems Development

While the software life cycle and RUP are established process models,
different approaches are also used today. These approaches can be con-
sidered as responses to changing goals (e.g. more freedom for devel-
opers) and ISD environments (e.g. availability of open-source software).

4.4.1 Agile Development and Extreme Programming
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

"Recently there has been a rebellion in the industry against a growing
tide of poor performances, long lead times, poor quality, disappointed
customers, and frustrated developers. It is a rebellion against poor
management. A passionate body of software developers has declared
that there must be a better way – delivering software should be more
predictable." [Anderson 2004, p. xxviii]

This quotation by David Anderson, an advocate of agile development
(AD), expresses precisely the motivation for agile methods. After three
decades of software engineering, the state of the art is still lamentable:
Most development projects exceed budgets and delivery dates – provid-
ed that they don't fail completely. Maintenance costs are exploding due
to low software quality, software developers are increasingly frustrated,
and the reputation of their profession is continuously suffering. "Devel-
opers are disheartened by working ever longer hours to produce ever
poorer software." [Martin 2003, p. 3] David Anderson articulates the

"A rebellion in
the software
industry"

"Developers are
disheartened by
working ever
longer hours to
produce ever
poorer software."

4 Developing Information Systems 206

consequences quite clearly: "Senior executives, perplexed by the spiral-
ing costs of software development and depressed by poor results, poor
quality, poor service and lack of transparency are simply shrugging their
shoulders and saying, 'if the only way this can be done is badly, then let
me do it badly at a fraction of the cost'. The result is a switch to offshore
development and layoffs." [Anderson 2004, p. xxv]

The above "rebellion" took place in February 2001 at a ski resort in
the Wasatch Mountains of Utah, USA. A group of industry experts with
long-standing software experience, naming themselves the "agile alli-
ance," met there for skiing – and to somehow re-invent software engi-
neering. Jim Highsmith, one of the participants, called them "organiza-
tional anarchists." [Highsmith 2001] The rebellion may be seen as a
counter-move to the increasing industrialization of software enginee-
ring, and as a movement back towards the roots when software develop-
ment was considered an "art" and software was hand-crafted.

The most famous outcome of the meeting is the "manifesto for agile
software development". This is a rather short position statement indicat-
ing what the agile alliance considers fundamental ideas for better soft-
ware development. The manifesto is shown in figure 4-18.

– Valuing individuals and interactions more than processes and tools

puts a focus on the human factor. As software development is a team
activity, collaboration is considered more important than a rigor-
ously structured tool-supported process. Team work is valued higher
than individual performance. "A team of average programmers who
communicate well are more likely to succeed than a group of super-
stars who fail to interact as a team." [Martin 2003, p. 4]

– The preference for working software over comprehensive documen-
tation expresses an anti-position to thoroughly structured processes
where documentation is overstressed and documents are given more
importance than the actual target of the process, which is working
software. Robert Martin even formulated this as his first law of doc-
umentation: "Produce no document unless its need is immediate and
significant." [Martin 2003, p. 5] Short documents are preferred over
long ones.

– Collaboration with the customer is considered more valuable than
having waterproof contracts and communicating on legal terms.
Customer feedback on a regular and frequent basis is indispensable
for successful projects. The customer should be involved in the
project, providing continuous feedback.

"Agile alliance" –
a counter-move

"Manifesto for
agile software
development"

Team work is
valued

"Produce no
document unless
its need is
immediate and
significant."

Collaboration
with the
customer

4.4 Non-conventional Approaches to ISD 207

– Responding to change over following a plan is the same rationale as
discussed for RUP. Change is inevitable and must be naturally incor-
porated into the process. The ability to respond to change appropri-
ately may determine the success or failure of a project.

Figure 4-18 The agile manifesto [Agile 2001]

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Robert C. Martin
Steve Mellor

Ken Schwaber
Jeff Sutherland
Dave Thomas

James Grenning
Jim Highsmith
Andrew Hunt
Ron Jeffries

Jon Kern
Brian Marick

Kent Beck
Mike Beedle

Arie van Bennekum
Alistair Cockburn

Ward Cunningham
Martin Fowler

Robert C. Martin
Steve Mellor

Ken Schwaber
Jeff Sutherland
Dave Thomas

James Grenning
Jim Highsmith
Andrew Hunt
Ron Jeffries

Jon Kern
Brian Marick

Kent Beck
Mike Beedle

Arie van Bennekum
Alistair Cockburn

Ward Cunningham
Martin Fowler

© 2001, the above authors
this declaration may be freely copied in any form,

but only in its entirety through this notice.

One comment regarding the dislike of documents may be added: Many
documents are in fact just for the files, created because the process mod-
el or the project-management approach demands deliverables on paper.
However, a natural aversion against documenting what has been done
seems to be common characteristic of software developers. This aver-
sion has been observed as long as software exists. Perhaps this attitude
implicitly contributed to formulate the anti-documentation position.

Responding to
change

Software
developers have
a natural
aversion against
documenting

4 Developing Information Systems 208

Figure 4-19 The twelve principles of agile development [Agile 2001]

The agile manifesto is a concise summary of how software development
in the authors' opinion should be approached. In a more operational
view, the authors elaborated the rationale of the manifesto in twelve
principles (cf. figure 4-19). Readers will recognize many good ideas
that are present in other post-waterfall-model approaches as well.

While the agile manifesto and the agile principles express a certain
way of thinking about and attacking software development, they pro-
vide neither an operational approach nor a process model. Several meth-
odologies have been developed to fill this gap. Some actually existed

Agile
methodologies

Principles behind the Agile Manifesto

We follow these principles:

• Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

• Welcome changing requirements, even late in development. Agile processes
harness change for the customer's competitive advantage.

• Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

• Business people and developers must work together daily throughout the project.

• Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

• The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

• Working software is the primary measure of progress.

• Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

• Continuous attention to technical excellence and good design enhances agility.

• Simplicity − the art of maximizing the amount of work not done − is essential.

• The best architectures, requirements, and designs emerge from self-organizing
teams.

• At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

4.4 Non-conventional Approaches to ISD 209

before the agile alliance articulated the manifesto and influenced the
formulation of the agile principles. Among the agile methodologies are:

» Extreme programming (XP)
» Scrum (http://www.controlchaos.com/about/)
» Feature driven development (FDD,

http://www.featuredrivendevelopment.com/)
» Crystal Clear [Cockburn 2004]
» Adaptive software development (ADP,

 http://www.adaptivesd.com/)

Extreme programming (XP)

Extreme programming is the best-known of the agile methodologies. It
was developed by three participants of the agile-alliance meeting, Kent
Beck, Ward Cunningham and Ron Jeffries, in the late 1990s, and be-
came popular through Kent Beck's book in 1999 (first edition of [Beck
2004]).

XP stresses customer satisfaction. The main goal of XP is to reduce
the cost of change. In traditional system development methods, require-
ments are determined in the beginning and often fixed from that point
on. As pointed out earlier, the cost of changing the requirements at a
later stage can be very high. XP sets out to lower the cost of change by
introducing basic values and principles, making the process more
flexible with respect to changes.

Based on these values and principles, extreme programming is a set
of simple and concrete practices that combines into an agile develop-
ment process [Martin 2003, p. 17]. XP is based on the values and prin-
ciples of:

– Communication − frequent and extensive, both within the project

and with the customer.
– Simplicity − always starting with the simplest possible solution and

turning it into a better one later.
– Feedback − frequent and rapid feedback from the system (by unit

testing), from the customer (by frequent acceptance tests), and from
the team (by involving the team into requirements changes immedi-
ately).

– Courage − for example, knowing when to create a better solution or
when to throw code away.

Kent Beck, Ward
Cunningham and
Ron Jeffries

XP is a set of
simple and
concrete
practices

4 Developing Information Systems 210

– Respect − team members respect each other, avoiding changes that
will delay the work of their colleagues. Members respect their work
by always striving for high quality and the best solutions.

XP practices

In the following, the practices of extreme programming incorporating
the above values and principles are briefly explained. This outline is
based on XP descriptions where the interested reader will find more
details [Beck 2004, Beck 2005, Wells 2006, Martin 2003].

 Customer team member ("the customer is always available"): All
phases of an XP project require communication with the customer.
Face-to-face communication onsite is preferred. One or more customer
representatives should be on the development team.

 User stories: These are substitutes for large requirements documents,
used to create quick time estimates for scheduling work and release
planning. They are written by the customers and explain what they need
the system to do for them. User stories are not meant to capture all
details. Instead, they should only provide enough detail to make a
reasonable time estimate for implementation. When the time comes to
implement the story, developers will talk to the customer and receive a
detailed description of the requirements face-to-face.

 Short cycles, small releases: XP projects should deliver working
software in iterations, for example every two weeks. The team seeks to
discover small units of functionality that make good business sense and
can be released into the customer's environment early in the project.
After a number of iterations, a release is planned. A release is a major
delivery that the customer can put into production, comprising the work
of about three months. A release plan consists of a prioritized collection
of user stories that have been selected by the customer. With releases
and iterations, the developers get valuable feedback early enough to
have an impact on the project's progression. This is preferable because
the longer a team waits to introduce an important feature to the users,
the less time they will have to fix any problems.

 Acceptance tests: The details about user stories are captured in the
form of acceptance tests, i.e. the user stories are translated into
acceptance tests. The customer specifies scenarios to test when a user
story has been correctly implemented. Acceptance tests are black-box
tests. Each acceptance test represents some expected result from the
system. Customers are responsible for verifying the correctness of the

Customer team
member

User stories

Short cycles,
small releases

Acceptance tests

4.4 Non-conventional Approaches to ISD 211

acceptance tests and for deciding on which failed tests are of highest
priority.

 Pair programming: All production code to be included in a release is
created by two people working together at a single computer. One
member of the pair types the code and uses the mouse, for example,
while the other member watches the code being typed, looking for
errors and improvements, and perhaps giving strategic thoughts to the
implementation. Pair membership should change at least once per day.
Eventually each team member will have worked with every other team
member. Pair programming has been observed to increase software
quality without impacting the time to deliver§.

 Test-driven development: Testing is planned and performed in a non-
conventional way. Unit tests are one of the cornerstones of XP. A unit
test framework like JUnit (http://www.junit.org) is useful to enable
developers to create automated unit tests suites. The tests are created
before the code is written ("test first" principle), so the goal of unit test-
ing can be characterized as making failing unit tests pass. (Obviously a
test done on non-existing code will fail, yet when the code is written, it
will eventually make the test pass.) Test cases are usually written
shortly before the code is written, so the body of test cases grows with
the code. Unit-test frameworks are considered development tools in XP
just as a compiler and an editor are. When a pair makes a change to a
unit, they can run the associated tests again to ensure that nothing was
broken. Binding development progress to units and isolated testing of
units supports the decoupling of units and thus the fundamental idea of
object-oriented development: encapsulation.

 Collective ownership: The entire team is responsible for the entire
system, its code, its architecture etc. A pair has the right to check any
module and improve it, fixing bugs or refactoring. Combined with
automated testing, anyone can make a change to any piece of code and
release it to the code repository as needed. Before any code is released it
must completely pass the entire test suite. No one person becomes a
bottleneck for changes, and everyone may contribute new ideas to all
segments of the project.

§ A side observation: In a pair programming experiment conducted with students

of computer science, McDowell et al. found that those who paired got signifi-
cantly higher scores for their programs than those who worked alone. The per-
centage of students who passed the final exam was higher in the pair-program-
ming groups than in the non-pairing groups [McDowell 2006].

Pair
programming

Test-driven
development

Collective
ownership

4 Developing Information Systems 212

 Continuous integration: Developers should integrate and release code
into the code repository rather often, every few hours. Changes should
never be withheld for more than a day. In XP, pairs are encouraged to
check out any module any time, improve it and check it back in (collec-
tive ownership). Parallel pairs are likely to work on the same module.
So the question is: How will parallel changes to the same module be
handled? Or in other words, how will the changes be merged? The rule
in XP is simple: sequential integration. Only one pair integrates at any
given moment. The first pair to check in wins, everybody else has to
merge their changes onto the last checked-in version. Continuous inte-
gration avoids diverging or fragmented development efforts. Everyone
needs to work with the latest version so that changes are not being made
to obsolete code. Frequent integration reduces the potential problems
substantially.

 Sustainable pace ("no overtime"): XP teams are not allowed to work
overtime. "Projects that require overtime to be finished on time will be
late no matter what you do." [Wells 2006] Instead, it is recommended to
have a release planning meeting to change the project scope or timing
when delivery dates are endangered. The only exception to the rule is
the last week before a release if the team is very close to reaching its
release goal. In this case overtime is permitted.

 Open workspace: To facilitate communications the team works in an
open workspace with all the team members and equipment being easily
accessible. People who sit in pairs in front of workstations can commu-
nicate intensely. Although counter-intuitive, it has been found that
despite noise and distraction, such an environment may increase pro-
ductivity by a factor of two.

 Planning game: Since XP is an iterative development process, the
goals of the next iterations must be planned. In the planning game,
responsibilities are divided between the customer and the developers.
Together they determine the scope of the next release. Customers select
features (user stories) and decide how important these features are for
them. Developers estimate how much the story will cost to implement
in terms of person weeks and what is feasible in the next iteration or
release. The customers then decide what story is the most important or
has the highest priority to be completed.

 Simple design: "A simple design always takes less time to finish than
a complex one." [Wells 2006] The design is kept as simple as possible
for the current set of stories. Only the stories for the current iteration are
considered, not any future stories. Instead of creating an overall system

Continuous
integration

Sustainable pace
("no overtime")

Open workspace

Planning game

Simple design

4.4 Non-conventional Approaches to ISD 213

design, the developers start with a simple design and migrate that design
from iteration to iteration, to be the best design for the current set of
stories. Thus an XP team will not start with building frameworks and
infrastructure for the features that might be coming, but take the first set
of stories and make them work in the simplest possible way. Developers
strive to keep things as simple as possible for as long as possible by
never adding functionality before it is scheduled.

 Refactoring: As programmers add new features to the project, the
code tends to degrade and the design deteriorates. If this continues, the
code will end up in an unmaintainable mess. So from time to time, re-
factoring is necessary. Refactoring is a process of incremental improve-
ment. In a series of small transformations, the structure of the system is
improved without affecting the system's behavior. After each small
transformation, the unit tests are run to make sure that nothing was
broken. In this way the system will continue to function while the de-
sign is transformed. Refactoring should be done continuously through-
out the project rather than at the end of a release, an iteration, or a day.
"Refactoring is something we do every hour or every half hour." [Mar-
tin 2003, p. 16]

 Metaphor: Choosing a system metaphor helps people to get the big
picture of the system. The system metaphor provides an idea or a model
for the system. In particular, it provides a context for naming things
(e.g. classes, objects) in the software consistently. Consistent names are
very important for understanding the overall design of the system and
for code reuse as well.

In addition to the practices explained above, XP advocates provide more
rules and recommendations on how to work in a development project,
including:

– Agreeing on coding standards to keep the code consistent and easy

for the entire team to read and refactor.
– Moving people around and having them work on different sections

of the system, to avoid knowledge loss and coding bottlenecks.
– Using CRC (class, responsibilities and collaboration) cards to design

the system as a team; typically used to determine which classes are
needed and how they will interact.

– Having a stand up meeting every morning to communicate prob-
lems, solutions, and promote team focus.

Refactoring

Metaphor

Further
recommenda-
tions

4 Developing Information Systems 214

– Optimizing last ("make it work, make it right, then make it fast"
[Wells 2006]) − no time should be spent optimizing the code until
the end because it will change continuously.

XP process model

Does extreme programming have a process model? In the agile
community, "process" is often used with a negative undertone, implying
that a process has attributes such as "disciplined" or "structured" which
are disliked by agile developers. These attributes are associated, for
example, with the waterfall model and with iterative processes in cases
where they are planned and structured. In contrast to this, XP is
described in terms of values and practices.

__

Figure 4-20 XP process model [Wells 2006]

User stories

Architectural
spike

Release
planning

Spike

Requirements

System
metaphor

Test scenarios

New user story

Uncertain
estimates

Iteration

Acceptance
tests

Small
release

Next
iteration

Confident
estimates

Customer
approval

Latest
version

Bugs

Release plan

User stories

Architectural
spike

Release
planning

Spike

Requirements

System
metaphor

Test scenarios

New user story

Uncertain
estimates

Iteration

Acceptance
tests

Small
release

Next
iteration

Confident
estimates

Customer
approval

Latest
version

Bugs

Release plan

Nevertheless, the description of relationships between iterations, releas-
es, stories and tests indicates that there is a certain process idea under-
lying extreme programming. Figure 4-20 illustrating the flow of work
can be interpreted as a generic model of XP development processes. A
concrete project is characterized by a particular path through the graph.

Spikes are simple prototypes – solutions created to figure out an-
swers to tough technical or design problems. Most spikes are not good
enough to keep, so they are usually thrown away. The goal is reducing

Agile developers
dislike "process"

Spikes are
simple
prototypes

4.4 Non-conventional Approaches to ISD 215

the risk of a technical problem or increasing the reliability of an esti-
mate for a user story.

Agile vs. structured?

Since its first articulation in 2001, agile development has found a large
community of followers – and fierce opponents as well. While the fol-
lowers are fascinated by the human-centric approach of agile develop-
ment, opponents criticize that agile development is contrary to a disci-
plined process and impossible to control. (AD advocates reply that there
is no need for control in motivated teams.)

Agile development and structured approaches seem to be so far apart
that a veritable method war broke out. Grady Booch, in the foreword to
Boehm and Turner's book on a possible comprise, expects "... that this
won't be the last set of method wars I'll live through." [Boehm 2004, p.
xiii] Barry Boehm, a software engineering pioneer, and Richard Turner,
an author on the original SEI-CMMI team [SEI 2007], compared both
agile and disciplined (sometimes called "plan-driven§) development in
their book entitled "Balancing Agility and Discipline – A Guide for the
Perplexed". At the end of their examination, the authors drew six
conclusions [Boehm 2004, p. 148]:

1. Neither agile nor plan-driven methods provide a silver bullet.
2. Agile and plan-driven methods have some home grounds where

one clearly dominates the other.
3. Future trends are toward application developments that need both

agility and discipline.
4. Some balanced methods are emerging.
5. It is better to build your method up than to tailor it down.
6. Methods are important, but potential silver bullets are more likely

to be found in areas dealing with people, values, communication
and expectations management.

§ "Plan-driven" means that the development process follows a plan with exactly

defined stages, activities and documents accompanying the activities. There is
a concern for completeness of documentation at every step so that thorough
verification of the results is possible. Not only the waterfall model but also
incremental and evolutionary process models fall into this category if they
mandate strong documentation and traceability [Boehm 2004, pp. 10-11].

Followers and
opponents

"Balancing agility
and discipline"

4 Developing Information Systems 216

4.4.2 Reuse-oriented Process Models
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Reuse of existing software components is a concept underlying many
development projects. The obvious goal is to reduce the development
effort, thus leading to lower cost and shorter development time. Infor-
mation systems development using a service-oriented architecture, for
example, is explicitly based on the reuse of components, i.e. web servic-
es or enterprise services. In general, reusable components may be found
from an organization's earlier projects, from open-source libraries, from
UDDI registries on the Internet (see section 3.3.1) and from software
vendors "off the shelf".

COTS oriented process model

The latter type of components is known as COTS (commercial-off-the-
shelf) components. Diverse kinds of software have been summarized
under this term. A common understanding is that a COTS component is
a prebuilt piece of software supplied by a vendor, that is integrated into
the software system under development [Morisio 2002, p. 189]. The
component becomes a part of the new system. It must be there to pro-
vide operational functionality of the system.

Major tasks in a COTS based development effort include screening
of available components as to their suitability against existing require-
ments, gluing components together, and building pieces of software that
are not available as COTS [Conradi 2003].

In the original COTS approach, components are thought of as being
more or less "shrink wrapped". This means that a component must be
taken as it is (no customization). If it only comes close to the require-
ments of an individual organization but does not meet them completely,
either the requirements have to be adapted or some functionality has to
be developed outside the COTS component.

Morisio et al. studied the actual processes of 15 NASA (National
Aeronautics and Space Administration) projects using COTS for the
development of satellite ground support software [Morisio 2000]. Based
on this research, they proposed a process model for COTS based

Reducing the
development
effort

Commercial-off-
the-shelf
components

Screening avail-
able components
and gluing them
together

4.4 Non-conventional Approaches to ISD 217

development in which several COTS components plus a considerable
amount of new developed software have to be integrated.

The main phases shown as dashed ovals in figure 4-21 are: require-
ments, design, coding and integration. Most phases encompass specific
COTS based activities. These activities are drawn above the horizontal
line in figure 4-21. Conventional activities are placed below the line.
Major activities in the four phases are the following ones [Morisio
2002, pp. 195-197]:

Figure 4-21 Process model for COTS based development§

Package
identification
evaluation/
selection

Require-
ments

analysis

Identity
glueware and

integration
require-
ments

Non-cots
design

Write
glueware

and
interfaces

Non-cots
coding

Target system
installation

and acceptance
test

Integration
and test

Requirements Design Coding Integration

COTS
specific
activities Require-

ments
review

Design
review

Vendor

Customer

Legend:
Information flow - bidirectional

Process activity

Process check or review

External role

Process phase

Package
identification
evaluation/
selection

Require-
ments

analysis

Identity
glueware and

integration
require-
ments

Non-cots
design

Write
glueware

and
interfaces

Non-cots
coding

Target system
installation

and acceptance
test

Integration
and test

Requirements Design Coding Integration

COTS
specific
activities Require-

ments
review

Design
review

Vendor

Customer

Legend:
Information flow - bidirectional

Process activity

Process check or review

External role

Process phase

– Requirements: The requirements phase now comprises both conven-
tional analysis activities and COTS specific activities. The part
specifying the activities of COTS identifies and evaluates available
components using vendor documentation, reviews, peer experiences
and other sources. A feasibility study including a complete require-
ments definition and an effort estimation may be conducted, and a
high-level architecture and a risk assessment model may be devel-
oped. At the end of the phase, the initial requirements are reviewed

§ Morisio 2002, p. 195.

Main phases of
COTS based
development

Conventional and
COTS specific
activities

4 Developing Information Systems 218

and perhaps adapted in light of what is feasible with the selected
components.

– Design: The design phase encompasses a high-level design where
the main concern is defining the integration of COTS components
and new developed software. This may be particularly demanding
when several components are involved, each one with possibly
different architectural styles and constraints. Requirements for so-
called glueware, i.e. software to bind the components together, are
specified. Glueware may be needed to invoke the components' func-
tionality, to do exception handling and to resolve incompatibilities
between two components. If it becomes clear in the design review at
the end of the phase that integrating the selected components is
impossible, the process goes back to the requirements phase (an
arrow not explicitly shown in Morisio et al.'s process model).

– Coding: This phase covers primarily the coding of non-COTS mod-
ules, glueware and other interfaces between COTS components and
conventional software. The overall amount of coding will obviously
be significantly lower than in a traditional development project.

– Integration: Actual integration of the COTS components, with the
help of the glueware developed, and of the non-COTS modules is
the subject of the integration phase. While in theory this should be a
fairly easy step as everything was decided and assessed beforehand,
reports from practical projects indicate that integration consumed the
most effort [Morisio 2002, p. 194].

The advantages of COTS based development include lower costs, less
work and shorter completion times. Building on existing components
can also enhance the reusability of the new solution.

Obvious disadvantages are: 1) that the customer's requirements are
likely to be "smoothened", i.e. adapted to what the components are
capable of providing; 2) interfacing components with other components
may be technically complicated; and 3) the debugging of the final
system can prove to be very difficult because the COTS components are
black boxes.

Reusing web services

While the original COTS approach was targeting conventional software
technology and components based on, for example, MS Excel or
Access, object-oriented technology and later web services have opened
up new opportunities for reusing existing software.

Main concern is
integration of
COTS
components

Non-COTS
modules,
glueware and
interfaces

Actual integration
of the COTS
components

Advantages and
disadvantages

4.4 Non-conventional Approaches to ISD 219

In particular, UDDI registries and other sources on the Internet now-
adays offer components in the form of web services or enterprise ser-
vices. Reuse-oriented development employing a service-oriented archi-
tecture basically encompasses the same steps as shown in figure 4-21:
Available services have to be found, evaluated, selected, composed and
integrated with other software modules.

The role of the glueware is played by a language that lets the devel-
opers define how services have to be invoked in the execution of a
business process. WSBPEL (web services business process execution
language) is an example of such a language used to specify business
process behavior based on web services [OASIS 2006]. The activity of
composing web services for larger services and finally complete solu-
tions for an entire or a partial business process is called web services
orchestration (WSO) [Newcomer 2004, ch. 6].

4.4.3 Open-source Software Processes
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Does open-source software (OSS) development follow a process mod-
el? Although OSS development is not the topic of this book, some
open-source software characteristics should be noted. To discuss the
above question, we take up Fitzgerald's distinction between FOSS and
OSS 2.0:

– FOSS ("free and open-source software") – software created by many

volunteers (or what has been called a "crowd of anarchist program-
mers") collaborating on the Internet, and

– OSS 2.0 – software created by professional organizations in a more
rigorous way and published in source code [Fitzgerald 2006, p. 587].

FOSS development

FOSS development has been based on rather idealistic ideas formulated
and revised from 1997 on by Eric S. Raymond. Stimulated by an inves-
tigation into how the Linux operating system came into existence, Ray-
mond turned his insights into 19 principles, some of which are noted
below [Raymond 2000]:

WSBPEL
providing the
glueware

Based on ideas
by Eric Raymond

4 Developing Information Systems 220

1) Every good work of software starts by scratching a developer’s per-
sonal itch.

2) Good programmers know what to write. Great ones know what to
rewrite (and reuse).

3) "Plan to throw one away"; you will, anyhow.§
6) Treating your users as co-developers is your least-hassle route to

rapid code improvement and effective debugging.
7) Release early. Release often. And listen to your customers.
8) Given a large enough beta-tester and co-developer base, almost

every problem will be characterized quickly and the fix obvious to
someone. "Given enough eyeballs, all bugs are shallow."#

19) Provided the development coordinator has a communications medi-
um at least as good as the Internet, and knows how to lead without
coercion, many heads are inevitably better than one.

While the second and third principles reflect established software-engi-
neering knowledge regarding system evolution, principles 6, 7, 8 and 19
indicate the general direction of FOSS development: involve many
people in the development, as it increases software quality because bugs
will be found and fixed quickly.

Two general characteristics of FOSS development processes are: 1) a
strong focus on incrementally writing, testing and debugging code, and
2) less focus on the early process stages (planning, analysis, design).
The decision to make new software is not a management act based on a
project proposal, but a developer's "itch worth scratching" (see principle
no. 1). Often, the same person performs the analysis, designs and writes
the first prototype.

This is in sharp contrast to conventional software engineering
approaches where the most importance is placed upon the analysis and
design stages, while implementation and testing are considered subordi-
nate activities. FOSS protagonists like Eric Raymond see no need for a
lengthy discussion of requirements since requirements are taken as
understood – an assumption that is true if developers and end-users are
the same.

The first prototype published on the Internet is actually the starting
point for the OSS community to come in. As shown in figure 4-22,
existing code is reviewed by interested volunteers and improved, and
new code is incrementally added. Before a new release is published on

§ The quote is the title of chapter 11 of Frederick Brooks's book "The Mythical

Man-Month [Brooks 1995, p. 115].
Raymond called this quote by Linus Torvalds, the developer of Linux: "Linus's

Law" [Raymond 2000, p. 8].

Involving many
people increases
the software
quality

"No need for a
lengthy discus-
sion of require-
ments"

Starting point for
the community to
come in

4.4 Non-conventional Approaches to ISD 221

the Internet for review and further development, pre-commit tests are
encouraged. The development release is tested and debugged in parallel
by a potentially large number of developers worldwide, making bug
finding and fixing a short period. A stable, debugged production version
can be released subsequently [Fitzgerald 2006, pp. 588-589].

Figure 4-22 FOSS development process model

Note that in contrast to conventional software development, the initiator
can also be an open-source developer. Likewise developers are often
users of the system at the same time. This is indicated by extended
braces in the figure.

Developers and
users are often
the same

Planning
analysis & design

Implementation &
test

Code review
improvement & extension

Pre-commit test

Parallel debugging

Operation

Source code prototype

Development
release

Production
release

Initiator

Open- source
developers

Users

Planning
analysis & design

Planning
analysis & design

Implementation &
test

Implementation &
test

Code review
improvement & extension

Code review
improvement & extension

Pre-commit testPre-commit test

Parallel debuggingParallel debugging

OperationOperation

Source code prototype

Development
release

Production
release

Initiator

Open- source
developers

Users

4 Developing Information Systems 222

The assumption underlying the FOSS approach is that motivated,
powerful individuals make idealistic contributions in the development
of a software system. This assumption has been discussed and ques-
tioned by many authors. Nikolai Bezroukov, in an often cited essay on
"Open Source Software Development as a Special Type of Academic
Research", seriously challenged most of Raymond's assertions [Bez-
roukov 1999], initiating an academic discussion on how OSS develop-
ment should and actually is being done. The discussion has been going
on since then. In fact, rather than developing software following Ray-
mond's pure "bazaar-style" approach [Raymond 2000], a more centrally
coordinated way is often preferred ("cathedral-style.")

OSS 2.0 development

Since the beginning of Linux, the development of open-source software
has undergone a fundamental change. In particular, business firms and
commercial organizations have entered the open-source community,
making formerly proprietary software open-source or sponsoring the
development of new open-source software. This has brought a radical
paradigm shift in large sectors of the OSS market.

The ultimate goal of the new players is obviously not to give things
away for free but to earn money. One way of creating revenue is to offer
support and services around a software product which is as such license-
free.

Another motive for supporting open-source software is due to its
strategic potential to alter the competitive forces at play. "The haphaz-
ard principle of individual developers perceiving 'an itch worth scratch-
ing' is superseded by corporate firms considering how best to gain
competitive advantage from open source. ... For example, IBM is a
strong supporter of Linux, because it erodes the profitability of the
operating system market and adversely affects competitors like Sun and
Microsoft" [Fitzgerald 2006, p. 591]. In this light, planning an OSS
product is a strategic activity.

When developers and end-users are the same, as assumed in the
FOSS community, requirements and the system design may, in fact, be
taken as understood. However, when business information systems or
other business software are the subject of the development effort, then
an organization's employees and not the developers are the end-users.
Consequently, capturing the requirements and transforming them into
meaningful system functionality based on an appropriate architecture
are much more deliberate phases in OSS 2.0 than in FOSS.

"Bazaar-style"
approach vs.
"cathedral-style"
approach

A paradigm shift
in the OSS
market

Planning OSS
has become a
strategic
business activity

Capturing
requirements is
an important
phase

4.5 Offshoring Process Models 223

As a consequence, management of the development process is less
bazaar-like. In order to achieve a professional product, analysis and
design need much attention. For a number of widely used open-source
products, formalized meetings have been established, for example the
Apache Foundation's conferences in the United States and in Europe
(http://www.apache.org/foundation/conferences.html). These meetings
bring together developers to coordinate and plan further development of
the respective product [Fitzgerald 2006, p. 591]. As a consequence, ex-
tensions and new features of the system are not created in a pure bazaar-
like style as in FOSS development but in a more coordinated way.

The basic cycle of figure 4-22 is still being employed in OSS 2.0
development. Researchers investigating open-source software note,
however, that the bazaar-like style – many people working on the same
product – is being less applied to the development process and more to
the product-making process (product stabilization, delivery, support)
[Fitzgerald 2006, p. 593]. This shift is understandable when taking into
account that nowadays large stakeholders are assigning paid developers
to work on open-source products.

Kim Johnson, whose master's thesis is probably the most cited ref-
erence on OSS process models [Johnson 2001], names as an example
Microsoft's strategy of shipping early versions of products that are
notoriously bug ridden:

"As long as a product can demonstrate plausible promise, either by
setting a standard or uniquely satisfying a potential need, it is not neces-
sary for early versions to be particularly strong" [Johnson 2007]; or in
other words: the Microsoft community will do a good share of the test-
ing, helping Microsoft in the debugging and making of a stable product.

4.5 Offshoring Process Models

Offshoring is different from the previously discussed approaches and
process models insofar as not just one organization but two are building
the information system. A subsidiary established by a mother company
(captive center) is also considered a second organization. Operating in a
different social, cultural and legal environment, a captive center is sub-
ject to different organizational factors than the mother company.

Formalized
meetings and
conferences

Paid developers
working on open-
source products

Two organiza-
tions are building
the IS

4 Developing Information Systems 224

Underlying the above process models was the implicit assumption
that either: 1) the user organization itself is developing the system, 2) a
software company commissioned for the job is developing the system,
or 3) a software vendor is producing standard software for the open
market. A domestic software company building a custom information
system for another organization is, of course, also a second organization
but in this case the contractor is likely to work in a similar way as an in-
ternal ISD group, being more or less in daily contact with the customer.

In offshoring projects, the organization carrying most of the develop-
ment work is at a remote location, far away (offshoring) or at least not
close (nearshoring) so that daily face-to-face communication is not a
typical characteristic. This means that communication and interaction
need to be planned and ensured in a different way. Transferring work
from one organization to another one requires the work to be based on
well-defined documents, software pieces and quality assurance.

At first sight, process models followed by organizations that offshore
information systems development are not much different from models
for onsite development. Most offshoring process models in practice are
based on one of the previously discussed models, yet with specific
extensions to capture offshoring needs and reality. In particular, organi-
zations that developed software themselves before they started offshor-
ing often continue to use the same process model as before. An obvious
reason is that available project-management experience and knowhow
are related with that model.

Offshoring providers, on the other hand, are somewhat limited in the
choice of process model for their part, because their model has to match
the offshorer's model. The looser the connections between the client and
the offshore organization are, the more freedom the latter one has to
proceed according to its own needs and preferences. Obviously the off-
shoring provider cannot follow an iterative approach like RUP if the
client's process model is strictly sequential.

4.5.1 The Offshorer's Perspective
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Organizations employing an offshore software company or a captive
center for information systems development are typically either:

Communication
and interaction
must be planned
thoroughly

Process models
for offshore and
onshore ISD are
similar

The offshore
company's model
must match the
offshorer's model

Typical
offshorers

4.5 Offshoring Process Models 225

– user organizations with their own development groups, attempting to
reduce cost,

– software organizations developing custom information systems, with
the user organization involved in the development,

– software organizations developing standard software.

Rather atypical offshorers would be user organizations that neither
have their own development group nor a commissioned software firm
for the development effort. Although not inconceivable, organizations
without software development knowhow are unlikely to turn to remote
offshoring providers directly. They are more likely to look for help from
a domestic firm (who in turn may send some of the development off-
shore).

Since many organizations still apply a sequential process model or a
variant of this model in their development projects, it is not surprising
that sequential approaches are dominating the published offshoring pro-
cess models. Notwithstanding its many disadvantages, the waterfall
model provides clear milestones, deliverables and points of manage-
ment control that are particularly helpful when communication and
feedback are by nature not as close as in an onsite project.

High-level offshoring process models often exhibit the same sequen-
tial phases as a conventional process model for onsite development, for
example:

– Business problem definition
– Requirements
– Analysis and design
– Implementation
– Testing
– Deployment
– Operations and support

Differences lie in the responsibilities for each phase's activities (who
does what?), including additional activities not present in conventional
process models. Responsibilities for activities depend on the chosen
scope of outsourcing as discussed in section 2.3.5. This means, does the
organization wish to send offshore:

1. coding and testing only,
2. module design, coding and testing,
3. system design, module design, coding and testing,
4. "the problem"?

Atypical
offshorers

Sequential
process models
are dominating

4 Developing Information Systems 226

In the first and second cases, most life cycle tasks remain with the
customer's project team. In the third case, the cut-off stage is the system
design. Often the onsite and offshore teams collaborate for the design as
illustrated in figure 4-23.

Figure 4-23 Process model with onsite and offshore responsibilities

Business
model Requirements Analysis & Design Implementation Testing Deployment

Software Development Life Cycle
Core
processes

Facilitating processes

Requirements

Impact
assessment

Functional
design

Customer approval

Customer approval

Technical design

Detailed
design

Coding

Unit
test

Customer level

Requirements level

Functional level

Technical level

Code level

Assembly/Cross
assembly test

System
test

Acceptance test

Customer approval Technical design

Test planning and preparation
User procedures and trainings

Roll-out planning and preparation

Configuration and change management

Environment setup and support
Onsite Offshore Onsite

Business
model Requirements Analysis & DesignAnalysis & Design ImplementationImplementation TestingTesting DeploymentDeployment

Software Development Life Cycle
Core
processes

Facilitating processes

Requirements

Impact
assessment

Functional
design

Customer approval

Customer approval

Technical design

Detailed
design

CodingCoding

Unit
test

Customer level

Requirements level

Functional level

Technical level

Code level

Assembly/Cross
assembly test

System
test

Acceptance test

Customer approval Technical designTechnical design

Test planning and preparation
User procedures and trainings

Roll-out planning and preparation

Configuration and change management

Environment setup and support
Onsite Offshore Onsite

This figure reflects the high-level process model of a large, globally
acting software company. The underlying division of labor leaves pro-
ject management, architecture, high-level design, risk and quality man-
agement, and the final testing responsibilities with the offshorer while
the detailed design, coding and much of the testing are the responsibility
of the offshore-services provider.

The fourth case, outsourcing the entire business problem, is again
different in that most of the responsibilities are with the offshore organi-
zation. This organization is likely to employ a different business model
than in cases 1, 2 and 3. In section 4.5.2 we will look into the fourth
case more closely.

Examining offshoring process models in more detail exhibits a
number of additional tasks that are different from conventional process
models. They are largely due to additional communication, collabora-
tion and control requirements between onsite and offshore personnel
which are not present in onsite projects.

Responsibilities
depend on the
scope of
outsourcing

4.5 Offshoring Process Models 227

One such task is examining whether the project is suitable for off-
shoring at all. Figure 4-24 lists some of the offshoring criteria. One such
criterion is management commitment: Is the offshorer's management
committed to send the development offshore? If the offshorer is a soft-
ware company developing the system for a customer, the customer
might object to offshoring. Small projects are usually not suited to off-
shoring because of the additional overhead as compared to onshore
development.

If the system cannot be divided into separate work units, then it is
difficult to send portions of the project offshore and reliably control
deliverables. Usage of standard technologies makes offshoring easier
than usage of proprietary technologies. A system with tight connections
and many interfaces with other systems in the customer's IS environ-
ment raises more difficulties than a system that is only loosely coupled.
If the offshore provider needs to know and understand the customer's
business process in detail, it might be too hard to transfer all that knowl-
edge from the customer to the provider.

Communication between the onsite and offshore teams is inevitably
and to a significant extent based on documents. Therefore the availabil-
ity and quality of relevant documents play an important role. The better
the requirements and design specifications are, for example, the less
misinterpretation will occur on the developers' side. The languages on
both sides may pose a problem for communication if the language is not
the same and the language barrier cannot be overcome.

An example of additional communication requirements is a sequence
of approval steps as illustrated in figure 4-25. The process summarized
in this figure is practiced by DCandM, a Brazilian offshoring provider
[DCM 2006]. Here it is assumed that the offshore company enters the
process at a very early stage, when the business problem is investigated
and business requirements are being specified. The specification created
by the offshoring provider's consultant specifies the functional require-
ments from a business perspective.

This specification is also created in several steps and iterations, with
onsite and offshore technical staff involved. Finally it has to be
approved by the key players from a technical perspective (e.g. technical
project leaders offshore and onsite, developers).

Developing the technical solution comprises implementation and tes-
ting. An approval step has to be passed again, this time internally by the
offshore company's quality assurance staff. Afterwards, the approved
solution is delivered to the offshore company's business consultant who
wrote the functional specification. If the solution also passes this review
step, the system is handed over to the customer for reviewing the final

Is the project
suitable for
offshoring?

The role of
documents

Additional
communication
due to approval
sequence

4 Developing Information Systems 228

result with respect to the business problem and requirements that initi-
ated the project.

Generalized offshoring process model

Since offshoring projects differ in what tasks are outsourced to offshore,
it is hardly possible to formulate a universal process model for all off-
shore ISD projects. Figure 4-26 attempts to capture the major stages that
most such projects go through. Depending on the life-cycle stage where
the offshoring starts, offshoring-specific tasks are entered earlier or later
in the project – following either the business-problem specification,
requirements analysis and definition, high-level design or detailed-
design stage. Offshoring-specific stages are the following:

Figure 4-24 Criteria to examine for offshoring projects

very easy

very well

very little

very loose

very low

very easy

very small

yes

opposed

very difficult
If there is a language barrier between the
offshore and the onsite teams, can
appropriate communication be ensured?

insufficient
How well is the system documented (e.g.
completeness, correctness and
understandability of specifications)?

very much
How much knowledge of the underlying
business process must the offshore provider
have?

very tight
Is the system tightly connected with other
systems at the customer's site (i.e. how
many interfaces with other systems)?

very highWhat is the share of standard technologies
required in the project?

very difficultCan the system easily be divided into
separate modules, tasks and/or activities?

very largeWhat is the project size (in €, $, or person
months)?

If the system under consideration is
developed for a customer, does the
customer agree to offshoring?

strongly in favorIs the management committed to offshore
the project?

Criteria for Offshoring

very easy

very well

very little

very loose

very low

very easy

very small

yes −

opposed

very difficult
If there is a language barrier between the
offshore and the onsite teams, can
appropriate communication be ensured?

insufficient
How well is the system documented (e.g.

understandability of specifications)?

very much
How much knowledge of the underlying

have?

very tight
Is the system tightly connected with other
systems at the customer's site (i.e. how
many interfaces with other systems)?

very highWhat is the share of standard technologies
required in the project?

very difficultCan the system easily be divided into
separate modules, tasks and/or activities?

very largeWhat is the project size (in €, $, or person

doesn't care − no
If the system under consideration is
developed for a customer, does the
customer agree to offshoring?

strongly in favorIs the management committed to offshore
the project?

Criteria for Offshoring

very easy

very well

very little

very loose

very low

very easy

very small

yes

opposed

very difficult
If there is a language barrier between the
offshore and the onsite teams, can
appropriate communication be ensured?

insufficient
How well is the system documented (e.g.
completeness, correctness and
understandability of specifications)?

very much
How much knowledge of the underlying
business process must the offshore provider
have?

very tight
Is the system tightly connected with other
systems at the customer's site (i.e. how
many interfaces with other systems)?

very highWhat is the share of standard technologies
required in the project?

very difficultCan the system easily be divided into
separate modules, tasks and/or activities?

very largeWhat is the project size (in €, $, or person
months)?

If the system under consideration is
developed for a customer, does the
customer agree to offshoring?

strongly in favorIs the management committed to offshore
the project?

Criteria for Offshoring

very easy

very well

very little

very loose

very low

very easy

very small

yes −

opposed

very difficult
If there is a language barrier between the
offshore and the onsite teams, can
appropriate communication be ensured?

insufficient
How well is the system documented (e.g.

understandability of specifications)?

very much
How much knowledge of the underlying

have?

very tight
Is the system tightly connected with other
systems at the customer's site (i.e. how
many interfaces with other systems)?

very highWhat is the share of standard technologies
required in the project?

very difficultCan the system easily be divided into
separate modules, tasks and/or activities?

very largeWhat is the project size (in €, $, or person

doesn't care − no
If the system under consideration is
developed for a customer, does the
customer agree to offshoring?

strongly in favorIs the management committed to offshore
the project?

Criteria for Offshoring

4.5 Offshoring Process Models 229

__

Figure 4-25 Offshoring project approval steps [DCM 2006]

Functional specification
- Business requirements
- Functional requirements

What? Who?

Approval of functional specification

Technical specification
- System design
- Detailed design

Approval of technical specification

Technical solution
- Implementation
- Testing

Approval of technical specification

Functional solution review

Approval of functional solution

Business solution review

Approval of business solution

OP business consultant,
customer's staff

Customer's stakeholders

OP technical staff

Customer & OP technical
heads, developers

OP development team

OP quality assurance staff

OP business consultant

OP business consultant

Customer's staff,
OP business consultant

Customer's stakeholders

Legend: OP = offshoring provider

Functional specification
- Business requirements
- Functional requirements

What? Who?

Approval of functional specification

Technical specification
- System design
- Detailed design

Approval of technical specification

Technical solution
- Implementation
- Testing

Approval of technical specification

Functional solution review

Approval of functional solution

Business solution review

Approval of business solution

OP business consultant,
customer's staff

Customer's stakeholders

OP technical staff

Customer & OP technical
heads, developers

OP development team

OP quality assurance staff

OP business consultant

OP business consultant

Customer's staff,
OP business consultant

Customer's stakeholders

Legend: OP = offshoring provider

4 Developing Information Systems 230

– Examination of offshoring feasibility: The first offshoring-specific
task, provided that offshoring is considered a serious option, is to
investigate in more detail if the project is suited to offshoring.
Criteria like the ones listed in figure 4-24 will be applied.

– Negotiations with offshoring provider(s): Requests for quotations
are sought from the potential offshoring provider or from several
providers, and negotiations with the provider(s) are conducted. This
is a crucial stage if the provider is a different company. In the case of
a captive center it is also important, because the cost of the project
will be estimated so that the economy of the deal can be assessed.

– Preparing the project for offshoring includes the following tasks:
Determining what has to be done before a work order can be placed
with the provider; setting up a project organization that takes off-
shoring-specific requirements into account; establishing a rough
overall project schedule and a more detailed transition plan; manage-
ment commitment to outsource project stages offshore; and prepar-
ing onsite project members and other stakeholders to deal with the
offshoring situation.

– Detailed offshore project feasibility: If necessary, the client and the
offshore organization analyze in detail if it is reasonable to assume
that the outsourced tasks will be solved as expected. The offshoring
provider may need to collect information necessary to examine
whether the required expertise, manpower and technical infrastruc-
ture are available or can be allocated at the offshore site in order to
be able to make a definite commitment. The client's objective is to
be convinced that the partner is reliable and capable of delivering as
expected. This stage may include refining the project organization,
the transition plan and the project schedule.

– Placing the offshore development order: Provided that the offshore
organization is willing and capable of performing the outsourced
tasks, both parties enter into an agreement specifying the work to be
done and perhaps some process characteristics. While the legal form
of such an agreement depends on whether the partners belong to the
same company or not (e.g. a contract, a statement of work), some
essential contents will be the same: timetable, milestones, delivera-
bles, costs etc.

– Project transition: The major activities in this stage are knowledge
transfer and ensuring a working project-wide technical infrastruc-
ture. The objective of this stage is to make sure that the offshore
organization is able to continue the project successfully offshore.

4.5 Offshoring Process Models 231

__

Figure 4-26 A generalized offshoring life-cycle model

Business problem
specification

or

Requirements
analysis & definition

High-level design

Detailed design

or

or

Examination of
offshoring feasibility

Negotiations with
offshoring provider(s)

Make project ready
for offshoring

Placing offshore
development order

Project transition
offshore

Delivery offshore
to onsite

System test

Acceptance test

Installation

Operation &
support

or

Detailed offshore
project feasibility
analysis

Business problem
specification

or

Requirements
analysis & definition

High-level design

Detailed design

or

or

Examination of
offshoring feasibility

Negotiations with
offshoring provider(s)

Make project ready
for offshoring

Placing offshore
development order

Project transition
offshore

Delivery offshore
to onsite

System test

Acceptance test

Installation

Operation &
support

or

Detailed offshore
project feasibility
analysis

Business problem
specification

or

Requirements
analysis & definition

High-level design

Detailed design

or

or

Examination of
offshoring feasibility

Negotiations with
offshoring provider(s)

Make project ready
for offshoring

Placing offshore
development order

Project transition
offshore

Delivery offshore
to onsite

System test

Acceptance test

Installation

Operation &
support

or

Detailed offshore
project feasibility
analysis

4 Developing Information Systems 232

In order to acquire necessary project knowledge (e.g. domain, busi-
ness-process, tool or environment knowledge), offshore personnel
may have to be trained by the customer. For this purpose, employ-
ees of the offshore organization may visit the client's organization
onsite to collect information and knowledge that they can take
home to disseminate among their project co-workers.

– Delivery: While a significant portion of the workload will be carried
out by the offshore organization, the next stage from the client's
point of view is when will they get the results, i.e. the functioning
software system. In addition to the software, the system documenta-
tion, testing results and quality assurance reports will be handed over
to the client. Delivery usually takes place onsite, with offshore
personnel available onsite to solve problems detected directly.

Depending on what tasks and stages were outsourced, the process con-
tinues at the customer's site with system or acceptance testing.

Although the model in figure 4-26 is basically sequential, with some
activities possibly going on in parallel, the offshoring-specific stages
need not necessarily be performed in a strict sequence nor as disjoint
stages. For example, RFCs and negotiations can be performed before,
after or parallel to making the project ready for offshoring. Likewise, if
the offshore organization is already known, then the project feasibility
study, leading to a final commitment to offshore the project, can be
done together with the preparation for project offshoring.

Furthermore, there are breakpoints in the process which are not
explicitly marked in the figure. Such a point where the project may be
cancelled or the process may go back to an earlier stage is, for example,
the end of the offshore project feasibility analysis. If the offshore part-
ner cannot credibly assure that the project is in good hands, the custom-
er may negotiate with a different provider, or the offshoring idea may be
completely dropped because the problems occurring with this provider
are presumed to be the same as with other providers.

4.5.2 An Offshore Software Company's Perspective
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Unless the offshoring provider was set up as a subsidiary or as a multi-
national’s pure captive center, the offshoring provider is a normal soft-
ware company in its home country, perhaps specialized in working with

Offshoring-
specific stages
not necessarily
strictly sequential

Break points in
the process

Offshore
software
companies

4.5 Offshoring Process Models 233

foreign customers. From the point of view of such a company, an
offshoring project is just another project that has to be acquired on the
market, bidding against competitors. As software companies, offshoring
providers offer more than just coding. Projects covering more stages or
even the entire life cycle are more attractive to them than plain imple-
mentation or maintenance projects.

With regard to the topic of this chapter of the book (i.e. process mod-
els) offshoring providers are restricted by the overall model imposed by
the customer. The majority of process models found in practice are
sequential models (waterfall model). However, the further up the system
life cycle that an offshoring provider enters the process, the more free-
dom they have to form the process according to their needs and experi-
ence. For example, when the entire system development process is in
the hands of the offshoring provider, this organization is free to choose
an iterative or evolutionary approach. If the client is ready for continu-
ous engagement and collaboration, even a comprehensive iterative
approach such as RUP (cf. section 4.3) may be applied.

Initially, the majority of offshore projects were maintenance and cod-
ing and testing projects, because offshore programmers were cheaper.
Another focus was system operation. Typical transaction systems such
as computer reservation systems were run offshore. As many organiza-
tions have accumulated offshoring experience over the years, the level
of software-capabilities maturity has also grown. Due to this, offshore
organizations have become trusted partners for pre-coding stages as
well as for outsourcing entire business functions or processes.

The more projects an offshoring provider successfully completes
with the same customer, the closer the business relationship with that
customer becomes, and the more likely it is that they will be awarded
future contracts. With a long-standing relationship, trust between the
partners grows, and the customer may be increasingly willing to out-
source more critical process stages such as requirements analysis or
even the entire solution process for the business problem to the offshore
partner.

Many offshoring providers offer a full spectrum of IT services to
their customers. As business organizations, they naturally attempt to sell
those services with which they can generate most revenue. This means
that instead of offering just coding and testing services, they are design-
ing systems, analyzing and specifying the customer's requirements, and
capturing and modeling the business problem. Along with business con-
sulting services, globally operating offshore companies have become
serious competitors in the western domestic consultancy industry.

Process model:
the earlier, the
more freedom

Initially: mainten-
ance and coding
& testing projects

Nowadays: pre-
coding stages
and entire
processes

Many offshore
companies offer
a full spectrum of
IT services

4 Developing Information Systems 234

The world market leaders in the offshoring market, Tata Consultancy
Services (TCS) and Infosys Technologies, are large Indian organizations
that have been providing offshoring services for a long time. TCS is an
IT company employing more than 104,000 employees worldwide (in
2007), certified at CMMI level 5 [TCS 2007]. Application development
is one branch in their IT services division, next to business process
outsourcing, consulting, infrastructure services, engineering and indus-
trial services etc. Infosys Technologies with over 80,000 employees
worldwide has been focusing on strategic offshore outsourcing of
software services for many years [Infosys 2007]. Both TCS and Infosys
use a global delivery model (GDM) for their services. Offshoring
projects are embedded in these frameworks.

Large organizations like TCS and Infosys offer a fully-fledged spec-
trum of services and products beyond what is traditionally called "off-
shoring". They have their own proven process models, applied in many
projects, covering the entire life cycle or major parts of it. On the other
hand, a large number of small and medium-size offshoring providers
worldwide still live largely from "traditional" offshoring projects in
which the customer outsources implementation and testing or mainten-
ance and imposes the overall process model.

TCS and Infosys
are the world
market leaders in
offshore services

Global IT players
vs. conventional
offshoring
providers

No matter which process model is followed in the project and no matter
who does the work, certain activities will always occur. These activities
may be conducted in a linear sequence (as in the waterfall model), in
iterations (as in RUP) or in an evolutionary manner, yet in any case they
have to be done. Core activities include the following:

– Requirements engineering
– Design
– Implementation
– Test

In chapters 5 and 6, approaches to solve the underlying problems and
tools supporting the respective tasks are presented. The problems of
requirements engineering, design, implementation and test have been
there as long as information systems development has existed. There-
fore the state-of-the-art regarding methodological approaches is rather

Core activities in
all process
models

Analysis
and
Design

5 Analysis and Design 236

stable. On the other hand, tools supporting the activities are subject to
continuous improvement and change more rapidly.

5.1 Requirements Engineering (RE)

The main objective of requirements engineering is to elaborate the
requirements for the information system under consideration and to
document them in an appropriate way, for example in a requirements
specification as discussed in section 3.2.1. In order to achieve these
results, requirements engineers need a thorough understanding of the
problem and of the system to be built, involving identification of the
tasks, the functionalities, the users and other stakeholders, the scope and
the resources needed for building the system. Requirements engineering
can be defined as follows:

Requirements engineering (RE) comprises all necessary activities
of the IS development process that ascertain the stakeholders'
requirements, analyze and evaluate these requirements, and docu-
ment them so that they can be used in further development stages
and throughout the information system's lifetime.

Requirements engineering thus comprises three major areas: require-
ments elicitation (ascertaining the requirements), requirements evalua-
tion (analysis, agreeing, validation of the requirements) and require-
ments specification (documenting the requirements). Before the require-
ments elicitation starts, a feasibility study may be conducted.

When the information system is completed and in operation, or even
when the system is still under development, requirements management
is an issue. New requirements may emerge, asking for implementation
in future versions of the system. Gathering requirements, prioritizing,
monitoring and keeping track of the status (which requirements have
been implemented and to what extent?) are activities that accompany
the information system throughout its life cycle.

Requirements engineering emerged as an important area for research
and practice in the 1980's, initiating an academic discussion whether it
should be considered as a discipline of its own or as a part of software
engineering. No matter which position the contributors to the discussion

Objective:
elaborating and
documenting the
requirements

Definition:
requirements
engineering

Requirements
management

Requirements
engineering
emerged in the
1980's

5.1 Requirements Engineering (RE) 237

assumed, all agreed on the importance of thoroughly engineering the
stakeholders' requirements. As software systems became increasingly
complex, users became less and less satisfied because they felt that their
"true" requirements were not being met. Something had to be done and
the birth of requirements engineering was the outcome.

5.1.1 What are Requirements?
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Requirements are primarily descriptions of what the future system
should do and how it should behave once it is implemented. Require-
ments may specify properties of or constraints upon both the system and
the development process.

Requirements can be subdivided into functional requirements and
non-functional requirements on the one hand, and into user require-
ments and system requirements on the other hand. Figure 5-1 illustrates
these categories.

– Functional requirements specify what the system should do – exact-

ly what business problems the system should solve, what functions it
should provide to the user, what screens, forms, reports, and data are
needed, etc.

– Non-functional requirements are general criteria that the system
should meet, apart from solving specific application problems. Such
criteria often refer to software quality and performance of the sys-
tem. Examples are maintainability, reliability, scalability, robust-
ness, user-friendliness, response times, interoperability, reusability,
modularity and understandability. These criteria have been exten-
sively discussed for many years in the software engineering litera-
ture as attributes of software quality [ACM 1978, Boehm 1978, Kan
2002].

– Some requirements may be imposed by the legal environment, by
industry standards the organization desires to meet, or by other influ-
encing factors that are not directly related with the specific informa-
tion system. Since requirements of this type may apply to an entire
application domain, Sommerville calls them domain requirements
[Sommerville 2007, pp. 125-126]. A more general term is environ-

What should the
future system do
and how should it
behave?

Functional
requirements

Non-functional
requirements

Environmental
requirements

5 Analysis and Design 238

mental requirements. An example is requirements derived from the
W3C's accessibility guidelines for web pages [W3C 2006].

Figure 5-1 Classification of requirements

Requirements

User requirements

System requirements

Functional requirements

Functional requirements

Non-functional requirements

Environmental requirements

Non-functional requirements

Environmental requirements

RequirementsRequirements

User requirementsUser requirements

System requirementsSystem requirements

Functional requirementsFunctional requirements

Functional requirementsFunctional requirements

Non-functional requirementsNon-functional requirements

Environmental requirementsEnvironmental requirements

Non-functional requirementsNon-functional requirements

Environmental requirementsEnvironmental requirements

Requirements are often specified on at least two different levels of
abstraction, on the user's level and on the developers' level, leading to a
distinction between user requirements and system requirements
[Sommerville 2007, pp. 127-131]:

– User requirements describe functional and non-functional require-

ments in a way that is understandable for system users and other
stakeholders without detailed technical knowledge. They should
only specify the external behavior of the system and not system
characteristics relevant for the design or implementation of the sys-
tem. The specification should be written in non-technical language
(usually in natural language) using easy-to-understand diagrams.

User
requirements

5.1 Requirements Engineering (RE) 239

– System requirements describe the requirements on a technical level
and in more detail, explaining how the desired user functionality
should be provided by the system. System requirements serve as the
starting point for the system design. If the development of the
information system is outsourced to a software vendor, the system
requirements specification may serve as the basis for the contract.
Therefore it should be a complete and consistent specification of the
whole system.

5.1.2 Major Tasks of Requirements Engineering
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The requirements engineering process often starts with a feasibility
study and then goes through the steps of requirements elicitation, analy-
sis, agreeing (negotiation), validation and specification. Figure 5-2 illus-
trates how the tasks of requirements engineering work together.

Feasibility study

Depending on how detailed the original feasibility study of the system
was from when the project proposal was written (see sections 3.1 and
3.2), the feasibility study will update and elaborate the previously exam-
ined points in detail. Questions to be answered include the following:

– Is the system economically feasible, i.e. can it be built within the

given budget?
– Is the system technically feasible, i.e. can it be built with the avail-

able software and hardware technology? Can required additional
technology be bought within the project budget?

– Are the required human resources with know-how and experience
for the project available?

– Is the system organizationally feasible, i.e. will the organization
adopt the system successfully? Is the system legally feasible, i.e.
does it comply with all laws and legal regulations that apply?

– Can the system be built within the given time frame?

System
requirements

Updating and
refining earlier
examinations

5 Analysis and Design 240

__

Figure 5-2 Requirements engineering tasks

Requirements
elicitation

Feasibility
study

Requirements
analysis

Requirements
negotiation
(agreeing)

Requirements
specification

Requirements
validation

Requirements
elicitation

Requirements
elicitation

Feasibility
study

Feasibility
study

Requirements
analysis

Requirements
analysis

Requirements
negotiation
(agreeing)

Requirements
negotiation
(agreeing)

Requirements
specification

Requirements
specification

Requirements
validation

Requirements
validation

Requirements elicitation

Eliciting requirements is also called capturing or gathering require-
ments. Eliciting is the preferred term because it describes that some-
thing latent needs to be brought out. In many cases, requirements are
neither explicitly available nor completely clear in the minds of the
stakeholders, so they definitely need to be "elicited". At the same time,
analysts must develop their understanding of the application domain.

Requirements elicitation comprises the following parts [Nuseibeh
2000, p. 37]:

– Finding out what problem needs to be solved, and hence identifying

system boundaries. These boundaries define, at a high level, where
the final system will fit into the current operational environment.

Latent needs
have to be
"elicited"

System
boundaries

5.1 Requirements Engineering (RE) 241

– Identifying stakeholders – individuals or organizations who will
gain or lose from the success or failure of a system. Stakeholders
include customers or clients who pay for the system, developers who
design, construct and maintain the system, and users who interact
with the system due to their work. Users may belong to different
categories, e.g. clerical workers, knowledge workers, managers.
They can be novice users, expert users, occasional users, disabled
users etc. An essential part of the elicitation process is to identify the
needs of different user classes.

– Eliciting high-level goals or objectives a system must meet. This
helps to focus the requirements engineer on the problem domain and
the needs of the stakeholders, rather than on possible solutions to
those problems.

– Eliciting information about the tasks users currently perform and
those that they might want to perform with the help of the new
system. This is the part of requirements elicitation that will finally be
transformed into operational functional requirements specifying
what the system should do, with an appropriate level of detail.

A number of techniques are available for the elicitation of requirements.
An overview can be found in Nuseibeh and Easterbrook's "roadmap"
[Nuseibeh 2000, p. 39]. The most common techniques are the use of
questionnaires and surveys, interviews and analysis of existing docu-
mentation such as organizational charts, process models or standards,
and user or other manuals of existing systems.

Group elicitation techniques include brainstorming and focus groups,
as well as RAD (rapid application development) and JAD (joint applica-
tion development) workshops. Such workshops bring analysts, develop-
ers, customers and other stakeholders together with the help of an un-
biased facilitator.

Prototyping as discussed in section 4.2.2 is a useful approach when
there is a great deal of uncertainty about the requirements and what the
final system should be like, or when early feedback from stakeholders is
desired. Prototypes may be developed for requirements elicitation only
and then discarded (throw-away prototyping).

Other techniques for requirements elicitation are model-driven tech-
niques and cognitive techniques such as protocol analysis, laddering,
card sorting and repertory grids [Nuseibeh 2000, p. 39]. Sommerville
proposes viewpoint-oriented elicitation, scenarios and ethnography as
elicitation techniques [Sommerville 2007, pp. 149-158].

Identifying
stakeholders

High-level goals
or objectives

How the tasks
are currently
performed

Techniques for
requirements
elicitation

Throw-away
prototyping

5 Analysis and Design 242

Requirements evaluation

Once the requirements have been collected, the next step is to analyze
them. Requirements analysis begins with a classification in which the
analyst takes the unstructured requirements and groups them into
coherent clusters. Requirements may have to be prioritized due to
budget or schedule limitations. Some requirements may be incompatible
as they were articulated by different stakeholders expressing their views
independently of each other. This may have resulted in conflicting,
redundant or overlapping requirements, as different stakeholders have
different goals, which is another source of conflicts.

An important part of the requirements evaluation stage is therefore to
come to an agreement about the final requirements to pursue and their
priorities. This usually involves negotiations among and decisions by
the stakeholders. Requirements negotiation and conflict resolution is a
difficult step because of different opinions, background, knowledge and
last but not least due to the different goals of the stakeholders.

Requirements validation is the step in which the requirements are
formally examined and approved. While the checking of requirements
also happens in analysis, Sommerville uses the term validation to
describe a more formal way of checking requirements which is based on
written documents or models that will be discussed below [Sommerville
2007, pp. 158-160]. These checks include checking for consistency,
completeness and realism (i.e. can the requirements reasonably be
implemented?). Special review teams may be assigned to this task.

The validation process can be facilitated through system prototypes
demonstrating certain system behavior. Writing test cases as part of the
validation process can also help to detect errors in the requirements. If it
is difficult or impossible to specify how the realization of a particular
requirement can be tested, then the requirement might not lend itself
straightforwardly to implementation in the first place and should be
revised.

Requirements specification

The step in which the requirements are formally documented is the
requirements specification or documentation. Formal documents are
needed for various purposes, as discussed in section 3.2.1. Figure 2-4
showed an outline of a requirements specification document.

Ideal requirements are "complete, consistent, correct, feasible, neces-
sary, prioritized, unambiguous and verifiable" [Wiegers 2001]. An

Analyzing the
requirements

Agreeing on final
requirements

Requirements
validation

Formal
documents are
needed

5.1 Requirements Engineering (RE) 243

adequate specification of the requirements is important for the up-
coming development activities, in particular for the design stage.

Some formalization may be preferred for this purpose, because
formal or semi-formal representations are usually closer to the needs of
the designer than plain written text. Modeling methods for requirements
engineering are discussed in the next section.

We have referred to the persons responsible for the requirements
engineering tasks in this section as requirements engineers or analysts.
Other names are requirements managers, requirements analysts, busi-
ness analysts and system analysts. Requirements engineers must be ver-
satile persons, capable of working with the client or customer, with the
end-users, the project sponsor and/or the product manager. This is a
quite demanding role.

Serving as "... the principal conduit through which requirements flow
between the customer community and the software development team",
the requirements engineer must posses an array of skills such as the fol-
lowing [Wiegers 2003]:

» Listening skills – understanding what people say and what they

might be hesitant to say
» Interviewing and questioning skills – asking the right questions to

elicit essential requirements information
» Analytical skills – critically evaluating the information gathered

from multiple sources to reconcile conflicts, separate user wants
from needs, and distinguish solution ideas from requirements

» Facilitation skills – for example, leading requirements elicitation
workshops

» Observational skills – being able to validate information and expose
new areas for elicitation

» Writing skills – communicating information effectively to custom-
ers, marketing, managers and technical staff

» Organizational skills – structuring the many pieces of information
gathered during elicitation and analysis into a coherent whole

» Modeling skills – being able to model requirements information and
represent it in graphical diagrams or in a modeling language

» Interpersonal skills – negotiating with and resolving conflicts among
project stakeholders

Semi-formal
representations
aid the designers

Requirements
engineers

Skills a require-
ments engineer
should have

5 Analysis and Design 244

5.1.3 Use-case Modeling and Other RE Methods
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The most common approach to modeling and representing functional
requirements nowadays are use cases. They were introduced by Ivar
Jacobson in 1986 and later became a part of UML. A use case is a tex-
tual description of what a system should do. Use cases are sometimes
called stories as they explain how a system should fulfil the stake-
holders' needs. The example shown in figure 5-3 describes a use case on
a high level.

__

Figure 5-3 A brief use case [Larmann 2005, p. 63]

Actors are the ones that interact with the system. They carry out the use
cases. An actor stands for a role rather than for an individual. A human
being is not the only actor. A software system, a piece of hardware, or
in general terms, something with behavior are also actors. They are the
stimuli that initiate actions.

A specific sequence of actions and interactions between actors and
the system is called a scenario or a use-case instance. A use case can
thus be characterized as a set of scenarios describing actors using the
system to obtain an observable result of value. Jacobson et al. define a
use case as "a behaviourally related sequence of transactions performed
by an actor in a dialogue with the system to provide some measurable
value to the actor" [Jacobson 1995, p. 343.]

Some scenarios may be desirable, representing successful actions and
interactions with the system, while others stand for failures. Both
success scenarios and failure scenarios are described within the use
case. In many cases, there is one main scenario (called the basic flow or

Actors initiate
actions

Scenarios (use
case instances)

Success
scenarios and
failure scenarios

Process Sale: A customer arrives at a checkout with items to purchase.
The cashier uses the POS system to record each purchased item. The
system presents a running total and line-item details. The customer enters
payment information, which the system validates and records. The system
updates inventory. The customer receives a receipt from the system and
then leaves with the items.

5.1 Requirements Engineering (RE) 245

main success scenario) and a number of alternate scenarios (or failure
scenarios). The main success scenario is often the one assumed in the
first high-level description of the use case.

A set of use cases, actors and their relationships is called a use-case
model. Such a model comprises all the actors of the system and all the
use cases by which the actors interact with the system. In this way, a
use-case model describes the total functional requirements of the sys-
tem.

Use cases can be short informal descriptions or detailed specifica-
tions, depending on the purpose for which they are written. Three types
are often distinguished [Larmann 2005, p. 66-67]:

– Brief – one paragraph with a few sentences summarizing the use

case (see figure 5.3 above for an example).
– Casual – a few paragraphs of text, describing various scenarios in an

informal manner (see figure 5-4 below for an example).
– Detailed ("fully dressed") – a formal document elaborated in detail

with certain sections, including preconditions and postconditions for
success. A full expansion of the casual use case of figure 5-4 can be
found in [Larman 2005, pp. 68-72].

Fig. 5-4: A casual use case [Larman 2005, p. 63-64]

Use-case model

Types of use-
case descriptions

Handle Returns

Main success scenario

A customer arrives at a checkout with items to return. The cashier uses
the POS system to record each returned item. The system …

Alternate scenarios

If they paid by credit, and the reimbursement transaction to their credit
account is rejected, inform the customer and pay them with cash.

If the item identifier is not found in the system, notify the cashier and
suggest manual entry of the identifier code (perhaps it is corrupted).

If the system detects failure to communicate with the external
accounting systems, …

5 Analysis and Design 246

Detailed use cases are often based on templates. Such a template pro-
vides typical sections such as use-case name, summary of the use case,
preconditions, basic flow, alternate flows, postconditions, author, date
etc. A common use-case template from the author of "Writing Effective
Use cases" [Cockburn 2000] with sample data is shown in figure 5-5.

The goal-in-context section specifies what the major stakeholder
(buyer) expects the system to do for him or her. Preconditions state
what must be true before the scenario starts. Success end conditions (or
postconditions) state what must be true when the use case is completed
successfully (according to the main success scenario). Failed end condi-
tions must be true when an alternate scenario was followed.

Primary actors are the ones whose goals are fulfilled through the use
cases. Secondary actors (or supporting actors) provide a service to the
system. Secondary actors are often other information systems interfac-
ing with the system under consideration. A trigger is an action upon the
system that starts the use case. Extensions refer to the steps of the main
scenario. Sub-variations will cause eventual bifurcations in the scenario.
Since use cases can be composite (i.e. composed of other use cases), the
superordinate use case is the use case that includes this one.

Use-case diagrams

Use-case advocates stress that use cases are text documents. "Doing use
case work means to write text" [Larman 2005, p. 89]. Nevertheless, vi-
sual representations of use cases have become very popular. The UML
(unified modeling language) provides a graphical notation to illustrate
the relationships between actors and use cases, so called use-case dia-
grams.

Actors are usually represented by a stickman with the name written
underneath. The suggestive meaning of the stickman symbol is a human
being, but actors can be other computer systems as well. Therefore, a
box-type representation of actors is often used, with the stereotype
«actor» and the name of the actor written within the box. Using both
types of representation – stickmen for human actors and boxes for com-
puter-based actors – provides a visual distinction between the two types.

Ovals are the symbols for use cases in a use-case diagram. Actors
and use cases are connected by lines showing which actor communi-
cates with which use cases. The lines are called communication associa-
tions.

Use-case
templates

Preconditions
and
postconditions

Primary and
secondary actors

UML provides
use-case
diagrams

UML symbols of
use cases

5.1 Requirements Engineering (RE) 247

Figure 5-5 Detailed use case based on a template [Cockburn 1998]

Use Case 5 Buy goods

Goal in context Buyer issues request directly to our company, expects goods
shipped and to be billed.

Scope & level Company, summary
Preconditions We know buyer, their address, etc.
Success end condition Buyer has goods, we have money for the goods.
Failed end condition We have not sent the goods, buyer has not spent the money.
Primary,
secondary actors

Buyer, any agent (or computer) acting for the customer.
Credit card company, bank, shipping service.

Trigger Purchase request comes in.

Description Step Action
 1 Buyer calls in with a purchase request.

 2 Company captures buyer’s name, address,
requested goods, etc.

 3 Company gives buyer information on goods,
prices, delivery dates, etc.

 4 Buyer signs for order.
 5 Company creates order, ships order to buyer.
 6 Company ships invoice to buyer.
 7 Buyer pays invoice.
Extensions Step Branching action

 3a Company is out of one of the ordered items:
 3a1. Renegotiate order.

 4a Buyer pays directly with credit card:
 4a1. Take payment by credit card (use case 44)

 7a Buyer returns goods:
 7a. Handle returned goods (use case 105)

Sub-variations Branching action

 1 Buyer may use phone in, fax in, use web order form,
electronic interchange

 7 Buyer may pay by cash or money order, check, credit
card

Related information 5. Buy goods
Priority Top
Performance 5 minutes for order, 45 days until paid
Frequency 200/day
Channel to actors Not yet determined
Open issues What if we have part of the order? What if credit card is stolen?
Due date Release 1.0
...any other management
information...

Superordinates Manage customer relationship (use case 2)

Subordinates Create order (use case 15)
Take payment by credit card (use case 44)

5 Analysis and Design 248

Figure 5-6 illustrates this graphical notation with an example of a high-
level use-case diagram for a POS (point-of-sale) system [Larman 2005,
p. 90]. Note that the use cases "process sale" and "handle returns" from
the figures 5-3 and 5-4 are contained in the diagram. Primary actors are
the "cashier", the "system administrator" and the "sales activity system".
Supporting actors in this example are software systems, namely the
"payment authorization service", "tax calculator", "accounting system"
and "HR system". As a matter of style, primary actors are placed on the
left-hand side of the diagram and secondary actors on the right-hand
side.

High-level use-case diagrams like the one in figure 5-6 serve as
context diagrams as in other diagramming notations for requirements
engineering (see below). A context diagram shows the main behavior of
the system under consideration and which actors communicate with the
system. It makes visible what is inside and what is outside the system,
i.e. it shows the boundaries of the system.

Relationships

Use-case models can be refined in various ways. More structural infor-
mation can be added by specifying relationships between use cases and
relationships between actors. The relationship types used for this pur-
pose reflect typical object-oriented concepts such as generalization and
inheritance. Relationships between use cases are:

• «Extends» – a generalization/specialization relationship between two

use cases. Use case B extends use case A with additional behavior
which A does not have. Figure 5-7 a) illustrates this case. Processing
CD sales might require more actions than processing normal sales.
The cashier has to take action to get the CD that belongs to the
empty CD cover the customer took from the shelf.

• «Includes» – a relationship of one use case that includes (or uses) the
behavior of another use case. Use case A including use case B
means that extra behavior from B is added to A. «Includes» is used
when multiple use cases have a common function that can be used
by all. Figure 5-7 b) shows an example. Returns at the POS require
reimbursement to the customer, with a certain procedure for return-
ing cash and a different one for returning the amount to the custom-
er's credit card account. Returns by mail require the same procedure
in case the customer paid by credit card.

UML provides
use-case
diagrams

High-level use-
case diagrams
serve as context
diagrams

Relationships
between use
cases

5.1 Requirements Engineering (RE) 249

Figure 5-6 Use-case diagram for a point-of-sale system§

POS system

Manage security

Process sale

Handle returns

Process rental

Cash in

Analyze activity

Manage users

. . .

System
administrator

«actor»
Sales activity

system

Cashier

«actor»
HR system

«actor»
Accounting

system

«actor»
Tax calculator

«actor»
Payment

authorization
service

POS system

Manage securityManage security

Process saleProcess sale

Handle returnsHandle returns

Process rentalProcess rental

Cash inCash in

Analyze activityAnalyze activity

Manage usersManage users

.

System
administrator

«actor»
Sales activity

system

«actor»
Sales activity

system

Cashier

«actor»
HR system

«actor»
HR system

«actor»
Accounting

system

«actor»
Accounting

system

«actor»
Tax calculator

«actor»
Tax calculator

«actor»
Payment

authorization
service

«actor»
Payment

authorization
service

§ Larman 2005, p. 90.

5 Analysis and Design 250

A relationship between actors is:

• Generalization/specialization – a relationship in which one actor

inherits behavior from another one. Actor B is a specialization of A
if B has some features inherited from A. In the example of figure 5-7
c), customers are specialized into customers at the point of sale and
customers receiving home delivery.

Figure 5-7 Relationships in use-case diagrams (examples)

«extends»

Process
sale

Process
CD sale

a) Extends relationship b) Includes relationship

Handle POS
returns

Handle mail
returns

Handle POS
cash

payment

Handle POS
credit card
payment

Handle check
payment

«includes» «includes»

«includes» «includes»

Customer

POS customer Home-delivery
customer

c) General and special actors

«extends»

Process
sale

Process
CD sale

«extends»

Process
sale

Process
CD sale

Process
sale

Process
sale

Process
CD sale
Process
CD sale

a) Extends relationship b) Includes relationship

Handle POS
returns

Handle mail
returns

Handle POS
cash

payment

Handle POS
credit card
payment

Handle check
payment

«includes» «includes»

«includes» «includes»

Handle POS
returns

Handle POS
returns

Handle mail
returns

Handle mail
returns

Handle POS
cash

payment

Handle POS
cash

payment

Handle POS
credit card
payment

Handle POS
credit card
payment

Handle check
payment

Handle check
payment

«includes» «includes»

«includes» «includes»

Customer

POS customer Home-delivery
customer

Customer

POS customer Home-delivery
customer

c) General and special actors

Generalization -
specialization

5.1 Requirements Engineering (RE) 251

Supplementary specification

For a more detailed specification of requirements, additional documents
supplementing the use-case model can be used. Feature lists are some-
times used for this purpose. While high-level feature lists contain essen-
tially the same information as a use-case model, feature lists can be
refined to as much detail as one likes. In this way, feature lists tend to
become very long, obscuring the essential behavior that should actually
be specified.

While use cases are helpful for capturing and documenting functional
requirements, they are not suited to specifying non-functional require-
ments. The latter ones are often summarized in a supplementary specifi-
cation, including [Larman 2005, p. 107]:

– Quality attributes and common functionality across many use cases

– so-called FURPS+ requirements (functionality, usability, reliabili-
ty, performance, supportability)

– Reports, documentation (user, installation, administration) and help
features

– Hardware and software constraints (e.g. operating system, network-
ing software)

– Development constraints (e.g. tools, IDE to use)
– Licensing, legal and internationalization concerns
– Packaging
– Standards (technical, safety, quality)
– Operational concerns (e.g. frequency of backups, handling errors)
– Information in the domain of interest (e.g. what is the entire cycle of

credit payment handling)

When the requirements specification is intended to serve as a basis for a
contract with a third party or as input for the design group, more de-
tailed information than provided in the initial use-case model is needed.

In the RUP (Rational unified process; cf. section 4.3) model, this
information is added throughout the process. Requirements engineering
in RUP is an activity that is repeated in the iterations of the inception,
elaboration and construction phases. In this way, the requirements engi-
neer can start with the inception by identifying the most use cases, but
writing only a few important ones in detail. In the elaboration iterations,
the initial use cases are revised, and most use cases are eventually speci-

Feature lists

Supplementary
specification

5 Analysis and Design 252

fied in detail. During construction, use cases may still be modified
according to feedback received from implementation.

5.1.4 More UML: Sequence Diagrams and Class Diagrams
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

In addition to use-case models, high-level sequence diagrams and class
diagrams are used in requirements engineering in order to refine the
information captured in use cases.

Sequence diagrams

A sequence diagram generally illustrates the interaction between ob-
jects. When used to specify high-level system behavior, a sequence dia-
gram shows the communication between actors and the system under
consideration for a particular scenario as a sequence of events or com-
munication steps.

On top of the diagram are the objects involved – the actor(s) and the
system. Vertical dashed lines indicate the beginning or the end of a
communication between the two. Messages from the actor requesting an
action by the system and returning messages from the system, including
results, are represented by horizontal arrows. The sequence of actions is
from top to bottom, i.e. the imaginary vertical axis represents the time.

Figure 5-8 shows an example of a sequence diagram for the main
success scenario of the "handle cash payment" use case in figure 5-7.
The box around the arrows "enter item ID and quantity" and "confirm
item accepted" indicates a loop – in case the customer returns more than
one item. High-level sequence diagrams like the one in figure 5-8 re-
gard the system under consideration as a black box, specifying only
how the external actors communicate with the system.

Sequence diagrams are usually created for the more important sce-
narios, not for all. This diagramming technique is also used for later
activities of information systems development, especially for system
design. Here they serve the purpose of specifying object interaction
through messages. This will be described in section 5.2.2.

Sequence
diagrams show
the interaction
between objects

In a high-level
sequence
diagram, the
system is a black
box

5.1 Requirements Engineering (RE) 253

__

Figure 5-8 Sequence diagram example

Cashier

System

Create new return

Enter item ID and quantity

Confirm item accepted

For each item

End return

Send return total

Pay to customer

Cashier

SystemSystem

Create new return

Enter item ID and quantity

Confirm item accepted

For each item

End return

Send return total

Pay to customer

Class diagrams

A class diagram represents a static model of a system in terms of
classes, attributes and relationships among the classes. The terminology
for class diagrams, just as most of the UML terminology, is object-
oriented. Note, however, that use cases and use-case models are not
object-oriented.

A class is an object-oriented concept that defines a type of object.
Objects belonging to the class share a common structure and a common
behavior. Class diagrams can be used on different levels of abstraction.
High-level class diagrams are called domain models (in RUP) or

Classes,
attributes and
relationships

High-level class
diagrams

5 Analysis and Design 254

conceptual models. These models contain conceptual classes (or domain
concepts) and their relationships.

A conceptual class is a type of object that occurs in the domain and
is considered important enough to be represented on its own. It repre-
sents abstract or concrete things in the real world. In the above POS sys-
tem, examples are "sale", "article", "customer", "cash register" etc.; or in
a college administration system, "student", "course", "lecturer", "lecture
hall" etc. In contrast to these high-level classes that represent domain
concepts, lower-level classes used in design and implementation are
software entities.

Finding appropriate conceptual classes is a creative activity. A com-
mon technique is to examine the use-case model and identify the nouns
in the use cases' textual descriptions. The nouns are often reasonable
candidates for conceptual classes. (In entity-relationship modeling, the
same technique has been used for a long time. Finding appropriate en-
tity types is a similar problem as finding conceptual classes.)

In addition to classes, a conceptual model specifies the relationships
between the classes or between their objects. Relationships considered
in the domain model are association, generalization and refinement.
(More relationship types will be introduced later for the design and
implementation activities.)

An association is a semantic connection between classes, specifying
that objects of these classes can be connected in a certain way. A partic-
ular connection of an object belonging to class A with an object of class
B is called a link. An association can thus be described as a set of
possible links between objects of the two classes. An association has:

– one or two names,
– one or two multiplicity expressions (optionally),
– one or two arrows (optionally).

The name should express the meaning of the association (how are the
objects connected?). An arrow is a visual aid to indicate in which direc-
tion to read the association. In figure 5-9, the association between A and
B reads "A contains B" and "B belongs to A".

Multiplicity specifies how many objects of class B can be associated
with one object of class A. Typical values are:

1 one A object can be linked with exactly 1 B object
0..1 one A object can be linked with 0 or 1 B object(s)
0..* one A object can be linked with 0 or more B objects
* one A object can be linked with "many" (including 0) B objects;
 i.e. same as 0..*

Conceptual
classes

Relationships

Associations

Multiplicities

5.1 Requirements Engineering (RE) 255

Figure 5-9 Association names and reading directions

A B
Contains ►

◄ Belongs to
AA BB

Contains ►

◄ Belongs to

Other ranges than 0..1 (e.g. 1..4) and lists of values (e.g. 2, 4, 8) can also
be used as multiplicities if the domain concepts asks for such associa-
tions. Figure 5-10 shows three cases:

a) An object of class A is linked with exactly 1 object of class B.
b) An object of class A is linked with at most 1 object of class B.
c) An object of class A can be linked with no, one or many objects of B.

Note that no multiplicity is specified for the reading direction from right
to left. An assumption in such a case is that the multiplicity is one.

An example of multiplicities is given in figure 5-11. An author may
have written many books, and a book can have more than one author.

__

Figure 5-10 Association multiplicities

A Ba)
1

A Bb)
0..1

A Bc) *

A Ba)
1

AA BBa)
1

AA BBb)
0..1

A Bc) *AA BBc) *

5 Analysis and Design 256

Why is the multiplicity 0..* for "Wrote" and 1..* for "Has"? The answer
is that a book without an author does not make sense, but an author
without a book might. The publishing company might wish to record a
promising author in its information system even before they have
published the first book of this author.

__

Figure 5-11 Association of books and authors

Author Book
Wrote ►

◄ Has

1..* 0..*Author Book
Wrote ►

◄ Has

1..* 0..*

Attributes describe the characteristics of the objects belonging to a class.
For example, an article has a name, an ID, a price etc. A sale has a total,
a date and a time. In UML, attribute names are written in a second com-
partment of the box representing the class. In the domain model, only
the essential attributes are considered.

Sometimes it depends on the perspective of the modeler to decide if
something is an attribute or a class. An address, for example, could be
considered an attribute if it is simple and belongs to only one person. A
complex company address, on the other hand, qualifies as a class of its
own if it is associated with several departments or contact persons in the
company. Figure 5-12 shows a portion of a domain model with four
conceptual classes, associations and some important attributes.

Attributes have certain types. In the high-level domain model, types
are usually ignored, but in more detailed models the types are included.
Types are either simple data types (such as integer, number, string,
Boolean) or commonly used types (such as amount, phone number, or
social security number).

Generalization is a relationship between two classes indicating that
one class, the superclass, is a more general form of the other class, the
subclass; or in other words, the subclass is a special case of the super-
class. We can also say that a subclass (object) is a superclass (object).
For example, a supplier is a business partner. This is called an is-a
association.

The superclass is also known as the parent class. Subclasses are
called child classes, children or derived classes. Generalization helps to

Attributes

Generalization

Superclasses
and subclasses

5.1 Requirements Engineering (RE) 257

reduce redundancy by factoring out common features of conceptual
classes to a superclass.

Figure 5-13 illustrates the generalization relationship with an exam-
ple containing different types of business partners: customers, suppliers
and banks. In UML, generalization is indicated by hollow arrowheads.
All subclasses have common attributes, e.g. an address and a contact
person, and common associations with other conceptual classes. These
common features are factored out to the superclass "business partner".
The features which are different remain with the subclasses.

__

Figure 5-12 Classes, attributes and associations

Employee

EmployeeID
Last name
First name
E-mail

Department

Department
name

Address

City
Street
Building
Floor

Project

Project
name

Project

ProjectID: ID
Project name: string
Start date: date
End date: date
Budget: money
Person months: number
Customer: string
. . .

«refines»

Heads

Belongs to

1 0..1

1..* 0..*
1..*

1..*

1..* 1

1 1

0..*

0..1Manages

Works for

Employee

EmployeeID
Last name
First name
E-mail

Employee

EmployeeID
Last name
First name
E-mail

Department

Department
name

Department

Department
name

Address

City
Street
Building
Floor

Project

Project
name

Project

Project
name

Project

ProjectID: ID
Project name: string
Start date: date
End date: date
Budget: money
Person months: number
Customer: string
. . .

«refines»

Heads

Belongs to

1 0..1

1..* 0..*
1..*

1..*

1..* 1

1 1

0..*

0..1Manages

Works for

5 Analysis and Design 258

For example, suppliers may have an association with materials that can
be purchased from them whereas banks do not. Therefore the superclass
"business partner" will not have a general association with the materials
class, but the subclass "supplier" will be associated with materials.

Figure 5-13 Generalization example

Business
partner

BankSupplierCustomer

Superclass

Subclasses

Subclasses
of a subclass

Domestic
supplier

Foreign
supplier

Business
partner
Business
partner

BankSupplierCustomer

Superclass

Subclasses

Subclasses
of a subclass

Domestic
supplier
Domestic
supplier

Foreign
supplier
Foreign
supplier

Generally speaking, all of a superclass's definition should apply to the
subclasses. This means that the subclass has the same attributes, the
same behavior and the same associations as the superclass. In addition,
a subclass may have different features, otherwise there is little reason to
create the subclass. Identifying subclasses and treating them separately
is motivated by the need to capture additional attributes, additional
associations or different behavior which is not provided by the super-
class.

Generalization is transitive. This means if C is a subclass of B and B
is a subclass of A, then C is also a subclass of A with the same attrib-
utes, behavior and associations as A. In figure 5-13, "domestic supplier"
is a subclass of "supplier" and indirectly of "business partner".

A refinement is a relationship connecting two descriptions of the
same thing at different levels of abstraction. The refining description
must conform to the abstract description. Refinements in UML can be
used to model various matters. In requirements engineering, they are
useful to refine conceptual classes of the high-level domain model into

Generalization is
transitive

Refinement
relationship

5.1 Requirements Engineering (RE) 259

more detailed descriptions suited for a requirements specification docu-
ment. Refinements are indicated by a dashed line with a hollow
arrowhead. This is shown in the lower part of figure 5-12 where the
class "project" is described in more detail.

5.1.5 Other Approaches to Requirements Engineering
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

While the most popular approach to requirements engineering today is
to develop use cases and other UML models, more approaches exist,
including structured analysis, business area analysis and ARIS require-
ments definitions.

Structured analysis (SA)

Structured analysis (SA) has been the dominating approach for many
years and is still used, both in practice, research and teaching. In the
1980s and 1990s, most textbooks on information systems development
were focused around structured analysis, discussing ISD as if structured
analysis was the only approach available.

SA was originally developed in the 1970s by Ed Yourdon, Tom
DeMarco, Chris Gane and Trish Sarson. Many books by the original
authors and by other others about SA have been written since then. SA
is often used in combination with SD (structured design) and referred to
as SA/SD.

The purpose of SA is to create a system specification. DeMarco
starts his book "Structured analysis and system specification" with a
crisp statement summarizing this purpose: "Let's get right to the point.
... Structured analysis is concerned with a new kind of functional speci-
fication, the structured specification" [DeMarco 1978, p. 3]. DeMarco's
definition of SA is pragmatic: "Structured analysis is the use of these
tools: data flow diagrams, data dictionary, structured English, decision
tables, decision trees to build a new kind of target document, the struc-
tured specification." [DeMarco 1978, p. 16]

The primary modeling tools of SA are data flow diagrams (DFDs).
They dominate SA to an extent that the terms "structured analysis" and
"data flow diagrams" have even been used as synonyms. Another quasi-
synomym is DeMarco method, although this is just one popular variant
of SA. Others are SSA (structured systems analysis [Gane 1979]), mod-

Ed Yourdon,
Tom DeMarco,
Chris Gane,
Trish Sarson

Purpose of SA:
creating a
"structured
specification"

SA variants:
DeMarco,
SSA, modern
structured
analysis, SADT

5 Analysis and Design 260

ern structured analysis [Yourdon 1989] and SADT (structured analysis
and design technique [Ross 1977]).

The structured specification is primarily a graphical model of the
processes of the information system under consideration, represented by
a set of data flow diagrams. A process in SA is an activity that trans-
forms input data flows into output data flows. A data flow diagram is
thus a procedural description of how activities are connected by data
flows.

DFDs are created in a top-down manner, by functional decomposi-
tion. The structured specification comprises a data dictionary document-
ing the processes, data flows, data stores (e.g. files) and data elements,
and so-called transform descriptions specifying how the processes
should work. Structured English, decisions tables and decision trees are
used for this purpose [DeMarco 1978, pp. 31-32].

SA provides a process model to arrive at the structured specification.
This model consists of seven steps, starting with a study of the current
situation and ending with the structured specification. The documents
produced in each step are called:

1. Current physical data flow diagram – result of a study of the cur-

rent environment, in particular of the current way of solving the
underlying problems (who does what and how?)

2. Current logical data flow diagram – result of a clean-up and ab-
straction process elaborating the current processes and data flows
based on the current physical data flow diagram

3. New logical data flow diagram plus supporting documentation – a
representation of the requirements for the new system in terms of
processes and data flows, described in detail in the data dictionary
and the transform descriptions (at this point it is not decided yet
whether the processes will be automated or manual)

4. New physical data flow diagrams – a set of options resulting from
considerations to determine the scope of the automated system,
i.e. the question what will be automated and what will remain
manual work ("establishing the man-machine interface")

5. New physical data flow diagram – the selected option based on
quantification of cost and schedule data associated with each
option

6. Structured specification – the target of the process, as a result of
revising and packaging the new physical data flow diagram, the
data dictionary and the transform descriptions into a final form

The structured
specification is a
graphical model
of the processes

SA process
model and
documents

5.1 Requirements Engineering (RE) 261

Developing the data flow diagrams is a top-down process with stepwise
refinement. Higher-level diagrams are decomposed into lower-level
diagrams. The domain of study is specified in a context diagram that
defines the boundaries of the system. In a context diagram, system
functionality is outlined as one top-level process with ingoing and out-
going data flows and possibly sources and sinks of the data. A source or
sink is a person, an organization or an information system outside the
context of the system under study, providing data for or receiving data
from the system.

Figure 5-14 illustrates this concept with the help of a simplified
order-processing system. Customer inquiries and possibly orders for
products are coming from customers. The order-processing system is-
sues quotations and order confirmations. For this purpose it needs prod-
uct data and customer master data provided by the sales department (or
sales information system). When the order is confirmed to the customer,
order documents are issued and given to the sales department for further
processing. "Customer" and "sales" are sources and sinks of data simul-
taneously because they both provide and receive data.

On the highest level of decomposition (level 0), the main processes
of the system and the data flows into and out of these processes are
plotted. Such a level-0 diagram for the order-processing system is
shown in figure 5-15. Note that the six processes are numbered and that
"orders & quotations" is a so-called data store (e.g. a file or a database
table) indicated by two parallel lines.

Figure 5-14 SA context diagram

Customer SalesOrder
processing

Inquiry

Quotation
Order

Confirmation

Order
documents

Customer data

Product data

Legend:
Source
or sink Process Data flow

CustomerCustomer SalesSalesOrder
processing

Inquiry

Quotation
Order

Confirmation

Order
documents

Customer data

Product data

Legend:
Source
or sink Process Data flow

Context diagram
defining the
boundaries of the
system

Level-0 diagram

5 Analysis and Design 262

In the next steps, the top-level processes are refined into more detailed
processes. Figure 5-16 shows the refinement of the "check inquiry"
process (no. 1) into three subprocesses numbered 1.1 to 1.3. The other
level-0 processes will be refined in the same way. Afterwards, level-1
processes will be refined, and so on. How many levels of refinement are
appropriate depends on the complexity of the problem. A rule of thumb
says refinement should stop when a process can be described in less
than one page of structured English. (Structured English is a rigorously
defined subset of natural English with a restricted vocabulary and con-
junctions restricting control flow to structured-programming like con-
structs.)

Figure 5-15 SA level-0 diagram

1.
Check
inquiry

Customer
data

Product
data

Inquiry

Checked
inquiry

3.
Issue
letter

2.
Create

quotation/
rejection

Quotation/
rejection

Orders & quotations

4.
Check
order

5.
Record
order

6.
Issue
order

documents

Confirmation

Order documents

Customer
data

Product
data

Order

Checked order

Order

1.
Check
inquiry

Customer
data

Product
data

Customer
data

Product
data

Inquiry

Checked
inquiry

3.
Issue
letter

2.
Create

quotation/
rejection

Quotation/
rejection

Orders & quotationsOrders & quotations

4.
Check
order

5.
Record
order

6.
Issue
order

documents

Confirmation

Order documents

Customer
data

Product
data

Customer
data

Product
data

Order

Checked order

Order

DFDs are the essential modeling technique in SA. A data dictionary,
structured English, decision trees and decision tables are additional
techniques to supplement the DFDs with more detailed information.

Level-1 and
level-2 diagrams

DFDs are the
main modeling
technique in SA

5.1 Requirements Engineering (RE) 263

CASE tools supporting structured analysis usually provide graphical
support for creating the respective documents.

The brief description of structured analysis in the above paragraphs
was intended to show SA's basic approach of refining processes with
the help of data flow diagrams. Readers requiring more indepth infor-
mation on structured analysis are advised to consult dedicated SA books
[e.g. DeMarco 1978, Gane 1979, Yourdon 1989] or ISD books with a
structured-analysis focus [e.g. Kendall 2005].

__

Figure 5-16 SA level-1 diagram decomposing process no. 1

1.1
Check

customer
data

Customer
data

Inquiry

1.2
Check
product

data

Product
data

1.3
Check
product

availability

Checked
inquiryInventory

1.1
Check

customer
data

1.1
Check

customer
data

Customer
data

Inquiry

1.2
Check
product

data

Product
data

1.3
Check
product

availability

Checked
inquiryInventoryInventory

5 Analysis and Design 264

Business area analysis (BAA)

Business area analysis (BAA) is a part of information engineering (IE).
IE is a comprehensive model-based approach to enterprise-wide plan-
ning, analysis, design and construction of information systems, pro-
posed and marketed by James Martin since the early 1990s. As de-
scribed in section 4.2.3, information engineering has four major stages:

– Information strategy planning
– Business area analysis
– System design
– Construction

On the top level of the pyramid (cf. figure 4-7), in information
strategy planning (ISP), models representing the strategic opportunities,
goals, critical success factors and information needs of different parts of
the enterprise are developed. The whole enterprise is modeled in this
way on a high abstraction level and then split into different areas
appropriate for business area analysis.

Since IE is essentially a data and function-oriented approach, a busi-
ness area is defined as "a naturally cohesive grouping of business func-
tions and data" [Martin 1990, p. 184]. What makes up a business area
can be determined, for example, by a clustering algorithm. A business
area is not an organizational unit of the enterprise but something defined
in terms of interconnected functions and data, possibly spanning across
several departments or organizational units. A business area such as
warehouse management, for example, will touch the warehousing, pur-
chasing, production-planning and quality-control departments.

Business area analysis assesses individually each part of an enter-
prise, i.e. each business area is analyzed one after the other. Priorities,
i.e. which business area to start with, are determined within information
strategy planning. The purpose of BAA is to develop a number of mod-
els documenting the results of the analysis. The main model types are:

• Data model – essentially a normalized entity-relationship model in a

particular notation, using attribute-free relationships and crow's-foot
connectors for cardinalities [Martin 1990, pp. 304-317]. (ER models
are briefly discussed in the section on ARIS below.)

• Process decomposition model – a static model of the top-level busi-
ness functions decomposed into lower-level processes by functional
decomposition, creating a tree-structured hierarchy of processes. (In
IE terminology, the top-level activities identified in ISP are called

Information
engineering (IE)

Business area:
"a naturally
cohesive
grouping of
business
functions and
data"

Data model

Process
decomposition
model

5.1 Requirements Engineering (RE) 265

business functions. A process is an activity that transforms input
data into output data as in SA.) An example of a decomposition dia-
gram is given in figure 5-17. In this diagram, the business function
"warehousing" is refined in three levels of processes.

Figure 5-17 Process decomposition diagram (example)§

Warehousing

Receive
goods

. . .Dispatch
goods

Accept
shipment

Assess
quality

Store
items

Update
inventory

Assemble
orders

Pack
orders

Ship
orders

Update
inventory

Sample
goods

Record
measurements

Formulate
statistics

Update
inventory

Record
shipment

WarehousingWarehousing

Receive
goods

Receive
goods

. . .Dispatch
goods

Accept
shipment

Assess
quality
Assess
quality

Store
items
Store
items

Update
inventory

Assemble
orders

Pack
orders
Pack

orders
Ship

orders
Ship

orders
Update

inventory
Update

inventory

Sample
goods

Sample
goods

Record
measurements

Formulate
statistics

Record
measurements

Record
measurements

Formulate
statistics

Formulate
statistics

Update
inventory
Update

inventory
Record

shipment
Record

shipment

• Process dependency model – a model that shows the dynamic rela-
tionships between processes. Some processes depend on others in
the sense that they can be executed only if some other process has
been performed before. An example from material requirements
planning (MRP) is shown in figure 5-18. Process dependency mod-
els can be refined and specified very precisely with the help of cardi-
nalities and logical connectors.

• Process data flow model – a process dependency model with data
inputs and outputs added to the processes. Figure 5-19 shows an
example of a process data flow diagram. It was created from a
process dependency diagram with data flows added. (The bold
circles mean mutual exclusivity. After checking product availability,
either the "create backorder" process or the "fill order" process has
to be performed.) Note that a process data flow diagram is not the
same as a data flow diagram in structured analysis because the
sequence of processes is not defined by data flows.

§ Martin 1990, p. 259.

Process
dependency
model

5 Analysis and Design 266

Figure 5-18 Process dependency diagram (example)§

Calculate
gross

requirements

Break down
bill of

materials

Collect
firm

orders

Collect
backlog

Collect
prospect
estimates

Create
demand
model

Collect
inventory

status

Calculate
net

requirements

Calculate
gross

requirements

Calculate
gross

requirements

Break down
bill of

materials

Break down
bill of

materials

Collect
firm

orders

Collect
firm

orders

Collect
backlog
Collect
backlog

Collect
prospect
estimates

Collect
prospect
estimates

Create
demand
model

Create
demand
model

Collect
inventory

status

Collect
inventory

status

Calculate
net

requirements

Calculate
net

requirements

• Process/data matrix (process/entity matrix) – a matrix showing
which processes create (C), read (R), update (U) or delete (D) which
data entities. The matrix rows signify processes and columns signify
entity types. Entries in the cells are the above abbreviations C, R, U
and D (sometimes referred to as CRUD). Some cells have one letter,
some more. Figure 5-20 shows a portion of a process/data matrix
associated with figure 5-19#. For example, the "Customer" column
has obviously a "C" entry in the "Create new customer record" row
and an "R" for the delivery and billing processes.

The models of BAA are not created in a linear sequence but in iterations
with successive refinement. Completeness and consistency of the mod-
els is checked in this process. Computerized tools (CASE tools) do
some of the checking automatically.

§ Martin 1990, p. 266.
Some data flows coming from or going to data stores were shown explicitly in

figure 5-19. In addition, we assume that orders are kept in a data store between
processes. Each process that needs to do something with an order will read the
order from the data store (R) and possibly update the order and write it back to
the data store (U).

Process/data
matrix (process/
entity matrix)

5.1 Requirements Engineering (RE) 267

Figure 5-19 Process data flow diagram (example) [Martin 1990, p. 271]

Customer

Customer

Product Accounts
receivable

Delivery

Backorder

Order
confirmation

Customer

Order

Check
customer

credit

Validate
order

Fill
order

Inventory
Check
product

availability

Validated
order

Validated
order

Validated
order

Create new
customer

record

Create
backorder

Validated
order

Deliver
order

Products
ordered Validated

order

Bill
customer

Invoice

Order

CustomerCustomer

CustomerCustomer

ProductProduct Accounts
receivable
Accounts
receivable

Delivery

BackorderBackorder

Order
confirmation

Order
confirmation

CustomerCustomer

OrderOrder

Check
customer

credit

Check
customer

credit

Validate
order

Fill
order
Fill

order

InventoryInventory
Check
product

availability

Check
product

availability

Validated
order

Validated
order

Validated
order

Create new
customer

record

Create new
customer

record

Create
backorder

Create
backorder

Validated
order

Deliver
order

Deliver
order

Products
ordered Validated

order

Bill
customer

Bill
customer

Invoice

Order

5 Analysis and Design 268

This is possible since all models and all their components are (ideally)
stored in a central repository, the encyclopedia that was illustrated in
figure 4-8. All models are interconnected via the encyclopedia.

Figure 5-20 A section of a process/data matrix

. . .

RRRDBill customer

RRUDeliver order

URUFill order

Create backorder

RRU
Check product
availability

RU
Check customer
credit

C
Create new
customer record

RRCUValidate order

. . .

RRRDBill customer

RRUDeliver order

URUFill order

Create backorder

RRU
Check product
availability

RU
Check customer
credit

C
Create new
customer record

RRCUValidate order

Legend:

C = Create
R = Read
U = Update
D = Delete

O
rd

er

C
us

to
m

er

In
ve

nt
or

y

Pr
od

uc
t

. .
 .En

tit
y

Ty
pe

Process

In this way it can be checked whether an entity referred to in a process
data flow diagram has been created somewhere, i.e. it must have a "C"
in some process/entity matrix. The attributes of an entity type specified
in an entity-relationship diagram are available in the process data flow
diagram. A process named in the matrix must be specified in a
decomposition or process dependency diagram.

Completeness
and consistency
checks based on
the encyclopedia

5.1 Requirements Engineering (RE) 269

ARIS requirements definition

ARIS (architecture of integrated information systems) is similar to
information engineering, capturing different views of an organization's
information systems. It starts by identifying business processes and
modeling them. ARIS uses a comprehensive set of methods. These
methods are often summarized in a picture shown in figure 5-21, called
the ARIS HOBE (house of business engineering) [Scheer 2002, p. 4].

Figure 5-21 ARIS HOBE (house of business engineering)§

A R I S

screens

Organiza

Hierarchy

F

F1 F2

F3 F4
Process

Processing
forms

ModulesStructogram

Program

Distributed
database

Trigger
Window,

Distributed
processing

Protocols
Ethernet HP 9000 RS 6000

PS/2

Token Ring

Ring

Planning
levels Area

Plant

Exec.
mgmt.

Access

O - D
OE

R W C
R C R

O - F

Function
Levels PCD

O - F - D

Event control

D - F

Input -
Output OOD

F1
F1,F2

g
Write
Create

=
=

W
C

Database
description

Relations

BNR X

YANR

Entity
relationship
diagram (ERM)

Bus

TCP/IP

F B

DPX/2

Organi-
zational chart

Network
topology

Program control

E F D O

D
A
D

f
a
c

F1, F2
F3

A R I S

screens

Organiza

Hierarchy

F

F1 F2

F3 F4
Process

Processing
forms

ModulesStructogram

Program

Distributed
database

Trigger
Window,

Distributed
processing

Protocols
Ethernet HP 9000 RS 6000

PS/2

Token Ring

Ring

Planning
levels Area

Plant

Exec.
mgmt.

Access

O - D
OE

R W C
R C R

O - F

Function
Levels PCD

O - F - D

Event control

D - F

Input -
Output OOD

F1
F1,F2

g
Write
Create

=
=

W
C

Database
description

Relations

BNR X

YANR

Entity
relationship
diagram (ERM)

Bus

TCP/IP

F B

DPX/2

Organi-
zational chart

Network
topology

Program control

E F D O

D
A
D

f
a
c

F1, F2
F3

Data FunctionControl

Organization

Output

Requirements
definition

Design
specification

Implementation
description

Legend: R = Read
W = Write
C = Create
F = Function
D = Data
O = Organization
E = Event
Op = Output

Op 1
Op 2

Op 3

Op 4

Op 5
Op 6

Op 1

Op 1 Op 2

Op 4 Op 5
Process Hierarchy

A R I S

screens

Organiza

Hierarchy

F

F1 F2

F3 F4
Process

Processing
forms

ModulesStructogram

Program

Distributed
database

Trigger
Window,

Distributed
processing

Protocols
Ethernet HP 9000 RS 6000

PS/2

Token Ring

Ring

Planning
levels Area

Plant

Exec.
mgmt.

Access

O - D
OE

R W C
R C R

O - F

Function
Levels PCD

O - F - D

Event control

D - F

Input -
Output OOD

F1
F1,F2

g
Write
Create

=
=

W
C

Database
description

Relations

BNR X

YANR

Entity
relationship
diagram (ERM)

Bus

TCP/IP

F B

DPX/2

Organi-
zational chart

Network
topology

Program control

E F D O

D
A
D

f
a
c

F1, F2
F3

A R I S

screens

Organiza

Hierarchy

F

F1 F2

F3 F4
Process

Processing
forms

ModulesStructogram

Program

Distributed
database

Trigger
Window,

Distributed
processing

Protocols
Ethernet HP 9000 RS 6000

PS/2

Token Ring

Ring

Planning
levels Area

Plant

Exec.
mgmt.

Access

O - D
OE

R W C
R C R

O - F

Function
Levels PCD

O - F - D

Event control

D - F

Input -
Output OOD

F1
F1,F2

g
Write
Create

=
=

W
C

Database
description

Relations

BNR X

YANR

Entity
relationship
diagram (ERM)

Bus

TCP/IP

F B

DPX/2

Organi-
zational chart

Network
topology

Program control

E F D O

D
A
D

f
a
c

F1, F2
F3

Data FunctionControl

Organization

Output

Requirements
definition

Design
specification

Implementation
description

Legend: R = Read
W = Write
C = Create
F = Function
D = Data
O = Organization
E = Event
Op = Output

Op 1Op 1
Op 2Op 2

Op 3Op 3

Op 4Op 4

Op 5Op 5
Op 6Op 6

Op 1Op 1

Op 1Op 1 Op 2Op 2

Op 4Op 4 Op 5Op 5
Process Hierarchy

Event-controlled process chains (EPCs) serve as the major initial mod-
eling technique. In figure 5-22, a small example of an EPC is shown,

§ Scheer 2002, p. 4.

Event-controlled
process chains
(EPCs)

Event-controlled
process chains

5 Analysis and Design 270

illustrating its main elements: functions, events, person types (or organi-
zational units) and technical terms (inputs/outputs of EPC functions).

Figure 5-21 Event-controlled process chain (example)§

Movie

Movie
theater

Show
start

Start check of
reservation

request

Find show Show

Call center
agent

Show
found

Show

Number
of tickets

Compare number
of available
tickets with
requested

Reservation
possible

Reservation
impossible

Show not
found

Symbols:

Event

Function

Person
type

Technical
term

X

X

X Xor rule

Call center
agent

MovieMovie

Movie
theater
Movie
theater

Show
start
Show
start

Start check of
reservation

request

Start check of
reservation

request

Find showFind show ShowShow

Call center
agent

Call center
agent

Show
found

ShowShow

Number
of tickets
Number
of tickets

Compare number
of available
tickets with
requested

Reservation
possible

Reservation
possible

Reservation
impossible

Reservation
impossible

Show not
found

Show not
found

Symbols:

Event

Function

Person
type

Technical
term

XX

XX

X Xor rule

Call center
agent

Call center
agent

§ Andres 2006, p. 4.

5.1 Requirements Engineering (RE) 271

Just like information engineering, ARIS is essentially data and function-
oriented, starting from a business perspective. The ARIS approach is to
identify functions, data and organizational units involved in the business
processes and their interconnections, and to represent them in five
views, the function, data, organization, control and output views. Each
view except the last one is examined on three different abstraction
levels (called descriptive levels). These levels are requirements defini-
tion, design specification and implementation description.

EPCs represent the business view of an organization's processes.
They can be interpreted as high-level descriptions of the requirements
for information systems development. In order to make operational
requirements out of the high-level process descriptions, two approaches
are available: 1) the original ARIS approach and, 2) the UML oriented
approach.

1) Original ARIS approach

For each view and each level of ARIS, models and methods for describ-
ing the respective elements are provided (cf. figure 5-21). For require-
ments engineering, the respective models and methods are provided on
the ARIS "requirements definition" level, including the following:

– Entity-relationship models (for the data view)
– Decomposition diagrams and process-sequence diagrams (for the

functions view)
– Organizational charts (for the organization view)
– Process data flow diagrams, EPCs, function/data matrices and other

matrices (for the control view)

Most of these models and diagrams are neither new nor ARIS specific.
For example, decomposition diagrams, organizational charts, process
data flow diagrams and entity-relationship diagrams are used in infor-
mation engineering as well. ARIS unites them into a comprehensive
framework in a similar way to IE.

Since the entity-relationship model (ERM) has been the most widely
used data-modeling technique for many years, we will explain it here
briefly. (More detailed descriptions can be found in the literature [e.g.
Elmasri 2006, Hoffer 2006, Bagui 2003]). The original entity-relation-
ship model was developed by P.P. Chen in the 1970s [Chen 1976]. A
number of variants have come into existence since then. One of them is
the variant used in information engineering as mentioned above.

ARIS views and
descriptive levels

ARIS models for
requirements
engineering

Entity-
relationship
model (ERM)

5 Analysis and Design 272

ERMs are quite similar to domain models in UML. This is not sur-
prising, since the entity-relationship model has long been employed for
the same purpose as a UML domain model. The basic concepts are enti-
ty types, relationship types and attribute types; or on an instance level:
entities, relationships and attributes.

Entities are real or abstract objects which are of interest in the
domain which is to be modeled. For example, the book "The making of
information systems", the author "Karl Kurbel", or the specific book
shop at the corner are all entities. Entity types are types of such objects,
e.g. the types "book", "author" and "book shop".

Relationships are logical connections between entities (for example,
"Karl Kurbel wrote The making of information systems"). Relationship
types are the types of such connections between entity types. For exam-
ple, the relationship type "wrote" will connect the entity types "book"
and "author" as shown in figure 5-23.

Attributes are properties of an entity or a relationship. Attribute types
are the types of these properties. For example, "last name" is an attribute
type of the entity type "author". Note that in the ER model version
which is supported by ARIS, both entities and attributes can have attrib-
utes. In the example of figure 5-23, the "wrote" relationship has an at-
tribute "royalty share" which specifies the percentage from the total
royalty a (co-) author will receive regarding this particular book.

Figure 5-23 ERM for books and authors

Last name, first name, …
Royalty
share Title, date, …

Author BookWrote
(0, *) (1, *)

Last name, first name, …Last name, first name, …
Royalty
share
Royalty
share Title, date, …Title, date, …

AuthorAuthor BookBookWroteWrote
(0, *) (1, *)

Relationship types have cardinalities (or complexities). A cardinality is
similar to a multiplicity in a UML class diagram, defining with how
many entities of type 2 a particular entity of type 1 may be connected. A
precise way of writing cardinalities is the min-max notation (min-max
cardinalities) specifying both the minimum and the maximum number

Entities and
entity types

Relationships
and relationship
types

Attributes and
attribute types

Min-max
cardinalities

5.1 Requirements Engineering (RE) 273

of connected entities. Min-max cardinalities are noted down as tuples
(min, max).

In figure 5-23, the (0,*) cardinality on the left says that one particular
author can have written zero or more books. (1,*) on the right means
that one particular book must have at least one author and can have
many authors. It is a matter of convention where on the connecting lines
the cardinalities are written (next to entity type 1 or entity type 2). We
follow Scheer's usage here (i.e. writing the (0,*) cardinality on the
author's side), but others prefer to do it the other way round (i.e. writing
the (0,*) cardinality on the book's side). Note that Scheer's convention is
opposite to the way in which the corresponding multiplicities were
written in the class diagram of figure 5-11.

In addition to the basic concepts just described, common extensions
are generalization/specialization ("is a" relationships) and aggregation
(re-interpreted relationship types).

Figure 5-24 Generalization/specialization (example)

Business
partner

Customer BankSupplier

Domestic
supplier

Foreign
supplier

Business
partner
Business
partner

CustomerCustomer BankBankSupplierSupplier

Domestic
supplier

Foreign
supplier

Domestic
supplier

Foreign
supplier

Aggregation is a concept often used with different meanings. In the
ARIS entity-relationship model, it stands for creating new entity types
from relationships, i.e. related entity types are combined into an aggre-

"Is a" relationship

Aggregation

5 Analysis and Design 274

gated type. The purpose of this combination is to have a new concept (a
newly constructed entity type) that itself may have relationships with
other entity types.

An example is given in figure 5-25. The problem underlying this
entity-relationship diagram is managing advertisements in a newspaper
company. The same advertisement can be published several times in
different editions of the newspaper. "Publication" is primarily a relation-
ship type connecting advertisements with newspaper editions. Since
customers can place orders for the publication of an advertisement in
one or more editions of the paper, obviously a relationship between the
entity type "Customer" and the relationship type "Publication" is need-
ed. However, relationships exist only between entity types. Therefore,
the relationship type "Publication" has to be re-interpreted as an entity
type, which is indicated by a (entity) rectangle around the (relationship)
diamond.

__

Figure 5-25 ERM with aggregation and generalization

Advertise-
ment EditionPublication

Customer Orders

is-a

Gets CommissionRegular
customer Agency

(1, *) (0, *)

(0, *)

(1,1)

(0, *)(1,1)

adID, ad name,
description, file

name, …

commID,
commission

scheme

custID, name
address, phone no,

…

edID volume,
issue, date, …

Invoice
item

Invoice

invoiceID, date,
customer-to-bill, sales rep,

…

(1, *)

(1,1)

itemID, price, …

state, …

Belongs
to

(0, *)

(1,1)

category,
contact person

discount scheme

Advertise-
ment EditionPublication

Customer Orders

is-a

Gets CommissionRegular
customer Agency

(1, *) (0, *)

(0, *)

(1,1)

(0, *)(1,1)

adID, ad name,
description, file

name, …

adID, ad name,
description, file

name, …

commID,
commission

scheme

custID, name
address, phone no,

…

edID volume,
issue, date, …
edID volume,
issue, date, …

Invoice
item

InvoiceInvoice

invoiceID, date,
customer-to-bill, sales rep,

…

(1, *)

(1,1)

itemID, price, …itemID, price, …

state, …

Belongs
to

(0, *)

(1,1)

category,
contact person

category,
contact person

discount scheme

Re-interpreted
relationship types

5.2 Design 275

Likewise, a relationship between a particular publication of an adver-
tisement and an invoice for it can only be established if the publication
is indeed an entity type. For this purpose the re-interpretation of "Pub-
lication" as an entity type is also needed.

Some attributes in the figure are underlined. These attributes are used
to identify an individual entity uniquely. In the real world, all objects of
a business have such identifiers. For example, a particular invoice is
uniquely identified by an invoice number. In the ERM, the respective
attribute is called "invoiceID".

2) UML-oriented approach

Many organizations today use UML for all modeling and specification
tasks in information systems development. Taking this fact into account,
ARIS supports the transformation of EPCs defining business processes
into use cases and UML models [Andres 2006, pp. 5-6]. Essentially the
creation of a use-case model and a class model from the event-con-
trolled process chains is supported.

The use-case model is created through a mapping of EPC functions
onto UML use cases in a schematic way. The functions are treated as if
they were use cases and copied to a use-case diagram. The class dia-
gram is created from the technical terms of the EPC, which represent
data. The technical terms are considered candidates for classes. They
are examined and then made either classes or attributes in the class
model.

5.2 Design

The goal of design is to draft a solution in terms of software concepts.
While requirements engineering captures and specifies the requirements
for the systems as seen by the stakeholders, design activities ultimately
lead to a description of the future software system. Elements of the solu-
tion are software concepts, not user or domain concepts as in require-
ments engineering. Nevertheless, there is a correspondence between
domain concepts and software concepts, as the latter ones are usually
derived from the former ones. The result of the design is a specification

Attributes
identifying an
individual entity
uniquely

Transformation
of EPCs into use
cases and class
models

Design leads to a
description of the
software

5 Analysis and Design 276

of the software system that can be directly transformed into executable
code in the implementation stage.

The term "design" has blurry boundaries, obscuring where require-
ments end and design specifications begin. Even in a well-known ap-
proach such as RUP (Rational unified process; cf. section 4.3.2), the
analysis and design disciplines are not cleanly separated. Some of the
UML modeling techniques for analysis and design are the same.

How do requirements turn into design specifications? How do layers,
modules, classes, objects or whatever constructs are needed come into
existence? In the majority of the software engineering literature, there
used to be a gap between requirements engineering and a requirements
specification on the one hand, and follow-up activities in design on the
other hand. Much was left to the creativity, intuition and experience of
the designer. Operational approaches were available from authors from
the SA/SD (structured analysis/structured design) field, but not really
accepted by hard-core software engineering gurus. In section 5.2.5 we
will discuss these approaches briefly.

Patterns

Eventually, the intuition and experience-based approaches by expert de-
signers found their explicit descriptions in so-called patterns. A pattern
is an effective solution to a problem that occurs repeatedly in a given
context. It is accompanied by a description of what the consequences of
using the pattern are and by a set of "known uses" [Kircher 2007, p. 29].

In short, a pattern is a general repeatable solution to a commonly
occurring problem. It describes a category of problems and is meant to
be reused in new contexts. A definition of the term is as follows:

A pattern is a named description of a problem and a solution that
can be applied in new contexts, with advice on how to apply it in
novel situations, taking into consideration the forces and trade-
offs in varying circumstances [Larman 2005, p. 279].

Patterns became popular in the 1990s. The best-known set of patterns is
the so-called GoF patterns collections discussed further below. Patterns
serve different purposes on different abstraction levels. Rough catego-
ries are [Buschmann 1996, pp. 11-16]:

» Architectural patterns – applied in early design activities in order

to establish an architecture
» Design patterns – related to the design of partial solutions of a cer-

tain type

Boundaries
between
requirements and
design are blurry

How do
requirements
turn into design
specifications?

Definition:
pattern

Pattern
categories

5.2 Design 277

» Idioms – used for low-level design solutions

Since the patterns discussion began in the 1990s, thousands of
patterns have been created and used by software developers. Heavy
books have been edited, such as further volumes of the cited "Pattern-
Oriented Software Architecture, Volume I" [Buschmann 1996], and a
series of PLoP (pattern language of programming) conferences has been
held since then.

In software development projects, many patterns are used together,
often in repeated combinations. This has lead to a distinction between
stand-alone patterns and pattern collections [Buschmann 2007, p. 32].

Pattern collections contain several patterns which are related with
each other in a specific relationship:

» Pattern compounds – collections of pattern which are usually ap-

plied together.
» Pattern sequences – collections of patterns that are always used in

the same sequence.
» Pattern complements – collections where one pattern provides

either the missing ingredient for another pattern or a balanced
solution for a related problem (e.g. a pattern for creating and a
pattern for destroying an object).

Since the relationships between patterns can be quite complex (e.g.
complements consisting of compounds and sequences), so-called
pattern languages have been created. Pattern languages aim to provide
holistic support for using patterns to develop software for specific
domains, such as e-commerce and communication middleware [Busch-
mann 2007, p. 33].

In the pattern community, it is expected that more patterns will come
into existence, focusing on particular application domains (e.g. business
process modeling, transaction-oriented business systems, mobile sys-
tems) and software technologies (e.g. programming languages). Many
software developers use patterns today, but even more do not [Mano-
lescu 2007, p. 62]. However, the dissemination of pattern-oriented ap-
proaches in practice is expected to grow.

In the following description, we will focus on those perspectives of
design activities that are of primary interest in the development of busi-
ness information systems: designing the system architecture, the classes
and objects, the user interface and the database. Patterns play an impor-
tant role in these perspectives, but other approaches will be discussed as
well.

Pattern
collections

Pattern
languages

More patterns
will be created

5 Analysis and Design 278

5.2.1 Architectural Design
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The importance of an appropriate architecture has already been empha-
sized in chapter 3. In this section, we will discuss briefly how an archi-
tecture is developed. Actually, an architecture-in-the-large may already
be prescribed for the current development effort, i.e. when the informa-
tion system under discussion has to match existing systems and fit into a
given information systems landscape. For example, if the company has
already implemented an organization-wide enterprise service-oriented
architecture (ESOA, cf. section 3.4), then the new system will have to
match this architecture.

However, architectural decisions will still be needed for the current
information system. At least an architecture-in-the-small has to be de-
veloped unless the system is trivial. The question when this architecture
is created has several answers. A high-level architecture may be created
in early project stages and later refined. In the RUP process model, for
example, a high-level architecture is established in the inception phase.
Later in the elaboration phase, this architecture is stabilized and an
architectural prototype is built (cf. section 4.3.1). Distinguishing be-
tween a logical architecture and a physical architecture is helpful to
identify the necessary tasks.

A logical architecture deals with the functionality of the system,
allocating functionality to different parts of the system [Eriksson 2004,
p. 254]. It reflects the application logic, but not the physical distribution
of that logic into software components. The logical architecture mainly
specifies the functional properties of the system and is driven by the
functional requirements (cf. section 5.1.1).

Several UML diagram types are used together to describe a logical
architecture, including package, use-case, class and sequence diagrams.
Activity, state machine and communication diagrams can also be em-
ployed. (The latter ones are explained further below in the context of
design tasks.)

Package diagrams group together architectural components which
belong together. A package in UML is a general grouping mechanism
for all kinds of model elements. The package content (i.e. all package
elements belonging to the package) is drawn inside a large box with a

Architecture-in-
the-large

Architecture-in-
the-small

Logical
architecture

Package diagram

5.2 Design 279

small rectangle (a tab) attached to its upper left corner. The tab may
contain the name of the package. Package elements can be packages
themselves. This is usually the case when a logical architecture is dis-
played in a package diagram.

Figure 5-26 shows an example of a logical architecture consisting of
three layers. Each layer contains further packages. Since packages are
general grouping mechanisms, the contained packages may consist of
any type of model elements. A reasonable assumption in the case of
figure 5-26 would be that the contained packages contain classes
derived from the conceptual classes of the domain model. The dashed
lines represent dependency relationships.

A physical architecture describes the physical structure of the
software system, i.e. the software components implementing the func-
tional concepts specified in the logical architecture and the relationships
among the components.

In a broader sense, the physical architecture includes hardware, net-
work and system software related aspects such as the distribution of the
run-time software in terms of processes, programs and network nodes.
The physical architecture mainly deals with the non-functional proper-
ties of the system such as reliability, compatibility, resource usage and
deployment of the system.

The physical architecture is created from the logical architecture by
mapping the models describing the logical architecture onto models for
the physical architecture. Classes and other concepts specified in the
logical architecture are connected with the respective artifacts in the
physical architecture.

UML diagrams used to illustrate a physical architecture are the same
as those used for a logical architecture: package, use-case, class, inter-
action, state machine and activity diagrams. Interaction diagrams, in
particular communication diagrams, help to make the points visible
where layer (package) boundaries are crossed. For this purpose, archi-
tecturally significant scenarios should be developed [Larman 2005, p.
564]. Information needed for the implementation is provided through
component and deployment diagrams.

Creating an architecture has been recognized as a process of its own,
in addition to or as part of a general process model. In RUP, an activity
called architectural analysis (AA) addresses the architecture issues. The
purpose of AA is:

1. to identify factors which influence the architecture,
2. to make decisions resolving the issues.

Physical
architecture

UML diagrams
for a physical
architecture

RUP:
architectural
analysis (AA)

5 Analysis and Design 280

Figure 5-26 Package diagram showing a three-layer architecture§

Swing

User interface

Text

Domain

Sales

ServicesAssess

Inventory

Pricing

Payments

POSRuleEngine

Technical Services

Persistence Log4J Jess SOAP

Swing

User interface

Text

Domain

Sales

ServicesAssess

Inventory

Pricing

Payments

POSRuleEngine

Technical Services

Persistence Log4J Jess SOAP

Factors with architectural implications identified in the first step are
called architectural factors or architecturally significant requirements.
The result of an architectural analysis, essentially a documentation of

§ Larman 2005, p. 563.

5.2 Design 281

the architectural decisions, is called a software architecture document
(SAD).

Another approach to designing an architecture was proposed by
Bass, Clements and Kazmann under the name attribute-driven design
(ADD) [Bass 2003, pp. 155-166]. ADD starts from the so-called archi-
tectural drivers. In the terms of AA, these are architecturally significant
requirements that have a dominating influence on the design of the ar-
chitecture. For example, high-availability requirements can be an archi-
tectural driver for a point-of-sale system. ADD is basically a method
that decomposes a system top-down into subsystems or modules, look-
ing at one module at a time and refining it.

Architectural patterns are useful aids in developing an architecture.
An architectural pattern describes a fundamental structural organization
or schema for software systems. Buschmann et al. in their seminal book
"Pattern-oriented software architecture" define an architectural pattern
as "... providing a set of predefined subsystems, specifying their respon-
sibilities, and including rules and guidelines for organizing the relation-
ships between them" [Buschmann 1996, p. 26].

Architectural patterns have been proposed by many authors and for
many purposes. The most cited classification of patterns is the one by
Buschmann et al., covering a variety of application areas [Buschmann
1996, pp. 25-220]. These authors provide a detailed discussion of archi-
tectural patterns. Short summaries and abstracts of their patterns can be
found in many guidelines about architectural patterns, such as the sub-
sequent ones, taken from the Hillside website [e.g. Hillside 2007]:

• Layers – this pattern helps to structure applications that can be

decomposed into groups of subtasks, where each group of subtasks
is at a particular level of abstraction.

• Pipes and filters – provides a structure for systems that process a
stream of data. Each processing step is encapsulated in a filter
component. Data are passed through pipes between adjacent filters.
Recombining filters allows the developer to build families of related
systems.

• Blackboard – useful for problems for which no deterministic solu-
tion strategies are known. In a blackboard architecture, several spe-
cialized subsystems assemble their knowledge to build a possibly
partial or approximate solution.

• Broker – used to structure distributed software systems with de-
coupled components that interact by remote service invocations. A
broker component is responsible for coordinating communication,

Bass et al.:
attribute-driven
design (ADD)

Architectural
patterns

Architectural
patterns [Busch-
mann 1996]

5 Analysis and Design 282

such as forwarding requests, as well as for transmitting results and
exceptions.

• Model-view-controller (MVC) – dividing an interactive application
into three components. The model contains the core functionality
and data. Views display information to the user. Controllers handle
user input. Views and controllers together comprise the user inter-
face. A change-propagation mechanism ensures consistency be-
tween the user interface and the model.

• Presentation-abstraction-control (PAC) – defines a structure for in-
teractive software systems in the form of a hierarchy of cooperating
agents. Every agent is responsible for a specific aspect of the
application's functionality and consists of three components:
presentation, abstraction and control. This subdivision separates the
human-computer interaction aspects of the agent from its functional
core and its communication with other agents.

• Microkernel – this pattern applies to software systems that must be
able to adapt to changing system requirements. It separates a mini-
mal functional core from extended functionality and customer-
specific parts. The microkernel also serves as a socket for plugging
in these extensions and coordinating their collaboration.

• Reflection – provides a mechanism for changing the structure and
behavior of software systems dynamically. In this pattern, an appli-
cation is split into two parts. A meta level provides information
about selected system properties and makes the software self-aware.
A base level includes the application logic. Its implementation
builds on the meta level. Changes to information kept in the meta
level affect subsequent base-level behavior.

While some of these pattern refer to specific tasks, e.g. the pipes-and-
filters pattern for systems that process data streams, others describe typ-
ical problems and solutions for business information systems. Common
patterns are the layers, broker and model-view-controller patterns. Lay-
ers (or tiers) as addressed in the layers pattern, which divide a system
into levels of abstraction, were discussed in section 3.2. A well-known
broker architecture is CORBA (common object request broker architec-
ture) [OMG 2007].

The model-view-controller (MVC) pattern is a very common pattern
for interactive systems focused on presenting data to the user, for
example systems with a web front-end, which by itself is a compre-
hensive task. Since many application systems need to support multiple
types of users with multiple types of interfaces, the "normal" web front-

Model-view-
controller (MVC)

5.2 Design 283

end is only one interface. An electronic shop, for example, may require
an HTML solution for web customers, a WML (wireless markup lang-
uage) front-end for wireless customers, a Java Swing interface for sys-
tem administrators, and an XML-based web service for suppliers of the
shop [Sun 2002]. No matter which channel an interaction goes through
(e.g. an HTTP request, a SOAP message), all will need the same core
functionality of the shop system.

Instead of repeating the functionality and the database in respective
HTML, WML, XML and Swing-based solutions, the MVC pattern
divides the system into three main components. The rationale is to sepa-
rate data concerns from user interface concerns, so that changes to the
user interface do not affect the data handling. Vice versa, the data can
be reorganized without changing the user interface.

The MVC pattern maps traditional application tasks – input, pro-
cessing and output – to the graphical user interaction model. It decoup-
les data access and business logic from data presentation and user inter-
action with the help of an intermediate component: the controller. As
shown in figure 5-27, the three components of an MVC architecture are
[Singh 2002, p. 348, Gulzar 2002, p. 2]:

 Model – contains a domain-specific representation of the informa-
tion on which the system operates and the core functionality of the
system. The model represents enterprise data and the business rules
that govern access to and updates of this data. The model notifies
views when it changes and provides the ability for the view to query
the model about its state. It also provides the ability for the controller
to access application functionality encapsulated by the model.

 Views – one or more displaying information to the user. A view
renders the contents of the model. It accesses the database through
the model and specifies how the data should be presented. The view
is responsible for maintaining consistency in its presentation when
the model changes.

 Controllers – one or more defining the system behavior, responding
to events, especially user actions. A controller translates interactions
with the view into actions to be performed by the model. The con-
troller dispatches user requests and selects views for presentation. It
interprets user inputs (e.g. HTTP get and post requests) and maps
them onto actions to be performed by the model. Based on the user
interactions and the outcome of the model actions, the controller re-
sponds by selecting an appropriate view. A system may have more
than one controller. Some systems use a separate controller for each

Model

Views

Controllers

5 Analysis and Design 284

client type, because view interaction and selection often vary
between client types.

Figure 5-27 Model-view-controller architecture [Singh 2002, p. 348]

View

• Renders the models
• Requests updates from

models
• Sends user gestures to

controller
• Allows controller to select

view

Model

• Encapsulates system state
• Responds to state queries
• Exposes functionality
• Notifies views of changes

Controller

• Defines system behavior
• Maps user actions to model

updates
• Selects view for response
• One for each functionality

View selection

User gestures

State
query

State
change

Change
notification

Method invocations

Events

View

• Renders the models
• Requests updates from

models
• Sends user gestures to

controller
• Allows controller to select

view

View

• Renders the models
• Requests updates from

models
• Sends user gestures to

controller
• Allows controller to select

view

Model

• Encapsulates system state
• Responds to state queries
• Exposes functionality
• Notifies views of changes

Model

• Encapsulates system state
• Responds to state queries
• Exposes functionality
• Notifies views of changes

Controller

• Defines system behavior
• Maps user actions to model

updates
• Selects view for response
• One for each functionality

Controller

• Defines system behavior
• Maps user actions to model

updates
• Selects view for response
• One for each functionality

View selection

User gestures

State
query

State
change

Change
notification

Method invocations

Events

An often used example to demonstrate the model-view-controller archi-
tecture is the Java pet store. This is a sample system provided by Sun
Microsystems. It has been used to demonstrate various aspects of the
Java platforms over the years. (The latest version of the store illustrates,
for example, how to develop an AJAX enabled Web 2.0 system.)

The Java pet store is a typical e-commerce system – an online store
based on an electronic product catalog organized by categories. Users
browsing the catalog get various views of products and services for sale.
The store takes orders, acknowledges orders and processes credit-card
payments. For these tasks, it has to manage user logins, shopping ses-
sions, personalization and shipping information. The Java pet store also

Java pet store
(Sun)

5.2 Design 285

includes administration functions such as inventory and order manage-
ment.

An MVC architecture was chosen for the pet store because it pro-
vides a structure for handling complex, presentation-oriented problems.
The pet store's website represents such a problem. It has numerous
views and pages available for customer access, potentially written in
different languages, plus content that may be personalized.

Figure 5-28 Model, view and controller tasks in Java pet store§

HTTP request

View Controller

Model

Format page
to display

Browser client

Determine page
to display

Filter request

Extract data

Map request
to command

Invoke command
to handle request

Organize work
for request

Retrieve
data

Perform
operation

HTTP request

View Controller

Model

Format page
to display

Format page
to display

Browser clientBrowser client

Determine page
to display

Determine page
to display

Filter requestFilter request

Extract dataExtract data

Map request
to command
Map request
to command

Invoke command
to handle request
Invoke command
to handle request

Organize work
for request

Organize work
for request

Retrieve
data

Perform
operation
Perform

operation

§ Singh 2002, p. 366.

MVC facilitates
the handling of
complex,
presentation-
oriented
problems

5 Analysis and Design 286

Figure 5-29 Class diagram showing MVC classes in Java pet store§

§ Adapted from Singh 2002, p. 366.

View Controller

Model

Client

Request intercepting filter«JSP»
screen view

Screen flow manager «Serviet»
front controller

Composite view

View helper

Command handler

Event factory

Event

«EJB»
EJB tier controller

Command factory

Service locator

Value object
Business delegate

«EJB»
session facade

«EJB»
business object bmp

«EJB»
business object

Data access object

View Controller

Model

ClientClient

Request intercepting filterRequest intercepting filter«JSP»
screen view

«JSP»
screen view

Screen flow manager «Serviet»
front controller

«Servlet»
front controller

Composite view Composite view

View helperView helper

Command handlerCommand handler

Event factoryEvent factory

EventEvent

«EJB»
EJB tier controller

«EJB»
EJB tier controller

Command factoryCommand factory

Service locatorService locator

Value objectValue object
Business delegateBusiness delegate

«EJB»
session facade

«EJB»
session facade

«EJB»
business object bmp

«EJB»
business object

Data access objectData access object

5.2 Design 287

Customers can make many different requests, each of which the store
interprets and carries out, with data coming from multiple sources. The
system dynamically determines the sequence of views to display to the
customer.

The flow of tasks related with these features is roughly divided into
three sections: controller, model and view-related tasks as shown in fig-
ure 5-28. HTTP requests coming from the user's browser are examined
by the controller, leading to an invocation of a suitable command. The
model is responsible for performing the respective operation and
retrieving the data needed for the operation. View-oriented tasks are
determining which page to display and formating the page that is finally
shown to the user as the result of the initial request.

Figure 5-28 is a flow-oriented description and not an architectural
specification of classes and relationships between the classes. It serves
as a first approximation of which tasks are there to be solved and to
which part of the solution these tasks belong. The latter assignments are
not always unambiguous. For example, determining the page to display
next will involve not only the view but also the controller.

From the rough division of tasks into the three parts, an architecture
of the pet store can be developed and described in appropriate UML
models and diagram. A class diagram, for example, will be created,
specifying the major architectural components in the form of classes
and relationships. Figure 5-29 shows a high-level class diagram indicat-
ing which classes belong to which part (model, view, controller). We
will not discuss the details of the architecture here. Since the pet store is
a reference system for Java developers, the solution contains advanced
features such as Java EE design patterns beyond the scope of this book.

The reader interested in more information will find details of the
architecture in the book by Singh et al. [Singh 2002, chapter 11] and de-
tails of the current implementation of the Java pet store on Sun Micro-
systems' developers website [Sun 2006a].

5.2.2 Designing the Objects (Design Model)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The main goal of design is to specify a software solution capable of
performing the use cases. In RUP, the term use-case realization is used
for this purpose. A use-case realization describes how a particular use

 Controller,
model and view-
related tasks

Use-case
realization

5 Analysis and Design 288

case is realized within the design model. Following the object-oriented
paradigm, design means in the first place that the classes of the software
system and the interaction between objects of these classes need to be
specified. In fact, the core of "traditional" definitions of object-oriented
design (i.e. before RUP and UML) was to find an appropriate class and
object structure [e.g. Booch 1994, p. 39].

Classes and their relationships are modeled in class models and
represented by class diagrams. These diagrams were already introduced
in section 5.2.1 above where they served to describe domain concepts.
The same notation is used in design, but here the classes are design
classes, which means that they are intended to be implemented later in a
programming language. Design classes have more detail than domain
concepts because the goal of design is to create complete, consistent and
unambiguous specifications.

Interaction diagrams (sequence and communication diagrams)
define how objects are supposed to interact by sending, receiving and
processing messages in order to fulfill the requirements. Sequence dia-
grams were introduced as a diagramming technique for requirements
engineering in section 5.1.4. In design, the same type of diagram is used
but contains more detail. Communication diagrams are discussed fur-
ther below.

Design model is a term from the Rational unified process (cf. section
4.3). A design model encompasses the static structure and the dynamic
behavior of the future system. The structure is specified through design
classes assigned to packages (subsystems), with well-defined interfaces
and relationships. The behavior of the system is described with the help
of interaction diagrams. In UML, class, interaction and package dia-
grams together form a design model.

Interaction diagrams and design class diagrams are explained in more
detail below. A package diagram groups UML elements that belong
together, in particular classes, interfaces and/or other packages (i.e.
nested packages). In this way, large systems can be organized into sub-
systems. Packages are also used in architectural design to organize
layers of a software system, assembling all classes, interfaces and pack-
ages that make up a layer into one package. Figure 5-26 (cf. section
5.1.4 above) contained an example of a package diagram showing a
logical architecture with three layers.

Interaction diagrams

UML provides two types of interaction diagrams: sequence diagrams
and communication diagrams. Both serve the purpose of illustrating

Design classes

Interaction
diagrams

Design model:
class, interaction
and package
diagrams
together

Package
diagrams

Sequence and
communication
diagrams

5.2 Design 289

how objects are connected, i.e. how they collaborate by exchanging
messages with each other.

Messages are written on the lines connecting the objects. UML mes-
sage syntax specifies that messages must have a name and that they may
have parameters (possibly with parameter types) and a return type (type
of the result returned). In the example of figure 5-30, "makePayment" is
a message name and "cash" a parameter (whose type is not explicitly
noted because it is obviously some currency type).

Figure 5-30 Excerpts from sequence and communication diagrams§

:Register :Sale

:Payment

makePayment (cash)
makePayment (cash)

create (cash)

a) Sequence diagram

makePayment (cash)
:Register

1: makePayment (cash)
:Sale

:Payment

1.1: create (cash)

b) Communication diagram

:Register:Register :Sale:Sale

:Payment:Payment

makePayment (cash)
makePayment (cash)

create (cash)

a) Sequence diagram

makePayment (cash)
:Register:Register

1: makePayment (cash)
:Sale:Sale

:Payment:Payment

1.1: create (cash)1.1: create (cash)

b) Communication diagram

§ Larman 2005, pp. 224-225.

Messages

5 Analysis and Design 290

Classes and objects are drawn as rectangles with the name written
inside. Interaction diagrams usually show instances (objects) and not
types (classes). To notate an instance, the name is preceded by a colon
(which may also be preceded by a unique identifier). For example:

Sale is the "Sale" class,
:Sale is an object of the "Sale" class (an instance),
dom:Sale is an object of a particular "Sale" class, uniquely iden-
 tified through the name "dom".

Sequence diagrams may consume much horizontal space, because they
extend towards the right every time an object is added. The horizontal
axis represents the flow of time, meaning a sequence diagram is basical-
ly read from left to right and top-down.

The upper section of figure 5-30 shows part of a sequence diagram
for a scenario of the "Process sale" use case of figure 5-6. The message
"makePayment(cash)" is received by a "Register" object which now
sends a "makePayment(cash)" message to a "Sale" object. This object
sends a "create(cash)" message to a "Payment" instance etc.

The vertical bars interrupting dashed lines are called execution speci-
fication bars (previously called activation boxes). They show where the
focus of control is.

The same problem is described with the help of a communication
diagram (previously called collaboration diagram) in the lower part of
the figure. The sequence of messages is now not simply from left to
right and from top to down as in a sequence diagram. Instead, messages
have labels indicating the sequence and the nesting of messages. In
figure 5-31, the nested labels define the sequence of messages as:

1. message-1, invoking :Class-a
2. message-2, invoking :Class-c
3. message-4, invoking :Class-e
4. message-3, invoking :Class-b
5. message-6, invoking :Class-d
6. message-5, invoking :Class-f

Communication diagrams are more compact than sequence diagrams,
requiring less space since objects/classes can be drawn anywhere when
the diagram is being developed. In a sequence diagram, new objects/
classes always extend the diagram to the right.

Interaction diagrams can be extended and refined with many details,
especially with control structures such as loops and conditional mes-
sages and advanced object-oriented concepts such as polymorphism and

Classes and
instances

Sequence
diagrams

Communication
diagrams

5.2 Design 291

asynchronous messages. Reader interested in more information are
advised to consult the UML specification [Booch 2005] or dedicated
UML books [e.g. Larman 2005].

Figure 5-31 Examples of nested labels in a communication diagram

1: message-2

message-1 2: message-3

1.1: message-4

2.2: message-5

:Class-a :Class-b

:Class-c

:Class-e :Class-f

:Class-d

2.1: message-6
1: message-2 1: message-2

message-1 2: message-3

1.1: message-4 1.1: message-4

2.2: message-5 2.2: message-5

:Class-a:Class-a :Class-b:Class-b

:Class-c:Class-c

:Class-e:Class-e :Class-f:Class-f

:Class-d:Class-d

2.1: message-6 2.1: message-6

Design patterns

For many recurring design problems, solutions have been described in
the form of design patterns. As many authors have developed such pat-
terns, hundreds of them are available today. The seminal work of Gam-
ma, Helm, Johnson and Vlissides [Gamma 1995] defined 23 design
patterns which are nowadays known as the GoF patterns ("Gang-of-
Four patterns"). Some of the problems addressed in the GoF patterns
occur quite often, others are less common.

The GoF patterns are subdivided into three categories:

– Creational patterns – handling the instantiation process (how, when,

and which objects are created)
– Structural patterns – handling the composition of classes and ob-

jects, how classes and objects are used in larger structures, and how
interfaces are separated from implementation

– Behavioral patterns – handling the communication between objects
and the responsibilities of objects

GoF patterns
("Gang-of-Four
patterns")

5 Analysis and Design 292

Widely used GoF patterns include the following [Gamma 1995, chap-
ters 3-5]:

– Factory method (creational): Sometimes it is useful to have a mech-

anism for instantiating objects although the class of the object is not
known yet. The factory method pattern helps the designer to model
an interface for creating an object which at creation time can let its
subclasses decide which class to instantiate. This means that the
creation of objects is deferred to the subclasses.

– Abstract factory (creational): An abstract factory is an interface or an
abstract class for creating families of related or dependent objects
(e.g. buttons, listboxes etc. on a graphical user interface) without re-
quiring the developer to specify the concrete classes (e.g. Windows
button, Java Swing button, MacOS button) of these objects in the
definition of the abstract factory. An abstract factory has a method
that returns one of several concrete factories. Each concrete factory
can instantiate on request several different objects as declared in the
definition of the concrete factory.

– Singleton (creational): A pattern to make sure that only one object of
a class can be instantiated and that this object can be accessed from
anywhere (global visibility).

– Adapter (structural; also known as wrapper): Converts the interface
of a class into another interface that is expected by the client class.
Adapters let classes work together that would otherwise not be able
to because of incompatible interfaces. The client invokes the adapt-
er's methods instead of calling directly the methods of the incompat-
ible class.

– Composite (structural): The composite pattern lets other classes treat
individual objects and compositions of objects in the same way (e.g.
polymorphically). Both the individual objects and the composite
implement the same interface. Thus a client call to an interface
method does not need to differentiate whether the object invoked is
an atomic object or a composite object.

– Façade (structural): Provides a unified interface to existing imple-
mentations or interfaces of a subsystem; in other words, this pattern
puts up a new interface (a façade) in front of the original subsystem,
hiding internal details. The façade pattern makes it possible to use

5.2 Design 293

the façade like a black box that provides services. It defines a
higher-level interface, making the subsystem easier to use§.

– Proxy (structural): This pattern helps to control access to an object
with a proxy (also known as a surrogate or placeholder), e.g. when
direct access to the object is not possible or not desired. A variant is
the remote proxy pattern in which a local proxy (called a "stub")
provides services that are actually performed by a remote object.

– Mediator (behavioral): Defines an object that is responsible for con-
trolling and coordinating the interactions of a group of other objects.
In this way, collective behavior is encapsulated in a separate medi-
ator object. The mediator pattern promotes loose coupling by keep-
ing objects from referring to each other explicitly. Objects commu-
nicate with the mediator and not directly with each other.

– Strategy (behavioral): This pattern is useful for situations where it is
necessary to dynamically select or swap the algorithms used in an
application. It defines a family of algorithms, encapsulates each one
in a separate class, and makes them interchangeable. The strategy
pattern makes it possible to change an algorithm independently from
other objects that use it.

Another approach to defining patterns, based on fundamental object-
oriented design principles, was proposed by Larman under the name
GRASP, initially an acronym for "General responsibility assignment
software patterns". GRASP patterns are more fundamental than the GoF
patterns, describing fundamental principles of software design and not
focusing too much on solutions to particular problems.

The key notion in GRASP is responsibility, an important concept
used in a design approach called responsibility-driven design (RDD).
Essentially, responsibility means that an object is responsible for doing
or for knowing something [Larman 2005, p. 276]:

– Being responsible for doing something includes doing it alone (such

as creating an object or doing a calculation), initiating an action in
other objects, and controlling and coordinating activities in other
objects.

– Being responsible for knowing something includes knowing about
private internal data, knowing about related objects, and knowing
what the object can derive or calculate.

§ Façades are used, for example, to encapsulate legacy system functionality to

make it accessible through web services in modern service-oriented architec-
tures [Jankowska 2005, Kurbel 2006]; cf. section 7.4.3.

GRASP patterns

Key notion is
responsibility

5 Analysis and Design 294

Based on these types of responsibilities, Larman describes nine design
patterns called information expert (an object that knows something),
creator (an object that does something), controller, low coupling, high
cohesion, polymorphism, pure fabrication, indirection and protected
variations. Interested readers can find details of these patterns in Lar-
man's book [Larman 2005, pp. 281-318, 413-434]. One thing about the
GRAPS patterns is worth noting: Understanding responsibilities helps
very much in creating good object-oriented designs!

Patterns can be documented in plain text, in a semi-formal notation
such as UML diagrams, or in both. In the GoF book, the pattern struc-
ture is described with a class diagram, sometimes supplemented by an
object diagram (showing instances) and a sequence diagram. Most as-
pects of a pattern such as intent, motivation, participants (classes,
objects), applicability (to which situations), implementation aspects and
sample code are explained in several pages of text. The GRASP patterns
are documented in a similar way.

Although many types of UML diagrams can be used to describe a
pattern, class diagrams and interaction diagrams are the most common
ones. Figure 5-32 a) shows, as an example, a class diagram for the
proxy pattern [Gamma 1995, p. 209, Eriksson 2004, p. 261]. Apart from
the client class invoking interface operations, another three classes are
involved in this pattern: a "RealSubject" class, a "Subject" class, and a
"Proxy" class.

The "Subject" class provides an interface (operations) that clients can
use. This interface is implemented in the "RealSubject" class (possibly
far away on a remote computer) and also in the "Proxy" class. However,
the "Proxy" class only delegates any calls it receives to the "RealSub-
ject" class. A "Client" class object always works, through the "Subject"
interface, with the "Proxy" object, so the "Proxy" object controls access
to the "RealSubject" object§.

An example illustrating the schema of figure 5-32 a) is given in the
lower half of the figure. Suppose a "SalesReport" object (client) needs a
sales total from a particular time period, which can be computed by a
"sum()" operation of the "SalesStatisticsSubject" class.

§ The diagram uses a notation similar to UML design class diagrams which are

explained later in this section. An arrow with a large hollow arrowhead
indicates implementation of an interface here, an arrow with a regular arrow-
head is an association. A dashed arrow line is used by Gamma et al. to indicate
that an external client initiates the creation of the objects in order to realize the
pattern [Gamma 1995, p. 364].

Documenting
patterns

Class diagram
for proxy pattern

5.2 Design 295

Figure 5-32 Proxy pattern described in a class diagram§

SalesStatisticsSubject

sum()

…

SalesProxy

sum()

…

RealSubject

doAction1

…

doAction2

Client

…

SalesReport

…

print()

Proxy

doAction1

…

doAction2

Subject

doAction1

…

doAction2

«interface»
ISalesStatistics

…

sum()

refersTo

refersTo

b) Example

a) Schema

SalesStatisticsSubject

sum()

…

SalesProxy

sum()

…

RealSubject

doAction1

…

doAction2

RealSubject

doAction1

…

doAction2

Client

…

Client

…

Client

…

SalesReport

…

print()

SalesReport

…

SalesReport

…

print()

Proxy

doAction1

…

doAction2

Proxy

doAction1

…

doAction2

Subject

doAction1

…

doAction2

Subject

doAction1

…

doAction2

«interface»
ISalesStatistics

…

sum()

refersTo

refersTo

b) Example

a) Schema

However, the client object actually invokes the "sum()" operation which
is provided by the interface "ISalesStatistics" and implemented in the

§ Based on: Eriksson 2004, pp. 261-266.

5 Analysis and Design 296

"SalesProxy" class. This implementation is basically a call to the
"sum()" operation of the "SalesStatisticsSubject" instance (possibly a re-
mote method invocation over a network).

__

Figure 5-33 Proxy pattern described in a sequence diagram

:SalesStatisticsSubject:SalesProxy:SalesReport

:Proxy:Client :RealSubject

doAction1

doAction1

a) Schema

sum()

sum()

b) Example

:SalesStatisticsSubject:SalesStatisticsSubject:SalesProxy:SalesProxy:SalesReport:SalesReport

:Proxy:Proxy:Client:Client :RealSubject:RealSubject

doAction1

doAction1

a) Schema

sum()

sum()

b) Example

5.2 Design 297

Proxies often do more tasks than just forwarding requests, e.g. perform-
ing local tasks which do not require the complete functionality of the
"RealSubject". In this way the performance of the system can be en-
hanced.

Sequence diagrams for the proxy patterns of figure 5-32 are drawn in
figure 5-33. In the application example in part b) of the figure, a client
instance (a "SalesReport" object) sends a "sum()" message to the
"SalesProxy" object implementing the "ISalesStatistics" interface. The
"Proxy" object sends itself a "sum()" message to the "SalesStatistics-
Subject". This object will respond to the request of the "Proxy", and the
"Proxy" object can now return the result to the "SalesReport" object that
started the inquiry.

Design class diagrams

The second major outcome of design activities, next to interaction dia-
grams, are class diagrams. Patterns can help find the appropriate classes
for many stereotypical problems. Class diagrams were introduced in
section 5.1.4 where they served to represent domain concepts in require-
ments engineering. The same diagrams, with more detail, are used in
design to represent design elements such as classes which are meant to
be implemented as program code later.

In order to distinguish a class diagram for design from a class dia-
gram representing a domain model, the former type is often called a
design class diagram (DCD). The visual symbol for classes contains
three compartments: classifier name, attributes and operations.

The classifier name in a DCD is usually either the name of a class or
the name of an interface. (An interface specifies behavior, usually by
defining abstract operations that classes supporting the interface have to
implement.) In a class diagram, interfaces are marked with the stereo-
type «interface». The classifier name can be qualified if the class or in-
terface belongs to a package, e.g. "sales.marketing.Invoice". By conven-
tion, class names and interface names are capitalized.

Attributes describe characteristics of the objects. In design classes,
attributes are defined with data types. Common types (e.g. primitive
types such as number) are written directly with the attribute name. For
abstract types (reference types), UML allows the developer to write the
type (class name) following the attribute name and a colon, or to draw
an association line pointing to the respective class, or both. In figure 5-
34, for example, the data type of the "customerToBill" attribute is "Cus-
tomer", and an association line is used to reference the "Customer"

Sequence
diagrams for
proxy pattern

Class diagrams:
domain concepts
in RE, software
entities in design

Classifier name
compartment

Attributes
compartment

5 Analysis and Design 298

class. (Note that "Employee" and "IDType" are also reference types
whose classes are not shown in the figure.)

Operations are written in the third compartment. An operation has a
name and it can have parameters, a visibility (e.g. private, public) and
properties (additional information, e.g. exceptions that may be raised).

An operation creating an instance of the class is prefixed with the
stereotype «constructor». For the "invoiceItem" class, two constructors
were explicitly modeled. The first one, "InvoiceItem (advertisement,
edition, price)", creates an invoice-item line. For this purpose, it has to
get the relevant advertisement, the edition and the price of the publi-
cation. The second one, "InvoiceItem (publ)", also creates an invoice-
item line, but from information provided by "publ" (a "Publication"
object).

The example used in figure 5-34 to illustrate design class diagrams is
similar to the example modeled in a previous entity-relationship dia-
gram (cf. figure 5-25). It is about a newspaper company selling adver-
tisement space in their newspapers. The same advertisement can be
published in different issues of the newspaper. Customers are invoiced
for individual publications, depending on their status as agencies or
regular customers.

Associations in design class diagrams connect design classes.
Associations have names, multiplicities and sometimes small triangular
arrows indicating the reading direction (e.g. "Customer Orders Publica-
tion" in figure 5-34).

When an attribute declaration references another class (using the
class name as its data type), an arrow (called navigability arrow) shows
the direction from the source to the target. A role name is used to
express the role played by the referenced class in the specific context of
the association (it is common to use the name of the attribute as a role
name). The role name and the multiplicity are placed only at the target
end of a navigability arrow. In the figure, the "Invoice" and "Customer"
classes are associated via the "customerToBill" attribute referencing the
"Customer" class. The association line shows the role "customerToBill"
and the multiplicity "1" (i.e. the invoice goes to exactly one customer).

A dependency relationship in UML is a relationship between two
classes which is characterized by the fact that one class (the consumer
or client) has knowledge of some matters of the other class (the sup-
plier). This means that a change to the supplier class may require a
change in the client class.

Dependency is a very broad concept, including relationships that
have their own representations in UML. For example, any association is
a dependency, expressed by an a association line. Therefore dependency

Operations
compartment

Attribute
declaration
referencing
another class

Dependency
relationship

Indirect
dependency via
parameter types

5.2 Design 299

lines are only needed for those types of dependencies that do not have
their own representations. An example is an indirect dependency via
parameter types.

Figure 5-34 Design class diagram (example)

Invoice

invoiceID : IDType
date : Date
customerToBill : Customer
salesRep : Employee

...

addItemLine(…)
deleteItemLine(…)
getTotal(…)
printInvoice(…)

...

InvoiceItem

itemID : IDType
price : Number

...

«constructor» InvoiceItem (ad,
edition, price)
«constructor» InvoiceItem(publ)
getPrice(…)

...

Advertisement

adID : IDType
adName : String
description : String
fileName : String...

adFileExists(…)
updateAd(…)
printAd(…)

...

1 1..*

Publication

state : Integer
price: Number...

cancelOrder(Customer)
changeState(…)
paymentDue(…)...

1

1

Belongs
to

Customer
custID : IDType
name : String
address : String
phoneNo : String

...

...

Edition
edID : IDType
volume : String
issue : String
date : Date
adsDeadline : Date

...

...

1 1

Orders ► 1..*

0..*

1..*

Published
in

customerToBill

RegularCustomer

discountScheme : …
...

...

Agency

category : …
contactPerson : …

...

...

CommissionScheme

commID : IDType
description : String

...

...

0..* Gets ► 1

isBeforeAdsDeadline(…)
placeOrder(newAdFile,…)
placeRepeatOrder(oldAd…)
cancelOrder(…)
modifyAd(changes, oldAd)

Invoice

invoiceID : IDType
date : Date
customerToBill : Customer
salesRep : Employee

...

addItemLine(…)
deleteItemLine(…)
getTotal(…)
printInvoice(…)

...

Invoice

invoiceID : IDType
date : Date
customerToBill : Customer
salesRep : Employee

...

addItemLine(…)
deleteItemLine(…)
getTotal(…)
printInvoice(…)

...

InvoiceItem

itemID : IDType
price : Number

...

«constructor» InvoiceItem (ad,
edition, price)
«constructor» InvoiceItem(publ)
getPrice(…)

...

Advertisement

adID : IDType
adName : String
description : String
fileName : String...

adFileExists(…)
updateAd(…)
printAd(…)

...

Advertisement

adID : IDType
adName : String
description : String
fileName : String...

adFileExists(…)
updateAd(…)
printAd(…)

...

1 1..*

Publication

state : Integer
price: Number...

cancelOrder(Customer)
changeState(…)
paymentDue(…)...

1

1

Belongs
to

Customer
custID : IDType
name : String
address : String
phoneNo : String

...

...

Edition
edID : IDType
volume : String
issue : String
date : Date
adsDeadline : Date

...

...

1 1

Orders ► 1..*

0..*

1..*

Published
in

customerToBill

RegularCustomer

discountScheme : …
...

...

Agency

category : …
contactPerson : …

...

...

CommissionScheme

commID : IDType
description : String

...

...

0..* Gets ► 1

isBeforeAdsDeadline(…)
placeOrder(newAdFile,…)
placeRepeatOrder(oldAd…)
cancelOrder(…)
modifyAd(changes, oldAd)

5 Analysis and Design 300

Suppose a method of class A receives a parameter of type B, and B is a
reference type defined by class B. Then A depends on B because if B's
interface is changed, A's implementation may also need to be changed.
Dependency relationships are shown as dashed arrow lines.

In figure 5-34, a dependency relationship exists between the "Cus-
tomer" and "Advertisement" classes, because the "placeRepeatOrder"
method of "Customer" uses a parameter "oldAd" whose type is "Adver-
tisement".

Dependency relationships include generalization as introduced in
section 5.1.4 and using (i.e. implementing) an interface. UML provides
several notations to describe an interface implementation. As a depend-
ency relationship, it is drawn as a dashed arrow with a large hollow
arrowhead. Interfaces were shown in the proxy pattern description
above, however, they followed the style of the original authors (i.e.
solid instead of dashed lines).

Composition is an association type in which a whole is composed of
parts. Since the whole is aggregated from the parts, this association is
also called composite aggregation. The parts exist only within the
whole, and the whole without the parts does not exist either. For ex-
ample, an "InvoiceItem" object as in figure 5-34 can only exist if an
"Invoice" object exists and vice versa (an invoice without items makes
no sense). A composition is marked with a filled diamond on the asso-
ciation line.

An association class serves the same purpose as a re-interpreted
relationship type in the entity-relationship model explained in section
5.1.5: Sometimes it is necessary to treat an association as a class, for
example if it needs to have its own attributes, operations and associa-
tions with other classes. In the figure, "Publication" is an association
class, connected with the classes "InvoiceItem" and "Customer".

A singleton class – a design pattern mentioned above – has at most
one instance. This fact can be indicated by writing a "1" in the top right
corner of the classifier compartment.

User-defined compartments may be added to the default compart-
ments classifier name, attributes and operations. A user-defined com-
partment is sometimes introduced to describe exceptions that can be
raised by objects of the class.

The same notation as for class diagrams is used for object diagrams.
An object diagram shows specific instances of classes and specific links
between those instances at some point in time ("a possible snapshot of
the system's execution" [Eriksson 2004, p. 25]). To distinguish object
names from class names, object names are written the same way as

Composition
(composite
aggregation)

Association
classes

Singleton class

User-defined
compartments

Object diagrams

5.2 Design 301

described above in the part on interaction diagrams, i.e. preceded by
colon and underlined.

UML design class diagrams can have a number of additional ele-
ments such as refinements (introduced in section 5.1.4), or-associations
(mutually exclusive associations), constraint associations (one associa-
tion is a subset of another association) and derivations (rules how to
derive something). Discussing all facets of class-diagram notation is
beyond the scope of this book. Interested readers can find more details
in UML 2 references, guides and dedicated books [e.g. Booch 2005,
Larman 2005, Eriksson 2004].

Activity diagrams

Activity diagrams are a popular means to model processes. An activity
diagram shows the steps of the solution and the flow of control between
the steps. Not only people used to procedural programming and hence
to procedural design like activity diagrams. Object-oriented developers
also appreciate them because they provide a richer notation of activity
sequences than communication and sequence diagrams. For example,
they let the designer describe conditional execution and refinement of
an activity, events triggering an activity and organizational aspects (e.g.
who performs the activity, where is it performed).

Activity diagrams are similar to data flow diagrams (DFDs) in struc-
tured analysis (SA), which were discussed in section 5.1.5. However,
DFDs in SA are primarily used for capturing, analyzing and document-
ing requirements. UML activity diagrams, on the other hand, are mostly
used in design, but they can also help to model complex requirements
(in addition to use cases) and implementation details.

The main elements of an activity diagram are actions, transitions and
object nodes. The flow of control is described with the help of arrows,
forks, joins, rakes and signals. Organizational aspects are expressed by
swimlanes. A solid circle and a bull's eye circle indicate the start and the
end of an activity diagram, respectively. Among the most common
elements and symbols in activity diagrams are the following ones (some
of them are also shown in the figures 5-35 to 5-37):

• Action – does something in order to produce a result. The action

symbol is a rectangle with rounded corners. In figure 5-35, "confirm
order", "fill order" etc. are actions.

• Transition – connects actions, indicated by an arrow. Upon comple-
tion of an action, transition to the next action(s) happens automati-
cally.

More DCD
elements

Main elements of
activity diagrams

5 Analysis and Design 302

Figure 5-35 Activity diagram for customer order process (example)

Sales Production Accounting

Customer
order
received

Check
customer
order

Create new
order

Confirm
order

«datastore»
Order

«datastore»
OrderItem

Fill
order

Create
invoice

Send invoice

Publication
date arrived

Payment
received

Check
payment

Close
order

•

•
Sales Production Accounting

Customer
order
received

Customer
order
received

Check
customer
order

Check
customer
order

Create new
order
Create new
order

Confirm
order
Confirm
order

«datastore»
Order
«datastore»
Order

«datastore»
OrderItem
«datastore»
OrderItem

Fill
order
Fill
order
Fill
order

Create
invoice
Create
invoice

Send invoiceSend invoice

Publication
date arrived

Payment
received
Payment
received

Check
payment
Check
payment

Close
order

•

•

• Object nodes – represent objects either produced by the actions or
needed to perform an action. An object node is represented by a
rectangle. Object nodes serving as data stores as in SA (cf. section
5.1.5) are marked with the stereotype «datastore». For example,
"Order" is an object node (a data store).

• Fork – splits one transition into two or more (i.e. several parallel
actions follow). The symbol for a fork is a bold line. In figure 5-35,
a fork splits the transition going out of "Check customer order" into
two transitions, one towards "Confirm order" and another one to-
wards "Create new order".

5.2 Design 303

• Join – unifies several branches, making one transition out of multi-
ple transitions. The symbol is the same as for a fork, but it has
multiple ingoing lines and only one outgoing line. A join is used, for
example, on the right-hand side of figure 5-35 to make sure that both
an invoice has been created and that the publication date has arrived
before the "Send invoice" action is performed.

• Decision – specifies mutually exclusive branches. Depending on a
condition, one of the branches is selected. A diamond is used to indi-
cate a decision. Branches can be labeled as in figure 5-36 where
"[exists]" and "[new customer]" are labels.

• Merge – brings branches back together. It has the same symbol as a
fork, yet with two or three ingoing transitions and only one outgoing
transition.

Figure 5-36 Expanded activity diagram for "Check customer order"

Check customer order

Check
customer

Check advertise-
ment

[exists]

[new customer]

[exists]

Create new
advertisement

Create new
customer

[new advertisement]

«datastore»
Advertisement

«datastore»
Customer

•

•
Check customer order

Check
customer
Check
customer

Check advertise-
ment
Check advertise-
ment

[exists]

[new customer]

[exists]

Create new
advertisement

Create new
advertisement

Create new
customer

Create new
customer

[new advertisement]

«datastore»
Advertisement
«datastore»

Advertisement

«datastore»
Customer

«datastore»
Customer

•

•

5 Analysis and Design 304

• Rake – indicates expansion of an action into a more detailed dia-
gram, i.e. the action is refined in the second diagram. Figure 5-35
contains four actions that will be expanded in separate diagrams.
Two of these are shown in figures 5-36 ("Check customer order")
and 5-37 ("Create invoice").

Figure 5-37 Expanded activity diagram for "Create invoice" action

Create invoice

Create invoice
header

«datastore»
CommissionScheme

«datastore»
Order

Create invoice
lines

Calculate
discounts, taxes
& total

Write
invoice

«datastore»
Customer

«datastore»
Invoice

«datastore»
OrderItem

«datastore»
InvoiceItem

•

•
Create invoice

Create invoice
header
Create invoice
header

«datastore»
CommissionScheme

«datastore»
Order
«datastore»
Order

Create invoice
lines
Create invoice
lines

Calculate
discounts, taxes
& total

Calculate
discounts, taxes
& total

Write
invoice
Write
invoice

«datastore»
Customer
«datastore»
Customer

«datastore»
Invoice
«datastore»
Invoice

«datastore»
OrderItem
«datastore»
OrderItem

«datastore»
InvoiceItem
«datastore»
InvoiceItem

•

•

5.2 Design 305

• Signals – can be received and sent from inside or outside the dia-
gram. They can be used to model events that trigger an action. Sig-
nals are pentagon-shaped and come in three variants; one for send-
ing a signal, one for receiving a signal, and one for a timer signal
(received when a set time interval is over or a set time arrives).
Examples shown in figure 5-35 are "Payment received" (a signal
received) and "Publication date arrived" (a timer signal).

• Swimlanes – partition an activity diagram into multiple activity se-
quences. Any suitable criterion may be chosen to divide an activity
diagram into swimlanes; for example, responsibility for an action.
Swimlanes can thus be used to show different actors or organiza-
tional units in a business context. In figure 5-35, there are three
swimlanes representing the "Sales", "Production" and "Accounting"
departments.

The sample diagrams in figures 5-35 to 5-37 show a simplified order
process related to the class diagram of figure 5-34. When the newspaper
publishing company receives a customer order stating that the customer
wishes to have one or more advertisements published, the order must be
verified first: Does the customer already exist in the company's data-
base? Are the advertisements already available in the advertisements
database? If not, then a new customer record and/or one or more new
advertisement records have to be created. When everything is OK, the
order is confirmed to the customer and a new customer order is created,
leading to an additional order record and one or more new order item
records in the database.

While the initial actions are performed by the "Sales" department (cf.
figure 5-35), completing the order (i.e. placing the advertisements in the
correct newspaper issues, pages and locations) is under the responsibil-
ity of the "Production" department. The "Accounting" department han-
dles invoice creation. The invoice contains the order and customer data.
The total is computed taking customer discounts and taxes into account;
afterwards the invoice is stored in the database and formatted for
printing. When the payment arrives, the amount received needs to be
checked against the invoice details. At the end, the order is closed.

Frameworks

Frameworks can help significantly to reduce the design and implemen-
tation effort, provided that a framework for the problem on hand is
available. Generally speaking, a framework is a reusable design for a
software system or a subsystem, made up of a number of modules that

A simplified order
process

A framework is a
reusable design

5 Analysis and Design 306

can be extended by other, application-dependent modules.
Frameworks are available for various problem categories such as

graphical user interfaces, middleware and enterprise applications. Ex-
amples include the following:

– GUI frameworks such as Java Swing, a framework for creating

interactive Java systems [Zakhour, ch. 15], and Apache Struts, a free
open-source framework for creating Java web applications [Apache
2007]. Both are, by the way, based on the model-view-controller
architectural pattern.

– Middleware frameworks such as JNI (Java native interface), Java
RMI (remote method invocation) and the Microsoft .NET frame-
work.

– Enterprise application frameworks such as JBoss Seam and SAP
Composite Application Framework.

Enterprise application frameworks support the development of informa-
tion systems in a business domain. Such frameworks can be specialized
in certain application areas, e.g. financial engineering, or in the applica-
tion of certain technologies. JBoss Seam, a framework that supports
Java EE web development [Yuan 2007], and the "SAP Composite Ap-
plication Framework" [SAP 2007b] are examples of the second cate-
gory. The SAP framework provides an environment for the design and
use of composite applications within an enterprise service-oriented
architecture (ESOA) as discussed in section 3.4.

The most common framework type defines frameworks for graphi-
cal user interfaces. In all windowing systems, the same "infrastructural"
problems occur, such as creating, resizing, moving, and closing a win-
dow; handling user actions (button click, listbox selection, etc.); or navi-
gating between web pages. Suppose the system under design is an
electronic web shop. If a GUI framework is available, the development
team can concentrate on the application problem (e.g. registering cus-
tomers, displaying the product catalog, managing the shopping cart,
creating and processing customer orders etc.) instead of worrying about
the "plumbing" behind it (e.g. basic form handling, error-free navigation
from one page to another, mechanisms for database access).

Frameworks are in principle not tied to a particular paradigm (such
as object-oriented analysis and design), but nowadays they are usually
realized with the help of object-oriented concepts (such as abstract and
concrete classes, interfaces and objects). In object-oriented terms, a
framework can be defined as follows:

Enterprise
application
frameworks

GUI frameworks

5.2 Design 307

A framework consists of a cohesive set of abstract and concrete
classes and interfaces for a particular problem type, including a
mechanism to plug in additional classes and to customize and ex-
tend the provided classes. The framework also specifies what the
framework user has to provide through abstract classes and inter-
faces.

In other words, a framework provides core functionality for a certain
problem category and a way to adapt and extend the core functionality
according to the needs of the particular application problem. This means
that a framework is usually not the same as the final software system
solving the application problem but a powerful means to create such a
system. Users of the framework (designers, developers) create the appli-
cation-dependent components and satisfy requirements expected by the
framework components; for example, designing and coding subclasses
of abstract classes, implementing interfaces and handling exceptions.

A framework determines the system structure in-the-large, i.e. how
the system is subdivided into classes and objects, how the classes and
objects collaborate, and the flow of control between them. The major
design decisions valid for all application systems in the respective
domain were already made by the framework designers. The project
team can concentrate on the application-specific requirements of the
information system under development. The major part of the final
solution consists of the framework components, and only the
application-dependent components have to be written by the developers.

In contrast to class libraries and packages that also provide pre-
defined components, frameworks play an active part. Whereas the invo-
cation of library and package classes is under the control of user-written
modules, frameworks rely on the Hollywood principle: "Don't call us,
we'll call you." [Larman 2005, p. 627] It is the framework objects that
control the flow of actions, not the user-written objects. The latter ones
have to react and act according to the framework's calls. For example,
framework classes send messages to user-written classes, expecting in
the first place that the class has been implemented and secondly to
receive an appropriate response.

Frameworks and design patterns are similar concepts which are often
used together. Embedding design patterns in a framework can signifi-
cantly increase the degree of reusability of the framework. The more
design patterns included in a framework, the more general the frame-
work becomes.

Since frameworks and design patterns resemble each other, we will
point out the differences between the two concepts. According to

Definition:
framework

Frameworks
provide core
functionality

System structure
in-the-large

"Don't call us,
we'll call you"

Design patterns
and frameworks

5 Analysis and Design 308

Gamma et al., there are three major differences distinguishing frame-
works from design patterns [Gamma 1995, p. 28]:

1. Design patterns are more abstract than frameworks. Design pat-

terns are basically textual descriptions of problem-and-solution
categories, possibly explained with the help of some sample code.
Nevertheless a pattern has to be implemented anew each time it is
used in a concrete application context. Frameworks, on the other
hand, are designs plus code. While the framework design is docu-
mented in text or another appropriate notation, many classes,
interfaces and objects are available as code written in a program-
ming language such as Java or C++.

2. Design patterns are smaller than frameworks. A framework can
contain a number of design patterns but a design pattern does not
contain frameworks.

3. Design patterns are more general than frameworks. A framework
always has a specific application domain, while most design pat-
terns are applicable in any domain as long as the general problem
type underlying the pattern occurs in that domain. For example,
an abstract factory may be useful in a GUI framework as well as
in a financial-accounting framework.

The main advantages of frameworks are reusability and lower develop-
ment effort, since essential design decisions have already been made
and part of the implementation is already available. On the other hand,
the creativity of the designers and the degree of freedom to make
choices are restricted by the framework.

Since the framework does most of the work and additional compo-
nents must comply with the framework, a framework upgrade usually
has an impact on the application modules, meaning that the user-written
components may need to be modified as well. Loose coupling with the
framework components is thus an important aspect in designing user-
written components.

Using a business framework can significantly improve development
productivity. On the other hand, business frameworks are heavyweight
products, requiring a lot of time to get acquainted with. In a large organ-
ization, the benefits will usually outweigh the cost. However, the cost
and learning efforts can be prohibitive for a small company.

Frameworks are
designs plus
code

Advantages:
reusability and
less development
effort

Business
frameworks are
heavyweight

5.2 Design 309

5.2.3 Designing the User Interface
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Software systems are used to solve problems. Many software systems,
such as most business information systems, are used by humans. How-
ever, software systems can also be used by machines or other technical
devices, e.g. embedded systems software.

User-interface (UI) design is about interfaces for software systems
that have human users. The interface between the human user and the
software is of considerable importance in the development of an infor-
mation system. There are two main reasons for this: 1) For the user, it is
the interface that exposes the system's functionality, and 2) the user
interacts with the system through the interface.

General principles of UI design

A general requirement for UI design is that the interface should support
users in their work as effectively and efficiently as possible. From the
1980s on, researchers have investigated how to do this. Even new aca-
demic disciplines such as human computer interaction (HCI) and soft-
ware ergonomics came into existence. Annual conferences dealing with
these topics show that there is ongoing interest in both the academia and
in practice (for example, the annual HCI International Conferences;
http://www.hci-international.org/).

General principles for user-interface design have been developed by
many researchers and practitioners over the years. We will not discuss
in detail this research and instead refer the reader to the relevant litera-
ture [e.g. Shneiderman 2005]. An aggregated list of UI design principles
compiled by Sommerville is shown in figure 5-38.

The goal of user-interface design is to enhance the usability of the
underlying software system. Usability, as a non-functional requirement
for software systems, was mentioned above in section 5.1.1. It expresses
how easy or difficult it is for the user to work with the system and to
achieve whatever the intent of using the system is.

Usability depends primarily on the quality of the user interface. Us-
ability should be distinguished from utility, which refers to the expected
functionality, i.e. does the system do what the user needs? Jakob Niel-

Interfaces for
human users

Human computer
interaction (HCI),
software
ergonomics

Usability

Utility

5 Analysis and Design 310

sen, who has been called the "usability pope", characterizes usability by
five quality components as shown in figure 5-39: learnability, effi-
ciency, memorability, errors and satisfaction [Nielson 2003].

__

Figure 5-38 General principles for user-interface design§

The interface should provide appropriate interaction
facilities for different types of system users.User diversity

The interface should provide meaningful feedback
when errors occur and provide context-sensitive user
help facilities.

User guidance

The interface should include mechanisms to allow
users to recover from errors.Recoverability

Users should never be surprised by the behaviour of
the system.

Minimal
surprise

The interface should be consistent in that, wherever
possible, comparable operations should be activated
in the same way.

Consistency

The interface should use terms and concepts drawn
from the experience of the people who will make most
use of the system.

User familiarity

DescriptionPrinciple

The interface should provide appropriate interaction
facilities for different types of system users.User diversity

The interface should provide meaningful feedback
when errors occur and provide context-sensitive user
help facilities.

User guidance

The interface should include mechanisms to allow
users to recover from errors.Recoverability

Users should never be surprised by the behaviour of
the system.

Minimal
surprise

The interface should be consistent in that, wherever
possible, comparable operations should be activated
in the same way.

Consistency

The interface should use terms and concepts drawn
from the experience of the people who will make most
use of the system.

User familiarity

DescriptionPrinciple

By their nature, user interfaces can be quite different, depending on the
type of device they are displayed on. A typical business information
system interfaces with the user via a computer monitor, plus a keyboard
and a mouse as input devices. However, some types of systems use
different devices to display information – for example small LCD
screens on mobile phones and voice generators in navigation systems.
All these types of systems require an interface design. Although in this
section we are not explicitly focusing on a particular type of system, an
implicit assumption is that the user has a regular computer monitor, a
mouse and a keyboard. Nevertheless, the basic principles apply to other
types of user interfaces as well.

§ Sommerville 2007, p. 364.

User interfaces
depend on the
device

5.2 Design 311

Figure 5-39 Characteristics of usability [Nielsen 2003]§

How pleasant is it to use the interface?Satisfaction

How many errors do users make, how severe are these
errors, and how easily can they recover from the errors?Errors

When users return to the interface after a period of not
using it, how easily can they reestablish proficiency?Memorability

Once users have learned the user interface, how
quickly can they perform tasks?Efficiency

How easy is it for users to accomplish basic tasks the
first time they encounter the user interface?Learnability

How pleasant is it to use the interface?Satisfaction

How many errors do users make, how severe are these
errors, and how easily can they recover from the errors?Errors

When users return to the interface after a period of not
using it, how easily can they reestablish proficiency?Memorability

Once users have learned the user interface, how
quickly can they perform tasks?Efficiency

How easy is it for users to accomplish basic tasks the
first time they encounter the user interface?Learnability

Most information systems today have a graphical user interface (GUI).
The term GUI design has more or less become a synonym for user-
interface design. Graphics have become increasingly popular, not only
as a general basis for interaction with the user but also as means to pre-
sent compiled information. For example, managers appreciate graphical
systems such as dashboards and cockpits because they are very effective
means to present and manipulate management-relevant information.

Graphics have many advantages over text. Visualizing data can help
the viewer to get relevant information out of the data faster and more
efficiently. In many situations, not the detailed data items or the precise
numeric values are important but the general picture behind them. For
example, a sales manager interested in the development of the main
competitors' market shares will be served better with pie charts or with a
stacked-bars chart than with numbers like 13.86 %, 22.51 % etc.

Graphical information displays can also be used to change or enter
numerical values. In the example of figure 5-40, a horizontal trackbar is

§ In Nielsen's document, the term "design" is used instead of "user interface" or

"interface" as in the table. We made this change because the meaning of the
word "design" is not the same as the meaning we are using in this chapter.

Graphical user
interface (GUI)

Visualizing data

5 Analysis and Design 312

used to display the extent to which a numerical goal (profit margin) has
been achieved. In addition, the user can move the slider in order to set a
new value for the profit margin from which other parameters are
recomputed.

Figure 5-40 Graphical display and manipulation of a numerical value

Graphics are usually more pleasant to look at than text and numbers,
and sometimes they are more efficient to show and manipulate informa-
tion. However, there are also drawbacks and situations where textual
representations have advantages over graphical ones. Graphics can take
up a lot more screen space and require more time to download than text.
For example, a list of quarterly sales figures can be represented in one
or two short lines of text (e.g. name of the month in one line, sales
figure underneath), whereas the same information shown as a bar chart
would occupy a significantly larger portion of the screen. Graphical
representations provide a quick visual impression of matters while text
is better to present details and exact numerical values.

Colors are popular means to associate a meaning or importance with
information. Colors are often used to express the significance or the
status of things. In a dashboard, for example, red color could stand for
"high risk", yellow for "observe this" and green for "OK". However,
colors should better be used carefully and conservatively. The reasons
for this are: 1) The same color may mean different things to different
persons; 2) some people have problems to distinguish between certain
colors or are completely color-blind, and 3) color mixes created by ama-
teurs (i.e. not by professional graphics designers) often look unprofes-
sional.

Disadvantages

Colors

5.2 Design 313

Types of users

The user interface should meet the user's needs. But who is "the user"?
The same information system can have very different types of users.
Common categories – somewhat overlapping – are the following:

» Expert users – persons who are very experienced in what they are

doing with the system
» Power users – persons who exploit significant portions of the sys-

tem's functionality in their work
» Novices – people who are new to the system, learning how to use it

effectively
» Permanent users – people who use the system every day, for exam-

ple to do their daily work
» Casual users – people who use the system every now and then

Obviously, the needs of these types of users are quite different. Novices,
for example, need easy, user-friendly access, navigation, support and
help features. Power users, on the other hand, want to get their work
done as efficiently as possible. Where a novice user might prefer step-
by-step navigation through self-explanatory menus and listboxes, power
users would consider this type of support rather in their way. They
might be happy with shortcuts or with typing abbreviations because
they know exactly where to go and how to get their work done. Casual
users are again different. Someone who uses the system only once in a
month has to receive more support and guidance than someone who
works with the system every day.

Another differentiation of users is according to their roles as users of
the information system. Typical business information systems have
categories of users such as the following:

– Customers
– Suppliers
– Employees: clerical workers, knowledge workers, managers
– System administrators

All users work with the same information system, yet with different,
possibly overlapping parts of the system and on different levels of profi-
ciency. System administrators are usually power users. A customer can
be a casual user, placing an order with the help of the system's web
front-end every now and then. However, the customer can also be a

User categories

Different user
types have
different needs

Categories of
users according
to their roles

5 Analysis and Design 314

permanent user, placing several orders every day (because he or she is
an industrial buyer working in a procurement department). Employees
processing the daily orders are permanent users requiring efficient ac-
cess to customer, order and production data. This can best be provided
through a forms-based interface including data-handling tools. Knowl-
edge workers analyzing customer behavior with the help of business-
intelligence tools need an effective interface to handle large amounts of
data, in particular numbers, and graphical tools for visualization.

These sample descriptions show that user categories can be quite het-
erogeneous. Most non-trivial information systems have multiple types
of users. System designers need to take this variety into account when
designing the user interface. Consequently, a system can have more
than one user interface, or at least several variants of the interface.

In addition to multiple user types, different technical devices used as
front-ends can also call for several interfaces. Suppose the requirements
specification states that access to the information system must be pro-
vided not only from computer monitors but also from PDAs and UMTS
phones. This means that the same information, produced by the system,
must be made available in different forms.

An approach to separate the presentation of information to the user
from the information itself is provided by the model-view-controller
(MVC) pattern. We discussed this architectural pattern in section 5.2.1
above (see also figure 5-27). The MVC pattern provides a good
approach to the design of any interactive system and in particular of
systems where multiple user interfaces are an issue.

Forms-based interfaces

Typical means for the interaction between a business information sys-
tem and its users are forms and menus: Forms are the major mechanism
to present and transfer information, and menus serve for navigation
through the system. While menus are common in all types of software
systems, forms are particularly important in business systems. For
example, in an ERP (enterprise resource planning) system, all major ob-
jects – products, customers, suppliers, machines, warehouses etc. – are
presented to the user via forms. New data are entered into forms,
planning algorithms are started from forms, and data retrieved from the
company's database are also shown in forms.

The same is true in e-commerce. Visiting an electronic shop on the
Internet generally involves browsing through a product catalog that is
presented with the help of forms. When the customer considers buying
some items, these items are put into a shopping cart represented as a

Non-trivial IS
have multiple
types of users

Model-view-
controller pattern

Forms are
particularly
important in
business IS

E-commerce
occurs via forms

5.2 Design 315

form. When he or she finally orders the articles, the order is shown as a
form, as well as the order confirmation and the invoice. For this reason,
forms deserve particular attention in the context of user interfaces of
business information systems.

Forms are composed of elements called "controls" (or "control ele-
ments"; sometimes also called "widgets"). A control is a GUI element
through which a user and a form interact. Some controls are used to
display information to the user; others let the user enter information or
initiate an action, and some controls serve both purposes.

Controls are graphical elements with associated look and behavior.
For example, a radio button is usually round, has a black dot in the
center when clicked, and in a group of radio buttons, only one can be
pressed at a time. Some user actions (such as clicking on a button or
selecting an item from a text box) create an event that is to be handled
by the program associated with the form (i.e. by an event handler –
event-oriented programming).

Controls are usually available as predefined components from pro-
gram libraries, packages or toolboxes. Software developers do not need
to write the entire program code for them as they only include pre-
written code into their modules.

GUI toolboxes

Integrated development environments (IDEs) such as Visual Studio,
Eclipse and JBuilder provide toolboxes that support interface design
with easy-to-use controls. Development productivity increases signifi-
cantly if such a toolbox is available. In addition to this and other advan-
tages, an IDE toolbox has a positive effect on the uniformity and
consistency of the user interface. It not only gives the user interface a
well-known look-and-feel (e.g. MS Windows like, Java Swing like), but
the information system's forms and controls also look the same and
behave in similar ways. Typical controls provided by a GUI toolbox
include command and radio buttons, list boxes, picture boxes, text
fields, labels, menus and much more. Figure 6-10 (chapter 6) shows a
sample form containing some of these controls.

Accessibility

Nowadays, free access to information is considered valuable, sometimes
even a human right. With regard to IT, accessibility describes the degree
of ease with which it is possible for people to access an IT system (incl.
IS). More specifically, accessibility refers to people with disabilities.

"Controls",
"widgets"

5 Analysis and Design 316

Accessibility demands that disabled persons should be enabled to
access the same information as people without disabilities. Other
aspects of accessibility comprise the support for elderly people and for
people in "non-standard" situations:

"Users may not be able to see, hear, move, or may not be able to
process some types of information easily or at all. They may have
difficulty reading or comprehending text. They may not have or
be able to use a keyboard or mouse. They may have a text-only
screen, a small screen, or a slow Internet connection. They may
not speak or understand fluently the language in which the docu-
ment is written. They may be in a situation where their eyes, ears,
or hands are busy or interfered with (e.g., driving to work, work-
ing in a loud environment, etc.)" [W3C 1999, p. 3].

Some countries have laws attempting to ensure that information tech-
nology is not a barrier for disabled persons. With regard to websites and
web pages, the World Wide Web Consortium (W3C) in 1999 developed
criteria and guidelines on how to make web content accessible to people
with disabilities. These guidelines have been adopted into national laws
and regulations by several countries. New W3C guidelines are under
development, but they had not been finalized by the time this book went
to press.

The W3C describes 14 accessibility guidelines which are shown in
figure 5-41. Each of these guidelines is refined in many rules and prac-
tices, explaining in detail what is acceptable, what should be avoided,
and how things should be realized. The W3C also defines detailed
checkpoints, priorities (what "must", "should", and "may" be satisfied)
and conformance levels depending on which checkpoints are satisfied.

While some guidelines are immediately understandable, others are
described on a rather high abstraction level. The purpose of guidelines 1
and 2, for example, is obviously to help deaf, blind and color-blind
people. The purpose of others can only be understood by reading the
detailed rules and checkpoints. Why the need to "clarify natural lang-
uage usage" (guideline 4), for example? The reason is that an automated
tool reading the content of a web page to a blind person can pronounce
words correctly only if it knows what language they are in. Suppose the
default language is English and the screen reader does not know that the
sentence contains French words. Pronouncing a phrase like "Skiing in
France – downhill the Aiguille du Midi in Argentière" would sound
rather funny, unless "Aiguille du Midi" and "Argentière" are marked up
as being French.

Accessibility and
"non-standard"
situations

National laws
and regulations

5.2 Design 317

__

Figure 5-41 W3C accessibility guidelines [W3C 1999]

No. Guideline Explanation

1 Provide equivalent
alternatives to auditory
and visual content.

Provide content that, when presented to the user,
conveys essentially the same function or purpose as
auditory or visual content.

2 Don't rely on color
alone.

Ensure that text and graphics are understandable when
viewed without color.

3 Use markup and
style sheets and
do so properly.

Mark up documents with the proper structural elements.
Control presentation with style sheets rather than with
presentation elements and attributes.

4 Clarify natural
language usage.

Use markup that facilitates pronunciation or
interpretation of abbreviated or foreign text.

5 Create tables that
transform gracefully.

Ensure that tables have necessary markup to be trans-
formed by accessible browsers and other user agents.

6 Ensure that pages featur-
ing new technologies
transform gracefully.

Ensure that pages are accessible even when newer
technologies are not supported or are turned off.

7 Ensure user control
of time-sensitive
content changes.

Ensure that moving, blinking, scrolling, or auto-updating
objects or pages may be paused or stopped.

8 Ensure direct accessibility
of embedded user inter-
faces.

Ensure that the user interface follows principles of
accessible design: device-independent access to
functionality, keyboard operability, self-voicing, etc.

9 Design for device
independence.

Use features that enable activation of page elements via
a variety of input devices.

10 Use interim solutions. Use interim accessibility solutions so that assistive
technologies and older browsers will operate correctly.

11 Use W3C
technologies and
guidelines.

Use W3C technologies (according to specification) and
follow accessibility guidelines. Where it is not possible to
use a W3C technology, or doing so results in material
that does not transform gracefully, provide an alternative
version of the content that is accessible.

12 Provide context and orien-
tation information.

Provide context and orientation information to help users
understand complex pages or elements.

13 Provide clear navigation
mechanisms.

Provide clear and consistent navigation mechanisms --
orientation information, navigation bars, a site map, etc.
-- to increase the likelihood that a person will find what
they are looking for at a site.

14 Ensure that documents
are clear and simple.

Ensure that documents are clear and simple so they
may be more easily understood.

5 Analysis and Design 318

Website designers are encouraged, or forced by law, to follow the
guidelines in order to make the website accessible. For example, if a
web page contains pictures, the designer has to provide an alternate
representation for each picture containing the same essential informa-
tion as the picture itself (e.g. a textual description of the intent of the
picture). Automated tools are available today to check whether a web-
site is accessible or not.

Although the W3C accessibility guidelines are primarily guidelines
for website design, the underlying ideas should be taken into considera-
tion for any kind of information system that has an interface for human
users. A color-blind person or a worker in a dark environment will have
the same problems with any GUI, no matter whether it is a web front-
end or a Java Swing front-end. Therefore we recommend keeping the
W3C guidelines in mind when designing a user interface and following
the rules as far as they are applicable.

User-interface prototyping

User-interface design is often an iterative process conducted with the
help of prototyping. This is different from other design tasks. Concep-
tual work regarding architectural design and object design requires
analytical skills, and results can be well documented in paper models
(or in diagrams produced by a graphics tool). However, specifying a
user interface in an abstract way seems to be difficult for most people.

A more promising approach is to explore the needs of the user
interface with the help of software prototypes, involving end-users and
other stakeholders in the process. In this way, UI design is seen as an
evolutionary process that starts with the development of the first proto-
type for requirements elicitation. We discussed this aspect in the section
on requirements engineering (cf. section 5.1.2).

All process models and approaches discussed in chapter 4 include
user-interface prototyping in one way or another. This is especially true
for the iterative and non-standard approaches, i.e. RUP, agile develop-
ment, XP (extreme programming) etc. The closer end-users are in-
volved in the process, the more prototyping will be done automatically.
In XP, for example, users are part of the development team. Continuous
changes to the system and to the user interface in particular are quite
likely to occur. Not even the waterfall model excludes user interface
prototyping. A user-interface prototype can be developed within the
requirements analysis and definition stage to help the analysts elicit the
users' requirements (cf. section 4.2.1).

Automated tools
can check
accessibility

Prototyping
supports UI
design

5.2 Design 319

IDEs containing GUI toolboxes facilitate user-interface prototyping
significantly. With simple drag-and-drop features and automatic layout
features, it is very easy to create a graphical user interface on-the-fly,
modify it and discard it if it is not deemed appropriate.

5.2.4 Designing the Database
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Designing a database means in the first place to develop a relational
data model. This model is the foundation of the vast majority of today's
databases and database management systems. Most corporate databases
are built with the help of a relational database management system
(RDBMS). Therefore, it is straightforward to model and store additional
data for new IS in the same way.

However, the current favorite paradigm for software development is
object-orientation. In the design process, classes and objects are mod-
eled, resulting in class diagrams and object diagrams. Class definitions
include data definitions (attributes), and the relationships between
classes are also available. Due to this, the class diagrams appear to be a
quite natural starting point to create a relational data model.

The problem is that object-oriented thinking is very different from
thinking in relational concepts. Object-orientation is a paradigm for
developing good-quality software systems composed of objects – where
"quality" means properties such as maintainability, reliability, scalabil-
ity, user-friendliness and usability. The relational model is a model for
data entities and their relationships, based on mathematical set theory.
Data are represented by relations that consist of tuples§. Operations on
data are operations on sets.

This gap has been called the "object-relational impedance mismatch"
[Ambler 2003, p.105]. Overcoming this mismatch is an important task
in the design stage. In this section we will address the major issues to be
dealt with.

§ The term "relation" is not to be confused with the term "relationship" as used

in class diagrams or entity-relationship diagrams. A relation in the relational
data model is, according to mathematical set theory, a subset of the Cartesian
product over the domains of the attributes.

Developing a
relational data
model

Object-oriented
thinking is
different from
relational thinking

"Object-relational
impedance
mismatch"

5 Analysis and Design 320

A much simpler and more straightforward approach to creating a
database for an object-oriented software system would be to use an
object-oriented database management system (ooDBMS). Such systems
are capable of storing and managing "objects" – the same objects that
are used in the programming language. This means that there is no need
for the developer to bother with making relations (or tuples) out of
classes (or objects). A number of object-oriented DBMSs are available
on the market, but unfortunately these systems have not gained, and are
unlikely to gain, significant market shares.

So-called object-relational database management systems are a step
in between. They allow developers to use the data types (class names)
of the programming language not only in their programs but also when
accessing the database. The database is essentially a relational database
that "understands" the application system's data types. Since most rela-
tional database management systems today provide this functionality,
the term object-relational DBMS is not much used any more.

Using a relational database management system underneath an
object-oriented software system requires two major steps to overcome
the object-relational impedance mismatch:

1. Designing a persistence layer in the software system
2. Mapping classes and relationships to relations of the database

Designing a persistence layer

A relational database is normally accessed with the help of SQL (struc-
tured query language). Provided that developers know not only their
programming language but also SQL, they could embed SQL state-
ments directly in the program code. However, this approach is definitely
not to be recommended because it means that the programmer has to do
the conceptual work of mapping classes to relations and keep track of
the details that implement the concepts each time data needs to be read
from or written to the database.

A better approach is to decouple data access from the application
program code and provide an object-oriented interface for data manipu-
lation and definition. This could been done through separate data
classes.

However, a more effective way is to design a so-called persistence
layer in the software system that is independent of underlying imple-
mentations. On the one hand, this means that the application classes
need to know the interface only and that they do not need to worry
about the object-relational mapping. On the other hand, implementation
changes do not affect the rest of the system. For example, the current

Object-oriented
database DBMS

Object-relational
DBMS

Relational DBMS

Persistence layer

5.2 Design 321

DBMS could be substituted by a new one, and this substitution will not
have any impact on the information system as such (at least in theory).

In a layered architecture (cf. section 3.2.2, e.g. figure 3-3), the persis-
tence layer can be seen as a part of the data tier or as a separate tier as
shown in figure 5-42. In a service-oriented architecture (SOA, cf.
section 3.3), persistence is a service that is available to software clients
just like any other service.

A typical persistence layer (or service) contains classes which build
SQL statements (such as select, insert, update), make objects persistent
(i.e. to store objects), retrieve objects, handle collections of objects and
manage transactions.

Figure 5-42 Persistence tier in a four-tier architecture

Presentation tier

Business tier

Persistence tier

Database tier

Graphical user interface

Application processing

Object persistence services

Data management

Presentation tier

Business tier

Persistence tier

Database tier

Graphical user interfaceGraphical user interface

Application processingApplication processing

Object persistence servicesObject persistence services

Data managementData management

Operations provided by a persistence layer include the following ones
[Ambler 2005b, p. 8]:

– Build SQL statement
– Save object
– Retrieve object
– Delete object
– Get next object
– Get previous object

Persistence layer
operations

5 Analysis and Design 322

– Commit transaction
– Rollback transaction

Object-relational mapping

The second task in overcoming the object-relational impedance
mismatch is to make relations out of the design model's classes and
relationships. While the basic procedure of this mapping is straight-
forward and easy to follow, extra considerations are required in some
special cases, complicating the process. The major parts of object-rela-
tional mapping comprise:

1) Mapping classes
2) Mapping generalization/specialization
3) Mapping associations

Ad 1): Mapping classes is fairly simple but there are exceptions or
special cases. The basic rule is to make a relation for each class, and to
adopt the attributes of the class as attributes of the relation. (In database
terminology, a relation is often called a table, an attribute is called a
column, and a tuple is called a row, because of the tabular shape when
the data are shown in a formatted form.)

Exceptions to the rule are:

a) Classes connected by generalization/specialization relationships

are not always transformed in such a way that one relation corre-
sponds to one class (see ad 2) below).

b) Some class attributes do not have a corresponding relational attrib-
ute. An example is a derived attribute whose value is computed
from other values, such as an order total as the sum of all order
items. While class attributes may represent derived values, attrib-
utes of relations normally don't.

c) Some class attributes may require more than one attribute in a
relation. Relations have only scalar attributes while class attributes
can be compound (i.e. the type of the attribute is a class). For ex-
ample, an "address" attribute of a "Customer" class will require
several columns in the database table, such as "street", "city", "zip
code", "country" etc.

Note that the mappings have to be realized not only when objects are
stored but in both directions! When a persistent object is referenced in
the program, the data representing the object will be read from the
database and the object will be reconstructed. For example, the order

Making a relation
for each class

Exceptions to the
rule

5.2 Design 323

total attribute mentioned above may need to be recalculated from the
individual order items, implying that order item data also have to be
retrieved from the database.

Relational data models are often described in a notation used in
relational algebra. Figure 5-43 shows in part a) an "Order" class con-
nected with an "OrderItem" class as a UML design class diagram, as
well as the corresponding relations in relational notation in part b). The
name of a relation is written before the parentheses embracing the
attributes of the relation. It is also common to prefix the name with an
"R" (= relation) and a dot. So instead of defining a relation in the
following way:

Order (orderID, customerID, orderDate, shippingDate, status,
employeeID)

we would write:

R.Order (orderID, customerID, orderDate, shippingDate, status,
employeeID)

The "orderID" attribute is underlined because it serves as the primary
key. A primary key identifies a tuple in a relation uniquely. The other ID
attributes ("customer ID" and "employeeID") are foreign keys. A for-
eign key is the primary key of another relation.

In order to express a data model in UML, class diagrams have to be
used. UML does not provide a specific diagram for data modeling, but
as an extension to UML, a so-called data modeling profile can be used.
Unfortunately several authors have proposed different data modeling
profiles, and the Object Management Group has not yet released a
standard.

A data modeling profile, like UML profiles in general, contains a set
of stereotypes explaining what a model element is used for. Stereotypes
that have been proposed for data modeling include the following:

«Table» – optional since all rectangles in a
 class diagram are tables
«PK» – primary key
«FK» – foreign key
«Subtype» – inheritance relationship
«Composition» – part-whole relationship
«Dependency» – dependency relationship

A diagram using data modeling stereotypes, derived from the design
class diagram of figure 5-43 a), is shown in part c) of the figure. In con-

Primary keys,
foreign keys

Data modeling
profile

Data-modeling
stereotypes

5 Analysis and Design 324

trast to the design class diagram, the data diagram does not contain op-
erations, and it shows more database-oriented information through the
use of stereotypes.

Note that the following assumptions and transformations were made
in the design class diagram and in its mappings:

– Business objects in the real world usually have identifiers following

a strict classification or numbering scheme. We assume that such a
scheme is given through an "IDType" class. This type is used for all
important business objects. (It has been used, by the way, for the
design classes in figure 5-34 before.) Therefore, the "Order" class
has an attribute "orderID" of type "IDType".

– Where in the DCD a class name is used for the data type of an
attribute (i.e. an abstract data type), this attribute is replaced by a
foreign-key attribute pointing to the respective table that the class
has been mapped to. For example, the types "Customer", "Employ-
ee" and "Product" are substituted by "IDType" foreign keys refer-
encing the tables "Customer", "Employee" and "Product", respec-
tively.

– The "Order" – "OrderItem" relationship is a composition, i.e. order
items can only exist if an order exists. Therefore we did not give the
design class "OrderItem" an "IDType" attribute. However, for the
"OrderItem" database table a unique identifier is needed. Since the
"productID" is not necessarily unique – an order might contain sev-
eral suborders for the same product – we introduced an additional,
unique identifier "itemID".

Ad 2): Mapping generalization/specialization relationships is a special
case of mapping classes. The question is whether the classes connected
by generalization/specialization are all mapped to separate relations or
not, and how this is done. Remember that specialization implies that the
special classes have the same attributes as the general class, plus
additional attributes (and additional operations which we do not con-
sider here).

Proceeding according to the general rule – to make a relation out of
each class – results in as many database tables as there are classes. The
fact that these tables belong together is represented by a common pri-
mary-key attribute. The DBMS (or the application program) can then
reconstruct a specialized object by joining the attributes of the child and
parent objects.

Mapping
generalization/
specialization

5.2 Design 325

Figure 5-43 Data modeling in UML

Order OrderItem

orderID : IDType
customerToBill : Customer
orderDate : Date
shippingDate : Date
status : String
contactPerson : Employee

product : Product
itemPrice : Number
quantity : Number
unitOfMeasurement : String

printOrder(…)
deleteOrder(…)

…

addItem(…)
deleteItem(…)

…

a) Design class diagram

b) Relations

Order (orderID, customerID, orderDate, shippingDate, status, employeeID)
Foreign keys: customerID, employeeID

OrderItem (itemID, productID, itemPrice, quantity, unitOfMeasurement)
Foreign key: productID

c) UML notation for data modeling

Order «Table»

orderID : IDType «PK»
customerID : IDType «FK»
orderDate : Date
shippingDate : Date
status : String
contactPersonID : IDType «FK»

OrderItem «Table»

itemID : IDType «PK»
productID : IDType «FK»
itemPrice : Number
quantity : Number
unitOfMeasurement : String

1 1..*

1 1..*

«Composition»

Order OrderItem

orderID : IDType
customerToBill : Customer
orderDate : Date
shippingDate : Date
status : String
contactPerson : Employee

product : Product
itemPrice : Number
quantity : Number
unitOfMeasurement : String

printOrder(…)
deleteOrder(…)

…

addItem(…)
deleteItem(…)

…

a) Design class diagram

b) Relations

Order (orderID, customerID, orderDate, shippingDate, status, employeeID)
Foreign keys: customerID, employeeID

OrderItem (itemID, productID, itemPrice, quantity, unitOfMeasurement)
Foreign key: productID

c) UML notation for data modeling

Order «Table»

orderID : IDType «PK»
customerID : IDType «FK»
orderDate : Date
shippingDate : Date
status : String
contactPersonID : IDType «FK»

OrderItem «Table»

itemID : IDType «PK»
productID : IDType «FK»
itemPrice : Number
quantity : Number
unitOfMeasurement : String

1 1..*

1 1..*

«Composition»

5 Analysis and Design 326

Figure 5-44 Specialization in classes and tables

a) Design class diagram

b) Relations

Customer (custID, name, address, phoneNo, …)
RegularCustomer (custID, discountScheme)

Foreign key: custID
Agency (custID, category, contactPerson)

Foreign key: custID

c) UML notation for data modeling

custID : IDType
name : String
address : String
phoneNo : String

Customer

...

...

RegularCustomer

discountScheme : …
...

...

Agency

category : …
contactPerson : …
...
...

custID : IDType «PK»
name : String
address : String
phoneNo : String

Customer «Table»

...

RegularCustomer
«Table»
custID : IDType

«PK» «FK»
discountScheme : …

...

Agency «Table»

custID : IDType
«PK» «FK»

category : …
contactPerson : …

a) Design class diagram

b) Relations

Customer (custID, name, address, phoneNo, …)
RegularCustomer (custID, discountScheme)

Foreign key: custID
Agency (custID, category, contactPerson)

Foreign key: custID

c) UML notation for data modeling

custID : IDType
name : String
address : String
phoneNo : String

Customer

...

...

Customer

...

...

RegularCustomer

discountScheme : …
...

...

Agency

category : …
contactPerson : …
...
...

Agency

category : …
contactPerson : …
...
...

custID : IDType «PK»
name : String
address : String
phoneNo : String

Customer «Table»

...

RegularCustomer
«Table»
custID : IDType

«PK» «FK»
discountScheme : …

...

Agency «Table»

custID : IDType
«PK» «FK»

category : …
contactPerson : …

5.2 Design 327

Consider the specializations "RegularCustomer" and "Agency" of the
"Customer" class in figure 5-44 a). Mapping these three classes to a
relational data model yields three tables as follows:

Customer (custID, name, address, phoneNo, ...)
RegularCustomer (custID, discountScheme)
 Foreign key: custID
Agency (custID, category, contactPerson)
 Foreign key: custID

The UML equivalent is shown in part c) of the figure. This mapping
approach is straightforward and compliant to proper data modeling prin-
ciples. However, it has the drawback that two tables (or several tables,
in the case of multi-level inheritance) in the database have to be joined
each time a special customer object is accessed from the program.

Therefore other approaches have been proposed, but they tend to
violate clean data modeling principles. One such proposal is to map all
design classes to just one relation. Another one is to map only the spe-
cial classes to database tables and duplicate the common attributes
defined with the general class [e.g. Ambler 2003, pp. 233-234]. We do
not recommend such practices and banish them into a footnote§.

Ad 3): Since relations and their attributes are the major concepts of a
relational data model, they are also used to map associations. How this
mapping is done depends on the multiplicities of the associations. We

§ a) In the case of mapping everything onto only one relation, this relation would

comprise all attributes of all classes connected by generalization/specialization,
plus one more attribute indicating what type of object it is. In the following
relation, the "custType" attribute is used to distinguish which further attributes
apply to a particular object:

 Customer (custID, custType, name, address, phoneNo, discountScheme,
category, contactPerson, ...)

However, using such a discriminator is a violation against normalization
principles (the relation is not in the third normal form).

b) Mapping only the special classes to database tables and duplicating the
common attributes creates redundancy in the database which can lead to
inconsistencies later. Redundant attributes in our example are the attributes
"name", "address" and "phoneNo" (originally of the "Customer" class) that are
now adopted as attributes of both "RegularCustomer" and "Agency". Note that
the two relations now have their own primary keys:

 RegularCustomer (regCustID, name, address, phoneNo, discountScheme, ...)
 Agency (agencyID, name, address, phoneNo, category, contactPerson, ...)

Some
approaches
violate clean data
modeling

Mapping
associations

5 Analysis and Design 328

have to distinguish three cases: many-to-many, one-to-many, and one-
to-one associations.

A many-to-many association between two classes A and B has multi-
plicities of 1..* or 0..* at both ends of the association line. This means
that any A object can be associated with many B objects, and any B
object can be associated with many A objects.

Many-to-many associations are mapped via a connecting relation.
This relation specifies through pairs "primary key A – primary key B"
which tuple of A is connected with which tuple of B. In the design class
model of figure 5-34, a many-to-many association existed between
"Advertisement" and "Edition". A connecting relation should list which
advertisement exactly (identified by an "adID") is published in which
edition (identified by an "edID") of the paper.

In the DCD of figure 5-34 we already introduced an association class
"Publication" that serves this purpose. The reason for modeling an asso-
ciation class was actually a different one – the association between "Ad-
vertisement" and "Edition" needed to have associations itself – but at
the same time the association class "Publication" does exactly what we
need now: providing pairs of "Advertisement" and "Edition" objects§.

This is exactly the purpose of a connecting relation, i.e. listing pairs
of primary keys identifying tuples of the participating relations. At the
same time, the two primary keys together constitute the primary key of
the association class; i.e. this class has a compound primary key. This is
why two attributes of the "Publication" relation are underlined:

 Publication (adID, edID, state, ...)
 Foreign keys: adID, edID

In a one-to-many association between two classes A and B, the multi-
plicities are 1 or 0..1 at one end and 1..* or 0..* at the other end of the
association line. This can be modeled in such a way that the relation
with the "many" multiplicity at its end of the association line, say B,
references a tuple of the other relation, say A, via a primary key of A.
One of B's attributes is therefore a foreign key referencing a specific
tuple of A. Looking again at figure 5-34, the association between
"Publication" and "Customer" is a one-to-many association. Therefore,
the "Publication" relation above is extended by another foreign-key
attribute "customerID" referencing the customer who ordered publish-
ing of the advertisement:

§ If we had not modeled the association class "Publication" before, we would

now introduce a relation (e.g. "PublishedIn") connecting the "Advertisement"
and "Edition" relations through pairs of primary-key values.

Many-to-many
associations

A connecting
relation lists pairs
of primary keys

One-to-many
associations

5.2 Design 329

 Publication (adID, edID, custID, status, ...)
 Foreign keys: adID, edID, custID

In a one-to-one association between two classes A and B, the multiplic-
ities are 1 or 0..1 at both ends of the association line. This means that
exactly (or at most) one A object is associated with exactly (or at most)
one B object. A common way of connecting the A and B relations is to
include a reference to the A object in B and a reference to the B object
in A, via foreign-key attributes.

Figure 5-45 Data model as a class diagram using stereotypes

Invoice «Table»

invoiceID : IDType «PK»
date : Date
customerToBill : IDType «FK»
salesRepID : IDType «FK»

…

InvoiceItem «Table»

itemID : IDType «PK»
adID : IDType «FK»
edID : IDType «FK»
invoiceID : IDType «FK»
price : Number
…

Advertisement «Table»

adID : IDType «PK»
adName : String
description : String
fileName : String

…

«Composition»

Customer «Table»

custID : IDType «PK»
name : String
address : String
phoneNo : String

…

Publication «Table»

adID : IDType «PK»
edID : IDType «PK»
customerID : IDType «FK»
invoiceItemID : IDType «FK»
state : String
price : Number

…

0..*

1 1

1 1

0..*

1 1..*

1 0..*

RegularCustomer
«Table»
custID : IDType

«PK» «FK»
discountScheme : …

...

Agency «Table»

custID : IDType
«PK» «FK»

category : …
contactPerson : …

1 1

10..1 0..1

1..*

CommissionScheme
«Table»

comID : IDType «PK»
description : String

…

0..* 1

Edition«Table»

edID : IDType «PK»
volume : String
issue : String
date : Date

…

Invoice «Table»

invoiceID : IDType «PK»
date : Date
customerToBill : IDType «FK»
salesRepID : IDType «FK»

…

InvoiceItem «Table»

itemID : IDType «PK»
adID : IDType «FK»
edID : IDType «FK»
invoiceID : IDType «FK»
price : Number
…

Advertisement «Table»

adID : IDType «PK»
adName : String
description : String
fileName : String

…

Advertisement «Table»

adID : IDType «PK»
adName : String
description : String
fileName : String

…

«Composition»

Customer «Table»

custID : IDType «PK»
name : String
address : String
phoneNo : String

…

Customer «Table»

custID : IDType «PK»
name : String
address : String
phoneNo : String

…

Publication «Table»

adID : IDType «PK»
edID : IDType «PK»
customerID : IDType «FK»
invoiceItemID : IDType «FK»
state : String
price : Number

…

Publication «Table»

adID : IDType «PK»
edID : IDType «PK»
customerID : IDType «FK»
invoiceItemID : IDType «FK»
state : String
price : Number

…

0..*

1 1

1 1

0..*

1 1..*

1 0..*

RegularCustomer
«Table»
custID : IDType

«PK» «FK»
discountScheme : …

...

RegularCustomer
«Table»
custID : IDType

«PK» «FK»
discountScheme : …

...

Agency «Table»

custID : IDType
«PK» «FK»

category : …
contactPerson : …

Agency «Table»

custID : IDType
«PK» «FK»

category : …
contactPerson : …

1 1

10..1 0..1

1..*

CommissionScheme
«Table»

comID : IDType «PK»
description : String

…

CommissionScheme
«Table»

comID : IDType «PK»
description : String

…

0..* 1

Edition«Table»

edID : IDType «PK»
volume : String
issue : String
date : Date

…

Edition«Table»

edID : IDType «PK»
volume : String
issue : String
date : Date

…

One-to-one
associations

5 Analysis and Design 330

In the example of figure 5-34, a one-to-one association was modeled
between the classes "InvoiceItem" and "Publication". This situation can
be mapped to the following relations, with additional attributes "in-
voiceItemID" and "adID, edID", respectively:

 InvoiceItem (itemID, adID, edID, invoiceID, price, ...)
 Foreign key: adID, edID, invoiceID
 Publication (adID, edID, custID, invoiceItemID, status, ...)
 Foreign keys: adID, edID, custID, invoiceItemID

Figure 5-45 summarizes the above mappings in a class diagram using
UML data-modeling stereotypes. The diagram corresponds to the de-
sign class diagram in figure 5-34. Below are two aspects regarding
multiplicities that have to be mentioned.

Firstly, note that the multiplicities of the association between "Ad-
vertisement" and "Edition" (0..* and 1..*) in the DCD had to be split up.
The reason is that in the data model of figure 5-45 the relations "Ad-
vertisement" and "Edition" are not connected with each other but with
the "Publication" relation. This relation has a one-to-many association
(1 and 0..*) with "Advertisement" and another one-to-many association
(1 and 0..*) with "Edition"!

The second point is how the generalization/specialization relation-
ships between the "Customer" class and the classes "RegularCustomer"
and "Agency" are modeled. Generalization/specialization is mapped to
one-to-one relationships between the corresponding database tables,
allowing also 0 occurrences (0..1 multiplicities). For example, 0..1 im-
plies that if a customer is specialized into a regular customer, then the
same customer cannot be specialized into an agency at the same time.

ER-relational mapping

Relational databases existed long before object-orientation became pop-
ular. In the pre-object-oriented times, relational databases were also cre-
ated in a systematic way, but the starting point was often an entity-rela-
tionship model (ERM) and not a design class model. In fact, ER model-
ing is still a widely used technique for creating conceptual data models.

Mapping an entity-relationship model to a relational data model
follows the same basic rules as discussed above for the mapping of a
design class model. Actually these rules were established for ER-rela-
tional mapping a long time ago and later transferred to object-relational
mapping. The three major steps corresponding to the ones explained for
object-relational mapping are:

ER modeling is
widely used

Same rules as
for mapping a
design class
model

5.2 Design 331

1. Mapping entity types: This is as straightforward as mapping
classes. The general rule is to make a relation out of each entity
type. Attributes of the relation correspond to the attributes of the
entity type. If abstract data types or derived values have been used
for entity attributes, then attribute mapping is not a one-to-one
mapping as above. However, these cases are less common in ER
modeling than in object-oriented modeling.

2. Mapping generalization/specialization: Generalization/specializa-
tion relationships are mapped in the same way as explained above.
Each entity type is represented by one relation. The relations for
the specialized entity types are defined with the same primary
keys as the relation for the general entity type.

3. Mapping other relationships (than generalization/specialization
relationships): This step is analogous to mapping associations be-
tween classes. Many-to-many relationships are transformed using
connecting relations. A one-to-many relationship between two
entity types A and B is mapped with the help of a foreign-key
attribute in B which references a tuple in A. In a one-to-one
relationship, a tuple of A points to the associated tuple of B via a
foreign key and vice versa.

To illustrate ER-relational mapping through an example, take another
look at figure 5-25. In this figure, an entity-relationship model was
created for the same issues as modeled in the design class diagram of
figure 5-34. Going through the steps 1) to 3) will yield exactly the same
relational data model that was created by object-relational mapping. The
result can be studied in figure 5-45.

Note that in the ERM an "Invoice item" was modeled as a one-to-
many relationship between the entity types "Invoice" and "Publication".
This relationship was not mapped through a foreign-key attribute but
through a separate relation. The reason is that the "Invoice item" rela-
tionship in the ER model had attributes. In order to represent attributes
in a relational data model, a relation is needed.

XML databases

We have assumed so far that we are designing a relational database.
This is a reasonable assumption because most real-world databases to-
day are based on the relational data model. On the other hand, XML has
gained wide acceptance in many areas of software engineering, in
particular in Internet computing.

Mapping the ER
model of figure
5-25

5 Analysis and Design 332

Service orientation as a new paradigm for software development has
brought the concept of software as a service. A service is a software
module provided over a network. A service-oriented architecture (SOA)
as discussed in section 3.3 comprises services, e.g. web services or
enterprise services. Web services are usually invoked via the SOAP
protocol over an intranet or the Internet, and SOAP is based on XML.

Let us assume that a service invocation is about retrieving informa-
tion stored in the company's database. A common practice today is that
the database server is a node in the company's intranet which provides
database services. Therefore, the database request is sent as an XML
message over the network. The response containing the information
retrieved from the database also comes back as an XML message. How
does this happen? The answer is that a piece of software in between
wraps the actual database information into XML format.

To get an impression of what this looks like, revisit the figures 3-7
and 3-8 in chapter 3. Figure 3-7 contains a service request in XML –
namely to provide information about the product with ID "A-1088".
The values returned are "racing bike" (name), "low-end racing bike for
upward mobile professionals" (description), "230.99" (price), and "13"
(quantityAvailable). Most likely these values were retrieved from a
product database with an SQL statement such as:

Select name, description, price, quantityAvailable
from Product
where productID = "A-1088"

Obviously the XML request in the SOAP envelope was mapped onto
such an SQL command. Likewise the tuple of values returned was
wrapped into an XML response such as the one in figure 3-8. Although
the example in figures 3-7 and 3-8 was actually about invocation of a
higher-level web service for data management ("MasterDataService")
and not about immediate database access, similar XML code would be
needed to send a request to a database service and to receive the re-
sponse.

This example makes clear that it would be nice if the DBMS under-
stood XML directly, instead of forcing the developer to make SQL calls
(or, as in a more software-engineering way, calls to persistence-layer
operations) out of XML messages, be it manually or with the help of a
middleware; and vice versa.

This is the motivation for XML databases. The XML:DB Initiative,
an industry consortium promoting XML databases, identifies three
major types – native, XML enabled and hybrid databases. They are
characterized as follows [XML:DB 2003]:

Database
requests and
responses are
sent as XML
messages

Types of XML
databases

5.2 Design 333

– A native XML database (NXD): a) defines a (logical) model for an

XML document – as opposed to the data in that document – and
stores and retrieves documents according to that model; b) has an
XML document as its fundamental unit of (logical) storage, just as a
relational database has a row in a table as its fundamental unit of
(logical) storage; c) does not require any particular underlying physi-
cal storage model. For example, it can be built on a relational,
hierarchical or object-oriented database, or use a proprietary storage
format such as indexed, compressed files.

– An XML enabled database (XEDB) is a database that has an added
XML mapping layer provided either by the database vendor or a
third party. This mapping layer manages the storage and retrieval of
XML data. Data that is mapped onto the database is mapped onto
specific formats of the DBMS vendor, and the original XML meta-
data and structure may be lost. Data retrieved as XML is not guaran-
teed to have originated in XML form.

– A hybrid XML database (HXD) is a database that can be treated as
either a native XML database or as an XML enabled database.

The major commercial database management systems today are XML
enabled. They accept input written in XML and render output in XML,
but their internal structure is relational. This means that they map XML
elements onto relations, tuples and attributes, and vice versa.

5.2.5 Other Approaches to Design: SD/CD
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

For more than two decades, SA (structured analysis) was the dominat-
ing approach regarding systems analysis and in particular, requirements
engineering. When SA is applied, the results of the requirements stage
are data flow diagrams (DFDs) and a data dictionary, possibly supple-
mented by decision trees, decision tables and procedural descriptions in
so-called "structured English". In contrast to UML diagrams, DFDs
describe activities connected by data flows (not classes or objects). Data
are passed from one activity to the next.

Several approaches to create a design from DFDs, as a follow-up to
SA, were developed in the 1970s by well-known SA authors such as

DFDs describe
activities and
data flows, not
classes

Structured
design/composite
design)

5 Analysis and Design 334

Larry Constantine, Ed Yourdon, Glen Myers and Wayne Stevens [Ste-
vens 1974, Yourdon 1979]. They were called SD (structured design)
and CD (composite design), often together referred to as SD/CD.

The main ideas are attributed to Larry Contantine and his work on
module cohesion and module coupling. These principles are still consid-
ered important characteristics of modern software quality. A major goal
of his design approach was to achieve loose coupling between and tight
cohesion within modules.

SD/CD is still a popular design methodology wherever SA is the
favorite approach to requirements engineering. The primary question
answered by SD/CD is: How can a design (in terms of software mod-
ules) be derived from the requirements (described as DFDs)? The DFDs
describe how data flow between activities. However, what is needed
now are software components and their interrelationships (e.g. which
module calls which other module) – or in other words, a decomposition
of the entire software system into modules.

The major outcome of SD/CD is a structure chart. In this sense the
aim of SD/CD is to create a structure chart from the data flow diagrams.
A structure chart is a tree diagram showing the hierarchy of modules
and their relationships [Martin 1986, p. 181-190].

Several approaches have been proposed to derive a structure chart
from a DFD. The two most common ones are: transform analysis (for
data-oriented systems) and transaction analysis (for transaction-orient-
ed, e.g. interactive systems).

Transform analysis

Transform analysis is used for problems where the classical data pro-
cessing aspect is dominating, i.e. the system is mainly to process input
data and to create output data:

Input → processing → output

While this scheme looks quite simple, each of the three parts can be
rather complex. Therefore the first step of transform analysis is to divide
a level-1 data flow diagram into three parts called:

– Afferent branch – contains those DFD processes that are responsible

for reading input data and transforming this data into such a shape
that the essential task of the system can be carried out subsequently.

– Central transform – concerned only with the logical processing and
not with input or output related considerations.

Module cohesion
and coupling

Structure chart:
decomposing the
system into
modules

Dividing a level-1
DFD into three
parts

5.2 Design 335

– Efferent branch – consists of those processes which transform inter-
nal data into an output form suitable for the user.

There may be more than one afferent branch, more than one central
transform, and more than one efferent branch in a structure chart.

To illustrate transform analysis, consider the data flow diagram of
figure 5-46 for a newspaper subscription system. It is split up into an af-
ferent branch, a central transform and an efferent branch.

Figure 5-46 Example of a data flow diagram divided into three parts

1.
Get
valid

subscription

2.
Process

error

3.
Process

subscription 4.
Prepare

documents

5.
Print

documents

Invalid

subscription

Subscription
transactions

Error file

Valid subscription

Afferent branch Central
transform

Processed subscription

Documents

Efferent branch

1.
Get
valid

subscription

1.
Get
valid

subscription

2.
Process

error

2.
Process

error

3.
Process

subscription 4.
Prepare

documents

5.
Print

documents

Invalid

subscription

Subscription
transactions

Error file

Valid subscription

Afferent branch Central
transform

Processed subscription

Documents

Efferent branch

Figure 5-47 shows the top-level structure chart which corresponds to the
DFD of figure 5-46. It consists of three top-level modules: "Get valid
subscription", "Process valid subscription" and "Create documents".
Arrows with hollow circles indicate data passed from one module to
another. For example, a "Valid sub" (valid subscription) is passed from
the main module to the module "Process valid subscription", and a
"Processed sub" is passed back.

In the subsequent steps, called factoring, the top-level structure chart
is refined and extended. This means that the modules representing the
central transform and the input and output branches are refined into sub-
modules. The factoring process may continue several levels down, de-

Factoring

5 Analysis and Design 336

pending on the complexity and size of the system. Additional modules
can be included, e.g. from program libraries and for error-handling.

Figure 5-47 High-level structure chart with a central transform

Subscription
system

Get
valid
subscription

Create
documents

Process
valid
subscription

Valid
sub

Processed
subValid

sub
Processed
sub

Subscription
system
Subscription
system

Get
valid
subscription

Get
valid
subscription

Create
documents
Create
documents

Process
valid
subscription

Process
valid
subscription

Valid
sub

Processed
subValid

sub
Processed
sub

Transaction analysis

The second approach, transaction analysis, is centered around the notion
of a transaction. In SD/CD, a transaction is an action triggered by some
data element, in particular when that data element receives its value
through user input.

A transaction center is a module that distinguishes between different
types of processing depending on the mentioned data element (or more
broadly speaking, on the desired type of action). The respective mod-
ules invoked by the transaction center are called transaction modules. A
typical transaction center is an activity from which a number of alterna-
tive data flows originate. However, only one of several succeeding pro-
cesses will be performed.

Often the transaction centers are easy to spot in a data flow diagram.
In the DFD refining the "Process subscription" node of figure 5-46,
such an activity – with multiple mutually exclusive outgoing data flows
– is "3.1 Determine transaction type". This is illustrated in figure 5-48.
Depending on the outcome of the "Determine transaction type" activity,
either process 3.2, 3.3, 3.4 or 3.5, but only one of these processes, will
be performed.

Transaction
center

5.2 Design 337

__

Figure 5-48 Example of a DFD with alternative data flows

3.1
Determine
transaction

type

3.2
Process

new
subscription

3.3
Process
renewal

3.4
Process

modification

3.5
Process

cancellation

Valid
subscription

New sub-
scription Renewal Change Cancellation

Subscribers Subscribers

3.6
Update

subscription
transactions

Subscribers
Processed

subscription

Pro-
cessed
renewal

Pro-
cessed
modifi-
cation

Processed
new sub

Processed
cancellation

3.1
Determine
transaction

type

3.1
Determine
transaction

type

3.2
Process

new
subscription

3.2
Process

new
subscription

3.3
Process
renewal

3.3
Process
renewal

3.4
Process

modification

3.4
Process

modification

3.5
Process

cancellation

3.5
Process

cancellation

Valid
subscription

New sub-
scription Renewal Change Cancellation

SubscribersSubscribers SubscribersSubscribers

3.6
Update

subscription
transactions

3.6
Update

subscription
transactions

SubscribersSubscribers
Processed

subscription

Pro-
cessed
renewal

Pro-
cessed
modifi-
cation

Processed
new sub

Processed
cancellation

Note that the datastore "Subscribers" is shown three times in the dia-
gram although it exists only once. The main reason for this is to avoid
crossing lines. Since the processes 3.2 to 3.5 are all connected with the

5 Analysis and Design 338

datastore, at least two lines would intersect with others if the datastore
were put in the diagram only once§.

In a structure chart, a transaction center is a module that has several
child modules, but only one will be invoked. The transaction center is
marked by a black diamond from which the connections to the subordi-
nate modules originate. Figure 5-49 shows, as an example, a transaction
center corresponding to the "Determine transaction type" DFD node,
and transaction modules corresponding to the DFD processes 3.2 to 3.5.

Figure 5-49 Structure chart with a transaction center

Process
transaction

Process new
subscription

Process
renewal

Process
modification

Process
cancellation

New sub

New sub

Re
ne

wa
l

Re
ne

wa
l

CancellationCancellation

M
odification

M
odification

Process
transaction

Process
transaction

Process new
subscription
Process new
subscription

Process
renewal
Process
renewal

Process
modification

Process
modification

Process
cancellation

Process
cancellation

New sub

New sub

Re
ne

wa
l

Re
ne

wa
l

CancellationCancellation

M
odification

M
odification

Transform analysis and transaction analysis are not mutually exclusive
approaches. In the design of many non-trivial systems, both central
transforms and transaction centers can be found. The complete structure
chart for the subscription system, composed of the subdiagrams above,
also contains both a central transform part ("Process valid subscription"
and submodules) and a transaction center ("Process transaction"). This
structure chart is shown in Figure 5-50.

§ Duplication of symbols is the preferred way of avoiding line crossing in data

flow diagrams. In the Gane-Sarson notation [Gane 1979], a special marker is
used to indicate duplicates, whereas in the original DeMarco notation
[DeMarco 1979] the symbols are just shown more than once.

5.2 Design 339

P
ro

ce
ss

tra
ns

ac
tio

n

Pr
oc

es
s

ne
w

su
bs

cr
ip

tio
n

P
ro

ce
ss

re
ne

w
al

P
ro

ce
ss

m
od

ifi
ca

tio
n

P
ro

ce
ss

ca
nc

el
la

tio
n

Ne
w

su
b Ne
w

su
b

Renewal
Renewal

Ca
nc

el
la

tio
n

Ca
nc

el
la

tio
n

Modific
ation

Modific
ation

Valid sub

Processed sub

P
ro

ce
ss

 v
al

id
su

bs
cr

ip
tio

n

Valid sub

Processed sub

S
ub

sc
rip

tio
n

sy
st

em

U
pd

at
e

su
bs

cr
ip

tio
n

tra
ns

ac
tio

ns

Proc
es

se
d s

ub

G
et

 v
al

id
su

bs
cr

ip
tio

n

G
et

su
bs

cr
ip

tio
n

ite
m

P
ro

ce
ss

 e
rro

r

Print doc

Erro
r it

em

Sub
 ite

m

Va
lid

 s
ub

C
re

at
e

do
cu

m
en

ts

P
rin

t
do

cu
m

en
ts

C
om

po
se

do
cu

m
en

ts

Processed sub

C
om

po
se

re
fu

nd
C

om
po

se
in

vo
ic

e

C
om

po
se

co
nf

irm
at

io
n

le
tte

r

Proc
es

se
d s

ub Prin
t d

oc

Processed sub
Print doc

Print doc

Processed sub
Pr

oc
es

se
d

su
b

P
ro

ce
ss

tra
ns

ac
tio

n
P

ro
ce

ss
tra

ns
ac

tio
n

Pr
oc

es
s

ne
w

su
bs

cr
ip

tio
n

Pr
oc

es
s

ne
w

su
bs

cr
ip

tio
n

P
ro

ce
ss

re
ne

w
al

P
ro

ce
ss

re
ne

w
al

P
ro

ce
ss

m
od

ifi
ca

tio
n

P
ro

ce
ss

m
od

ifi
ca

tio
n

P
ro

ce
ss

ca
nc

el
la

tio
n

P
ro

ce
ss

ca
nc

el
la

tio
n

Ne
w

su
b Ne
w

su
b

Renewal
Renewal

Ca
nc

el
la

tio
n

Ca
nc

el
la

tio
n

Modific
ation

Modific
ation

Valid sub

Processed sub

P
ro

ce
ss

 v
al

id
su

bs
cr

ip
tio

n
P

ro
ce

ss
 v

al
id

su
bs

cr
ip

tio
n

Valid sub

Processed sub

S
ub

sc
rip

tio
n

sy
st

em
S

ub
sc

rip
tio

n
sy

st
em

U
pd

at
e

su
bs

cr
ip

tio
n

tra
ns

ac
tio

ns

U
pd

at
e

su
bs

cr
ip

tio
n

tra
ns

ac
tio

ns

Proc
es

se
d s

ub

Proc
es

se
d s

ub

G
et

 v
al

id
su

bs
cr

ip
tio

n
G

et
 v

al
id

su
bs

cr
ip

tio
n

G
et

su
bs

cr
ip

tio
n

ite
m

G
et

su
bs

cr
ip

tio
n

ite
m

P
ro

ce
ss

 e
rro

r
P

ro
ce

ss
 e

rro
r

Print doc

Print doc

Erro
r it

em

Erro
r it

em

Sub
 ite

m

Sub
 ite

m

Va
lid

 s
ub

Va
lid

 s
ub

C
re

at
e

do
cu

m
en

ts
C

re
at

e
do

cu
m

en
ts

P
rin

t
do

cu
m

en
ts

P
rin

t
do

cu
m

en
ts

C
om

po
se

do
cu

m
en

ts
C

om
po

se
do

cu
m

en
ts

Processed sub Processed sub

C
om

po
se

re
fu

nd
C

om
po

se
re

fu
nd

C
om

po
se

in
vo

ic
e

C
om

po
se

in
vo

ic
e

C
om

po
se

co
nf

irm
at

io
n

le
tte

r

C
om

po
se

co
nf

irm
at

io
n

le
tte

r

Proc
es

se
d s

ub Prin
t d

oc

Prin
t d

oc

Processed sub
Print doc

Print doc

Processed sub
Pr

oc
es

se
d

su
b

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__

Fi
gu

re
 5

-5
0

 S

tr
uc

tu
re

 c
ha

rt
 fo

r t
he

 s
ub

sc
rip

tio
n

sy
st

em

P
ro

ce
ss

tra
ns

ac
tio

n

Pr
oc

es
s

ne
w

su
bs

cr
ip

tio
n

P
ro

ce
ss

re
ne

w
al

P
ro

ce
ss

m
od

ifi
ca

tio
n

P
ro

ce
ss

ca
nc

el
la

tio
n

Ne
w

su
b Ne
w

su
b

Renewal
Renewal

Ca
nc

el
la

tio
n

Ca
nc

el
la

tio
n

Modific
ation

Modific
ation

Valid sub

Processed sub

P
ro

ce
ss

 v
al

id
su

bs
cr

ip
tio

n

Valid sub

Processed sub

S
ub

sc
rip

tio
n

sy
st

em

U
pd

at
e

su
bs

cr
ip

tio
n

tra
ns

ac
tio

ns

Proc
es

se
d s

ub

G
et

 v
al

id
su

bs
cr

ip
tio

n

G
et

su
bs

cr
ip

tio
n

ite
m

P
ro

ce
ss

 e
rro

r

Print doc

Erro
r it

em

Sub
 ite

m

Va
lid

 s
ub

C
re

at
e

do
cu

m
en

ts

P
rin

t
do

cu
m

en
ts

C
om

po
se

do
cu

m
en

ts

Processed sub

C
om

po
se

re
fu

nd
C

om
po

se
in

vo
ic

e

C
om

po
se

co
nf

irm
at

io
n

le
tte

r

Proc
es

se
d s

ub Prin
t d

oc

Processed sub
Print doc

Print doc

Processed sub
Pr

oc
es

se
d

su
b

P
ro

ce
ss

tra
ns

ac
tio

n
P

ro
ce

ss
tra

ns
ac

tio
n

Pr
oc

es
s

ne
w

su
bs

cr
ip

tio
n

Pr
oc

es
s

ne
w

su
bs

cr
ip

tio
n

P
ro

ce
ss

re
ne

w
al

P
ro

ce
ss

re
ne

w
al

P
ro

ce
ss

m
od

ifi
ca

tio
n

P
ro

ce
ss

m
od

ifi
ca

tio
n

P
ro

ce
ss

ca
nc

el
la

tio
n

P
ro

ce
ss

ca
nc

el
la

tio
n

Ne
w

su
b Ne
w

su
b

Renewal
Renewal

Ca
nc

el
la

tio
n

Ca
nc

el
la

tio
n

Modific
ation

Modific
ation

Valid sub

Processed sub

P
ro

ce
ss

 v
al

id
su

bs
cr

ip
tio

n
P

ro
ce

ss
 v

al
id

su
bs

cr
ip

tio
n

Valid sub

Processed sub

S
ub

sc
rip

tio
n

sy
st

em
S

ub
sc

rip
tio

n
sy

st
em

U
pd

at
e

su
bs

cr
ip

tio
n

tra
ns

ac
tio

ns

U
pd

at
e

su
bs

cr
ip

tio
n

tra
ns

ac
tio

ns

Proc
es

se
d s

ub

Proc
es

se
d s

ub

G
et

 v
al

id
su

bs
cr

ip
tio

n
G

et
 v

al
id

su
bs

cr
ip

tio
n

G
et

su
bs

cr
ip

tio
n

ite
m

G
et

su
bs

cr
ip

tio
n

ite
m

P
ro

ce
ss

 e
rro

r
P

ro
ce

ss
 e

rro
r

Print doc

Print doc

Erro
r it

em

Erro
r it

em

Sub
 ite

m

Sub
 ite

m

Va
lid

 s
ub

Va
lid

 s
ub

C
re

at
e

do
cu

m
en

ts
C

re
at

e
do

cu
m

en
ts

P
rin

t
do

cu
m

en
ts

P
rin

t
do

cu
m

en
ts

C
om

po
se

do
cu

m
en

ts
C

om
po

se
do

cu
m

en
ts

Processed sub Processed sub

C
om

po
se

re
fu

nd
C

om
po

se
re

fu
nd

C
om

po
se

in
vo

ic
e

C
om

po
se

in
vo

ic
e

C
om

po
se

co
nf

irm
at

io
n

le
tte

r

C
om

po
se

co
nf

irm
at

io
n

le
tte

r

Proc
es

se
d s

ub Prin
t d

oc

Prin
t d

oc

Processed sub
Print doc

Print doc

Processed sub
Pr

oc
es

se
d

su
b

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__

Fi
gu

re
 5

-5
0

 S

tr
uc

tu
re

 c
ha

rt
 fo

r t
he

 s
ub

sc
rip

tio
n

sy
st

em

5 Analysis and Design 340

The flow of control, beyond invocation of subordinate modules, is
normally not shown in a structure chart. However, since modules may
be called repeatedly (iteration) or conditionally (selection), some au-
thors have proposed symbols and conventions for control structures
such as:

– Iteration – indicated by a curved arrow () around the top ends of

the lines connecting modules.
– Selection – indicated by a diamond (), similar to the black dia-

mond used in a transaction center.
– Sequence – placing modules from left to right implies sequential

execution of the modules in this order.

While the main task in SD/CD is to create a structure chart from DFDs,
the design methodology comprises more steps. In particular, the design
has to be evaluated according to the cohesion and coupling criteria. The
design may be modified in order to improve module cohesion and loos-
en module couplings. Afterwards, the design is prepared for implemen-
tation, which means primarily that the programs or program units into
which the design modules will be split up or combined are specified.

SD/CD is a typical top-down design methodology for data-oriented
problems, following the principle of functional decomposition. Deriving
high-level system structures from DFDs is quite straightforward. How-
ever, this is only the starting point. Most of the work is still left to the
so-called factoring (i.e. further decomposition). This is a top-down pro-
cess that can be as difficult as with any other methodology.

While SD/CD was very popular in the 1980s and 1990s, it has lost
much of its importance due to the rise of object-oriented analysis and
design. Classes and objects do not translate easily into procedural
modules. However, since many legacy systems were built according to
SD/CD, knowing this approach is helpful, e.g. in reengineering projects.

5.3 Upper CASE

Much of the analysis and design work consists of creating and docu-
menting models in diagrams. All UML diagrams and all other diagrams

Subsequent
SD/CD steps

SD/CD is suited
for data-oriented
problems

5.3 Upper CASE 341

described above must be drawn! Not only is the creation of diagrams a
lot of work, but changing them later in a consistent way is even worse.
Doing this work on paper can be a nightmare.

Simple drawing features in Office programs such as Word and
Powerpoint help a little. Specific drawing tools such as Visio and Corel
Draw are somewhat better because they adjust elements automatically.
However, they do not "understand" what a drawing is about, and there-
fore cannot check whether it is obviously wrong or not. Partial under-
standing of the semantics of the underlying models would be helpful in
many situations.

5.3.1 Automating Diagrams
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Suppose a design model consists of several diagrams, for example
design class diagrams, sequence diagrams and activity diagrams. Let us
assume that the designer wishes to delete a class in a DCD, enter a new
one into the design model, and change the name of a third one. The
DCD is affected, and it is likely that the other diagrams are too. Obvi-
ously there cannot be any more activities and interactions involving the
deleted class. On the other hand, additional activities and interactions
with the new class have to be considered. Changing the name of the
third class is fairly simple, but still it needs to be done in every diagram
where that class is used.

Doing these modifications on paper models means a lot of eraser,
scissors and glue usage. Wouldn't it be nice if the graphical tool "knew"
which diagrams are affected, where to find the classes, relationships and
other connections that need to be redefined, and what to tell the designer
about the necessary changes? In order to be able to do all the required
checking, the tool must possess a certain level of understanding about
the meaning of the diagrams.

Graphical tools with such capabilities have been around since the late
1980s and early 1990s. They are called CASE tools. CASE stands for
"computer aided software engineering" – an analogy to other CA-terms
such as CAD (computer aided design) and CAP (computer aided plan-
ning) used in the manufacturing industry.

CASE tools are very comprehensive software systems. The more
stages of the software life cycle a CASE tools supports, the more dia-

Propagating
model changes

CASE tools

5 Analysis and Design 342

gram types it has to offer. A complete UML CASE tool has to support
13 types of diagrams in a consistent way, not counting numerous UML
extensions such as profiles.

What makes CASE tools especially interesting for a development
project is the integration of different tools and in particular, integration
of the results (diagrams) produced with the tools. This means three
things:

1. A diagram created in one SLC stage can be used in the next stage

as input for its available tools.
2. Transformation of one diagrammatic representation of the same

thing into another representation can be automated to a certain
degree.

3. Transformation of models into code can also be automated to a
certain degree (code generation).

An enabler for the integration of tools and for automated transforma-
tions between the tools is a common repository in which all information
and meta-information is stored. This means in particular that all results
created during analysis, design and coding activities – diagrams, class
definitions, program code etc. – are available in electronic form in the
repository. Various types of visual representations can then be
generated from the information stored in the repository.

Comprehensive CASE tools supporting the work throughout all SLC
stages with the same quality were promised by CASE advocates but
never actually delivered. Some tools were good at modeling, in partic-
ular for analysis and design, but not at generating code. Others produced
good code or code templates from models, but were weak regarding
analysis and design.

This situation led in the 1990s to the distinction between "upper
CASE" and "lower CASE" tools. "Upper" and "lower" actually refer to
the positions of the respective activities in a SLC model such as the
waterfall model (cf. figure 4-2):

– Upper CASE means tool support for the early stages of the software

life cycle, especially for analysis (requirements engineering) and
design tasks.

– Lower CASE means tool support for stages further down the soft-
ware life cycle: program design, coding, testing and debugging.

– I-CASE (integrated CASE) means tool support for all stages in such
a way that tools are integrated [Martin 1989, p. 54].

Repository

Upper and lower
CASE

5.3 Upper CASE 343

I-CASE is the term for what was actually desired: high-quality
CASE support for all software life cycle activities. This would mean:
integrated tools across all stages (upper and lower) of the software life
cycle, including integrated results created with the tools. This would
finally result in code that is automatically generated from the models.

I-CASE was a lofty goal at the time. Even though some very power-
ful CASE tools existed – examples are ADW (Application Develop-
ment Workbench) and IEF (Information Engineering Facility) [Stone
1993] – they were not equally powerful for all SLC stages, from
analysis all the way down to code generation. While analysis and design
models were supported by convenient modeling tools, code generation
was cumbersome and error-prone.

Another problem was the creation of an open repository with inter-
faces to plug in tools from different vendors. One of the biggest soft-
ware-project failures reported in history was actually the famous "re-
pository manager" project by IBM in the 1980s and 1990s [Sagawa
1990]. It failed because the task of building such a comprehensive
repository was just too complex at the time, even for an IT heavyweight
such as IBM.

Today, a new generation of CASE tools are available, although they
are not always explicitly called CASE tools. Outstanding features of the
early CASE tools were the use of graphics and visualization of informa-
tion. Nowadays most tools targeted at human users are graphical tools,
because visualizing information is considered user-friendly. Some of
today's toolsets have names including the term "studio", in particular
lower CASE tools (e.g. Visual Studio, WebSphere Studio).

We will continue to use the term CASE because it is tool and vendor
independent. Since analysis and design is the topic of this chapter, the
focus is on upper CASE tools. These tools support typical analysis and
design activities, usually with the help of UML diagrams. Well-known
tools include the following:

– Software Architect (full name: IBM Rational Software Architect§)
– Software Modeler (full name: IBM Rational Software Modeler)
– Rational Rose (full name: IBM Rational Rose#)

§ Software Architect, Software Modeler and Rational Rose are available from

IBM Rational (http://www-306.ibm.com/software/rational/).
Renamed after the acquisition of Rational Corp. by IBM in 2003. Rational

Rose is a comprehensive family of UML modeling and development tools, one
of the most widely used UML toolsets. However, it supports only UML up to
version 1.4.

Integrated CASE

IBM's "repository
manager"

Today's upper
CASE tools

5 Analysis and Design 344

– Enterprise Architect (by Sparx Systems, Australia;
http://www.sparxsystems.com/products/ea.html)

– Together (full name: Borland Together;
http://www.borland.com/us/products/together/)

– objectiF (by MicroTool, Germany;
http://www.microtool.de/objectiF/en/)

– Innovator (by MID, Germany; http://www.mid.de)

5.3.2 An Example: Modeling with a CASE Tool
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

In this section, we will look at a sequence of diagrams created with an
upper CASE tool. The example is about an advertisement ordering
system offered by a newspaper publishing company. It includes some
diagrams that were manually drawn earlier in this chapter. The model-
ing tool used to create the diagrams is Enterprise Architect.

Figure 5-51 illustrates the main actors using the system. Customers
can place and cancel orders. An order means that one or more advertise-
ments are to be published in a particular edition of the paper. Since
advertisements are often reused, the publisher keeps them stored and
offers to do simple changes inhouse (e.g. updating a text field such as
application deadline).

Customers appreciate this service because they do not have to pay
their own advertising agency to produce a new advertisement file.
Therefore a use case "modifyAd" is modeled, expressing that this cus-
tomer initiates a modification in the stored advertisement and the sales
representative responsible for the customer will see that the change is
done. The sales representative also invoices the customer later.

The domain concepts relevant for requirements engineering are
shown in figure 5-52. Advertisements are associated with particular
newspaper editions in which they are supposed to appear. Customers
order the publication of an advertisement for a particular edition. An
invoice can consist of several invoice items, each of which refers to a
published advertisement.

Main actors

Domain concepts

5.3 Upper CASE 345

Figure 5-51 Use-case diagram for advertisement-ordering system

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

placeOrder

cancelOrder

modifyAd

sendInv oice

Customer

SalesRep

placeOrder

cancelOrder

modifyAd

sendInvoice
SalesRep

Customer

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

placeOrder

cancelOrder

modifyAd

sendInv oice

Customer

SalesRep

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

red Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

placeOrder

cancelOrder

modifyAd

sendInv oice

Customer

SalesRep

placeOrder

cancelOrder

modifyAd

sendInvoice
SalesRep

Customer

A design class diagram containing some classes derived from the
domain model and additional classes created in the design process is
shown in figure 5-53. It is basically the same diagram as the one drawn
in figure 5-34 before, yet in a tool-specific notation. Private class mem-
bers are indicated by a hyphen whereas public members have a plus
sign. The notation for methods is Java-like. Methods can return a value.
For example, the "getTotal" method returns a numerical value of type
"double", and the "adFileExists" method returns "true" or "false".
Underlined methods are static methods (class methods).

The "Customer" class was specialized in the design process into an
"Agency" class and a "RegularCustomer" class. The reason is that the
two types of customers are treated differently. Furthermore, the "Com-
missionScheme" for agencies is quite differentiated. Therefore it was
modeled as a separate class. The "Customer" class has two important
methods:

1. The "placeOrder" method is for new advertisements. When a cus-

tomer places an order for a new advertisement, the file containing
it plus the volume and the issue in which it is to be published have
to be provided as parameters.

Design class
diagram

5 Analysis and Design 346

2. The "placeRepeatOrder" method should be used for existing ad-
vertisements, i.e. advertisements that have been published before.
The first parameter here ("oldAd") is a reference to the advertise-
ment in the advertisement-ordering system.

Figure 5-52 Domain model for advertisement-ordering system

g g

l Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

l Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

l Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

l Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

l Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

l Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

Inv oice

- date
- salesRep

InvoiceItem

- price

Advertisement

- adName
- description
- fi leName

Customer

- name
- address
- phoneNumber

Publication

- state
- price

Edition

- adsDeadline
- date
- issue
- volume

1

ConsistsOf

1..* 1

RefersTo

1

0..*

CustomerToBil l

1 1..*

RefersTo

0..*

1

Orders

0..*

1

BelongsTo

1

1..*

OrderedFor

0..*

0..*

ContainedIn

1..*

g g

l Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

l Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

l Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

l Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

l Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

l Version EA 6.5 Unregistered Trial Version EA 6.5 Unregis

Inv oice

- date
- salesRep

InvoiceItem

- price

Advertisement

- adName
- description
- fi leName

Customer

- name
- address
- phoneNumber

Publication

- state
- price

Edition

- adsDeadline
- date
- issue
- volume

1

ConsistsOf

1..* 1

RefersTo

1

0..*

CustomerToBil l

1 1..*

RefersTo

0..*

1

Orders

0..*

1

BelongsTo

1

1..*

OrderedFor

0..*

0..*

ContainedIn

1..*

The relationships between advertisement objects, editions of the news-
paper and the publication of an advertisement in a particular edition was
reconsidered and obviously modeled in a different way than in the
initial domain model. Remember that the purpose of a domain model is
to capture the essential concepts of the application domain without
giving too much thought about details.

Advertisements, editions and publication had already been consid-
ered in domain modeling as conceptual classes. However, in the design
it showed that a "Publication" is actually something that associates an
"Advertisement" object with an "Edition" object. Therefore it was mod-
eled as an association class.

The DCD created by the CASE tool looks quite similar to the manu-
ally created diagram shown in figure 5-34. The generated notation is
more or less the same as described for class diagrams in the official
UML reference.

5.3 Upper CASE 347

Figure 5-53 Design class model for advertisement-ordering system

EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Ve

EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Ve

EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Ve

EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Ve

EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Ve

EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Ve

EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Ve

EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Ve

EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Ve

EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Ve

EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Ve

EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Ve

EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Ve

EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Ve

EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Ve

EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Ve

EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Ve

EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Ve

EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Version EA 6.5 Unregistered Trial Ve

Inv oice

- invoiceID: IDT ype
- date: Date
- salesRep: Employee

«constructor»
+ Invoice(Customer) : Invoice

«method»
+ addItemLine(InvoiceItem) : void
+ deleteItemLine(InvoiceItem) : void
+ getTotal() : double
+ printInvoice() : String

Inv oiceItem

- i temID: IDT ype
- price: double
- advertisement: Advertisement
- edi tion: Edi tion

«constructor»
+ InvoiceItem(Advertisement, Edi tion, price) : InvoiceItem
+ InvoiceItem(Publ ication) : InvoiceItem

«method»
+ getPrice() : double

Adv ertisement

- adID: IDType
- adName: String
- description: String
- fi leName: String

«method»
+ updateAd(String, String) : void
+ printAd() : String
+ adFi leExists() : boolean
+ getEditions() : Collection
+ getPubl ications() : Col lection

Edition

- edId: IDType
- volume: String
- issue: String
- adsDeadline: Date
- date: Date

«method»
+ isBeforeAdsDeadl ine() : boolean
+ getEditionBy(String, String) : void

Customer

- custID: IDType
- name: String
- address: String
- phoneNo: String

«method»
+ placeOrder(String, String, String) : boolean
+ placeRepeatOrder(Advertisement, String, String) : boolean
+ cancelOrder(Publ ication) : boolean
+ modifyAd(String, Advertisement) : void
+ getOrders() : Col lection
+ getAds() : Col lection
+ getCustomers() : Col lection

RegularCustomer

- discountScheme: int

Agency

- category: int
- contactPerson: String

ComissionScheme

- commID: IDT ype
- description: String

Publication

- advertisement: Advertisement
- edi tion: Edi tion
- state: int
- price: double

«constructor»
+ Publ ication(Advertisement, Edi tion, Customer) : Publ ication

«method»
+ cancelOrder(Customer) : boolean
+ changeState(int) : void
+ paymentDue() : boolean
+ isCancelable() : boolean

«method»
publ ic placeRepeatOrder(..., volume, issue) : boolean
{
 Check i f a valid "oldAd" object exists.
 If not return false, else:
 Find "Edi tion" object for "volume" and "issue" parameters.
 Create a "Publ ication" instance.
 Return true i f the "Publ ication" object was successful ly _
 created, else return false.
}

«method»
publ ic placeOrder(fi leName, volume, issue) : boolean
{
 Create and populate a new "Advertisement" _
 instance.
 Find "Edi tion" object for "volume" and "issue" _
 parameters.
 Create a "Publication" instance.
 Return true i f the "Publ ication" object was _
 successful ly created, else return false.
}

0..*

Gets

1

1

CustomerToBi l l

0..*

1

Orders

0..*

0..*

Publ ishedIn

1..*

1

BelongsTo

1

1..*1 1 1..*

1

1..*

5 Analysis and Design 348

Figure 5-54 Data model for advertisement-ordering system

5.3 Upper CASE 349

Unfortunately this is not the case in the next step: deriving a UML data
model from the design class diagram. In this step, the particular CASE
tool we used generated plenty of implementation-specific details that we
actually would not need at this stage of the process where we just want
to create a plain data model.

The generated data model is shown in figure 5-54. It contains as
many tables as there were classes in the design class diagram. Each
table corresponds to a class of the DCD. Instead of the UML stereotype
«Table», the class name compartment contains a little table icon on the
right-hand side.

Note that the attributes and the data types were not mapped exactly.
The reason is that our CASE tool declares attributes only in a database-
dependent way. The user has to specify a concrete DBMS first. Thus the
data types in the diagram are data types supported by a concrete DBMS
(we chose Oracle in order to be able to continue). The "String" type
used in the design classes, for example, is now an Oracle "varchar" type
of a specified length.

The CASE tool we used imposes more severe limitations. A class
name cannot be used as a data type of the primary key. Therefore, the
"IDType" class had to be replaced by one of the supported types. We
chose a "varchar(32)" type, i.e. a string 32 characters long, to map key
attributes (assuming that a key can be represented as a sequence of
characters and subdivided into substrings with appropriate meanings).

The operations compartments contain generated methods which are
actually methods ensuring primary and foreign key constraints. It is
questionable to show such implementation-oriented details in a data
model. However, the tool does this (and others also do), so we have to
cope with it. Likewise, the joining conditions written on the association
lines are very much a matter of implementation (how are data retrieved
from different tables in SQL) and not of modeling.

A useful piece of information indicating which class a foreign key
actually points to is generated by the tool and written as a role on the
association line. For example, foreign-key relationships exist between
"Customer" and "Invoice", and between "InvoiceItem" and "Invoice".
"+FK_Invoice_Customer" and "+FK_"InvoiceItem_Invoice" on the as-
sociation lines indicate these roles. The "+FK_"InvoiceItem_Invoice"
role indicates that a foreign key points from the "InvoiceItem" to the
"Invoice" table. The stereotype «Composition» provides in addition the
information that an "Invoice" objects consists of "InvoiceItem" objects.

Many implemen-
tation-specific
details were
generated

Generated data
model

Limitations by the
CASE tool

Indicating
foreign-key
relationships

5 Analysis and Design 350

5.3.3 On to Implementation
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The design class diagram and the data model we created with the CASE
tool are the two major models that we will use as input in the next
process stage: implementation. Of course, more UML diagrams can be
– and in non-trivial projects usually are – created in the analysis and de-
sign activities, including state machine, activity, sequence, communica-
tion and package diagrams. The upper CASE tool we have been
employing – just as the other tools mentioned in section 5.3.1 – supports
the creation of these diagram types, too.

Methods which are not straightforward to implement (e.g. methods
containing complicated algorithms) may be outlined in the design stage
in pseudo-code or in a programming language. This facilitates the cod-
ing in that the programmers do not need to rethink the same problems
the designers already solved. In UML, such explanations are added with
the help of a comment. As an example, the "placeOrder" and "placeRe-
peatOrder" methods in figure 5-53 are supplemented by comments de-
scribing the procedural logic.

The two mentioned models (design class model and data model) are
the most important ones of all in that they specify the programs and the
database tables that need to be implemented. From a CASE perspective,
these models are the ones that today's CASE tools handle in a sufficient-
ly reliable way: The tools allow the developer to generate adequate
code, i.e. program code in a language such as Java, and database code in
a DDL (database definition language). This will be illustrated in more
detail in sections 6.1.1 and 6.1.2 below.

Code generation does not replace programmers but relieves them of
some schematic work, such as writing class headers, attributes, methods'
signatures etc. These things can be derived automatically from the
specifications in a design class diagram. Code for things that have not
been specified (e.g. how exactly will a method do its work) can of
course not be generated. This part of the implementation – still the
major part today – is left to the programmers.

Creating the database can be automated to a significant extent. Stud-
ying the data model in figure 5-54, the reader may guess that most DDL
code can be created automatically since all essential information for the

Comments can
be used to
describe
procedural logic

Design class
models and data
models are the
most import ones

5.3 Upper CASE 351

data definitions is already included in the diagram. Tuning and refining
the generated database code is then left to database programmers.

The third component of an information system, the graphical user
interface, is usually also generated automatically. This is done with the
help of the GUI toolbox in which the design was created. Code genera-
tion for graphical user interfaces will be illustrated in section 6.1.3.

Implementation is a term with many meanings. This can lead to confu-
sion when people from different disciplines use it. In organizational the-
ory, implementation means putting some concept or plan into operation
in a real organization. Computer scientists used to call the coding activi-
ties (i.e. writing programs) implementation. However, in a more general
view, not only programs but any model or concept that is to be executed
on a computer must be implemented. We will use the term with the
following meaning:

"Implementation"
has many
meanings

Imple-
mentation
and
Testing

6 Implementation and Testing 354

Implementation is the realization of a design so that it can be exe-
cuted on a computer. This includes the realization of: the system's
classes; the user interface; and the database structures.

The classes and the user interface are implemented in a programming
language whereas the database structures are implemented in a data
definition language. Other concepts such as workflows may need to be
implemented as well so that they can be executed automatically.

Testing is an approach to finding errors in the system under consid-
eration. It does not mean to ensure that the system is correct! Errors can
occur on various levels: in the code, in the design, in the requirements
or even in the problem statement. In any case, an error means that the
system is not functioning as it should.

Testing comprises all activities to accomplish a satisfactory level
of confidence that the system under development fulfills it in-
tended purpose. Objects of testing can be documents (such as spe-
cifications) or software (such as a module or a complete system).
The goal of testing is to find errors and remove the causes of the
errors.

Testing and implementation are obviously closely connected. If a con-
cept is to be executed on a computer, as the definition of "implementa-
tion" states, then the implementation must run without errors, otherwise
the concept has not been implemented (or at least not correctly imple-
mented). In practice, implementation and testing go hand-in-hand. This
aspect will be discussed later, in section 6.2. First we will consider the
basic methods and tools for implementation.

6.1 Implementing the Design

In this section, some aspects of implementing a design are discussed.
Implementation means primarily to use computerized tools: a program-
ming language, a database management system (in particular its data
definition language), and higher-level tools that may facilitate the
implementation.

Definition:
implementation

Testing means
finding errors

Definition: testing

6.1 Implementing the Design 355

6.1.1 Programming
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The core of implementation is to write programs. Previously, imple-
mentation was more or less a synonym for programming. The main task
was to create Cobol, PL/1 or Assembler programs. Database program-
ming was included, and user interfaces did not play any significant role.

Nowadays, writing code in a programming language is only one of
several implementation tasks, yet still the most voluminous and time-
consuming one. Some of the former tasks no longer apply because they
are solved outside the normal programs (e.g. data definitions, transac-
tions processing). On the other hand, additional tasks have to be solved
that were not there before. Examples are network programming for
distributed systems, synchronization of parallel tasks (thread program-
ming) and socket programming for Internet based systems.

Programming methodology was an intensively discussed topic for
many decades, initiated by Edsger Dijkstra's famous article "Goto
statement considered harmful" [Dijkstra 1968a] that lead eventually to
the emergence of structured programming (SP). SP was about writing
understandable and maintainable programs, focusing on simple control
structures and on modularization. While the discussion about SP has
come to an end, the principles of SP are commonly accepted today and
SP has become general programming practice. Therefore we will not
discuss programming methodology in this book.

More fundamental principles for proper program structures, in
addition to those of structured programming, were proposed and also
intensively discussed in the 1970s and 1980s. These principles include,
in particular, information hiding and encapsulation, abstract data types
(ADTs), and finally the concept of objects communicating via messages
with each other. Eventually the principles and concepts were incorpo-
rated into the design of programming languages, so they are also con-
sidered common knowledge and practice today.

Programming languages

The primary tool for programming is a programming language. In the
early times of computing, a programming language was a language in

Programming is
not the only
implementation
task

Structured
programming
(SP)

Fundamental
program
structuring
principles

Programming
paradigms

6 Implementation and Testing 356

which the operations and data were specified, i.e. the operations to be
performed, the sequence of the operations, and the data used as input
and created as output. This was called procedural (or imperative) pro-
gramming. Other programming styles (or programming paradigms)
were introduced in the course of time, leading to a variety of program-
ming languages. Figure 6-1 summarizes the most important paradigms
and examples of corresponding languages.

Figure 6-1 Programming paradigms and languages

Programming paradigms Programming languages

Procedural (imperative)
Functional
Object-oriented
Declarative
Logic
Event-driven

Fortran, Cobol, Pascal, …
Lisp, FP
Java, C++, Ada95, Visual Basic .NET
SQL
Prolog
Visual Basic .NET

Although hundreds of programming languages have been invented and
many of them have survived, there seems to be a convergence towards a
few widely used languages.

The dominating languages today are Java and Visual Basic. Java has
become the most wide-spread language for large professional software
systems across a broad range of application areas. Visual Basic is the
preferred language in the Microsoft world. Since Microsoft is strong in
PC applications, Visual Basic is mostly used for small and midsize
software systems running in a Microsoft environment. Other languages
with large developer communities include C++, C#, Prolog and Delphi.
Proprietary languages with large user groups also exist (e.g. ABAP for
SAP developers).

Java was developed at Sun Microsystems by James Gosling and col-
leagues in 1995. The first public version was shipped as the JDK 1.0
("Java development kit") in January 1996. Both the language and the
development environments have undergone several renamings and
numbering schemes. The language as such was called "Java 2" for some
years, but as of 2007 the official name is "Java" again.

Java rapidly gained widespread acceptance because it implemented
most object-oriented concepts that were considered desirable by the
software engineering community. Java provides powerful mechanisms
for inheritance, polymorphism, persistence and more. Since the lang-

Java and Visual
Basic are the
dominating
languages today

Java

6.1 Implementing the Design 357

uage design is also object-oriented, Java can easily be extended. A large
number of class libraries around the language core are available, includ-
ing comprehensive GUI support (cf. section 6.1.3). Java is a cross-plat-
form language, running under MS Windows, Apple OS X, Sun Solaris,
Linux etc. Language versions are available for other devices than regu-
lar computers, e.g. for mobile phones and PDAs.

Visual Basic has its roots in the old Basic language developed in
1964 for educational purposes at Dartmouth College in New Hamp-
shire. Basic stood for "Beginners all-purpose symbolic instruction
code", and that was exactly the goal: a language for beginners in which
they could write instructions for the computer in a "symbolic" way (as
opposed to writing machine-oriented code in Assembler). The original
Basic language was very simple, providing only 14 statement types
altogether.

Today's Visual Basic has little to do with that simple language of
1964 except for the name and some keywords that have survived. The
name Visual Basic was introduced by Microsoft in 1987. The language
came with a visual development environment, the first tool of its kind
by Microsoft. After a few years, Visual Basic had become the fastest-
growing programming language on the market.

Visual Basic gained its popularity mainly due to two reasons: 1) It
was easy to use because the language was embedded in a powerful
development environment that conveniently supported graphical user
interface design, coding, and testing. 2) Visual Basic dialects were em-
bedded in Microsoft Office programs such as Excel and Access, capable
of extending the functionality of these programs.

While Visual Basic – up to the version Visual Basic 6 – was just an
easy-to-use procedural event-oriented programming language, the intro-
duction of Microsoft's .NET platform brought a fundamental redesign of
the language. Visual Basic became a full-fledged object-oriented pro-
gramming language with all the important object-oriented features such
as classes, inheritance, polymorphism etc., similar to Java and C++. The
name was changed to Visual Basic .NET.

The design of this language is completely different from Visual
Basic 6 and earlier versions. It is based on the general concepts and
mechanisms of the .NET framework (cf. section 3.5.2). That is why the
other .NET languages such as C# are very similar to Visual Basic .NET.
Although they look different (syntactically), the fundamental language
concepts are the same.

Visual Basic .NET is embedded in Visual Studio. This is a very
powerful IDE providing the same functionality for all .NET program-
ming languages.

Visual Basic

Visual Basic
.NET

6 Implementation and Testing 358

Other languages

A conventional programming language – as above – is not the only type
of language used in the implementation stage. Other languages are
markup, scripting and macro languages as shown in figure 6-2.

__

Figure 6-2 Languages for implementation of information systems

Implementation
languages

Conventional
programming
languages

Markup
languages

Scripting
languages

Macro
languages

Java
Visual Basic
C++

HTML
XHTML
XML

ASP
JSP
PHP

VBA

Server-side Client-side

JavaScript
VBScript

Implementation
languages

Conventional
programming
languages

Markup
languages

Scripting
languages

Macro
languages

Java
Visual Basic
C++

HTML
XHTML
XML

ASP
JSP
PHP

VBA

Server-side Client-side

JavaScript
VBScript

A markup language is a language that uses markups to specify
properties of text or text documents. Markup languages have become
the primary means of creating front-ends for web based systems. The
most important markup languages are HTML, XHTML (eXtensible
HTML) and XML.

Extensions of static web pages are developed with the help of scripts.
Scripts are programs embedded in web pages (client-side scripts) or
running on a web server (server-side scripts), written in a scripting
language. A scripting language is usually embedded in a scripting
technology, because it is not the naked language but the technology
around that allows the language to access and manipulate web objects.
For example, the scripting technology for server-side scripting in Mi-
crosoft systems is ASP (Active Server Pages), but the language used to

Other
implementation
languages

Markup
languages

Scripting
languages

6.1 Implementing the Design 359

write the scripts is Visual Basic. In environments working with JSP
(JavaServer Pages), the scripts are small Java programs.

Some scripting technologies are available for server-side scripting
only, others for client-side scripting. JavaScript is the most commonly
used language for client-side scripting, while ASP, JSP and PHP are the
major technologies for server-side scripting.

A macro is a piece of code similar to a script. Macros have been used
in many contexts. Today, a macro usually stands for a sequence of steps
that is initiated by a user action (such as pressing a button or a keyboard
combination). Behind this button or keyboard combination is a program
that executes the desired steps. Some macros are just a few lines of
code, but others extend over many pages of program text.

A macro language is a language to write macros. Macro program-
ming is very popular in and around Microsoft Office tools such as
Excel, Access and Word. The programming language used here is VBA
("Visual Basic for Applications"). Voluminous information systems,
especially for small enterprises, have been written using VBA inside
Excel and Access. Likewise, many end-users develop their personal
information systems in this way. The formatting of this book was done
with the help of macros written in VBA that run inside MS Word.

Technology-supported programming

Not all program code needs to be written from scratch. Actually the op-
posite is true. Most code of a typical information system has been writ-
ten by other people before or is generated automatically. What is left to
the programmers in the implementation phase are four major tasks:

1. Generating code from diagrams, models and/or GUI designs, and

extending or modifying the code. This is discussed below and in
sections 6.1.2 and 6.1.3.

2. Writing application-specific code that cannot be generated.
3. Invoking prewritten code available through APIs (application pro-

gramming interfaces) and/or including code from program librar-
ies into the system under development. This will be discussed in
section 6.2.3.

4. Testing code pieces as they are created, in parallel with the pro-
gramming.

Although testing is usually considered as an independent set of activi-
ties (or an independent stage), the immediate testing of new code pieces
is so closely intermingled with the writing of these code pieces that it

Macro languages

What is left to the
programmers?

6 Implementation and Testing 360

cannot reasonably be separated. Therefore we include this type of
testing (actually: module testing, cf. section 6.3.4) as a programmer's
responsibility.

Generating code from class diagrams

Code generation from class diagrams is a standard feature of CASE
tools. The result consists of such code that could be automatically
derived from the information available in the design class diagrams.

Generated Java code for the two classes "Invoice" and "InvoiceItem"
of figure 5-53 is shown in figures 6-3 to 6-6. The CASE tool that pro-
duced the code is the same one we used before (Enterprise Architect).
Attributes contained in the DCD were adopted as private variables in
the class definitions. Some new variables were also created by the tool
(prefixed by "m_"). These variables are needed to reference other ob-
jects. For example, in the "Invoice" class there are new "m_Customer"
and "m_InvoiceItem" variables through which the respective "Custom-
er" and "InvoiceItem" objects can be accessed.

Java method stubs were also generated. Since the DCD does not
contain much information regarding methods, only the methods' signa-
tures (method name, parameters, return types), empty comments for the
parameters and return statements in the methods' bodies could be
derived automatically. The programmer is expected to extend, modify
and/or delete the generated code, writing program statements and
comments.

The tool generated parameterless constructors, in addition to the
parametrized constructors defined in the DCD. So-called getter and
setter methods were also created§. Some CASE tools generate these
methods by default, others do so only if these methods are explicitly
specified. (Our CASE tool required us to explicitly specify getters and
setters in the design class diagram. The stubs that were generated from
this extension are shown in figure 6-4.)

Code generation for the two classes "Invoice" and "InvoiceItem" (cf.
figures 6-3 and 6-5) was satisfactory insofar as the tool made no real
mistakes. One missing point is, however, that no reference from the
"InvoiceItem" class to the "Invoice" class was created. A reference was
only generated in the other direction (variable "m_InvoiceItem").

§ Getter and setter methods are methods used to access the values of private

variables. According to the information-hiding and encapsulation priniciples,
other objects should not be allowed to access internal details of an object's
implementation. A common solution is instead to define a method returning
the object's value ("get") and a method to set the object's value ("set").

Generated Java
code for "Invoice"
and "InvoiceItem"

Constructors,
getter and setter
methods

6.1 Implementing the Design 361

Figure 6-3 Generated Java code for "Invoice" class

/**
 * @version 1.0
 * @created 27-Dec-2007 10:25:14
 */
public class Invoice {

 private IDType invoiceID;
 private Date date;
 private Employee salesRep;
 public Collection m_InvoiceItem;
 public Customer m_Customer;

 public Invoice(){

 }

 /**
 *
 * @param customer
 */
 public Invoice(Customer customer){

 }

 public void finalize() throws Throwable {

 }

 /**
 *
 * @param invoiceItem
 */
 public void addItemLine(InvoiceItem invoiceItem){

 }

 /**
 *
 * @param invoiceItem
 */
 public void deleteItemLine(InvoiceItem invoiceItem){

 }

 public double getTotal(){
 return 0;
 }

 public String printInvoice(){
 return "";
 }

}

6 Implementation and Testing 362

Figure 6-4 Getter and setter methods for "Invoice" class

 public IDType getInvoiceID(){
 return null;
 }

 /**
 *
 * @param newId
 */
 public void setInvoiceID(IDType iDType){

 }

 public Date getDate(){
 return null;
 }

 /**
 *
 * @param date
 */
 public void setDate(Date date){

 }

 public Employee getSalesRep(){
 return null;
 }

 /**
 *
 * @param employee
 */
 public void setSalesRep(Employee employee){

 }

Therefore the programmer will need to manually add to the code of
"InvoiceItem" a declaration such as the following:

 public Invoice m_Invoice;

This is only a minor change, but it shows that generated code should
be reviewed carefully. ("public" is a Java modifier created for associa-
tion variables by the CASE tool. With respect to information hiding and
encapsulation, "public" is actually not appropriate and should be
changed to "private", as in the next example.)

A more severe example where code revision is indispensable is the
code generated for the "Advertisement", "Edition" and "Publication"

Generated code
must be
reviewed care-
fully

6.1 Implementing the Design 363

classes (cf. figure 6-6). The latter class is actually an association class
connecting the other two classes.

Figure 6-5 Generated Java code for “Invoiceltem” class

/**
 * @version 1.0
 * @created 27-Dec-2007 10:55:29
 */
public class InvoiceItem {

 private IDType itemID;
 private double price;
 private Advertisement advertisement;
 private Edition edition;
 public Publication m_Publication;
 public Collection m_Advertisement;
 public Collection m_Edition;

 public InvoiceItem(){

 }

 public void finalize() throws Throwable {

 }

 /**
 *
 * @param advertisement
 * @param edition
 * @param double
 */
 public InvoiceItem(Advertisement advertisement,
 Edition edition, price double){

 }

 /**
 *
 * @param publication
 */
 public InvoiceItem(Publication publication){

 }

 public double getPrice(){
 return 0;
 }

}

What the CASE tool generated, however, is an unsatisfactory mapping.
In the "Advertisement" class, a variable to reference "Edition" objects

6 Implementation and Testing 364

was created ("m_Edition"), but this is only a one-directional mapping.
Neither did the tool generate variables representing the connections
from "Advertisement" objects and from "Edition" objects to "Publica-
tion" objects.

Figure 6-6 Generated code for "Advertisement", "Edition" and "Publication"

/**
 * @version 1.0
 * @created 27-Dec-2007 11:11:54
 */
public class Advertisement {

 private IDType adID;
 private String adName;
 private String description;
 private String fileName;
 public Collection m_Edition;
 ...
}

public class Edition {

 private IDType edId;
 private String volume;
 private String issue;
 private Date adsDeadline;
 private Date date;
 ...
}

public class Publication {

 private Advertisement advertisement;
 private Edition edition;
 private int state;
 private double price;
 ...
}

The proper mapping would have to be written by the programmer. The
new code is shown in figure 6-7 (additional statements in italics). Three
major changes are: 1) Association variables "m_Publication" were
introduced in "Edition" and "Advertisement" as private variables. 2)
The generated public association variable "m_Edition" in "Advertise-
ment" was discarded. 3) Two methods "addPublication" to fill the col-
lections "m_Publication" in "Edition" and "Advertisement" were added.

More methods to handle the generated and the additional association
variables have to be written by the programmer. We refrain from dis-

The programmer
has to write a
proper mapping

6.1 Implementing the Design 365

cussing more coding details since the topic of this book is not Java pro-
gramming.

Although it would be nice if the CASE tool generated code such as
the one in figure 6-7 (plus additional extensions mentioned) automati-
cally, most state-of-the-art tools produce incomplete mappings similar
to the code shown in figure 6-6.

Figure 6-7 Modifications of generated code

/**
 * @version 1.0
 * @created 27-Dec-2007 11:25:51
 */
public class Advertisement {

 private IDType adID;
 private String adName;
 private String description;
 private String fileName;
 private Collection m_Publication;
 ...

 public void addPublication(Publication publication) {
 ...
 }
}

public class Edition {

 private IDType edId;
 private String volume;
 private String issue;
 private Date adsDeadline;
 private Date date;
 private Collection m_Publication;
 ...

 public void addPublication(Publication publication) {
 ...
 }
}

public class Publication {

 private Advertisement advertisement;
 private Edition edition;
 private int state;
 private double price;
 ...
}

Most tools
produce
incomplete
mappings

6 Implementation and Testing 366

6.1.2 Implementing the Database
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Provided that the information system under development will employ a
relational database – as the majority of today's IS do – implementing the
database means primarily to create database schemata in a DDL (data
definition language). The dominating language for relational databases
is SQL (structured query language). Therefore the data definitions have
to be formulated in SQL, in particular in "create table" statements.

We will illustrate the data definitions for the advertisement-ordering
system with SQL statements, assuming that the reader has some basic
knowledge of SQL. Readers who do not know SQL are advised to con-
sult an introductory text on SQL [e.g. van der Lans 2006], or skip this
section.

Since the UML data model we created with our CASE tool before
contained plenty of implementation oriented detail, generating complete
and correct SQL data definition statements is straightforward. The result
is shown in figure 6-8. (Some line breaks were removed from the
generated code to make it fit into the print area of this book.) The code
was generated for an Oracle database, because we selected this DBMS
before (cf. section 5.3.2).

The first portion of the generated SQL code contains "drop" state-
ments for all tables, meaning that tables with the same names as existing
tables are discarded. The "create table" portion mirrors the attributes of
the respective tables in the data model of figure 5-54.

The generator did not place primary-key clauses directly with the
respective attributes, such as

 CREATE TABLE Advertisement
 (adID VARCHAR(32) PRIMARY KEY NOT NULL ...;

but specified all primary keys as constraints on the respective tables
with the help of "alter" statements. Figure 6-8 shows three of the nine
generated "alter" statements – one for each "create" statement. (The rest
have been omitted from the figure.)

Foreign keys were also not declared directly via foreign-key clauses,
but specified as constraints; for example:

CASE tools
generate
complete SQL
data definitions

Primary keys are
specified as
constraints

6.1 Implementing the Design 367

Figure 6-8 Generated DDL code for advertisement-ordering system

DROP TABLE Advertisement CASCADE CONSTRAINTS;
DROP TABLE Agency CASCADE CONSTRAINTS;
DROP TABLE CommissionScheme CASCADE CONSTRAINTS;
DROP TABLE Customer CASCADE CONSTRAINTS;
DROP TABLE Edition CASCADE CONSTRAINTS;
DROP TABLE Invoice CASCADE CONSTRAINTS;
DROP TABLE InvoiceItem CASCADE CONSTRAINTS;
DROP TABLE Publication CASCADE CONSTRAINTS;
DROP TABLE RegularCustomer CASCADE CONSTRAINTS;

CREATE TABLE Advertisement (
 adID VARCHAR(32) NOT NULL, adName VARCHAR(120),
 description CLOB, fileName VARCHAR(255));

CREATE TABLE Agency (
 custID VARCHAR(32) NOT NULL, category VARCHAR(50),
 contactPerson VARCHAR(120), comID VARCHAR(32));

CREATE TABLE CommissionScheme (
 comID VARCHAR(32) NOT NULL, description CLOB);

CREATE TABLE Customer (
 custID VARCHAR(32) NOT NULL, name VARCHAR(120),
 address VARCHAR(255), phoneNumber VARCHAR(28));

CREATE TABLE Edition (
 edID VARCHAR(32) NOT NULL, volume VARCHAR(50),
 issue VARCHAR(50), date DATE);

CREATE TABLE Invoice (
 invoiceID VARCHAR(32) NOT NULL, custID VARCHAR(32),
 date DATE, salesRep VARCHAR(32));

CREATE TABLE InvoiceItem (
 itemID VARCHAR(32) NOT NULL, adID LONG, edID LONG,
 invoiceID VARCHAR(32), itemPrice NUMBER(8,2),
 quantity NUMBER(8,2));

CREATE TABLE Publication (
 adID VARCHAR(32) NOT NULL, edID VARCHAR(32) NOT NULL,
 custID VARCHAR(32) NOT NULL, invoiceItemID VARCHAR(32) NOT NULL,
 state VARCHAR(50));

CREATE TABLE RegularCustomer (
 custID VARCHAR(32) NOT NULL,
 discountScheme VARCHAR(50));

ALTER TABLE Invoice ADD CONSTRAINT PK_Invoice
 PRIMARY KEY (invoiceID);

ALTER TABLE InvoiceItem ADD CONSTRAINT PK_InvoiceItem
 PRIMARY KEY (itemID);

ALTER TABLE Publication ADD CONSTRAINT PK_Publication
 PRIMARY KEY (adID, edID);

 ...

ALTER TABLE Invoice ADD CONSTRAINT FK_Invoice_Customer
 FOREIGN KEY (custID) REFERENCES Customer (custID);

ALTER TABLE InvoiceItem ADD CONSTRAINT FK_InvoiceItem_Invoice
 FOREIGN KEY (invoiceID) REFERENCES Invoice (invoiceID);

6 Implementation and Testing 368

 ALTER TABLE InvoiceItem ADD CONSTRAINT FK_InvoiceItem_Invoice
 FOREIGN KEY (invoiceID) REFERENCES Invoice (invoiceID);

Seven "alter" statements like the above were generated – one for each
foreign-key relationship. Two of them are included in the figure.

The database is ready to use. Java classes of the advertisement-order-
ing system could access the database via a DML (data manipulation
language) directly or through middleware such as JDBC (Java database
connectivity). Database generation from data models is the part of code
generation that has always worked best, even with the CASE tools of
the early 1990s.

6.1.3 Implementing the User Interface
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Regarding the user interface, design and implementation activities are
closely connected. The reason for this is that user interfaces today are
usually designed in a prototyping approach. When CASE tools, IDEs or
GUI toolboxes are employed to develop a GUI prototype, the result is
available as executable code – notwithstanding the fact that the user
interface was probably created by simple drag-and-drop.

What is missing in such a prototype is the functionality behind the
GUI elements, e.g. what happens when an item from a listbox is
selected or a button is pressed? These events caused by the user must be
handled in the program, requiring that code is written – so-called event
handlers.

When the user-interface plays a dominant role in the system under
development, GUI design and implementation can even be the initial
activities – before the rest of the system is implemented. An event-
driven, object-oriented process submodel for design and implementation
would place GUI creation before implementation of the non-GUI
classes and the database:

1. Design the user interface (i.e. generate, position and size GUI

objects; think about possible events).
2. Define relevant properties and methods (event handlers) for the

GUI objects.

GUI oriented
design and
implementation

Event-driven
subprocess
model

6.1 Implementing the Design 369

3. Design the non-GUI classes of the problem domain and the data-
base.

4. Implement event handlers to be executed when a GUI event
occurs.

5. Implement the non-GUI classes, especially the methods to be
invoked by GUI event handlers, and the database.

In the case that the user interface is HTML based, an event handler
would be a script. In a Windows form, it is a Visual Basic .NET method
(a "sub" procedure). In a Java form, an event handler is a Java method.

As an example, consider a registration form for online courses pro-
vided by a seminar company. The form contains a number of form ele-
ments (controls) where clients can enter their data and course selections,
including the following:

– Text fields for the client's first name, last name and e-mail address

(with HTML names "txtFirstName", "txtLastName", "txtEmail")
– Check boxes for the seminars to select from (with HTML names

"chkBi101", chkMoIS" and "chkWiF")
– Submit, reset and print buttons

Several GUI events can happen in this form, for example: text is entered
into a text field; a check box is marked; one of the three buttons is
pressed, etc. Suppose the event "submit button is pressed" occurs. An
event handler dealing with this event will be invoked. It needs to check
whether the data entered are plausible and then submit the form to the
web server for processing.

Figure 6-9 shows a simplified excerpt of an HTML document con-
taining the web form code. When the user fills out the form and presses
the submit button on the GUI, the "onSubmit" event occurs. Within the
<form> tag, an event handler associated with the "onSubmit" event is
invoked. The event handler in this case is a JavaScript function named
"checkInput". If it returns true, the form is sent to the web server where
it will be processed by a PHP script called "registration.php".

Some of the code has been omitted in the figure, in particular the
definitions of the form elements (controls). Names of the form elements
are used in the event-handler code. In figure 6-9, these are the text-field
names ("txtFirstName") and check-box names (e.g. "chkBi101").

The above example shows that event handling in JavaScript is quite
simple. In Visual Basic it is both simple and powerful, whereas in Java
a lot of work before and around the actual handling has to be done. On

Event handlers

An example

A JavaScript
event handler

6 Implementation and Testing 370

the other hand, Java provides the most powerful event-handling facili-
ties.

The question of how easy or difficult it is to develop a graphical user
interface depends not only on the language but also on the desired flexi-
bility. On a scale from static to dynamic, three major categories of user
interfaces can be distinguished:

– completely static
– semi-static
– completely dynamic

__

Figure 6-9 JavaScript event handler in a web form

<html>
<head>
 <title>Registration Form</title>
 <script type="text/javascript"> <!--

 function checkInput() {
 with(document.regForm) {
 if(txtFirstname.value.length == 0)
 alert("Your first name is missing");
 else if(txtLastname.value.length == 0)
 alert("Your last name is missing");
 else if((txtEmail.value.indexOf("@") < 0) ||
 (txtEmail.value.indexOf(".",
 txtEmail.value.indexOf("@")) < 0))
 alert("Your e-mail address is wrong!");
 else if(!(chkBi101.checked || chkMoIS.checked ||
 chkWiF.checked))
 alert("You did not register for any course!");
 else {
 var result;
 result = confirm("Send your data?");
 return result;
 }
 return false;
 }
 } //-->
 </script>
</head>

<body>
 <form name="regForm" method="get"
 action="registration.php" enctype="text/plain"
 onSubmit="return checkInput()">

 ...

 </form>
</body>
</html>

6.1 Implementing the Design 371

A completely static GUI is one where all form elements are placed on
the user interface and all properties are defined when the GUI is
designed and implemented. Developing such a user interface is easy
when it is done "manually", i.e. with the help of a GUI tool. In this case
the designer can employ the drag-and-drop features provided by the
tool.

The actual program code that will create the user interface (i.e. the
screen layout and the controls) when the program is executed is gener-
ated behind the screen, along with the designer's drag-and-drop actions.
The GUI is (more or less) fixed in the sense that it is displayed exactly
as it was manually designed. Figure 6-9 described a completely static
GUI§.

A semi-static GUI is created by the designer in the same way as
above. However, when the program executing the GUI code is running,
some properties and values of GUI elements (e.g. form elements such as
text fields, list boxes etc.) are assigned dynamically, or the GUI may
even be reconfigured dynamically (e.g. adding new elements, omitting
pre-designed ones). If there are several options of what to display in a
form and how to display it, then a designer could create several forms
and allow the program to choose the appropriate alternative at runtime.

The developer needs to know the details of the available GUI con-
trols in order to be able to fill them with content and tailor their appear-
ance. In an object-oriented programming language, this usually means
that the developer must know the object model underlying the user-
interface software (e.g. the HTML document object model used by the
web browser) and the methods and properties of the generated objects.

A completely dynamic GUI is created by a program during runtime,
usually from code that was written by a human developer and not gener-
ated by a tool. Dynamic GUIs are required when the elements and/or
contents of the user interface depend on the user, the state of the pro-
gram or the data. An example where dynamic GUI creation is needed is
personalized web pages.

Writing a program that entirely defines a user interface through text
(program statements) by hand is a cumbersome and difficult program-
ming task. The developer needs to know not only the available proper-
ties and methods of generated objects, as in the semi-static case, but also
how to create the objects. In an object-oriented programming language,

§ With regard to behavior resulting from user actions, the GUI underlying figure

6-9 is in fact dynamic. Plausibility checks are done, and submission of the
form will result in some server action. However, from the perspective dis-
cussed here – creating the form itself – the GUI is a completely static one.

Completely static
GUIs

Semi-static GUIs

Completely
dynamic GUIs

6 Implementation and Testing 372

this usually means that the developer must know the available GUI
packages, in particular the classes from which concrete user-interface
objects can be instantiated or from which subclasses can be derived (e.g.
the Java Swing classes and APIs).

The reader can imagine how much work it takes to write GUI code
directly in a programming language by looking at the example in figure
6-12. This code was generated with the help of a visual GUI editor and
a built-in code generator. Suppose the same code had to be developed
without such tools. Then the developer would need to create all the ob-
jects, attributes and methods through manually writing Java statements.
That this can be avoided illustrates how powerful today's development
tools for graphical user interfaces actually are.

Generating a graphical user interface

In the following example, creating a GUI with the help of a GUI editor
and a code generator is demonstrated. The subject is a development of a
user form for the advertisement-ordering system through which custom-
ers can place orders for publication of advertisements.

Figure 6-10 shows one of the forms provided for customer inter-
action. It is assumed that a login form, or a form for registration of new
users, redirected the customer to the current form. What a customer
should be able to do now are three things:

1. Place an order to publish a new advertisement. In this case, the

customer should be assisted in finding an advertisement file on his
or her computer and then uploading the file.

2. Place a repeat order for an existing advertisement. The customer
should be allowed to select from a list of previously published
advertisements. A drop-down list as shown in figure 6-10 ("Junior
Accountant – 2/2008") provides this information. In the text area
underneath the drop-down list, the customer can write instructions
regarding how the previous advertisement should be amended.

3. Withdraw an already booked order. In this case, open orders
which can still be cancelled (i.e. not in production yet) are provid-
ed in another drop-down list ("Sales Manager – 4/2008").

In the screenshot shown in figure 6-10, the customer was going to book
an advertisement for newspaper edition 12/2008 ("Issue = 12", "Volume
= 2008"). The advertisement he wanted is one that was published before
in this newspaper ("Junior Accountant – 2/2008"). Unfortunately the
deadline for booking advertisements for edition 12/2008 was already

Manually writing
GUI code is
awkward

A user form for
ordering
advertisements

6.1 Implementing the Design 373

over. The ordering system noted this when the customer pressed the
"Check" button, and produced an error message ("Edition closed – no
more orders accepted.")

The GUI in figure 6-10 was created with an integrated development
environment for Java, NetBeans IDE, and an add-on for web develop-
ment, NetBeans Visual Web Pack. (Both are available for download
from http://www.netbeans.org.) We chose a web GUI and not a Java
Swing GUI because more and more business information systems pro-
vide web front-ends for their users instead of proprietary front-ends.

Figure 6-10 Web GUI for advertisement-ordering system

The GUI was largely created by drag-and-drop, with some properties
edited with the tool's property editor. In particular, the names of the
GUI objects and most of the text shown in the figure were defined in
this way. The main purpose of the example is to show different GUI

NetBeans and
NetBeans Visual
Web Pack

6 Implementation and Testing 374

elements and the code generated behind the curtain for these elements.
Since the example and the IDE are Java oriented, the generated code is
in the first place JSP (JavaServer Pages) and Java code.

Figure 6-11 shows JSP code that the NetBeans add-on generated
from the GUI design. The purpose of this figure is not to explain
vendor-specific XML code – NetBeans was originally a product of Sun
Microsystems before it became open source – but to illustrate how
much coding work a GUI tool does for the programmer. If this code had
not been generated from the visual design, the programmer would need
to type similar code manually instead.

The code in the figure contains only the part of the JSP page where
the order form is specified. The page actually begins with XML
information about the namespace§ used, the page structure etc., and it
ends with the respective closing tags. Many tags have attributes with
much more content than what can be displayed in one line of this book.
That is why the text is cut off at the right-hand side.

Figure 6-12 shows excerpts of the Java code. The figure was edited
somewhat to make it fit on a book page, and most of the 15 pages of
generated code was deleted. Lines containing only a colon indicate
omissions. Again, we are not going to explain details of Java program-
ming but only point out some essential features.

The Java code of the advertisement-ordering system is contained in a
package named "advertisement_ordering", generated by NetBeans. All
the GUI components are imported from libraries. For example, the

 import com.sun.rave.web.ui.component.TextField;

statement imports the class "TextField" from the "com.sun.rave.web.ui.
component" library package. An object with the name "orderForm"
with a setter and a getter was created from the specification of this ob-
ject in the GUI design. (The name "orderForm" was set as the value of
the "id" property of the form object; cf. figure 6-14 below.)

From the various GUI components of the form, generated code for
three of them is visible in the boxes on the left-hand side and on the
upper right-hand side of figure 6-12: the text field named "txtIssue" in
which the user can enter the issue of the newspaper, the drop-down list
named "drpPreviousAds1" containing previous advertisement orders,
and the button named "checkBtn" allowing the user to check whether
the intended booking is possible.

§ The namespace has the name "ui" which is used to prefix NetBeans custom

tags. For example, the <ui:button> tag is NetBean's implementation of a button
in JSP.

Generated JSP
code

6.1 Implementing the Design 375

Figure 6-11 Generated JSP code for advertisement-ordering GUI

6 Implementation and Testing 376

__

Figure 6-12 Java code for advertisement-ordering GUI (1)

package advertisement_ordering;

import com.sun.rave.web.ui.appbase.AbstractPageBean;
import com.sun.rave.web.ui.component.Body;
import com.sun.rave.web.ui.component.Button;
import com.sun.rave.web.ui.component.DropDown;
import com.sun.rave.web.ui.component.Form;
import com.sun.rave.web.ui.component.Head;
import com.sun.rave.web.ui.component.Html;
import com.sun.rave.web.ui.component.ImageComponent;
import com.sun.rave.web.ui.component.Label;
import com.sun.rave.web.ui.component.Link;
import com.sun.rave.web.ui.component.Page;
import com.sun.rave.web.ui.component.RadioButton;
import com.sun.rave.web.ui.component.StaticText;
import com.sun.rave.web.ui.component.TextArea;
import com.sun.rave.web.ui.component.TextField;
import com.sun.rave.web.ui.component.Upload;
import com.sun.rave.web.ui.model.Option;
import com.sun.rave.web.ui.model.SingleSelectOptionsList;
import de.uniffo.eabook.example.Edition;
import java.text.DateFormat;
import javax.faces.FacesException;
import javax.faces.event.ValueChangeEvent;

public class MainPage extends AbstractPageBean {
 // <editor-fold desc="Managed Component Definition">

 :

 private Form orderForm = new Form();

 public Form getOrderForm() {
 return orderForm;
 }

 public void setOrderForm(Form f) {
 this.orderForm = f;
 }

 :

 private TextField txtIssue = new TextField();

 public TextField getTxtIssue() {
 return txtIssue;
 }

 public void setTxtIssue(TextField tf) {
 this.txtIssue = tf;
 }

 :

6.1 Implementing the Design 377

__

Figure 6-12 Java code for advertisement-ordering GUI (2)

 private DropDown drpPreviousAds1 = new DropDown();

 public DropDown getDrpPreviousAds1() {
 return drpPreviousAds1;
 }

 public void setDrpPreviousAds1(DropDown dd) {
 this.drpPreviousAds1 = dd;
 }

 :

 private Button checkBtn = new Button();

 public Button getCheckBtn() {
 return checkBtn;
 }

 public void setCheckBtn(Button b) {
 this.checkBtn = b;
 }

 :

 :

 public String checkBtn_action() {
 String volume = (txtVolume.getText() != null)
 ? txtVolume.getText().toString() : "";
 String issue = (txtIssue.getText()) != null
 ? txtIssue.getText().toString() : "";
 Edition ed = Edition.getEdition(volume, issue);

 if (ed == null) {
 errMsgText.setText("No such edition - " +
 "please check issue and volume");
 }
 else if (!ed.isBeforeDeadline()) {
 errMsgText.setText("Edition closed - " +
 "no more orders accepted");
 }
 else {
 String sDate = DateFormat.getInstance().format
 (ed.getDeadline());
 errMsgText.setText(
 "Ordering open - deadline is: " + sDate);
 }

 return null;
 }
}

6 Implementation and Testing 378

Figure 6-12 also shows some code the programmer added to the
generated code. The second box on the right-hand side contains event-
handler code for the "checkBtn" button. This code was executed when
we created the screenshot of figure 6-10. In particular, the "else if"
branch of the "if" statement produced the error message "Edition closed
– no more orders accepted."

6.2 Lower CASE

Following the distinction between upper and lower CASE introduced in
section 5.3, tools supporting the programming and testing stages fall
into the category of lower CASE. Historically, many lower CASE tools
started around a programming language, providing editing and debug-
ging facilities in addition to a compiler and a runtime environment for
the language. An example of a lower CASE tool with which many stu-
dents previously started their programming careers is Turbo Pascal. To-
day a large number of toolsets – both language-specific and language-
independent – are available for programming and testing activities.

6.2.1 Integrated Development Environments (IDEs)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Lower CASE tools are usually called IDEs (integrated development
environments) today. An IDE can be characterized as follows:

An IDE (integrated development environment) is a set of inter-
locking tools for the development of programs. Core tools are
tools supporting programming and testing. Additional tools may
be included, supporting design and management tasks.

A summary of typical core tools and additional tools extending the core
functionality is given in figure 6-13. In the core of an IDE are the
following tools:

Definition: IDE

6.2. Lower CASE 379

– A text editor "understanding" the programming language used. Such
an editor is capable of checking the syntax, and to a certain degree
the semantics, of program statements entered by the developer.

– A GUI toolbox supporting the creation of graphical user interfaces.
The toolbox provides a collection of controls that can be arranged by
drag-and-drop features on a design pane. GUI code can be generated
automatically from the design.

– A compiler or an interpreter for each programming language sup-
ported by the IDE.

– A build-automation tool (e.g. linker, binder, linkage editor) assem-
bling all needed machine-language modules (compiled application
program modules and library modules) into one executable program.

– A debugger tracing program errors and pointing out to the developer
what is wrong at what position of the source code.

__

Figure 6-13 Typical tools of an IDE

Core IDE Tools Additional Tools
Text editor Design tools
GUI toolbox Class browser
Compiler/interpreter Forms designer
Linker, binder Version-control system
Debugger Project-management tools

The user interface of an IDE (NetBeans) is shown in figure 6-14. This
IDE was used to create the GUI of the advertisement-ordering system in
figure 6-10. Five panes are currently open and visible in the screenshot:

• Project window – displaying the structure of the "Advertisement

Ordering" project on the left, with web pages, JavaBeans, libraries
etc.

• GUI builder window – the working area in the middle where the
GUI design takes place. The developer is currently working on the
design of the "MainPage.jsp" page.

• Palette window – the widgets provided by the GUI toolbox on the
right-hand side, e.g. labels, text fields, buttons etc. They can be
dragged and dropped onto the design pane and positioned wherever
they are needed.

IDE toolset

IDE user
interface

6 Implementation and Testing 380

• Outline window – providing a hierarchical view of the objects; in the
screenshot: displaying the document structure.

• Properties window – displaying properties of the objects. When the
screenshot was taken, the "orderForm" object (i.e. the entire form for
ordering advertisements) hightlighted in the outline window was the
active object. Therefore the properties of this object are shown in the
window.

The properties window allows the developer to simply enter an object's
properties instead of assigning them in complicated JSP or Java code.
For example, the form object in figure 6-14 received its name "order-
Form" in such a way that the text string "orderForm" was typed in the
"id" property field of the properties window at the right-hand side (thus
overwriting the generated default name "Form1.")

The NetBeans IDE contains more tools than the ones visible in figure
6-14. Some will be used further below, in particular the text editor,
compiler and debugger (cf. section 6.3.5).

While a text editor, GUI toolbox, compiler or interpreter, linker/bind-
er and debugger represent a minimal set of tools found in all IDEs,
comprehensive systems on the market offer a wide range of additional
tools as listed in figure 6-13:

• Program design tools – providing simple or moderate support for

the creation of UML diagrams, or for importing UML diagrams cre-
ated by an upper CASE tool. This means that the IDE understands
UML diagrams and is able to generate code from the diagrams.

• A class browser – visualizing the structure of an object-oriented
system (e.g. in the form of class hierarchies) and allowing inspection
of the classes' members.

• A forms designer as a special type of GUI tool – supporting the crea-
tion of forms-based user interfaces common in business information
systems.

• A version-control system (VCS) – keeping track of various versions
of modules, subsystems and the whole system when several devel-
opers are working in parallel (on different or on the same parts of the
system). For example, such a tool time-stamps and records all
changes submitted.

• Project-management features can be embedded in or connected with
an IDE. For example, the Eclipse IDE provides a large number of
plug-ins for project management.

Setting
properties

Additional IDE
tools

6.2. Lower CASE 381

Figure 6-14 An IDE user interface (NetBeans)

Version-control and project-management components embedded in an
IDE usually do not reach the power of dedicated systems for these tasks.
However, an IDE together with dedicated version-control and project-
management systems can be a very powerful tool combination for soft-
ware-development projects, provided that the tools are integrated.
(Dedicated version-control and project-management systems will be
discussed in chapters 8 and 9.)

Lower CASE tools assist programmers in many ways. The most
obviously felt support is for editing and debugging. Along with the typ-
ing of program code, most tools immediately check the syntax of each
keyword, identifier or text line entered, make auto-completion sugges-
tions, and provide useful additional tips. Debugging with an IDE is very
convenient, raising the developer's productivity significantly. This will
be demonstrated in section 6.3.5.

6 Implementation and Testing 382

Well-known IDEs

An example of a Java-oriented IDE is NetBeans, the tool we used for
GUI design and implementation in the previous section. Other Java
IDEs, as mentioned in section 3.5.1, are Sun Java Studio, Microsoft
J++, JBuilder, Eclipse and WebSphere Studio Application Developer.

In the Microsoft .NET world, the dominating IDE is Visual Studio
.NET (http://www.microsoft.com/vstudio). This is a very powerful envi-
ronment for all major .NET programming languages, including Visual
Basic, Visual C++, Visual C#, and Visual J#.

Well-known multi-language IDEs are Eclipse (http://www.eclipse.
org), supporting Java, C, C++, Fortran, Cobol and scripting languages,
and Borland Developer Studio (http://www.borland.com), covering C,
C++, C# and Delphi/Object Pascal.

6.2.2 Connecting Upper and Lower CASE
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Unfortunately the dream of I-CASE (integrated CASE – tool integra-
tion across all stages and activities of the software life cycle) did not
come true, as mentioned in section 5.3. Today we have powerful upper
CASE tools and powerful lower CASE tools.

The reader may wonder how upper and lower CASE tools come
together. An essential question for programming is: What happens with
the results created with an analysis and design tool, in particular with
the class diagrams? Are they put in the drawer, or can they be used – in
electronic form – as input for the next activities?

We already saw some overlap of upper and lower CASE in the
previous examples: The lower CASE tool (NetBeans) was employed to
design a GUI by drag-and-drop, from which Java code was generated.
On the other hand, the upper CASE tool (Enterprise Architect) pro-
duced Java stubs and SQL statements, i.e. code for implementation.
However, this is the end of the upper CASE tool's functionality.

Suppose the project under consideration employs Enterprise Archi-
tect (EA) for analysis and design, and NetBeans for implementation and
testing. The Java code generated from the design class diagram is inside
EA, but now we have to continue with NetBeans.

Java IDEs

Visual Studio
.NET

Other multi-
language IDEs

What happens
with the analysis
and design
results?

Upper and lower
CASE tools are
overlapping

6.2. Lower CASE 383

Some IDEs provide import features allowing the developer to import
models (diagrams) created with a different tool. For example, since
Rational Rose used to be a common toolset for analysis and design,
some IDEs such as Visual Studio and JBuilder allowed Rose UML
models to be imported. Plug-ins are often provided to do this work.

Apart from such point-to-point import features, the situation regard-
ing upper and lower CASE integration is rather disillusioning. What
many programmers do in order to avoid starting from scratch is copy-
and-paste. Since the code generated by an upper CASE tool is just nice-
ly formatted yet plain text, it is easy to copy into the workspace of the
lower CASE tool. In this way, the generated declarations and stubs can
be reused and extended by application-specific code details.

As an example, consider the code generated with Enterprise Archi-
tect as shown in the figures 6-3 and 6-5. The programmer would copy
this code from the EA's source-code pane and paste it onto the source-
code pane of NetBeans. Since the result in NetBeans looks exactly the
same as the source in EA, we refrain from showing the same in yet
another figure.

Subsequently, the actual programming can start: The programmer
will write Java code in NetBeans to implement, for example, the two
"InvoiceItem" constructors:

 public InvoiceItem(Advertisement advertisement,
 Edition edition, price double) {...}
 public InvoiceItem(Publication publication) {...}

The programmer might delete the generated parameterless construc-
tor and then think about an efficient way to obtain the advertisement's
price within the generated "getPrice" method, substituting the line
"return 0" by a more meaningful result:

 public double getPrice(){
 return 0;
 }

6.2.3 Program Libraries and APIs
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Using already existing code in the implementation stage is obviously a
good way to reduce the implementation effort. Prefabricated modules
are available in program libraries (also called module, class or code

Upper and lower
CASE tools are
not integrated

6 Implementation and Testing 384

libraries). In fact, the total code of a typical software system today con-
sists mainly of prefabricated modules. Only a very small percentage of
the code is actually written by a programmer or generated by a CASE
tool. The major part of the system is composed of existing code that was
imported from program libraries.

Program libraries have been created since computing began and con-
tain reusable modules for many purposes. Application-oriented libraries
have become particularly popular in mathematics and statistics. For
example, the NAG Fortran libraries (http://www.nag.co.uk), the Matlab
libraries (http://www.mathworks.com/products/matlab) and the IMSL
libraries (http://www.vni.com/products/imsl) are very comprehensive
program libraries containing thousands of subroutines for numerical and
statistical problems. Other examples are low-level programming func-
tions such as computer arithmetics, input/output, and operating-system
functions made available to application programs through libraries.

In the development of programming languages, it became common
to make languages extensible, or in fact to extend the language from the
beginning on, with the help of program libraries. This means that a large
part of the functionality is not provided through the language core but
through extensions via libraries. Most functionality is thus not invoked
through direct program commands but through library calls.

Program libraries are accessed through interfaces. Early libraries
(e.g. numerical libraries) typically provided subroutines and functions as
interfaces the programmer could invoke. Nowadays, especially in ob-
ject-oriented languages, the interfaces are called APIs (application
programming interfaces).

Java APIs

A very typical language extensible through program libraries is Java.
This language has only about 15 types of statements§ and 50 keywords,
presenting some desired properties or behavior the programmer may
specify. However, thousands of predefined classes, along with the bare
language, are available in class libraries! Programmers may use these
classes in their programs. In fact, they are actually forced to do so
because typical program features (such as reading input and writing
output on a GUI) are only available from libraries.

An API in Java is a specification of a class or an interface, describing
how the class or the interface can be used. This means in particular that
the attributes and the methods (including the constructors) are specified.

§ The weakener "about" is used because the number depends on what is counted

as an individual statement type.

Mathematical
and statistical
libraries

Language
extensions
through libraries

A Java API is a
class or interface
specification

6.2. Lower CASE 385

Figure 6-15 Java API packages [Sun 2007]

Java APIs

Java SE APIs

Core APIs

- AWT (abstract windowing toolkit)

- Swing: creating GUIs and more
- RMI (remote method invocation)
- accessing naming services
- utility classes
- handling text, dates, numbers and messages
- database access
- security framework

- performing arithmetics
- fundamental classes of the Java language
- input and output
- developing JavaBeans
- creating and using applets

java.awt

javax.swing
javax.rmi

java.text
java.sql, javax.sql
java.security
java.net
java.math

java.io
java.beans
java.applet

javax.naming
java.util

APIs for other technologies

Jave ME APIs

Java EE APIs

Non-core APIs

Other APIs

XML & web services

...

...

...

- JDI (Java debug interface)

- mirror API
- inspecting source-level structure of programs and libraries
- JAAS (Java authentication and authorization service)

- Java API for XML-based web services

- Java API for XML binding
- Java API for XML processing

- contains several packages for XML

- Java web services

- managing distributed transactions
- Java servlets
- Java persistence
- modeling a mail system

- Java messaging service
- JavaServer Faces
- EJB (Enterprise JavaBeans)

...

com.sun.jdi

...
com.sun.mirror
com.sun.javadoc
com.sun.security.auth

JAX-WS

...
JAXB
JAXP

javax.xml
...

javax.persistence

javax.transaction

javax.jws

javax.servlet

javax.mail

javax.jms
javax.faces
java.elb

java.lang

- implementing networking applications

6 Implementation and Testing 386

The meaning of the term "interface" in Java is different from the general
meaning in software engineering. A Java interface is a reference type,
similar to a class, that does not contain method bodies. Interfaces cannot
be instantiated. They can only be implemented by classes or extended
by other inter-faces [Zakhour 2006].

Java APIs are organized into packages containing related classes and
interfaces. Packages can be nested, i.e. a package can be a part of an-
other package which in turn can belong to yet another package etc.
Therefore an identifier of a class member accessed through an API can
contain a long path, for example:

javax.swing.border.LineBorder.createBlackLineBorder()

This is an invocation of the method "createBlackLineBorder" of the
"LineBorder" class contained in the "border" package. The "border
package is part of the "swing" package that is contained in "javax". (In
practice, the developer would probably import the whole "border" pack-
age or the "LineBorder" class to avoid typing the long path name.)

Java APIs are available for all editions of the Java platform – Java
SE (standard), Java EE (enterprise), Java ME (micro) and for a number
of software technologies around, such as web services and e-mail.

Figure 6-15 summarizes the overall structure of the Java APIs and
lists a subset of the available top-level packages. Note that the names
are package names and not class names. The available prebuilt classes
are contained inside the packages or in nested packages inside the outer
packages.

The Java SE APIs are divided into core, non-core, XML & web
services and other APIs. In the Java enterprise edition, more APIs are
provided, including the EJB (Enterprise JavaBeans) APIs which are at
the core of professional business applications today.

6.3 Testing

It is intentional that this section has a rather unspectacular title ("test-
ing"). Other authors choose titles such as "software quality assurance",
"software validation" or "software verification" for similar contents.

6.3 Testing 387

Although we will discuss different approaches as well, at the end it all
comes down to testing.

6.3.1 Establishing Trust: Validation and Verification
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Wouldn't it be nice if we could assure that a program is free of errors? A
dream of all software engineers – yet impossible to reach for most non-
trivial programs. It is a well-known fact in software engineering that
software contains errors, just as other products contain errors. The only
difference is that with tangible products the errors are called defects, not
errors.

Before discussing efforts to make software correct, we first have to
look at three closely related terms: software quality assurance, software
validation and software verification.

Software quality assurance (SQA) comprises all activities required to
make sure that a software product meets certain quality objectives, in
particular non-functional requirements such as maintainability, reliabil-
ity, robustness, user-friendliness and understandability.

As a general term, SQA comprises all software quality attributes.
However, in a narrower sense, the most relevant quality attribute here is
reliability. As a property of a technical system, reliability is often
defined with regard to time: What is the probability that the system will
not fail to work as intended within a given time interval? Or: what is the
mean time between failure (MTBF)? Quantitative figures such as these
ones are important when software metrics [Ebert 2005] are used to in
fact measure software quality.

Software validation focuses on the external view of the system,
especially with respect to the functional requirements (cf. section 5.1.1):
does the system really do what the stakeholders want it to do? Barry
Boehm gave the following definition of software validation: "To estab-
lish the fitness or worth of a software product for its operational mis-
sion" [Boehm 1981, p. 37]. He informally translated this to:

"Are we building the right product?"

Software verification, on the other hand, aims to make sure that the
software works as it should, according to its design specification. In
Boehm's definition, the goal is: "To establish the truth of correspon-

Software quality
assurance (SQA)

Software
reliability

Software
validation

Software
verification

6 Implementation and Testing 388

dence between a software product and its specification" [Boehm 1981,
p. 37]. His informal translation of this is:

"Are we building the product right?"

The term verification is often used with a very specific, narrow
meaning – in the sense of formal verification (also called program veri-
fication). This means using formal methods in order to prove that a pro-
gram is correct. Formal methods require a formal specification of the
software, usually with the help of a mathematical representation. Based
on such a representation, a number of formal approaches (e.g. mathe-
matical logic) can be applied to prove that the program does exactly
what its formal specification states.

Generations of computer science students have been tortured
learning formal verification methods and applying them to toy problems
(such as stacks and queues). Real-world problems and realistically-sized
software systems remained beyond the scope of what could reasonably
be handled with such methods. Therefore, formal verification is not
considered in this book.

Software developers try to produce programs that are free of errors,
striving for correctness. But what exactly is an "error", and when is soft-
ware "correct"?

Glen Myers introduced this question in 1976 in his seminal book on
software reliability – still a mandatory text in many computer science
courses today – with the following anecdote: "The Ballistic Missile
Early Warning System is supposed to monitor objects moving towards
the United States, and, if the object is unidentified, to initiate a sequence
of defensive procedures ... An early version of this system mistook the
rising moon for a missile heading over the northern hemisphere. Is this
an error?" [Myers 1976, p. 4].

What is the answer to this question? – It depends. If the specification
of the system stated what was quoted above, perhaps in a more formal
way, then interpreting the moon as a hostile missile was correct – with
respect to the specification. However, any reasonable person would
probably say that this is an error, because taking "defensive procedures"
against the moon does not make much sense.

Obviously the notion of an error depends on the standpoint of the
observer. The above example illustrates that there are at least two
interpretations of what may represent an error:

– From a software-technical perspective, any deviation of the pro-

gram's behavior from its specification can be considered an error.

Formal
verification

What is an error?

6.3 Testing 389

– From a user-oriented perspective, an error occurs when the program
does not do what the user can reasonably expect it to do.

Neither from the software-technical nor from the user-oriented point of
view is it really possible to guarantee that a program is free of errors. A
formal proof of correctness is beyond what is feasible today. Therefore
other ways have to be gone in order to assure a certain level of trust in
the program. As we cannot reach faultlessness, methods to ensure suffi-
cient trustworthiness have to be applied. The aim of these methods is to
credibly assure that the performance of the program will be satisfactory,
in particular that the program contains only a small number of errors,
making failures reasonably unlikely.

Approaches to find errors and to improve the reliability of software
can be put into two categories: manual (or document-based) and auto-
mated (or tool-supported) approaches.

Manual approaches are based on paper documents such as require-
ments specifications, analysis and design models, use cases, interface
descriptions (e.g. methods' signatures), pseudocode and source code.
Document-based methods have names such as "design review", "code
inspection", "walk-through", "structured walk-through" and "technical
review".

These methods are accompanied by organizationals concepts, regard-
ing both the process and the composition of the group performing the
inspection or review. For example, in a code review, the author of the
code (programmer) leads the group through the code, participants (read-
ers and inspectors) ask questions and make comments about possible
errors, and a moderator or chairman facilitates the inspection process.

Document-based approaches are also called static approaches, be-
cause they do not require software to be executed (which would be
considered "dynamic"). These approaches have been available and used
in practice for many years. The IEEE even defined a standard for
inspections, reviews and walk-throughs under the code IEEE 1028-1997
("IEEE standard for software reviews") [IEEE 1998b].

Automated approaches are applied to software, which implies the use
of tools. Therefore they are also called tool-supported approaches. A
typical example is a software component being examined with the help
of a compiler and a debugger. Software testing is another name for tool-
supported approaches in order to find errors and improve program
reliability.

Ensuring trust in
software
reliability

Document-based
approaches

"IEEE standard
for software
reviews"

Automated
approaches

6 Implementation and Testing 390

6.3.2 Testing Principles and Test-case Design
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Software testing has been called a "destructive" activity because its goal
is to show that errors are there, not to prove correctness! If anything can
be "proved" by testing, then it is that the software is faulty. One of the
most popular quotes in the testing literature goes back to Edsger
Dijkstra, the father of structured programming: "Program testing can be
used to show the presence of bugs, but never to show their absence!"
[Dijkstra 1970, p. 7]

In this sense, testers need to have a "destructive" attitude: find as
many errors as possible! In order to succeed in doing so, adequate test
cases have to be designed and applied. Test-case design depends on the
chosen testing strategy. A common distinction of testing strategies is
functional (black-box) versus structural (white-box) testing, although
more than these two strategies are available.

Functional testing (black-box testing)

Functional testing focuses on the functionality of the software as it is
perceived from "outside" the piece of software under testing. The soft-
ware is considered a black box, accessed only through its interfaces.
Since the functionality is tested and not the working of internal program
mechanisms, the tester does not look inside the program but observes its
external behavior. Functional testing means testing against a specifica-
tion. Test cases are designed in such a way that valid and invalid input
and expected output are specified.

Since it is clearly not feasible to test all possible input data constella-
tions, an approach to functional testing is to partition the inputs into
groups which are expected to cause the same program behavior (parti-
tion testing). For example, if a test case is based on input from a 20-item
listbox and the test is run with one particular item selection from the list,
then it can be assumed that the program will behave in the same way
when any other item from the list is selected.

As another example for partition testing, consider an inventory
replenishment module dealing with on-hand stock. Provided that the

Software testers
are "destructive"

A program is a
black box

Partition testing

6.3 Testing 391

values for on-hand stock this module receives are numerical, they can
possibly be

– greater than the reorder level,
– less than or equal to the reorder level,
– negative.

The possible input data in this example would be divided into three
partitions. It is assumed that testing the module with one value out of a
partition (e.g. "+34 units on stock") is sufficient, because it can be
expected that testing the module with another value (e.g. "+49 units on
stock") will not create any other behavior of the program. It should be
mentioned that this assumption is certainly reasonable, but it may also
be wrong.

Common partitioning strategies are partitioning into valid and invalid
inputs, and into correct and incorrect outputs. Partitions of program
inputs or program outputs are also called equivalence classes or
equivalence partitions.

Supplementary to forming partitions, it can be helpful to look at the
values at the boundaries of the partitions, and at the boundaries of value
ranges in general (boundary-value analysis). Another typical value to
check is zero. In the above example, suppose the reorder-level quantity
is 25. Typical boundary values of on-hand stock to test would then be
26, 25, 24, 1, 0 and -1.

Test cases for black-box testing should be developed by persons who
understand the interface mechanisms of the software under
consideration (e.g. how to invoke it) but who do not know the internal
structure of the software. In practice, IT organizations usually have spe-
cialized testing departments, testing groups or individuals who develop
test cases for black-box tests and run them.

Structural testing (white-box testing)

The opposite of black-box testing is white-box testing. This means
looking inside the "box", i.e. looking at the program code and the pro-
gram structure. Therefore it is also called structural testing. White-box
testing deals with the internal program logic. How detailed the logic is
examined depends on the chosen strategy. Several approaches have
been proposed:

– Statement coverage: Execute and test every single statement of the

program at least once.

Equivalence
classes
(equivalence
partitions)

Boundary-value
analysis

Developing test
cases

Looking inside
the "box"

6 Implementation and Testing 392

– Condition (or branch) coverage: Execute and test every point in the
program where a branching decision has to be made at least once.

– Path coverage: Execute and test every path through the program at
least once.

– Invocation coverage: Execute and test every subprogram invocation
(entry point and exit point) at least once.

For non-trivial programs, creating test cases according to these ap-
proaches can be extremely difficult or even impossible. How many test
cases would be needed to check every path through the small program
outlined in figure 6-16? The program graph contains 2 loops with at
most 10 iterations each and 14 branching decisions, yielding approxi-
mately 1018 paths through the program. How would anyone create 1018
test cases and check whether they are correctly executed? 1018 is 10
quintillions (i.e. a 1 with 10 zeroes).

Figure 6-16 Flow graph of a program with loops and branches

1018 paths
through the
program

6.3 Testing 393

Although path testing and other white-box testing approaches have been
around in software-engineering textbooks for decades, and still are, their
utility is questionable. Complete path coverage usually cannot be
achieved. Condition coverage is more reasonable as it reduces the num-
ber of program paths significantly. Including the looping conditions of
figure 6-16 in the counting, the number of paths to test for condition
coverage is 162 – still a substantial number, but more manageable. Test-
case automation with tools (see below) can help to create the test cases.

For practical testing, white-box approaches make more sense when
they are not applied ex post (i.e. to a completed piece of software) but as
an ongoing effort. This means testing in an incremental way, in parallel
to the writing of the program code. This aspect of white-box testing will
be discussed further below (cf. regression testing, test-driven develop-
ment).

White-box testing is a supplement to black-box testing. When defects
have been elaborated in the black-box tests, then white-box testing can
help to locate the causes, i.e. erroneous statements in the program code.

Test cases for white-box testing are developed by persons who know
the internal structure and working of the software. These are usually the
programmers who developed the piece of software under consideration.

Gray-box testing

Black-box testing is done from a completely external view – without
knowledge of the internals of the piece of software under testing.
White-box testing is the exact opposite: From knowing exactly what the
program code is like, the tests are built. Gray-box testing is a combina-
tion of both, trying to unite the advantages of both approaches. In gray-
box testing, test cases are created as in black-box testing, but making
use of knowledge of the internal structure of the test object at the same
time. Functional and structural aspects of testing are merged.

Some widespread approaches and also a number of individual
approaches fall into the category of gray-box testing. In the section on
XP (extreme programming), we mentioned the "test first" principle as
one of the XP cornerstones (cf. section 4.4.1). This principle is realized
through gray-box testing, within the more general framework of TDD
(test-driven development, cf. section 6.3.3 below).

Another gray-box testing approach called rapid testing focuses on
finding the most severe errors first. This approach was motivated by the
fact that it is impossible to test everything – neither through white-box
nor through black-box testing. On the other hand, not all errors are
equally grave with respect to the utility of the software.

Condition
coverage

Merging
functional and
structural testing

"Test first"
principle

Rapid testing

6 Implementation and Testing 394

There are many types of errors, for example:

» Fatal errors – make it impossible to use the software as intended.
» Severe errors – allow the use of the software, but prevent that it

works properly.
» Severe errors with work-arounds – prevent that the software works

properly, but the error can be bypassed through additional measures.
» Other errors – impairing the use or the look of the software, but not

really severe.

Instead of writing test cases for black-box or for white-box testing first,
rapid testing starts with a "mission":

"Find the most severe errors first."

The term "rapid testing" reminds of rapid application development
(RAD), an approach to developing application systems quickly. The
negative side of RAD is that if it is not done in a systematic way, it can
result in "quick-and-dirty" development. From this perspective, James
Bach, an advocate of rapid testing, stresses that "... rapid testing doesn't
mean 'not thorough', it means 'as thorough as is reasonable and required,
given the constraints on your time.' A good rapid tester is a skilled prac-
titioner who can test productively under a wider variety of conditions
than conventionally trained (or untrained) testers." [Bach 2006]

Exploratory testing is a related approach, stressing that not every-
thing in testing can be prescribed beforehand, through writing and
subsequently executing test cases. "Exploratory testing is simultaneous
learning, test design, and test execution" [Bach 2003]. This means that
the tester actively controls the design of the tests as these tests are per-
formed. The tester learns more about the software and uses information
gained while testing for the design of new and better tests.

Exploratory testing can be seen as the opposite of traditional, planned
testing. The latter form is also called (pre-) scripted testing because the
tests are planned before and described in a written specification (at least
in theory). Exploratory testing, on the other hand, takes the standpoint
that the tester learns in the process and therefore the testing evolves.

Regression testing

Software lives and evolves. During its initial development, the state of
the software changes permanently. Throughout the lifetime of the soft-
ware, more changes happen.

How severe is an
error?

Rapid testing
doesn't mean
'not thorough'

Exploratory
testing

6.3 Testing 395

A recurring problem with evolving software is that things that
worked before suddenly do not work any more. This happens both in
the micro iterations, within a development cycle, and in the long-term
system evolution, from one release to the next one. When a new version
of the software is created, based on an existing and running version,
special attention has to be devoted to ensuring that properly functioning
features of the previous version continue to work in the new version.
For the developer, this means that the tests performed against the old
version must still run, with the same results, against the new version.

Repeating tests that were performed with earlier versions of the
software is called regression testing. Here, regression means going back
in the test history. Taking into consideration that the same system may
have undergone a number of versions (or releases), the tests for each of
the earlier versions need to be successfully rerun. The new version can
contain new errors, but it also occurs that previously fixed errors re-
emerge. This can be caused, for example, by the unforeseen effects of
program changes ("spaghetti-bowl effect"). It can also happen when
parts of the software are redesigned and reimplemented, and the devel-
oper again makes the same mistakes as before.

Figure 6-17 illustrates the idea of regression testing. Just as the
software undergoes an evolution, through a number of versions, the
regression test suite grows. The suite for the current version n comprises
new tests created for this version, in particular for new features, but also
tests that were run against the previous version n-1. These tests include
regression tests of version n-2 etc.

A major problem of regression testing is to keep track of all the tests
that were created and run before. Especially when software has a se-
quence of releases, information regarding earlier tests often does not
survive. Such information can be, for example, why certain test cases
were developed, which problem they checked, and if they are still valid.

Keeping track of test cases across versions with manual procedures is
cumbersome. Automated testing tools can help to record test cases and
execute all earlier regression tests automatically. With the help of a tool,
it is even possible to rerun all regression tests automatically at specified
intervals, e.g. once a day (during development) or once a week, and
record all errors.

Test specification and documentation

In a "disciplined" approach to software development (as opposed to an
"agile" approach, cf. section 4.4.1), things are planned and documented
before they are executed. With regard to testing, this means that tests are

Things that
worked before
don't work any
more

Going back in the
test history

Keeping track of
all tests

6 Implementation and Testing 396

planned and test cases are developed before the testing starts. (The
opposite is exploratory testing as mentioned above.) The result of the
planning is a test plan. A formal description of the plan, laid down in a
document, is called a test specification. Many IT organizations, and
individual projects as well, have developed their own guidelines of what
to document in a test specification and how.

Figure 6-17 Evolution of software versions and regression test suite

Software Test Cases

Version 1.0

Version n-2

Version n-1

Version n

. . .

Test cases for
version 1.0

. . .

New test cases
for version n-2

New test cases
for version n-1

New test cases
for version n

Software Test Cases

Version 1.0Version 1.0

Version n-2Version n-2

Version n-1Version n-1

Version nVersion n

. . .

Test cases for
version 1.0

Test cases for
version 1.0

. . .

New test cases
for version n-2

New test cases
for version n-1

New test cases
for version n

A major problem of regression testing is to keep track of all the tests
that were created and run before. Especially when software has a
sequence of releases, information regarding earlier tests often does not
survive. Such information can be, for example, why certain test cases
were developed, which problem they checked, and if they are still valid.

Keeping track of test cases across versions with manual procedures is
cumbersome. Automated testing tools can help to record test cases and
execute all earlier regression tests automatically. With the help of a tool,
it is even possible to rerun all regression tests automatically at specified
intervals, e.g. once a day (during development) or once a week, and
record all errors.

Keeping track of
all tests

6.3 Testing 397

Test specification and documentation

A widely accepted, comprehensive standard for test documentation is
the IEEE 829-1998 standard. This standard specifies the form and
content of individual test documents. Its terminology is a little different
insofar as the term "test plan" is used to describe the testing on a higher
abstraction level, while the term "test specification" stands for refine-
ments of the test plan regarding major activities.

IEEE 829-1998 covers a set of test documents for test planning, test
specification and test reporting [IEEE 1998a]. Test specification docu-
ments are defined for the description of the test design, the test cases
and the test procedure. For test reporting, four document types are rec-
ommended to describe what happens during execution of the tests. Fig-
ure 6-18 quotes the description of the test documents from the standard.

The IEEE standard describes eight types of documents. In practice,
few organizations really create all these documents. A typical test speci-
fication will consist of one document, or of two documents (with test-
case descriptions in a separate document), and the reporting is also con-
densed into one document.

An outline of a typical test-specification document is given in figure
6-19. This outline shows that in a "disciplined" testing approach a large
number of details are specified. (Advocates of agile development and
exploratory testing call this "software bureaucracy.") While the docu-
mentation overhead might seem frightening at first glance, it becomes
more and more important as time passes. Suppose three years later, a
new tester has to find an error detected by a regression test. This person
will appreciate very much any piece of information that was recorded
three years ago, including the telephone numbers of the people listed in
the first section (and hope that any one of them will still be working for
the company).

The number of test cases that have to be planned for a unit to test
depends on the testing strategy and on the complexity of the unit. In a
black-box strategy, the number of test cases depends primarily on the
possible inputs. Suppose we want to test the replenishment module
mentioned above in the subsection on black-box testing. Under the
assumption that an input to this module consists of two values, the stock
on hand and the type of the product (A, B or C, according to an ABC
classification), then we might want to test all combinations of:

– 9 values for stock on hand from equivalence classes and boundary

values, e.g. 34, 5, -22; 26, 25, 24, 1, 0 and -1;

IEEE 829-1998
standard for test
documentation

"Software
bureaucracy"?

Example: 36 test
cases

6 Implementation and Testing 398

Figure 6-18 Documents of IEEE standard 829-1998 [IEEE 1998a, p. iii]

Test Plan

The test plan prescribes the scope, approach, resources, and schedule of the
testing activities. It identifies the items to be tested, the features to be tested, the
testing tasks to be performed, the personnel responsible for each task, and the
risks associated with the plan.

The Specification

Test specification is covered by three document types:

- A test design specification refines the test approach and identifies the features
 to be covered by the design and its associated tests. It also identifies the test
 cases and test procedures, if any, required to accomplish the testing and
 specifies the feature pass/fail criteria.
- A test case specification documents the actual values used for input along with
 the anticipated outputs. A test case also identifies constraints on the test
 procedures resulting from use of that specific test case. Test cases are
 separated from test designs to allow for use in more than one design and to
 allow for reuse in other situations.
- A test procedure specification identifies all steps required to operate the system
 and exercise the specified test cases in order to implement the associated test
 design. Test procedures are separated from test design specifications as they
 are intended to be followed step by step and should not have extraneous detail.

The Reporting

Test reporting is covered by four document types:

- A test item transmittal report identifies the test items being transmitted for testing
 in the event that separate development and test groups are involved or in the
 event that a formal beginning of test execution is desired.
- A test log is used by the test team to record what occurred during test execution.
- A test incident report describes any event that occurs during the test execution
 which requires further investigation.
- A test summary report summarizes the testing activities associated with one or
 more test design specifications.

– 4 values for ABC classification, e.g. "A", "B", "C" plus one illegal

value ("9").
This means that 36 combinations (9 times 4) are possible, and thus 36
test cases will be written. As in this example, the number of test cases is

6.3 Testing 399

Figure 6-19 Outline of a test specification (example)

 Document Information

– Title and identifier of the document
– Project name and identifier
– Document type, summary, and purpose of the document (what is specified in this document?)
– Date, version and version history (who changed what when?)
– Document status (draft, final, ...), confidential/not confidential
– Author of the document, responsible or authorizing person, contact person
– Other relevant, related documents

 General Information

– Short description of the project/software system
– Overall goals and objectives of the tests
– Scope (functionality/features/behavior to be tested and also, not to be tested)

 Test Preparation

– Testing schedule
– Preconditions for the tests
– Test objects (what is to be tested?)
– Test strategy (black-box, white-box, path coverage etc.)
– Procedure to determine test cases
– Repository for test cases
– Termination criterion (when to stop testing)
– Procedure to create/adopt test data (manual, from database, with the help of a generator etc.)

 Testing Environment

– Testing platform
– Testing and documention tools
– Test files and/or test databases
– Special hardware/software (e.g. test server), generators and other resources

 Test Organization

– Persons (roles and names) involved in the testing and their responsibilites

 Test case 1

Test-case ID
– Test object
– Test input (data) and preconditions for the test
– Test-case description, actions to be performed, test steps
– Expected result (output data or behavior)
– How and where to record defects

 Test case 2

 …

 Test case n

 …

 Test Reporting Specification

– Test steps performed and defects noticed, for each test case
– Procedures for storing and evaluating test results
– Definition of a test log (chronological record of all tests and their results)

6 Implementation and Testing 400

usually quite large. Therefore the test-cases are often described in a
separate document, called a test-case specification.

Test automation

Testing is a lot of work and it takes a lot of time. In some software
development projects, 50 % of the development effort go into testing.
Therefore most organizations are moving from manual testing to
automated testing, completing three major tasks:

– Test-case execution: If the test cases are already available, then an

automated tool can run the tests and record the results (success,
failure, details of the defects, state of the environment etc.).

– Test-case design: In addition to test case execution, tools can help to
design the test cases – in a way that they can be executed auto-
matically. This requires some sort of formal specification of the
software behavior, which is often not easy to obtain. However, tools
to specify test cases are available today.

– Debugging: This is the part of testing that is supported best by
today's tools. Debugging support will be discussed and demonstrated
below in section 6.3.5.

How much testing is enough?

Any non-trivial software system contains errors. After testing and
debugging the system will contain fewer errors, but most likely the sys-
tem will not be error-free. Testing costs a lot of money – time, man-
power and computing resources – so the question arises: when to stop
testing?

In practice, this question is often answered in a rather pragmatic way:
when all defined test cases – manually defined and/or tool-generated –
run without errors; when the tester feels that all typical inputs are
processed satisfactorily (or when the tester knows which inputs to avoid
because they make the program crash); or simply when the time
scheduled for testing is over.

Not all errors are equally severe. It is obviously more important to
remove severe errors than to remove insignificant errors. The above
mentioned rapid testing approach started from the mission: "Find the
most severe errors first." While it makes sense, abstractly speaking, to
start with the most severe errors and then to proceed to the less severe
ones, this does not answer the questions: When should testing stop?
What errors are severe? What errors are insignificant? Obviously the

Automated tools
for testing tasks

When to stop
testing?

6.3 Testing 401

answer depends on how much damage an error can cause and/or how
much value the stakeholders obtain from removing the error.

An approach to relate the efforts made in the software life cycle to
the value created by these efforts is value-based software engineering
(VBSE) [Biffl 2006]. It is about making such decisions in software
engineering that the value of the delivered system will enhanced.

As a part of VBSE, value-based testing relates the adequate amount
of testing to the risks that have already been addressed in testing and to
the risks that are still open. This approach assumes that risks were
identified before, in a risk analysis within the requirements engineering
stage, and test cases have been defined to address these risks.

Huang and Boehm present a quantitative method to determine "how
much testing is enough", based on the Cocomo II cost-estimation model
(cf. section 2.4.3) and the Coqualmo quality-estimation model§. They
show that there is an optimal point when to stop testing [Huang 2006,
pp. 93-94]. This point is at the minimum of a risk-exposure (RE) curve
constructed from the probability of loss P(L) and the size of the loss
S(L), as shown in figure 6-20:

 RE = P(L) * S(L)

Loss can refer to either financial loss or loss of reputation and there-
fore diminished future prospects. The fewer the defects, the lower the
probability of loss. The abscissa represents the needed investment in
software quality (SQ), or more simply, the effort for testing the system.

The minimum ("sweet spot") is different for different types of soft-
ware systems. In figure 6-20, three curves are shown. The curve on top,
with the "sweet spot" at the right-most side, is an example of a system
with very high reliability requirements. (The authors describe it as a
"high-finance business case ... representing very high-volume time-sen-
sitive cash flows" [Huang 2006, p. 93]). It needs the most testing effort.
The curve below is for a less critical system, a "normal commercial"
system, and the lowest curve is for a system where some errors may
even be tolerated ("an early start-up representing relatively defect-
tolerant early adopters" [Huang 2006, p. 93]).

Huang and Boehm show also that value-based testing is superior to
conventional (value-neutral) testing, e.g. testing with automated test
generators, path testing or testing with unprioritized requirements.
Value-based testing produces more business value per dollar invested
than conventional testing.

§ Online information on Coqualmo is available at http://sunset.usc.edu/research/

coqualmo/coqualmo_main.html (accessed July 17, 2007).

Value-based
software
engineering
(VBSE)

Value-based
testing

A Cocomo II and
Coqualmo based
method for
testing planning

Stop testing at
the "sweet spot"

Value-based
testing is
superior to
conventional
testing

6 Implementation and Testing 402

__

Figure 6-20 Risk exposure vs. quality investment [Huang 2006, p. 93]

Software quality investment

Risk
exposure
(RE)

0

0.2

0.4

0.6

0.8

1.0

Sweet
spot

High finance

Normal commercial

Early start-up

Software quality investment

Risk
exposure
(RE)

0

0.2

0.4

0.6

0.8

1.0

Sweet
spot

High finance

Normal commercial

Early start-up

The authors exemplify their findings with a comparison of value-
neutral testing versus value-based testing of the "high-finance" system
mentioned above. As figure 6-21 illustrates, the "sweet spot" for value-
neutral testing is higher and more to the right than for value-based
testing. This means that value-based testing costs less and has a lower
risk exposure than value-neutral testing.

The approach of Huang and Boehm is plausible. However, a pre-
requisite is that risks are actually addressed and explicitly quantified as
it is the case in the Cocomo II and Coqualmo models. Organizations
using these models can apply value-based testing. Others can at least
adopt the general insight from VBSE, that the most severe errors to
remove first are those that can cause the most severe damage to the
organization's business.

6.3 Testing 403

Figure 6-21 Risk exposure of value-based vs. value-neutral testing§

Software quality investment

Risk
exposure
(RE)

0

0.2

0.4

0.6

0.8

1.0

Sweet
spot

Value-neutral testing

Value-based testing

Software quality investment

Risk
exposure
(RE)

0

0.2

0.4

0.6

0.8

1.0

Sweet
spot

Value-neutral testing

Value-based testing

6.3.3 Test-driven Development (TDD)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The "test first" principle has gained its popularity as one of the practices
of XP (extreme programming). Test-first development (TFD) is an
implementation of this principle, employed inside the XP community as
well as outside. TFD as a general approach to testing and programming
reverses the sequence of activities: write tests first and code afterwards.

This approach implies incremental development: Before the next
small piece of the program code is written, the programmer thinks of
what capability this code should add to the program and what the result
should be. Prior to writing the code, the programmer writes a test
invoking the capability and examining the results provided by it.

§ Huang 2006, p. 94.

"Test first"
principle

6 Implementation and Testing 404

Running the test immediately would yield a program failure, because
the capability is not yet implemented. The necessary code is written
with the goal in mind to make the test pass. Tests that had been run
against the program before the new capability was added obviously
must still pass, so all are repeated.

Since the program grows in small increments, this approach bears the
risk that an initially clear design becomes blurred. Therefore, the
program structure is reexamined and improved through refactoring.
Refactoring is a disciplined approach to restructuring code, making
small changes to improve the program structure without changing the
behavioral semantics, i.e. neither removing nor adding behavior [Am-
bler 2007, p. 39].

Designing and writing a test, implementing code so that the test
passes, and improving the program structure via refactoring are the
essential activities in each micro-iteration. The next increment of the
code is created in the same way. The program grows and its structure
evolves in micro-iterations through refactoring.

Test-driven development (TDD) is a combination of test-first devel-
opment (TFD) and refactoring [Ambler 2007, p. 37]. The following
definition is based on Jeffries and Melnik's characterization of TDD and
reflected in figure 6-22§ [Jeffries 2007, p. 24-25]:

Test-driven development is a discipline of design and program-
ming where every line of new code is written in response to a test
the programmer writes just before coding and where the entire
code is reviewed after each code increment.

Test-driven development has gained much popularity among program-
mers mainly due to two reasons: TDD helps to ensure that things that
worked before still work when the program is changed, and it helps to
build up a regression test suite in a quite natural way. Regression tests
are the major mechanisms to ensure continuous functioning of the pro-
gram.

Due to a weak design and obscured or opaque program structures,
large programs are sometimes very hard to implement, modify or ex-
tend. This is particularly true for legacy systems where the only infor-

§ Jeffries and Melnik actually use the term "design" instead of "structure" [Jeff-

ries 2007, p. 24-25]. We prefer to speak of a program "structure" in the figure,
because the term "design" in software engineering is normally used for
creative activities on a higher abstraction level than coding.

Write tests first
and code
afterwards

Refactoring

Definition: test-
driven
development

TDD helps to
build up a
regression test
suite

6.3 Testing 405

mation the programmer has is the source code (a "spaghetti bowl" of
code). Making changes to such a system can be nightmare.

TDD is a considerable step forward compared to the state-of-the-art
of implementation and testing. Many developers and maintenance pro-
grammers of large systems are afraid of unforeseen effects when they
have to add new features or make other changes to a working program
(including such actions during the development process). While this
state of affairs of practical software engineering may be lamentable, it is
the real world. TDD can help to raise the programmer's confidence in
the program – and in his/her own actions§.

Figure 6-22 TDD micro-iterations [Jeffries 2007, p. 25]

Design
a test

for a new
capability

Implement
just-enough

code
Improve
design

3
Refactor

2
Pass

1
Fail

Design
a test

for a new
capability

Implement
just-enough

code
Improve
design

3
Refactor

2
Pass

1
Fail

Writing comprehensive program code for new features first and
testing afterwards often does not work because when errors occur they
are difficult to find and debug. In an extremely incremental approach
such as TDD where almost every new line is immediately tested, errors
show more or less immediately. A typical duration of a test-code-pass
cycle as in figure 6-22 is just a few minutes (excluding refactoring).
Regression tests are also run every few minutes. In this way, any new

§ This lamentable situation was mirrored in a paper entitled "TDD: The art of

fearless programming" – the editors' introduction to a special issue of the IEEE
Software magazine devoted to test-driven development [Jeffries 2007].

"Don't touch a
working
program!"

Errors show
immediately

6 Implementation and Testing 406

problem created by an additional or modified line of code becomes
visible immediately.

The larger the program and the more tests in the regression suite, the
longer the regression testing takes. Therefore the complete test suite
may not be run after every increment but at longer time intervals.

Martin reports about a 45,000 lines-of-code Java program developed
in the test-driven manner where running the complete regression test
suite took 30 seconds [Martin 2007, p. 34]. Since this was considered
too long a waiting time, the complete suite was run only about every 30
minutes. Tests for the immediate environment of the current increment
took only 1 to 2 seconds. This means that new errors were discovered
after a few minutes or at most after half an hour.

The very short cycles of TDD are advanced by keeping things as
simple and short as possible. Martin coins this rule into two of his "three
laws of TDD" as shown in figure 6-23.

Figure 6-23 "The three laws of TDD" [Martin 2007, p. 32]

The Three Laws of TDD

1. You may not write production code unless you've first written
a failing unit test.

2. You may not write more of a unit test than is sufficient to fail.

3. You may not write more production code than is sufficient to
make the failing test pass.

While TDD is mainly used for the development of code pieces – on

the module or unit level – it has been applied to special aspects of
information systems development as well, such as developing GUIs
[Ruiz 2007] and databases (TDDD – test-driven database development
[Ambler 2007]). TDD is also used on higher testing levels such as
acceptance testing (cf. section 6.3.4).

TDD has obvious benefits but also drawbacks. Gains in productivity
have been reported in many studies, but the results are sometimes con-
troversial, which does not allow generalization. A summary of such
studies is presented by Jeffries and Melnik [Jeffries 2007, pp. 27-29].
Most of the listed studies report significant gains in productivity and
software quality, but others show no or even negative effects. Substan-
tially lower error rates are a frequently reported effect of TDD.

TDD is also used
for GUI and
database
development

6.3 Testing 407

Test-driven development conflicts with conventional implementation
and testing methods which are practiced in many organizations – just as
agile development and extreme programming conflict with conventional
software development. Organizational structures can impede TDD. The
IT management can be in favor of "disciplined" approaches to software
development (cf. section 4.4.1). If software quality assurance (SQA) or
software quality management (SQM) is installed as an organizational
unit, then this unit expects larger pieces of written code (modules, pack-
ages, subsystems etc.) to test and not individual statements.

A disadvantage of TDD is that it is hard to learn. For traditional pro-
grammers, it is difficult to figure out how to create effective tests, and to
do so ahead of having even code to test. On the other hand, further up
the learning curve, writing tests becomes much easier, and programmers
who have experienced TDD for a while prefer it over traditional
implementation and testing [Crispin 2006, p. 71].

An inherent drawback of incremental development is that the final
program structure is likely to be less "clean" than a structure that was
designed and implemented top-down. Through refactoring, the structure
is continuously improved, but this is also to some degree an incremental
improvement. Radical refactoring – i.e. structural changes – collides
with the above mentioned fear of breaking something that used to work.

Why do programmers not clean up code? Martin answers this
question with a quote reflecting a common attitude among software
developers: "If it ain't broke, don't fix it!" [Martin 2007, p. 33] Test-
driven development, on the other hand, lets programmers improve code
without the fear of breaking something, because any small mistake will
be detected immediately.

6.3.4 Testing Levels and Scope
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Testing comprises activities with different scopes, beginning with the
testing of single code units and ending with the complete software sys-
tem ready to go into operation. The levels on which tests are performed
are:

– Module testing
– Integration testing
– System testing

TDD conflicts
with conventional
implementation
and testing

TDD is hard to
learn

"Fearless
programming"

6 Implementation and Testing 408

– Installation testing
– Interoperability testing (system integration testing)
– Acceptance testing

Module testing

The goal of module testing (also called component testing or unit
testing) is to ensure proper functioning of a piece of software such as a
class or a method. Under the name unit testing, this type of testing has
received a lot of attention, in particular within the TDD community, not
least owing to that unit testing is well supported by test tools. However,
any testing sequence, not only in TDD, starts with the testing of small
software units (modules, components).

The discussion about black-box versus white-box testing in section
6.3.2 was mostly a discussion about module testing. Various approaches
to module testing exist, including data-flow, fault and usage based
testing as shown in figure 6-24. This figure is derived from a survey by
Juristo et al. who investigated experimental results of different types of
unit testing [Juristo 2006, pp. 74-75].

Specification-based techniques are basically black-box approaches,
and code-based techniques are white-box approaches. Data-flow based
approaches among the latter ones address the path from a variable defi-
nition and its uses in the program, i.e., the code between the definition
and the use of the variable is executed. Reference-model based tech-
niques derive the test cases from a graphical representation of the pro-
gram in a flow graph or call graph. A number of diversifications of con-
trol-flow, data-flow and mutation based techniques listed in Juristo et
al.'s survey have been omitted in the figure.

The authors discuss some results of the studies they examined, point-
ing out that the results have to be considered with caution as far as
generalization is concerned. Some interesting findings include the
following [Juristo 2006, p. 73]:

– Specification-based techniques are usually more effective than code-

based techniques that use criteria with weak coverage levels.
– Boundary-value analysis was found more effective than statement

coverage but takes longer and needs experienced testers.
– Condition coverage takes longer than boundary-value analysis,

whereas its effectiveness is similar.

Results of the
study

6.3 Testing 409

__

Figure 6-24 Techniques for module testing [Juristo 2006, pp. 74-75]

Based on tester’s intuition and experience

Specification based

Control-flow based techniques

Data-flow based techniques

Reference-model based techniques

- test cases are derived from a graphical representation
 of the program in a flow graph or call graph

Fault based

Usage based

- test cases are generated according to their
 probability of occuring in an actual operation
- tests are designed according to reliability objectives,
 expected use, and criticality of different functions

Operational profile

Reliability-engineered testing

Fault seeding
- faults are artificially introduced in the program to
 evaluate test-set quality

Ad hoc testing
Exploratory testing

- no specific testing guidelines
- test cases are dynamically modified based on experience

- cf. section 6.3.2
- cf. section 6.3.2

Decision table/cause-effect graphing
Boundary-value analysis
Equivalence partitioning

Random testing
Derived from formal specifications
Finite-state-machine based

Code based

- cf. section 6.3.2
- cf. section 6.3.2

- cf. section 6.3.2

Statement coverage

Path coverage

...

Decision (branch) coverage

- test cases cover each definition of each variable for
 at least one use of the variable

- same for: … all possible executable paths ...

- same for: … to each use of the variable in a computation

- test cases ensure that there is at least one path of
 each variable definition to each use of the definition

- test cases must execute all possible paths of each
 definition of each variable to each use of the definition

All definitions

All dus

All du-paths

All c-uses

All uses

Flow graphs
Call graphs

Error guessing
Mutation testing

Techniques for Test-set Generation

- test cases are derived from knowledge about typical faults
- test cases must cover all (or some) program mutants

...

6 Implementation and Testing 410

Unit-testing tools

The growing popularity of test-driven development is partly due to the
fact that powerful testing tools are available. These tools are known
under the name xUnit, where x stands for a programming-language
initial: JUnit is the tool for Java, SUnit for Smalltalk, CUnit for C,
CppUnit for C++, NUnit for the .NET languages etc.

A common feature of this tool family is that testing code is separated
from the actual implementation code. The tester writes testing code with
xUnit annotations regarding the code unit to be tested. xUnit tools pro-
cess the annotations and create a compact testing protocol which is out-
side the unit under testing. This is a definite advantage over conven-
tional module testing where testing code is usually embedded in the
actual implementation code.

Although JUnit is the most popular tool from the xUnit family, the
origin of the tool family was a pattern and a framework written by Kent
Beck for Smalltalk (SUnit). Ported to Java by Erich Gamma and Kent
Beck, JUnit is an open-source framework to write and run repeatable
unit tests. Its features include:

– Assertions for testing expected results
– Test fixtures for sharing common test data
– Test runners for running tests

Beck and Gamma encourage the use of JUnit due to the obvious ad-
vantages of automation: The test runs as such can be automated; many
tests can be run at the same time; and the test results can be interpreted
automatically, without human interference. In their "JUnit cookbook",
Beck and Gamma introduce JUnit in the following way [Beck 2007]:

"JUnit tests do not require human judgment to interpret, and it is
easy to run many of them at the same time. When you need to test
something, here is what you do:

1. Annotate a method with @org.junit.Test.

2. When you want to check a value, import org.junit.Assert.*
statically, call assertTrue() and pass a boolean that is true if the
test succeeds.

For example, to test that the sum of two Moneys with the same
currency contains a value which is the sum of the values of the two
Moneys, write:

JUnit, SUnit,
CUnit etc.

Testing code is
separate from
implementation
code

Erich Gamma,
Kent Beck

"JUnit cookbook"

6.3 Testing 411

@Test public void simpleAdd() {
 Money m12CHF = new Money(12, "CHF");
 Money m14CHF = new Money(14, "CHF");
 Money expected = new Money(26, "CHF");
 Money result = m12CHF.add(m14CHF);
 assertTrue(expected.equals(result));
}

If you want to write a test similar to one you have already written,
write a Fixture instead."

In this example, the "assertTrue" method checks whether the "result"
(the value returned by the tested "add" method) is equal to what was
"expected", and returns true or false.

A test fixture is a set of test data (objects) that can be used for more
than one test. Using such a fixture avoids duplicating the code necessary
to initialize the common test objects. In many cases, setting up test ob-
jects takes more time than setting up the test as such. Once the fixture is
defined, it can be used for any number of test cases. A fixture is invoked
with an "@org.junit.Before" annotated method in which the instance
variables for the common objects have to be initialized.

Continuing the above example, the "@Before" method "setUp" could
be used to define a set of test data, such as 12 CHF, 14 CHF and 28
USD, that is available for all test cases [Beck 2007]:

__

Figure 6-25 Java class with JUnit testing annotations

 public class MoneyTest {
 private Money f12CHF;
 private Money f14CHF;
 private Money f28USD;

 @Test public void simpleAdd() {
 ...
 }

 @Test public void simpleSub() {
 ...
 }

 @Before public void setUp() {
 ...
 }

 @After public void cleanUp() {
 ...
 }
 }

Test fixtures

6 Implementation and Testing 412

@Before public void setUp() {
 f12CHF = new Money(12, "CHF");
 f14CHF = new Money(14, "CHF");
 f28USD = new Money(28, "USD");
}

For running the tests and collecting the results, JUnit provides tools to
define the test suite and to display the results. Suppose we created an-
other test case "simpleSub" checking a subtraction, then the class to test
might look like the one outlined in figure 6-25. A JUnit method tagged
with "@After" is automatically invoked after each test is run (just as an
"@Before" method is executed before each test is run).

The "MoneyTest" class will be invoked for execution by a so-called
runner, either from the console, from inside an IDE or from another
Java program. For example, an invocation from the console is done by
running the "JUnitCore" class with a parameter ("Money Test"):

c:\> java org.junit.runner.JUnitCore MoneyTest

In this case, the results will also be displayed on the console, saying that
the two tests were OK or not OK.

Another tool for unit testing is Fit ("framework for integrated test").
It was created by Ward Cunningham, the father of the WikiWikiWeb
("wiki"). The idea underlying Fit is to enhance communication and col-
laboration between developers and customers. "During development,
how can customers know that their programmers are producing the right
thing? How can programmers know what the customers really want?
How can testers know what's right and what's wrong? Getting these
groups to communicate effectively and precisely should be a goal for
teams creating great software." [Cunningham 2005].

Fit strives to make testing visible and understandable not only for the
programmer but also for the customer. The mechanism to achieve this
goal is a web GUI for the test tool. Test cases are displayed in HTML
tables, for example, and the results are also shown in the table. User
involvement is supported by the fact that users can provide rule-style
test examples in Excel or Word tables. These tables can be imported
into the Fit tool. The programmer's job is then to define the structure of
the tests in the underlying programming language, i.e. defining what the
columns and/or rows of the tables stand for and how they are related.

In the example given in figure 6-26, the program under testing is to
calculate employee pay. The customer created a Word table showing
through examples how hourly pay should be calculated. The
programmer imported this table into the Fit tool and wrote the tests to
be run. The tests are executed when the HTML page is loaded,
displaying the test results immediately.

Running the tests

Fit ("framework
for integrated
test")

Test examples
provided in MS
Excel or Word
tables

6.3 Testing 413

The table in figure 6-26 shows the test examples and the results. The
first row contains information for Fit on where the tests are defined. The
second row has the headers for the columns. The remaining rows
provide data examples. The first example says: "If someone works for
40 standard hours and zero holiday hours, and is paid $20 per hour, then
his or her total pay is $800." [Cunningham 2005] Test results are
displayed in colors. Green stands for OK, red for an error, yellow for an
exception, and gray says that the cell was ignored for some reason.
Obviously the expected result in the last row of the table is 1360, but the
payroll program produced 1040 – an error.

Figure 6-26 Fit testing example [Cunningham 2005]

Mocking up the environment

Module testing has to cope with the problem that a module is usually
just a small part of the overall software system. It interacts with other
modules, e.g. passing messages to and receiving messages from these

6 Implementation and Testing 414

modules. How can the programmer responsible for the module examine
the proper functioning of this single piece from the whole puzzle?

Unless module testing is implicitly embedded in integration testing –
usually not a good idea but sometimes done this way – the answer is
mock objects (mocks). Mocks are substitutes for the immediate neigh-
bors of the module to test – in an object-oriented language, classes con-
taining test implementations that "simulate" the behavior of the actual
classes. Mock objects have the same interface as the objects they
represent, but not a complete implementation. In fact, they often have
very simple implementations§.

One problem resulting from this is that mock objects limit the degree
of test coverage. Consider the case of a method invoked with an argu-
ment "product ID" and returning the stock of this product. A mock will
probably always return the same stock value, leaving open all other
cases (cf. above equivalence classes, boundary values, product ID does
not exist etc.)

In a large system with many classes, writing mock objects for unit
testing can be a time-consuming work. The more the current unit de-
pends on other classes, the more mocks have to be written. To facilitate
this work, automated tools for the generation of mock objects and run-
ning the mocks within unit tests have been developed. Many of them
are open-source tools that can be downloaded from the Internet.

Integration testing

While module testing looks at the individual pieces of the system under
development, (module) integration testing brings the pieces together.
The work to do in this stage is actually "integration" (of the modules).
However, integration hardly ever works on the first attempt, requiring
plenty of testing at the same time. Since testing and integration usually
go hand in hand, "integration" and "integration testing" have more or
less become synonyms.

Consider a layered architecture such as a three or four-tier architec-
ture (cf. section 3.2.2) with 10 or 20 modules on each layer that have
passed their unit tests. Several dozens of modules now have to be inte-
grated, and the question is where to start integrating. Basically there are
four options:

1. "Big bang": Take all modules of the system, compile them, build

an executable program and run it. What will happen in near to 100

§ For example, many mock implementations of methods expected to return a

Boolean value contain just one statement ("return true.")

Mock object
(mocks)

Automated tools
for generating
and running
mocks

Testing and
integration go
hand in hand

"Big bang"
integration

6.3 Testing 415

% of non-trivial cases is that the program crashes. The actual
cause of the crash will be very difficult to find, since the initial
mistake that caused the crash may have happened many modules
away, in any of the other dozens of modules. Obviously a step-by-
step integration approach is better in order to be able to localize
errors.

Figure 6-27 Dependency graph of a layered software system

M0

M1-1 M1-2 M1-3

M2-1 M2-2 M2-3 M2-4 M2-5 M2-6

M3-1 M3-2 M3-3 M3-4 M3-5 M3-6

M4-1 M4-2 M4-3 M4-4 M4-5 M4-6

Level

0

1

2

3

4

M0

M1-1 M1-2 M1-3

M2-1 M2-2 M2-3 M2-4 M2-5 M2-6

M3-1 M3-2 M3-3 M3-4 M3-5 M3-6

M4-1 M4-2 M4-3 M4-4 M4-5 M4-6

Level

0

1

2

3

4

Step-by-step integration can start from the top layer or the bottom layer
(cf. figure 6-27). In a large system, not all modules of a layer will be
integrated in one – even though smaller, yet still quite big – "bang" but
in an incremental way. Since localizing errors in a large system can be a
cumbersome task, due to the complex interactions in such a system, it is
a good practice to start with a small subset of the modules and then
integrate new modules in small steps, one by one. This makes it easier
to spot the cause of an error.

For the stepwise integration, a call graph or better, a dependency
graph (showing all dependencies between modules) can be used. Some
modules at the leaves of the graph (or underneath the root, depending on
the integration strategy) will be integrated first with their immediate
neighbors, before proceeding bottom-up (or top-down, respectively). In
the scheme of figure 6-27, the levels of the graph are numbered 0 to n.

Step-by-step
integration

6 Implementation and Testing 416

2. Bottom-up integration: Take a module of the second-lowest level

(level n-1) of the dependency graph and integrate it with all mod-
ules of the lowest level that are invoked, or that the module de-
pends on in some other way. In figure 6-27, for example, the first
modules to integrate could be M3-2 with M4-1, M4-2 and M4-3.
If the number of modules is too large, start with a few modules,
use mocks for the other ones, and substitute the mocks incremen-
tally by real implementations. Then take the next level n-1 module
and do the same (e.g. M3-4 with M4-4 and M4-5), etc. Afterwards
continue with a level n-2 module and integrate it with lower level
modules (e.g. M2-3 with M4-1, M3-2, M3-3 and M3-4), etc. Once
the top-level module has been successfully tested, integration
testing ends.

3. Top-down integration: Take the root module and integrate it with
all modules that are invoked or that the root depends on directly.
In figure 6-27, these are the modules M1-1, M1-2 and M1-3. If
the number of level-1 modules is too large, start with a few mod-
ules, use mocks for the other ones, and substitute the mocks incre-
mentally by real implementations.

Note that modules of level 1 (or lower) depend on other modules which
have not yet had integration testing. Therefore the level-1 (and lower)
modules must use mocks for level 2 (or lower) modules. In figure 6-27,
M1-1 will need mocks for M2-1 and M2-2, M1-2 will need mocks for
M2-3 and M2-4, and M1-3 will need mocks for M2-5 and M2-6.

On the next level, the process is the same. M1-1 will be integrated
with the real M2-1 and M2-2, which in turn will need mocks for M3-1
and M4-1, respectively. Integration testing ends when the level n-1
modules have been successfully tested.

4. "Sandwich testing": Combine bottom-up and top-down integra-

tion testing. In many practical situations, testing is done in neither
an exclusively top-down nor bottom-up manner. Combining top-
down and bottom-up means starting with low-level modules,
integrating bottom-up, and with high-level modules, proceeding
top-down, at the same time or intermingled. For example, one
tester can start from the top, the other one from the bottom,
meeting in the middle. Top-down and bottom-up testing can also
overlap, and sometimes even oscillate upwards and downwards.

Bottom-up
integration

Top-down
integration

"Sandwich
testing"

6.3 Testing 417

In addition to these formal perspectives, integration testing can be
looked at from the customer's point of view, or from the perspective of
which part of the system creates the most value for the organization.
Integrating such modules that provide the most valuable functionality
first can be a reasonable approach, if such functionality can be isolated
in the dependency graph. In figure 6-27, let us assume that the branch
beginning with M1-2 provides the most important functionality. Then
the integration testing may focus on the branch including all modules
from M1-2 downwards as far as M4-1 to M4-5, before less important
functionality is tested.

System testing

The last part of module integration testing is actually already a system
test, i.e. a test of the entire system. However, the term "system testing"
is normally used for testing the complete system against the require-
ments specification. This stage of testing is still the responsibility of the
organization developing the information system, not the customer's
responsibility.

System tests are black-box tests, investigating both functional and
non-functional requirements. The "black box" in system testing is the
complete software system, whereas in unit testing the black boxes are
individual modules (units).

For the testing against functional requirements, a good basis to
develop test cases are the use cases and other UML diagrams from early
development stages (e.g. sequence diagrams).

Non-functional requirements are sometimes tested in separate tests
with individual names. Examples include:

– Performance testing: Is the system's performance acceptable when it

is run under a heavy load? Testing the performance requires that a
representative workload is created for the tests – also called an
operational profile. This is a set of test cases that reflect the actual
mix of work that will be handled by the system [Sommerville 2007,
p. 546].

– Stress testing: How will the system behave when it reaches, or ex-
ceeds, its regular operational capacity? Will it fail or degrade grace-
fully, i.e. continue to operate but at a lower speed? At which load
level does the system fail and what happens when it crashes? To
what extent is the system failure safe, preventing loss of data?

– Recovery testing: Is the system able to recover from program
crashes, hardware failures, power failures and similar problems (e.g.

Value-based
integration
testing

Testing against
the requirements
specification

Functional
requirements

Non-functional
requirements

6 Implementation and Testing 418

a network failure during data transmission)? How successful is the
recovery, i.e. which state is the system able to restore?

– Usability testing: Can the system be adequately used regarding its
intended purpose? Usability testing requires test cases that reflect
realistic work situations.

– Accessibility testing: Does the system meet accessibility require-
ments, and to what extent (level "A", level "double-A", level "triple-
A" conformance [W3C 1999])?

Before the system can be delivered to the customer, the developing
organization has to make sure that all requirements are met and/or all
contracted features are available and functioning. This may include inte-
grating hardware and software if the system needs special hardware for
operational usage.

Installation and interoperability testing

When the system testing is completed, the final system is delivered to
the customer. Before it can go into operation – and before the customer
will pay the bill – more testing is necessary. Normally the target hard-
ware and software configuration under which the system will have to
run is different from the configuration under which the system was
developed. Therefore the system has to be ported to and installed on the
target configuration. Testing the proper working on the target configura-
tion is called installation testing.

Closely related with installation testing is system integration testing
(interoperability testing). In today's digitally enabled firms, the deliv-
ered system is most likely just another piece in the organization's
information systems landscape. It will need to work together with other
information systems. For example, if the system under consideration
adds agile manufacturing-planning capabilities to the organization's
information systems, then it will probably have to interoperate with the
ERP system, with technical information systems (such as CAD, CAP
and CAM), with shop-floor control systems, with the CRM system and
with other systems.

The purpose of system integration testing is to examine if the
delivered system is compatible with existing systems, and how well it
interoperates with them. This type of testing is usually performed by
people from the customer's and the developers' organizations together.

Testing on the
target configura-
tion

Interoperability
with other IS

6.3 Testing 419

System integration testing may require preparatory work on the other
systems' side. These systems may not be ready to collaborate with the
new system. Making them interoperable as well can be a costly process,
in particular when the systems are legacy systems. Before integration
can be considered, the legacy system may need to undergo a reengineer-
ing.

Since software reengineering is a significant effort of its own, corre-
sponding projects should be started on time. Otherwise interoperability
with the new information system cannot be tested. Reengineering and
integration of legacy software are discussed section 7.5.

Acceptance testing

Finally the customer has to accept the system. In order to raise confi-
dence that the new system will do its intended work properly to a
satisfactory level, the customer's staff will perform their own tests, alone
or together with personnel from the developers' organization.

Most testing before was done with test data. Now the tests are per-
formed with real data. Since acceptance testing is often the first time
that the customer inspects the new system really thoroughly, it is not
unusual that insufficient or inadequate requirements are detected. The
closer the customer was involved in the development (as it is the case in
XP, for example; cf. section 4.4.1), the fewer problems can be expected.
In a traditional waterfall-like approach, problems such as the one illus-
trated in figure 4-4 are often observed.

Acceptance testing may also reveal that the performance of the sys-
tem is unsatisfactory. Although the performance may have been tested
during system testing, this was done with the help of test data. Now
when real data are used, bottlenecks may show because the operational
profile for performance testing might not have been adequate.

A special case of acceptance testing is the so-called beta testing. This
term is used when new standard software or a new release of such soft-
ware is being developed. The software company producing the system
gives an almost final version of the system to selected customers. These
customers agree to use the software and report back errors they detect
[Sommerville 2007, p. 81]. The software producer gets valuable
feedback from the user community and can remove errors that were not
found during the internal testing stages.

But what does the customer get? The newest and utmost state-of-the-
art product in the application field – something that software developers
and "techies" seem to be fond of.

Reengineering
and integration of
legacy software

Testing by the
customer

Testing with real
data

Beta testing

6 Implementation and Testing 420

6.3.5 Debugging with a Lower CASE Tool
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Debugging is a common term in implementation and testing. "Bug" is a
colloquial expression among software developers for any software error
that prevents the program from behaving as intended, e.g. making it
crash or producing an incorrect result. "De-" bugging literally means re-
moving the bugs, but the way this term is commonly used includes
finding the bugs as well.

Debugging occurs in all approaches to implementation and testing, in
test-driven development as well as in conventional coding and testing.
The more code has to be examined, the more difficult the debugging is.
Debugging tends to be easier in TDD, because the additional code
snippets to be tested incrementally are small. When a large piece of
software has to be searched, a lot more effort is required. What makes
debugging difficult is the fact that the cause of an error can lie anywhere
in the software (the so-called "spaghetti bowl" syndrome). It rarely lies
exactly in the code piece where the program failed or misbehaved.

The major steps in debugging are the following:

1. Find out that a bug exists
2. Locate the program statement where the bug occurs
3. Identify the cause of the bug
4. Fix the bug
5. Test the debugged program

In conventional coding and testing, programmers used to add debug-
ging statements to the code displaying the values of critical variables
and/or messages saying which modules, methods, branches etc. the flow
of control went through. In the early times of computer programming –
and sometimes still today, in very tough cases – the programmer would
even print out a memory dump reflecting the state of the machine when
the program crashed. (The reader can imagine that reading and inter-
preting a binary or hexadecimal coded memory dump is a challenging
task!)

Today, the above mentioned debugging steps are supported by auto-
mated tools, called debuggers. Typical functions of a debugger include:

What is a "bug"?

Conventional
debugging

6.3 Testing 421

– Running the program statement by statement (stepwise execution),
– Stopping execution at defined points (so-called breakpoints) to ex-

amine the current state of the program,
– Tracking values of certain variables,
– Modifying the state of the program while it is running (e.g. setting

new values).

A good debugger can significantly raise programmer productivity.
Many powerful debuggers are available today. Modern lower CASE
tools (IDEs) include effective debugging support. A typical IDE pro-
vides debugging information and features such as the following:

» Call stack – the sequence of method calls made during execution of

the current thread. The last method invoked is usually shown on top.
» Threads – all threads of the running program (i.e. in the current

debugging session).
» Loaded classes – the hierarchy of all classes currently loaded by the

program, showing class names, methods, fields etc.
» Local variables – all local variables within the scope of the current

method (variable name, data type, current value etc.).
» Watches (data watches) – specific variables and expressions defined

by the programmer to watch while debugging (e.g. variable or ex-
pression name, data type and current value).

» Breakpoints – points in the program where the execution is paused
for debugging purposes. For example, a breakpoint is often set be-
fore the statement where the program failed, in order to let the pro-
grammer watch its behavior from that point on.

» Console – messages from the debugger about the current session
(e.g. program execution state, debugging state).

Debugging example

Debugging is a multi-step process that requires experience and in-depth
programming knowledge. Within the limited space of a printed book,
we can only give a short outline of what debugging activities are like.
For illustration, we use a very simple example. However, the reader
should keep in mind that debugging in practice is a time-consuming
task.

Consider the following situation: In the implementation of the adver-
tisement-ordering system used as an example before, some developers

Modern IDEs
support
debugging

6 Implementation and Testing 422

were responsible for the core Java classes (cf. figure 5-53) and others
for the graphical user interface (cf. figure 6-10). Since both teams were
working in parallel, the GUI developers needed mocks of the underly-
ing system classes (e.g. "Edition", "Customer", "Advertisement" etc.).
These mocks are quite simple, mostly returning just null or constant
values.

__

Figure 6-28 A useless error message

The following problem occurred: When the GUI was tested, the web
browser displayed a window with a rather useless error message shown
in figure 6-28. In order to find out the cause of the error, the developer
ran the program in NetBeans. The screenshot in figure 6-29 reflects a
typical work situation during testing. The output window at the bottom
contains log messages from the Java runtime system and the web server.
The main window in the middle shows Java source code that is being
executed.
The output window contains a very long list of log statements from
which only the last text block is visible. This text block describes the
final error situation as follows:

Caused by: java.lang.NullPointerException
 at de.uniffo.eabook.example.Edition.getEdition
 (Edition.java:32)
 at advertisement_ordering.MainPage.checkBtn_action
 (MainPage.java:463)
 at sun.reflect.NativeMethodAccessorImpl.invoke0
 (Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke
 (NativeMethodAccessorImpl.java:39)

6.3 Testing 423

 at sun.reflect.DelegatingMethodAccessorImpl.invoke
 (DelegatingMethodAccessorImpl.java:25)
 at java.lang.reflect.Method.invoke(Method.java:585)
 at com.sun.faces.el.MethodBindingImpl.invoke
 (MethodBindingImpl.java:146)
 ... 29 more

Figure 6-29 Program execution with error (NetBeans GUI)

The interesting lines of this text block are the first three ones. A null-
pointer exception occurred (something that usually happens when an
object was not initialized) when the "getEdition" method of the "Edi-
tion" class was executed (in statement 32 of this class). "getEdition"
was called by the "checkBtn_action" method of "MainPage" (in state-
ment 463 of "MainPage.")

Clicking on the top "at" line in the output window makes the debug-
ger go to the statement where the program failure occurred and position

A null-pointer
exception

6 Implementation and Testing 424

the code editor to this statement. This is the highlighted line in the
middle window. The program crashed when trying to execute the "for"
statement.

Why? Nothing seems to be wrong with the "for" statement. Like in
most cases, the cause of the problem is not the statement where the
failure became visible but somewhere else. How to find the erroneous
statement? This is the crucial question, and this is actually where the
debugging begins.

To localize the origin of the problem, the developer starts the pro-
gram in the debugging mode and executes it statement by statement. A
number of NetBeans tools supporting this process are available. In
particular, breakpoints allowing stepwise execution, a trace of the invo-
cations (call stack), and the values of relevant variables are helpful in a
debugging situation.

To solve the error-location problem, a number of breakpoints were
set, and some variables and the call stack were watched in the output
window. Figure 6-30 shows the values of local variables in the enlarged
bottom right corner of the debugger screen. The values of "volume" and
"issue" ("2009" and "13") are the values the tester had entered in the
respective text fields of the web form.

Figure 6-30 Local-variables window in NetBeans debugger

The call stack displayed in the call-stack window and the code section
corresponding to the last entered method are shown in figure 6-31. The
current statement to be executed is found in the "getEditions" method,
in line 46 of the "Edition" class ("return null"). This method was in-
voked from the "getEdition" method in line 33. The "getEdition" meth-

Actual debugging
begins here

Local variables

Call stack

6.3 Testing 425

od itself was called in MainPage at line 463, i.e. from the method
"checkBtn_action".

Two more steps past the snapshot situation of figure 6-31, the
program terminates with a null-pointer exception. The first step is
execution of the "return" statement (i.e. returning the "null" value to the
"getEditions" invocation in the aforementioned "for" statement). The
second step is execution of the "for" statement (and indirectly of the
embedded "getEditions" call).

Now, why did the program crash? The answer is that the GUI devel-
oper forgot to return an actual value from a "getEditions" invocation
when he wrote the "Edition" class mock. Methods calling "getEditions"
expect to receive an object in return, but they receive a null value
instead. This is why the null-pointer exception was raised.

Figure 6-31 Call-stack and code windows in NetBeans debugger

Why did the
program crash?

6 Implementation and Testing 426

Once the source of the problem was found, fixing was simple. Instead
of returning "null", a dummy object was returned§. From then on the
"getEditions" method was able to continue its work without interrup-
tions (at least during the testing stage). Correct execution (i.e. a correct
result of the program) was shown earlier in figure 6-10.

§ The statement "return null" was substituted by "return getDummyEditions()", a

mock method that returns an "Edition" object with constant values.

As we pointed out at the beginning of the chapter 6, the term "imple-
mentation" has several meanings. Up to and throughout chapter 6, im-
plementation was used in the computer-science oriented sense, meaning
the realization of a design through "lower-level" techniques such as
programming and creating database schemata.

In organizational theory, implementation stands for introducing a
new concept or solution into the organization and bringing it to life. In
naming this chapter "implementing standard software", we are referring
to implementation as an organizational term: putting standard software
into operation, including all necessary activities to achieve this goal.

"Implementation"
as organizational
term

Imple-
menting
Standard
Software

7 Implementing Standard Software 428

7.1 Standard vs. Individual Software

An early decision to be made in an information system development
project is whether to "build, buy, or rent". This question was addressed
in section 2.2.3. While chapters 4 to 6 dealt with the "build" case (i.e.
the system is developed by the organization), the "buy" case will be dis-
cussed in this chapter.

The number of organizations that develop comprehensive informa-
tion systems themselves is decreasing. In typical business settings,
large-scale information systems are mostly systems that were developed
by specialized software companies as standard software and not by the
user organizations.

Some organizations still create individual information systems al-
though standard software is available. However, these are primarily
large companies that have their own software development departments.
For most other organizations, individual software development has just
become too expensive. Taking into account the high development cost
and the need for well-trained personnel with up-to-date technological
know-how, the majority of user organizations prefer to acquire ready-
made software.

The increasing market share of standard software is also due to the
fact that nowadays this software can be better adapted to an organiza-
tion's individual needs than used to be the case in the past.

In the beginning, standard software was primarily used for non-core
business functions and processes that lent themselves easily to standard-
ization such as financial accounting, payroll and bill-of-materials proc-
essing. However, organizations were hesitant to base their core proc-
esses on standard software because they were afraid of the standardizing
effect of this software. This is because companies often differentiate
themselves from their competitors through the implementation of core
processes. Standard software was seen as an "equalizer", bearing the
risk that competitive advantages embedded in the core processes would
be lost.

Build, buy, or
rent?

Individual ISD is
too expensive

Loss of
competitive
advantage due to
standard
software?

7.1 Standard vs Individual Software 429

Nowadays, organizations increasingly employ standard software for
their core business processes as well. One reason for this is that the
technological means to individualize standard software have become
quite powerful. Therefore, organizations can use standard software,
adapt it to their particular needs, and still differentiate themselves from
their competitors. Advantages and disadvantages of standard software
are summarized in figure 7-1.

__

Figure 7-1 Advantages and disadvantages of standard software

Advantages Disadvantages

Cost
Predictability
Timeframe
Availability
Best practices, software quality
Maintenance, support and further
development

Customization effort
Integration effort
Vendor dependency
Oversize system
Organizational changes

Advantages of standard software

 Cost: The main advantage of standard software, but by far not the
only one, is cost. While the cost for an individual software-development
project has to be completely born by one organization, the cost for
developing standard software is passed on to many organizations, each
one paying a price to the vendor which is only a fraction of the total
development cost.

 Predictability: The cost of standard software is not only lower but
also more predictable than the cost of individual software. While the
price of standard software is known in advance, cost estimation for
individual software development is subject to significant uncertainty (cf.
section 2.4.3). Likewise, the cost of implementing the standard software
in the organization can be estimated based on the vendor's previous
experience with similar projects. Comparable estimates are not available
for an individually developed software system.

 Timeframe: Practical experience has shown that many ISD projects
exceed their deadline, because it is very difficult to predict the duration
of software-development activities. Implementing a standard software
system is easier to oversee. This is because the time needed to develop
the software is not required. Only the duration of the customizing and

Individualized
standard
software

Development
cost is passed on
to many
organizations

Package price
is known in
advance

7 Implementing Standard Software 430

implementation parts, based on the vendor's experience, need to be
estimated.

 Availability: A standard package is essentially available immediately,
whereas an individual software system will be available months or years
from now. For competitiveness, quick availability is often an essential
requirement.

 Best practices: A standard-software vendor receives customer feed-
back regarding drawbacks, missing features and things to improve.
Such feedback is usually incorporated into future system releases, en-
hancing the system gradually. The more customers the vendor has, the
more know-how will eventually be included. Business information
systems such as ERP systems incorporate industry-wide knowledge and
best practices which an individual organization otherwise would not
have access to.

 Software quality: In the same way, the software-technical quality of
the system improves over time as many users point out errors, perform-
ance flaws and shortcomings regarding non-functional software require-
ments that the vendor will remove.

 Maintenance, support and further development: Not only is the user
organization relieved from these time-consuming activities but they also
do not need to worry about keeping up with the latest technologies.
These are tasks the vendor will solve.

Disadvantages

 Customization effort: Since it hardly ever happens that standard busi-
ness software meets exactly the organization's needs, the software al-
most always has to be adapted or extended (cf. section 7.3). This re-
quires significant effort, takes time and costs a lot of money. Many
organizations "... make the mistake of over-customizing their applica-
tion modules in attempt to appease the end-users of the systems. This
tendency to over-customize can be expensive and consume internal
resources." [Beatty 2006, p. 108] A good deal of the cost shows later
when customizations must be carried from one version of the system to
the next upgrade.

 Integration effort: Connecting the standard software with existing
information systems, possibly legacy systems, in the organization's IS
landscape requires significant effort in order to bridge the gaps (cf.
section 7.4).

 Vendor dependency: The user organization depends on the vendor
regarding all aspects of the information system, including availability of
new features and releases, the risk of vendor insolvency and/or acquisi-

Continuous
improvement

Customization is
expensive

Legacy and other
systems

Switching cost is
prohibitive

7.1 Standard vs Individual Software 431

tion by a competitor, the vendor's product, marketing and technology
strategies etc. Once a comprehensive standard software system has been
implemented, the cost of switching to a different vendor is usually
prohibitive.

 Oversize: Standard software is often oversized because it contains
more functionality than an individual organization needs. In order to be
able to serve the requirements of a variety of customers, the vendor
usually includes a wide array of functions from which the individual
customer can select the most suitable (cf. section 7.3.1). Nevertheless,
the system contains more than the customer needs, which often results
in increased hardware requirements.

 Organizational changes: Implementing standard software – with
standard business processes and rules – in an organization usually
means that the organization, to some extent, has to adjust to what the
software prescribes. This is not what most organizations want. They
would rather have the software reflect the exact processes and rules the
organization ran before. Although listed under "disadvantages" here, the
need to adapt also has positive effects, as standard software often intro-
duces organizational improvements (see "best practices" above).

7.2 Process Models for Standard Software
Implementation

Implementing standard software is a costly process with time-consum-
ing activities. Some activities are the same as in developing an informa-
tion system, but most differ in that the complete information system
already exists.

Usually a number of similar systems are available on the market. Be-
ing quite large and containing thousands of functions, a major challenge
for the buyer is to understand these systems and how well they would
satisfy the organization's needs.

Since the implementation of standard software requires a lot of effort
and has a long-term impact on the organization, process models were
developed to support the implementation process. Comprising a large
number of activities to be performed in a specific order, some process
models are supported by tools facilitating the implementation work. In

Standard
software contains
more than the
organization
needs

Adapting the
organization to
the software

Some process
models are sup-
ported by tools

7 Implementing Standard Software 432

section 7.2.3, an example of a vendor-specific process model with tool
support will be given for illustration.

7.2.1 Selecting the Vendor and the Product
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The first stage, or one of the first stages, of a process model is the selec-
tion of an appropriate standard software system for the problem domain
under consideration. Usually several options are available. In some
areas, the number of systems to select from is quite large. For example,
several hundred standard packages for enterprise resource planning are
on the market. Although some address specific industries or company
sizes, the number of candidates a typical business organization can
select from still amounts to several dozen.

Checklists

Just as in information systems development, the starting point for the
selection process is a requirements specification. In order to make
heterogeneous software offerings comparable, many user organizations
develop checklists containing the business processes and/or functions
they want supported by the software. Such checklists can range from
several dozen to thousands of items. For example, Trovarit AG, a
consulting firm specialized in the implementation of enterprise resource
planning, uses a checklist of 2,250 criteria for tool-supported selection
among 600 ERP and other business systems (http://www.trovarit.com/).

Smaller checklists tend to address the desired functionality in an
aggregated form, whereas long checklists usually exhibit much detail.
Since an aggregated description of a specific functionality is often not
sufficient, stakeholders tend to elaborate the checklists in depth.

For example, a checklist for a dispatching system might specify that
vehicle routing functionality is needed. Such a general requirement
would probably be met by almost every dispatching system on the
market. However, if the organization says that they want an optimiza-
tion algorithm for the routing and automated processing of RFID data
for the monitoring of actual shipments, the list becomes longer (and the
number of candidate systems smaller).

Checklists can
be very long

7.2 Process Models for Standard Software Implementation 433

Figure 7-2 Excerpt of a checklist for APS software [Homer 2007]

Ref Software Product Functionality Field Type Supplier1
Product 1

Supplier 2
Product 2

Supplier 3
Product 3

 .
. .

49 Manufacturing Planning & Scheduling:
50 Regenerative Schedule Y/N Y Y Y
51 Incremental Schedule Y/N Y Y Y
52 Resources/Constraints that can be modeled:
53 Labour Y/N Y Y Y
54 Machines Y/N Y Y Y
55 Tools Y/N Y Y Y
56 Sub contractors Y/N Y Y Y
57 Materials Y/N Y Y Y
58 Shelf life of product Y/N N Y Y
59 Warehouse capacity Y/N N Y Y
60 Transportation Y/N N Y Y
61 Work Centres-machine/labour combination Y/N Y Y Y
62 Multiple plant sourcing Y/N Y Y Y
63 All of the above, simultaneously Y/N N Y Y
64 Modeling capabilities:
65 Set up time Y/N Y Y Y
66 Run time Y/N Y Y Y
67 Wait time Y/N Y Y Y
68 Move time Y/N Y Y Y
69 Multiple time fences Y/N Y Y Y
70 Substitute resources/materials Y/N Y Y Y
71 Alternate routings i.e. machines Y/N Y Y Y
72 Rate based modeling Y/N Y Y Y
73 Fixed-duration modeling Y/N Y Y Y
74 Infinite Capacity Planning Y/N Y Y Y
75 Finite Capacity Planning Y/N Y Y Y
76 Floating Bottlenecks Y/N Y Y Y
77 By-products Y/N Y Y Y
78 Co-products Y/N Y Y Y
79 Variable production by part by machine Y/N Y Y Y
80 Operation overlapping Y/N Y Y Y
81 Split operations Y/N Y Y Y
82 Assigns tooling to operation Y/N Y Y Y
83 Schedule constrained by tooling availability Y/N Y Y Y
84 Variable delay to force op to start at start of shift Y/N N Y Y
85 Supports synchronisation of operations Y/N Y Y Y
86 Maintains high utilisation of bottlenecks Y/N Y Y Y
87 Supports sequence dependent scheduling of set ups Y/N Y Y Y
88 Supports scheduling of development jobs Y/N Y Y Y
89 Supports scheduling of maintenance jobs Y/N Y Y Y
90 Rules based approach for sequencing Y/N Y Y Y
91 Distribution & Inventory Planning
92 Supply Network Definition:
93 Supplier Y/N Y Y N
94 Plant Y/N Y Y N
95 Distribution Centre Y/N Y Y N
96 Customer Location Y/N N Y N
97 Supply network planning tools: Y/N N Y N
98 Linear programming Y/N N Y N
99 Heuristics Y/N N Y N
100 Multi plant sourcing logic Y/N N Y N
101 Optimise truck loads Y/N N Y N
102 Prodn sourcing, inventory build, transport balancing Y/N N Y N
103 Global supply chain design. Y/N Y Y N
104 Rules based order fulfilment Y/N Y Y Y
105 First come/first served Y/N Y N Y
106 Fair share deployment Y/N Y Y Y
107 Prioritised allocation Y/N Y Y Y
108 Forecast consumption rules Y/N N Y N
 . .

.

7 Implementing Standard Software 434

An example of a checklist for the selection of advanced planning and
scheduling (APS) software for supply chain management is given in
figure 7-2. It shows an excerpt referring to the manufacturing planning
and scheduling part of APS. Entries for three candidate software
systems were already made in this checklist.

When the organization prepares a request for proposals (RFP) to be
given to potential vendors, more questions than those referring to the
software system's functionality are added. Thus the RFP will typically
consist of a long list of questions referring to topics such as:

– System functionality details
– Hardware and software requirements (incl. non-functional require-

ments such as scalability)
– Organization of service and support, service levels
– User training and help (hotline, help desk)
– Cost (license, upgrade, maintenance, training etc.)
– Legal issues (contract, indemnification, liability etc.)

Not all checklist criteria are of the same importance. Some definitely
need to be satisfied ("must have"), while others would be "nice to have",
but are not indispensable. "Must have" criteria can be applied in the
selection process to eliminate candidates, unless the missing functional-
ity can be obtained otherwise (e.g. by additional programming).

Long and detailed checklists have been criticized for obvious disad-
vantages. Major drawbacks of the checklist approach include the
following:

1. The more elaborate the desired functionality details are, the higher

the risk that the potential for organizational improvement is
missed. Stakeholders tend to coin the current way of problem
solving into the checklist and thus prescribe it for the future
solution. This means that organizational shortcomings are also
transferred. Often the individual features have to be developed
through additional programming, causing additional costs, and
best practices embedded in the standard software are not adopted.

2. Stakeholders tend to over-specify the desired system with func-
tionality that appears desirable to them but is not really necessary.
This means that even good systems that do not provide this spe-
cific functionality are either eliminated from the list of candidates,
or if they survive on the list and one such candidate wins at the
end, the special functions will be implemented at additional cost.

Request for
proposals (RFP)

Disadvantages of
checklists

Many functions
of a detailed
checklist are not
used later

7.2 Process Models for Standard Software Implementation 435

What is worse, many detailed requirements that dominated the
selection process are later found to be not so important after all.
Practical experience shows that the majority of functions specified
in a detailed checklist are not used when the new system is in real
operation.

3. The effort to create a detailed checklist is very high. It involves
stakeholders from different departments, requiring long discus-
sions, compromises and a balance of interests among them.

Taking these points into considerations, some consultants recommend
not spending too much time on creating checklists for vendor selection
if a sound basis of standard software is available on the market. In the
ERP field, for example, surveys have shown that organizations can
expect 90 % of their requirements to be satisfied by the top ten ERP
systems, and even 95 % by the top three systems [Scherer 2004].

Utility-value analysis

The reader may imagine the difficulties of a checklist-based selection
process by considering figure 7-2. If there were 50 APS systems on the
market, then a checklist could help to reduce the number of candidates
to a manageable size of perhaps three to five systems. Yet the remaining
systems would still have their "Y" and "N" entries at different places. In
the example, products 1 and 3 apparently do not provide supply network
planning tools. Product 2 does include these tools, but suppose it costs
twice as much as the other two products. Should products 1 and 3 be
eliminated as candidates? Perhaps for other criteria they are superior to
product 2, exhibiting "Y" entries where product 2 has "N"s.

To come to a final decision, the benefits of having certain features
must be weighed against the drawbacks of missing other features. Since
most benefits and drawbacks cannot be measured directly in money or
any other quantitative units, it is necessary to apply qualitative judge-
ment. Methods supporting this approach often use utility values for the
criteria provided by the decision maker.

In a typical utility-value analysis, all criteria are weighted with per-
centages reflecting their relative importance to the decision maker. For
each alternative (in our case: for each candidate software system), each
criterion is then assessed in such a way that points are given reflecting
how well the candidate satisfies the criterion. Points can range, for
example, on a cardinal scale from 1 (very bad) to 10 (very good). Multi-
plying the points by the percentages and adding up the products yields

Spending too
much time on
creating
checklists?

Benefits and
drawbacks of
available/missing
features

Weighting criteria

7 Implementing Standard Software 436

an aggregated utility value for each alternative. The candidate with the
highest utility is the system to choose.

Figure 7-3 shows an example of the assessment step. System 2 was
found to cover most of the desired functionality (90 %) while the other
two systems cover only 70 % and 60 %, respectively. Therefore the cus-
tomization effort is expected to be normal (4 person months) for system
2 but higher for the other two systems (10 and 12 person months,
respectively). System 2 is widely established on the market and has over
500 installations, a matter from which a certain level of trust in the
system may be derived.

Figure 7-3 Aggregated software assessment (example)

Criterion Product assessment

 Product 1 Product 2 Product 3

System functionality 70% 90% 60%

Non-functional requirements very good OK quite good

Cost (license, hw/sw, maintenance) 1,200,000 1,750,000 1,150,000

Customization effort 10 pm 4 pm 12 pm

Technical service & support excellent average mediocre

User training & help average good good

Reference installations 26 > 500 80
 pm = person months

Figure 7-4 Utility-value analysis

Criterion Weight Points from product assessment

(%) Product 1 Product 2 Product 3

System functionality 30 7 9 6

Non-functional requirements 10 9 6 8

Cost (license, hw/sw, maintenance) 20 5 2 5

Customization effort 20 4 7 3

Technical service & support 10 10 5 4

User training & help 5 5 7 7

Reference installations 5 2 10 5
Total 100 615 645 520

Assessing three
standard
packages

7.2 Process Models for Standard Software Implementation 437

The mapping of these qualitative and quantitative results to utility val-
ues (points from 1 to 10) is shown in figure 7-4. For example, the high-
est number of reference installations (> 500) was given 10 points while
the 26 and 80 reference installations received only 2 and 5 points,
respectively. Summing up the points weighted with their percentages
yields total utility values of 615, 645 and 520. The winner is obviously
product 2. If the organization bases its decision on the utility-value
analysis, then it will license this system.

7.2.2 A Generic Process Model
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Implementing standard software requires various activities before and
after the actual implementation step, resulting in a multi-stage process.
Some stages are the same as or similar to the stages of information
systems development while others are quite different.

In this section, we discuss a typical process model that user organiza-
tions follow when they have decided to implement standard software.
The initial perspective is the same as in chapter 4: the starting point for
an implementation is an approved project proposal (cf. section 2.2.1).
This means that the management decisions to launch the project and to
license standard software instead of developing a system inhouse have
been made.

We also assume that the organization is willing to do, or has already
done, business process engineering and/or reengineering, i.e examining
the current processes and elaborating potentials for improvement. Deter-
mining the new processes in detail is done later – when the final deci-
sion for the product to buy has been made.

The reason is that business information systems are usually built
under assumptions including: how an organization works; what organ-
izational structures and typical business processes look like; common
data structures and database entities; workflows; etc.

Although the software vendor may have set the assumptions based
on practical observation of a large number of applications, the individ-
ual organization probably has not worked exactly according to these
assumptions up to now. For the organization it makes sense to adopt
some (or all) of the best practices built into the standard software, in-
stead of ignoring the underlying assumptions and changing the standard

Mapping the
assessment to
utility values

Business IS are
built under
assumptions

Standard
software
changes the
organization

7 Implementing Standard Software 438

software so that it exactly maps the current organizational and process
structures. (This would mean making individual software out of stan-
dard software.) However, adopting best practices and other features of
the standard software usually requires organizational change.

The fine-tuning of business processes, functions and organizational
structures depends on the particular software product chosen and on the
particular assumptions the vendor of this product made. Therefore the
details of the necessary changes can only be determined when the con-
crete product has been selected. We assume that this change process is
going on in parallel to the software implementation process.

Typical process models represent basically a sequence of stages as
shown in figure 7-5. Major tasks and stages are the following:

(1) Vendor and product selection – evaluating vendors and standard
packages available on the market as discussed in section 7.2.1.

(2) Configuration – choosing those modules of the selected product that
should be implemented in the organization. The reason why standard
software is also called "package software" or "modular program" is that
it is usually composed of many modules combined in a package. Not
every organization needs every module. A bank, for example, will not
need the production-planning module of the chosen ERP system but
rather the financial modules.

In some cases it is difficult to decide which modules to adopt and
which not. Most functionality of the ERP system's materials manage-
ment (MM) module will not be of any use for the bank because the
primary material it manages is money. However, some functions of the
MM module may still be useful, e.g. inventory management for office
supplies. The question is whether it is worth licensing (and paying for)
the MM module for this purpose, or is it better to use simple off-the-
shelf inventory management software in addition to the ERP system. A
trade-off between higher cost (licensing) and integration problems
(using additional stand-alone software) has to be made.

(3) Negotiations and contract – settling the deal with the selected
vendor. The price, terms and conditions are likely to be negotiated in
parallel to the selection and configuration process. The vendor and the
buyer will enter into the final agreement once the module configuration
is chosen and all questions regarding support, services, training,
maintenance, upgrades etc. are solved.

(4) Installation – setting up a working hardware and software configura-
tion at the customer's site. Major activities include preparing the com-
puter system on which the system will run, and installing the database

Choosing the
modules to be
implemented

Infrastructure
and installation

7.2 Process Models for Standard Software Implementation 439

management system, the application server and the web server the
standard software will use. If these infrastructure components are
already available, they must be prepared to host the new system. When
the infrastructure is working, the program files and all other software
components making up the new system can be installed.

Testing if and how well the standard software works together with
the rest of the organization's information systems landscape (interopera-
bility testing, cf. section 6.3.4), can either be part of the installation
stage or the customizing and extensions stage, depending on how much
individual modification and extension work is required. If significant
parts of the system are re- or newly programmed, then it is obviously
not appropriate to test its interoperability before this code exists.

(5) Customizing and extensions – adapting the standard software to the
organization's individual requirements. In most implementation pro-
jects, this is the stage that requires most of the effort. Customization and
related topics will be discussed in detail in section 7.3.

(6) Preparing for transition – making the organization fit for the new
system. This stage includes training of end-users and technical staff,
producing organizational instructions and customized user manuals, and
final testing, in particular acceptance and performance testing (cf.
section 6.3.4). Before the system can go into operation, the stakeholders
examine it against the requirements formalized in the requirements
specification and/or the contract (acceptance testing). Since most work
before was done using test data, the system's performance under "real"
conditions – using real data and including extreme workloads – has to
be examined to ensure that the system will not fail in daily operation.

It should be noted that the focus of the "preparing for transition"
stage is not a general reorganization and reengineering of the business.
The major tasks in preparing the organization for the new system, such
as developing new organizational structures and establishing new busi-
ness processes, have to start much earlier. They will be going on in
parallel to the process stages described in this software implementation
process model.

An important question to be answered is how the transition from the
old system, or from the old way of doing things, to the new system will
be organized. This step bears significant risk. Whereas the old processes
and functions were known to work, the new, standard-software support-
ed processes and functions have not proved their reliability yet. There-
fore, the new solution bears a higher risk of business operations being
disturbed or interrupted if the software fails to work properly. One of
the three options described next has to be chosen.

Customization

Making the
organization fit
for transition

7 Implementing Standard Software 440

__

Figure 7-5 Process model for standard-software implementation

Vendor & product selection

Configuration

Installation

Customizing & extensions

Preparing for transition

Transition

Operation & maintenance

System upgrades

Negotiations & contract

Vendor & product selectionVendor & product selection

Configuration

InstallationInstallation

Customizing & extensionsCustomizing & extensions

Preparing for transitionPreparing for transition

TransitionTransition

Operation & maintenanceOperation & maintenance

System upgradesSystem upgrades

Negotiations & contractNegotiations & contract

(7) Transition – the actual implementation step putting the new system
into operation. This may include moving from a pre-production hard-
ware and software environment to the live system. In practice, the
transition is often done according to one of the following options:

7.2 Process Models for Standard Software Implementation 441

a) Parallel operation – implementing the new system parallel to the
old system and running both systems for a while. All transactions
are basically performed in the new system but redundantly in the
old system as well. An obvious advantage is safety: If the new sys-
tem fails, work can continue with the old system. The major disad-
vantage is also obvious: double work.

b) Stepwise transition – starting the transition process by implement-
ing only one or a few modules of the new system and implement-
ing additional modules later, step by step. For example, implemen-
tation of an ERP system might start with the human-resources
(HR) module and continue later with financial and managerial
accounting, followed by materials management. An advantage of
stepwise transition is that the organization can gain experience
with the new system. End-users in the HR department learn and
become acquainted with the system. Perhaps they find errors or
drawbacks that the vendor can remove. If experiences are positive,
the next module can be put into operation. If experiences are
extremely negative, the entire standard-software deal might even
be cancelled.

c) "Big bang" – defining a cut-over date and replacing operations
with the old system by the new one. At the specified date, all users
migrate to the new system, and operation of the old one is dis-
continued. This type of transition is extremely risky because many
things not thought of before can go wrong. However, if it works,
the organization can benefit from the new solution immediately.

The majority of practical implementation projects follow the second
approach – stepwise transition. However, a consequence of proceeding
in steps is that the implementation of a large standard-software system
can take years.

The big-bang approach, even though it is very risky, can work if it is
prepared very carefully. There are organizations that have successfully
employed it. Preconditions are extensive user training and thorough
acceptance and performance testing. Powerful help features, a hotline
and extensive technical support available from the cut-over date on can
help to reduce and/or remove unforeseen problems quickly.

(8) Operation and maintenance – using the system for its intended
purpose every day. In this stage, it is common that flaws and errors are
observed. The organization responsible for removing them is either the
software vendor, if the error occurs in a standard module, or the user
organization themselves, if the error occurs in code that was changed or
created by their IT staff (such as an extension module). The more

Running both the
old and the new
system for a
while

Implementing
only a few
modules at first

Replacing all at
once

7 Implementing Standard Software 442

changes to and extensions of the vendor's code made and the tighter the
module coupling, the more likely it is that the parties will argue about
whose fault it is that the error or flaw occurred.

(9) System upgrades – adopting new versions of the standard software.
Most software vendors work in cycles. For some period of time, they
collect new requirements, shortcomings observed by the users and fun-
damental errors that cannot be removed as part of maintenance. Then
they incorporate the corresponding changes into their system. They also
add new features in order to become more competitive. A new, up-
graded version of the system (usually called a release) is produced and
offered to the customers. New hardware or software technologies, such
as a new software architecture, operating system or GUI technology
may also trigger the development of a new version.

The customer can choose whether to adopt the upgrade or not. Soft-
ware vendors often put pressure on their customers to implement the
new release. However, many customers are hesitant to do so. Unless
they are observing major problems with the current release, they would
rather continue operating it. New versions can create new problems (and
most likely contain new errors and flaws).

If the customer decides to license the new release, a mini-implemen-
tation project may be set up before the arrow back to the operation stage
in figure 7-5 is followed. Sometimes a new release is accompanied by
so many changes and extensions that it comes close to a new system. In
such a case, user training and more preparation may be required before
the system can go into operation. This is the reason for a second arrow
going back from the "system upgrades" to the "preparing for transition"
stage in figure 7-5.

The effort to successfully upgrade a standard package is often under-
estimated. One misconception is to think of implementing an upgrade of
a business information system as an IT task. In practice, it is more a
business project than an IT project, because the business side is respon-
sible for determining the business case for the upgrade. Upgrading an
ERP system, for example, requires that the business units establish the
timetable for planning, installing and testing the upgrade to minimize
disruptions to business processes. In a practical ERP upgrade project
cited by Beatty and Williams as an example, it was found that the man-
ufacturing department absorbed 43 % and the finance department 12 %
of the project hours [Beatty 2006, p. 108].

New releases

Mini-implemen-
tation project

Implementing an
upgrade is a
business project

7.2 Process Models for Standard Software Implementation 443

7.2.3 A Vendor-specific Process Model
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Implementing a large standard-software system such as an ERP or a
CRM system is a voluminous task, including a large number of fine-
grained activities, in particular for customization of the system. The
implementation crew can easily get lost in the complex network of
things to be done. Large software vendors have developed computer-
supported tools to assist the organization in the implementation work.
Such tools are based on a specific process model provided and followed
by the vendor.

A well-known example is SAP's process model for implementing
ERP, supported by the ASAP (Accelerated SAP) toolset. ASAP was
created in 1997 and based on worldwide experiences SAP consultants
and user organizations had gained in ERP implementation projects. As
the name suggests, the motivation for ASAP was to speed up lengthy
implementation projects so that organizations could benefit from the
ERP system "as soon as possible."

ASAP is not a process model but actually a toolset for ERP
implementation, organized along the stages and activities on the road to
a running system. A so-called "roadmap" guides the implementation
process. The roadmap is divided into five major stages. All activities
within the stages are supported and monitored by an automated imple-
mentation guide. ASAP provides detailed project plans in MS Project
format to assist each stage.

Although not explicitly named a process model, the ASAP roadmap
indeed serves as one. Its major stages and tasks are illustrated in figure
7-6. The initial stages of the above generic process model – vendor and
product selection, negotiations, contract etc. (cf. figure 7-5) – are not
included because SAP obviously supports only the implementation of
their own product. Process stages covered by the roadmap are the
following:

(1) Project preparation – planning the implementation project. This in-
cludes: defining project goals and objectives; clarifying the scope of the
implementation; defining the project schedule, the budget plan and the
order in which the modules will be implemented; establishing the pro-
ject organization and relevant committees; and assigning resources.

ASAP
(Accelerated
SAP)

ASAP roadmap

7 Implementing Standard Software 444

(2) Business blueprint – creating a so-called blueprint in which the
organization's requirements in terms of business processes and organ-
izational structure are outlined. A reference model is created that can
serve as a basis for the next stage, realization. SAP provides a detailed
generic reference model from which the implementation team can
select, modify and include processes (and other components) into the
organization's specific reference model.

__

Figure 7-6 ASAP roadmap [SAP 2005c, p. 2]

Project
Preparation

Business
Blueprint

Realization

Final
Preparation Go Live &

Support

Continuous
Change

Project
Preparation

Business
Blueprint

Realization

Final
Preparation Go Live &

Support

Continuous
Change

 © SAP AG

A complete reference model consists of various views of the informa-
tion system: a process view, a functional view, an organizational view, a
data view, an information-flow view and a communication view. All
views are represented by graphical diagrams. For example, processes
are represented by event-controlled process chains (EPCs) and functions
hierarchies by decomposition diagrams.

The blueprint document also contains specifications of forms, reports
and access rights that have to be realized in the next stage. The business
blueprint stage is a very important one because it determines what the
final system will be like. A "question and answer database" is provided
to support the team in asking the right questions and not forgetting
important issues in preparing the business blueprint. An automatically
generated "business process master list" (BPML) can be used as a docu-
mentation of the answers.

Reference model

Different views
of the IS

7.2 Process Models for Standard Software Implementation 445

(3) Realization – implementing the reference model defined in the busi-
ness blueprint by configuring the selected modules. Customizing (cg.
section 7.3) is the main task in this stage. First a so-called baseline
system is configured, covering about 80 % of the blueprint's business
processes. Special cases, individual requirements and exceptions
making up the remaining 20 % are solved in the second phase, leading
to the final configuration. Other important tasks of this phase are con-
ducting integration tests and developing end-user documentation.

The major tool provided for customization is the implementation
guide (IMG). This tool helps the implementation team customize the
system step by step, according to the requirements defined in the
blueprint and/or with the help of the question and answer database and
the business process master list (BPML).

(4) Final preparation – completing testing (in particular interoperability
and performance testing), end-user training, system management and
cutover preparations. All open issues should be resolved to ensure that
all prerequisites for the system to go live have been fulfilled. Integration
with other information systems and data cutover must be completed.

(5) Go live and support – moving from a pre-production environment to
the live system. This stage includes activities such as production sup-
port, monitoring system transactions and system performance, tuning
and/or removing performance bottlenecks, and removing errors.

ASAP is not the only roadmap for SAP ERP implementation. Many
consulting firms have specialized in SAP ERP implementation and cre-
ated their own roadmaps based on their own experience. SAP also pro-
vides more roadmaps, e.g. ASAP Focus for mid-size companies and
Global ASAP for ERP implementation on a global scale. SAP's com-
prehensive application management platform (called "solution manag-
er") contains ASAP tools as a part of the total functionality [SAP 2008].

7.3 Customizing Standard Software

Customizing standard software means adapting the software to the
individual needs of a customer. Various methods, techniques and tools
for customization exist, ranging from setting parameters, without touch-

Implementation
guide (IMG)

Consulting firms
specialized in
SAP ERP
implementation

7 Implementing Standard Software 446

ing the program code, to writing and including individual programs. In
the following sections, two types of customizing standard software are
discussed: adjusting and extending the software.

7.3.1 Adjusting Standard Software
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Most standard business software can be adjusted by setting parameters
or selecting from lists of options. Vendors of large software systems
increasingly design their systems in such a way that they incorporate a
lot of functionality – much more than an individual organization needs.
Alternative functionality for the same problem is also provided so that a
variety of customer organizations can select the solution which matches
their specific requirements best.

The final system operating at a customer's site is then configured (or
generated) according to the specific parameter settings and selections.
No additional programming is required. This is a major advantage for
the customer, taking into consideration that developing new or changing
existing code is expensive.

An example of adjusting an ERP system through parameter settings
is given in the figures 7-7 to 7-9. In this example, the above mentioned
implementation guide is used to configure an SAP ERP system. This
tool guides the implementation staff through the customization steps.
Three categories of parameters are distinguished:

– General settings, such as country, currency, calendar, time zones,

measurement units etc.
– Settings regarding the organizational structure, such as factories,

company codes, clients
– Module-specific settings, such as certain parameters for require-

ments planning within the materials management module.

Figure 7-7 shows in the window on the left a screenshot with part of
the navigation structure provided by the implementation guide. It
illustrates the areas in which customization features are available. The
substructure for general settings is expanded in the window on the right.
The organization can specify country-specific parameters such as coun-

Setting
parameters and
selecting from
options

No additional
programming
required

Using the SAP
implementation
guide

Customization
areas

7.3 Customizing Standard Software 447

try name, telephone codes, currencies and time zones. In figure 7-8, the
window to set the company's country is displayed.

Setting a module-specific parameter is illustrated in figure 7-9. The
underlying problem is how exactly to perform an availability check for
a particular material. Suppose this material is required for an upcoming
production step or a customer order. The simple question: "is this mate-
rial available?" can have many answers, depending on what type of
stock is included in the check and which point in time the check refers
to.

__

Figure 7-7 SAP implementation guide (IMG)

As the figure shows, stock that might be examined can be safety stock,
stock in transfer, stock in quality inspection, stock that is just blocked
for other orders, etc. In addition, availability depends on movement
inwards and outwards from the inventory locations, e.g. on purchasing
orders for the material and when these orders will be delivered. Material
that is not available today but on the day when it is required in produc-

Parameters for
availability
checks

7 Implementing Standard Software 448

tion may be regarded as "available". A replenishment lead time may
need to be considered, because purchasing material takes some time.

Figure 7-8 Defining the country with the IMG

Another question is when to perform the check: when the production
order is released, when it is opened or when it is saved? In SAP ERP,
the customization team can choose among several options regarding the
time of the availability check. Many more factors influence an availabil-
ity check. While it is the production managers' responsibility to specify
what to check and how to check it, it is the software that finally
performs the check. Instead of writing a custom program that takes all
user-specific requirements into account or modifying the standard-pack-
age code accordingly, parametrization makes it possible to satisfy the
user's requirements and still leave the program code untouched.

7.3 Customizing Standard Software 449

Figure 7-9 Parameters for availability check

Adjustment through parameter settings appears to be a cost-effective
way to tailor standard software, making it an individual business solu-
tion. However, taking a closer look at parametrization reveals severe
problems. These problems are not technical but business problems.
There are essentially three reasons for the problems: the mass of param-
eters, the complexity of parameter interactions, and a lack of under-
standing of the business implications of parameter settings.

Consider the following example: The production-planning module of
SAP ERP exhibits almost 200 parameters. Approximately 40 of them
are related with materials (parts) managed in the MM module, similar to
the ones discussed in the above examples. Imagine a small company
with about 25,000 active materials. Then more than one million param-
eters have to be set [Dittrich 2006 p. 1]. Clearly this cannot be done

Too many
parameters

Too many
parameter
interactions

7 Implementing Standard Software 450

manually. Therefore many parameters just remain untouched, and the
initial default settings the system comes with are left as they are. Opti-
mization potential is not exploited.

The second problem, parameter interactions, is due to the fact that
the underlying business matters are interrelated. Setting one parameter
in isolation can mean that the desired effect from setting a different
parameter will not occur. Likewise, if the person setting a parameter
does not understand the implications of this parameter on the business
objectives, he or she will hardly be able to stipulate the parameter with a
reasonable value.

7.3.2 Extending Standard Software: User Exits
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

When an organization needs functionality that is not provided by the
selected standard package, this functionality may be developed sepa-
rately and linked with the package.

The so-called user exits (or program exits) are a traditional technique
to extend standard software by custom modules. A user exit is a place in
a program where an external program may be invoked. This program
can be written by someone else, for example by the customer or by de-
velopers working on behalf of the customer (such as a consulting firm
assisting the organization in the implementation of the package).

Providing user exits means that the vendor of the standard package
deliberately opened the software for extensions. This is often the case
when application-specific code is required that the standard-software
vendor could not know in advance, or when that code is so specific that
it would be different in each customer setting. If the required program-
ming effort is significant, it does not pay for the vendor to develop
many different code versions.

Extending standard software via user exits requires three steps:

1. Finding the correct user exit in the source code of the standard

package (provided that the source code is available) or in a code
administration tool (provided that the software vendor offers such
a tool). The documentation of a user exit should contain import
and export specifications (parameter interfaces). Import means
data input that the standard software provides for the program to
be written. Export means data that the standard software will ac-

User exit: an
external program
can be invoked

Finding the
correct user exit

7.3 Customizing Standard Software 451

cept from the custom program. Finding the correct user exit may
be a cumbersome step if user exits are not properly documented.

2. Writing the custom code. This includes processing import from
and preparing output for export to the standard software.

3. Including the custom module in the standard software's source
code. (This does not necessarily mean to physically embed it into
the source code. It can also be loaded from a custom library at
compile time or at runtime, for example.)

__

Figure 7-10 User exit to include custom code [Becker 2007]

Software developed in a programming language such as Cobol, PL/1 or
ABAP usually provides user exits in the form of code-includes or sub-
program calls. Whenever an implementation makes use of a user exit, a
custom procedure or function is called (and/or the included code is exe-
cuted). Afterwards the standard module continues its work, possibly
using data the subprogram exported.

Including the
custom program

7 Implementing Standard Software 452

Programming user exits is no fun. It is subject to constraints and
conventions set by the standard software and by the underlying software
technology. For example, extending a software package such as SAP
R/3 which was written in ABAP means that the extension must also be
programmed in ABAP. Variable, exit and subprogram names are given
so that the customization programmer does not have much choice.

The screenshot in figure 7-10 shows an example from customizing
the FI (financials) module of an SAP R/3 system [Becker 2007]. The
programmer intends to write custom code for checking the content of a
customer-data field. The user exit's name is "EXIT_SAPMF02D_001"
(a typical naming convention in SAP's ABAP code).

The ABAP workbench makes the R/3 source code available where
the custom code has to be entered. At the bottom of the screenshot,
between the lines "INCLUDE ZXF04U01" and "ENDFUNCTION", the
programmer will type the code extending the standard module§. This
code will be executed by SAP R/3 whenever the flow of control in the
FI module hits the user exit.

User exits are often employed when events in the execution of the
standard software occur. An event must be handled. However, the pack-
age vendor cannot always know in advance what a particular customer
intends to do in the case of the event. Therefore event handling is often
left to the customer.

7.3.3 APIs and the Hollywood Principle
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

User exits are "old technology", however still widely used. The reason
is that user exits have been around since the early Assembler-language
packages in the 1960s and 1970s. Basically the same mechanisms later
found their ways into software written in third and fourth-generation
languages such as Cobol, PL/1 and ABAP. Since SAP R/3 is based on

§ In the above example [Becker 2007], the following ABAP code was entered:

* User exit to ensure that all US customers have a group key
* entered on the customer master.
*
if i_kna1-land1 = 'US' and i_kna1-brsch = ' '.
 message e001(F2).
endif.

Programming
user exits is
subject to
constraints

Event are often
handled through
user exits

User exits are
"old technology"

7.3 Customizing Standard Software 453

"old technology", programming user exits as shown above is still a
common technique in the SAP users' world.

Most modern information systems are object-oriented. New systems
are increasingly being developed in Java, as is the case for SAP's
current developments. Under the object-oriented paradigm, user exits
are out of place. Instead, object-oriented mechanisms are available to
create extensions of existing software. Such mechanisms include
abstract classes, interfaces, inheritance and polymorphism.

In order to apply object-oriented concepts in a systematic way,
design patterns and other fundamental principles of object-oriented
design can be employed. The so-called Hollywood principle and APIs
realizing the encapsulation principle describe two approaches to connect
standard modules with custom modules.

"Don't call us, we'll call you"

The so-called Hollywood principle ("don't call us, we’ll call you")
applied to customization describes a form of collaboration in which the
execution of custom extensions is controlled by the standard package.
This means that the custom extension must be ready to be invoked, but
it is under the control of the standard package to make it happen.

Conventional user exits as discussed in the previous section have
actually always followed this approach. However, the name Hollywood
principle became popular with modern software technology and the use
of frameworks.

As described in section 5.2.2, a framework provides core functional-
ity for a certain problem category through a set of abstract and concrete
classes and interfaces, and it includes a mechanism to plug in additional
classes and to customize and extend the provided classes. The frame-
work specifies what the framework user has to provide. When a stan-
dard package was explicitly designed as a framework, then it is easy to
extend because extensibility is built-in.

Not only frameworks but also other object-oriented systems apply
the Hollywood principle to allow for systematic extensions. A typical
approach to permit individual organizations to customize object-ori-
ented software is as follows.

1. The software vendor provides abstract classes and interfaces con-

taining little (or no) implementation code. The user organization
subclasses the abstract classes and writes individual code. Similar-
ly, the organization implements the interfaces so that they satisfy
both the organization's needs and the software vendor's interface
specification.

Object-oriented
approaches

Custom
extensions
controlled by the
standard
package

Customizing
object-oriented
software

Abstract classes
and interfaces

7 Implementing Standard Software 454

2. The standard modules invoke custom methods wherever they
expect work to be done in a customer-specific way. This is possi-
ble because the vendor defined the signatures of these methods,
either as abstract methods (i.e. methods of an abstract class) or as
methods of an interface, and thus they are known in the standard
package.

A Java-oriented schematic example is outlined in figure 7-11. The
standard software on the left-hand side is composed of many classes,
including some abstract classes. Abstract classes become concrete
classes when the things not implemented in the abstract class (in partic-
ular methods) have been completely implemented.

Figure 7-11 Customizing a Java standard package

This can happen both in the standard part of the system, performed by
the vendor, and in the extensions part shown on the right-hand side, per-
formed by the user organization. In the latter case, it is a customization.

7.3 Customizing Standard Software 455

Standard-software developers can invoke customer-written methods
that do not yet exist at the time the standard software is created. This is
possible because the same developers define the abstract methods as
well (i.e. the signatures of these methods). For example, the standard-
software class "SSClassW" can invoke the abstract "computeSavings"
method which the customer will implement in the "CustomClassF"
class. The class "CustomClassF" is a subclass of the abstract class
"SSClassF". It inherits the standard features defined in the abstract
"SSClassF" class and specifies in addition the custom features required
inside the subclass.

Application programming interfaces (APIs)

Custom extensions can make use of APIs provided by the standard-
software vendor. The underlying idea is similar to the parametrization
approach: The software vendor develops program code for potentially
needed functions in advance and makes it available to customers. How-
ever, while parametrization happens on the end-user level, APIs are
used on the coding level.

APIs are interfaces to pre-written code, usually collected in a library.
The software vendor provides these interfaces, and the customer's
developers can import the library code and invoke it through an API.
Execution control is to some extent with the extension modules. The
customer's developers write programs in which the pre-written standard-
software code is invoked according to the flow of control in the exten-
sion module. This means that the programmer is relieved of writing
code that the vendor's developers already produced before.

Using APIs is a common approach in Java software development
where thousands of APIs are available. The majority of APIs are gen-
eral-purpose APIs in the sense that they provide useful programming
functions that can be applied in many contexts. However, specialized
and domain-specific APIs are also available.

BAPIs (business APIs) are an example of business-oriented program-
ming interfaces. These were introduced by SAP in the 1990s as
interfaces to business functionality encapsulated in so-called business
objects, e.g. "employee", "invoice", "product data" etc. [SAP1997].
Through the BAPIs, business objects embedded in SAP's software
became available both to customers writing custom software and to
software partners writing add-ons to SAP's software.

Using APIs is simple if the available libraries are known and under-
stood. The only thing a custom developer needs to do is import the
respective library package and invoke the methods provided. Figure 7-

Invoking
customer-written
methods that do
not yet exist

APIs are
interfaces to pre-
written code

Most Java APIs
are general-
purpose APIs

BAPIs (SAP's
business APIs)

7 Implementing Standard Software 456

12 illustrates this with a schematic example: The user organization has
to create its own module for demand calculation because the software
vendor's demand module does not reflect the organization's require-
ments.

__

Figure 7-12 Flow of control using APIs

VLClassA // APIs

 method1 ()
 method2 ()
 ...

VLClassB // APIs

 method1 ()
 method2 ()
 ...

library_package_1

...

VLClassK // APIs

 ...

library_package_2

...

SSClassV

SSclassX SSClassY SSClassZ

class SSClassW {
 ...
 CustomClassF.computeDemand();
 ...
}

Standard package

...

import library_package_1;
import library_package_2;

class CustomClassF {
 ...
 computeDemand() {
 ...
 VLClassB.method1 ();
 ...
 VLClassA.method2 ();
 ...
 }
 ...
}

CustomClassG

Custom classes

CustomClassH...

...

Vendor libraries

What the vendor does, however, is to provide useful methods that
simplify writing such a module.

The organization's individual demand-computation method is created
within the "CustomClassF" class by a custom developer. This method,

7.4 Integrating Standard Software into the IS Landscape 457

"computeDemand", calls two library methods from the "library_pack-
age_1" to accomplish its work. One is the method "VLClassB.method1"
provided by the "VLClassB" class, the other one is "VLClassA.meth-
od2" provided by the "VLClassA" class.

7.4 Integrating Standard Software into the
Information Systems Landscape

Although a standard-software package may cover many business areas,
it is never the only information system of the enterprise. Most likely
other information systems, solving different problems than the new sys-
tem, existed before and will continue to exist.

The new and the old systems are rarely completely isolated from
each other but rather connected through common processes, data or
workflows. This means that the new and the old systems have to
collaborate in some way.

A common way of collaboration between different information sys-
tems is through data. If system A produces output that system B should
process as input, and the formats of the data produced by A are different
from the formats expected by B, then there is a compatibility problem
that has to be solved.

Likewise, suppose both systems are employed within the same
workflow. System A is an old Cobol program whereas B uses the latest
Java technology. When a workflow step solved with the help of system
A is completed, the next step may need the help of system B. Then the
respective module of A, or some other mechanism, must trigger
execution of the proper method of B, and data created in A must be
available to B.

Old and new sys-
tems must
coexist

7 Implementing Standard Software 458

7.4.1 Enterprise Application Integration (EAI)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The problem of making heterogeneous systems work together is
addressed in enterprise application integration (EAI). The aim of EAI is
to create integrated business solutions by combining existing informa-
tion systems with the help of common middleware. This means that
EAI allows autonomous information systems to share data, functions,
objects and/or processes.

Among other drivers, the growing dissemination of standard business
software in the 1990s and the need to integrate it with existing informa-
tion systems significantly stimulated research and development in EAI.
Another driver for EAI was the need to integrate so-called legacy sys-
tems, i.e. stand-alone information systems based on "old" technology,
with each other and with new developments (cf. section 7.5).

Despite its roots in standard-package and legacy integration, the
scope of EAI is much wider. EAI also means that new solutions can be
built on top of heterogeneous systems, leveraging earlier investments.
Provided that up-to-date EAI technologies are available, EAI is an
attractive foundation for the development of new solutions, because it
requires neither big changes to existing systems nor extensive program-
ming.

EAI simplifies the flow of information between departments using
possibly heterogeneous information systems, improving internal pro-
cesses in the enterprise.

Customers and suppliers can also benefit because EAI allows the
company to manage relationships with customers and suppliers in an
enterprise-wide integrated manner [Ruh 2001, p. 4]. Without integra-
tion, the customer (or the employee dealing with the customer) is often
exposed to various stand-alone information systems. Each departmental
system, for example, asks for information from the customer, which in
many cases was given to another department's system before. With EAI,
the point of contact for the customer (or for the employee dealing with
the customer) appears to be one system. However, it is in fact the EAI
technology that makes different stand-alone systems behave like one
integrated system.

Integrating
heterogeneous
standard
packages and
legacy systems

7.4 Integrating Standard Software into the IS Landscape 459

Middleware technologies

Middleware is application-independent software providing services that
mediate between different application systems. In particular, middle-
ware for EAI provides mechanisms to share information, to package
functionality so that capabilities are accessible as services, and to coor-
dinate business processes [Ruh 2001, pp. 2-3].

Common middleware technologies for enterprise application
integration are message queuing and message brokers.

Message queuing is an approach in which two systems communicate
through messages. The sender system places a message in a queue for
transmission. A queue manager forwards the message to a destination
queue, and the destination queue holds the message until the recipient
system is ready to process it [Cummins 2002, p. 6]. Coupling between
the two systems is loose because the recipient need not be ready to
process the message when it arrives. Furthermore, a transformation
facility will convert the sender's data format to the format the recipient
requires. A typical middleware for message queuing was IBM's MQ
Series (now part of the WebSphere product suite and renamed to
WebSphere MQ [Davies 2005b]).

While message queuing is a useful approach for point-to-point
connection between two systems, it is problematic when many systems
have to be integrated in this way. As the number of point-to-point con-
nections grows, this approach becomes inefficient. Figure 7-13 shows
an example where n (n = 6) information systems are connected point-to-
point. Since 15 double-ended connections exist, provisions for objects
such as input queues, output queues and message channels have to be
made 30 times, usually through program changes (i.e. declarations and
calls to the message-queuing system in the 6 participating systems). The
number of endpoints in application programs where changes have to be
made is n * (n-1).

A message broker is a facility that coordinates the communication in
a network based on the exchange of formally defined messages. This
concept is illustrated in figure 7-14. It allows information, in the form of
messages, to flow between disparate applications and across multiple
hardware and software platforms. A message broker receives messages
from many sources and redirects them to their destinations. It delivers
messages in the correct sequence and in the correct context of the
destination system.

Two systems
communicate
through
messages

Message
queuing is
problematic
when many
systems have to
be integrated

Message broker

7 Implementing Standard Software 460

Figure 7-13 Point-to-point connections in message queuing

Information
system

A

Information
system

B

Information
system

F

Information
system

C

Information
system

E

Information
system

D

Information
system

A

Information
system

A

Information
system

B

Information
system

B

Information
system

F

Information
system

F

Information
system

C

Information
system

C

Information
system

E

Information
system

E

Information
system

D

Information
system

D

A message broker transforms a message from the sender's format to the
receiver's format (or more precisely, it translates a message from the
sender's messaging protocol to the receiver's messaging protocol). In
this way, message brokers are able to move messages from any type of
system to any other type of system, provided that the broker
understands the protocols used by these systems. Rules can be applied
to the information that is flowing through the message broker in order to
route, store, transform and retrieve the information. A well-known
example of a message broker is IBM's WebSphere Message Broker
[Davies 2005a].

Middleware topologies

An arrangement of nodes in a network is called a topology. Middleware
connects a number of such nodes representing information systems.
Topologies underlying the middleware include peer-to-peer, hub-and-
spoke and bus topologies.

Translating and
moving
messages

7.4 Integrating Standard Software into the IS Landscape 461

Figure 7-14 Message-broker concept

Information
system

A

Information
system

B

Information
system

F

Information
system

C

Information
system

E

Information
system

D

Message
broker

Information
system

A

Information
system

A

Information
system

B

Information
system

B

Information
system

F

Information
system

F

Information
system

C

Information
system

C

Information
system

E

Information
system

E

Information
system

D

Information
system

D

Message
broker

Message
broker

– A peer-to-peer (point-to-point) topology connects each node with
each other node. This is the case when individual connections
between the information systems are established. Message-queuing
systems as well as their predecessors, RPCs (remote procedure
calls), implement a peer-to-peer topology. This was already illus-
trated in figure 7-13 above. State-of-the-art EAI approaches usually
do not use a peer-to-peer topology because of the high integration
effort.

– A hub-and-spoke topology has a central node onto which all other
nodes are connected. In EAI middleware, the central node is the
message broker. All connected information systems communicate
with the message broker and not directly with each other. Figure 7-
14 shows an example of a hub-and-spoke topology.

– A bus topology connects the nodes to a common transport compo-
nent that controls and manages the communication between the
nodes. A bus model allows two nodes to communicate while others
have to wait until the communication is completed. In EAI, the bus

Peer-to-peer
topology

Hub-and-spoke
topology

Bus topology

7 Implementing Standard Software 462

implements the necessary integration mechanisms. Figure 7-15
illustrates the bus topology.
The bus topology has gained significant attention as a SOA

component (SOA = service-oriented architecture; cf. section 3.3). When
information systems functionality is organized in the form of services
(e.g. enterprise services, web services) in a service-oriented architecture,
a middleware such as an enterprise service bus (ESB) mediates between
service requesters and service providers. An example of an enterprise
service bus within a SOA was given earlier in figure 3-11 (chapter 3).

Figure 7-15 Bus topology

Information
system

A

Information
system

B

Information
system

F

Information
system

C

Information
system

E

Information
system

D

Message bus

Information
system

A

Information
system

A

Information
system

B

Information
system

B

Information
system

F

Information
system

F

Information
system

C

Information
system

C

Information
system

E

Information
system

E

Information
system

D

Information
system

D

Message bus

Integration levels

While middleware addresses integration on the level of software-
technical infrastructure, users are more concerned with integration on
the level of data, functions or processes. From this perspective, we can
distinguish the following integration levels as illustrated in figure 7-16:

 Data level – integrating different information systems in such a way
that they can work with the same data. This means extracting informa-

Enterprise ser-
vice bus (ESB)

Data-level
integration

7.4 Integrating Standard Software into the IS Landscape 463

tion from one data source, perhaps transforming this information, and
putting it in another database.

The advantage of data-level integration is that existing code remains
largely untouched. Data-integration technology provides mechanisms to
move data between databases and to transform data as necessary. Trans-
formation of database schemata is a well-understood and mature ap-
proach. Still it requires significant effort, because in practice integration
often includes not two or three databases but dozens or hundreds, with
thousands of tables.

Figure 7-16 Integration levels in EAI

User-interface
level

Business-logic
level

Program level

Data level

? ?User-interface
level

User-interface
level

Business-logic
level

Business-logic
level

Program levelProgram level

Data levelData level

?? ??

Problems occur quite frequently. The main reason is that the database
integrator and/or the end-user have to specify transformation rules.
Often the rules are not obvious, and mistakes are made. Consider, for
example, integration of a custom sales-force optimization program with
the standard software's accounting module. Both databases have a "re-
gion" field, but in the first one regions are "north", "south", "west" and
"east", while in the second one regions are "metropolitan", "suburbian"
and "rural". It is obviously quite difficult to map these different seman-

Transformation
rules, mapping
different
semantics

7 Implementing Standard Software 464

tics. Business knowledge is required so that appropriate rules can be
specified.

 Program level – integrating different information systems by allow-
ing them to use each other's program functionalities. Application pro-
gramming interfaces (APIs) help to do this, but only if they are avail-
able. Standard software usually provides APIs, as discussed in section
7.3.3. Conventional individual software sometime does, but mostly does
not.

Changes to the program code are required in order to invoke the stan-
dard software's APIs. Furthermore, preparing an API invocation as well
as results returned from the standard package may require processing by
the individual software before and after the call. This means that pro-
gram modifications and extensions are necessary.

Integrating two standard packages can be easy if the vendors con-
sidered this integration beforehand§. Otherwise it also requires custom
programming in which the developer uses APIs of both systems.

 Business-logic level – sharing business logic between different infor-
mation systems. This means that the same business methods are accessi-
ble for all systems that need them, instead of having redundant (and
sometimes inconsistent) implementations of the same method in these
systems.

Consider, for example, an S&D (sales and distribution) system and
an MRP (material requirements planning) system both calculating or-
der-completion dates. If the two systems use different scheduling meth-
ods, then the MRP system will probably compute a different end date
than the S&D system. As a consequence, the customer will be told the
wrong delivery date, because the responsible sales representative works
with the S&D system, but manufacturing follows the MRP system.

Business-logic level integration is substantially enabled by service-
oriented architectures where business methods are available as enter-
prise services or web services (cf. sections 3.3.1 and 3.4.1).

 User-interface level – bringing information systems together via their
user interfaces. This is usually done when the systems are so heteroge-
neous that they cannot be integrated otherwise, for example two legacy
mainframe systems. The technique is also known as "screen scraping"
because it takes mainly the screen input and/or output of the respective
systems and integrates the input or the output on the user interface.

§ This is not unusual in a business environment. For example, vendors of

specialized software often provide interfaces to SAP's ERP software, because
they know that many of their customers will run an SAP system.

Program-level
integration

Business-logic
level

User-interface
level ("screen
scraping")

7.4 Integrating Standard Software into the IS Landscape 465

7.4.2 Patterns for Enterprise Application Integration
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Since most organizations have an EAI problem, many approaches have
come into existence and best practices have emerged. Like in other
areas, documented patterns are available in which the experience gained
by many integration developers and software architects is combined.

In their book on enterprise integration patterns, Hohpe and Woolf
collected 65 patterns for EAI [Hohpe 2004]. An online description of
the patterns can be found at http://www.eaipatterns.com. Hohpe and
Woolf's pattern categories are:

• Integration styles – describing different ways in which systems can

be integrated. All patterns in this category follow the messaging
style, meaning that sending a message does not require both systems
to be up and ready at the same time. This style is documented in the
"messaging" pattern.

• Channel patterns – describing fundamental attributes of a messaging
system. These patterns refer to the way a sender and a receiver can
communicate through a common channel. Channel patterns include
the "point-to-point channel", "publish-subscribe channel", "channel
adapter" and "message bus" patterns.

• Message construction patterns – documenting the intent, form and
content of the messages. The base pattern for this category is the
"message" pattern describing how two applications connected by a
message channel can exchange a piece of information.

• Routing patterns – explaining mechanisms to direct messages from a
sender to the correct receiver. These patterns consume messages
from one channel and republish the message to another channel.
They represent specific types of the "message router" pattern. Exam-
ples are the "message broker", "aggregator" and "splitter" patterns.

• Transformation patterns – describing ways to change the content of
a message, e.g. transforming the data format used by the sending
system; or adding, deleting or rearranging data. The base pattern
here is "message translator".

Enterprise
integration
patterns

7 Implementing Standard Software 466

• Endpoint patterns – describing how a node (i.e. a participating infor-
mation system) connects to a messaging system so that it can send
and receive messages. "Messaging gateway", "event-driven consum-
er" and "message dispatcher" are examples of endpoint patterns.

• System management patterns – providing mechanisms to keep a
complex message-based system running. Taking into account that
thousands or millions of messages per day must be processed, the
EAI solution has to deal with error conditions, performance bottle-
necks and changes in the participating systems. "Message history",
"detour", "smart proxy" and "test message" are system management
patterns addressing these requirements.

7.5 Legacy Systems

In most organizations, a large number of old information systems are in
use. It is common to call them legacy systems, because they do not
conform to the latest software technology. However, there are a number
of reasons why this pejorative term is not justified.

7.5.1 Characteristics of Legacy Systems
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The so-called legacy systems are often of inestimable value to the
organization. Many companies depend on them to such a degree that
they would have to stop operations if these systems failed for more than
a few days.

From an academic software-engineering point of view, legacy soft-
ware is full of problems and should be replaced by modern software as
quickly as possible. The most serious problem with legacy software is
that the cost of maintenance and adaptation can be extremely high.
Practice reports indicate that many companies spend 60 - 80 % of their
IT budgets for just maintaining and adjusting legacy systems.

Many companies
depend on
legacy systems

7.5 Legacy Systems 467

Most business information systems undergo an evolution throughout
their lifetime. Software evolution means continuous incremental
changes to the software. These changes can be caused by removal of
errors which are detected in the operation phase; software enhancements
(i.e. code modifications and extensions resulting from new end-user
requirements); measures to improve software quality; adaptation of the
software to a new hardware or software platform etc. A system built 20
or 30 years ago is likely to rely on features of a target machine, oper-
ating system and utility programs that may not be supported any more.
Generations of software developers and maintenance programmers may
have written new or modified old code inside and around the system.

In addition, software is aging. Changing user expectations will
eventually not be reflected by the software's functionality any more, nor
can the software be modified indefinitely. The more changes made to
the software, the more likely that there are unforeseen side effects that
lead to errors. The system's reliability and performance are also decreas-
ing. Incremental changes tend to alter or remove symptoms, changing
the initial design incrementally. An initially clean and well thought-out
software design, and thus the software quality, is slowly degrading.

Another empirical observation is that instead of actually changing
existing program code, maintenance programmers prefer to write their
own (new) code, because the existing code is not well enough under-
stood. Thus the size of the software grows. While they do remove errors
and modify or extend what is required, many maintenance programmers
do not document what changes to the program they made. This creates
additional difficulties for future maintenance tasks.

Taking all these factors into account, the volatility of an information
system eventually becomes so high that doing yet more changes to the
system is considered too risky. The state of the system has to be frozen.
Reengineering or substituting the system cannot be to put off any more.

7.5.2 Integrating with Legacy Systems
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Integrating standard software with legacy systems can be extremely
difficult. Legacy systems do not provide APIs, and often they even lack
documentation. The less documentation about a legacy system is avail-
able, the more one has to rely on the system's behavior. One remarkable

Software evolu-
tion

Software is aging

Maintenance
makes software
systems grow

7 Implementing Standard Software 468

characteristic of most legacy systems is that even though the internals of
the system are not known and understood in detail, the system is run-
ning and working. What can be observed is only its behavior.

Integration of a legacy system can be based on what the system does
– not on how it does it –, taking the system more or less as a black box.
A pattern that documents this approach is the façade pattern mentioned
in section 5.2.2. This pattern provides an interface to one or more exist-
ing systems, hiding internal details of the system(s). The façade reflects
behavior of the system(s) that should be accessible for other systems.

Depending on its software technology, a standard software system
can interact with the façade in several ways. If the standard package is a
conventional system providing user exits, then a user exit can be applied
to invoke a façade method. More often the invocations have to be pro-
grammed inside the standard software, i.e. vendor code has to be modi-
fied so that it calls a façade method.

If the standard package is a modern object-oriented system, the
façade could be implemented by subclassing superclasses provided by
the standard software. However, this would mean that the legacy system
is closely coupled to the standard software through the façade.

Figure 7-17 Integrating legacy and standard software

Façade pattern

7.5 Legacy Systems 469

A better way is to define an application-independent façade and bridge
the gap between the façade and the standard software's interface through
an adapter (i.e. following the adapter pattern). Adapters are also called
wrappers [Gamma 1995, p. 139]. Figure 7-17 illustrates this way of
integrating legacy and standard software.

Infrastructural problems (e.g. disparate platforms on which the leg-
acy system on the one hand and the standard package on the other hand
are running) can prevent an immediate integration of the systems. Since
the platform of the legacy system is likely to be an obsolete one, the
legacy system may need to be migrated to a new platform. Migration
requires that the legacy system can access the infrastructural services of
the new platform. This can be accomplished by redesigning and recod-
ing those parts of the legacy system that access infrastructural services –
a rather awkward task, taking into consideration that the legacy code is
not well understood.

A more manageable approach to making infrastructural services
available to the legacy system is therefore the so-called wrapping. This
means that the services the legacy system needs to do its work are pro-
vided via an interface, so that the legacy code can remain untouched.

7.5.3 Reengineering Legacy Systems
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Despite all the problems caused by old information systems, there are
also serious arguments in their favor, including the following:

– Legacy software represents significant investments; developing or

buying new systems would require large new investments.
– Experience and application knowledge have been gathered and

incorporated into the software over the years. Generations of busi-
ness people and information system developers have added business
rules and processes, coded inside the legacy system's programs.

– In most organizations, no single person today has a complete under-
standing of the legacy system's internal mechanisms. Experience and
knowledge are not explicitly recorded elsewhere, implying that they
would also not be available for the development of a new system to
replace the legacy system.

Adapter pattern

Wrapping
facilitates
migration of a
legacy system

Advantages of
legacy systems

7 Implementing Standard Software 470

– Users are familiar with their programs. Errors have been removed
over the years, or at least they are known. New programs contain
new errors.

Integration of a legacy system with a new standard package, as well as
integration with an information system developed inhouse, is a chal-
lenging problem. The main reason for this is that the integration effort
usually requires changes in or extensions to the legacy code. For exam-
ple, if a standard-package API has to be invoked, then the code calling
the API must be written inside the legacy software. Or if the standard
package provides useful input to the legacy system, additional code has
to be written so that this input can be processed.

In order to be able to modify a legacy system, developers need a
sufficient understanding of the system – its design, coding and data
structures. Unfortunately this understanding is very hard to obtain. Low
software quality, opaque program structures ("spaghetti code"), missing
documentation, redundant and inconsistent data (and even functions) are
some of the problems. Often only the source code – or worse, machine
code – from the legacy system is available. Before such problematic
software can be modified in any way, some reengineering is required in
most cases.

The meaning of the term reengineering depends on the context. In
business management, reengineering refers to the analysis and restruc-
turing of business processes. In software engineering, the term reengi-
neering comprises all activities aimed at the improved understanding
and workings of the old software.

Major stages of a software reengineering process are reverse engi-
neering and restructuring:

– Reverse engineering focuses on deriving information of a higher

abstraction level from low-level information. Reverse engineering
has two particular sub-goals: re-documentation and design recovery.
Re-documentation tries to accomplish what was neglected when the
system was built: creating a documentation. Design recovery is an
attempt to derive design models from code and data analysis. Exam-
ples of such models are operational program specifications, call hier-
archies, functional models and data models (e.g. entity-relationship
diagrams).

– Restructuring means shaping up program code, designs, specifica-
tions or concepts. Based on better structures, the legacy system can
be improved through forward engineering. The goal of restructuring
and forward engineering can be migration to a new platform, in-
tegration with other programs, or just improving software quality

Developers need
an understanding
of the old system

Business
reengineering

Software
reengineering

Reverse
engineering

Restructuring,
forward
engineering

7.5 Legacy Systems 471

characteristics such as understandability and maintainability in order
to reduce maintenance cost.

In the beginning, reengineering was primarily concerned with facilitat-
ing the maintenance of a legacy system or making the system ready to
be ported to a new hardware or software environment. With the growing
need for integrated systems, the focus shifted onto integration needs and
the old system's interfaces with the outside (software) world. The term
integration-oriented reengineering expresses this shift of focus.

A prerequisite for integration-oriented reengineering is understand-
ing the old system in terms of its data structures and its functions. Even
in writing a façade where the legacy code is left largely untouched (cf.
section 7.5.2), an understanding of the internal structure is needed.
When the legacy system has undergone reverse engineering and restruc-
turing, the necessary steps to integrate it with other systems can be
started.

Figure 7-18 illustrates the basic reverse-engineering process. It starts
from the "highest" available abstraction of executable machine code. In
the worst case, there is no higher representation of the program than the
machine code and the database (or data files). Therefore the first step
would be to create source code from the machine code. From the source
code, and perhaps from knowledge of maintenance programmers and
end-users, modules, screen definitions, data structures and call struc-
tures have to be derived. Eventually the level of data models and func-
tional models may be reached. However, it is often not possible to
derive these models because necessary information is missing.

Afterwards, restructuring and forward engineering can be started,
with the aim of partially or totally reimplementing the design models (in
particular, data and functional models) – provided that it was possible to
derive a system design during reverse engineering. If not, then restruc-
turing will be limited to cleaning up some of the code.

All representations and information derived in the reverse-engineer-
ing process are documented, preferably in a repository as outlined on
the left-hand side of figure 7-18.

Reverse engineering is supported by automated tools that create
higher-level representations of a legacy system from lower-level repre-
sentations. These tools include:

» Disassemblers and decompilers – producing source code from ma-

chine code.
» Model-capture tools – extracting information from the source code

or from higher representation forms.

Integration-
oriented
reengineering

Reverse-
engineering
process

Reengineering
repository

Automated tools
for reverse
engineering

7 Implementing Standard Software 472

Figure 7-18 Reverse engineering of legacy software

Executable
system

Users
Maintenance
programmers
(+ developers)

L E G A C Y S Y S T E M

Database

Real world

Source code

Identification
Division.
Program -ID C001.
Author XYZ.
...

Data model

Logical
database model

Data structures

01 Cu stomer
05 CNumber Pic 999.
05 CName Pic X(20).
...

Screens

Customer
Number 999
Name XXXXXXXX

Functional model

Data flow diagrams

Call structure

Modules

Move CName To NA
Move CNumber To
NR
...

Documentation

CNam e is the name of
a customer. CNumber
is the number of a
customer...

- Data model
- Functional model

- Data flow
diagrams

- Call structure
- Logical database

model

- Modules
- Data structures

- Screens

R
ev

er
se

 e
ng

in
ee

rin
g

Reengineering
repository

Executable
system

Users
Maintenance
programmers
(+ developers)

L E G A C Y S Y S T E M

Database

Real world

Source code

Identification
Division.
Program -ID C001.
Author XYZ.
...

Data model

Logical
database model

Data structures

01 Cu stomer
05 CNumber Pic 999.
05 CName Pic X(20).
...

Screens

Customer
Number 999
Name XXXXXXXX

Functional model

Data flow diagrams

Call structure

Modules

Move CName To NA
Move CNumber To
NR
...

Documentation

CNam e is the name of
a customer. CNumber
is the number of a
customer...

Call structure

Modules

Move CName To NA
Move CNumber To
NR
...

Documentation

CNam e is the name of
a customer. CNumber
is the number of a
customer...

- Data model
- Functional model

- Data flow
diagrams

- Call structure
- Logical database

model

- Modules
- Data structures

- Screens

R
ev

er
se

 e
ng

in
ee

rin
g

Reengineering
repository

» Analysis tools – helping to analyze and manipulate the extracted
information.

» Documentation generators – creating condensed program informa-
tion from source code, especially for Cobol programs. Java pro-
grams can be documented with Javadoc, a JDK component (cf.
section 3.5.1).

» Visualization tools – creating graphical representations of informa-
tion extracted from the legacy system, such as call graphs, program
flowcharts and data-model diagrams.

Information systems are usually developed in projects. Most tasks and
activities discussed in the previous chapters take place within these pro-
jects. These projects must be planned, carried out, monitored and evalu-
ated. Project management is the framework in which the planning, exe-
cution and controlling of projects occur.

Managing projects properly is of utmost importance. As mentioned
in chapter 2, industry surveys report that only about 30 % of all applica-
tion-software development projects are considered successful [Standish
2004]. Close to 20 % are failures (cancelled prior to completion or
completed but never used), and the remaining 50 % are challenged (cost
and/or time overrun, lacking features etc.).

In this chapter, we will first discuss project management issues in
general and then with a special focus on information systems develop-
ment. Although many project characteristics are the same, information
system development exhibits particular properties.

Software
Project
Management

8 Software Project Management 474

8.1 Project Management Overview

Project management is an important field of management in many
application areas. Not only information systems development but also
many other undertakings with a focused goal take place in the form of a
project. Examples are: building a bridge or an airport, preparing and
conducting a cultural event, making a multi-million dollar movie,
replacing the firm's IT infrastructure, and organizing a conference.

Not surprisingly, project management has been studied in theory and
practice and by various disciplines for many years – in business infor-
matics as well as in management, computer science, manufacturing,
construction and other disciplines. Many insights from various areas
have been gathered, resulting in the emergence of a general body of
project management knowledge.

However, it is not always justified to transfer practices gained in one
problem domain to projects conducted in a different domain. While this
mistake is often made, it has been identified as one of the reasons why
ISD projects fail or why they do not produce the expected results.
Therefore we will point out in section 8.1.3 the specifics of information
systems development that distinguish it from other project types.

A vast body of literature about project management is available as
well. It is not possible to condense all this gathered knowledge, based
on many theoretical approaches and practical experiences, in one
chapter of a book on making information systems. We will instead
outline the major areas, methods, techniques and tools and refer readers
interested in more detail to the relevant literature.

8.1.1 Tasks and Processes of Project Management
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Discussing project management requires first an understanding of what
a project is. From the many definitions of the term project that exist, we

Project
management has
been studied for
many years

A vast body of
literature exists

8.1 Project Management Overview 475

prefer the following one. It is an extension of the project definition
given by the Project Management Institute (PMI) [PMI 2004, p. 5]:

A project is a temporary endeavor undertaken to create a unique
product, service or result through a series of related activities.

Relevant attributes which make an endeavor a project are "temporary",
"unique" and "series of related activities":

– Temporary means that a project has a definite start date and a defi-

nite end. The project ends when its objectives have been achieved,
or when the project is terminated for some other reason.

– Unique means that the outcome of the project exists only once, be it
a material product, a service or another result. For example, a bridge
is a unique outcome. Although many bridges have been built, each
individual bridge is different. Likewise, each information system is
different from every other information system although many sys-
tems have been created.

– A series of related activities is needed to complete the project. This
characteristic refers to the temporal dimension of a project. Usually
many activities – sequential and/or parallel activities – are required
and have to be coordinated.

Project management deals with the various aspects of managing
projects. The PMI defines project management as: "the application of
knowledge, skills, tools and techniques to project activities to meet
project requirements" [PMI 2004, p. 8]. This definition is adequate
when "project requirements" are understood as including budget and
schedule as well. On the other hand, the term "requirements" in ISD has
a more focused meaning, in particular functional and non-functional re-
quirements for the information system under development. Therefore
we prefer Laudon's extension of the PMI's definition, which is [Laudon
2007, p. 557]:

Project management is the application of knowledge, skills, tools
and techniques to achieve specific targets within specified budget
and time constraints.

The starting point for project management activities is an approved
project proposal as described in section 2.2.1, i.e. the decision to launch
the project has been made. All project-management actions from then
on are taken with the goal in mind to successfully achieve the project
targets.

Definition: project

Definition: project
management

8 Software Project Management 476

Project management involves sequences of activities that can be
interpreted as processes. Figure 8-1 provides a graphic overview of the
processes as defined by the PMI. These processes can be applied to the
entire project or to a project phase. Processes cover initiating, planning,
executing, monitoring and controlling, and closing a project (or a pro-
ject phase) [PMI 2004, pp. 40-69]:

– Initiating processes facilitate the formal authorization to start a new

project (or a project phase). This is often done by stakeholders out-
side to the project's scope of control, as discussed in sections 2.1 and
2.2.

– Planning processes support the planning of actions to attain the
objectives and scope that the project was undertaken to address. The
objects of the planning are so-called knowledge areas outlined fur-
ther below.

– Executing processes have the goal to complete the work defined in
the plan. Execution involves coordinating people and resources, as
well as performing the activities of the project in accordance with
the plan.

__

Figure 8-1 PMI project management processes [PMI 2004, p. 40]

Monitoring &
controlling processes

Planning
Processes

Executing
Processes

Initiating
Processes

Closing
Processes

Monitoring &
controlling processes

Planning
Processes

Executing
Processes

Initiating
Processes

Closing
Processes

PMI project
management
processes

8.1 Project Management Overview 477

– Monitoring and controlling processes regularly measure and moni-
tor progress to identify variances from the project plan so that
corrective actions can be taken when necessary.

– Closing processes formally terminate all activities of a project (or a
project phase), pass on the completed product to others or close a
cancelled project.

Activities which are required to initiate a project were already described
in chapter 2. Closing processes comprising activities such as documen-
tation, delivering the result and contract closure are mainly administra-
tive and will not be discussed in detail. The focus of this chapter is on
the planning, execution, monitoring and controlling aspects of project
management.

8.1.2 Project Management Topics
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

What are the matters to be managed in a project? Perhaps a software
developer first thinks of analysis, design and implementation activities,
a senior manager thinks of the cost, an end-user of the system's quality
and a project manager of the people to coordinate. All of these are im-
portant topics of project management, and even more topics may need
to be addressed.

A comprehensive list of project management areas is described in the
PMI's "Guide to the PMBOK" ("project management body of knowl-
edge" [PMI 2004]). A generally accepted subset of the PMBOK consid-
ered applicable to most projects was adopted by the American National
Standards Institute (ANSI) as an ANSI standard (IEEE Std 1490-2003).

Outside America, the International Project Management Association
(IPMA) has defined and published a comprehensive collection of pro-
ject management areas in the IPMA competence baseline (ICB). The
ICB comprises fields of competences a project manager should possess,
differentiating between

– technical (e.g. scope & deliverables, time & project phases),
– behavioral (e.g. leadership, results orientation) and
– contextual (project portfolio orientation, project implementation)

competence elements [ICB 2006].

PMBOK (project
management
body of
knowledge)

IPMA
competence
baseline (ICB)

8 Software Project Management 478

Both IPMA and PMI have international chapters or member organi-
zations disseminating the ideas and standards of the parent organiza-
tions. Like some other project management associations, they offer
courses and provide certification for project managers.

The project management areas addressed in the Project Management
Institute's "Guide to the PMBOK" are [PMI 2004]:

– Integration management: Due to many interrelationships, the

various processes and activities in a project cannot be treated in
isolation. For example, cost management has connections with time
management and risk management. The objective of integration
management is to coordinate the various processes and activities in a
project.

– Scope management: The purpose of this area is to ensure that the
project includes all the work required to complete the project
successfully, but not more. Scope management is concerned with
what is and what is not included in the project.

– Time management: A project consists of a large number of activities
with diverse connections and dependencies. Time management is
responsible for scheduling and timely completion of all activities
and of the entire project. This will be discussed in more detail in
section 8.2.1.

– Cost management: Since the total cost of a project is not known in
advance, it has to be estimated. This was discussed in section 2.3.4.
Costs then have to be broken down and assigned to work packages
or activities, and controlled in the course of the project. When
variances from the budget are detected, corrective actions have to be
initiated.

– Quality management: All activities that determine quality policies,
objectives, standards and responsibilities are summarized under
quality management. This includes activities to plan, assure and
control both the quality of the project's results and the quality of the
project management processes.

– Human resources management: This area is concerned with identi-
fying project roles and responsibilities, staffing the project, improv-
ing competencies and interaction of team members, tracking team
member performance, resolving issues and coordinating changes of
the team.

– Communications management: Generating, collecting, distributing,
storing and retrieving project information in a timely and appropriate
manner are crucial for project success. Processes and activities for

PMI project
management
areas

8.1 Project Management Overview 479

effective information exchange and reporting are included in this
area.

– Risk management: Since projects can be exposed to significant risks,
the management of these risks is of utmost importance. Risk
management includes the identification and analysis of risks, the
development of counter-measures, the monitoring and controlling of
risks, and the evaluation of measures in response to the risks.

– Procurement management: Projects often require products, services
or other results from outside. All activities and processes to purchase
or acquire the products, services or results (e.g. contracting, supplier
selection) are part of procurement management.

8.1.3 Special Aspects of ISD Project Management
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

A substantial body of knowledge has been accumulated in the field of
project management. However, not everything that is found useful in
other fields is applicable to information systems development projects,
at least not one-to-one. Most of the agreed and documented project-
management knowledge was gathered in other areas, where circum-
stances and conditions are different from software development.

Applying an inappropriate project-management approach or relying
on wrong assumptions about project matters can be sources of serious
problems. Projects can fail if they are not managed properly. Therefore
pointed out below are some important points which should be consid-
ered when a software-development project has to be managed:

 Certainty: Cost and time management are more difficult because the
data on which cost and time projections are based are less reliable. In
other areas such as construction and manufacturing, where a good deal
of project management knowledge has its origin, the required project
activities are better known, more stable and easier to estimate. For
example, we know pretty exactly how long it takes to apply a layer of
concrete on a 50 m bridge on top of a steel girder infrastructure. How-
ever, we do not know with the same certainty how long it takes to
implement a layer of software on top of a network infrastructure,
because more things can go wrong or do not work as expected.

Not everything is
applicable to ISD

Cost and time
projections are
less reliable

8 Software Project Management 480

 Repetitiveness: One reason why activities can be predicted better in
construction and manufacturing projects is that many activities occur in
exactly the same or a similar way as they did in earlier projects. Even
though the same typical activitites will be found in any software devel-
opment project, factors influencing time and effort vary significantly.
For example, to remove an error in integration testing can take half an
hour, but it can also take a week.

When the organization's projects over time are very similar, more
reliable estimates can be given. This is an assumption underlying the
Cocomo II model discussed in section 2.4.3. Based on a series of earlier
projects, an organization can calibrate the parameters of the estimation
equations. In this way, they get reliable estimates, provided that the
current type of project matches the previous projects.

 Communication: Each software development project is different, not
only regarding its scope and size but also its complexity and how well
the problem to be solved is understood. The less clear the problem and
its solution beforehand are, the more communication among the project
team is required. Communication takes time, reducing the amount of
time available for "productive" work. The larger the team is, the more
team members usually need to communicate with each other. On the
other hand, more people get the work done faster.

Figure 8-2 shows the effect of communication on productivity with
the help of a schematic illustration. If no communication was needed,
the project would end the faster the more people work on the team.
However, project members need to communicate and additional time
for their interactions must be considered, so the project takes longer.
The communication effort increases progressively as the number of
people involved increases. In fact, the figure suggests that there is an
optimal team size from the perspective of communication. While this is
true under idealistic assumptions, staffing a project in practice depends
on more factors (e.g. skill requirements, availability, temporal aspects)
than those underlying the figure. Nevertheless it becomes clear that
communication needs have a significant effect on team size and project
duration.

It should be noted that the curve for communication effort depends
on the amount and intensity of communication required which in turn
depend on factors such as how complex the system is, how well it is
understood, and how experienced the team members are. Consequently
the curve can also be further up or further down in the figure, resulting
in different curves for project duration as well.

Activities are less
repetitive

More communi-
cation needed if
the problem is
not clear

8.1 Project Management Overview 481

__

Figure 8-2 Effect of communication on productivity

Time

Team size

Project duration
without communication

Project duration
with communication

Time

Team size

Project duration
without communication

Project duration
with communication

 Moving target: A frequent observation in practical software-
development projects is that the system initially ordered by the custom-
er is not the system finally delivered to the customer. This is primarily
due to a "target shift" – by the customer, by the software organization
developing the system or by both. A target shift occurs for many rea-
sons, for example: the customer’s market has changed since the system
was ordered; a major competitor came out with a similar solution faster,
leading to new requirements; new technologies have emerged, requiring
a radical redesign; new stakeholders are in the game, with different
interests; etc. The moving-target syndrome is a major reason for costs
and deadlines overrunning.

 Scope creep: A problem similar to the above scenario, scope creep is
caused by the scope of the system under development undergoing small
incremental changes. A superficial reason for this is that the customer's
requirements are changing. Digging a little deeper, the actual reasons
are twofold: 1) Requirements were not sufficiently clear in the begin-
ning, when they were captured and documented in a requirements speci-
fication. As things become clearer in the course of the project, require-
ments need to be reformulated or changed. 2) When end-users and other

Target shift

Incremental
scope changes

8 Software Project Management 482

stakeholders are involved in the development process, they get to see
initial or intermediate solutions throughout the process. This helps them
to understand what they will finally obtain, and at the same time they
get new ideas about how things might be improved or extended by addi-
tional useful features. The more user involvement is realized, the more
likely it is that requirements will change incrementally or that new
requirements will emerge.

While adapting the scope of the project to the users' needs is good for
the users, it requires more work on the developers' side that was not
calculated before. The so-called scope creep is followed by a "cost
creep" – a source of conflict between the customer and the contractor.
The parties are forced to agree on what is actually covered by the initial
requirements specification or contract, and what is not, i.e. what are the
new requirements which need to be invoiced separately.

 Process model: Many decisions in a software-development project
depend on the chosen process model: the work plan, the project organi-
zation, roles, staffing and other responsibilities of project management.
An often encountered mistake is to impose an inappropriate project
organization onto the development effort.

Figure 8-3 Work distribution scheme

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Time

Effort &
staffing level

Analysis Design Coding Testing

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Time

Effort &
staffing level

Analysis Design Coding Testing

Another problem is insufficient consideration of timely staff allocation,
i.e. assigning certain skills when they are needed. The example of a
common work distribution scheme shown in figure 8-3 illustrates this
point. The peak demand for analysts in this example is in February -
March, while testers are mostly needed October to December.

Inappropriate
organization and
allocation

8.2 Project Planning 483

This work distribution and staff allocation can work well when the
project follows a waterfall model. However, when the project manager
decides to apply an iterative approach because it appears better suited to
the problem at hand, an allocation of human resources according to the
scheme in figure 8-3 would be completely inappropriate. In an iterative
model, testers will be needed in each cycle (e.g. every three months),
and the same is true for analysis experts. If the upper management allo-
cates the project's staffing "as it is always done", then the project will
get into trouble!

8.2 Project Planning

Some of the planning problems addressed in the project management
areas outlined in section 8.1.2 have already been discussed in previous
chapters. For example, the project scope is decided upon in require-
ments engineering; the planning of project cost, in particular cost esti-
mation methods, were described in section 2.3.4; project risks were
addressed in chapter 2.

Quality management is relevant to all ISD phases. It was also
addressed in various contexts before. For example, quality issues are
explicitly treated by one of the RUP (Rational unified process) best
practices – "focus continuously on quality" (cf. section 4.3.3). Commu-
nications management together with tools supporting it will be dis-
cussed in chapter 9.

In section 8.2, we focus on two important areas of project planning:
1) work and time planning on different levels of detail, including the
scheduling of activities; 2) planning the project organization.

8 Software Project Management 484

8.2.1 Activity and Time Planning
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The aim of activity and time planning is to define the activities required
to accomplish the project result, to bring the activities into an appropri-
ate sequence, to determine the resources and the time needed to perform
an activity, and to create a schedule based on an analysis of the
activities and their relationships. The PMBOK distinguishes several
processes for activity and time planning (plus one process to control the
schedule) [PMI 2004, pp. 123-156]:

Activity definition

The overall work to be done in the project has to be decomposed into
manageable units. Complex tasks are broken down into subtasks and
further refined. The result is called a work breakdown structure (WBS).
(In the PMBOK, the WBS is actually created under the label "scope
management", and the work units on the lowest refinement level are
called "work packages.")

Typical approaches to derive activities are hierarchical decomposi-
tion and the use of templates. Hierarchical decomposition means break-
ing coarse-grained work units down into fine-grained work units (e.g.
work packages into activities). However, when the project structure is
not completely new, it may not be necessary to do the same decomposi-
tion work again that has already been done in previous projects in the
same way. In such a case, activities can be adopted from a previous
project or from a template in which activity definitions of previous pro-
jects have been gathered.

Activity definitions include activity descriptions and attributes such
as predecessor and successor activities, logical relationships, constraints
and assumptions. They have to be documented, for example in an
activity list.

Activity sequencing

Evaluating the logical relationships between activities, especially pre-
decessor and successor relationships, and arranging the activities in a
logical structure is the goal of activity sequencing. The result is a prece-

Work breakdown
structure (WBS)

Deriving activities
from the WBS

Precedence
graph

8.2 Project Planning 485

dence graph, showing which activities precede and/or succeed other
activities.

An example is given in figure 8-4. The figure contains 13 activities
and their logical relationships. Arrows indicate successor-predecessor
relationships. The activity "database implementation", for example, re-
quires that the activity "database design" has been previously complet-
ed. As the figure shows, some activities have more than one predecessor
or successor, and some activities can be performed in parallel.

Figure 8-4 Activity precedence graph

8 Software Project Management 486

Precedence-relationship types

Several types of precedence relationship are possible. The most com-
mon one – and also the one assumed in figure 8-4 – is that the preceding
activity must be finished before the successor can start ("finish-to-
start"). For example, testing of module A must be finished before inte-
grating A with other modules can start. Other types are [PMI 2007, p.
132]:

– "Finish-to-finish" – the completion of the successor activity depends

on the completion of the predecessor activity.
– "Start-to-start" – the initiation of the successor activity depends on

the initiation of the predecessor activity.
– "Start-to-finish" – the completion of the successor activity depends

on the initiation of the predecessor activity.

The type of diagram in figure 8-4 is called an activity-on-node net-
work because the nodes represent activities. Usually the nodes of an
activity-on-node diagram contain more information than just activity
names. This will be illustrated below in figure 8-7.

A different type of diagram, called an activity-on-arrow (or activity-
on-arc) network, is obtained when the activities are represented by
arrows (arcs). The nodes of such a network stand for the start and the
end of activities and are regarded as events. Figure 8-5 shows an
example of an activity-on-arrow network.

The nodes of this network contain four types of information: 1) node
number (top sector), 2) earliest end (left sector), 3) latest end (right sec-
tor), and 4) float (i.e. time buffer; bottom sector). For example, 5-11-19-
8 in the upper center node means that the state of the network after per-
forming activity D is that the earliest end of D is 11, the latest end of D
is 19, and thus the buffer is 8.

Information on the arrows refers to activities. For example, D=3
means that activity D (i.e. "database design", cf. figure 8-6) has a dura-
tion of 3 time units (e.g. weeks).

Activity resource & duration planning

Determining what resources and what quantities of each resource are
needed to perform each project activity, and when the resources will be
available, is the goal of activity resource planning. Resources can be
persons, skills, computing equipment, IT infrastructure etc. When the

Activity-on-node
network

Activity-on-arrow
network

Resources

8.2 Project Planning 487

demand for resources is uncertain, it must be estimated, for example
using expert judgment.

Figure 8-5 Activity-on-arrow network

B=3A=5

D=3
C=3 E=3

F=4

G=7 H=3 I=3

J=4

L=4

K=3 M=2

0

0
0

1
5

0
5

2
8

0
8

3

11
8

19
6

11
8

19
5

11
0

11
4

15
0

15
7

22
0

22
8

26
0

26
9

29
0

29
10 11

31
0

31

Activity durations

Activity durations are needed for scheduling and any other time-related
project planning. However, they are often the most difficult estimates to
determine, and at the same time the most critical ones. Project failures

8 Software Project Management 488

and deadline violations are often due to unrealistic assumptions about
activity durations. This problem is particularly serious in software-
development projects. In many work areas of such projects, it is quite
difficult to predict activity durations with a sufficient degree of
certainty.

Techniques for estimating activity durations include the application
of expert judgment and analogies from previous projects. A so-called
three-point estimation can be used when uncertainty is high, leading to
"most likely", "optimistic" and "pessimistic" estimates.

Schedule development

An activity precedence graph (either an activity-on-node or activity-on-
arrow graph) and activity durations are the most important inputs to
activity scheduling. Availability of resources must also be taken into
account. The goal is to develop a schedule in which planned start and
end dates are assigned to all activities. Methods supporting schedule
development are based on graph theory, especially network theory.
Common methods are:

– Critical path method (CPM)
– Metra potential method (MPM)
– Program evaluation and review technique (PERT)
– Graphical evaluation and review technique (GERT)
– Critical chain method (CCM)

When a software tool for scheduling is available, the project manager
basically needs to enter quantitative data from the activities' definitions
(such as durations and predecessors). The tool then evaluates the inter-
relationships and creates a schedule. This will be demonstrated in sec-
tion 8.2.3. Although scheduling is rarely done by hand, we will briefly
explain the basic procedure here.

Suppose an activity-on-node network as in figure 8-4 above was
produced in the activity-sequencing step. Details of the activities are
provided in figure 8-6. From these data, a schedule can be created. We
will do so with the help of CPM (critical path method). CPM calculates
early and late start and end dates for all activities plus buffer times (so-
called float):

– The earliest possible start dates are computed in a forward-pass

analysis of the network, beginning with the earliest possible start of
the first activity (e.g. "today").

Three-point
estimation

Schedule
development
methods

Critical path
method (CPM)

8.2 Project Planning 489

– The latest possible end dates are obtained from a backward-pass
analysis of the network, starting with the desired completion date of
the last activity and calculating start and end dates of this activity's
immediate predecessors.

– Float (slack) is the amount of time an activity can be shifted forward
or backward without causing a conflict with any of its predecessors
or successors. The sum of all floats on any path through the network
(from the first activity to the last activity) is called the total float. It
can be computed as the difference between the sum of all the earliest
start dates minus the sum of all the latest start dates.

__

Figure 8-6 Activity data (example)

Activity ID Activity Description Predecessors Duration

A Requirements analysis - 5

B Requirements specification A 3

C Software architecture B 3

D Database design B 3

E Database implementation D 3

F GUI design B 3

G GUI implementation F 3

H Class design C 4

I Coding & unit testing H 7

J Integration test E, G, I 4

K System test J 3

L Installation provisions C 4

M Delivery & installation K, L 2

If a network path has a total float equal to or less than zero, it is called a
critical path. Such a path is critical to the network because there are no
time reserves. If anything goes wrong, the project completion date is en-
dangered. Activities on a critical path are called critical activities be-
cause any delay in the completion time of the activity will cause the
entire project to be delayed.

Figure 8-7 shows a network with 13 activities and a critical path.
Activities connected by boldface dashed arrows are critical activities.

Critical path

8 Software Project Management 490

Figure 8-7 Activity-on-node network with a critical path

8.2 Project Planning 491

This can be seen from the time buffers (float) that are zero and the
earliest and latest start and end dates which are identical. An activity
such as "database implementation" is not critical because it has a float
of 8 (= 19 - 11) time units (e.g. weeks). This means that it can start any
time between weeks 11 and 19 as long as it is completed by week 22.
This is the latest feasible completion date. Otherwise there would be a
problem with the successor activity ("integration test") because this
critical activity must start in week 22.

CPM can be combined with the above mentioned three-point
estimation, using "most likely", "optimistic" and "pessimistic" estimates
for activity durations. As a result, three schedules can be obtained, a
most likely, an optimistic and a pessimistic schedule.

Alternatively, the three types of estimate can be weighted and com-
bined to one expected value for each activity duration. Applying the
CPM method based on expected values yields a schedule that has a
certain probability attached to it. This probability can be computed from
the expected values and their variances. It tells the project manager how
likely it is that the project will be completed as expected.

CPM is a simple and an easy-to-use scheduling method. However, it
has many limitations and drawbacks that make it unsuitable to model
complex activity relationships and dependencies. More flexible, but not
as easy to use are methods that consider stochastic activity durations
and decisions in the process, such as MPM, PERT and GERT. The
reader interested in more information should consult dedicated literature
about network analysis and planning methods.

Developing a feasible schedule with the help of any of the mentioned
methods may not be possible. This can happen if the given activity
durations are too long or the project deadline is too close so that a feasi-
ble network cannot be created. A way out of this dilemma is schedule
compression. This means that the schedule is restructured, either by
speeding up activities or by performing activities in parallel that
normally would be done one after the other. Schedule compression
usually results in additional cost and therefore has to be considered
carefully.

Simulation can be used to examine schedule modifications and their
consequences. What-if simulations help to evaluate the effects of
different scenarios (e.g., what happens when the installation of the
project's new IT infrastructure is delayed by one month?) and project
settings. Stochastic influences can be treated with the help of Monte-
Carlo simulations. In this type of simulation, probability distributions
are used for input variables (e.g. activity durations), and possible
outcomes are also presented in the form of probability distributions.

Schedule
compression

Simulation

8 Software Project Management 492

Schedules are usually displayed in graphical form, as bar charts or
network charts. Bar charts exhibit activities with start and end dates and
their durations on a time axis. They may also contain milestones and
logical relationships between activities. Figure 8-8 shows a simple bar
chart.

Figure 8-8 Project schedule as a bar chart

Network graphs exhibit primarily the logical dependencies between the
activities in the form of activity-on-node (or activity-on-arrow) graphs.
However, a network graph can contain more information such as an
activity's earliest and latest start and end dates, the duration and the
float. Examples of network graphs were given in figure 8-5 and 8-5.

8.2.2 Planning the Project Organization
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Projects are executed within an organization (e.g. a company), and in
addition, a project as such has its own internal organization. The
project's organization is not independent from the surrounding organ-
ization that carries out the project. Availability of resources, the project

Bar charts

8.2 Project Planning 493

manager's authority, budget control and many more factors depend on
the organization of the company. Therefore we have to look at basic
organizational structures first before discussing an ISD project's internal
organization.

Organizational structure

There are three basic types of organizational structure: functional, pro-
jectized and matrix organizations. These are illustrated in the four parts
of figure 8-9, adapted from the PMBOK [PMI 2004, pp. 29-31].

 A functional organization is structured according to business func-
tions such as marketing, production, controlling etc. Staff members are
grouped by specialty, i.e. people with similar skills are assigned to the
same unit. Each employee has one clear superior. A dedicated project
manager is optional.

Part a) of figure 8-9 sketches a strictly functional organization. Note
that it does not exhibit a project manager. When a project is carried out
in such an organization, staff from several functional areas have to work
together. Since they still report to their functional managers – both
inside and outside the project – the functional managers have to
collaborate in the coordination of the project.

While the advantages of a functional organization are clear responsi-
bilities and authorities, project coordination and control are difficult and
less effective. Consider, for example, a change request by an employee
in the right-hand branch of the hierarchy, requiring work to be done by
an employee in the left-hand branch. The issue has to be communicated
to the functional manager on the right, up to the chief executive (at least
if it is controversial), down to the functional manager on the left and
then down to the employee who will do the work. Note that figure 8-9
shows only a two-level hierarchy. In a real organization – in a multi-
level hierarchy – the path upwards and downwards the organizational
tree can be long and time-consuming.

 A projectized organization (often called a project organization) as
illustrated in figure 8-9 b) is one where the organizational structure is
completely project-oriented. This could be the case when a company's
business is doing projects for other companies. The essential manage-
ment positions are project managers. Each project has its own staff.
Employees in a project report to their project manager. Project manag-
ers have a great deal of independence and authority, including budget
and resource control.

A strictly
functional
organization

Project
managers are
the essential
management
positions

8 Software Project Management 494

Figure 8-9 Forms of organizational structure [PMI 2004, pp. 29-31]

a) Functional
Organization

Chief
executive

Functional
manager

Functional
manager

Functional
manager

Staff

Staff

Staff

Staff

Staff

Staff

Staff

Staff

Staff

Staff engaged in project activities

Project
coordination

a) Functional
Organization

Chief
executive

Chief
executive

Functional
manager

Functional
manager

Functional
manager

Functional
manager

Functional
manager

Functional
manager

Staff

Staff

Staff

StaffStaff

StaffStaff

StaffStaff

Staff

Staff

Staff

StaffStaff

StaffStaff

StaffStaff

Staff

Staff

Staff

StaffStaff

StaffStaff

StaffStaff

Staff engaged in project activities

Project
coordination

b) Projectized
Organization

Chief
executive

Project
manager

Project
manager

Project
manager

Staff

Staff

Staff

Staff

Staff

Staff

Staff

Staff

Staff

Staff engaged in project activities

Project
coordination

b) Projectized
Organization

Chief
executive

Chief
executive

Project
manager
Project

manager
Project

manager
Project

manager
Project

manager
Project

manager

Staff

StaffStaff

Staff

Staff

StaffStaff

StaffStaff

Staff

Staff

StaffStaff

Staff engaged in project activities

Project
coordination

8.2 Project Planning 495

Figure 8-9 (continued)

c) Matrix
Organization

Chief
executive

Functional
manager

Functional
manager

Functional
manager

Staff

Staff

Project manager

Staff

Staff

Staff

Staff

Staff

Staff

Staff engaged in project activities

Project
coordination

c) Matrix
Organization

Chief
executive

Chief
executive

Functional
manager

Functional
manager

Functional
manager

Functional
manager

Functional
manager

Functional
manager

Staff

Staff

Project manager

Staff

StaffStaff

StaffStaff

Staff

Staff

StaffStaff

Staff engaged in project activities

Project
coordination

d) Strong Matrix
Organization

Chief
executive

Functional
manager

Manager of
project managers

Functional
manager

Staff

Staff

Staff

Staff

Staff

Staff engaged in project activities

Project coordination

Staff Project manager

Project manager

Project manager

Functional
manager

Staff

Staff

Staff

d) Strong Matrix
Organization

Chief
executive

Chief
executive

Functional
manager

Functional
manager

Manager of
project managers

Manager of
project managers

Functional
manager

Functional
manager

Staff

Staff

Staff

StaffStaff

StaffStaff

Staff engaged in project activities

Project coordination

StaffStaff Project managerProject manager

Project managerProject manager

Project managerProject manager

Functional
manager

Functional
manager

Staff

Staff

StaffStaff

8 Software Project Management 496

 Matrix organizations are between strictly functional and strictly
projectized organizational structures, exhibiting both functional and
project-oriented characteristics. Part c) of figure 8-9 sketches a matrix
organization. While the basic organizational structure is functional, a
cross-functional project structure is overlying the functional structure.

When a dedicated project manager is introduced, this organization is
called a balanced matrix. Project managers have a certain degree of
independence, including partial control of the budget and the resources.

 In a strong matrix organization, the role of the project managers is
strengthened in that they have more authority as well as more budget
and resource control. As part d) of figure 8-9 suggests, project man-
agement can be a department of its own with a manager at the top,
meaning that project managers do not report to functional managers but
to the manager of the project management group.

A strong matrix organization can be found in software companies
that have many projects going on at the same time. Since projects vary,
the organizational structure changes over time. Both matrix and projec-
tized organizational structures have to cope with permanent change.

__

Figure 8-10 Influence of organizational structure on projects [PMI 2004, p. 28]

Full-timeFull-timePart-timePart-timeProject management
administrative staff

Full-timeFull-timeFull-timePart-timeProject manager's
role

Project
manager

Project
manager

Mixed
Functional
manager

Who controls the
project budget

High to
almost total

Moderate
to high

Low to
moderateLittle or noneResource

availability

High to
almost total

Moderate
to high

Low to
moderateLittle or noneProject manager's

authority

Strong
Matrix

Balanced
Matrix

Projectized

Matrix

Functional

Organization
Structure

Project
Characteristics

Full-timeFull-timePart-timePart-timeProject management
administrative staff

Full-timeFull-timeFull-timePart-timeProject manager's
role

Project
manager

Project
manager

Mixed
Functional
manager

Who controls the
project budget

High to
almost total

Moderate
to high

Low to
moderateLittle or noneResource

availability

High to
almost total

Moderate
to high

Low to
moderateLittle or noneProject manager's

authority

Strong
Matrix

Balanced
Matrix

Projectized

Matrix

Functional

Organization
Structure

Project
Characteristics

The organizational structure imposes limitations on the scope of project
management. In other words: what can be decided within a project – by
the project manager – depends to a great deal on the organizational

Functional and
project-oriented
features

More authority
for project
managers

8.2 Project Planning 497

structure. Figure 8-10 summarizes the influence of organizational
structure on projects.

Information systems development by user organizations

Developing an information system is typically an endeavor carried out
as a project. However, a number of differences from projects in other
areas exist, as we pointed out in section 8.1.3.

A typical organizational structure for IS development projects within
a user organization (i.e. a company whose core business is not software,
cf. section 1.3.3) is a matrix organization.

Suppose the company has a basically functional organization or an
organization along product lines (divisional organization). Since IT (in-
cluding software development) is not a core business function or a part
of a business function, it is attached as a staff department to a manage-
ment instance (e.g. the CEO or a second or third-level top manager). In
organizational studies, this is called a line-and-staff organization.

Let us assume that the manufacturing department of the company
needs a more flexible shop-floor scheduling system. A project team will
be set up from staff of functional areas such as production planning,
shop-floor control, engineering, sales and distribution and of course
from IT, as shown in figure 8-11. The business, engineering and
manufacturing people remain in their functional areas. They report to
their functional managers, but regarding project matters they report to
the project manager as well. The project manager is likely to come from
the IT department, just like the system analysts and programmers.

The project in figure 8-11 consists of ten persons, five from the IT
department, two from shop-floor control, and one each from engineer-
ing, production planning and sales and distribution. Not all will work
full-time for the project (e.g. the shop-floor manager), and some will
need to become involved at different times (e.g. the production planner
for requirements engineering, programmers for coding).

Organizational structure of a software company

Projects in organizations whose business is software development are
different from figure 8-11 for three reasons. Firstly, software companies
do not produce physical goods and thus they do not have departments
such as production and engineering. Secondly, since information proc-
essing is the object of their work, there is no separate CIO and no
separate IT department. Thirdly, almost all work is done in the form of
projects.

Line-and-staff
organization

8 Software Project Management 498

Figure 8-11 Organization of an ISD project (example)

Chief
executive

officer

Engineering
manager

Production
manager

Sales &
distribution
manager

OperationsProgram-
ming

PM &
design

Chief
information

officer

Staff

…

Staff

…

Staff

…

Staff

…

Staff

…

Staff

…

Shop-floor
control

manager

Production
planning
manager

Staff

… Project members

Chief
executive

officer

Chief
executive

officer

Engineering
manager

Engineering
manager

Production
manager

Production
manager

Sales &
distribution
manager

Sales &
distribution
manager

OperationsOperationsProgram-
ming

Program-
ming

PM &
design
PM &
design

Chief
information

officer

Staff

…

StaffStaff

…

Staff

…

StaffStaff

…

Staff

…

StaffStaff

…

Staff

…

StaffStaff

…

Staff

…

StaffStaff

…

Staff

…

StaffStaff

…

Shop-floor
control

manager

Shop-floor
control

manager

Production
planning
manager

Production
planning
manager

Staff

…

StaffStaff

… Project members

Depending on what other business the company has in addition to
software development, different organizational structures are possible.
For example, if IT infrastructure services (IIS) or application service
providing (ASP) are part of the business, then even characteristics of a
functional organization can be observed.

Since our focus is information systems development, we will primar-
ily consider software-development organizations and software-develop-
ment departments of IT organizations. A typical organizational structure
here is a strong matrix organization.

However, speaking of a matrix organization in a software company
is different from speaking of a matrix organization in a manufacturing
firm or a bank. "Matrix organization" means that functional and cross-
functional features are blended. Functional areas of a software company

Strong matrix
organization

8.2 Project Planning 499

are analysis, design, programming, testing etc., in addition to marketing,
accounting and other business functions. These functional areas may be
arranged in a hierarchy as shown in figure 8-12.

__

Figure 8-12 Functional organization of a software company

The figure shows a hypothetical organization structure. Since we are
assuming a software company that earns its money from software
development, the biggest portion of the structure is occupied by the
development department. Other functional areas are sales and marketing
(where sales representatives and customer support are working), quality
management and project management, in addition to business functions
that are present in all companies.

A typical development project in this hypothetical company com-
prises staff from many functional areas. Assuming a strong matrix
organization, the following departments will be involved:

A hypothetical
ISD project

8 Software Project Management 500

– Project management – project manager, assistant project manager (in
large projects) and administrative personnel

– Sales and marketing – e.g. the sales representative who acquired the
project and serves as primary customer contact

– Analysis – requirements engineers or systems analysts performing
requirements engineering

– Design – software architects developing the basic architecture of the
system; class, database and GUI designers

– Implementation – programmers implementing the classes (e.g. Java
programmers), DDL and DML programmers implementing the
database, and GUI developers implementing the web front-ends
(markup-language and script programmers)

– Testing – staff performing module, integration and system testing
– Standards – a quality officer or assistant to ensure that software-

engineering standards are met.

The persons inside the dashed line in figure 8-12 together form the
project team for this concrete project. In the design and implementation
departments, one or more persons from each category (architect, class
designer, Java programmer etc.) are involved, which is indicated by
three dots interrupting the dashed line. The internal organization of such
a project team is discussed in the next subsection.

Project organization within a software company

The organizational structure of a specific project is established when the
project is launched. Since it is unlikely that the new project will be
totally different from previous projects, templates may be available, or
an earlier project organization is used as a pattern.

An organizational structure of a software development project
defines the roles of project members and arranges the roles in a tree-like
or network structure. Examples of roles are programmer, architect,
domain expert, quality assistant etc. Roles are filled by persons from
within the company's existing organizational units.

Basic project-organization types are a hierarchical organization and a
team organization. Another type with both hierarchical and team char-
acteristics is the chief programmer team.

In a hierarchical project organization, roles are arranged in a tree-
like structure, with a head of the project on top and subheads with line
authority at the nodes (cf. figure 8-13). The head on top is usually the
project manager, but other constructions such as a technical project head

Hierarchical
project
organization

8.2 Project Planning 501

plus a business head with split responsibilities are also possible.
Subheads are responsible for subprojects or for certain groups of project
members. Examples are a requirements manager with authority to issue
instructions to requirements engineers (or system analysts) and a head
of programming.

The project hierarchy can be supplemented by staff roles, in
particular administrative roles supporting the project head (line-and-
staff organization). In large projects, subheads may also be assisted by
staff roles (e.g. a coordinator managing authorizations and software
configurations).

Figure 8-13 Hierarchical project organization

Project head

Subproject 2
head

Subproject 1
head

Admin staff

Admin staff

Admin staff

…

…
…

Admin staff

Admin staff

Design
head

Analysis
head

Programming
head

Tester

Tester

Designer

Designer

Designer

Sales rep

Req eng

Req eng

Req eng

Customer
personnel

Customer
personnel

Java
programmer
…

GUI
programmer

DB
programmer

DB
programmer

Project headProject head

Subproject 2
head

Subproject 2
head

Subproject 1
head

Subproject 1
head

Admin staff

Admin staff

Admin staff

Admin staffAdmin staff

Admin staffAdmin staff

Admin staffAdmin staff

…

…
…

Admin staffAdmin staff

Admin staffAdmin staff

Design
head

Design
head

Analysis
head

Analysis
head

Programming
head

Programming
head

Tester

Tester

TesterTester

TesterTester

DesignerDesigner

DesignerDesigner

DesignerDesigner

Sales repSales rep

Req eng

Req eng

Req eng

Req engReq eng

Req engReq eng

Req engReq eng

Customer
personnel
Customer
personnel

Customer
personnel
Customer
personnel

Java
programmer

Java
programmer
…

GUI
programmer

GUI
programmer

DB
programmer

DB
programmer

DB
programmer

DB
programmer

8 Software Project Management 502

Figure 8-13 shows a line-and-staff organization of a large hypothetical
project that is subdivided into subprojects. A total of 27 people are
working in subproject 1:

1 subproject head
2 administrative staff
1 analysis head
3 requirements engineers
1 design head
3 designers
1 programming head
10 programmers
2 testers
1 sales representative
2 customer representatives

Customer personnel involved in the project are not under the authority
of subproject head 1. Therefore a dashed line connecting these two roles
is drawn in figure 8-13.

Large projects are often organized in a hierarchical way. Many large
bureaucratic organizations prefer hierarchical project structures in infor-
mation systems development. However, followers of non-conventional
approaches (such as agile development) usually favor less formal struc-
tures as discussed in the next paragraph.

In a hierarchical structure, communication paths are formalized,
going up and down the tree. If the project head in figure 8-13, for exam-
ple, is exposed to an urgent customer change request regarding realiza-
tion of a program function, he or she will not talk to the Java program-
mer directly but to the subproject 1 head. This person will talk to the
programming head who will communicate with the programmer. (The
reply then travels the same path up the hierarchy.)

Small projects or subprojects are often organized in a less formal
way, as a team. The project task is assigned to a group of people. While
a project head is usually nominated by the superiors launching the
project, the other roles are less clearly defined beforehand. "Everybody
talks to everybody".

Suppose for example that four developers and one tester are assigned
to the project. Who will do the architectural design? Who will examine
and refine the requirements? Who will design classes and implement
them? Rough roles and responsibilities are likely to be defined by the
project manager, e.g. in such a way that a senior developer designs the
software architecture, and certain parts of the total functionality are
assigned to the other three developers. This means that one person per-

A hypothetical
sub-project

Team
organization

8.2 Project Planning 503

forms the design, implementation, testing, documentation and perhaps
even requirements analysis for one portion of the system. (Remember
that XP practices such as the "planning game" and "user stories" imply
that the programmer talks directly to the customer; cf. section 4.4.1).

In the software-engineering community, team organization enjoys a
high popularity because it exhibits democratic features. Project issues
are discussed by the team and decisions are made by consensus within
the team. In contrast, a hierarchical organization is characterized by
"instructions" that are issued by higher-level organizational roles and
executed by lower-level roles.

A team organization can work well, provided that the team is capable
and willing to collaborate in a consensual way and that the project
manager has leadership capabilities such as being able to solve conflicts
and motivate the team members. On the other hand, a team organization
based on an "everybody talks to everybody" approach reaches its limits
as the project size grows. In a large team, the communication overhead
explodes, incapacitating effective team work.

For example, consider a team of 6 members (n = 6) as shown in
figure 8-14 a). Each member has to talk to 5 other members, yielding
n*(n-1)/2 = 15 communication paths. Suppose the team size doubles.
Then each team member theoretically has to communicate with 11
people, and the number of paths increases to 66 as shown in part b).

Figure 8-14 Communication paths in a democratic team

a) Teamsize 6 a) Teamsize 12a) Teamsize 6 a) Teamsize 12

"Everybody talks
to everybody"

8 Software Project Management 504

Although in practice not everybody will need to talk to everybody, the
example shows that a large share of the daily working hours will be
spent on communication and not on productive work, unless some
hierarchical coordination mechanisms is in place.

A chief programmer team (CPT) is a project organization that has
been enjoying a great deal of popularity in the software-engineering
literature for several decades. It is basically a hierarchical organization
with most authority combined in one person (the chief programmer) and
a number of roles assisting the chief programmer. This organizational
structure goes back to an IBM project in the early 1970s in which an
information system for the New York Times was developed [Baker
1972, Mills 1973].

Figure 8-15 Chief programmer team organization

Testing specialist

Programming
specialists

Language lawyer

Toolsmith

Editor

Administrator

Secretary

Specialists &
Support Staff CPT Nucleus

Chief
programmer

Librarian
Backup

programmer
(Co-pilot)

Testing specialist

Programming
specialists

Language lawyer

Toolsmith

Editor

Administrator

Secretary

Specialists &
Support Staff CPT Nucleus

Chief
programmer

Librarian
Backup

programmer
(Co-pilot)

Testing specialist

Programming
specialists

Language lawyer

Toolsmith

Editor

Administrator

Secretary

Specialists &
Support Staff CPT Nucleus

Chief
programmer

Librarian
Backup

programmer
(Co-pilot)

The rationale for the CPT approach is based on the observation that
programming abilities amongst software developers vary extremely.
"The best programmers may be up to 25 times as productive as the

Chief
programmer
team (CPT)

8.2 Project Planning 505

worst programmers. It therefore makes sense to use the best people in
the most effective way and provide them with as much support as
possible." [Sommerville 2007, p. 605].

When the chief programmer team organization was first proposed, it
was compared with a surgical team in which a chief surgeon is
supported by a team of specialists whose members assist the chief rather
than operate independently. As shown in figure 8-15, the permanent
roles in the original CPT organization were called chief programmer,
backup programmer and librarian [Baker 1972, pp. 57-58]:

– A chief programmer is a senior-level programmer who is

responsible for the development of a software system. The chief
programmer produces a critical system nucleus in full, specifies all
other parts and integrates them.

– A backup programmer (sometimes called co-pilot) is also a senior-
level programmer supporting the chief programmer. When the chief
programmer is unavailable, the backup programmer can take on his
or her tasks.

– The librarian may be a programmer, a technician or a secretary with
additional technical training, responsible for clerical functions such
as configuration management, tracking project progress and prepar-
ing reports.

This nucleus may be extended by including other programmers,
analysts, technicians and specialists from certain fields, depending on
the size and character of the system under development. Roles outside
the nucleus have been proposed, named and described by many authors.
As shown in figure 8-15, such roles can be [Mills 1973, pp. 58-61]:

– Program testing specialist – preparing and performing tests as

defined by the chief programmer or the co-pilot
– Programming specialists – additional programmers with special

skills to whom the chief programmer can delegate work
– Language lawyer – a programming language specialist who may

create, for example, an optimized version of some module written by
the chief programmer

– Toolsmith – a specialist for software tools and utility programs to be
used by the chief programmer or others

– Editor – proofreading, formatting and producing a final version of
the documentation created by the chief programmer and the co-pilot

8 Software Project Management 506

– Administrator – bookkeeping for the project, including legal require-
ments such as contract reporting, patents and trade marks

– Secretary – providing secretarial support services

While the core roles in the nucleus are permanent roles, some of the
above roles are temporary. For example, an editor will only be needed
when the documentation is produced, and a specialist for bridge pro-
grams will only be needed when interfaces with an external software
system have to be created.

Although the chief programmer team organization has enjoyed much
attention in the software-engineering literature, only few organizations
actually use it. This is due to several reasons: First, individuals with
such outstanding software development and management skills as
required for the chief programmer are hard to find. Second, having most
of the knowledge, experience and high-level skills concentrated in one
person is risky. Third, since the chief programmer takes on all the
responsibility and makes all the important decisions, the other project
members may feel that their role is not recognized. Fourth, this organi-
zation is limited to small teams and thus to small projects.

For larger projects, variants and extensions of the CPT organization
have been proposed, such as breaking down the overall system under
development into smaller subsystems that can be handled by individual
chief programmer teams. However, these variants and extensions are
not used much. Concluding this subsection, we may regard the chief
programmer team as an effective organizational structure for small pro-
jects. It that has a lot of productivity potential and at the same time bears
a high risk.

8.2.3 Planning with a Project Management System (PMS)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Planning non-trivial projects is usually done with the help of a software
tool – a project management system (PMS). On the market, a large
number of PMS are available. For example, a list provided by the Ger-
man project management society exhibits 181 systems [PM 2007]. They
range from simple open-source systems for PCs all the way to heavy-
weight systems for mainframes with six or seven-digit license fees.

Drawbacks

A large number
of PMS exist

8.2 Project Planning 507

Figure 8-16 Project management systems [Wyomissing 2008]

Desktop Project Management Software

Software (1) (2) (3) (4) (5) (6) (7) (8)
GanttProject • •

Microsoft Project • • •

OmniPlan • •

Open Workbench • •

Pertmaster •

PlanningForce • • • •

Enterprise Project/Portfolio Management Software

Software (1) (2) (3) (4) (5) (6) (7) (8)
AceProject • • • • •
Achievo • • •

Artemis • • • • • • •
InventX • • • • • • • •
Microsoft Project
Portfolio Server • • • • • • • •

Planisware OPX2 • • • • • • • •
Vertabase • • • • • • •

Feature Definitions

(1) Demand Demand management features for requesting work, collecting
requirements, etc.

(2) Portfolio Managing a portfolio of projects, balancing resources across
a portfolio of projects, etc.

(3) Schedule Creating and tracking on a schedule with dependencies and
milestones

(4) Budget Defining and tracking on project budget performance

(5) Risk Features for defining and mitigating risks and tracking issues

(6) Resource Tools for defining resources, allocating to projects, and
analyzing utilization

(7) Time Features for timesheet entry, charging to project tasks, and
reporting

(8) Performance Project performance metrics and analytical tools

8 Software Project Management 508

Some well-known project management systems are listed in figure 8-16.
Two simplified categories are distinguished in this figure: desktop
systems and enterprise systems. The first category comprises mostly
systems for the management of single projects whereas the second
category addresses enterprise-wide project management (multi-project
management, cf. section 8.4).

The entries in the criteria columns of figure 8-16 indicate that desk-
top PMS basically support project scheduling and resource manage-
ment. Full-fledged enterprise PMS provide additional features such as
budget and risk management, timesheets, performance measurement
and features for multi-project management (demand and portfolio
management).

A widely used project management system is MS Project. Although
it falls in the category "desktop systems", it is a professional PMS pro-
viding many features for project planning and project control. MS Pro-
ject goes back to the late 1980s when the first version was developed.
Being part of the MS Office suite, its current official name is Microsoft
Office Project 2007.

As the second table in figure 8-16 shows, server-based versions of
MS Project also exists. MS Office Project 2007 is actually a product
family. As of 2008, Microsoft offers the following products from this
family under the name "Microsoft Office Enterprise Project Manage-
ment (EPM) Solution" [Microsoft 2008]:

– MS Office Project Professional 2007 – providing desktop function-

ality plus EPM capabilities when connected to Microsoft Office Pro-
ject Server 2007

– MS Office Project Server 2007 – allowing organizations to store
project and resource information centrally

– MS Office Project Portfolio Server 2007 – supporting project port-
folio management (multi-project management)

The main presentation tool provided by systems such as MS Project is a
bar chart. This bar chart can be enriched with many types of informa-
tion including an activity's start and end dates (earliest or latest dates);
cost, people and other resources assigned to the activity; duration,
successors and/or predecessors of the activity in the work breakdown
structure (WBS) etc.

The bar chart in figure 8-8 was created with MS Project. Another
example of a bar chart displaying not only activities but also the net-
work structure is shown in figure 8-17. The dates written next to the
bars are an activity's earliest start date and latest end date.

Microsoft Project

"Microsoft Office
Enterprise
Project
Management
(EPM) Solution"

Main
presentation tool:
bar chart

8.2 Project Planning 509

Figure 8-17 Bar chart with logical dependencies and dates

For example, the "GUI implementation" activity cannot start before
January 15th, and it must end not later than April 1st. MS project can
generate and display these dates because the activity sequences, dura-
tions and dependencies were defined when the activities were created.

Figure 8-18 Assigning resources to activities

8 Software Project Management 510

Resources (including people) can also be stored and assigned to those
activities for which they are needed. Figure 8-18 illustrates the
assignment of project workers to activities. It should be noted, however,
that MS Project supports only the creation of "flat" resources and the
assignment of these resources to activities. It does not support the
modeling of an organizational structure such as a hierarchy as shown in
figure 8-13.

8.3 Project Execution and Control

To accomplish the project's requirements, the work specified in the
planning phase must be carried out. This involves the coordination of
people, resources and activities within the scope of the project. The
activities of the project must be initiated, performed, supervised and
controlled. The project management will monitor the timely creation of
the deliverables specified in the project plan, consider change requests,
initiate corrective actions, and update the project plan.

In principle, all partial plans drafted for the above mentioned project
management areas – integration, scope, cost, quality, human-resources,
communications, risk and procurement management (cf. section 8.2.1) –
will be implemented in the execution phase. Monitoring and controlling
the project's progress as well as re-planning and reacting to change are
the major challenges for the project management.

8.3.1 Monitoring and Controlling Project Work
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The main objective of monitoring and controlling is to compare actual
project performance against the project plan (including all partial plans)
and to take corrective or preventive actions if needed. Project monitor-
ing means collecting, measuring and disseminating performance infor-
mation [PMI 2004, p. 94]. Controlling compares the measurements
against the project baseline and takes any necessary remedial action.

Coordinating
people,
resources and
activities

Monitoring,
controlling,
reporting

8.3 Project Execution and Control 511

Monitoring and control are usually accompanied by reporting. This
means creating reports for the management about the status of work on
the project, including forecasts of developments up until the end of the
project [IPMA 2006, p. 72].

In more detail, monitoring and controlling the project work include
the following tasks [PMI 2004, p. 94]:

– Comparing actual project performance against the agreed project

plan.
– Assessing performance to determine whether any corrective or pre-

ventive actions are indicated, and initiating these actions if neces-
sary.

– Analyzing, tracking and monitoring project risks to make sure the
risks are identified, their status is reported, and that appropriate risk
response plans are being executed.

– Maintaining an accurate, timely information base concerning the
project's results and associated documentation.

– Providing information to support status reporting, progress measure-
ment and forecasting.

– Providing forecasts to update current cost and current schedule
information.

– Monitoring implementation of approved changes when and as they
occur.

To satisfy these requirements, monitoring and controlling tasks have to
be carried out within the project management areas, in particular in
scope, schedule, cost, quality and risk management. The PMBOK, for
example, describes a set of monitoring and controlling tasks in these
areas in detail [PMI 2004, sections 5.5, 6.6, 7.3, 8.3 and 11.6]. In brief,
they can be summarized as follows:

Scope control

Scope control is concerned with scope changes and the impacts of these
changes. Scope control tries to avoid the so-called scope creep
(uncontrolled growths and changes of requirements, cf. section 8.1.3),
managing changes through a defined process of change requests, change
approvals and recommended actions to carry out changes. As a result,
the work breakdown structure (WBS) and the scope statement may be
updated.

Avoiding scope
creep

8 Software Project Management 512

Schedule control

Schedule control is a task which determines the current status of the
project schedule, to examine if and why the schedule has changed, and
to manage actual changes as they occur [PMI 2004, p. 152]. For
schedule control, the start and end dates of the activities as shown in
figure 8-15 and the project milestones are used. Schedule control
includes progress reporting and a defined process by which the schedule
can be changed (request, approval, authorization etc.). An important
part is to decide if a detected schedule variation requires corrective
action. For example, a delay on a scheduled activity which is not on the
critical path may have little effect on the overall project schedule and
can be tolerated.

Schedule analysis is facilitated by comparison bar charts plotting the
approved project schedule against the actual project schedule. This is a
visual help showing where the schedule has progressed as planned and
where not.

Outputs of schedule control include updates of the project schedule,
in particular updated network diagrams and bar charts with effective
new start and end dates. Any schedule change can have an impact on
other project management areas. For example, if an activity is resched-
uled, as a consequence, resources needed for this activity may also have
to be reallocated, according to the new start and end dates.

As another output of schedule control, corrective actions may be
defined in order to bring the expected future schedule back in line with
the approved schedule. This includes actions to ensure completion of
schedule activities on time or with minimum delays.

Cost control

Cost control deals with the cost performance of the project. The time-
phased budget of the project is monitored, actual expenditures and
variances against the approved budget are determined, and requested
changes to the budget are agreed upon. Cost control includes the meas-
urement of project performance and forecasting future project develop-
ments, in particular their cost implications.

Taking into account that cost overruns are rather common in practice,
a crucial task of cost control is to ensure that potential overruns do not
exceed the authorized budget for the period or entire project. If an
overrun cannot be avoided, then appropriate measures have to be taken
to keep the overrun within acceptable limits. Scope or schedule change

Comparison bar
charts

Outputs of
schedule control

8.3 Project Execution and Control 513

requests may also induce additional costs. If they are approved, the
budget has to be adapted.

A controlling technique for performance measurement is the earned
value technique (EVT). This technique "... compares the cumulative
value of the budgeted cost of work performed (earned) at the original
allocated budget amount to both the budgeted cost of work scheduled
(planned) and to the actual cost of work performed (actual)" [PMI 2004,
p. 172].

Figure 8-19 Earned value technique example [PMI 2004, p. 174]

C
um

ul
at

iv
e

va
lu

es

Today Time

AC
(actual
costs)

EV
(earned
value)

PV
(planned

value)

BAC
(budget

at
completion

C
um

ul
at

iv
e

va
lu

es

Today Time

AC
(actual
costs)

EV
(earned
value)

PV
(planned

value)

BAC
(budget

at
completion

Figure 8-19 illustrates this concept for a work component that is over
budget and behind the project plan. The curves and points shown in the
figure are:

– PV (planned value) – budgeted cost for an activity (or an aggregated

component of the work breakdown structure), cumulated up to a
given point in time

– EV (earned value) – budgeted amount for the work actually com-
pleted on this activity (or WBS component) during a given time
period

– AC (actual cost) – total cost incurred in accomplishing work on the
schedule activity (or WBS component) during a given time period

Earned value
technique (EVT)

8 Software Project Management 514

– BAC (budget at completion) – the total budget for the project, equal
to the planned value (PV) at the point in time when the project is
scheduled to end

At the point in time when the measurement was done, the work compo-
nent in the example of figure 8-17 had a lower earned value than the
planned value. This means that not as much work has been completed
as was assumed in project planning.

Cost and schedule variances as well as performance indices can be
computed from the planned, earned and actual values. These variances
and indices are used to forecast the remaining work on the activity (or
WBS component), in particular to compute the:

– ETC (estimate to complete) – an estimate of the cost needed to com-

plete the remaining work. For example, ETC = BAC - EV, possibly
weighted by a cost performance index.

– EAC (estimate at completion) – the most likely total cost based on
project performance, risk quantification, remaining budget and/or
actual costs. For example, EAC = AC + ETC, or EAC = AC + BAC
- EV, possibly weighted by a cost performance index.

The exact ways to compute the estimates depend on an assessment of
the past variances and the original assumptions for cost estimation as
well as on expectations about how likely it is that similar variances will
occur in the future. Readers interested in details of these forecasts and
the earned value technique are advised to consult the literature [e.g.
Fleming 2006].

Quality control

Project quality has two aspects: product quality and process quality. The
causes of unsatisfactory results have to be identified and eliminated. In
information systems development, quality control includes monitoring
of both the quality of the information system under development and
the quality of the development process.

An information system's product quality is usually addressed under
the topics software quality management, validation, verification or
testing. Concrete measures to ensure and improve an information
system's quality were discussed in section 6.3, for example testing
strategies and test-driven development. It is the project manager's
responsibility to control and ensure that quality assurance measures – in
particular creating a good design, evaluating development documents

Forecasts

Product quality

8.3 Project Execution and Control 515

regarding validation and verification of results, and doing thorough
testing – are adequately performed on the system under development.

Process quality is influenced by factors such as: is the process model
suited for the particular development effort and/or how well was it
tailored to the needs of the current project? Are the test documents (e.g.
test specifications, test-case descriptions) appropriate? Is the process
well documented and followed by the development team?

Monitoring and improving processes is a continuous task. This can
be based, for example, on the CMMI (capability maturity model inte-
gration). CMMI is a process improvement approach that describes
effective processes and helps organizations to establish such processes
[SEI 2007].

Risk control

Monitoring and controlling risks requires that potential risks were
identified and possible responses were defined before the information
system construction began. The project management has to keep track
of known risks and identify, analyze and plan for newly arising risks.
Risk monitoring and control can lead to a re-assessment of known risks.
The project management is also responsible for the execution of risk
responses and the evaluation of their effectiveness. They may recom-
mend project changes as well as corrective and preventive actions
(including contingency plans) to bring the project into compliance with
the project goals [PMI 2004, pp. 266-268].

8.3.2 PMS Support for Project Controlling
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Monitoring and controlling a project effectively is much easier with the
help of a project management system. Provided that all planned activi-
ties, dates, dependencies, resources, costs etc. were entered during the
planning phase of the project, it is fairly easy to have ongoing checks
performed automatically whether or not the planned data have been put
into effect and/or deviations have occurred.

Based on the differences between planned and actual values, the
schedule can be adapted, start and end dates can be recalculated, and
cost and time estimates can be adjusted automatically. This is possible if

Process quality

CMMI (Capability
maturity model
integration)

8 Software Project Management 516

the actual state of the project is continously updated, i.e. if all starts and
ends of activities and all resources utilized are booked in the PMS.

Some project-controlling support as provided by MS Project is illus-
trated in the figures 8-20 to 8-23.

Figure 8-20 is used for cost controlling. The solid bars inside some
of the activity bars indicate activities that have been started but are not
completed yet. The inner bars visualize how much of an activity is
completed (%) at the time the chart is generated.

For the completed activities in figure 8-20, cost variances were
computed and written to the right of the activity bars. For example,
requirements analysis cost 2,000 € more than planned, and class design
was completed at 400 € less than expected.

Current activities are "database design" and "GUI design". Since
these activities are not yet completed, their cost variances are 0 €.
(Alternatively, the project manager could have displayed the actual cost
spent so far or the remaining cost for these activities, if he or she was
interested in more details.)

For activities not yet started (i.e. all activities from "coding & unit
testing" to "delivery & installation"), the planned costs are displayed.
"System test", for example, was planned to be completed at 40,320 €.

__

Figure 8-20 Cost controlling with MS Project

Schedule controlling is illustrated in figure 8-21. For completed and
ongoing activities, the work variances (i.e. difference between planned

MS Project

Cost controlling

Schedule
controlling

8.3 Project Execution and Control 517

and actual time spent) are shown. For example, the requirements
specification took 240 hours more than planned, while requirements
analysis was completed as expected (variance 0 hours) and class design
took less time than planned (variance -24 hours).

Figure 8-21 Work variances and upcoming start and end dates

 Legend: Tasks 1 - 6 work variance, 7 - 13 earliest start and latest end dates

Activities not started yet are shown with their earliest and their latest
possible start dates. For example, database implementation could start
on January 29th, and it must not start later than May 30th, otherwise the
project completion date would be exceeded.

Also interesting for the project manager and the stakesholders who
are financing the project is how the resources are utilized. Since all
necessary data are stored and updated in the PMS – and provided that
they are regularly updated – the PMS can generate reports such as the
status of resource utilization.

Figure 8-22 shows such an evaluation. It was created by MS Project,
based on the project data in its database. MS Project automatically ex-
ported the data to MS Visio and made Visio create a chart. This chart is
a one-level tree extending as far to the right as there are resources. Since
we cannot display the whole tree within the print area of a book, it is cut
off after four project workers on the right.

The resource status report shows that at the time it was created, a
total of 6,557 work hours and 436,260 € were already spent on the
project staff, divided up between the individuals as displayed on the

Utilization of
resources

8 Software Project Management 518

lower nodes of the tree. For example, Paul Jones worked 1,197 hours on
the project, charged to the budget at 77,827 €.

Figure 8-22 Resource status report

8.4 Multi-project Management

In real-world business settings, organizations usually have not only one
project but many projects going on at the same time. These projects may
be independent of each other or related with one another. Multi-project
management is concerned with environments in which multiple projects
have to be selected and managed.

8.4 Multi-project Management 519

8.4.1 Levels and Tasks of Multi-project Management
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

On the strategic level, it is a senior management task to decide which
projects to do and which budget and resources to allocate for each pro-
ject, taking into account that projects may have higher or lower priori-
ties, promise different benefits, and compete for the same resources.
Portfolio analysis as described in section 2.2 is a method to evaluate and
select candidate projects.

On the operational level, parallel and/or sequential projects have to
be coordinated with regard to overlapping staff, cash-flow and resource
requirements. If results from one project are needed for another project,
additional dependencies have to be considered.

Managing multiple projects is a much more complex task than man-
aging a single project. Topics such as integration, scope, time, human
resource, cost, quality, communication, risk and procurement manage-
ment have to be addressed for all the projects. What makes the manage-
ment even more difficult is that the projects can have different objec-
tives and most likely they are in different stages. For example, some
may be just in the requirements analysis stage while others are in the
design stage and yet others in one of the testing stages.

Nevertheless, the senior management expects every project to be suc-
cessful within the allocated times and budgets. They expect transpar-
ency regarding schedule and cost of each project; coordination of work
across the projects; allocation of resources to projects according to
priorities; and resolution of conflicting requirements between the
projects.

Terms related with multi-project management are project portfolio
management and program management. Some authors use these three
terms interchangeably, while others summarize the latter two under the
first one. We will follow this second way and define the terms as
follows:

– Project portfolio management (PPM) is concerned with actively

identifying, evaluating and prioritizing projects, resources and
budgets within an organization. PPM helps an organization evaluate
and prioritize each project according to certain criteria, such as
strategic value, impact on resources, cost etc. [Greer 2006].

Strategic level

Operational level

Project portfolio
management

8 Software Project Management 520

– Program management is concerned with managing multiple
interdependent projects in order to meet given business goals. The
focus of program management is on coordinating and prioritizing
resources across projects to ensure that resource allocation is
managed from an enterprise-wide perspective.

– Multi-project management is the management of an organization's
projects – both ongoing projects and candidate projects – through
organization-wide processes ensuring that projects are selected, pri-
oritized and equipped with resources in such a way that the business
goals are met. Multi-project management comprises program
management and project portfolio management.

Regarding the topic of this book, relevant multi-project management
issues are primarily those on the operative level (program management).
Important tasks include cross-project planning and controlling of shared
resources, cross-project reporting, and common standards for quality
management and project assessment.

8.4.2 PMS Support for Multi-project Management
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Enterprise-level project management systems such as the ones shown in
figure 8-16 usually include features for portfolio and program manage-
ment. As an example, the main features of the InventX SP2M ("strategic
project portfolio management") system are listed below. As the name
suggests, the focus of this PMS is portfolio management and setting up
projects. InventX supports the following areas [Cranes 2006]:

– Portfolio management – creating and maintaining a complete view

of the scope, resources, schedules and budget performance of all or a
subset of the projects, and consolidating information from multiple
projects.

– Strategic planning – developing and maintaining a dynamic strategic
plan of projects. Setting up a strategic plan includes capturing vision,
mission, SWOT analysis, key strategies etc.

– Project planning – initiating the project and identifying starting
activities that lead to the launching of a new project.

Program
management

Multi-project
management

Enterprise-level
PMS

8.4 Multi-project Management 521

– Requirements management – capturing, managing and communicat-
ing the product and project requirements and specifications.

– Resource management – capturing resource information such as
type, skills, training requirements etc. and assigning resources to
project tasks; monitoring resources and making decisions regarding
resource allocation across multiple projects.

– Time & expense management – time accounting and expense man-
agement including time sheet and expense reporting for both project
and non-project activities.

– Reports and analytics – providing executives with a digital dash-
board into the portfolio project system; making real-time project
status information available.

– Task management – displaying project tasks assigned to individual
team members, helping the team members to review and update the
status of their tasks, including approval and recommendations by the
project manager.

Another example of multi-project management support is MS Project
("Microsoft Office Project 2007"). This product family comprises two
servers with multi-project management capabilities:

– The portfolio server ("MS Office Project Portfolio Server 2007")

provides methods to manage all project and program portfolios with
the help of workflows that subject each project to the appropriate
governance controls throughout its life cycle [Microsoft 2008a]. It
supports the collection of data and metrics for each project and pro-
gram, storing these data and metrics in a common repository. The
performance of each project or program can be measured and
tracked throughout its life cycle. Furthermore, algorithms to select
the optimal portfolio under varying constraints, such as costs and
full-time equivalents (FTE), are provided.
Another important feature is the automatic derivation of prioritiza-
tion scores such as strategic value, financial value, risk, architec-
tural fit and operational performance to assess projects and pro-
grams. Figure 8-23 shows an evaluation of a number of projects,
generated from such scores. The projects are plotted in a two-
dimensional space of total project cost (x-axis) and relative strate-
gic value (y-axis). The bubbles represent projects, with the size of
a bubble expressing the total financial benefits from a project. The
colors red, green and yellow (shades of gray in the figure) stand for
risk classes.

MS portfolio
server

8 Software Project Management 522

__

Figure 8-23 Bubble chart to evaluate projects [Microsoft 2008a]

– The project server ("MS Office Project Server 2007") provides cen-

tral storage of all project and resource-related information. This
includes high-level resource allocation for proposed projects before
they are approved. The server supports the management of programs
with multiple (sub-) projects and their cross-project dependencies in
a coordinated fashion. Deliverables are used to track and manage
these dependencies [Microsoft 2008b].

In information systems development, project and program managers
need a clear picture of the utilization of resources across projects, the
project budgets and costs, and the evolution of requirements. A multi-
project management system can effectively assist the managers in
obtaining this picture. It helps them keep track of the progress and the
performance of all ongoing projects. Through diagrams visualizing
aggregated information they get a quick overview of the status and how
the projects are doing.

An example of an overview chart generated with the Planisware
OPX2 PMS is shown in figure 8-24 [Planisware 2007].

MS project
server

8.4 Multi-project Management 523

This chart assists managers in cost controlling. It displays a number of
projects, extending to the right, and the cost accounts project activities
are charged to, extending towards the back. The stacked bars in the dia-
gram represent actual cost (dark gray) and ETC (estimate to complete,
light gray).

Other views, angles and chart types can be used to exhibit more
information. In this way, program or project managers can see immedi-
ately how much each project has already spent and how much more is
expected to be spent.

Figure 8-24 Multi-project cost controlling support [Planisware 2007]

CPMS cost
controlling
support

8 Software Project Management 524

8.5 Managing Globally Distributed Projects

Developing information systems is increasingly characterized by global
work distribution. Many development teams are composed of specialists
who are located in different geographical regions. It has become normal
that individuals, teams, organizational units and/or organizations in
different parts of the world collaborate on common projects.

8.5.1 Managing Global vs. Managing Local Projects
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

In large projects, distributing the work to different organizations (or
organizational units) has long been practiced as a common approach.
However, these organizations were usually located nearby, at least in
the same country. Due to the benefits of offshoring (cf. section 2.3.3),
the distribution of work is now happening on a global scale. People,
teams, departments and organizations collaborate on projects even when
they are thousands of kilometers apart.

Globally distributed work (GDW) has become a common charac-
teristic of the software industry. With regard to software engineering, a
sub-discipline named GSD (global software development) or GDSD
(globally distributed software development) has emerged, and interna-
tional conferences and workshops are addressing this problem domain.

The major tasks and management areas in global software develop-
ment projects are the same as in collocated projects, but there are addi-
tional issues to be solved which make the management more difficult.
In particular, long distances, the cultural gap, different time zones, lan-
guages and working habits pose challenging problems to the project
management.

The sheer fact that the stakeholders are physically separated by long
distances creates many problems. As an example, consider a stakehold-
er structure as shown in figure 8-25. The user organization's manage-

GDW, GSD,
GDSD

Distributed
stakeholders

8.5 Managing Globally Distributed Projects 525

ment is in London, their IT group who runs the project is in Boston, and
most of the future users are in Denver and Boston.

The software organization, headquartered in Bangalore, has project
teams working in Boston, Sydney and Bangalore. They subcontracted
another software firm who also needs to communicate with the client's
IT organization. Although the "official" communication between the
customer and the software vendor goes through the customer's IT
organzation, there is indirect (and informal) communication between the
two (shown as a dashed line).

Figure 8-25 Stakeholders in a global project [Bhat 2006, p. 39]

Glober users

Business
managers

Business
users

Business
users

London, UK

Denver, US

Boston, US

Client
(business

community)

Client
(IT organization)

Business process
consultants

Software
vendor 2

Boston, US

Project team

Project team

Project team

Boston, US

Bangalore, India

Sydney, Australia

Software vendor 1

Glober users

Business
managers

Business
users

Business
users

Business
users

Business
users

London, UK

Denver, US

Boston, US

Client
(business

community)

Client
(IT organization)

Client
(IT organization)

Business process
consultants

Business process
consultants

Software
vendor 2
Software
vendor 2

Boston, US

Project teamProject team

Project teamProject team

Project teamProject team

Boston, US

Bangalore, India

Sydney, Australia

Software vendor 1

It is easy to imagine that communication in such a project is much more
difficult than in a collocated project. It costs more money (e.g. travel
expenses) and is prone to misunderstandings. Many things take longer,
because requests, responses and documents have to be exchanged across
time zones, cultural spheres and language barriers. For example, if
partners in countries with different languages are involved, time for
translating documents such as requirements specifications, designs, test
plans etc. has to be taken into account.

It is a challenge for the management of a global project to define and
implement solutions to overcome these problems.

8 Software Project Management 526

GDSD issues for project management

Project management areas for global projects are basically the same as
described for local projects in section 8.1.2. However, special attention
has to be given to factors resulting from global work distribution. Fol-
lowing the PBMOK's categories, this is the case in the following areas:

– Scope management: According to the PMBOK, the work break-
down structure (WBS) is created in this management area. In a
global project, the project manager will be thinking about work
packages that can be outsourced to the offshore partner when the
WBS is created. This means, he or she will define work packages in
such a way that they can easily be outsourced later.

– Time management: Activities must be well-defined, in particular
activities that will be outsourced, to avoid misunderstandings later in
the project. A clear understanding of the activities by both parties is
needed. The offshore partner should sign off the work-package and
activity definitions.
Activity sequencing should allow for buffers for activities out-
sourced to the offshore company and for additional buffers to man-
age integration of results across teams. Activities on the critical
path are problematic candidates for outsourcing, since the risk of
exceeding end dates is higher than for local activitites.

Time and effort estimation should be performed by both parties,
because the offshore partner has a better understanding of offshore
factors influencing the time and effort.

Although much of the collaboration and communication is facili-
tated by electronic means nowadays, in-person meetings are still
required in many cases. This means that time for obtaining visa or
working permits have to be built into the time plan.

– Cost management: If the onshore organization has their own soft-
ware development staff, "make or buy" decisions may be made for
individual activities (or work packages). This means that the project
manager has to analyze the costs and benefits of offshoring vs.
completing the work inhouse.

– Quality management: Additional quality measures may be intro-
duced, in particular when the offshore partner does not have a
certified quality standard. While Indian software companies are
often on a relatively high CMMI level, offshore partners in other

Buffers make
sense

8.5 Managing Globally Distributed Projects 527

countries may lack this certification. This leaves it to the customer to
impose quality standards on the offshore partner. For example, the
customer would have to verify the partner's testing procedures.

– Human resources management: In many cases the customer wishes
to control the skills and experience of the offshore organization's
staff and initiate training to make sure that the necessary skills are
available. Special emphasis has to be placed on bridging cultural
gaps between onshore and offshore project team members. This
helps to mitigate the risk of misunderstandings and facilitates the
resolution of issues.

– Communications management: Due to a globally dispersed project
structure, communication paths and contact persons for all parties
involved have to be defined. In very large projects, the communica-
tion structure between onshore and offshore project managers has to
be established. Well-organized communication is very important.
Otherwise the remote teams or team members tend to make their
own assumptions and decisions which may later prove to be wrong.
Extensive reworking might be needed as a consequence of this.
Ongoing information and feedback on relevant issues can alleviate
these communication problems. Day-to-day communication be-
tween the team members can largely be based on tools nowadays.
Some of these tools will be discussed in chapter 9.

– Risk management: Cultural differences between onsite and offshore
teams or project members deserve special attention. They are a
frequent source of misunderstandings and miscommunication, lead-
ing to unsatisfactory intermediate or final project results. Risks may
also be caused by different quality perceptions onsite and offshore,
and by the formation of subgroups onsite that work against the
offshore group for social or political reasons. The risks associated
with cultural differences, different languages and subgroups are
often underestimated.

8.5.2 Organization of Globally Distributed Projects
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Global distribution of project work comes in many variants. There is a
spectrum of options regarding how distributed work can be organized.

Bridging cultural
gaps

8 Software Project Management 528

For simplification, we will discuss only the two endpoints of the spec-
trum: 1) a virtual team and 2) collaborating teams.

Virtual team

A virtual team is a project team composed of team members from
different geographical regions and/or different organizations. It has the
same goals and objectives as a traditional team. However, it operates
across time, geographical locations and organizational boundaries. A
crucial enabler for virtual teams is information and communication
technology. With the help of technology, it is possible that dispersed
members can operate as a single team.

Virtual teams have become a common phenomenon in software
development. For example, a medium-size team of 14 persons could be
operating with a project manager in Frankfurt (Germany), three senior
software developers and two quality experts in Berlin, six programmers
in Hyderabad (India) and two designers in St. Pertersburg (Russia).

A virtual team will basically be organized in the same way as a non-
virtual team such as the one shown in figure 8-13 above. It has one
project head (or project manager) who is responsible for the project and
who communicates with all team members. Virtual teams like this are
better suited for small projects (or sub-projects) than for large projects.

Collaborating teams

In most large projects, work is divided up among several teams with
separate responsibilities. Each team is responsible for a sub-project or
for a set of activities within the overall project. This means that the
teams have their own project managers, contact persons and organiza-
tional structures.

Figure 8-26 illustrates this approach with the help of an example.
Five dispersed teams are collaborating. The overall project management
and the requirements engineers who are interfacing with the Hamburg
based customer work in Berlin (Germany). The overall system has been
decomposed into two subsystems A and B. These subsystems have been
assigned to different development teams, one in Bangalore (India) and
one in Shanghai (China). Integration and testing is done by a test team
in Bucharest (Romania).

In a distributed project organization like the above, it is important to
have well-defined interfaces between the central project management
and the decentralized teams. Many companies practicing offshoring set
up one or more roles for onsite-offshore coordinators.

A virtual team is
one team

Several teams
with separate
responsibilities

Onsite-offshore
coordination

8.5 Managing Globally Distributed Projects 529

__

Figure 8-26 Global software development

Customer

Project
manager

Test team

Development team A

Development team B

Require-
ments

Components
(source code)

Components
(source code)

Test
cases

Test
plans

Change
request

Customer

Project
manager

Test team

Development team A

Development team B

Require-
ments

Components
(source code)

Components
(source code)

Test
cases

Test
plans

Change
request

A typical example for a medium-size project is shown in figure 8-27.
On the left-hand side, the onsite project team is shown. The central pro-
ject management is reinforced by an offshoring manager and an offshor-
ing software engineer. The offshoring manager is responsible for plan-
ning, controlling and coordinating cross-location work activities, includ-
ing the resolution of conflicts and intercultural issues. The offshoring
software engineer is in charge of technical coordination, in particular
answering technical questions regarding specifications, documents and
deliverables and clearing up technical misunderstandings.

The onshore company also has an offshore coordinator at the site of
the offshore company (or captive center). This person serves as a con-
tact to the local team for technical and administrative questions. He or
she helps to avoid misinterpretations and the rise of issues that would
otherwise escalate.

Likewise, the offshoring provider has a coordinator working onsite
(onsite coordinator). This person's task is similar to the offshore
coordinator's task – clearing up open questions and resolving technical
issues with the onsite personnel.

A process-oriented view of the roles and interactions between the
two organizations involved is shown in figure 8-28. In this example, the
central team (on the left) provides the system requirements, architecture,
design, development plan and acceptance tests for components to be de-
veloped offshore.

Offshoring
manager,
offshoring
software
engineer

Offshore
coordinator

Onsite
coordinator

Interaction
between onsite
and offshore
organizations

8 Software Project Management 530

__

Figure 8-27 Interfacing onsite and offshore organizations in ISD

ONSITE ORGANIZATION

Onsite coordinator

Architecture

Requirements
engineering

Development

Quality assurance

Testing

Development

Offshore coordinator

Design

Subproject management

Offshoring software
engineer

Project management

OFFSHORE ORGANIZATION

Offshoring manager

The offshore partner specifies the component requirements and

designs which are verified by the central team. Module integration is
also done by the central team. Testing is a task of the offshore team,
prepared by the central team that prepares acceptance criteria and
verifies the tests performed offshore.

8.5 Managing Globally Distributed Projects 531

Figure 8-28 ISD processes involving remote teams [Paulish 2007]

Development
expertise

Software
engineering

expertise

Requirements

Architecture
& design

Development
plan

Acceptance
tests

Domain
expertise

Management
&

process
expertise

Central team

Technology
expertise

Software
engineering

expertise

Offshore team

Copyright 2007 © Siemens Corporate Research

Component requirements

Component design

Code

Tests

Verified by

Integrated by

Verified by

Development
expertise

Development
expertise

Software
engineering

expertise

Software
engineering

expertise

Requirements

Architecture
& design

Development
plan

Acceptance
tests

Domain
expertise
Domain

expertise

Management
&

process
expertise

Management
&

process
expertise

Central team

Technology
expertise

Technology
expertise

Software
engineering

expertise

Software
engineering

expertise

Offshore team

Copyright 2007 © Siemens Corporate Research

Component requirements

Component design

Code

Tests

Verified by

Integrated by

Verified by

An earlier example of onsite and offshore tasks was given in the
discussion of offshoring process models (cf. section 4.5.1). In figure 4-
23 of that section, we illustrated the responsibilities of onsite and
offshore partners along a sequential process model.

A typical information-system development project today is character-
ized by team work where team members are not necessarily collocated,
but possibly distributed around the globe. This has led to increased
demands regarding collaboration. To enable this collaboration, effective
tooling needs to be in place to support the development processes.

As fundamental tools have stabilized and become commodities, the
focus on tooling improvement for individual developers has shifted to
teams of developers and now to geographically distributed development
teams. Tools make it possible to address the core requirements of a
distributed development environment, make the status of a project
transparent to all participants, and help to disperse knowledge from
individual team members.

Fundamental,
combined and
project-wide tools

Tooling
Support
for ISD

by Brandon Ulrich

9 Tooling Support for ISD 534

In this chapter, we will discuss three primary areas of tools that assist
with global software development projects. The first are fundamental
tools, which provide the necessary foundation to build a development
process. Based on these fundamental tools are additional tools that
support the automation of projects. Finally, once the projects have been
automated, tools for task-focused, context-based and process-focused
development try to increase the productivity of a distributed team.

9.1 Fundamental Tools

Three fundamental types of tools are critical to the success of any
software project: source control systems, defect tracking systems and
testing tools. Source control systems maintain the history of code used
in a software project. Defect and issue tracking systems record problems
and enhancements for a system in a structured manner. Test tools help
ensure that code is correctly functioning. Together, these sets of tools
provide a foundation onto which higher value added project services
can be built.

In this section, we will present source-control, defect-tracking and
test tools (load-testing tools). Since the other type of test tools (unit-
testing tools) were discussed before, in the context of testing issues (cf.
section 6.3), only load-testing tools are included below.

9.1.1 Software Version Control Systems
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Software version control systems help a team manage the source code
used throughout the development process. The version control systems
allow distributed teams of developers to collaborate on the same
projects.

Many terms exist for the concept of maintaining a history of code
within a software development project, including: revision control, ver-
sion control, source (code) control, source code management, as well as

Maintaining a
history of code

9.1 Fundamental Tools 535

configuration management, which covers a wider area. However these
ideas have the same underlying concept – that each version of a soft-
ware development artifact has a history that can be returned to at any
time. For example, it is possible to recreate the base of source code as it
appeared at any particular date and time within the project's life.

Maintaining this software history is important for many reasons. It
makes it easy to undo mistakes. It allows multiple developers to work
on a body of source code in a controlled way. Version control also
allows auditing and metrics of the development process and can be
"invaluable for bug-tracking, audit, performance, and quality purposes."
[Hunt 1999, p. 83] By allowing the creation of any prior release, it
allows multiple versions of a software product to be supported.

A version control system uses a repository as the central storage area
for all versions of the project's files. A version is a certain set of files at
a particular point in time. Before developers work with a repository,
they must check out the source code. This collection of source code on
the developer's machine is called the working copy [Mason 2006, p. 12].
After editing it, they update, or synchronize their code with the
repository to identify any changes that have occurred while they were
editing the source code on their local machine.

After updating, developers commit their changes to the repository so
that they are available for other developers. When using systems that
restrict editing to one developer at a time (discussed below), a developer
will check in their code after they have finished working on it. It is
considered good practice for a developer to commit their code as soon
as they have completed the task that they are working on [Subramaniam
2006, p. 162].

Version control systems allow the undoing of mistakes since it is
always possible to return to a previously working state at any time. If a
series of code changes caused a problem, these can be easily reverted so
that the code is working as it was before.

Concurrent editing support

One of the biggest advantages of version control systems is that they
allow multiple developers to work on the same collection of source code
simultaneously. This means that the development team can continue to
work with and make changes to the code while their teammates are
working on different areas. To provide for concurrent access, version
control systems support two primary types of versioning models, either
locking or version merging.

Project repository

Committing
changes to the
repository

Multiple
developers work
on the source
code

9 Tooling Support for ISD 536

File locking is relatively straightforward: The requested file is simply
locked until the developer has finished work on it. During that time, no
other developer can modify the file. After the developer has finished
updating the file, the new version is added to the source code repository
and the file lock is removed. Although simple, a locking system is more
useful to smaller development teams working in close geographical
proximity to facilitate collaboratively editing files. With more distrib-
uted teams, a frequent challenge is deciding whether or not to override a
colleague's lock – especially considering that they might be located in a
time zone 8 hours ahead.

__

Figure 9-1 File locking [Collins 2004, p. 4]

Harry "locks" file A, then copies
it for editing

Repository

A

While Harry edits, Sally's lock
attempt fails

Repository

A

A
Harry Sally

LOCK

Read

A'
Harry Sally

LockX

Harry writes his version, then
release his lock

Repository

A'

A'
Harry Sally

Write

Unlock

Now Sally can lock, read and
edit the latest version

Repository

A'

A'
Harry Sally

A'

Read

LOCK

Harry "locks" file A, then copies
it for editing

Repository

AA

While Harry edits, Sally's lock
attempt fails

Repository

AA

AA
Harry Sally

LOCK

Read

A'A'
Harry Sally

LockX

Harry writes his version, then
release his lock

Repository

A'A'

A'A'
Harry Sally

Write

Unlock

Now Sally can lock, read and
edit the latest version

Repository

A'A'

A'
Harry Sally

A'A'

Read

LOCK

The second model for version management is version merging. When
using version merging, there are no file locks. Instead, multiple
developers may modify the file at the same time. Although this may
sound like a recipe for disaster, in practice, most modifications to a file

File locking

9.1 Fundamental Tools 537

are localized and can be automatically merged. For example, if
developer A modifies a method called "equals" at the same time that
developer B modifies a method called "toString", these changes can be
automatically merged. The automatic merge works by requiring that all
developers update (i.e. synchronize) their code with the repository prior
to committing their changes. In the above example, when developer B
updates her code, she will receive developer A's changes to the "equals"
method. In the case that multiple developers are working on the same
area of code at the same time, a conflict occurs that must be manually
merged by the developer.

Figure 9-2 Version merging [Collins 2004, p. 5]

Two copy the same file

Repository

A

They both to edit their copies

Repository

A

A
Harry Sally

Read

A'

Harry Sally

Sally publisher her version first

Repository

A"

A'
Harry Sally

Write

Harry gets "out-of-date" error

Repository

A'
Harry Sally

A"

A

Read

A"

A"

A"

XWrite

Two copy the same file

Repository

AA

They both to edit their copies

Repository

A

A
Harry Sally

Read

A'

Harry Sally

Sally publisher her version first

Repository

A"

A'
Harry Sally

Write

Harry gets "out-of-date" error

Repository

A'
Harry Sally

A"

A

Read

A"

A"

A"

XWrite

Multiple software version support

Generally there are multiple versions of software in use at any one
given time. A company may release a 1.0 version of its software, which

9 Tooling Support for ISD 538

is adopted by several customers, followed later by several smaller
"point" releases such as 1.1, 1.2, and 1.3. At any time, different cus-
tomers may be using different versions of the software. If an important
customer identifies a problem in the 1.1 release, it will become neces-
sary to fix the problem in the code for that specific release.

Because development of a product does not generally stop after a
release, it is quite common for the development team to be working
with a completely different set of files than those currently in use by the
customer. A version control system lets the team return to the software
source files as they appeared to the customer in a previous release. They
can then fix the problem in the version that it occurred. The fix may
need to be moved forward to the main line of development or other
supported branches.

Common version control systems

There are a large number of commercial and open-source version
control systems. The two most popular ones are Concurrent Versions
System and Subversion.

The Concurrent Version System (or Concurrent Versioning System)
is most commonly known by its abbreviation, CVS. It was created in
1985, is freely available as open-source, and has a large installed base of
users. CVS is a client-server system, with a CVS server that contains
the source code and the change history and a client that connects to the
server.

As the "concurrent" in its name implies, CVS allows multiple devel-
opers to work on the same file at the same time via their CVS client,
instead of requiring an explicit file lock. Developers update their code to
synchronize their changes with the server, and then commit their
changes to the server after testing.

Subversion is a more recent version control system, also commonly
known by the initials of its client program, SVN. It was first released in
2004 and is an open-source tool that shares many features with CVS.
The number of SVN users has been steadily increasing. Although reli-
able usage statistics are difficult to obtain, since companies frequently
use SVN and CVS for internal development projects, SVN usage now
appears to be more popular than CVS for open-source development
projects (http://cia.vc/stats/vcs).

Multiple versions
in use at the
same time

Concurrent
Version System
(CVS)

Subversion
(SVN)

9.1 Fundamental Tools 539

9.1.2 Issue and Defect Tracking Systems
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Issue and defect tracking systems are used to maintain the list of
problems found within a product. They help organize development
projects by maintaining a database of issues with the software. They
also provide a means of scheduling work across a development team,
since the issues and defects can be assigned to specific developers or
distributed teams.

An issue is a defect or bug found in the software – issue tracking
systems are also called defect tracking systems or bug tracking systems.
By maintaining a list of the defects in one place, management of the
corrections becomes simpler, workarounds to known problems can be
documented, and prioritization of the issues is transparent.

The information recorded by a defect tracking system depends on the
system, its configuration and the organizational requirements. However,
there are common sets of information necessary to track regarding all
issues. First, which product is affected by the problem? What
component of this product is involved? What version of the product is
affected? Are other versions also affected? Who discovered the issue?
What are the required steps to reproduce the problem?

Issue tracking systems also allow a defect to be prioritized. Some
systems support both severity and priority concepts, since the priority of
a defect is often based on business reasons rather than technical reasons.
As an example, a high severity item that causes a major system mal-
function but is only rarely encountered may have a lower priority than a
less severe bug that is encountered by most customers [Rothmann 2005,
p. 80].

Once this basic information is recorded, more detailed information
may be added as further research is done on the issue. In the end, the
issue will be marked as fixed, left open or recorded as unable to
reproduce. When the issue is fixed, it is important to record the
developer that completed the fix and the version of the software that
includes the fix.

Having all of this information in a defect tracking system allows
support personnel and users to query the database of problems to see if
the problem that they have encountered has already been identified. If

An issue is a
defect or bug

Defects can be
prioritized

9 Tooling Support for ISD 540

so, they can find a workaround, if it exists. They can also add more
detailed information about the problem that they identified.

Issue tracking systems also include reporting systems generating
reports of the issues. This can give a good picture of the overall quality
of a product version. Reports are also useful to identify trends in the
quality of software and to take steps to improve the quality if necessary.
Examining these reports to identify the number of issues entered, the
number of issues fixed, and the amount of time necessary to fix them
can help identify trouble spots in a project [Richardson 2005, p. 36].

Features and enhancements can also be included in issue tracking
systems. This allows the prioritization of new work that will be
performed. By including features and enhancements, issue tracking
systems adopt characteristics of task-management systems.

Example defect life cycle

The process of entering and resolving a defect has a life cycle. This life
cycle is similar between projects and tools. An example of a defect life
cycle for the Bugzilla issue tracking system is shown in figure 9-3.

A typical path for a defect through this life cycle is as follows. When
a new defect is entered into the system, it is in the UNCONFIRMED
state until the presence of the bug is confirmed. The bug remains in the
NEW state until it is assigned to a developer.

Once the issue is assigned to the developer, the developer has several
ways of resolving the defect. The developer may fix the code respon-
sible for introducing the defect. A developer might also mark the bug
report as a duplicate of an existing report. If the developer cannot re-
produce the problem, they mark it as WORKSFORME. Otherwise, the
developer may mark the bug as INVALID if something is wrong with
the report or as WONTFIX if the defect will not be corrected.

After the bug has been resolved, it may be verified by either the
reporter or by a quality assurance department. If the bug has not been
fixed, it will be reopened, otherwise it is closed.

Common issue tracking systems

There are many issue tracking systems, both commercial and open-
source. Of the freely available open-source systems, Bugzilla is the
most popular. It was developed in 1998. Bugzilla is written in Perl and
runs on a web server such as Apache. It requires a supported database,
such as MySQL or PostgreSQL. An example of Bugzilla use in a pro-
ject can be seen at the Eclipse website (https://bugs.eclipse.org/bugs/).

Reporting on
issues

9.1 Fundamental Tools 541

__

Figure 9-3 Bugzilla life cycle [Mozilla 2007]

JIRA is a popular commercial product that provides open-source
projects a free license to use it. It has more features than Bugzilla, and
supports tight integration between source code control systems and the
issue tracking system. Reporting is also well supported. An example of
a JIRA system can be seen at the JBoss Seam website (http://jira.jboss.
org/jira/browse/JBSEAM).

9 Tooling Support for ISD 542

9.1.3 Load-testing Tools
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Load-testing tools are designed to ensure that an application, usually a
server-based application, can reliably support a specified number of
users. The number of users is referred to as the load. A load test is a
stress test on the server, used to determine if the server will respond
within a certain response time, or fail.

A common use of a load test is to determine the maximum number of
concurrent users that are supported by a certain hardware configuration.
Once the server application has been installed, the load test tools
simulate an increasing number of users until either the system breaks or
the response time becomes unacceptably high.

For example, consider load testing an auction site. If the developer
wanted to determine the maximum number of concurrent users that can
perform a search, they could set this up as a single test. Then the load
testing tools will run an increasing number of these users together,
recording the response, the number of concurrent users and the response
time. At some point in the stress test, either the response will be errone-
ous due to a software failure or the response time will increase to a point
considered to be a failure (e.g. 5 seconds). The number of concurrent
users then registered is regarded as the number of concurrent users
supported by this particular test.

However, users exhibit different patterns of activity, which would
not be correctly indicated in the above test. In the auction site example,
some users would be searching for items, some would be bidding on
items, some would be entering new auctions, and others would be leav-
ing feedback or arranging shipping after the conclusion of an auction.
To get a realistic real-world picture of the number of users supported, it
is necessary to set up scenarios that represent real-world use.

These individual usage scenarios are then executed in parallel with
the help of a load-testing tool. The proportion of scenarios being execut-
ed can be set at specific levels, varied randomly, or usually fluctuating
between real-world values. In the auction site example, a user might
execute a search, look at the results of that search for 3 seconds, click on
a search result to see the item, read about the item for 12 seconds, and

A load test is a
stress test

How many users
can be
supported?

Individual usage
scenarios

9.3 Combining Fundamental Tools 543

then place a bid on the item. A more typical case might omit the end-of-
cycle purchases, just repeating user searches and item browsing.

A load-testing tool would allow parallel execution of these scenarios
to give a typical result of the number of actual users that can be
supported by the system. Real-world use is much less demanding than
concurrent uses, because pauses in the users' behavior are reflected in
the scenarios. This translates to a more realistic picture of the number of
actual users that would be supported on a particular hardware platform.

In practice, both types of testing are valuable. Although real-world
usage tends to be of the most interest for scaling a system, it is also nice
to know the point where the system will unequivocally fail. Returning
to the auction-site example, it would be useful to know the maximum
number of users that can submit a bid on an item at the same time, since
many users wait until as near as possible to the end of an auction to bid.

There are a variety of commercial and open-source load testing tools.
Many small projects simply write unit test code to measure the results
themselves. Larger projects use commercial tools such as Mercury Load
Runner§ or open-source tools such as Apache JMeter [Apache 2008].

9.2 Combining Fundamental Tools

This section discusses tools that build upon the fundamental tools to
provide additional value to an ISD project. These tools are release engi-
neering tools, quality control tools and continuous integration tools.

9.2.1 Release Engineering Tools
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Release engineering tools use the software version control systems
discussed in section 9.1.1 in combination with testing tools to automate
the process of constructing a version of software. Automating this pro-

§ http://www.mercury.com/us/products/performance-center/loadrunner/.

Common load
testing tools

Based on
software version
control systems

9 Tooling Support for ISD 544

cess allows developers working in distributed teams to easily reproduce
the software assembly process carried out by their distributed peers in a
controlled and repeatable manner.

In software development organizations, a "build" is a term for con-
structing a version of software. Release engineering tools are more fre-
quently called build tools and are designed to automate the process of
creating software, mostly by automating the series of tasks necessary to
compile, test and deploy software systems.

Automated software builds have removed the huge integration builds
at the end of a development cycle. Instead of creating the final build at
the end of the cycle and "throwing it over the wall" to the quality-
assurance teams, complete builds and tests are run more frequently.
Over time, the frequency has moved from weekly builds to daily
("nightly") builds. The recent introduction of continuous integration
tools (see below) now allow builds and automated tests to be run every
time a line of code is changed.

The build runs in a series of dependent stages. A failure at any of the
stages means that the build will terminate abnormally. Before the build
can run, the appropriate source code must be retrieved from the source
code repository (see section 2.2). This may be the most recent version
(the "mainline"), or it might be a historical version that is maintained
within the source repository.

The first step of the build tool is to compile the necessary code to
make the system. Simple systems may be composed of modules written
in a single language; in this case, the same compiler is used for all
modules. More complex systems may use a variety of languages within
and between modules and run on diverse platforms (e.g. Windows, Mac
and Linux platforms). Once the project has been compiled, automated
test tools are generally run by the build script. Again, multiple platform
support can add complexity to the build process.

After the tests have been run, the software product may be packaged.
For example, Java projects which will be deployed on the server need to
be assembled in a certain way. Support and configuration files must be
copied to the correct locations. Documentation and on-line support
specific to the local language must be built and packaged.

After packaging is complete, the package may be deployed. Depend-
ing on the type of application, this might mean running the installation
routines created in the packaging stage. Server applications must be de-
ployed on one or more target servers. This step often includes database
deployment and set up.

A manual build system requires a developer to go through a series of
steps. These steps increase dramatically as different languages and

"Build"

Automated
software builds

Compiling and
testing

Packaging

Deploying

Advantages of an
automated build
system

9.3 Combining Fundamental Tools 545

platforms are supported. Complex systems that require testing on sever-
al application servers or databases involve so many steps that the ability
to reproduce a build by following manual processes becomes suspect.

By automating the build, it becomes possible to construct a version
of the system as it was at any time in the past. Retrieving the relevant
source code from the repository before the build runs means that the
build can be reproduced as necessary for any version of software. Since
the build configuration files themselves are usually included within the
source code repository, changes to the build over time are maintained.

Additionally, individual developers can also construct the software
on their own system to ensure that changes they introduced did not
adversely affect the overall system stability.

There are a number of release engineering tools available. They
depend upon the system being built. Make is popular for C/C++.
Apache Ant is a very common and freely available open-source tool for
Java. Ant runs on any platform that supports a Java virtual machine. Ant
uses a build file to control the process of the build. The build is divided
into separate tasks, which do things such as compile code, create a zip,
copy files etc. Ant is also designed to be extensible, so it is possible to
create customized Ant tasks to meet requirements that were not foreseen
by the original authors.

9.2.2 Quality Control Tools
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Quality control tools ensure that standards in coding, documentation
and quality control are handled consistently across development teams.
They can also detect potential programming problems, design issues
and legal IP (intellectual property) problems. These tools may run at
different stages of the build process. For example, some tools focus only
on source code, whereas others inspect the object or machine code to
identify potential issues.

Enforcing coding standards

There is a great deal of flexibility in the way developers write source
code. Different standards for naming files, modules, packages, methods,
variables etc. can exist. The organization of a file is also up to the devel-

Common release
engineering tools

9 Tooling Support for ISD 546

oper writing the code. How code is indented, how lines are wrapped,
which line length to use are all potential sources of inconsistency
between developers. Other formatting issues of interest are commenting
standards, programming statement organization and declarations.

Consider a simple question of naming conventions. Within the same
set of coding conventions, different names may imply different things.
For example, in the code conventions for the Java programming lan-
guage [Sun 1999], the usage of case implies meaning. FooBar, fooBar
and FOO_BAR, for example, each represent different things. Beginning
each word with a capital, such as "FooBar" meets the standard for a
Java class name. A name that is completely capitalized with an under-
score separating words in the name, such as FOO_BAR, indicates that
FOO_BAR is a constant. Names that begin with a lowercase character,
such as fooBar, are used to indicate variable names.

However, these are merely conventions, and are not enforced by the
compiler in any way. This can allow developers to use different stan-
dards, or simply to make mistakes in their naming that go against the
standard. When a different developer expecting to be reading code that
abides by the standard reads the first developer's code, they will be
confused or make incorrect assumptions about the code. In either case,
precious time is lost in understanding and reading the code.

To support developers who wish to abide by these standards, devel-
opment tools usually include the ability to format code according to a
specific standard. For example, the Eclipse IDE supports a large number
of coding standards and can automatically reformat code to comply with
these standards. An example of supported conventions related to organi-
zing control statements in the Eclipse IDE can be seen in figure 9-4.

However, these tools are only successful if used by each of the devel-
opers. Since developers use a variety of program editors, there may be
differences in the support for maintaining the conventions. Therefore
external tools that can be integrated into a build process are frequently
used to verify and maintain the conventions across an entire project.

An example of such a tool is CheckStyle [CheckStyle 2007]. It is
freely available as open-source and designed to verify that Java
programs adhere to a particular coding standard. CheckStyle can also be
integrated into an automated build process.

Checking documentation against code

An advantage of modern programming languages such as C# and Java
is that they allow a developer to include documentation directly within
the source code. C# allows developers to embed XML comments that

Naming
conventions

Compilers do not
enforce
conventions

Tools that verify
the conventions

9.3 Combining Fundamental Tools 547

can be exported and formatted. Java provides Javadoc, which supports
adding comments to code. A processor can then go through the code
and build XHTML documentation for the code.

This documentation is important, not only as an external reference to
understand the options for calling routines and their meanings.

Figure 9-4 Code convention support in the Eclipse IDE

Modern IDEs also include the ability to automatically prompt the
programmer with this documentation. This support is often displayed
after a certain time; for example, after the cursor hovers over a method
call for a particular period of time or when a developer pauses before
entering parameters in a Java class constructor. An example of this
support in the Eclipse IDE can be seen in figure 9-5. For distributed
team members that often write code based solely on the published API
of modules developed by other teams, documentation can become a
primary means of communication.

Documentation –
a means of
communication

9 Tooling Support for ISD 548

__

Figure 9-5 Javadoc tooltip within Eclipse IDE

Although there are clearly many advantages to documenting code
directly in the source code files, it can be challenging to maintain the
documentation so that it matches the source code. To understand this, it
helps to look at an example of a Javadoc comment for a method. Figure
9-6 shows an example Javadoc for a method named "contains".

For comparison, figure 9-7 shows how the documentation code from
figure 9-6 would be rendered in display to a developer. In the documen-
tation, it is clear that some elements are rendered differently. For
example, <tt>true</tt> renders the text "true" using fixed-width text
("typewriter text"). There are several other formatting commands simi-
lar to HTML.

Figure 9-6 Javadoc for "contains" method

Documentation
should match the
source code

Javadoc

9.3 Combining Fundamental Tools 549

There are also some tags referred to as annotations. Here @param,
@returns and @throws are used to respectively indicate the method
parameters, the return class and any exceptions that the method call may
throw. Note that although the parameter name "o" for an object
("@param o element…") is intended to match the "o" found in the
method call ("contains(Object o)"). However, there is no compile time
checking that this is the case, so there is the possibility that errors may
be introduced by a careless developer making changes to the parameters
of a method.

Since these documentation errors will show up throughout the devel-
opment environment and in the published documentation, these incon-
sistencies can lead to wasted time as developers try to understand why a
routine works differently than documented. The integrated IDE support
for the documentation also makes the documentation appear as more
than simple text entered haphazardly by a distracted member of the
development team.

Figure 9-7 Formatted Javadoc

There are various tools available to help detect consistency problems
between the documentation and the code. DoctorJ [Incava 2008] is a
freely available open-source example of such a tool. It can detect prob-
lems between missing, misspelled or incorrectly ordered parameters and
exception names, and help to identify a developer modifying the code
without updating the documentation. It can also identify problems with
incorrect Javadoc tags and indicate if documentation is missing for a
class.

Documentation
errors

DoctorJ

9 Tooling Support for ISD 550

By incorporating one of these tools within the build process (see
section 9.2.1), documentation errors can be identified before they
influence productivity.

Cut-and-paste code detection

Problems can occur when code is copied and pasted between two source
files. This can indicate poor planning or team coordination [Gurses
2005]. Code should be refactored to avoid the problems of maintaining
identical code in multiple locations. Furthermore, duplicated code may
imply legal and IP (intellectual property) problems – even in open-
source projects. This is because each source artifact has an associated
copyright, even if the license is open.

In large projects with work broken between many different teams, it
is often simpler for a hurried developer to copy code from a different
team's project. This may be because of bureaucratic or legal obstacles
between team collaboration, or simply due to time constraints. Howev-
er, reusing the borrowed code may have viral IP effects on the product
the developer is creating.

Cut-and-paste code detectors can help identify these problems before
they become an issue. These tools use a variety of algorithms to identify
code that has been "borrowed" from external sources.

PMD (there is no meaning associated with the letters; cf.
http://pmd.sourceforge.net/) is a freely available open-source tool. It has
a cut-and-paste detector to identify suspect code, that can be easily
integrated into a build process.

9.2.3 Continuous Integration Tools
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Continuous integration tools combine several fundamental tools and
techniques described in the previous sections. Continuous integration
tools are used to increase the number of automated builds to a practi-
cally "continuous" basis, ensuring that everyone on a team, regardless of
their location, has access to the most recent build. While automated
builds are frequently scheduled to run on a weekly or even a nightly
basis, continuous integration tools trigger an automated build more fre-
quently – ideally whenever code changes. "Many continuous integration

Redundancy,
legal and IP
problems

Combining
several
fundamental
tools

9.3 Combining Fundamental Tools 551

tools use a "polling" strategy to check whether anything has changed
within a repository, and if it has, to automatically do something useful
like building the latest code and running tests." [Mason 2006, p. 160]

Continuous integration works with version control systems, release
engineering tools, bug-tracking systems and software quality tools. Of
these, the idea of automatically testing the build is paramount: "Contin-
uous integration assumes a high degree of tests which are automated
into the software …" [Fowler 2006]

Once an automated build process has been established and a build
can be created at any time with a simple command-line call, it becomes
easier to add more advanced functionality. This is where continuous in-
tegration comes into play. The theory is that a build should be automati-
cally triggered whenever there is a change to a project's source code.

The driver for increased use of continuous integration tools is the
need for more frequent releases. As development cycles have decreased
in length, the amount of time that a team has to focus solely on system
integration and integration testing has decreased. This has led to more
frequent internal releases which are intended for the development team
itself, as opposed to external customers.

Benefits of continuous integration

Of the many advantages of continuous integration, Fowler believes that
risk reduction is the "greatest and most wide ranging benefit." [Fowler
2006] The risk is reduced because integration problems are addressed
immediately, instead of at the end of a release cycle.

The immediate feedback provided by identifying bugs also helps to
decrease the amount of time necessary to fix the bug. This is because
when a new build has introduced a bug, a developer can compare the
current build to the previous build. By comparing the source used in
both of these builds, isolating the breaking change becomes much
simpler.

Another advantage of continuous integration is the confidence with
which developers can make larger changes to code. In many
development projects, there is a particularly complex area of logic that
the team is hesitant to change because of numerous dependencies.
Instead of refactoring this area of code to improve the quality and
reduce the complexity, the fear of breaking dependent systems means
that the code looks more and more complex. Applying a continuous
integration build can provide the confidence that dependent problems
will be automatically and immediately identified – giving the developer
the confidence to improve the code.

Triggering builds
automatically

Need for frequent
releases

Risk reduction

More confidence

9 Tooling Support for ISD 552

Information reporting and monitoring is another advantage of
continuous integration systems. The most obvious way to report a build
failure to the team is by the use of an e-mail, monitor, light or other
device.

E-mail notification of build problems means that some or all of a
team will be notified as soon as an event occurs. A typical configuration
is that an e-mail is sent to the person that made the breaking change in
the source code, identified by their user identification in the source code
control repository. E-mails may be additionally sent to the entire team,
or simply the project manager.

Instant messaging notification is also popular. Build failures can also
be sent via test messaging to the mobile phones of those affected [Clark
2004, p. 126].

However, clear visual indicators of the current build status are very
important. Often a computer monitor is dedicated to the task of display-
ing the status of the build for the entire team (cf. figure 9-8). This allows
everyone to see at a glance that everything is running smoothly. When a
build fails, this machine may be configured to sound a tone, play a song,
or provide similar audible feedback.

Figure 9-8 Continuous integration feedback [Clark 2004, p. 130]

Other notification mechanisms use an X10 module (a device that reacts
to a radio signal to turn on or off any electrical device). For this to work,
the continuous integration machine is equipped with an X10 transmitter,

Reporting and
monitoring

Notification
mechanisms

9.3 Combining Fundamental Tools 553

which switches on or off electrical devices to indicate the build status,
e.g. a green or a red light to indicate that the build is successful or
unsuccessful [Duvall 2007, p. 216].

While popular and inexpensive, X10 notification methods have the
disadvantage that they are binary information; they are either on or off.
An increasingly popular tool for visual notification is a product called
the Ambient Orb (http://www.ambientdevices.com/cat/orb/). This is a
frosted-glass ball that glows different colors to display real-time infor-
mation. This device receives radio signals that allows it to vary its color.
This ability can be used to indicate ranges, such as the level of code
quality during a particular continuous integration build. When the code
base is at a high quality the light is green, as quality deteriorates, the
color of the ball changes to lighter shades of green, then yellows, and
eventually to red.

Continuous integration tools are available for a wide variety of plat-
forms and languages. CruiseControl is the most popular choice for Java
projects. It was developed by Martin Fowler's company for an internal
project and is now freely available as open-source (http://cruisecontrol.
sourceforge.net). AntHill is another popular continuous integration tool
on the Java platform available in both commercial and open-source
versions (http://www.anthillpro.com).

Example of continuous integration tool use

This section will discuss the use of a continuous integration tool using
CruiseControl as an example. We will discuss the workflow from the
perspective of a developer working on a project that is using a continu-
ous integration system.

Developers working on a project using source code control start by
checking out the project from the source code repository. These steps
and examples were discussed in section 9.1.1. After the developer has a
local copy of the source code, they make changes to the source code to
fix problems or add additional functionality.

Once the code is complete, the developer will run their suite of
automated tests on the code that contains their changes. This ensures
that they have not introduced new problems into the code while making
their changes.

Of course, the developer is not working in isolation; other developers
may have made changes while the first developer was completing their
work. Therefore, after the local tests are successful, the developer
updates their source with any changes from the repository. If there were
new changes, the developer runs the tests again to verify that his or her

Ambient Orb

Common tools

Checking out the
project

9 Tooling Support for ISD 554

code works correctly with the latest source. Once the tests pass, the
developer commits the changes to the repository (cf. figure 9-9).

This is the point where the continuous integration server comes into
play. A continuous integration system is usually configured to poll the
source code repository for changes. The length may vary depending on
how long the actual build takes to complete on the server. If the
continuous integration build takes a few minutes, as may be the case
with a large set of integration tests, then the continuous integration build
might be configured to run every 5 minutes or so.

Figure 9-9 Continuous integration process [Duvall 2007, p. 15]

It is also important not to initiate the build process the exact second that
code has been committed to the repository. This is because updates to

Continuous
integration server

"Quiet period"

9.3 Project-wide Tools 555

the repository are often grouped by a developer. For example, work
may be committed using different comments and therefore in different
commit groups. To handle this, a so-called "quiet period" is defined so
that, for example, at least 30 seconds must pass without any additional
source code changes.

Once the build is initiated, the continuous integration server pulls the
source from the source code repository. It then runs the build process,
which generally starts by compiling the source code. Once the source
code has been compiled, a set of tests is run on the compiled code to
verify that no new bugs have been introduced during the last change.

A failure may occur at any point during the continuous integration
process. When this occurs, CruiseControl notifies the parties that have
been specified in the configuration. Configuration options are extensive,
allowing only the parties that made changes included in the build to be
notified. Frequently, a failed notice may go to the project manager or
perhaps the entire project team. Successful build notifications are often
sent only to the developers that have made the changes.

Alternative notification mechanisms are also used, including instant
messaging and mobile phone messaging. To avoid being burned out by
the large numbers of changes, it is important to limit these notifications.

9.3 Project-wide Tools

This chapter discusses tools that help the development process at the
higher level, by offering task-focused development, context-based
development and process-focused development. These tools enable
distributed groups of developers to collaborate more effectively.

9.3.1 Task-focused Development Tools
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Task-focused development tools, in combination with issue tracking sys-
tems discussed in section 9.1.2, allow distributed groups of developers

Notifications

9 Tooling Support for ISD 556

to focus on completing their work without affecting other developers.
Most developers are required to work on several, possibly quite
different, tasks during the course of their workday. In addition to work-
ing on the latest feature or product release that they are developing, they
also maintain responsibility for repairing previous versions of a product
or address newly found and critical bugs.

Developers receive their tasks from a myriad of sources. Incoming e-
mails from project managers or end-users, or bugs entered in issue
tracking systems may each represent a task that the developer needs to
schedule and prioritize. Unless these tasks are entered in a developer's
personal to-do list, they can be overlooked or missed.

Task-focused development tools make use of task repositories such
as issue tracking systems (cf. Bugzilla or JIRA mentioned in section
9.1.2). They help a developer focus on the task that they are currently
performing. They make editing and adding new tasks possible, both
recording the work to be done as well as notes on the progress or issues
encountered. They allow the tasks to be prioritized based on their
criticality. They support the developer's personal scheduling by helping
them assign a set of tasks to be performed during a working week. This
helps keep the developer on schedule and realize when they are falling
behind schedule.

From a project management perspective, task-focused development
allows tasks to be monitored by team leads or project managers. They
can see the amount of time that has been spent on a particular task, as
well as the estimate of the amount of work required to complete the
task. They can also see the scheduled date of the task and use this infor-
mation to ensure that the needs of the project timeline are being met.

Example of task-focused development

The first feature necessary to support task-focused development is a
mechanism to view, search and categorize tasks. Since the tasks may be
located in several locations, both local and remote, aggregating and
displaying a combined list is important.

Task categorization is important for both developers and managers as
a simple means of viewing their tasks. To categorize the tasks, it is
necessary to be able to search through the aggregated list of items for
those relevant to a specific area. For example, the tasks in figure 9-10
are categorized based on their project (in this case, an Eclipse.org
project called "H3ET" or "CfH") and based on the person assigned to
complete the task.

Tasks come from
many sources

Prioritizing and
scheduling tasks

Task
categorization

9.3 Project-wide Tools 557

Figure 9-10 Task monitoring in Eclipse with Bugzilla

Once a category has been created, a query can be assigned to refresh
and display matching tasks as shown in figure 9-11. The specific query
constraints depend on the data fields of the issue tracking system. In this
example, the query is restricted based on the product (NHS CfH), the
component (Model Comparison Tool), the milestone (1.3RC) and the
status (all pending statuses).

Since there can be dozens or hundreds of active tasks at a given time,
creating several categories makes the management simple. A category
can be created for the current developer, for the other members of their
team, for the entire project or for high priority items. These different
views make it simpler for a developer to see the tasks that they are
interested in. It also simplifies the manager's task of understanding what
tasks each of their team members are currently working on.

Another required feature for remote task repositories is synchroniza-
tion. New tasks need to be automatically added to the list, and changed
or deleted tasks need to reflect their new status.

Task scheduling (cf. figure 9-12) allows the developer to organize
and schedule his or her working week. The effort level of the task can
be estimated, such as the number of hours required for completion.

Task
synchronization

Task scheduling

9 Tooling Support for ISD 558

__

Figure 9-11 Repository query view

9.3 Project-wide Tools 559

If a deadline exists, this can be recorded on the task. Once the developer
schedules the task, they can group the tasks by those that are supposed
to be completed in the coming days.

Figure 9-12 Task scheduling

Task scheduling helps reduce the stress associated with numerous out-
standing tasks by knowing when they will be completed and when they
will begin. Developers can quickly go through their list of tasks, assign-
ing each a day of the current week, next week, or some arbitrary date in
the future. This makes it quicker to order the tasks according to when
they will be completed. Recording scheduling information that is shared
between a team is also useful for project planning.

Project management support from task-focused development

The value of the task planning activities for project management sup-
port is high. Project managers can estimate the time required to com-
plete a set of tasks, view the productivity of their employees, and
reschedule tasks to ensure that a deliverable is completed in a timely
manner.

Figure 9-13 shows several graphs created with the XPlanner tool
(http://xplanner.org). XPlanner is a project planning and tracking tool
for XP teams (cf. extreme programming, section 4.4.1). The figure indi-
cates the number of outstanding hours for a particular release. The
release is defined as a collection of tasks, each of which has estimated
completion values from the members of the team. Instead of manually
maintaining a project list, a current overview of the amount of time
estimated for completion is always available to the team.

Time estimated
for completion

9 Tooling Support for ISD 560

Figure 9-13 Viewing estimated remaining hours in XPlanner§

§ http://xplanner.org/images/screenshots/statistics.jpg.

9.3 Project-wide Tools 561

9.3.2 Context-based Development
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The previous section highlighted some advantages of organizing work
into tasks. However, the real advantages from working in a task-focused
development environment accrue once the task-based development is
combined with context-based development.

Context-based development is designed to reduce information over-
load for developers by allowing them to focus only on the programming
artifacts relevant to their current task. It also allows developers to
multitask much more easily, by saving the context that they were
working in before they were forced to change contexts.

A common example of this is when a high-priority task arrives that
can be completed relatively quickly. The developer can save the task
they are currently working on, fix the high-priority task, and then switch
back to working on their original task where they left off.

Context-based tools are emerging that watch what developers do,
which files they interact with, and restrict their information windows to
these sets of files. This allows a developer to indicate, "I'm fixing bug
#1234" and collect all the contextual information that is built up (which
files were referenced, which bugs were involved) to commit to a source
code control repository along with the bug fixes.

Twelve hours or twelve days later, someone sitting across a desk or
across the ocean can restore the context that was saved when fixing this
problem. This decreases communication costs and increases pro-
ductivity significantly, since a new developer can start off with the same
set and layout of information that the original developer was working
with.

When working with teams spread around the world, it is hard to lean
over a colleague's shoulder and explain the changes that were recently
made to one of their modules. Since development work tends to "follow
the sun" on large projects, it places an increased need on communicat-
ing and collaborating with peers that are eight hours ahead or eight
hours behind.

Reducing
information
overload

Task switching

Restoring the
saved context

9 Tooling Support for ISD 562

Information overload and task switching

Developers working on large systems are used to the overhead of
working with thousands of artifacts distributed through dozens of
modules. Separating code into modules makes it simpler for a program-
mer to identify the areas of the system that are affected by their changes,
but it still becomes necessary to identify cross-dependencies and other
relevant artifacts. Test cases, for example, are frequently located in
separate modules than the code that they test; however they are immedi-
ately relevant to any work done on the code.

There is an enormous mental overhead to keeping track of each of
these items, and a continual need to move between files, searching for
and scrolling to a single item of interest. To cope with this, developers
commonly have several editors active on different artifacts, switching
between them as necessary.

Further compounding the effect of information overload is the task
switching necessary in the development environment. Some tasks of a
longer and lower-priority duration will inevitably be interrupted by an
urgent task affecting the entire development team. This means that the
developer must switch from their current task to an entirely new task.
However, during this switch, the information that had been collected
about the context relevant to the currently active task is lost or forgotten.

Context-based development approaches attempt to maintain the list
of items relevant to the task that the developer is currently working on.
This means that when the developer switches from one task to a more
urgent task, they can more easily return to the same context when they
finish the higher priority item.

But what artifacts are included in the context, and how is this context
identified? These artifacts can be anything from products to packages,
files, classes, methods and variables. Each of these items is potentially
relevant to solving the developer's current task.

The difficulty is in identifying which of the artifacts are relevant for
display to the developer. Ideally, the developer's environment would
display only the items that are necessary to complete the current task.
This type of user interface is referred to as an attention-reactive user
interface.

Attention-reactive user interfaces are a "general strategy for con-
structing interfaces for high-information applications." [Card 2002]
They are composed of two parts: a degree-of-interest (DOI) model to
describe what is interesting to the developer, and an adaptive visual dis-
play to optimize the visual representation of the many things to display.

Working with
thousands of
artifacts

Interrupted tasks

Maintaining the
relevant context

Attention-reactive
user interfaces

9.3 Project-wide Tools 563

9.3.3 Process-focused Automation and Tooling
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Once a large number of tools are implemented and working, it becomes
a challenge to tie everything together into a meaningful process. This is
especially problematic with distributed development teams. However,
between offshoring, outsourcing, and international mergers and acquisi-
tions, distributed development teams are becoming the norm, rather than
the exception.

Process-focused tooling tries to combine the above ideas into a
customized process. For example, during a continuous integration build,
a failure in one of the automated tests is identified. The specific build
and test failure are linked with the bug automatically. Source code
changes made to the bug and the context are also attached to it (e.g via
task-focused context-based development tooling). All these links hap-
pen automatically, and the developers don't have to focus on the pro-
cess; the tooling does.

Furthermore, the tools help define and enforce a process for the
distributed team members. Of course, this requires that the tooling
understands the concept of a project as well as a team. When these ideas
are combined, it becomes possible to assign a project to a process.

Teams in a project also follow processes, so teams can have their
own process defined as well. Their process may differ from the process
at the project level; perhaps they are more restrictive with more rules, or
less formal with fewer process rules. Generally there is a hierarchical
relationship between project teams. This means that sub-teams may also
refine or override the processes used by their parent groups.

Outlook: IBM Jazz

The IBM Jazz project "focuses on collaboration across geographic
boundaries." [Krill 2007] It is intended to support software life cycle
management by managing development artifacts throughout the devel-
opment cycle [IBM 2007]. Jazz is planned to be available as commer-
cial software in 2008.

Combining tools
into a
development
process

Defining and
enforcing the
process

Individual
processes for
teams and sub-
teams

9 Tooling Support for ISD 564

Jazz focuses on the software process as a configurable entity. The
steps in the process can be defined in a workflow. Once a process has
been defined, it can be connected to a project. Teams are created and
assigned to the project as well. Jazz uses task-focused development (see
section 9.3.1). It refers to tasks as work items, each of which are
associated with a project. Since the project can be further decomposed
into process steps, each of the tasks can be associated with different
steps of the on-going development process. For example, a bug might
be assigned to a particular milestone.

Jazz's integration with source code management systems (see section
9.1.1) extends to the work item level. Tasks can be updated with infor-
mation on the changes that occurred as well as the source files that
changed.

An interesting feature is the ability to suspend a current work item,
such as when a high-priority bug arrives. Although task-focused devel-
opment tools make it simple to switch between tasks, they do not
support a simple way of saving changes to the source code that have
already been made.

Using Jazz, a developer can suspend a work item that is already in
process. This returns their working copy of the source code to match the
repository so that they can fix and commit the high-priority change.
After the change has been made, they can resume their suspended work
item and continue where they left off.

Process example

As an example of how process-focused development works in practice,
consider a project that is being run using Jazz following the typical
Eclipse software development process. This process is based on break-
ing a product release into frequent milestones at approximately six-
week intervals [Venners 2005]. Each milestone starts with a planning
phase, enters a development phase, and finishes with a stabilization
step. At the end of each of the milestones is a retrospective step that
evaluates the overall success of the milestone release, particularly
focusing on what succeeded and what failed.

Consider how a process might be configured during the stabilization
step. This step is just before the release of the milestone, and is designed
to ensure the stability of the milestone release by testing and correcting
as many defects as possible. Some development teams impose very high
standards on any code changes during this time to ensure software
stability. These often include a review process whereby any new code

Software process
as a configurable
entity

Suspending and
resuming work
items

Eclipse
development
process

9.3 Summary and Outlook 565

contributed by a team member will be peer-reviewed by another
member of the team.

If a developer attempted to commit the code to the repository without
having their changes verified, an error would occur. This is because
they violated the process. There would be steps to find out what to do
next, such as a suggestion as to whom the code changes should be
forwarded to in order to complete the development.

This example illustrates how process-focused development tools help
to enforce a development process. This works across team boundaries
as well, and it eases collaboration between geographically dispersed
teams.

9.4 Summary and Outlook

This chapter has discussed comprehensive, integrated tool support in
three primary areas that assist with global software development
projects: fundamental tools, combined tools and project-wide tools.

The first set of tools provide basic features critical to distributed
development projects. These tools include software version control
systems, which maintain a history of a project's source code. Issue and
defect tracking systems were discussed as a database of defects,
enhancements and potential ways to work around existing problems.
Finally, load-testing tools were outlined which can validate that pro-
grams are running as expected.

Tools that built upon these basic tools include release engineering
tools, quality control tools, and continuous integration tools. Release
engineering tools automate the process of software construction. Quality
control tools ensure that distributed teams all work to the same stan-
dards. Continuous integration tools were described as a way to tie all of
the previously discussed tools together. Continuous integration tools
allow a project to be placed "on autopilot": automatically running the
necessary tools whenever a project artifact changes.

Section 9.3 discussed tools that increase the productivity of distrib-
uted development teams. Task-focused development allows distributed
teams to work on individually assigned issues. Context-based develop-
ment allows team members to share their perspectives with colleagues

Violation of the
process

9 Tooling Support for ISD 566

regardless of their location. Process-focused tooling was discussed that
helps ensure distributed teams collaborate effectively and follow a con-
sistent process.

The needs of globally distributed development teams have grown in
importance in today's globalized world. To address these needs, projects
such as IBM's Jazz are hoping to address issues with distributed knowl-
edge management and process execution. As companies attempt to opti-
mize productivity on their global teams, the pressure to provide tooling
support for worldwide team collaboration will only increase.

References

[Achour 2006] Achour, M., Betz, F., Dovgal, A. et al.: PHP Manual − Appendix
A. History of PHP and Related Projects; PHP Documentation Group 2006;
http://mx2.php.net/manual/en/history.php (accessed Feb 3, 2008).

[ACM 1978] Association for Computing Machinery (ACM): Proceedings of the
Software Quality and Assurance Workshop, San Diego, CA, Nov 15-17,
1978; Special Joint Issue of Software Engineering Notes 3 (1978) 5 and Per-
formance Evaluation Review 7 (1978) 3 & 4.

[Agile 2001] Agile Alliance: Manifesto for Agile Software Development; http://
www.agilemanifesto.org/ (accessed Jan 9, 2008).

[Albrecht 1983] Albrecht, A., Gaftney, J.E.: Software Function, Source Lines of
Code, and Development Effort Prediction: A Software Science Validation;
IEEE Transactions on Software Engineering 9 (1983) 6, pp. 639-648.

[Amberg 2005] Amberg, M., Herold, G., Kodes, R. et al.: IT Offshoring − A
Cost-Oriented Analysis; in: Proceedings of Conference on Information
Science, Technology and Management 2005 (CISTM 2005); New Delhi,
India, July 2005.

[Ambler 2007] Ambler, S.W.: Test-Driven Development of Relational Databases;
IEEE Software 26 (2007) 5, pp. 37-43.

[Ambler 2005a] Ambler, S.W.: A Manager's Introduction to The Rational Unified
Process (RUP), Version December 4, 2005; http://www.ambysoft.com/down-
loads/managersIntroToRUP.pdf (accessed Aug 20, 2006).

[Ambler 2005b] Ambler, S.W.: The Design of a Robust Persistence Layer For
Relational Databases, Version June 21, 2005; http://www.ambysoft.com/
downloads/persistenceLayer.pdf (accessed May 22, 2007).

[Ambler 2003] Ambler, S.W.: Agile Database Techniques: Effective Strategies
for the Agile Software Developer; Wiley Publishing, Indianapolis, IN 2003.

[Anderson 2004] Anderson, D.J.: Agile Management for Software Engineering:
Applying the Theory of Constraints for Business Result; Prentice Hall,
Upper Saddle River, NJ 2004.

[Andres 2006] Andres, T.: From Business Process to Application − Model-driven
Development of Business Management Software; ARIS Expert Paper; IDS
Scheer, Saarbrücken, Germany, May 2006.

[Apache 2008] The Apache Software Foundation: Apache JMeter User's Manual;
http://jakarta.apache.org/jmeter/usermanual/ (accessed Jan 13, 2008).

References 568

[Apache 2007] The Apache Software Foundation: Apache Struts; http://struts.
apache.org/ (accessed May 15, 2007).

[Apache 2006a] The Apache Software Foundation: Apache Geronimo; http://
geronimo.apache.org/ (accessed Aug 10, 2006).

[Apache 2006b] The Apache Software Foundation: Apache HTTP Server Project;
http://httpd.apache.org/ (accessed Aug 10, 2006).

[Apache 2006c] The Apache Software Foundation: Apache Tomcat; http://tomcat.
apache.org/ (accessed May 15, 2006).

[Aspray 2006] Aspray, W., Mayadas, F., Vardi, M.Y. (Eds.): Globalization and
Offshoring of Software – A Report of the ACM Job Migration Task Force;
ACM 0001-0782/06/0200, Association for Computing Machinery, New
York, NY 2006 (an online version is available at: http://www.acm.org/
globalizationreport).

[ASPstreet 2006] ASPstreet.com: ASP Directory; http://www.aspstreet.com/
directory (accessed Mar 14, 2006).

[ASUG 2006] ASUG (America's SAP User Groups): Wanted: Enterprise
Architects; SAP Info (2006) 135, pp. 8-10.

[Ayers 2001] Ayers, J.B.: Handbook of Supply Chain Management; St. Lucie
Press, Boca Raton, FL 2001.

[Bach 2006] Bach, J.: Rapid Software Testing; http://www.satisfice.com/info_rst.
shtml (accessed Jul 14, 2007).

[Bach 2003] Bach, J.: Exploratory Testing Explained – v.1.3 4/16/03; http://www.
satisfice.com/articles/et-article.pdf (accessed Jul 14, 2007).

[Bagui 2003] Bagui, S., Earp, R.: Database Design Using Entity-Relationship
Diagrams; CRC Press, Portland, OR 2003.

[Baker 1972] Baker, F.T.: Chief Programmer Team of Management of Production
Programming; IBM Systems Journal 11 (1972) 1, pp. 56-73.

[Barry 2003] Barry, D.: Web Services and Service-Oriented Architectures: The
Savvy Manager's Guide; Morgan Kaufman Publishers, San Francisco, CA
2003.

[Basili 1975] Basili, V.R., Turner, A.J.: Iterative Enhancement: A Practical
Technique for Software Development; IEEE Transactions on Software
Engineering 1 (1975) 4, pp. 390-396.

[Bass 2003] Bass, L., Clements, P., Kazman, R.: Software Architecture in
Practice, Second Edition; Addison-Wesley, Boston, MA 2003.

[Beatty 2006] Beatty, R.C., Williams, C.D.: ERP II: Best Practices for Success-
fully Implementing an ERP Upgrade; Communications of the ACM 49
(2006) 3, pp. 105-109.

[Beck 2007] Beck, K., Gamma, E.: JUnit Cookbook; http://junit.sourceforge.net/
doc/cookbook/cookbook.htm (accessed Jul 29, 2007).

[Beck 2005] Beck, K., Andres, C.: Getting Started with XP: Toe Dipping, Racing
Dives, and Cannonballs; Three Rivers Institute 2005 (available online at
http://www.threeriversinstitute.org/; accessed Jan 3, 2007).

References 569

[Beck 2004] Beck, K., Andres, C.: Extreme Programming Explained: Embrace
Change, 2nd Edition; Addison-Wesley Professional, Boston, MA 2004.

[Becker 2007] Becker, T.: User Exits in FI/CO; http://www.sapbrainsonline.com/
ARTICLES/TECHNICAL/USEREXITS/USEREXITS_in_FICO.html (ac-
cessed Aug 29, 2007).

[Bezroukov 1999] Bezroukov, N.: Open Source Software Development as a
Special Type of Academic Research (Critique of Vulgar Ramondism); First
Monday 4 (1999) 10.

[Bhat 2006] Bhat, J.M., Gupta, M., Murthy, S.N.: Overcoming Requirements
Engineering Challenges: Lessons from Offshore Outsourcing; IEEE Soft-
ware 23 (2006) 5, pp. 38-44.

[Biffl 2006] Biffl, S., Aurum, A., Boehm, B. et al.: Value-Based Software
Engineering; Springer, Berlin, Heidelberg 2006.

[Boehm 1995a] Boehm, B., Clark, B., Horowitz, E. et al.: An Overview of the
COCOMO 2.0 Software Cost Model; in: Proceedings of SSTC Software
Technology Conference, April 1995; available for download at http://sunset.
usc.edu/research/COCOMOII/cocomo_main.

[Boehm 1995b] Boehm, B., Clark, B., Horowitz, E. et al.: Cost Models for Future
Software Life Cycle Processes: COCOMO 2.0; in: Arthur, J.D., Henry, S.M.
(Eds.), Special Volume on Software Process and Product Measurement,
Annals of Software Engineering; Baltzer Science Publishers, Amsterdam
1995; available for download at http://sunset.usc.edu/research/COCOMOII/
cocomo_main. html (accessed Apr 14, 2006).

[Boehm 1981] Boehm, B.W.: Software Engineering Economics; Prentice Hall,
Upper Saddle River, NJ 1981.

[Boehm 1978] Boehm, B.W., Brown, J.R. et al.: Characteristics of Software
Quality; North Holland, Amsterdam, New York 1978.

[Booch 2006] Booch, G.: The Accidental Architecture; IEEE Software 23 (2006)
3, pp. 9-11.

[Booch 2005] Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling
Language User Guide, 2nd Edition; Addison-Wesley Professional, Boston,
MA 2005.

[Booch 1994] Booch, G.: Object-Oriented Analysis and Design with Applications,
2nd Edition; Benjamin/Cummings Publishing, Redwood City, CA 1994.

[Brooks 1995] Brooks, F.P.: The Mythical Man-Month: Essays on Software Engi-
neering, 20th Anniversary Edition; Addison-Wesley Professional, Boston,
MA 1995.

[Burn 2007] Burn, O.: Checkstyle 4.4; http://checkstyle.sourceforge.net/ (accessed
Jan 12, 2008).

[Buschmann 2007] Buschmann, F., Henney, K., Schmidt, D.C.: Past, Present, and
Future Trends in Software Patterns; IEEE Software 24 (2007) 4, pp. 31-37.

[Buschmann 1996] Buschmann, F., Meunier, R. et al.: Pattern-Oriented Software
Architecture, Volume 1: A System of Patterns; John Wiley & Sons, New
York et al. 1996.

References 570

[Campione 2001] Campione, M., Walrath, K., Huml, A.: The Java Tutorial − A
Short Course on the Basics, Third Edition; Addison-Wesley, Boston, MA
2001.

[Card 2002] Card, S.K., Nation, D.: Degree-of-Interest Trees: A Component of an
Attention-Reactive User Interface; in: Proceedings of International Confer-
ence on Advanced Visual Interfaces (AVI02), Trento, Italy 2002.

[Carr 2005] Carr, N.G.: Does Software Matter? Informatik Spektrum 28 (2005) 4,
pp. 271-273.

[Carr 2004] Carr, N.G.: Does IT Matter? Information Technology and the
Corrosion of Competitive Advantage; Harvard Business School Publishing,
Boston, MA 2004.

[Carr 2003] Carr, N.G.: IT Doesn't Matter; Harvard Business Review 81 (2003) 5,
pp. 41-49.

[Cash 1992] Cash, J.I., McFarlan, F.W., McKenney, J.L.: Corporate Information
Systems Management: The Issues Facing Senior Executives, 3rd Edition;
Irwin Professional Publishers, Homewood, Ill. 1992.

[Chappell 2004] Chappell, D.: Enterprise Service Bus; O'Reilly Media, Sebasto-
pol, CA 2004.

[Chen 1976] Chen, P.P.: The Entity-Relationship Model – Toward a Unified View
of Data; ACM Transactions on Database Systems 1 (1976) 1, pp. 9-36.

[Clark 2004] Clark, M.: Pragmatic Project Automation; The Pragmatic Bookshelf,
Raleigh, NC 2004.

[Cockburn 2004] Cockburn, A.: Crystal Clear: A Human-Powered Methodology
for Small Teams; Addison-Wesley Professional, Boston, MA 2004.

[Cockburn 2000] Cockburn, A.: Writing Effective Use Cases; Addison-Wesley
Professional, Boston, MA 2000.

[Cockburn 1998] Cockburn, A.: Basic Use Case Template; http://alistair.cock-
burn.us/images/Uctempla.doc (accessed Mar 24, 2007).

[Collins 2004] Collins-Sussman, B., Fitzpatrick, B.W., Pilato, C.M.: Version
Control with Subversion; O'Reilly Media, Sebastopol, CA 2004 (available
online at http://svnbook.red-bean.com/ (accessed Sep 26, 2007).

[Conradi 2003] Conradi, R., Jaccheri, L., Torchiano, M.: Using software process
modeling to analyze the COTS based development process; Workshop on
Software Process Simulation Modeling 2003 (Prosim '03), collocated with
ICSE '03, 3-4 May 2003, Portland, USA.

[Cranes 2006] Cranes Software International Ltd.: InventX – Product Overview;
http://www.inventx.com/product-overview.aspx (accessed Jan 6, 2008).

[Crispin 2006] Crispin, L.: Driving Software Quality: How Test-Driven Develop-
ment Impacts Software Quality; IEEE Software 25 (2006) 6, pp. 70-71.

[Cummins 2002] Cummins, F.A.: Enterprise Integration – An Architecture for
Enterprise Application and Systems Integration; John Wiley & Sons, New
York et al. 2002.

[Cunningham 2005] Cunningham, W.: Introduction To Fit; http://fit.c2.com/
(accessed Jul 27, 2007).

References 571

[Davies 2005a] Davies, S., Cowen, L., Giddings, C., Parker, H.: WebSphere
Message Broker Basics; IBM Redbooks, White Plains, NY 2005 (updated
version available online at ibm.com/redbooks; accessed Aug 31, 2007).

[Davies 2005b] Davies, S., Broadhurst, P.: WebSphere MQ V6 Fundamentals;
IBM Redbooks, White Plains, NY 2005 (updated version available online at
ibm.com/redbooks; accessed Aug 31, 2007).

[Davison 2003] Davison, D.: Top 10 Risks of Offshore Outsourcing; December 9,
2003; http://techupdate.zdnet.com/techupdate/stories/main/Top_10_Risks_
Offshore_Outsourcing.html (accessed Mar 16, 2006).

[DCM 2006] DC&M Partners LLC: Offshore Development Process Model; http://
www.dcm-partners.com/offshore-development-process-model.htm (accessed
Sep 7, 2006).

[DeMarco 1978] DeMarco, T.: Structured Analysis and System Specification;
Yourdon Press, New York 1978.

[Dijkstra 1970] Dijkstra, E.W.: Notes on Structured Programming, Second Edi-
tion; T.-H.-Report 70-WSK-03, Technical University Eindhoven, Nether-
lands 1970.

[Dijkstra 1968a] Dijkstra, E.W.: Go To Statement Considered Harmful; Commu-
nications of the ACM 11 (1968) 3, pp. 147-148.

[Dijkstra 1968b] Dijkstra, E.W.: The Structure of T.H.E. Multiprogramming
System; Communications of the ACM 11 (1968) 5, pp. 341-346.

[Dittrich 2006] Dittrich, J., Mertens, P., Hau, M., Hufgard, A.: Dispositionspara-
meter in der Produktionsplanung mit SAP, 4. Aufl.; Vieweg, Wiesbaden,
Germany 2006.

[Duvall 2007] Duvall, P.M., Matyas, S., Glover, A.: Continuous Integration,
Addison-Wesley, Boston, MA 2007.

[Ebert 2005] Ebert, C., Dumke, R. et al.: Best Practices in Software Measurement
– How to Use Metrics to Improve Project and Process Performance; Spring-
er, Berlin, Heidelberg 2005.

[EBS 2006] EBS: Offshore Outsourcing Basics; http://www.ebstrategy.com/out-
sourcing/basics/index.htm (accessed Jan 15, 2008).

[Eclipse 2005] The Eclipse Foundation: Eclipse Process Framework Project
(EPF); http://www.eclipse.org/epf/ (accessed Aug 25, 2006).

[EFC 2006] European Foundation Centre (EFC): Funders Online; http://www.
fundersonline.org/grantseekers/proposal_basics.html (accessed Jan 14,
2008).

[Elmasri 2006] Elmasri, R., Shamkant B., Navathe, S.B.: Fundamentals of Data-
base Systems, 5th Edition; Addison-Wesley, Boston, MA 2006.

[Endrei 2004] Endrei, M., Ang, J., Arsanjani, A. et al.: Patterns: Service-Oriented
Architecture and Web Services; IBM Redbooks, White Plains, NY 2004
(available online at ibm.com/redbooks; accessed Apr 23, 2006).

[Eriksson 2004] Eriksson, H.-E., Penker, M. et al.: UML 2 Toolkit; John Wiley &
Sons, New York et al. 2003.

References 572

[Finnegan 2007] Finnegan, D., Willcocks, L.P.: Implementing CRM: From
Technology to Knowledge; John Wiley & Sons, New York et al. 2007.

[Fitzgerald 2006] Fitzgerald, B.: The Transformation of Open Source Software;
MIS Quarterly 30 (2006) 3, pp. 587-598.

[Fleming 2006] Fleming, Q.W., Koppelman, J.M.: Earned Value Project Manage-
ment, 3rd Edition; Project Management Institute, Newton Square, PA 2006.

[Fowler 2006] Fowler, M.: Continuous Integration – last updated May 1, 2006;
http://martinfowler.com/articles/continuousIntegration.html (accessed Jan 16,
2008).

[Gamma 1995] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns:
Elements of Reusable Object-Oriented Software; Addison-Wesley Profes-
sional, Boston, MA 1995.

[Gane 1979] Gane, C., Sarson, T.: Structured Systems Analysis: Tools and Tech-
niques; Prentice Hall, Englewood Cliffs, NJ 1979.

[Greer 2006] Greer, M.: What's Project Portfolio Management (PPM) & Why
Should Project Managers Care About It?; http://www.michaelgreer.com/
ppm.htm (accessed Jan 9, 2008).

[Gulzar 2002] Gulzar, N.: Fast Track to Struts: What it Does and How; The
ServerSide.com, Nov 4, 2002 (available online at http://www.theserverside.
com/tt/articles/content/StrutsFastTrack/StrutsFastTrack.pdf; accessed Apr
23, 2007).

[Gurses 2005] Gurses, L.: Improving Code Quality with PMD and Eclipse;
EclipseZone.com October 2005; http://www.eclipsezone.com/articles/pmd/
(accessed Jan 16, 2008).

[Highsmith 2001] Highsmith, J.: History: The Agile Manifesto; http://www.agile-
manifesto.org/history.html (accessed Jan 9, 2008).

[Hillside 2007] Hillside.net: The Pattern Abstracts from Pattern-Oriented Soft-
ware Architecture; http://hillside.net/patterns/books/Siemens/abstracts.html
(accessed April 10, 2007).

[Hoffer 2006] Hoffer, J.A., McFadden, F., Prescott, M.: Modern Database
Management; Pearson Education, Upper Saddle River, NJ 2006.

[Hohpe 2004] Hohpe, G., Woolf, B.: Enterprise Integration Patterns – Designing,
Building, and Deploying Messaging Solutions; Addison-Wesley, Boston
2004.

[Homer 2007] Homer Computer Services: Advanced Planning System Software
Selection Guide; http://www.homercomputer.com.au/pdf/wapssamples.pdf
(accessed Aug 16, 2007).

[Huang 2006] Huang, L., Boehm, B.: How Much Software Quality Investment Is
Enough: A Value-Based Approach; IEEE Software 23 (2006) 5, pp. 88-95.

[Hunt 1999] Hunt, A., Thomas, D,: The Pragmatic Programmer; Addison-Wesley,
Boston 1999.

[IBM 2008] IBM Corp.: WebSphere Software; http://www-306.ibm.com/soft-
ware/websphere/ (accessed Jan 3, 2008).

References 573

[IBM 2007] IBM Corp.: All that Jazz; http://www.alphaworks.ibm.com/topics/cde
(accessed Jan 13, 2008).

[IBM 2003] IBM Corp.: WebSphere MQ Application Programming Guide,
Fourth Edition; IBM Corp., White Plains, NY 2003.

[IEEE 1998a] Institute of Electrical and Electronics Engineers, Inc. (IEEE): IEEE
Standard for Software Test Documentation, IEEE 829-1998; New York, NY
1998.

[IEEE 1998b] Institute of Electrical and Electronics Engineers, Inc. (IEEE):
Standard for Software Reviews, IEEE 1028-1997; New York, NY 1998.

[IFPUG 2005] International Function Point Users Group (IFPUG): Publications
and Products; Nov. 2005; http://www.ifpug.org/publications (accessed Dec
1, 2007).

[Incava 2008] Incava.org: DoctorJ; http://www.incava.org/projects/java/doctorj/
(accessed Jan 12, 2008).

[Infosys 2008] Infosys Technologies Ltd.: Global Delivery Model – Risk Mitiga-
tion; http://www.infosys.com/global-sourcing/global-delivery-model/risk-
mitigation.asp (accessed Jan 17, 2008).

[Infosys 2007] Infosys Technologies Ltd.: Investor Services – Investor FAQs –
Corporate Information; http://www.infosys.com/investors/investor-services/
FAQs.asp (accessed Jan 1, 2008).

[IPMA 2006] International Project Management Association (IPMA): ICB –
IPMA Competence Baseline (ICB), Version 3.0; IPMA, Nijkerk, Nether-
lands 2006.

[Jacobson 1995] Jacobson, I., Ericsson, M., Jacobson, A.: The Object Advantage:
Business Process Reengineering With Object Technology; ACM Press, New
York, NY 1995.

[Jankowska 2005] Jankowska, A.M., Kurbel, K.: Service-Oriented Architecture
Supporting Mobile Access to an ERP System; in: Ferstl, O. et al. (Eds.),
Wirtschaftsinformatik 2005 − eEconomy, eGovernment, eSociety; Physica,
Heidelberg, Germany 2005; pp. 371-390.

[Jeffries 2007] Jeffries, R., Melnik, G.: TDD: The Art of Fearless Programming;
IEEE Software 26 (2007) 5, pp. 24-30.

[Jendrock 2007] Jendrock, E., Ball, J., Carlson, D. et al.: The Java EE 5 Tutorial;
http://java.sun.com/javaee/5/docs/tutorial/doc/; Sun Microsystems 2007 (ac-
cessed Dec 8, 2007).

[Johnson 2007] Johnson, K.: Open-Source Software Development; Los Angeles
Chinese Learning Center; http://chinese-school.netfirms.com/computer-arti-
cle-open-source.html (accessed Feb 17, 2007).

[Johnson 2001] Johnson, K.: A Descriptive Process Model for Open-Source Soft-
ware Development; Master's Thesis, University of Calgary, Department of
Computer Science, June 2001.

[Jupitermedia 2005] Jupitermedia Corp.: Understanding LAMP; December 1,
2005; http://www.serverwatch.com/tutorials/article.php/3567741 (accessed
Jul 24, 2006).

References 574

[Juristo 2006] Juristo, N., Moreno, A.M., Vegas, S., Solari, M.: In Search of What
We Experimentally Know about Unit Testing; IEEE Software 25 (2006) 6,
pp. 72-79.

[Kagermann 2006] Kagermann, H., Österle, H.: Geschäftsmodelle 2010 − Wie
CEOs Unternehmen transformieren; FAZ Buch, Frankfurt/Main, Germany
2006.

[Kan 2002] Kan, S.H.: Metrics and Models in Software Quality Engineering, 2nd
Edition; Addison-Wesley Longman, Amsterdam, Netherlands 2002.

[Kendall 2005] Kendall, K.E., Kendall, J.E.: Systems Analysis and Design, Sixth
Edition; Prentice Hall, Upper Saddle River, NJ 2005.

[Kircher 2007] Kircher, M., Völter, M.: Software Patterns; IEEE Software 24
(2007) 4, pp. 28-30.

[Kleppe 2003] Kleppe, A., Warmer, J., Bast, T.: MDA Explained: The Model
Driven Architecture − Practice and Promise; Addison-Wesley, Boston, MA
2003.

[Krill 2007] Krill, P.: IBM sings Jazz tune for app development, Jun 13, 2007;
http://www.arnnet.com.au/index.php/id;174308548;fp;16;fpid;1 (accessed
Jan 24, 2008).

[Kroll 2005] Kroll, P.: Introducing IBM Rational Method Composer; http://www-
128.ibm.com/developerworks/rational/library/nov05/kroll/ (accessed Aug 25,
2006).

[Kruchten 2006] Kruchten, P., Obbink, H., Stafford, J.: The Past, Present, and
Future of Software Architecture; IEEE Software 23 (2006) 2, pp. 22-30.

[Kruchten 1996] Kruchten, P.: A Rational Development Process; Crosstalk 9
(1996) 7, pp. 11-16.

[Kunze 1998] Kunze, M.: Lasst es leuchten; LAMP: Datenbankgestütztes Web-
Publishing-System mit Freeware; c’t (1998) 12, p. 230.

[Kurbel 2006] Kurbel, K., Schreber, D., Ulrich, B.: A Web Services Façade for an
Open Source ERP System; in: Proceedings of the 12th Americas Conference
on Information Systems, Acapulco, Mexico, August 4-6, 2006.

[Kurbel 2005] Kurbel, K.: Enterprise Resource Planning and Integration; in:
Khosrow-Pour, M. (Ed.): Encyclopedia of Information Science and Technol-
ogy, Vol. I-V; Idea Group Reference, Hershey, PA et al. 2005; pp. 1075-
1082.

[Kurbel 1992] Kurbel, K., Dornhoff, P.: A System for Case-Based Effort Estima-
tion for Software-Development Projects; Working Paper No. 11 of the Insti-
tute of Business Informatics, University of Muenster, Germany, July 1992.

[Kurbel 1990] Kurbel, K.: An Integrated Approach to Expert System Develop-
ment, Project Organization, and Project Management; in: SE90 – Proceed-
ings of Software Engineering 90, Brighton, July 1990; Cambridge 1990, pp.
271-281.

[Kurbel 1987] Kurbel, K., Labentz, M., Pietsch, W.: Prototyping und Projekt-
management bei großen Entwicklungsteams; Information Management 2
(1987) 1, S. 6-15.

References 575

[Larmann 2005] Larmann, C.: Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative Development, 3rd Edi-
tion; Prentice Hall Ptr, Upper Saddle River, NJ 2005.

[Laudon 2007] Laudon, K.C., Laudon, J.P.: Management Information Systems:
Managing the Digital Firm, Tenth Edition; Prentice Hall, Upper Saddle
River, NJ 2007.

[Manolescu 2007] The Growing Divide in the Patterns World; IEEE Software 24
(2007) 4, pp. 61-67.

[Martin 2007] Martin, R.C.: Professionalism and Test-Driven Development; IEEE
Software 26 (2007) 5, pp. 32-36.

[Martin 2003] Martin, R.C.: Agile Software Development − Principles, Patterns,
and Practices; Prentice Hall, Upper Saddle River, NJ 2003.

[Martin 1990] Martin, J.: Information Engineering, Book II: Planning and Analy-
sis; Prentice Hall, Englewood Cliffs, NJ 1990.

[Martin 1989] Martin, J.: Information Engineering, Book I: Introduction; Prentice
Hall, Englewood Cliffs, NJ 1989.

[Martin 1986] Martin, J., McClure, C.: Structured Techniques – The Basis for
CASE; Prentice Hall, Englewood Cliffs, NJ 1990.

[Mason 2006] Mason, M.: Pragmatic Version Control Using Subversion, 2nd
Edition; The Pragmatic Bookshelf, Raleigh, NC 2006.

[McDowell 2006] McDowell, C., Werner, L., Bullock, H.E., Fernald, J.: Pair Pro-
gramming Improves Student Retention, Confidence, and Program Quality;
Communications of the ACM 49 (2006) 8, pp. 90-95.

[Meyr 2002] Meyr, H., Wagner, M., Rohde, J.: Structure of Advanced Planning
Systems; in: Stadtler, H., Kilger, C. (Eds.), Supply Chain Management and
Advanced Planning, 2nd Edition; Springer, New York 2002, pp. 99-104.

[Microsoft 2008a] Microsoft Corp.: Microsoft Office Project Portfolio Server
2007; http://office.microsoft.com/en-us/portfolioserver/FX101674151033.
aspx (accessed Jan 7, 2008).

[Microsoft 2008b] Microsoft Corp.: Microsoft Office Project Server 2007; http://
office.microsoft.com/en-us/projectserver/FX100739841033.aspx (accessed
Jan 7, 2008).

[Microsoft 2007a] Microsoft Corp.: Microsoft Server Products Overview; http://
www.microsoft.com/servers/overview.mspx (accessed Dec 7, 2007).

[Microsoft 2007b] Microsoft Corp.: .NET Framework Developer Center − Tech-
nology Overview; http://msdn2.microsoft.com/en-us/netframework/ (ac-
cessed Dec 7, 2007).

[Microsoft 2007c] Microsoft Corp.: .NET Framework Developer's Guide − .NET
Framework Conceptual Overview; http://msdn2.microsoft.com/en-us/library/
(accessed Dec 7, 2007).

[Mills 1980] Mills, H.D.: The Management of Software Engineering, Part I:
Principles of Software Engineering; IBM Systems Journal 19 (1980) 4, pp.
415-419.

References 576

[Mills 1973] Harlan D., Mills, H.D., Baker, F.T.: Chief Programmer Teams; Data-
mation 19 (1973) 2, pp. 58-61.

[Morisio 2002] Morisio, M., Seaman, C.B., Basili, V.R., et al.: COTS-Based
Software Development: Processes and Open Issues; Journal of Systems and
Software 61 (2002) 3, pp. 189-199.

[Morisio 2000] Morisio, M., Seaman, C.B., Parra, A.T. et al.: Investigating and
Improving a COTS-Based Software Development Process; in: Proceedings
of the International Conference on Software Engineering (ICSE 2000), Lim-
erick, Ireland, June 4-11, 2000; IEEE Computer Society Press, Los Alamitos,
CA, pp. 32-41.

[Morrison 2005] Morrison, P., Macia, M.: Offshoring: All Your Questions
Answered; http://www.alsbridge.com/outsourcing_leadership/dec2005_off-
shoring.shtml (accessed Jan 16, 2008).

[Mozilla 2007] Mozilla Foundation: The Bugzilla Guide – 3.1.2 Development
Release; http://www.bugzilla.org/docs/ (accessed Jan 13, 2008).

[Myers 1976] Myers, G.J.: Software Reliability – Principles and Practices; John
Wiley & Sons, New York et al. 1976.

[Newcomer 2004] Newcomer, E., Lomow, G.: Understanding SOA with Web
Services; Addison-Wesley Professional, Boston, MA 2004.

[Nilekani 2006] Nilekani, M.: IT, India, the Zenith; Sunday Hindustan Times
(2006) January 1, p. 5.

[NTT 2006] NTT DoCoMo, Inc.: i-mode; http://www.nttdocomo.com/corebiz/ser-
vices/imode/index.html (accessed Jan 2, 2006).

[Nuseibeh 2000] Nuseibeh, B.A., Easterbrook, M.A.: Requirements Engineering:
A Roadmap; in: Finkelstein, A.C.W. (Ed.), Proceedings of the Conference on
The Future of Software Engineering; Limerick, Ireland, June 4-11, 2000;
IEEE Computer Society Press, Los Alamitos, CA, pp. 35-46.

[OASIS 2006] OASIS Open, Inc.: Web Services Business Process Execution Lan-
guage Version 2.0, Committee Draft, 17 May, 2006; http://www.oasis-open.
org/committees/download.php/18714/wsbpel-specification-draft-May17.htm
(accessed Feb 16, 2007).

[Offshore 2008] OffshoreXperts.com: Outsourcing Services Directory; http://
www.offshorexperts.com (accessed Jan 6, 2008).

[OMG 2007] The Object Management Group (OMG): CORBA Basics; http://
www.omg.org/gettingstarted/corbafaq.htm (accessed Jan 5, 2008).

[OMG 2006] The Object Management Group (OMG): OMG Model Driven
Architecture; http://www.omg.org/mda/ (accessed Aug 16, 2006).

[Oracle 2006] Oracle Corp.: Anatomy of an XML Database: Oracle Berkeley DB
XML – An Oracle White Paper; Redwood Shores, CA, September 2006;
http://www.oracle.com/dm/07h1corp/bdbxml.pdf (accessed May 22, 2007).

[Overby 2003] Overby, S.: The Hidden Costs of Offshore Outsourcing; CIO
Magazine (2003) Sep 1; online available at http://www.cio.com/archive/
090103/money.html (accessed Feb 2, 2008).

References 577

[Parnas 1979] Parnas, D.L.: Designing Software for Ease of Extension and
Contraction; IEEE Transactions on Software Engineering 5 (1979) 2, pp.
128-138.

[Parnas 1974] Parnas, D.L.: On a 'Buzzword': Hierarchical Structure; in: Rosen-
feld, J.L. (Ed.), Information Processing 74, Proceedings of IFIP Congress
74; Amsterdam, London 1974, pp. 339-344.

[Parnas 1972a] Parnas, D.L.: On the Criteria to be Used in Decomposing Systems
into Modules; Communications of the ACM 15 (1972) 12, pp. 1053-1058.

[Parnas 1972b] Parnas, D.L.: Information Distribution Aspects of Design Method-
ology; in: Freiman, C.V. (Ed.), Information Processing 71, Proceedings of
IFIP Congress 71, Volume 1 − Foundations and Systems; Amsterdam, Lon-
don 1972, pp. 339-344.

[Paulish 2007] Paulish, D.: Methods, Processes & Tools for Global Software
Development; Presentation at the International Workshop on Tool Support
and Requirements Management in Distributed Projects (REMIDI'07),
Munich, August 27-30, 2007; http://www4.in.tum.de/~kuhrmann/remidi07.
shtml (accessed Dec 24, 2007).

[Perks 2003] Perks, M.: Guide to Running Software Development Projects;
http://www-128.ibm.com/developerworks/websphere/library/techarticles/
0306_perks/ perks.html (accessed Jan 24, 2008).

[Planisware 2007] Planisware USA: Project Portfolio Management & Strategic
Planning; http://www.planisware.com/generique.php?docid=28 (accessed Jan
1, 2008).

[PM 2007] PM-Software.info: Projektmanagement-Software; http://www.pm-
software.info/produktliste.html (accessed Jan 4, 2008).

[PMI 2004] Project Management Institute: A Guide to the Project Management
Body of Knowledge (PMBOK Guide), Third Edition; Project Management
Institute, Newton Square, PA 2004.

[Rational 1998] Rational Software Corp.: Rational Unified Process − Best Prac-
tices for Software Development Teams, White Paper; Rational Software
Corp., Cupertino, CA 1998.

[Raymond 2000] Raymond. E.S.: The Cathedral and the Bazaar, Version 3.0,
September 2000; http://www.catb.org/~esr/writings/cathedral-bazaar/cathe-
dral-bazaar/cathedral-bazaar.ps (accessed Feb 14, 2007).

[Richardson 2005] Richardson, J.R., Gwaltney, W.A. Jr.: Ship It! A Practical
Guide to Successful Software Projects; The Pragmatic Bookshelf, Raleigh,
NC 2005.

[Ross 1977] Ross, D., Schomann, K.: Structured Analysis for Requirements
Definition; IEEE Transactions on Software Engineering SE-3 (1977) 1, pp.
6-15.

[Rothman 2005] Rothman, J., Derby, E.: Behind Closed Doors: Secrets of Great
Management; The Pragmatic Bookshelf, Raleigh, NC 2005.

[Rothman 1997] Rothman, J.: Iterative Software Project Planning and Tracking;
http://www.jrothman.com/Papers/7ICSQ97.html (accessed Jan 14, 2008).

References 578

[Royce 1970] Royce, W.W.: Managing the Development of Large Software
Systems: Concepts and Techniques; IEEE WESCON Technical Papers,
Western Electronic Show and Convention, Los Angeles, Aug. 25-28, 1970,
pp. 1-9; reprinted in: Riddle, W.E. (Ed.), Proceedings of the 9th International
Conference on Software Engineering, Monterey, CA; IEEE Computer
Society Press, Los Alamitos, CA, March 1987, pp. 328-338.

[Ruh 2001] Ruh, W.A., Maginnis, F.X., Brown, W.J.: Enterprise Application
Integration: A Wiley Tech Brief; John Wiley & Sons, New York et al. 2001.

[Ruiz 2007] Ruiz, A., Price, Y.W.: Test-Driven GUI Development with TestNG
and Abbot; IEEE Software 26 (2007) 5, pp. 51-57.

[Sadtler 2005] Sadtler, C., Laursen, L.B., Phillips, M. et al.: WebSphere Applica-
tion Server V6 System Management and Configuration Handbook; IBM
Redbooks, White Plains, NY 2005 (available online at http://ibm.com/
redbooks; accessed Jan 31, 2008).

[Sagawa 1990] Sagawa, J.M.: Repository Manager technology; IBM Systems
Journal 29 (1990) 2, pp. 209-227.

[Sakthivel 2007] Sakthivel, S.: Managing Risk in Offshore Systems Development;
Communications of the ACM 50 (2007) 4, pp. 69-75.

[Salesforce 2006] Salesforce.com; http://www.salesforce.com (accessed Mar 14,
2006).

[SAP 2008] SAP AG: Components and Tools of SAP NetWeaver: SAP Solution
Manager; http://www.sap.com/platform/netweaver/components/solutionman-
ager/index.epx (accessed Jan 1, 2008).

[SAP 2007a] SAP AG: Enterprise Service-oriented Architecture − Design, Devel-
opment, and Deployment − SAP Solution Brief, SAP NetWeaver; SAP AG,
Walldorf, Germany 2007.

[SAP 2007b] SAP AG: SAP Composite Application Framework: A Robust
Environment for the Design of Composite Applications; SAP AG, Walldorf,
Germany 2007; http://www.sap.com/platform/netweaver/cafindex.epx (ac-
cessed May 17, 2007).

[SAP 2007c] SAP AG: SAP ERP – SAP Solution Map; http://www.sap.com/solu-
tions/business-suite/erp/index.epx (accessed May 25, 2007).

[SAP 2006a] SAP AG: IT Practices with SAP NetWeaver: The Best Solutions for
your Business Requirements − SAP Solution in Detail, SAP NetWeaver;
SAP AG, Walldorf, Germany 2006.

[SAP 2006b] SAP AG: SAP NetWeaver and Enterprise Services Architecture −
SAP Solution in Detail, SAP NetWeaver; SAP AG, Walldorf, Germany
2006.

[SAP 2005a] SAP AG: Enterprise Services Architecture − Design, Development,
and Deployment − SAP Solution Brief, SAP NetWeaver; SAP AG, Walldorf,
Germany 2005.

[SAP 2005b] SAP AG: mySAP Supply Chain Management – Solution Overview;
SAP AG, Walldorf, Germany 2005.

[SAP 2005c] SAP AG: R/3 System – SAP Knowledge Management; SAP
Documentation Products and Services; SAP AG, Walldorf 2005.

References 579

[SAP 2004a] SAP AG: Enterprise Services Architecture − An Introduction −
SAP White Paper, SAP NetWeaver; SAP AG, Walldorf, Germany 2004.

[SAP 2004b] SAP AG: SAP NetWeaver; SAP AG, Walldorf, Germany 2004.
[SAP 2003] SAP AG: SAP NetWeaver Platform Interoperability with IBM

WebSphere and Microsoft .NET − SAP White Paper, SAP NetWeaver; SAP
AG, Walldorf, Germany 2003.

[SAP 1997] SAP AG: R/3 System – SAP Technology Infrastructure – From
Client/Server to Internet Architecture; SAP AG, Walldorf, Germany 1997.

[SCC 2006] Supply-Chain Council: Supply-Chain Operations Reference-model −
Version 8.0; Washington, DC 2006.

[Scheer 2005] Scheer, A.-W., Thomas, O., Adam, O.: Process Modeling Using
Event-driven Process Chains. In: Dumas, M. et al. (Eds.), Process-Aware
Information Systems – Bridging People and Software through Process
Technology; John Wiley & Sons, Hoboken, NJ 2005, pp. 119-145.

[Scheer 2002] Scheer, A.-W., Abolhassan, F. et al.: Business Process Excellence
− ARIS in Practice; Springer, Berlin, Germany 2002.

[Scheer 2000] Scheer, A.-W.: ARIS − Business Process Modeling, 3rd Edition;
Springer, Berlin, Germany 2000.

[Scherer 2004] Scherer, E.: ERP-Zufriedenheit: Best Practises und Best Fit bei der
ERP-Systemauswahl; PPS Management 9 (2004) 2, pp. 38-40.

[SEI 2007] Software Engineering Institute (SEI): Capability Maturity Model
Integration (CMMI) Version 1.2 Overview; http://www.sei.cmu.edu/cmmi/
adoption/pdf/cmmi-overview07.pdf (accessed Dec 15, 2007).

[Serrano 2006] Serrano, N., Sarriegi, J.M.: Open Source Software ERPs: A New
Alternative for an Old Need; IEEE Software 23 (2006) 3, pp. 94-97.

[Shaw 2006] Shaw, M., Clements, P.: The Golden Age of Software Architecture;
IEEE Software 23 (2006) 2, pp. 31-39.

[Shneiderman 2005] Shneiderman, B., Plaisant, C.: Designing the User Interface:
Strategies for Effective Human-Computer Interaction, 4th Edition; Addison-
Wesley, Boston, MA 2005.

[Siebel 2006] Siebel Systems, Inc.: What is CRM?; http://www.siebel.com/what-
is-crm/software-solutions.shtm (accessed Jan 2, 2006).

[Singh 2002] Singh, I., Stearns, B. et al.: Designing Enterprise Applications with
the J2EE Platform, Second Edition; Addison-Wesley Professional, Boston,
MA 2002.

[Sommerville 2007] Sommerville, I.: Software Engineering, Eighth Edition;
Addison-Wesley, Harlow, UK 2007.

[Standish 2004] The Standish Group International, Inc.: 2004 Third Quarter
Research Report; http://www.standishgroup.com/sample_research/PDFpag-
es/q3-spotlight.pdf (accessed Jan 8, 2006).

[Stevens 1974] Stevens, W., Myers, G., Constantine, L.: Structured Design; IBM
Systems Journal 13 (1974) 2, pp. 115-139.

[Stone 1993] Stone, J.A.: Inside ADW and IEF − The Promise and the Reality of
CASE; McGraw-Hill, New York 1993.

References 580

[Subramaniam 2006] Subramaniam, V., Hunt, A.: Practices of an Agile
Developer; The Pragmatic Bookshelf, Raleigh, NC 2006.

[Sun 2007] Sun Microsystems, Inc.: Reference API Specifications; http://java.sun.
com/reference/api/ (accessed July 1, 2007).

[Sun 2006a] Sun Microsystems, Inc.: Java Pet Store Demo; https://blueprints.dev.
java.net/petstore/; Sun Microsystems 2006 (accessed April 15, 2007).

[Sun 2006b] Sun Microsystems, Inc.: JDK 6 Documentation; http://java.sun.com/
javase/6/docs/Sun Microsystems 2006 (accessed Dec 2, 2007).

[Sun 2004] Sun Microsystems, Inc.: JavaTM Remote Method Invocation (Java
RMI); http://java.sun.com/j2se/1.3/docs/guide/rmi/ (accessed May 15, 2006).

[Sun 2002] Sun Microsystems, Inc.: Java BluePrints – Model-View-Controller;
http://java.sun.com/blueprints/patterns/MVC-detailed.html (accessed April 8,
2007).

[Sun 1999] Sun Microsystems, Inc.: Code Conventions for the Java Programming
Language – Revised April 20, 1999; http://java.sun.com/docs/codeconv/ (ac-
cessed Jan 12, 2008).

[Takagiwa 2002] Takagiwa, O., Korchmar, J., Lindquist, A., Vojtko, M.: Web-
Sphere Studio Application Developer Programming Guide; IBM Redbooks,
San Jose, CA 2002 (available online at http://www.redbooks.ibm.com/; ac-
cessed Jan 23, 2008).

[Tatvasoft 2006a] Tatvasoft: Software Outsourcing Issues; http://www.tatvasoft.
com/software-outsourcing-central/outsourcing_issues.asp (accessed Mar 15,
2006).

[Tatvasoft 2006b] Tatvasoft: Software Outsourcing Process; http://www.tatvasoft.
com/software-outsourcing-central/development/default.asp (accessed Mar
15, 2006).

[Tatvasoft 2006c] Tatvasoft: Software Outsourcing − Tatvasoft Advantages;
http://www.tatvasoft.com/software-outsourcing/software-outsourcing-tatva
.asp (accessed Mar 15, 2006).

[TCS 2007] Tata Consultancy Services (TCS): Results for Quarter II FY 2007-
2008; http://www.tcs.com/Investors/pdf/TCS_Analysts_Q2_08.pdf (accessed
Jan 1, 2008).

[van der Lans 2006] van der Lans, R.F.: Introduction to SQL – Mastering the
Relational Database Language, 4th Edition; Addison-Wesley Professional,
Boston, MA 2006.

[Venners 2005] Venners, B.: Eclipse's Culture of Shipping, June 28, 2005;
http://www.artima.com/lejava/articles/eclipse_culture.html (accessed Jan 15,
2008).

[W3C 2006] World Wide Web Consortium (W3C): Web Content Accessibility
Guidelines 2.0 – W3C Working Draft 27 April 2006; http://www.w3.org/
TR/WCAG20/ (accessed Mar 15, 2007).

[W3C 2004] World Wide Web Consortium (W3C): Web Services Glossary;
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/ (accessed Apr 22,
2006).

References 581

[W3C 2003] World Wide Web Consortium (W3C): SOAP Version 1.2 Part 1:
Messaging Framework − W3C Recommendation 24 June 2003; http://www.
w3.org/TR/soap12-part1/ (accessed Apr 22, 2006).

[W3C 2001] World Wide Web Consortium (W3C): Web Services Description
Language (WSDL) 1.1 − W3C Note 15 March 2001; http://www.w3.org/TR/
wsdl (accessed Apr 23, 2006).

[W3C 1999] World Wide Web Consortium (W3C): Web Content Accessibility
Guidelines 1.0; W3C Recommendation 5-May-1999; http://www.w3.org/TR/
WCAG10/ (accessed Jan 3, 2008).

[Wells 2006] Wells, D.: Extreme Programming: A Gentle Introduction; http://
www.extremeprogramming.org/ (accessed Feb 1, 2008).

[West 2003] West, D.: Planning a Project with the IBM Rational Unified Process;
IBM Corp., Somers, NY 2003 (available online at http://www3.software.ibm.
com/ibmdl/pub/software/rational/web/whitepapers/2003/tp151.pdf; accessed
Aug 21, 2006).

[Wiegers 2003] Wiegers, K.E.: So You Want To Be a Requirements Analyst?
Software Development 11 (2003) 7 (available online at http://www.process-
impact.com/articles/be_analyst. pdf; accessed Mar 24, 2007).

[Wiegers 2001] Wiegers, K.E.: Requirements When the Field Isn't Green; STQE 3
(2001) 3 (available online at http://www.processimpact.com/articles/reqs_not
_green.pdf; (accessed Mar 23, 2007).

[Woods 2006] Woods, D.: Packaged Composite Applications: A Liberating Force
for the User Interface; SAP Design Guild Website, http://www.sapdesign-
guild.org/editions/edition7/composite_applications.asp (accessed Jan 8,
2006).

[Wyomissing 2008] Wyomissing Publishing: PM Digest – Project Management
Software; http://www.pmdigest.com/software/ (accessed Jan 2, 2008).

[XML:DB 2003] XML:DB Initiative for XML Databases: What is an XML data-
base?; http://xmldb-org.sourceforge.net/faqs.html (accessed May 23, 2007).

[Yuan 2007] Yuan, M.J., Heute, T.: JBoss Seam: Simplicity and Power Beyond
Java EE; Prentice Hall PTR, Indianapolis, IN 2007.

[Yourdon 1989] Yourdon, E.: Modern Structured Analysis; Yourdon Press,
Englewood Cliffs, NJ 1989.

[Yourdon 1979] Yourdon, E., Constantine, L.: Structured Design: Fundamentals
of a Discipline of Computer Program and Systems Design; Yourdon Press,
Englewood Cliffs, NJ 1979.

[Zachman 1982] Zachman, J.A.: Business Systems Planning and Business Infor-
mation Control Study: A comparison; IBM Systems Journal 21 (1982) 1, pp.
31-53.

[Zakhour 2006] Zakhour, S., Hommel, S. et al.: The Java Tutorial: A Short
Course on the Basics, 4th Edition; Prentice Hall PTR, Indianapolis, IN 2006.

Index

A
AA (RUP), 279
ABAP, 452
abstract class, 454
abstraction, 97, 118
abstraction layers, 98
accelerated SAP, 443
acceptance test, 210
acceptance testing, 232, 419, 439
accessibility, 315
accessibility guidelines, 316, 317
accessibility testing, 418
activity and time planning, 484
activity diagram, 301
activity sequencing, 484
activity-on-arrow network, 486
activity-on-node network, 486, 488
actor, 244, 246
AD, 205
adapter, 292
adapter pattern, 469
ADD, 281
aggregation, 273
agile alliance, 206
agile development, 205, 215
alternate scenario, 244
Ambient Orb, 553
analytical CRM, 15
Apache, 152
Apache Ant, 545
Apache JMeter, 543
API, 384, 455
applet, 130
application client, 130
application composition model, 82

application programming interface,
384, 455

application server, 8, 19, 20
application service provider, 46, 74
architectural analysis, 279
architectural patterns, 281
architectural prototype, 189
architecture, 95, 180, 189, 278
architecture of integrated

information systems, 181
architecture-in-the-large, 278
architecture-in-the-small, 278
ARIS, 181
ASAP, 443
ASP, 46
association, 254, 298
association class, 300
attention-reactive user interface,

562
attribute-driven design, 281
attributes, 256, 297

B
BAA, 176, 264
BAPI, 102, 455
bar chart, 492, 508, 509
behavioral patterns, 291
benefits from information systems,

69
beta testing, 419
big bang, 414, 441
black-box testing, 390, 393
bottom-up integration, 416
boundary-value analysis, 391, 408
BPM, 182
breakpoint, 421, 424

Index

584

BSP, 33
bug tracking system, 539
Bugzilla, 540, 557
build, 544, 545, 551
build tool, 544
bus topology, 461
business API, 455
business application programming

interface, 102
business area analysis, 176, 264
business blueprint, 444
business logic, 99
business modeling, 192
business process, 157
business process modeling, 182
business systems planning, 33
business-logic level integration, 464

C
CAD, 7
call stack, 421, 424
CAM, 7
CAP, 7
capabilities maturity model, 52
capital budgeting, 89
capital-budgeting methods, 90
captive center, 50, 53
cardinality, 272
CASE tools, 341
cause-effect chains, 92
check in, 535
check out, 535
checklist, 432
chief programmer team, 504
class, 253
class diagram, 253, 288
class library, 384
client-server model, 100
CLR, 138
CMMI, 52
CNC, 7
Cocomo II, 81
code review, 389
coding standard, 545
collaborating team, 528
collaboration diagram, 290
commercial-off-the-shelf

components, 216

common language runtime, 138
communication diagram, 290
component, 130
component model, 129
composite aggregation, 300
composite application, 117, 118,

151
composition, 300
computer aided design, 7
computer aided manufacturing, 7
computer aided planning, 7
computerized numerical control, 7
conceptual class, 254
conceptual model, 254
concurrent version system, 538
condition coverage, 393, 408
configuration, 438
configuration management, 535
construction, 177, 190
container, 131
context diagram, 248, 261
context-based development, 561,

562
continuous integration tool, 550
contract management, 63
control, 315
controlling project work, 510
copy and paste programming, 136
core information systems, 6, 8
cost control, 512
cost controlling, 516
cost drivers, 84, 87
cost estimation methods, 75
cost factors, 62, 72, 73
cost-benefit analysis, 39
COTS, 216
CPM, 488
CPT, 504
creational patterns, 291
critical path, 489
critical path method, 488
CRM, 6, 13
CruiseControl, 553
customer relationship management

system, 6, 13
customization, 2, 439
customizing object-oriented

software, 453
cut-and-paste code detection, 550

Index 585

CVS, 538

D
data definition language, 366
data flow diagram, 259
data model, 264
data modeling profile, 323
database layer, 99
database management system, 7, 16
data-level integration, 462
DBMS, 7
DCD, 297
DDL, 366
debugger, 420
debugging, 420
defect life cycle, 540
defect tracking system, 539
deliverables, 43
dependency graph, 415
dependency relationship, 298
deployment, 194
design, 275
design class, 288
design class diagram, 297, 345
design model, 193, 288
design patterns, 291, 308
design prototyping, 173
design recovery, 470
design specification, 45, 276
develop software iteratively, 198
DFD, 259, 333
disciplines (RUP), 192
doctorJ, 549
documentation, 162, 206, 467
domain concept, 254, 344
domain model, 253, 346

E
EAI, 458
early design model, 84
earned value technique, 513
Eclipse, 547, 557, 564
EJB, 130
EJB container, 133, 134
elaboration (RUP), 189
electronic business, 18, 102
electronic commerce, 18, 102

electronic shop, 18
encapsulation, 97
encyclopedia, 178
engineering, 176
enterprise application framework,

306
enterprise application integration,

458
enterprise architecture, 97
enterprise integration pattern, 465
Enterprise JavaBeans, 17, 130, 145
enterprise portal, 19
enterprise resource planning

system, 6, 8, 13
enterprise service, 116
enterprise service bus, 114, 143,

462
entity bean, 131
entity-relationship model, 330
environment, 196
environmental requirements, 237
EPC, 182
equivalence class, 391
ERM, 330
ERP, 6, 8, 9
ER-relational mapping, 330
error, 393
ESB, 114, 143, 462
event, 452
event handler, 368, 369
event handling, 452
event-controlled process chain, 182
evolutionary development, 166,

169, 191
evolutionary process model, 169,

170
evolutionary prototyping, 171, 174
EVT, 513
extreme programming, 209

F
façade, 292
façade pattern, 468
factoring, 335, 340
factory method, 292
failure scenario, 244
fat client, 101
fearless programming, 407

Index

586

feasibility study, 239
file locking, 536
find, bind and execute, 113
Fit, 412
flexibility, 98
flow diagram, 333
form, 314
formal verification, 388
forms designer, 380
forward engineering, 470
FOSS, 219
four-tier architecture, 104, 127
FP, 77
framework, 305, 307, 453
framework for integrated test, 412
free and open-source software, 219
function points, 75
functional organization, 493
functional requirements, 237, 278,

387
functional testing, 390
function-point method, 77

G
Gang-of-Four patterns, 291
GDSD, 524
GDW, 524
generalization, 256, 273, 324
getter, 360
global software development, 524
globally distributed project, 527
globally distributed software

development, 524
globally distributed work, 524
GoF patterns, 291
graphical user interface, 99, 306,

311
GRASP patterns, 293
gray-box testing, 393
GSD, 524
GUI, 99, 311
GUI framework, 306

H
hardware and software platform,

122
hardware platform, 122

HCI, 309
hidden costs of offshore

outsourcing, 65, 73
hierarchical project organization,

500
hierarchical structure, 98
hierarchy, 98
Hollywood principle, 307, 453
hub-and-spoke topology, 461
human computer interaction, 309
hump-chart diagram, 185

I
IBM Jazz, 563
I-CASE, 343
ICB, 477
IDE, 134, 315, 378
IE, 176, 264
IEEE standard 830-1998, 42
IFPUG, 81
IMG, 445
implementation, 194, 353, 354, 427
implementation guide, 445, 446
inception, 188
increment, 192
incremental development, 167
individual information system, 428
information engineering, 33, 264
information hiding, 98, 105
information strategy planning, 33,

176, 264
information system, 3, 4
information systems architecture,

97
installation, 438
installation testing, 418
instance, 290
intangible benefits, 69
integrated development

environment, 134, 315, 378
integration testing, 414
integration-oriented reengineering,

471
intellectual property, 54, 545
interaction diagram, 288
interface, 384
International Function Point Users

Group, 81

Index 587

interoperability, 147, 152
interoperability testing, 418, 439
invocation coverage, 392
IPMA competence baseline, 477
is-a association, 256
is-a relationship, 273
ISP, 33, 176, 264
issue tracking system, 539, 540,

555
IT doesn't matter, 5
iterations, 192
iterative enhancement, 167

J
Java, 356
Java API, 124, 384
Java application programming

interface, 124
Java bytecode, 124
Java database connectivity, 17, 129
Java development kit, 125
Java EE, 126
Java launcher, 125
Java pet store, 284
Java platform, 123
Java runtime environment, 126
Java SE, 125
Java virtual machine, 124, 125, 126
Java VM, 124, 126
Javadoc, 547, 548
JavaServer Faces, 129
JavaServer Pages, 129, 130
JDBC, 17, 129
JDK, 125
JIRA, 541
JRE, 126
JSF, 129
JSP, 129, 130
JUnit, 410

K
knowledge coordinator, 178

L
LAMP, 152
legacy software, 469

legacy system, 466
level-0 diagram, 261
line-and-staff organization, 497
lines of code, 75
Linux, 152
load-testing tool, 542
LOC, 75
logical architecture, 278
loose coupling, 114
lower CASE, 378, 382

M
macro, 359
macro language, 359
main success scenario, 244
Make, 545
management decisions, 2, 27, 32,

38, 92, 94
manifesto for agile software

development, 206
markup language, 358
matrix organization, 496, 498
MDA, 180
mdISD, 175
message, 105, 108, 143, 289, 290,

459
message queuing, 459
message-driven bean, 131
Microsoft intermediate language,

139
middleware, 114, 143, 458, 459
middleware topologies, 460
milestones, 28, 39, 40, 42
mini-milestones, 43
min-max cardinalities, 272
mobile business, 19, 102, 103
mobile commerce, 19, 102
mock, 414, 416
model-driven architecture, 180
model-driven information systems

development, 175
model-view-controller, 282
model-view-controller pattern, 314
module cohesion, 334
module coupling, 334
module testing, 408, 413
Monte-Carlo simulation, 491
moving target, 481

Index

588

MS Project, 508, 516, 521
MSIL, 139
multi-project management, 518,

520
multi-tier architecture, 102, 104
MVC, 282, 314

N
naming convention, 546
nearshoring, 50
NET

.NET, 136

.NET framework, 137

.NET platform, 137, 138, 151
net present value method, 91
network graph, 492
non-functional requirements, 237,

387
NPV, 91

O
object diagram, 300
object points, 75
object-oriented database

management system, 320
object-relational database

management system, 320
object-relational impedance

mismatch, 319
object-relational mapping, 322
ODBC, 17
offshore coordinator, 529
offshore outsourcing, 50, 67
offshoring, 3, 45, 49, 223
offshoring manager, 529
onsite coordinator, 529
ooDBMS, 320
open database connectivity, 17
open-source development, 26
open-source software, 25, 219
operational CRM, 15
organizational change, 431, 438
OSS, 25, 219
OSS 2.0, 222
outsourcing, 2, 46, 48, 67

P
package diagram, 278, 288
pair programming, 211
parallel operation, 441
parameter, 446, 447, 449
partition testing, 390
path coverage, 392
pattern, 276, 465
pattern collections, 277
pattern languages, 277
peer-to-peer topology, 461
performance testing, 417
persistence layer, 320
personal information management,

23
physical architecture, 279
planning game, 212
platform, 122
PMBOK, 477
PMS, 506
point-to-point topology, 461
portfolio analysis, 34
post-architecture model, 86
PPM, 519
precedence graph, 485
presentation layer, 99
presentation logic, 103
process decomposition model, 264
process dependency model, 265
process model, 482
process quality, 514, 515
process-focused automation, 563
product quality, 514
program exit, 450
program library, 384
program management, 520
program verification, 388
program-level integration, 464
programming, 355
programming language, 355
programming methodology, 355
programming paradigm, 356
project, 475
project approval, 30
project management, 195, 473, 475
project management body of

knowledge, 477
project management process, 476

Index 589

project management system, 506,
520

project organization, 492, 493, 500
project portfolio, 34
project portfolio management, 519
project proposal, 32, 38, 156, 437
projectized organization, 493
prototyping, 171, 191, 241
proxy, 293, 294

Q
quality, 204, 237, 387, 430, 478,

514, 526, 545
quality control, 514
quality control tool, 545

R
rapid prototyping, 171
rapid testing, 393, 400
Rational unified process, 184
RDBMS, 319
recovery testing, 417
re-documentation, 470
reengineering, 469, 470
refactoring, 213, 404, 407
reference model, 444
refinement, 258
regression test suite, 395, 404
regression testing, 394
re-interpreted relationship type, 274
relational database management

system, 319
relationship, 254, 272
release, 442
release engineering tool, 551
reliability, 387, 389
repository, 178, 179, 342, 471, 535,

554, 558, 565
request, 106, 108, 129
requirement, 40, 163, 164, 167,

172, 174, 189, 193, 237, 242,
419

requirements analysis, 242
requirements elicitation, 240
requirements engineer, 243
requirements engineering, 40, 161,

236

requirements evaluation, 242
requirements management, 236
requirements prototyping, 172
requirements specification, 40, 45,

160, 164, 166, 189, 242, 417
requirements validation, 242
resource, 510
resource status report, 518
response, 106, 129
responsibility, 293
restructuring, 470
reuse, 216
reverse engineering, 470, 471
revision control, 534
rich client, 101
risk, 202, 401, 479, 515
risk control, 515
risk management, 59, 64
robustness, 97
role, 500
RUP, 184

S
SA, 259, 333
sandwich testing, 416
SAP, 9
scenario, 244
schedule compression, 491
schedule control, 512
SCM, 6
scope control, 511
scope creep, 481, 511
scoring model, 35
screen scraping, 464
script, 358
scripting language, 358
SD, 177
sequence diagram, 290
sequential process model, 159
service, 105, 113
service consumer, 113
service contract, 113
service lease, 114
service provider, 113
service proxy, 114
service registry, 113
service-oriented architecture, 105,

106, 332

Index

590

servlet, 130
session bean, 131
setter, 360
singleton, 292, 300
size estimate, 74
SOA, 105, 106, 332
SOAP, 108, 332
SOAP message, 108, 110
software architecture, 96, 97, 106
software ergonomics, 309
software platform, 122
software process model, 158
software quality assurance, 387
software reengineering, 470
software requirement, 160
software requirements specification,

40
software version control system,

534
source code management, 534
source control system, 534
SP, 355
SQA, 387
SQL, 366
SRS, 40
stability, 97
standard package, 6
standard software, 6, 46, 428
statement coverage, 391
stepwise transition, 441
stress testing, 417
strong matrix organization, 496,

498
structural patterns, 291
structural testing, 391
structure chart, 334, 338
structured analysis, 259, 333
structured English, 262
structured programming, 355
structured query language, 366
structured specification, 260
Struts, 129
subclass, 256
subcontracting, 46
Subversion, 538
success scenario, 244
superclass, 256
supplementary specification, 251
supply chain, 11

supply chain management, 12
supply chain management system, 6
SVN, 538
swimlanes, 305
system design, 177
system integration testing, 418
system requirement, 160
system testing, 417
system upgrade, 442

T
tangible benefits, 69
task monitoring, 557
task scheduling, 557
task-focused development tool, 555
TCO, 73
TCP project assessment, 62
TDD, 404
team organization, 502
test automation, 400
test case, 391
test plan, 396
test specification, 396
test-case specification, 400
test-driven development, 211, 404,

407
test-first development, 403
test-first principle, 211
testing, 194, 354
testing environment, 204
TFD, 403
thin client, 101
three-tier architecture, 101, 102
throw-away prototyping, 171, 241
tier, 101
top-down integration, 416
total cost of ownership, 73
transaction analysis, 336
transaction center, 336
transition, 54, 64, 191
trustworthiness, 389

U
UDDI, 112
UI, 309
UML, 184
unified modeling language, 184

Index 591

unit test, 211
unit testing, 408
universal description, discovery and

integration, 112
upper CASE, 382
upper CASE tool, 343
usability, 309
usability testing, 418
use case, 417
use-case diagram, 246
use-case instance, 244
use-case model, 189, 245
use-case realization, 287
user, 313
user exit, 450, 452
user interface, 368
user stories, 210
user-interface design, 309, 318
user-interface prototyping, 173, 318
uses relation, 98
utility, 309
utility-value analysis, 435

V
validation, 387
value-based software engineering,

401
value-based testing, 401
VBA, 359
VBSE, 401
verification, 387
version control, 534
version control system, 535, 551
version merging, 536
version-control system, 380
versioning, 168
virtual machine, 99
virtual team, 528
Visual Basic, 357
Visual Basic .NET, 357

Visual Basic for Applications, 359
Visual Studio .NET, 140

W
waterfall model, 164
WBS, 484
web server, 19, 20, 144
web service, 107, 108, 113, 116,

218
web services business process

execution language, 219
web services description language,

108
web services orchestration, 219
web tier, 129
WebSphere, 142
WebSphere application server, 143
WebSphere message queuing, 143
WebSphere Studio, 145, 151
what-if simulation, 491
white-box testing, 391, 393
widget, 315
work breakdown structure, 484
wrapper, 292
WSBPEL, 219
WSDL, 108, 110
WSO, 219

X
X10 module, 552
XML database, 331, 332
XML message, 108, 332
XP, 209

Y
Yellow Pages, 112

