The Maklng of

Information
Systems

Software Engineering
and Management

ina Globalized Worla

@ Springer

The Making of Information Systems

Karl E. Kurbel

The Making of Information
Systems

Software Engineering and Management
in a Globalized World

@ Springer

Karl Kurbel holds the Chair of Business Informatics at the European University Viadrina Frankfurt
(Oder) in Germany

Prof. Dr. Karl E. Kurbel

European University Viadrina Frankfurt (Oder)
Chair of Business Informatics

15230 Frankfurt (Oder), Germany

kurbel. BI@uni-ffo.de

Chapter 9 was contributed by Brandon Ulrich, Managing Director of B2 International, a Budapest,
Hungary, based software company

Brandon Ulrich

B2 International Ltd.
Madach ter 3, Em. III

1075 Budapest, Hungary
bulrich@b2international.com

ISBN: 978-3-540-79260-4 e-ISBN: 978-3-540-79261-1
DOI: 10.1007/978-3-540-79261-1

Library of Congress Control Number: 2008925552

© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Product liability: The publisher cannot guarantee the accuracy of any information about dosage and
application contained in this book. In every individual case the user must check such information by
consulting the relevant literature.

Cover design: WMX Design GmbH, Heidelberg

Printed on acid-free paper

987654321

springer.com

Preface

Information systems (IS) are the backbone of any organization today.
Practically all major business processes and business functions are
supported by information systems. It is inconceivable that a business
firm — or any other non-trivial organization — would be able to operate
without powerful information systems.

This book deals with the question: Where do these information
systems come from? In previous decades, the answer seemed fairly
obvious: An organization would have their IT (information technology)
group, and these people would develop information systems when the
need arose. Most of the early books on business information systems
started from this premise.

While inhouse IS development still has its role in large organizations,
the number of options to obtain an information system has significantly
grown. For example, an organization may choose to contract an external
partner for the development. They may outsource their complete infor-
mation systems development, or even their entire IT department, to such
a partner. The partner can be located onshore or offshore. Many organi-
zations establish captive centers, or they collaborate with offshore soft-
ware companies in India, South America and Eastern Europe. Managing
projects with globally distributed partners today creates additional chal-
lenges for the making of information systems.

Another significant change is that a good deal of large-scale informa-
tion systems development (ISD) has moved from organizations whose
core business is not software to those whose business is software. Fewer
companies than previously actually develop individual information sys-
tems any more. In the business domain, large software vendors such as
SAP, Oracle and Microsoft are providing standard software that already
solves large portions of the problems for which individual information
systems were developed before.

Vi Preface

Since standard software never meets an individual organization's
requirements one hundred percent, the customization of this software
and its implementation in the organization have become major chal-
lenges. This means that much of the effort, time and money spent previ-
ously on information systems development now goes into customizing
the standard software and adapting the organization to the software.

Taking into consideration an increasing number of already existing
information systems, most organizations are facing the problem that any
new system needs to be integrated into the existing IS landscape so that
it smoothly collaborates with the other systems.

With the aforementioned factors in mind, this book examines and
discusses the question of how information systems come into existence
today. Chapter 1 describes typical information systems in a modern
enterprise and which options in the making of information systems an
organization faces. Chapter 2 discusses management issues and deci-
sions regarding the launching of a project, inhouse or external develop-
ment, outsourcing, offshoring as well as the costs and benefits of infor-
mation systems.

The information systems architectures and platforms presented in
chapter 3 play a pivotal role today. Since a new information system will
most likely need to fit with the existing IS, an architecture may either be
prescribed or to some extent need to be developed within the project.
Flexible architectures have recently received much attention with the
emergence of the SOA (service-oriented architecture) approach. Plat-
forms provide the infrastructure for developing and running information
systems.

In the fourth chapter, process models for information systems devel-
opment are presented. Our investigation starts with the waterfall model
and passes on to evolutionary development, prototyping, RUP (Rational
unified process) and agile methodologies such as XP (extreme program-
ming). Special attention is paid to the needs of off-shoring projects.

Chapter 5 focuses on two of the major stages in any development
effort: analysis and design. Hardly any other area has received as much
attention in research and practice as analysis and design. A vast body of
methods and tools are available. We focus on the essential tasks to be
solved in these stages, on modeling with the help of UML (unified
modeling language) and on tools supporting the analysis and design
activities.

In chapter 6, two more important stages are discussed: implemen-
tation and testing. In today's information systems development, these
stages are largely based on automated tools such as IDEs (integrated
development environments), program libraries and testing tools. There-

Preface VI

fore we discuss not only principles and methods but also typical tool
support.

Chapter 7 covers the problem of selecting, customizing and imple-
menting standard software in an organization. Since this standard soft-
ware must collaborate with other software in one way or another, inte-
gration issues are discussed in a section on EAI (enterprise application
integration). A particular problem in this context is integration with so-
called legacy software — i.e. information systems that are not based on
current software technology but must nevertheless continue to operate.

Like many business efforts, the making of an information system is
usually done in the form of a project. The eighth chapter discusses pro-
ject issues, in particular project management and project organization.
Special consideration is given to the fact that many projects are just one
out of many in a project portfolio, and that they may be performed by
globally distributed teams.

Up-to-date tools for professional information systems development
today are presented and evaluated in the final chapter. This includes
tools that support the work of distributed project teams which have team
members collaborating on several projects at the same time.

Before I started to work on this book, it seemed to be a clearly de-
fined and overseeable project. However, as the work progressed, practi-
cally all topics revealed an abundance of facets asking for investigation.
An empirical observation made in many ISD projects came true in this
book project as well: "It takes longer than expected and costs more than
expected."

I would not have been able to complete this book within a finite time
without many people helping me. With sincere apologies to those whom
I might have forgotten, my special thanks go to the following people:

Anna Jankowska developed a template for the layout and formatting
of the manuscript and wrote many intricate Word macros to make it
look like what the reader sees today.

Elvira Fleischer spent months of her life creating figures for the
book and fighting with the template while formatting most of the chap-
ters.

Brandon Ulrich deserves special thanks for many roles, including his
roles as a contributor of essential ideas covered in the book, author of
chapter 9, reviewer of the manuscript and proofreader as well.

Francesca Olivadoti was a valuable help in improving my English
writing. Being actually a student of political science in the UK, she may
have turned into an IS specialist after proofreading the manuscript
twice.

VIII Preface

1lja Krybus helped me with various aspects of process models, mod-
eling with UML and several tools to create reasonable examples (and
figures) in chapters 4, 5 and 6.

Armin Boehm created among other things Visio diagrams and screen-
shots to illustrate standard software implementation and project
management.

Ivo Stankov contributed his creativity in formatting several chapters
using Anna's template and editing figures for the final layout.

Finally I would like to thank my wife Kirti Singh-Kurbel, not only
for her patience and the time I could not spend with her during the past
two years, but also because she contributed practical insights and
experiences from large-scale software development, including project
organization, project management and ISD offshoring, in many
discussions at home.

Berlin, April 2008 Karl Kurbel

Table of Contents

1 THE DIGITAL FIRM 1
1.1 The Role of Information Systems 3
1.2 Information Systems in the Enterprise 6

1.2.1 Enterprise Resource Planning 8
1.2.2 Supply Chain Management 11
1.2.3 Customer Relationship Management 13
1.2.4 Database Management 15
1.2.5 Electronic Commerce and Electronic Business 17
1.3 The Role of Information Systems Development 20
1.3.1 Technological Infrastructure of Information Systems 20
1.3.2 What Happened to ISD? 21

1.3.3 Scenarios for Information Systems Development Today 22

2 MANAGING THE MAKING OF INFORMATION SYSTEMS 27

2.1 Creating the Idea 28
2.2 Management Decisions 32
2.2.1 The Role of Specifications and Documents 38
2.2.2 Milestones and Deliverables 42
2.2.3 Buy, Build or Rent? 44
2.3 Global Options: Outsourcing and Offshoring 48
2.3.1 Offshoring Strategy 51
2.3.2 Offshoring Projects 54
2.3.3 Benefits, Pitfalls and Risks of Offshoring 55
2.3.4 The Costs of Offshore Outsourcing 62
2.3.5 Special Issues of ISD Offshoring 66
2.4 The Business Value of IS: Costs and Benefits 69
2.4.1 Benefits from Information Systems 69
2.4.2 The Cost of Making Information Systems 71
2.4.3 Cost Estimation Methods 74

2.4.4 Cost-benefit Analysis 89

X

Table of Contents

3 INFORMATION SYSTEMS ARCHITECTURE

3.1 What is an Architecture?

32

33

34

35

Common Architectural Patterns

3.2.1 Flashback to System Structures

3.2.2 Three-Tier and Multi-Tier Architectures
Service-oriented Architecture (SOA)

3.3.1 Web Services

3.3.2 Web Services as Building Blocks of a SOA
Enterprise Service-oriented Architecture

3.4.1 Enterprise Services

3.4.2 Key Features of Enterprise SOA (ESOA)
Platforms

3.5.1 Java Platform

3.5.2 Microsoft .NET Platform

3.5.3 IBM WebSphere

3.5.4 SAP NetWeaver

3.5.5 LAMP

4 DEVELOPING INFORMATION SYSTEMS

4.1
4.2

43

4.4

4.5

Starting with a Problem Specification

Process Models and ISD Paradigms

4.2.1 Sequential Process Model (Waterfall Model)
4.2.2 Evolutionary Process Models and Prototyping
4.2.3 Model-driven Information Systems Development
Rational Unified Process (RUP)

4.3.1 Phases 187

4.3.2 Disciplines

4.3.3 Best Practices

Non-conventional Approaches to Information Systems
Development

4.4.1 Agile Development and Extreme Programming
4.4.2 Reuse-oriented Process Models

4.4.3 Open-source Software Processes

Offshoring Process Models

4.5.1 The Offshorer's Perspective

4.5.2 An Offshore Software Company's Perspective

5 ANALYSIS AND DESIGN

5.1

Requirements Engineering

5.1.1 What are Requirements?

5.1.2 Major Tasks of Requirements Engineering
5.1.3 Use-case Modeling and Other RE Methods

95

95

98

98
101
105
107
112
116
116
118
122
123
136
142
147
152

155

156
158
159
165
175
184

192
197

205
205
216
219
223
224
232

235

236
237
239
244

Table of Contents Xl
5.1.4 More UML: Sequence Diagrams and Class Diagrams 252
5.1.5 Other Approaches to Requirements Engineering 259

5.2 Design 275
5.2.1 Architectural Design 278
5.2.2 Designing the Objects (Design Model) 287
5.2.3 Designing the User Interface 309
5.2.4 Designing the Database 319
5.2.5 Other Approaches to Design: SD/CD 333

5.3 Upper CASE 340
5.3.1 Automating Diagrams 341
5.3.2 An Example: Modeling with a CASE Tool 344
5.3.3 On to Implementation 350

6 IMPLEMENTATION AND TESTING 353

6.1 Implementing the Design 354
6.1.1 Programming 355
6.1.2 Implementing the Database 366
6.1.3 Implementing the User Interface 368

6.2 Lower CASE 378
6.2.1 Integrated Development Environments (IDEs) 378
6.2.2 Connecting Upper and Lower CASE 382
6.2.3 Program Libraries and APIs 383

6.3 Testing 386
6.3.1 Establishing Trust: Validation and Verification 387
6.3.2 Testing Principles and Test-case Design 390
6.3.3 Test-driven Development (TDD) 403
6.3.4 Testing Levels and Scope 407
6.3.5 Debugging with a Lower CASE Tool 420

7 IMPLEMENTING STANDARD SOFTWARE 427

7.1 Standard vs. Individual Software 428

7.2 Process Models for Standard Software Implementation 431
7.2.1 Selecting the Vendor and the Product 432
7.2.2 A Generic Process Model 437
7.2.3 A Vendor-specific Process Model 443

7.3 Customizing Standard Software 445
7.3.1 Adjusting Standard Software 446
7.3.2 Extending Standard Software: User Exits 450
7.3.3 APIs and the Hollywood Principle 452

7.4 Integrating Standard Software into the Information Systems
Landscape 457
7.4.1 Enterprise Application Integration (EAI) 458
7.4.2 Patterns for Enterprise Application Integration 465

Xl Table of Contents

7.5 Legacy Systems
7.5.1 Characteristics of Legacy Systems
7.5.2 Integrating with Legacy Systems
7.5.3 Reengineering Legacy Systems

8 SOFTWARE PROJECT MANAGEMENT

8.1 Project Management Overview
8.1.1 Tasks and Processes of Project Management
8.1.2 Project Management Topics
8.1.3 Special Aspects of ISD Project Management
8.2 Project Planning
8.2.1 Activity and Time Planning
8.2.2 Planning the Project Organization
8.2.3 Project Planning with a Project Management
System (PMS)
8.3 Project Execution and Control
8.3.1 Monitoring and Controlling Project Work
8.3.2 PMS Support for Project Controlling
8.4 Multi-project Management
8.4.1 Levels and Tasks of Multi-project Management
8.4.2 PMS Support for Multi-project Management
8.5 Managing Globally Distributed Projects
8.5.1 Managing Global vs. Managing Local Projects
8.5.2 Organization of Globally Distributed Projects

9 TOOLING SUPPORT FOR ISD
(by Brandon Ulrich)

9.1 Fundamental Tools
9.1.1 Software Version Control Systems
9.1.2 Issue and Defect Tracking Systems
9.1.3 Load-testing Tools
9.2 Combining Fundamental Tools
9.2.1 Release Engineering Tools
9.2.2 Quality Control Tools
9.2.3 Continuous Integration Tools
9.3 Project-wide Tools
9.3.1 Task-focused Development Tools
9.3.2 Context-based Development
9.3.3 Process-focused Automation and Tooling
9.4 Summary and Outlook

References
Index

466
466
467
469

473

474
474
477
479
483
484
492

506
510
510
515
518
519
520
524
524
527

533

534
534
539
542
543
543
545
550
555
555
561
563
565

567
583

The
Digital
Firm

The basic question we will answer in this book is: How can an
organization today obtain the information systems it needs? What does
it take to ensure that those systems are of a good quality and that they
work together properly, supporting the needs of the organization?

The type of organization we have in mind is a business firm. How-
ever, the fundamental principles, methods and technologies for creating
information systems discussed in this book are applicable to other
organizations such as nonprofit organizations, government offices, and
municipal authorities.

Initially, information systems development was mainly technical. It
has since evolved into an activity with strong management involvement.
Managerial-level decisions are required throughout the entire process.
One reason for this is that many different ways to obtain an information
system exist today. Managers have to decide which one to follow. For
example, an organization may choose to:

Focus on
business firms

Management
decisions

Software may be
standardized, but
organizations are

not

Customization

Outsourcing

2 1 The Digital Firm

1. develop the system inhouse if it has an IT department with a soft-
ware development group,

2. contract an external partner, a software firm, to develop the sys-
tem,

3. buy or license standard software and implement it within the
organization, provided that standard software matching the firm's
requirements is available on the market,

4. buy or license standard software if it satisfies at least some
essential requirements, and extend that software with internally-
developed components,

5. search the open-source market for complete information systems
or for suitable components, and adapt that software to the needs of
the organization,

6. search for web services available on Internet servers that would
fulfill the desired tasks, and embed those services as part of a an
overall solution tailored to the needs of the organization.

Many more variations and diversifications of these approaches are
possible, as are combinations of these approaches. One observation
from the real world is that standard software rarely addresses the exact
information needs of a particular organization. While the software is
standardized, organizations are not. This is why standardized software
must usually be customized to the organization — entailing minor or
major changes to the software. Some important functionalities may be
missing, while other features provided by the standard-software
developers are superfluous to the implementing organization's needs.

Adapting standard software to the requirements of an individual
organization is called customization. Customizing standard software has
become a common approach to obtaining individual information sys-
tems in most companies today. Different approaches for customization
are in use, e.g. parameterization and APIs (application programming
interfaces). These approaches will be discussed in chapter 7.

An even more fundamental management decision with long-term
consequences is to entirely or partially outsource information systems
development. This is a strategic decision because it influences the
organization's future options on how to obtain new information systems
and run them. Outsourcing means to contract out business functions or
business processes to a different organization — in the context of this
book usually to a software firm — or to a subsidiary.

1.1 The Role of Information Systems 3

When the outsourcing partner is located in a different country or con-
tinent, then this type of outsourcing is called offshoring. Transferring
work to low-wage countries in general, and in the IT (information tech-
nology) field in particular, has recently received substantial attention.
Many organizations hope to benefit from the global distribution of work
by offshoring because it cuts costs. India, China and Eastern Europe are
the preferred locations for offshoring IT work today. In chapter 2, out-
sourcing and offshoring with regard to information systems develop-
ment are discussed in more detail.

Offshoring

1.1 The Role of Information Systems

Information systems are the foundation of doing business today. Most
business firms would not be able to operate without their information
systems. In a similar way, nonprofit organizations, educational institu-
tions, governments, public administrations and many other entities also
rely on information systems.

The term information system (IS) derives from the fact that such a
system deals with information — processing and producing information
and making it available to people or other information systems that need
the information to do their work. The information systems discussed in
this book are used within organizations to support human task solving,
automating some of this work where possible. In business informatics,
information systems are often defined as socio-technical systems, or as
"man — machine — task" systems. These terms indicate that an IS is a
technical solution to a task in which human beings in an organization
are involved, using the information produced, or providing information
to be processed by the system.

Definitions of the term "information system" vary. Depending on the
backgrounds and viewpoints of the authors, some focus more on the
technical perspective, others on the organizational and management
aspects. In the field of management information systems (MIS), for
example, an information system has been defined as a set of interrelated
components that collect (or retrieve), process, store and distribute infor-
mation to support decision making and control in an organization
[Laudon 2007, p. 14].

Businesses rely
on information
systems

Many definitions
of the term
"information
system"exist

Definition:
information
system

IS are composed
of software
elements and
operate within
organizations

All industries
depend on
information
systems

4 1 The Digital Firm

In order to balance technical, organizational and management per-
spectives of IS, we give the following definition:

An information system (IS) is a computer-based system that
processes inputted information or data, stores information,
retrieves information, and produces new information to solve
some task automatically or to support human beings in the
operation, control and decision making of an organization.

The notion of a system implies that there are interrelated elements. In an
information system, these elements may be programs or program mod-
ules, databases, data structures, classes, objects, user-interface forms or
similar entities, depending on the perspective and on the abstraction
level of the viewer. Taking a broader view, organizational units and
hardware components may be included as well.

In this book, we will consider information systems primarily as sys-
tems composed of software elements that are developed by and operate
within organizations. The modeling and development of information
systems, for example, will be discussed from the viewpoint that it is
people who develop the software and use abstract models to do so.
Therefore the final outcome is software that will be used by people in an
organization.

Narrowing the perspective to some extent, we can say that an
information system is a software system. Sometimes the two terms will
be used interchangeably in this book. However, not every software
system qualifies as an information system. Purely technical systems that
do not have any organizational impact — for example software switching
data packets in a GPRS (general packet radio service) network, a com-
piler or a cache manager — are not considered information systems even
though computer scientists tend to call purely technical systems such as
the last one "managers" or "management" systems.

Information systems are playing an increasingly important role in
most organizations today. In many industries, companies depend heavi-
ly on their information systems. Information-intense industries such as
insurance, banking and telecommunications could not survive without
information systems. Some industries would not exist without IS, and
electronic commerce would not have been invented. Firms such as
Amazon, Yahoo, Travelocity, Hotels.com etc. would simply not have
been created without powerful supporting information systems.

Also in traditional industries such as manufacturing and retail, there
is a growing dependence on information systems. Firms need IS for
every part of their business — for their daily operations, for controlling
and reporting, for their strategic planning, and for maintaining their

1.1 The Role of Information Systems 5

supplier and customer relationships. It would be inconceiveable that
General Motors, Siemens, Wal-Mart, Metro etc. are doing business
today without efficient information systems.

Another reason why information systems are so important is that
information technology (IT) accounts for a significant share of capital
investment in modern economies. In the US, for example, investment in
IT has become the largest single component of capital investment — 35
% of private business investment, and more than 50 % in information-
intense industries such as the financial sector [Laudon 2007, pp. 5-6].

It is a well-known fact that efficient usage of information technology
presupposes information systems able to utilize and exploit the features
of the technology. Business productivity can increase substantially and
firms can achieve strategic advantage over their competition by deploy-
ing information systems that support their strategic goals.

However, the importance of information technology as a differentiat-
ing factor in organizational performance has been challenged by Nicho-
las Carr in a famous article entitled "IT doesn't matter" [Carr 2003] and
in his subsequent book "Does IT matter? Information technology and
the corrosion of competitive advantage" [Carr 2004]. Carr argues that
information technology may be bought by any company in the market-
place, so competitive advantage obtained through IT can be easily
copied. Therefore, IT has become a commodity rather than a strategic
factor.

Carr's theses have stirred-up an intensive discussion in the IS and
management communities. Most IS experts disagreed with Carr's
theses, yet one effect of the discussion was the significantly increased
pressure on IT departments to justify the return on information-technol-
ogy investments.

With the question: "Does software matter?" Carr continued his argu-
ment and also classified software as a commodity that will mostly be
developed in software factories in low-wage countries, bought off the
shelf, or obtained as a service on a plug-and-pay basis [Carr 2005].

While some of Cart's observations are certainly correct, the situation
in typical organizations around the world is more nuanced. Complete
off-the-shelf software packages are suitable for standardizable products
such as office programs but not for the heavyweight enterprise systems
managing the business processes of a firm. Even if some components
are purchased as ready-to-install modules or developed in India or
Bangladesh, they still need to be integrated into and adjusted to the
diversified information systems landscape in the organization.

Nicholas Carr:
"IT doesn't
matter"

"Does software
matter?"

Developing IS is
not the core
business

6 1 The Digital Firm

The situation is as outlined in the beginning of this chapter: Some IS
may be developed inhouse, some bought off the shelf, and others
purchased and customized. We definitely agree with one point of Carr's
arguments: Typical business firms whose core business is not software
have reduced the volume of internally developed corporate software
dramatically, sometimes to the extent that they do not develop new
software at all any more. The role of information systems development
has changed — from developing entire new business solutions inhouse to
implementing what others have developed, integrating that with the rest
of the information systems in the organization, and perhaps developing
some supplementary components.

1.2 Information Systems in the Enterprise

Stand-alone
information
systems

Integrated
information
systems

Standard
software,
application
package

Core information
systems: ERP,
SCM, CRM

In the early times of business computing, most information systems
were designed to solve specific problems or support a particular func-
tion, such as MRP (materials requirements planning), payroll or finan-
cial accounting. These were stand-alone systems, developed only to
solve or support the task at hand. They were "islands" not connected
with one another.

A typical enterprise today uses a large number of information
systems. These systems tend to be integrated so that they can work
together. All major business processes are represented in and operated
with the help of information systems. Fewer and fewer companies use
systems that they developed themselves. Instead they work with
standard software, customized and extended to their needs.

With standard software, also called standard packages, we denote a
software system that was developed with the aim of being used by many
organizations. Standard software exists for many problem areas: office
programs, database management systems, enterprise resource planning
etc. When business problems are underlying the software, the terms
business software or application package are sometimes used.

A typical configuration of information systems in an enterprise
comprises at least three large systems as figure 1-1 illustrates: An ERP
(enterprise resource planning) system, an SCM (supply chain manage-
ment) system and a CRM (customer relationship management) system.

1.2 Information Systems in the Enterprise 7

All are built on top of one or more database management systems
(DBMS) — ideally using the same logically integrated database.

Figure 1-1 Core information systems in a typical enterprise

Enterprise resource
planning (ERP)

Supply chain Database Customer
management management relationship
(SCM) (DBMS) management
(CRM)

Technical IS, manufacturing
automation & control

The ERP, SCM and CRM systems are usually standard software that
have been customized according to the requirements of the individual
organization. Nowadays these three types of systems tend to be integrat-
ed: An SCM module, for example, will have access to information
available in the ERP system.

If the company is a manufacturing firm, then technical information
systems and software for manufacturing automation and control will
form an equally significant share of the corporate software as the busi-
ness systems. Ideally, technical systems such as CAD (computer aided
design), CAP (computer aided planning), CAM (computer aided manu-
facturing) and CNC (computerized numerical control) will be well-inte-
grated with the business systems, using the same logical database.

Information systems such as the above are designed to be accessed
by many users at the same time. Previously these systems were run on

CAD, CAP, CAM,
CNC

IS on a network

Application
servers

IS development
means develop-
ment around the
core systems

8 1 The Digital Firm

one computer, usually a large mainframe, and users were connected
through terminals. Nowadays most processing is distributed to various
computers connected by a network. Users access IS functionality as
clients from personal computers, workstations, terminals and other end
devices over the network. This means that the desired functionality must
be available on network servers.

A server providing access to information systems functionality is
called an application server. Before the web age, that term referred to a
server in a client-server based system. Nowadays application and web
functionalities have become closely related. Therefore application ser-
vers and web servers are partly sharing the work, with some overlap,
and many application servers are becoming web based. Well-known
products include BEA WebLogic, Borland AppServer and IBM Web-
Sphere Application Server. Open-source application servers are Apache
Geronimo and JBoss.

Organizations use more information systems than those depicted in
figure 1. Dedicated systems for particular problem areas can be found in
vast numbers. Yet the ones contained in the figure may be regarded as
the core information systems on which today's companies operate. In-
formation systems development today normally means development a-
round those systems. The core systems are already there, limiting the
degree of freedom for new systems or making additional systems un-
necessary because the functionality is available in the standard software.
What can be done and what has to be done is often determined or con-
strained by the requirements of the core systems. Any additional system
must collaborate with the existing ones, in many cases providing data as
input or processing information produced as output by the core systems.

1.2.1 Enterprise Resource Planning

An ERP system
is an
organization's IS
backbone

The most fundamental information system in most organizations is the
enterprise resource planning (ERP) system. An ERP system is a com-
prehensive information system that collects, processes and provides
information about all parts of an enterprise, partly or completely auto-
mating business processes and business rules within and across business
functions [Kurbel 2005]. ERP systems cover all major business func-
tions and processes. They have reached a high degree of maturity

1.2 Information Systems in the Enterprise 9

because they have been around for many years. ERP systems often
originated from former MRP II (manufacturing resource planning) and
MRP (material requirements planning) systems that go back as far as
the late 1960s and early 1970s.

ERP systems are very large systems, so the question may arise
whether an ERP system is actually one information system or many.
ERP systems cover many areas and thus contain many modules.
Originally these modules were more or less separate. A synonym for
standard software was "modular program" because modules covering
certain business functions were only loosely coupled and could be
implemented separately. In this case, we might say that each module is
an information system of its own.

Nowadays the degree of integration between the modules of an ERP
system is so high that the systems appear as one system. For the user, an
ideal ERP system will behave like one enterprise-wide information
system with one database and one common user-interface. Therefore we
consider an ERP system as one information system. Nevertheless such a
system may be composed of many subsystems and many databases, as
long as they are well integrated.

The most common ERP system worldwide is SAP ERP (formerly
SAP R/3). Its wide range of functionalities are illustrated in figure 1-2.
Five comprehensive areas are covered by SAP ERP:

— Analytics (support for strategic enterprise management and for re-
porting, planning, budgeting, analyzing most other areas)

— Financials (financial and managerial accounting)

— Human capital management (employee management, transactions
involving employees, payroll etc.)

— Operations (logistics and production planning and control, inventory
and warehouse management, procurement, sales etc.)

— Corporate services (services supporting employees in real estate
management, incentive and commission management, travel man-
agement and more)

Figure 1-2 shows only the top-level domains supported by SAP ERP.
Each section can be decomposed into many further sublevels. At the
lowest sublevels, very detailed functions for each step of each business
process are provided.

On the market there are many ERP products offering similar func-
tionalities although they may be arranged in different ways. However,
their market shares are rather small. The big players are, after a round of

Is an ERP
system a single
system?

Market leader in
ERP

ERP application
domains

SAP, Oracle,
Microsoft and
open-source

10 1 The Digital Firm

mergers and acquisitions at the beginning of the 21st century, SAP,
Oracle (comprising former PeopleSoft and J.D. Edwards) and Micro-
soft. A number of ERP systems are available as open-source, including
Compiere, ERPS, Openbravo ERP and OFBiz [Serrano 2006].

Figure 1-2

Restrictions set
by the ERP
system

Application domains and modules of SAP ERP [SAP 2007b]

q Strategic Enterprise Financial . . Workforce
Analviics Management Analytics Operations Analytics Analytics
Financials Financial Supply Financial Management Corporate

Chain Management Accounting Accounting Governance
LumagiCapital Talent Management Workforce Process Management Workforce Deployment
Management
Procurement . Inventory and Inbound and .

A Procure- Supplier Transportation

and Logistics . Warehouse Outbound

] ment Collaboration e Management
Execution Management Logistics
Product

Development Production Manufacturing | Enterprise Asset| Product Live-Cycle Data
and Planning Execution Management | Development Management
Manufacturing
Aftermarket Professional- Incentive and
Sales_and Sales Order Sales Service Global _Trade Commission
Services Management .) Services
and Service Delivery Management
Real Estate Enterprise Project Travel |Environment,| Quality Global
Corporate Asset .
Servi Manage- and Portfolio | Manage- | Health and | Manage- Trade
ervices Manage-)
ment ment Management ment Safety ment Services
© SAP AG

Since most systems provide the functionality required for enterprise re-
source planning, businesses usually do not develop information systems
for ERP any more. However, if a company finds that some "standard"
solution provided by the chosen ERP system does not reflect its
individual requirements appropriately, then that company is likely to
look for its own solution. This could be by developing or purchasing a
dedicated information system for the specific problem, extending the
ERP system, modifying its programs, or in other ways working its way
"around" the ERP system.

The new solution has to meet technological restrictions that are set
by the ERP system. These restrictions could be the platform on which it
runs, the programming language (if program code has to be modified),
the database management system etc.

1.2 Information Systems in the Enterprise 11

While the focus of ERP is to support internal business processes,
business activities do not end at the boundaries of the company. Going
beyond these limits is the task of supply chain management (SCM).

1.2.2 Supply Chain Management

The second of the core information systems is an SCM system. Organi- Orﬁ;agiza':ions
. collaborate In

zations are collaborating in supply cha}lns, creating netwo'rks of supph— supply chains

ers and customers over many levels, including the suppliers' suppliers

and the customers' customers, as shown in figure 1-3.

Figure 1-3 Supply-chain processes [SCC 2006]

Suppliers'
Supplier Your Company Customer

Supplier Customer Customer's

Internal or External Internal or External

Businesses have become increasingly specialized. They concentrate on A firm's perfor-
their core competencies, outsource secondary activities and purchase Omnaﬂgzgsgsnds
assemblies rather than manufacture them themselves. Consequently, chains
effective supplier-customer networks have become crucial for success.

The performance of a firm depends heavily on the smooth functioning

of the supply chains to which it belongs. No matter how efficient

internal processes and the supporting ERP system are, if the supplier of

a critical component, or that supplier's supplier, or a supplier further up

in the chain fails to deliver properly, the company will not be able to

perform as it thought it could. This effect is illustrated by figure 1-3.

12 1 The Digital Firm

SCMlooks atthe Therefore, a natural extension of ERP is supply chain management

g:‘:t"r?grs: [Ayers 2001]. SCM considers the organization's business partners, in
particular the suppliers and their suppliers. In addition, many method-
ological and technical shortcomings of ERP have been removed or at
least improved in SCM. These improvements are known as APS (ad-
vanced planning and scheduling) [Meyr 2002] and are implemented in
SCM solutions by SCM vendors.

Figure 1-4 Relationship between SCM and ERP [Corsten 2001]

* Procurement * Order
planning management

= + Production > _ + Shop-floor
c planning] control
c -—
% 5
o + Distribution o + Distribution
-% planning £ control
5 2
> » Transport (; » Transport
S planning g control
(/3) S

 Sales planning < n

ERP system

SCM system

1.2 Information Systems in the Enterprise 13

Supply chain management and enterprise resource planning are closely
connected. This is due to two facts: In a supplier-customer network,
many results provided by ERP are needed as input for the SCM system
and vice versa. Secondly, the same functions are sometimes needed in
both systems. There is a natural overlap between ERP and SCM
functionality. In closely coupled solutions (e.g. SAP SCM [SAP 2005b]
and SAP ERP), the SCM system may even invoke functions of the ERP
system.

Like ERP systems, SCM systems support all levels of planning and
control, from long-term strategic planning (such as setting up a supplier-
customer network) to execution of daily operations. Figure 1-4 shows
the relationship between ERP and SCM systems on the mid-range
planning and control level. Dedicated planning functions are found in
the SCM system, whereas control functions are often the same as in the
ERP system. In addition, there is close interaction between the two
systems because they often use the same data.

SCM and ERP
are connected

Planning and
control levels in
SCM

1.2.3 Customer Relationship Management

The most recent member of a typical business information systems suite
is a customer relationship management (CRM) system. CRM is an
integrated approach to identifying, acquiring and retaining customers
[Siebel 2006]. Some authors consider good customer relations the most
valuable asset of a business firm. While marketing and management
have always placed high importance on customer relationships, the
business's information systems have not supported this view until the
late 1990s. Previously, valuable customer information was distributed
and maintained in various information systems — in the ERP system, in
e-commerce, call-center, customer-service systems, and more.

The need to place the focus on customer relationships arose when
marketing, sales and service departments developed new channels be-
yond traditional ones such as retail stores and field sales: websites (elec-
tronic shops), e-mail ordering, call centers, mobile commerce, push
services etc. The number of sources of customer information grew. It
became increasingly difficult to find, maintain and update customer in-
formation efficiently and consistently. Analyzing customer data for
marketing in a unified way, in order to generate more value for the firm,

CRM: identifying,
acquiring and
retaining
customers

Managing
customer
interactions

14 1 The Digital Firm

was not possible. By enabling organizations to manage and coordinate
customer interactions across multiple channels, departments, lines of
business and geographical regions, CRM helps organizations increase
the value of every customer interaction and improve corporate perform-
ance.

Figure 1-5

Definition of a
CRM system

Sources and uses of customer information [Siebel 2006]

Customer Relationship Management

Website Analytics —
E-mail

l«— Call center |

Customers Customers Back office
information

<« Field staff 0

Operations:
Partners SFA, EMA, CSS [

A CRM system is an information system that is used to plan, schedule
and control the presales and postsales activities in an organization
[Finnegan 2007, p. 4]. The goal of CRM is to improve long-term
growth and profitability through a better understanding of customer be-
havior. CRM includes all aspects of dealing with current and prospec-
tive customers: call center, sales force, marketing, technical support,
field service etc. All customer information from these sources is collect-
ed and maintained in a central database as illustrated in figure 1-5.
Marketing, sales and service departments access the same information.

1.2 Information Systems in the Enterprise 15

A typical "back office" system the CRM system is connected to is
the company's ERP system. CRM systems are sometimes called "front
office" systems because they are the interface with the customer.

CRM systems are composed of operational and analytical parts.
Operational CRM includes in the first place support for:

— SFA (sales force automation — e.g. contact/prospect information,
product configuration, sales quotes, sales forecasting etc.)

— EMA (enterprise marketing automation — e.g. capturing prospect and
customer data, qualifying leads for targeted marketing, scheduling
and tracking direct-marketing etc.)

— CSS (customer service and support — e.g. call centers, help desks,
customer support staff, web-based self-service capabilities etc.).

Analytical CRM consolidates the data from operational CRM and uses
analytical techniques to examine customer behavior, identify buying
patterns, create segments for targeted marketing, identify opportunities
for cross-selling, up-selling and bundling, and separate profitable and
unprofitable customers. This is done with business intelligence tech-
niques such as OLAP (online analytical processing) and data mining,
based on a data warehouse.

In addition to operational and analytical customer relationship man-
agement, many CRM systems include components for ERM (employee
relationship management) and PDM (partner relationship management).
This is due to the fact that employee performance and partner (e.g.
dealer) performance are closely related with customer relationships.

Connections between CRM and various parts of enterprise resource
planning are quite tight. That is why ERP vendors also provide CRM
systems which interoperate with their respective ERP systems. It is not
surprising that the long-time market leader in CRM, Siebel Systems
[Siebel 2006], was bought by Oracle in 2006.

"Back office" and
"front office"
systems

Operational
CRM: SFA, EMA,
CSS

Analytical CRM

ERM, PDM

1.2.4 Database Management

All of the above information systems handle large amounts of data.
Only in the early days of business information processing were these
data stored in program-related data files. Early MRP (material require-

Definition:
database
management
system

Most DBMSs are
relational

Database
management
systems on the
market

Interfacing with
an RDBMS

16 1 The Digital Firm

ments planning) systems, for example, had quite sophisticated file or-
ganization systems. However, today all non-trivial business information
systems store their data in databases.

The roots of database management systems go back to the 1960s and
1970s, so it is not surprising that today's systems have reached a high
level of maturity. The functionality of a modern DBMS comprises a lot
more than just storing and retrieving data. For example, database
schemata can be generated automatically from models. Visual tools for
semantic data modeling, for creating graphical user-interfaces and for
querying the database, as well as a workflow management system and
much more are provided. In fact, Oracle's entire ERP functionality is
largely based on tools around Oracle's database management system.
This is not surprising as Oracle Corp. is one of the world's largest
DBMS vendors.

A DBMS is an information system that handles the organization,
storage, retrieval, security and integrity of data in a database. It accepts
requests from programs or from end-users, processes these requests and
returns a response, e.g. transferring the requested data.

Most of today's database management systems are relational systems
(RDBMS). With the emergence of object-oriented analysis, design and
programming, RDBMS were extended to accommodate not only data
records but also objects, thus realizing object persistence. Notwithstand-
ing the existence of dedicated object-oriented DBMS, the majority of
business information systems use RDBMS.

There are many relational database management systems on the
market. Oracle (Oracle Database), IBM (DB2), Microsoft (SQL Server)
and Sybase (Adaptive Server Enterprise) have the largest market shares.
MySQL and PostgreSQL are popular open-source products. A widely
used DBMS for end-users, but not for large professional business
systems, is Microsoft Access.

A major achievement of more than four decades of business informa-
tion processing was the decoupling of application systems and database
management systems. In earlier times the programs of an MRP II or
ERP system, for example, referenced the DBMS directly. Since each
vendor's DBMS implementation had its own extensions and modifica-
tions of the SQL (structured query language) standard, the application
system and the database management system were tightly coupled.
Portability of a database — and thus of an entire ERP system, for exam-
ple — was a difficult, sometimes impossible task.

Nowadays an RDBMS supports common interfaces with standard
access methods. Programs now invoke operations provided by the
interfacing technology instead of directly accessing the database

1.2 Information Systems in the Enterprise 17

management system. Portability has significantly improved in this way.
Standard technologies and access methods are:

— ODBC (open database connectivity), providing access to databases
on a network for Windows programs,

— JDBC (Java database connectivity), allowing Java programs to
access a relational database via the SQL language,

— Java EE/EJB (Java enterprise edition/Enterprise JavaBeans), giving
higher-level access to a database than JDBC, using EJB entity beans,

— XML (eXtensible markup language) enabling, providing standard
access methods for navigation and queries in XML. Data are extract-
ed from a database and put into XML documents and vice versa.

The functionality of a professional DBMS is provided on a server. Like
an application server for the business functionality, a database server is
connected to a network. ERP, SCM and CRM functions access the
server over the network. Human users such as database administrators
and end-users also reach the server over the network.

1.2.5 Electronic Commerce and Electronic Business

With the explosive growth of the Internet, organizations began to em-
ploy the web to do business. Many organizations developed web-based
systems to present themselves and to advertise and sell their products.

This posed a major problem since web technology is quite different
from the conventional information systems technology the back-office
systems are based on. Web-based systems are written in HTML (hyper-
text markup language) and in software technologies extending HTML,
whereas a typical ERP system is written in a language such as Java, C,
C++, Cobol etc. and strongly relies on a database management system.

Two lines of development emerged: 1) dedicated web-based infor-
mation systems and 2) web-based front-ends for the core back-office
systems. In the beginning, web-based systems were stand-alone sys-
tems, not integrated with the business processes and the ERP/CRM
systems of the company. This was not only a technological problem but
also an organizational one.

Web technology
is different from

conventional IS

technology

Electronic
commerce

Data redundancy
between ERP
and e-commerce
systems

Electronic
business

18 1 The Digital Firm

Electronic commerce (e-commerce) refers to the process of buying
and selling products or services over a digital network. Usually it is
assumed that this network is the Internet and that the products or
services are offered via the World Wide Web. An electronic shop (or a
web shop) is an information system that presents products and services
in a product catalog. It lets customers add products to a shopping cart
and complete the purchase with a financial transaction. Product config-
uration, personalization and many more features may be included.

A fundamental problem in the development of an electronic shop is
that most of the data involved are available in the company's database or
have to be stored in that database. Therefore, the shop system needs to
access the database. Technologies to access a database from an HTML
based user interface are available, for example invoking stored proced-
ures of the database from ASP (Active Server Pages) or JSP (JavaServ-
er Pages) scripts. Yet the script code is likely to contain redundant data-
related functions that are implemented in the ERP system anyway. If the
ERP system and the electronic shop are not integrated, this redundancy
cannot be avoided. Many more problems may arise from the lack of
integration.

Until today, e-commerce systems were often developed as individual
solutions, without employing standard software. Ready-made shop
solutions with tools for adaptation to company specific features are
available, yet many organizations prefer tailor-made systems developed
inhouse or by a web design agency.

Electronic business (e-business) takes the concepts and technologies
of e-commerce into the inside of the business firm and into the business
relations with partners. E-business is business performed with the help
of digital networks, based on Internet, intranet, and web technology. E-
business comprises all the business processes in the company, including
processes for the internal management of the firm and for coordination
with suppliers, customers and other business partners. E-commerce is a
part of e-business.

One of the implications of e-business for information systems and
their relationships is that system communication and interaction with
users are now increasingly based on Internet protocols and languages
instead of proprietary communication mechanisms. For example, a
typical graphical user interface (GUI) of an ERP system in the past was
based on forms that were generated with a tool provided by the ERP
vendor. Using web technology in e-business now means that the user
interface will not be created in a proprietary GUI technology but written
in HTML or created with a tool that generates HTML forms. Likewise,
data communication between systems or system modules is moving to

1.2 Information Systems in the Enterprise 19

Internet technologies. Data are increasingly transferred in XML format,
not only between web-based systems but also for accessing databases.

Another implication is that organizations provide portals for their
employees, for business partners such as customers and suppliers, and
for the general public. An enterprise portal is a website that serves as a
single entry point or gateway to a company's information and knowl-
edge base for employees and possibly for customers, suppliers, partners,
or the general public. In modern architectures, access to the functional-
ity and data resources of the core business information systems is also
provided through portals. This means that systems for ERP, SCM, CRM
etc. have to be coupled with a portal — another challenge where web
technology and conventional software technology meet.

Since electronic commerce and electronic business usually employ
web technology, the basic pattern of client requests and server responses
applies. This means that e-commerce/e-business information systems
need a web server. If they are integrated with the core information sys-
tems that run on an application server, then both a web server and an
application server will be present. The two servers communicate with
respect to application functions and data. Since the functionalities of
web and application servers are overlapping, a division of labor between
the two has to be established.

E-commerce and e-business started as approaches employing cable-
based networks and desktop computers. With the emergence of wireless
networks and end devices capable of receiving, displaying, and trans-
mitting data at reasonable speeds — mobile phones, PDAs (personal dig-
ital assistants), pocket PCs — a performance similar to that available on
stationary computers was desired for mobile workers and their mobile
devices.

Mobile commerce (m-commerce) and mobile business (m-business)
are the counterparts of e-commerce and e-business when the respective
activities are based on the use of mobile appliances and wireless
network technologies. Such technologies are, for example, UMTS (uni-
versal mobile telecommunication system), i-mode (an NTT DoCoMo
technology [NTT 2006]), GPRS (general packet radio service), HSCSD
(high speed circuit switched data) and GSM (global system for mobile
communication).

Implementations of mobile-commerce and mobile-business systems
vary significantly, depending on the type of network, the protocols
available on the mobile devices, and the computing power of the
devices. While early mobile phones were more or less "dumb"
terminals, just capable of displaying simple data on WML (wireless
markup language) cards, many modern phones have XHTML MP

Coupling ERP,
SCM, CRM with
an enterprise
portal

Web server and
application
server

Mobile
commerce,
mobile business

20 1 The Digital Firm

(eXtensible HTML mobile profile) browsers or are Java enabled. This
means, for example, that they can serve as "fat" clients and execute Java
programs themselves.

1.3 The Role of Information Systems Development

Summing up the discussion in the previous sections, the environments
of business information systems are quite diversified. We start the
examination of the role of IS development today with a discussion of
the technological infrastructure of information systems.

1.3.1 Technological Infrastructure of Information Systems

Network
protocols

Typical features that many organizations share are summarized in figure
1-6. While the back-ends are more or less similar, the front-ends differ
substantially. The core information systems of an enterprise are usually
built on top of a database management system. DBMS functionality is
available on servers on a network. The business functionality of a firm's
information systems is provided by application servers that are also
accessible over the network. If the network is the Internet and web
technology is used, then web servers talking to the application servers
have to be integrated.

Users access information systems from end devices, typically over a
network. If the network is a stationary one, then TCP/IP (transmission
control protocol/Internet protocol) and HTTP (hypertext transfer proto-
col) for Internet/intranet and web based systems, or proprietary proto-
cols for conventional systems are used. In the wireless networks
mentioned above, data are transported via HTTP, WAP (wireless access
protocol) or Java ME (Java mobile edition) technology between the
end-user's device and the web server.

1.3 The Role of Information Systems Development 21

Figure 1-6 Technological infrastructure of information systems

|

=
:
1 e
o 1 .
S TCP/IP
HTTP
LT Proprietary
P protocols

Wireless network

e
Application
servers Wired
network
—
Web
servers |

Business
functionality
Database
servers

1.3.2 What Happened to ISD?

After the previous discussion, one might be tempted to ask: What is left "Does ISD
of information systems development (ISD) if "everything is there?" matter?
Information systems development used to be a classical discipline and

an integral part of business informatics, computer science and informa-

tion systems programs. Doesn't ISD matter any more?

The "nothing is
there" hypothesis

Is everything
there?

22 1 The Digital Firm

The answer is that the focus of ISD has shifted. In the past, the study
of and approaches to the development of information systems started
from the assumption that "nothing is there." Or more precisely, the basic
assumption was that the organization either did not have an IT based
solution, or that it had an old information system and wanted to replace
it with a new one. In the first case, the organization would start its
development efforts from scratch; in the latter case, it would develop a
new and better system based on an analysis of the old one.

The "everything is there" view in fact needs a closer look. First,
where does "everything" come from? Of course, there are professional
organizations that still develop large-scale standard software such as an
enterprise resource planning system, a database management system
and others.

Second, not really "everything" is there. There are gaps in the stan-
dard solutions provided by the vendors of application packages. The
gaps have to be filled by individual information systems. Likewise,
additional IS are needed when new requirements arise. For example,
organizational requirements may change with business strategies, mar-
keting needs, emerging new technologies etc.

1.3.3 Scenarios for Information Systems Development Today

Obviously the situation regarding information systems development is
different in organizations whose core business is not software, and in
those whose core business is software.

User organizations

One characteristic of the first category (user organizations) is that the
development of new information systems has significantly decreased.
Nowadays, organizations develop fewer systems on their own, or none
at all any more. Instead, they employ standard software and technolo-
gies as summarized in figures 1-1 and 1-6, and adapt and extend the
standard software. New, more powerful, and perhaps better versions of
the software can be obtained when the vendor provides a new release,
and if the organization decides to buy and implement that release.

More precisely, five idealistic scenarios for ISD can be distinguished.

1.3 The Role of Information Systems Development 23

Scenario 1: Patchwork and niches

An organization licenses and implements standard software and cus-
tomizes that software with the help of the customization tools available
for the software, e.g. parameterization or model-based generation. Miss-
ing features are added via APIs (application programming interfaces).
This means that some parts of the overall solution are developed specifi-
cally for the individual organization, either inhouse, by a software firm,
or by the vendor of the standard software.

If an entire problem area relevant to the organization is not covered
by the standard software, then a complete information system will be
developed either inhouse or by a partner (see scenario 4), or purchased
from a different vendor. This new system has to fit the rest of the
company's information systems, not only regarding technology but also
integration on a logical level. Restrictions and requirements for the new
IS are set by the organization's information systems architecture. If the
new system does not match those restrictions and requirements, bridges
have to be built to make the new and the existing systems compatible
("bridge programming"). Connecting software products from different
sources or vendors can be a non-trivial development problem.

New releases of the standard software may create problems for add-
on systems so that those systems need to be modified.

Scenario 2: Personal information management

Definitely not all tasks at all individual workplaces in an organization
are supported by standard business information systems, yet most
people today use a personal computer for their daily work. Almost all
white-collar workers do, as do many blue-collar workers as well. Many
workplace related tasks, on the personal level, are solved with the help
of office programs.

While simple problems may be addressed using those tools directly,
more complicated tasks require the development of programs (often
called "macros") or entire information systems. With end-user oriented
tools and languages, workers can develop themselves, or have someone
develop for them, quite powerful information systems based on Micro-
soft Excel and Access, for example. Excel and Access support end-user
development through visual tools and the VBA (Visual Basic for Appli-
cations) language. As the level of IT education in the business world is
increasing, adept professionals may also develop larger solutions for

Customizing

Extending
standard
software

Development by
end-users
through visual
tools and IDEs

A typical
example is data
analysis

Development of
standard soft-
ware rarely starts
from scratch

Existing systems
limit the degree
of freedom

24 1 The Digital Firm

their individual tasks in a convenient IDE (integrated development
environment) such as Visual Studio .NET.

Typical examples of personal information management are end-user
systems for data analysis. Using data provided by one of the standard
business systems, an information system in Excel based on pivot tables
may be employed at the workplace to analyze the data and create nice-
looking charts. Many ERP, SCM, and CRM systems today provide
download and upload features and interfaces for office programs such
as Excel, Access, and Outlook. SAP and Microsoft even developed a
common software (called Duet; http://www.duet.com) to enhance inte-
gration of SAP application software (such as SAP ERP) with personal
information management (based on MS Office Professional).

Software organizations

By software organizations we denote professional software firms that
live off producing and selling software, as well as IT departments, soft-
ware development groups and subsidiaries of large organizations whose
primary task is to produce and maintain software for their parent organ-
izations. A special type of software organization, with blurry edges, are
loose networks of developers that create open-source software.

Scenario 3: Large-scale development

Entire information systems such as ERP, SCM or CRM systems are
usually created by organizations that have the financial power to invest
large amounts of money in standard software development and receive
the returns only after some years.

Although this type of development is not constrained by an existing
inhouse IS landscape like a user organization has, development rarely
starts from "nothing is there" either. Unless the problem domain is a
completely new one, some older system or at least some modules are
likely to exist already. If an ERP vendor, for example, decides to set up
a new ERP system, then that company probably has experience in the
field from selling such a system. Since not all parts of the old system
will be obsolete — a bill-of-materials processor, for example, will always
process bills of materials in the same way — some of the old program
code is likely to survive into the new system.

Upgrading an existing system is more common than developing an
entirely new system from scratch. New versions or releases are prod-
uced based on the existing system, adding new features and revising and
improving old features. This limits the degree of freedom rather heavily.

1.3 The Role of Information Systems Development 25

The new release has to run in the user organization's social and technol-
ogical environments, often in identical environments as the old releases.
New systems and releases are often subject to the constraint that
interfaces for industry-standard systems in adjacent areas have to be
provided. An ERP system, for example, needs interfaces for Siebel
CRM, and any non-ERP system will require interfaces for SAP ERP.

Scenario 4: Custom information systems

Although really large information systems are usually standard software
(scenario 3), this software may need to be substantially extended for an
individual organization. Likewise, entirely new, individual information
systems may be needed to fill gaps not covered by the standard soft-
ware. These types of development are often contracted to professional
software organizations. That organization will carry out the develop-
ment, working together with employees of the user organization at
various levels and stages.

If the user organization has their own IT staff, a typical division of
labor is that these people do the requirements engineering and produce a
requirements specification document (cf. section 2.2.1). The software
vendor will design the system, develop it and deliver it to the customer.
There it will be tested and evaluated by business and IT staff.

Scenario 5: Open-source development

Open-source software (OSS) is software that is available as source code
to the public free of charge. All types of software exist as open-source:
operating systems, database management systems, web servers, office
programs, and even business information systems such as ERP and
CRM systems.

The development of OSS comes in many variations. OSS is typically
developed around a nucleus — a software system — that was initially cre-
ated by an organization or individual and then made available to who-
ever is interested in the code. Many developers around the world revise
the code and contribute additional code. Some OS systems started out
from hobbyist programming by individuals who wanted to do good to
the world (or perhaps bad to capitalist organizations exploiting the
world through costly software). Other OSS was initially created by pro-
fessional organizations and then made available to the rest of the world.
The primary reason for doing so is normally not altruism but to earn
money from services and software based on the OSS.

Software
company and
user organization
working together

Sources of 0SS
systems

Open-source
development is
incremental and
iterative

26 1 The Digital Firm

Open-source development goes on in an incremental and iterative
way. Since many people or organizations are involved, revising and
contributing code, there are usually rules of how new versions of the
software become public — sometimes strict rules, sometimes loose rules,
sometimes practically no rules. Nevertheless, anyone interested in OSS
may download the code, use it, incorporate it in their own systems, and
build new systems based on that code. Legal obligations may have to be
fulfilled when revenue is earned from the new systems (see section 4.6).

Outlook

All five scenarios are simplified abstractions of real-world situations,
yet they are useful to distinguish different types of information systems
development.

Scenario 4 is the one that comes closest to what was underlying clas-
sical ISD. Scenario 2 will not be covered in this book. Scenario 1 is the
dominating scenario for most user organizations today. Many of the
methods and tools discussed in this book apply to large-scale develop-
ment by software organizations (scenarios 3 and 4) as well as to devel-
opment around standard software (scenario 1).

While pure OSS projects (developing open-source software within
the OSS community) are not the focus of this book, the use of OSS
systems or modules within large-scale professional systems (scenario 3)
and within custom information systems (scenario 1) is an increasingly
important aspect.

Managing
the
Making

of IS

The making of an information system is subject to management deci-
sions. Managers are involved in different stages and at different times,
making decisions before and during the project. Speaking of "manage-
ment" in the context of making information systems, at least two levels
of management decisions have to be distinguished: senior management
and operational management decisions.

Senior management decisions
Senior managers decide whether an information systems project should

be started or not. They set the overall framework for the project in terms
of budget, resource allocation, staffing, time limits etc.

Examples of
management
decisions

High project-
failure risk

Project
management

28 2 Managing the Making of Information Systems

Management decisions may also need to be made in the course of the
project. Should more resources be allocated if the project is late or if the
results so far are not good enough? Should we continue with the project
or cancel it before more money goes down the drain? Decisions like
these have to be based on examinable intermediate results and points in
time, so-called milestones.

Starting, continuing and cancelling a project are highly critical
management decisions since the failure risk is rather high. According to
industry surveys, only about 30 % of all application software develop-
ment projects are considered successful [Standish 2004]. Close to 20 %
are failures, i.e. they are cancelled prior to completion or completed but
never used. The remaining 50 % are challenged — not delivered on time,
with cost overruns, lacking features, or not meeting expectations.
Notably almost half of the challenged projects exceed their budgets.

Operational management decisions

Operational managers, in particular project managers, are the ones who
run a project once it has been decided. Their tasks include project
planning, allocating and assigning personnel, scheduling activities using
appropriate techniques (e.g. network planning techniques, Gantt charts),
controlling costs and time, and more. Project managers also need
milestones to help them do their jobs efficiently, e.g. to control time and
costs. Usually, their milestones are fine-grained whereas for senior
management, milestones are on a higher aggregation level.

In this chapter we will focus on decisions that involve the senior
management of a firm although there is certainly some overlap with the
tasks of operational managers. (Project management will be discussed
in a separate chapter later in this book.)

2.1 Creating the Idea

(Better) solutions
desired

Where does the initiative for a new information system come from? A
generic textbook answer to that question is: Someone detected a prob-
lem or an unsatisfactory situation and is looking for a (better) solution

2.1 Creating the Idea 29

which can be supported or provided by an information system.
Examples of such problems or situations are:

The marketing department feels that the company is reacting far too
slowly to changing customer demands, mainly because it does not
receive consolidated sales figures by products and sales regions in
real-time. Successful competitors perform better because they
apparently have efficient customer response systems that provide
such information.

A business process in the organization is not flowing smoothly. The
problem is not the business process because that was just recently
reengineered. The problem seems to be that the existing informa-
tion systems do not support the new workflows smoothly.

New strategic opportunities open up with the emergence of new
technologies. For example, to be able to sell products over the
Internet requires significant extensions of the conventional informa-
tion systems landscape.

Target groups demand new product or service features. Imagine the
rise of a new fad: Young career-orientated business professionals
will suddenly only wear tailor-made clothes, yet bought off the
shelf. Fashion stores will immediately need powerful "configura-
tors", translating measurements automatically into production
orders and NC (numerical control) programs, and powerful logistics
systems that deliver the clothes within an hour or two to the shop.

Business software vendors create, or jump onto a new trend, prom-
ising significant benefits to their customers and offering solutions
for the underlying problems. Companies fearing to miss the train
join-in.

Industry associations address problems and propose new approach-
es, solutions or information systems to their members. This is often
the case with small and medium-size enterprises that do not have
the manpower and/or knowhow to observe the information systems
market and technological trends.

Another starting point for partly new or entirely new information
systems is when new technologies for software or hardware are
introduced to the market. Gradually the hardware or software vendors
the firm is depending on will increase pressure upon them to migrate to
the new technology, because eventually they will not support the old
platforms any more.

New
technologies
trigger new IS

New
technologies
enable new
solutions

Management
involvement

Project idea is
created by ...

Senior
management

30 2 Managing the Making of Information Systems

For the user organization this means that existing systems have to be
ported to the new hardware or software environment. Since some pro-
gramming will be involved in that process anyway, modifications of the
old programs to cope with new requirements might be added at the
same time.

An even more typical situation is that software vendors offer not only
new technology but also new solutions based on that technology. That
is, they provide new and better information systems than the old ones,
using the new technology. For example, when SAP introduced the
NetWeaver platform, a new IS architecture (ESOA — enterprise service
oriented architecture) and new solutions to business problems that were
not available before (xAPPS — SAP's version of packaged composite
applications [Woods 2006]) were also introduced. User organizations
that decide to migrate to the new technology can benefit from those new
solutions.

Setting up an information system project costs money, and justifi-
cation of that money is demanded throughout the project. Management
involvement in a project is considered a critical success factor. The
better the senior management's understanding of the project is, the better
the expected results can be. A management standpoint like "I don't
understand that technical stuff anyway" is not unusual but problematic
for any IT project.

Creating awareness and justification can be difficult for the promo-
tors of a project. If there is no clear understanding of the potentials and
restrictions of information technology, then expectations are bound to
be vague and sometimes exaggerated. Competing interest groups in the
organization may try to influence the decisions of senior management
regarding project acceptance, funding and planning in their respective
directions.

Tasks to be solved and obstacles to be overcome in the process of
obtaining project approval and funding depend on the degree to which
senior management and departmental management were involved in
creating the initiative for the project. A somewhat simplified differen-
tiation of tasks is the following, as summarized in figure 2-1.

The project idea was launched by senior management. In this case
there is no need to create awareness of the problematic situation
nor to convince the management of the necessity of the new sys-
tem. However, before a project is agreed to, a cost-benefit analy-
sis and estimates regarding expected project costs and duration
will still be requested.

2.1 Creating the Idea 31

2. The project idea was born in a department of the business firm — Business
or looking at a software company, by the marketing department department
looking for new business opportunities. In this case the senior
management needs to be convinced of the project idea. A project
proposal for the management will be produced in addition to a
cost-benefit analysis and cost and time estimates.

3. The project idea originated in the IT department. This case has IT department

more obstacles to overcome. In the first place, the potential users
in the company department(s) and their departmental managers
have to be convinced. When the department's management is be-
hind the project, then the senior management can be tackled. Pro-
ject proposals may be needed for both the departmental manage-
ment and the senior management. Costs, benefits and duration
have to be assessed as in the above cases.

Figure 2-1 Levels of project approval and tasks involved

Project Stakeholders Tasks
initiator to convince involved

Cost-benefit analysis

Senior —

management Cost & time estimation
Departmental Senior Project proposal
management — management

IT [—

management

Software = T Selling proposition
vendor management

4. The idea for a new information system comes from a software Software vendor
vendor. This is basically the situation when a vendor seeks to sell
a new product. Assuming that the user organization has an IT
department, the first step might be to bring the CIO (chief infor-
mation officer) and the IT managers on the vendor's side. IT per-
sonnel may have reservations about new systems and technologies

32 2 Managing the Making of Information Systems

because they are used to the current situation and would require
additional training. On the other hand, IT personnel tend to be
interested in new technologies, so fewer problems can be expect-
ed from this side. Once the IT department is in line, the further
steps are the same as in point (3).

2.2 Management Decisions

Project proposal

Typical decisions made by senior management are the decisions a) to
set up a project, b) to redefine project goals and conditions after some
time, and c) to continue or cancel a project, if it is not successful or for
other reasons. In this section, the underlying decision problems are
discussed.

Along with the decision to set up a project, management may be
faced with another question: How and perhaps where should the project
be done — develop the system inhouse, let a software firm develop, or
buy from a software vendor? These questions will be addressed in
section 2.3.

a) Setting up a project

Unless the initiative for a project was born by the senior management
itself, the decision makers have to be convinced of the necessity of the
project an/or the expected benefits. A common way to start the approval
process is to write a project proposal. Such a proposal describes the
objectives, the expected benefits, costs, risks, and the time frame of the
project.

Management will evaluate the proposal against the business goals.
Does the proposed information system match the firm's business strat-
egy? Does it support the critical success factors? Which goals are better
achieved if the project is successfully completed? Methods and tech-
niques to answer those questions are available. Common approaches
that have been used in practice for many years are business systems
planning and information strategy planning.

2.2 Management Decisions 33

Business systems planning (BSP) was initially developed by the IBM
Corporation in the late 1960s and since then it has been continuously
improved and extended [Zachman 1982]. The underlying idea is that
information systems cannot be developed and operated in isolation.
They need to be integrated into an enterprise-wide information systems
architecture.

BSP provides a methodology to describe all data resources and all
business processes of an organization and how they are interrelated.
From such a description, individual information systems are derived and
specified in terms of data and processes to be covered by the respective
systems. While BSP is an approach to specifying the entire information
systems landscape of an enterprise, the outcomes of a BSP study can
later be used to evaluate a project proposal and determine the fitting of a
new information system.

Information strategy planning (ISP) is a part of information engi-
neering, a methodology that James Martin made popular in the early
1990s. Information engineering is a very comprehensive approach to the
planning, analysis, design and construction of information systems on
an enterprise-wide basis applying semi-formal techniques and auto-
mated tools [Martin 1989].

Information strategy planning is the first of four information-engi-
neering stages which finally lead to an interlocking set of running infor-
mation systems in an enterprise. ISP covers the top management goals,
the critical success factors, and how technology can be used to create
new opportunities or competitive advantages. The outcome of ISP is a
high-level specification of the enterprise's information needs and how
they are related with the goals and the critical success factors. This
specification can be used, like a BSP study, as a measure to evaluate a
project proposal.

Comprehensive methodological approaches such as BSP and infor-
mation engineering started more or less from the "nothing is there"
assumption, modeling the entire organization in terms of information
technology concepts. However, with the dissemination of even more
comprehensive standard software, the "nothing is there" assumption is
not valid any more, thus decreasing the importance of BSP and infor-
mation engineering substantially. Nevertheless, for an evaluation of
how well a proposed information system would match the company's
goals and critical success factors, it is extremely helpful if a high-level
model of the respective relationships like an ISP model is available!

Another senior management decision in many cases is the "make or
buy" decision. In such a case the project proposal will contain argu-
ments both in favor of and against either one of the options.

Business
systems planning
(BSP)

Information
strategy planning
(ISP)

BSP and ISP
start from scratch

Project portfolio

34 2 Managing the Making of Information Systems

Portfolio analysis

The option to produce a system inhouse may be subject to a portfolio
analysis. A project portfolio is a tool to effectively identify, assess,
select and manage a collection of projects. Portfolio analysis is particu-
larly important for software organizations.

These organizations live off the returns from projects and may have
many projects going on at the same time. Taking a new project into the
portfolio is then based on a rating and an evaluation of a/l projects. One
reason for this is that the company's resources have to be shared among
the projects. For example, resources may need to be shifted from other
projects to a project that has an urgent demand. Strategic factors playing
an important role in the decision whether to start a new project or not
are market share, market growth, project complexity, risk, expected
cash flow etc.

Figure 2-2

Criteria for
portfolio analysis

A project portfolio [Laudon 2007, p. 563]

High . Examine
x '9 Avoid cautiously
=
-
]
2,
2
o ow Rogtlne Identify and
projects develop

Low High

Benefits from project

If the organization is a user organization, there may also be several
parallel IS projects competing for limited resources. Criteria that can be
applied in a portfolio analysis are, for example, the risks of the projects,
their benefits, how they match the firm's strategy, and how they fit the
enterprise-wide information systems architecture [Cash 1992]. "High

2.2 Management Decisions 35

benefit/low risk/good strategy fit/good architecture fit" projects are the
ideal projects; however, there may be other reasons and restrictions why
non-ideal projects have to be included in the portfolio as well.

Figure 2-2 shows a simple project portfolio with the two dimensions
"project risk" and "benefits from project". Projects in the lower right
quadrant are the favorable ones. The organization should intensify
and/or identify such projects. However, projects with high risk often
promise high benefits as well, so they should also be taken into consid-
eration and carefully examined.

Scoring models

When it is preferred either to buy an information system or to have it
developed by a software company instead of developed inhouse, or
more generally, when different alternatives are available, then so-called
scoring models are a common way to arrive at a decision. A scoring
model allows the decision makers to allocate importance to a criteria list
by assigning weights to the criteria.

The problem underlying the example of figure 2-3 is the choice
between two ERP systems. The company's decision makers did agree,
for example, on higher weighting for order-processing related functions
and on somewhat lower weighting for warehousing functions.

The % columns indicate how well the systems under discussion satis-
fy the company's requirements regarding the criteria list. For example,
system A satisfies the requirements for order processing by 67 %, so A's
score for that criterion is 268 (weight 4 x percent 67) while B gets a
score of 292 (4 x 73). Assessing all criteria in the same way yields a
total score of 3,128 for ERP system A and 3,300 for ERP system B, so
B appears to be the better one for the organization.

Compared to real-life scoring models, figure 2-3 contains only a very
simple model. ERP systems, for example, have hundreds of functions,
so the list of criteria is usually much longer. A difficult task is to find
and agree on the really relevant criteria. Not only are the functional
structures of different ERP systems quite different; what different
people consider relevant criteria may also vary. Often far too many
criteria are considered and given high importance. This is because it is
difficult to image in advance what functions of a future system will
really be needed unless the decision makers have thorough experience
with systems similar to the ones under discussion.

Another problem with scoring models is created by qualitative fac-
tors. Agreeing on the criteria to be applied and on appropriate weights
for the criteria is a difficult problem.

Project risk vs.
project benefits

Criteria and
weights

Criteria and
weights

Problem:
agreeing on
criteria

Problem:
qualitative factors

36 2 Managing the Making of Information Systems

Figure 2-3 Example of a scoring model [Laudon 2007, p. 564]

ERP ERP ERP ERP
Criteria Weight System A System A System B System B
% Score % Score
1.0 Order
processing
1.1 Online order entry 4 67 268 73 292
1.2 Online pricing 4 81 324 87 348
1.3 Inventory check 4 72 288 81 324
1.4 Customer credit
" 3 66 198 59 177
1.5 Invoicing 4 73 292 82 328
Total order 1,370 1,469
processing
2.0 Inventory
management
2.1 Production 3 72 216 76 228
forecasting
e Te e 4 79 316 81 324
planning
2.3 Inventory 4 68 279 80 320
control
2.4 Reports & 71 213 68 207
Total inventory 1,017 1,079
management
3.0 Warehousing
3.1 Receiving 2 71 142 75 150
SR A 3 77 231 82 246
packing
3.3 Shipping 4 92 368 89 356
weEl 741 752
warehousing

Grand total ‘ | 3,128 3,300

2.2 Management Decisions 37

Weights are the result of a decision process in which different stake-
holders may pursue different interests. Similarly, determining the per-
centage to which a functional requirement is fullfilled may depend on
highly subjective judgements.

Therefore, scoring models are used to support decision makers in
their decision process rather than to substitute the decision as such.

b) Redefining a project

In the course of a project many unexpected things could happen: Cost or
time may overrun, new technologies may emerge, a customer's require-
ments or priorities may change, the business strategy may shift, a syst-
em similar to the one under development may become available on the
market, etc. Many projects eventually have to face a situation that they
are challenged after some time.

A significant number of real-world projects are either delayed with
respect to the project schedule, more expensive than expected, or both.
The parties interested in the project and the project management are
then under pressure to justify what has been achieved so far, to explain
why it took longer or why it cost more than planned or both, and to
argue for budget and/or time extensions. Decisions regarding the budget
and the time frame are the senior management's responsibility. Based on
project experience and reassessment of the risks, an adjusted cost and
time plan will have to be approved.

c) Cancelling a project

The pressure to justify an ongoing project may be so strong that the
project stakeholders face the question: "Should the project be
cancelled?" This is a difficult decision since time, money and human
resources have been invested in the project. If the project is shut down
then this investment, good will and trust in the developing organization
are lost, and expected benefits will not be realized. The costs and lost
opportunities of shutting down the project have to be assessed against
the expected costs and benefits if the project is continued. It is again the
senior management's responsibility to decide whether a project is
continued or cancelled. Portfolio analysis can help to reach such a
decision if the organization has several projects going on at the same
time.

Projects
exceeding time
and budget

Continue or
cancel?

38 2 Managing the Making of Information Systems

2.2.1 The Role of Specifications and Documents

Documents are
the point of
reference

Contents of a
project proposal

Needs statement

Management decisions are based on documents and financial figures.
Documents play an important role not only for senior management
decisions but also for operational decisions and project management.
Written documents are the points of reference for agreements with
contractors, for the justification of project results, for assigning work to
the project team, for project controlling and reporting, and for many
more purposes. Important documents that serve as a basis for decisions
by senior and operational management include the project proposal, the
requirements specification, and various analysis and design models.

Project proposal

The purpose of writing a project proposal is to provide senior manage-
ment with a comprehensive evaluation of the project to help them make
their decision. Such a proposal should state:

— what needs to be done,

— why, when and how it should be done,

— who is responsible and who is going to do the work,
— how much will it cost,

— what are the benefits,

— what are alternatives,

— what are the risks?

Although the structure and contents of a project proposal depend on the
specific problem situation and on the organization's requirements, a
typical proposal may contain an executive summary and sections like
the following [EFC 2006]:

e Needs statement: It should be a concise, yet convincing overview of
the needs the organization wants to address with the project. The
reader should get a complete picture of the scope of the problem.
How important is the project, and what are the consequences if the
project is not carried out?

2.2 Management Decisions 39

e Goals and objectives: This section should make clear to the senior Goals and
management which business goals and critical success factors will objectives
be supported by the new information system. It will also define the
specific goals of the project (e.g. reduce inventory costs by x %)
and the objectives, i.e. specific, tangible and measurable outcomes
that should be achieved within a specified period of time.

e Approach and timetable: How and when are the project's objectives Approach and
going to be achieved and by whom are the primary questions timetable
addressed in this part of the document. It comprises a proposal
regarding the "make or buy" decision, or an evaluation of these two
alternatives. The "how" question is further refined by a rough
project plan composed of the major sections of the project. Each
section is terminated by a milestone ("milestone plan"). The human
resources involved in each section are specified.

o Cost-benefit analysis: The costs caused by the project are specified, Cost-benefit
and expected benefits are elaborated. Benefits can either be short- analysis
term or long-term. Some benefits can be measured in financial
figures (e.g. 10 % savings in transportation costs, 15 % additional
revenue from faster delivery to retail stores) while others are quali-
tative benefits requiring causal analysis and argumentation (e.g.
better service level).

e Project budget: A budget summary states the duration of the Projectbudget

project and the total project cost, as well as any already available
income. There are different ways to structure a budget depending
on the type of the project and on the organizations's requirements.
However, almost every budget includes items like: project person-
nel, software costs (licenses etc.), additional hardware requirements
and other equipment, traveling, meetings, training the future users,
and overhead costs such as project administration.

e Project risks: A description of the major risks of the proposed pro- Project risks

ject is an essential part of the document. Project risks can originate
from the task to be solved (e.g. too complex, too many departments
involved), from project management (e.g. vague time estimates, in-
appropriate development tools), from the project team (e.g. com-
petencies, knowledge level, experience etc. of team members, team
size), from the IT infrastructure, from the implementation process
in the organization (e.g. acceptance by users), and also from senior
management (e.g. lack of support inside the organization).

Project
controlling and
evaluation

Future costs

Requirements
engineering

Requirements
specification
document

Point of
reference

40 2 Managing the Making of Information Systems

e Project controlling and evaluation: This section should state how
the progress — success or failure — in reaching the stated objectives
1s measured. Who will conduct the evaluation, when will it be
performed, and how will the reporting be done?

e Future costs: A statement of the financial and human resources
needed in the operation of the information system once the project
is completed and the system is implemented should be included in
the document, e.g. resources for maintenance of the system, for user
support and training, for software upgrades etc.

The project proposal has to be convincing because the main purpose is
to obtain approval for the project by the decision makers. Equally
important is the budget and/or the allocation of resources to be granted
for the project. Often the approval and the budget are limited to some
initial project stages. The decision to continue the project will be made
at a later time, based on results achieved or insights gained by that time.
Milestones serve the purpose of evaluating project progress and
deciding whether to continue, cancel or reshape the project and whether
to re-allocate resources.

Requirements specification

Once the project is approved, the requirements that the information
system is expected to satisfy have to be elaborated in more detail. This
is the subject of the requirements engineering stage in the course of the
project. Requirements determine the outcome of the project. If the
requirements are not right then the resulting information system will not
do what the stakeholders expected. Requirements engineering is a par-
ticularly critical stage in most projects and known to be difficult. It has
evolved into a discipline of its own that will be discussed in chapter 5.

The outcome of requirements engineering is again a document (or a
collection of documents). It is called either a requirements specification,
requirements document, or software requirements specification (SRS).

This document may serve as a reference for different purposes and
for different types of users. In the "buy" case, requests for quotations
may be issued, and quotations received may be evaluated based on that
document. Likewise an agreement with an external contractor to build
the system will refer to the requirements specification. If the system is
built inhouse, then the specification is the document that is given to the
system-development group as the starting point for their design consid-
erations [Sommerville 2007, p. 137].

2.2 Management Decisions 41

In the implementation and testing stages, the requirements specification
is used by the test group to develop validation tests for the information
system, and to test the system against initial requirements. Even in the
later operations and maintenance stages, the requirements specification
can be used by support and maintenance personnel to better understand
the system and the relationships between its parts.

Figure 2-4 A requirements specification§

Chapter Description
Define the expected readership of the document and describe its
Preface) :
version history.
Describe the need for the system. Describe its functions and explain
. how it will work with other systems. Describe how the system fits into
Introduction .) e A
the overall business or strategic objectives of the organization
commissioning the software.
Gl Define the technical terms used in the document. Do not make
ossary .) h
assumptions about the experience or expertise of the reader.
Describe the services provided for the user and the non-functional
User system requirements — in natural language, diagrams or other
requirements| notations that are understandable by customers. Define the user
definition interface (forms, menu structure, navigation). Product and process
standards which must be followed should be specified.
System Present a high-level overview of the anticipated system architecture

architecture

showing the distribution of functions across system modules.
Architectural components that are reused should be highlighted.

System
requirements

Describe the functional and non-functional specification require-
ments in more detail. If necessary, further detail may also be added
to the non-functional requirements, e.g. interfaces to other systems.

Set out one or more system models showing the relationships be-

iﬁ}:g tween the system components and the system and its environment
(e.g. object models, data-flow models, semantic data models).
S Describe the fundamental assumptions on which the system is
ysten based and anticipated changes due to hardware evolution, changing
evolution
user needs, etc.
Provide detailed, specific information which is related to the applica-
. tion which is being developed. Examples are hardware and data-
Appendices - A A) ”
base descriptions (e.g. minimal and optimal configurations for the
system).
Several indexes to the document may be included. As well as a
Index normal alphabetic index, there may be an index of diagrams, an

index of functions, etc.

§ Adapted from: Sommerville 2007, p. 139.

|EEE standard
830-1998

42 2 Managing the Making of Information Systems

Guidelines on how to create a good requirements specification are
provided by professional societies, software organization, consultancies
etc. An often cited document is the "IEEE recommended practice for
software requirements specifications" (IEEE standard 830-1998) by the
Institute of Electrical and Electronics Engineers, Inc. (IEEE). Unfortu-
nately this document is provided only for IEEE members. Guidelines
are also found in most books on software or requirements engineering.
An example adapted from Sommerville's book is given in figure 2-4.

More documents and models are used in later stages of a project. In
the design stage, for example, models play an important role as specifi-
cations and reference documents for software developers. (Modeling
techniques are discussed in detail in chapter 5.) In the testing stage, test
plans are created and documented in formal test specifications (cf.
section 6.3.2).

2.2.2 Milestones and Deliverables

Project
milestones

Milestones
should be
operational

For controlling a project's progress and for judging whether the project
is on the right track regarding its objectives and schedule, appropriate
information is indispensable. Managers facing requests for more
resources or having to decide on whether to continue or cancel a project
need tangible results as a basis for their decision.

Milestones are distinct points in a project where a project activity or a
work package ends. Major milestones include the end of each logical
stage in the project according to the underlying process model. When
the milestone "design stage completed" is reached, for example, the
activities of the next stage (implementation) can be launched. Typically,
once a milestone is achieved, it is set out in a document — the milestone
report — and associated with some sort of decision about the future of
the project. An example of milestones that a software company might
define for the later stages of a standard-software development project is
given in figure 2-5.

Achievements expected at a major milestone should be specified in
the project proposal already. In this way senior management can see
what the potential breakpoints in the project are. It is important to define
milestones that are operational, i.e. successful completion of the respec-
tive activity must be measurable or at least demonstrable. A milestone

2.2 Management Decisions 43

like "90 % of the code is ready" is useless since plain code volume says
nothing about the time needed to accomplish a working system.

Figure 2-5 Milestones for second-half project stages [Rothman 1997]

All required features of the system are known and the detailed
Feature freeze design has uncovered no more. No more features are
inserted into the product.

Implementation of the design has stopped. Some testing of

Sty il the features has occurred.

System test freeze Integration testing is complete. Code freeze for system test to

start.
Beta ship The date the Beta software ships to Beta customers.
Product ship The date the product ships to the general customer base.

For work-assignment and project-management purposes, milestones can Mini-milestones
be broken down into mini-milestones. While the major milestones

reflect high-level activities of several weeks or months duration, mini-

milestones take less than one or two days effort and are measured in

hours. The advantages are improved status reporting, fine-grain control

of knowing if a mini-milestone is missed, improved motivation because

every day or so a mini-milestone is achieved, and reduced schedule risk

[Perks 2003].

Deliverables are intermediate or final project results that are handed Deliverables
over to the person or organization that gave the order for the project,
e.g. the customer (external) or the organization's management (internal).
Typical deliverables are documents produced at the end of a project
stage or a work package such as a design specification, a system proto-
type or a test report.

Milestones and deliverables are related but not identical. Milestones Milestones #
may be associated with deliverables. Deliverables are results intended deliverables
for the people the project manager (or another person in a position of
responsibility) is reporting to. Milestones are points where major steps
are completed. Results may, but not necessarily, be of interest to cus-
tomers or top managers. Some results are important just for the project
management, serving as internal milestones within the project.

44 2 Managing the Making of Information Systems

2.2.3 Build, Buy or Rent?

Many ways to
obtain an IS

SMEs have
fewer options

Conventional
information
systems
development

As we pointed out at the beginning of this book, there are many ways to
obtain an information system, i.e. building the system inhouse, buying
and customizing standard software, having a domestic or foreign (e.g.
Indian) software firm develop the system, obtaining desired system ser-
vices on demand, etc. Deciding which of the different ways to choose is
the senior management's responsibility.

All options have advantages and disadvantages, sometimes beyond
the information system needs at hand. For example, it may be cheaper
to give the order to develop the system to an external software firm, yet
this also means that expertise gained in the development process will
not be inside the company but outside. If this path is repeatedly chosen,
then less and less development knowledge and knowhow will be
retained internally. As a consequence, the company will depend on
external software firms for future developments as well.

Being able to choose among alternatives requires, of course, that the
mentioned alternatives are available to the organization. A small or
medium-size enterprise (SME) that has no software development per-
sonnel obviously does not have an option to develop the system
inhouse. Therefore it is large companies that can select from the full
range of possibilities. However, small and medium-size companies that
develop their own software also exist, in particular if they are highly
specialized and need specialized software.

Below we will discuss the options of developing, buying and renting
an information system. In the case that the system is not bought off the
shelf but has to be developed, we can distinguish further who is in
control of the development process.

1. Developing inhouse

Inhouse personnel developing the complete system has been the con-
ventional way through which many information systems have come into
existence. Traditional approaches to ISD have mostly assumed that the
system under consideration is built inhouse. Models and methods avail-
able for this case are discussed in chapters 4 to 6.

2.2 Management Decisions 45

2. Developing with external partners

Instead of developing inhouse, the company may decide to have either
the entire or parts of the system built by an external contractor. Usually
the contractor is a professional software firm whose core business is
software. Reasons to place an external order are manifold: The user
company may not have the manpower to develop the system; technical
knowhow may be lacking; the software firm is known to have
experience in a specific field; external development is less expensive
than internal; and more.

Large projects may be split up into parts. In this case, some parts can
be built inhouse while others are ordered from one or more external
partners. In the past, the conventional way of placing an order was to
commission a domestic software firm. Today, in a globalized world,
competitors from different countries and continents are offering their
services. When the contractor resides in a different country, in particular
in a low-wage country, then the development order falls into the
category of offshoring (see below).

Overall control of the development process and the external orders
remains with the user organization. Since a division of labor between
the company placing the order and the company completing the contract
is involved, a clearcut interface between the two is needed. A typical
interface is the requirements specification as described in section 2.2.1.
This means that the initial work is done by the user organization — in
particular defining the information system's scope, elaborating require-
ments, and describing the requirements in a document. The require-
ments specification is used to evaluate intermediate and final results
provided by the contractor, and to accept or reject the delivered system.

External partners may also be commissioned in later stages of a large
project. Sometimes the system design is made by the user organization,
in addition to the requirements specification, but the implementation
according to the design specification is given to a software firm with
expertise in the software technology required for the coding. Some
organizations even give the testing of a software system to external
companies that are known system testing specialists.

3. Ordering an individual turnkey solution
While in the previous case the user organization remains in full control

of the total process, an organization may prefer to be relieved of that
burden. This can be the case, for example, in small and medium-size

Working with a
software firm

Requirements
specification as
an interface

Design specifica-
tion as an
interface

External partner
has complete
responsibility

Subcontracting

Adaptations and
extensions

46 2 Managing the Making of Information Systems

companies where the knowhow and manpower to perform an IS project
are not available. Under the assumption that an individual solution is
necessary and standard software is not available for the problem at
hand, such a company would rather have an external specialist do the
entire development process.

In this case, the initial project steps also have to be taken by the
contractor. In particular, creating an initial project document will be a
task of the contractor. This document should contain topics similar to a
project proposal, as far as that they are applicable, such as objectives,
timetable, milestones, costs, benefits and future costs. The requirements
engineering process will also be conducted by the contractor. This
means that people from the software firm will go into the company,
study processes and documents, interview employees to elicit user
requirements etc., in order to create a requirements specification.

It should be noted that an external contractor is in a similar situation
as the initial company in which the information system need arose. The
contractor may develop the ordered (sub-) system inhouse or
commission subcontractors for parts of that system. In large projects
subcontracting is a common practice.

4. Buying, customizing and extending standard software

A common way for a user organization to obtain an information system
is to buy or license standard software which is available for many
business problems. This approach is discussed in detail in chapter 7. It is
quite popular because standard software has many advantages. A major
one is that standard software is usually cheaper than the development of
an entirely new information system from scratch.

As pointed out earlier, standard packages rarely meet all individual
requirements of a particular organization. In general, they have to be
adapted to the organization's needs (customization). Missing features,
i.e. functionality that is not contained in the standard package, must be
provided. Additional information systems or add-ons to the standard
software have to be developed for that purpose — by the package vendor,
by the company itself, or by external contractors.

5. Employing an application service provider (ASP)

Application service providing is a business model in which a company,
the application service provider (ASP), makes computer-based services
available to other companies (customers). Application service providing
can be seen as a value-adding continuation of the outsourcing of hard-

2.2 Management Decisions 47

ware resources and operations to dedicated partners. Formerly hardware
outsourcing meant that instead of maintaining hardware capacity within
an individual organization, a remote computing center operated by a
specialized provider is employed. The customer would then run their
programs on the provider's hardware.

In the ASP model, not only are customers provided with hardware or
computing power in the narrow sense, but they are also provided with
services. Such services are wide ranging, from specialized functions like
invoicing, tax calculations, online payment and credit card processing
via all-in-one coverage of the IS needs of a particular industry or profes-
sion (e.g. lawyers) to comprehensive information system support for
small and medium-size businesses. Complete application packages for
financial management, enterprise resource planning, customer relation-
ship management etc. are available from ASPs. Collaborating with an
ASP can be an attractive option because the company does not need to
install, operate and maintain complex information systems itself in
order to receive a guaranteed service and support level.

In the marketplace, there are thousands of ASPs for a large number
of application problems. ASPstreet.com, for example, a web portal for
application service providing, lists about 4,100 ASPs [ASPstreet 2006].
Big players like IBM, SAP and Microsoft are engaged in application
service providing.

IBM, for example, has offered business services for a long time in
areas such as financial, human-resources, supply-chain and customer
relationship management. As an application service provider, IBM
makes software from Oracle, SAP, Peoplesoft etc. available to other
companies. SAP targets the small and medium-size enterprise market
with its All-in-One software and SAP business partners acting as ASPs.
Microsoft, as another example, offers its Commerce Manager software
for creating online stores to small businesses. A well-known ASP in the
field of customer relationship management and related areas is
Salesforce.com [Salesforce 2006].

Customers of an ASP pay for the use of the software, not for a
license. Since the provider serves many customers with the same soft-
ware, individual fees for employing the service can be quite low. A
number of different payment schemes are in use, for example subscrip-
tion based (e.g. monthly fee) or per transaction.

The ASP model works well if software exactly fitting the organiza-
tion's needs is available. Since this is rarely the case for complex busi-
ness problems, customization needs can be a major obstacle. The ASP
is more likely to customize its software for large customers than for a
variety of potential small customers. Another problem is integration

Importing
computing
services

ASP examples

Customers pay
for software
usage

ASP software
does not fit all

48 2 Managing the Making of Information Systems

with the customers's other information systems. If the software provided
by the ASP requires data, for example, that are distributed in the
company's database, then that company has to fill the gap by bridge
programs retrieving and preparing the data in the required format.

2.3 Global Options: Outsourcing and Offshoring

Driving factors
are price and
quality

Domestic and
global options

Started in the
1990s

Software development is not the core business of most companies, it
requires expertise and manpower, and above all it is rather costly.
Therefore it is not surprising that many organizations prefer to use other
companies which are experienced in software development.

Since development costs are significantly lower in Asian, Latin
American and Eastern European countries than in the United States and
in Western Europe, many software orders have gone to vendors in these
regions. While price has been the driving factor for many years, other
reasons have also emerged in the recent past. For example, the know-
how and maturity levels of professional software companies in India are
on average higher than in the US and Western Europe.

Nowadays, organizations that do develop software — user organiza-
tions and software companies as well — have several choices. They can
choose between inhouse and external development. If external develop-
ment is the preferred option, the next question is whether the external
partner should be domestic or foreign. In the case of a multinational
company, another choice is between developing at home vs. developing
in a location abroad where that company has a branch and where soft-
ware development is more cost-effective. It is the management's task to
decide which of the various alternatives to choose.

A number of terms have been coined for the modes of information
systems development abroad, including offshoring, nearshoring, and
offshore outsourcing. We will start with a brief look into some terms
related to the location of development.

Outsourcing

Outsourcing is a business practice that became popular when a general
reorientation of business strategies took place in the 1990s. Many

2.3 Global Options: Outsourcing and Offshoring 49

companies put a stronger focus on their core competencies and trans-
ferred non-core activities from internal business units to external
organizations such as subcontractors specializing in those activities.
One of the first spectacular outsourcing deals in information technology
was the Eastman Kodak deal, which resulted in that company's entire
data center operations being outsourced to IBM, Digital Equipment and
Businessland in 1990.

This example shows that outsourcing is not a specific practice for
software development but possible for any non-core business function.
In the IT field, outsourcing deals cover a wide range, from software
development via processing transactions in dedicated application areas
(e.g. banking, insurance, flight reservations) to outsourcing the com-
pany's complete IT infrastructure.

Offshoring

The notion of offshoring is mostly used in the context of information
technology although its general meaning is just to do something "off"
one's own "shore". With respect to software development, three related
terms are onsite, onshore and offshore development. While onsite
means development at the organization's location, onshore stands for
development at a different place in the same country (e.g. by a domestic
contractor), and offshore stands for development in a different country.

Offshoring is a concept that comprises several operational models for
all kinds of IT-related activities. A task force of the ACM (Association
for Computing Machinery) distinguished between six different types of
work sent offshore [Aspray 20006, p. 19]:

Programming, software testing, and software maintenance

2. IT research and development

High-end work such as software architecture, product design,
project management, IT consulting and business strategy

4. Physical product manufacturing (semiconductors, computer com-
ponents, computers)

5. Business process outsourcing (e.g. insurance claim processing,
accounting, bookkeeping) and IT enabled services (e.g. financial
analysis, reading x-rays)

6. Call centers and telemarketing

With regard to the topic of this book, information systems development,
the first and the third categories are the ones to consider. Looking at the

Offshore,
onshore and
onsite

Types of work
sent offshore

Organization of
offshoring

Captive centers
and joint
ventures are the
most common
forms

50

2 Managing the Making of Information Systems

companies offshoring software-related work today, the following
models can be identified:

a)

b)

d)

Captive centers: Many multinational companies employ local
branches in low-wage countries for software development or set up
specific development centers. SAP, for example, develops signi-
ficant parts of its business software in its Bangalore branch in India.
American Express, Citibank, Dell, Continental and many other big
companies run captive IT centers abroad.

Joint ventures: The company interested in offshoring and an out-
sourcing provider enter into a joint venture regarding IT services.
The two parties set up a new firm that will carry out development
projects.

Offshore outsourcing: A third party — usually a software firm in a
low-wage country providing outsourcing services to other compa-
nies — is contracted by a customer to develop one or more informa-
tion systems (or for other IT services). Novices in offshoring can
seek help from domestic firms offering brokerage services.

Global IT partners: Large IT companies in offshore countries have
entered the world market, offering their services onshore. This
means that a customer outsources work to a domestic branch of the
foreign IT company who in turn sends parts of the work to their
development centers at home. Indian companies such as TCS (Tata
Consultancy Services), Infosys, Wipro and Satyam have become
important players on the world market in this way.

Big offshoring deals covered in the media usually involve a captive
center or a joint venture. On the other hand, outsourcing to a different
offshore company, without face-to-face contact and physically sepa-
rated by thousands of kilometers, is not a widely used practice. How-
ever, outsourcing information systems development to an external
partner is a viable mode in the following:

Global IT firms offer their services onshore (case 'd' above)
When the customer has a branch in the offshore country

When the offshore company has a country office based onshore
When a reliable broker is available

Nearshoring

Nearshoring is a variant of offshoring in which the "shore" is nearer
than India or China. Nearshoring means relocation of activities to

2.3 Global Options: Outsourcing and Offshoring 51

lower-cost foreign locations, but in close geographical proximity. For
the US, typical destinations of nearshoring are Mexico and Canada; for
Western European countries, Eastern Europe is a favorite location.

Reasons why nearshoring is preferred over offshoring include
cultural closeness and sometimes fewer language problems. Germans,
for example, may feel more comfortable working with people from
Slovakia or Hungary than with people from China because cultural
differences are smaller, and they might even be able to communicate in
German.

It should be noted that the borders between offshore, nearshore,
onshore and even onsite are blurring. Offshoring and nearshoring pro-
viders are moving into the domestic markets with their own branches.
The goal of such a move is to enhance the provider's competitive
position. An offshoring provider with a branch in Germany, the UK or
the US can present itself as a domestic software company in that coun-
try — with a significant cost advantage over their competition because
they can give labor-intense work to the mother company in India or
China.

Likewise it has been observed that offshoring providers have opened
branches "near shore". Knowing that many user organizations prefer
nearshoring over offshoring ("farshoring"), the provider opens a branch
or establishes a joint venture either near the US, UK or Germany. In this
way the offshoring provider can act as a nearshoring provider and
attract customers that are willing to outsource nearshore but not
farshore.

Cultural
differences are
smaller

Global IT service
providers

Nearshore "front-
ends" to
offshoring

2.3.1 Offshoring Strategy

In this section, the aims, mechanisms, benefits, risks and costs of
offshoring are discussed. Most organizations that have partially or
completely offshored their information systems development consider
offshoring a long-term strategy and not a one-off occurrence conducted
for the sake of a single information system. Establishing this strategy is
the first step before all other activities can begin. This includes a
number of subtasks. While the first subtask occurs in all four types of
offshoring, the second one is specific to offshore outsourcing. The third
subtask described below refers to captive centers and joint ventures.

India is the
market leader

Qualified Indian
IT graduates

CMMI levels 3
and higher

52 2 Managing the Making of Information Systems

l. Selecting the country

This is an important decision because capabilities, risks and benefits
differ between countries. Different countries may be suitable for differ-
ent aims and purposes. Factors to consider are political stability, infra-
structure, size and quality of the IT labor pool, language and cultural
issues, data security, protection of intellectual property rights, software
piracy and government support.

India is by far the market leader in offshore IT work, followed by
China, Canada, Mexico, Ireland, Malaysia, South Africa, Israel, Russia
and the Philippines [Aspray 2006, pp. 52-54]. More than half of the
offshoring deals worldwide reported go to India. Eastern European
countries are increasingly considered for nearshoring by companies in
Western Europe.

India's predominance is based on several facts, including an educa-
tion system that has placed great emphasis on computer science and
mathematics, generating a large number of graduates in the field of
information technology every year. Although English is not the mother-
tongue of most Indians, it is widely used in higher education. Most
computer science and business graduates speak fluent English, so the
language barrier for communication with customers in English language
countries is low.

Since IT services and outsourcing have been big business in India for
many years, the number of qualified providers exceeds by far the
numbers in other countries. The level of knowledge and experience is
very high. More Indian software companies are certified as levels 3 and
higher in the capabilities maturity model (CMMI)® than in any other
country, including the US and Europe. One reason for this is that the
Indian government started to strongly support the IT industry in the
1990s, including deregulation and liberalization, and providing numer-
ous incentives such as tax exemption for IT enabled services.

Due to the high Indian maturity level, offshore costs have risen, and
other countries are becoming more competitive. It has been reported

§ CMMI, originally the SEI-CMM (capability maturity model) was developed
by the Software Engineering Institute (SEI) at Carnegie Mellon University. It
is a framework for evaluating and measuring the maturity of the software de-
velopment process of an organization on a scale of 1 to 5. Those levels de-
scribe stages on an evolutionary path from an ad hoc, immature process to a
mature, disciplined process. Key practices are defined in the CMM, intended
to improve the ability of organizations to meet goals for cost, schedule,
functionality and product quality. The SEI substituted the CMM by CMMI
(capability maturity model integration) in 2000 [SEI 2007].

2.3 Global Options: Outsourcing and Offshoring 53

that Indian IT companies are now subcontracting software firms in
Bangladesh, Sri Lanka and Nepal due to lower costs.

Il. Selecting the vendor

In the case of offshore outsourcing, an appropriate partner in the
offshore country has to be selected. This involves the following steps
[EBS 2006]:

a) Examining the vendor landscape: In countries providing offshoring
services, there are usually a large number of potential partners. If no
previous experience with any of those partners is available, screen-
ing criteria have to be employed, for example experience, domain
expertise, cost, quality and financial stability.

b) Determining the cooperation model: The best-fit model for the
cooperation has to be selected. Mature outsourcing providers offer
not only information system development but also other services,
for example support, helpdesk and even operating the system
afterwards.

¢) Narrowing down the vendors: Criteria may include years in
business, scale of operation, range of services, geographic span,
delivery model options, industry focus and cultural fit. Experienced
outsourcing specialists recommend visiting each vendor to person-
ally assess each key performance criterion that is considered impor-
tant to the company.

d) Negotiating contract and relationship: The company finally has to
negotiate and attempt to build a relationship with the selected
vendor. Since this is a strategic relationship that might be difficult
to exit later, taking the time to negotiate suitable terms and condi-
tions is very important.

lll. Establishing an offshore center

Different steps are necessary when the offshoring provider is a captive
center or a joint venture. In this case, the strategic division of tasks
between the organization at home and the offshore center has to be
decided: Which tasks will be sent offshore, which ones will remain
onshore? These questions are discussed below (cf. critical issues).

As in the offshore outsourcing case, contractual relationships
between the onshore and offshore organizations have to be established —
for example: How will the offshore center accept work (via quotation,

Criteria

Negotiations

Captive centers,
joint ventures

Transition to
offshore

Intellectual
property
concerns

54 2 Managing the Making of Information Systems

statement of work, order, contract)? How will the internal cost be
allocated and charged (e.g. who will invoice whom, how will internal
service charges be determined)?

Critical issues

Apart from vendor selection, there are critical issues to be considered in
the strategy stage. Organizations with existing development teams have
to prepare the transition to offshoring very carefully. Onsite developers
may fear the loss of their jobs and refuse to cooperate. Offshore person-
nel will then fail to receive necessary information which is needed in
order to understand the customer's processes and requirements, and
mixed onsite-offshore teams will not work well. Expected benefits of
offshoring will not be realized in such a case.

Intellectual property rights may be a serious concern for some
companies. "What if source code developed for me is also sold to my
competitors? What if an employee of the service provider steals code
and sells it to my competitors?" are two of the questions asked [Tatva-
soft 2006a]. Appropriate legal provisions and technical measures to
prevent violation of intellectual property have to be established.

2.3.2 Offshoring Projects

Onsite and
offshore
personnel must
cooperate

Information systems development projects that are most suitable for
offshoring are projects that automate well-documented business func-
tions or processes where little day-to-day interaction is required. An
ideal development task would be one that is completely specified in
terms of the process steps, inputs and outputs. In such a case, a specifi-
cation could be "thrown over the fence" (i.e. handed over to the off-
shoring partner) and an information system will be delivered as a result
of the project.

Unfortunately most projects are not of that nature and require a lot of
interaction. Therefore project teams have to be set up in a way that on-
site and offshore personnel communicate intensely. Most projects have
offshore personnel working onsite for that reason.

Process models also have to be adapted to offshoring requirements.
Process models for offshoring projects will be discussed in section 4.5.

2.3 Global Options: Outsourcing and Offshoring 55

Critical issues

Offshore software companies often hire people (e.g. freelancers) for Manpower
new projects, or subcontract other software development firms. The turnover
customer may also have their own development staff involved in the

project. All these different people have to work together smoothly.

Since staff turnover in the booming offshoring industry in India is high,

new people may have to be integrated into the team rather frequently.

These issues create significant challenges for project management.

Different time zones may generate problems and frustration in Differenttime
communication. When the customer in New York City, for example, zones
sends an urgent change request at lunchtime to the development team in
Pune, India, it is almost midnight there, and the request is not likely to
be processed until the next day. Some offshore companies try to cope
with this situation by working according to the customer's hours or at
least ensuring communication 24 hours a day.

Maintaining, changing and enhancing the information system once Offshore
the project is completed (i.e. the system is installed and running at the gs;ﬁ;%?:rlztg?t
customer's site) must also be planned on time. Offshore developers may
no longer be available, having moved on to other projects or employers.

Having onshore developers working in the project team can therefore
help to reduce after-project problems, because these developers will
have the same knowledge about the system as the offshore developers.

2.3.3 Benefits, Pitfalls and Risks of Offshoring

Offshoring has become a common option for software development
since significant benefits are associated with it. On the other hand,
failures have also been reported, and many organizations are hesitant to
start offshoring because of the risks. These advantages, problems and
risks are discussed below.

Benefits
1. Cost savings: Most companies that started offshoring projects Costsavings

were initially attracted by obvious cost savings. Salaries of skilled
software developers in India some years ago were about 20 % of

Higher quality

Availability of IT
skills

Availability of
resources

Customer
orientation

Working morale

56

2 Managing the Making of Information Systems

the salaries in the US and Western Europe. Having people with 80
% lower pay work on a project does not mean, however, that the
savings will be 80 % compared to an onsite or onshore project.
Additional and hidden costs accrue, so that the total savings are a
lot lower. Offshoring projects report total cost reductions of 15 to
40 % compared to onsite projects, which is nevertheless a signifi-
cant saving [Davison 2003].

Quality: In established offshoring locations the quality level has
risen quite high. The quality of the information systems obtained
is another and increasingly important factor why offshore out-
sourcing is practiced. India, for example, is loosing its cost advan-
tage because of rapidly growing IT salaries. However, profes-
sional Indian IT companies are on average capable of producing
higher quality software than domestic software firms — at least
regarding certification according to the ISO 9000 standards and
the CMMI levels. Customers in Europe and America appreciate
the high quality they get.

Availability of IT skills: Offshore IT companies and captive
centers can provide well-trained software developers experienced
in cutting-edge technologies that may not be available onsite.
Building up knowledge and expertise inhouse may be much more
expensive than employing knowledge and expertise of personnel
provided by an offshore company. Time-to-market is shorter
when experienced staff are available.

Resources: Organizations lacking manpower for software
development can overcome their shortages through outsourcing
projects. Outsourcing permits an organization to free resources
and appoint available personnel to high-priority or greater-value
adding activities.

Customer orientation: Nowadays, offshoring providers have to
withstand stronger competition. The offshoring portal Off-
shoreXperts.com lists more than 50,000 offshoring providers in
the IT field [Offshore 2008]. Therefore it is not surprising that
most offshoring providers have a sound customer orientation.

Working morale: Being customer-oriented, outsourcing providers
may be more willing to satisfy the customer than an internal
development group might be. Higher flexibility, desire to meet
deadlines, and quick responses to customer requests can be seen.
"For last minutes changes, we don't turn the light off at five" is a
slogan on the website of an outsourcing provider [Tatvasoft

2.3 Global Options: Outsourcing and Offshoring 57

2006c]. Captive centers in an offshore country also enjoy the
working morale common for that country.

Pitfalls and risks of offshore outsourcing

While some critical offshoring issues were mentioned before, we now
look at the problems and risks of offshoring in more detail. Particular
attention will be given to offshore development projects in the next
subsection. Immediate and hidden costs of offshoring will be discussed
in the section 2.3.4.

Offshoring strategies and/or projects can fail, yet there is no indica-
tion that offshore projects show a greater failure rate than onshore pro-
jects. What exactly is considered a failure depends on a priori expecta-
tions. Assumptions regarding the cost savings, for example, may not be
fullfilled because they were unrealistic. The table of risks shown in
figure 2-6 is headed by erroneous cost expectations. The list was pub-
lished by Meta Group (now part of Gartner Group) as a top 10 list of the
risks related to offshore outsourcing. Figure 2-6 gives a summary of
those risks.

Underestimating the complexity of setting up and managing an
offshore project is another pitfall. Not only the geographical distribution
but also cultural and language differences can make an offshoring
project difficult to manage. Even if the customer's language is the same
as the outsourcing company's, misunderstandings and problems occur
because of social, religious and behavioral differences. The legal
environment, civil rights, bureaucracy and an unstable political situation
in the offshoring country are further sources of risk.

Interfacing the offshoring provider with the remaining organization,
in particular with inhouse software developers, is a serious management
challenge. Those who "survive" the partial outsourcing of software
development might still not be supportive of the deal and resist coopera-
tion.

When more stages of the software life cycle are outsourced, more
people in the organization are affected. When coding and testing are
outsourced, ordinary programmers become dispensible. When design is
also outsourced to the offshoring provider, software architects are
affected. When requirements analysis and definition are outsourced,
systems analysts are not needed to the same extent as before.

Outsourcing life-cycle activities does not mean that all onsite
personnel who previously did the respective jobs are laid off. People
closer to coding and testing are affected more than personnel further up
in the life cycle.

Unrealistic a
priori
expectations

Impact on
inhouse
personnel

58

2 Managing the Making of Information Systems

Figure 2-6 Risks of offshore outsourcing [Davison 2003]

Top 10 Risks of Offshore Outsourcing

1.

Cost-reduction
expectations

Executives assume that labor arbitrage will yield savings
comparable to salary differences without regard for the hidden
costs. In reality, most organizations save 15 % - 25 % during the
first year; by the third year, cost savings often reach 35 % - 40 %
as companies go up the learning curve.

N

. Data security/

protection

The vendor might not have sufficiently robust security practices or
might not be able to meet the company's internal security
requirements. Security breaks, intellectual property and privacy
violations may occur.

w

. Process discipline

(CMM)

The company is lacking internal process model maturity. Meta
Group observes that appr. 70 % of IT organizations are at CMM
level 1 while many offshore vendors' characteristic is level 5. This
will undermine potential cost savings.

. Loss of business

knowledge

Most organizations have business knowledge that resides within
the developers of applications. In some cases, this expertise may
be a proprietary or competitive advantage. Companies must
carefully assess business knowledge and determine if moving it
offshore will compromise company practices.

[

. Vendor failure to

deliver

A common oversight is a contingency plan — what happens if the
vendor, all best intentions and contracts aside, simply fails to
deliver. The organization should assess the implications of vendor
failure (i.e., does failure have significant business performance
implications?).

o

. Scope creep

Most projects change by 10 - 15 % during the development cycle.
Organizations are surprised that the vendor expects to be paid for
incremental scope changes.

~

. Government

oversight/
regulation

Organizations facing government oversight (e.g. healthcare) must
ensure that the offshore vendor is sensitive to industry-specific
requirements; able to comply with government regulations; and
accountable during audits.

oo

. Culture

A representative example: although English is one official language
in India, pronunciation and accents can vary tremendously. Cultural
differences include religions, modes of dress, social activities, and
even the way a question is answered. Executives should not
assume that cultural alignment will be insignificant or trivial.

©

. Turnover of key

personnel

Rapid growth of outsourcing vendors has created a dynamic labor

market with high demand for key personnel. Turnover levels are in
the 15 % - 20 % range. The impact of high turnover has an indirect
cost, increasing the time spent on knowledge transfer and training

new individuals.

10. Knowledge

transfer

The time and effort to transfer knowledge to the vendor is a cost
rarely accounted for. We observe that most organizations
experience a 20 % decline in productivity during the first year of an
agreement, largely due to time spent transferring both technical
and business knowledge to the vendor.

2.3 Global Options: Outsourcing and Offshoring 59

Project managers, for example, are still needed, yet the focus of their
activities is shifted from cordinating technical staff and detailed devel-
opment activities to coordinating onsite and offshore activities and
people.

The management's challenge is to communicate the benefits of oft-
shoring for the company's competitiveness to their staff and to manage
the transformation process from inhouse to offshore development. In
offshoring projects, there is still plenty of work left to be done in the
customer's organization. Yet this work is different, because it is focused
on the business and departmental level.

An example is preparing projects to make them ready for offshoring
and identifying new opportunities for IS solutions. Personnel further
down the development cycle may be qualified to take on work higher in
the life cycle, closer to the business problems, or in the coordination of
onsite and offshore activities. Such activities are discussed in more
detail in section 4.5.1.

Many companies fail to manage risks. A proper risk assessment and
mitigation plan should be prepared in advance [Morrison 2005].
Infosys, a leading Indian outsourcing provider, includes a detailed plan
for risk identification, monitoring and mitigation as part of project
planning. This plan covers risk identification, prioritization and miti-
gation options. The status of the risks is continuously tracked and
reviewed using a monthly milestone mechanism [Infosys 2008].

The bottom line is: As organizations consider the vast benefits and
allure of offshoring, they must also balance the risks and uncertainties
with the potential for labor arbitrage [Davison 2003].

Risks of offshore development projects

Any offshore software development bears a number of risks, no matter
whether it has been outsourced to a different organization, a captive
center or a joint venture under the control of the customer. Among the
risk factors are the following [Sakthivel 2007]:

e Coordination of collaborative work: Teams composed of onshore
and offshore staff need to collaborate effectively over large dis-
tances. Face-to-face interaction and meetings have to be substituted
by online collaboration tools (groupware, project repository, video-
conferencing etc.). Problems can arise due to the shortcomings of
the tools, incompatibilities between different tools and lack of
acceptance by the project members. The less powerful and the less

Shift of skill
profiles required

Risk
management is
important

Collaboration
management and
tools

60

2 Managing the Making of Information Systems

Quality of °
documents

Cost estimation °
is uncertain

Process quality °

integrated the tools are, the more face-to-face interaction will be
required, implying time-consuming journeys, costs and delays.

Quality of requirements and design specifications: Requirements
engineering is based on interaction with the stakeholders, and
likewise, deriving a good design needs interaction with and feed-
back from the requirements engineers. These things are difficult to
do over a distance, with the help of electronic means only. Creating
and communicating appropriate requirements and design specifica-
tions in this way bears a significant risk of misunderstanding and
misinterpretation. When onsite personnel create the specifications,
these documents should be clear and unambiguous. However, from
requirements engineering we know how difficult precise require-
ments specifications are.

Cost estimation and effort planning: The risks of inappropriate pro-
ject schedules and underestimated budgets is high in conventional
projects and higher in offshoring projects. Established methods for
cost estimation and effort planning of offshoring projects are not
available. The well-known approaches assume work in collocated
places. They need to be adapted, refined and extended for onshore
and offshore distribution of work.

Quality of development process: An appropriate, well-defined
development process is necessary to be able to address problems
and risks occurring in the development (e.g. incorrect requirements,
lack of domain knowledge, design flaws, technological problems).
Both partners have to adhere to this process. The risk of miscom-
munication is high if the onshore and offshore teams use different
sets of methods and tools, or if they follow different process
templates. Even worse is the case that the partners are at different
levels of process maturity (e.g. different CMMI levels).

Project management: Offshoring projects are more difficult to
manage than onsite projects. Additional factors such as communi-
cation, coordination and management across countries and cultures
need to be considered.

More detailed discussions of the risks in offshore software development
are provided in the offshoring literature [e.g. Aspray 2006, pp. 182-
212].

The level of risk in an offshoring project depends on the type of

system to be developed and on the organization of offshoring [Sakthivel
2007, pp. 72-75]. The spectrum of systems with different risk levels
shows strategic information systems on the one end and routine systems

2.3 Global Options: Outsourcing and Offshoring 61

on the other end, with several variants in between. Strategic information
systems involving new technologies, new business processes, and
possibly evolving requirements bear high risks whereas routine systems
with stable requirements have rather low risks.

The organizational form of offshoring as discussed in the beginning
of section 2.3 can also be associated with higher or lower risks. This
implies a trade-off between costs and risks (cf. figure 2-7). Setting up a
captive center (subsidiary) exhibits significantly lower risks for an or-
ganization than working with a single offshore vendor and having to
depend solely on them. However, the costs of setting up a captive center
and communication infrastructure are much higher than the costs of
finding and collaborating with a vendor who already has the necessary
infrastructure. Figure 2-7 shows that the risk level and the costs, on the
spectrum between these two extreme forms, are inversely proportional.

Risks and costs
depend on the
organization of
offshoring

Figure 2-7 Offshoring risks and costs®

High
Packed software in a subsidiary
ISD in a subsidiary

2

%]

8 ISD with a strategic partner

ISD in a joint venture
ISD with multiple vendors
ISD with a single vendors

Low

Low , .
Risk High

§ Adapted from: Sakthivel 2007, p. 73.

62 2 Managing the Making of Information Systems

2.3.4 The Costs of Offshore Outsourcing

Obvious and
hidden costs

TCP project
assessment

Not all costs of an offshoring project are immediately visible. Obviously
the cost of a deal agreed upon with the offshore-services provider,
whether fixed-rate or hourly, is known or can be estimated, but cost
factors such as knowledge transfer and transition are easily overlooked.
Such hidden costs show when a detailed analysis of the project is per-
formed. In this section we will take a closer look at obvious and hidden
costs. Since more empirical data are available for offshore outsourcing
and hardly any for offshoring to a captive center, we illustrate the costs
to be considered by focusing on offshore outsourcing.

Cost factors can be distinguished in different ways. Siemens AG,
among other things one of the largest software development organiza-
tions in the world, created a method for assessing offshore project
candidates with the help of a comprehensive list of cost factors. This
method is called TCP because it analyzes projects from a technical, a
commercial (or business), and a process-related perspective. It is a gen-
eral method for project assessment, not a specific method for informa-
tion systems development. However, many of the considered cost fac-
tors occur in ISD projects as well as in other types of projects. Fur-
thermore, TCP is focused on working with external partners and not on
giving work to subsidiaries offshore (captive centers).

Cost factors are divided into one-off and recurring costs and differen-
tiated according to technical, business, and process perspectives, as
shown in figure 2-8 [Amberg 2005]:

Costs from a technical perspective

e Task or process selection — finding the right ISD task or the right
business process for offshoring, from a technical point of view (e.g.
required technical skills).

o Knowledge transfer — company knowledge required for the devel-
opment has to be transferred to the offshoring provider, e.g. by
training offshore personnel either at the customer's site (onsite) or at
the provider's site (offshore), or by sending company experts off-
shore to work with the provider for the duration of the project.

2.3 Global Options: Outsourcing and Offshoring 63

e Project specifications — required not only in the beginning but also
in every step of the process model. Creating specifications may be
costly for complex systems due to integrity requirements and the
level of detail.

Costs from a business perspective

e Provider selection — costs of preselecting possible outsourcing
providers based on market data, narrowing down the list by
evaluating detailed information, and onsite auditing of the remain-
ing candidates. This process has been reported to cost an additional
1 to 10 % of the annual cost of an offshoring deal, taking from six
months to a year [Overby 2003].

Figure 2-8 Cost factors of IT offshore outsourcing [Amberg 2005]

Technical Business Process
perspective perspective perspective
Non- Task or process Outsourcing Process
recurring selection provider selection synchronization
costs Knowhow transfer Contract management | Transition
Cooperation
Recurring . _— Labor
t Project specification . Perfomance
Costs Risk management
measurement

e Contract management — costs of inviting bids, evaluation of quota-
tions, contract negotiations, setting up and concluding the contract;
monitoring adherence with the contract, change-request manage-
ment, conflict management, invoicing, charging cost centers etc. in
the course of the project. Additional costs range from 6 to 10 per-
cent per year [Overby 2003].

e Labor — since software development is a labor-intense process, the
cost of labor is the major cost portion. In outsourcing projects it is
usually included in the contracted totals, but in captive offshore
centers the labor cost is likely to be explicitly calculated, and made
visible to the mother company. A loss in productivity may have to
be considered in the beginning, because offshore personnel have to
get acquainted with the task and processes, due to cultural differ-
ences, and for similar reasons.

64 2 Managing the Making of Information Systems

e Risk management — costs of analyzing and evaluating risk factors,
monitoring and keeping track of risks, developing and applying
measures to minimize or avoid risks, etc.

Costs from a process perspective

e Process synchronization — costs of synchronizing the processes of
the project partners, regular process auditing, reporting mecha-
nisms, processes for early feedback, technical audits at the supplier
site and common development guidelines.

e Transition — costs of what is required in order to hand the work
over to the offshoring provider. This includes onsite visits to famil-
iarize offshore developers with the processes, technology and archi-
tecture of the customer before these developers can begin the actual
work in their home country. An adequate IT infrastructure with
specific software and hardware and broadband data communication
may need to be set up at the offshore site.

e Cooperation — costs of sustaining cooperation through meetings,
traveling, communication, trouble shooting etc

e Performance measurement — costs of defining adequate perform-
ance metrics and monitoring the provider's performance in the
course of the project.

Figure 2-9 Additional offshore outsourcing costs [Overby 2003]

Cost factors Ranges

Selecting a vendor 02 - 2%
Transition 2 - 3%
Laying off employees, severance, retention 3 - 5%
Lost productivity & cultural issues 3 - 27%
Improving development processes 1 - 10%
Managing the contract 6 - 10%

Total hidden costs
Best case 15.2%
Worst case 57%

2.3 Global Options: Outsourcing and Offshoring 65

Cost figures from practical experiences in large projects are illustrated
by Overby in an article on the hidden costs of offshore outsourcing
[Overby 2003]. It is assumed that offshoring is a long-term activity, so
the annual cost of an offshoring deal as agreed upon with the contractor
are known and can be used as a reference. Additional costs are esti-
mated as a percent of the annual contracted cost in the ranges shown in
figure 2-9. In the best case, these costs are 15.2 %. In the worst case,
they add up to 57 %.

A sample computation based on these ranges is given in figure 2-10.
It is assumed that the company's total value of offshore outsourcing
contracts is $16.2 million per year (this happens to be the average value
of offshore outsourcing contracts determined in a survey of 101 com-
panies quoted by the author).

Hidden costs of
offshore
outsourcing

Figure 2-10 Total cost of offshore outsourcing [Overby 2003]

Hidden Costs Best Case Worst Case
Contract value Contract value
1. Vendor selection $162M | x.002=|$ 324K |$162M | x.02=| $ 324K
2. Transitioning the work x.02= |$ 324K x.03=| $ 486 K
3. Layoffs and retention x.03=|$ 486K x.05=|% 810K
4. !.ost productivity/cultural x.03= | $ 486K x27=|$ 44M
issues

5. Ipn;;,)‘roving development x01= | $ 162K x10=|$ 16M
6. Managing the contract x.06=|$ 912K x.10=|$ 1.6 M
Total hidden costs 152%=|$ 25M 57%=|$%$ 9.2M
Original contract value + | $16.2M +|$16.2M
Total cost of outsourcing (TCO) Bestcase= | $18.7 M Worstcase = | $ 254 M

The costs of vendor selection are annualized in the table over 5 years
from an initial cost of 1 - 10 %. The large span in the cost category "lost
productivity/cultural issues" is caused by widely varying factors such as
the maturity of the offshore provider, understanding of cultural differ-
ences among onshore and offshore workers, the turnover rate among
offshore workers, and the length of the contract.

66 2 Managing the Making of Information Systems

2.3.5 Special Issues of ISD Offshoring

Offshoring has
many variants

Offshoring study
by an ACM task
force

Offshoring just
one project?

Offshoring is not only practiced in software development but across
business functions and processes. Infrastructure services, operative
business processes, research and development, and many more activities
are being performed offshore.

Many articles and reports discuss procedures, benefits, disadvantages
and pitfalls of offshoring in a rather general manner, not distinguishing
between different domains of work. However, offshoring a call center
or flight-reservations processing is obviously quite different from off-
shoring information systems development. Even within the IT field, off-
shoring can mean quite different things. It makes a difference whether
operations (e.g. processing bank transactions), a function such as run-
ning a computing center, or processes such as maintaining legacy sys-
tems and developing information systems are outsourced.

An excellent exception to the bulk of literature treating everything
alike is the above mentioned offshoring study prepared by an ACM task
force [Aspray 2006]. This study focuses clearly on offshoring software-
related activities, and it makes clear differentiations between different
types of work sent offshore.

Since the focus of this book is the making of information systems,
we will point out some special characteristics of offshoring which are
related to information systems development. ISD is usually done in the
form of projects. A project is by definiton a unique undertaking and will
not re-occur in the same form again. So an immediate question is:
Should the offshoring cover only this one project? This would be a rare
case, contrary to observed business practices. As we discussed earlier,
offshoring is more a business strategy than a one-time activity, requiring
a relatively long phase of preparation. Going through this just for one
project might not be worth the effort.

The work of setting up an ISD offshoring project depends on the
complexity of the problems to be solved and on the level of abstraction.
The closer the outsourced work is to the coding stage, the lesser the
effort is to get the project on track, because code is less vague than
requirements or a statement of the business problem.

2.3 Global Options: Outsourcing and Offshoring 67

Outsourcing in projects

Looking at things bottom up, we can identify generic levels of difficulty OtUT_tSOUﬁ?:]”Q
in offshoring information systems development. Figure 2-11 summa- 52" "' -
rizes these levels.

1. Outsourcing the coding and testing of a system from the domestic Coding

organization to an offshore organization is relatively simple, pro-
vided that the client delivers clear and precise system/module
specifications. Unfortunately this simple precondition is not so
simple to meet. Specifications are often ambiguous and incom-
plete, leaving room for (mis-) interpretation by offshore develop-
ers. Nevertheless, a coding project is easier to handle than the
scenarios mentioned subsequently.

Figure 2-11 Scope of ISD offshore outsourcing

Outsourced Input by Output by Difficulty
activities customer offshore provider of project

Module specifications,

COd.mg & system specification, Running information system
testing
test cases
. System specification Module specifications,
Moc_lule dESan, & design divided implemented & tested modules,
coding & testing) S)
into modules running information system

System specification & design,
Requirements module specifications,
specification implemented & tested modules,
running information system

System design,
module design,
coding & testing

Requirements specification,

o Project & problem System specification & design,
Application scope, problem module specifications,
problem description implemented & tested modules,

running information system

Module design

System design

Requirements

Where to draw
the line is a
strategic decision

68

2 Managing the Making of Information Systems

Outsourcing module design, coding and testing means that the
client provides an architectural specification of the entire system
and of what modules are expected to be there. Detailed module
specifications are prepared by the offshore company and dis-
cussed with the client. Based on these specifications the system
is programmed and tested.

Outsourcing system design, module design, coding, and testing
can be considered if the client's requirements are clear and well-
specified. That is, requirements engineering is performed by the
client. The offshore organization starts from the given require-
ments specification, developing an architecture if an architecture
is not provided by the client. However, if the client creates a
requirements specification only on paper, without a working sys-
tem prototype, there is a high risk that this specification will not
be correctly understood. Paper specifications are often ambiguous,
imprecise and incomplete, increasing the need for extensive
communication between onsite and offshore personnel.

"Outsourcing the problem" means that responsibility for all
activities related to the development of an information system is
given to the offshore organization. Provided that the client has de-
fined the project scope and decided that the information system
will be built, the offshore organization starts by elaborating
requirements and creating the requirements specification, fol-
lowed by design, coding and testing. This is obviously the most
challenging outsourcing situation with regard to communication
requirements between the client's staff and offshore personnel.

Offshoring strategy

Looking at the offshoring of information systems development as a

long-term business strategy, general policies and regulations beyond a
particular project are needed.

The enterprise's management has to decide where to draw the line.

What will remain onsite, and what will go offshore? More precisely,
which activities (or stages in the ISD process model) will be outsourced
to an offshore location? Should they be outsourced completely, or will
equal activities continue to be performed inside the company? For
example, will all coding be outsourced in the future, or will onsite
programmers continue to develop code as well? If onsite and offsite
personnel work on the same system, integration becomes an even more
challenging issue.

2.4 The Business Value of IS: Costs and Benefits 69

The management of offshoring projects will be revisited in chapter 8
of this book which focuses on project management issues.

2.4 The Business Value of IS: Costs and Benefits

Many IT investments in the past have been justified by the alleged
strategic implications of information systems that give organizations a
competitive advantage. More often, operational benefits such as faster
workflows and cost savings due to improved work efficiency have
stimulated ISD projects. On the other hand, investments in new
information systems are under pressure because they usually cost large
amounts of money.

The fundamental question asked by top management — are the costs
justified by the benefits? — has to be answered before a new project will
be given the green light. The same question may be asked again later in
the project if the need arises to redefine the project or to decide whether
to cancel or continue with the project.

In this section, we will discuss the benefits and costs of information
systems and the methods to evaluate the benefits and the costs.

2.4.1 Benefits from Information Systems

Benefits from information systems can be classified into tangible and
intangible benefits. Tangible benefits can be quantified and measured.
Intangible benefits cannot be quantified immediately, however, they
may lead to long-term quantifiable advantages.
Tangible benefits, for example, are higher sales figures. Consider a Tangible benefits

new information system capable of predicting customer demand in a
certain region a longer time ahead and more precisely than before. Due
to the system's predictions, production can then be adjusted faster,
stores can be supplied with the appropriate quantities and therefore sell

Strategic
advantage and
other intangible
benefits

70 2 Managing the Making of Information Systems

more, and storage costs for shelf warmers will be reduced. All these
factors can be measured and assessed in monetary terms. Many tangible
benefits are actually cost savings as shown in figure 2-12.

The problem with benefits from information systems is that the most
interesting ones, those interesting for top management, are mostly
intangible. For example, the strategic advantage which can be obtained
with the help of an information system will eventually be seen when the
organization reaches a larger market share or a higher level of customer
satisfaction. This advantage is difficult to assess in advance because it is
not certain to what extent the competitive advantage will be reached or
that it will be reached at all. To some extent it depends on what the
competition does. Maybe they are developing a similar or a better infor-
mation system. On the other hand, the organization might suffer from a
severe competitive disadvantage if it does not have such a system in the
future but the major competitor does.

Figure 2-12

Benefits from information systems [Laudon 2007, p. 566]

Tangible Benefits (Cost Savings) \

Increased productivity

Lower operational costs

Reduced workforce

Lower computer expenses

Lower outside vendor costs

Lower clerical and professional costs
Reduced rate of growth in expenses
Reduced facility costs

Intangible Benefits \

Improved asset utilization
Improved resource control
Improved organizational planning
Increased organizational flexibility
More timely information

More information

Increased organizational learning
Legal requirements attained
Enhanced employee goodwill
Increased job satisfaction
Improved decision making
Improved operations

Higher client satisfaction

Better corporate image

2.4 The Business Value of IS: Costs and Benefits 71

Although the thesis that IS provides organizations with competitive
advantages was seriously challenged by Carr in his article "IT doesn't
matter", as we pointed out in section 1.1, there are many examples of
strategic benefits that have been reached with the help of information
systems.

Henning Kagermann, CEO of SAP AG, and Hubert Osterle, director
of the Institute of Information Management at the University of St.
Gallen (Switzerland), wrote a book on business models that is full of
such examples [Kagermann 2006]. The authors express clearly that the
true benefits of information systems come from value-adding business
concepts and business models and not from information systems as
such.

However, information systems are the means through which value-
adding concepts can be implemented. Many of today's innovative busi-
ness models could not be realized without powerful information sys-
tems. The benefits expected from new business models often depend on
the availability of information systems supporting the models.

Value-adding
business
concepts require
powerful
information
systems

2.4.2 The Cost of Making Information Systems

To know how much an information system will cost is important not
only for the decision to develop or order one but also for project
planning and control. The cost of buying an information system seems
to be obvious. In this case, at least one major cost item, the licensing
cost, is known as a hard fact. Unfortunately, this cost is only one part of
the total cost.

The cost of developing an information system is much more difficult
to predict because this cost depends primarily on the effort that the
development process will require. In a project, the earlier this cost has to
be calculated, the less exact the estimate will be. Or vice versa: The
later this cost is calculated, the better the understanding is of what needs
to be done, how much time it will take, and how much it will cost.

In this section, the major cost factors of making information systems
are identified. Methods to predict the costs will be discussed in the sub-
sequent section. For the analysis of cost factors, we differentiate accord-
ing to the various ways in which an IS can be obtained (explained in
section 2.2.3).

Early cost
estimates are
difficult

Software
developers and
more

External software
and collaboration
costs

72 2 Managing the Making of Information Systems

1. Inhouse development

The major cost factor of developing an information system inhouse is
human labor, in particular software development personnel. However,
this is not all. A closer look reveals a list of cost factors:

» Software development staff (e.g. programmers, systems analysts,
requirements engineers, software/IS architects, testers)

» Project management staff
» Support staff (e.g. secretaries, accountants, technicians, cleaners)

» Buying/licensing and installing IT infrastructure if not available
(workplaces, networking, communication devices; development
tools, e.g. an integrated development environment — IDE) and util-
izing that infrastructure

» Providing office space, heating, electricity etc.
» Traveling, meetings, communication

» Training software developers in new software technologies and
tools

» Training users in the functionalities and handling of the IS before
and after the system is installed

» Lost productivity of non-development personnel (e.g. from inter-
views and discussions with end-users in requirements engineering)

» Implementation and conversion

A rough estimate is that the overhead on top of the core software devel-
opment personnel amounts to about the same as the total salaries of
those developers [Sommerville 2007, p. 614]. If a software developer is
paid €12,000 per month and 5 developers work on the same project, the
total cost of the project will add up to €120,000 per month.

2. Developing with external partners

In addition to the costs mentioned above, costs for those tasks or parts
of the system that are provided by external partners have to be taken
into account. Additional effort from the organization demanding an
information system is required because it needs to specify operational
interfaces with external partners, communicate with those partners, and
integrate externally developed components into the overall information
system.

2.4 The Business Value of IS: Costs and Benefits 73

If the external partner resides in a different country, then both the
obvious and hidden costs of offshore outsourcing as discussed in section
2.3.4 (e.g. vendor selection and transition) have to be included.

3. Ordering an individual turnkey solution

This case is operationally simpler for the customer since the main cost is
the contracted price of the new information system. This cost is deter-
mined in a process starting with an invitation for bids and ending with
awarding the contract to the selected vendor. Additional costs include:

— Traveling, meetings, communication

— Lost productivity of non-development personnel

— Training of users before and after installation of the system

— Implementation and conversion

— Necessary hardware and networking equipment if that equipment
was not included in the turnkey solution.

4. Buying, customizing and extending standard software

In the past, many organizations opting for standard software were mis-
led by the hope that the cost would only be the license cost of the soft-
ware. This erroneous assumption lead to the adoption of the fotal cost of
ownership (TCO) concept for software. In general, the total cost of own-
ership of an asset is considered to be the purchase price plus the addi-
tional costs of operation. For standard software, TCO components
include the following cost factors:

— Software license according to the contracted license model

— Customizing the software (either with the help of the package
vendor, specialized consultants or inhouse staff)

— Extending the software if important features are missing

— Integrating the standard package with the rest of the company's
information systems

— Installation of the system on the company's hardware, networks and
system software

— User training before and after installation of the system

— Implementation and conversion (often with the help of external con-
sultants)

Main cost:
contracted price

Total cost of
ownership (TCO)

License costs are
only 20 - 30 % of
the TCO

74 2 Managing the Making of Information Systems

— Hardware, software and network upgrades depending on the require-
ments of the new information system

It should be noted that in many practice projects the software license
costs account for not more than 20 - 30 % of the TCO. The full cost of
employing standard software packages is three to five times higher!
Additional costs occur for customizing, extending and integrating the
standard package. These activities may call for a project of their own,
with cost factors as in points 1. to 3. above.

5. Employing an application service provider (ASP)

Cost factors are fairly simple to identify when an application service
provider is employed. In this case the major cost factor is the price paid
to the provider, according to the agreed payment scheme. However,
there are other costs inside the organization to consider as in the above
cases, in particular the costs of training users, implementing new pro-
cedures in the organization related to the ASP's software, and conver-
sion from the old processes to the new ones.

2.4.3 Cost Estimation Methods

Estimating the
effort needed to
achieve the
project result

Assumption:
effort is
proportional to
system size

Since reliable cost figures are extremely important both for the decision
to set up a project and for the allocation and control of the project
budget, a significant number of methods to estimate that cost was devel-
oped in the past.

Although there is a wide variety of methods, the common goal of
most methods is to estimate the effort or the time it takes to achieve the
result of the project, i.e. a functioning, implemented and running
information system. Conventional estimation methods are aimed at a
situation where an organization is doing the development itself (i.c. case
1. above).

An assumption underlying many methods is that the effort required
for the development (measured in person months) is proportional to the
size of the future information system. If a size estimate is available, this
number can be multiplied by a cost coefficient or used in an estimation
function to yield the total cost of the development project.

2.4 The Business Value of IS: Costs and Benefits 75

An immediate question follows from this: How to measure the size
of an information system? Common approaches are:

e Lines of code: The traditional unit of measurement for software has
been the lines of code (LOC) of the proposed system. Usually
source-code lines are used, but machine-code instructions are used
as well. Many authors and practicioners have argued that LOC is a
questionable measure. A line of code in an assembler language is
not comparable with a line of code in a third or fourth-generation
language. Therefore projects can only be directly compared when
they use the same language, and cross-language figures are mean-
ingless. With the emergence of CASE tools, the lines of code be-
came increasingly irrelevant because those tools often generate an
abundance of code lines — much more than a human programmer
would write. Nevertheless the lines of code have been the most
used measure of system size.

e Function points: Due to the weakness of the lines-of-code measure,
IBM introduced function points as an alternative measure in 1979.
This measure is based on the system's functionality and not on its
low-level implementation (code). Function points are given for pro-
gram functions as the programmer sees them, e.g. input, output,
data retrieval, external interfaces and related functions.

e Object points: A higher abstraction level than function points is
assumed when system objects are used as a measure of size.
Objects in this approach are not identical with objects in object-
oriented programming. The term stands for screens, reports and
code modules that have to be developed. These are typical pro-
gramming objects when a fourth-generation language is used.

Most cost estimation methods that are based on the predicted size of an
information system use one of these three measures of size.

A common drawback of LOC, function and object points, and of
estimation methods employing these measures is that they require a fair-
ly detailed understanding of the design and the module structure of the
future information system. Such understanding is hardly available
before the project has started and requirements, architecture, interfaces
have been specified etc. Obviously estimation methods using size meas-
ures are not appropriate for the time before the project starts but only for
later stages. In the course of the project they can provide valuable
information for project management, controlling and budgeting.

Nevertheless, cost figures are indispensable for the management
decision to set up a project, but where do they come from? Other

Lines of code
(LOC)

Function points

Object points

Estimation based
on size
measures is not
appropriate in
early project
stages

76

2 Managing the Making of Information Systems

approaches that do not employ the system size and require less detail
are available, but they provide results that are less precise.

Characteristics of cost estimation methods

Method Description

Analogy-based

Previously completed similar projects are selected and compared with
the current project. Actual data from the completed projects are used
to estimate the requirements, duration, size etc. of the new project.
Conclusions for the cost of the new project are drawn by analogy.

CBR is an automated artificial-intelligence approach using similarity
and analogy. Information and knowledge about completed projects

Case-based : - . A
. are stored with descriptors in a case knowledge base. A new project
reasoning : A . L
(CBR) is chec!(ed against old projects for similarity. Costs and other »
properties of the closest old project are adapted to the characteristics
of the new project.
Experts on software cost estimation and/or the application domain
and/or the required software technology are consulted. Those experts
Expert } - . .)
f use their experience and understanding of the new project to arrive at
judgement - . :] ;
a cost estimate. Several iterations or Delphi techniques may be
applied to reach a consensus.
This is a model used primarily to divide up the budget and/or human
Percentage resource allocation according to project stages. Shares for the stages
shares can be determined based on experiences from previous projects of

the organization, or based on industry figures$.

Fixed budget

The project budget is set autonomously, for example based on what
the top management provides for the project or what the customer is
willing to pay. The estimated cost is not based on a detailed
examination of the required system functionality but on what the
budget allows.

Function point

This is a size-based method which uses function points to estimate
the size of the system, qualitative factors to include the levels of

method difficulty and complexity into account, and historical data (function-
point curve) plotting function points against effort in person months.
The Constructive Cost Model (Cocomo) is based on empirical data

Comaim [from many software development projects. Cocomo Il provides

formulae for different types of application systems that are used to
estimate the effort for the new system in person months.

Typical approaches to predict the costs of developing an information
system include the following:

§ A historical note: A rule-of-thumb often applied in conventional projects was
the "40-20-40 rule", meaning that 40 % of the total effort goes into the early
project stages up to system specification, 20 % goes into programming, and 40
% goes into testing, implementation and conversion.

2.4 The Business Value of IS: Costs and Benefits 77

— Analogy-based methods

— Case-based reasoning (CBR)
— Expert judgement

— Percentage shares

— Fixed budget

It is worth mentioning that combinations of different approaches are
often used. For example, a fixed budget is stipulated by the manage-
ment based on analogies of former projects and/or expert judgement.
This budget is then divided into portions for major project phases. Con-
sequently, the size and functionality of the future information system is
not only determined by market or user requirements, but also restricted
by the given budget.

Figure 2-13 summarizes the main characteristics of a number of cost
estimation methods. Apart from case-based reasoning (CBR), these are
the most widely used approaches in practice. Despite this, CBR is an
interesting method of artificial intelligence (Al) [Kurbel 1992]. The
function-point method and the Cocomo model are discussed subse-
quently.

Function-point method

The function-point (FP) method was originally developed within IBM
in 1979 [Albrecht 1983]. It is one of the few actual "methods" for soft-
ware cost estimation that has been accepted and used by many organiza-
tions. This method relies on the assumption that the effort to develop an
information system depends primarily on three factors: the functions of
the future system, the difficulty of those functions, and the complexity
of the project. The system's functions are evaluated, weighted, and the
resulting points are summed up. The total number of function points is
used to obtain the estimated effort from an empirical curve which is
based on experiences from former projects. Figure 2-14 illustrates the
major components of the method.

"Functions" in the FP terminology are functions on the programming
level that were typical for early third-generation languages. They are
assigned to the following categories:

Input functions (dialog input, batch input etc.)
Output functions (screens, forms, reports etc.)
Inquiries (user interactions requiring a response)
File manipulation

Interfacing other systems

Nk v =

Combined
approaches

Effort depends
on amount and
difficulty of
functions, and on
system
complexity

Programming-
level functions

78 2 Managing the Making of Information Systems

Figure 2-14

System must be
decomposed into
functions first

Components of function-point method

Current Project : Former Projects
|
Project Functions of the |
Characteristics Information System I
|
|
|
Evaluate project Evaluate system functions| | | Evaluate former projects
characteristics = function points : = effort-FP pairs
|
|
Y | Y
Sum up project Sum up function : Update project base
characteristics (T,) points (T,) | | after each project
|
|
Y | Y
Compute project || Adjust total function : Create FP curve by
assessment factor (A) points (T, =T, * A) | | regression analysis
Get effort for current
project from FP curve

The complete system has to be specified in terms of such functions.
This is the first step, requiring a decomposition of the system into mod-
ules, programs and functions. Clearly such a decomposition cannot be
done with sufficient accuracy before the system has been specified and
designed in detail. This shows that the FP method is not an appropriate
method for pre-project or initital project stages but for later stages. In an
early project stage, at best rough function estimates can be used.

In the next step, each function is evaluated according to its level of
difficulty. Weights for each type of function and each level of difficulty
are predefined, based on previous experience. Let c; = weight of a
function of category i and difficulty level j, and x;; = function count for
category 1 and difficulty level j, with j € {simple, average, difficult}.
The function points for category i are then obtained by adding the
products c;; * x;j for category i.

2.4 The Business Value of IS: Costs and Benefits 79

For example, a dialog-input function that checks the plausibility of Example:a

user input by searching the system's database, provides context-sensitive
user menus, and lets the user go back and forth between screens is con-
sidered difficult. A similar function that checks only whether the user
input is numeric or not, provides only fixed standard menus, and allows
no forward and backward navigation is considered simple. The difficult
function will be weighted with 6, the simple one with 2 (and an average
function, for example, would be weighted with 4). If there are 50 diffi-
cult, 20 average and 40 simple input functions in the prospective
system, then the total function points for input functions are:

50*%6 +20%4 + 40%2 = 460

Function weights for the other types may have different ranges. For
example, file-handling functions have often been considered more
difficult, with ranges from 5 to 20.

The total number of function points T,, summed up over all functions
of all categories is then:

Tu =22 Cij * Xij

When the sum of the function points is computed in this way, this
sum is weighted according to characteristics which reflect the com-
plexity and the environment of the project. Such characteristics include
the development platform, the degree of distributed processing, the
amount of reuse, the required performance (e.g. response times), experi-
ence of the development team, degree of user involvement, and so on.
The project characteristics are mapped to an assessment factor A that
raises or lowers the initial total function points T, in a range of + 30 %.

More precisely, each characteristic is weighted with a value between
0 and 5. A value of 0 means that this characteristic has no influence in
the current project whereas a value of 5 indicates very strong influence.
The weighted characteristics are added up, yielding a value around 100.

When T, is the sum of project characteristics, the project assessment
factor A reflecting project characteristics is computed as

A=0.7+T.,/100

Weighting the unadjusted function points total T, with A finally
results in the adjusted total T,:

T.=A*T,
Provided that the organization has collected experiences from earlier

projects (i.e. assessed the projects according to the FP method), then the
function points from those projects can be plotted against the effort

"difficult" and
"simple" function

Sum of function
points weighted
with the project's
complexity

Total function
points

Function-point
curve

Subjective
factors

80 2 Managing the Making of Information Systems

needed in each project, yielding a set of points scattered in a two-dimen-
sional space. By regression analysis a curve can be constructed through
these points (FP curve) as in figure 2-15. The expected effort of the new
project is then obtained by reading the effort (person months) corre-
sponding to the T, value of the new project from the FP curve.

The function-point method has the advantage that it uses more objec-
tive measures than just gut level analogies or judgements. Nevertheless
it involves subjective factors as well. Different people have different
opinions of what makes a function simple or difficult, and of what
makes a project complex and more/less problematic to handle.

Figure 2-15

Modern IS are
not function-
oriented

Function-point curve

3000

2000

1000 o ?°

>
T T T e

T T T
300 400 500

Person months

Other drawbacks come from the fact that the FP method is rather old. It
is a suitable method for data-processing systems with a significant share
of input/output handling, designed in a function-oriented way, for exam-
ple with an appoach such as SA/SD (Structured Analysis/Structured
Design [DeMarco 1978]). Today's information systems have different

2.4 The Business Value of IS: Costs and Benefits 81

characteristics, e.g. graphical user interfaces (GUI) that did not exist
when the FP method was invented. They use database management
systems instead of files, they are often event-driven, and usually they
are designed as object-oriented systems.

The FP method has been extended and refined to cover new system
types and development approaches. The International Function Point
Users Group (IFPUG), a non-profit organization whose mission is to
promote the effective management of application software development
through the use of function points, included rules for counting GUI
based systems in their manual [IFPUG 2005]. The IFPUG claims that
the FP method can be used for object-oriented systems as well and
demonstrated this with a case study.

Cocomol i

The best-known cost-estimation model today is Cocomo II. This is a
very complex model, created by Barry Boehm and his research group at
USC-CSE, the University of Southern California's Center for Software
Engineering. Its predecessor, called Cocomo (Constructive Cost Mod-
el), had been developed by Boehm during his time as Chief Scientist of
the Defense Systems Group at TRW, a Californian consulting firm.

Cocomo was based on empirical project data from a large set of pro-
jects at TRW. The original model was first published by Boehm in his
famous book "Software Engineering Economics" in 1981 [Boehm
1981]. Cocomo II is seen by the authors as a model that evolved from
the original Cocomo, accounting for changes in software-engineering
methodology and technology, rather than as a replacement or with-
drawal of the earlier concepts. To distinguish the original model from
the upgraded model, the former one is now referred to as Cocomo 81.

Cocomo 81 was a suitable model for large software systems built to
specification according to a linear development model such as the
waterfall model (cf. section 4.2.1) and implemented with third-genera-
tion languages. However, business systems, object-oriented software
and new approaches that became popular in the late 1980s and the
1990s — such as prototyping, composing solutions from off-the-shelf
components, evolutionary and incremental development etc. — did not
fit Cocomo 81 well.

An upgraded version of the model, Cocomo II, was created by
Boehm and his group and published in 1995 [Boehm 1995a]. Cocomo
I addresses the previously mentioned topics. It provides three sub-
models targeted towards different types of systems and different stages
of a project:

International
Function Point
Users Group
(IFPUG)

Barry Boehm is
the father of
Cocomo

Cocomo ll's
predecessor was
Cocomo 81

Cocomo I
submodels

Object points are
used as a size
measure

Seven step
procedure

Classifying
objects

Assigning
weights

82 2 Managing the Making of Information Systems

» Application composition model: This model is for systems that are
developed with the help of tools connecting interoperable compo-
nents. Those components are created, for example, with GUI
builders, distributed-processing middleware or database managers,
or selected from domain-specific packages.

» Early design model: This model can be used before the system's
architecture and design have been completed, i.e. in early project
stages.

» Post-architecture model: When the architecture is specified and
more details are known, the cost of the system can be estimated on
a fine-grained level with the help of the post-architecture model.

Application composition model

The application composition model is recommended for prototyping
projects and for software that can be put together from existing com-
ponents.

This model employs object points as a measure of size rather than
lines of code or function points. An initial object count is obtained from
the estimated number of screens, reports and third-generation language
modules. Each such object is weighted according to its classification as
simple, medium or difficult. Finally the reuse rate and the developer's
productivity are taken into account. Boehm et al. propose a seven step
procedure to arrive at the expected effort in person months [Boehm
1995b]:

1. Assess object counts, i.e. estimate the number of screens, reports
and 3GL components that will constitute this application.

2. Classify each object instance into simple, medium and difficult
complexity levels depending on values of characteristic dimen-
sions. What makes a screen simple, medium or difficult, for ex-
ample, are the number of data tables where the data comes from,
the distribution of those tables between servers and clients,
and the number of views contained in the screen. For reports, the
same criteria regarding sources of data are considered plus the
number of sections the report has. 3GL modules are generally
considered difficult.

3. The weights associated with simple, medium and difficult objects
as shown in figure 2-16 are then employed to reflect the relative
effort required to implement an instance of that complexity level.

2.4 The Business Value of IS: Costs and Benefits 83

4. Determine object points: Add all the weighted object instances to Determining OP
get one number, the object-point count OP. count

Figure 2-16 Object weights for application composition model®

Complexity weight
Object type
simple medium difficult
Screen 1 2 3
Report 2 5 8
3 GL component 10

5. Estimate the percentage of screens, reports and 3GL modules ex- Estimating reuse
pected to be reused in the project (%reuse). Compute the new
object points NOP as:

NOP = OP (100 - %reuse)/100.

6. Determine a productivity rate, PROD = NOP/person month, from Determining
the scheme given in figure 2-17. (The productivity rates in the POIUCtVIY
figure were derived from an empirical analysis of project data.)

Figure 2-17 Productivity in application composition model®

Developers'
experience very low low nominal high very high
and capability

ICASE maturity and

capability very low low nominal high very high
PROD (NOP/person 4 7 13 25 50
month)

§ Boehm 1995b.
Boehm 1995b.

Computing
person months

Early design
model is used
early in or before
the design phase

Function points
and lines of code
are used as a
size measure

Basic estimation
equation

Scale factors

84 2 Managing the Making of Information Systems

7. Compute the estimated effort for the project in person months
(PM) as:

PM = NOP/PROD

Early design model

As the name suggests, this model is used early in or before the design
phase. At this stage of the system development, not enough is known
for a fine-grained cost estimation. The early design model uses a rela-
tively small set of cost drivers compared with the post-architecture
model. Those cost drivers are the ones that can be reasonably assessed
at an early point of development.

The early design model uses unadjusted function points (T,) and
source lines of code (SLOC) for estimating the size of the system.
Functions points for the system under consideration are determined in a
similar way as in the function-point method above. The unadjusted
function points T, are converted into source lines of code. Further
computations are based on SLOC. Cocomo II provides detailed criteria
of what is counted as a source line of code and what not.

The basic estimation equation in the early design model yields the
effort PM as:

PM=A * S * EA

where A is a constant calibrated with empirical data. It is proposed to be
in the range between 2.5 and 3. S is the size of the system in KSLOC
(kilo SLOC = thousand SLOC). EA is a multiplier for effort adjustment
based on the cost drivers considered at this level.

B is an exponential factor that reflects increased or decreased effort
as the size of the project increases (economies or diseconomies of
scale). If B < 1, the project exhibits economies of scale. If the system's
size is doubled, the project effort is less than doubled. For small
projects, fixed startup activities such as tailoring tools and setup of
standards can be a source of economies of scale. Scale factors are:

— Precedentedness (how familiar is the project?)

— Development flexibility (rigorous vs. general goals)

— Architecture/risk resolution (well-specified interfaces, extent of risk
analysis carried out)

— Team cohesion (difficult vs. seamless interaction in the team)

— Process maturity (according to capabilities maturity model — CMMI)

2.4 The Business Value of IS: Costs and Benefits 85

Each factor is rated with a weight W; from 5 (very low) to 0 (very high).
Boehm et al. recommend setting the exponent B as follows:

B=1.01+0.01 ZW;

The effort adjustment multiplier EA is computed as the product of the
numerical values obtained for seven cost drivers that are considered in
the early design model:

— RCPX (required software reliability, database size, system complex-
ity, documentation)

— RUSE (additional effort for required reusability)

— PDIF (platform difficulty)

— PERS (personnel capability)

— PREX (personnel experience)

— FCIL (facilities, e.g software tools, multi-site development)

— SCED (required development schedule)

Each cost driver is weighted on a scale from 1 (very low) to 6 (very
high). The product of the weighted cost drivers yields the effort adjust-
ment multiplier:

EA = RCPX * RUSE * PDIF * PERS * PREX * FCIL * SCED

As an example, consider a development project with system size SLOC
= 12,000, an exponential factor B = 1.1 and A = 2.95. If no cost driver
has any upwards or downwards effect (i.e. all cost drivers are 1), then
the basic estimated equation yields a total effort of:

PM=295%*12"*1=454 person months

Suppose the product of the cost drivers EA is different from 1, e.g. 1.4,
then the total effort of the project is calculated as:

PM=295*12"*14=635 person months.
Code generation and reuse

Nowadays significant portions of code may be generated with auto-
mated tools (e.g. ICASE tools). The productivity in terms of SLOC is
much higher than for manually created code. Therefore the effort
required for generated code may be computed separately and added to
the effort for manually written code. Let

PM, = additional effort for using code generation,

Cost drivers

Effort adjustment
multiplier

An estimation
example

Generated code

Reused code

More cost drivers
and more details
than in the early

design model

86 2 Managing the Making of Information Systems

PM = effort for manually generated code as in the
basic stimation equation above

PM,, = total effort for such a mixed system,

ASLOC = number of automatically generated source code
lines,

AT = percentage of the total system code generated
automatically,

ATPROD = productivity level for this type of code creation.

The estimated effort for the automated part is computed as [Sommer-
ville 2007, p. 629]:

PM, = (ASLOC * AT/100) / ATPROD

Then the total effort taking manually and automatically produced parts
of the system into account is:

PM,, = PM + PM,

Code reuse is another characteristic of modern software develop-
ment. Cocomo II considers reused code in such a way that it computes
an equivalent number of lines of new source code (ESLOC) based on
the number of reusable lines of code in the components that have to be
adapted (ASLOC). The estimated project effort is then based on the
equivalent. The formula for ESLOC takes into account the effort
required to understand the software, to make changes to the reused code
and to make changes to the system to integrate the new code [Boehm
1995b]:

ESLOC = ASLOC * ((AA + SUY/100 + 0.4 * DM + 0.3 * CM +
0.3 * IM)

AA (assessment and assimilation), SU (software understanding), DM
(percentage of design modification), CM (percentage of code modifica-
tion) and IM (percentage of integration effort) are called increments and
are rated on scales with different ranges [see Boehm 1995b for details].

Post-architecture model

The post-architecture model uses the same PM estimation equation as
the early design model, but there are more cost drivers which are more
detailed than in the former model.

The code size in this model is determined by estimating three compo-
nents:

1. the total number of lines of new code to be developed,

2.4 The Business Value of IS: Costs and Benefits 87

2. the number of equivalent source lines of code (ESLOC) consider-
ing reuse,

3. the number of lines of code to be modified because of require-
ment changes,

and adding these components.

The cost drivers are grouped into four categories: product factors
reflecting characteristics of the new system, hardware-platform factors
constraining the project, personnel factors taking experience and
capabilities of the project workers into account, and project factors
reflecting project characteristics such as the software technology used.

Figure 2-18 summarizes the cost drivers for the post-architecture
model. Each cost driver is rated on a scale from very low to extra high.
Detailed criteria for this rating are available. The weights determined in
the rating are mostly numbers between 0.8 and 1.3 (some ranges have
end points as low as 0.67 and as high as 1.67).

Judging the cost drivers is not free from subjective elements.
Sommerville demonstrates the effects of the multipliers by a small
example in which the initial value of B is 1.17. The cost drivers RELY,
CPLX, STOR, TOOL and SCED are considered with values # 1, and
the resulting development effort is 730 person months [Sommerville
2007, p. 634]. If the five cost drivers are set to their maximum values,
the result is 2,306 person months. This is more than three times the
initial estimate. If the minimum values are taken, then the effort is 295
person months or 40 % of the initial estimate.

This variation in the results highlights that the people responsible for
cost estimation need thorough experience with the Cocomo II model to
arrive at reasonable estimates. This experience cannot be easily trans-
ferred from one project type or application domain to another. Cocomo
II requires many details that need to be elaborated and calibrated for
each user organization separately. Sommerville's bottom line is that "...
it is an extremely complex model to understand and use ... In practice,
however, few organisations have collected enough data from past pro-
jects in a form that supports model calibration. ... for the majority of
companies, the cost of calibrating and learning to use an algorithmic
model such as the Cocomo model is so high that they are unlikely to
introduce this approach" [Sommerville 2007, p. 634].

Cocomo II has additional features supporting the calculation of
hardware cost (target hardware), platform cost, manpower cost and the
duration of the project.

The total duration of a project depends on many factors. Since a short
time-to-market may give the company a competitive advantage, manag-
ers tend to demand short development times. Putting more personnel

Cost drivers

Calibrating a
Cocomo Il model
Result is highly
sensitive to
multiplier values

Additional
Cocomo
features

88

2 Managing the Making of Information Systems

into a project does not necessarily mean that the project will be complet-
ed faster. In particular, if a project is behind schedule, more people may
cause more problems. "Adding manpower to a late project makes it
later" is an often quoted phrase by Frederick Brooks, a software engi-
neering pioneer [Brooks 1995, p. 25]. Although more staff does not al-
ways mean slowing down the project, it is obvious that more people
have to spend more time communicating and specifying their interfaces.

Figure 2-18

Duration
estimate

Cost drivers in the post-architecture model [Boehm 1995a]

Product factors

RELY
DATA
CPLX
RUSE
DOCU

TIME
STOR
PVOL

ACAP
PCAP
AEXP
PEXP
LTEX

PCON

TOOL
SCED
SITE

Required system reliability

Size of database used

Complexity of system modules

Required percentage of reusable components
Extent of documentation required

Platform factors

Execution time constraint
Main memory constraints
Volatility of development platform

Personnel factors

Capability of project analysts

Capability of programmers

Analyst experience in the application domain
Platform experience

Language and tool experience

Personnel continuity

Project factors

Use of software tools (weak, powerful, ...)
Required development schedule (tight, comfortable, ...)
Multisite operations (collocated, distributed, international, ...)

The project's duration TDEV can be derived from the computed effort
figure PM. The exponent in the estimation formula accounts for the

diverse factors that may influence the elapsed time:

2.4 The Business Value of IS: Costs and Benefits 89

TDEV = 3 * pM(©33+02* (B-101)

In case the project schedule has been compressed (or expanded)
compared to the initial schedule, the percentage of the compression or
expansion can be considered through a factor Pscgp:

TDEV = 3 * pM(©33+02* (B-101) Pscen/100

To illustrate the computation of TDEV, consider the above development
project with system size SLOC = 12,000, an exponential factor B = 1.1,
A =295, and EA = 1.4. PM = 63.5 person months was yielded by the
estimation equation.

Assuming that the project schedule was compressed to 80 % (Pscgp
= 80), the duration of the project is computed as:

TDEV = 3 * 63,5033 702 (L1-1L0D) % (/100 = 10.2 months.

It should be noted that Cocomo II is not an academic or scientific Cocomo llis a
approach but based on observations and data from real projects. The tuned model
values of cost drivers, weights, scale factors etc. have been calibrated
and adjusted over the years. We might say that Cocomo 1I is a "tuned
model" based on real-world observation rather than an analytic model.

2.4.4 Cost-benefit Analysis

Will a new information system be worth making? Managers like to base
their decisions on financial figures. Spending money on an asset that
will hopefully produce returns in the future is an investment. Trans-
lating the question into management terminology results in something
like: will we earn money from investing in the making of the new
system? Or in other words: what is the return on the investment if we
buy or develop that system?
In the field of capital budgeting, a variety of methods are available to Capital-

e . . budgeting
assess the profitability of an investment. Common methods are: methods

» Payback period

» Accounting rate of investment (ROI)
» Cost-benefit ratio

» Net present value

» Profitability index

» Internal rate of return (IRR)

Cash inflows and
outflows

Reliable
estimates of cash
inflows and
outflows

90 2 Managing the Making of Information Systems

These methods are based on cash flows associated with buying or
creating an asset. Money for the investment is spent in the beginning
(cash outflow). Benefits from the investment are obtained later in the
form of net cash inflows. Capital-budgeting methods weigh the cash
flows going out of the company against the cash flows coming into the
company, yielding a measure of the profitabilty of the proposed
investment.

The main problem with capital-budgeting methods is that costs and
benefits have to be expressed in financial numbers. Our discussion in
the previous sections showed that predicting the costs of a new informa-
tion system is already difficult, yet it is still easier than grasping the
benefits. Costs tend to be tangible, and the major part of the costs occurs
in the near future. Benefits are often intangible, achieved later, and
cannot be expressed directly in financial figures.

Therefore it is helpful to distinguish between two scenarios, depend-
ing on whether cash flows are certain or uncertain.

Scenario 1: Certainty regarding cash flows

Scenario 1 comprises IS projects where reliable estimates of cash
inflows and outflows are available. Consider, for example, a retail chain
selling fashion clothes totaling €120,000,000 per year in their stores in
several countries. Sales are reported to the company's headquarters at
the end of each month. The marketing department found that the com-
pany could sell 20 % more in the next four years if they had real-time
sales data available. In this case, production, procurement and delivery
could be adjusted quickly to respond to changing customer behavior.
An appropriate information system would be able to collect, evaluate
and aggregate real-time data and make the needed information available
to the production and sales managers.

20 % of €120,000,000 is easy to calculate (€24,000,000). Assuming
that the additional cost of operations is €19,000,000 in the first year and
€15,000,000 per year afterwards, the net benefits are €5,000,000 in the
first year and €9,000,000 in each of the following three years (cash
inflows).

A suitable information system offered by a vendor of standard busi-
ness software has been selected. The total cost of ownership amounts to
€15,500,000 in the first year and €2,900,000 in the following years. In
the TCO, new hardware, software and network components are in-
cluded as well as support, maintenance and software licenses. Figure 2-
19 summarizes the example data.

2.4 The Business Value of IS: Costs and Benefits 91

Figure 2-19 Cash flows of an IS project (example)

Cash flow vear 1 2 s 4

Costs 15,500,000 2.900,000 | 2,900,000 [2,900,000
Benefits 5,000,000 9,000,000 | 9,000,000 [9,000,000
Net cash flow -10,500,000 6,100,000 | 6,100,000 | 6,100,000

Given the above data, a capital-budgeting method can be used to
support the decision making. Since cash inflows that will occur in the
future are not of the same value to the company as money that is
available today, the cash flows have to be discounted.

A method that takes the time value of money into account is the ner Net present
present value (NPV) method. The net present value of an investment is value (NPV)
computed as the sum of the expenditure in the first period (negative
value) plus the discounted cash flows from future periods. Let x; be the
cash flow in period i, p the interest rate, and n the number of periods in
which cash flows will occur, then the net present value of the invest-
ment is:

n
NPV = 3 x;/ (1+p)
i=0

with X = initial investment (or net expenses in the first period). An
investment is considered favorable if the net present value is positive. If
NPV < 0 the conclusion is that investing the money in the project will
result in a loss. The investor would get a better return if the money was
invested elsewhere at an interest rate of p %, for example buying bonds
in the capital market with an effective yield of p %.

Assuming an interest rate of 5 % and applying the NPV formula to
the above example, the net present value of the new system is:

NPV =6,111,812.98

This NPV means that the company will earn an equivalent of
€6,111,812.98 (today's value) from the new information system; i.e. the
decision should be in favor of the system.

Intangible
benefits

Cause-effect
chains

92 2 Managing the Making of Information Systems

It should be noted, however, that this conclusion is only true if the
future sales are really 20 % higher than at present (€24,000,000). If they
grow only by 18 % (€ 21,600,000), the net benefits will be €2,400,000
lower than expected, i.e. €2,600,000 in the first year and €6,600,000 in
the following years (assuming that operational costs remain the same).
Now the net present value comes out negative, meaning that the
investment will result in a loss:

NPV =-2,823,982.29

This example shows that results of the NPV method, just as results of
other capital-budgeting methods, are only trustworthy if the underlying
assumptions are satisfied, in particular that the cash flows can be pre-
dicted with certainty.

Scenario 2: Uncertainty regarding cash flows

Unfortunately the benefits of most information systems do not lend
themselves easily to quantification and measurement in units of money.
Rather they are intangible, for example improving the firm's planning
and decision-making infrastructure, streamlining business processes, or
opening up new business opportunities. Capital-budgeting methods do
not help much in those cases.

The making of information systems is not so much different from
other situations where management decisions are required but reliable
figures are not available. Managers use qualitative judgement and ex-
perience, consider cause-effect relations, and weigh market opportuni-
ties against risks to arrive at a decision. Qualitative approaches such as
scenario techniques, balance of arguments and cause-effect chains can
be used to support decision making when crisp numbers are not in sight.

Cause-effect chains or networks, for example, put intangible benefits
into a logical order, exhibiting implications of one benefit on other
benefits. At the end there should be an effect that represents a financial
goal or can easily be translated into such a goal. Figure 2-20 illustrates a
cause-effect chain of benefits for a project similar to the one discussed
in scenario 1.

If such a cause-effect chain is sufficiently convincing and an accept-
able cost of the new information system can be predicted with sufficient
accurateness, the decision will be in favor of the system.

As we pointed out before (see section 2.1), the forces stimulating
new information systems are often market driven. When an IS might
help to open new business opportunities or to satisfy important target
groups demanding new services from the firm, qualitative benefits have

2.4 The Business Value of IS: Costs and Benefits 93

a good chance of being convincing enough. The management decision
to obtain such a system is likely to be based on "fuzzy" expectations
rather than on precise cash-flow figures that are not available at this
point anyway. In the absence of reliable figures, a typical decision
situation is characterized by:

— astated requirement from the market,
— acommitment to satisfy that requirement,
— the assignment of a project leader,

Figure 2-20 Cause-effect chain of a proposed information system

4 A
Real-time feedback from retail stores
. J
. A 4
Better information for sales, procurement,

L and production department)
\ 4

()

Just-in-time delivery of materials by supplier

. J
A

4 A

Reduced inventory costs for inbound materials

. J
A

()

Shorter time-to-market of new products

|\ J
A 4

()

Satisfying customer demand better

. J
\J

4 A

Fewer shelf warmers and returns from retail

L stores)
\4

4 A

Higher revenues
. J

Management
decisions

94 2 Managing the Making of Information Systems

— aproject budget,
— adeadline when the system is expected to be operational.

When the decision to obtain the IS is made under uncertainty and with
incomplete information, the budget and the deadline will only by chance
be appropriate to meet the intended project goals. What happens when
the project exceeds the budget or hits the deadline? Again a manage-
ment decision will be made regarding a possible extension of the budget
and/or the deadline, a reduction of the project goals or the cancellation
of the project as discussed in section 2.2 above.

Information
Systems
Architecture

3.1 What is an Architecture?

"Architecture" is a popular term, yet different people use it for different
things and with different meanings. In the 1980s and 1990s, architecture
was close to becoming a buzzword. Apart from computer architecture,
terms like enterprise architecture, information architecture, application
architecture, communication architecture and more appeared to be
trendy.
The discussion in chapter 1 showed the need for quite a number of Different)
different elements to work together smoothly. Depending on the level of :Ir:}?oetﬂlt; working
abstraction, such elements may be entire information systems such as a together

CRM system, web and application servers, database management sys-

"Structure
matters"

Enterprise-wide
architecture vs.
information
system
architecture

Different
architectures can
coexist

96 3 Information Systems Architecture

tems, browsers etc. In a fine-grained view, elements may be programs
or program modules, databases, data structures, classes, objects, user-
interface forms or similar entities. Elements have to be arranged in a
meaningful and effective way. The ease of adding new elements to the
system and removing existing ones is important.

What exactly is an architecture? An architecture has very much to do
with system structure. "Structure matters," is a key statement in a well-
known book on software architecture [Bass 2003, p. 44]. An architec-
ture defines the elements of a system, what they are meant to do, and
their interrelations. Every non-trivial system has an architecture,
whether it is implicit or explicit. A building has an architecture, a com-
puter has an architecture, and software has an architecture. Booch calls
a software architecture intentional if it has been explicitly identified and
implemented, whereas "an accidental architecture emerges from the
multitude of individual design decisions that occur during development
[Booch 2006, p. 9]."

The study of software architecture as "... the principled understand-
ing of the large-scale structures of software systems" [Shaw 2006, p.
31] emerged in the late 1980s. Since that time, intensive research in the
field has made software architecture an essential part of system design
and construction. An overview of the evolution of software architecture
is given by Kruchten and coauthors [Kruchten 2006].

When discussing architecture, it is important to define the scope: Are
we taking an organization-wide view, or are we talking about one infor-
mation system? Hence a common distinction in the past was between an
enterprise-wide architecture and an information system's architecture
(sometimes called software architecture). While the latter is limited to
the elements of just one system, the former represents a framework for
all information systems in the organization.

At present we consider this distinction reasonable because different
systems with different structures do coexist in reality. They all have
their individual architectures: SAP ERP has its architecture, Microsoft
Dynamics has its architecture, Siebel CRM has its architecture, etc. Any
information system built around any of these systems must match the
respective architecture.

Yet we believe that in the future the distinction between an enter-
prise-wide architecture and an information system's architecture will be-
come obsolete. With the emergence of enterprise-wide software plat-
forms, standard software vendors will place all their systems on such
platforms. Likewise, user organizations will base individual new infor-
mation systems on the same platform as the rest of their information
systems. Using the same software infrastructure will have a standardiz-

3.1 What is an Architecture? 97

ing effect on all information systems. In section 3.5, software platforms
and their relationship with architecture will be discussed.

Stressing an organization-wide integrative view of systems and
business needs, the term enterprise architecture has been coined. An
enterprise architecture describes how business processes, data, programs
and technologies come together. Enterprise architects make all these
parts fit together and fit into the governing principles of the enterprise
[ASUG 2006, p. 9]. Enterprise architects take a holistic perspective.

For the above reason, we give just one generic definition of the term
information systems architecture, extending the definition of software
architecture by Bass et al. [Bass 2003]. The definition comprises the
architecture of a single information system as well the architecture of an
enterprise-wide set of IS.

An information systems architecture is the architecture of a usu-
ally large information system that may contain subsystems. Archi-
tecture refers to the structure or structures of the system, which
comprise the elements of the system, the externally visible proper-
ties of those elements, and the relationships among them.

Referring to the externally visible properties of the elements implies that
an architecture is an abstraction using the encapsulation principle [Par-
nas 1972a].

Since structure depends on the perspective of the viewer and on the
type of relationship between the elements relevant for the viewer, a sys-
tem can have more than one structure. Often one structure dominates,
but others may be present. Note that "properties" is not being used here
in the narrow object-oriented sense which describes only static attrib-
utes, but in a general sense which includes behavior. Thus the externally
observable behavior of the elements is part of the architecture.

What makes an architecture a "good" architecture? Fundamental
attributes of a quality architecture are:

— Robustness
— Stability
— Flexibility

An architecture is robust if structural changes can be performed without
disturbing the entire architecture. Stability means that the architecture
can survive for a significant period of time. A stable and robust archi-
tecture will allow for changes but basically remain the same over time.
New versions of software products, for example, will not require the
architecture to be redesigned.

Enterprise
architecture

Definition:
information
systems architec-
ture

A system can
have more than
one structure

Flexibility is an
important
attribute of a
system's
architecture

98 3 Information Systems Architecture

Architectural flexibility is a very important attribute today. In a dy-
namic world, software elements are changing rapidly. The architecture
must allow the exchange of existing elements and the integration of new
elements without major efforts. This calls for consistent application of
the abstraction, information-hiding and encapsulation principles that go
back all the way to the early 1970s [Parnas 1972b].

3.2 Common Architectural Patterns

In this section, we will discuss common architectural patterns, starting
with a look at how the study of software architecture has emerged
during the past decades.

3.2.1 Flashback to System Structures

"Structure" is a
buzzword unless
the relationship
type is defined

"Uses relation"
(Parnas)

Abstraction
layers

Information hiding, hierarchy and layers of abstraction are the pillars on
which architectures are built. Like information hiding, the concept of
hierarchy was defined by Parnas in another famous article: "On a 'Buzz-
word": Hierarchical Structure" [Parnas 1974]. Parnas insisted that "struc-
ture" is a meaningful term only if there is a precise understanding of the
type of relationship between the elements.

Parnas proposed the "uses relation" for that purpose. For a software
system decomposed into modules, the uses relation is defined as
follows: Module A uses module B if correct execution of B may be
necessary for A to complete the task described in its specification
[Parnas 1979, p. 131]. The uses relation was an appropriate relationship
type for the development of individual software systems underlying the
discussion at that time.

Abstraction layers in information systems development were
discussed for the first time in the 1970s. A famous operating system
developed by Edsger Dijkstra, the T.H.E. system, served as a model
[Dijkstra 1968b]. The elements of that system were arranged in layers.

3.2 Common Architectural Patterns 99

Layers were encapsulated following the concept of virtual machines.
Lower layers provided abstractions of their respective functionalities to
higher layers.

Transporting this concept from operating-system to application-sys-
tem development was not straightforward and did not reach widespread
practical use. However, the basic idea of a layered system structure
returned and gained wide acceptance many years later when layered
architectures emerged.

The 1980s brought workstations and personal computers with
graphical user interfaces (GUIs). These computers were not only used
as stand-alone machines but also as front-ends to business information
systems. Since GUIs need their own processing logic, this logic was
isolated and assigned to a dedicated layer as in figure 3-1. One layer
contains the graphical user interface and another layer contains the
actual system logic.

GUI and
business-logic
layers

Figure 3-1 Separation of concerns in business information systems

Presentation logic

Business logic

Information systems are usually built on databases. Preparing access to
the database and accessing the database comprises a significant portion
of an information system's code. Therefore a further division of labor
appeared appropriate following the advances of the 1980s. GUI related
tasks, database related tasks, and the actual logic of the underlying
business problem were separated and assigned to different layers.
According to this separation of tasks, a common pattern for business
information systems contains three layers as shown in figure 3-2:

— Presentation layer
— Business logic or application layer
— Database layer

Three layers of a
business
information
system

100 3 Information Systems Architecture

Since the tasks on the three layers have often been assigned to dedicated
servers that can be accessed by clients, the term "client-server comput-
ing" was invented.

Figure 3-2

Client-server
model

Three-layered structure of a business information system

Presentation layer

Business logic layer

Database layer

The client-server model is a model for distributed computing that
divides processing between clients and servers. Clients request services
from servers, and servers provide those services. While the client-server
model is actually a software model which can be implemented on any
configuration of hardware, a common way is to assign servers and
clients to separate computers. That is why many people associate hard-
ware components with the terms servers and clients, and actually con-
sider the client-server model a hardware model.

In the field of business software, SAP was one of the first companies
to use this new model, introducing its R/3 enterprise resource planning
system as a client-server system in 1990. Subsequently, most business
information systems developed in the 1990s used the client-server
model, applying the basic principles of forming layers and separating
concerns into layers.

Modifications were now much easier than in monolithic systems,
such as when introducing new GUI versions. Changing the application
logic was also simplified as the overhead from user-interface code and

3.2 Common Architectural Patterns 101

database access no longer applied. That overhead often accounted for
the largest share of an information system's code.

In a client-server system, work can be divided up among clients and Thin and fat
servers in many ways. If most tasks are assigned to the server(s) and clients
little work is left for the clients, such clients are called thin clients. They
do not require much computing power, so the client software may run
on simple computers — at the end of the spectrum even on "dumb" ter-
minals. In the opposite direction, if the clients perform a significant
share of the work, they are called fat clients. Such clients obviously
require more powerful computers.

Client-server systems with thin clients are easier to administer

because most of the software is centralized on a few dedicated servers.
Likewise, security hazards are easier to control on a server than on
many clients. Fat clients are more convienent for the user because some
tasks are executed directly at the user's computer, avoiding network
traffic and slow responses.

With web-based front-ends for information systems and web brows-
ers as the dominating user interface technology, clients have become
rather thin. This development, however, created problems for systems
requiring intensive user interaction beyond clicking on links, such as
typical business information systems today.

Nowadays a trend to bring more system functionality back to the Rich clients,
client can be observed, making clients fatter again. Rich client is a term AJAX, RCP
used for a client that provides more functionality than a simple browser-
based client. On a rich client some of the processing can already be
done, avoiding interaction with the server. Current technologies used for
this purpose include AJAX (Asynchronous JavaScript and XML) and
Eclipse RCP (Rich Client Platform).

3.2.2 Three-Tier and Multi-Tier Architectures

As the idea of dividing systems into layers spread throughout the 1990s, Thrﬁ_‘?'tiff
the term architecture became popular. Layers were now called "tiers." A 2" €S
system structure as in figure 3-3 was called a three-tier architecture.

102 3 Information Systems Architecture

Figure 3-3

Multi-tier
architectures

End-devices in
mobile business

Three-tier architecture

Presentation tier Graphical user interface

Business tier Application processing

Data tier Data management

Three-tier architectures became the dominating paradigm for many
years, yet new requirements made further separations of tasks and layers
necessary. In particular, electronic commerce and electronic business
created new requirements, such as access to information systems via
Internet and web browsers. In such a case, the presentation tier is actu-
ally represented by the browser, but now a web server and an applica-
tion server had to be integrated into the architecture.

In this way, four-tier and multi-tier architectures came into existence.
SAP, for example, introduced an architecture for an Internet-enabled
R/3 release in 1997 that was composed of four tiers (or six, depending
on the interpretation of tier division) as shown in figure 3-4. In addition
to the three common tiers, an Internet tier was embedded. That tier con-
tained a web server and functionality supporting Internet technology.
The business or application tier was subdivided into R/3 core applica-
tion functionality and Internet application functionality. These compo-
nents communicate via SAP's BAPI (business application programming
interface) mechanism.

Another reason to extend the three-tier model was the emergence of
mobile commerce and mobile business, and the variety of end devices
that employees and business partners use to access a firm's information
systems.

3.2 Common Architectural Patterns 103

Figure 3-4 Internet enabled multi-tier SAP R/3 architecture [SAP 1997]

R/3 Internet application
components

BAPI

BAPI
BAPI

R/3 core functionality

Database services

Examples are simple mobile phones with WAP and WML; more pow-
erful ones with HTTP and XHTML MP or with Java ME; PDAs, palm-
tops and pocket PCs with XHTML or HTML etc. It is a long way from
the firm's database via the business tier to the user's device-specific
browser. Device-independent data has to be converted on the way from
the business tier to the user and vice versa. In addition, data has to be
adjusted to the properties of the respective end device, such as display
size, graphics formats, available device memory etc.

An architecture for mobile business systems is shown in figure 3-5. Presentation
Compared with a conventional three-tier architecture, additional com- logic tier
plexity is introduced by the tasks necessary to establish an appropriate
user interface. These tasks are rather voluminous, involving interpreta-
tion and conversion of data in either direction. For this reason, a sepa-
rate tier for the complex presentation logic is introduced, while the pres-
entation as such remains on the top tier, realized by device-dependent
browsers.

104 3 Information Systems Architecture

Figure 3-5

Tiers impose a
clear static
structure on a
software system

Four-tier architecture for mobile information systems

Browser-based user interface

1

Content interpretation and conversion

I

Application processing

1

Data tier Data management

Presentation tier

Presentation logic tier

Business tier

Multi-tier architectures essentially impose a clear static structure onto a
software system. Each system element belongs to a particular tier. The
elements are interconnected according to one or more relationship
types.

The overall structure of the system is static in the sense that the
system is formed by the collection of all present elements. The logical
view is that of one self-contained system, even though the system ele-
ments may reside at different physical locations, e.g. on different serv-
ers and clients connected by a network. (We could call such a system a
"monolith", on a high abstraction level, if the term "monolithic system"
had not been coined in the old times to describe non-modular systems.)
The elements are static parts of the system, intended to remain what
they are and where they are.

The perspective of conventional architectures such as a three-tier or
multi-tier architecture is that a software system is composed of modules.
Such modules may be procedures, forms, objects etc. — i.e., pieces of

3.3 Service-oriented Architecture (SOA) 105

program code are regarded as elements of the system. A completely
different view is taken when services (instead of software modules) are
considered the constituents of an architecure.

3.3 Service-oriented Architecture (SOA)

In a service-oriented architecture (SOA), a system is regarded as a
collection of services. The SOA perspective of architecture is thus on a
higher abstraction level. Just as in real life, where people and businesses
are increasingly interested in obtaining services instead of just products
(objects), both the developer and the user of a software system will
attach higher importance to getting the specified work done (i.e. obtain-
ing a service) than to knowing which software module or modules are
performing that work.

While software modules of a conventional system are invoked
through method or procedure calls, a service exchanges messages with
other services. That is, the interface of a service is constituted by the
messages defined for communication with other services. Of course
there must be software modules behind a service interface doing the re-
quested work, yet these modules are completely hidden. Services
exhibit strong information hiding.

In contrast to a conventional system, a system with a service-oriented
architecture is not monolithic — neither physically nor logically. The
opposite is true. Services may be obtained from anywhere. There is no
need for the code implementing the service to be on a local server nor
inside the organization at all. The service may be invoked via the In-
ternet from anywhere in the world. The same service may be used in
different information systems, ideally by different organizations inde-
pendent of their geographic location.

Before proceeding further, the terms service and service-oriented
architecture (SOA) have to be defined.

The notion of a software service is actually adopted from the notion
of services in a business context. Customers or clients demand services
from businesses, e.g. getting a quotation, booking a flight or opening a
bank account. Likewise, a software service provides some functionality
that is useful to software clients. A service provides a function that is

Service-oriented
architecture
(SOA)

Services
exchange
messages

Services may be
obtained from
anywhere in the
world

Definition:
service

106 3 Information Systems Architecture

well-defined, self-contained and does not depend on the context or state
of other services [Barry 2003, p. 18]. A service accepts requests and
returns responses through a well-defined, standard interface as illustrat-
ed by figure 3-6.

A formal definition of the term service was given by the W3 Consor-
tium [W3C 2004]:

A service is an abstract resource that represents a capability of
performing tasks that form a coherent functionality from the
point of view of provider entities and requester entities. To be
used, a service must be realized by a concrete provider agent.

Figure 3-6

Definition:
service-oriented
architecture
(SOA)

Service request and response

Service Service
consumer provider

Service request

\ 4

A

Service response

Service Service
interface implementation

A service-oriented architecture is essentially a collection of services that
are capable of communicating with each other. The communication can
involve either simple data passing or it could involve two or more
services coordinating some activity [Barry 2003, p. 18]. A more formal
definition is as follows:

A service-oriented architecture (SOA) is a software architecture
that defines the use of services to solve the tasks of a given
software system. These services can be employed by other ser-
vices in a standardized way. Services interoperate based on a

3.3 Service-oriented Architecture (SOA) 107

formal definition which is independent from the underlying plat-
form and programming language.

The services that constitute a particular architecture may be integrated
with the help of technical infrastructure components such as a service
bus and a service repository.

It may be noted that the term service-oriented architecture is often
defined and used in a rather general way, not referring to an "architec-
ture" in the actual sense, but calling SOA a "methodology" or a "design
style" for interoperable systems, for example.

3.3.1 Web Services

The basic idea of a service-oriented architecture is independent of a
particular software technology. However, the popularity of SOA at the
beginning of the 21" century coincided with the emergence of web ser-
vices as a new interoperation technology that is based on standard Inter-
net protocols. The SOA paradigm as such is not an entirely new para-
digm. It was already proposed earlier in the 1990s, but nowadays ser-
vice-oriented architecture is often directly associated with web services.

Based on the W3 Consortium's definition [W3C 2004], we will use
the term web service in the following sense:

A web service is a software component designed to support
interoperable machine-to-machine interaction over a network. It
has an interface described in a machine-processable format
(specifically WSDL). Other software components interact with
the web service in a manner prescribed by its interface
description using SOAP messages.

Web services are self-contained and loosely coupled software
entities. They can be published, located and invoked across the web.
Web services offer mechanisms for building interoperable, distributed,
platform and language-independent systems. They lend themselves
naturally to incorporation into the SOA paradigm. Their features satisfy
immediately the requirements that services in a service-oriented archi-
tecture should satisfy.

Definition: web
service

Web services are
self-contained
and loosely
coupled

Web services
communicate
through
messages

XML-based
standards

SOAP provides
an "envelope" for
requests and
responses

SOAP request
example

SOAP response
example

108 3 Information Systems Architecture

The web services framework specifies how distributed components
(services) communicate in order to use other services' functionality via
the Internet. Communication is based on message exchange. A web ser-
vice receives a message containing a request. It will process the request
and send a response message back to the requester.

The entire communication infrastructure uses XML based standards:
SOAP (formerly an acronym for simple object access protocol, now
considered a name), WSDL (web services description language), and
UDDI (universal description, discovery and integration).

SOAP

SOAP defines a common syntax for data exchange assuring syntactic
interoperability [W3C 2003]. Any web application, independent of the
underlying programming language, can send a SOAP message with the
service name and input parameters via the Internet and will in return
obtain another SOAP message with the results of this remote call.

SOAP provides an "envelope" for wrapping and sending service re-
quests and responses. SOAP messages are represented in XML format,
blowing up even simple requests and responses into many lines of XML
code. Fortunately it is not the programmer who has to write this code.
Software tools and IDEs (integrated development environments)
normally generate XML messages from higher-level service interfaces.

Figure 3-7 shows a SOAP message containing a request for product
information. The service consumer wishes to check how many units of
the product with ID A-1088 are available in stock and to receive details
of this product (e.g. description, price, description, quantity). The code
was generated by a development tool (Oracle JDeveloper 10g). The
actual request is to invoke the "getProductInfo" operation exposed by
the "MasterDataService" web service with a "productID" parameter
value of "A-1088" (all printed in bold italics in figure 3-7).

The web service returns the result in another SOAP message as
shown in figure 3-8: the "name" ("racing bike"), the "description"
("low-end racing bike for upward mobile professionals"), the "price"
("230.99"), and "13" as the "quantityAvailable" (all printed in bold
italics in figure 3-8). The names of these elements are defined in the
web service's interface.

The XML code was actually generated by the development tool from
Java source code such as:

public Product getProductInfo(String productiIbD){
} -

3.3 Service-oriented Architecture (SOA) 109

Figure 3-7 Web service request as a SOAP message

//SOAP Request

<?xm1 version = '1.0"' encoding = '"UTF-8'?>
<SOAP-ENV:Envelope
xmlns :SOAP- ENV—"http //schemas.xmlsoap. org/soap/enve1ope/
xmlns: xs1—"http //www.w3.0rg/2001/XMLSchema-instance
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<SOAP-ENV:Body>
<nsl:getProductinfo xmlns:nsl="MasterDataservice"
SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/">
<productID xsi:type="xsd:string">A-1088</productID>
</nsl:getProductInfo>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 3-8 Web service response (SOAP message)

//SOAP Response

<?xml version = '1.0' encoding = 'UTF-8'?>
<SOAP-ENV:Envelope
xmIns:SOAP-ENV="http://schemas.xmlsoap. org/soap/enve]ope/
xmlns: xs1—"http //www.w3.0rg/2001/XMLSchema-instance
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<SOAP-ENV: Body>
<nsl:getProductInfoResponse xmlns:nsl="MasterDataService"
SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/">
<return xmIns:ns2="http://Products/IMasterbDataServicel.xsd"
xsi:type:"nsZ:Products_Product">
<id xsi:type="xsd:string" xs1 nil="true"/>
<name xsi:type="xsd:string" >rac1ng bike</name>
<description xsi:type="xsd:string">
Tow-end racing bike for upward mobile professionals
</description>
<price xsi:type="xsd:double">230.99</price>
<quantityAvailable xsi:type="xsd:int">13
</quantityAvailable>
</return>
</nsl:getProductInfoResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In this code, the "getProductlnfo" method returns a "Product" type
object. "Product” is a class declared in the Java program, containing the
fields "productID", "name", "description" etc. These are the names that
were used in the generation of the SOAP code.

W3C's definition
of WSDL

Clients needs to
know the WSDL
specification

Inhouse web
services

110 3 Information Systems Architecture

WSDL

An immediate question is: how does the service consumer know what to
send in the request, i.e. the name of the operation ("getProductInfo" in
our example) and the respective parameters that are expected and re-
turned ("productID", "name" etc.)? This information is contained in the
web service's public interface, specified in WSDL.

The W3 Consortium defines WSDL as "... an XML format for de-
scribing network services as a set of endpoints operating on messages.
The operations and messages are described abstractly, and then bound
to a concrete network protocol and message format to define an end-
point" [W3C 2001].

Every web service has a WSDL description specifying how to com-
municate with the web service. Any service consumer (client) — or more
precisely, any developer of a program invoking the web service — needs
to know this specification in order to employ the web service correctly
in his/her program.

The WSDL description is also processed by the tool that generates
the SOAP messages. When the web service is actually invoked, i.e. at
runtime, the SOAP request message is sent directly to the service pro-
vider's site. The WSDL file is not needed at that time any more.

Figure 3-9 contains some selected excerpts of the WSDL file for the
above example. The WSDL description is a lot more blown up than the
SOAP message. Fortunately this code is generated, so it is not the pro-
grammer who has to write down all the details in XML format.

The "MasterDataService" web service exposes three operations, "get-
ProductInfo”, "getProductDetails", and "getQuantity". The parameter to
be provided in the request invoking "getProductinfo" (in the message
part) is "productID". The result provided as response from the web
service is an object of type "Products Product", with the name "return".
This type is declared as a complex type in the upper part of figure 3-9.

UDDI

How does the service consumer know where to send the request, i.e.
who is providing the web service? There are two answers to this ques-
tion. The first one is: The service consumer, or more precisely, the
developer of the client program, just knows the service provider's
address. SOAP messages are sent to web addresses or URLs (uniform
resource locators). If the system is developed within the organization, a
place to store the web services will be defined, e.g. a project repository.

3.3 Service-oriented Architecture (SOA) 111

Figure 3-9 WSDL description for "MasterDataService" webservice

//WSDL

<?xm1 version = '1.0' encoding = 'UTF-8'?> <!-- Generated by
oracle JDeveloper 10g web Services WSDL Generator -->
<definitions
name="MasterDataService"
<types>
<schema
<com$1exType name="Products_Product"” ...>
<all>
<element name="1id" type="string"/>
<element name="name" type="string"/>
<element name="price" type="double"/>
<element name="description" type="string"/>
<element name="quantityAvailable" type="int"/>
</all>
</compTlexType>
</schema>
</types>

<message name="getProductInfoORequest">

<part name="productIiD" type="xsd:string"/>
</message>
<message name="getProductInfoOResponse'>

<part name="return" type="nsl:Products_Product'/>
</message>

<binding name=' getProductB1nd1ng type="tns:getProductPortType">
<soap: b1nd1ng style="rpc’
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="getProductinfo">
<soap:operation soapAction="" style="rpc"/>
<input name="getProductInfoORequest'">
<soap:body use="encoded" namespace="MasterDataService"
encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/" />
</input>
<output name="getProductInfoOResponse'>
<soap:body use="encoded" namespace="MasterDataService"
encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/" />
</output>
</operation>

<operation name="getProductDetails">

</operation> B
<operation name="getQuantity">

</obé?ation>
</binding>

<service name_ Masterﬂataserv7ce >
<port name="getProductPort" binding="tns:getProductBinding">
<soap:address location="http://..."/>
</port>
</service>
</definitions>

Yellow Pages

UDDI: making
web services
publicly known

Public and
private UDDI
registries

Decline of public
UDDI registries

112 3 Information Systems Architecture

The developer will then address this location to invoke the web service.
Most web services today are used in this way, since the majority of
SOA based systems are still inhouse systems.

The second answer is: The developer will look up the provider in
something like the Yellow Pages. The general idea underlying web ser-
vices is to make such services available to anyone interested in the ser-
vice via the Internet. For this purpose, a common point of reference, or a
directory (or many directories), is required. Assuming that such a point
of reference is available, developers can look up who provides the web
service they need for their work.

UDDI (universal description, discovery and integration) is one ap-
proach to making web services publicly known and accessible. UDDI
defines a way to publish and discover information about web services. It
is a platform-independent, open framework for describing services, dis-
covering businesses and integrating business services using the Internet
[Newcomer 2004, ch. 3]. The UDDI approach relies upon a distributed
registry of organizations and their service descriptions implemented in a
common XML format.

UDDI registries can be public or private registries. A private registry
is only accessible within a single organization or by a well-defined set
of users. The public registries were originally intended as a logically
centralized, physically distributed service that replicate data with each
other on a regular basis. When an organization registers with a single
instance of a public UDDI registry, the data is automatically shared with
other public UDDI registries and becomes freely available to anyone
who needs to find web services. Any organization may look up services
in a public registry using a SOAP call and will obtain a list of services
that meet the given criteria.

In the beginning of the SOA age, a number of public UDDI registries
were set up. Eventually most of them discontinued to operate as the
UDDI service was integrated into commercial products such as devel-
opment tools, IDEs, platforms and servers.

3.3.2 Web Services as Building Blocks of a SOA

Find, bind and
execute

Providers may register their services in a registry. The simple scheme of
requests and responses as shown in figure 3-6 has to be extended when

3.3 Service-oriented Architecture (SOA) 113

a service consumer first has to search for suitable web services on the
Internet. If both the consumer and the provider agree on the terms, the
consumer can then use a registered service. This triangle has been called
a "find, bind and execute" paradigm. It is illustrated in figure 3-10. Six
entities are involved [McGovern 2003, p. 37]: the service consumer, the
service provider, the service registry, a service contract, a service proxy
and the service lease.

Figure 3-10 SOA entities and "find-bind-execute" paradigm§

\

Find Register

Contract

Implementation Service
code Proxy >
Bind & execute

The service consumer is a software component (e.g. another service) SOA entities
that requests a service. The consumer looks up the service in the

registry, finds out about the terms of use and the location of the

service, and initiates the process of binding to the service and

executing the requested operation.

— The service provider is a network-addressable component that
accepts and executes requests from consumers. The provider pub-
lishes a service contract in the registry that potential service consum-
ers have to comply with.

The service registry is a directory on the network that stores infor-
mation about web services (such as name, description, provider,
WSDL file and contracts) from service providers and displays this
information to any interested party.

A service contract is a specification describing the interactions be-
tween a service provider and a consumer. It may also specify pre-

§ Cf. McGovern 2003, pp. 37, 39.

Most web
services today
are not
registered

Web services are
loosely coupled

Middleware:
enterprise
service bus
(ESB)

114 3 Information Systems Architecture

and postconditions for service execution or quality of service (QoS)
levels. For example, a QoS attribute may be the time it takes to
execute a service method.

— The service lease restricts the time for which a contract is valid, i.e.
the time from the beginning of the contract to the time specified by
the lease.

— A service proxy is an additional entity that helps the consumer
execute a service by calling a proxy function instead of accessing the
service directly.

These entities describe a general framework for web service consumers,
providers and registries. However, most web services used today are
services that are known beforechand (e.g. developed in the same
organization or by business partners). They are invoked directly by the
service consumer, so a registry is not involved and contracts and leases
don't need to be considered explicitly.

Web services are interoperable, supporting different platforms and
languages, usually coarse-grained, and network addressable. The flexi-
bility of a service-oriented architecture comes largely from the fact that
web services are modular, composable, location-transparent, self-con-
tained, dynamically bound and loosely coupled. Modular and compos-
able means that services can be aggregated into composite services or
into a larger solution with a limited number of known dependencies.

The concept of loose coupling aims at the minimization of dependen-
cies between modules of a system. Loose coupling is an important
quality attribute of any software architecture. In a SOA loose coupling
is accomplished through the concepts of bindings and contracts
[McGovern 2003, p. 49]. When a consumer wishes to use a web ser-
vice, it binds the request message to a transport type that the service
accepts and sends the message over the transport to the service provider.
The provider executes the requested function and returns a message
whose format is specified in the service description (WSDL). The
coupling is loose because the only dependency between the provider
and the consumer is the binding to the service based on the interface
specification in the WSDL description.

In a service-oriented architecture, a middleware functioning as a
mediator between service consumers and service providers can be used.
This middleware — an enterprise service bus (ESB) — facilitates the
invocation of services. It provides additional functionality such as trans-
forming message formats between consumers and providers, converting
protocols, and routing requests to the correct service provider [Endrei

3.3 Service-oriented Architecture (SOA)

2004, p. 41]. An enterprise service bus is usually based on a messaging

system.
Figure 3-11 Service-oriented architecture with an enterprise service bus
Service
registry
A AAA
| Ul e e
| |
. === l l = . .
Service Register Service Service
provider 1 provider 2 provider 3
A A A
Invoke Return
service result
A Y \ 4 Y
Enterprise service bus
A A A A
Request Response
\ 4 \ 4 A 4 \ 4
Service Service Service Service
consumer 1 consumer 2| | consumer 3 consumer 4
Information Information Information
system 1 system 2 system 3

Figure 3-11 illustrates the middleware concept. Ideally the service
consumers — different information systems, modules of one system, or
other services — communicate only with the enterprise service bus,
giving requests to the service bus and taking responses from the bus.
Finding appropriate services, if such services are not known beforehand,
and perhaps agreeing on terms with the provider's organization is still
left to the developers creating the service consumers.

Web services tend to be fairly atomic, exposing relatively low-level
functions — as opposed to the business functions or business-process
steps the services are intended to automate. This means that either
services on a higher abstraction level, which is closer to the business
application, should be provided or that low-level web services have to

Web services
tend to expose
low-level
functions

116 3 Information Systems Architecture

be aggregated, i.e. combined into composite services. Composing web
services, also called web services orchestration (WSO), is an aspect of
software reuse that will be discussed in section 4.4.2 on reuse-oriented
process models. Providing higher-level services is discussed in the next
section.

3.4 Enterprise Service-oriented Architecture

An enterprise SOA (ESOA) is a service-oriented architecture on an
abstraction level which is closer to the business problems. An ESOA
makes use of enterprise services.

3.4.1 Enterprise Services

Enterprise
services are
abstractions of
business activi-
ties

Enterprise services are services that automate business problems. The
term enterprise service existed before web services became popular, in
particular in the context of enterprise messaging systems and the enter-
prise-service-bus concept [Chappell 2004]. Nowadays, enterprise ser-
vices stand for a type of web services, namely web services on the busi-
ness level. This meaning of the term has been particularly stressed by
SAP since they introduced the SOA approach for their new products.

While web services are often fine-grained, exposing some functional-
ity delivered by a single information system or a module of such a
system, enterprise services ideally are abstractions of business activities,
not of software systems or modules. Enterprise services are defined at a
granularity where they can be understood by business analysts, and
therefore not require a developer to translate. Since business activities
are part of business processes and processes often go across business
functions, an enterprise service is likely to employ functionality from
different information systems, modules or web services.

3.4 Enterprise Service-oriented Architecture 117

Enterprise services use web-service technology (XML, WSDL,
SOAP etc.), therefore they can be looked at as web services on the
business level. Being on a higher abstraction level means also that enter-
prise services are more powerful than web services, often composed of
other enterprise services and/or web services. Enterprise services are
defined by SAP as "an aggregation of fine-grained web services in
combination with simple business logic" [SAP 2007a, p. 2].

SAP's concept of enterprise services is that these services can be
combined to form composite applications. A composite application
composes functionality and information from existing systems to sup-
port new business processes or scenarios [SAP 2005a, p. 3]. The con-
ceptual level of enterprise services is intended to be such that a business
analyst can "assemble" enterprise services into composite applications
that enable new business scenarios [SAP 2004a, p. 16].

The difference between a web service, on the single-system level,
and a business-level enterprise service can be demonstrated by the
following scenario [SAP 2006b, p. 7]:

Consider a business-process step such as cancelling an order that
originated in the finance department in response to a customer's credit
standing. Carrying out the task takes more than the single deletion of the
order record in the sales management system. From a business perspec-
tive, several activities across business functions and across information
systems are needed, including sending a confirmation to the customer,
removing the order from the production plan, releasing materials allo-
cated to the order, notifying the invoicing department, and changing the
order status to "inactive" or deleting it from various systems.

For each of these activities, a single web service might be offered
from the different systems (or from the modules of the company's ERP
system) involved. If just these web services are provided, an employee
responsible for the cancellation of the order will have to go to each
system or module, i.e. start a screen, and carry out the necessary action.

An enterprise service would combine the tasks solved by the various
web services and the employee's steps into one service. The employee
would just initiate the process, e.g. start a screen that leads to invocation
of the enterprise service "Cancel order".

Complex end-to-end solutions like this can be composed with the
help of enterprise services, both in the development of new and the
reuse of existing information systems. Enterprise services can be reused
in different contexts. Thus they are the building blocks for creating
larger solutions, based on existing and on new components. They can be
assembled to compose new systems and enable new business processes.
Being platform and language independent, they can also be used to

Enterprise
services are web
services on a
business level

Composite
application

Enterprise
service example

Enterprise
services can be
used as building
blocks for larger
solutions

118 3 Information Systems Architecture

communicate business logic between software systems running on
disparate platforms [SAP 2006b, p. 8].

3.4.2 Key Features of Enterprise SOA (ESOA)

ESOA is an
enterprise-level
approach to SOA

Abstraction from
the service's
implementation

Architecture of
an ESOA based
information
system

ES aggregated
into composite
applications

SAP calls ESOA its blueprint of a service-oriented architecture (SOA) —
"a business-driven, enterprise-level approach to service-oriented archi-
tecture that offers increased adaptability, flexibility and openness" [SAP
2007a, p. 2]. At the heart of ESOA are enterprise services. ESOA ex-
tends the SOA concept just as enterprise services enhance web services,
raising them to a higher level, i.e. to the business level.

Since business systems are mostly taking a process-oriented view,
the enterprise service-oriented architecture goes hand in hand with busi-
ness processes. Enterprise services are the building blocks in modeling,
designing and implementing new business processes and changing
existing processes. Taking into account that solutions for many business
processes and process steps already exist, hard-wired within conven-
tional information systems, a goal of ESOA is to decouple business pro-
cesses from the underlying systems so that process steps can be added,
removed or changed — even without interrupting daily operations.

In other words, an enterprise service provides a high-level interface
isolating the functionality interesting for a service consumer from the
service's implementation. This abstraction is helpful to combine and
recombine functionality from different applications as needed — and
without having to pull existing solutions apart and start all over [SAP
2006b, p. 8].

A typical architecture of an ESOA based information system has four
layers as illustrated in figure 3-12. The bottom layer contains the com-
pany's existing information systems such as an ERP system and a CRM
system. These systems expose reusable functionality as enterprise ser-
vices with the help of SAP's NetWeaver platform (see section 3.5).

Composite applications
Enterprise services are aggregated into so-called composite applica-

tions. A composite application is defined by SAP as making use of data
and functions provided as services by underlying systems.

3.4 Enterprise Service-oriented Architecture 119

Figure 3-12 Enterprise service-oriented architecture (ESOA)

t t t

Process e Process
step, stepy
4 A K / [y

N

e 0) B s

| SAP Netweaver |

BIS, BIS,,

A composite application combines functions and data into a coherent
business scenario, supported by its own business logic and specific user
interfaces. Such a composite application may use functionalities from
many modules of the underlying information systems, e.g. SAP sys-
tems, third-party systems and inhouse legacy systems. Enterprise ser-
vices manage and control the flow of information from one information
system to the next, and from one department to the next.

As an example of a composite application, SAP outlines the automa-
tion of a business process regarding a product change request (PCR).
The following description is adopted from [SAP 2004a, p. 11].

A PCR process is initiated when an important part of the product
needs to be changed. Reasons for this can be that the design, the materi-
als used to build the product, the needs of a particular customer, or
regulatory requirements have changed. In all cases, the entire manufac-
turing process must be examined, and many reviewers are involved. The
standard operating procedure for PCRs at most firms is paper based.
Each reviewer examines the PCR document and gathers information

Users

Composite
application

Enterprise
services

Platform

Business
information
systems

Example: product
change request
(PCR)

A composite
application for
PCR

Developers can
create end-to-
end enterprise
services

120 3 Information Systems Architecture

from the underlying information systems, entering and reentering data
as needed. In the end, the required approvals are all obtained.

A composite application for PCR based on enterprise services would
replace the paper request with a set of interactive forms. The reviewers
enter the required information into such forms. The forms are submitted
and the information is automatically transferred into the underlying
information systems. Much of the information in the forms is automati-
cally populated with data from the underlying systems. Some of it has
been entered by previous reviewers further up the approval chain,
avoiding additional entry and reentry of data. Enterprise services move
the data back and forth from the many different systems needed to
populate one form. All of the information moves intact from one
approver to the next.

In an architecture like the one in figure 3-12, service consumers and
service providers are typically — but not necessarily — within one organi-
zation. Finding services and terms of use (contract) are not an issue in
this case, so a registry is not needed. Many business processes go across
an organization's boundaries, extending to suppliers or customers. In
this case, the bottom layer of the architecture includes information sys-
tems of business partners as well, just as some of the enterprise services
may be provided by the business partners.

Since SAP has many installations and customers, it can be expected
that SAP's enterprise service-oriented architecture will be widely dis-
seminated. Not only is SAP migrating their own standard software onto
that architecture; customers are encouraged to build their custom sys-
tems around the SAP software with the help of ESOA technology as
well. Enterprise SOA is intended to become the architecture for a cus-
tomer's entire information systems landscape.

The strong promotion of enterprise services includes assistance for
developers with a so-called "inventory" of enterprise services. Develop-
ers can take the smaller services available in the inventory and link them
together to create new systems, e.g. end-to-end enterprise services that
support complete processes.

Eventually an enterprise services registry will be provided for se-
lected partners and customers. The abstraction level is supposed to be
raised eventually to a level on which business analysts are able to create
enterprise services themselves — with the help of a high-level modeling
tool that enables them to link services, without the need for program-
mers [SAP 2006b, p. 11].

3.4 Enterprise Service-oriented Architecture 121

Benefits of ESOA

The benefits of an enterprise service-oriented architecture extend the
advantages obtained from a service-oriented architecture (SOA). With
enterprise services built on top of existing information systems, these
systems can be used in a flexible way and reused for newly configured
solutions in the future. Because of their high abstraction level, it is
easier for business analysts to understand and model enterprise services
than plain web services.

Another advantage of an enterprise service-oriented architecture is
that developers do not need to deal with the semantic interoperability
between web services created on different systems. ESOA tools resolve
the data and process disparities between different web services.

Information hiding is ensured just as in web services. Composite
applications that use an enterprise service are not affected by changes in
the underlying information systems. This is contrary to a conventional
system architecture. When an individual piece of application functional-
ity in such an architecture is changed, all interfaces and applications that
touched the component have to be changed as well.

The most important benefits of ESOA promised by SAP are speed
and flexibility through efficient aggregation and reuse of IS functional-
ity.

Many innovations in business models and business concepts are only
possible if customized IS solutions supporting the innovation are avail-
able. However, a standard software package is unlikely to provide just
that piece of functionality that is needed for the specific innovation.
Therefore new solutions are often developed from scratch.

Building new, customized solutions that support innovation is expen-
sive and time-consuming because some of the functionality of the exist-
ing package will probably be rebuilt. Later, as the innovation becomes a
standard practice, the custom-built solution has to be integrated with, or
migrated into, the standard package. However, because the custom
solution and the package are usually based on different platforms, the
transition tends to be a costly and lengthy process. The consequence is
that conventional IS solutions stimulated by an innovation cannot be
delivered at an appropriate speed and cost [SAP 2005a, pp. 1-2].

New solutions based on an enterprise service-oriented architecture,
on the other hand, benefit from reusable services and, perhaps more
importantly, from immanent integration of these services with the
existing information systems. Instead of building the custom solution
from scratch, isolated from the company's other back-office systems,

Information
hiding in
enterprise
services

Building new,
individual
solutions from
scratch is
expensive

122 3 Information Systems Architecture

and with partly redundant functionality, the new solution will be based
on the same technology and seamlessly integrated in the overall
information systems architecture of the organization.

3.5 Platforms

Platforms provide
the technological
infrastructure for
information
systems

Hardware
platform

Hardware and
software platform

Software
platform

A platform provides the technological infrastructure for an organiza-
tion's information systems. While an architecture prescribes a general
pattern for the arrangement of the elements of information systems and
for the interaction of these elements, a platform defines how and
through which kinds of software the computer hardware is operated. A
platform provides tools and mechanisms to develop programs and to
execute programs. There are several levels on which the term platform
is used:

A hardware platform is the set of hardware components that make
up a specific type of computer system for which basic operating-sys-
tem software is written. Examples of hardware platforms are PCs
with Intel processors, Sun SPARC workstations and IBM AS/400
midrange computers. Any hardware platform requires specific sys-
tems software to make use of the hardware components.

A hardware and software platform is composed of a hardware plat-
form and the system software (operating system, networking compo-
nents, graphical user interface components etc.) written for that
hardware. For users of the platform, the system software determines
what application software can run on the platform and how this is
done. Examples of hardware and software platforms are PCs with
Windows; Sun workstations with Solaris; and Apple computers with
OS X. This type of platform is losing importance, since operating
systems and hardware systems are increasingly being decoupled.

A software platform is the set of basic software components that
determines how other software can be developed, executed and pro-
vided to users. A software platform runs on top of a hardware plat-
form, completely abstracting from any particular hardware. An ex-
ample of a software platform is the Java platform. It runs on differ-
ent hardware and software platforms.

3.5 Platforms 123

With regard to software, the term platform is actually used on different
abstractions levels. For example, an application server is called a plat-
form because it provides the basic infrastructure for developing and
deploying network-based multi-user software systems. Java EE, a set of
higher-level Java components, is called a platform because it comprises
all the functionality needed to create and run enterprise information
systems.

In the context of making information systems, software platforms
play an important role. The available platform defines which techno-
logical features can be used and what the restrictions are. In particular,
the platform determines the way in which an architecture can be
implemented; which tools are available for the development,
deployment and operation of information systems (e.g. IDEs, version
control tools, application servers); and how components of the
architecture can be added and removed.

Although there are a variety of software platforms (and numerous
products called platforms), some may be considered more important
than others for the majority of today's organizations. They are funda-
mental in the sense that they prescribe certain ways of developing,
integrating, and executing software. Important platforms today include
the following:

— Java platform

— Microsoft NET

— SAP NetWeaver

— IBM WebSphere

— LAMP (Linux; Apache, MySQL; Perl, Python, PHP)

A software
platform defines
technological
features and
restrictions

Important
platforms today

3.5.1 Java Platform

The Java platform is a very comprehensive platform. It comes in three
variants which are called editions:

— Java ME (micro edition)
— Java SE (standard edition)
— Java EE (enterprise edition)

Former names:
J2ME, J2SE and
J2EE

124 3 Information Systems Architecture

Before 2006, the editions were known as J2ME, J2SE and J2EE (J2 =
Java 2 platform). Java ME is used on small devices such as cellular
phones, PDAs and pagers. Java SE comprises the essential tools for
developing, deploying and running web-based and conventional infor-
mation systems in Java. Java EE is an extension of Java SE supporting
distributed multi-tier enterprise systems.

The Java platform determines how Java programs are developed and
executed. Located between the user's Java program and the underlying
hardware and software, the main parts of the platform are the Java vir-
tual machine (Java VM) and the Java application programming inter-
face (Java API). These parts are shown in figure 3-13 in a simplified
view:

Figure 3-13

Translating the
Java programs

The role of the Java platform [Campione 2001, p. 4]

myProgram.java

Java application programming interface (API)

Java
platform

Java virtual machine (VM)

Hardware & software platform

The Java VM is a "virtual" computer that can translate and execute Java
programs. The Java API consists of a large collection of ready-made
software components, grouped into libraries and/or packages of related
classes and interfaces. Examples are packages for the development of
graphical user interface (GUI), applets, concurrent programs etc.

The Java platform is independent of hardware and operating systems,
i.e. it can run on different hardware and software platforms. This inde-
pendence is achieved through a two-level process in which Java pro-
grams are translated twice. Figure 3-14 illustrates these steps. A Java
compiler translates the Java program into an intermediate language, so-
called Java bytecode. This bytecode is independent of a hardware
and/or software platform.

3.5 Platforms 125

The Java launcher tool then translates the bytecode and runs it with
an instance of the Java virtual machine. Java VMs are available for all
major platforms. Each VM can take the same bytecode, translate it for
the respective hardware and execute it on that hardware. Java bytecode
can be interpreted or compiled. Launchers include optimization features
which first compile bytecode into native code and then adaptively opti-
mize the native code according to the runtime characteristics of the
program.

Figure 3-14

Java Program

myProgram.java

Compiler
;

bytecode

myProgram.class

o 1

[Launcher r[Launcher]

My
Program

\li
=
] [——

~
[Launcher]07

Apple/OS X

|- -AES: |

PC/Windows Sun/Solaris

Java SE (Java platform, standard edition)

The standard edition comprises a large number of programming inter-
faces, providing tool support for the development, deployment and exe-
cution of Java programs. In Sun's official documents for the Java
platform, these tools together with the Java language constitute the Java
development kit (JDK). The set of software tools forming the JDK is
sometimes also called the Java platform.

In figure 3-15, the JDK for the Java platform, standard edition (offi-
cial name: "Java™ Platform, Standard Edition 6") is outlined. Accord-
ing to Sun's numbering scheme, the JDK is referred to as "Java™ SE

§ Adapted from Campione 2001, p. 4.

Compiling and launching Java programs

§

Java
development kit
(JDK)

Components of
the Java platform

126 3 Information Systems Architecture

Development Kit 6" (or "JDK 1.6.0"). A subset of the JDK is the Java
runtime environment (JRE). In figure 3-15, the application program-
ming interfaces are combined into the "Java SE API". As shown in the
figure, the Java platform includes:

— the Java language,

— development tools and APIs (e.g. compiler, launcher),
— deployment technologies (e.g. web-based deployment),
— user interface toolkits,

— integration and other libraries,

— language and utilities libraries,

— the Java virtual machine (VM).

Figure 3-15

Java platform, standard edition [Sun 2006b]
Java SE
API

JDK JRE

Platorns | Solats | Windows.

(It should be noted that the terms APIs, toolkit and technology are
sometimes used interchangeably in Sun's documents.) Details of all
tools comprised in the JDK can be found in the JDK documentation
[Sun 2006b].

Java EE (Java platform, enterprise edition)

Most heavy-weight real-world business information systems today are
distributed systems with a multi-tier architecture, allowing access and
processing transactions by many users at the same time. The Java plat-

3.5 Platforms 127

form supports the development and deployment of such systems with
components that go beyond the Java SE components.

Java EE, better known by its former name J2EE ("Java 2 platform,
enterprise edition"), comprises all components of the standard edition
plus additional components for heavy-weight distributed multi-tier
enterprise systems. Java EE assumes that information systems have a
four-tier architecture as shown in figure 3-16.

Figure 3-16 Example of two Java EE-based IS [Jendrock 2007, ch. 1]

Java EE information Java EE information
system 1 system 2

Client tier Client
machine
- Java EE
~

server

_

\

Database
server

EIS tier

- J

This logical architecture is often reduced to a physical architecture of
three tiers because the web-tier and the business-tier components usu-
ally reside on one machine (Java EE server). The client-tier components
run on the client computer, and the components of the so-called EIS tier

Java EE
assumes a four-
tier IS
architecture

128

3 Information Systems Architecture

run on a database server and perhaps other servers. EIS stands here for
"enterprise information systems", including databases and so-called

legacy systems (i.e. systems not based on Java EE technology).

In figure 3-16, information system 2 is a web-based system with a
browser front-end (HTML), using JSP (JavaServer Pages) technology to
generate dynamic page content. Information system 1 has a graphical
user interface created with Java technology (Swing, AWT etc.). Typical
technologies in a web-based system used on and between the four tiers
are shown in figure 3-17.

Figure 3-17

Common technologies in a Java EE four-tier architecture

Client tier

Web tier

Business tier

Data tier

Browser

HTML, XML/XSLT,
JavaScript, VBScript,
Java (applets)

A

HTML
XML

Y

Web server

JSP, servlets,
Web services, JSF, Struts

A

SOAP
lloP
v JRMP

Application server

EJB (Enterprise JavaBeans)
JMX (Java management extensions)

A

JDBC
JCA

Database server

Non-Java EE server

3.5 Platforms 129

o (lient tier: A browser visualizes static and dynamic web page con-
tent described in a markup language, either created by client-side
technologies such as HTML, XML/XSLT (eXtensible stylesheet
language transformations), JavaScript, VBScript and Java (for app-
lets) or prepared on the web server by server-side technologies.

o Web tier: A web server accepts requests from the client and prepares
responses with the help of server-side technologies such as JSP
(JavaServer Pages), servlets, web services, JSF (JavaServer Faces)
or Struts. JSF and Struts are frameworks for separating logic and
data on the web tier. Although any Java EE-compatible web server
may be used, the most common web server in Java EE-based sys-
tems is Apache Tomcat [Apache 2006c¢].

e Business tier: An application server contains the business logic
which is usually implemented with the help of EJBs (Enterprise
JavaBeans). Common application servers used with Java EE are
IBM WebSphere, BEA WebLogic and JBoss Application Server.

o Data tier (database tier, EIS tier): A database server stores data sent
from the business tier in a database and retrieves data from the
database upon requests by the business tier. Data exchange with
non-Java EE systems is supported.

The client tier communicates with the web tier in HTML or XML. The
web tier talks to the business tier with the help of middleware such as
web services, CORBA (common object request broker architecture
[OMG 2007]) and RMI (remote method invocation [Sun 2004]).
CORBA uses the IIOP (Internet inter-ORB protocol), RMI uses JRMP
(Java remote method protocol) and IIOP, and web services use SOAP.
The database tier has no specific Java EE components, but an interface
is provided via JDBC (Java database connectivity). Any database man-
agement system can be connected provided that it has a JDBC driver.
Non-Java EE systems (e.g. an ERP or CRM system with a different
technology) can be connected with the help of JCA (Java connector
architecture).

Java EE supports the development, deployment and execution of
information systems with a four-tier architecture such as the one shown
in figure 3-17.

For the client tier, the web tier and the business tier of such an archi-
tecture, component models are available. Component models provide
program libraries for application development. Developers use the
respective predefined classes and interfaces to create their particular

Client tier

Web tier

Business tier

Data tier
(database tier,
EIS tier)

Communication
between tiers

Component
models

Java EE
components
have to conform
to specific rules
and conditions

Application client

Applet

Servlet

JavaServer
Pages (JSP)

Enterprise Java
beans (EJBs)

130 3 Information Systems Architecture

application components. The Java EE specification defines the follow-
ing component models:

— Client-tier components: Java application clients and applets
— Web-tier components: JavaServer Pages (JSP) and servlets
— Business-tier components: Enterprise JavaBeans (EJBs)

Java EE programs are made of components. These components are
written in Java and are compiled in the same way as any other program.
The difference between components and "standard" Java classes is that
Java EE components have to conform to specific rules and conditions.
They are assembled into a Java EE-based information system, are
verified to be well formed and in compliance with the Java EE
specification, and are deployed to production, where they are run and
managed by the Java EE server [Jendroch 2007, ch. 1].

An application client is a Java program running on a client machine.
Typically an application client is used for tasks that require more
functionality and interaction than can be provided by a markup
language. It has a graphical user interface created with Java technology
(Swing, AWT packages).

An applet is a Java program that is executed by the Java virtual
machine installed within the web browser on the client computer.

Servlets are server-side Java programs that dynamically process
requests and build responses on the web server. Servlets are a means to
enable dynamic content in a static markup document.

JavaServer Pages (JSPs) are text-based files that include markup
text, Java code and JavaBean components. (JavaBeans are also compo-
nents but not considered Java EE components.) JSPs are an extension of
the servlet components facilitating the creation of static content. When a
JSP page is requested by the client, the web server compiles it into a
servlet. The browser then invokes this servlet that creates the content to
be sent back to the client.

Enterprise JavaBeans (EJBs) are the most powerful components for
developing business information systems. EJBs provide a distributed
component model for developing secure, scalable, transactional and
multi-user components. EJBs are reusable software entities containing
business logic. They also isolate the business logic from lower-level
tasks such as transaction management and security authorization, thus
the developer can concentrate on the business problem and is relieved of
system programming. From a technical point of view, EJBs are
standardized and allow any component complying with the rules of the
EJB specification to run on any Java EE application server.

3.5 Platforms 131

There are several types of EJBs: session beans (stateless and stateful
session beans), entity beans and message-driven beans.

Session beans are associated with client sessions. This means that the
lifespan of a session bean ends when the session is terminated.
Depending on how object states are treated, beans can be stateful or
stateless. A stateful session bean holds the state of the client across
invocations. This means that data (i.e. values of instance variables) are
preserved between different calls of a method. A stateless bean, on the
other hand, does not preserve data between method calls. Once a
method has been executed, the data associated with that particular
method call is lost.

Entity beans represent persistent data objects stored in a database.
They provide an object-oriented mapping of the rows of a database table
to corresponding objects of a Java program. Examples of entity beans
are objects such as customers, invoices, accounts, machines, employees
etc. Entity beans are called by session beans. For example, a session
bean "order entry" will probably call an entity bean "customer order".

Message-driven beans play an important role in today's message-
oriented systems. Not only web services but also other service-oriented
systems send messages, e.g. via a service bus that is based on a
messaging system. Messages are asynchronous by their nature whereas
method invocations are usually synchronous. A session bean that is
expected to do something may not be running when a message
requesting the functionality arrives, so a message-driven bean has to
activate the session bean or create one. Message-driven beans are not
invoked by method calls but only by sending them messages.

An example of how the different types of beans interact is presented
in figure 3-18. Session beans may be invoked by any web-tier
component or client that needs business-tier functionality. A message-
based request coming from a messaging client is processed by a
message-driven bean which in turn invokes a session bean. Persistent
data are finally stored in and retrieved from a database, therefore entity
beans are called by the session beans to access these data.

Components are not run by themselves but instead within so-called
containers. The motivation for using containers is that thin-client multi-
tier applications are in fact hard to write. They involve rather compli-
cated code to handle transaction and state management, multi-threading,
resource pooling and other complex low-level details [Jendrock 2007,
ch. 1]. Containers provide prefabricated solutions to all those problems,
relieving the developer from writing intricate low-level code.

Session beans

Entity beans

Message-driven
beans

Example of
beans interacting

Components run
within containers

Containers pro-
vide an interface
to low-level
platform-specific
functionality

Container types

132 3 Information Systems Architecture

Containers are the interface between a component and the low-level
platform-specific functionality that supports the component. Before a
Java EE component can be executed, it must be assembled into a Java
EE module and deployed into its container. Containers are defined for
the following components:

— An applet container manages the execution of applets. It consists of
a web browser and a Java plug-in running together on the client.

— An application-client container is used for executing standard Java
application clients. Both the application client and the container run
on the client.

Figure 3-18

Java EE components, servers and tiers (example)

. Java
Client tier Messaging C++ o
client client aPP“Ca“O”
client
T 1 T Web server
Web tier Serviet JSP
Messaging CORBA/ RMI- RMI- RMI-
1IOP IIOP IIOP IIOP
Application| server
3 VI v ¥
EJB message- EJB session EJB session
driven bean bean bean

Business tier l l / l

EJB session
bean

EJB entity bean EJB entity bean

T 7
JDBC JCA
Database server

3.5 Platforms 133

— A web container hosts JavaServer Pages and servlets. It manages the
execution of these components. The container and the components
run on the web server.

— An EJB container hosts the EJB components. EJBs and their con-
tainer run on the application server. The main advantage of using an
EJB container is that container services are available for component
pooling, bean lifecycle management, client session management,
database connection pooling, transaction management, persistence,
authentication and access control (for details see [Singh 2002, pp.
135-136]).

Java EE components and their containers are summarized in figure 3-
19. The browser on the client is responsible for both executing applets
and displaying pages created by servlets and JSPs. EJBs are called by
servlets, JSPs and application clients.

Figure 3-19 Java EE containers and components [Jendrock 2007, ch. 1]

Serviet JSP page

Web container

Applet container

Database

Application-
client

container Enterprise Enterprise

JavaBean JavaBean

EJB container

IDEs for Java

Java EE
enforces a
certain
architecture and
software
technology

134 3 Information Systems Architecture

Java IDEs

Integrated development environments (IDEs) are available for Java just
as for other common programming languages or platforms. They
facilitate the development of Java programs through powerful tools.
However, since the Java platform is very comprehensive and Java is a
rather heavy-weight language, IDEs are also heavy-weight products.
Ease of use is not quite the same as for simpler programming languages.

Both commercial and open-source IDEs are available. Some open-
source IDEs were originally developed and sold by companies like IBM
and Sun Microsystems and later made available freely. Well-known
IDEs for Java include the following:

— NetBeans (originally developed by Sun Microsystems, in 2000 made
open-source; http://www.netbeans.org)

— Sun Java Studio (also by Sun Microsystems, formerly known as
"Sun Forte")

— Visual J# (as part of Visual Studio .NET; see section 3.5.2)
— JBuilder (by Borland; http://www.borland.com)

— Eclipse (originally developed by IBM, in 2001 made open-source;
http://www.eclipse.org)

— WebSphere Studio Application Developer (part of IBM WebSphere
Studio)

Many professional Java developers use JBuilder, Eclipse or NetBeans.
While JBuilder is a commercial product that has evolved through many
versions over more than a decade, Eclipse and NetBeans are popular
open-source IDEs. Eclipse is nowadays governed by a consortium of
members firms, among them IBM, Oracle, SAP and Borland.

Specifics of IS development in Java EE

The above brief outline of the comprehensive Java platform shows that
this platform is not only very powerful but that it also sets clear stan-
dards and restrictions regarding further application development. A
four-tier architecture as laid out in the figures 3-16 and 3-17 is presup-
posed, the tools and APIs are oriented towards such an architecture, and
the component models guide system designers and implementers in a
certain manner, restricting significantly flexibility and allowing only
EJB specification-compliant constructs. The EJB container controls all
invocations of EJB components, interposing itself between each method

3.5 Platforms 135

call. In other words, the container puts itself between the caller and the
EJB method called. As a conclusion, information system projects based
on Java EE have only limited choices regarding software architecture
and technology.

Projects using the Java platform are in some ways different from
conventional development projects.

First and obviously, there is no decision to be made about what might
be the best programming language for the problem — there is only one
on that platform. In addition, building up knowledge and expertise in
using the Java platform takes significant efforts. Once proficient Java
architects, designers and programmers are available, the organization is
likely to put its future development projects on the same platform.

Perhaps a choice regarding the appropriate IDE is left, yet the impact
of this decision is less severe than the choice of the programming
language. Having experience with one IDE may mean that the same
IDE is also used in the future and therefore other, better IDE options are
not explored.

On the other hand, IDEs are products that compete on the market
with new versions to attract developers. If a new feature useful for the
current project is available in the next version of some other IDE but not
contained in the IDE the organizations has used up to now, switching to
that new IDE may take place.

Second, developing in Java implies to a significant extent the use of
prefabricated solution modules (classes, interfaces, patterns etc.) and ex-
tending or adapting these modules. Frequently modules created by the
developers are not built from scratch, because a lot of functionality is
already available (derived from superclasses). However, it is difficult to
know all the things that are already available and where to find them,
i.e. which libraries, packages, classes, APIs etc. do already exist. The
risk that the wheel is reinvented is therefore not negligible.

Third, the degree of freedom left to the developer is substantially less
than in other languages. The Java platform imposes a strict corset on
designers and implementers. Java EE prescribes a specific architecture
and its component models force the developers to proceed in a certain
way. Some pressure restricting the freedom is caused by the large
offering of prefabricated solutions. When such a solution is available, it
is attractive to use it instead of developing a new one that will cost time
and money.

Fourth, some parts of Java programs are very compact, incorporating
an abundance of functionality in a few lines of code. While Java experts
are used to this compactness, newcomers find it difficult to understand.

No choice of
programming
language

Reinventing the
wheel in Java?

The Java
platform imposes
a strict corset on
designers and
implementers

"Copy and paste"
programming

136 3 Information Systems Architecture

Finally, the emerging trend of Java becoming "the" platform for
heavy-weight information systems in all areas has a remarkable side
effect: Solutions to many types of problems developed worldwide are
published and can be found on the Internet. Java programmers often
copy code from the Internet and paste it into their own programs. Pro-
ject managers need to observe this type of "copy and paste" program-
ming carefully because it can create problems regarding the software
quality and copyright issues.

3.5.2 Microsoft .NET Platform

Objectives of the
.NET platform

When .NET was announced in 2000, Microsoft called it an "initiative".
For some time it remained unclear what .NET really was — a product, an
architecture, a framework, or a platform? In fact, NET became a brand
for an integrated set of different Microsoft technologies, some of them
entirely new, some updates of former technologies or products. From a
technical point of view, .NET can be considered a platform because it
provides an interlocking set of tools and mechanisms to develop pro-
grams and to execute programs. (In a quite similar way, IBM introduced
the brand name WebSphere as a collection of products with a platform
at its core; cf. section 3.5.3.)

When .NET was advertised and introduced into the market, the goal
was to provide a common platform for developing and running enter-
prise-wide and Internet-based information systems. The specific objec-
tives of NET were to support:

— Distributed computing and to simplify the development of client-
server and other distributed systems, based on open Internet stan-
dards (HTTP, XML, SOAP etc.).

— Componentization, i.e. building systems from software components
(reuse) in a simpler way than before.

— Internet interoperability, in particular through the use of software
components that reside on servers somewhere on the Internet (web
services).

— Language independence; this means that components can be written
in different programming languages, are easily integrated, and work
smoothly together.

3.5 Platforms 137

— Language integration on the programming level; for example, a class
written in one language can inherit from a class written in a different
language.

— Reliability, i.e. programs under .NET are supposed to contain fewer
errors than conventional programs.

— Security by providing a security infrastructure. Security is an in-
creasingly important problem in today's web-based environments
allowing access to computers and information systems from outside
via the Internet.

The .NET platform has the following parts:

The NET framework
Developer tools
A set of servers
Client software

B

The core of .NET, the .NET framework, will be discussed in a subsec-
tion below. The premium tool for developers is Visual Studio .NET, a
very powerful and convenient-to-use IDE for developing information
systems under .NET. Servers include MS Windows server, a database
server (SQL server), and a server for web-based information systems
(BizTalk server). Clients run under Windows XP or Windows Vista, for
example.

.NET framework

The .NET framework is the core of the platform supporting information
systems development in the highly distributed environment of the
Internet. According to Microsoft's documentation, its objectives are
[Microsoft 2007c]:

— To provide a consistent object-oriented programming environment
regardless of whether the object code is stored and executed locally,
executed locally but Internet-distributed, or executed remotely.

— To provide a code-execution environment that minimizes software
deployment and versioning conflicts; guarantees safe execution of
code, including code created by an unknown or semi-trusted third
party; and eliminates the performance problems of scripted or
interpreted environments.

Objectives of the
.NET framework

The CLR is the
foundation of the
.NET framework

138 3 Information Systems Architecture

— To let developers work in the same way across widely varying types
of application systems, such as Windows-based and web-based
systems.

— To build all communication on industry standards to ensure that
code based on the .NET framework can integrate with any other
code.

The .NET framework is composed of two major parts as illustrated in
figure 3-20, the common language runtime and set of class libraries.

The common language runtime (CLR) is the foundation of the NET
framework. It manages code at execution time, providing core services
such as memory management, thread management, code safety verifica-
tion, compilation and other system services. The CLR is the basis for
language independence and language integration. These are achieved
through an intermediate-language concept.

Figure 3-20

.NET supports
many
programming
languages

Components of the .NET framework

.NET Framework

.NET framework class library

| Windows forms | | Web forms | | Web services |

Data and XML classes
| saL [ADONET|[XML |[XxSLT][ASP.NET]| e

Base framework classes
| 10]| sting |[NET]| Security || Threading]| v

Common language runtime (CLR)
(Type checking, debugging, exceptions, JIT compilers etc.)

Windows operating system

The .NET platform supports many programming languages. Next to
Microsoft's core languages, Visual Basic .NET and C#, only a few more
(J#, so-called "Managed C++", and JScript .NET) were available at the
beginning. Today the list is long. In the MSDN (Microsoft developers
network) documentation, 24 languages are listed, including APL,

3.5 Platforms 139

Cobol, Eiffel, Fortran, Java, Pascal, Perl and Smalltalk [Microsoft
2007b].

Most modern programming languages are based on similar principles
and provide similar constructs. There is a common understanding in
software engineering of what makes a "good" programming language
(e.g. control structures from "structured programming", data types, ob-
jects, classes, inheritance etc.). But in actual fact, all programming lan-
guages look completely different due to their syntax. Some use end
statements to close blocks (end if, end sub etc.), some use curly braces;
some terminate statements with a certain character, some by the end of
the line; etc. These syntactical differences are not really important, yet
the semantics of the constructs certainly are. The idea behind an inter-
mediate language — between the source language and the machine lan-
guage — is to provide a common implementation of the semantics under-
lying all source languages.

Code that is in conformance with the CLR specifications is called
managed code, while code that does not target the runtime is known as
unmanaged code. All managed code is compiled into an intermediate
language, MSIL (Microsoft intermediate language). Compilers for
NET languages translate source code into MSIL. Before the MSIL
code can actually be executed, it has to be translated into machine-
specific binary code ("native code"). As shown in figure 3-21, this is
done by a "just in time" (JIT) compiler. The name JIT compiler comes
from the fact that the translation is done when the respective method is
called for the first time.

Syntactical
differences
between pro-
gramming
languages are
not important

MSIL (Microsoft
intermediate
language), JIT
("just in time")
compiler

Figure 3-21 Translating managed code

Compilation
Source Language MSIL code
code compiler and metadata
Execution First time
each method
is called
Native JIT
code compiler

.NET framework
class library

Most code is
generated

Programming
languages

140 3 Information Systems Architecture

The CLR/intermediate-language approach is similar to the Java
VM/Java bytecode as discussed in section 3.5.1. Although the Java
world and .NET world are rather separate worlds (and will probably
remain so), both follow the same fundamental principles and concepts.
Just as Java programs can run on any hardware and software platform
that has a Java virtual machine, programs in any of the .NET languages
can run on any platform that has the .NET framework. However, up
until now, these have been almost exclusively Windows platforms.

The NET framework class library, the second main component of
the NET framework, is a comprehensive, object-oriented collection of
reusable classes that are tightly connected with the CLR. The base
framework classes provide types based on .NET's common type system
(CTS). These types are used by all .NET languages that produce man-
aged code. In addition to standard types such as integers, floating-point
types, arrays etc., types supporting string management, data collection,
database connectivity, file access etc. are available in the data and XML
classes. The class library further includes types that can be used for the
development of graphical user interfaces (Windows forms), web pages
created with ASP .NET (Web forms) and web services.

Visual Studio .NET

Visual Studio .NET is a comprehensive IDE for creating any kind of
software component that can run on the .NET platform, e.g. GUI forms,
web forms, code modules, classes, data access components, XML files,
stylesheets and more. It contains a complete set of development tools
for building web-based systems with ASP .NET as well as conventional
desktop-oriented systems, web services and mobile solutions.

For most types of components, code is partly or completely gener-
ated from the developer's input. For example, GUI components can be
entirely created by "visual programming", dragging and dropping
graphical icons onto the GUI design pane. Properties of components can
be set or changed in a table (properties window), access methods for
user-defined classes are generated automatically, and database access
(connectors, adapters, queries etc.) is provided via prefabricated classes.

For web services, SOAP messages and WSDL files are created auto-
matically from the respective language classes. Explorers and browsers
help to keep track of the logical structure ("class view", "object brows-
er'") and the physical structure of development projects ("solution ex-
plorer") including the servers involved ("'server explorer").

The core languages included with Visual Studio are Visual
Basic .NET, Visual C++ NET, Visual C# .NET, and Visual J# NET.

3.5 Platforms 141

All languages share the same set of tools. In this way, access to key
NET technologies and the creation of mixed-language solutions are
facilitated.

Compared to IDEs for other languages and platforms, Visual Studio
NET is not only a very powerful development environment but also
one of the most convenient ones available on the market. Microsoft con-
siders it as its flagship in the NET world. Software developers working
with Visual Studio can benefit from very powerful tools.

.NET servers

A number of Microsoft servers are available on the .NET platform,
supporting important areas such as database management, electronic
commerce and business process management. The .NET servers include
the following products [Microsoft 2007a]:

e BizTalk server facilitates the exchange of information among diverse
information systems running on different hardware and software
platforms. It is a business process management (BPM) server that
enables companies to automate business processes. BizTalk server
contains tools to design, develop, deploy and manage processes and
to integrate processes across disparate information systems, both
within the organization (enterprise application integration, EAI) and
between organizations (business-to-business, B2B). BizTalk server
includes mechanisms for connecting to legacy systems and to typical
business packages for ERP and CRM (e.g. SAP, Siebel, PeopleSoft,
Oracle and JD Edwards). A messaging engine provides a way to
define and exchange XML-based documents among systems.

e Commerce server: E-commerce websites have many things in com-
mon. Instead of building everything from scratch, organizations can
use the commerce server's packaged components to deploy person-
alized portals. Commerce servers provide features such as order pro-
cessing, merchandising and catalog management with integrated
search capabilities.

o SQL server is Microsoft's RDBMS for distributed information sys-
tems. Clients can send queries to a database server, and the server
returns the results over the network. SQL server provides enterprise
data management with integrated tools for business intelligence (BI),
analysis, reporting and notification.

e [Exchange server, the Microsoft messaging and collaboration server,
enables users to send and receive electronic mail and other forms of
interactive communication through computer networks. Exchange

BizTalk server

Commerce
server

SQL server

Exchange server

Content
management
server

Development
under .NET takes
place within
Visual Studio

142 3 Information Systems Architecture

server interoperates with Microsoft Outlook, Outlook Express and
other e-mail client systems.

o (Content management server is an enterprise web content manage-
ment system that enables companies to build, deploy and maintain
highly dynamic Internet, intranet and extranet Web sites.

Other servers include the host integration server (for interoperation of
Windows-based systems with IBM hosts), application center server
(supporting scalability, managing replicated server applications), ISA
server (Internet security and acceleration server, providing firewall and
proxy services), and the speech server (for deploying and managing
distributed speech applications).

Specifics of IS development on the .NET platform

For developers, the .NET platform unfolds its power best when Visual
Studio .NET is available as IDE. Visual Studio suggests an event-driven
programming style, making the creation of graphical user interfaces
very easy. For this reason, Visual Studio is also a powerful tool for
requirements prototyping (see section 4.4.2).

Working with Visual Studio is very comfortable compared to other
IDEs. The developer does not need to leave Visual Studio because
everything needed in the development process is there. No matter
whether a desktop-oriented information system, a web front-end, a web
service, an XML file or an XML schema have to be created, Visual
Studio assists the developer through tools generating code and checking
whatever new code is written.

Implementation is largely controlled by Visual Studio. Developers
continue to add items to the system under development, Visual Studio
generates some of the code, and the developer completes the code
manually. Testing and debugging are also done with the help of tools
embedded in the IDE.

3.5.3 IBM WebSphere

Java-based
e-business
systems

WebSphere is a widely used platform for developing, deploying and
running Java-based electronic-business systems. It comprises applica-

3.5 Platforms 143

tion servers, tools for Java development, connectivity mechanisms, and
many more products. In fact, WebSphere is a brand name for a long
series of IBM products that are related to web-based information
systems, yet many people associate with the name WebSphere the best-
known of these products, the WebSphere application server (WAS).

WebSphere products can be divided into runtime tools and develop-
ment tools. Runtime tools, next to the WebSphere application server
(see further below), include the following [IBM 2008]:

— WebSphere message queuing (MQ, formerly known as IBM
MQSeries) — enables programs to communicate with one another
across a network in a messaging and queuing style: Messages sent
by programs to be processed by other programs are placed in storage
queues, allowing the programs to run independently of each other, at
different speeds and times, in different locations, and without being
connected [IBM 2003, p. 3].

— WebSphere enterprise service bus (ESB) — an abstraction layer on
top of messaging, providing a connectivity infrastructure for inte-
grating systems and services. ESB routes messages between ser-
vices, converts transport protocols and message formats between
requester and service, and handles business events from disparate
sources.

— WebSphere commerce — an e-commerce platform that supports
doing business directly with consumers (business-to-consumer) or
with businesses (business-to-business), and indirectly through chan-
nel partners. At the core is an online selling environment that en-
ables companies to offer personalized, cross-channel shopping.

— WebSphere portal — provides a single access point to web content
and IS, personalized to each user's needs; supports workflows,
content management, security mechanisms and scalability.

Developments tools in and around WebSphere can be distinguished into
two lines. One is WebSphere Studio (see further below), the other one is
a suite from former Rational Software (now IBM): Rational application
developer (RAD), Rational web developer (RWD), and Rational
software architect (RSA).

WebSphere application server (WAS)
The WebSphere application server is typical middleware that connects

the presentation tier and the business tier in e-business systems where
clients and servers are distributed on the Internet. Clients send requests

WebSphere
runtime tools

WebSphere
message
queuing

WebSphere
enterprise
service bus
(ESB)

WebSphere
commerce

WebSphere
portal

WAS connects
presentation and
business tiers

WAS containers
and engines

144 3 Information Systems Architecture

over the web. Responses are established based on business information
systems (like ERP or CRM) or database management systems hosted by
the WAS.

Since the web is the network on which responses and requests are
transported, a web server is employed to work with the application serv-
er. In many cases this is the Apache web server, but the WAS works
with other web servers, too.

In addition to HTTP requests, EJBs, web services and messages can
also invoke the application server as shown in figure 3-22. Correspond-
ingly, the WAS architecture provides containers and engines to accept
and process the respective tasks, including a web container, an EJB con-
tainer, JCA services, a messaging engine and a web services engine
[Sadtler 2005, p. 21]:

Figure 3-22

WebSphere application server [Sadtler 2005, pp. 7, 21]

. WebSphere
Clients application
server
Web browser Web > Web
server container
N EJB
”1 container
JCA | Business
services i '";%rtréamt'g"
Message Message
Messaging jaueue 4| Messaging _ | queue
- engine >
i Web
Web services > WeZ nseianéceS > sorviees
9 (provided)

3.5 Platforms 145

— The web container processes HTTP requests, servlets and JSPs
(JavaServer Pages).

— The EJB container provides all runtime services that are needed to
deploy and manage Enterprise JavaBeans.

— The JCA (Java EE connector architecture) services provide connec-
tion management for access to business information systems. JCA
specifies how connections are administered and how transactions
have to be performed.

— The messaging engine handles and stores messages. It provides a
connection point where clients can produce messages and from
which clients can receive messages.

— With the help of the web services engine, the WebSphere application
server can act as both a web service provider and as a requester. In
the first case, it hosts web services that may be invoked by clients. In
the latter case, it sends requests from its own information systems
that need services from other locations.

The overview scheme in figure 3-22 illustrates the basic functionality of
a single application server. This corresponds to a stand-alone server that
hosts one or more information systems. Even though several application
servers may run on one machine, they will still be stand-alone servers.

In heavy-duty environments, centrally managed distributed servers
have advantages over stand-alone servers, including workload manage-
ment, scalability, failover capabilities and thus high availability. The
WebSphere application server also supports distributed server configu-
rations.

WebSphere Studio

WebSphere Studio comprises a family of IDE products for develop-
ment, testing, debugging and deploying web-based information systems
[Takagiwa 2002, p. 4]. It provides support for each stage of the develop-
ment life cycle. WebSphere Studio is the follow-on toolset for IBM's
former Java IDE, Visual Age for Java.

The WebSphere Studio products are based on the Eclipse workbench.
This is an open-source toolset originally designed by IBM, later
released as open-source, and nowadays managed by the Eclipse.org
consortium (http://www.eclipse.org). The Eclipse workbench provides
frameworks, services and tools for building tools. Any independent
software vendor can use the same APIs as IBM to create their own tools
that can be plugged into the Eclipse workbench.

Distributed
servers

WebSphere
Studio is based
on Eclipse

WebSphere
Studio applica-
tion developer

146 3 Information Systems Architecture

The products of the WebSphere Studio family provide support for a
wide range of development tasks, from medium-complex websites to
heavy-weight Java EE information systems based on the MVC (model-
view-controller) pattern. In the middle of the range is the WebSphere
Studio application developer — the toolset that most people associate
with the name WebSphere Studio. It includes the following basic tools
[Takagiwa 2002, pp. 13-18]:

— Web development tools — to create HTML pages, JSPs servlets and
other resources

— Relational database tools — to create and manipulate the data design
of a project in terms of relational database schemas

— XML tools — to build DTDs (data type definitions), XML schemas
and XML files

— Java development tools — an IDE (integrated development environ-
ment) for Java

— Web services development tools — to build and deploy web services-
enabled systems across software and hardware platforms, based on
UDDI, SOAP and WSDL

— Team collaboration tools — to allow individual developers to work
on a team project, share their work with others as changes are made,
and access the work of other developers as the project evolves

— Integrated debugger — to detect and diagnose errors in programs
running locally or remotely

— Server tools for testing and deployment — to test JSPs, servlets,
HTML files and EJBs

— EJB development tools — to develop and deploy enterprise Java
Beans

— Performance profiling tools — to test the performance of a system
under development

— Plug-in development tools — to develop plug-ins for the Eclipse
workbench

Many Java developers around the world use IBM WebSphere tools
and/or Eclipse as an IDE. One remarkable feature of WebSphere is that
it has interfaces with SAP NetWeaver's application platform (see imme-
diately below).

3.5 Platforms 147

3.5.4 SAP NetWeaver

As an example of a business-oriented, proprietary, high-level platform,
SAP NetWeaver is presented in this section. NetWeaver is an integration
and application platform both for building new, custom information
systems based on SAP's technological infrastructure and for integrating
an organization's existing information systems using different infra-
structures. For many SAP users such a platform makes sense not just
because their core information systems are based on that platform. Since
the core systems dominate the organization's IT landscape, any integra-
tion or development project will have to meet the restrictions and re-
quirements of these heavy-weight systems. This is certainly easier if all
systems are using the same platform.

Business challenges and requirements that led to the development of
the NetWeaver platform, according to SAP, include the following [SAP
2003]: Enterprises expect their IT departments or IT organizations to
make their contribution towards competitiveness, cost reduction and in-
creasing shareholder value. Heterogeneous IT environments prevent
such contributions or make them at least very difficult.

On the other hand, it is a fact that many organizations have disparate
information systems and they wish to continue operating these systems
in the future. No single vendor can deliver all the solutions that an
enterprise needs, including SAP. A growing trend is, for example, that
SAP's customers run SAP systems for their specific business processes
and also use IBM and Microsoft technologies for their e-commerce
solutions and office work. This means that SAP systems must be able to
import, export and interoperate effectively with systems based on the
NET, Java, and WebSphere platforms. Business partners of the firm
also have information systems, and since more and more business trans-
actions are done online, integrating with those systems has be taken into
account.

Interoperability between heterogeneous IT environments has become
a major issue because the cost of IT is largely determined by how well
disparate information systems can be integrated. Nowadays, end-users
expect seamless integration of different systems and transparent access
to information from these systems, no matter where the data is actually

A proprietary,
high-level
platform

Motivation for
SAP NetWeaver

Interoperability
between
heterogeneous
IT environments

SAP NetWeaver
is an integration
and application
platform

SAP: "integrating
people,
information, and
business
processes"

Enterprise portal

Collaboration

148 3 Information Systems Architecture

stored. According to SAP, the lion's share of the integration effort in
large businesses occurs between SAP systems and other custom busi-
ness systems. Consequently integration became the major challenge to
be tackled when the NetWeaver platform was designed.

In a simplified view, SAP NetWeaver is described as an "integration
and application platform to unify and align people, information, and
business processes across technologies and organizations." [SAP 2003,
p. 6] In fact, NetWeaver integrates a number of technologies for differ-
ent purposes: mobile, portal, collaboration, knowledge-management,
business-intelligence, master data-management, business process-man-
agement, integration-broker and application-server technologies [SAP
2004b, p. 5].

NetWeaver is used to integrate information from different sources
via open standards such as XML, SOAP, UDDI, WSRP (Web services
for remote portlets) and WSBPEL (Web services business execution
language). It is the basis for SAP's enterprise service-oriented architec-
ture (ESOA) and the composite applications which are discussed in
section 3.4. SAP's core products in the SAP business suite (including
SAP ERP) are based on the NetWeaver platform as well as all new
modules available from SAP partners around the world.

An overview of SAP NetWeaver as given by SAP is shown in figure
3-23. This overview focuses on the integration goal ("integrating peo-
ple, information and business processes" [SAP 2003, p. 6]), exhibiting
most major components of NetWeaver. The following description is
based on SAP documents [SAP 2006a, SAP 2004b, SAP 2003].

People integration

People integration stands for bringing together the right information (i.e.
the appropriate system functionality) and the right persons. NetWeaver
includes four components for this purpose:

e Enterprise portal — provides a complete platform infrastructure
along with knowledge management and collaboration software.
Under a unified user interface, workers get personalized, role-based
access to heterogeneous IT environments. Information can be
extracted from SAP and non-SAP systems, data warehouses, web
pages etc. and received from web services.

e Collaboration — supports communication among teams and commu-
nities. This includes real-time and virtual collaboration tools such as
news forum, instant messaging, collaboration room, chat, team
calendars, shared documents and tools etc.

3.5 Platforms 149

o Mobile infrastructure/multichannel access — permits access to enter- Mobile infrastruc-
prise systems using mobile devices and voice systems, so people can ;ucrsg::ltuchannel
stay connected any place where their business is conducted. Con-
nections can be based on HTTP, WAP (wireless application proto-
col), WLAN (wireless LAN), Bluetooth, GSM (global system for
mobile communications), UMTS (universal mobile telecommunica-
tions system), Voice over IP and other technologies.

Figure 3-23 Overview of SAP NetWeaver [SAP 2003, p. 6]

SAP NetWeaver

Mobile infrastructure/multichannel access

Enterprise portal I Collaboration

Business intelligence Knowledge
management

Master data management

Exchange infrastructure Business process
9 management

Java EE

DB & OS abstraction

Information integration

In this category, both structured and unstructured information are made
available in a consistent and accessible manner. Functionality is
provided in the following areas:

Knowledge
management

Business
intelligence

Master data
management

Exchange
infrastructure

Business
process
management

Development
and runtime
environment for
Java EE and
ABAP based
software

150 3 Information Systems Architecture

o Knowledge management — manages and makes accessible text and
audio files, slide shows etc. Search features, content management,
information classification and distribution, integration of external
content etc. are included.

e Business intelligence — helps to identify, integrate and analyze dis-
parate business data from heterogeneous sources. Tools support
enterprise modeling, data warehousing and data mining, queries,
simulation, decision making and creating interactive reports.

o Master data management — promotes information integrity across
the business. Consolidation, harmonization, and central master-data
management are provided, including business partner information.

Process integration

The goal of process integration is to enable efficient business processes
across heterogeneous IT environments both within the boundaries of an
enterprise and beyond. NetWeaver supports:

e [Exchange infrastructure — providing integration technologies that
support process-centric collaboration among SAP and non-SAP sys-
tem components. Messages and service requests are handled based
on open standards such as XML, SOAP and WSDL. Special adapt-
ers for business-to-business integration are available (i.e. processes
integrating business partners).

e Business process management — permitting existing information
systems as well systems under planning to be combined into end-to-
end business processes spanning the entire value chain. Modeling,
execution and controlling of processes and workflows are supported.

Application platform

The application platform provides a development and runtime environ-
ment for both Java EE and ABAP based software, including abstrac-
tions from the underlying operating and database management systems
and a web application server as a development and deployment platform
for web-based systems and web services.

More components and tools are available with the NetWeaver
platform. As the time goes on, SAP provides new tools and components
and realigns existing ones with new names or into new arrangements.

3.5 Platforms 151

The composite application framework is a development environment
for building composite applications as discussed in section 3.4.2. The
framework contains design tools, methodologies, services, processes, an
abstraction layer for objects and user interface patterns.

The solution manager (formerly life-cycle management) provides
comprehensive tools for all stages of the software life cycle: design,
development, deployment, implementation, versioning, testing and on-
going operations such as administration and change management.

The Auto-ID infrastructure provides middleware which connects
automated communication and sensing devices such as RFID readers
and printers, Bluetooth devices, embedded systems and bar-code
devices. RFID data can be captured, stored and transmitted so that they
can be interpreted by information systems.

As mentioned in the beginning of this section, integration with IBM
and Microsoft systems is considered a crucial requirement. Following
this need, the importance of interoperability of SAP systems on the one
hand and IBM and Microsoft systems on the other hand is not only
stressed on a business level but also supported on a technology infra-
structure level. This means that NetWeaver components for people, in-
formation and process integration as well as the application platform
have counterparts in the IBM WebSphere and Microsoft .NET plat-
forms.

For example, the Java classes offering access to SAP interfaces are
integrated into IBM's WebSphere Studio application developer
(WSAD), and modules developed in WSAD are compatible with the
runtime environment of SAP's web application server. This means that
components developed in WebSphere can run under the SAP web
application server.

Another example is the SAP .NET connector. Using this connector,
SAP systems can be extended with components developed for the
Microsoft .NET platform. An SAP system can access and integrate
NET services, and at the same time .NET based information systems
can access SAP modules.

On the integration levels, correspondences between NetWeaver
components on the one hand and WebSphere and .NET components on
the other hand are established. For example, IBM's Lotus suite with
powerful collaboration and information management features can be
accessed from SAP systems and vice versa. A business information
system running on SAP Netweaver can be integrated with an informa-
tion system running on IBM WebSphere (applying JMS using
MQSeries). Likewise, a Microsoft .NET solution can be connected via a
MSMQ (Microsoft message queuing) adapter. In this way, user com-

Composite
application
framework

Solution
manager

Auto-ID
infrastructure

Interoperability
with IBM and
Microsoft
systems

Connecting with
Websphere
components

Connecting with
NET
components

Integration with

152 3 Information Systems Architecture

panies can manage an IT landscape in which SAP, IBM and Microsoft
systems coexist.
This is an attractive perspective for information systems develop-

non-SAP . .

solutions ment by user organizations. In many organizations, more knowledge
and experience are available in general development technologies such
as Java IDEs or Visual Studio .NET than in SAP specific technologies.
Through the interoperability with IBM WebSphere and Microsoft
NET, organizations can easily extend and enhance their heavy-weight
SAP information systems by light-weight components developed with
the help of common software technologies.

3.5.5 LAMP
LAMP is a

bundle of tools
that are often
used together

Linux

Apache

LAMP is a popular platform composed of open-source software. In fact,
LAMP is not a unified platform like the above ones but a bundle of
tools that are often used together. The name is an acronym that stands
for:

L =Linux
A = Apache
M =MySQL

P = Perl/Python/PHP

It is attributed to Michael Kunze, who recommended this
combination of products as an alternative to commercial and proprietary
platforms in a German computer magazine in 1998 [Kunze 1998].

L = Linux is an open-source operating system similar to Unix. It was
originally developed by a Finnish student, Linus Torvalds, in the early
1990s and given to the open-source community. Professional software
firms have adopted and extended Linux, offering services and support
for user organizations. Those who wish to handle Linux themselves can
still download and run it for free.

A = Apache has become a generic name for a variety of open-source
software products, yet the original product was the Apache HTTPD web
server [Apache 2006b]. One powerful feature of this server is that it
supports loadable extension modules that enhance its base functionality.
Many such modules are available for many purposes. Especially for
web application development, an interpreter for one of the "P" lan-

3.5 Platforms 153

guages can be embedded into the web server to enhance the power of
the server. Apache HTTPD is considered to be an easy to install and
configure web server that needs little attention once it is running.

M = MySQL is a widely used open-source relational database
management system. It works closely together with PHP as a scripting
language, i.e. many websites written in PHP have an underlying
MySQL database. PHP is a recursive abbreviation of PHP hypertext
preprocessor (originally named "personal home page tool" by its crea-
tor, Rasmus Lerdorf, in 1995 [Achour 2006]).

P = Perl and Python (in addition to PHP) are other scripting lang-
uages that have been in use since the web began. Early web servers had
CGI (common gateway interface) built in. With the help of Perl, Python
and PHP, it was possible to use CGI to exchange data between the
client's web browser and the server.

When Linux is distributed the other components usually come with it
as a bundle. That is why the four components are often used in combi-
nation and can be seen as platform. In this sense, the "platform"
comprises a web server (Apache HTTPD), a database management
system (MySQL) and a scripting language (Perl, Python and/or PHP).
The compatibility of these components has grown and been extended
over the years.

LAMP's combination of a web server, a DBMS and a scripting lan-
guage suggests that typical e-business systems using web technology
and databases can be based on LAMP. A well-known example of a
large system on this platform is Wikipedia, the free encyclopedia on the
Internet (http://wikipedia.org). It runs under Linux, with content stored
in a MySQL database and provided to clients by an Apache HTTPD
web server.

LAMP is more limited than the platforms discussed earlier. The
combination of the four components basically provides a development
and runtime environment for web-based systems. However, since all
components are open-source, developers and projects around the world
have created a large number of additional components. Among these are
content management systems (CMS), application servers and many
more.

Application servers that can be used together with the LAMP compo-
nents have been developed both in ASF (Apache Software Foundation)
and other open-source projects. The Tomcat [Apache 2006¢c] and
Geronimo [Apache 2006a] servers, for example, were developed by the
Apache Software Foundation, a non-profit corporation in the United
States. They add application-server functionality to the web-server func-
tionality of Apache HTTPD. The goal of Geronimo is to provide full

MySQL

Perl/Python/PHP

Wikipedia runs
under LAMP

Tomcat and
Geronimo

Similar platforms

154 3 Information Systems Architecture

application server support for information systems based on Java EE
[Apache 2006a].

Since LAMP has become such a success, similar platforms with
slightly different combinations of components emerged, for example,
with Windows or BSD Unix as operating system, PostgreSQL as
DBMS and IIS as web server. The most prominent acronyms are the
following [Jupitermedia 2005]:

LAPP — Linux, Apache, PostgreSQL, Perl/Python/PHP
WAMP — Windows, Apache, MySQL, Perl/Python/PHP
MAMP — Macintosh, Apache, MySQL, Perl/Python/PHP
BAMP — BSD, Apache, MySQL, Perl/Python/PHP
WIMP — Windows, 1IS, MySQL, Perl/Python/PHP
AMP — Apache, MySQL, Perl/Python/PHP

The AMP combination has no specific operating system. This indicates
that Apache, MySQL and Perl/Python/PHP are actually the important
components. The benefits of using them together will show on any
operating system. However, Linux is open-source and the other
components are often bundled with Linux; therefore this combination is
the most popular one.

Developing
Information
Systems

In this and the following chapters, we will discuss different approaches
concerning how an organization can obtain its information systems once
the decision in favor of a system has been made.

While chapter 7 will deal with buying and introducing software that
was developed by others, in particular standard software, the focus in
this chapter is on how to build completely new information systems or
new modules that extend existing information systems within an organi-
zation. By "new modules" we mean that significant development effort
is required in order for the project to pass all stages of the software
development process.

In contrast to this, limited extensions of a running information sys-
tem are considered part of the maintenance and support stages. Adding
functionality to a new standard software system will be discussed in
chapter 7, as part of the customizing process.

The perspective taken in this chapter is that the starting point for the
development effort is an approved project proposal (cf. section 2.2.1);

156 4 Developing Information Systems

i.e., a managerial level decision to launch a project for building a system
inhouse has been made. If no restrictions existed, we could say that the
project starts from scratch. In the real world, however, such restrictions
often limit the degrees of freedom substantially.

4.1 Starting with a Problem Specification

Constraints
limiting the
degrees of
freedom

Project proposal
is not operational

Business
process model —
a high-level
description

Constraints that a new information system development effort may need
to observe include the following:

— The existing information systems landscape has to be considered.
Most likely the new system will need to be interfaced with the
company's ERP system and other information systems.

— The platform on which the new system will run is probably outside
the scope of the project. If the company's existing systems are all
based on IBM WebSphere, for example, then it is unlikely that a
different platform will be chosen for a new system which needs to
be integrated.

— Depending on how closely the system is to be connected with exist-
ing systems, its architecture may already be predetermined, i.e., it
may have to match the architecture of the other systems.

— Many projects have to run under a tight budget and meager staffing,
limiting the possibilities of what can be done.

Despite these constraints, the development of new information systems
offers a wide array of options and fewer limitations than customization
projects.

Any development project needs a specification of the problems to be
tackled. The project proposal contains a problem description, but this
description is usually just a written text for the approval process, too
coarse and not operational enough to identify relevant development
tasks. For this purpose, a more formalized high-level specification of the
future system is required.

Several approaches to define such high-level specifications have
emerged in the past. With business processes nowadays being the
dominating paradigm for running organizations, this high-level descrip-

4.1 Starting with a Problem Specification 157

tion of the IS needs is usually a description of a business process or a
sub-process.

The process specification could simply be a textual description of the
major process steps and the resources involved. Since semi-formal
specifications have advantages over text, various graphical notations to
specify a business process on a high level have come into existence over
the years, including the following:

» Context diagrams in SA (structured analysis) [Yourdon 1989, p.
339]

» Activity and use-case diagrams in UML (unified modeling lan-
guage)

» Event-driven process chains in ARIS (architecture of integrated
information systems) [Scheer 2005]

» Business process diagram in BPMN (business process manage-
ment notation)

Graphical
notations for
business process
modeling

Figure 4-1 High-level business process (example)

[production | [production | [dispatching]

confirm
order

feasible deliver

manu-

order check plan P
S acture
received feasibility, " ot production product
feasible
customer
engi- notify

notify

sales customer

neering

ly

Figure 4-1 shows just one possible way of visualizing a business pro-
cess. As many notations for business-process modeling exist, the
graphical constructs vary. Besides high-level diagrams, all approaches
comprise a suite of graphical symbols with appropriate semantics as
well as methods and tools for different aspects of modeling and con-
struction. As a process is increasingly refined, more symbols and more
meanings are added to the high-level representation. Since methods and

158 4 Developing Information Systems

tools will be discussed in the following chapter, we do not introduce
more notations at this point.

4.2 Process Models and ISD Paradigms

Definition:
software process
model

ISD paradigms

Assuming that an operational problem specification has been created,
development of the information system can start. There are many ways
to conduct the development effort. Templates arranging development
activities into a specified order are called software process models.
(Note that the term "process" refers here to software development
activities and not to business processes as above.) This term can be
defined as follows:

A software process model is an ordered set of activities with asso-
ciated results that are conducted in the production and evolution
of software. It is an abstract representation of a type of software
process.

In a formal view, a software process model can be regarded as a de-
scription of a software process at the type level. A particular process is
an instantiation of the process model. However, a process model is
usually normative ("how things should be done") whereas process
instances are actually what happens in reality.

A large number of software process models have been proposed
since the beginning of software engineering, categorized in many ways,
and described by attributes such as:

— linear vs. iterative development,
— sequential vs. incremental development,

— plan-driven vs. agile development,

— model-driven vs. evolutionary development.

Decades of discussion about the best approach to software development
have gone by, and method wars have been fought over what might be
the best methodology. Most approaches survived, so a variety still exists

4.2 Process Models and ISD Paradigms 159

today. In addition, new organizational forms in the IT industry require
new approaches beyond the traditional ones; for example, offshoring
and open-source development have to be taken into account.

Out of the variety of old and new approaches, we will discuss the
established standard practices from the past, as well as current develop-
ments and issues. In the subsequent sections, the following approaches
to information systems development will be discussed:

— sequential (waterfall)

— prototyping and evolutionary, RAD

— model-driven

— RUP

— agile

— reuse oriented (web service/orchestration, componentware, COTS)
— offshoring

— open-source

These approaches are not free of overlapping. In fact, most real-world
ISD projects have features of more than one category. This means that
the software processes in practice rarely follow just exactly one
approach but rather include features of other approaches as well.

Approaches to
ISD in this book

4.2.1 Sequential Process Model (Waterfall Model)

The sequential process model is based on the idea that the development
process can be divided into distinct stages with specified inputs and
outputs. The next stage starts when the previous one is completed.
Results cascade from one stage downwards to the next stage, just like a
waterfall. The flow of work is sequential and basically unidirectional as
illustrated in figure 4-2.

The waterfall model was the first process model in software
engineering. Its goes back to a systems engineering model that was
adapted to software development by Winston Royce [Royce 1970].
Since it was "the" process model for a long time, it has also been called
software life cycle model (SLC model). Still today, this term is often
used to refer to the waterfall model, although many different types of
software life cycles have come into existence in the meantime.

First process
model in
software
engineering

Original model
has been
extended and
adapted in many
ways

Requirements
analysis and
definition

160 4 Developing Information Systems

In Royce's original model, seven distinct phases were identified:
system requirements, software requirements, analysis, program design,
coding, testing and operations. The original model has been extended
and adapted by many authors who introduced new phases or arranged
phases in a different way, so the number and the names of the phases
vary. For example, the design stage is often divided into two stages:
preliminary design and detailed design. A widely used version of the
waterfall model goes back to Barry Boechm [Boehm 1981, pp. 35-41].

Each stage has a specified result — usually one or more documents
that have to be approved before the next stage begins. In principle, the
next stage should only start when the result of the previous stage is
accepted. For example, the outcome of the requirements analysis stage
is a requirements specification as discussed in section 2.2.1. The next
stage, design, needs this document as an input. It should not start before
the requirements specification is stable and approved.

The fundamental stages of a software life cycle model are illustrated
in figure 4-2. The main tasks assigned to the stages are as follows:

— Requirements analysis and definition: In this stage, the desired func-
tionality of the information system is specified. Requirements of the
stakeholders, in particular of the principals and future users, are elic-
ited and analyzed in detail. Requirements analysis is often divided
into analysis of:

» system requirements and
» software requirements.

System requirements refer to all components of the information
system (i.e. hardware, communication channels, networks, people,
organizational units, etc.) whereas software requirements address
the desired functionality of the software system. The focus in ISD
is usually on the latter aspect®.

As a result of the analysis process, a software requirements
specification is derived. Finding out and describing the require-
ments correctly and completely is a difficult task, yet crucial for
the success of an information systems project. Therefore, require-

"non

§ The terms "system requirements", "system engineering", and "systems analy-
sis" in non-business contexts usually refer to technical systems where the soft-
ware is only one of several constituent components, e.g. radar, cruise-control,
and telecommunications systems. Electronic, mechanical, electrical, and per-
haps other subsystems are equally important as the software coordinating the
technical components. Business information systems, on the other hand, focus
on information and people. Technical components involved do not carry the
same importance as in the before mentioned systems.

4.2 Process Models and ISD Paradigms 161

ments engineering has emerged as its own discipline. Section 5.1
explains requirements engineering in more detail.

— Preliminary design: The major components of the information Preliminary
system are identified. If an overall system architecture already design
exists, then the components are placed into this architecture. Other-
wise the system architecture is developed first. An architecture is
likely to be prescribed if the new system has to work closely
together with existing systems.

Figure 4-2 Waterfall model (software lifecycle model)

Requirements
analysis & definition

[Preliminary design

[Detailed design

Implementation &
module testing

Integration & system
testing

[Documentation

Operation &
maintenance

162 4 Developing Information Systems

For example, if the new system will provide an enterprise service
in a larger IS landscape with a service oriented architecture, then
the new system has to be designed based on SOA principles.

Detailed design — Derailed design: The major components identified before are speci-
fied in more detail and refined into smaller components according to
the design paradigm or the particular approach being used in the
project. The component interfaces and the interactions between the
components are specified. Coarse program logic, workflow and
database structures are established.

Implementation — Implementation and module testing: The system components speci-

fensc:ir:g’du'e fied in the design stage are implgmented as programs or program
modules. Each module is examined through testing if it works
properly, i.e. according to its specification. Errors that are detected
during testing are removed (debugging). While the original SLC
model considered only programs in this stage, further components of
the information system also need to be implemented, e.g. the
database, forms, reports and workflows.

Integrationand _ ntegration and system testing: The individual components of the

system testing system are integrated and tested together to ensure that the entire
system works according to the requirements specification. Just as the
requirements may include system and software requirements, both
the system requirements and the software requirements may have to
be validated after integration.

Documentation — Documentation: An important task is documenting the new informa-
tion system. Depending on the users of the documentation, different
types of documents have to be produced. Typical documentations
include:

» end-user documentation (how to use the system),

» system-administrator documentation (how to run the system),

» maintenance documentation (how to make changes to the sys-
tem),

» API documentation (how to use the application programming
interfaces, if provided).

The last two types of documentation are for developers. Since
maintenance programmers usually need to understand the program
logic, both the interfaces and the program code have to be
described. API documentations basically contain detailed interface
specifications. Some information systems may require more types
of documentation than the ones listed above.

4.2 Process Models and ISD Paradigms 163

— Operation and maintenance: After the information system has been
tested and documented, it is delivered to the internal or external
customer. The system is installed in the production environment (i.e.
on the computer system it is supposed to run on in practice) and put
into operation. It is an empirical observation that from the time the
system is put into operation errors are observed and new or changed
requirements have to be realized. Since maintenance and operation
are overlapping activities, they are usually considered together as
one rather long stage.

The drawbacks and advantages of the waterfall model have been exten-
sively discussed for many years. Most authors agree that the assumption
of distinct phases performed in strict sequential order does not conform
to what happens in practical projects. It is often unrealistic to expect that
one phase can be definitely completed with a correct result before the
next phase starts.

For example, an empirical observation is changing requirements.
When a system is built for a customer, quite often the requirements are
modified and/or new requirements are formulated by the customer later
in the project. This is due to the fact that beforehand, not enough
knowledge about the future system existed. Therefore, requirements
cannot be specified in detail. As knowledge of the system increases in
the course of the project, requirements become clearer and are likely to
be adapted at a later stage. In particular, when customers see what they
will get (i.e. a running system or at least part of it), requirements may
appear in a different light and therefore be redefined.

Other problems with separating life cycle phases occur during
design. Sometimes, specified requirements turn out to be difficult or
impossible to transform into a design using reasonable effort, making a
revision of the requirements specification necessary. During coding
some features of the design may prove difficult to implement unless the
design is changed. Likewise, design errors and flaws in the require-
ments specification are often detected in the implementation stage,
requiring repetition of some of the work which was done in earlier
stages.

There are many examples of such situations where work in the next
stage has an impact on results of one or more of the previous stages. To
cope with these real-world circumstances, modifications of the waterfall
model that include revisiting earlier stages were proposed.

Figure 4-3 illustrates the underlying ideas. One immediate variant is
that information from the next stage flows back to the previous stage,
causing earlier results to be revised. Larger iterations are induced when
the need to return to an early stage arises. For example, if contradicting

Operation and
maintenance

Drawbacks of the
waterfall model

Changing
requirements

Problematic
requirements
and/or designs

Information from
the next stage
flows back

164 4 Developing Information Systems

requirements are not detected until integration and system testing, then
the requirements specification has to be corrected at a rather late point
in time, and all the in-between stages have to be executed again. Part of
the work that was done before has to be done again. The high cost of
improving results of earlier stages late in the process is considered a
major drawback of process models which are based on the waterfall
model.

Figure 4-3

Waterfall model
has strong
advocates

Software life cycle model with iterations

Requirements
analysis & definition

Preliminary design

Detailed design

Implementation &
module testing

Integration &
system testing

Documentation

Operation and
maintenance

Although the waterfall model and its extensions are often discussed in a
negative undertone, there are strong advocates of these models. Large
organizations have established versions of the model for their own
projects because this model provides a structured approach which is
easy to understand and to use in communication between development
personnel and managers. Having distinct phases also means that

4.2 Process Models and ISD Paradigms 165

milestones and deliverables can immediately be attached to the phases,
providing crisp points in the project for management control and action.
Contracts with external software firms can be based on deliverables that
are a result of a stage in the waterfall model.

Putting emphasis on completing early stages such as requirements
analysis and design before proceeding further makes sense. Having a
complete and consistent set of requirements before the design is created
and the software is coded helps to save money. If analysis-and-design
mistakes are detected in the coding and testing stage, then a lot of the
earlier work has to be re-done.

The software life cycle model is considered useful for large projects
where reliable requirements can be specified in advance. This is the
case, for example, when the problem domain is well-known, when the
project team has experience with similar IS development projects and
when customers are not directly involved in the project (e.g. developing
shrink-wrapped standard software).

Advantages

Appropriate
when
requirements are
clear

4.2.2 Evolutionary Process Models and Prototyping

The obvious drawbacks of the sequential approach stimulated a differ-
ent approach to thinking about reasonable software processes. This new
way of thinking already began in the 1970s and was very strong in the
1980s. In fact, Winston Royce in his often cited 1970 article had not
actually advocated the waterfall model but pointed out its shortcomings.
Consequently he proposed an iterative approach similar to the one
illustrated in figure 4-3 [Royce 1970, p. 9].

The fundamental disadvantage of the waterfall model and its exten-
sions is the sequential flow of information and results from one stage to
the next. Even in its iterative variants, the main process is a sequential
one. Iterations essentially correct flaws and improve specification and
design features that were badly done before, either because of a lack of
knowledge or because of mistakes.

We pointed out before the difficulties to establish correct, complete
and consistent requirements and to design system components on an
abstract level without a line of code written. These difficulties lead to
different approaches that intermingle analysis, design and implementa-

A new way of
thinking

SLC iterations
essentially
correct flaws

Abstract
specifications are
difficult

166 4 Developing Information Systems

tion of an information system and let users see early what the final sys-
tem will be like.

An often displayed cartoon in the software engineering literature
illustrates the dilemma of the waterfall model (see figure 4-4): A long
period of time goes by between when a project’s requirements specifi-
cation is produced and when the customer sees the final product. If the
requirements specification did not mirror exactly what the customer
actually wanted, this divergence will only show when the product is
delivered — and much money has already been spent.

To overcome these drawbacks of the waterfall model, two guiding
principles that are fundamentally different from the sequential approach
were established:

1. Making software development an evolutionary process
2. Building prototypes

Figure 4-4

"What the user wanted"

=
As proposed by the As specified in the As designed by the
project sponsor project request senior analyst
As produced by As installed at What the user wanted

the programmers the user's site

While most systems evolve after they have been installed (i.e. they grow
and change), evolutionary development means that system growth and
changes are already embedded as integral parts in the development
process. Iterations in the software lifecycle model serve this purpose to

4.2 Process Models and ISD Paradigms 167

some extent, but they are considered a necessary evil rather than a
welcome process feature.

In a truly evolutionary process model, the premise is that the infor-
mation system comes into existence through evolution: Starting with
incomplete and perhaps insufficient knowledge about what the final
information system has to be like, a limited subsystem is created in the
beginning. Continuing from this subsystem, an enhanced, extended,
and/or better subsystem is created. This subsystem may include new or
better components than the previous subsystem. The process continues
until a satisfactory and complete information system has evolved.

Evolutionary development has various incarnations. Many authors
have proposed approaches that create a sequence of running subsystems
until the final system is established. The most important ones are:

— lIterative enhancement: Requirements are specified as objectives in
the beginning. Some requirements are then selected and realized in
three phases: design, implementation and analysis. The goal of the
analysis phase is to evaluate the subsystem created and perhaps
modify the design. In the next step, the subsystem is extended by
selecting and realizing more requirements etc. The process ends
when all requirements have been dealt with [Basili 1975]. Whereas
design changes and extensions are part of the methodology, major
changes of the requirements are not. This means that iterative
enhancement is suited for projects where the requirements are more
or less stable from the beginning onwards.

— Incremental development: The overall system is developed as a se-
quence of increments [Mills 1980]. Customers set priorities regard-
ing their requirements for the system. Subsystems are identified that
realize a subset of the requirements. After the overall system archi-
tecture has been designed, a subsystem fulfilling the most important
requirements is designed in detail, implemented, tested, delivered
and evaluated by the developers and the users. This might lead to
new insights about the requirements that are taken into consideration
when the next increment is developed. This increment undergoes the
same development process. After its integration with the previous
increment(s), the new system is evaluated, and the next increment is
developed, etc.

Advantages of incremental development include that the cus-
tomer gets a running system after a shorter time and does not have
to wait until the entire system is completed. The shortcomings of
the initial increments can be avoided in later increments, so the
overall system quality is enhanced.

IS comes into
existence in an
evolutionary
process

Iterative
enhancement

Incremental
development

Advantages and
disadvantages of
incremental
development

Versioning

Requirements
are part of the
evolution

Ease of change
is required

A generic
process model

168 4 Developing Information Systems

The major disadvantage is that it is not easy to split up a system
into distinct subsystems if no overall design is made. Services or
modules needed by all subsystems are difficult to identify before-
hand. In addition, if the increments are developed in completely
separate subprojects, there is a risk that the subsystems will be
heterogeneous and not behave in the same way, which would
adversely affect the user-friendliness of the system.

— Versioning: The final system evolves from a sequence of preceding
versions. While there is no sharp distinction from iterative enhance-
ment and incremental development, versioning implies that more or
less the same functionality is available in the successive versions.
Yet the next version represents a better implementation than the pre-
vious one, be it through an enhanced architecture or design, through
better coding or through improved requirements.

Taking the most severe problem of the waterfall model into account —
i.e. capturing the requirements in a correct, complete, and consistent
manner — we believe that the most important progress when using an
evolutionary approach, as opposed to a sequential one, is the embedding
of the requirements definition into the evolution loops. This means that
the requirements document is not established only once and for the
entire project, at an early point in time when many things about the new
system are not clear yet, but that requirements can be refined and
revised throughout the project.

This is certainly not compatible with a sequential process model in
which all subsequent stages depend entirely on a definite requirements
specification. Consequently, the design and implementation stages must
be flexible in the sense that a system design which has only been
established once may need to be changed, and the code written for the
old design should be easy to modify in the next loop. Ease of change is
a (non-functional) requirement that can be substantially supported by
automated tools.

Taking the evolution of the requirements specification as well as the
underlying ideas of iterative enhancement, incremental development
and versioning into consideration, a generic process model for evolu-
tionary information systems development can be described through the
following steps:

1. Start with an analysis of the problem and an provisional set of
requirements for the project.

2. Create a preliminary specification of the requirements as input to
the first development cycle.

4.2 Process Models and ISD Paradigms 169

3. Establish a preliminary system design based on the current
requirements specification.

4. Select those requirements or functionalities that should be actual-
ized next.

5. Develop a detailed design of the system version or the subsystem
defined in the previous step.

6. Implement, test and debug the current system version or sub-
system.

7. Evaluate the current system version or subsystem (involve both
developers and customer/users in the evaluation).

8. Continue with step 4 until a satisfactory solution to the problem is
obtained; i.e., revise the requirements specification and subse-
quently the design based on the evaluation.

Figure 4-5 summarizes the process model. To keep the figure simple,
not all possible branches have been explicitly indicated. For example,
an intermediate version or a functioning subsystem providing value to
the customer may be installed and implemented before the complete
system is available, if that subsystem can run by itself. In addition, a
bypass of the design stage is possible because design revisions are only
necessary if modified requirements call for a design change.

The system undergoes several development cycles in which the
requirements are continuously reformulated, refined and/or improved.
The loop comes to an end when all development objectives are fulfilled.
By objectives we mean 1) the requirements stated, 2) the desired soft-
ware quality, and 3) a satisfactory solution to the actual problem that
initially caused the customer to start the project. Three to four iterations
are typically observed in mid-size practical projects.

Although an evolutionary process model has many advantages over a
sequential process model, disadvantages should also be noted. When a
system is intended to evolve continuously, it is difficult to establish in-
struments for management control such as milestones and deliverables.
Since the result of a development cycle is based on a preceding evalua-
tion and the result of the previous cycle, it is not possible to predict
what will be the result of the next cycle and when that result will be
available. Likewise, contracts with external providers are difficult to
formulate if crisp deliverables cannot be specified.

Furthermore, as the system undergoes continuous change, the final
system structure may degenerate into an architectural patchwork,
making maintenance and future extensions costly.

Several
development
cycles

Disadvantages of
evolutionary
development

Structure suffers
from "patchwork”

170

4 Developing Information Systems

Figure 4-5

Evolutionary process model

analysis

Problem & requirements

[P

1€

Requirements
specification

System design

Definition of version/
subsystem

Detailed design

Implementation & test

Evaluation of
current system

All
objectives
met?

no

Delivery & installation

Operation &
maintenance

4.2 Process Models and ISD Paradigms 171

As mentioned before, automated tools can significantly enhance devel-
opment productivity. Since change is inherent to evolutionary devel-
opment, tools that generate code are particularly helpful. On the other
hand, the pressure to use such tools creates tool dependencies which
may be counter-productive in the long-run. For example, a different
toolset may turn out to be better suited for the next cycle. However, it
will be difficult to adopt the new tool if system components meant to
remain in the next version are bound to the old toolset.

Prototyping

Building system prototypes is a well-established practice in engineering.
When a new product is under development, working prototypes are
built first in order to study design and manufacturing options or cus-
tomer acceptance. Prototypes in information systems development serve
similar purposes. IS prototypes are running subsystems that help devel-
opers or users to gain insights into the future system. These insights
would not be available if only abstract paper documents describing the
system were created.

Prototyping in information systems development can be used in two
fundamentally different ways:

— Throw-away prototyping
— Evolutionary prototyping

The main purpose of a throw-away prototype is to provide an object of
study to developers or users that they can explore and gain experiences
with. The prototype is only used for that purpose and later discarded (cf.
figure 4-6). Since it does not constitute a part of the final system that
will be delivered to the customer, throw-away prototypes are often
created in a "quick and dirty" manner; i.e. software quality is not given
high priority.

Powerful tools are needed to create prototypes fast. Although a
prototype could be written in a conventional programming language, the
speed factor calls for high-level tools. Such tools can aid a quick crea-
tion of a prototype through drag-and-drop features and code generation,
which requires only little hand-coding. In particular, the creation of
graphical user interfaces should be facilitated by tools.

The term rapid prototyping has also been coined for this approach.
Rapid development does not necessarily imply that the prototype will be
thrown away afterwards.

Evolutionary prototyping means that an initial prototype will be ab-
sorbed into the next one and so on, as illustrated in figure 4-6. The final

Tool
dependencies

Prototyping is an
established
engineering
practice

Throw-away
prototyping

Powerful
software tools
are needed

Evolutionary
prototyping

172 4 Developing Information Systems

system will contain code that has evolved from the previous prototypes.
This process was discussed above under the topic evolutionary process
models. The project will follow such a process model when prototype
evolution is the approach of choice.

Figure 4-6 Throw-away vs. evolutionary prototyping

Evolutionary prototypes Throw-away prototype
t
' Requirements
Prot?type 1 analysis & Prototype 1
1 definition
.|
1 |
1
Pliototype 2 %
1

%
l

Prototype n
= final system

Detailed
design

As opposed to evolutionary prototyping, throw-away prototypes are
mostly used within a software life cycle stage, to support core activities
of this stage. From this viewpoint, prototyping variants include the

following:
Requirements — Requirements prototyping as part of the requirements analysis and
prototyping definition stage is the most widely used form of prototyping. The

aim here is to assist the project staff to elicit and to validate user re-
quirements. Prototypes are built to give the customer and/or the
users an idea of what the implementation of their requirements will
be like. A prototype helps them to make vague or fuzzy require-
ments explicit so that they can be mapped on to information system
functionality. Section 5.1 discusses requirements engineering in
more detail.

4.2 Process Models and ISD Paradigms 173

— User-interface prototyping is similar to requirements prototyping in
that those parts of the system representing the system's interface to
the user, i.e. the graphical user interface (GUI), are developed quick-
ly. The purpose of user-interface prototyping is to demonstrate the
look-and-feel of the future system to the customer and/or the users.
The prototype is likely to be a mock-up; i.e. functionality behind the
GUI is not implemented yet. A powerful GUI builder tool such as
Visual Studio .NET (for Windows based systems) or JBuilder (for
Java based systems) is essential for user-interface prototyping.

— Design prototyping is an approach supporting the design stage(s). It
is different from the previous ones in that it targets the developers
and not the users. Design decisions can affect the ease or difficulty
of implementation and maintenance and thus effect future costs posi-
tively or negatively. If design consequences are not immediately ob-
vious, building prototypes to try out one or more design options
helps to assess implications of the options. In this case, the prototype
will not contain a sophisticated GUI but rather a complete imple-
mentation of a small part of the overall functionality.

The advantages of prototyping are manyfold. Evolutionary prototyping
is a means to accelerate delivery of the system to the customer. Stable
subsystems can be installed for practical use before the entire system is
completed. In today's fast-changing business environment, the speed of
delivery can be a critical factor with regard to the competitiveness of an
enterprise.

Prototyping helps to make things clear early. Customers and/or end-
users see at an early stage of the project what the final system will be
like. In particular, a prototype can help to derive and formulate require-
ments for the subsequent development phases. To both developers and
customers, the size of the final system becomes more transparent, facili-
tating time and cost estimation. Design prototypes can provide helpful
insights regarding the expected effort. In fact, prototypes are sometimes
built especially to support cost estimation.

Obvious disadvantages on the other hand have prevented many
organizations from adopting prototyping, in particular evolutionary
prototyping, as a general approach to information systems development.
Some of these problems we discussed above, in the context of evolu-
tionary process models, such as management and contractual problems,
software quality and tool dependencies. Further problems related with
the use of prototypes have been identified as the

— "normative force of facts",
— pressure to release,

User-interface
prototyping

Design
prototyping

Prototyping
makes things
clear early

Disadvantages of
prototyping

"Normative force
of facts"

Pressure to
release

Uncontrollable
growth of
requirements

Lack of project
management
methodology

174 4 Developing Information Systems

— uncontrollable growth of requirements,
— lack of project management methodology.

= "Normative force of facts": The rationale of prototyping is to enable
exploration and gaining of experience so that the solution or the next
prototype will be better than the current one. In contrast to this, devel-
opers tend to "save" their work and reuse it in subsequent versions.
Inappropriate solutions will survive in this way. Likewise, the percep-
tion of users may be prejudiced by the current prototype. As they are
not aware of alternative solutions to the problem, the exemplary imple-
mentation is considered "the" solution, no matter if a better solution
exists or not. Tool restrictions and peculiarities may further narrow the
solution space. Due to these factors, the example (i.e. the prototype)
determines the final product, which is not the idea of prototyping.

= Pressure to release: Customers, end-users and managers are usually
not IT experts. When they see a running prototype, they may not be
aware that it is still a long way to go from the prototype to a stable,
robust and efficient production system ("it works, why can't we release
it?"). It may be difficult to explain to non-experts why still three times
the already elapsed time will be needed until the final system is avail-
able, and that ignoring software quality now will increase maintenance
costs later.

= Uncontrollable growth of requirements: A fundamental assumption
in most forms of prototyping is that customers and/or end-users are
involved in the development process. As the project progresses, things
become clearer and the state of knowledge about the problem and its
solution increases. In many cases this leads not only to requirements
changes but also to new requirements, implying more work for the
development team. Negative consequences can be: frustration on the
developers' side because of a higher workload and having to throw
away results of their previous work; difficulty staying on schedule and
budget; and delay of delivery, the latter leading to customer dissatis-
faction. Project managers have to keep an eye on balancing growing
user requirements with the project schedule and budget. If changes have
not been provided for in the initial agreement, conditions and terms may
need to be renegotiated.

= Lack of project management methodology: While the waterfall model
is accompanied by a widely used set of project management methods,
such a common and accepted methodology does not exist for prototyp-
ing. In many organizations, evolutionary prototyping is considered
inappropriate for practical projects. A major reason for this is that an
evolutionary process model does not provide crisply defined points for

4.2 Process Models and ISD Paradigms 175

management control and action as a sequential process model does. It
should be noted, however, that project management methodologies for
evolutionary prototyping are available. They are just not as common as
the standard SLC based methodologies. (This author already developed
a project management methodology for evolutionary prototyping in
1987 [Kurbel 1987, Kurbel 1990].)

4.2.3 Model-driven Information Systems Development

Models play an important role in information systems development.
They can be used in various phases of the development cycle. For
example, the entity-relationship model (ERM) is often employed to cap-
ture the essential data for an information system and their interrelations
as input for the creation of a database.

However, consistent use of models throughout the development
stages was not a common approach in practice; rather models were
created subsequently on paper for the documentation, when the devel-
opment was already finished. Nowadays modeling is supported by
powerful tools that will be discussed in detail in chapter 5.

Model-driven information systems development (mdISD) has a
stronger orientation towards business information systems than the pre-
viously discussed process models®. While these models are rather gen-
eral, targeting technical software in engineering as well (or in the first
place), mdISD supports primarily business problems. There are two
fundamental ideas on which mdISD relies:

1. the use of models at all stages of development,
2. the automated transformation of models into code or other models.

While automatic code generation from formal specifications had
been a dream of computer scientists since the early times of program-
ming, this dream largely did not come true. Only when semi-formal
methods and diagramming techniques matured and the automated tools

§ We use the term "model-driven information systems development" (mdISD)
instead of other terms such as "model-driven development/model-driven archi-
tecture" (MDD/MDA) to express the specific focus on (business) information
systems development.

Models were for
documentation

mdISD is
business
oriented

James Martin — a
pioneer of mdISD

Definition:
information
engineering

Focus on
enterprise-wide
information
processing

ISP (information
strategy
planning)

BAA (business
area analysis)

176 4 Developing Information Systems

supporting these techniques became available in the early 1990s, did
model-based information systems development become a serious
approach for large-scale practical projects.

Information engineering (IE)

A pioneer in the field of model-driven information systems develop-
ment was James Martin who established the discipline of information
engineering (IE). This was a comprehensive approach to enterprise-
wide modeling of all aspects of information systems and transforming
the models into running systems. Martin defined information engineer-
ing as:

"The application of an interlocking set of formal techniques for
the planning, analysis, design, and construction of information
systems on an enterprise-wide basis or across a major sector of
the enterprise." [Martin 1989, p. 1]

IE is supported by "an interlocking set of automated techniques in
which enterprise models, data models, and process models are built up
in a comprehensive knowledge base and are used to create and maintain
data processing systems." [Martin 1989, p. 1]

The comprehensive information-engineering view covers all stages
of IS planning and development, starting from strategic planning down
to technical construction of programs and databases. The focus of IE is
not on a single information system but on enterprise-wide information
processing as a whole. Separate views of information systems are inte-
grated. According to the state-of-the-art at that time, these views are
data, functions and processes — all analyzed and modeled within a com-
mon framework.

Information engineering consists of four main stages, as illustrated
by the pyramid view in figure 4-7:

— ISP (information strategy planning) is the top stage where strategic
goals, critical success factors and information requirements of all
major parts of the enterprise are determined. The result of informa-
tion strategy planning is a global model of the enterprise and its
division into business areas.

— On the second level, BAA (business area analysis) is performed
within one or more major sectors of the enterprise. Data models (e.g.
entity-relationship diagrams), process models (e.g. decomposition
diagrams) and other models are developed here, and desirable infor-
mation systems within the business areas are defined.

4.2 Process Models and ISD Paradigms 177

— 8D (system design) is the third stage where procedures, data struc- SD (system
tures, screen layouts, windows, reports etc. are specified. esign)

— In the fourth stage, construction, programs and data structures are Construction
implemented, tested and integrated.

Figure 4-7 Information engineering pyramid [Martin 1989, p. 4]

Information strategy
planning

N

Business area
analysis

System design

Construction ~0e®
0 il

e P

Although the idea of capturing and modeling an entire organization's [E needs power-
. ful CASE tools
information systems needs is independent of tools, turning this impres-

sive approach into running systems is not possible without powerful

tools at all stages. A major objective of IE is to generate c