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Preface

This book is intended to serve as a reference for the design and implementa-
tion of parallel quantum chemistry programs. Development of efficient quan-
tum chemistry software capable of utilizing large-scale parallel computers
requires a grasp of many issues pertaining to both parallel computing hard-
ware and parallel programming practices, as well as an understanding of the
methods to be implemented. The text provides an in-depth view of paral-
lel programming challenges from the perspective of a quantum chemist, in-
cluding parallel computer architectures, message-passing, multi-threading,
parallel program design and performance analysis, as well as parallel imple-
mentation of important electronic structure procedures and methods such as
two-electron integral computation, Hartree–Fock and second-order Møller–
Plesset perturbation (MP2) theory, and the local correlation method LMP2.
Some topics relevant to parallel computing in quantum chemistry have not
been included in this book. Thus, performance tools and debuggers are not
treated, parallel I/O is only briefly discussed, and advanced electronic struc-
ture methods such as coupled-cluster theory and configuration interaction
are not covered.

We will assume that the reader has a basic understanding of quantum
chemistry, including Hartree–Fock theory and correlated electronic structure
methods such as Møller–Plesset perturbation theory. Readers can find intro-
ductory discussions of these methods in, for example, Jensen1 and the classic
Szabo and Ostlund text.2 A comprehensive and somewhat more advanced
treatment of electronic structure theory can be found in Helgaker, Jørgensen,
and Olsen.3 No prior experience with parallel computing is required, but the
reader should be familiar with computer programming and programming
languages at the advanced undergraduate level. The program examples in
the book are written in the C programming language, and at least a rudimen-
tary knowledge of C will therefore be helpful. The text by Kernighan and
Ritchie4 covers all C features used in this book.

Scope and Organization of the Text

This book is divided into two parts. In Part I we will discuss parallel
computer architectures as well as parallel computing concepts and termi-
nology with a focus on good parallel program design and performance
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analysis. Part II contains detailed discussions and performance analyses of
parallel algorithms for a number of important and widely used quantum
chemistry procedures and methods.

An outline of the contents of each chapter is given below.

Chapter 1: Introduction

Here we provide a brief history of parallel computing in quantum chemistry
and discuss trends in hardware as well as trends in the methods and algo-
rithms of quantum chemistry. The impact of these trends on future quantum
chemistry programs will be considered.

Chapter 2: Parallel Computer Architectures

This chapter provides an overview of parallel computer architectures, includ-
ing the traditional Flynn classification scheme and a discussion of computa-
tion nodes and the networks connecting them. We also present an overall
system view of a parallel computer, describing the hierarchical nature of par-
allel architecture, machine reliability, and the distinction between commodity
and custom computers.

Chapter 3: Communication via Message-Passing

This chapter covers message-passing, one of the primary software tools re-
quired to develop parallel quantum chemistry programs for distributed mem-
ory parallel computers. Point-to-point, collective, and one-sided varieties of
message-passing are also discussed.

Chapter 4: Multi-Threading

The importance of multi-threading will continue to increase due to the emer-
gence of multicore chips. Parallelization by means of multi-threading is dis-
cussed as well as hybrid multi-threading/message-passing approaches for
utilizing large-scale parallel computers.

Chapter 5: Parallel Performance Evaluation

Design and implementation of efficient parallel algorithms requires careful
analysis and evaluation of their performance. This chapter introduces ideal-
ized machine models along with measures for predicting and assessing the
performance of parallel algorithms.

Chapter 6: Parallel Program Design

This chapter discusses fundamental issues involved in designing and imple-
menting parallel programs, including the distribution of tasks and data as
well as schemes for interprocessor communication.
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Chapter 7: Two-Electron Integral Evaluation

An important, basic step performed in most quantum chemistry programs is
the computation of the two-electron integrals. Schemes for parallel computa-
tion of these integrals and detailed performance models incorporating load
imbalance are discussed.

Chapter 8: The Hartree–Fock Method

The Hartree–Fock method is central to quantum chemistry, and an efficient
Hartree–Fock program is an essential part of a quantum chemistry program
package. We outline the Hartree–Fock procedure and present and analyze
both replicated data and distributed data Fock matrix formation algorithms.

Chapter 9: Second-Order Møller–Plesset Perturbation Theory

Second-order Møller–Plesset (MP2) perturbation theory is a widely used
quantum chemical method for incorporating electron correlation. This chap-
ter considers parallel computation of MP2 energies, comparing the perfor-
mance achievable with simple and more sophisticated parallelization strate-
gies.

Chapter 10: Local Møller–Plesset Perturbation Theory

Local correlation methods represent an important new class of correlated elec-
tronic structure methods that aim at computing molecular properties with the
same accuracy as their conventional counterparts but at a significantly lower
computational cost. We discuss the challenges of parallelizing local correla-
tion methods in the context of local second-order Møller–Plesset perturbation
theory, illustrating a parallel implementation and presenting benchmarks as
well.

Appendix A: A Brief Introduction to MPI

The Message-Passing Interface (MPI) is the primary mechanism used for ex-
plicit message-passing in scientific computing applications. This appendix
briefly discusses some of the most commonly used MPI routines.

Appendix B: Pthreads

Pthreads is a standard for creating and managing multiple threads. We give a
brief introduction to multi-threaded programming with Pthreads, including
an example Pthreads program.

Appendix C: OpenMP

OpenMP is a set of compiler extensions to facilitate development of multi-
threaded programs. We describe these compiler extensions, using example
source code illustrating parallel programming with OpenMP.
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1
Introduction

The need for parallel software for scientific computing is ever increasing.
Supercomputers are not only being built with more processors, but parallel
computers are also no longer limited to large machines owned and managed
by high-performance computing centers; parallel desktop computers are in-
creasingly widespread, and even laptop computers have multiple processors.
Development of scientific computing software must adapt to these conditions
as parallel computation becomes the norm rather than the exception. In the
field of quantum chemistry, additional factors contribute to the need for par-
allelism. Quantum chemistry has become an indispensable tool for investi-
gating chemical phenomena, and quantum chemical methods are employed
widely in research across many chemical disciplines; this widespread use
of quantum chemistry reinforces the importance of rapid turnaround com-
putations, which can be addressed by parallel computing. Additionally, for
quantum chemistry to continue to be an integral part of chemical research,
quantum chemical methods must be applicable to the chemical systems of
interest, including larger molecules, and parallelism can play an important
role in extending the range of these methods. Parallel implementations can
broaden the scope of conventional quantum chemical methods, whose com-
putational cost scales as a high-degree polynomial in the molecular size, and
enable the treatment of very large molecular systems with linear-scaling or
reduced-scaling methods.

In the following, we will first give a brief historical sketch and current
perspective of parallel computing in quantum chemistry. We will then discuss
trends in hardware development for single-processor and parallel computers
as well as trends in parallel software development, including the parallel
programming challenges following the emergence of new quantum chemical
methods and the changes in hardware.

3
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1.1 Parallel Computing in Quantum Chemistry: Past and Present

Although the history of parallel computing in quantum chemistry is closely
linked to the development of parallel computers, the concept of parallel com-
puting was utilized in quantum chemistry even before the introduction of
electronic computers into the field. In the late 1940s and early 1950s, intrigued
by the idea of parallel computations, Per-Olov Löwdin in Uppsala organized
a group of graduate students to carry out numerical integrations using FACIT
Electric desk calculators. In six months, this “parallel computer” evaluated
more than 10,000 multicenter integrals, employing Simpson’s rule with a cor-
rection term. These integrals allowed the computation of wave functions that
made it possible to explain the cohesive and elastic properties as well as the
behavior under very high pressure of a large number of alkali halides.1,2

The use of parallel electronic computers in quantum chemistry, however,
was not explored until several decades later. Work by Clementi and co-
workers3 in the early 1980s demonstrated the use of a loosely coupled array
of processors (with 10 compute processors) for computation of Hartree-Fock
energies for a short DNA fragment. The Hartree-Fock computations for this
87-atom system, using a basis set with 315 basis functions, represented an
extraordinary feat at the time. Other early work exploring the use of par-
allel computers in quantum chemistry include parallel implementations of
both the Hartree-Fock method and a few correlated electronic structure meth-
ods. Thus, by the late 1980s, parallel programs had been developed for
computation of Hartree-Fock energies 4,5 and gradients, 6 transformation of
the two-electron integrals,4,5,7 and computation of energies with second-order
Møller-Plesset perturbation theory5,8 (MP2) and the configuration interaction
(CI) method.4

To a large extent, these pioneering efforts employed custom-built parallel
computers such as the loosely coupled arrays of processors (LCAP),3,4,6,8 al-
though one of the early commercially available parallel computers, the Intel
hypercube, was used as well.5,7 In the late 1980s, the increasing availability
of commercial parallel computers and the concomitant improvements in the
requisite software, such as message-passing libraries, spurred many research
groups to undertake development of parallel quantum chemistry applica-
tions. The development of parallel quantum chemistry methods, including
the earliest efforts as well as later works carried out until the mid-1990s, has
been reviewed elsewhere.9,10 By the late 1990s, great strides had been made
toward extending parallel computing in quantum chemistry to a wider range
of methods and procedures, for instance, Hartree-Fock second derivatives,11

MP2 gradients,12 multireference CI,13 multireference pseudospectral CI,14 full
CI,15 and the coupled-cluster method.16,17

At present, parallel computing in quantum chemistry continues to
be an active field of research; new and improved parallel algorithms for
well-established quantum chemical methods are steadily appearing in the
literature, and reports of new computational methods are often followed by
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development of algorithms for their parallel execution. Examples of improved
parallel algorithms for previously parallelized methods include a recent
parallel implementation of the full CI method,18 which enabled full CI cal-
culations of an unprecedented size and provided valuable benchmark data,
and a novel parallel implementation of the resolution-of-the-identity MP2
method, demonstrating computation of energies and gradients for large sys-
tems; 19 also, the first parallel implementation of the MP2-R12 method has
been reported.20 Furthermore, parallel algorithms have been developed for
linear-scaling methods, for instance, linear-scaling computation of the Fock
matrix,21,22 which is the major computational step in Hartree-Fock and den-
sity functional theory, and the local MP2 method has been parallelized as
well. 23 Additionally, new directions are being explored, such as automatic
parallel code generation by the Tensor Contraction Engine24,25 and utilization
of multilevel parallelism to achieve improved parallel efficiency.26

These research efforts have resulted in a variety of quantum chemistry
program packages with parallel capabilities; indeed, most quantum chem-
istry software suites today support some level of parallelism. A number of
the parallel quantum chemistry program suites are freely available, and there
are several commercial programs as well. Among the free program packages
are: COLUMBUS,27 which has parallelized versions of the multireference CI
and multireference average quadratic coupled-cluster methods; DALTON,28

which includes parallel Hartree-Fock and density functional theory (DFT);
GAMESS (US),29 with parallelized Hartree-Fock, DFT, and correlated wave
functions, up to second derivatives for certain methods; MPQC,30 designed
to be parallel from the beginning, with parallel Hartree-Fock, DFT, and MP2
energies and gradients and parallel explicitly correlated MP2 energies; and
NWChem, 31 also incorporating parallelism from the onset, supporting a
wide range of methods including Hartree-Fock, DFT, time-dependent DFT,
coupled-cluster methods, CI methods, as well as high-level methods for prop-
erties. Several commercial quantum chemistry program packages incorporate
varying levels of parallelism; among these are ACES III,32 GAMESS (UK),33

Gaussian,34 MOLCAS,35 MOLPRO,36 and Q-Chem.37

1.2 Trends in Hardware Development

Let us briefly look at some trends in hardware technology that have conse-
quences for developers of parallel scientific applications and for the efficient
utilization of single processors as well.

1.2.1 Moore’s Law

A central trend in hardware development is the exponential increase with
time of the number of transistors in an integrated circuit. This observation,
known as Moore’s law, was first made in 1965 by Gordon Moore,38 who found
that the number of transistors that minimized the cost per component in an
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FIGURE 1.1
Historical development of the transistor count for integrated circuits. The solid line depicts
Moore’s 1975 prediction that transistor counts would double every two years. Data were obtained
from Intel’s web site, http://www.intel.com, and from Wikipedia, http://www.wikipedia.org.

integrated circuit was doubling every year and predicted that this trend would
continue until 1975. In 1975, Moore updated his prediction,39 estimating that
the number of transistors in an integrated circuit would double every two
years; three decades later, this trend still continues as illustrated in Figure 1.1.

1.2.2 Clock Speed and Performance

The performance of an integrated circuit depends on the number of transis-
tors, which has increased following Moore’s law, and also on the clock speed,
that is, the rate at which the circuit performs its most fundamental opera-
tions. Figure 1.2 shows the development over time of the integer and floating
point performance of single chips along with the clock speeds of those chips.
It is apparent from the figure that the performance improvement does not
parallel that of the clock speed. The development of the clock speed relative
to the instruction rate falls into three periods of chip development. The first
period is distinguished by the use of pipelining, enabling instructions to be per-
formed in several stages that are overlapped to improve performance. This
is marked by the rapid improvement in performance relative to clock speed
up until around 1989. During the second period, multiple-issue (or superscalar)
processors were developed and improved. Such processors allow more than
one instruction to start execution on each clock cycle. During this period the
achieved performance gains were affected by a variety of factors, and the
lack of equivalent gains in bandwidth and latency (discussed in the next sec-
tion) resulted in an overall decrease in performance achieved per clock cycle.
The third, and current, period is that of multicore processors. Clock speeds in
these processors have dropped from their peak, yet significant performance
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FIGURE 1.2
Development of clock rates, integer performance, and floating point performance for selected
Intel chips from 1982 until the present. Integer performance data were normalized to a value of 1
for the first data point (1982); floating point performance data were normalized to make the first
data point (1989) match the integer performance for that year. Integer performance was derived
from SPECint92, SPECint95, SPECint2000, and SPECint2000rate benchmarks,50 using the latest
benchmark available for a given chip. For the oldest two chips, the maximum theoretical rate for
instruction execution was employed, and the availability of several benchmarks for some proces-
sors allowed normalization of the data so that performance data from different benchmarks could
be used. A similar approach was used for floating point performance using the floating point ver-
sions of the SPEC benchmarks. Data were obtained from Wikipedia, http://www.wikipedia.org;
Intel’s web site, http://www.intel.com; the SPEC web site, http://www.spec.org; and Hennessy
and Patterson.51 Various sources found with the Google news archive at http://news.google.com
assisted in determining the year of introduction of each chip.

improvements are still realized by essentially completely replicating multiple
processors on the same chip. The trend of placing multiple processors on a
single integrated circuit is expected to continue for some time into the future.

1.2.3 Bandwidth and Latency

Important factors determining processor performance include the memory
bandwidth and latency. The memory bandwidth is the rate at which a pro-
cessor can transfer data to or from memory, and the memory latency is the time
that elapses between a request for a data transfer and the arrival of the first
datum. Figure 1.3 illustrates the development of the memory bandwidth and
latency relative to the floating point performance over the last two decades.
For any given year, the figure shows the ratio of the memory bandwidth and
the inverse latency to the floating point performance, and both ratios have
been normalized to yield a value of 1 in 1989; note that no absolute per-
formance data can be gleaned from the figure. From the downward trends
of the curves, however, it is clear that the improvements in latency lag the
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FIGURE 1.3
Development of memory bandwidth and inverse latency relative to processor floating point
performance from 1989 to the present. For a given year, the figure shows the memory bandwidth
and inverse latency divided by the floating point performance, and the data are normalized to
yield a value of 1 for 1989. Floating point performance data are identical to those reported in
Figure 1.2; memory bandwidth and latency data were taken from Ref. 40 and, for recent years,
obtained from Wikipedia, http://www.wikipedia.org, and with the assistance of the Google
news archive, http://news.google.com.

improvements in bandwidth, which, in turn, are not as fast as the increase in
the floating point performance. Similar trends are observed in bandwidths
and latencies for networks and disks as well.40

To improve the bandwidth and reduce the latency, most modern pro-
cessors can execute instructions out of order, permitting instructions to be
scheduled ahead of those that are awaiting data. Also, a substantial portion
of the available transistors on a chip are now dedicated to caches that hold
frequently used data closer to the processor to reduce the latency penalty for
each access. These measures, however, have not been sufficient to completely
offset the effects of the relative decrease in the speeds of data movement. The
much faster improvement in peak floating point computation rates compared
to improvements in both memory and network bandwidth and latency have
made efficient use of modern computers, in particular parallel computers,
more challenging. For example, a parallel algorithm that had a negligible
communication overhead when developed a decade ago may have a reduced
parallel performance on today’s computers because the faster improvement
in floating point performance has made the communication time of the algo-
rithm nonnegligible compared to the computation time.

1.2.4 Supercomputer Performance

In addition to steady gains in the performance of a single chip, the speeds of
the fastest parallel computers have shown tremendous growth. The TOP500
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FIGURE 1.4
Semilogarithmic plot of the development over time of the speed of the world’s fastest super-
computer and the floating point performance of a single chip. The speed of the fastest parallel
computer doubles about every year, while the processing speed of a chip doubles about every
eighteen months. The fastest supercomputer speed is measured as the floating point rate (in
millions of floating point operations per second, MFLOPS) for the HPL benchmark for the com-
puter at the top of the TOP500 list.41 The single-chip floating point performance is normalized to
the effective single-chip floating point performance in the HPL benchmark determined for the
Sandia Thunderbird computer (described in section 2.4.5) for which both HPL and single-chip
data were available.

list,41 compiled every year since 1993, ranks the world’s fastest parallel com-
puters using the High-Performance Linpack benchmark42 (HPL). Figure 1.4
shows the development over time of the speed of the fastest TOP500 com-
puter and the floating point performance of the fastest single chip. The speed
of the fastest parallel computer, doubling roughly every year, grows at a sig-
nificantly faster rate than the speed of the fastest chip, which doubles about
every eighteen months. This difference in growth rates is due mostly to the
increase over the years in the total number of chips contained by the largest
parallel computers. If these trends hold, the fastest TOP500 supercomputer
will run at a speed of around 7 petaflops in the year 2012.

Regarding single-chip performance, given the stagnation in clock speeds
shown in Figure 1.2, it is reasonable to expect that most of the on-chip improve-
ments in the near future will be obtained by adding more processor cores. The
2006 chip performance data in Figure 1.4 were obtained for a two-core chip,
and, extrapolating the trend in floating point performance improvements,
we would then expect each chip to have around 32 processor cores in 2012.
Alternatively, one might find that chip manufacturers would switch to more,
but simpler, cores on a chip, and this could dramatically increase the number
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of cores available. As a case in point, a research chip containing 80 cores was
demonstrated by Intel in 2006.

1.3 Trends in Parallel Software Development

In the previous section we briefly discussed some of the major current trends
in hardware development, and below we will consider the effects of this
development on software design. Moreover, we will touch upon how the
evolution of methods and algorithms in itself affects the parallelization of
applications. The combined effect of the advances in hardware and software is
a rapidly evolving computational environment that poses a serious challenge
for the program developer wishing to design long-lasting parallel software
that will continue to take advantage of hardware performance gains; we will
conclude this section with a discussion of new programming models that are
designed to address this challenge.

1.3.1 Responding to Changes in Hardware

In the past, efficient utilization of large-scale parallel computers has required
adaptation of applications to accommodate a number of processors that dou-
bled every three years. If the current trends continue to hold, however, the
number of processors on parallel computers is expected to grow even faster,
doubling every year. Thus, writing scalable applications, namely, parallel pro-
grams that can take advantage of a very large number of processors, becomes
increasingly important. For example, this may entail putting more emphasis
on reducing the communication overhead when designing parallel applica-
tions; using a significant amount of collective communication in a parallel
application usually precludes scalability, and, moreover, the slower improve-
ments in network performance than in instruction rates make it increasingly
difficult to hide the communication overhead.

Although the rapidly increasing number of processors on the largest
supercomputers emphasizes the need for efficient massively parallel appli-
cations, the increasing availability of small-scale parallel computers makes
small-scale parallelism important as well. Small-scale parallelism is usually
considerably easier to incorporate into a scientific application; achieving high
parallel efficiency on a small number, perhaps a few tens, of processors may
require relatively modest modifications to existing scalar code, whereas high
parallel efficiency on thousands of processors requires a very carefully de-
signed parallel application.

1.3.2 New Algorithms and Methods

Considering quantum chemistry in particular, hardware improvements have
made it possible to tackle different classes of problems, posing a new set of
challenges for parallel program developers. For instance, parallelization of
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conventional quantum chemistry methods, whose computational cost scales
as a high-degree polynomial in the molecular size, is rather forgiving in terms
of what steps are parallelized. Consider, for example, conventional MP2 the-
ory, whose computational cost is dominated by O(N5) and O(N4) steps for
large N, where N is the size of the molecule. If the O(N5) steps can be perfectly
parallelized without communication overhead and the O(N4) steps are run
sequentially, then the time to solution, as a function of N and the number of
processors, p, can be expressed as

tMP2(N, p) ≈ A
N5

p
+ B N4 (1.1)

where Aand B are constants and one process is run per processor. The fraction
of time spent in serial code when running with a single process is fMP2 ≈
B/( AN+B), and from Amdahl’s law (discussed in section 5.2.1) it then follows
that the maximum attainable speedup is

Smax,MP2 = 1
fMP2

≈ AN + B
B

. (1.2)

The parallel efficiency (also defined in section 5.2.1), which measures how
well the computer is utilized, is then given as

EMP2(N, p) = tMP2(N, 1)
ptMP2(N, p)

≈ 1

1 + ( p−1)
AN/B+1

(1.3)

and a perfect parallelization corresponds to EMP2(N, p) = 1. From Eq. 1.2
it follows that the maximum attainable speedup increases with the problem
size. Also, we see from Eq. 1.3 that the efficiency decreases with the number of
processors, but if the problem size increases at the same rate as the number of
processors, the efficiency remains nearly constant. Thus, we can utilize a large
number of processors with reasonably high efficiency provided that we have a
large enough problem to solve. However, for a linear-scaling method, such as
LMP2, we do not have such a luxury. Assuming that we have a linear-scaling
algorithm with two linear-scaling terms, only one of which is parallelized,
the time to solution is

tLMP2(N, p) ≈ C
N
p

+ DN (1.4)

where C and D are constants. This yields the following maximum speedup
and efficiency:

Smax,LMP2 ≈ C + D
D

(1.5)

ELMP2(N, p) ≈ 1

1 + ( p−1)
C/D+1

. (1.6)
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In this case, there is a fixed upper limit to the achievable speedup, and the
efficiency decreases as the number of processors increases, regardless of the
problem size. Thus, much work must be invested to achieve efficient paral-
lelization of linear-scaling methods; these methods involve a large number of
steps that scale linearly in N, and each step must be parallelized to achieve
high efficiency when running on large numbers of processors.

1.3.3 New Programming Models

In this book we will focus on the traditional message-passing programming
model typically employed in parallel applications, as well as hybrid program-
ming models, where message-passing is combined with multi-threading.
However, given the continual rapid advances in hardware, algorithms, and
methods, it is worthwhile to reconsider whether the traditional and hybrid
programming models are the best approaches for obtaining high perfor-
mance. Our considerations should encompass the entire software life cycle,
including the cost of writing, debugging, porting, and extending the applica-
tion program. It is likely that alternative programming models will be able to
provide ways to express parallelism that are simpler and less error-prone and
yield higher efficiency on large parallel computers than the traditional models.

The partitioned global address space (PGAS) languages provide an al-
ternative to traditional message-passing programming models that allows
programmers to view the distributed memory of a parallel machine as if
the memory were shared and directly addressable from all of the processes
executing the application, subject to various constraints. The application can
take advantage of locality to achieve high performance because mechanisms
are provided for the process to determine which memory is local and which
is remote (local memory access is faster than remote memory access). Several
PGAS languages exist, and examples include: Unified Parallel C 43 (UPC),
which is derived from C; Co-array Fortran,44 derived from Fortran; and Tita-
nium,45 derived from the JavaTM language. The hybrid programming exam-
ples presented later in this book as well as the Global Arrays package46 use
the PGAS concept, but employ software libraries to implement data sharing
rather than having the explicit language support that is provided by the PGAS
languages.

Programming model research is also being conducted by the Defense
Advanced Research Projects Agency (DARPA) under the High Productiv-
ity Computing Systems (HPCS) program. The desired outcome of this pro-
gram is the creation of computing environments that run application pro-
grams more efficiently than existing architectures while keeping the time and
effort required to write applications for the new architectures to a minimum.
A component of this research is the development of languages that contain
advanced parallel computing constructs. The languages that have been cre-
ated by the DARPA HPCS program, and are still being researched, are X10,47

Chapel,48 and Fortress.49 As of the time of writing, these efforts hold promise
but are not ready for adoption.
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2
Parallel Computer Architectures

A basic understanding of parallel processing hardware is required to de-
sign and implement parallel software that gets the best performance out of a
computer and to choose a suitable hardware platform for running a particular
application. In this chapter, we will first introduce various computer architec-
tures, using Flynn’s taxonomy. We will then discuss the two main components
defining a parallel computer, namely, the nodes and the network connecting
the nodes, where a node is a set of processors grouped together and sharing
memory and other resources. The discussion of parallel network architecture
will compare the properties of various topologies for the networks connect-
ing the nodes. Finally, we will provide a detailed discussion of the multiple-
instruction, multiple-data (MIMD) architecture, which has emerged as the
dominant architecture for large-scale computers, covering MIMD memory
organization, reliability, and impact on parallel program design.

2.1 Flynn’s Classification Scheme

Parallel computers are often classified according to a scheme proposed by
Michael Flynn in 1972.1 In the Flynn taxonomy, illustrated in Table 2.1, there
are four classes of parallel computers, distinguished on the basis of the flow
of data and instructions: an application running on a computer is viewed
as one or more sequences (or “streams”) of instructions and one or more
streams of data, and computers are divided into four classes depending on
whether multiple streams of data or instructions are permitted. Three of these
four classes of parallel computer architectures are of interest for quantum
chemistry applications and are discussed in detail next.

2.1.1 Single-Instruction, Single-Data

The single-instruction, single-data (SISD) architecture has a single instruction
stream and a single data stream. A single processor in a personal computer
serves as an example of this type of architecture. The instruction stream and

17
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TABLE 2.1

Flynn’s taxonomy for parallel computers
SISD Single-instruction, single-data
SIMD Single-instruction, multiple-data
MISD Multiple-instruction, single-data
MIMD Multiple-instruction, multiple-data

the data stream interact, and the data stream is entirely determined by those
instructions in the instruction stream that pertain to the movement of data. We
will discuss SISD processors in more detail in section 2.3, where we consider
their role as components in a parallel computer.

2.1.2 Single-Instruction, Multiple-Data

Scientific computing often involves performing the same operation on differ-
ent pieces of data. A natural way to do this is provided by the single-instruction,
multiple-data (SIMD) architecture, in which a single instruction stream simul-
taneously operates on multiple data streams. The most extreme example of a
SIMD architecture is the Connection Machine,2 the first models of which ap-
peared in the 1980s. In the CM-2 model of this computer, a single instruction
stream is decoded and used to control the operation of up to 65,536 computing
units, each processing its own data stream.

More limited versions of SIMD architectures are common today. Rather
than simultaneously computing all results as is done in the CM-2, the more
modern SIMD architectures pipeline data through one or more execution
units and can achieve high computational rates due to the repetitiveness of the
work involved. This arrangement is used in vector processors (for example,
the Cray X1TM). Also, modern microprocessors now have extensions allowing
single instructions to perform identical operations on multiple pieces of data.
Examples include Intel’s Streaming SIMD Extensions (SSE) and Motorola®
AltiVecTM used in recent versions of the IBM POWERTM processor.

Large-scale SIMD computers such as the CM-2 have not survived in the
marketplace because a limited range of applications are amenable to the em-
ployed programming model and because of the continued trend, as predicted
by Moore’s law, lowering the cost of making each computational unit a full-
featured device with its own instruction decoder.

2.1.3 Multiple-Instruction, Multiple-Data

The multiple-instruction, multiple-data (MIMD) architecture permits multiple
instruction streams to simultaneously interact with their own data stream.
While MIMD machines composed of completely independent pairs of in-
struction and data streams may be of use for trivially parallel applications,
it is generally necessary to use a network to connect the processors together
in a way that allows a given processor’s data stream to be supplemented by
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data computed by other processors. A MIMD computer of essentially any size
can be built by repeatedly adding inexpensive microprocessors and simple
network elements as described in section 2.2.4. This feature, combined with
programming flexibility, has made MIMD the principal architecture for large-
scale parallel computers. The discussion of parallel programming principles
and the parallel algorithms presented throughout the remaining chapters of
this book will therefore pertain mostly to the MIMD architecture. After the
discussion of network and node architectures in the next two sections, we
will examine the MIMD architecture in depth in section 2.4.

2.2 Network Architecture

A massively parallel computer consists of a number of nodes connected via
a network. A node is a group of processors that share memory and other re-
sources, and each node typically contains several processors, although single-
processor nodes are used as well. The network connecting the nodes is one
of the key components defining a parallel computer. To a large extent, the
network determines the performance of the processors collectively running a
single parallel job. Moreover, networks are used hierarchically within a paral-
lel computer to connect nodes, processing elements, or other networking ele-
ments. We will refer to the endpoints of each of these networks as either ports
or nodes depending on the context. In this section we will discuss network
architecture, including different types of networks, routing of data through
a network, and factors determining network performance. Furthermore, we
will give an overview of the various topologies of the networks connecting
the nodes in large parallel computers, relating the topological properties of
the network to the overall machine performance and cost.

2.2.1 Direct and Indirect Networks

Networks may be characterized as either direct or indirect. In a direct network,
the computing elements and the network components are combined, and the
number of switching elements equals the number of processing elements.
The switching elements in a network are the components through which
the nodes are connected. Figure 2.1 depicts four computing elements, each
with two network links, that form a direct network in a simple ring topology
(ring topologies are discussed in section 2.2.4). In an indirect network, the
networking and processing elements are separated, allowing more complex,
multistage networks to be built. A common example of an indirect network
is the fat tree, discussed in section 2.2.4 and shown in Figure 2.2. Any direct
network can also be considered as an indirect network with an equal number
of separate processing and switching elements. An indirect representation of
a ring network is shown in Figure 2.3.
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P0

P2P3

P1

FIGURE 2.1
A direct network with four computing elements, Pi ,
arranged in a ring.

Networks in modern parallel computers are usually indirect; the comput-
ing elements are decoupled from the switching elements, which internally
possess the processors and memory required to perform the switching func-
tions. Some modern parallel computers, however, have networks that are
direct in the sense that they provide one switching element per node, even
though the computing and switching elements are decoupled. For the pur-
pose of performance analysis, we will consider a network with decoupled
computing and switching elements to be an indirect network, although those
networks that have exactly one switching element per node will be shown
in the figures as direct networks with merged computing and switching
elements.

2.2.2 Routing

When data is sent between two processing elements, it must typically
transverse several switching elements. The networks employed in high-
performance computing have enough richness of connectivity that any one
of several paths, called routes, can be used to move data between two points.
Figure 2.4 shows two different routes through a network. A method is needed
to select between the possible routes through the network, and a common

P0

S9

S4

S0

S6

S2

P5

S8

S5 S7

S1 S3

P1 P2 P3 P4 P6 P7

FIGURE 2.2
An indirect network with eight computing elements, Pi , and ten switching elements, Si . The
network shown is a binary three-stage fat tree.
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P3

P0 P1

P2

S3

S0 S1

S2

FIGURE 2.3
A ring network shown as an indirect network with separate computing elements, Pi , and network
elements, Si .

approach is static routing (also called oblivious routing), where the data be-
tween two endpoints always follows the same path, regardless of other traffic
in the network. Static routing can be accomplished by giving each switch
a table that maps the destination address into the next link along which
to send the data. Another approach, called source routing, entails encoding
the sequence of links that the data will follow at the beginning of the data
stream.

Each of the routes shown in Figure 2.4 passes through the same number
of switches and the same number of links, and one is expected to perform as
well as the other when the network is otherwise idle. However, the situation
changes when there is more than one pair of nodes involved in data transfers.
Figure 2.5 shows network congestion, which can occur when additional traffic
is present in the network. Here, processing element P0 is sending data to
P5 using the path P0 → S0 → S4 → S9 → S6 → S2 → P5, and P1 is sending
data to P7 using the path P1 → S0 → S4 → S8 → S6 → S3 → P7. Both routes
utilize the link S0 → S4 and both pass through S6. Each switching element can
handle multiple flows involving distinct links without loss of performance,
but the competition for the link S0 → S4 will result in either data loss∗ or
reduced data injection rates on P0 and P1, ultimately leading to a loss of
performance.

An alternative to static routing is adaptive routing, which dynamically
changes the route between two endpoints to balance the traffic over all avail-
able links. The network hardware must be specifically designed to support
adaptive routing, although some of the advantages of adaptive routing may
also be gained with hardware that only supports source or static routing by
using a technique called dispersive routing, in which data transmitted between
a pair of endpoints travels along multiple, randomly selected paths.

∗ In this case the employed message-passing software will retransmit the data.
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FIGURE 2.4
Two possible routes through a fat tree network for data sent from P0 to P5. In (a) the data travels
along the path P0 → S0 → S4 → S9 → S6 → S2 → P5. In (b) the data travels along the path
P0 → S0 → S5 → S9 → S7 → S2 → P5. Routes (a) and (b) will deliver equivalent performance
in an otherwise idle network.

Example 2.1 Static versus Adaptive Routing
Figure 2.6 illustrates the performance on a Linux cluster 3 of two net-
working technologies using static and adaptive routing, respectively.
The static routing data were collected using 4x InfiniBandTM hardware,
and the adaptive routing data were obtained with 10 Gigabit Ethernet
equipment employing a Woven Systems, Inc., 10 Gigabit Ethernet switch,
which adaptively modifies the routing algorithm when overutilized
links are detected. The adaptive routing scheme is capable of sustaining
the same bandwidth as the number of nodes increases, but static routing
leads to a significant performance drop when the number of nodes ex-
ceeds the number connected via a single switch, producing congestion
in the network links.
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FIGURE 2.5
Network congestion caused by simultaneous data flows from P0 → P5 and P1 → P7. The link
from S0 → S4 must be used by both traffic flows, limiting network performance. The use of S6
by both traffic flows will not cause congestion because switching elements can handle multiple
flows involving distinct links without performance loss.

2.2.3 Network Performance

The application developer typically assumes that the network is flat and com-
plete, that is, any given processing element has equal access to all others re-
gardless of other network traffic. However, as we have seen in section 2.2.2,
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FIGURE 2.6
Average bandwidth obtained with adaptive and static routing, shown as a fraction of the peak
bandwidth measured for each case. InfiniBand with 4x single data rate was used for static routing,
and 10 Gigabit Ethernet was used for adaptive routing. Data were obtained on a Linux cluster3

and represent average measured bandwidths for the Sandia Cbench Rotate benchmark.12
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certain network traffic patterns can lead to congestion and result in less than
ideal performance. We will here examine the performance of the network in
the absence of congestion, and a measure for the amount of potential conges-
tion will be discussed in section 2.2.4.

As a first approximation, after the first word† of data enters the network,
the subsequent words are assumed to immediately follow as a steadily flow-
ing stream of data. Thus, the time required to send data is the sum of the
time needed for the first word of data to begin arriving at the destination (the
latency, α) and the additional time that elapses until the last word arrives (the
number of words times the inverse bandwidth, β):

t = α + nwordβ. (2.1)

The latency can be decomposed into several contributions: the latency due to
each endpoint in the communication, tendpoint; the time needed to pass through
each switching element, tsw; and the time needed for the data to travel through
the network links, tlink thus, the latency can be expressed as

α ≈ tendpoint + nswtsw + nlinktlink (2.2)

where nsw and nlink are the number of switches and links, respectively.
The endpoint latency, tendpoint, consists of both hardware and software con-

tributions and is on the order of 1 μs. The contribution due to each switching
element, tsw, is on the order of 100 ns. The tlink contribution is due to the finite
signal speed in each of the nlink cables and is a function of the speed of light
and the distance traveled; it is on the order of 1–10 ns per link. The total time
required to send data through the network depends on the route taken by the
data through the network; however, when we discuss performance model-
ing in chapter 5, we will use an idealized machine model where α and β are
constants that are obtained by measuring the performance of the computer
of interest.

The bandwidth of the network relative to the computational power of the
nodes is another critical performance factor. The greater the computational
power of the nodes, the greater is the need to rapidly transfer data between
them; hence, greater computational power requires a higher bandwidth (that
is, a smaller β). Let us look at the relationship required between the computa-
tional power and the bandwidth for efficient utilization of a parallel computer.
The computational power of a processor can be expressed as 1/γ , where γ is
the time needed to perform a floating point operation (see section 5.3). The
efficiency with which an application can use a parallel computer (defined
in section 5.2) can be expressed as a function of α, β, γ , and the number of
processors, p,

E( p, α, β, γ ) = 1
1 + fα( p)α/γ + fβ( p)β/γ + · · · ≤ 1 (2.3)

† For our purposes, a word is defined to be eight bytes, since double precision data are usually
used in quantum chemistry.
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where fα( p) and fβ( p) are nonnegative application specific functions. A per-
fectly parallel application has an efficiency of one, and obtaining an efficiency
as close to one as possible is desirable. Typically fα( p) � fβ( p), and achieving
high parallel efficiency therefore requires attention to the coefficient multiply-
ing fβ( p). A parallel architecture is said to be balanced if it is designed so that
the γ to β ratio enables the machine to deliver adequate efficiencies for the
machine’s target applications.

2.2.4 Network Topology

The topology of the network strongly affects both its cost and its perfor-
mance. The cost depends mostly on two parameters: the number of simple
switching elements needed, nsw, and the number of links supported by each
switching element, known as the degree of the switch. The performance is also
influenced largely by two topological factors, one of which is the number
of switching elements that data must pass through to reach its destination,
nhop. The second factor determining the network performance is the bisection
width, BC , which is a measure for the network congestion that an applica-
tion can generate. BC is defined as the minimum number of network links
that must be cut to completely separate the nodes into two sets of equal size.
We here only consider bidirectional network links, that is, links on which
data can be sent in both directions at the same time, and we will count each
connection that is cut as two towards the computation of BC . Topologies
for which the bisection width equals the number of processors, BC = p,
are known as full bisection width networks.‡ From a performance perspec-
tive, full bisection width networks are desirable because of the potential for
low congestion in the network, even with the substantial traffic flows that
are required by many high-performance computing applications. In practice,
actual observed performance depends, among other factors, on the routing
method used between the pairs of nodes, and even a full bisection width net-
work can experience performance loss due to congestion. Nonetheless, BC

is a useful performance metric because it provides an upper bound on the
number of links that can be utilized between node pairs in the worst-case
bisection.

In the following, we will describe several network topologies, and Table 2.2
gives the values of the degree, nhop, BC , and nsw for these topologies. Topolo-
gies of particular interest are the crossbar, which provides the building block
for more complex networks, the mesh and torus networks, which provide
a good balance of cost and performance that enables very large computers
to be built, and the fat tree, providing excellent performance at low cost for
intermediate numbers of nodes.

‡ Bidirectional links are sometimes counted only as one link for the purpose of determining BC ,
and a bisection width of p/2 then corresponds to a full bisection width network.
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TABLE 2.2

Well-known network topologies and their performance characteristics. The
network degree is the number of links supported by each simple switch,
and p is the number of processors; nhop is the maximum number of switches
through which data must pass, and BC and nsw represent the bisection width
and the number of simple switching elements, respectively
Network Degree nhop BC nsw

Crossbar p 1 p 1

Ring 2 p/2 + 1 4 p

Mesh 4 2
√

p − 1 2
√

p p

Torus 4
√

p + 1 4
√

p p

3D Torus 6 3/2p1/3 + 1 4p2/3 p

Hypercube log2 p log2 p + 1 p p

k-ary Fat Tree 2k 2 logk p − 1 p ( p/k)(logk p − 1/2)

2.2.4.1 Crossbar

The crossbar topology can directly connect any number of distinct pairs of pro-
cessing elements. A crossbar connecting four nodes is shown in Figure 2.7 (a).
The internal complexity of the crossbar is high, as is illustrated in Figure 2.7 (b).
Because the degree of the switch in a crossbar network must be equal to the
number of processing elements, p, it is costly to build crossbar switches for
large p. Crossbars with low-degree switches, however, are frequently used
as building blocks to construct larger networks for a number of different net-
work topologies. Typically, the degree of a crossbar switch is limited by the
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FIGURE 2.7
A crossbar network topology provides complete connectivity between all of the processing ele-
ments as shown in (a). This crossbar is a single degree–four switching element connecting four
processing elements. The internal construction of a crossbar with four bidirectional ports is shown
in (b). In the configuration shown, data from input ports 0, 1, 2, and 3 flow to output ports 3, 0,
1, and 2, respectively.
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FIGURE 2.8
A ring topology directly connects each processing element with two neighboring processing
elements.

functionality that can be fit into a single silicon chip. This chip must contain:
a number of high-speed serializer/deserializers (SERDES) that convert data
traveling on a wire to data held in the circuits on the chip; the crossbar; routing
logic; buffers to store data while waiting for output links to become available;
and a processor. An example is the Mellanox InfiniScaleTM III switch chip,
which has 96 SERDES, each moving data in both directions for a total for
8 Gbits/s. These SERDES are grouped into 24 groups of 4 or 8 groups of 12.
A total of 768 Gbits/s of data can pass through the switch chip.

2.2.4.2 Ring

The ring topology, shown in Figure 2.8, connects each processing element to
two neighbors. A ring is therefore inexpensive to build, but the ring topo-
logy also has a small bisection width, BC = 4 (two bidirectional links are
the minimum number of links that must be cut to separate the nodes into
two halves). With a fixed bisection width, BC = 4, compared with an ideal
bisection width of p, the ring topology becomes increasingly inadequate as
p increases. Hence, the ring topology is not used to connect a large number
of processing elements, although rings can be employed to connect a smaller
number of processors within a large-scale network (see Figure 2.15 for an
example).

2.2.4.3 Mesh and Torus

The mesh§ and torus topologies, as shown in Figure 2.9, place the switching
elements in a regular grid with connections from each switch to its nearest
neighbors. Torus networks are logically formed from meshes by connecting
each switch on the boundary to the switch on the opposite boundary of the
mesh. In practice, the long cable runs required to connect the switches on the
opposite sides of a row can be avoided by doing the wrap-around in the torus
as follows: connections are first established between all the odd-numbered
switches in a row and then between the even-numbered switches, and these
two sets are then connected at both ends of the row. A similar procedure can
be used for the columns. Using this scheme, the cable lengths are roughly
twice as long as in the mesh, but long cable runs are not required for the
wrap-around.

§ The term “mesh” is sometimes used to refer to what we in this book denote as an ad hoc grid.
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FIGURE 2.9
A two-dimensional mesh (a) and torus (b) network.

A torus network generally provides better performance than a mesh: in a
torus, all nodes are equivalent, and nhop is only about half that of the mesh
while BC is twice that of the mesh. The torus and mesh can also be general-
ized to three dimensions. The performance metrics listed in Table 2.2 for the
mesh and torus are valid when the numbers of nodes in each dimension of
the network are equal, although, typically, this condition is not met. To make
it possible to build parallel computers of arbitrary size and to reduce manu-
facturing costs, mesh and torus networks are made from identical repeating
units. Thus, it is natural to map the dimensions of the network to the physical
dimensions of the computing facility, and mesh and torus networks typically
do not have the same number of nodes along all dimensions. The values of
BC and nhop in Table 2.2 are upper and lower bounds, respectively, for general
mesh and torus networks.

2.2.4.4 Hypercube

In a hypercube topology, the number of nodes, p, is a power of two, p = 2k ,
where k is the degree, or dimension, of the hypercube. A zero-dimensional hy-
percube is a single node, and a one-dimensional hypercube is a pair of nodes
with a network link between them. A (k + 1)-dimensional hypercube is con-
structed from two k-dimensional hypercubes by connecting each node with its
counterpart in the other hypercube. A four-dimensional hypercube is shown
in Figure 2.10. The hypercube topology was used for some of the early large-
scale parallel computers, for instance, by Intel and nCUBE in the 1980s, but
today the hypercube topology has largely been displaced by other topologies.

2.2.4.5 Fat Tree

A fat tree topology is shown in Figure 2.11. All the processing elements are at
the lowest level of the tree, and above these the switching elements are placed
in several levels, or stages. The first stage of switching elements connect down-
ward to the processing elements and upward to the second stage of switching
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FIGURE 2.10
A hypercube network with degree k = 4.

elements; the second stage of switching elements connect downward and up-
ward to the first and third stages of switching elements, respectively, and
so forth. At each stage (except at the top), the total downward and upward
bandwidths are equal, but the bandwidth going upward is concentrated into
fewer, “fatter” links. The switches in the fat tree network are not all identical:
as we move up the stages, the switches become more powerful.

Constructing a network from identical switches is much less costly, how-
ever, and in practice fat tree networks are usually constructed as shown in
Figure 2.2. The fat tree network illustrated in Figure 2.2 is a binary fat tree, and
it is also hierarchically constructed from multiple stages; however, instead of
concentrating traffic to pass through fewer and more powerful switches as
we move up the tree, the traffic is split between multiple switches. In general,
a k-ary fat tree is constructed from switches with degree 2k, and each switch-
ing element has k downward and k upward links except at the top, where
there are 2k downward links. A k-ary fat tree with n stages can support up to
p = kn nodes. The top stage only requires half as many switches as each of

P0 P3P2P1 P4 P7P6P5

S0 S1 S2 S3

S5S4

S6

FIGURE 2.11
A fat tree network formed by progressively increasing the link bandwidth as we move up the
tree: for each switch, except at the top level, the bandwidth on upwards links matches the sum
of the bandwidths of the lower links.
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FIGURE 2.12
A two-stage, two-to-one oversubscribed fat tree network. Each stage 1 switch has four links to
processing elements, but only two links to stage 2 switches.

the lower stages (when k is even) since the 2k links in each of the top switches
are all directed downward. The fat tree is a full bisection width network, and
implementations of fat trees using both adaptive routing and static routing
exist.

The cost of a fat tree network can be reduced by making the tree oversub-
scribed. An oversubscribed fat tree has more downward links than upward
links at one or more stages in the tree, and it has a reduced bisection width, BC ;
if the bisection width has been reduced by a factor of a by oversubscription,
that is, BC = p/a , the tree is said to be a -to-one oversubscribed. A two-to-one
oversubscribed fat tree is shown in Figure 2.12; in this network, the switches
in the first stage are each connected to four nodes but have only two links to
the switches in the second stage.

2.2.4.6 Bus

A bus network is illustrated in Figure 2.13. In bus networks, only one pair of
ports can communicate at a time, and communication between the remaining
ports is blocked until the network becomes available again. This behavior
severely limits the ability of a bus network to support many processing ele-
ments. Bus networks were among the first networks deployed in inexpensive,
modestly sized, parallel computers, and Ethernet hubs and Ethernet networks

P4

P0

P5 P6 P7

P1 P2 P3

FIGURE 2.13
A bus network. Only a single pair of processing elements can communicate at any given time.
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FIGURE 2.14
An ad hoc grid network. Ad hoc topologies are irregular, and the nodes can be geographically
dispersed.

formed by tapping each computer into a single coaxial cable are examples of
bus networks. Because of the availability of inexpensive crossbar components
from which larger-scale networks can be constructed, bus networks are now
uncommon.

2.2.4.7 Ad Hoc Grid

An ad hoc grid topology typically arises in computing environments that were
not purpose-built to function as a single computer. The nodes in the grid are
loosely coupled, as illustrated in Figure 2.14; a node may be administratively
independent of the other nodes and may be distant as well, perhaps even
connected over the Internet. The field of grid computing concerns itself with
authentication, resource scheduling, data movement, and loosely-coupled
computation in such environments. A grid network’s performance, however,
is too low (the bisection width is too small and the latency too large) to be
of direct interest for the quantum chemistry applications discussed in this
book.

2.3 Node Architecture

We have seen in the previous section that a massively parallel computer con-
sists of a number of nodes connected via a communication network, and that
the nodes comprise small groups of processors that share memory and other
resources, although a node may also contain just a single processor. Each in-
dividual node in a parallel computer is typically essentially the same as a
personal computer with the addition of specialized hardware (a host channel
adaptor (HCA) or a network interface card (NIC)) to connect the computer to the
network. Parallelizing an application is not strictly a matter of providing for
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parallelism across the nodes. Internally, each node has a significant amount
of parallelism, and this introduces several additional layers of complexity to
developers that seek to fully utilize the computer’s resources. In this section
we will discuss the logical internal structure of a node. The nodes in a parallel
computer are composed of one or more SISD type processors, which execute
instructions that may read and write memory locations, as needed. Mod-
ern processor designs take elaborate measures to hide the great discrepancy
between memory speeds and processor speeds. These techniques include:
caching data in high-speed memory nearer to the processor; processing in-
structions out-of-order so that instructions that do not have unfulfilled mem-
ory dependencies can continue ahead of other instructions that are waiting
for data; and interleaving the processing of several instruction streams so that
when one stream blocks, another stream can proceed. This latter approach is
accomplished at the finest degree possible with simultaneous multi-threading
(SMT), where individual instructions from multiple threads of execution can
be selected for execution by the processor. These hardware-supported threads
can correspond to either software-level threads or separate processes (see
chapter 4 for more information on processes and threads).

Processors have evolved to become quite complex due to dramatic in-
creases in the amount of functionality that can be placed on a single silicon
chip. Initially, as the level of complexity started to increase, instruction-level
parallelism (ILP) was introduced to allow instructions to be overlapped in
execution by processing them in several stages forming a pipeline. The next
advancement in ILP was the provision of multiple functional units in hard-
ware, permitting instructions whose results are independent of each other to
be executed simultaneously. At present, integration scales are so large that
substantial additional improvements can no longer be achieved within a sin-
gle processor, and therefore multiple processors are now packaged together
on the same chip. The individual processors on such a chip are called cores¶,
and the resulting chip is referred to as a multicore chip. Cores on the same
chip often share resources, in particular, a portion of their memory caches is
typically shared. The integration level is expected to continue to rise in the fu-
ture, resulting in the eventual appearance of manycore chips with a substantial
number of cores on each chip.

Nodes often provide multiple sockets, each of which can accommodate
a multicore chip (two or four sockets are common, and three-socket config-
urations exist as well). Figure 2.15 shows an example of a node architecture
based on the quad-core AMD OpteronTM chip. Each chip has four cores (or
processors, as we use the term here). Each core has its own first (L1) and
second (L2) level caches. All four cores share the third level cache (L3). A
crossbar switch connects the processors to two memory controllers for ac-
cessing off-chip memory. The crossbar has three additional high-speed links
that can be used to connect other multicore chips or input/output devices.

¶ Often the multicore chips themselves are called “processors.” We will use the term “processor”
to refer to individual cores, unless the context clearly indicates otherwise.
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FIGURE 2.15
An example node consisting of four quad-core AMD Opteron chips. Memory, processors, and
the parallel machine interconnect are reached though a ring network formed by connecting
the crossbar switches. A single quad-core AMD Opteron chip provides four cores (C0–C3), two
memory controllers, the System Request Interface (SRI), the crossbar, and the L1, L2, and shared
L3 caches.

In Figure 2.15, a single HCA is connected, which provides connectivity to the
other nodes on the network. The node shown has a shared memory architec-
ture in which all the sixteen processors have direct access to all the memory.
In a shared memory architecture, data from the same memory can be read
by several processors and, hence, may be stored in multiple caches; if one of
the processors then changes its data, the system may have two inconsistent
copies of this data, resident in different cache entries. This situation is dealt
with by cache-coherency support in hardware, which will invalidate data in
other caches whenever the data in the local caches change. Such invalidation
generates additional traffic on the network connecting the processors within
the node, and this can impact the performance of the computer, especially
when the number of processors in the node is large.

Shared memory computers in which all processors have equal access to
all memory in the system are referred to as symmetric multiprocessors (SMP),
and may also be called uniform memory access (UMA) computers. In the node
shown in Figure 2.15, references to memory may need to pass through one,
two, or three crossbar switches, depending on where the referenced mem-
ory is located. Thus, this node technically has a nonuniform memory access
(NUMA) architecture, and, since the node is cache-coherent, this architecture
is called ccNUMA. However, since the crossbar switches in the quad-core
AMD Opteron implementation of ccNUMA exhibit high performance, this
particular node would typically be considered to be an SMP.
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Also shown in Figure 2.15 is a disk system. Often nodes do not have their
own disks, but when present disks can be used as an additional means (much
slower, but much less expensive, than memory) to store large amounts of
data. Storage is discussed in more detail in section 2.4.2.

Modern processors, together with the operating systems that control them,
provide multiple abstractions of the hardware within a node. Virtual memory
and multi-tasking are two of the most important of these abstractions. Together,
they allow multiple programs to run on the hardware, each appearing to have
sole access to it. Each of these programs will run in its own process. Each process
has virtual memory, which allows it to access memory as if no other processes
were present. The hardware provides facilities that efficiently map addresses
in the virtual memory address space into the node’s physical memory. Multi-
tasking refers to the ability to run multiple processes at once, with the processes
alternately executing on the processor. This allows all processes to steadily
make progress in their computations, even though there might be only a single
processor. In multi-tasking, a process is periodically stopped and its state
saved, another process’ state is restored, and that process begins execution on
the processor. This procedure is repeated for all processes. Together, multi-
tasking and virtual memory create the illusion that each process has access to
a dedicated processor, albeit one that may be slower and have less memory
than the actual processor.

Each process can have multiple threads of execution. Threads provide inde-
pendent execution contexts that share the same virtual memory. Nodes with
multiple processors can schedule different threads and processes to execute
concurrently. Sharing of data between processes is discussed in chapter 3, and
an overview of programming with multiple threads is given in chapter 4.

Another abstraction of the hardware is the virtual machine. This has been
available for decades in mainframe computers but only recently appeared in
mainstream processors. The virtual machine abstraction takes virtual memory
and multi-tasking a step further by more completely virtualizing the proces-
sor’s capabilities. Virtual machines allow multiple operating systems to run
concurrently.

2.4 MIMD System Architecture

Each of the individual nodes discussed in the previous section can be a MIMD
parallel computer. Larger MIMD machines can be constructed by connecting
many MIMD nodes via a high-performance network. While each node can
have shared memory, memory is typically not shared between the nodes, at
least not at the hardware level. Such machines are referred to as distributed
memory computers or clusters, and in this section we consider such parallel
computers in more detail.
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2.4.1 Memory Hierarchy

Distributed memory computers are a challenge to program because of their
deep hierarchical structure. We will examine their memory hierarchy by con-
structing a hypothetical computer using a node architecture similar to the one
depicted in Figure 2.15, which contains four processing chips, each with its
own local memory and four processor cores. In this hypothetical computer,
our nodes are connected using the oversubscribed fat tree network topology
shown in Figure 2.12. The resulting computer has a total of 4 × 4 × 24 = 384
processors. The memory hierarchy is shown in Table 2.3. Different layers in
this memory hierarchy are handled differently and to different degrees by
various layers of software. At the lowest layer in the hierarchy are the proces-
sor registers. These hold a very small amount of data, which is immediately
available for use by the processor. The compiler and very highly optimized
math kernels perform the work of allocating registers to data. The next level
up in the memory hierarchy is the memory cache, which itself is typically sub-
divided into several, progressively larger and slower, levels. Math kernels are
optimized to access data in a way that keeps the most frequently used data in
the fastest caches. Compilers can also take cache performance considerations
into account as they optimize the executable code. Application programmers
typically are not concerned with the details of the cache, but general pro-
gramming principles such as striving to access data in loops with a stride of
one are the result of attempting to make the best use of cache. The next level
in the memory hierarchy is the main memory of the node, which provides
storage that is much larger and much slower than the memory caches. Be-
cause, in our example, some memory is local to each chip, some is local to
an adjacent chip, and some memory is two hops away, the memory can also
be subdivided into several levels. It is typically up to the operating system
to optimize access to main memory by allocating data for processes in the
memory attached to the processor on which the process is running. The final
levels in the memory hierarchy correspond to remote memory on other nodes.
Because data transfered between two nodes may pass through either one or
three switching elements in this example, remote memory can also be sub-
divided into two different levels. Applications usually directly manage the
movement of data between nodes, often using message-passing techniques
such as those discussed in chapter 3. However, applications typically use an
idealized network model that ignores the number of switch hops between
nodes. Getting good performance out of such deep memory hierarchies is a
hard task, which will grow even more difficult as improvements in memory
and network performance lag improvements in processing power.

2.4.2 Persistent Storage

There are two principal ways to provide persistent storage in a parallel com-
puter: each node may have its own local disk, or a common storage device
may be shared by all nodes and accessed via a network. The nodes in a parallel
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computer are often diskless, and in this case all storage is networked. In com-
puters that have local disks, network storage is usually provided as well as a
way of making, for instance, home directories readily available on all nodes.

2.4.2.1 Local Storage

The fastest currently available disk drives have a bandwidth of around
100 Mbyte/s and a latency of about 3 ms. Multiple drives can be combined
together as a redundant array of inexpensive disks (RAID) system to provide bet-
ter bandwidth, but the latency cannot be improved in this way. Because disk
access is considerably slower than memory access, the use of disk resources
in a parallel computer must be carefully planned to avoid large performance
penalties. For example, in applications involving storage of large quantities
of data on disk, data compression can be employed to reduce the bandwidth
required for retrieval of the data. An example of the use of this strategy in a
quantum chemistry application is the compression of the two-electron inte-
grals stored on disk in a parallel Hartree–Fock program.4 In general, the use
of local disk-based storage is not a parallel programming issue, and we will
not consider this topic any further in this text.

2.4.2.2 Network Storage

Some form of network storage is typically available on parallel computers.
Network storage can be provided by a single, special-purpose node, for in-
stance, a server providing shared storage through the Network File System
(NFS) protocol. While multiple nodes can access data concurrently on such
a file server, the performance of the file server severely degrades as more
nodes attempt simultaneous access. Alternatively, the parallel computer can
be attached to a storage system that is essentially another parallel computer
dedicated to providing high-performance storage. This kind of storage sys-
tem has multiple high-speed connections to the parallel computer and can
provide much higher performance. Lustre®5 is an example of such a parallel
file system.

Even though parallel disk storage systems can provide much higher band-
width than either a local disk or network storage provided through a single
server, the available performance typically is not sufficient to meet the needs
of many quantum chemistry applications. Considering, for example, Fock
matrix formation (discussed in chapter 8), an implementation may use either
a direct method that computes the two electron atomic orbital integrals as
needed, or a disk-based method that stores the integrals on disk and reads
them in each iteration. The time required to compute an integral on a current
processor is about 0.5 μs. On a large-scale computer with 20,000 processors,
an integral would then be computed on average every 25 ps. If these integrals
were read from disk rather than computed, matching this computation rate
would require a bandwidth of 320 Gbytes/s—and even computers of this
size usually cannot deliver such bandwidth. For smaller parallel comput-
ers, the storage systems are also unlikely to be able to deliver the necessary
bandwidth: for example, using eight-processor nodes, the required per-node
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bandwidth would be 128 Mbytes/s/node, and sustaining this bandwidth
to all nodes simultaneously is beyond the capabilities of the storage systems
commonly found in clusters. These constraints limit the usefulness of network
storage for quantum chemistry applications. Some quantum chemistry appli-
cations do make use of network storage, however, to allow reuse of data that
are very expensive to compute. For example, parallel storage systems have
been used to store the molecular orbital integrals in parallel implementations
of correlated electronic structure methods such as the MP2-R12 methods.6

2.4.2.3 Trends in Storage

Being mechanical devices, disk drives will always have severe latency issues.
Already, disk drives are being replaced in consumer devices by NAND flash
memory, a solid state persistent storage medium. This memory has the advan-
tage of a significantly lower latency and higher bandwidth than disk drives.
It is currently more expensive per unit storage than disks, but the large man-
ufacturing volumes needed to meet the demand for consumer devices using
NAND flash are driving its price down, and NAND flash will find increasing
use in computing. The availability of solid state storage in parallel computers
would make the use of persistent storage desirable for a much wider range
of methods than those that can use current disk technology.

2.4.3 Reliability

Many components must work in harmony for an application to successfully
run on a large parallel computer, and this requires an exceptional level of
reliability for all components. Although a personal computer that failed only
once every five years would probably be very satisfactory, a 10,000 node com-
puter built from nodes with that same individual failure rate would fail, on
average, about every 4.4 hours. This figure is known as the mean time between
failures (MTBF) for the computer and is the reciprocal of the rate of failure.
Let us look at a collection of N types of components with ni components of
each type, and let each component type have a mean time between failures
of MTBFi . For this system, the overall mean time between failures will be the
reciprocal of the sum of the rates of failure for the individual components

MTBFsystem = 1(∑i≤N
i=1

ni
MTBFi

) ≤ min
1≤i≤N

MTBFi

ni
. (2.4)

Thus, the mean time between failures for the system is bounded by the weak-
est component type in the system, namely the one with the smallest MTBFi

ni
value; for systems with many types of components, however, the mean time
between failures is typically much smaller than that for the weakest compo-
nent. If a particular type of component has a small MTBF, then overall system
reliability can be increased by eliminating as many of these components as
possible. Thus, nodes in a parallel computer often have no disk drive, be-
cause disk drives are one of the most failure-prone components. Generally,
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it is difficult to obtain an accurate mean time between failures for a system
because manufacturers often overestimate the MTBF for components; also,
MTBF claims made by manufacturers of parallel computers must be critically
evaluated, as MTBF values are often miscalculated.

One way to mitigate the effects of failures is to introduce redundancy
into the system for the components that are most prone to failure. Typically,
systems with redundancy are designed so that when a single component fails,
that component can be replaced without interrupting the operation of the
system. The system will fail only when more than one failure occurs before
the first failure can be repaired. Redundancy is commonly used for power
supplies and fans. Networks such as the oversubscribed fat tree shown in
Figure 2.12 have natural redundancy in the links between two switching
elements. If one element fails, traffic can be routed around the failed link,
albeit at reduced performance.

2.4.4 Homogeneity and Heterogeneity

A parallel computer is said to be homogeneous if the same program running on
different nodes will produce exactly the same results in the same amount of
time. Otherwise, the computer is considered to be heterogeneous. Most large-
scale parallel computers today are built to be homogeneous. Ad hoc collec-
tions of nodes, and homogeneous systems that have had new hardware added
after the original installation, are often heterogeneous.

Heterogeneity in a parallel computer can sometimes lead to reduced per-
formance, incorrect results, or deadlock. Consider, for example, a parallel
computer in which all nodes are identical, except for one node, which has a
processor with a clock speed that is only half that of the processors on the
other nodes. If a program running on this parallel computer distributes the
computation by assigning the same amount of work to each node, the slower
node will require twice as much time as the other nodes to complete its work.
Hence, the overall time to complete the application will be twice as long as
if all nodes had the same, faster, clock speed; approximately half of the com-
puting power of the entire parallel machine could thus be lost due to the one
slow node.

Heterogeneity in the employed system libraries or compilers can result in
inconsistent or incorrect results for a parallel program, even when the hard-
ware and executables are homogeneous. For example, using different dy-
namically linked system libraries (such as math libraries) on different nodes
can lead to slightly different results for a program running on different nodes.
Using different compilers or compiler flags can also change the results of float-
ing point computations. For example, the Intel® architecture stores double
precision floating point numbers using 80 bits in registers but only 64 bits in
memory, and storing a floating point register to memory results in rounding.
When a subroutine requires enough temporary data that the compiler cannot
keep all of it in the processor’s registers, the compiler must chose which data
to store in memory, and this choice will affect the numerical result.
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Programs that require that a certain routine, for a given set of input data,
will produce bit-wise identical answers on all nodes employed may expe-
rience difficulties when run in a heterogeneous environment. For example,
consider an iterative algorithm that uses the norm of a residual vector to de-
termine if the calculation has converged and the iterative procedure can be
exited. Slight numerical differences can cause the computation on different
nodes to exit the iterative procedure after different numbers of iterations, and
if inter-node communication is required to complete each iteration, the nodes
that did not exit the iterative procedure would be left waiting for the other
nodes that did exit, resulting in deadlock.

Note that even computers intended to be homogeneous, consisting of iden-
tical nodes and using the same software on every node, may not always, in
practice, meet the conditions for homogeneity. Thus, factors beyond the con-
trol of the builder and user of the computer may cause otherwise identical
nodes to run at different speeds, effectively creating a heterogeneous envi-
ronment. Examples include: the slow-down of execution on a node caused
by error correction performed by error-correcting code (ECC) that is employed
to improve robustness of memory (if one bit is wrong, the error will be cor-
rected, and execution will proceed); the reduction of a processor’s clock speed
to prevent overheating; and the malfunctioning and off-lining of one or more
cores in a multicore chip, which reduces the computational power of the node
but does not cause failure of the chip.

2.4.5 Commodity versus Custom Computers

Parallel computers broadly fall into one of two categories: commodity clusters,
which are manufactured from commonly available components, and custom
high-performance computers containing parts designed for, and used only by,
a particular product line of computers. Commodity clusters usually have a
lower cost because they use widely available parts that are produced in large
volumes. They nearly always run an operating system that is an open-source
variant of UNIXTM, such as GNU/Linux, and are then also referred to as
Beowulf clusters. Custom computers, however, typically support larger num-
bers of processors and provide higher levels of performance for applications
that run well at such large scales.

Originally, custom parallel computers employed both custom processors
and a custom interconnect, but today many custom computers use commod-
ity processors combined with purpose-built interconnects. In our discussion
of the mean time between failures (MTBF), we saw that a high MTBF in a large-
scale computer requires very high reliability of the individual components,
and large-scale custom computers are designed with this in mind. For in-
stance, custom computers use fewer, more reliable fans, and some computers
use only a single, large, and very reliable fan for an entire rack of nodes.
Additionally, these computers are designed with a high level of redundancy
for power supplies and do not use disk drives for individual nodes, as both
of these components are also failure prone.
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Example 2.2 The Sandia Red Storm Supercomputer
This is the computer that formed the basis for the Cray XT3TM super-
computer. Every node has a 2.4 GHz dual core AMD OpteronTM pro-
cessor, and a direct network provides each node with a 6.4 GB/s bidi-
rectional link to its own switch using AMD HyperTransportTM. The
switches connect to their six neighbors with 7.8 GB/s bidirectional links.
A 27 × 20 × 24 3D mesh topology is used for a total of 12,960 compute
nodes. An additional 320 nodes are used for I/O and service functions
on each of the two networks to which the machine can be connected.
The network latency, including software overhead, between nearest
neighbors is 4.8 μs, and the worst-case network latency is 7.8 μs. Red
Storm’s parallel filesystem can maintain a rate of 50 Gbytes/s. An op-
erating system specifically designed for high-performance computing
(a lightweight kernel), named Catamount, is used on the compute nodes,
and GNU/Linux runs on the service nodes. The High-Performance Lin-
pack benchmark7 (HPL) on this computer achieved 101.4 teraflops on
26,544 processors,‖ placing it third on the June 2007 TOP500 list.8

Although, at any given time, the largest custom computers are faster than
the largest commodity computers, the performance of commodity parallel
computers has been improving steadily. This is illustrated in Figure 2.16,
which depicts the HPL benchmark results from the TOP500 list for both the
fastest custom and the fastest commodity parallel computers. An analysis
of this kind is fraught with limitations: the TOP500 list is self-selected, the
HPL benchmark may not be the most meaningful measurement of machine
performance, and it can be difficult to assign certain computers to one of the
commodity and custom categories. Nonetheless, some useful information
can still be collected from this exercise. It is readily apparent that the perfor-
mance of both commodity and custom parallel computers is exponentially
increasing. The performance of custom computers has doubled about every
twelve months from 1993 to 2007. Commodity computers started out more
than thirty times slower than custom computers but improved their perfor-
mance at a higher rate, doubling every nine months from 1995 to 2001. In 2002
the performance of commodity computers took a leap and almost reached the
performance of custom computers but then started growing more slowly, dou-
bling every sixteen months. Throughout the time period considered here, the
performance of commodity computers has lagged that of custom computers
by two to five years.

Parallel computers may also be distinguished based on whether they are
allocated for capacity or capability computing, and this distinction is related
to the commodity versus custom classification. Capacity computers are de-
signed to obtain good throughput and high cost-effectiveness for running
many small- to modest-sized jobs. Capability computers are reserved for

‖ The number of processors exceeded 2×12,960 because some I/O nodes were also used for
computation for this benchmark.
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FIGURE 2.16
Semilogarithmic plot of the HPL benchmark value for the fastest custom and commodity comput-
ers, as reported in the TOP500 list.13 Custom computers show exponential growth throughout
this time period, doubling in performance about every year. The performance of commodity
computers also improves exponentially, doubling every nine months from 1995 to 2001 and then
slowing down, doubling about every sixteen months from 2001 to the present. The anticipated
appearance of petaflop computers in 2008 will be in accord with the current growth trend of
custom computers.

running the very largest of jobs that cannot run elsewhere due to their large re-
quirement for processing power or memory. Commodity clusters are typically
used for capacity computing, and custom computers are usually reserved for
capability computing.

Example 2.3 The Sandia Thunderbird Cluster
This computer is a commodity cluster with 4,480 nodes. Each node has
two 3.6 GHz single-core Intel® Xeon® processors. The interconnect is
4x single data rate InfiniBand, which provides a peak bidirectional data
rate of 2 GB/s. The network topology is a 2-to-1 oversubscribed fat tree,
and the operating system is GNU/Linux. This cluster ran the High-
Performance Linpack benchmark7 at a rate of 53 teraflops, placing it at
number 11 on the June 2007 TOP500 list.8

2.5 Further Reading

An in-depth, yet very approachable, discussion of network architecture is
presented in Principles and Practices of Interconnection Networks by Dally and
Towles.9 An up-to-date and informative discussion of node architecture can be



P1: Binod

February 26, 2008 18:35 51644 51644˙C002

Parallel Computer Architectures 43

found in the fourth edition of Hennessy and Patterson’s Computer Architecture:
A Quantitative Approach,10 which also includes a CDROM with an appendix
providing an overview of network architecture. A more detailed discussion of
the dangers of using heterogeneous computers has been given by Blackford
et al.11
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3
Communication via Message-Passing

On distributed memory computers, the memory of a node is directly accessible
only to the processes running on that node, and message-passing is the
primary means for exchanging data between processes running on different
nodes. Most parallel algorithms for distributed memory computers therefore
use a programming model, the message-passing paradigm, in which pro-
cesses exchange data by explicitly sending and receiving messages. Except
for trivially parallel computational problems in which the processes can work
completely independently of each other, parallel applications involve some
data exchange between processes, and often a significant amount of commu-
nication is required. For instance, data needed by a process may have to be
retrieved from a remote memory location associated with another process, or
a manager process in charge of distributing and scheduling work will need
to communicate with other processes to do so. The use of message-passing
in a parallel program may affect the parallel performance in several ways.
For example, the communication overhead (the time required to perform the
communication) may be significant and may grow as the number of processes
increases, and the presence of communication steps may require synchroniza-
tion of all processes, which forces some processes to be idle while waiting for
other processes to catch up.

Communication operations can be classified into three categories: point-to-
point communication, which requires cooperation of the sending and receiv-
ing process and is the most basic type of message-passing; collective commu-
nication involving a group of processes; and one-sided communication, which
enables one process to control the exchange of data with another process. In
this chapter, we will discuss these types of communication and show exam-
ples of their application. While much of the discussion will not be specific to
a particular message-passing library, we will use the Message-Passing Inter-
face (MPI) to illustrate the concepts. MPI is the most widely used message-
passing library in scientific computing, and it is available on most parallel
platforms employed in this field. A brief introduction to MPI is provided in
Appendix A.

45
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3.1 Point-to-Point Communication Operations

Point-to-point communication, also referred to as pairwise communication, en-
tails the sending of a message from one process to one other process. To
accomplish this type of operation, an explicit call to a sending operation must
be placed by the sending process while the posting of a corresponding receive
operation is required by the receiving process. Point-to-point communication
operations may be broadly characterized as either non-blocking or block-
ing, depending on whether execution control is blocked until the message
transmission is complete. Application of point-to-point communication op-
erations creates the possibility for writing unsafe parallel programs, includ-
ing programs that produce a nondeterministic result due to race conditions
and programs that cause deadlocked processes. It is important never to rely
on any unsafe programming practices whatsoever in parallel programming;
although an unsafe program may work reliably on one parallel architecture
or using a specific version of a message-passing library, unsafe programs are
very likely to cause problems, for example, when porting code to other com-
puters, updating message-passing libraries, or using the application with new
input data sets. In the following we will discuss blocking and non-blocking
message-passing in more detail, illustrate their use in a few examples, and
briefly address the use of safe programming practices that avoid deadlock
and race conditions.

3.1.1 Blocking Point-to-Point Operations

A send or receive operation is said to be blocking if execution is blocked until
the operation is complete. Completion of the send or receive operation is
defined in terms of the associated buffer: an operation is complete when it is
safe to reuse the buffer used for the message transfer. Thus, when a process
posts a blocking send, execution for that process will be suspended until
the send buffer can be safely overwritten. Likewise, after posting a blocking
receive, execution will resume only when the data to be received is guaranteed
to have been put into the receive buffer.

Using blocking send and receive operations in a program can reduce the
memory requirement because the message buffers are guaranteed to be safe
for reuse upon return of the functions so that no extra buffer space needs to
be allocated for the message transfer (although the message-passing library
may allocate the storage anyway). The use of blocking operations, however,
creates the possibility for a deadlock situation. Deadlock arises when two or
more processes are stuck waiting for each other. For example, one process may
be waiting for a response from a second process, which, in turn, is waiting for
the first process to respond. In Figure 3.1, we show a function that employs
MPI blocking send and receive operations to send data between processes in
a virtual ring in a manner that creates deadlock of all processes. In this case,
every process first posts a blocking receive operation to receive a message from
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void send_data_in_ring_deadlock(int *indata, int *outdata,
int ndata, int this_proc, int p)

{
/* this_proc: process ID; p: number of processes */

int next_proc; /* send data to this process */
int previous_proc; /* receive data from this process */
MPI_Status status; /* Required by MPI_Recv */

if (this_proc == p-1) next_proc = 0;
else next_proc = this_proc+1;

if (this_proc == 0) previous_proc = p-1;
else previous_proc = this_proc-1;

MPI_Recv(indata, ndata, MPI_INT, previous_proc, 0,
MPI_COMM_WORLD, &status);

MPI_Send(outdata, ndata, MPI_INT, next_proc, 0,
MPI_COMM_WORLD);

return;
}

FIGURE 3.1
A function (written in C) using MPI blocking send and receive operations and causing a
deadlock of all processes. The function attempts to send data around in a virtual ring of p
processes by letting each process, with process identifier this_proc, receive data from process
this_proc−1 while sending data to this_proc+1 (process p − 1 sends to process 0 to
complete the ring). The blocking receive, MPI_Recv, (posted by all processes) never returns,
however, because every process is waiting for the matching send, MPI_Send, to be called at the
sending end. The employed MPI functions are explained in Appendix A.

another process, but no message is ever received because the process that is to
send the message will be waiting to receive a message from another process.
In general, deadlock can be avoided by using non-blocking communication
operations.

3.1.2 Non-Blocking Point-to-Point Operations

A non-blocking send or receive operation will return control to the calling
process immediately after the call has been posted. For a non-blocking send
operation, therefore, control is returned to the calling process without check-
ing whether the data has been copied out of the send buffer or transmission
of the data started. A non-blocking receive, likewise, returns without de-
termining whether the data to be received has been copied into the receive
buffer. Non-blocking communication operations are thus an example of asyn-
chronous operations, namely, operations that will return without requiring
cooperation from a remote process. Synchronous communication operations,
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void send_data_in_ring(int *indata, int *outdata,
int ndata, int this_proc, int p)

{
/* this_proc: process ID; p: number of processes */

int next_proc; /* send data to this process */
int previous_proc; /* receive data from this process */
MPI_Request request; /* Required by MPI_Irecv, MPI_Wait */
MPI_Status status; /* Required by MPI_Wait */

next_proc = (this_proc == p-1 ? 0 : this_proc+1);
previous_proc = (this_proc == 0 ? p-1 : this_proc-1);

MPI_Irecv(indata, ndata, MPI_INT, previous_proc, 0,
MPI_COMM_WORLD, &request);

MPI_Send(outdata, ndata, MPI_INT, next_proc, 0,
MPI_COMM_WORLD);

MPI_Wait(&request, &status);

return;
}

FIGURE 3.2
A modified version of the C function in Figure 3.1 using an MPI non-blocking receive,
MPI_Irecv, to avoid deadlock. The MPI_Irecv returns without waiting for any message to
arrive, and each process then proceeds to post the sending operation, MPI_Send. The MPI_Wait
causes each process to wait at this point until the message to be received by MPI_Irecv has
arrived. The employed MPI functions are explained in Appendix A.

on the other hand, require a function call on both the sending and receiving
process before returning. When using non-blocking operations it is usually
necessary at some point to ascertain that it is safe to overwrite the send buffer,
or that the data has arrived in the receive buffer. This can be accomplished by
calling a function (for example, MPI_Wait) that blocks until the previously
posted non-blocking send or receive operation has completed, or by calling a
function (such as MPI_Test) that tests for completion of the preceding send
or receive but does not block. Attempting to read the receive buffer after
posting a non-blocking receive can lead to a race condition, which is a non-
deterministic program behavior caused by critical dependence on the rela-
tive timings of events. Thus, reading from the message buffer before ensuring
that the receive has completed will produce a different result depending on
whether the receive did already complete. Likewise, a race condition can be
caused by trying to modify the send buffer after calling a non-blocking send
operation.

In Figure 3.2, we show a modified version of the function from Figure 3.1,
which sends data around in a virtual ring. In the modified version, each
process first posts a non-blocking receive operation to receive data from
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another process. This receive function will return immediately without wait-
ing for a message to arrive, and all processes can therefore proceed and post
the subsequent send operations, sending out the data to be received by the
non-blocking receives. Deadlock can thus be avoided by replacing the block-
ing receive used in Figure 3.1 with a non-blocking receive. Before returning,
however, each process must wait for the preceding non-blocking receive to
finish receiving its message (by calling MPI_Wait) so that the program will
not exit before all the data has arrived.

The use of non-blocking point-to-point communication offers the potential
for improving performance by overlapping communication with computa-
tion. A call to a non-blocking send or receive operation only briefly interrupts
execution while the call is being posted, and the calling process can resume
computation without waiting for the send or receive to complete. This also
means that if a process initiates communication with another process that is
not yet ready to respond to the message, the issuing process does not have to
remain idle while waiting for the response. However, overwriting the send
buffer or using the data in the receive buffer must not be attempted until
the non-blocking communication operation is complete. The extent to which
it is possible to overlap communication and computation depends on the
actual implementation of the non-blocking communication operations. Ren-
dezvous protocols, which may require an initial message exchange (a “hand-
shake”) between the sending and receiving processes before the data transfer
is initiated, are often used for non-blocking message-passing to avoid creat-
ing extra message copies. The requirement of such a handshake, however,
can reduce the ability to overlap communication and computation.1 Newly
developed protocols for non-blocking message-passing hold promise for
achieving a better overlap of communication and computation and, hence,
improving parallel efficiency and scalability for programs employing non-
blocking operations.1

3.2 Collective Communication Operations

Collective communication operations are message-passing routines in which a
group of processes are involved simultaneously. If all processes in a parallel
application are involved, the operation is also referred to as global communica-
tion. Collective communication operations implemented in message-passing
libraries such as MPI offer a convenient way to exchange data between pro-
cesses or perform other operations that involve a group of processes. Collec-
tive operations that simply move data between processes include: broadcasts,
in which a process sends a message to all other processes; scatter operations
involving a process sending a different message to all other processes; and
gather operations, the reverse of scatter operations, gathering data from all
processes onto one process. Another type of collective operations are reduc-
tion operations, which perform data movement as well as some computations
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on the data. Finally, a third category of collective communication operations
serve to synchronize processes, for instance, by introducing a barrier into
the program beyond which no process can pass until it has been reached by
all processes. In Appendix A we list examples of commonly employed MPI
collective communication operations and illustrate their use.

Collective operations are relatively easy to use, and they eliminate the
need for the programmer to develop custom-designed and potentially com-
plicated parallel communication schemes. Additionally, efficient algorithms
have been implemented for many collective communication operations on a
variety of parallel platforms, increasing the portability of parallel code that
employs these operations. Potential disadvantages of collective communi-
cation include the introduction of communication bottlenecks and reduced
efficiency resulting from process synchronization. In the following we will dis-
cuss a few of the most commonly used collective communication operations,
present algorithms for carrying out these operations, and analyze their cost
for the purpose of performance modeling. Examples of algorithms employing
collective communication are given in sections 8.3 and 9.3 and in chapter 10.

3.2.1 One-to-All Broadcast

A one-to-all broadcast is a communication operation in which data from one
process is sent to all other processes. The data distribution before and after
the broadcast is illustrated in Figure 3.3. A commonly used algorithm for
performing the one-to-all broadcast is the binomial tree algorithm, which is
illustrated in Figure 3.4 for a case with eight processes labeled P0–P7. In the
first step, P0 sends its data to P4; in the second step, P0 and P4 send their
data to P2 and P6, respectively; and in the final step P0, P2, P4, and P6 each
send their data to the process whose identifier is one higher than that of the
sending process. In the general case, assuming we have p processes where p
is a power of two, the ith step in the broadcast involves 2i−1 processes each
sending data to the process whose process identifier is p/2i higher. The entire
broadcast process requires log2 p steps, and in each step data of length l is

One-to-all All-to-all

D0 D0

D0

D0

D0

P0 :

P1 :

P2 :

P3 :

P0 :

P1 :

P2 :

P3 :

D0

D1

D2

D3

D0D1D2D3

D0D1D2D3

D0D1D2D3

D0D1D2D3

FIGURE 3.3
Data distribution before and after one-to-all and all-to-all broadcast involving four processes,
P0–P3. Di represents the data initially associated with process Pi .
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Distribution of Data:

P0

P1 P2 P4

P3 P5 P6

P7

1

2

3

3 3

3

2

Initially:

After step 1:

After step 2:

After step 3:

P0 P1 P2 P3 P4 P5 P6 P7

D0

D0

D0

D0

D0

D0 D0 D0

D0 D0 D0D0 D0 D0 D0

FIGURE 3.4
One-to-all broadcast using a binomial tree algorithm involving eight processes, P0–P7. The data
to be distributed, D0, is owned initially by P0. The message length is the same in all steps, and the
broadcast here requires three steps; the numbered arrows represent data sent in steps 1, 2, and 3,
respectively. In general, the binomial tree broadcast algorithm requires log2 p steps, where p is
the number of processes.

transferred between a pair of processes. Expressed in terms of the latency α

and the inverse bandwidth β, this yields the total communication cost

tone-to-all broadcast
comm = log2 p(α + lβ) [binomial tree algorithm]. (3.1)

An alternative broadcast algorithm, performing the broadcast as a scatter
operation followed by an all-to-all broadcast, can be modeled as follows2

tone-to-all broadcast
comm = (log2 p + p − 1)α + 2

p − 1
p

lβ [van de Geijn algorithm].

(3.2)

The initial scatter, in which the process holding all the data scatters the data
among all processes, requires tcomm = log2 pα + ( p − 1)lβ/p, and the follow-
ing all-to-all broadcast, in which each process sends its data (of length l/p) to
every other process, requires tcomm = ( p − 1)(α + lβ/p) when using a ring
algorithm (see Eq. 3.3). The van de Geijn algorithm has a higher latency but
a smaller bandwidth term (for p > 2) than the binomial tree algorithm and
therefore is likely to achieve better performance when broadcasting long mes-
sages for which the latency term can be neglected.

3.2.2 All-to-All Broadcast

In an all-to-all broadcast every process sends a message to every other process.
The data distribution before and after an all-to-all broadcast is illustrated in
Figure 3.3. This type of operation may be accomplished with a simple systolic
loop algorithm (also called a ring algorithm) in which data is sent around in
a virtual ring as illustrated in Figure 3.5. In each step, data exchange takes
place only between neighboring processes, and every process sends data to
its neighbor on one side and receives data from its neighbor on the other side.
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FIGURE 3.5
Data movement in systolic loop algorithm for all-to-all broadcast involving four processes,
P0–P3. Using p processes, the algorithm requires p − 1 steps. Initially, process Pi owns data
Di , and upon completion, the full data set D0, D1, D2, D3 has been copied to every process.

In the first step, every process sends its own data along to the next process,
and in each of the following steps every process transmits the data it received
in the previous step. Using p processes, the ring algorithm requires p−1 steps,
and the amount of data transmitted by a process in each step is constant. If l
denotes the amount of data that initially resides on each process and will be
transmitted to the other processes, the communication time for the all-to-all
broadcast using the ring algorithm can be expressed as

tall-to-all broadcast
comm = ( p − 1)(α + lβ) [ring algorithm]. (3.3)

An all-to-all broadcast can also be performed with a recursive doubling
algorithm. The name of this algorithm derives from the fact that the distance
between two processes exchanging information, as well as the message length,
is doubled in each step of the algorithm as illustrated in Figure 3.6. In the first
step, processes Pi and Pi+1 exchange data (for even i); in the second step, Pi

and Pi+2 exchange data (for even �i/2�); and in step m, process Pi exchanges
data with process Pi+2m (for even �i/2m�). In each step, every process sends its
original data as well as the data it has received from other processes in previ-
ous steps. The amount of data to be exchanged between processes thus grows
with each step, and, using the data length l from above, the data to be transmit-
ted by a process in step k can be expressed as l2k−1. If the number of processes
is a power of two, the recursive doubling all-to-all broadcast can be completed
in log2 p steps, and the required communication time is then given as

tall-to-all broadcast
comm = log2 pα +

log2 p∑
k=1

2k−1lβ

= log2 pα + ( p − 1)lβ [recursive doubling algorithm].
(3.4)

If the number of processes is not a power of two, more than log2 p steps are
required in the recursive doubling algorithm, and in this case2 the algorithm
can be implemented so that the total number of steps required is bounded
by 2 log2 p.
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Step 3:
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FIGURE 3.6
Communication pattern and data distribution in all-to-all broadcast using a recursive doubling
algorithm involving eight processes, P0–P7. The top part of the figure illustrates the exchange of
data between pairs of processes in each step, and the resultant data distribution in each step is
shown on the bottom.

The recursive doubling algorithm can be completed in fewer steps than
the ring algorithm (log2 p vs. p − 1), yielding a smaller total latency, and
the recursive doubling algorithm is therefore well suited for short message
sizes where the latency term will tend to dominate. The bandwidth term,
( p − 1)lβ, is the same for the ring and the recursive doubling algorithm, and
this term cannot be reduced because each process must receive an amount
of data equal to ( p − 1)l. The performance models for the broadcast given
above have implicitly assumed that the connectivity of the network allows
the various communication operations to be performed without causing net-
work congestion. For this to be the case, the recursive doubling algorithm, in
principle, requires a network with connectivity of at least hypercube quality
(see section 2.2.4.4), although the performance model in Eq. 3.4 may be an
acceptable approximation also for some networks with lower connectivity.
We note that, since the bandwidth term is the same for the ring and recur-
sive doubling algorithms, an all-to-all broadcast can be as fast on a simple
ring topology as on a much more sophisticated and expensive topology if it
involves long messages for which the bandwidth term dominates.
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3.2.3 All-to-One Reduction and All-Reduce

The class of collective communication operations known as reduction opera-
tions involve the determination of a single result from a set of data distributed
across a number of processes. Examples of reduction operations include the
computation of the sum or product of a set of numbers and determination of
the largest or smallest number in the set. In the following we will describe the
all-to-one reduce and all-reduce operations in detail. In the case of the all-to-
one reduce, the result is accumulated on one process only, whereas the all-
reduce operation communicates the result of the reduction to all processes.∗

The communication pattern involved in an all-to-one reduce operation is
analogous to that of a one-to-all broadcast but is performed in the reverse
order. Thus, whereas a message is sent from one process (the root) to all other
processes in the one-to-all broadcast, all processes send a message to the
root in the all-to-one reduce. In addition to message-passing, some message
processing is also required locally in the all-to-one reduction. Using a binomial
tree algorithm (see Eq. 3.1 and Figure 3.4), and assuming that the number of
processes, p, is a power of two, the communication time can be modeled as

tall-to-one reduce
comm = log2 p(α + lβ + lγ ) [binomial tree algorithm]. (3.5)

In this equation, γ represents the computational time required per word of
data to perform the operation associated with the reduce (for instance, a
summation or multiplication). We saw in the previous section that the one-to-
all broadcast could be implemented with a bandwidth term that did not grow
with the number of processes (Eq. 3.2). The trade-off for achieving the reduced
bandwidth term was a larger latency term, and this approach therefore was
advantageous for long messages only. Likewise, the all-to-one reduce can be
performed using algorithms with β and γ terms nearly independent of the
process count but with a higher latency. One such algorithm, developed by
Rabenseifner,2,3 is implemented as an all-to-all reduce followed by a gather
operation, and the communication time is

tall-to-one reduce
comm = 2 log2 pα + 2

p − 1
p

l(β + γ /2) [Rabenseifner algorithm].

(3.6)

For large message sizes, where the latency term can be ignored, Rabenseifner’s
algorithm should provide improved performance relative to the binomial tree
algorithm, especially when the number of processes is large.

An all-reduce operation can be performed as an all-to-one reduction fol-
lowed by a one-to-all broadcast, and, using the binomial tree algorithm for

∗ Note that an all-reduce operation is different from an all-to-all reduction, also called a reduce-
scatter, which scatters the result of the reduction among all processes.
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both the reduction and the broadcast, the communication time becomes

tall-reduce
comm = log2 p(2α + 2lβ + lγ ) [binomial tree algorithm]. (3.7)

The Rabenseifner all-reduce algorithm is identical to the Rabenseifner all-to-
one reduction, except for using an all-to-all broadcast (allgather) operation
in place of gather, and the communication time for this algorithm can be
modeled as

tall-reduce
comm = 2 log2 pα + 2

p − 1
p

l(β + γ /2) [Rabenseifner algorithm].

(3.8)

Note that the performance models for Rabenseifner’s all-to-one reduce and
all-reduce are identical because the gather operation used for the all-to-one
reduce has the same communication requirement as the all-to-all broadcast
used in the all-reduce.

3.3 One-Sided Communication Operations

In one-sided communication, one process controls the exchange of data with an-
other process, and data exchange does not require cooperation of the sending
and receiving processes. One-sided communication can be implemented via
remote direct memory access, which enables a process to access (read from or
write to) the memory of another process without explicit participation from
the process whose memory is accessed.

One-sided communication, like non-blocking point-to-point message-
passing, is asynchronous, but one-sided communication offers the potential
for improved parallel efficiency for certain types of applications. Consider,
for instance, a distributed data parallel program in which processes need to
access data on other processes frequently, but in a nonpredictable way. In
this case, each process will be engaged in computation, and, when necessary,
request data from another process. At the same time, however, every process
must be able to process data requests from other processes, which may arrive
at any given time. A communication scheme for this type of situation can be
implemented using non-blocking send and receive operations, but some idle
time will invariably result because processes actively engaged in computation
are not available for taking care of incoming requests for data except at pre-
determined points in their computation. By using one-sided communication,
however, a process can fetch the data it needs from another process without
the latter process having to cooperate in the exchange, thus eliminating the
wait for the serving process to respond.

Various libraries providing differing levels of support for one-sided com-
munication operations are currently available for parallel application devel-
opment. Notably, the Aggregate Remote Memory Copy Interface, ARMCI,
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library, which is widely used in quantum chemistry applications, provides
a variety of one-sided communication operations. 4 Support for one-sided
communication in MPI was specified in the MPI-2 standard.5 The one-sided
communication features in MPI-2 are subject to a somewhat complex set of
rules and restrictions, and while certain implementations of MPI-2 may pro-
vide the desired functionality, other, standard-compliant, implementations
might not provide acceptable performance, scalability, or functionality for
quantum chemistry applications. Programmers intending to write programs
that are portable to multiple MPI-2 implementations are advised to carefully
study the MPI-2 specification to ensure that it meets their requirements before
using the one-sided feature. A one-sided communication style can be also im-
plemented by means of threads; we will discuss the use of multiple threads
in chapter 4, and in sections 8.4 and 9.4 we will give examples of one-sided
communication schemes using multiple threads.

3.4 Further Reading

Algorithms and cost analyses for a number of collective communication oper-
ations have been discussed in some detail by Grama et al.6 A comprehensive
performance comparison of implementations of MPI on different network
interconnects (InfiniBand, Myrinet®, and Quadrics®), including both micro-
level benchmarks (determination of latency and bandwidth) and application-
level benchmarks, has been carried out by Liu et al. 7 A discussion of the
optimization of collective communication in MPICH, including performance
analyses of many collective operations, has been given by Thakur et al.2
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4
Multi-Threading

In the previous chapter we discussed the use of message-passing for introduc-
ing parallelism across nodes in a distributed memory parallel computer. Each
node in a distributed memory computer has its own separate memory that can
be accessed by the other nodes by means of message-passing. Within a given
node, however, the memory is typically directly available to all of the proces-
sors on the node, and there are two principal ways to introduce parallelism:
the program can execute as separate processes that each have their own inde-
pendent virtual memory and share data via message-passing; alternatively,
multiple threads can be used within a process. In this chapter we will discuss
how to parallelize execution of a program by using multiple threads. We will
outline some of the advantages and potential pitfalls of using multi-threading,
compare the multi-threading and message-passing approaches, and discuss
hybrid programming, which uses both multi-threading and message-passing.
In Appendices B and C, the use of multi-threading will be illustrated using
two different approaches, namely Pthreads and OpenMPTM.

As discussed in section 2.3, a process is an abstraction within a node that
provides a virtual memory separate from that of other processes. By default, a
process has a single execution context, that is, a single stream of instructions
is executed. Some operating systems provide support for multiple execu-
tion contexts within a single process, and these execution contexts are called
threads. The threads can execute concurrently on different processors, or, if
not enough processors are available, the operating system can serialize them
onto the available processors. The relationship between processes, threads,
and processors is illustrated in Figure 4.1. Threads are typically used in a
fork-join∗ model of computing where an initial, or main, thread is started
for the process, additional threads are forked from the main thread, and,
after some computation, the main thread joins with the forked threads until
there is again only a single thread. The threads corresponding to a given pro-
cess share resources such as heap memory (that is, memory obtained by the

∗ This is different from the fork system call in UNIX, which produces a new process providing
a new execution context in a new virtual address space.
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FIGURE 4.1
The relationship between processes, threads, and processors within a node. Each process has its
own memory space shared among one or more threads. The threads are mapped to processors
by the operating system.

C language malloc function or the C++ new operator) and file descriptors,
but each thread also stores some data unique to that particular thread; for ex-
ample, the address of the instruction currently being executed, the processor
registers, and a stack storing temporary data generated by function calls are
all specific to a given thread. It is also possible for threads to have private
memory and for processes to share memory; however, for our purposes, the
simplified picture presented above will suffice.

The sharing of resources between threads in the same process is both
the strength and weakness of using multiple threads. Because it is trivial for
multiple threads to access the shared data, data need not be communicated
and replicated as it might if two processes required the same data. Thus,
using multiple threads usually requires less memory than using multiple
processes on a node; additionally, as soon as one thread generates new data,
another thread can access that data at very low cost and without any data
transfer. A disadvantage of the data sharing, however, is the need for threads
to coordinate their activities whenever they modify memory to ensure that
memory is always in a consistent state. We will discuss this point in more
detail in sections 4.1 and 4.2.

The threads we have discussed so far are known as kernel threads. These
threads are provided by the operating system, which can schedule different
threads to run simultaneously on different processors. Another type of thread
is a user thread (or user-space thread), which is scheduled by the program itself.
There are two ways to perform this scheduling: an operating system timer can



P1: Binod

February 27, 2008 12:2 51644 51644˙C004

Multi-Threading 61

periodically interrupt the currently running user thread to let the program
switch to another user thread; alternatively, one may require that user threads
explicitly yield control, and the process can then switch execution to another
user thread only at these yield points. This latter approach makes switching
between threads very efficient, and the explicitly chosen yield points make it
easier to ensure thread-safety. A disadvantage, however, is that a user thread
with a long time period between yields can starve other threads of resources.
Neither method for user threading can take advantage of multiple processors
in a node. Because we are interested in using multi-threading for intra-node
parallelism, our discussions of multi-threading in this book will focus on
kernel threads.

4.1 Pitfalls of Multi-Threading

Because different threads in the same process share resources such as memory,
extra care must be taken to ensure that these resources are manipulated in the
desired way. When programming in a single-threaded environment, it can be
assumed that data is fixed until it is explicitly modified; in a multi-threaded
environment, however, data may change without the current thread actually
modifying it—a property that can make it difficult for programmers to adjust
to multi-threaded programming. Consider, for example, the program shown
in Figure 4.2, which creates two threads that each compute an integer value
and add that value into the same memory location, datum. If the two threads
execute their code serially, we achieve the expected result, but if both threads
are active concurrently, or their execution is interleaved on the same proces-
sor, then one of several outcomes can occur. Three of the possible outcomes,
each producing a different result, are shown in Table 4.1. In Case 1, Thread

Integer datum = 0

Create Thread 1 which computes:

Integer a = compute_a()

datum = datum + a

Create Thread 2 which computes:

Integer b = compute_b()

datum = datum + b

Wait for threads to complete

FIGURE 4.2
Pseudocode illustrating a race condition in a multi-threaded program. Two threads are created,
each reading and modifying a datum at the same memory location, datum.
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TABLE 4.1

Outcomes for three of the possible code paths that may arise due to the race
condition in Figure 4.2

Case 1 Case 2 Case 3

Thread 1 Thread 2 Thread 1 Thread 2 Thread 1 Thread 2
read datum read datum read datum
datum+=a read datum read datum
write datum datum+=a datum+=a

read datum datum+=b datum+=b
datum+=b write datum write datum
write datum write datum write datum

outcome: datum = a+b outcome: datum = b outcome: datum = a

1 finishes execution before Thread 2 starts, and by the time Thread 2 reads
datum, Thread 1 has completed its update to datum, and the expected result
is obtained. In Case 2, both threads first read a copy of datum, perhaps load-
ing its value into a register. Each thread then adds its result to this temporary
copy and writes out the result, with Thread 2 writing out datum last. In this
case, Thread 2 overwrites the contribution previously written out by Thread
1, and the result is incorrect. Case 3 is similar to Case 2, but when the datum
is written out by the two threads, the order of the writes is reversed, and the
datum written out lacks the contribution computed by Thread 2. The situa-
tion illustrated in Table 4.1 is called a race condition, and special precautions
must be taken to avoid such cases.

Let us briefly consider how one can avoid a race condition in a program
like the one shown in Figure 4.2. The race condition is caused by the need
for each thread to create a temporary copy of the datum to be able to add a
contribution to it. If the temporary copy were in a processor cache support-
ing cache-coherency, this would not present a problem because the node’s
cache-coherency protocol would ensure consistency across all threads. In our
example, however, there is a period of time while the datum is being processed
during which the cache-coherency mechanism cannot prevent simultaneous
use of the datum by another thread because the datum is kept in a register.
Regions of a program that can be safely executed by only one thread at a time
are known as critical sections. The programmer must specifically identify crit-
ical sections and ensure that they are correctly handled. One way to handle a
critical section is to acquire a mutual exclusion lock, or mutex, that permits only
one thread to execute a given region of code at a time. Exactly how this is done
depends on the particular multi-threading implementation used, and it will
be illustrated for Pthreads in Appendix B and for OpenMP in Appendix C.

What would be the consequences of overlooking the critical section where
datum is accumulated in the example from Figure 4.2? If compute_a were
a function that usually ran faster than compute_b, the outcome, in most
cases, would be that of Case 1 of Table 4.1, which is the correct answer. Thus,
a problem of this type could go undetected, even though the program is
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Create Mutex A

Create Mutex B

Create Thread 1, which executes:

Lock mutex A

Lock mutex B

Process resources protected by A and B

Unlock mutex B

Unlock mutex A

Create Thread 2, which executes:

Lock mutex B

Lock mutex A

Process resources protected by A and B

Unlock mutex A

Unlock mutex B

Wait for threads to complete

FIGURE 4.3
An example of a flawed locking protocol that can result in deadlock.

non-deterministic and sometimes will produce the wrong answer. Conse-
quently, it can be very difficult to test and debug multi-threaded code. A
combination of good program design and tools for detecting unprotected
critical sections are essential components of multi-threaded programming.

Another hazard that must be dealt with when programming for multiple
threads is the possibility of deadlocks. Deadlocks are situations where one or
more threads try to acquire a lock on an already locked mutex that will never
be unlocked due to an error in the programmer’s use of mutexes. An example
of a potential deadlock is shown in Figure 4.3. Here, two mutexes are created,
A and B, each protecting some shared resources that are unspecified in this
example. Two threads are then created, Thread 1 and Thread 2, both requiring
access to the resources protected by mutexes A and B. Thread 1 first acquires a
lock on mutex A and then B. Thread 2 reverses this order, first locking mutex
B and then A. Unfortunately, it is possible for Thread 1 to lock A and Thread
2 to lock B before Thread 1 is able to lock B. In this case, neither Thread 1 nor
Thread 2 can proceed, and the program will deadlock. A problem like this
can be avoided by ensuring that all threads that lock multiple mutexes use a
consistent locking order.

Deadlock can also result from using a mutex in a recursive routine. Con-
sider, for instance, a routine that acquires a lock on a mutex and then calls
itself without unlocking the mutex. If the routine then attempts to lock the
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mutex again, the thread will typically deadlock because the mutex is already
locked. This will not happen, however, if a special mutex explicitly support-
ing recursion is used; in this case, a given thread can hold more than one lock
on a given mutex. Note that recursive mutexes usually have more overhead
than the nonrecursive variety.

4.2 Thread-Safety

The concept of thread-safety refers to the use of various programming tech-
niques for creating code that works properly in a multi-threaded environment.
A thread-safe function will act correctly when it is executed concurrently by
multiple threads. Related is the concept of a reentrant function, which depends
only on its arguments and uses only temporary values allocated on the stack
as well as the results of calls to other reentrant functions. Reentrant func-
tions are also thread-safe (although it is possible to use a reentrant function
in an unsafe way if it modifies data passed by reference, and the programmer
passes the same data reference to the reentrant function from multiple simul-
taneously executing threads). Many of the C library calls keep data in global
memory, and, thus, are not reentrant. Neither are they thread-safe because
they do not obtain a mutual exclusion lock to protect their global data. The
drand48pseudo-random number generator is an example of a nonreentrant,
nonthread-safe function, because it produces its result by reading and modify-
ing global data without obtaining a mutual exclusion lock. The C library pro-
vides reentrant versions of such routines. They are identified by the _r suffix
in their function name and have a different signature requiring that all needed
data is passed as an argument. In the drand48 case, the drand48_r func-
tion takes two arguments: a pointer to data of type struct drand48_data,
which contains the needed state information, and a pointer to double in
which the result is placed. Each thread calling drand48_r must provide its
own storage for each of these arguments to use the function in a thread-safe
fashion.

Many of the techniques for writing thread-safe code are well aligned with
what is generally considered good programming practice. In the discussion of
the pitfalls of multi-threaded programming in the previous section we briefly
discussed how to avoid race conditions and deadlocks, and below we list a
few general guidelines to help ensure the thread-safety of code:

• Make functions reentrant when possible.
• Use caution when sharing data that could be modified:

◦ Avoid global and static data.
◦ When possible, avoid modifying data to which multiple threads

have pointers.
• Use mutual-exclusion locks:

◦ When modifying shared data.
◦ When calling functions that are not thread-safe.
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• Care must be taken to avoid deadlocks:
◦ A recursive function should only acquire a mutex once, or a

mutex supporting recursion must be used.
◦ Pay attention to locking/unlocking order when using multiple

mutexes.

4.3 Comparison of Multi-Threading and Message-Passing

Let us compare the message-passing and multi-threading approaches by con-
sidering a parallel algorithm for performing a matrix–vector multiplication,
c = Ab. In this example, A is an n × n matrix, the number of processes is des-
ignated nproc, and we will assume that n is a multiple of nproc. The message-
passing version of this algorithm is implemented using the Message-Passing
Interface (MPI) and shown in Figure 4.4.† Parallelism is achieved by using
concurrently executing processes, each with their own address space. Each
process has a copy of the entire b vector, while the A matrix is distributed
by rows among all the processes; process i holds the n/nproc rows numbered
from i × n/nproc to (i + 1)n/nproc − 1, and the portions specific to each process
are stored in Alocal. Every process uses the locally stored part of A to compute
a portion of the c vector, clocal = Alocalb. To construct the complete c vector,
an MPI_Allgatherv call is employed to broadcast each process’s clocal into
a complete c vector that is the same on all processes.

A multi-threaded analogue of this program, shown in Figure 4.5, is im-
plemented using Pthreads.‡ When the mxv routine is entered, there is only a
single thread of control, the master thread. This thread sets up a small amount
of context information, work, that will be used by each worker thread and
contains references to the data, the size of the problem, and the work that each
thread is to execute. Threads are started by calling pthread_create, pass-
ing in as arguments the work context and a routine, run_thread, that uses
the context to perform work. Before proceeding, the master thread awaits
the completion of the work by calling pthread_join for each thread. At
this point in the program, the c vector is complete, and the computation can
proceed. No communication is required in this algorithm because the threads
share a single address space, making all the data immediately available to all
threads.

Another multi-threaded implementation of the matrix–vector multiplica-
tion, using OpenMP,§ is shown in Figure 4.6. This implementation is much

† Message-passing and MPI are discussed in chapter 3 and Appendix A, respectively.
Sections 5.3.2 and 6.4.1 present performance analyses of this algorithm.
‡ Pthreads is discussed in Appendix B.
§ OpenMP is discussed in Appendix C.
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void mxv(double *c, double **A_local, double *b, int n,
int local_n) {

double *c_local;
int *n_on_proc = (int*)malloc(n*sizeof(int));
int *offset_on_proc = (int*)malloc(n*sizeof(int));
int i, nproc;
MPI_Comm_size(MPI_COMM_WORLD,&nproc);
for (i=0; i<nproc; i++) {

n_on_proc[i] = local_n;
offset_on_proc[i] = i*local_n;

}
c_local = (double*)malloc(sizeof(double)*local_n);
for (i=0; i<local_n; i++)

c_local[i] = dot(A_local[i],b,n);
MPI_Allgatherv (c_local, local_n, MPI_DOUBLE,

c, n_on_proc, offset_on_proc,
MPI_DOUBLE, MPI_COMM_WORLD);

free(c_local);
}

FIGURE 4.4
A routine to compute the matrix vector product c = Ab using message-passing. The input data
b is replicated, and A is distributed with local rows in A_local. The output data c is replicated
among all of the processes. The number of processes is designated nproc, and local_n is the
number of elements of the c vector that will be computed locally.

simpler than the Pthreads version from Figure 4.5, and the OpenMP version
differs from the scalar code only by the addition of the OpenMP pragma.

4.4 Hybrid Programming

While multi-threading provides parallelism within a single shared memory
node, algorithms running on multiple nodes of large-scale parallel computers
must use message-passing to explicitly move data between nodes. A hybrid
programming technique can be used to utilize multi-threading for single-
node parallelism in combination with message-passing for parallelization
across many nodes. This hybrid approach entails all the complexity of both
multi-threading and message-passing as well as some additional concerns
that will be outlined next. The advantages of the hybrid approach relative
to pure message-passing is the fast synchronization within a node, the data
sharing between threads, and an overall smaller memory requirement. These
features permit a more fine-grained intra-node parallelism than what could
be used with separate processes in a message-passing scheme and will make
it easier, or possible, to utilize extremely large computers.
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typedef struct {
double *c, *b, **A;
int begin, end, n;

} work_t;
void *run_thread(void *arg) {

work_t *work = (work_t*)arg;
int i;
for (i=work->begin; i<work->end; i++)

work->c[i] = dot(work->A[i],work->b,work->n);
return 0;

}
void mxv(double *c, double **A, double *b, int n,

int nthread) {
int i;
work_t *work = malloc(sizeof(work_t)*nthread);
pthread_t *thread = malloc(sizeof(pthread_t)*nthread);
for (i=0; i<nthread; i++) {

work[i].c = c;
work[i].b = b;
work[i].A = A;
work[i].n = n;
work[i].begin = (n/nthread)*i;
work[i].end = work[i].begin + n/nthread;
pthread_create(&thread[i],NULL,run_thread,&work[i]);
}

for (i=0; i<nthread; i++) {
pthread_join(thread[i],0);

}
free(work);
free(thread);

}

FIGURE 4.5
A routine to compute the matrix vector product c = Ab using Pthreads.

void mxv(double *c, double **A, double *b, int n) {
int i;

#pragma omp parallel for
for (i=0; i<n; i++)

c[i] = dot(A[i],b,n);
}

FIGURE 4.6
A routine to compute the matrix vector product c = Ab using OpenMP.
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TABLE 4.2

The four levels of multi-threading support defined by the MPI standard
Single The application may use only a single thread.
Funneled All MPI calls must be made from the initial thread of a process.
Serialized Only a single thread may call an MPI routine at a time. The programmer must

ensure that this condition is met.
Multiple Fully thread-safe. Multiple threads may concurrently be involved in MPI calls.

As discussed earlier in this chapter, thread-safety of functions is a key issue
when using multi-threading, and in hybrid programming models, thread-
safety of message-passing libraries is an important concern as well. The
Message-Passing Interface (MPI) defines four different levels of support for
multi-threading, shown in Table 4.2. The programmer can specify the desired
level of multi-threading support by using MPI_Init_thread to initialize
MPI. This routine is given a flag that specifies the desired level of multi-
threading support and an output variable in which will be placed the ac-
tual level of multi-threading support that MPI will provide. If the MPI_Init
routine is used to initialize MPI, then the level of threading support is im-
plementation defined. MPI implementations are not required to support all
of the multi-threading levels, and those that are supported by a given MPI
implementation may not perform well. For example, some MPI implemen-
tations that utilize hardware support for remote direct memory access detect
incoming messages by polling; polling entails repeatedly reading a specific
memory location until its value changes, and using this technique for detect-
ing incoming messages yields very high performance for micro-benchmarks.
However, if we write an application that requires a thread to repeatedly use
an MPI_Read call to wait for infrequently arriving data, then, if a polling MPI
implementation is used, the thread in question will be continuously occu-
pied by polling; hence, the processor, on which this thread is running, will
not otherwise be available for computation. This could lead to a significant
performance loss, although in a node using manycore technology, the effec-
tive loss of one processor for computation might be acceptable. Alternatively,
an MPI implementation that employs interrupts to signal the arrival of new
messages could be used.

In Figure 4.7 we show a hybrid matrix–vector multiplication algorithm
obtained by combining the MPI parallelization shown in Figure 4.4 with the
OpenMP parallelization shown in Figure 4.6. There are two levels of paral-
lelism: using MPI, nproc processes are first started up, one on each node,
and each of these processes then spawns a number of threads by means of
the OpenMP pragma. This implementation required addition of just a single
line of code to the MPI version, and the resulting program will work with any
MPI that provides the “funneled” level of multi-threading support.

Figure 4.8 shows a more complex hybrid programming example. It depicts
the threads in the second-order Møller-Plesset perturbation theory algorithm
P2 discussed in section 9.4. This algorithm sets up both computation threads
and communication threads on each node. The computation threads perform
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void mxv(double *c, double **A_local, double *b, int n,
int local_n) {

double *c_local;
int *n_on_proc = (int*)malloc(n*sizeof(int));
int *offset_on_proc = (int*)malloc(n*sizeof(int));
int i, nproc;
MPI_Comm_size(MPI_COMM_WORLD,&nproc);
for (i=0; i<nproc; i++) {

n_on_proc[i] = local_n;
offset_on_proc[i] = i*local_n;

}
c_local = (double*)malloc(sizeof(double)*local_n);

#pragma omp parallel for
for (i=0; i<local_n; i++)

c_local[i] = dot(A_local[i],b,n);
MPI_Allgatherv (c_local, local_n, MPI_DOUBLE,

c, n_on_proc, offset_on_proc,
MPI_DOUBLE, MPI_COMM_WORLD);

free(c_local);
}

FIGURE 4.7
A routine to compute the matrix vector product c = Ab using a hybrid multi-threading and
message-passing technique. The algorithm shown combines the MPI and OpenMP paralleliza-
tions illustrated in Figures 4.4 and 4.6. Since all MPI calls are from the main thread, MPI need
only support the “funneled” level of multi-threading.

the bulk of the floating point intensive work, computing the four-index atomic
orbital integrals and transforming them from the atomic to the molecular or-
bital basis. After two quarter transformations are performed, a redistribution
of the data is required. The redistribution is accomplished by the compute
thread’s send call, and the recipient of this send is a communication thread
on a remote node, which receives the data and sums the contribution into the
appropriate memory location. This algorithm requires the “multiple” level of
multi-threading support in MPI because multiple computation threads may
be sending data simultaneously and also because the communication threads
can receive data while the computation threads are sending and other com-
munication threads are receiving.

4.5 Further Reading

Appendix B briefly discusses programming with Pthreads, and the text by
Lewis and Berg1 is a good source for more information on multi-threaded pro-
gramming with Pthreads. Appendix C gives a brief introduction to
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While R, S pairs remain 

While contributions remain 

  Receive (iN|jS) 

  Accumulate (iN|jS) 

End while 

Computation Threads 

Communication Threads 

  Get next RS pair  

  Loop over M, N  

    Compute (MN|RS) 

(iN|RS) = ΣMCMi(MN|RS)

  End M, N loop   

  Loop over i, j  
(iN|jS) = ΣRCRj(iN|RS)

    Redistribute by ij: 
    Send (iN|jS) 

  End i, j loop  

End while 

(ia|jS) = ΣNCNa(iN|jS) 

(ia|jb) = ΣSCSb(ia|jS) 

While R, S pairs remain 

While R, S pairs remain 

While R, S pairs remain 

FIGURE 4.8
Computation and communication threads in a parallel MP2 algorithm (the algorithm shown is
the P2 algorithm discussed in section 9.4). Steps involving communication are shown in boldface.

OpenMP, and the OpenMP standard2 includes complete details for program-
ming with OpenMP.
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5
Parallel Performance Evaluation

While the performance of a scalar algorithm is usually measured in terms of
execution time and resource requirements, such as memory and disk usage,
additional performance metrics are needed for parallel algorithms. Several
factors, including communication overhead, degree of parallelism, and load
imbalance, must be incorporated into parallel performance measures to be
able to characterize the performance of a parallel algorithm over a wide range
of parallel computers and process∗ counts. The development of a performance
model capable of making realistic predictions of the parallel performance and
exposing potential shortcomings of the algorithms should be an integral part
of parallel program development.

In this chapter we will consider issues pertaining to parallel performance
modeling. We first introduce some network performance characteristics for
parallel computers that must be considered when modeling parallel perfor-
mance. We then present several performance measures for parallel programs,
and we discuss how to develop a performance model for a parallel algorithm.
Finally, we will discuss how to evaluate performance data and illustrate how
reported performance data can be potentially misleading.

5.1 Network Performance Characteristics

The network performance characteristics for a parallel computer may greatly
influence the performance that can be obtained with a parallel application.
The latency and bandwidth are among the most important performance char-
acteristics because their values determine the communication overhead for
a parallel program. Let us consider how to determine these parameters and
how to use them in performance modeling. To model the communication time
required for a parallel program, one first needs a model for the time required
to send a message between two processes. For most purposes, this time can

∗ We use the term “process” to refer to an operating system process along with one or more
dedicated processors.

71
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be modeled using an idealized machine model, which assumes that the time
depends on the length of the message but is independent of both the relative
locations of the two processes and other concurrent network traffic. Using the
idealized machine model, the total time required to send a message between
two processes can be expressed as follows

tsend = α + lβ (5.1)

where α represents the latency, β is the inverse bandwidth, and l denotes the
message length. When a process posts a sending operation to send a message
to another process, a certain amount of time is required to prepare the message
to be sent and to propagate the first byte of the message through the network;
this lag is the latency, or startup time, and it represents the time that elapses
before any data is received.† Using the idealized machine model, the time
required to complete the transmission, in addition to the startup time, is
proportional to the message length. The proportionality constant is β, the
inverse of the bandwidth. The bandwidth, β−1, is the transfer rate and is
typically measured in Mbytes/s.

Another network performance characteristic, related to the latency and
bandwidth, is the effective bandwidth, which is defined as the message length
divided by the total send time

Effective bandwidth = l
tsend

. (5.2)

The effective bandwidth is a measure for the overall rate of transfer for a mes-
sage, including the startup time, and it increases with the message size until
reaching an asymptotic value, which equals the bandwidth β−1. In Figure 5.1,
the time required to send a message between two processes is plotted as a
function of the message size; the resulting effective bandwidth is shown as
well. The values for α and β can easily be obtained from the plots: as the
message size approaches zero, the communication time approaches α; as the
message size grows large, the effective bandwidth asymptotically approaches
β−1. In the figure, we also show the communication time predicted by the
idealized machine model (Eq. 5.1), demonstrating that this model accurately
predicts the measured communication time over the entire range of message
sizes included. The values of α and β can also readily be obtained from a
linear plot of the communication time versus the message size: this plot will
be a straight line whose slope and intercept with the y-axis represent β and
α, respectively.

When evaluating parallel network performance, it is important to ascer-
tain whether reported bandwidth data refer to unidirectional or bidirectional
bandwidths. Most communication networks provide bidirectional commu-
nication channels, which are able to transmit messages in both directions

† Note that the term “latency” is sometimes used differently in the parallel computing literature;
in some texts the latency represents the time required to send a message (i.e., tsend).
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FIGURE 5.1
Log–log plot of the time required to send a message between two processes as a function of
message size; the resulting effective bandwidth is shown as well. The dashed line represents the
linear function α + l × β, where l is the message size in bytes, and the values of α and β are
29 μs and (590 MB/s)−1, respectively. Data were obtained with the program shown in Figure 5.2
running on a Linux cluster12 using an InfiniBand interconnect employing IPoIB.

simultaneously. A bandwidth measured by sending data in only one direc-
tion at a time is referred to as a unidirectional bandwidth, whereas a bidirec-
tional bandwidth is obtained by measuring transfer rates while simultane-
ously sending data in both directions on a communication channel. When
bidirectional bandwidths are reported, the total amount of data going in both
directions is counted, so bidirectional bandwidths are usually nearly twice
as large as unidirectional bandwidths (in practice, there is normally a perfor-
mance drop when data is transmitted in both directions at the same time).
Performance models based on the send time for a single message given in
Eq. 5.1 are formulated in terms of an inverse bandwidth, β, that pertains to
the rate of data transfer in one direction; these models, therefore, should use
a β value based on the unidirectional bandwidth, or, alternatively, one-half
times the bidirectional bandwidth.

The latency and bandwidth are machine-specific parameters, and they
depend on both the message-passing hardware and software employed. Ex-
amples of values for these parameters, which may differ widely for different
communication networks, are listed in Table 5.1. As mentioned (in Figure 5.1),
the latency and bandwidth can be determined for a given parallel computer
by measuring the time required for sending messages between processes as
a function of the message size. In Figure 5.2 we show a program that can
be used for this purpose, and this program was used to generate the data
presented in Figure 5.1. Programs for determining α and β are also available
on the World Wide Web. 1 The program shown in Figure 5.2 employs MPI
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TABLE 5.1

Latency α, inverse bandwidth β, and bandwidth β−1 for Gigabit
Ethernet (GigE) and InfiniBand (using IPoIB) interconnects on a
Linux cluster.12 Data were determined using the program shown in
Figure 5.2, and the reported bandwidths are unidirectional

α β β−1

(μs) (ns/byte) (Mbytes/s)

GigE 143 8.5 118
IPoIB 29 1.7 590

blocking point-to-point send and receive operations, and it can be used on
any parallel computer on which MPI is available. The program calls the func-
tion pingpong, which sends data back and forth between two processes, and
measures the corresponding communication time as a function of the mes-
sage size. To ensure that the measured communication times are sufficiently
long to be meaningful (that is, much greater than the resolution of the sys-
tem clock), timings are recorded for a large number of repeated calls of the
pingpong function. The times thus measured are divided by the number of
repetitions and by a factor of two to obtain the time required to send a mes-
sage between the two processes. Timings are printed out for each message
size, and the measured values of α and β are printed out as well. Note that
this program measures the unidirectional bandwidth: although data is sent
back and forth between two processes, data transfer does not take place in
both directions at the same time.

5.2 Performance Measures for Parallel Programs

5.2.1 Speedup and Efficiency

One of the most widely used performance measures for parallel programs is
the speedup, S( p), which is defined as

S( p) = t(1)
t( p)

(5.3)

where t(1) and t( p) denote the execution time when running on a single
process and on p processes, respectively. The ideal speedup, also referred to as
linear speedup, generally equals the number of processes employed, S( p) = p.
Another performance measure, closely related to the speedup, is the efficiency,
E( p), defined as

E( p) = S( p)
p

. (5.4)
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#include <mpi.h>
#include <stdio.h>

static inline void pingpong(int me, char *a, int na) {
MPI_Status status;
if (me == 0) {

MPI_Send(a, na, MPI_CHAR, 1, 0, MPI_COMM_WORLD);
MPI_Recv(a, na, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &status);

}
else if (me == 1) {

MPI_Recv(a, na, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &status);
MPI_Send(a, na, MPI_CHAR, 0, 0, MPI_COMM_WORLD);

}
}
int main(int argc, char **argv) {

const int maxdata = 1<<24;
int i, j, me;
double t, alpha, beta;
void *a = (void*)malloc(maxdata);
int nrepeat=100000;
memset(a,0,maxdata);
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &me);
for (i=0; i<=maxdata; i=(i?i*2:1)) {

double t1, t0;
pingpong(me,a,i);
t0 = MPI_Wtime();
for (j=0; j<nrepeat; j++) pingpong(me,a,i);
t1 = MPI_Wtime();
if (me == 0) {

t = 0.5*(t1-t0)/nrepeat;
printf("%10d %15.9f %15.3f\n", i, t, i/t);
if (i==0) alpha = t;
if (i==maxdata) beta = (t-alpha)/i;

}
if (i>1000 && nrepeat>10) nrepeat /= 2;

}
if (me == 0)

printf("alpha = %12.9f sec\n1/beta = %12.3f bytes/sec\n",
alpha, 1/beta);

MPI_Finalize();
return 0;

}

FIGURE 5.2
A program to estimate latency, α, and inverse bandwidth (unidirectional), β, for a parallel
computer. The program is written in the C programming language and employs MPI blocking
send and receive operations. For each message size i, the program calls the function pingpong,
which sends a message back and forth between two processes, and measures the time required
for this message transfer. The pingpong function is called nrepeat times for each message size
to ensure that the measured time is much greater than the resolution of the system clock.
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The efficiency measures how well the computer is utilized by a parallel appli-
cation, and the efficiency is usually expressed as a percentage, with an ideal
efficiency corresponding to E( p) = 100%.

In general, the highest speedup that can by obtained by a parallel al-
gorithm is S( p) = p. This upper bound on the speedup applies when the
algorithm requires the same total number of operations when using a single
process and p processes, and the computers used for the single-process and
p-process timings match in all aggregate properties. Thus, the total amount
of memory and disk space available as well as the bandwidth for accessing
these resources should be the same for the single-process and the p-process
computations. If these conditions are not met, it is possible to get superlinear
speedups, S( p) > p. In quantum chemistry, for instance, integral-direct algo-
rithms are an important class of algorithms for which superlinear speedups
are commonly encountered. These algorithms will store a number of the in-
tegrals (depending on the available memory) and recompute the rest of the
integrals as they are needed; when running on a distributed memory com-
puter where the aggregate memory increases with the number of processes,
these algorithms can take advantage of the increase in available memory
to reduce the number of integrals that must be recomputed, effectively re-
ducing the total work and making superlinear speedups possible. We will
illustrate examples of such superlinear speedups in section 5.4. Whereas in-
tegral direct algorithms by design take advantage of the increased memory
to achieve superlinear speedups, other classes of algorithms may produce
superlinear speedups as well. For example, algorithms that use distributed
data will be able to fit a larger fraction of the data in cache as the num-
ber of processes increases; the total amount of data that must be fetched
from slower memory will therefore decrease, possibly leading to superlinear
speedups.

When considering the speedup for a given parallel algorithm, t( p) (with
p > 1) always represents the execution time for that particular algorithm,
although t(1) may sometimes represent a timing for a different algorithm.
Thus, t(1) can be the single-process execution time for the fastest existing
scalar algorithm, and the resulting speedup is then designated the absolute
speedup. Alternatively, t(1) may represent the execution time of the current
parallel algorithm when running on one process. In this case, the computed
speedup will be a relative speedup, which measures how well the algorithm
has been parallelized but not does provide any information about the ab-
solute performance gain achieved by the parallelization. The efficiency, like
the speedup, may be relative or absolute depending on the definition of t(1).
Throughout this book, we will use the terms speedup and efficiency without
specifying whether the quantity in question is relative or absolute, unless this
distinction is important. In computational science applications, the speedups
and efficiencies considered are often relative. Absolute speedups and efficien-
cies are not easily obtained for quantum chemistry algorithms, for instance,
because it may be difficult to determine which algorithm is the best exist-
ing scalar algorithm. The fastest scalar algorithm may not be the same for
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different test cases or for different computers, or it may perhaps be part of
a commercial package that is not available to the programmer. Additionally,
speedup curves are usually employed to assess how well an algorithm has
been parallelized, and for this purpose relative speedups tend to be more
informative than absolute speedups.

In practice, ideal speedups are difficult to achieve, especially if the number
of processes is large. One factor that reduces the speedup is the existence in
an algorithm of inherently sequential parts of code that cannot benefit from
a parallel implementation. An upper bound on the speedup was formulated
by Amdahl,2 who expressed the maximum attainable speedup for a parallel
algorithm in terms of the serial fraction, f , of the algorithm

S( p) ≤ 1
f + (1 − f )/p

≤ 1
f
. (5.5)

In this relation, known as Amdahl’s law, f represents the fraction of the single-
process execution time that is consumed by the parts of the algorithm that
have not been parallelized, and f is defined as

f = ts
ts + tp

(5.6)

where ts and tp denote the single-process execution time for the serial parts
and the parallel parts of the program, respectively. It follows from Amdahl’s
law that even a small fraction of serial code can seriously reduce the maximum
obtainable speedup: for example, if f = 1/10, the speedup cannot exceed 10
no matter how many processes are employed.

The speedup limit of 1/ f given by Amdahl’s law is derived using the
assumption that the fraction of serial code is independent of the problem
size. It has been argued by Gustafson, 3 however, that the serial fraction is
likely to decrease when the problem size increases, and that the definition of
the speedup should reflect this. Gustafson expressed the execution time on
p processes and on a single process as follows

tG( p) = ts + tp( p) (5.7)

tG(1) = ts + p × tp( p) (5.8)

where tp( p) designates the execution time on p processes of the parallel part
of the algorithm. This leads to the following so-called scaled speedup, here
designated SG ,

SG( p) = tG(1)
tG( p)

= ts + p × tp( p)
ts + tp( p)

. (5.9)

Note that the tp used by Gustafson, as defined by Eq. 5.7, is different from
the tp employed in Eq. 5.6. Defining the fraction of serial code in terms of the
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execution time on p processes

fG = ts
ts + tp( p)

(5.10)

the following expression, known as Gustafson’s law, gives the resulting
speedup

SG( p) = fG + p × (1 − fG) = p + (1 − p) × fG . (5.11)

By using a definition of fG that depends on p, Gustafson’s law predicts a
speedup without a fixed upper bound. Note, however, that the speedup SG( p)
is not a linear function of p, as it may appear from Eq. 5.11, because fG also
depends on p.

It is important to realize that Amdahl’s and Gustafson’s laws are not con-
tradictory and that different expressions for the speedup are obtained simply
because different definitions are employed for the serial fraction of code, f and
fG , respectively. We have included a discussion of Amdahl’s and Gustafson’s
laws because they are frequently invoked in the literature in discussions of
parallel computing; these laws provide simple upper bounds to attainable
parallel speedups, but they are generally of limited value for parallel perfor-
mance analysis. The speedup limits given by Amdahl’s and Gustafson’s laws
are obtained by assuming that a fraction of the code is inherently sequential,
and that the remaining part of the code can be parallelized in a way that yields
ideal speedups. In programs that have been parallelized from the outset,
however, the sequential fraction of code (whether computed from Amdahl’s
or Gustafson’s definition) can often be made so small that its effect on the
speedup is essentially negligible. In practice, the major obstacles to achieving
linear speedups are factors such as communication overhead and load imbal-
ance, and these factors must be taken into account when modeling parallel
performance.

In Figure 5.3 we show a variety of speedup curves illustrating some
parallel performance characteristics often encountered in practice. The ideal
speedup curve (a) is a straight line with unit slope (for a program with con-
stant efficiency, the speedup curve will always be a straight line). The speedup
curve (b) represents a case with superlinear speedups but degrading perfor-
mance due to factors such as communication overhead or load imbalance.
This curve initially rises above the ideal speedup curve but drops below the
ideal curve as the number of processes increases. The speedup curves (c) and
(d) both represent a case in which the computation time scales ideally, but the
communication overhead causes degrading performance. In (c), the commu-
nication overhead is logarithmic, and relatively high speedups are obtained
even for large process counts, whereas in (d), the communication overhead in-
creases linearly with the number of processes, resulting in rapid performance
degradation and a speedup curve that turns downward for larger process
counts. Finally, the speedup curve (e) illustrates speedups obtained for an
algorithm that has a small serial fraction (0.025) but is otherwise parallelized
with no load imbalance or communication overhead.
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FIGURE 5.3
Speedup curves illustrating commonly encountered performance patterns. (a) ideal;
(b) superlinear speedup with performance degradation due to, e.g., communication overhead or
load imbalance; (c) logarithmic communication overhead; (d) linear communication overhead;
(e) incompletely parallelized program (serial fraction of 0.025). See text for details.

5.2.2 Scalability

A parallel algorithm is said to be scalable if its parallel efficiency can be main-
tained as the number of processes increases. Scalability may be classified as ei-
ther weak or strong, depending on how the efficiency varies with the number
of processes and the problem size. An algorithm is weakly scalable if the effi-
ciency does not decrease as the number of processes grows, provided that the
problem size increases as well. Thus, for process counts p1 and p2 and problem
sizes n1 and n2, with p2 > p1 and n2 > n1, weak scalability implies that

E( p2, n2)>∼E( p1, n1) (5.12)

where E( p, n) is the efficiency (see Eq. 5.4), here expressed as a function of
both the number of processes and the problem size. If the efficiency meets
the more rigorous requirement of being roughly constant as the number of
processes increases for a fixed problem size, that is,

E( p2, n) ≈ E( p1, n) (5.13)

the algorithm is said to be strongly scalable. Expressed in terms of speedup,
strong scalability implies that the speedup of an algorithm increases roughly
linearly with the number of processes for a fixed problem size, and the
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speedup curve for a strongly scalable parallel algorithm should therefore
be close to a straight line. Strong scalability is difficult to achieve for a parallel
algorithm, and, at best, an algorithm may be strongly scalable for a limited
range of processes. Thus, if the problem size is kept constant, the efficiency
will eventually begin to decrease when the number of processes exceeds the
number of computational tasks to be distributed.

A more detailed analysis of the scalability of an algorithm that can reveal
the rate at which the problem size must grow to maintain a constant efficiency
requires an explicit functional form for E( p, n). We will show an example
of the derivation of an efficiency function in section 5.3.2. Additionally, it
is important to clearly define the problem size. In computational complexity
theory, the problem size is usually defined to be a measure for the size of the
input required for an algorithm.4 For example, the problem size for a matrix–
matrix multiplication involving matrices of dimensions m × m would be m2.
This definition for the problem size is also consistent with the one usually
employed in computational chemistry, where the problem size is defined as
the size of the molecule being studied, expressed, for example, in terms of the
number of atoms, electrons, or basis functions.

5.3 Performance Modeling

Having introduced various performance metrics, we are now ready to start
developing performance models for parallel programs. A performance model
for a parallel algorithm should be capable of predicting the execution time of
the algorithm running on a given parallel computer as a function of the prob-
lem size and the number of processes employed. From the execution time,
other performance measures, such as speedup and efficiency, can then be
computed. We emphasize that very accurate prediction of the execution time
is not a requirement for a performance model; indeed, for complex algorithms
involving disparate computational tasks and communication operations, this
would require undue effort. Rather, the performance model should simply
provide an estimate for the execution time that is sufficiently accurate to
capture the essential performance characteristics, such as scalability, commu-
nication bottlenecks, and degree of parallelism, that are required to assess the
parallel performance of the algorithm.

5.3.1 Modeling the Execution Time

The execution time for a parallel algorithm is a function of the number of pro-
cesses, p, and the problem size, n. Additionally, the execution time depends
parametrically on several machine-specific parameters that characterize the
communication network and the computation speed: the latency and the in-
verse of the bandwidth, α and β, respectively (both defined in section 5.1),
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and the floating point operation (flop) rate, γ , which is a measure for the time
needed to carry out one floating point operation.

The values for these machine-specific parameters can be somewhat depen-
dent on the application. For example, the flop rate can vary significantly de-
pending on the type of operations performed. The accuracy of a performance
model may be improved by using values for the machine-specific parame-
ters that are obtained for the type of application in question, and the use of
such empirical data can also simplify performance modeling. Thus, if specific,
well-defined types of operations are to be performed in a parallel program
(for instance, certain collective communication operations or specific compu-
tational tasks), simple test programs using these types of operations can be
written to provide the appropriate values for the pertinent performance pa-
rameters. We will show examples of the determination of application specific
values for α, β, and γ in section 5.3.2.

Let us develop an expression for the execution time for a parallel program,
assuming that computation is not overlapped with communication and that
no process is ever idle. Each process, then, will always be engaged in either
computation or communication, and the execution time can be expressed as
a sum of the computation and the communication times

t( p, n; α, β, γ ) = tcomp( p, n; γ ) + tcomm( p, n; α, β, γ ) (5.14)

where we use the notation t( p, n; α, β, γ ) to indicate that t is a function of p and
n and depends parametrically on α, β, and γ . To estimate the computational
time, we need to know the total number of floating point operations required.
We will assume that this flop count is independent of the number of processes,
and we will represent it by the function g(n). Assuming that the fraction f of
the work is inherently sequential, and that the parallelizable fraction, 1 − f ,
can be parallelized ideally, the computational time can be expressed as

tcomp( p, n; γ ) = g(n)
[

f + (1 − f )
p

]
γ. (5.15)

The communication time required by an algorithm is a function of the
number of messages sent and of the length of these messages. Using the
idealized machine model (Eq. 5.1), the total communication time can be esti-
mated as

tcomm( p, n; α, β, γ ) = m( p, n) × α + l( p, n) × β + h( p, n) × γ (5.16)

where m( p, n) is the number of messages sent by a process, l( p, n) repre-
sents the combined length of all these messages, and h( p, n) is the number
of floating point operations required in the communication steps (some com-
munication steps, such as the reduce operations discussed in section 3.2.3,
require floating point operations to be performed). In general, both the num-
ber of messages and the amount of data to be communicated and processed
depend on the number of processes as well as the problem size. If collective
communication operations are employed, modeling of the communication
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time requires knowledge of the specific implementation used for the oper-
ation of interest. Performance models have been developed for most of the
commonly used collective communication operations, and we have included
examples of these in section 3.2. The communication overhead for a parallel
program can sometimes be, at least partially, hidden by overlapping commu-
nication and computation. This, in effect, will reduce the values for α and
β entering Eq. 5.16. To achieve such masking of the communication over-
head, asynchronous message passing must be employed, and the commu-
nication scheme must be designed specifically to interleave communication
and computation. We will illustrate algorithms that overlap communication
and computation in sections 8.4 and 9.4.

The performance models we have discussed so far have assumed that
equal amounts of work will be done on all processes and have not taken
load imbalance into account. Load imbalance arises when different amounts
of work are assigned to different processes, and for applications involving
nonuniform computational tasks, load imbalance can be one of the major
factors contributing to lowering the parallel efficiency. We have assumed pre-
viously (Eq. 5.14) that a process is always engaged in either computation or
communication; when taking load imbalance into account, however, a pro-
cess may also be idle, waiting for other processes to finish tasks, and the total
execution time can be modeled as

t = ti
comp + ti

comm + ti
idle (5.17)

where the superscript i indicates timings for process Pi . The sum of ti
comp,

ti
comm, and ti

idle is the same for all processes, but the individual contribu-
tions vary across processes. Load imbalance is then measured as the dif-
ference between the total execution time and the average active time across
processes. Defining active time as ti

comp + ti
comm, the load imbalance can be

expressed as

Load imbalance = t −
∑p

i=1(ti
comp + ti

comm)

p
(5.18)

where t is the total execution time (Eq. 5.17), and p represents the number of
processes.

The presence of nonuniform computational tasks whose sizes are not
known in advance is often the cause of load imbalance, and quantitative
modeling of load imbalance can therefore be difficult to do. However, simu-
lations that involve distribution of nonuniform tasks can sometimes provide
empirical data that can be used to model load imbalance. In chapter 7 we will
illustrate the use of empirical data to model load imbalance in the computa-
tion of the two-electron integrals, which is a required step in many quantum
chemical methods. Parallel programs involving uniform computational tasks
will experience load imbalance whenever the number of tasks is not a multi-
ple of the number of processes. This kind of load imbalance is easier to include
in a performance model because the amount of work assigned to the process



P1: Binod

February 27, 2008 12:25 51644 51644˙C005

Parallel Performance Evaluation 83

/* Loop over i values to be processed locally */
For i = this_proc×n/p, i < (this_proc+1)×n/p, i = i + 1

ci = Aib (form the dot product of i’th row of A with b)
End for

All-to-all broadcast of c (put entire c vector on all processes)

FIGURE 5.4
Outline of a simple parallel algorithm to perform the matrix–vector multiplication Ab = c. A is
an n × n matrix distributed by rows, b and c are replicated vectors, p is the number of processes,
and this_proc is the process ID. A static work distribution scheme is used, and a single global
communication operation is required. Each process computes the elements ci of the c vector
corresponding to the locally stored rows of A, and an all-to-all broadcast operation puts a copy
of the entire c vector on all processes.

with the heaviest load can be predicted, and the corresponding execution
time can be used in the performance model.

5.3.2 Performance Model Example: Matrix-Vector Multiplication

To illustrate a performance model for a simple parallel program, consider the
parallel matrix–vector multiplication program outlined in Figure 5.4. The pro-
gram performs the multiplication of the matrix A with the vector b, producing
the product vector c; A is distributed by rows across processes, and b and c are
replicated. The multiplication is parallelized by letting each process compute
the product of the locally held rows of A with b. Every process computes its
part of the product as a series of vector–vector dot products, processing one
row of A at a time, each dot product yielding the corresponding element of
the vector c. When all processes have completed the multiplication step, a
global communication operation (an all-to-all broadcast) is performed to put
a copy of the entire c vector on all processes.

Let us develop a performance model for the parallel matrix–vector mul-
tiplication. We first note that if the dimensions of A are n × n, the maximum
number of processes that can be utilized in this parallel algorithm equals n.
The total number of floating point operations required is n2 (where we have
counted a combined multiply and add as a single operation), and provided
that the work is distributed evenly, which is a good approximation if n � p,
the computation time per process is

tcomp = n2

p
γ (5.19)

where γ is the floating point operation rate, and p is the number of pro-
cesses. The only communication step required is the all-to-all broadcast of c.
To perform this operation we will use an algorithm based on a binomial tree
all-reduce operation for which the communication time can be modeled as
(Eq. 3.7)

tcomm = log2 p[2α + n(2β + γ )]. (5.20)
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We will use this algorithm instead of the all-to-all broadcast algorithm
provided in the employed implementation of MPI because the latter algo-
rithm displayed very irregular performance.‡ A performance model for a
matrix–vector multiplication that uses the all-to-all broadcast is discussed in
section 6.4.1. The total execution time, the speedup, and the efficiency can
then be expresssed as the following functions of p and n

ttotal( p, n) = n2

p
γ + log2 p[2α + n(2β + γ )] (5.21)

S( p, n) = ttotal(n, 1)
ttotal(n, p)

= p
1 + p log2 p[2α + n(2β + γ )]/(n2γ )

(5.22)

E( p, n) = 1
1 + p log2 p[2α + n(2β + γ )]/(n2γ )

. (5.23)

Several performance features of the algorithm can be gleaned from the above
equations without determining the values of α, β, and γ . Thus, it is appar-
ent that the algorithm is not strongly scalable, because the efficiency, E( p, n),
is a monotonically decreasing function of p for any fixed problem size. The
algorithm is weakly scalable, however, because the efficiency may be kept
nearly constant as the number of processes increases provided that the prob-
lem size increases as well. To determine how rapidly the problem size must
grow, consider the term p log2 p[2α + n(2β + γ )]/(n2γ ) from the denomina-
tor of Eq. 5.23. The value of this expression must not increase as p increases,
and n must therefore grow at approximately the same rate as p log2 p. If we
define the problem size as n2, in keeping with the definition introduced in
section 5.2.2, the problem size must then increase as ( p log2 p)2 to maintain a
nearly constant efficiency as the number of processes increases.

From Eq. 5.22 we can also compute the the maximum attainable speedup
for the algorithm. If we differentiate the expression for the speedup with
respect to p, keeping n fixed and using the definition A = [2α + n(2β +
γ )]/(n2γ ln 2), we get

∂S( p, n)
∂p

= 1 − p A
(1 + Ap ln p)2 . (5.24)

Therefore, the maximum speedup will be obtained when the number of pro-
cesses is pmax = 1/A = n2γ ln 2/[2α+n(2β+γ )]. For process counts p < pmax,
S( p, n) is an increasing function of p, and the maximum speedup that can be
obtained with the algorithm is Smax = S( pmax, n); pmax is also an upper limit
for the number of processes that should be used with this algorithm because
increasing p beyond pmax will lower the speedup.

‡ A given implementation of MPI often will not provide optimal performance for all MPI opera-
tions; to ascertain that the MPI implementation delivers reasonable and predictable performance,
the user should therefore compare the actual performance with that predicted by the appropriate
performance models.
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FIGURE 5.5
Predicted and measured speedups and efficiencies for the simple parallel matrix–vector multi-
plication outlined in Figure 5.4. Dashed curves represent predictions by the performance model,
solid curves show measured values, and the dot-dashed line is the ideal speedup curve. The
matrix dimensions are n × n.

To determine values for the machine parameters α, β, and γ , a series of
test runs were performed using a Linux cluster. 5 The value for γ was es-
timated to be 4.3 ns by timing single-process matrix–vector multiplications
for various matrix sizes. To model the communication time, the values of α

and the sum 2β + γ are required; these values were found to be α = 43 μs
and 2β + γ = 72 ns/word (using 8 byte words) by timing the all-reduce
operation as a function of the number of processes for a number of prob-
lem sizes and fitting the data to a function of the form of Eq. 5.20. Using
these values for the machine parameters, the performance model was used
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to predict the speedups and efficiencies that can be obtained for the parallel
matrix–vector multiplication, and the results are shown in Figure 5.5 along
with the speedups and efficiencies measured by running the program. From
these plots it is evident that the performance model works very well for
the range of problem sizes and process counts investigated. The expression
used to model the communication time for the all-reduce operation is strictly
correct only when the number of processes is a power of two, and, other-
wise, underestimates the communication time. Consequently, the speedups
predicted by the model are slightly higher than the observed speedups for
process counts that are not a power of two, and this effect is more pronounced
for large problem sizes. For instance, for n = 8000, the observed speedups
drop below the predicted values just after p = 64, and as p increases toward
the next power of two, the observed speedups approach the predicted values
again. The parallel matrix–vector multiplication is an application involving
only uniform computational tasks and a single type of collective communi-
cation, and it is therefore relatively easy to provide an accurate performance
model. For this application, there are n computational tasks, and load imbal-
ance will be essentially negligible when n � p. In chapter 7 we will illustrate
how to model load imbalance for an application with unevenly sized compu-
tational tasks.

The speedup curves in Figure 5.5 also clearly demonstrate that the parallel
efficiency is a rapidly decreasing function of p. The decrease in the efficiency
is caused by the large communication overhead involved in the all-reduce
operation, which becomes a bottleneck that severely limits the speedup. Using
the expression derived for the process count, pmax, that yields the maximum
speedup, we find the maximum attainable speedups with the algorithm for
n = 2000, 4000, and 8000 to be roughly 10, 22, and 43 respectively, obtained
at the corresponding pmax values of 51, 126, and 284. The weak scalability
of the algorithm is also demonstrated by the plot, which displays higher
speedups for larger problem sizes for a given process count. The performance
model predicts that increasing the dimension n at roughly the same rate as
p log2 p should yield a constant efficiency as p increases, and this is consistent
with the measured efficiencies. Finally, we note that performance models for
parallel matrix–vector multiplication using a row-distributed matrix as well
as a block-distributed matrix will be discussed in section 6.4, demonstrating
the higher scalability of the block-distributed approach.

5.4 Presenting and Evaluating Performance Data: A Few Caveats

In the previous sections of this chapter we discussed how to do performance
modeling for parallel programs, and we will here briefly consider a few
important points to keep in mind when presenting performance data for a
parallel algorithm or evaluating performance data reported in the literature.
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FIGURE 5.6
Speedups for MP2 algorithms P1 and P2 (dynamic version) measured relative to timings for one
process (P11 and P21) and sixteen processes (P116 and P216). Computations were performed on a
Linux cluster12 for the uracil dimer molecule using the cc-pVDZ basis set (cf. Figure 9.8). Inflated
speedup curves are obtained by measuring speedups relative to a number of processes greater
than one.

A number of ways to report misleading parallel performance data have been
discussed elsewhere, 6,7 including how to boost performance data by com-
paring with code that is nonoptimal in a number of ways. Performance data
are most often presented in the form of speedup curves, and it is therefore
important to ascertain that the presented speedups are, in fact, representative
of the typical parallel performance of the algorithm. Below we will discuss a
couple of commonly encountered practices for presenting speedups that can
lead to misrepresentation of performance data.

In Figure 5.6, speedup curves are shown for two algorithms computing en-
ergies with second order Møller–Plesset perturbation theory. The algorithms,
designated P1 and P2, are explained in detail in chapter 9. For each algorithm,
two speedup curves were produced from one set of timings: one curve mea-
sures speedups relative to the computational time on a single process, and
the other curve measures speedups relative to timings obtained on sixteen
processes, setting the speedup S( p = 16) equal to 16. Reporting speedups
in this way, namely, measuring speedups relative to a number of processes
pmin and assuming that S( pmin) = pmin, is a fairly common practice, in part
justified if pmin is the smallest number of processes that will allow the cal-
culation to run. However, if the assumption S( pmin) = pmin is unwarranted,
this practice can produce inflated speedup curves. For the speedup curves
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FIGURE 5.7
Superlinear speedups for Fock matrix formation in the iterative part of the Hartree–Fock proce-
dure as a consequence of storing a larger fraction of the integrals on each process as the number
of processes increases. Speedups for the entire Hartree–Fock procedure are shown as well. Com-
putations were performed on a Linux cluster12 for the uracil dimer using the aug-cc-pVTZ basis
set (cf. Figure 8.3). A static task distribution of atom quartets was employed (see section 8.3 for
details of the algorithm).

shown in Figure 5.6 there is a nonnegligible performance degradation when
going from one to sixteen processes; the speedup curves measured relative to
sixteen processes, therefore, are somewhat misrepresentative, exaggerating
the parallel performance of the algorithms. We note that on parallel comput-
ers consisting of multiprocessor nodes, it may be reasonable to measure the
speedup as a function of the number of nodes, rather than processors, because
a node, not a single processor, is the repeating unit.

We have seen in section 5.2 that the ideal speedup for a process count of p is
S( p) = p, but that superlinear speedups are possible for some algorithms. For
instance, integral-direct algorithms in quantum chemistry can take advantage
of the increase in aggregate memory as the number of processes increases
to achieve superlinear speedups. In Figures 5.7 and 5.8 we show examples
of superlinear speedup curves for two integral-direct quantum chemistry
algorithms. Figure 5.7 displays speedups obtained with a direct Hartree–
Fock program using replicated data, illustrating speedups both for the entire
Hartree–Fock procedure and for the computationally dominant step in the
procedure, the formation of the Fock matrix. The Hartree–Fock procedure is
iterative, and the Fock matrix must be formed in each iteration; formation of
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FIGURE 5.8
Superlinear speedups for an MP2 calculation requiring multiple integral passes, using the dy-
namic version of the P2 algorithm. The corresponding speedups when doing only one integral
pass are shown as well, and the dashed line represents linear speedups. Data were obtained on
a Linux cluster12 for the uracil dimer molecule using the cc-pVDZ basis set (cf. Figure 9.8).

the Fock matrix requires the two-electron integrals, which therefore must be
computed in every iteration. A certain number of the integrals, however, do
not need to be recomputed because they can be stored in memory, and as the
aggregate memory increases with the number of processes, a smaller fraction
of the integrals must be recomputed. This results in superlinear speedups,
producing a concave upward speedup curve (see section 8.3). The superlinear
speedups in the Fock matrix formation step also cause the entire Hartree–
Fock procedure to display superlinear speedups, although the performance
degradation observed in various steps of the procedure reduces the slope of
the speedup curve for the total procedure.

The speedup curves in Figure 5.8 were obtained for the computation
of energies with second-order Møller–Plesset perturbation theory using the
integral-direct algorithm P2 explained in detail in section 9.4. The algorithm
can achieve superlinear speedups by utilizing the increased aggregate mem-
ory to reduce the number of integral passes, and, hence, the total compu-
tational work, as the number of processes increases. If enough memory is
available that only one integral pass is required when p = 1, however, the
algorithm will not display superlinear speedups. The speedups in Figure 5.8
were measured for two series of runs that were identical except for the amount
of memory allocated per process: in the first case enough memory was allo-
cated per process that only one integral pass was required; in the second case,
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less memory was allocated per process so that the required number of inte-
gral passes was 4, 2, and 1 for p = 1, p = 2, and p ≥ 4, respectively. While
the superlinear speedup curve does represent actual speedups, it masks the
fact that there is a significant performance degradation as the number of pro-
cesses increases. The other speedup curve, however, representing speedups
obtained when the total amount of computation is constant for all process
counts, gives a clear picture of how well the algorithm has been parallelized.
Although superlinear speedups may be legitimate, they should not be pre-
sented without investigating how they arise. For the purpose of performance
analysis, the steps that display superlinear speedups should be identified
and, if possible, it may be informative to show the speedups for these and
other steps separately.

5.5 Further Reading

We have used expressions involving the latency, α, and inverse bandwidth,
β, to model the communication time. An alternative model, the Hockney
model,8,9 is sometimes used for the communication time in a parallel algo-
rithm. The Hockney model expresses the time required to send a message
between two processes in terms of the parameters r∞ and n 1

2
, which rep-

resent the asymptotic bandwidth and the message length for which half of
the asymptotic bandwidth is attained, respectively. Metrics other than the
speedup and efficiency are used in parallel computing. One such metric is
the Karp–Flatt metric, 10 also referred to as the experimentally determined
serial fraction. This metric is intended to be used in addition to the speedup
and efficiency, and it is easily computed. The Karp–Flatt metric can provide
information on parallel performance characteristics that cannot be obtained
from the speedup and efficiency, for instance, whether degrading parallel
performance is caused by incomplete parallelization or by other factors such
as load imbalance and communication overhead.11
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6
Parallel Program Design

Before undertaking the task of writing a parallel program, which may require
a significant amount of effort, it is important to consider what one wishes to
gain from the parallel implementation. Is a shorter time to solution the only
requirement? Or should the parallel program also be able to tackle larger
problem sizes, use a large number of processes, and run with high parallel
efficiency to avoid wasting computing resources? In general, parallel execu-
tion of a given computational problem can be achieved in multiple ways, and
the optimal solution may depend on factors such as the range of problem sizes
that will be targeted, the number of processes that will be used, the amount of
memory available, and the performance characteristics of the communication
network. It is therefore important to take these factors into consideration in
the design phase so that the parallel algorithm can be tailored for high per-
formance under the circumstances likely to be encountered in practice. The
design process may involve prioritizing performance characteristics, such as
whether to minimize the operation count, the memory requirement, or the
communication overhead, and then making tradeoffs based on the priorities.
For instance, it may be possible to reduce the memory requirement or the
communication overhead by allowing some redundant computation.

The first step in the development of a parallel algorithm usually involves
determining how the computational work can be partitioned into smaller
tasks that can be processed concurrently and how to distribute the data
involved in the computation. One may distinguish between parallelization
schemes driven by the distribution of data, so-called data decomposition (also
known as domain decomposition), and strategies centered on a partitioning of
computational work, known as functional decomposition. In data decomposi-
tion schemes, one first works out a partitioning of the data associated with
a problem, and this data distribution, in turn, determines the distribution
of the associated computational tasks. A functional decomposition, on the
other hand, first determines how to distribute the computational work, and
a data distribution appropriate for this work partitioning is subsequently
worked out. These complementary parallelization strategies have been dis-
cussed in the literature,1–3 and we will not here focus on which distribution
drives the parallelization; in practice, parallel algorithm design in quantum
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chemistry usually involves simultaneous consideration of both task and data
distributions.

In the following, we will address the major issues involved in the design
of a parallel algorithm, including the partitioning of the problem into smaller
tasks that can be performed in parallel, the distribution of data, and the de-
velopment of a communication scheme to handle the required exchange of
data between processes. We will also examine techniques for improving the
parallel performance, including load balancing strategies and ways to reduce
the communication overhead.

6.1 Distribution of Work

A key point in the design of a parallel algorithm is the partitioning of the
computational work into a set of smaller tasks that can be performed concur-
rently. Let us first introduce a couple of terms pertaining to the distribution of
work that will be useful in discussing different parallelization schemes. The
degree of parallelism (also called the degree of concurrency) of a parallel algorithm
is defined as the number of tasks that can be executed simultaneously. Often,
different parts of a parallel algorithm will have different degrees of paral-
lelism, and it is therefore reasonable to use the term degree of parallelism as
a measure for the maximum number of processes that can be used efficiently
in the execution of a given algorithm. The granularity of a parallel algorithm
refers to the size of the individual computational tasks that are distributed
among processes (or threads in a hybrid approach), where the task size is a
measure for the time required to complete the task. The concept of granu-
larity is illustrated in Figure 6.1: if the tasks are small, the algorithm is said
to be fine-grained; a coarse-grained algorithm, on the other hand, employs rela-
tively large tasks. Generally, a fine-grained algorithm involves more overhead
in terms of communication and synchronization of processes and can suffer
from low efficiency because the work is divided into small chunks. However,

Time

Fine-grained

Coarse-grained

Computation Communication

FIGURE 6.1
Interspersion of computation and communication time on a process in a fine-grained and a
coarse-grained parallel algorithm.
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fine-grained parallelism may provide a better opportunity for evenly balanc-
ing the load because there are more tasks to be distributed. Coarse-grained
parallelism allows individual processes to work independently for longer
stretches of time, and it tends to involve less communication overhead and
to be easier to implement; the disadvantage of a coarse-grained algorithm is
a smaller degree of parallelism, which increases the likelihood of load im-
balance and limits the number of processes that can be used efficiently. As a
general strategy for determining the appropriate level of granularity for an
algorithm, task sizes should be chosen so as to allow an even distribution of
work (within the desired range of process counts), which is a prerequisite for
achieving high parallel efficiency.

Depending on the desired degree of parallelism for an algorithm, it may
be advantageous to first explore relatively fine-grained work partitioning
schemes because the availability of more tasks allows more flexibility in the
parallel design. If necessary, individual tasks, subsequently, can be grouped
together into larger chunks to form a more coarse-grained algorithm. When
deciding on a work distribution scheme, it is necessary to consider both the
number and sizes as well as the uniformity of the tasks and also possible
interdependencies between tasks that may impose restrictions on the order
in which they are carried out. In the following we will discuss two schemes
for distributing the work, namely static and dynamic task distributions. A static
scheme uses a predetermined distribution of the work that cannot be altered
during the computation, whereas a dynamic load balancing approach deter-
mines the work distribution during the execution of the program, assigning
work to processes as they become idle until there are no tasks left.

6.1.1 Static Task Distribution

The most straightforward way to partition the work is to use a static task dis-
tribution, assigning tasks to processes according to a predetermined scheme.
With a static task distribution, work cannot be redistributed during the execu-
tion of the program if load imbalance arises, and static distributions therefore
are well-suited mostly for computational problems involving uniform tasks
requiring the same execution time. Static distribution schemes offer a number
of advantages relative to dynamic schemes. Firstly, the static schemes tend to
be easier to implement, and they usually do not require any communication
to distribute the work. Moreover, for a static task distribution it can be deter-
mined in advance which tasks will be assigned to a given process, and this
may provide the opportunity to store data locally on the processes where it
will be needed.

Example 6.1 Exploiting Data Locality in a Parallel Direct
Hartree–Fock Program
If we can determine in advance which tasks will be assigned to a given
process, we can also predetermine what data that process will need to
access. Hence, in some cases it may be possible to use a data distribution
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FIGURE 6.2
Distribution of tasks (labeled A–H) across three processes using a round-robin distribution.

scheme that simply places the data on the processes where it will sub-
sequently be needed. This approach can reduce the communication re-
quirement and may also reduce the computational cost. Consider, for
instance, the computation of the Fock matrix, a computationally dom-
inant step in the Hartree–Fock procedure (see chapter 8). The Hartree–
Fock procedure is iterative, and the Fock matrix must be computed in
each iteration. Computation of the Fock matrix involves a contribution
from the two-electron integrals (Eq. 8.5) of the form

Fμν = Fμν + Dρλ(μν|ρλ) (6.1)

where Dρλ represents an element of the density matrix, (μν|ρλ) is a two-
electron integral, and μ, ν, ρ, and λ denote atomic orbitals. If a direct
approach is used in which the two-electron integrals are computed when
they are needed, the integrals must be computed in each iteration. Work
is distributed by letting each process compute a subset of the (μν|ρλ)
integrals, and a given process thus computes a subset of the integrals
in every iteration. For a static work distribution scheme, however, the
same integrals will be required by a given process in each iteration, and
this process can therefore store a subset of these integrals (depending
on the available memory) and reuse them, saving computational time.
If a dynamic work distribution scheme were employed, a process most
likely would need a different set of integrals in every iteration, and
reusing locally stored integrals would not be possible.

6.1.1.1 Round-Robin and Recursive Task Distributions

Commonly used static task distribution schemes include round-robin and
recursive distributions. A round-robin work distribution scheme is illustrated
in Figure 6.2. In this type of scheme, work is distributed by looping through
a task list, assigning one task to each process in turn and repeating until
all tasks have been assigned. A simple round-robin allocation of tasks can
be implemented as outlined in Figure 6.3. If the tasks are not uniform, load
balance can usually be improved by first randomizing the tasks in the task
list; round-robin scheduling using such randomization of tasks can balance
the work reasonably well even for quite nonuniform task sizes provided that
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For i = this_proc, i < ntask, i = i + p
Process task i

End for

FIGURE 6.3
Outline of a simple round-robin static task distribution. The number of tasks is ntask, p is the
number of processes, and this_proc is the process ID.

the number of tasks is much larger than the number of processes. In Part II of
this book, a round-robin distribution is used for most of the algorithms that
employ a static task distribution.

A recursive work distribution scheme involves recursive subdivisions of
the computational problem to create smaller tasks that can be solved con-
currently by individual processes. Recursive work distribution schemes are
typically used for computational problems that lend themselves to a divide-
and-conquer parallelization approach. For instance, finding the maximum
value in an unsorted array and sorting the elements in an array are problems
that can be solved using recursive algorithms.

Example 6.2 Parallel Quicksort
The widely used quicksort algorithm is a recursive algorithm for sort-
ing a sequence of numbers.4 It uses a divide-and-conquer strategy to
divide the sequence of numbers into successively smaller subsequences
until the subsequences are of length one, or, at least, sufficiently short
that their sorting is a trivial problem. An outline of the quicksort algo-
rithm is shown in Figure 6.4. Initially, an element from the sequence is
selected as a pivot, and the sequence is then divided into two smaller se-
quences, one containing the elements smaller than or equal to the pivot,
the other containing the elements greater than the pivot. These two sub-
sequences are then sorted by recursive application of quicksort. In the
parallel version of the quicksort procedure, the recursive calls to quick-
sort (Quicksort(Left,nleft) and Quicksort(Right,nright))
are performed in parallel. This can be done by treating these calls as
new tasks to be started up in separate processes. The recursive subdi-
vision of tasks and their assignment to new processes are illustrated
in Figure 6.5. To achieve an efficient parallel quicksort, it is necessary
also to parallelize the creation of the left and right subsequences, for
instance, by letting each process be responsible for a subset of the orig-
inal sequence and assigning the elements in this subset to the left and
right subsequences. Although the recursive parallel quicksort algorithm
may be conceptually simple, the implementation of an efficient paral-
lel quicksort algorithm is somewhat involved and is beyond the scope
of this text. A more thorough discussion of parallel implementations of
quicksort can be found elsewhere.2 Note that the parallel quicksort algo-
rithm illustrated here is an example of a static work distribution scheme
that, unlike most static schemes, requires communication to distribute
the tasks.
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Quicksort(A,n) {
If n eq 1: return A[0]

int q = int(n∗rand())
int pivot = A[q]

double Left[n], Right[n]
int nleft = 0, nright = 0

For i = 0, i < n, i = i + 1
If A[i] ≤ pivot

Left[nleft] = A[i]
nleft = nleft + 1

Endif
If A[i] > pivot

Right[nright] = A[i]
nright = nright + 1

Endif
End for

Return concatenate(Quicksort(Left,nleft),Quicksort(Right,nright)) }
FIGURE 6.4
Outline of a sequential quicksort algorithm for sorting the n elements in the array A. The pivot
is here chosen randomly among the elements of A. The Left array holds the elements smaller
than or equal to the pivot, and the Right array contains elements greater than the pivot. The
quicksort function is called recursively via the calls to Quicksort(Left,nleft) and Quick-
sort(Right,nright), and the resulting arrays are concatenated before returning.

9 3 8 1 0 3 6 8 5 9 5 4 2

3 1 0 3 4 2 9 8 6 8 5 9 5 P4P0

P0 P1 P2 P3 P4 P5 P6 P7

P0

P6P4P2P0 1 0 2 3 3 4 6 5 5 9 8 8 9

0 1 2 3 3 4 5 5 6 8 8 9 9

FIGURE 6.5
Recursive subdivision of tasks in parallel quicksort using eight processes, P0−P7. The array to be
sorted is subdivided by recursive calls to quicksort, indicated by arrows representing assignment
of work to a new process. The pivot is shown in the gray box.
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6.1.2 Dynamic Task Distribution

Dynamic task distribution is a load balancing strategy particularly useful
for computational problems involving nonuniform tasks. In this type of par-
allelization, the task distribution is determined during the execution of the
program by assigning work to processes as soon as they become idle. A dy-
namic task distribution, therefore, responds to arising load imbalance during
the execution of a program by allocating work only to the processes that are
ready for new tasks and not assigning further work to those processes that
are already engaged in computation. Dynamic task distribution tends to be
more difficult to implement than static distribution schemes because it may
involve nontrivial communication patterns, and, as noted in section 6.1.1, it
may not be possible to exploit data locality to the same extent in a dynamic
task distribution model because the dynamic assignment of tasks to processes
may necessitate redistribution of data. Dynamic task distribution, however,
usually offers improved load balance relative to static schemes and allows
efficient use of more processes. Dynamic load balancing schemes can be im-
plemented by means of a manager–worker approach with one process in
charge of the distribution of work to others, or by using a decentralized work
scheduling mechanism in which all processes exchange tasks with each other
as necessary to balance the work. We will discuss these two approaches next.

6.1.2.1 Manager–Worker Model

In a manager–worker model (also known as a master–slave model) one process,
the manager, distributes work to the other processes, the workers. A dynamic
manager–worker task distribution scheme is outlined in Figure 6.6. In this
scheme, the manager keeps a list of the computational tasks, and upon re-
quest the manager will send the next available task to a worker process. Each
worker will process one task at a time and, when finished, request a new task
from the manager. This continues until there are no tasks left, at which point
a task request from a worker will be answered by a message from the man-
ager informing the worker that all tasks have been completed. The parallel
algorithms using dynamic load balancing in Part II of this book all employ a
manager–worker model.

Dynamic manager–worker distribution schemes are most easily imple-
mented by means of blocking send and receive operations, but the use of
non-blocking operations will allow prefetching of task requests (on the man-
ager) and tasks (on the workers). Such prefetching may reduce the amount of
time workers spend waiting for task requests to be returned from the man-
ager, and this can lead to improved parallel efficiency when the waiting time
is nonnegligible, for instance, if there are numerous very small computational
tasks. In the manager–worker model illustrated in Figure 6.6, the manager is
dedicated to distributing tasks to workers and does not itself do any com-
putation. Consequently, if there are p processes, only p − 1 processes are
available to process the computational tasks, and the maximum parallel effi-
ciency that can be obtained with this scheme is therefore [( p − 1)/p] × 100%.
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If (this_proc eq manager)

Create task list

int requests_remaining = ntask + p − 1

int task_index = 0

While (requests_remaining)

Receive work request from a worker

If (task_index < ntask)

Send next task from list to worker

task_index = task_index + 1

Else

Send “finished” message to worker

Endif

requests_remaining = requests_remaining − 1

End while

Else

int finished = 0

Send request for new task to manager

Receive task or “finished” from manager

While (!finished)

Process current task

Send request for task to manager

Receive new task or “finished” from manager

End while

Endif

FIGURE 6.6
Outline of a dynamic manager–worker task distribution scheme. The number of tasks and pro-
cesses are designated ntask and p, respectively. One process is assigned to be the manager, and
the remaining p − 1 processes are the workers.

This limitation can be avoided by letting the manager participate in computa-
tion so that all p processes will process computational tasks, but the manager
will then be less likely to be available to respond instantly to requests from the
workers. If a manager–worker scheme involves a very large number of tasks
or processes, the processing of requests for tasks on the manager may become
a bottleneck. Thus, if the time required to finish a task on a worker is ttask, and
the time required to process a request for a task is treq, then ttask/treq requests
can be processed on the manager in the time it takes a worker to finish a task,
and ttask/treq therefore is the maximum number of worker processes that the
manager can support. To avoid a bottleneck on the manager, the number of
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tasks can be reduced by grouping several tasks together, effectively increasing
the granularity, although this approach can also make load balancing more
difficult. Alternatively, a decentralized distribution of tasks can be employed
as explained below.

6.1.2.2 Decentralized Task Distribution

A dynamic distribution of tasks can be carried out using a decentralized model
that does not involve a manager but requires all processes to be engaged in
computation and to exchange tasks with each other as processes become idle.
This scheme can be implemented as follows. Initially, all tasks are distributed
among processes using a simple predetermined scheme, and each process
starts working on the tasks that were assigned to it. Once a process runs
out of tasks, it will request tasks from other processes. For instance, when
process Pi becomes idle, it will request tasks from Pj , which will then send
a task back to Pi . It is common to use a work splitting strategy in which the
process that has become idle receives half of the tasks remaining on another
process. The exchange of work between processes continues until all tasks
have been processed. If Pi requests work from Pj , and Pj does not have any
tasks remaining, Pi will proceed to request a task from the next process and
so on until a process responds with a task or all processes have been polled.
Using this type of task distribution, it is not trivial to determine when all
processes have finished, and termination detection algorithms may have to
be used for this purpose (see section 6.6).

6.2 Distribution of Data

For computational problems involving large data structures, a well-designed
data distribution scheme is a prerequisite for an efficient parallel implementa-
tion. In general, data must be distributed to take advantage of the increasing
aggregate memory as the number of processes increases so that memory bot-
tlenecks can be avoided when tackling larger problem sizes. Complex com-
putational problems typically involve many data structures of different sizes,
including input and output data and intermediates arising in the compu-
tation. Often, it may be possible to replicate small data structures without
performance penalty, and this can simplify the parallel program design and
reduce the need for interprocess communication.

Example 6.3 Distribution of Data in Quantum Chemistry
Applications
Some data structures commonly encountered in quantum chemistry ap-
plications are listed in Table 6.1. For a problem size of n (where n is the
number of basis functions or the number of atoms), there could be data
structures whose storage requirements grow as O(n), O(n2), O(n3), and
O(n4). If arrays of O(n4) are stored, they must be distributed or serious



P1: Binaya Dash

February 28, 2008 15:1 51644 51644˙C006

102 Parallel Computing in Quantum Chemistry

TABLE 6.1

Some data structures commonly encountered in quantum
chemistry methods. The problem size (that is, the number of
atoms or the number of basis functions) is denoted n

Size Data Structures

O(n) basis set, molecular coordinates, molecular orbital energies
O(n2) Fock matrix, density matrix, single-substitution amplitudes
O(n3) subsets of triple-substitution amplitudes
O(n4) two-electron integrals, double-substitution amplitudes

storage bottlenecks will result. Data structures of O(n) are generally not
distributed because their replication greatly simplifies programming
and does not create performance problems. Whether to distribute struc-
tures of size O(n2) may depend on the method in question. If the O(n2)
structures are the largest data structures to be stored, for instance, in
direct Hartree–Fock and density functional theory, they are sometimes
distributed, especially if large molecules are to be investigated. Other-
wise, the O(n2) arrays are often replicated, in particular in correlated
electronic structure methods where much larger data structures must
also be handled. Intermediates requiring O(n3) storage arise, for ex-
ample, in the computation of the perturbative triples contribution to
the coupled-cluster energy, and these intermediates are not distributed
because the bottleneck for the calculation usually is the O(n7) time re-
quirement.

When designing a data distribution scheme, careful attention must be
paid to creating a data layout that prevents storage bottlenecks and avoids
excessive data transfer between processes. To reduce the likelihood of in-
troducing storage bottlenecks, the data should be distributed evenly to the
extent possible (assuming a homogeneous parallel computer). In Figure 6.7,
we show examples of some commonly used distribution patterns for a ma-
trix: one-dimensional partitionings of the matrix that distribute entire rows or
columns among processes and a two dimensional partitioning, distributing
matrix blocks. Each data distribution may have its own merits and drawbacks.
For instance, a one-dimensional distribution of a matrix can take advantage
of at most n processes for distribution of an n × n matrix, whereas a block
distribution can distribute the matrix over as many as n2 processes. Certain
computational problems, however, may be more easily performed in paral-
lel if an entire row or column of a matrix is available on one process (see
section 6.4). Choosing a data distribution that reduces the amount of data
transfer required during program execution will reduce the communication
overhead and allow for a more efficient parallel implementation. This may
entail using an owner-computes approach in which each process, to the ex-
tent possible, works only on the data stored locally. If a dynamic distribution
scheme is employed, however, more extensive data retrieval from remote
processes may be required.
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FIGURE 6.7
Distribution of an n×n matrix across p processes, P0 − Pp−1, by (a) rows, (b) columns, and (c)
square blocks. The one-dimensional distributions (a) and (b) can utilize at most n processes,
whereas the two-dimensional block distribution (c) can distribute the matrix across up to n2

processes.

Example 6.4 Data Distribution in the Two-Electron Integral
Transformation
Consider data distribution in the two-electron integral transformation,
which is a data-intensive computational step required in many quantum
chemical methods. Chapter 9 presents a detailed discussion of parallel
direct computation of MP2 energies, the dominant step of which is the
two-electron integral transformation. Let us look at the integral trans-
formation used in the P2 algorithm from chapter 9 and focus on how the
data is distributed. The integral transformation must generate the set of
two-electron integrals (ia | jb) in the molecular orbital basis, distributed
across processes in a manner that facilitates computation of the MP2
correlation energy from the expression

Ecorr
MP2 =

∑
i jab

(ia | jb)[2(ia | jb) − (ib| ja )]
εi + ε j − εa − εb

. (6.2)

This can be achieved by distributing the i, j pairs so that each process
stores the (ia | jb) integrals for a subset of the i, j pairs and all a, b pairs.
The computation and transformation of the integrals proceed in separate
steps as follows

(μν|λσ ) → (iν|λσ ) → (iν| jσ ) → (ia | jσ ) → (ia | jb) (6.3)

and the distribution over i, j , therefore, cannot be performed until the
half-transformed integrals (iν| jσ ) have been generated. The computa-
tion of the integrals in the atomic orbital basis, (μν|λσ ), and the first
quarter transformation, (μν|λσ ) → (iν|λσ ), involve nonuniform com-
putational tasks, and a random (or, alternatively, dynamic) distribution
of λ, σ is employed to achieve load balance. Only small batches of the
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(μν|λσ ) and (iν|λσ ) integrals are generated at a time, so storage of these
integrals is not a concern, but their distribution prevents the (iν| jσ ) inte-
grals from being initially generated where they belong. A redistribution
of these integrals is therefore required in the integral transformation (as
shown in Figure 9.3). After this redistribution step, an owner-computes
approach is possible, letting each process work independently on finish-
ing the integral transformation and computing the contribution to the
MP2 correlation energy for the locally stored integrals. The data distribu-
tion employed in this algorithm is uniform and allows for high parallel
efficiency, requiring data exchange between processes only during the
second quarter transformation.

6.3 Designing a Communication Scheme

Parallel program execution for anything but trivially parallel computational
problems requires some exchange of data between processes. Parallel algo-
rithm design therefore involves determining how this data exchange is to take
place: it must be decided what data to exchange, when to do so, and what
type of communication to use for this purpose. The communication require-
ment can be strongly dependent on the work and data distribution strategy,
and this should be taken into account in the design phase. The exchange of
large amounts of data between processes can take a significant amount of
time and will adversely affect the parallel performance, and communication
must therefore be employed judiciously. The use of collective communication
operations, especially, can reduce the scalability of a parallel algorithm, and
any communication step requiring synchronization of two or more processes
tends to create idle time on some processes, lowering the efficiency. In general,
and in particular when using collective communication, the communication
to computation ratio should be kept as low as possible to minimize idle time
on processes waiting for messages to be processed.

In the following we will discuss communication schemes employing col-
lective and point-to-point operations and illustrate their use in parallel algo-
rithms.

6.3.1 Using Collective Communication

The use of collective communication operations can simplify parallel pro-
gramming. A complex exchange of data can be achieved with a single func-
tion call, and the programmer need not be concerned with the explicit sending
and receiving of messages between individual processes. Although efficient
implementations are readily available for many collective communication op-
erations, their use must nonetheless be limited if high parallel performance is
desired for large process counts. For collective operations involving replicated
data, such as all-reduce and broadcast, the time required to do a collective
communication operation increases with the number of processes involved
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and may become a bottleneck when the number of processes is large. Still, if
only small amounts of data are involved, collective communication can be em-
ployed without serious performance penalty. Also, some collective operations
have only a very small component that does not scale, and these operations
may be suitable for use in a high-performance algorithm. An example of this
is shown in section 10.3.1.

Example 6.5 Collective Communication Reduces Scalability
Collective communication operations can reduce the scalability of a par-
allel program by introducing a communication bottleneck. Consider, for
example, an algorithm requiring n2 floating point operations and using
an all-to-all broadcast operation involving n2/p pieces of data per pro-
cess. The communication time for the all-to-all broadcast (using a recur-
sive doubling algorithm) is tall−to−all = α log2 p + βn2( p − 1)/p (from
Eq. 3.4). The execution time on p processes can be expressed in terms of
the machine parameters α, β, and γ as follows

t( p, n) = tcomp( p, n) + tcomm( p, n) = γ
n2

p
+ α log2 p + βn2 p − 1

p
. (6.4)

The resulting speedup and efficiency are

S( p, n) = t(1, n)
t( p, n)

= p

1 + α
γ

p log2 p
n2 + β

γ
( p − 1)

(6.5)

E( p, n) = S( p, n)
p

= 1

1 + α
γ

p log2 p
n2 + β

γ
( p − 1)

. (6.6)

The efficiency obtained is a decreasing function of the number of pro-
cesses, and the algorithm is not strongly scalable. In fact, parallel algo-
rithms employing collective communication are never strongly scalable.
In this case, the algorithm is not guaranteed to be weakly scalable either;
increasing the problem size cannot necessarily prevent a decrease in the
efficiency as p increases because of the last term in the denominator in
Eq. 6.6. Often, however, algorithms using collective communication are
weakly scalable, and high efficiency can be obtained for larger process
counts provided that the problem size is also large.

We will illustrate parallel matrix–vector multiplication algorithms using
collective communication in section 6.4, and detailed examples and perfor-
mance analyses of quantum chemistry algorithms employing collective com-
munication operations can be found in sections 8.3, 9.3, and 10.3.

6.3.2 Using Point-to-Point Communication

We saw in section 6.3.1 that certain collective communication operations can
introduce bottlenecks in parallel algorithms because the communication time
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is an increasing function of the number of processes. Point-to-point and one-
sided communication offer a potential for higher performance for any type
of communication involving enough data to make the communication time
nonnegligible. The drawback of using these communication schemes is the
increased complexity of parallel programming. The programmer must spec-
ify a detailed schedule for when and where to send and receive messages on
each individual process while being careful to avoid pitfalls such as dead-
lock and race conditions. In section 9.4 one-sided communication is used
to implement a high-performance second-order Møller–Plesset perturbation
theory algorithm. In Example 6.6, we will illustrate the use of point-to-point
message-passing, including a strategy for avoiding deadlock.

Example 6.6 Using a Systolic Loop Communication Pattern
Collective operations can be implemented in terms of point-to-point op-
erations, and we will illustrate this use of point-to-point communication
for a systolic loop algorithm: this algorithm exchanges data between
neighboring processes in a systematic manner, and it could be used,
for instance, to implement an all-to-all broadcast. In the systolic loop
communication scheme illustrated in Figure 6.8, data is passed between
neighboring processes in a virtual ring. An array of data, a, is assumed
to be distributed by blocks across p processes, each process holding one
block. The execution takes place in p stages that each consist of a com-
putation step followed by a communication step. In the computation
step every process performs some computation on the block of a cur-
rently residing on that process. In the subsequent communication step
all processes exchange data with their neighbors: process Pi sends its

Pp–1 P0 P1

Pi+1 Pi Pi–1

f(ak)

ak ak–1

FIGURE 6.8
A systolic loop communication pattern using p processes, P0 − Pp−1. Execution requires p steps,
and in each step every process first performs computations on its local data and then exchanges
data with its neighbors. The activity on process Pi in one step is shown: first, computation
is performed on the locally residing block of data, ak , and ak is then sent to the downstream
neighbor while a new block, ak−1, is received from the upstream neighbor.
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/* Determine which process to send to: */
int next_proc = (this_proc + 1) mod p

/* Determine which process to receive from: */
int previous_proc = (this_proc − 1 + p) mod p

int k = this_proc

For step = 0, step < p, step = step + 1

Perform computation on local block (ak) of a
Post non-blocking receive of ak−1 from previous_proc
Send ak block to next_proc using blocking send
Wait for completion of posted non-blocking receive
k = (k + 1) mod p

End for

FIGURE 6.9
Outline of systolic loop communication scheme using point-to-point message-passing (cf.
Figure 6.8). The number of processes and the process ID are designated p and this_proc, re-
spectively. Non-blocking receive operations are employed to prevent deadlock.

current block of a to Pi+1 while receiving a new block from Pi−1 (process
Pp−1 sends data to P0 to complete the loop). Because all processes try to
exchange data with their neighbors at the same time, care must be exer-
cised to avoid a deadlock situation. Deadlock can arise if blocking send
and receive operations are used: if each process first posts a blocking re-
ceive (Pi receives from Pi−1) and then posts a blocking send (Pi sends to
Pi+1), deadlock will result. A blocking receive operation posted by a pro-
cess cannot be completed before the message has been received, but the
message will not arrive because the sending process will be waiting for
its own blocking receive operation to complete. Therefore, the systolic
loop communication scheme must be implemented using non-blocking
receives (or sends): a non-blocking receive must be issued, followed by a
blocking send, and, finally, a wait for the receive operation to complete,
as shown in Figure 6.9. By using a non-blocking receive, the subsequent
blocking send operation can be initiated before the receive is complete,
preventing deadlock. The wait operation posted after the send waits for
the receive to complete before proceeding to ensure that data has been
received before it is used.

6.4 Design Example: Matrix-Vector Multiplication

To illustrate some of the parallel program design principles discussed in this
chapter, let us consider the design of a parallel algorithm to perform a dense
matrix–vector multiplication Ab = c, where A is an n × n matrix and b
and c are n-dimensional vectors. To be able to take full advantage of the
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parallel resources, we will require that the matrix A is distributed and that
the number of processes that can be utilized is at least equal to the dimension
n. Additionally, we will assume that the final distribution of the c vector is
required to be the same as the initial distribution of b. For a dense matrix–
vector multiplication, the computational tasks are uniform, so a static task
distribution will be adequate. We will first look at a parallel algorithm using
a row-distribution for the matrix, and we will then explore another algorithm
that distributes the matrix by blocks.

6.4.1 Using a Row-Distributed Matrix

Let us first try a simple parallelization scheme in which A is distributed by
rows across p processes, P0 − Pp−1, and the vector b is replicated as illustrated
in Figure 6.10 (assuming n is a multiple of p). During the multiplication, the
product vector c will be distributed, but upon completion of the multiplica-
tion, we want the c vector to be replicated as well. The elements, ci , of c are
computed as the product of an entire row of A and the b vector

ci =
∑

j

Ai j b j . (6.7)

Because the process Pi holds the rows i × n/p through (i + 1) × n/p − 1
of A, Pi can compute the corresponding elements of c, ci×n/p − c(i+1)×n/p−1,
using only locally stored data. Each process first independently computes
the elements of c corresponding to the locally stored rows of A. When this
step is complete, a single collective communication step is required to put a
copy of the entire c vector on all processes. This can be accomplished with
an all-to-all broadcast operation in which each process sends its elements of c
to all other processes. An outline of this algorithm can be found in chapter 5
(Figure 5.4) where matrix–vector multiplication is discussed in the context of
performance modeling.

n
p

A b c

• =

rows

All-to-all

broadcast

elements

c

n
p

FIGURE 6.10
Data residing on process Pi in a parallel matrix–vector multiplication Ab = c, where A is a row-
distributed n × n matrix, and b and c are replicated vectors of length n. The process count is p,
and Pi holds the rows of A numbered in/p through (i+1)n/p−1 and computes the corresponding
elements of c. A final all-to-all broadcast puts the entire c vector on all processes.
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Let us briefly consider the performance characteristics of this algorithm.
The degree of parallelism equals n because at most n processes can be used to
distribute the rows of A. The memory requirement per process is n2/p +
2n (requiring storage of n/p rows of A and the entire b and c vectors).
The communication overhead is the time required for an all-to-all broadcast
involving p processes and a data length of n/p. Using a recursive doubling
algorithm and assuming that p is a power of two, the communication time is
tcomm = α log2 p + βn( p − 1)/p (Eq. 3.4). The total number of floating point
operations required to perform the multiplication is n2 (counting a combined
multiply and add as one operation), and the execution time can therefore be
expressed as

t( p, n) = tcomp( p, n) + tcomm( p, n) = γ
n2

p
+ α log2 p + βn

p − 1
p

(6.8)

using the machine parameters α, β, and γ . This yields the following speedup
and efficiency

S( p, n) = γ n2 p
γ n2 + αp log2 p + βn( p − 1)

(6.9)

E( p, n) = S( p, n)
p

= 1

1 + α
γ

p log2 p
n2 + β

γ

p−1
n

. (6.10)

From Eq. 6.10 it follows that the dimension n must grow at the same rate
as p to maintain a constant efficiency as the number of processes increases.
If n increases at the same rate as p, however, the memory requirement per
process (n2/p + 2n) will increase with the number of processes. Thus, a k-fold
increase in p, with a concomitant increase in n to keep the efficiency constant,
will lead to a k-fold increase in the memory required per process, creating
a potential memory bottleneck. Measured performance data for a parallel
matrix–vector multiplication algorithm using a row-distributed matrix are
presented in section 5.3.2.

6.4.2 Using a Block-Distributed Matrix

Let us try to modify the matrix–vector multiplication algorithm from
section 6.4.1 to improve the scalability. The poor scalability was a result of
the relatively large communication overhead incurred by using a row distri-
bution for the matrix A. When A is distributed by rows, all elements of the b
or c vector must visit (or be stored by) each process during the computation:
if b and c are replicated, no data exchange is required for b, but an all-to-all
broadcast is required to replicate c at the end of the computation; if both vec-
tors are distributed, no communication is required for c but all elements of b
must visit all processes during the execution.

The first requirement for the new algorithm therefore is to distribute A
differently. A column distribution will not reduce the communication re-
quirement, so we need to distribute A by blocks. We will employ the data
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distribution illustrated in Figure 6.11, assuming that n is a multiple of p, and
that p is a square number. The p processes are numbered Pi, j using indices
i and j that both run from 0 to

√
p − 1, and in Figure 6.11 the processes are

shown on a two-dimensional grid with the process Pi, j positioned in row i
and column j of each grid. The matrix A is divided into p square blocks Ai, j ,
each with dimensions n/

√
p × n/

√
p, and process Pi, j holds the block Ai, j .

The vector b is divided into
√

p blocks of size n/
√

p and distributed across the
first row of processes, P0, j , 0 ≤ j <

√
p. The final distribution of c is identical

to the initial distribution of b.
Using these data distributions, the matrix–vector multiplication proceeds

as shown in Figures 6.11 and 6.12. Initially, every process in the first row
performs a one-to-all broadcast of its block of b to all other processes in the
same column. Every process Pi, j now holds the blocks Ai, j and b j , and Pi, j

then computes the product Ai, j b j of these locally stored blocks, producing
the contribution ci( j)to the block ci . The processes in row i now hold all the
contributions to the block ci , and for each row these contributions are added
in an all-to-one reduce operation, putting the resulting completed block ci on
the process Pi,0. Finally, after a point-to-point send of the block ci from Pi,0 to
P0,i , the matrix–vector multiplication is complete, with each of the first

√
p

processes holding a block of c.
The communication overhead for this algorithm is the cost of performing

a broadcast and a reduce operation that both involve n/
√

p elements and√
p processes (ignoring the small cost of the final point-to-point send putting

the block ci on Pi ). Ignoring the computation needed by the reduction, the
cost for these two operations is the same, and the total communication time
is tcomm = 2(α + βn/

√
p) log2

√
p = (α + βn/

√
p) log2 p, using a binomial

tree algorithm (Eq. 3.1) and assuming that p is a power of two. Note that the
communication requirement for the block distribution will be minimized by
dividing the matrix into square blocks, as done here. We then get the following
expressions for the execution time, speedup, and efficiency

t( p, n) = γ
n2

p
+ log2 p(α + βn/

√
p) (6.11)

S( p, n) = γ n2 p
γ n2 + αp log2 p + βn

√
p log2 p

(6.12)

E( p, n) = 1

1 + α
γ

p log2 p
n2 + β

γ

√
p log2 p

n

. (6.13)

For a constant problem size, the efficiency for this algorithm is a decreas-
ing function of p, so the algorithm is not strongly scalable. To maintain the
efficiency, however, the dimension n only needs to grow proportionally to√

p log2 p, whereas n was required to increase proportionally to p in the
algorithm using a row distribution for A. Because

√
p log2 p grows signif-

icantly more slowly than p, this represents an improvement in scalability.
From Eqs. 6.10 and 6.13 it follows that for a given dimension n, the efficiency
obtained using the block distribution is higher than that obtained using the
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FIGURE 6.11
Parallel matrix–vector multiplication Ab = c on p processes using fully distributed data. The
processes are shown on a grid with process Pi, j in row i and column j (0 ≤ i <

√
p, 0 ≤ j <

√
p).

The steps indicated with arrows are: (1) an initial broadcast within each column putting a copy
of b j on every process in column j ; (2) computation of the contribution ci( j) = Ai, j b j to the
block ci on Pi, j ; (3) summation of ci( j) across each row, putting the complete block ci on Pi,0;
and (4) redistribution of c (Pi,0 sends ci to P0,i ) to match the initial distribution of b. The index m
represents the value

√
p − 1. A is distributed by square blocks, and Pi, j holds the block Ai, j . The

vectors b and c are divided into uniform blocks, and P0, j holds the block b j and (at the end) c j .

row distribution of A for larger process counts (p > 21). For smaller num-
bers of processes, however, the efficiency obtained using a row distribution
is slightly higher. In addition to higher scalability, the algorithm using the
block-distributed A also has a much higher degree of parallelism, being able
to use as many as n2 processes. Furthermore, if n grows at the rate required to
keep up the efficiency,

√
p log2 p, the memory requirement per process does

not increase as fast as for the first algorithm, reducing the likelihood of a
memory bottleneck.
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j = this_proc mod
√

p (column index for Pi, j)
i = (this_proc − j)/

√
p (row index for Pi, j)

If i eq 0: Broadcast block bj to Pk, j (for 0 < k <
√

p)

Compute local contribution to block ci: ci(j) = Ai, j bj

Do a reduce operation adding ci(j) across each row to collect full ci on Pi,0

If j eq 0: Send ci to P0,i (final c distribution: ci on P0,i)

FIGURE 6.12
Outline of the algorithm for parallel matrix–vector multiplication Ab = c with block-distributed
matrix A discussed in the text. The number of processes is designated p, and this_proc is
the process ID. The employed data distribution is shown in Figure 6.11; b j and ci represent
blocks of length n/

√
p of the b and c vectors, respectively, and Ai, j is the block of A stored by

process Pi, j .

6.5 Summary of Key Points of Parallel Program Design

In the previous sections of this chapter, we have discussed the design of par-
allel programs, including the distribution of work and data as well as the
design of a communication scheme. The design phase also should include at
least a preliminary performance model for the proposed parallel algorithm
so that it can be ascertained whether the program is likely to meet the various
desired performance criteria. Performance modeling for parallel programs is
discussed in detail in chapter 5. If a preliminary performance model for a pro-
posed parallel algorithm reveals serious flaws, one may revisit the previous
design steps and possibly reach a compromise between different design goals
to achieve a satisfactory algorithm. Below we give an overview of the steps
involved in parallel program design, summarizing some of the key points
discussed in this chapter and also including some considerations regarding
gauging the parallel efficiency of an algorithm.

• Distribution of Work
◦ Consider desired degree of parallelism
◦ Partition computational problem into smaller, preferably uni-

form, tasks that can be performed concurrently by individual
processes

◦ Decide whether to distribute work statically or dynamically
– Are task sizes known in advance? Are they uniform?

◦ If using static task distribution
– Select a distribution scheme, for example, round-robin or

recursive
– If tasks are nonuniform, randomization of tasks before

distribution may improve load balance
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◦ If using dynamic task distribution
– Select a distribution scheme, for example, manager–worker

or decentralized
– If tasks are nonuniform, initial sorting of tasks according

to size and distribution from largest to smallest usually
improves load balance

• Distribution of Data
◦ Decide what data must be distributed

– Large data structures should be distributed to avoid mem-
ory bottlenecks

– Smaller data structures can possibly be replicated to re-
duce communication overhead and the need for synchro-
nization and to simplify parallelization

◦ Decide how to distribute data
– Consider whether the task distribution suggests a partic-

ular data distribution
– Consider distributing data in a way that minimizes the

communication overhead
– Can data be distributed so processes do computation only

on local data?
• Designing a Communication Scheme

◦ Decide whether to use collective, point-to-point, or one-sided
communication
– How much data exchange must take place?
– Can collective communication be used without introduc-

ing a communication bottleneck?
– Collective communication simplifies programming but

tends to reduce scalability, particularly when replicated
data is involved

– Point-to-point or one-sided communication may improve
performance but complicates implementation

◦ If using collective communication
– Try to minimize the amount of data to be communicated

in collective operations
– Collective operations require synchronization of processes;

carefully consider where to put them
◦ If using point-to-point communication

– Decide whether to use blocking or non-blocking opera-
tions

– Determine message sizes, possibly coalescing many small
messages into fewer larger ones

– Carefully check to avoid deadlock and race conditions
– Check for proper termination detection
– Try to overlap communication and computation
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– If using manager–worker scheme, consider if a bottleneck
is likely on manager

• Performance Modeling
◦ Work out performance model for the parallel algorithm (this

can be just a rough model, but it should try to capture the
essential performance features)

◦ Is parallel performance adequate? Efficiency? Scaling?
◦ Is load imbalance likely to be an issue? Is it accounted for in

the model?
◦ Try to identify potential bottlenecks (serial code, replicated ar-

rays, collective communication steps)
◦ Is the computation-to-communication ratio acceptable?
◦ Consider tradeoffs; for example, partial data replication may

reduce communication, and sacrificing scalar speed may offer
potential for improved parallel implementation

6.6 Further Reading

For a discussion of potential benefits of parallelism and how to decide whether
parallelism might be worthwhile for a given application, see Pancake.5 An
approach to methodical design of parallel algorithms, involving four steps
designated partitioning, communication, agglomeration, and mapping, has
been introduced by Foster.1 As mentioned in section 6.1.2.2, termination de-
tection can be a non-trivial task when using a decentralized task distribution.
For an overview of termination detection algorithms, see, for example, Tel.6
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7
Two-Electron Integral Evaluation

The two-electron integrals, also known as electron repulsion integrals, are
ubiquitous in quantum chemistry, appearing in the Hartree–Fock method
and any correlated method based upon it as well as in density functional
methods. The two-electron integral computation is a time-consuming step,
and an efficient integral program is an important part of a quantum chemistry
code. When designing parallel algorithms for computation of the two-electron
integrals, assuming that an efficient scalar code exists, issues of particular im-
portance are load balancing of the nonuniform computational tasks involved
as well as utilization of the permutational symmetry of the integrals. In this
chapter we will first discuss a few basic issues pertaining to the computation
of the two-electron integrals, and we will then examine different parallel im-
plementations of the integral computation, using either a simple static load
balancing scheme or employing a manager–worker model for dynamically
distributing the work.

7.1 Basics of Integral Computation

The two-electron integrals arise in the evaluation of matrix elements between
Slater determinants of a two-electron operator of the form

1
|ri − r j | = 1

ri j
(7.1)

which represents electron–electron repulsion. Using the so-called chemist’s,
or Mulliken, notation, the two-electron integral denoted (χμχν |χρχλ) is
defined as

(χμχν |χρχλ) =
∫

φ∗
μ(r1)σ ∗

μ(ω1)φν(r1)σν(ω1)r−1
12 φ∗

ρ(r2)

× σ ∗
ρ (ω2)φλ(r2)σλ(ω2)dr1dω1dr2dω2 (7.2)

117
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where ri and ωi represent the spatial and spin coordinates, respectively, of
electron i , χ = φ(r)σ (ω) is a spin orbital, φ denotes a spatial orbital, and σ

designates a spin function (either α or β). Integrating over the spin of the elec-
trons and using real orbitals, the two-electron integral takes on the following
form in the spatial orbital basis

(φμφν |φρφλ) =
∫

φμ(r1)φν(r1)r−1
12 φρ(r2)φλ(r2)dr1dr2. (7.3)

We will use the shorthand notation (μν|ρλ) to represent the integral (φμφν |
φρφλ) from Eq. 7.3, where μ, ν, ρ, and λ label real, spatial atomic orbitals.

The number of two-electron integrals in the atomic orbital basis equals n4,
where n is the number of basis functions. The two-electron integrals possess
permutational symmetry, however, and the integral (μν|ρλ) is invariant to
the following exchanges of indices: μ ↔ ν, ρ ↔ λ, and μν ↔ ρλ. This yields
an eight-fold permutational symmetry in the two-electron integrals, and the
number of unique integrals, therefore, is only ≈ n4/8 (the exact number of
unique integrals is 1

4 n(n + 1)[ 1
2 n(n + 1) + 1]). For computational efficiency,

related basis functions (atomic orbitals) are grouped into shells, and the two-
electron integrals are computed for one shell quartet at a time. Thus, if M,
N, R, and S represent shells of atomic orbitals, all integrals (μν|ρλ) with
μ ∈ M, ν ∈ N, ρ ∈ R, and λ ∈ S for a fixed M, N, R, S shell quartet are com-
puted together. All basis functions constructed from the same set of primitive
Gaussian functions are included in a shell, and a shell may represent one an-
gular momentum, for instance, an f shell, or a mixture of angular momenta,
such as an sp shell.

In practice, integral screening is employed before the integrals are com-
puted. The screening is performed using the Schwarz inequality

|(μν|ρλ)| ≤ (μν|μν)1/2(ρλ|ρλ)1/2. (7.4)

If the integrals (μν|ρλ) are found to be below a certain threshold for all
μ, ν, ρ , λ in the M, N, R, S quartet, the entire shell quartet can be neglected.
This screening can significantly reduce the number of integrals that must be
evaluated, and for extended systems the number of nonnegligible integrals
approaches O(n2). 1 Integral evaluation, however, is still a computationally
expensive step, often the dominant step in conventional Hartree–Fock and
density functional methods, and utilization of the permutational symmetry
of the integrals is important to further reduce the computational work.

The computational expense of evaluating the integrals in a shell quartet
is strongly dependent on the angular momenta represented in the quartet.
The computation time is larger for shells with basis functions of high angular
momentum because these shells contain more basis functions and because
the evaluation of the integral for each of these functions generally is more
costly. We note that for a shell with a total angular momentum of l, the num-
ber of basis functions (using spherical harmonics) is 2l + 1, and each of these
functions is a product of a polynomial of degree l and a linear combination of
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Gaussian functions. For instance, evaluation of a shell quartet of f functions,
( f f | f f ), may take more than a thousand times longer than that of a pure s
quartet, (ss|ss). The exact time required to compute a shell quartet of inte-
grals, however, is usually not known in advance. When designing parallel
algorithms for two-electron integral computation, one is therefore faced with
the challenge of creating an even distribution over a number of processes of
tasks whose sizes vary widely but are not known exactly.

In the remainder of this chapter we will discuss different ways to par-
allelize the computation of the two-electron integrals with focus on how to
achieve load balance. Two-electron integral computation in a quantum chem-
istry code is often performed in the context of a procedure such as Fock matrix
formation or two-electron integral transformation, but we here consider the
integral computation separately to specifically concentrate on strategies for
distributing the work. Examples of parallel two-electron integral computation
in quantum chemical methods are discussed in chapters 8, 9, and 10.

7.2 Parallel Implementation Using Static Load Balancing

The most straightforward way to distribute the work in the two-electron inte-
gral computation is to employ a static load balancing scheme that distributes
the tasks in a round-robin fashion. Because all the integrals belonging to a
shell quartet are computed together, the smallest possible tasks that can be
distributed are individual shell quartets. The distribution of individual shell
quartets is advantageous in terms of achieving load balance because, given
the nonuniformity of the computational tasks, breaking the tasks into the
smallest possible chunks will yield a more even distribution. In parallel elec-
tronic structure programs, however, distribution of individual shell quartets
is not always feasible. For instance, if the two-electron integrals will subse-
quently be transformed from the atomic to the molecular orbital basis, the
memory and communication requirements can be reduced significantly by
distributing shell pairs instead of shell quartets. We will here analyze the per-
formance of two parallel algorithms for two-electron integral computation,
one algorithm distributing individual shell quartets and the other algorithm
distributing shell pairs. We note that, while distribution of just one shell in-
dex is a very straightforward way to parallelize the two-electron integral
computation, this distribution yields only a small number of tasks, which are
irregular, and load imbalance will cause rapid performance degradation as
the number of processes increases.

7.2.1 Parallel Algorithms Distributing Shell Quartets and Pairs

Two parallel algorithms for two-electron integral computation using static
load balancing are outlined in Figure 7.1. The algorithms, designated (a)
and (b), both employ a static work distribution scheme with a round-robin



P1: Binaya Dash

February 27, 2008 13:57 51644 51644˙C007

120 Parallel Computing in Quantum Chemistry

i = 0 i = 0

For M = 1, nshell For M = 1, nshell

For N = 1, M For N = 1, M

For R = 1, M If i mod p eq this_proc

If R eq M: Smax = N For R = 1, M

Else: Smax = R If R eq M: Smax = N

For S = 1, Smax Else: Smax = R

If i mod p eq this_proc For S = 1, Smax

Compute (MN|RS) Compute (MN|RS)

Endif End for

i = i + 1 End for

End for Endif

End for i = i + 1

End for End for

End for End for

(a) (b)

FIGURE 7.1
Outline of two parallel algorithms for two-electron integral computation using static
load balancing. Algorithm (a) distributes shell quartets MNRS, and algorithm (b) distributes
shell pairs MN. Both algorithms utilize the full integral permutation symmetry. The number of
shells and the process count are denoted nshell and p, respectively, and this_proc (0 ≤ this_proc
< p) represents the process identifier.

allocation of tasks, require no communication, and utilize the full eight-fold
permutational symmetry of the integrals. The algorithms differ in the sizes
of the computational tasks that are distributed, however: algorithm (a) dis-
tributes individual shell quartets MRNS, whereas algorithm (b) uses a dis-
tribution of shell pairs MN. In algorithm (b), once an MN shell pair has been
assigned to a process, this process computes all the integrals (MN|RS) for that
MN pair, where RS represents all included RS shell pairs. The number of tasks
to be distributed in algorithm (a) is the number of shell quartets, nMNRS, and
in algorithm (b) the number of tasks equals the number of MN shell pairs,
nMN. Expressed in terms of the number of shells in the basis set, nshell, the
number of tasks in algorithms (a) and (b) are ≈ n4

shell and ≈ n2
shell, respec-

tively (ignoring constant factors arising from the utilization of permutational
symmetry), and the degree of parallelism, thus, is much higher for algorithm
(a). When Schwarz screening (Eq. 7.4) is employed, the number of tasks in
(a) and (b) become ∝ n2

shell and ∝ nshell, respectively, for large molecules. In
the next section we will present a detailed performance analysis of the two
algorithms.
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7.2.2 Performance Analysis

To analyze the performance of algorithms (a) and (b), we will first obtain
expressions for the parallel efficiencies. For these algorithms, which are fully
parallelized and involve no communication, load imbalance is the only factor
that may contribute significantly to lowering the parallel efficiency, and to
predict the parallel performance, we must be able to estimate this load im-
balance. Additionally, to make quantitative predictions for the efficiency, it is
necessary to collect some statistics for the computational times required for
evaluation of the integrals in a shell quartet.

Let us first consider how to model the load imbalance. We know that
the times required to compute the two-electron integrals for individual shell
quartets (MN|RS) vary, and we will consider these times as a distribution
with mean μq and standard deviation σq . Likewise, the computation times
for all the integrals corresponding to fixed MN shell pairs, (MN|RS), form
a distribution with mean μp and standard deviation σp. For algorithm (a), a
round-robin distribution of shell quartets using p processes will yield about
nMNRS/p shell quartets to be handled by each process. We will assume that
the processing time for each of these tasks is selected from a random distri-
bution described by the appropriate μ and σ . This is a good approximation
if the number of tasks is much greater than p, and, in turn, p � 1. It then
follows from basic probability theory that the total process execution times in
algorithm (a) will form a distribution with mean μa = μq ×nMNRS/p and stan-
dard deviation σa = σq × √

nMNRS/p. Analogously, for algorithm (b) random
distribution of nMN tasks (shell pairs) over p processes yields a distribution of
process execution times with mean μb = μp ×nMN/p and standard deviation
σb = σp × √

nMN/p.
We will now use these distributions to express the total execution time,

that is, the maximum execution time for any one process, for algorithms (a)
and (b). This time can be approximated by a sum of the average execution
time and a load imbalance term proportional to the standard deviation as
follows

ta ( p, nMNRS) = μa ( p, nMNRS) + k( p)σa ( p, nMNRS)

= μq
nMNRS

p
+ k( p)σq

√
nMNRS

p
(7.5)

tb( p, nMN) = μb( p, nMN) + k( p)σb( p, nMN)

= μp
nMN

p
+ k( p)σp

√
nMN

p
. (7.6)

We have here expressed the load imbalance as the standard deviation σ times
a factor k( p), which is a function of the number of processes, and we will
determine the functional form for k( p) in section 7.2.2.1. From Eqs. 7.5 and
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7.6, we get the following expressions for the efficiencies

Ea ( p, nMNRS) = ta (1, nMNRS)
pta ( p, nMNRS)

= 1 + k(1)(σq /μq )/
√

nMNRS

1 + k( p)(σq /μq )
√

p/nMNRS
(7.7)

Eb( p, nMN) = tb(1, nMN)
ptb( p, nMN)

= 1 + k(1)(σp/μp)/
√

nMN

1 + k( p)(σp/μp)
√

p/nMN
. (7.8)

By means of Eqs. 7.7 and 7.8 the scalability of the algorithms can be in-
vestigated. We first note that k( p) is a slowly varying function of p and can
be assumed to be constant for the purpose of scalability analysis (see sec-
tion 7.2.2.1). The algorithms are weakly scalable because the efficiency can be
maintained as the number of processes increases provided that the problem
size increases as well. For algorithm (a) to maintain a nearly constant efficiency
as p increases, the number of shell quartets, nMNRS, must grow at the same rate
as p, while for algorithm (b), maintaining a constant efficiency requires the
number of shell pairs, nMN, to increase proportionally to p. With nshell shells
in the basis set, nMNRS and nMN will be proportional to n4

shell and n2
shell, respec-

tively. Thus, in algorithm (a), nshell needs to increase only as p1/4 to keep the ef-
ficiency from decreasing, whereas in algorithm (b) nshell must increase as p1/2.
Likewise, when integral screening is employed, nshell must increase propor-
tionally to p1/2 and p for (a) and (b), respectively, to maintain a constant effi-
ciency. This difference in scalability for the two algorithms has important con-
sequences for the parallel performance as the number of processes gets large.

To employ the performance models in Eqs. 7.7 and 7.8 for quantitive pre-
dictions of the parallel performance, we need an expression for k( p) as well
as the means and standard deviations associated with the integral compu-
tation. We will discuss below how to obtain these parameters, and we will
illustrate both the predicted and the actual, measured performance for the
two algorithms.

7.2.2.1 Determination of the Load Imbalance Factor k(p)

To obtain an expression for k( p) we will assume that the process execution
times for both algorithms (a) and (b) form a normal distribution, which is a
reasonable assumption (according to the Central Limit Theorem from prob-
ability theory) when there is a large number of tasks per process. Assuming
a normal distribution with mean μ and standard deviation σ , the proba-
bility of a process execution time being below μ + kσ can be computed as
1
2 + 1

2 erf(k/
√

2), where erf denotes the error function. If there are p processes,
the probability that all process execution times are below μ+kσ is then given
as [ 1

2 + 1
2 erf(k/

√
2)]p. We need Eqs. 7.5 and 7.6 to be fairly accurate estimates

for the maximum execution time, and we must therefore choose k such that
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the probability that all process execution times are below μ + kσ is nearly
unity. Let this probability be represented by T . We then need to solve the
following equation for k

[
1
2

+ 1
2

× erf(k/
√

2)
]p

= T (7.9)

which yields

k =
√

2 × erf−1(2T1/p − 1). (7.10)

In our performance models we will use a value of T = 0.99, that is, we will
require that the probability that no process execution time exceeds that of the
model equals 99%. Some care must be exercised in choosing an appropriate
T value. A value too close to unity will cause Eqs. 7.5 and 7.6 to predict
unrealistically high total execution times because there is no upper limit for
the normal distribution. If T is too small, on the other hand, Eqs. 7.5 and 7.6
are likely to underestimate the total execution time. For simplicity, we will
use an approximate form for the inverse error function, and for T = 0.99 we
find the following expression to be a very good approximation to Eq. 7.10

k( p) ≈
√

1.9 × ln p + 5.3. (7.11)

We will use this functional form for k( p) in the performance models for al-
gorithms (a) and (b) below. The term

√
1.9 × ln p + 5.3 increases very slowly

with p and is nearly constant over a wide range of process counts. Note that
the statistical approach employed in modeling the load imbalance entails
using a k( p) function that does not tend to 0 as p approaches 1, and the model
breaks down for very small process counts. However, if Eqs. 7.5 and 7.6 were
employed simply to predict the single-process timings, a value of 0 should be
used for k(1).

7.2.2.2 Determination of μ and σ for Integral Computation

To compute the total execution times and efficiencies from Eqs. 7.5–7.8, the
means, μq and μp, and standard deviations, σq and σp, are required. In
Table 7.1 we show measured values for these quantities for a number of
commonly used basis sets, ranging from the minimal set STO-3G to the large
correlation-consistent quadruple-ζ set cc-pVQZ. The values reported here
were determined on a single processor of a Linux cluster 2 for the ethane
molecule using the default two-electron integrals program in the MPQC pro-
gram suite.3 The values may show considerable variation with the employed
integrals program and hardware, which should therefore be chosen to be
representative of what will be employed in the parallel application. For pre-
dicting the parallel efficiency, only the ratio σ/μ is required. For individual
shell quartets MNRS, the ratio σq /μq ranges from about 0.5 for a minimal
basis set to 2–4 for large basis sets. When considering all integrals (MN|RS)
together, the ratio of the standard deviation to the mean, σp/μp shows less
variation and assumes values in the range 0.6–1.5 for the basis set studied.
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TABLE 7.1

The average time (μ) and the ratio of the standard deviation to the average time
(σ/μ) for computation of shell quartets of two-electron integrals. Results were
obtained for the ethane molecule on a single processor of a Linux cluster.2

The number of basis functions and shells in the basis set are denoted n and
nshell, respectively. The subscript q refers to individual shell quartets of integrals,
(MN|RS), whereas the subscript p refers to sets of integrals (MN|RS) for one MN
pair and all included RS pairs

Basis Set n nshell μq (μs) σq/μq σp/μp

STO-3G 16 10 32 0.5 0.6
6-31G* 42 20 14 1.4 0.8
cc-pVDZ 58 28 11 3.7 1.2
cc-pVTZ 144 54 10 2.0 1.1
cc-pVQZ 290 88 23 2.6 1.5

The ratio of the standard deviation to the mean tends to increase with im-
provement of the basis set, although the cc-pVDZ set is an exception. Note
that the largest μq value is found for the STO-3G basis set; this basis set does
not contain uncontracted s functions, which significantly increases the cost of
evaluating the s integrals and yields a large mean even though there are no
high-angular momentum basis functions.

7.2.2.3 Predicted and Measured Efficiencies

Let us use the performance models in Eqs. 7.7 and 7.8 to analyze the par-
allel performance of algorithms (a) and (b) in more detail. We will consider
the parallel performance on a Linux cluster,2 and we will employ the values
from Table 7.1 for the average time and standard deviation for two-electron
integral computation as well as the functional form for k given in Eq. 7.11.
In Figure 7.2 we illustrate parallel efficiencies predicted by the models for
algorithms (a) and (b). Results were obtained using the correlation-consistent
triple-ζ basis set cc-pVTZ for the ethane, butane, and octane molecules. For
the ratios σq /μq and σp/μp, the values 2.0 and 1.1, respectively, were used. It is
clear from Figure 7.2 that the efficiency for algorithm (a) decreases much more
slowly with the number of processes than that of algorithm (b), and that, for a
given problem size, the efficiency for algorithm (a) is significantly higher than
for algorithm (b). In addition to the predicted efficiencies, Figure 7.2 also illus-
trates actual performance data obtained by running the parallel programs for
butane. For both algorithms, there is good agreement between the predicted
and measured efficiencies, although for algorithm (b) the model predicts ef-
ficiencies that are somewhat too low for small process counts. The results
demonstrate the validity of the performance models for both algorithms, the
predicted efficiencies showing the correct trends and clearly exposing the
shortcomings of algorithm (b).

On the basis of the results presented above we conclude that, for a static
distribution of work in the parallel computation of two-electron integrals,
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FIGURE 7.2
Predicted and measured parallel efficiencies on a Linux cluster2 for two-electron integral compu-
tation for alkanes employing the cc-pVTZ basis set and using static distribution of shell quartets
(a) and shell pairs (b).∗

distribution of individual shell quartets can yield very high parallel efficiency,
even for large numbers of processes. A static distribution of shell pairs, on the
other hand, produces load imbalance that causes the efficiency to decrease,
limiting the number of processes that can be utilized. In quantum chemistry
applications, however, a static distribution of shell pairs is often employed
because it can be advantageous in terms of reducing the memory requirement
or the amount of communication (see chapter 9 for an example). Hence, it is of
interest to investigate whether the parallel efficiency can be improved when
using a pair distribution. This is the topic of the next section in which we will
analyze the performance of an algorithm for parallel two-electron integral
computation that distributes shell pairs by means of a dynamic manager–
worker model.

7.3 Parallel Implementation Using Dynamic Load Balancing

We demonstrated in the previous section that a static distribution of shell
pairs in the computation of the two-electron integrals causes a significant
performance degradation for large process counts, resulting in a reduced de-
gree of parallelism. For instance, for the butane molecule using the cc-pVTZ

∗ Since no communication is required by this algorithm, parallelism was simulated by sequen-
tially running batches of integrals. This permitted data to be collected for more processes than
the number of available processors in the employed cluster.
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basis set, the measured parallel efficiency for the integral computation was
around 93% for a process count p = 20, about 78% for p = 50, and dropped
below 60% around p = 200. The performance degradation for the static dis-
tribution of shell pairs is caused by load imbalance, and we will here discuss
an alternative way to distribute shell pairs, employing a dynamic manager–
worker distribution to mitigate the load imbalance that arises for the static
distribution.

7.3.1 Parallel Algorithm Distributing Shell Pairs

The optimal distribution of tasks (shell pairs) will be the distribution that
minimizes the maximum execution time for any process. Finding the opti-
mal distribution can be formulated as a variant of a bin packing problem in
which a number of items with different weights have to be distributed into a
given number of bins so as to minimize the maximum weight of items in a
bin. For bin packing problems, it is generally advantageous to sort the items
according to decreasing size and to distribute the larger items first. There
are a number of commonly used heuristics for providing approximate so-
lutions to bin packing problems, and we will here use the so-called worst-fit
decreasing heuristic.4 For the parallel integral computation, this corresponds to
sorting the computational tasks according to decreasing size and letting each
worker process, once it becomes idle, request the largest remaining task on the
manager.

To use this scheme for the parallel integral computation, one process is
designated the manager, and a list of tasks (MN shell pairs), sorted accord-
ing to decreasing size, is created on the manager. The exact sizes (compu-
tational times) of the tasks are not known in advance, but we will use the
product of the number of basis functions in the M and N shells as a mea-
sure for the size of the computational task corresponding to the MN shell
pair. These shell pairs will be assigned by the manager to the worker pro-
cesses by request, one at a time, with the largest tasks distributed first. An
algorithm, designated algorithm (c), using this dynamic manager–worker
scheme for parallelizing the two-electron integral computation is outlined in
Figure 7.3. The manager process only distributes computational tasks and
does not compute any integrals itself, and all the computation is done by the
worker processes. Each worker process requests individual MN shell pairs
from the manager and, after receiving a shell pair, proceeds to compute the
(MN|RS) set of integrals. Upon completing this task, the process requests
a new shell pair and so forth until there are no tasks left. At this point, the
request for a task will be answered by a message from the manager telling the
worker that all tasks have been processed. The manager–worker work dis-
tribution scheme has been implemented using point-to-point blocking send
and receive operations throughout. Note that this algorithm, like algorithms
(a) and (b) in section 7.2, utilizes the full permutational symmetry of the
integrals.
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If (this_proc eq manager)

Create list of sorted MN shell pairs (descending size)

int nMN = nshell(nshell + 1)/2
int requests_remaining = nMN + p − 1
int task_index = 0
While (requests_remaining)

Receive work request from a worker

If (task_index < nMN)

Send next MN pair from list to worker

task_index = task_index + 1

Else

Send “finished” message to worker

Endif

requests_remaining = requests_remaining − 1

End while

Else

int finished = 0

Send request for MN pair to manager

Receive MN pair or “finished” from manager

While (!finished)

For R = 1, M
If R eq M: Smax = N
Else: Smax = R
For S = 1, Smax

Compute (MN|RS)
End for

End for

Send request for MN pair to manager

Receive MN pair or “finished” from manager

End while

Endif

FIGURE 7.3
Outline of the parallel algorithm (c) for two-electron integral computation using dynamic
manager–worker distribution of shell pairs MN. Indices M, N, R, and S represent shells of
basis functions, nshell is the number of shells, p is the process count, and this_proc (0 ≤ this_proc
< p) is the process identifier.
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7.3.2 Performance Analysis

Let us consider a performance model for algorithm (c). We first note that, for
a manager–worker model in which one process is dedicated to distributing
tasks to the others, the maximum efficiency that can be attained with p pro-
cesses is bounded by [( p − 1)/p] × 100%. Other factors that may contribute
to lowering the efficiency are load imbalance on the worker processes and
communication overhead.

7.3.2.1 Load Imbalance

The load imbalance resulting from a dynamic distribution of tasks is very
difficult to model because the times required for the individual computational
tasks are not known in advance. Provided that the number of tasks is much
larger than the number of processes, however, it is reasonable to assume that
the dynamic task distribution will enable an essentially even distribution of
the load. For this to remain true as the number of processes increases, the
number of tasks, nMN, must increase proportionally to p. Although this is the
same growth rate as obtained for a static work distribution, the actual value
for nMN needed for high efficiency for a given process count is much smaller
for the dynamic distribution, and the assumption of perfect load balance is
therefore adequate for our purposes.

7.3.2.2 Communication Time

Assigning an MN shell pair to a worker requires exchange of two short mes-
sages between the manager and a worker: a request from the worker (message
length one integer) and a response from the manager (message length two
integers). The manager must assign a total of nMN shell pairs to the work-
ers and must also send out a final message to each process when there are
no MN pairs left. Using integers of length 4 bytes, the total communication
time on the manager then equals (nMN + p − 1) × (2 × α + (4 + 8) × β).
When a worker receives an assigned MN shell pair, it proceeds to compute
all integrals (MN|RS) for that MN shell pair and all RS shell pairs. This
computation of O(n2

shell) integrals takes considerably longer time than the
message exchange with the manager required to get the MN shell pair, and
the worker processes therefore spend an insignificant portion of their time
on communication. Consider as an example the butane molecule using the
correlation-consistent triple-ζ basis set cc-pVTZ. The number of unique MN
shell pairs is 4656, and for a calculation with p = 100, using α = 50 μs and
β = 10 ns, the total communication time on the manager is 0.48 seconds. For
this case, the average computational time for a worker process is 2.18 seconds
on the employed Linux cluster.2 Thus, the manager is idle most of the time,
and contention on the manager process is unlikely to happen. Additionally,
each worker process spends only about 0.48/99 = 4.8 ms doing communica-
tion, which is a negligible fraction (about 0.2%) of the computational time.
Therefore, in this case, the communication time can be safely neglected in the
performance model.



P1: Binaya Dash

February 27, 2008 13:57 51644 51644˙C007

Two-Electron Integral Evaluation 129

 0

 20

 40

 60

 80

 100

40 80 120 160 200

E
ffi

ci
en

cy
 (

%
)

Number of processes

Dynamic (measured)
Dynamic (predicted)
Static (predicted)

FIGURE 7.4
Predicted and measured parallel efficiencies for two-electron integral computation using dy-
namic distribution of shell pairs. The predicted efficiency for static distribution of shell pairs is
included for comparison. Results were obtained for C4H10 with the cc-pVTZ basis set.

7.3.2.3 Predicted and Measured Efficiencies

With these considerations, we then get the following simple performance
model for algorithm (c), expressing the expected efficiency as a function of
the number of processes

Ec( p) = p − 1
p

. (7.12)

In Figure 7.4, we show performance data for algorithm (c) obtained on a Linux
cluster2 for the butane molecule with the cc-pVTZ basis set. The figure shows
both the measured and the predicted efficiency for algorithm (c) and also
displays the efficiency predicted for the static pair distribution, algorithm
(b), from section 7.2. We first observe that the simple performance model
accurately predicts the efficiency for algorithm (c) over a large range of process
counts, and that the efficiency increases with the number of processes. The
increased efficiency arises because the fraction (1/p) of potential work that is
lost by not using the manager for computation of integrals decreases as the
number of processes increases. As the process count increases, the efficiency
quickly approaches a nearly constant value close to 100%, and algorithm (c)
thus exhibits strong scalability, being able to sustain a constant, high efficiency
up to nearly 200 processes. As the number of processes grows very large,
however, even dynamic load balancing is unable to create an even distribution
of work, and the efficiency will eventually decrease.
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In summary, we have here analyzed the performance of a dynamic
manager–worker model for distributing shell pairs in the parallel compu-
tation of two-electron integrals. The analysis clearly demonstrates that the
dynamic distribution of shell pairs provides significantly higher parallel ef-
ficiency than the static shell pair distribution, except for very small process
counts, and that dynamic load balancing enables utilization of a large number
of processes with little loss of efficiency.
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8
The Hartree–Fock Method

The Hartree–Fock method, also known as the self-consistent field method, is
central to quantum chemistry. Incorporating the idea of molecular orbitals, it
is a valuable and computationally inexpensive method for providing a qual-
itative description of the electronic structure of molecular systems. Impor-
tantly, the Hartree–Fock method is also the foundation for more sophisticated
electronic structure methods that include electron correlation, for instance
Møller–Plesset perturbation theory and the coupled-cluster and configura-
tion interaction methods. An efficient Hartree–Fock program is an essential
part of a quantum chemistry program suite, and in this chapter we will look
at parallel implementation of the Hartree–Fock method. We will first give
a brief overview of the computational steps involved in the Hartree–Fock
procedure and how these steps can be parallelized. We will then consider
in detail the parallel implementation of the formation of the Fock matrix,
which is the computationally dominant step. We will discuss two parallel
Fock matrix formation algorithms, using replicated and distributed data,
respectively.

8.1 The Hartree–Fock Equations

In Hartree–Fock theory, each electron is assigned to a molecular orbital, and
the wave function is expressed as a single Slater determinant in terms of the
molecular orbitals. For a system with nel electrons the wave function � is then
given as

� = 1√
nel!

∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) · · · ψnel (x1)
ψ1(x2) ψ2(x2) · · · ψnel (x2)

...
...

. . .
...

ψ1(xnel ) ψ2(xnel ) · · · ψnel (xnel )

∣∣∣∣∣∣∣∣∣
. (8.1)

131
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In Eq. 8.1, ψi represents a molecular orbital, and xk designates the spatial and
spin coordinates of electron k (rk and ωk)

ψi (xk) = θi (rk)σ (ωk) (8.2)

where θi is a spatial orbital, and σ is a spin function, either α or β. In the
following we will consider the closed-shell case, and we will assume that the
spin coordinates have been eliminated so that we can formulate the equations
in terms of spatial orbitals.

The molecular orbitals are expressed as linear combinations of atomic
orbitals φμ

θi (r) =
n∑
μ

Cμiφμ(r) (8.3)

where n is the number of atomic orbitals (basis functions), and Cμi is a molecu-
lar orbital coefficient. Expressing the nonrelativistic, time-independent
Schrödinger equation using a wave function of this form yields a general-
ized eigenvalue problem, the Roothaan equations,

FC = SCε (8.4)

in which F represents the Fock matrix, S is the overlap matrix, C is the matrix
of molecular orbital coefficients with elements Cμi , and ε is a diagonal matrix
of orbital energies. The Fock matrix can be expressed as a sum of a one-electron
part Hcore (the core Hamiltonian) and a two-electron part G, and its elements
are given as follows in the atomic orbital basis

Fμν = Hcore
μν + Gμν

= Hcore
μν +

∑
ρλ

Dρλ

[
(μν|ρλ) − 1

2
(μλ|ρν)

]
. (8.5)

The elements Dρλ of the density matrix D are computed from the molecular
orbital coefficients (assumed to be real)

Dρλ = 2
nel/2∑

i

Cρi Cλi (8.6)

where the sum runs over all occupied molecular orbitals i .
The electronic contribution to the Hartree–Fock energy is computed as

follows

Eel = 1
2

∑
μν

Dμν(Hcore
μν + Fμν) (8.7)

and the total Hartree–Fock energy is the sum of the electronic energy and the
nuclear repulsion energy: EHF = Eel + Enuc.
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The Roothaan equations are solved for the molecular orbital coefficients
C and orbital energies ε, and the equations must be solved by an iterative
procedure because the Fock matrix itself depends on C. The most compu-
tationally expensive step in the Hartree–Fock procedure is the formation of
the two-electron part, G, of the Fock matrix; the computation of G requires
O(n4) steps, where n is the number of basis functions (with integral screening
this cost asymptotically approaches O(n2)). In addition to being the major
computational step in the Hartree–Fock procedure, the computation of the
G matrix is also, by far, the step posing the greatest challenge with respect
to efficient parallelization. The G matrix is computed from the two-electron
integrals, and because of the large computational expense of evaluating these
integrals, their full eight-fold permutational symmetry should be utilized,
if possible. When using the full symmetry of the integrals (μν|ρλ), namely
μ ↔ ν, ρ ↔ λ, and μν ↔ ρλ, the integral (μν|ρλ) contributes to six Fock
matrix elements: Fμν and Fρλ from the first term in the summation on the
right hand side of Eq. 8.5 and Fμρ , Fμλ, Fνρ , Fνλ from the second term in the
summation. Consequently, for each integral computed, the corresponding six
elements of the density matrix must be available, and six elements of the Fock
matrix must be updated with the computed contributions.

8.2 The Hartree–Fock Procedure

Let us briefly consider the steps involved in the Hartree–Fock procedure and
how to parallelize these steps. Figure 8.1 outlines the basic computational
procedure for solving the Hartree–Fock equations for closed-shell systems.
Note that the electronic density matrix D is related to the molecular orbital
coefficient matrix C (for which we are solving the equations) via Eq. 8.6. A
guess for D is first obtained from, for example, the extended Hückel method
or by projecting the density computed with a small basis set into the cur-
rent basis set. The core Hamiltonian, Hcore, is then computed from the kinetic
energy and nuclear attraction integrals. This is followed by computation of
the overlap matrix for the basis set, S, which is diagonalized to obtain the
overlap eigenvalues, s, and eigenvectors, U. Using s and U, an orthogonal
basis is formed, in this case using canonical orthogonalization, which em-
ploys the transformation matrix X = Us−1/2. At this point, an iterative proce-
dure is begun to determine C. In the iterative procedure, the Fock matrix is
first formed by computing the density-dependent two-electron part (electron–
electron coulomb and exchange contributions), G(D), and adding it to Hcore.
The result is transformed into the orthogonal basis, yielding F′, which is then
diagonalized to produce the eigenvectors C′ and the eigenvalues ε. Next, the
eigenvectors C′ are transformed to the original basis, C = XC′. Finally, Cocc,
which contains the columns of C corresponding to the occupied orbitals, is
used to compute the new D. To accelerate convergence, this density is typically
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Guess D

Compute Hcore

Compute S

Diagonalize S to get s and U

Form X = Us−1/2

Iterate until converged:

Form F = Hcore + G(D)

Form F′ = X†FX

Diagonalize F′ to get ε and C′

Form C = XC′

Form D = 2CoccC†
occ

Extrapolate D

FIGURE 8.1
An outline of the Hartree–Fock procedure. The Fock matrix F is a sum of a one-electron
part, Hcore, and a density-dependent two-electron part, G(D), where D is the electronic
density matrix. S is the overlap matrix with eigenvalues s and eigenvectors U, and F′ is the
orthogonalized Fock matrix with eigenvalues ε and eigenvectors C′. Cocc is the portion of the
molecular orbital matrix C corresponding to the occupied orbitals.

extrapolated to obtain the new guess density for the next iteration, and this
extrapolation requires operations such as matrix addition and matrix–scalar
products.

The major components of the Hartree–Fock procedure, listed roughly in
order of decreasing computational requirements, are:

1. Fock matrix formation
2. Matrix diagonalization
3. Matrix multiplication
4. Computation of Hcore and S matrix elements
5. Matrix addition
6. Matrix-scalar product

In a parallel Hartree–Fock program, these steps can be performed with
either replicated or distributed data. When distributed data is used, the ma-
trices are blocked in such a way that all the elements corresponding to the basis
functions within a given pair of shells are always found on the same processor.
This grouping of the elements by shells is used because integral libraries, for
computational efficiency, compute full shell blocks of integrals including all
the functions within the involved shells. For the parallel computation of Hcore
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and S, shell pairs are distributed among the processes, and each process com-
putes the parts of these matrices corresponding to the assigned shell pairs. If a
replicated data distribution is used, an all-to-all broadcast of these individual
contributions will provide the full matrix on each node. The linear algebra
operations (matrix diagonalization, multiplication, addition, and scalar prod-
uct) can be performed with libraries such as ScaLAPACK1 or Global Arrays.2

The parallel formation of the Fock matrix, which is the computationally most
demanding step, is discussed in detail in sections 8.3 and 8.4 using a repli-
cated data and a distributed data approach, respectively. Replicating all the
data allows for a simple parallelization scheme requiring only a single com-
munication step at the end. The use of fully distributed data is significantly
more complicated, but it eliminates the possible O(n2) memory bottleneck
of the replicated data approach and creates the potential for treating larger
systems.

8.3 Parallel Fock Matrix Formation with Replicated Data

In Figure 8.2, we show the outline of an algorithm for parallel formation of the
Fock matrix (two-electron part only) using replicated Fock and density ma-
trices. The algorithm is integral-direct, computing the two-electron integrals
on the fly instead of storing them. Each process computes a subset of the two-
electron integrals and updates the Fock matrix with the contributions arising
from these integrals. Work is assigned to processes by distributing unique
atom quartets ABC D (A ≥ B, C ≥ D, AB ≥ C D), and letting each process
compute the subset of the integrals (μν|ρλ) for which μ, ν, ρ, and λ are basis
functions on atoms A, B, C , and D, respectively; because basis functions are
grouped into shells for the purpose of integral computation, this corresponds
to computing the integrals (MN|RS) for all shells M, N, R, and S on the atoms
A, B, C , and D, respectively.

Processes request tasks (atom quartets) by calling the function get_quartet,
which has been implemented in both a dynamic and a static version. The
dynamic work distribution uses a manager–worker model with a manager
process dedicated to distributing tasks to the other processes, whereas the
static version employs a round-robin distribution of tasks. When the number
of processes is small, the static scheme achieves the best parallel performance
because the dynamic scheme, when run on p processes, uses only p − 1
processes for computation. As the number of processes increases, however,
the parallel performance for the dynamic task distribution surpasses that of
the static scheme, whose efficiency is reduced by load imbalance. With the
entire Fock and density matrix available to every process, no communication
is required during the computation of the Fock matrix other than the fetching
of tasks in the dynamic scheme. After all ABC D tasks have been processed,
a global summation is required to add the contributions to the Fock matrix
from all processes and send the result to every process.
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While (get_quartet(A,B,C ,D))

For M ∈ shells on atom A

For N ∈ shells on atom B

For R ∈ shells on atom C

For S ∈ shells on atom D

Compute (MN|RS)

Update F blocks FMN, FRS, FMR, FMS, FNR, FNS

using (MN|RS) and D blocks

DRS, DMN, DNS, DNR, DMS, DMR

End for

End for

End for

End for

End while

Global summation of Fock matrix contributions from all processes

FIGURE 8.2
Outline of a parallel algorithm for Fock matrix formation using replicated Fock and
density matrices. A, B, C , and D represent atoms; M, N, R, and S denote shells of basis functions.
The full integral permutational symmetry is utilized. Each process computes the integrals and
the associated Fock matrix elements for a subset of the atom quartets, and processes request
work (in the form of atom quartets) by calling the function get_quartet. Communication
is required only for the final summation of the contributions to F, or, when dynamic task
distribution is used, in get_quartet.

The employed grouping together of all the shells on an atom creates larger
tasks than if individual shell quartets were distributed. This grouping will
tend to worsen load imbalance for the static scheme because the number of
tasks is smaller, but the parallel efficiency of the dynamic task distribution will
be largely unaffected. The grouping of shells will be advantageous, however,
in the distributed data algorithm discussed in section 8.4 because it reduces
the communication requirement.

Let us develop a simple performance model for the replicated data al-
gorithm. We will ignore load imbalance in the model and assume that the
computation time can be expressed simply as

tcomp( p) = nintγint

p
(8.8)

where nint is the number of integrals to be computed, γint is the average time
required to compute an integral, and p is the number of processes. We have
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here ignored the local update of the Fock matrix elements, which takes a
negligible amount of time. The communication overhead is the time required
for the global summation of the Fock matrix contributions from all processes;
this summation can be performed with an all-reduce operation, and, using
Rabenseifner’s algorithm (Eq. 3.8), the communication time is

tcomm( p) = 2 log2 pα + p − 1
p

n2(β + γ /2) (8.9)

where α, β, and γ represent the latency, inverse bandwidth, and floating point
operation rate, respectively, and n is the number of basis functions; note that
the Fock matrix is symmetric so only about n2/2 elements are stored. Values
for α typically lie in the microseconds range, and β and γ will usually be
in the nanosecond range; because γint (Eq. 8.8) typically is on the order of a
microsecond and nint is O(n4) (or O(n2) with screening), the communication
time for this algorithm is negligible relative to the computation time, and the
performance model, then, simply predicts linear speedups, S( p) = p.

When using this algorithm in a Hartree–Fock program, where the Fock
matrix must be computed in each iteration, superlinear speedups are possible,
however. With a static task distribution, the Fock matrix formation algorithm
can store a number of the computed two-electron integrals and reuse them in
each iteration instead of recomputing them: a given process needs the same
subset of the integrals in every iteration and can therefore compute all of
the required integrals in the first iteration and store a number of them in
memory for reuse in later iterations. This integral storage has consequences
for the parallel performance of the algorithm. If we assume that each process
can store m integrals, the process will compute nint/p integrals in the first
iteration and nint/p − m integrals (when nint/p ≥ m) in each of the following
iterations. The speedup can then be expressed as

S( p) = nint + (niter − 1)(nint − m)
nint/p + (niter − 1)(nint/p − m)

= nintniter − m(niter − 1)
nintniter/p − m(niter − 1)

= p × nintniter − m(niter − 1)
nintniter − pm(niter − 1)

(8.10)

where niter represents the number of iterations. The second term in the denom-
inator in Eq. 8.10 gives rise to an upward concave speedup curve, yielding
superlinear speedups. Superlinear speedups are possible only when the al-
gorithm is used in an iterative procedure and each process allocates some
memory for integral storage. The results presented below pertain to a single
computation of the Fock matrix, in which case integral reuse is not possi-
ble, and the ideal speedups will be the usual linear speedups, S( p) = p.
In section 5.4, superlinear speedups are shown for a Hartree–Fock program
that uses the above Fock matrix formation algorithm and employs integral
storage.
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FIGURE 8.3
Speedups for parallel Fock matrix formation using replicated density and Fock matrices.
Speedups were obtained on a Linux cluster3 for the uracil dimer with the aug-cc-pVTZ basis set
and were computed relative to single-process timings using measured wall times.

In Figure 8.3 we show speedups for the replicated data algorithm,
measured for the uracil dimer, (C4N2O2H4)2, using the augmented
correlation-consistent triple-ζ basis set aug-cc-pVTZ (920 basis functions).
The algorithm displays nearly ideal speedups when using a dynamic task
distribution, achieving a speedup of 99 when running on 100 processes. The
speedups for the static distribution are high as well, although a bit lower than
for the dynamic case because load imbalance lowers the efficiency for larger
process counts; the static distribution yields a speedup of 88 on 100 processes.

Parallel Fock matrix computation using replicated density and Fock matri-
ces is easy to implement and achieves high parallel efficiency. Using replicated
matrices, however, may create a memory bottleneck: the Fock and density
matrices are both, nominally, of size O(n2), and keeping a copy of the entire
density and Fock matrix for every process may not be possible when the num-
ber of basis functions is very large. This memory bottleneck can be avoided
by distributing the matrices, and we will explore this approach in the next
section.

8.4 Parallel Fock Matrix Formation with Distributed Data

To avoid a potential memory bottleneck in parallel Hartree–Fock computa-
tions for very large systems, the density and Fock matrices must be
distributed, and in this section we will investigate a distributed data parallel
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Boolean got_quartet = get_quartet(A′,B ′,C ′,D′)

If (got_quartet)

begin_prefetch_blocks(A′,B ′,C ′,D′)

Endif

While (got_quartet)

A = A′; B = B ′; C = C ′; D = D′

got_quartet = get_quartet(A′,B ′,C ′,D′)

finish_prefetch_blocks(A,B,C ,D)

If (got_quartet)

begin_prefetch_blocks(A′,B ′,C ′,D′)

Endif

For M ∈ shells on atom A

For N ∈ shells on atom B

For R ∈ shells on atom C

For S ∈ shells on atom D

Compute (MN|RS)

Update F blocks: FMN, FRS, FMR, FMS, FNR, FNS

using (MN|RS) and D blocks

DRS, DMN, DNS, DNR, DMS, DMR

End for

End for

End for

End for

accumulate_blocks(A,B,C ,D)

flush_block_cache(A,B,C ,D)

End while

FIGURE 8.4
Outline of a parallel algorithm for Fock matrix formation using distributed Fock and density
matrices. A, B, C , and D represent atoms, M, N, R, and S denote shells of basis functions, and
only unique integrals are computed.

Fock matrix formation algorithm. Again, we will discuss only the computa-
tion of the two-electron part of the Fock matrix.

An outline of the algorithm is shown in Figure 8.4. Like the replicated data
algorithm from section 8.3, the distributed data algorithm is integral-direct,
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and the computational tasks to be distributed are atom quartets ABC D. The
tasks can be distributed statically using a round-robin scheme or dynamically
by means of a manager–worker model. Data distribution is accomplished
by distributing atom blocks FAB and DAB of the Fock and density matrices
across all processes; the blocks FAB and DAB include all matrix elements Fμν

and Dμν with μ and ν representing basis functions on atoms A and B, re-
spectively. Using distributed Fock and density matrices necessitates commu-
nication throughout the computation of the Fock matrix and makes efficient
parallelization significantly more challenging. Because the full permutational
symmetry of the integrals is utilized, each atom quartet of integrals ( AB|C D)
contributes to six atom blocks of the Fock matrix (FAB , FC D, FAC , FAD, FBC ,
FB D); to compute these contributions, six blocks of the density matrix (DC D,
DAB , DB D, DBC , DAD, DAC ) are required, and these blocks must be fetched
from the processes that store them. To improve performance, prefetching of
density matrix blocks is employed, so that a process will not need to wait idly
for data to arrive. When the contributions to the Fock matrix from an atom
quartet of integrals have been computed, they are sent to the processes that
store the corresponding blocks of the Fock matrix. The prefetching of density
matrix blocks and the sending of computed Fock matrix contributions to the
processes where they belong are effectuated by a one-sided message passing
scheme; this scheme is implemented via multi-threading using a version of
MPI that provides full support for multiple threads. By using one-sided com-
munication, it is possible to overlap computation and communication, and,
hence, a process may continue to perform computation while, at the same
time, a communication thread within the same process is active exchang-
ing data with other processes. Use of a one-sided communication scheme is
necessary to achieve high parallel performance in the distributed data Fock
matrix computation because the varying sizes of the atom quartets, com-
bined with the need to retrieve or send out density and Fock matrix blocks,
result in an irregular communication pattern involving frequent message
exchanges.

The algorithm, as outlined in Figure 8.4, proceeds as follows. Initially, a
process calls the functionget_quartet to fetch a computational task, namely
an atom quartet A′ B ′C ′ D′. If successful, the process then calls the function
begin_prefetch_blocks to start prefetching the required blocks of the
density matrix (DC ′ D′ , DA′ B ′ , DB ′ D′ , DB ′C ′ , DA′ D′ , DA′C ′ ). A while loop is then
entered, and inside this loop, a new atom quartet is first fetched; the prefetch-
ing of the density matrix blocks for the previous atom quartet is then com-
pleted (by calling finish_prefetch_blocks), and prefetching of density
matrix blocks for the new atom quartet is initiated. While the prefetching for
the new quartet is taking place, the integrals in the old quartet are computed
and contracted with the prefetched blocks of the density matrix (Eq. 8.5)
inside the loop over the shells M, N, R, and S on the atoms A, B, C , and D
to produce the corresponding Fock matrix contributions. When these con-
tributions have been computed for the entire current atom quartet, they are
sent to the processes where they are to be stored and added into the local



P1: Binaya Dash

February 27, 2008 14:30 51644 51644˙C008

The Hartree–Fock Method 141

Post non-blocking receive for xi 

Send request for xi

Compute using xi–1 

xi now needed: wait for xi

Post non-blocking receive for xi+1 

Compute using xi 

Send request for xi+1 

xi+1 now needed: wait for xi+1

P0 P1

Receive request and send xi 

Receive request and send xi+1 

Computation

thread

Communication

thread

FIGURE 8.5
Prefetching of data by process P0 from process P1 in the parallel Fock matrix computation with
distributed data. P0 and P1 each run a computation thread and a communication thread; only
the threads involved in the data exchange, namely the computation thread within P0 and the
communication thread within P1, are shown. The zigzag pattern on the computation thread
represents (potential) idle time.

Fock matrix blocks held by those processes. This is accomplished by calling
the function accumulate_blocks, and after thus accumulating the locally
computed contributions to the Fock matrix remotely, the blocks of the den-
sity matrix used to compute these contributions are cleared (by calling the
function flush_block_cache) before the next batch is fetched.

As discussed in section 7.3, it is advantageous from a load balancing per-
spective, when using a dynamic task distribution, to process computationally
expensive blocks first; however, if we are otherwise careless about the order in
which tasks are processed, it is possible for all of the tasks to simultaneously
request the same density block, resulting in a communication bottleneck for
the process holding that block. Thus, even when dynamic task distribution is
used, some degree of randomization is employed in the task ordering.

The multi-threaded approach used in the algorithm is illustrated in
Figure 8.5. Each process spawns a separate communication thread that han-
dles all requests from remote processes without blocking the work done by
the process’s main computation thread. Two types of requests can be sent to
the communication threads: requests for a specific block of the density matrix
to be sent out and requests to add data into a locally stored Fock matrix block.
Figure 8.5 only shows the fetching of the density matrix elements, and the
case illustrated involves only two processes, P0 and P1. The illustrated data ex-
change involves P0 requesting data from P1, and only the threads involved,
namely the computation thread within P0 and the communication thread
within P1, are shown in the figure. Note that the computation thread in P1 is
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not blocked by the data processing handled by P1’s communication thread:
communication and computation can progress simultaneously. As shown in
the figure, the computation thread within P0 first initiates a prefetch of a
block of the density matrix by sending a request to P1, whose communication
thread receives this request and starts sending the requested block back to
P0. Meanwhile, after issuing the prefetch, the computation thread in P0 con-
tinues to do computation until, at some later point, it needs to process the
data requested from P1. At this point, the computation thread issues a wait
call, which causes the computation to pause until the requested data have
arrived. Ideally, the data should already have arrived at this time, so only
a short interruption of execution in P0’s computation thread is required to
ascertain that the requested block is available.

Let us look at the communication requirement for this algorithm. For
each atom quartet, six blocks of the density matrix must be fetched, and
the corresponding six blocks of the Fock matrix must be sent where they
belong. The average size of these blocks is approximately (n/natom)2. The
communication requirement per process then becomes

tcomm( p) = nquartet

p
[12α + 12(n/natom)2β] (8.11)

where nquartet/p represents the number of atom quartets handled by each
process, and nquartet is given as

nquartet ≈
{

n4
atom/8 without screening

k2n2
atom/8 with screening.

(8.12)

We have here assumed that, with integral screening, each of the basis func-
tions on an atom, on average, interact with the basis functions on k other
atoms. Note that fetching entire atom blocks of the density at a time and
sending out computed Fock matrix contributions by atom blocks reduces the
total amount of data to be communicated by a factor of (n/natom)2 (without
screening) relative to the communication requirement resulting from sending
and fetching individual matrix elements for each two-electron integral.

Having determined the communication requirement, we can work out a
performance model for the algorithm. The amount of computation per process
is the same as for the replicated data algorithm, namely

tcomp( p) = nintγint

p
(8.13)

where nint denotes the number of integrals to be computed, and γint repre-
sents the average time required to compute an integral. The value of nint is
given as

nint ≈
{

n4/8 without screening

k2n4/(8n2
atom) with screening.

(8.14)
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With screening performed at the atom level, nint is computed as the product
of the number of atom quartets, 1

8 (knatom)2, and the average atom quartet size,
(n/natom).4

Using the earlier expressions for the computation time and the communi-
cation time, we can derive the efficiency for the algorithm. First, note that the
efficiency can be expressed as follows

E( p) = S( p)
p

= tcomp(1)
p

[
tcomp(1)/p + tcomm( p)

]

= 1
1 + tcomm( p)/tcomp( p)

(8.15)

where we have used the relation tcomp( p) = tcomp(1)/p, which assumes that the
computation steps are perfectly parallelized. Thus, the efficiency is a function
of the ratio of the communication time to the computation time. This ratio
can be derived from Eqs. 8.11–8.14.

tcomm( p)
tcomp( p)

=
(natom

n

)4 12α + 12(n/natom)2β

γint
. (8.16)

Note that this ratio (and, hence, the parallel efficiency) is not affected by the use
of integral screening. Because the value for the ratio tcomm( p)/tcomp( p) is inde-
pendent of p, the efficiency is independent of p, and the algorithm is strongly
scalable. Scalability is a particularly important property for a distributed data
algorithm whose advantage relative to the replicated data version is a reduced
memory requirement per process: to fully utilize the distributed data algo-
rithm’s potential for handling larger systems, the number of processes should
be large, and the algorithm, therefore, must be able to run efficiently also for
large process counts.

If values for α, β, γint, and n/natom are known, or can be estimated, the
efficiency provided by the algorithm can be computed. Typical values for α

and β for current high-performance networks (see Table 5.1) are α = 30 μs
and β = 14 ns/word (using 8 byte words), and the time required to compute
an integral, γint, is on the order of a microsecond on a current state-of-the-art
microprocessor for basis sets of double-ζ plus polarization quality; we will
use a value of 0.5 μs for γint, obtained on the Linux cluster3 used for testing
the algorithm. For a double-ζ plus polarization basis set, assuming a roughly
equal number of hydrogen and first-row atoms, the number of basis functions
per atom is n/natom ≈ 10. Using these values, and substituting Eq. 8.16 into
Eq. 8.15, we get a parallel efficiency E( p) ≈ 93% for the distributed data Fock
matrix formation algorithm. Note that in addition to depending on the num-
ber of basis functions per atom, the predicted efficiency varies considerably
with the relative values of γint and the parameters α and β. For instance, on
a network with lower performance, assuming a five-fold increase in α and β,
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FIGURE 8.6
Speedups for parallel Fock matrix formation using fully distributed density and Fock matri-
ces. Speedups were obtained using one compute thread per node on a Linux cluster3 for the
uracil dimer with the aug-cc-pVTZ basis set. Speedups were computed relative to single-process
timings using measured wall times.

the predicted efficiency would be reduced to about 73%; a decrease in pro-
cessor performance, on the other hand, such as increasing γint by a factor of
five, would increase the parallel efficiency to around 99%.

Speedup curves for the distributed data algorithm running on a Linux
cluster3 are shown in Figure 8.6. Speedups were measured for the same case
used for the replicated data algorithm in Figure 8.3, and an ideal speedup
curve corresponds to S( p) = p. Timings were measured with both a dynamic
and a static task allocation, and the dynamic scheme, which provides a more
even work distribution, yields better parallel performance for large process
counts, achieving a speedup of 91 for 100 processes compared with 81 for
the static distribution. The speedups for both the dynamic and static task
distributions in Figure 8.6 are somewhat lower than their counterparts in the
replicated data algorithm, Figure 8.3, because the communication overhead in
the distributed data algorithm is nonnegligible. As predicted, the distributed
data algorithm is scalable, yielding linear speedup curves and maintaining a
nearly constant efficiency as the number of processes increases.

To further investigate the scalability of the Fock matrix formation algo-
rithms as well as the effect of running multiple compute threads on a node, a
series of runs were performed using two compute threads (and one commu-
nication thread) per node, enabling computations to be performed with up to
200 compute threads; apart from the number of compute threads per node,
the test case was identical to the one used above. The resulting speedups are
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FIGURE 8.7
Speedups for parallel Fock matrix formation for distributed and replicated data algorithms when
running two compute threads per node. Speedups were obtained on a Linux cluster3 for the uracil
dimer with the aug-cc-pVTZ basis set and were computed relative to single-node timings with
one compute thread, using measured wall times.

shown in Figure 8.7 for both the replicated and distributed data algorithms.
For a given total number of compute threads, the speedups measured using
two compute threads per node are slightly lower, about 1–3%, than those
obtained for a single compute thread per node (cf. Figures 8.3 and 8.6). This
small decline in performance is caused by competition for shared resources,
including communication and memory bandwidth, between the two com-
pute threads on each node; in the distributed data case, the compute threads
also compete with the communication thread for the two processors available
on each node. When using a static task distribution, load imbalance causes
somewhat jagged speedup curves and a slightly decreasing efficiency, but
with dynamic load balancing, both algorithms are capable of providing sus-
tained high performance as the number of compute threads increases.

8.5 Further Reading

For a detailed discussion of Hartree–Fock theory, see, for instance, Szabo and
Ostlund.4 Many parallel self-consistent field implementations have been pre-
sented in the literature; for a review of some of the early work in this field,
see Harrison and Shepard.5 Several massively parallel, distributed data self-
consistent field algorithms have been implemented. For example, Colvin et al.6



P1: Binaya Dash

February 27, 2008 14:30 51644 51644˙C008

146 Parallel Computing in Quantum Chemistry

developed a direct algorithm using a static work distribution together with
a systolic loop communication pattern, and Harrison et al. 7 employed dy-
namic load balancing and distributed data by means of global arrays accessed
via a one-sided communication scheme. A semidirect approach used in con-
junction with a dynamic load balancing strategy was investigated by Lindh
et al.,8 and Mitin et al.9 have implemented disk-based and semidirect parallel
Hartree–Fock programs with compression of the integrals stored on disk.
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9
Second-Order Møller–Plesset
Perturbation Theory

Second-order Møller–Plesset (MP2) perturbation theory is among the simplest
and most widely used quantum chemical methods for incorporating electron
correlation. Although MP2 theory is computationally less expensive than
most other correlated electronic structure methods, its computational cost
scales steeply with the molecular size. For conventional implementations of
MP2 theory, which are based on canonical orbitals obtained in a Hartree–
Fock calculation, the scaling is formally O(N5), where N is the size of the
molecule. Parallel implementation of MP2 theory, therefore, is an important
step towards extending the applicability of the method to larger molecular
systems. Another potential bottleneck in applications of conventional MP2
theory is the rather large storage requirement, which arises in the transfor-
mation of the two-electron integrals from the atomic orbital to the molecular
orbital basis. To mitigate this bottleneck, a parallel implementation of MP2
theory should use a distributed data model in which the integral arrays are
distributed across processes.

In the following we will discuss scalar and parallel implementations of
canonical closed-shell MP2 theory. We will present a scalar MP2 energy
algorithm and show two different parallel implementations that both em-
ploy distributed data but differ in their level of sophistication. The first par-
allel implementation is readily obtained from the scalar code, requiring only
small modifications, whereas the second parallel algorithm employs a more
sophisticated asynchronous message-passing scheme and is designed to be
scalable.

9.1 The Canonical MP2 Equations

The MP2 energy is the sum of the Hartree–Fock energy and the MP2 correla-
tion energy

EMP2 = EHF + Ecorr
MP2 (9.1)

147
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and the MP2 correlation energy for a closed-shell system can be expressed
as1,2

Ecorr
MP2 =

∑
i jab

(ia | jb)[2(ia | jb) − (ib| ja )]
εi + ε j − εa − εb

(9.2)

where i, j and a, b represent occupied and unoccupied (virtual) spatial molec-
ular orbitals, respectively, εm denotes a molecular orbital energy, and (ia | jb)
is a two-electron integral defined as

(ia | jb) =
∑
μνλσ

Cμi Cνa Cλ j Cσb(μν|λσ ) (9.3)

(μν|λσ ) =
∫

φμ(r1)φν(r1)r−1
12 φλ(r2)φσ (r2)dr1dr2. (9.4)

The coefficients Cμm are the molecular orbital coefficients obtained in the
Hartree–Fock procedure, and φμ is an atomic orbital. The two-electron inte-
gral transformation (Eq. 9.3) is usually performed as four separate quarter
transformations

(iν|λσ ) =
∑

μ

Cμi (μν|λσ ) (9.5)

(iν| jσ ) =
∑

λ

Cλ j (iν|λσ ) (9.6)

(ia | jσ ) =
∑

ν

Cνa (iν| jσ ) (9.7)

(ia | jb) =
∑

σ

Cσb(ia | jσ ) (9.8)

which reduces the overall computational complexity of the transformation
from O(N8) (from Eq. 9.3) to O(N5), where N represents the size of the system.
For the integral transformation as written above, the computational complex-
ity of each of the four quarter transformations is O(on4), O(o2n3), O(o2vn2),
and O(o2v2n), respectively, where o is the number of occupied orbitals, v is
the number of virtual orbitals, and n denotes the number of basis functions.
Transforming to occupied, rather than virtual, molecular orbitals in the first
two quarter transformations results in computational savings and a reduced
storage requirement because the number of occupied orbitals is usually sig-
nificantly smaller than the number of virtual orbitals.

The integral transformation may be performed by first computing all the
two-electron integrals in the atomic orbital basis, (μν|λσ ), and then doing the
four quarter transformations consecutively, completing one quarter transfor-
mation before beginning the next. In this case, however, it is necessary to
store all the computed two-electron integrals in the atomic orbital basis as
well as all the partially transformed integrals generated in each transforma-
tion step. This leads to a storage requirement of O(N4), which becomes a bot-
tleneck as the size of the system grows. To reduce the storage requirement,
a direct approach may be employed in which a subset of the two-electron
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integrals in the atomic orbital basis is computed and partially transformed
before computing the next subset of integrals. If MP2 calculations are to be
performed for large molecular systems, a direct method will usually be used.
The two-electron integral transformation is the most time-consuming step in
the computation of the MP2 energy, and the computational efficiency of this
step is therefore important for the overall efficiency of the MP2 procedure. To
reduce the computational time required for the transformation, the permu-
tational symmetry of the integrals should be exploited to the extent possible.
At the same time, the storage requirement should be kept low to prevent stor-
age bottlenecks, and the optimum implementation may entail a compromise
between these two requirements.

9.2 A Scalar Direct MP2 Algorithm

An outline of a scalar direct MP2 algorithm is shown in Figure 9.1, and the ma-
jor features of the algorithm are summarized in Table 9.1. The algorithm is a
modified version of a previously published direct MP2 algorithm3 designed

Loop over I batches

Loop over R, S shells (S ≤ R)

Loop over M, N shells (N ≤ M)
Compute (MN|RS)
Loop over i ∈ I

(i N|RS) = (i N|RS) + CMi (MN|RS)
(i M|RS) = (i M|RS) + CNi (MN|RS)

End i loop
End M, N loop

Loop over i ∈ I , j ≤ i , all N
(i N| j S) = (i N| j S) + CRj (i N|RS)
(i N| j R) = (i N| j R) + CSj (i N|RS)

End i, j, N loop

End R, S loop

(ia | j S) = ∑
N CNa (i N| j S) (i ∈ I ; all j, a , S, N)

(ia | jb) = ∑
S CSb(ia | j S) (i ∈ I ; all j, a , b, S)

EMP2
corr = EMP2

corr + ∑
i jab(ia | jb)[2(ia | jb) − (ib| ja )]/(εi + ε j − εa − εb)

(i ∈ I ; all j, a , b)

End I loop

FIGURE 9.1
A scalar direct MP2 algorithm. R, S, M, and N denote shells of atomic orbitals. To re-
duce the storage requirement, occupied orbitals, i , can be processed in batches, I .
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TABLE 9.1

Comparison of major features of the scalar and parallel MP2 algorithms. The
scalar algorithm and the parallel algorithms P1 and P2 are outlined in Figures 9.1,
9.2, and 9.3, respectively. The number of basis functions, occupied, and virtual
orbitals are denoted n, o, and v, respectively; nshell, nsh,max, ni , and p represent,
in order, the number of shells, the maximum shell size, the number of occupied
orbitals in a batch, and the number of processes. Process utilization is defined as
the number of processes that can be efficiently utilized

Scalar P1 P2

Symmetry utilization (AO integrals) 4-fold 4-fold 4-fold

Memory requirement per process O(on2) O(on2/p) O(on2/p)

1st quarter transformation ni nn2
sh,max ni nn2

sh,max ni nn2
sh,max

2nd quarter transformation ni on2 ni on2/p ni on2/p

3rd quarter transformation ni ovn ni ovn/p ni ovn/p

4th quarter transformation ni ov2 ni ov2/p ni ov2/p

Communication per process N/A O(on3) O(nshello2n2/p)

Type of communication N/A Collective One-sided

Process utilization 1 O(o2) O(o2)

to have a small memory requirement and yet be computationally efficient.
A fully in-core approach is used, employing no disk storage. The algorithm
is integral-direct, requiring storage of only a subset of the two-electron inte-
grals at any given time, and two of the three permutational index symmetries,
M ↔ N and R ↔ S, can be exploited in the computation of the two-electron
integrals (MN|RS), where M, N, R, and S represent shells of atomic orbitals
(basis functions). The memory requirement is only third-order, O(ovn), and
is significantly smaller than the fourth-order requirement in a conventional
approach. In the integral computation and the first two quarter transforma-
tions, the memory requirement is kept small by performing these steps for
one RS pair at a time (this is what prohibits utilization of the third index
permutation symmetry, MN ↔ RS, in the integral computation). The overall
memory requirement is reduced from fourth- to third-order by dividing the
occupied orbitals, i , into batches and performing the integral transformation
for one batch at time, computing the contribution to the correlation energy
from the generated integrals in the current batch before processing the next
one. The batch size, ni , which may range from 1 to the number of occupied
orbitals, o, is determined by the available memory, and with ni occupied or-
bitals in a batch, the memory requirement becomes ni ovn. Reducing the batch
size thus reduces the memory requirement but increases the total amount of
computation because the two-electron integrals must be computed in each
batch.
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The algorithm, as outlined in Figure 9.1, entails an outer loop over batches,
I , of occupied orbitals. For each batch, the two-electron integrals (MN|RS)
are computed for one shell pair R, S (S ≤ R) and all M, N pairs (N ≤ M), and
these integrals are then immediately transformed in the first quarter trans-
formation, generating (i N|RS). Because of the restriction N ≤ M, the com-
puted (MN|RS) integrals must be summed into both (i N|RS) and (i M|RS).
The second quarter transformation is performed within the same loop over
R and S, and both the atomic orbital integrals, (MN|RS), and the quarter-
transformed integrals, (i N|RS), are stored for only one R, S pair at a time.
The half-transformed integrals, (i N| j S), and the three-quarter and fully trans-
formed integrals, (ia | j S) and (ia | jb), respectively, are generated for the full
range of all pertinent indices except for the occupied index i , which belongs
to the current batch of occupied orbitals.

9.3 Parallelization with Minimal Modifications

Parallel implementations of quantum chemical methods are frequently de-
rived from existing serial code, rather than developing the parallel algorithms
from scratch. If a serial code already exists, this approach will often be the
fastest way to achieve a parallel implementation. The relative ease of im-
plementation, however, generally comes at the expense of a lower parallel
efficiency than what could be achieved by designing a parallel algorithm
from the beginning. In this section we consider a parallel direct MP2 energy
algorithm based on the scalar algorithm presented in section 9.2 and requiring
only small changes to the serial code.

The minimum requirements for a reasonably efficient parallel MP2 imple-
mentation that can utilize a large number of processes are: distribution of all
large data arrays (to avoid storage bottlenecks) and distribution of the two-
electron integral computation and transformation over two or more indices
(to balance the load). Load balancing in the computation of the two-electron
integrals requires distribution of work over at least two indices because the
computational tasks are not even-sized. Thus, if the computation of (MN|RS)
is distributed over only one shell index, there will be nshell large, but irregu-
larly sized, tasks to distribute, and load balance will be difficult to achieve for
large process counts, especially with a static task distribution. Distribution
over two shell indices, on the other hand, creates O(n2

shell) smaller tasks that
can more easily be evenly distributed, making it possible to take advantage of
more processes. A detailed discussion of load balancing in the computation
of the two-electron integrals is given in chapter 7.

The parallel algorithm, P1, developed by doing only minimal modifica-
tions to the scalar algorithm from the previous section is shown in Figure 9.2.
Parallelization has been achieved using a simple global communication
scheme that is straightforward to implement, and the work has been dis-
tributed as follows: in the integral transformation, a round-robin distribution
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Loop over I batches

Loop over R, S shells (S ≤ R)

Loop over M, N shells (N ≤ M)
If my MN pair

Compute (MN|RS)
Loop over i ∈ I

(i N|RS) = (i N|RS) + CMi (MN|RS)
(i M|RS) = (i M|RS) + CNi (MN|RS)

End i loop
Endif

End M, N loop

Global summation of current (i N|RS) batch

Loop over i ∈ I , all j, N
If my i j pair

(i N| j S) = (i N| j S) + CRj (i N|RS)
(i N| j R) = (i N| j R) + CSj (i N|RS)

Endif
End i, j, N loop

End R, S loop

(ia | j S) = ∑
N CNa (i N| j S) (my i j pairs; all a, S, N)

(ia | jb) = ∑
S CSb(ia | j S) (my i j pairs; all a, b, S)

EMP2
corr = EMP2

corr + ∑
i jab(ia | jb)[2(ia | jb) − (ib| ja )]/(εi + ε j − εa − εb)

(my i j pairs; all a, b)

End I loop

Global summation of EMP2
corr

FIGURE 9.2
The parallel direct MP2 algorithm P1 derived by making only small changes to the
scalar algorithm in Figure 9.1. R, S, M, and N represent shells of atomic orbitals. Occupied
orbitals, i , can be processed in batches, I , to reduce the storage requirement. Distributed indices
are underlined.

of the M, N shell pairs is employed in the initial computation of the two-
electron integrals and in the first quarter transformation; in the second quar-
ter transformation and throughout the rest of the algorithm, the work is dis-
tributed over occupied orbital pairs i, j . This distribution of work necessitates
two global communication steps. The first step is a global summation of the
contributions to the quarter-transformed integrals, (i N|RS), after the first
quarter transformation. This summation is necessary because each process
handles only a subset of the M, N pairs and therefore computes only a partial
contribution to the quarter-transformed integrals. The second communication



P1: Binaya Dash

February 28, 2008 15:3 51644 51644˙C009

Second-Order Møller–Plesset Perturbation Theory 153

step is a global summation of the individual contributions to the correlation
energy from each process. The algorithm distributes the integral arrays that
are generated in full, namely, the half-, three-quarter-, and fully-transformed
integrals, (i N| j S), (ia | j S), and (ia | jb), respectively, and these arrays are dis-
tributed over occupied pairs i, j using the same distribution as for the work.
By using the same distribution for work and data, communication can be
minimized because each process handles only local data.

Comparison of Figures 9.1 and 9.2 shows that only a few, straightforward,
modifications of the serial code are required to implement the parallel algo-
rithm P1, and the specific changes are as follows. In the parallel version, a
simple test is performed within the M, N loop to decide whether the current
M, N pair is to be processed locally, and a similar test is performed on the i, j
pairs in the second quarter transformation. Additionally, two communication
steps have been added: a global summation after the first quarter transfor-
mation and a global summation of the correlation energy contributions at the
end. Each of these summations is accomplished with a single function call to
a global communication operation, in the first case doing an all-reduce oper-
ation (for example, MPI_Allreduce) and in the second case by means of an
all-to-one reduce (for example, MPI_Reduce). In addition to these changes,
the sizes of the integral arrays (i N| j S), (ia | j S), and (ia | jb) have been mod-
ified in the parallel version because only a subset of the i, j pairs are stored
and processed locally.

Let us develop a simple performance model for the algorithm P1. The only
time-consuming communication step is the global summation of the quarter-
transformed integrals. This summation is performed ≈ 1

2 nI n2
shell times, each

summation involving integral arrays of length ≈ ni n(n/nshell)2, where nshell,
nI , and ni denote the number of shells, the number of batches of occupied
orbitals, and the number of occupied orbitals in a batch, respectively. Using
nI ni = o, this yields a total number of ≈ 1

2 on3 integrals to be added in the
global summation. Employing the performance model for Rabenseifner’s all-
reduce algorithm (Eq. 3.8), which is valid when the number of processes, p,
is a power of two, the communication time can be expressed as follows

tP1
comm( p) = 1

2
nI n2

shell

[
2 log2 pα + 2

p − 1
p

ni n
(

n
nshell

)2

(β + γ /2)

]

= nI n2
shell log2 pα + p − 1

p
on3(β + γ /2) (9.9)

employing the machine parameters α, β, and γ defined in chapter 5. The
communication time is an increasing function of p, and this will adversely
affect the parallel efficiency of the algorithm. Assuming that the computa-
tional time on one process, tcomp(1), is known, and ignoring load imbalance,
we can model the total execution time as

tP1
total( p) = tcomp(1)

p
+ nI n2

shell log2 pα + p − 1
p

on3(β + γ /2). (9.10)
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This yields the following expression for the speedup, S( p) = ttotal(1)/ttotal( p)

SP1( p) = p × tcomp(1)
tcomp(1) + nI n2

shell p log2 pα + ( p − 1)on3(β + γ /2)
. (9.11)

The term multiplying p on the right hand side of Eq. 9.11 is a decreasing func-
tion of p, and the P1 algorithm is not strongly scalable. This lack of scalability
is caused by the communication requirement, which increases with p and
becomes a bottleneck for large process counts. The number of processes that
can be efficiently utilized with this algorithm will depend on the machine
parameters α, β, and γ , and also on the size of the molecule and the basis set
employed. We will discuss the parallel performance of the P1 algorithm in
more detail in section 9.5.

9.4 High-Performance Parallelization

To achieve a parallel MP2 implementation that is scalable, the simple global
communication approach used in the P1 algorithm in the previous section
must be abandoned. It is necessary, instead, to use a communication scheme
in which the communication time per process decreases with increasing pro-
cess counts, and in the following we will discuss a high-performance paral-
lel direct MP2 algorithm, designated P2, using one-sided communication to
achieve this. Two versions of the P2 algorithm have been implemented, using
static load balancing and dynamic load balancing by means of a manager–
worker scheme. We have included both implementations because parallel
performance for large process counts can generally be improved by using a
dynamic work distribution, although a manager–worker approach leads to
reduced efficiency for small process counts because one process is dedicated
to distributing work to the other processes.

An outline of the P2 algorithm is shown in Figure 9.3. Like the P1 algo-
rithm of the previous section, P2 is based on the scalar algorithm of Fig-
ure 9.1, and both parallelizations have thus been realized without sacri-
ficing scalar performance. In the P2 algorithm, the work distribution for
computation of the two-electron integrals and the first and second quarter
transformations is handled by distribution of the outer shell pairs R, S. The
static version of the algorithm employs a round-robin distribution of the R, S
pairs, whereas the dynamic version uses a dedicated manager process to dis-
tribute the R, S pairs. The manager keeps a list of R, S shell pairs, sorted
according to decreasing size, and sends shell pairs to worker processes upon
receiving requests for tasks. The manager–worker model used here is de-
scribed in more detail in the discussion of dynamic load balancing in the
two-electron integral transformation in chapter 7. Once an R, S shell pair has
been allocated to a process, whether statically or dynamically, the shell quartet
(MN|RS) of two-electron integrals is computed for all M, N, and the first and
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Loop over I batches

While there are R, S shell pairs left

Get my next RS pair (S ≤ R)

Loop over M, N shells (N ≤ M)
Compute (MN|RS)
Loop over i ∈ I

(i N|RS) = (i N|RS) + CMi (MN|RS)
(i M|RS) = (i M|RS) + CNi (MN|RS)

End i loop
End M, N loop

Loop over i ∈ I , all j
Loop over all N

(i N| j S) = (i N| j S) + CRj (i N|RS)
(i N| j R) = (i N| j R) + CSj (i N|RS)

End N loop
Send (i N| j S) and (i N| j R) contributions
to process holding current i j pair

End i, j loop

End while

(ia | j S) = ∑
N CNa (i N| j S) (my i j pairs; all a, S, N)

(ia | jb) = ∑
S CSb(ia | j S) (my i j pairs; all a, b, S)

EMP2
corr = EMP2

corr + ∑
i jab(ia | jb)[2(ia | jb) − (ib| ja )]/(εi + ε j − εa − εb)

(my i j pairs; all a, b)

End I loop

Global summation of EMP2
corr

FIGURE 9.3
The high-performance parallel direct MP2 algorithm P2. R, S, M, and N denote shells of
atomic orbitals. Occupied orbitals, i , can be processed in batches, I , to reduce the storage
requirement. Distributed indices are underlined. R, S pairs are distributed either statically or
dynamically as explained in the text.

second quarter transformations are then carried out for this set of integrals.
In the second quarter transformation each process computes the contribu-
tion to the half-transformed integrals (i N| j S) and (i N| j R) from the locally
held quarter-transformed integrals and for all i, j pairs. Because R, S pairs
are distributed, individual processes will generate only a partial contribution
to the half-transformed integrals, and these contributions will then be sent
to the process that is to store the corresponding i, j pair and added into a
local array of half-transformed integrals held by that process. To make the
redistribution of the half-transformed integrals efficient, we use a one-sided
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message-passing scheme, which is implemented by means of multiple threads
and uses separate threads for communication and computation (this scheme
is discussed in more detail in section 4.4). After completion of the second
quarter transformation, all processes hold a set of half-transformed integrals
(i N| j S) for all N, S and for a subset of the i, j pairs. The remainder of the
transformation and the computation of the correlation energy are carried out
by each process independently using only local data, processing the subset
of the i, j pairs corresponding to the locally held half-transformed integrals.
When all processes have finished computing their contribution to the corre-
lation energy, a (fast) global summation is performed to add the individual
contributions.

To develop a performance model for the P2 algorithm, we need to analyze
the communication requirement in more detail. The only nonnegligible com-
munication step in the algorithm is the sending of half-transformed integrals
between processes during the integral transformation. This step involves, for
each i, j pair, sending the contributions to the integrals (i N| j S) and (i N| j R)
from the process where they were computed to the process that is to hold the
current i, j pair. If the current i, j pair is to be held locally, the generated half-
transformed integrals will simply be kept by the process that computed them
without the need for any communication. If there are p processes, a fraction
equal to 1/p of the contributions to the half-transformed integrals generated
by a process will correspond to local i, j pairs, whereas the remaining fraction
( p − 1)/p, representing i, j pairs to be subsequently handled by other pro-
cesses, must be sent to remote processes. Each process handles the fraction 1/p
of the total work, and, consequently, a process must send the fraction ( p−1)/p2

of the total number of half-transformed integrals to remote processes where
they will be added into local arrays. The sends are carried out inside a nested
loop over batches I , the local R, S pairs, i ∈ I , and all j , yielding a total number
of sends per process of ≈ 2nI

1
2 n2

shellni o( p − 1)/p2 = n2
shello

2( p − 1)/p2, where
nI and ni are the number of I batches and the number of occupied orbitals in
a batch, respectively. The length of each message is the number of integrals in
the chunks of the (i N| j S) or (i N| j R) arrays that are sent between processes,
and it is on average n2/nshell. Using the usual model, tsend = α+lβ, for sending
a message of length l, the communication time for the P2 algorithm can be
expressed as

tP2
comm( p) = n2

shello
2 p − 1

p2

(
α + n2

nshell
β

)
. (9.12)

The send operations employed are non-blocking and can be overlapped
with computation to some extent. Our performance model will take this
into account by using effective α and β values measured for overlapped
communication and computation. From Eq. 9.12 it is clear that the overall
communication requirement for the P2 algorithm, namely, the total amount
of data that must be sent per process, O(nshello2n2/p), is roughly inversely pro-
portional to the number of processes, which is a prerequisite for a strongly
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scalable algorithm. The total execution time for P2 can then be modeled as

tP2
total( p) = tcomp(1)

p
+ n2

shello
2 p − 1

p2

(
α + n2

nshell
β

)
(9.13)

where tcomp(1) is the single-process execution time, and the work is assumed
to be evenly distributed. Using Eq. 9.13, we get the following expression for
the speedup for P2

SP2( p) = p × tcomp(1)
tcomp(1) + n2

shello2(( p − 1)/p)
[
α + (n2/nshell)β

] . (9.14)

The speedup predicted by Eq. 9.14 is approximately proportional to p, indi-
cating that the P2 algorithm is strongly scalable (as long as sufficient work
exists to enable good load balance, that is, o2 � p) and should be able to sus-
tain a nearly constant efficiency as the number of processes increases. We have
developed the performance model for P2 without specifying whether we con-
sider the static or dynamic version because the same model is applicable in
both cases, within limits. Equation 9.14 is valid for the static version, provided
that load imbalance is negligible. As the number of processes grows large,
however, the static version will experience load imbalance, and the speedups
will be lower than predicted by the model. For the dynamic version of P2,
load imbalance is not an issue even for very large numbers of processes, but
the right hand side of Eq. 9.14 should be multiplied by ( p − 1)/p because
only p − 1 processes are engaged in computation. This limits the maximum
speedup to p − 1 for the dynamic version. For large process counts where
p − 1 ≈ p, this can be ignored, but for small numbers of processes (p <∼ 16),
the resulting loss of speedup and efficiency is nonnegligible. As demonstrated
in chapter 7, the extra communication required to dynamically distribute the
work is negligible and, therefore, can be omitted from Eq. 9.14.

In practice, we would use the static work distribution in P2 for p <∼ 16,
where load imbalance should be negligible in most cases, and use the dynamic
distribution for larger process counts. Under those circumstances the perfor-
mance model in Eq. 9.14 is valid and should give a realistic representation
of the performance that can be obtained with the P2 algorithm. Although a
manager–worker model has been employed here to distribute the work dy-
namically, it is also possible to implement dynamic load balancing without
a dedicated manager process. This approach prevents the loss of efficiency
incurred by not doing computation on the manager and has been explored
in the context of parallel MP2 energy computation (see section 9.6). We will
investigate the parallel performance of the P2 algorithm further in the next
section.
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9.5 Performance of the Parallel Algorithms

Let us analyze in more detail the parallel performance that can be obtained
with the two parallel algorithms P1 and P2 described in the previous sections.
The major features of the two algorithms are summarized in Table 9.1. P1 and
P2 require the same amount of computation, and they can both utilize O(o2)
processes, but their communication requirements differ. The amount of com-
munication required for P1 is relatively small, O(on3), but the algorithm uses
global communication, and the communication requirement per process does
not decrease as the number of processes increases. For P2, which uses one-
sided message-passing, the communication requirement, O(nshello2n2/p), is
inversely proportional to the number of processes. Consequently, the com-
munication time for P2 should not become a bottleneck as the number of
processes grows. This difference in communication patterns for P1 and P2 is
the root of the performance differences obtained for the two algorithms as we
will illustrate below. As mentioned earlier, the P1 and P2 algorithms can di-
vide the occupied orbitals into batches and do the integral transformation for
one batch at a time if the global memory available is insufficient for perform-
ing the integral transformation in one pass. This necessitates recomputation
of the two-electron integrals, which must be evaluated for each batch. Thus,
for cases where the number of required batches decreases with increasing
process counts because more aggregate memory becomes available, super-
linear speedups can be obtained for P1 and P2. In all examples considered in
this chapter, only one batch is required in the integral transformation for any
process count, and the ideal speedup curve, therefore, corresponds to linear
speedups, S( p) = p; superlinear speedups for the P2 algorithm are illustrated
in section 5.4.

To make quantitative predictions for the performance of P1 and P2, we
need values for the parameters characterizing the molecule, namely n, nshell,
and o, as well as the machine-specific parameters α, β, and γ . We will consider
the parallel performance of P1 and P2 on a Linux cluster4 for the face-to-face
isomer of the uracil dimer5 (C8N4O4H8) employing the correlation-consistent
double-ζ basis set cc-pVDZ and including all orbitals in the correlation proce-
dure. For this system, the number of basis functions and shells are n = 264 and
nshell = 104, and the number of occupied orbitals o is 58. We first performed
a number of benchmarks to determine the values for the machine parame-
ters using the MPICH26 version of the Message-Passing Interface (MPI).∗ The
values of the latency α and the inverse bandwidth β appropriate for commu-
nication that is overlapped with computation were found to be α = 9.9 μs
and β = 15.7 ns/word (= 1.96 ns/byte), and these values can be used in the
performance model for P2. For P1, the machine parameters were determined

∗ We require that MPI be thread-safe, and this currently necessitates using the TCP/IP protocol
running on IPoIB on our InfiniBand cluster. This results in lower performance than would be
obtained with a native InfiniBand interface.
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by fitting timings for the all-reduce operation to Eq. 3.8 (for process counts
that are a power of two). We found the latency to be α = 130 μs, and the value
for β + γ /2 was determined to be 58 ns/word (7.3 ns/byte). Note that in the
performance models we use values of β and γ given in time units per word,
using 8 byte words, because we have expressed the message length in terms
of double precision words. Finally, for the performance models, the single-
process computational time, tcomp(1), is also required, and tcomp(1) was found
to be 2462 seconds. In this case, it was possible to perform the computation
with one process (using only one pass in the integral transformation). In gen-
eral, however, it may be necessary to obtain an effective floating point rate for
the application and use this to estimate the single-process execution time, or,
alternatively, to measure speedups relative to pmin, where pmin represents the
smallest number of processes for which the computation can be performed.
The compute units in the Linux cluster4 used here for benchmarking are two-
processor nodes, and to fully utilize the machine, two processes should be
run per node. The performance results discussed here pertain to cases where
only one process was run per node. Some performance degradation should
be expected when using two processes per node because there will be some
competition for memory and communication bandwidth. Full machine uti-
lization can also be obtained by running two compute threads, instead of two
processes, per node (a multi-threaded implementation of P2 is discussed in
section 4.4).

Using the determined values for the various parameters, the performance
models, Eqs. 9.10, 9.11, 9.13, and 9.14, yield the total execution times and
speedups shown in Figures 9.4 and 9.5. The performance models predict P1
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FIGURE 9.4
Log–log plot of predicted total execution times (P1total and P2total) and communication times
(P1comm and P2comm) on a Linux cluster for the uracil dimer using the cc-pVDZ basis set. Ideal
scaling corresponds to a straight line of negative unit slope.
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FIGURE 9.5
Speedups (relative to one process) predicted by the performance models for algorithms P1 and
P2 on a Linux cluster for the uracil dimer using the cc-pVDZ basis set.

to be the fastest algorithm for small process counts and P2 to become faster
than P1 as the number of processes increases. It is also clear from Figure 9.4 that
the fraction of the total execution time spent doing communication increases
rapidly with the number of processes for P1, whereas the communication
time for P2 constitutes a nearly constant fraction of the total execution time
as the number of processes increases. The speedups predicted by the perfor-
mance models (Figure 9.5) illustrate the poor scalability of P1, caused by the
communication overhead, and the maximum speedup that can be attained
with P1 for the example considered is only about 30. The P2 algorithm, on
the other hand, displays strong scalability as evidenced by the nearly linear
speedup curve. Although the predicted efficiency for P2 is high, around 75%,
it is significantly below 100% because the communication overhead, though
scalable, is not negligible and constitutes approximately 25% of the total ex-
ecution time.

To achieve high parallel efficiency with the P2 algorithm, the commu-
nication network must be capable of delivering a high bandwidth. Using a
network with a significantly smaller bandwidth than in the example above
will yield a lower parallel efficiency: if the InfiniBand network used in the
examples above is replaced by a Gigabit Ethernet network, the latency and
inverse bandwidth for communication overlapped with computation will be
around 11 μs and 68 ns/word, respectively; although the latency is nearly
the same as for the InfiniBand network in this particular case, the bandwidth
delivered by the Ethernet network is more than 4 times lower than that ob-
served for InfiniBand. The consequence of the lower bandwidth is illustrated
in Figure 9.6, which shows the speedups predicted by the performance model
for P2 using the network parameters for both InfiniBand and Gigabit Ethernet.
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FIGURE 9.6
Predicted speedups (Eq. 9.14) for the P2 algorithm using network performance parameters for
InfiniBand and Gigabit Ethernet (using the same test case as in Figure 9.5).

The difference in speedup curves for these two cases demonstrates that net-
work performance characteristics can have significant impact on the parallel
performance of an algorithm.

The measured total execution times and communication times for P1 and
P2 on the employed Linux cluster 4 are illustrated in Figure 9.7. For larger
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FIGURE 9.7
Log–log plot of measured total execution times (P1total and P2total) and communication times
(P1comm and P2comm) on a Linux cluster4 for the uracil dimer using the cc-pVDZ basis set. Only
the static version of the P2 algorithm is shown. Ideal scaling corresponds to a straight line of
negative unit slope. See text for details.
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FIGURE 9.8
Measured speedups (relative to single-process timings) for the P1 and P2 algorithms on a Linux
cluster4 for the uracil dimer using the cc-pVDZ basis set.

process counts, P2 is significantly faster than P1 (about two and half times
faster for p = 110), but in the interval 2 < p <∼ 16, P1 is the fastest algo-
rithm. For both algorithms, the measured performance agrees well with the
predictions of the performance model (Figure 9.4): the performance models
correctly predict the trends in the total execution times and communication
times for P1 and P2, and the models are adequate for doing performance
analyses of the algorithms. Dips in the timings, and corresponding increases
in the speedups, are observed for P1 for process counts that are powers of
two because the employed all-reduce algorithm in P1 in that case is more
efficient. In the performance model for P1, we modeled the communication
time using Eq. 9.9, which is valid when the number of processes is a power of
two, and the predictions of the performance model for P1 are therefore more
accurate in those cases. The measured speedups for P1 and P2 are depicted in
Figure 9.8, and the associated efficiencies are shown in Figure 9.9. For com-
parison, we have included measured speedups and efficiencies for both the
static and dynamic versions of P2. Looking at the efficiencies in Figure 9.9, we
note that, for small process counts, the P1 algorithm achieves a high parallel
efficiency. The efficiency loss displayed by the dynamic version of P2 when
the number of processes is small corresponds roughly to a fraction of 1/p,
as expected, and the efficiency therefore increases with the number of pro-
cesses in a limited region. When p is small, the static version of P2 displays
better performance than the dynamic version, but for larger process counts,
where load imbalance becomes more pronounced, the dynamic version is
faster. Finally, we note, that as the number of processes grows large, the P2
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FIGURE 9.9
Measured efficiencies for the P1 and P2 algorithms on a Linux cluster4 for the uracil dimer using
the cc-pVDZ basis set.

algorithm is capable of maintaining a nearly constant efficiency, even though
the problem size is rather small.

In summary, we have analyzed the performance of two parallel direct
MP2 implementations derived from the same scalar algorithm: a simple par-
allel algorithm (P1), whose implementation requires minimal modifications
to the scalar code, and a more sophisticated parallel implementation (P2) de-
signed to be scalable. We have demonstrated that the simple parallelization
strategy used in P1 yields excellent performance for small process counts
(p <∼ 16), and that the required global communication operation causes very
poor performance when the number of processes is large, severely limiting
the scalability of P1. We have also shown that it is possible to develop a
scalable MP2 algorithm (P2) by using a communication scheme involving
one-sided communication. Although the P2 algorithm is capable of provid-
ing sustained, high parallel efficiency as the number of processes increases,
achieving high parallel efficiency is contingent upon having a communica-
tion network with a high bandwidth. Note that another high-performance
parallel direct MP2 algorithm, which can exploit only one of the three index
permutation symmetries in the integral computation but has a smaller com-
munication requirement, is discussed in chapter 10 in the context of local MP2
theory. Both the P1 and P2 algorithms can display superlinear speedups for
cases where the number of required batches of occupied orbitals decreases
with increasing process counts as more global memory becomes available. In
the discussion of speedups in section 5.4, superlinear speedup curves, as well
as other inflated speedups computed relative to p-process timings, where
p > 1, are illustrated for P1 and P2.
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9.6 Further Reading

For an in-depth discussion of the MP2 method see, for example, Szabo and
Ostlund1 and Helgaker et al.7 Many parallel MP2 implementations have been
reported in the literature, and the algorithms mentioned below represent
just a small selection of these, illustrating different parallelization strategies.
Wong et al.8 developed a parallel direct MP2 algorithm employing one-sided
communication and using a dynamic distribution of shell pairs in the first half
of the integral transformation and a static distribution of pairs of occupied
orbitals in the remaining part. A somewhat similar parallelization strategy has
been used by Schütz and Lindh.9 These algorithms distribute data using the
Global Array toolkit10 and also employ a global array of computational tasks
from which processes fetch tasks to be processed, thus obviating the need for a
dedicated manager process. A distributed data parallel MP2 implementation
has also been achieved using the Distributed Data Interface,11 storing the large
data arrays in the aggregate memory of a distributed memory computer. A
parallelization strategy similar to P2, using static load balancing, has been
employed in a massively parallel direct algorithm for computation of MP2
energies and gradients.12 Parallel MP2 algorithms using disk I/O to store the
half-transformed integrals have been developed as well, using a combination
of dynamic distribution of two shell indices13 or one shell index14 followed
by a static distribution of occupied orbital pairs.
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10
Local Møller–Plesset Perturbation Theory

The computational cost of most correlated electronic structure methods scales
as a high-degree polynomial in the molecular size, typically O(N5)–O(N7),
where N is the size of the molecule. This scaling poses a serious challenge
to the application of high-level quantum chemical methods to larger molec-
ular systems, and to extend the scope of such methods, it is necessary to
employ alternative formulations that reduce the computational complexity.
Reduced-scaling approaches that exploit the inherently local nature of dy-
namic electron correlation have been developed for a number of correlated
electronic structure methods, including second-order Møller–Plesset pertur-
bation (MP2) theory. One such method, the local MP2 method LMP2, 1,2

employs an orbital-invariant formulation that makes it possible to express
the energy in a basis of noncanonical orbitals. The delocalized nature of the
canonical molecular orbitals used in conventional MP2 theory gives rise to
the high-order polynomial scaling of the cost, and by permitting the use of
localized orbitals, the local MP2 method offers the potential for a significantly
reduced computational cost.

The application of local, reduced-scaling quantum chemical methods,
nonetheless, places heavy demands on the computational resources, and to
take full advantage of these methods it is necessary to develop algorithms
tailored to application to massively parallel computers. Parallel algorithm
development for local correlation methods entails special challenges because
of the irregular data structures involved, making it more difficult to achieve
an even distribution of work and data. In this chapter we will discuss mas-
sively parallel computation of energies with the LMP2 method, focusing on
issues pertaining to parallelization of local correlation methods. We will first
give a brief introduction to LMP2 theory, and we will then present a massively
parallel LMP2 algorithm and discuss its parallel performance.

10.1 The LMP2 Equations

In LMP2 theory, the MP2 equations are expressed using an orbital-invariant
formulation employing noncanonical orbitals, and a number of approxima-
tions are introduced to achieve reduced scaling of the computational cost.

167
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The employed set of noncanonical orbitals are local in nature: the occupied
orbital space is represented by localized occupied molecular orbitals, and the
virtual (unoccupied) orbital space consists of atomic orbitals (AOs) projected
into the virtual orbital space to ensure the required orthogonality of the oc-
cupied and unoccupied spaces.

In the orbital-invariant formulation, the closed-shell MP2 correlation en-
ergy can be expressed as follows3

Ecorr
MP2 =

∑
i j

Tr[Ki j (2T j i − Ti j )] =
∑
i jab

K ab
i j

(
2Tab

i j − Tba
i j

)
. (10.1)

The elements of the matrix Ki j are the two-electron integrals, K ab
i j = (ia | jb),

and the elements of the matrix Ti j are the double-substitution amplitudes Tab
i j .

Indices i, j and a, b represent occupied and unoccupied orbitals, respectively.
The two-electron integrals (ia | jb) are computed by transformation of the

AO integrals (μν|λσ ) in a four-step transformation similar to that used in
conventional MP2 theory (cf. section 9.1)

(iν|λσ ) =
∑

μ

Lμi (μν|λσ ) (10.2)

(iν| jσ ) =
∑

λ

Lλ j (iν|λσ ) (10.3)

(ia | jσ ) =
∑

ν

Pνa (iν| jσ ) (10.4)

(ia | jb) =
∑

σ

Pσb(ia | jσ ) (10.5)

using transformation matrices L and P instead of the molecular orbital coeffi-
cient matrix used in conventional MP2 theory. The matrix L transforms from
the atomic orbital basis into the basis of localized occupied orbitals, and P is
the projection matrix that transforms into the projected atomic orbital basis.

The double-substitution amplitudes from Eq. 10.1 are determined from a
set of linear equations

Ri j = Ki j + FTi j S + STi j F − S
∑

k

[FikTk j + Fkj Tik]S = 0 (10.6)

which in LMP2 theory (unlike in conventional MP2 theory) must be deter-
mined by an iterative procedure. In this equation, Ri j is the residual matrix
with elements Rab

i j , F and S represent the virtual–virtual blocks of the Fock
matrix and the overlap matrix, respectively, and Fik is an element of the Fock
matrix in the localized occupied orbital basis. The iterative solution of the
residual equation, Eq. 10.6, is described in detail elsewhere.4,5 It involves, in
each iteration, computing the residual matrices Ri j from the current ampli-
tudes Tab

i j , using the computed residual elements to form the updates �Tab
i j to

the amplitudes, and then using the updated amplitudes in the next iteration.
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Reduced computational scaling is achieved in LMP2 theory by neglect-
ing the contribution to the correlation energy arising from interactions of
orbitals that are spatially distant and by employing prescreening techniques
throughout the integral transformation. Orbital interactions are neglected by
including only double substitutions involving excitations out of pairs of spa-
tially close localized occupied orbitals and into pairs of unoccupied orbitals
(projected atomic orbitals) belonging to domains associated with the involved
occupied orbitals; the domains are predetermined, and there is one domain
for each occupied orbital, containing the atomic orbitals that contribute the
most to the Mulliken population of the occupied orbital.

10.2 A Scalar LMP2 Algorithm

The dominant steps in the computation of the LMP2 energy are the integral
transformation and the computation of the residual in the iterative procedure.
Of these two steps, which account for the vast majority of the computational
time, the integral transformation generally is by far the most time-consuming,
although the time required to compute the residual (which must be done in
each iteration) is nonnegligible.

In Figure 10.1 we show an outline of a scalar algorithm for computing the
LMP2 energy.5 Initially, the localized occupied molecular orbitals are formed.
The orbital domains are then created, and the screening quantities that will be
used in the integral transformation are computed. The two-electron integral
transformation is then performed, generating the integrals that are subse-
quently needed in the iterative solution of the residual equation (Eq. 10.6) and

Localize occupied molecular orbitals

Create domains

Compute screening quantities required for integral transformation

Perform integral transformation generating (ai |b j)

Begin LMP2 iterations

Compute LMP2 residual

Compute �T
Update T (use DIIS extrapolation if desired)

Compute Ecorr
MP2, �Ecorr

MP2

Check for convergence on �Ecorr
MP2 and �T

End LMP2 iterations

FIGURE 10.1
Outline of a scalar local MP2 algorithm.
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the computation of the energy. In the iterative procedure, the LMP2 residual
is first computed and then used to form the update to the double-substitution
amplitudes, �Tab

i j . Using �Tab
i j and employing the DIIS (direct inversion in

the iterative subspace) procedure, the double-substitution amplitudes T are
then updated, and a new value for the LMP2 energy is computed. A check
for convergence of the amplitudes and the energy is finally performed, and,
if convergence has not been reached, a new iteration is started.

The screening procedures and the systematic neglect of certain orbital in-
teractions employed in local correlation methods produce sparse data struc-
tures (for example, the two-electron integrals), and this sparsity must be uti-
lized to achieve reduced computational scaling. Implementation of local cor-
relation methods therefore requires an efficient way to handle such sparse
data structures, storing and manipulating only the nonzero elements. Sparse
matrices and higher-dimensional arrays can be handled by dividing the data
structures into smaller, independent, dense data structures that are stored and
manipulated individually. Alternatively, sparse data representations can be
employed, which store the nonzero elements in contiguous memory locations
(while keeping track of where the data fit into the full matrix or array) and also
provide support for performing operations on the data structure as a single
unit. The LMP2 implementation discussed in this chapter employs the latter
approach, using a sparse data representation that supports the handling of
sparse matrices and multidimensional arrays.5

10.3 Parallel LMP2

For an efficient parallel LMP2 implementation we will require distribution
of all large data arrays to avoid storage bottlenecks, parallelization of all
computationally significant steps, and a communication scheme that does not
seriously impair parallel performance as the number of processes increases.
To ensure portability of the code, we will try to use a communication scheme
involving only collective communication. In chapter 9 we investigated an MP2
algorithm (designated P2) using one-sided communication, implemented by
means of separate communication threads, that yielded a scalable algorithm
with very good parallel performance. This communication scheme, however,
required using a thread-safe version of the Message-Passing Interface (MPI),
reducing portability of the code.

The various sparse arrays, including the two-electron integrals and the
double-substitution amplitudes, will be handled by a sparse data represen-
tation that also provides support for parallel operations such as converting
a replicated array to a distributed array and redistributing an array using a
different distribution scheme;5 a set of generalized contraction routines de-
veloped to perform contractions of these distributed sparse multidimensional
arrays will be employed as well.
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In the following we will use a matrix notation for the double-substitution
amplitudes, Ti j , two-electron integrals, Ki j , and residual elements, Ri j , where,
for instance, Ti j contains all the double-substitution amplitudes Tab

i j for a fixed
i j pair. Using the matrix notation is convenient in the discussion but does not
reflect the actual data representation. The double-substitution amplitudes,
integrals, and residual elements are stored as four-dimensional sparse arrays
using the employed sparse data representation. In this representation, how-
ever, indices can be frozen: for instance, freezing the indices i and j in the
four-index array T with indices i , j , a , and b allows the sub-array Ti j to be
manipulated as a matrix.

In the following we will discuss parallel implementation of the two dom-
inant computational steps in the LMP2 procedure, namely the two-electron
integral transformation and the computation of the residual. Parallelization
of other computationally less demanding, but nonnegligible, steps is straight-
forward.5

10.3.1 Two-Electron Integral Transformation

Apart from involving sparse data structures, a more complicated screening
protocol, and different transformation matrices, the LMP2 integral transfor-
mation is similar to that of a conventional MP2 approach. We will therefore
explore how a parallel algorithm that has been used successfully in a parallel
conventional MP2 algorithm6 will fare for the LMP2 case. In addition to mak-
ing the changes appropriate for the LMP2 method, we will implement the
algorithm using only collective communication to increase portability. The
AO integrals as well as the partially and fully transformed integrals will be
handled using the parallel sparse data representation mentioned above.

The parallel two-electron integral transformation algorithm, as employed
here, is outlined in Figure 10.2. The algorithm computes the AO integrals
and performs four separate quarter transformations, yielding the fully trans-
formed two-electron integrals. One of the three index permutation symme-
tries of the integrals is used, resulting in a four-fold redundancy in the integral
computation. Work and data are distributed by distribution of pairs of shells
of atomic orbitals M, N in the first part of the algorithm and by distribution
of pairs of localized occupied orbitals i, j in the last part of the transforma-
tion. Schwarz screening, as well as other screening using the transformation
matrices P and L, is performed after the distribution of tasks (possibly elim-
inating more work for some processes than for others). To switch from the
M, N to the i, j distribution, a communication step is required to redistribute
the half-transformed integrals. This redistribution takes place when all of the
half-transformed integrals have been generated, and it is the only commu-
nication step in the integral transformation. It can be accomplished by an
all-to-all scatter operation in which each process scatters its integrals, in a
prescribed way, to all the other processes. If the number of half-transformed
integrals is designated nhalf and the number of processes is p, there will be
nhalf/p integrals per process; using an all-to-all scatter algorithm that has a
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While get_pair(M, N) (get next available MN pair)

Allocate all AO integral blocks (MR|NS) for current M, N pair

Compute (MR|NS)
Allocate all (MR|N j) blocks for current M, N pair

1st quarter transf.: (MR|N j) = ∑
S(MR|NS)L(S, j)

Allocate all (Mi |N j) blocks for current M, N pair

2nd quarter transf.: (Mi |N j) = ∑
R(MR|N j)L(R, i)

End while

Redistribute half-transformed integrals: (Mi |N j) → (Mi |N j)

Allocate all (Mi |b j) blocks for local i, j pairs

3rd quarter transf.: (Mi |b j) = ∑
N(Mi |N j) P(N, b)

Allocate all (ai |b j) blocks for local i, j pairs

4th quarter transf.: (ai |b j) = ∑
M(Mi |b j) P(M, a )

FIGURE 10.2
Outline of the parallel two-electron integral transformation used in the LMP2 algorithm.
Indices M, R, N, S represent shells of atomic orbitals; i, j are localized occupied molecular
orbitals; and a, b denote projected atomic orbitals. Distributed indices are underlined. The
algorithm utilizes the M, N and i, j permutational symmetries. All the integral allocation steps
are preceded by integral screening (not shown). Indices M, N are distributed throughout the
first half of the transformation, while the remainder of the transformation uses distributed i, j
indices. The only communication step required is the redistribution of the half-transformed
integrals to switch from the M, N to the i, j distribution.

small bandwidth term and is expected to perform well for long messages,7

the total time required to redistribute the integrals can be modeled as

tcomm = ( p − 1)α + nhalf

p
β (10.7)

where α and β represent the latency and inverse bandwidth, respectively. The
bandwidth term is inversely proportional to p, and if the message length is
sufficiently long to make the latency term negligible (a reasonable assumption
because nhalf tends to be very large), the redistribution of the integrals is a
strongly scalable step.

For canonical MP2 theory, the above integral transformation has been
shown to yield high parallel efficiency6 when the integrals are redistributed
by means of one-sided message-passing, which allows overlapping commu-
nication with computation to achieve a higher effective bandwidth. Because
we use a collective communication step to redistribute the integrals in the
LMP2 algorithm, this overlap of communication and computation cannot be
achieved. The number of integrals to be redistributed in the LMP2 case, how-
ever, is much smaller than for canonical MP2; the number of half-transformed
integrals to redistribute is only O(n) as opposed to O(o2n2) in canonical MP2
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theory, where n is the number of basis functions and o is the number of oc-
cupied orbitals. As we shall see in section 10.3.3 this makes the communica-
tion overhead for the LMP2 integral transformation negligible, even though
the computational complexity of the LMP2 procedure is also much smaller
than that of the conventional MP2 method. Direct implementations of canon-
ical MP2 theory often perform the integral transformation in several batches,
thus reducing the overall memory requirement but increasing the compu-
tational cost because the AO integrals must be recomputed in each batch.
The LMP2 algorithm, however, completes the entire integral transformation
in one pass because the reduced storage requirement of the LMP2 approach
relative to conventional MP2 makes integral storage unlikely to constitute a
bottleneck.

10.3.2 Computation of the Residual

The computation of the residual is the dominant step in the iterative proce-
dure. From Eq. 10.6, we see that a given residual matrix Ri j , with elements
Rab

i j , contains contributions from the integrals and double-substitution am-
plitudes with the same occupied indices, Ki j and Ti j , respectively, as well
as from the double-substitution amplitudes Tik and Tk j . The contributions
from Tik and Tk j complicate the efficient parallelization of the computation of
the residual and make communication necessary in the iterative procedure.
The double-substitution amplitudes can either be replicated, in which case a
collective communication (all-to-all broadcast) step is required in each iter-
ation to copy the new amplitudes to all processes; or the amplitudes can be
distributed, and each process must then request amplitudes from other pro-
cesses as needed throughout the computation of the residual. Achieving high
parallel efficiency in the latter case requires the use of one-sided message-
passing.

In keeping with our intent to use only readily portable types of communi-
cation, we will here replicate the amplitudes and perform the collective com-
munication operations that this approach entails. The parallel computation
of the residual then proceeds as shown in Figure 10.3. Each process computes
the residual matrices Ri j for the i j pairs for which the integral matrices Ki j

are stored locally; to do so, only locally stored data are needed because the
required Ki j integrals as well as all of the double-substitution amplitudes are
available locally. After computing a residual matrix Ri j , a process will com-
pute the corresponding double-substitution amplitude update �Ti j and use
this update to form the new double-substitution amplitudes Ti j . When all
processes have computed the new Ti j amplitudes for their i j pairs, a collec-
tive operation is performed to put a copy of the entire T array on all processes.
This is accomplished by an all-to-all broadcast operation in which each pro-
cess broadcasts the locally computed Ti j matrices to every other process. The
cost of performing this communication step can be estimated as follows. Let
the number of processes and the total number of double-substitution am-
plitudes be p and nampl, respectively (that is, there are nampl/p amplitudes
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While get_local_pair(i, j) (get next local i j pair)

Initialize Ri j to Ki j

Update Ri j with FTi j S and STi j F terms

Update Ri j with S
∑

k[FikTk j + Fkj Tik]S term

Compute �Ti j from Ri j

Compute new Ti j

End while

All-to-all broadcast of local Ti j matrices

FIGURE 10.3
Outline of parallel computation of the LMP2 residual, which is required in each itera-
tion. The update of the double-substitution amplitudes is shown as well. Every process loops
over the local i j pairs, defined as those i j pairs for which the transformed two-electron integrals
Ki j reside locally. In the final communication step, each process broadcasts all of its Ti j matrices
to every other process, giving all processes a copy of the entire updated T array.

per process); using a performance model for a recursive doubling all-to-all
broadcast (Eq. 3.4), the communication time can then be modeled as

tcomm = log2 pα + nampl
p − 1

p
β. (10.8)

As opposed to the collective communication operation used in the integral
transformation, this communication step is not scalable; the communication
time will increase with p, or, if the latency term can be neglected, remain
nearly constant as p increases. This communication step is therefore a po-
tential bottleneck, which may cause degrading parallel performance for the
LMP2 procedure as the number of processes increases. To what extent this
will happen depends on the actual time required for this step compared with
the other, more scalable, steps of the LMP2 procedure, and we will discuss
this issue in more detail in the following section.

10.3.3 Parallel Performance

Let us investigate the parallel performance of the LMP2 algorithm described
above. We will first look at the performance for the test case that was also used
in chapter 9 for the parallel canonical MP2 algorithms (Figure 9.8), namely the
uracil dimer, using a cc-pVDZ basis set and running on a Linux cluster.8 The
speedups measured for the parallel LMP2 algorithm for this case are shown
in Figure 10.4. For this relatively small molecule, the LMP2 transformation
is only slightly faster (about 2%) than the canonical MP2 transformation; the
computational savings obtained by restricting the correlation space accord-
ing to the local correlation model are roughly offset by the additional work
required as a consequence of using a larger dimension for the virtual space
(the number of virtual orbitals used in the LMP2 method equals the number
of basis functions). The LMP2 integral transformation yields a nearly linear
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FIGURE 10.4
Measured parallel LMP2 speedups for the uracil dimer using the cc-pVDZ basis set. Timings were
obtained on a Linux cluster;8 speedups were computed (from measured wall times) relative to
the execution time required using one process.

speedup curve and achieves a speedup of 90 when running on 100 processes.
The redistribution of the integrals is scalable, as predicted by the model in
Eq. 10.7, and it takes up about 2% of the total execution time for the integral
transformation for all process counts investigated. Load imbalance in the in-
tegral transformation, though not severe, is the main reason for the slight
deterioration of the performance observed for large process counts. High
parallel efficiency can be achieved using a collective communication step to
redistribute the integrals in the LMP2 transformation, and using the integral
transformation from above in a conventional MP2 algorithm in conjunction
with an efficient one-sided message-passing scheme also yields very good
parallel performance.6 The communication requirement of O(o2n2) for con-
ventional MP2, moreover, is smaller than that of the high-performance MP2
algorithm P2 from section 9.4, but the tradeoff for the reduced communication
requirement is a four-fold redundancy in the integral computation, compared
with only a two-fold redundancy for the P2 algorithm.

Looking at the parallel performance for the iterative procedure, the
speedups are significantly lower than for the integral transformation, and
for the uracil dimer the iterative procedure achieves a speedup of 52 for 100
processes. The nonscalable collective communication step required in each
iteration is the primary factor contributing to lowering the speedup, but a
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FIGURE 10.5
Measured speedups for the parallel LMP2 procedure for the linear alkane C32H66 using the
cc-pVDZ basis set. Timings (wall times) were measured on a Linux cluster.8 Speedups labeled
with (2) are computed relative to two-process timings, and other speedups are measured relative
to single-process timings. Paging in the integral transformation when using a single process
artificially elevates the speedups measured relative to single-process timings, and speedups for
the transformation and the overall procedure are therefore also shown measured relative to
two-process timings, setting the speedup S( p = 2) equal to 2.

small amount of load imbalance for large process counts contributes as well.
The iterative procedure takes up around 30% of the total LMP2 execution
time for this case (which required 13 iterations to converge the energy to 10−7

hartrees), so the parallel efficiency for this step is significant with respect to
the overall performance for the LMP2 procedure. The speedups for the entire
LMP2 procedure yield an efficiency of 67% when running on 100 processes;
the speedups are nearly ideal up to around 32 processes after which the per-
formance starts to decay.

Let us also examine the parallel performance for a larger, linear molecule
for which the LMP2 procedure yields significant computational savings.
Figure 10.5 shows speedups for the LMP2 procedure measured for the linear
alkane C32H66 with the cc-pVDZ basis. Speedups for the entire LMP2 proce-
dure and for the integral transformation are very similar to those obtained for
the uracil dimer, although a bit lower: when using 100 processes, the speedups
are 62 and 87 for the overall procedure and the integral transformation,
respectively. The step whose parallel performance is most affected by the
increased sparsity is the iterative procedure, which yields an efficiency of
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37% on 100 processes. When sparsity can be exploited to a large degree, how-
ever, the iterative procedure becomes a less significant computational step,
requiring only about 12% of the total execution time for 100 processes and less
for smaller process counts. The less favorable scaling of the iterative proce-
dure, therefore, does not have a large impact on the overall parallel efficiency
for the LMP2 procedure. The performance obtained for this linear alkane,
for which sparsity is utilized to a large extent, demonstrates that the integral
screening and other steps used to reduce the computational complexity do
not significantly affect the overall parallel performance of the algorithm. In
particular, the integral transformation still exhibits high parallel performance
even though most of the screening is performed after the computational tasks
have been distributed.

From the results obtained in this chapter, we can draw a few conclusions
regarding efficient parallel implementation of local correlation methods: It
may be possible to use parallel integral transformation algorithms developed
for conventional correlation methods, with the appropriate modifications for
local correlation. The parallel LMP2 integral transformation investigated here,
which uses a modified version of an algorithm developed for canonical MP2
theory, achieves high parallel performance, and the algorithm displays good
load balance also for large process counts even though the tasks, in this case
shell pairs, are distributed before most of the integral screening is carried
out. While distribution of data is also required in local correlation methods to
avoid storage bottlenecks, it is possible to simplify the parallelization by repli-
cating certain data structures that may be too large to replicate in a conven-
tional correlation method, for instance, the double-substitution amplitudes.
This replication of data, however, may require additional collective commu-
nication operations (such as an all-to-all broadcast of the double-substitution
amplitudes in every iteration), and distribution of data should therefore also
be considered. Finally, the sparsity of the data structures involved in local
correlation methods necessitates an efficient way to handle distributed sparse
multidimensional arrays.
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A
A Brief Introduction to MPI

The Message-Passing Interface (MPI) is a software library providing the func-
tionality for passing messages between processes in a distributed memory
programming model. The MPI standard was developed to provide program-
mers with a single interface for message-passing that is portable to multiple
architectures, and it is supported by essentially all distributed memory paral-
lel computers used for scientific computing. We here give a brief introduction
to MPI, demonstrating how to write a simple MPI program and discussing a
few of the most widely used MPI functions for point-to-point and collective
communication. This introduction is intended only to provide a rudimentary
knowledge of MPI programming in a single-threaded context,∗ and the reader
is referred elsewhere1–4 for more comprehensive discussions. While the MPI
standard5 provides bindings for MPI functions for both ANSI C, C++, and
Fortran, we will here use the C bindings only.

A.1 Creating a Simple MPI Program

In Figure A.1 we show a simple MPI program, written in C, illustrating several
basic MPI calls used in most MPI programs to manage the MPI execution
environment. The program includes the header file mpi.h

#include <mpi.h>

which contains all MPI type, function, and macro declarations and must be
included to use MPI. The first MPI call in the program is MPI_Init, which
initializes the MPI execution environment. MPI_Init has the signature

int MPI_Init(&argc, &argv)

and takes the same arguments, argc and argv, as those provided to the C main
function. This initialization is always required; MPI_Init must be called by

∗ The use of MPI in a multi-threaded environment is briefly discussed in section 4.4.
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#include <mpi.h>
#include <stdio.h>

int main(int argc, char **argv)
{
int me; /* process ID */
int p; /* number of processes */
double t_start, t_end;

MPI_Init(&argc, &argv); /* initialize MPI environment */

MPI_Comm_size(MPI_COMM_WORLD, &p); /* get number of processes */
MPI_Comm_rank(MPI_COMM_WORLD, &me); /* assign process ID */

MPI_Barrier(MPI_COMM_WORLD); /* synchronize all processes */
t_start = MPI_Wtime(); /* record start time */

/* ... Perform some work ... */

MPI_Barrier(MPI_COMM_WORLD); /* synchronize all processes */
t_end = MPI_Wtime(); /* record end time */

if (me == 0) {
printf("Wall time = %12.9f sec\n", t_end - t_start);
printf("Number of processes = %5d \n", p);

}

MPI_Finalize(); /* terminate MPI environment */
return 0;

}

FIGURE A.1
An MPI program, written in C, illustrating several basic MPI operations. See text for
details.

all processes, and it generally must precede any other MPI call.† The subse-
quent calls to MPI_Comm_size and MPI_Comm_rank (cf. Figure A.1) deter-
mine the number of processes and the rank of the calling process, respectively.
The function declarations for these functions are

int MPI_Comm_size(MPI_Comm comm, int *size)
int MPI_Comm_rank(MPI_Comm comm, int *rank).

The first argument is an MPI communicator (of type MPI_Comm). An MPI
communicator is an object associated with a group of processes that can com-
municate with each other, and it defines the environment for performing com-
munication within this group. The default communicator isMPI_COMM_WORLD,
which encompasses all processes. The MPI_Comm_size function determines
the size of the associated communicator, that is, the number of processes

† The only MPI call that may be placed before MPI_Init is MPI_Initialized, which checks
whether MPI has been initialized.
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therein. MPI_Comm_rank determines the rank of the calling process within
the communicator; the rank is a process identifier assigned to each process,
and the processes within a communicator are numbered consecutively, start-
ing at 0. The final MPI call in Figure A.1 is MPI_Finalize, which is required
to terminate the MPI environment and must be called by all processes. The
MPI_Finalize function, which has the signature

int MPI_Finalize()

must be the last MPI call in a program, and any MPI call placed after MPI_
Finalize will produce an error.

All MPI functions (except timing calls) have an integer return type, and the
integer returned is an error value, which can be used to determine whether
the function completed successfully. Upon successful completion of a function
call, the return value will be equal to MPI_SUCCESS, and a code segment like
the following

rc = MPI_Init(&argc,&argv);
if (rc != MPI_SUCCESS} {

/* ... abort execution ... */
}

can thus be used to check whether MPI was successfully initialized.
The program in Figure A.1 also illustrates the use of MPI timing calls via

the MPI_Wtime function

double MPI_Wtime()

which returns the wall clock time (in seconds) on the calling process mea-
sured relative to some point in the past that is guaranteed to remain the same
during the lifetime of the process. The values returned by MPI_Wtime by
different processes, however, may not be synchronized, and elapsed times
should therefore be computed from timing calls made by the same process.
In Figure A.1, the elapsed time for a segment of the program is measured by
placing calls to MPI_Wtime before and after this segment, and the timings,
as measured on process 0, are printed out. To make sure that the longest time
required by any process is recorded, all processes are synchronized before
making calls to the MPI_Wtime function; the synchronization is performed
with the MPI_Barrier function (see section A.2.2).

A.2 Message-Passing with MPI

Having introduced the basic MPI calls for managing the execution environ-
ment, let us now discuss how to use MPI for message-passing. MPI provides
support for both point-to-point and collective communication operations.
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TABLE A.1

Types of arguments required by various MPI functions
Buffer: Buffer (of type void*) holding the message to be sent or received
Count: Integer specifying the number of elements in the message buffer
Destination: Integer specifying the rank of the process to receive the message
Source: Integer specifying the rank of the process sending the message
Tag: Tag (nonnegative integer) identifying the message
Data type: Specification (of type MPI_Datatype) of the type of data to be sent

or received (e.g., MPI_INT, MPI_DOUBLE, MPI_CHAR)
Root: Integer specifying the rank for the root process
Status: Object (of type MPI_Status) containing information about

a received message
Request: Handle (of type MPI_Request) used for non-blocking send and receive

to make it possible to determine if the operation has completed
Operation: Operation (of type MPI_Op) to be performed in an MPI reduction

(e.g., MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD)
Flag: Integer returned as either logical true (1) or false (0)
Communicator: Object (of type MPI_Comm) representing a group of processes that

can communicate with each other. MPI_COMM_WORLD can be used to
specify all processes

There are a very large number of such operations, and we will here briefly
discuss some of the most commonly employed functions. A number of dif-
ferent argument types are required by these functions, and in Table A.1 we
list all argument types required by MPI functions included in this appendix.

A.2.1 Point-to-Point Communication

We have seen in section 3.1 that point-to-point communication operations can
be either blocking or non-blocking, and MPI provides support for a number
of point-to-point operations of both kinds. A few of the most basic MPI point-
to-point communication operations are listed in Table A.2. They include the
blocking send and receive operations MPI_Send and MPI_Recv and their
non-blocking immediate mode counterparts MPI_Isend and MPI_Irecv.
The blocking wait operation MPI_Wait can be posted after a non-blocking
send or receive operation to wait for the preceding operation to complete,
and the non-blocking function MPI_Test tests whether a non-blocking send
or receive operation has completed. Examples of the use of MPI blocking and
non-blocking point-to-point operations can be found in Figures 3.2 and 5.2. A
few blocking send operations other than MPI_Send are included in Table A.2,
namely, MPI_Ssend, MPI_Bsend, and MPI_Rsend.

The MPI_Send function, in some implementations (for certain data sizes),
is buffered so that the send buffer will immediately be copied into a local
buffer used for the message transfer, and the send function in that case will
return independently of whether a corresponding receive has been posted at
the receiving end. The MPI_Ssend function, on the other hand, is guaranteed
not to return until the message transfer has started, and, hence, requires a
matching receive on the receiving process in order to complete. If a buffered
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TABLE A.2

C bindings for some commonly used MPI point-to-point communication op-
erations; output parameters are underlined. All of the operations have re-
turn type int. The non-blocking counterparts to MPI_Ssend, MPI_Bsend, and
MPI_Rsend are MPI_Issend, MPI_Ibsend, and MPI_Irsend, respectively;
these functions, which are not shown in the table, take the same arguments as
MPI_Isend
Action MPI Function

Blocking receive: MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm,
MPI_Status *status)

Blocking send: MPI_Send(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Blocking synchronous send: MPI_Ssend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Blocking buffered send: MPI_Bsend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Blocking ready send: MPI_Rsend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Non-blocking receive: MPI_Irecv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm,
MPI_Request *request)

Non-blocking send: MPI_Isend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm,
MPI_Request *request)

Wait for non-blocking
operation to complete: MPI_Wait(MPI_Request *request, MPI_Status *status)
Test whether non-blocking
operation has completed: MPI_Test(MPI_Request *request, int *flag,

MPI_Status *status)

send is desired, the function MPI_Bsend can be used, and this can sometimes
improve performance by allowing faster return of control to the calling pro-
cess. The ready send MPI_Rsend can be posted only after a matching receive
has been posted by the receiving process (or the result will be undefined),
and in this case using MPI_Rsend instead of MPI_Send may (depending on
the MPI implementation) improve performance.

A.2.2 Collective Communication

A number of the most widely used collective communication operations pro-
vided by MPI are listed in Table A.3. The collective operations have been
grouped into operations for data movement only (broadcast, scatter, and
gather operations), operations that both move data and perform computa-
tion on data (reduce operations), and operations whose only function is to
synchronize processes. In the one-to-all broadcast, MPI_Bcast, data is sent
from one process (the root) to all other processes, while in the all-to-all broad-
cast, MPI_Allgather, data is sent from every process to every other process
(one-to-all and all-to-all broadcast operations are discussed in more detail in
section 3.2). The one-to-all scatter operation, MPI_Scatter, distributes data
from the root process to all other processes (sending different data to different
processes), and the all-to-one gather, MPI_Gather, is the reverse operation,
gathering data from all processes onto the root.
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TABLE A.3

C bindings for some widely used MPI collective operations; output parameters
are underlined. All of the operations have return type int. For MPI_Bcast, the
buf parameter is an output parameter on all processes except the root
Action MPI Function
Data Movement Only

One-to-all broadcast: MPI_Bcast(void *buf, int count, MPI_Datatype datatype,
int root, MPI_Comm comm)

All-to-all broadcast: MPI_Allgather(void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf,
int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

One-to-all scatter: MPI_Scatter(void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf,
int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm)

All-to-one gather: MPI_Gather(void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf,
int recvcount, MPI_Datatype recvtype
int root, MPI_Comm comm)

Data Movement and Computation

All-to-one reduction: MPI_Reduce(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op,
int root, MPI_Comm comm)

All-reduce: MPI_Allreduce(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype,
MPI_Op op, MPI_Comm comm)

Synchronization Only

Barrier synchronization: MPI_Barrier(MPI_Comm comm)

The all-to-one reduction and all-reduce operations,MPI_ReduceandMPI_
Allreduce, perform a reduction operation on data across all processes and
place the result on either the root process (MPI_Reduce) or on all processes
(MPI_Allreduce). The type of operation performed is specified via the op
argument of type MPI_Op, and the types of operations that can be performed
include, for example, finding the maximum or minimum value across a data
set or performing a multiplication or addition of the numbers in the set, and
user defined operations can be specified as well. The synchronization oper-
ation listed in Table A.3, MPI_Barrier, is a barrier synchronization: when
encountering the barrier, a process cannot continue until all processes have
reached the barrier, and, hence, all processes are synchronized.

To illustrate the use of collective communication operations, we show in
Figure A.2 an MPI program that employs the collective communication op-
erations MPI_Scatter and MPI_Reduce; the program distributes a matrix
(initially located at the root process) across all processes, performs some com-
putations on the local part of the matrix on each process, and performs a
global summation of the data computed by each process, putting the result
on the root process.
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#include <mpi.h>
#include <stdio.h>
#define ndata 10

int main (int argc, char *argv[])
{

int me, p; /* process ID and number of processes */
double local_result, result;
double A[ndata*ndata];
double my_row[ndata];

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &me);
MPI_Comm_size(MPI_COMM_WORLD, &p);
/* quit if number of processes not equal to ndata */
if (p != ndata) {

if (me == 0) printf("Number of processes must be %d. "
"Quitting. \n", ndata);

abort();
}

/* If root process, read in A matrix from somewhere */
if (me == 0) read_data(A);

/* Scatter rows of A across processes (one row per process) */
MPI_Scatter(A, ndata, MPI_DOUBLE, my_row, ndata,

MPI_DOUBLE, 0, MPI_COMM_WORLD);

/* Do some computation on the local row of A */
local_result = compute(my_row);

/* Add local_result from all processes and put on root process */
MPI_Reduce(local_result, result, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

/* If root process, print out result */
if (me == 0) printf("Result: %lf \n", result);

MPI_Finalize();
return 0;

}

FIGURE A.2
An MPI program, written in C, illustrating the use of the MPI collective operations
MPI_Scatter and MPI_Reduce. The root process (process 0) scatters rows of a matrix across
all processes; each process then performs some computations on its own row and, finally, the
sum of the results from all processes is put on the root process.
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Pthreads: Explicit Use of Threads

Pthreads, also known as POSIX� Threads, as specified by the IEEE POSIX
1003.1c standard, provides fairly portable support for multi-threading. It uses
a library interface that enables the user to explicitly manipulate threads, for
instance, to start, synchronize, and terminate threads. The programmer fully
controls when threads are created and what work they perform, and this
provides great flexibility, albeit at the cost of greater complexity than the
OpenMP approach discussed in Appendix C. In the following we will give a
brief introduction to programming with Pthreads; for more complete infor-
mation, good guides to multi-threaded programming and Pthreads can be
found elsewhere.1,2

We will illustrate programming with Pthreads using the simple exam-
ple shown in Figure B.1 in which a number of tasks are distributed between
two threads. To use Pthreads, it is necessary to include the Pthreads header
file pthread.h, which declares the function signatures for the Pthreads li-
brary along with the required data types. A few of the most commonly used
Pthreads functions are listed in Table B.1, and their arguments are described
in Table B.2. A key feature required by a Pthreads program is a start routine,
which is the function that will be run by the threads. In our example, the
start routine for the created threads is the worker function. Having defined
a start routine, threads can be created by means of the pthread_create
function call, which takes the start routine as one of its arguments. In our
example program, the threads running the worker routine obtain their tasks
from a shared pointer to a variable, which is named task_iter and is
of type task_iterator_t. The task_iter variable contains an integer
(next_task) that gives the next unassigned work unit, an integer that gives
the last work unit (max_task), and a mutual exclusion lock (mutex). Because
all start routines must have the same signature, arguments are passed using
a pointer to void, and the start routine must cast this into whatever type is
needed. In our example, the task_iter variable is the argument for the start
routine.

Let us take a closer look at the creation of the threads. The pthread_
create function, which creates the threads, requires a few arguments in
addition to the start routine mentioned above (see Table B.1). One of these

189
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#include <pthread.h>
typedef struct {

volatile int next_task;
int max_task;
pthread_mutex_t mutex;

} task_iterator_t;

void *worker(void *arg) {
task_iterator_t *task_iter = (task_iterator_t*)arg;
int my_task;
while (1) {

pthread_mutex_lock(&task_iter->mutex);
my_task = task_iter->next_task++;
pthread_mutex_unlock(&task_iter->mutex);
if (my_task > task_iter->max_task) return 0;
/* ... process work unit ’my_task’ ... */

}
}

int main() {
/* Declarations. */
pthread_attr_t attr;
task_iterator_t task_iter;
pthread_t thread_1, thread_2;

/* Initialize. */
pthread_attr_init(&attr);
pthread_attr_setstacksize(&attr,8000000);
task_iter.max_task = 100;
task_iter.next_task = 0;
pthread_mutex_init(&task_iter.mutex,NULL);

/* Start threads. */
pthread_create(&thread_1,&attr,worker,&task_iter);
pthread_create(&thread_2,&attr,worker,&task_iter);

/* Wait for threads to complete. */
pthread_join(thread_1,NULL);
pthread_join(thread_2,NULL);

/* Clean-up and return. */
pthread_attr_destroy(&attr);
pthread_mutex_destroy(&task_iter.mutex);
return 0;

}

FIGURE B.1
An example of distribution of work among threads using the Pthreads library.
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TABLE B.1

Several of the most common Pthreads functions. All of these functions return a
zero to indicate success, with the exception of pthread_exit, which returns
void. See Table B.2 for a description of the arguments
Action Pthreads Function Arguments

Create a thread: pthread_create pthread_t *thread
const pthread_attr_t *attr
void *(*start_routine)(void*)
void *arg

Initialize attributes: pthread_attr_init pthread_attr_t *attr
Release attributes: pthread_attr_destroy pthread_attr_t *attr
Initialize mutex attributes: pthread_mutexattr_init pthread_mutexattr_t *mattr
Release mutex attributes: pthread_mutexattr_destroy pthread_mutexattr_t *mattr
Create a mutex: pthread_mutex_init pthread_mutex_t *mutex

const pthread_mutexattr_t *mattr
Destroy a mutex: pthread_mutex_destroy pthread_mutex_t *mutex
Lock a mutex: pthread_mutex_lock pthread_mutex_t *mutex
Unlock a mutex: pthread_mutex_unlock pthread_mutex_t *mutex
Terminate calling thread: pthread_exit void *value_ptr
Wait for a thread: pthread_join pthread_t thread

void **value_ptr

arguments is the argument required by the start routine, namely, in our ex-
ample, task_iter. Another required argument for pthread_create is a
pthread_t pointer that will be used to store an identifier for the thread.
Additionally, a pointer to an attribute object, pthread_attr_t, specifying
the properties of the thread, and possibly hints regarding how to run it, is
needed (a value of NULL can be provided to use the default attributes). In our
example, this attribute argument is named attr; it has been initialized by
calling the pthread_attr_init function, and the stack-size attribute has
been set with the pthread_attr_setstacksize function.

In the example in Figure B.1, the pthread_create function is called
twice, creating two new threads in addition to the main thread; the two new
threads each start running the worker routine, and the main thread keeps
running, so three threads are active at the same time. The main thread can wait
for the execution of the two other threads to complete and ignore their return

TABLE B.2

Types of arguments required by various Pthreads functions
thread Type pthread_t identifier for a thread.
attr Type pthread_attr_t thread attribute descriptor; attributes include

properties such as the thread’s stacksize and scheduling policy.
start_routine Pointer to a function that takes and returns a pointer to void. This routine

will be run in a separate thread.
arg A pointer to void used as an argument to a start_routine.
value_ptr A pointer to void* used to place the result returned by a thread’s

start_routine.
mutex A mutex object of type pthread_mutex_t.
mattr Type pthread_mutexattr_t mutex attribute descriptor; mutex at-

tributes can specify that the mutex can be locked recursively, for example.
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values by calling the pthread_join function for each of the two threads as
shown in the figure. Before performing the join, the main thread could have
run the worker routine as well for a total of three threads concurrently run-
ning the routine. Finally, the attribute object and the mutex can be destroyed
by calling the pthread_attr_destroy and pthread_mutex_destroy
functions.

The mutex in our program example is required to ensure that only one
thread at a time reads and updates the shared work variable, task_iter
(without the mutex, simultaneous updates oftask_iter could occur, namely,
two threads updating task_iter->next_task at the same time). The mu-
tex must be initialized with a call topthread_mutex_init. Here, the default
mutex attributes are satisfactory, so a NULL is passed as the mutex attribute
argument. The pthread_mutex_lock call in the worker function acquires
the mutex lock, and only one thread at a time can hold the lock on the mu-
tex. When one thread holds the lock, the other thread will block at the call
to pthread_mutex_lock until pthread_mutex_unlock is called by the
holding thread. At that time, the thread blocked by pthread_mutex_lock
will be allowed to proceed.

We have not yet addressed the initialization of the variable task_iter,
which is passed as an argument to the worker function and specifies in-
formation about the tasks to be processed. A single datum of type task_
iterator_t needs to be allocated and initialized. In the example in
Figure B.1, the field next_task, storing the number of the next work unit, is
initialized to zero, and the max_task field is initialized to the largest allowed
value for next_task; the field mutex is initialized by calling pthread_
mutex_init as explained above. Finally, note that in the program in
Figure B.1, we have used the volatile type modifier to inform the com-
piler that the next_task element of the task_iter_t structure could be
changed outside the context of the current thread. Just before a volatile da-
tum is used, it is read from memory, and immediately after it is modified,
it is written to memory. As used here, the volatile modifier is not strictly
necessary because the possibility of side effects in the function calls just before
and after the use of the next_task variable force the compiler to perform
the read and write anyway. Nonetheless, in other contexts volatilemay be
required, and it is also good style to use it to remind the programmer of what
data could be changed by other threads.

Pthreads provides a large amount of flexibility as well as complete control
over how threads are used; additionally, Pthreads provides condition vari-
ables that permit development of complex locking protocols that wait for a
condition to be satisfied. In Appendix C we will discuss a simpler alterna-
tive to Pthreads, OpenMP. Section 4.3 gives another example of a Pthreads
program and compares it to the equivalent OpenMP and message-passing
programs.
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C
OpenMP: Compiler Extensions
for Multi-Threading

The Pthreads standard discussed in Appendix B is very flexible and provides
a large amount of functionality, but parallel programming with Pthreads can
be complicated and requires implementation of code written specifically with
multi-threading in mind. OpenMP provides an alternative, and somewhat
simpler, way to use multi-threading in parallel applications. OpenMP is an
extension to the Fortran, C, and C++ languages designed to make it possi-
ble to easily take advantage of multi-threading in both new programs and
existing serial code. OpenMP also provides several work-sharing constructs
that are much more high level than those provided by Pthreads. OpenMP
is used by providing the compiler with code annotations. These annotations
are ignored by compilers that do not support OpenMP, making it possible
to maintain backwards compatibility. OpenMP has been available in com-
mercial compilers for some time, and it is also available in recent versions
of the GNU Compiler Collection (GCC),1 making its adoption rate likely to
increase.

Despite the relative ease of using OpenMP, the issues discussed in
section 4.1 pertaining to threads modifying resources shared by multiple
threads also apply to OpenMP programming. It is left to the programmer to
ensure that the necessary protections are applied to these resources, and
multi-threaded programming with OpenMP can be particularly hazardous
for programmers modifying preexisting code that was not written with multi-
threading in mind. In the following we give a brief introduction to OpenMP,
illustrating its range of functionality and how to write small programs. Com-
plete details for programming with OpenMP, along with numerous examples,
can be found in the OpenMP specification.2

We will use C code fragments to illustrate OpenMP; the equivalent C++
code fragments would be similar to those for C, but the use of OpenMP in
Fortran looks somewhat different, although the concepts are the same. The C
and C++ code annotations in OpenMP are specified via the pragma mecha-
nism, which provides a way to specify language extensions in a portable way.

195
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TABLE C.1

A few of the primary OpenMP functions. These functions are declared in the
omp.h system include file
OpenMP Function Arguments Action
omp_get_num_threads Returns the number of threads in the current

team.

omp_get_thread_num Returns the number of the current thread.

omp_set_num_threads int num_threads Sets the number of threads to use.

omp_get_num_procs Returns the number of processors.

omp_get_nested Returns true if nested parallelism is enabled.

omp_set_nested int nested Enables nested parallelism if and only if nested
is true and the implemenation supports it.

omp_get_wtime Returns a double containing the wall time in
seconds starting from an arbitrary reference
time.

omp_get_wtick Returns a double giving the clock resolution
in seconds.

Pragmas take the form of a C preprocessor statement,∗ and compilers that do
not recognize a pragma will ignore them.† OpenMP pragmas begin with the
keyword omp, which is followed by the desired directive:

#pragma omp directive

The directive will apply to the immediately following statement only. If the
directive needs to apply to several statements, the statements can be grouped
together by enclosing them between a { and a }. In the following, the term
“block” will be used both for single statements and for multiple statements
grouped together in this way.

C.1 Functions

OpenMP provides functions to query the OpenMP environment, control the
behavior of OpenMP, acquire and release mutexes, and obtain timing infor-
mation. A few of these functions are summarized in Table C.1. The omp.h

∗ C99 permits pragmas also to be given with an operator notation.
† This calls for the use of some caution when using OpenMP. In many cases, pragmas that are
mistyped will not be used or reported—they are just ignored.
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system include file, which declares these functions, must be included as fol-
lows if the OpenMP functions are to be used:

#include <omp.h>

OpenMP also provides a few environment variables; one of these is the
OMP_NUM_THREADS variable, and a Bash shell statement of the form

export OMP_NUM_THREADS=k

where k is a positive integer sets the number of threads to be used equal to k.

C.2 Directives

The OpenMP directives shown in Table C.2 can be divided into those that
specify parallel regions, work-sharing constructs, and synchronization con-
structs. The primary OpenMP directive is parallel, and the block of code
that follows this statement is a parallel region that will be executed by mul-
tiple threads, namely a team of threads created by the thread encountering

TABLE C.2

Selected OpenMP directives and their effect. C/C++ directives are shown, and
similar directives exist for Fortran
Parallelism Directives

parallel The key OpenMP directive. Forms a team of threads that all execute the following
program block.

Work-Sharing Directives

for Distribute the work in the following for statement among all the threads in the
current team.

sections Make the current thread team execute in parallel the section constructs in the
following program block.

single Execute the following program block on any single thread in the current team.

Synchronization Directives

critical Serialize execution of the following program block with respect to all threads in all
teams.

master Execute the next program block only on the current team’s master thread (thread
number 0).

flush Force data in memory to be consistent with any potential temporary copies.

barrier No thread in the current team passes the barrier until all reach it.

atomic The storage location modified in the following statement is atomically modified
with respect to all threads in all teams.

ordered Execute the following program block in order as if loop iterations were performed
serially.
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the parallel directive and consisting of this thread and zero or more ad-
ditional threads. The default number of threads on which to run is defined
by the OpenMP implementation, and the default can be overridden by setting
the OMP_NUM_THREADS environment variable or by calling omp_set_num_
threads. It is also possible to give clauses to the parallel pragma that
affect the number of threads that will be created, although these will not be
discussed here. Furthermore, if the parallel region is nested inside of another,
then additional settings and implementation details will affect the number
of additional threads created. In the following example, a team of threads is
created, and each of these threads executes the block of code following the
pragma:

double x[100];
#pragma omp parallel

{
int nthread = omp_get_num_threads();
int mythread = omp_get_thread_num();
for (i=mythread; i<100; i+=nthread) {

x[i] = process_iterand(i);
}

}

Here, process_iterand is a thread-safe routine that produces elements of
the x vector, and the programmer has explicitly distributed the work among
the threads in a round-robin fashion.

C.2.1 Work-Sharing Constructs

OpenMP provides work-sharing constructs that make it unnecessary for the
programmer to provide code that explicitly distributes the work among
threads. A work-sharing construct binds to the thread team created by the
innermost parallel directive within which the construct is nested.

C.2.1.1 The for Directive

The following code fragment illustrates the use of the for directive:

double x[100];
#pragma omp parallel

{
int i;

#pragma omp for
for (i=0; i<100; i++) {

x[i] = process_iterand(i);
}

}
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The for directive binds to the innermost parallel region in which it is nested.
It distributes the work in the following for loop among the threads in the
team established by the corresponding parallel directive. In this example,
the process_iterand function is called 100 times with all integers from 0 to
99, inclusive, and it could be called concurrently from multiple threads with
any order of the iterands. The for loop is required to have a special structure:
the counter variable must be a signed integer type and it must not be modified
except in the for statement’s increment expression; the completion test must
use one of the >=, <=, <, or > relational operators; and the loop variable must
be initialized to, compared to, and incremented or decremented by integer
expressions that are not modified within the loop. Options to control how the
work is scheduled can be given to the for directive or in an environment
variable.

Often, a scalar (that is, a single variable in a certain memory location) is
modified in each pass through a for loop. Contributions to the scalar must be
handled in a special way since all threads must update its value using proper
locking protocols. This can be accomplished by adding a reduction clause
to the line containing a parallel or work-sharing directive. For instance, a
dot product routine could be parallelized as:

double r;
#pragma omp parallel
#pragma omp for reduction(+: r)

for (i=0; i<n; i++)
r += x[i]*x[i];

This reduction clause notifies the compiler that the r variable is to be
reduced by applying the + operator; a private copy of r will be created for
each thread to use during the execution of the loop, and at the end, the re-
duction operation is then applied on these local copies, in this case adding
the contributions from all threads. Other reduction operators include *, -, &,
^, |, &&, and ||. A comma-separated list of variables can be given, and mul-
tiple reduction clauses with different operators can be specified. The order
in which the reduction is performed is not defined, so numerical round-off
error for floating point reductions can result in slightly different results for
multiple runs with the same input data. The consequences of omitting the
reduction clause in the above example are dire: the program will compile
without warnings, and regression tests can produce the correct result, but
actual production runs could produce an incorrect, nondeterministic result.
A bug of this type could be very difficult to find.

The accumulation of x[i]*x[i] into r in the above example is a critical
section (see section 4.1) because r is shared among all threads. The (almost)
associative and commutative properties of the addition and other permitted
operators allow the reduction operator to provide better performance than
would be possible by obtaining a mutual exclusion lock for each accumulation
into r.
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C.2.1.2 The sections Directive

The sections directive specifies another work-sharing construct. The pro-
gram block following asectionsdirective contains a series of nested blocks,
and each of the blocks, except for the first (for which it is optional) must be
preceded by a section directive, as shown below:

double a, b;
#pragma omp parallel
#pragma omp sections

{
#pragma omp section

{
a = compute_a();

}
#pragma omp section

{
b = compute_b();

}
}

The execution of these blocks will be divided among the threads in the
team, and each section block will be executed exactly once by a thread
belonging to the current team created by the innermost containing parallel
region.

C.2.1.3 Compound Directives

As can be seen from the above examples, a parallel directive is often fol-
lowed immediately by a work-sharing directive. Therefore, OpenMP sup-
ports combined directives where the work-sharing directive is on the same
line as the parallel directive, as follows:

double x[100];
int i;

#pragma omp parallel for
for (i=0; i<100; i++) {

x[i] = process_iterand(i);
}

which has the same effect as the first example of the for directive in sec-
tion C.2.1.1.

C.2.2 Synchronization Constructs

During the multi-threaded parallel execution inside of an OpenMP work-
sharing region, it is sometimes necessary to explicitly coordinate the activity
of the threads. We have already seen an example of implicit synchronization
with the reduction clause of the for directive, which causes each thread to
ensure that updates to the reduction variables occur in a thread-safe manner.
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There is also an implicit synchronization occurring after a thread completes
a work-sharing construct—threads wait for all the others to finish unless a
nowait clause is specified. Other situations requiring synchronization can be
dealt with by using one of the following explicit synchronization directives.

C.2.2.1 The critical Directive

If a non-thread-safe function is called inside of a for loop, it is necessary to
ensure that the function call is made by only one thread at a time. Such a
critical section can be protected by a critical directive, which serializes
the execution of the program block following it. In the following example, the
progress of each thread is reported using printf

int i;
#pragma parallel for

for (i=0; i<10; i++) {
double r = compute_result(i);
int mythread = omp_get_thread_num();

#pragma omp critical
printf("in thread %2d, r = %12.8f\n",

mythread, r);
}

The printf function modifies the output stream, which is shared among all
threads, and depending on the details of the system C library, printf may
or may not be thread-safe. By preceding the call to printfwith a critical
directive, stdout can be modified by only one thread at a time, ensuring that
printf will work correctly.

C.2.2.2 The atomic Directive

The critical directive imposes a performance penalty by forcing complete
serialization among all threads. An alternative synchronization directive, the
atomic directive, can be used to prevent a memory location from being
modified by more than one thread at a time without requiring all threads
to be serialized. Consider, for example, the formation of a histogram by the
aggregation of data into a few bins. Because different threads may have to
update data in the same bin, the update is a critical section. However, the
critical directive would result in complete serialization of all threads as
they sum their contributions into the array. In this case, only threads that try to
add contributions to the same bin need to be serialized. The atomic directive
ensures that the memory location being modified in the statement following
it is read, modified, and written out again atomically. As a result, each thread
will always have a consistent view of that memory. In the following example,
a histogram is formed from the results of the compute_value function:

int i;
int histogram[10];
for (i=0; i<10; i++) histogram[i] = 0;
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#pragma omp parallel for
for (i=0; i<10000; i++) {

int index = (int)(compute_value(i)*10.0);
if (index < 0) index = 0;
if (index >= 10) index = 9;

#pragma omp atomic
histogram[index]++;

}

C.2.2.3 The flush Directive

Theflushdirective is related to thevolatile keyword in C/C++, although
it is more flexible. A thread may create a temporary copy of a variable, for
example, in a register, making it possible for different threads to have different
values for a shared variable at the same time. Memory consistency is enforced
when all threads needing a consistent copy of a variable encounter the flush
directive. Specific variables can be named with the flush directive, or the
variable names can be left out. In the latter case, all data visible to the thread
is flushed. Below, the memory for x and y is flushed:

#pragma parallel {
/* ... */

#pragma omp flush(x,y)
/* ... */

}

Flushes are automatically issued in several situations: at barrier di-
rectives, and before and after regions affected by parallel, critical, or
ordered directives. Also, when the nowait clause is not given to a for or
sections directive, a flush will be implicit upon exit from the associated
region. Flushes are also implicitly performed during explicit lock manipula-
tion operations. The data updated following the atomic directive is flushed
before and after the atomic region is executed. Because of these automatic
flushes, it is seldom necessary for the programmer to explicitly flush data.

C.2.2.4 The master Directive

This directive specifies that the following block is only executed on the master
thread within a thread team. The following code fragment, therefore, will print
only one line of output:

#pragma omp parallel
{

#pragma omp master
printf("region entered by master thread\n");

}

C.2.2.5 The ordered Directive

The ordered directive causes the block following it to be processed sequen-
tially in the same order as the loop iterations. Note that only the part of the
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parallel block that is outside of the scope of the ordered directive will be
performed in parallel, and using the ordered directive can therefore cause
severely reduced performance. In the following example, the ordered direc-
tive is used to handle a recurrence relation requiring that xi−1 be known to
compute xi . Note that the for in which ordered is nested must contain an
ordered clause.

int i;
double x[100];
x[0] = 0.0;

#pragma omp parallel for ordered
for (i=1; i<100; i++) {

double delta_x = compute_delta_x(i);
#pragma omp ordered

x[i] = x[i-1] + a;
}

C.2.3 Data-Sharing Directive Clauses

Above we have discussed various OpenMP directives as well as a couple of
directive clauses (reduction and nowait). In OpenMP there are a number
of directive clauses that can be used to specify the sharing status of variables
within a parallel region, and we will discuss a few of these in the following.
When an OpenMP program is executing within a thread-parallel region, each
thread can read from and write to variables that were defined in the scope
surrounding the parallel region as well as new variables declared within the
parallel region. It is essential for the programmer to understand whether ref-
erenced variables are private to each thread or shared by all of the threads
concurrently executing that region. The sharing status of a variable can ei-
ther be predetermined by the type qualifiers and scope for that variable or
implicitly determined. When the sharing status is implicitly determined, the
programmer can alter it by using a clause that specifically defines the sharing
status. The OpenMP specification gives detailed rules for what is shared and
what is private. For the most part, variables declared in the scope outside of
the parallel region of interest are by default shared. Variables allocated with
automatic storage within the parallel region are always private. However,
static variables are by default shared, and data allocated on the heap (with
malloc or new) are always shared. Also, the iterand in the for statement
following a for directive is always private.

C.2.3.1 The private Clause

Variables that implicitly have shared status can be made private by explicitly
naming them in a private clause given to a parallel directive. Such pri-
vate variables are given independent storage locations in each thread in the
current thread team. The initial and final values of private variables are not de-
fined. However, if the variable is named in a firstprivate clause, instead
of a private clause, the variable will be private and each thread’s private
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copy of the variable will automatically be initialized to its value at the point
the parallel construct is encountered. If the variable must have a well-defined
value after execution of the parallel region has completed, the lastprivate
clause will set the variable to its value computed in the last iteration of a for
construct or the last section region of a sections construct.

C.2.3.2 The shared Clause

Theshared clause explicitly specifies that the named variables will be shared
among all threads. This is particularly useful when the default(none)
clause is used (see the next section), in which case all shared variables declared
in an outer scope must be explicitly named in a shared directive.

C.2.3.3 The default Clause

The default clause takes one argument that gives the default scope for
those variables in the parallel construct that have implicit sharing status. The
possible arguments in C/C++ are none and shared; specifying none will
make it illegal to reference any variable with implicit sharing status declared
in an outer scope, while specifying shared will cause these variables to be
shared by default. Using default(none) provides an extra degree of safety
by preventing the programmer from accidentally assuming that a shared
variable is private, as in the following example:

int i,j;
double x[10][10];

#pragma omp parallel for shared(x) default(none)
for (i=0; i<10; i++) {

for (j=0; j<10; j++) {
x[i][j] = compute_x(i,j);

}
}

A compiler supporting OpenMP will reject this code: the default(none)
clause is given, but the sharing status of j is implicit. A segment of code like
the above, however, could easily lead to a subtle error that would be difficult
to detect; if the default(none) clause had accidentally been omitted in the
code example above, the program would have compiled without warnings,
and j would be shared among all of the threads, possibly causing illegal
memory overwrites or causing some elements of x to not be computed. The
code listed above will compile and work as intended, that is, jwill be private,
if the private(j) clause is also given with the parallel directive.
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Multistage networks, 19
Multi-tasking, 34
Multi-threading, 59–70; see also OpenMP

and Pthreads
and message-passing, 65–69

Fock matrix formation, 140, 141
kernel threads, 60, 61
MP2, 68–69, 70
MPI, levels of support, 68
pitfalls, 61–64
thread-safety, 64–65
user threads, 60, 61

Mutex, 62, 63, 65
in Pthreads, 190, 191, 192
recursive, 64

Mutual exclusion lock, see Mutex
Myrinet, 56

N

NAND flash, 38
Network, 19–31

direct, 19–20
flat and complete, 23
full bisection width, 25
indirect, 19–20
interface card, 31
performance, 23–25, 71–74
topology, see Topology

Network File System (NFS), 37
Node, 19, 59

architecture, 31–34
Non-blocking operation, see Point-to-point

communication, non-blocking
Nonuniform memory access, 33
NUMA, see Nonuniform memory access
NWChem, 5

O

Oblivious routing, 21
One-sided communication, 45, 55–56

Fock matrix formation, 140
MP2, 155–156

OpenMP, 65–69, 195–204
applications, 65, 67
directives, 197–204
environment variables, 197, 198
functions, 196–197

omp.h, 196–197
Orbital-invariant formulation, 167, 168
Overlap matrix, 132, 133, 168
Owner-computes approach, 102, 104

P

Pairwise communication, 46; see also
Point-to-point communication

Parallel program design, 93–114
communication scheme, 104–107,

113–114
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design example, 107–112
distribution of data, 101–104
distribution of work, 94–101
key points, summary of, 112–114

Partitioned global address space, 12
Performance evaluation, parallel, 71–91
Performance measures, parallel programs,

74–80
Performance modeling, 80–86

execution time, 80–83
Fock matrix formation, 136–137, 142–143
misleading performance data, 87–90
MP2, 153–154, 156–157
two-electron integral computation,

121–125, 128–130
Persistent storage, see Storage, persistent
PGAS, see Partitioned global address space
Pipelining, 6, 7, 32
Point-to-point communication, 45, 46–49;

see also MPI
blocking, 46–47
non-blocking, 47–49
use of, 105–107

Polling, 68
Port, 19
POSIX Threads, see Pthreads
Pragma, 195–196, 198–204

applications, 67, 69
Problem size, 80
Process, 34, 59, 60
Programming models, 12
Projected atomic orbitals, 168, 169
Pthreads, 65, 67, 189–193, 195

applications, 67, 190
functions, 191
pthread.h, 189

Q

Q-Chem, 5
Quadrics, 56
Quicksort, 97–98

R

Rabenseifner algorithm
all-reduce, 55
all-to-one reduce, 54

Race condition, 48, 61, 62
RAID, 37
Recursive doubling algorithm, 52

all-to-all broadcast, 52–53, 109, 174
Recursive task distribution, 96–98
Red Storm supercomputer, 41
Reduce, see Reduction operation
Reduction operation, 49, 54–55

all-reduce, 54–55, 83, 85–86, 137, 153, 159
all-to-all reduce, 54
all-to-one reduce, 54–55, 110
reduce-scatter, 54

Redundant array of inexpensive disks, see
RAID

Reentrant function, 64
Register, 35, 36
Remote direct memory access, 55, 68
Remote memory, 35, 36
Rendezvous protocol, 49
Ring, see Topology, ring
Ring algorithm, 46–48, 51–52, 53; see also

Systolic loop
Roothaan equations, 132, 133
Round-robin distribution, 96–97

Fock matrix formation, 135, 140
MP2, 151, 154
two-electron integral computation, 119,

121
Route, 20
Routing, 20–23

S

Scalability, 79–80
strong, 79–80
strongly scalable algorithm, 129, 143,

156–157, 160, 172
weak, 79
weakly scalable algorithm, 84, 105, 122

ScaLAPACK, 135
Scatter operation, 49, 51

all-to-all, 171, 172
Schwarz inequality, 118
Self-consistent field method, see

Hartree-Fock
Serial fraction, 77–79

experimentally determined, 90
Shared memory architecture, 33
Shells of basis functions, 118
SIMD, see Single-instruction, multiple-data
Simultaneous multi-threading, 32
Single-instruction, multiple-data, 18
Single-instruction, single-data, 17–18, 32
SISD, see Single-instruction, single-data
Source routing, 21
Sparse multidimensional arrays,

distributed, 170–171
SPEC benchmarks, 7
Speedup, 74–79

absolute, 76
ideal, 74
linear, 74
maximum attainable, 11–12, 76, 84
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relative, 76
scaled, 77–78
superlinear, 76, 78–79, 88–90, 137

Speedup curves
Fock matrix formation, 138, 144, 145
Hartree-Fock, 88
inflated, 87
local MP2, 175, 176
matrix-vector multiplication, 85
MP2, 87, 89–90, 160–162
shapes of, 78–79
superlinear, 88–90

Startup time, see Latency
Static routing, 21
Static task distribution, 95–98
Storage, persistent, 35–38

local, 37
network, 37–38
reliability, 38–39
trends, 38

Streaming SIMD Extensions, 18
Superscalar processors, see Multiple-issue

processors
Switch, see Switching element
Switching element, 19
Symmetric multiprocessor, 33
Synchronous communication, 47
Systolic loop, 51–52, 106–107

all-to-all broadcast, 51–52

T

Task size, 94–95
Tensor Contraction Engine, 5
Termination detection algorithm, 101, 114
Thread, 34, 59–61; see also Multi-threading
Thread-safety, 64–65
Thunderbird cluster, 42
Titanium, 12
TOP500, 8–9, 41, 42
Topology, 25

ad hoc, 31
bus, 30–31
crossbar, 25–27
fat tree, 19, 25, 28–30
k-ary, 29
oversubscribed, 30

stages, 28
hypercube, 28–29
mesh, 25, 27–28, 41
ring, 19–20, 27
torus, 25, 27–28

Torus, see Topology, torus
Trivially parallel, 18, 45, 104
Two-electron integrals, 117–130

basics of integral computation, 117–119
parallel evaluation of, 119–130
distribution of execution times, 121–124
dynamic load balancing, 125–130
efficiency, 124–125, 129–130
load imbalance, 121–123, 128
performance analysis, 121–125, 128–130
static load balancing, 119–125
permutational symmetry, 118
utilization of, 120, 126, 133, 136, 150, 172
screening, 118, 133, 142–143, 171
unique, 118

Two-electron integral transformation
data distribution, 103–104
local MP2, 168–169, 171–173
MP2, 148–151
parallel MP2, 68–69, 70, 151–156

U

UMA, see Uniform memory access
Unified Parallel C, 12
Uniform memory access, 33
Unsafe parallel program, 46
UPC, see Unified Parallel C
User thread, 60–61

V

van de Geijn algorithm
one-to-all broadcast, 51

Vector processors, 18
Virtual machine, 34
Virtual memory, 34, 79
Volatile, 190, 192, 202

X

X10, 12
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