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CHAPTER 1 
 

INTRODUCTION 
 
 
 

OVERVIEW 
 
 

This book is based on an experience of ours in which the need to interpret 
unanticipated phenomena observed in empirical studies on the transition 
toward algebraic thought conducted in the 1980s, triggered a long-term 
research program that in turn led to a theoretical formulation that emphasizes 
local analyses. 

To illustrate that experience, we briefly examine a few of the phenomena 
observed in the transition from arithmetic to algebra, which represent an 
essential part of pre-algebra. The observations dealing with cognition are 
presented in Section 4.2.1, the reverse of multiplication syndrome in 4.2.2, 
different uses of the notion of equality. Polysemy of x; and in 4.2.3, 
difficulties in translations. We begin by indicating the role of historical 
analysis in Section 4.1, and complete the section with an example of a 
dialogue that took place during a clinical interview, in which additional 
phenomena appeared in translating algebraic language to natural language 
(Section 4.3). 

The book presents the theoretical elements developed and shows how the 
theory of local models, through their different components, has enabled a 
deeper study of phenomena in the field of acquiring algebraic language, 
considering aspects that are relevant to learning, teaching, and research. 

Use of the term “educational algebra” in the title of the book, instead of the 
more usual term “school algebra” is appropiate given the broad-based nature 
of the educational aspects we deal with. As will become patent in the rest of 
the book, besides working with children and teachers in schools we have 
used other sources as well to design and develop empirical studies: semiotics, 
epistemological analysis (primarily history of mathematical ideas), phenomeno-
logical analysis (mainly Freudenthal’s approach to curriculum development), 
formal mathematics, cognitive theories, etc. The term “educational algebra” is 
sufficiently broad to encompass the aspects that are educational, albeit not 
necessarily school-related. 

We also introduce two central terms, “mathematical sign systems” and 
“local theoretical models”, which are used throughout the book. They are 
discussed more extensively in Chapter 2 and in other chapters, where they  
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are used in the description of concrete examples arising from the empirical
studies. 

We conclude with a review of other literature on the subject of 
mathematical language and language and mathematics to place our work 
within a context and to demonstrate its contribution therein. 

The desire to achieve a profound understanding of both the origin and 
nature of the difficulties confronting those who seek to gain access to
algebraic thinking has set in motion great ideas and inquiries about them over 
the past three decades. The vast amount of literature produced from all this 
research activity makes the task of surveying and updating the state of the art 
in this field increasingly difficult. It is not so difficult, however, to identify a 
series of studies that concentrate on studying symbolic algebra as a language, 
together with the details of its acquisition. Because of the abstract nature of 
algebraic language and the highly syntactic competences required for its use, 
many of these studies use approaches that include semiotic concepts and 
linguistic analyses. This book is devoted to setting out a path of theoretical 
development for educational algebra, in which this very perspective is adop-
ted and in which an historical element becomes a contributing factor.  

Despite the deliberately theoretical character of this work, its direction 
differs from that of general models. This work incorporates elements that 
make it possible to develop local frameworks of analysis and methodological 
design for the study of specific phenomena. In these frameworks, it is possible 
to include evidence connected with such phenomena, the interpretation of 
which escapes general treatments. Such is the case when individuals who are 
beginning the study of algebra, produce personal sign systems that are located 
on a level prior to the mathematical sign system that is to be learned (that of 
symbolic algebra in this case). 

After the worldwide acknowledgment in the late 1970s that the educa-
tional system had largely failed to teach algebra in secondary schools, one of 
the great ideas put forward was Hans Freudenthal’s proposal. Freudenthal 
stressed the need to analyze the language of algebra by comparing it with 
other languages, such as natural language and the language of arithmetic, both 
of which were considered means of support (Freudenthal, 1983, ch. 16). His 
dissertation was followed by many other studies dealing with mathematics 
education seen through a linguistic hue. 

Most of the research carried out recently on the didactics of mathematics 
lacks paradigmatic theoretical models, even if one uses the term paradigm 
(somewhat in the sense of Kuhn, 1962) not as a synonym of theory, but in a 
more general sense, i.e, as the set of basic assumptions that one can make 
about the nature and limits of the actual subject to be studied, the method for 
studying it, and the decision as to what will be accepted as evidence. Nor has 
a consensus been reached about which of the basic assumptions should 
determine the form to be taken by the theoretical frameworks for interpreting 
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specific phenomena and for proposing new experimental designs that will 
carry theory further forward to embrace other evidence or new unrelated 
evidence. In short, it is still necessary to speak of the boundaries of many 
research projects. 

As a start, other disciplines have already begun research on the very 
subjects that pervade most of the work on which mathematics educators have 
reported. Some of these subjects include linguistics, logic, psycholinguistics, 
semiotics, general cognitive psychology, the psychology of mathematics, the 
epistemology of mathematics, the history of mathematics, the psychology of 
education, the theory of the development of mathematics curricula, and the 
didactics of mathematics. 

Many research studies have recently incorporated the results of these 
disciplines and have redefined results within their own theoretical frame-
works. Here we interpret various recent theoretical assumptions to reorganize 
the research undertaken on the processes of teaching/learning algebra during 
the past few years. To accomplish this, it is necessary to work with a good 
deal of new terminology to be able to describe recent research. 

To this end, in Chapter 2 we introduce the methodological concept of local 
theoretical models (LTMs). Although LTMs are dealt with in greater detail in 
Chapter 2, we can state here that the subject is considered in terms of four 
interrelated components: (1) teaching models, (2) models for the cognitive 
processes, (3) models of formal competence and (4) models of communi-
cation. Here we shall refer only to their local character. 

 
 
 

AND ITS COMPONENTS 
 
 

One of the chief reasons for resorting to local theoretical elaborations was the 
need to interpret phenomena that arose during the study. These phenomena 
could not have been anticipated from the design of the observation and did not 
fit into schemes of analysis based on general theories derived from mathe-
matics education itself or from neighboring disciplines such as psychology, 
pedagogy, sociology, history, epistemology, or linguistics. Studies on the 
transition from arithmetical thought to algebraic thought carried out in the 
1980s came up against this situation, giving rise to a long-term research 
program that envisaged the development of theoretical elements that would 
make it possible to refine the analysis of such phenomena. An initial 
hypothesis is that although we set out from a general notion —that of the 
mathematical sign system— it is the local character of the theoretical 

1.. ON THE LOCAL CHARACTER OF THE THEORETICAL FORMULATION  
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knowledge about the subject. Hence LTMs (Filloy, 1990) represent the central 
idea in this work. Rather than partializing the problems of mathematics 
education research, LTMs open up paths of communication between the various 
components that usually contribute to them. In fact, each local model con-
templates the study of cognitive aspects, formal mathematical competence, 
teaching, and communication. This comprehensive approach offers possibilities 
of making a substantive contribution to a highly focused study, based on a 
multiplicity of disciplines and drawing on the work of specialists and com-
munities connected with those disciplinary fields. The contents of this book are 
the result of progress in the research agenda that we set ourselves when, in our 
studies on algebraic thought among adolescents in the 1980s, we were first 
faced with the limitations of general analytical schemes in trying to interpret the 
phenomenon of the polysemy of x or that of the reverse of multiplication 
syndrome, for instance. Later in this chapter we provide a detailed description 
of those phenomena, as well as others that arose during our research. For our 
descriptions, we shall be using the notion of mathematical sign system (MSS), a 
brief introduction to which is provided in the following section. 

 
 
 

2. MATHEMATICAL SIGN SYSTEMS 
 
 

2.1. Sign 
 
 
This section discusses the phenomena that take place in mathematics 
education, using the jargon of semiotics. We do so not to embellish our 
observations with cryptic language, but because we consider these phenomena 
as processes of signification and communication, and semiotics deals with 
processes of precisely this type. 

The fact that semiotics studies these processes rather than signs is 
especially clear in the semiotics developed by Charles Sanders Peirce. In 
Peirce’s semiotics, this emphasis on processes is present even in the very idea 
of sign. Peirce gave countless definitions of “sign” throughout his extensive 
writings, in which he repeatedly outlined the concept. In all of his definitions, 
three characteristics are worthy of special emphasis. The first is the fact that 
the sign is not characterized by a dyadic relation such as that of Saussure’s 
signifier/signified pair; the relationship to which any sign belongs is triadic. 
And one of the elements, which Peirce calls the “interpretant,” is the cognition 
produced in a mind. The second is the fact that the sign is not a static entity 
but is instead open within a series. Since all cognition is in turn a sign, that 
sign therefore stands within a triadic relationship to another interpretant  
 

elaboration that makes it possible to delve deeper and thus generate new 
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(which is another cognition), and so on and so forth. The third is the fact that 
the sign is not arbitrary or rather that the triadic relation to which it belongs is 
not arbitrary. 

 
In a manuscript written in 1873, Peirce gives his briefest and most compact 

definition of a sign: 
 

A sign is an object which stands for another to some mind (Peirce, W 3, p. 66).1 
 

The relation is established between the sign (S), its object (O), and a mind 
for which the sign is related to its object in such a way that, for certain 
purposes, it can be treated as if it were that other.2 Let us see how Peirce 
defines the interpretant (I): 

 
A sign […] addresses somebody, that is, creates in the mind of that person an equivalent sign, 
or perhaps a more developed sign. That sign which it creates I call the interpretant of the first 
sign. The sign stands for something, its object. (Peirce, CP, 2.228, p. 135.) 
 

The triadic relation (S, O, I) is, therefore, a relation in which both S and I 
are signs, so that I is a new sign, S’, which enters into another triadic relation, 
i.e., it creates in a mind another sign as interpretant, I’, of object O, a new 
cognition I’, such that object O links the two triadic relations (S, O, I) and (S’, 
O, I’). This leads to the open nature of the sign in a process of semiosis that 
has no end. Peirce expressed it thus in another definition, subsequent to that 
quoted above: 

 
Sign [Lat. signum, a mark, a token]: Ger. Zeichen; Fr. signe; It. segno. (I) Anything which 
determines something else (its interpretant) to refer to an object to which itself refers (its 
object) in the same way, the interpretant becoming in turn a sign, and so on ad infinitum. 
(Peirce, CP, 2.303, p. 169.) 
 

Also present in this definition is the third aforementioned characteristic: 
the fact that the relation is not arbitrary. The sign forces the interpretant to 
refer to the same object as the one to which it refers. In a more extensive 
definition, quoted later, Peirce is even more exigent and adds that the sign 
forces the interpretant to refer to the same object and, furthermore, in the 
same way as it refers. Moreover, there must also be an interpretant, I1, of 
interpretant I, which has as object O1, the relation between the sign and its 
object. 

 
A Sign, or Representamen, is a First which stands in such a genuine triadic relation to a Second, 
called its Object, as to be capable of determining a Third, called its Interpretant, to assume the 
same triadic relation to its Object in which it stands itself to the same Object. The triadic 
relation is genuine, that is its three members are bound together by it in a way that does not 
consist in any complexus of dyadic relations. […] The Third must indeed stand in such a 
relation, and thus must be capable of determining a Third of its own; but besides that, it must 
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have a second triadic relation in which the Representamen, or rather the relation thereof to its 
Object, shall be its own (the Third’s) Object, and must be capable of determining a Third to this 
relation. All this must equally be true of the Third’s Third and so on endlessly […] (Peirce, CP, 
2.274, p. 156). 
 
 

 
 
The examples presented throughout the book have enabled us to make use of 
Peirce’s concept of the sign and its typology, and to explore the sense through 
which it casts light on what we wish to examine. The examples also show 
something else: the signs that are used in mathematics are not all of a 
linguistic nature, which makes it advisable not to use the terminology or 
concept of the sign that belong to linguistics (derived, to a greater or lesser 
extent, from the work of Saussure), and therefore not to speak of the 
signifier/signified pair. In the preceding text we have not done so, using 
instead the term “expression,” from the expression/content pair —terminology 
that has been introduced in semiotics (the science of signs in general, and not 
just of linguistic signs). This is also very convenient because in mathematics 
one is accustomed to speaking of “algebraic expressions” or “arithmetic 
expressions” to refer to the corresponding written forms. 

However, in putting the emphasis on individual signs, what we have seen 
so far may conceal the crucial fact that there are no isolated signs in any text 
(whether mathematical or not). 

It is very common for a description of the language in which mathematical 
texts are written to distinguish between two subsets of signs: one consisting of 
signs conceived as strictly mathematical and another consisting of signs in 
some vernacular language. From the viewpoint of signification processes, 
however, this distinction ceases to be crucial although it can still be made. 
What seems to be crucial is the sign system taken as a whole, and what must 
be described as mathematical is the system and not the signs, because the 
system is responsible for the meaning of the texts. One must therefore 
understand the term “mathematical sign systems” as mathematical systems of 
signs and not systems of mathematical signs,3 for what is of a mathematical 
nature is the system and not just the individual signs. Consequently, what is of 
interest for the development of mathematics education is to study the 
characteristics of these (mathematical) sign systems which are due not just to 
the fact that they are sign systems but also precisely to the fact that they are 
mathematical systems. 

Filloy (1990) and Kieran and Filloy (1989) introduced the need to use  
a sufficiently broad notion of mathematical sign systems. It had to serve as  
a tool to analyze the texts produced by students when they are taught 

2.2. Mathematical sign systems 
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mathematics in school systems —and those texts are conceived as the result of 
processes of production of sense— as well as to analyze historical mathe-
matical texts, taken as monuments, petrifactions of human action, or processes 
of cognition belonging to an episteme. In taking these mathematical texts as 
the object of study, rather than supposedly ideal texts conceived as 
manifestations of “mathematical language” or texts that are measured by 
them, the notions of mathematical sign systems and of text must both open up 
in various directions. 

Thus one must speak of mathematical sign systems, with their corres-
ponding code, when there is a socially conventionalized possibility of 
generating sign functions (by the use of a sign functor, see Chapter 7), even 
when the functional correlations have been established in the use of didactic 
artefacts in a teaching situation with the intention that they should be imper-
manent. But one must also consider the sign systems or strata of sign systems 
that learners produce in order to give sense to what is presented to them in the 
teaching model,4 although they may be governed by a system of corres-
pondences that has not been socially established but is idiosyncratic. 

 
 
 

3. DIFFERENT ANSWERS TO SAME QUESTIONS? 
 
 
We point out, however, that not only semiotics but also information processing 
theory and the didactics of mathematics (Brousseau, 1997) have done 
important work on the notion of code. This notion is emerging as a key concept 
to interpret what comes from using the idea of representation in the models that 
explain the cognitive problems presented by alternative teaching approaches or 
technology learning environments. Or, to provide another example, consider 
the emphasis that psycholinguistics and artificial intelligence place on a 
process-based model of human capabilities and relate it to the way in which the 
model explains how and why users of mathematical language naturally and 
commonly make mistakes in its syntactic procedures. To these developments, 
one must add the attention that a pragmatic viewpoint has given to meaning in 
use rather than formal meaning. 

By accumulation, these approaches —and others of a similar nature— have 
led to a change of direction in recent work, which is shifting away from the 
competence of mathematical language users and moving toward performance. 
This change of viewpoint has basic and essential implications for the manner in 
which mathematical language is seen. Essentially, the claim is that grammar —
the formal abstract system— and pragmatics —the principles of language 
usage— are complementary domains in our studies. In addition, that both  
are domains related to the various teaching models, be they innovative or 
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traditional, that are used to achieve the objective of guiding students in order for 
them to become competent users of the language of mathematics. Since one of 
our aims is to observe what happens in mathematics classrooms, however, we 
must also confront the complexities of teaching and learning phenomena within 
that particular setting. 

Indeed, one of the simplest phenomena demonstrated by classroom 
observation, for instance, reading level permanence among children who have 
just finished primary education (approximately 12 years old), is what arises 
when they are confronted with questions like those in Figure 1.1, which shows 
the evolution of the equation Ax = B in school teaching. 

 
 Evolution of the equation Ax = B  
 1) 3 ×  = 12 

2) 3 ×  = 672 

3)

 672

×3

 
4) 3 × x = 672 
5) 3x = 672 

 

Between the ages of 10 and 12 it is easy to direct some students so that all 
the questions are read like [2]: What is the number that, when multiplied by 
3, gives 672? 

 
Figure 1.1 

 
When one analyzes the responses of children within this age group, many 

issues arise. Apart from the fact that these questions are deemed as different 
because some can be answered and others cannot, we also find that it is fairly 
easy to get a certain student profile bogged down in their use of the preferred 
arithmetic method, trial and error. It is even quite easy to induce them to 
continue using that method for a considerable time despite the fact that the 
numbers become progressively larger, which eventually means that they no 
longer have sufficient arithmetic skills to be able to answer the question 
without making mistakes. We call this phenomenon “the reverse of multi-
plication syndrome.” 

To be able to observe phenomena of this kind experimentally, we therefore 
need an experimental framework that will enable us to interpret the facts and 
propose new observations that will unravel the relations existing between the 
different components in play. 
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 4. THE TRANSITION FROM ARITHMETIC TO ALGEBRA. PRE-ALGEBRA. SOME 
OBSERVATIONS ABOUT COGNITION 

 
 

Several studies have indicated conceptual and/or symbolic changes that mark 
the difference between arithmetic and algebraic thought. Examples of the 
foregoing are those related to the various interpretations of letters (Booth, 
1984), those dealing with the notion of equality (Kieran, 1980, 1981), and 
those produced with respect to the symbolic or graphic conventions for coding 
operations and transformations in solving of equations (Matz, 1982). From 
such indications, one can imagine paths of evolution from arithmetic to 
algebraic thought that correspond to the representative notions and forms for 
the objects and operations involved in the mechanisms of change. Thus, the 
changes deemed essential for a person to attain algebraic knowledge can be 
visualized along each of these paths as points where there is a cut between one 
kind of thought and another. 

One of the foregoing points that is of particular interest to the topic of 
equation solving is suggested by analyzing the strategies and methods used to 
solve equation systems in texts of pre-symbolic algebra from the 13th to 15th 
centuries. An important factor in this analysis for developing solution 
strategies and methods is that of operating unknowns. This arises as a result of 
the limitations imposed by the frameworks that belong to the pre-symbolic 
representation of equations and their characteristic elements. Thus, for ex-
ample, the solution that led to equations that we now write as x2 + c = 2bx and 
x2 = 2bx + c are completely different in each case. Yet this would not happen 
if the rules for transposing terms from one side of an equation to the other 
were known because, for instance, then it would be possible to reduce the case 
of one of the equations on a syntactic level to that of the other, which would 
correspond to a more developed level of operation on unknowns. 

 
 

4.1. The role of historical analysis 
 
 
The propositions contained in Leonardo of Pisa’s Liber Quadratorum (Book 
of Squares)5 can quickly be proved using the mathematical sign system of 
secondary school algebra. Indeed, they are propositions that can be proved in 
less space than that taken up by one of the pages of this text, and their 
mathematical content does not go beyond what is presently learned in 
secondary school. Nevertheless, it is easy to perceive the intensity of thought 
required to follow the reasoning depicted in Leonardo’s book. And it is not as 
if he were rhetorically playing with trivial matters. On the contrary, his work 
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is very possibly the pinnacle of mathematical thought in Middle Age Europe. 
Frozen in time on those pages one finds reasoning that drew —and still 
draws— great admiration because of its freshness and intensity. It is a thought 
that comes to us from the 13th century and that shows us how a mathematical 
sign system predetermines the ways in which we analyze problems, advocates 
our solution strategies, and draws the lines of strength that guide the sense of 
all our inferences. This strikes us as odd within the context of developing the 
thought processes of children, but it is even more amazing in the thought 
process of a first-class mathematician, perhaps the greatest mathematician of 
that era. At the same time it provides us with the opportunity to discover 
unknown terrain on which we can observe and describe the same cognitive 
tendencies as we find in today’s children as they attempt to become competent 
users of the mathematical sign systems that they are taught in secondary 
school. It further enables us to draw plausible hypotheses, and then observe 
those hypotheses in the behavior of present-day students as one tries to have 
them make competent use of the sign systems currently used to articulate the 
messages through which today’s mathematics education is communicated. 

As one confronts mathematical texts such as those of Leonardo, one’s 
attention is first drawn to the fact that no one speaks that language now. Were 
they translated into the mathematical sign system of current symbolic algebra 
they might appear to be advanced problems typical of a modern textbook. They, 
however, differ in that their solution strategies do not conform to customs. In 
addition, today one would not perform many of the operations and intermediate 
steps that seem to be necessarily present in those texts. The language of the 
abbacus books6 is today a dead language. Their translation to modern algebraic 
language fill us with amazement for the novel actions that led to the same 
results as ours, but that follow unheard of paths. Their very presence in problem 
after problem and in book after book are indicative of skills unrelated to those 
we have developed in building and using our algebraic language —skills, one 
might add, that we have never felt the need to build, develop, or use when 
confronting problems with our arithmetic abilities and knowledge. 

Clearly, as we build new conceptual apparatuses that have imposed 
themselves upon us without the possibility of erecting them within a proper 
structure, connecting them to others that have previously been firmly rooted, 
those new skills tend to overshadow older skills. Moreover, given the fragile 
means at one’s disposal to use at that point any new resources and solution 
techniques, even problems that had been mastered for quite some time are 
now difficult to model in the new language within which the infant conceptual 
apparatus that is in the process of being constructed is expressed. 

Nonetheless, well anchored intellectual structures tend to perpetuate 
themselves and compel us to reconsider situations that, when modeled in the 
new language, could be solved with simple, routine operations. 
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Indeed we do realize that we began speaking of reading and interpreting 
ancient texts, and have now taken a leap onto the plane of psychological 
processes. We now feel confident in saying that it is precisely this leap, 
forward and backward, that enables us to produce hypotheses founded on the 
development of general knowledge and to convert them into hypotheses about 
the didactics of mathematics, which then seeks to reconsider that process on 
the level of individuals –children, in this case. The MSS of arithmetic has  
to make way for that of algebra, and this has become an increasingly per-
tinent matter even for situations that have always before been modelled in 
arithmetic. 

Building the new MSS, whose point of departure must necessarily be 
elementary arithmetic operations, will involve the need to operate on new 
objects. These objects will signify not only numbers but also numerical 
representations, whether as individual items (e.g., unknowns), sets of numbers 
(e.g., coefficients of equations), an expression of relations between sets of 
numbers (e.g., proportional variation), or as functions, etc. The algebraic MSS 
will have to be structured on new objects whose operations will not be 
completely determined until the outlines of the new world of objects become 
more precise. What is more, the objects will not be totally outlined and well 
defined until the new operations have been completely structured in terms of 
both their semantic and syntactic aspects. 

Such profound changes in arithmetic habits and notions do not take place 
spontaneously in individuals simply because they are confronted with the 
need for change. The intervention of teaching, at that point of transition from 
arithmetic to algebraic knowledge, can be crucial for most students who are 
learning algebra for the first time. 

Although it is necessary to modify some arithmetic notions in order to 
acquire the new —algebraic— knowledge, it is also necessary to preserve the 
previous knowledge —arithmetic, in this case. Even in the single example of 
equations previously presented, there is a need for arithmetic equations to 
subsequently be recognized as such in order to preserve the entire operativity 
acquired beforehand for their solution —an operativity situated on an 
intermediate level of knowledge between arithmetic and algebraic knowledge, 
that is to say the level of pre-algebraic knowledge. 
 
 
 
4.2. Mathematics lessons at the beginning of secondary education 
 
 
We present three types of situations that generally arise when students have 
just completed elementary education and are beginning secondary education: 
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 1) The reverse of multiplication syndrome. 
2) Different uses of the notion of equality. The phenomenon of contextual 

ambiguity. 
3) Difficulty translating from natural language to algebra and viceversa. 
 
 

4.2.1. The reverse of multiplication syndrome 
 
 
As mentioned in Section 3, some students get stuck using the arithmetic 
method of their preference, which is trial and error when solving the equation 
Ax = B, and even go on using this method when it has become inefficient 
because the B numbers are too large for them to perform arithmetic trial and 
error without making mistakes. 

During the first year of secondary school (in the Mexican Educational 
System), most students end up preferring the method of dividing B by A in 
order to solve the equation Ax = B, which is the objective of the mathematics 
syllabus at that stage. However, the same trial and error strategy reappears in 
the work of students who had already achieved operativity to solve all first-
degree equations, when the context in which the equation Ax = B appears 
comes from an analytical process while the student is solving a word problem. 

Even more surprisingly, at times when the expression Ax = B is written by 
the very person who is being observed, the signs are not recognized as the 
expression of an equation that a few moments before the student knew how to 
deal with operationally to find the solution. The context in which the equation 
appears, even in its written form, makes the student “forget” the operativity 
achieved previously and revert to preferring the arithmetic method of trial and 
error or, in some cases, become unable to bring any method of solution into 
play. A more detailed description of what happens in the latter case shows that 
the interpretation of the sign x is crucial in interpretation of the expression 
Ax = B: interpreting the x as an unknown makes the student not know what to 
do, because “it is something that is not known,” in the student’s own words. 
In addition, it is important to recall that we are at a point in teaching when we 
are trying to have students begin to use the knowledge they have learned 
about solving first-degree equations in order to solve application problems 
that appear in mathematics lessons as well as in physics, chemistry, and other 
subjects. 
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4.2.2. Different uses of the notion of equality. Polysemy of x 
 
 
Several ways of interpreting equality can be distinguished among the uses 
made by 12- to 13-year-old children, as follows: 
 
 
A) As an arithmetic equality (EAr) 
 
In this case, the student tries to combine the terms on the right side of the 
equation or read them as a single number before giving any type of answer or 
performing any operation. Those who make this interpretation carry out one 
of the following procedures: 
 

i) Completion: “This [the independent term on the left side] needs this 
much to be equal to this [the complete right side]”. 

ii) Direct isolation: this procedure predominates in students who perform 
well, but it also appears in the other cases. In items such as 

  
x +

141
16

= 17 +
141
16

,     x + 17 = 42+ 17 and 
  
x +

x
4

= 6 +
x
4

, 

students who make this interpretation (EAr) and who try to isolate x face 
serious difficulties. For some students, the fact that they do not know 
the value of   17 prevents them from tackling the   x + 17 = 42+ 17. 

 
Arithmetic 

equality 
 

resultoperations

x A B A+ = +  

 P r o c e d u r e s    
 ↓   ↓   
 
Completion 

  
Trial and error

Difficulty in    x + 17 = 42+ 17
 

 
Figure 1.2 

 
B) Equality of the left side (as a whole) with the right side (also as a whole)(C0) 
 
This interpretation also allows for two procedures: 
 
i) Completion, which in many cases is more visual than arithmetic. 
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ii) Isolation. In some children of mid-level performance, the C0 interpretation 
precedes the appearance of the EAr interpretation. In other cases, it appears 
on its own. 

 
Equality of the two sides, 
taking each side as a whole 

 
a wholea whole

x A B A+ = +  

 P r o c e d u r e s    
 ↓   ↓    
Completion  Trial and error  

More visual than arithmetic   
 

Figure 1.3 
 
C) Equality term by term (C1) 
 
With this interpretation it is possible to solve these equations very quickly, 

except the items 
    
x +

x
4

= 6 +
x
4

 and   x + 5 = x + x , on which we will comment 

later. This interpretation predominates in students with a high achievement 
level, although in some cases it is preceded by the C0 interpretation or (in 
children of mid-level performance) by rearrangement of the terms with 
respect to the = sign. 
 

 
Equality term by term 

⇓ ⇓

x + A = B + A
↑ ↑

 

 
 Predominates in high performance level students  
 ↓     
Quick solution ← By comparison Or By canceling 
    
 Preceded by:   
 Interpretation (A)  Rearrangement of terms with respect to the = 

sign 
 

Figure 1.4 

In the items 
    
x +

x
4

= 6 +
x
4

 and x + 5 = x + x there is a tendency to give a C1 

interpretation, but also to assign different values to different occurrences of x. 
The typical response is: 
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This x  (
  
x
↓

+
x

4
= 6 +

x

4
) equals 6 and these ( x +

x
↓

4
= 6 +

x
↓

4
) can be any 

number. 
 
In the item x + 5 = x + x, the same kind of response appears: 
 

This   x
↓

 ( x + 5 = x + x
↓

) equals 5 and these (   x
↓

+ 5 = x
↓

+ x ) can have 
any value. 
 
In some cases, the students were asked to invent a problem that could be 

solved with this equation. Others were presented with a problem of the same 
kind to make them see that, within the context of one and the same problem, 
all occurrences of an unknown represent that same unknown. However, this 
clarification was not always successful. 

We have denominated this phenomenon of unknown multivalence as 
“polysemy of x,” because it involves a reading of the same sign in various 
contexts in which x is an unknown and in which x is a generalized number. 
Moreover, what “unites” these two interpretations or readings is the numerical 
equality of both sides of the equation. 
 
 
4.2.3. Difficulties in translations 
 
 
After secondary school students have received pre-algebra MSS instruction 
and been introduced to elementary algebra so as to solve linear equations and 
decode arithmetic-algebraic texts, yet before receiving systematic teaching on 
usage of open expressions, equivalence of expressions, and how to solve 
equation systems, the task of reading or writing algebraic language is very 
difficult for them. This is so much the case that one can almost see the tension 
mount in them as they struggle between using the arithmetic MSS to read and 
express themselves and their need to give mathematical signs new meanings 
within the context of the algebraic MSS. This is yet another indicator of the 
fact that the boundary between arithmetic and algebra cannot be avoided 
given that it would lead to false conceptions about the processes for acquiring 
the algebraic MSS, and, consequently, about the role of teaching within those 
processes. Furthermore, this highlights just how important it is for reading and 
writing algebraic MSS to be considered a decisive educational goal for middle 
school students. 

The forms of notation used in algebra just happen to be basically the same 
as those in arithmetic, i.e., numbers, operation symbols, the equal sign, and 
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letters. However, their meanings and the way they are operated essentially 
differ in the two fields. Consider the following example: 

The two expressions A = b × h and y = ax are syntactically equivalent, yet 
the way of reading them —their interpretation— determines the actions that 
subsequently have to be performed. 

One (conventional) way of reading A = b × h is “the area (of a rectangle) is 
equal to the base times the height,” which refers readers to the field of 
arithmetic-geometric MSS. Whereas y = ax, read in context, could mean “y is 
a linear function of x, with parameter a.” Or else in the realm of analytical 
geometry, it could be read as “the geometric place that corresponds to the 
straight line that passes through the origin with slope a.” 

In the latter example, clearly texts expressed by means of the same MSS 
have no lack of ambiguity because those very texts can be read as texts of 
different related MSSs. 

As another example: in the expression (3 + 5 – 2) – (7 – 3 – 2) = 4, the 
equal sign functions as an indicator of the result of actions performed with 
signs that belong to the arithmetic MSS. 

 
( ) ( )

( )
OPERATIONS

actions to be performed RESULT

3 5 2 7 3 2 4
↓

+ − − − − =  

 
Figure 1.5 

 
However, the equal sign that appears in 4x + 2 = 5x – 3 denotes a relation 

between expressions (between texts). This relation is algebraic, but it is 
numeric for a specific value of x, which leads to a numeric identity when 
substituted in the equation: x = 5 gives 4(5) + 2 = 5(5) – 3; 22 = 22. 

 
4x + 2 = 5x – 3 

4(5) + 2 = 5(5) – 3 
22 = 22 

↓ 
SYMMETRY 

 
Figure 1.6 

 
In this case, = denotes symmetry and the numeric value found for x does 

not appear on the right hand side of the equalization as a result of the actions 
carried out; rather it is in a relation of identity with itself. 

In an expression syntactically equivalent to the latter, such as 
3x + 5 = 2x + x + 3 + 2, the equal sign also denotes algebraic equivalence, but 



CHAPTER 1  

 

17 

 

in this case it is tautological. In other words, the equality is valid for any value 
of x. 

The examples given show that mathematical signs do not have one single 
interpretation, and therefore their correct reading requires a reconceptualization 
of the mathematical objects that these signs represent, as one steps from one 
context to another —from arithmetic to algebra or to geometry. 
 
 
4.3. Algebraic and natural language translations 
 
 
In order to research translation from algebraic to natural language and 
viceversa, researchers can ask questions in which students are taught to use 
algebraic language to write sentences previously written in natural language 
—originally Spanish, although here we are presenting an English translation 
of the transcriptions. For example, one can ask a student to write phrases such 
as “a increased by 2” using signs, which we illustrate with part of a dialogue 
between the interviewer (I) and a student (S): 
 

S: I don’t understand that. 
I: They give you a sentence and they ask you to write it using letters and signs representing 

operations. 
S: In other words, symbolizing something … 
I: Yes, but what do you mean by symbolizing? 
S: … 
I: Give me a sentence in Spanish in which you use “increasing.” 
S: You’ve increased speed. 
I: And what does that mean? 
S: That the person is now, well, going faster? 
I: And another sentence in Spanish which also includes “two”? 
S: Well … I went on increasing my speed for two days. 
[…] 
S: In the last two days he’s increased in weight. 
[…] 
S: His weight increased by two kilos. 
 
In this case, the student makes use of meanings taken from colloquial 

language in order to answer the teacher’s questions. It is obvious that he needs 
to give meaning to the phrase presented before proceeding to symbolise  
it, and in all replies the student is inconsistent in terms of the varying 
interpretations of the phrase, which will lead to its incorrect symbolisation. 
This inconsistency derives from the fact that in the original phrase “a” and 
“two” are measurements or quantities of the same thing, and here the student 
assigns them to different things (speed and days, weight and time), except in  
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the sentence “His weight increased by two kilos,” in which he seems to speak 
of an initial weight (a) and the two kilos by which it has increased. 

In another case, a student responds to the same question with the drawing 
that appears in Figure 1.7. 

 

 
 

Figure 1.7 
 

Here the word “increase” is clearly not identified with the mathematical 
action of adding, but corresponds to a real action of enlarging or expanding, 
an action that affects the letter (sign) “a”. 

By putting questions such as these to students, one can observe the inter-
action of mathematical language with natural language. In this regard very 
interesting analyses have been undertaken that illustrate once again that, at the 
ages in reference, the meanings of the words in natural language predominate 
and that these meanings inhibit translation of phrases that consist of those 
words to the MSS of algebra. 

Here is another example. When students were asked to read open expres-
sions such as 

  
a + b

2
, ab, 3ab, a2, 

 
in addition to producing textual readings like 
 

“a plus b over two” 
 
some students tended to associate geometric meanings with these expressions, 
and therefore they produced non-algebraic readings. We will now illustrate 
this with part of a dialogue between the interviewer and a student: 
 

I: Read the next expression aloud. [Pointing to the first one in the list shown above]. 
S: Broader side over two. 
I: And now, if you stop thinking of it as a formula, what would you read there, in what 

situations have you come across it? 
S: Well, it’s for finding a result. 
I: Such as? 
S: Well … 
 
Here, after a long pause, the interviewer intervenes and asks the question 

again, this time referring to the expression a + b. 
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 S: As numbers … for example, 50 + 20. 
I: So that if this [indicating a + b] is there on the blackboard, it means 50 + 20. 
S: No, I mean, it could also mean something else. 
I: Such as what? 
S: Another unknown. 
I: What unknown? 
S: For example, a equals, no … well, if a equals 20, what does b equal? 
I: And there … 
S: The unknown is b. 
 
What we see in this dialogue is that the student tends to interpret open 

expressions as geometric formulae (for example, “broader side over two”) or 
else tends to close them, either seeking a result by assigning specific numeric 
values to the letters, or converting one of the letters into a given and the other 
into an unknown, which is a characteristic of the closed expressions of 
algebra, i.e., equations. 

In both cases, we see that the letters and operation symbols still suggest to 
the student meanings associated with those signs in primary school. In other 
words, expressions that include letters or that are formulae or that are simple 
equations, even when the equals sign —necessary in these two cases— is 
absent. It is the student who completes the expression in order to be able to 
read it within contexts that are familiar to him or her. 

This example points to the kind of semantic antecedents of the MSSs used 
by 12- to 14-year old students, which are the foundations upon which their 
algebraic language skills must be developed. It is there that open expressions, 
for instance, will denote new mathematical objects at a higher level of 
generality, involving more general concepts such as that of generalized 
number (a and b in a + b) and that of suspended operation (the addition in 
a + b). 

 
 
 

5. ALGEBRA AS A LANGUAGE: 
APPROACHES FROM LINGUISTIC, SEMIOTIC, AND HISTORICAL PERSPECTIVES 

 
 

In this section, we review several works on mathematical language and 
language and mathematics that are especially relevant to the issues raised and 
analyzed in this book. 

From a broader perspective than one that solely encompasses algebra, 
David Pimm has carried out an analysis of the language spoken and written in 
the maths classroom, expressed in his book Speaking Mathematically, which 
was published in the late 1980s (Pimm, 1987). In this work, Pimm tackled  
the task of examining school mathematical discourse by applying analytical 
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techniques from theoretical linguistics. The language of the students, the 
language of the teacher, and the discussions in the mathematics classroom 
expressed through the authentic output of those actors constitute the main 
corpus of analysis in Pimm’s research. 

As far as theoretical analytical instruments are concerned, Pimm turns to 
the linguistic concept of register in order to approach the concept of metaphor 
in mathematics, to which he gives special importance, since he sets out from 
the recognition that the part played by this concept in the learning of 
mathematics is as fundamental as the part it plays in the learning of natural 
language (Pimm, 1987). When treating the theme of the formalism of written 
language, Pimm necessarily touches on the subject of symbolic algebra, 
inasmuch as it is an essential reference when speaking of a system of symbols 
in mathematics, and of their syntax and grammar. His analysis also tackles the 
theme of the role of natural language in teaching and learning in mathematics, 
with special emphasis on how the meanings assigned to words in colloquial 
language are spontaneously transferred by children to mathematics. 

The fact that Pimm concentrates his analysis of language on the maths 
classroom, in its various expressions (speaking, writing, reading) and through 
the output of various actors (pupils, teacher), is a manifestation of his clear 
interest in matters of communication, which places him among researchers 
with a conception of mathematics as a social activity. 

Raymond Duval, on the other hand, in his book Sémiosis et Pensée 
Humaine. Registres sémiotiques et apprentissages intellectuels (Duval, 1995), 
tackles the subject of learning in mathematics from a semiotic perspective, 
based on the relationship between semiosis (apprehension or production of a 
semiotic representation) and noesis (cognitive acts such as conceptual 
apprehension, understanding of inferences or discrimination of differences). 
Duval emphasizes the role of this relationship in the cognitive functioning of 
thinking and in its implications for the learning of mathematics and the native 
language. The variety of semiotic systems of representation in mathematics 
(graphs, formulae, tables, geometric figures, etc.) and the conversions 
between them are the material analyzed in Duval’s works, which indicates 
that one of the greatest problems in semiosis has to do with the phenomena of 
non-congruence, which arise precisely in processes of conversion between 
representations. One of the central theses in this work is that coordination of 
registers of representation by learners is a necessary condition for conceptual 
apprehension in mathematics. 

Among the studies on learning in mathematics with a semiotic perspective, 
Duval’s is characterized by its theoretical analysis of the relationship between 
semiotic representations and mental representations, in cognitive development 
and in the exercise of cognitive activities. It is also characteristic of this author 
to give prominence to the cognitive activities of reasoning and the 
comprehension of texts, which prompts him to expound specific aspects of 
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argumentation and proof in mathematics and to tackle the subject of sense. 
This last aspect is considered basically in relation to the orientation and 
conscious control of the fundamental cognitive activities by learners. 

Such a wide-ranging treatise as Duval’s could not fail to apply its theoretical 
analysis to the learning of the mother tongue and its connection with 
learning in mathematics. Within this framework, the author also deals with  
the differences and relationships between natural language and formal 
languages, taking geometry and logic as cases illustrating translations between 
the native language and formal language. The case of algebra is not used in this 
sense, but there is no doubt that it could be very relevant for the analysis of 
specific situations of “putting into equations,” that is, the translation of the text 
of a problem (written in natural language) into algebraic language. There is a 
clear allusion by the author to symbolic algebra in the chapter devoted to 
conversion between registers, in connection with conversions between algebraic 
expressions and Cartesian graphs, but without devoting an ex professo treatment 
to algebraic language, with respect to the major themes that he develops, such 
as congruence and conversions between semiotic representations; the compre-
hension of texts and sense; and the relationships between noesis and semiosis, 
natural language and formal language, and mental representations and semiotic 
representations. 

More recently, in his book Mathematics Education and Language (Brown, 
2001), Tony Brown has presented a theoretical study in which elements of 
hermeneutics, linguistics, poststructuralism, and social phenomenology are 
combined to analyze the instrumental character of language in the develop-
ment of mathematical understanding. Brown uses examples taken from 
research on mathematics education to examine how language influences the 
activity developed in the normative framework of a given situation. One of 
the implications of this analysis is that learning can be seen as a reconciliation 
between the conventional ways and potential ways (for learners and teachers) 
of describing such a situation. 

Accordingly, Brown pays special attention to the role of pupil and teacher 
narratives. Specifically, in Chapter 8, “Narratives of learning mathematics,” he 
analyzes a theoretical perspective concerning the ways in which pupils 
progress in learning mathematics, for the particular case of progressing from 
arithmetic thinking to algebraic thinking. He goes back to data collected by 
other authors in various studies on this transition and proposes that they be 
revised, including their discourses and suppositions. For this purpose he makes 
use of Ricœur’s analysis of time and narrative in order to form an analytical 
approach to the treatment of notions such as transition, development and 
progression in the learning of mathematics. From this new perspective, the 
results of previous studies on the transition toward algebraic thinking attain 
another dimension, that of the view of the individuals who experience the 
transition and who use their own resources of expression to narrate their 
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appreciation of the boundary between arithmetic and algebra. Moreover, 
according to Brown, in light of what Ricœur calls semantic innovation, adding 
a new narrative is interpreted as an extension of the familiar comprehensions of 
an individual with respect to the actions that he performs to incorporate figures 
of speech that will enable him to grasp a mental experience that has not yet 
fitted into previous versions of his linguistic usage. In fact, the cases of 
transition from arithmetic to algebra that Brown reanalyzes contribute elements 
that recreate this part of Ricœur’s theory concerning semantic innovation. 

The studies by Pimm, Duval, and Brown to which we have referred respond 
to the need to develop theory in order to analyze phenomena of the learning and 
teaching of mathematics closely connected with language in a broad sense. In 
these approaches, the analysis of mathematics as a language —in its various 
expressions, oral and written; with its different semiotic representations, through 
formulae, graphs, tables, etc.; used by different actors, pupils and teachers; 
through conventional expressions or potential expressions (narratives) — is as 
important as the analysis of its intricate relationship with natural language. The 
theoretical advances reported in these three works draw on theories from other 
disciplines, such as linguistics, semiotics, critical sociology, and hermeneutics. 
Similarly, this book forms part of attempts to theorize about mathematics, 
language and education, with a specialised focus on the language of symbolic 
algebra, assuming, as we indicated earlier, a theoretical view in which two main 
elements participate, semiotic and historical, and adopting a perspective based 
on pragmatics, favoring the study of meaning in use rather than formal 
meaning. In this way the focus of attention is shifted toward the activity of 
individuals with the language of algebra. Essentially, grammar, as the formal 
system, and pragmatics, as the set of principles of using language, are conceived 
as complementary domains, especially when they are related with models of 
teaching algebra. 

Other works that emphasize algebra’s character of written language have 
been devoted to the task of analyzing algebraic syntax and semantics, taking 
elements from support theories, such as linguistics and semiotics. The work 
done by David Kirshner makes use of generative and transformational 
grammar (Kirshner, 1987) to generate simple algebraic expressions and 
perform transformations with them, all based on descriptions of the superficial 
forms and deep forms of those expressions. In transformational grammar, the 
transformations of the expressions take place in the corresponding deep 
forms, which reveal the structure of the forms produced with respect to the 
operations that constitute them and their hierarchy. 

Jean-Philippe Drouhard, on the other hand, develops a notion of 
signification, with which he associates four aspects: reference, which 
corresponds to the function of algebraic evaluation; sense, which is given by  
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the set of transformations applicable to the expression; interpretation, which 
corresponds to the various readings given to the expression in the different 
contexts in which it may appear (such as number theory, analytical geometry, 
etc.); and connotation, which corresponds to psychological signification 
(depending on each individual) (Drouhard, 1992). The analysis of the 
meaning, or significations, of algebraic writing is then approached theoretic-

Finally, in this brief survey of the studies most directly related to ours,  
we must mention the work of Luis Radford, who shares with us a semiotic 
perspective and an interest in historical analysis, which he proposes from an 
anthropological viewpoint (Radford, 2000a, 2003, 2004). Radford takes from 
Vygotsky the idea that human cognitions are tied to usage of signs, so that it is 
no longer central to consider what signs represent but rather what they enable 
one to do; furthermore, these signs belong to sign systems that are part of a 
culture and therefore transcend individual cognitions (Radford, 2000b). From 
this viewpoint he analyzes both the emergence of algebraic thought in pupils 
who are starting to study algebra and the emergence of algebraic symbolism 
in history. 

Developments such as those just described have proved to be valuable 
materials in the applications of the theoretical formulation that is discussed 
here, the connection of which with teaching forms part of its essential 
characteristics as it envisages the need to develop local models (to interpret 
specific phenomena), which comprise components of formal competence, 
teaching, cognitive processes and communication. 

 
 
 

SUMMARY 
 
 
Throughout the book we emphasize our adoption of the pragmatic perspective 
of meaning in use rather than formal meaning, which has led many studies, 
and this one in particular, to concentrate attention on the user’s performance 
with the mathematical sign system (MSS). In the case that concerns us, the 
theme of the algebraic sign system and its relationship with the sign systems 
of arithmetic and the native language and with personal output is approached 
on the basis of the notion of MSSs and strata of MSSs. Before introducing 
these notions in greater depth, here we have presented some basic aspects of 
Charles S. Peirce’s semiotics that are pertinent for an understanding of the 
sense in which we use the notion of sign, in particular, the triadic conception 
of the sign, with the introduction of the interpretant as the third fundamental 
element, the idea of unlimited semiosis. 

ally by the application of this subdivision into these four aspects. 
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In the next chapter, we shall develop the notion of the local theoretical 
model in the context of curricular design and development for students, 
teachers, and researchers. We shall also stress the crucial role of Freudenthal’s 
didactical phenomenology, both in this context of curricular design and 
development and in the context of experimental design, which we present in 
Chapter 3. In Chapter 4 we describe a study conducted following such a 
design. 

All chapters of this book shall have the same structure as this Introduction. 
They all begin with an Overview and end with a Summary (which includes 
mention of the topic to be discussed in the chapter that follows). 
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ENDNOTES 
 
 
1 We have given the references to Peirce’s works not by indicating the year of publication but 
by using the abbreviation W followed by the volume number in the case of the ongoing 
publication by the University of Indiana entitled Writings of Charles S. Peirce: A 
Chronological Edition, or by the abbreviation CP followed by the paragraph number in the case 
of the now classic collection of his works entitled Collected Papers of Charles Sanders Peirce. 
2 This is how Peirce explains the meaning of “represent” or “stand in relation to” in Peirce, CP, 
2.273, p. 155. 
3 The ambiguity of the English expression “mathematical sign systems” would not exist if 
English used brackets as one of its structuring mechanisms, as is the case in the sign system of 
algebra. Then one would only need to write “mathematical (sign systems)” rather than 
“(mathematical sign) systems.” Freudenthal (1983) analyzed this difference between the sign 
system of written English (and most vernacular languages) and mathematical sign systems in 
the chapter entitled “The Algebraic Language,” and he illustrates this ambiguity of English with 
the example of the expression “pretty little girls schools,” “which according to the places of the 
—lacking— brackets can have 17 different meanings” (Freudenthal, 1983, p. 471). Fortunately, 
our expression “mathematical sign systems” cannot be interpreted in so many ways, and we are 
using it in only one sense, which is the one specified by the brackets in “mathematical (sign 
systems).” 
4 We will come back to the idea of sense as opposed to meaning and the idea of giving sense 
throughout the book, particularly in Chapters 7 and 8. 
5 We have consulted the French translation (Ver Eecke, 1952) and the English translation 
(Sigler, 1987), both done from the original Latin, and the Spanish version done from the French 
version cited (Ver Eecke, 1973). A detailed analysis of this book from the viewpoint that 
interests us here can be found in Filloy (1993a). 
6 We remark that Fibonacci’s Liber Abaci (L. E. Sigler, 2002) is one of the most famous of this 
collection of books. We come back to them in Chapter 3, Section 3.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

CHAPTER 2 
 

CURRICULUM DESIGN AND DEVELOPMENT FOR STUDENTS, 
TEACHERS, AND RESEARCHERS 

 
 
 

OVERVIEW 
 
 

We first suggest that it is necessary to make the conception of the nature of 
mathematics explicit, as it underlies curriculum organization and curriculum 
development, and show some of the risks that appear when this is not done. 

Section 2 explains what we understand by theoretical model through four 
basic characteristics, distinguishing it from other uses of the same term, and 
then introducing the methodological concept of the local theoretical model 
(LTM) and its four interrelated components. We discuss the contrast between 
the local and the general, and of the methodological nature of local modeling, 
setting out from the need to design ad hoc observation settings to study 
specific phenomena. We also explain the recursive character of the appli-
cation of local models and, in Chapter 3 explain the ephemeral quality of 
certain theoretical theses in this application. 

The major part of the chapter describes our manner of understanding the 
phenomenological analysis of mathematical concepts (or mathematical 
structures) that Freudenthal proposed in his book Didactical Phenomenology 
of Mathematical Structures (Freudenthal, 1983). For this purpose we outline 
the essential characteristics of a conception of the nature of mathematics that 
is compatible with our way of understanding Freudenthal’s phenomenology 
and that also includes the idea of the generation of concepts from proofs, 
which is characteristic of the work of Lakatos. We also discuss Freudenthal’s 
distinction between mental objects and concepts, and the consequences for 
curriculum development, which derive from the opposition that Freudenthal 
proposed between the constitution of mental objects and the acquisition of 
concepts. In this discussion, we use our semiotic viewpoint as a basis for 
interpreting the distinction established by Freudenthal, using as an example 
some considerations for a LTM for studying the uses of natural numbers. In 
the context of these considerations, we present the distinction between three 
types of sign —icons, indices and symbols— which Peirce himself used to 
describe algebraic expressions as iconic, while the letters in them are indices, 
and signs such as those of operation or equality are symbols. 
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 1. INTRODUCTION 
 
 

Any reflection about the elements with which one tries to structure plans and 
syllabuses for the teaching of mathematics entails, consciously or spontane-
ously, a conception of the fundamentals of mathematics. To try to free oneself 
from this discussion, which is far removed from the requirements of the usual 
practices of drawing up a curriculum, one tends to set out a list with various 
ways of analyzing the practices that take place in the teaching of mathematics in 
school systems –in other words, mathematics education. Thus one speaks of 
mathematics as (see Filloy and Sutherland, 1996): 

– A corpus of knowledge to be learned. 
– A set of techniques for solving problems. 
– The study of certain structures: arithmetic-algebraic, geometric, etc. 
– A language with a given sign system that intertwines with natural 

language. 
– A formal science with a highly formalized language. 
– A scientific activity, that of mathematicians, that has existed for 

centuries and that, at present, has developed specific practices very 
remote from those that can be found in educational systems. 

– An activity in which phenomena belonging to the natural and social 
sciences are modeled. 

– A collection of procedures for performing practical calculations to 
measure, classify, predict, count, etc. 

– A part of natural language in which judgments are expressed about the 
progress of society, the economy, the climate, voting forecasts, etc. 

– A collection of ways of talking about random or repeated phenomena 
with a view to predicting certain future events. 

– An essential element of the culture of all historical ages. 
– A symbolic system in which one can formulate expressions that give 

an account of general patterns so that one can make generalized 
calculations. 

– A symbolic system in which generalizations and abstractions are 
expressed, and that permits representations with operational capability. 

– A symbolic system in which one can express phenomena of iteration 
and recursion for the expression of algorithms. 

– A system of mental abilities, such as spatial imagination, the ability to 
reason hypothetically and deductively, etc. 

– Certain structures of the intellect, an internalization of the properties of 
actions that are performed with real objects. 

– A list (even longer than the foregoing) of teaching activities such as is 
provided in mathematics textbooks. 
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1.1. Partial and eclectic points of view 
 
 
The above list is clearly not exhaustive; but it can easily be multiplied if one 
simply thinks of the many different ways of interpreting some of the terms 
that we have used, within the various theoretical frameworks of psychology, 
for instance. 

Of course, from some viewpoints the range of mathematical competences 
that one tries to teach to young students in the basic levels of our present 
educational systems is all these things and many others. Therefore, if some 
viewpoints are favored at the expense of others, this leads to the design of 
curricula that leaves much to be desired because of their partiality, limiting 
the possibilities of using the curriculum to achieve rich, novel teaching that 
contemplates a transformation of the vitiated practices. Such practices occur 
in the current educational systems and they are the direct cause of the poor 
progress of students and of the rejection of mathematics by the general 
population. 

As a result of proceeding partially, placing some aspects above others, a 
false dilemma appears, in which the relational aspects of mathematical 
thinking work to the disadvantage of its instrumental use and viceversa. 
Similarly, the adoption of a particular bias makes the dilemma between 
understanding and mere mechanization more acute, in relation not only to 
mathematical operations but to mathematical thinking in general. As an 
example one can think of the risks entailed by an unduly narrow design of the 
curriculum for the teaching of mathematics, thinking of it simply as 
knowledge about given (ideal) objects the properties and relations of which 
must be gradually discovered, or the opposing risks introduced by other 
radical tendencies, which maintain the attitude that all mathematical know-
ledge is gradually constructed from the first interactions between individuals 
and reality. In both cases there is an exclusion of all the social aspects that 
intervene in the processes by which students become competent in the use of 
mathematical language and results, both for thinking and for producing 
practical knowledge that can be communicated to any other competent 
individual. 

But perhaps the most common mistake is an extreme eclecticism, by trying 
to give the same weight to all of the aspects indicated in the preceding list. 
This generally leads to the production of curriculum designs in which the 
confusion reaches the most elementary strands in the curriculum. Of course, 
plunging spontaneously into the design of a curriculum can have even worse 
results, in which the path followed by the curriculum design leads to a tangle 
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of contradictions and lines of force that interweave, mingle, or clash without 
rhyme or reason. 

All this is no more than a preamble to the need to clarify the conception of 
the nature of the mathematics that is brought into play in the curriculum. 

 
 
 

2. LOCAL THEORETICAL MODELS 
 
 

2.1. Four characteristics of LTMs 
 
 
The term model has a wide range of meanings: it can refer to many things, 
from a physical scale model to a set of abstract ideas. Here we examine the 
use that we make of this term in mathematics education. 

We use the term theoretical models, or simply models, without claiming 
that everything given the name of model may be a model in this sense. In fact, 
in this usage models differ considerably from what is given the same name in 
other applications. Our aim in this book is to analyze how the various 
examples have certain common characteristics, which is why we call them 
models. To begin, we point out four characteristics. 

The first characteristic is the fact that a theoretical model consists of a set 
of assumptions about some concept or system. 

First, it is necessary to distinguish theoretical models from diagrams, 
illustrations, or physical models, which, although sometimes useful to represent 
the model, must not be identified with the model itself. Second, it is true that at 
times, albeit not always, what is called a model is also termed a theory. 

This interchangeability of names is possible because, in such cases, the 
terms “model” and “theory” refer to the same set of assumptions, although the 
same things are not suggested about this set when we call it a model as when 
we call it a theory. Some of the differences, and also the reasons why not all 
models are called theories, must be analyzed. The second characteristic has 
precisely to do with this. 

The second characteristic is the fact that a theoretical model describes a 
type of object or system by attributing to it what might be called an internal 
structure, a composition or mechanism that, when taken as a reference, will 
explain various properties of that object or system. 

A theoretical model, therefore, analyzes a phenomenon that exhibits 
certain known regularities by reducing it to more basic components, and not 
simply by expressing those regularities in quantitative terms or by relating the 
known properties to those of different objects or systems. Accordingly, the 
term “theory” in this sense is broader than “model,” because not all theories 
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are formulated with the aim of providing structural analyses, which are typical 
of models. 

The third characteristic is the fact that a theoretical model is considered an 
approximation that is useful for certain purposes. 

The value of a particular model can be judged from two different but 
related viewpoints: how well it serves the purposes for which it is employed 
and the completeness and accuracy of the representation that it provides. 

The fact that a theoretical model may be proposed as a way of representing 
the structure of an object or system for certain purposes explains why various 
models are often used alternately. This represents another difference between 
the use of the terms “model” and “theory.” To propose something as a model 
of something is equivalent to suggesting it as a representation that provides at 
least some approximation to the real situation; further, it means admitting the 
possibility of alternative representations that may be useful for different pur-
poses. To propose something as a theory, however, is equivalent to suggesting 

principles or that those principles approximate to the principles that actually 
apply. Consequently, someone who proposes something as a theory is obliged 
to maintain that any alternative theories must be discarded or modified, or that 
they will be valid only in special cases. 

Finally, the fourth characteristic is the fact that a theoretical model is often 
formulated and developed and perhaps even named on the basis of an analogy 
between the object or system that it describes and some other object or 
different system. 

This implies a comparison in which one observes properties and principles 
that are similar in certain aspects, which fits in with the previous observation 
that theoretical models have the aim of providing a useful representation of a 
system. To provide such a representation, it is often helpful to establish an 
analogy between the system in question and some known system that is 
governed by rules or principles that are understood, and one supposes that 
some of those rules, or others like them, also govern the system that one is 
trying to describe with the model. Reasoning of this kind, based as it is on 
argument by analogy, is never considered sufficient to establish the principles 
in question, but only to suggest that they may be considered as first 
approximations, subject to proof and subsequent modification. In each case, 
however, the model itself can be distinguished from any analogy on the basis 
of which it was developed. 

Theoretical models can fulfil the same functions as theories: they can be 
used for purposes of explanation, prediction, calculation, systematization, 
derivation of principles, and so on. The difference between the use of a model 
and the use of a theory does not lie in the kind of function for which it can be 

that something is governed by certain specified principles, and not just that
it is useful for certain purposes to represent it as being governed by those 
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used, but in the way in which it fulfils that function. Theoretical models 
provide explanations; but these explanations are based on assumptions that 
may be simplified, and this condition must be borne in mind when one com-
pares them with theories. It is often said of explanation and systematization by 
means of a theory that they are more profound and penetrating, which reflects 
the belief that the principles that constitute a theory are more accurate than 
those of a model and take more known magnitudes into account. So why not 
always use the theory, which is more complete? In what follows we briefly 
discuss why we prefer a local approach and not a general one, but first we 
mention some semiotic terms that we use repeatedly throughout the book. 

 
 

2.2. Semantics and pragmatics 
 
 
It is not our intention here to develop with any precision the kind of 
theoretical model that is presented throughout the book. We content ourselves 
with calling on the reader’s intuitive concepts concerning terms such as 
semantics, syntax, semantic load, a more concrete or more abstract level of 
language, and of the reading level of a text. Even though one consequence of 
the interpretations obtained in the corresponding empirical studies —
described later in the book— is precisely the fact that many of the mistakes 
that are usually made when using new expressions come from the anticipatory 
mechanisms of the individual who is decoding a situation that needs to be 
modeled in that mathematical sign system (MSS), where the semantic load —
the custom of certain uses— produced by the individual’s prior experience 
plays a decisive part in possible conceptual errors or mistakes in the syntactic 
use of the new signs. Nevertheless, we are confident that the approach that we 
offer for some of the problems proposed is valid in itself, even if it is read 
from the viewpoint of other theoretical frameworks, and that the “facts” that 
we describe have an intrinsic interest, even if considered in terms of other 
interpretations. 

We pay more attention, therefore, to the pragmatic viewpoint, which 
consists in pointing out the meaning given by use, instead of placing greater 
emphasis on meaning in the abstract. As we have indicated, this approach 
diverts observation in mathematics education away from the competence of 
users of a MSS and toward performance, and it also has fundamental 
implications for the way in which MSSs are studied. Essentially, it is claimed 
that grammar (the abstract formal system) and pragmatics (the principles of 
the use of MSSs) are complementary domains in the observation of teaching 
processes with the various teaching models (innovative and traditional) that 
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are used to achieve the aim of guiding students so that they become competent 
users of an MSS. 

Consequently, this viewpoint not only includes the central role of formal 
grammar, but also recognizes that it should be incorporated in a broader 
framework that combines formal and functional explanations. In other words, 
that in order to interpret the complete meaning of some mathematical 
messages during normal teaching/learning processes, alongside the strictly 
formal meaning of the mathematical text in question we also have to admit 
some other meanings of certain other (logical) messages that are not explicitly 
communicated either by the sender or by the receiver. We refer to the so-
called presuppositions (of which there are various kinds) or the immediate 
consequences or implications —all this requires the incorporation of some 
“natural logic” that takes the relation between these meanings into account. 

Also, following the same direction of this idea, we are forced to distinguish 
the difference between competence to decode a message and competence  
to communicate it (many studies in mathematics education concentrate on  
this result). It is necessary that our theoretical approach should take these  
two different kinds of activity into account: the production of mathematical 
messages and their decoding. 

Empirical observations of how a MSS is used during the exchange of 
messages within teaching/learning processes and the corresponding situation 
when those MSSs are used by an individual who is thinking out the solution of 
a problem situation show that the cognitive processes involved interweave the 
formal level of competence with the pragmatic level. There is a pragmatic 
component, which comes from the teaching environment in which the learning 
process takes place. This component is bound up with institutionalized social 
contracts, so that it is necessary to take into account not only the traditional, 
customary ways in which the messages of an MSS are emitted in the 
educational system, but also —and this seems more important— the presence 
of the entire historical evolution of such sign systems. Notation is the first 
aspect that appears, but it is not the only one of all the particular ways in which 
nowadays, after a historical evolution, we tend to use MSSs and their 
applications to problems in present-day science, technology, and social 
information processes. 

Together with these pragmatic tendencies, there is a component that is 
due to an individual’s cognitive mechanisms that appear in each stage of 
intellectual development, which gives preference to different mechanisms for 
proceeding, various ways of coding and decoding the mathematical messages 
pertinent for the stage in question, various strategies for solving problems, and 
so on. For example, think of all the evidence that has been accumulated about 
the tendencies of students to maintain the arithmetic interpretations of many 
algebraic situations despite their progression to advanced stages of algebra. 
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2.3. The components of LTMs 
 
 
The stability of these phenomena of mathematics education and the well 
established replicability of the experimental designs that have been used to 
study them are such that we cannot fail to include these observations among 
the components that are important for any theoretical model for observation in 
mathematics education. Thus we have a need to propose theoretical com-
ponents that deal with different types of (1) teaching models, together with (2) 
models for the cognitive processes, both related to (3) models of formal 
competence that simulate the competent performance of an ideal user of an 
MSS, and (4) models of communication, to describe the rules of com-
municative competence, formation and decoding of texts, and contextual and 
circumstantial disambiguation. 
 
 
2.4. Local versus general, the reason for the local in our theoretical models 
 
 
From the point of view maintained by some authors devoted to problem 
solving, close to cognitive psychology, one could infer that, to decode a 
problem situation, experts proceed according to a synthetic process, that is, 
from the data to the unknown. In several of these studies, in general, when 
competent users are presented with a problem situation, they recognize “types 
of problems,” because they have formed schemes of them. Thus one could say 
that, when an expert is presented with a problem situation, in time he would 
make an integration of the information, in which he would recognize what the 
central relations of the situation are, comparing them with others that are 
already in his long-term memory, where there are also specific strategies to be 
followed. With all of these he is finally able to go on to represent the problem 
by means of mathematical texts and then decode them for the solution of the 
problem. 

However, from our empirical observations about the decoding of mathe-
matical problem situations it follows that any solution, however fast and 
fleeting it may be, necessarily passes through an initial logical analysis or 
logico-semiotic outline of the problem situation, conscious or unconscious, 
which makes it possible to sketch out the solution. That is, one shows the path 
that has to be followed to solve the problem in accordance with some 
mathematical text produced with the use of a certain stratum of an MSS, in 
which one can establish the direction that the solving process is going to take, 
and with which one can give analytic or synthetic reasoning processes. Thus 
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an expert or a novice confronted with a problem tends to do work that may 
proceed from the unknown to the data or viceversa, but in that work the 
competence to decode the problem situation is determined more by the 
competence to produce the logico-semiotic outline of the problem situation —
which includes strategies of analysis and synthesis— than by the mere 
recognition of some previously learnt scheme. 

Thus, when a competent user performs a logico-semiotic outline of a 
problem situation, he or she may bring into play cognitive mechanisms that 
enable him (a) to anticipate the central relations in the problem and also (b) to 
decide in which stratum of an MSS to outline all the steps of the solution, or 
decide between one MSS and another more specific MSS, subsequently going 
on to a process of analysis and synthesis with which he finally obtains the 
decoding of the problem situation. 

To the foregoing we could add many other examples of how, with a global 
approach, using the results of some general theory of certain branches of 
knowledge, the analyses of the phenomena that belong to mathematics 
education, performed thus, reduce the field of investigation very substantially, 
preventing a clear understanding of the specific phenomenon that one is trying 
to observe. For example, consider what we would achieve if we wished to use 
only a general linguistic theory to construct a useful semiotics for 
mathematics education. 

Therefore, instead of arguing in favor of giving preferential consideration 
to certain components —“grammar,” “logic,” “mathematics,” “teaching 
models,” “models of cognition,” “pragmatics,” “communication”— we have 
to concentrate on local theoretical models, appropriate only for specific 
phenomena but capable of taking into account all four of the components 
indicated earlier. The idea is to propose ad hoc experimental designs that cast 
light on the interrelations and oppositions that take place during the evolution 
of all the relevant processes related to each of the four components. 

 
 

2.5. The component of formal competence 
 
 
Earlier, we gave reasons for the need to have models for cognitive processes; 
this is reinforced later, when we analyze teaching models (Chapter 5). When 
we introduce our framework of (semiotic) interpretation, MSSs, the need to 
have models of communication is also underpinned. 

As we observe both thinking processes (cognitive component) and the 
exchange of messages (communicative component) between individuals with 
various degrees of competence in the use of the MSSs employed to create  
the mathematical texts (teaching model) relevant for the teaching/learning 
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process, the need for these three models would seem obvious: the model of 
cognitive processes, the model of communication, and the teaching model. 

The need for the model of formal competence comes from the requirement 
for a description of the situations observed by means of a more abstract MSS, 
to make it possible to decode all the texts produced in an exchange of 
messages in which the actors have various degrees of competence in the use 
of the MSSs in question. Later we see that we interpret the teaching/learning 
process in this way, hence the advisability that the observer should possess 
competence in a more abstract MSS that encompasses all the MSSs used in 
the process observed. In the most extreme case, we might suppose that the 
model of formal competence is the one with which the epistemic individual 
would decode the situations observed, that is, the decoding of someone who 
has all the competences created during the whole historical process of the 
construction of mathematical knowledge. Fortunately, it is sufficient for the 
observer to have a model of formal competence described in a more abstract 
MSS than the one used by all the individuals observed: the learners, the 
teachers, and the observer himself when he is involved in the exchange of 
messages (for example, in the clinical interview). 

Let us emphasize the importance of the component of formal competence 
with a paragraph concerning what is stated about Freudenthal’s didactical 
phenomenology presented later in this chapter. The order in which the various 
kinds of phenomenological analysis must be developed begins with pure 
phenomenology (the component of formal competence), for which what is of 
prime importance is knowledge of mathematics and its applications; it is 
completed with a historical phenomenology; then there is a didactical 
phenomenology (for which what has to be known is the process of teaching 
and learning); and in all cases it concludes with a genetic phenomenology. No 
phenomenological analysis can be effective when teaching is subsequently 
organized on the basis of it if it is not supported by a sound analysis of pure 
phenomenology (in other words, the component of formal competence). 

 
 
 

3. A GENERAL FRAMEWORK FOR CURRICULUM DEVELOPMENT  
FOR THE STUDY OF AN LTM 

 
 

It is advisable to begin the design of a curriculum of a teaching model with a 
general framework that is broad but based on certain clearly established 
attitudes, with the intention that various approaches may be obtained from 
them. Thus, the emphasis placed on them will come from one or another of 
these central theses, with the aim that the tensions between one viewpoint and 
another will consequently be diluted by the need to provide a response in each 
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case to the demands of the theses selected, converted in this way into lines of 
force that promote certain decisions and not others, in making those decisions 
meaningful. 

It is in this spirit that we put forward the following reflections to regulate 
the criteria for the design of the teaching models that it is decided to use. In 
the following two sections, we introduce ideas derived from the works of 
Freudenthal that are pertinent for curriculum development, and also the 
relation of those ideas to the generation of concepts through proving that is 
found in the work of Lakatos. 

 
 

3.1. Concepts 
 
 
School mathematics is articulated in a series of interrelated conceptual 
networks, with the characteristic that, with time, students succeed in becoming 
competent in the use of increasingly abstract general networks —competences 
that call on many previously mastered competences. 
 
 
3.2. The relation with reality. Teaching mathematization 
 
 
The first elementary mathematical concepts are a response to the interaction 
that children have with the real world. The first notions about quantity, 
magnitudes, classification, distribution, division, etc. are developed directly 
from the children’s experiences in the real world, but they are also a response 
to the work of getting hold of the socially established codes for the symbolic 
manipulation of all these processes, including those inherent in the individual, 
such as understanding, analysis, and thought. That is why the first 
mathematical texts have the manipulation of objects and reflection on their 
interaction as their physical forms of expression. Therefore, a curriculum 
design that does not set out from the need to move from the concrete to the 
abstract and that does not then complete the inverse action will tend to result 
in the students producing MSSs that do not have the sense that one wished to 
give them socially. 

In modern versions, this to and fro between the concrete and the abstract, 
between the real world and its representations in a mathematical sign system 
(quantitative modeling, a particular case of mathematization), has played a 
decisive part not only in science but also in education. Through quantitative 
modeling it is feasible to “interpret the world with numbers” (Boohan, 1994), 
using algebraic relations to calculate the numeric value of dependent variables 
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and thus be able to make short- and long-term predictions about the behaviour 
of phenomena. 

One gateway to the learning of algebra is modeling. In this kind of 
approach the emphasis is on the role of the sign system of algebra as a means 
to express relations between variables that correspond to phenomena or 
situations in the physical world, and the corresponding didactic paths 
contemplate the complete cycle: (1) translation of “concrete” situations or 
situations expressed in natural language (word problems) to algebraic code; 
(2) analysis of relations between variables, based on manipulation of the 
algebraic expressions produced (syntactic level); and (3) interpretation of the 
“concrete” situation in the light of the results of the work with algebraic 
syntax. The argument in favor of the virtues of this approach to algebra is that 
in step (1) meaning is given to algebraic expressions, and in steps (2) and (3) 
the syntactic manipulation of those expressions becomes meaningful. 

With the characteristics just described, the teaching of algebra as a means 
of modeling tends to promote in students the production of signs in a socially 
accepted MSS, that of symbolic algebra. In more recent proposals, in the 
framework of teaching by modeling, other MSSs are also brought into play, 
such as those of making graphs, numeric tables of variation, spreadsheets, and 
mathematical narrative (Nemirovsky, 1996). The last of these has succeeded 
in facilitating processes that can present great difficulty in modeling, such as 
the translation of relations in a “concrete” situation to algebra. 

 
 

3.3. Practical knowledge 
 
 
On the basis of the knowledge obtained from experiences in the real world 
and the representation of that relation with a sign system that intertwines with 
natural language, mathematical concepts are used to perform measurements, 
calculations, and representations. Such concepts are immensely useful and no 
member of modern society who wishes to pursue a normal intellectual 
development can disregard them. Nowadays, to be able to analyze the events 
that take place in the daily lives of individuals and society, one requires 
certain competences in the use of the MSSs that are taught in mathematics 
classes. One important component of the curriculum must aim at making it 
possible for students to use their mathematical knowledge in their daily lives 
to solve the problems that are presupposed by modern educational systems 
and that refer to those with which society presents them every day (for 
example, in the reading of newspapers). 
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3.4. The analytic and instrumental function for other areas of knowledge 
 
 
An important feature of elementary mathematics consists in the fact that many 
other areas of knowledge have gradually, but increasingly intensively, been 
making use of its symbolic systems to represent the various explanatory 
models that are found in those areas. Thus, school mathematics is required to 
describe and understand phenomena from a great diversity of sources. 
Mastery of the more abstract and general parts of the basic curriculum 
provides students with a symbolic system in which analytic capability is 
reinforced by language strata in which not only is it possible to model the 
phenomena that one is trying to understand and master, but also, precisely 
there, in the symbolic, one has the operational capability of advancing in the 
prediction of what will happen when the modeled phenomena take place in 
time, or when some variable evolves in a particular way. That is why the final 
parts of algebra, geometry, probability, and statistics, which are traditionally 
taught in the last two years of the secondary school (13-15 years of age), are 
of such importance for the future of individuals and for society, which 
demands competence in such matters if one is to master understanding of 
natural phenomena and progress in one’s societal roles. 
 
 
 

4. PHENOMENOLOGICAL ANALYSIS AS A COMPONENT OF DIDACTICAL 
ANALYSIS. HANS FREUDENTHAL’S APPROACH TO CURRICULUM DEVELOPMENT 

 
 

4.1. Phenomenological analysis 
 
The didactical analysis of mathematics, i.e., the analysis of the contents of 
mathematics that is performed for the sake of the organization of the teaching 
of mathematics in educational systems, has various components, which 
organize the various teaching models presented in this book. One of the 
components takes its name from Hans Freudenthal’s book Didactical 
Phenomenology of Mathematical Structures (Freudenthal, 1983) and is the 
subject of this section. We here set out the characteristic features and some of 
the consequences of what we understand by phenomenological analysis of 
mathematics as a component of its didactical analysis. The exposition 
repeatedly refers to Freudenthal’s work, taking some liberties with the 
terminology that he uses and introducing other terminology that is not his. 

The phenomenological analysis of a concept or a mathematical structure 
consists of describing the phenomena for which it is the means of organi-
zation and the relation that the concept or structure has to those phenomena. 
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The description of the phenomena for which it is a means of organization 
must consider the totality of the phenomena for which this is so at the time, 
that is, it must take mathematics in its present state of development and in its 
present use; but it is also advisable to indicate the phenomena for the 
organization of which it was created and the phenomena to which it has 
extended subsequently. 

The phenomenological analysis developed by Freudenthal is fashioned to 
serve teaching. However, Freudenthal distinguishes various types of phenol-
menology, all important from the viewpoint of teaching, but only one of them 
is described as didactical. These types are: phenomenology, didactical phenol-
menology, genetic phenomenology, and historical phenomenology. 

The first thing that characterizes each of these phenomenological analyses 
is the phenomena that they take into consideration with respect to the concept 
that is analyzed. In the first case they are the phenomena that are organized in 
mathematics taken in its state at the present moment and assuming its present 
use. In the didactical case they are the phenomena present in the world of the 
students and the phenomena that are proposed in the teaching sequences. In 
the genetic case, the phenomena are considered with respect to the learners’ 
cognitive development. In the historical case, special attention is paid to the 
phenomena for the organization of which the concept in question was created, 
and how it has extended to other phenomena. 

The description of the relations between the phenomena and the concept 
takes into consideration, in the first case, the relations that are established, and 
in the other three how those relations were brought about, acquired or formed, 
in the educational system, with respect to cognitive development or in history, 
respectively. 

Moreover, in the case of pure phenomenology the concepts or mathema-
tical structures are treated as cognitive products, whereas in the case of 
didactical phenomenology they are treated as cognitive processes, i.e., situated 
in the educational system as teaching material and being learned by students. 
Freudenthal says that when writing a didactical phenomenology one may 
think that it should be based on a genetic phenomenology, but this idea is 
mistaken. The order in which the various types of phenomenological analysis 
must be used begins with pure phenomenology (for which it is sufficient to 
know mathematics and its applications); this is completed with a historical 
phenomenology, followed by a didactical phenomenology (for which it is 
necessary to know the teaching and learning process), and in all cases genetic 
phenomenology comes last. No phenomenological analysis can be effective 
when teaching is subsequently organized on the basis of it if it is not 
supported by a sound analysis of pure phenomenology. 

Freudenthal’s phenomenological analysis aims to serve as a basis for the 
organization of the teaching of mathematics and does not set out to elaborate 
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an explanation of the nature of mathematics. It might be possible to use it 
without adopting any epistemological or ontological commitment about 
mathematics, that is, accepting mathematics as a means for the organization of 
phenomena, without maintaining that things really are so. However, the ideas 
that students form about the nature of mathematics and the ideas that teachers 
have exert a very considerable influence on how both students and teachers 
conceive the mathematical activity that has to be performed in class, and the 
knowledge that students produce and that teachers try to teach. This is  
also why we think it necessary to outline a conception of the nature of 
mathematics that is compatible with the interpretation that we make of 
Freudenthal’s phenomenological analysis. 

We set out, therefore, from the statement that mathematical concepts are 
means of organization for phenomena of the world. However, this charac-
terization does not tell us much if we do not specify to what we are referring 
when we speak of the world, and if we do not establish which phenomena are 
organized by mathematical concepts. Nevertheless, one of the tasks of 
phenomenology is precisely to investigate which phenomena are organized by 
mathematical concepts, by analyzing those concepts, so that one cannot seek 
to know in advance which they are. Nor can one seek to characterize in 
advance the kind of phenomena organized by mathematics, because to do so 
one would need to have linked the phenomenology of mathematics to a 
general phenomenology in which one establishes a typology of phenomena —
a task that, in our view, could be approached by means of Peirce’s phenol-
menology. Consequently, we can have an idea of the kind of phenomena 
involved only on the basis of the concrete analyses that we perform. 

On the other hand, it is possible to interpret that from the foregoing 
statement it follows that mathematics lies in a separate world from the world 
whose phenomena it organizes, which is the world around us, the real world. 
This, however, is not the most appropriate interpretation. 

In fact, if we place ourselves at the origin, or at the lowest level, we could 
say that the phenomena that are going to be organized by mathematical 
concepts are phenomena of this real, physical, everyday world. Our experi-
ences with this physical world have to do with the objects of the world, their 
properties, the actions that we perform on them, and the properties that those 
actions have. Hence the phenomena that mathematics is to organize are the 
objects of the world, their properties, the actions that we perform on them or 
the properties of those actions, when objects, properties, actions, or properties 
of actions are seen as what is organized by those means of organisation and 
are considered in their relation to them. 

This first interpretation establishes the idea that mathematical concepts do 
not actually reside in an ideal world whose reflection we study, nor do they  
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have an existence prior to mathematical activity, nor does that activity consist, 
therefore, in the discovery of the geography of the world in which those 
objects are. Yet they are also not installed in a world foreign to our 
experience, inasmuch as they are created as a means of organization of 
phenomena of the world. The previous interpretation is not felicitous in this 
respect, because it does not take into account the fact that Freudenthal does 
not remain at the lowest level, describing mathematical activity simply as an 
interplay between phenomena of the world and means of organization in 
mathematics, in which phenomena seek to be organized and means for this are 
created in mathematics. On the contrary, Freudenthal accompanies the process 
of creation of mathematical objects as means of organization with a process 
by which the means of organization become objects that are situated in a field 
of phenomena. Consequently, mathematical objects are incorporated into the 
world of our experience, which they enter as phenomena in a new relation of 
phenomena/means of organization in which new mathematical concepts are 
created, and this process is repeated again and again. 

Mathematics is therefore in the same world as the phenomena that it 
organizes: there are not two worlds but one, which grows with each product of 
mathematical activity. The phenomena that mathematical concepts organize are 
the phenomena of the world that contains the products of human cognition and, 
particularly, the products of mathematical activity itself; the phenomena that are 
organized by mathematical concepts are the objects of that world, their 
properties, the actions that we perform on them, and the properties of those 
actions, inasmuch as they are contained in the first term of a phenomena/means 
of organisation pair. 

The staggered progression of phenomena/means of organization pairs 
entails two processes: the process of creation of mathematical concepts as 
means of organization, which is indicated by each pair, and the process by 
which a means of organization is objectified in such a way that it can become 
part of a new pair, this time in the position of phenomena. The staggered 
progression draws a picture of the production of more abstract mathematical 
objects on an ever higher level, and it shows that mathematical activity 
generates its own content. 

 
 

4.2. Constitution of mental objects versus acquisition of concepts 
 
 
We speak of mathematical concepts, of their creation in a relation of 
phenomena/means of organization, of the objectification of the means of 
organization and their entry into a phenomena/means of organization relation 
on a higher level; we speak of transformations of concepts as a consequence 
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of the mathematical activities of proving theorems, solving problems, 
organizing in a deductive system and the process of defining. All this is 
accompanied by the affirmation that mathematical concepts do not have an 
existence independent from the mathematical activity that creates them. But 
we also bring into the arena a new idea developed by Freudenthal that will 
oblige us to rethink the relations that concepts establish in these ladders of 
concepts/means of organization: this is the idea of a mental object as opposed 
to a concept. 

This idea is important primarily because it is on the basis of it that 
Freudenthal adopts a didactic attitude: the aim of educational activity in the 
school system must basically be the constitution of mental objects, and only 
secondarily the acquisition of concepts —which is in second place in terms of 
both time and order of importance. This attitude is also particularly important 
for the period of compulsory education, because one must consider what part 
of mathematics must be offered in it to the population as a whole. But it is 
also important for the phenomenological analysis of mathematical concepts, 
all the more so if the analysis is a didactical phenomenology and one has in 
mind the idea that the analysis is prior to the organization of teaching and is 
performed with that purpose. This is the aspect that we deal with here. 

In a first approach, the contrast between mental object and concept that 
Freudenthal proposes can be seen as the consequence of considering the 
people who conceive or use mathematics in contrast to mathematics as a 
discipline or set of historically, socially, and culturally established knowledge. 
In the foregoing sections, when speaking of mathematical concepts we have 
considered them basically within the discipline, and we have hardly intro-
duced the intervention of real people; what has appeared is, at best, a 
semblance of them, the ideal subject who performs actions with powers 
superior to those that we possess. We can set out, therefore, from an initial 
image: the contrast of mental object and concept is a contrast between what is 
in people’s heads (mental objects) and what is in mathematics as a discipline 
(concepts). 

As this is the sense in which Freudenthal uses these terms and in which we 
are going to use them here, it is worth pointing out before we go on that the 
term “mental object” does not appear in normal usage. The customary 
practice is to speak of the concept that someone has —of number or triangle 
or anything else, whether it belongs to mathematics or not— or to use the 
term “conception” instead of “concept” and speak of the conception that 
someone has of circumference, for example; but in this case one generally 
wishes to emphasize that what is in the person’s mind is part of a concept or a 
way of seeing that concept. 
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4.3. Considerations for an LTM for studying the uses of natural numbers 
 
 

Peirce also speaks of a certain progression in the types of signs we treated  
in Chapter 1: 

 
A regular progression of one, two, three may be remarked in the three orders of signs, Icon, 
Index, Symbol. The Icon has no dynamical connection with the object it represents; it simply 
happens that its qualities resemble those of that object, and excite analogous sensations in the 
mind for which it is a likeness. But it really stands unconnected with them. The index is 
physically connected with its object; they form an organic pair, but the interpreting mind has 
nothing to do with this connection, except remarking it, after it is established. The symbol is 
connected with its object by virtue of the idea of symbol-using mind, without which no such 
connection would exist. (Peirce, CP, 2.299, pp. 168-169.) 
 
4.3.1. The first arithmetic signs 
 
It seems that the first written signs were arithmetic signs. Let us look at some 
of the characteristics of signs that we have just expounded at work in those 
primitive signs. 

It has actually been determined that the first written signs were arithmetic 
signs as a result of a step-by-step reconstruction of the development of two 
systems of writing that had their beginning in about 3500 BC and that were 
created by Sumerians in the south of Mesopotamia and by Elamites in Susa 
(located in what is now Iran).1 

These first signs were marked with a stylus on the outside of hollow balls 
of soft clay, and they always corresponded both in form and number to 
pebbles of various shapes contained inside the balls. These marks were thus 
icons that represented the hidden pebbles, and one had only to break the ball if 
one wished to confirm that they really did stand for the objects that they 
represented. The marks on the balls are icons because they resemble in form 
and number the objects they represent, so that they signify even if the balls are 
empty. These signs have what we might call a primitive way of working, 
because the code that the person who closes up the balls and makes marks on 
them has to share with the person into whose hands they come is not very well 
established socially, or, at any rate, is subject to doubt. 

Interesting as these first written marks are in so patently possessing two of 
the natural characteristics of signs, they become even more interesting when 
we discover that they have the antecedents and consequents that will now be 
explained. 

The marked balls that have been found in the excavations are from the 
second stage of this temporal series. Before that stage, the remains correspond 
to hollow balls containing pebbles but without any external mark. After the 
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second stage the pebbles disappear and only the marks remain, and the hollow 
balls, which no longer have to contain anything, become flat tablets. 

First of all, therefore, there are objects hidden in a hollow ball, then the 
first written signs, with the objects that they represent present but hidden, and 
finally only the written signs without the objects that they represent. 

But these objects, in turn, are signs —although not signs belonging to a 
system of writing— because, in each of the three historical stages, the balls or 
tablets are records or trading transactions; they are accounts. The objects 
represented by the written marks are also arithmetic signs, because, by their 
shape and quantity, they represent a certain number of objects. What the 
archaeologists have reconstructed tells us that these pebbles were used to 
record an account in the course of a commercial transaction, and once the 
matter was settled they were placed inside a hollow ball to record the 
agreement between the trading parties concerning the quantity involved in the 
transaction. These first arithmetic signs stood for other arithmetic signs that 
had a different medium of expression and they eventually replaced them in 
the records, but only in the records, because if the traders probably continued 
using pebbles to do their accounts, they had no operational capability. 

These mathematical signs on clay tablets led to the development of 
Sumerian cuneiform writing. We know that later, in the palaeo-Babylonian 
era (2000 to 1600 BC), genuine mathematical texts were written on tablets 
similar to these primitive specimens (and not only in Sumerian but also in 
Akkadian, a Semitic language), but that is another story, which we will not go 
into here.2 
 
4.3.2. The signs used in the Roman number system 
 
Although the arithmetic signs that are at the origin of cuneiform writing fell 
into disuse thousands of years ago, the Etruscan herdsmen, far from 
commercial transactions and the schools of scribes in the fertile crescent, by 
making notches on a stick, one for each head counted, created a number 
system that we still use, albeit only marginally: the one known as the Roman 
number system. 

The signs that we have inherited from them for the representation of 
numbers actually seem to have developed as a result of their physical 
inscription on a linear record. Thus the primitive repetition of notches, ||||||||…, 
became structured by means of special marks every five notches, with a view 
to making it easier to count the expression: a slanting mark in the fifth 
position, a cross-shaped mark in the tenth position, etc., giving rise to marks 
such as ||||/||||X||||/||||X||| to record a herd of twenty-three animals. The primary 
marks and structural marks eventually became the alphabetical letters I, V, 
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and X, becoming integrated into the system of writing and identified with the 
letters that they most resembled. 

As they were positions in a series, V and X did not signify the cardinal 
numbers “five” and “ten,” but the fifth and tenth positions in the series. In 
fact, the first written forms for “five” and “ten” were not V and X but IIIIV 
and IIIIVIIIIX, which do indeed represent cardinal numbers, and in which 
both I and V represent a unit. It was only later that considerations of economy 
led to the use of V to represent IIIIV and thus five units. The signs V and X 
initially functioned as reference points in the series in yet another sense: IV 
came to signify “four,” not as the result of a rule of subtraction between the 
cardinal numbers designated by I and V, but because from the presence of the 
sign V one could understand that the mark immediately before V in the series 
was being designated. Similarly, VI did not come to signify “six” as the result 
of a rule of addition, but because it designated the mark immediately after V. 
It was only when the signs V and X acquired a cardinal meaning —standing 
for IIIIV and IIIIVIIIIX— that the earlier rules, which had to do with 
positions in a series, i.e., with …IV… or …VI…, were reinterpreted as rules 
of addition and subtraction between cardinals. In this historical account, the 
transformations that took place in the expression as a result of the processes of 
abbreviation gave new senses both to the elementary signs and to the rules for 
the formation of compound signs, senses that correspond to the meanings now 
taught in schools. 

These marks are indices of the action of counting. Puig (1997) points  
out that the phenomena that organize mathematical concepts are objects, 
properties, actions, and properties of actions. This is one of the clearest 
examples of a mathematical concept that organizes a phenomenon that does 
not belong to the domain of objects or properties of objects, but to the domain 
of actions and properties of actions (which does not do away with the fact that 
in the corresponding triadic relation the action of counting is the object of the 
sign for a mind, that is, for an interpretant). As a result of transformations of 
the expression, the indices become symbols. 

 
4.3.3. Algebraic expressions 
 
It is common to refer to algebraic expressions as “symbolic language” —for 
example, when one speaks of putting a problem into equations, one usually 
describes this as a “transition from natural language to symbolic language.” 
However, if we use Peirce’s terminology, algebraic expressions are not 
symbols but icons, strange as this may seem at first sight. Let us see how 
Peirce himself explains it: 
 
[…] thus, an algebraic formula is an icon, rendered such by the rules of commutation, 
association, and distribution of the symbols. It may seem at first glance that it is an arbitrary 
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classification to call an algebraic expression an icon; that it might as well, or better, be regarded 
as a compound conventional sign [symbol]. But it is not so. Because a great distinguishing 
property of the icon is that by direct observation of it other truths concerning its object can be 
discovered than those which suffice to determine its construction. […] This capacity of 
revealing unexpected truth is precisely that wherein the utility of algebraic formulae consists, 
so that the iconic character is the prevailing one. (Peirce, CP, 2.279, p. 158.) 
 

Algebraic expressions are icons, and this is precisely what makes them 
powerful, because as signs they have the properties that their objects have. 
However, the letters in algebraic expressions, taken in isolation, are not icons 
but indices, each letter being an index of a quantity. They are also not 
symbols. If the algebraic expression is the result of the translation of the 
verbal statement of an arithmetic-algebraic problem, each specific letter 
represents a specific quantity as a result of the convention established by the 
person who produced the translation, but each letter refers to a quantity even 
if there is no interpretant, because any interpretant who is not aware of the 
convention established will assign the letters to the right quantities, since the 
algebraic expression as a whole will require that the corresponding quantity 
be assigned to each letter. So are there no symbols in algebraic expressions? 
Yes, there are. The signs +, =, etc. are symbols in Peirce’s sense. 

Algebraic expressions are thus an example of the imbrication of three 
kinds of signs in mathematical writing: the letters are indices; the signs +, =, 
etc. are symbols; and the expression taken as a whole is an icon. 

 
4.3.4. Uses of numbers in different contexts 
 
The students in whom teachers attempted to instil the concept of number in 
the years of what was known as “modern mathematics” —in a school version 
of Cantor’s construction of cardinals— would have left school without being 
able to count if they had not created a mental object of number apart from 
what the official syllabuses wished them to be taught. We will use this 
complex, multiple concept as an example to show the difference between 
mental object and concept, describing it in semiotic terms instead of as 
Freudenthal does. 

If we consider the ordinary activity of people and not just the mathematical 
activities of mathematicians or the scholastic activities of students in 
mathematics classes, the use of number, or rather numbers, appears in very 
diverse contexts. A list of them might include the contexts of sequence, 
counting, cardinal, ordinal, measurement, label, written numeral, magic, and 
calculation. A description of the characteristics of each context is not our 
purpose here: the list is worth mentioning solely in order to show that it  
is possible to distinguish a considerable quantity of contexts. Following 
Wittgenstein for a moment, we understand meaning as being constituted by 
the use that one makes of a term, that use not being an arbitrary use, the 
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product of what someone takes it into his or her head to do with the term in 
question, but a practice subject to rules. 

The uses of numbers in each of these contexts follow rules. For example, 
when one says “My telephone number is three, eight, six, four, five, eight, 
six,” the number refers to an object and does not describe any property of it or 
its relation to other objects but serves to identify it. This is the context of 
label, and in it, when the expression is oral, the digits that make up the 
number are generally expressed separately, as in the example given. In an 
ordinal context, the number refers to an object that is in an ordered set  
of objects, and it describes what place it occupies—“he came third” or “he’s 
the one that makes three.” In a cardinal context, the number refers to a set of 
objects (without order, or whose order is not taken into consideration), and it 
describes the numerousness of the set— “there are three.” And so on. 

The totality of the uses of numbers in all contexts constitutes the semantic 
field of “number,” the encyclopedic meaning of “number.” The identification 
of the context in which number is being used enables someone who is reading 
a text or receiving a message to abide by the semantic restriction that the 
context establishes and thus interpret it appropriately. However, the person 
who reads a text or has to interpret a message does not operate in the whole 
encyclopedia —i.e., the totality of the uses produced in a culture or an 
episteme— but in his personal semantic field, which he has gradually built up 
by producing sense —senses that becomes meanings if the interpretation is 
felicitous— in situations or contexts that demanded of him new uses for 
“number” or numbers. 

In this semiotic description, what Freudenthal calls “mental object 
‘number’” corresponds to this “personal semantic field.” Freudenthal’s didactic 
attitude in favor of the constitution of mental objects means that the aim of 
educational systems, expressed in the terms that we are using, should be that the 
student’s personal semantic field should be sufficiently rich —should embrace 
the encyclopedia sufficiently— to enable him to interpret appropriately all the 
situations in which it proves necessary to use “number” or numbers. 

The contexts of the ordinary use of numbers are the various places in 
which we can experience the phenomena that have been organized by means 
of the concept of number, both the phenomena for which it was originally 
created and those to which it has now been extended. The idea of mental 
object that we have just introduced must also be seen, therefore, as a means of 
organisation of phenomena: with the mental object “number” people are able 
to count, among other things. Mental objects are constituted in chains of 
phenomena/means of organization, in the same way as with concepts, with the 
consequent increase in level —in fact, the contexts of the ordinary use of 
numbers that we have mentioned are situated on the lowest levels, and to  
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realise the phenomenological richness of number in secondary school one 
must take other contexts into consideration, including contexts that have 
already been mathematized. 

 
 

4.4. Relation between mental object and concept 
 
 
This is an initial explanation of what a mental object is and how it is 
constituted, but what Freudenthal calls mental object could simply have been 
called the concept that a person has of number. To justify the introduction of a 
term that distinguishes it, it is necessary to explain for what other thing the 
term “concept” has been reserved, and how it differs from what we have just 
called “mental object.” We have already said that the first distinction is that 
mental objects are in people’s minds and concepts are in mathematics. But 
this would hardly be sufficient reason to oppose mental object to concept if 
we thought that the mental object is the reflection of the concept in people’s 
minds. The relation between mental object and concept, however, is not a 
mirror-like relation. Once again we will explain it in semiotic terms. 

We have identified the mental object “number” with the personal semantic 
field, which comes from all the uses of numbers in all the contexts in which 
they are used, from a semantic field consisting of all the culturally established 
meanings. The mathematical concepts of natural number —and we use the 
plural in order to emphasize the fact that we consider the concepts developed 
by Peano, Cantor and Benacerraf, for example, as different— in the form in 
which they exist in current mathematics are the product of a long history, with 
processes of creation and modification of concepts. In terms of the semiotic 
description that we are using now, any mathematical concept of number that 
one wishes to examine once it has been created appears as the result of the 
process of defining that has incorporated it into a system organized 
deductively as a narrowing of the semantic field. Thus, for example, the 
concept of natural number developed by Peano —especially in its more 
modern versions— can be seen as the breaking down of the meaning that 
pertains to the context of sequence and its presentation in the form of a series 
of axioms that give an exhaustive account of its components. The concept of 
natural number that is derived from Cantor’s construction, on the other hand, 
is ascribed, in the very name that Cantor gave in his original intention, to the 
cardinal context. 

In this explanation, concepts appear to be directly related to a part of the 
mental object, given that, in the process of defining, part of the meaning that 
the mental object embraces is selected. We will immediately point out that 
this is not the only difference, and that we do not wish to give the impression 
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that the relation between mental object and concept is a relation between a 
part of the content of the mental object and the totality of its content. But we 
wish, rather, to indicate that what this explanation establishes provides a 
foundation for the attitude taken by Freudenthal that we have mentioned: the 
acquisition of the concept is a secondary school objective and can be left until 
after mental objects have been soundly constituted, and in any case it does 
come afterwards. 

The relation between mental object and concept is more complex than is 
shown by the explanation that we have just given using the example of 
number, because the explanation was limited to comparing the deployment of 
the semantic field of number and Peano’s definition, as if there were not 
centuries of history that have produced both contexts of use —which we are 
now going to find with traces of their organization by concepts of number— 
and Peano’s definition. Taking into account the processes of creation and 
modification of concepts that are present in that history, the relation between 
the mental object that can be constituted from the contexts mentioned and the 
content of the concept of number created by Peano’s definition cannot be 
reduced to a relation between part and whole. 

Constituting a mental object implies being able to give an account with it of 
all the uses in all the contexts or being able to organize all the corresponding 
phenomena, in which case the mental object is well constituted. The aim of 
educational systems that Freudenthal indicates is this constitution of good 
mental objects. Acquiring the concept implies examining how it was established 
in mathematics organized locally or globally in a deductive system. The 
particular relation that each mathematical concept has to the corresponding 
mental object determines how the constitution of the mental object relates to the 
acquisition of the concept. The constituents of the good mental object are 
determined by means of the phenomenological analysis of the corresponding 
concept. 

 
 

4.5. From phenomena to mental objects and concepts through teaching 
 
 
The relation between mental objects and concepts is varied. Both are con-
stituted as means of organization of phenomena, mental objects precede 
concepts, and concepts do not replace mental objects but contribute to the 
formation of new mental objects that contain them or with which they are 
compatible. 

The distance between the mental object, or rather the first mental object, 
and the concept can be an abyss: this is the case with the mental object 
“curve” and Jordan’s concept of curve, for example. In general, in topology 
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mental objects do not lead very far, and it is necessary to form concepts, by 
means of a formation of concepts that involves more than a local organization. 
These concepts enter a field of phenomena that are organized on a higher 
level by mental objects such as spaces and varieties of arbitrary dimension, 
which in turn are converted into concepts by means of new processes of 
organization and the creation of more abstract sign systems to describe them. 
As this example shows, by introducing the idea of mental object the process 
of a progressive rise through the chain of phenomena/means of organization 
pairs links up with a process of transformation of mental objects into 
concepts. 

The analyses of didactical phenomenology must be based on analyses of 
pure phenomenology, bearing in mind that, in many more cases than one 
might imagine, the distance between the mental object and the concept is so 
great that it is not possible to build bridges between them by didactic means in 
secondary school. 

For the constitution of mental objects through teaching while bearing 
concepts in mind, the distance between them and the various forms that this 
distance adopts are therefore of importance. It is worth mentioning a few 
cases, such as those that are set out in the following paragraphs. 

Sometimes there are components that are essential for the formation of the 
concept but are not pertinent for the constitution of the mental object. This is 
the case with the cardinal number: the comparison of sets without structure is 
essential for the concept, but it plays almost no part in the constitution of the 
mental object because, in the real situations in which a person experiences the 
phenomenon that is organized with the mental object “number” in its cardinal 
sense, the sets of objects are rarely without structure, and, moreover, the 
structure is a means for making the comparison, rather than something that 
must be removed in order to make it. 

Sometimes, what a didactical phenomenology shows is that the phenol-
mena organized by the concept are so varied that in fact different mental 
objects are constituted, depending on the field of phenomena that is selected 
for exploration in teaching, or several mental objects if several kinds of 
phenomena are explored. For the acquisition of the concept it is necessary, 
therefore, to integrate these different mental objects into a single mental 
object. This is the case with the concept of area, for example. 

Indeed, lengths, areas, and volumes are the magnitudes that are measured 
in elementary geometry. It is therefore necessary that these concepts should 
be acquired as part of the learning of measurement and measuring. The 
comparison between qualities of objects is the beginning of the activity of 
measuring. This becomes measurement through the intermediary of the 
establishment of a unit and consideration of objects that are treated as objects 
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of which one can predicate that quality —for example, one can predicate that 
they have length if it makes sense to say of them that they are “long.” 

However, as concepts, length, area, and volume are problematic because of 
the variety of approaches for the constitution of the mental object “area” (or 
“volume”). Indeed, plane figures can be compared with respect to area 
directly, if one is part of the other, or indirectly, after transformation by 
cutting and pasting, congruences, and other applications that preserve area; or 
else by measuring both of them. The measuring can be done by covering the 
figure with units of area, or by means of interior and exterior approximations; 
for this one uses the additivity of the area beneath the composition of plane 
figures that are mutually disjoint except for their boundaries (of dimension 
one), or convergence of the areas by approximation. It is not clear that these 
approaches lead to the same result, and in fact the proof that the result of 
measuring by following all these procedures is the same is not simple. The 
constitution of the mental object “volume” also has the additional complica-
tion of considering phenomena corresponding to capacity, which are usually 
measured with different units. 

Sometimes it is difficult even to distinguish the mental object from the 
concept, at least if one wishes to have a unitary mental object: only by means 
of access to the concept is it possible to unify a heterogeneous set of mental 
objects. This is the case with the concept of function. 

Finally, there are mental objects whose field of phenomena appears only in 
a mathematical or mathematized context. An example of this in secondary 
school is provided by the concepts of analytical geometry. 

Indeed, in history, global location by using coordinates leads to the 
algebrization of geometry. Whereas the system of polar coordinates used to 
describe the sky and the Earth’s surface has served to systematize location, 
the system of Cartesian coordinates is particularly efficacious for describing 
geometric figures and mechanical movements and, later, functions in general. 
A figure can be translated algebraically into a relation between coordinates, a 
movement in a function that depends on time, and a geometric application in a 
system of functions of a certain number of variables. 

The phenomena that are proper to analytical geometry are thus phenomena 
produced by the expression of geometric properties in the complex sign 
system in which algebraic expressions and Cartesian representation refer to 
one another. They are, therefore, phenomena that can be explored only in 
contexts previously mathematized by the use of those sign systems. 
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4.6. Concepts generated by proving 
 
 
We have seen that mathematical concepts are created in the phenomena/-
means of organization process, but this does not mean that once created they 
remain immutable. On the contrary, mathematical concepts alter in history as 
a result of their use and the new MSSs in which they are described. This does 
not imply, however, that alterations in a concept indicate that the original 
concept was mistaken and that we have to see the history of mathematical 
concepts as an advance toward truth, for we have rejected the view that 
mathematical objects have an existence prior to the process that creates them. 

A different idea of the evolution of concepts in history was developed by 
Lakatos in his book Proofs and Refutations (Lakatos, 1976). What is of 
interest for us here is the fact that in this book Lakatos examines how 
concepts evolve under the pressure of the proof of theorems in which they are 
involved. 

Lakatos tells that, after the establishment of the conjecture that for any 
polyhedron the relation C + V = A + 2 is true, and after its proof by Euler, 
examples of solids emerged that did not fit in with the proof that had been 
performed or, what was more important, with the theorem that had been 
proved. In terms of a conception of the nature of mathematical objects 
according to which there is a pre-existing ideal object that we call polyhedron 
and what mathematical activity does is to discover its properties, the matter is 
quite clear: these solids are not true polyhedrons, or else the proof is wrong. 
The reconstruction of history that Lakatos makes is not this. 

Lakatos separates the two types of counter-examples that I have just 
mentioned and calls them local and global counter-examples, respectively. A 
local counter-example is one that has characteristics that cause the proof not 
to be applicable to it, but that verifies the relation. These counter-examples do 
not refute the conjecture: what they do is to indicate that in the proof a 
property was used that was assumed to be valid for all polyhedrons, but it is 
not so. What is refuted, therefore, is a lemma that has been used implicitly, 
and therefore the proof. The presence of these counter-examples introduces a 
difference in the concepts that was not present before. 

The effects of the appearance of global counter-examples have more 
importance for what we are examining. A counter-example is global when it 
refutes the conjecture. As first global counter-examples of the theorem 
proposed by Euler, Lakatos presents the solid that consists of a cube with a 
cube-shaped hollow inside it, and a solid formed by two tetrahedrons joined 
by one edge or one corner; later he presents the even more interesting case of 
a star-shaped solid, which does or does not verify the relation depending 
whether or not one considers that its faces are star-shaped polygons. The  
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presence of these solids as counter-examples produces a tension between the 
concept, the theorem, and its proof. This tension can be resolved in various 
ways, which all affect the concept of polyhedron. The most elementary are: 

 
1) Monster-barring. 

The counter-examples presented are considered to be not genuine 
examples of the concept of polyhedron but monsters, i.e., beings whose 
existence is possible but not desired. The possibility of their existence is 
determined by the definition of polyhedron that is being used, whether 
explicitly or implicitly, so that, in order to preserve the theorem, a new 
definition of the concept of polyhedron that explicitly excludes them is 
produced. 
2) Exception-barring. 

The counter-examples presented are considered to be examples of the 
concept whose existence had not been foreseen when the conjecture was 
stated. The conjecture is modified with the intention of withdrawing to safe 
ground. To do so, a difference that separates these examples is introduced in 
the concept. 
3) Monster-adjustment. 

The objects are looked at in a different way so that they cease to be 
counter-examples; this is the case with the two ways of looking at star-shaped 
polyhedrons: as being composed of star-shaped polygons or not. 

Although these are only the most elementary ways of confronting the 
tension created, even with them we can see that the concept of polyhedron is 
affected in all cases. Whether the counter-examples are accepted or excluded 
as examples of the concept, the semantic field is expanded. In one case, 
because the content of the expression increases, or, to put it differently, 
because the field of phenomena for which the concept had been created —
which is what constitutes its semantic field— did not contain the phenomena 
corresponding to the objects and properties that are now present, and it is 
extended to include them. In the other case, because the concept enters into an 
interplay of relations to these new objects from which it explicitly 
disassociates itself in the new definition, which also form a constitutive part 
of its content. 

The full story is more complex, and it also features progressively richer 
and more abstract mathematical sign systems to which the concepts initially 
expressed in other, less rich or less abstract mathematical sign systems are 
translated, and it leads Lakatos to state that the concepts generated by the 
proof do not improve the original concepts, they are not specifications or 
generalisations of them, but they convert them into something totally 
different, they create new concepts. This is precisely what we wish to 
emphasize: the result of the process that Lakatos presents, a process of tension 
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between concepts, theorems, and proofs, is not the delimitation of the true 
concept of polyhedron that supposedly corresponds to the pre-existing ideal 
object, but the creation of new concepts. 

 
 

4.7. Problem solving, defining, and other processes  
that also generate concepts 

 
 
From Lakatos we have just extracted the idea that mathematical concepts do 
not remain immutable once created. We have also outlined how concepts 
change, impelled by the tension produced in them by their application in 
proofs and refutations. However, mathematical activity does not consist only 
in proving theorems. One of the fundamental driving forces in the develop-
ment of mathematics is problem solving, and this includes the proving of 
theorems, but also other activities. 

Problem solving includes the proving of theorems in two senses. In the 
first sense, problem solving includes the proving of theorems considered 
globally, because, if we follow the terminology of Polya (1957) and, instead 
of distinguishing between problems and theorems as was first done by 
Greek mathematicians, we call them all problems and distinguish between 
“problems to find” and “problems to prove,” then the proving of theorems is 
simply one kind of problem solving: the solving of problems to prove. 

In the second and more important sense, problem solving includes the 
proving of theorems in the solving of each problem in particular; indeed, what 
characterizes problem solving in mathematics, even with problems to find, is 
the fact that the obtaining of the result must be accompanied by an argument 
that substantiates the fact that the result obtained verifies the conditions of the 
problem, i.e., any problem is a problem to prove or, if it is a problem to find, 
it contains a problem to prove —the problem to prove that the result found 
verifies the conditions of the statement. 

This obliges us to extend the terrain in which concepts are submitted to a 
tension that modifies them beyond the proving of theorems to the solving of 
problems. But it becomes even more necessary to do so if we take into 
consideration other parts of problem solving that do not involve the proving 
of theorems —specifically, the proposal of new problems or the study of 
families of problems. 

Problem solving also does not exhaust the field of mathematical activities 
or the field of mathematical activities that generate concepts. Other activities 
that are responsible for the creation of many great mathematical concepts in 
the form in which we know them now have to do with the organization of sets 
of results of varying extent —obtained in the activity of solving problems and 
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proving theorems— in a deductive system. This systematic organization has 
adopted different forms in the course of history, and it may be more local or 
more global, more or less axiomatic or formalized, but in any case it has 
constituted an essential component of mathematics since mathematicians 
moved from accumulating results and techniques for obtaining them to 
writing “elements.” Indeed, although we do not detail that set of activities 
here, one essential characteristic of it is that it has transformed the sense in 
which definitions are used in mathematics. “In mathematics a definition does 
not serve just to explain to people what is meant by a certain word,” as 
Freudenthal says, but rather, when we consider the mathematical activities by 
means of which deductive systems are organized, “definitions are links in 
deductive chains.” 

The process of defining is, therefore, a means of deductive organization of 
the properties of a mathematical object, which brings into the foreground the 
properties that are deemed to make it possible to constitute a mathematical 
system, local or global, in which that mathematical object is incorporated. 
However, emphasizing certain properties such as those that define a concept 
is not an innocent operation, a neutral operation with respect to the concept, 
because, on the one hand, it makes the concept appear as originally created to 
organize the corresponding phenomena, and, on the other, it makes the 
content of the concept be, from then on, what is derived from that definition 
in the deductive system in which it has been incorporated. Therefore, this 
process of defining also creates new concepts, just as proving theorems do. 

 
 
 

SUMMARY 
 
 

In this chapter we have presented the phenomenological analysis (based on 
the work of Hans Freudenthal) as an approach to curricular development for 
teachers, students, and researchers. The content is basic for the remainder of 
the chapters since it deals essentially with establishing the difference between 
acquiring concepts and building mental objects in mathematics, as well as 
how one goes from phenomena to mental objects and to concepts through 
teaching. The ideas are illustrated through the case of uses of natural numbers. 
We also refer to the work of Lakatos “Proofs and Refutations” in order  
to make evident that tests, definitions, and problem solving are concept 
generators. 

We have also dealt with the concepts of mathematical sign systems and 
local theoretical model, thus adding further to their introduction in Chapter 1. 
Dealing with these concepts has enabled us to refer to the phenomenological 
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analysis as a framework for developing teaching models, as components of a 
local theoretical model. 

In the next chapter, we deal with the methodological aspect of LTMs, and 
we present both an historical and phenomenological analysis of school 
algebra. 
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ENDNOTES 

 
1 This reconstruction is recounted in full detail in Ifrah (1994), vol. I, pp. 233–263. See also 
Schmandt-Besserat (1992) and Glassner (2000). 
2 Although it would be worth doing so. In the texts of problems that appear on tablets written in 
Akkadian, the words “long” and “wide” are in Sumerian and are used to designate unknown 
quantities, even though the problem is not geometric. One can imagine that the strangeness of 
the signs of another language in a text written in Akkadian favored the use of those signs as 
what Høyrup (2002a) calls “a functionally abstract representation.” Indeed, although “long” 
and “wide” continue to retain the original geometric meaning, the sense that they have is no 
more than that of two quantities that can form part of a calculation – that is, these words are 
precursors of the objects of algebra. 
 
 
 



 

CHAPTER 3 
 

EXPERIMENTAL DESIGN 
 
 
 

OVERVIEW 
 
 

We begin analyzing the diagram of an experimental setting design for the 
observation of algebra learning and teaching phenomena. In this chapter we 
discuss a manner of studying the evolution and development of algebraic 
ideas through historical and epistemological analysis (based on the analysis of 
ancient pre-symbolic algebra texts), which in turn serves as a point of 
departure for experimental design in mathematical education for the particular 
case of the transition toward algebraic thought. The phenomenological 
analysis, as presented in general terms in Chapter 2, is applied to the case of 
algebraic language and to that of school algebra (didactic phenomenology). 
Here once again the notions of mathematical sign system and of language 
strata become relevant, especially when the historical analysis touches upon 
the genesis of modern algebra thus re-broaching the elements that correspond 
to said notions presented in Chapter 2. The chapter consists of the following 
sections: 1, Introduction; 2, Experimental observation; 3, On the role of 
historical analysis; and 4, The phenomenological analysis of school algebra. 
 
 
 

1. INTRODUCTION 
 
 

In this chapter we present two diagrams that give a general description of the 
design of a study in accordance with the guidelines of our research program 
(diagram A), and the general form of the development of the study (diagram 
B). In the rest of the chapter, we specify some of the terms used in those 
diagrams and set out in more detail how the historical analysis of algebraic 
ideas and phenomenological analysis intervene in it. 
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2. EXPERIMENTAL OBSERVATION 
 
 
2.1. The design and development of the experiment 
 
 
Both the design and the development of the experiment are presented in the 
form of a flow diagram (see Figures 3.1. and 3.2). We merely wish to 
emphasize that we have introduced our theoretical elements —local theoretical 
models (LTMs) and mathematical sign systems (MSSs)— as the theoretical 
counterpart with which the experimental observations are designed and 
interpreted. For this is a theory produced to provide support for observation, and 
that is how it should be interpreted. These ways of designing and developing 
experimentation are exemplified throughout the book, and they are in use in 
several research works (see Chapters 4, 6, 7, 8, and 9). 
 
 

theses 
 
 
Note that in diagram A there is a recurrence: the diagram begins with a box 
that represents the area under investigation, and at the end of the entire 
process there is a return to the beginning. In the case of diagram B the starting 
point is a local theoretical model, designed in the stages of diagram A, and 
after the performance of an experimental study, in which the theses of this 
first LTM are confronted with what occurs in the empirical development of 
the experiment, one finally comes to a phase of analysis and interpretation. 
On the basis of the results of this phase, the initial problem area is framed 
within the perspective of a new LTM, the design of which returns to the first 
stages of diagram A, so as to be able once again to start the process described 
in diagram B. 

In this recursiveness, it may well happen that the theoretical theses framed 
in the first LTM prove to be insufficient to study and interpret the empirical 
observations made in the stage of empirical development (see, for example, 
Chapter 9), or else some of the theses as elaborated might have to be 
discarded or differentiated into others that provide a better fit for the 
interpretation of what has been observed. In this respect one could speak of 
the ephemeral quality of certain theses that do not stand up to verification 
with the empirical facts observed. 

2.2. Recursiveness in the use of LTMs and the ephemeral quality of certain 
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Figure 3.1. Diagram A of the design of the study 
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Figure 3.2. Diagram B of the development of the study 

 

Imp leme ntation of a system
for controlled teaching

Local theoretical m odel

Selection of p opulation to be studied in
the controlled teaching system

Application of a diagnostic evaluation to the selected
population to measure its efficiency in the use of the
MSSs that are considered mo re concrete strata of the
new, more abstract M SS

Classification of the populati on into strata
or profiles according to their performance
in the diagnosis

Selection of a population s ubgroup in w hich the
various classes or profil es are present, for
observation in a clinical interview

Case studies:
Observation b y me ans o f videotaped individual c linical
interview w ith the subjects in the selected subgroup

Analysis and interpretation of the interviews carried out

Preparation of a report on the observations in terms of the theoretical aims of the s tudy

Cognition
Preparation of a catalog of
observations related w ith
the mo del for cognitive
processes

Teaching
Preparation of a catalog of
observations related w ith
the teaching m odel used

Comm unication
Preparation of a catalog of
observations related w ith
the comm unication m odel

The problem i n the perspective of a new local theoretical model and the design of the m odel
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2.3. On the didactic cut 
 
 
We mention first that it is advisable to choose the moment of the experimental 
observation at some point in the mathematics curriculum at which what has 
been learned (of the material taught up to that point) does not make it possible 
for the next topic that is to be taught to be discovered spontaneously without 
the intervention of the teaching that is to come. The ideal situation is to find a 
conceptual area in which, when the competences of the population with 
regard to the uses of those concepts are diagnosed, one sees that those 
competences lead to performances very far from what is expected (the aims of 
the education). For example, in the case of Thales’ Theorem in Chapter 7, 
through what had been learned previously the entire population had developed 
tendencies that caused all the learners to have mistaken responses concerning 
ratio and proportion when faced with the most elementary questions that can 
be asked in this field, questions that are the basis of the whole future 
development of trigonometry. 

Another example is the solving of equations and the transition from 
arithmetic to algebra, which is discussed in Chapter 4. On the other hand, in 
the ongoing studies that are mentioned at the end of Chapter 8, there are 
already indications that suggest that what is being studied in them would also 
constitute a didactic cut.1 

 
 

2.4. On controlled teaching 
 
 
Second, it is advisable that the population being studied should comprise 
several cohorts of the same age, belonging to the same grade level, at the 
same school, and that they should receive instruction in mathematics within a 
system of controlled teaching. This means that the population being studied 
receives instruction in mathematics with materials that allow them to do 
individual work in class, at their own pace, that there is monitoring of 
advances made by individuals and groups of students, that there is the 
possibility of intervening with supplementary teaching material where it is 
required. 
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2.5. On diagnosis 
 
 
The groups that receive the controlled teaching constitute the totality of the 
population being studied. During the period in which the controlled teaching 
is developed, mechanisms of measurement and classification are prepared and 
refined so as to make it possible eventually to construct a diagnostic test by 
which classes or profiles of individuals can be obtained. The diagnosis 
provides a detailed description of the performances of the students and has the 
further aim of delimiting the profiles so that one can see which students it 
would be interesting to observe in greater depth. For this purpose a case study 
is designed in which the clinical interview plays the main part with a view to 
setting up the observation environment. 

In general, it is advisable to classify the population in relation to three 
axes. The first has to do with the syntactic competences of the individuals  
in the use of the more concrete MSSs. The second has to do with the 
competences concerning the use of the semantics of those MSSs, when 
applying it to the solution of problem situations. The third axis of competence 
seeks to group together the competences that have to do with the intuitive and 
spontaneous uses of the strata of the more concrete MSSs that will be used in 
the decoding of the new teaching situations which the teaching model that is 
being used will require. 

We will see an illustration of this principle in Chapter 4, which contains a 
description of a study in which the population is classified by means of a 
written test on pre-algebra consisting of three subsections: arithmetic 
equations with literal notation (e.g., 5x + 3 = 90), arithmetic equations without 
literal notation (e.g.,  – 95 = 23), and problems corresponding to arithmetic 
equations. 

The classification of the population in relation to these three axes makes it 
possible subsequently to select pupils for the clinical interview who have 
different profiles with regard to one or more of the axes, and who therefore 
correspond to aspects of the MSSs brought into play in the teaching. 

 
 

2.6. On the clinical interview 
 
 
To be able to observe the phenomena studied with greater precision one needs 
an experimental situation that makes it possible to monitor certain disturbing 
factors that are always present in the classroom, and one needs observation 
mechanisms that allow a more exhaustive and precise analysis. However, this 
must be done in such a way that what is observed has to do with the problems 
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presented by the individual being observed and also that the components that 
the teaching brings into play are present. That is the nature of clinical 
interviews with teachers. 

The clinical interviews have a structured format, but the interviewer moves 
freely between the various steps that have been designed previously, allowing 
the line of thought of the interviewee to define each of the subparts of the 
interview. The first part of the interview is usually devoted to confirming that 
the interviewee has the profile given by the diagnosis. 

Except in cases where the interviewee has no difficulty in solving the 
problem that is set, the interviewer intervenes to put further questions that, 
through a process of discovery, help the interviewee to learn the problem that 
he was initially unable to solve. It is a question of discovering the difficulties 
presented by the learning of beginnings of algebra, given the ways in which 
one seeks to teach it nowadays. In these clinical interviews the focuses of 
observation are the ways of teaching and the particular ways of learning (with 
their typical obstructions and difficulties) that are seen in the students. 

 
 

2.7. On the preliminary analysis of the problems 
 
 
If we look at diagram A of the design of the experiment, in step 2, 
“Preliminary analysis of the problems,” many general disciplines combine to 
make it possible to perform the analysis: psychology, historical analysis, 
epistemology, mathematics, sociology, education in mathematics, etc. Many 
research studies nowadays favor one or more of these focuses, or else, in the 
case of the design of the experiment, there tends to be a tension between the 
studies that favor a quantitative approach (via the use of statistics) and those 
that favor a more qualitative approach (via the use of clinical observation). 

However, in favoring some general focus, such as the analysis of the 
history of mathematical ideas, it is possible that all the other items that are 
described in diagrams A and B may be left out. One might think, therefore, 
that such a study is a valid contribution only in the field of the general 
discipline with which it is concerned; nevertheless, experience shows that 
studies of this kind are ultimately of little interest in the general discipline, 
where there is a preference for certain working habits and focuses and for 
using all the antecedents so far established in that discipline. Moreover, they 
also generally prove to be of little importance in mathematics sducation, the 
main results of which are intended to be useful for students and teachers in  
the present educational systems. In the next section we show a way of using 
the analysis of mathematical ideas, which, in our view, makes it fruitful for 
research in mathematics education. 
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3. ON THE ROLE OF HISTORICAL ANALYSIS 
 
 

It is clear that any analysis that seeks to clarify educational problems —
analysis being the prime driving force in our research— must be performed in 
the specific framework of our educational systems; but also, as a unitary 
counterpart, such analysis cannot help seeking to transform the conditions in 
which the teaching of mathematics is taking place in our countries. This 
clearly conditions the problems and therefore the methodology of the study; 
but also, in an aspect usually overlooked, it imprints on the results the need to 
be used, to be put to the test in the very place where they supposedly seek to 
cast light, where their modifications will have to be taken into account in 
order to advance, to go deeper into the facts being investigated, to be able to 
construct new hypotheses that take the work done into account. 

This makes it necessary for the problems, in at least some of their aspects, 
to be closely linked with the actual process of teaching. However, this does 
not mean abandoning somewhat theoretical problems and their appropriate 
logical methods; rather, the studies take place within larger programs in which 
direct contact with students and teachers is present. 

In this section we show that the historic-critical analysis of the development 
of mathematical ideas makes it possible, for example, to construct learning 
sequences that reflect the achievements of theoretical research, and that it 
becomes fully meaningful when, in turn, in theoretical research the history of 
ideas is enriched by the new hypotheses formulated by putting teaching 
sequences to the test in educational systems. Then we will rightly be able to 
maintain that we are speaking of studies in the field of mathematics education 
and not in that of the history or epistemology of mathematics. 

 
 

3.1. Epistemological analysis 
 
 
At one time history was relegated to being a pastime of mathematicians, 
although with the production of dazzling works, such as Van der Waerden 
(1954), or general views seen through new eyes, such as Boyer (1968). Now, 
however, it has regained its proper stature and has even made its way into the 
textbooks (see Edwards, 1979). 

Even earlier, however, Boyer (1959) had offered us more profound 
attempts to capture other more intense moments: those of the evolution of 
ideas. Many titles could be added here to illustrate this great return of history 
as an instrument with which to view the present. We will only indicate, by 
way of example, that our ideas about the nature of the rudimentary processes  
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of constructing mathematical models have changed completely as a result of 
historical studies concerning the Babylonians (Neugebauer, 1969); that our 
conceptions about the origin of the theory of proportions, deduction, and 
axiomatization have begun to acquire subtle tonalities that we did not perceive 
before, thanks to Szabó (1977); and that Jens Høyrup, pursuing this evolution 
of algebraic ideas from Babylon to medieval Italian algebra in numerous 
studies, has made us see it in a different way (see, for example, Høyrup, 1985, 
1986, 1987, 1991, 1999a, 2002a, 2002b). 

This re-encounter between history and epistemology through the history of 
ideas has also begun to benefit the didactics of mathematics. 

 
 

3.2. The reading of texts 
 
 
The new approach consists of analyzing problems of teaching and learning 
mathematics with the historic-critical method, and then of putting the 
theoretical findings to the test in the educational systems so that, after this 
experimentation, one will once again have a new view of the problematics of 
the history of ideas that corresponds to the teaching results. 

A first example, taken from Filloy (1980), will make this idea clearer. 
Analyses of Diophantus’s Arithmetic, Bombelli’s Algebra and the contrast 
between it and Viète’s The Analytic Art2 lead to interesting hypotheses about 
the development of the first notions of algebra in secondary school (with 
pupils aged 12 to 15), as one can gather from the works of Jacob Klein 
(1968), for example. From these results one can infer that the most significant 
change in symbolization, in that stage of the beginning of algebra, is the step 
from the mathematical concept of unknown to the mathematical concept of 
variable. A transition that involves not only the feat of solving complicated 
arithmetic problems, already achieved in Diophantus’s Arithmetic in one 
sense more efficiently than by Viète, but also reflection on the operations that 
are always performed to solve such problems. This reflection on operations 
suggested to Viète the need to speak not only of unknowns but also of the fact 
that the coefficients of the equations that result from making the zetetic 
analysis of the problems are also variables; that is, such coefficients have to 
operate on each other, not just representing a number, unknown or not but 
ultimately only one number, but rather representing all the numbers that could 
come from equations resulting from the analysis of arithmetic problems. 

These facts would seem to complete the picture, especially when the 
analysis is continued along these lines, as is done by Klein (1968) or Jones 
(1978). This change of perspective (in Viète) immediately generated others, 
owing to the problems posed by operating on measurements, as can be seen 
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clearly in the work of Stevin. A change is generated, as we were saying, in the 
very concept of number, that is, new (ideal) objects become numbers: 
numbers that can be operated on in the same way; for example, decimals 
become numbers provided that they obtain the category of mathematical 
objects, the main argument in Stevin’s works, Arithmetic and Disme (Stevin, 
1634). 

But when one constructs teaching sequences that try to follow this 
connecting theme, as in Alarcón and others (1981–1982), and one observes 
the behaviour of the population (in the statistical sense) in the distributions 
that indicate the evolution of mathematical abilities, one finds that there are 
other elements which have not been taken into account. It then becomes 
apparent that first of all one would have to seek out the history of operational 
aspects, of the syntax of arithmetic-algebraic language, in its development in 
the East, and also, secondly, study the evolution of another history, apparently 
unconnected but one that in practice is revealed to be totally related to that of 
operational aspects: the history of the analysis of variation and change; either, 
in the first instance, purely arithmetic methods (such as those of proportional 
variation), or, on a deeper level, those entailed by pictographic representation 
of the first and second variations of movement, of the change in the intensity 
of light, or of the propagation of heat. 

At this point it would seem to be very important to go back to history and 
analyze the works of the Middle Ages in regard to this. Our debt to historians 
(see Grant 1969, 1971; Clagett 1959, 1968; Van Egmond, 1980; Hughes, 
1981; and Høyrup, 1999b, for example) is inestimable in this context, for their 
compilations, translations, and commentaries provide us with living material 
which is waiting for us to go to them with new eyes: those of the problematics 
of the teaching of algebra, at the very point where algebra was to make  
it possible to introduce analytical ideas in geometry, and, immediately 
afterwards, the methods of infinite calculus. Similarly, in order to understand 
the jump between arithmetic and algebra (and the appearance of arithmetic-
algebraic language) it is necessary to cast light on the period immediately 
before the publication of Bombelli’s and Viète’s books. 

In Viète’s The Analytic Art we find the construction of an algebraic 
language in which, in addition to being able to model the problem situations 
solved by the languages used by Bombelli and Diophantus, we can also find a 
language in which one can describe the syntheses and algebraic properties of 
the operations introduced in the older texts. What is new in Viète’s language 
lies in the fact that, whereas in those earlier texts operations were used only 
by performing them or employing them problem by problem, in Viète there is 
the possibility of describing the syntheses (algebraic theorems) and the 
syntactic properties of operations, because they can all be described with that 
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language stratum and they can also be added to the store of knowledge on 
which someone who has mastered that new language stratum can draw. 

In the following sections we describe language strata prior to the intro-
duction of the language of Viète’s The Analytic Art. As examples we use 
certain differences between the abbacus books and Jordanus de Nemore’s  
De Numeris Datis. 

 
 

3.3. The abbacus books 
 
 
As can be seen in the work of compilation by Van Egmond (1980), the 
abbacus books represent the most feasible path for the assimilation of the 
mathematics of the East by Western European civilization; and in this 
adaptation of Indo-Arabic mathematics to the problems characteristic of a 
society with a vigorously rising economy (the society of Italy in the 15th and 
16th centuries) a new kind of mathematics was born. 

This mathematics was present and ready to be applied in the so-called 
abbacus books, the content of which essentially comprised the presentation of 
the Indo-Arabic positional system of numeration, the four elementary arithmetic 
operations, and the solution of commercial problems. These problems involved 
the four elementary operations, and also the use of the simple and compound 
rule of three, simple and compound interest, and the solution of some simple 
algebraic equations. Some books also included multiplication tables, tables of 
monetary equivalents, and tables of weights and measures. 

The first abbacus book of which we know was written in Latin in the Near 
East (Greece) and was introduced in Western Europe, in its first vernacular 
version, between the 12th and 13th centuries. 

The meaning of the word abbacus in the name of these books was that of 
“the art of calculating, counting and arithmetic.” The term was first used in 
this sense by Leonardo of Pisa, better known as Fibonacci, who in the 13th 
century wrote a compendium on the mathematical practice known up to that 
point. This happened naturally, because his father was a merchant from Pisa 
who visited and stayed in Arab countries in the East and in the Maghreb, 
particularly in the town now known as Bejaia (in what is now Algeria), and so 
Fibonacci was taught by Arabic teachers and learned the Arabic systems, both 
of commerce and of mathematics, with the result that his book contained 
knowledge of practical commercial mathematics, in accordance with the Indo-
Arabic system, and with a particular influence exercised by his own experi-
ence in merchant life and by his instruction in a great variety of Arabic texts 
on algebra, geometry, and commercial mathematics. 
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The production of abbacus books increased greatly in Italy in the 15th 
century; it is estimated that there were then 400, with about 400 different 
problems solved in each one; so, with regard to problems, even if we 
eliminate the repetitions between books, the production was of the order of 
tens of thousands. 

The first abbacus schools appeared in the West almost at the same time as 
the arrival of the first abbacus books. It is known that the first school was 
founded in 1284 in the commune of Verona, and that these schools were 
attended mainly by the sons of merchants and, in general, by men of affairs, in 
order to practice commercial mathematics and continue their basic education 
in grammar. The abbacus schools tended to proliferate in the 14th century; it 
is known that in Florence alone, in about 1343, there were six schools in 
which over a thousand students were taught. And, although this growth did 
not remain stable in subsequent centuries, there are references for about three 
or four schools in each important city (Florence, Milan, Pisa, Venice, Lucca), 
which functioned continuously from the 14th century and throughout the 
Renaissance. 

The most plausible historical explanation (see Van Egmond, 1980) for the 
appearance and multiplication of abbacus books, schools, and teachers in the 
West is of a social and economic nature. With the so-called Commercial 
Revolution in Italy in the 13th century there was a substantial social change: 
monetary power began to count more than feudal power, with the result that 
there was a greater desire for control of trading and financial activities, 
together with the skills required for their performance, than for possession 
even of land. Consequently, the rise of this new social class that came to 
power imposed the need to create the means to make this new kind of 
inheritance effective: the skills required in order to be able to participate in 
commercial power. These skills naturally included the contents of the abbacus 
books, originally produced to serve as reference books for the accountants and 
merchants of the time, and the need to make them accessible to the 
merchants’ sons led to the creation of abbacus schools and teachers, financed, 
initially at least, by the parents themselves. 

The children who attended the abbacus schools were 10 or 11 years old, 
and they were trained in the basic principles of arithmetic and practical 
mathematics (writing Indo-Arabic digits, the four operations with integers and 
fractions, solving commercial problems, and handling monetary equivalents 
and weights and measures), and also in grammar. It might be considered that 
the abbacus schools functioned as a kind of basic secondary education, acting 
as a bridge between basic education (the classical Roman school) and 
university (the first universities having been founded in Europe in the 12th 
and 13th centuries). 
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Although the abbacus schools might be viewed as an integral part of 
school education at that time, in reality they constituted a genuine innovation 
in educational circles because, unlike the universities, which provided instruc-
tion for the elites and functioned primarily as places for discussion and 
reflection about knowledge, the abbacus schools acted as transmitters of 
knowledge applicable to daily life. In the 15th century commercial activity 
was not just transacted between merchants and men of affairs, but rather those 
activities began to form part of the everyday life of what had become an urban 
population. 

Thus the abbacus schools and contents served to satisfy a social demand in 
the new Europe civilization, with such success that they became a tradition 
that endured for centuries as a companion to the new pattern of culture, the 
mentality created by the commercial revolution. 

To appreciate the full extent of the social and educational role of the 
abbacus books one would only need to review some of the mathematical 
contents of current textbooks for basic education in any country in the world 
to realise that, essentially, they are the same as what could be extracted from a 
typical abbacus book (see Van Egmond, 1980). This gave them the character 
of assimilators of Eastern mathematics to the needs of the new Western 
culture (which now stretches back over more than five centuries) through 
school education. 
 
 
3.4. An abbacus problem 
 
 
In the section of recreational problems in the Trattato di Fioretti (Mazzinghi, 
1967), we can find problems such as the following: 
 
Fa’ di 19, 3 parti nella proportionalità chontinua che, multiplichato la prima 
chontro all’altre 2 e lla sechonda parte multiplichato all’altre 2 e lla terza parte 
multiplichate all’altre 2, e quelle 3 somme agunte insieme faccino 228. 
Adimandasi qualj sono le dette parti. [From 19 make 3 continually pro-
portional parts such that, if the first is multiplied by the other 2 and the second 
part is multiplied by the other 2 and the third part is multiplied by the other 2 
and those 3 are added, together they make 228. The question is what the 
aforementioned parts are.] 
 

We can state this problem by translating it into the MSS of current algebra 
as follows: 

 
Find three numbers x, y, z such that 
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x + y + z = 19
x
y
=

y
z

x y + z( )+ y x + z( )+ z x + y( )= 228

⎫

⎬

⎪
⎪

⎭

⎪
⎪

 

 
In Puig and Rojano (2004) there is a transcription of the original version in 

old Italian of the solution of this problem, accompanied by a translation into 
the MSS of algebra. For our present purposes, the solution presented in the 
treatise consists in applying a series of rules, in particular a rule of doubles3 
and the Babylonian method of completing squares. In both cases, but more 
obviously in the rule of doubles, each time that the rule is used it is reworded 
for the specific numbers with which it is necessary to operate. We will see 
that this is one of the characteristics that make the MSSs of the abbacus books 
more concrete than Viète’s MSSs, but also more concrete than that of 
Jordanus de Nemore’s book, De Numeris Datis. 

 
 

3.5. De Nemore and his work 
 
 
The bibliographic information about Jordanus de Nemore is very diffuse, but 
the authenticity of his work has been established. He lived during the period 
that ranges from the middle of the 12th century to the middle of the 13th 
century, and on the basis of annotations in the margins of his writings it is 
believed that he taught at the University of Toulouse. Research on his life and 
work has led him to be considered, since the last century, one of the most 
prestigious natural philosophers of the 13th century. It is also known that he 
devoted himself to physics-mathematics, laying the foundations for the whole 
area of medieval statics. Among his mathematical works, those devoted to 
arithmetic (and algebra) continued to be reproduced until the 16th century. 

If we consider only the treatises of a strictly mathematical character, we 
can identify six works attributed to Jordanus: Demonstratio de algorismo, 
which is a practical explanation of the Arabic number system with regard to 
integers and their use; Demonstratio de minutiis, which deals with fractions; 
De elementis arithmetice artis, which became the classic source of theoretical 
arithmetic in the Middle Ages; Liber philotegni de triangulis, which stands 
out in medieval Latin geometry particularly because it gives geometric proofs 
of theorems; Demonstratio de plana sphera, which consists of five multi-
partite propositions that clarify various aspects of stereographic projection; 
and, lastly, De numeris datis, considered the first book of advanced algebra 
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written in Western Europe, after Diophantus’s Arithmetic (which was written 
in about 250 BC but did not reappear in the Christian West until the 15th 
century, whereas in the Islamic East there is an Arabic translation of the 9th 
century; see Sesiano, 1982, and Rashed, 1984). 

 
 

3.6. De Numeris Datis 
 
 
Our description of this work is based on the version edited, translated, and 
interpreted by Barnabas Hughes and published by the University of Berkeley 
(Hughes, 1981). The book includes a critical edition in Latin of the complete 
De Numeris Datis, together with an English translation of the entire text and a 
translation into modern symbology of the statement and canonical form of 
each proposition (it does not include the symbolic translation of the solving 
procedure). In Puig (1994) there is a detailed description of the MSSs of this 
work, together with a translation of parts of book one, more literal than the 
translation by Hughes, precisely with the aim of bringing out the charac-
teristics of the MSSs. Here we will limit ourselves to outlining what is of 
interest for our present purpose. 

Unlike the abbacus books, employed as elementary algebra texts in 
secondary education for use in commercial life, De Numeris Datis was a text 
aimed at university students of the time, with the intention of setting them 
non-routine “algebraic” problems and teaching how to solve them. Indeed, De 
Numeris Datis presents a treatment of quadratic, simultaneous and propor-
tional equations which presupposes handling contents equivalent to those of 
al-Khwârizmî’s Concise book of the calculation of al-jabr and al-muqâbala 
(Rosen, 1831) and Fibonacci’s Liber abbaci (Boncompagni, ed., 1857; Sigler, 
ed., 2002). Both texts begin with some definitions and the development of the 
equations   x

2 = bx, x 2 = c  and bx = c , very rapidly arriving at the equations 

  x
2 + bx = c, x 2 + c = bx  and bx + c = x2 . 

The part played by De Numeris Datis in the history of mathematics is 
comparable to that of Euclid’s Data (Taisbak, 2003), in Hughes’s opinion, in 
the sense that the former constitutes the first book of advanced algebra, in the 
same way that the latter is the first book of advanced geometry and implies a 
good knowledge of fundamental geometry (contained in the Elements), 
confronting the ambitious student with the proof and solution of non-standard 
problems by the method of analysis. 

The propositions of De Numeris Datis are useful for analysis, therefore, 
just as a box of tools is, but the very structure of the book is also an exercise 
in analysis. In fact, unlike what happens in the problem of the Trattato di 
Fioretti, which we have just mentioned and that can be taken as representative 
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of the abbacus type of problem, in the propositions of De Numeris Datis it is 
a question of finding numbers for which some numerical relationships are 
known, but these relationships are given by constants, that is, the book says, 
for example, that the sum of three numbers has been given instead of saying 
that the sum of three numbers is equal to a certain specific number, 228 in the 
case mentioned, as it appears in an abbacus book. In fact, the statements of 
the propositions in De Numeris Datis are not problems but theorems, as they 
always have the form “if such numbers or ratios and relationships between 
them have been given, then such numbers or ratios have been given,” and they 
are proved like theorems, and are accompanied by a particular problem with 
specific numbers that is solved with the rule derived from the steps of the 
proof of the theorem or from the steps of the theorems to which this theorem 
is reduced. 

This second point is fundamental for the character of De Numeris Datis 
that interests us here: the sequence in which the propositions in De Numeris 
Datis are solved explicitly shows the reduction of each proposition to one that 
has been proved previously, and, therefore, the solution of the corresponding 
problems to the solutions of others solved previously. This kind of sequence is 
not entirely absent in abbacus texts, that is, in abbacus problems we also see 
repeated application of rules or algorithms when the solving procedure has led 
to a well-identified situation in which the application is feasible: this is the 
case with the rule of doubles or the Babylonian method in the problem 
mentioned. However, this aim of reducing to situations or forms already 
encountered and solved previously does not appear explicitly in the abbacus 
texts, whereas in De Numeris Datis it forms part of the method of solution. 
This might be due to the fact that expressions that we would write as 
 x + y + z = a and  x + y + z = b  with a ≠ b  are not fully identified as equi-
valents for the purposes of the solving procedures and strategies, which in the 
abbacus books depend strongly on the specific properties of the specific 
number a (or b) and its relationships with the other numbers that appear in the 
other equations of the system in question. 

It is in this sense that De Numeris Datis might be located in a more 
evolved stage, as it makes it possible to group problems that can be solved in 
the same way into large families by identifying more general forms. By this 
we do not wish to suggest that the actual strategies and skills required for the 
solution of problems in De Numeris Datis are on a higher level of abstraction 
or a more evolved level in terms of symbolization than those developed by the 
abbacus texts. These ideas about establishing a clear difference between 
levels of symbolization and solving strategies and skills are developed in 
Filloy and Rojano (1983). The point of view developed there considers the 
construction of symbolic algebra as the final identification within a single 
language of earlier strata of that language in which the absence of abstract 
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symbolism causes the posing of the problems and the procedures for solving 
them to be carried out in the vernacular (Latin, Italian). This imprints 
peculiarities on the operations performed, peculiarities that vary from one 
stratum to another and that cause those operations to be irreducible from one 
stratum to another unless one has developed what we call a more abstract 
MSS. 

 
 
 

4. THE PHENOMENOLOGICAL ANALYSIS OF SCHOOL ALGEBRA 
 
 

Modern algebra organizes phenomena that have to do with the structural 
properties of arbitrary sets of objects in which there are defined operations. 
Those properties and those objects come from the objectification of means of 
organisation of other phenomena of a lower level and they are the product of a 
long history with successive rises in level. 
 
 
4.1. Characteristics of algebra in al-Khwârizmî 
 
 
One way of viewing this history consists in placing oneself in the 9th century 
at the time when al-Khwârizmî wrote the Concise Book of the Calculation of 
Al-jabr and Al-muqâbala and taking that event as the birth of algebra as a 
clearly defined discipline within mathematics. What al-Khwârizmî did, and 
what separates his work from all the others that have been seen as algebra 
after him, was that he began by establishing “all the types or species of 
numbers that are required for calculations.” 

The context in which he seems to have examined those species is that of 
the exchange of money in trading or inheritances, and from it he takes the 
names that he uses for the species of numbers. The world of commercial 
problems and inheritances is linear or quadratic: in the course of the 
calculations there are numbers that are multiplied by themselves, in which 
case they are “roots” of other numbers, and the numbers that result from 
multiplying a number by itself are mâl, literally “possession” or “treasure”; 
other numbers are not multiplied by themselves and are not the result of 
multiplying a number by itself, and therefore they are neither roots nor 
treasures, they are “simple numbers” or dirhams (the monetary unit). 
Treasures, roots, and simple numbers are thus the species of numbers that  
al-Khwârizmî considers. 

In his Arithmetic, Diophantus had already distinguished different species 
(eidei) of numbers, with a different conceptualization (ways in which a 
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number may have been given), using the names monas, arithmos, dynamis, 
cubos, dynamodynamis, dynamocubos, etc., and thus a longer series than al-
Khwârizmî’s. 

Calculating with al-Khwârizmî’s or Diophantus’s species of numbers 
follows similar rules: what is obtained is always an expression equivalent to 
our polynomials or rational expressions, as the numbers of the same species 
are added together, or are taken that many times, or that many parts are taken, 
and the result is a number of that species a certain number of times or a 
certain number of parts of a number of that species; and if numbers of 
different species are added, the sum cannot be performed and is simply 
indicated. Thus, “four ninths of treasure and nine dirhams minus four roots, 
equal to one root” (Rosen, 1831, p. 41 of the text in Arabic) is an algebraic 
equation in al-Khwârizmî’s book, since al-Khwârizmî’s MSS uses vernacular 
language (Arabic in his case) exclusively; and 

 ∆
ϒβΜ

o

σŹισαŹΜ
o

ση  (Tannery, 1893, vol. I, p. 64, l. 8) 
is an equation in Diophantus’s MSS, which is read as “dynamis 2 monas 200 
equals monas 208,” since Diophantus uses abbreviations for the names of the 
species of numbers, which in this case consist of the first two letters of the 
word, and the Greek system of numeration uses the letters of the alphabet 
marked with a horizontal stroke, in a system that is not positional but additive, 
with codes for the nine units, the nine tens and the nine hundreds. There is 
almost no conceptual difference between the algebraic expressions and the 
equations of the two authors, as what is represented in them is the names of 
the species, the specific numbers that indicate how many of each species there 
are, the operations indicated between the quantities of each species, and the 
relationship of equality between quantities. 

Al-Khwârizmî’s book might thus be seen as more elementary or situated 
one step behind Diophantus, as the set of species of numbers is smaller and 
the expression uses only the signs of the vernacular. However, what is new in 
al-Khwârizmî’s book is that it suggests having a complete set of possibilities 
of combinations of the different kinds of numbers. It is clear that initially the 
possibilities are infinite, and that therefore it is necessary to reduce them to 
canonical forms in order to be able to consider obtaining a complete set. But 
al-Khwârizmî’s aim then is also to find an algorithmic rule that makes it 
possible to solve each of the canonical forms, and to establish a set of 
operations of calculation with the expressions that makes it possible to reduce 
any equation consisting of those species of numbers to one of the canonical 
forms. All the possible equations would then be soluble in his calculation. 
Moreover, al-Khwârizmî also establishes a method for translating any 
(quadratic) problem into an equation expressed in terms of those species, so 
that all quadratic problems would then be soluble in his calculation. 



 CHAPTER 3 77 

  

Al-Khwârizmî obtains the set of canonical forms by combining all the 
possible forms of the three species, taken two at a time and taken three at a 
time. He thus obtains the three forms which he calls “simple,” making the 
species equal two at a time: 

 
treasure equal to roots 
treasure equal to numbers 
roots equal to numbers 
 

and the three forms that he calls “compound,” adding two of them without 
taking order into account and making them equal to the third: 
 

treasure and roots equal to numbers 
treasure and numbers equal to roots 
roots and numbers equal to treasure. 
 
As al-Khwârizmî is able to present an algorithm to solve each of these 

canonical forms simply by collecting and justifying methods that are 
established and that have been in use since the time of the Babylonians, all 
that remains is to establish a procedure for translating the statements of the 
problems into their algebraic expressions and a calculation that makes it 
possible to transform any equation into one of the canonical forms. 

The species of numbers refer to concrete numbers with which calculations 
are performed, so that in order to be able to translate the statements of the 
problems into those algebraic expressions it is necessary to be able to refer 
also to unknown quantities as if they were concrete numbers and calculate 
with them, that is, it is necessary to name the unknown and treat it like a 
known number. What al-Khwârizmî does to achieve this is to use the word 
shay’, literally “thing,” to name an unknown quantity. He then uses it to 
perform the calculations which the analysis of the quantities and relationships 
present in the problem indicates to him as being necessary, and in the course 
of the calculations he sees what species of number that thing is: a root if it is 
multiplied by itself, or a treasure if it is the result of a quantity that has been 
multiplied by itself; so that he can translate the statement of the problem into 
two expressions that represent the same quantity and make them equal so as to 
have an equation. In Chapter 11 we will see that these are in fact the steps of 
the Cartesian method. 

“Thing,” incidentally, is a common noun for representing any unknown 
quantity, not the proper name of a specific unknown quantity, unlike what is 
established by the Cartesian method; in fact, al-Khwârizmî does not say “the 
thing” but “thing,” that is, “a thing,” when he refers to the unknown quantity 
which he calls “thing.” In the course of the construction of the equation that 
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translates the problem, however, “thing” is bound to one of the unknown 
quantities, functioning as the proper name of that quantity. 

The operations in the calculation are algebraic transformations of the equa-
tions that seek to obtain one of the canonical forms. However, the canonical 
forms have three features that characterize them (and that cause the complete 
set of canonical forms to have 6 items), and the operations are directed at 
achieving each of those three features. 

The first is that there are no negative terms, or, to use al-Khwârizmî’s 
terminology, there is nothing “that is lacking” on either of the two sides of the 
equation. 

In fact, in al-Khwârizmî’s or Diophantus’s algebraic expressions there are 
quantities that are being subtracted from other quantities. There are not 
positive and negative quantities, but quantities that are being added to others 
(additive quantities) and quantities that are being subtracted from others, and 
the latter cannot be conceived on their own but only as being subtracted from 
others. Thus, al-Khwârizmî may even go so far as to speak of “minus thing” 
when he is explaining the sign rules, but he is always referring to a situation 
in which that thing is being subtracted from something: 

 
When you say ten minus thing by ten and thing, you say ten by ten, a hundred, and minus thing 
by ten, ten “subtractive” things, and thing by ten, ten “additive” things, and minus thing by 
thing, “subtractive” treasure; therefore, the product is a hundred dirhams minus one treasure. 
(Rosen, 1831, p. 17 of the text in Arabic) 

 
However, as the subtractive quantities are conceived as something that has 

been subtracted from something, an expression in which there is a subtractive 
quantity represents a quantity with a defect, a quantity in which something is 
lacking. Diophantus’s sign system expresses this way of conceiving the 
subtractive in an especially explicit way, as in his work all the additive 
quantities are written together, juxtaposed in a sequence one after another, and 
all the subtractive quantities are written afterwards, also juxtaposed, preceded 
by the word leipsis (what is lacking). Thus, the algebraic expression 

  x3 − 3x 2 + 3x −1  
is written as 

Κϒ α ς γ Λ ∆ϒ γ Μ
o

α (Tannery, 1893, vol. I, p. 424, l. 10),  
 

an abbreviation of “cubos 1 arithmos 3 what is lacking dynamis 3 monas 1,” 
in which the expressions corresponding to x3 and 3x are juxtaposed on one 
side, and x2 and 1 on the other, separated by the abbreviation for “what is 
lacking.” 

It is precisely this idea that there is something lacking in the quantity that 
is directly responsible for the form adopted by the operation that eventually 
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gave its name to algebra. In fact, the objective of the operation that  
al-Khwârizmî calls al-jabr is that nothing should be “lacking” on either side 
of the equation. That is why the operation is called al-jabr, literally 
“restoration,” because it restores what is lacking. In terms of the language of 
modern algebra, al-jabr eliminates the negative terms in an equation by 
adding them to the other side, but al-jabr is not equivalent to the transposition 
of terms because the modern transposition of terms can also transfer a positive 
term to the other side by making it negative, which goes against the intention 
of the al-jabr operation (but is consistent with the fact that the canonical form 
that one now seeks to attain with algebraic transformations is ax2 + bx + c = 0, 
with a, b, and c being real numbers). 

The second characteristic feature of al-Khwârizmî’s canonical forms is that 
each species of number appears only once. The algebraic transformation that 
this pursues is al-muqâbala, literally “opposition.” As al-Khwârizmî always 
performs this operation after al-jabr, at this point there is nothing lacking; 
there are no negative terms in the equation. The operation consists in 
compensating for the number of times that a given species of number appears 
on each side of the equation, leaving the difference on the appropriate side. 

Lastly, the third characteristic is that there is only one treasure, or, in 
modern terms, that the coefficient of the treasure is 1. This is achieved by 
means of two operations that al-Khwârizmî calls “reduction” (radd) and 
“completion” (ikmâl or takmîl). “Reduction” is used when the coefficient of 
the treasure is greater than one, and it consists in dividing the complete 
equation by the coefficient; and “completion” is used when the coefficient of 
the treasure is less than one (it is “part of a treasure,” in al-Khwârizmî’s 
words), and it consists in multiplying the complete equation by the inverse of 
the coefficient. 

The first two operations, al-jabr and al-muqâbala, appear in the title of  
al-Khwârizmî’s book as the characteristic operations of calculation, and they 
are also mentioned, although not by name, in the introduction to Diophantus’s 
Arithmetic (Tannery, 1893, vol. I, p. 14, ll. 16–20). 

What makes all these calculations meaningful, therefore, is the idea of the 
establishment of a complete set of canonical forms, which then organizes 
algebraic expressions through transformations, and it organizes problems into 
families of problems that are solved in the same way. 

 
 

4.2. Steps toward modern algebra 
 
 
Al-Khwârizmî’s complete set of canonical forms was complete only with the 
condition of restricting the species of numbers to the three that he considered. 
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The continuation, including the cube as the fourth species, was developed by 
cUmar al-Khayyâm, who established that the complete set of canonical forms 
had 25 items, but that he could not find an algorithm for solving the 25. What 
al-Khayyâm did as a result of his inability to give a strictly algebraic solution 
for the matter was to show how the solution of the canonical forms could be 
constructed in the cases that resisted him by means of intersecting conical 
sections.4 As a response to the same inability, Sharaf al-Dîn al-Tûsî added to 
this the establishment of procedures for the approximate calculation of roots.5 
For the historical phenomenology that we are outlining, these non-algebraic 
responses to the lack of ability to find algorithms for all the canonical forms 
do not interest us. Nor are we interested in the fact that eventually algorithms 
were found not only for al-Khayyâm’s 25 canonical forms but also for fourth-
degree equations. What interests us is the response given to the inability to 
find algorithms for the canonical forms of equations of a degree higher than 
the fourth from Lagrange onwards. 

In fact, in his memoir written in 1771, “Réflexions sur la résolution 
algébrique des équations” (Lagrange, 1899, vol. III, pp. 205-424), Lagrange 
explicitly proposed an aim which was not that of continuing to search for 
algorithms, but of examining why it had been possible to find them. 

 
I propose to examine the various methods that have been found so far for the algebraic solution 
of equations, and reduce them to general principles and show a priori why these methods 
succeed for the third and fourth degree and are lacking for higher degrees. (Lagrange, 1899, 
vol. III, p. 206) 

 
Here, therefore, Lagrange explicitly takes the methods themselves as the 

object of study, so that the problematics of algebra is shifted to a higher level, 
beyond the organization of problems into families by the establishment of 
canonical forms in a more abstract MSS than that of the problems themselves. 
Now it is the characteristics of the canonical forms themselves that have to be 
organized in order to account for the success or failure of algebraic methods 
of solution. What Lagrange does is to make a critique of the methods, a 
critique in the sense of establishing limits. To do this, he studies the 
relationships in the methods between a given equation that one is trying to 
solve and the reduced equation, a second-degree auxiliary equation that can 
therefore be solved algebraically, to which one can proceed from the given 
equation by a rational relationship; and, on the basis of this study, in a crucial 
movement he reverses the relationship by finding a way of expressing the 
reduced equation in terms of the roots of the given equation (what Lagrange 
calls the resolvent). From this point he is able to establish the reason for the 
success of the methods, and also the fact that the same reason cannot exist for 
degrees higher than the fourth (which does not exclude the possibility of an 
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algebraic solution, but does rule out the possibility of it belonging to the same 
structure). 

The shift made by Lagrange, from the search for methods of solution to the 
explanation of why they are successful or not, led Abel in 1824 to jump to a 
new level, in his Mémoire sur les équations algébriques, où l’on démontre 
l’impossibilité de la résolution de l’équation générale du cinquième degré 
(Abel, 1881, I, pp. 28-33), in which he shows, as the title says, that the 
inability to find an algebraic method of solution for equations of a degree 
higher than the fourth really is an impossibility, thereby giving the previously 
insoluble problem a formulation in which it is soluble, changing the problem 
of finding a method into the problem of proving whether such a method 
exists. 

Galois’s works provided the final and definitive jump in level, by linking 
the solubility of an equation to the properties of the equation’s group and 
tackling the problem by studying the properties of those groups, so that what 
is studied is not what equations are soluble but what groups are soluble. He 
shows this clearly in a memoir written in 1831, Sur les conditions de 
résolubilité des équations par radicaux, where he says: 

 
Problem. “In what case is an equation soluble by simple radicals?” 
First of all I will observe that in order to solve an equation one must lower its group 
progressively until it contains only one permutation. 
[…] let us seek the condition that must be satisfied by an equation’s group so that it can thus be 
lowered by the adjunction of radical quantities. (Galois, 1846, p. 426) 

 
With this step, from Galois onward algebra becomes modern algebra. As 

Vuillemin says, 
 

[…] Galois’s theory has shifted the interest of algebra: whereas, essentially, it set out to solve 
equations, in future it will tend rather to seek the nature of the magnitudes that must be added to 
the base field in order to determine the factorising field in which it becomes possible to express 
and ascertain roots rationally. (Vuillemin, 1962, p. 247) 

 
 

4.3. The phenomenological analysis of the language of algebra 
 
 
After Galois we enter a different history, that of modern algebra, which is 
absent from current school algebra, yet the historical phenomenology that we 
have expounded in the two previous sections does not exhaust the phenol-
menology of school algebra. It is at least necessary to consider what 
phenomena are organized by the language of algebra, and in what way it 
organizes them. Once again, this can be done as historical phenomenology or 
as didactical phenomenology. The historical view is developed in Section 1.3, 
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“Algebraic Language: A History of Symbolisation,” in Puig and Rojano 
(2004); the didactical phenomenology can be found in Freudenthal’s 
Didactical Phenomenology of Mathematical Structures, Chapter 16, “The 
Algebraic Language.” In this section we refer to what is expounded in the two 
texts. 

 
 

4.3.1. The representation of unknown quantities and species of numbers 
 
 
In Puig and Rojano (2004) there is an analysis of how the central core of the 
evolution of the language of algebra has to do with the way in which 
unknown quantities, on the one hand, and species of numbers, on the other, 
are represented in algebraic expressions and therefore in equations. 

In most of the sign systems of medieval algebra there is only one name to 
represent the unknown, “thing,” which is in fact a common noun although 
used as a proper name. Consequently, those MSSs cannot represent different 
unknown quantities with different proper names. Instead, once an unknown 
quantity has been named as “a thing,” the others have to be named with 
compound names constructed more or less algorithmically from the relation-
ships between it and each new unknown quantity (for example, “ten minus 
thing” is the name that one could give to an unknown quantity of which it is 
known that when it is added to “thing” the result is ten). However, the 
network of relationships between the quantities in the problem might be so 
complex that it is extremely intricate, or even impossible, to name all the 
quantities with compound names: for these problems, the fact that only the 
term “thing” is available makes the sign system not very efficient. 

Medieval algebraists resorted to various devices to get around this. 
Sometimes they used the term “thing” again, but with a qualifier. This is the 
case with Abû Kâmil, who in one problem in his book of algebra (cf. Levey, 
ed. 1966, pp. 142-144) uses the names “large thing” and “small thing” (“res 
magna” and “res parva” in the Latin version edited by Sesiano, 1993, p. 388). 
Sometimes they used names of coins for the other unknown quantities. This is 
also the case with Abû Kâmil, who uses dînâr and fals (cf. Levey, ed. 1966, p. 
133, n. 140, although on this occasion Abû Kâmil is expounding a different 
solution for a problem that has already been solved using “thing” on its own), 
or with Leonardo of Pisa, who uses denaro, as well as res (cf. Boncompagni, 
1857, pp. 435-436 and p. 455). In the part devoted to inheritances in  
al-Khwârizmî’s book, at one point he does not even use the term “thing” but 
calls the inheritance mâl, treasure, using it in its vernacular sense, and he calls 
what corresponds to each of the heirs “share” or “part share,” and he 
constructs the indeterminate linear equation “five shares and two parts of 
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eleven of share equal to the treasure.” According to Anbouba (1978), in the 
same part of al-Khwârizmî’s book there is also a problem in which he 
constructs a linear system of two equations using “thing” and “part of thing” 
to name two different unknown quantities.6 

Moreover, what appears in the algebraic expressions is the names of the 
species of numbers (simple number or dirham, root, treasure, cube, etc.; or, in 
the translation into Latin, numerus, radix, census,7 cubus, etc.), but the 
quantity by which this species is qualified is not named. From the identi-
fication of “thing” with “root” it is assumed that the treasure is the thing 
multiplied by itself, but there is no way of expressing another quantity 
represented with another proper name that has been multiplied by itself. The 
algebraic expressions of these sign systems do not say “five treasures of 
thing” but just “five treasures,” unlike the sign system of modern algebra, 
which uses 5x2 to say “five times the square of x,” and, therefore, is 
structurally prepared for designating another unknown quantity with another 
proper name, y, and saying “five times the square of y”, 5y2. 

The sign system of Indian algebra does have proper names for different 
unknown quantities (it uses names of colors for this purpose), and it forms 
algebraic expressions by juxtaposing the name of the unknown quantity and 
the name of the species (cf. Colebrooke, ed., 1817), but this system did not 
have any impact on medieval Arabic algebra, or therefore, on algebra in the 
Christian West. It was not until Viète that a sign system was developed in 
which there were proper names for different quantities, together with the 
names of the species. But Viète’s sign system also used letters as proper 
names, and not just for unknown quantities but also for known quantities. 
This freed the algebraic expressions from ambiguities and made them capable 
of providing a direct representation of the quantities analyzed in the state-
ments of the problems. 

However, in Puig and Rojano (2004) it is shown that Viète’s sign system 
lacks full operational capacity on the syntactic level because the species of 
numbers are represented by words or abbreviations of them, although these 
words are constructed algorithmically from certain basic words. It is also shown 
that this syntactic operativity is attained when one combines the representation 
of quantities by letters, introduced by Viète, with the representation of species 
by means of numbers that indicate the position of the species in the series of 
species (in continual proportion).8 The algorithmic rules for the construction of 
the names of the species can then be replaced by those numbers and converted 
into part of the calculation. 
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4.3.2. Aspects of the didactical phenomenology of the language of algebra 
 
 
In the “Variables in the Vernacular” section of his phenomenological analysis 
of the language of algebra, Hans Freudenthal recounts that 

 
When my daughter was at the age when children play the game “what does this mean?” and I 
asked her what is “thing” she answered: Thing is if you mean something and you do not know 
what is its name. (Freudenthal, 1983, p. 474) 

 
The didactical phenomenology of the language of algebra that Freudenthal 

expounds is based precisely on the examination of the phenomena that are 
organized by the language of algebra, seen with regard to how those 
phenomena are organized in the vernacular and in the language of arithmetic, 
which are the languages that provide the starting point or context from which 
pupils have to acquire the language of algebra. 

We will not repeat Freudenthal’s observations here, but simply indicate 
some of the aspects that he analyzes. 

 
1) The rules of transformation in languages 
 
We have already seen that the need for the development of rules of 
transformation in the language of algebra comes from the aim of being able to 
solve all problems without needing to have a specific algorithm for each one, 
and that this is done by the establishment of canonical forms and calculation 
on the syntactic level. In teaching, only awareness of the overall aim can give 
sense to the use of such syntactic transformations. Freudenthal examines the 
fact that rules of transformation also exist in the vernacular, but that the 
correctness of the transformations performed in the vernacular cannot 
generally be decided without resorting to the contextual meaning, whereas in 
the language of algebra the part played by the context in this sense is 
generally nil. 

 
2) The algorithmic construction of proper names 
 
We have seen that this is an outstanding aspect of the language of algebra. 
Freudenthal points out that algorithmic features are not unusual in vernacular 
languages. But these algorithmic procedures of sign construction are not very 
systematic and are not generalized (plurals, conjugations and declensions, 
etc.). The first experience that children have of an algorithmic construction of 
proper names is the learning of numbers in their mother tongue: an area of 
contact between the vernacular and the language of arithmetic. 
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3) Structuring devices 
 
The rules of transformation and the algorithmic construction of proper names 
are based on the structure of the language. The language of algebra has a 
wide range of structuring devices, many of them shared with the language  
of arithmetic, especially parentheses, priority between operations, and the 
arrangement of signs in relation to the text line (exponents, subscripts and 
superscripts, the fraction bar and the positions above and below the text line 
that it determines, roots, etc.). Once again, Freudenthal analyzes the existence 

 
4) Variables in the vernacular versus algebra variables 
 
We have already analyzed the use of “thing” in the language of algebra, and 
the differences between it and the variables of modern school algebra. 
Freudenthal points out that the use of letters must also be examined in 
geometry, where Euclid’s Elements already used letters to refer to points, 
lines, and figures, and he indicates the origin of the expression “point A,” in 
which A is the proper name of the point, in an abbreviation of an earlier 
expression, “the point at A,” which simply describes a drawn figure to which 
letters have been added in order to be able to refer to it in the oral discourse 
which was customary in teaching. 

Freudenthal also examines the fact that in order to use a variable as a 
proper name it is necessary to bind the variable. “Variables,” says Freudenthal 
(1983, pp. 474-475), “can be bound independently of any context, by 
linguistic logic devices, or in dependence of a context.” The logic devices are 
the universal and existential quantifiers, the definite article (including “the 
thing” as opposed to “thing”), the set former, the function or species former 
and the interrogative, whereas the devices that depend on context are the 
demonstratives. 

 
5) Formal substitution and algebraic transformations 
 
Formal substitution is the culminating point in the constitution of the MSS in 
the teaching of school algebra. For this to take place it is necessary that the 
algebraic expressions should have completely relinquished the character of 
representing actions that their antecedents in the MSS of arithmetic possess, 
and should have completely acquired the static character of a relationship. 
One of the key elements in this transition from language as action to the 

are based on content, whereas this is not the case (or not so much) in the 
of such structuring devices in the vernacular, and the fact that there they 

language of algebra. 
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language of algebra is the exceedingly well-known change of meaning from 
the arithmetic equals sign to the algebraic equals sign. 

However, in the context of algebraic transformations, which are performed 
between expressions with a static character that represent relationships, the 
meaning of the arithmetic equals sign reappears. The algebraic transformation 
par excellence consists in “reducing” an expression to a simpler form or a 
canonical form, so that (x + a)(x – a) = is an indication that an action must be 
performed and that the result of the transformation is expected on the other 
side of the equals sign; it is not just the construction of an equivalence. Yet 
the reversibility of algebraic transformations may give that appearance: for 
example, the action that is the opposite of “reducing” is “factorizing” (and one 
would have to decide which is simpler, the classical canonical forms resulting 
from reducing, or the expressions that explicitly show the roots that result 
from factoring). 

At the origin of formal substitution there is the possibility that the letter that 
names a quantity may be replaced by a compound expression that names the 
same quantity. This makes it necessary for the user of the MSS to accept the 
fact that, as the letter and the compound expression represent the same thing, 
not only can they be made equal but also the calculations or relationships 
represented in an expression in which the letter appears can also be carried out 
with the equivalent expression and the new expression will represent the same 
thing. On the other hand, the user will have to face syntax problems9 that derive 
from the structuring devices, such as the priority between operations, which 
sometimes makes it necessary to introduce other structuring devices such as 
parentheses where they were not present; or the problems posed by having to 
replace a letter with an expression in which that letter may also appear. This is 
the case with the difficulty that pupils find in replacing n with n + 1, for 
example, when using the method of complete induction. 

However, the substitution becomes definitively formal when the expres-
sions are no longer the result of the translation of the statement of a problem 
but are algebraic expressions which are studied as such. 
 
 
 

SUMMARY 
 
 

This chapter goes over part of a diagram of the design of the experimental 
setting for the observation of phenomena of learning and teaching algebra. 

In the next chapter we shall apply the methodological diagram to the study 
“Operating on the Unknown,” with a view to studying the processes of 
transition from arithmetic thinking to algebraic thinking at the point when  
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pupils first encounter the need to operate on what is represented. In order to 
locate this point (called a “didactic cut” in the study), we use historical and 
epistemological analysis of mathematical sign systems found in old texts on 
algebra from the pre-symbolic period (before the appearance of François 
Viète’s The Analytic Art). This analysis and the phenomenological analysis of 
algebraic language illustrate the power of the methodology proposed by local 
models, in the part corresponding to the choice of the moment of observation. 
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 ENDNOTES 
 
1 See Filloy, Rojano and Solares (2004) 
2 The canonic edition of the Greek text of Diophantus’s Arithmetic is the one by Paul Tannery 
(Tannery, 1893); we have also consulted the French translation by Paul Ver Eecke (Ver Eecke, 
1959). The canonic edition of Bombelli’s Algebra is the one by Ettore Bortolotti (Bortolotti, 
1966). The original Latin text of Viète’s book, In Artem Analyticen Isagoge, is included in the 
complete works of Viète compiled and published by Franciscus van Schooten (Van Schooten, 
1646); there is an English translation included as an appendix in Klein (1968), and another one 
in Witmer, ed. (1983). 
3 In the text of the Trattato di Fioretti the rule is not stated generally but with reference to the 
concrete case to which it is applied, as follows: “E a multiplichare la seconda parte nella 
somma di tutte e 3 due volte è chome a multiplichare la seconda parte nel doppio della somma 
di tutte a 3, overo quanto a multiplichare lo doppio della seconda parte nella somma di tutte et 
3.” [And multiplying the second part by the sum of the 3 two times is like multiplying the 
second by double the sum of all 3, or like multiplying double the second part by the sum of all 
3] (Mazzinghi, 1967, p. 16). Stated in a general form, the rule would say: “multiplying one 
quantity by another one twice is equal to multiplying the first quantity by double the second 
one, or also multiplying double the first quantity by the second.” 
4 There is a recent edition of the Arabic text of al-Khayyâm’s Treatise on Algebra, accom-
panied by a translation into French, in Rashed and Vahebzadeh (1999). One can also consult 
the English translation by Kasir (1931). 
5 There is an edition by Roshdi Rashed of the Arabic text of Sharaf al-Dîn al-Tûsî’s Treatise on 
Equations, accompanied by a translation into French, in al-Tûsî (1986). 
6 Diophantus also has a single name for unknown quantities (arithmos). In problem 28 in Book 
II of his Arithmetic (Tannery, 1893, vol. I, pp. 124–127), he resorts to the device of saying that 
a second unknown quantity is one unit (monas 1), performing the calculations using this 
supposition, and then in the result changing the units to arithmos and calculating again. 
7 “Census” was the term chosen by Gerardo de Cremona for mâl, treasure, in his translation of 
al-Khwârizmî’s book of algebra, and it was the one that caught on in the Christian Mediaeval 
West (cf. the edition by Hughes, 1986). 
8 This is already present in Chuquet’s Triparty, written in French in 1484. However, this book 
by Chuquet remained unpublished and was therefore scarcely known until the end of the 19th 
century, when Aristide Marre published it (Marre, 1880). Bombelli used the same kind of 
representation in his Algebra, from which it became more widely known among algebraists. 
9 See our ongoing work reported in Chapter 8 and in Filloy, Rojano and Solares (2004). 
 
 
 



 

CHAPTER 4 
 

CONCRETE MODELS AND ABSTRACTION PROCESSES 
TEACHING TO OPERATE ON THE UNKNOWN 

 
 
 

OVERVIEW 
 
 

This chapter deals with concrete modeling in teaching the elements of 
algebraic syntax and the processes (abstraction) that arise both in modeling 
itself and in the use of the syntactic skills learned in order to solve word 
problems. The subject is approached by means of a clinical study case 
“Operación de la incógnita” (“Operating on the Unknown”), the design and 
experimental performance of which are within the theory of local theoretical 
models, following the recursive diagrams that appear in Chapter 3. The study 
deals with the transition from arithmetic to algebraic thought, and in the study 
the idea of didactic cut is introduced for this context. We also begin the 
discussion of the dialectic relationship between semantics and algebraic 
syntax. Throughout the chapter we utilize the phenomenological analysis  
of school algebra presented in the previous chapter and the notions of 
mathematical sign system and language strata, dealt with in Chapter 1.  

 
 
 

1. INTRODUCTION 
 
 

1.1. Observation in class 
 
 
As we mentioned in the Introduction (Chapter 1), one of the simplest 
phenomena that observation in class shows about the permanence in a reading 
level with children who have just finished primary education (about 12 years 
old) is one that appears when they are confronted with questions of the kind 
that illustrate what we called the reverse of multiplication syndrome. 

These observations can easily be made in the classroom, where it is 
possible to infer that these events are linked with many others, examples of 
the intrinsic difficulties that the learning of algebra presents: the usual syntax 
mistakes when one is working operationally with algebraic expressions, 
translation mistakes when one is using algebra to solve problems written  
in ordinary language, mistaken interpretations of the meaning of algebraic 
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expressions in the different contexts in which they appear, the difficulty of 
finding any meaning in them, the impossibility of using algebra to solve 
ordinary problems, etc. 

 
 

1.2. Experimental observation 
 
 
In order to observe these phenomena with greater precision, one needs an 
experimental situation in which one can monitor various obstructions that are 
always present in the classroom, and observation mechanisms that allow a 
more exhaustive, precise analysis. But the task must also be undertaken in 
such a way that what is observed has to do with the problems presented by the 
person under observation, and also that the components that teaching brings 
into play are present. 

Over a period of four school years an experiment was carried out at the 

monitored from the viewpoint of the teaching aims that it strove to achieve, and 
also a check was kept on the teaching strategies used throughout the middle 
school stage. Moreover, a laboratory for clinical observation was set up in 
which individual or group interviews could be conducted and videotaped. The 
clinical interviews had a structured format, but the interviewer moved freely 
within the previously designed steps, allowing the line of thought of the person 
interviewed to define each of the subparts of the interview. Except in cases in 
which the interviewee had no difficulty in solving the task set, the interviewer 
intervened to set further questions that would help the interviewee to learn (by 
discovery) the task that he or she was unable to solve initially. The aim was to 
discover the difficulties that the beginnings of algebra present for learning, 
given the usual ways in which it is taught at present. These were clinical 
interviews, in which the focus of observation was the usual ways of teaching 
and the individual ways of learning (with their typical obstructions and 
difficulties) that the students presented. 

This infrastructure formed the basis for the development of the project 
“Evolution of Symbolization in the Middle School Population,” and within it 
the study “Acquisition of the Language of Algebra,” concentrating on the 
interrelationships between two overall strategies for the design of learning 
sequences that cover long periods of time in the middle school algebra 
curriculum, which are: 

a) Modeling of more abstract situations in more concrete languages in 
order to develop syntactic skills. 

of mathematics in the six years of the secondary education program was 
Centro Escolar Hermanos Revueltas in Mexico City, in which the teaching 
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b) Production of codes to develop problem-solving skills. Use of syntactic 
skills for the development of solving strategies. 

Broadly speaking, in (a) the aim is to make new expressions and opera-
tions meaningful, modeling them on concrete situations. In (b) the aim is to 
produce senses for new expressions and operations (in such a way as to 
generate problem-solving codes), setting out from the assumption of the 
presence of certain skills in the syntactic use of the new symbols and their use 
as a more abstract language. 

 
 

1.3. The theoretical framework 
 
 
Apart from empirical observations such as those indicated in the first section 
of this introduction, the theoretical lines that guided this project were drawn 
essentially from three sources: first, an epistemology based on analysis of 
texts from the Middle Ages and the Renaissance (a description of which can 
be found in Chapter 3); second, a line drawn from semiotics, in an attempt to 
make it a guide for the analysis of algebra on the basis of its conception as a 
mathematical sign system; and third, cognitive psychology in its recent 
developments concerning language acquisition and its relation to the 
pragmatics of language. 

We shall try to approach various aspects concerning the interrelation 
between the semantic and syntactic components of the problem, seen from the 
viewpoint of teaching strategies of types (a) and (b), briefly described above. 
This chapter concentrates, as its title indicates, on type (a) strategies and on 
the point in teaching when one wishes to teach how to operate on the 
unknowns that appear in first-degree equations. 

Here we are not going to go into an analysis of what happens when a 
totally syntactic model is used as a teaching strategy. In Chapter 5, Section 
3.5, we show that the phenomena that appear in that case are of the same 
nature as those described here for concrete models. The reader will not fail to 
perceive that aspects of type (b) strategies also appear here in the description 
of the mechanisms that are brought into play when the processes of 
abstraction are set in motion. However, the approach focuses totally on type 
(a) teaching strategies, their relations to the appearance of the usual syntax 
mistakes, their differences model by model, and the relation that they have to 
the students’ prior attitudes, especially in terms of the extreme positions 
between the clearly syntactic tendencies and clearly semantic tendencies that 
are seen in the students. Emphasis is placed on the processes of abstraction in 
the situations presented, and in the operations involved. 
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A general description of what is presented indicates that there is a dialectic 
relationship between syntactic and semantic advances, and that an advance in 
either of these two components implies an advance in the other. This analysis 
is made from a viewpoint that corresponds to the usual strategies of teaching 
algebra. The starting point is the belief that the facts described here are not 
taken into account in current teaching systems, merely being left to later 
corrections that students may manage to make to various misconceptions and 
mistakes in the use of algebraic properties —properties that one is trying to 
teach for the first time. 

 
 

1.4. Reading Guide 
 
 
The text of this chapter is divided into the following four parts: 

1) The solution of equations and the transition from arithmetic to algebra. 
This part sets out the theoretical and empirical antecedents that are 
relevant for the problem presented, especially for the determination of 
the point in the development of the algebra curriculum at which the 
experimental observation was situated. 

2) Concrete modeling at a transition point. This part describes the point 
when the observation took place from the perspective of the teaching 
that preceded it, and it also describes the population from which the 
individuals were taken in order to carry out the case studies that make 
up the clinical part of this research. The population is classified in 
terms of its abilities and prior knowledge, and there is a discussion of 
why the study described here was carried out only with individuals 
from the so-called “upper stratum.” 

3) Processes of abstraction of operations using a concrete model to learn 
how to operate on the unknown. Here we begin to describe how the 
individuals observed performed, after a phase of instruction in 
operating on the unknown based on the modeling of equations in 
concrete contexts. A brief description of the empirical results obtained 
is given, in order to present referents that will enable us to describe the 
processes of interaction between the semantic and syntactic aspects that 
appear in the acquisition of the first elements of the language of 
algebra. 

4) Semantics vs. algebraic syntax. This section is devoted to making a 
comparative analysis of the differences between the use of two models 
(the balance scales and a geometric model) by part of the population 
with a better performance. The differences can thus be taken into 
account for the proposal of teaching strategies based on these 
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observations. The two most important are: first, the fact that there are 
differences in the translation of elements of the equation to the model 
which obstruct progress in its use; and second, the fact that some 
equations offer more natural translations in one model than in another. 

5) Contrast between two cognitive tendencies in the learning and use of 
mathematics, with respect to the application of the same model for 
operating on the unknown. 

 
 
 

2. THE SOLUTION OF EQUATIONS AND THE TRANSITION  
FROM ARITHMETIC TO ALGEBRA 

 
 

In Sections 3 and 4 of the Introduction (Chapter 1) we pointed out that various 
clearly established research results mark distinct differences between ways of 
thinking rooted in arithmetic and others that are characteristic of algebra. One 
of them is the inability to operate with the unknown as if it were known, 
which can be seen in most students when one starts to teach them algebra. 

This kind of operational insufficiency in what is represented in the pre-
symbolic stage of algebra suggests the presence of a point of cut-off or change 
between operating on the unknown and not operating on it, here on the level 
of individual thinking. In the clinical study “Operating on the Unknown,” 
carried out with children 12 or 13 years of age,1 operating on the unknown 
does indeed seem to be a necessary action for the solution by means of non-
spontaneous methods2 of certain first-degree equations with at least two 
occurrences of the unknown, for the solution of which it is not sufficient to 
reverse the operations on the coefficients. The following equations are 
examples of this kind: 

 
38x + 72 = 56x 

3x + 20 = x + 164 
 

According to the study, the step from the operational solution of equations 
such as x + 27 = 58 or 4 × (x + 11) = 52 to the solution of equations such as 
3x + 8 = 7x and 7x + 2 = 3x + 6, for example, is not immediate, and in 
between comes the construction (or acquisition) of certain elements of syntax 
which is algebraic, strictly speaking. The construction of these syntactic 
elements is carried out on the basis of a reasonably well consolidated 
knowledge of arithmetic, and, in turn, this construction is possible only if one 
succeeds in breaking away from certain notions that belong to the domain of 
arithmetic; hence the presence of a cut. 
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Take, for example, the notion of an equation: Ax ± B = C. In arithmetic 
terms, the left side of an equation corresponds to a sequence of operations that 
are carried out on numbers (whether known or not), and the right side 
corresponds to the result of having carried out those operations: this is what 
one might call an arithmetic notion of equality (or of an equation). Starting 
from such a notion, an equation of the type Ax ± B = C (where A, B, and C are 
particular given numbers) can be solved by simply inverting the operations in 
the sequence on the left, starting from the result C. We will call equations of 
this type “arithmetic” equations. 

However, the arithmetic notion of equality does not apply to an equation 
such as Ax ± B = Cx ± D (where A, B, C, and D are particular given numbers), 
and therefore its operational solution involves operations outside the scope of 
arithmetic, such as operating on the unknown. In order that such operations 
may acquire sense for the individual and so be brought into use in the process 
of solving an equation, equations such as those of the form described here 
(which we will call “non-arithmetic” equations) must in turn be provided with 
some meaning; this, however, implies a basic modification to the notion of 
equation or numeric equality. 

With respect to the meaning of the new equations, it must be understood 
that the expressions in both parts of the equality are of the same nature (or 
structure), and that there is a series of actions that give sense to the equality 
between them (such as the actions corresponding to the substitution of the 
numeric value of x). 

Profound changes or modifications in arithmetic habits and notions do not 
occur in the individual spontaneously, simply as the result of being confronted 
with the need for such changes to take place.3 Intervention with teaching, at 
this point of transition from arithmetic to algebraic knowledge, may prove 
crucial for most individuals who are learning algebra for the first time (Filloy 
and Rojano, 1984). 

On the other hand, although some arithmetic notions have to be modified 
for the sake of the acquisition of a new knowledge, that of algebra, the earlier 
knowledge (of arithmetic, in this case) must also be preserved, as even in the 
single example of equations that we have presented it is necessary that 
arithmetic equations should subsequently continue to be recognized as such, 
in order to preserve all the previously acquired manipulative skills for their 
solution. These skills are situated at a level of knowledge between arithmetic 
and algebraic knowledge: that of pre-algebraic knowledge. 
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3. CONCRETE MODELING AT A TRANSITION POINT 
 
 

As we noted in the previous section, changes in the conception of the 
operations performed on objects such as numbers are essential in order to 
prepare the way for the conception of operations on objects other than 
numbers (such as unknowns) and for the conception of objects themselves 
(what they represent or may come to represent). Therefore, at this point the 
teaching of algebra requires the use of teaching resources by means of which 
one can bring into play the relations between elements that participate in the 
realisation of these changes. 

We will now describe some of the results obtained in the clinical study 
“Operating on the Unknown,” carried out with children 12 to 14 years of age 
who, at the time of observation, had not received instruction in solving linear 
equations with one unknown occurring two or more times, i.e., the equations 
that we have described as non-arithmetic. The teaching models used in the 
study are those presented in Section 5 of this chapter. 

 
 

3.1. The study “Operating on the Unknown” 
 
 
This study was preceded by work carried out in two different fields: (1) 
analysis of parts of mathematical texts and works of transition that came 
before the first work of symbolic algebra, The Analytic Art, by François Viète, 
and (2) experimentation with pedagogical sequences the writing of which was 
based, in turn, on works of historic-critical analysis of the development of 
mathematical ideas (see Chapter 3). On the basis of these prior studies we 
conjectured the existence and location of the didactic cut mentioned earlier, in 
the child’s line of development from arithmetical to algebraic thinking. This 
didactic cut corresponds (allowing for the differences between the two areas) 
to important changes in the history of the emergence of symbolic algebra, 
concerning the conception and use of objects such as unknowns. Thus, in one 
of its parts the research on the acquisition of the language of algebra focuses 
on the study of the processes of change that are brought about in a small 
neighborhood of the cut. The study “Operating on the Unknown” was situated 
at this point, and its preparation comprised two stages: the design and 
application of a teaching treatment prior to the clinical observation, so that it 
was possible to halt the teaching at the point indicated previously, and the part 
corresponding to the design and application of a diagnostic test of pre-
algebraic efficiency, in order to select the individuals to be observed on the 
basis of their performance in the test; the results were also used in the design 
and setting up of the clinical observation. 
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In terms of teaching, the cut is situated 
 

here 
↓  

The children have already learned 
to solve arithmetic equations. 

The children have not received any 
instruction in solving the first non-
arithmetic equations. 

Examples are: Examples are: 
Ax ± B = C Ax ± B = Cx 
Ax(Bx ± C) = D Ax ± B = Cx ± D 

 

x
A
= B  

 

x
A
=

B
C

 

 

They can be solved simply by 
inverting the operations (applied 
to the data of the problem). 

They cannot be solved simply by 
inverting the operations (applied to 
the data of the problem). 

  
 There is no need to 

operate on the 
unknown 

  It is necessary to 
operate on what is 
represented 

 

↑  
The study was carried out at the cut-off point. 

 
As far as the clinical observation was concerned, the aims of the study 

“Operating on the Unknown” were: 
 

solving non-arithmetic equations for the first time. 

interview) with a phase of instruction in operating on the unknown. 
 

Aims 1 and 2 were directed at more general objectives of the study: 
 

cut between operating and not operating on the unknown. 

knowledge, which might correspond to obstructions for the acquisition 
of the language of algebra. 

equations immediately after they had been provided (in the same 

b) To isolate phenomena concerning behavior of anchoring in arithmetic 

a) To corroborate the location and perception by the child of the didactic 

2) To analyze the children’s performance in the solution of non-arithmetic 

1) To analyze the children’s spontaneous responses when faced with 
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way in which they are taught and from the teaching strategies used to 
teach pre-algebraic material. 

 
We were interested in dealing with the area of the processes that are set in 

motion when new concepts and operations are introduced by means of a 
concrete model, and so we will refer only to the aims indicated in 2, (b) and 
(c), which are more directly related to teaching. 

The population studied comprised three cohorts of children ages 12 to 13 
in the second year of secondary education, all at the same school, receiving 
instruction in mathematics within a system of controlled teaching.4 

The written test of pre-algebra comprised three subsections: arithmetic 
equations with literal notation (e.g., 5x + 3 = 90), arithmetic equations without 
literal notation (e.g., � – 95 = 23), and problems corresponding to arithmetic 
equations. 

Once the criteria had been established for the classification of the 
population with respect to each of the axes (subsections) considered in the 
pre-algebra test, distributions were obtained for the test as a whole, as shown 
in Figure 4.1. 

The group observed consisted basically of children located on the main 
diagonal, but also included some cases that contravened the order of some of 
the axes, i.e., children in categories corresponding to the other vertices of the 
cube. 

With respect to the first aim of the study, i.e., the one concerned with the 
children’s spontaneous responses to their first non-arithmetic equations, in 
each cohort of children we considered the three categories that appeared on 
the main diagonal, calling them the lower, middle, and upper strata respectively. 
Twenty-seven children were interviewed in all, and the interviews were 
videotaped. 

c) To recognize problems in learning the new concepts, deriving from the 
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(3, 3, 0)(0, 3, 0)

(3, 0, 0)

(3, 3, 3)

(0, 0, 0)

(0, 3, 3)

(0, 0, 3)

(3, 0, 3)

Equations without literals

Equations with literals

Central class

Problem solving

Answers given
by 3 students
Answers given
by 4 students
Answers given
by 6 students
Answers given
by 7 students
Answers given
by 17 students

 
 

Figure 4.1 
 
 

3.2. The clinical interview 
 
 
Five sequences of items, series E, C, I, A, and P, make up the basic content of 
the clinical interview. It must be borne in mind, however, that, depending on 
how each interview developed, the order of the items and the order of some of 
the series were altered, and additional items were even created. This can be 
seen if one compares the items in series E, C, and I presented in this section 
with the ones presented in Chapter 6, which are the items actually used in the 
interview with Ma. Series A and P are not shown in detail here because their 
items coincide exactly with those in the interview with Ma and they are 
presented in Chapter 5. 
 

Series E: Verification of the pre-test Arithmetic equations 
x + 5= 8
x − 4 = 8

x + 27 = 58
x −15= 143

x −1568= 392

 

13×�= 39
3× x = 39
6×�= 34434

(x + 3)× 6 = 48
4 × (x +11) = 52
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Series C: The equation as equivalence Cancellation 

  

x + 5= 5+ 2

x + 141
16

= 7+ 141
16

x + 17 = 41+ 17

x + x
4
= 6+ x

4

 

x + 5= 2+ 5
x + 2 = 2x + x
x + 2 = x + x
x + 5= x + x

 

 
Series I: Operating on the unknown Non-arithmetic equations 

  

x + 2 = 2x
2x + 4 = 4x
3x + 8= 7 x
3x + 8= 6x

3+ 2x= 5x
5x = 2x + 3
5x = 3+ 2x

7x + 2 = 3x + 6  

7x + 15 = 8x
38x + 72 = 56x

37x + 852 = 250x
2x + 3 = 5x

13x + 20 = x +164
10x −18 = 4x

10x − 8 = 4x + 6
7x − 20 = 5x + 30

 

 

With respect to the first aim of the study, the cross-analysis of the 
interview series against the three strata of students produced interesting 
results that made it possible, on the one hand, to confirm the presence of the 
didactic cut (especially on the basis of the performance of the children in the 
upper stratum), and, on the other, to outline the characteristic approaches of 
each stratum to the situation represented by the cut, i.e., the spontaneous 
solution of non-arithmetic equations, series C and I. 

In order to tackle the second aim of the study, concerning the children’s 
performance after a phase of instruction in operating on the unknown based 
on the modeling of equations in concrete contexts, both the administration and 
the analysis of the second part of the clinical interview focused on the 
children in the upper stratum. This was essentially because it was necessary  
to be sure of a certain degree of mastery of arithmetic and pre-algebraic 
language so that genuine transition phenomena could be assimilated without 
running the risk that those phenomena might have a causal relationship to 
shortcomings in the basic knowledge on which the new language was to be 
constructed. 
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This part of the study began with a phase of instruction in operating on the 
unknown at the point at which the child stopped trying to solve the equations 
in series I using his or her own resources. 

The following section provides a brief description of the results of this 
second part of the clinical study in order to obtain empirical referents for the 
description of the processes of interaction between the semantic and syntactic 
aspects in the acquisition of the first elements of algebraic language. 

 
 
 

4. PROCESSES OF ABSTRACTION OF OPERATIONS, BASED ON THE USE  
OF A MODEL TO LEARN HOW TO OPERATE ON THE UNKNOWN 

 
 

Although there are theoretical bases for feeling sure that an initial semantic 
approach to algebra is more helpful for subsequent good performance with 
algebra than a merely syntactic approach, this does not mean that the con-
struction of algebraic syntax from this first approach is immediate; in between 
there are processes of abstraction of the operations performed with the 
elements of the concrete situation in which the new objects and operations are 
modeled. These processes, in turn, imply others, such as the process of 
generalization of actions in modeling and the process of discrimination of the 
various cases to be modeled, among others. 

As was pointed out in an earlier section, for the purposes of this study we set 
out from the basis that one of the first algebraic operations, strictly speaking, is 
operating on the unknown to solve non-arithmetic linear equations, and we 
adopted the position of introducing this operation semantically by the use of 
concrete models. 

Two models were used, the balance scales and a geometric model. A 
schematic description is given below. 

 
 

 
5. TWO CONCRETE MODELS 

 
 

In this section we give a schematic description of the concrete models used in 
the studies reported in other chapters of this book. These two concrete models 
were designed so that first-degree equations and the algebraic transformations 
that make it possible to solve them could be translated into the models. They 
consist of what we will call a “geometric” model and the balance scales 
model. 

In the geometric model, the quantities represented by letters and algebraic 
expressions are represented as lengths and areas of rectangles (x and its 
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coefficients are lengths, and their products and the independent terms are 
areas), the addition of algebraic expressions is represented as a juxtaposition 
of areas, and the equation, i.e., the equality of two algebraic expressions, by 
equality of areas. In this model one can also represent some algebraic 
transformations as actions of comparing, cutting, and pasting areas. 

In the balance scales model, the equation is represented by the balance of 
weights in the two pans, so that what is placed in each pan has to represent the 
algebraic expression corresponding to each side of the equation. This is 
achieved by representing the x – the unknown – by an object of unknown 
weight, an expression such as Ax by A objects of the same unknown weight, 
and an independent term B by B objects of a given known weight. The 
algebraic transformations are represented by actions of adding and removing 
objects that do not alter the balance of the scales. 

We will now present the use of these two models to solve equations of the 
type Ax + B = Cx, which are the simplest equations in which it is necessary to 
operate on the unknown. 

 
 

5.1. The geometric model 
 
 
The equation given is Ax + B = Cx, with A, B, and C being given positive 
integers and C > A in this case. 

The steps for solving the equation by using the model are: 
 
1) Reproduction of the model (translation of the equation to the model). 
 

x

A

x

C

B
 

 
Figure 4.2 

 
2) Comparison of areas: 
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Figure 4.3 
 

3) Production of the simplified equation: (C – A) x = B. 
4) Solution of the simplified equation. 
5) Verification of the answer. 
 
 

5.2. The balance scales model 
 
 
The equation given is Ax + B = Cx, with A, B, and C being positive integers 
and C > A in this case. 

The steps for solving the equation by using the model are: 
 
1) Reproduction of the model (translation of the equation to the model). 
 

� � �

A objects of equal
(unknown) weight

B objects of equal
(known) weight

C objects of equal
(unknown) weight  

 
Figure 4.4 

 
2) Repeated reduction of the objects of unknown weight while maintaining 

the balance, until all the objects of this type have been removed from 
one of the pans. 

 
� �

B objects of equal
(known) weight

C—A objects of equal
(unknown) weight  

 
Figure 4.5 

 
3) Production of the simplified equation: (C – A) x = B. 
4) Solution of the simplified equation. 
5) Verification of the answer. 
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In the case of the two models, the children of high pre-algebraic efficiency 
were provided only with the first elements of the model (the first step of 
translation), and were allowed to develop the following stages on their own, 
with as little help as possible from the interviewer. Once they had mastered 
the use of the model for an equation of the type Ax + B = Cx, they were given 
equations of increasing complexity (Ax + B = Cx + D; Ax – B = Cx + D, Ax – 
B = Cx – D, etc.), in order to observe the transfer of the use of the model to 
these types, and also the processes of abstraction of the operations performed 
repeatedly in the model. 

 
 

5.3. Results 
 
 
In the course of the interviews we saw processes of abstraction of the 
operations on new objects (in this case, unknowns), based on performing 
actions on them in the model and progressing to operating on them on the 
level of symbolic algebra. In these processes of abstraction we detected two 
kinds of phenomena, which we will now describe. 
 
 
5.3.1. Momentary loss of earlier skills, accompanied by the presence  

of behavior anchored in arithmetic 
 
 
The most frequent case was the apparent forgetting of manipulative skills for 
solving arithmetic equations when they appeared as intermediate steps in the 
process of solving non-arithmetic equations with the use of a model. This was 
a non-recognition of the simplified equation (C – A)x = B as an equation that 
the student already knew how to solve syntactically. It obeys a phenomenon 
of getting stuck in the model that prevents the child from reading the 
simplified equation as an expression detached from the concrete meanings 
that the model gives it. 

Example: Fragments of the interview5 with Vt, age 13, upper stratum, who 
in series E proved very efficient at solving “arithmetic” equations, even with 
negative solutions. 

 
Equation set: 8x + 30 = 5x + 9 
 
By means of the geometric model, Vt arrived at the simplified equation 

3x + 30 = 9 
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Vt: What? 
I: Do you think you could solve this now? 
Vt: Nine minus … (points to the 9 on the right and then points to the 30 on the left) Nine 

minus a number bigger than nine, that will give me a negative number, divided by three 
… 

 
Vt does not give the answer, and when the interviewer asks her to do so 

she starts using the geometric model (which is not appropriate in this case): 
 
3x + 30 = 9 

x

3

30

 
 

The interviewer asks Vt to solve the equation 3x + 30 = 9 without the 
model. 

 
I: Can you solve it? 
Vt: No. 
 
After a few minutes: 
 
Vt: Well, if you like I can do it with … [She picks up the calculator and, recovering her 

previous manipulative skills, reverses the operations and obtains x = –7.] 
 
 

5.3.2. Modification of the arithmetic notion of equation 
 
 
This phenomenon appeared in various ways, which we now present. 
 
1) As a confrontation with different kinds of equations, with a structure that 
did not necessarily agree with that of the examples used during the modeling 
 

Example: Description of a series of items in the interview with Mt, age 13, 
upper stratum, who at this point had already abstracted the actions of the 
model on a syntactic level, and no longer used the model to solve equations. 

Initially she did not recognize the equations 2x + 3 = 5x, 3 + 2x = 5x, 
5x = 2x + 3 and 5x = 3 + 2x as being the same. 
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I Mt 16 2x + 3 = 5x 
Mt operates with the unknown 2x, as she 
has done in the previous items. 

2x + 3 = 5x – 2x = 3x 

I Mt 17 3 + 2x = 5x 
The permutation of the terms on the left 
makes Mt uncertain about what she should 
do with x. 

 

I Mt 18 2x + 3 = 5x 
Mt is presented with the equation from item 
16 so that she can compare them. She 
recognizes that they are the same equation 
except for the permutation of terms, but she 
also admits that she had not realized this. 

 
 

I Mt 19 5x = 2x + 3 
Mt modifies the equation in order to solve it 
like the preceding one: 

5x = 2x + 3 
2x + 3 = 5x 
2x + 3 = 5x – 2x = 3x 

I Mt 20 5x = 3 + 2x 
Although Mt sees this equation as being the 
same as the one in the previous item, she 
does not assign to it the solution already 
found for that item; she applies the same 
method of solution to it: 

5x = 3 + 2x 3x x = 1 

 
 

2) As a need not only to make the terms of the equation meaningful, but also 
to give sense to these new expressions and the operations required in order to 
use them 
 

One way of giving sense to them is presented by the process of 
verification, giving new meaning to algebraic equations in which equality 
appears, such as those in which it is possible to perform a series of operations 
in order to obtain the value of an unknown, and then substitute it on the left 
side of the equation and perform the operations indicated, and also do the 
same on the right, and the results agree. 

Example: Mt has solved 25 items, some with the geometric model and the 
last ones on a syntactic level. In the stage of checking the answer to  
10x – 18 = 4x + 6 she spontaneously gives a “more algebraic” interpretation 
of the equation: 

 
I Mt 26 10x – 18 = 4x + 6 
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Mt: In other words, they’re equivalent. 
I: What do you mean by equivalent? 
Mt: … If I take the value of x and do this operation (pointing to the left side of the 

equation), I get a result. That result has to be the same as this (pointing to the right side 
of the equation). 

 
Mt goes on to solve the equation using the method of “operating on the 

unknown in the equation.” 
 
Note: At the beginning of series I, Mt interpreted a non-arithmetic 

equation as “two equivalent equations” (using this expression to refer to the 
two sides of the equation, because x appeared in both), and it was only in this 
item that she made her interpretation explicit in operative terms. 

 
3) Use of personal notations (codes) to indicate the actions already performed 

solving process 
 

This suggests the existence of a stage prior to the operational algebraic 
stage. In this stage there are also obstructions, which these notations impose 
when the complexity of the equations increases, generating what are 
subsequently considered, in the later study of algebra, natural mistakes of 
syntax: inappropriate use of the equals sign, absence of the equals sign, 
forgetting certain terms, etc. 

An illustrative example is that of Mt, who soon gave up using the concrete 
model to operate on the unknown and generated her own notations and codes 
to indicate the actions to be applied to the elements of the equation. 

 
4) Clinging to the model (even in cases that are very complicated to 
represent), an attitude that underlies an apparent algebraic manipulative 
ability with the elements of the equation 
 

Example: After 28 items of series I, Vt continued using the geometric 
model, without showing any sign of trying to do without it. The final items in 
the interview, which present an increasing degree of difficulty in their 
modelling, were the following: 

 
 
 
 
 
 
 

and the actions still to be performed with elements of the equation during the 
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I Vt 29 8x – 10 = 6x – 4 
First attempt: 
Vt: Maybe, first I take away 

these parts (the parts 
corresponding to –10 and –
4 in the drawing). 

x

8
10

x

6
4

 
Second attempt: 

x

8
10

x

6
4

 
Mistaken operation con-
fusing length and area: 

x

8
10

x

6
4

 
Vt: … well, x … minus ten. 

x

8
10

x

6
4

x

 
With help from the inter-
viewer: 

 

Vt: Two times x, minus ten, 
plus four. 

2x – 10 + 4 

Vt: … must be equal to …  
I: Nothing, because you took 

away everything. 
2x – 10 + 4 = 0. 

  
I Vt 30 23x – 7 = 14x + 2 
Spontaneous —unaided  
With help from the inter-
viewer. 
Vt realizes that the area 
that remains now is 
different from zero. 

x

23
7

x

14
2

x

 

x

23
7

x

14
2

x

 
Vt: Nine times x, minus seven.   
I: Is equal to what?  
Vt: Two. 9x – 7 = 2 
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I Vt 31 18x – 41 = 9x – 5 
Spontaneous —unaided 

x

18
41

x

9
5

 

x

18
41

x

9
5

9

 
Vt: But would it be … minus 

five? … Let’s see, it would 
be nine times x, minus 41, 
plus five. x

18
41

x

9
55

9

 
I: That must be equal to …  
Vt: Zero. 9x – 41 + 5 = 0 
I: Zero, because you put it 

here. 
 

  
I Vt 32 10x – 3 = 4x 
Spontaneous —unaided  

 
 

5) Relinquishing the model, transferring manipulation with coefficients to 
manipulation with terms that include unknowns 
 

This leads them to make the usual mistake of adding monomials of degree 
one to monomials of degree zero (coefficients and constants); in other words, 
faulty operation on the unknown. The case of Mt is now presented, with item 
11 from series I, in which she tries to do without the use of the geometric 
model and makes mistakes of syntax: 

 
I Mt 11 15x + 13 = 16x 
 
Mt operates on the unknown in two steps. The first is correct; the second is 

incorrect. 
 
Mt: 16x minus 15x is 1 times, so 1 plus 13, 14. 
 
The interviewer refers her to the geometric model: 
 

15x + 13 = 16x  15x
 

Š
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Mt: … one x … [She expresses uncertainty about making “one x” equal to the constant 
term.] 

 
With help from the interviewer: 
 
Mt: So here we have to put one times x (pointing to the result of 16x – 15x). 
I: And that has to be equal to what? 
Mt: Thirteen. (She writes 1x = 13.) 
 
 

6) The presence of obstructions inherent in each model, but also with the 
preservation of general behavior from which it is possible to learn about the 
difficulties that do not depend solely on the way in which the material is 
taught 

 
 

7) Recognition, through the models, of the diversity of the types of first-degree 
equations. The solution of these equations ultimately requires the same 
operations, but they are not transferred from the simpler ones to the more 
complex ones (see the example illustrating result 5) 

 
 
 

6. SEMANTICS VERSUS ALGEBRAIC SYNTAX 
 
 

6.1. Comparison of the use of two different models to operate on the unknown 
 
 
In a third phase of the clinical study “Operating on the Unknown,” we made a 
comparative analysis of observations of the performance of upper-stratum 
children (with respect to pre-algebraic manipulation skills) in the solution of 
non-arithmetic equations, using the balance scales model, and observations 
concerning the processes of abstraction of the operations of the model toward 
a syntactic level, in the case of the use of the geometric model. 

This comparison between models is interesting because it enables us to 
identify the phenomena that are stimulated during the processes of abstraction 
of the operations in modeling that do not depend on the specific model that is 
used; it is also interesting, however, to detect the variations from one model to 
another, so that they can be taken into account when proposing teaching 
strategies based on them. 

Some of the more important results in terms of the aspects that varied from 
one model to another were the following: 
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1) There are specific ways (depending on each model) of translating the 
elements of the equation to the model, which represent an obstruction to 
progress in using it 
 
In the geometric model we find phenomena such as those illustrated by the 
following items from the interview with Mt using series I: 
 
I Mt 13 129x + 51 = 231x 
 

 
 

 
Mt: So x equals two (wrong answer). 

 
 
I Mt 14 37x + 852 = 250x 

She applies the method of 
“operating on the unknown in the 
equation” and abbacus-style reading.

 

Mt: What number multiplied by 213 gives us 
this (pointing to 852)?  

 
I Mt 15 x + 5 = 2x 

 x + 5 = 2x – x = 1x 
Mt: One x must be equal to 5, in other words, 

x equals 5.  
 

In item I Mt 14, it is worth noting that Mt does not write down the 
simplified equation using algebraic notation, although she does work with the 
equality 102x = 51, indicating it with an arrow and solving it (wrongly, 
because she uses a specific item wrongly). Mt creates her own signs to 
explain the simplified equation, and from the indications accompanying it one 
can see the actions that have already been performed and the actions that have 
yet to be carried out to solve the equation; this is a stage prior to the 
operational level in which the simplified equation is written using algebraic 
syntax. 

This stage prior to the operational stage plays a very important part in the 
development of operations in mathematics; before having the operations 
established on an operational level, one guides oneself by means of personal 
signs created (by oneself) for the type of problem that one is attacking, and 
even later, although more reduced, more syntactic ways of performing the 
operations involved are created, this strategy of drawing (with personal signs) 
helps one greatly to see what one is doing. In fact, Mt is creating a way of 
indicating the process with a notation in which she writes down what she is 

129x + 51 = 231x Š

129x + 51 = 231x Š 129x = 102x

129x + 51 = 231x Š 129x = 102x

37x + 852 = 250x Š 37x = 213x

x + 5 = 2x Š x = 1
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doing, and what corresponds to what; really, what Mt is presenting is a 
simplified equation with many more signs, but one that enables her to see 
what has been done before and what has to be done afterwards. 

The geometric approach, described above as an obstruction, consists in 
breaking down into linear dimensions the rectangular area that represents the 
constant middle term (B in Ax + B = C), which leads to the application of the 
method of “joining of linear dimensions” to solve the equation, i.e., to find b 
and h such that b × h = B and b = C – A or h = C – A. This method is not 
applicable in the case in which B is not divisible by C – A, because, if C – A 
does not divide into B, then it is not possible to find b and h with the desired 
characteristics, as can be seen in Figure 4.6: 

 

 
Figure 4.6 

 

On the other hand, in the model of the balance scales, when an attempt is 
made to assign units of weight to the objects in the scales, confusion may be 
caused in the development of the initial “natural” strategy of the model by the 
repeated cancellation of identical weights, and this repeated cancellation also 
weakens the notion of the unknown in the context of the concrete situation. 
We will illustrate this with some items from Dr’s interview with series I: 

 
I Dr 22 4x + 6 = 2x 

 
Dr: … the value of this x (pointing to the x on the left side) must be less … than the value 

of this x (pointing to the x on the right side). 
 
Dr decides to use the balance scales model and translates the terms of the 

equation to the model correctly. But then he says: 
 
Dr: Let’s say that this (pointing to one of the dots in the pan on the right) is equal to 6 

grams. 
[…] 
Dr: … in other words, that this (pointing to the first dot in the pan on the right) is four x 

(writing “4x” and connecting it to the dot with an arrow), and this (indicating the 
second dot) is equal to 6 grams (writing “6 gr” and connecting it to the dot). 
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4x 6 gr

 
 
I: But aren’t these the same? (Indicates the two dots on the right) 
Dr: Uh-huh. 
[…] 
Dr: The weight of this (pointing to the right side) has to be equal to the weight of this 

(pointing to the left side), so I could simplify it like this: this (indicating one of the two 
dots on the right) … each of them could be 6 grams. 

I: But why? Why 6 grams? 
Dr: It’s a way of saying it, as if this (indicating the four white dots) were one x and this 

(pointing to the six black dots) were the other x. 
[…] 
Dr: … But perhaps … Who knows? 
 

4x 6 gr

 
 
 

2. Some transfers from the use of a particular variety of model to a particular 
variety of equation are more natural in one model than in another 
 

The transition from the variety Ax + B = Cx to Ax + B = Cx + D is more 
natural in the scales, given that the repeated cancellation is essentially the 
same in each case, and also, in this model, the simplified equation is presented 
in the model itself and can be solved without having to translate it to the 
notation of algebra. 

 
From Ax + B = Cx 

…              

                                   

…              

CA B

C AB

… …

−
…

↓
� � � � � � � � � � �

� � � � � � �
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to Ax + B = Cx + D (if B > D) 

…              …

                                   

…              …

             

              

              

CA B D

C AB D

… …

−
…

↓

↓

� � � � � � � � � � � � � �

� � � � � � � � � �

                      

…                                          
C AB D −−

…� � � � � � �

 

 
In the geometric model, however, it is necessary to realize that one has 

only to superimpose the areas corresponding to the first-degree terms, without 
performing any action on the areas corresponding to the constant terms, in 
order to produce the simplified equation, i.e., in this case the transfer from the 
use of a model to a new variety of equation is not trivial. 
 
From Ax + B = Cx 
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to Ax + B = Cx + D 

However, the transition to varieties such as Ax – B = Cx or Ax – B = Cx – D 
has to be interpreted, in the model, in terms of negative constant numbers, 
which do not have concrete representations that correspond to them in the 
scales (other than representations derived from mental actions, such as the re-
establishment of equilibrium), whereas in the context of areas these terms can 
be interpreted as concrete actions of removing areas equivalent to the absolute 
values of the terms in question, without thereby violating the semantics of the 
model. 

 
Ax – B = Cx 

A

B

C

x x

 
 
or Ax – B = Cx – D 

A

B

C

x x
D

 
 
Finally, in the case of a negative solution there is no way of carrying out 

actions in the concrete model to “simplify” the proposed equation in either of 
the two models. For example, the equation 4x + 6 = 2x can certainly be 
represented in the balance scales model and in the geometric model, but in 
both cases the actions of simplification within the model lead to situations that 
are lacking in sense on the concrete level, such as areas or weights that are 
equal to zero but do not appear thus in their concrete or graphic repre-
sentations. 
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7. CONTRAST BETWEEN TWO COGNITIVE TENDENCIES IN THE LEARNING  

AND USE OF MATHEMATICS, WITH RESPECT TO THE APPLICATION  
OF THE SAME MODEL FOR OPERATING ON THE UNKNOWN 

 
 

Results 1 to 7 correspond to the first phase of the study presented in Section 5 
of this chapter, in which there is a description and analysis of certain general 
patterns that were observed in the performance of children of the upper 
stratum, before and after the phase of instruction in operating on the unknown 
(see also Filloy and Rojano, 1989). In carrying out the analysis, the natural 
characteristics of that stratum with respect to the others —the middle and 
lower strata and the cases that contravened that order— were taken into 
account, without considering individual differences in the children’s attitudes 
or tendencies. 

However, among those individual differences it is of particular interest to 
examine the contrast between algebraic syntax and semantics, which 
correspond to canonic tendencies that vary within a spectrum that ranges from 
a kind of operational tendency, at one extreme, to a kind of semantic tendency 
at the other. The individual tendencies in this spectrum show preferences for 
certain kinds of methods for solving or attacking problems, varying from the 
most operational and algorithmic to the most semantic and analytic. 
Irrespective of the origin of tendencies of this kind, they exist and are 
detected, generally, during the learning and use of mathematics —in the case 
of the children’s performance, in the classroom or in the clinical interview— 
and not in results of tests with closed responses, multiple-choice questions, 
etc. In other words, these tendencies have been reported by teachers and 
researchers as a result of clinical or natural observations. 

With regard to the interaction between syntax and semantics in the 
language of algebra, if the tendency of the person interviewed is taken into 
account as a factor, along the lines of the tendencies mentioned in the last 
paragraph, it makes it easier to carry out a more sharply defined analysis, in 
the sense that, once the interaction phenomena that are strongly linked to this 
factor are differentiated from the phenomena that are independent of it, one 
eliminates the risk of false generalizations with respect to an evolution from a 
concrete version of certain operations toward their syntactic version. Thus, in 
the interview corresponding to the post-instruction performance of two girls 
with extreme, opposite tendencies —Mt, upper stratum, 13 years old, with a 
marked operational tendency in mathematics, and Vt, also in the upper 
stratum and 13 years old, with a marked semantic tendency in her approach to 
pre-algebraic equations and problems— these tendencies were strongly 
confirmed, although in the two cases the same models had been used for the 
instruction in operating on the unknown (the models in question are presented 
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at the end of the next chapter). Two results can be derived from this, which 
we will now present. 

The first is that the spontaneous development of the use of the model to 
operate on the unknown is not uniform even in children of the same level of 
pre-algebraic efficiency, but rather this development is strongly bound up 
with tendencies in the learner that are of a general character and that vary 
within a spectrum that ranges from the syntactic or operational, at one 
extreme, to the semantic at the other. Indeed, we detected extreme cases with 
trajectories of development of the use of the same model that were quite 
different: in one case, this development took place with a continuance in the 
context of the model, even in varieties of equation the modeling of which was 
highly complex; in the other case, that of the operational tendency, there was 
a constant search for the elements of syntax in the actions in the model, which 
were repeated in the solving of each equation and in each variety of equation, 
and this search brought about a rapid relinquishing of the semantics of the 
model and a modeling of those actions in a more abstract language by the 
creation of personal forms of notation that did not belong to the model or to 
algebra but were on an intermediate level prior to manipulative algebra. 

The second result is the fact that there are obstructers to the abstraction of 
the operations in the model toward a syntactic-algebraic level that do not 
depend either on the particular model used or on the tendencies of the learner 
such as those mentioned above, but that depend on the emphasis placed on the 
component of modeling that makes it possible to build on previous knowledge 
and on operations already mastered by the learner in order to introduce the 
new objects, concepts, and operations. This reduction of the new to the known 
brings with it the risk of concealing the difficulties of operating with the new 
objects and of bringing the new concepts into play. Indeed, in the processes of 
abbreviation and automation of the actions in the two models used here we 
observed a tendency to conceal the real operation on the unknown. In the 
geometric model, the abbreviation led to the disappearance of the areas that 
involve the unknown; in fact, the linear dimension that was lost was the one 
that represented the unknown, the operations were reduced to operations 
between the given values of the equation, and the unknown ceased to play 
any part.  

 

x

A

x

C

B

C

B

 
 

Figure 4.7 
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In the balance scales, as a result of the discretization of the coefficients of 
x and the constant terms, it is possible to perform operations of the same kind 
with both, these operations being between numbers of objects of known 
weight and number of objects of unknown weight. 

 

…              …
Ax CxB D

… …� � � � � � � � � � � � � �  

 
Figure 4.8 

 
This automation (in the two models) leads to the subsequent making of 

typical mistakes of algebraic syntax, such as actually adding (or subtracting) 
the coefficients of terms of different degrees. Even students with a 
pronounced operational tendency make the same kind of mistakes as a result 
of the use of their personal forms of notation, which are also generated in a 
process of automating actions. 

 
Ax + B = Cx + D  →  (A + B – D) + C. 

 
Another error is the introduction of artificial brackets in some expressions, 

such as, for example, B + Ax → (B + A)x, isolating the operations between 
numbers from their operation with the unknown. 

 
 
 

SUMMARY 
 
 

One of the central themes in research on school algebra is that of the 
approaches or models used for the teaching of specific themes or concepts. In 
the context of local models, this theme is located in the component of the 
teaching models. This chapter discusses this theme for the case of the teaching 
of syntactic procedures for solving linear equations by means of concrete 
models (the balance scales and a geometric model) in the framework of the 
study “Operating on the Unknown.” Specifically, we study the strategies used 
by pupils when these models are applied. The focus of attention is the 
relationship between the pupils’ strategies and the appearance of common 
mistakes of syntax and extreme tendencies, on the one hand toward preferring 
to operate on an abstract or syntactic level, and on the other toward preferring 
to keep the operations that are performed tied to referents on the concrete 
level of the teaching model. Throughout this analysis special emphasis is 
placed on the processes of abstraction that take place in learning with concrete 
models and in the operations that are involved. 



118 CONCRETE MODELS AND ABSTRACTION PROCESSES 

  

In this chapter we have shown and analyzed results concerning the use of 
two specific teaching models. In the next chapter we deal with the issue of 
teaching models in general, that is, the teaching component of a local 
theoretical model. In Chapter 6 we come back to the use of the teaching 
models considered in this chapter to further analyze issues related with 
problem solving. In Chapter 9 the issue of problem solving is treated in a 
more general way. 
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ENDNOTES 

 
1 The observation took place at the Centro Escolar Hermanos Revueltas in Mexico City, with 
children receiving instruction in mathematics in a controlled teaching system (the 82/83, 83/84, 
84/85 and 85/86 cohorts.) Early reports on this study are Filloy and Rojano (1984, 1985a, 
1985b) and the doctoral dissertation of Rojano (1985). 
2 Trial and error and guessing the solution are examples of spontaneous solving methods. 
3 This was the case with the children in the study “Operating on the Unknown,” who at the time 
of observation had not received instruction on moving the unknown in the solving of equations. 
When these children were faced for the first time with equations such as Ax ± B = Cx, they 
tackled them with trial and error methods, without any indication of spontaneously operating on 
the x terms. 
4 The population studied received instruction in mathematics with materials that allowed them 
to work individually in class at their own pace. The progress of individuals and groups of 
students was monitored, and there was a possibility of intervention with supplementary 
teaching materials in cases where it was necessary. 
5 In the transcription of the interviews, I signifies the “interviewer” and the pupils are 
designated as Vt (in this case), Ma, etc. 
 
 
 



 

CHAPTER 5 
 

TEACHING MODELS 
 
 
 

OVERVIEW 
 
 

From the standpoint of symbolic algebra as a language, we characterize 
teaching models as successions of mathematical texts that are exchanged 
between pupil and teacher. Said characterization involves notions such as that 
of text and of textual space, the differentiation of which corresponds to the 
difference between meaning and sense, given that once one understands that 
a text is the result of reading a textual space, teaching and learning in 
mathematics class may be interpreted as a repeated reading process –
transformation of textual spaces into texts, which are in turn taken as textual 
spaces to be read, and so on and so forth. This theoretical treatment of 
teaching models is completed by use of the notions of mathematical sign 
system and of language strata, to be applied to the case of concrete modeling 
introduced in the previous chapter, as well as to the analysis of syntactic 
models in algebra and of the semantic – syntactic relationship in algebra, the 
discussion of which was also begun in the preceding chapter. 
 

 
 

1. INTRODUCTION 
 
 

The structuralist movement of the 1960s advocated teaching a mathematics in 
which school algebra was conceived as the explanation of the structural 
properties of numbers and of arithmetic-algebraic operations. In the texts and 
materials produced in that period there were many different presentations, for 
example, of the laws of commutation and association, which referred first to 
numbers (or a specific number system) and second to letters. This is an 
example of how the transition from arithmetic to algebra was reduced to a 
mere paraphrase of the laws that were valid for numbers, but applied on this 
occasion to algebraic expressions. 

This conception of algebra as simply an extension of arithmetic knowledge 
denies the conceptual and qualitative changes in the way of operating and of 
solving problems that the appropriation of algebraic language presupposes, 
and in the teaching of mathematics at middle school levels it gives rise to 
what one might call “a forgotten boundary” (Chevallard, 1983): the boundary 
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between arithmetic and an algebraic way of thinking, which is eliminated 
from the aspect of the structural properties common to both —for example, 
commutativity and associativity are properties that are equally valid for 
numbers and letters— since that viewpoint hides the characteristics that 
differentiate them. 

Despite the years that have elapsed and the fact that the structuralist 
movement is no longer in vogue, it is still necessary to talk about this in 
curriculum development because our teaching plans and syllabuses for 
mathematics are still influenced by it. With the reforms that have been carried 
out since then, perhaps the approach proposed has changed, and consequently 
there has been a development of syllabuses with a greater inclusion of the 
need to use the solving of problem situations. Nevertheless, there is still a 
need to insist on more profound changes, which have not yet taken place. In 
this book we discuss various problems that will have to be taken into account 
in the future, in the design of those parts of syllabuses that have to do with 
solving first-degree equations and arithmetic-algebraic word problems. 

The importance of algebra as a language of generalizations and as a 
method is precisely what distinguishes it from arithmetic, and what for 
centuries has set it in a privileged place in education. However, algebra has 
ceased to play that role in our current syllabuses. One cannot yet see a proper 
recovery of the significance of school algebra as a symbolic language whose 
potential lies in its use as a means for expressing situations and for solving 
problems posed in various areas of knowledge. 

In the last chapter we talked about a clinical study of 12- to 14-year-old 
children that showed the difficulties that secondary school students face when 
they have to read or write algebraic language. At the time of the observation, 
the children had already received instruction in pre-algebra and had been 
introduced to elementary algebra through solving linear equations and the 
corresponding word problems, but they had not yet received systematic 
instruction on the use of open expressions, the equivalence of expressions, or 
solving systems of equations. At this level it was still possible to see a tension 
in the students between the way of reading and expressing themselves using 
the language of arithmetic and the need to produce new meanings for 
mathematical texts in the context of algebra. The latter aspect is yet another 
indicator that the arithmetic-algebraic boundary cannot be avoided, because 
that would lead to false conceptions about the processes of acquiring the 
language of algebra and, consequently, about the role of teaching in such 
processes. On the other hand, the importance of considering the reading and 
writing of symbolic algebra as an educational goal for learners at middle 
school level is reaffirmed. 
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1.1. Problem-solving ability and competence in the use of the Mathematical 
Sign Systems (MSSs) of algebra 

 
 
Problem solving is an objective that has remained in the school curriculum 
despite all the educational reforms that have taken place, and at present it has 
particular importance in the curriculum of mathematics at middle school 
levels. Moreover, research on mathematics education has always considered 
that it was a matter worth studying in depth, and the many studies that have 
been performed in this field have constantly pointed out the role played by 
symbolization in problem solving. 

It might be said that the first tasks of mathematical symbolization that the 
learner performs at a higher level of generality than that of arithmetic come 
when he tries to solve a problem with the tool of algebra, and that then there is 
the beginning of a process of combined evolution of symbolization and 
problem solving that involves using algebra as a language in which to model 
and solve problems derived from various branches of knowledge (physics, 
biology, geometry, financial affairs, etc.), subsequently culminating in the use 
of algebra as a basic language for expressing statements and procedures 
performed in other branches of mathematics (analytic geometry, calculus, 
mathematical analysis, etc.). In Chapter 9 we explore the possibility of 
attaining the competences required for the use of the Cartesian method for 
solving problems when syntactic competences have recently been acquired 
using a concrete teaching model. In this chapter we also deal with concrete 
teaching models in general terms. 

However, in addition to recognizing in algebra this fundamental role as a 
means of scientific expression, it is also necessary to recognize its importance 
in school education, that is, in the realm of teaching. Yet it is precisely in this 
area that the assimilation of the language of algebra by students presents 
difficulties that come from the interaction between this language which is in 
the process of being constructed and two languages that have already been 
mastered, namely, the language of arithmetic and natural language. In the 
translation between mathematical sign systems and natural language these 
difficulties were shown through the predominance of the meanings given to 
signs and words in the two languages in which the students were competent, 
natural language and the language of arithmetic prior to the sign system of 
algebra. The students would have to overcome these difficulties, therefore, in 
order to attain to the reading and writing of algebra and thus become 
competent users of the language of algebra. On the one hand, this would help 
them to achieve one of the goals of educational systems, which is precisely 
the mastery of the language of mathematics, and on the other it would assist 
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them to satisfy one of the most ancient social requirements of human beings, 
the capability of solving problems in a general, systematic way. 

Indeed, if we admit the above-mentioned suppositions about the funda-
mental role that algebra plays in the school curriculum, we must also admit 
the need to recover the conception of school algebra as a language which is 
essentially different from that of arithmetic, and as a language whose 
symbolic level made it the first language in the history of mathematics that 
was capable of explaining itself, and one that has subsequently served as a 
basis for the symbolic development of mathematics as a whole, to the point of 
achieving the algorithmic and expressive autonomy that characterize it now. 

 
 

1.2. The rest of the chapter 
 
 
In what follows we shall make a series of observations about mathematical 
texts in which we shall make use of the notions about mathematical sign 
systems that we introduced in the Introduction (Chapter 1) and Chapter 2. 
This will enable us to characterize teaching models as successions of 
mathematical texts (all this is treated in greater depth and with greater 
generality in Chapter 8), which are exchanged between the learner and the 
teacher. Having done this, we take a look at concrete teaching models and 
their strengths and weaknesses. 

 
 
 

2. MATHEMATICAL TEXTS AND TEACHING MODELS 
 
 

2.1. A teaching model is a sequence of mathematical texts 
 
 

Because we do not conceive mathematical texts as manifestations of 
mathematical language, and also because, in order to be able to give an 
account of those that are present in the processes of teaching and learning, we 
cannot identify them with written texts, it is pertinent to use a notion of text 
that conceives it as “the result of a reading/transformational labor made over 
the textual space” (Talens and Company, 1984, p. 32). Indeed, this idea was 
introduced in order to provide a notion of text that could be used in the 
analysis of any practice of production of sense (for example, the work of a 
learner with a teaching model, although this example may be rather far 
removed from the concerns of Talens and Company in their article), and for 
this purpose it is useful to introduce a distinction between “textual space” 
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(TS) and “text” (T), which corresponds to a distinction between “meaning” 
and “sense.” A text, therefore, is the result of a reading/transformational labor 
made with a textual space, the aim of which is not to extract or unravel a 
meaning inherent in the textual space, but to produce sense. The textual space 
has an empirical existence; it is a system that imposes a semantic restriction 
on the person who reads it; the text is a new articulation of that space, 
individual and unrepeatable, made by a person as a result of an act of reading. 

Moreover, the distinction between TS and T is a distinction between 
positions in a process, because any T resulting from a reading of a TS is 
immediately in the position of a TS for a new reading —and so on ad 
infinitum. 

Both the work of mathematicians and that of students in mathematics 

transformation of textual spaces into texts. In particular, from this viewpoint a 
teaching model is a sequence of texts that are taken as a TS to be 
read/transformed into other TSs as the learners create sense in their readings. 

 
 

2.2. Mathematical texts are produced by means of stratified mathematical 
sign systems and with heterogeneous matters of expression 

 
 
In saying this we wish, first, to go against the idea of the existence of a text 
written in a totally formalized language that, although never actualized, is on 
the horizon as the text alluded to by the text that is really produced, by 
operations that are conceived as “abuses of language.”1 But we also want to 
contrast it with Rotman’s idea that there is a rigorous text always present as 
the text belonging to a Code2 that establishes the rules of the rigorous 
mathematical text, but that is enveloped in an informal text organized by the 
metaCode, although Rotman states that, contrary to the previous case, the text 
of the metaCode is unavoidable because it is the only way of guaranteeing the 
persuasion that, according to him, is an intrinsic need pertaining to any 
mathematical text. 

Moreover, for Rotman, the fact that one cannot do without the metaCode 
“opens up mathematics to the sort of critical activity familiar in the 
humanities.” However, according to Rotman “it by no means follows from 
this that mathematics’ ways of making sense, communicating, signifying and 
allowing interpretations to be multiplied can be assimilated to those of 
conventionally written texts in the humanities,” because in mathematical texts 
there are signs that are not those of natural language. So, having avoided the 
danger of reduction of the mathematical text to the ideal text, it seems that for 
Rotman it is a question of avoiding the symmetrical danger of reduction to 

classes can be described from the aspect of this repeated process of reading/
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text written in the vernacular, since he asks himself “[w]hat, in short, is 
unsayable (in fact, unthinkable, unwritable) except via mathematical symbols.” 
We, however, do not find it so special to analyze a text in which not only 
natural language appears, since semiotics has set about the analysis of films, 
music or dance, for example, the expression of which is heterogeneous in that 
it combines matters of various origins; and we find that it is more suitable to 
study what type of combination of heterogeneous matter of expression is 
characteristic of mathematical texts than to undertake a search for something 
that can be expressed only by means of an expressive matter that is specific to 
mathematics. 

However, abandoning the idea of a formalized or rigorous text as the 
background that in one way or another governs the analysis of mathematical 
texts does not make us deny the role effectively played in practice by the 
illusion of the formalized text, because this illusion has formed part of the 
idea that mathematicians have had of the rules of their practice. The way of 
combining matters of expression from different languages and the way of 
forming relations between the strata of mathematical sign systems is deter-
mined by this non-discursive component of the practice of mathematics, 
among other things, as are the texts produced in a given historical period 
among all those that might have been produced. 

 
 

2.3. The heterogeneity of the matter of expression is revealed in the presence 
in the texts of segments of natural language, algebraic language, 
geometric figures and other diagrams, etc. 

 
 
Although these segments come from languages with which it is possible to 
produce texts according to systems of rules that belong to each of them, they 
are not governed separately in mathematical texts by the rules of each of those 
languages. What really happens is that the rules of some languages conta-
minate those of others, so that mathematical sign systems are governed by 
new rules, created from those of the various languages that they incorporate. 

We shall show this contamination between languages with an example in 
which the rules of natural language have been modified by copying them from 
the rules of arithmetic language. An expression such as “siete menos cuatro” 
[seven minus four], for example, is constructed by importing the form of the 
arithmetic expression 7 – 4 into Spanish. The way of expressing the task of 
subtracting one number from another in Spanish is what we have just used in 
this sentence: “sustraer, quitar o restar cuatro de siete” [subtract, remove or  
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take four from seven], a phrase in which the operation appears first —and not 
between the numbers— and the numbers appear in reverse order. 

The strangeness in Spanish of expressions such as this, which we may not 
notice now, is evident when we examine school texts from the 19th century 
and see that, in any of them, these expressions are introduced as something 
whose meaning has to be explained by resorting to the expression in the 
vernacular “restar tanto de tanto” [take so much from so much]. Thus, in the 
school text most frequently used in Spain in the 19th century, Vallejo writes: 
“la espresión 5 – 3 = 2, quiere decir que después de quitar 3 unidades del  
5 quedan 2, y se lee cinco menos tres igual ó es igual á dos” [the expression  
5 – 3 = 2 means that, after taking 3 units from 5, 2 remain, and it is read as 
five minus three equals or is equal to two] (Vallejo, 1841, p. 26). Freudenthal 
(1983) points to this phenomenon in other languages, such as German and 
Dutch. Thus, in German, until the early 20th century subtractions were 
formulated with the expression “vier von sieben“ [four from seven], until 
textbooks began to introduce “sieben minus vier” [seven minus four] for élite 
schools and “sieben weniger vier” [seven less four], for ordinary schools —
expressions that were foreign to German in both cases. 

 
 

2.4. Inscribed in mathematical texts there are deictics that refer to elements  
of segments of different natures 

 
 
Thus, for example, in a text in which the expression “point A, point B, 
segment AB” is accompanied by the corresponding geometric figure, whether 
drawn physically or imagined, the letters A and B link together words, figures, 
and expressions formed exclusively by these letters, and manipulation of the 
letters or the figures in the expression itself makes up for the lack of 
manipulation of natural language. 
 
 
2.5. Through these deictics, indications of translations between elements that 

refer to each other are inscribed in the text, which are marks, borne by the 
text itself, of the semantic field that the reader has to use to produce sense 

 
 
Unless one admits a drift toward aberrant readings, these indications are 
necessary because any reading of a mathematical text constitutes a learning 
process, in a non-trivial sense, for the empirical reader. Thus, in a school text 
in which Pythagoras’ Theorem is stated, the many references between the 
expression “the hypotenuse c,” the letter c written next to one of the sides of a 
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triangle drawn on the page, and the algebraic expression a2 + b2 = c2 enable 
one to understand that the text stipulates that the drawn figure which looks 
like a right-angled triangle effectively represents that geometric object, and 
that a2 + b2 = c2 states Pythagoras’ Theorem. 
 
 
2.6. The objects with which mathematics deals are created in a movement  

of phenomena/means of organization by the mathematical sign systems 
that describe them 

 
 
Since this movement of promotion from phenomena to means of organization 
does not always develop on the same level, that is, what is taken as 
phenomena asking to be organized by new means is not in an immutable 
world whose collection of phenomena is the subject of study of mathematics, 
mathematics generates its own content (see Section 4.1 in Chapter 2). An 
important aspect of this movement can be called “abstraction.” The stratifi-
cation of the mathematical sign systems with which mathematical texts are 
produced has to do with these processes of abstraction. 
 
 
2.7. The fact that mathematical sign systems are the product of a process of 

progressive abstraction, whether in the history of mathematics or in the 
personal history of an empirical subject, has the effect that the ones that 
are really used are made up of strata that come from different points in 
the process, interrelated by the correspondences that it has established 

 
 
In the Introduction (Chapter 1) and in Chapter 4 we have dealt with various 
phenomena that show this use of different strata of an MSS. 
 
 
2.8. The reading/transformation of a text/textual space can therefore be 

performed using different strata of the mathematical sign system, making 
use of concepts, actions, or properties of concepts or actions that are 
described in one of those strata 

 
 
The texts produced by readings that use different strata or a different 
combination of strata can be translated into one another and recognized as 
“equivalent” on condition that the pertinent correspondences between the 
elements used are also described in the mathematical sign system. When this 
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is not the case, only the creation of a new MSS will make it possible. The 
process of creating new MSSs for this purpose is actually a process of 
abstraction, and the new MSS is more abstract than the preceding ones. 

To express this with more precision, if it happens that two textual spaces 
ET and ET' cannot be read/transformed by means of a stratified mathematical 
sign system L by using the same concepts, actions, or properties of concepts 
or actions as are described in one of the strata, whereas in another mathe-
matical sign system M it can be done, then M is “more abstract” than L with 
respect to ET and ET'. This is what happens in the book De Numeris Datis, 
for example, with two propositions that Jordanus Nemorarius transforms by 
means of different procedures, but that could be transformed in the same way 
using the sign system of modern elementary algebra. The MSS of this 13th-
century text is less abstract than the MSS of modern elementary algebra, and 
in the history of mathematics the creation of the latter MSS was a process of 
abstraction that resulted, among other things, in the fact that texts such as 
those that could not be seen as equivalent for Jordanus Nemorarius are now 
equivalent (see Chapter 3 and Puig, 1994). 

The creation of more abstract MSSs that takes place in the history of 
mathematics in this way has its correspondence in school systems. Indeed, 
during a teaching and learning process a student is sometimes incapable of 
transforming a textual space ET' by means of a stratified mathematical sign 
system L, using the same concepts, actions, or properties of concepts or 
actions as those with which he transformed a textual space ET; the breaking 
down of this impossibility is precisely what is sought by the teaching model 
and what constitutes true learning, and it occurs when the student modifies the 
language stratum in which the means of transformation are described, creating 
a new mathematical sign system M, in which the textual spaces ET and ET' 
are identified as being transformable by the same means (see Chapter 4). The 
creation of this M is a “process of abstraction” that also entails the creation of 
“more abstract” concepts or actions (the ones described in the modified 
language stratum). 

 
 

2.9. In these modifications of language strata that lead to identifying concepts 
or actions, an important part is played by the autonomization of the 
trans-formations of the expression with respect to the content 

 
 
The importance of this autonomization resides in the fact that these 
transformations can then be made in accordance with the rules without having 
to verify the result of the transformations of the expression with respect to the 
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content in each of the steps, but only occasionally or once the complete set of 
transformations has been concluded. 

Umberto Eco points out that in algebraic expressions, as in all the signs 
that he calls “diagrams” and which for us, following Peirce, are icons, “there 
are one-to-one correspondences between expression and content,” so that “the 
operations that I perform on the expression modify the content. If these 
operations are performed following certain rules, the result provides me with 
new information about the content” (Eco, 1984, p. 16). Geometric figures are 
also diagrams in this sense, whether they are drawn to represent geometric 
objects —as in Euclid’s Elements— or to represent algebraic quantities. In the 
didactic device that we describe at the end of this chapter, geometric figures 
are used precisely for this purpose. Al-Khwârizmî had already done so in his 
Concise Book of the Calculation of Al-jabr and Al-muqâbala,3 in which he 
used geometric figures to prove the correctness of the algorithmic rules that 
he gave to solve the six canonic forms of equations that we now call first- and 
second-degree equations, in what he called “proofs by means of figures” —
and not “geometric proofs,” since he did not make use of the propositions of 
Euclid’s Elements. 

However, we would not say, with Eco, that what the result of the trans-
formations of the expression provides can always be described as “new 
information about the content.” Sometimes, producing sense for the result of a 
transformation in the expression involves expanding the semantic field of the 
objects or actions involved, as is shown by the simple example of the 
identification of a0 with 1, by virtue of the fact that certain rules produce  
an/an = an–n = a0 and others produce an/an = 1, so that the expression a0, 
literally meaning “a multiplied by itself zero times,” which does not mean 
anything, is given sense by expanding the semantic field of “multiply” and 
“times.” The autonomization of the expression thus brings with it a power to 
generate content. 

Since the inscription of the first written arithmetic signs, which, as we 
indicated in Chapter 2, lacked operational capability, during the course of 
history mathematicians have gradually developed sign systems the expression 
of which has had increasingly greater power to generate content. Hence, as we 
see it, examining mathematics as a sign system and showing the crucial role 
played by the autonomization of the expression does not have to lead to 
Russell’s famous conclusion that “the propositions of logic and mathematics 
are purely linguistic, and they are concerned with syntax” (Russell, 1973,  
p. 306). 
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2.10. The development of new competences in mathematics can be seen as the 
result of working with an MSS that one has already mastered to some 
extent 

 
 
This happens both in the history of mathematics and in the history of 
individuals. In the school system, this work consists in an exchange of 
messages between teacher and student that is produced by means of the 
reading/transformation of the sequence of texts that we call a teaching model. 
As a result of this reading/transformation, new concepts are produced through 
the production of new senses and the establishment of new meanings for the 
MSS (or MSSs) in which what is taught is described and produced, which 
even entail the creation of new MSSs. 

In his Remarks on the Foundations of Mathematics (Part III, 31), 
Wittgenstein wrote that “the proof changes the grammar of our language, 
changes our concepts. It makes new connections, and it creates the concept of 
these connexions. (It does not establish that they are there; they do not exist 
until it makes them.) [der Beweis ändert die Grammatik unserer Sprache, 
ändert unsere Begriffe. Er macht neue Zusammenhänge, und er schafft den 
Begriff dieser Zusammenhänge. (Er stellt nicht fest, daß sie da sind, sondern 
sie sind nicht da, ehe er sie nicht macht.)]” This observation by Wittgenstein 
about the effect of proof in the grammar of our language and in our concepts 
can be paraphrased by transferring it to what we have just expounded and 
simply replacing “proof” by “work with an MSS” and “our language” by “an 
MSS that we have mastered.” Thereby one is being at the same time more 
general and less precise. One is more general because proving is obviously a 
kind of work with an MSS and it is not only this kind of work that changes 
mathematical concepts (see Section 4.7 in Chapter 2). One is less precise 
because we do not specify what kind of work with an MSS changes concepts 
and MSSs and we are not claiming that it is any kind. 

However, Wittgenstein’s remark is about the work of mathematicians and 
not about the work of students in the school system. As our viewpoint and our 
area of interest is the school system, we will have to use a version of 
Wittgenstein’s remark adapted to the fact that we are only dealing with the 
processes of teaching and learning mathematics in school systems where 
mathematical concepts are not created for the first time but have to be 
recreated— or “reinvented,” to use Freudenthal’s expression —by students 
using the guide of the teaching process. In this sense, the aim of the teaching 
model, of the sequence of texts that are read and transformed, must be that the 
new senses produced by the students should be felicitous, that is, that they 
should be in agreement with the socially established meanings, and that the 
new, “more abstract” MSSs created should become non-idiosyncratic MSSs. 
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2.11. A teaching model is a sequence of problem situations. This is the sense 
of teaching through problem solving 

 
 
As the teaching model is a sequence of texts, produced both by the teacher 
and by the student, and those texts are the result of the work of both in 
teaching situations that are in fact problem situations (which are taken as 
textual spaces), it is pertinent also to add what we have learned from our 
studies and inquiries about problem solving. In particular, we have evidence 
that, when a problem is solved, one inevitably makes an initial logical 
conscious or unconscious analysis (which in Chapter 9 we will call a “logico-
semiotic outline”), however quick and fleeting it may be, which seeks to 
rough out the solution, that is, to indicate the path that must be followed in the 
solution of the problem in accordance with some mathematical text produced 
with the use of a certain MSS. 

A competent user who makes such a logic-semiotic outline uses cognitive 
mechanisms that enable him to anticipate the key relations of the problem 
and, from various MSSs or strata of MSSs, decide which one, more abstract 
or more concrete, he is going to use to outline the steps of the solution. Only 
then does he develop a process of analysis and synthesis that enables him to 
decode the problem situation. 

Along these lines, the age-old idea in reforming declarations of basing 
teaching on problem solving can begin to make sense for us. A teaching 
model is also a sequence of problem situations, a sequence of mathematical 
texts Tn, the production and decoding of which by the learner finally enables 
him to interpret all the texts Tn in a more abstract MSS. This “changes the 
grammar of our language,” because the new, more abstract MSS is of such a 
nature that its code makes it possible to decode the texts Tn as messages with 
a socially established mathematical code, precisely the code proposed by the 
educational aims that fixed the model of competence that the teaching model 
pursues. 

Sense is produced in the new MSS by the use of new signs in each step of 
the analysis and solution in the way in which they have to be used —as 
Wittgenstein says: “I go through the proof and say: ‘Yes, this is how it has to 
be; I must fix the use of my language in this way’ [Ich gehe den Beweis durch 
and sage: ‘Ja, so muß es sein; ich muß den Gebrauch meiner Sprache so 
festlegen’.]” (Wittgenstein, 1956, III, 30). This is possible when the MSS as a 
whole is bound by the concatenation of the actions set in motion during the 
problem-solving processes in all the problem situations that were previously 
seen as different and irreducible, but that now, thanks to the new MSS, are 
solved by means of processes that are established as being the same, i.e., that 
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are transferred from one problem to another, at the same time converting what 
was a diversity of problems into a family of problems. 

Teaching organizes the transition from an MSS that has to some extent 
been mastered by the learner, through its use in problem situations and the 
chain of readings/transformations ET/T = ET'/T' = ET"/T" …, to a new MSS 
from which the previous one is seen as being more concrete, and with which 
what was previously described as separate and unconnected is now described 
as being the same, and as a result is produced as new concepts and new signs. 

 
 
 

3. CONCRETE MODELING 
 
 

In discussions about the kind of teaching resources that should be used in the 
curricular development of any teaching model, two conflicting positions 
usually appear. In the case of the solution of equations, one of the positions 
proposes modeling the new operations and new objects in (more) concrete 
contexts (with “concrete” understood as contexts that are familiar for the 
learner), with the aim of endowing them with meanings and constructing the 
first elements of manipulative operations, taking this context as a starting 
point. A contrasting position proposes starting from the syntactic level and 
teaching the rules of syntax so that they can later be applied in the solving of 
equations and problems. This is the traditional treatment in the teaching of the 
solving of equations, based on the syntactic models of Viète —transposition 
of terms from one side of the equation to the other— and Euler —addition 
and multiplication of the additive and multiplicative inverses, respectively, in 
the two sides of the equation. 

If one adopts the first of the two positions just indicated in order to 
develop teaching strategies at the beginnings of the acquisition of the 
competences of a MSS, it is necessary to possess knowledge about the 
processes that intervene between the actions performed on a more concrete 
level —i.e., the actions in the model— and the corresponding elements of 
syntax that may be obtained from them. These processes, which we will here 
call processes “of abstraction of operations,” and that are processes of 
recovery, on a syntactic level, of the elements common to the actions 
performed in the repeated use of a model or a concrete teaching situation, 
present regular characteristics in the course of their development by 
individuals; but they also move along paths that may differ greatly from one 
individual to another, owing to the presence in individuals of tendencies with 
respect to their use and learning of mathematics (we have looked at this area 
in more detail at the end of Chapter 4). 
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Moreover, although there is a set of regular characteristics or charac-
teristics that are repeated from individual to another in these processes of 
abstraction of operations, some of them may vary with variations in the 
concrete situation from which one sets out in order to obtain or construct the 
corresponding syntactic elements —or in the model from which one sets out. 

 
 

3.1. Algebraic semantics versus syntax 
 
 
In the study expounded in other chapters, in which a teaching model con-
cerning the solution of first-degree equations was developed, the interrelations 
between two overall strategies for the design of learning sequences that 
occupy long periods of time in the middle school algebra curriculum were 
basic. These strategies were: 
 

a) Modeling of more abstract situations in more concrete languages in 
order to develop syntactic abilities. 

b) Producing codes to develop problem-solving abilities and using 
syntactic abilities to develop solving strategies. 

 
Broadly speaking, in (a) the objective was to give meanings to new 

expressions and operations, modeling them on more concrete situations and 
operations. In (b) the objective was to give senses to the new expressions and 
operations so that problem-solving codes would be generated, setting out from 
the supposition of the presence of certain abilities of syntactic use of the new 
signs and their utilization as a more abstract language. In the Introduction 
(Chapter 1) we show the problems that learners present when they have just 
finished primary education. 

In what follows we will see that the development of syntax and semantics 
produces a dialectic relation in which an advance in one of these two aspects 
is necessary for an advance in the other, although sometimes the development 
of one may inhibit development of the other. 

 
 

3.2. Components of concrete modeling 
 
 
If one thinks about the introduction of certain mathematical notions by means 
of models (as is done in Chapter 4 for the solution of algebraic equations), it 
is advisable to bear in mind some of the main components of modeling, 
especially two components that are fundamental. The first component is 
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translation, by means of which sense and meaning are given in a more 
concrete context to the new objects and operations that are introduced, which, 
from a more abstract viewpoint, are the same as those that appear in more 
abstract situations. In other words, through translation these objects and 
operations are related to elements of a more abstract situation and, on the 
basis of what is known about the solution of such situations on the more 
concrete level, operations are introduced which, although carried out on the 
concrete level, are also intended to be performed on the corresponding objects 
on the more abstract level. Consequently, there is a need for a two-way 
translation between one context and the other, so that it may be possible to 
identify each operation on the more abstract level with the corresponding 
operation in the concrete model. 

The second component is the separation of the new objects and operations 
from the more concrete meanings with which they were introduced. In other 
words, in the modeling one also seeks to relinquish the semantics of the 
concrete model, because what one wishes to achieve ultimately is not the 
solution of a situation that one already knows can be solved, but the discovery 
of ways of solving more abstract situations by means of more abstract 
operations. This second component is a driving principle that directs the 
modeling function toward the construction of a syntax external to the model. 

 
 

3.3. Concrete modeling versus mechanization and practice 
 
 
In his book The Psychology of Algebra, published in the early 1920s, 
Thorndike proposed the integration of everything that seemed pertinent at the 
time so that the teaching of algebra could advance. That aspiration can still be 
seen now as a program yet to be fulfilled for any other theoretical and 
experimental approach —leaving aside, perhaps, certain emphases and pre-
occupations belonging only to the theoretical perspective, in accordance with 
the psychological knowledge of the time. Among matters that are still of great 
relevance today we find the central motivation: 
 
Algebraic computation as actually found is then emphatically an intellectual ability. It is not so 
indicative of intellect as problem solving, partly because it involves less abstraction, selection, 
and original thinking, partly because it involves only numbers, not numbers and words. It is, 
however, far above the reproach of being a mechanical routine which can be learned and 
operated without thought. (Thorndike, 1923, p. 451.) 

 
During the 84 years that have elapsed since then the emphasis placed by 

researchers has varied greatly, leading, in the middle of the last century, to the 
granting of total pre-eminence, not to what is called “problem solving” in the 
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remark just quoted, but to the structural components of the matter studied. 
The result of this was that, in French middle school syllabuses, it was possible 
to find a so-called algebra in which what had been the traditional teaching 
situations until then, based on considering algebra as a continuation of 
arithmetic, did not appear anywhere. As a reaction to this, there was a swing 
toward the use of teaching models based on situations similar to those 
proposed by Thorndike, but more concrete, mechanizing the handling of 
algebraic expressions, with an expeditious use of the rules of syntax. 

 
 

3.4. Syntactic models 
 
 
The idea of a concrete teaching model can be extended to the strategies 
proposed in the 1920s, which we here call “syntactic models,” in contrast to 
concrete models, which we call “semantic,” because in them emphasis is 
placed on working with a considerable semantic load in all the signs and 
operations involved. In the syntactic model, conversely, the emphasis is 
placed on the general rule used to construct the habits that set the operations 
in motion. 

With respect to these models, empirical evidence indicates that, apart from 
the generation of private semantics of the individual that give meaning to the 
terms proposed by the general rule and to the operations involved, phenomena 
of reading of the situations proposed appear, guided by the senses given to the 
rules that must be set in motion in order to carry out the syntactic task. For 
example, when someone first comes across equations of the type Ax – B = C 
(A, B, C > 0), he may always attribute the positive sign to B and the negative 
sign to A, guided by the sense that he has obtained from previous practices 
performed with the solution of equations of the type Ax + B = C. In other 
words, a syntactic context guides a mistaken but natural reading, due to the 
individual’s anticipatory mechanisms —a cognitive tendency that we 
presented in the last chapter. 

In this respect, the emphasis placed not only on mechanisation but also on 
the concern for practice, and the consequences that this has on the practice 
times that learning experiments propose, acquire a new sense in view of the 
need to correct spontaneous readings, here generated not by semantics but by 
syntax. 
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3.5. Modeling and teaching algebra 
 
 
The results described in this book allow us to state that the correction of 
mistakes of algebraic syntax and the operational mishaps that appear amid 
complex processes of solving problems or equations generated during the 
learning of algebra cannot be left to the spontaneity with which students 
make use of the first elements with which they are provided in order to 
penetrate into the realm of algebra. The paths traced by those spontaneous 
developments are not directed toward what the teaching of algebra seeks to 
achieve: that is precisely why this correction is a task of teaching. So that, if 
one thinks of introducing certain notions of algebra by means of models 
(including the syntactic model), it is advisable to bear in mind the main 
components of modeling, as described above. 

The studies described in this book show that mastery of the first of the 
components of modeling (translation) may weaken or inhibit the development 
of the second: such is the case with learners such as Vt, mentioned in Chapter 
4, who achieve a good command of the concrete model, but as a result also 
develop a tendency to remain and progress within that context, and this 
anchoring to the model goes against the other component, that of the 
abstraction of operations toward a syntactic level, which involves breaking 
away from the semantics of the concrete model. 

This indication about the interaction between the two basic components of 
modeling does not depend on the tendency of the individual, for even in cases 
of a syntactic tendency, such as that of Mt, mentioned in Chapter 4, during the 
processes of abbreviation of actions and production of intermediate notations 
(between the concrete situation and the level of algebraic syntax) obstructions 
to the processes of abstraction of the operations effected in the concrete model 
are generated as a result of not possessing, in that period of transition, suitable 
ways of representing the results or states to which the operations lead. Once 
again, this is a deficiency in the second of the components of the action of 
modeling. 

The obstructions indicated earlier constitute a kind of essential insuffi-
ciency, in the sense that, if modeling is left to spontaneous development by 
the learner, one of its components is strengthened, and this tends to hide 
precisely what one is essentially trying to teach, which is new concepts and 
operations (a more detailed description can be found in Chapter 4). 

This kind of dialectic between the processes that correspond to the two 
components of modeling must be taken into account by teaching, which 
should try to develop the two kinds of process harmoniously, so that neither 
obstructs the other. Indeed, from the analysis of the cases presented in 
Chapter 4 it is clear that this is a task of teaching, given that this second aspect 
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of modeling, that of breaking away from the earlier notions and operations on 
which the introduction of the new knowledge is based, is a process that 
consists in the negation of parts of the semantics of the model, and these 
partial negations take place during the transfer of the use of the model from 
one problem situation to another —in the case of the geometric model it is a 
transfer of its application from one variety of equation to another. However, 
when this generalization in the use of the model is at the expense of 
spontaneous development by the learner, the partial negations may take place 
in essential parts of it —in the geometric model, the presence of the unknown 
and operation on it are negated. Consequently, intervention with teaching 
becomes necessary in the development of these processes of relinquishing and 
negation of the model, in order to channel them toward the construction of the 
new notions. 

The transfer of the problematic of algebraic semantics versus syntax to a 
level of actions of modeling makes it possible to narrow the distance between 
teaching and this problematic, since analysis of the interaction on this other 
level reveals didactic phenomena that show the need for the intervention of 
teaching at key points in the processes set in motion at the beginnings of the 
acquisition of the language of algebra. 

 
 
 

SUMMARY 
 
 

In this chapter we use the notions of textual space and stratified mathematical 
sign systems (from “less abstract” to “more abstract”) to describe teaching 
models in terms of sequences of mathematical texts (produced by the teacher 
or pupils) and in terms of sequences of problem situations. These theoretical 
notions generalize the examples of teaching models used to teach the syntax 
required for solving first-degree equations with the unknown appearing on 
both sides of the equality, presented in Chapter 4. In this chapter we speak of 
concrete models (the balance scales and a geometric model) and of “abstract” 
or syntactic models (the model of “doing the same on both sides” and the 
model of transposing terms). In the study “Operating on the Unknown” these 
models were used to observe the processes of transferring actions performed 
in simple cases to cases of equations with more complex characteristics, and 
also the processes of abstraction of actions performed in all the cases of 
equations presented to the pupils. In the next chapter we analyze the first steps 
toward the use of algebraic syntax in problem solving. 
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ENDNOTES 
 

1 The illusion of a text written in a formalized mathematical language, which is never present 
but to which the text that is really written refers, could not be better expressed than it is in the 
Introduction to Book I of Nicolas Bourbaki’s Éléments de Mathématique (Bourbaki, 1966): 
“Nous abandonnerons donc très tôt la Mathématique formalisée […] Les facilités qu’apportent 

[…] comme le sont en pratique tous les textes mathématiques, c’est-à-dire en partie en langage 
courant et en partie au moyen de formules constituant des formalisations partielles, particulières 
et incomplètes, et dont celles du calcul algébrique fournissent l’exemple le plus connu. Souvent 
même on se servira du langage courant d’une manière bien plus libre encore, par des abus de 
langage volontaires, par l’omission pur et simple des passages qu’on présume pouvoir être 
restitués aisément par un lecteur tant soit peu exercé, par des indications intraduisibles en 
langage formalisé […] Ainsi, rédigé suivant la méthode axiomatique, et conservant toujours 
présente, comme une sorte d’horizon, la possibilité d’une formalisation totale, notre Traité vise 
à une rigueur parfaite […]” (pp. 6-7). The expression “abuse of language,” which describes the 
fundamental operation that makes it possible to abandon the writing of the formalized text and 
refer to it, appears repeatedly throughout the treatise. 
2 Rotman presented a first version of his semiotic model of mathematical activity in Rotman 
(1988). A more recent version, modified and more extensive, is in Chapter 3 of Rotman (1993), 
which begins by announcing that “What I propose here is a semiotic model of mathematical 
activity fabricated around the idea of a thought experiment. The model identifies mathematical 
reasoning in its entirety —proofs, justifications, validation, demonstrations, verifications – with 
the carrying out of chains of imagined actions that detail the step-by-step realization of a certain 
kind of symbolically instituted, mentally experienced narrative” (Rotman, 1993, p. 66). His 
distinction between Code and metaCode seeks to account for the fact that “contemporary 
mathematicians divide their activity […] into two modes: the formal and the informal” (p. 69). 
Code is, therefore, “the unified system of all such rules, conventions, protocols, and associated 
linguistic devices which sanction what is to be understood as a correct or acceptable use of 
signs by the mathematical community,” metaCode is a “heterogeneous and divergent collection 
of semiotic and discursive means” which give an account of “the mass of signifying and 
communicational activities that in practice accompany the first mode of presenting 
mathematics” (p. 69). In his model there is also a third element, which Rotman calls the 
“subCode” or “virtual Code,” and three characters: the Subject, who uses the signs of the Code; 
the Person, who uses those of the metaCode; and the Agent, who uses those of the virtual Code. 
Rotman (1988) is also included in Rotman (2000) as its first chapter. 
3 As was usual in the 9th century in the Arab world, this book by Muhammad ibn Mûsa  
al-Khwârizmî did not have a title. Two manuscripts of it have been conserved, one of which 
was edited and translated into English by Frederic Rosen, with the title The Algebra of 
Mohammed ben Musa (Rosen, 1831). According to Høyrup (1991), both this manuscript and 
Rosen’s translation are less close to the original text than the Latin translation produced by 
Gerardo de Cremona in the 12th century in the school of translators in Toledo. There is a recent 
edition of this manuscript (Hughes, 1986). Gerardo de Cremona heads his translation with the 
words “Liber Maumeti filli Moysi alchoarismi de algebra et almuchabala incipit” [“here begins 
the book of algebra and almuchabala by Mahomet the son of Moses alchoarismi”], leaving the 
Arabic words al-jabr and al-muqâbala untranslated, as we have just done. It is precisely 
because al-jabr remained untranslated that this part of mathematics, which in a sense  
al-Khwârizmî founded, was eventually called algebra. See an analysis of one of al-Khwârizmî’s 
proofs by means of figures in Puig (1998). 
 
 
 

les premiers “abus de langage” ainsi introduits nous permettront d’écrire le reste de ce Traité 



 

CHAPTER 6 
 

ALGEBRAIC SYNTAX AND SOLVING WORD PROBLEMS 
FIRST STEPS 

 
 
 

OVERVIEW 
 
 

This chapter deals with advancing toward semantics, in the sense of applying 
or using a recently learned syntax (as of concrete models) toward solution of 
word problems. It is a continuation of the analysis of the results obtained in 
the study, introduced in Chapter 4, “Operación de la Incógnita” (“Operating 
on the Unknown”), in which through presentation of a case we revisit the 
discussion of the dialectic relationship between the syntactic and semantic 
components of symbolic algebra; we touch upon the issue of the need for 
important reconceptualizations in the dynamics of the relationship, such as  
the reconceptualization of equalizations, unknowns, and the equivalence of 
expressions; and we analyze the repercussions of this relationship in the field 
of teaching algebra. 

 
 
 

1. INTRODUCTION 
 
 

When one speaks of the semantics of elementary algebra, there is the possibility 
that one may be referring to the meanings that can be suggested by algebraic 
signs and expressions, with the involvement of processes of decoding of such 
signs and expressions, or that one may be talking of the semantics of the 
contexts in which the statements of problems that can be modelled and solved 
in algebra are immersed. 

In behavioral terms, that is, in terms of behavior that is externalized, and 
even with respect to the thought processes that give rise to such behavior, this 
double interpretation of the term makes sense. Indeed, the reading and 
interpretation of the signs and expressions of algebra and their use in 
symbolizing and attacking problems are two kinds of process, but their 
starting points and the products that they generate are different. 

However, if one accepts the thesis that is expounded in the last chapter (or 
that follows from what is expounded there) about the existence of a dialectic 
inherent in the interaction between the syntactic and semantic aspects of 
algebraic language, and about the decisive role that this interaction plays in 
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the acquisition of that language, considering, for example, the tensions bet-
ween the two basic components of modeling used in the teaching to which the 
interaction gives rise, then one also accepts as a consequence that the 
meanings that are made to correspond to the signs and expressions of algebra 
at the point when they are introduced (meanings that may be taken from the 
context of concrete models or even from syntactic models) will necessarily 
have to play some part in the subsequent use of them to model situations that 
come from richer semantic contexts, such as statements of problems. And, on 
the other hand, one will also accept that, in turn, the semantic experience 
obtained in the use of algebraic syntax for problem solving has an influence 
on the readings that may be given to signs, algebraic expressions, equations, 
etc. outside the contexts of those problems. 

In view of these considerations, the term “semantics of elementary algebra” 
can be interpreted as referring to the semantic fields to which the learner has 
related the elements of syntax that he has acquired at a particular point. This 
includes both the meanings with which those elements were learned, which may 
also be in a syntactic context, and the meanings that they have acquired during 
their use, which may be a clearly operational use or their use in solving 
problems. In this way, the differences that a behavioral conception of the term 
poses would be evened out. 

Although one may think of a kind of logical linking of assertions, as set 
out in the last paragraph, with respect to the interpretation(s) of the term 
algebraic semantics, the fact is that, within the framework of the present 
study, what has been presented (in the last chapter) is only what was observed 
empirically in the processes that were set in motion by a semantic intro-
duction of elements of syntax —such as operations with the unknown in order 
to solve non-arithmetic equations. One would also have to establish the other 
links with empirical experience, that is, the transition to the semantic aspect of 
algebra that problem solving represents. 

In the present chapter, this area is dealt with in terms of the transfer of the 
recently acquired manipulative skills to other contexts, such as those of 
statements of problems. Unlike the kind of observations made in series E and 
I in the clinical interview (see Chapter 4), in which the other aspect of the 
semantics of algebra —that of the introduction to syntax— was touched on 
with the aim of detecting the kind of difficulties that appear in the beginnings 
of the construction of syntax, for this second aspect the child was shown two 
series of statements of problems, series A with abbacus-style statements 
(statements of the “find a number …” variety) and series P with statements in 
other contexts, in which a process of progressive symbolization was needed  
in order to construct an equation that would solve the problem. In these cases 
in series P it was not a question of observing the child’s spontaneous 
developments with respect to the way of attacking the problem and the 
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solution procedures carried out, but rather the interviewer intervened with 
teaching in this phase of the solving activity. The aim of the observation in 
this series was to see how far it was possible, by teaching, to take the child 
along the path of the transfer from very limited, recently acquired algebraic 
manipulative skills to other contexts, different from those on which the 
instruction for introducing these skills was based. And the purpose of this was 
to provide those skills with senses —the senses given by becoming aware of 
the aim of mastering such skills— and to conclude a kind of sequence in the 
teaching, with which one would obtain an overall view of this transition 
toward the application of algebra, overall in the sense of its interconnections 
with the syntactic aspect and the semantic aspect of the learner’s prior 
experience in the first incursions into the realm of algebra. 

 
 
 

2. THE TRANSITION TO SEMANTICS (THE CASE OF MA) 
 
 

Among the processes of transfer of a certain algebraic manipulation to 
contexts of problems it can be used to solve, there are those by means of 
which the instances of the solving procedure in which these manipulation 
skills can effectively be applied are identified. These processes of simple 
recognition are just part of the complex process of transference —which 
includes, among others, the processes of the analytic reading of the statement, 
the production of a strategy, and a system of representation. But although they 
are processes of simple recognition, they are not simple processes. 

In the last chapter we made a point of reporting the observed fact that, in 
the middle of a complex process of reasoning, the presence of some dis-
tracting element is sufficient to make the student get stuck in a certain context 
in which this recognition of what is already known, what has already been 
mastered on operational levels, is not put into effect. The possibility that such 
phenomena of getting stuck may appear in the development of the procedure 
of problem solving cannot be excluded, and if they are, as has already been 
observed in other cases, it may disturb the whole procedure and even impede 
the possibility of finding a solution. The counterpart to obstructers of this kind 
is that level of transference of manipulation skills in which the elements of 
syntax that have already been mastered can be withdrawn from the semantics 
of the context in which the problem is posed (or solved). 

In the clinical study carried out with 12- to 13-year-old children described 
in the previous chapter, this problem of using manipulation skills was taken 
into account, and two series of items in the interview (series A and P) were 
devoted to providing the possibility of observing phenomena of the transfer of  
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elements of algebraic manipulation acquired by the child in the previous 
series (series I). Moreover, in order to be able to apply the P series of 
problems it was necessary that there should be a certain amount of algebraic 
manipulation on a syntactic level in the solving of linear equations with more 
than one occurrence of the unknown, precisely so that one could observe the 
transfer of these manipulation skills to other contexts. As can be seen in 
Chapter 4, this requirement could not be satisfied by all the children 
interviewed within the space of time that the interview lasted, not even by all 
the children in the upper stratum. From the reduced group of children who 
were confronted with the problems in series P we have chosen one of the most 
significant cases, that of Ma, in order to set out an analysis of the interview 
with her in this chapter. 

The application of series A (abbacus problems) was intended to allow 
observation of the phenomena that arise in a process of minimal transfer of 
recently acquired manipulation skills, as it consisted of word problems 
corresponding to the same kind of equations as those that the child had been 
solving in series E and I. They were problems that could be translated directly 
into the corresponding equation. This series, A, was applied to most of the 
children in order to observe whether they were able to achieve this translation, 
even if they did not manage to solve the equation. 

Series P consisted of a sequence of problems, the statements of which are 
not directly translatable to an equation but require a progressive sym-
bolization of elements of the problem in order to construct the equation. In the 
interview, this progressive symbolization was achieved by the teaching phase. 
In fact, with this teaching two initial steps in the solving of any problem were 
obviated: the analysis of the statement, which leads to the production of a 
strategy for attacking the problem, and the representation of the elements of 
the problem that intervene in the solution, that is, in this case, a progressive 
symbolization. Once instruction had been provided in this translation phase, 
the child was allowed to perform the transformations of the equation in order 
to solve it, and the interviewer intervened with teaching only in those steps of 
algebraic manipulation that had not been taught previously. 

The first problems in series P appeared in pairs: in the first problem of 
each pair the instruction described previously was provided, and in the second 
problem the child was allowed to tackle the problem and solve it completely. 
Finally, the last items in series P were problems that did not appear in pairs 
and that varied in contexts —moving to contexts such as geometr—– and 
instruction was provided when necessary. 

The objectives of confronting the child with the problems of series P were: 
(1) To observe another level of transference of the algebraic manipulation 
acquired in previous series (different from the level required in series A), 
taking account especially of the processes of identification or recognition of 
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the instances of the solving procedure in which it was feasible to apply that 
algebraic manipulation. (2) To observe the processes of automation of actions 
by exploring the possibility that the corresponding problems might become 
routine operations. (3) To observe the processes of transfer of the translation 
and solving skills acquired in the first items of the series to the solution of the 
final items, which did not appear in pairs and were in varied contexts. (4) To 
detect phenomena of interaction between the syntax applied in the problems 
—whether it had already been mastered or not— and the semantics of their 
context. 

Ma, the case presented here, belonged to the upper stratum of the 
population studied, observed in the period 1982/83, and was 13 at the time of 
the interview. The most important characteristics of the interview were: high 
manipulation skills in series E; very rapid abstraction of operations in the 
model toward the level of algebraic syntax in series I; consistently correct use 
of algebraic notation to record the steps in the solution of the equations of 
series I with and without use of the model; immediate transfer of the algebraic 
manipulation acquired in I to the solving of the problems in series A; 
immediate recognition and operational solution of equations like those of 
series I in other contexts (series P); and an advance in algebraic manipulation 
as a result of the need to develop new elements of algebraic syntax to solve 
the problems in series P. 

We shall present the case of Ma in the following sections: 

1) Map of the interview. 
2) Performance prior to the phase of instruction in operating on the 

unknown. 
3) Performance subsequent to the instruction phase. 
4) Progress toward semantics. 
 
 

2.1. Map of the interview 
 
2.1.1. Data of the interviewee 
 
Name: Mariana (abbreviation, Ma) 
Age: 13 
School level: Second year of secondary education 
School year: 1982–1983 
Level: High efficiency in pre-algebra 
 
Note: At the time of the interview, she had received no teaching in algebra as 
such. 
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2.1.2. Items in the interview 
 
The items appear in the order in which they were presented to the student. 
 
Series E 
 
The aim of this series was to verify the results of the pre-test. Only arithmetic 
equations were included, i.e., equations with one occurrence of x. In what 
follows, the abbreviation E Ma n means the nth item of series E in the 
interview with Ma. 
 

E Ma 1 x + 5 = 8 E Ma 6 13x = 39 
E Ma 2 x – 4 = 8 E Ma 7 6x = 37434 
E Ma 3 x + 27 = 58 E Ma 8 (x + 3) × 6 = 48 
E Ma 4 x – 15 = 143 E Ma 9 4 × (x + 11) = 52 
E Ma 5 x – 1568 = 392   

 
Series I 
 
The aim of this series was to explore the student’s difficulties when 
confronted with the first non-arithmetic equations (i.e., equations with 
occurrences of x on both sides) and having to operate on the unknown. Nine 
sub-series (I-a to I-i) and four intercalated items made up the complete series. 
In what follows, the abbreviation I Ma n means the nth item of series I in the 
interview with Ma —the items are not numbered with respect to the sub-
series. 
 
Sub-series I-a 
 
Equations of the type Ax + B = Cx, with A, B, and C being given positive 
integers. 
 

I Ma 1 x + 2 = 2x I Ma 7 4x + 12 = 6x 
I Ma 2 x + 5 = 2x I Ma 8 5x + 8 = 3x 
I Ma 3 2x + 4 = 4x I Ma 9 5x + 8 = 8x 
I Ma 4 2x + 3 = 5x I Ma 10 7x + 468 = 19x 
I Ma 5 6x + 15 = 9x I Ma 11 113x = 3328 + 321x 
I Ma 6 4x + 12 = x   
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Sub-series I-f 
 
A new variety of equation: two occurrences of x, one on each side, and two 
positive constant terms, one on each side. In other words, equations of the 
type Ax + B = Cx + D, with A, B, C, and D being positive integers. 
 

I Ma 12 7x + 2 = 3x + 6 I Ma 13 13x + 20 = x + 164 
I Ma 14 8x + 12 = 4x + 52 I Ma 15 28x + 348 = 52x + 12 

 
Sub-series I-g 
 
Equations of types Ax + B = Cx – D and Ax – B = Cx + D, with A, B, C, and D 
being positive integers. 
 

I Ma 16 5x – 3 = 2x + 6 I Ma 17 15x + 1590 = 71x – 202 
I Ma 18 11x + 687 = 45x – 27   

 
Sub-series I-e 
 
Operating with the unknown is suggested, i.e., the occurrences of x appear on 
the same side of the equation. 
 

I Ma 19 4x – 3x = 7 
 
Intercalation I-f 
 
The characteristics of the equations are the same as in sub-series I-f. 
 

I Ma 20 8x – 7 = 4x + 13 
 
Intercalation I-g 
 
The characteristics of the equations are the same as in sub-series I-g. 
 

I Ma 21 7x – 1114 = 3x + 1001 
 
Sub-series I-h 
 
A variety of equation with two negative constant terms. 
 

I Ma 22 7x – 1114 = 3x – 1001 
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Intercalation I-g 
 
The characteristics of the equations are the same as in sub-series I-g. 
 
I Ma 23 7x + 1114 = 3x – 1001 I Ma 24 113x – 70 = 22x + 1022 

 
Series A 
 
This series contains abbacus-style word problems with a view to observing 
the translation to equations or diagrams. It includes statements that correspond 
either to arithmetic equations or to non-arithmetic equations. In what follows, 
the abbreviation A Ma n means the nth item of series A in the interview with 
Ma. 
 

A Ma 1 If you add five to a number and then take away thirteen and 
the result is forty-five, what is the number? 

A Ma 2 If you add twelve to a number and then multiply it by nine 
and the result is a hundred and seventeen, what is the number? 

A Ma 3 If you add two to a number the result is double the original 
number. What is the number? 

A Ma 4 Seven times a number reduced by twelve is equal to three 
times that number. What is the number? 

A Ma 5 If we add the triple of a number to forty-eight, the result is 
nineteen times that number. What is the number? 

A Ma 6 Five times a number plus three is equal to twice the number 
plus twelve. What is the number? 

 
Series C 
 
The method of cancellation is sufficient to solve the equations in this series, 
and therefore it is not necessary to operate on the unknown. It includes 
equations with one occurrence of x and equations with two or more 
occurrences of x. In what follows, the abbreviation C Ma n means the nth item 
of series C in the interview with Ma. 

 
C Ma 1 

 
x + 5 = 5 + 2 

 
C Ma 2   

x +
141
16

=17 +
141
16

 

 
Series P 
 
This series contains statements of problems in contexts different from those of 
the abbacus-type statements, with a view to observing the transfer of the 
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recently acquired algebraic syntax. In what follows, the abbreviation P Ma n 
means the nth item of series P in the interview with Ma. 
 

P Ma 1 There are chickens and rabbits in a yard. I count the heads and 
there are sixteen, I count the legs and there are fifty-two. How 
many chickens and how many rabbits are there in the yard? 

 
Series S 
 
This series includes an introduction to the syntactic manipulation required to 
continue with the process of solving the problem in item P Ma 1. In what 
follows, the abbreviation S Ma n means the nth item of series S in the 
interview with Ma. 
 
S Ma 1 2 × (x + 16) = S Ma 5 2 × (x – 1) = 
S Ma 2 3 × (x + 16) = S Ma 6 3 × (x – 1) = 
S Ma 3 2 × (2x + 1) = S Ma 7 4 × (16 – x) = 
S Ma 4 6 × (2x + 5) =   

 
Series P 
 
The characteristics of the problems are those that we have just described. 
 

P Ma 1 There are chickens and rabbits in a yard. I count the heads and 
there are sixteen, I count the legs and there are fifty-two. How 
many chickens and rabbits are there in the yard? 

P Ma 2 There are chickens and rabbits in a yard. I count the heads and 
there are eight, I count the legs and there are twenty-six. How 
many chickens and how many rabbits are there in the yard? 

P Ma 3 Mariana is thirteen, Eugenio is forty. When will Eugenio be 
twice as old as Mariana? 

P Ma 4 Mariana is thirteen, Roberto is twenty-four. When will 
Roberto be twice as old as Mariana? 

P Ma 5 José Luis asks his Uncle Juan: “How old are you?” As his 
uncle likes word puzzles, he answers: “Twice my age plus 
your sister’s age is equal to three times my age less your age.” 
If José Luis is fifteen and his sister is twenty-eight, how old is 
Uncle Juan? 

P Ma 6 Three boys won nine hundred and sixty pesos. Enrique won 
twenty-four pesos less than Eduardo, and Esteban won ten 
times as much as Enrique. What did each of them win? 
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P Ma 7 How many meters is the perimeter of Figure 6.1 if both 
figures, 1 and 2, have the same perimeter? What is the 
perimeter of Figure 6.2? 

a

a

2a

4m               
 

Figure 6.2  
 
2.2. Performance prior to the instruction phase 
 
 
In Ma’s performance in the arithmetic equations of series E we observed that 
she used trial and error during the first items because of the simplicity of the 
equations that appeared in them, but when the numerical form of the equation 
became complex she applied the method of reversing operations without 
using the visual resource of the diagram, whether the equations consisted of 
one step or two. She generally used the calculator, and as it could handle 
negative numbers it was not possible to observe whether she found difficulty 
in operations of this kind. According to the results of the pre-test, she had had 
no difficulty in operating with negative numbers. 

Except for the first items in the series, in which she was asked whether her 
answer was correct, Ma verified the result spontaneously and correctly by 
substituting in the equation that was given, without any indication of a 
polysemic operation with x. 

Ma tackled the initial items in series I with the trial and error method, 
preceded by an abbacus-style reading of the equation. Like all the children in 
the upper stratum, Ma very soon stopped trying to solve the equations by the 
method of trial and error. Thus, she stopped trying to solve item I Ma 4 
2x + 3 = 5x, which is easy to do by trial and error, in the expectation of being 
taught an operative solving method. At that point the phase of instruction in 
operating on the unknown took place, with the use of the geometric model. 

 
 

2.3. Performance after the instruction phase 
 
 
Ma’s performance in the use of the geometric model to operate on the 
unknown was characterized by immediate abstraction of the operations 
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carried out in the model toward the level of algebraic syntax, as can be seen in 
item I Ma 6, the first that she tackled after the instruction phase. One factor 
that influenced this very rapid abstraction was the parallel record that Ma 
kept, using signs of algebraic language, while she was performing the actions 
with the elements of the model. The procedure was based on a mental 
representation of the model, as Ma dispensed with the drawing from the 
outset. This, therefore, is a case in which the processes of abstraction of the 
operations of the model to algebra (in items of the same variety) were reduced 
to immediate translation of the actions in the model into algebraic language; 
in other words, the relinquishing of the semantics of the model was effected 
by means of this translation. In fact, the translation in the opposite direction 
(from the equation to the model) was not at all explicit, precisely because of 
the omission of the drawings. This way of using algebraic notation to record 
the development of the procedure almost step by step avoided the con-
cealment of the real operation on the unknown, detected in cases where the 
processes of abstraction involved a prior automation of the actions in the 
model without making a record of those actions and of the automation. In 
some cases there was no parallel record of the actions in any non-model 
language; in others, a kind of intermediate language was created in which the 
elements of syntax that the student succeeded in recovering through the 
automation of the actions were reproduced. In both types of cases we 
observed concealment of the operation with the unknown and consequent 
mistakes of algebraic syntax. 

The immediate abstraction of the actions in the model to algebraic 
language was not completely uniform in Ma’s post-instruction performance: 
the changes to more complex varieties of equation or even changes to 
equations with a non-trivial numeric structure —such as those of the type 
C < A in Ax + B = Cx— acted as disturbing elements in the manner of 
abstracting the operations. In these changes we saw a return to explicit use of 
the model followed by a repetition of the process of abstraction, via the 
translation into algebra of the steps carried out in the model. That is to say, 
when the syntax generated locally in one variety could not be transferred to 
new varieties, it was necessary to revert to the semantics of the model to 
reconstruct the actions in it and once again recover them on the syntactic level 
of algebra: this could be seen very clearly in the change from sub-series I-a to 
sub-series I-f, which began with item I Ma 12 7x + 2 = 3x + 6. 

On the other hand, the overcoming of the obstacle presented by the new 
variety of equation presented in I Ma 12 was translated into an evolution in 
the solving method on a syntactic level. That is, Ma’s habit of jotting down 
the steps of the procedure in algebraic language as she went along —even 
when that language was developed in the concrete model— enabled her, on 
the one hand, to realize that the method consisted in reducing the new type of 
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equation to one that was already known; and, on the other hand, given that the 
steps of the reduction were written down using the signs of algebra, it was 
possible for her to begin an automation of the procedure of simplification of 
the equation on the level of algebraic syntax. The way in which Ma began the 
simplification of the original equation that she was given, operating on the 
constant terms before operating on the terms in x, led her to propose a first 
reduction of the equation as one of the intermediate steps in the process of 
simplification, in other words, producing an equation of the same variety as 
that of the items in sub-series I-a, with two occurrences of x and only one 
constant term. 

 
I Ma 12 7x + 2 = 3x + 6 
Ma reduces the equation to an equation of 
the first type 

 
7x = 3x + 4 

 
Ma did not tackle this equation immediately, despite having automated the 

operations for solving this kind of equation in sub-series I-a: this was a sort of 
regression in the line of evolution that we had been observing in her 
performance. Ma had to be referred to the geometric model, and there she 
solved this equation. 

This pattern of solution was repeated in several subsequent items in the 
same sub-series, I-f, such as: 

 
I Ma 13 13x + 20 = x + 164 
Ma performs the first reduction 
syntactically and writes from right to left. 

 
13x = 144 + x 

Ma resorts to the geometric model and 
obtains the simplified equation. 

12x = 144 

 
By the end of sub-series I-f she was performing all the operations on a 

syntactic level, without resorting to the model. Moreover, as Ma began the 
procedure in this case by operating first on the terms in x, the first reduction 
of the equation no longer appeared as a step in the procedure: 

 
I Ma 15 28x + 348 = 52x + 12 
The difficulty in placing the terms in the 
simplified equation disappears. 

 
24x + 12 = 348 

She does the operations (348 – 12) ÷ 24 
with a calculator. 

x = 14 

 
In this case, as in the others that we have analyzed, this level of evolution 

in the way of solving the new equations was impeded by the presence of 
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disturbing elements. Indeed, in the last item of sub-series I-f we saw that Ma 
had progressed substantially as regards translating the actions to a syntactic-
algebraic level, which she had been doing in a combined manner in the model 
and apart from it, in addition to having succeeded in overcoming the difficulty 
of placing the terms resulting from the reduction operations in this item. It 
was precisely this difficulty that reappeared in the change to the variety of 
equation in sub-series I-g, when Ma tried to transfer the syntactic rules used 
by her implicitly —she never actually stated them— in the previous varieties: 

 
I Ma 16 5x – 3 = 2x + 6 
Development by Ma 5x – 3 = 
[Wrong] 3x = – 3 + 6 
Correction made at the request of the 
interviewer 

3x – 3 = 6 

Ma says: “x equals three” 
 
The difficulty in placing the terms after the first transformations of the 

equation persisted in this sub-series (I-f) and in the following sub-series, 
although in some items in them it did not appear because Ma took the 
precaution of operating first on the terms in x and beginning to write down the 
simplified equation from right to left. This apparently helped her to relocate 
the terms according to their degree —one or zero— in the new equation. 

After overcoming this difficulty, which was brought about by the presence 
of disturbing elements in the equation, such as, for example, the fact that the 
solution was negative or less than one, Ma achieved a high manipulative level 
in solving linear equations with one or more occurrences of x. Because of this 
degree of mastery that Ma had acquired in solving the new equations, she was 
subsequently given two further series of items in the interview: series A, 
consisting of abbacus-type statements, and series P, the context of which went 
beyond the context of the model with which she had been given instruction in 
operating on the unknown. In these two series, the statements corresponded to 
equations that were either arithmetic (like those of series E) or non-arithmetic 
(like those of series I) —see Section 2.1, “Map of the interview.” 

Theoretically, there could be several possible responses to these statements 
in the case of children in the upper stratum: translation of the statement to an 
equation (or a diagram, in those cases where it was meaningful) and not going 
on to solve it; translation to an equation and solving it by applying the 
recently acquired manipulative skills; solving the problem without translating 
it into an equation (or a diagram, where appropriate). In Ma’s case, in the 
abbacus-style statements of series A we observed great fluency in translating 
the statement into the corresponding equation and solving it operationally in 
both cases (equations with one occurrence of x or with more than one), which 
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denoted an immediate correct transfer of her recently acquired algebraic 
manipulation to word statements of the new equations. We now describe the 
development of some of the items in series A to illustrate what we have just 
indicated. 
 

A Ma 1 If you add five to a number and then take away thirteen and 
the result is forty-five, what is the number? 

 
Equation (x + 5) – 13 = 45 
Solution by reversing operations (45 + 13) – 5 

 
A Ma 6 Five times a number plus three is equal to twice the number 

plus twelve. What is the number? 
 

Equation 5x + 3 = 2x + 12 
3x + 3 = 12 
x = 3 

 
In one item in series A we saw a momentary loss of earlier skills in Ma 

because of the presence of a disturbing element: a result equaling zero in the 
simplified equation. 

 
A Ma 4 Seven times a number reduced by twelve is equal to three 

times that number. What is the number? 
 

Equation 7x – 12 = 3x 
Simplified equation 4x – 12 = 0 
Ma tries to solve the simplified 
equation by using trial and error, 
but when she is unsuccessful she 
soon resorts to using the visual 
representation of the diagram: 

×4

0  

 
Finally, in series P Ma was given problems for which the translation into 

an equation was not direct because two unknowns appeared in the statement 
—two quantities that had to be found— so that it was necessary to write one 
of the unknowns as a function of the other. Some types of problems appeared 
in pairs, where the second problem in each pair was obtained simply by 
changing the given values in the first problem. The pairs in series P were P 

Š12

 unknown in the equation 
Solution by operating on the

operations 
a calculator, by reversing the
Solution of the diagram with x = 3 
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Ma 1 and P Ma 2, P Ma 3 and P Ma 4 (see Section 2.1, “Map of the 
interview”). The interviewer intervened in the first item of each pair in order 
to help with the formulation of the equation, whereas the second item of each 
pair was developed by Ma entirely on her own: once the equation had been 
formulated Ma was perfectly capable of applying her recently acquired 
manipulative skills to the solution of this equation, which had more than one 
occurrence of x. 

This pattern of development, by pairs of problems, was repeated in part of 
series P, and it can be said that once the initial difficulty had been resolved, 
which in these cases had to do with the translation into an equation, and given 
that the earlier algebraic manipulation was transferred immediately to the 
solution of the equation, the problem posed, simply with the given values 
changed, immediately became a routine problem for Ma. 

It must be pointed out that the phase of translating from the statement to 
the equation, in all cases, was a complex process of progressive sym-
bolization, with the gradual construction of the equation corresponding to the 
statement, and that the fact that Ma managed to deal with these problems in a 
routine way so quickly was due to two things: first, the fact that she knew in 
advance that the idea was to produce the equation, and, second, the fact that, 
in the progressive symbolization, she recorded all the steps of the process with 
fairly tidy algebraic notation, which enabled her to re-read the process 
whenever she found it necessary, and to direct her development of the 
procedure toward obtaining the equation. Also, a third factor that counted in 
this very rapid transfer to other contexts was the operational confidence that 
Ma had already acquired in solving equations of this kind. 

We ought to make it clear that this transfer of manipulation skills to other 
contexts took place in Ma on a level where there was no presupposition of the 
production of a strategy for attacking the problem by the person interviewed: 
it was a transfer on the level of recognizing equations that came from contexts 
of problems as equations that she already knew how to solve. In this specific 
case, these equations required operation on the unknown for their solution. 
This kind of transfer made it possible for the recently acquired algebraic 
manipulation to be considered as a potential tool for solving a larger family of 
problems, that is, a family including statements that led to the linear equations 
here described as non-arithmetic. 

 
 

2.4. Progress toward semantics 
 
 
Despite the confidence reflected, in Ma’s case, in the ability to solve the new 
equations operationally when they appeared in other contexts, we must also 
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consider the processes that come into play between understanding the 
statement and formulation of an equation, so as to be able to speak of a real 
transfer of that algebraic manipulation to the solution of problems. These 
processes include those of representation of the elements of the problem, 
which presuppose a reading and analysis of the statement that discriminates 
between what is given and what has to be found, so as to be able to recover 
the relevant information and set aside non-essential facts. This representation 
can also be preceded by the production of a strategy for attacking the pro-
blem, although sometimes it comes afterwards. 

In Ma’s case these processes were precluded, first because she was faced 
with these problems immediately after she had learned to solve the equations 
in series I, in other words, as a result of the sequence of the interview it may 
have been natural for her to apply what she had just learned; second, phases of 
instruction took place throughout the guided translation procedure, so that 
there was no opportunity to observe her own approaches to the problem or the 
difficulties that might have appeared in the solving procedure, to which her 
approaches might have given rise. 

However, there are two notable features in Ma’s performance in this 
guided solving of problems that were related to the interconnection of 
semantics and algebraic syntax. One of these features was Ma’s recognition of 
the equation, once presented to her, as one of those that she had learned to 
solve, and the fact that she then went on to solve it. As can be seen in the 
analysis of series I, what usually happens is that, when certain situations that 
previously could be tackled operationally are presented in the middle of a 
complex process of reasoning, they are not read on a language level in which 
it is possible to recognize them and solve them as before: this is reported as 
“the momentary loss of earlier skills” resulting from a behavior of getting 
stuck. In Ma, this phenomenon did not appear in series P, and there are two 
plausible explanations for this: the certainty that she had from the outset that 
she was going to come to the formulation of an equation —as we mentioned 
earlier— and the fact that she had been able to give sense to the recently 
acquired manipulative skills at the point when she perceived that it corres-
ponded to ways of attacking new problems. It is in this way, once again, that 
the consolidation of the first elements of algebraic syntax is supported by its 
connection to semantics outside algebra, in this case that of the statements of 
the problems. 

A second notable feature in this part of the interview with Ma is the fact 
that, during the development of the solving of the problems, instruction 
phases were necessary in order to resolve certain operational steps that formed 
part of the transformations of the equation that had been formulated. These 
operational steps were elements of syntax that had not yet been taught to Ma 
within the context of algebra. Moreover, she had not yet been taught all the 
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algebra that is included in the curriculum of secondary education. In these 
instruction phases the interviewer again made use of contexts outside algebra, 
such as in the case of the law of distribution when there are unknowns 
involved, the explanation and development of which was carried out in a 
geometric representation and the development was subsequently translated 
into algebraic language. 

Figure 6.3 
 

This law was known by Ma at the time of the interview. In fact, it was in 
what she had been taught previously, and there, too, it had been presented by 
means of a geometric representation of the expressions involved. However, 
she did not recognize it as a known situation in the middle of this procedure of 
transforming the equation, and she needed a phase of instruction. The 
explanation for this non-recognition is that, although expressions of the type 
A × (B + C) —which is how Ma had learned the development of these 
expressions, with A, B, and C being any numbers— and A × (B + x) are 
basically the same, there really is a difference in terms of the 
conceptualization and interpretation of the literal notations in the two types. 
This difference consists in the simple fact that in the first type A, B and C are 
generalized numbers, i.e., the letters represent a set of numbers (Booth, 1984), 
and in the second only A and B are generalized numbers, whereas x represents 
an unknown for Ma in the context of solving a problem. 

In this case, therefore, it was not a matter of a momentary loss of an earlier 
skill, but the fact that the identification of one type of expression with the 
other requires a process of conceptualization in the learner that denies the 
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condition of unknown to x and interprets it on the level of generalized 
numbers, which includes A, B, and C. The strategy used in the interview to 
lead Ma to this identification was to give the new type of expression, 
A × (B + x), a treatment analogous to that given to expressions of the type 
A × (B + C), i.e., to translate the expression into more concrete terms in a 
context of areas, so that the development performed in the concrete was 
recovered in algebraic language. In this way, by taking as a starting point a 
problem situation with a semantic context outside algebra (ages, numbers of 
rabbits, etc.), translating that situation to algebraic sentences (with the 
involvement of all the processes that were mentioned earlier) and attempting 
to apply skills of algebraic syntax to them, one reaches a point where it 
becomes necessary to progress on this syntactic level: the transformations of 
the equation require new elements of syntax, which in turn are based on 
substantial changes in the conception of the objects that those elements 
involve so that they can be developed. These changes sometimes require one 
to negate notions that, on the other hand, are necessary for translating the 
statement of a problem to algebra, such as the notion of the unknown, and 
thus to make way for other notions, such as that of generalized number, which 
are necessary for evolving in the development of certain elements of syntax, 
such as the manipulation of algebraic identities, for example. 

Returning to the matter of the transfer of the algebraic manipulation 
acquired to broader contexts such as those of statements of problems, 
although Ma’s case cannot be considered as an example of transfer 
understood in its full extension, one could speak of another level of partial 
transfer, which consisted in having the manipulative skills required in the 
solving of the problem well established, to a point where, on the one hand, 
there was an ability to recognize situations in which these skills could be 
applied (equations, in this case) and, on the other, the mere recognition of 
these situations acted as a motor for the setting in motion of the corresponding 
operational actions – even though an intervention with teaching was needed 
so that they could be carried out. This is a necessary, but not sufficient, level 
of transfer for the transition from semantics (that of the problem) to take 
place. In Ma’s case, it seems that this first level of transfer was resolved, at 
least with respect to these first incursions into the terrain of algebraic 
operations, operations with the unknown. 

In other respects, Ma’s performance in the last items of series P, in which 
she had already operationalized the new elements of the syntax that she had 
been taught in the first problems in the series, makes it clear that progress in 
algebraic semantics (as far as its use in problem solving is concerned) also 
implies progress in syntax. The implication in the opposite sense, that is, that 
progress in syntax implies progress in the semantic aspect of algebra is also 
true, and this second implication seems to be a fairly widespread opinion, as it 
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is always considered that a certain level of syntax is a factor that assists 
problem solving. 

In the interview with Ma, this kind of regression toward a line of evolution 
in syntax shows the possibility of concluding the sequence that, in its most 
significant points, travels along a path that takes as its starting point the 
construction of minimal elements of algebraic syntax, endowing them with 
meanings in the context of a concrete model, then detaching them from those 
meanings in order to recover them on the more abstract level of the syntax of 
algebra, and finally endowing them with the sense that is provided by the 
possibility of applying them to the solution of problems. 

In the realm of teaching, it might seem to be impossible to propose to 
conclude sequences such as the one just described in a relatively short time 
span: the interview with Ma shows not only that it is useful and necessary,  
but also that it is possible. In other words, although Ma presents certain 
characteristics that represent favorable conditions for making the attempt, the 
fact that in her case it was possible to cover in just one hour and forty minutes 
all the ground for the teaching of these first notions and operations of algebra 
opens up the possibility in the realm of teaching of trying to develop elements 
of algebraic syntax and their corresponding semantic versions in harmony —
either as elements derived from contexts of the model(s) used to introduced 
them, or else as elements that are themselves used to model situations that 
emanate from statements of problems— and make them come together in  
the correct, congruent use of algebraic language, with respect to these two 
aspects, syntactic and semantic. 

 
 
 

3. SOME POINTERS CONCERNING TEACHING 
 
 

By way of conclusion, on the basis of the observations in Ma’s case it can be 
said that the interactions between algebraic semantics and syntax can be 
channeled by means of appropriate teaching strategies toward the completion 
of sequences in the course of which the new algebraic notions and operations 
that are introduced can be endowed not only with meanings but also with 
senses. This kind of approach breaks away from the old idea that in the 
teaching of algebra it is possible to develop independently a syntax that will 
be used subsequently in the solution of problems. This traditional conception 
encourages the development of the “non-senses” of learning algebra in 
children, given that only a small proportion of the student population 
eventually acquires the language of algebra at the level of using it as a tool for 
solving problems. In other words, in order to provide senses for all this ini-
tial algebraic manipulation it is necessary somehow to conclude a kind of 
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sequence, realizing why one is learning and automating all this syntax. In a 
traditional strategy, the concluding of the sequence is deferred in time “until 
the operational area has been developed sufficiently,” which excludes a  
large part of the population that studies algebra from ever reaching that 
“conclusion.” 

On the other hand, the results of this study indicate that it is not solely a 
question of time, but that the transfer of algebraic manipulation to the context 
of the problems —which is usually not addressed specifically by teaching but 
rather is largely left to spontaneous developments— is not simple, and that 
processes are involved in which the semantic and syntactic aspects of the new 
language interact and are transformed into their conceptual elements. Indeed, 
as we have already pointed out in Ma’s case, the transfer processes are of 
various kinds and range from those that are usually taken into consideration in 
studies carried out under the heading of “problem solving,” such as the 
analytic reading of the statement, the production of a strategy of attack, the 
production of a representation of the elements that feature in the statement, 
etc., to the generation of new syntactic elements, on the basis of modifications 
in the learner’s conceptual apparatus, such as, for example, the possible 
negation of the condition of unknown in some of the signs that appear in the 
representation of the situation of the problem and in the syntactic operations 
that have to be carried out. On the other hand, bearing in mind the obser-
vations about the stage prior to the introduction of some elements of syntax, it 
is also necessary to complete the cycle if one wishes to achieve a certain 
degree of consolidation of the new operational knowledge and a certain 
degree of potential and actual mastery in its application to problem solving. 

The foregoing indications are important for the area of teaching symbolic 
algebra, because, if they are taken into account when particular teaching 
strategies are proposed, this implies making basic modifications in the current 
conceptions of teaching in this area, or at least in these conceptions as they are 
reflected by the approaches that appear in syllabuses, in current textbooks and 
in some specialized reports on studies (whether experimental or not). They 
would be basic modifications because even an analysis of the cognitive aspect 
of certain central objectives in the teaching of algebra in secondary education, 
in the terms of the observations and results that we have expounded, would 
show that any significant advance in the learning of algebraic language, in any 
of the semantic or syntactic aspects, is based on substantial modifications of 
notions that are interlinked, such as the notions of the unknown, variable, 
generalized number, function, algebraic identity, proportional relation, etc. 
These notions in themselves play a leading role in achieving important 
objectives such as the solution of problems in which the unknowns do not 
appear explicitly in the statement and there is the involvement of other  
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notions, such as proportional variation or function, and in the course of the 
solution it is necessary to negate that variability in order to be able to fix the 
relation and recover the unknown(s) of the problem. On the other hand, 
results set out in this study show that underlying the dynamics of such 
advances there is a dialectic interaction between the semantic and syntactic 
aspects of algebra, so that progress in one of these directions is supported by 
progress in the other, and the possibility of making use of this interaction in 
the development of teaching strategies is something that would also have a 
repercussion on a reconsideration of the current approaches to the teaching of 
elementary algebra. 
 
 
 

SUMMARY 
 
 

Perhaps one of the greatest challenges in the teaching of algebra, once pupils 
have acquired the rudimentary elements of algebraic syntax (for example, 
through concrete models), is that of managing to make the pupils use them in 
the solution of word problems. In the same way that, in the learning of syntax, 
one can see an intricate relationship between syntax and semantics (understood 
as a relationship between the operations performed on the purely syntactic level 
and the meanings that those operations have in the context of the concrete 
model), in the application of that syntax in the solution of problems one can 
also perceive a tension between the semantics that belongs to the context of the 
problem and the symbolic manipulation of the algebraic expressions that 
represent the situation of the problem. This chapter deals with this relationship 
and the elaboration of the thesis that states that there is a dialectic relationship 
between the semantic and syntactic aspects of algebraic language, in the sense 
that an advance in one of these aspects often takes place at the cost of a retreat 
or stagnation in the other. The final section of the chapter contains a reflection 
on the implications that the relationship between semantics and syntax has in 
the realm of teaching. Once again we have taken as a basis for the discussion 
observations made in the clinical study “Operating on the Unknown,” presented 
in Chapter 4. 

In the next chapter, we shall present the cognitive tendencies of pupils 
from the study “Operating on the Unknown,” and from a study on the Thales 
theorem, in which another teaching model is in use and a geometrical sign 
system is involved. 



 

CHAPTER 7 
 

COGNITIVE TENDENCIES AND ABSTRACTION PROCESSES 
 
 
 

OVERVIEW 
 
 

This chapter is devoted to the subject of the cognitive processes that take 

learning of algebraic syntax and its use in solving problems. Eleven cognitive 
tendencies are described, well identified in empirical studies, some referring 
to the presence of readings by learners on different levels of language or sign 
systems, which may obstruct the possibility of solving an algebraic task. 

We explore also the processes of abstraction in terms of the theoretical 
notions of meaning and sense, in relation to mathematical sign systems 
(MSSs), seen in strata. The material for this exploration is the basic protocol 
or plan of two interviews, one concerning the solution of linear equations and 
the other concerning proportional variation. The plan of the interviews is set 
out and analyzed in episodes, incorporating into each episode comments 
related to the transformations of texts (algebraic expressions or geometric 
figures or propositions) for the solution of the task presented. These texts are 
located in more abstract or less abstract strata of MSSs. The chapter ends with 
a list of cognitive tendencies identified in the various episodes. 
 
 

 
1. INTRODUCTION 

 
 

The cognitive processes that are set in action in order to carry out the forms of 
mathematical thinking and their communication with socially established codes 
gradually fine-tune the complex elements that are used in (1) perception, for 
example, in the case of the handling of geometric forms and their trans-
formations; (2) the directing of attention and its relations to the processes of 
understanding; (3) the increasingly intensive use of memory; (4) the setting in 
motion of processes of analyzis and synthesis increasingly intertwined with the 
use of logic; (5) the heuristic conceptions used in the solving of problem 
situations, and (6) learning, closely bound up with the processes of genera-
lization and abstraction and requiring novel uses of the MSSs of school 
mathematics. 

place during the learning of algebraic language. We analyze its close rela-
tionship with cognitive tendencies that are observed in students during the 
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We ourselves see these cognitive processes in teaching situations, parti-
cularly when, in a teaching situation, one is trying to move from a more 
concrete stratum of an MSS language to a more abstract one and various 
events take place, a brief list of which we present in this introduction. In 
Sections 2, 3, and 4 they are developed in more detail, and in Section 5 this 
list of events is exemplified with the two studies. 
 
 
1.1. Cognitive tendencies toward a competent use of more abstract MSSs 
 
 
1.1.1. The presence of a process of abbreviation of concrete texts in order  

to be able to produce new rules of syntax 
 
 
1.1.2. The production of intermediate senses 
 
 
1.1.3. The return to more concrete situations when an analysis situation 

presents itself 
 
 
This feature is present in most of the actions of mathematical thinking and has 
been reported in many other studies. 
 
 
1.1.4. The inability to set in motion operations that could be performed a few 

moments before 
 
 
Behavior of this kind has even been seen in a student who was trying to solve 
the equation Ax = B, hard as it may be to believe in view of the simplicity of 
the equation. Situations also appear in which the operativity of fractions is 
inhibited by the presence of mistaken spontaneous readings of a geometric 
nature concerning the notions of ratio and proportion of magnitudes. In 
Section 4, where one teaching sequence is the proof of Thales’ Theorem, we 
will see how and with what difficulties it is possible to give new senses to the 
uses of the various concepts that are embraced in the arithmetic of fractions. 
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1.1.5. Getting stuck in readings made in language levels that will not allow 
the problem situation to be solved 

 
 
An example is the observation of the performance of 12- to 14-year-old 
students when they try to solve problem situations based on solving the 
equation Ax = B, which we called the “reverse of multiplication syndrome” in 
the Introduction (Chapter 1). In this chapter, examples can be found of a 
mistaken geometric reading concerning the order of magnitude between ratios 
of magnitudes. 
 
 
1.1.6. The articulation of mistaken generalizations 
 
 
The literature on mistakes made by students is full of this kind of behavior. 
The student tries to get away from the behavior mentioned in Section 1.1.5 by 
promoting a rule to other contexts where its application is meaningless: what 
is involved is an incorrect use of those concepts and operations. 
 
 
1.1.7. The presence of calling mechanisms that cause the learner to get stuck 

in setting in motion mistaken solving processes 
 
 
When we spoke of the “reverse of multiplication syndrome,” we indicated the 
presence of this cognitive tendency. Another example appears when students 
try to find the side of a rectangle when the area and measurement of the base 
are known, using trial and error instead of the operation of division. Many of 
the phenomena that appear in 1.1.9 are also due to this behavior. 
 
 
1.1.8. The presence of inhibiting mechanisms 
 
 
In an extreme case, the examples in Section 1.1.7 are typical of this behavior, 
but also in the area of solving equations the presence of negative solutions 
gives rise to obstructions of syntactic rules that had been mastered previously. 
The insistence on not beginning to analyze a problem, the refusal to solve 
simple equations in which radicals appear, and the inability to use elements of 
syntax that have not been fully mastered in the intermediate steps of an 
analytic chain to solve a problem are further examples of this behavior. 
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1.1.9. The effect of obstructions derived from semantics  
on syntax and viceversa 

 
 
When a person is solving problems and endowing algebraic signs with 
meanings, this brings about a predisposition to use syntax. Most of the 
phenomena mentioned in Section 1.1.4 can be interpreted in this way. A 
student may even write down a simple arithmetic equation in the middle of 
solving a problem and not recognize it as such, despite having spent years 
solving such equations with great skill. In the case of syntax, the tendency to 
get stuck on more concrete levels inhibits appropriate readings of more 
abstract texts. 
 
 
1.1.10. The generation of syntactic errors due to the production  

of intermediate personal codes in order to produce senses  
for intermediate concrete actions 

 
 
1.1.11. The need to produce senses for increasingly abstract networks  

of actions until they become operations 
 
 
We will find these and some other cognitive tendencies again and again in 
Chapters 4 to 6, where empirical studies are presented. In Chapter 9, in which 
we analyze cognition and problem situations in mathematics, we will also see 
in each subsection that the presence of one or more of the cognitive 
tendencies that have just been listed can be observed. The same can be said of 
Sections 3 and 4 of the Introduction, (Chapter 1), devoted to pre-algebra and 
cognition. 
 
 
 

2. SOLVING EQUATIONS AND THALES’ THEOREM 
 
 

When youngsters begin studying algebra and trigonometry they bring with 
them the notions and approaches that they used in arithmetic. However, 
algebra and trigonometry are not just a generalization of arithmetic. Learning 

 
 

in arithmetic. A change in the student’s thinking is required, from concrete
this new material does not merely mean making explicit what was implicit 
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numeric situations to more general propositions about numbers, figures, and 
operations. The transition from what might be considered as an informal way 
of representing and solving problems to a new MSS proves difficult for many 
of those who begin to study algebra and geometry. These students go on using 
the methods that worked for them in arithmetic. 
 
 
2.1. General description 
 
 
We are going to explore the theoretical idea introduced in Section 2.10 of 
Chapter 5 and develop it further in the following chapter, to the effect that the 
acquisition of new competences in elementary mathematics can be considered 
as the product of the modification of concepts, actions, and procedures of 
MSSs for which competences have already been mastered to some degree. 

When one observes how mathematics is learned, it is apparent that new 
rules are constantly being formed as learners find new paths that extend 
previously developed conceptual networks. A fundamental aspect of this 
viewpoint is the idea of sense, in contrast to that of meaning when one is 
talking of stratified MSSs. In this chapter we analyze in more detail what 
usually occurs in the clinical interviews that we used in Chapters 4 and 6. 

In order to show that the cognitive tendencies that we introduced in 
Section 1 are present not only when one is studying algebra1, in Sections 2 
and 4 we advance in the use of algebra in order to introduce trigonometry and 
analytical geometry. We do so by describing an experimental study on the 
notion of the slope of a straight line, which we now introduce briefly and 
develop in the fourth section of this chapter, after a discussion about solving 
equations. 

 
 

2.2. Thales’ Theorem: Meaning and sense in an MSS 
 
 
The aim of this study was to observe the natural obstructions to the use of an 
MSS in which the notions of geometric proportional variation could be 
presented. The analysis focused on observation of learners when they were 
presented with situations that simulated the demonstration of Thales’ theorem. 
With respect to the two possible readings, in two different MSSs, it was 
concluded that neither of them could be reduced to the other. One reading was 
made with the Egyptian model for rational numbers and the other with the 
Greek model (later, in Section 4.3, we give a brief description of these two 
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models of rational numbers). The notion of meaning was used throughout the 
study, in contrast to that of the sense of a text that uses a specific MSS. 

In Chapter 8 we present the Fundamental Theorem of Geometric 
Proportionality as an example of the structuring of a formal competence 
model; in this chapter we illustrate the ad hoc teaching model by means of an 
example. The teaching model is based on an analysis of what happens in 
straight staircases with respect to the relation between how high one has 
climbed and the distance one has moved forward when one reaches any point 
on the incline of the staircase. The aim is to make it clear that this relation is 
constant and can be called the “slope” of the staircase. 

In Section 4 we will see that when we used this teaching model with 
children who had just left primary school we came up against a great 
difficulty: breaking away from what geometric intuition indicated to the 
learners. In fact, when they were asked the question shown below, about the 
geometric problem that considers the incline of a straight staircase (which we 
will call question Q), 

 

O A’ B’

A

B

 
 

Figure 7.1 
 

Compare the ratio between the height climbed and the distance traveled horizontally 
at A with the ratio between the height climbed and the distance traveled horizontally 
at B. 

What is the relationship between the ratios 
A ′A
O ′A

 and 
B ′B
O ′B

? 

Are they equal or is one greater than the other? 
 

The “natural” response was that the second was greater because OA' <OB'  and 
OA' <OB' , that is, both the height climbed and the distance traveled 
horizontally in B is greater than the height climbed and the distance traveled 
horizontally in A. 

In Section 4 we find other facts related to this and see how teaching can be 
used to prevent such cognitive tendencies that lead students to make mistakes 
that supposedly have already been overcome. 
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2.3. The rest of the chapter 
 
We explore processes of abstraction and their relation to the theoretical 
notions of meaning and sense for MSSs: in Section 3, for the solving of 
equations, and in Section 4 for proportional variation and Thales’ Theorem. 
Finally, in Section 5, we return to cognitive tendencies, recapitulating what 
has been said in this and earlier chapters. 
 
 
 

3. SOLVING EQUATIONS. ANALYSIS OF A TYPICAL INTERVIEW BY EPISODES 
 
 

In this section we present a description of a typical clinical interview in the 
form of episodes. As a teaching sequence it uses a strategy that sets out from a 
concrete model for teaching how to solve linear equations. The study in which 
these interviews were conducted is described in Chapters 4 and 6. 

The teaching sequence is designed to provide the student with a series of 
problem situations that are stated in the language of symbolic algebra and are 
translated to a language (iconic and written) which is concrete (balance scales, 
piles of stones, exchange of plots of land, etc.). The aim is that by the end of 
the sequence the learners will solve linear equations syntactically. We will 
designate the MSS that it is desired to teach as MSSa, using the subscript a to 
indicate that this MSS is more abstract than the MSS used to describe the 
problem situations that are given to the student, because in the more concrete 
MSSc the signs have a greater direct relation to certain meanings that come 
from the situations presented: plots of land and geometric properties, balance 
scales, and properties of balancing, etc. The subscript c is used here to 
indicate that this MSS is more concrete. 

Thus the first type of situation in MSSa are texts of the following variety: 
 

Ax + B = Cx, where A, B, and C are positive integers and in this case  
C > A, 
 

presented to the students with numeric coefficients. 
On a more concrete level, i.e., in the MSSc referred to, these texts take the 

form: 
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Figure 7.2 
 

The texts of this type are called algebraic, in contrast to the ones that are 
called arithmetic, where it is not necessary to operate on the unknown in order 
to solve the equation (see Chapter 4). 

 
 

3.1. First episode 
 
 
Step A. Interpretation of Texta as Textc. 
 
 Step A: Transferring the equation to the model 
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 Step A: Transferring the equation to the model 

 
 

Figure 7.3 
 

Step B. Setting in motion of known actions in the more concrete language 
stratum in order to decode the problem situation. 
 

 
 

Figure 7.4 
 

Step C. Performance of concrete actions. 
 
Step D. Decoding of the problem situation until a solution is reached: a 
solution described in another Textc. 
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Comment 1. The hypothesis assumes that the learner is competent to perform 
actions of this kind, and use their properties, and that this will enable him to 
solve the problem situation presented by the Textc in the more concrete 
language stratum MSSc. 
 
 
3.2. Second episode 
 
 
Step E. Translation into a Texta, the solution of the problem situation 
described in Textc. 

Textc is translated into the new equation, (C – A) x = B, which is the new 
Texta. 

 
Step F. Solving the equation (C – A) x = B. 

Previous teaching makes it possible to solve this arithmetic equation. Of 
course, things are not always so simple, because the learners may find 
themselves with an intermediate problem situation (in a more concrete 
stratum), either in a new Texta or in a new Textc. 

An example of an intermediate problem situation is presented in Figure 

 
3

3x

reduced equation 3x = 3  
 

Figure 7.5 
 

When a situation like this appears, sometimes it is necessary to perform 
steps B, C, and D again. 

 
 

7.5. 
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3.3. Third episode 
 
 
The teaching strategy of repetition and practice now appears in the teaching 
sequence, with more cases to be solved; but, for example, with increasingly 
larger numbers in the equation Ax + B = Cx, C > A. 
 
Step G. Steps C, D, E, and F are performed once again, giving rise to steps H 
and I. 
 
Step H. A process of abbreviation tending to set aside many of the meanings 
that appeared in the Textsc, aiming to arrive at a syntactic level of proceeding. 
 
Step I. Production of intermediate personal codes to represent the actions 
performed and the intermediate results (see Section 1). 
 
Comment 2. An intermediate language stratum has been introduced, and the 
meanings in it come from the personal syntactic rules just used. 
 

Until steps H and I, all the actions performed on Textc are dependent on 
the sense of the (concrete) context. Until these steps we have only created a 
didactic device for solving equations of the variety Ax + B = Cx, C > A. What 
will happen if another Texta of a different variety is presented to the learner, 
for example, the new Texta 8x + 5 = 3x + 15? 

 
 

3.4. Fourth episode 
 
 
Step J. Recognition that the problem situation is a new one and cannot be 
reduced to a reading made with the recently created intermediate language 
strata, which are more abstract than the original concrete language stratum. 
 
Step K. A new process of learning (by discovery) is performed with the same 
teaching strategy, and thereby it is possible to set in motion actions A, B, C, 
… to J. 
 

But new factors appear: 
 

Step L. Step H is performed in a shorter time. 
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Comment 3. In step I, the intermediate codes are refined in the direction of 
possessing meanings which are freer of dependence on the sense of the 
concrete context. 
 

Step L is a negation of part of the meanings that come from the language 
stratum in which the text in question is described. Different situations that 
were irreducible to one another can now be interpreted in the same way, and 
the syntactic rules constructed in I are now applied to the new Textsc. Only 
now are the two texts recognized as being of the same kind of problem 
situation, and as a result the same solving process is set in motion. 

 
 

3.5. Fifth episode 
 
 
Step M. There is a return to step K with new types of problem situations. For 
example, with a new Texta such as 8x – 3 = 5x + 6. 
 
Step N. Steps A, B, … L are set in motion once again. 
 
Step O. Operations are created in a new language stratum in which the senses 
are no longer dependent on the concrete context, giving new meanings to the 
new, more abstract concepts. 
 
Comment 4. With the strategy of repetition and practice a new, more abstract 
language stratum is achieved in which it is possible to model (translate) more 
abstract situations, i.e., families of problems that previously were irreducible 
to one another are recognized as equal from the viewpoint of the solving 
processes set in motion by using the new MSSs. 
 

With the process in its totality —the five episodes— a collection of 
stratified MSSs with interrelated codes has been created, and they make it 
possible to produce texts whose decoding must make reference to several of 
those strata: the transformation of the texts will use actions and concepts 
whose properties are described in one or more of the strata. 

This is an example of what is described theoretically in Chapter 8, in terms 
that we will now advance here. 

Two texts, T and T’, both products of the use of an MSS, L, are called 
transversal when the user cannot create T in the same way as in the decoding 
of T’ – that is, if T is not reducible to T’ by the use of L (remember Comment 
3). What really happens is that the learner can produce T and T’ but cannot 
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recognize the two decoding processes as a product of the use of the same 
actions, procedures and concepts of the various strata of L. 

If we now have another stratified MSS, M, in which T and T’can be coded 
and the production of both can be described by means of the same actions, 
procedures, and concepts in M, the meaning of which has as referents the 
actions, procedures, and concepts used in the decoding of T and T’ in the 
strata of L, then we will say that M is a more abstract stratified MSS than L 
for T and T’ (remember Step O). 

In order to accomplish this, the objects, actions, procedures, and concepts 
used in M have lost part of their semantic-pragmatic meaning: they are more 
abstract. 

 
 

 
4. PROPORTIONAL VARIATION, THALES’ THEOREM. AN EXPERIMENTAL STUDY 

 
 

The Theorem of Similarity, also known as Thales’ Theorem, represents a 
didactic cut for the acquisition of competences in the use of important 
mathematical concepts that range from the first notions of some models of 
rational numbers to the properties of continuous linear variation, and from the 
introduction of linear functions and their algebraic representation to their use in 
geometric representation in trigonometry and the beginnings of infinitesimal 
calculus. 

This section describes an experimental study in which the main aim was to 
explore what competences are necessary to understand and use Thales’ 
Theorem, what natural obstructions present themselves, and what importance 
all this has for the expansion of rational numbers to a stratified MSS in which 
the numeric signs have as referents both the fractions that are used in the MSS 
of elementary arithmetic and the geometric signs that we call ratios between 
continuous magnitudes. From these results one can clearly see that until a user 
has a correct interpretation of all the concepts involved in the theorem of 
similarity, brought together in the strata of a new MSS, he cannot call on 
stable notions with which to operate and establish relations of order, to use in 
the same way as he does with the more primitive MSSs used in the repre-
sentations of the rational numbers, introduced earlier with the competent use 
of the MSS of elementary arithmetic. 

In order to observe the didactic cut just mentioned, an experimental design 
was put into operation, in which the teaching was controlled for a period of 
two consecutive school years, in the first and second years of secondary 
school in Mexico (ages 12 to 14). In this experiment, the teaching sequences 
that were used to teach two cohorts of 30 students at the Centro Escolar 
Hermanos Revueltas in Mexico City were controlled. A diagnostic test was 
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designed with three axes: manipulative skills, competence in the solving of 
linear equations, and a final axis concerning the concepts and equations 
connected with the understanding of the geometric situation in which a 
staircase with a straight rake or incline is studied, where the central and 
culminating point is the use of the notion of the slope of a straight line (the 
incline, in the concrete case referred to here). As an example, we then present 
the seventh of the nine units that make up the teaching model used. 

 
 

4.1. Unit 7 in the teaching model 
 
 
a) Drawing straight staircases 
 

O A B C D

Z

a

b
c

d

O A B C D

Z

Q Q  
 

Figure 7.6 
 

In the triangle on the left, color the line that represents the incline of a straight 
staircase red. This line is   OZ . You can extend it beyond O and Z to show that 
you are indicating the line and not just a piece of it, which we will call a 
segment of it. 

Fill in the gaps: 

  OZ = Oa =Ob= = = = = dZ  

Color the line   ZQ , which represents the wall, blue. Color the line that 
represents the floor green. This line is: 

  OQ = BC = = = = = = AQ  

In the triangle on the right, first draw lines perpendicular to the line   OQ  at 
points A, B, C, and D (use a set square). 

Then draw lines perpendicular to the line QZ  that pass through the points 

where the lines you have just drawn cut the incline OZ . Finish drawing the 
steps so that you have a staircase like the one in the drawing on the left. 
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Note that in this way you can make steps with whatever depth of tread you 
want. The depth of tread that you choose determines the rise (the height of the 
step). 

Now in your notebook construct two right-angled triangles, with one of the 
perpendicular sides in each triangle measuring the same as the distance 
between point O and point Q in the previous figure. Draw this side 
horizontally. 

In the first of these triangles, draw the other perpendicular side shorter 
than the distance between Q and Z. 

In the second triangle, draw the other perpendicular side longer than the 
distance between Q and Z. 

In each of the triangles, on the side OQ  mark points A, B, C, and D at the 
same distance from O as the same points in the figure at the beginning of this 
unit. 

Construct steps with treads that are the distance from O to A, the distance 
from A to B, etc. 

Verify that, in each triangle, all the steps give the same result for: 
 

slope =
rise

. 

 
Which is greater, the slope of the hypotenuse of the first triangle or the 

slope of the hypotenuse of the second triangle? 
Choose a step in one of the triangles. Find the corresponding step in the 

other triangle. In which of them is the rise greater? 
Do the same with the other steps. 
You can see that the corresponding steps in the two triangles have the 

same tread, because that is how we constructed them. 
But the slope of the hypotenuse of the first triangle is less than the slope of 

the hypotenuse of the second triangle. That is why the rise of the steps 
constructed on the hypotenuse of the first triangle is less than the rise of the 
corresponding steps on the hypotenuse of the second triangle. 

 
b) Drawing steps with a given rise 
 
In this right-angled triangle we have started with points on the line that 
represents the wall. Two lines have been drawn perpendicular to   ZQ . Now 

draw a line perpendicular to OQ , passing through m'. 
With a set square it is very easy. Try not to go beyond the point where you 

cut the line nn'. You have just drawn a step with a rise equal to the distance 

tread
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between n and m. Now draw a step with a rise equal to the distance between n 
and q; and another one, with a rise equal to the distance between q and Z, and 
one more, with a rise equal to the distance between l and m. 

 

O

Z

n’

q

Q

n

m

l

m’

 
 

Figure 7.7 
 

If we ask you to find a step in which 
 

rise = dist (Q,l), 
 
do you understand? Once again we are using more symbols. We have already 
told you that we will be using more and more symbols. 

It will always be the same; if you understand properly the first time that we 
use a symbol, afterwards you just have to remember what the symbol 
represented. 

In this case we have simply abbreviated the words “with a rise equal to the 
distance between Q and l” and in their place we have put: 

 
rise = dist (Q,l) 

 
Do you think it’s difficult to indicate the step with 
 

rise = dist (m,n)? 
 
It shouldn’t be, because it’s the first one you drew. 
In your notebook, draw two right-angled triangles with one of the 

perpendicular sides more or less horizontal, because it is going to represent 
the floor of a staircase whose incline is the hypotenuse; the other 
perpendicular side will represent the wall. 

Put the same letters as before, O, Q, and Z, at the corners of each triangle. 
In the first triangle, on the horizontal line, which is where the O and the Q 

should be, mark five more letters, E, F, G, H, and I. Construct steps such that: 
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1. tread = dist (O,E) 
2. tread = dist (E,F) 
3. tread = dist (F,G), etc. 
 
In the second triangle, put the letters m, n, p, q, and r on the vertical line, 

 
1. rise = dist (m,n) 
2. rise = dist (p,q), etc. 
 
Verify that each of these examples gives the same result for: 
 

 
=

rise
. 

 
On this right-angled triangle draw two more perpendicular lines to 

marked by point m to the height marked by point n. Then put three more 
points on the hypotenuse (the incline) and draw perpendicular lines so as to 
make steps which, when you climb them, will take you from each point to the 
next. 

 

O

Z

Q

n

mm’

 
 

Figure 7.8 
 
In this example, once again verify that you get the same result for: 
 

 
. 

 
 

tread
vertical travel

horizontal travel

which is where you put the letters Q and Z. Construct steps such that: 

slope =

slope =
vertical travel

construct a step which, when you climb it, will take you from the height 

horizontal travel
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4.2. Description of the study 
 
 
The first diagnostic test was given at the end of the first year of secondary 
school, when the students were 13 years old. The population observed was 
classified on the basis of the three axes described in Section 2.5 of Chapter 3, 
with a view to carrying out case studies by means of videotaped interviews. 
Two students were selected from each class. The first part of the interviews 
was used to confirm the diagnostic test and check that the case actually 
corresponded to what was expected. 

The next stage consisted in observing the difficulties that appeared when 
the students were trying to use the notion of the slope of a straight line. The 
clinical interview also consisted in the provision of a teaching sequence in 
which the students analyzed various situations presented in terms of the 
construction and use of straight staircases. Of the various concepts, ideas, and 
actions that were employed, some favored the use of a new MSS stratum, 
whereas others proved to be genuine obstructions to the possibility of using 
the new signs competently in order to set processes in motion to find the 
correct solution of the problem situations presented to the students or 
considered by them in their processes of analysis. 

The following year, further interviews were conducted with the cases that 
seemed most interesting, in order to observe what types of obstruction were 
still present and which ones had undergone some kind of development to 
make it possible to acquire the competences required by the formal com-
petence component of the local theoretical model (LTM) that was being used 
to codify, analyze, and interpret the behavior of the students when they 
confronted the problem situations that they were given in order to acquire the 
organization of those competences, as envisaged by the teaching sequence of 
the LTM. 

For these interviews, therefore, problem situations were designed that were 
of the same kind as those that had been used the previous year. An important 
difference that appeared was the observation, in various cases, of the possibility 
of giving general explanations about why the slope of the incline remained 
constant despite the fact that it was calculated (in arithmetic terms) at different 
points on the staircase. 

An even more important advance appeared with students whom the 
diagnosis had indicated as being more capable in their previous history of 
using the competences in the three axes of the diagnostic test. This advance 
was achieved by using the elementary arithmetic MSS with the addition of the 
geometric signs that had to do with comparison of magnitudes, the properties 
of the variation of a slope, and other geometric notions such as angle of 
inclination, measurement of segments, and elementary operations with them; 
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in other words, by the use of a new stratified MSS, with which it was possible 
to give intrinsic explanations (i.e., within the new MSS) of the stability of the 
slope of the line, giving an account of the senses that the learner gave to the 
series of processes of analysis of the problem situations that he set in motion 
each time that he reached a correct solution. In short, this description of sense 
structured the steps that could be taken in the concrete examples presented by 
the teaching sequence in order to produce a proof of Thales’ Theorem when 
the magnitudes involved are commensurable. Thus, in the concrete cases in 
which the steps of a staircase appeared, it was possible to measure all the 
pertinent magnitudes with a unit of the decimal metric system, for example 
centimeters. 

 
 

4.3. A few particular observations 
 
 
We start this section by defining the terms “Egyptian model” and “Greek 
model” of the rational numbers, which we are going to use here. In broad 
outline, the Egyptian model uses an MSS stratum in which the rational numbers 
are conceived as equal parts of discrete or continuous wholes, but in which 
fractions represent the relationship between the part and the whole that contains 
it. This relationship is transferred to other wholes with their corresponding parts 
through what is called equivalence of fractions, understood as an arithmetic 
proportion. 

With this model, the second series of interviews in the case studies included 
a part of the observation that was intended to measure competence in the use of 
the unit of measurement and the relationship between two magnitudes when 
they have been measured, even though the units of measurement may be 
different. 

The Greek model is an MSS stratum developed on the basis of the usual 
language for designating linear magnitudes, the notion of order between them, 
the comparison between two magnitudes in which the notion of ratio is 
introduced, and finally the variation of one magnitude with respect to another. 
Thus, the language stratum in which one can describe a situation that 
illustrates the notion of the slope of a straight line presupposes a competent 
use of an MSS (with a strong geometric component) that contains operations 
between ratios and in which the concept of geometric proportionality has been 
mastered to the point at which ratios are expressed as stable “objects.” Its use 
permits the introduction of continuous linear functions and the start of their 
use as new objects with which it will be necessary to learn to perform new 
operations. 
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4.3.1. First observation 
 
 
The natural but wrong reply to question Q, which we mentioned in Section 
2.2, was given by all the students: when comparing the ratio between the 
height climbed and the distance traveled forward between two points, A and 
B, on a straight staircase, all the students said that the ratio at the higher point 
was greater, because both the height climbed and the distance travelled 
forward were greater. 

This blockage (see below, cognitive tendencies 5 and 6), in which the 
order between linear magnitudes was transferred to the order between ratios, 
had to be corrected, using the teaching model, by the arithmetic reading of the 
problem situation presented, using the Egyptian model. This correction was 
achieved only by some of the students, all belonging to the upper stratum of 
the diagnostic classification mentioned earlier. 

What is more, the error was transferred when the same question was asked 
but with one of the magnitudes increasing while the others remained constant, 
but this happened only when the Greek model was used, while the same 
question in the Egyptian model was answered correctly. This is an example of 
a circumstance that indicates that the arithmetic reading and the geometric 
reading of the situation are irreducible to one another. 

 
 

4.3.2. Second observation 
 
 
When the steps of a straight staircase constructed on an incline are introduced, 
the question in geometric language can be translated into a question about the 
relationship between the measurement of the height climbed (taking the rise 
of the steps as the unit) and the measurement of the distance travelled forward 
(taking the tread as the unit). Thus, for each point A, when a step finishes, 

AA'
OA'

≅ No.(A) × rise
No.(A) × tread

, 

 
where No.(A) is the number of steps from O to A. 
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O A’

A

rise
tread

 
 

Figure 7.9 
 

This new reading of the situation did not succeed in becoming pertinent in 
order to obtain a correct response to question Q, and the blockage persisted, 
even when the student had just discovered that the fractions that appeared in 
the arithmetic analysis of the situation were equivalent. Even when they had 

these results before their eyes, all the students repeatedly answered that 
 

B ′B
O ′B

 

was greater because  B ′B  and O ′B  were greater. 
 
 

4.3.3. Third observation 
 
 
Those who corrected the mistakes made in the teaching situation of the 
interview did so with the introduction of the measurement of the rise and the 

tread, answering that the rational numbers 
B ′B
O ′B

 and 
A ′A
O ′A

 were both reducible 

to the same decimal number by dividing the numerator by the denominator. 
 
 
4.3.4. Fourth observation 
 
 
When they realized that they had predicted something (in the geometric 
reading) that the arithmetic reading contradicted, the students of the upper 
stratum corrected their mistakes. They tended to give general geometric 
explanations, declaring that the step was the same at each point on the 
staircase because the incline was straight and “this straight line continues in 
the same way.” 

Once again we must point out that, although the same notation is used in 
the Greek model as in the Egyptian model (namely a/b) to designate the 
rational numbers that appear in the two language strata, these objects are not 
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the same, because their meanings are so different that if the same facts are 
described in the two language strata, the affirmation in one of them 
contradicts what is asserted in the other. 

 
 

4.3.5. Fifth observation 
 
 
The students who took part in the second interview were about 14 years old 
and were familiar with the teaching situation —the analysis of the situation of 
the straight staircase, which they had done during the first year of instruction, 
was intended to make them capable of producing texts and solving the 
following arithmetic equations: 
 

A ±  = B,  ± A = B, A/  = B/C, and /A = B/C, 
 
where A, B, C, and D are any rational numbers. 

At the same time, they also knew that the relationship 
A ′A
O ′A

 in the incline 

was constant, and that it was called the slope of the line. Despite their know-
ledge of the statements of Thales’ Theorem in this particular situation, the 
students continued with the same kind of blockage during the geometric 
reading. We can say, therefore, that familiarity with Thales’ Theorem is not 
pertinent for developing the competence required in order to answer question Q. 

 
 

4.3.6. Sixth observation 
 
 
Some of the learners of this age who were in the middle stratum according to 
the classification of the diagnostic test succeeded in achieving the desired 
correction, not by giving a general geometric explanation but by interpreting 
the situation through the arithmetic reading. Essentially, the interpretation of 
the straight line as the incline of a staircase enabled them, given points A and 
B, to construct a staircase with equal steps in which A and B defined steps. 

Here, the commensurability of the magnitudes involved was used, as they 
were always measured in units of the decimal metric system and it was always 
possible to imagine the steps as being of the size of the smallest unit that 

could be used. Thus, it is possible to convert 
OA
O ′A

 and 
OB
O ′B

 to rational 
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numbers whose numerators are a multiple of the measurement of the tread and 
whose denominators are the same multiple, but this time of the rise. 

This interpretation and the reading of question Q in this context is an 
intuitive proof in concrete terms of Thales’ Theorem in the case described. 
 
 
4.3.7. Seventh observation 
 
 
Part of the study indicates that proportional variation with discrete magnitudes 
is a necessary precursor in order to arrive at conclusions such as those 
described in the sixth observation. 

The recognition of the continuous linear variation represented by the 

equation 
 

OA
A ′A

= k  when A varies requires an interpretation of the slope of the 

straight line such as is made in the sixth observation. 
The possibility of representing lines using the Cartesian plane with 

algebraic expressions (linear equations) requires mastery of continuous linear 
variation. This is essential for an understanding of the possibility of having 
two related continuous variables, such as the ones that are described by 
equations like y = kx (the x and y that vary in direct proportion), and the fact 
that continuous linear variation can therefore be represented as straight lines, 
by translation to analytic geometry. 

 
 

4.4. The distinction between meaning and sense exemplified again 
 
 
Here we anticipate what appears in Section 3.1 of Chapter 8, because for the 
students involved in this study sense had to be provided in the new MSS by 
the use of new signs in the ways that were required by each of the steps in the 
process of analysis and solution, as we said in that section. 

In this study, students who were not yet competent in the use of the new 
MSS, corresponding to other strata of the diagnostic classification, were able 
to accomplish the linking of the various steps required for the solution, 
because they remembered the sequence presented by the teaching model, but 
most of the time they did so without sense. It was only when they had the 
senses with which they were provided by the concrete proof of Thales’ 
theorem that the concept of the slope of a straight line acquired stability. Then 
they were able to set in motion the processes of abstraction in this study too. 
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5. COGNITIVE TENDENCIES REVISITED 
 
 

At the beginning of this chapter, we made a list of cognitive tendencies that 
were observed when a learner was in the process of making himself 
competent in the use of a more abstract MSS than those used in the Teaching 
Model. We will make use of the list again in Chapter 8 when we provide an 
example to illustrate the dialectic process between the meaning of certain 
concepts and the sense of the processes used to acquire a competent use of 
those concepts. 

Here we use the same list of cognitive tendencies and relate them to the 
various steps and episodes that we described in Section 3 of this chapter when 
we analyzed the interviews described in Chapters 4 and 6. We will also add 
what we obtained in the study concerning the notion of the slope of a straight 
line, which we have just described in Section 4. 

 
 

5.1. The presence of a process of abbreviation of concrete texts  
in order to be able to produce new rules of syntax 

 
 
Consider Episode 1, and especially Episode 4 and Comment 3. See also 
Chapter 4 and Step H. 
 
5.2. The production of intermediate senses 
 
See Comment 2, the analysis of Step L made in Comment 3, and the process 
described in Step O. See also Section 3.4 of Chapter 8. 
 
 
5.3. The return to more concrete situations when an analysis situation 

presents itself 
 
 
This fact is always present in most of the actions of mathematical thinking 
and has been reported in many other studies (Filloy and Rojano 1984, 1985a, 
1985b, 1989). In the description that appears earlier, it can be seen in Step F 
and especially in Step J, where there is a return to using part of the concrete 
model that had already been discarded in previous steps. The return to a more 
concrete situation is also observed in Step M, and in Section 3.4 of Chapter 8. 
 
 



 CHAPTER 7 187 

  

5.4. The impossibility of setting in motion operations that could be performed 
a few moments before 

 
 
See the Introduction (Chapter 1), which contains a description of behavior of 
this kind when trying to solve the equation Ax = B. In Section 4 of this chapter 
the operation of fractions is inhibited by the presence of mistaken spontaneous 
readings of a geometric nature concerning the notions of ratio and proportion 
of magnitudes. See also Step F, in which, when arithmetic equations (Ax = B), 
the manipulative skills of which were totally mastered by the whole 
population, were presented in the sequence of steps described earlier, most of 
the students lost their great operational ability to solve such equations. 
 
 
5.5. Getting stuck in readings made in language levels that will not allow the 

problem situation to be solved 
 
 
See once again, in the reverse of multiplication syndrome, the observation 
about the performance of 12- to 13-year-old students when trying to solve 
problem situations based on the solution of the equation Ax = B, which we 
have already discussed in the Introduction (Chapter 1). In Section 4 of this 
chapter there is also an example of getting stuck in the mistaken geometric 
reading about the order of magnitude between ratios of magnitudes. Also, in 
Section 3 of this chapter this behavior can be found in Steps F and I, 
especially as a result of what is stated in Comment 2 about the dependence of 
sense on the concrete context in which the learner gets stuck. See also Section 
3.4 of Chapter 8. 
 
 
5.6. The articulation of mistaken generalizations 
 
 
See what is stated in the Chapter 1. 
 
 
5.7. The presence of calling mechanisms that cause the learner to get stuck  

in setting in motion mistaken solving processes 
 
 
In many cases, some learners cannot properly resolve what is described in 
Step F as a result of this behavior. For example, as we mentioned in the 
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Presentation chapter, when they try to find the side of a rectangle for which 
they know the area and the measurement of the base by using trial and error 
instead of using the operation of division. Many of the phenomena 
corresponding to cognitive tendency 9 are also due to this behavior. 
 
 
5.8. The presence of inhibiting mechanisms 
 
 
See what is stated in the Presentation chapter and in Section 3.4 of Chapter 8. 
 
 
5.9. The effect of obstructions derived from semantics on syntax and viceversa 
 
 
See what is stated in the Presentation chapter and in Section 3.4 of Chapter 8. 
 
 
5.10. The generation of syntactic errors due to the production of intermediate 

personal codes in order to produce senses for intermediate concrete 
actions 

 
 
Consider Step I and Comment 3. In the Introduction (Chapter 1) and chapter 4 
there is also a description of this cognitive tendency, in which one can see 
how the production of personal codes can generate mistakes of syntax. 
 
 
5.11. The need to produce senses for increasingly abstract networks of actions 

until they become operations 
 
 
All the steps in the clinical interview combine to provide an example of this 
assertion. See also Section 3.4 of Chapter 8. 
 
 
 

SUMMARY 
 
 

This chapter summarizes the two preceding chapters and advances toward the 
notion of sense within a mathematical sign system. We begin by illustrating 
the ideas through the example of a proof of the Thales Theorem. Here we 
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shall explain what the Greek model and the Egyptian model consist of for 
rational numbers. We then continue to explore the relationship of abstraction 
processes with the theoretical notions of meaning and sense, both for the case 
of solving linear equations and of proportional variation and the Thales 
Theorem. The presentation of the foregoing cases is based on the protocols of 
clinical interviews described by episodes and in terms of theoretical nature 
such as the mathematical sign system, language strata and mathematical 
texts. We finally recap the material presented in the chapter and identify a 
series of cognitive tendencies in the interview episodes, which is presented in 
the form of a table of correspondences (between episodes and specific 
cognitive trends). 

In the next chapter we further exemplify these cognitive tendencies in the 
context of research on a more advanced level of the use of algebraic sign 
systems. We advance also in the theoretical explanation of the role of the 
competence model in the description of the teaching model as a sequence of 
texts, and in the distinction between meaning and sense. 
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ENDNOTES 
 

1  See an earlier discussion on this issue In Filloy (1993b). 
 



 

CHAPTER 8 
 

MATHEMATICAL SIGN SYSTEMS. MEANING AND SENSE 
 
 
 

OVERVIEW 
 
 

The concepts of meaning and sense are central here, as in any semiotic 
treatment of algebraic language. We use these concepts to analyze the 
relationship between the theoretical approach and the commitment to the 
transformation of mathematical practices in the classroom. In other words, 
meaning and sense are related to the comparison between models of formal 
competence and teaching models. Once again we use cases developed to 
illustrate this relationship: the case of Thales’ Theorem, presented in Chapter 
7, and a new one introduced in this chapter, the case of the methods for 
solving systems of two equations with two unknowns, in which it is necessary 
to master algebraic substitution and the comparison of algebraic expressions. 
In this chapter we attach importance not only to teaching models but also to 
the role of the teacher as an active agent in the processes of communication 
and signification in the math classroom. 
 

 
 

1. INTRODUCTION 
 
 

Theoretical developments in research on mathematics education need to go 
hand in hand with working with teachers. We now explore one way in which 
this synergy can be achieved. 

 
 

1.1. Research and working with teachers 
 
 
On the basis of experimental results that are already known, work groups set 
up by teachers and researchers conceive new ideas for curriculum design and 
development, while at the same time new problems emerge that deserve the 
attention of future experimental research of the kind described in Chapter 3. 
Experience shows that total mastery by the teachers of the theoretical 
framework proposed is not necessary for experimental research of this kind to 



192 MATHEMATICAL SIGN SYSTEMS 

  

be rich in results that are useful for them and for dissemination of the results 
among other teachers to be possible. 

It is fortunate that this is the case, because otherwise we would be in an 
impasse in which the teacher, to be able to make use of the research  
outcomes, would have to become an expert in the bodies of knowledge that 
provide the basis for the theoretical frameworks (psychology, semiotics, etc.), 
and would also have to master the processing and interpretation of the data, 
which among other things would include advanced techniques for data 
analysis or processing of the observations carried out. This can be expected of 
only a minority of teachers in the existing systems of education, and therefore 
the research results would lack a concrete referent where they could be 
applied —they would be discourses devoid of content and totally ideologized. 

Nevertheless, we are certainly faced with the paradox of trying to find 
theoretical frameworks that are increasingly well supported by precise 
notions, described in increasingly sophisticated metalanguages, with 
increasingly powerful methodologies for processing information; but at the 
same time also trying to transform the teaching practices that are used in 
classrooms in the existing education systems. 

Finally, to be able to use, in all its richness and variety, what worldwide 
research has achieved in recent years it is necessary to create a new field in 
curriculum design and development (to be used in the controlled teaching 
mentioned in diagram B, presented in Chapter 3), belonging to this new 
branch of knowledge which aspires, on a theoretical level, to use all the forms 
of knowledge that can be brought into play, but which, on the other hand, 
finds its full justification in the possibility of the transformation of the 
systems of education. In Chapter 10 we propose that this should be developed 
in the future. 

In Chapter 10 we explore paths by means of which research on 
mathematics education can progress in the practice of transforming the 
existing systems of education, which makes its theoretical output meaningful. 
We now analyze experimental research, the practice most commonly used for 
impacting on the reproduction of theoretical knowledge and the expansion of 
its gnoseo-territory within the episteme, but not forgetting to mention that to 
this practice we must add others that are necessary to it and consubstantial 
with it: publishing output, research groups, conferences, seminars, 
symposiums, etc. 

Reference to diagrams A and B in Chapter 3 will enable us to shorten the 
analysis. The researcher has a meeting with the teachers to discuss a problem 
area (box 1 in diagram A) that is of interest to all. The team’s experience is 
used to put forward a preliminary plan that defines the lines of work required 
so that an initial analysis of the problems can be carried out (box 2 in diagram 
A); after some time this preliminary plan should become a project. At that 
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point the definitive design should already be clear (box 5 in diagram A) and 
trials should have been made of the instruments of observation, classification, 
and measurement and the curriculum development that will be used during the 
study of a system of controlled teaching (diagram B). 

Once a plan exists in which the problem area has been analyzed by 
structuring an ad hoc local theoretical model, the steps in diagram B are 
organized to disprove or add knowledge that will make it possible to verify 
the theses of the local theoretical model (LTM), and to refine and expand it to 
allow future studies, as shown in the final box in diagram B. 

A report on the observations is produced and a new LTM is designed, and 
writings are prepared in which all the theses, empirical results, and their 
interpretation are published in the form of articles or books. 

 
 

1.2. Proof and the formal model 
 
 
We begin this section with an analysis of how certain results attributed to the 
Greek mathematical philosopher Thales may have been proved.1 
 
1.2.1. What Thales may have been able to prove 
 
 
Thales is the first person who is credited with having discovered various 
mathematical results for himself. Among them are the following geometric 
results: 
 

[1] A diameter bisects a circle. 
[2] The angles at the base of an isosceles triangle are equal. 
[3] The opposite angles at the vertex where two lines intersect are equal. 
[4] Two triangles are congruent if they have one equal side and two equal 

angles. 
[5] The angle inscribed in a semicircle is a right angle. (This result was 

already known to the Babylonians some 1400 years previously. Later 
we will refer to it as Theorem C.) 

[6] The Fundamental Theorem of Geometric Proportionality for com-
mensurable magnitudes, which the pedagogical tradition of mathe-
matics calls “Thales’ Theorem.” We have presented a version of this 
theorem in Chapter 7. 

 
Some of these results must have been known considerably earlier, and of 

some it is simply said that they were stated by Thales. The important thing 
here is the belief that Thales used logical reasoning in order to show that these 
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assertions are true, and he did not do so on the basis of intuition, experi-
mentation, and repeated verification, as had been done until then. In any case, 
what is certainly true is that, whether Thales did so or not, a little later the 
most ancient Pythagoreans developed mathematics in a deductive manner. 

We now analyze proof in mathematics, through a discussion about the 
possibility that Thales did actually prove that the angle in a semicircle is a 
right angle (result [5] above). 

If Thales had known that the angle in a semicircle is a right angle, he could 
have proved Theorem T: “the sum of the three internal angles of any right-
angled triangle is equal to two right angles”. 

Suppose that BC is the diameter of a semicircle, O is the center and A a 
point on the semicircumference (Figure 8.1). 

 
A

B C
O

 
 

Figure 8.1 
 

Our reasoning is as follows: 
 
Thales knows [5], and therefore 
 

angle BAC is a right angle. 
 
If we draw OA, two isosceles triangles are formed, OAB and OAC (in both 

of which two of the sides are equal to the radius). 
 
Thales knows [2], and therefore 
 

the angles at the base of these triangles are equal. 
 
In other words, 
 

angle OCA = angle OAC and angle OBA = angle BAO [A] 
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Therefore the sum of angles OCA and OBA is equal to the sum of angles 
OAC and BAO, and by using [5] Thales concludes that this sum is a right 
angle [C]. 

 
By using [A] and [C] Thales can conclude that 
 

the sum of the three angles of the triangle ABC is equal to two right angles. 
 
This we will call Theorem [T]. 
 
It is also easy to see that any triangle can be divided into two right-angled 

triangles, as Figure 8.2 shows, and hence we can conclude that the sum of the 
internal angles of any triangle is equal to two right angles [T]. 

 
A

B C
D  

 
Figure 8.2 

 
If we analyze what we have just written, we see that, on the basis of 

knowing [2] and [5], Thales could have concluded another geometric result, 
[C], by means of logical arguments, and he could then have obtained [T]  
by the same kind of argument. This is an example of what deduction in 
mathematics means. 

There is something that immediately leaps to the eye as a result of this 
analysis: [A] and [5] could have been obtained by means of experimentation, 
that is, they could have been verified as valid in repeated observations made 
with triangles that had been drawn or found in nature. In fact, it is possible 
that Thales obtained them in this way. However, [C] or [T] are established by 
means of deduction, by the use of certain simple arguments, certain processes 
of reasoning that we describe as logical, which apparently have nothing to do 
with direct experimentation performed by using our senses. Yet when the 
ancient Greeks took [C] or [T] and experimented with real triangles, they 
actually came to the conclusion that [C] and [T] were true: in any triangle that 
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they drew, the correctness of [C] and [T] was verified (by means of their 
experimental procedures). 
 
1.2.2. Which of the two propositions came first, [C] or [T]? 
 
Let’s go back to our discussion about the possibility that Thales may have 
proved that the angle subtended by a diameter is a right angle [5]. We have 
seen that this might have led him to conclude, on the basis of simple 
reasoning, that the sum of the angles inside a triangle is equal to two right 
angles [T]. But if we look at the proof of [5] in Euclid’s Elements, we find 
that Euclid used [T] in order to demonstrate it. 
 

Euclid knows [T]: 
 

angle ABC + angle BCA + angle CAB = 2 right angles. 
 
Euclid knows [A]: 
 

angle OCA = angle OAC and angle OBA = angle BAO. 
 

A

B C
O

 
 

Figure 8.3 
 

And as 
 

angle BAC = angle BAO + angle OAC, 
 

he concludes that 
 

angle BAC = angle ABC + angle BCA, 
 

which, by substituting in [T], gives 
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2 times angle BAC = 2 right angles, 
 

in other words, 
 

angle BAC = 1 right angle. 
 
This is a case of the equivalence of two results. If we know [5], we can 

prove [T]. If we know [T], we can prove [5] (in both cases by using logical 
reasoning and other results such as [A], for example). 

 
1.2.3. Proof in mathematics 
 
Bearing in mind what we have just written, we teach students to construct 
proofs in Euclidean geometry by using various complementary proof tech-
niques. But, even though we might consider them as different proofs in our 
day-to-day work, in Wittgenstein’s conception, which we introduced in 
Chapter 5, what we have here, strictly speaking, is the same proof, but dressed 
up in two different ways. What matters is the grammar of the proof and not its 
style. 

The important thing is that, from the viewpoint of the internal relations 
between the concepts, essentially it is the same proof. That is, in terms of the 
problem posed in the previous section, the two proofs are the same in the 
sense that, whether we follow one route or the other, in either case we will be 
using the same rules. To conclude, a mathematical proof articulates the 
internal network of relations that make a mathematical proposition a rule of 
syntax. 

The essence of a mathematical proof, according to Wittgenstein, is that in 
itself it produces a grammatical (logical) rule. Thus the expression, the result, 
our conviction of its establishment, is the fact that we adopt it as a rule. It is 
worth repeating that what matters here is the internal relations that are 
established between various concepts with the acceptance of the new result: 
“the proof changes the grammar of our language, changes our concepts. It 
makes new connexions, and it creates the concept of these connexions.” 
(Wittgenstein, 1956, III, 31). 

 
 

1.3. The formal competence model and the teaching model 
 
 
When one is implementing a curriculum for use in controlled teaching (start 
of diagram B, Chapter 3) in an experimental study, the sequence of texts that  
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constitute the teaching model (as established in Chapter 5) is outlined – in 
order thus to be able to produce sense – by the formal competence model that 
has been adopted so as to be able to carry out the observation. Remember that 
the formal model provides the observer with a more abstract MSS which 
encompasses all the MSSs used in the process observed (Chapter 2, Section 
2.5). The sense produced by the sequence of texts in the teaching model (1) 
changes our language (making us competent in the use of a more abstract 
MSS); (2) changes our concepts; (3) creates new connections; and (4) creates 
the concept of those new connections. 

Let’s give an example to make this clearer. We will use an LTM to 
observe the use of an MSS that, as a stratum, forms part of almost any MSS. 
We are referring to competence in the use of natural numbers and their basic 
operations. 

There is a well-known controversy between those who declare that order is 
constructed from cardinality and those who maintain the opposite. Underlying 
this are the various positions on the matter in the philosophy of mathematics 
and in the foundations of mathematics. 

The construction by Von Neumann2 starts with a definition of natural 
number that sets out from the properties of order, which enables him 
subsequently to call on the properties of finite induction and thence define the 
notion of counting, cardinality, and the operations of arithmetic. A local 
theoretical model designed in order to observe interactions and contrasts in 
competences in the use of the notions just indicated would require an observer 
who has competences in the use of an MSS with which he could decode 
exchanges of messages at the point when someone (a teacher) with a good 
level of use (competent performance) of numeration and its operations tried to 
get a learner to attain that level of competence. 

Note that the teaching model to be used in the LTM proposed for the 
carrying out of the experimental observation will determine the formal 
approach that is useful: one along the lines of Frege, Von Neumann, Zermelo, 
Cantor, Dedekind, Poincaré, Couturat, Peano, Hilbert or perhaps someone 
else.3 

In order to make the foregoing paragraph clearer, let’s outline the steps 
that would have to be covered by controlled teaching that aimed to introduce 
natural numbers, counting and the elementary operations, and in which one 
wished to use the notion of order (between numbers) as early as possible: 

 
1. Introduction of the first numbers 0 = Ø, 1 = {Ø}, 2 = {Ø, {Ø}}, 3 = {Ø, 

{Ø}, {Ø, {Ø}}}, etc. 
2. Definition of ∈-ordered set. 
3. Definition of natural number, taking those of [1] as examples. 
4. Introduction of the principle of finite induction. 
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5. Definition of counting and various properties. 
6. Introduction of the operation of addition and its properties. 
7. Introduction of the operation of multiplication. 
 
We will not continue here with the more concrete version that could be 

used to work on the sequence of texts: our aim is to speak of algebra and 
various ways of teaching it with the use of concrete models, such as the one 
introduced in Chapter 4 for teaching how to solve linear equations, which is 
studied in the following chapter. 

A further example appears in Chapter 7, in which we discuss a teaching 
model that uses straight staircases whose organizing principle is the Fun-
damental Theorem of Geometric Proportionality, which teaching tradition 
attributes to Thales and the statement of which is: “If a straight line is parallel 
to one of the sides of a triangle, then it cuts the other two sides in proportional 
segments, and, inversely, if a straight line divides two of the sides of a triangle 
into proportional parts, then it is parallel to the third side.” 

 

A B

C

QP

 
 

Figure 8.4 
 
 
 

2. SIGNIFICATION AND COMMUNICATION 
 
 

2.1. Sources of meaning of MSSs 
 
 
The notion of MSS that is used to interpret observations in mathematics 
education must be broad enough to accomplish the tasks enumerated in the 
preceding chapters, and it must be accompanied by a notion of the meaning of 
sign that covers both the formal meaning of mathematics and its pragmatic 
meaning. 

Furthermore, the notion of MSS that is used must be efficient enough to 
deal with a theory of production of MSSs in which one is working with  
the systems of intermediate signs that the learner uses in teaching/learning 
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processes. During these processes it is necessary to correct the use of those 
intermediate MSSs so that by the end of the teaching process the learner  
will be competent in the desired MSS, which is the educational aim of any 
teaching model. 

Being idiosyncratic, some of the intermediate MSSs cannot be considered 
as MSSs owing to the personal character of the codes invented by the learner, 
which would not enable him to use that sign system in a broad process of 
communication because of the lack of an agreed social convention about the 
code. But as we are also dealing with observation of these processes of 
mathematical thinking, we must be prepared to study those sign systems and 
interpret the learner’s personal codes in order to discover the obstructions that 
are created by the tension of dealing with the various MSSs available to the 
user when he is trying to become competent in the use of a new MSS and 
achieve a good performance in terms of its socially determined pragmatic 
meaning. 

Any explanatory LTM must deal with four types of sources of meaning 
(see Kaput [1987, 1989] with respect to the first three): 

 
1. Of transformations within an MSS without reference to another MSS. 
2. Of translations across different MSSs. 
3. Of translations between MSSs and non-mathematical sign systems —

such as natural language or texts produced with visual images— and 
the sign systems used by those observed during teaching/learning 
processes that enable us to observe the cognitive processes of the 
learner and, from those psychological results, propose new hypotheses 
for an educational mathematics analysis of the teaching models 
involved in the experimental design of the LTM being studied. 

4. With the consolidation, simplification, generalization and correction of 
actions, procedures, and concepts of the intermediate MSSs created 
during the development of the teaching sequences proposed by the 
teaching component of the LTM being studied, these intermediate 
MSSs evolve toward a new, more abstract MSS in which there will be 
new actions, procedures, and concepts that will have as referents all the 
actions, procedures, and concepts belonging to the intermediate MSSs 
for use in new processes of signification. If the aims of the teach 
ing model are achieved, the new stage will have a higher level of 
organization and will represent a corresponding new stage in the 
cognitive development of the learner. 
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2.2. Meaning and sense 
 
 
In the processes described in the previous section, there is a need not only to 
give meaning to the signs of the MSS, but also to produce sense for the new 
expressions and the operations required in order to use them. One way of 
producing sense for them comes through the process of verification: for 
example, in order to give a new meaning to the term equality in algebraic 
equations, seeing them as being the equations in which it is possible to 
perform a series of operations in such a way as to obtain a value for the 
unknown, and, when this value is substituted in the left side of the equation 
and the operations indicated are performed and the same is done in the other 
side of the equation, the results coincide. 

As an example, see the behavior of Mt with item 26 in Subseries I-g, 
which is described in Chapter 4. 

 
 

2.3. The production of MSSs 
 
 
Whereas the first three sources of sign-functors (translations, in Kaput’s 
terminology) represent means of dealing with primitive expressions and ways 
of combining them (see Kaput, 1987, 1989), the fourth represents processes of 
abstraction and generalization by means of which compound signs can be 
named and manipulated as units and subsequently used in processes of 
signification to solve the new problem-solving situations with which the 
learner is confronted in the teaching sequences of the teaching component of 
the LTM. If, as in this case, we have to deal with learning/teaching processes, 
there is no way of avoiding these processes of abstraction and generalization 
as our main focus of observation, and we need a theory of the production of 
MSSs in which an abstraction-functor relates the various strata of inter-
mediate MSSs (used during the development of the teaching sequences) to the 
final, more abstract MSS (the aim of the LTM being studied). Subsequently, 
an analysis in mathematics education would interpret that evidence in order to 
propose new hypotheses that will have to be observed by means of the 
appropriate methodological procedures, by designing a new LTM. 
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2.4. Signification and communication 
 
 
To interpret observations in mathematics education it is necessary to develop 
the theoretical possibility of a unified approach for phenomena of mathematical 
signification and communication. Let’s make a preliminary exploration of the 
theoretical possibilities with a view to raising a few queries. 

We will give the name of general mathematical semiotic theory to the 
approach in question, capable of explaining sign-functors in terms of 
categories that underlie the sign systems correlated by one or more codes. 
This design can contain at least two different fields: (1) a theory of codes for 
MSSs, and (2) a theory of production of MSSs. In all this one must take into 
account a broad range of phenomena such as the common use of MSSs, the 
evolution of their codes, different kinds of communicative conduct in 
mathematical interaction,4 the use of MSSs for models of things or states of 
the world or some other theoretical sign systems, such as those used in 
biology, physics, etc. 

These notions enable us to distinguish an MSS from other sign systems, 
and to start to develop a notion of sign-functor that can be explained within 
the same theory of codes. This allows a distinction between “signification” 
and “communication”: in principle, a semiotics of signification involves a 
theory of MSS codes, whereas a semiotics of mathematical communication 
involves a theory of the production of MSSs. The theory of codes developed 
for these purposes will take into account rules of competence, formation of 
texts, and contextual and circumstantial disambiguation, and will propose a 
semantics that, within its own framework, solves the problems posed by a 
pragmatics of the use of MSSs. In Chapter 10 we propose various hypotheses 
for studying the use of the communication component of an LTM (see also 
the use that we give in the example at the end of this chapter). 

Our semiotic theory has the capability of offering appropriate formal 
definitions of any kind of mathematical sign-functor, whether or not they have 
been described or coded by the user. Thus, the typology of modes of pro-
duction of MSSs aims to propose categories capable of describing even those 
situations in which sign-functors that are not totally coded are present 
(conventionally considered by the teaching model) when they are being 
constructed through teaching processes. 
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2.5. Mathematical texts 
 
 
We have to face the fact that an MSS (with its corresponding code) exists 
when there is a socially conventionalized possibility of generating functional 
signs (by the use of a sign-functor), whether the domain of the functions is 
discrete units called mathematical signs or vast portions of discourse (which 
in Chapter 5 we called mathematical texts), in which a mixed concatenation of 
signs is produced. In this concatenation process signs are used that come from 
different sign systems (including natural language and the learner’s personal 
sign system which we mentioned earlier), assuming that the functional 
correlation of the textual space (Chapter 5) has previously been posited by a 
social convention – even in ephemeral cases, such as the didactic sign systems 
that appear during the intermediate steps in the sequences of certain teaching 
models (balance scales, sets of objects, spreadsheets, Logo environments, 
diagrams, etc.), which will subsequently have to be set aside, in the future use 
of the MSS, by the same process of abstraction. 

On the other hand, there will be a process of communication when one 
uses the possibilities provided by an MSS for the physical production of 
expressions for many practical purposes –in particular, the meaningful 
manipulation of objects is a mathematical text. 

These processes of performance require processes of signification, the 
rules (discursive competence) of which must be taken into account by the 
cognitive (theoretical) component of the production of mathematical signs 
when they have already been coded, because, as we mentioned in Chapter 5, 
we are going to be interested in observing how new competences are acquired 
by the user with the expansion of those intermediate MSSs to other new ones 
that contain them. 

In Chapter 5 we gave a definition of a teaching model as a sequence of 
problem situations, a sequence of mathematical texts Tn, the production and 
decoding of which by the learner eventually enables him to interpret all the 
texts Tn in a more abstract MSS. We are now going to examine the relations 
between meanings in an MSS and the sense provided by the sequences of 
texts Tn at the point when a more abstract MSS is produced. In Section 4 of 
this chapter we provide a succinct presentation of the results of an empirical 
study that makes use of the cognitive tendencies mentioned in Chapter 7, and 
also the production of sense, by the introduction of two different methods of 
solution, which lead to two different meanings of the equals sign when one  
is learning for the first time to solve systems of two equations and the 
corresponding word problems. 
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3. MEANING AND SENSE 
 
 

3.1. The sense of a succession of texts 
 
 
In a new MSS, sense is provided by the use of new signs in the ways in which 
they are required by each of the steps in the process of analysis and solution, 
in view of the whole sign system associated by the concatenation of actions 
set in motion by the process of solving the various problem situations which 
were previously considered irreducible to one another. Now these situations, 
thanks to the use of the new MSS, are solved with processes that are 
established as being the same, that is, processes that are transferred from  
the solution of one problem to another, converting what was previously a 
diversity of problems into what can now be called a family of problems, all 
the members of which can be solved by using the same process. 

Learners who are not yet competent in the use of the new MSS may 
perform the linking of the various steps required by the solution because they 
remember the sequence proposed by a teaching model, but generally they do 
so without sense, and at any small obstruction or variation in the problem 
situation they revert to using propositions that they had previously recognized 
as mistaken. Only when they are in possession of the senses that the sequence 
of texts Tn (provided by the teaching model) gives them, only then will the 
new concepts acquire stability. These senses (of use) provide the new MSS 
with more abstract signs, because such signs have as referents signs of a 
greater quantity of MSS strata, related to one another. 

 
 

3.2. Teaching models and stratified MSSs 
 
 
What we use for thinking mathematically and for communicating what we 
think to others is a collection of stratified MSSs whose codes are interrelated 
in such a way that it is possible to produce texts for the decoding of which it is 
necessary to make use of several of those strata. Moreover, the production of 
text0s uses actions, procedures, and concepts whose properties are described 
in one or another of the strata. 

Two texts, T and T', both products of the use of an MSS, L, will be called 
transversal when the user cannot create T in the same way as in the decoding 
of T' – that is, if T is not reducible to T' by the use of L. What really happens 
is that the learner can produce T and T' but cannot recognize the two  
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decodings as a product of the use of the same actions, procedures, and 
concepts of the various strata of L. 

If we now have another stratified MSS, M, in which T and T' can be coded 
and the production of both can be described by means of the same actions, 
procedures, and concepts in M, the meaning of which has as referents the 
actions, procedures, and concepts used in the decoding of T and T' in the 
strata of L, then we will say that M is a more abstract stratified MSS than L 
for T and T'. 

In order to accomplish this, the objects, actions, procedures, and concepts 
used in M have lost part of their semantic-pragmatic meaning: they are more 
abstract. 

This brief description of how we can define the abstraction-functor 
enabled us in Chapter 5 to give a definition of a Teaching Model as a set of 
sequences of mathematical texts Tn whose production and decoding by the 
learner eventually enables him to interpret all the texts Tn in a more abstract 
MSS whose code makes it possible to decode the texts Tn as messages with a 
socially well-established mathematical code, the one posited by the 
educational aims of the teaching model. 

The analysis of how the competences necessary for developing these 
processes of decoding the text sequences Tn are acquired by the learner in 
order to become a competent user of the MSS F (i.e., the MSS described in 
the formal competence component) is part of an educational mathematics 
study of the teaching model that must take into account the cognitive 
processes described by means of the cognitive component of the LTM being 
studied. We now give an example of an empirical study that, although in 
abbreviated form, we think will help to make the distinction between meaning 
and sense clearer. 

 
 
 

4. TWO MEANINGS OF THE EQUALS SIGN AND THE SENSES OF THE METHODS  
OF COMPARISON AND SUBSTITUTION 

 
 

4.1. The methods of comparison and substitution and the equals sign 
 
 
In this section we analyze the meanings of the equals sign generated by the 
production of the sense of the methods of algebraic comparison and 
substitution when solving problems with two unknowns and systems of 
equations. To do so we will use parts of an experiment carried out with 13- to 
14-year-old children, providing a brief description of the components of its 
LTM. The introduction of these methods was effected in the teaching model 
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by means of a process of extension of the syntax and significations just 
learned for the solving of problems of linear equations with one unknown. By 
this process some users were able to give sense to the methods and they thus 
generated the new meanings required. 

In Chapter 7 we used the notions of meaning and sense for the analysis of 
the processes of learning and of the creation of rules that make it possible to 
coordinate the actions carried out in the solving of problems with one 
unknown by means of concrete models (see also Filloy, 1991; Filloy and 
Rojano, 2001; Filloy, Rojano and Solares, 2002). We now make use of these 
notions to study the transition from the representation and manipulation of 
one unknown to the representation and manipulation of an unknown that is 
given in terms of another unknown. This transition actually corresponds to a 
didactic cut (see Chapters 4 and 6). The new representation of what is not 
known is used in the methods of comparison and substitution in such a way as 
to make it possible to reduce a problem with two unknowns to a problem with 
just one unknown, and then the syntax learned previously can be applied to 
solve linear equations with one unknown. 

In the special case of system S1, the method of comparison consists in 
comparing two sequences of operations on one of the unknowns and on the 
given values, which make it possible to calculate the value of the other 
unknown. Consequently, two ways of calculating the value of one of the 
unknowns are equated. 

 

  
S1 : y =12 − x

5x −6 = y
⎧ 
⎨ 
⎩ ⎪ 

 
 

In the case of system S2, the method of algebraic substitution consists in 
introducing into the first equation the y in the second equation given by the 
sequence of operations, which makes it possible to find its value. In this way, 
one sequence of operations is substituted into another sequence of operations. 

 

  
S2 : x + y = 12

5x −6 = y
⎧ 
⎨ 
⎩ ⎪ 

 
 

The study was carried out with students aged 13 or 14. For them, the sense 
of these methods was given by the concatenation of all the actions performed. 
Indeed, at the beginning of the learning process these sequences of actions 
were not yet endowed with sense. Both the increase in the syntactic 
complexity of the relations between the data and the unknowns and the 
variations in the numeric domains of the data or the solutions could obstruct 
the applications of the methods and the spontaneous solving strategies. At that 
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point, a reading based on the more concrete strata of the new MSS did not 
allow the student to identify the variations in the problem situation as 
members of the same family of problems. Only by the acquisition of the sense 
provided by the sequence of mathematical texts in the teaching model could 
they be identified as members of the same family of problems, capable of 
being solved by the same process or sequence of actions. Then the new 
notions and the new notion of equality attained stability. Earlier results on the 
meanings of equality are described in Matz (1982), Kieran (1981), Kieran and 
Sfard (1999), and Drouhard (1992). 

In Chapter 4, Section 5.3.2, we have seen how one of the students 
interviewed in another study generated what is described in the literature as 
the “algebraic” meaning of the equals sign, by solving the equation 10x – 18 = 
4x + 6. 

 
Mt: […] if I take the value of x and do this operation [pointing to 10x – 18], I get a result. 

That result has to be the same as this [pointing to 4x + 6]. 
 

 
4.2. An LTM for the methods of algebraic comparison and substitution 
 
 
The study was carried out with 12 children at the Centro Escolar Hermanos 
Revueltas in Mexico City during the academic year 1987–88. Clinical 
interviews were conducted and videotaped. The children had already received 
instruction in pre-algebra and had been introduced to elementary algebra 
through the solving of linear equations with one unknown and word problems 
connected with those equations, but the teaching had not yet introduced them 
to the systematic use of open algebraic expressions or to systems of linear 
equations. 

Diagrams A and B in Chapter 3 describe the development of the study. We 
now give a brief description of the components of competence, teaching, and 
cognitive processes in the LTM. In Section 4.4.3 we mention the 
communication component. 
 
4.2.1. The formal competence model 
 
We created the formal competence component in the LTM from the syntax 
model for simple algebraic expressions and equations developed by Kirshner 
(1987) and completed by Drouhard (1992). We also incorporated the elements 
of semantics proposed by Drouhard (1992) for studying the significations of 
algebraic writings. However, although those studies on algebraic syntax and 
semantics produced important results for teaching, such as Drouhard’s 
definition of formal automaton for learners who concentrate their attention on 
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the rules that have to be applied (sens in Drouhard’s sense) and not on the 
truth value of the results obtained (dénotation in Drouhard’s sense), they did 
not include in the analysis the spontaneous use that learners make of the 
elements of algebraic language that they already possess in order to solve the 
new problems. 

This formal competence model enabled us to study the syntactic 
complexity of the methods of algebraic substitution and comparison for the 
solving of systems of equations. We will not expound that study here but will 
simply say that from that study it transpired that the method of substitution is 
more complex than that of comparison. 

 
4.2.2. Teaching model 
 
On the basis of the analysis carried out in the formal competence component 
we adopted the following teaching route for the introduction of the methods, 
setting out from the competences previously acquired for the solution of linear 
equations with one unknown: (1) Reduction of the system of two equations 
with two unknowns to one equation with one unknown by applying algebraic 
comparison or substitution. (2) Solution of the equation with one unknown by 
applying the syntax previously learned. (3) Substitution of the numeric value 
found in either of the two equations. (4) Solution of the equation obtained by 
applying the syntax previously learned. 
 
4.2.3. Cognitive processes model 
 
For the definition of the cognitive processes model we used the list of 
cognitive tendencies presented in Chapter 7. The ones that were particularly 
important in the present study are numbered as follows in that chapter: (2) the 
production of intermediate senses; (3) the return to more concrete situations 
when an analysis situation presents itself; (5) readings made at language 
levels that will not allow the problem situation to be solved; (8) the presence 
of inhibiting mechanisms; (9) the effect of obstructions derived from 
semantics on syntax and viceversa; (11) the need to produce senses for 
increasingly abstract networks of actions so that they become operations. 
 
 
4.3. Items in the interview 
 
 
The list of items is divided into two sections: word problems and purely 
syntactic tasks. The list of items presented to each student was allowed to 
vary, depending on the cognitive tendencies encountered during the interview. 
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Nine word problems were presented. Here are three examples: 
 

The sum of two numbers is 90. If one of them is added to 16 and then 
multiplied by 5, the result is 360. What are the numbers? 
The difference between two numbers is 27. We know that 7 times the 
smaller number plus 30 gives 12 times the same number (the smaller one). 
What are the numbers? 
The perimeter of a rectangle is 5 times the width. The length is 12 meters. 
What is the width? 

 
The syntax questions were: 

 
S.1 
 
S.2 
 
S.3 
 
S.4 
 
S.5 
 
S.6 
 
S.7 
 

x + 2 = 4 
x + y = 8 
x + y = 10 
x – y = 4 
x + y = 9 
2x + 3y = 23 
x + y = 12 
5x – 6 = y 
x + 33 = 48 
x + y = 73 
14 + x = 37 
4 – y = 28 
45 – x = 17 
x + y = 41 

S.8 
 
S.9 
 
S.10 
 
S.11 
 
S.12 
 
S.13 
 

x + y = 60 
3x = 171 
2 × (x + 6) = 84 
x + y = 104 
4 × (x – 8) = 72 
x + y = 17 
3x + 4 = 22 
4x + 2y = 34 
3 × (8 + x) = 6 
2x + y = 23 
2 × (3 – x) = 6 
4x + 3y = 12 
 

S.14 
 
S.15 
 
S.16 
 
S.17 
 
S.18 
 
S.19

4 × (3 – x) = 4 
x + y = 13 
x – y = 1 
x + y = 5 
y – 6 = 3x + 20 
5y – 4x = 64 
3x + 8y = 84 
8x + 3y = 59 
4x – 3 = y 
6x = y – 7 
3x – 2 = y 
5x = y + 8 

 
 
4.4. The empirical study. Observations 
 
 
We now present a few extracts from the analysis of the interviews in two 
cases from the upper stratum, Mn and Mt, and one case from the middle 
stratum, L. From these cases it is possible to describe different ways of giving 
meaning to the new algebraic objects, the ones obtained by the production of 
the sense of the methods of comparison and substitution. 
 
4.4.1. Trial and error 
 
This appeared as a spontaneous solving strategy in all the cases analyzed and 
it was connected with the spontaneous readings that the learners made of the 
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first systems of equations with two unknowns. This is the trial–and–error 
strategy used by L (cognitive tendencies 2 and 3). 
 
S L 3 
x + y = 9 
2x + 3y = 23 
 

L writes 
0 + 9 
1 + 8 
2 + 7 
3 + 6 
4 + 5 
5 + 4 

 
He crosses out the last line. Then he 
points to each line, starting with the 
first. He stops at 4 + 5 and writes: 
 
 4 5 

8 
15 
23 

 
L: The numbers are 4 and 5. 
I: Four and five? 
L: Yes. The first thing I did was to find the 

possible sums that come to 9, and then, 
by trial and error, 2 times 1 is 2 [pointing 
to 1 + 8] … and see if they add up. 

L interprets this pair 
of equations as be-
ing “linked,” i.e., 
equations in which 
the x and the y have 
the same value. 
L writes down the 
various ways of 
obtaining 9 by add-
ing two positive 
integers, then he 
performs the opera-
tions on the un-
knowns indicated in 
the second equation 
until he finds the 
values of the un-
knowns with which 
he can obtain 23. 

 
As we will see later, these spontaneous readings and strategies may 

become obstructions for the learning of general methods of solution such as 
comparison and substitution (cognitive tendencies 5, 8, 9). 

 
4.4.2. The difficulties in producing sense for comparison and substitution and 

for the meaning of the equals sign 
 
There are two obstructions in the application of the method of algebraic 
comparison: the reading of the objects (unknowns and data) and of the 
operations in the context of positive whole numbers, and the lack of 
knowledge necessary for establishing the new equality, that is, algebraic 
equivalence (tendencies 2, 5, 8, 9). 
 



 CHAPTER 8 211 

  

S Mt 18 
 
4x – 3 = y 
6x = y – 7 

Mt wants to obtain the value of y. 
She transforms the system into: 
 
4x – 3 = y 
6x + 7 = y 
 
but she does not compare the two 
expressions, and instead she tries 
to find the solution among the 
positive whole numbers by trial 
and error. 
 
Mt: Here [pointing to 4x – 3 = y] it says 

that four times x minus three is equal 
to y, and here [pointing to 6x + 7 = y] 
six x … plus seven! … is equal to y. 
This [pointing to the y in 6x + 7 = y] 
must be bigger than this [pointing to 
the y in 4x – 3 = y]. 

Mt is capable of solving 
equations with one 
unknown, regardless of 
the numerical domains 
of the numbers in the 
operations and the 
solutions, and the 
complexity of the 
algebraic structure of 
the equations. 
Also, she applies 
comparison in the case 
of systems of equations 
derived from word 
problems in which the 
same unknown is 
isolated in the two 
equations and the 
solutions are positive 
integers. 

 
The difficulties encountered in producing sense for the method of 

algebraic substitution have to do with the readings given to the representation 
of the unknown in terms of the unknown on various levels of abstraction, and 
with the inhibition against using algebraic substitution. Moreover, as was to 
be expected from the analysis performed with the formal competence model, 
we find that the meaning given to the equals sign when it is used to equate 
two sequences of operations that make it possible to calculate the same value 
is different from the meaning given to it when algebraic substitution is 
applied. 

 
4.4.3. Different levels of abstraction: the case of names 
 
The communication model enables us to establish the difference in the 
readings given by the interviewer and the student. Indeed, when a competent 
user applies the method of algebraic substitution he makes use of the 
equivalence of two expressions knowing the sense of the method, knowing 
that it will lead him to find a unique value for x and y, if there is one. For 
example, in the system S2 presented in Section 4.1 a competent user considers 
the expressions 4x – 3 and y as being equivalent, for him they are 
representations or names of the same object: the unknown y. But the 
spontaneous readings made by learners concentrate on the sequence of 
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operations performed in order to calculate the value of the unknown y, as they 
say when they are asked in the interview. This difference in the meanings 
attributed to algebraic expressions is present in any process of teaching 
algebra where the teacher is a competent user and the students are learners, 
generating difficulties such as those reported here (tendencies 2 and 5). 
 
4.4.4. The criss-cross method 
 
Mn invented a method of solution that, in combination with trial and error, 
enabled him to solve all the systems of equations that were presented to him. 
His method of solution, which he called “criss-crosses,” consisted in adding 
the left side of one of the equations to the right side of the other, simplifying 
by elimination of terms, and, if possible, isolating one unknown in the 
simplified equation. In some cases, with the criss-cross method one can obtain 
equations with one unknown. The application of this method maintains the 
equivalence of the different sides, and also the value of the unknowns. Mn 
added not only numbers or identical expressions but also complete algebraic 
expressions. 

Here is an example of how Mn solved a system of equations using a 
combination of the criss-cross method with his strategy of trial and error. 

 
S Mn 17 
3x + 8y = 84 
8x + 3y = 59 

Mn: I get 8x + 3y + 84 = 3x + 8y + 59 by mixing the two together. What 
I get is that if I take this [pointing to the left side of the second 
equation] and add this [pointing to the right side of the first 
equation] it will give me the same as if I take this [pointing to the 
left side of the first equation] and add this [pointing to the right side 
of the second equation] because the two are equivalent. 
If I eliminate 3x from here [pointing to 8x + 3y + 84 = 3x + 8y + 59] 
… well, and at the same time I eliminate 3y while I’m at it, I get 5x 
+ 84 = 5y + 59 … which gives me 5x + 25 = 5y, from which I 
deduce … so now, if I divide it all by 5, I get y = x + 5. So I deduce 
that x is 5 less than y … 
Now let’s see. What’s the equivalence? How much is x and how 
much is y. 
For example, if I make x equal to 4, for the sake of argument … no 
it can’t be 4 because it just can’t. If, well, x is 4 and so y is obviously 
9, then I get [pointing to 3x + 8y = 84] 12 [multiplying 3 by 4 in his 
head] plus 9 times 8, which comes to 72. 12 + 72 = 84, which is 
right. 
Now I’ll check the other one [pointing to 8x + 3y = 59], which says 
that 8x, which is 32, plus 27 [multiplying 3 by 9 in his head] equals 
59. 
I check it and I see that they’re both correct, so I deduce that x = 4 
and y = 9. 
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Mn has no difficulty with the numerical domains of the equations and 
systems that he has to solve. His strategies of canceling and simplifying are 
strongly linked to the extension of the meaning of the equals sign established 
in an equation. His strategy of trial and error, which in this case is reduced to 
a minimum, is based on his ability to perform numeric calculations mentally, 
his mechanisms for anticipating the numeric values that have to be obtained, 
and his coordination of the actions carried out (cognitive tendency 11). 

 
4.4.5. Inhibition against the use of substitution 
 
The design of the interview was focused on getting the students to use the 
method of substitution, and therefore, toward the end of the interview, they 
were provided with one of the unknowns isolated on one side of the equation. 
However, although Mn had sufficient syntactic competence to generate a 
comparison method of his own, the criss-cross method, he kept away from the 
possibility of using the method of substitution (cognitive tendencies 5 and 8). 
 

 
 

SUMMARY 
 
 

The contents of this chapter are eminently of a theoretical nature. The chapter 
deals with emphasizing the role of the formal competency model (one of the 
components of a local theoretical model) in the description of the teaching 
model as a succession of texts. The foregoing is illustrated through a local 
theoretical model for competency in the use of natural numbers and their 
basic operations. Under the heading of signification and communication, we 
deal with the topics of source of meaning for a mathematical sign system; 
meaning and sense; and production of mathematical sign systems. Finally in 
order to make the difference between meaning and sense more clear, we resort 
to the clinical study of operating unknowns at a second level of representing 
unknowns (the context of solving two linear equation systems with two 
unknowns) in which the meanings of the equal sign are related to the senses 
of the comparison and substitution solving methods. 

In the next chapter all the theoretical notions developed in the book are 
applied to the study of algebraic problem solving. 
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ENDNOTES 
 
1 No texts by Thales have been conserved but only indirect accounts of his works. Our 
interpretation of what Thales knew is based on Heath (1921). 
2 See Von Neumann (1923) and compare with Zermelo (1909). An introduction for the use of 
middle school teachers can be found in Hamilton and Landin (1961). A discussion of a 
philosophical nature can be found in Benacerraf, “What numbers could not be,” included in 
Benacerraf and Putman, eds. (1983), pp. 272-294. 
3 For other definitions of “natural number” or, more generally, “ordinal number,” see 
Bachmann (1955) and Isbell (1960). 
4 An example of classification of communicative exchange behavior can be seen in Brousseau 
(1996). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

CHAPTER 9 
 

SOLVING ARITHMETIC-ALGEBRAIC PROBLEMS 
 
 
 

OVERVIEW 
 
 

The chapter begins with an Introduction in which we shall refer to the work of 
other authors who broach different aspects of arithmetic-algebraic problem 
solving. Those aspects include the arithmetic or algebraic nature of the 
problems; the relation of that nature to the underlying structure of the word 
problem and to the processes of translating the problem into a mathematical 
sign system; and the entrenched nature of arithmetic-type reasoning that may 
eventually inhibit implementation of algebraic solution strategies or methods. 

Afterwards we refer to classical methods, such as the Cartesian Method, 
and non-traditional methods for solving problems in order to discuss cognitive 
aspects such as that of the problem of transference, the competent use of the 
logic-semiotic outline, the strata of mathematical sign systems used as 
representations, and the use of primitive methods and their relationship with 
the use of memory. 

The sense of the text of a word problem with the use of the Method of 
Successive Analytic Inferences (MSAI) is determined by the logical numeric 
structure presented in the problem situation. This thesis permeates all others 
to be discussed subsequently. 

We present also results from empirical studies concerning the compe-
tencies that are necessary for the use of four teaching models based on four 
methods for solving arithmetic algebraic word problems: the Method of 
Successive Analytical Inferences (MSAI), the Analytic Method of Successive 
Explorations (AMSE), the Spreadsheets Method (SM), and the Cartesian 
Method (CM). We stress the need to be competent in increasingly abstract and 
general uses of the representations required to attain full competency in the 
algebraic method par excellence, which here is called the CM, contrasting it 
with the competencies required by the other three methods, which are rooted 
more in arithmetic. These methods are related to competency in usage of 
different language strata of the algebra sign system and to the appearance of 
cognitive tendencies within this context of solving word problems. 
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1. INTRODUCTION 
 
 

The topic of arithmetic-algebraic problem solving has been extensively 
studied, both in the curricular realm (Bell, 1996) and with regard to the 
cognitive and change of focus demands represented by the activity for 
students in their transition from arithmetic to algebra (Bednarz and Janvier, 
1996; Puig and Cerdán, 1990; Filloy, Rojano and Rubio, 2001). The 
researchers who have dealt with these problems have at the same time had to 
face the difficulty of specifying the differences between arithmetic and 
algebraic problems. The foregoing has led to discussions as to whether or not 
it is possible to make a dichotomic classification of this type because the 
elements that make up a word problem are apparently insufficient for its 
characterization. It seems that it is the relationship of those elements with the 
solution strategies put into play by the problem solvers that defines the 
arithmetic or algebraic nature of the entire activity. 

One of the studies in algebra dealing with problem/strategy relations is that 
undertaken by N. Bednarz, L. Radford, B. Janvier, and A. Lapage (1989). 
Their findings show the influence wielded by by the structural factors of a 
problem in the solution strategies applied by pre-algebraic students. In their 
work, the latter researchers use an analytical framework for the problem 
types, in which they consider the “relational claculation” proposed by 
Vergnaud (1982) on the one hand, and the result of analyzing the problems 
that correspond to the arithmetics and algebra sections in textbooks, on the 
other. The results of their empirical work, developed within the foregoing 
framework, suggest the existence of differences between the “relational 
calculation” upon which an arithmetic mode of thought is based and the 
“relational calculation” upon which an algebraic mode of thought is based. 
That is to say, the mode of thought –be it arithmetic or algebraic– appears to 
be determined by the type of “relational calculation” that underlies the 
problem structure.  And it is in this sense that the authors give themselves 
leave to speak of “algebraic” problems and of “arithmetic” problems (Bednarz 
and Janvier, 1996). 

L. Puig and F. Cerdán refer to the nature of word problem solution, 
analyzing the processes of translating the text expressed in natural language 
into an expression through which the problem can be solved. Depending on 
whether the translation process leads to an expression that only involves 
givens or an expression that involves an unknown in the chain of operations 
(equation), the problem solution is said to be of an arithmetic or of an 
algebraic nature, respectively. The latter authors resort to two general 
methods in order to analyze said translation processes: the analysis and 
synthesis method and the Cartesian Method (Puig and Cerdán, 1990). Later in 
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this same chapter, we expound upon what those methods consist of and how 
they are used to classify the forms of translation. 

However in studying the transition toward algebraic thought within in the 
field of problem solving, the issue of deep-seated attachment to arithmetic 
modes of solution also arises as an unavoidable topic.  One of those modes  
is that of proportional reasoning. Studies such as that carried out by  
L. Verschaffel et al. (2000) demonstrate that students 12 years of age and 
older tend to apply proportionality in an over-generalised manner, for instance 
to non-linear cases or to cases that require purely algebraic procedures. What 
is more, an extrapolation of those methods has been found to be present in 
students beyond the secondary level in their attempts to solve probability or 
differential calculus problems (van Dooren et al., 2003). In this chapter, we 
analyze the relations between arithmetic and algebraic problems solving 
methods, specifically taking students’ tendency to remain anchored to an 
arithmetic mode of thought into consideration.  The classification of problems 
is focused on the Family of Problems idea and the evolution toward mastery 
of the Cartesian (or algebraic) method is analyzed by way of progressive 
symbolization usage and of overcoming the difficulties that arise from a series 
of cognitive tendencies that act as obstructors of algebraic-type reasoning. 

For consistency as regards the theoretical elements presented in previous 
chapters, we use the notion of a “more abstract” or “less abstract” mathematical 
sign system (MSS) and to that of intermediate strata of MSS in order to 
undertake our analysis of the evolution toward the Cartesian Method. 
 
 
 
2. THE SOLUTION OF PROBLEM SITUATIONS IN ALGEBRA. COGNITIVE ASPECTS 

 
 

To approach this issue we shall consider three classic methods for solving 
problems, and shall return to them later, when we describe an empirical study 
on a specific use of these methods in the solution of arithmetic/algebraic 
problems. 
 

1) What we call the Method of Successive Analytic Inferences (MSAI), 
which is in fact the Classic Analytic Method for solving problems. In 
this method, the statements of the problems are conceived as 
descriptions of “real situations” or “possible states of the world,” and 
consequently these texts are transformed by means of analytic 
sentences, i.e., using “facts” that are valid in “any possible world.” 
These analytic sentences constitute logical inferences that act as 
descriptions of transformations of the “possible situations” until the 
solver comes to one that is recognized as the solution of the problem. 
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2) What we call the Analytic Method of Successive Explorations (AMSE). 
In this solving method the solver uses explorations with particular data 
to set in motion the analysis of the problem and thereby its solution. 

3) What we call the Cartesian Method (CM), which is the usual approach 
to problem solving in current algebra texts. In this method, some of the 
unknown elements in the text are represented by means of expressions 
belonging to a more abstract MSS, and the text of the problem is then 
translated to a series of relations expressed in that MSS that lead to one 
or various texts, the decoding of which, via a regression in the translation 
to the original MSS, produces the solution of the problem. 

We are interested in describing what kind of difficulties, obstacles, and 
facilities are produced by the use of each of these three methods for solving 
the word problems that appear in textbooks. But we are particularly interested 
in what kind of competences are generated by the use of the AMSE, in order 
that the user may come to be competent in the use of the CM, and which of 
the competences generated by the MSAI are necessary for competent use of 
the CM, given that the teaching objective is competence in the use of the CM. 

Some experts and many beginners, when they use an MSS, spontaneously 
resort to the use of particular values and operate with them in order to explore 
and thus solve certain problems, since the use of particular data and their 
operation spontaneously provides meanings in a more concrete MSS to the 
relations that are immersed in a problem, and in many cases this produces 
more possibilities that the logical analysis may be set in motion. With the use 
of a more abstract MSS it is hard to capture the sense of the symbolic 
representations, as they are more abstract, and therefore it is hard to find 
strategies for solving the problem. 

To solve more complex problems it is necessary to advance in the 
competence to make logical analyses of problem situations. But to be able to 
set in motion the analytic reasoning required for problem solving, it is 
necessary that certain obstructers should not be present, and that there should 
not be uncertainty about the tactics that need to be used to solve the problem, 
and in order to progress in all this it is necessary to advance in intermediate 
tactics immersed in the uses of the strata of the intermediate MSSs that are 
being used. We will explore these matters in what follows. 

 
 

2.1. Competent use and cognitive tendencies 
 
 
Competent use of the CM for solving problems implies an evolution in the use 
of symbolization, in which a competent user can eventually make sense of a 
symbolic representation of problems that is detached from the particular 
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concrete examples given in the teaching process, thus creating Families of 
Problems, the members of which are problems identified by a particular 
scheme of solution. The sense of the CM will arrive when the user becomes 
aware that by using it he is going to be able to solve such Families of 
Problems. The sense of the CM for solving problems is not achieved by 
exemplifying it separated out, with example after example disarticulated, as is 
encouraged by the usual traditional teaching. The integral conception of the 
method requires the confidence of the user that the general application of its 
steps necessarily leads to the solution of such Families of Problems. 

A competent use prevents the user from lapsing into certain cognitive 
tendencies that obstruct the possibility of making appropriate use of the CM 
to solve problems. Examples of this would be (1) the presence of calling 
mechanisms that lead to the setting in motion of incorrect solving processes, 
for example, if, in the solution of a problem, a type of mathematical text 
appears that the user does not know how to decode; (2) the presence of 
obstructions derived from semantics that affect syntax and viceversa, for 
example, when solving problems and endowing signs with meanings, which 
predisposes the user to a good use of syntax; and (3) the presence of 
inhibitory mechanisms, for example, when the values of certain data are 
changed in a problem from a Family of Problems that has already been solved 
(see latter in this chapter). 

 
 

2.2. Mastery of intermediate tactics and cognitive tendencies 
 
 
Mastery of intermediate tactics must contribute to the development of positive 
cognitive tendencies that present themselves in the processes for learning 
more abstract concepts, such as (1) the return to more concrete situations 
when an analysis situation presents itself, analysis being a necessary part for 
advancing in competence with the CM, or (2) the presence of a process of 
abbreviation of a concrete text in order to be able to produce new rules of 
syntax, for example, in problem solving when one is operating with the 
particular values assigned to the unknown in a problem in each exploration of 
the AMSE, and one then gradually operates on the abstract text with the rules 
of the more abstract MSS, no longer making reference to the concrete 
situation. 

Symbolic representations of problems in the CM make the use of the 
working memory more efficient. When the student succeeds in creating 
relations between given values and unknowns the information is integrated, 
making more complex chunks of information. At the point when the student 
succeeds in creating these relations, the use of syntax avoids the need to 
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burden the working memory with semantic descriptions bound up with the 
statement of the problems. 

 
 

2.3. The problem of transference 
 
 
With respect to the difference in solving problems that exists between an 
expert and a novice, some researchers establish that a competent user has 
preformed mental schemes that enable him or her to recognize a problem 
from the very first words, and when he recognizes it he realizes what kind of 
strategy has to be followed to solve it. Other researchers state that the 
formation of schemes enables users to classify problems on the basis of 
general principles, ignoring superficial aspects, in a process in which the 
outline of the problem that is obtained is brought into agreement with the 
mental scheme that is stored in the user’s long-term memory. 

From this it would seem that it is as a result of such schemes that a way of 
working forward is set in motion, in which what is produced is a synthesis of 
the problem rather than an analysis. However, although this may happen in 
many problem situations, it would not be of much help in the explanation of 
more complex processes that might enable us to say why some individuals 
can transfer the solution that appears in one kind of problem to another that 
has not been dealt with, i.e., the transfer of the use of a method from one MSS 
to another. 

 
 

2.4. Competent use of the logical/semiotic outline 
 
 
The most competent individuals in formal terms generally use the CM to 
solve certain kinds of problems that are presented to them. However, when 
they are solving some problems they first go through a brief phase of 
reflection, in which they themselves evaluate whether they are able to 
anticipate the steps of the solution, i.e., in which they make a logical/semiotic 
outline of the situation that includes, among other things, clarification or 
identification of what is “unknown” and discrimination of the central relations 
involved in the problem, for this purpose using an MSS stratum that often is 
not really the sign system required by the CM but a more concrete MSS 
stratum, for example the MSS of the MSAI or a stratum of the sort of MSSs 
that are used in the explorations of the AMSE. 

To produce this outline one can set out from the given values and from 
there arrive at the value of the unknown, or else one can make a logical 
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analysis that involves the establishment of relations in which one operates 
with the unknown, either in a particular form, as in the AMSE, or else with 
the unknown being represented directly by the MSS of the CM. 

 
 

2.5. The pertinent use of certain intermediate strata 
 
 
Formal competence in problem solving is not necessarily due to the formation 
of a large number of mental schemes referring to types of problems. In other 
words, although it may be possible to identify someone as being competent in 
problem solving because he or she uses strata of the MSS of the CM to solve 
them, apparently making automatic use of previously acquired mental 
schemes concerning the solving of different families of problems, if one 
wishes to make a better characterization of formal competence in problem 
solving one must consider a user’s progress in the ability to make a logical/ 
semiotic analysis of problem situations. 

This means that a competent user of a more abstract MSS really is 
competent if he is also competent in other, more concrete MSS strata that 
enable him to have a greater possibility of setting in motion the logical 
analysis of a problem situation, tackling it by using MSS strata that are not 
necessarily the most abstract, but using the MSS stratum that enables him to 
understand the problem and thereby set in motion a logical analysis of it. 

 
 

2.6. The logical/semiotic outline, the MSS strata used as representation 
 
 
By the use of certain strata of the MSS required by the CM, users generate 
intermediate senses linked only to those levels: this enables them to simplify 
the solution of some Families of Problems. Once these senses are mastered, 
the use of this new sign system, solely with these levels, brings about the 
simplification of certain problems (see, for example, in Krutetskii (1976) the 
case of problems of the “chickens and rabbits” variety, the statement of which 
is in Section 2.1.2 of Chapter 6). Thus, by teaching a method such as the 
AMSE one is trying to make ad hoc use of intermediate strata, which can be 
identified among the more concrete strata required by the CM in order to 
simplify the analysis of the problem (although the more abstract strata also 
appear). The aim is to generate senses progressively for such representations 
which will be implemented by the use of the CM. Each Family of Problems 
determines the levels of representation —MSS strata— required for its 
solution. 
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2.7. The level of representation and the use of memory 
 
 
To solve a problem such as the problem of the chickens and the rabbits, for 
example, with primitive methods, a high level of competence may be 
required. Consequently, the natural tendency is to use the method of trial and 
error, trying to find a way round the series of consecutive analytic inferences 
required by the arithmetic logical analysis of the situation. These inferences 
require representations that permit an analysis, which in turn demands a more 
advanced use of the sign systems involved. In other words, mathematics and 
natural language become interwoven and are set to work, and then competences 
are needed in order to produce logical/semiotic outlines that will make the 
solving strategy meaningful. What makes this analysis and logical/semiotic 
outline complicated is the fact that for some problems intense use of working 
memory is required, and this implies training that only expert problem solvers 
possess. 
 
 
2.8. The use of primitive methods and the use of memory 
 
 
When primitive methods are used, what is generated is not a unique 
representation of a certain style, but rather the representation changes with 
each Family of Problems. Moreover, with the use of a new MSS more 
advanced methods are used as a means for writing, arranging, and working, 
and the representation is produced using canonic forms. This constitutes part 
of the sense of the use of such an MSS. When a primitive method is used, 
representations must be invented for each Family of Problems, and this will 
call for a certain competent use of working memory in order to go on 
representing the solving actions proposed in the logical/semiotic outline, 
subsequently leaving new marks and indicators —or new chunks in the 
memory— by means of which the previous results can be grouped together 
and not left drifting. Other more advanced methods require the students to 
learn how to leave marks that progressively release units of memory, thus 
enabling the user to make use of these units in setting in motion the analysis 
and solution of the problem. 

Intermediate representations arrange the information in chunks of more 
complex organization, even though it may not be possible to distinguish this 
from the signs produced by the user. Thus, during the interviews some 
students reached a representation of the problem in which they very probably 
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made calculations —for example, by means of a calculator or a computer— 
and in the end they simply wrote down the numeric solution of the problem. 

 
 

2.9. Personal codes 
 
 
An important aspect to be considered is the use of personal notation (codes) to 
indicate the actions already carried out and the actions yet to be performed on 
the elements of the solving process. This suggests the existence of a stage 
prior to the operational stage. Obstructions also appear in this stage, imposed 
by these personal notations when the complexity of the situation increases, 
generating what are later considered to be natural mistakes of syntax in 
subsequent studies: the inappropriate use of equals signs or their absence, the 
forgetting of certain terms, etc. 
 
 
2.10. Problem solving and syntax 
 
 
Empirical evidence can be found to show that the process of analyzing a 
typical problem situation, expressed in natural language, leads to the 
appearance of phenomena of reading of the situation that inhibit the setting in 
motion of algorithms that a few moments before were carried out immediately 
and correctly. Thus, in the presence of an expression written in the usual 
algebraic language of a first-degree equation, the student is unable to decode 
it as such and is therefore unable to use the brilliant operational abilities that 
the same student had exhibited a few moments before with the same equation. 
Examples of problem situations can be quoted —in those parts in which 
translations are made from ordinary language to an MSS— that show the 
existence of a tension between the interpretation of the expression (decoding 
of the text) given by a reading that comes from a context belonging to the 
MSS, and the practices of mechanisation of operations (syntax), inhibiting the 
necessary reading given by the semantic interpretation that the concrete 
situation gives it in the word problem. Once again, a syntactic reading inhibits 
the reading of the concrete context in which the problem is situated, not 
allowing these expressions to be given an interpretation that will make it 
possible to go on with the correct solving strategy (which will lead to the 
solution), and which would include that part of the translation as one of its 
tactics. 
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2.11. Mechanization and practice 
 
 
It is at this point in the discussion that some of the theoretical preoccupations 
of Thorndike (1923) and their implications in teaching acquire a new 
presence, because of the peremptory need for the automation of certain 
operations that come from the decoding of a concrete problem situation 
(problems of ages, mixtures, alloys, coins, work, etc.), since neither the sense 
of the algorithms required, nor the semantic interpretation in terms of the 
contexts in which the operations have been performed, nor the mechanisms of 
anticipation —especially inhibitory mechanisms— must obstruct the setting 
in motion of a solving strategy. moreover, when this strategy is transferred to 
the short-term memory, it is necessary that the length of time that it may 
remain there should not obstruct the possibility of considering all the 
intermediate tactics required for the solution proposed and should allow 
the concatenation of all the tactics —before all the steps necessary for the 
achievement of these partial goals have been carried out— to be performed in 
that part of the short-term memory, which it is difficult to keep activated for 
such a long time. it could be said that this ability to make considerable 
quantities of information remain for a long time, so as to be able to move out 
of that part of the memory and bring in important new information, is 
generally hard to find among middle school students, because it calls for 
substantial resources that typical teaching does not provide. in this situation, 
mechanisation as a result of intense practice permits optimum use of the 
expressions and operations customary in the mss, and thus it breaks away 
from the anticipatory mechanisms that inhibit the setting in motion of the 
necessary solving strategies. 
 

 
 

3. SOLVING ARITHMETIC-ALGEBRAIC PROBLEMS 
 
 

The sense of the text of a word problem as it is understood in Section 4 of this 
chapter —with the use of the Method of Successive Analytic Inferences 
(MSAI)— is determined by the logico-numeric structure presented in the 
problem situation. This thesis permeates all the others that will be discussed 
later. 

In this chapter we present experimental results concerning the com-
petences that are necessary for the use of four teaching models based on four 
methods for solving arithmetic-algebraic word problems: the Method of 
Successive Analytic Inferences (MSAI), the Analytic Method of Successive  
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Explorations (AMSE), the Spreadsheet Method (SM), and the Cartesian 
Method (CM). Definitions of these methods, with the exception of the SM, 
have already appeared in Section 2. 

We will stress the need to be competent in increasingly abstract and 
general uses of the representations required to attain full competence in the 
algebraic method par excellence, which here is called the CM, contrasting it 
with the competences required by the other three methods, which are more 
rooted in arithmetic: the MSAI (see Section 4), the AMSE, and the SM (see 
Section 5). In Chapter 6 we analyzed the strengths and weaknesses of 
introducing the Cartesian Method with students who have just acquired 
competence in solving equations using as a teaching model the abstraction of 
operations via the concrete model that we gave in Chapters 4 and 6. 

 
 

3.1. The “Solving Arithmetic-Algebraic Problems” project 
 
 
It can be said that from the first stage, in which an exploratory study was 
carried out, the work was done with a set of results from which empirical 
results were obtained, and these were then converted into theses that in turn 
were put to the test in the experimental study in the final stage of the project. 
Thus the original theses not only evolved but were also gradually extended 
and modified when they were used as reference elements in the new study, 
serving as (1) an instrument of analysis of the exploratory questionnaires used 
to characterize the students who were selected for the clinical interviews, (2) 
an instrument of analysis of the performance of the students in the teaching 
sequence, and (3) an instrument of analysis of the performance of the students 
in the clinical interviews. Furthermore, in this use of the theses as one of the 
tools for interpretation in the experimental study other theses emerged, which 
were then put to the test in the final parts of the experimental study, as also 
were the clinical interviews in the case study —see Filloy and Rojano (2001), 
in which one of these cases is presented. 

The theses that appear in this chapter may be considered as the empirical 
results that emerged from the final research, and as such they can be put to the 
test by means of other experimental studies, or else by the observations that 
emerge from teaching practice. This may make it possible to advance them, or 
to modify or even reject them. 

The series of theses presented may have interrelations and similarities in 
some aspects, but our intention is to present them just as they were used as an 
instrument for interpretation in the research. It must be clearly understood that 
some of these theses were gradually refined, others evolved, having been 
enriched, made more precise and even modified during the study, and others 
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simply come from the results that were obtained in the final phase of the 
research, that is, from the analysis of clinical interviews. 

It must also be said that these theses have drawn both implicitly and 
explicitly on ideas from various fields of knowledge, such as history, 
epistemology, teaching, psychology, mathematics, etc. However, these 
suppositions were obtained both from the interaction with the students in the 
classroom when solving problems and from the interpretation of the results of 
their execution via the teaching model proposed. Let’s begin by stating, in the 
following section, some theses concerning the behavior observable in middle 
school students when they solve arithmetic-algebraic word problems. 

 
 

3.2. Some preliminary observations 
 
 
3.2.1. A cognitive tendency: resistance to producing sense for an algebraic 

representation when one is in a numeric context 
 
A cognitive tendency that is observed in a considerable part of the student 
population of this age consists in a resistance to producing sense for an 
algebraic representation when one is in a dynamic of numeric solving. For 
example, when one proposes systematic use of the AMSE and the SM after 
showing their virtues for solving certain problems by a procedure of trial  
and error, some students come to understand the operations that they have 
performed only after obtaining the numeric solution of the problem and 
establishing the equation that represents it. 

This tendency to obtain an equation only from an equality, in order to 
follow the requirements of the teaching process, leads to a situation in which 
the representation of an unknown quantity or magnitude in the problem is 
only used as a label because, when it is used, the solution of the problem has 
already been obtained, and at best the students relate the value found by other 
means to the letter that appears in the equation. In these cases, the letters that 
are used in the equation obtained have the status of a name, and these letters 
are not associated with the supposed numeric values that were used to find the 
representation of the solution of the problem. 

 
3.2.2. Concerning the natural tendency to use numeric values to explore 

problems 
 
When using the language of algebra, some expert students and many 
beginners resort spontaneously to the use of numeric values (and arithmetic 
operations) to explore and thus solve certain algebraic word problems, since 
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the use of numbers and arithmetic operations spontaneously gives meaning  
to the relations that are immersed in a problem, which in many cases increases 
the possibilities of being able to set in motion the logical analysis of the 
problem. With algebraic language it is more difficult to capture the sense of 
symbolic representations because they are more abstract, and therefore it is 
more difficult to find strategies to solve the problem. 
 
3.2.3. The relationship between competence to make a logical analysis  

and mastery of intermediate tactics 
 
In order to solve more complex problems it is necessary to advance in the 
competence to make a logical analysis of problem situations. However, to be 
able to set in motion the analytic reasonings required for solving problems, it 
is necessary that there should be no obstructers such as the following: 
 

a) When they make a logical analysis of a problem, some students do not 
accept the operativity of the unknowns; in other words, when they try 
to make the analysis, they tend to use or give values to the unknowns 
and not to manipulate them as such, even in problems with situations 
that can be performed with concrete objects. When they come to make 
the analysis, the students cannot follow the train of thought that carries 
out concrete actions (which, separately, they accept without any 
difficulty), because when they think of something unknown, such as a 
number of children, they cannot follow the logical implications that 
derive from it. 

b) There is great difficulty in being able to represent one unknown in terms 
of another, even among students who have overcome the difficulty 
expressed in the previous point. 

c) There is uncertainty about the tactics that have to be used when solving 
the problem. 

 
In turn, in order that these obstructers should not appear it is necessary to 

advance in the use of intermediate strategies immersed in the uses of: 
 
a) algebraic expressions, 
b) proportionality, 
c) percentages, 
d) multiplication within the schemes 
 

� × A = B; A × B = �; A × � = B, 
 
e) negative numbers. 
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Only a competent use of all this can prevent the user from lapsing into 
cognitive tendencies such as tendencies 7, 8, and 9, which obstruct the 
possibility of making use of the CM to solve word problems, as we indicated 
in Section 2. 

 
3.2.4. One way of observing the complexity of a problem is through the 

difficulty that a user has in inventing a problem of the same family 
 
One way of observing the complexity of a problem consists in analyzing the 
difficulties that are produced when one invents problems similar to a problem 
that has been solved previously, because varying the data allows one to 
observe whether the student perceives that the problems are the same from a 
logical viewpoint and that the difficulty depends only on finding relations 
between data and unknowns. 

Similarly, the complexity of the relations of the problem can be observed 
when one invents problems similar to one that has been solved by setting out 
from the solution, that is, knowing the value of the unknown or unknowns – 
setting out from assigning a value to the unknown when one invents a similar 
problem is not a natural tendency in users. This process tests the establishment 
of the relations made previously and opens up the way to recognition of the 
family of problems because of the need to create the data of an analogous 
problem. The creation of problems similar to one solved previously tests the 
forms of mental representation or comprehension that were used when 
analyzing the original problem. 

 
3.2.5. For a user to be competent in a more abstract MSS, he must also be 

competent in other, more concrete MSSs 
 
For a student to become a competent user of the mathematical sign system of 
algebra (MSSal), which, formally, is the most abstract sign system in our 
study, it is necessary that he or she should be competent in other, less abstract 
sign systems, such as the mathematical sign system of arithmetic (MSSa), 
which is used in the MSAI, and the sign system in between these two, (MSSi), 
which is used by the AMSE and the SM. 
 
3.2.6. The sense of the CM is related both to the capability of going back to 

more concrete MSSs and also to the aptitude for recognizing the 
algebraic expressions used to solve the problem as expressions that 
involve unknowns 

 
To give a full sense of use to the CM for solving algebraic word problems it is 
necessary that the (competent) user should have the capability of going back 
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to sign systems with a greater semantic load; for example, to the intermediary 
mathematical sign system (MSSi) associated with the AMSE and the SM, or 
to the most concrete mathematical sign system, that of arithmetic (MSSa). 

The sense of the CM in problem solving requires that users should 
recognize the algebraic expressions used in the solution of the problem as 
expressions that involve unknowns. It can be said that there is a competent 
use of expressions with unknowns when it makes sense to perform operations 
between the unknown and the data of the problem. In steps prior to competent 
use of the CM, the pragmatics of the more concrete sign systems leads to 
using the letters as variables, passing through a stage in which the letters are 
only used as names and representations of generalized numbers, and a 
subsequent stage in which they are used only for representing what is 
unknown in the problem. These last two stages, both clearly distinct, are 
predecessors of the use of letters as unknowns and using algebraic expressions 
as relations between magnitudes, in particular as functional relations. 

 
 

3.3. Four teaching models 
 
 
The use of the four teaching models associated with the MSAI, the AMSE, 
the SM, and the CM comes after observations made in the classroom over 
several years: when students with similar characteristics (students with 
knowledge of elementary algebra, from official secondary schools) begin 
subsequent levels of study they generally show a tendency to tackle word 
problems by means of the mathematical sign system of arithmetic (MSSa). 

The solution of problems by using the language of algebra causes great 
difficulties, even with problems equivalent to others that have been solved 
previously. The students cannot establish correct meanings for the algebraic 
relations of word problems. An attempt was made to find an answer to this 
situation by proposing teaching models associated with methods for solving 
word problems by a numeric approach: this not only helps to solve the 
problems but also, especially, aids the student to produce meanings. 

This teaching proposal was formulated with the intention of facilitating the 
setting in motion of the analysis of word problems and making it possible to 
link the students’ pre-algebraic tendencies for tackling problems with the 
learning of the model socially demanded, which is the CM, that is, the model 
in which problems are represented and solved by means of the language of 
algebra. For this purpose we took into account four mathematical sign 
systems (with their signs, way of operating on the unknown, strategies, 
actions, ideas, etc.): the MSSa of arithmetic, linked with the MSAI; the MSSal 
of algebra, related to the CM; the MSSi corresponding to the intermediary 
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sign system between these two, that is, the one associated with the AMSE; 
and, finally, the MSS that pertains to spreadsheets. 

It seemed to us important to use the four teaching models, starting out 
from the theoretical analysis made in the first phase of the project and the 
empirical observations made up to that point. One aspect that should be 
pointed out has to do with the different uses that students make of the 
unknown when they are trying to represent and solve arithmetic-algebraic 
word problems, and also the difficulties that those uses generate. 

The earlier empirical results indicated that students such as those in the 
study (teenagers 13 to 16 yeas of age, with prior knowledge of arithmetic and 
algebra) generally showed serious obstacles that hampered the setting in 
motion of the logical analysis of various families of arithmetic-algebraic word 
problems when using an algebraic expression with the use of a letter, usually 
x, to represent the unknown. Moreover, in general there was also a certain 
inability to make use of the mathematical sign system of algebra (MSSal) and, 
therefore, to represent and solve word problems by means of the teaching 
model associated with the CM. 

The students also had great difficulty in making the arithmetic logical 
analysis of many kinds of problem, and, consequently, in solving them with 
the MSAI. This classic arithmetic method requires great competence both  
in the use of the MSSa and in making an analysis of the situations presented in 
the problems, especially in those whose text involves assertions that are not 
expressed in terms of unknowns, so that the analysis is then made with 
reasonings that involve unknown magnitudes or quantities. 

See Section 4 for a more detailed presentation of the MSAI teaching model 
and the problems in its use, where it is shown that situations such as those 
mentioned make logical analysis of them more complex, especially if the 
MSSa of arithmetic is used. This is even so in simple problems like those in 
Section 4: to solve them by applying the MSAI calls for a much greater 
capability of logical analysis of the situation than if one tackles it with 
numeric explorations as in the AMSE or the SM, and even greater if one 
approaches it with the CM. 

Moreover, the teaching models associated with the AMSE and the SM 
contain elements that facilitate the setting in motion of the logical analysis of 
certain kinds of problem. As they use hypothetical numeric values for the 
unknown, arithmetic operations are performed between them and the data, 
and as these operations have a greater semantic load than algebraic relations, 
they make it more likely that the user may be able to produce meanings for 
these operations in accordance with the conditions of the problem. This last 
point is a key factor in problems in which it is complex to set the logical 
analysis in motion using the MSSa of arithmetic. 
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One of the aims that we propose in Section 5 is to observe whether, with 
the use of the teaching model based on the AMSE and the SM, the user can: 
(1) start to relinquish the use of the mathematical sign system of arithmetic 
with which the MSAI is associated; (2) begin to break away from the 
arithmetic use that is made of the unknown by solving problems and operating 
with it by reasoning and making inferences with a representation of one’s 
own; and (3) moving on to a use of the unknown in which one operates with a 
representation of one’s own, through the solution of families of problems, for 
an understanding of which, and therefore for the setting in motion of their 
analysis, one requires the use of hypothetical numeric values for the unknown 
in natural form, knowing beforehand that in problems of this kind it is more 
complex to set their analysis in motion by the use of the MSSa of arithmetic 
associated with the MSAI than by the use of the other two methods. 

To sum up, the use of the four teaching models based on the MSAI, the 
AMSE, the CM, and the SM for solving arithmetic-algebraic word problems 
takes account of the fact that, in order to solve arithmetic-algebraic word 
problems with the CM and, in general, to achieve competent use of the 
mathematical sign system of algebra (MSSal), it is necessary to consider 
the competences, adjustments, and limitations that other, more concrete 
mathematical sign systems, in this case the MSSa of arithmetic and those 
associated with the AMSE and the SM, may impose on the more abstract sign 
system that it is socially desired to teach, that of algebra, which one usually 
wishes to use as a method for solving problems in algebraic form —a method 
identified in this work as the Cartesian Method. 

 
 

3.4. The Cartesian Method 
 
 
It is worth mentioning that any of the indicative procedures that are usually 
proposed in teaching or in textbooks for solving word problems by translating 
them to the MSSal of algebra take into account, in some way, what we have 
called the Cartesian Method. 

The reason for calling the method Cartesian is that part of Descartes’s 
Regulæ ad directionem ingenii (Rules for the direction of the mind)1 can be 
interpreted as an examination of the nature of the work of translating an 
arithmetic-algebraic word problem to the MSSal of algebra and its solution in 
that MSS. This is how it was understood by Polya, who, in the chapter “The 
Cartesian Pattern” in his book Mathematical Discovery, rewrote the pertinent 
Cartesian rules in such a way that they could be seen as problem solving 
principles that use the MSSal of algebra. Polya’s paraphrase of Descartes’s 
rules is as follows: 
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(1) First, having well understood the problem, reduce it to the determination of certain 
unknown quantities (Rules XIII–XVI).2 
[…] 
(2) Survey the problem in the most natural way, taking it as solved and visualizing in suitable 
order all the relations that must hold between the unknowns and the data according to the 
condition (Rule XVII).3 
[…] 
(3) Detach a part of the condition according to which you can express the same quantity in two 
different ways and so obtain an equation between the unknowns. Eventually you should split 
the condition into as many parts, and so obtain a system of as many equations, as there are 
unknowns (Rule XIX).4 
[…] 
(4) Reduce the system of equations to one equation (Rule XXI).5 (Polya, 1966, pp. 27–28) 

 
In Puig and Cerdán (1990) the process of solving arithmetic-algebraic 

word problems modeled by the analysis and synthesis method is compared 
with the process modeled by the Cartesian method. In the process modeled by 
the analysis and synthesis method one works from the unknown in the 
problem and concludes when one does not come to further unknown 
quantities (auxiliary unknowns) but rather known quantities (data of the 
problem), that is, when the unknown has been reduced to data. The product of 
the analysis is then a set of relations between the quantities of the problem 
linked in such a way that they can be represented in the form of a tree that 
leads from the unknown to the data of the problem. The synthesis then 
consists in making one’s way through this diagram in the opposite direction, 
from the data to the unknown, performing the corresponding arithmetic 
operations or, if one wishes, writing the arithmetic expression to solve the 
problem. Therefore, when the analysis and synthesis method is used for 
solving problems of this kind and leads to their solution, it does so in the 
MSSa of arithmetic. 

To illustrate this we now present the statement of a problem, the 
representation of its analysis in a diagram, and the arithmetic expression that 
results from the synthesis. 

 
The suit cloth problem 
 
Four pieces of cloth, each 50 meters long, are going to be used to make 20 

suits, each of which needs 3 meters of cloth. The rest of the cloth will be used 
to make coats. If each coat needs 4 meters, how many coats can be made? 
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Figure 9.1 
 

Problems like this can also be solved with the use of the MSS of algebra, 
by translating the statement into an equation and then solving it. Thus, in the 
problem just stated, it can be considered, when following the third of the rules 
rewritten by Polya, that the quantity that can be expressed in two different 
ways is the “total cloth,” so that one writes the equation 4x + 20·3 = 4·50, the 
solution of which is precisely the arithmetic expression given by the synthesis 
above. What makes the (indicated) solution of this equation coincide with this 
arithmetic expression is the fact that the sequence of operations indicated in 
the equation can be inverted, with the inverse operations affecting only known 
quantities. In other words, one can go through the set of quantities and 
relations expressed in this equation by proceeding from the unknown to data, 
as one does in analysis and synthesis. Observe that this equation is in fact one 
of those that we have called “arithmetic” equations. 

It is not hard to realize that the equations that we have called “algebraic,” 
that is, those in which the unknown appears on both sides of the equation, 
cannot be inverted in the same way, because it is necessary to operate on the 
unknown in order to solve them. So that one cannot go through the set of 
quantities and relations expressed in such an equation by proceeding from the 
unknown to the data as one does in analysis and synthesis. 

Let us take as an example an equation such as 
x

217
+171 =

x
198

. If we try 

to trace the path of the analysis from the unknown, using the relations 
between quantities that are expressed in this equation, this does not reduce the 
unknown to data, and instead one returns to the unknown when one uses the 
relation that corresponds to its second appearance. We will show this by using 
a word problem in one of whose solutions this equation appears. Thus we will 
be able to name the quantities and relations expressed in the equation in 
accordance with their meanings in the context of the story that the statement 
of the problem tells. 
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The problem comes from Kalmykova (1975) and has already been used in 
Puig and Cerdán (1988) and Puig (1996). We will call it “the hay problem.” 

 
The hay problem 
 
A collective farm assumed that some hay stockpiled for cattle would last 

for 198 days, but the hay lasted for 217 days since it was of the highest quality 
and they used 171 kg less per day than they thought they would. How much 
hay had been prepared on the farm? (Kalmykova, 1975, p. 90) 

 

If this problem can be translated into the equation 
x

217
+171 =

x
198

, it is 

because, from the story that the statement tells, we have extracted the known 
quantities “days planned,” Dp (198), “actual days,” Da (217) and “daily 
reduction in consumption of hay,” Cr (171), the unknown quantities “planned 
daily consumption,” Cp, “actual daily consumption,” Ca, and “hay stockpiled,” 
T, and the relations between these quantities Dp ×  Cp = T, Da ×  Ca = T and Ca 
+ Cr = Cp. 

However, the use of these quantities and relations in the analysis of the 
unknown leads to one of the following two diagrams, which cannot end with 
data because once again the unknown appears, so that the analysis cannot 
conclude in such a way that the solution of the problem is an arithmetic 
expression obtained by synthesis. 

 

+
Cp

÷

×
T

Cr

T

Dp

Da

Cr

−
Ca

÷

×
T

Cp

T

Da

Dp

Cr

 
 

Figure 9.2 
 
The diagrams in Figure 9.2 correspond to the two possible attempts to 

isolate each of the occurrences of x by inverting the operations indicated in 

the equation, which lead to 171 198
217

x x⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 and 171 217
198

xx ⎛ ⎞= +⎜ ⎟
⎝ ⎠

,  

but not to x equals an arithmetic expression. In fact, with such equations it is 
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not sufficient to invert the operations indicated in order to isolate the 
unknown, but rather it also necessary to operate on the unknown. 

If, instead of solving the hay problem with the CM (and therefore the 
MSSal of algebra), we had tried to solve it with the analysis and synthesis 
method (and the MSSa of arithmetic) and the relations Dp ×  Cp = T, Da ×  Ca = 
T and Ca + Cr = Cp had been established in the analysis, then it would not have 
been possible to solve the problem because this analysis does not allow us to 
reduce the unknown to data. The diagrams in Figure 9.2 show this clearly. 

The fundamental difference between the analysis of the statement in the 
analysis and synthesis method and in the CM lies in the fact that the logic-
semiotic outline that one makes when one uses the CM anticipates the use of 
the MSSa of algebra. This entails not only the use of letters to designate the 
quantities that are determined in the analysis but also new meanings for 
arithmetic operations and relations, particularly the equals sign, which belong 
to that MSSal. Consequently, when making this analysis the known and 
unknown quantities are considered in the same way —Descartes himself 
indicated that the whole art of the method lay in this.6 In contrast, in the 
analysis and synthesis method the analysis is developed by situating oneself in 
the unknown of the problem and considering on what data one would have to 
operate in order to obtain it, and in the logic-semiotic outline one does not 
contemplate the possibility of operating other than on known quantities. 

The diagrams shown so far, which reflect a solution modeled by the 
analysis and synthesis method, are not suitable for giving an account of the 
analytic reading in the CM. There is a different kind of diagram, which is 
suitable, however —one in the form of a graph that we have adapted from 
Fridman (1990) and that Cerdán (in preparation) studies and uses. These 
graphs represent the analytic reading of the statement of an arithmetic-
algebraic word problem characteristic of the CM because their vertices 
represent quantities and their edges represent relations between quantities, so 
that the graph shows the network of relations between quantities that has been 
determined in this analytic reading. Moreover, the vertices corresponding to 
the data of the problem are represented by black circles (which we will call 
“dark vertices”), and the vertices corresponding to the unknown quantities 
(the unknowns of the problem or auxiliary unknowns) are represented by 
unfilled squares (which we will call “light vertices”). As the four basic 
arithmetic operations are binary, the corresponding relations are ternary, so 
that in the most common arithmetic-algebraic problems the edges have three 
vertices.7 

Thus, the analytic reading of the hay problem (taken as a textual space) 
which produces the known quantities Dp (198), Da (217), and Cr (171), the 
unknown quantities Cp, Ca , and T, and the relations between these quantities  
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Dp ×  Cp = T, Da ×  Ca = T and Ca + Cr = Cp (a new text) is represented by the 
graph in Figure 9.3. 

 

 
 

Figure 9.3 
 
The analytic reading of the suit cloth problem in which the quantities and 

relations that we represented previously by a diagram are determined can also 
be represented by the graph in Figure 9.4. In it the known quantities are 
“number of pieces of cloth,” Np (4), “number of suits,” Ns (20), “cloth per 
coat,” Cc (4 m), “cloth per piece.” Cp (50 m) and “cloth per suit,” Cs (3 m); the 
unknown quantities are “number of coats,” Nc, “cloth for the coats,” Tc, “cloth 
for the pieces or total cloth,” Tp, and “cloth for the suits,” Ts, and the relations 
are Ni × Gi = Ti, i ∈ {c, p, s}, Tp = Tc + Ts. 

 

 
 

Figure 9.4 
 
In these graphs it is also clear why one network of relations makes it 

possible to obtain the solution of the problem by using the MSSa of arithmetic 
and the other does not. In fact, in order to avoid having to operate on 
unknown quantities it is necessary that on one ternary edge two of the vertices 
should be dark (should be known quantities), for then the light vertex can be 
converted into a dark vertex (the unknown quantity can be calculated from 



CHAPTER 9 

 

237 

 

known quantities) by performing the corresponding arithmetic operation. The 
unknown of the problem can be obtained from the data as long as there is a 
way of progressively converting light vertices into dark vertices until one 
arrives at the unknown. In the graph corresponding to the analytic reading of 
the suit cloth problem this path exists and it coincides with the path described 
by the analysis and synthesis diagram in Figure 9.1. In the diagram of the 
reading of the hay problem the path cannot exist because there is no edge that 
has two dark vertices. Consequently, it is consistent with the terminology 
introduced earlier to describe as “arithmetic” those graphs that share with the 
graph in Figure 9.4 the property that we have explained, and as “algebraic” 
those that do not have it (such as the one in Figure 9.3), just as is done by 
Cerdán (in preparation). 

These graphs represent the analytic reading of the statements of the 
problems when they are solved by means of the CM, but this analytic reading 
is only the first step in the method. To obtain the equation 4x + 20·3 = 4·50 or 

the equation 
  

x
217

+171 =
x

198
 it is necessary to complete three further steps. 

The second step consists in choosing a quantity (or several quantities) 
which one designates with a letter (or several different letters). 

The third step consists in writing algebraic expressions to designate the 
other quantities, using the letter (or letters) introduced in the second step and 
the relations found in the analytic reading made in the first step. 

The fourth step consists in writing an equation (or as many independent 
equations as the number of letters introduced in the second step) based on the 
observation that two (non-equivalent) algebraic expressions written in the 
third step designate the same quantity. 

In Figures 9.5, 9.6, and 9.7 we show how these steps can also be rep-
resented in graphs. 

 
Second step 
 

        
 

Figure 9.5 
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Third step 
 

           
 

Figure 9.6 
 
Fourth step 
 

       
 

Figure 9.7 
 
Observe that the equation obtained is arithmetic if the graph is arithmetic, 

and algebraic if it is algebraic. We have also seen that the corresponding 
analysis and synthesis diagrams either produce an arithmetic solution or they 
do not. However, this does not mean that we can describe the corresponding 
problems as “arithmetic” (the suit cloth problem) and “algebraic” (the hay 
problem). In fact, in the case of the hay problem what is not arithmetic is a 
solving process carried out by the analysis and synthesis method (represented 
by the analysis and synthesis diagram) and an analytic reading that constitutes 
the first step of the CM (represented by the graph); but it is possible that there 
may be another solving process or another analytic reading that determines 
another network of relations between quantities that is arithmetic. Such is 
indeed the case: if the analytic reading determines not only the quantities 
determined previously but also the unknown quantities “additional days,” Dm, 
“consumption on the additional days,” CDm and “total saving,” St, and the new 
relations Dp ×  Cr = St, Dm ×  Ca = CDm, Dp  Dm = Da and CDm = St, the 
corresponding graph is arithmetic, as can be seen in Figure 9.8, and  
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the unknown is determined by means of the arithmetic expression 
198 171 171 198
217 198

⋅⎛ ⎞+ ⋅⎜ ⎟−⎝ ⎠
. 

 

 
 

Figure 9.8 
 
What can be described as arithmetic or algebraic, therefore, is the solving 

process (represented by the analysis and synthesis diagram), the analytic 
reading (represented by the graph), or the equation that translates the 
statement, but not the problem. 

The splitting of the CM into steps, as presented, describes the competent 
behaviour of the ideal subject. Only in this sense is it possible that each step 
begins with the completion of the previous one. In fact, there are obvious 
connections between the termination of one step and the commencement of 
the next. For example, the writing of algebraic expressions (step two) is 
complete precisely when two expressions have been written that designate the 
same quantity, which in turn makes step four possible. What this splitting into 
steps clearly shows is that the CM is the algebraic method par excellence, 
because each of the steps makes sense only with the use of the MSSal of 
algebra. 

 
 

3.5. Spreadsheets used to solve word problems 
 
 
As we saw at the beginning, some of the theses presented indicate the virtues 
of using numeric values to explain the solving of word problems. When a 
method such as the AMSE is put into practice in a context such as that of the 
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computer spreadsheet, the search for the value of the unknown is done only 
with the use of numeric values. In other words, unlike what happens with the 
AMSE, in the SM one does not make an explicit formulation of the equation. 

When one observes students using the SM to represent and solve word 
problems, the spreadsheet medium influences their preliminary solving 
strategies, but it can also be said that earlier experience in solving problems 
has an impact on the strategies used in the SM. 

When this method is applied, once the problem has been expounded in the 
MSS of the spreadsheet the students have at their disposal a means with which 
to explore the possible solving strategies. 

We will now indicate some of the observations that we have gathered 
concerning what happens when students use the SM. 

 
1) Most students do not think spontaneously in terms of an algebraic 

experience when they first work in an environment such as the one 
provided by the SM. 

2) The SM stimulates students to stop focusing on a specific example and 
move on to considering a general relation. 

3) The SM also stimulates students to accept working with an unknown. 
The use of one cell in the spreadsheet to represent the unknown is 
established, and by using the mouse they can then express the various 
relations stated in the problem in terms of the cell used in the first 
place. 

4) After using the SM there is a greater awareness of the relations between 
the unknowns, and between the unknowns and the data of the problem. 

5) Before a sequence of sessions in the use of the SM one can observe an 
evolution toward a more general algebraic method consisting in 
proceeding from the unknown to the given. 

6) In the SM one can see an integration of various solving strategies, such 
as the refinement of the whole and part strategy and trial and error. 

 
 
 

4. THE METHOD OF SUCCESSIVE ANALYTIC INFERENCES 
 
 

4.1. An example of the use of the MSAI 
 
 
We have already described the MSAI in Section 2. We indicated there that the 
use of the MSAI for solving arithmetic-algebraic problems presents itself as a 
product of logical inferences which act as descriptions of the transformations 
of the possible situations of the problem until one comes to one that is 
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recognized as the solution of the problem. We will illustrate this kind of 
inference with the problem that we call “the typist problem”: 
 
The typist problem 
 

A typist has to type 1200 pages in a certain number of days. If she types 40 
more pages a day, she will finish the work 8 days sooner. How many pages a 
day does she type and how many days is she expected to take to finish the 
work? 

 
Solution 
 
If � is the number of pages that the typist normally types, the number of 
pages not typed in the 8 days will be 8 times �, which will have to be made 
up by typing 40 extra pages a day. The days that the typist will work will be 8 
less than the number of days that she would take to do the work normally, 
which we can calculate by dividing 1200 by �. From all this we obtain the 
following equalities: 
 

8�= 40
1200
�

−8
⎛
⎝⎜

⎞
⎠⎟

 

 

  
�= 5

1200
�

− 8
⎛
⎝⎜

⎞
⎠⎟

=
6000
�

− 40  

 
Multiplying both sides by the quantity  � we obtain the equality 
 

  �2 = 6000− 40�  
 
which is the same as 
 

  �2 +40�= 6000 . 
 
In order to calculate the quantity we use the seventh proposition in the first 

book of Jordanus de Nemore’s De Numeris Datis, written in the early 13th 
century: 

 
If one divides a number into two parts, one of which has been given, and 

the product of the one that has not been given by itself and by the one that has 
been given is a given number, then the divided number will have been given.8 
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In Nemore’s book each proposition has three parts: the first is the statement, 
in which he affirms that if some numbers (or ratios) have been given, and 
certain relations between them have also been given, then other numbers (or 
ratios) have also been given; the second part is the proof, in which he makes 
transformations of the numbers (or ratios) and the relations which either show 
that the numbers are in fact given or else convert them into the numbers and 
relations of the hypothesis of some previous proposition; and the third part is 
the calculation of an example with concrete numbers, which therefore has the 
value of an algorithm. 

If we use the algorithm that Nemore presents in the third part of pro-
position I-7, we will solve the problem in the following manner: 

 
One of the parts is 40, and the other part squared and by 40 is 6000. 

Double 6000 and double it again, giving 24000. Add to this the square of 40, 
which is 1600, making 25600, the square root of which is 160. From this take 
40 and halve the result, giving 60. This is the unknown part (in our case, �). 
So that the number divided is 40 + 60 = 100.9 

 
Verification 
 

If the typist does 60 pages a day, she would do 1200 in 1200 ÷ 60 = 20 
days. If she does 40 more pages a day, she will do 100, so that she will take 
1200 ÷ 100 = 12 days, which is 8 less than 20. 
 
 
4.2. Difficulties in the use of the MSAI 
 
 
4.2.1. The tendency not to admit the possibility of making inferences  

about something that is unknown 
 
There are middle school students who do not admit the possibility of making 
inferences about something that is unknown. A case of a similar nature is that 
of other students who simply avoid operating on the unknown. In other words, 
some students show resistance to bringing into play operations on the 
representation of something unknown. 
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4.2.2. Lack of knowledge of concepts as an obstructer 
 
When a user solves a problem by means of the MSAI, this enables him to 
recognize that there is a logical structure in the problem. As a result of this 
recognition he may become aware that concepts that he has not mastered are 
involved in the logical relations of the problem, and this may become an 
obstructer for recognizing and generating problems of the same family as the 
one that he has just solved. On the other hand, if the student is competent in 
the concepts that are involved in the implications obtained from the logical 
outline of the problem, then he or she is capable of representing the unknown 
and making use of that representation, even if the unknown parts vary. This 
happens, for example, if one passes from using a directly proportional relation 
to using several directly proportional relations in the same problem. 

 
4.2.3. Families of problems determine their level of representation. 
 
Each family of problems determines the levels of representation that their 
solution requires. For example, when a student is really competent in a more 
abstract MSS and is presented with a problem of mixtures (see the mixtures 
problem that we present in Section 4.3.2), the solution may lead naturally to 
the use of the MSSa of arithmetic. However, this kind of problem is usually 
solved algebraically. 
 
4.2.4. The use of trial and error to avoid the difficulty of the inferences  

of the MSAI 
 
To be able to solve certain families of problems with the MSAI an expert 
level of competence is required, and therefore there is a natural tendency to 
use trial and error —for example, to get away from the series of successive 
analytic inferences that logical analysis of the situation requires. 

With the use of trial and error it is actually possible to simplify the 
difficulty of the inferences of the MSAI. This is due to the fact that there are 
problems in which, in order to tackle them with the MSAI, the series of 
successive inferences required in order to make the analysis of the situation 
calls for representations that involve competence in more advanced uses of 
the arithmetic sign system —the more complicated problems require a greater 
mastery of the codes that relate syntax and semantics, both in natural language 
and in the MSSa of arithmetic, and also in their pragmatics, that is, in the uses 
that permit crossing between the two sign systems. 
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4.2.5. The need for intensive use of memory as an obstructer 
 
A factor that complicates the establishment in the MSAI of the logical outline 
in the MSSa of arithmetic is the fact that some problems require an intensive 
use of working memory, and this implies a training that only expert solvers 
have had. Moreover, when one uses the MSAI to solve word problems one 
must invent the representations problem by problem, and this calls for a 
certain capability of using working memory in order to represent the actions 
proposed in the logical outline of the solution and leave new markers and 
indicators —or new groupings in the memory— for preliminary results, and 
so not leave them isolated or forgotten. 
 
4.2.6. The singularity of the representation of each problem in the MSAI 

as opposed to representation using canonic forms in the CM 
 
When one uses the MSAI, one does not generate one sole representation of a 
certain style, but rather the representation changes for each problem, or at any 
rate for families of problems; on the other hand, when one uses the MSSal of 
algebra or the CM, one always uses the representation provided by certain 
expressions which belong to that MSSal, and those representations are reduced 
to canonic forms in order to solve them. 
 
 
4.3. Advances with the MSAI 
 
 
4.3.1. Modification of the natural tendency to tackle arithmetic-algebraic 

problems by means of arithmetic, and its relation to the representation 
of the unknown. 

 
The natural tendency to tackle arithmetic-algebraic problems by means of 
arithmetic weakens when one tries to solve certain families of problems that 
are difficult to solve with the MSAI. When variations in the value of what is 
unknown are brought into play, it is possible to propose families that will 
require the student to use representations of a different kind, in which 
unknown quantities have to be represented so that inferences can then be 
made with them (see the problem in Section 4.3.2). In the end, with the 
Cartesian Method it will be necessary to operate on the representation of what 
is unknown in the problem. 

The needs of representation generate new senses, which bring the possibility 
of making more abstract uses of the MSSs used to make the representation  
of the problem on the basis of the outline of the solution. The essential 
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difference between the traditional introduction to solving problems with 
algebra and these preliminary approaches, such as the MSAI, lies in the fact 
that, in the solution of the problems (1) the unknown is represented, but one 
does not operate on it; (2) inferences are made that refer to the representation 
of the unknown; (3) if one operates on something, one always operates on 
data; (4) if one speak of unknowns, one does so in terms of the results of the 
operations that are performed on the data. 

 
4.3.2. On the processes of abstraction and generalization 
 
As more complex families of problems are solved, the sign systems used 
gradually become more abstract. These processes of generalization and 
abstraction operate on the families of problems, either by finding common 
elements —which we will call “generalization” —or by making negations in 
part of the members of the family —in which case we will speak of a process 
of abstraction. 

Thus, for example, a mechanism to explain why mixture problems are 
more difficult than problems of other families can be found in observation of 
the need to break away from the use of only inferring from the representation 
of something unknown in order to be able to use the representation in which 
the unknown parts also vary. 

As an example of what we have just said, we will use the MSAI to solve a 
mixture problem. 

 
The mixture problem 
 
A man wants to change the mixture of water and antifreeze in the radiator 

of his car, which contains 20% antifreeze. He has discovered that the best 
mixture is one that contains 50% antifreeze, so he has to remove a certain 
quantity of the mixture in the radiator and then add antifreeze until it 
represents 50% of the mixture. The radiator has a capacity of 30 liters. What 
quantity of mixture must he replace? 

 
Solution 
 
The mixture in the car initially contains 6 L of antifreeze and 24 L of 

water. It is necessary to remove 9 L of water so that only 15 L remains. In 
order to do this we note that any quantity of mixture is always 80% water and 
the rest is antifreeze. We have to remove a quantity of mixture such that 80% 
of it is 9 L, that is, 9 ÷ 0.8 = 11.25 L. 
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Note that the MSAI allows one to envisage a family of problems in which 
the radiator is of any capacity and the initial mixture can be of any proportion. 
Here, in solving the problem we vary both the water and the antifreeze, both 
of which are initially unknown quantities. 

 
4.3.3. With time, the MSAI requires representations similar 

to those of the AMSE and the SM 
 
When this happens, representations are established that show a distancing 
from the use of the MSSa of arithmetic that is used in the MSAI. In other 
words, in the AMSE and the SM one brings into use a representation of what 
is not known with a view to operating on the unknown that represents it, 
whereas in the MSAI what is not known is only represented and inferences 
are made that speak of that representation, but one never operates on the 
representation of what is not known. This is one of the greatest differences 
between the use of what is not known in the MSAI and the use that one seeks 
to provide in the intermediate MSSsi that are used in the AMSE and the SM. 
 
4.3.4. The use of numeric trial and error in the arithmetic MSS stratum can 

enable the user to correct a faulty analysis made with the MSAI 
 
4.3.5. The succinctness of the use of the MSAI 
 
So that the reader may recognize the power of a solution obtained with the 
MSAI, we are going to solve the following problem, also solved with the 
AMSE in Filloy, Rojano, and Rubio (2001), which we will call the “teacher 
problem.” 
 

The teacher problem 
 
A teacher at Kinder has 120 chocolates and 192 toffees. She is going to 

distribute them fairly among the students. If each student receives 3 more 
toffees than chocolates, how many students are there? 

 
Solution 
 
We begin by giving one chocolate and one toffee to each student. As there 

are fewer chocolates, they run out before the toffees, so that now only toffees 
remain to be given out: the 192 – 120 = 72 that remain. 

Now we give them out, knowing that each student receives 3 of them; 
therefore there are 72 ÷ 3 = 24 students. 
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Verification 
 
Each student receives 192 ÷ 24 = 8 toffees and 120 ÷ 24 = 5 chocolates, 

i.e., three fewer. 
 
The reader can compare this solution with the one given in Filloy, Rojano, 

and Rubio (2001) using the AMSE, and will be able to see the succinctness of 
the solution just given, and also appreciate that from this solution one can 
generate a family of problems similar to that of the teacher. One has only to 
vary the number of toffees, chocolates, etc. One can also then see the kind of 
restrictions that have to be made so that these quantities produce a real 
problem, that is, a problem that has a solution. 

 
 
 

5. TOWARD THE CM VIA THE MSAI, THE AMSE AND THE SM 
 
 

In this section we are going to present the two other methods that are more 
deeply rooted in arithmetic: the Analytic Method of Successive Explorations 
(AMSE) and the Spreadsheet Method (SM). In Filloy, Rojano, and Rubio 
(2001) we gave examples of how they are used with students. Here we will 
give a series of reasons that make these two methods, together with the MSAI 
presented in the last section, suitable precursors before trying to get middle 
school students to become competent in the method traditionally used, which 
we have here called the Cartesian Method (CM). 

It could be said that, hitherto, making students competent in the use of the 
CM has been the only aim indicated in traditional algebra courses in the 
chapters that talk about solving word problems. In Filloy and Rojano (2001) 
we showed the difficulties of introducing the CM when one has just taught 
how to solve equations. The results presented in that work are gratifying, 
although it presents only one case to analyze the difficulties and the successes. 

We will now present results that endorse the appropriateness of using the 
MSAI, the AMSE, and the SM as vehicles for achieving the competences that 
the CM requires. 

 
 

5.1. The AMSE and the SM as a bridge to unite syntactic and semantic 
development 

 
 
The teaching models based on the AMSE and the SM serve as a bridge to 
unite syntactic and semantic development through the production of meanings 
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for arithmetic-algebraic operations in the transition from the use of the notion 
of variable to that of unknown. 
 
 
5.2. The MSAI, the AMSE, and the SM serve as precursors for creating 

the meanings of algebraic relationships 
 
 
The meanings of arithmetic operations, their properties, and their results, as 
used in the MSAI, the AMSE, and the SM, serve as precursors for creating the 
meanings of the algebraic relations established in the use of expressions with 
unknowns and data, and even the meanings of the more complex expressions 
involving unknowns of a word problem that are presented in the use of the 
CM. The meanings of the arithmetic operations within strata of the MSSa of 
arithmetic serve as precursors of more abstract representations —algebraic, 
for example. However, correctly signifying arithmetic operations, their 
properties and their results with the MSAI, the AMSE, and the SM in order to 
create meaning for the algebraic relations of the CM also implies the need to 
make competent use of them. 
 
 
5.3. The AMSE and the SM encourage different algebraic interpretations  

of the word problem 
 
 
The algebraic interpretations encouraged by the AMSE and the SM do not 
generally represent the relations between data and unknown in the order in 
which they appear in the statement of the problem, something that does 
usually happen in the teaching sequences with which the CM is illustrated. 

Indeed, this freedom in interpretation is based on the student’s natural 
tendency to manipulate only one unknown in problems that may involve the 
manipulation of two or more, in contrast to the classic teaching strategies, 
which are generally versions of the CM, tending to use two unknowns in the 
solution of such problems. 

 
 

5.4. Dimensional analysis of equations serves as an element of control 
 
 
Making a dimensional analysis of the equations obtained from numeric 
relations that are established between quantities involved in a word problem 
helps one to understand the notion of relation between quantities and 
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magnitudes that emerge from the word problem, and therefore serves as an 
element of control of the representation of the problem and as a means for 
producing sense for the notion of equivalence between algebraic expressions. 

In general, however, it serves to create senses that lead to the notion of 
equivalence between algebraic expressions that involve the use of unknowns 
as the common element in two algebraic relations, this being expressed in an 
equation. 

 
 

5.5. For some problems the MSAI is more efficient than the AMSE or the SM 
 
 
To embark on a plan to find a solution via the CM or the AMSE is not always 
the best path to the solution. An easier solving strategy may be one that is set 
in motion on the basis of a direct logic-arithmetic analysis, as in the MSAI 
(see, for example, the teacher problem and the mixture problem, presented in 
Sections 4.3.5 and 4.3.2). In the problems in which this happens, the 
intermediate character of the MSAI is not seen. 
 
 
5.6. The relationship between representations in the CM and the efficient use 

of working memory 
 
 
Symbolic representations of problems in the CM make the use of the working 
memory more efficient. When the student succeeds in making relations 
between data and unknowns he combines the information, making more 
complex packets of information. At the point when the student succeeds in 
making these relations, the use of syntax obviates the need to burden the 
working memory with semantic descriptions bound up with the posing of the 
problems. 
 
 
5.7. The competent use of the CM and its relation to the various uses  

of algebraic expressions 
 
 
To simplify the more complex problems of arithmetic and medium level 
algebra one requires a competent use of the MSSal of algebra and therefore of 
the CM. Part of the order of complexity of families of arithmetic-algebraic 
word problems comes from the difficulties presented by their logic-arithmetic 
analysis. 
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To understand progress in the competent use of the CM one must: 
 
a) Explore the tensions that exist between the uses of the concepts of 

name, representation of a generalized number, representation of what 
is not known, unknown, variable, and relation. To do so, one must 
understand what happens with the difficulty of a problem and of the 
solution of the equation that represents it when the data of the problem 
are varied. 

b) Analyze the relation between the complexity of a family of problems 
and the development of algebraic syntax and semantics: the operation 
of negatives, use of rational numbers, simplification of algebraic 
expressions, solution of equations, etc. This has to do with the 
clarification of what we might call the various uses of the algebraic 
expressions indicated in (a). 

 
 

5.8. The logical outline, the analysis of the problem, and other competences  
of students 

 
 
In the first stage of the AMSE and the SM (and probably of any method), 
which consists in the reading and understanding of the text of the problem, it 
is necessary to make a logical outline of the problem situation. This outline 
involves, among other things, a logical mental representation of the problem 
that contains the basic information of the problem situation and that identifies 
the relations that are central for the possibility of setting any solving strategy 
in motion. However, having an understanding or overall logic-mental 
representation of the problem is not enough to enable one to set the AMSE 
and the CM in motion; one must also, as part of the logical analysis of the 
problem, have developed competences to: 
 

1) Make a breakdown of the principal question of a problem that is given 
generically. In the AMSE and the SM, this becomes stage 1 of the 
teaching model based on this method: explanation of each of the 
unknowns of the problem. 

2) Split up the problem in such a way that if there is an implicit unknown 
it is made explicit, and even becomes the principal unknown (ability to 
change the unknown). 

3) Create new unknowns, based on the problem situation, with which one 
can set solving strategies in motion. 

4) Represent relations between the various unknowns. 
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5) Identify representations of relations to find an element common to one 
or more of these relations. 

6) Represent this identification via an equation. 
7) Use algebraic procedures for the solving of equations as a tactic for the 

search for the unknown in the problem situation. 
 
All of these competences are an important and necessary part of the sense 

of the Cartesian method. 
 
 

5.9. The AMSE and the SM use special markers in their representations 
to release units of memory that allow the progressive setting in motion  
of the analysis 

 
 
The AMSE and the SM require the student to learn to leave markers that 
release units of memory, enabling him or her to use them in the progressive 
setting in motion of the analysis and subsequently the solution of the problem. 
These markers can enable him or her to recover the senses of the relations that 
are established between the data and the unknown quantities. 

Some students do not create enough markers, so that in their system of 
representation only a few of the equations that they propose are correct. These 
intermediate representations group the information into packets that have a 
complex organization, although this cannot be distinguished in the notation 
produced by these students. 

 
 

5.10. The solution of some problems depends on whether the logical  
outline establishes a suitable representation 

 
 
Proposing a more abstract representation is not sufficient to solve some 
problems. There are problems whose solution depends more on whether the 
representation established by the logical outline is suitable than on whether it 
is more abstract. 

If one is using arithmetic methods, it is also not sufficient to be capable of 
retaining everything that one produces in the working memory. In certain 
families of problems some solvers try to get closer and closer to the result, yet 
by this path it is very difficult for them to find an equality as they get 
progressively closer. 

In this case the problem is not a matter of not having records of the 
calculations; the difficulty lies in the fact that one is not taking the logical 
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outline of the problem as a basis for seeking an equation as a representation of 
what is happening in the problem. Consequently, in order to progress one will 
require either a more abstract representation or, at least, a more articulated 
representation of the problem solving process, that is, a representation in 
which what one seeks is to be in possession of a process in which one carries 
out a series of stages that enable one gradually to clarify the relations between 
the data, so that some of these mutual relations can then be identified: in other 
words, a representation in which the aim is not to find the numeric solution of 
the problem but to establish the linear equation that models it. 

 
 

5.11. Some abbreviations that use natural language are related  
to the production of mistaken representation in the MSSs 

 
 
Some abbreviations that make use of natural language, referring to arithmetic 
relations established in the process of solving a problem or in the logical 
outline of it, possibly combined with the limitations of working memory, 
encourage non-competent users to produce mistaken representations, both 
when they use the MSSa of arithmetic and when they use the MSSal of 
algebra. 
 
 
5.12. In some contexts one finds a cognitive tendency to make transfers 

(mistaken or otherwise) from one problem to another as a result of 
immediate recognition. 

 
 
When one presents a problem after another problem with a statement that 
speaks of similar things but is not of the same family, there is a natural 
tendency to bring into play automatic processes that are based on a mistaken 
recognition of known forms or schemes in the statement, with the result that 
the user produces generalizations that lead him or her to represent the problem 
in the same way as the preceding one. 

This tendency is related to the reading of problems not as the kind of texts 
that arithmetic-algebraic word problems are, but as narrative texts. The use of 
this kind of reading to replace the reading that constitutes the logical analysis 
of the problem situation may lead to errors in the representation of the 
problem. 
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5.13. The articulation of mistaken generalizations 
 
 
When the student gets stuck in readings based on the use of certain parts of 
the arithmetic-algebraic language that do not enable him or her to solve the 
problem situation, he tends to get round the difficulty by the device of 
extending a rule to other contexts where its application does not make sense. 

The context may play the part of an obstructer or encourager of an 
incorrect coding of a representation of a concept in which the user is trying to 
acquire formal competence through the teaching process. The cognitive 
tendency of getting stuck in readings made within an MSS prevents the 
setting in motion of a solving process by means of a different MSS stratum. 

 
 
 

SUMMARY 
 
 

In this chapter we provide the results of an empirical study concerning the 
competences that are necessary for the use of four methods for solving 
arithmetic-algebraic word problems. The methods in question are the Method 
of Successive Analytic Inferences, the Analytic Method of Successive 
Explorations, the Spreadsheet Method, and the Cartesian Method. Emphasis is 
placed on the need to be competent in increasingly general and more abstract 
uses of representations required for mastery of the algebraic method par 
excellence, the Cartesian Method, and the competences of the Cartesian 
Method are contrasted with those required for mastery of the other three 
methods, which are more deeply rooted in arithmetic. 

The next chapter concludes the book by describing ways to further study 
educational algebra. 
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ENDNOTES 

 
1 The canonic edition of the works of Descartes is the one by Charles Adam and Paul Tannery, 
Œuvres de Descartes, volume X of which includes the original Latin of the rules. The original 
posthumous edition is Descartes (1701), and the first French translation is contained in the 
eleventh volume of the edition by Victor Cousin, Œuvres de Descartes, which was published in 
1826. 
2 Although Polya says that this sentence paraphrases four of Descartes’s rules, rule XIII really 
contains all that it paraphrases: “Quand nous comprenons parfaitement une question, il faut la 
dégager de toute conception superflue, la réduire au plus simple, la subdiviser le plus possible 
au moyen de l’énumération.” (Descartes, 1826, p. 284). Previously (rule VII) Descartes has 
already stated the importance of “énumération”, which he defines as “la recherche attentive et 
exacte de tout ce qui a rapport à la question proposée. […] cette recherche doit être telle que 
nous puissions conclure avec certitude que nous n’avons rien mis à tort” (Descartes, 1826,  
p. 235). Rule XIV speaks of the understanding of “l’étendue réelle des corps” and says that the 
preceding rule also applies to it. Rules XV and XVI are advice for the mind to pay attention to 
the essential and for the memory not to weary itself with what may be necessary but does not 
require the attention of the mind. Rule XV recommends drawing figures to keep the mind 
attentive: “Souvent il est bon de tracer ces figures, et de les montrer aux sens externes, pour 
tenir plus facilement notre esprit attentif.” (Descartes, 1826, p. 313). Rule XVI recommends not 
using complete figures, but mere jottings in order to unburden the memory, when the attention 
of the mind is not needed: “Quant à ce qui n’exige pas l’attention de l’esprit, quoique 
nécessaire pour la conclusion, il vaut mieux le désigner par de courtes notes que par des figures 
entières. Par ce moyen la mémoire ne pourra nous faire défaut, et cependant la pensée ne sera 
pas distraite, pour le retenir, des autres opérations auxquelles elle est occupée” (Descartes, 
1826, p. 313). 
3 “Il faut parcourir directement la difficulté proposée, en faisant abstraction de ce que quelques 
uns de ses termes sont connus et les autres inconnus, et en suivant, par la marche véritable, la 
mutuelle dépendance des unes et des autres” (Descartes, 1826, p. 319). 
4 “C’est par cette méthode qu’il faut chercher autant de grandeurs exprimées de deux manières 
différentes que nous supposons connus de termes inconnus, pour parcourir directement la 
difficulté; car, par ce moyen, nous aurons autant de comparaisons entre deux choses égales” 
(Descartes, 1826, p. 328). 
5 “S’il y a plusieurs équations de cette espèce, il faudra les réduire toutes à une seule, savoir à 
celle dont les termes occuperont le plus petit nombre de degrés, dans la série des grandeurs en 
proportion continue, selon laquelle ces termes eux-mêmes doivent être disposés” (Descartes, 
1826, p. 329). 
6 “[…] tout l’art en ce lieu doit consister à pouvoir, en supposant connu ce qui ne l’est pas, nous 
munir d’un moyen facile et direct de recherche même dans les difficultés les plus embarrassées. 
[…] Si […] nous les mettions, quoique inconnues, au nombre des choses connues, pour en 
déduire, graduellement et par la vraie route, le connu même comme s’il étoit inconnu, nous 
remplirons tout ce que cette règle exige” (Descartes, 1826, pp. 320–321). 
7 In fact, Fridman (1990) considers only trinomial graphs, that is, graphs with all the edges 
having three vertices. However, in order to give an account of all the arithmetic-algebraic 
problems that are set in primary and secondary school it is necessary to consider other kinds of 
edges: with four vertices (e.g., for relations of proportionality), with two vertices (e.g., for the 
relation of equality between two quantities), and others (e.g., to give an account of the relations 
corresponding to the operations of raising to powers and extracting roots –see Nassar, 2001). 
8 This book by Jordanus de Nemore has been published by Barnabas Hughes in Latin, with an 
English translation and a transcription into the language of modern algebra (Hughes, 1981). 
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Here we give a different translation of Nemore’s propositions. The reasons for this are set out 
in Puig (1994). The Latin text of the statement of proposition I-7 is as follows (Hughes, 1981, 
p. 59): 
Si dividatur numerus in duo, quorum alterum tantum datum, ex non dato autem in se et in 
datum provenerit numerus datus, erit et numerus qui divisus fuerat datus. 
9 Our translation is not literal, and in it we have replaced the numbers of Nemore’s example 
with those of the typist problem. The Latin text is given below (Hughes, 1981, p. 59): 
Huius operatio est verbi gratia. Sit vi unum dividentium, et ex reliquo in se et in vi fiant xl 
quorum duplum id est lxxx duplicentur, et erunt clx, quibus addatur quadratum vi hoc est 
xxxvi, et fient cxcvi, cuius radix est xiiii, de quo sublatis vi et reliquo mediato fient iiii, qui est 
reliquum. Eritque totus divisus x, coniunctis iiii et vi. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

CHAPTER 10 
 

WIDENING PERSPECTIVES 
 
 
 

OVERVIEW 
 
 

In this chapter we put forward points of interest from the perspective of future 
research, in seven sections: (1) The history of algebraic ideas. (2) The 
dialectics of syntax and semantics in the study of the generation of errors and 
in new points of interest concerning the representation of the unknown, based 
on something that is also unknown. This leads us to analyze the usual 
treatments for teaching systems of equations and to propose new ways of 
teaching them based on the use of trial and error, canceling, comparison, and 
substitution. (3) The study of the new problems posed by information and 
communication technology (ICT) by analyzing the new roles in the classroom 
or in the communication between learner and teacher. (4) An analysis of the 
MSS of Jordanus de Nemore’s De Numeris Datis, which makes it possible (a) 
to propose teaching models for second-degree equations; (b) to study the 
reason for the greater difficulty in the use of factorization compared with the 
learning of algebraic identities; and (c) to study the difficulties in using an 
algorithm as a subroutine in another more complex algorithm. (5) Early 
algebra, a rich new field for research with a huge past of research results. (6) 
Investigation of theoretical questions that involve the use of research into the 
instruction imparted by teachers. And (7), in the interests of (6), the need to 
develop the theoretical aspects of the communication model for the classroom 
using ICT. 
 
 
 

1. HISTORICAL ANALYSIS OF ALGEBRAIC IDEAS 
 
 

In Chapter 3 we showed the part played by the analysis of the history of 
algebra in our research, and consequently what kind of historical analysis is of 
interest to us. 

Without repeating all that was said there, our use of history has two 
fundamental features. On the one hand, it is concerned with an analysis of 
algebraic ideas. As a result, there is very little interest for us in, for example, 
questions of dating or of priority in developing the concepts of algebra. What 
we are basically interested in is identifying the algebraic ideas that are 
brought into play in a specific text and the evolution of those ideas, which can 
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be seen by comparing texts; in this context we can consider historical texts as 
cognitions and analyze them as we analyze the performance of pupils, whose 
productions also constitute mathematical texts (provided that one uses a 
notion of text such as the one we presented in Chapter 5). 

The second feature creates a close bond between historical research and 
research into mathematics education, which allows us to state that our 
historical research belongs to research into mathematics education, and is 
characterized by a two-way movement between historical texts and school 
systems: 

 
1) The problematics of the teaching and learning of algebra is what 

determines which texts must be sought out in history and what 
questions should be addressed to them. 

2) The examination of historical texts leads to (a) considering new items 
that have to form part of the model of competence, (b) having new 
ways of understanding the performance of pupils and, therefore, of 
developing the model of cognition, and, lastly, (c) developing teaching 
models. With all these things teaching experiments are organized and 
the performance of students is analyzed. 

3) Attention is redirected to the historical texts in order to question them 
once again, now using the results obtained with students, that is, the 
results derived from the performance of students when all that has been 
extracted from the analysis of algebraic ideas is incorporated into the 
teaching model and the analysis of the teaching and learning processes. 

4) And so on, repeatedly. 
 
 

1.1. Current and future research 
 
 
In this section we indicate some of the directions in which we are turning to 
history as a result of issues present in the current problematics of research in 
educational algebra, and another one is mentioned especially in Section 3. 

The use of spreadsheets to teach how to solve problems that students were 
traditionally taught to solve by using some version of the Cartesian method, 
whether with the aim of serving as an intermediary for the teaching of the 
Cartesian method or with a view to replacing it with a new method, poses the 
question of the ways of naming unknown quantities. 

In fact, in a spreadsheet one can refer to unknown quantities by assigning 
one or more cells for one or more unknown quantities, like the way in which 
one assigns one or more letters to one or more unknown quantities in the 
second step of the Cartesian Method, and it is advisable to place the cell 
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beneath a cell in which the name of the quantity is written in the vernacular, 
either complete or else abbreviated in some way. The relationships between 
the quantities can then be represented as operations expressed in spreadsheet 
language. In that language the cells are designated by a matrix code consisting 
of a letter and a number, e.g., B3, which indicates the column and row of the 
cell, and the cell name then becomes the name of the corresponding quantity 
in the spreadsheet language. The cell name can be written explicitly using the 
keyboard or generated by clicking on it with the mouse. 

When the spreadsheet is used to solve word problems its language has 
considerably more complexity than what we have just described, but this brief 
outline shows that the way in which the unknown is named in this language  
is different from that of the language of modern school algebra. This has con-
sequences for the use of the spreadsheet in teaching how to solve problems 
and in the performance of pupils when they are taught in this way. It is 
therefore worth turning now to historical texts in which the language of 
modern school algebra had not yet been developed, in order to see how 
unknown quantities are named in them and what effects the way of naming 
them has on the way of representing the relationships between quantities that 
are translated from the statement of the problem and the relationships 
generated in the course of the calculations. 

Therefore, both in the case of the use of the spreadsheet and in that of the 
teaching of problem solving by using the Cartesian Method, at some point it  
is necessary to teach the use of more than one letter (or cell) to represent 
unknown quantities, together with the corresponding way of handling ex-
pressions in the corresponding languages. As we pointed out in Chapter 3 and 
in Puig and Rojano (2004), most of the languages of algebra prior to Viète 
were incapable of this, and yet problems were solved that we would now 
naturally represent by using more than one letter. It would be interesting, 
therefore, to turn to the historical texts once again in order to examine the 
ways in which this was done. 

Finally, the use of graphic calculators, with the possibility of collecting 
data with calculator-based ranger (CBR) or calculator-based laboratory (CBL) 
sensors, to teach the idea of family of functions as a means for organizing 
phenomena through the modeling of real situations poses the problems of the 
establishment of canonical forms in which the parameters express properties 
of each family of functions and, therefore, of the situations that are modeled. 
Bound up with this is the development of a calculation, that is, a set of 
algebraic transformations, which makes it possible to reduce the expressions 
obtained by modeling the real situation to one of the canonical forms. The 
history of the idea of canonical form (and that of calculation or algebraic 
transformations that is bound up with it) thus acquires a new perspective 
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which is worth studying, in addition to the aspect studied in Chapter 2 and in 
Puig and Rojano (2004). 

 
 

 
2. COGNITIVE TENDENCIES AND THE INTERACTION BETWEEN SEMANTICS  

AND ALGEBRAIC SYNTAX IN THE PRODUCTION OF SYNTACTIC ERRORS 
 
 

The literature on algebraic errors in the learning of algebra concentrates 
mainly on their syntactic component (Matz, 1982; Kirshner, 1987; Drouhard, 
1992). There are not many books like Booth (1984) and Bell (1996) that place 
this problematic component in a more general context such as problem 
solving. In this section we analyze the interaction between semantics and 
algebraic syntax as a source of syntactic errors when the interaction takes 
place in a teaching process that uses concrete models. We defend the view 
that an analysis of this kind provides a perspective that enables us to give 
explanations that are different from the usual explanations for the presence of 
certain typical errors of algebraic syntax. 

Undertaking a semantic introduction of new algebraic concepts, objects 
and operations involves selecting a concrete situation (i.e., a situation which is 
familiar to the learner in some context) in which such objects and operations 
can be modeled. With this focus it is possible to make use of previous 
knowledge in order to achieve the acquisition of new knowledge. This is one 
of the guiding principles of modeling, the strengths and weaknesses of which 
appear as soon as a specific model is brought into operation (see Chapter 5, 
for example). 

 
 

2.1. Different tendencies 
 
 
In Chapter 4 we introduced the syntactic/semantic opposition with respect to 
cognition. 

The antagonism of these two tendencies (Vt’s and Ma’s) was evident from 
mere observation of their respective interviews. However, from a comparative 
analysis of them, there are a couple of points concerning aspects common to 
both cases that deserve to be emphasized. One can see, on the one hand,  
that despite the antagonism just mentioned there is a common tendency to 
abbreviate the process (with the pupils going their own way to perform the 
abbreviation in each case); and, on the other hand, a certain number of 
obstacles and errors are generated during these abbreviation processes that 
are also common, and that can be considered as typical of the subsequent 
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syntactic handling of symbolic algebra. In one case (Vt), the tendency to 
abbreviation consists in trying to ease the operations performed in the model, 
but remaining in it. To do this it is necessary to pay attention to the actions 
(translation, comparison, etc.) that are performed repeatedly. This reflection 
leads, in turn, to a process of abbreviation of those actions. It is precisely 
through this abbreviation that some parts of the concrete model are lost: on 
the one hand, the “base-line” (the linear dimension that corresponds to the 
unknown), and, on the other, the area condition of the constant term and the 
operational handling of it. This leads to a tendency to perform the addition of 
x with the terms of degree zero, resulting in an aberrant operation between 
terms of different degrees. 

 
 

2.2. Syntactic errors 
 
 
The generation of the same kind of syntactic errors in the two cases that we 
have just mentioned is not accidental and can be explained by an analysis of 
the general level, as we did in Chapter 6. When one teaches with models there 
is a danger that what constitutes the main virtue of any concrete model (i.e., 
the fact that it seeks the support of previous knowledge) may become the 
main obstruction for the acquisition of new knowledge. In the cases of the 
pupils interviewed, who were allowed to develop the use of the geometric 
model on their own, what happened was that the component of the model 
which tended to abbreviate, and therefore to conceal, the operation with the 
unknown persisted in both cases. In cases like Vt’s, pupils who possess a 
strong semantic tendency allow this to happen because the automation of the 
actions in the model weakens the presence of the unknown throughout  
the whole procedure. In cases like Ma’s, this tendency is due to the effects of 
the creation of personal codes, created to record intermediate states of the 
equation proposed originally. The corrections in each case are of a local 
nature and in accordance with the tendency of each pupil. Thus, when there  
is an inclination to remain in the model, the correction of the syntactic 
aberration mentioned earlier is performed in the model itself, because only 
semantic models can make such an aberration evident. In the case of the 
syntactic tendency, however, the correction is normally performed together 
with other events in the syntax, specifically through an essential modification 
of the notions of equation and unknown. 
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2.3. New studies needed 
 
 
By way of conclusion, the interaction between semantics and algebraic 
syntax, which is presented throughout the processes of abstraction of the 
operations performed with algebraic objects (which have been endowed with 
meaning and sense in the context of a concrete model) when learning the 
language of algebra, is modulated by the tendencies of the individual and by 
features of the specific model which is being used. Nevertheless, there are 
some aspects of this interaction that remain constant when there is a change in 
the tendency of the individual or the type of model. These essential aspects of 
the relationship between semantics and algebraic syntax in turn reflect 
essential aspects of another interaction that appears between the two basic 
components of the model, namely, the reduction to the concrete and the 
relinquishing of the semantics of the concrete. The transfer of the problem  
of semantics versus algebraic syntax to the level of actions with the model 
enables us to close the breach that exists between these two domains of 
algebra. The analysis of the interaction between semantics and syntax on this 
new level points to the need to intervene with the teaching model at key 
moments in the early days of the use of algebraic language. 

This dialectics of semantics and syntax and the theoretical description of 
the relationships between the deep and superficial forms of the syntax of the 
MSS of algebra, i.e., the generative and transformational aspects of the 
description of grammar (cf. Kirschner, 1987; Drouhard, 1992), may be linked 
to the explanation of why mistakes are made when, in order to follow a rule, it 
is necessary to use one or more rules that previously were used competently. 

Future research will clarify this matter. Moreover, in this context it is 
possible to continue with the study of the solution of systems of equations 
when solving problems, as we indicated at the end of Chapter 8. 

 
 
 

3. JORDANUS NEMORARIUS’S DE NUMERIS DATIS AS AN MSS.  
THE CONSTRUCTION OF A TEACHING MODEL FOR THE SECOND-DEGREE 

EQUATION AND THE INTRODUCTION OF CERTAIN ALGEBRAIC IDENTITIES 
 
 

In this book we have proposed a certain kind of reading of the classic texts of 
the history of mathematics (see Chapter 3 and Section 1 in this chapter). 

From that viewpoint we have studied the MSS of Jordanus de Nemore’s 
book De Numeris Datis (cf. Puig, 1994, where there is also a detailed 
description of the propositions of Book I of that work and three propositions 
from Book IV which are equivalent to al-Khwârizmî’s three compound 



 CHAPTER 10 263 

 

canonical forms), seeking in it the characteristics of the mathematical sign 
system (MSS) —or mathematical sign systems— in which it is written, the 
way in which that language configures the objects that one can speak of with 
it, the problems that it poses and seeks to solve, and the operativity that the 
MSS has over the objects expressed in it. As we have already indicated in 
Chapter 6, we conceive the construction of symbolic algebra as the final 
identification, within a single language stratum, of earlier language strata that 
are irreducible from one stratum to another until the more abstract language 
has been developed. From this perspective, the interest in turning to a  
13th-century text such as Nemorarius’s work, which is prior to Viète’s 
establishment of the language of symbolic algebra, lies in the possibility of 
taking it as a monument and describing one of the MSSs that are seen 
retrospectively, from the viewpoint of symbolic algebra, as being less 
abstract. This interest attaches to research into the didactics of mathematics as 
soon as one conceives that what students do when they learn symbolic algebra 
and are taught in educational systems can also1 be described in terms of the 
use of MSSs —some of them idiosyncratic— which have to culminate in the 
competent use of the more abstract MSS of symbolic algebra —or, at least, 
that is the aim of educational systems. 

We will now present an analysis of proposition I-7,2 which shows how  
the results of the analysis of De Numeris Datis set out in Puig (1994) could be 
used to construct a teaching model (which includes the use of new 
technologies) to teach how to solve the second-degree equation, and to study 
the difference in the difficulty of the use of algebraic identities, on the one 
hand, and the factorization of algebraic expressions, on the other. To give 
some idea of the construction of such a teaching model we will also reproduce 
that proposition from De Numeris Datis, interpreted in a figure. 

 
The statement of proposition I-7 is the following: 

 
If we divide a number into two parts, one of which has been given, and the 
product of the other by itself and by the one that has been given is a given 
number, the divided number will also have been given. 
 

This proposition is important in the general organization of Nemore’s 
book, as many other propositions reduce to it. On the other hand, if it is 
translated into the MSS of modern algebra the statement reduces to the 
equation x2 + ux = v, which is the first of al-Khwârizmî’s canonical forms. 

This translation is obtained if the analysis of the statement determines the 
following quantities: 
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the part given, 
the part not given, 
the other quantity given (the part not given by itself and by the other 
given part), 

 
and one then decides to represent “the part not given” with the letter x, and the 
data with the letters u, “the part given,” and v, “the other quantity given,” 
and one constructs the expressions x + u, for “the number that is divided,” and 
x (x + u), for the other given quantity, so that one can construct the equation  
x (x + u) = v (equivalent to al-Khwârizmî’s first canonical form). 

However, the argument that Jordanus de Nemore develops to prove this 
proposition goes as follows (the division into parts is ours): 
 

[1] Let the number be divided into a and b, b given 
[2] Let a by itself and by b, that is, by all of ab, be d, given 
[3] Let us also add c to ab, and let c be equal to a 
[4] Thus, all of abc is divided into ab and c 
[5] So that ab by c is d, given 
[6] and the difference between ab and c is b, given 
[7] abc and c will be given, and equally a and ab. 
 

To understand this argument one must know that Nemore has already 
proved in proposition I-5 that “if a number is divided into two parts, the 
product and difference of which have been given, the two parts will also have 
been given”, so that what Nemore does is to reinterpret the quantities of 
the statement of I-7 so that the situation is that of I-5. Table 10.1 shows the 
correspondence between the letters that Nemore uses in the argument, the 
quantities in the statement that they represent, the meaning that he gives them 
so as to be able to use I-5, and the corresponding algebraic expressions in the 
MSS of modern algebra, and Figure 10.1 gives a representation of them all as 
lengths and areas. 

Table 10.1 
 

The letters in 
Nemore’s 
MSS 

Meaning in the statement Meaning in the 
interpretation 

Expression in the 
MSS of modern 
school algebra 

a the part not given the smaller part (s) X 
b the part given the difference (d) U 
ab the number that is divided the larger part (l) x + u 
c a number equal to a the smaller part (s) X 
d the part not given by itself and 

by the part given: the other given 
quantity 

the product (p) x (x + u) = v 

abc  the total (t) x2 + ux = v 

the number that is divided, 
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Figure 10.1 
 

The divisions of the square in Figure 10.1 are selected in such a way that 
they easily represent the smaller part and the larger part into which a number 
has been divided (or, alternatively, the sum of two numbers), the difference of 
the parts, their product, the square of each of them, etc. Then the algebraic 
identities and the Babylonian procedures of cutting and pasting to solve 
quadratic problems are represented in this figure by shading parts of it and 
using the equalities between the subdivisions of the square, so that it can be 
used in the study of the teaching of these aspects of school algebra with a 
concrete model. By way of example, in Figure 10.2 we show the algebraic 
identity “sum by difference equals difference of squares.” 

 

Figure 10.2 
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4. NEW USES OF TECHNOLOGY IN THE CLASSROOM  
AND THE COMMUNICATION MODEL 

 
 

The powerful resources that are available nowadays, from calculators to 
computers, offer new ways of teaching mathematics. The numeric strategies 
and visual focuses that they provide represent a challenge to symbolic algebra 
as a means for obtaining the desired competences in solving problems. These 
numeric and visual resources enable us to design teaching activities by which 
students work with questions of a mathematical nature without having 
previously had any formal introduction to the mathematics involved in them. 

Much stress has recently been laid on the use of computerised envi-
ronments, but little light has been cast (from a theoretical viewpoint) on how 
this use has led to a new organization of classrooms. The result is 
undoubtedly beneficial, in view of the obsoleteness of teaching practices. And 
so it seems relevant that we should concentrate our discussion on the organi-
zation of the classroom environment. 

A reflection on the relationship between theory and practice in the context 
of innovative approaches in the teaching and learning of algebra leads one to 
take into account both real classroom practice and curriculum contents such as 
those that result from the study of new proposals. 

It is worth concentrating attention on the changes that have taken place in 
school classroom practice with the introduction of innovative techniques, 
whether or not they are based on the use of information and communication 
technology. It would be interesting to study the changes in the role of the 
teacher, the role of the students, and the role of the environments in which the 
teaching activities take place. 

The continuation of studies such as the ones that we presented in Chapter 9 
(about problem solving) and those that are connected with the processes of 
generalisation in algebra is bound up with the use of ICT. Much research has 
already been done on how the environments of technology can affect the 
learning and teaching of mathematics. 

Specifically for the case of algebra, it is known that environments such as 
LOGO and spreadsheets allow the design of student activities for learning to 
express and manipulate the general. For example, it is known that young 
students are capable of perceiving the regularity of a pattern in sequences of 

regularity with an algebraic formula, and it is even more difficult for them to 

ence, make predictions, generate new terms, etc. By using a spreadsheet the 
students can try to reproduce a given sequence, first numerically and then by 
introducing a general formula to generate the sequence and checking whether 
the formula is correct. This not only gives them the possibility of expressing 

manipulate such a formula (if they know it) in order to analyze the sequ- 

numbers or figures, but that they find great difficulty in expressing the 
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the general in a language similar to that of algebra but also allows them to 
explore and discover properties of the sequence dynamically. That is to say, in 
this environment the transition to the expression and manipulation of the 
general can take place in an exploratory and experimental manner. In a similar 
way the regularities in a figure can be expressed in a LOGO program and the 
students can analyze them by using the program; and when they are the ones 
who write the program, they take control of processes of generalization that 
can be of great complexity. 

In another area, symbolic manipulators (CAS) and even the spreadsheet 
have been used to help pupils to solve algebraic word problems, probably one 
of the most difficult items to teach in the curriculum. An argument widely 
accepted for the use of CAS is that the pupil concentrates on the phases of the 
analysis of the text of the problem and its translation into algebraic code 
without having to fight with the syntactic manipulation of the equation (or 
system of equations) to find the solution. Finding the solution is the respons-
ibility of the automated processes of the symbolic manipulator. On the other 
hand, the spreadsheet has been applied to help students to organize the 
information of the text of a problem in cells and to develop formulas that 
express functional relationships between unknown and data and between 
unknowns (when there are two or more). The solution of the problem can then 
be found by means of the numerical variation of one of the unknowns. Thus 
the spreadsheet method also emphasizes the process of analysis of the text of 
the problem, but here the development of the formulas (in spreadsheet syntax) 
is done with an arbitrary initial numeric assignation to the value of one of the 
unknowns, which serves as an independent variable in the search for the 
solution. That is, unlike CASs, in the spreadsheet method the stage of posing 
and solving the problem is not done with the language of algebra, but it is 
done with a strong numeric support, which is favored by the predominance of 
arithmetic thinking in adolescent pupils. 

The examples just given illustrate only a few of the uses of computational 
environments or technology that have been studied, proposed, and implemented 
for the teaching of algebra in some educational systems. However, the 
question of ICT in the teaching of algebra is far from being an exhausted topic 
in the field of research. The dynamic quality and immediate visual feedback 
of computer methods, so highly praised since they began to be used in 
education, do in fact play a fundamental part in the cases to which we have 
referred. But there is also widespread recognition of the fact that equally 
fundamental is the possibility of taking control of that dynamism by working 
with executable expressions, written and manipulated with a code (that of the 
software) which is very similar to algebraic code, but that is not, or does not 
behave, completely like symbolic algebra. This naturally raises the question 
of whether, in the long term, the use of these tools will tend to replace the 
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manipulative aspects of algebra in teaching, or whether the intention is that 
the students’ experiences with technological tools may eventually link up with 
the syntax of the algebra of pencil and paper. 

These seemingly simple questions really give rise to fundamental 
considerations: on the one hand, concerning the importance of whether or not, 
in teaching, one conserves certain levels of competence in the use of the basic 
language of mathematics and science, and, on the other, concerning matters of 
situated learning, of the possibility of transferring knowledge and competence 
from one medium to another. These queries, subject to the specificity of the 
theoretical formulations that have been given in the preceding chapters, give 
rise to items in a research agenda, focusing on matters of interaction between 
languages, or rather of transition between mathematical sign systems of 
different levels of abstraction, inside and outside computer environments. 
This last aspect would include analysis, with this semiotic perspective, of the 
studies currently in progress, carried out with environments of simulation and 
graphing, where one is working with phenomena of variation and where the 
absence of the analytical representations of the functional relationships is 
deliberate. 

 
 
 

5. EARLY ALGEBRA 
 
 

For the presentation of this field we consider the following question to be of 
capital importance: What forms does syntactic competence adopt in early 
algebra? Has it been expelled from early algebra or has it only been hidden? 
In Section 5.3 we will give a reply that points to the need, when researching in 
this field, to take both the syntactic competences and the cognitive tendencies 
generated into account. 
 
 
5.1 Generalization 
 
 
To set bounds to this point of view, we will initially confine ourselves to 
one of the subsidiary areas most studied currently, generalization, given its 
importance in the implementation of curriculum developments for the 
youngest learners, for whom the aim is to start to lay the foundations of what 
will ultimately be developed in algebra in later years. See Ginsburg, Inoue 
and Seo (1999); Usiskin (1999); Cuevas and Yeatts (2001); Friel, Rachlin and 
Doyle (2001); Greenes, Cavanagh, Dacey, Findell and Small (2001); Malara 
and Navarra (2003). 
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5.2. Implementation of the teaching model 
 
 
We can analyze the kind of tasks connected with generalization that have 
recently preoccupied the research community with seven examples taken from 
research papers (presented in strictly alphabetical order): (1) Iwasaki and 
Yamaguchi (1997), (2) Lee (1996), (3) Mason (1996), (4) Radford (2000b), 
(5) Stacey (1989), (6) Zazkis and Liljeddahl (2001) and (7) Zazkis and 
Liljeddahl (2002). 

In general, in these articles we find: 

1) Exchange of messages with mathematical texts (Tn), in an attempt to get 
the learners to acquire the desired competences. Usually these articles 
show a good performance on the part of the learners presented in parts 
of the series of texts Tn and the probable appearance of personal codes 
in the performances. 

2) Some learners are successful in producing sense for the series of texts 
Tn and they thereby become competent users of the language game 
proposed by the series Tn (the Process of Generalization). 

3) In all cases, what has been said in (1) and (2) implies the use of a 
stratum of the MSS in which syntactic competences in arithmetic and 
the rudiments of algebra are necessary. 

4) Point (3) forces the appearance in the users of cognitive tendencies that 
have been well known for some time: those described in (a) Vergnaud 
(1981), (b) Carpenter, Moser and Romberg (eds.) (1982), (c) Fuson 
(1998), (d) Kieran (1981), (e) Booth (1984), (f) Figueras, Filloy and 
Valdemoros (1985, 1986), (g) Filloy and Lema (1996), (h) Filloy and 
Rojano (1989) (reverse of multiplication syndrome, polysemy of x, very 
many cognitive tendencies indicated in this book), (i) Filloy and Rubio 
(1991, 1993a, 1993b), (j) Filloy, Rojano and Rubio (2001), etc. 

 
 

5.3. Grammatical change 
 
 
To sum up what has been said: the reorganization of the new conceptual field 
developed on the basis of achieving the necessary competences in the use of 
the language set involves a change in the logical syntax of the new stratum of 
the MSS. 



270 WIDENING PERSPECTIVES 

  

5.4. Research needed 
 
 
We therefore have to put forward new local theoretical models (LTMs) to  
be used with these K–8 students to study the processes of abstraction  
and visualization characteristic of the use of ICT: electronic blackboards, 
symbolic calculators, specific software (spreadsheets, Cabri, SimCalc, etc.), 
programming languages (LOGO, the language of electronic calculators, 
Visual Basic, etc.), optical readers, videotaped interviews, and so on. 

The cognition components of these new LTMs will have to take into 
account all the cognitive tendencies detected in the past, which were 
presented summarily in point (4) of 5.2. 

 
 

 
6. RESULTS OF RECENT RESEARCH INTO PROBLEMS OF LEARNING ALGEBRA 

USED AS THE CORE FOR IN-SERVICE COURSES IN THE TEACHING OF 
MATHEMATICS 

 
 

The need to apply a theoretical focus to the problem of teaching mathematics 
began to become evident in the middle of the last century. From the outset, 
this new awareness drew the attention of groups of mathematicians, educa-
tors, psychologists, and epistemologists, stimulating the introduction of new 
curricula at all levels of the educational system. This attitude resulted in the 
appearance of many areas for investigation that had not been studied 
previously and which posed unexpected problems. 

The changes in the mathematics curriculum made it essential for teachers 
to have some knowledge that fit in with the new ideas about the teaching of 
mathematics. The need for researchers in this field also emerged. 

 
 

6.1. Some topics for discussion 
 
 
The development of a theoretical focus in research has led to the posing of 
questions such as the following: 
 

1) What is the role of a theory in the didactics of mathematics? 
2) How can a teacher obtain some benefit from learning theories of the 

didactics of mathematics or research methods used in the didactics of 
mathematics? 



 CHAPTER 10 271 

  

3) To what extent are research results relevant for conditions in the real 
world? To what extent are they useful for teachers in their day-to-day 
activities in the classroom? 

 
This first group of questions arises as a result of the development of 

theoretical perspectives that, because of their complexity, are not easily 
accessible for teachers. Moreover, there seems to be a view that “didactic 
objectivity” can exist independently of the real conditions in which the 
processes of teaching and learning take place in current school systems. What, 
then, is the point of studying “didactics”? Of what use is the discourse in 
which its concepts are expressed? Could one sensibly imagine a course of 
study on “didactics” that did not aim to change the real practices that 
characterise the teaching and learning of mathematics? 

It is certainly significant in this respect that five of our studies on algebra 
which are presented in this book were developed with the assistance of 
teachers and pupils in the educational systems in the countries where the 
authors live. 

We ought to point out that in each of those studies the attitudes of the 
teachers involved underwent a transformation as the experimental work 
advanced. It is appropriate, therefore, to contrast the use of theories in the 
design of experiments for research and even the interpretation of the results 
with the intermediate products of the experiment as it progresses. In the 
experiments in the studies just mentioned, the teachers were involved directly 
as a fundamental part of the experiment and they produced a great abundance 
of ideas about the immediate results. 

It is worth asking oneself how profound and penetrating an idea a teacher 
needs to have of the fundamentals of a didactic theory or research meth-
odology to be influenced by the results of the experiment in the direction of 
changing his basic attitudes toward his work and getting the corresponding 
improvement from it. The examples in our studies suggest that a complete 
understanding of the theory used is not essential for the experiment to produce 
a wealth of useful data for the teachers who take part in the experiment, or for 
those data to be provided to other teachers. If it were essential we would be in 
a no-win situation, as it would be necessary, before a teacher could use the 
results of the study, for him to become an expert in the theoretical fields on 
which it was based: psychology, linguistics, artificial intelligence, epistemo-
logy, the history of ideas, etc., and also on the processing and interpretation of 
data, including advanced techniques of data analysis or methods for 
processing observations, etc. 
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6.2 Research needed 
 
 
The following questions should be the focus of future research: 
 

1) Why and how can many of the immediate results of research in 
educational mathematics be expressed in the direct discourse that 
teachers use in their ordinary speech? 

2) Why are those results perceived as new information, previously 
unknown to the teachers who take part in the experiments and in the 
discussions held at the end of each experiment with other teachers not 
involved in them? 

3) Why is this information perceived by the teachers as decisive for a new 
way of seeing their problems and changing what they previously 
thought was normal (in their activities in day-to-day teaching)? 

4) Why is it that, as a result of a practical experiment, previous practices 
of teaching are seen by the teachers as inconsistent with the immediate 
results produced by the study that is being carried out? 

 
In order to do research to answer questions such as these we will have to 

separate the theoretical framework that supports semiotic research in 
educational algebra (with teachers involved in it) from the theoretical 
framework on the basis of which the teachers play an active part in designing 
the research. To achieve this we will have to develop our ideas about the 
communication model. In the following section we put forward some ideas on 
which to work in the future. It is also necessary for what is proposed in 
Sections 3 and 5 of this chapter. 

 
 
 

7. OBSERVATION IN THE CLASSROOM. A SEMIOTIC PERSPECTIVE 
 
 

The only occasion on which the communication model has been used in this 
book is in the final example in Chapter 8. It is worth reproducing the 
conclusion that we reached in point 4.4.3, entitled “Different levels of 
abstraction: the case of names”: “The communication model enables us to 
establish the difference in the readings given by the interviewer and the 
student […] This difference in the meanings attributed to algebraic 
expressions is present in any process of teaching algebra where the teacher is 
a competent user and the students are learners, generating difficulties such as 
those reported here (tendencies 2 and 5).” 
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The words just quoted could be the most general thesis that guides the 
design of any communication model. In this book, as the observations 
reported concentrated on the results of the case studies, concluding with 
clinical interviews, the communication model has not been used much, and 
consequently it has not been introduced much; we have merely mentioned a 
few general considerations concerning it in Chapter 8. But if one is trying to 
analyze situations that occur in the classroom, or any situation in which there 
is a teacher (human or an interactive electronic teaching model) and learners, 
it is necessary to develop its theoretical aspects further. 

 
 
 

CODA 
 
 

Chapter 10 brings the book to a close, proposing a research agenda that 
includes questions and topics that arise from the discussions and analyses 
presented in the preceding chapters, from the perspective of local theoretical 
models, mathematical sign systems, and historical analysis. To start with, we 
propose going back to history to study the evolution of certain algebraic ideas, 
analyzing historical texts as cognitions in the same way that we analyze 
students’ productions, which in turn constitute mathematical texts in the sense 
used in Chapter 5. We also express an interest in making a deeper study of 
operating with the unknown, on a second level of representation, that is, when 
it is expressed in terms of another unknown (a typical situation in the solution 
of systems of equations with two or more unknowns) and in exploring new 
methods for solving systems of two equations with two unknowns, going 
beyond the classical methods of substitution and comparison. Also in the field 
of teaching, it is of interest to explore teaching models for solving the 
quadratic equation, based on analysis of Jordanus de Nemore’s work De 
Numeris Datis. We also propose the need for a greater theoretical 
development with respect to models of communication in the classroom for 
the case of the teaching of algebra. In particular, it is of interest to investigate 
how the use of ICT affects patterns of communication in the classroom (the 
communication component in local theoretical models). This last point leads 
naturally to the theme of using the results of research in teacher training. 
Finally, the research trend which has acquired importance in recent years 
concerning the early introduction to algebra is also put forward, with 
questions such as: What forms does syntactic competence adopt in early 
algebra? Is this competence avoided in early algebra or is it present 
implicitly? We invite the reader to engage with these questions from the 
theoretical perspective expounded throughout this book, in which the 
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identification of “the algebraic” in these early approaches is closely connected 
with explicit handling of the mathematical sign system of symbolic algebra. 
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ENDNOTES 
 

 
1 The MSSs on which the more abstract MSS is erected, present in history and in the history of 
each individual, cannot be the same; nor, therefore, can the paths toward the more abstract 
MSS. In the case of algebra, one need only take account of the fact that modern school 
arithmetic is not written in the vernacular but in an MSS imbued with signs and even rules of 
syntax that come from the MSS of symbolic algebra and which have come down from it to 
arithmetic. 
2 This proposition has already appeared in Chapter 9. There we used the third part of the 
proposition, the problem with which the algorithm obtained for the solution is exemplified, 
whereas here we will analyze the second part, which develops the proof of the proposition. 
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sequence of, 121, 124, 125, 134, 140, 

205, 207, 209 
Meaning, 7, 8, 17, 19, 20, 21, 22, 24, 25, 

30, 33, 39, 48, 50, 52, 71, 87, 88, 90, 
95, 105, 107, 121, 123, 124, 125, 127, 
131, 132, 133, 135, 136, 137, 138, 
141, 142, 160, 162, 163, 166, 168, 
169, 170, 174, 175, 176, 186, 188, 
192, 191, 200, 202, 205, 207, 208, 
209, 212, 213, 214, 215, 216, 217, 
222, 223, 232, 235, 237, 240, 241, 
256, 257, 264, 267, 276, 279 
culturally established, 52 
formal, 8, 24, 25, 33, 200 
negation of part of the, 175 
of sign, 200 
pragmatic, 201 
semantic-pragmatic, 176, 207 
sources of, 201 

Means of organization, 41, 43, 44, 51, 53, 
55, 129 

Mental object 
and concepts, 27, 53 
constitution of, 27, 45, 51, 54 

Method of comparison, 208 
Method of substitution, 210, 216 
Method of Successive Analytic 

Inferences, 219, 222, 225, 229, 230, 
234, 235, 236, 237, 248, 250, 251, 
252, 253, 254, 255, 256, 257,  
258, 262 
succinctness of the use of the, 255 

Mistakes of algebraic syntax, 118, 139, 
152 

Model of cognitive processes, 3, 34, 36, 
37, 260 

Model of communication, 3, 34, 36, 37, 
277 

Model of formal competence, 3, 34, 37, 
191 

MSAI. See Method of Successive 
Analytical Inferences 

MSS. See Mathematical Sign System 
 

Natural numbers, 27, 45, 60, 199, 216 
 
Observation in class, 90 
Operating on the Unknown, 89, 92, 93, 94, 

95, 96, 97, 100, 101, 102, 107, 108, 
111, 112, 116, 117, 119, 141, 142, 146, 
147, 149, 151, 154, 159, 163, 171, 235, 
240, 241, 250, 254 
teaching to, 89 

 
Phenomena 

field of, 44, 53, 54, 55, 57 
Phenomenology 

didactical, 26, 37, 41, 42, 45, 54, 84, 86 
genetic, 37, 41, 42 
historical, 37, 41, 42, 82, 84 
phenomenological analysis, 1, 27, 37, 

41, 42, 45, 53, 59, 60, 59, 60, 77, 84, 
86, 90, 89 
of school algebra, 60, 59, 77, 89 
of the language of algebra, 84, 86 

pure, 37, 42, 54 
Polysemy of x, 4, 16, 272 
Pragmatics, 8, 24, 25, 32, 33, 34, 36, 92, 

201, 204, 234, 251 
Problem 

analysis of, 66, 69, 183, 193, 222, 226, 
232, 259, 262 

analytic reading of, 143, 161, 242, 243, 
244, 246 
graph of, 242, 243, 244, 246 

arithmetic-algebraic, 49, 219, 220, 242, 
248, 252 

arithmetic-algebraic word problem, 122, 
231, 236, 237, 238, 242, 259, 262 

complexity of, 233 
corresponding to arithmetic equations, 

65, 98 
families of, 59, 82, 175, 226, 237, 251, 

252, 253, 261 
family of 

more complex, 253 
problem situation, 33, 35, 65, 70, 122, 

133, 134, 140, 159, 164, 165, 167, 
170, 173, 174, 175, 182, 184, 190, 
205, 206, 209, 211, 219, 221, 223, 
225, 226, 228, 229, 232, 259, 260, 
262 

situation 
decoding the, 35, 36, 134, 172, 173 

to find, 58 
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to prove, 58 
with two unknowns, 208 
word problem, 39, 89, 122, 141, 144, 

162, 205, 210, 211, 214, 219, 222, 
232, 233, 234, 235, 236, 247, 252, 
261, 270 

Problem solving, 28, 34, 35, 44, 58, 59, 
60, 91, 119, 122, 123, 124, 133, 134, 
136, 137, 139, 142, 144, 160, 161, 
163, 166, 167, 203, 207, 217, 219, 
221, 222, 223, 224, 225, 228, 231, 
232, 234, 237, 238, 239, 247, 253, 
261, 262, 265, 269 
of arithmetic-algebraic word 

problems, 229, 237, 238, 262 
situations, 203 
word problems, 220, 235, 238, 256 

Problem solving the use of algebraic 
syntax in, 141 

Process 
of abbreviation, 164, 174, 188, 224, 

263 
of abstraction, 89, 130, 152, 163, 192, 

204, 253 
of communication, 4, 5, 22, 25, 36, 

163, 200, 201, 203, 205, 210, 214, 
216, 259, 268, 269, 275, 276, 277 

of communication and signification, 
191 

of decoding, 32, 33, 34, 35, 36, 37, 65, 
134, 141, 176, 205, 206, 207, 222, 
228, 229 

of defining, 5, 44, 52, 58, 59, 60, 75, 
183, 204 

of generalization and abstraction, 164, 
253 

of progressive abstraction, 129 
of signification, 5, 7, 25, 202, 203, 

205, 216 
of understanding, 164 
of verification, 107, 202 

Proportional variation, 12, 69, 162, 163, 
170, 176, 187, 192 
geometric, 168 

 
Reading, 16, 20, 25, 125, 128, 129, 134, 

138, 142, 163, 165, 166, 168, 189, 
190, 211, 212, 213, 214, 262, 276 
of text, 68 

Reduction, 76, 81, 103, 118, 126, 152, 
153, 240, 264 

Referent, 93, 101, 119, 176, 177, 192, 202, 
206, 207 

Repetition and practice, 174, 175 
Reverse of multiplication syndrome, 1, 4, 

9, 13, 90, 165, 166, 190, 272 
Root, 77, 78, 79, 82, 83, 85, 87, 89, 250 
 
Semantic tendency, 117, 264 
Semantics 

a semantic introduction of elements of 
syntax, 142 

advancing toward, 141 
algebraic, 140, 142, 159, 160 
of elementary algebra, 141, 142 
personal semantic field, 50, 51, 52 
vs. algebraic syntax, 89, 93, 111, 157, 

262, 264 
Semiotics, 1, 2, 3, 5, 7, 8, 21, 22, 23, 24, 

25, 26, 27, 32, 36, 50, 51, 52, 91, 126, 
191, 192, 203, 204, 225, 226, 227, 271, 
275, 276 

Sense, 3, 6, 8, 11, 22, 23, 24, 25, 26, 30, 
31, 39, 45, 48, 49, 51, 54, 58, 59, 69, 
71, 75, 76, 83, 85, 87, 91, 95, 107, 116, 
117, 121, 125, 126, 128, 131, 132, 133, 
134, 136, 138, 139, 141, 143, 157, 160, 
163, 165, 167, 168, 169, 170, 174, 175, 
183, 188, 190, 191, 192, 191, 196, 198, 
202, 205, 206, 207, 208, 209, 210, 212, 
213, 214, 215, 217, 219, 220, 223, 226, 
227, 229, 232, 234, 247, 253, 258, 260, 
262, 264, 272, 276, 279 
for intermediate concrete actions, 167, 

191 
intermediate, 226 
of the text, 219, 229 
of the text of a word problem, 219, 229 
production of, 7, 125, 205 
without, 188, 206 

Sequence 
of mathematical texts, 125, 134, 205, 

209 
of problem situations, 133, 134, 205 

Sign 
compound, 48, 202 
expression and content, 131 
function, 7 
functor, 8 
geometric, 177, 183 
icon, 28, 46, 49, 131 
index, 28, 46, 48, 49 
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intermediate, 201 
symbol, 17, 21, 22, 28, 46, 48, 49, 91, 

126, 180 
triadic relation, 5, 6, 48 

Sign system 
didactic, 204 
personal, 2, 204 

Sign-functor, 203, 204 
Slope 

of a straight line, 168, 177, 182, 184, 
188 

SM. See Spreadsheets Method 
Solving strategies, 76, 91, 136, 209, 229, 

247, 248, 260 
Spreadsheet Method, 219, 230, 231, 234, 

235, 236, 237, 247, 248, 254, 256, 
257, 258, 259, 260, 263, 270 

Symbolic manipulators, 270 
Syntactic 

complexity, 209, 210 
error, 167, 191, 262, 263 
model, 92, 121, 135, 138, 139, 140, 142 
procedures, 8, 119 
skills, 89, 91 

Syntax 
elements of, 94, 117, 135, 142, 144, 

152, 157, 159, 161, 166 
model, 210 
natural mistakes of, 108, 228 
purely syntactic level, 162 
rule of, 198 
the construction of, 143 

 
Teaching model, 3, 8, 33, 34, 36, 38, 41, 

60, 65, 96, 119, 121, 123, 124, 125, 
130, 132, 133, 134, 135, 136, 138, 
140, 163, 169, 177, 184, 188, 192, 
191, 198, 199, 200, 201, 202, 204, 
205, 206, 207, 208, 209, 216, 219, 
229, 230, 231, 235, 236, 237, 256, 
260, 259, 260, 264, 265, 266, 272, 
276, 277 

Teaching route, 210 
Teaching sequence, 42, 67, 69, 165, 170, 

174, 177, 182, 183, 202, 203, 230, 257 
Teaching situation, 8, 65, 133, 135, 138, 

164, 185, 186 
Teaching strategies, 90, 92, 93, 98, 111, 

135, 160, 161, 257 
Text, 7, 10, 11, 12, 17, 18, 22, 23, 32, 34, 

37, 50, 59, 70, 71, 74, 75, 76, 78, 80, 
84, 87, 89, 91, 92, 121, 125, 126, 127, 
128, 129, 130, 133, 134, 163, 164, 166, 
169, 170, 171, 175, 176, 186, 188, 198, 
201, 204, 205, 206, 207, 216, 221, 222, 
224, 228, 236, 242, 259, 262, 260, 261, 
262, 265, 270, 272, 276, 279 
sequence of, 125, 132, 133, 192, 198, 

200, 206 
transformation of, 176 

Textual space, 121, 125, 129, 130, 133, 
140, 204, 242 

Thales’ theorem, 163, 191 
situations that simulated the 

demonstration of, 168 
Transfer 

of algebraic manipulation, 145, 159, 
161 

processes of, 141, 143, 145 
Transition from arithmetic to algebra, 1, 

10, 12, 24, 64, 89, 92, 95, 121, 220 
Translation 

difficulties in, 1, 17 
Treasure, 77, 78, 79, 80, 81, 85 
Trial and error strategy, 9, 13, 14, 150, 151, 

155, 166, 190, 213, 214, 215, 216, 227, 
231, 248, 251, 255, 259 

 
Variable 

continuous, 187 
in algebra, 88 
in the vernacular, 88 
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