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Preface

This book is about random objects—sequences, processes, arrays, measures,
functionals—with interesting symmetry properties. Here symmetry should
be understood in the broad sense of invariance under a family (not necessarily
a group) of measurable transformations. To be precise, it is not the random
objects themselves but rather their distributions that are assumed to be
symmetric.

Though many probabilistic symmetries are conceivable and have been
considered in various contexts, four of them—stationarity, contractability,
exchangeability, and rotatability—stand out as especially interesting and im-
portant in several ways: Their study leads to some deep structural theorems
of great beauty and significance, they are intimately related to some basic
areas of modern probability theory, and they are mutually connected through
a variety of basic relationships. The mentioned symmetries may be defined
as invariance in distribution under shifts, contractions, permutations, and
rotations. Stationarity being a familiar classical topic, treated extensively
in many standard textbooks and monographs, most of our attention will be
focused on the remaining three basic symmetries.

The study of general probabilistic symmetries essentially originated with
the work of de Finetti (1929–30), who proved by elementary means (no ad-
vanced tools being yet available) the celebrated theorem named after him—
the fact that every infinite sequence of exchangeable events is mixed i.i.d.
Though the statistical and philosophical implications were thoroughly ex-
plored by de Finetti himself and his followers, the result was long regarded
by probabilists as an isolated curiosity. (The attitude still prevails among
the ignorant!) The mathematical study of exchangeability and related topics
was not revived until the work of Hewitt and Savage (1955), Ryll-Nardzewski
(1957), Bühlmann (1960), and Freedman (1962–63). The area eventually be-
came fashionable, owing to some remarkable discoveries of Aldous (1977,
1981), Hoover (1979), Kingman (1978), and others, which led to a vigorous
further development. By the time of the 1981 Rome conference on exchange-
ability, honoring de Finetti on his 75th birthday, the accumulated knowledge
was already so vast and the literature so scattered that a quick overview was
getting difficult. Though the situation was partially remedied by a brilliant
review paper of Aldous (1985), a serious student of the subject would still
need to consult the original research papers.
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To me personally, probabilistic symmetries have been a major interest—
even an obsession—throughout my career, and at least half of my publications
during the past thirty years have been in this area. More than twenty years
ago, I began (foolishly) to announce my intention of writing a monograph on
the subject. What held me back was the constant discovery of new results and
basic connections that needed to be explored before the subject could be said
to have reached a critical level of maturity. In the meantime, the relevant
literature has kept growing exponentially, and a single volume would now
seem totally inadequate to cover the entire area. Regrettably, this situation
has forced me to be very selective, and I hope that my readers will forgive
me for giving preference to the areas that I know best. Entire theories, often
of great significance, are either ignored altogether or deferred to appendices
for brief summaries, with their major proofs omitted.

de Finetti’s theorem—once regarded as a deep result, requiring 50 pages of
proof—can now be established in just a few lines. What remains, then, to fill
the pages of a whole book? The answer may be surprising to the novice: The
area of distributional symmetries is one of the richest of modern probability
theory, exhibiting an abundance of deep, beautiful, and often astounding
results. Though some proofs remain long and intricate, even with the best
tools currently available, the patient reader will be greatly rewarded. As
in any area of mathematics, the interest lies as much in the overall, logical
structure of the edifice as in the individual statements of theorems. I have
therefore spent countless hours (indeed weeks, months, or years) reworking
the proofs to make them as accessible and transparent as possible, in the
hope that young researchers will be inspired to continue the work where
previous generations have left off. As should be clear from a glance at the
bibliography, the current theory has emerged through the collective efforts
of countless authors of many nationalities.

The present exposition is divided into nine chapters, each devoted to a
major aspect of the theory. The first chapter introduces the basic symmetries
of contractability, exchangeability, and rotatability and gives the represen-
tations that are accessible by elementary methods. Important martingale
connections are introduced in Chapter 2, and martingale methods are used
to study the paths of exchangeable processes. The general representation of
such processes is derived by weak convergence methods in Chapter 3, which
also contains a variety of limit theorems and approximation results. In Chap-
ter 4 we present the predictable sampling theorem and its continuous-time
counterpart, and in Chapter 5 we consider the closely related decoupling
identities for exchangeable sums and integrals. Exchangeable random sets
and the associated excursion theory are considered in Chapter 6. The re-
maining Chapters 7–9 are devoted to multi-variate symmetries of different
kinds. Thus, we deal in Chapter 7 with exchangeable or contractable arrays
of arbitrary dimension, in Chapter 8 with separately or jointly rotatable ar-
rays or functionals, and in Chapter 9 with separately or jointly exchangeable
random measures on a finite or infinite rectangle.
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Special, though related, topics include the Lp-symmetries of Chapter 1,
some invariance results for Palm measures in Chapter 2, the sub-sequence
principles in Chapter 3, the time-change reductions in Chapter 4, some de-
compositions of the strong Markov property in Chapter 6, the paint-box
representation of symmetric partitions in Chapter 7, and the theory of ex-
changeable random sheets in Chapter 8. Though most results are previously
known, there are many new results (or new versions of old ones) scattered
throughout the book.

For motivation and general guidance, we begin with a short introduction,
highlighting some main results from the various chapters. Some auxiliary
results of a more technical nature are treated in appendices, and the book
concludes with some detailed historical notes, along with references to the
original papers. A long, though far from exhaustive, bibliography lists publi-
cations closely related to the included material. Though most proofs should
be accessible to readers with a good knowledge of graduate level probability
and real analysis, detailed references are often provided, for the reader’s con-
venience, to my earlier book Foundations of Modern Probability (2nd ed.),
where FMP a.b refers to Proposition b in Chapter a.

Acknowledgments: My interest in symmetries goes back to my student
days in Gothenburg, Sweden, where I had the good fortune of being nurtured
by an unusually stimulating research environment. I am especially indebted
to Peter Jagers for some crucial influences during the formative year of 1971–
72, when I wrote my dissertation.

In later years I have met most of the key players in the development of the
subject, many of whom have had a profound influence on my own work. For
helpful or stimulating discussions through the years, I would like to mention
especially David Aldous, Istvan Berkes, Persi Diaconis, Douglas Hoover, Gail
Ivanoff, John Kingman, Jim Pitman, and Paul Ressel. I am also grateful for
the interest and encouragement of countless other friends and colleagues,
including the late Stamatis Cambanis, Kai Lai Chung, Erhan Çinlar, the
late Peter Franken, Cindy Greenwood, Gopi Kallianpur, Klaus Krickeberg,
Ross Leadbetter, Ming Liao, the late Klaus Matthes, Balram Rajput, and
Hermann Thorisson. (I apologize for any unintentional omission of names
that ought to be on my list.)

Special thanks go to Gail Ivanoff and Neville Weber, who allowed me
to include the part of Theorem 1.13 conjectured by them. Generous help
was offered by Ulrich Albrecht and my son Matti, when my computer broke
down at a crucial stage. I am also grateful for some excellent remarks of
an anonymous reviewer, and for the truly professional work of John Kimmel
and the production team at Springer-Verlag.

My greatest thanks, as always, extend to my eternally youthful and won-
drously clever wife Jinsoo, for her constant love and support, without which
this book could never have been finished. As a devoted wife, she has grace-
fully accepted that the most useful mathematical insights are often coming
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at times that were meant to be spent with the family. On a personal note, I
adore her for being such a wonderful mother to our children, and I owe her
special thanks for tolerating my daily piano practice and for never complain-
ing, as I am filling our house with piles and piles of books on every aspect of
cultural history.

Olav Kallenberg
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Introduction

The hierarchy of distributional symmetries considered in this book, along
with the associated classes of transformations, may be summarized as follows:

invariant objects transformations
stationary shifts

contractable sub-sequences
exchangeable permutations

rotatable isometries

where each invariance property is clearly stronger than the preceding one.
All four symmetries may be considered in discrete or continuous time (or
space) and in one or several dimensions. There is also the distinction between
bounded and unbounded index sets.

The most obvious problem in this area is to characterize the class of ob-
jects of a given type with a specified symmetry property. Thus, for example,
de Finetti’s theorem describes the infinite, exchangeable sequences of ran-
dom variables as mixed i.i.d. This classical result is rather easy to prove by
modern martingale or weak convergence arguments. Other characterizations
may be a lot harder. Thus, it takes about 30 pages of tight mathematical
reasoning to derive the characterization of contractable arrays of arbitrary
dimension, and for the multi-variate rotatable case another 40 pages may
be required. In other cases again, no simple representation seems to exist.
Thus, for example, stationary sequences are unique mixtures of ergodic ones,
but there is no (known) representation of a (strictly) stationary and ergodic
sequence in terms of simpler building blocks. The situation for finite, con-
tractable sequences is even worse, since here the integral representation in
terms of extreme points is not even unique.

The next step might be to explore the relationship between the various
symmetries. For example, Ryll-Nardzewski’s theorem shows that every in-
finite, contractable sequence of random variables is even exchangeable, so
that, for infinite sequences, the two symmetries are in fact equivalent. (The
equivalence fails for finite sequences.) A higher-dimensional counterpart is
the much deeper fact that every contractable array on a tetrahedral index
set can be extended (non-uniquely) to an exchangeable array on the corre-
sponding product set. For a connection with stationarity, it is easy to show
that an infinite sequence is contractable iff (if and only if) it is strongly sta-
tionary, in the sense of invariance in distribution under optional shifts. Let
us finally mention the fundamental and nontrivial fact that every continuous
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and contractable (in the sense of the increments) process on RR+ = [0,∞)
with zero drift is also rotatable.

Connections can also take the form of limit theorems or approximation
properties. Thus, for example, we may approximate a finite exchangeable
sequence by infinite ones. This, of course, is nothing else than the familiar
asymptotic equivalence between sampling with or without replacement from
a finite population, explored in scores of statistical papers. Similar approxi-
mation theorems can be established in continuous time, where modern weak
convergence and coupling methods play a prominent role.

Our investigation may continue with a more detailed study of the various
symmetric random objects. For example, though on RR+ the exchangeable
(increment) processes are just mixtures of the familiar Lévy processes—this
is the continuous-time counterpart of de Finetti’s theorem, first noted by
Bühlmann—on [0, 1] one gets a much broader class of exchangeable pro-
cesses, and it becomes interesting to explore the path and other properties of
the latter. It may then be natural to relate the various symmetries to a filtra-
tion of σ-fields and to employ the powerful machinery of modern martingale
theory and stochastic calculus.

This new dynamical approach has led to some startling new discover-
ies, opening up entirely new domains of study. We have already mentioned
the elementary connection between exchangeability and strong stationarity.
Further instances are given by the wide range of characterizations involving
direct or reverse martingales in discrete or continuous time. Less obvious are
the predictable sampling and mapping theorems, where the defining prop-
erties of contractable or exchangeable sequences and processes are extended
to suitably predictable random transformations. Apart from their intrinsic
interest, those results also serve as valuable general tools, providing short
and streamlined proofs of the arcsine and related theorems for random walks
and Lévy processes. A connected, indeed even stronger, class of theorems are
the decoupling identities for sums and integrals with respect to exchangeable
processes, discussed in further detail below.

All the mentioned problems continue to make sense in higher dimensions,
and the last third of the book deals with multi-variate symmetries of various
kind. As already noted, already the basic characterization problems here
become surprisingly hard, and the picture is still incomplete.

−−−

We turn to a more detailed summary of the contents of the book, intro-
ducing at the same time some crucial definitions and notation. Let us first
define the basic symmetries, as they appear already in Chapter 1. Given an
infinite sequence of random elements ξ = (ξ1, ξ2, . . .), we say that ξ is con-
tractable (sometimes even called spreading invariant or spreadable) if every
sub-sequence has the same distribution, so that

(ξk1, ξk2, . . .)
d= (ξ1, ξ2, . . .) (1)
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for any positive integers k1 < k2 < · · · , where d= denotes equality in dis-
tribution. It is clearly enough to consider sub-sequences obtained by omit-
ting a single element. (Our term comes from the fact that we may form a
sub-sequence by omitting some elements and then contracting the resulting
sequence to fill in the resulting gaps. This clearly corresponds to a spread-
ing of the associated index set.) A finite sequence ξ1, . . . , ξn is said to be
contractable if all sub-sequences of equal length have the same distribution.

For the stronger property of exchangeability, we require (1) to hold for
any distinct (not necessarily increasing) elements k1, k2, . . . of the index set.
Thus, for infinite sequences, the kn are required to form an injective (but
not necessarily surjective) transformation on NN = {1, 2, . . .}. However, it is
clearly enough to require that (1) be fulfilled for any finite permutation of
NN, defined as a bijective transformation n �→ kn such that kn = n for all
but finitely many n. (Indeed, it suffices to consider transpositions of pairs of
adjacent elements.) For technical purposes, it is useful to note that the finite
permutations form a countable group of transformations of the index set.
(By contrast, the classes of shifts or sub-sequences of NN are only semigroups,
which leads occasionally to some technical problems.)

Finally, when the ξk are real-valued (or take values in a suitable linear
space), we may define rotatability of ξ by requiring that every finite sub-
sequence be invariant in distribution under arbitrary orthogonal transforma-
tions. Thus, for every n, the distribution µn of (ξ1, . . . , ξn) is assumed to
be spherically symmetric on RRn. It is then clear, at least intuitively, that
each µn is a mixture of uniform distributions over concentric spherical shells
around the origin. The situation for infinite sequences may be less obvious.
Since permutations are special cases of rotations, we note that every rotat-
able sequence is exchangeable. Similarly, by the injectivity of contractions,
every exchangeable sequence is clearly contractable. Finally, shifts are special
contractions, so every contractable sequence is stationary.

In continuous time, we may define the corresponding symmetries in terms
of the increments. The initial value playing no role, we may then restrict our
attention to processes starting at 0, and by suitable scaling and shifting we
may assume that the index set I is either [0, 1] or RR+. Considering any dis-
joint intervals I1, I2, . . . ⊂ I of equal length, listed in the order from left to
right, we may say that a process X on I is contractable, exchangeable, or
rotatable if the increments of X over I1, I2, . . . have the corresponding prop-
erty (for all choices of intervals). A problem with this definition is that the
underlying transformations are only applied to the increments of X (rather
than to X itself).

A preferable approach would be to base the definition on suitable path-
wise transformations. Thus, for any points a < b in I, we may form the
contraction Ca,bX by deleting the path on (a, b) and attaching the continued
path starting at (b,Xb) to the loose end at (a,Xa), employing a suitable
parallel displacement in space and time. By a similar construction, for any
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three points a < b < c in I, we may form the transposition Ta,b,cX by
swapping the paths over the intervals [a, b] and [b, c]. Then we say that X

is contractable if Ca,bX
d= X for all a < b and exchangeable if Ta,b,cX

d= X
for all a < b < c. For rotations, a Hilbert space approach often seems more
appropriate, as explained below.

−−−

Chapter 1 begins with a proof of de Finetti’s theorem. In its original
form, the theorem says that every infinite, exchangeable sequence of ran-
dom variables ξ = (ξ1, ξ2, . . .) is mixed i.i.d. In other words, there exists a
probability measure ν on the set of distributions m on RR such that

L(ξ) ≡ P{ξ ∈ ·} =
∫

m∞ν(dm). (2)

(Here m∞ denotes the distribution of an i.i.d. sequence based on the measure
m.) The condition is clearly even sufficient, so it characterizes the class of
exchangeable sequences.

A more sophisticated version of the theorem is in terms of conditioning.
Thus, an infinite sequence ξ as above is exchangeable iff it is conditionally
i.i.d. In other words, there exists a random probability measure ν on RR such
that, conditionally on ν, the ξk are i.i.d. with the common distribution ν.
This we can write conveniently as

P [ξ ∈ ·|ν] = ν∞ a.s. (3)

Even this characterization is superseded by the stronger statement of Ryll-
Nardzewski, the fact that every infinite, contractable sequence of random
variables is conditionally i.i.d. Thus, for infinite sequences of random vari-
ables, the four stated properties—contractable, exchangeable, mixed i.i.d.,
and conditionally i.i.d.—are all equivalent. This is the modern statement of
de Finetti’s theorem, proved in Section 1.1.

de Finetti’s theorem suggests a corresponding result in continuous time,
characterizing exchangeable processes on RR+ as mixtures of Lévy processes.
The proposed statement, first noted by Bühlmann, requires some qualifica-
tions, owing to some technical difficulties associated with the uncountable
nature of the index set. One way to make the claim precise is to consider
only exchangeable processes defined on the rationals, and assert that any such
process X can be extended a.s. to a mixture of Lévy processes. Another way
is to require X to be continuous in probability and claim that X has then
a version with the stated property. A third option is to assume from the
outset that X is right-continuous with left-hand limits (rcll), which ensures
the validity of the original claim. Whatever the approach, the conclusion
may be stated in either a mixing form, in the format of (2), or a conditional
form, akin to (3). We finally note that, by Ryll-Nardzewski’s theorem, even
Bühlmann’s result remains true in a stronger contractable version.
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The results of de Finetti and Bühlmann are no longer true for bounded
index sets. The obvious counterpart in discrete time is the fact that finite
exchangeable sequences are mixtures of so-called urn sequences, obtained by
sampling without replacement from a finite collection (that may be repre-
sented by tickets in an urn). The general result in continuous time is much
harder and will be discussed later. However, the special case of random mea-
sures is accessible by elementary means, and we may prove that a random
measure ξ on [0, 1] is exchangeable iff it can be represented in the form

ξ = αλ +
∑

k
βkδτk

a.s., (4)

where α and β1, β2, . . . are non-negative random variables and τ1, τ2, . . . is
an independent sequence of i.i.d. U(0, 1) random variables, U(0, 1) being the
uniform distribution on [0, 1]. Here λ denotes Lebesgue measure on [0, 1],
and δt is the measure assigning a unit mass to the point t.

In particular, we see that a simple point process ξ on [0, 1] is exchange-
able iff it is a mixed binomial process of the form ξ =

∑
k≤κ δτk

, where
τ1, τ2, . . . are i.i.d. U(0, 1) and κ is an independent random variable. This
may be contrasted with the infinite-interval case, where ξ is mixed Poisson
by Bühlmann’s theorem. Those rather elementary results, of considerable
importance in their own right, are interesting also because of their connec-
tions with classical analysis, as they turn out to be essentially equivalent to
Bernstein’s characterizations of completely monotone functions. Likewise, de
Finetti’s original theorem for exchangeable events is equivalent to Hausdorff’s
celebrated moment representation of completely monotone sequences.

We turn to the rotatable case. Here Freedman’s theorem states that an
infinite sequence of random variables ξ = (ξ1, ξ2, . . .) is rotatable iff it is
mixed i.i.d. centered Gaussian. In its conditional form the condition says
that, given a suitable random variable σ ≥ 0, the ξk are conditionally i.i.d.
N(0, σ2). The latter description corresponds to the a.s. representation ξk =
σζk, k ∈ NN, where ζ1, ζ2, . . . are i.i.d. N(0, 1) and independent of σ. In either
form, the result is equivalent to Schoenberg’s theorem in classical analysis—
the remarkable fact that a continuous function ϕ on RR+ with ϕ(0) = 1 is
completely monotone, hence a Laplace transform, iff for every n ∈ NN the
function fn(x) = ϕ(|x|2) = ϕ(x2

1 + · · · + x2
n) on RRn is non-negative definite,

hence a characteristic function.
The rotational invariance may be expressed in the form

∑
k ckξk

d= ξ1,
where c1, c2, . . . are arbitrary constants satisfying

∑
k c2

k = 1. It is natural
to consider the more general case of lp-invariance, where we require instead
that ∑

k
ckξk

d= ‖c‖p ξ1, c = (c1, c2, . . .) ∈ lp.

This makes sense for arbitrary p ∈ (0, 2], and the property is equivalent to
the a.s. representation ξk = σζk, where the ζk are now i.i.d. symmetric p-
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stable and σ is an independent random variable. This is another classical
result, due to Bretagnolle, Dacunha-Castelle, and Krivine.

−−−

The main purpose of Chapter 2 is to introduce and explore the basic
martingale connections in discrete and continuous time. Given a finite or
infinite random sequence ξ = (ξ1, ξ2, . . .) adapted to a filtration F = (Fn), we
say that ξ is F -contractable or F -exchangeable if for every n ∈ NN the shifted
sequence θnξ = (ξn+1, ξn+2, . . .) is conditionally contractable or exchangeable,
respectively, given Fn. When F is the filtration induced by ξ, we note that
the two properties reduce to the corresponding elementary versions. However,
the added generality is often useful for applications. For infinite sequences,
either property holds iff ξ is strongly stationary, in the sense that θτ ξ

d= ξ
for every finite optional (or stopping) time τ . It is also equivalent that the
prediction sequence

µn = P [θnξ ∈ ·|Fn], n ≥ 0,

be a measure-valued martingale on ZZ+ = {0, 1, . . .}. Similar results hold in
continuous time.

Even more striking are perhaps the reverse martingale connections. To
state the basic discrete-time version, let ξ = (ξ1, ξ2, . . .) be a finite or in-
finite random sequence in an arbitrary measurable space, and consider the
associated sequence of empirical distributions

ηn = n−1
∑

k≤n
δξk

, n ≥ 1.

Then ξ turns out to be exchangeable iff the ηn form a reverse, measure-valued
martingale. In continuous time, we consider any integrable semi-martingale
X on I = [0, 1] or RR+ with jump point process ξ and let [Xc] denote the
quadratic variation of the continuous component Xc. Then X is exchangeable
iff the process

Yt = t−1(Xt, ξ[0, t], [Xc]t), t ∈ I \ {0},

is a reverse martingale.
Returning to the associated forward martingales, we show that any inte-

grable and contractable process X on QQ[0,1] = QQ∩ [0, 1] can be extended to a
special semi-martingale on [0, 1) with associated jump point process ξ, such
that [Xc] is linear and X and ξ have compensators of the form

X̂ = M · λ, ξ̂ = λ ⊗ η, (5)

where M and η denote the martingales

Mt =
E[X1 − Xt|Ft]

1 − t
, ηt =

E[ξ1 − ξt|Ft]
1 − t

.
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In particular, this allows us to extend X to a process with rcll paths. We
may henceforth add the latter property to the defining characteristics of a
contractable or exchangeable process.

By a much deeper analysis, it can be shown that every integrable and
exchangeable process X on [0, 1] has an a.s. representation

Xt = αt + σBt +
∑

k
βk(1{τk ≤ t} − t), t ∈ [0, 1], (6)

for some i.i.d. U(0, 1) random variables τk, an independent Brownian bridge
B, and an independent collection of random coefficients α, σ, and β1, β2, . . . ,
where 1{·} = 1{·}. This clearly generalizes the representation (4) of exchange-
able random measures on [0, 1].

The martingale description involving (5) has a surprising partial con-
verse. Here we consider any uniformly integrable, special semi-martingale
X on [0, 1] with jump point process ξ such that the end values X1, [Xc]1,
and ξ1 are a.s. non-random. Then X is exchangeable iff the compensating
processes X̂, [Xc], and ξ̂ are absolutely continuous and admit densities that
form martingales on (0, 1). This result is related to Grigelionis’ characteri-
zation of mixed Lévy processes—hence of exchangeable processes on RR+—as
semi-martingales whose local characteristics are a.s. linear.

The various martingale descriptions enable us to prove some powerful
norm relations for contractable and related processes. For example, for any
Lp-valued, exchangeable processes X on [0, 1], we have the relations

‖Xt‖p � ‖X∗
1‖p �

∥∥∥([X]1 + X2
1 )1/2

∥∥∥
p
,

uniformly in X and for t ∈ (0, 1) and p > 0 in compacts. (Here a � b
means that the ratio a/b is bounded above and below by positive constants,
and X∗

t = sups≤t |Xs|.) We can also use martingale methods to estimate the
local growth rates of arbitrary exchangeable processes.

The chapter closes with a discussion of Palm measures. For simple point
processes ξ on S, the Palm distribution Qs at a point s ∈ S can be thought
of as the conditional distribution of ξ, given that ξ has a point at s. (For
the existence, we need to assume that the intensity measure Eξ is σ-finite.)
Each measure Qs is again the distribution of a simple point process ξs on
S, which is clearly such that one of the points lies at s. The reduced Palm
distribution Q′

s can be defined as the law of the point process ξ′
s = ξs − δs,

obtained from ξs by omitting the trivial point at s. Now a central result says
that Q′

s is (or, rather, can be chosen to be) independent of s iff ξ is a mixed
binomial or Poisson process based on Eξ. Recall that the latter are precisely
the exchangeable point processes on S, except that exchangeability is now
defined in the obvious way with respect to the measure Eξ. As a special
case, one recovers a celebrated result of Slivnyak—the fact that ξ is Poisson
iff the measures Q′

s all agree with the original distribution L(ξ).

−−−
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Chapter 3 deals with weak convergence and related approximation prop-
erties. To introduce the subject, recall that by de Finetti’s theorem every
infinite exchangeable sequence ξ = (ξ1, ξ2, . . .) can be described in terms of
a directing random measure ν, such that conditionally on ν, the ξk are i.i.d.
with the common distribution ν. It is easy to see that the distributions of ξ
and ν determine each other uniquely. Now consider a whole sequence of such
infinite exchangeable sequences ξn = (ξ1

n, ξ
2
n, . . .), n ∈ NN, with associated

directing random measures ν1, ν2, . . . . We may then ask for conditions en-
suring the distributional convergence ξn

d→ ξ, where ξ is again exchangeable
and directed by ν. Here one naturally expects that ξn

d→ ξ iff νn
d→ ν, which

is indeed true for a suitable choice of topology in the space of measures.
In a similar way, we can go on and consider exchangeable sequences,

measures, or processes on any bounded or unbounded index set. The first
step is then to identify the corresponding directing random elements, which
may be summarized as follows:

bounded unbounded
sequences ν ν
measures (α, β) (α, ν)
processes (α, σ, β) (α, σ, ν)

For unbounded sequences, ν is the directing measure in de Finetti’s theorem,
and for bounded sequences ξ = (ξ1, . . . , ξm) we may choose ν to be the empir-
ical distribution m−1∑

k δξk . For exchangeable random measures ξ on [0, 1],
we have a representation (4) in terms of some non-negative random variables
α and β1, β2, . . . , and we may choose the directing random elements to be
α and β, where β denotes the point process

∑
k δβk

on (0,∞). Similarly,
exchangeable processes X on [0, 1] have a representation as in (6), which
suggests that we choose the directing elements α, σ, and β =

∑
k δβk

. For ex-
changeable processes on RR+, we may derive the directing triple (α, σ, ν) from
the characteristics of the underlying Lévy processes, and for exchangeable
random measures on RR+ the choice of directing pair (α, ν) is similar.

In each of the mentioned cases, there is a corresponding limit theo-
rem, similar to the one for exchangeable sequences. For example, if X and
X1,X2, . . . are exchangeable processes on [0, 1] with directing triples (α, σ, β)
and (αn, σn, βn), respectively, then

Xn
d→ X ⇐⇒ (αn, σn, βn) d→ (α, σ, β), (7)

for carefully chosen topologies on the appropriate function and measure
spaces. But much more is true. To indicate the possibilities, consider some
finite, exchangeable sequences ξn = (ξk

n; k ≤ mn) with associated summation
processes

Xn(t) =
∑

k≤mnt
ξk
n, t ∈ [0, 1],



Introduction 9

and introduce the random triples (αn, σn, βn), where

αn =
∑

k
ξk
n, σn = 0, βn =

∑
k
δξk

n
.

Then (7) remains true for any exchangeable process X on [0, 1] directed
by (α, σ, β), provided only that mn → ∞. The corresponding result for
summation processes on RR+ generalizes Skorohod’s functional limit theorem
for i.i.d. random variables. We can also use a similar approach to establish the
representation (6) of exchangeable processes on [0, 1], now in full generality,
without imposing the previous integrability condition.

The processes in (6) are similar to, but more general than Lévy processes,
which leads to the obvious challenge of extending the wide range of path
properties known for the latter to the broader class of general exchangeable
processes. The problems in the general case are often much harder, owing
to the lack of simple independence and Markov properties. One powerful
method for obtaining such results is by coupling. Given an exchangeable
process X on [0, 1] with constant directing triple (α, σ, β), we may then try
to construct a Lévy process Y approximating X in a suitable path-wise sense,
to ensure that at least some of the path properties of Y will carry over to
X. In particular, such an approach allows us to extend some delicate growth
results for Lévy processes, due to Khinchin, Fristedt, and Millar, to a general
exchangeable setting.

The chapter concludes with a discussion of sub-sequence principles. Here
we note that, given any tight sequence of random elements ξ = (ξ1, ξ2, . . .) in
an arbitrary Polish space S, we can extract an asymptotically exchangeable
sub-sequence ξ ◦ p = (ξp1, ξp2, . . .), in the sense that the shifted sequences
θn(ξ◦p) tend in distribution, as n → ∞, toward a fixed exchangeable sequence
ζ. A stronger result, established in various forms by several people, including
Dacunha-Castelle and Aldous, is the weak sub-sequence principle, where the
asserted limit holds in the sense of the weak convergence

E[η; θn(ξ ◦ p) ∈ ·] w→ Eην∞, η ∈ L1,

ν being the directing random measure of ζ. In other words, the previously
noted convergence θn(ξ◦p) d→ ζ is stable, in the sense of Rényi. A related and
even more powerful result is the strong sub-sequence principle, due to Berkes
and Péter, ensuring that for any ε > 0 we can choose the sub-sequence ξ ◦ p
and an approximating exchangeable sequence ζ such that

E[ρ(ξpn, ζn) ∧ 1] ≤ ε, n ∈ NN,

where ρ denotes a fixed, complete metrization of S.

−−−

Chapter 4 deals with various properties of invariance under predictable
transformations in discrete or continuous time. To explain the discrete-time
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results, recall that a finite or infinite random sequence ξ = (ξ1, ξ2, . . .) is
exchangeable if its distribution is invariant under non-random permutations
of the elements, as in (1). The predictable sampling theorem extends the
distributional invariance to certain random permutations. More precisely,
letting τ1, τ2, . . . be a.s. distinct predictable times, taking values in the (finite
or infinite) index set of ξ, we have

(ξτ1, ξτ2, . . .)
d= (ξ1, ξ2, . . .).

(Recall that a random time τ is said to be predictable if τ−1 is optional, hence
an ordinary stopping time.) If ξ is only assumed to be contractable, then the
same property holds for any strictly increasing sequence of predictable times
τ1, τ2, . . . . The latter result is a version of the optional skipping theorem,
first established for i.i.d. sequences by Doob. The more general result for
exchangeable sequences yields simple proofs of some classical arcsine laws
and fluctuation identities for random walks and Lévy processes.

The corresponding continuous-time results are much harder. In the ex-
changeable case, we may define the random transformations in terms of pre-
dictable processes V on the interval I = [0, 1] or RR+, taking values in the
same set I and such that λ◦V −1 = λ a.s., where λ denotes Lebesgue measure
on I. In other words, we assume the paths of V to be measure-preserving
transformations on I, corresponding to the permutations considered in dis-
crete time. Given a suitable process X on I, we now define the transformed
process X ◦ V −1 by

(X ◦ V −1)t =
∫

I
1{Vs ≤ t} dXs, t ∈ I, (8)

in the sense of stochastic integration of predictable processes with respect to
general semi-martingales. To motivate the notation, we note that if Xt =
ξ[0, t] for some random measure ξ, then X ◦ V −1 is the distribution function
of the transformed measure ξ ◦V −1. The predictable mapping theorem states
that if X is an exchangeable process on I, then X ◦ V −1 d= X.

In the contractable case, we need to consider predictable subsets A of the
index set I with λA ≥ h. The corresponding time-change process τ is given
by

τt = inf{s ∈ I; λ(A ∩ [0, s]) > t}, t ≤ h,

and we may define the associated contraction CAX of X by

(CAX)t = X(A ∩ [0, τt]) =
∫ τt

0
1A(s) dXs, t ≤ h,

again in the sense of general stochastic integration. (A technical difficulty
is to establish the existence of the integral on the right, since in general
contractable processes are not known to be semi-martingales.) We can then
show that if X is contractable, then CAX

d= X on [0, h).
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Even stronger invariance properties can be established when X is a stable
Lévy process. In the simplest case, we assume that X is strictly p-stable for
some p ∈ (0, 2] and consider a predictable process U ≥ 0 such that Up is
locally integrable. Let V be another predictable process such that

(Up · λ) ◦ V −1 = λ a.s., (9)

where the left-hand side is defined as in (8) in terms of the integral process
(Up · λ)t =

∫ t
0 Up

s ds. Then we can show that

(U · X) ◦ V −1 d= X,

where U · X denotes the stochastic integral
∫ t
0 UdX and the mapping by

V is again defined as in (8). In particular, the result leads to time-change
representations for stable integrals. If X is symmetric p-stable, we can drop
the condition U ≥ 0, provided we replace U by |U | in (9). Even stronger
results are obtainable when X is a Brownian motion or bridge.

The quoted results may be regarded as far-reaching extensions of the
classical time-change reductions of continuous local martingales to Brow-
nian motion, due to Dambis, Dubins and Schwarz, and Knight, and the
corresponding reductions of quasi-left-continuous, simple point processes to
Poisson, due to Papangelou and Meyer. In fact, an abstract version that
combines all those classical results into a single theorem plays the role of a
universal tool in this chapter.

Time-change reductions of optional times are closely related to the theory
of exchangeable processes. To see the connection, let ξ be an exchangeable
random measure on [0, 1], given by (4) for some i.i.d. U(0, 1) random variables
τ1, τ2, . . . , and assume for simplicity that the coefficients are a.s. non-random
with β1 > β2 > · · · . Then for any random mapping V of [0, 1] into itself, we
have

ξ ◦ V −1 = αλ ◦ V −1 +
∑

k
βk δV (τk),

and we see that ξ ◦ V −1 d= ξ iff V is a.s. λ-preserving and satisfies

(Vτ1, Vτ2, . . .)
d= (τ1, τ2, . . .). (10)

In fact, the predictable mapping theorem shows that (10) holds automatically
as soon as V is predictable with λ ◦ V −1 = λ a.s.

Now consider an arbitrary sequence of optional times τ1, τ2, . . . with as-
sociated marks κ1, κ2, . . . in some measurable space K, and introduce the
compensators η1, η2, . . . of the random pairs (τj, κj). The corresponding
discounted compensators ζ1, ζ2, . . . are random sub-probability measures on
RR+×K, defined as the unique solutions to the Doléans differential equations

dζj = −Zj
− dηj, Zj

0 = 1, j ∈ NN,
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where Zj
t = 1 − ζj([0, t] × K). Consider any predictable mappings T1, T2, . . .

on RR+ × K taking values in a space S, and fix some probability measures
µ1, µ2, . . . on S. Then the conditions

ζj ◦ T−1
j ≤ µj a.s., j ∈ NN, (11)

ensure that the images γj = Tj(τj, κj) will be independent with distributions
µj . This may be surprising, since the inequalities in (11) are typically strict
and should allow considerable latitude for tinkering with any initial choice of
mappings Tj .

−−−
Chapter 5 deals with the closely related family of decoupling identities.

To explain the background, consider a sequence of i.i.d. random variables
ξ1, ξ2, . . . with finite mean Eξ1 and a predictable sequence of random variables
η1, η2, . . . . Under suitable integrability conditions on the ηk, we note that

E
∑

k
ξkηk = E(ξ1) E

∑
k
ηk.

Similarly, assuming Eξ1 = 0 and Eξ2
1 < ∞, we have

E
(∑

k
ξkηk

)2
= E(ξ2

1) E
∑

k
η2

k,

under appropriate integrability conditions. The remarkable thing about these
formulas is that the right-hand side is the same regardless of the dependence
between the sequences (ξk) and (ηk). In other words, if we choose (η̃k)

d= (ηk)
to be independent of (ξk), then (under the previous conditions)

E
∑

k
ξkηk = E

∑
k
ξkη̃k,

E
(∑

k
ξkηk

)2
= E

(∑
k
ξkη̃k

)2
.

This is the idea of decoupling: Whatever the dependence may be between
the variables ξk and ηk, we can evaluate the expressions on the left as if the
two sequences were independent.

The situation in continuous time is similar. Thus, assuming X to be
a Lévy process with associated filtration F = (Ft), letting V be an F -
predictable process on RR+, and choosing Ṽ

d= V to be independent of X, we
have (again under suitable integrability conditions)

E
∫∞
0 V dX = E(X1) E

∫∞
0 Vs ds = E

∫∞
0 Ṽ dX,

E(
∫∞
0 V dX)2 = E(X2

1 ) E
∫∞
0 V 2

s ds = E
(∫∞

0 Ṽ dX
)2

,

where, for the latter equations, we need to assume that EX1 = 0. The
formulas follow from standard facts in stochastic calculus. Specializing to
the case where ηk = 1{τ ≥ k} or Vt = 1{τ ≥ t} for some optional time
τ < ∞ and writing Xk =

∑
j≤kξj , we get the classical Wald identities

E(Xτ ) = E(X1) E(τ), E(X2
τ ) = E(X2

1 ) E(τ),
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where the latter formula requires EX1 = 0 and both equations are valid, in
discrete and continuous time, under suitable integrability conditions.

The relations mentioned so far are quite elementary and rather obvious.
With some further effort, one can derive higher-dimensional formulas of the
same kind, such as

E
(∑

k
ξkηk

)d
= E

(∑
k
ξkη̃k

)d
,

E
(∫ ∞

0
V dX

)d

= E
(∫ ∞

0
Ṽ dX

)d

,

which, in addition to appropriate integrability conditions, require that the
sums or integrals

Sm =
∑

k
ηm

k , Im =
∫ ∞

0
V m

s ds,

be non-random (or at least F0-measurable) for 1 ≤ m < d. From here on, we
may easily proceed to general product moments, which leads to decoupling
identities of the form

E
∏

j≤d

∑
k
ξjk ηjk = E

∏
j≤d

∑
k
ξjk η̃jk, (12)

E
∏

j≤d

∫ ∞

0
Vj dXj = E

∏
j≤d

∫ ∞

0
Ṽj dXj, (13)

requiring non-randomness of the sums or integrals

SJ =
∑

k

∏
j∈J

ηjk, IJ =
∫ ∞

0

∏
j∈J

Vj(s) ds, (14)

for all nonempty, proper subsets J ⊂ {1, . . . , d}.
Up to this point, we have assumed the sequence ξ = (ξjk) to be i.i.d.

(in the second index k) or the process X = (Xj) to be Lévy. The truly
remarkable fact is that moment formulas of similar type remain valid for
finite exchangeable sequences (ξjk) and for exchangeable processes (Xj) on
[0, 1]. Thus, in the general exchangeable case we can still prove decoupling
identities such as (12) or (13), the only difference being that the sums or
integrals in (14) are now required to be non-random even for J = {1, . . . , d}.

These innocent-looking identities are in fact quite amazing, already when
d = 1. For a simple gambling illustration, suppose that the cards of a well-
shuffled deck are drawn one by one. You are invited to bet an amount ηk on
the kth card, based on your knowledge of previous outcomes, and the bank
will return the double amount if the card is red, otherwise nothing. Also
assume that, before entering the game, you must fix your total bet

∑
k ηk.

Then (12) shows that your expected total gain is 0. This is surprising, since
you might hope to improve your chances by betting most of your money when
the proportion of red cards in the remaining deck is high. If

∑
k η2

k is also
fixed in advance, then even the variance of your total gain is independent of
your strategy, and so on for higher moments.
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Though the methods of proof in Chapter 5 are very different from those
in the previous chapter, the results are actually closely related. Indeed, it
is not hard to derive the predictable sampling theorem in Chapter 4 from
the corresponding decoupling identities, and similarly in continuous time.
We can even prove contractable versions of the decoupling identities that
are strong enough to imply the optional skipping theorem for contractable
sequences, and similarly for contractable processes on [0, 1].

−−−
In Chapter 6 we consider exchangeable random sets and related processes

on [0, 1] or RR+. To motivate the basic ideas, consider an rcll process X on RR+

with X0 = 0 such that the random set Ξ = {t ≥ 0; Xt = 0} is a.s. unbounded.
Then X is said to be regenerative at 0 if for any optional time τ taking values
in Ξ, the shifted process θτ X is independent of Fτ with the same distribution
as X, where F = (Ft) denotes the right-continuous filtration induced by X.
Local homogeneity is the same property without the independence condition.
Thus, X is said to be locally homogeneous at 0 if θτ X

d= X for any optional
time τ in Ξ.

In view of de Finetti’s theorem and the characterization of infinite ex-
changeable sequences by strong stationarity, it is easy to believe (but not
quite so easy to prove) that X is locally homogeneous iff it is a mixture of
regenerative processes. Since the latter can be described in terms of a local
time random measure ξ supported by Ξ, along with a homogeneous Pois-
son point process η of excursions, as specified by Itô’s excursion law, in the
general locally homogeneous case we obtain a conditional representation of
the same type. In particular, the cumulative local time process Lt = ξ[0, t]
is a mixture of inverse subordinators, hence the inverse of a non-decreasing,
exchangeable process on RR+.

For processes on [0, 1], we need to replace the local homogeneity by a
suitable reflection property. To make this precise, let us first consider the
case of a random, closed subset Ξ ⊂ [0, 1] containing 0. For any optional time
τ in Ξ, we may construct a reflected set Rτ Ξ by reversing the restriction of Ξ
to [τ, 1]. The strong reflection property is defined by the condition Rτ Ξ

d= Ξ
for every optional time τ in Ξ. The definition is similar for processes X on
[0, 1], except that the initial reflection needs to be combined with a reversal
of each excursion.

With reflection invariance defined in this way, the theory becomes anal-
ogous to the one for processes on RR+. Thus, under the stated condition, we
have again a local time random measure ξ supported by Ξ, along with an ex-
changeable point process η of excursions, such that X admits a conditional
Itô-type representation in terms of ξ and η. In particular, the cumulative
local time L, normalized such that L1 = 1, now becomes the inverse of a
non-decreasing exchangeable process on [0, 1].

We proceed to describe an interesting sampling property of the local time
process L. First suppose that Ξ is regenerative. Combining the regenerative
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property with the loss-of-memory property characterizing the exponential
distribution, we note that if the time τ is exponentially distributed and inde-
pendent of Ξ, then σ = Lτ has again an exponential distribution. Iterating
this result, we see that if τ1 < τ2 < · · · form a homogeneous Poisson process
on RR+ independent of Ξ, then the variables Lτ1, Lτ2, . . . form a compound
Poisson process. (Multiplicities occur when several times τk hit the same ex-
cursion interval.) Ignoring repetitions in the sequence (Lτk

), we get another
homogeneous Poisson process σ1, σ2, . . . , and by suitably normalizing L we
can arrange that

(σ1, σ2, . . .)
d= (τ1, τ2, . . .). (15)

As stated in this form, the result clearly carries over to the general locally
homogeneous case.

So far things are quite simple and elementary. Now consider instead a
random subset Ξ of [0, 1], satisfying the strong reflection property and admit-
ting a normalized local time process L, as described above. Here we take the
variables τ1, τ2, . . . to be i.i.d. U(0, 1), independently of Ξ, and let σ1, σ2, . . .
be the distinct elements of the sequence Lτ1, Lτ2, . . . . Then, surprisingly, the
σk are again i.i.d. U(0, 1), and so (15) remains fulfilled.

Still considering an exchangeable random set Ξ in [0, 1], as described
above, we now assume that λΞ = 0 a.s. Continuing Ξ periodically and
shifting by an independent U(0, 1) random variable, we obtain a stationary
random set Ξ̃ in RR. Under suitable regularity conditions, the distributions of
Ξ and Ξ̃ can be shown to resemble each other locally, apart from a normalizing
factor. Here only some simple aspects of this similarity are discussed. For any
fixed interval I ⊂ [0, 1], we may consider the probabilities that I intersects
Ξ or Ξ̃, which will typically tend to 0 as I shrinks to a single point t ∈ (0, 1).
Under mild restrictions on the underlying parameters, we can show that the
local time intensity Eξ is absolutely continuous with a nice density p, and
that for almost every t ∈ (0, 1)

P{Ξ ∩ I �= ∅} ∼ pt P{Ξ̃ ∩ I �= ∅}, I ↓ {t}.

Similar relations hold for regenerative sets in RR+. To appreciate these formu-
las, we note that the probabilities on the left are very difficult to compute.
For those on the right the computation is easy.

If X is locally homogeneous at several states, it is clearly conditionally
regenerative at each of them. It may be less obvious that these properties
can be combined, under suitable conditions, into a conditional strong Markov
property on the corresponding part of the state space. Strengthening the
local homogeneity into a property of global homogeneity, we may even deduce
the Markov property in its usual, unconditional form. This leads us naturally
to regard the strong Markov property of a process X at an optional time
τ < ∞ as the combination of two properties,

P [θτ X ∈ ·|Fτ ] = P [θτ X ∈ ·|Xτ ] = µ(Xτ , ·) a.s.,
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a conditional independence and a global homogeneity condition. We have al-
ready indicated how the latter property at every τ implies the strong Markov
property, hence also the conditional independence. Under certain regularity
conditions, we can even obtain an implication in the opposite direction. Thus,
again quite surprisingly, the homogeneity and independence components of
the strong Markov property are then equivalent.

−−−

The last three chapters deal with certain multi-variate symmetries. Cru-
cial for our subsequent developments is the discussion of exchangeable and
contractable arrays in Chapter 7. Here our main aim is to derive representa-
tions of separately or jointly contractable or exchangeable arrays of arbitrary
dimension. For motivation we note that, by de Finetti’s theorem, any infinite
sequence of exchangeable random variables X1,X2, . . . has a representation

Xn = f(α, ξn) a.s., n ∈ NN,

in terms of a measurable function f on [0, 1]2 and some i.i.d. U(0, 1) random
variables α and ξ1, ξ2, . . . .

A two-dimensional array X = (Xij ; i, j ∈ NN) is said to be separately
exchangeable if

X ◦ (p, q) ≡ (Xpi,qj
; i, j ∈ NN) d= (Xij ; i, j ∈ NN) ≡ X,

for any (finite) permutations p = (pi) and q = (qj) of NN, and jointly exchange-
able if the same property holds when p = q, so that for any permutation p of
NN,

X ◦ p ≡ (Xpi,pj
; i, j ∈ NN) d= (Xij ; i, j ∈ NN) ≡ X.

Restricting p and q to sub-sequences p1 < p2 < · · · and q1 < q2 < · · · yields
the corresponding properties of separate or joint contractability. However,
since any separately contractable array is also separately exchangeable, by
Ryll-Nardzewski’s theorem, it is enough to consider the jointly contractable
case.

For jointly exchangeable arrays it is often more natural to consider the
index set N2, consisting of all pairs i, j ∈ NN with i �= j. This is because
an array X = (Xij) on NN2 is jointly exchangeable iff the same property
holds for the array of pairs (Xii,Xij) indexed by N2. Similarly, for (jointly)
contractable arrays, we may prefer the index set T2 of pairs i, j ∈ NN with
i < j, since an array X = (Xij) on NN2 is contractable iff the same property
holds for the array of triples (Xii,Xij,Xji) on T2. It is also convenient to
think of T2 as the class of sets {i, j} ⊂ NN of cardinality 2.

The first higher-dimensional representation theorems were obtained, in-
dependently, by Aldous and Hoover, who proved that an array X = (Xij) on
NN2 is separately exchangeable iff

Xij = f(α, ξi, ηj, ζij) a.s., i, j ∈ NN,
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for some measurable function f on [0, 1]4 and some i.i.d. U(0, 1) random
variables α, ξi, ηj , ζij , i, j ∈ NN. Hoover also settled the more general case of
jointly exchangeable arrays of arbitrary dimension. In particular, he showed
that a two-dimensional array X = (Xij) is jointly exchangeable iff

Xij = f(α, ξi, ξj , ζij) a.s., i, j ∈ NN, (16)

for some measurable function f as above and some i.i.d. U(0, 1) random
variables α, ξi, and ζij = ζji. These results and their higher-dimensional
counterparts are quite deep, and their proofs occupy much of Chapter 7.

In the same chapter, we also derive the corresponding representations
of (jointly) contractable arrays. In two dimensions we have the same rep-
resentation as in (16), except that i and j should now be restricted to the
triangular index set T2. In higher dimensions, it is natural to choose as our
index set the class ÑN of all finite subsets J ⊂ NN. The representation can
then be stated compactly in the form

XJ = f(ξI ; I ⊂ J), J ∈ ÑN, (17)

where ξ = (ξJ ) is an array of i.i.d. U(0, 1) random variables, also indexed by
ÑN, and f is a measurable function on a suitable space. This formula can be
used to extend X in a natural way to a jointly exchangeable array on the
index set NN, consisting of all finite sequences (k1, . . . , kd) in NN with distinct
entries. The surprising conclusion is that an array on ÑN is contractable iff it
admits an exchangeable extension to NN. Note that this extension is far from
unique, owing to the non-uniqueness of the representing function in (17).

After a detailed study of some matters of uniqueness and conditioning,
too technical to describe here, we conclude the chapter with a discussion
of symmetric partitions. Informally, a random partition of NN into disjoint
subsets A1, A2, . . . is said to be exchangeable if an arbitrary permutation
of NN yields a partition with the same distribution. To formalize this, we
may introduce a random array X on NN with entries 0 and 1, such that
Xij = 1 iff i and j belong to the same set Ak. The partition {Ak} is then
defined to be exchangeable if X is jointly exchangeable, in the sense of the
previous discussion. The classical result, due to Kingman, states that {Ak}
is exchangeable iff it admits a paint-box representation

Xij = 1{ξi = ξj} a.s., i, j ∈ NN, (18)

in terms of a sequence of exchangeable random variables ξ1, ξ2, . . . . The term
comes from the interpretation of the variables ξj as colors, chosen at random
from a possibly infinite paint box, which determine a partition of NN into
subsets of different colors.

There is nothing special about exchangeable partitions. Letting T be an
arbitrary family of injective maps p : NN → NN, we can show that a random
partition {Ak} is T -invariant (in distribution) iff it admits a representation
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as in (18) in terms of a T -invariant sequence of random variables. To indi-
cate the possibilities, we can apply the stated result, along with the previous
representations of arrays, to obtain representations of exchangeable or con-
tractable partitions of NN or ÑN, respectively.

−−−

In Chapter 8 we turn our attention to multi-variate rotatability. For
arrays, the definitions are analogous to those in the contractable and ex-
changeable cases. Thus, for suitable two-dimensional arrays X, U , and V
indexed by NN2, we define the transformed array Y = (U ⊗ V )X by

Yij =
∑

h,k
Uih Vjk Xhk, i, j ∈ NN.

To rotate X in the first index, we choose U to be an orthogonal matrix on a
finite index set I2 ⊂ NN2, and extend U to NN2 by putting Uij = δij ≡ 1{i=j}
when either i or j lies in Ic. Similarly, we get a rotation in the second index
by choosing V to be an orthogonal matrix of the same type. Then X is said
to be separately rotatable if

(U ⊗ V )X d= X, U, V ∈ O, (19)

where O denotes the class of infinite, orthogonal matrices as above, rotating
only finitely many coordinates. It is jointly rotatable if (19) holds whenever
U = V ∈ O. The definitions carry over immediately to arrays of arbitrary
dimension.

We have already seen that, by Freedman’s theorem, an infinite sequence
X = (X1,X2, . . .) is rotatable iff it can be represented in the form Xj = σζj ,
where ζ1, ζ2, . . . are i.i.d. N(0, 1) and σ is an independent random variable.
For separately rotatable arrays X = (Xij) on NN2, we get the a.s. representa-
tion

Xij = σζij +
∑

k
αk ξki ηkj , i, j ∈ NN, (20)

in terms of some i.i.d. N(0, 1) random variables ξki, ηkj , and ζij and an inde-
pendent collection of random coefficients σ and α1, α2, . . . , where the latter
need to be such that

∑
k α2

k < ∞ a.s. This is a quite deep result, first con-
jectured by Dawid, and then proved (under a moment condition) by Aldous.
For jointly rotatable arrays on NN2, we get instead an a.s. representation of
the form

Xij = ρδij + σζij + σ′ζji +
∑

h,k
αhk (ξki ξkj − δij δhk), i, j ∈ NN, (21)

for some i.i.d. N(0, 1) random variables ξki and ζij and an independent col-
lection of random coefficients ρ, σ, σ′, and αhk, where the latter must satisfy∑

h,k α2
hk < ∞ a.s., to ensure convergence of the double series in (21).

The representations (20) and (21) of separately or jointly rotatable arrays
are easily extended to the continuous parameter case, as follows. Here we
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consider processes X on RR2
+ with X(s, t) = 0 when s = 0 or t = 0, and we

may define rotatability in the obvious way in terms of the two-dimensional
increments

∆h,kX(s, t) = X(s + h, t + k) − X(s + h, t) − X(s, t + k) + X(s, t),

where s, t, h, k ≥ 0 are arbitrary. Assuming X to be continuous in probability,
we get in the separately rotatable case an a.s. representation

X(s, t) = σZ(s, t) +
∑

k
αk Bk(s) Ck(t), s, t ≥ 0,

for a Brownian sheet Z, some independent Brownian motions B1, B2, . . .
and C1, C2, . . . , and an independent collection of random coefficients σ and
α1, α2, . . . with

∑
k α2

k < ∞ a.s. In the jointly rotatable case, we get instead
an a.s. representation of the form

X(s, t) = ρ(s ∧ t) + σZ(s, t) + σ′Z(t, s)
+
∑

h,k
αhk (Bh(s) Bk(t) − δhk (s ∧ t)). (22)

The last two representation formulas are best understood in their measure-
valued or functional versions

X = σZ +
∑

k
αk (Bk ⊗ Ck), (23)

X = ρλD + σZ + σ′Z̃ +
∑

h,k
αhk (Bh ⊗ Bk), (24)

where λD denotes Lebesgue measure along the main diagonal D in RR2
+, Z̃

is the reflection of Z given by Z̃s,t = Zt,s, and Bh ⊗ Bk denotes the double
stochastic integral formed by the processes Bh and Bk. In particular, we note
that

(Bk ⊗ Bk)([0, s] × [0, t]) = Bk(s)Bk(t) − s ∧ t, s, t ≥ 0,

by the expansion of multiple Wiener–Itô integrals in terms of Hermite poly-
nomials, which explains the form of the last term in (22).

The representations in the discrete and continuous parameter cases can
be unified by a Hilbert-space approach, which also clears the way for exten-
sions to higher dimensions. Here we consider any continuous linear random
functional (CLRF) X on an infinite-dimensional, separable Hilbert space H,
where linearity means that

X(ah + bk) = aXh + bXk a.s., h, k ∈ H, a, b ∈ RR,

and continuity is defined by Xh
P→ 0 (or E[|Xh| ∧ 1] → 0) as h → 0 in

H. Rotatability of X means that X ◦ U
d= X for any unitary operator U

on H, where (X ◦ U)h = X(Uh), and Freedman’s theorem shows that X is
rotatable iff X = ση for some isonormal Gaussian process (G-process) η on
H and an independent random variable σ.
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For CLRFs X on H⊗2 = H⊗H we may define separate and joint rotata-
bility in the obvious way in terms of tensor products of unitary operators,
and we get the a.s. representations

Xh = σζh + (ξ ⊗ η)(α ⊗ h), (25)
Xh = σζh + σ′ζ̃h + η⊗2(α ⊗ h), (26)

in terms of some independent G-processes ξ, η, and ζ on H⊗2 and an in-
dependent pair (σ, α) or triple (σ, σ′, α), where σ and σ′ are real random
variables and α is a random element of H⊗2. Here (25) is just an abstract
version of (20) and (23). However, (26) is less general than (21) or (24), since
there is no term in (26) corresponding to the diagonal terms ρδij in (21) or
ρ(s ∧ t) in (24). This is because these terms have no continuous extension
to H⊗2.

Those considerations determine our strategy: First we derive representa-
tions of separately or jointly rotatable CLRFs on the tensor products H⊗d,
which leads to simple and transparent formulas, independent of the choice of
ortho-normal basis in H. Applying the latter representations to the various
diagonal terms, we can then deduce representation formulas for rotatable
arrays of arbitrary dimension.

It may come as a surprise that the representations of rotatable random
functionals on the tensor products H⊗d can also be used to derive representa-
tion formulas for separately or jointly exchangeable or contractable random
sheets of arbitrary dimension. (By a random sheet on RRd

+ or [0, 1]d we mean
a continuous random process X such that X = 0 on each of the d coordinate
hyper-planes.) To see the connection, recall that a continuous process X
on RR+ or [0, 1] with X0 = 0 is exchangeable iff Xt = αt + σBt a.s., where
B is a Brownian motion or bridge, respectively, independent of the random
coefficients α and σ. Omitting the drift term αt gives Xt = σBt, which we
recognize, for processes on RR+, as the general form of a rotatable process.
When X is defined on [0, 1], we may apply the scaling transformation

Y (t) = (1 + t) X
(

t

1 + t

)
, t ≥ 0, (27)

to convert X into a rotatable process on RR+.
In higher dimensions, we can decompose X into drift terms associated

with the different coordinate subspaces of RRd
+, and then apply transforma-

tions of type (27), if necessary, to get a description of X in terms of rotatable
processes of different dimension. The previously established representations
in the rotatable case can then be used to yield the desired representation for-
mulas for exchangeable random sheets. For contractable random sheets on
RRd

+, we may easily reduce to the exchangeable case by means of the general
extension property from Chapter 7. The indicated approach and resulting
formulas provide a striking confirmation of the close relationship between the
various symmetries in our general hierarchy.

−−−
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The final Chapter 9 deals with separately or jointly exchangeable ran-
dom measures ξ on a finite or infinite rectangle R in the plane, where the
exchangeability may be defined in terms of the increments over a regular
square grid in R. By suitable shifting and scaling, we may reduce to the
cases where R is one of the sets [0, 1]2, [0, 1] × RR+, and RR2

+, and since joint
exchangeability makes no sense for the infinite strip [0, 1]2 × RR+, there are
precisely five remaining cases to consider. In each of them, our main objec-
tive is to derive a general representation formula for ξ. (Though most of our
methods seem to extend rather easily to higher dimensions, the complexity
of the argument, already in dimension two, discourages us from attacking
the general multi-variate representation problem.)

To introduce the representations of ξ, it may be helpful first to consider
the special case where ξ is a simple point process. Since every exchangeable
distribution can be shown to be a unique mixture of extreme or ergodic
distributions, where the latter are such that no further decomposition is
possible, it is also enough to consider the extreme case.

Beginning with the unit square, we get for any extreme, separately ex-
changeable, simple point process ξ on [0, 1]2 the a.s. representation

ξ =
∑

i,j
aij(δσi

⊗ δτj
), (28)

where σ1, σ2, . . . and τ1, τ2, . . . are i.i.d. U(0, 1) and the aij are constants
taking values 0 or 1. (Since aij can be 1 for at most finitely many pairs (i, j),
the double sum in (28) is in fact finite.) In the jointly exchangeable case, we
have instead the representation

ξ =
∑

i,j
aij(δτi

⊗ δτj
), (29)

in terms of a single sequence τ1, τ2, . . . of i.i.d. U(0, 1) random variables.
The representations in the remaining three cases are much more compli-

cated. For extreme, separately exchangeable, simple point processes ξ on
RR+ × [0, 1], we get an a.s. representation of the form

ξ =
∑

i,j
αij (δσi

⊗ δτj
) +

∑
i
(δσi

⊗ ηi), (30)

where σ1, σ2, . . . form a homogeneous Poisson process on RR+, the variables
τ1, τ2, . . . are independent of the σi and i.i.d. U(0, 1), and the sums

η̂i = ηi +
∑

j
αij δτj

, i ∈ NN, (31)

are conditionally independent and identically distributed point processes on
[0, 1]. The points σi and τj can be chosen such that

{σ1, σ2, . . .} = {s ≥ 0; ξ({s} × [0, 1]) ≥ 1},
{τ1, τ2, . . .} = {t ∈ [0, 1]; ξ(RR+ × {t}) = ∞}.
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(To appreciate the latter condition, we note that with probability one ξ(RR+×
{t}) ∈ {0, 1,∞} for all t.) Then (31) gives the total mass along each line
segment {σi} × [0, 1], divided into contributions to the lines RR+ × {τj} and
to the complementary set. Finally, the components ηi outside the lines need
to be conditionally independent binomial processes on [0, 1] independent of
the coefficients αij .

The difficulties of clearly specifying the mutual dependence between the
various components in (30) is evident from this attempt at a verbal descrip-
tion. A more precise and transparent formulation can be achieved by means
of a suitable coding, similar to the one employed for the symmetric arrays in
Chapter 7. We may then write (30) in the form

ξ =
∑

i,j
fj(ϑi)(δσi

⊗ δτj
) +

∑
i

∑
k≤g(ϑi)

(δσi
⊗ δρik

),

for some measurable functions fj : RR+ → {0, 1} and g : RR+ → ZZ+, where the
variables τj and ρik are i.i.d. U(0, 1), and the pairs (σi, ϑi) form an indepen-
dent, unit rate Poisson process on RR2

+.
For separately exchangeable, simple point process ξ on RR2

+, we get a
representation of the form

ξ = ζ +
∑

i,j
αij(δσi

⊗ δτj
) +

∑
i
(δσi

⊗ ηi) +
∑

j
(η′

j ⊗ δτj
),

where ζ is a homogeneous Poisson process on RR2
+, independent of all remain-

ing terms, and the ηi and η′
j are conditionally independent Poisson processes

on RR+, independent of the variables σi and τj , the latter being such that

{σ1, σ2, . . .} = {s ≥ 0; ξ({s} × RR+) = ∞},
{τ1, τ2, . . .} = {t ≥ 0; ξ(RR+ × {t}) = ∞}.

A complete verbal description of the underlying joint distribution, though
still possible, would now be too complicated to be useful. This is even more
true in the jointly exchangeable case, where the corresponding representation
can be written as

ξ = ζ + ζ̃ ′ +
∑

i,j
αij(δτi

⊗ δτj
) +

∑
j
(δτj

⊗ ηj + η′
j ⊗ δτj

).

The difficulties are again resolved through the device of coding. Then for
separately exchangeable point processes ξ, we may write

ξ =
∑

k
δaρk

+
∑

i,j
f(ϑi, ϑ

′
j , ζij)(δτi

⊗ δτ ′
j
)

+
∑

i,k
(δτi

⊗ δg(ϑi)σik
) +

∑
j,k

(δg′(ϑ′
j)σ

′
jk
⊗ δτ ′

j
),

for some measurable functions f ∈ {0, 1} and g, g′ ≥ 0, a constant a ≥ 0,
some independent, unit rate Poisson processes {(τi, ϑi)}, {(τ ′

j , ϑ
′
j)}, and {ρk}

on RR2
+, and {σik} and {σ′

jk}, k ∈ NN, on RR+, and some independent i.i.d.
U(0, 1) random variables ζij .
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For jointly exchangeable processes ξ, one can derive a somewhat more
complicated representation of a similar type. However, it may now be prefer-
able to extend the Poisson processes to a higher dimension and write the
representation in the alternative form

ξ =
∑

k

(
l(ηk) δρk,ρ′

k
+ l′(ηk) δρ′

k
,ρk

)
+
∑

i,j
f(ϑi, ϑj, ζ{i,j}) δτi,τj

+
∑

j,k

(
g(ϑj, χjk) δτj ,σjk

+ g′(ϑj, χjk) δσjk,τj

)
,

in terms of some independent, unit rate Poisson processes {(τj, ϑj)} and
{(σjk, χjk)}, k ∈ NN, on RR2

+ and {(ρk, ρ
′
k, ηk)} on RR3

+, along with some i.i.d.
U(0, 1) random variables ζ{i,j}, i ≤ j, where f , g, g′, and l, l′ are measurable
functions between suitable spaces. The latter representation has the further
advantage of being extendable to the general random measure case.

−−−

This is where the book (but certainly not the subject) ends. Much more
could be said about symmetric distributions, and some of the additional
material might fit naturally into our account. Other important aspects of the
theory are omitted since they seem to require very different methods. For
example, the fundamental theory of extremal and ergodic decompositions is
reviewed only briefly in an appendix, with some of the main proofs omitted.
Important areas of application—to statistics, genetics, and other fields—
are not even mentioned, this time even for another reason: These areas are
already covered by a huge literature, and as a non-expert, I would have little
more of interest to contribute.

Yet, what remains is a comprehensive and, as far as one can tell, reason-
ably complete theory involving the basic notions of distributional symmetry,
comprising an abundance of interesting connections and ideas, unified by
both methods and results. One may hope that the present exposition will
provide a sound basis for further developments in both theory and appli-
cations. Indeed, a perceptive reader will surely identify some unexplored
territory and find a wealth of challenging open problems.



Chapter 1

The Basic Symmetries

The purpose of this chapter is to introduce the basic notions of distribu-
tional symmetry and to prove some fundamental results that are accessible
by elementary methods. Already in Section 1.1, dealing with infinite ex-
changeable sequences, we prove Ryll-Nardzewski’s extension of de Finetti’s
celebrated theorem, along with some technical facts about uniqueness, inde-
pendence, and measurability. Section 1.2 deals with the corresponding theory
for finite sequences, where it becomes interesting to compare the notions of
contractable, exchangeable, and mixed i.i.d. sequences.

Continuous-time versions of the basic symmetries are introduced and
compared in Section 1.3. In Section 1.4 we characterize exchangeable and
contractable random processes and measures defined on an infinite interval.
The corresponding results for a finite interval are accessible, at this stage,
only for random measures, where the general representation is derived in
Section 1.5. More can be said in the special cases of simple point processes
and diffuse random measures, treated in further detail in Section 1.6.

Rotatable sequences and their representation in terms of Gaussian ran-
dom variables are studied in Section 1.7, which also contains a discussion of
the more general Lp-symmetries, where the basic representations are in terms
of general stable noise processes. The chapter concludes with a collection of
miscellaneous complements and exercises.

1.1 Infinite Sequences

A finite or infinite random sequence ξ = (ξ1, ξ2, . . .) in a measurable space
(S,S) is said to be exchangeable if

(ξk1, . . . , ξkm) d= (ξ1, . . . , ξm) (1)

for any collection k1, . . . , km of distinct elements in the index set of ξ. We also
say that ξ is contractable if (1) holds whenever k1 < · · · < km . Informally,
ξ is exchangeable if its distribution L(ξ) = P ◦ ξ−1 is invariant under finite
permutations and contractable if all sub-sequences of equal length have the
same distribution. Note that, trivially, every exchangeable sequence is also
contractable.
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We shall relate the mentioned notions of symmetry to some basic struc-
tural properties. Then say that a random sequence ξ = (ξj) in S is condi-
tionally i.i.d. if

P [ξ ∈ ·|F ] = ν∞ a.s. (2)

for some σ-field F and some random probability measure ν on S. In other
words, ν is a probability kernel from the basic probability space (Ω,A) to
S, or, equivalently, a random element in the space M1(S) of probability
measures on S, endowed with the σ-field generated by all projection maps
πB : µ �→ µB, B ∈ S. Since the measure ν in (2) is clearly a.s. F -measurable
(measurable with respect to the P -completion F), the relation remains valid
with F = σ(ν). We may also take expected values of both sides to see that
ξ is mixed i.i.d., in the sense that

P{ξ ∈ ·} = Eν∞ =
∫

M1(S)
m∞P{ν ∈ dm}. (3)

The following fundamental result shows that all the mentioned proper-
ties are essentially equivalent, as long as the sequence ξ is infinite. (For
finite sequences, we shall see below that all equivalences may fail.) The re-
sult requires a regularity condition on the state space S of ξ. Recall that
a measurable space (S,S) is said to be Borel if there exists a measurable
bijection f of S onto a Borel set of RR such that the inverse mapping f−1 is
again measurable. In particular (FMP A1.2),1 any Polish space S has this
property when endowed with its Borel σ-field S = B(S).

Theorem 1.1 (infinite exchangeable sequences, de Finetti, Ryll-Nardzewski)
Let ξ be an infinite sequence of random elements in a measurable space S.
Then these three conditions are equivalent when S is Borel:

(i) ξ is contractable,
(ii) ξ is exchangeable,
(iii) ξ is conditionally i.i.d.

For general S, we still have (i) ⇔ (ii) ⇐ (iii).

We shall give several proofs of this result, beginning with a simple argu-
ment based on the mean ergodic theorem (FMP 10.6).

First proof: For Borel spaces S, it suffices to prove that (i) implies (iii),
the implications (iii) ⇒ (ii) ⇒ (i) being obvious. Then let ξ be a contractable
sequence in S. Put Iξ = ξ−1I, where I denotes the shift-invariant σ-field in
(S,S)∞, and note that the conditional distribution ν = P [ξ1 ∈ ·|Iξ ] exists
since S is Borel (FMP 6.3). Fix any set I ∈ I and some bounded, measurable
functions f1, . . . , fm on S. Noting that {ξ ∈ I} = {θkξ ∈ I} for all k,

1Throughout, FMP refers to my book Foundations of Modern Probability, 2nd ed.
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using the contractability of ξ, and applying the mean ergodic and dominated
convergence theorems, we get as n → ∞

E 1I(ξ)
∏

k≤m

fk(ξk) = n−m
∑

j1,...,jm≤n

E 1I(ξ)
∏

k≤m

fk(ξkn+jk
)

= E 1I(ξ)
∏

k≤m
n−1

∑
j≤n

fk(ξkn+j)

→ E 1I(ξ)
∏

k≤m
νfk,

and so the extreme members agree. Hence, by a monotone-class argument
(FMP 1.1) and the definition of conditional probabilities,

P [ξ ∈ B|Iξ ] = ν∞B a.s., B ∈ S∞,

which proves (2) with F = Iξ .
It remains to extend the implication (i) ⇒ (ii) to general spaces S. Then

let ξ be an infinite, contractable sequence in S. Fix any bounded, measurable
functions f1, . . . , fm on S, and note that the random vectors

ηj = (f1(ξj), . . . , fm(ξj)), j ∈ NN,

form a contractable sequence in RRm . Since the latter space is Borel, it follows
that (ηj) is also exchangeable. In particular, we get for any permutation
k1, . . . , km of 1, . . . ,m

E
∏

j≤m
fk(ξkj

) = E
∏

j≤m
fk(ξj),

and (1) follows by a monotone-class argument. This shows that ξ is ex-
changeable. �

To avoid reliance on the mean ergodic theorem, we may use instead the
following elementary estimate.

Lemma 1.2 (L2-bound) Let ξ1, . . . , ξn ∈ L2 with Eξj = m, var(ξj) = σ2 <
∞, and cov(ξi, ξj) = σ2ρ for all i �= j, and fix any distributions (p1, . . . , pn)
and (q1, . . . , qn) on {1, . . . , n}. Then

E
(∑

i
piξi −

∑
i
qiξi

)2 ≤ 2σ2(1 − ρ) supj |pj − qj |.

Proof: Put cj = pj − qj , and note that
∑

j cj = 0 and
∑

j |cj | ≤ 2. Hence,

E
(∑

i
ciξi

)2
= E

(∑
i
ci(ξi − m)

)2

=
∑

i,j
cicj cov(ξi, ξj)

= σ2ρ
(∑

i
ci

)2
+ σ2(1 − ρ)

∑
i
c2
i

≤ σ2(1 − ρ)
∑

i
|ci| supj |cj |

≤ 2σ2(1 − ρ) supj |cj |. �
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Second proof of Theorem 1.1: Let ξ be contractable, and fix any bounded,
measurable function f on S. By Lemma 1.2 and the completeness of L2 (FMP
1.31), there exists a random variable αf such that∥∥∥n−1

∑
k≤n

f(ξm+k) − αf

∥∥∥2

2
<
�

n−1‖f‖2, m ≥ 0, n ≥ 1, (4)

where ‖f‖ = supx |f(x)| and f <
�

g means that f ≤ cg for some constant
c < ∞. Thus, for fixed m1,m2, . . . ∈ ZZ+ we have n−1∑

k≤n f(ξmn+k) → αf

a.s. as n → ∞ along a subsequence N ′ ⊂ NN (FMP 4.2). In particular, αf is
a.s. Iξ-measurable (FMP 10.4). By the contractability of ξ and dominated
convergence we get, a.s. along N ′ for any I ∈ I,

E[f(ξ1); ξ ∈ I] = E
[
n−1

∑
j≤n

f(ξj); ξ ∈ I
]
→ E[αf ; ξ ∈ I],

which implies
αf = E[f(ξ1)|Iξ ] = νf a.s.

The proof can now be completed as before. �

We can also prove Theorem 1.1 by a simple martingale argument, based
on the following useful observation. Recall that ⊥⊥η denotes conditional
independence given η.

Lemma 1.3 (contraction and independence) Let ξ, η, and ζ be random
elements such that (ξ, η) d= (ξ, ζ) and σ(η) ⊂ σ(ζ). Then ξ⊥⊥η ζ.

Proof: Fix any measurable set B in the range space of ξ, and define

µ1 = P [ξ ∈ B|η], µ2 = P [ξ ∈ B|ζ].

Then (µ1, µ2) is a bounded martingale with µ1
d= µ2, and so E(µ2 − µ1)2 =

Eµ2
2 − Eµ2

1 = 0, which implies µ1 = µ2 a.s. Hence, ξ⊥⊥η ζ by FMP 6.6. �

Third proof of Theorem 1.1 (Aldous): If ξ is contractable, then

(ξm, θmξ) d= (ξk, θmξ) d= (ξk, θnξ), k ≤ m ≤ n.

Now write Tξ =
⋂

n σ(θnξ) and fix any B ∈ S. Using Lemma 1.3 followed by
reverse martingale convergence (FMP 7.23) as n → ∞, we get a.s.

P [ξm ∈ B|θmξ] = P [ξk ∈ B|θmξ] = P [ξk ∈ B|θnξ] → P [ξk ∈ B|Tξ ],

which shows that the extreme members agree a.s. In particular,

P [ξm ∈ B|θmξ] = P [ξm ∈ B|Tξ ] = P [ξ1 ∈ B|Tξ ] a.s.

Here the first relation yields ξm ⊥⊥Tξ
θmξ for all m ∈ NN, and so by iteration

ξ1, ξ2, . . . are conditionally independent given Tξ . The second relation shows
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that the conditional distributions agree a.s. This proves (2) with F = Tξ and
ν = P [ξ1 ∈ ·|Tξ ]. �

We proceed to establish some uniqueness and extremality properties asso-
ciated with equations (2) and (3). Say that an exchangeable or contractable
sequence ξ is extreme if its distribution µ cannot be expressed as a non-
trivial mixture pµ1 +(1− p)µ2 of exchangeable or contractable distributions.
The relation F = G a.s. between two σ-fields means that the corresponding
P -completions agree.

Proposition 1.4 (uniqueness and extremality) Let ξ be an infinite, ex-
changeable sequence in a Borel space (S,S), such that P [ξ ∈ ·|F ] = ν∞

a.s. for some σ-field F and some random probability measure ν on S. Then

(i) ν is a.s. unique, ξ-measurable, and given by

n−1
∑

k≤n
1B(ξk) → νB a.s., B ∈ S;

(ii) F ⊥⊥ν ξ, and F ⊂ σ(ξ) implies F = σ(ν) a.s.;
(iii) L(ξ) =

∫
m∞µ(dm) iff µ = L(ν);

(iv) L(ξ) is extreme iff ν is a.s. non-random.

Justified by the uniqueness in (i), we shall henceforth refer to the random
distribution ν in (2) as the directing random measure of ξ and say that ξ is
directed by ν.

Proof: (i) Fix any measurable function f ≥ 0 on S, and conclude from
the disintegration theorem (FMP 6.4) and the law of large numbers (FMP
4.23) that

P
{
n−1

∑
k≤n

f(ξk) → νf
}

= Eν∞
{
x; n−1

∑
k≤n

f(xk) → νf
}

= 1.

This proves the asserted convergence, and the a.s. uniqueness of ν follows by
FMP 1.17 since S is Borel.

(ii) This is clear by FMP 6.6 and 6.7.
(iii) Let ν̃ be a random probability measure with distribution µ. By FMP

6.9 we may construct a random sequence η = (ηj) in S satisfying P [η ∈ ·|ν̃]
= ν̃∞ a.s. Then

P ◦ η−1 = Eν̃∞ =
∫

m∞µ(dm),

and comparing with (2) we see that ν
d= ν̃ implies ξ

d= η. Conversely,
assuming ξ

d= η and applying (i) to both ξ and η, we get νf
d= ν̃f for all

measurable functions f ≥ 0 on S, and so ν̃
d= ν by FMP 12.1.

(iv) Use part (iii) and the fact that a probability measure on M1(S) is
extreme iff it is degenerate. �
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The next result refers to the case where a random sequence ξ = (ξj) in a
measurable space S is exchangeable or contractable over a random element η
in some space T , in the sense that the pairs ζj = (ξj, η) form an exchangeable
or contractable sequence in S × T .

Corollary 1.5 (conditional independence) For any Borel spaces S and T ,
let the infinite random sequence ξ = (ξj) in S be exchangeable over a random
element η in T with directing random measure ν. Then ξ⊥⊥ν η, and the
sequence of pairs ζj = (ξj, η) is directed by ν ⊗ δη.

Proof: The last assertion follows from Proposition 1.4 (i). In particular,
P [ξ ∈ ·|ν, η] = ν∞ a.s., and so η⊥⊥ν ξ by the same proposition. �

To state the next result, we introduce in (S,S)∞ the tail σ-field T , the
shift-invariant σ-field I, and the exchangeable σ-field E . The latter consists of
all sets B ∈ S∞ that are invariant under every finite permutation of NN. Given
a random sequence ξ in S, we denote the corresponding induced σ-fields in
Ω by Tξ = ξ−1T , Iξ = ξ−1I, and Eξ = ξ−1E .

Corollary 1.6 (equivalent σ-fields, Hewitt and Savage, Olshen) Let ξ be
an infinite, exchangeable sequence in a Borel space S with directing random
measure ν. Then

σ(ν) = Iξ = Tξ = Eξ a.s.

In particular, all four σ-fields are trivial when ξ is i.i.d.

The last assertion, in the case of the exchangeable σ-field Eξ , is the cele-
brated Hewitt–Savage zero-one law (FMP 3.15).

Proof: From the first and third proofs of Theorem 1.1 we see that

P [ξ ∈ ·|Iξ ] = P [ξ ∈ ·|Tξ ] = ν∞ a.s.,

and so the first two equalities follow by Proposition 1.4 (ii). Next let B ∈ E
be arbitrary, and note that ξ remains exchangeable over 1B(ξ). Hence,
1B(ξ)⊥⊥ν ξ by Corollary 1.5, and so ξ−1B ∈ σ(ν) a.s. by FMP 6.7. This
shows that Eξ ⊂ σ(ν) a.s., and the converse relation is obvious since ν is a.s.
invariant under finite permutations of ξ. �

Let us write ξ ◦ p = (ξp1, ξp2, . . .) for sequences ξ = (ξ1, ξ2, . . .) in S and
p = (p1, p2, . . .) in NN. We say that the random sequences ξi = (ξ1

i , ξ
2
i , . . .),

i ∈ I, are separately exchangeable or contractable, if for any permutations or
sub-sequences p1, p2, . . . of NN we have

(ξ1 ◦ p1, ξ2 ◦ p2, . . .)
d= (ξ1, ξ2, . . .).
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Corollary 1.7 (separate exchangeability and independence, de Finetti) For
any Borel space S and index set I, let ξi = (ξk

i ), i ∈ I, be infinite, separately
exchangeable sequences in S with directing random measures νi. Then the
elements ξk

i are conditionally independent with distributions νi, given the
family ν = {νi; i ∈ I}.

Proof: For convenience, we may write

ξ = {ξi}, ξ \ ξi = {ξj ; j �= i}, ξi \ ξk
i = {ξh

i ; h �= k}.

By Theorem 1.1 and Corollary 1.5, we have for any i ∈ I and k ∈ NN

ξk
i ⊥⊥νi

(ξi \ ξk
i ), ξi ⊥⊥νi

(ξ \ ξi), (5)

and so by combination ξk
i ⊥⊥νi

(ξ\ξk
i ). The asserted conditional independence

now follows by a conditional version of FMP 3.8. Furthermore, we see from
(5) and Proposition 1.4 (i) that ξi ⊥⊥νi

ν, and so by FMP 6.6

P [ξk
i ∈ ·|ν] = P [ξk

i ∈ ·|νi] = νi a.s. �

1.2 Finite Sequences

Though all three equivalences in Theorem 1.1 may fail for finite sequences
ξ = (ξ1, . . . , ξn), we may still derive a general representation formula for
exchangeable distributions that resembles the conditional i.i.d. property in
the infinite case. To state the result, consider any non-random sequence s =
(s1, . . . , sn) in a measurable space (S,S), and introduce the corresponding
counting measure µ =

∑
k≤n δsk

. The associated factorial measure µ(n) on Sn

is given by
µ(n)B =

∑
p
δs◦pB =

∑
p
1B(s ◦ p), B ∈ Sn,

where the summation extends over all permutations p = (p1, . . . , pn) of
{1, . . . , n}. Both µ and µ(n) are clearly independent of the order of the
elements s1, . . . , sn, and we note that µ is a measurable function of s whereas
µ(n) is a measurable function of µ. The measure µ(n)/n! arises naturally as
the distribution of the so-called urn sequence ξ = (ξ1, . . . , ξn), obtained by
successive drawing without replacement from the finite set {s1, . . . , sn}. In
particular, µ(n) has the one-dimensional marginals µ.

The following counterpart of Theorem 1.1 shows that every finite ex-
changeable sequence is a mixture of urn sequences.

Proposition 1.8 (finite exchangeable sequences) Let ξ = (ξ1, . . . , ξn) be a
finite random sequence in a measurable space S, and put β =

∑
k δξk

. Then
ξ is exchangeable iff P [ξ ∈ ·|β] = β(n)/n! a.s., in which case ξ is extreme iff
β is a.s. non-random.
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Proof: Suppose that ξ is exchangeable. Since β is an invariant function
of ξ, we have (ξ ◦ p, β) d= (ξ, β) for any permutation p of {1, . . . , n}. By
Fubini’s theorem the relation extends to any random permutation π⊥⊥ ξ. In
particular, we may choose π to be exchangeable, so that P{π = p} = 1/n!
for all p. Then for any measurable function f : Sn → RR+ and set A ∈ σ(β),
we obtain

E[f(ξ); A] = E[f(ξ ◦ π); A] = E[Eξf(ξ ◦ π); A] = E[β(n)f/n!; A],

which shows that P [ξ ∈ ·|β] has the stated form. The converse assertion is
obvious from the definition of β(n). Given the uniqueness of β, we may prove
the last assertion in the same way as parts (iii) and (iv) of Proposition 1.4. �

In particular, we note that the distribution of a finite exchangeable se-
quence ξ = (ξ1, . . . , ξn) is determined by the associated empirical distri-
bution ν = n−1∑

k δξk
. Though a finite exchangeable sequence may not be

extendible to an infinite sequence with the same property, we have the follow-
ing simple approximation of finite exchangeable sequences by infinite ones.
Here we write ‖µ‖ for the total variation of the signed measure µ.

Proposition 1.9 (approximation) Let ξ = (ξ1, . . . , ξn) be an exchangeable
sequence in S with empirical distribution ν, and consider an infinite, ex-
changeable sequence η directed by ν. Then

‖L(ξ1, . . . , ξk) − L(η1, . . . , ηk)‖ ≤ k(k − 1)
n

, k ≤ n.

Our proof relies on a comparison of sampling with or without replacement
from a finite population, as made precise by the following statement. Here
U{1, . . . , n} denotes the uniform distribution on the set {1, . . . , n}.
Lemma 1.10 (sampling equivalence) Let ξ1, ξ2, . . . be i.i.d. U{1, . . . , n},
and let η1, . . . , ηn be the numbers 1, . . . , n listed in their order of first ap-
pearance in the sequence (ξj). Then the ηj are exchangeable, and

P
⋂
j≤k

{ξj = ηj} ≥ 1 − k(k − 1)
2n

, 1 ≤ k ≤ n. (6)

Proof: Fix any permutation p = (p1, . . . , pn) of 1, . . . , n. Then pη1, . . . , pηn

lists the numbers 1, . . . , n in their order of first appearance in the sequence
pξ1, pξ2, . . . . Since the latter variables are again i.i.d. U{1, . . . , n}, we get
(pη1, . . . , pηn) d= (η1, . . . , ηn), and the asserted exchangeability follows as we
take the average over all permutations p. To prove (6), we note that

P
⋂

j≤k
{ξj = ηj} = P{ξ1, . . . , ξk distinct}

=
∏
j≤k

n− j + 1
n

≥ 1 − k(k − 1)
2n

,

where the last relation may be verified by induction. �
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Proof of Proposition 1.9: Consider some i.i.d. U{1, . . . , n} random vari-
ables τ1, τ2, . . . independent of ξ, and let σ1, . . . , σn be the numbers 1, . . . , n
enumerated in their order of first appearance in the sequence (τk). Introduce
the sequences ξ̃j = ξσj

, 1 ≤ j ≤ n, and η̃j = ξτj
, j ≥ 1, and note that ξ̃

d= ξ

and η̃
d= η, the former relation by Lemma 1.10. Using the estimate of the

same lemma, we get for any k ≤ n

‖L(ξ1, . . . , ξk) − L(η1, . . . , ηk)‖ ≤ 2 P
⋃

j≤k
{ξ̃j �= η̃j}

≤ 2 P
⋃

j≤k
{σj �= τj}

≤ k(k − 1)/n. �

A finite contractable sequence ξ need not be exchangeable. However, we
may construct an exchangeable sequence η that shares with ξ some basic
features. The result is often useful to extend estimates for exchangeable
sequences or processes to a contractable setting.

Lemma 1.11 (one-dimensional coupling) For any contractable sequence ξ =
(ξ1, . . . , ξn) in a measurable space S, there exists an exchangeable sequence
η = (η1, . . . , ηn) in S such that∑

j≤k
δξj

d=
∑

j≤k
δηj

, k = 1, . . . , n.

Proof: Let π = (π1, . . . , πn) be an exchangeable permutation of 1, . . . , n
independent of ξ, and define

η = ξ ◦ π = (ξπ1, . . . , ξπn).

Note that η is exchangeable by Fubini’s theorem. Fixing any k ∈ {1, . . . , n},
we may enumerate the set {π1, . . . , πk} in increasing order as τ1 < · · · <
τk. Using the contractability of ξ, the independence (τj)⊥⊥ ξ, and Fubini’s
theorem, we get∑

j≤k
δξj

d=
∑

j≤k
δξ◦τj

=
∑

j≤k
δξ◦πj

=
∑

j≤k
δηj

. �

For an application of the last result, we consider the following contractable
version of a classical inequality.

Proposition 1.12 (moment comparison, Hoeffding) Let ξ1, . . . , ξn form a
contractable sequence in RRd with empirical distribution ν, and let η1, η2, . . .
be conditionally i.i.d. with distribution ν. Define Xk =

∑
j≤k ξj and Yk =∑

j≤k ηj . Then for any convex function f on RRd, we have

Ef(Xk) ≤ Ef(Yk), k = 1, . . . , n,

whenever either side exists.
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Proof: By Lemma 1.11 we may assume that the ξj are exchangeable.
We may also assume that the ξj are a.s. distinct, since we can otherwise
introduce an independent, exchangeable permutation π1, . . . , πn of 1, . . . , n
and consider the sequence of pairs ζj = (ξj, πj) in RRd+1. Next, we can use
Proposition 1.8 to reduce to the case where ν is non-random. Finally, in view
of Lemma 1.10, we can take ξ1, . . . , ξn to be the first n distinct elements of
the sequence η1, η2, . . . .

Now introduce for every k ≤ n the tail σ-field Tk = σ{ξj ; j > k}, and note
that the sequences ξ1, . . . , ξk and η1, . . . , ηk are conditionally exchangeable
given Tk. In particular,

Xk = E[Xk|Tk] = kE[ξ1|Tk] = kE[η1|Tk] = E[Yk|Tk],

and so, by the conditional version of Jensen’s inequality in RRd (FMP 3.5),
we get

Ef(Xk) = Ef(E[Yk|Tk]) ≤ EE[f(Yk)|Tk] = Ef(Yk). �

Though the notions of exchangeability and contractability fail to be equiv-
alent for finite sequences, equivalence does hold under additional hypotheses.
Here we say that a sequence ξ is contractable or exchangeable over a σ-field
F if it is conditionally contractable or exchangeable, given any set A ∈ F
with PA > 0.

Theorem 1.13 (contractable and exchangeable sequences, Ivanoff and We-
ber, Kallenberg) Let the sequence ξ = (ξ1, . . . , ξn) in (S,S) be contractable
over a σ-field F . Then each of these conditions implies that ξ is even ex-
changeable over F :

(i) S is a measurable, Abelian group, and α =
∑

j ξj is F-measurable;
(ii) β =

∑
j δξj

is F-measurable;
(iii) cardS ≤ 2.

Proof: (i) The result is clearly true for n = 1. Proceeding by induction,
we assume that the statement holds for sequences of length < n, and turn to
a contractable sequence ξ = (ξ1, . . . , ξn) with F -measurable sum α =

∑
j ξj .

Then θξ = (ξ2, . . . , ξn) is contractable over G = F∨σ(ξ1) and
∑

j>1 ξj = α−ξ1

is G-measurable. By the induction hypothesis we conclude that θξ is even
exchangeable over G, which means that

(F , ξ1, ξp2, . . . , ξpn) d= (F , ξ1, . . . , ξn), (7)

for any permutation (p2, . . . , pn) of (2, . . . , n), in the sense of the same equal-
ity with F replaced by 1A for an arbitrary A ∈ F .

Next we see from the contractability of ξ that

(F , ξ2, . . . , ξn) d= (F , ξ1, . . . , ξk−1, ξk+1, . . . , ξn), k ≤ n.
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Since ξk = α −∑
j �=kξj and α is F -measurable, we obtain

(F , ξ1, . . . , ξn) d= (F , ξk, ξ1, . . . , ξk−1, ξk+1, . . . , ξn), k ≤ n. (8)

Now fix any permutation (k1, . . . , kn) of (1, . . . , n), take k = k1, and let
U be the permutation matrix that transforms the right-hand side of (8) into
(F , ξk1, . . . , ξkn). Applying U to both sides of (8), we get a relation of the
form

(F , ξ1, ξp2, . . . , ξpn) d= (F , ξk1, . . . , ξkn),

for a suitable permutation (p2, . . . , pn) of (2, . . . , n). Combining this with (7)
gives

(F , ξk1, . . . , ξkn) d= (F , ξ1, . . . , ξn),

which shows that ξ is exchangeable over F . This completes the induction.
(ii) Arguing as in the proof of Theorem 1.1, we may reduce to the case

where S is Euclidean. Then α =
∑

j ξj =
∫

xβ(dx) is F -measurable, and the
result follows by part (i). We can also prove the result directly, as follows:

Let π⊥⊥ (F , ξ) be an exchangeable permutation of 1, . . . , n, and put ξ̃k =
ξ ◦ πk for k ≤ n. Introduce the filtrations (Gk) and (G̃k) induced by the
sequences (F , ξ1, . . . , ξn) and (F , ξ̃1, . . . , ξ̃n), and define βk =

∑
j≤k δξj

and
β̃k =

∑
j≤k δξ̃j

. We claim that

(F , ξ1, . . . , ξk)
d= (F , ξ̃1, . . . , ξ̃k), 0 ≤ k ≤ n. (9)

This is trivially true for k = 0. Proceeding by induction, we assume that (9)
holds for some fixed k < n. Using the contractability of ξ, we get for any
measurable function g ≥ 0 on S

E[g(ξk+1)|Gk] = (n− k)−1E
[∑

m>k
g(ξm)

∣∣∣Gk

]
= (n− k)−1(β − βk)g.

Since ξ̃ is exchangeable over F and based on the same F -measurable random
measure β, a similar relation holds for ξ̃k+1, G̃k, and β̃k. Using the induction
hypothesis, we get for any measurable function f ≥ 0 on Sk

E[f(ξ1, . . . , ξk)g(ξk+1)|F ] = E[f(ξ1, . . . , ξk)E[g(ξk+1)|Gk]|F ]
= (n− k)−1E[f(ξ1, . . . , ξk)(β − βk)g|F ]
= (n− k)−1E[f(ξ̃1, . . . , ξ̃k)(β − β̃k)g|F ]
= E[f(ξ̃1, . . . , ξ̃k)E[g(ξ̃k+1)|G̃k]|F ]
= E[f(ξ̃1, . . . , ξ̃k)g(ξ̃k+1)|F ],

which extends to (9) with k replaced by k+1. This completes the induction,
and the assertion follows for k = n.
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(iii) By conditioning we may assume that F is trivial. Let S = {a, b}.
For n = 2, the contractability of ξ yields

P{ξ1 = a, ξ2 = b} = P{ξ1 = a} − P{ξ1 = ξ2 = a}
= P{ξ2 = a} − P{ξ1 = ξ2 = a}
= P{ξ2 = a, ξ1 = b},

which implies (ξ1, ξ2)
d= (ξ2, ξ1). When n > 2, fix any k ∈ {1, . . . , n− 1}, and

note that the pair (ξk, ξk+1) is conditionally contractable, given the remaining
elements ξ1, . . . , ξk−1 and ξk+2, . . . , ξn. By the result for n = 2, the pair
(ξk, ξk+1) is even conditionally exchangeable, and therefore

ξ
d= (ξ1, . . . , ξk−1, ξk+1, ξk, ξk+2, . . . , ξn).

Since every permutation of ξ is a product of such transpositions, the asserted
exchangeability follows. �

Since an exchangeable sequence is also contractable, extremality can be
understood in the sense of either property. We show that the two notions
are equivalent.

Corollary 1.14 (extremality) For any finite, exchangeable sequence ξ =
(ξ1, . . . , ξn) in a space S, these two conditions are equivalent:

(i) ξ is extreme in the exchangeable sense,
(ii) ξ is extreme in the contractable sense.

Proof: First assume (ii), and let µ = L(ξ) = pµ1 + (1 − p)µ2 for some
exchangeable distributions µ1, µ2 and some p ∈ (0, 1). Since the µi are also
contractable, condition (ii) yields µ1 = µ2, which proves (i).

Next assume (i), and let µ = pµ1 + (1 − p)µ2 for some contractable dis-
tributions µ1, µ2 and some p ∈ (0, 1). By Proposition 1.8 we note that µ
is restricted to permutations of some fixed sequence a1, . . . , an ∈ S, and so
the same thing is true for µ1 and µ2. The latter are then exchangeable by
Theorem 1.13 (ii), and so µ1 = µ2 by condition (i). This proves (ii). �

1.3 Continuous-Time Symmetries

In continuous time we may identify three natural symmetry properties, each
of which is described in terms of some simple transformations of [0, 1] or RR+.
Assuming 0 ≤ a ≤ b, we introduce the reflections

Ra(t) =
{

a− t, t ≤ a,
t, t > a,



36 Probabilistic Symmetries and Invariance Principles

contractions

Ca,b(t) =

⎧⎪⎨⎪⎩
t, t ≤ a,
∞, t ∈ (a, b],
t − b + a, t > b,

and transpositions

Ta,b(t) =

⎧⎪⎨⎪⎩
t + b − a, t ≤ a,
t − a, t ∈ (a, b],
t, t > b.

An RRd-valued process X on I = [0, 1], RR+, QQ[0,1], or QQ+ = QQ ∩ [0,∞)
with X0 = 0 is said to be reflectable if X ◦R−1

a
d= X for all a ∈ I, contractable

if X ◦ C−1
a,b

d= X for all a < b in I, and exchangeable if X ◦ T−1
a,b

d= X for all
a ≤ b in I, where the second relation is understood to hold on [0, 1 − b + a]
when I = [0, 1]. Here we are using the notation

(X ◦ f−1)t =
∫

I
1{s ∈ I; f(s) ≤ t} dXs, t ∈ I,

where the integral over a finite union of disjoint intervals is defined by∫
U

dXs =
∑

j
(Xbj

− Xaj
), U =

⋃
j
(aj, bj ],

and similarly for intervals of types [aj, bj ], [aj, bj), or (aj, bj). In particular,
we note that

(X ◦ R−1
a )t = Xt∨a − X(a−t)+ , (10)

(X ◦ C−1
a,b )t = Xt∧a + Xb+(t−a)+ − Xb. (11)

It is sometimes more convenient to write

X ◦ R−1
a = RaX, X ◦ C−1

a,b = Ca,bX, X ◦ T−1
a,b = Ta,bX.

The definitions of reflectable, contractable, and exchangeable random
measures ξ on a product space I × S are similar, except that the map-
pings ξ ◦ R−1

a , ξ ◦ C−1
a,b , and ξ ◦ T−1

a,b should now be understood in the sense
of measure theory, with the added convention ξ({0} × S) = 0 a.s. Note that
the definitions for processes and measures are consistent when Xt = ξ(0, t]
for some random measure ξ on [0, 1] or RR+ with ξ{s} = 0 a.s. for all s.

For random processes X or measures ξ on I, we may also consider some
elementary notions of exchangeability or contractability, defined in terms of
the increments. Then define in the two cases

ξnj = Xj/n − X(j−1)/n,

ξnj = ξ((j − 1)/n, j/n], n ∈ NN, j ≤ n or j ∈ NN,

respectively, and say that X or ξ has exchangeable or contractable increments
if the sequence ξn1, ξn2, . . . is exchangeable or contractable for every n ∈ NN.

The following result exhibits some relations between the various notions
of symmetry and invariance.
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Theorem 1.15 (equivalent symmetries) Let X be an RRd-valued process on
I = RR+ or QQ+ with X0 = 0. Then these three conditions are equivalent:

(i) X is contractable,
(ii) X is exchangeable,
(iii) X is reflectable.

If instead I = [0, 1] or QQ[0,1], then (i) ⇐ (ii) ⇔ (iii), with equivalence through-
out when X1 is non-random. If I = QQ+ or QQ[0,1], or if I = RR+ or [0, 1] and
X is right-continuous, then (i) and (ii) are equivalent to the statements

(i′) X has contractable increments,
(ii′) X has exchangeable increments.

All assertions remain true for random measures on (0,∞)× S or (0, 1]× S,
where S is an arbitrary Borel space.

Proof: For a ≤ b it is easy to verify the relation

Rb−a ◦ Rb ◦ Ra = Ta,b on (0,∞),

which shows that (iii) implies (ii). Letting a ≤ b ≤ c, we next define

Ta,b,c(t) =

⎧⎪⎨⎪⎩
t + c − b, t ∈ (a, b],
t − b + a, t ∈ (b, c],
t, t /∈ (a, c],

and note that
Ta,b,c = Tc−a,c ◦ Tb−a,c−a ◦ Ta,c. (12)

Since every permutation is a product of transpositions, we see in particular
that (ii) implies (ii′). Next we may check that, for any a ≤ b ≤ c,

{s ≥ 0; Ta,b,c(s) ≤ t} = {s ≥ 0; Ca,b(s) ≤ t}, t ∈ [0, c − b + a].

Taking c = 1 and using (12), we conclude that (ii) implies (i) for processes
on [0, 1] or QQ[0,1]. Letting c → ∞, we get the same implication for processes
on RR+ or QQ+. We also note that, trivially, (i) implies (i′).

Let us now write XI = Xt − Xs for I = (s, t], [s, t], [s, t), or (s, t), and
note that by (10)

(RaX)I =
{

Xa−I , I ⊂ [0, a],
XI , I ⊂ [a,∞). (13)

Assuming (ii), we may iterate (12) to obtain

(XI1, . . . ,XIn) d= (XJ1, . . . ,XJn), (14)

for any sets of disjoint intervals I1, . . . , In and J1, . . . , Jn with lengths |Ik| =
|Jk| for all k. Fixing any times 0 = t0 < t1 < · · · < tn, where a = tm for some
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m ≤ n, we may apply (14) with Ik = tk − tk−1 for all k ≤ n, Jk = a − Ik for
k ≤ m, and Jk = Ik for k > m, and conclude from (13) that

((RaX)I1, . . . , (RaX)In) d= (XI1, . . . ,XIn).
Hence,

((RaX)t1, . . . , (RaX)tn) d= (Xt1, . . . ,Xtn),

and since t1, . . . , tn were arbitrary, we obtain RaX
d= X, which shows that

(ii) implies (iii).
If I = QQ+ or QQ[0,1], then clearly (ii′) implies

((Ta,bX)t1, . . . , (Ta,bX)tn) d= (Xt1, . . . ,Xtn)

for any a < b and t1, . . . , tn in I. Hence, Ta,bX
d= X, which shows that

(ii′) implies (ii). The same argument shows that (i′) implies (i) in this case,
except that t1, . . . , tn should be restricted to [0, 1− b + a] when I = QQ[0,1]. If
instead I = RR+ or [0, 1], we may argue that (ii′) implies (14) for any sets of
disjoint intervals I1, . . . , In and J1, . . . , Jn with rational endpoints such that
|Ik| = |Jk| for all k. Using the right continuity of X, we obtain the same
formula without restrictions on the endpoints, which is clearly equivalent to
(ii). Thus, the implication (ii′) ⇒ (ii) remains valid in this case. A similar
argument shows that (i′) ⇒ (i).

To see that (i) implies (ii) when I = RR+ or QQ+, define T =
⋂

t σ(θtX−Xt).
Using (i) and proceeding as in the third proof of Theorem 1.1, we get for any
s < t in I

P [Xt − Xs ∈ ·|θtX − Xt] = P [Xt − Xs ∈ ·|T ] = P [Xt−s ∈ ·|T ]. (15)

Here the first relation yields

(Xt − Xs)⊥⊥T (θtX − Xt), s < t in I,

which shows that the increments of X are conditionally independent given
T (FMP 3.8, 6.6). Next we see from the second relation in (15) that the
conditional distribution of Xt −Xs depends only on t− s. Hence, (14) holds
for any intervals I1, . . . , In and J1, . . . , Jn as before, and (ii) follows.

To see that (i) implies (ii) when I = [0, 1] or QQ[0,1] and X1 is non-random,
we consider the more general case where X is contractable over a σ-field F
and X1 is F -measurable. We need to prove that Ta,bX

d= X for any a ≤ b
in [0, 1]. It is then enough to consider an arbitrary partition of [0, b− a] into
sub-intervals I1, . . . , In and to show that

(XI1+a, . . . ,XIn+a, Ca,bX) d= (XI1, . . . ,XIn, C0,b−aX). (16)

This is trivially true for n = 0, since in that case a = b.
Now assume (16) to be true for partitions into n − 1 intervals Ik, and

turn to the case of n intervals I1, . . . , In. Writing I1 = [0, c], we have
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(F , Ca,a+cX) d= (F , C0,cX) by the assumed contractability, and since X1

is F -measurable it follows that

(XI1+a, Ca,a+cX) d= (XI1, C0,cX). (17)

Next we note that C0,cX is contractable over G = F ∨ σ(Xc) with the G-
measurable final value X1 − Xc. Invoking the induction hypothesis, we may
apply (16) to the process C0,cX, transformation Ca,b−c, and partition I2 − c,
. . . , In − c of [0, b − a− c], and then use (17) to obtain

(XI1, . . . ,XIn, C0,b−aX)
= (XI1, (C0,cX)I2−c, . . . , (C0,cX)In−c, C0,b−a−c ◦ C0,cX)
d= (XI1, (C0,cX)I2−c+a, . . . , (C0,cX)In−c+a, Ca,b−c ◦ C0,cX)
d= (XI1+a, (Ca,a+cX)I2−c+a, . . . , (Ca,a+cX)In−c+a, Ca,b−c ◦ Ca,a+cX)
= (XI1+a, . . . , IIn+a, Ca,bX).

This completes the induction, and the assertion follows.
To prove the last assertion, we may apply the previous arguments to the

measure-valued process Xt = ξ((0, t]×·). The only difficulty is with the proof
of the implication (ii) ⇒ (iii), since (13) may fail when X is discontinuous at
an endpoint of I. Now this does not affect the subsequent argument, since
X has no fixed discontinuities. In fact, if P{ξ({t} × S) �= 0} > 0 for some
t = t0 > 0, then by (ii) the same relation holds at every t > 0, which is
impossible since ξ has at most countably many fixed discontinuities. �

We may use the last result to prove an interesting and useful closure
property for exchangeable and contractable processes. The result for Lévy
processes and subordinators is of course classical.

Theorem 1.16 (composition) Let X and Y be independent processes on
[0, 1] or RR+ with X0 = Y0 = 0, where X is RRd-valued and measurable, and Y
is non-decreasing with values in the domain of X. Then

(i) if X and Y are exchangeable, so is X ◦ Y ;
(ii) if X and Y are contractable, so is X ◦ Y .

Proof: (i) Applying (10) to the processes X, Y , and X ◦ Y , we get for
any t in the domain I of Y

(RYtX) ◦ (RtY )s = (RYtX) ◦ (Ys∨t − Y(t−s)+)

= X ◦
(
Yt ∨ (Ys∨t − Y(t−s)+)

)
− X ◦ (Yt − Ys∨t + Y(t−s)+)+

= X ◦ Ys∨t − X ◦ Y(t−s)+ = (Rt(X ◦ Y ))s,

which shows that

Rt(X ◦ Y ) = (RYtX) ◦ (RtY ), t ∈ I. (18)
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By the exchangeability and independence of X and Y , we have for any t ∈ I

P [RYtX ∈ ·|Y ] = P [X ∈ ·|Y ],
P [RtY ∈ ·|X] = P [Y ∈ ·|X],

and so by (18)

Rt(X ◦ Y ) = (RYtX) ◦ (RtY ) d= X ◦ (RtY ) d= X ◦ Y.

By Theorem 1.15 it follows that X ◦ Y is exchangeable.
(ii) Here we may apply (11) to the processes X, Y , and X ◦ Y to get for

any a ≤ b in I

(CYa,Yb
X) ◦ (Ca,bY )s = (CYa,Yb

X) ◦ (Ys∧a + Yb+(s−a)+ − Yb)

= X ◦
(
(Ys∧a + Yb+(s−a)+ − Yb) ∧ Ya

)
− X ◦ Yb

+ X ◦
(
Yb + (Ys∧a + Yb+(s−a)+ − Yb − Ya)+

)
= (X ◦ Y )s∧a + (X ◦ Y )b+(s−a)+ − X ◦ Yb

= (Ca,b(X ◦ Y ))s,

which shows that

Ca,b(X ◦ Y ) = (CYa,Yb
X) ◦ (Ca,bY ), a ≤ b. (19)

By the contractability and independence of X and Y , we have for any a ≤ b

P [CYa,Yb
X ∈ ·|Y ] = P [X ∈ ·|Y ],

P [Ca,bY ∈ ·|X] = P [Y ∈ ·|X],

and so by (19)

Ca,b(X ◦ Y ) = (CYa,Yb
X) ◦ (Ca,bY ) d= X ◦ (Ca,bY ) d= X ◦ Y,

which shows that X ◦ Y is contractable. �

We turn to another kind of operation that preserves the properties of
contractability or exchangeability. Here the relation A < B between two
subsets A,B ⊂ RR means that a < b for any a ∈ A and b ∈ B. For processes
X on an interval I and for any sub-interval J = (a, b] ⊂ I, we define the
restriction of X to J by XJ = Xa,b = θaX

b − Xa, or

XJ
t = Xa,b

t = X(a+t)∧b − Xa, t ∈ I.
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Theorem 1.17 (interval sampling) Let X be an RRd-valued, measurable pro-
cess on [0, 1] or RR+, and consider an independent sequence of disjoint, ran-
dom sub-intervals I1, . . . , In. Then

(i) for I1 < · · · < In, if X and (λI1, . . . , λIn) are contractable, so is
(XI1, . . . ,XIn);

(ii) if X and (λI1, . . . , λIn) are exchangeable, so is (XI1, . . . ,XIn).

Proof: (i) By the contractability and independence of the Ik it suffices
to prove that, whenever the intervals I1 < · · · < In and J1 < · · · < Jn are
independent of X with

(λI1, . . . , λIn) d= (λJ1, . . . , λJn),

we have
(XI1, . . . ,XIn) d= (XJ1, . . . ,XJn).

By the independence and contractability of X, we may then assume that⋃
k Ik and

⋃
k Jk are intervals starting at 0. But then the assertion is an

immediate consequence of Fubini’s theorem.
(ii) Here it is clearly enough to show that the distribution of XI1, . . . ,XIn

is invariant under transpositions of adjacent elements. By conditioning we
may then reduce to the case n = 2, and so it is enough to consider only
two disjoint intervals I and J. Since X is measurable, we may next invoke
Fubini’s theorem to reduce to the case where the lengths λI and λJ take
only two values, a and b. By contractability we may finally assume that
I ∪ J = (0, a + b]. Noting that

(X0,a,Xa,a+b) d= (Xb,b+a,X0,b),
P{λI = a} = P{λI = b} = 1

2 ,

by the exchangeability of X and (λI, λJ), we get

L(XI,XJ ) = P{I = (0, a]}L(X0,a,Xa,a+b)
+ P{I = (0, b]}L(X0,b,Xb,b+a)
+ P{I = (a, a + b]}L(Xa,a+b,X0,a)
+ P{I = (b, b + a]}L(Xb,b+a,X0,b)

= 1
2 L(X0,a,Xa,a+b) + 1

2 L(X0,b,Xb,b+a)
= P{I = (0, a]}L(Xa,a+b,X0,a)

+ P{I = (0, b]}L(Xb,b+a,X0,b)
+ P{I = (a, a + b]}L(X0,a,Xa,a+b)
+ P{I = (b, b + a]}L(X0,b,Xb,b+a)

= L(XJ,XI),

which shows that indeed (XI,XJ ) d= (XJ,XI). �
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The next result shows how the conditions defining the exchangeability
or contractability of a random measure ξ on a product space S × I can be
extended in a natural way to more general sets or functions. Here I = [0, 1]
or RR+, and for any B ∈ B(I) we define the general contraction CBξ by

(CBξ)f =
∫ ∫

S×B
f(s, λ(B ∩ [0, t]) ξ(ds dt), f ≥ 0.

Theorem 1.18 (extended invariance) Let ξ be a random measure on S×I,
where S is Borel and I = [0, 1] or RR+. Then

(i) ξ is contractable iff CBξ
d= ξ on [0, λB] for every B ∈ B(I);

(ii) ξ is exchangeable iff ξ ◦ f−1 d= ξ for every λ-preserving map f on I.

Proof: (i) Let ξ contractable on S × I. For finite interval unions B,
the asserted property then holds by Theorem 1.15. To prove the general
result, we may assume that ξ(S × ·) is a.s. locally finite and λB < ∞. By a
monotone-class argument it suffices to show that, for any t1 < · · · < tm ,

((CBξ)t1, . . . , (CBξ)tm) d= (ξt1, . . . , ξtm), (20)

where ξt = ξ(· × [0, t]) and (CBξ)t = (CBξ)(· × [0, t]). By the regularity
of λ, we may then choose some finite interval unions U1, U2, . . . such that
λ(B∆Un) → 0. Since (20) holds for each Un, it is enough to show that
‖(CUnξ)t − (CBξ)t‖ P→ 0 as n → ∞ for fixed t ≥ 0. This can be written as
‖ξ(· × Ut

n) − ξ(· × Bt)‖ P→ 0, where we define

Bt = {s ∈ B; λ(B ∩ [0, s]) ≤ t},

and similarly for Ut
n in terms of Un. Since clearly λ(Bt∆Ut

n) → 0, we need
only show that λAn → 0 implies ξ(· × An) P→ 0. By the regularity of λ we
may then assume that the sets An are open, and by the continuity of ξ we
may take them to be finite interval unions. Since ξ is contractable, we may
finally choose An = (0, an] for some constants an → 0, in which case the
stated convergence holds a.s. by the continuity of ξ.

(ii) Suppose that ξ is exchangeable on S×I and that f is λ-preserving on
I. For any disjoint intervals I1, . . . , Im ⊂ I with inverse images Bk = f−1Ik,
k ≤ m, we need to show that

(ξB1, . . . , ξBm) d= (ξI1 , . . . , ξIm), (21)

where ξB = ξ(· × B). As before, we may then choose some finite interval
unions Un

1 , . . . , Un
m , n ∈ NN, such that λ(Un

k ∆Bk) → 0 for each k. Since the
Bk are disjoint, we may assume that Un

1 , . . . , Un
m have the same property for

each n, and since λBk = λIk for all k, we may also assume that λUn
k ≤ λIk

for any n and k. Then there exist some intervals In
k ⊂ Ik with λIn

k = λUn
k ,

and we note that

λ(In
k ∆Ik) = λIk − λIn

k = λBk − λUn
k ≤ λ(Un

k ∆Bk) → 0.
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As before, we conclude that ξUn
k

P→ ξBk
and ξIn

k

P→ ξIk
for all k. Furthermore,

the exchangeability of ξ yields

(ξUn
1
, . . . , ξUn

m
) d= (ξIn

1
, . . . , ξIn

m
).

Relation (21) now follows as we let n → ∞. �

Part (ii) of the last result can also be obtained as an easy consequence
of the representations in Proposition 1.21 and Theorem 1.25 below. Much
more general results of this type will be established in Chapter 4.

1.4 Infinite-Interval Processes

In analogy with Theorem 1.1, we may expect a contractable or exchangeable
process X on RR+ to have conditionally stationary and independent (or i.i.d.)
increments. Just as in the unconditional case, there will then exist a con-
volution semigroup of random probability measures µr on the range space
RRd, such that the increments Xt − Xs are conditionally independent with
distributions µt−s, given the whole family {µr}.

To make all this precise, recall that for any non-random convolution
semigroup {µr} on RRd, there exists an RRd-valued Lévy process X (i.e., an
rcll process with stationary, independent increments and X0 = 0) such that
L(Xt − Xs) = µt−s for all s < t (FMP 15.12). Furthermore, the distribution
of X determines and is determined by the characteristics (α, ρ, ν), where
α ∈ RRd is the drift coefficient of X, ρ = (ρij) denotes the covariance matrix
of the diffusion component, and ν is the Lévy measure on RRd \ {0} governing
the distribution of jumps (FMP 15.7). More precisely, X has the Lévy–Itô
representation

Xt = αt + σBt +
∫ t

0

∫
x(η − 1{|x| ≤ 1}λ ⊗ ν)(ds dx), t ≥ 0, (22)

where η is a Poisson process on RR+× (RRd \{0}) with intensity measure λ⊗ν,
B is an independent Brownian motion in RRd, and σ is a d × d-matrix such
that σσ′ = ρ (FMP 15.4). The integrability condition

∫
(|x|2 ∧ 1)ν(dx) <

∞ ensures the existence of the compensated Poisson integral in (22) (FMP
12.13). Indeed, the convergence is a.s. uniform on bounded intervals, as may
be seen from Lemma 2.19 below.
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Theorem 1.19 (exchangeable processes on RR+, Bühlmann) Let X be an
RRd-valued process on QQ+ with X0 = 0. Then these conditions are equivalent:

(i) X is contractable,
(ii) X is exchangeable,
(iii) X has conditionally i.i.d. increments.

In that case, X extends a.s. to an rcll process X̃ on RR+, where X̃ is condi-
tionally Lévy with some random characteristics α, ρ, and ν. The latter are
then a.s. unique, and X is extreme iff (α, ρ, ν) is a.s. non-random.

An exchangeable process X as above is said to be directed by the random
elements α, ρ, and ν, and the latter are often referred to, collectively, as the
directing triple of X.

First proof: For the first assertion, it is enough to show that (i) implies
(iii), the remaining implications being obvious. Thus, assume that X is
contractable. In the proof of Theorem 1.15 we saw that X has conditionally
stationary and independent increments, given a suitable σ-field T . Hence,
the conditional distributions µt = P [Xt ∈ ·|T ], t ∈ QQ+, a.s. satisfy the
semigroup property µs ∗ µt = µs+t, s, t ∈ QQ+. We may then introduce the
associated random characteristics α, ρ, and ν, and from FMP 15.16 we know
that the latter are a.s. unique and measurably determined by the family {µt}.

Now let η be a Cox process directed by ν with η⊥⊥ν (α, ρ) (cf. FMP
12.7 for existence), and introduce an independent Brownian motion B in RRd.
Writing σ for the square root of the nonnegative definite matrix ρ, we may
use (22) to construct a mixed Lévy process Y . Then clearly X

d= Y on QQ+.
Since Y is a.s. rcll and hence may be regarded as a random element in the
Borel space D(RR+,RRd), the transfer theorem (FMP 6.10) ensures the exis-
tence of an rcll process X̃

d= Y satisfying X = X̃ a.s. on QQ+. Finally, we
see from (22) and Fubini’s theorem that X̃ is conditionally Lévy with char-
acteristics (α, ρ, ν). The last assertion follows as before from the uniqueness
of (α, ρ, ν). �

It is again illuminating to consider alternative proofs. Here we show how
the result can also be deduced as a corollary of Theorem 1.1.

Second proof of Theorem 1.19: Suppose that X is contractable. Introduce
the processes

Y k
n (t) = X(t + (k − 1)/n) − X((k − 1)/n), t ∈ [0, n−1], k, n ∈ NN,

and note that the sequence Y 1
n , Y 2

n , . . . is again contractable for each n. By
Theorem 1.1 it is then conditionally i.i.d. with a common distribution νn.
Since the νn are a.s. measurably determined by X and hence by every se-
quence Y k

n , k ∈ NN, we may apply Proposition 1.4 (ii) twice to obtain

σ(νm) = σ(νmn) = σ(νn) a.s., m, n ∈ NN,
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which shows that the σ-field I = σ(νn) is a.s. independent of n. In particular,
X has conditionally stationary, independent increments, given I. The proof
can now be completed as before. �

The last result leads immediately to a characterization of contractable or
exchangeable random measures on RR+. We may consider the more general
case of random measures on a product space S×RR+, where S is an arbitrary
Borel space and contractability is understood in the sense of transformations
of RR+. By a marked point process on S×RR+ we mean a simple point process
ξ such that ξ(S × {t}) ≤ 1 for all t ≥ 0.

Lemma 1.20 (exchangeable point processes) Let ξ be a marked point pro-
cess on S × RR+, where S is Borel. Then ξ is contractable iff it is Cox and
directed by ν ⊗ λ for some random measure ν on S. In that case, ν is a.s.
unique, and ξ is extreme iff ν is a.s. non-random.

Proof: Suppose that ξ is contractable. Arguing as in the proof of the
last theorem, we see that ξ has stationary, independent increments over QQ+,
given the tail σ-field Tξ . By continuity, the statement extends immediately
to the increments over RR+. Hence, by the Erlang–Lévy characterization in
FMP 12.10, we conclude that ξ is conditionally Poisson with intensity mea-
sure ν ⊗ λ, where ν = E[ξ(· × [0, 1])|Tξ ]. Thus, ξ is a Cox process directed
by ν ⊗λ, and we note that ν is a.s. unique by the law of large numbers. The
last assertion now follows as in the proofs of Proposition 1.4 (iii) and (iv). �

The last result is easily extended to a characterization of general ex-
changeable or contractable random measures on S × RR+. Write M′(S) =
M(S)\{0}, where M(S) denotes the class of σ-finite (or locally finite) mea-
sures on S.

Proposition 1.21 (exchangeable random measures) Let ξ be a random mea-
sure ξ on S × RR+, where S is Borel. Then ξ is contractable iff

ξ = α ⊗ λ +
∫ ∫

(µ ⊗ δt) η(dµdt) a.s.,

for some random measures α on S and ν on M′(S) and a Cox process η⊥⊥ν α
directed by ν ⊗ λ. In that case, α and ν are a.s. unique, and ξ is extreme iff
(α, ν) is a.s. non-random.

Proof: Suppose again that ξ is contractable. On M′(S) × RR+ we may
introduce the marked point process

η =
∑

t≥0
δξ(·×{t}) ⊗ δt,

which determines the purely discontinuous component ξd of ξ, via the formula

ξd =
∑

t≥0
ξ(· × {t}) ⊗ δt =

∫ ∫
(µ ⊗ δt) η(dµdt).
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Putting ξc = ξ − ξd, we see from Theorem 1.15 that the pair (ξc, ξd) is again
contractable on the space {1, 2} × S × RR+, which implies that (ξc, η) is con-
tractable on (S ∪M(S)) × RR+. Proceeding as in Lemma 1.20, we conclude
that ξc = α⊗λ a.s. for some random measure α on S and that η is condition-
ally Poisson with intensity measure of the form ν ⊗ λ, given the pair (α, ν).
This shows that η is a Cox process with directing random measure ν⊗λ, and
it also implies the asserted conditional independence. The stated uniqueness
is obvious for α, and for ν it follows from the corresponding statement in
Lemma 1.20. The last assertion is an immediate consequence. �

1.5 Measures on a Finite Interval

The characterization problem for exchangeable processes on [0, 1] is more
difficult and will not be solved completely until Chapter 3. Here we shall
only consider the special case of exchangeable random measures on a prod-
uct space S × [0, 1], where S is an arbitrary Borel space. We begin with
a characterization of contractability for simple point processes and diffuse
random measures on [0, 1]. A more detailed discussion of this case appears
in the next section.

We say that ξ is a binomial process on [0, 1] based on λ and k ∈ ZZ+ if
ξ =

∑
j≤k δτj

a.s. for some i.i.d. U(0, 1) random variables τ1, . . . , τk. The term
is motivated by the fact that the variables ξB are binomially distributed with
parameters k and λB. We also consider mixtures of such processes, where
τ1, τ2, . . . are i.i.d. U(0, 1) and the constant k is replaced by a random variable
κ⊥⊥ (τj).

Proposition 1.22 (simple or diffuse random measures, Davidson, Matthes
et al., Kallenberg)

(i) A simple point process ξ on [0, 1] is contractable iff it is a mixed bino-
mial process.

(ii) A diffuse random measure ξ on [0, 1] is contractable iff ξ = αλ a.s. for
some random variable α ≥ 0.

In both cases, ξ is also exchangeable.

We give an elementary proof based on Propositions 1.8 and 1.13 and the
law of large numbers. A shorter but more sophisticated argument is pre-
sented in the next section.

Proof: (i) Let ξ̃ be a mixed binomial process on [0, 1] based on ξ[0, 1] and
λ. Writing Inj = n−1(j − 1, j] for 1 ≤ j ≤ n, we introduce for every n ∈ NN
the point processes

ηn =
∑

j
(ξInj ∧ 1) δj/n, η̃n =

∑
j
(ξ̃Inj ∧ 1) δj/n,
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and define

κ = ξ[0, 1] = ξ̃[0, 1], κn = ηn[0, 1], κ̃n = η̃n[0, 1].

The sequences of weights ξInj ∧ 1 and ξ̃Inj ∧ 1 are exchangeable, the former
by Proposition 1.13 (iii). Hence, by Proposition 1.8, both are mixed urn
sequences with values in {0, 1}. Letting ‖ · ‖n denote half the total variation
on the σ-field Un = σ{In1, . . . , Inn}, we get

‖L(ξ) − L(ξ̃)‖n

≤ ‖L(ξ) − L(ηn)‖n + ‖L(ηn) − L(η̃n)‖ + ‖L(η̃n) − L(ξ̃)‖n

≤ P{κ �= κn} + P{κn �= κ̃n} + P{κ̃n �= κ}
≤ 2P{κn < κ} + 2P{κ̃n < κ} → 0.

Hence, L(ξ) = L(ξ̃) on every Un, which extends to ξ
d= ξ̃ by a monotone-class

argument.
(ii) For each n ∈ NN, let ηn be a Cox process directed by nξ, and note

that the random variables ηnB are mixed Poisson with means nξB. Since
ηn is also a simple, contractable point process on [0, 1] (FMP 12.5), part (i)
shows that it is a mixed binomial process based on ηn[0, 1] and λ. Noting
that the Cox property is preserved by independent thinnings (FMP 12.3),
we conclude that the variables ηnB are also mixed Poisson with conditional
means nξ[0, 1]λB. Applying the law of large numbers twice, we obtain

ξB
P← (ηnB/n) P→ ξ[0, 1] λB, B ∈ B[0, 1],

which implies ξB = ξ[0, 1]λB a.s. for all B ∈ B[0, 1]. This extends by a
monotone-class argument to ξ = ξ[0, 1]λ a.s.

The last statement is obvious from the invariance of Lebesgue measure λ
and the form of the binomial processes. �

We continue with a useful relationship between contractable sequences
and processes.

Theorem 1.23 (contractable sequences and processes) Let ξ be a marked
point process on S× [0, 1], where S is Borel and ξ(S× [0, 1]) = n is a.s. finite
and non-random. Put ξ̄ = ξ(S × ·), and let η = (η1, . . . , ηn) be the associated
sequence of marks. Then

(i) ξ is contractable iff ξ̄ and η are independent and contractable.

In that case,

(ii) ξ and η are simultaneously extreme,

(iii) ξ and η are simultaneously exchangeable.
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Proof: (i) Suppose that ξ̄ and η are independent and contractable. Fix
any finite interval union U ⊂ [0, 1], and put I = [0, λU ]. Write ξU and ξ̄U for
the contractions of ξ to S × I and ξ̄ to I, respectively, and let ηU

1 , . . . , ηU
ξ̄U be

the marks of ξU , enumerated in the order from left to right. Using Fubini’s
theorem twice, along with the contractability of η and ξ̄, and Theorem 1.15,
we get for k ≤ n and any measurable function f ≥ 0 on M(I) × Sk

E[f(ξ̄U , ηU
1 , . . . , ηU

k ); ξ̄U = k]

=
∫

Ef(µ, η1, . . . , ηk) P{ξ̄U ∈ dµ, ξ̄U = k}

=
∫

Ef(µ, η1, . . . , ηk) P{ξ̄I ∈ dµ, ξ̄I = k}

= E[f(ξ̄I , η1, . . . , ηk); ξ̄I = k],

which shows that ξU d= ξI . Hence, ξ is contractable.
Conversely, suppose that ξ is contractable. Let U and I be as before, and

fix any B ∈ Sn. Since ξU c d= ξIc by Theorem 1.15, we obtain

P{ξ̄U = 0, η ∈ B} = P{ξ̄Uc = n, ηU c ∈ B}
= P{ξ̄Ic = n, ηIc ∈ B}
= P{ξ̄I = 0, η ∈ B}.

Applying this to subsets U of a fixed interval union V with associated interval
J = [0, λV ] and using a version of FMP 12.8, we obtain

P{ξ̄V ∈ ·, η ∈ B} = P{ξ̄J ∈ ·, η ∈ B}.
Thus, ξ̄ is conditionally contractable given η ∈ B, whenever the latter event
has positive probability. By Proposition 1.22 it follows that ξ̄ is conditionally
a binomial process based on n and λ, and since the conditional distribution
is independent of B, we conclude that ξ̄ is contractable and independent of η.

To see that even η is contractable, fix any numbers a < b in (0, 1), and
put

I = [0, a], U = [0, a] ∪ (b, 1], V = [0, 1 − b + a].

Then ξU d= ξV by the contractability of ξ and Theorem 1.15. Combining
this with the independence of ξ̄ and η, we get for any B ∈ Sn−1 and k ∈
{0, . . . , n− 1}

P{(η1, . . . , ηk, ηk+2, . . . , ηn) ∈ B}P{ξ̄I = k, ξ̄U = n− 1}
= P{(ηU

1 , . . . , ηU
n−1) ∈ B, ξ̄I = k, ξ̄U = n− 1}

= P{(ηV
1 , . . . , ηV

n−1) ∈ B, ξ̄I = k, ξ̄V = n− 1}
= P{(η1, . . . , ηn−1) ∈ B}P{ξ̄I = k, ξ̄U = n− 1}.

Dividing by the common factor P{ξ̄I = k, ξ̄U = n− 1} > 0, we obtain

(η1, . . . , ηk, ηk+2, . . . , ηn) d= (η1, . . . , ηn−1), k = 0, . . . , n− 1,

which extends by iteration to the required contractability condition.
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(ii) The measure ξ is clearly a measurable function of the pair (ξ̄, η), and
conversely, ξ̄ and η can be measurably recovered from ξ. Hence, the corre-
sponding distributions L(ξ) and L(ξ̄)⊗L(η) determine each other uniquely.
Since ξ̄ is a fixed binomial process, it follows that L(ξ) and L(η) are uniquely
determined by each other. Furthermore, the bi-linearity of the product mea-
sure L(ξ̄)⊗L(η) implies that the mapping L(η) �→ L(ξ) is linear. Hence, for
any p ∈ (0, 1), the relations

L(η) = pµ1 + (1 − p)µ2, L(ξ) = pµ̃1 + (1 − p)µ̃2

are equivalent whenever µ1 and µ2 are contractable probability measures on
Sn and µ̃1 and µ̃2 are the corresponding contractable distributions on M[0, 1].
If η is extreme, we have µ1 = µ2, and then also µ̃1 = µ̃2, which shows that
even ξ is extreme. By the same argument, extremality of ξ implies the same
property for η.

(iii) Since ξ̄ is a binomial process based on n and λ, the transfer theo-
rem (FMP 6.10) guarantees the existence of an a.s. representation ξ̄ =

∑
j δσj

,
where σ1, . . . , σn are i.i.d. U(0, 1) random variables with σ ≡ (σj)⊥⊥ξ̄ η. Since
also η⊥⊥ ξ̄, we have in fact σ⊥⊥ η by the chain rule for conditional indepen-
dence (FMP 6.8). Enumerating the σj in increasing order as σπ1, . . . , σπn , we
note that π1, . . . , πn form a σ-measurable permutation of 1, . . . , n. Introduc-
ing the inverse permutation π′ = (π′

1, . . . , π
′
n) and writing ηπ′

j
= η ◦ π′

j , for
convenience, we obtain

ξ =
∑

i
δηi

⊗ δσ◦πi
=
∑

j
δη◦π′

j
⊗ δσj

. (23)

Now suppose that η is exchangeable. By Fubini’s theorem we see that
(η ◦ π′, σ) d= (η, σ), where η ◦ π′ = (ηπ′

1
, . . . , ηπ′

n
). Hence, (η ◦ π′)⊥⊥σ, and

the asserted exchangeability of ξ follows from (23) by another application
of Fubini’s theorem. Conversely, suppose that ξ is exchangeable. Then this
remains conditionally true, given the invariant point process β =

∑
j δηj

on
S, and so we may assume the latter to be non-random. But then η is ex-
changeable by Theorem 1.13 (ii). �

We can use the last theorem to characterize the exchangeable random
measures on a product space S × [0, 1], where S is Borel. For convenience,
we begin with the case of marked point processes. Recall that if β =

∑
j δβj

is an arbitrary point process on S, then a uniform or λ-randomization of β
is defined as a point process on S× [0, 1] of the form ξ =

∑
j δβj ,τj

, where the
τj are i.i.d. U(0, 1) and independent of β1, β2, . . . .

Lemma 1.24 (exchangeable point processes) Let ξ be a marked point pro-
cess on S× [0, 1], where S is Borel. Then ξ is exchangeable iff it is a uniform
randomization of the point process β = ξ(·× [0, 1]). In that case, ξ is extreme
iff β is a.s. non-random.
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Proof: If ξ is exchangeable, it remains so under conditioning on β. Since
the class of uniform randomizations is closed under mixing, we may hence-
forth assume that β is non-random. Next we note that ξ remains exchange-
able on any product set A × [0, 1] with A ∈ S. Since the randomization
property for every such set with βA < ∞ implies the same property on
S × [0, 1], we may further assume that βS = n < ∞.

Under those additional hypotheses, we introduce the time and mark se-
quences τ = (τ1, . . . , τn) and η = (η1, . . . , ηn) of ξ and note that, by Theorem
1.23, both ξ̄ =

∑
j δτj

and η are exchangeable with τ ⊥⊥ η. Fixing any enu-
meration b1, . . . , bn of the points of β, we may conclude from Proposition 1.8
and the transfer theorem that η = b ◦ π ≡ (bπ1, . . . , bπn) a.s. for some ex-
changeable permutation π⊥⊥ τ of 1, . . . , n. The same theorem ensures that
τ = σ ◦ κ ≡ (σκ1, . . . , σκn) for some i.i.d. U(0, 1) random variables σ1, . . . , σn

with σ ≡ (σj)⊥⊥π and a σ-measurable permutation κ = (κ1, . . . , κn) of
1, . . . , n. Writing π′ for the inverse of the permutation π, we obtain

ξ =
∑

j
δηj

⊗ δτj
=
∑

j
δb◦πj

⊗ δσ◦κj
=
∑

i
δbi

⊗ δσ◦κ◦π′
i
.

We may now use Fubini’s theorem to see that the permutation κ ◦ π′ of
1, . . . , n remains exchangeable, conditionally on σ. Hence, (κ ◦ π′)⊥⊥σ, and
since even σ is exchangeable, it follows that σ ◦ κ ◦ π′ d= σ. This shows that
ξ has the required form. The last assertion may be proved by the same ar-
guments as for Proposition 1.4. �

We turn to the corresponding characterization for general random mea-
sures on S × [0, 1]. It is interesting to compare with the characterization of
contractable random measures on S × RR+ in Proposition 1.21.

Theorem 1.25 (exchangeable random measures) Let ξ be a random mea-
sure on S × [0, 1], where S is Borel. Then ξ is exchangeable iff

ξ = α ⊗ λ +
∑

j
βj ⊗ δτj

a.s.,

for some i.i.d. U(0, 1) random variables τ1, τ2, . . . and an independent collec-
tion of random measures α and β1, β2, . . . on S. In that case, ξ is extreme
iff α and β =

∑
j δβj

are a.s. non-random.

First proof: As in case of Proposition 1.21, we introduce the marked point
process

η =
∑

t∈[0,1]
δξ(·×{t}) ⊗ δt,

now defined on the product space M′(S) × [0, 1], and construct the purely
discontinuous component ξd of ξ through the formula

ξd =
∑

t
ξ(· × {t}) ⊗ δt =

∫ ∫
(µ ⊗ δt) η(dµdt). (24)
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Putting ξc = ξ − ξd, we see from Theorem 1.15 that the pair (ξc, η) is again
exchangeable. Since the same condition holds conditionally, given the invari-
ant measures α = ξc(· × [0, 1]) and β = η(· × [0, 1]), we may assume that
the latter are non-random. Then ξc = α ⊗ λ a.s. by Proposition 1.22, and
Lemma 1.24 shows that η =

∑
j δbj ,τj

a.s. for some i.i.d. U(0, 1) random vari-
ables τ1, τ2, . . . , where b1, b2, . . . is an arbitrary enumeration of the points of
β. The desired representation is now immediate from (24). The last assertion
follows by the usual arguments, given the fact that α and β are a.s. unique,
measurable functions of ξ. �

It is interesting to see how the underlying lemmas can also be proved
directly, by an entirely different method involving moment measures.

Second proof of Theorem 1.25: By Theorem 1.15 it is enough to consider
the cases where ξ̄ = ξ(S × ·) is a.s. diffuse or ξ is a marked point process on
S × [0, 1], in either case with a non-random projection β = ξ(· × [0, 1]). In
the point process case, we may also assume that β is simple, since we can
otherwise consider a uniform randomization of ξ, which is again exchangeable
with a simple projection onto the extended mark space.

In the diffuse case, it suffices to show that ξ(A×·) is a.s. invariant for every
A ∈ S with βA < ∞. We may then assume ξ to be a diffuse, exchangeable
random measure on [0, 1]. Using the exchangeability of ξ, we get for any
disjoint, rational sub-intervals I and J

EξI = aλI, Eξ2(I × J) = bλ2(I × J),

for some constants a, b ≥ 0. Noting that Eξ2 and λ2 both vanish on the main
diagonal of [0, 1]2, we may use a monotone-class argument to conclude that
Eξ = aλ and Eξ2 = bλ2. Since ξ[0, 1] = c is non-random, we obtain a = c
and b = c2, and so for any B ∈ B[0, 1]

var(ξB) = E(ξB)2 − (EξB)2 = c2λ2B2 − (cλB)2 = 0,

which implies ξB = cλB a.s. Here the exceptional null set can be chosen to
be independent of B, which leads to the a.s. relation ξ = cλ.

Turning to the case of marked point processes, we may fix an enumeration
b1, b2, . . . of the marks and define ξj = δτj

= ξ({bj}× ·) for all j. Considering
the contributions to disjoint, rational intervals and extending by a monotone-
class argument, we see as before that E(ξ1⊗· · ·⊗ξn) = λn. Noting that each
product measure ξk

j = δk
τj

is supported by the main diagonal Dk in [0, 1]k

with the one-dimensional projections δτj
= ξj , we obtain more generally

E
⊗

j≤n
ξ

kj

j =
⊗

j≤n
λkj

,

where λk denotes the measure on Dk with one-dimensional projections λ.
Since the joint distribution of ξ1, ξ2, . . . is uniquely determined by the product
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measures of arbitrary order, we conclude that β determines the distribution
of ξ. We may now compare with a uniform randomization ξ̃ of β, which is
again an exchangeable, marked point process with the same projection onto
S. Using the mentioned uniqueness, we obtain the required equality ξ

d= ξ̃. �

1.6 Simple or Diffuse Random Measures

The simple point processes and diffuse random measures deserve special at-
tention for at least two reasons: Their distributions are uniquely determined
by the avoidance function ϕ(B) = P{ξB = 0} (FMP 12.9), and they exhibit
some special features that are not present in the general case. Though some
of the quoted results are familiar already from earlier sections, the following
unified approach may be illuminating.

Let us first describe the exchangeable sequences and processes in the four
fundamental cases of discrete or continuous, finite or infinite time intervals.
We may begin with the binomial process on [0, 1] based on λ and k, which
is a simple point process of the form ξ =

∑
j≤k δτj

(or any point process
with the same distribution), where τ1, τ2, . . . are independent U(0, 1) random
variables. Replacing k by a ZZ+-valued random variable κ⊥⊥ (τj), we obtain
a mixed binomial process ξ on [0, 1], which satisfies

P{ξB = 0} = E(1 − λB)κ = ψκ(1 − λB), B ∈ B[0, 1], (25)

where ψκ(s) = Esκ denotes the probability generating function of κ. In
particular, we get a homogeneous Poisson process with rate r ≥ 0 by choosing
κ to be Poisson distributed with mean r. Extending by independence to the
interval RR+ and mixing with respect to r (so that ξ becomes conditionally
Poisson with the random rate ρ ≥ 0), we obtain a mixed Poisson process ξ
on RR+, satisfying

P{ξB = 0} = Ee−ρλB = ϕρ(λB), B ∈ B(RR+), (26)

where ϕρ(u) = Ee−uρ denotes the Laplace transform of ρ.
We may also consider point processes on the discrete intervals {1, . . . , n}

or NN, where the simple point processes ξ may be identified with finite or
infinite sequences of {0, 1}-valued random variables ξ1, ξ2, . . . . If the ξj are
i.i.d. with Eξj = r, then ξ = (ξ1, ξ2, . . .) becomes a Bernoulli sequence with
rate r ∈ [0, 1]. Randomizing the parameter r, as before, we obtain a mixed
Bernoulli sequence with a random rate ρ in [0, 1], which satisfies

E[ξk1 · · · ξkm ] = Eρk, k1 < · · · < km. (27)

For completeness, we may also consider the pure or mixed hyper-geometric
sequences ξ on {1, . . . , n}, where the former may be defined as urn sequences
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with values in {0, 1}. Writing n(k) = n!/(n− k)! for 0 ≤ k ≤ n, we get in the
general case

E[ξk1 · · · ξkm ] = E[κ(m); κ ≥ m]/n(m), k1 < · · · < km, (28)

for some random variable κ in {0, . . . , n}.
The following theorem summarizes the characterizations of contractable

sequences or processes in the mentioned four cases, along with the corre-
sponding results for diffuse random measures.

Theorem 1.26 (simple or diffuse random measures) A simple point process
ξ on an interval I is contractable, hence also exchangeable, iff

(i) ξ is a mixed hyper-geometric sequence when I = {1, . . . , n},
(ii) ξ is a mixed Bernoulli sequence when I = NN,
(iii) ξ is a mixed binomial process when I = [0, 1],
(iv) ξ is a mixed Poisson process when I = RR+.

A diffuse random measure ξ on I = [0, 1] or RR+ is contractable iff ξ = αλ
a.s. for some random variable α ≥ 0.

All the listed assertions are special cases of previously established results.
Thus, part (i) is an immediate consequence of Proposition 1.8 and Theorem
1.13 (iii), part (ii) is a special case of Theorem 1.1, part (iii) appears in
Proposition 1.22, and part (iv) was proved in Lemma 1.20. Finally, the diffuse
case was established in Proposition 1.22. Some of those earlier proofs could
be readily simplified, if we were only willing to use the (nontrivial) fact that
contractability implies exchangeability in the simple and diffuse cases. The
latter statement, recorded for point processes already in Proposition 1.13 and
Corollary 1.21, is an easy consequence of the fundamental uniqueness result
for simple and diffuse random measures in FMP 12.8.

It is interesting to note that the last theorem is essentially equivalent to
the celebrated Hausdorff–Bernstein theorem in analysis, which characterizes
the completely monotone sequences or functions on a finite or infinite inter-
val. A statement of that result, along with the relevant definitions, is given
in Theorem A4.1.

Second proof of Theorem 1.26: If ξ is a simple point process, then by FMP
12.8 it suffices to establish formulas (25)–(28) for suitable random variables
κ or ρ. In cases (i) and (ii), we may then introduce the moments ck =
E[ξ1 · · · ξk] and verify, by induction on m, that

(−1)m∆mck = E[ξ1 · · · ξk (1 − ξk+1) · · · (1 − ξk+m)] ≥ 0, (29)

for appropriate k and m. This shows that the sequence (ck) is completely
monotone, and so by Theorem A4.1 we have ck = E[κ(k); κ ≥ k]/n(k) or
ck = Eρk, respectively, for some random variable κ in {0, . . . , n} or ρ in
[0, 1]. Formulas (27) and (28) now follow by the contractability of ξ.
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In cases (iii) and (iv), define f(t) = P{ξ(0, t] = 0}, put Ik = h(k − 1, k]
for fixed h > 0, and conclude from (29) for the variables ξk = 1{ξIk = 0}
that f is completely monotone on [0, 1] or RR+, respectively. Next consider
any disjoint intervals J1, J2, . . . ⊂ [0, 1] of lengths hn > 0. By Fatou’s lemma
and the contractability of ξ, we have

0 ≤ 1 − lim infnf(hn) = lim supnP{ξJn > 0}
≤ P{ξJn > 0 i.o.} ≤ P{ξ[0, 1] = ∞} = 0,

which shows that f(0+) = 1. Hence, Theorem A4.1 yields f(t) = E(1 − t)κ

or f(t) = Ee−tρ, respectively, for some random variable κ in ZZ+ or ρ in RR+.
Formulas (25) and (26) now follow by the contractability of ξ.

Next assume that ξ is diffuse and contractable on [0, 1] or RR+. Let η
be a Cox process directed by ξ, and note that η is simple (FMP 12.5) and
contractable. Applying part (iii) to η, we get for any t ∈ [0, 1]

Ee−ξ[0,t] = P{η[0, t] = 0} = E(1 − t)η[0,1] = Ee−tξ[0,1].

By the contractability of ξ and FMP 12.8 (ii) we obtain ξ
d= αλ on [0, 1] with

α = ξ[0, 1], which implies ξ = αλ a.s. on the same interval. By scaling we
obtain the same result for measures on RR+. �

The next result shows how suitable restrictions of an exchangeable point
process are again exchangeable and satisfy appropriate independence rela-
tions. Given a random element ξ, a σ-field F , and an event A ∈ F , we say
that ξ is independent of F with distribution µ on a set A, if P [ξ ∈ ·|F ] = µ
a.s. on A. Here, clearly, ξ need not even be defined on Ac. Note that for
binomial processes on a real interval, the underlying measure is assumed to
be λ, unless otherwise specified.

Proposition 1.27 (restrictions of exchangeable processes) Consider a sim-
ple, contractable point process ξ =

∑
j δτj

on I = [0, 1] or RR+, where τ1 <
τ2 < · · · . Then

(i) for any finite interval J ⊂ I, the restriction ξJ = 1J · ξ is a mixed
binomial process on J satisfying ξJ ⊥⊥ξJ ξJc;

(ii) for every n ∈ NN, the ratios τ1/τn, . . . , τn−1/τn form a binomial process
on [0, 1], independent of τn, τn+1, . . . on the set {ξI ≥ n}.

Proof: (i) First assume that ξ is a contractable process on a finite interval
I. Then Theorem 1.26 shows that ξ is a mixed binomial process on I and
hence admits a representation ξ =

∑
j≤κ δσj

, where the σj are i.i.d. U(I) and
independent of κ = ξI. For any sub-interval J ⊂ I, we note that ξJ and ξJc

are conditionally independent binomial processes on J and Jc, respectively,
given the random variables κ and ιk = 1{k ≤ κ, σk ∈ J}, k ∈ NN. Thus, ξJ is
conditionally a binomial process on J with parameter ξJ, given the process
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ξJc and the variables ξJ and ι1, ι2, . . . . Since the conditional distribution
is a function of ξJ alone, we obtain ξJ ⊥⊥ξJ (ξJc , ι1, ι2, . . .), and the required
independence follows. The result extends to processes on I = RR+, by a
martingale or monotone-class argument.

(ii) It is enough to prove the assertion on {τn < t} for a fixed t ∈ I, and
by Theorem 1.26 we may then assume that ξ is a mixed binomial process on
[0, t]. By conditioning and scaling, we may next reduce to the case where ξ is
a binomial process on [0, 1] based on m ≥ n and λ. Then ξ =

∑
j≤m δσj

a.s.
for some i.i.d. U(0, 1) random variables σ1, . . . , σm . Since the latter have joint
distribution λm on [0, 1]m , we note that (τ1, . . . , τm) has distribution m!λm on
the tetrahedral subset ∆m = {t1 < · · · < tm}. By elementary conditioning
it follows that (τ1, . . . , τn−1) has conditional distribution (n− 1)!λn/τn−1

n on
τn∆n−1 = {t1 < . . . < tn−1 < τn}, given the remaining variables τn, . . . , τm .
Using the disintegration theorem (FMP 6.4), we conclude that the ratios
τ1/τn, . . . , τn−1/τn have distribution (n − 1)!λn−1 on ∆n−1, conditionally on
τn, . . . , τm , which is equivalent to our assertion. �

This leads to some useful characterizations of mixed Poisson processes.
Given a simple point process on RR+ with points τ1 < τ2 < · · · , we define the
associated spacing variables as γk = τk − τk−1, k ∈ NN, where τ0 = 0.

Proposition 1.28 (mixed Poisson processes, Nawrotzki, Freedman, Matthes
et al., Kallenberg) Let ξ be a simple point process on RR+ with infinitely many
points τ1 < τ2 < · · · . Then these conditions are equivalent:

(i) ξ is contractable, hence also exchangeable;
(ii) ξ is a mixed Poisson process;
(iii) ξ is a mixed binomial process on [0, t] for every t > 0;
(iv) τ1, . . . , τn−1 form a binomial process on [0, τn], conditionally on τn for

every n;
(v) ξ is stationary with exchangeable spacing variables γ1, γ2, . . . .

Proof: Conditions (i)–(iii) are equivalent by Theorem 1.26, and Proposi-
tion 1.27 yields (i) ⇒ (iv). Conversely, (iv) implies that ξ is exchangeable on
[0, t], conditionally on {τn ≥ t} for any t > 0 and n ∈ NN. Condition (i) now
follows as we let n → ∞ and then t → ∞.

Condition (v) follows from (ii) by FMP 12.15. Conversely, assume (v)
and let (γk) be directed by µ. Then µ is clearly shift-invariant, and by
conditioning we may reduce to the case where ξ is a stationary renewal pro-
cess. Writing f(t) = µ(t,∞) and c = (Eγk)−1, we see from FMP 9.18 that
f ′(t) = −cf(t), which implies f(t) = e−ct. By FMP 12.15 it follows that ξ is
Poisson with constant rate c. �

A sequence ξ = (ξ1, . . . , ξκ) of random length κ is said to be exchangeable,
if for every n ∈ NN the elements ξ1, . . . , ξn are exchangeable, conditionally on
{κ = n}. Sequences of this type arise naturally as the sets of excursions of
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exchangeable processes. Since excursions are handled most naturally by the
martingale methods of subsequent chapters, we restrict our present attention
to some simple special cases.

The spacing variables of a simple point process ξ on [0, 1] with points
τ1 < · · · < τκ are given by γk = τk − τk−1, k = 1, . . . , κ + 1, where τ0 = 0
and τκ+1 = 1. If ξ is a random sequence in an arbitrary space S, with a
specified element 0 such that ξk = 0 at times τ1 < τ2 < · · · , we define the
first excursion η1 = (η1

1, η
1
2, . . .) of ξ by taking η1

j = ξj for j ≤ τ1 and η1
j = 0

for j > τ1. If τn−1 < ∞, then the nth excursion ηn is similarly defined in
terms of the shifted sequence θτn−1ξ. We say that an excursion η is complete
if it ends with a string of zeros.

Proposition 1.29 (spacings and excursions)

(i) For any simple, exchangeable point process ξ on [0, 1] or RR+, the induced
spacing variables γ1, γ2, . . . are exchangeable.

(ii) For any finite or infinite, exchangeable sequence ξ1, ξ2, . . . in a space S,
the excursions η1, η2, . . . from a fixed state 0 ∈ S are exchangeable.

(iii) For any finite or infinite sequence ξ0, ξ1, . . . in RRd with exchangeable
increments and ξ0 = 0, the associated complete excursions η1, η2, . . .
from 0 are exchangeable.

Proof: (i) Since mixtures of exchangeable sequences are again exchange-
able, it suffices, by Theorem 1.26, to assume that ξ is a Poisson process on
RR+ or a binomial process on [0, 1]. In the former case the assertion is obvi-
ous, since the γj are i.i.d. exponentially distributed random variables. For
every n ∈ NN it follows that γ1, . . . , γn are conditionally exchangeable given
τn, which yields the exchangeability of the ratios γ1/τn, . . . , γn/τn. Now ac-
cording to Proposition 1.27 (ii), the latter variables have the same joint
distribution as the spacing variables induced by a binomial process based on
n− 1 and λ, and the result in the binomial case follows.

(ii) In the infinite case we may assume that the state space S is Borel,
since we can otherwise consider the image of ξ under an arbitrary measurable
mapping f : S → ZZ+ with f(x) = 0 iff x = 0, and then extend by a monotone-
class argument. By Theorem 1.1 we may then take the ξj to be i.i.d., in which
case the result follows from the strong Markov property.

In the finite case, Proposition 1.8 allows us to assume that ξ is an urn
sequence. In particular, the number of zeros is then fixed, and so is the
number k of excursions. It remains to prove that

P
⋂

j
{ηj = yj} = P

⋂
j
{ηpj

= yj}, (30)

for any excursions y1, . . . , yk in S and permutation p1, . . . , pk of 1, . . . , k.
Expressing (30) in terms of the ξj , we see that the relation is an immediate
consequence of the exchangeability of ξ.
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(iii) The argument for (ii) applies with only minor changes. Since the
number of excursions is no longer fixed in general, we need to supplement
the events in (30) by requiring that ξ have exactly n complete excursions.
Since the latter condition can be expressed in terms of the increments ∆ξj

following the first n excursions η1, . . . , ηn, we may proceed as before to com-
plete the proof. �

1.7 Rotations and Lp-Symmetries

Here we take as our starting point the standard Gaussian or normal dis-
tribution N(0, 1) on RR with Lebesgue density (2π)−1/2e−x2/2. It has the
remarkable property that, if η1, η2, . . . are i.i.d. N(0, 1), then the distribution
of (η1, . . . , ηn) is spherically symmetric for every n > 0. This is clear from
the form of the joint density (2π)−n/2e−|x|2/2, where |x| = (x2

1 + · · · + x2
n)1/2.

In Corollary 1.32 below we shall see how the stated symmetry property char-
acterizes the normal distribution.

If η1, . . . , ηn are i.i.d. N(0, 1), then the normalized vector with components

ξk =
ηk

(η2
1 + · · · + η2

n)1/2 , k = 1, . . . , n,

is uniformly (or symmetrically) distributed on the unit sphere in RRn. We need
the intuitively obvious (but less elementary) fact (FMP 2.29) that the latter
property determines uniquely the distribution of (ξ1, . . . , ξn). In particular,
the distribution of a spherically symmetric random vector ζ = (ζ1, . . . , ζn) is
then determined by L(ζ2

1 + · · · + ζ2
n) = L(|ζ|2).

The previous construction of the uniform distribution on the unit sphere
in RRn yields a short proof of the following classical result, where the low-
dimensional projections of this distribution are shown to be approximately
Gaussian for large n. Here we write ‖µ‖ for the total variation of the signed
measure µ.

Lemma 1.30 (Gaussian approximation, Maxwell, Borel) For each n ∈ NN,
let the random vector (ξn1, . . . , ξnn) be uniformly distributed on the unit sphere
in RRn, and let η1, η2, . . . be i.i.d. N(0, 1). Then

lim
n→∞

∥∥∥L(n1/2(ξn1, . . . , ξnk)) − L(η1, . . . , ηk)
∥∥∥ = 0, k ∈ NN. (31)

Proof: Writing ρ2
n =

∑
j≤n η2

j , we may take ξnk = ηk/ρn for all k ≤ n ∈ NN,
so that

1
n(ξ2

n1 + · · · + ξ2
nk)

=
σ2

n

nρ2
k

=
1
n

+
ρ2

n − ρ2
k

nρ2
k

.

Letting fk denote the density of ρ−2
k , putting ζnk = n/(ρ2

n − ρ2
k), and using

the spherical symmetry and the independence ρ2
k ⊥⊥ ζnk, we obtain
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‖L(n1/2(ξn1, . . . , ξnk)) − L(η1, . . . , ηk)‖
= ‖L(n(ξ2

n1 + · · · + ξ2
nk)) − L(ρ2

k)‖
=

∫
|Eζnkfk(ζnk(x− n−1)) − fk(x)| dx

≤ E
∫

|ζnkfk(ζnk(x− n−1)) − fk(x)| dx.

Here ζnk → 1 a.s. as n → ∞ by the law of large numbers, and so the inte-
grand tends to 0 by the continuity of fk. Hence, the right-hand side tends to
0 by mean and dominated convergence (FMP 1.32). �

The last result leads easily to the following fundamental characterization
of rotatable sequences. Here a sequence of random variables ξ = (ξ1, ξ2, . . .)
is said to be rotatable if every finite subsequence (ξ1, . . . , ξn) has a spherically
symmetric distribution.

Theorem 1.31 (rotatable sequences, Freedman) An infinite sequence of ran-
dom variables ξ1, ξ2, . . . is rotatable iff ξj = σηj a.s., j ∈ NN, for some
i.i.d. N(0, 1) random variables η1, η2, . . . and an independent random variable
σ ≥ 0. The latter is then a.s. unique.

Proof: Suppose that ξ is rotatable, and introduce an independent se-
quence of i.i.d. N(0, 1) random variables η = (η1, η2, . . .) . Putting σ2

n =
(ξ2

1 + · · · + ξ2
n)/n, we see from Lemma 1.30 that σnη

d→ ξ. In particular, the
sequence (σn) is tight, and therefore σn

d→ σ along a subsequence N ′ ⊂ NN for
some random variable σ ≥ 0. Assuming σ⊥⊥ η, we get σnη

d→ ση along N ′,
and so ξ

d= ση, by the uniqueness of the limiting distribution. The transfer
theorem (FMP 6.10) then yields the corresponding a.s. relation, and we get
σ2

n → σ2 a.s. by the law of large numbers, which proves the asserted unique-
ness. �

The last result yields another classical characterization.

Corollary 1.32 (rotatability and independence, Maxwell) Let ξ1, . . . , ξn be
independent random variables, where n ≥ 2. Then (ξ1, . . . , ξn) is rotatable iff
the ξk are i.i.d. centered Gaussian.

Proof: Assume the stated symmetry. In particular, the ξk are i.i.d. and
may be extended to an infinite i.i.d. sequence ξ = (ξ1, ξ2, . . .). The rotata-
bility yields r1ξ1 + r2ξ2

d= ξ1 for any r1, r2 ∈ RR with r2
1 + r2

2 = 1, and so by
iteration

∑
k≤n rkξk

d= ξ1 for any constants r1, . . . , rn ∈ RR with
∑

k r2
k = 1. By

the Cramér–Wold theorem (FMP 5.5) it follows that (ξ1, . . . , ξn) is rotatable
for every n ∈ NN, and so by Theorem 1.31 we have ξ = ση a.s. for some i.i.d.
N(0, 1) sequence η = (ηk) and an independent random variable σ ≥ 0. But
then n−1∑

k≤n ξ2
k → σ2 a.s. by the law of large numbers applied to η, and
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Kolmogorov’s zero-one law shows that σ is a.s. a constant. This means that
the ξk are i.i.d. N(0, σ2). �

Conversely, we can prove the last corollary directly, and then derive The-
orem 1.31 as an easy corollary. This approach will be pursued below, in
the more general context of stable distributions. Yet another approach is to
base the proof of Theorem 1.31 on Schoenberg’s celebrated Theorem A4.3 in
classical analysis. In fact, the two theorems are essentially equivalent.

Second proof of Theorem 1.31: Let ξ be rotatable, write ϕ for the char-
acteristic function of ξ1, and put f(t) = ϕ(

√
t) for t ≥ 0. For any u ∈ RRd we

have uξ ≡ 〈u, ξ〉 d= |u|ξ1 by rotatability, and so

Eeiuξ = Eei|u|ξ1 = ϕ(|u|) = f(|u|2), u ∈ RRd. (32)

By Theorem A4.2 (the easy direction), f(|u|2) is then nonnegative definite
on RRd for every d ∈ NN, and so by Theorem A4.3 the function f is completely
monotone on RR+. Since it is also continuous with f(0) = 1, Theorem A4.1
(iv) yields f(t) = Ee−tσ2/2 for some random variable σ. By (32) and Fubini’s
theorem we obtain

Eeiuξ = E exp(− 1
2σ

2|u|2) = Ee−iu(ση), u ∈ RRd.

Hence, the uniqueness theorem for characteristic functions yields ξ
d= ση,

which can be strengthened as before to the required a.s. equality ξ = ση. �

The rotational symmetry of (ξ1, . . . , ξn) is equivalent, by the Cramér–
Wold theorem (FMP 5.5), to the condition

r1ξ1 + · · · + rnξn
d= (r2

1 + · · · + r2
n)1/2ξ1, r1, . . . , rn ∈ RR.

We turn to the more general case where all linear combinations have the
same distribution, apart from a scaling. A real or complex random variable
ξ is said to be symmetric stable, if for any independent random variables
ξ1, ξ2, . . .

d= ξ and constants r1, . . . , rn ∈ RR or CC, respectively, we have

r1ξ1 + · · · + rnξn
d= rξ1 (33)

for some constant r ∈ RR or CC. Similarly, we say that a random variable ξ ≥ 0
is positive stable, if (33) holds for any r1, . . . , rn ≥ 0 with a suitable choice of
r ≥ 0. If there is no risk for confusion, we may often omit the qualifications
“symmetric” or “positive” when referring to p-stable distributions.

The following result shows that, in all three cases, there exists a constant
p ∈ (0, 2] such that the coefficients r and r1, . . . , rn are related by

|r1|p + · · · + |rn|p = |r|p, (34)
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or, in the positive case, simply by rp
1 + · · · + rp

n = rp. The corresponding
p-stable distributions are then unique up to a normalization. In particular,
Corollary 1.32 shows that the symmetric 2-stable distributions on RR are
precisely the centered Gaussian laws.

Proposition 1.33 (p-stable distributions, Lévy) Let the random variable ξ
be symmetric stable in CC or RR, or positive stable in RR+. Then the coefficients
r, r1, . . . , rn in (33) are related by (34) for some constant p ∈ (0, 2], or in the
positive case, for some p ∈ (0, 1]. All such values of p may occur, and for
each p the distribution of ξ is unique up to a normalization.

The result may be derived from the representation of Lévy processes or in-
finitely divisible distributions (FMP 15.9). Here we give a direct, elementary
proof. Our argument requires the following simple extension of the classical
Cramér–Wold theorem (FMP 5.5).

Lemma 1.34 (one-dimensional projections) Let ξ and ξ1, ξ2, . . . be random
elements in CCd, where d ∈ NN is arbitrary. Then ξn

d→ ξ iff

�〈u, ξn〉 d→ �〈u, ξ〉, u ∈ CCd. (35)

Proof: Writing u = s + it with s, t ∈ RRd, we get from (35)

〈s,�ξn〉 − 〈t,�ξn〉 d→ 〈s,�ξ〉 − 〈t,�ξ〉, s, t ∈ RRd.

Hence, the Cramér–Wold theorem in RR2d yields

(�ξn,�ξn) d→ (�ξ,�ξ),

which is clearly equivalent to ξn
d→ ξ. �

Proof of Proposition 1.33: We may clearly exclude the case where ξ = 0
a.s. If ξ1, ξ2, . . . are real and i.i.d. symmetric stable, then ξ1 − ξ2

d= rξ for
some r ∈ RR \ {0}, which implies −ξ

d= ξ. In the complex case, we may put
εn = e2πi/n and note that

ε1
nξ1 + · · · + εn

nξn
d= rξ,

for some r ∈ CC \ {0}. This implies εk
nξ

d= ξ, and so by continuity rξ
d= |r|ξ.

Hence, (33) remains true with r1, . . . , rn and r replaced by their absolute
values, and so it suffices to prove (34) for positive r1, . . . , rn and r.

In all three cases, define s1, s2, . . . ≥ 0 by

ξ1 + · · · + ξn
d= snξ, n ∈ NN.

Then by iteration s(nk) = sk
n for all k, n ∈ NN, where s(n) = sn, and also

smξ1 + sn−mξ2
d= snξ, 1 ≤ m < n.
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If sm/sn is unbounded, we may divide by sm ∨ sn−m and then take limits
along a subsequence to obtain ξ1 + cξ2 = 0 a.s. for some c ∈ [0, 1], which is
impossible. Thus, sm/sn is bounded for m < n. Applying this to the ratios
sk

m/sk
n = s(mk)/s(nk), we see that the sequence sn is even non-decreasing.

Now fix any k,m, n ∈ NN, and choose h ∈ NN such that mh ≤ nk ≤ mh+1.
Then

h log sm ≤ k log sn ≤ (h + 1) log sm,

(h + 1) log m ≥ k log n ≥ h log m.

Dividing the two formulas and letting k → ∞ for fixed m and n, we get

log sm

log m
=

log sn

log n
, m, n ∈ NN,

which implies log sn = c log n = log nc for some c ≥ 0, and hence sn = nc.
Here in fact c > 0, since c = 0 would imply ξ = 0 a.s. In particular, we get
for any t1, t2 ∈ NN

tc1ξ1 + tc2ξ2
d= (t1 + t2)cξ, (36)

which extends by division and continuity to arbitrary t1, t2 ≥ 0. This is
clearly equivalent to (33) and (34) with p = c−1.

Letting ϕ denote the characteristic function or Laplace transform of �ξ,
we see from (36) that

ϕ(tc1)ϕ(tc2) = ϕ((t1 + t2)c), t1, t2 ≥ 0,

which shows that the function f(t) = ϕ(tc) satisfies the Cauchy equation
f(t1)f(t2) = f(t1 + t2). Since f is bounded and continuous, we obtain f(t) =
e−at for some a ≥ 0, and so ϕ(t) = e−atp for all t ≥ 0. This proves that L(�ξ)
is unique up to a normalization. In the complex case, we get

�(rξ) d= �(|r|ξ) = |r|�ξ, r ∈ CC,

and so the uniqueness extends to L(ξ) by Lemma 1.34.
If ξ ≥ 0 a.s., then ϕ(t) = Ee−tξ is convex on RR+, and we get p ≤ 1. In

the symmetric case, we put η = �ξ and note that

1 − e−atp

t2
=

1 − ϕ(t)
t2

= E
1 − cos tη

t2η2 η2, t > 0.

If p > 2, then as t → 0 we get 0 = 1
2Eη2, which implies η = 0 a.s. and

therefore ξ = 0 a.s. Hence, in this case p ∈ (0, 2].
To prove the existence, we note that any constant ξ ≥ 0 is trivially

positive 1-stable. Further note that if η
d= ζ are independent, centered,

Gaussian, then η and ξ = η + iζ are real and complex, symmetric 2-stable.
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Next let η be a Poisson process on (0,∞) with intensity measure cx−p−1dx,
and put ξ =

∫
xη(dx). Then ξ < ∞ for p ∈ (0, 1), and by FMP 12.2 we have

log Ee−tξ = −c
∫ ∞

0
(1 − e−tx) x−p−1dx

= −ctp
∫ ∞

0
(1 − e−x) x−p−1dx,

which shows that ξ is positive p-stable. Finally, let η be a Poisson process
on CC \ {0} whose intensity measure Eη has Lebesgue density c|z|−p−2, and
put ξ =

∫
zη(dz), where the integral is defined as the limit along the regions

Bc
ε = {|z| > ε}. This limit exists a.s. for p ∈ (0, 2), and we have

log E exp(i�(tξ)) = −c
∫ ∞

0
r−p−1dr

∫ 2π

0
(1 − exp(ir|t| cos θ)) dθ

= −4c|t|p
∫ ∞

0
(1 − cos r) r−p−1dr

∫ π/2

0
(cos θ)p dθ,

which shows that �ξ and ξ are real and complex, symmetric p-stable, respec-
tively. �

The previous results lead easily to an extension of Theorem 1.31. Here
we say that an infinite random sequence ξ = (ξ1, ξ2, . . .) in CC, RR, or RR+ is
lp-symmetric if (33) holds for all n ∈ NN and r and r1, . . . , rn in CC, RR, or RR+,
respectively, satisfying (34).

Theorem 1.35 (lp-symmetry, Bretagnolle, Dacunha-Castelle, and Krivine)
An infinite random sequence ξ = (ξj) in CC, RR, or RR+ is lp-symmetric iff
ξ = ση a.s. for some i.i.d., p-stable sequence η = (ηj) and an independent
random variable σ ≥ 0. In that case, σ is a.s. unique up to a normalization.

Proof: Let ξ be lp-symmetric. It is then exchangeable by Lemma 1.34,
and so by Theorem 1.1 and Corollary 1.6 it is conditionally i.i.d., given the
tail σ-field Tξ . Using Lemma 1.34 again, we note that (33) remains true with
coefficients r and rj related by (34), conditionally on ξn+1, . . . , ξm for arbi-
trary m > n. By direct and reverse martingale convergence (FMP 7.23), ξ is
then conditionally lp-symmetric given Tξ , hence conditionally i.i.d. p-stable.
Fixing a p-stable i.i.d. sequence ζ ⊥⊥ ξ, we see from Proposition 1.33 that ξ is
conditionally distributed as a positive multiple σζ, where σ is Tξ-measurable
by the law of large numbers. Since ζ ⊥⊥σ, we obtain ξ

d= σζ, and the corre-
sponding a.s. relation follows by the transfer theorem in FMP 6.10. �

We turn to a general, abstract version of the last result. Given a linear
space L over F = CC, RR, or RR+, we define a linear random functional on L as
an F -valued process ξ on L such that

ξ(af + bg) = aξf + bξg a.s., a, b ∈ F, f, g ∈ L.
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In the special case where L is a function space, we say that ξ has independent
increments if ξf1, . . . , ξfn are independent whenever f1, . . . , fn have disjoint
supports. In particular, we may fix a σ-finite measure space (S,S, µ) and
a constant p > 0, and choose L = Lp(µ) = Lp

F (µ), defined as the class of
F -valued, measurable functions f on S with ‖f‖p < ∞. By a p-stable noise
on S with control measure µ we mean a linear random functional ξ on Lp(µ)
such that

ξf
d= ‖f‖pζ, f ∈ Lp(µ), (37)

for some p-stable random variable ζ in F . We need to establish the existence
and uniqueness of ξ.

Lemma 1.36 (p-stable noise) Fix a σ-finite measure space (S,S, µ), let
F = CC, RR, or RR+, and let p ∈ (0, 1] when F = RR+ and p ∈ (0, 2] other-
wise. Then there exists a linear random functional ξ on Lp

F (µ) satisfying
(37) for some p-stable random variable ζ �= 0 in F . Here ξ has independent
increments, and L(ξ) is unique up to a normalization.

Proof: For p = 1 and F = RR+, we can simply take ξ = µ. For p = 2 and
F = RR, we may choose ξ to be an isonormal Gaussian process on the Hilbert
space L2(µ), defined as a centered Gaussian process on L2 with covariance
function Eξ(f)ξ(g) = 〈f, g〉. Finally, when p = 2 and F = CC, we may take
ξ = η + iζ, where η and ζ are independent copies of the Gaussian process in
the previous case.

To prove the existence for p ∈ (0, 2), or for p ∈ (0, 1) when F = RR+, let η
be a Poisson process on S × (F \ {0}) with intensity measure µ⊗ ν, where ν
has Lebesgue density |z|−p−2 when F = CC and |x|−p−1 when F = RR or RR+,
and put

ξf =
∫ ∫

xf(s) η(ds dx), f ∈ Lp.

Proceeding as in the proof of Proposition 1.33, we can easily verify that ξ
satisfies (37) for a suitable ζ.

By Lemma 1.34 we note that the distribution of ξ is uniquely determined
by that of ζ. The asserted uniqueness up to normalizations then follows from
the corresponding statement in Proposition 1.33. Utilizing the uniqueness,
it is enough to prove the independence of the increments for the special pro-
cesses constructed above. But for those, the statement follows easily from
basic properties of Poisson processes and Gaussian distributions. �

It is now easy to establish a version of Proposition 1.35 for Lp-symmetric
linear random functionals ξ on Lp, defined by the requirement that ‖f‖p =
‖g‖p implies ξf

d= ξg. To allow a wider range of applications, we consider the
more general case when ξ is defined on an abstract linear space L, mapped
into Lp(µ) by a linear operator A. Here we need to assume that the image
AL is an infinite-dimensional subset of Lp, in the sense that the closure AL
contains infinitely many functions f1, f2, . . . ∈ Lp with positive norms and
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disjoint supports. When this is true, we say that AL is a separating subspace
of Lp. We also say that L(ξf) depends only on ‖Af‖p if ξf

d= ξg whenever
f, g ∈ L are such that ‖Af‖p = ‖Ag‖p.

Theorem 1.37 (Lp-symmetric random functionals) Consider a linear ran-
dom functional ξ on a linear space L over F = CC, RR, or RR+, a σ-finite
measure µ on a Borel space S, and a linear operator A : L → Lp

F (µ) such
that AL is a separating subspace of Lp. Then L(ξf) depends only on ‖Af‖p

iff
ξf = ση(Af) a.s., f ∈ L, (38)

for some p-stable noise η on S with control measure µ and an independent
random variable σ ≥ 0. The latter is then a.s. unique up to a normalization.

Proof: We may define a linear random functional ζ on AL by

ζ(Af) = ξf a.s., f ∈ L. (39)

To see that ζ is well-defined, suppose that Af = Ag for some f, g ∈ L. By
the linearity of A we have for any a, b ∈ F

A(af + bg) = aAf + bAg = (a + b)Af = A((a + b)f),

and so by the linearity and invariance of ξ

aξf + bξg = ξ(af + bg) d= ξ((a + b)f) = aξf + bξf.

Hence, Lemma 1.34 yields (ξf, ξg) d= (ξf, ξf), and so ξf = ξg a.s. To verify
the a.s. linearity of ζ, let f, g ∈ L and a, b ∈ F be arbitrary, and conclude
from the linearity of A and ξ that a.s.

ζ(aAf + bAg) = ζ(A(af + bg)) = ξ(af + bg)
= aξf + bξg = aζ(Af) + bζ(Ag).

To extend ζ to the closure AL, let f1, f2, . . . ∈ L with ‖Afn‖p → 0. Fixing
any g ∈ L with ‖Ag‖p = 1 and using the linearity of A and the homogeneity
of the norm, we get

‖Afn‖p = ‖Afn‖p‖Ag‖p = ‖A(‖Afn‖pg)‖p,

and so by the linearity and invariance of ξ

ζ(Afn) = ξfn
d= ξ(‖Afn‖pg) = ‖Afn‖pξg

P→ 0.

Hence, ζ is uniformly Lp/L0-continuous on AL, and so it extends a.s. uniquely
to an L0-continuous process on AL. The linearity on AL extends by conti-
nuity to AL, and we note that L(ζf) still depends only on ‖f‖p.
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Since AL is separating, we may choose f1, f2, . . . ∈ AL with disjoint
supports and norm 1. Then for any r1, . . . , rn ∈ F we have

‖∑krkfk‖p
p =

∑
k
‖rkfk‖p

p =
∑

k
|rk|p =

∥∥∥(∑k|rk|p)1/p f1

∥∥∥p

p
,

and so ∑
k
rkζfk = ζ

∑
k
rkfk

d=
(∑

k
|rk|p

)1/p
ζf1.

By Proposition 1.35 there exists a p-stable sequence (ηj) and an independent
random variable σ ≥ 0 such that ζfj = σηj a.s. for all j. Letting η⊥⊥σ be a
p-stable noise on Lp(µ) with the same normalization, we get for any f ∈ AL

ζf
d= ζ(‖f‖pf1) = ‖f‖pση1

d= σηf,

and so by Lemma 1.34 we have ζ
d= ση a.s. on AL. The corresponding a.s.

relation is then obtained from FMP 6.10, and (38) follows by means of (39).
To prove the a.s. uniqueness of σ, we may use the law of large numbers, as
before. �

By a linear isometry of Lp = Lp
F (µ) we mean a linear operator U on Lp

such that ‖Uf‖p = ‖f‖p for all f ∈ Lp. Given a linear random functional ξ

on Lp, we say that L(ξ) is invariant under linear isometries of Lp if ξU
d= ξ

for all such operators U , where (ξU)f = ξ(Uf). By Lemma 1.34 this is
equivalent to the condition ξ(Uf) d= ξf for all f ∈ Lp. We consider the
following strengthened version of Theorem 1.37, in the special case where A
is the identity mapping on Lp and µ is diffuse.

Theorem 1.38 (invariance under Lp-isometries) Let ξ be a linear random
functional on Lp = Lp

F (µ), where µ is a diffuse, σ-finite measure on a Borel
space S, F = CC, RR, or RR+, and p > 0. Then L(ξ) is invariant under linear
isometries of Lp iff ξ = ση a.s. for some p-stable noise on S with control
measure µ and an independent random variable σ ≥ 0.

To deduce the result from Theorem 1.37, we need the following technical
result.

Lemma 1.39 (extension) Let f, g ∈ Lp = Lp
F (µ) with ‖f‖p = ‖g‖p, where

µ is a diffuse, σ-finite measure on a Borel space S, F = CC, RR, or RR+, and
p > 0. Then f = Ug or g = Uf for some linear isometry U on Lp.

Proof: Since S is Borel, we may assume that S = [0, 1]. First note that
if µ1 and µ2 are diffuse measures on S with µ11 = µ21 < ∞ and distribution
functions Fi(t) = µi[0, t], then the formula V f = f ◦ F−1

1 ◦ F2 defines a
linear isometry V : Lp(µ1) → Lp(µ2) satisfying V 1 = 1. If fact, writing
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ϕ = F−1
1 ◦ F2 and and noting that µ1 = µ2 ◦ ϕ−1 since µ2 is diffuse, we get

for any f ∈ Lp(µ1)

µ2|V f |p = µ2|f ◦ ϕ|p = (µ2 ◦ ϕ−1)|f |p = µ1|f |p.

Now fix any f, g ∈ Lp(µ) with ‖f‖p = ‖g‖p, and let A and B denote
the corresponding supports. We may assume that either µBc > 0 or µAc =
µBc = 0, since we can otherwise interchange the roles of f and g. By the
previously mentioned result there exists a linear isometry V1 : Lp(|f |p · µ) →
Lp(|g|p · µ) satisfying V11 = 1, and we may define

U1h = gV1(h/f), h ∈ Lp(1A · µ).

Then clearly U1f = g on B, and moreover

(1B · µ)|U1h|p = (1B · µ)|gV1(h/f)|p
= (|g|p · µ)|V1(h/f)|p
= (|f |p · µ)|h/f |p = (1A · µ)|h|p,

which shows that U1 is a linear isometry from Lp(1A · µ) to Lp(1B · µ).
Next we may choose some measurable functions f ′, g′ ∈ Lp with supports

Ac and B′ ⊂ Bc, respectively, such that ‖f ′‖p = ‖g′‖p. Proceeding as before
in case of f and g, we may construct a linear isometry U2 : Lp(1Ac · µ) →
Lp(1Bc · µ) satisfying U2f

′ = g′. Now define

Uh = 1BU1(1Ah) + 1BcU2(1Ach), h ∈ Lp(µ).

Then Uf = g, and for any h ∈ Lp(µ) we have

µ|Uh|p = (1B · µ)|U1(1Ah)|p + (1Bc · µ)|U2(1Ach)|p
= (1A · µ)|h|p + (1Ac · µ)|h|p = µ|h|p,

which shows that U is a linear isometry on Lp(µ). �

Proof of Theorem 1.38: Assume that L(ξ) is invariant under linear Lp-
isometries, and fix any f, g ∈ Lp with ‖f‖p = ‖g‖p. By Lemma 1.39 there
exists a linear isometry U on Lp such that either Uf = g or Ug = f . Since
ξU

d= ξ by hypothesis, we have ξf
d= ξg. The desired representation now

follows by Theorem 1.37. �

1.8 Miscellaneous Complements

Here we are listing, with details omitted, some interesting problems or
statements related to the previous material. The motivated reader is invited
to work through the list as a set of exercises.
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1. Derive part (ii) of Theorem 1.26 from part (i) by a limiting argument.
(Hint: Let ξ = (ξk) be an infinite, contractable sequence in {0, 1}, and define
ρn =

∑
k≤n ξk/n. Then ρn

d→ ρ along a subsequence for some random variable
ρ in [0, 1]. Using (i), let n → ∞ for fixed m to check that E

∏
k≤m ξk = Eρm .

Finally, use the contractability and a monotone-class argument to verify that
ξ has the required distribution.)

2. Derive part (iv) of Theorem 1.26 from part (iii) by a limiting argu-
ment. (Hint: Let ξ be a simple, exchangeable point process on RR+. Then (iii)
yields P{ξB = 0} = E(1− λB/n)κn , B ∈ B[0, n], n ∈ NN, where κn = ξ[0, n].
Show that κn/n

d→ ρ along a subsequence for some random variable ρ ≥ 0,
and conclude that P{ξB = 0} = Ee−ρλB .)

3. Let ϕ be a random closed set in [0, 1] or RR+, and assume that ϕ is
exchangeable, in the sense that the events Ank = {ϕ ∩ [(k − 1)/n, k/n)},
k ≤ n or k ∈ NN, are exchangeable for fixed n ∈ NN. Show that ϕ is a.s.
locally finite on {ϕc �= ∅}. Then use Theorem 1.26 to derive a representation
of P{ϕ ∩ [0, t] = ∅}. (Hint: In the [0, 1]-case, define νn =

∑
k 1Ank

, and note
that νn ↑ ν. Show that ϕ = [0, 1] a.s. on {ν = ∞} and that ϕ is otherwise
locally finite. In the RR+-case, consider the random sets ϕn = ϕ ∩ [0, n] for
arbitrary n.)

4. Use the spherical symmetry of the standard Gaussian distribution in
RRn to compute the area An of the n-dimensional unit sphere. Then derive
the volume Vn of the unit ball in RRn. (Hint: The area of a sphere of radius
r > 0 equals Anr

n−1.)

5. Let ξ1, . . . , ξ4 be i.i.d. N(0, 1), and put ρk = (ξ2
1 + · · · + ξ2

k)
1/2. Show

that the random variables ρ1/ρ3 and ρ2
2/ρ

2
4 are U(0, 1).

6. For n ∈ NN, let (ξ1
n, . . . , ξ

n
n ) be uniformly distributed over the unit

sphere in RRn. Show that the ξj
n are asymptotically independent, in the sense

that ‖L(ξ1
n, . . . , ξ

k
n)−⊗j≤k L(ξj

n)‖ → 0 as n → ∞ for fixed k. Prove the same
statement when the ξj

n are extreme, exchangeable in j for fixed n.

7. For n ∈ NN, let ξn be an extreme, exchangeable, marked point process
on [0, n] with κn points, where the sequence (κn/n) is tight. Show that the
processes ξn have asymptotically independent increments, in the sense of the
previous problem. Show also that the result may fail in general, without the
stated tightness condition.

8. Let ξ be a mixed binomial process on [0, 1] such that ξI ⊥⊥ ξJ for some
disjoint, non-degenerate intervals I, J ⊂ [0, 1]. Show that ξ is Poisson.

9. Let ξ be a mixed binomial process on [0, 1] such that (ξI∧1)⊥⊥ (ξJ∧1)
for any two disjoint intervals I, J ⊂ [0, 1]. Show that ξ is Poisson.
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10. Let ξ be a mixed binomial process on [0, 1] such that ξ
d= ξp for every

p ∈ (0, 1), where ξp is a p-thinning of some point process ηp on [0, 1]. Show
that ξ is a mixed Poisson process.

11. Let τ1, τ2, . . . form a mixed binomial or Poisson process ξ on some
interval I, and fix any integers m < n. Show that, on the set {ξI ≥ n}, the
points (τk − τm)/(τn − τm), m < k < n, form a binomial process independent
of τ1, . . . , τm and τn, τn+1, . . . .

12. (Rényi) Let τ1 < · · · < τn form a binomial process on RR+ based
on an exponential distribution µ, and put τ0 = 0. Show that the variables
(n− k)(τk+1 − τk), 0 ≤ k < n, are i.i.d. µ.

13. (Kendall) Let ξ be a mixed Poisson process on RR+ with directing
measure αµ(dt) = αetdt, where P{α > x} = e−x. Show that Zt = ξ[0, t] + 1
is a birth process on NN with rates λk = k. (Hint: Let Z be a birth process, as
stated, with jumps at τ1 < τ2 < · · · . Compute the joint density of τ1, . . . , τn

and check that, conditionally on τn, the variables τ1, . . . , τn−1 form a bino-
mial process on [0, τn] based on µ. Conclude from Corollary 1.28 that ξ is
mixed Poisson with directing measure of the form αµ. It remains to check
that Ee−αµ[0,t] = P{τ1 > t} = e−t when P{α > x} = e−x.)

14. Derive the Hausdorff–Bernstein Theorem A4.1 from Theorem 1.26.
(Hint: Given a completely monotone sequence a = (an) or function f with
a0 = 1 or f(0+) = 1, use the Daniell–Kolmogorov theorem to construct
an associated exchangeable random sequence or point process ξ, and apply
Theorem 1.26 to find the form of a or f .)

15. Derive Schoenberg’s Theorem A4.3 from Theorem 1.31. (Hint: Let
f be continuous with f(0) = 1 and such that fn(u) = f(|u|2) is nonneg-
ative definite on RRn for every n. Then the fn are characteristic functions
by Bochner’s Theorem A4.2, and by the Daniell–Kolmogorov theorem there
exists an infinite random sequence ξ = (ξk) such that (ξ1, . . . , ξn) has char-
acteristic function fn for every n. Here ξ is rotatable by the Cramér–Wold
theorem, and the required form of f follows from Theorem 1.31. For the
converse assertion, use Bernstein’s Theorem A4.1.)



Chapter 2

Conditioning and Martingales

In this chapter we apply the powerful machinery of modern martingale theory
and stochastic calculus to the study of contractable or exchangeable random
sequences and processes, where the basic symmetries are now related to an
underlying filtration. We begin in Section 2.1 with the discrete-time theory,
where infinite contractable sequences are characterized by strong stationarity
and by the martingale property of the associated prediction sequence. Here
we also characterize finite or infinite, exchangeable sequences by the reverse
martingale property of their empirical distributions. The corresponding re-
sults in continuous time are considered in Section 2.2.

A deeper analysis is presented in Section 2.3, where exchangeable pro-
cesses on RR+ or [0, 1] are characterized as special semi-martingales, whose lo-
cal characteristics are absolutely continuous with martingale densities. Sim-
ilar methods allow us in Section 2.4, under a suitable moment condition,
to derive the missing representation formula for exchangeable processes on
[0, 1]. In Section 2.5 we use martingale techniques to establish some powerful
norm inequalities for exchangeable processes, and in Section 2.6 we use a
suitable super-martingale to estimate the rates of local growth.

Our final Section 2.7 deals with invariance properties of reduced Palm
distributions, characterizing exchangeable random measures and point pro-
cesses on an abstract space, in the spirit of Slivnyak’s celebrated result for
Poisson processes on the line.

2.1 Contractable Sequences

The notions of exchangeability and contractability may be related to a fil-
tration in a natural way. Thus, a finite or infinite random sequence ξ =
(ξ1, ξ2, . . .) is said to be exchangeable or contractable with respect to a filtra-
tion F = (F0,F1, . . .) if it is F -adapted and such that, for n = 0, 1, . . . , the
shifted sequence θnξ = (ξn+1, ξn+2, . . .) is conditionally exchangeable or con-
tractable given Fn. To avoid relying on the existence of regular conditional
distributions, we may take the conditional statement to mean that the stated
property holds for θnξ, conditionally on A, for every A ∈ Fn with PA > 0.
The new conditions of exchangeability or contractability clearly reduce to
the previous, unqualified ones when F is the filtration induced by ξ.
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For infinite sequences, it is useful to prove an extended version of Theorem
1.1 involving the stronger versions of exchangeability and contractability.
Then say that ξ is conditionally F-i.i.d. if there exists a random probability
measure ν on S such that

P [ξk+1 ∈ ·| Fk, ν] = ν a.s., k ∈ ZZ+. (1)

This will be seen to be equivalent to the seemingly stronger relation

P [θkξ ∈ ·| Fk, ν] = ν∞ a.s., k ∈ ZZ+. (2)

We can also establish some less obvious equivalences with properties in-
volving optional times and martingales. Let us say that the sequence ξ is
strongly stationary or F -stationary if θτ ξ

d= ξ for every optional (or stop-
ping) time τ < ∞. For finite sequences ξ = (ξ1, . . . , ξn), the condition is
interpreted as

(ξτ+1, . . . , ξτ+k)
d= (ξ1, . . . , ξk) whenever τ + k ≤ n a.s.

The F -prediction sequence µ = (µk) of ξ is defined by µk = P [θkξ ∈ ·|Fk],
and we say that µ is an F -martingale if µkf = E[f(θkξ)|Fk] is a martingale in
the usual sense for every bounded, measurable function f on the appropriate
space. In this form, the definition makes sense even when S is not Borel and
µ may have no measure-valued version. For finite sequences ξ = (ξ1, . . . , ξn),
we may interpret the martingale condition as

(1A, ξk+2, . . . , ξn) d= (1A, ξk+1, . . . , ξn−1), A ∈ Fk, 0 ≤ k ≤ n− 2.

The mentioned properties are related as follows.

Proposition 2.1 (strong stationarity and prediction) Let ξ be an infinite,
F-adapted random sequence in a Borel space S, with F-prediction sequence
µ. Then these conditions are equivalent:

(i) ξ is conditionally F-i.i.d.,
(ii) ξ is F-exchangeable,
(iii) ξ is F-contractable,
(iv) θτ ξ

d= ξ for every F-optional time τ < ∞,
(v) µ is a measure-valued F-martingale.

Conditions (iii)–(v) remain equivalent for finite sequences ξ.

Proof: First assume (i), in the form of condition (1). Letting f1, . . . , fn ≥
0 be measurable functions on S and iterating (1), we obtain

E[f1(ξk+1) · · · fn(ξk+n)|Fk, ν]
= E[f1(ξk+1) · · · fn−1(ξk+n−1) E[fn(ξk+n)|Fk+n−1, ν]|Fk, ν]
= E[f1(ξk+1) · · · fn−1(ξk+n−1)|Fk, ν] νfn

= · · · = νf1 · · · νfn,
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which extends to (2) by a monotone-class argument. In particular, ξ satisfies
conditions (ii) and (iii), which are equivalent by Theorem 1.1.

Conversely, (ii) implies that the sequence θnξ is exchangeable over Fn for
every n ∈ ZZ+, and so by Corollary 1.5 there exist some random probability
measures νn on S such that a.s.

P [θnξ ∈ ·| νn,Fn] = P [θnξ ∈ ·|νn] = ν∞
n , n ∈ ZZ+.

In particular, we obtain P [θmξ ∈ ·|νn] = ν∞
n a.s. for all m > n, and so by

Proposition 1.4 the random measures νn are a.s. independent of n. Hence, (2)
holds with ν = ν0, which proves (i). This shows that (i)–(iii) are equivalent.

To prove the equivalence of (iii)–(v), we may restrict our attention to in-
finite sequences ξ, the proof in the finite case requiring only obvious changes.
Assuming (iii), we get for k ∈ ZZ+ and any bounded, measurable function
f : S∞ → RR

E[µk+1f |Fk] = E[f(θk+1ξ)|Fk] = E[f(θkξ)|Fk] = µkf,

which proves (v). Conversely, for any k and f as before, we get from (v)

E[f(θk+1ξ)|Fk] = E[µk+1f |Fk] = µkf = E[f(θkξ)|Fk],

which implies

(1A, ξh+1, . . . , ξk, ξk+2, . . .)
d= (1A, ξh+1, . . .), A ∈ Fh, h ≤ k.

Iterating this relation for fixed h and A, we see that θhξ is conditionally
contractable given Fh, and (iii) follows.

Next we see from FMP 6.2 that µτ = P [θτ ξ ∈ ·|Fτ ] for every F -optional
time τ < ∞. By FMP 7.13 we conclude that (v) is equivalent to

Ef(θτ ξ) = Eµτ f = Eµ0f = Ef(ξ)

for any bounded measurable function f , which is in turn equivalent to (iv). �

For finite sequences ξ = (ξ1, . . . , ξn), we proceed to characterize exchange-
ability by the strong reflection property

(ξτ+1, . . . , ξn) d= (ξn, . . . , ξτ+1),

where τ is an arbitrary optional time in {0, . . . , n − 1}. We may abbreviate
the condition as Qτ ξ

d= θτ ξ, where the reflection operators Qk are defined for
fixed n by Qk(a1, . . . , an) = (an, . . . , ak+1). We also say that ξ is a conditional
F-urn sequence with occupation measures βk =

∑
j≤k δξj

, k ≤ n, if a.s.

P [ξk+1 ∈ ·|βn,Fk] =
βn − βk

n− k
, k < n. (3)
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This will be seen to be equivalent to the seemingly stronger relation

P [θkξ ∈ ·|βn,Fk] =
(βn − βk)(n−k)

(n− k)!
, k < n, (4)

where (βn−βk)(n−k) denotes the factorial measure of βn−βk, first introduced
in connection with Proposition 1.8.

Proposition 2.2 (reflection invariance) Let ξ be a finite, F-adapted ran-
dom sequence in a Borel space S. Then these conditions are equivalent:

(i) ξ is F-exchangeable,
(ii) ξ has the F-reflection property,
(iii) ξ is a conditional F-urn sequence.

Proof: First assume (iii), in the form of condition (3). Then for any
measurable functions fk+1, . . . , fn ≥ 0 on S, we have

E[fk+1(ξk+1) · · · fn(ξn)|βn,Fk]
= E[fk+1(ξk+1) · · · fn−1(ξn−1) E[fn(ξn)|βn,Fn−1]|βn,Fk]
= E[fk+1(ξk+1) · · · fn−1(ξn−1)|βn,Fk] (βn − βn−1)fn

= · · · =
n∏

j=k+1

(βn − βj−1)fj

n− j
=

(βn − βk)(n−k)

(n− k)!

n⊗
j=k+1

fj,

which extends to (4) by a monotone-class argument. This shows in particular
that ξ satisfies (i). Since reflections are special cases of permutations, the
implication (i) ⇒ (ii) is obvious.

Now assume (ii). Considering optional times in the set {k, n}, we obtain

P [Qn−kθkξ ∈ ·|Fk] = P [θkξ ∈ ·|Fk] a.s., k ≤ n− 2.

Hence, for any k ≤ n− 2 and A ∈ Fk,

(1A, ξk+1, . . . , ξm, ξn, . . . , ξm+1)
d= (1A, ξk+1, . . . , ξn), k < m < n.

Noting that the reflections on the left generate all permutation of θkξ, we
conclude that the latter sequence is exchangeable over 1A, and (i) follows
since A was arbitrary.

Next assume (i). Then for any permutation p of (k + 1, . . . , n),

(1A, ξ1, . . . , ξk, θkξ ◦ p) d= (1A, ξ), A ∈ Fk.

Since βn is invariant under permutations of ξ, we obtain

(1A, βn, θkξ ◦ p) d= (1A, βn, θkξ), A ∈ Fk,
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which shows that θkξ is exchangeable over (βn,Fk). Hence, for any measur-
able function f ≥ 0 on S,

(n− k)E[f(ξk+1)|βn,Fk] =
∑

j>k
E[f(ξj)|βn,Fk]

= E
[∑

j>k
f(ξj)

∣∣∣∣βn,Fk

]
= (βn − βk)f,

which proves (iii). �

To state the next result, recall that an integer-valued random time τ is
said to be predictable with respect to the discrete filtration F if τ − 1 is F -
optional. The following result shows that, under additional hypotheses, the
strong stationarity in Proposition 2.1 can be replaced by the weaker condition
ξτ

d= ξ1 for any finite, predictable time τ ≥ 1. This is equivalent to a weaker
version of the previous martingale property.

Theorem 2.3 (local prediction) Let ξ be an infinite, stationary random se-
quence with induced filtration F , taking values in a Borel space S. Then
these conditions are equivalent:

(i) ξ is F-exchangeable,
(ii) ξ is F-contractable,
(iii) ξτ

d= ξ1 for every finite, F-predictable time τ ≥ 1,
(iv) µk = P [ξk+1 ∈ ·|Fk] is a measure-valued F-martingale.

Conditions (i)–(iv) remain equivalent for any finite sequence ξ adapted to a
filtration F , provided that the occupation measure β is F0-measurable.

Proof: In both the finite and infinite cases we have trivially (i) ⇒ (ii), and
Proposition 2.1 yields (ii) ⇒ (iii). Arguing as in the proof of the latter result,
we see that also (iii) ⇔ (iv). Thus, it remains to show that (iv) implies (i).

First consider a finite sequence ξ of length n, adapted to a filtration F
such that β is F0-measurable. Assuming (iv), we get for k < n and any
bounded, measurable function f on S

E[f(ξk+1)|β,Fk] = E[f(ξk+1)|Fk] = · · · = E[f(ξn)|Fk]
= (n− k)−1

∑
j>k

E[f(ξj)|Fk]

= (n− k)−1E[βf − βkf |Fk]
= (n− k)−1(β − βk)f,

which proves condition (iii) of Proposition 2.2. Even condition (i) of the
same result is then fulfilled, which means that ξ is F -exchangeable.

Now suppose instead that ξ is infinite and stationary with induced filtra-
tion F . Define ν = P [ξ1 ∈ ·|Iξ ], where Iξ denotes the shift-invariant σ-field
of ξ. Assuming (iv) and using the point-wise ergodic theorem (FMP 10.6)
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and dominated convergence, we get for any bounded, measurable function f
on S

E[f(ξk+1)|Fk] = E[f(ξk+2)|Fk] = · · ·
= n−1

∑
j≤n

E[f(ξk+j)|Fk]

= E
[
n−1

∑
j≤n

f(ξk+j)
∣∣∣∣Fk

]
→ E[νf |Fk],

which implies

E[f(ξk+1)|Fk] = E[νf |Fk] a.s., k ∈ ZZ+. (5)

We now extend ξ to a stationary sequence ξ̂ indexed by ZZ (FMP 10.2)
and define F̂k = σ{ξ̂j ; j ≤ k} for all k ∈ ZZ. Using the stationarity of ξ̂ and
martingale convergence, and noting that ν is F̂k-measurable for every k, we
may strengthen (5) to

E[f(ξk+1)| ν, F̂k] = E[f(ξk+1)|F̂k] = E[νf |F̂k] = νf,

and so P [ξk+1 ∈ ·|ν,Fk] = ν, which implies (i). �

Finally, we consider a reverse martingale that plays a basic role in subse-
quent sections. Recall that, for any finite or infinite sequence ξ, the associated
empirical distributions are given by

ηn = n−1
∑

k≤n
δξk

, n ≥ 1.

Theorem 2.4 (empirical distributions) Let ξ be a finite or infinite random
sequence with empirical distributions η1, η2, . . . . Then ξ is exchangeable iff
the ηk form a reverse, measure-valued martingale.

Proof: We introduce the tail filtration

Tk = σ(θk−1η) = σ(ηk, θkξ), k ≥ 1,

where the second equality follows from the relations

kηk = (k − 1)ηk−1 + δξk
, k ≥ 1. (6)

Suppose that ξ is exchangeable. Then (ξ1, . . . , ξm) is exchangeable over Tm

for every m in the index set of ξ, and so for k = 1, . . . ,m and any measurable
function f ≥ 0 on S, we have a.s.

E[f(ξ1)|Tm ] = · · · = E[f(ξk)|Tm ]
= k−1

∑
j≤k

E[f(ξj)|Tm ]

= E
[
k−1

∑
j≤k

f(ξj)
∣∣∣∣ Tm

]
= E[ηkf |Tm ].
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Taking k = m− 1 and m gives

E[ηm−1f |Tm ] = E[ηmf |Tm ] = ηmf a.s.,

which proves that η = (ηk) is a reverse martingale.
Conversely, suppose that η is a reverse martingale. Then by (6) we have

for k ≥ 1 and any bounded, measurable function f on S

E[f(ξk)|Tk] = kηkf − (k − 1)E[ηk−1f |Tk] = ηkf. (7)

Fixing m ≥ 1, we define for k = 1, . . . ,m

ζk = ξm−k+1, βk =
∑

j≤k
δζj

= mηm − (m− k)ηm−k.

The ζk are clearly adapted to the filtration Fk = Tm−k, 0 ≤ k ≤ m, and by
(7) we have for k = 0, . . . ,m− 1

E[f(ζk+1)|βm,Fk] = E[f(ξm−k)|Tm−k] = ηm−kf

= (m− k)−1(βm − βk)f.

Hence, the sequence (ζ1, . . . , ζm) = (ξm, . . . , ξ1) is exchangeable by Proposi-
tion 2.2, which shows that even ξ is exchangeable. �

2.2 Continuous-Time Symmetries

Given a filtration F , we say that a process X is F -exchangeable or F -
contractable if it is F -adapted and such that, for every t ≥ 0, the shifted
process θtX − Xt is conditionally exchangeable or contractable given Ft.
Next we say that an F -adapted process X is conditionally F -Lévy if there
exists a random triple γ = (α, ρ, ν) such that, for every t ≥ 0, the process
θtX − Xt is conditionally Lévy with characteristics γ, given (Ft, γ). As in
the discrete-time case, we note that these notions reduce to the unqualified
ones when F is the filtration induced by X.

The strong stationarity of X is now defined in terms of the increments.
Thus, we say that X has F -stationary increments if θτ X−Xτ

d= X for every
optional time τ < ∞. Finally, we consider the martingale property of the
F -prediction process

µt = P [θtX − Xt ∈ ·|Ft], t ≥ 0.

The definitions for processes on [0, 1] require only some obvious modifications,
similar to those needed in discrete time.

The case of random measures ξ on a product space I × S is similar,
where I = RR+, QQ+, [0, 1], or QQ[0,1], and S is an arbitrary Borel space. Thus,
we say that ξ is F -exchangeable or F -contractable if θtξ is exchangeable or
contractable over Ft for every t, where θtξ denotes the shifted measure defined
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by (θtξ)B = ξ(B + t) for every measurable subset B ⊂ I × S. The strong
stationarity of ξ is now defined by the condition θτ ξ

d= ξ for every optional
time τ < ∞, and the prediction process is given by µt = P [θtξ ∈ ·|Ft].

We begin with a continuous-time version of Proposition 2.1.

Proposition 2.5 (strong stationarity and prediction) Let X be an RRd-
valued, F-adapted process on QQ+ with F-prediction process µ and with X0 =
0. Then these statements are equivalent:

(i) X is conditionally F-Lévy,
(ii) X is F-exchangeable,
(iii) X is F-contractable,
(iv) θτ X − Xτ

d= X for every optional time τ < ∞,
(v) µ is a measure-valued F-martingale.

The equivalence of (iii)–(v) extends to processes on QQ[0,1]. All statements
remain true for right-continuous processes on RR+ or [0, 1], and they extend
with obvious changes to random measures on (0,∞) × S or (0, 1] × S, for
any Borel space S.

Proof: For processes on QQ+ or QQ[0,1], the arguments for Proposition 2.1
apply with obvious changes. Thus, instead of using Theorem 1.1 and the
associated uniqueness assertions in Proposition 1.4, we need to employ the
continuous-time versions of the same statements from Theorem 1.19. As-
suming (v), we now obtain

P [θtX − Xt ∈ ·|Fs] = P [θsX − Xs ∈ ·|Fs], 0 ≤ s ≤ t,

and it follows as before that, conditionally on Ft for fixed t ≥ 0, the shifted
process θtX − Xt has contractable increments, which proves (iii). Next we
note as before that (v) is equivalent to θτ X −Xτ

d= X, for any optional time
τ < ∞ that takes only countably many values.

The result extends with the same proof to processes on RR+ or [0, 1],
except that (iv) is only obtained in the weaker form with the optional time τ
restricted to a finite index set. To deduce the general version of (iv), we may
approximate τ from the right by such elementary optional times τn (FMP
7.4) and conclude that by right continuity

(θτnX)s − Xτn → (θτ X)s − Xτ , s ≥ 0. (8)

The relation θτnX −Xτn

d= X then extends to the limit. The same argument
proves the result for random measures on (0,∞) × S or (0, 1] × S. �

For processes X on [0, 1], we define the F -reflection property by the con-
dition Qτ X

d= θτ X −Xτ , in the sense of finite-dimensional distributions and
for any F -optional time τ in [0, 1], where

(QtX)s = X1 − X(1−s)∨t,

(θtX)s = X(t+s)∧1, s, t ∈ [0, 1].
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Note that the processes Qτ X and θτ X − Xτ are both defined on [0, 1], start
at 0, and are constantly equal to X1−Xτ on [1− τ, 1]. For random measures
ξ on a product space (0, 1] × S, the reflection Qtξ is defined instead as a
random measure on [0, 1 − t) × S, given by

(Qtξ)(B × C) = ξ((1 − B) × C), B ∈ B[0, 1 − t), C ∈ S.

We may now state a partial extension of Proposition 2.2 to continuous
time. The representation problem for exchangeable processes on [0, 1] is more
difficult and will not be addressed until Theorem 2.18.

Proposition 2.6 (reflection invariance) Let X be an RRd-valued, F-adapted
process on QQ[0,1] with X0 = 0. Then X is F-exchangeable iff it has the F-
reflection property. The result remains true for right-continuous processes on
[0, 1], and also for random measures on (0, 1] × S, where S is Borel.

Proof: Recall from Theorem 1.15 that a process on QQ[0,1] is exchangeable
iff it has exchangeable increments. We may then apply Proposition 2.2 to the
increments of X on an arbitrary rational interval [t, 1], and conclude that X

is F -exchangeable iff the reflection property Qτ X
d= θτ X −Xτ holds for any

optional time τ ≤ 1 taking only finitely many rational values. This extends
immediately to the general case.

For right-continuous processes X on [0, 1], the same argument applies at
any real time t ∈ [0, 1] and shows that X is F -exchangeable iff Qτ X

d= θτ X−
Xτ for every optional time τ taking values in some set Ah = {1− jh; j ≥ 0}
with h > 0. For general τ , we may approximate from the right by such times
τn and infer from the right-continuity of X that (8) holds and (QτnX)s →
(Qτ X)s for all s. Hence, the reflection property at τn carries over to τ .

For random measures ξ on (0, 1] × S, we note that the measure-valued
process Xt = ξ((0, t] × ·) has no fixed discontinuities under either condition.
We may then proceed as before to see that ξ is F -exchangeable iff Qτ ξ

d= θτ ξ
for every optional time τ that takes at most countably many values. To
extend the latter condition to arbitrary optional times τ , we may approxi-
mate by such special times τn ↓ τ . Assuming S = RR, we get Qτnξ

v→ Qτ ξ
and θτnξ

v→ θτ ξ, where v→ denotes vague convergence in the measure space
M((0, 1] × RR). This yields the required reflection property at τ . �

In order to apply the more advanced results of martingale theory and
stochastic calculus to exchangeable or contractable processes X, we need
the underlying filtration F to be right-continuous and complete, where the
latter property is the requirement that each Ft should contain all null sets
in the completion of F∞. The following result shows that this can always
be assumed, as long as X is right-continuous. For a precise statement, re-
call (FMP 7.8) that any filtration F has a smallest extension F with the
mentioned properties, often referred to as the usual augmentation of F .
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Lemma 2.7 (augmented filtration) Consider a right-continuous, RRd-valued
process X on I or a random measure ξ on I×S, where S is Borel and I = RR+

or [0, 1], and suppose that X or ξ is exchangeable or contractable with respect
to a filtration F . Then the same property holds for the right-continuous and
complete extension of F .

Proof: If θtX −Xt is exchangeable or contractable over Ft, it remains so
over Fs+ for every s < t. Letting t ↓ s and using the right continuity of X,
we conclude that θsX − Xs is exchangeable or contractable over Fs+. The
last statement extends immediately to any completion of Fs+, and it remains
to note that F s agrees with the P -completion of Fs+ with respect to F∞.
The proof for random measures is similar. �

The remainder of this section is devoted to a study of exchangeable or
contractable, marked point processes on RR+ or [0, 1]. The results, of interest
in their own right, prepare for our treatment of the general semi-martingale
case in subsequent sections.

Recall that the compensator of a marked point process ξ on S × I, where
I = [0, 1] or RR+, is defined as the a.s. unique, predictable random measure ξ̂
on the same space such that ξ− ξ̂ is a measure-valued, local martingale (FMP
25.22). By a density of ξ̂ we mean a measurable, measure-valued process η =
(ηt) on S, hence a kernel from Ω×I to S, such that ξ̂[0, t] = (λ⊗η)t =

∫ t
0 ηsds

a.s. for all t ∈ I. A conditional martingale on an interval I is defined as a
process M on I such that E[|Mt||Fs] < ∞ and E[Mt|Fs] = Ms a.s. for all
s < t in I.

Theorem 2.8 (compensator density) Let ξ be an F-contractable, marked
point process on S × [0, 1], where S is Borel. Then ξ has F-compensator
ξ̂ = λ ⊗ η, where η = (ηt) is a conditional, measure-valued F-martingale on
(0, 1), given by

ηt =
E[ξ1 − ξt|Ft]

1 − t
, t ∈ [0, 1).

Our proof is based on a couple of technical lemmas.

Lemma 2.9 (conditional integrability) Let ξ be a simple, F-contractable
point process on [0, 1] or RR+. Then

E[ξ[0, t]|Fs] < ∞ a.s., 0 < s < t.

Proof: Fix any t > s > 0, and note that ξ is a mixed binomial process on
[0, t] by Theorem 1.26. Writing binomial coefficients as (n//k) and putting
r = s/t and ξs = ξ[0, s], we get for any k ∈ ZZ+

E[E[ξt|Fs]; ξs = k] = E[ξt; ξs = k] = E ξtP [ξs = k|ξt]
=

∑
n≥k

nP{ξt = n} (n//k) rk (1 − r)n−k

≤
∑

n≥k
n (n//k) (1 − r)n−k < ∞,
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where the last series converges by the ratio test, since its terms an satisfy

an

an−1
=

n2(1 − r)
(n− 1)(n− k)

→ 1 − r < 1.

Hence, E[ξt|Fs] < ∞ a.s. on the set
⋃

k{ξs = k} = {ξs < ∞} = Ω. �

Lemma 2.10 (conditional martingales) Any conditional martingale M on
RR+ is a local martingale.

Proof: Put αt = E[|Mt||F0], and note that for t ≤ 1

αt = E[|E[M1|Ft]||F0] ≤ E[E[|M1||Ft]|F0] = α1,

by the conditional form of Jensen’s inequality. Defining

Mn
t = Mt1{α1 ≤ n}, t ∈ [0, 1], n ∈ NN,

we get for any t ≤ 1

E|Mn
t | = E[|Mt|; α1 ≤ n] = E[αt; α1 ≤ n] ≤ E[α1; α1 ≤ n] ≤ n.

Furthermore, we have for any s ≤ t in [0, 1]

E[Mn
t |Fs] = E[Mt; α1 ≤ n|Fs] = Ms1{α1 ≤ n} = Mn

s ,

which shows that Mn is a martingale on [0, 1]. Thus, M is a local martingale
on the same interval. It is now easy to continue inductively and show that
M is a local martingale on RR+. �

Proof of Theorem 2.8: Put ξt = ξ(· × [0, t]), and introduce the processes

ζt = E[ξ1|Ft], ηt =
ζt − ξt

1 − t
, t ∈ [0, 1). (9)

By Lemmas 2.9 and 2.10 we note that, for any B ∈ S with ξ1B < ∞, the
process ζB is a local martingale on (0, 1) and hence admits a right-continuous
version on the same interval. Letting s < t in (0, 1) be such that 1 − s and
1 − t are rationally dependent, we conclude from the F -contractability of ξ
that a.s.

E[ηtB|Fs] =
E[ξ1B − ξtB|Fs]

1 − t
=

E[ξ1B − ξsB|Fs]
1 − s

= ηsB.

The formula extends to arbitrary s < t in (0, 1), by approximation of s from
the right. This shows that η is a conditional martingale on (0, 1).

Now ξt = ζt − (1 − t)ηt by (9), and integration by parts gives

dξtB = dζtB − (1 − t)dηtB + ηtB dt.
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Here the first two terms on the right are local martingales on (0, 1), and the
last term ηtB dt is continuous and hence predictable. By the definition of the
compensator ξ̂ it follows that dξ̂tB = ηtB dt or ξ̂t =

∫ t
0 ηtdt. Thus, η has the

stated property, and it remains to note that η has a measure-valued version
since S is Borel. �

We turn to a continuous-time version of Theorem 2.3.

Theorem 2.11 (density criterion) Let ξ be a marked point process on S×I,
where S is Borel and I = [0, 1] or RR+. When I = [0, 1], assume that ξ is
F-adapted and ξ1 = ξ(·× [0, 1]) is F0-measurable, and when I = RR+, let ξ be
stationary with induced filtration F . Then these conditions are equivalent:

(i) ξ is F-exchangeable,
(ii) ξ is F-contractable,
(iii) ξ̂ = λ ⊗ η a.s. for a conditional F-martingale η on I◦.

Proof: Since (i) ⇒ (ii) is obvious and (ii) ⇒ (iii) by Theorem 2.8, it is
enough to show that (iii) ⇒ (i). Beginning with the case where I = [0, 1], let
ξ be F -adapted on S × [0, 1] with an F0-measurable projection ξ1 on S, and
suppose that ξ̂ admits a conditional F -martingale density η = (ηt) on (0, 1).
For any A ∈ S with ξ1A < ∞ a.s., we have

ξ1A− ξtA = E[ξ1A− ξtA|Ft] = E[ξ̂1A− ξ̂tA|Ft]

= E
[∫ 1

t
ηsAds

∣∣∣∣Ft

]
=
∫ 1

t
E[ηsA|Ft] ds

= (1 − t) ηtA,

which shows that ξ1 − ξt = (1 − t)ηt for all t ∈ (0, 1). Hence,

ξ̂t =
∫ t

0

ξ1 − ξs

1 − s
ds, t ∈ [0, 1). (10)

Now fix any disjoint sets A1, . . . , An ∈ S such that ξ1Ak < ∞ for all k,
put κk = ξ1Ak, and let τk

1 < · · · < τk
κk

be the points of the process ξAk.
Define τ̂ k

j = ξ̂Ak(τk
j ) and put γk

j = τ̂ k
j − τ̂ k

j−1, where τ̂ k
0 = 0. By (10) we have

γk
j = (κk − j + 1) log

(
1 − τk

j−1

1 − τk
j

)
, j ≤ κk, k ≤ n,

and we may solve recursively for the τk
j to obtain

τk
j = 1 − exp

(
−
∑

i≤j

γk
i

κk − i + 1

)
, j ≤ κk, k ≤ n. (11)

Using the basic time-change reduction of multivariate point processes (FMP
25.26), we see that the random variables γk

i are conditionally independent
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and exponentially distributed with unit mean, given the σ-field F0. Hence,
by (11), the distribution of (ξA1, . . . , ξAn) is uniquely determined by that
of ξ1.

Now consider a uniform randomization ξ̃ of ξ1, regarded as a marked point
process on S × [0, 1], and let F̃ denote the right-continuous and complete
filtration induced by F0 and ξ̃. Then by Theorem 2.8 the pair (ξ̃, F̃) satisfies
the same conditions as (ξ,F), and so

(ξA1, . . . , ξAn) d= (ξ̃A1, . . . , ξ̃An).

Since A1, . . . , An were arbitrary, we get ξ
d= ξ̃, and in particular ξ is exchange-

able. Applying the same argument, for arbitrary t ∈ [0, 1), to the conditional
distribution of θtξ given Ft, we conclude that ξ is indeed F -exchangeable.

Next suppose that ξ is stationary on S × RR+ with induced filtration F ,
and that the compensator ξ̂ of ξ has a conditional martingale density η = (ηt)
on (0,∞). Using Fubini’s theorem and the martingale properties of ξ − ξ̂
and η, we get a.s., for any measurable function f ≥ 0 on S and times s < t
and h > 0,

E[ξt+hf − ξtf |Fs] = E
[
ξ̂t+hf − ξ̂tf

∣∣∣Fs

]
= E

[∫ t+h

t
ηrf dr

∣∣∣∣∣Fs

]

=
∫ t+h

t
E[ηrf |Fs] dr =

∫ t+h

t
ηsf dr = hηsf,

where ξt+hf−ξtf = ξ(·×(t, t+h])f . Since the right-hand side is independent
of t, we may use Fubini’s theorem and the mean ergodic theorem to obtain

E[ξs+hf − ξsf |Fs] = n−1
∫ s+n

s
E[ξt+hf − ξtf |Fs] dt

= E
[
n−1

∫ s+n

s
(ξt+hf − ξtf) dt

∣∣∣∣Fs

]
→ E[E[ξhf |Iξ ]|Fs] = hE[νf |Fs],

where ν denotes the sample intensity of ξ, given by E[ξ|Iξ ] = ν⊗λ a.s. (FMP
10.19). Since the left-hand side is independent of n, we conclude that

E[ξs+hf − ξsf |Fs] = hE[νf |Fs] a.s., s, h ≥ 0. (12)

Let us now extend ξ to a stationary, marked point process ξ̂ on S×RR with
induced filtration F̂ = (F̂s). By stationarity and martingale convergence, we
get from (12)

E[ξ̂s+hf − ξ̂sf |F̂s] = hνf a.s., s ∈ RR, h ≥ 0.

Since f was arbitrary, it follows that ξ̂ has F̂ -compensator ν ⊗ λ. Using
the general Poisson reduction in FMP 25.24, we conclude that ξ̂ is a Cox
process on S × RR directed by ν ⊗ λ. In particular, this implies the asserted
exchangeability of ξ. �

We may also prove a continuous-time version of Theorem 2.4.
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Theorem 2.12 (empirical measures) Let ξ be a marked point process on
S×I, where S is Borel and I = (0, 1] or (0,∞), and define ηt = t−1ξt, t > 0.
Then ξ is exchangeable iff η = (ηt) is a reverse, conditional, measure-valued
martingale.

Proof: Assume that ξ is exchangeable. Introduce the tail filtration

Tt = σ(θtη) = σ(ξt, θtξ), t > 0,

where the second equality follows from the relation

(t + h)ηt+h = ξt + θtξ(· × (0, h]), t > 0.

Let s < t be rationally dependent in (0,∞), so that s = mh and t = nh for
some h > 0 and m,n ∈ NN. Noting that ξ is exchangeable over Tt on [0, t] for
every t ∈ I, we get for any measurable function f ≥ 0 on S

E[ξhf |Tt] = m−1
∑

k≤m
E[ξkhf − ξ(k−1)hf |Tt]

= m−1E
[∑

k≤m
(ξkhf − ξ(k−1)hf)

∣∣∣ Tt

]
= m−1E[ξsf |Tt] = hE[ηsf |Tt].

Combining this with the corresponding relation for ηt gives

E[ηsf |Tt] = h−1E[ξhf |Tt] = E[ηtf |Tt] = ηtf, (13)

which shows that η is a conditional, reverse martingale on tQQ+ for every t > 0.
To extend (13) for fixed t > 0 to arbitrary s < t, it suffices to approximate s
from the right by times in tQQ+, and then use the right-continuity of ηsf and
dominated convergence.

Now suppose instead that η is a reverse, conditional martingale. Since
the jumps of ηtf are positive for every measurable function f ≥ 0 on S, we
note in particular that η is continuous in probability. By Lemma 2.10 we may
apply the martingale regularization theorem (FMP 7.27) and conclude that η
remains a reverse, conditional martingale with respect to the left-continuous,
complete extension T of T . Also note that the continuity of η implies the
corresponding property for ξ, so that ξ(· × {t}) = 0 a.s. for all t > 0.

Using Fubini’s theorem and the definition and martingale property of η,
we get for any times s ≤ t and measurable functions f ≥ 0 on S

E[ξtf − ξsf |T t] = E[tηtf − sηsf |T t] = (t − s)ηtf

=
∫ t

s
ηtf dr =

∫ t

s
E[ηrf |T t] dr

= E
[∫ t

s
ηrf dr

∣∣∣∣ T t

]
,

which shows that ξ has T -compensator ξ̂ = λ ⊗ η. The exchangeability of ξ
now follows by Theorem 2.11. �
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2.3 Semi-Martingale Criteria

Our further development of the continuous-time theory is more difficult, as it
depends on the sophisticated concepts and results of semi-martingale theory
and general stochastic calculus. The purpose of this section is to extend any
contractable process on QQ[0,1] to a semi-martingale on the real interval [0, 1],
and to characterize the exchangeable processes on RR+ or [0, 1] in terms of
their semi-martingale characteristics.

Recall that an RRd-valued process X is called a special semi-martingale
if it admits a decomposition X = M + X̂, where M is a local martingale
and X̂ is a predictable process of locally finite variation, starting at 0. The
decomposition is then a.s. unique (FMP 17.2, 25.16), and X̂ is called the
compensator of X. We have also an a.s. unique decomposition X = Xc +Xd

into a continuous local martingale Xc starting at 0, called the continuous
martingale component of X, and a purely discontinuous semi-martingale Xd

(FMP 26.14). With Xc we may associate the matrix-valued covariation pro-
cess ρ with components ρij

t = [Xc
i ,X

c
j ]t, i, j ≤ d. We finally introduce the

jump point process ξ on (RRd \ {0})×RR+ given by ξ(B × I) =
∑

t∈I 1B(∆Xt),
along with the associated compensator ξ̂. The three processes X̂, ρ, and ξ̂
are often referred to, collectively, as the local characteristics of X.

For technical reasons, we need to impose an integrability condition on
X. Say that a process X is (uniformly) F0-integrable if it is a.s. (uniformly)
integrable with respect to the conditional distribution P [X ∈ ·|F0].

Theorem 2.13 (regularization and martingale properties) Let X be an F0-
integrable, F-contractable, RRd-valued process on QQ[0,1], and let F denote
the right-continuous, complete augmentation of F . Then X extends to a
uniformly F0-integrable, F-contractable, special F-semi-martingale on [0, 1)
with jump point process ξ, such that [Xc] is a.s. linear, X̂ = M · λ, and
ξ̂ = λ ⊗ η, for some conditional F-martingales M on [0, 1) and η on (0, 1)
given by

Mt =
E[X1 − Xt|Ft]

1 − t
, ηt =

E[ξ1 − ξt|Ft]
1 − t

, t ∈ [0, 1).

Proof: Introduce the processes

Nt = E[X1|Ft], Mt =
Nt − Xt

1 − t
, t ∈ QQ[0,1), (14)

and note that N is a conditional F -martingale. By the F -contractability of
X, we have for any s ≤ t in QQ[0,1)

E[Mt|Fs] =
E[X1 − Xt|Fs]

1 − t
=

E[X1 − Xs|Fs]
1 − s

= Ms,

which shows that even M is a conditional F -martingale. By the martin-
gale regularization theorem (FMP 7.27) and Lemma 2.10, the right-hand
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limits Mt+ and Nt+ exist outside a fixed P -null set and form conditional
F -martingales on [0, 1). Noting that by (14)

Xt = Nt − (1 − t)Mt, t ∈ QQ[0,1), (15)

and using Lemma 2.10, we see that Xt+ exists in the same sense and defines
an F -semi-martingale on [0, 1). The F -contractability of X extends to F
and X+ by approximation from the right. Furthermore, for rational t ∈ [0, 1)
and hn > 0 with hn → 0, the contractability of X yields a.s.

Xt+ − Xt ← Xt+hn − Xt
d= Xt+2hn − Xt+hn → Xt+ − Xt+ = 0,

which shows that Xt+ = Xt a.s. for every t ∈ QQ[0,1). Thus, X+ is a.s. an
extension of X to [0, 1], and we may henceforth write X instead of X+.

Equation (15) extends immediately to [0, 1). In particular, X is uni-
formly F0-integrable on [0, 1

2 ], and the same property holds on [0, 1] by the
contractability of X. Integration by parts (FMP 26.6) in (15) gives

dXt = dNt − (1 − t)dMt + Mtdt, t ∈ [0, 1),

which shows that X is a special F -semi-martingale on [0, 1) with compen-
sator dX̂t = Mtdt. By Theorem 1.15 the point process ξ on (RRd \ {0}) × [0, 1]
inherits the F -contractability from X, and so by Theorem 2.8 it has F -
compensator ξ̂ = λ ⊗ η, where η is the stated conditional, measure-valued
F -martingale on (0, 1). Finally, Theorem 1.15 ensures that the co-variation
processes ρij

t = [Xc
i ,X

c
j ]t are again F -contractable as well as continuous and

of locally finite variation (FMP 17.5), properties that carry over to the in-
creasing and decreasing Jordan components (FMP 2.18) of ρ. Hence, Theo-
rem 1.26 yields ρij

t = ρij
1 t a.s. for some F0-measurable random variables ρij

1 . �

The necessary conditions in Theorem 2.13 are not sufficient to guarantee
exchangeability, and further hypotheses are needed. Since different sets of
conditions are required for processes on [0, 1] and RR+, we treat the two cases
separately. We begin with two martingale criteria for exchangeable processes
on RR+. For general semi-martingales X we define the local characteristics as
before, except that the jumps of X need to be suitably truncated before we
form the compensator X̂. The precise way of truncation is inessential.

Theorem 2.14 (martingale criteria on RR+, Grigelionis, Kallenberg) Let X
be an RRd-valued F-semi-martingale on RR+ with X0 = 0, where F is right-
continuous and complete. Then each of these conditions implies that X is
F-exchangeable:

(i) The local characteristics of X are a.s. linear;
(ii) X is a special semi-martingale, F is the filtration induced by X, the

local characteristics of X admit martingale densities, and X is locally
L1-bounded with stationary increments.
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In subsequent proofs we shall often use the basic reduction Theorem 4.5,
whose proof is independent of the results in this chapter.

Proof: (i) Letting M = (M1, . . . ,Md) denote the continuous martingale
component of X, we have [Mi,Mj ]t ≡ tρij a.s. for some F0-measurable ran-
dom variables ρij . Writing Ut,r = 1{r ≤ t} and noting that, for i, j ≤ d and
s, t ≥ 0,

Mi
t =

∫ ∞

0
Ut,rdMi

r,∫ ∞

0
Us,rUt,rd[Mi,Mj ]r = ρij

∫ ∞

0
1{r ≤ s ∧ t} dr = (s ∧ t) ρij ,

we see from Theorem 4.5 that, conditionally on F0, the process M = (Mi
t )

on RR+ × {1, . . . , d} is centered Gaussian with covariance function

E[Mi
sM

j
t |F0] = (s ∧ t) ρij , s, t ≥ 0, i, j ≤ d.

In other words, M is conditionally a Brownian motion in RRd with covariance
matrix ρ = (ρij).

Next we consider the jump point process ξ of X and note that ξ̂t ≡ tν a.s.
for some F0-measurable random measure ν on RRd \ {0}. Using Theorem 4.5
with V as the identity mapping on RR+×(RRd\{0}), we see that, conditionally
on F0, the process ξ is independent of M and Poisson with intensity measure
λ ⊗ ν. Furthermore, FMP 26.6 (iv) yields∫ t

0

∫
|x|2ξ(ds dx) < ∞ a.s., t ≥ 0,

and so, by FMP 12.13 (i) and (iii), the integrals

Nt =
∫ t

0

∫
|x|≤1

x (ξ − λ ⊗ ν)(ds dx), t ≥ 0,

converge a.s. and define a local martingale.
We may finally introduce the process J of jumps of modulus > 1, and

note that the residual X̂t = Xt − Mt − Nt − Jt is a.s. linear by hypothesis
and hence of the form tα for some F0-measurable random vector α in RRd.
Comparing with the general representation in FMP 15.4, we conclude that X
is conditionally a Lévy process with characteristic triple (α, ρ, ν), given the σ-
field F0. In particular, X is then exchangeable over F0. The same argument
shows that, more generally, the shifted process θtX−Xt is exchangeable over
Ft for every t ≥ 0. Thus, X is F -exchangeable.

(ii) Here the argument is similar to that for random measures in Theorem
2.11. Writing X̂ for the compensator of X, we have X̂t =

∫ t
0 Msds for some

martingale M . Noting that X − X̂ is a true martingale and using Fubini’s
theorem, we get for any s ≤ t

E[Xt − Xs|Fs] = E[X̂t − X̂s|Fs] = E
[∫ t

s
Mrdr

∣∣∣∣Fs

]
=

∫ t

s
E[Mr|Fs] dr = (t − s)Ms.
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Dividing by t − s and applying the mean ergodic theorem (FMP 10.9), we
obtain E[X|Fs] = Ms a.s. with X = E[X1|IX ], where IX = X−1I denotes
the σ-field of X-measurable events, invariant under the combined shifts θtX−
Xt, t ≥ 0. Hence,

E[Xt − Xs|Fs] = (t − s)E[X|Fs], 0 ≤ s ≤ t. (16)

We now extend X to a process on RR with stationary increments (FMP 10.2),
and write F t

s for the σ-field induced by the increments of X on (s, t]. Then
(16) holds with Fs replaced by F s

0 , and by stationarity

E[Xt − Xs|F s
r ] = (t − s)E[X|F s

r ], r ≤ s ≤ t.

The formula extends by martingale convergence, first to r = −∞, and then
to the right-continuous and complete filtration G induced by (F s

−∞). Since
X is Gs-measurable for every s, e.g. by the ergodic theorem, we obtain

E[Xt − Xs|Gs] = (t − s)X a.s., s ≤ t,

which shows that Xt − tX is a G-martingale.
Next consider the matrix-valued process ρt = [Xc]t = [X]ct . By hypothe-

sis, ρ admits a matrix-valued martingale density, and in particular E|ρt| < ∞
for all t. Writing ρ̄ = E[ρ1|IX ], we see as before that ρt−tρ̄ is a G-martingale.
Since the components of ρ are continuous and of locally finite variation, we
conclude (FMP 17.2) that ρt ≡ tρ̄ a.s. We finally consider the jump point
process ξ on RRd \ {0}, and note as before that ξtB − tξ̄B is a G-martingale
for every Borel set B with 0 /∈ B, where the random measure ξ̄ is a.s. defined
by ξ̄B = E[ξ1B|IX ].

The preceding argument shows that X remains a special semi-martingale
with respect to G and that the associated local characteristics are a.s. linear.
By part (i) it follows that X is G-exchangeable. In particular, X is exchange-
able on RR+. �

We turn to a similar martingale characterization of exchangeable pro-
cesses on [0, 1].

Theorem 2.15 (martingale criterion on [0, 1]) Let X be a uniformly F0-
integrable, RRd-valued, special F-semi-martingale on [0, 1) with X0 = 0, where
F is right-continuous and complete, and let ξ denote the jump point process
of X. Suppose that X1 = X1−, ξ1, and [Xc]1 exist and are F0-measurable,
and that (X̂, [Xc]) and ξ̂ admit conditional martingale densities on [0, 1) and
(0, 1), respectively. Then X is F-exchangeable.

Our proof will be based on two lemmas.
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Lemma 2.16 (local characteristics) Let X and ξ be such as in Theorem
2.15. Then [Xc] is a.s. linear, and for every t ∈ [0, 1) we have a.s.

ξ̂t =
∫ t

0

ξ1 − ξs

1 − s
ds, (17)

X̂t = tX1 −
∫ t

0
ds
∫ s

0

d(Xr − X̂r)
1 − r

. (18)

Proof: Formula (17) agrees with (10), which was established under more
general hypotheses in the proof of Theorem 2.11. Next let N denote the
conditional martingale density of the matrix-valued process ρ = [Xc]. Using
the F0-measurability of ρ1, Fubini’s theorem, the martingale property of
N , and the integration-by-parts formula for general semi-martingales (FMP
26.6), we get for any t ∈ [0, 1]∫ 1

t
Nudu = ρ1 − ρt = E[ρ1 − ρt|Ft] = E

[∫ 1

t
Nudu

∣∣∣∣Ft

]
=

∫ 1

t
E[Nu|Ft] du = (1 − t)Nt

= N0 +
∫ t

0
(1 − s) dNs −

∫ t

0
Nsds.

Solving for the second term on the right gives a.s.∫ t

0
(1 − s) dNs = ρ1 − N0, t ∈ [0, 1],

which implies (1 − s)dNs = 0 and hence Nt ≡ N0 = ρ1 a.s. This shows that
ρt ≡ tρ1 a.s.

Let us finally introduce the conditional martingale density M of X̂. Since
X̂ is continuous, we may use a BDG (Burkholder–Davis–Gundy) inequality
(FMP 26.12) and the representation of co-variation processes in terms of the
jumps (FMP 26.15) to obtain

E[(X − X̂)∗2
1 |F0] <

�
tr [X]1 = tr ρ1 +

∫
|x|2ξ1(dx) < ∞,

where X∗
t = sups≤t |Xs|. In particular, X − X̂ extends to a conditional

martingale on [0, 1]. Since |M| is a conditional sub-martingale on [0, 1) (FMP
7.11), we may use Fubini’s theorem to get for any t ∈ [0, 1)

E
[∫ t

0
|Ms|ds

∣∣∣∣F0

]
=
∫ t

0
E[|Ms||F0] ds ≤ tE[|Mt||F0] < ∞.

This justifies that we employ Fubini’s theorem to write, for any s ≤ t < 1,

E[Xt − Xs|Fs] = E[X̂t − X̂s|Fs] = E
[∫ t

s
Mudu

∣∣∣∣Fs

]
=

∫ t

s
E[Mu|Fs] du = (t − s)Ms.
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The last formula extends to t = 1 by uniform integrability, and since X1−Xs

is Fs-measurable, we obtain a.s.

X1 − Xs = (1 − s)Ms, s ∈ [0, 1]. (19)

Integrating by parts yields

−(1 − s) dMs + Msds = dXs = d(Xs − X̂s) + dX̂s,

and so, by the uniqueness of the canonical decomposition,

dX̂s = Msds, dMs = −d(Xs − X̂s)
1 − s

.

Integrating both relations gives

X̂t =
∫ t

0
Msds =

∫ t

0

(
M0 −

∫ s

0

d(Xr − X̂r)
1 − r

)
ds

= tM0 −
∫ t

0
ds
∫ s

0

d(Xr − X̂r)
1 − r

,

and (18) follows since M0 = X1 a.s. in view of (19). �

Lemma 2.17 (uniqueness) For processes X as in Theorem 2.15, the con-
ditional distribution P [X ∈ ·|F0] is an a.s. unique, measurable function of
X1, [Xc]1, and ξ1.

Proof: By Lemma 2.16 we have [Xc]t = t[Xc]1 ≡ tρ a.s., and so by
Theorem 4.5 the continuous martingale component Xc is conditionally a
Brownian motion with covariance matrix ρ, given the σ-field F0. Turning
to the distribution of ξ, fix any disjoint Borel sets A1, . . . , An in RRd that are
bounded away from 0, and put κr = ξ1Ar for r = 1, . . . , n. By the proof of
Theorem 2.11, we can express the points τr

1 < τr
2 < · · · of the processes ξtAr

as
τr
j = 1 − exp

(
−
∑

i≤j

γr
i

κr − i + 1

)
, j ≤ κr, r ≤ n,

where the variables γr
i are conditionally independent and exponentially dis-

tributed with mean 1, given F0. In view of Theorem 4.5, the γr
i are also

conditionally independent of Xc, which specifies completely the joint con-
ditional distribution of the processes Xc

t and ξtA1, . . . , ξtAn in terms of the
random matrix ρ and the variables κ1, . . . , κn. By a monotone-class argu-
ment, the conditional distribution of the pair (Xc, ξ) is then determined a.s.
by ρ and ξ1. It is easy to check that this specification is also measurable.

To complete the proof, it is enough to show that X can be expressed as
a measurable function of Xc and ξ. Then note that the purely discontinuous
component Xd of X − X̂ is given a.s. by

Xd
t =

∫ t

0

∫
x �=0

x(ξ − ξ̂)(dxds), t ∈ [0, 1],
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where the integral converges in probability since tr [X]1 < ∞ a.s. (FMP
26.12). Since also (17) exhibits the compensator ξ̂ in terms of ξ, we conclude
that X − X̂ = Xc + Xd is determined a.s. by (Xc, ξ). Next (18) expresses
X̂ as a function of X − X̂, and so even X = (X − X̂) + X̂ is specified a.s.
by (Xc, ξ). Again it is easy to verify that all steps in the construction are
measurable. �

Proof of Theorem 2.15: Put α = X1, β = ξ1, and ρ = [Xc]1, let σ denote
the non-negative definite square root of ρ, and write β =

∑
j δβj

, where
the random vectors β1, β2, . . . in RRd can be chosen to be F0-measurable.
Introduce a Brownian bridge B in RRd and an independent sequence of i.i.d.
U(0, 1) random variables τ1, τ2, . . . , all independent of F0. Define

Yt = αt + σBt +
∑

j
βj(1{τj ≤ t} − t), t ∈ [0, 1]. (20)

To prove that the series converges, we note that∑
j
β2

j =
∫

|x|2ξ1(dx) =
∫

|x|2ξ1/2(dx) +
∫

|x|2(ξ1 − ξ1/2)(dx) < ∞,

since the first integral on the right is bounded by tr[X]1/2 < ∞ and the second
one has the same distribution by Theorem 2.11. By the three-series criterion
(FMP 4.18) it follows that, conditionally on F0 and for fixed t ∈ [0, 1], the
partial sums Sn

t converge a.s. and in L2 toward some limit St. Since the
processes Mn

t = Sn
t /(1 − t) are conditional martingales on [0, 1), the same

thing is true for Mt = St/(1− t), and so by symmetry and Doob’s inequality
(FMP 7.16)

E[(Sn − S)∗2
1 |F0] ≤ 2E[(Mn − M)∗2

1/2|F0]

≤ 23E[(Mn
1/2 − M1/2)2|F0]

= 25E[(Sn
1/2 − S1/2)2|F0] → 0.

The individual terms in (20) being rcll and exchangeable over F0, we note
that the sum Y has the same properties. Furthermore, we have Y1 = α = X1,
and the jump sizes of Y are given by the same point process β = ξ1 as
for X. Since Y is F0-integrable, we conclude from Theorem 2.13 that Y
is a special G-semi-martingale, where G denotes the right-continuous and
complete filtration generated by F0 and Y . Noting that the sum S is a
purely discontinuous semi-martingale (FMP 26.14), we have also a.s.

[Y c]t = [σB]t = tσσ′ = tρ = [Xc]t.

We may now apply Lemma 2.17 to see that P [X ∈ ·|F0] = P [Y ∈ ·|F0].
In particular, since Y is exchangeable over F0, the same thing is true for X.
Applying this result to the shifted processes θtX − Xt and the associated
σ-fields Ft, we see more generally that X is F -exchangeable. �
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2.4 Further Criteria and Representation

The previous arguments can be used to derive an explicit representation of
exchangeable processes on [0, 1]. For technical reasons, we impose an extra
moment condition, which will be removed in Chapter 3.

Theorem 2.18 (representation on [0, 1]) Let X be an integrable, RRd-valued
process on QQ[0,1]. Then X is exchangeable iff

Xt = αt + σBt +
∑

j
βj(1{τj ≤ t} − t) a.s., t ∈ QQ[0,1], (21)

for some i.i.d. U(0, 1) random variables τ1, τ2, . . . , an independent Brownian
bridge B in RRd, and an independent array of random elements σ in RRd×d

and α, β1, β2, . . . in RRd with
∑

j |βj |2 < ∞ a.s. In that case, α, ρ = σσ′, and
β =

∑
j δβj

are a.s. unique, the series in (21) converges a.s., uniformly on
[0, 1], and (21) defines an exchangeable, rcll extension of X to [0, 1].

The following lemma is needed to prove the asserted uniformity. It also
yields the corresponding convergence in Theorem 1.19.

Lemma 2.19 (uniform convergence) Let X = (Xr
t ) be a real-valued process

on QQ+×I for an interval I ⊂ RR, such that Xr
t is rcll in t ∈ I with independent

increments in r ∈ QQ+ and satisfies (Xr −Xs)∗ P→ 0 as s, r → ∞. Then there
exists an rcll process X̃ on I such that (Xr − X̃)∗ → 0 a.s.

Proof: Choosing rn → ∞ in QQ+ with

E[(Xrn − Xrn−1)∗ ∧ 1] ≤ 2−n, n ∈ NN,

we note that (Xrm − Xrn)∗ → 0 a.s. as m,n → ∞. Hence, there exists
a right-continuous process X̃ on I satisfying (Xrn − X̃)∗ → 0 a.s., and we
get (Xr − X̃)∗ P→ 0 as r → ∞ along QQ+. Write Y r = Xr − X̃. Fixing
any ε > 0 and r ∈ QQ+ and a finite subset A ⊂ [r,∞) ∩ QQ, and putting
σ = sup{s ∈ A; (Y s)∗ > 2ε}, we get as in FMP 16.8

P{(Y r)∗ > ε} ≥ P
{
(Y r)∗ > ε, max

s∈A
(Y s)∗ > 2ε

}
≥ P{σ < ∞, (Y r − Y σ)∗ ≤ ε}
≥ P

{
max
s∈A

(Y s)∗ > 2ε
}

min
s∈A

P{(Y r − Y s)∗ ≤ ε},

which extends immediately to A = [r,∞)∩QQ. Solving for the first factor on
the right gives

P
{
sups≥r(Y

s)∗ > 2ε
}
≤ P{(Y r)∗ > ε}

1 − sups≥rP{(Y r − Y s)∗ > ε} → 0,

which shows that sups≥r(Y s)∗ P→ 0 and hence (Xr − X̃)∗ = (Y r)∗ → 0 a.s. �
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Proof of Theorem 2.18: Suppose that
∑

j |βj |2 < ∞ a.s. To prove the
asserted uniform convergence, we may clearly assume that α, σ, and β1, β2, . . .
are non-random. Then introduce the martingales

Mn
t = (1 − t)−1

∑
j≤n

βj(1{τj ≤ t} − t}, t ∈ [0, 1),

and note that by Doob’s inequality

E(Mm − Mn)∗2
1/2 <

�
E(Mm − Mn)2

1/2 <
�

∑
j>m∧n

β2
j → 0,

as m,n → ∞. By Lemma 2.19 we conclude that Mn, and hence also the series
in (21), converges a.s., uniformly on the interval [0, 1

2 ]. By symmetry we have
the same result on [1

2 , 1], and by combination we get the required uniform
a.s. convergence on [0, 1]. In particular, X is a.s. rcll, and the coefficients βj

may be recovered from X as the magnitudes of the jumps. Also note that
α = X1 and ρ = [σB, σB]1 a.s. The expression in (21) clearly defines an
exchangeable process on [0, 1].

Now suppose instead that X is integrable and exchangeable on QQ[0,1]. By
Theorem 2.13 it extends a.s. to an exchangeable special semi-martingale on
[0, 1) with respect to the right-continuous and complete filtration F induced
by X. The extended process being rcll, we may introduce the associated
jump point process ξ, which satisfies

∫ |x|2ξ1(dx) ≤ tr [X,X]1 < ∞ a.s.
From the cited theorem we see that [Xc] is a.s. linear and that X̂ and ξ̂ are
a.s. absolutely continuous, with densities that are conditional martingales on
[0, 1) and (0, 1), respectively. Since X remains exchangeable over (X1, ξ1)
by Theorem 1.15, the stated properties remain valid with F replaced by the
right-continuous and complete filtration G induced by X and (X1, ξ1). But
then α = X1 = X1−, β = ξ1, and ρ = [Xc]1 are G0-measurable, and we may
argue as in the proof of Theorem 2.15 to see that X

d= Y for the process Y
in (20), where σ denotes the non-negative definite square root of ρ. We may
finally use the transfer theorem (FMP 6.10) to obtain a corresponding a.s.
representation of X. �

Our next aim is to consider reverse martingale criteria for a process X on
I = [0, 1] or RR+ to be exchangeable. The following result extends Theorem
2.4 for random sequences and Theorem 2.12 for marked point processes.

Theorem 2.20 (reverse martingale criterion) Let X be an integrable pro-
cess in D0(I,RRd) with jump point process ξ, where I = [0, 1] or RR+. Then
X is exchangeable iff the process t−1(X, ξ, [X]c)t is a reverse, conditional
martingale on I \ {0}.

Note that if Xt/t is a reverse, conditional martingale, then X itself is a
reverse semi-martingale, which ensures the existence of the process [X]c.
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Proof: First assume that X is exchangeable. Then X is a semi-martingale
by Theorem 2.13, and so by Theorem 1.15 the triple (X, ξ, [Xc]) exists and
is again exchangeable on I. Introducing the tail filtration

Tt = σ{(X, ξ, [Xc])u, u ≥ t}, t ∈ I,

we conclude that (X, ξ, [Xc]) is exchangeable over Tt on [0, t] for every t ∈ I.
Writing Mt = t−1Xt and letting s ≤ t be rationally dependent, so that
s = mh and t = nh for some m,n ∈ NN and h > 0, we get

E[Xh|Tt] = m−1
∑

k≤m
E[Xkh − X(k−1)h|Tt]

= m−1E
[∑

k≤m
(Xkh − X(k−1)h)

∣∣∣ Tt

]
= m−1E[Xs|Tt] = hE[Ms|Tt].

Combining with the same relation for Mt gives

E[Ms|Tt] = h−1E[Xh|Tt] = E[Mt|Tt] = Mt,

which shows that M is a reverse, conditional T -martingale on tQQ∩(I\{0}) for
every t > 0. The result extends by right continuity and uniform integrability
to the entire interval I \ {0}. A similar argument applies to the processes
t−1ξt and t−1[Xc]t.

Now suppose instead that Mt = t−1Xt is a reverse, conditional T -mar-
tingale. Using Fubini’s theorem and the definition and martingale property
of M , we get for any s ≤ t in (0, 1]

E[Xt − Xs|Tt] = E[tMt − sMs|Tt]

= (t − s)Mt =
∫ t

s
Mtdr

=
∫ t

s
E[Mr|Tt] dr = E

[∫ t

s
Mrdr

∣∣∣∣ Tt

]
,

which shows that X is a special, reverse semi-martingale with respect to T
with compensator X̂ = M · λ. A similar argument shows that if ηt = t−1ξt

and ρt = t−1[Xc]t are reverse, conditional T -martingales, then ξ and [Xc]
have T -compensators ξ̂ = λ⊗ η and [Xc]∧ = ρ · λ, respectively. Since [Xc] is
continuous with locally finite variation, we have in fact [Xc] = [Xc]∧ = ρ · λ
a.s.

The continuity of ξ̂ implies that ξ is continuous in probability, and so the
same thing is true for X. Hence, the previous statements remain true for the
left-continuous versions of the various processes, and Doob’s regularization
theorem (FMP 7.27) allows us to replace T by the generated left-continuous
and complete filtration T . For fixed u ∈ I, the martingale conditions of
Theorem 2.15 are then fulfilled for the right-continuous process Y on [0, u]
with associated right-continuous and complete filtration F , given by

Yt = Xu − Xu−t−, Ft = T u−t, t ∈ [0, u].



2. Conditioning and Martingales 93

We also note that the terminal values

Yu = Yu− = Xu, ξu, [Y c]u = [Y ]cu = [X]cu = [Xc]u

are all measurable with respect to F0 = T u. Hence, the quoted theorem
shows that Y is F -exchangeable on [0, u]. In particular, X is then exchange-
able on [0, u], and u being arbitrary, it follows that X is exchangeable on I. �

We conclude this section with two technical propositions that will be use-
ful in subsequent chapters. They will be proved here under the additional
assumption that the exchangeable processes considered on [0, 1] are repre-
sentable as in Theorem 2.18. The general results will then follow from the
developments in Chapter 3.

To introduce the first of those results, we say that the processes X1,X2, . . .
on I = [0, 1] or RR+ are jointly F-exchangeable if the process (X1, . . . ,Xn)
is F -exchangeable for every n ∈ NN. The stronger notion of separate F-
exchangeability is defined by the requirement that the shifted process θtXi −
Xi(t) be exchangeable over Ft and (Xj, j �= i) for any i ∈ NN and t ∈ I.
In either case, the family (Xj) is said to be F -extreme if the Ft-conditional
distribution is a.s. extreme for every t ∈ I. By F0-extremality we mean the
same property for t = 0 only. Let us also say that the Xj are F -independent
if they are adapted and conditionally independent given Ft for every t.

Lemma 2.21 (separate exchangeability and independence) Let X1,X2, . . .
be F-exchangeable and F0-extreme processes on [0, 1] or RR+. Then the Xk

are separately F-exchangeable iff they are F-independent, in which case the
whole family is F-extreme. The corresponding statements hold in discrete
time.

Proof: We prove the result for representable processes X in continuous
time only, the discrete-time case being similar. First we claim that an F -
exchangeable and F0-extreme process X of this type is even F -extreme.
Then note that, by the uniqueness of the representation, a process X as in
Theorem 1.19 or 2.18 is extreme iff the characteristics (α, ρ, ν) or (α, ρ, β) are
a.s. non-random. The claim now follows from the fact that the characteristics
of the shifted process θtX − Xt are measurably determined by those for X
and for the stopped process Xt.

Now assume that the Xj are separately exchangeable and individually
extreme. Then the conditional distribution P [Xi ∈ ·|Xj, j �= i] is a.s. ex-
changeable for every i ∈ NN, and so the extremality yields a.s.

P [Xi ∈ ·|Xj, j �= i] = P{Xi ∈ ·}, i = 1, . . . , d. (22)

Thus, Xi ⊥⊥ (Xj, j �= i) for all i, which shows that the Xj are independent.
Conversely, the independence of X1,X2, . . . implies (22), and so their separate
exchangeability follows from the corresponding individual property.
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To see that the whole family (Xj) is extreme, suppose that the joint distri-
bution µ is a nontrivial convex combination of some separately exchangeable
distributions µ1 and µ2. By the individual extremality we note that µ1 and
µ2 have the same marginal distributions as µ, and so, by the previous proof,
the Xj remain independent under µ1 and µ2. This shows that µ1 = µ2 = µ,
and the required extremality follows.

Let us now suppose that the Xj are individually F -exchangeable and
F0-extreme. As before they are even F -extreme, and so the unconditional
statements apply to the conditional distribution of θtX −Xt given Ft, which
proves the required equivalence and extremality. �

To motivate the next result, we note that the representation in Theorem
2.18 may require an extension of the original probability space, to accom-
modate the random variables τ1, τ2, . . . . Similarly, for an F -exchangeable
process with a representation as in the cited theorem, the individual terms
may not be F -exchangeable or even F -adapted. Here we show how to achieve
the desired properties by a suitable extension of F . The result will be useful
in Chapter 5.

Given a filtration F on some index set I, we say (following FMP 18.4)
that G is a standard extension of F if

Ft ⊂ Gt ⊥⊥Ft F , t ∈ I.

The condition ensures that all adaptedness and martingale properties for the
original filtration F carry over to G.

Lemma 2.22 (term-wise exchangeability) Let X be an F-exchangeable pro-
cess on [0, 1], admitting a representation as in Theorem 2.18. Then the in-
dividual terms can be chosen to be separately G-exchangeable and G-extreme
for a suitable extension G of F . If X is F0-extreme, we can choose G to be
a standard extension of F .

Again we note that the representability requirement is redundant, since
the stated property holds automatically for every exchangeable process on
[0, 1], by Theorem 3.15 below.

Proof: Suppose that X has characteristics (α, ρ, β), and let ξ denote
the point process of jump times and sizes. To resolve the multiplicities of
the latter, we may introduce a uniform randomization ξ̃⊥⊥ξ F of ξ on the
space RRd × [0, 1]2, by independently attaching some i.i.d. U(0, 1) labels ϑj

to the original points (βj, τj). (The precise definition and construction are
described in FMP 12.7.) The points β̃j = (βj, ϑj) are a.s. distinct and may
be enumerated measurably in terms of the projection β̃ = ξ̃(· × [0, 1]), which
ensures that the associated times τj will be i.i.d. U(0, 1) and independent
of (α, ρ, β̃) and B. We choose G to be the filtration induced by F , ξ̃, and
(α, ρ, β̃).
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Through this construction, the pair (X, ξ̃) will be G-exchangeable and
G0-extreme, and with the chosen enumeration, the individual terms

Xj
t = βj(1{τj ≤ t} − t), t ∈ [0, 1], j ∈ NN,

become G-exchangeable and G-independent. This extends by subtraction
to include even the continuous component X0

t = σBt. All those terms are
also seen to be G0-extreme. Hence, by Lemma 2.21 they are even separately
G-exchangeable and G-extreme.

Now assume that X is already F0-extreme, so that α, ρ, and β are F0-
measurable. Then we need to show that

(Ft, ξ̃
t, α, ρ, β̃) ⊥⊥Ft F , t ∈ [0, 1],

where ξ̃t denotes the restriction of ξ̃ to RRd × [0, t] × [0, 1]. Omitting the
Ft-measurable components α, ρ, and Ft and subtracting the projection β̃t =
ξ̃t(· × [0, t]) from β̃, we may write the last relations in the equivalent form

(ξ̃t, β̃ − β̃t)⊥⊥Ft F , t ∈ [0, 1].

But here the left-hand side is a uniform randomization of the corresponding
Ft-measurable pair (ξt, β − βt), where ξt is the restriction of ξ to RRd × [0, t])
with projection βt onto RRd. The result is then a consequence of the condi-
tional independence in the original construction. �

2.5 Norm Relations and Regularity

The martingale properties of exchangeable and contractable processes can be
used to establish some basic norm relations. Here we consider continuous-
time, exchangeable or contractable processes on [0, 1], as well as summation
processes of the form

Xt =
∑
j≤nt

ξj , t ∈ [0, 1],

based on finite, exchangeable or contractable sequences of random variables
ξ1, . . . , ξn. The results can be used to establish some local growth properties
of exchangeable and contractable processes. They will also play an instru-
mental role for the weak convergence theory in the next chapter.
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Theorem 2.23 (norm comparison) Let X be a real, exchangeable semi-
martingale on [0, 1), and define γ = ([X]1 + X2

1 )1/2. Then uniformly in X
and (t, p), we have

(i) for (t, p) ∈ (0, 1) × (0,∞) in compacts,

‖Xt‖p � ‖X∗
1‖p � ‖γ‖p ;

(ii) for (t, p) ∈ [0, 1) × (0,∞) in compacts,

t1/(p∧1)‖γ‖p <
�

‖Xt‖p � ‖X∗
t ‖p <

�
t1/(p∨2)‖γ‖p .

The same relations hold for summation processes based on exchangeable n-
sequences, as long as t ≥ n−1. The bounds are sharp, though the upper rate
in (ii) can be improved to t1/(p∨1) when X is non-decreasing. All estimates re-
main valid for contractable processes in Lp, possibly except for those involving
X∗ when p < 1.

An elementary inequality will be helpful for the proof.

Lemma 2.24 (hyper-contraction) Let ξ be a random variable satisfying
‖ξ‖4 ≤ c‖ξ‖2 < ∞ for some constant c > 0. Then

(3c4)−1/p‖ξ‖2 ≤ ‖ξ‖p ≤ ‖ξ‖2, p ∈ (0, 2].

Proof: By scaling we may assume that ‖ξ‖2 = 1. Then Eξ4 ≤ c4, and so
the Paley–Zygmund inequality (FMP 4.1) yields

P{ξ2 > t} ≥ c−4(1 − t)2, t ∈ [0, 1].

Hence, by FMP 3.4 we get for any r ∈ (0, 1]

E|ξ|2r = r
∫ ∞

0
P{ξ2 > t}tr−1dt

≥ rc−4
∫ 1

0
(1 − t)2tr−1dt

=
2

c4(r + 1)(r + 2)
≥ 1

3c4 .

To obtain the asserted lower bound, it remains to take r = p/2 and raise
the extreme sides to the power 1/p. The upper bound holds by Jensen’s
inequality. �

Proof of Theorem 2.23: In view of the length and complexity of the
argument, we divide the proof into five parts:

1. Part (i) for exchangeable semi-martingales: Consider any process X
as in Theorem 2.18 with constant coefficients, and put Yt = Xt − αt. Then
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Mt = Yt/(1 − t) is a martingale on [0, 1), and we may integrate by parts to
get

dYt = (1 − t)dMt − Mtdt,

d[X]t = d[Y ]t = (1 − t)2d[M ]t.

Hence, for fixed t ∈ [0, 1) and p ≥ 1, the BDG-inequalities (FMP 26.12) yield

‖Y ∗
t ‖p ≤ ‖M∗

t ‖p � ‖[M ]1/2
t ‖p � ‖[X]1/2

t ‖p ≤ [X]1/2
1 ,

and so by Minkowski’s inequality

‖Xt‖p ≤ ‖X∗
t ‖p <

�
‖[X]1/2

t ‖p + t|α| <
�

γ. (23)

On the other hand, we see from (21) and Jensen’s inequality that, for any
p ≥ 2 and for fixed t ∈ (0, 1),

‖Xt‖2
p ≥ EX2

t = t(1 − t)[X]1 + t2α2 >
�

γ2. (24)

Finally, by the exchangeability of X and Minkowski’s inequality,

‖X∗
t ‖p ≤ ‖X∗

1‖p <
�

[t−1]‖X∗
t ‖p � ‖X∗

t ‖p . (25)

Combining (23)–(25), we obtain for any p ≥ 2

‖Xt‖p � ‖X∗
t ‖p � ‖X∗

1‖p � γ, (26)

which extends by Lemma 2.24 to arbitrary p > 0.
When the coefficients α, β, and σ are random, we see from Fubini’s

theorem and (26) that, for fixed t and p,

E[|Xt|p|α, β, σ] � E[X∗p
t |α, β, σ] � E[X∗p

1 |α, β, σ] � γp a.s.,

and all bounds being uniform, we may take expected values to obtain

‖Xt‖p � ‖X∗
t ‖p � ‖X∗

1‖p � ‖γ‖p . (27)

It is easy to check that the underlying estimates are uniform for t bounded
away from 0 and 1, as well as for p bounded away from 0 and ∞.

2. Part (ii) for exchangeable semi-martingales: Fix any u ∈ (0, 1), and let
t ∈ [0, u] be arbitrary. Applying (27) to the exchangeable process Ys = Xst/u,
s ∈ [0, 1], we obtain

‖Xt‖p = ‖Yu‖p � ‖Y ∗
u ‖p = ‖X∗

t ‖p , (28)

uniformly in t ≤ u. This proves the second relation in (ii).
To prove the upper bound in (ii), it suffices as before to consider pro-

cesses X with constant coefficients α, β, and σ. Noting that [X] is again
exchangeable by Theorem 1.15, we get for any t < 1 and p ≥ 2

‖[X]1/2
t ‖p

p = E[X]p/2
t ≤ [X]p/2−1

1 E[X]t = t[X]p/2
1 ,
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and so by (23)

‖Xt‖p <
�

‖[X]1/2
t ‖p + t|α| ≤ t1/p[X]1/2

1 + t|α| <
�

t1/pγ.

If instead p ≤ 2, then by (24) and Jensen’s inequality

‖Xt‖2
p ≤ EX2

t = t(1 − t)[X]1 + α2t2 <
�

tγ2.

Finally, when X is non-decreasing, we have for p ≥ 1

‖Xt‖p
p = EXp

t ≤ Xp−1
1 EXt = tαp ≤ tγp,

while for p ≤ 1 we get by Jensen’s inequality

‖Xt‖p ≤ ‖Xt‖1 = EXt = tα ≤ tγ.

It is easy to check that these estimates are uniform for t bounded away from
1 and for p bounded away from 0 and ∞.

To establish the lower bound, we may use part (i) and proceed as in (25)
to get for any t ∈ (0, 1) and p > 0

‖γ‖p � ‖X∗
1‖p <

�
[t−1]1/(p∧1)‖X∗

t ‖p ≤ t−1/(p∧1)‖X∗
t ‖p ,

again with the desired uniformity in t and p. This completes the proof of
(ii). To see that the three bounds are sharp, it suffices to consider the special
processes

X1
t = t, X2

t = 1{τ ≤ t}, X3
t = Bt,

where τ is U(0, 1) and B is a standard Brownian motion.

3. Exchangeable summation processes: Consider a summation process X
based on an exchangeable sequence ξ1, . . . , ξn. Introduce some independent
i.i.d. U(0, 1) random variables τ1, . . . , τn, and put Yt =

∑
j ξj1{τj ≤ t}. Then

Y is exchangeable with Y1 = X1, and we note that

Y ∗
1

d= X∗
1 , [Y ]1 + Y 2

1 = [X]1 + X2
1 = γ2.

Hence, the continuous-time result yields

‖Xt‖p ≤ ‖X∗
1‖p = ‖Y ∗

1 ‖p � ‖γ‖p ,

uniformly for p bounded away from 0 and ∞.
To get a reverse estimate, we may assume that n ≥ 3, since trivially

|Xt| = X∗
t when n ≤ 2 and t < 1. Fixing any t ∈ [2/n, 1) and writing

m = [nt], we get in the extreme case and for p ≥ 2

‖Xt‖2
p ≥ EX2

t = mEξ2
1 + m(m− 1)Eξ1ξ2

=
m

n

∑
j
ξ2
j +

m(m− 1)
n(n− 1)

∑
i �=j

ξiξj

=
m

n

(
1 − m− 1

n− 1

)∑
j
ξ2
j +

m(m− 1)
n(n− 1)

(∑
j
ξj

)2

= t′(1 − t′′)[X]1 + t′t′′X2
1 >

�
γ2,
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where t′ = m/n and t′′ = (m − 1)/(n − 1). Proceeding as before, we see
that (i) remains true in this case, uniformly for t bounded away from 0 and
1, and for p bounded away from 0 and ∞. As for part (ii), the previous
argument applies when t is a multiple of n−1, and the general result follows
by interpolation.

4. Contractable summation processes: If the sequence ξ1, . . . , ξn is con-
tractable, then by Lemma 1.11 we may choose an exchangeable sequence
η1, . . . , ηn such that ∑

j≤k
δξj

d=
∑

j≤k
δηj

, k ≤ n.

For the associated summation process X and Y we get

Xt
d= Yt, t ∈ [0, 1]; γ2 ≡ [X]1 + X2

1
d= [Y ]1 + Y 2

1 ,

and so by the previous case we have for suitable t and p

‖X∗
t ‖p ≥ ‖Xt‖p � ‖γ‖p , (29)

t1/(p∧1)‖γ‖p <
�

‖Xt‖p <
�

t1/(p∨2)‖γ‖p ,

with the stated improvement when the ξj are non-negative.
To derive the reverse estimate in (29), we may assume that the ξj are

integrable, since otherwise ‖γ‖p = ∞ for p ≥ 1 and there is nothing to prove.
By Theorem 2.13 the process X − X̂ is then a martingale on [0, 1) with
quadratic variation [X], where X̂ admits the martingale density

Mt =
E[X1 − Xt|Ft]

1 − t
, t ∈ [0, 1).

By a BDG-inequality we have for any t ∈ [0, 1] and p ≥ 1

‖(X − X̂)∗
t ‖p <

�
‖[X]1/2

t ‖p ≤ ‖γ‖p .

Next we may use the continuous-time version of Minkowski’s inequality (FMP
1.30), the sub-martingale property of |Mt|p (FMP 7.11), Jensen’s inequality,
and the equivalence in (29) to get for any t ∈ (0, 1) and p ≥ 1

‖X̂∗
t ‖p ≤

∥∥∥∥∫ t

0
|Ms|ds

∥∥∥∥
p
≤
∫ t

0
‖Ms‖pds

≤ ‖Mt‖p <
�

‖X1−t‖p <
�

‖γ‖p .

Combining the last two estimates and using Minkowski’s inequality, we ob-
tain

‖X∗
t ‖p ≤ ‖(X − X̂)∗

t ‖p + ‖X̂∗
t ‖p <

�
‖γ‖p ,

and we note as in (25) that the bound extends to ‖X∗
1‖p. This proves (i)

when t ∈ (0, 1) is fixed, uniformly for bounded p ≥ 1. We may finally use
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the scaling argument in (28) to see that the relation ‖Xt‖p � ‖X∗
t ‖p remains

uniform even for t bounded away from 1.

5. Contractable semi-martingales: For fixed t ∈ (0, 1), we may approxi-
mate X on [0, t] by the step processes

Xn
s = X([ns/t]t/n), s ∈ [0, t], n ∈ NN, (30)

and note that Xn
t ≡ Xt and (Xn)∗

t ↑ X∗
t as n = 2k → ∞. Using the result in

the previous case, employing monotone convergence, and arguing as in (25),
we obtain

‖Xt‖p = ‖Xn
t ‖p � ‖(Xn)∗

t ‖p → ‖X∗
t ‖p � ‖X∗

1‖p .

Next we define Xn as in (30) with t = 1 and put γn = [Xn]1 + (Xn
1 )2. As

a contractable semi-martingale, X is continuous in probability, and therefore
Xn

t
P→ Xt for all t ∈ [0, 1]. Furthermore, by a standard approximation

property for semi-martingales (cf. FMP 17.18), we have [Xn]t
P→ [X]t for all

t < 1, which extends to t = 1 by contractability. Thus, γn
P→ γ. Applying

the result in the previous case to the processes Xn, we see that

‖Xn
t ‖p � ‖γn‖p , t1/(p∧1)‖γn‖p <

�
‖Xn

t ‖p <
�

t1/(p∨2)‖γn‖p , (31)

with the appropriate improvement when X is non-decreasing. If Xt ∈ Lp

for some t ∈ QQ(0,1), we conclude that the sequences (Xn)∗
1 and γn are Lp-

bounded, and so by uniform integrability we have for any q < p and t ∈ [0, 1]

‖Xn
t ‖q → ‖Xt‖q , ‖γn‖q → ‖γ‖q .

Since also ‖Xt‖q → ‖Xt‖p and ‖γ‖q → ‖γ‖p as q → p by monotone conver-
gence, relations (31) extend in the limit to X and γ. �

The estimates of Theorem 2.23 allow us to improve on Theorem 2.13.

Theorem 2.25 (regularization) Any F-contractable process X on QQ[0,1] has
an a.s. rcll extension X̃ to [0, 1], which remains contractable with respect to
the augmented filtration F . If E[|Xt||F0] < ∞ a.s. for some t ∈ (0, 1), then
X̃ is a uniformly F0-integrable, special semi-martingale on [0, 1].

In Theorem 3.15 we shall use this result to show that every F -exchange-
able process on [0, 1] or RR+ is a semi-martingale. Our present proof requires
the following standard criterion for regularity.

Lemma 2.26 (optional continuity and regularity, Aldous) Let X be an RRd-
valued process on QQ[0,1] satisfying

Xτn+hn − Xτn

P→ 0, (32)

for any optional times τn and positive constants hn → 0 such that τn+hn ≤ 1.
Then X extends a.s. to an rcll process on [0, 1].



2. Conditioning and Martingales 101

Proof: By the corresponding tightness criterion (FMP 16.11) and its proof
we see that w̃(X,h) P→ 0 as h → 0, where w̃ is the modified modulus of con-
tinuity associated with the Skorohod topology on D = D([0, 1],RRd), and so
by monotonicity we have w̃(X,h) → 0 a.s. Arguing directly from definitions
or approximating by step processes, we conclude that the right and left lim-
its X± exist outside a fixed P -null set (FMP A2.2), and also that X+ ∈ D
a.s. It remains to note that X+ = X a.s. on QQ[0,1], since X is continuous in
probability in view of (32). �

Proof of Theorem 2.25: Fix any u ∈ (0, 1), and let X be the summation
process based on an extreme, exchangeable n-sequence with n ≥ u−1. Then
Theorem 2.23 yields ‖Xu‖1 � ‖Xu‖2 � γ, and so by the Paley–Zygmund
inequality (FMP 4.1) there exists a constant c > 0 such that

P{|Xu| > rcγ} ≥ c(1 − r)2
+, r > 0.

Substituting s = rγ and passing to the non-extreme case, we obtain

P{|Xu| > cs} ≥ cE(1 − s/γ)2
+, s > 0,

where (1− s/γ)+ is taken to be 0 when γ = 0. Using Chebyshev’s inequality
gives

P{γ > 2s} = P {1 − s/γ > 1
2}

= P
{
4(1 − s/γ)2

+ > 1
}

≤ 4E(1 − s/γ)2
+ ≤ 4c−1P{|Xu| > cs}. (33)

By another application of Theorem 2.23, we get in the extreme case
E|Xt| ≤ bt1/2γ for t ∈ [n−1, 1

2 ], where b > 0 is an absolute constant. Hence,
by Chebyshev’s inequality and (33), we have for any ε > 0

P{|Xt| > ε} ≤ 2sbt1/2ε−1 + P{γ > 2s}
≤ 2bst1/2ε−1 + 4c−1P{|Xu| > cs}.

The last estimate extends to contractable summation processes by Lemma
1.11, and since n was arbitrary, it remains true for any t ≤ 1

2 when X is a
contractable process on QQ[0,1]. The right-hand side tends to 0 as t → 0 and
then s → ∞, which shows that Xt

P→ 0 as t → 0.
Now consider any optional times τn and positive constants hn → 0 such

that τn + hn ≤ 1, and conclude from Proposition 2.5 that

Xτn+hn − Xτn

d= Xhn

P→ 0.

By Lemma 2.26 we can then extend X to an a.s. rcll process on [0, 1], and
by right continuity we note that X remains contractable with respect to the
augmented filtration F of F .
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If E[|Xt||F0] < ∞ a.s., then Theorem 2.23 yields E[X∗|F0] < ∞, and
so by Theorem 2.13 we see that X is a special F -semi-martingale on [0, 1).
Furthermore, the compensator X̂ is absolutely continuous with a conditional
martingale density M as in (14). Using Jensen’s inequality, the contractabil-
ity of X, and Theorem 2.23, we get for any t ∈ [0, 1)

E[|Mt||F0] ≤
E[|X1 − Xt||F0]

1 − t
=

E[|X1−t||F0]
1 − t

<
�

E[X∗|F0]
(1 − t)1/2 .

Thus, by Fubini’s theorem,

E
[∫ 1

0
|dX̂t|

∣∣∣∣F0

]
=

∫ 1

0
E[|Mt||F0] dt

<
�

E[X∗|F0]
∫ 1

0
(1 − t)−1/2 dt < ∞,

which shows that X̂ has F0-integrable variation. This in turn implies that
X − X̂ is a uniformly F0-integrable local martingale on [0, 1]. �

We may also use the previous methods to examine the local martingales
occurring in the semi-martingale decomposition of a contractable process,
first considered in Theorem 2.13. The following result is useful in connection
with stochastic integration.

Proposition 2.27 (martingale norms) Let X be an F-contractable process
on [0, 1] such that ‖Xt‖p < ∞ for some t ∈ (0, 1) and p ≥ 1. Then X =
M · λ + N a.s. for some Lp-martingales M and N on [0, 1) satisfying

‖λ|M| ‖p ∨ ‖N∗‖p <
�

‖X∗‖p < ∞.

Proof: Writing p′′ = p∨2 and using Jensen’s inequality, the contractability
of X, and Theorems 2.13 and 2.23, we get for s ∈ (0, 1) the uniform estimate

(1 − s)‖Ms‖p = ‖E[X1 − Xs|Fs]‖p

≤ ‖X1 − Xs‖p = ‖X1−s‖p

<
�

(1 − s)1/p′′‖Xt‖p.

Hence, by the extended Minkowski inequality (FMP 1.30),

‖λ|M| ‖p ≤ λ‖M‖p <
�

‖Xt‖p

∫ 1

0
(1 − s)1/p′′−1ds <

�
‖Xt‖p < ∞.

Since N = X − M · λ a.s., we may finally use Minkowski’s inequality and
Theorem 2.23 to obtain

‖N∗‖p ≤ ‖X∗‖p + ‖(M · λ)∗‖p <
�

‖Xt‖p < ∞. �
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2.6 Path Properties

Here we use martingale methods to study some path properties of exchange-
able processes, which requires us first to develop some general tools. We
begin with a basic super-martingale in discrete time.

Proposition 2.28 (discrete-time super-martingale, Dubins and Freedman,
Kallenberg) Let X = (X0,X1, . . .) be an F-adapted sequence of random vari-
ables with X0 = 0, and let ξ denote the jump point process of X. Fix an even
function f ≥ 0 on RR with f(0) = 0 and a non-increasing, convex function
g ≥ 0 on RR+, and put An = ξ̂nf . Suppose that either X is a local martingale,
f is convex, and f ′ is concave on RR+, or else that f is concave on RR+. Then
we can define a super-martingale Y ≥ 0 by

Yn = 2g(An) − f(Xn)g′(An), n ∈ ZZ+.

Note that A is allowed to be infinite. This causes no problem since both
g and g′ have finite limits g(∞) ≥ 0 and g′(∞) = 0 at ∞. We may also allow
g′(0) = −∞, with the understanding that 0 · ∞ = 0.

Proof: First assume that f is convex and f ′ is concave on RR+. For any
a ∈ RR and x ≥ 0, we have

f(a + x) − f(a) − xf ′(a) =
∫ x

0
{f ′(a + s) − f ′(a)} ds

≤
∫ x

0
{f ′(s/2) − f ′(−s/2)} ds

= 2
∫ x

0
f ′(s/2) ds = 4

∫ x/2

0
f ′(t) dt

= 4f(x/2) ≤ 2f(x),

where the second relation holds by the concavity of f ′ and the last one is due
to the convexity of f . Hence, for x ≥ 0

f(a + x) ≤ f(a) + xf ′(a) + 2f(x). (34)

Since f is even and f ′ is odd, it follows that

f(a− x) = f(−a + x) ≤ f(−a) + xf ′(−a) + 2f(x)
= f(a) − xf ′(a) + 2f(−x),

which extends (34) to arbitrary a, x ∈ RR.
Now consider any martingale X = (Xn) such that the sequences A = (An)

and Y = (Yn) are both a.s. finite. Using (34) and the martingale property of
X, we get for any n ∈ NN

E[f(Xn)|Fn−1] ≤ f(Xn−1) + 2E[f(∆Xn)|Fn−1]
= f(Xn−1) + 2∆An, (35)
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and so, by the convexity of g,

E[Yn|Fn−1] ≤ 2g(An) − {f(Xn−1) + 2∆An}g′(An)
= 2g(An−1) − f(Xn−1)g′(An)

+ 2{g(An) − g(An−1) − ∆Ang
′(An)}

≤ 2g(An−1) − f(Xn−1)g′(An−1) = Yn−1, (36)

which shows that Y is a super-martingale. The martingale property of X is
not required when f is concave on RR+, since (35) then follows trivially from
the subadditivity of f .

Let us now examine the cases of infinite values. First we note that Y is
a.s. finite. This is clear if we can only show that f(Xn) = 0 a.s. on the set
{An = 0}. Then write

E[f(∆Xn); ∆An = 0] = E[E[f(∆Xn)|Fn−1]; ∆An = 0]
= E[∆An; ∆An = 0] = 0,

and conclude that f(∆Xn) = 0 a.s. on {∆An = 0}. Excluding the trivial
case where f ≡ 0, we obtain ∆X1 = · · · = ∆Xn = 0 a.s. on {An = 0}, which
implies Xn = 0 a.s. on the same set. Hence,

Yn = 2g(0) − f(0)g′(0) = 2g(0) < ∞ a.s. on {An = 0}.

Next we consider the possibility that An may be infinite. Then (36) remains
true with the same proof on the set {An < ∞}, and on {An = ∞} we have
trivially

E[Yn|Fn−1] = E[2g(∞)|Fn−1] = 2g(∞)
≤ 2g(An−1) − f(Xn−1)g′(An−1) = Yn−1.

It remains to extend the result for convex functions f to local martingales
X. Then consider any optional time τ such that the stopped sequence Xτ

n =
Xτ∧n is a true martingale. Noting that

E[f(∆Xτ
k )|Fk−1] = E[f(∆Xk)|Fk−1]1{τ ≥ k} = ∆Ak1{k ≤ τ},

we obtain
Aτ

n =
∑

k≤n∧τ
∆Ak =

∑
k≤n

E[f(Xτ
k )|Fk−1],

and so the sequence

Y τ
n = 2g(Aτ

n) − f(Xτ
n)g′(Aτ

n), n ∈ ZZ+,

is a positive super-martingale. Applying this result to a localizing sequence
τ1, τ2, . . . and using Fatou’s lemma, we obtain the same property for the orig-
inal sequence Yn. �

We proceed with a continuous-time version of the last result.
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Proposition 2.29 (continuous-time super-martingale) Let X be a quasi-
left-continuous semi-martingale with X0 = 0, and let ξ denote the jump
point process of X. Fix an even function f ≥ 0 on RR with f(0) = 0 and
a non-increasing, convex function g ≥ 0 on RR+, and let A be a predictable
process with A0 = 0 and dAt ≥ dξ̂tf . Suppose that either X is a purely
discontinuous local martingale, f is convex, and f ′ is concave on RR+, or else
that X is of pure jump type and f is concave on RR+. Then we can define a
super-martingale Y ≥ 0 by

Yt = 2g(At) − f(Xt)g′(At), t ≥ 0.

When f(x) ≡ x2, the statement remains true with At = 〈X〉t for any local
L2-martingale X. If instead f(x) ≡ |x| and X has locally finite variation,
we may take A = V̂ , where V is the total variation process of X.

Here g′ is right-continuous by convention. As before, we may allow A to
take infinite values, and we may also have g′(0) = −∞, with the understand-
ing that 0 · ∞ = 0. For convenience, we begin with a couple of lemmas.

Lemma 2.30 (convex functions and super-martingales) Let X ≥ 0 be a
special semi-martingale with compensator X̂ and X0 = 0, consider a non-
decreasing, predictable process A with A0 = 0 and dAt ≥ dX̂, and fix a
non-increasing, convex function g ≥ 0 on RR+. Then we can define a super-
martingale Y ≥ 0 by

Yt = g(At) − Xtg
′(At), t ≥ 0.

Proof: By suitable approximation we may assume that g′(0) is finite.
Integrating by parts, as in FMP 26.10, and using the convexity of g, the
positivity of X, and the monotonicity of A, we obtain

dYt = dg(At) − d(Xtg
′(At))

= dg(At) − Xt−dg′(At) − g′(At)dXt

≤ dg(At) − g′(At)dXt.

Hence, by FMP 26.4 and the monotonicity of g and A− X̂,

dŶt ≤ dg(At) − g′(At)dX̂t

≤ dg(At) − g′(At)dAt. (37)

To estimate the right-hand side, we may assume that g is smooth on
(0,∞), since we can otherwise approximate g′ from above by a suitable con-
volution with the desired properties. Using the general substitution rule in
FMP 26.7, we get for any s < t

g(At) − g(As) =
∫ t+

s+
g′(Ar−)dAr +

∑
r∈(s,t]

(∆g(Ar) − g′(Ar−)∆Ar)

=
∫ t+

s+
g′(Ar)dAr +

∑
r∈(s,t]

(∆g(Ar) − g′(Ar)∆Ar).
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Noting that
∆g(Ar) ≤ g′(Ar)∆Ar, r ≥ 0,

by the convexity of g and the monotonicity of A, we get dg(At) ≤ g′(At)dAt,
and so by (37) the process Ŷ is non-increasing, which shows that Y is a local
super-martingale. Since Y ≥ 0, we conclude that Y is even a true super-
martingale. �

The following lemma gives the required estimate for convex functions f
and purely discontinuous martingales X. Here we write

∫ t
s for integration

over (s, t].

Lemma 2.31 (domination) Let X be a quasi-left-continuous, purely dis-
continuous, local martingale with jump point process ξ, and consider an
even, convex function f ≥ 0 on RR such that f ′ is concave on RR+ and
f(0) = f ′(0) = 0. Then

f(Xt) ≤ f(Xs) +
∫ t

s
f ′(Xr−)dXr + 2(ξt − ξs)f, s < t.

Proof: Fix any s < t in RR+ and a partition s = t0 < t1 < · · · < tn = t.
We claim that

f(Xt) ≤ f(Xs) +
∑

k
f ′(Xtk−1)(Xtk − Xtk−1)

+ 2
∑

k
f(Xtk − Xtk−1). (38)

Indeed, the formula for n = 1 agrees with (34) for a = Xs and x = Xt − Xs.
Proceeding by induction, we assume the result to be true for partitions into
n− 1 intervals. Turning to the case of n intervals, we obtain

f(Xt) ≤ f(Xt1) +
∑

k>1
f ′(Xtk−1)(Xtk − Xtk−1)

+ 2
∑

k>1
f(Xtk − Xtk−1),

and by (34)

f(Xt1) ≤ f(Xs) + f ′(Xs)(Xt1 − Xs) + 2f(Xt1 − Xs).

Adding the two inequalities gives (38).
The first sum in (38) may be regarded as a stochastic integral with respect

to X of the predictable step process f ′(Xn), where

Xn
t =

∑
k
Xtk−11{t ∈ (tk−1, tk]}, t ≥ 0.

Choosing successively finer partitions with mesh size maxk(tk − tk−1) → 0,
we get f ′(Xn

t ) → f ′(Xt−) for all t ≥ 0, and since the processes f ′(Xn) are
uniformly locally bounded, we conclude from FMP 26.4 that

∑
k
f ′(Xtk−1)(Xtk − Xtk−1)

P→
∫ t

s
f ′(Xr−)dXr.
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To deal with the second sum in (38), we first assume that X has finite
variation and finitely many jumps in (s, t], say at τ1, . . . , τm . Letting τj ∈
(tk−1, τk] for k = κj , j = 1, . . . ,m, and writing K = {κ1, . . . , κm}, we note
that ∑

k∈K
f(Xtk − Xtk−1) →

∑
j
f(∆Xτj

) = ξtf − ξsf.

Since f(x) = o(x) as x → 0, the contribution from the complement Kc tends
to 0, and so the entire sum tends to the same limit ξtf − ξsf .

Proceeding to martingales X with the stated properties, we may first
reduce by localization to the case where f ′ is bounded. In fact, let fn be
the even, convex function satisfying fn(x) = f(x) when |f ′(x)| ≤ n and
f ′

n(x) = ±n when |f ′(x)| > n. Writing τn = inf{t ≥ 0; |f ′(x)| > n} and
using the result in the special case, we get for any m ≤ n

fn(Xτm
t ) ≤ fn(Xτm

s ) +
∫ t

s
f ′(Xτm

r− )dXτm
r + 2(ξτm

t − ξτm
s )fn,

and the desired formula follows as we let n → ∞ and then m → ∞. By a
further localization, we may assume that EX∗ < ∞.

Since X is quasi-left-continuous, we can choose a sequence of totally inac-
cessible times τ1, τ2, . . . enumerating the jump times of X. For every n ∈ NN
we introduce the process Xn of compensated jumps at τ1, . . . , τn, and note
that each Xn has finite variation and finitely many jumps. Hence, the result
in the special case yields

f(Xn
t ) ≤ f(Xn

s ) +
∫ t

s
f ′(Xn

r−)dXn
r + 2(ξn

t − ξn
s )f, (39)

where ξn is the jump point process associated with Xn. Since X is purely
discontinuous, we have (X − Xn)∗ P→ 0, and therefore f(Xn

t ) P→ f(Xt) and
f(Xn

s ) P→ f(Xs) by the continuity of f . We also note that (ξn
t − ξn

s )f →
(ξt − ξs)f by monotone convergence.

To deal with the stochastic integral in (39), we may write Y = f ′(X) and
Y n = f ′(Xn), and conclude from a BDG-inequality (FMP 26.12) that

E(Y n
− · Xn − Y− · X)∗

t

≤ E(Y n
− · (Xn − X))∗

t + E((Y n
− − Y−) · X)∗

t

≤ E((Y n
− )2 · [Xn − X])1/2

t + E((Y n
− − Y−)2 · [X])1/2

t .

Noting that the processes Y and Y n are uniformly bounded with (Y −Y n)∗ P→
0 and that E[X −Xn]1/2

∞ → 0, we see that the right-hand side tends to 0 by
dominated convergence as n → ∞. Hence,∫ t

0
f ′(Xn

s−)dXn
s

P→
∫ t

0
f ′(Xs−)dXs, t ≥ 0,

and the desired relation follows as we let n → ∞ in (39). �
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Proof of Proposition 2.29: Define U = f(X), with f and X as stated.
By Lemma 2.30 it suffices to show that U is a special semi-martingale with
compensator bounded by 2A for the specified processes A. This is obvious
when X is a local L2-martingale and f(x) ≡ x2, since the compensator of X2

equals 〈X〉 by definition (FMP 26.1). It is equally obvious when f(x) ≡ |x|
and X has locally finite variation. Next let f be non-decreasing and concave
on RR+ with f(0) = 0, and let X be a pure jump type process. Then, by
subadditivity, we have for any s < t

f(Xt) − f(Xs) ≤
∑

r∈(s,t]
f(∆Xr) = ξtf − ξsf,

and so the compensator of U = f(X) is bounded by A = ξ̂f . The case of con-
vex functions f and purely discontinuous martingales follows from Lemma
2.31, since the integral f ′(X−) · X is a local martingale by FMP 26.13. �

We may use the previous results to study the local growth of exchangeable
processes on [0, 1]. A different approach based on coupling is exhibited in
connection with Corollaries 3.29 and 3.30. Given an even, convex function
f ≥ 0 with f(0) = 0, we write f−1 for the non-negative inverse of f .

Theorem 2.32 (local growth, Fristedt, Millar, Kallenberg) Let X be an
exchangeable process on [0, 1] with characteristics (α, 0, β), and fix an even,
continuous function f ≥ 0 on RR with f(0) = 0 and βf < ∞ a.s. Then the
following statements hold as t → 0:

(i) If f is convex, f ′ is concave on RR+ with f ′(0) = 0, and c > 1, then

Xt

f−1(t| log t|c) → 0 a.s.,
Xt

f−1(t)
P→ 0.

(ii) If
∑

j |βj | < ∞ and α =
∑

j βj , and if f is concave on RR+, then

Xt

f−1(t)
→ 0 a.s.

Proof: (i) We may clearly assume that α and β are non-random, and since
t/f−1(t| log t|c) → 0 as t → 0, we may even take α = 0. Then Theorem 2.13
shows that Mt = Xt/(1 − t) is a purely discontinuous, quasi-left-continuous
martingale on [0, 1), and that the compensator µ̂t of the associated jump
point process µt satisfies

µ̂t − µ̂s =
∫ t

s

dξ̂r

1 − r
≤
∫ t

s

β dr

(1 − r)2 ≤ (t − s)β
(1 − t)2 , s < t < 1.

Hence, by Proposition 2.29 and FMP 7.18,

f(Mt)g′(2tβf) → a ≤ 0 a.s., t → 0,
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for any non-increasing and convex function g : RR+ → RR+. In particular, we
may take g′(t) = −(t| log t|c)−1 for small t > 0 and arbitrary c > 1 to get as
t → 0

f(Mt)
t| log t|c → ac ≥ 0 a.s., c > 1.

Comparing with the limit for exponents c′ ∈ (1, c), we see that in fact ac = 0.
Since f(rx) ≤ r2f(x) for r ≥ 1 by the concavity of f ′, we obtain

|Xt|
f−1(t| log t|c) =

(1 − t)|Mt|
f−1(t| log t|c) <

�

(
f(Mt)
t| log t|c

)1/2

→ 0 a.s.,

as required.
Next we see from Lemma 2.31 that

f(Mt) ≤
∫ t

0
f ′(Ms−)dMs + 2µtf, t ∈ [0, 1).

Putting τn = inf{t > 0; |Mt| > n} and noting that the stopped integral
process (f ′(M−) · M)τn is a true martingale, we get

Ef(Mt∧τn) ≤ 2Eµtf = 2Eµ̂tf ≤ 2t(1 − t)−2βf,

and so by Fatou’s lemma

Ef(Xt) ≤ Ef(Mt) ≤ lim inf
n→∞ Ef(Mt∧τn) ≤ 2t(1 − t)−2βf.

Using this relation and noting that f(x+y) ≤ 2f(x)+2f(y) for any x, y ∈ RR,
we get for t ∈ (0, 1] and n ∈ NN

t−1Ef(Xt) <
�

t−1Ef
(∑

j≤n
βj(1{τj ≤ t} − t)

)
+ t−1Ef

(∑
j>n

βj(1{τj ≤ t} − t)
)

<
�

t−1f
(
t
∑

j≤n
|βj |

)
+
∑

j>n
f(βj),

which tends to 0 as t → 0 and then n → ∞. This gives f(Xt)/t
P→ 0, and

we conclude as before that Xt/f
−1(t) P→ 0.

(ii) Here the subadditivity of f yields

f(Xt) = f
(∑

j
βj1{τj ≤ t}

)
≤
∑

j
f(βj)1{τj ≤ t}, t ∈ [0, 1].

Now Theorem 2.12 or 2.20 shows that the processes

Mn
t = t−1

∑
j>n

f(βj)1{τj ≤ t}, t ∈ (0, 1], n ∈ ZZ+, (40)
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are reverse, L1-bounded martingales, and therefore converge a.s. as t → 0
toward some finite limits Mn

0 . Since trivially M0
t − Mn

t → 0 a.s., Fatou’s
lemma gives

EM0
0 = EMn

0 ≤ lim inf
t→0

EMn
t =

∑
j>n

f(βj),

and n being arbitrary, we conclude that M0
0 = 0 a.s. Hence, f(Xt)/t → 0

a.s., and the assertion follows as before, since f(rt) ≤ rf(t) for r > 1 by the
concavity of f . �

We may also use the previous methods to study the convergence of the
series of centered jumps in the representation formula for exchangeable pro-
cesses exhibited in Theorem 2.18.

Proposition 2.33 (uniform convergence) Let τ1, τ2, . . . be i.i.d. U(0, 1),
and fix an even, continuous function f ≥ 0 on RR with f(0) = 0 and βf < ∞.
Then the following statements hold as n → ∞:

(i) If f is convex, f ′ is concave on RR+ with f ′(0) = 0, and p ∈ (0, 1), then

sup
t∈(0,1)

∣∣∣∑j>nβj(1{τj ≤ t} − t)
∣∣∣

f−1(tp(1 − t)p)
→ 0 a.s.

(ii) If f is concave on RR+, then

sup
t∈(0,1]

∣∣∣∑j>nβj1{τj ≤ t}
∣∣∣

f−1(t)
→ 0 a.s.

Proof: (i) Introduce the martingales Mn
t = Xn

t /(1 − t), where

Xn
t =

∑
j>n

βj(1{τj ≤ t} − t), t ∈ [0, 1], n ∈ ZZ+,

and note as before that the jump point processes µn of Mn satisfy dµ̂n
t ≤

4βnfdt on [0, 1
2 ], where βnf =

∑
j>n f(βj). Hence, we may form a super-

martingale Y n as in Proposition 2.29, based on the processes Mn
t and An

t =
4tβnf and for any non-increasing, convex function g ≥ 0 on RR+. By the
Bernstein–Lévy maximum inequalities (FMP 7.15) we get for any r > 0

rP
{
supt≤1/2(−f(Xn

t )g′(4tβnf)) ≥ r
}

≤ rP{suptY
n
t ≥ r}

≤ 3 suptEY n
t ≤ 6g(0) < ∞,

which shows that the sequence of suprema on the left is tight. Fixing any
p ∈ (0, 1), we may choose g′(t) = −t−p for small t > 0 and conclude from
FMP 4.9 that as n → ∞

sup
t∈(0,1/2]

t−pf(Xn
t ) P→ 0.
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By symmetry the same result holds for the processes Xn
1−t, and so by com-

bination
sup

t∈(0,1)

f(Xn
t )

tp(1 − t)p

P→ 0.

Since f(rt) ≤ r2f(t) for all r ≥ 1, we conclude that

sup
t∈(0,1)

|Xn
t |

f−1(tp(1 − t)p)
P→ 0,

and the corresponding a.s. convergence follows by Lemma 2.19.
(ii) Here we introduce the processes

Xn
t =

∑
j>n

βj1{τj ≤ t}, t ∈ [0, 1], n ∈ ZZ+,

and note as before that f(Xn
t ) ≤ tMn

t , where the Mn are given by (40). Since
the latter processes are reverse martingales on (0, 1] with EMn

t = βnf < ∞,
we may apply the Bernstein–Lévy inequalities to get as n → ∞

rP{(Mn)∗ > r} ≤ βnf → 0, r > 0,

which shows that (Mn)∗ P→ 0. Since (Mn)∗ is non-increasing in n, the last
result remains true in the a.s. sense, and we obtain

supt t
−1f(Xn

t ) ≤ (Mn)∗ → 0 a.s.

The assertion now follows since f(rx) ≤ rf(x) for any r ≥ 1 by the concavity
of f . �

2.7 Palm Measure Invariance

Fix a σ-finite measure λ on a measurable space (S,S). If ξ is a mixed Poisson
process on S directed by ρλ for some random variable ρ ≥ 0, then clearly

P{ξB = 0} = ϕ(λB), B ∈ S,

where ϕ(t) = Ee−tρ denotes the Laplace transform of ρ. When 0 < λS < ∞,
we note that the same formula holds for a mixed binomial process ξ based on
the probability measure λ/λS and a ZZ+-valued random variable κ, provided
that we choose ϕ(t) = E(1 − t/λS)κ for t ∈ [0, λS]. In either case, ξ has
Laplace functional

Ee−ξf = ϕ(λ(1 − e−f )), f ≥ 0, (41)

where the function f is understood to be measurable. This shows that the
distribution of ξ is uniquely given by the pair (λ,ϕ), and justifies that we
write L(ξ) = M(λ,ϕ).
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In the context of Palm measures, it is convenient to allow the basic “prob-
ability” measure P to be σ-finite, provided that the associated “distribution”
of ρ or κ is such that ϕ(t) < ∞ for all t > 0. Then the “distribution” of
ξ is still determined by (λ,ϕ), and the notation M(λ,ϕ) continues to make
sense. In fact, by an extension of the Hausdorff–Bernstein Theorem A4.1,
we may choose ϕ to be any completely monotone function on (0, λS). In
particular, given a pair (λ,ϕ) as above with ϕ(0) = 1, we may consider the
σ-finite measure M(λ,−ϕ′).

The following result characterizes the mixed Poisson and binomial pro-
cesses in terms of their reduced Palm measures. For the definitions and ele-
mentary properties of Palm and supporting measures, we refer to Appendix
A5.

Theorem 2.34 (reduced Palm measures, Papangelou, Kallenberg) Let ξ be
a point process on a Borel space S with reduced Palm measures Q′

s, s ∈ S.
Then we can choose the latter to be independent of s iff ξ is a mixed Poisson
or binomial process, in which case L(ξ) = M(λ,ϕ) iff Q′

s = M(λ,−ϕ′) a.e. λ.

This leads in particular to the following classical characterization of the
general Poisson process.

Corollary 2.35 (Poisson criterion, Slivnyak) Let ξ be a point process on a
Borel space S with reduced Palm distributions Q′

s, s ∈ S. Then Q′
s = L(ξ)

a.e. Eξ iff ξ is Poisson.

Proof: Assume the stated condition. Then Theorem 2.34 yields

L(ξ) = M(λ,ϕ) = M(λ,−ϕ′),

for some measure λ and function ϕ. Solving the equation ϕ = −ϕ′ gives
ϕ(t) = e−t, which means that ξ is Poisson with intensity λ. Reversing the
argument yields the result in the opposite direction. �

Our proof of Theorem 2.34 is based on a simple connection between Palm
measures and regular conditional distributions.

Lemma 2.36 (Palm measures and conditioning) Let ξ be a random measure
on a Borel space (S,S) with Palm measures Qs, s ∈ S, fix a set C ∈ S with
ξC < ∞ a.s., and consider a random element τ in C satisfying

P [τ ∈ ·|ξ] = (1C · ξ)/ξC a.s. on {ξC > 0}. (42)

Then for any measurable function f ≥ 0, we have

E[f(ξ, τ)|ξC, τ ] =
∫

f(µ, τ) q(τ, ξC, dµ) a.s. on {ξC > 0}, (43)

where q is a probability kernel from C × (0,∞) to M(S) given by

q(s, x, ·) = Qs[ · |µC ∈ dx], s ∈ C, x > 0. (44)
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Proof: By the definition of the Palm measures Qs and the a.s. finiteness
of ξC, we note that the measures Rs = Qs{µC ∈ ·} are σ-finite for s ∈ C
a.e. λ, where λ denotes the supporting measure associated with the kernel Q.
This ensures the existence, for λ-almost every s ∈ C, of a probability kernel
q(s, ·) from (0,∞) to M(S) satisfying (44). Furthermore, we see from FMP
7.26 that q(s, x, ·) has a product measurable version on C × (0,∞). It is also
clear that q is independent of the choice of λ.

To prove (43), we may clearly assume that λC > 0. Using (42), (44), the
definition of Palm and supporting measures, and the disintegration theorem
(FMP 6.4), we get for any product measurable function f ≥ 0 on M(S)×C

Ef(ξ, τ) = E
∫

C
f(ξ, s) ξ(ds)/ξC

=
∫

C
λ(ds)

∫
f(µ, s) Qs(dµ)/µC

=
∫

C
λ(ds)

∫
x−1Rs(dx)

∫
f(µ, s) q(s, x, dµ).

Writing rs(dx) = Rs(dx)/x for x > 0, we obtain

L(τ, ξC, ξ) = λ ⊗ r ⊗ q on C × (0,∞) ×M(S),
L(τ, ξC) = λ ⊗ r on C × (0,∞),

in the sense of composition of kernels (FMP 1.41). Hence, for any measurable
subset B ⊂ C × (0,∞),

E[f(ξ, τ); (τ, ξC) ∈ B] =
∫ ∫

B
(λ ⊗ r)(dxds)

∫
f(µ, s) q(s, x, dµ)

= E
[∫

f(µ, τ) q(τ, ξC, dµ); (τ, ξC) ∈ B
]
,

and (43) follows. �

Proof of Theorem 2.34: First suppose that L(ξ) = M(λ,ϕ). In particular,
we note that λ is then a supporting measure for ξ. Fixing a measurable
function f ≥ 0 on S with λf > 0 and a set B ∈ S with λB < ∞, we get
by (41)

Ee−ξf−tξB = ϕ(λ(1 − e−f−t1B)), t ≥ 0.

Taking right derivatives at t = 0 gives

EξBe−ξf = −ϕ′(λ(1 − e−f )) λ(1Be−f ),

where the formal differentiation on each side is justified by dominated conver-
gence. Writing Qs for the Palm measures of ξ associated with the supporting
measure λ, we obtain∫

B
λ(ds)

∫
e−µf Qs(dµ) = −ϕ′(λ(1 − e−f ))

∫
B

e−f (s) λ(ds),
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and since B was arbitrary, we get for s ∈ S a.e. λ∫
e−µf Qs(dµ) = −ϕ′(λ(1 − e−f )) e−f (s),

which implies∫
e−µf Q′

s(dµ) =
∫

e−(µf−δs)f Qs(dµ) = −ϕ′(λ(1 − e−f )).

This extends by monotone convergence to arbitrary f ≥ 0, and we may
conclude that Q′

s = M(λ,−ϕ′) a.e. λ. In particular, Q′
s is independent of

s ∈ S a.e. λ.
Conversely, suppose that we can choose the supporting measure λ and

the associated reduced Palm measures Q′
s such that Q′

s = Q′ is independent
of s. Let us first assume that ξS < ∞ a.s. and P{ξ �= 0} > 0. We may then
introduce a random element τ in S satisfying

P [τ ∈ ·|ξ] = ξ/ξS a.s. on {ξS > 0}. (45)

For n ∈ NN with P{ξS = n} > 0, we get by Lemma 2.36

P [ξ − δτ ∈ M| ξS = n, τ ∈ ds] = Qs[µ − δs ∈ M|µS = n]
= Q′[M|µS = n− 1],

which implies
τ ⊥⊥ξS (ξ − δτ ) on {ξS > 0}. (46)

Next we get, for any B ∈ S and for n ∈ NN with P{ξS = n} > 0,

P [τ ∈ B| ξS = n]

= E[ξB| ξS = n]/n =
E[ξB; ξS = n]
nP{ξS = n}

=
∫
B Qs{µS = n}λ(ds)

nP{ξS = n} =
Q′{µS = n− 1}λB

nP{ξS = n} .

In particular, we may take B = S to see that 0 < λS < ∞. Dividing the
expressions for B and S, and using (46), we obtain

P [τ ∈ ·| ξS, ξ − δτ ] = P [τ ∈ ·| ξS] = λ/λS a.s. on {ξS > 0}. (47)

Since S is Borel, we may write ξ =
∑

j≤κ δσj
for some random elements

σ1, . . . , σκ of S, where κ = ξS. Now introduce some mutually independent
random variables π1, π2, . . . ⊥⊥ ξ with distributions

P{πk = j} = k−1, j = 1, . . . , k, k ∈ NN.

Define τ1 = σ ◦ πκ, select τ2 from the remaining set {σj ; j �= πκ} as variable
number πκ−1, and continue recursively until the whole sequence τ1, . . . , τκ
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has been constructed, by means of πκ, . . . , π1, as a random permutation of
σ1, . . . , σκ. Then (τ1, . . . , τκ) is clearly conditionally exchangeable given κ =
ξS, and (45) follows with τ = τ1. Using (47) and invoking the independence
of the variables πk, we obtain

P [τ1 ∈ ·|κ, τ2, . . . , τκ] = λ/λS a.s. on {κ > 0},

which extends by exchangeability to

P [τi ∈ ·|κ; τj, j �= i] = λ/λS, i ≤ κ, a.s. on {κ > 0}.

The τi are then conditionally i.i.d. λ/λS given κ = ξS, which means that ξ
is a mixed binomial process based on λ/λS. In other words, L(ξ) = M(λ,ϕ)
for some completely monotone function ϕ on [0, λS].

Let us finally allow ξ to be unbounded. Choosing sets Bn ↑ S in S with
ξBn < ∞ a.s., we see from the previous argument that

L(1Bnξ) = M(1Bnλ,ϕn), n ∈ NN,

for some completely monotone functions ϕn on [0, λBn], n ∈ NN. The unique-
ness of the representation yields ϕm = ϕn on the common interval [0, λBm ∧
λBn], and so there exists a common extension ϕ on [0, λS), which is again
completely monotone on the new interval. For any measurable function f ≥ 0
on S, we may put fn = 1Bnf and note that

Ee−ξfn = ϕ(λ(1 − e−fn)), n ∈ NN.

Equation (41) now follows as we let n → ∞, by monotone and domi-
nated convergence together with the continuity of ϕ. This shows that again
L(ξ) = M(λ,ϕ). �

We turn to a similar but more sophisticated result for general random
measures. Here we write ξ ∈ S1(λ, α, β) if ξ is symmetrically distributed with
respect to the positive and bounded measure λ on S with diffuse component
ξd = αλ/λS, with atom sizes βj given by the point process β =

∑
j δβj

, and
with associated atom positions τj that are independent random variables with
the common distribution λ̂ = λ/λS. Note that this forces λ to be diffuse,
unless α = 0 and β(0,∞) ≤ 1 a.s. In the exceptional case, we have ξ = β1δτ1

for some independent random elements β1 and τ1, where the distribution of
the latter is arbitrary.

Similarly, by ξ ∈ S∞(λ, α, ν) we mean that ξ is again λ-symmetric, but
now with conditionally independent increments directed by the pair (α, ν).
Thus, ξ has again diffuse component ξd = αλ, and the atoms of ξ are given
by a Cox process η⊥⊥ν α on S × (0,∞) directed by λ ⊗ ν. Given the Palm
measures Qs of a random measure ξ, we now define the associated reduced
versions Q′

s by

Q′
s = Qs{µ; (µ{s}, µ− µ{s}δs) ∈ ·}, s ∈ S.



116 Probabilistic Symmetries and Invariance Principles

Theorem 2.37 (invariant Palm measures) Let ξ be a random measure on a
Borel space S with supporting measure λ and associated reduced Palm mea-
sures Q′

s. Then Q′
s = Q′ is a.e. independent of s iff ξ is λ-symmetric, in

which case even Q′ is λ-symmetric, and λ is diffuse unless ξ is a.s. degener-
ate. Furthermore, letting λ = Eξ be σ-finite and Q′

s ≡ Q′ = L(η, ζ), we have
η⊥⊥ ζ iff either of these conditions holds:

(i) ξ ∈ S1(λ, 0, β) for some mixed binomial process β on (0,∞),
(ii) ξ ∈ S∞(λ, ρα, ρν) for a fixed pair (α, ν) and some random ρ ≥ 0.

The last assertion contains the remarkable fact that, in the case of inde-
pendence η⊥⊥ ζ, the atomic structure of ξ, regarded as a point process on
the product space S × (0,∞), is separately exchangeable with respect to the
measures Eξ and Eβ or Eν, respectively. It is only in the mixed Poisson
case that we can also have a diffuse component, which is then proportional
to ν.

A lemma will again be helpful for the proof. Here and below, we write
lβ = l · β for l(x) ≡ x, and when 0 < ξS < ∞ we put ξ̂ = ξ/ξS.

Lemma 2.38 (symmetry and independence) Let ξ be a random measure on
S with ξS < ∞ a.s., let P [τ ∈ ·|ξ] = ξ̂ a.s. on {ξ �= 0}, and define

(η, ζ) = (ξ{τ}, ξ − ξ{τ}δτ ) on {ξ �= 0}.

Then ξ ∈ some S1(λ, α, β) iff τ ⊥⊥ (η, ζ) conditionally on {ξ �= 0}, where λ is
diffuse unless ξ is a.s. degenerate. In that case, (η, ζ) is again conditionally
λ-symmetric, say with ζ ∈ S1(λ, α′, β′) on {ξ �= 0}, and writing γ = αδ0 + lβ
and γ′ = α′δ0 + lβ′, we have for any measurable function f ≥ 0

E[f(η, γ′)| ξ �= 0] = E
[∫

f(x, γ − xδx)γ̂(dx)
∣∣∣∣ γ �= 0

]
.

Proof: Define λ = P [τ ∈ ·|ξ �= 0], let α be the total diffuse mass of ξ, write
β =

∑
j δβj

for the point process of atom sizes of ξ, and put γ = αδ0 + lβ.
Assuming τ ⊥⊥ (η, ζ) and noting that γ is a measurable function of (η, ζ), we
obtain

P [τ ∈ ·| γ, η, ζ] = λ a.s. on {γ �= 0}. (48)

Since also P [τ ∈ ·|ξ, γ] = ξ̂ a.s. on {γ �= 0}, and since conditional λ-symmetry
implies the corresponding unconditional property, we may henceforth assume
that γ is non-random and nonzero.

Now let τ1, τ2, . . . be the positions of the atoms of sizes β1, β2, . . . , enu-
merated in exchangeable order in case of multiplicities, as in the proof of
Theorem 2.34. Considering (48) on the set {η = βk} and arguing as in the
previous proof, we obtain

P [τk ∈ ·| ξ{τk}, ξ − ξ{τk}δτk
; τj, j �= k] = λ a.s. , k ≤ β(0,∞),
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which shows that the τj are i.i.d. λ. When α > 0, we note that also a.s.

ξd/α = P [τ ∈ ·| ξ{τ} = 0, ξ]
= P [τ ∈ ·| η = 0, ζ] = P{τ ∈ ·} = λ,

which implies ξd = αλ a.s. In particular, λ is diffuse when α > 0. The same
thing is true when β(0,∞) > 1, since otherwise we would have P{τ1 = τ2} >
0, contradicting the definition of the τj . The λ-symmetry of ξ then follows
under either condition. In the degenerate case, the required symmetry is
obvious from the representation ξ = β1δτ .

By the disintegration theorem (FMP 6.4) and the definitions of τ , η, and
γ, we get for any measurable function f ≥ 0 on RR+

E[f(η)|ξ] = E[f(ξ{τ})|ξ] =
∫

S
f(ξ{s}) ξ̂(ds) =

∫ ∞

0
f(x) γ̂(dx),

a.s. on {ξ �= 0}. Using this fact and applying the disintegration theorem once
more, we conclude that

E[f(η, γ′)| ξ �= 0] = E[f(η, γ − ηδη)| γ �= 0]

= E
[∫ ∞

0
f(x, γ − xδx) γ̂(dx)

∣∣∣∣ γ �= 0
]
,

as asserted.
Now suppose instead that ξ is λ-symmetric for some probability measure

λ on S, assumed to be diffuse unless ξ is a.s. degenerate. By an easy extension
of Theorem 1.25 or its proof, ξ has then an a.s. representation

ξ = αλ +
∑

j
βjδτj

,

for some i.i.d. random elements τ1, τ2, . . . with distribution λ and an inde-
pendent sequence of random variables α, β1, β2, . . . . To establish the required
independence τ ⊥⊥ (η, ζ) and λ-symmetry of (η, ζ), it is enough to prove the
corresponding statements for the conditional distribution, given γ = αδ0 + lβ
with β =

∑
j δβj

, and to verify that τ has conditional distribution λ. For con-
venience, we may then assume that γ is non-random.

We may construct η and τ by a randomization in two steps, as follows.
First we choose η to be independent of τ1, τ2, . . . with distribution

P{η = 0} = α/γRR+,

P{η = βk} = mkβk/γRR+, k ≥ 1,

where mk = β{βk}. When η = βk, we may next choose τ = τjk
, where

jk = min{j ≥ 1; βj = βk}. If instead η = 0, we may choose τ to be an
independent random variable with distribution λ. It is easy to check that τ
satisfies the required relation P [τ ∈ ·|ξ] = ξ̂.
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Since ζ = ξ when η = 0, we have a.s.

P [τ ∈ ·| ζ, η = 0] = P [τ ∈ ·| ξ, η = 0]
= P [τ ∈ ·| η = 0] = λ.

Similarly, by the independence of η and τ1, τ2, . . . ,

P [τ ∈ ·| ζ, η = βk] = P [τjk
∈ ·| τi, i �= jk; η = βk]

= P{τjk
∈ ·} = λ.

Combining the two results gives P [τ ∈ ·|η, ζ] = λ a.s., which means that τ is
independent of (η, ζ) with distribution λ.

Next we see from the independence η⊥⊥ ξ that

P [ζ ∈ ·| η = 0] = P [ξ ∈ ·| η = 0] = P{ξ ∈ ·},

which is λ-symmetric by hypothesis. Similarly, writing

ζk = ξ − βkδτjk
, k ≥ 1,

and noting that ζk ⊥⊥ η, we get

P [ζ ∈ ·| η = βk] = P [ζk ∈ ·| η = βk] = P{ζk ∈ ·},

which is again λ-symmetric. Hence, ζ is conditionally λ-symmetric given η,
which implies the unconditional λ-symmetry of the pair (η, ζ). �

Proof of Theorem 2.37: In proving the first assertion, it suffices to consider
the restrictions of ξ to sets B ∈ S with ξB < ∞ a.s., and to simplify the
notation we may then assume that ξS < ∞ a.s. Letting τ be such that
P [τ ∈ |ξ] = ξ/ξS on {ξS > 0}, we get by Lemma 2.36 for any x > 0 and
s ∈ S

P [(ξ{τ}, ξ − ξ{τ}δτ ) ∈ ·| ξS ∈ dx, τ ∈ ds]
= Qs[(µ{s}, µ− µ{s}δs) ∈ ·|µS ∈ dx], (49)

in the sense of the quoted lemma. If Q′
s is independent of s, then so is the

right-hand side of (49), which implies

τ ⊥⊥ξS (ξ{τ}, ξ − ξ{τ}δτ ) on {ξS > 0}. (50)

Since the defining property of τ remains conditionally valid given ξS, Lemma
2.38 applies to the conditional distributions, and we may conclude that, a.s.
for given ξS > 0, ξ is either degenerate at τ or conditionally symmetrically
distributed with respect to the diffuse random measure

P [τ ∈ ·|ξS] = E[ξ/ξS|ξS] = E[ξ|ξS]/ξS a.s. on {ξS > 0}. (51)
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Now for any B ∈ S and A ∈ B,

E[ξB; ξS ∈ A] =
∫

B
Qs{µS ∈ A}λ(ds)

= Q′{(x, µ); x + µS ∈ A}λB,

and combining this with the same equation for B = S gives

E[E[ξB|ξS]; ξS ∈ A] = E[ξB; ξS ∈ A]
= E[ξS; ξS ∈ A] λB/λS.

Since A was arbitrary, we obtain

E[ξB|ξS] = (λB/λS) ξS a.s., B ∈ S,

and so by (51)

P [τ ∈ ·|ξS] = E[ξ|ξS]/ξS = λ/λS a.s. on {ξS > 0}.

This shows that ξ remains unconditionally symmetric with respect to λ. We
also note that λ is diffuse by Lemma 2.38, unless ξ is a.s. degenerate.

Conversely, suppose that ξ is λ-symmetric, where λ is diffuse except when
ξ is a.s. degenerate. To show that Q′

s = Q′ is a.e. independent of s, it is
enough to consider the restrictions of ξ to any sets B ∈ S with 0 < λB < ∞,
and so we may assume that ξ ∈ S1(λ, α, β) with 0 < λS < ∞. Then clearly
E[ξ|ξS] = (ξS)λ/λS a.s., and so for any B ∈ S we have∫

B
Qs{µS ∈ ·}λ(ds) = E[ξB; ξS ∈ ·]

= E[E[ξB|ξS]; ξS ∈ ·]
= E[ξS; ξS ∈ ·] λB/λS,

which shows that a.e.

Qs{µS ∈ ·}λS = E[ξS; ξS ∈ ·], (52)

independently of s. On the other hand, Lemma 2.38 yields (50) with τ defined
as before, and so by (49) we see that even the conditional distributions

Qs[(µ{s}, µ− µ{s}δs) ∈ ·|µS], s ∈ S, (53)

are a.e. independent of s. This, in combination with (52), shows that Q′
s = Q′

is independent of s a.e. λ.
From Lemma 2.38 and (49) we see that the conditional distributions in

(53) are λ-symmetric, and so the same thing is true for the σ-finite measure
Q′. Writing γ = αδ0+lβ as before, and letting γ(µ) denote the corresponding
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measure formed from a general µ, we get by (49) and Lemma 2.38 for any
r > 0

Qs

[
f(µ{s}, γ(µ) − µ{s}δµ{s})

∣∣∣µS ∈ dr
]

= E
[
f(ξ{τ}, γ − ξ{τ}δξ{τ})

∣∣∣ ξS ∈ dr
]

= E
[∫ ∞

0
f(x, γ − xδx)γ̂(dx)

∣∣∣∣ ξS ∈ dr
]
,

where γ̂ = γ/γRR+. Combining with (52), we conclude that

Qsf(µ{s}, γ(µ) − µ{s}δµ{s})

=
∫ ∞

0
Qs

[
f(µ{s}, γ(µ) − µ{s}δµ{s})

∣∣∣µS ∈ dr
]
Qs{µS ∈ dr}

=
∫ ∞

0
E
[∫ ∞

0
f(x, γ − xδx)γ̂(dx)

∣∣∣∣ ξS ∈ dr
]
E[ξS; ξS ∈ dr] /λS

=
∫ ∞

0
E
[∫ ∞

0
f(x, γ − xδx)γ(dx)

∣∣∣∣ ξS ∈ dr
]
P{ξS ∈ dr}/λS

= E
∫ ∞

0
f(x, γ − xδx) γ(dx)/λS.

Writing Q′ = L(η, ζ) and γζ = γ(ζ), we obtain

Q′f(η, γζ) λS = E
∫ ∞

0
f(x, γ − xδx) γ(dx). (54)

Now suppose that λ = Eξ is σ-finite and Q′ = L(η, ζ) with η⊥⊥ ζ. To
prove (i) or (ii), it suffices as before to assume that ξ ∈ S1(λ, α, β) with
0 < λS < ∞. Writing γ′ = γζ , we get by (54) for any scalars t ≥ 0 and
measurable functions f ≥ 0

Ee−ηtEf(γ′) = Ee−ηtf(γ′)

= E
∫ ∞

0
e−xtf(γ − xδx)γ(dx)/EξS

=
∫ ∞

0
e−xtEf(γx − xδx)Eγ(dx)/EξS,

where γx = αxδ0 + lβx is such that L(γx) equals the Palm distribution of γ
at x ≥ 0. Assuming 0 < Ef(γ′) < ∞, we obtain

Ee−ηt =
∫ ∞

0
e−xt Ef(γx − xδx)

Ef(γ′)
Eγ(dx)
EξS

.

By the uniqueness theorem for Laplace transforms (FMP 5.3) we conclude
that, for x ≥ 0 a.e. Eγ, the ratio Ef(γx − xδx)/Ef(γ′) is independent of f .
Comparing with the value for f ≡ 1 gives

Ef(γx − xδx) = Ef(γ′), x ≥ 0 a.e. Eγ, f ≥ 0.
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Considering separately the cases x > 0 and x = 0, we see that

Ef(α′, β′) =
Ef(α, β − δx)γ(dx)

Eγ(dx)
=

Ef(α, β − δx)β(dx)
Eβ(dx)

= Ef(αx, βx − δx), x > 0 a.e. Eβ, (55)

Ef(α′, β′) = Eαf(α, β)/Eα when Eα > 0,

and so by combination

Ef(αx, βx − δx) Eα = Eαf(α, β), x > 0 a.e. Eβ. (56)

From this point on, it is enough to consider the restrictions of β to any
compact subsets of (0,∞), and so we may assume that Eκ < ∞, where
κ = βRR+. Arguing as in the proof of Theorem 2.34, though now with τ
satisfying P [τ ∈ ·|α, β] = β/κ, we see from (55) that β is a mixed binomial
process with β ⊥⊥κ α. In particular,

E[β|α, κ] = E[β|κ] = (κ/Eκ)Eβ. (57)

Condition (i) or (ii) holds trivially when α = 0 a.s., and since (ii) is also
trivially fulfilled when κ = 0 a.s., we may henceforth assume that Eα > 0
and Eκ > 0. Then for any t ≥ 0 and s ∈ [0, 1], we get by (56) and (57)

Eαe−αtsκ

Eα
=

Ee−αtsκ−1β(dx)
Eβ(dx)

=
Ee−αtsκ−1E[β(dx)|α, κ]

Eβ(dx)

=
Ee−αtsκ−1κEβ(dx)

EκEβ(dx)
=

Ee−αtκsκ−1

Eκ
,

and so by conditioning on α

Ee−αtαE[sκ|α]
Eα

=
Ee−αtE[κsκ−1|α]

Eκ
, t ≥ 0, s ∈ [0, 1]. (58)

Now choose some measurable functions p0, p1, . . . satisfying

P [κ = k|α] = pk(α), k ∈ ZZ+,

and note that, a.s. for any s ∈ [0, 1),

E[sκ|α] =
∑

k≥0
skpk(α) ≡ ψ(α, s),

E[κsκ−1|α] =
∑

k≥0
ksk−1pk(α) = ψ′(α, s),

where ψ′ denotes the derivative of ψ in the second argument. Putting c =
Eκ/Eα, we may then write (58) in the form

cEe−αtαψ(α, s) = Ee−αtψ′(α, s), t ≥ 0, s ∈ [0, 1).
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Invoking once again the uniqueness theorem for Laplace transforms, we con-
clude that

cαψ(α, s) = ψ′(α, s) a.s., s ∈ [0, 1),

where the exceptional null set can be chosen by continuity to be independent
of s. Noting that ψ(α, 1) = 1, we get the a.s. unique solution

E[sκ|α] = ψ(α, s) = exp(−cα(1 − s)), s ∈ [0, 1],

which shows that κ is conditionally Poisson with mean cα. Thus, β is a
mixed Poisson process directed by αEβ/Eα, which shows that (ii) holds in
the form

ξ ∈ S∞(λ, ρEα, ρEβ), ρ =
α

EαλS
.

To prove the sufficiency of (i) and (ii), we may assume again that 0 <
EξS < ∞. When β is a mixed binomial process and α = 0, we see from
Theorem 2.34 that βx − δx

d= β̂ a.e. independently of x, and so by (54) we
get for any measurable functions f, g ≥ 0

Ef(η)g(β′) = E
∫ ∞

0
f(x)g(β − δx) xβ(dx)/EξS

=
∫ ∞

0
xf(x) Eg(βx − δx) Eβ(dx)/EξS

= Eg(β̂)
∫ ∞

0
xf(x) Eβ(dx)/EξS

= Ef(η) Eg(β′),

where the last equality follows as we take f ≡ 1 and g ≡ 1, respectively. This
shows that η⊥⊥β′, and since also η⊥⊥β′ ζ, we obtain η⊥⊥ ζ by the chain rule
for conditional independence (FMP 6.8).

Next assume β to be a Poisson process with Eβ = ν and let α ≥ 0 be a
constant. Then by Corollary 2.35 we have for any measurable function f ≥ 0
and set B ⊂ (0,∞)

E
∫

B
f(α, β − δx) β(dx) =

∫
B

Ef(α, βx − δx) Eβ(dx)

= Ef(α, β) νB.

Assuming next that β is a Cox process directed by ρν, where (α, ν) is again
fixed, we get by the previous result together with the disintegration theorem
(FMP 6.4)

E
∫

B
f(ρα, β − δx) β(dx) = EE[f(ρα, β)|ρ] ρνB

= Eρf(ρα, β) νB.

Writing γ = ραδ0 + lβ, we obtain∫
B

Ef(γx − xδx) Eγ(dx) = E
∫

B
f(γ − xδx) γ(dx)

= (Eρf(γ)/Eρ) EγB.
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Since this is also trivially true for B = {0}, we obtain γx − xδx
d= γ̂ a.e.

independently of x ≥ 0. We may now apply (54) to obtain

Ef(η)g(γζ) = E
∫ ∞

0
f(x)g(γ − xδx) γ(dx)/EξS

=
∫ ∞

0
f(x) Eg(γx − xδx) Eγ(dx)/EξS

= Eg(γ̂)
∫ ∞

0
f(x) Eγ(dx)/EξS

= Ef(η) Eg(γζ),

where the last equality follows again for the special choices f ≡ 1 and g ≡ 1.
Hence, in this case η⊥⊥ γζ , and since also η⊥⊥γζ

ζ, we conclude as before that
η⊥⊥ ζ. �

The characterizations of symmetric point processes in terms of Palm dis-
tributions imply the corresponding characterizations in terms of the dual
object of Papangelou kernel, defined as in Appendix A5. In this connection,
given a simple point process ξ on a Borel space (S,S), we say that ξ satisfies
condition (Σ) if

P [ξB = 0|1Bcξ] > 0 a.s. on {ξB = 1}, B ∈ S.

Theorem 2.39 (conditional invariance, Papangelou, Kallenberg) Let ξ be
a simple point process on a Borel space (S,S) satisfying condition (Σ), and
fix a σ-finite measure λ on S. Then L(ξ) ∈ M(λ,ϕ) for some function ϕ iff
there exist some random variables ρB ≥ 0, B ∈ S, such that

E[1Bξ; ξB = 1|1Bcξ] = ρB1Bλ a.s. on {ξB = 0}, B ∈ S. (59)

Proof: First assume condition (59). Since S is Borel, we may take S = RR.
We may also assume that both ξ and λ are locally finite, in the sense that
ξI < ∞ a.s. and λI for every bounded interval I. Let U denote the countable
class of finite interval unions with rational endpoints. Writing η for the
Papangelou measure of ξ, we see from Theorem A5.1 that

1Uη = αU1Uλ a.s. on {ξU = 0}, U ∈ U ,

for some random variables αU ≥ 0. Since U is countable, we can choose the
exceptional null set to be independent of U , and since clearly αU1 = αU2 a.s.
whenever λ(U1 ∩ U2) > 0, we may also assume that αU = α is independent
of U . Noting that

(supp ξ)c =
⋃
{U ∈ U ; ξU = 0} a.s.

we conclude that η = αλ a.s. on (supp ξ)c. Since ξ is simple, we also see from
Theorem A5.1 that η(supp ξ) = 0 a.s., and therefore η = αλ a.s. on S.
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Invoking condition (Σ), we next conclude from Theorem A5.1 and Fubini’s
theorem that, for any measurable function f ≥ 0 on S ×M(S),

C′f = E
∫

f(s, ξ) η(ds)

= E α
∫

f(s, ξ) λ(ds)

=
∫

λ(ds) Eαf(s, ξ)

=
∫

λ(ds)
∫

f(s, µ) E[α; ξ ∈ dµ].

This shows that the reduced Palm measures of ξ associated with the sup-
porting measure λ have versions

Q′
s(M) = E[α; ξ ∈ M ], s ∈ S.

Since the latter measures are independent of s, we conclude from Theorem
2.34 that ξ is a mixed Poisson or binomial process based on λ.

Conversely, suppose that L(ξ) ∈ M(λ,ϕ) for some function ϕ. Then for
any B ∈ S we note that 1Bξ is conditionally a mixed Poisson or binomial
process based on 1Bλ, given 1Bcξ, and so the measure E[1Bξ; ξB = 1|1Bcξ]
is a.s. proportional to λ, which proves (46).

We can also base our proof of the converse assertion on the theory of
Palm measures and Papangelou kernels. By Theorem 2.34 we note that the
reduced Palm measures Q′

s = Q′ associated with the supporting measure λ
can be chosen to be independent of s, and so the reduced Campbell measure
of ξ equals C′ = λ ⊗ Q′. Condition (Σ) then yields Q′ ! L(ξ), say with
the Radon–Nikodým density g on M(S). Writing α = g(ξ), we get for any
measurable function f ≥ 0

C′f =
∫

Q′(dµ)
∫

f(s, µ) λ(ds)

=
∫

g(µ) P{ξ ∈ dµ}
∫

f(s, µ) λ(ds)

= E α
∫

f(s, ξ) λ(ds),

which shows that η = αλ a.s. Condition (46) now follows by Theorem
A5.1. �



Chapter 3

Convergence and Approximation

This chapter deals primarily with the theory of convergence in distribution
and related approximation properties for exchangeable sequences and pro-
cesses. The basic convergence criteria for exchangeable and related sequences
are treated in Section 3.1, which also contains a limit theorem for asymp-
totically invariant sampling from a stationary process. The corresponding
continuous-time theory is initiated in Section 3.2 with a discussion of ran-
dom measures on [0, 1] and RR+. The convergence theory for exchangeable
processes on [0, 1] and RR+ is presented in Section 3.3, and the corresponding
approximation theorems for summation processes based on exchangeable se-
quences appear in Section 3.4. As a by-product of those developments, we
can now establish the representation theorem for exchangeable processes on
[0, 1] in full generality.

In Section 3.5 we use complex variable theory to show that the conver-
gence of a sequence of exchangeable processes is determined by conditions
on an arbitrarily short time interval. The basic convergence assertions, orig-
inally established in the sense of Skorohod’s J1-topology, are strengthened
in Section 3.6 to the sense of the uniform topology. In the same section we
prove some coupling theorems that enable us to extend path properties for
Lévy processes to the general exchangeable case.

The final Section 3.7 provides a weak and a strong version of the sub-
sequence principle—the remarkable fact that every tight sequence of random
variables contains a sub-sequence that is approximately exchangeable.

3.1 Discrete-Time Case

We begin with a limit theorem for contractable sequences ξn = (ξj
n) of finite

lengths mn → ∞, taking values in a Polish space S. If ξ = (ξj) is an
infinite random sequence in S, we define the convergence ξn

d→ ξ by the
finite-dimensional conditions

(ξ1
n, . . . , ξ

k
n) d→ (ξ1, . . . , ξk), k ∈ NN.

Let M1(S) denote the set of probability measures on S, equipped with the
topology of weak convergence, and recall that M1(S) is again Polish. For
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any random probability measures νn and ν on S, we write νn
wd−→ ν for

convergence in distribution with respect to the weak topology.

Theorem 3.1 (convergence of contractable sequences) Let ξ1, ξ2, . . . be con-
tractable sequences in a Polish space S, of finite lengths mn → ∞ and with
empirical distributions νn. Then ξn

d→ some ξ in S∞ iff νn
wd−→ some ν in

M1(S), in which case L(ξ) = Eν∞.

Note that the result contains a version of Ryll-Nardzewski’s theorem—the
fact that any infinite contractable sequence in a Polish space S is mixed i.i.d.
From this result we can easily deduce the stronger version in Theorem 1.1.
In particular, the present argument provides a weak-convergence approach
to de Finetti’s theorem.

Proof: First assume that νn
wd−→ ν. Fix any bounded, continuous func-

tions f1, . . . , fr on S, and let m,n ∈ NN be arbitrary with mr ≤ mn. Put
‖fk‖ = sups |fk(s)|. Using the contractability of the sequences ξn = (ξk

n) and
applying Lemma 1.2, we get∣∣∣E∏

k≤r
fk(ξk

n) − E
∏

k≤r
νnfk

∣∣∣
=

∣∣∣∣E∏
k≤r

m−1
∑

j≤m
fk(ξkm−j

n ) − E
∏

k≤r
νnfk

∣∣∣∣
≤

∑
k≤r

E

∣∣∣∣m−1
∑

j≤m
fk(ξkm−j

n ) − νnfk

∣∣∣∣ ∏h �=k
‖fh‖

<
�

m−1/2r
∏

h≤r
‖fh‖,

which tends to 0 as n → ∞ and then m → ∞. Since also

E
∏

k≤r
νnfk → E

∏
k≤r

νfk

by the weak continuity of the mapping µ �→ ∏
k≤r µfk, we obtain

E
∏

k≤r
fk(ξk

n) → E
∏

k≤r
νfk = E

∏
k≤r

fk(ηk),

where the sequence η = (ηk) has distribution Eν∞. By the general criterion
in FMP 4.29 it follows that ξn

d→ η in S∞.
Conversely, suppose that ξn

d→ ξ in S∞. By the contractability of each
ξn we obtain the weak convergence

Eνn = P{ξ1
n ∈ ·} w→ P{ξ1 ∈ ·},

and so by Prohorov’s theorem (FMP 16.3) the sequence (Eνn) is tight in
S. By Theorem A2.2 it follows that the sequence of random measures (νn)
is tight in M1(S). Using Prohorov’s theorem again, we conclude that any
sub-sequence N ′ ⊂ NN contains a further sub-sequence N ′′ such that νn

wd−→ ν
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along N ′′, for some random probability measure ν on S. But then the pre-
vious part of the proof yields ξn

d→ η along N ′′, where L(η) = Eν∞. Since
also ξn

d→ ξ, we obtain L(ξ) = Eν∞. By Proposition 1.4 the distribution
of ν is then unique, and so the convergence νn

wd−→ ν extends to the entire
sequence. �

We turn to the basic convergence criteria for exchangeable sequences of
finite or infinite length. To allow for a unified statement, we may refer to
the directing random measure of an infinite exchangeable sequence ξ as the
empirical distribution of ξ.

Theorem 3.2 (convergence of exchangeable sequences) Let ξ, ξ1, ξ2, . . . be
exchangeable sequences in a Polish space S, of common length m ≤ ∞ and
with empirical distributions ν, ν1, ν2, . . . . Then ξn

d→ ξ in Sm iff νn
wd−→ ν in

M1(S), in which case even (ξn, νn) wd−→ (ξ, ν) in Sm×M1(S). The statement
remains true for sequences ξn of finite lengths mn → m = ∞.

Proof: First let m < ∞, and put β = mν and βn = mνn for convenience.
If ξn

d→ ξ, then (ξn, βn) wd−→ (ξ, β) by continuous mapping. Conversely,
suppose that βn

wd−→ β. Then the sequence of pairs (ξn, βn) is weakly tight
by Theorem A2.2 and Prohorov’s theorem, and the latter theorem shows that
every sub-sequence N ′ ⊂ NN has then a further sub-sequence N ′′ satisfying

(ξn, βn) wd−→ (η, β̃) along N ′′, (1)

for suitable η and β̃. In particular, the same convergence holds for the
marginals, which implies that η is exchangeable and β̃

d= β. Furthermore,
the continuous mapping theorem yields

(βn, βn) wd−→
(∑

j
δηj

, β̃
)

in (M1(S))2,

and the diagonal in (M1(S))2 being closed, we conclude from the Portman-
teau theorem (FMP 4.25) that β̃ =

∑
j δηj

a.s. Using the disintegration
theorem (FMP 6.4) and Theorem 1.8, we obtain for any measurable function
f ≥ 0

Ef(η, β̃) = E
∫

f(x, β̃) β̃(m)(dx)/m!

= E
∫

f(x, β) β(m)(dx)/m! = Ef(ξ, β),

which shows that (η, β̃) d= (ξ, β). Hence, (1) reduces to (ξn, β) wd−→ (ξ, β)
along N ′′, which remains true along NN since the limit is independent of sub-
sequence.

Next let m = ∞. Assuming the νn to be non-random with νn
w→ ν, we see

from FMP 4.29 that ν∞
n

w→ ν∞ in M1(S∞), which means that ξn
d→ ξ in S∞.
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Hence, by FMP 4.28 we have (ξn, νn) d→ (ξ, ν), which extends by Lemma A2.4
to random measures νn with νn

wd−→ ν. Now assume instead that ξn
d→ ξ in

S∞. The sequence (νn) is then weakly tight in M1(S) by Theorem A2.2 and
Prohorov’s theorem, and so the latter theorem shows that any sub-sequence
N ′ ⊂ NN has a further sub-sequence N ′′ such that νn

wd−→ ν̃ along N ′′, for
some random probability measure ν̃ on S. As before, we get ξn

d→ ξ̃ along
N ′′, where ξ̃ is an exchangeable sequence directed by ν̃. But then ξ̃

d= ξ,
and so by Proposition 1.4 we have ν̃

d= ν. Hence, νn
wd−→ ν along N ′′, which

remains true along NN since the limit is independent of sub-sequence.
Finally, suppose that the sequences ξn have finite lengths mn → ∞. Then

Theorem 3.1 shows that ξn
d→ ξ iff νn

wd−→ ν, where the limits are related
by L(ξ) = Eν∞. If the νn are non-random with νn

w→ ν, we see as before
that (ξn, νn) d→ (ξ, ν) in S∞ ×M1(S). By Lemma A2.4, this extends to the
general case where the νn are random with νn

wd−→ ν. �

We proceed to show how exchangeable sequences arise asymptotically
through random sampling from stationary processes. Here we say that the
probability measures µ1, µ2, . . . on RRm

+ or ZZm
+ are asymptotically invariant if

lim
n→∞ ‖µn − µn ∗ δt‖ = 0, t ∈ RRm

+ or ZZm
+ .

For probability measures µn defined on RR∞
+ or ZZ∞

+ , we require the same
condition for all finite-dimensional projections µn◦π−1

1,...,m. The shift-invariant
σ-field associated with a process X on RR+ or ZZ+ is denoted by IX .

Proposition 3.3 (asymptotically invariant sampling) Let X be a stationary
and measurable process on T = RR+ or ZZ+, taking values in a Polish space
S. For every n ∈ NN, consider an independent sequence of random variables
τj
n in T with joint distribution µn, where the µn are asymptotically invariant

in T∞, and put ξn = (ξj
n) with ξj

n = X(τj
n). Then ξn

d→ ξ in S∞, where the
sequence ξ = (ξj) is exchangeable in S and directed by ν = P [X0 ∈ ·|IX ].

Proof: By FMP 4.29 it suffices to show that Ef(ξn) → Ef(ξ) for any
finite tensor product f(x) = f1(x1) · · · fm(xm), where f1, . . . , fm are mea-
surable functions on S with ‖fk‖ ≤ 1. We may then assume that the µn

are asymptotically invariant on Tm . Letting λr denote the uniform distribu-
tion on [0, r] or {0, . . . , r}, respectively, and writing Xt = (Xt1, . . . ,Xtm) for
t = (t1, . . . , tm), we get informally

Ef(ξn) = E
∫

f(Xt) µn(dt)

≈ E
∫

f(Xt)(µn ∗ λm
r )(dt)

=
∫

µn(ds) E
∫

f(Xs+t) λm
r (dt)

→
∫

µn(ds) Eνmf = Ef(ξ).
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For a formal justification, we may write

|Ef(ξn) − Ef(ξ)|
≤

∣∣∣∣E ∫
f(Xt)(µn − µn ∗ λm

r )(dt)
∣∣∣∣

+
∫

µn(ds)
∣∣∣∣E ∫

f(Xs+t)λm
r (dt) − Eνmf

∣∣∣∣
≤ ‖µn − µn ∗ λm

r ‖ + sup
s∈T m

E

∣∣∣∣∫ f(Xs+t)λm
r (dt) − νmf

∣∣∣∣
≤

∫
‖µn − µn ∗ δs‖λm

r (ds) +
∑
k≤m

sup
s∈T

E

∣∣∣∣∫ fk(Xs+t)λr(dt) − νfk

∣∣∣∣ .
Using the asymptotic invariance of the µn and applying the dominated con-
vergence and mean ergodic theorems, we see that the right-hand side tends
to 0 as n → ∞ and then r → ∞. �

3.2 Random Measures

We begin with some convergence criteria for exchangeable random measures
ξ on a product space S × [0, 1]. Recall from Theorem 1.25 that if S is Borel,
then ξ has a representation

ξ = α ⊗ λ +
∑

j
βj ⊗ δτj

a.s., (2)

where α and β1, β2, . . . are random measures on S and τ1, τ2, . . . is an indepen-
dent sequence of i.i.d. U(0, 1) random variables. Note that the distribution
of ξ is determined by that of the pair (α, β), where β is the point process on
M′(S) = M(S) \ {0} given by β =

∑
j δβj

. We also note that

ξ(· × [0, 1]) = α +
∑

j
βj ≡ γ. (3)

In order to discuss the convergence of such random measures ξ, we need
to endow S with a suitable topology. To avoid some technical complications,
we consider only the case where S is a compact metric space. Then ξ, α,
β1, β2, . . ., and γ are all a.s. bounded, and the spaces M(S) and M′(S)
are locally compact in the weak topology. The convergence criteria become
especially simple when expressed in terms of the random measures β1 on
M(S ×M(S)) given by

β1 = α ⊗ δ0 +
∑

j
βj ⊗ δβj

. (4)

We may also introduce the non-decreasing, measure-valued process

Xt = ξ(· × [0, t]), t ∈ [0, 1], (5)

which is clearly right-continuous with left-hand limits and therefore may
be regarded as a random element in the Skorohod space D([0, 1],M(S))
endowed with the J1-topology.



130 Probabilistic Symmetries and Invariance Principles

Theorem 3.4 (convergence on S × [0, 1]) Let ξ, ξ1, ξ2, . . . be exchangeable
random measures on S × [0, 1] directed by (α, β) and (αn, βn), n ∈ NN, where
S is compact, and define X,γ, β1 and Xn, γn, β

1
n as in (3), (4), and (5). Then

these conditions are equivalent:

(i) ξn
wd−→ ξ in M(S × [0, 1]),

(ii) Xn d→ X in D([0, 1],M(S)),
(iii) (βn, γn) vd−→ (β, γ) in N (M′(S)) ×M(S),
(iv) β1

n
wd−→ β1 in M(S ×M(S)).

Here N (S) denotes the class of integer-valued measures in M(S), and
vd−→ means convergence in distribution with respect to the vague topology.

In the special case of exchangeable random measures on [0, 1], the spaces in
(iii) and (iv) clearly reduce to N (0,∞) × RR+ and M(RR+), respectively.

Proof: First assume (i), so that ξn
wd−→ ξ in M(S × [0, 1]). Consider any

optional times τ1, τ2, . . . in [0, 1) with respect to the induced filtrations and
some positive constants h1, h2, . . . → 0 such that τn + hn ≤ 1 a.s. Writing
ξ̄n = ξ(S × ·) and using the finite-interval version of Proposition 2.5, we get
as n → ∞ for fixed h > 0

E[ξ̄n[τn, τn + hn] ∧ 1] = E[ξ̄n[0, hn] ∧ 1]
≤ E[ξ̄n[0, h] ∧ 1] → E[ξ̄[0, h] ∧ 1],

which tends to 0 as h → 0. Thus, ξ̄n[τn, τn + hn] P→ 0, and so by Aldous’
criterion (FMP 16.11) the sequence (Xn) is tight in the Skorohod space
D([0, 1],M(S)).

Now suppose that Xn
d→ Y along a sub-sequence N ′ ⊂ NN. Then ξn

wd−→ η

along N ′, where Y and η are related as in (5). Since also ξn
wd−→ ξ, we have

η
d= ξ, and so Xn d→ X along N ′, where even X and ξ are related as in (5).

Hence, by the tightness of (Xn) and Prohorov’s theorem, the convergence
Xn d→ X remains valid along NN, which proves (ii). Condition (iii) follows
easily from (ii) by means of the continuous mapping theorem.

Conversely, assume (iii). Then in particular,

ξn(S × [0, 1]) = γnS
d→ γS < ∞,

and since S × [0, 1] is compact, the sequence (ξn) is weakly tight. If ξn
wd−→ η

along a sub-sequence N ′ ⊂ NN, then η is again exchangeable, and so by the
previous proof we have (βn, γn) vd−→ (β̃, γ̃) along N ′, where η and (β̃, γ̃) are
related as in (2) and (3). But then (β̃, γ̃) d= (β, γ), and therefore η

d= ξ.
Hence, we have ξn

wd−→ ξ along N ′, and (i) follows by the tightness of (ξn).
To prove the equivalence of (iii) and (iv), we may assume that the αn and

βn are non-random, since the general case will then follow by the definition
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of weak convergence. First suppose that β1
n

w→ β1 on S × M(S). For any
continuous function f ≥ 0 on S, we note that the function

g(s, µ) = f(s), s ∈ S, µ ∈ M(S),

is again bounded and continuous. Hence,

γnf = β1
ng → β1g = γf,

which shows that γn
w→ γ on S.

Next let f ≥ 0 be a continuous function with compact support on M′(S),
and note that

ε ≡ inf{µS; µ ∈ M′(S), f(µ) > 0} > 0.

Introducing the bounded and continuous function

g(s, µ) = (µS ∨ ε)−1f(µ), s ∈ S, µ ∈ M(S),

we obtain
βnf = β1

ng → β1g = βf,

which shows that βn
v→ β on M′(S).

Conversely, suppose that βn
v→ β on M′(S) and γn

w→ γ on S. The latter
convergence yields

β1
n(S ×M(S)) = αnS +

∑
j
βnjS = γnS → γS < ∞.

Writing c = supn γnS < ∞, it follows that the measures β1
n are uniformly

bounded by c and restricted to the compact set S × {µ ∈ M(S); µS ≤ c}.
Hence, by Lemma A2.1 the sequence (β1

n) is weakly relatively compact in
M(S ×M(S)).

Now assume that β1
n

w→ ρ on S×M(S) along a sub-sequence N ′ ⊂ NN, for
some bounded measure ρ on S ×M(S). By continuous mapping it follows
as before that

γ
w← γn = β1

n(· ×M(S)) w→ ρ(· ×M(S)). (6)

Next consider any continuous function f ≥ 0 on S × M′(S) with compact
support, and define

g(µ) =
∫

f(s, µ) µ(ds), µ ∈ M′(S).

Then g has compact support in M′(S) and is again continuous, by the ex-
tended continuous mapping theorem (FMP 4.27). Hence,

ρf ← β1
nf = βng → βg = β1f,
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which shows that ρ = β1 on S ×M′(S). Combining this with (6) gives

ρ(· × {0}) = γ − β1(· ×M′(S)) = β1(· × {0}),

and so ρ = β1. Hence, β1
n

w→ β1 along N ′, and then also along NN, since the
limit is independent of sub-sequence. �

We proceed to the case of exchangeable random measures ξ on S × RR+,
where S is a compact metric space. Then by Proposition 1.21 we have the
general representation

ξ = α ⊗ λ +
∫ ∫

(µ ⊗ δt) η(dµdt) a.s., (7)

where α is a random measure on S and η is a Cox process on M′(S) × RR+,
directed by a random measure of the form ν ⊗ λ and satisfying η⊥⊥να. For
the double integral to converge, we need to assume that

∫
(µS∧1)ν(dµ) < ∞

a.s., by FMP 12.13 or Theorem A3.5. The pair (α, ν) is then a.s. unique,
and the distributions of ξ and (α, ν) determine each other uniquely.

To allow for a simple convergence criterion in terms of the pairs (α, ν),
we put µ̂ = µ/(µS∨1) and introduce on S×M(S) the a.s. bounded random
measure

ν̂1 = α ⊗ δ0 +
∫

(µ̂ ⊗ δµ) ν(dµ). (8)

Theorem 3.5 (convergence on S × RR+) Let ξ, ξ1, ξ2, . . . be exchangeable
random measures on S × RR+ directed by (α, ν) and (αn, νn), n ∈ NN, where
S is compact, and define X, ν̂1 and Xn, ν̂1

n as in (5) and (8). Then these
conditions are equivalent:

(i) ξn
vd−→ ξ in M(S × RR+),

(ii) Xn d→ X in D(RR+,M(S)),
(iii) ν̂1

n
wd−→ ν̂1 in M(S ×M(S)).

In the special case of exchangeable random measures on RR+, we note that
the space in (iii) reduces to M(RR+).

Proof: Assuming (i) and noting that ξ(S × {t}) = 0 a.s. for every t > 0,
we get ξn

wd−→ ξ on S × [0, t] for all t > 0, and so by Theorem 3.4 we obtain
Xn d→ X on D([0, t],M(S)) for all t > 0, which implies (ii). The implication
(i) ⇒ (ii) can also be proved directly by the same argument as before. The
converse assertion is obvious by continuity. It is then enough to prove the
equivalence of (i) and (iii).

To show that (iii) implies (i), it suffices by Lemma A2.4 to consider the
case of non-random α and ν. Then by (7) and FMP 12.2 we have for any
continuous function f > 0 on S

−t−1 log Ee−Xtf = αf +
∫

(1 − e−µf ) ν(dµ) = ν̂1g, t > 0, (9)
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and similarly for Xn in terms of ν̂1
n, where

g(s, µ) = f(s)
1 − e−µf

µf
(µS ∨ 1), s ∈ S, µ ∈ M(S),

the second factor on the right being defined as 1 when µf = 0. Here g is
clearly continuous on S×M(S). To see that it is also bounded, we note that
if 0 < ε ≤ f ≤ c, then g ≤ c when µS ≤ 1 and g ≤ c/ε when µS > 1. Using
(iii), we obtain

Ee−Xn
t f = exp(−tν̂1

ng) → exp(−tν̂1g) = Ee−Xtf ,

and so by FMP 5.3 we have Xn
t f

d→ Xtf , which is easily extended to any
continuous functions f ≥ 0 on S. Hence, by FMP 16.16 we have Xn

t
wd−→ Xt.

Since the processes X and Xn have independent increments, we conclude
from FMP 4.29 that Xn fd−→ X, and a further routine extension yields the
required convergence in (i).

Now assume (i). Noting that 1 − e−t ≥ c(t ∧ 1) with c = 1 − e−1, we get
from (9) for any r > 0

Ee−rXn
1 S = E exp

(
−rαnS −

∫
(1 − e−rµS)νn(dµ)

)
≤ E exp(−rαnS − crνn[µS; rµS ≤ 1] − cνn{rµS > 1}).

Since Xn
1 S

d→ X1S < ∞, we have rXn
1 S

P→ 0 as r → 0 uniformly in n, and
so

rαnS + rνn[µS; µS ≤ r−1] + νn{µS > r−1} P→ 0,

in the same sense. By Theorem A2.2 it follows that the sequence ν̂1
n is weakly

tight on S×M(S). Now suppose that ν̂1
n

wd−→ ρ along a sub-sequence N ′ ⊂ NN
for some random measure ρ on S × M(S). Using the direct assertion, we
conclude that ξn

vd−→ η along N ′, where η and ρ are related as in (7) and
(8). But then η

d= ξ, and by the uniqueness in Proposition 1.21 we obtain
ρ

d= ν̂1. Hence, ν̂1
n

wd−→ ν̂1 along N ′, which extends to NN since the limit is
independent of sub-sequence. �

We conclude with the case of exchangeable random measures ξn on the
product spaces S× [0, tn], where S is compact and tn → ∞. In this case, the
pairs (αn, βn) refer to the scaled random measure ξ′

n given by ξ′
nB = ξn(tnB),

and we need to modify the definition of β1 from (4) by taking

β̂1 = α ⊗ δ0 +
∑

j
β̂j ⊗ δβj

. (10)
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Theorem 3.6 (convergence along increasing sets) Let ξ be an exchangeable
random measure on S × RR+ directed by (α, ν), where S is compact, and for
each n ∈ NN, let ξn be exchangeable on S × [0, tn] and directed by (αn, βn),
where tn → ∞. Define X, ν̂1 and Xn, β̂1

n as in (5), (8), and (10). Then these
conditions are equivalent:

(i) ξn
vd−→ ξ in M(S × RR+),

(ii) Xn d→ X in D(RR+,M(S)),

(iii) β̂1
n/tn

wd−→ ν̂1 in M(S ×M(S)).

As before, the measure space in part (iii) reduces to M(RR+) when the ξn

are exchangeable random measures on the intervals [0, tn]. We begin with an
elementary lemma, where we write ‖ · ‖A for the total variation on the set A.

Lemma 3.7 (Poisson approximation) If τ is U(0, 1), then for any t ∈ (0, 1)
there exists a unit rate Poisson process ηt on [0, 1] such that

E‖δτ − ηt‖2
[0,t] ≤ 2t2, t ∈ [0, 1].

Proof: Fixing any t ∈ (0, 1), let σ1, σ2, . . . be i.i.d. U(0, t), and introduce
an independent pair of random variables κ and κ′ in ZZ+ with κ∧ 1 ≤ κ′ ≤ 1,
where κ is Poisson with mean t and P{κ′ = 1} = t. Define η =

∑
k≤κ δσk

, and
put σ = σ1 when κ′ = 1 and σ = 1 when κ′ = 0, so that η is unit rate Poisson
on [0, t] and σ

d= τ on [0, t]. By the transfer theorem (FMP 6.10) we may
next choose a unit rate Poisson process ηt on [0, 1] such that (τ, ηt)

d= (σ, η)
on [0, t]. Then clearly

E‖δτ − ηt‖2
[0,t] = E‖δσ − η‖2

[0,t] = E(κ′ − κ)2

= e−t − 1 + t +
∑

k≥2
(k − 1)2 tk

k!
e−t ≤ 2t2. �

Proof of Theorem 3.6: To show that (iii) implies (i), it suffices by Lemma
A2.4 to consider the case of non-random characteristics (αn, βn) and (α, ν).
For each n ∈ NN, put ν̃n = βn/tn and α̃n = αn/tn, and let ηn be a Poisson
process on M′(S)×RR+ with intensity measure ν̃n⊗λ. We may next introduce
on S × RR+ the random measures

ξ̃n = α̃n ⊗ λ +
∫ ∫

(µ ⊗ δt) ηn(dµdt), n ∈ NN,

which are locally finite since∫
(µS ∧ 1) ν̃n(dµ) ≤ t−1

n

∑
j
βnjS < ∞,

and have stationary, independent increments with characteristics (α̃n, ν̃n).
Condition (iii) yields ν̃1

n
w→ ν1, and so by Theorem 3.5 we have ξ̃n

vd−→ ξ.
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To extend the convergence to the random measures ξn, we may assume
that

ξn = α̃n ⊗ λ +
∑

j
βnj ⊗ δτnj , n ∈ NN, (11)

where the τnj are i.i.d. U(0, tn) for each n. Fix any t > 0, and let n be large
enough that tn ≥ t. Then by Lemma 3.7 we may choose some independent
Poisson processes ηnj with constant rates t−1

n such that

E‖δτnj
− ηnj‖2

[0,t] ≤ 2(t/tn)2, n, j ∈ NN, (12)

and we may define the Poisson processes ηn on S × RR+ by

ηn =
∑

j
βnj ⊗ ηnj, n ∈ NN.

Now fix any [0, 1]-valued, continuous functions f on S and g on [0, t].
Using the subadditivity of the function x∧ 1, Fubini’s theorem, the estimate
(12), and (iii), we get

E(|(ξn − ξ̃n)(f ⊗ g)| ∧ 1)

≤ E
(∑

j
βnjf |g(τnj) − ηnjg| ∧ 1

)
≤

∑
j
E(βnjf |g(τnj) − ηnjg| ∧ 1)

≤
∑

j
(βnjf E|g(τnj) − ηnjg| ∧ P{(δτnj

− ηnj)[0, t] �= 0})
≤

∑
j
(βnjf ∧ 1) E‖δτnj

− ηnj‖2
[0,t]

<
�

(t/tn)2
∑

j
(βnjf ∧ 1)

≤ (t/tn)2 β̂1
n(S ×M(S))

<
�

(t2/tn) ν̂1(S ×M(S)) → 0,

which shows that (ξn − ξ̃n)(f ⊗ g) P→ 0.
More generally, we have for any continuous functions f1, . . . , fm and

g1, . . . , gm as above

(ξn − ξ̃n)
∑

i≤m
(fi ⊗ gi)

P→ 0.

Using the Stone–Weierstrass approximation theorem together with the basic
approximation lemma of weak convergence theory (FMP 4.28), we conclude
that ξnf

d→ ξf for any continuous function f ≥ 0 on S × RR+ with compact
support, which yields ξn

vd−→ ξ on S×RR+ by FMP 16.16. This shows that (iii)
implies (i). We also note that (i) and (ii) are equivalent by the corresponding
assertion in Theorem 3.4.

Now assume (i). Letting each ξn be represented as in (11) in terms of
the random measures αn and βnj and some independent times τnj , uniformly
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distributed on [0, tn], we get for any r ≥ 0

E exp(−rXn
1 S) ≤ E exp

(
−r

∑
j
βnjS 1{τnj ≤ 1}

)
= E

∏
j

(
1 − t−1

n (1 − e−rβnjS)
)

≤ E exp
(
−
∑

j
t−1
n (1 − e−rβnjS)

)
= E exp

(
−t−1

n

∫
(1 − e−rµS) βn(dµ)

)
,

where the third relation follows from the estimate 1 − x ≤ e−x for x ≥ 0.
Noting that the sequence (Xn

1 S) is tight and proceeding as in the proof
of Theorem 3.5, we conclude that the sequence (β̂1

n/tn) is weakly tight on
S ×M(S). Condition (iii) now follows as before. �

3.3 Exchangeable Processes

In this section, we derive convergence criteria for RRd-valued, exchangeable
processes on [0, 1] or RR+. Motivated by Theorem 2.18, we consider first
exchangeable processes on [0, 1] of the form

Xt = αt + σBt +
∑

j
βj(1{τj ≤ t} − t), t ∈ [0, 1], (13)

where τ1, τ2, . . . are i.i.d. U(0, 1) random variables, B is an independent Brow-
nian bridge in RRd, and the random elements α and β1, β2, . . . in RRd and σ in
RRd2 are independent of (τj) and B and satisfy

∑
j |βj |2 < ∞ a.s. (In Theorem

3.15 below we show that every exchangeable process on QQ[0,1] is of this form.)
If X is instead an exchangeable process on an interval [0, u], we may intro-
duce the process Yt = Xtu on [0, 1] and assume that Y has a representation
as in (13). In this case, characteristics such as α, σ, and β will always refer
to the re-scaled process.

It is convenient to express our conditions in terms of the point process
β =

∑
j βj on RRd\{0}, regarded as a random element in the space N (RRd\{0})

endowed with the vague topology, and we say that X is directed by the triple
(α, σσ′, β). We also need to introduce the co-variation matrix

γ = [X,X]1 = σσ′ +
∑

j
βjβ

′
j . (14)

For random processes on [0, 1] or RR+, we write fd−→ for convergence of the
finite-dimensional distributions.
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Theorem 3.8 (convergence on [0, 1]) Let X and X1,X2, . . . be RRd-valued,
exchangeable processes on [0, 1], as in (13), directed by the triples (α, σσ′, β)
and (αn, σnσ

′
n, βn), n ∈ NN, and define γ and the γn as in (14). Then these

conditions are equivalent:

(i) Xn
d→ X in D([0, 1],RRd),

(ii) Xn
fd−→ X,

(iii) (αn, γn, βn) vd−→ (α, γ, β) in RRd+d2 ×N (RRd \ {0}).

Our proof requires some tightness criteria of independent interest, which
also apply to summation processes of the form

Xt =
∑

j≤mt
ξj, t ∈ [0, 1],

where ξ1, . . . , ξm are exchangeable random vectors in RRd. To allow for a
unified treatment, we introduce in the latter case the quantities

α =
∑

j
ξj , γ =

∑
j
ξjξ

′
j . (15)

Lemma 3.9 (tightness on [0, 1]) Let X1,X2, . . . be RRd-valued, exchangeable
processes on [0, 1], as in (13), directed by (αn, σnσ

′
n, βn), n ∈ NN, and define

the γn as in (14). Let t1, t2, . . . ∈ (0, 1) be bounded away from 0 and 1. Then
these conditions are equivalent:

(i) (Xn) is tight in D([0, 1],RRd),
(ii) (Xn(tn)) is tight in RRd,
(iii) (αn) is tight in RRd and (tr γn) in RR+.

This remains true for summation processes Xn based on exchangeable se-
quences (ξnj) in RRd of lengths mn ≥ t−1

n , with αn and γn defined as in (15).

Proof: First we note that (i) implies (ii), since supt |xt| is a continuous
function of x ∈ D([0, 1],RRd). Next we see from Theorem 2.23 that

(
E[|Xn(tn)|4|αn, γn]

)1/2 � E[|Xn(tn)|2|αn, γn] � α2
n + tr γn. (16)

By Lemma A2.5 it follows that (ii) implies (iii).
Now assume condition (iii). For exchangeable processes on [0, 1] we have

E[|Xn(t)|2|αn, γn] ≤ t(tr γn) + t2|αn|2 < ∞, t ∈ [0, 1],

and similarly for summation processes based on exchangeable sequences. By
Jensen’s inequality we get for any cn > 0 and tn ∈ [0, 1]

E
(
|cnXn(tn)|2 ∧ 1

)
≤ E

(
E[|cnXn(tn)|2|αn, γn] ∧ 1

)
≤ E

(
c2
n(tn(tr γn) + t2n|αn|2) ∧ 1

)
.
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Letting cn → 0 and applying FMP 4.9 in both directions, we see from
(iii) that (ii) is fulfilled. Similarly, we may take cn = 1 and conclude that
Xn(hn) P→ 0 as hn → 0. Now consider any optional times τn with respect
to Xn and some positive constants hn → 0 such that τn + hn ≤ 1 a.s. Us-
ing Proposition 2.5, together with the earlier observation about Xn(hn), we
obtain

Xn(τn + hn) − Xn(τn) d= Xn(hn) P→ 0.

Condition (i) now follows by Aldous’ criterion in FMP 16.11. �

Proof of Theorem 3.8: First assume (i). Since the process X in (13) is a.s.
continuous at every t ∈ [0, 1], the evaluation maps πt : x �→ xt are a.s. continu-
ous at X. Hence, (ii) follows by continuous mapping (FMP 4.27). Conversely,
assuming (ii), we see from Lemma 3.9 that (Xn) is tight in D([0, 1],RRd). Then
by Prohorov’s theorem (FMP 16.3) every sub-sequence N ′ ⊂ NN contains a
further sub-sequence N ′′ such that Xn

d→ some Y along N ′′. This implies
Xn

fd−→ Y on some dense set T ⊂ [0, 1] containing 1, and so Y
d= X on T ,

which extends by right-continuity to all of [0, 1]. Thus, Xn
d→ X along N ′′,

and (i) follows since N ′ was arbitrary.
To prove that (iii) implies (ii), it suffices by Lemma A2.4 to consider

non-random triples (αn, γn, βn) and (α, γ, β), so that the Xn and X are rep-
resentable as in (13) with non-random coefficients. The case where γn ≡ 0 is
elementary, as is also the case where (αn, σn) ≡ 0 and the βn are uniformly
bounded, since we can then arrange that either βnj → βj or βnj → 0 for all j.
Next assume that (α, β) = 0 ≡ αn and the measures βn are bounded. Then
clearly maxj |βnj | → 0, and also E βnj(1{τj ≤ t} − t) = 0 for every j and t.
Furthermore, for any s ≤ t, we have

cov(Xn
s ,Xn

t ) = σn cov(Bs,Bt)σ′
n +

∑
j
βnjβ

′
njcov(1{τj ≤ s}, 1{τj ≤ t})

= s(1 − t)γn → s(1 − t)γ
= σ cov(Bs,Bt)σ′ = cov(Xs,Xt).

Using Lindeberg’s theorem in RRd (FMP 5.5 and 5.12), we conclude that
Xn

fd−→ X.
By the independence of terms, we can combine the three cases into one

(FMP 4.29) to obtain Xn
fd−→ X, as long as β and all the βn are bounded.

In the general case, we may fix a bounded measure β′ ≤ β and choose
the measures β′

n ≤ βn to be bounded with associated matrices γ′ and γ′
n

such that (αn, γ
′
n, β

′
n) → (α, γ′, β′). Then the corresponding processes satisfy

X ′
n

fd−→ X ′, and for every t ∈ [0, 1] we have

E|Xn,t − X ′
n,t|2 <

�
t(1 − t)|γn − γ′

n| → t(1 − t)|γ − γ′|.

Since γ−γ′ can be made arbitrarily small, we may argue by uniform approx-
imation (FMP 4.28) to obtain Xn

fd−→ X. This proves that (iii) ⇒ (ii).
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Conversely, assuming (ii), we see from Lemma 3.9 that the sequence of
triples (αn, γn, βn) is tight in RRd+d2 ×N (RRd \{0}). Then Prohorov’s theorem
shows that every sub-sequence N ′ ⊂ NN contains a further sub-sequence N ′′

such that (iii) holds along N ′′, for a suitable limit (α̃, γ̃, β̃). Here γ̃ may be
expressed as in (14) for some random matrix σ̃, and by randomization we
may form an associated process Y as in (13). Then the previous part of the
proof yields Xn

fd−→ Y along N ′′, and comparing this with (ii) gives Y
d= X.

The uniqueness in Theorem 2.18 implies (α̃, γ̃, β̃) d= (α, γ, β), which means
that (iii) holds along N ′′. The full convergence now follows since N ′ was
arbitrary. �

We turn to the case of contractable processes on RR+. Recall from Theorem
1.19 that any such process X is also exchangeable with representation

Xt = αt + σBt +
∫ t

0

∫
x (η − 1{|x| ≤ 1}λ ⊗ ν)(ds dx), t ≥ 0, (17)

for some random triple (αh, σ, ν) in RRd+d2 ×M(RRd \ {0}) satisfying
∫
(|x|2 ∧

1)ν(dx) < ∞ a.s., an independent, RRd-valued Brownian motion B, and a Cox
process η⊥⊥ν (α, σ,B) directed by ν. Here we say that X is directed by the
triple (α, σσ′, ν). It is convenient in this case to introduce, for every h > 0,
the random vector and matrix

αh = α −
∫

x 1{h < |x| ≤ 1} ν(dx),

γh = σσ′ +
∫

xx′ 1{|x| ≤ h} ν(dx), (18)

with the obvious sign convention when h > 1.

Theorem 3.10 (convergence on RR+) Let X and X1,X2, . . . be RRd-valued,
contractable processes on RR+ directed by (α, σσ′, ν) and (αn, σnσ

′
n, νn), n ∈

NN, and define (αh, γh) and (αh
n, γ

h
n) as in (18). Then for any h > 0 with

ν{|x| = h} = 0 a.s., these conditions are equivalent:

(i) Xn
d→ X in D(RR+,RRd),

(ii) Xn
fd−→ X in RRd,

(iii) (αh
n, γ

h
n , νn) vd−→ (αh, γh, ν) in RRd+d2 ×M(RRd \ {0}).

Though the random measures ν and the νn are defined on RRd \ {0}, we
note that the appropriate topology is that of the extended space RRd \ {0},
where RRd denotes the one-point compactification of RRd. Again it is useful
to establish separately the associated tightness criteria. For convenience, we
associate with each triple (α, σσ′, ν) the random quantity

ρ = |αn|2 + tr(σσ′) +
∫

(|x|2 ∧ 1) ν(dx). (19)
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Let us also say that the νn are tight at ∞ if

lim
r→∞ lim sup

n→∞
E(νn{x; |x| > r} ∧ 1) = 0.

This is clearly equivalent to the condition νn{|x| > rn} P→ 0, for every
sequence rn → ∞.

Lemma 3.11 (tightness on RR+) Let X1,X2, . . . be RRd-valued, contractable
processes on RR+ directed by (αn, σnσ

′
n, νn), n ∈ NN, and define the ρn as in

(19). Let t1, t2, . . . ∈ (0,∞) be bounded away from 0 and ∞. Then these
conditions are equivalent:

(i) (Xn) is tight in D(RR+,RRd),
(ii) (Xn(tn)) is tight in RRd,
(iii) (ρn) is tight in RR+ and (νn) is tight at ∞.

This remains true for exchangeable processes Xn on [0, un] → RR+, with the
triples (αn, σnσ

′
n, νn) replaced by u−1

n (αn, σnσ
′
n, βn), as well as for exchange-

able summation processes Xn
t =

∑
j≤tmn

ξnj and constants tn ≥ m−1
n .

Proof: The equivalence of (i) and (ii) in Lemma 3.9 extends immediately
to processes defined on RR+ or [0, un] → RR+. In particular, (ii) is equivalent
to the same condition for any fixed tn = t. Now let Xr

n denote the process
obtained from Xn by omitting all jumps of modulus > r, and note that

E[|Xr
n(t)|2|αn, σn, νn] = t tr(γr

n) + t2|αr
n|2 ≤ (t ∨ t2)ρr

n,

where
ρr

n = |αr
n|2 + tr(σσ′) +

∫
(|x|2 ∧ r)νn(dx), r > 0.

Assuming (iii), we see that (ρr
n) is tight for fixed r > 0, and so cnρ

r
n

P→ 0 as
cn → 0. Furthermore, for any r > 0 we have

E
(
cn|Xn(t)|2 ∧ 1

)
≤ E

(
cn|Xr

n(t)|2 ∧ 1
)

+ P{Xr
n(t) �= Xn(t)}

≤ E
(
cn(t ∨ t2)ρr

n ∧ 1
)

+ E(tνn{|x| > r} ∧ 1) .

Letting n → ∞ and then r → ∞, we see that the right-hand side tends to
0, uniformly for bounded t > 0. Hence, cn|Xn(t)|2 P→ 0, and so (Xn(t)) is
uniformly tight for bounded t, which proves (ii).

To prove the reverse implication, we may assume that (ii) holds for fixed
tn = t ∈ (0, 1). Letting βn be the jump point process for the restriction of
Xn to [0, 1], we conclude from Lemma 3.9 that the sequences tr(σnσ

′
n) and∫ |x|2βn(dx) are tight. Noting that βn is a Cox process directed by νn and

letting cn > 0, we get by FMP 12.2

E exp
(
− cn

∫
|x|2βn(dx)

)
= E exp

(
−
∫ (

1 − e−cn|x|2
)
νn(dx)

)
, (20)



3. Convergence and Approximation 141

which tends to 1 as n → ∞ when cn → 0. Hence,

cn

∫
(|x|2 ∧ 1) νn(dx) + νn{cn|x|2 > 1} <

�

∫ (
1 − e−cn|x|2

)
νn(dx) P→ 0,

which implies the required tightness of
∫
(|x|2∧1)νn(dx), as well as the tight-

ness at ∞ of (νn). Thus, (iii) holds for the centered processes X ′
n(t) =

Xn(t)− αnt, and by the direct assertion it follows that (X ′
n(t)) is tight. The

tightness of (αn) now follows by subtraction, which completes the proof for
processes on RR+.

For processes on [0, un] → RR+, let β1
n be the jump point processes associ-

ated with the restrictions to [0, 1], and note that β1
n is a u−1

n -thinning of βn.
Hence, by FMP 12.2 we have instead of (20)

E exp
(
−cn

∫
|x|2β1

n(dx)
)

= E exp
∫

log
(
1 − u−1

n

(
1 − e−cn|x|2

))
βn(dx),

which again tends to 1 under (ii) when cn → 0. Writing β̂n = βn/un, we get
in this case

cn

∫
(|x|2 ∧ 1) β̂n(dx) + β̂n{cn|x|2 > 1}

<
�

−
∫

log
(
1 − u−1

n

(
1 − e−cn|x|2

))
βn(dx) P→ 0,

which shows that the integrals
∫
(|x|2 ∧ 1)β̂n(dx) are tight and the random

measures β̂n are tight at ∞. The proof of (iii) may now be completed as
before.

We postpone the discussion of summation processes, where the results
follow most easily from the approximation theorems of the next section. �

Proof of Theorem 3.10: The implication (i) ⇒ (ii) holds by continuity, and
the converse assertion follows from the corresponding statement in Theorem
3.8. To prove that (iii) implies (ii), it suffices by Lemma A2.4 to consider
non-random characteristics (αn, σnσ

′
n, νn). The random vectors Xn(t) are

then infinitely divisible, and the one-dimensional convergence holds by the
classical criteria (FMP 15.14). The general finite-dimensional convergence
then follows by the independence of the increments (FMP 4.29).

Now assume (ii). By Lemma 3.11 the random variables ρn in (19) are
tight in RR+ and the random measures νn are tight at ∞. Hence, the νn are
vaguely tight on RRd \ {0}, and so by Prohorov’s theorem any sub-sequence
N ′ ⊂ NN contains a further sub-sequence N ′′ such that νn

vd−→ some ν̃ along
N ′′. The tightness at ∞ ensures ν̃{∞} = 0 a.s., which means that ν̃ is a.s.
a random measure on RRd \ {0}. It is also clear from the tightness of ρn that∫
(|x|2∧1)ν̃(dx) < ∞ a.s. Fixing any k > 0 with ν̃{|x| = k} = 0 a.s., we may

choose yet another sub-sequence N ′′′ ⊂ N ′′ such that

(αk
n, γ

k
n, νn) vd−→ (α̃k, γ̃k, ν̃) in RRd+d2 ×M(RRd \ {0}),



142 Probabilistic Symmetries and Invariance Principles

for suitable α̃k and γ̃k. Since the differences

γk
n −

∫
|x|≤k

xx′νn(dx) = σnσ
′
n, n ∈ NN,

are non-negative definite, the corresponding property holds a.s. in the limit,
and so we may choose some random vector α̃ and matrix σ̃ satisfying (18)
with (αh, γh, νh) replaced by (α̃k, γ̃k, ν̃). If X̃ is a mixed Lévy process based
on (α̃, σ̃, ν̃), the direct assertion yields Xn

d→ X̃ along N ′′′. But then X̃
d= X,

and so (α̃, σ̃σ̃′, ν̃) d= (α, σσ′, ν) by the uniqueness in Theorem 1.19. In partic-
ular, we may then choose k = h and obtain (iii) along N ′′′. The convergence
extends to the entire sequence since N ′ was arbitrary. �

We conclude with the case of exchangeable processes Xn, as in (13),
defined on some intervals [0, un] → RR+. Here we define the corresponding
directing triples (αn, σnσ

′
n, βn) in terms of the scaled processes Yn on [0, 1],

given by Yn(t) = Xn(tun), t ∈ [0, 1]. With any characteristic triple (α, σσ′, β)
and constant h > 0, we associate the random vector and matrix

αh = α −
∑

j
βj1{|βj | > h},

γh = σσ′ +
∑

j
βjβ

′
j1{|βj | ≤ h}. (21)

Theorem 3.12 (convergence on increasing intervals) Let X be an RRd-
valued, exchangeable process on RR+ directed by (α, σσ′, ν), and consider for
every n ∈ NN an exchangeable process Xn on [0, un], as in (13), directed by
(αn, σnσ

′
n, βn), where un → ∞. Define (αh, γh) and (αh

n, γ
h
n) as in (18) and

(21). Then for any h > 0 with ν{|x| = h} = 0 a.s., the following conditions
are equivalent:

(i) Xn
d→ X in D(RR+,RRd),

(ii) Xn
fd−→ X in RRd,

(iii) u−1
n (αh

n, γ
h
n , βn) vd−→ (αh, γh, ν) in RRd+d2 ×M(RRd \ {0}).

Proof: The equivalence of (i) and (ii) may be proved as before. To com-
plete the proof, it is enough to show that (iii) implies (ii), since the reverse
implication will then follow, as in the previous proof, by means of Lemma
3.11. By Lemma A2.4 we may assume that the characteristics (αn, σnσ

′
n, βn)

in (iii) are non-random. In that case, we shall prove (ii) by applying Theorem
3.10 to some approximating Lévy processes X̃n with characteristics

(α̃n, σ̃nσ̃
′
n, ν̃n) = u−1

n (α1
n, σnσ

′
n, βn), n ∈ NN.

To construct the X̃n, we may write

Xn(t) = α̃nt + σ̃n(Bn
t − (t/un)Bn

un
)

+
∑

j
βnj(1{τnj ≤ t} − (t/un)1{|βnj | ≤ 1}), t ∈ [0, un],
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where τn1, τn2, . . . are i.i.d. U(0, un) random variables and Bn is an indepen-
dent standard Brownian motion. For any u ∈ (0, un], there exist by Lemma
3.7 some Poisson processes ηnj with rates u−1

n such that

E‖δτnj
− ηnj‖2

[0,u] ≤ 2(u/un)2, n, j ∈ NN, (22)

where the pairs (τnj, ηnj) can be assumed to be i.i.d. for fixed n ∈ NN and
independent of Bn. The point processes ηn =

∑
jδβnj

⊗ηnj on (RRd \{0})⊗RR+

are then Poisson with intensity measures ν̃n ⊗ λ, and so we may define some
Lévy processes X̃n with the desired characteristics by taking

X̃n(t) = α̃nt + σ̃nB
n
t +

∑
j
βnj(ηnj(0, t] − (t/un)1{|βnj | ≤ 1}).

Writing pn = u/un, we get by (22) and (iii)

E
(
(Xn − X̃n)∗2

u ∧ 1
)

≤ p2
nE|σ̃nB

n
un
|2 +

∑
j
(β2

nj ∧ 1)E‖δτnj
− ηnj‖2

u

≤ upn tr(σ̃nσ̃
′
n) + 2p2

n

∑
j
(β2

nj ∧ 1) → 0,

which shows that Xn(t)−X̃n(t) P→ 0 for every t > 0. Noting that (iii) implies
X̃n

fd−→ X by Theorem 3.10 and using FMP 4.28, we obtain (ii). �

3.4 Approximation and Representation

The limit theorems of the last section are easily extended to summation
processes Xt =

∑
j≤rt ξj of rate r > 0 based on finite or infinite exchangeable

sequences ξ = (ξ1, ξ2, . . .) in RRd. When the length m of ξ is finite, we consider
X as a process on [0, u] = [0,m/r]. In particular, we get a process on [0, 1]
by taking r = m. Infinite sequences ξ generate summation processes on RR+.

For sequences ξ of finite length m, we introduce the characteristics

α =
∑

j≤m
ξj, β =

∑
j≤m

δξj
, γ =

∑
j≤m

ξjξ
′
j . (23)

For any h > 0, we also consider the truncated quantities

αh =
∑

j≤m
ξj1{|ξj | ≤ h}, γh =

∑
j≤m

ξjξ
′
j1{|ξj | ≤ h}. (24)

If ξ is instead an infinite exchangeable sequence with directing random mea-
sure η, we define ν = rη, and introduce for any h > 0 the quantities

αh =
∫

|x|≤h
x ν(dx), γh =

∫
|x|≤h

xx′ ν(dx). (25)

This is clearly consistent with our earlier definitions, provided that we take
σ = 0.

With this notation, the basic convergence criteria for exchangeable sum-
mation processes take on the same form as the continuous-time results of the
preceding section.
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Theorem 3.13 (convergence of summation processes, Hájek, Rosén, Bill-
ingsley, Hagberg, Kallenberg) The statements of Theorems 3.8, 3.10, and
3.12 remain true with the Xn replaced by summation processes of rates rn →
∞, based on finite or infinite exchangeable sequences ξn = (ξnj) in RRd, and
with characteristics given by (23), (24), and (25).

The result follows easily from the earlier results by means of a random
change of scale. For any random sequences (ξn) and (ηn) in a metric space
S, we define the relation ξn

d∼ ηn to mean that ξn
d→ ξ iff ηn

d→ ξ for any
random element ξ of S.

Lemma 3.14 (time-scale comparison) Let S1, S2, . . . be RRd-valued, unit rate
summation processes on RR+ or [0,mn], and let N1,N2, . . . be independent,
unit rate Poisson or binomial processes on the same intervals. Define

Xn(t) = Sn(rnt), Yn(t) = Sn ◦ Nn(rnt), t ∈ [0, un],

where rn → ∞ and un = mn/rn. Then Xn
d∼ Yn holds in D([0, 1],RRd) when

un ≡ 1 and in D(RR+,RRd) when un → ∞ or ≡ ∞.

Proof: Writing mn = ∞ for processes on RR+, we have in either case

ENn(t) = t, var Nn(t) = t(1 − m−1
n t) ≤ t, t ∈ [0,mn],

and so
E
(
r−1
n Nn(rnt)

)
= t, var

(
r−1
n Nn(rnt)

)
≤ r−1

n t → 0,

which implies r−1
n Nn(rnt)

P→ t for each t. Hence, by monotone interpolation,

supt≤u

∣∣∣r−1
n Nn(rnt) − t

∣∣∣ P→ 0, u ≥ 0,

which implies ρ(Xn, Yn) P→ 0 for a suitable metrization ρ of the Skorohod
topology on D([0, 1],RRd) or D(RR+,RRd) (cf. FMP A2.2). The assertion now
follows by FMP 4.28. �

Proof of Theorem 3.13: Choose some processes Yn
d∼ Xn as in Lemma

3.14. Then by Theorem 1.23 the Yn are exchangeable in the continuous-time
sense with the same characteristics as the Xn. Hence, by Theorem 3.8, 3.10,
or 3.12, condition (iii) is equivalent to Yn

d→ X, which shows that (i) and
(iii) are equivalent. Next we note that (i) implies (ii) since X has no fixed
discontinuities. Conversely, assuming (ii), we see from Lemma 3.9 that (Xn)
is tight in D([0, 1],RRd) or D(RR+,RRd). By Prohorov’s theorem it remains to
show that if Xn

d→ Y along a sub-sequence N ′ ⊂ NN, then Y
d= X. But this

is clear by comparison with (ii), since the stated condition implies Xn
fd−→ Y

along N ′ on some dense subset of [0, 1] or RR+. �



3. Convergence and Approximation 145

We now have the tools to establish the general representation of exchange-
able processes on [0, 1], previously obtained under a moment condition in
Theorem 2.18. We may also provide a new proof of the similar but more el-
ementary representation for processes on RR+, originally derived in Theorem
1.19. A martingale approach to the latter result is implicit in the proof of
Theorem 2.14. As a by-product of our representations, we obtain a partial
extension of the regularity conditions from Theorem 2.25.

Theorem 3.15 (regularity and representation) An RRd-valued process X on
QQ[0,1] or QQ+ is exchangeable iff it has an a.s. representation as in (13) or
(17), respectively, for some random variables, vectors, matrices, and pro-
cesses as in Theorem 2.18 or 1.19. If X is F-exchangeable, the formula
provides an extension of X to an F-semi-martingale on [0, 1] or RR+, respec-
tively, where F denotes the right-continuous and complete augmentation of
F .

Proof: We may assume that X is exchangeable on QQ[0,1], the proof for
processes on QQ+ being similar. For every n ∈ NN, we introduce the increments

ξnj = X(j/n!) − X((j − 1)/n!), j = 1, . . . , n!, (26)

and consider the associated summation processes

Xn(t) =
∑

j≤tn!
ξnj, t ∈ [0, 1].

We also define the associated triples (αn, γn, βn) as in (23).
The tightness conditions of Lemma 3.9 are trivially fulfilled, since Xn(t)

→ X(t) for all t ∈ QQ[0,1]. By Prohorov’s theorem, condition (iii) of Theorem
3.8 then holds along a sub-sequence N ′ ⊂ NN for some limiting triple (α, γ, β).
Here γ can be expressed as in (14) in terms of some matrix σ, and we may
choose an associated exchangeable process Y on [0, 1] with representation
as in (13). By Theorem 3.13 we have Xn

fd−→ Y along N ′, and so X
d= Y

on QQ[0,1]. We may finally use the transfer theorem (FMP 6.10) to obtain a
process X̃

d= Y on [0, 1] with a similar representation such that X̃ = X a.s.
on QQ[0,1].

Now assume that X is F -exchangeable on QQ[0,1]. Then X remains G-
exchangeable, where G is the filtration generated by F and (α, β, γ), and so
by Theorem 2.25 it extends a.s. to a special semi-martingale X̃ on [0, 1] with
respect to the augmented filtration G. Using the Bichteler–Dellacherie the-
orem (FMP 26.21), we see that X̃ remains a semi-martingale on [0, 1] with
respect to F . �

Our next aim is to extend some of the previous results to contractable
processes on [0, 1]. Here the following continuous-time version of Lemma 1.11
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will play a key role. For any contractable semi-martingale X on [0, 1], we
introduce the associated characteristic processes

αt = Xt, βt =
∑

s≤t
δ∆Xs , γij

t = [Xi,Xj ]t, t ∈ [0, 1].

Without the semi-martingale hypothesis, we can only define αt and βt.

Lemma 3.16 (one-dimensional coupling) Let X be an RRd-valued, contract-
able semi-martingale on [0, 1]. Then there exists an exchangeable process X̃
on [0, 1], such that the associated characteristic processes satisfy

(αt, βt, γt)
d= (α̃t, β̃t, γ̃t), t ∈ [0, 1]. (27)

Without the semi-martingale property, we can only assert that (αt, βt)
d=

(α̃t, β̃t) for all t. A similar statement holds for contractable random measures
on S × [0, 1], where S is compact.

Proof: The increments ξnj in (26) being contractable for fixed n, there
exist by Lemma 1.11 some exchangeable sequences ξ̃nj satisfying∑

j≤k
δξnj

d=
∑

j≤k
δξ̃nj

, k ≤ n!, n ∈ NN. (28)

Let Xn and X̃n denote the associated summation processes on [0, 1]. When
t ∈ QQ[0,1], we have X̃n

t
d= Xn

t = Xt for all but finitely many n ∈ NN, and so
by Lemma 3.9 the sequence (X̃n) is tight in D([0, 1],RRd). Hence, Prohorov’s
theorem yields X̃n d→ X̃ along a sub-sequence N ′ ⊂ NN, where the limiting
process X̃ is exchangeable on [0, 1]. By Theorem 3.13 the corresponding
characteristic triples satisfy

(α̃n
t , β̃n

t , γ̃n
t ) vd−→ (α̃t, β̃t, γ̃t) in RRd+d2 ×N (RRd), t ∈ QQ[0,1], (29)

with n restricted to N ′. Using (28) together with the discrete approximation
property of co-variation processes (cf. FMP 17.17), we obtain

(α̃n
t , β̃n

t , γ̃n
t ) d= (αn

t , βn
t , γn

t ) P→ (αt, βt, γt), t ∈ QQ[0,1]. (30)

Comparing (29) and (30) yields (27) for t ∈ QQ[0,1], and the general result
follows by the right-continuity on both sides. Though the convergence γn

t
P→

γt may fail when X is not a semi-martingale, the previous argument still
applies to the first two components in (27).

Next let ξ be a contractable random measure on S × [0, 1]. Write

tnj = j/n!, Inj = (j − 1, j]/n!, ξnj = ξ(· × Inj), j ≤ n!, n ∈ NN,

and introduce some exchangeable sequences (ξ̃nj) satisfying (28). Consider
on S × [0, 1] the random measures

ξn =
∑

j
ξnj ⊗ δtnj

, ξ̃n =
∑

j
ξ̃nj ⊗ δtnj

, n ∈ NN.
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Since
ξ̃n(S × [0, 1]) d= ξn(S × [0, 1]) = ξ(S × [0, 1]) < ∞,

the sequence (ξ̃n) is weakly tight (FMP 16.15), and so we have convergence
ξ̃n

wd−→ ξ̃ along a sub-sequence N ′ ⊂ NN, for some limit ξ̃. Approximating as
in Lemma 3.14 and using Theorem 3.4, we see that ξ̃ is again exchangeable.
Moreover, in the notation of the latter result and for n ∈ N ′,

(β̃n
t , γ̃n

t ) vd−→ (β̃t, γ̃t) in N (M′(S)) ×M(S), t ∈ QQ[0,1].

The proof may now be completed as before. �

We can now extend some earlier tightness and convergence criteria to the
contractable case.

Theorem 3.17 (tightness and finite-dimensional convergence) Let X1,X2,
. . . be RRd-valued, contractable processes on [0, 1] or [0, un] → RR+, or summa-
tion processes on the same intervals of rates rn → ∞, based on contractable
sequences in RRd. Then

(I) conditions (i) and (ii) of Lemmas 3.9 and 3.11 are equivalent, and the
equivalence extends to (iii) when the Xn are semi-martingales;

(II) Xn
d→ X in D([0, 1],RRd) or D(RR+,RRd) iff Xn

fd−→ X, in which case
the limit X is again contractable.

Proof: (I) The implication (i) ⇒ (ii) is generally true in D([0, 1],RRd) and
D(RR+,RRd). Conversely, assume condition (ii), and note that the same condi-
tion holds for the associated exchangeable processes X̃n in Lemma 3.16. By
Lemma 3.9 or 3.11 it follows that (X̃n) is tight in D([0, 1],RRd) or D(RR+,RRd),
respectively. Now consider any optional times τn for Xn and some positive
constants hn → 0 such that τn + hn ≤ 1 or un. Using Proposition 2.5 and
noting that xn → x in D([0, 1],RRd) or D(RR+,RRd) implies xn(hn) → x(0), we
get in the continuous-time case

Xn(τn + hn) − Xn(τn) d= Xn(hn) d= X̃n(hn) P→ 0,

and similarly for summation processes based on contractable sequences. Con-
dition (i) now follows by Aldous’ criterion in FMP 16.11. If the Xn are semi-
martingales, then the equivalence (ii) ⇔ (iii) holds for the X̃n by Lemmas
3.9 and 3.11, and the result carries over to the Xn by means of (27).

(II) If Xn
d→ X in D([0, 1],RRd) or D(RR+,RRd), then Xn

fd−→ X on some
set T ⊂ [0, 1] or RR+, respectively, with a countable complement. Fixing any
disjoint intervals I1, . . . , Ik of equal length, we get for almost every h > 0

(Xn(I1 + h), . . . ,Xn(Ik + h)) d→ (X(I1 + h), . . . ,X(Ik + h)), (31)

where X(I) and Xn(I) denote the increments of X and Xn over I. If the
Xn are contractable in the continuous-time sense, then the limit in (31) is
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contractable for almost every h > 0. The property extends by right continuity
to X(I1), . . . ,X(Ik), which proves the contractability of X in the continuous-
time case. The same result then holds for summation processes by Lemma
3.14. In particular, X has no fixed discontinuities, and so the convergence
Xn

fd−→ X extends to the entire time scale.
Conversely, suppose that Xn

fd−→ X. By (I) it follows that (Xn) is tight
in D([0, 1],RRd) or D(RR+,RRd), respectively. If Xn

d→ Y along a sub-sequence
N ′ ⊂ NN, then Xn

fd−→ Y holds as before along N ′. Since also Xn
fd−→ X, we

get Y
d= X. The desired convergence Xn

d→ X now follows by Prohorov’s
theorem. �

We conclude with some continuous-time versions of Theorem 3.1. As
noted before, any random measure ξ on a product space S × [0, u] can be
identified with an rcll process Xt = ξ(· × [0, t]) in M(S).

Proposition 3.18 (convergence of contractable random measures) For ev-
ery n ∈ NN, let ξn be a contractable random measure on S × [0, un], where
S is compact and un → ∞, and choose an associated exchangeable ran-
dom measure ξ̃n, as in Lemma 3.16. Then ξn

d∼ ξ̃n in both M(S × RR+)
and D(RR+,M(S)). A similar result holds for summation processes of rates
rn → ∞, based on contractable sequences of random measures on S.

Proof: If ξn
d→ ξ in M(S × RR+) or D(RR+,M(S)), then by Theorem 3.17

(I) the sequence (ξ̃n) is tight in both spaces, and so by Prohorov’s theorem
every sub-sequence N ′ ⊂ NN has a further sub-sequence N ′′ such that ξ̃n

d→ ξ̃
along N ′′, in the sense of either topology, for some random measure ξ̃ on
S × RR+. Conversely, if ξ̃n

d→ ξ̃, then for every sequence N ′ ⊂ NN we have
ξn

d→ ξ along a further sub-sequence N ′′ for a suitable limit ξ. In each case,
it remains to show that ξ

d= ξ̃.
Then note that, by continuous mapping from D([0, t],RRd) to N (M′(S))×

M(S), the associated characteristics satisfy

(βt, γt)
vd←− (βn

t , γn
t ) d= (β̃n

t , γ̃n
t ) vd−→ (β̃t, γ̃t), t ≥ 0, (32)

along N ′′. Now ξ and ξ̃ are both contractable by Theorem 3.17 (II) and
hence can be represented, as in Proposition 1.21, in terms of some random
pairs (α, ν) and (α̃, ν̃). Using (32) and the law of large numbers, we get on
M(S) ×M(M′(S)) as t → ∞

(α, ν) v← t−1(αt, βt)
d= t−1(α̃t, β̃t)

v→ (α̃, ν̃),

which implies ξ
d= ξ̃ by the uniqueness in Proposition 1.21. �

We can also use Lemma 3.16 to prove the following continuous-time ver-
sion of Proposition 1.12.
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Proposition 3.19 (moment comparison) Let X be an RRd-valued, contrac-
table semi-martingale on [0, 1] with characteristic triple (α, β, γ), and let Y
be a mixed Lévy process in RRd with the same characteristics. Then for any
convex function f on RRd, we have

Ef(Xt) ≤ Ef(Yt), t ∈ [0, 1],

whenever either side exists.

Proof: By Lemma 3.16 we may assume that X is exchangeable, in which
case we may take the coefficients in the representation (13) to be non-random.
By monotone convergence we can next assume that f(x) = O(|x|) as |x| →
∞. It is now easy to reduce to the case where the sum in (13) is finite.
Changing one term at a time and using a conditioning argument based on
Fubini’s theorem, we may further reduce to the case of a single representing
term. We may also disregard the centering, which is the same for X and Y .

First assume that X = σB0 and Y = σB, where B is a Brownian motion
and B0 a Brownian bridge in RRd. Fixing any t ∈ [0, 1], we note that Xt

d= ξ

and Yt
d= ξ + η, where ξ and η are independent, centered, Gaussian random

vectors with covariance matrices t(1 − t)σσ′ and t2σσ′, respectively. Using
Jensen’s inequality in RRd (FMP 3.5), we get

Ef(Xt) = Ef(ξ) = Ef(E[ξ + η|ξ])
≤ EE[f(ξ + η)|ξ] = Ef(ξ + η) = Ef(Yt).

Next assume that Xt = β1{τ ≤ t} and Yt = βNt, where N is a unit
rate Poisson process on RR+ and τ is U(0, 1). For every n ∈ NN, consider a
Bernoulli sequence ηn

1 , ηn
2 , . . . with rate n−1, and put Y n

t = β
∑

j≤nt η
n
1 . Then

Proposition 1.12 yields

Ef(X([nt]/n)) ≤ Ef(Y n
t ), t ∈ [0, 1].

Here the left-hand side tends to Ef(Xt) by continuity and dominated con-
vergence as n → ∞. Furthermore, Y n

t
d→ Yt by a standard approximation

(FMP 5.7), and also E|Y n
t |2 ≤ 2|β|2. Hence, Ef(Y n

t ) → Ef(Yt) by continu-
ous mapping and uniform integrability (FMP 4.11), and the desired relation
follows. �

3.5 Restriction and Extension

The next result shows how the condition of finite-dimensional convergence
Xn

fd−→ X in Theorems 3.8 to 3.12 can be relaxed in various ways. Corre-
sponding uniqueness criteria are obtained for the choice of Xn ≡ Y .
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Theorem 3.20 (improved convergence criteria) Let X,X1,X2, . . . be RRd-
valued, exchangeable processes defined on I = [0, 1] or [0, un] → I = RR+.
Then Xn

d→ X in D(I,RRd) iff

(i) Xn
fd−→ X on [0, ε] for some ε > 0;

(ii) Xn
fd−→ X on cNN for some c > 0, when I = RR+;

(iii) Xn(t) d→ X(t) for all t, when X,X1,X2, . . . are real and continuous;

(iv) Xn(t) d→ X(t) for some t ∈ (0, 1) \ { 1
2} or t > 0, when X,X1,X2, . . .

are extreme.

A few lemmas will be helpful. The following result shows how various
properties of the processes X1,X2, . . . carry over to the proposed limit.

Lemma 3.21 (closure properties) Let X1,X2, . . . be RRd-valued, exchange-
able processes on [0, 1] or [0, un] → RR+ such that Xn

fd−→ some X. Then
even X is exchangeable, and

(i) X is extreme whenever this holds for every Xn;

(ii) X is continuous whenever this holds for every Xn.

Proof: The first assertion is obvious, part (i) follows from the criteria
in Theorems 3.8 to 3.12, and (ii) holds since Xn

d→ X in D([0, 1],RRd) or
D(RR+,RRd). �

If X is an exchangeable process on [0, 1], the restriction Xp to a sub-
interval [0, p] is again exchangeable. The next result shows how the distribu-
tions of the associated directing triples are related. Here it is convenient to
write ρ = σσ′ and to introduce the Fourier–Laplace (FL) transform of the
directing triple (α, ρ, β), given by

H(u, v, f) = Eeiuα−vρ−βf , u ∈ RRd, v ∈ V +
d , f : RRd → CC+,

where CC+ = {z ∈ CC; �z ≥ 0}. Here vρ =
∑

ij vijρij , and V +
d denotes the

set of real d× d matrices v such that vρ ≥ 0 for all symmetric, non-negative
definite matrices ρ. We also define l(x) ≡ x for x ∈ RRd.

Lemma 3.22 (restriction) Let X be an RRd-valued, exchangeable process on
[0, 1] with restriction Xp to [0, p], and let Hp denote the FL-transform of the
directing triple (αp, ρp, βp) of Xp. Then for p < 1

2 and appropriate u, v, and
f , we have

Hp(u, v, f) = H1

(
pu, pv + 1

2p(1 − p)uu′, ipul − log(1 − p(1 − eiul−f ))
)
.
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When p < 1
2 we have �(1 − p(1 − eiul−f )) > 0, and we may choose the

principal branch of the logarithm. Assuming that f(x) = O(|x|2) at the
origin, we then have the same behavior for the function

g(x) = ipux − log
(
1 − p(1 − eiux−f (x))

)
, x ∈ RRd. (33)

Proof: For convenience, we may drop the subscript 1 when p = 1. Noting
that

αp = Xp, ρp = pρ, βp =
∑

j
δβj

1{τj ≤ p},
we get formally

Hp(u, v, f) = E exp(iuαp − vρp − βpf)

= E exp
(
ipuα + iuσBp + iu

∑
jβj(1{τj ≤ p} − p)

−pvρ −∑
jf(βj)1{τj ≤ p}

)
= E exp

(
ipuα − 1

2p(1 − p)u′ρu− pvρ − ipu
∑

jβj

)
∏

j

(
1 − p(1 − eiuβj−f (βj))

)
= E exp (ipuα − (pv + 1

2p(1 − p)uu′)ρ − ipuβl

+β log(1 − p(1 − eiul−f ))
)

= H1

(
pu, pv + 1

2p(1 − p)uu′, ipul − log(1 − p(1 − eiul−f ))
)
.

To justify the computation, we may first consider the case where X is ex-
treme with finitely many jumps, and then proceed to the general extreme
case by dominated convergence. The result in the composite case follows by
conditioning on (α, σ, β). �

We proceed to show how the Laplace transform of a random measure
can be extended by analytic continuation. Here lcsc is short for a locally
compact, second countable, Hausdorff topological space.

Lemma 3.23 (analytic extension 1) Let ξ be a random measure on an lcsc
space S, let α be a CC-valued, integrable random variable, and fix a continuous
function f0 : S → CC+ with ξ|f0| < ∞ a.s., such that E(αe−ξf ) = 0 for
every measurable function f in a locally uniform neighborhood of f0. Then
E[α|ξ] = 0 a.s.

Proof: For any bounded Borel set B ⊂ S, there exists an ε > 0 such that
E(αe−ξf ) = 0 for every measurable function f : S → CC+ with |f − f0| < ε on
B and f = f0 on Bc. Since f0 is continuous, we may next choose δ > 0 so
small that |f0(x) − f0(y)| < ε/2 whenever x, y ∈ B with d(x, y) < δ, where
d is an arbitrary metrization of S. For any partition of B into Borel sets
B1, . . . , Bn of diameter < δ, the function

f(x) = f0(x)1Bc(x) +
∑

k
ck1Bk

(x), x ∈ S,
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satisfies |f − f0| < ε for all vectors (c1, . . . , cn) in some open subset of CCn
+.

Hence, E(αe−ξf ) = 0 for all such functions f . Since this expected value is
an analytic function of each coefficient c1, . . . , cn ∈ CC+, the relation extends
to any c1, . . . , cn ∈ RR+. We may next extend the formula by dominated
convergence, first to any measurable function f ≥ 0 with f = f0 outside
a bounded set, and then to any continuous function f ≥ 0 with bounded
support. Using the uniqueness theorem for Laplace transforms (FMP 5.3),
we conclude that E[α; ξ ∈ A] = 0 for any measurable set A ⊂ M(S), and
the assertion follows. �

We need also a similar result for random covariance matrices.

Lemma 3.24 (analytic extension 2) Consider a symmetric, non-negative
definite random d×d matrix ρ, an integrable random variable α in CC, and an
element c ∈ V +

d such that E(αe−vρ−cρ) = 0 for all v ∈ V +
d . Then E[α|ρ] = 0

a.s.

Proof: Introduce the non-negative random variables

ηii = ρii, ηij = ρii + ρjj − 2ρij , i �= j.

For any symmetric matrix u = (uij) with non-negative entries, we may define
a corresponding matrix v ∈ V +

d through the identity vρ ≡ uη. It is also clear
that cρ ≡ bη for some symmetric matrix b = (bij). By hypothesis, we have
E(αe−uη) = 0 for all matrices u ≥ b. Here the left-hand side is an analytic
function of each coefficient uij ∈ CC+, and so the relation extends to arbitrary
uij ≥ 0. Using the uniqueness theorem for Laplace transforms, we conclude
that E[α; η ∈ A] = 0 for every Borel set A ⊂ RRd2 , and the assertion fol-
lows. �

Proof of Theorem 3.20: The necessity of (i)–(iv) holds by Theorems 3.8,
3.10, and 3.12. Conversely, assume anyone of the four conditions. Then
(Xn) is tight by Lemma 3.9, and so by Prohorov’s theorem any sub-sequence
N ′ ⊂ NN has a further sub-sequence N ′′ such that Xn

d→ some Y along N ′′.
It remains to show that Y

d= X. Now Xn
fd−→ Y along N ′′ by the necessity

of (i)–(iv), and hence, in the four cases, we have respectively

(i) X
d= Y on [0, ε],

(ii) X
d= Y on cNN,

(iii) Xt
d= Yt for all t,

(iv) Xt
d= Yt for the special value of t.

Furthermore, we note that Y is exchangeable by Lemma 3.21, and also con-
tinuous in case (iii) and extreme in case (iv). To show that X

d= Y , we need
to discuss each case separately.
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(i) By scaling it is enough to consider two exchangeable processes X and
X̃ on [0, 1] such that X

d= X̃ on [0, p] for some p < 1
2 . Writing H and H̃

for the FL-transforms of the corresponding characteristic triples (α, ρ, β) and
(α̃, ρ̃, β̃), we have by Lemma 3.22, for appropriate u, v, and f ,

H(pu, pv + 1
2p(1 − p)uu′, g) = H̃(pu, pv + 1

2p(1 − p)uu′, g),

where g is defined by (33) in terms of f and u. Applying Lemma 3.24 for
fixed u and f , we obtain the extended version

E exp(ipuα − vρ − βg) = E exp(ipuα̃ − vρ̃ − β̃g). (34)

Fixing u and v, we can solve for f in (33) to obtain

f(x) = iux− log
(
1 − p−1(1 − eipux−g(x))

)
+ 2πni, x ∈ RRd, (35)

where the logarithm exists since

1 − p−1(1 − eipux−g(x)) = eiux−f (x) �= 0, x ∈ RRd.

Given any continuous, real-valued function f0 > 0 with f0(x) = O(|x|2) at
the origin, we note that the corresponding function g0 in (33) is continuous
and CC+-valued with g0(x) = O(|x|2). Hence, (35) holds for the pair (f0, g0),
provided that we choose the right-hand side to be continuous and real for
x = 0. If the function g is sufficiently close to g0 in the locally uniform
topology, we can use (35) with the same branch of the logarithm to construct
a corresponding CC+-valued function f . Then (33) remains true for the pair
(f, g), and so even (34) holds for such a g. By Lemma 3.23, the latter relation
extends to any real-valued functions g ≥ 0.

As a final step, we may replace pu by u to obtain H(u, v, g) ≡ H̃(u, v, g)
for all u, v, and g. This implies (α, ρ, β) d= (α̃, ρ̃, β̃), and the required relation
X

d= X̃ follows by the uniqueness in Theorem 3.15.
(ii) Here we may assume that the processes X and X̃ are exchangeable on

RR+ with directing triples (α, ρ, ν) and (α̃, ρ̃, ν̃), respectively, such that X
d= X̃

on NN. Then the exchangeable sequences ξk = Xk −Xk−1 and ξ̃k = X̃k −X̃k−1

agree in distribution, and so, by the law of large numbers, the same thing is
true for the associated directing random measures η and η̃. Now the latter
are a.s. infinitely divisible with characteristic triples (α, ρ, ν) and (α̃, ρ̃, ν̃),
respectively, which are measurably determined by η and η̃. In fact, the
mapping η �→ (α, ρ, ν) is continuous in the topology of Theorem 3.10, by the
same result or by the continuity theorem for infinitely divisible distributions
in FMP 15.14. Hence, even (α, ρ, ν) d= (α̃, ρ̃, ν̃), and the required relation
X

d= X̃ follows by the uniqueness in Theorem 1.19.
(iii) Here we may assume that X and X̃ are real-valued, continuous,

exchangeable processes on [0, 1] such that Xt
d= X̃t for all t. Writing H
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and H̃ for the FL-transforms of the characteristic pairs (α, σ2) and (α̃, σ̃2),
respectively, we note that

EeiuXt = E exp(iuαt + iuσBt)

= E exp
(
iutα − 1

2u
2t(1 − t)σ2

)
= H

(
ut, 1

2u
2t(1 − t)

)
,

and similarly for X̃. Substituting

s = ut, v = 1
2u

2t(1 − t) = 1
2s

2(t−1 − 1),

and noting that the range of (s, v) contains the set (RR \ {0}) × RR+, we get
H(s, v) ≡ H̃(s, v) by continuity, and so (α, σ2) d= (α̃, σ̃2). Thus, X

d= X̃ by
the uniqueness in Theorem 3.15.

(iv) The result for processes on RR+ follows as in FMP 15.8 from the
uniqueness theorem for characteristic functions. It is then enough to consider
some extreme, exchangeable processes X and X̃ on [0, 1] such that Xt

d= X̃t

for a fixed t ∈ (0, 1) \ { 1
2}. Then, as in Lemma 3.22, we have

Eeiu′Xt = exp
(
itu′α + iu′σBt + iu′∑

jβj(1{τj ≤ t} − t)
)

= exp(itu′α − 1
2t(1 − t)u′ρu)

∏
j
ft(iu′βj), (36)

and similarly for X̃t, where

ft(z) = e−tz(1 − t(1 − ez)) = 1 + O(z2), z ∈ CC.

Since
∑

j β2
j < ∞ and

∑
j β̃2

j < ∞, the expressions in (36) converge, uniformly
for bounded u, toward some entire functions ϕt(u) and ϕ̃t(u) on CCd, and the
relation Eeiu′Xt = Eeiu′X̃t extends to ϕt(u) ≡ ϕ̃t(u).

Now ft has the zeros

z = log(t−1 − 1) + (2n + 1)πi, n ∈ ZZ,

and so the solutions to the equation ϕt(u) = 0 satisfy

u′βj = (2n + 1)π − i log(t−1 − 1), j ∈ NN, n ∈ ZZ.

Taking imaginary parts gives

(�u)′βj = �(u′βj) = − log(t−1 − 1) �= 0,

which represents a plane in RRd. Since the zeros of ϕt and ϕ̃t agree and
have the same multiplicities, we conclude that the sequences β1, β2, . . . and
β̃1, β̃2, . . . agree apart from order. Thus, β = β̃, and we may divide by the
corresponding products in (36) to obtain

exp(itu′α − 1
2t(1 − t)u′ρu) = exp(itu′α̃ − 1

2t(1 − t)u′ρ̃u), u ∈ RRd.

Here we may take absolute values to get u′ρu = u′ρ̃u for all u ∈ RRd, which
implies ρ = ρ̃ since both matrices are symmetric. We are then left with the
equation eitu′α = eitu′α̃ for arbitrary u, which gives α = α̃. �
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3.6 Coupling and Path Properties

Here our first aim is to strengthen the convergence in Theorems 3.8, 3.10,
and 3.12 to the sense of the locally uniform topology. Unfortunately, the
usual weak convergence theory doesn’t apply to this case, since the uniform
topology on D([0, 1],RRd) is non-separable and the induced σ-field is different
from the one generated by the coordinate projections. Our present approach
is through a coupling argument, which provides an even stronger a.s. version
of the indicated result.

Letting x, x1, x2, . . . ∈ D(I,RRd) with I = [0, 1] or RR+, we write xn
u→ x

for the locally uniform convergence (xn − x)∗
t → 0, where t ∈ I is arbitrary.

If X,X1,X2, . . . are random processes in D(I,RRd), then by Xn
ud−→ X we

mean that f(Xn) d→ f(X) for every measurable function f on D(I,RRd)
that is continuous for the uniform topology, in the sense that f(xn) → f(x)
whenever xn

u→ x in D(I,RRd).

Theorem 3.25 (uniform convergence, Skorohod, Kallenberg) Let X and
X1,X2, . . . be RRd-valued, exchangeable processes on [0, 1] or [0, un] → RR+.
Then these conditions are equivalent:

(i) Xn
fd−→ X,

(ii) Xn
d→ X,

(iii) Xn
ud−→ X,

(iv) X̃n
u→ X a.s. for some X̃n

d= Xn.

Here an elementary lemma will be helpful.

Lemma 3.26 (combination of sequences) Let ξk,n ≥ 0, k, n ∈ NN, be random
variables such that ξk,n → 0 a.s. as n → ∞ for fixed k. Then there exist some
constants kn → ∞ such that

lim
n→∞

max
k≤kn

ξk,n = 0 a.s. (37)

Proof: We may assume that the variables ξk,n are non-increasing in n,
non-decreasing in k, and uniformly bounded, since otherwise they can be
replaced by

ηk,n = max
j≤k

sup
m≥n

ξk,n ∧ 1, k, n ∈ NN,

which have all the stated properties, satisfy the hypotheses of the lemma,
and are such that ηkn,n → 0 implies (37). Then define

nk = inf{n ∈ NN; Eξk,n ≤ 2−k}, k ∈ NN,
kn = max{k ≤ n; nk ≤ n}, n ∈ NN.

Since Eξk,n → 0 as n → ∞ by dominated convergence, we have nk < ∞ for
all k, which implies kn → ∞. Furthermore, by Fubini’s theorem,

E
∑

k
ξk,nk

=
∑

k
Eξk,nk

≤
∑

k
2−k < ∞,
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which shows that ξk,nk
→ 0 a.s. as k → ∞. Noting that nkn ≤ n for large n

and using the monotonicity in the second index, we get as n → ∞

ξkn,n ≤ ξkn,nkn
→ 0 a.s.

Relation (37) now follows by the monotonicity in the first index. �

Proof of Theorem 3.25: It is enough to prove that (ii) ⇒ (iv), since (i)
⇔ (ii) by the previous results, and the implications (iv) ⇒ (iii) ⇒ (ii) are
obvious. First we consider processes X and X1,X2, . . . on [0, 1] with non-
random characteristics (α, γ, β) and (αn, γn, βn), n ∈ NN, satisfying Xn

d→ X
in D([0, 1],RRd). Fix any ε > 0 with β{|x| = ε} = 0, and let ξ1, . . . , ξm denote
the jumps in X of modulus > ε, listed in order from left to right. For large
enough n ∈ NN, even Xn has m jumps greater than ε, say ξ1

n, . . . , ξ
m
n , and we

note that
(ξ1

n, . . . , ξ
m
n ) d→ (ξ1, . . . , ξm).

By FMP 4.30 we may replace the Xn by equivalent processes Xε
n

d= Xn such
that the same convergence holds in the a.s. sense. Since the associated times
τ1, . . . , τm and τ1

n , . . . , τm
n form independent binomial processes on [0, 1], e.g.

by Theorem 1.23, we may assume that also τk
n = τk a.s. for all k. Then the

corresponding jump processes Jε and Jε
1 , J

ε
2 , . . . satisfy ‖Jε

n − Jε‖ → 0 a.s.
The remaining components Y ε = X − Jε and Y ε

n = Xn − Jε
n, n ∈ NN,

satisfy Y ε
n

d→ Y ε, in the sense of Skorohod’s J1-topology on D([0, 1],RRd), and
so by FMP 4.30 we may assume that Y ε

n → Y ε a.s. for the same topology.
Then, with probability one, there exist some increasing bijections λ1, λ2, . . .
on [0, 1] such that ‖Y ε

n ◦ λn − Y ε‖ → 0 and ‖λn − λ‖ → 0, where λ(t) ≡ t.
Furthermore, we note that w̃(Y ε, h) → 0 a.s. as h → 0, where w̃ denotes
the modified modulus of continuity in D([0, 1],RRd) (FMP A2.2). Since the
jump sizes of Y ε are bounded by ε, we conclude for the ordinary modulus of
continuity w that

lim sup
h→0

w(Y ε, h) ≤ ε a.s., ε > 0. (38)

Writing Xε
n = Jε

n + Y ε
n

d= Xn and noting that

‖Xε
n − X‖ ≤ ‖Jε

n − Jε‖ + ‖Y ε
n − Y ε‖

≤ ‖Jε
n − Jε‖ + ‖Y ε

n ◦ λn − Y ε‖ + w(Y ε, ‖λn − λ‖),

we get by (38)
lim sup

n→∞
‖Xε

n − X‖ ≤ ε a.s., ε > 0. (39)

To extend the last result to the case of random characteristics, we note
that, in view of Theorem 3.8,

(αn, γn, βn) vd−→ (α, γ, β) in RRd+d2 ×N (RRd \ {0}).
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By FMP 6.12 we may assume this to hold a.s., and from the proof of the same
result we see that the processes X,X1,X2, . . . can be taken to be conditionally
independent, given the family of characteristics (α, γ, β) and (αn, γn, βn).
Then all processes are conditionally exchangeable, given the latter quantities,
and Theorem 3.8 shows that Xn

d→ X remains conditionally true. We may
now to apply FMP 4.30, as before, to the conditional distributions of X and
X1,X2, . . . , to obtain some processes Jε

n and Y ε
n with suitable conditional

distributions, satisfying the appropriate a.s. conditions. To justify the last
step, we need to check that the construction in the proof of FMP 4.30 depends
measurably on the underlying distributions, which is quite straightforward.
This ensures the existence, even for general characteristics, of some processes
Xε

n
d= Xn satisfying (39).
To eliminate the ε in (39), we may apply Lemma 3.26 to the random

variables
ξk,n =

(
‖X1/k

n − X‖ − k−1
)
∨ 0, k, n ∈ NN,

which are clearly such that ξk,n → 0 a.s. as n → ∞ for fixed k. By the lemma
we may then choose a sequence kn → ∞ with ξkn,n → ∞ a.s., and we note
that the processes X̃n = X1/kn

n
d= Xn satisfy

‖X̃n − X‖ ≤ ξkn,n + k−1
n → 0 a.s.

We proceed to the case of processes X and Xn on RR+. By the result
in the finite-interval case, there exist some processes Xk

n
d= Xn satisfying

(Xk
n − X)∗

k → 0 a.s. as n → ∞ for fixed k ∈ NN. Using Lemma 3.26 with
ξk,n = (Xk

n−X)∗
k, we may next assert the existence of some constants kn → ∞

such that ξkn,n → 0 a.s. Putting X̃n = Xkn
n

d= Xn, we get a.s., as n → ∞ for
fixed t > 0,

(X̃n − X)∗
t ≤ (Xkn

n − X)∗
kn

= ξkn,n → 0,

which shows that X̃n
u→ X a.s. The case of processes Xn on increasing in-

tervals [0, un] → RR+ is similar, apart from the need to impose an additional
restriction kn ≤ un. �

To examine the local path properties of an exchangeable process, it is
often convenient to compare with a suitable Lévy process, for which the
corresponding properties are well-known. Our basic comparison takes the
form of two general coupling theorems, each of which provides some very
precise error estimates. To measure the rate of decrease of the coefficients βj

in (13), we introduce the index of regularity

ρX = inf{c ≥ 0;
∑

j |βj |c < ∞}.

Clearly ρX ∈ [0, 2], and we also note that ρX = 1 is the borderline case for the
jump component of X to have finite variation. If X is a stable Lévy process
of index p ∈ (0, 2), then ρX = p. In the general case, we may iterate the
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following construction to obtain mixed Lévy approximations with arbitrarily
small error terms.

Theorem 3.27 (coupling 1) Let X be a real-valued, exchangeable process
on [0, 1] directed by (α, σ2, β). Then X = Y + Z a.s. for some exchangeable
process (Y,Z) in RR2, where Y is mixed Lévy with the same directing triple
and Z has a directing triple (α′, 0, β′) satisfying ρ−1

Z ≥ ρ−1
X + 1

2 a.s.

Proof: Let X be given by (13). Since the order of terms is irrelevant, we
may choose the index set of j to be ±NN = {±1,±2, . . .} and assume that

β−1 ≤ β−2 ≤ · · · ≤ 0 ≤ · · · ≤ β2 ≤ β1,

where some of the βj may be 0. Independently of the random processes
and variables in (13), we introduce a random pair (ϑ, ξ), where ϑ is N(0, 1)
and ξ =

∑
j δξj

is an independent, unit rate Poisson process on ±NN with
points ξj , enumerated in increasing order. Now consider the point process
η =

∑
jδ(τj, βξj

) on [0, 1] × RR, where δ(x) = δx, and for t ∈ [0, 1] define

Yt = αt + σ(Bt + ϑt) +
∫ t

0

∫
x �=0

x (η − λ ⊗ β1)(ds dx), (40)

where β1 denotes the restriction of β to the set [−1, 0) ∪ (0, 1]. Noting that
Bt + ϑt is a standard Brownian motion on [0, 1] and η is a Cox process on
[0, 1]× (RR\{0}) directed by λ⊗β (cf. FMP 12.3), we see from Theorem 1.19
that Y is a mixed Lévy process on [0, 1] directed by the same triple (α, σ2, β).

Since Y is exchangeable with diffusion component σBt and with jumps
βξj

occurring at times τj , we may rewrite (40) in the form

Yt = α̃t + σBt +
∑

j
βξj

(1{τj ≤ t} − t), t ∈ [0, 1],

for a suitable random variable α̃. Then

Zt ≡ Xt − Yt = (α − α̃)t +
∑

j
(βj − βξj

)(1{τj ≤ t} − t),

which shows that Z is exchangeable with directing triple (α′, 0, β′), where
α′ = α − α̃ and β′ =

∑
j β′

j with β′
j ≡ βj − βξj

. To see that β′ satisfies the
required index relation, we may clearly take β to be non-random. We can
also assume that β1 ≥ β2 ≥ · · · > 0, thus restricting the summation in (13)
to the index set NN.

First suppose that ρX < 2, and fix any p ∈ (ρX , 2). Choose any constants
q ∈ (0, 1) and a ∈ (0, 1

2) with

0 < q−1 − p−1 < a < 1
2 ,

and put b = 1 − a and r = b/a. Define mn = (an)1/a, and note that

∆mn ∼ m′
n = (an)r = mb

n. (41)
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Write xn = βmn , where βt ≡ β[t]. Noting that k−b(ξk − k) → 0 a.s. by
the Marcinkiewicz–Zygmund law of large numbers (FMP 4.23), and using
Hölder’s inequality and (41), we get∑

k
|β′

k|q <
�

∑
k
(βk−kb − βk+kb)q <

�
ar
∑

n
nr|∆xn|q

<
�

ar
(∑

n
nrxc−1

n−1|∆xn|
)q (∑

n
nrxp

n

)1−q
,

where c = 1 + p − p/q ∈ (0, p). Using the monotonicity of xn, Fubini’s
theorem, and Hölder’s inequality, we get as in FMP 3.4

c
∑

n
nrxc−1

n−1|∆xn| ≤
∑

n
nr|∆xc

n| <
�

r
∑

n
nr−1xc

n

≤ r
(∑

n
n−d

)1−c/p (∑
n
nrxp

n

)c/p
,

where d = (q−1 − p−1)−1 − r > 1. Combining the preceding estimates and
noting that

∑
n n−d < ∞ and

∑
n nrxp

n <
�

∑
j βp

j < ∞ by (41), we conclude
that

∑
k |β′

k|q < ∞. This gives ρZ ≤ q, and the assertion follows as we let
q → (p−1 + 1

2)
−1 and then p → ρX .

Now assume instead that ρX = 2, and let q ∈ (1, 2) be arbitrary. Writing
γk = βq

k , we get by convexity

∑
k
|β′

k|q ≤
∑

k

∣∣∣βq
k − βq

ξk

∣∣∣ = ∑
k
|γk − γξk

|. (42)

Since
∑

k γ
2/q
k =

∑
k β2

k < ∞, the previous case applies to the constants γk

with p = 2/q and proves convergence of the last sum in (42). Thus, we have
again ρZ ≤ q, and as q → 1 we get ρ−1

Z ≥ 1 = ρ−1
X + 1

2 , as required. �

We turn to a different kind of coupling, where the given exchangeable
process X is essentially squeezed between two mixed Lévy processes X±, with
directing random measures ν± close to the original directing point process
β. Since a weak regularity condition will now be imposed on β, it may be
necessary, for future applications, first to make a preliminary reduction by
means of Theorem 3.27. For convenience, we may assume that X has positive
jumps. Write log2 x = log log(x ∨ e).

Theorem 3.28 (coupling 2) Let X be a real-valued, exchangeable process
on [0, 1] directed by (α, σ2, β), where β1 ≥ β2 ≥ · · · and ρX < 2 a.s. Then
X = Y± ∓ Z± for some exchangeable processes (Y,Z)± in RR2, where Y± are
mixed Lévy and directed by (α±, σ2, ν±), with

ν± =
∑

k

(
1 ± (k−1 log2 k)1/2

)
δβk

, (43)

and Z± are a.s. non-decreasing apart from finitely many negative jumps. If X
is non-decreasing with drift 0, we may choose Y± to have the same properties.
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Proof: Independently of all random objects in (13), we introduce a N(0, 1)
random variable ϑ and some independent Poisson processes ξ± =

∑
k δ(ξ±

k ) on
NN with Eξ±{n} = 1± (n−1 log2 n)1/2. Put β± =

∑
k δ(β±

k ) with β±
k = β(ξ±

k ),
write η± =

∑
k δ(τk, β

±
k ), and define

Y±(t) = αt + σ(Bt + ϑt) +
∫ t

0

∫
x �=0

x (η± − λ ⊗ β±)(ds dx). (44)

The processes Y± are clearly mixed Lévy with directing triples (α, σ2, ν±),
and we note that Z± = ±(Y± − X) are exchangeable with directing triples
(α̃±, 0, β̃±), where β̃±

k = ±(β±
k − βk). We shall prove that β̃±

k ≥ 0 for all
but finitely many k, and also that

∑
k β̃±

k < ∞ a.s. Then the Z± are clearly
non-decreasing, apart from a linear drift and finitely many negative jumps,
and the required conditions become fulfilled, after a suitable adjustment of
the drift coefficient in (44). For convenience, we may henceforth assume that
β is non-random.

Using (43) and some elementary estimates, we get

±(Eξ±[1, n] − n) ∼
∑

k≤n
(k−1 log2 k)1/2

∼
∫ n

e
(x−1 log2 x)1/2dx ∼ 2(n log2 n)1/2. (45)

This gives in particular Eξ±[1, n] ∼ n, and so, by the Hartman–Wintner law
of the iterated logarithm (FMP 14.8), we have eventually for large n∣∣∣ξ±[1, n] − Eξ±[1, n]

∣∣∣ ≤ (3n log2 n)1/2.

Combining this with (45), we get for any b > 1
2 and for large enough n

n− nb ≤ ξ−[1, n] ≤ n ≤ ξ+[1, n] ≤ n + nb,

Since k − n ∼ ±nb iff n − k ∼ ∓kb, we conclude that, for b > 1
2 and large

enough k,
k − kb ≤ ξ+

k ≤ k ≤ ξ−
k ≤ k + kb,

and hence
βk+kb ≤ β−

k ≤ βk ≤ β+
k ≤ βk−kb.

Since ρX < 2, we finally see from the previous proof that∑
k
(β+

k − β−
k ) ≤

∑
k
(βk−kb − βk+kb) < ∞,

whenever b is close enough to 1
2 . �

To illustrate the use of the last two theorems, we now extend some clas-
sical local growth results for Lévy processes to the more general setting of
exchangeable processes on [0, 1]. Similar results were derived directly, by
different methods, in Theorem 2.32.
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Corollary 3.29 (local growth 1, Khinchin, Millar, Kallenberg) Let X be an
exchangeable process on [0, 1] directed by (α, σ2, β). Then

(i)
lim sup

t→0

Xt

(2t log | log t|)1/2 = |σ| a.s.;

(ii) for any convex function f on RR+ with f(0) = f ′(0) = 0 such that
f(x1/2) is concave and for arbitrary c > 1, we have

lim
t→0

Xt

f−1(t| log t|c) = 0 a.s. on
{
σ = 0,

∑
k
f(|βk|) < ∞

}
.

Proof: (i) Let X = Y + Z be the decomposition in Theorem 3.27. Then
the statement holds for the mixed Lévy process Y , and it remains to prove
the result for Z, which reduces the discussion to the case where ρX < 2 and
σ = 0. Next we may utilize the decomposition X = Y+ − Z− of Theorem
3.28. Here the result holds for the mixed Lévy process Y+, and since X ≤ Y+

a.s. near 0, the formula remains true for X.
(ii) For convenience, we may assume that β is non-random, restricted to

(0,∞), and such that βf < ∞. Consider the decomposition X = Y + Z of
Theorem 3.27, and note that the asserted formula holds for Y . Letting β′

and β′′ denote the directing point processes of Y and Z, respectively, we note
that even β′f < ∞ a.s. since Eβ′f = βf < ∞. The relation β′′

j = βj − β′
j

yields |β′′
j | ≤ βj ∨ β′

j , and so∑
j
f(|β′′

j |) ≤
∑

j
f(βj) +

∑
j
f(β′

j) = βf + β′f < ∞.

This reduces the discussion to the case where ρX < 2.
Next we use Theorem 3.28 to approximate X by Lévy processes Y± such

that Y− ≤ X ≤ Y+ near 0. The associated Lévy measures ν± satisfy ν± ≤ 2β
near the origin, and so the condition βf < ∞ implies ν±f < ∞. The result
then holds for both Y+ and Y−, and so it remains true for X. �

We may also extend some growth results for subordinators to any non-
decreasing, exchangeable processes on [0, 1].

Corollary 3.30 (local growth 2, Fristedt, Kallenberg) Let X be a non-
decreasing, exchangeable process on [0, 1] with directing point process β and
drift 0. Then a.s.

(i) for any concave, increasing function f on RR+ with f(0) = 0,

lim
t→0

Xt

f−1(t)
= 0 iff βf < ∞;

(ii) for any function f ≥ 0 on RR+ such that f(t)/t is increasing,

lim
t→0

Xt

f(t)
= 0 iff

∫ ∞

0
β(f(t),∞) dt < ∞.
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Proof: The corresponding results for subordinators apply to the approx-
imating processes Y± in Theorem 3.28, with similar criteria in terms of the
associated directing random measures ν±. Now the latter conditions are
equivalent to those for β, since 1

2β ≤ ν± ≤ 2β near the origin. �

3.7 Sub-sequence Principles

For motivation, we begin with a simple result for exchangeable sequences.
If ξ is an infinite, exchangeable sequence directed by ν, then we know that
P{ξ ∈ ·} = Eν∞. The next result shows that the same relation holds
asymptotically in a suitably conditional sense.

Proposition 3.31 (stable convergence, Rényi and Révész) Let ξ = (ξn) be
an infinite, F-exchangeable sequence directed by ν, taking values in a Polish
space S. Then

(i) E[θnξ ∈ ·|Fn] w→ ν∞ a.s.,
(ii) E[η; θnξ ∈ ·] w→ Eην∞ for all η ∈ L1.

Proof: (i) For any bounded, measurable function f on S∞, we get a.s. by
Proposition 2.1 and martingale convergence

E[f(θnξ)|Fn] = E[E[f(θnξ)|Fn, ν]|Fn]
= E[ν∞f |Fn] → E[ν∞f |F∞] = ν∞f.

If S is Polish, then so is S∞, and we can apply this result to a convergence-
determining sequence of bounded, continuous functions f1, f2, . . . on S∞,
which yields the asserted statement.

(ii) If η is Fn-measurable, then for any bounded, measurable function f
on S∞

Ef(θnξ)η = EE[f(θnξ)|ν,Fn]η = E(ν∞f)η.

For general η ∈ L1, we get by martingale convergence (FMP 7.23)

|Ef(θnξ)η − E(ν∞f)η| = |E(f(θnξ) − ν∞f)E[η|F∞]|
≤ |Ef(θnξ)(E[η|F∞] − E[η|Fn])|

+ |E(f(θnξ) − ν∞f)E[η|Fn]|
+ |E(ν∞f)(E[η|Fn] − E[η|F∞])|

≤ 2‖f‖ ‖E[η|Fn] − E[η|F∞]‖1 → 0,

which shows that Ef(θnξ)η → E(ν∞f)η. As before, it remains to apply
this to a convergence-determining sequence f1, f2, . . . of bounded continuous
functions f1, f2, . . . on S∞. �

In particular, part (ii) shows that the sequence ξ1, ξ2, . . . converges stably,
in the sense of Rényi, with mixing random measure ν. By a similar argument,
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most classical limit theorems for i.i.d. sequences of random variables carry
over, in a mixed form and in the sense of stable convergence, to arbitrary
exchangeable sequences.

We now turn our attention to more general random sequences ξ in a Polish
space. Our aim is to show that any tight sequence ξ has a sub-sequence that
is approximately exchangeable. We begin with an approximation in the sense
of stable convergence. For suitable sequences ξ = (ξn) and p = (pn), we write
ξ ◦ p = (ξp1, ξp2, . . .).

Theorem 3.32 (weak sub-sequence principle, Dacunha-Castelle, Aldous)
For any tight random sequence ξ = (ξn) in a Polish space S, there exist a
sub-sequence p of NN and a random probability measure ν on S such that

E[η; θn(ξ ◦ p) ∈ ·] w→ Eην∞, η ∈ L1. (46)

In particular, the shifted sub-sequence θn(ξ ◦ p) converges in distribution
to an exchangeable sequence directed by ν. Our proof of Theorem 3.32 is
based on two lemmas. First we need to prove convergence of the conditional
distributions along a sub-sequence, which requires a simplifying assumption.

Lemma 3.33 (compactness) Let ξ = (ξn) be a tight random sequence in a
Polish space S, such that each ξn takes only finitely many values. Then there
exist a sub-sequence ξ ◦ p = (ξpn) of ξ with induced filtration F = (Fn) and
a random probability measure ν on S such that

P [(ξ ◦ p)n+1 ∈ ·|Fn] w→ ν a.s.

Proof: Let f1, f2, . . . be a convergence-determining sequence of bounded,
continuous functions on S. By the weak compactness of the unit ball in L2,
combined with a diagonal argument, we can choose a sub-sequence ζ1, ζ2, . . .
of ξ such that

E[fj(ζn); A] → E[αj ; A], A ∈ A, j ∈ NN. (47)

for some random variables α1, α2, . . . ∈ L2. Passing to a further sub-sequence,
if necessary, we can ensure that

|E[fj(ζn+1)|A] − E[αj |A]| ≤ 2−n, A ∈ An, j ≤ n, n ∈ NN, (48)

where An denotes the set of atoms A in Fn = σ(ζ1, . . . , ζn) with PA > 0.
We shall prove that the latter sequence ζ = (ζn) has the required property.

The sequence P [ζn ∈ ·|A] is again tight for every A ∈ ⋃
m Am , and so

by Prohorov’s theorem and a diagonal argument we have P [ζn ∈ ·|A] w→ µA

along a sub-sequence for some probability measures µA on S. Comparing
with (47), we conclude that

µAfj = E[αj |A], A ∈
⋃

n
An, j ∈ NN. (49)
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Next we introduce the random probability measures

µn =
∑

A∈An
1AµA, n ∈ NN, (50)

and note that the random variables µnf form a bounded F -martingale for
every bounded, measurable function f on S. By martingale convergence we
obtain µnfj → βj a.s. for some random variables βj .

The probability measures Eµn are independent of n and are therefore
trivially tight. Furthermore, we see from Doob’s inequality that, for any
compact K ⊂ S,

E(supnµnK
c)2 <

�
supnE(µnK

c)2 ≤ supnEµnK
c,

which tends to 0 as K ↑ S. By dominated convergence we get supnµnK
c →

0 a.s., which shows that the sequence (µn) is a.s. tight. But then, with
probability 1, we have convergence µn

w→ µ along a sub-sequence, where the
limiting probability measure µ may depend on ω ∈ Ω. Comparing this with
the previously noted convergence µnfj → βj a.s., we obtain µnfj → µfj a.s.
along NN for every j ∈ NN, and since the fj are convergence-determining, we
conclude that µn

w→ µ a.s. In particular, we see from FMP 1.10 that µ has a
measurable version ν.

Now define

νn = P [ζn+1 ∈ ·|Fn] =
∑

A∈An
1AP [ζn+1 ∈ ·|A], n ∈ NN,

and conclude from (48), (49), and (50) that

|νnfj − µnfj | ≤ 2−n a.s., j ≤ n.

For any j ∈ NN, we get a.s.

|νnfj − νfj | ≤ |νnfj − µnfj | + |µnfj − νfj | → 0,

which implies νn
w→ ν a.s. �

Our next step is to extend the previous convergence to the infinite product
space S∞. Here we write wP−→ for convergence in probability with respect to
the weak topology.

Lemma 3.34 (iteration) Let ξ = (ξn) be an F-adapted random sequence in
a Polish space S, satisfying P [ξn+1 ∈ ·|Fn] wP−→ ν for some random probability
measure ν on S. Then

E[η; θnξ ∈ ·] w→ Eην∞, η ∈ L1.
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Proof: Consider in S an exchangeable sequence ζ = (ζn) directed by ν
and such that ζ ⊥⊥ν A. We claim that

(η, ξn+1, . . . , ξn+k)
d→ (η, ζ1, . . . , ζk), k ∈ ZZ+, (51)

for any F∞-measurable random element η in a Polish space T . This is vac-
uously true for k = 0. Now assume the statement to be true for a given
k ∈ ZZ+. Proceeding by induction, suppose that η is Fm-measurable for some
m ∈ NN, and fix a bounded, continuous function f ≥ 0 on T ×Sk+1. By FMP
4.27 we note that the mapping

(y, x1, . . . , xk, µ) �→ µf(y, x1, . . . , xk, ·) (52)

is again continuous from T × Sk ×M1(S) to RR+. Furthermore, noting that
ν is F∞-measurable, we see from the induction hypothesis that

(η, ξn+1, . . . , ξn+k, ν) d→ (η, ζ1, . . . , ζk, ν).

Since νn ≡ P [ξn+1 ∈ ·|Fn] wP−→ ν, we may use FMP 4.28 to conclude that

(η, ξn+1, . . . , ξn+k, νn+k)
d→ (η, ζ1, . . . , ζk, ν).

Combining this with the continuity in (52) and using the disintegration the-
orem twice, we get for n > m and as n → ∞

Ef(η, ξn+1, . . . , ξn+k+1) = Eνn+kf(η, ξn+1, . . . , ξn+k, ·)
→ Eνf(η, ζ1, . . . , ζk, ·)
= Ef(η, ζ1, . . . , ζk+1).

This proves (51) for k + 1 when η is Fm-measurable.
To extend the result to any F∞-measurable random element η in T , we

may choose some Fm-measurable random elements ηm in T such that ηm
P→ η.

This is obvious when η is simple, since for any finite partition A1, . . . , Ar ∈
F∞ of Ω there exist some approximating partitions Am

1 , . . . , Am
r ∈ Fm such

that P (Ai∆Am
i ) → 0 for all i ≤ r (FMP 3.16). The associated approxima-

tions ηm of η then satisfy ηm
P→ η. It remains to note that any F∞-measurable

random element η in T is tight and hence can be approximated in probability
by some simple, F∞-measurable random elements η1, η2, . . . . The required
extension now follows by FMP 4.28. This completes the induction and proves
(51) for any F∞-measurable random element η.

In particular, every bounded, F∞-measurable random variable η satisfies

E[η; θnξ ∈ ·] w→ E[η; ζ ∈ ·] = Eην∞,

which extends by a simple approximation to any η ∈ L1(F∞). Since ξ and
ν are a.s. F∞-measurable, we may finally extend the result to arbitrary η ∈
L1(A), by writing

E[η; θnξ ∈ ·] = E[E[η|F∞]; θnξ ∈ ·]
w→ EE[η|F∞]ν∞ = Eην∞. �
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Proof of Theorem 3.32: Fix any metric ρ in S. Since the ξn are indi-
vidually tight, we may choose some random elements ζ1, ζ2, . . . in S, each of
which takes only finitely many values, such that

E[ρ(ξn, ζn) ∧ 1] ≤ 2−n, n ∈ NN.

Then Fubini’s theorem yields E
∑

n(ρ(ξn, ζn) ∧ 1) ≤ 1, and so ρ(ξn, ζn) → 0
a.s. By Lemma 3.33 we may next choose a sub-sequence ζ ◦ p = (ζp1, ζp2, . . .)
with induced filtration F = (Fn) such that

P [(ζ ◦ p)n+1 ∈ ·|Fn] w→ ν a.s.

Then Lemma 3.34 yields

E[η; θn(ζ ◦ p) ∈ ·] → Eην∞, η ∈ L1,

and (46) follows by means of FMP 4.28. �

Choosing ζ1, ζ2, . . . to be conditionally i.i.d. given A with distribution ν,
we note that the statement of Theorem 3.32 is equivalent to θn(ξ ◦ p) → ζ,
in the sense of stable convergence. A sequence ξ satisfying the condition
E[η; θnξ ∈ ·] w→ Eην∞ of Theorem 3.32 is said to be determining with mixing
random measure ν. For determining sequences it is clear that the mixing
measure ν is a.s. unique.

Proceeding to a further sub-sequence, if necessary, we may strengthen the
conclusion to approximation in a suitable point-wise sense.

Theorem 3.35 (strong sub-sequence principle, Berkes and Péter) Let ξ =
(ξn) be a tight random sequence in a separable, complete metric space (S, ρ),
and fix any ε > 0. Then there exist a sub-sequence p of NN and an exchange-
able sequence ζ = (ζn) in S such that

E[ρ(ξpn, ζn) ∧ 1] ≤ ε, n ∈ NN. (53)

Here, as always, we assume the underlying probability space to be rich
enough to support an independent randomization variable. Using approx-
imations of this type, it can be shown that any classical limit theorem for
i.i.d. random elements of S remains true, in a mixed form, for a suitable
sub-sequence of any tight sequence ξ in S. The details of this extension lie
outside the scope of the present exposition.

To prove the stated theorem, we need again a couple of lemmas. For the
first one, we write ‖µ − ν‖ = supA |µA− νA|.

Lemma 3.36 (sequential coupling) Let ξ = (ξn) be an F-adapted random
sequence in a Borel space S, and put νn = P [ξn ∈ ·|Fn−1], n ∈ NN. Fix
any probability measures µ1, µ2, . . . on S. Then there exist some independent
random elements ζn in S with distributions µn, n ∈ NN, such that

P{ζn �= ξn} = E‖µn − νn‖, n ∈ NN.
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Proof: We may assume that S = [0, 1]. Introduce some i.i.d. U(0, 1)
random variables ϑ1, ϑ2, . . . independent of F∞, put Gn = Fn ∨σ(ϑ1, . . . , ϑn),
and note that νn = P [ξn ∈ ·|Gn−1] for all n. It is enough to choose the ζn to be
Gn-measurable and independent of Gn−1 with distributions µn. Proceeding
recursively, we need to show that, for any random variable ξ, σ-field F ,
distribution µ, and U(0, 1) random variable ϑ⊥⊥ (ξ,F), there exists a random
variable ζ ⊥⊥F with distribution µ, measurable with respect to (ξ,F , ϑ), such
that

P{ζ �= ξ} = E‖µ − P [ξ ∈ ·|F ]‖. (54)

Assuming first that F is the trivial σ-field and putting ν = L(ξ), we
need to construct ζ with distribution µ such that P{ζ �= ξ} = ‖µ − ν‖.
Then consider the Lebesgue decomposition µ = p · ν + µs of µ with respect
to ν (FMP 2.10), where µs⊥ν and p ≥ 0, and put ζ = ξ when ϑ ≤ p(ξ).
This gives the partial distribution (p ∧ 1) · ν, and we can easily complete
the construction such that ζ gets distribution µ. By FMP 7.26, the density
function p(x) can be chosen to be jointly measurable in µ, ν, and x. Then
for fixed µ, any reasonable method of construction yields ζ as a measurable
function fµ of (ξ, ϑ, ν).

Turning to the general case, we may still define ζ = fµ(ξ, ϑ, ν), but now
with ν = P [ξ ∈ ·|F ]. Noting that P [(ξ, ϑ) ∈ ·|F ] = ν ⊗ λ and using the
disintegration theorem (FMP 6.4), we get a.s.

P [ζ ∈ ·|F ] = P [fµ(ξ, ϑ, ν) ∈ ·|F ]

=
∫ ∫

1{fµ(x, t, ν) ∈ ·} ν(dx) dt = µ, (55)

P [ζ �= ξ|F ] = P [fµ(ξ, ϑ, ν) �= ξ|F ]

=
∫ ∫

1{fµ(x, t, ν) �= x} ν(dx) dt = ‖µ − ν‖. (56)

Here (55) shows that ζ ⊥⊥F with distribution µ, and we get (54) by taking
expected values in (56). �

The main result will first be proved in a simple special case.

Lemma 3.37 (case of finite state space) When S is finite, the conclusion
of Theorem 3.35 holds with (53) replaced by

P{ξpn �= ζn} ≤ ε, n ∈ NN. (57)

Proof: By Theorem 3.32 we may assume that ξ is determining with mixing
measure ν. Fix any ε > 0. Since S is finite, we may choose a measurable
partition of M1(S) into finitely many sets M1, . . . ,Mm , each of diameter < ε
with respect to the norm ‖ · ‖. For every k ≤ m we fix a measure µk ∈ Mk.
When the set Ωk = {ν ∈ Mk} has positive probability, we may introduce the
conditional probability measure Pk = P [ · |Ωk] on Ωk.
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We shall construct a sub-sequence p = (pn) of NN such that

‖Pk[ξpn ∈ ·|Fn−1] − µk‖ ≤ ε a.s., k ≤ m, n ∈ NN, (58)

where Fn = σ(ξp1, . . . , ξpn) for all n. Then by Lemma 3.36 there exist some
random elements ζ1, ζ2, . . . , i.i.d. under each Pk with distribution µk, such
that

Pk{ξpn �= ζn} ≤ ε, k ≤ m, n ∈ NN. (59)

The sequence ζ = (ζn) is clearly exchangeable, and (57) follows from (59) by
averaging over k.

Suppose that p1, . . . , pn have already been chosen to satisfy (58). For any
k ≤ m and A ∈ Fn with PkA > 0, we get by Theorem 3.32 as r → ∞

‖Pk[ξr ∈ ·|A] − µk‖ ≤ ‖Pk[ξr ∈ ·|A] − Ek[ν|A]‖ + ‖Ek[ν|A] − µk‖
→ ‖Ek[ν|A] − µk‖ ≤ Ek[‖ν − µk‖ |A] < ε.

Since Fn is finite, we may then choose r > pn so large that

‖Pk[ξr ∈ ·|Fn] − µk‖ ≤ ε a.s., k ≤ m,

which yields (58) for n + 1 with pn+1 = r. �

Proof of Theorem 3.35: By Theorem 3.32 we may assume that ξ = (ξn) is
determining with mixing measure ν. We may also take ρ ≤ 1. Fix any ε > 0,
and put ε′ = ε/3. Since ξ is tight, we may choose a compact set K ⊂ S such
that

P{ξn /∈ K} ≤ ε′, n ∈ NN. (60)

Next we may cover K by finitely many open balls Bk of diameter ≤ ε′ such
that Eν∂Bk = 0. Taking successive differences, we may construct a partition
of B =

⋃
k Bk into finitely many Eν-continuity sets Sk of diameter ≤ ε′. To

this we may add the set S0 = Bc, to obtain a finite partition of S. Fixing a
point sk ∈ Sk for every k, we define a mapping f on S by taking f(s) = sk

when s ∈ Sk.
Since Eν∂Sk = 0 for all k, the sequence (f(ξn)) is again determining with

mixing measure ν ◦f−1. By Lemma 3.37 we may then choose a sub-sequence
p of NN and an exchangeable sequence ζ = (ζn) such that

P{f(ξpn) �= ζn} ≤ ε′, n ∈ NN. (61)

Write ŝ = f(s), and note that ρ(s, ŝ) ≤ ε′ for all s ∈ K. Using (60) and (61),
we obtain

Eρ(ξpn, ζn) ≤ Eρ(ξpn, ξ̂pn) + Eρ(ξ̂pn, ζn)

≤ P{ξpn /∈ K} + E[ρ(ξpn, ξ̂pn); ξpn ∈ K] + P{ξ̂pn �= ζn}
≤ 3ε′ = ε. �



Chapter 4

Predictable Sampling and Mapping

The core of this chapter consists of an account of the optional skipping and
predictable sampling theorems, along with their continuous-time counter-
parts, the predictable contraction and mapping theorems. Those topics also
lead us naturally into the area of random time change.

The relatively elementary discrete-time theory is treated already in Sec-
tion 4.1. After an interlude about Gauss and Poisson reduction of local
martingales and marked point processes in Section 4.2, we consider in Sec-
tion 4.3 the predictable mapping theorem for exchangeable processes on [0, 1]
or RR+, and then in Section 4.4 the predictable contraction theorem for con-
tractable processes on [0, 1]. The stronger results attainable for Brownian
and stable processes are treated in Section 4.5. In particular, we show how
stochastic integrals with respect to stable Lévy processes can be represented
in terms of time-changed versions of the original processes.

The final section 4.6 deals with predictable mapping of optional times. As
a main result we show, under suitable regularity conditions, how a collection
of marked, optional times can be reduced to independent U(0, 1) random
variables through an appropriate family of predictable transformations.

4.1 Skipping and Sampling

Our first aim is to show that the defining property of a finite or infinite,
contractable sequence extends to certain randomly selected sub-sequences.
Recall that a discrete random time τ is said to be F -predictable for a given
filtration F if τ − 1 is optional or a stopping time for F . This is equivalent
to the condition {τ = k} ∈ Fk−1 for every k.

Proposition 4.1 (optional skipping, Doob, Kallenberg) Let ξ = (ξj) be a
finite or infinite, F-contractable random sequence in a measurable space S,
and let τ1 < · · · < τm be F-predictable times in the index set of ξ. Then

(ξτ1, . . . , ξτm) d= (ξ1, . . . , ξm). (1)

Proof: By a suitable truncation, we may assume that the index set I is
finite, say I = {1, . . . , n}. We proceed by induction on m ≤ n, starting with
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the vacuous statement for m = 0. Assuming (1) to be true for fewer than m
elements, we turn to the case of m predictable times τ1 < · · · < τm . Letting
f : Sm → RR+ be measurable, we get for any k ≤ n− m + 1

E[f(ξτ1, . . . , ξτm); τ1 = k] = E[f(ξk, ξτ2, . . . , ξτm); τ1 = k]
= E[f(ξk, ξk+1, . . . , ξk+m−1); τ1 = k]
= E[f(ξn−m+1, . . . , ξn); τ1 = k],

where the second equality holds by the induction hypothesis, applied to the
F -contractable sequence of triples (1{τ1 = k}, ξk, ξj), j = k + 1, . . . , n, and
the predictable times τ2, . . . , τm , and the last equality holds since θk−1ξ is
contractable over Fk−1. Summing over k = 1, . . . , n − m + 1 and using the
contractability of ξ, we obtain

(ξτ1, . . . , ξτm) d= (ξn−m+1, . . . , ξn) d= (ξ1, . . . , ξm),

as required. This completes the induction. �

The monotonicity assumption of the last result can be dropped when ξ
is exchangeable, which holds in particular for infinite sequences.

Theorem 4.2 (predictable sampling) Let ξ = (ξk) be a finite or infinite,
F-exchangeable random sequence in a measurable space S. Then (1) holds
for any a.s. distinct, F-predictable times τ1, . . . , τm in the index set of ξ.

Note that we are no longer demanding the τk to be increasing, nor do we
require ξ to be infinite.

Proof: First suppose that ξ has index set I = {1, . . . , n} and m = n.
Then the τk form a random permutation of I, and we note that the inverse
permutation α1, . . . , αn is predictable, in the sense that

{αj = k} = {τk = j} ∈ Fj−1, j, k ∈ {1, . . . , n}.

For every m ∈ {0, . . . , n}, we introduce the unique Fm−1-measurable random
permutation αm

1 , . . . , αm
n of 1, . . . , n satisfying

(αm
1 , . . . , αm

m) = (α1, . . . , αm), αm
m+1 < · · · < αm

n . (2)

Fix any measurable functions f1, . . . , fn ≥ 0 on S, and let 0 ≤ m < n.
Using the first relation in (2), the Fm-measurability of (αm+1

j ) and (αm
j ), the

F -exchangeability of ξ, and the disintegration theorem, we obtain

E
∏

k
fαm+1

k
(ξk) = E EFm

∏
k
fαm+1

k
(ξk)

= E
∏

k≤m
fαk

(ξk) EFm
∏

k>m
fαm+1

k
(ξk)

= E
∏

k≤m
fαk

(ξk) EFm
∏

k>m
fαm

k
(ξk)

= E EFm
∏

k
fαm

k
(ξk) = E

∏
k
fαm

k
(ξk),
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where EF = E[·|F ]. Summing over m and noting that αn
k = αk and α0

k = k,
we get

E
∏

k
fk(ξτk

) = E
∏

k
fαk

(ξk) = E
∏

k
fk(ξk),

and (1) follows.
Next suppose that I = {1, . . . , n} with n > m. We may then extend the

sequence (τk) to a random permutation of I such that τm+1 < · · · < τn. For
any r > m and k ≤ n we have

{τr ≤ k} =
{∑

i≤m
1{τi > k} ≥ r − k

}
∈ Fk−1,

which shows that τm+1, . . . , τn are again predictable. Hence, the result in the
previous case yields (ξτ1, . . . , ξτn) d= ξ, and (1) follows.

Finally suppose that I = NN. Then for every n ∈ NN, we introduce the
random times

τn
j = τj1{τj ≤ n} + (n + j)1{τj > n}, j ≤ m,

which are bounded by m + n and also predictable, since

{τn
j ≤ k} = {τj ≤ k} ∈ Fk−1, k ≤ n,

{τn
j = n + j} = {τj > n} ∈ Fn−1 ⊂ Fn+j−1.

Using the result in the previous case and letting n → ∞, we obtain

‖L(ξ1, . . . , ξm) − L(ξτ1, . . . , ξτm)‖
=
∥∥∥L(ξτ n

1
, . . . , ξτ n

m
) − L(ξτ1, . . . , ξτm)

∥∥∥
≤ ‖L(τn

1 , . . . , τn
m) − L(τ1, . . . , τm)‖

<
�

P
⋃

j≤m
{τj > n} ≤

∑
j≤m

P{τj > n} → 0,

and the assertion follows since the left-hand side is independent of n. �

For an interesting application of the last result, we consider a celebrated
identity from fluctuation theory.

Corollary 4.3 (positivity and maximum, Sparre-Andersen) Let ξ1, . . . , ξn

be exchangeable random variables, and put Sk =
∑

j≤k ξj and M = maxk≥0 Sk.
Then ∑

k≤n
1{Sk > 0} d= min{k ≥ 0; Sk = M}.

Proof: The random variables ξ̃k = ξn−k+1, 1 ≤ k ≤ n, clearly remain
exchangeable for the filtration

Fk = σ{Sn, ξ̃1, . . . , ξ̃k}, k = 0, 1, . . . , n.

Writing S̃k =
∑

j≤k ξ̃j , we introduce the predictable permutation

αk =
∑

j∈[0,k)
1{S̃j < S̃n} + (n− k + 1)1{S̃k−1 ≥ S̃n}, k = 1, . . . , n,
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along with its inverse τ1, . . . , τn, and put ξ′
k = ξ̃τk

and S′
k =

∑
j≤k ξ′

j . Infor-
mally, this amounts to lining up the negative excursions from the left and the
inverted positive ones from the right. Then (ξ′

k)
d= (ξ̃k)

d= (ξk) by Theorem
4.2, and it is easy to check that

min{k ≥ 0; Sk = maxjSj} d= min{k ≥ 0; S′
k = maxjS

′
j}

=
∑

j∈[0,n)
1{S̃j < S̃n}

=
∑

k∈[1,n]
1{Sk > 0}. �

We turn to some multi-variate versions of Proposition 4.1 and Theorem
4.2.

Proposition 4.4 (multi-variate sampling) Let ξj = (ξjk), j = 1, . . . , d, be
finite or infinite random sequences in S, indexed by I, consider some F-
predictable times τjk in I, and put ξ̃jk = ξj,τjk

. Then (ξ̃jk)
d= (ξjk) under each

of these conditions:

(i) ξ is separately F-exchangeable and the τjk are a.s. distinct for each j;
(ii) ξ is separately F-contractable and τj1 < τj2 < · · · for each j.

Proof: (i) First we take I = {1, . . . , n}. For every j ≤ d, let τj1, . . . , τjn

form a random permutation of I. Introduce the inverse permutation αj1, . . . ,
αjn, and define the intermediate permutations (αm

jk) as in (2). Proceeding as
before, we get for any measurable functions fjk ≥ 0 on S

E
∏

j,k
fj,αm+1

jk
(ξjk) = E

∏
j

∏
k≤m

fj,αjk
(ξjk) EFm

∏
j

∏
k>m

fj,αm+1
jk

(ξjk)

= E
∏

j

∏
k≤m

fj,αjk
(ξjk) EFm

∏
j

∏
k>m

fj,αm
jk

(ξjk)

= E
∏

j,k
fj,αm

jk
(ξjk),

and we may sum over m to obtain

E
∏

j,k
fjk(ξj,τjk

) = E
∏

j,k
fj,αjk

(ξjk) = E
∏

j,k
fjk(ξjk).

This completes the proof for predictable permutations of finite sequences,
and the general result follows as before.

(ii) Again we may take I = {1, . . . , n}. The statement is obvious for
n = 1. Assuming it is true for n−1, we turn to sequences of length n. Given
any predictable times τj1 < · · · < τj,mj

in I, we introduce the F0-measurable
times

τ ′
jk = 1{τjk = 1} + (k + n− mj)1{τjk > 1}, k ≤ mj, j ≤ d.

We also define κj = 1{τj1 = 1} and J = {j; τj1 = 1}. Applying the induction
hypothesis to the array of pairs (ξj1, κj, ξjk), k = 2, . . . , n, and then using
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the joint contractability of (ξjk) over F0, we get for any measurable functions
fjk ≥ 0 on S

E
∏

j,k
fjk(ξj,τjk

) = E
∏

j∈J
fj1(ξj1) EF1

∏
j

∏
k>κj

fjk(ξj,τjk
)

= E
∏

j∈J
fj1(ξj1) EF1

∏
j

∏
k>κj

fjk(ξj,k+n−mj
)

= E
∏

j,k
fjk(ξj,τ ′

jk
) = E

∏
j,k

fjk(ξjk).

This completes the induction, and the result follows. �

4.2 Gauss and Poisson Reduction

The continuous-time theory is based on a general reduction of a continu-
ous local martingales M and a quasi-left-continuous point process ξ to a
pair (X, η), consisting of a centered Gaussian process X and an indepen-
dent Poisson process η, each defined on an abstract space. As special cases,
the result contains the classical time-change reductions of a continuous local
martingale to a Brownian motion and of a quasi-left-continuous simple point
process to a Poisson process. Generalizations, in different directions, of the
latter results will appear throughout the chapter.

Though the general reduction theorem was used already in Chapter 2, it
is stated here because of its close connections to other results in this chapter.
It is then important to notice that the present proof is self-contained and
does not utilize any previous results in this book.

Recall that a marked point process ξ on S × [0, 1] or S × RR+ is said to
be quasi-left-continuous if its compensator ξ̂ is a.s. continuous, in the sense
that ξ̂(S × {t}) = 0 a.s. for every t.

Theorem 4.5 (Gauss and Poisson reduction) Consider a continuous, local
martingale M in RRd, a quasi-left-continuous, K-marked point process ξ on
(0,∞) with compensator ξ̂, a predictable process V : RR+ × K → Ŝ, and a
progressively measurable process Ut : RR+ → RRd, t ∈ T , where K and S are
Borel and Ŝ = S ∪ {∆} with ∆ /∈ S. Suppose that the random measure and
process

µ = ξ̂ ◦ V −1, ρs,t =
∑

i,j

∫ ∞

0
Ui

s,rU
j
t,rd[Mi,Mj ]r, s, t ∈ T,

exist and are F0-measurable, and define

η = ξ ◦ V −1, Xt =
∑

i

∫ ∞

0
Ui

t,rdMi
r, t ∈ T.

Then conditionally on F0, the point process η is Poisson on S with intensity
measure µ, and X is an independent, centered Gaussian process on T with
covariance function ρ.
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In applications, we often need to extend the point process ξ, through a
suitable randomization, to ensure that the compensator ξ̂ will be a.s. un-
bounded. Using this device, we can transform any quasi-left-continuous,
simple point process on [0, 1], by a suitable random time-change, to the be-
ginning of a Poisson process on RR+. The underlying randomization will then
be assumed without further comments.

Proof: Fixing any constants c1, . . . , cm ∈ RR, elements t1, . . . , tm ∈ T , and
disjoint Borel sets B1, . . . , Bn ⊂ S with µBj < ∞, we consider the processes

Nt =
∑

k
ck

∑
i

∫ t

0
Ui

tk,rdMi
r,

Y k
t =

∫
S

∫ t+

0
1Bk

(Vs,x) ξ(ds dx), t ≥ 0, k ≤ n.

For any u1, . . . , un ≥ 0, we further introduce the exponential local martin-
gales

Z0
t = exp(iNt + 1

2 [N,N ]t),

Zk
t = exp

(
−ukY

k
t + (1 − e−uk)Ŷ k

t

)
, t ≥ 0, k ≤ n.

where the local martingale property holds for Z0 by FMP 18.1 and for
Z1, . . . , Zn by FMP 26.8 applied to the processes Ak

t = (1− e−uk)(Ŷ k
t − Y k

t ).
The same property holds for the product Zt =

∏
k Zk

t since the Zk are strongly
orthogonal (FMP 26.4, 26.6). Furthermore,

N∞ =
∑

k
ckXtk , Y k

∞ = ηBk

[N,N ]∞ =
∑

h,k
chck

∑
i,j

∫ ∞

0
Ui

th,rU
j
tk,rd[Mi,Mj ]r =

∑
h,k

chckρth,tk ,

Ŷ k
∞ =

∫
S

∫
K

1Bk
(Vs,x) ξ̂(ds dx) = µBk, k ≤ n.

The product Z remains a local martingale with respect to the conditional
probability measure PA = P [ · |A], for any A ∈ F0 with PA > 0. Choosing
A such that ρth,tk and µBk are bounded on A, we see that even Z becomes
bounded on A and hence is a uniformly integrable PA-martingale. In partic-
ular, we get E[Z∞|A] = 1 or E[Z∞; A] = PA, which extends immediately to
arbitrary A ∈ F0. This shows that E[Z∞|F0] = 1, and we get

E
[
exp

(
i
∑

k
ckXtk −

∑
k
ukηBk

)∣∣∣F0

]
= exp

(
− 1

2

∑
h,k

chckρth,tk −
∑

k
(1 − e−uk)µBk

)
.

Invoking the uniqueness theorems for characteristic functions and Laplace
transforms (FMP 5.3), we conclude that the variables Xt1, . . . ,Xtm and
ηB1, . . . , ηBn have the required joint conditional distribution, and the as-
sertion follows by a monotone-class argument. �



4. Predictable Sampling and Mapping 175

We turn to an application of the preceding result, needed below, where
some infinitely divisible random variables are constructed through stochastic
integration with respect to some quasi-left-continuous, purely discontinuous,
local martingales. Recall that two local martingales M and N are said to
be strongly orthogonal if [M,N ] = 0 a.s., and that M is purely discontinuous
if its continuous martingale component vanishes, so that [M ] = [M,M] is a
pure jump-type process (FMP 26.14–15).

Lemma 4.6 (martingale reduction) Let M1, . . . ,Mm be strongly orthogonal,
purely discontinuous, quasi-left-continuous, local martingales with jump point
processes ξ1, . . . , ξm, consider some predictable processes V1, . . . , Vm, and de-
fine Wk(x, t) = xVk(t), k ≤ m. Assume that the measures νk = ξ̂k ◦W−1

k are
a.s. non-random and satisfy∫ ∞

−∞
(x2 ∧ |x|) νk(dx) < ∞, k ≤ m. (3)

Then the stochastic integrals γk =
∫∞
0 VkdMk exist for all k and define some

independent, centered, infinitely divisible random variables with Lévy mea-
sures νk and vanishing Gaussian components.

Proof: In view of the Cramér–Wold theorem (FMP 5.5), it suffices to
prove that the linear combination

∑
k ckγk has the appropriate infinitely di-

visible distribution for arbitrary c1, . . . , ck ∈ RR. By suitable scaling, we may
then assume that ck = 1 for all k. Since ξ̂k ◦ W−1

k = νk for all k, we see
from Theorem 4.5 that the random measures ηk = ξk ◦W−1

k are independent
Poisson processes on RR \ {0} with intensity measures νk.

Now introduce the process

Nt =
∑

k
(Vk · Mk)t, t ≥ 0.

To prove the existence of the stochastic integrals on the right, we note that∫ ∞

0
V 2

k d[Mk] =
∫ ∞

0

∫ ∞

−∞
W 2

k dξk =
∫ ∞

−∞
x2ηk(dx).

Using Jensen’s inequality and the subadditivity of x1/2, we get from (3)

E
(∫ ∞

−∞
x2ηk(dx)

)1/2
≤ E

(∫ 1

−1
x2ηk(dx)

)1/2

+ E

(∫
|x|>1

x2ηk(dx)
)1/2

≤
(
E
∫ 1

−1
x2ηk(dx)

)1/2

+ E
∫

|x|>1
|x| ηk(dx)

=
(∫ 1

−1
x2νk(dx)

)1/2

+
∫

|x|>1
|x| νk(dx) < ∞.

This shows that N exists as a uniformly integrable martingale on [0,∞]
(cf. FMP 26.13) satisfying

E[N ]1/2
∞ =

∑
k
E
(
V 2

k · [Mk]
)1/2

∞
< ∞.
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We can now approximate N , for every ε > 0, by the martingale

Nε
t =

∑
k

∫ t

0
Wk1{|Wk| > ε} d(ξk − ξ̂k), t ≥ 0.

The random variables Nε
∞ are clearly centered, compound Poisson with Lévy

measure
∑

k νk restricted to the complements [−ε, ε]c. Furthermore, a BDG-
inequality (FMP 26.12) yields Nε

∞ → N∞ =
∑

k γk in L1 as ε → 0, and so by
15.14 we get the required distribution for the limit. �

4.3 Predictable Mapping

In Proposition 1.18 we saw that if ξ is an exchangeable random measure on a
product space S × I, where S is Borel and I = [0, 1] or RR+, then ξ ◦ f−1 d= ξ
for every measure-preserving transformation f on I. Now we intend to show
that the statement remains true if the deterministic function f is replaced by
a predictable process V . (When I = RR+, we may allow V to take the value
+∞.)

To state the corresponding result for exchangeable processes X on I =
[0, 1] or RR+, we need to identify the proper interpretation of X ◦ V −1. Re-
calling from Theorem 3.15 that X is a semi-martingale with respect to the
augmented filtration, we define X ◦ V −1 as the process

(X ◦ V −1)t =
∫

I
1{Vs ≤ t} dXs, t ∈ I, (4)

where the right-hand side is a stochastic integral of the predictable process
Us = 1{Vs ≤ t}. In particular, we note that if X is the distribution function
of some random measure ξ on I, so that Xt = ξ[0, t] for all t ∈ I, then
X ◦ V −1 agrees with the distribution function of the transformed measure
ξ ◦ V −1. Hence, in this case, the relations X ◦ V −1 d= X and ξ ◦ V −1 d= ξ are
equivalent.

Theorem 4.7 (predictable mapping) Consider an F-exchangeable, RRd-
valued process X on I or an F-exchangeable random measure ξ on S × I,
where S is Borel and I = [0, 1] or RR+. Then for any F-predictable trans-
formation V on I such that λ ◦ V −1 = λ a.s., we have X ◦ V −1 d= X or
ξ ◦ V −1 d= ξ, respectively.

For exchangeable processes X, the random variable or vector (X ◦ V −1)t

is only defined up to a null set for every fixed t ∈ I. The asserted relation
X ◦ V −1 d= X signifies implicitly that X ◦ V −1 has an rcll version with the
same distribution as X (FMP 3.24).

Several proofs of Theorem 4.7 are known. The most straightforward ap-
proach, chosen here, may be to deduce the result from the corresponding
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discrete-time Theorem 4.2 by a suitable approximation. Three lemmas will
then be required. To state the first one, we say that the random subset A ⊂ I
is a simple, predictable set if it is a finite union of predictable intervals of the
form (σ, τ ], where σ ≤ τ are optional times taking values in a fixed, finite
subset of QQI = QQ ∩ I.

Lemma 4.8 (approximation) Let A1, . . . , Am be disjoint, F-predictable sets
in I = [0, 1] or RR+ with non-random, rational lengths. Then for every n ∈ NN
there exist some simple, disjoint, F-predictable sets A1,n, . . . , Am,n ⊂ I such
that λAj,n = λAj a.s. and

lim
n→∞

∑
j≤m

Eλ(Aj∆Aj,n) = 0. (5)

Proof: First assume that I = [0, 1]. Let C be the class of predictable inter-
vals (σ, τ ], and write D for the class of predictable sets A ⊂ (0, 1], admitting
approximations Eλ(A∆An) → 0 by simple, predictable sets An. Then C is a
π-system generating the predictable σ-field P on (0, 1] (FMP 25.1), and D is
a λ-system containing C. Hence, D = P (FMP 1.1), which means that every
predictable set A admits the stated approximation. Applying this result to
the sets A ∩ (k − 1, k] for arbitrary k ∈ NN, we may extend the statement to
predictable sets in RR+ of finite length.

Now let A1, . . . , Am be such as stated, and proceed as above to produce
some simple, predictable sets A1n, . . . , Amn satisfying (5). For every n ∈ NN,
we may easily adjust the latter sets, to make them disjoint with desired
lengths λA1, . . . , λAm . Noting that, for distinct i, j ≤ m,

E|λAj − λAj,n| ≤ Eλ(Aj∆Aj,n),
Eλ(Ai,n ∩ Aj,n) ≤ Eλ(Ai∆Ai,n) + Eλ(Aj∆Aj,n),

we see that the total change is of the same order as the original approxima-
tion error. Hence, the new sets A′

j,n will again satisfy (5). �

To justify the approximation of the last lemma, we need to show that the
resulting errors in (4) are negligible. This requires the following continuity
property for the associated stochastic integrals. When X is a semi-martingale
and A is a predictable set such that 1A is X-integrable, it is often suggestive
to write X(A) =

∫
A dX =

∫
1AdX.

Lemma 4.9 (existence and continuity) Consider an F-exchangeable ran-
dom measure ξ or process X on I = [0, 1] or RR+, and let A,A1, A2, . . . be
F-predictable sets in I. Then ξA or X(A) exist when λA < ∞ a.s., and if
λAn

P→ 0 on a set F , we have ξAn
P→ 0 or X(An) P→ 0, respectively, on F .

Proof: If Xt = ξ[0, t], then clearly X(An) = ξAn. Thus, the statement for
random measures is essentially a special case of that for processes, and it is
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enough to consider the latter. Since the semi-martingale integral is indepen-
dent of filtration by FMP 26.4, we may extend the latter, if required, to ensure
that the characteristic triple (α, β, γ) or (α, ν, γ) becomes F0-measurable.

Beginning with the case where I = [0, 1], we see from Theorems 2.13 and
2.25 that X is a special semi-martingale such that [Xc] is a.s. linear, and
both X itself and its jump point process ξ have absolutely continuous com-
pensators X̂ and ξ̂, respectively. Thus, we may write X̂ = M ·λ and ξ̂ = η ·λ,
where M is a.s. integrable on [0, 1]. Since the quadratic variation [X]1 = γ is
finite and F0-measurable, it follows that the associated predictable variation
〈X − X̂〉 is again absolutely continuous with an a.s. integrable density N .
Hence, by dominated convergence,

|X̂(An)| ≤
∫

An

|Ms|ds
P→ 0,

〈X − X̂〉(An) =
∫

An

Nsds
P→ 0,

and so by FMP 26.2 we have X(An) P→ 0.
In the RR+-case, we know from Theorem 1.19 that X is conditionally a

Lévy process given F0. Hence, we may write X = M + L + J, where M is a
local martingale with bounded jumps and linear predictable variation 〈M〉,
L is a linear drift component, and J is a process of isolated large jumps,
such that the associated jump-time process N is mixed Poisson with linear
compensator N̂ . If λA < ∞ a.s., then the variables 〈M〉(A), L(A), and
N̂(A) are a.s. finite, which implies the existence of X(A). Furthermore, the
condition λAn

P→ 0 yields

〈M〉(An) P→ 0, L(An) P→ 0, N̂(An) P→ 0,

and so by FMP 26.2 we have

M(An) + L(An) P→ 0, N(An) P→ 0.

Here the latter convergence implies J(An) P→ 0, since |J(An)| ∧ 1 ≤ N(An),
and again it follows that X(An) P→ 0.

Finally, suppose that λAn
P→ 0 on F . Then we may choose some positive

constants cn → 0 such that P [λAn > cn; F ] → 0. For every n ∈ NN we define

τn = inf{t ≥ 0; λtAn > cn}, A′
n = An ∩ [0, τn],

where λtA = λ(A ∩ [0, t]). Here the A′
n are predictable with λA′

n ≤ cn → 0,
and so X(A′

n) P→ 0. Noting that X(An) = X(A′
n) a.s. on {τn = ∞} =

{λAn ≤ cn}, we get for any ε > 0

P [|X(An)| > ε; F ] ≤ P{|X(A′
n)| > ε} + P [λAn > cn; F ] → 0,

which shows that X(An) P→ 0 on F . �
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Finally, we need to describe the simple, predictable sets of Lemma 4.8 in
terms of discrete, predictable times.

Lemma 4.10 (enumeration) Let A be a simple, F-predictable set in I =
[0, 1] or RR+, with all interval endpoints belonging to ZZ+/n, and define Gk =
Fk/n, k ∈ ZZ+. Then there exist some G-predictable times τ1 < τ2 < · · · such
that

A =
⋃

j≤m
(τj − 1, τj ]/n.

Proof: The time σ = inf A satisfies {σ < t} ∈ Ft for all t ∈ I and is there-
fore F -optional by the right continuity of F (FMP 7.2). Hence, nσ = τ1−1 is
G-optional, which means that τ1 is predictable. Furthermore, the stochastic
interval (σ, σ+n−1] is F -predictable, and so the same thing is true for the dif-
ference A′ = A\(σ, σ+n−1]. The assertion now follows easily by induction. �

Proof of Theorem 4.7: First we consider the case of exchangeable pro-
cesses X on I. Fix any disjoint, rational intervals I1, . . . , Im ⊂ I of equal
length h, and define Aj = V −1Ij for all j ≤ m. The Aj are predictable by
the predictability of V , and since λ ◦ V −1 = λ a.s. by hypothesis, we have
also λAj = λIj a.s. for all j. Hence, by Lemma 4.8, we may choose some
simple, predictable sets Aj,n, disjoint for fixed n and with λAj,n = λAj a.s.,
such that Aj,n → Aj in the sense of (5). Restricting n to a suitable subse-
quence N ′ ⊂ NN, we may assume that each Aj,n is a finite union of intervals
Ink = n−1(k − 1, k]. Then by Lemma 4.10 we may write

Aj,n =
⋃

k≤nh
In,τnjk

, j ≤ m, n ∈ N ′, (6)

where the times τnjk are a.s. distinct for fixed n and predictable with respect
to the discrete filtration Gn

k = Fk/n, k ≤ nλI. The increments X(Ink) are
then Gn-exchangeable for each n ∈ N ′, and so by Theorem 4.2

{X(In,τnjk
); (j, k) ≤ (m,nh))} d= {X(Ink + (j − 1)h); (j, k) ≤ (m,nh)}.

Using (5) and Lemma 4.9, we get

(X(I1), . . . ,X(Im)) d= (X(A1,n), . . . ,X(Am,n))
P→ (X(A1), . . . ,X(Am))
= (X ◦ V −1I1, . . . ,X ◦ V −1Im),

which shows that X ◦V −1 d= X on QQI . The relation extends to I by another
application of Lemma 4.9.

In the case of random measures ξ, we may apply the previous result, for
arbitrary B1, . . . , Bd ∈ Ŝ, to the RRd-valued process

Xt = (ξ(B1 × [0, t]), . . . , ξ(Bd × [0, t])), t ∈ I,
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to see that ξ ◦ V −1 d= ξ on the class of product sets B × [0, t]. The general
result then follows by a monotone-class argument. �

In the special case of processes on I = RR+, we can also prove the result
by a direct argument based on Theorem 4.5. The more subtle argument re-
quired for I = [0, 1] will be given later.

Second proof of Theorem 4.7, for I = RR+: Extending the original fil-
tration, if necessary, we may assume that the characteristics of X are F0-
measurable. First suppose that X has isolated jumps. Then

Xt = αt + σBt +
∫
RRd

∫ t

0
x ξ(dxds), t ≥ 0,

where ξ is a Cox process on RRd × RR+ directed by ν ⊗ λ and B is an inde-
pendent Brownian motion. We may also assume that the triple (α, σ, ν) is
F0-measurable and the pair (B, ξ) is F -exchangeable.

Since ξ has compensator ξ̂ = ν ⊗ λ, we obtain ξ̂ ◦ V −1 = ν ⊗ λ, which
yields ξ ◦ V −1 d= ξ by Theorem 4.5. Next, we consider for every t ≥ 0 the
predictable process Ut,r = 1{Vr ≤ t}, r ≥ 0, and note that

∫ ∞

0
Us,rUt,rd[Bi,Bj ]r = δij

∫ ∞

0
1{Vr ≤ s ∧ t} dr = (s ∧ t) δij .

Using Theorem 4.5 again, we conclude that the RRd-valued process

(B ◦ V −1)t =
∫ ∞

0
Ut,rdBr, t ≥ 0,

is Gaussian with the same covariance function as B. From the same result
we also note that ξ ◦ V −1 and B ◦ V −1 are conditionally independent given
F0. Hence,

((ξ, λ,B) ◦ V −1, α, σ, ν) d= (ξ, λ,B, α, σ, ν),

which implies X ◦ V −1 d= X.
Turning to the general case, we may write

Xt = Mε
t + (Xt − Mε

t ), t ≥ 0,

where Mε is the purely discontinuous, local martingale formed by all com-
pensated jumps of modulus ≤ ε. Then (X−Mε)◦V −1 d= (X−Mε) as above,
and it suffices to show that Mε

t
P→ 0 and (Mε ◦V −1)t

P→ 0, as ε → 0 for fixed
t ≥ 0. In the one-dimensional case, we may use the isometric property of the
stochastic L2-integral (cf. FMP 26.2), together with the measure-preserving
property of V , to see that a.s.
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EF0(Mε ◦ V −1)2
t = EF0

(∫ ∞

0
1{Vs ≤ t} dMε

s

)2

= EF0

∫ ∞

0
1{Vs ≤ t} d〈Mε〉s

= EF0

∫ ∞

0
1{Vs ≤ t}ds

∫
|x|≤ε

x2ν(dx)

= t
∫

|x|≤ε
x2ν(dx) → 0.

Hence, by Jensen’s inequality and dominated convergence,

E
[
(Mε ◦ V −1)2

t ∧ 1
]
≤ E

[
EF0(Mε ◦ V −1)2

t ∧ 1
]
→ 0,

which shows that (Mε ◦ V −1)t
P→ 0. The convergence Mε

t
P→ 0 is obtained in

the special case where Vs ≡ s. �

In applications, the relation λ ◦ V −1 = λ may often be satisfied only up
to a random time ζ ∈ I. By a localization argument based on Lemma 4.9,
it is clear that the process X ◦ V −1 still exists on the random interval [0, ζ).
We proceed to show that the relation X ◦ V −1 d= X also remains valid on
[0, ζ), in the sense that X ◦ V −1 can be extended beyond ζ to a process with
the same distribution as X.

Theorem 4.11 (predictable embedding) Given an RRd-valued, F-exchange-
able process X on I = [0, 1] or RR+ and an F-predictable process V : I → Ī,
there exists a process Y

d= X on I such that X ◦ V −1 = Y a.s. on [0, ζ),
where

ζ = sup{t ∈ I; (λ ◦ V −1)t = t}.

To be precise, we assert that (X ◦ V −1)t = Yt a.s. on {ζ > t} for every
t ∈ I. Our proof requires several lemmas. First we may reduce to the case
where λ ◦ V −1 ≤ λ a.s.

Lemma 4.12 (leveling) For I = [0, 1] or RR+, consider a predictable process
V : I → Ī such that λ ◦ V −1 ≤ λ a.s. on some random interval [0, ζ). Then
there exists a predictable process U ≥ V , such that a.s. λ ◦U−1 ≤ λ on [0, 1)
or RR+ and U ∧ ζ = V ∧ ζ.

Proof: By a suitable truncation, we may reduce to the case where I = RR+.
Writing λt = λ(· ∩ [0, t]), we consider on RR+ the processes

Zt = sup{r ≥ 0; λt ◦ V −1 ≤ λ on [0, r]},
Ut = Vt + ∞ · 1{Vt ≥ Zt}.

Since V is predictable and hence progressively measurable, Fubini’s theorem
shows that λt ◦ V −1I is Ft-measurable for every interval I. Assuming λt ◦
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V −1I ≤ λI for every rational interval I ⊂ [0, r], we get the same inequality
for any open set, and hence, by regularity, for every Borel set in [0, r]. This
implies

{λt ◦ V −1 ≤ λ on [0, r]} ∈ Ft, r, t ≥ 0,

and so Zt is Ft-measurable for every t ≥ 0, which means that Z is adapted.
Since it is also left-continuous, it is then predictable, and so the same property
holds for the process U .

Noting that a.s. Ut ∧ Zt = Vt ∧ Zt and Zt ≥ ζ for all t ≥ 0, we get
U ∧ ζ = V ∧ ζ a.s. To show that λ◦U−1 ≤ λ a.s., we may assume that V and
ζ are non-random with λ ◦ V −1 ≤ λ on [0, ζ). For every ε > 0, we introduce
the function

Uε,t = Vt + ∞ · 1{Vt ≥ Zt − ε}, t ≥ 0.

Fixing any b, ε > 0, we next define

s = sup{t ≥ 0; λt ◦ U−1
ε ≤ λ on [0, b]}.

If s < ∞, we have Zs+ ≤ b, and we may choose a t > s such that Zt ≥ Zs+−ε.
Using the definitions of Uε, Zt, and s, and noting that Uε,r /∈ [Zs+ − ε,∞)
for r > s, we get

λt ◦ U−1
ε ≤ λt ◦ V −1 ≤ λ on [0, Zt) ⊃ [0, Zs+ − ε),

λt ◦ U−1
ε = λs ◦ U−1

ε ≤ λ on [Zs+ − ε, b],

which shows that λt ◦ U−1
ε ≤ λ on [0, b]. This contradicts the definition of

s and shows that s = ∞, which implies λ ◦ U−1
ε ≤ λ on [0, b]. Since b > 0

was arbitrary, the same relation holds on RR+. We may finally let ε → 0 and
conclude by monotone convergence that λ ◦ U−1 ≤ λ. �

In the case where I = [0, 1], we proceed to construct a predictable and
measure-preserving modification of V . Such a construction may be impossi-
ble when I = RR+.

Lemma 4.13 (filling) Let V be a predictable transformation of [0, 1] such
that λ ◦ V −1 = λ a.s. on some random interval [0, ζ). Then there exists a
predictable process U on [0, 1] such that a.s.

λ ◦ U−1 = λ, λ{t ∈ [0, 1]; Ut ∧ ζ = Vt ∧ ζ} = 1.

Proof: By Lemma 4.12 we may assume that λ◦V −1 ≤ λ holds identically
on [0, 1). For t, x ∈ [0, 1], we introduce the processes

Rt,x = x + λ{s ≤ t; Vs > x},
Xt = inf{x ∈ [0, 1]; Rt,x = 1}, (7)
Ut = Vt ∧ Xt−.
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Since λ◦V −1 ≤ λ on [0, 1), we note that R is jointly continuous on [0, 1]×[0, 1)
and non-decreasing in x for fixed t with Rt,0 = t and Rt,1− = 1+λt ◦V −1{1}.
Thus, the set Ξ = {R = 1} is closed in [0, 1]2, and so the infimum in (7)
is attained. Furthermore, the process X is clearly non-increasing and right-
continuous on [0, 1] with X0 = 1 and X1 = 0, and by continuity the pairs
(t,Xt) and (t,Xt−) belong to Ξ for every t. Writing T for the left-continuous
inverse of X, it follows that even (Tx, x) ∈ Ξ for every x ∈ [0, 1].

Noting that Xt > x iff t < Tx for any x, t ∈ [0, 1], we obtain

λ{s; Us > x} = λ{s; Vs ∧ Xs− > x}
= λ{s < Tx; Vs > x} = 1 − x,

which shows that λ ◦ U−1 = λ. Since also λ ◦ V −1 = λ on [0, ζ), we have

λ ◦ (U ∧ ζ)−1 = λ ◦ (V ∧ ζ)−1,

which implies λ(V ∧ζ−U∧ζ) = 0. Noting that V ≥ U , we obtain U∧ζ = V ∧ζ
a.e. λ.

The process V being predictable and hence progressively measurable, we
note that Rt,x is Ft-measurable for any x, t ∈ [0, 1]. By the monotonicity
in x it follows that X is adapted, and so the left-continuous version Xt− is
predictable. Combining this with the predictability of V , we conclude that
even U is predictable. �

Next we show that the process X ◦ V −1 is unaffected on [0, ζ) by the
changes in V described by the last two lemmas.

Lemma 4.14 (localization) Let X be an F-exchangeable process on I =
[0, 1] or RR+, and consider some F-predictable processes U and V on I and
a random variable ζ ∈ I, such that λ{U ∧ ζ �= V ∧ ζ} = 0 and λ ◦ V −1 ≤ λ
a.s. on [0, ζ). Then

(X ◦ U−1)t = (X ◦ V −1)t a.s. on {ζ > t}, t ∈ I.

Proof: For fixed t ∈ I, we introduce the optional time

τ = sup{s ∈ I; λs{U ∧ t �= V ∧ t} = 0, (λs ◦ V −1)t ≤ t}

and the predictable processes

Ũs = Us + ∞ · 1{τ < s}, Ṽs = Vs + ∞ · 1{τ < s}, s ∈ I.

Then a.s.
λ{Ũ ∧ t �= Ṽ ∧ t} = 0, (λ ◦ Ṽ −1)t ≤ t,

and so, on the set

{ζ > t} ⊂ {τ = ∞} ⊂ {U = Ũ, V = Ṽ },
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we have formally

(X ◦ U−1)t =
∫ τ

0
1{Us ≤ t}dXs =

∫ τ

0
1{Ũs ≤ t}dXs

=
∫ τ

0
1{Ṽs ≤ t}dXs =

∫ τ

0
1{Vs ≤ t}dXs

= (X ◦ V −1)t.

The last calculation is justified by the local property of stochastic inte-
grals in FMP 26.2 (iv), together with absolute continuity of the compensators
X̂ and 〈X,X〉 established in Theorem 2.13. Before applying the latter result,
we may need to extend the original filtration to ensure that, for processes on
[0, 1], the directing triple (α, σσ′, β) becomes F0-measurable. The result for
processes on RR+ follows by truncation. �

We also need the following coupling lemma.

Lemma 4.15 (coupling) Let the processes X1 d= X2 d= · · · in D(RR+,RRd)
and the random variable ζ in [0,∞] be such that

Xn
t

P→ Yt on {ζ > t}, t ≥ 0,

where the process Y is continuous in probability. Then there exists a process
X

d= X1 such that

Yt = Xt a.s. on {ζ > t}, t ≥ 0.

Proof: Write D = D(RR+,RRd). Since the sequence of pairs (Xn, ζ) is
trivially tight in D × RR+, we have convergence (Xn, ζ) d→ (X, ζ̃) along a
subsequence, where X

d= X1 and ζ̃
d= ζ. Defining

xu(t) = ((u− t)+ ∧ 1) x(t),
f(x, u) = (xu, u), x ∈ D, u ∈ RR+, t ≥ 0,

we get f(Xn, ζ) d→ f(X, ζ̃) in D × RR+ by continuity, and so

f(Xn, ζ) fd−→ f(X, ζ̃) on T,

where T is a dense subset of RR+. On the other hand, f(Xn, ζ)t
P→ f(Y, ζ)t

for all t ≥ 0, and therefore

f(Xn, ζ) fd−→ f(Y, ζ) on RR+.

Comparing the two formulas, we see that f(Y, ζ) d= f(X, ζ̃) on T , which
extends to RR+ by right-continuity on the right and continuity in probability
on the left. The transfer theorem (FMP 6.10) then allows us to assume that

f(Y, ζ)t = f(X, ζ)t a.s., t ≥ 0,

which yields the required relation. �
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Proof of Theorem 4.11: First we take I = [0, 1]. Letting U be such as in
Lemma 4.13, we get by Lemma 4.14

(X ◦ V −1)t = (X ◦ U−1)t a.s. on {ζ > t}, t ∈ [0, 1].

Furthermore, Theorem 4.7 yields X ◦ U−1 d= X. The assertion now follows,
with Y chosen as the right-continuous version of X ◦ U−1.

Now let I = RR+. By Lemmas 4.12 and 4.14 we may assume that λ◦V −1 ≤
λ on RR+. For every n ∈ NN, we may introduce the predictable process

Un(t) =
{

Vt + ∞ · 1{Vt > n}, t ≤ n,
inf{s ≥ 0; s − λn ◦ V −1(0, s ∧ n] = t − n}, t > n,

where λn = λ(· ∩ [0, n]). Then clearly λ ◦ U−1
n = λ a.s. on RR+, and so by

Theorem 4.7 we have Y n = X ◦ U−1
n

d= X. On the other hand, Lemma 4.9
yields Y n

t
P→ Yt on {ζ > t} for every t ≥ 0. The assertion now follows by

Lemma 4.15. �

4.4 Predictable Contraction

Since the conclusion of Theorem 4.7 implies that X is exchangeable, it must
be false for more general contractable processes on [0, 1]. All we can hope
for, in general, is then to prove a continuous-time version of the optional
skipping property in Proposition 4.1. The obvious continuous-time analogue
would be to consider a predictable set A ⊂ [0, 1] of fixed length λA = h and
define the A-contraction CAX of X by

(CAX)t = X(A ∩ [0, τt]) =
∫ τt

0
1A(s)dXs, t ∈ [0, h], (8)

where the random time scale (τt) is given by

τt = inf{s ∈ [0, 1]; λ(A ∩ [0, s]) > t}, t ∈ [0, h]. (9)

It is reasonable to expect that CAX
d= X on [0, h]. Unfortunately, already the

definition of CAX in terms of stochastic integrals seems to require X to be a
semi-martingale (cf. FMP 26.21), a property that has only been established,
in Theorems 2.13 and 2.25, under an extra moment condition. Before the
general result can even be stated, we therefore need to extend the stochastic
integral in (8) to arbitrary contractable processes X.

Then, given an F -contractable process X on [0, 1] and an F -predictable
set A ⊂ [0, 1], we need to construct the process XA(t) = X(At), where
At = A∩ [0, t]. When A is simple, so that A =

⋃
j≤m(σj, τj ] for some disjoint,

predictable intervals (σj, τj ], we may define XA as the elementary integral

XA(t) =
∑

j≤m
(Xt∧τj

− Xt∧σj
), t ∈ [0, 1]. (10)
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We proceed to show that XA has an additive and continuous extension to
arbitrary predictable sets A ⊂ [0, 1]. Here the mapping A �→ XA is said to be
additive on the predictable σ-field P if XA∪B = XA +XB a.s. for any disjoint
sets A,B ∈ P.

Proposition 4.16 (selection integral) Let X be an F-contractable process
on [0, 1]. Then the elementary integral in (10) extends, a.s. uniquely, to an
additive map A �→ XA on the F-predictable σ-field P, such that λAn

P→ 0
implies (XAn)∗

t
P→ 0 for all t ∈ [0, 1). Furthermore, XA is a.s. rcll on [0, 1)

with ∆XA = 1A∆X, and we have XA = 1A · X a.s. whenever X is a semi-
martingale on [0, 1).

First we consider the case of simple, predictable sets.

Lemma 4.17 (elementary integral) Let X be an F-contractable process on
[0, 1], and consider some simple, F-predictable sets A,A1, A2, . . . ⊂ [0, 1].
Then

(i) λA ≥ h a.s. implies CAX
d= X on [0, h];

(ii) λAn
P→ 0 implies (XAn)∗

t
P→ 0 for all t ∈ [0, 1).

Proof: (i) We may assume that A has fixed length h and its interval
endpoints belong to the set {tn,k; k ≤ n} for a fixed n ∈ NN, where tn,k = k/n.
Then A is a union of some intervals In,k = (tn,k−1, tn,k], and so by Lemma 4.10
we may write A =

⋃
k≤nh In,τk

, where the times τ1 < · · · < τnh are predictable
with respect to the discrete filtration Gk = Fk/n, k = 0, . . . , n. Noting that
the processes

Yk(t) = X(tn,k−1 + t) − X(tn,k−1), t ∈ [0, n−1], k = 1, . . . , n,

form a G-contractable sequence, we get by Proposition 4.1

(Yτ1, . . . , Yτnh
) d= (Y1, . . . , Ynh),

and the assertion follows.
(ii) Fix any rational time t ∈ (0, 1), and put Bn = An ∪ (t, 1]. Then

λBn ≥ 1 − t, and so by (i) we have CBnX
d= X on [0, 1 − t]. Noting that

XA = CAX ◦ λA with λA(t) = λ(A ∩ [0, t]), we get for any h ∈ (0, 1 − t)

E[(XAn)∗
t ∧ 1] ≤ E[(CBnX)∗

h ∧ 1] + P{λAn > h}
= E[X∗

h ∧ 1] + P{λAn > h},

which tends to 0 as n → ∞ and then h → 0 by the right continuity of X.
This shows that (XAn)∗

t
P→ 0. �

Proof of Proposition 4.16: Fix any predictable set A ⊂ [0, 1]. Proceeding
as in Lemma 4.8, we may choose some simple, predictable sets A1, A2, . . . ⊂
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[0, 1] such that λ(A∆An) P→ 0. Then also λ(Am∆An) P→ 0 as m,n → ∞,
and so by Lemma 4.17 (ii) we have for any t < 0

(XAm − XAn)∗
t = (XAm\An − XAn\Am)∗

t

≤ (XAm\An)∗
t + (XAn\Am)∗

t
P→ 0.

Hence, there exists a process XA satisfying

(XA − XAn)∗
t

P→ 0, t ∈ [0, 1),

and we note that XA is rcll on [0, 1), since this property holds trivially for the
processes XAn . To see that XA is independent of the choice of approximating
sequence A1, A2, . . . , consider another such sequence B1, B2, . . . , and apply
the previous argument to the alternating sequence A1, B1, A2, B2, . . . to see
that even (XA − XBn)∗

t
P→ 0.

To prove the stated continuity, let A1, A2, . . . ⊂ [0, 1] be predictable with
λAn

P→ 0, and fix any t ∈ (0, 1). Approximating as before for each n ∈ NN,
we may choose some simple, predictable sets B1, B2, . . . ⊂ [0, 1] such that

λ(An∆Bn) P→ 0, (XAn − XBn)∗
t

P→ 0.

Then even λBn
P→ 0, and so by Lemma 4.17 (ii)

(XAn)∗
t ≤ (XBn)∗

t + (XAn − XBn)∗
t

P→ 0.

To prove the asserted additivity, consider any disjoint, predictable sets
A,B ⊂ [0, 1]. As before, we may choose some simple, predictable sets An

and Bn such that

λ(A∆An) P→ 0, λ(B∆Bn) P→ 0. (11)

Here the second relation remains true with Bn replaced by Bn \ An, and so
we may assume that even An and Bn are disjoint. It is also clear from (11)
that λ((A∪B)∆(An ∪Bn)) P→ 0. Noting that trivially XAn∪Bn = XAn +XBn

a.s., we get for any t ∈ (0, 1)

(XA∪B − XA − XB)∗
t ≤ (XA∪B − XAn∪Bn)∗

t

+ (XA − XAn)∗
t + (XB − XBn)∗

t
P→ 0,

which shows that XA∪B = XA + XB a.s.
The relation ∆XA = 1A∆X is clearly true for simple, predictable sets

A ⊂ [0, 1]. To extend the result to general A, we may again choose some
simple, predictable sets An such that λ(A∆An) P→ 0. Then (XA−XAn)∗

t
P→ 0

for all t ∈ [0, 1), which implies

(∆XA − ∆XAn)∗
t

P→ 0, t ∈ [0, 1).
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It remains to show that

(1A∆X − 1An∆X)∗
t

P→ 0, t ∈ [0, 1).

Equivalently, given any predictable sets An with λAn
P→ 0, we need to show

that (1An∆X)∗
t

P→ 0 for every t < 1. Letting ξ denote the jump point process
of X, and putting Bε = {x; |x| > ε} and At

n = An ∩ [0, t], we must prove
that ξ(At

n ×Bε)
P→ 0 for every ε > 0. But this is another consequence of the

previously established continuity property.
If X is a semi-martingale on [0, 1), then clearly XA = 1A ·X a.s., as long

as the predictable set A is simple. For general A, suppose that X has a
semi-martingale decomposition M +V . Then choose the approximating sets
An such that also∫ t

0
1A∆And[M ] +

∫ t

0
1A∆An|dV | P→ 0, t ∈ [0, 1).

Letting n → ∞ for fixed t ∈ [0, 1), we get by FMP 26.13

(XA − 1A · X)∗
t ≤ (XA − XAn)∗

t + (1A · X − 1An · X)∗
t

P→ 0,

which shows that XA = 1A · X a.s. �

Defining CAX by (8) and (9), in terms of the stochastic integral in Propo-
sition 4.16, we may now state a continuous-time version of the optional skip-
ping property in Proposition 4.1.

Theorem 4.18 (predictable contraction) Let X be an F-contractable pro-
cess on [0, 1], and consider an F-predictable set A ⊂ [0, 1] with λA ≥ h a.s.
Then CAX

d= X on [0, h).

By the right continuity of the processes XA and (τt), we note that even
CAX is right-continuous on [0, h). Thus, the relation CAX

d= X holds in
the function space D([0, h),RRd). Defining (CAX)h as the left-hand limit
(CAX)h−, we may extend the result to the interval [0, h].

Proof: Fix any rational times t1 < · · · < tm in [0, h), and define

Aj = A ∩ (τtj−1, τtj ], j = 1, . . . ,m,

where t0 = 0. Since the τt are optional times, the sets A1, . . . , Am are again
predictable. From the definition of τt it is also clear that λAj = tj−tj−1 for all
j. Using Lemma 4.8 we may choose, for every n ∈ NN, some disjoint, simple,
predictable sets Aj,n such that λAj,n = λAj a.s. and λ(Aj∆Aj,n) P→ 0. By
a suitable re-numbering, we may clearly assume that each Aj,n is a union of
intervals Ink = n−1(k−1, k]. Trading intervals between the sets, if necessary,
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we may also arrange that Aj−1,n ≤ Aj,n for all j, in the sense that the
conditions s ∈ Aj−1,n and t ∈ Aj,n imply s < t.

Now Lemma 4.10 yields a representation of the sets Aj,n as in (6), where
the times τnjk in the second subscript are predictable with respect to the
discrete filtration Gn

k = Fk/n, k ≤ n. For every j, the times associated
with Aj−1,n are smaller than those for Aj,n. Since the increments X(Ink) are
Gn-contractable, Proposition 4.1 yields

(X(A1,n), . . . ,X(Am,n)) d= (Xt1 − Xt0, . . . , Xtm − Xtm−1).

Letting n → ∞ and using the continuity property in Proposition 4.16, we
obtain

((CAX)t1, . . . , (CAX)tm) = (X(U1), . . . ,X(Um))
d= (Xt1, . . . ,Xtm),

where Uk =
⋃

j≤k Aj . This shows that CAX
d= X on the set of rational num-

bers in [0, h), and the general relation follows by the right continuity on each
side. �

4.5 Brownian and Stable Invariance

Here we consider some special cases where the predictable mapping Theorem
4.7 can be improved. For any processes U and V on I = RR+ or [0, 1], we
define

λV =
∫

I
Vtdt, 〈U, V 〉 =

∫
I
UtVtdt, ‖V ‖2 = 〈V, V 〉1/2.

Recall from Theorem 2.25 that an F -exchangeable Brownian bridge in RRd is
a continuous semi-martingale on [0, 1]. The associated martingale component
is of course a standard Brownian motion.

Theorem 4.19 (Brownian invariance)
(i) Let X be a Brownian motion with respect to F , and consider some

F-predictable processes V t on RR+, t ≥ 0, such that

〈V s, V t〉 = s ∧ t a.s., s, t ≥ 0.

Then the process Yt =
∫

V tdX is again a Brownian motion.
(ii) Let X be an F-exchangeable Brownian bridge, and consider some F-

predictable processes V t on [0, 1], t ∈ [0, 1], such that

λV t = t, 〈V s, V t〉 = s ∧ t a.s., s, t ∈ [0, 1].

Then the process Yt =
∫

V tdX exists and is again a Brownian bridge.
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To deal with case (ii), we need to convert the relevant stochastic integrals
with respect to a Brownian bridge into continuous martingales. This is ac-
complished by the following result. Given a Lebesgue integrable process V
on [0, 1], we define

V t = (1 − t)−1
∫ 1

t
Vsds, t ∈ [0, 1).

Lemma 4.20 (Brownian bridge integral)

(i) Let X be an F-exchangeable Brownian bridge with martingale com-
ponent B, and let V be an F-predictable process on [0, 1], satisfying
EF0

∫ 1
0 V 2 < ∞ a.s. and such that λV is F0-measurable. Then∫ 1

0
Vt dXt =

∫ 1

0
(Vt − V t) dBt a.s.

(ii) For any processes U and V in L2[0, 1], we have∫ 1

0
(Ut − Ut) (Vt − V t) dt =

∫ 1

0
UtVt dt − λU · λV.

Proof: (i) Recall from Theorem 2.13 that Mt = Xt/(1− t) is a martingale
on [0, 1). Integrating by parts, we get for any t ∈ [0, 1)

dXt = (1 − t)dMt − Mtdt = dBt − Mtdt, (12)

and also ∫ t

0
VsMs ds = Mt

∫ t

0
Vsds −

∫ t

0
dMs

∫ s

0
Vrdr

=
∫ t

0
dMs

∫ 1

s
Vrdr − Mt

∫ 1

t
Vsds

=
∫ t

0
V sdBs − XtV t.

Combining this with (12) gives∫ t

0
VsdXs =

∫ t

0
(Vs − V s)dBs + XtV t, t ∈ [0, 1). (13)

Applying the Cauchy–Buniakovsky inequality twice and using dominated
convergence, we get as t → 1

(
EF0|XtV t|

)2 ≤ EF0(M2
t ) EF0

(∫ 1

t
|Vs|ds

)2

≤ (1 − t) EF0(M2
t ) EF0

∫ 1

t
V 2

s ds

= tEF0

∫ 1

t
V 2

s ds → 0,
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and so by dominated convergence XtV t
P→ 0. Using (13) and invoking the

dominated convergence property of stochastic integrals (FMP 17.13), it re-
mains to show that V is B-integrable. In other words, we need to prove that∫ 1
0 V

2
t dt < ∞ a.s. This will be established as part of (ii).

(ii) We may take U = V , since the general case will then follow by
polarization. Writing Rt =

∫ 1
t Vsds = (1 − t)V t and integrating by parts, we

get on [0, 1) ∫
V

2
t dt =

∫
(1 − t)−2R2

t dt

= (1 − t)−1R2
t + 2

∫
(1 − t)−1RtVt dt

= (1 − t)V 2
t + 2

∫
V tVt dt.

For bounded V , we conclude that∫ 1

0
(Vt − V t)2 dt =

∫ 1

0
V 2

t dt − (λV )2 =
∫ 1

0
(Vt − λV )2dt, (14)

and so by Minkowski’s inequality

‖V ‖2 ≤ ‖V ‖2 + ‖V − V ‖2

= ‖V ‖2 + ‖V − λV ‖2 ≤ 2‖V ‖2,

which extends to the general case by monotone convergence. This shows that
V ∈ L2, and the asserted relation follows from (14) by dominated conver-
gence. �

Proof of Theorem 4.19: (i) This is immediate from Theorem 4.5.
(ii) By Lemma 4.20 (i) we have a.s.

Yt =
∫ 1

0
(V t

r − V
t

r) dBr, t ∈ [0, 1],

where B denotes the Brownian motion X − X̂. Furthermore, we see from
part (ii) of the same result that∫ 1

0
(V s

r − V
s

r)(V
t
r − V

t

r) dr =
∫ 1

0
V s

r V t
r dr − λV s · λV t = s ∧ t − st.

The assertion now follows by Theorem 4.5. �

We turn to a study of stable processes. Recall that a Lévy process X is
said to be strictly p-stable if it satisfies the self-similarity or scaling relation
Xrt

d= r1/pXt for every r > 0 (FMP 15.9). If the same relation holds apart
from a linear drift term brt, we say that X is weakly p-stable. Excluding the
trivial case where X ≡ 0, we see from Lemma 1.33 that p-stability may occur
only for p ∈ (0, 2].
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A strictly 2-stable Lévy process is simply a constant multiple of Brownian
motion. For p ∈ (0, 2), a Lévy process is known to be weakly p-stable iff it
is purely discontinuous with Lévy measure ν(dx) = c±|x|−p−1dx on RR±, for
some constants c± ≥ 0. A weakly p-stable Lévy process with p �= 1 can
be reduced, by a suitable centering, to a strictly p-stable process. Such a
reduction is no longer possible when p = 1, since the linear process Xt = t
is itself strictly 1-stable. In fact, any strictly 1-stable process is symmetric
apart from a linear drift term, hence a Cauchy process with drift. In other
words, strict 1-stability implies c+ = c−.

When p ∈ (0, 1), a strictly p-stable Lévy process X has locally finite
variation and its continuous component vanishes. If instead p ∈ (1, 2), then
X is a purely discontinuous martingale. Though a strictly or weakly 1-stable
process has neither of these properties, it is still a purely discontinuous semi-
martingale. Given a filtration F , we say that a process X is F -Lévy if it is
both a Lévy process and a Markov process with respect to F . By Theorem
2.25 we may then assume that F is right-continuous and complete.

Before we can state the basic invariance properties of stable Lévy pro-
cesses, we need to examine the matter of integrability. Given a semi-mar-
tingale X and a predictable process V , we say that V is X-integrable on
the closed interval [0,∞] and write V ∈ L(X) if X is locally integrable in
the usual sense, and the integral process V ·X extends to a semi-martingale
on [0,∞]. By specializing our conditions to processes V supported by finite
intervals [0, t], we obtain criteria for the local integrability V ∈ L(X).

Proposition 4.21 (stable integrals) Consider a p-stable F-Lévy process X
and an F-predictable process V . Then V ∈ L(X) iff

(i) V ∈ Lp a.s., when X is strictly p-stable;

(ii) V ∈ Lp ∩ L1 a.s., when X is weakly p-stable for some p �= 1;

(iii) V ∈ L1 ∩ L log L a.s., when X is weakly 1-stable.

Here L log L denotes the class of functions f on RR+ such that |f log |f ||
is integrable. Our proof depends on a random time change, based on the
following simple invariance property of the underlying Lévy measure, which
will also be needed later.

Lemma 4.22 (invariance of Lévy measure) Consider a p-stable Lévy mea-
sure ν on RR \ {0} and some measurable functions U and V ≥ 0 on RR+, and
put Wx,t = (xUt, Vt). Assume that ν is symmetric or U ≥ 0. Then

(|U |p · λ) ◦ V −1 = λ

implies
(ν ⊗ λ) ◦ W−1 = ν ⊗ λ.
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Proof: By Fubini’s theorem, we have for any r, t > 0

(ν ⊗ λ) ◦ W−1((r,∞) × [0, t]) = (ν ⊗ λ){(x, s); xUs > r, Vs ≤ t}
=

∫ ∞

0
ν{x; xUs > r}1{Vs ≤ t} ds

= ν(r,∞)
∫ ∞

0
1{Vs ≤ t}|Us|p ds

= t ν(r,∞),

and similarly for the set (−∞,−r) × [0, t]. The assertion now follows by a
monotone-class argument. �

In subsequent proofs we shall often, without further comments, use the
device of trans-finite extension, which allows us to apply results like Theorem
4.5 when there is only inequality ξ̂ ◦V −1 ≤ µ a.s. on S. The idea is to extend
X and V , along with the underlying filtration F , to a second copy of the
time axis RR+, such that the extended version satisfies ξ̂ ◦ V −1 = µ a.s. The
quoted result then ensures that ξ ◦V −1 can be extended to a Poisson process
η on S with Eη = µ.

Proof of Proposition 4.21: The case p = 2 being classical, we may assume
that p ∈ (0, 2). Considering separately the processes V ± = (±V ) ∨ 0, we
may reduce to the case where V ≥ 0. First suppose that V ∈ L(X). For any
n ∈ NN we define

Vn,t = Vt ∧ n, Tn,t = (V p
n · λ)t, Wx,t = (xVn,t, Tn,t).

Letting ξ denote the jump point process of X, we note that the process
(Vn · X) ◦ T−1

n has jump point process ξ ◦ W−1
n . Since ξ has compensator

ξ̂ = ν ⊗ λ and ξ̂ ◦ W−1
n = ν ⊗ λ on [0, λV p

n ] by Lemma 4.22, the extended
version of Theorem 4.5 yields the existence of a Poisson process ηn

d= ξ on
RR × RR+ satisfying ξ ◦ W−1

n = ηn a.s. on [0, λV p
n ].

Now introduce the associated quadratic variation processes

Qn,t =
∫ ∫ t

0
x2ηn(dxds), t ≥ 0,

and note that [Vn · X]∞ = Qn ◦ λV p
n . For any t, r > 0 we have

P{λV p
n > t} ≤ P{Qn,t ≤ r} + P{λV p

n > t, Qn,t > r}
≤ P{[X]t ≤ r} + P{[Vn · X]∞ > r}.

Noting that λV p
n → λV p and [Vn ·X]∞ → [V ·X]∞ by monotone convergence

as n → ∞, we obtain

P{λV p > t} ≤ P{[X]t ≤ r} + P{[V · X]∞ > r}.
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Since [X]∞ = ∞ and [V · X]∞ < ∞ a.s., the right-hand side tends to 0 as
t → ∞ and then r → ∞, which implies λV p < ∞ a.s. This proves the
necessity of the condition V ∈ Lp in (i)–(iii).

To prove the sufficiency when p �= 1, we may take X to be strictly p-stable
and let V ∈ Lp. Considering separately the positive and negative jumps, we
may assume that again c− = 0. Writing Tt = (V p · λ)t and Wt = (xVt, Tt),
we see as before that ξ ◦ W−1 = ξ̃ a.s. on [0, λV p], where ξ̃

d= ξ. Assuming
first that p ∈ (0, 1), we get a.s.

(V · X)∞ =
∫ ∫ ∞

0
Vsx ξ(dxds)

=
∫ ∫ λV p

0
y ξ̃(dy dr) = X̃ ◦ λV p < ∞

for some process X̃
d= X, which shows that V ∈ L(X). If instead p ∈ (1, 2),

we note that∫ ∞

0
V 2d[X] =

∫ ∫ ∞

0
V 2

s x2ξ(dxds) =
∫ ∫ λV p

0
x2ξ̃(dxds).

Writing ξ̃t = ξ̃(· × [0, t]) and using Jensen’s inequality and subadditivity, we
get

E
(∫ ∞

0
x2ξ̃t(dx)

)1/2
≤ E

(∫ 1

0
x2ξ̃t(dx)

)1/2

+ E
(∫ ∞

1
x2ξ̃t(dx)

)1/2

≤
(
E
∫ 1

0
x2ξ̃t(dx)

)1/2

+ E
∫ ∞

1
xξ̃t(dx)

=
(
t
∫ 1

0
x2ν(dx)

)1/2

+ t
∫ ∞

1
xν(dx) < ∞.

Hence, V ∈ L(X) by FMP 26.13. Since λV p < ∞ a.s., we see that again
V ∈ L(X). This completes the proof of (i) for p �= 1. It also proves (ii), since
if X is weakly p-stable with drift X̂ and V ∈ L(X), we have λV p < ∞ a.s.,
which implies V ∈ L(X − X̂). But then also V ∈ L(X̂), which means that
V ∈ L1 a.s.

It remains to take p = 1. By the necessity part we may then take V ∈ L1,
which allows us to choose an arbitrary centering. For convenience, we may
assume that X = M + J, where M is a purely dicontinuous martingale
with jumps bounded by ±1 and J is a pure step process containing all the
remaining jumps. Now introduce the processes

At =
∑

s≤t
∆Ms1{|Vs∆Ms| > 1}

=
∫ ∫ t

0
x1{|x| ≤ 1 < |xVs|} ξ(dxds), (15)

Bt =
∑

s≤t
∆Js1{|Vs∆Js| ≤ 1}

=
∫ ∫ t

0
x1{|xVs| ≤ 1 < |x|} ξ(dxds), (16)
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and note that both A and V ·B have isolated jumps of modulus ≤ 1. In fact,
assuming V ≥ 0 and c− = 0, we have in case of A∑

s≤t
1{∆As > 0} ≤

∫ ∫ t

0
1{xVs > 1} ξ(dxds)

= ξ̃((1,∞) × [0, λV ]) < ∞.

Recalling that V is predictable and writing c = c+− c−, we may evaluate the
associated compensators as

Ât =
∫ ∫ t

0
x1{|x| ≤ 1 < |xVs|} ξ̂(dxds)

=
∫ t

0
ds
∫

x1{|x| ≤ 1 < |xVs|} ν(dx)

= c
∫ t

0
ds
∫

1{|Vs|−1 < x ≤ 1}x−1 dx

= c
∫ t

0
log(|Vs| ∨ 1) ds,

B̂t =
∫ ∫ t

0
x1{|xVs| ≤ 1 < |x|} ξ̂(dxds)

=
∫ t

0
ds
∫

x1{|xVs| ≤ 1 < |x|} ν(dx)

= c
∫ t

0
ds
∫

1{1 < x ≤ |Vs|−1}x−1 dx

= −c
∫ t

0
log(|Vs| ∧ 1) ds.

Let us finally introduce the L2-martingale N = M − (A− Â), and note that
X has the semi-martingale decomposition

X = N + (J + A− Â)
= N + (J + A− B) + (B − B̂) − (Â− B̂). (17)

Assuming V ≥ 0, we obtain(
V 2 · 〈N + B − B̂〉

)
∞

=
∫ ∫ ∞

0
(xVs)21{|xVs| ≤ 1} ξ̂(dxds)

=
∫ 1

−1

∫ λV

0
x2ξ̂ ◦ W−1(dxds)

= λV
∫ 1

−1
x2ν(dx) < ∞.

This shows that V ∈ L(N), already in the elementary sense of L2-integration
(FMP 26.2), and also that the process V ·(B−B̂) extends to a local martingale
on [0,∞]. Next we note that

(V · (J + A− B))t =
∑

s≤t
Vs∆Xs1{|Vs∆Xs| > 1}

=
∫ ∫ t

0
xVs1{|xVs| > 1} ξ(dxds), (18)
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which for V ≥ 0 has total variation∫ ∫
|xVs|1{|xVs| > 1} ξ(dxds) =

∫
|x|>1

∫ λV

0
|x| ξ̃(dxds) < ∞.

Thus, the first three terms in (17) give rise to semi-martingales on [0,∞],
and so the global integrability V ∈ L(X) holds iff the process(

V · (Â− B̂)
)

t
= c

∫ t

0
Vs log |Vs| ds, t ≥ 0, (19)

exists and has finite variation on RR+. For c �= 0, this is precisely the condi-
tion in (iii). �

For any F -predictable processes U and V ≥ 0 satisfying appropriate
integrability conditions, we define the transformed process (U · X) ◦ V −1 by(

(U · X) ◦ V −1
)

t
=
∫ ∞

0
1{Vs ≤ t}UsdXs, t ≥ 0. (20)

We proceed to show that if X is symmetric p-stable, or if it is strictly p-stable
and U ≥ 0, then the condition

(|U |p · λ) ◦ V −1 = λ a.s. (21)

ensures that the transformation in (20) will preserve the distribution of X.
The results are easily modified, through a suitable centering, to cover the
case of weakly p-stable Lévy processes X, as long as p �= 1. The weakly
1-stable case is more delicate and requires a separate treatment.

Theorem 4.23 (stable invariance) Let X be a p-stable F-Lévy process, and
let U and V ≥ 0 be F-predictable processes satisfying (21) and such that
(U · X) ◦ V −1 exists.

(i) If X is symmetric p-stable, or if X is strictly p-stable and U ≥ 0 a.s.,
then

(U · X) ◦ V −1 d= X.

(ii) If X is weakly 1-stable with c+ − c− = c and U ≥ 0 a.s., then

(U · X) ◦ V −1 + c (U log U · λ) ◦ V −1 d= X.

Proof: The result for p = 2 follows from Theorem 4.19 (i) with

V t
r = Ur1{Vr ≤ t}, r, t ≥ 0,

since for any s, t ≥ 0 we have by (21)

〈V s, V t〉 =
∫ ∞

0
U2

r 1{Vr ≤ s ∧ t} dr

= (U2 · λ) ◦ V −1[0, s ∧ t]
= λ[0, s ∧ t] = s ∧ t.
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When p ∈ (0, 2), the jump point process ξ of X is Poisson with F -
compensator ξ̂ = ν ⊗ λ a.s., where ν is the p-stable Lévy measure of X.
Writing Wx,t = (xUt, Vt), we see from (21) and Lemma 4.22 that ξ̂ ◦ W−1 =
ν ⊗ λ a.s., and so by Theorem 4.5 we have η ≡ ξ ◦ W−1 d= ξ. Assuming first
that p ∈ (0, 1), we obtain(

(U · X) ◦ V −1
)

t
=

∫ ∞

0
1{Vs ≤ t}UsdXs

=
∫ ∫ ∞

0
1{Vs ≤ t}Usx ξ(dxds)

=
∫ ∫ t

0
y (ξ ◦ W−1)(dy dr) =

∫ ∫ t

0
y η(dy dr), (22)

which is a process with the same distribution as X.
Now let p ∈ (1, 2), so that X is a quasi-left-continuous and purely

discontinuous martingale. Fixing any times t1 < · · · < tm and putting
Ik = (tk−1, tk] with t0 = 0, we may introduce the strongly orthogonal mar-
tingales Mk = 1Ik

(V ) · X. Writing Y = (U · X) ◦ V −1, we note that

γk ≡ Ytk − Ytk−1 =
∫ ∞

0
UdMk, k = 1, . . . ,m. (23)

The Mk have jump point processes ξk = 1Ik
(V ) · ξ with compensators

ξ̂k = 1Ik
(V ) · ξ̂ = 1Ik

(V ) · (ν ⊗ λ), k ≤ m.

Writing Hx,t = xUt and Wx,t = (xUt, Vt), we note that

ξ̂k ◦ H−1 = (ξ̂ ◦ W−1)(· × Ik)
= (ν ⊗ λ)(· × Ik) = λIk ν.

By Lemma 4.6 it follows that γ1, . . . , γm are independent, centered, infinitely
divisible random variables with Lévy measures λIkν and vanishing Gaussian
components. Hence,

(Yt1, . . . , Ytm) d= (Xt1, . . . ,Xtm), (24)

which shows that Y
d= X.

It remains to take p = 1. If U ≥ 0, then (21) yields (U ·λ) ◦V −1 = λ a.s.,
which shows that the drift component is a.s. mapped into itself. We may then
assume that X = M +J, where M is a purely discontinuous martingale with
jumps in [−1, 1] and J is a pure jump-type process with jumps of modulus
> 1. Defining A and B as in (15) and (16) and putting Ã = A − Â and
B̃ = B − B̂, we see from (17) that

X + (Â− B̂) = (M − Ã + B̃) + (J + A− B).

In view of (19), it is then enough to show that

Y + Z ≡ (U · (M − Ã + B̃)) ◦ V −1 + (U · (J + A− B)) ◦ V −1 d= X.
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Letting η denote the restriction of ξ ◦ W−1 to [−1, 1]c × RR+, we may
proceed as in (18) and (22) to obtain

Zt = ((U · (J + A− B)) · V −1)t =
∫ ∫ t

0
xη(dxds), t ≥ 0.

Next we note that (23) remains true with Mk = 1Ik
·X ′, where X ′ = M−Ã+B̃

and Ik = (tk−1, tk] as before. Letting ξ′ denote the jump point process of X ′

and putting ξk = 1Ik
(V ) · ξ′, we see as before that ξ̂ ◦H−1 = λIkν

′, where ν′

denotes the restriction of ν to [−1, 1]. Using a slightly extended version of
Lemma 4.6, we get as in (24)

(Yt1, . . . , Ytm, Z) d= (Mt1, . . . ,Mtm, J)

for arbitrary times t1 < · · · < tm . This implies (Y,Z) d= (M,J), and so

(
U · (X + Â− B̂)

)
◦ V −1 = Y + Z

d= M + J = X.

It remains to note that Â = B̂ = 0 a.s. when X is strictly 1-stable. �

The last theorem, in a suitably extended version, leads easily to some
interesting time-change representations of stable integrals.

Corollary 4.24 (time-change representations, Rosiński and Woyczyński,
Kallenberg) Consider a p-stable F-Lévy process X and an F-predictable pro-
cess V ∈ L(X).

(i) If X is symmetric p-stable, there exists a process Y
d= X such that

V · X = Y ◦ (|V |p · λ) a.s.

(ii) If X is a strictly p-stable, there exist some mutually independent pro-
cesses Y,Z

d= X such that

V · X = Y ◦ (V p
+ · λ) − Z ◦ (V p

− · λ) a.s.

(iii) If X is weakly 1-stable with c+ − c− = c, there exist some mutually
independent processes Y,Z

d= X such that a.s.

V · X = Y ◦ (V+ · λ) − Z ◦ (V− · λ) − c (V log |V |) · λ.

Our proofs of parts (ii) and (iii) are based on the following multi-variate
version of Theorem 4.23, which can be deduced as a simple corollary or may
be proved directly by similar methods.
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Lemma 4.25 (multi-variate invariance) Let X be a p-stable F-Lévy pro-
cess, and let U1, . . . , Um, V ≥ 0 be F-predictable processes with UiUj ≡ 0 a.s.
for all i �= j, such that the pairs (Uj, V ) satisfy (21).

(i) If X is strictly p-stable, then the processes Xj = (Uj · X) ◦ V −1 are
mutually independent with the same distribution as X.

(ii) If X is weakly 1-stable with c+ − c− = c, then the previous statement
holds for the processes

Xj = (Uj · X) ◦ V −1 + c (Uj log Uj · λ) ◦ V −1, j = 1, . . . ,m.

Proof of Corollary 4.24: (i) Randomizing extensions of V and X, as
explained before the proof of Proposition 4.21, we may assume that λ|V |p =
∞ a.s. Since the predictable process T = |V |p ·λ satisfies (|V |p ·λ) ◦T−1 = λ

a.s., we conclude from Theorem 4.23 (i) that Y ≡ (V ·X)◦T−1 d= X. Putting
T−1

t = inf{s ≥ 0; Ts > t}, we obtain

Yt =
∫ ∞

0
Vs1{Ts ≤ t}dXs = (V · X) ◦ T−1

t a.s., t ≥ 0,

and due to the right continuity of Y , T−1, and V · X, we may choose the
exceptional null set to be independent of t. Writing Rt = inf{u > t; Tu > Tt},
we get a.s. for fixed t ≥ 0

Y ◦ Tt = (V · X) ◦ T−1 ◦ Tt = (V · X) ◦ Rt = (V · X)t,

where the last relation follows from the identity (|V |p · λ) ◦ R = |V |p · λ,
combined with the fact that the jump point process ξ of X has compensator
ξ̂ = ν ⊗ λ. Invoking the right continuity of Y , T , and V ·X, we see that the
exceptional null set can be chosen again to be independent of t.

(ii) Here we may assume that λV p
± = ∞ a.s. Putting T± = V p

± · λ,
we see from Lemma 4.25 (i) that the processes Y± = (V± · X) ◦ T−1

± are
mutually independent with the same distribution as X. As before, we note
that Y± ◦ T± = V± · X a.s., which implies

V · X = V+ · X − V− · X = Y+ ◦ T+ − Y− ◦ T−.

(iii) Assuming λV± = ∞ and putting T± = V± · λ, we see from Lemma
4.25 (ii) that the processes

Y± = (V± · X) ◦ T−1
± + c (V± log V± · λ) ◦ T−1

±

are mutually independent and distributed as X. As before, we get a.s.

Y± ◦ T± = V± · X + c V± log V± · λ,

which implies

V · X = V+ · X − V− · X = Y+ ◦ T+ − Y− ◦ T− − c V log |V | · λ. �
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4.6 Mapping of Optional Times

The predictable mapping Theorem 4.7 shows that any predictable, mea-
sure-preserving transformation of the unit interval [0, 1] preserves the joint
distribution of a family of independent U(0, 1) random variables. Indeed,
the random measure version of the quoted theorem is essentially equivalent
to that statement. Our present aim is to study the effect of predictable
mappings on more general collections of random elements. This requires
some martingale theory, to describe the dynamical properties of a single
random variable.

More precisely, we consider a marked point process ξ on RR+×K consisting
of a single point (τ, κ) in (0,∞)×K, where K is a Borel space with associated
σ-field K. We assume that ξ = δτ,κ is adapted to a right-continuous and
complete filtration F and denote the associated compensator by η (FMP
25.22). The time τ is then optional with compensator η̄ = η(· × K). For
convenience, we introduce the measure-valued process ηt = η([0, t]×·) and its
projection η̄t = η[0, t]. Similar conventions apply to other random measures
on RR+ × K.

If F is the filtration induced by ξ, then η reduces to the natural compen-
sator, given explicitly, as in FMP 25.28, by

ηtB =
∫ t∧τ

0

µ(ds × B)
µ([s,∞) × K)

, B ∈ K, t ≥ 0, (25)

where
∫ b
a denotes the integral over (a, b]. Conversely, (25) shows that η

determines the underlying measure µ up to time τ . Though (25) may fail in
general, we can always find a random sub-probability measure ζ on (0, τ ]×K,
called the discounted compensator of ξ, such that (25) holds with µ replaced
by ζ.

To construct ζ, we note that the tail process Zt = 1 − ζ̄t is related to η̄
through the ordinary differential equation

dZt = −Zt−dη̄t, Z0 = 1, (26)

whose solution is unique and given by Doléans’ exponential (FMP 26.8)

Zt = exp(−η̄c
t )
∏
s≤t

(1 − ∆η̄s), t ≥ 0, (27)

where ∆η̄s = η̄s − η̄s− and η̄c denotes the continuous component of η̄. It
remains to express ζ in terms of Z and η as ζ = Z− · η, or

ζ(A) =
∫ ∫

A
Zt−η(dt dx), A ∈ B(RR+) ⊗K. (28)

We list some basic properties of Z.
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Lemma 4.26 (tail process) Consider an adapted pair (τ, κ) in (0,∞) × K
with compensator η, and define Z by (27). Then a.s.

(i) ∆η̄ < 1 on [0, τ) and ≤ 1 on [τ ];
(ii) Z is non-increasing with Z ≥ 0 and Zτ− > 0 a.s.;
(iii) Y = Z−1 satisfies dYt = Ytdη̄t, as long as Zt > 0.

Proof: (i) Define σ = inf{t ≥ 0; ∆η̄t ≥ 1}, and note that σ is optional by
an elementary approximation argument. The random interval (σ,∞) is then
predictable, and so the same thing is true for the graph [σ] = {∆η̄ ≥ 1} \
(σ,∞). Hence, by dual predictable projection (FMP 25.13),

P{τ = σ} = Eξ̄[σ] = Eη̄[σ].

Since also
1{τ = σ} ≤ 1{σ < ∞} ≤ η̄[σ]

by the definition of σ, we obtain

1{τ = σ} = η̄[σ] = ∆η̄σ a.s. on {σ < ∞},

which implies ∆η̄σ ≤ 1 and τ = σ a.s. on the same set.
(ii) Since 1 − ∆η̄ ≥ 0 a.s. by (i), we see from (27) that Z is a.s. non-

increasing with Z ≥ 0. Since also
∑

t ∆η̄t ≤ η̄τ < ∞ a.s. and supt<τ ∆η̄t < 1
a.s. in view of (i), we have Zτ− > 0.

(iii) By an elementary integration by parts (cf. FMP 26.10), we have on
the set {t ≥ 0; Zt > 0}

0 = d(Zt Yt) = Zt− dYt + Yt dZt,

and so, by the chain rule for Stieltjes integrals (cf. FMP 26.2 (ii)) together
with (26),

dYt = −Z−1
t− Yt dZt = Z−1

t− Yt Zt− dη̄ = Yt dη̄. �

Now consider any predictable process V on RR+ × K such that a.s.∫ τ

0

∫
|V |dζ < ∞,

∫ τ

0

∫
V dζ = 0 on {Zτ = 0}. (29)

We introduce the associated processes

Ut,x = Vt,x + Z−1
t

∫ t

0

∫
V dζ, t ≥ 0, x ∈ K, (30)

Mt = Uτ,κ1{τ ≤ t} −
∫ t

0

∫
Udη, t ≥ 0, (31)

with the understanding that 0/0 = 0. The following remarkable identities
and martingale properties will play a basic role.
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Lemma 4.27 (fundamental martingale) Consider an adapted pair (τ, κ) in
(0,∞)×K with compensator η and discounted compensator ζ, and put Zt =
1 − ζ̄t. Let V be a predictable process on RR+ × K satisfying (29), and define
U and M by (30) and (31). Then

(i) M exists and satisfies M∞ = Vτ,κ a.s.;
(ii) if E|Uτ,κ| < ∞, we have EVτ,κ = 0, and M becomes a uniformly inte-

grable martingale satisfying ‖M∗‖p <
�

‖Vτ,κ‖p for every p > 1.

Proof: (i) Write Y = Z−1. Using (28), (29), and Lemma 4.26 (ii), we get

η|V | = ζ(Y−|V |) ≤ Yτ−ζ|V | < ∞.

Next we see from (29), (30), and Lemma 4.26 (iii) that

η|U − V | ≤ ζ|V |
∫ τ

0
Y dη̄ = (Yτ − 1) ζ|V | < ∞,

whenever Zτ > 0. Similarly, when Zτ = 0, we obtain

η|U − V | ≤ ζ|V |
∫ τ−

0
Y dη̄ = (Yτ− − 1) ζ|V | < ∞.

Thus, in either case, the process U is η-integrable and the definition of M
makes good sense.

Now let t ≥ 0 be such that Zt > 0. Using (30) (twice), Lemma 4.26 (iii),
Fubini’s theorem, and (28), we get for any x ∈ K∫ t

0

∫
(U − V ) dη =

∫ t

0
Ys dη̄s

∫ s

0

∫
V dζ =

∫ t

0
dYs

∫ s

0

∫
V dζ

=
∫ t

0

∫
(Yt − Ys−) Vs,y dζs,y

= Ut,x − Vt,x −
∫ t

0

∫
V dη.

Simplifying and combining with (30), we obtain∫ t

0

∫
Udη = Ut,x − Vt,x = Yt

∫ t

0

∫
V dζ. (32)

We claim that this remains true for t = τ , even when Zτ = 0. Then use (28),
(29), and (32) to write in this case∫ τ

0

∫
Udη =

∫ τ−

0

∫
Udη +

∫
[τ ]

∫
Udη

= Yτ−

∫ τ−

0

∫
V dζ +

∫
[τ ]

∫
V dη

= Yτ−

∫ τ

0

∫
V dζ = 0 = Uτ,x − Vτ,x.
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This shows that (32) in generally true. In particular,

Vτ,κ = Uτ,κ −
∫ τ

0

∫
Udη = Mτ = M∞.

(ii) If E|Uτ,κ| < ∞, then by dual predictable projection

Eη|U | = Eδτ,κ|U | = E|Uτ,κ| < ∞,

which yields the asserted uniform integrability of M . Applying a similar
calculation to the predictable process 1[0,σ]U for an arbitrary optional time
σ, we obtain EMσ = 0, which shows that M is a martingale (FMP 7.13).
Hence, in view of (i),

EVτ,κ = EM∞ = EM0 = 0.

Furthermore, by Doob’s inequality (FMP 7.16) and (i), we get for any p > 1

‖M∗‖p <
�

‖M∞‖p = ‖Vτ,κ‖p. �

The last result is easily extended to higher dimensions. Let us then say
that two optional times are orthogonal, if they are a.s. distinct and such that
their compensators have a.s. no discontinuity points in common. For more
general collections of optional times, orthogonality should be understood in
the pair-wise sense.

Corollary 4.28 (product moments) For 1 ≤ j ≤ m, consider an adapted
pair (τj, κj) in (0,∞) × Kj and a predictable process Vj on RR+ × Kj , and
define Zj , ζj , and Uj as in (27), (28), and (30). Let the τj be orthogonal, and
assume that for every j

ζj |Vj | < ∞, ζjVj = 0 a.s. on {Zj(τj) = 0}, (33)
E|Uj(τj, κj)| < ∞, E|Vj(τj, κj)|pj < ∞, (34)

where p1, . . . , pm > 0 with
∑

j p−1
j ≤ 1. Then

E
∏

j≤m
Vj(τj, κj) = 0.

Proof: Let η1, . . . , ηm denote the compensators of the pairs (τj, κj), and
define the martingales M1, . . . ,Mm as in (31). Fix any i �= j in {1, . . . ,m},
and choose some predictable times σ1, σ2, . . . such that {t > 0; ∆η̄i > 0} =⋃

k[σk] a.s. (cf. FMP 25.17). By dual predictable projection (FMP 25.13) and
orthogonality, we have for any k ∈ NN

Eδσk
[τj ] = P{τj = σk} = Eδτj

[σk] = Eηj [σk] = 0.

Summing over k gives ηi[τj ] = 0 a.s., which shows that the Mj are strongly
orthogonal, in the sense that [Mi,Mj ] = 0 a.s. for all i �= j. Next integrate
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repeatedly by parts, to conclude that the product M =
∏

j Mj is a local
martingale. Writing p = (

∑
j p−1

j )−1 and using Hölder’s inequality, Lemma
4.27 (ii), and (33)–(34), we obtain

‖M∗‖1 ≤ ‖M∗‖p ≤
∏

j
‖M∗

j ‖pj
<
�

∏
j
‖Vτj ,κj

‖pj
< ∞.

Thus, M is a uniformly integrable martingale, and so by Lemma 4.27 (i)

E
∏

j
Vj(τj, κj) = E

∏
j
Mj(∞) = EM(∞) = EM(0) = 0. �

We are now ready to state the main result of this section.

Theorem 4.29 (mapping to independence) For 1 ≤ j ≤ m, consider an
adapted pair (τj, κj) in (0,∞) × Kj with discounted compensator ζj and a
predictable mapping Tj of (0,∞) × Kj into a probability space (Sj,Sj , µj)
such that ζj ◦ T−1

j ≤ µj a.s. Let the τj be orthogonal. Then the random
elements γj = Tj(τj, κj) in Sj are independent with distributions µj .

Proof: Fix any sets Bj ∈ Sj , j ≤ m, and introduce on RR+ × Kj the
bounded, predictable processes

Vj(t, x) = 1Bj
◦ Tj(t, x) − µjBj, t ≥ 0, x ∈ Kj, j ≤ m. (35)

Then by definitions and hypotheses∫ t

0

∫
Vj dζj =

∫ t

0

∫
1Bj

(Tj) dζj − µjBj(1 − Zj(t)) ≤ Zj(t) µjBj.

Replacing Bj by its complement Bc
j will only affect the sign of V , and com-

bining the two estimates yields

−Zj(t) µjB
c
j ≤

∫ t

0

∫
Vj dζj ≤ Zj(t) µjBj. (36)

In particular, |ζjVj | ≤ Zj(τj) a.s., and so ζjVj = 0 a.s. on {Zj(τj) = 0}.
Using (30), (35), and (36), we obtain

−1 ≤ 1Bj
◦ Tj − 1 = Vj − µjB

c
j ≤ Uj ≤ Vj + µjBj = 1Bj

◦ T ≤ 1,

which implies |Uj | ≤ 1. The hypotheses of Corollary 4.28 are then fulfilled
with p1, . . . , pm = m, and we conclude that

E
∏

j

(
1Bj

(γj) − µjBj

)
= E

∏
j
Vj(τj, κj) = 0. (37)

We may use the last relation to show that

P
⋂

j≤m

{γj ∈ Bj} =
∏
j≤m

µjBj. (38)
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For m = 1, this is obvious from (37). Proceeding by induction, we assume
(38) to be true for up to m− 1 pairs (τj, κj), and turn to the case of m such
pairs. Expanding the product on the left of (37) and applying the induction
hypothesis to all lower order terms, we see that all but two of the 2m terms
will cancel out, which leaves us with the desired relation (38). �

We may extend the last result to a conditional statement, akin to Theorem
4.5, involving an additional continuous local martingale.

Corollary 4.30 (extended mapping property) Let γ1, . . . , γm be such as in
Theorem 4.29, except that the µj are now allowed to be random and F0-
measurable. Define a process X on S, as in Theorem 4.5, in terms of a
continuous local martingale M in RRd and some predictable processes Ut, t ∈
S, such that the associated co-variation process ρ on S2 is F0-measurable.
Then conditionally on F0, the γj are independent with distributions µj , and
X is independent, Gaussian with covariance function ρ.

Proof: Let V1, . . . , Vm be such as in the last proof, and define the associ-
ated martingales M1, . . . ,Mm as in (31). Also introduce the exponential local
martingale Z = exp(iN + 1

2 [N ]), where N is such as in the proof of Theorem
4.5. Then (Z − 1)

∏
j Mj is conditionally a uniformly integrable martingale,

and we get as in (37)

EF0(Z∞ − 1)
∏

j

(
1Bj

(γj) − µjBj

)
= 0.

Noting that the same relation holds without the factor Z∞ − 1, we may
proceed recursively as before to obtain

EF0 exp(iN∞)
∏

j
1Bj

(γj) = exp(− 1
2 [N ]∞)

∏
j
µjBj.

Applying the uniqueness theorem for characteristic functions to the bounded
measure P̃ =

∏
j1Bj

(γj) · PF0 , we conclude that

PF0{X ∈ A; γj ∈ Bj, j ≤ m} = νρ(A)
∏

j
µjBj,

where νρ denotes the centered Gaussian distribution on RRT with covariance
function ρ. �

Our final aim is to show how a randomization can be used to resolve pos-
sible discontinuities and multiplicities. Given a point process ξ on some space
S, we may form a uniform randomization η of ξ by adding some independent
U(0, 1) marks to the unit atoms of ξ, as explained in FMP 12.7. Given two
filtrations F and G on a probability space (Ω,A, P ), we say as in FMP 18.4
that G is a standard extension of F if Ft ⊂ Gt ⊥⊥Ft F for all t ≥ 0. This is
the minimal condition required to preserve all adaptedness and conditioning
properties.
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Lemma 4.31 (randomization) Consider an F-adapted point process ξ on
S×RR+ with compensator ξ̂ and a uniform randomization η on S×RR+×[0, 1].
Let G be the right-continuous filtration induced by F and η. Then G is a
standard extension of F , and η has G-compensator η̂ = ξ̂ ⊗ λ.

Proof: For any t ≥ 0, let ξt and ηt denote the restrictions of ξ and η to
[0, t] × S and [0, t] × S × [0, 1], respectively, and put η′

t = η − ηt. Then by
construction

η⊥⊥ξ F , ηt ⊥⊥ξ η′
t, ηt ⊥⊥ξt ξ.

Using the first of these relations and then combining with the other two,
invoking the chain rule for conditional independence (FMP 6.8), we obtain

ηt ⊥⊥ξ,η′
t
F , ηt ⊥⊥ξt (η′

t,F),

and so
ηt ⊥⊥Ft (η′

t,F), (ηt,Ft)⊥⊥Ft (η′
t,F).

Approximating from the right in the last relation gives Gt⊥⊥FtF , which shows
that G is a standard extension of F .

Using the latter property, the chain rule for conditional expectations, the
relation η⊥⊥ξ F , Fubini’s theorem, and the definitions of randomization and
compensation, we get on (t,∞) × S × [0, 1] for arbitrary t ≥ 0

E[η|Gt] = E[η|Ft] = E[E[η|Ft, ξ]|Ft] = E[E[η|ξ]|Ft]
= E[ξ ⊗ λ|Ft] = E[ξ|Ft] ⊗ λ = E[ξ̂|Ft] ⊗ λ

= E[ξ̂ ⊗ λ|Ft] = E[ξ̂ ⊗ λ|Gt].

Since η̂ = ξ̂ ⊗ λ is F -predictable and hence even G-predictable, we conclude
that η̂ is indeed a G-compensator of η. �

For a first application of the preceding theory, we consider the transfor-
mation of a simple, unbounded point process ξ on (0,∞) to a homogeneous
Poisson process. The quasi-left-continuous case, where the compensator ξ̂ is
continuous, is classical and appears in FMP 25.26.

Corollary 4.32 (time change to Poisson) Let ξ =
∑

j δτj
be a simple, un-

bounded, F-adapted point process on (0,∞) with compensator ξ̂, and consider
some i.i.d. U(0, 1) random variables κ1, κ2, . . . ⊥⊥F . Put ρt = κj on {t = τj}
for all j, and let ρt = 1 otherwise. Then the times

σj = ξ̂c(0, τj ] −
∑

t≤τj
log(1 − ρt ξ̂{t}), j ∈ NN, (39)

form a unit rate Poisson process on RR+.

When ξ is quasi-left-continuous, we note that (39) reduces to σj = ξ̂(0, τj ],
in agreement with Theorem 4.5 or FMP 25.26.
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Proof: We shall use Theorem 4.29 to show that the differences σj − σj−1

are independent and exponentially distributed with mean 1, where σ0 = 0.
Since the τj are orthogonal, it is then enough to consider σ1. Letting G be
the right-continuous filtration induced by F and the pairs (σj, κj), we see
from Lemma 4.31 that (τ1, κ1) has G-compensator η = ξ̂⊗λ on [0, τ1]× [0, 1].
Let ζ denote the associated discounted version with projection ζ̄ on RR+, and
put Zt = 1− ζ̄(0, t]. We may also introduce on RR+ × [0, 1] the G-predictable
processes T and V = e−T , given by

T (t, x) = η̄c(0, t] −
∑

s<t
log(1 − η̄{s}) − log(1 − x η̄{t}),

V (t, x) = exp(−η̄c(0, t]) (1 − x η̄{t})
∏

s<t
(1 − η̄{s})

= Zt−(1 − x η̄{t}),

where the last equality comes from (27). Noting that, for any random variable
γ with distribution function F and for arbitrary t ∈ RR,

P{F (γ) ≤ F (t)} = P{γ ≤ t} = F (t),
P{F (γ) ≤ F (t−)} = P{γ < t} = F (t−),

we obtain ζ ◦V −1 ≤ λ on [0, 1]. Hence, Theorem 4.29 shows that V (τ1, κ1) =
e−σ1 is U(0, 1), which yields the desired distribution for σ1 = T (τ1, κ1). �

We can also use the preceding theory to give an alternative proof of The-
orem 4.7, at least for processes on [0, 1].

Second proof of Theorem 4.7, for I = [0, 1]: Extending the original filtra-
tion F , as explained in Lemma 2.22, we may assume that the coefficients in
the representation of X are F0-measurable. Our first step is to truncate the
sum of centered jumps in the representation of Theorem 2.18. Then let Xn

denote the remainder after the first n terms, and write Xn = Mn + X̂n. Not-
ing that tr[Mn]1 =

∑
j>n |βj |2 → 0 and using the BDG-inequalities in FMP

26.12, we obtain (Mn ◦ V −1)t
P→ 0 for every t ∈ [0, 1]. Next we may proceed

as in the proof of Theorem 2.25, which again involves the use of Theorem
2.23, to see that

E
[∫ 1

0
|dX̂n|

∣∣∣∣F0

]
<
�

E[X∗
n|F0] <

�
(tr[Xn])1/2

1

=
(∑

j>n
|βj |2

)1/2
→ 0.

This implies (Xn ◦V −1)t
P→ 0 for all t ∈ [0, 1], which reduces the proof to the

case of finitely many jumps.
Here it is enough to consider a jointly exchangeable pair, consisting of a

marked point process ξ on [0, 1] and a Brownian bridge B in RRd. By Lemma
4.31 we may finally reduce to the case where ξ has a.s. distinct marks. It is
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then equivalent to consider finitely many optional times τ1, . . . , τm such that
B and the point processes ξj = δτj

are jointly exchangeable.
To apply Corollary 4.30, we may choose the continuous martingale M to

be the integral with respect to the Brownian motion in Lemma 4.20, where
the predictable process V is replaced by the associated indicator functions
Ut

r = 1{Vr ≤ t}, r ∈ [0, 1], for arbitrary t ∈ [0, 1]. Then the co-variations of
the lemma become∫ 1

0
(Us

r − U
s

r) (Ut
r − U

t

r) dr =
∫ 1

0
Us

r Ut
r dr − λUs · λUt

= λUs∧t − λUs · λUt

= s ∧ t − st = EBsBt,

as required.
Turning to the random measures ξj = δτj

, we recall from Theorem 2.8
that the associated compensators ηj are a.s. given by

ηj [0, t] =
∫ t∧τj

0

ds

1 − s
= − log(1 − t ∧ τj), t ∈ [0, 1].

Since the ηj are diffuse, the corresponding discounted compensators ζj are
obtained from (27) as

ζj [0, t] = 1 − e−ηj [0,t] = 1 − (1 − t ∧ τj) = t ∧ τj, t ∈ [0, 1].

This implies ζj = λ([0, τj ] ∩ ·) ≤ λ a.s., and so ζj ◦ V −1 ≤ λ ◦ V −1 = λ a.s.
We may now conclude from Corollary 4.30 that

(B ◦ V −1, Vτ1, . . . , Vτm) d= (B, τ1, . . . , τm),

which yields the required relation X ◦ V −1 d= X. �



Chapter 5

Decoupling Identities

The aim of this chapter is to establish, under suitable regularity and other
conditions, the various decoupling or Wald-type identities for product mo-
ments of predictable sums and integrals with respect to exchangeable or
contractable sequences or processes. The statements supplement the pre-
dictable sampling and mapping theorems of the previous chapter and yield
some deeper insight into those propositions.

The main results appear in Sections 5.2 and 5.4–6. Thus, the decoupling
identities for predictable sums with respect to finite or infinite exchangeable
sequences are given in Section 5.2. Moment identities for stochastic integrals
with respect to exchangeable processes on [0, 1] are established in Section
5.4, and the corresponding formulas for processes on RR+ are given in Section
5.5. Finally, Section 5.6 deals with some tetrahedral moment identities for
contractable sums and integrals.

The proofs require some auxiliary results for predictable sums and in-
tegrals. Thus, some norm estimates are established in Section 5.1, and in
Section 5.3 we present a rather subtle martingale representation of stochastic
integrals with respect to exchangeable processes on [0, 1], along with some
further norm estimates. In the final Section 5.7, we indicate how the present
identities are related to the principal results of Chapter 4.

5.1 Integrability and Norm Estimates

To prepare for the moment identities for infinite predictable sums, we need
some explicit criteria for summability and existence of higher moments. In
this section, we also treat the analogous problems in continuous time, where
the i.i.d. sums are replaced by stochastic integrals with respect to Lévy pro-
cesses. The more difficult case of exchangeable integrals on [0, 1] is postponed
until Section 5.3.

First we discuss infinite sums of the form
∑

k ξkηk, where the sequence
ξ = (ξk) is i.i.d. and η = (ηk) is predictable. Our present aim is to examine
the convergence and integrability of such series.
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Proposition 5.1 (predictable i.i.d. sums) Consider some infinite random
sequences ξ = (ξk) and η = (ηk) in RR, where ξ is F-i.i.d. and η is F-
predictable. Then for any p ≥ 1 we have

E supn

∣∣∣∑
k≤n

ξkηk

∣∣∣p <
�

|Eξ1|p E
(∑

k
|ηk|

)p

+ E|ξ1|p E
(∑

k
|ηk|p∧2

)(p∨2)/2
.

Moreover, the series on the left converges a.s. whenever the right-hand side
is finite.

We may clearly assume that ξ1 ∈ Lp, so that Eξ1 exists. When Eξ1 = 0,
we note that the first term on the right vanishes.

Proof: Put Sn =
∑

k≤n ξkηk and S∗ = supn |Sn|. Applying a BDG-
inequality (FMP 26.12) to the local martingale

Mn =
∑

k≤n
(ξk − Eξk) ηk, n ∈ ZZ+,

we see that

ES∗p <
�

|Eξ1|pE
(∑

k
|ηk|

)p
+ E

(∑
k
(ξk − Eξk)2η2

k

)p/2
.

Continuing recursively in m steps, where 2m ∈ (p, 2p], we get

ES∗p <
�

∑
0≤r<m

∣∣∣Eξ
(r)
1

∣∣∣p2−r

E
(∑

k
|ηk|2

r
)p2−r

+ E
(∑

k
ξ

(m)
k η2m

k

)p2−m

. (1)

where the random variables ξ
(r)
k are defined recursively by

ξ
(0)
k = ξk; ξ

(r+1)
k = (ξ(r)

k − Eξ
(r)
k )2, 0 ≤ r < m.

The argument is justified by the fact that∣∣∣Eξ
(r)
k

∣∣∣p2−r

≤ E
∣∣∣ξ(r)

k

∣∣∣p2−r

<
�

E|ξk|p, 0 ≤ r < m, (2)

where the first relation holds by Jensen’s inequality and the second relation,
valid even for r = m, follows recursively from the estimates

E
∣∣∣ξ(r+1)

k

∣∣∣p2−r−1

= E
∣∣∣ξ(r)

k − Eξ
(r)
k

∣∣∣p2−r

<
�

E
∣∣∣ξ(r)

k

∣∣∣p2−r

+
∣∣∣Eξ

(r)
k

∣∣∣p2−r

<
�

E
∣∣∣ξ(r)

k

∣∣∣p2−r

.

Using sub-additivity and term-wise independence, and applying the sec-
ond relation in (2), we obtain

E
(∑

k
ξ

(m)
k η2m

k

)p2−m

≤ E
∑

k

∣∣∣ξ(m)
k

∣∣∣p2−m

|ηk|p

= E
∣∣∣ξ(m)

1

∣∣∣p2−m

E
∑

k
|ηk|p

<
�

E|ξ1|p E
(∑

k
|ηk|p∧2

)(p∨2)/2
. (3)
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Similarly, by sub-additivity, we have(∑
k
|ηk|2

r
)p2−r

≤
(∑

k
|ηk|p∧2

)(p∨2)/2
, r ≥ 1. (4)

The desired estimate follows by insertion of (2), (3), and (4) into (1).
To prove the last assertion, suppose that the right-hand side is finite.

Then
E
(∑

k
|ηkEξk|

)p
= |Eξ1|p E

(∑
k
|ηk|

)p
< ∞.

Taking differences, we conclude that EM∗p < ∞. In particular, M is an
L1-bounded martingale, and hence converges a.s. The a.s. convergence of Sn

then follows by combination. �

Let us now examine the convergence and integrability of stochastic in-
tegrals V · X, where X is a Lévy process and V is predictable. Assuming
the first moments of X to be finite, say EXt ≡ αt, we may introduce the
associated characteristics (α, σ2, ν).

Proposition 5.2 (predictable Lévy integrals) Consider an integrable F-Lévy
process X with characteristics (α, σ2, ν) and an F-predictable process V , and
put νp =

∫ |x|pν(dx). Then for any p ≥ 1 we have

E(V · X)∗p <
�

|α|pE(λ|V |)p + σpE(λV 2)p/2

+
(
νp + (νp∧2)(p∨2)/2

)
E
(
λ|V |p + (λ|V |p∧2)(p∨2)/2

)
, (5)

in the sense that the integral process V · X exists and satisfies (5) whenever
the bound is finite. In that case, the limit (V · X)∞ also exists a.s.

When X is continuous, the stated estimate remains valid for arbitrary
p > 0. In the other extreme case, when α = σ = 0, the bound in (5) reduces
to νpλ|V |p when p ∈ [1, 2], and for p ≥ 2 we get

E(V · X)p <
�

(
νp + (ν2)p/2

)
E
(
λ|V |p + (λV 2)p/2

)
.

Our proof of Proposition 5.2 requires an elementary inequality.

Lemma 5.3 (norm interpolation) For measurable functions f on an arbi-
trary measure space, we have

‖f‖r ≤ ‖f‖p ∨ ‖f‖q, 0 < p ≤ r ≤ q.

Proof: We may take f ≥ 0 and p < r < q, so that p−1 > r−1 > q−1.
Setting s = p−1 and t = q−1, we may choose a = 1 − b ∈ (0, 1) such that
as + bt = r−1. Then Hölder’s inequality yields

‖f‖r = ‖fa+b‖1/(as+bt) ≤ ‖fa‖1/as‖fb‖1/bt

= ‖f‖a
p‖f‖b

q ≤ ‖f‖p ∨ ‖f‖q. �
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Proof of Proposition 5.2: We consider separately the drift, diffusion, and
purely discontinuous martingale components of X. For Xt ≡ αt we have

E(V · X)∗p = |α|pE(V · λ)∗p ≤ |α|pE(λ|V |)p,

provided that the right-hand side is finite. Next suppose that Xt ≡ σBt for
a Brownian motion B and a constant σ ≥ 0. Then a BDG-inequality for
continuous martingales (FMP 17.7) yields

E(V · X)p = σpE(V · B)∗p <
�

σpE(V 2 · [B])p/2
∞ = σpE(λV 2)p/2,

again as long as the right-hand side is finite.
Now suppose instead that X is a purely discontinuous martingale such

that the last term in (5) is finite. Then define recursively the processes

X(0) = X; X(r) = [X(r−1)], r ∈ NN,

and note that for any r ≥ 1 and t > 0

X
(r)
t =

∑
s≤t

(∆Xs)2r

, EX
(r)
t = t ν2r . (6)

Choosing m ∈ NN to be such that 2m ∈ (p, 2p], we see from Lemma 5.3 that
ν2r < ∞ for 1 ≤ r < m. Hence, the processes X(r) are finite and integrable
for 0 ≤ r < m, and the compensated processes

M
(r)
t = X

(r)
t − EX

(r)
t , t ≥ 0, 0 ≤ r < m,

are martingales. Combining (6) with a BDG-inequality for general local
martingales (FMP 26.12), we get for 0 ≤ r < m

E(V 2r · X(r))p2−r

∞ <
�

(ν2r)p2−r

E(λV 2r

)p2−r

+ E
(
V 2r+1 · X(r+1)

)p2−r−1

∞
,

where finiteness on the right guarantees that the integrals V 2r · EX(r) and
V 2r ·M(r) exist, for the latter according to FMP 26.13. Adding the estimates
for 0 ≤ r < m gives

E(V · X)∗p <
�

∑
1≤r<m

(ν2r)p2−r

E
(
λV 2r

)p2−r

+ E
(
V 2m · X(m)

)p2−m

∞
, (7)

where finiteness on the right again ensures the existence of the stochastic
integral V · X as a uniformly integrable martingale.

By subadditivity and dual predictable projection, we see from (6) that

E
(
V 2m · X(m)

)p2−m

∞
= E

(∑
t
(Vt∆Xt)2m

)p2−m

≤ E
∑

t
|Vt∆Xt|p = νp Eλ|V |p.
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Furthermore, Lemma 5.3 gives for 1 ≤ r < m

(ν2r)p2−r ≤ νp + (νp∧2)
(p∨2)/2 ,(

λV 2r
)p2−r

≤ λ|V |p +
(
λ|V |p∧2

)(p∨2)/2
.

Inserting all those estimates into (7) yields the required bound in (5). Since
V · (X −EX) is a uniformly integrable martingale when this bound is finite,
the last assertion follows immediately by martingale convergence. �

We proceed with a simple algebraic identity. Write
∑′

k1,...,kd
for summa-

tion over all d-tuples (k1, . . . , kd) with distinct components k1, . . . , kd.

Lemma 5.4 (diagonal decomposition) There exist some constants cπ , in-
dexed by partitions π of {1, . . . , d}, such that whenever xj

k ∈ RR, j ≤ d,
k ∈ NN, with

∏
j

∑
k |xj

k| < ∞, we have∑′
k1,...,kd

∏
j
xj

kj
=
∑

π
cπ

∏
J∈π

∑
k

∏
j∈J

xj
k. (8)

Proof: The result is obvious for d = 1. Proceeding by induction, assume
the statement to be true in dimensions < d, and turn to the d-dimensional
case. Let SJ denote the inner sum on the right of (8). For each i < d,
write Ji = J when i /∈ J and Ji = J ∪ {d} when i ∈ J. Summing over
distinct indices k1, . . . , kd ∈ NN and arbitrary partitions π of {1, . . . , d − 1},
and applying the induction hypothesis for fixed i < d to the array yj

k = xj
k

for j �= i and yi
k = xi

kx
d
k, we obtain∑

k1...,kd

∏
j≤d

xj
kj

=
∑

k1,...,kd−1

∑
kd �=k1,...,kd−1

xd
kd

∏
j<d

xj
kj

=
∑

k1,...,kd−1

(
Sd −

∑
i<d

xd
ki

) ∏
j<d

xj
kj

= Sd

∑
k1,...,kd−1

∏
j<d

xj
kj
−
∑
i<d

∑
k1,...,kd−1

xi
ki

xd
ki

∏
j �=i,d

xj
kj

=
∑
π

cπ Sd

∏
J∈π

SJ −
∑
i<d

∑
π

cπ

∏
J∈π

SJi
.

This extends the result to dimension d and hence completes the induction. �

In continuous time, we need a decomposition for products of general semi-
martingales, extending the formula for stochastic integration by parts (FMP
26.6). For any semi-martingales X1, . . . ,Xd, we introduce the general varia-
tions [X]J , J ⊂ {1, . . . , d}, given for |J| = 1 and 2 by

[X]jt = Xj
t − Xj

0 , [X]ijt = [Xi,Xj ]t, i �= j in {1, . . . , d},
and then extended recursively to higher orders by the formula [X]I∪J =
[[X]I , [X]J ], for any disjoint sets I and J. Thus, for any J ⊂ {1, . . . , d} with
|J| > 2, we have

[X]Jt =
∑

s≤t

∏
j∈J

∆Xj
s , t ≥ 0.
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We also need to introduce the tetrahedral regions

∆m = {(s1, . . . , sm) ∈ [0, 1]m ; s1 < · · · < sm}, m ∈ NN.

Given a set J, we say that J1, . . . , Jm ⊂ J form an ordered partition of J if
the Jk are disjoint and nonempty with union J.

Lemma 5.5 (tetrahedral decomposition) Let X1, . . . ,Xd be semi-martingales
starting at 0. Then

X1
t · · ·Xd

t =
∑

J1,...,Jm

∫
· · ·
∫

t∆m

d[X]J1
s1
· · · d[X]Jm

sm
, t ≥ 0,

where the summation extends over all ordered partitions J1, . . . , Jm of the set
{1, . . . , d}.

Here the multiple stochastic integral on the right should be interpreted
in the sense of repeated stochastic integration. Thus, the asserted decompo-
sition is equivalent to

X1
t · · ·Xd

t =
∑

J1,...,Jm

∫ t

0
d[X]Jm

sm

∫ sm−

0
d[X]Jm−1

sm−1
· · ·

∫ s2−

0
d[X]J1

s1
.

In particular, the formula for d = 2 becomes

X1
t X2

t =
∫ t

0
d[X]ijs +

∫ t

0
X1

s−dX2
s +

∫ t

0
X2

s−dX1
s ,

which agrees with the general rule for integration by parts (FMP 26.6).

Proof: First we show that

d(X1 · · ·Xd)t =
∑

J
XJc

t−d[X]Jt , t ≥ 0, (9)

where XI =
∏

i∈I Xi and the summation extends over all nonempty subsets
J ⊂ {1, . . . , d}. This holds trivially for d = 1. Proceeding by induction, we
assume (9) to be true for up to d−1 factors. Turning to the case of d factors,
we may integrate by parts to get

d(X1 · · ·Xd)t = X1
t−d(X2 · · ·Xd)t + (X2 · · ·Xd)t−dX1

t

+ d[X1,X2 · · ·Xd]t. (10)

Using the induction hypothesis and the chain rule in FMP 16.2 (ii), we obtain

X1
t−d(X2 · · ·Xd)t =

∑
J
X1

t−XJc

t−d[X]Jt =
∑

J
X

Jc∪{1}
t− d[X]Jt , (11)

where the summation extends over all nonempty subsets J ⊂ {2, . . . , d} with
complements Jc. Similarly, combining the induction hypothesis with the co-
variation property in FMP 26.6 (v) and the recursive property of higher order
variations, we see that

d[X1,X2 · · ·Xd]t =
∑

J
XJc

t−d[X1, [X]J ]t =
∑

J
XJc

t−d[X]J∪{1}
t , (12)
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where the summation is again over all nonempty subsets J ⊂ {2, . . . , d}. In-
serting (11) and (12) into (10), we obtain (9) for the case of d factors, which
completes the induction. The required formula follows from (9) by iteration
in finitely many steps, or, equivalently, by another induction argument. �

We also need the following basic projection property.

Lemma 5.6 (optional projection, Dellacherie) Consider a measurable pro-
cess X with EX∗ < ∞ and a progressive process Y , such that for any optional
time τ

E[Xτ ; τ < ∞] = E[Yτ ; τ < ∞]. (13)

Then for any rcll, adapted process A of locally finite variation such that
E
∫ |X| |dA| < ∞, we have E

∫
XdA = E

∫
Y dA.

Proof: By FMP 2.18 we may assume that A is non-decreasing. Replacing
τ by its restrictions to the Fτ -measurable sets B± = {±Yτ > 0, τ < ∞}
(FMP 7.5, 25.4), we obtain

E[|Yτ |; τ < ∞] = E[Yτ ; B+] − E[Yτ ; B−]
= E[Xτ ; B+] − E[Xτ ; B−]
≤ E[|Xτ |; τ < ∞].

Applying this to the first-passage times τs = inf{t ≥ 0; At > s} and using
an elementary substitution (FMP 1.22) and Fubini’s theorem, we obtain

E
∫

|Yt| dAt =
∫

E[|Yτs |; τs < ∞] ds

≤
∫

E[|Xτs |; τs < ∞] ds

= E
∫

|Xt| dAt < ∞.

This justifies that we apply Fubini’s theorem to the original integral, and we
get by (13)

E
∫

Yt dAt =
∫

E[Yτs ; τs < ∞] ds

=
∫

E[Xτs ; τs < ∞] ds = E
∫

Xt dAt. �

Let us also quote an elementary martingale result.

Lemma 5.7 (integration by parts) Let M and N be martingales with
‖M∗‖p ∨ ‖N∗‖q < ∞, where p, q > 1 with p−1 + q−1 ≤ 1. Then

E(M∞N∞) = E(M0N0) + E[M,N ]∞.
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Proof: Integration by parts (FMP 26.6) yields

MtNt = M0N0 + (M− · N)t + (N− · M)t + [M,N ]t.

Since ‖M∗N∗‖1 < ∞ by Hölder’s inequality, it remains to show that the
integral terms M− ·N and N− ·M are uniformly integrable martingales. Now
both processes are local martingales (FMP 26.13), and so the Hölder and
BDG inequalities (FMP 26.12) yield

E(M− · N)∗ <
�

E[M− · N ]1/2
∞ = E(M2

− · [N ])1/2
∞

≤ E(M∗ [N ]1/2
∞ ) ≤ ‖M∗‖p ‖[N ]1/2

∞ ‖q

<
�

‖M∗‖p ‖N∗‖q < ∞,

and similarly with M and N interchanged. The required properties now fol-
low by dominated convergence. �

We conclude with an elementary integral estimate.

Lemma 5.8 (norms of averages) Let f be a locally integrable function on
RR+, and define f̄t = t−1 ∫ t

0 fsds. Then for any p > 1 and r ≥ 0 we have∫ ∞

0
|f̄t|p t−r dt ≤

(
p

r + p − 1

)p ∫ ∞

0
|ft|p t−r dt. (14)

Proof: Since |f̄t| ≤ t−1 ∫ t
0 |fs|ds, we may assume that f ≥ 0, and since

f = 0 a.e. implies f̄ ≡ 0, we may further assume that λf > 0. Finally,
by monotone convergence we may reduce to the case where f is bounded
with compact support in (0,∞), in which case the left-hand side of (14) is
finite and strictly positive. Letting p−1 + q−1 = 1, writing Ft = (f · λ)t and
c = p/(r + p− 1), and using integration by parts and Hölder’s inequality, we
obtain ∫ ∞

0
f̄ p

t t−r dt =
∫ ∞

0
Fp

t t−r−p dt = c
∫ ∞

0
Fp−1

t ft t
1−r−p dt

= c
∫ ∞

0
f̄ p−1

t ft t
−r dt

≤ c
(∫ ∞

0
f̄ p

t t−r dt
)1/q (∫ ∞

0
fp

t t−r dt
)1/p

,

and (14) follows as we divide by the second factor on the right and raise both
sides to the pth power. �

5.2 Exchangeable Sums

Here we begin with the moment identities for finite sums involving random
n-sequences ξ = (ξj

k) and η = (ηj
k) in RRd, where j ∈ {1, . . . , d} and k ∈

{1, . . . , n}. It is often convenient to write

ξj = (ξj
1, . . . , ξ

j
n), ξk = (ξ1

k , . . . , ξ
d
k).
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Given any filtration F = (Fk; k = 0, . . . , n) and a partition π = {J1, . . . , Jm}
of {1, . . . , d} into disjoint, nonempty subsets, we say that the projections
ξJ = (ξj ; j ∈ J) of ξ onto the subspaces RRJ are separately F-exchangeable if
they are F -adapted and such that the shifted sequences θkξJr are separately
exchangeable, conditionally on Fk, for every k ∈ [0, n). Recall that an ex-
changeable sequence ξ = (ξ1, . . . , ξn) is extreme iff it is a.s. an urn sequence,
so that the sum

∑
k f(ξk) is a.s. non-random for every measurable function

f .
For any nonempty subset J ⊂ {1, . . . , d}, we introduce the sums

RJ =
∑

k

∏
j∈J

ξj
k, SJ =

∑
k

∏
j∈J

ηj
k.

Given a partition π of {1, . . . , d}, we define

Rπ =
∏

J∈π
RJ , Sπ =

∏
J∈π

SJ .

A relation π ≺ π′ or π′ & π between two partitions π and π′ means by
definition that π′ is a refinement of π, in the sense that every set I ∈ π′ is
contained in some J ∈ π.

Theorem 5.9 (moments of finite sums) Consider some random n-sequen-
ces ξ and η in RRd and a partition π of {1, . . . , d}, such that the projections ξJ ,
J ∈ π, are extreme, separately F-exchangeable and η is F-predictable with∑

k E
∏

j |ηj
k| < ∞. Suppose that SI is a.s. non-random for any I ⊂ J ∈ π.

Then
E
∏

j≤d

∑
k≤n

ξj
k ηj

k =
∑

π1,π2
cπ1,π2Rπ1Sπ2

for some constants cπ1,π2 = cπ2,π1, where the summation on the right extends
over all partitions π1, π2 & π.

In particular, the moments for d = 1, 2 and n ≥ 2 become

E1 =
R1S1

n
, E12 =

nR12S12 − R12S1S2 − R1R2S12 + R1R2S1S2

n(n− 1)
.

If Rj = Sj = 0 for all singletons j, then for d = 2, 3 and n ≥ d we get

E12 =
R12 S12

n− 1
, E123 =

nR123 S123

(n− 1)(n− 2)
.

The formulas simplify when π is nontrivial.
The remarkable (indeed surprising) fact is that the result is always the

same, regardless of the dependence between ξ and η. Thus, under the stated
conditions, we can evaluate the product moment as if the two sequences were
independent. By Fubini’s theorem we may even assume that η is non-random.
If η̃ is another F -predictable sequence, satisfying the same integrability con-
dition and such that∑

k

∏
j∈I

ηj
k =

∑
k

∏
j∈I

η̃j
k, I ⊂ J ∈ π,
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then
E
∏

j

∑
k
ξj
k ηj

k = E
∏

j

∑
k
ξj
k η̃j

k.

This holds in particular when η̃⊥⊥ ξ with η̃
d= η. Taking ξ1 = · · · = ξd = ξ

and η1 = · · · = ηd = η, we get for p ∈ NN the relation

E
(∑

k
ξkηk

)p
= E

(∑
k
ξkη̃k

)p
, (15)

valid whenever η and η̃ are predictable sequences in Lp such that the sums

Sh =
∑

k
ηh

k =
∑

k
η̃h

k , h = 1, . . . , p,

are a.s. non-random. The identity in (15) remains true, under appropriate
conditions, when each term in the two sums is interpreted as an inner product
in RRd.

To prove Theorem 5.9, we begin with a simple special case.

Lemma 5.10 (constant weights) The assertion of Theorem 5.9 is true when
η is non-random.

Proof: Since the ξJ , J ∈ π, are independent by Lemma 2.21, the moment
Ed on the left can be factored accordingly, which reduces the proof to the
case where the basic partition consists of the single set {1, . . . , d}. Summing
over arbitrary partitions π of {1, . . . , d} and distinct indices kJ ≤ n, J ∈ π,
we get the product moment

Ed =
∑
π

∑
(kJ )

E
∏
J∈π

∏
j∈J

ξj
kJ

ηj
kJ

=
∑
π

∑
(kJ )

(
E
∏

J∈π

∏
j∈J

ξj
kJ

)(∏
J∈π

∏
j∈J

ηj
kJ

)

=
∑
π

(n− |π|)!
n!

(∑
(kJ )

∏
J

∏
j
ξj
kJ

)(∑
(kJ )

∏
J

∏
j
ηj

kJ

)
.

By Lemma 5.4, the inner sums on the right are linear combinations of the
products Rπ′ or Sπ′ , respectively, for arbitrary partitions π′ ≺ π, which shows
that Ed has the stated form. �

The assertion for general η will be proved by induction on n. It is then
convenient to consider a slightly stronger conditional version. Given an F -
exchangeable sequence ξ = (ξ1, . . . , ξn) in S, we say that ξ is F -extreme if∑

k f(ξk) is F0-measurable for every measurable function f : S → RR.

Lemma 5.11 (conditional moments) Let ξ, η, and π be such as in Theorem
5.9, except that we now allow the projections ξJ , J ∈ π, to be F-extreme and
the sums SI with I ⊂ J ∈ π to be F0-measurable. Then the stated formula
holds for the conditional moment EF0

∏
j

∑
k ξj

kη
j
k.
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Proof: The statement is obvious for n = 1, since η is then F0-measurable.
Now assume the result to be true for sequences of length < n, and proceed
to the case of n-sequences ξ and η. The transfer theorem (FMP 6.10) allows
us to construct another n-sequence η̃ satisfying

(η̃,F0)
d= (η,F0), η̃⊥⊥F0 Fn. (16)

Then η̃ is predictable with respect to the extended filtration F̃k = Fk ∨
σ{η̃1, . . . , η̃k+1}, k = 0, . . . , n. Furthermore, for any k ≤ n, we see from
(16) that (η̃,Fk)⊥⊥Fk

Fn and hence θkξ⊥⊥Fk
F̃k, which shows that ξ remains

separately exchangeable with respect to F̃ . Since ξ1 is F1-measurable, it is
also clear that the π-components of θξ are conditionally extreme under both
F1 and F̃1. Finally, the reduced sums

S′
J =

∑
k>1

∏
j∈J

ηj
k = SJ −

∏
j∈J

ηj
1, J ⊂ K ∈ π,

are F1-measurable and agree a.s. with the corresponding sums for η̃.
We can now conclude from the induction hypothesis that a.s.

EF1
∏
j∈J

∑
k>1

ξj
k ηj

k = EF̃1
∏
j∈J

∑
k>1

ξj
k η̃j

k, J ⊂ {1, . . . , d}.

Noting that ηi
1 = η̃i

1 a.s., we obtain

EF0
∏
j≤d

∑
k≤n

ξj
k ηj

k = EF0
∑
J∈2d

∏
j /∈J

(ξj
1 ηj

1) EF1
∏
j∈J

∑
k>1

ξj
k ηj

k

= EF0
∑
J∈2d

∏
j /∈J

(ξj
1 η̃j

1) EF̃1
∏
j∈J

∑
k>1

ξj
k η̃j

k

= EF0
∏
j≤d

∑
k≤n

ξj
k η̃j

k.

Since ξ⊥⊥F0 η̃, we see from Lemma 5.10 and Fubini’s theorem that the right-
hand side has the stated form. This completes the induction, and the result
follows. �

We turn to the basic decoupling identities for infinite sums. Though fewer
sums SJ are now required to be non-random, we need to impose some more
delicate integrability conditions. More specifically, we assume the existence
of some constants p1, . . . , pd ≥ 1 with

∑
j p−1

j ≤ 1 such that, for every j ∈
{1, . . . , d},

|Eξj
1|E

(∑
k
|ηj

k|
)pj

+ E|ξj
1|pj E

(∑
k
|ηj

k|pj∧2
)(pj∨2)/2

< ∞. (17)

Note that the first term vanishes when Eξj
1 = 0.

For any nonempty subset J ⊂ {1, . . . , d}, we introduce the moments and
sums

mJ = E
∏

j∈J
ξj
1, SJ =

∑
k

∏
j∈J

ηj
k,
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whenever they exist. Furthermore, for any partition π of {1, . . . , d}, we
consider the products

mπ =
∏

J∈π
mJ , Sπ =

∏
J∈π

SJ .

Theorem 5.12 (moments of infinite series) Consider some infinite random
sequences ξ and η in RRd and a partition π of {1, . . . , d}, such that the pro-
jections ξJ , J ∈ π, are independent F-i.i.d. and η is F-predictable. Suppose
that (17) holds for some p1, . . . , pd > 0 with

∑
j p−1

j ≤ 1 and that SI is a.s.
non-random for any I ⊂ J ∈ π with 1 < |I| < d, as well as for I = {j} when
mj �= 0 and d ≥ 2. Then

E
∏

j≤d

∑
k≥1

ξj
k ηj

k =
∑

π1,π2
cπ1,π2mπ1ESπ2,

for some constants cπ1,π2, where the summation extends over all partitions
π1, π2 & π with π1 & π2.

Note that the expected value ESπ2 on the right can be replaced by Sπ2 for
all nontrivial partitions π2. If mπ1 = 0, we regard the corresponding terms
as 0. For d = 1, 2 we get the moments

E1 = m1ES1, E12 = (m12 − m1m2)ES12 + m1m2S1S2.

If mj = 0 for all j, then for d = 2, 3 we have

E12 = m12 ES12, E123 = m123 ES123.

Again it is remarkable that, under the stated conditions, the product
moment depends only on the marginal distributions of ξ and η, and hence
can be evaluated as if the two sequences were independent. Indeed, if η̃
is another predictable sequence, satisfying the same integrability conditions
and such that the sums SI with I ⊂ J ∈ π agree for η and η̃, then

E
∏

j

∑
k
ξj
k ηj

k = E
∏

j

∑
k
ξj
k η̃j

k.

Specializing to the case where ξj = ξ, ηj = η, and η̃j = η̃ for all j, we get as
before an identity between ordinary moments of the form

E
(∑

k
ξkηk

)p
= E

(∑
k
ξkη̃k

)p
,

valid under appropriate integrability and constancy conditions. In particular,
(17) reduces in this case to

|Eξ1|E
(∑

k
|ηk|

)p
+ E|ξ1|p E

(∑
k
|ηk|p∧2

)(p∨2)/2
< ∞. (18)

Again we begin the proof with a special case.
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Lemma 5.13 (constant weights) The assertion of Theorem 5.12 is true
when η is non-random with finite support.

Proof: Again we may assume that the basic partition consists of the single
set {1, . . . , d}. Summing over arbitrary partitions π of {1, . . . , d} and distinct
indices kJ ∈ NN, J ∈ π, we obtain the moment

Ed =
∑
π

∑
(kJ )

E
∏
J∈π

∏
j∈J

ξj
kJ

ηj
kJ

=
∑
π

mπ

∑
(kJ )

∏
J∈π

∏
j∈J

ηj
kJ

.

By Lemma 5.4 the inner sum on the right is a linear combination of products
Sπ′ for partitions π′ ≺ π, which shows that Ed has the required form. �

To establish the general assertion, it is again convenient to prove a for-
mally stronger conditional version of the statement.

Lemma 5.14 (conditional moments) Let ξ, η, and π be such as in Theorem
5.12, except that SI is now allowed to be F0-measurable for any I ⊂ J ∈ π
with 1 < |I| < d, as well as for I = {j} when mj �= 0 and d ≥ 2. Then the
stated formula holds for the F0-conditional moments.

Proof: We begin with a formal argument that ignores all matters of con-
vergence, to be followed by a detailed justification. Proceeding by induction
on d, we fix a d ∈ NN and assume the result to be true in any lower dimension.
Define

Sn
J =

∑
k>n

∏
j∈J

ηj
k = SJ −

∑
k≤n

∏
j∈J

ηj
k, n ∈ ZZ+, J ⊂ {1, . . . , d},

and note that the sequence (Sn
J ) is predictable for any J ⊂ I ∈ π with

1 < |J| < d, as well as for singletons J = {j} with mj �= 0 when d ≥ 2. The
induction hypothesis yields

EFn
∏

j∈J

∑
k>n

ξj
k ηj

k =
∑

π1,π2
cπ1,π2mπ1S

n
π2

, |J| < d,

for some constants cπ1,π2 , where the summation extends over all partitions
π1 & π2 & (J ∩ π). Summing over nonempty subsets J ⊂ {1, . . . , d} and
partitions π1 & π2 & (Jc ∩ π) and conditioning in the n-th term below, first
on Fn and then on Fn−1, we obtain

EF0
∏

j

∑
k
ξj
k ηj

k = EF0
∑
J �=∅

∑
n≥1

(∏
j∈J

ξj
n ηj

n

)(∏
j /∈J

∑
k>n

ξj
k ηj

k

)
=

∑
J �=∅

∑
π1,π2

cπ1,π2mπ1

∑
n≥1

Sn
π2

EF0
∏
j∈J

ξj
n ηj

n

=
∑
J �=∅

mJ

∑
π1,π2

cπ1,π2mπ1

∑
n≥1

Sn
π2

EF0
∏
j∈J

ηj
n. (19)
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Here the underlying F0-measurability follows from the facts that |Jc| < d,
that every I ∈ π2 lies in some I ′ ∈ π, and that {j} ∈ π2 implies {j} ∈ π1.

Now let ξ̃⊥⊥F∞ with ξ̃
d= ξ, and put F̃n = Fn ∨ σ{ξ̃1, . . . , ξ̃n}. Then

F̃0 = F0, and so by (19)

EF0
∏

j

∑
k
ξj
k ηj

k = EF0
∏

j

∑
k
ξ̃j
k ηj

k.

Since ξ̃⊥⊥ (η,F0), we see from Fubini’s theorem and Lemma 5.13 that the
right-hand side has the stated form. This completes the induction.

To justify the previous argument, we may first invoke (17) and Proposi-
tion 5.1 to see that the series

∑
k ξj

kη
j
k converges a.s. for every j, with partial

sums satisfying

E supn

∣∣∣∑
k≤n

ξj
k ηj

k

∣∣∣pj

< ∞, j = 1, . . . , d. (20)

The existence of the moments in (19) is then ensured by Hölder’s inequality.
Next we may fix an arbitrary partition π′ of {1, . . . , d} and conclude from

Hölder’s and Jensen’s inequalities that

E
∏

J∈π′

∑
k≥1

∏
j∈J

|ηj
k| ≤ E

∏
j

(∑
k
|ηj

k||J |
)1/|J |

≤
∏

j

{
E
(∑

k
|ηj

k||J |
)pj/|J |}1/pj

, (21)

where the set J on the right is defined by j ∈ J ∈ π′. By subadditivity, the
last expectations admit the estimates

E
(∑

k
|ηj

k||J |
)pj/|J | ≤ E

(∑
k
|ηj

k|pj∧2
)(pj∨2)/2

, |J| ≥ 2.

In view of (17), the left-hand side of (21) is then finite for all partitions π′

such that mj �= 0 when {j} ∈ π′. In particular, the sum SJ converges when
either |J| ≥ 2 or J = {j} with mj �= 0.

For any m ∈ NN, we have∏
j

∑
k
ξj
k ηj

k =
∏

j

(∑
k≤m

ξj
k ηj

k +
∑

k>m
ξj
k ηj

k

)
=

∑
J �=∅

∑
n≤m

∏
j∈J

(ξj
n ηj

n)
∏
i /∈J

∑
k>n

ξi
k ηi

k +
∏
j≤d

∑
k>m

ξj
k ηj

k.

To estimate the last term, we may use (20), Hölder’s inequality, and domi-
nated convergence as m → ∞ to see that

E
∏

j

∣∣∣∑
k>m

ξj
k ηj

k

∣∣∣ ≤ ∏
j

∥∥∥∑
k>m

ξj
k ηj

k

∥∥∥
pj

→ 0.

The previous formula then extends to m = ∞, in the sense of convergence
in L1, which justifies the first two relations in (19). �
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5.3 Martingale Representations

Here our aim is to prepare for the moment identities in continuous time
by studying stochastic integrals of the form V · X, where V is predictable
and X is an exchangeable or contractable process on [0, 1]. We begin with
some general norm and continuity properties, depending only on the semi-
martingale properties of contractable processes in Chapter 2. Those results
are needed to prove the tetrahedral decoupling identity in Theorem 5.30.
Recall from Theorem 2.23 that if ‖Xt‖p < ∞ for some t ∈ (0, 1) and p ≥ 1,
then ‖X∗‖p < ∞.

Proposition 5.15 (contractable integrals) Consider on [0, 1] an F-contract-
able process X with ‖X∗‖p < ∞ and an F-predictable process V with ‖V ∗‖q <
∞, where p, q > 1 with r−1 = p−1 + q−1 ≤ 1. Then

(i) V · X exists and satisfies ‖(V · X)∗‖r <
�

‖X∗‖p‖V ∗‖q < ∞;
(ii) for any predictable processes V1, V2, . . . with |Vt| ≥ |V n

t | → 0 for all
t ∈ [0, 1] a.s., we have ‖(Vn · X)∗‖r → 0.

Proof: (i) By Proposition 2.27 we may write X = M · λ + N a.s., where
M and N are Lp-martingales on [0, 1) with

‖λ|M| ‖p ∨ ‖N∗‖p <
�

‖X∗‖p < ∞.

Hence, V · X = V M · λ + V · N a.s., whenever these integrals exist. Now
Hölder’s inequality yields

‖(V M · λ)∗‖r ≤ ‖λ|V M| ‖r ≤ ‖V ∗ λ|M| ‖r

≤ ‖V ∗‖q ‖λ|M| ‖p

<
�

‖V ∗‖q ‖X∗‖p < ∞.

Next we may use the Hölder and BDG inequalities (FMP 26.12) to see that

‖(V · N)∗‖r <
�

‖[V · N ]1/2
1 ‖r = ‖(V 2 · [N ])1/2

1 ‖r

≤ ‖V ∗ [N ]1/2
1 ‖r ≤ ‖V ∗‖q ‖[N ]1/2

1 ‖p

<
�

‖V ∗‖q ‖N∗‖p <
�

‖V ∗‖q ‖X∗‖p < ∞,

which also proves the existence of V · N (FMP 26.13). Finally, we may
conclude from Minkowski’s inequality that

‖(V · X)∗‖r ≤ ‖(V M · λ)∗‖r + ‖(V · N)∗‖r

<
�

‖V ∗‖q ‖X∗‖p < ∞.

(ii) By the previous estimates and dominated convergence,

‖(Vn · X)∗‖r ≤ ‖(VnM · λ)∗‖r + ‖(Vn · N)∗‖r

<
�

‖λ|VnM| ‖r + ‖(V 2
n · [N ])1/2

1 ‖r → 0. �
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We continue with a more detailed study of stochastic integrals V · X on
[0, 1], in the special case where X is extreme, exchangeable. By Theorems
2.18 and 3.15 we may then assume that X has a representation

Xt = αt + σBt +
∑

j
βj(1{τj ≤ t} − t), t ∈ [0, 1].

We begin with some sufficient conditions for integrability.

Theorem 5.16 (exchangeable integrals) Consider on [0, 1] an extreme, F-
exchangeable process X with characteristics (α, σ2, β) and an F-predictable
process V . Fix a p ∈ (0, 2] with

∑
j |βj |p < ∞, and suppose that σ = 0 when

p < 2 and α =
∑

j βj when p ≤ 1. Then
(i) for p ∈ (0, 1] and λ|V |p < ∞ a.s., we have

∫ 1
0 |Vt||dXt| < ∞ a.s.;

(ii) if p ∈ (1, 2] and
∫ 1
0 |Vt|p(1−t)−εdt < ∞ a.s. for some ε > 0, the integral

V · X exists on [0, 1] and satisfies∫ 1

0
V dX = αλV + σ

∫ 1

0
V dB +

∑
j
βj(Vτj

− λV ) a.s. (22)

Proof: (i) In this case we have

Xt =
∑

j
βj1{τj ≤ t}, t ∈ [0, 1],

where τ1, τ2, . . . are i.i.d. U(0, 1) and
∑

j |βj | < ∞, and we may clearly assume
that V ≥ 0 and βj ≥ 0 for all j. Since

∑
j βp

j < ∞, we may also introduce
the exchangeable process

Yt =
∑

j
βp

j 1{τj ≤ t}, t ∈ [0, 1].

By Theorem 2.8 or 2.13 we note that the compensator Ŷ of Y is absolutely
continuous with the martingale density

Nt = (1 − t)−1
∑

j
βp

j 1{τj > t}, t ∈ [0, 1).

Introducing the optional times

σn = sup{t ∈ [0, 1]; (V pN · λ)t ≤ n}, n ∈ NN,

we get by subadditivity and dual predictable projection (FMP 25.22)

E(V · X)p
σn

= E
(∑

j
βjVτj

1{τj ≤ σn}
)p

≤ E
∑

j
βp

j V p
τj

1{τj ≤ σn}
= E(V p · Y )σn = E(V pN · λ)σn ≤ n,

and so (V · X)σn < ∞ a.s. for all n. It remains to notice that σn = 1 for
all but finitely many n, since N , as a positive martingale, is automatically
L1-bounded and hence a.s. bounded.
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(ii) Here we may assume that α = 0, and also that V ≥ 0 and βj ≥ 0 for
all j. First we consider integration with respect to the L2-bounded martingale
X − X̂ on [0, 1], where X̂ denotes the compensator of X. If X is continuous,
then X − X̂ = σB for some Brownian motion B, and V · (X − X̂) reduces
to the Itô integral σV · B, which exists iff σV ∈ L2(λ) a.s. (FMP 17.11).

Next let σ = 0. Defining Y , N , and σn as before and using Jensen’s
inequality, subadditivity, and dual predictable projection, we obtain(

E(V 2 · [X])1/2
σn

)p ≤ E(V 2 · [X])p/2
σn

= E
(∑

j
β2

j V 2
τj

1{τj ≤ σn}
)p/2

≤ E
∑

j
βp

j V p
τj

1{τj ≤ σn}
= E(V p · Y )σn = E(V pN · λ)σn ≤ n.

By FMP 26.13 we conclude that V ·X exists on [0, σn], and the integrability
on [0, 1] follows since σn = 1 for all sufficiently large n.

It remains to prove the existence of the integral V · X̂. Then recall from
Theorem 2.13 that X̂ = −M · λ, where Mt = Xt/(1− t) on [0, 1). Hence, by
Hölder’s inequality,

∫ 1

0
Vt |dX̂t| =

∫ 1

0

Vt|Xt| dt

1 − t
≤
(∫ 1

0

V p
t dt

(1 − t)ε

)1/p (∫ 1

0

|Xt|q dt

(1 − t)q′

)1/q

, (23)

where p−1 + q−1 = 1 and q′ = (1 − ε/p)q < q. Here the first factor on the
right is finite by hypothesis. Since this remains true for any smaller value of
ε > 0, we may assume that q′ ∈ (1, q), which allows us to choose a p′ > p
such that (p′)−1 +(q′)−1 = 1. Then by Theorem 2.32 we have |Xt|p′

<
�

(1− t)
a.s., and therefore

|Xt|q (1 − t)−q′
<
�

(1 − t)−q′+q/p′
, t ∈ [0, 1),

which is integrable on [0, 1] since q′ − q/p′ < q′ − q′/p′ = 1. This shows that
even the second factor in (23) is finite.

To prove (22), we may clearly assume that α = σ = 0. Since the remain-
ing formula is obvious for finite sums, it suffices to show that (V ·Xn)1

P→ 0,
where

Xn(t) =
∑

j>n
βj(1{τj ≤ t} − t), t ∈ [0, 1]. (24)

This time we introduce the optional times

σn = sup{t ∈ [0, 1]; (V pNn · λ)t ≤ 1}, n ∈ ZZ+,

where
Nn(t) = (1 − t)−1

∑
j>n

βp
j 1{τj > t}, t ∈ [0, 1).
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Writing Mn for the martingale component of Xn and using a BDG-inequality
(FMP 26.12), we get as before

E(V · Mn)∗p
σn

<
�

E(V 2 · [Xn])p/2
σn

≤ E(V pNn · λ)σn,

and so
E[(V · Mn)∗p ∧ 1] <

�
E[(V pNn · λ)1 ∧ 1] + P{σn < 1}. (25)

Since (V pNn · λ)1
P→ 0 by dominated convergence, and hence σn = 1 for all

but finitely many n, the right-hand side of (25) tends to 0 by dominated
convergence, which shows that (V · Mn)∗ P→ 0.

To prove the corresponding result for the compensator V · X̂n, choose q,
q′, and p′ as before and put r = 1/p′, so that 0 < r < p−1 < 1. Then by
Hölder’s inequality,∫ 1

0
Vt |dX̂n

t | =
∫ 1

0

Vt |Xn
t | dt

1 − t

≤
∫ 1

0

Vt dt

(1 − t)1−r
sup
t<1

|Xn
t |

(1 − t)r

≤
(∫ 1

0

V p
t dt

(1 − t)ε

)1/p (∫ 1

0
(1 − t)qr−q′

dt
)1/q

sup
t<1

|Xn
t |

(1 − t)r
.

Here the first two factors on the right are finite, as before, and the third one
tends to 0 a.s. by Proposition 2.33. �

We turn to the special case where the integral λV is a.s. F0-measurable.
Then introduce the predictable process

Ut = Vt − (1 − t)−1
∫ 1

t
Vsds = Vt − V t, t ∈ [0, 1),

where V t =
∫ 1
t Vsds/(1− t). The following representation generalizes the one

for Brownian bridge integrals in Lemma 4.20.

Theorem 5.17 (martingale integral) Let X be an extreme, F-exchangeable
process on [0, 1] with martingale component M and characteristics (α, σ, β),
and let V be an F-predictable process with F0-measurable integral λV , satis-
fying the conditions in Theorem 5.16 for some p > 1. Then∫ 1

0
VtdXt = αλV +

∫ 1

0
UtdMt a.s., (26)

and for any p ≥ 1 and q > 2p we have

E(U · M)∗p <
�

σp E(λV 2)p/2 + (Eλ|V |q)p/q
(∑

j
|βj |p∧2

)(p∨2)/2
. (27)

If the latter bound is finite, then U ·M is a true martingale on [0, 1], and the
series in (22) converges in Lp.
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Proof: We may clearly assume that α = 0. Then recall from Theorem 2.13
that X = M−N ·λ on [0, 1), where N denotes the martingale Nt = Xt/(1−t).
Writing the latter relation as Xt = (1 − t)Nt and integrating by parts, we
obtain

dMt = dXt + Ntdt = (1 − t)dNt. (28)

Next we may integrate by parts and use the F0-measurability of λV to get,
for any t ∈ [0, 1),∫ t

0
VsNsds = Nt

∫ t

0
Vsds −

∫ t

0
dNs

∫ s

0
Vrdr

= Nt

(
λV −

∫ 1

t
Vsds

)
−
∫ t

0
dNs

(
λV −

∫ 1

s
Vrdr

)
=

∫ t

0
dNs

∫ 1

s
Vrdr − Nt

∫ 1

t
Vsds.

Using the semi-martingale decomposition of X, equation (28), and the defi-
nition of U , we conclude that∫ t

0
VsdXs =

∫ t

0
UsdMs + Nt

∫ 1

t
Vsds, t ∈ [0, 1), (29)

where the first two integrals exist on [0, 1] by Theorem 5.16 and its proof,
combined with Lemma 5.8. Applying Hölder’s inequality with p−1 + q−1 = 1
gives

∣∣∣∣Nt

∫ 1

t
Vsds

∣∣∣∣ ≤ |Nt|
(∫ 1

t
(1 − s)εq/pds

)1/q (∫ 1

t
|Vs|p(1 − s)−εds

)1/p

<
�

|Xt| (1 − t)−(1−ε)/p,

which tends a.s. to 0 as t → 1 by Theorem 2.32. Equation (26) now follows
from (29), as we let t → 1 and use the continuity of the two stochastic
integrals (FMP 26.13).

To prove (27), we note that M has quadratic variation

[M ]t = [X]t = σ2t +
∑

j
β2

j 1{τj ≤ t}, t ∈ [0, 1],

and hence, by a BDG-inequality (FMP 26.12),

E(U · M)∗p <
�

E(U2 · [M ])p/2
1

= E
(
σ2λU2 +

∑
j
β2

j U2
τj

)p/2

<
�

σpE(λU2)p/2 + E
(∑

j
β2

j U2
τj

)p/2
.

Since λU2 ≤ λV 2 by Lemma 4.20 (ii), it remains to estimate the second term
on the right.
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Then introduce for any p > 0 the process

Y p
t =

∑
j
|βj |p 1{τj ≤ t}, t ∈ [0, 1],

and recall from Theorem 2.13 that Y p has compensator

dŶ p
t = (1 − t)−1

∑
j
|βj |p 1{τj > t} dt, t ∈ [0, 1).

If p ≤ 2 and q > 2p, we get by subadditivity, dual predictable projection,
Hölder’s inequality with r = (1 − p/q)−1, and Lemma 5.8

E
(∑

j
β2

j U2
τj

)p/2
≤ E

∑
j
|βj Uτj

|p = E
∫ 1

0
|Ut|p dY p

t

=
∑

j
|βj |p E

∫ τj

0
|Ut|p (1 − t)−1dt

≤
∑

j
|βj |p (Eλ|U |q)p/q

(
E
∫ τj

0
(1 − t)−rdt

)1/r

<
�

∑
j
|βj |p (Eλ|V |q)p/q,

where the last step relies on the fact that, by Fubini’s theorem,

E
∫ τj

0
(1 − t)−rdt =

∫ 1

0
(1 − t)1−rdt = (2 − r)−1 < ∞.

If instead p > 2, we may use Hölder’s inequality, and then proceed as before
to get

E
(∑

j
β2

j U2
τj

)p/2
≤

(∑
j
β2

j

)p/2−1
E
∑

k
β2

k |Uτk
|p

=
(∑

j
β2

j

)p/2−1 ∑
k
β2

k E
∫ τk

0
|Ut|p (1 − t)−1dt

<
�

(∑
j
β2

j

)p/2
(Eλ|V |q)p/q.

This completes the proof of (27). When the bound is finite, we conclude
from FMP 26.13 that U · M is an Lp-martingale on [0, 1]. To prove the last
assertion, we may apply (22), (26), and (27) to the tail processes Xn in (24)
with associated martingale components Mn to obtain

E
∣∣∣∣∑j>n

βj (Vτj
− λV )

∣∣∣∣p = E|(V · Xn)1|p = E|(U · Mn)1|p

<
�

(Eλ|V |q)p/q
(∑

j>n
|βj |p∧2

)(p∨2)/2
,

which tends to 0 as n → ∞ by the convergence of the series on the right. �
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5.4 Exchangeable Integrals

Here we establish a general moment identity for RRd-valued processes X =
(Xj) and V = (V j) on [0, 1], where X is exchangeable and V is predictable.
For any J ⊂ {1, . . . , d} we introduce the product V J

t =
∏

j∈J V j
t . When

|V | ∈ L1 a.s., we may consider the centered processes V̂ j
t = V j

t − λV j along
with their products V̂ J

t =
∏

j∈J V̂ j
t , which remain predictable whenever λV j

is F0-measurable for all j. If X has characteristics (α, ρ, β), we define

βJ
k =

∏
j∈J

βj
k, βJ =

∑
k
δβJ

k
, BJ =

∑
k
βJ

k .

Theorem 5.18 (moments of integrals on [0, 1]) Let X and V be RRd-valued
processes on [0, 1], where X is extreme, F-exchangeable with directing triple
(α, ρ, β) and V is F-predictable with Eλ|V j |pj < ∞, j ≤ d, for some
p1, . . . , pd > 0 with

∑
j p−1

j < 1
2 . Suppose that the products αiλV i, ρjkλV̂ jk,

and βJλV̂ J are a.s. non-random. Then

E
∏

j

∫ 1

0
V jdXj =

∑
π

∏
i
(αiλV i)

∏
j,k

(ρjkλV̂ ij)
∏

J
BJPπ(λV̂ I),

for some polynomials Pπ(λV̂ I) in the integrals λV̂ I with I ⊂ J ∈ π, where
the summation extends over all partitions π of {1, . . . , d} into singletons {i},
pairs {j, k}, and sets J with |J| ≥ 2.

Under the stated hypotheses, the first moment equals E1 = α1λV 1. Im-
posing the further condition αjλV j ≡ 0, we have the second and third order
moments

E12 = (ρ12 + B12) λV̂ 12, E123 = B123 λV̂ 123.

If U is another predictable process satisfying the same integrability conditions
and such that λUJ = λV J a.s. for all J ⊂ {1, . . . , d}, then

E
∏

j≤d
(Uj · Xj)1 = E

∏
j≤d

(V j · Xj)1.

In particular, we obtain a decoupling identity for product moments by choos-
ing U to be independent of X with the same distribution as V . Specializing
to the case of equal components, we get for real-valued processes X, U , and
V the moment identity

E(U · X)n
1 = E(V · X)n

1 ,

valid under the assumption that λUk and λV k agree and are F0-measurable
for all k ≤ n. The result remains true for RRd-valued processes with V · X =∑

j(V j · Xj), provided that the integrals λ
∏

j(Uj)nj and λ
∏

j(V j)nj agree
and are F0-measurable for all n1, . . . , nd ∈ ZZ+ with

∑
j nj ≤ n.

The following result is helpful to deal with contributions from the contin-
uous martingale components.
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Lemma 5.19 (martingale product) Let M1, . . . ,Md be continuous F-mar-
tingales starting at 0, such that ρij = [Mi,Mj ]∞ is a.s. non-random for
i �= j, and suppose that Mj is Lpj -bounded for each j, where p1, . . . , pd > 0
with

∑
j p−1

j = p−1 ≤ 1. Then the process

Mt = EFt
∏

j≤d
Mj

∞, t ≥ 0,

is a continuous, Lp-bounded martingale satisfying

M0 = E
∏

j≤d
Mj

∞ =
∑

π

∏
i,j

ρij a.s.,

where the summation extends over all partitions π (if any) of {1, . . . , d} into
pairs {i, j}.

Proof: By Lemma 5.5 we have for t ≥ 0

M1
t · · ·Md

t =
∑

J1,...,Jm

∫
· · ·
∫

t∆m

d[M ]J1 · · · d[M ]Jm,

where the summation extends over all ordered partitions of the set {1, . . . , d}
into pairs or singletons J1, . . . , Jm . Decomposing the sum according to the
last occurrence of a singleton set {i} and applying Lemma 5.5 twice again,
we obtain∏

j≤d

Mj
t = Vt +

∑
I,J, i

∫ t

0
dV J

s

∫ s

0
MI

r dMi
r +

∑
i≤d

∫ t

0
M{i}c

s dMi
s,

where the first summation extends over all partitions of {1, . . . , d} into two
sets I and J �= ∅ and a singleton {i}. Here the processes MI , V J , and V are
given by

MI
t =

∏
j∈I

Mj
t , V J

t =
∑

J1,...,Jm

∏
k≤m

[M ]Jk
t , Vt = V 1,...,d

t ,

where the summation extends over all partitions (if any) of J into pairs Jk.
In particular, V J = 0 when |J| is odd. Integration by parts yields

∏
j≤d

Mj
t = Vt +

∑
I,J, i

(
V J

t

∫ t

0
MI

s dMi
s −

∫ t

0
V J

s MI
s dMi

s

)
+
∑
i≤d

∫ t

0
M{i}c

s dMi
s.

Letting t → ∞ and noting that V J
∞ is a.s. a constant, we get∏

j≤d

Mj
∞ = V∞ +

∑
I,J, i

∫ ∞

0
(V J

∞ − V J
s )MI

s dMi
s +

∑
i≤d

∫ ∞

0
M{i}c

s dMi
s.

If the stochastic integrals are uniformly integrable martingales, we obtain

Mt = V∞ +
∑
I,J, i

∫ t

0
(V J

∞ − V J
s )MI

s dMi
s +

∑
i≤d

∫ t

0
M{i}c

s dMi
s,

and the assertions follow.
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To justify the formal computations, we write p−1
ij = p−1

i +p−1
j and use the

Hölder, BDG, and Courrège inequalities (FMP 1.29, 17.7, 17.9) to get

‖[Mi,Mj ]∗‖pij
≤ ‖[Mi]1/2

∞ [Mj ]1/2
∞ ‖pij

≤ ‖[Mi]1/2
∞ ‖pi

‖[Mj ]1/2
∞ ‖pj

<
�

‖(Mi)∗‖pi
‖(Mj)∗‖pj

.

Hence, by the same inequalities, we have for any I, J, i, and J1, . . . , Jm as
before ∥∥∥((V J

∞ − V J )MI · Mi
)∗∥∥∥

p

<
�

∥∥∥∥((V J
∞ − V J )2(MI)2 · [Mi]

)1/2

∞

∥∥∥∥
p

<
�

∥∥∥(V J )∗ (MI)∗ [Mi]1/2
∞
∥∥∥

p

≤
∑

J1,...,Jm

∏
k≤m

‖(V Jk)∗‖pJk

∏
h∈I

‖(Mh)∗‖ph
‖(Mi)∗‖pi

<
�

∏
j
‖(Mj)∗‖pj

< ∞,

as required. Similar estimates yield the same bound for the norm ‖(M{i}c ·
Mi)∗‖p. �

To deal with contributions from the jumps of X, we need a result that is
closely related to Corollary 4.28.

Lemma 5.20 (predictable product) Let M be a continuous F-martingale
on [0, 1], let V1, . . . , Vd be F-predictable processes on [0, 1] with λV1 = · · · =
λVd = 0 a.s., and let τ1, . . . , τd be i.i.d. U(0, 1) and such that the processes
Xj

t = 1{τj ≤ t} are F-exchangeable. Suppose that E|M∗|p < ∞ and
Eλ|Vj |pj < ∞ for all j, where p, p1, . . . , pd > 0 with p−1 + 2

∑
j p−1

j < 1.
Then

E M1
∏

j≤d
Vj(τj) = 0.

Proof: Writing V j = Vj and noting that λ|V j |pj < ∞ a.s., we see from
Theorems 2.8 and 5.17 that

V j
τj

=
∫ 1

0
V j

t dXj
t =

∫ 1

0
Uj

t dMj
t , j = 1, . . . , d,

where for any j ≤ d and t ∈ [0, 1),

Mj
t = 1{τj ≤ t} + log(1 − t ∧ τj),

Uj
t = V j

t + (1 − t)−1
∫ t

0
V j

s ds. (30)
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Putting Nj = Nj = Uj · Mj and noting that M,N1, . . . ,Nd are strongly
orthogonal martingales, we get by repeated integration by parts

Mt

∏
j
Nj

t =
∫ t

0
dMs

∏
j
Nj

s +
∑

i

∫ t

0
MsdNi

s

∏
j �=i

Nj
s .

It remains to show that each term on the right is a uniformly integrable
martingale, since in that case

E M1
∏

j
V j

τj
= E M1

∏
j
Nj

1 = E M0
∏

j
Nj

0 = 0.

Then conclude from the estimate in Theorem 5.17 that E(Nj)∗qj < ∞
whenever 0 < 2qj < pj . Since p−1 + 2

∑
j p−1

j < 1, we may choose the qj such
that p−1 +

∑
j q−1

j ≤ 1. Using the BDG and Hölder inequalities, we obtain

E
(∏

j
Nj · M

)∗
<
�

E
(∏

j
N2

j · [M ]
)1/2

1
≤ E [M ]1/2

1

∏
j
N∗

j

≤ ‖[M ]1/2
1 ‖p

∏
j
‖N∗

j ‖qj

<
�

‖M∗‖p

∏
j
‖N∗

j ‖qj
< ∞,

as required. Similarly, for i = 1, . . . , d, we have

E
(
M
∏

j �=i
Nj · Ni

)∗
<
�

E
(
M2

∏
j �=i

N2
j · [Ni]

)1/2

1

≤ E M∗ [Ni]
1/2
1

∏
j �=i

N∗
j

≤ ‖M∗‖p ‖[Ni]
1/2
1 ‖qi

∏
j �=i

‖N∗
j ‖qj

<
�

‖M∗‖p

∏
j
‖N∗

j ‖qj
< ∞. �

Proof of Theorem 5.18: Under the stated moment conditions, we see from
Theorems 5.16 and 5.17 that the product moment E

∏
j(V j ·Xj)1 exists and

can be evaluated by term-wise integration, according to (22). In particular,
this allows us to assume that X has finitely many jumps. Writing X̂j

t =
Xj

t − αjt and noting that (V j · X̂j)1 = (V̂ j · X̂j)1, we obtain

E
∏

j
(V j · Xj)1 = E

∏
j

(
αjλV j + (V̂ j · X̂j)1

)
=

∑
J

∏
j /∈J

(αjλV j) E
∏

j∈J
(V̂ j · X̂j)1,

where the summation extends over all subsets J ⊂ {1, . . . , d}. This reduces
the discussion to the case where αj = 0 and λV j = 0 for all j. By Lemma
2.22 we may finally assume that the individual terms in the representation
of X are jointly (indeed even separately) F -exchangeable.

Now let Mj denote the continuous martingale component of Xj , and let
Uj be given by (30). Writing Nj = Uj · Mj , we get by Lemma 4.20

(V j · Bj)1 = (Uj · Mj)1 = Nj
1

[Ni,Nj ]1 = (Uij · [Mi,Mj ])1 = ρijλUij = ρijλV ij .
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Let us now define p−1
J =

∑
j∈J p−1

j for any J ⊂ {1, . . . , d}. By Lemma 5.19
there exists an LpJ -bounded, continuous martingale MJ satisfying

MJ
1 =

∏
j∈J

Nj
1 =

∏
j∈J

(V j · Bj)1, (31)

EMJ
1 =

∑
π

∏
i,j

[Ni,Nj ]1 =
∑

π

∏
i,j

ρijλV ij , (32)

where the summations in (32) extend over all partitions π (if any) of J into
pairs {i, j}.

Next we may use the decomposition in Theorem 5.16, together with (31),
to obtain

E
∏

j
(V j · Xj)1 = E

∏
j

(
(V j · Bj)1 +

∑
k
βj

kV
j(τk)

)
= E

∑
I,π

MI
1

∑
(kJ )

∏
J∈π

βJ
kJ

V J (τkJ
)

=
∑
I,π

∑
(kJ )

∏
J∈π

βJ
kJ

E MI
1

∏
J∈π

V J (τkJ
), (33)

where the outer summations extend over all subsets I ⊂ {1, . . . , d} and
partitions π of Ic, and the inner summations extend over all sets of distinct
indices kJ , J ∈ π. Writing V J = (V J − λV J ) + λV J and using Lemma 5.20
and (32), we get for fixed I, π, and (kJ )

E MI
1

∏
J∈π

V J (τkJ
) = E MI

1

∏
J∈π

λV J =
∏
J∈π

λV J
∑
π′

∏
i,j

ρijλV ij ,

where the summation extends over all partitions π′ of I into pairs {i, j}.
Inserting this into (33) yields

E
∏

j
(V j · Xj)1 =

∑
π

∏
i,j

(ρijλV ij)
∏

J
λV J

∑
(kJ )

∏
J
βJ

kJ
,

where the outer summation extends over all partitions π of {1, . . . , d} into
pairs {i, j} and subsets J with |J| ≥ 2, and where the indices kJ are distinct,
as before. It remains to note that, by Lemma 5.4, the inner sum on the right
is a polynomial in the sums BK , where K is a nonempty union of sets J from
the partition π. �

5.5 Lévy Integrals

Here we prove a general moment identity for RRd-valued processes X = (Xj)
and V = (V j) on RR+, where X is an integrable Lévy process with charac-
teristics (α, ρ, ν) and V is predictable. In order to apply Proposition 5.2, we
need to assume the existence of some constants p1, . . . , pd ≥ 1 satisfying

|αj |E(λ|V j |)pj + ρjjE(λ|V j |2)pj/2

+
∫

|xj |pjν(dx) E
(
(λ|V j |pj∧2)(pj∨2)/2 + λ|V j |pj

)
< ∞. (34)
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For any J ⊂ {1, . . . , d}, we define

νJ =
∫ ∏

j∈J
xj ν(dx), V J

t =
∏

j∈J
V j

t .

Theorem 5.21 (moments of Lévy integrals) Let X and V be RRd-valued
processes on RR+, where X is F-Lévy with characteristics (α, ρ, ν) and V is an
F-predictable process satisfying (34), for some p1, . . . , pd > 0 with

∑
j p−1

j ≤
1. Suppose that the products αiλV i (when d ≥ 2), ρjkλV jk (when d ≥ 3),
and νJλV J (for 2 ≤ |J| < d) are a.s. non-random. Then

E
∏
j∈d

∫ ∞

0
V jdXj = E

∑
π

∏
i

(αiλV i)
∏
j,k

(
(ρjk + νjk) λV jk

)∏
J

(νJλV J ),

where the summation extends over all partitions π of {1, . . . , d} into single-
tons {i}, pairs {j, k}, and subsets J with |J| ≥ 3.

As before, we note that the product moment depends only on the marginal
distributions of X and V . Choosing Ṽ to be independent of X with the same
distribution as V , we obtain

E
∏

j≤d
(V j · Xj)∞ = E

∏
j≤d

(Ṽ j · Xj)∞.

In the special case where Xj = X, V j = V , and Ṽ j = Ṽ for all j, we obtain
for simple moments the equality

E(V · X)n
∞ = E(Ṽ · X)n

∞,

under appropriate constancy and moment conditions.
Several lemmas will be needed for the proof of Theorem 5.21. We begin

with some technical estimates. Recall that p−1
J =

∑
j∈J p−1

j for any nonempty
subset J ⊂ {1, . . . , d}.

Lemma 5.22 (product moments) Under the hypotheses of Theorem 5.21,
we have for any J ⊂ {1, . . . , d} with |J| > 1∫ ∏

j∈J
|xj |p ν(dx) E(λ|VJ |p)pJ/p < ∞, 1 ≤ p ≤ pJ .

Proof: Excluding the trivial case where
∫ |xj |ν(dx) = 0 or λ|Vj | = 0 for

some j ∈ J, we have by hypothesis∫
|xj |pjν(dx) < ∞, E(λ|Vj |pj∧2)(pj∨2)/2 + Eλ|Vj |pj < ∞, (35)

for any j ∈ J. Hence, by Hölder’s inequality,∫ ∏
j∈J

|xj |pJ ν(dx) < ∞, Eλ|VJ |pJ < ∞. (36)



5. Decoupling Identities 235

Next we note that xp∧2 ≤ (x2 ∧ 1) + xp for x, p > 0. By (35) we get for any
j ∈ J ∫

|xj |pj∧2ν(dx) ≤
∫

(x2
j ∧ 1)ν(dx) +

∫
|xj |pjν(dx) < ∞,

and so by (35) and Lemma 5.3∫
|xj |qν(dx) < ∞, E(λ|Vj |q)pj/q < ∞, pj ∧ 2 ≤ q ≤ pj. (37)

Since ∑
j∈J

p−1
j ≤ 1 ≤ 1

2 |J| ≤
∑

j∈J
(pj ∧ 2)−1,

we may choose some constants qj in [pj ∧ 2, pj ], j ∈ J, with
∑

j∈J q−1
j = 1,

and conclude from Hölder’s inequality and (37) that∫ ∏
j∈J

|xj | ν(dx) ≤
∏

j∈J

(∫
|xj |qjν(dx)

)1/qj

< ∞,

E(λ|VJ |)pJ ≤ E
∏

j∈J
(λ|Vj |qj)pJ/qj

≤
∏

j∈J

(
E(λ|Vj |qj)pj/qj

)pJ/pj

< ∞.

The assertion now follows by (36) and Lemma 5.3. �

Next we need to estimate the higher order variations [X]J of a semi-
martingale X, introduced in connection with Lemma 5.5. Recall that when
X is purely discontinuous,

[X]Jt =
∑

s≤t

∏
j∈J

∆Xj
s , t ≥ 0, |J| > 1.

Lemma 5.23 (variation integrals) If ρ = 0 in Theorem 5.21, then for any
J ⊂ {1, . . . , d} with |J| > 1 we have

E
(∫

|VJd[X]J |
)pJ

<
�

supp∈[1,pJ ]

(∫ ∏
j∈J

|xj |pν(dx)
)pJ/p

× supp∈[1,pJ ] E(λ|VJ |p)pJ/p < ∞.

Proof: The total variation process
∫ |d[X]J | is a subordinator of pure

jump type, whose Lévy measure equals the image of ν under the mapping
x �→ ∏

j∈J |xj |. The stated estimate then follows from Proposition 5.2, and
the finiteness on the right is clear from Lemmas 5.3 and 5.22. �

Our next aim is to construct a bounded measure on RRd with given product
moments cJ , J ∈ 2d, where 2d denotes the class of subsets of {1, . . . , d}.

Lemma 5.24 (moment fitting) Given any cJ ∈ RR, J ∈ 2d \{∅}, there exists
a measure µ on S = {−1, 1}d with µS =

∑
J |cJ | such that∫

µ(dx)
∏

j∈J
xj = cJ , J ∈ 2d \ {∅}.
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Proof: We begin with the case where cI = σ1{I = J} for some fixed
subset J �= ∅ and sign σ = ±1. Then fix any k ∈ J and put Jk = J \ {k}.
Introduce some i.i.d. random variables ξj , j �= k, with P{ξj = ±1} = 1

2 , and
define ξk = σ

∏
j∈Jk

ξj . Let µσ
J denote the distribution of (ξ1, . . . , ξd). If k /∈ I

or I \ J �= ∅, we may choose an h ∈ I such that ξh is independent of all
remaining variables ξi, i ∈ I \ {h} ≡ Ih, in which case∫ ∏

i∈I
xi µσ

J (dx) = E
∏

i∈I
ξi = Eξh E

∏
i∈Ih

ξi = 0.

If instead k ∈ I ⊂ J, we have∫ ∏
i∈I

xi µσ
J (dx) = E

∏
i∈I

ξi = σE
∏

i∈I
ξi

∏
j∈J

ξj

= σE
∏

j∈J\I
ξj = σ

∏
j∈J\I

Eξj = σ1{I = J}.

This shows that∫ ∏
i∈I

xi µσ
J (dx) = σ 1{I = J}, I, J ∈ 2d \ {∅}. (38)

For general moments cJ , we put c±
J = (±cJ ) ∨ 0 and define

µ =
∑

I
(c+

I µ+
I + c−

I µ−
I ),

where the summation extends over all I ∈ 2d \ {∅}. Then (38) gives

µS =
∑

I
(c+

I + c−
I ) =

∑
I
|cI |,∫

µ(dx)
∏

j∈J
xi =

∑
I
(c+

I − c−
I )1{I = J} = cJ ,

as required. �

The next result reduces the proof of Theorem 5.21 to the case where
X has bounded and isolated jumps. To avoid trivial exceptions, we may
henceforth assume that Eλ|Vj | > 0 for all j ≤ d (which entails no loss of
generality).

Lemma 5.25 (truncation) In the context of Theorem 5.21, there exist some
Lévy processes Xn = (Xn

j ) with characteristics (α, ρ, νn), defined with respect
to standard extensions Fn of F , where the νn are bounded with bounded
supports and moments νJ

n = νJ , |J| > 1, such that

∏
j

∫ ∞

0
Vj dXn

j →
∏

j

∫ ∞

0
Vj dXj in L1.

Proof: For each n ∈ NN, let Y n denote the Lévy process obtained from
X by omission of all centered jumps of modulus > n or < n−1. Then Y n

has characteristics (α, ρ, ν̂n), where ν̂n denotes the restriction of ν to the
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set Bn = {x ∈ RRd; n−1 ≤ |x| ≤ n}, and we may introduce the associated
moment deficiencies

cJ
n =

∫
Bc

n

ν(dx)
∏

j∈J
xj, J ∈ 2d, |J| > 1. (39)

For every n ∈ NN, there exists by Lemma 5.24 a measure µn on {−1, 1}d with
total mass ‖µn‖ =

∑
J |cJ

n | < ∞ such that∫
µn(dx)

∏
j∈J

xj = cJ
n, J ∈ 2d, |J| > 1. (40)

Next we may introduce, on a suitably extended probability space, a Lévy
process Zn ⊥⊥F with characteristics (0, 0, µn). Then Xn = Y n + Zn is again
Lévy with characteristics (α, ρ, νn), where νn = ν̂n + µn, and we note that
Xn remains Lévy with respect to the right-continuous and complete filtration
Fn induced by F and Zn. To see that Fn is a standard extension of F , we
need to verify that (Zn

s ; s ≤ t)⊥⊥Ft F for all t ≥ 0, which is clear from the
independence of Z and F . We also see from (39) and (40) that νn and ν
have the same product moments νJ

n = νJ , |J| > 1.
To prove the asserted approximation property, we may assume that, by

(34) and Lemma 5.22,∫ (
|xj |pj ∨ |xj |pj∧2

)
ν(dx) < ∞,

∫
ν(dx)

∏
j∈J

|xj | < ∞,

for all j ∈ {1, . . . , d} and J ∈ 2d with |J| > 1. Writing ν̂′
n = ν − ν̂n, we get

by (40) and dominated convergence as n → ∞∫ (
|xj |pj ∨ |xj |pj∧2

)
ν̂′

n(dx) → 0,∫ (
|xj |pj ∨ |xj |pj∧2

)
µn(dx) = µn{−1, 1}d =

∑
J
|cJ

n |

≤
∑

J

∫
ν̂′

n(dx)
∏

j∈J
|xj | → 0,

where the summations extend over all J ∈ 2d with |J| > 1. By (34) and
Proposition 5.2 it follows that

‖(Vj · (Xj − Xn
j ))∗‖pj

≤ ‖(Vj · (Xj − Y n
j ))∗‖pj

+ ‖(Vj · Zn
j )∗‖pj

→ 0.

Since also ‖(Vj ·Xj)∗‖pj
< ∞ by the same proposition, we see from Hölder’s

inequality that

E
∣∣∣∣∏j

∫ ∞

0
Vj dXj −

∏
j

∫ ∞

0
Vj dXn

j

∣∣∣∣
≤

∑
k
E

∣∣∣∣∏j<k
(Vj · Xj)∗ ∏

j>k
(Vj · Xn

j )∗ (Vk · (Xk − Xn
k ))∗

∣∣∣∣
≤

∑
k

∏
j<k

‖(Vj · Xj)∗‖pj

∏
j>k

‖(Vj · Xn
j )∗‖pj

× ‖(Vk · (Xk − Xn
k ))∗‖pk

→ 0,

where the summations extend over all k ∈ {1, . . . , d}. �
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We are now ready to prove our key lemma. Here
∫ b
a denotes integration

over (a, b], and we will often write Lebesgue integrals
∫

f(s)ds as
∫

f .

Lemma 5.26 (key identity) In the setting of Theorem 5.21, let α = ρ = 0,
and let ν be bounded with bounded support. Consider a continuous martingale
M with ‖M∗‖p < ∞, where p−1 +

∑
j p−1

j ≤ 1, and suppose that νJλVJ is a.s.
non-random even for J = {1, . . . , d}, unless M is a constant. Then for any
optional time τ we have

E M∞
∏

j

∫ ∞

τ
VjdXj = E Mτ

∑
π

∏
J
νJ

∫ ∞

τ
VJ (s)ds,

where the summation extends over all partitions π of {1, . . . , d} into sets J
with |J| > 1.

Proof: For d = 0 the assertion reduces to EM∞ = EMτ , which holds by
optional sampling. Proceeding by induction, we assume the asserted formula
to be valid for up to d − 1 factors. To extend the result to products of d
integrals, we may fix any T > 0 and proceed through the following chain of
equalities, where each step is explained in detail below:

E M∞
∏

j≤d

∫ ∞

τ
Vj dXj − E M∞

∏
j≤d

∫ ∞

τ∨T
Vj dXj

= E M∞
∑

J

∫ τ∨T

τ
V J

t d[X]Jt
∏

j /∈J

∫ ∞

t
Vj dXj

= E
∑

J

∫ τ∨T

τ
V J

t Mt d[X]Jt
∑

π′

∏
I
νI

∫ ∞

t
VI

= E
∑

J
νJ

∫ τ∨T

τ
V J

t Mt dt
∑

π′

∏
I
νI

∫ ∞

t
VI

= E M∞
∑

J
νJ

∫ τ∨T

τ
V J

t dt
∑

π′

∏
I
νI

∫ ∞

t
VI

= E M∞
∑

π

∏
J
νJ

∫ ∞

τ
VJ − E M∞

∑
π

∏
J
νJ

∫ ∞

τ∨T
VJ

= E Mτ

∑
π

∏
J
νJ

∫ ∞

τ
VJ − E M∞

∑
π

∏
J
νJ

∫ ∞

τ∨T
VJ ,

where νJ = 0 for |J| = 1 and the summations extend over all nonempty
subsets J ⊂ {1, . . . , d}, all partitions π′ of Jc into sets I with |I| > 1, and all
partitions π of {1, . . . , d} into sets J with |J| > 1.

As promised, we proceed with a careful justification of the individual
steps. First we note that the first and fifth equalities hold by the tetrahedral
decomposition in Lemma 5.5, though in the equivalent form of (9), written
in reverse time as

d(X1 · · ·Xd)t =
∑

J
(XJc

∞ − XJc

t ) d[X]Jt , t ≥ 0.

The time reversal is justified in the present case, since the relevant processes
VJ ·XJ and VJ ·λ have locally finite variation, so that the associated integrals
are of elementary Stieltjes type.
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The second and fourth equalities are due to optional projection, as expli-
cated by Lemma 5.6. The underlying sampling property is in step two

E M∞
∏

j /∈J

∫ ∞

τ
Vj dXj = E Mτ

∑
π′

∏
I∈π′ νI

∫ ∞

τ
VI ,

which holds by the induction hypothesis, whereas in step four it is simply
the optional sampling formula EM∞ = EMτ . The associated finite-variation
processes of Lemma 5.6 are given, respectively, by

At =
∫ (τ∨T )∧t

τ∨t
VJ d[X]J , Bt =

∫ (τ∨T )∧t

τ∨t
VJ (s) ds

∏
I
νI

∫ ∞

s
VI .

The third step uses dual predictable projection (FMP 25.13), where the
integrator [X]Jt is replaced by its compensator, equal to νJ t when |J| > 1
and to 0 when |J| = 1. The associated integrand is

Ut = 1(τ,τ∨T ](t) VJ (t) Mt

∏
I
νI

∫ ∞

t
VI , t ≥ 0,

where each factor is predictable, the first one by left-continuity and adapt-
edness, the second one by hypothesis, and the remaining ones by continuity
and adaptedness. The latter property is due to the fact that νIλVJ is a.s.
non-random whenever |I| < d.

The sixth step is trivial when M is a constant and is otherwise due to the
optional sampling formula E[M∞|Fτ ] = Mτ , combined with the fact that

νJ

∫ ∞

τ
VJ = νJλVJ − νJ

∫ τ

0
VJ

is Fτ -measurable for all J by FMP 7.5.
The truncation involving T is essential in steps two and three, to ensure

the required integrability when |J| = 1. The appropriate integrability condi-
tions are then easy to verify from (34), using Hölder’s inequality and Lemmas
5.22 and 5.23. Similarly, as T → ∞, we get

∣∣∣∣E M∞
∏

j

∫ ∞

τ∨T
VjdXj

∣∣∣∣ ≤ ‖M∗‖p

∏
j

∥∥∥∥∫ ∞

τ∨T
Vj dXj

∥∥∥∥
pj

→ 0,∣∣∣∣E M∞
∏

J
νJ

∫ ∞

τ∨T
VJ

∣∣∣∣ ≤ ‖M∗‖p

∏
J
|νJ |

∥∥∥∥∫
τ∨T

|VJ |
∥∥∥∥

pJ

→ 0,

by the same conditions and estimates, which proves the asserted identity. �

After all these preparations, we are finally ready to prove the main result
of this section.
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Proof of Theorem 5.21: From Proposition 5.2 we see that V · (X − EX)
is a uniformly integrable martingale, which proves the assertion for d = 1.
When d ≥ 2, we note that the products αjλVj exist and are a.s. non-random.
Writing Yt = Xt − αt and expanding the product, we obtain

E
∏

j

∫ ∞

0
Vj dXj =

∑
J

∏
j∈J

(αjλVj) E
∏

j /∈J

∫ ∞

0
Vj dYj,

where the summation extends over all subsets J ⊂ {1, . . . , d}. This reduces
the argument to the case of centered processes X. By Lemma 5.25 we may
also assume that ν is bounded and has bounded support.

Now write B and Y for the continuous and purely discontinuous martin-
gale components of X, and define Mj = (Vj · Bj), so that

[Mi,Mj ]∞ = (ViVj · [Bi,Bj ])∞ = ρijλVij , i �= j. (41)

When d ≥ 3, the right-hand side is a.s. non-random by hypothesis, and so
by Lemma 5.19 there exist some continuous martingales MJ , indexed by
nonempty subsets J ⊂ {1, . . . , d}, such that ‖M∗

J‖pJ
< ∞ and

MJ (∞) =
∏

j∈J
Mj(∞), EMJ =

∑
π

∏
i,j

ρijλVij ,

where the summation extends over all partitions (if any) of J into pairs {i, j}.
Putting M∅ ≡ 1, we get by Lemma 5.26 with τ = 0

E
∏

j≤d

∫ ∞

0
Vj dXj = E

∑
J
MJ (∞)

∏
j /∈J

∫ ∞

0
Vj dYj

= E
∑

π

∏
i,j

(ρijλVij)
∏

J
(νJλVJ ), (42)

where the summations extend over all subsets J ⊂ {1, . . . , d}, respectively
over all partitions π of {1, . . . , d} into pairs {i, j} and subsets J with |J| ≥ 2.

This completes the proof for d �= 2. When d = 2, we note that the first
equality in (42) remains valid with M12 = M1M2. So does the second one,
since by Lemma 5.7 and (41)

EM1(∞)M2(∞) = E[M1,M2]∞ = EρijλVij . �

5.6 Contractable Sums and Integrals

Here we first consider random n-sequences ξ = (ξj
k) and η = (ηj

k) in RRd, where
j = 1, . . . , d and k = 1, . . . , n. The integrability problems being elementary
in this case, we may restrict our attention to bounded random variables.
For typographical convenience, we shall often write binomial coefficients as
(n//k) = n!/k!(n− k)! .
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Theorem 5.27 (tetrahedral moments of sequences) Let ξ and η be bounded
random n-sequences in RRd, where ξ is F-contractable and η is F-predictable,
and suppose that the sums

Si =
∑

k1<···<kd

∏
j≥i

ηj
kj

, i = 1, . . . , d, (43)

are F0-measurable. Then

E
∑

k1<···<kd

∏
j≤d

(ξj
kj

ηj
kj

) = (n//d)−1 E
∑

h1<···<hd

∏
i≤d

ξi
hj

∑
k1<···<kd

∏
j≤d

ηj
kj

.

Thus, if η̃ is another bounded and F -predictable sequence with the same
F0-measurable sums Si as in (43), we have

E
∑

k1<···<kd

∏
j≤d

ξj
kj

ηj
kj

= E
∑

k1<···<kd

∏
j≤d

ξj
kj

η̃j
kj

.

In particular, we obtain a tetrahedral decoupling identity by choosing η̃ to
be conditionally independent of ξ with the same distribution as η. The last
result leads easily to a decoupling identity for ordinary product moments.

Corollary 5.28 (product moments) Let ξ = (ξj
k) and η = (ηj

k) be finite,
bounded random sequences in RRd, where ξ is F-contractable and η is F-pre-
dictable, and suppose that the sums

SJ1,...,Jm =
∑

k1<···<km

∏
r≤m

∏
j∈Jr

ηj
kr

, J1, . . . , Jm ⊂ {1, . . . , d} disjoint,

are F0-measurable. Then

E
∏
j≤d

∑
k≤n

ξj
k ηj

k =
∑

J1,...,Jm

(n//m)−1 E
∑

h1<···<hm

∏
i≤m

ξJi
hi

∑
k1<···<km

∏
j≤m

η
Jj

kj
,

where the outer summation on the right extends over all ordered partitions
J1, . . . , Jm of {1, . . . , d}.

Proof: This follows from Theorem 5.27 by means of the elementary, tetra-
hedral decomposition∏

j≤d

∑
k≤n

xj
k =

∑
J1,...,Jm

∑
k1<···<km

∏
r≤m

∏
j∈Jr

xj
kr

,

where the outer summation on the right extends over all ordered partitions
J1, . . . , Jm of {1, . . . , d}. �

In particular, we note that if η̃ is another bounded and F -predictable
sequence with the same F0-measurable sums SJ1,...,Jm , then

E
∏
j≤d

∑
k≤n

ξj
k ηj

k = E
∏
j≤d

∑
k≤n

ξj
k η̃j

k.
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Specializing to the case where ξj
k = ξk, ηj

k = ηk, and η̃j
k = η̃k for all j and k,

we get the moment identity

E
(∑

k≤n
ξkηk

)r
= E

(∑
k≤n

ξkη̃k

)r
,

valid whenever the sums

Sr1,...,rd
=

∑
k1<...<kd

∏
j≤d

η
rj

kj
=

∑
k1<...<kd

∏
j≤d

η̃
rj

kj
,

are a.s. non-random for all r1, . . . , rd ∈ ZZ+ with r1 + · · · + rd ≤ r.
A simple lemma is needed for the proof of Theorem 5.27.

Lemma 5.29 (predictable sums) Let η = (ηj
k) be an F-predictable sequence

in RRd of length n ≥ d such that the sums in (43) are F0-measurable. Then
the predictability extends to the sequence

Th =
∑

h<k1<···<kd

∏
j≤d

ηj
kj

, 0 ≤ h < n.

Proof: For d = 1 we have

Th =
∑

k>h
ηk = S1 −

∑
k≤h

ηk, 0 ≤ h < n,

which is clearly Fh−1-measurable, where F−1 = F0 by convention. This
proves the result for d = 1. Now assume the statement to be true in dimen-
sion d − 1. Turning to the d-dimensional case, we write

Th = S1 −
∑
k≤h

η1
k

∑
k<k2<···<kd

∏
j≥2

ηj
kj

, 0 ≤ h ≤ n− d.

Applying the induction hypothesis to the (d− 1)-fold inner sum, we see that
the k-th term on the right is Fk−1-measurable. Hence, Th is Fh−1-measurable,
and so the sequence (Th) is F -predictable, which proves the result in d di-
mensions and completes the induction. �

Proof of Theorem 5.27: Using repeatedly the F -contractability of ξ, the
F -predictability of η, and Lemma 5.29, we get

E
∑

k1<···<kd

∏
j≤d

(ξj
kj

ηj
kj

) = E ξd
n

∑
k1<···<kd

∏
j<d

(ξj
kj

ηj
kj

) ηd
kd

= E ξd
n

∑
k1<···<kd−1

∏
j<d

(ξj
kj

ηj
kj

)
∑

kd>kd−1

ηd
kd

= E ξd−1
n−1ξ

d
n

∑
k1<···<kd−1

∏
j≤d−2

(ξj
kj

ηj
kj

) ηd−1
kd−1

∑
kd>kd−1

ηd
kd

= E ξd−1
n−1ξ

d
n

∑
k1<···<kd−2

∏
j≤d−2

(ξj
kj

ηj
kj

)
∑

kd>kd−1>kd−2

ηd−1
kd−1

ηd
kd

= · · · = E
∏
i≤d

ξi
n−d+i

∑
k1<···<kd

∏
j≤d

ηj
kj

= (n//d)−1 E
∑

h1<···<hd

∏
i≤d

ξi
hi

∑
k1<···<kd

∏
j≤d

ηj
kj

. �
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Turning to the case of contractable processes on [0, 1], we introduce the
tetrahedral regions

∆k =
{
(s1, . . . , sk) ∈ [0, 1]k; s1 < · · · < sk

}
, k ∈ NN.

Theorem 5.30 (tetrahedral moments of processes) Let X and V be RRd-
valued processes on [0, 1], where X is F-contractable with ‖(Xj)∗‖pj

< ∞,
j ≤ d, for some p1, . . . , pd > 0 with

∑
j p−1

j ≤ 1 and V is bounded and
F-predictable, and suppose that the integrals

ηk =
∫
· · ·
∫
∆d−k+1

∏
j≥k

V jdλ, k = 1, . . . , d, (44)

are F0-measurable. Then

E
∫
· · ·
∫
∆d

∏
j≤d

V jdXj = d! E
∫
· · ·
∫
∆d

∏
i≤d

dXi
∫
· · ·
∫
∆d

∏
j≤d

V jdλ.

In particular, we note that if Ṽ is F -predictable with the same F0-
measurable integrals ηk, then

E
∫
· · ·
∫
∆k

∏
j≤d

V jdXj = E
∫
· · ·
∫
∆k

∏
j≤d

Ṽ jdXj.

Choosing Ṽ to be conditionally independent of X with the same distribution
as V , we obtain a tetrahedral decoupling identity. As in the discrete case, we
may also use the last result to derive a corresponding identity for ordinary
product moments. Then write V J

s =
∏

j∈J V j
s , for convenience.

Corollary 5.31 (product moments) Let X and V be RRd-valued processes
on [0, 1], where X is F-contractable with ‖(Xj)∗‖pj

< ∞, j ≤ d, for some
p1, . . . , pd > 0 with

∑
j p−1

j ≤ 1 and V is bounded and F-predictable, and
suppose that the integrals

ηJ1,...,Jm =
∫
· · ·
∫
∆m

∏
k≤m

V Jkdλ, J1, . . . , Jm ⊂ {1, . . . , d} disjoint,

are F0-measurable. Then

E
∏
j≤d

∫ 1

0
V jdXj =

∑
J1,...,Jk

k! E
∫
· · ·
∫
∆k

∏
i≤k

dXJi

∫
· · ·
∫
∆k

∏
j≤k

V Jjdλ,

where the summation extends over all ordered partitions J1, . . . , Jk of the set
{1, . . . , d}.

In particular, we see that if Ṽ is F -predictable with the same integrals
ηJ1,...,Jm , then

E
∏

j≤d

∫ 1

0
V jdXj = E

∏
j≤d

∫ 1

0
Ṽ jdXj.
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Specializing to the case where Xj
t = Xt and V j

t = Vt for all j and t, we get
the moment identities

E(V · X)r
1 = E(Ṽ · X)r

1,

valid whenever the integrals

ηr1,...,rm =
∫
· · ·
∫
∆m

∏
k≤m

V rk
sk

dsk

are F0-measurable for all r1, . . . , rm ∈ ZZ+ with r1 + · · · + rm ≤ r.
The following identity involving stochastic and Lebesgue integrals will

play a crucial role in our proof of Theorem 5.30. Given a random variable
ρ, we say that X is F -contractable over ρ, if the contractability holds with
respect to the extended filtration Gt = σ(Ft, ρ).

Lemma 5.32 (integral reduction) Consider some real processes X and V
on [0, 1] and a random variable ρ, where X is F-contractable over ρ and V is
F-predictable. Suppose that ‖X∗‖p ∨ ‖V ∗‖q ∨ ‖ρ‖r < ∞ for some p, q, r > 0
with p−1 + q−1 + r−1 ≤ 1. Then for any t, h > 0 with t + h ≤ 1, we have

hE ρ
∫ t

0
VsdXs = E ρ (Xt+h − Xt)

∫ t

0
Vsds.

Proof: Since ρV is predictable with respect to the extended filtration
Gt = Ft ∨ σ(ρ), and since ‖ρV ∗‖s ≤ ‖ρ‖r‖V ∗‖q < ∞ by Hölder’s inequality
with s−1 = q−1 + r−1, we may take ρ = 1 and assume that p−1 + q−1 ≤ 1.

We begin with a formal computation, to be justified afterwards under the
stated norm conditions. Then recall from Theorem 2.13 that X is a special
F -semi-martingale, whose compensator X̂ admits a martingale density M
on [0, 1). Using repeatedly the definition of M , the martingale properties
of N = X − X̂ and M , and Fubini’s theorem, we get for any t, h > 0 with
t + h ≤ 1

hE
∫ t

0
VsdXs = hE

∫ t

0
VsdX̂s = hE

∫ t

0
VsMsds

= h
∫ t

0
E(VsMs) ds = h

∫ t

0
E(VsMt) ds

= hE Mt

∫ t

0
Vsds =

∫ t+h

t
E
(
Mu

∫ t

0
Vsds

)
du

= E (X̂t+h − X̂t)
∫ t

0
Vsds

= E (Xt+h − Xt)
∫ t

0
Vsds.

Here the first two expressions exist by Proposition 5.15 and its proof. To
justify the first equality, we recall from the same proof that

‖(V · N)∗‖r <
�

‖(V 2 · [N ])1/2
1 ‖r <

�
‖V ∗‖q ‖X∗‖p < ∞,
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where r−1 = p−1 +q−1 ≤ 1. This shows that V ·N is a true martingale (FMP
26.13), and the relation follows.

The second equality holds by the definition of M and the elementary
chain rule in FMP 1.23. To justify the use of Fubini’s theorem in the third
step, we see from Jensen’s inequality and the proof of Proposition 5.15 that
Eλ|V M| ≤ ‖V ∗‖q‖λ|M| ‖p < ∞. To justify the fourth equality, we note that
E|VsMt| ≤ ‖Vs‖q‖Mt‖p < ∞ by Hölder’s inequality. We may then use the
martingale property of M to write

E(VsMt) = E(VsE[Mt|Fs]) = E(VsMs).

The next three steps use Fubini’s theorem, the martingale property of M ,
and Fubini’s theorem again, in each case with a similar justification as before.
The last step uses the martingale property of N and is justified by the fact
that E|Nt+h|λ|V | ≤ ‖N∗‖p‖V ∗‖q < ∞. �

We also need the following elementary rule of stochastic calculus.

Lemma 5.33 (integration by parts) Let X, V , and U be processes on [0, 1],
where X is an F-semi-martingale, V is F-predictable and X-integrable, and
U is progressively F-measurable with λ|U | < ∞ a.s. and such that λU is
F0-measurable. Then∫ 1

0
Utdt

∫ t−

0
VsdXs =

∫ 1

0
VtdXt

∫ 1

t
Usds.

Proof: Write A = U · λ and Y = V · X, and note that [A,Y ] = 0 since
A continuous and of bounded variation. Now integrate by parts (FMP 26.6)
to obtain ∫ 1

0
Yt−dAt = A1Y1 −

∫ 1

0
AtdYt =

∫ 1

0
(A1 − At) dYt,

which is equivalent to the asserted formula. �

We proceed with a continuous-time version of Lemma 5.29.

Lemma 5.34 (predictable integrals) Let V 1, . . . , V d be bounded, F-predict-
able processes on [0, 1] such that the integrals in (44) are F0-measurable.
Then the predictability carries over to the process

Ut =
∫ 1

t
V 1

s1
ds1

∫ 1

s1

V 2
s2

ds2

∫ 1

s2

· · ·
∫ 1

sd−1

V d
sd

dsd, t ∈ [0, 1].

Proof: For d = 1 we have

Ut = η1 −
∫ t

0
V 1

s ds, t ∈ [0, 1],
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which is continuous and adapted, hence predictable. Now assume the asser-
tion to be true in dimension d − 1. Turning to the d-dimensional case, we
may write

Ut = η1 −
∫ t

0
V 1

s1
ds1

∫ 1

s1

V 2
s2

ds2

∫ 1

s2

· · ·
∫ 1

sd−1

V d
sd

dsd, t ∈ [0, 1].

Applying the induction hypothesis to the (d − 1)-fold integral in the vari-
ables s2, . . . , sd, we see that the integrand of the remaining outer integral is
a predictable function of s1. The process U is then continuous and adapted,
hence predictable, which proves the statement in dimension d and completes
the induction. �

Finally we need a continuity property of tetrahedral integrals.

Lemma 5.35 (approximation) Let X, V , and V1, V2, . . . be RRd-valued pro-
cesses on [0, 1], where X is F-contractable and V, V1, V2, . . . are uniformly
bounded and F-predictable with Vn → V . Suppose that ‖(Xj)∗‖pj

< ∞,
j ≤ d, for some p1, . . . , pd > 0 with

∑
j p−1

j ≤ 1. Then∫
· · ·
∫
∆d

∏
j
V j

n dXj →
∫
· · ·
∫
∆d

∏
j
V jdXj in L1. (45)

Proof: Changing one component at a time, we see that the difference in
(45) is bounded in L1 by

∑
k≤d

E

∣∣∣∣∫ · · ·∫
∆d

∏
i<k

(V idXi) (V k
n − V k) dXk

∏
j>k

V j
n dXj

∣∣∣∣
=

∑
k≤d

E

∣∣∣∣∣
∫
· · ·
∫
∆d−k

Uk
− (V k

n − V k) dXk
∏

j>k
V j

n dXj

∣∣∣∣∣ , (46)

where
Uk

t =
∫
· · ·
∫

t∆k−1

∏
i<k

V idXi, t ∈ [0, 1], k ≤ d.

Using Proposition 5.15 (i) repeatedly, we see that ‖(Uk)∗‖qk
< ∞ for all k,

where q−1
k =

∑
i<k p−1

i . By part (ii) of the same proposition it follows that

‖(Uk
−(V k

n − V k) · Xk)∗‖rk
→ 0, k ≤ d,

where r−1
k =

∑
j≤k p−1

j . We may finally use Proposition 5.15 (i), repeatedly
as before, to see that the k-th term of (46) tends to 0 as n → ∞. �

We may now prove Theorem 5.30 under a simplifying assumption.

Lemma 5.36 (case of bounded support) The assertion of Theorem 5.30 is
true when V 1, . . . , V d are supported by some interval [0, b] with b < 1.
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Proof: Fix any u ∈ [b, 1), and define

tk = 1 − (1 − u)
d − k

d
, ρk =

Xk
tk
− Xk

tk−1

tk − tk−1
, k ≤ d.

For k = 1, . . . , d, we introduce the processes

Tk
t =

∫
· · ·
∫

t∆k

∏
j≤k

V jdXj,

Uk
t =

∫ 1

t
V k

sk
dsk

∫ 1

sk

V k+1
sk+1

dsk+1

∫ 1

sk+1

· · ·
∫ 1

sd−1

V d
sd

dsd,

and put T 0
t ≡ Ud+1

t ≡ 1. Note that the Tk are semi-martingales and the Uk

are predictable by Lemma 5.34. Using Lemma 5.33 and the definitions of Tk

and Uk, we get for suitable k∫ 1

0
V k

s T k−1
s− Uk+1

s ds =
∫ 1

0
V k

s Uk+1
s ds

∫ s−

0
V k−1

r T k−2
r− dXk−1

r

=
∫ 1

0
V k−1

r T k−2
r− dXk−1

r

∫ 1

r
V k

s Uk+1
s ds

=
∫ 1

0
V k−1

r T k−2
r− Uk

r dXk−1
r .

Writing πk = ρk · · · ρd for k = 1, . . . , d + 1 and using Lemma 5.32, we obtain

E πk+1

∫ 1

0
V k

s T k−1
s− Uk+1

s dXk
s = E πk

∫ 1

0
V k

s T k−1
s− Uk+1

s ds

= E πk

∫ 1

0
V k−1

s T k−2
s− Uk

s dXk−1
s ,

where the required integrability follows by repeated use of Proposition 5.15.
Iterating the latter relations yields

ETd
1 = E πd+1

∫ 1

0
V d

s T d−1
s−1 Ud+1

s dXd
s

= E π1

∫ 1

0
V 1

s T 0
s− U2

s ds = E π1U
1
0 ,

and since U1
0 = η1 by Fubini’s theorem, we obtain

E
∫
· · ·
∫
∆d

∏
j
V jdXj = E(ρ1 · · · ρd)η1

= E η1E[ρ1 · · · ρd|F0]. (47)

In particular, we may take V 1 = · · · = V d = 1A on [0, u] for any A ∈ F0

to obtain

E 1A

∫
· · ·
∫

u∆d

dX1 · · · dXd = (ud/d!) E[ρ1 · · · ρd; A],
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which implies

d! EF0

∫
· · ·
∫

u∆d

dX1 · · · dXd = ud E[ρ1 · · · ρd|F0].

Inserting this into (47) yields

ud E
∫
· · ·
∫
∆d

∏
k
V kdXk = d! E η1E

F0

∫
· · ·
∫

u∆d

∏
k
dXk

= d! E η1

∫
· · ·
∫

u∆d

∏
k
dXk,

and the desired relation follows as we let u → 1 and use Lemma 5.35. �

Our final step is to show how the proof of Theorem 5.30 can be reduced
to the special case of Lemma 5.36.

Lemma 5.37 (truncation) In the setting of Theorem 5.30, suppose that
|V k| ≤ c < ∞ for all k ≤ d. Then for any ε ∈ (0, 1

2 ] there exist some
predictable processes Ṽ 1, . . . , Ṽ d on [0, 1] with a.s. the same values of the
integrals (44), and such that for any k ≤ d

Ṽ k = V k on [0, 1 − 2ε],
|Ṽ k| ≤ 2c on (1 − 2ε, 1 − ε],
Ṽ k = 0 on (1 − ε, 1].

Proof: On [0, 1] we introduce the random signed measures

ξkB =
∫

B
V k

s ds, B ∈ B[0, 1], 1 ≤ k ≤ d,

which are adapted by the predictability of the V k. Equation (44) and the
constraint |V k| ≤ c translate into the conditions

(ξk ⊗ · · · ⊗ ξd)∆d−k+1 = ηk, |ξk[a, b]| ≤ (b − a)c, (48)

for any a, b, and k with 0 ≤ a ≤ b ≤ 1 and 1 ≤ k ≤ d, where it is enough
to take a, b ∈ QQ. Both conditions being measurable in the random elements
ξ1, . . . , ξd and η1, . . . , ηd, they can be summarized in the form

F (ξ1, . . . , ξd; η1, . . . , ηd) = 0 a.s.,

for some measurable function F on the appropriate product space.
Now fix any ε ∈ (0, 1

2 ], and let ξ′
1, . . . , ξ

′
d denote the restrictions of ξ1, . . . ,

ξd to [0, 1 − 2ε]. By Lemma A1.6 there exist some random signed measures
ξ̂1, . . . , ξ̂d, measurable with respect to ξ′

1, . . . , ξ
′
d and η1, . . . , ηd, such that

ξ̂k = ξk on [0, 1 − 2ε] for every k and

F (ξ̂1, . . . , ξ̂d; η1, . . . , ηd) = 0 a.s.
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In other words, the ξ̂k are F1−2ε-measurable and satisfy (48). In particu-
lar, they are a.s. absolutely continuous (FMP 2.21) and possess densities
V̂1, . . . , V̂d with values in the interval [−c, c] (FMP 2.15). By FMP 7.26 we
may choose the V̂k to be product-measurable with respect to the σ-fields
B[0, 1] and F1−2ε, and since ξ̂k = ξk on [0, 1 − 2ε], we may assume that
V̂k = Vk on the same interval. From (48) we note that the V̂k satisfy (44)
with the same values ηk.

Now introduce the function

f(t) = t − 1
2(t − 1 + 2ε) ∨ 0, t ∈ [0, 1], (49)

and note that (f⊗k)−1∆k = ∆k for all k ∈ NN since f is strictly increasing.
Hence, the first relation in (48) remains true for the random signed measures
ξ̃k = ξ̂k ◦ f−1, k = 1, . . . , d. Inverting (49), we see that, a.s. on (1− 2ε, 1− ε],
the ξ̃k have densities

Ṽ k
t = 2V̂ k(2t − 1 + 2ε) ∈ [−2c, 2c], ε ≤ 1 − t < 2ε, k ≤ d.

Since ξ̃k = ξk on [0, 1 − 2ε] and ξ̃k = 0 on (1 − ε, 1], we may further choose
Ṽ k

t to be equal to V k
t and 0, respectively, on those intervals. Then (44) re-

mains true for the densities Ṽ k, and the required predictability is clear from
the corresponding property for the V k, together with the fact that Ṽ k is
B[0, 1] ⊗F1−2ε-measurable on (1 − 2ε, 1]. �

We may now complete the proof of the main result.

Proof of Theorem 5.30: For any ε ∈ (0, 1
2 ], we may choose the correspond-

ing processes V 1
ε , . . . , V d

ε as in Lemma 5.36 and conclude from Lemma 5.37
that the stated identity holds with each V k replaced by V k

ε . Since the latter
processes are uniformly bounded and satisfy V k

ε → V k on [0, 1) as ε → 0,
the required formula follows by Lemma 5.35. �

5.7 Predictable Sampling Revisited

The decoupling identities implicit in Theorems 5.9 and 5.12 can be used to
give simple proofs of the predictable sampling Theorem 4.2 and its multi-
variate version, Proposition 4.4. Here we go directly to the latter and more
general result.

Theorem 5.38 (predictable sampling) Let ξj = (ξjk), j ≤ d, be finite or
infinite, separately F-exchangeable sequences indexed by I, and for every j

consider some a.s. distinct, F-predictable times τjk in I. Then (ξjk)
d= (ξ̃jk),

where ξ̃jk = ξj,τjk
.
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Proof: By a monotone class argument, it is enough to consider the events
{ξ̃jk ∈ B} for finitely many measurable sets B, and by a suitable mapping
we may then reduce to the case where the state space is [0, 1]. Next we
may extend the filtration F , if necessary, to reduce to the case where each
component ξj is F -extreme. By conditioning on F0, we may finally assume
that all components of ξ are extreme.

Given the predictable times τjk, j ≤ d, k ≤ n, we introduce the associated
allocation sequences

αjk = inf{l ≤ n; τjl = k}, j ≤ d, k ∈ I,

and note that αjk ∈ Fk−1 for all j and k. Fix any constants cjk ∈ RR, j ≤ d,
k ≤ n, put cj,∞ = 0, and define γjk = cj,αjk

. Then for fixed j ≤ d, the finite
variables αjk form a permutation of 1, . . . , n, and so∑

k
γm

jk =
∑

k
cm
j,αjk

=
∑

k
cm
jk, j ≤ d, m ∈ NN.

Using Theorem 5.9 or 5.12 and the separate exchangeability of ξ, we get for
every m ∈ NN

E
(∑

j

∑
k
cjk ξ̃jk

)m

= E
(∑

j

∑
k
γjk ξjk

)m

= m!
∑

m1,...,md

E
∏

j

(∑
k
γjk ξjk

)mj

/mj !

= m!
∑

m1,...,md

E
∏

j

(∑
k
cjk ξjk

)mj

/mj !

= E
(∑

j

∑
k
cjk ξjk

)m

.

Here the double sums in the extreme members are bounded by constants,
and so their distributions are determined by the moments. Hence,∑

j

∑
k
cjk ξjk

d=
∑

j

∑
k
cjk ξ̃jk.

Since the coefficients cjk are arbitrary, we may use the Cramér–Wold theorem
to conclude that (ξjk)

d= (ξ̃jk). �

Similarly, we can use the moment identities in Theorems 5.18 and 5.21
to give an alternative proof of the predictable mapping Theorem 4.7.

Theorem 5.39 (predictable mapping) Let X be an RRd-valued, F-exchange-
able process on I = [0, 1] or RR+, and consider an F-predictable process V on
I such that V ◦ λ−1 = λ a.s. Then X ◦ V −1 d= X.

Here we need a technical lemma of independent interest.

Lemma 5.40 (exponential moments) Let X be an extreme, exchangeable
process on [0, 1] or a Lévy process on RR+ with bounded jumps. Then EeuXt <
∞ for all u ∈ RR and t ∈ [0, 1] or RR+, respectively.
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Proof: For processes X on [0, 1], we have by Theorems 2.18 and 3.15 a
representation

Xt = αt + σBt +
∑

j
βj(1{τj ≤ t} − t), t ∈ [0, 1],

where B is a Brownian bridge and τ1, τ2, . . . are independent and i.i.d. U(0, 1).
By Hölder’s inequality we may consider each of the three components sepa-
rately, and by scaling we may take u = 1. The first term is trivial, and for
the second one we get

EeσBt = exp
(

1
2σ

2t(1 − t)
)

< ∞.

To deal with the jump component, we first assume that βj = 0 for all but
finitely many j. Then for α = σ = 0 we get

EeXt = E exp
∑

j
βj(1{τj ≤ t} − t)

=
∏

j
E exp(βj(1{τj ≤ t} − t))

=
∏

j
e−βjt

(
1 − t(1 − eβj)

)
= exp

∑
j

{
log
(
1 − t(1 − eβj)

)
− βjt

}
.

Noting that, for fixed t ∈ [0, 1],

log(1 − t(1 − ex)) − xt = O(x2), x → 0,

and recalling that in general
∑

j β2
j < ∞, we see that the same computation

applies to the general case, which yields a finite value for EeXt .
For Lévy processes X we have instead

Xt = αt + σBt +
∫ t

0

∫
x(η − Eη)(ds dx), t ≥ 0,

where B is a Brownian motion and η is an independent Poisson process on
RR+ ×RR with intensity λ⊗ ν (FMP 15.4). Again it is enough to consider the
jump component. Assuming first that ν is bounded, and letting α = σ = 0,
we get as in FMP 15.8

EeuXt = exp
(
t
∫

(eux − 1 − ux) ν(dx)
)
, t ≥ 0.

Noting that ex−1−x = O(x2) and recalling that in general
∫
(x2∧1)ν(dx) <

∞, we see that the formula extends to arbitrary Lévy measures ν with
bounded support, which yields the asserted finiteness of EeuXt . �

Proof of Theorem 5.39: First assume that X is extreme with bounded
jumps. By the Cramér–Wold theorem (FMP 5.5) it suffices to show that, for
any constants tk ∈ I and cjk ∈ RR,∑

j,k
cjk(Xj ◦ V −1)tk

d=
∑

j,k
cjkX

j
tk .
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Since X has finite exponential moments by Lemma 5.40, it is then enough
to verify the moment relations

E
(∑

j,k
cjk(Xj ◦ V −1)tk

)n

= E
(∑

j,k
cjkX

j
tk

)n

, n ∈ NN.

Expanding each side according to the multinomial theorem, we may reduce
the assertion to

E
∏

j

(∑
k
cjk(Xj ◦ V −1)tk

)nj

= E
∏

j

(∑
k
cjkX

j
tk

)nj

,

where n1, . . . , nd ∈ ZZ+ are arbitrary. This will follow from Theorem 5.18 or
5.21, respectively, if we can only show that∫ ∏

j

(∑
k
cjk1{Vs ≤ tk})

)nj

ds =
∫ ∏

j

(∑
k
cjk1{s ≤ tk})

)nj

ds,

again for arbitrary n1, . . . , nd ∈ ZZ+. Now the last relation follows, by the
substitution rule for Lebesgue–Stieltjes integrals (FMP 1.22), from the fact
that λ ◦ V −1 = λ a.s.

Turning to the case of general Lévy processes, we may write X = Xn+Jn,
where Jn denotes the compound Poisson process formed by all jumps of X
greater than n. Writing Y n for the corresponding simple Poisson process, we
see from the previous case that

(Y n ◦ V −1)t
d= Y n

t
P→ 0, t ≥ 0,

which implies (Jn ◦ V −1)t
P→ 0 for all t. We may then let n → ∞ in the

relation Xn ◦ V −1 d= Xn to obtain X ◦ V −1 d= X.
Now let X be a general F -exchangeable process on I = [0, 1] or RR+,

directed by γ = (α, ρ, β) or (α, ρ, ν), respectively. Then X remains ex-
changeable with respect to the extended filtration Gt = σ(Ft, γ), t ∈ I, and
V clearly remains G-predictable. It is also clear from FMP 26.4 that the
process X ◦ V −1 is invariant under a change to filtration G, and also under
conditioning with respect to G0. The assertion now follows from the result
in the extreme case, applied to the conditional distributions given G0. �

Next we show how the optional skipping theorem, Proposition 4.1, can
be derived as an easy consequence of Corollary 5.28.

Proposition 5.41 (optional skipping) Let ξ = (ξj) be a finite or infinite,
F-contractable sequence indexed by I, and let τ1 < · · · < τm be F-predictable
times in I. Then (ξτ1, . . . , ξτm) d= (ξ1, . . . , ξm).
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Proof: By a suitable transformation and truncation, we may assume that
ξ = (ξj) is a finite sequence of bounded random variables. Letting τ1 < · · · <
τm be predictable times in the index set {1, . . . , n} of ξ, we need to show
that, for any c1, . . . , cm ∈ RR and p ∈ NN,

E
(∑

k≤m
ck ξτk

)p
= E

(∑
k≤m

ck ξk

)p
. (50)

Then introduce the predictable sequence

αj = inf{k; τk = j}, j ≤ n,

where αj = ∞ if τk �= j for all k. Putting c∞ = 0, we note that∑
k≤m

ck ξτk
=
∑

j≤n
cαj

ξj.

Hence, (50) will follow from Corollary 5.28 if we can only show that∑
h1<···<hr

∏
i≤r

cpi
αhi

=
∑

k1<···<kr

∏
j≤r

c
pj

kj
,

for any r ≤ m and p1, . . . , pr in ZZ+. Here the product on the left vanishes
unless (h1, . . . , hr) = (τk1, . . . , τkr) for some k1 < . . . < kr, in which case
αhi

= ki for all i. Since every sequence k1 < · · · < kr occurs exactly once,
the two sums are indeed equal. �

We may finally consider a version of Theorem 4.18, the predictable con-
traction property of contractable processes. Here our new proof is based on
the moment identities of Corollary 5.31. Unfortunately, the present argument
seems to require a strong integrability condition.

Theorem 5.42 (predictable contraction) Let X be an F-contractable pro-
cess on [0, 1] with finite exponential moments, and consider an F-predictable
set A ⊂ [0, 1] with λA ≥ h a.s. Then CAX

d= X on [0, h).

Proof: Arguing as before, we need to show that

E
(∫

f d(CAX)
)n

= E
(∫

f dX
)n

, n ∈ NN,

for any step function

f(t) =
∑

j≤m
cj 1{t ≤ tj}, t ∈ [0, 1],

where c1, . . . , cm ∈ RR and t1, . . . , tm ∈ [0, h] are arbitrary. Then introduce
the optional times

σj = inf{s ∈ [0, 1]; λ(A ∩ [0, s]) > tj}, j = 1, . . . ,m,
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and consider the predictable process

Vs = 1A(s)
∑

j≤m
cj 1{s ≤ σj}, s ∈ [0, 1],

Since
∫

fd(CAX) =
∫

V dX by the definition of CAX, it suffices by Corollary
5.31 to show that∫

· · ·
∫
∆k

∏
j≤k

V pj
sj

dsj =
∫
· · ·
∫
∆k

∏
j≤k

fpj
sj

dsj, (51)

for arbitrary k ∈ NN and p1, . . . , pk ∈ ZZ+.
Then introduce the right-continuous inverse τ : [0, h] → A of the mapping

As = λ(A ∩ [0, s]), and note as in FMP 2.14 that λ ◦ τ−1 = 1A · λ on [0, τh].
Since τ is strictly increasing with τtj = σj , it is also clear that V ◦ τ = f .
For the same reason, the k-fold tensor product τ⊗k maps ∆k into itself, and
similarly for the complement ∆c

k. Relation (51) now follows by the substitu-
tion rule for Lebesgue–Stieltjes integrals (FMP 1.22). �



Chapter 6

Homogeneity and Reflections

In this chapter, we study the invariance in distribution of a process X on
RR+ or [0, 1] under optional shifts or reflections, where the underlying times
τ are typically restricted by the condition Xτ = 0. Just as in the classical
case of regenerative processes, this leads to an Itô-type representation in
terms of an exchangeable point process of excursions, the associated time
scale being given by a local time random measure supported by the zero set
Ξ = {t; Xt = 0} of X.

After some preliminary discussion in Section 6.1, we characterize in Sec-
tion 6.2 the locally homogeneous processes on RR+, and in Section 6.3 we
consider the corresponding results for reflection invariant processes on [0, 1].
Further propositions involving the local time random measure and its local
intensity are given in Section 6.4. In Section 6.5 we show how the distribu-
tion of a sequence of independent and exponentially or uniformly distributed
random variables is essentially preserved under mapping by the local time
process. Next, Section 6.6 provides a comparison of the local hitting proba-
bilities of Ξ with the corresponding probabilities for a suitably defined sta-
tionary version Ξ̃.

Homogeneity at several states is considered in Section 6.7, which leads to
characterizations of proper and mixed Markov processes. The results sug-
gests the developments in the final Section 6.8, where we show, under suitable
regularity conditions, that the homogeneity and independence parts of the
strong Markov property are essentially equivalent.

6.1 Symmetries and Dichotomies

Consider an rcll process X on RR+ taking values in a Polish space S. We
assume that X is recurrent at some specified state 0 ∈ S, in the sense that
the random set Ξ = {t ≥ 0; Xt = 0} is a.s. unbounded. Letting X be adapted
to a right-continuous and complete filtration F , it is said to be (locally) F-
homogeneous at 0 if θτ X

d= X for every F -optional time τ < ∞ with Xτ = 0.
This holds in particular for the hitting times τr = inf{t ≥ r; Xt = 0}, r ≥ 0,
which are optional since X is progressively measurable (FMP 7.7). Note that
the F -homogeneity at 0 implies X0 = 0 a.s.

Our first result is a conditional form of the homogeneity.
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Lemma 6.1 (conditional homogeneity) Let X be F-homogeneous at 0. Then
for any optional times σ ≤ τ < ∞ with Xσ = Xτ = 0, we have

P [θσX ∈ ·|Fσ ] = P [θτ X ∈ ·|Fσ ] a.s.

Proof: Writing σA for the restriction of σ to a set A ∈ Fσ and using the
F -homogeneity at 0, we get

θσA∧τ X
d= θτ X, A ∈ Fσ.

Noting that σA ∧ τ equals σ on A and τ on Ac, we get for any A ∈ Fσ

E[P [θσX ∈ ·|Fσ ]; A] = P [θσX ∈ ·; A] = P [θτ X ∈ ·; A]
= E[P [θτ X ∈ ·|Fσ ]; A],

and the assertion follows. �

For a more detailed description of X, we note that the complement Ξc is
open and hence a countable union of open intervals. Since the points of Ξ\Ξ
are isolated from the right in Ξ, by the right-continuity of X, it follows that
Ξc is a countable union of excursion intervals of the form (u, v) or [u, v). The
associated excursions of X are given by Yt = X(t+u)∧v , t ≥ 0. Note that each
Y belongs to the set D0 of excursion paths x ∈ D(RR+, S), such that xt �= 0
for 0 < t < l(x) and xt = 0 for all t ≥ l(x), where l(x) > 0 is referred to as
the length of excursion x. Write Ξ · λ = 1Ξ · λ.

The following zero-infinity laws describe the possible forms of Ξ.

Proposition 6.2 (dichotomies on RR+) Let X be rcll and F-homogeneous
at 0, and put Ξ = {X = 0}. Then a.s.

(i) for any ε > 0, X has 0 or ∞ many excursions of length > ε;
(ii) Ξ is either nowhere dense or a locally finite union of intervals;
(iii) either λΞ = 0, or Ξ · λ is unbounded with support Ξ;
(iv) either Ξ is locally finite, or Ξ is perfect.

Proof: (i) Let Aε be the set of paths with at least one excursion of length
> ε. Since X is F -homogeneous at 0, we get for any r > 0

P{X ∈ Aε, θτrX /∈ Aε} = P{X ∈ Aε} − P{θτrX ∈ Aε} = 0,

which implies
{X ∈ Aε} =

⋂
r>0

{θτrX ∈ Aε} a.s.

Thus, if X has at least one excursion longer than ε, then such excursions
exist beyond every time r > 0, which means that their number is infinite.

(ii) Put σ = inf Ξc, and note that {σ = 0} ∈ F0. By (i) and Lemma 6.1
we can then deal separately with the cases σ = 0, σ ∈ (0,∞), and σ = ∞.
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When σ = ∞, we have Ξ = RR+, and Ξ is trivially of the second type. Next
suppose that σ = 0 a.s. By the F -homogeneity at 0, we have

inf(Ξc ∩ [τr,∞)) = τr a.s., r ≥ 0.

Applying this to all r ∈ QQ+, we conclude that Ξ is a.s. nowhere dense.
Now let 0 < σ < ∞ a.s. Applying the F -homogeneity at 0 to the times

τr, we see in particular that every excursion interval is followed by an interval
in Ξ of positive length. In particular, X has a first excursion starting at σ
and ending at some time γ1 > σ. Proceeding recursively, we may identify an
infinite sequence of excursions, separated by Ξ-intervals with left endpoints
γ1 < γ2 < · · · . Putting γ∞ = limn γn and using the F -homogeneity at 0, we
see that γ∞ − γ1

d= γ∞. Hence,

E[exp(−γ∞ + γ1) − exp(−γ∞)] = 0,

and since γ1 ≥ 0, we conclude that γ∞ − γ1 = γ∞ a.s. Since even γ1 > 0
a.s., we obtain γ∞ = ∞ a.s., which shows that Ξ is a locally finite union of
intervals.

(iii) Here we put σ = inf supp(Ξ·λ) and note as before that {σ = 0} ∈ F0.
By Lemma 6.1 we may then consider the cases σ = 0 and σ > 0 separately.
In the latter case, the F -homogeneity at 0 yields σ∧ τr /∈ supp(Ξ · λ) a.s. for
every r > 0. Hence, σ > τr a.s. for all r ≥ 0. But then σ = ∞ a.s., which
means that λΞ = 0 a.s.

Next suppose that σ = 0. The F -homogeneity at 0 yields τr ∈ supp(Ξ ·λ)
a.s. for every r ≥ 0, and since the times τr with r ∈ QQ+ are dense in Ξ, we
obtain

Ξ ⊂ supp(Ξ · λ) ⊂ Ξ a.s.,

which shows that Ξ · λ has support Ξ. Now define αr = λ(Ξ ∩ [r,∞)) for
any r ≥ 0. Applying the F -homogeneity at 0 to the times τr, we see that
αr

d= α0 for all r. Hence,

E(e−αr − e−α0) = 0, r ≥ 0,

and since αr ≤ α0, we obtain αr ≡ α0 a.s. If α0 < ∞, then by dominated
convergence

λΞ = α0 = αr → 0, r → ∞,

which contradicts the condition σ = 0. Thus, λΞ = α0 = ∞ a.s.
(iv) Defining σ = inf(Ξ ∩ (0,∞)), we have again {σ = 0} ∈ F0, which

allows us to treat the cases σ = 0 and σ > 0 separately. In the former case,
we may use the F -homogeneity at 0 to see that, a.s. for fixed r ≥ 0, the time
τr is a limit point from the right. Applying this to all r ∈ QQ+, we conclude
that Ξ has a.s. no isolated points, which means that Ξ is a.s. perfect.

Next suppose that σ > 0 a.s. By the F -homogeneity at 0, the time τr is
then a.s. isolated from the right for every r ≥ 0. In particular, this applies to
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all right endpoints of excursion intervals. Thus, σ is isolated in Ξ, and pro-
ceeding recursively, we see that Ξ begins with a sequence of isolated points
0 < σ1 < σ2 < · · · . Writing σ∞ = limn σn and using the F -homogeneity at
time σ1, we obtain σ∞ − σ1

d= σ∞. Since σ1 ≥ 0, we may strengthen this to
an a.s. equality, and since even σ1 > 0 a.s., we conclude that σ∞ = ∞ a.s.
Thus, σn → ∞ a.s., which means that Ξ is a.s. locally finite. �

Let us now consider the analogous invariance condition for rcll processes
X on [0, 1] with X0 = X1 = 0, taking values in a Polish space S with a
specified element 0. For every random time τ in [0, 1] with Xτ = 0, we define
the reflected process Rτ X as follows.

First we form a new process X̃ on [0, 1] by reversing X on [τ, 1], so that

X̃t =
{

Xt, t ∈ [0, τ ],
X1−t+τ , t ∈ (τ, 1].

Next we replace every excursion Y of X̃ within the interval [τ, 1] by its
reversal Ỹ . Thus, if X̃ has the excursion intervals [uj, vj) or (uj, vj) in [τ, 1],
j ∈ NN, we define

(Rτ X)t = X̃uj+vj−t, t ∈ [uj, vj), j ∈ NN.

We also put (Rτ X)vj
= 0, unless vj is also the left endpoint of another

excursion interval. For all other values of t, we put (Rτ X)t = X̃t. The
reversal Rτ B of a set B ⊂ [0, 1] is defined by

Rτ B = (B ∩ [0, τ ]) ∪ ((1 − B + τ) ∩ (τ, 1]).

Informally, we get Rτ X from X by reversing the order of the excursions
after time τ . Note, however, that the construction may cause two or more
excursions of X to coalesce into a single excursion for Rτ X. The next result
shows that Rτ X is again rcll and that, whenever Rτ X

d= X, the processes X
and Rτ X have a.s. the same set of excursions.

Lemma 6.3 (reflection) Let X be an rcll process on [0, 1] with X0 = X1 =
0. Then Rτ X is again rcll, for any random time τ in [0, 1] with Xτ = 0.
If Rτ X

d= X holds in addition, then X and Rτ X have a.s. the same set of
excursions from 0, and the zero sets Ξ = {X = 0} and Ξτ = {Rτ X = 0} are
a.s. related by Rτ Ξ = Ξτ .

Proof: If (u, v] or (u, v) is an excursion interval of X̃, then Rτ X is clearly
rcll on [u, v], by the corresponding property of X. We also note that Rτ X is
trivially rcll on [0, τ ]. Now define C = {X̃ = 0} ∩ [τ, 1], and let t be a limit
point from the right in C. Then X̃t+ = 0, which implies (Rτ X)t+ = 0. Since
also (Rτ X)t = 0 in this case, we conclude that Rτ X is right-continuous at t.
A similar argument shows that (Rτ X)t− = 0 for every limit point from the
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left in C. Since a point of C \ {1} that is not a limit from the right must
be the left endpoint of an excursion interval, and correspondingly for limit
points from the left and right endpoints, the argument shows that Rτ X is
rcll.

Now suppose that Rτ X
d= X. Let β and β̃ denote the point processes

of excursion lengths of X and Rτ X. Since the excursions are universally
measurable functions of the underlying process, we conclude that β

d= β̃. Now
two or more (even infinitely many) excursions in X of lengths bj , j ≤ m, may
coalesce into a single excursion in Rτ X of length

∑
j bj . By the subadditivity

of 1 − e−x, we get in that case

exp
(
−
∑

j>n
bj

)
− exp

(
−
∑

j≥n
bj

)
≤ 1 − e−bn, n ≤ m,

with strict inequality for n < m. Summing over n ≤ m yields

1 − exp
(
−
∑

j
bj

)
<
∑

j

(
1 − e−bj

)
,

which shows that ∫
(1 − e−x) β̃(dx) ≤

∫
(1 − e−x) β(dx), (1)

with equality iff β = β̃. Since the relation β
d= β̃ yields a.s. equality in (1), we

conclude that β = β̃ a.s. Thus, coalescence is a.s. excluded when Rτ X
d= X,

and so, with probability 1, the two processes have then the same excursions.
In particular, the excursion intervals of X̃ and Rτ X agree a.s. apart from
endpoints, and the a.s. relation Rτ Ξ = Ξτ follows. �

Let us now assume that X is adapted to a right-continuous and complete
filtration F on [0, 1]. We say that X has the strong reflection property at 0
if Rτ X

d= X for every F -optional time τ in [0, 1] with Xτ = 0. It is often
useful to consider the following conditional version.

Lemma 6.4 (conditional reflection invariance) Let X be an rcll, F-adapted
process on [0, 1] with X0 = X1 = 0, satisfying the strong reflection property
at 0. Then for any optional time τ with Xτ = 0, we have

P [Rτ X ∈ ·|Fτ ] = P [X ∈ ·|Fτ ] a.s.

Proof: For any A ∈ Fτ , the restriction τA = τ1A +1Ac is again an optional
time in Ξ = {X = 0}. The reflection property at τA yields

E[P [Rτ X ∈ ·|Fτ ]; A] = P [Rτ X ∈ ·; A] = P [X ∈ ·; A]
= E[P [X ∈ ·|Fτ ]; A],

and the desired relation follows since A was arbitrary. �

Our next result is a finite-interval version of Proposition 6.2.
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Proposition 6.5 (dichotomies on [0, 1]) Let X be an rcll, F-adapted pro-
cess on [0, 1] with X0 = X1 = 0, satisfying the strong reflection property at
0, and put Ξ = {X = 0}. Then a.s.

(i) Ξ is either nowhere dense or a finite union of intervals;
(ii) either λΞ = 0, or Ξ · λ has support Ξ;
(iii) either Ξ is finite, or Ξ is perfect.

Proof: (i) As in the proof of Proposition 6.2, we may put σ = inf Ξc

and note that {σ = 0} ∈ F0. By Lemma 6.4 we can then treat the cases
σ = 0 and σ > 0 separately. In the former case, sup Ξc = 1 by the reflection
property at 0 and Lemma 6.3. For any r ∈ [0, 1), we can use the reflection
property at τr together with the same lemma to see that τr is a limit point
from the right of Ξc, a.s. on the set {τr < 1}. Since this holds with a common
null set for all rational r, we conclude that Ξ is a.s. nowhere dense.

Next suppose that σ > 0. Using two reflections, as before, we conclude
that every optional time τ with Xτ = 0 is followed by a Ξ-interval of positive
length, a.s. on the set {τ < 1}. In particular, every X-excursion ending
before time 1 is followed by a non-degenerate Ξ-interval. Next consider the
infimum τ of all limit points from the right of both Ξ and Ξc, where τ = 1
when no such time exists, and note that τ is optional with Xτ = 0. Hence,
τ is followed by a non-degenerate Ξ-interval, a.s. on {τ < 1}. Since this
contradicts the definition of τ when τ < 1, we obtain τ = 1 a.s., which
means that a.s. no points have the stated property. By the symmetry on
[0, 1], Ξ and Ξc have a.s. no common limit points from the left either. Hence,
by combination, X has only finitely many excursions, separated by intervals
of positive lengths. Finally, a reflection on [0, 1] shows that even the last
excursion is followed by a non-degenerate Ξ-interval.

(ii) First we note that Ξ · λ = Ξ · λ since Ξ \ Ξ is countable. Writing
σ = inf supp(Ξ · λ), we have again {σ = 0} ∈ F0, which justifies a separate
treatment of the cases σ = 0 and σ > 0. In the former case, we may apply two
reflections, as before, to see that every time τr belongs to the support of Ξ ·λ,
a.s. on the set {τr < 1}. Since this holds simultaneously for all rational points
r ∈ [0, 1), outside a fixed null set, we conclude that Ξ\{1} ⊂ supp(Ξ ·λ) a.s.
Finally, since 0 belongs to the support of Ξ ·λ, the same thing is true for the
point 1, owing to the symmetry of Ξ on the whole interval.

Now assume instead that σ > 0 a.s. Reflecting twice, as before, we see
that σ is followed by an interval outside of supp(Ξ ·λ), a.s. on {σ < 1}. Since
this contradicts the definition of σ when σ < 1, we obtain σ = 1 a.s., which
means that λΞ = 0 a.s. in this case.

(iii) Putting σ = inf(Ξ∩(0, 1]), we have again {σ = 0} ∈ F0, which allows
us to treat the cases σ = 0 and σ > 0 separately. In the former case, we
may apply the usual two reflections to see that every time τr is a limit point
from the right of Ξ, a.s. on {τr < 1}. Since this holds simultaneously for all
rational times r ∈ [0, 1), we conclude that Ξ has a.s. no isolated points in
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[0, 1). We may finally use a reflection on [0, 1] to we see that, with probability
one, the point 1 is not isolated in Ξ either. Hence, in this case Ξ is a.s. perfect.

If instead σ > 0, the usual reflection argument shows that every optional
time τ with Xτ = 0 is a.s. isolated from the right in Ξ, a.s. on {τ < 1}. In
particular, we may define τ to be the infimum of all limit points from the
right in Ξ, taking τ = 1 when no such times exist. Since τ itself has the
stated property on the set {τ < 1}, we get a contradiction unless τ = 1 a.s.
Thus, all points of Ξ are a.s. isolated from the right. By reflection on [0, 1],
we see that they are also a.s. isolated from the left. Hence, Ξ has a.s. only
isolated points and therefore Ξ must be finite. �

The previous symmetries may also be considered for random subsets Ξ
of I = RR+ or [0, 1], without reference to any underlying process X. Given
a right-continuous and complete filtration F on I, it is natural to require
Ξ to be progressively measurable as a random subset of I × Ω, in the sense
that Ξ ∩ [0, t] ∈ B ⊗ Ft for every t ∈ I. This ensures that the times τs =
inf(Ξ ∩ [s,∞)) will be optional for all s ∈ I (FMP 7.7). Motivated by the
case where Ξ = {X = 0} for some rcll process X, it is often convenient to
assume in addition that Ξ be closed on the left, in the sense that for any
decreasing sequence t1, t2, . . . in Ξ, the limit also lies in Ξ.

It is now clear how to extend the previous symmetry conditions to ran-
dom sets. Thus, letting Ξ be progressively measurable and closed on the left
in RR+, we say that Ξ is F -homogeneous if θτ Ξ

d= Ξ for every optional time τ
in Ξ, where θτ Ξ denotes the shifted set (Ξ− τ)∩RR+, and the distribution of
Ξ is specified by the hitting probabilities P{Ξ∩G �= ∅} for any open subsets
G ⊂ RR+. For the reflection property of a random set Ξ in [0, 1] with 0, 1 ∈ Ξ,
we require instead that Rτ Ξ

d= Ξ for all optional times τ in Ξ, where Rτ

denotes the reversal of Ξ on the interval [τ, 1]. Most results for locally ho-
mogeneous or strongly reflective processes X remain valid for homogeneous
or reflective random sets Ξ, provided we replace the excursions of X by the
contiguous intervals of Ξ.

6.2 Local Homogeneity

A stronger condition than local homogeneity is for X to be regenerative,
where we add the independence requirement Fτ ⊥⊥ θτ X. Thus, X is said to
be F -regenerative at 0 if P [θτ X ∈ ·|Fτ ] = P0 a.s. for every optional time
τ < ∞ with Xτ = 0, where P0 = L(X). We shall prove that X is F -
homogeneous at 0 iff it is conditionally F-regenerative at 0, in the sense that
there exists a σ-field I satisfying

P [θτ X ∈ ·|Fτ ,I] = P [X ∈ ·|I], (2)
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for every optional time τ with Xτ = 0. This means that X is conditionally
F -homogeneous at 0 and satisfies θτ X ⊥⊥I Fτ , whenever τ < ∞ is optional
with Xτ = 0.

Theorem 6.6 (homogeneity and regeneration) Let X be an F-adapted, rcll
process on RR+, taking values in a Polish space S and recurrent at a state
0 ∈ S with X0 = 0 a.s. Then these conditions are equivalent:

(i) X is F-homogeneous at 0,
(ii) X is conditionally F-regenerative at 0.

Proof: Assume that X is F -homogeneous at 0. Writing Ξ = {X = 0}
and using Proposition 6.2 (i), (ii), and (iv), we see that Ω is a.s. a disjoint
union of the measurable sets

Ω1 = {Ξ = RR+},
Ω2 = {Ξ is infinite but locally finite},
Ω3 = {Ξ is an infinite but locally finite union of intervals},
Ω4 = {Ξ is nowhere dense with a perfect closure}.

By part (i) of the same result, we may further decompose the last of these
events according to the length of the longest excursion. More precisely, for
every n ∈ NN, we may consider the set Cn of paths of the last type with
infinitely many excursions of length ≥ n−1 but none of length ≥ (n − 1)−1,
where 0−1 is interpreted as ∞. This gives an a.s. decomposition of the path
space D(RR+, S) into countably many measurable subsets B1, B2, . . . . Each
of these sets is a.s. invariant, in the sense that a.s. X ∈ Bn iff θτ X ∈ Bn

for every n ∈ NN and for any optional time τ < ∞ with Xτ = 0. Thus, the
F -homogeneity at 0 remains valid under each of the conditional distributions
P [ · |An] with PAn > 0, where An = {X ∈ Bn}.

Now suppose that the regenerative property holds conditionally when X
is restricted to any one of the sets Bn. Applying this result to the conditional
distributions Pn = P [ · |An] with PAn > 0, we see that there exist some σ-
fields I1,I2, . . . satisfying

Pn[θτ X ∈ ·|Fτ ,In] = Pn[X ∈ ·|In], n ∈ NN.

Introducing the σ-field

I = σ{In ∩ An; n ∈ NN},

we get in the general case

P [θτ X ∈ · |Fτ ,I] =
∑

n
P [θτ X ∈ · ; An|Fτ ,I]

=
∑

n
1AnPn[θτ X ∈ · |Fτ ,In]

=
∑

n
1AnPn[X ∈ · |In]

=
∑

n
P [X ∈ · ; An|I] = P [X ∈ · |I],
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where the second and fourth relations are justified by the fact that, for any
σ-field F and events C ∈ A, F ∈ F , and I ∈ In,

E[1AnPn[C|F ,In]; F ∩ I] = E[Pn[C ∩ F ∩ I|F ,In]; An]
= P (An) Pn(C ∩ F ∩ I)
= P (An ∩ C ∩ F ∩ I).

This reduces the discussion to the case where X ∈ Bn a.s. for some fixed n.
First we take Ξ to be infinite but locally finite, say with points 0 = σ0 <

σ1 < · · · . Let Y1, Y2, . . . be the associated excursions of X, and introduce
the discrete filtration Gn = Fσn , n ∈ ZZ+, so that the sequence Y = (Yn) is
adapted to G = (Gn). For any G-optional time κ < ∞ we note that τ = σκ

is F -optional, since for any t ≥ 0

{τ ≤ t} = {σκ ≤ t} =
⋃

k
{σk ≤ t, κ = k} ∈ Ft

by the definition of Fσk
. Hence, the F -homogeneity of X yields θκY

d= Y ,
and so by Proposition 2.1 the sequence Y is conditionally G-i.i.d., given a
suitable σ-field I. Relation (2) now follows by the local property of condi-
tional expectations (FMP 6.2).

Next we consider the case where λΞ = ∞ a.s. For every n ∈ NN, we
introduce the random times

σn
k = inf{t ≥ 0; λ(Ξ ∩ [0, t]) > k2−n}, k ∈ ZZ+, (3)

which are optional since F is right-continuous and the process λ(Ξ ∩ [0, t])
is non-decreasing and adapted, due to Fubini’s theorem (FMP 7.2, 7.6). We
also note that σn

k ∈ Ξ a.s. for all n and k, by the continuity of λ(Ξ ∩ [0, t])
and the right continuity of X.

Now introduce the processes

Y n
k (t) = X((t + σn

k−1) ∧ σn
k ), t ≥ 0, n, k ∈ NN, (4)

and note that, for every n ∈ NN, the sequence Y n = (Y n
k ) is adapted to the

discrete filtration Gn
k = Fσn

k
, k ∈ ZZ+. For any Gn-optional time κ < ∞, we

see as before that the time τ = σn
κ is F -optional with values in Ξ. Hence,

the F -homogeneity yields θτ X
d= X, which translates into the condition

θκY
n d= Y n. By Proposition 2.1 and Corollary 1.6, the sequence Y n is then

conditionally Gn-i.i.d., given the tail σ-field Tn of Y n. Noting that θσn
k
X

can be measurably recovered from θkY
n and that the tail σ-field Tn = T is

independent of n, we get

P [θτ X ∈ ·|Fτ ,T ] = P [X ∈ ·|T ] a.s., (5)

first for the special times τ = σn
k , and then, by FMP 6.2, for any F -optional

time τ taking values in the set {σn
k }.
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Now fix an arbitrary F -optional time τ in Ξ, and introduce the approxi-
mating optional times

τn = inf{σn
k ≥ τ ; k ∈ ZZ+}, n ∈ NN. (6)

The τn are non-increasing since σn
k = σn+1

2k for all n and k. Recalling that
θτ X

d= X by F -homogeneity and that 0 belongs to the support of Ξ · λ by
Proposition 6.2, we see that in fact τn ↓ τ a.s. Letting τ = τn in (5) and
taking conditional expectations with respect to Fτ ∨ T , we obtain

P [θτnX ∈ ·|Fτ ,T ] = P [X ∈ ·|T ] a.s., n ∈ NN,

and (5) follows for the general choice of τ , by the right continuity of X and
dominated convergence. This completes the proof of (ii) when λΞ = ∞.

The last case to consider is when Ξ is nowhere dense with perfect closure
and Ξc contains infinitely many intervals of length > ε. By scaling we may
take ε = 1. For every n ∈ NN we introduce the right endpoints σn

1 < σn
2 <

· · · of the successive excursion intervals of length > 2−n and put σn
0 = 0.

Note that the times σn
k are optional and take values in Ξ. The intermediate

processes Y n
k are again defined as in (4), and the associated discrete filtrations

are given by Gn
k = Fσn

k
. Using Proposition 2.1 and Corollary 1.6, we see as

before that

P [θτ X ∈ ·|Fτ ,In] = P [X ∈ ·|In] a.s., n ∈ NN, (7)

for any optional time τ taking values in the set {σn
0 , σn

1 , . . .}, where In denotes
the invariant σ-field induced by the sequence Y n = (Y n

k ).
To deduce the general formula, we note that the σ-fields In are non-

increasing, since the sets {σn
0 , σn

1 , . . .} are increasing in n. For the same
reason, (7) remains true for the times τ = σm

j with m ≤ n. The relation is
equivalent to the a.s. conditions

θτ X ⊥⊥In Fτ , P [θτ X ∈ ·|In] = P [X ∈ ·|In],

and in each formula we may let n → ∞ to obtain the same result for the
σ-field I =

⋂
n In. Equation (2) now follows by the local property of condi-

tional expectations (FMP 6.2), for any optional time τ that takes values in
the countable set {σn

k }. For a general optional time τ in Ξ, the shifted set
θτ Ξ

d= Ξ is again nowhere dense with a perfect closure containing 0. We may
then approximate, as in (6), by some optional times τn ↓ τ of the special
type, and (2) follows as before by the right continuity of X. This completes
the proof of the implication (i) ⇒ (ii). The reverse assertion is obvious. �

When X is F -homogeneous at 0, we may also establish a conditional form
of the classical Itô representation (FMP 22.11). More precisely, assuming Ξ
to be perfect, we shall prove the existence of a diffuse local time random
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measure ξ with support Ξ, such that the excursions of X, plotted against the
associated cumulative local times, form a Cox process η on RR+×D0 directed
by an invariant random measure λ ⊗ ν on RR+ × D0. The alternative is for
Ξ to have only isolated points, in which case the excursions of X form an
exchangeable sequence in D0.

When λΞ = 0 a.s. and F is the right-continuous and complete filtration
induced by X, there is also an elementary characterization in terms of infinite
sequences. Here we say that the excursions of X are exchangeable if, for any
ε > 0, the excursions longer than ε form an exchangeable sequence in D0,
given that such excursions exist. Armed with these definitions, we may now
state the main characterizations of locally homogeneous processes on RR+.

We proceed to show that any locally homogeneous process X in a Polish
space S has a conditional Itô representation in terms of an exchangeable point
process on RR+×D0. This implies that the excursions of X are exchangeable,
and the two conditions are equivalent when λΞ = 0.

Theorem 6.7 (representation on RR+) Let X be an F-adapted, rcll process
on RR+, taking values in a Polish space S, and recurrent and F-homogeneous
at a state 0 ∈ S. Then

(i) X has a conditional Itô representation at 0,
(ii) X has exchangeable excursions from 0.

Conversely, (i) implies that X is conditionally regenerative for the induced
filtration at every optional time in Ξ = {X = 0} that avoids the left endpoints
in Ξc. Furthermore, (i) and (ii) are equivalent when λΞ = 0 a.s.

A couple of lemmas will be needed for the proof. We begin with an
elementary comparison of σ-fields.

Lemma 6.8 (induced filtration) Let X be an rcll process inducing a right-
continuous filtration F , and consider some F-optional times σ and τ . Then

Fσ ∩ {σ < τ} ⊂ σ(Xτ , τ) ⊂ Fτ .

Proof: The second inclusion is well-known (FMP 7.5). To prove the first
one, we introduce the optional times

σn = inf{k/n ≥ σ; k ∈ ZZ+}, n ∈ NN.

Then for any A ∈ Fσ ⊂ Fσn and sk ↓ s ≥ 0 we have

A ∩ {σn = s < τ} ∈ Fs ∩ {τ > s} = Fs ∩
⋃

k
{τ > sk}

⊂
⋃

k
σ{Xsk ; τ > sk}

⊂
⋃

k
σ{Xτ ; τ > sk} ⊂ σ(Xτ , τ),

and so
A ∩ {σn < τ} =

⋂
s
(A ∩ {σn = s < τ}) ∈ σ(Xτ , τ),
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where the intersection extends over rational s ≥ 0. Since σn ↓ σ a.s., we get

A ∩ {σ < τ} = A ∩
⋃

n
{σn < τ}

=
⋃

n
(A ∩ {σn < τ}) ∈ σ(Xτ , τ). �

We proceed to show how certain conditional properties can be strength-
ened to relations between suitable conditional distributions. The point is
that the original property is typically stated in terms of uncountably many
conditions, each of which holds outside an associated null set.

Lemma 6.9 (conditional distributions) Let ξ and η be random elements in
some Borel spaces S and T , fix a σ-field I in Ω, and consider a regular
conditional distribution µ = P [(ξ, η) ∈ ·|I] with marginals µ1 and µ2. Then

(i) P [ξ ∈ ·|I] = P [η ∈ ·|I] iff µ1 = µ2 a.s.,
(ii) ξ⊥⊥I η iff µ = µ1 ⊗ µ2 a.s.

Proof: (i) Here it is clearly understood that S = T . Since S is Borel, the
associated σ-field contains a countable, measure-determining class C. The
first relation yields a.s. µ1B = µ2B for all B ∈ C, which implies µ1 = µ2 a.s.
The reverse implication is obvious.

(ii) Here we may choose some countable, measure-determining classes C1

and C2 in S and T . The conditional independence yields

µ(A× B) = µ1(A) µ2(B) a.s., A ∈ C1, B ∈ C2,

which extends with a fixed null set to any measurable subsets of S and T .
The a.s. relation µ = µ1 ⊗µ2 now follows by the uniqueness of product mea-
sures (FMP 1.27). The reverse assertion is again obvious. �

We are now ready to prove the stated representation theorem.

Proof of Theorem 6.7: Suppose that X is F -conditionally regenerative
at 0, given some σ-field I. In the discrete case, the representation in terms
of exchangeable sequences follows immediately by iteration. Turning to the
perfect case, we may assume that F is the filtration induced by X. For any
optional time τ in Ξ, we have

P [θτ X ∈ ·|Xτ , τ,I] = P [X ∈ ·|I] a.s., (8)

which is equivalent to the a.s. relations

θτ X ⊥⊥I (Xτ , τ), P [θτ X ∈ ·|I] = P [X ∈ ·|I]. (9)

Since τ is X-measurable, Lemma 6.9 shows that the last relations are fulfilled
outside a fixed null set, in the sense that the conditions

θτ X ⊥⊥ (Xτ , τ), θτ X
d= X, (10)

hold a.s. under P [X ∈ ·|I] for every fixed τ .
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In particular, we note that (10) holds simultaneously, outside a fixed null
set, for each of the optional times σn

k introduced earlier. By the local property
of conditional expectations, the result remains valid, simultaneously, for all
optional times τ taking values in the set {σn

k }. This is because the event
τ = σn

k is measurably determined by the pair (Xτ , τ).
Now fix an arbitrary optional time τ in Ξ, and note that τ is a.s. a limit

point from the right in Ξ. Defining the approximating times τn ↓ τ as in
(6), though now with strict inequality, we note that (10) holds a.s. under
P [X ∈ ·|I] with τ replaced by τn. Since Fτ ⊂ σ(Xτn, τn) by Lemma 6.8, we
get

θτnX ⊥⊥Fτ , θτnX
d= X,

a.s. under the same conditional law, and (10) follows for τ itself by the right
continuity of X. This shows that X is a.s. regenerative under P [X ∈ ·|I], and
the desired representation follows from the classical result for regenerative
processes (FMP 22.11) by means of Lemma A1.5.

Now assume instead condition (i), so that X has a conditional Itô repre-
sentation. To show that is conditionally regenerative or to deduce condition
(ii), we may consider separately the cases where Ξ is discrete, where λΞ = ∞,
and where Ξ is nowhere dense with perfect closure and X has infinitely many
excursions longer than some ε. The discrete case being elementary, we turn
to the case where λΞ = ∞. Since the excursion point process η is Cox and
directed by a product random measure λ ⊗ ν, we note that

P [θsη ∈ ·|ηs, ν] = P [η ∈ ·|ν] a.s.,

where ηs denotes the restriction of η to [0, s] × D0. This translates imme-
diately into the conditions in (10), a.s. under the distribution P [X ∈ ·|ν]
and for any optional time τ = σn

k as in (3). That in turn implies (9) with
I = σ(ν), which is equivalent to (8). Arguing as before, we may finally ex-
tend the latter relation to (2) for the filtration F induced by X and for any
F -optional time τ that avoids the left endpoints in Ξc.

A similar argument applies when Ξ is nowhere dense with perfect closure
and X has excursions longer than some ε > 0. Here we define σn

1 < σn
2 < · · ·

for each n > ε−1 as the right endpoints of excursion intervals longer than
n−1. To obtain (10) in this case with τ = σn

k and I = σ(ν), we need to
apply the strong Markov property of η under the conditional distributions
P [η ∈ ·|ν]. The argument may then be completed as before. This proves the
first part of the last statement. The same argument shows that (i) implies
(ii).

It remains to show that (ii) implies (i) when λΞ = 0 a.s. By suitable
conditioning, we may then assume that X has a.s. infinitely many excursions
longer than some ε > 0. For any h ∈ (0, ε), de Finetti’s Theorem 1.1 shows
that the excursions longer than h are conditionally i.i.d., and we may intro-
duce their common conditional distribution νh, which is a random probability
measure on the associated path space Dh. Then for any h ≤ k in (0, ε), the
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excursions in Dk are conditionally i.i.d. with distribution νh[ · |Dk]. Invok-
ing the uniqueness part of Proposition 1.4, we conclude that the random
measures νh are related by

νk = νh[ · |Dk] a.s., 0 < h < k < ε.

Proceeding as in FMP 22.10, we may then construct a σ-finite random mea-
sure ν on D0 such that

νh = ν[ · |Dh] a.s., 0 < h < ε.

The normalization of ν is arbitrary and can be chosen such that ν = νh a.s.
on Dh for some fixed h ∈ (0, ε).

If νD0 < ∞, the excursions of X are conditionally i.i.d. with distribu-
tion ν/νD0, which implies the required representation. Assuming next that
νD0 = ∞, we may introduce a Cox process β on RR+ ×D0 directed by λ⊗ ν.
For every m ∈ NN, let Y m

1 , Y m
2 , . . . denote the X-excursions longer than m−1,

where Y m
k = 0 for all k if no such excursions exist. Writing Ỹ m

1 , Ỹ m
2 , . . . for

the corresponding excursion sequences obtained from β, we note that the
arrays (Y m

k ) and (Ỹ m
k ) have the same distribution. Hence, the transfer the-

orem (FMP 6.10) ensures the existence of a Cox process η
d= β on RR+ × D0

generating the original array (Y m
k ). Since λΞ = 0, it is clear that η provides

the required Itô representation of X. �

The previous results remain valid with obvious changes for homogeneous
random sets Ξ in RR+. In this case, the Itô representation is expressed in
terms of a Cox process η on RR+ × (0,∞), along with a random drift param-
eter α ≥ 0. Equivalently, the set Ξ is the closed range of a non-decreasing,
exchangeable process T on RR+, known from Theorem 1.19 to be a mixture
of subordinators. In particular, the lengths of all contiguous intervals longer
than an arbitrary ε > 0 form an exchangeable sequence in (0,∞). It is often
convenient to refer to random sets Ξ of the indicated type as exchangeable
sets in RR+.

6.3 Reflection Invariance

We turn to the corresponding result for reflection invariant processes on [0, 1],
taking values in a Polish space S with a specified element 0. Recall that D0

denotes the set of excursion paths from 0, and write l(u) for the length of
excursion u. Given a marked point process η on [0, 1] × D0, we say that the
process X on [0, 1] with X0 = X1 = 0 is generated by η if the excursions of
X are given by the marks in η, in such a way that a point at (s, y) gives rise
to an excursion with endpoints

Ts± = αs +
∫ s±

0

∫
l(u) η(dr du),
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where α = 1 − ηl is assumed to be nonnegative. To simplify the subse-
quent discussion, we may henceforth take F to be the right-continuous and
complete filtration induced by X.

Theorem 6.10 (representation on [0, 1]) Let X be an rcll process on [0, 1]
with induced filtration F , taking values in a Polish space S and such that
X0 = X1 = 0 ∈ S a.s. Suppose that X satisfies the strong reflection property
at 0. Then

(i) X is generated by an exchangeable point process on [0, 1] × D0,
(ii) X has exchangeable excursions from 0.

Conversely, (i) implies Rτ X
d= X for any optional time τ in Ξ = {X = 0}

that a.s. avoids the left endpoints in Ξc. Furthermore, (i) and (ii) are equiv-
alent when λΞ = 0 a.s.

Proof: By Lemma 6.4 and Proposition 6.5, we can apply an elementary
conditioning to reduce the proof to the special cases where Ξ is finite, where
λΞ > 0, or where Ξ is perfect and nowhere dense with λΞ = 0. First suppose
that Ξ is finite, say with points

0 = σ0 < σ1 < · · · < σκ = 1.

Defining σk = 1 for k ≥ κ, we note that the σk are optional, and so the
reflection property yields Rσk

X
d= X for all n. Since κ is invariant under

reflections, we conclude that

P [Rσk
X ∈ ·|κ = n] = P [X ∈ ·|κ = n], 0 ≤ k < n.

Writing Y1, . . . , Yκ for the excursions of X, we obtain

P [(Y1, . . . , Yk, Yn, . . . , Yk+1) ∈ ·|κ = n] = P [(Y1, . . . , Yn) ∈ ·|κ = n].

Since any permutation of 1, . . . , n is generated by reflections of type 1, . . . , k,
n, . . . , k + 1, it follows that Y1, . . . , Yn are conditionally exchangeable, given
κ = n. The same argument applies to the case of finitely many excursions
separated by intervals. If instead the number of excursions is infinite, we
see in the same way that, for any ε > 0, the excursions longer than ε are
conditionally exchangeable, given their total number. This shows that the
strong reflection property implies (ii), and it also yields the representation in
(i) when Ξ is finite.

To prove the same representation when Ξ is perfect and nowhere dense
with Lebesgue measure 0, let β be the point process of excursions of X, and
introduce a uniform randomization β̃ of β. For any m ∈ NN, consider the X-
excursions Y m

1 , Y m
2 , . . . of length > m−1, listed in their order of occurrence,

and write Ỹ m
1 , Ỹ m

2 , . . . for the corresponding sequence derived from β̃. By
exchangeability the arrays (Y m

k ) and (Ỹ m
k ) have the same distribution, and

so by the transfer theorem (FMP 6.10) there exists a point process η
d= β̃



270 Probabilistic Symmetries and Invariance Principles

generating the original array (Y m
k ). Since λΞ = 0, this also yields the required

representation of X.
It remains to consider the case where λΞ > 0. Then define the optional

times σn
k as in (3), except that the infimum of the empty set is now taken to

be 1. Introduce the intervals Ink = 2−n[k− 1, k), n, k ∈ ZZ+, and consider for
fixed s ∈ [0, 1] the random times

τn =
∑

k
1Ink

(s λΞ) σn
k , n ∈ NN.

Using the reflection property of X and noting that the random variable λΞ
is X-measurable and invariant under reflections, we get

P{RτnX ∈ ·} =
∑

k
P [Rσn

k
X ∈ ·; sλΞ ∈ Ink]

=
∑

k
P [X ∈ ·; sλΞ ∈ Ink] = P{X ∈ ·},

which shows that RτnX
d= X for all n.

Now introduce the local time process

Lt = λ(Ξ ∩ [0, t])/λΞ, t ∈ [0, 1],

along with its right-continuous inverse

Tr = inf{t ∈ [0, 1]; Lt > r}, r ∈ [0, 1].

Put τ = Ts for the specified number s ∈ [0, 1], and note that τn = Tsn , where

sn = inf{(k2−n/λΞ) > s; k ∈ ZZ+} ∧ 1, n ∈ NN.

Since sn ↓ s, we obtain τn ↓ τ .
To extend the reflection property to the time τ , we note that RτnX =

Rτ X = X on [0, τ). Furthermore,

(RτnX)t = (Rτ X)t−τn+τ , t ∈ (τn, 1),

and as n → ∞ we get (RτnX)t → (Rτ X)t− on (τ, 1). Since also (RτnX)1 =
(Rτ X)1 = 0 by our construction of the reflected process, we have (RτnX)t →
(Rτ X)t a.s. for every t in some dense set B ⊂ [0, 1] containing 1. Taking
limits in the relation RτnX

d= X, we conclude that Rτ X
d= X on the same

set B, which extends to the entire interval [0, 1] by the right-continuity on
each side.

We now create a simple point process η on [0, 1] × D0 by plotting the
excursions of X against their local times. Since Ξ · λ has support Ξ by
Proposition 6.5 (ii), we see that η is a marked point process on [0, 1]×D0, in
the sense that a.s. η({t}×D0) = 0 or 1 for all t ∈ [0, 1]. The reflected process
Rτ X has a.s. the same excursions as X by Lemma 6.3, and since Ξ \ Ξ and
Ξτ \ Ξτ are countable, the same lemma yields a.s.

Rτ (Ξ · λ) = Rτ (Ξ · λ) = Ξτ · λ = Ξτ · λ.
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Hence, an excursion of X with local time t ∈ (s, 1) is reflected into one for
Rτ X with local time 1− t+s. In other words, the point process η̃ associated
with Rτ X equals the reflection Rsη of η, and so the relation Rτ X

d= X

implies Rsη
d= η. Since s was arbitrary, we conclude from Theorem 1.15 that

η is exchangeable, and the desired representation follows by Lemma 1.24.
To prove the converse assertion, assume condition (i). Let G denote the

right-continuous and complete filtration on [0, 1] induced by η and its pro-
jection β = η(· × [0, 1]), and note that the right-continuous inverse T = L−1

is adapted to G. Using the continuity of L and the right-continuity of T , we
get

{Lt ≤ s} = {t ≤ Ts} ∈ Gs, s, t ∈ [0, 1],

which shows that the times Lt are G-optional. We may then introduce the
time-changed filtration F̃ = (GLt). Since Xt can be measurably constructed
from β, along with the restriction of η to any interval [0, Lt+ε] with ε > 0, and
since the latter is F̃t+ε-measurable by FMP 7.5, we obtain Ft ⊂ F̃t+ε ↓ F̃t as
ε → 0, which shows that F ⊂ F̃ .

Now consider any F -optional time τ in [0, 1], and define σ = Lτ . By the
continuity of L we have

{σ < s} = {Lτ < s} =
⋃

r
{τ < r, Lr < s}, s ∈ [0, 1], (11)

where the union extends over all rational r ∈ [0, 1]. Noting that {τ < r} ∈
Fr ⊂ F̃r = GLr and using the right-continuity of G, we see that the right-
hand side of (11) belongs to Gs (FMP 7.2), which means that σ is G-optional.
Hence, Proposition 2.6 yields Rση

d= η, and it follows easily that RTσX
d= X.

Assuming that τ lies in Ξ and avoids the left endpoint of every excursion in-
terval, we have Tσ = T (Lτ ) = τ , which yields the required relation Rτ X

d= X.
The last assertion was proved implicitly already by the previous discussion. �

The last theorem remains valid with obvious changes for reflective ran-
dom sets Ξ in [0, 1]. Here the representation is in terms of an exchangeable
point process η on [0, 1] × (0, 1], describing the lengths of the contiguous in-
tervals of Ξ, along with a random drift parameter α ≥ 0. Equivalently, we
may represent Ξ as the range of a non-decreasing, exchangeable process T
on [0, 1] with T1 = 1 a.s., as described by Theorem 1.25. Note in particular
that the lengths of all contiguous intervals exceeding an arbitrary ε > 0 now
form an exchangeable sequence of random length. It is again convenient to
refer to random sets Ξ of the indicated type as exchangeable sets in [0, 1].

6.4 Local Time and Intensity

In the last two theorems we have seen that if the process X, defined in a
Polish space S with a specified element 0, is locally homogeneous on RR+ or
satisfies the strong reflection property on [0, 1], in either case with respect
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to the state 0, then it can be represented in terms of an exchangeable point
process η on RR+ × D0 or [0, 1] × D0, where D0 denotes the set of excursion
paths from 0.

For a complete description, we also need to specify a random variable
α ≥ 0, determining the amount of time spent at 0. Then any point (s, u) of
η corresponds to an excursion u of X with endpoints Ts±, given as before by

Ts± = αs +
∫ s±

0

∫
l(u) η(dr du), (12)

where l(u) denotes the length of excursion u ∈ D0. For processes on [0, 1]
we have α⊥⊥β η, where β denotes the projection of η onto D0; for processes
on RR+ the corresponding condition is α⊥⊥ν η, where λ ⊗ ν is the directing
random measure of the Cox process η. In the former case we may choose
α = λΞ = 1−βl, where Ξ = {Xt = 0}, which makes the directing pair (α, β)
uniquely and measurably determined by X.

The infinite-interval case is more subtle, since the corresponding directing
pair (α, ν) is only determined up to a normalization. For most purposes, it
is convenient to normalize (α, ν) by the condition

α +
∫

(1 − el(u)) ν(du) = 1. (13)

In the trivial case where X ≡ 0, we may choose α = 1 and ν = 0, in agreement
with (13). In general, the process Ts = Ts+ given by (12) is conditionally a
subordinator directed by the pair (α, ν).

The following result gives the existence and uniqueness of the correspond-
ing representation of X, as well as a relationship between the pair (α, ν) and
the σ-field I occurring in (2).

Proposition 6.11 (directing elements) For any process X as in Theorem
6.6, there exist a σ-finite random measure ν on D0 and a random variable
α ≥ 0 such that the excursions of X are given by a Cox process η⊥⊥ν α on
RR+ × D0 directed by λ ⊗ ν, where an atom of η at (s, y) corresponds to an
excursion with the endpoints in (12). If the pair (α, ν) is normalized by (13),
it becomes a.s. unique, and (2) holds with I = σ(α, ν).

Proof: The existence of the stated representation was proved already in
Theorem 6.7, where we showed that X is regenerative for the induced filtra-
tion F , a.s. with respect to the conditional distribution P [X ∈ ·|I]. (Note
that this property is much stronger than the conditional statement (2) es-
tablished in Theorem 6.6.) The required Itô representation, valid under the
conditional distribution by FMP 22.11 and 22.13, extends to the original set-
ting by Lemma A1.5. This gives α and ν as I-measurable random elements.
Similar representations are obtainable by elementary arguments, whenever
Ξ is locally finite or a locally finite union of intervals.

By the law of large numbers, the random measure ν is a.s. unique up to
a random normalization, and the corresponding variable α is then uniquely
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determined via (12). Now introduce the scaling functions Sc(t) = ct, t ≥ 0.
For any random variable γ ⊥⊥α,ν η, the scaled point process ηγ = η ◦ S−1

γ is
again Cox with directing random measure λ ⊗ (ν/γ) (FMP 12.3). Since an
atom of η at (s, y) gives rise to an atom of ηγ at (γs, y), expression (12) for the
excursion endpoints remains valid for ηγ , provided we replace α by α/γ. In
particular, we may define γ by the left-hand side of (13), which is a.s. finite
and strictly positive by FMP 12.13, so that (13) becomes fulfilled for the
new pair (α/γ, ν/γ). Changing the notation, if necessary, we may henceforth
assume that the same condition holds already for the original pair (α, ν).

Now let µa,m denote the distribution of a regenerative process X, based
on a directing pair (a,m) normalized as in (13). Then (2) yields

P [θτ X ∈ ·|Fτ ,I] = P [X ∈ ·|I] = µα,ν .

Since (α, ν) is I-measurable, the chain rule for conditional expectations gives

P [θτ X ∈ ·|Fτ , α, ν] = P [X ∈ ·|α, ν] = µα,ν ,

which shows that (2) remains true with I replaced by σ(α, ν). �

If ν or β is unbounded or if α > 0, then T is strictly increasing and admits
a continuous inverse

Lt = inf{s ≥ 0; Ts > t}, t ∈ I,

called the local time of X at 0. Note that L is unique up to a random factor
that depends, for I = RR+, on the normalization of (α, ν). When I = [0, 1]
we may normalize L by the condition L1 = 1, whereas for I = RR+ the most
natural normalization is given by (13). We may also introduce the local
time random measure ξ = λ ◦ T−1 on I, also characterized by the condition
ξ[0, t] = Lt for all t ∈ I.

Lemma 6.12 (local time) Let X be an rcll process on I = RR+ or [0, 1],
taking values in a Polish space S and exchangeable at a state 0 ∈ S. Suppose
that the set Ξ = {X = 0} has a perfect closure containing 0. Then the local
time random measure ξ of X at 0 is a.s. diffuse with support Ξ, and ξ is a.s.
unique up to a normalization.

Proof: The proof for regenerative processes, given in FMP 22.11, depends
on the fact that the generating subordinator T is strictly increasing. The
result extends immediately to the conditionally regenerative case. The same
argument applies to the local time of an exchangeable set in [0, 1], if we can
only show that the generating process T is strictly increasing. This is trivially
true when α > 0, and if α = 0 and βD0 = ∞ it follows easily from the law
of large numbers. �
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For the next few results we restrict our attention to exchangeable random
sets Ξ in [0, 1], though similar results holds for regenerative and related sets
in RR+. Our aim is to show how the local time random measure ξ of Ξ can be
constructed by a simple a.s. approximation. Then introduce the symmetric
neighborhoods

Ξh = (Ξ + 1
2 [−h, h]) ∩ [0, 1], h > 0,

so that Ξh consists of all points in [0, 1] at a distance ≤ h/2 from Ξ. Equiv-
alently, x ∈ Ξh iff Ih

x ∩Ξ �= ∅, where Ih
x = x + 1

2 [−h, h]. Let Ξh · λ denote the
restriction of Lebesgue measure λ to the set Ξh.

Proposition 6.13 (approximation) Let Ξ be an a.s. perfect, exchangeable
set in [0, 1] with local time ξ, and put α = λΞ. Then ξ = Ξ ·λ/α when α > 0,
and in general

ξh ≡ Ξh · λ
λΞh

w→ ξ a.s., h → 0. (14)

Proof: First suppose that α > 0. We need to verify the relation⋂
s∈(0,1)

(Ts−, Ts)c = {Ts; s ≥ 0} a.e. λ. (15)

Here the inclusion ⊃ holds since Tt ≥ Ts when s ≤ t, whereas Tt ≤ Ts− when
s > t. Conversely, let t ∈ ⋂

s[Ts−, Ts)c be arbitrary and put σ = inf{s; Ts >
t}. Then clearly Tσ− ≤ t ≤ Tσ and t /∈ [Tσ−, Tσ), which implies t = Tσ .
Thus, the inclusion ⊂ in (15) is also true, possibly apart from the countable
set of left endpoints of intervals (Ts−, Ts).

Now fix any t ∈ [0, 1], and conclude from (15) and the countable additivity
of λ that

λ(Ξ ∩ [0, Tt]) = λ{Ts; s ≤ t} = λ
⋂

s≤t
(Ts−, Ts)c ∩ [0, Tt]

= Tt −
∑

s≤t
∆Ts = αt = αλ[0, t]

= αλ ◦ T−1[0, Tt] = αξ[0, Tt].

Hence, the distribution functions of the measures Ξ · λ and αξ agree on the
set (15), and it remains to note that both measures are diffuse and give no
charge to the intervals (Ts−, Ts).

The approximation in (14) is obvious when α > 0 and β(0,∞) < ∞,
since Ξ is then a finite union of intervals. If instead β(0,∞) = ∞, the law
of large numbers yields

lim
r→0

∑
j 1{βj > r, τj ≤ s}∑

j 1{βj > r} = s a.s., s ∈ [0, 1].

Using Fubini’s theorem and letting h → 0, we get a.s.

ξh[0, Ts] =
∑

j(βj ∧ h)1{τj ≤ s}∑
j(βj ∧ h)

=
∫ h
0 dr

∑
j 1{βj > r, τj ≤ s}∫ h

0 dr
∑

j 1{βj > r}
→ s.
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Furthermore, we note that a.s.

ξ[0, Ts] = λ{r ∈ [0, 1]; Tr ≤ Ts} = λ[0, s] = s, s ∈ [0, 1],

since T is strictly increasing. Thus, by combination,

ξh[0, Ts] → ξ[0, Ts] = s a.s., s ∈ [0, 1],

where the exceptional null set can be chosen, by monotonicity, to be inde-
pendent of s.

Now fix any t ∈ [0, 1], and choose s ∈ [0, 1] such that Ts− ≤ t ≤ Ts. For
any ε > 0 we get, outside a fixed null set,

s − ε ← ξh[0, Ts−ε] ≤ ξh[0, t] ≤ ξh[0, Ts] → s,

s − ε = ξ[0, Ts−ε] ≤ ξ[0, t] ≤ ξ[0, Ts] = s.

Since ε was arbitrary, we conclude that a.s. ξh[0, t] → s = ξ[0, t] for all t,
which implies ξh

w→ ξ a.s. �

The distribution of an exchangeable set in RR+ or [0, 1] is a mixture of
extreme sets where the directing pair (α, ν) or (α, β) is non-random, and for
many purposes it is enough to study the extreme case. If Ξ is an extreme,
exchangeable set in [0, 1] with α = λΞ > 0, then Fubini’s theorem yields, for
any Borel set B ⊂ [0, 1],

αEξB = Eλ(Ξ ∩ B) = E
∫

B
1{t ∈ Ξ} dt =

∫
B

P{t ∈ Ξ} dt,

which shows that the intensity measure Eξ is absolutely continuous with
density pt = P{t ∈ Ξ}/α. In other words, the probability for Ξ to hit a fixed
point t ∈ [0, 1] equals αpt. Since λ(Ξ \ Ξ) = 0, we may replace Ξ by Ξ. By
Fatou’s lemma, we get for any tn → t in [0, 1]

lim sup
n→∞

P{tn ∈ Ξ} ≤ E lim sup
n→∞

1{tn ∈ Ξ} ≤ E1{t ∈ Ξ} = P{t ∈ Ξ},

which shows that the modified density is upper semi-continuous.
We proceed to examine the existence and continuity properties of the

density of Eξ when α = 0. (The corresponding hitting probabilities will be
studied in a later section.) Here it is useful to impose a regularity condition on
Ξ. Given an exchangeable set Ξ in [0, 1] directed by (0, β), we may introduce
the associated indices of regularity

ρ = sup
{
r ≥ 0; lim

u→∞ u2−r
∑

k
β2

k 1{uβk ≤ 1} = ∞
}
,

ρ′ = inf
{
r ≥ 0;

∫ 1

0
xrβ(dx) < ∞

}
.

We have already seen, in Theorem 2.32, Proposition 2.33, and Corollaries 3.29
and 3.30, how ρ′ gives information about the local behavior of the generating
process T , hence also of the local time L of Ξ. For our present purposes,
however, index ρ seems to be more appropriate. The following result shows
how the two indices are related.
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Lemma 6.14 (indices of regularity) The indices ρ and ρ′ of an exchangeable
set Ξ in [0, 1] satisfy 0 ≤ ρ ≤ ρ′ ≤ 1 a.s. For any r ∈ [0, 1], we can choose Ξ
such that ρ = ρ′ = r a.s.

Proof: For any r ∈ [0, 1] and u > 0, we have

u2
∑

k
β2

k 1{uβk ≤ 1} =
∫ 1/u

0
(ux)2β(dx)

≤
∫ 1/u

0
(ux)rβ(dx) ≤ ur

∫ ∞

0
xrβ(dx).

Since the right-hand side is finite when ρ′ < r, so is the limit in the definition
of ρ, which shows that even ρ < r. Since β always satisfies

∫ 1
0 xβ(dx) < ∞, it

is also clear that ρ and ρ′ are both bounded by 1. This completes the proof
of the first assertion.

To prove the second assertion, let us first replace β by the the measure
ν(dx) = x−r−1dx on (0, 1] for an arbitrary r ∈ [0, 1), so that ρ′ = r. To
evaluate ρ in this case, we note that

u2−p
∫ 1/u

0
x2 ν(dx) = (2 − r)−1ur−p, p > 0,

which tends to ∞ as u → ∞ iff r > p. Hence, ρ = ρ′ = r a.s. Since
the same relations hold for suitable discrete approximations of ν, the a.s.
equalities ρ = ρ′ = r may occur for every r ∈ [0, 1). To give an example
where ρ = ρ′ = 1, we may consider suitable discrete approximations of the
measure

ν(dx) = |x log x|−2dx, x ∈ (0, 1
2).

Here clearly
∫ 1
0 xrν(dx) < ∞ iff r ≥ 1, which shows that ρ′ = 1. Comparing

with the measures x−r−1dx for arbitrary r < 1, we see that also ρ = 1, as
required. �

For the remainder of this section, we assume that Ξ is extreme and perfect
with λΞ = 0 and ρ > 0. The distributions L(Ts), s ∈ (0, 1), are then
absolutely continuous with continuous densities ps,t, given by the Fourier
inversion formula

ps,t = (2π)−1
∫ ∞

−∞
e−itu EeiuTs du, s ∈ (0, 1), t ∈ RR. (16)

The required integrability is clear from the following estimate.

Lemma 6.15 (characteristic functions) For any a ∈ (0, ρ), we have∫ ∞

−∞
sup

s∈[h,1−h]

∣∣∣EeiuTs

∣∣∣ du <
�

h−1/a < ∞, h ∈ (0, 1
2 ].
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Proof: Let τ by U(0, 1). By an elementary Taylor expansion, we have for
any r ∈ [0, 1], h ∈ (0, 1

2 ], and s ∈ [h, 1 − h]

|E exp(ir1{τ ≤ s})|2 = |seir + 1 − s|2
= 1 − 2s(1 − s)(1 − cos r)
≤ 1 − hr2(1 − r2/12)
≤ 1 − 2hr2/3 ≤ exp(−2hr2/3),

and so for any r ≥ 0 and s ∈ [h, 1 − h],

|E exp(ir1{τ ≤ s})| ≤ exp
(
−hr21{r ≤ 1}/3

)
.

Hence, by the independence of τ1, τ2, . . . , we get for any u ≥ 0 and s ∈
[h, 1 − h] ∣∣∣EeiuTs

∣∣∣ =
∣∣∣E∏

k
exp(iuβk1{τk ≤ s})

∣∣∣
=

∏
k
|E exp(iuβk1{τk ≤ s})|

≤
∏

k
exp

(
−hu2β2

k 1{uβk ≤ 1}/3
)

= exp
(
−hu2

∑
k
β2

k 1{uβk ≤ 1}/3
)
.

Now fix any a ∈ (0, ρ). By the definition of ρ, there exists a constant
c > 0 such that

u2
∑

k
β2

k 1{uβk ≤ 1} ≥ 3cua, u ≥ 1. (17)

Then ∫ ∞

1
sup

s∈[h,1−h]

∣∣∣EeiuTs

∣∣∣ du ≤
∫ ∞

1
exp(−chua) du

≤ (ch)−1/a
∫ ∞

0
exp(−ua) du <

�
h−1/a.

The interval (−∞,−1] gives the same contribution, and the integral over
(−1, 1) is bounded by 2 <

�
h−1/a. �

When ρ > 0, we may integrate (16) with respect to s ∈ (0, 1) to obtain,
for the intensity measure Eξ, the density

pt =
∫ 1

0
ps,t ds, t ∈ [0, 1]. (18)

To describe the continuity properties of p, we may introduce the sets S0 ⊂
S1 ⊂ · · · ⊂ [0, 1], where Sn consists of all sums

∑
k≤m βjk

with m ≤ n
and distinct indices j1, . . . , jm ∈ NN. In particular, S0 = {0} and S1 =
{0, β1, β2, . . .}. Write 1 − Sn = {1 − s; s ∈ Sn}.
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Theorem 6.16 (local intensity) Let ξ be the local time random measure
of an extreme, exchangeable set Ξ in [0, 1] with index ρ > 0, and put d =
[ρ−1] − 1. Then Eξ is absolutely continuous with a lower semi-continuous
density p given by (16) and (18). The latter is also right-continuous on Sc

d

and left-continuous on (1 − Sd)c.

Proof: To see that p = (pt) is a density of Eξ, let B ∈ B[0, 1] be arbitrary.
Recalling that ξ = λ ◦ T−1 and using Fubini’s theorem twice, we obtain

EξB = E
∫ 1

0
1{Ts ∈ B} ds =

∫ 1

0
P{Ts ∈ B} ds

=
∫ 1

0
ds
∫

B
ps,t dt =

∫
B

dt
∫ 1

0
ps,t ds =

∫
B

pt dt.

The densities ps,t in (16) are jointly continuous in s ∈ (0, 1) and t ∈ [0, 1], by
Lemma 6.15 and dominated convergence. Letting tn → t, we get by Fatou’s
lemma

lim inf
n→∞ ptn ≥

∫ 1

0
lim inf
n→∞ ps,tn ds =

∫ 1

0
ps,t ds = pt,

which shows that p is lower semi-continuous.
Now define the right neighborhoods of Sd by

Sh
d = (Sd + [0, h]) ∩ [0, 1], h > 0.

Fixing any h > 0, we may choose n > d so large that
∑

j>n βj ≤ h. Let σ
denote variable number d+1 in magnitude among the times τ1, . . . , τn. Then
as s ↓ 0 for fixed n, we have

P{σ ≤ s} =
∑

k∈(d,n]

(n//k) sk(1 − s)n−k <
�

sd+1, (19)

where the (n//k) are binomial coefficients. Writing

Ts =
∑

j≤n
βj1{τj ≤ s} +

∑
j>n

βj1{τj ≤ s} = T ′
s + T ′′

s ,

we note that T ′′
s ≤ h for all s and T ′

s ∈ Sd when s < σ. Hence, Ts ∈ Sh
d on

the set {σ > s}.
Now put µs = L(Ts) and νs = L(T ′′

s ), and define µu =
∫ u
0 µsds for u ∈

(0, 1). In view of the previous remarks together with formula (19), Fubini’s
theorem, Fourier inversion, and Lemma 6.15, we get for any Borel set B ⊂
(Sh

d )c and constant a ∈ ((d + 2)−1, ρ)

µuB =
∫ u

0
P{Ts ∈ B} ds =

∫ u

0
P{Ts ∈ B, σ ≤ s} ds

=
∫ u

0
E[P [T ′′

s ∈ B − T ′
s|T ′]; σ ≤ s] ds

≤ (2π)−1λB
∫ u

0
P{σ ≤ s} ‖ν̂s‖1 ds

<
�

λB
∫ u

0
sd+1−1/a ds < ∞. (20)
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By the joint continuity of ps,t, the measure µv − µu has the continuous
density pu,v

t =
∫ v
u ps,tds on [0, 1] for any u < v in (0, 1). Differentiating in

(20), we get as v → 0

sup
t /∈Sh

d

pu,v
t <

�

∫ v

0
sd+1−1/a ds → 0,

which shows that pv = p0,v → 0, uniformly on the closure (Sh
d )c. Hence p1/2

is continuous on the same set.
Since Sd is closed and its elements are isolated from the left, we have

Sc
d =

⋃
h>0

(Sh
d )c, Sd ⊂

⋃
h>0

(Sh
d )c |

,

where the last bar denotes closure on the right. Thus, the density p1/2 is in
fact continuous on Sc

d and left-continuous on Sd ∩ (0, 1]. In other words, p1/2

is left-continuous on (0, 1] and right-continuous on Sc
d. A similar argument

shows that the function p − p1/2 = p1/2,1 is right-continuous on [0, 1) and
left-continuous on (1 − Sd)c. The asserted continuity properties of p follows
by combination of the two statements. �

6.5 Exponential and Uniform Sampling

In this section we consider some results about random sampling or trunca-
tion for exchangeable random sets Ξ in RR+ or [0, 1], where the sampling or
stopping times are independent of Ξ and Poisson or uniformly distributed,
respectively. The results in the infinite-interval case depend on the proper
normalization of the local time process Lt = ξ[0, t], which is chosen in accor-
dance with (13) unless otherwise specified.

Theorem 6.17 (Poisson and uniform sampling) Let X be an rcll process
on I = RR+ or [0, 1], taking values in a Polish space S, and exchangeable at
a state 0 with normalized local time L, directing pair (α, ν) or (α, β), and
excursion point process η. For any τ1, τ2, . . . in I, let σ1, σ2, . . . be the distinct
elements of the sequence Lτ1, Lτ2, . . . , and write ηn for the restriction of η to
the complement {σ1, . . . , σn}c. Then

(i) if I = RR+ and τ1 < τ2 < · · · form a unit rate Poisson process indepen-
dent of X, we have

(τn) d= (σn)⊥⊥ (α, ν, η∞);

(ii) if I = [0, 1] and τ1, τ2, . . . are i.i.d. U(0, 1) and independent of X, we
have

(τn) d= (σn); (σ1, . . . , σn)⊥⊥ (α, β, ηn), n ∈ NN.
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In either case, the sequence σ1, σ2, . . . is a.s. infinite. This is true for (i)
since τn → ∞ and L has unbounded support Ξ. It also holds in case (ii), due
to the law of large numbers and the continuity of L. The relation (τn) d= (σn)
is easy to prove in both cases by means of Theorem 1.16.

Proof: (i) Let N denote the Poisson process formed by τ1, τ2, . . . . Since T
is exchangeable on RR+ and independent of N , we see from the cited theorem
that the point process N ◦ T is again exchangeable. The same thing is then
true for the simple point process (N ◦T )∗, obtained from N ◦T by reduction
of all multiplicities to 1. Hence, the latter process is mixed Poisson. To find
the rate of (N ◦ T )∗, we note that the probability for at least one point τk to
fall in an interval of length h > 0 equals 1− e−h. Using the normalization in
(13), we obtain

E[(N ◦ T )∗
1|α, ν] = α + E

∫ 1

0

∫
(1 − e−l(x)) η(dr dx)

= α +
∫

(1 − e−l(x)) ν(dx) = 1.

It remains to notice the the jumps of N ◦ T occur at times σ1, σ2, . . . .
To prove the stated independence we define ζ =

∑
k δσk

, so that ζ is the
random measure corresponding to (N ◦ T )∗. Next we may write ζ = ζ ′ + ζ ′′,
where ζ ′ arises from points τk hitting the excursion intervals of X and ζ ′′ from
those falling in the set Ξ. Then the pair (η∞, ζ ′) is a randomization of η, in
the sense of FMP 12.2, whereas ζ ′′ is a Cox process directed by αλ. Since
(η∞, ζ ′)⊥⊥η ν, we see from FMP 12.3 that (η∞, ζ ′) is again a Cox process,
and the relation (η∞, ζ ′)⊥⊥η,α ζ ′′ guarantees that the entire triple (η∞, ζ ′, ζ ′′)
is Cox. Hence, so is the pair (η∞, ζ), and since ζ was seen to be Poisson,
the independence η∞ ⊥⊥ ζ follows. Applying this result to the conditional
distributions, given (α, ν), we obtain the stronger statement (α, ν, η∞)⊥⊥ ζ.

(ii) Consider the measure-valued process

Yt =
∑

k
δk1{τk ≤ t}, t ∈ [0, 1],

which is clearly exchangeable. Then so is the composition Y ◦T by Theorem
1.16. The jumps of the latter process are mutually singular point processes
on NN, which we enumerate according to the lowest order term δk included,
say as γ1, γ2, . . . . The corresponding jump times then become σ1, σ2, . . . , and
Theorem 1.25 shows that the σk are again i.i.d. U(0, 1).

To prove the asserted independence in this case, it is enough to show that
ηn ⊥⊥ (σ1, . . . , σn), since the general statement will then follow by conditioning
on (α, β). Proceeding by induction on n, we shall prove that each ηn is a uni-
form randomization of some point process β(n) and satisfies ηn ⊥⊥ (σ1, . . . , σn).
Assuming this to be true for all indices less than n, we obtain

ηn−1 ⊥⊥ (σ1, . . . , σn−1), σn ⊥⊥ηn−1 (σ1, . . . , σn−1).
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Hence, the chain rule for conditional independence (FMP 6.8) yields

(σn, ηn−1)⊥⊥ (σ1, . . . , σn−1). (21)

By the construction of σn and the induction hypotheses for indices 1 and
n− 1, we note that also σn ⊥⊥ ηn, and that ηn is a uniform randomization of
some point process β(n). Since ηn is a measurable function of (σn, ηn−1), we
conclude from (21) and FMP 3.8 that ηn ⊥⊥ (σ1, . . . , σn). This completes the
induction step from n− 1 to n.

It remains to prove the assertion for n = 1. Thus, we need to verify the
independence σ1 ⊥⊥ η1 and show that η1 is a uniform randomization of some
point process β(1). Here we can take the original process β to be simple, since
we may otherwise attach some independent and i.i.d. U(0, 1) marks to the
excursions of X, through a uniform randomization of η. We can also reduce,
via a suitable conditioning, to the case where the measure β =

∑
k δβk

is
non-random. Re-labeling τ1 = τ and σ1 = σ, we may write η =

∑
k δβk,σk

,
where σ1, σ2, . . . are i.i.d. U(0, 1).

Now define κ = k when τ hits excursion interval number k, and put κ = 0
when τ ∈ Ξ. Since τ is U(0, 1) and independent of X, we note that a.s.

P [κ = k|σ1, σ2, . . .] = l(βk), k ∈ NN,

P [κ = 0, σ ∈ ·|σ1, σ2, . . .] = αλ. (22)

In particular, κ is independent of (σk), and we get

P [(σk) ∈ ·|κ] = P{(σk) ∈ ·} = λ∞. (23)

When κ > 0, we have

σ = σκ, η1 = η − δβκ,σκ =
∑

k �=κ
δβk,σk

,

which yields the required distribution of (σ, η1), conditionally on κ > 0. For
κ = 0, we get instead from (22) and (23)

P{(σk) ∈ A, σ ∈ B, κ = 0} = αλ∞A · λB,

which implies
P [(σ, σ1, σ2, . . .) ∈ ·|κ = 0] = λ∞.

Since η1 = η when κ = 0, the required conditional distribution follows again
for the pair (σ, η1). �

If X is recurrent and conditionally regenerative at 0 with X0 = 0, then
by Lemma 6.27 the directing triple (α, ν), normalized by (13), is a.s. unique
and measurably determined by X. Though the uniqueness fails when Ξ =
{X = 0} is a.s. bounded, we may still recover the distribution of (α, ν) from
that of X.

To deal with the uniqueness problem for processes on RR+, we begin with
the case where the last excursion is infinite. In the present context, it may
be more natural to normalize (α, ν) by the condition ν{l = ∞} = 1.
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Proposition 6.18 (infinite excursions) Let X be an rcll process in S with
X0 = 0, where X is conditionally regenerative at 0 and the set Ξ = {X = 0}
is a.s. bounded. Write (α, ν) for the associated characteristics, normalized
by ν{l = ∞} = 1, and let ν′ denote the restriction of ν to {l < ∞}. Then
L(α, ν′) is determined by L(X).

Our proof is based on an elementary result for random variables.

Lemma 6.19 (exponential scaling) For any random variable ξ ≥ 0, let
σ⊥⊥ ξ be exponentially distributed with mean 1, and put η = ξσ. Then L(ξ)
and L(η) determine each other uniquely.

Proof: Using Fubini’s theorem twice, we get for any u > 0

Ee−η/u = Ee−ξσ/u = E
∫ ∞

0
e−se−ξs/u ds

= uE
∫ ∞

0
e−ute−tξ dt

= u
∫ ∞

0
e−ut Ee−tξ dt.

Applying the uniqueness theorem for Laplace transforms (FMP 5.3), we see
that L(η) determines the continuous function Ee−tξ on RR+. By another ap-
plication of the same theorem, we conclude that L(η) determines even L(ξ).
The reverse statement is obvious. �

Proof of Proposition 6.18: Consider a Cox process η on RR+×D0 directed
by λ⊗ν′, and let Y be a conditionally independent process with distribution
ν′′ = ν − ν′. Next introduce an independent random variable σ > 0 with a
standard exponential distribution. Then X has clearly the same distribution
as the process generated by α and ησ = η ∩ [0, σ], followed by the infinite
excursion Y . The transfer theorem allows us to assume that the two processes
agree a.s.

Since σ⊥⊥X, a scaling by a factor σ−1 yields another representation of
X, in terms of a Cox process η̃ on [0, 1] × D0, directed by ν̃ = σν′ along
with the random drift rate α̃ = σα, followed by the same infinite excur-
sion Y . Here α̃ and β̃ = η̃([0, 1] × ·) are measurable functions of X, which
ensures L(α̃, β̃) to be determined by L(X). Hence, so is L(α̃, η̃) since η̃ is
a uniform randomization of β̃ with η̃⊥⊥β̃ α̃. Noting that the pair (α̃, η̃) is
exchangeable, we conclude as in Theorem 3.20 and Lemma 1.20 that L(X)
determines L(α̃, ν̃) = L(σα, σν′). Finally, Lemma 6.19 shows that the latter
distribution determines L(α, ν′). �

Returning to the case of an unbounded, homogeneous set Ξ in RR+, we
may construct a bounded set of the same type by truncating Ξ at a suitable
random time τ . Thus, we may form a bounded, homogeneous set Ξτ = Ξ ∩
[0, τ ] by choosing τ to be an independent, exponentially distributed random
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variable. Similarly, given an exchangeable set Ξ in [0, 1] and an independent
U(0, 1) random variable, we may consider the truncated random set Ξτ . In
both cases, the truncated set has again a representation in terms of a non-
decreasing, exchangeable process T on RR+ or [0, 1], respectively, though the
jumps of T are now allowed to be infinite. Equivalently, the directing random
measure ν or β may now have an atom at ∞.

The following result shows that, in either case, the distribution of Ξτ

determines that of the original set Ξ.

Theorem 6.20 (exponential or uniform truncation) Let Ξ be an exchange-
able set in [0, 1] or RR+ directed by (α, β) or (α, ν), respectively, and let τ ⊥⊥Ξ
be U(0, 1) or exponentially distributed with mean 1. Then L(α, β) or L(α, ν)
is determined by L(Ξτ ).

Proof: Beginning with the case of exchangeable sets Ξ in RR+, we may
embed the exponential time τ as the first point of a unit rate Poisson process
ξ⊥⊥Ξ on RR+. Let η denote the Cox process on RR+ × (0,∞) representing
Ξ. To construct the corresponding point process η̂ representing Ξτ , we note
that every contiguous interval hit by at least one point of ξ is replaced by
an infinite interval. In addition, we need to introduce an infinite interval
wherever τ hits Ξ. On the local time scale, a unit mass of η at a point
(s, x) is retained with probability e−x and moved to infinity with probability
1−e−x. Additional points at infinity are created according to a mixed Poisson
process with the constant rate α.

The two components of η̂ are conditionally independent of ν and also mu-
tually independent, given α and η. Hence, η̂ is again a Cox process, whose re-
striction to (0,∞) is directed by the measure ν̂(dx) = e−xν(dx) (FMP 12.3).
Furthermore, Theorem 6.17 shows that the points at infinity occur at a con-
stant rate 1. The drift parameter α clearly remains the same after thinning,
and so the stopped process is directed by a pair (α, ν̃), where ν̃ = ν̂ on (0,∞)
and ν̃{∞} = 1. By Lemma 6.18 we see that L(Ξτ ) determines L(α, ν̂), which
in turn determines L(α, ν′), since the formula ν′(dx) = exν̂(dx) exhibits ν′

as a measurable function of ν̂ (FMP 1.41). This completes the proof for
processes on RR+.

Turning to the finite-interval case, we may form another point process β′

on (0, 1) by letting β′ = β − δx when τ hits a contiguous interval of length
x and taking β′ = β if τ ∈ Ξ. Let us also write η and η′ for the associ-
ated representing point processes, with the possible interval at τ included or
excluded, and recall from Theorem 6.17 that σ = Lτ is independent of η′.
Hence, the lengths of all contiguous intervals occurring up to time τ form a
σ-thinning β̂′ of β′, conditionally on σ. Since σ is U(0, 1) by Theorem 6.17,
we see from FMP 12.2 that the pair (σα, β̂′) has Laplace transform

E exp
(
−uσα − β̂′f

)
=
∫ 1

0
E exp

(
−upα + β′ log

(
1 − p(1 − e−f )

))
dp,
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where u ≥ 0 and f ≥ 0 is any measurable function on (0,∞). Letting t > 0
be arbitrary and substituting

u = tv, 1 − e−f = tg, f = − log(1 − tg),

we get

E exp
(
−tvσα + β̂′ log(1 − tg)

)
=

∫ 1

0
E exp(−tvpα + β′ log(1 − ptg)) dp

= t−1
∫ t

0
E exp(−vsα + β′ log(1 − sg)) ds.

Multiplying by t and differentiating at t = 1 for fixed g with ‖g‖ < 1, we
obtain

E exp(−vα + β′ log(1 − g))

=
d

dt

{
tE exp

(
−tvσα + β̂′ log(1 − tg)

)}∣∣∣
t=1

.

The reverse substitution

g = 1 − e−h, h = − log(1 − g)

yields the equivalent formula

E exp(−vα − β′h)

=
d

dt

{
tE exp

(
−tvσα + β̂′ log

(
1 − t(1 − e−h)

))}∣∣∣
t=1

,

valid for any bounded, measurable function h ≥ 0 on (0,∞). Invoking the
uniqueness theorem for Laplace transforms, we conclude that L(σα, β̂′) de-
termines L(α, β′). The assertion now follows since the pair (α, β′) determines
(α, β), due to the normalization α + βl = 1. �

The last result leads easily to corresponding criteria for convergence in
distribution, in the spirit of Chapter 3. Given an exchangeable set Ξ in RR+ or
[0, 1], we may then introduce the associated truncated set Ξ̂ = Ξτ = Ξ∩[0, τ ],
where τ is an independent random variable with a standard exponential or
uniform distribution. Normalizing the directing pair (α, ν) or (α, β) of Ξ by
the condition α + ν(1− e−l) = 1 or α + βl = 1, respectively, where l(x) = x,
we may define the associated random probability measures µ = µα,ν or µα,β

on RR+ by

µα,ν = αδ0 + (1 − e−l) · ν, (24)
µα,β = αδ0 + l · β. (25)

In the former case, we may allow the set Ξ to be bounded, corresponding
to the possibility for ν to have positive mass at infinity. Accordingly, the
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measure µ in (24) is regarded as defined on the compactified interval [0,∞],
with a possible atom at ∞ of size µ{∞} = ν{∞}.

Given some random sets Ξ and Ξ1,Ξ2, . . . in a suitable metric space S,
we write Ξn

d→ Ξ for convergence in distribution with respect to the Fell
topology (FMP 16.28, A2.5) of the corresponding closures Ξn and Ξ. For
the directing random measures µ of exchangeable sets Ξ in RR+ or [0, 1], the
relevant mode of convergence is with respect to the weak topology on the
compactified interval [0,∞] or [0, 1], which allows for the possibility of some
mass to escape to infinity.

Corollary 6.21 (convergence of truncated sets) For every n ∈ NN, let Ξn be
an exchangeable set in RR+ or [0, 1] directed by (αn, νn) or (αn, βn), respec-
tively, form Ξ̂n by exponential or uniform truncation, and define µn as in
(24) or (25). Then these three conditions are equivalent:

(i) Ξn
d→ some Ξ,

(ii) Ξ̂n
d→ some Ξ̂,

(iii) µn
wd−→ some µ.

When the statements are true, we may choose the limits Ξ, Ξ̂, and µ to be
related in the same way as Ξn, Ξ̂n, and µn.

Proof: Assuming (iii), we see from Theorems 3.4 and 3.5 that the asso-
ciated generating processes T1, T2, . . . and T satisfy Tn

d→ T , with respect
to the Skorohod topology on D(RR+, [0,∞]) or D([0, 1], [0, 1]). Condition (i)
then follows by continuity (FMP 4.27). Since (i) implies (ii) by continuous
mapping, it remains to show that (ii) implies (iii).

Then assume that Ξ̂n
d→ A. The sequence (µn) is uniformly bounded and

hence relatively compact in distribution (FMP 16.15). If µn
wd−→ µ along

a subsequence, then the implication (iii) ⇒ (ii) yields Ξ̂n
d→ Ξ̂ for the as-

sociated random sets, where Ξ is an exchangeable set corresponding to the
measure µ. This gives A

d= Ξ̂, and so by Theorem 6.20 the distribution of µ

is unique, and we may assume that A = Ξ̂ a.s. The convergence µn
wd−→ µ

then remains valid along the original sequence, which proves (iii) with the
indicated relationship between Ξ̂ and µ. �

6.6 Hitting Points and Intervals

Here we study the probability for an exchangeable set Ξ to hit a fixed point
or short interval. We consider only the case of sets in [0, 1], though similar
results hold for sets in RR+. In a previous section we have seen that, if Ξ
is an extreme, exchangeable set in [0, 1] with directing pair (α, β) satisfying
α > 0, then P{t ∈ Ξ} = αpt for a suitable density p of Eξ. This suggests
that, when α = 0, the hitting probability P{t ∈ Ξ} should be 0 for any
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t ∈ (0, 1). Though this is indeed true, the proof in the general case is quite
complicated, and so we restrict our attention to the regular case, where the
index of regularity ρ is strictly positive.

Theorem 6.22 (hitting fixed points, Berbee) Let Ξ be a regular, exchange-
able set in [0, 1] with λΞ = 0. Then t /∈ Ξ a.s. for every t ∈ (0, 1).

Proof: We may clearly assume that Ξ is extreme. Let T denote the
exchangeable process generating Ξ, with jumps βj occurring at times τj , and
write L for the associated local time process T−1. Suppose that P{t ∈ Ξ} > 0
for some t ∈ (0, 1). For a fixed n > d = [ρ−1] − 1, construct the process Tn

from T by omitting the n largest jumps, let Ξn be the random set generated
by Tn, and write Ln for the local time of Ξn. Putting κj = 1{τj ≤ Lt},
j ≤ n, we may choose k1, . . . , kn ∈ {0, 1} such that

0 < P{t ∈ Ξ, Lt < 1, κ1 = k1, . . . , κn = kn}
= P{tn ∈ Ξn, Ln

tn < 1, κ1 = k1, . . . , κn = kn}
≤ P{tn ∈ Ξn, Ln

tn < 1},

where tn = t −∑
j kjβj . This shows in particular that

tn <
∑

j>n
βj < inf(1 − Sd).

Next define κn
j = 1{τj ≤ Ln

tn}. Using the independence of Ξn and τ1, . . . , τn

and noting that P [κn
j = 0|Ξn] > 0 for all j ≤ n, we obtain

P{tn ∈ Ξ} ≥ P{tn ∈ Ξ, κn
1 = · · · = κn

n = 0}
= P{tn ∈ Ξn; κn

1 = · · · = κn
n = 0} > 0.

Replacing t by tn, we may henceforth assume that t /∈ 1 − Sd.
Reflecting Ξ at the optional time τ = 1 − (1 − t)1{t ∈ Ξ}, we see from

Theorem 2.32 (ii) with f(x) = x that

lim
h→0

h−1ξ[t, t + h] = ∞ a.s. on {t ∈ Ξ}.

Hence, by Fatou’s lemma,

lim inf
h→0

h−1Eξ[t, t + h] ≥ E lim inf
h→0

h−1ξ[t, t + h] = ∞,

which shows that Eξ has no bounded density on the right of t. By symmetry
there is no bounded density on the left side either. Thus, Theorem 6.16 yields
t ∈ Sd ∩ (1 − Sd), which contradicts our additional hypothesis t /∈ 1 − Sd.
This shows that indeed t /∈ Ξ a.s. for every t ∈ (0, 1). �

The last theorem suggests that we study instead the left and right dis-
tances of Ξ to a fixed point t ∈ (0, 1). For a striking formulation of our



6. Homogeneity and Reflections 287

results, we may introduce a cyclically stationary version Ξ̃ of the original set,
formed by a periodic continuation of Ξ, followed by a shift by an independent
U(0, 1) random variable ϑ. Thus, for any t ∈ [0, 1], we have t ∈ Ξ̃ iff either
t − ϑ or t − ϑ + 1 lies in Ξ.

We begin with a two-sided estimate. Then, for t ∈ [0, 1], we define

σ−
t = sup(Ξ ∩ [0, t]), σ+

t = inf(Ξ ∩ [t, 1]), δt = σ+
t − σ−

t .

The corresponding quantities for the stationary and periodic version Ξ̃ will
be denoted by σ̃±

t and δ̃t, respectively.

Theorem 6.23 (endpoint distributions) Let Ξ be a regular, extreme, ex-
changeable set in [0, 1] with local intensity p given by Theorem 6.16. Then
for any continuity point t of p, we have

P{(σ−
s , σ+

s ) ∈ B, δs ≤ h}
P{(σ̃−

s , σ̃+
s ) ∈ B, δ̃s ≤ h}

→ pt as s → t and h → 0,

uniformly for sets B ∈ B([0, 1]2) such that the denominator is positive.

To appreciate this result, we note that the probability in the denominator
is independent of s and can be easily computed explicitly. A similar remark
applies to Theorem 6.25 below.

Our proof is based on an asymptotic relationship, clearly of interest in
its own right, between the local time intensity Eξ and the endpoint distri-
butions L(Tτn±). As before, T denotes the exchangeable process generating
the set Ξ, and τ1, τ2, . . . are the i.i.d. U(0, 1) random variables occurring in
the representation of T .

Lemma 6.24 (endpoint densities) For any regular, extreme, exchangeable
set Ξ in [0, 1], the distributions of the interval endpoints σ±

n = T (τn±) are
absolutely continuous with densities p±

n such that, for any continuity point t
of p and times tn → t, we have

p±
n (tn) → p(t).

Proof: By symmetry it is enough to consider the left endpoints σ−
n =

Tτn−. Let Tn be the process obtained from T by omission of the n-th jump
βn1{τn ≤ s}, and note that τn is U(0, 1) and independent of Tn. Writing
µn

s = L(Tn
s ), we get by Fubini’s theorem

L(Tτn−) = L(Tn
τn

) =
∫ 1

0
µn

s ds, n ∈ NN. (26)

Letting a ∈ (0, ρ) be arbitrary and choosing a c > 0 satisfying (17), we get
as in Lemma 6.15, for the associated characteristic functions µ̂n

s,u and for any
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times s ∈ (0, 1
2 ],∫ ∞

1
supn|µ̂n

s,u| du ≤
∫ ∞

1
supn exp

(
−su2

∑
k /∈n

β2
k1{uβk ≤ 1}/3

)
du

≤
∫ ∞

1
exp(−s(cua − 1)) du

≤ es(sc)−1/a
∫ ∞

0
exp(−ua) du <

�
s−1/a.

Combining with the corresponding estimate for s ∈ ( 1
2 , 1), we get for any

ε > 0 ∫ 1−ε

ε
ds
∫ ∞

∞
supn|µ̂n

s,u| du <
�

∫ 1/2

ε
s−1/a ds ≤ ε−1/a < ∞. (27)

For s ∈ (0, 1), the measures µn
s are again absolutely continuous with

continuous densities pn
s,t obtained by Fourier inversion, and we note that

2π(pn
s,t − ps,t) =

∫ ∞

−∞
e−itu(µ̂n

s,u − µ̂s,u) du

= s
∫ ∞

−∞
e−ituµ̂n

s,u(1 − eiuβn) du.

Writing

pε
t =

∫ 1−ε

ε
ps,t ds, pn,ε

t =
∫ 1−ε

ε
pn

s,t ds,

and using dominated convergence based on (27), we get as n → ∞ for fixed
ε ∈ (0, 1

2 ]

supt|pn,ε
t − pε

t | ≤ π−1
∫ 1−ε

ε
s ds

∫ ∞

−∞

∣∣∣µ̂n
s,u sin(uβn/2)

∣∣∣ du → 0. (28)

Noting that ps,t = pn
s,t = 0 for t /∈ (0, 1), we get by Fubini’s theorem

ps,t = (1 − s)pn
s,t + spn

s,t−βn
, s ∈ (0, 1), t ∈ RR.

Solving for the functions on the right gives

pn
s,t ≤ 2ps,t + 2ps,t+βn, s, t ∈ (0, 1). (29)

Fixing a continuity point t0 of p and putting pn
t =

∫ 1
0 pn

s,tds, we obtain

|pn
t − pt0| ≤ (pn

t − pn,ε
t ) + |pn,ε

t − pε
t | + |pε

t − pt0|
≤ 3(pt − pε

t ) + 2(pt+βn − pε
t+βn

) + |pn,ε
t − pε

t | + |pt − pt0|.

Using (28) and the continuity of p and pε, we get

lim sup
t→t0, n→∞

|pn
t − pt0| ≤ 5(pt0 − pε

t0
),
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which tends to 0 as ε → 0 since pt0 < ∞. Hence, the left-hand side equals 0,
which means that pn

t → pt0 . It remains to note that pn is a density of L(σ−
n ),

since for any B ∈ B[0, 1]

P{σ−
n ∈ B} =

∫ 1

0
µn

s B ds =
∫ 1

0
ds
∫

B
ps,t dt

=
∫

B
dt
∫ 1

0
ps,t ds =

∫
B

pt dt,

in view of (26) and Fubini’s theorem. �

Proof of Theorem 6.23: Given any Borel set B ⊂ [0, 1]2, we define

Bn
s = {r ∈ (s, s + βn); (r − βn, r) ∈ B}, s ∈ [0, 1], n ∈ NN,

Ih = {n; βn ≤ h}, h > 0.

Using Theorem 6.22 and Lemma 6.24, we get as s → t

P{(σ−
s , σ+

s ) ∈ B, δs ≤ h} =
∑

n∈Ih
P{Tτn ∈ Bn

s }

=
∑

n∈Ih

∫ 1

0
1{r ∈ Bn

s } pn+
r dr

∼ pt

∑
n∈Ih

∫ 1

0
1{r ∈ Bn

s } dr

= pt

∑
n∈Ih

P{T̃τn ∈ Bn
s }

= pt P{(σ̃−
s , σ̃+

s ) ∈ B, δ̃s ≤ h},

with the obvious interpretation when pt = 0. Here T̃τn denotes the right
endpoint of the n-th interval in Ξ̃, so that T̃τn = Tτn + ϑ modulo 1. �

Imposing slightly stronger conditions, we can derive similar estimates for
the corresponding one-sided distributions. Equivalently, we may consider the
asymptotic probability that Ξ will hit a short interval I ⊂ [0, 1]. By I → t
we mean that both endpoints of I tend to t.

Theorem 6.25 (hitting fixed intervals) Let Ξ be a regular, extreme, ex-
changeable set in [0, 1] with local intensity p. Then for I restricted to sub-
intervals of [0, 1], we have

P{Ξ ∩ I �= ∅}
P{Ξ̃ ∩ I �= ∅}

→ pt as I → t, t ∈ (0, 1) a.e. λ.

Proof: Let p be the density in Theorem 6.16, and fix any continuity point t
of p, such that p is also continuous at t±βn for every n ∈ NN. The exceptional
t-set is clearly countable and hence has Lebesgue measure 0. Consider any
interval I = [s, s + l], and let h > 0 be arbitrary. Note that

P{Ξ ∩ I �= ∅} = P{σ+
s ≤ s + l}

= P{σ+
s ≤ s + l, δs ≤ h} + P{σ+

s ≤ s + l, δs > h},
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and similarly for Ξ̃, σ̃+
s , and δ̃s. By (29) the densities pn+ are bounded near

t by some constants cn > 0, and so for small enough |s − t| and l,

P{σ+
s ≤ s + l, δs > h} =

∑
n/∈Ih

∫ s+l

s
pn+

r dr ≤ l
∑

n/∈Ih
cn.

A similar relation holds trivially for σ̃+
s and δ̃s, with cn replaced by 1. Fur-

thermore, we get by monotone convergence as l → 0

l−1P{σ̃+
s ≤ s + l} = l−1

∑
n
(βn ∧ l) =

∫ 1

0
(rl−1 ∧ 1) β(dr) → ∞,

and so for fixed h > 0

P{σ+
s ≤ s + l, δs > h}
P{σ̃+

s ≤ s + l} ∨ P{σ̃+
s ≤ s + l, δ̃s > h}
P{σ̃+

s ≤ s + l} → 0. (30)

Now fix any ε > 0. For |s−t|, l, and h small enough, Theorem 6.23 yields

(1 − ε)pt <
P{σ+

s ≤ s + l, δs ≤ h}
P{σ̃+

s ≤ s + l, δ̃s ≤ h}
< (1 + ε)pt.

Hence, in view of (30), we get for small enough l > 0

(1 − ε)pt <
P{σ+

s ≤ s + l}
P{σ̃+

s ≤ s + l} < (1 + ε)pt,

and the assertion follows since ε was arbitrary. �

6.7 Markov Properties

Here we consider processes X that are locally F -homogeneous at every point
in some measurable subset C of the state space (S,S). Imposing suitable
regularity conditions, we show that such a process X is conditionally Markov
on C. More precisely, there exist a σ-field I and some I-measurable random
probability measures µx, x ∈ C, on the path space of X such that

P [θτ X ∈ ·|Fτ ,I] = µXτ a.s. on {Xτ ∈ C}, (31)

for any F -optional time τ . Versions of this statement are true for processes
in both discrete and continuous time. In the former case, we note that the
paths of X and the filtration F are automatically continuous.

Theorem 6.26 (local homogeneity and Markov property) Let X be an rcll
process on RR+ or ZZ+, adapted to a right-continuous, complete filtration F ,
taking values in a Polish space S, and recurrent and F-homogeneous at every
state in a countable set C ⊂ S. Then X is conditionally, strongly F-Markov
on C, given some σ-field I.
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Two lemmas are needed for the proof. We begin with a simple ergodic
property, which shows how the directing random elements (α, ν) of a condi-
tionally regenerative process X can be measurably recovered, up to a nor-
malization, from the path of X.

Lemma 6.27 (ratio limit laws) Let X be an rcll process on RR+, taking
values in a Polish space S, and recurrent and F-homogeneous at a state 0
with directing pair (α, ν). Write ηtB for the number of complete excursions
in the set B up to time t, and let ζt be the amount of time in [0, t] spent at 0.
Then as t → ∞, a.s. on {νB ∈ (0,∞)} for any measurable sets A,B ⊂ D0,
we have

ηtA

ηtB
→ νA

νB
,

ζt

ηtB
→ α

νB
.

Proof: Defining T as in (12) in terms of the Itô representation at 0, we
see from FMP 22.11 and the law of large numbers for a stationary Poisson
process that, a.s. as s → ∞,

s−1ηTsB → νB s−1ζTs = α.

Hence, a.s. on {νB ∈ (0,∞)},

ηTsA

ηTsB
→ νA

νB
,

ζTs

ηTsB
→ α

νB
,

and the assertions follow since T is a.s. non-decreasing with range Ξ =
{X = 0}. �

We also need the following result for conditionally regenerative processes,
such as those in Theorem 6.6. Given such a process X, we put τ0 = 0, and
proceed recursively to define the optional times

τn = inf{t > τn−1 + 1; Xt = 0}, n ∈ NN. (32)

Let us now introduce the processes

Yn(t) = X((t + τn−1) ∧ τn), t ≥ 0, n ∈ NN, (33)

so that Yn is the path of X between τn−1 and τn, shifted back to the origin.
From the conditional regeneration property of X we see that the sequence
(Yn) is exchangeable, hence conditionally i.i.d., where the common condi-
tional distribution µ is a random probability measure on the path space
D = D(RR+, S).

Lemma 6.28 (directing elements) Let X be an rcll process on RR+, taking
values in a Polish space S, and recurrent and F-homogeneous at a state 0
with directing pair (α, ν). Write µ for the directing random measure of the
sequence Y1, Y2, . . . given by (32) and (33). Then σ(µ) = σ(α, ν) a.s.
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Proof: Proposition 6.11 shows that X is conditionally regenerative given
(α, ν). Iterating the regenerative property, we conclude that the Yn are con-
ditionally i.i.d. given the same pair. Now Lemma 6.27 shows that (α, ν) is
a.s. measurably determined by X, which is in turn measurably determined
by Y1, Y2, . . . . Hence, Proposition 1.4 (ii) yields σ(α, ν) = σ(µ) a.s. �

Proof of Theorem 6.26: Beginning with the discrete-time case, we may
introduce, for any state x ∈ C, the associated recurrence times τx

0 < τx
1 < · · ·

and excursions Y x
0 , Y x

1 , . . . , where Y x
0 is the path of X up to time τx

0 . By
a discrete-time version of Theorem 6.6 there exists a random probability
measure νx, defined on the space Dx of excursions from x, such that the Y x

k

with k ≥ 1 are conditionally i.i.d. νx. By the law of large numbers, we may
recover νx from the Y x

k through the formula

n−1
∑

k≤n
1B(Y x

k ) → νxB a.s., B ∈ Sn. (34)

For any other state y ∈ C, the excursion sequence Y y = (Y y
k ) can be mea-

surably recovered from Y x = (Y x
k ), which shows that the associated random

measure νy is a.s. Y x-measurable. Indeed, since the limit in (34) is invariant
under shifts of the excursion sequence, we see that νy is even a shift-invariant
function of Y x. By Corollary 1.6 it follows that νy is a.s. νx-measurable, and
since x, y ∈ C were arbitrary, we conclude that the σ-field I = σ(νx) is a.s.
independent of x.

Now introduce the random probability measures

µx = P [θτ x
0
X ∈ ·|I], x ∈ C,

so that µx is the distribution of a process X starting at x and proceeding
through a sequence of i.i.d. excursions with the common distribution νx. In
view of Proposition 2.1, we may conclude from the conditional regeneration
property that

P [θτ X ∈ ·|Fτ ,I] = µx = µXτ a.s.,

for any F -optional time τ satisfying Xτ = x a.s. The general statement in
(31) now follows by the local property of conditional expectations (FMP 6.2).

In continuous time and for arbitrary x ∈ C, the shifted process θτ x
0
X

can be represented as in Proposition 6.11 in terms of a random pair (αx, νx),
where αx ≥ 0 is a random variable and νx is a σ-finite random measure on
the excursion space Dx. To ensure uniqueness, we may take αx and νx to
be normalized by (13). Arguing as before, it remains to show that the pairs
(αx, νx) with x ∈ C generate the same σ-field I. Then fix any two states x �=
y in C, put τ0 = inf{t ≥ 0; Xt = y}, and define the processes Y1, Y2, . . . as in
(32) and (33), though with the state 0 replaced by y. By Lemma 6.27 the pair
(αx, νx) is measurably determined by X and a.s. invariant under arbitrary
shifts. Hence, (αx, νx) is also a shift-invariant function of the sequence Y =
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(Y1, Y2, . . .). Since Y is exchangeable, say with directing random measure µy ,
we conclude from Lemmas 1.6 and 6.28 that

σ(αx, νx) ⊂ σ(µy) = σ(αy, νy) a.s.

Interchanging the roles of x and y yields the reverse relation, and so, by com-
bination, the two σ-fields agree a.s. Thus, I = σ(αx, νx) is a.s. independent
of x. �

We turn to a related property, slightly stronger than local homogeneity.
Given an rcll process X in a Polish space S, along with a right-continuous
and complete filtration F , we say that X is globally F-homogeneous on a
measurable subset C ⊂ S, if it is F -adapted and there exists a probability
kernel µx from C to D(RR+, S) such that, for any F -optional time τ ,

P [θτ X ∈ ·|Xτ ] = µXτ a.s. on {Xτ ∈ C}.
Specializing to optional times τ satisfying Xτ = x a.s. for some x ∈ C, we
recover the property of local homogeneity. Let us also say that X is recurrent
on C if it is recurrent at every state x ∈ C.

Proposition 6.29 (global homogeneity and Markov property) Let X be an
rcll process on RR+, adapted to a right-continuous, complete filtration F , tak-
ing values in a Polish space S, and recurrent and globally F-homogeneous on
a countable subset C ⊂ S with |C| ≥ 2. Then X satisfies the strong Markov
property on C.

Proof: Since global homogeneity implies the corresponding local property,
Theorem 6.26 shows that X satisfies the conditional strong Markov property
on C, given a suitable σ-field I. Furthermore, by Proposition 6.11, we may
take I = σ(αx, νx) for any x ∈ C, where αx and νx denote the random
characteristics associated with the excursions from x. We also recall from
Lemma 6.27 that (αx, νx) = fx(X) a.s. for some shift-invariant, measurable
function fx; D → RR+ × Dx.

Now let y ∈ C be arbitrary, and choose an optional time τ with Xτ = y
a.s. By the invariance of fx and the local homogeneity at y, we have

P ◦ (αx, νx)−1 = P [fx(θτ X) ∈ ·|Xτ ] = µy ◦ f−1
x ,

which means that µy ◦f−1
x is independent of y. Using the global homogeneity

on C, we conclude that, for any optional time τ and measurable subsets
A ⊂ RR+ × Dx and B ⊂ C,

P{(αx, νx) ∈ A, Xτ ∈ B} = E[P [fx(θτ X) ∈ A|Xτ ]; Xτ ∈ B]
= E[µXτ ◦ f−1

x A; Xτ ∈ B]
= E[P{(αx, νx) ∈ A}; Xτ ∈ B]
= P{(αx, νx) ∈ A}P{Xτ ∈ B},

which shows that (αx, νx)⊥⊥Xτ .
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Since (αx, νx) = fx(X) a.s., the event I = {(αx, νx) ∈ A} is a.s. F∞-
measurable, and so by FMP 3.16 there exist some sets In ∈ Fn, n ∈ NN,
satisfying P (I∆In) → 0. Fixing any elements u �= v in C, we may next
choose some optional times τn ≥ n such that

Xτn =
{

u on In,
v on Ic

n,
n ∈ NN.

Using the independence of (αx, νx) and Xτn , we obtain

P (I ∩ In) = P{(αx, νx) ∈ A, Xτn = u}
= P{(αx, νx) ∈ A}P{Xτn = u} = P (I) P (In),

and as n → ∞ we get P (I) = (P (I))2, which implies P{(αx, νx) ∈ A} =
P (I) = 0 or 1. Since A was arbitrary, it follows that I = σ(αx, νx) is a.s.
trivial, and so the conditional strong Markov property reduces to the usual,
unconditional version. �

6.8 Homogeneity and Independence

The strong Markov property of a process X may be regarded as a combina-
tion of the global homogeneity with a condition of conditional independence.
Assuming some quite restrictive conditions, we have shown in Proposition
6.29 that the global homogeneity of a process implies the strong Markov
property. We will now use entirely different methods to prove, again un-
der suitable regularity conditions, that the two components of the strong
Markov property are in fact essentially equivalent. Since different conditions
are needed in the two directions, we treat the two implications separately.
Let us write νt = L(Xt).

Theorem 6.30 (from independence to homogeneity) Let X be an F-adapted
process in a Borel space S, such that Fτ ⊥⊥Xτ Xτ+h for every simple, optional
time τ < ∞ and for any h > 0. Then each of these conditions implies that
X is homogeneous F-Markov:

(i) S is countable and F0 is non-atomic,
(ii) there exist a set A ∈ F0 with 0 < P [A|X] < 1 a.s. and a σ-finite

measure ν on S with νt ! ν for all t ≥ 0.

Some lemmas are needed for the proof. The following extension property
will play a key role throughout our discussion. Given two σ-finite measures µ
and ν on the same measurable space, we write µ∨ν for the smallest measure
dominating µ and ν, and µ∧ ν for the largest measure bounded by µ and ν.
(For existence, see FMP 2.9.)
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Lemma 6.31 (consistency) Consider a family of measurable functions fi,
i ∈ I, between two measurable spaces S and T , along with some σ-finite
measures ν and νi ! ν on S, i ∈ I, such that fi = fj a.e. νi ∧ νj for all
i, j ∈ I. Then there exists a measurable function f : S → T satisfying fi = f
a.e. νi for every i ∈ I.

Proof: First suppose that I = NN. For any i �= j in NN, let νj = νa
ij + νs

ij

be the Lebesgue decomposition of νj with respect to νi (FMP 2.10), so that
νa

ij ! νi and νs
ij ⊥ νi. By the latter relation, we may choose Aij ∈ S such

that
νs

ijAij = 0, νiA
c
ij = 0, i �= j,

and define recursively

Bj =
⋂

i<j
Bc

i ∩
⋂

k>j
Ajk, j ∈ NN.

We may now take f = fj on Bj for every j ∈ NN, and let f = f1 on B∞ =⋂
j Bc

j .
To see that f = fj a.e. νj , it is enough to consider the restriction to Bi

for arbitrary i < j, since for k > j (including k = ∞) we have

Bk ⊂
⋂

i≤j
Bc

i =
⋂

i<j
Bc

i ∩
(⋃

i<j
Bi ∪

⋃
k>j

Ac
jk

)
⊂
⋃

k>j
Ac

jk,

and hence
νjBk ≤

∑
k>j

νjA
c
jk = 0.

Now f = fi = fj a.e. νi∧νj on Bi, and it remains to note that Bi ·νj ! νi∧νj

since νj ! νi on Aij ⊃ Bi.
For a general index set I, we may assume that νS < ∞ and νi ≤ ν for

all i ∈ I. Define c = sup(νi1∨ · · · ∨ νin)S, where the supremum extends over
all finite subsets {i1, . . . , in} ⊂ I. Then choose a sequence of such collections
{in1 , . . . , inn} such that (νin1

∨ · · · ∨ νinn)S → c. Listing the elements ink in a
single sequence i1, i2, . . . , we obtain (νi1 ∨ · · · ∨ νin)S → c. Now the result in
the countable case yields a measurable function f : S → T such that f = fik

a.e. νik for all k. Since νi !
∨

k νik for every i ∈ I, the relation f = fi a.e. νi

remains generally true. �

To state the next result, we need to introduce, for suitable optional times
τ < ∞ and constants h > 0, the associated probability kernels µτ

h on the
state space S of X satisfying

µτ
h(Xτ , ·) = P [Xτ+h ∈ ·|Xτ ], h > 0.

Such conditional distributions exist by FMP 6.3 when S is Borel.

Lemma 6.32 (transition kernels) Let X be an F-progressive process in a
Borel space S, and consider some optional times σ, τ < ∞ and a constant
h > 0 such that Fσ ⊥⊥Xσ Xσ+h and Fτ ⊥⊥Xτ Xτ+h. Then

µσ
h(Xσ, ·) = µτ

h(Xτ , ·) a.s. on {σ = τ}.
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Proof: Since {σ = τ} ∈ Fσ ∩ Fτ by FMP 7.1, and also Fσ = Fτ and
Xσ+h = Xτ+h on {σ = τ}, we see from FMP 6.2 and the required conditional
independence that, a.s. on {σ = τ} for any measurable set B ⊂ S,

µσ
h(Xσ,B) = P [Xσ+h ∈ B|Xσ ] = P [Xσ+h ∈ B|Fσ ]

= P [Xτ+h ∈ B|Fτ ] = P [Xτ+h ∈ B|Xτ ] = µτ
h(Xτ ,B).

Since S is Borel, we can choose the exceptional null set to be independent of
B, and the result follows. �

Proof of Theorem 6.30: (i) Since S is countable, we have νt ! ν for all
t ≥ 0, where ν is the counting measure on S. Now fix any s, t ≥ 0 and x ∈ S
such that νs{x} ∧ νt{x} > 0. Since F0 is non-atomic and EP [Xs = x|F0] =
νs{x} > 0, we can choose a set A ∈ F0 satisfying

A ⊂ {P [Xs = x|F0] > 0}, 0 < PA < νt{x},

and we note that

P [Xs = x; A] = E[P [Xs = x|F0]; A] > 0,
P [Xt = x; Ac] ≥ νt{x} − PA > 0. (35)

The random time τ = s1A + t1Ac is F0-measurable and hence F -optional,
and so by Lemma 6.32

µs
h(Xs, ·) = µτ

h(Xτ , ·) a.s. on A,

µt
h(Xt, ·) = µτ

h(Xτ , ·) a.s. on Ac. (36)

Specializing to the sets in (35) gives

µs
h(x, ·) = µτ

h(x, ·) = µt
h(x, ·),

which shows that µs
h = µt

h a.s. νs ∧ νt for any s, t ≥ 0. Regarding the kernels
µt

h as measurable functions from S to M1(S), we conclude from Lemma 6.31
that µt

h = µh a.e. νt for a single probability kernel µh on S. Since h was
arbitrary, this proves the asserted homogeneity of X.

(ii) For A as stated and any s, t ≥ 0, we may again put τ = s1A +t1Ac and
derive (36) by means of Lemma 6.32. Writing B = {µs

h(Xs, ·) = µτ
h(Xs, ·)},

we see from the first relation in (36) that

E[P [A|X]; Bc] = P (A \ B) = 0.

Since P [A|X] > 0 a.s., we obtain PBc = 0, which means that µs
h(Xs, ·) =

µτ
h(Xs, ·) a.s. on the entire Ω. Thus, µs

h = µτ
h a.e. νs. A similar argument

yields µt
h = µτ

h a.e. νt, and so by combination µs
h = µt

h a.e. νs ∧ νt. Since
νt ! ν for all t ≥ 0, a reference to Lemma 6.31 again completes the proof. �
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To state our result in the opposite direction, we need some further no-
tation. Given a suitably measurable process X and an optional time τ , we
introduce the absorption probabilities aτ

h, given a.s. by

aτ
h(Xτ ) = P [θτ X ∈ Ih|Xτ ], h > 0,

where Ih denotes the set of paths x with xrh = x0 for all r ∈ NN.

Theorem 6.33 (from homogeneity to independence, Blumenthal and Ge-
toor, Kallenberg) Let X be an F-adapted process in a Borel space S, such
that aσ

h = aτ
h and µσ

h = µτ
h a.e. νσ ∧ ντ for some h > 0 and for any simple,

F-optional times σ, τ < ∞. Then Fτ ⊥⊥Xτ Xτ+h for every such time τ .

Our proof relies on the following zero–one law for absorption, stated in
terms of the notation

Aτ
h = {x ∈ S; aτ

h(x) = 1}, h > 0. (37)

Lemma 6.34 (zero–one law) Let X be an F-adapted process in a Borel
space S, such that aσ

h = aτ
h a.e. νσ ∧ ντ for some h > 0 and for any simple,

F-optional times σ, τ < ∞. Then for any such time τ ,

aτ
h(Xτ ) = 1Aτ

h
(Xτ ) = 1Ih

(θτ X) a.s.

Proof: Since S is Borel, we may assume that S = RR. Fixing any simple,
optional time τ < ∞ and constants m,n ∈ NN, we may introduce the optional
times

σ = inf{t = τ + rh; r ≤ m, [nXt] �= [nXτ ]},
τk = τ + (σ − τ)1{[nXτ ] = k}, k ∈ ZZ,

where r is restricted to ZZ+. Then clearly

{[nXτk
] = k} ⊂ {[nXτ+rh] = k, r ≤ m}, k ∈ ZZ.

By Lemma 6.31 we may assume that aτk
h = aτ

h = ah for all k ∈ ZZ+. Writing
bh = 1 − ah, we get

E[bh(Xτ ); θτ X ∈ Ih] =
∑

k
E[bh(Xτ ); θτ X ∈ Ih, [nXτ ] = k]

≤
∑

k
E[bh(Xτk

); [nXτk
] = k]

=
∑

k
P{θτk

X /∈ Ih, [nXτk
] = k}

≤ P{θτ X /∈ Ih, [nXτ+rh] = k, r ≤ m}
≤ P

{
θτ X /∈ Ih, maxr≤m|Xτ+rh − Xτ | ≤ n−1

}
,

and m being arbitrary, we obtain

E[bh(Xτ ); θτ X ∈ Ih] ≤ P{θτ X /∈ Ih, supr|Xτ+rh − Xτ | ≤ n−1},
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which tends to 0 as n → ∞. Hence, ah(Xτ ) = 1 a.s. on {θτ X ∈ Ih}.
Combining this with the definition of ah, we see that also

E[ah(Xτ ); θτ X /∈ Ih] = Eah(Xτ ) − P{θτ X ∈ Ih} = 0,

and so ah(Xτ ) = 0 a.s. on {θτ X /∈ Ih}. This shows that ah(Xτ ) = 1Ih
(θτ X)

a.s. In particular, we have ah(Xτ ) ∈ {0, 1} a.s., and the remaining relation
ah(Xτ ) = 1Ah

(Xτ ) follows by the definition of Ah = Aτ
h. �

Proof of Theorem 6.33: Since S is Borel, we may assume that S = RR. To
prove the relation Fτ ⊥⊥Xτ Xτ+h for a given optional time τ < ∞ and constant
h > 0, it is enough to consider optional times σ in the set {τ + rh; r ∈ ZZ+}.
Here we have νσ ! ν for some σ-finite measure ν on S, and so by Lemma
6.31 we may assume that µσ

h = µh and aσ
h = ah a.e. νσ for some fixed kernel

µh and measurable function ah.
Define the associated set Ah by (37). For any Borel set B ⊂ RR and event

F ∈ Fτ ∩ {Xτ ∈ Ah}, we get by Lemma 6.34

P [Xτ+h ∈ B; F ] = P [Xτ+h ∈ B, θτ X ∈ Ih; F ] = P [Xτ ∈ B; F ].

Hence, a.s. on the set {Xτ ∈ Ah}, we have

P [Xτ+h ∈ B|Fτ ] = 1B(Xτ ) = P [Xτ+h ∈ B|Xτ ] = µh(Xτ ,B). (38)

Now assume instead that F ∈ Fτ ∩ {Xτ /∈ Ah}. Fixing any m,n ∈ NN, we
define

σ = inf{t = τ + rh, r ≤ m; [nXt] �= [nXτ ]},
τk = τ + (σ − τ)1F c1{[nXτ ] = k}, k ∈ ZZ,

and claim that

{[nXτk
] = k} ∩ Fc ⊂ {[nXτ+rh] = k, r ≤ m}. (39)

In fact, assume the conditions on the left. Then [nXτ ] = k, since the opposite
relation would imply τk = τ , which yields the contradiction [nXτk

] = [nXτ ] �=
k. It follows that τk = σ, and so [nXσ ] = [nXτk

] = [nXτ ], which yields
[Xτ+rh] = k for all r ≤ m.

Letting B ∈ B(RR) be arbitrary, we have

|E[1B(Xτ+h) − µh(Xτ ,B); F ]|
=

∣∣∣∑
k
E[1B(Xτ+h) − µh(Xτ ,B); [nXτ ] = k, F ]

∣∣∣
=

∣∣∣∑
k
E[1B(Xτk+h) − µh(Xτk

, B); [nXτk
] = k, Xτk

/∈ Ah, F ]
∣∣∣

=
∣∣∣∑

k
E[1B(Xτk+h) − µh(Xτk

, B); [nXτk
] = k, Xτk

/∈ Ah, F c]
∣∣∣

≤
∑

k
P [[nXτk

] = k, Xτk
/∈ Ah; Fc]

≤
∑

k
P{[nXτ+rh] = k, r ≤ m; θτ X /∈ Ih}

≤ P
{
maxr≤m|Xτ+rh − Xτ | ≤ n−1, θτ X /∈ Ih

}
,
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where the second relation holds since τk = τ on F , the third relation follows
from the fact that

E[1B(Xτk+h) − µh(Xτh
, B); [nXτk

] = k, Xτk
/∈ Ah] = 0,

by the definition of µh, the fourth relation is true since 0 ≤ µh ≤ 1, and the
fifth relation is a consequence of the set inclusion (39), Lemma 6.34, and the
definition of Ih. As m,n → ∞, the right-hand side tends to P{θτ X ∈ Ih,
θτ X /∈ Ih} = 0, which shows that

P [Xτ+h ∈ B|Fτ ] = µh(Xτ ,B) a.s. on {Xτ /∈ Ah}. (40)

Combining this with the same relation on {Xτ ∈ Ah}, obtained in (38), we
see that the equality in (40) holds a.s. on all of Ω. In particular, this shows
that Fτ ⊥⊥Xτ Xτ+h. �



Chapter 7

Symmetric Arrays

This chapter, the first of three on multivariate symmetries, is devoted to a
study of contractable or exchangeable arrays of arbitrary dimension. The
main results are the representation theorems for separately or jointly ex-
changeable or contractable arrays, established in Sections 7.4 and 7.5. Each
representation is stated in terms of a measurable function on a suitable space,
and in Section 7.6 we examine when two such functions f and g can be used
to represent the same array. Such results are needed for some applications
in later chapters.

Those core portions are preceded by three sections of preliminary mate-
rial, needed for the proofs of the main results. In Section 7.1, we set the
stage for the subsequent developments by introducing the necessary termi-
nology and notation. Section 7.2 includes some basic coupling results and
a characterization of arrays with independent entries, and in Section 7.3 we
prove some general coding principles and a crucial inversion theorem for rep-
resentations in terms of U-arrays.

We also include some material needed in subsequent chapters. Thus,
Section 7.6 also provides a representation theorem for nested sequences of
exchangeable arrays, required in Chapter 9, and in Section 7.7 we prove a
fundamental relationship between conditional distributions, which will play
a crucial role in Chapter 8. The present chapter concludes with a Section
7.8 on symmetric partitions, exhibiting a version, for general symmetries, of
Kingman’s celebrated paint-box representation, originally established in the
exchangeable case.

7.1 Notation and Basic Symmetries

Consider a d-dimensional random array Xk1,...,kd
, k1, . . . , kd ∈ NN, with entries

in an arbitrary measurable space S. In other words, assume X to be an
S-valued random process on the index set NNd. For any mapping p : NN → NN,
we define the transformed array X ◦ p on the same index set by

(X ◦ p)k1,...,kd
= X(pk1, . . . , pkd

), k1, . . . , kd ∈ NN,

where, for typographical convenience, we write X(k) = Xk for any k =
(k1, . . . , kd) ∈ NNd. We say that X is (jointly) exchangeable if X ◦ p

d= X for
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all permutations p = (p1, p2, . . .) of NN, and (jointly) contractable if the same
relation holds whenever p is a sub-sequence of NN, so that p1 < p2 < · · · . The
main purpose of this chapter is to characterize exchangeable and contractable
arrays in terms of some general representation formulas.

An array of dimension one is simply an infinite sequence, for which the
notions of exchangeability and contractability are equivalent by Theorem 1.1.
To see that the stated equivalence fails for d > 1, let ξ1, ξ2, . . . be i.i.d. U(0, 1),
and define Xij = ξi∧j for all i, j ∈ NN. Then for any subsequence p of NN and
for arbitrary i, j ∈ NN, we have

(X ◦ p)ij = ξpi∧pj
= ξpi∧j

= (ξ ◦ p)i∧j ,

which implies that X is contractable. If p is instead the transposition
(2, 1, 3, 4, . . .), we get a.s.

(X ◦ p)12 = X21 = ξ1 �= ξ2 = X23 = (X ◦ p)13,

whereas X12 = X13 = ξ1 a.s. Hence, in this case X ◦ p � d= X, and X fails to
be exchangeable.

When X is exchangeable or contractable, the restrictions of X to the
diagonal subsets of NNd are exchangeable or contractable arrays in their own
right. More precisely, letting π = {I1, . . . , Im} be an arbitrary partition of
{1, . . . , d} into disjoint, non-empty subsets I1, . . . , Im , we write NNπ for the
set of non-diagonal vectors k = (kI ; I ∈ π). We may form an m-dimensional
array Xπ with index set NNπ by taking Xπ

h = Xk1,...,kd
, where ki = hI when

i ∈ I ∈ π. An array X is clearly exchangeable or contractable iff the non-
diagonal parts of the arrays Xπ have the same property, in the sense that
(Xπ ◦ p) d= (Xπ) for all permutations or sub-sequences p of NN. Since arrays
of the same dimension can be combined into a single array, it is equivalent
to consider the stated properties for a sequence of non-diagonal arrays of
different dimension. We define the associated index set NN to consist of all
finite sequences (k1, . . . , kd) with distinct entries k1, . . . , kd ∈ NN, where d ∈
ZZ+ is arbitrary.

In the contractable case, we can reduce the index set even further. Thus,
for any sequence k = (k1, . . . , kd) with k1 < · · · < kd, we may introduce the
finite array

X̃k = (Xk◦p) = {X(kp1, . . . , kpd
)},

where p ranges over all permutations of {1, . . . , d}. It is easy to verify that
a non-diagonal array X is contractable iff the same property holds for the
tetrahedral array X̃. Considering arrays of different dimension, we are led to
choose, for our index set in the contractable case, the family ÑN of all finite
sequences (k1, . . . , kd) ∈ NNd with strictly increasing entries. Since any such
vector (k1, . . . , kd) can be identified with the set {k1, . . . , kd}, we may think of
ÑN, alternatively, as the class of all finite subsets of NN. Our discussion justifies
that, for exchangeable and contractable arrays X, we choose the index sets
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to be NN and ÑN, respectively. It also makes sense to consider exchangeable
arrays on ÑN, since every permutation of NN induces, in an obvious way, a
permutation of ÑN.

Our main representations are all in terms of families of i.i.d. U(0, 1) ran-
dom variables, here referred to, for convenience, as U-sequences, U-arrays,
or U-processes, depending on the choice of index set. To represent exchange-
able arrays on NN or contractable arrays on ÑN, we consider U-arrays ξ = (ξJ )
indexed by ÑN, where J is an arbitrary, finite subset of NN. For any sequences
k = (k1, . . . , kd) in NN or sets J = {k1, . . . , kd} in ÑN, we introduce the arrays
ξ̂k or ξ̂J of variables ξI with I ⊂ J, enumerated consistently as follows. Let-
ting k = (k1, . . . , kd) and I = {i1, . . . , im} ∈ 2d with i1 < · · · < im , where 2d

denotes the class of subsets of {1, . . . , d}, we define k ◦ I = {ki1, . . . , kim}. If
instead J = {k1, . . . , kd} with k1 < · · · < kd, we put J ◦ I = k ◦ I, where
k = (k1, . . . , kd). Writing |k| for the dimension of the vector k and |J| for
the cardinality of the set J, we may now define

ξ̂J = {ξJ◦I ; I ∈ 2|J |}, J ∈ ÑN,

ξ̂k = {ξk◦I ; I ∈ 2|k|}, k ∈ NN.

A representing function f is said to be symmetric if f(x̂h) = f(x̂k) whenever
h ∼ k, in the sense that h and k are permutations of each other. When
the components of k = (k1, . . . , km) are different, we define k̃ as the set
{k1, . . . , kd}.

All representations of exchangeable and contractable arrays established
in this chapter are of functional type. To illustrate the basic ideas by a
simple case, we may state de Finetti’s classical theorem in a functional form,
obtainable from Theorem 1.1 by elementary methods.

Lemma 7.1 (functional representation) An infinite, random sequence ξ in
a Borel space (S,S) is contractable iff

ξj = f(α, ϑj) a.s., j ∈ NN, (1)

for a measurable function f : [0, 1]2 → S and some i.i.d. U(0, 1) random
variables α and ϑ1, ϑ2, . . . . The directing random measure ν of ξ is then
given by

νB =
∫ 1

0
1B(f(α, t)) dt, B ∈ S. (2)

Proof: Suppose that ξ is conditionally i.i.d. with directing random mea-
sure ν. Starting from an arbitrary collection of i.i.d. U(0, 1) random variables
α̃ and ϑ̃1, ϑ̃2, . . . , we may use repeatedly the transfer theorem (FMP 6.10) to
certify the existence of some measurable functions g and h between suitable
spaces such that

ν̃ ≡ g(α̃) d= ν, (ξ̃1, ν̃) ≡ (h(ν̃, ϑ̃1), ν̃) d= (ξ1, ν). (3)
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Writing f(s, t) = h(g(s), t), we get

ξ̃1 = h(ν̃, ϑ̃1) = f(g(α̃), ϑ̃1) = f(α̃, ϑ̃1),

and we may define, more generally,

ξ̃j = f(α̃, ϑ̃j) = h(ν̃, ϑ̃j), j ∈ NN.

Here the last expression shows that the ξ̃j are conditionally independent
given ν̃, and (3) yields their common conditional distribution as ν̃. Hence,
the sequence ξ̃ = (ξ̃j) satisfies (ν̃, ξ̃) d= (ν, ξ), and we may use the transfer
theorem once again (or, more directly, FMP 6.11) to obtain a.s.

ν = g(α), ξj = h(ν, ϑj), j ∈ NN. (4)

for some i.i.d. U(0, 1) variables α and ϑ1, ϑ2, . . . . In particular, (1) follows.
To prove (2), let B ∈ S be arbitrary, and use (4), Fubini’s theorem, and

the definition of ν to write

νB = P [ξ1 ∈ B|ν] = P [h(ν, ϑj) ∈ B|ν]

=
∫ 1

0
1B(h(ν, t)) dt =

∫ 1

0
1B(f(α, t)) dt. �

All multi-variate representations established in the sequel are extensions
of this result. Thus, we show in Theorem 7.15 that a random array X on
ÑN, taking values in an arbitrary Borel space S, is contractable iff it can be
represented in the form

XJ = f(ξ̂J ) a.s., J ∈ ÑN,

where ξ is a U-array on ÑN and f is a measurable function on the infinite
union

⋃
d≥0 [0, 1]2d , taking values in S. A similar result holds for exchangeable

arrays. Thus, we prove in Theorem 7.22 that a random array X on NN, taking
values in a Borel space S, is exchangeable iff it has a representation

Xk = f(ξ̂k) a.s., k ∈ NN.

The similarity of the two representations is remarkable. In fact, as an im-
mediate corollary, we note that an array on ÑN is contractable iff it admits
an exchangeable extension to NN. When X is one-dimensional, the two in-
dex sets agree, and the result reduces to Ryll-Nardzewski’s theorem—the
fact that, for infinite random sequences, the notions of exchangeability and
contractability are equivalent. Thus, the quoted result can be regarded as a
multi-dimensional version of Ryll-Nardzewski’s theorem.

A zero-dimensional array is just a single random element X = X∅, and
both representation reduce to X = f(ξ) for some measurable function f :
[0, 1] → S and a U(0, 1) random variable ξ—a well-known result that is
easy to prove (cf. FMP 6.10). In one dimension, the arrays are infinite
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random sequences X = (X1,X2, . . .), and the representation becomes Xk =
f(ξ∅, ξk) a.s. for all k ∈ NN, which holds in the exchangeable case by Lemma
7.1. For dimensions two and three, we obtain in both cases the less obvious
representations

Xij = f(ξ̂ij) = f(ξ∅, ξi, ξj , ξij),

Xijk = f(ξ̂ijk) = f(ξ∅, ξi, ξj , ξk, ξij , ξik, ξjk, ξijk),

where the indices i, j, and k are all different, and we are writing ξij = ξ{i,j}
and ξijk = ξ{i,j,k} for convenience.

We shall consider yet another type of symmetry. Given a random array
Xk1,...,kd

, k1, . . . , kd ∈ NN, we say that X is separately exchangeable if X ◦
(p1, . . . , pd)

d= X for any permutations p1, . . . , pd of NN, where

(X ◦ (p1, . . . , pd))k1,...,kd
= X(p1,k1, . . . , pd,kd

), k1, . . . , kd ∈ NN.

In other words, X is now required to be exchangeable in the one-dimensional
sense, separately in each index. For arrays ξ on ZZd

+ and for arbitrary vectors
k = (k1, . . . , kd) ∈ NNd, we write ξ̂k for the 2d-dimensional vector with entries
ξhj

, where hj = kj or 0 for all j. As before, the notation carries over to
measurable functions on suitable domains.

As a simple consequence of the previous representations, we prove in
Corollary 7.23 that a Borel-space valued array X on NNd is separately ex-
changeable iff it has a representation

Xk = f(ξ̂k) a.s., k ∈ NNd,

in terms of a U-array ξ on ZZd
+ and a measurable function f on [0, 1]2d . The

representations in dimensions zero and one are the same as before, but in
higher dimensions they are fundamentally different. Thus, in dimensions two
and three, we have the representations

Xij = f(ξ̂ij) = f(ξ00, ξi0, ξ0j , ξij),

Xijk = f(ξ̂ijk) = f(ξ000, ξi00, ξ0j0, ξ00k, ξij0, ξi0k, ξ0jk, ξijk),

where i, j, k ∈ NN are arbitrary.
The intricate proofs of the mentioned representations occupy much of

the remainder of the chapter. Thus, after two more sections of preliminary
material, the representation of contractable arrays is proved in Section 7.4,
followed by those for separately or jointly exchangeable arrays established in
Section 7.5. In Section 7.6, we examine to what extent those basic represen-
tations are unique. Section 7.7 in devoted to some conditional properties of
exchangeable arrays, needed in the next chapter, and Section 7.8 deals with
exchangeable and related partitions.

To simplify our statements, we assume throughout the chapter that all
random arrays take values in a general Borel space, unless otherwise specified.
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7.2 Coupling, Extension, and Independence

Here and in the next section, we consider some preliminary results needed for
the proofs of the main theorems of the chapter. The statements in the present
section include some coupling results for exchangeable or contractable arrays
and a characterization of representable arrays of the mentioned type with
independent entries.

Given an arbitrary index set T ⊂ RR, we write T̃ for the class of all
finite subsets of T . We say that a random array X on T̃ is contractable
if X ◦ p

d= X ◦ q for any finite, increasing sequences p = (p1, p2, . . .) and
q = (q1, q2, . . .) in T of equal length. When T = NN, this clearly reduces
to the previous notion of contractability. We proceed to show how pairs
of exchangeable or contractable arrays can be combined through a suitable
coupling.

Lemma 7.2 (coupling by conditional independence)
(i) Let X, Y , and Z be random arrays on NN with X ⊥⊥Y Z, and suppose

that the pairs (X,Y ) and (Y,Z) are exchangeable. Then so is the triple
(X,Y,Z).

(ii) Let X, Y , and Z be random arrays on Q̃Q with X ⊥⊥Y Z, and suppose
that the pairs (X,Y ) and (Y,Z) are contractable. Then so is the triple
(X,Y,Z).

Proof: (i) By FMP 6.3 there exists a probability kernel µ between suitable
spaces satisfying

µ(Y, ·) = P [X ∈ ·|Y ] a.s.

Let p be a finite permutation of NN, and let A and B be measurable sets in
the range spaces of X and (Y,Z). Noting that σ(Y ◦ p) = σ(Y ) since p is
invertible, and using the assumed conditional independence (twice) and the
exchangeability of (X,Y ) and (Y,Z), we get

P{(X,Y,Z) ◦ p ∈ A× B}
= E[P [X ◦ p ∈ A|(Y,Z) ◦ p]; (Y,Z) ◦ p ∈ B]
= E[P [X ◦ p ∈ A|Y ◦ p]; (Y,Z) ◦ p ∈ B]
= E[µ(Y ◦ p,A); (Y,Z) ◦ p ∈ B]
= E[µ(Y,A); (Y,Z) ∈ B]
= E[P [X ∈ A|Y,Z]; (Y,Z) ∈ B]
= P{(X,Y,Z) ∈ A× B],

which extends immediately to (X,Y,Z) ◦ p
d= (X,Y,Z). The asserted ex-

changeability now follows since p was arbitrary.
(ii) For any a < b in QQ+ and t ∈ QQ, we introduce on QQ the functions

pa,t(x) = x + a1{x > t},
pb

a(x) = x + a(1 − b−1x)1{0 < x < b},
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and put pa = pa,0. Then pb
a ◦ pb = pb, and since (X,Y ) ◦ pb

a
d= (X,Y ) by the

contractability of (X,Y ), we get

(X ◦ pb, Y ) d= (X ◦ pb
a ◦ pb, Y ◦ pb

a)
= (X ◦ pb, Y ◦ pb

a).

Hence, Lemma 1.3 yields
(X ◦ pb)⊥⊥

Y ◦ pb
a

Y,

and since σ{Y ◦ pb
a} = σ{Y ◦ pa} and σ{Y ◦ pb; b > a} = σ{Y ◦ pa}, we can

use a monotone-class argument to obtain the extended relation

(X ◦ pa)⊥⊥
Y ◦ pa

Y.

Since also (X ◦ pa)⊥⊥Y (Z ◦ pa) by hypothesis, the chain rule in FMP 6.8
gives

(X ◦ pa)⊥⊥
Y ◦ pa

(Z ◦ pa).

Combining this with the assumed relations

X⊥⊥Y Z, (X,Y ) ◦ pa
d= (X,Y ), (Y,Z) ◦ pa

d= (Y,Z),

we see as before that

(X,Y,Z) ◦ pa
d= (X,Y,Z), a ∈ QQ+.

Re-labeling QQ, if necessary, we get the same relation for the more general
mappings pa,t. Since for any sets I, J ∈ Q̃Q with |I| = |J| there exist some
compositions p and q of such functions satisfying p(I) = q(J), we obtain the
required contractability. �

In order to combine two or more contractable arrays on ÑN into a single
contractable array, using the last result, we need first to extend the original
arrays to Q̃Q. The required procedure is straightforward:

Lemma 7.3 (extension) Every contractable array X on ÑN can be extended
to a contractable array X on Q̃Q. The distribution of X is then uniquely
determined by that of X.

Proof: To construct the finite-dimensional distributions of X, fix any
J1, . . . , Jn ∈ Q̃Q, put J =

⋃
k Jk, and let f be the unique, increasing bijection

from J to I = {1, . . . , |J|}. Define

µJ1,...,Jn = L(X ◦ f(J1), . . . ,X ◦ f(Jn)). (5)

To prove the consistency of these measures, put J ′ =
⋃

k<n Jk, and let g
and p denote the increasing bijections from J ′ to I ′ = {1, . . . , |J ′|} and from
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I ′ to
⋃

k<n f(Jk), respectively. Noting that p ◦ g = f on J ′ and using the
contractability of X, we get

µJ1,...,Jn−1 = L(X ◦ g(J1), . . . ,X ◦ g(Jn−1))
= L(X ◦ p ◦ g(J1), . . . ,X ◦ p ◦ g(Jn−1))
= L(X ◦ f(J1), . . . ,X ◦ f(Jn−1))
= µJ1,...,Jn(· × Sn),

where Sn denotes the range space of XJn .
By the Daniell–Kolmogorov theorem (FMP 6.14) there exists a process Y

on Q̃Q with finite-dimensional distributions as in (5). Letting Y ′ denote the re-
striction of Y to ÑN, we see from (5) that Y ′ d= X, and so the transfer theorem
(FMP 6.10) yields the existence of a process X on Q̃Q with (X,X) d= (Y, Y ′).
In particular, X is a.s. an extension of X. The contractability of X follows
from (5), and the uniqueness of L(X) is clear from the fact that, for any
contractable extension of X, the finite-dimensional distributions must agree
with those in (5). �

Combining the last two lemmas, we obtain a useful coupling of con-
tractable arrays.

Corollary 7.4 (coupling of contractable arrays) Let X, Y
d= Y ′, and Z ′ be

random arrays on ÑN, such that the pairs (X,Y ) and (Y ′, Z ′) are contractable.
Then there exists an array Z on ÑN with (Y,Z) d= (Y ′, Z ′), such that the triple
(X,Y,Z) is again contractable.

Proof: By Lemma 7.3 we may extend (X,Y ) and (Y ′, Z ′) to contractable
arrays (X,Y ) and (Y ′

, Z
′) on Q̃Q, and by the uniqueness part of the same

lemma we note that Y
d= Y

′. Hence, the transfer theorem (FMP 6.10 and
6.13) yields an array Z on Q̃Q such that (Y ,Z) d= (Y ′

, Z
′) and X ⊥⊥Y Z. The

triple (X,Y ,Z) is then contractable by Lemma 7.2, and the same thing is
true for the restriction (X,Y,Z) to NN. �

We may next record a simple independence property of extensions.

Lemma 7.5 (conditional independence of extension) Let (X, ξ) be a con-
tractable array on Z̃Z with restriction (Y, η) to ÑN, and assume that ξ has
independent entries. Then Y ⊥⊥η ξ.

Proof: Writing

pn(k) = k − n1{k ≤ 0}, k ∈ ZZ, n ∈ NN,

and using the contractability of (X, ξ), we obtain

(Y, ξ ◦ pn) d= (Y, ξ), n ∈ NN.
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Since also σ{ξ ◦ pn} ⊂ σ{ξ}, Lemma 1.3 yields

Y⊥⊥
ξ ◦ pn

ξ, n ∈ NN.

Next we note that
⋂

n σ{ξ◦pn} = σ{η} a.s. by the extended version of Kolmo-
gorov’s zero-one law in FMP 7.25. The assertion now follows by martingale
convergence. �

To state the next result, define the shell σ-field S(X) of a random array
X on NNd by

S(X) =
⋂

n
σ{Xk; maxjkj ≥ n}.

Let us say that an array X on ZZd
+ is separately exchangeable on NNd if X

d=
X ◦ (p1, . . . , pd) for any finite permutations p1, . . . , pd on ZZ+ that leave 0
invariant.

Lemma 7.6 (shell σ-field, Aldous, Hoover) Let the random array X on ZZd
+

be separately exchangeable on NNd with restriction X ′ to NNd, and write S(X ′)
for the shell σ-field of X ′. Then

X ′ ⊥⊥
S(X ′)

(X \ X ′).

Proof: When d = 1, the array X ′ is just an infinite random sequence
ξ = (ξ1, ξ2, . . .), which is exchangeable over η = X0, and S(X ′) reduces to
the tail σ-field T of ξ. Applying de Finetti’s theorem to both ξ and (ξ, η),
for the latter in the extended form of Proposition 2.1, we get a.s.

P [ξ ∈ ·|µ] = µ∞, P [ξ ∈ ·|ν, η] = ν∞,

for some random probability measures µ and ν on the state space S. By
Proposition 1.4 (i) and (ii) it follows that µ = ν a.s. and ξ⊥⊥ν η, and it
remains to note that a.s. σ(ν) = T by Corollary 1.6.

Proceeding by induction, assume the statement to be true in dimension
d− 1, and turn to the case of a d-dimensional array X. Define an S∞-valued
array Y on ZZd−1

+ by

Ym = (Xm,k; k ∈ ZZ+), m ∈ ZZd−1
+ ,

and note that Y is separately exchangeable on NNd−1. Write Y ′ for the re-
striction of Y to NNd−1 and X ′′ for the restriction of X to NNd−1 ×{0}. By the
induction hypothesis,

(X ′,X ′′) = Y ′ ⊥⊥
S(Y ′)

(Y \ Y ′) = X \ (X ′,X ′′),

and since
S(Y ′) ⊂ S(X ′) ∨ σ(X ′′) ⊂ σ(Y ′),
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we conclude that
X ′ ⊥⊥

S(X ′), X ′′
(X \ X ′). (6)

Next we may apply the result for d = 1 to the S∞-valued sequence

Zk = (Xm,k; m ∈ NNd−1), k ∈ ZZ+,

to obtain
X ′ = (Z \ Z0) ⊥⊥S(Z)

Z0 = X ′′.

Since clearly
S(Z) ⊂ S(X ′) ⊂ σ(X ′),

we conclude that
X ′ ⊥⊥

S(X ′)
X ′′.

Combining this with (6) and using the chain rule in FMP 6.8, we obtain the
desired relation. �

For the present purposes, we need only the following corollary. Given an
array ξ on ZZd

+ and a set J ∈ 2d, we write ξJ for the sub-array with index set
NNJ × {0}Jc , and put ξ̂J = (ξI ; I ⊂ J). We also define ξm = (ξJ ; |J| = m)
and ξ̂m = (ξJ ; |J| ≤ m). The conventions for arrays on ÑN are similar. Put
ÑNd = {J ⊂ NN; |J| ≤ d} and ∆ÑNd = {J ⊂ NN; |J| = d}, and similarly for QQ.

Proposition 7.7 (independent entries)

(i) Let ξ be a random array on ZZd
+ with independent entries, separately

exchangeable on NNd. Given a measurable function f , define

ηk = f(ξ̂k), k ∈ ZZd
+.

Then η has again independent entries iff

ηk ⊥⊥ (ξ̂k \ ξk), k ∈ ZZd
+, (7)

in which case
ηJ ⊥⊥ (ξ \ ξJ ), J ∈ 2d. (8)

(ii) Let ξ be a contractable array on ÑN with independent entries. Given a
measurable function f , define

ηJ = f(ξ̂J ), J ∈ ÑN. (9)

Then η has again independent entries iff

ηJ ⊥⊥ (ξ̂J \ ξJ ), J ∈ ÑN, (10)

in which case
ηd ⊥⊥ (ξ \ ξd), d ∈ ZZ+. (11)
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Proof: (i) First assume (7). Combining with the relation ξ̂k ⊥⊥ (ξ \ ξ̂k)
gives ηk ⊥⊥ (ξ \ ξk), which implies

ηk ⊥⊥ (ξ \ ξk, η̂|k| \ ηk), k ∈ ZZd
+,

where |k| denotes the number of positive k-components. As in FMP 3.8, this
yields both the independence of the η-entries and relation (8).

Conversely, suppose that η has independent entries. Then for any J �= ∅ in
2d, the shell σ-field S(ηJ ) is trivial by Kolmogorov’s zero-one law. Applying
Lemma 7.6 to the ZZJ

+-indexed array (ηJ , ξ̂J \ ξJ ), which is clearly separately
exchangeable on NNJ , we obtain ηJ ⊥⊥ (ξ̂J \ ξJ ), which implies (7).

(ii) First assume (10). Since also ξ̂J ⊥⊥ (ξ \ ξ̂J ), we obtain ηJ ⊥⊥ (ξ \ ξJ ),
which implies

ηJ ⊥⊥ (ξ \ ξd, η̂d \ ηJ ), J ∈ ÑNd, d ∈ ZZ+.

This shows that η has independent entries and satisfies (11).
Conversely, suppose that η has independent entries. Extend ξ to a con-

tractable array on Q̃Q, and then extend η accordingly to Q̃Q by means of (9).
Fixing any d ∈ ZZ+, we define

(ξ′
k, η

′
k) = (ξ, η){i−k−1

i ; i≤d, ki>0}, k ∈ ZZd
+.

Then ξ′ is clearly separately exchangeable on NNd with independent entries,
and (9) yields η′

k = f(ξ̂′
k) for all k ∈ ZZd

+. Being part of η, the array η′ has
again independent entries, and so in view of (i) we have η′

k ⊥⊥ (ξ̂′
k \ ξ′

k) for
every k ∈ NNd, which is equivalent to ηJ ⊥⊥ (ξ̂J \ξJ ) for suitable sets J ∈ ∆Q̃Qd.
The general relation (10) now follows by the contractability of ξ. �

7.3 Coding and Inversion

Here we establish some further propositions, needed to prove the main results
of the chapter. The former include some coding results, for random elements
invariant under finite or compact groups, as well as two crucial inversion
theorems for representable arrays with independent entries. We begin with
a general coding property for random arrays.

Lemma 7.8 (coding) Let ξ = (ξj) and η = (ηj) be random arrays on an
arbitrary index set I satisfying

(ξi, ηi)
d= (ξj, ηj), i, j ∈ I, (12)

ξj ⊥⊥ηj
(ξ \ ξj, η), j ∈ I. (13)

Then there exist some measurable functions f and g on suitable spaces, such
that for any U-array ϑ⊥⊥ (ξ, η) on I, the random variables

ζj = g(ξj, ηj, ϑj), j ∈ I, (14)

form a U-array ζ ⊥⊥ η satisfying

ξj = f(ηj, ζj) a.s., j ∈ I. (15)
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Proof: Fix any i ∈ I. By the transfer theorem in FMP 6.10, we may
choose a measurable function f between suitable spaces such that

(ξi, ηi)
d= (f(ηi, ϑi), ηi).

By another application of the same result, we may next choose some mea-
surable functions g and h, such that the random elements

ζi = g(ξi, ηi, ϑi), η̃i = h(ξi, ηi, ϑi)

satisfy
(ξi, ηi) = (f(η̃i, ζi), η̃i) a.s., (η̃i, ζi)

d= (ηi, ϑi).

In particular, we get η̃i = ηi a.s., and so (15) holds for j = i with ζi as in
(14). Furthermore, ζi is U(0, 1) and independent of ηi. The two statements
extend by (12) to arbitrary j ∈ I.

Combining (13) with the relations ϑ⊥⊥ (ξ, η) and ϑj ⊥⊥ (ϑ \ ϑj), we see
that

(ξj, ηj, ϑj)⊥⊥ηj
(ξ \ ξj, η, ϑ \ ϑj), j ∈ I,

which implies
ζj ⊥⊥ηj

(ζ \ ζj, η), j ∈ I.

Combining this with the relation ζj ⊥⊥ ηj and using the chain rule in FMP
6.8, we conclude that ζj ⊥⊥ (ζ \ ζj, η). By iteration (FMP 3.8) it follows that
the array η and the elements ζj , j ∈ I, are all independent. Thus, ζ is indeed
a U-array independent of η. �

We turn to a general statement about symmetric representations, where
the invariance is defined in terms of a finite group G, acting measurably on
a Borel space S. Introduce the associated stabilizers (symmetry groups)

Gs = {g ∈ G; gs = s}, s ∈ S.

Proposition 7.9 (symmetric coding) Let G be a finite group, acting mea-
surably on a Borel space S, and consider some random elements ξ and η in
S such that g(ξ, η) d= (ξ, η) for all g ∈ G and Gη ⊂ Gξ a.s. Then there exist
some measurable functions f : S × [0, 1] → S and b : S2 × [0, 1] → [0, 1] with

b(gx, gy, t) = b(x, y, t), x, y ∈ S, g ∈ G, t ∈ [0, 1], (16)

such that whenever ϑ⊥⊥ (ξ, η) is U(0, 1), the random variable ζ = b(ξ, η, ϑ)
is U(0, 1) with ζ ⊥⊥ η and satisfies

gξ = f(gη, ζ) a.s., g ∈ G. (17)

Our construction proceeds in steps. First we need to construct an invari-
ant function h : S → G. Here we write hs = h(s) and let h−1

s denote the
inverse of hs as an element of G.
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Lemma 7.10 (invariant function) Let G be a finite group, acting measur-
ably on a Borel space S. Then there exists a measurable function h : S → G
such that

hgsgs = hss, g ∈ G, s ∈ S. (18)

For any mapping b : S → S, the function

f(s) = h−1
s b(hss), s ∈ S, (19)

satisfies
Gs ⊂ Gf (s) ⇒ f(gs) = gf(s), g ∈ G. (20)

Proof: We may assume that S ∈ B[0, 1]. For any s ∈ S, let Ms denote
the set of elements g ∈ G maximizing gs. Then for any g ∈ G and s ∈ S,

Mgsg = {hg; h ∈ Mgs} = {hg ∈ Ms; h ∈ G} = {h ∈ Ms} = Ms. (21)

We also note that Ms is a left coset of Gs, in the sense that

Ms = hGs = {hg; g ∈ Gs}, s ∈ S, h ∈ Ms. (22)

In fact, for fixed s and h we have g ∈ Ms iff gs = hs, which is equivalent to
h−1g ∈ Gs and hence to g ∈ hGs.

Fixing an enumeration g1, . . . , gm of G, we define hs to be the first element
gk belonging to Ms. This clearly defines a measurable function h : S → G.
Using (21) and (22), we get for any s and g

hgsg ∈ Mgsg = Ms = hsGs,

and so
h−1

s hgsg ∈ Gs, s ∈ S, g ∈ G,

which implies (18).
Now consider an arbitrary mapping b : S → S, and define the associated

function f by (19). To prove (20), fix any g ∈ G and an s ∈ S with Gs ⊂
Gf (s). By (18) we have

g−1h−1
gs hs ∈ Gs ⊂ Gf (s),

and so by (18) and (19),

f(gs) = h−1
gs b(hgsgs) = h−1

gs b(hss)

= h−1
gs hsf(s) = gf(s). �

Using the function h of the last lemma along with a Haar measure λ on
G, we can now construct the desired function f satisfying (17).
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Lemma 7.11 (representing function) Let G be a compact metric group,
acting measurably on a Borel space S. Let ξ and η be random elements in
S such that Gη ⊂ Gξ a.s. and g(ξ, η) d= (ξ, η) for all g ∈ G, and consider a
measurable function h : S → G satisfying (18). Then there exist a measurable
function f : S × [0, 1] → S and a U(0, 1) random variable ζ ⊥⊥ η such that
(17) holds outside a fixed P -null set. Here ζ can be replaced by any random
variable ζ ′ with (ξ, η, ζ) d= (ξ, η, ζ ′).

Proof: By (18) we have

h−1
η hgηg ∈ Gη ⊂ Gξ, g ∈ G,

outside a fixed null set. Hence, the random elements ξ̃ = hηξ and η̃ = hηη
satisfy

(ξ̃, η̃) = hη(ξ, η) = hgηg(ξ, η), g ∈ G. (23)

Writing λ for the normalized Haar measure (FMP 2.27) on G, we introduce a
random element γ ⊥⊥ (ξ, η) in G with distribution λ. Using Fubini’s theorem
and the invariance of L(ξ, η) and L(γ), we get

γ(ξ, η) d= (ξ, η), (γhη, ξ, η) d= (γ, ξ, η). (24)

By (23) and (24) we have

(η, ξ̃, η̃) = (η, hηξ, hηη)
d= (γη, hγηγξ, hγηγη)
= (γη, hηξ, hηη)
d= (γhηη, hηξ, hηη) = (γη̃, ξ̃, η̃).

Since also γη̃⊥⊥η̃ ξ̃ by the independence γ ⊥⊥ (ξ, η), we conclude that η⊥⊥η̃ ξ̃.
Hence, by FMP 6.13 there exist a measurable function b : S × [0, 1] → S and
a U(0, 1) random variable ζ ⊥⊥ η such that

hηξ = ξ̃ = b(η̃, ζ) = b(hηη, ζ) a.s.

Putting
f(s, t) = h−1

s b(hss, t), s ∈ S, t ∈ [0, 1],

we obtain ξ = f(η, ζ) a.s. Since also Gη ⊂ Gξ a.s. by hypothesis, Lemma
7.10 shows that (17) holds outside a fixed null set. If (ξ, η, ζ) d= (ξ, η, ζ ′),
then even ξ = f(η, ζ ′) a.s. since the diagonal in S2 is measurable, and (17)
remains valid with ζ replaced by ζ ′. �

Proof of Proposition 7.9: By Lemmas 7.10 and 7.11 there exist a measur-
able function f : S×[0, 1] → S and a U(0, 1) random variable ζ ⊥⊥ η satisfying
(17) a.s. Writing gζ = ζ, we conclude that even

g(ξ, η, ζ) d= (ξ, η, ζ), g ∈ G,
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and trivially Gξ,η ⊂ G = Gζ . Applying the same lemmas to the triple
(ξ, η, ζ), we may next choose a measurable function b : S2× [0, 1] → [0, 1] and
a U(0, 1) random variable ϑ⊥⊥ (ξ, η) such that a.s.

ζ = gζ = b(gξ, gη, ϑ), g ∈ G.

The same relation being a.s. true for the symmetrized version

b̃(x, y, t) = |G|−1
∑

g∈G
b(gx, gy, t), x, y ∈ S, t ∈ [0, 1],

we may assume that b satisfies (16). Finally, (17) remains true with ζ re-
placed by ζ ′ = b(ξ, η, ϑ′) for an arbitrary U(0, 1) random variable ϑ′ ⊥⊥ (ξ, η),
since in this case (ξ, η, ζ) d= (ξ, η, ζ ′). �

We continue with some elementary properties of symmetric functions.
Recall that, if two arrays ξ and η on ÑN are related by ηJ = f(ξ̂J ), then the
function f̂ is given by η̂J = f̂(ξ̂J ). Thus,

f̂(xI ; I ∈ 2d) =
(
f(xJ◦I ; I ∈ 2|J |); J ∈ 2d

)
, d ∈ ZZ+. (25)

Lemma 7.12 (symmetric functions) Let ξ be a random array on ÑN, and
let f and g be measurable functions between suitable spaces.

(i) If ηJ = f(ξ̂J ) on ÑN, then even η̂J = f̂(ξ̂J ) on ÑN.
(ii) If ηk = f(ξ̂k) on NN and f is symmetric, then η̂k = f̂(ξ̂k) on NN.
(iii) If f and g are symmetric, then so is f ◦ ĝ.
(iv) If ξ is exchangeable and f is symmetric, then the array ηJ = f(ξ̂J ) on

ÑN is again exchangeable.

Proof: (i) This is just the definition of f̂ , restated here for comparison.
(ii) Letting k ∈ NN and J ∈ 2|k|, and using the symmetry of f and the

definition of ξ̂, we get

f(ξk◦(J◦I); I ∈ 2|J |) = f(ξ(k◦J)◦I ; I ∈ 2|J |) = f(ξ̂k◦J ).

Hence, by the definitions of ξ̂, f̂ , η, and η̂,

f̂(ξ̂k) = f̂(ξk◦I ; I ∈ 2|k|)
= (f(ξk◦(J◦I); I ∈ 2|J |); J ∈ 2|k|)

= (f(ξ̂k◦J ); J ∈ 2|k|)
= (ηk◦J ; J ∈ 2|k|) = η̂k.

(iii) Put ηk = g(ξ̂k) and h = f ◦ ĝ. Applying (ii) to g and using the
symmetry of f , we get for any k ∈ NN

h(ξ̂k) = f ◦ ĝ(ξ̂k) = f(η̂k)
= f(η̂k̃) = f ◦ ĝ(ξ̂k̃) = h(ξ̂k̃).
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(iv) Fix any set J ∈ ÑN and a permutation p on NN. Using the symmetry
of f , we get as in (ii)

(η ◦ p)J = ηp◦J = f(ξ̂p◦J )
= f(ξ(p◦J)◦I ; I ∈ 2|J |)

= f(ξp◦(J◦I); I ∈ 2|J |)

= f((ξ ◦ p)J◦I ; I ∈ 2|J |) = f((ξ ◦ p)∧
J ).

This shows that η ◦ p = g(ξ ◦ p) for a suitable function g, and so the ex-
changeability of ξ carries over to η. �

We proceed with another key result, which allows us to solve for ξ in the
representation ηJ = f(ξ̂J ), provided that even η has independent entries.

Proposition 7.13 (inversion on ÑN) Let ξ be a contractable array on ÑN
with independent entries, and fix a measurable function f such that the array

ηJ = f(ξ̂J ), J ∈ ÑN, (26)

has again independent entries. Then there exist some measurable functions
g and h such that, for any U-array ϑ⊥⊥ ξ on ÑN, the variables

ζJ = g(ξ̂J , ϑJ ), J ∈ ÑN, (27)

form a U-array ζ ⊥⊥ η satisfying

ξJ = h(η̂J , ζ̂J ) a.s., J ∈ ÑN. (28)

If f is symmetric, we can choose g and h to have the same property.

Proof: For convenience, we may take ξ and η to have real entries. Write ξd

and ∆ξd for the restrictions of ξ to ÑNd and ∆ÑNd, respectively, and similarly
for η, ζ, and ϑ. Our construction of g and h proceeds recursively with respect
to the dimension d. For d = 0, we may apply Lemma 7.8 to the single random
pair (ξ∅, η∅), to ensure the existence of some functions g and h on suitable
sub-spaces such that, whenever ϑ∅ ⊥⊥ ξ is U(0, 1), the random variable ζ∅ =
g(ξ∅, ϑ∅) becomes U(0, 1) with ζ∅ ⊥⊥ η∅ and satisfies ξ∅ = h(η∅, ζ∅) a.s.

Now assume that g and h have already been constructed on
⋃

k<d RR2k+1

and
⋃

k<d RR2k+1 , respectively, such that the array ζd−1, given by (27) in terms
of an arbitrary U-array ϑ⊥⊥ ξ, is again a U-array independent of ηd−1 and
satisfying (28) on ÑNd. To extend the construction to dimension d, we note
that

ξJ ⊥⊥ξ̂′
J
(ξd \ ξJ ), J ∈ ∆ÑNd,

since ξ has independent entries. By (26) it follows that

ξJ ⊥⊥
ξ̂′
J , ηJ

(ξd \ ξJ , ηd), J ∈ ∆ÑNd.



316 Probabilistic Symmetries and Invariance Principles

We also note that the pairs (ξ̂J , ηJ ) = (ξJ , ξ̂′
J , ηJ ) have the same distribution

for all J ∈ ∆ÑNd, due to the contractability of ξ. Hence, Lemma 7.8 ensures
the existence of some measurable functions gd on RR2d+1 and hd on RR2d+1 ,
such that the random variables

ζJ = gd(ξ̂J , ηJ , ϑJ ), J ∈ ∆ÑNd, (29)

form a U-array ∆ζd satisfying

∆ζd ⊥⊥ (ξd−1, ηd), (30)
ξJ = hd(ξ̂′

J , ηJ , ζJ ) a.s., J ∈ ∆ÑNd. (31)

Inserting (26) into (29) and (28)—in the version for ÑNd−1—into (31), we
obtain

ζJ = gd

(
ξ̂J , f(ξ̂J ), ϑJ

)
,

ξJ = hd

(
ĥ′(η̂′

J , ζ̂ ′
J ), ηJ , ζJ

)
a.s., J ∈ ∆ÑNd,

for some measurable function ĥ′. This shows that (27) and (28) remain valid
on ÑNd for suitable extensions of g and h.

To complete the recursion, we need to prove that the arrays ζd−1, ∆ζd,
and ηd are independent. Then note that ϑd−1 ⊥⊥ (ξd,∆ϑd), since ϑ is a U-
array independent of ξ. By (26) and (27) it follows that

ϑd−1⊥⊥ (ξd−1,∆ηd,∆ζd).

Combining this with (30) gives

∆ζd ⊥⊥ (ξd−1,∆ηd, ϑd−1),

and by (26) and (27) it follows that ∆ζd ⊥⊥ (ηd, ζd−1).
Now only ηd ⊥⊥ ζd−1 remains to be proved. Since ξ and η have independent

entries and are related by (26), we may infer from Proposition 7.7 (ii) that
∆ηd ⊥⊥ ξd−1. Since ϑ⊥⊥ (ξ, η), the last relation extends to ∆ηd ⊥⊥ (ξd−1, ϑd−1),
which implies ∆ηd ⊥⊥ (ηd−1, ζd−1) by (26) and (27). Since also ηd−1 ⊥⊥ ζd−1

by the induction hypothesis, we conclude that indeed ηd ⊥⊥ ζd−1.
We turn to a proof of the last assertion. Here the construction for d = 0

is the same as before. Now fix any d ∈ NN, and assume that some mea-
surable and symmetric functions g and h have already been constructed on
appropriate subspaces, such that (27) defines a U-array ζd−1 ⊥⊥ ηd−1 on ÑNd−1

satisfying (28) on ÑNd−1 for any U-array ϑ⊥⊥ ξ.
To extend g to RR2d+1 and h to RR2d+1 , we note that the pair (ξ, η) is ex-

changeable, due to the symmetry of f and Lemma 7.12 (iv). By Proposition
7.9, applied to (ξ̂J , ηJ ) for fixed J ∈ ∆ÑNd, there exist some measurable func-
tions gd and hd, the former even symmetric, such that the random variables
ζJ in (29) are U(0, 1) and satisfy

ζJ ⊥⊥ (ξ̂′
J , ηJ ), J ∈ ∆ÑNd, (32)

ξk̃ = hd(ξ̂′
k, ηk̃, ζk̃) a.s., k ∈ ∆NNd, (33)
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where ξ̂′
J = ξ̂J \ ξJ and ∆NNd = {k ∈ NN; |k| = d}. Replacing hd by its

symmetrized version, which again satisfies (33), we may assume that even hd

is symmetric. Inserting (26) into (29) and (28)—in the version for ÑNd−1—into
(33), we obtain the desired symmetric extensions of g and h.

To prove the required independence relations, we note that

(ξJ , ϑJ )⊥⊥ (ξd \ ξJ , ϑd \ ϑJ ), J ∈ ∆ÑNd,

since (ξ, ϑ) has independent entries. Hence, by (26)

(ξ̂J , ϑJ )⊥⊥
ξ̂′
J , ηJ

(ηd, ξd \ ξJ , ϑd \ ϑJ ), J ∈ ∆ÑNd,

and so by (27)

ζJ ⊥⊥
ξ̂′
J , ηJ

(ηd, ζd \ ζJ ), J ∈ ∆ÑNd.

Combining with (32) and using the chain rule in FMP 6.8, we obtain

ζJ ⊥⊥ (ηd, ζd \ ζJ ), J ∈ ∆ÑNd,

which shows that the ζJ are mutually independent and independent of the
pair (ζd−1, ηd). It remains to show that ζd−1 ⊥⊥ ηd. Here the previous proof
applies without changes. �

We also need a version of the last result for separately exchangeable ar-
rays.

Proposition 7.14 (inversion on ZZd
+) Let the U-arrays ξ and η on ZZd

+ be
related by

ηk = f(ξ̂k), k ∈ ZZd
+, (34)

for some measurable function f . Then there exist a third U-array ζ ⊥⊥ η on
ZZd

+ and a measurable function g such that

ξk = g(η̂k, ζ̂k) a.s., k ∈ ZZd
+. (35)

Proof: For any J ∈ 2d, we may identify the set NNJ ×{0}Jc with NNJ . Write
ξJ for the restriction of ξ to NNJ , and put ξ̂J = (ξI ; I ⊂ J) and ξ̂′

k = ξ̂k \ ξk.
Since ξk ⊥⊥ (ξJ \ ξk) for any k ∈ NNJ , we see from (34) and FMP 6.7–8 that

ξk⊥⊥
ξ̂′
k, ηk

(ξ̂J \ ξk, ηJ ), k ∈ NNJ , J ∈ 2d.

Furthermore, we note that the distribution of (ξ̂k, ηk) is the same for all
k ∈ NNJ with fixed J ∈ 2d. Hence, by Lemma 7.8, there exist some measurable
functions GJ and some U-arrays ζJ on NNJ with

ζJ ⊥⊥ (ξ̂J \ ξJ , ηJ ), J ∈ 2d, (36)
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such that
ξk = GJ (ξ̂′

k, ηk, ζk) a.s., k ∈ NNJ , J ∈ 2d.

Iterating this relation yields (35) for a suitable function g.
As a further consequence of Lemma 7.8, we can choose

ζk = h(ξ̂k, ϑk), k ∈ ZZd
+, (37)

for some measurable function h between suitable spaces and an arbitrary
U-array ϑ⊥⊥ ξ on ZZd

+. Noting that

(ξ̂J , ϑJ )⊥⊥ (ξ \ ξ̂J , ϑ \ ϑJ ), J ∈ 2d,

we see from (34) and (37) that

(ξ̂J , ηJ , ζJ )⊥⊥ (ξ \ ξ̂J , ϑ \ ϑJ ), J ∈ 2d,

which together with (36) yields

ζJ ⊥⊥ (ξ \ ξJ , ηJ , ϑ \ ϑJ ), J ∈ 2d.

Hence, by (34) and (37)

ζJ ⊥⊥ (η̂|J |, ζ̂ |J | \ ζJ ), J ∈ 2d, (38)

where ηm = (ηJ ; |J| = m). In particular, the arrays ζJ are independent and
hence form a U-array ζ on ZZd

+.
Since both ξ and η have independent entries, Proposition 7.7 (i) yields

ηJ ⊥⊥ (ξ \ ξJ , ϑ) for every J ∈ 2J , and so by (34) and (37)

ηJ ⊥⊥ (η̂|J | \ ηJ , ζ̂ |J | \ ζJ ), J ∈ 2d.

From this relation and (38) we get

ζm ⊥⊥ (η̂m, ζ̂m−1), ηm ⊥⊥ (η̂m−1, ζ̂m−1), m ≤ d.

Proceeding by induction on m, we conclude that the arrays ζ0, . . . , ζm and
η0, . . . , ηm are all independent. In particular, we have ζ ⊥⊥ η. �

7.4 Contractable Arrays

The purpose of this section is to prove the following basic representation
theorem for contractable arrays on ÑN.

Theorem 7.15 (jointly contractable arrays) Let X be a random array on
ÑN with values in a Borel space S. Then X is contractable iff there exist a
U-array ξ on ÑN and a measurable function f :

⋃
d≥0 [0, 1]2d → S such that

XJ = f(ξ̂J ) a.s., J ∈ ÑN.

Here we can choose f to be symmetric iff X is exchangeable.
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The following extension property is an immediate consequence of the
main result. Identifying the elements of ÑN with vectors k = (k1, . . . , kd) with
k1 < · · · < kd, we may regard the index set ÑN as a subset of NN, and it makes
sense to consider extensions of a random array X on ÑN to the larger index
set NN.

Corollary 7.16 (extension criterion) Let X be a random array on ÑN with
values in a Borel space. Then X is contractable iff it can be extended to an
exchangeable array on NN.

Proof: Suppose that X is contractable. Then by Theorem 7.15 it has a
representation XJ = f(ξ̂J ), J ∈ ÑN, in terms of a U-array ξ and a measurable
function f , and we may define an extension Y to NN by Yk = f(ξ̂k), k ∈ NN.
Since ξ is trivially exchangeable, we note that Y has the same property. This
proves the necessity of our condition. The sufficiency is obvious, since every
exchangeable array is also contractable. �

For convenience, we divide the proof of Theorem 7.15 into a sequence of
lemmas. To state our first lemma, we say that a random array is representable
if can be represented as in Theorem 7.15. Recall that all random arrays are
assumed to take values in an arbitrary Borel space.

Lemma 7.17 (augmentation on ÑNd) For a fixed d ∈ ZZ+, assume that all
contractable arrays on ÑNd are representable. Consider a contractable array
(X, ξ) on ÑNd, where ξ has independent entries. Then there exist a U-array
η⊥⊥ ξ on ÑNd and a measurable function f such that

XJ = f(ξ̂J , η̂J ) a.s., J ∈ ÑNd.

Proof: Since the pair (X, ξ) is representable, there exist a U-array ζ and
some measurable functions g and h between suitable spaces such that a.s.

XJ = g(ζ̂J ), ξJ = h(ζ̂J ), J ∈ ÑNd. (39)

By Proposition 7.13, applied to the second of the two equations, there exist
a U-array η⊥⊥ ξ and a measurable function k such that

ζJ = k(ξ̂J , η̂J ) a.s., J ∈ ÑNd.

Combining this with the first relation in (39), we obtain the required repre-
sentation of X with f = g ◦ k̂. �

The following construction is crucial for the proof of our main result. Let
Z̃Z− denote the class of finite subsets of ZZ− = −ZZ+.



320 Probabilistic Symmetries and Invariance Principles

Lemma 7.18 (key construction) Let X be a contractable array on Z̃Z with
restriction X to ÑN, and consider the arrays

YJ = {XI∪J ; ∅ �= I ∈ Z̃Z−}, J ∈ ÑN,

Xn
J = X{n}∪(J+n),

Y n
J = (YJ+n, Y{n}∪(J+n)), J ∈ ÑN, n ∈ NN.

Then the pairs (X,Y ) and (Xn, Y n) are again contractable, and the latter
are equally distributed with

Xn ⊥⊥Y n (X \ Xn), n ∈ NN.

Proof: Noting that, for J ∈ ÑN and n ∈ NN,

(XJ, YJ ) = {XI∪J ; I ∈ Z̃Z−},
(Xn

J , Y n
J ) = {XI∪(J+n); ∅ �= I ∈ (ZZ− ∪ {n})∼},

and using the contractability of X, we see that (X,Y ) and (Xn, Y n) are again
contractable and that the latter pairs are equally distributed. It remains only
to prove the asserted conditional independence.

Then write X = (Qn,Rn) for each n ∈ NN, where Qn denotes the restric-
tion of X to (NN + n− 1)∼ and Rn = X \ Qn. Introduce the mappings

pn(k) = k − (n− 1)1{k < n}, k ∈ ZZ, n ∈ NN,

and conclude from the contractability of X that

(Qn,Rn) = X
d= X ◦ pn = (Qn,Rn ◦ pn).

By Lemma 1.3 it follows that Rn ⊥⊥Rn◦pn Qn, which is equivalent to

(Y,X1, . . . ,Xn−1)⊥⊥Y n (Xn,Xn+1, . . . ; X∅).

Replacing n by n+ 1 and noting that Y n+1 is a sub-array of Y n, we see that
also

(Y,X1, . . . ,Xn)⊥⊥Y n (Xn+1,Xn+2, . . . ; X∅).

Combining the two formulas, we get by FMP 3.8

Xn ⊥⊥
Y n

(Y,X1, . . . ,Xn−1,Xn+1, . . . ; X∅) = X \ Xn,

as required. �

The representation theorem will first be proved for contractable arrays
of bounded dimension. Here we need a recursive construction based on the
previous lemma.
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Lemma 7.19 (recursion) For a fixed d ∈ NN, assume that all contractable
arrays on ÑNd−1 are representable, and let X be a contractable array on ÑNd.
Then there exists a U-array η on ÑNd−1 such that the pair (X, η) is con-
tractable, the element X∅ is η∅-measurable, and the arrays

Xn
J = X{n}∪(J+n),

ηn
J = ηJ+n−1, J ∈ ÑNd−1, n ∈ NN,

satisfy
Xn ⊥⊥ηn (X \ Xn, η), n ∈ NN.

For any contractable array X on ÑNd, we can construct a contractable
extension to ÑN by taking XJ = 0 when |J| > d. By this device, we may
henceforth regard any array on ÑNd as defined on the larger index set ÑN.

Proof: Defining Y as in Lemma 7.18 in terms of a contractable extension
of X to Z̃Z, we note that (X∅, Y ) is a contractable array on ÑNd−1. Hence, by
hypothesis, it has an a.s. representation

X∅ = f(ξ∅), YJ = g(ξ̂J ), J ∈ ÑNd−1, (40)

in terms of some measurable functions f and g between suitable spaces and
a U-array ξ on ÑNd−1. The pairs (X,Y ) and (Y, ξ), regarded as contractable
arrays on ÑN, admit extensions as in Lemma 7.3 to contractable arrays (X,Y )
and (Y ′, ξ̄) on Q̃Q. Here clearly (X∅, Y ) d= (X∅, Y

′), and so the transfer theo-
rem (FMP 6.10, 6.13) yields the existence of a U-array η̄ on Q̃Qd−1 satisfying

(X∅, Y , η̄) d= (X∅, Y
′, ξ̄), η̄⊥⊥

X∅, Y
X. (41)

The a.s. representations in (40) now extend to Q̃Qd−1, though with (Y, ξ)
replaced by (Y , η̄), and Lemma 7.2 shows that (X,Y , η̄) remains contractable
on Q̃Q.

By Lemma 7.18 we have

Xn ⊥⊥Y (X \ Xn), n ∈ NN,

and by contractability and martingale convergence we may replace Y by
the pair (X∅, Y ). Combining this with the second relation in (41), using a
conditional version of FMP 3.8, we obtain

Xn⊥⊥
X∅, Y

(X \ Xn, η̄), n ∈ NN.

Since X∅ and Y are measurable functions of η̄, due to the extended repre-
sentation in (40), we conclude that

Xn ⊥⊥η̄ (X \ Xn), n ∈ NN. (42)
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By the contractability of (X, η̄), we may replace η̄ by its restriction η̄ε to
the index set T̃ε, where Tε =

⋃
k>0(k − ε, k] with ε > 0 rational. Since

σ{η̄ε} ↓ σ{η} by the extended version of Kolmogorov’s zero-one law in FMP
7.25, we conclude that, by reverse martingale convergence, (42) remains true
with η̄ replaced by η. Furthermore, we see from Lemma 7.5 that

Xn ⊥⊥ηn η, n ∈ NN,

and so by combination, using the chain rule in FMP 6.8, we obtain the re-
quired conditional independence. �

We are now ready to establish the representation of contractable arrays,
beginning with the case of bounded dimensions.

Lemma 7.20 (bounded dimensions) Contractable arrays on ÑNd are repre-
sentable for every d ∈ ZZ+.

Proof: The result for d = 0 is elementary and follows from Lemma 7.8
with η = 0. Proceeding by induction, we fix a d ∈ NN and, assuming all
contractable arrays on ÑNd−1 to be representable, consider a contractable array
X on ÑNd. Let the U-array η on ÑNd−1 be such as in Lemma 7.19, and extend
η to a U-array on ÑNd by choosing the variables ηJ , J ∈ ∆ÑNd, to be i.i.d.
U(0, 1), independently of X and all previously defined η-variables. Then
(X, η) remains contractable, the random element X∅ is η∅-measurable, and
the arrays

Xn
J = X{n}∪(J+n),

ηn
J = (ηJ+n, η{n}∪(J+n)), J ∈ ÑNd−1, n ∈ NN,

(differing only slightly from those in Lemma 7.19) satisfy

Xn ⊥⊥ηn (X \ Xn, η), n ∈ NN. (43)

The pairs (Xn, ηn) are equally distributed and inherit the contractabil-
ity from (X, η). Furthermore, the elements of ηn are mutually independent
for fixed n and uniformly distributed over the unit square [0, 1]2. Hence,
Lemma 7.17 ensures the existence of some U-arrays ζn ⊥⊥ ηn on ÑNd−1 and a
measurable function G between suitable spaces such that

Xn
J = G(η̂n

J , ζ̂n
J ) a.s., J ∈ ÑNd−1, n ∈ NN. (44)

In fact, by transfer (FMP 6.10) we may choose

ζn = h(Xn, ηn, ϑn), n ∈ NN, (45)

for some U-sequence ϑ = (ϑn)⊥⊥ (X, η) and a measurable function h, so that
by FMP 6.13

ζn ⊥⊥
Xn, ηn

(η, ζ \ ζn), n ∈ NN.
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On the other hand, by (43) and (45) together with the independence of the
ϑn, we have

Xn ⊥⊥ηn (η, ζ \ ζn), n ∈ NN.

Using the chain rule in FMP 6.8, we may combine the last two relations into
the single formula

ζn ⊥⊥ηn (η, ζ \ ζn), n ∈ NN.

Since also ζn ⊥⊥ ηn, the same result yields

ζn ⊥⊥ (η, ζ \ ζn), n ∈ NN.

This shows (FMP 3.8) that the ζn are mutually independent and independent
of η.

The arrays ζn may be combined into a single U-array ζ ⊥⊥ η on ÑNd \ {∅},
given by

ζ{n}∪(J+n) = ζn
J , J ∈ ÑNd−1, n ∈ NN,

and we may extend ζ to ÑNd by choosing ζ∅ to be U(0, 1) and independent of
η and all previous ζ-variables. Then (44) becomes

XJ = F (η̂J , ζ̂J ) a.s., ∅ �= J ∈ ÑNd, (46)

where F is given, for k = 1, . . . , d, by

F
{
(y, z)I ; I ∈ 2k

}
= G

{
yI+1, (y, z){1}∪(I+1); I ∈ 2k−1

}
.

Since X∅ is η∅-measurable, (46) can be extended to J = ∅ through a suitable
extension of F to [0, 1]2, e.g. by reference to FMP 1.13. By Lemma 7.8 with
η = 0, we may finally choose a U-array ξ on ÑNd and a measurable function
b : [0, 1] → [0, 1]2 such that

(ηJ , ζJ ) = b(ξJ ) a.s., J ∈ ÑNd.

Then (η̂J , ζ̂J ) = b̂(ξ̂J ) a.s. for all J ∈ ÑNd, and substituting this into (46)
yields the desired representation XJ = f(ξ̂J ) a.s. with f = F ◦ b̂. �

Our next aim is to extend the representation to arrays of unbounded
dimensions.

Lemma 7.21 (unbounded dimensions) If the contractable arrays on ÑNd are
representable for every d ∈ ZZ+, then so are all contractable arrays on ÑN.

Proof: Let X be a contractable array on ÑN. Our first step is to construct
some independent U-arrays ξk on ÑNk, k ∈ ZZ+, and some measurable functions
f0, f1, . . . on suitable spaces such that

XJ = fk(ξ̂0
J , . . . , ξ̂k

J ) a.s., J ∈ ∆ÑNk, k ∈ ZZ+, (47)
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where ξk
J = 0 for |J| > k. For k = 0, equation (47) reduces to X∅ = f0(ξ0

∅),
which holds for suitable f0 and ξ0

∅ by Lemma 7.20 with d = 0. By Corollary
7.4 we may redefine ξ0

∅ , if necessary, such that the augmented array (X, ξ0
∅)

becomes contractable.
Proceeding recursively, fix a d ∈ NN, and assume that ξ0, . . . , ξd−1 and

f0, . . . , fd−1 have already been chosen to satisfy (47) for all k < d, where the
ξk are independent U-arrays such that the combined array (X, ξ0, . . . , ξd−1) is
contractable on ÑN. Since contractable arrays on ÑNd are assumed to be repre-
sentable, Lemma 7.17 ensures the existence of a U-array ξd ⊥⊥ (ξ0, . . . , ξd−1)
on ÑNd and a measurable function fd between suitable spaces such that (47)
remains true for k = d.

Since (ξ0, . . . , ξd) is again a U-array and hence contractable, (47) yields
the same property for the combined array (Xd, ξ0, . . . , ξd), where Xd de-
notes the restriction of X to ÑNd. Applying Corollary 7.4 to the arrays
(X, ξ0, . . . , ξd−1) and (Xd, ξ0, . . . , ξd), we see that ξd can be redefined, if nec-
essary, such that (X, ξ0, . . . , ξd) becomes contractable. This completes the
recursion and proves the existence of arrays ξ0, ξ1, . . . and functions f0, f1, . . .
with the desired properties.

We now extend the sequence ξ0, ξ1, . . . to a U-array on ZZ+×ÑN, by choosing
the variables ξk

J with |J| > k to be i.i.d. U(0, 1) and independent of all
previously constructed variables. (This may require an obvious adjustment
of functions fk, to ensure that (47) remains fulfilled.) Putting

F (x̂0
J , x̂1

J , . . .) = fk(x̂0
J , . . . , x̂k

J ), J ∈ 2k, k ∈ ZZ+,

we may write (47) in the form

XJ = F (ξ̂0
J , ξ̂1

J , . . .) a.s., J ∈ ÑN.

By Lemma 7.8 with η = 0, we may next choose a U-array ξ on ÑN and a
measurable function g : [0, 1] → [0, 1]∞ such that

(ξ0
J , ξ1

J , . . .) = g(ξJ ) a.s., J ∈ ÑN.

The desired representation XJ = f(ξ̂J ) a.s., J ∈ ÑN, now follows with
f = F ◦ ĝ. �

Proof of Theorem 7.15: In view of the last two lemmas, it remains only
to prove the last statement. Anticipating Theorem 7.22 (whose proof is
independent of the present result), we get for exchangeable arrays X the
more general representation

Xk̃ = f(ξ̂k) a.s., k ∈ NN.

This gives 2|J | different representations of each element XJ , and averaging
over those yields a representation in terms of a symmetric function f̃ . Con-
versely, if an array X is representable in terms of a symmetric function f , it
must be exchangeable by Lemma 7.12 (iv). �
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7.5 Exchangeable Arrays

The aim of this section is to prove the following closely related representation
theorem for exchangeable arrays on NN.

Theorem 7.22 (jointly exchangeable arrays, Hoover) Let X be a random
array on NN with values in a Borel space S. Then X is exchangeable iff there
exist a U-array ξ on ÑN and a measurable function f :

⋃
d≥0 [0, 1]2d → S such

that
Xk = f(ξ̂k) a.s., k ∈ NN.

As an easy consequence, we obtain the following representation in the
separately exchangeable case.

Corollary 7.23 (separately exchangeable arrays, Aldous, Hoover) Let X be
a random array on NNd with values in a Borel space S. Then X is separately
exchangeable iff there exist a U-array ξ on ZZd

+ and a measurable function
f : [0, 1]2d → S such that

Xk = f(ξ̂k) a.s., k ∈ NNd.

Proof: Let X be separately exchangeable. It is then exchangeable even
in the joint sense, and so by Theorem 7.22 the non-diagonal part of X has
a representation Xk = f(ζ̂k) in terms of a U-array ζ on ÑN. Fixing any dis-
joint, infinite subsets N1, . . . ,Nd of NN, we conclude that X has the required
representation on the index set A = N1 × · · · × Nd, apart from an appropri-
ate re-labeling of ζ. Now the restriction to A has the same distribution as
X itself, due to the separate exchangeability of X. Using the transfer theo-
rem in FMP 6.10, we conclude that the representation on A extends to NNd. �

Our proof of the main result, Theorem 7.22, is again divided into a se-
quence of lemmas. We begin with an exchangeable counterpart of Lemma
7.19. For any k ∈ NN, write h ∼ k if h is a permutation of k, and define k̃
as the set of permutations of k. Let NNd and ∆NNd consist of all sequences
k ∈ NN with |k| ≤ d or |k| = d, respectively, and similarly for ZZ. Say that an
exchangeable array is representable if it can be expressed as in Theorem 7.22.

Lemma 7.24 (recursion) For a fixed d ∈ NN, assume that all exchangeable
arrays on NNd−1 are representable, and let X be an exchangeable array on NNd.
Then X can be represented on NNd−1 in terms of a U-array ξ on ÑNd−1, such
that the pair (X, ξ) is exchangeable and the arrays X̃k = {Xh; h ∼ k} satisfy

X̃k ⊥⊥ξ̂k
(X \ X̃k, ξ), k ∈ ∆NNd. (48)

Proof: Let X denote a stationary extension of X to the set ZZd, consisting
of all sequences r of at most d distinct integers r1, . . . , rm . Let r+ denote the
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sub-sequence of elements rj > 0. If k ∈ NNd−1 and r = (r1, . . . , rm) ∈ ZZd with
r+ ∼ (1, . . . , |k|), we write k ◦ r = (kr1, . . . , krm), where krj

= rj when rj ≤ 0.
Introduce the array Y on NNd−1 with elements

Yk =
(
Xk◦r; r ∈ ZZd, r+ ∼ (1, . . . , |k|)

)
, k ∈ NNd−1.

Informally, we may think of Yk as the set {Xh; h+ ∼ k}, provided with a
consistently chosen order of enumeration. The exchangeability of X implies
that the pair (X,Y ) is again exchangeable.

For any k = (k1, . . . , kd) ∈ ∆NNd, let Ŷk denote the restriction of Y to
sequences from k̃ of length < d, and note that(

X̃k, Ŷk

)
d=
(
X̃k, X \ X̃k, Y

)
, k ∈ ∆NNd,

since the two arrays are restrictions of the same exchangeable array X to
sequences in ZZ− ∪{k̃} and ZZ, respectively. Since also σ(Ŷk) ⊂ σ(X \ X̃k, Y ),
we see from Lemma 1.3 that

X̃k ⊥⊥Ŷk
(X \ X̃k, Y ), k ∈ ∆NNd. (49)

Since exchangeable arrays on NNd−1 are representable, there exists a U-
array ξ on ÑNd−1 and a measurable function f between suitable spaces such
that

(Xk, Yk) = f(ξ̂k), k ∈ NNd−1. (50)

By FMP 6.10 and 6.13 we may assume that ξ⊥⊥X ′,Y X, where X ′ denotes the
restriction of X to NNd−1, in which case the pair (X, ξ) is again exchangeable
by Lemma 7.2. The stated conditional independence also implies that

X̃k ⊥⊥
Y, X \ X̃k

ξ, k ∈ ∆NNd. (51)

Using the chain rule in FMP 6.8, we may combine (49) and (51) into the
single formula

X̃k ⊥⊥Ŷk
(X \ X̃k, ξ), k ∈ ∆NNd,

which yields the asserted relation, since Ŷk is ξ̂k-measurable in view of (50). �

We are now ready to derive the representation of Theorem 7.22, in the
special case of bounded dimensions.

Lemma 7.25 (bounded dimensions) Exchangeable arrays on NNd are repre-
sentable for every d ∈ ZZ+.

Proof: The result for d = 0 is again elementary and follows from Lemma
7.8 with η = 0. Proceeding by induction, fix a d ∈ NN such that all ex-
changeable arrays on NNd−1 are representable, and consider an exchangeable
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array X on NNd. By Lemma 7.24 we may choose a U-array ξ on ÑNd−1 and a
measurable function f between suitable spaces satisfying

Xk = f(ξ̂k) a.s., k ∈ NNd−1, (52)

and such that the pair (X, ξ) is exchangeable and the arrays X̃k = {Xh;
h ∼ k} with k ∈ ∆NNd satisfy (48).

To handle symmetries involving the sets X̃k, we need to fix an order of
enumeration. Letting G denote the group of permutations on 1, . . . , d, we
write

X̃k = (Xk◦g ; g ∈ G), ξ̂k = (ξk◦I ; I ∈ 2d), k ∈ ∆NNd,

where k ◦ I = {ki; i ∈ I}. The exchangeability of (X, ξ) implies that the
pairs (X̃k, ξ̂k) are equally distributed, and in particular

(X̃k◦g, ξ̂k◦g)
d= (X̃k, ξ̂k), g ∈ G, k ∈ ∆NNd.

Since ξ is a U-array, the arrays ξ̂k◦g are a.s. different for fixed k ∈ ∆NNd,
which implies that the associated symmetry groups are a.s. trivial. Hence,
by Proposition 7.9, there exist some U(0, 1) random variables ζk ⊥⊥ ξ̂k and a
measurable function h such that

Xk◦g = h(ξ̂k◦g, ζk) a.s., g ∈ G, k ∈ ∆NNd. (53)

Now introduce a U-array ϑ⊥⊥ ξ on ∆ÑNd, and define

Yk = h(ξ̂k, ϑk̃), Ỹk = (Yk◦g ; g ∈ G), k ∈ ∆NNd. (54)

Comparing with (53) and using the independence properties of (ξ, ϑ), we see
that

(Ỹk, ξ̂k)
d= (X̃k, ξ̂k), Ỹk ⊥⊥ξ̂k

(Y \ Ỹk, ξ), k ∈ ∆NNd.

In view of (48) it follows that (Ỹk, ξ)
d= (X̃k, ξ) for every k ∈ ∆NNd, and

moreover

X̃k ⊥⊥ξ (X \ X̃k), Ỹk ⊥⊥ξ (Y \ Ỹk), k ∈ ∆NNd.

Thus, the arrays X̃k associated with different sets k̃ are conditionally inde-
pendent given ξ, and similarly for the arrays Ỹk. Writing X ′ for the restriction
of X to NNd−1, which is ξ-measurable by (52), we obtain (X, ξ) d= (X ′, Y, ξ).
Using (54) and applying the transfer theorem in the form of FMP 6.11, we
conclude that

Xk = h(ξ̂k, ηk) a.s., k ∈ ∆NNd,

for some U-array η⊥⊥ ξ on ∆ÑNd. This, together with (52), yields the required
representation of X. �

Yet another lemma is needed, before we are ready to prove Theorem 7.22
in full generality. The following result is an exchangeable version of Lemma
7.17.
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Lemma 7.26 (augmentation on NNd) For a fixed d ∈ ZZ+, assume that all
exchangeable arrays on NNd are representable. Consider some arrays X on
NNd and ξ on ÑNd, where ξ has independent entries and the pair (X, ξ) is ex-
changeable on NNd. Then there exist a U-array η⊥⊥ ξ on ÑNd and a measurable
function f between suitable spaces such that

Xk = f(ξ̂k, η̂k) a.s., k ∈ NNd.

Proof: Since the pair (X, ξ) is exchangeable and hence representable on
NNd, we may choose a U-array ζ on ÑNd and some measurable functions g and
h between suitable spaces such that a.s.

Xk = g(ζ̂k), ξk̃ = h(ζ̂k), k ∈ NNd. (55)

Here the latter relation remains true for the symmetrized version of h, which
allows us to assume from the outset that h is symmetric. According to the
last statement of Proposition 7.13, we may then choose a U-array η⊥⊥ ξ on
ÑNd and a symmetric, measurable function b such that

ζJ = b(ξ̂J , η̂J ) a.s., J ∈ ÑNd.

By the symmetry of b and Lemma 7.12 (ii), we obtain

ζ̂k = b̂(ξ̂k, η̂k) a.s., k ∈ NNd,

and inserting this into (55) yields the desired formula with f = g ◦ b̂. �

We are now ready to complete the main proof.

Proof of Theorem 7.22: In Lemma 7.25 we saw that the exchangeable
processes on NNd are representable for every d ∈ ZZ+. To extend the result
to NN, we may proceed as in the proof of Lemma 7.21, except that now we
need to use Lemma 7.26 instead of Lemma 7.17 and Lemma 7.2 (i) in place
of Lemma 7.4. �

7.6 Equivalence Criteria

The previous representations are far from unique, in general. Our present aim
is to characterize pairs of functions f and f ′ that can be used to represent
the same array, when composed with suitable U-arrays ξ and ξ′. In the
contractable case, it is clearly equivalent that the arrays XJ = f(ξ̂J ) and
X ′

J = f ′(ξ̂J ) have the same distribution for a given U-array ξ. The case of
exchangeable arrays is similar.

Writing λ for Lebesgue measure on [0, 1], we say that a measurable func-
tion f(x̂J ), J ∈ ÑN, preserves λ in the highest order arguments, if for fixed
J ∈ ÑN and x̂′

J = x̂J \xJ the mapping xJ �→ f(x̂J ) preserves λ on [0, 1], where
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x̂J \ xJ denotes the array x̂J with the element xJ omitted. Similarly, we say
that the function g(x̂J , ŷJ ) maps λ2 into λ in the highest order arguments, if
for fixed J ∈ ÑN and (x̂′

J , ŷ′
J ) the function (xJ , yJ ) �→ g(x̂J , ŷJ ) maps λ2 into

λ. When ηJ = f(ξ̂J ), we define f̂ by the formula η̂J = f̂(ξ̂J ).
Consider an random array η on ÑN, given by

ηJ = f(ξ̂J ), J ∈ ÑN,

in terms of a U-array ξ on ÑN and a measurable function f between suitable
spaces. We shall often use the fact that f has a version that preserves λ in
the highest order arguments iff ηJ is U(0, 1) and independent of ξ̂′

J = ξ̂J \ ξJ

for every J ∈ ÑN. Similar statements hold for representations of separately
or jointly exchangeable arrays.

We begin with the equivalence criteria for representations of contractable
arrays on ÑN.

Theorem 7.27 (contractable arrays) Let ξ and η be independent U-arrays
on ÑN, and fix some measurable functions f, f ′ :

⋃
d≥0 [0, 1]2d→ S, where S is

Borel. Then these conditions are equivalent:
(i) (f(ξ̂J ); J ∈ ÑN) d= (f ′(ξ̂J ); J ∈ ÑN);
(ii) f ◦ ĝ(ξ̂J ) = f ′ ◦ ĝ′(ξ̂J ) a.s., J ∈ ÑN, for some measurable functions g, g′ :⋃

d≥0 [0, 1]2d → [0, 1] that preserve λ in the highest order arguments;

(iii) f(ξ̂J ) = f ′ ◦ ĥ(ξ̂J , η̂J ) a.s., J ∈ ÑN, for a measurable function h :⋃
d≥0 [0, 1]2d+1 → [0, 1] that maps λ2 into λ in the highest order ar-

guments.

Proof, (i) ⇒ (ii): Assume (i). Then by Corollary 7.4 we may choose a
U-array ζ on ÑN, such that the pair (ξ, ζ) is contractable and

f(ξ̂J ) = f ′(ζ̂J ) a.s., J ∈ ÑN. (56)

Next, Theorem 7.15 yields the existence of a U-array χ on ÑN and some
measurable functions g and g′ between suitable spaces such that a.s.

ξJ = g(χ̂J ), ζJ = g′(χ̂J ), J ∈ ÑN. (57)

By Proposition 7.7 (ii) we can modify g and g′ to become λ-preserving in
the highest order arguments. Substituting (57) into (56) yields the relation
in (ii) with ξ replaced by χ.

(ii) ⇒ (iii): Assuming (ii), we define

χJ = g(ξ̂J ), ζJ = g′(ξ̂J ), J ∈ ÑN. (58)

Since g and g′ preserve λ in the highest order arguments, Proposition 7.7 (ii)
shows that χ and ζ are again U-arrays on ÑN. By Proposition 7.13 we may
then choose a measurable function b and a U-array γ ⊥⊥χ on ÑN such that

ξJ = b(χ̂J , γ̂J ) a.s., J ∈ ÑN.
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Substituting this into (58) gives

ζJ = g′ ◦ b̂(χ̂J , γ̂J ) a.s., J ∈ ÑN,

which, when inserted into (ii), yields the relation in (iii) with h = g′ ◦ b̂ and
with (ξ, η) replaced by (χ, γ). By Proposition 7.7 (ii) we can finally modify
h into a function that maps λ2 into λ in the highest order arguments.

(iii) ⇒ (i): Assuming (iii), we may define

ζJ = h(ξ̂J , η̂J ), J ∈ ÑN. (59)

Since h maps λ2 into λ in the highest order arguments, Proposition 7.7 (ii)
shows that ζ is again a U-array on ÑN. Hence,

(f(ξ̂J ); J ∈ ÑN) = (f ′(ζ̂J ); J ∈ ÑN) d= (f ′(ξ̂J ); J ∈ ÑN),

which proves (i). �

The result for jointly exchangeable arrays on NN or ÑN is similar:

Theorem 7.28 (jointly exchangeable arrays, Hoover) For any ξ, η, f , and
f ′ as in Theorem 7.27, these conditions are equivalent:

(i) (f(ξ̂k); k ∈ NN) d= (f ′(ξ̂k); k ∈ NN);

(ii) f ◦ ĝ(ξ̂J ) = f ′ ◦ ĝ′(ξ̂J ) a.s., J ∈ ÑN, for some symmetric, measurable
functions g, g′ :

⋃
d≥0 [0, 1]2d → [0, 1] that preserve λ in the highest order

arguments;

(iii) f(ξ̂J ) = f ′◦ĥ(ξ̂J , η̂J ) a.s., J ∈ ÑN, for a symmetric, measurable function
h :

⋃
d≥0 [0, 1]2d+1 → [0, 1] that maps λ2 into λ in the highest order

arguments.

The last result also covers the case of exchangeable arrays on ÑN, since by
Theorem 7.15 we may then choose the representing functions f and f ′ to be
symmetric, in which case (i) reduces to the condition

(f(ξ̂J ); J ∈ ÑN) d= (f ′(ξ̂J ); J ∈ ÑN).

Proof, (i) ⇒ (ii): Assume (i). Then by Lemma 7.2 (i) there exists a
U-array ζ on ÑN, such that (ξ, ζ) is exchangeable and

f(ξ̂k) = f ′(ζ̂k) a.s., k ∈ NN.

By Theorem 7.22 we may next choose a U-array χ on ÑN and some measurable
functions g and g′ between suitable spaces such that a.s.

ξk̃ = g(χ̂k), ζk̃ = g′(χ̂k), k ∈ NN.
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This clearly remains true with g and g′ replaced by their symmetrized ver-
sions, and by Proposition 7.7 (ii) we may further assume that both functions
preserve λ in the highest order arguments. Condition (ii) now follows by
substitution, as before.

(ii) ⇒ (iii): Here we may proceed as in the proof of Theorem 7.27, with
only some minor changes: The last statement of Proposition 7.13 now enables
us to choose a symmetric version of b. Then Lemma 7.12 (iii) shows that
even h = g′ ◦ b̂ is symmetric.

(iii) ⇒ (i): Assuming (iii), we may define ζ by (59), and we note as before
that ζ is a U-array on ÑN. Since h is symmetric, (59) extends by Lemma 7.12
(ii) to the form

ζ̂k = ĥ(ξ̂k, η̂k), k ∈ NN.

Furthermore, we may use the exchangeability of (ξ, η) to extend the relation
in (iii) to

f(ξ̂k) = f ′ ◦ ĥ(ξ̂k, η̂k), k ∈ NN.

Hence, by combination

(f(ξ̂k); k ∈ NN) = (f ′(ζ̂k); k ∈ NN) d= (f ′(ξ̂k); k ∈ NN),

which proves (i). �

The corresponding equivalence criteria for separately exchangeable arrays
may be less obvious. Assuming ηk = f(ξ̂k) for all k ∈ ZZd

+, we now define the
function f̂ on ZZd

+ by η̂k = f̂(ξ̂k).

Theorem 7.29 (separately exchangeable arrays, Hoover) Let ξ and η be
independent U-arrays on ZZd

+, and fix some measurable functions f, f ′ : [0, 1]2d

→ S, where S is Borel. Then these conditions are equivalent:

(i) (f(ξ̂k); k ∈ NNd) d= (f ′(ξ̂k); k ∈ NNd);

(ii) f ◦ ĝ(ξ̂k) = f ′ ◦ ĝ′(ξ̂k) a.s., k ∈ NNd, for some measurable functions g, g′ :⋃
J∈2d [0, 1]2J → [0, 1] that preserve λ in the highest order arguments;

(iii) f(ξ̂k) = f ′ ◦ ĥ(ξ̂k, η̂k) a.s., k ∈ NNd, for a measurable function h :⋃
J∈2d [0, 1]2·2J → [0, 1] that maps λ2 into λ in the highest order ar-

guments.

Proof, (i) ⇒ (ii): Assuming (i), there exists by Lemma 7.2 (i) a U-array
ζ on ZZd

+, such that the pair (ξ, ζ) is separately exchangeable and

f(ξ̂k) = f ′(ζ̂k) a.s., k ∈ ZZd
+.

By an obvious extension of Corollary 7.23, there exist a U-array χ on ZZd
+

and some measurable functions g and g′ between suitable spaces such that
a.s.

ξk = g(χ̂k), ζk = g′(χ̂k), k ∈ ZZd
+.
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Finally, Proposition 7.7 (i) allows us to construct modifications of g and g′

that preserve λ in the highest order arguments.
(ii) ⇒ (iii): Assuming (ii), we may define

χk = g(ξ̂k), ζk = g′(ξ̂k), k ∈ ZZd
+,

and we note that χ and ζ are U-arrays by Proposition 7.7 (i). By Proposition
7.14 there exist a U-array γ ⊥⊥χ on ZZd

+ and a measurable function b satisfying

ξk = b(χ̂k, γ̂k) a.s., k ∈ ZZd
+.

Hence, by combination

ζk = g′ ◦ b̂(χ̂k, γ̂k) a.s., k ∈ ZZd
+.

Finally, Proposition 7.7 (i) shows that the function h = g′◦b̂ has an equivalent
version that maps λ into λ2 in the highest order arguments.

(iii) ⇒ (i): Assuming (iii), we see from Proposition 7.7 (i) that

ζk = h(ξ̂k, η̂k), k ∈ ZZd
+,

defines a U-array ζ on ZZd
+. �

For an interesting and useful application of the previous results, we show
how the representation in Theorem 7.22 can be extended to any nested se-
quence of exchangeable arrays. The statement will be needed to prove a
main result in Chapter 9. To explain the terminology, consider two random
arrays X = (Xij) and Y = (Yij) on NN2 satisfying X ⊂ Y , in the sense that
X is the sub-array of Y obtained by omitting the jth row and column when-
ever Yjj �= B for some measurable set B. If Y is jointly exchangeable and
ergodic, then the sequence (Yjj) is i.i.d. by de Finetti’s theorem, and the set
of indices j with Yjj ∈ B has density p = P{Y11 ∈ B}. It is clear that X is
again ergodic, exchangeable.

Now Theorem 7.22 shows that Y has an a.s. representation

Yij = g(ξi, ξj , ζij), i, j ∈ NN,

in terms of some i.i.d. U(0, 1) random variables ξi and ζij = ζji, i ≤ j, and a
measurable function g on [0, 1]3, where we may assume that g(x, x, z) = g1(x)
for some function g1 on [0, 1]. Writing A = g−1

1 B and letting h : [0, 1] → A be
measurable with λ ◦ h−1 = 1Aλ/p, we note that X is representable in terms
of the function

f(x, y, z) = g(h(x), h(y), z), x, y, z ∈ [0, 1].

Choosing g1 such that A = [0, p], we get in particular

f(x, y, z) = g(px, py, z), x, y, z ∈ [0, 1]. (60)
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This suggests that, for any nested sequence X1 ⊂ X2 ⊂ . . . of jointly
ergodic, exchangeable arrays on NN2, the combined array (Xn) should be
representable in terms of a single function f on RR2

+ × [0, 1]. If we could
reverse the previous construction and recover a version of the function g
in (60) in terms of f , then by continuing recursively we would obtain a
representing function for the whole sequence. Unfortunately, the indicated
construction seems to be impossible in general, and a more sophisticated
approach is required.

Proposition 7.30 (nested arrays) Let X1 ⊂ X2 ⊂ . . . be a nested sequence
of jointly ergodic, exchangeable arrays on NN2, where X1 has density pn = r−1

n

in Xn for each n. Then there exists a measurable function f on RR2
+ × [0, 1]

such that the Xn have representing functions

fn(x, y, z) = f(rnx, rny, z), x, y, z ∈ [0, 1], n ∈ NN.

Proof: Let us first consider only two jointly ergodic, exchangeable arrays
X ⊂ Y , where X has density p = r−1 in Y . Given a representing function f
of X, we need to construct a suitable extension of f , serving as a representing
function of Y . Then consider any representing function g of Y , chosen such
that X is representable in terms of the function

ĝ(x, y, z) = g(px, py, z), x, y, z ∈ [0, 1].

Then Theorem 7.28 shows that the functions f , g, and ĝ are related on [0, 1]6,
a.e. with respect to λ6, by

f(x, y, z) = ĝ(h1(x, x′), h1(y, y′), h2(x, x′, y, y′, z, z′))
= g(ph1(x, x′), ph1(y, y′), h2(x, x′, y, y′, z, z′)), (61)

for some measurable functions h1 : [0, 1]2 → [0, 1] and h2 : [0, 1]6 → [0, 1] that
map λ2 into λ in the last two arguments, where h2 is also symmetric in the
pairs (x, x′) and (y, y′).

We now extend h1 to a measurable function ĥ1 from [0, r]× [0, 1] to [0, r],
still mapping λ2 into λ. Similarly, we extend h2 to a symmetric, measurable
function ĥ2 from [0, r]2 × [0, 1]4 to [0, 1], where the extension is in the x- and
y-coordinates, such that λ2 continues to be mapped into λ in the last two
variables. Next define a function f̂ on [0, r]2 × [0, 1]4 by

f̂(x, x′, y, y′, z, z′) = g
(
pĥ1(x, x′), pĥ1(y, y′), ĥ2(x, x′, y, y′, z, z′)

)
.

Comparing with (61), we see that f̂ is an extension of f , in the sense that

f̂(x, x′, y, y′, z, z′) = f(x, y, z) on [0, 1]6 a.e. λ6.

Furthermore, if ξi, ξ′
i and ζij , ζ ′

ij , i ≤ j, are i.i.d. U(0, 1), then the same thing
is true for the variables

ηi = pĥ1(rξi, ξ
′
i), ηij = ĥ2(rξi, ξ

′
i, rξj, ξ

′
j , ζij , ζ

′
ij).
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Hence, the array

Ŷij = f̂(rξi, ξ
′
i, rξj, ξ

′
j , ζij , ζ

′
ij), i, j ∈ NN,

has the same distribution as Y , and it follows that Y itself can be represented
by the function f(rx, x′, ry, y′, z, z′) on [0, 1]6.

We return to our nested sequence of jointly ergodic, exchangeable arrays
X1 ⊂ X2 ⊂ · · · . Proceeding recursively, as before, we may construct a
sequence of measurable functions fn on [0, rn]2 × [0, 1]3n−2, each providing a
representation

Xn
ij = fn(rnξ

n
i , ξ̃n

i , rnξ
n
j , ξ̃n

j , ζn
ij) a.s., i, j, n ∈ NN,

for some independent and uniformly distributed random vectors ξn
i in [0, 1],

ξ̃n
i in [0, 1]n−1, and ζn

ij = ζn
ji in [0, 1]n, where the fn are successive extensions

of each other in the sense that, for any m ≤ n,

fm(x, y, z) = fn(x, x′, y, y′, z, z′) on [0, rm ]2 × [0, 1]3n−2 a.e. λ3n.

Regarding the functions fn as defined on the infinite-dimensional product
spaces

Sn = ([0, rn] × [0, 1]∞)2 × [0, 1]∞, n ∈ NN,

though each fn depends only on the first n variables in each group, we may
introduce their common extension f̂ to the space

S∞ = (RR+ × [0, 1]∞)2 × [0, 1]∞.

This enables us to represent the arrays Xn in the form

Xn
ij = f̂(rnξ

n
i , ξ̃n

i , rnξ
n
j , ξ̃n

j , ζn
ij) a.s., i, j, n ∈ NN,

for some independent and uniformly distributed random elements ξn
i in [0, 1]

and ξ̃n
i , ζn

ij = ζn
ji in [0, 1]∞. Here the latter may be regarded as infinite

sequences of i.i.d. U(0, 1) random variables.
Let us finally introduce a measurable function h from RR+× [0, 1]∞ to RR+,

mapping [0, rn] × [0, 1]∞ into [0, rn] for every n and such that λ∞ ◦ h−1 = λ.
Putting

f(x, y, z) = f̂(h(x), h(y), h(z)), x, y ∈ RR+, z ∈ [0, 1],

and letting ξi and ζij = ζji be i.i.d. U(0, 1) random variables, we see that the
arrays

Y n
ij = f(rnξi, rnξj, ζij), i, j, n ∈ NN,

have the same distributions as X1,X2, . . . . Hence, the transfer theorem
(FMP 6.10) yields

Xn
ij = f(rnη

n
i , rnη

n
j , χn

ij) a.s., i, j, n ∈ NN,

for suitable arrays of i.i.d. U(0, 1) random variables ηn
i and χn

ij = χn
ji, n ∈ NN.

This shows that f has indeed the required property. �
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7.7 Conditional Distributions

In this section we prove some a.s. relations between conditional distributions
of exchangeable arrays, which allow us to move freely between different rep-
resentations. Recall that 2d denotes the collection of subsets of {1, . . . , d}.
We say that a class J ⊂ 2d is ideal if I ⊂ J ∈ J implies I ∈ J . This holds
in particular for the classes 2J = {I; I ⊂ J}, J ∈ 2d; in general J is ideal
iff J =

⋃
J∈J 2J . For any array Y indexed by ZZd or ZZd

+, we introduce the
sub-arrays Y J = (Yk; kJ > 0, kJc ≤ 0), J ∈ 2d, where kJ > 0 means that
kj > 0 for all j ∈ J, and similarly for kJc ≤ 0. For subsets J ⊂ 2d we write
Y J = {Y J ; J ∈ J }, and similarly for ξJ .

We are now ready to state our main result about conditioning in sepa-
rately exchangeable arrays.

Proposition 7.31 (separately exchangeable arrays) Let X be a separately
exchangeable array on NNd, representable in terms of a U-array ξ on ZZd

+, and
let Y be a stationary extension of X to ZZd. Then for any ideal set J ⊂ 2d,
we have

P [X ∈ ·|ξJ ] = P [X ∈ ·|Y J ] a.s.

Our proof is based on the following lemma. For convenience, we may take
the representing U-array ξ to be indexed by N̂Nd = (NNJ ; J ∈ 2d) rather than
ZZd

+, which allows us to construct an extension Y of X to ZZd by extending ξ to
a U-array η on ẐZd = (ZZJ ; J ∈ 2d). We may then write ξJ for the restriction
of ξ to NNJ , and similarly for η.

Lemma 7.32 (conditional independence) Let X be a separately exchange-
able array on NNd, representable in terms of a U-array ξ on N̂Nd, and let (Y, η)
be a stationary extension of (X, ξ) to ZZd. Then

(i) Y ⊥⊥YJ ηJ for every ideal set J ⊂ 2d,
(ii) X ⊥⊥ξJ YJ for every ideal set J ⊂ 2d.

Proof: (i) For any j ∈ J ∈ 2d we consider the sequence

ζh = (Ŷ J
k ; kj = h), h ∈ ZZ.

Putting I = J \ {j} and noting that η̂I is invariant in the j-th index, we
see from the exchangeability of (Y, η) that the sequence (ζh, η̂

I), h ∈ ZZ,
is exchangeable. Hence, Lemma 1.3 yields ζ ⊥⊥ζ− η̂I , where ζ− denotes the
restriction of ζ to ZZ−, and so

Ŷ J ⊥⊥Ŷ I η̂I , I ⊂ J ∈ 2d, |J \ I| = 1.

Fixing any J ∈ 2d with |J| = m and choosing J = Jm ⊂ · · · ⊂ Jd with
|Jk| = k for all k, we obtain

Ŷ Jk+1 ⊥⊥Ŷ Jk η̂J , k = m, . . . , d − 1.
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Noting that
Ŷ J = Ŷ Jm ⊂ · · · ⊂ Ŷ Jd = Y,

in the sense of inclusion of the corresponding index sets, we may use the
chain rule in FMP 6.8 to see that

Y ⊥⊥Ŷ J η̂J , J ∈ 2d.

Applying the latter relation for any I ⊂ 2d to the combined array Z =
(Y, ηI), which is again separately exchangeable with representing U-array η,
we obtain

(Y, ηI)⊥⊥ẐJ η̂J , J ∈ 2d.

If the set J ⊂ 2d is ideal and contains I, then

ẐJ ⊂ ZJ = (Y J , ηI) ⊂ (Y, ηI), J ∈ J ,

and it follows that
Y ⊥⊥

YJ , ηI
η̂J , J ∈ J .

Fixing an enumeration J = {J1, . . . , Jm} and writing Jk = {J1, . . . , Jk} for
k = 0, . . . ,m, we get in particular

Y ⊥⊥
YJ , ηJk−1

η̂Jk , k = 1, . . . ,m,

where ηJ0 = ∅. The asserted relation now follows by the chain rule for
conditional independence in FMP 6.8.

(ii) Since ξ⊥⊥ (η \ ξ), we have

X⊥⊥ξJ (ξJ , η \ ξ), J ⊂ 2d.

If J is ideal, then the representation of Y J involves only elements from
(ξJ , η \ ξ), and the assertion follows. �

Proof of Proposition 7.31: If Y is representable in terms of a stationary
extension of ξ to ẐZd, then by Lemma 7.32 (i) and (ii) we have a.s.

P [X ∈ ·|Y J ] = P [X ∈ ·|Y J , ξJ ] = P [X ∈ ·|ξJ ]. (62)

In the general case, let η̄ be a U-array on ẐZd representing Y , and let η
denote the restriction of η̄ to N̂Nd. Introduce a third U-array ζ ⊥⊥X (ξ, η) on
N̂Nd satisfying (ζ,X) d= (ξ,X), and note that the triples (X, ξ, ζ) and (X, η, ζ)
are separately exchangeable on NNd by Lemma 7.2. In particular, they admit
stationary extensions (U, ξ̄, ζ̄) and (V, η̄′, ζ̄ ′) to ZZd, and we note that U is
representable in terms of both ξ̄ and ζ̄, whereas V is representable in terms
of both η̄′ and ζ̄ ′. Hence, (62) applies to all five triples

(X,Y, η), (X,V, η), (X,V, ζ), (X,U, ζ), (X,U, ξ),
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and we get

P [X ∈ ·|Y J ] = P [X ∈ ·|ηJ ] = P [X ∈ ·|V J ]
= P [X ∈ ·|ζJ ] = P [X ∈ ·|UJ ] = P [X ∈ ·|ξJ ]. �

To state the corresponding result in the jointly exchangeable case, recall
that the representing array ξ is then indexed by ÑNd = {J ⊂ NN; |J| ≤ d}.
For any k ≤ d, let ξk and ξ̂k denote the restrictions of ξ to ∆ÑNk and ÑNk,
respectively. Write Y∅ = Y ∅ for convenience.

Proposition 7.33 (jointly exchangeable arrays) Let X be a jointly ex-
changeable array on NNd, representable in terms of each of the U-arrays ξ
and η on ÑNd, and let Y be a stationary extension of X to ZZd. Then

(i) P [X ∈ ·|ξ̂k] = P [X ∈ ·|η̂k] a.s. for all k ≤ d,
(ii) P [X ∈ ·|ξ∅] = P [X ∈ ·|Y∅] a.s.

Proof: (i) We may assume that the pair (ξ, η) is exchangeable, since we
can otherwise introduce a third representing U-array ζ ⊥⊥X (ξ, η), so that
(ξ, ζ) and (η, ζ) become exchangeable by Lemma 7.2. We may then use the
result in the special case to conclude that

P [X ∈ ·|ξ̂k] = P [X ∈ ·|ζ̂k] = P [X ∈ ·|η̂k] a.s., k ≤ d.

If (ξ, η) is exchangeable, then both ξ and η can be represented as in
Theorem 7.15 in terms of a common U-array ζ on ÑNd. Assuming the assertion
to be true for each of the pairs (ξ, ζ) and (η, ζ), we obtain

P [X ∈ ·|ξ̂k] = P [X ∈ ·|ζ̂k] = P [X ∈ ·|η̂k] a.s., k ≤ d.

This reduces the argument to the case where η is representable in terms of ξ,
so that ηJ = g(ξ̂J ) for some measurable function g. Since η has independent
entries, we see from Proposition 7.7 (ii) that ηm+1 ⊥⊥ ξ̂m for every m < d.
Noting that η̂m is representable in terms of ξ̂m , we get

(ξ̂k, η̂m)⊥⊥ ηm+1, 0 ≤ k ≤ m < d,

and so by iteration
ξ̂k ⊥⊥ (η \ η̂k), 0 ≤ k < d. (63)

Now assume that X has a representation f(η̂) as in Theorem 7.22. Com-
bining with the formula η = g(ξ̂), we obtain

X = f(η̂) = f(η̂k, η \ η̂k) = f(ĝ(ξ̂k), η \ η̂k) a.s., k ≤ d. (64)

For any bounded, measurable function h on the range space of X, write
F = h ◦ f , and use Fubini’s theorem in the version of FMP 3.11 or 6.4 to
conclude from (63), (64), and the relation η̂k ⊥⊥ (η \ η̂k) that

E[h(X)|ξ̂k] = EF (ĝ(x̂k), η \ η̂k)|x=ξ

= EF (ŷk, η \ η̂k)|y=η = E[h(X)|η̂k],

which implies the asserted equation.
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(ii) Here we may assume that Y is represented by an extension of ξ. In
fact, we may otherwise introduce a U-array η̄ on Z̃Zd representing Y and write
η for the restriction of η̄ to ÑNd. Assuming the result to be true in the special
case and using part (i), we obtain

P [X ∈ ·|Y∅] = P [X ∈ ·|η∅] = P [X ∈ ·|ξ∅] a.s.

Under this extra hypothesis, the pair (Y, ξ∅) is again exchangeable. Hence,
for any bijection p : ZZ− → ZZ we get (Y ◦ p, ξ∅)

d= (Y∅, ξ∅), and Lemma 1.3
yields X ⊥⊥Y∅ ξ∅. On the other hand we note that X ⊥⊥ξ∅ Y∅, since ξ∅ is the
only ξ-element in common for the representations of X and Y∅. Combining
the two relations, we get

P [X ∈ ·|Y∅] = P [X ∈ ·|Y∅, ξ∅] = P [X ∈ ·|ξ∅] a.s. �

Next we show how the exchangeability of a random array is preserved,
in two different ways, under conditioning as in Propositions 7.31 or 7.33. To
avoid repetitions, here and in the subsequent lemma, we include even the
rotatable case. This requires only the basic definitions (see Chapter 8), and
the proofs are essentially the same as in the exchangeable case.

Recall that a set I is said to be µ-invariant with respect to a group G of
measurable transformations if µ(I ∆ g−1I) = 0 for every g ∈ G. We define a
distribution µ to be ergodic if every µ-invariant set has measure 0 or 1.

Lemma 7.34 (preservation laws) Let X be a separately or jointly exchange-
able or rotatable array on NNd with stationary extension Y to ZZd. Then

(i) X is conditionally ergodic, separately or jointly exchangeable or rotat-
able, given Y∅;

(ii) the family (E[X|Y J ]; J ⊂ 2d), assuming it exists, is again separately
or jointly exchangeable or rotatable.

In other words, (ii) holds for any real-valued array X with integrable en-
tries. Here we prove only the invariance part of (i), the ergodicity assertion
being established after the next lemma.

Partial proof: (i) In the separately exchangeable case, let p = (p1, . . . , pd),
where p1, . . . , pd are finite permutations on NN. The exchangeability of Y

yields (X ◦ p, Y∅)
d= (X,Y∅), and so P [X ◦ p ∈ ·|Y∅] = P [X ∈ ·|Y∅] a.s. Since

the set of permutations p is countable, we may choose the exceptional null
set to be independent of p, and the conditional exchangeability follows. In
the jointly exchangeable case, the same proof applies with p1 = · · · = pd.

The rotatable case involves the additional complication of an uncountable
class of transformations. However, every rotation T can be approximated by
rotations from a countable set T1, T2, . . . , and the previous argument applies
with obvious changes to the countable family {Tn}.
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(ii) By FMP 1.13 we have E[X|Y J ] = fJ (Y J ) for some measurable
functions fJ , taking values in the set of all real-valued arrays on NNd. Now let
p be as before, except that each pi should now be regarded as a permutation
on ZZ that leaves ZZ− invariant. Then (Y ◦ p)J is a permutation of Y J

generating the same σ-field, and so

E[X|Y J ] ◦ p = E[X ◦ p|Y J ] = E[X ◦ p|(Y ◦ p)J ] = fJ ◦ (Y ◦ p)J ,

where the last relation follows from the exchangeability of Y . Hence, by the
same property,

(E[X|Y J ]; J ⊂ 2d) ◦ p = (fJ ◦ (Y ◦ p)J ; J ⊂ 2d)
d= (fJ ◦ Y J ; J ⊂ 2d)
= (E[X|Y J ]; J ⊂ 2d).

A similar argument applies to the rotatable case. �

We proceed to characterize ergodicity for exchangeable arrays on NNd.
Here it is again convenient to include the rotatable case. An array X on NNd

is said to be dissociated if, for any disjoint sets I1, . . . , Im ∈ NN, the restrictions
of X to the index sets Id

1 , . . . , Id
m are independent. It is clearly enough in this

condition to take m = 2. Let us also say that X is representable in terms of
a U-array ξ \ ξ∅, if it has a representation Xk = f(ξ̂k) that does not involve
the variable ξ∅.

Lemma 7.35 (ergodicity, Aldous) Let X be a separately or jointly exchange-
able or rotatable array on NNd. Then these conditions are equivalent:

(i) X is ergodic,
(ii) X is dissociated,
(iii) X is representable in terms of a U-array ξ \ ξ∅.

Proof, (i) ⇒ (ii): Assume (i), and let Y be a stationary extension of X to
ZZd. Then the random measure P [X ∈ ·|Y∅] is a.s. invariant by Lemma 7.34
(i), and so by (i) and Lemma A1.2 it is a.s. non-random and equal to L(X).
Hence, X ⊥⊥Y∅, and (ii) follows by the exchangeability of Y .

(ii) ⇒ (iii): Assuming (ii), let X have a representation f(ξ̂) as in Theorem
7.22 or Corollary 7.23, and let Y be a stationary extension of X to ZZd. By
Proposition 7.31 or 7.33 and Fubini’s theorem we get a.s.

P{X ∈ ·} = P [X ∈ ·|Y∅] = P [X ∈ ·|ξ∅]
= P [f(ξ̂) ∈ ·|ξ∅] = P{f(ξ̂ \ ξ∅, x) ∈ ·}|x=ξ∅,

which implies
X

d= f(ξ̂ \ ξ∅, x), x ∈ [0, 1] a.e. λ.
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Fixing any x ∈ [0, 1] satisfying the last relation and using the transfer theo-
rem in FMP 6.10, we obtain X = f(ξ̃ \ ξ̃∅, x) a.s. for some ξ̃

d= ξ.
(iii) ⇒ (ii): This is clear since ξ∅ is the only common element of ξ in the

representations of X and Y ∅.
(ii) ⇒ (i): We may proceed as in the classical proof of the Hewitt–Savage

zero–one law (FMP 3.14–15). Thus, writing µ = L(X), we consider any
µ-invariant, measurable set I of arrays on NNd. Choose some approximating
sets An, depending only on the entries in {1, . . . , n}d, and let Bn be the
shifted sets, described in terms of the elements in {n + 1, . . . , 2n}d. Using
the invariance of µ and I and the µ-independence of An and Bn, we get

|µI − (µI)2| ≤ |µI − µ(An ∩ Bn)| + |(µI)2 − (µAn)(µBn)|
≤ 2µ(I∆An) + 2µ(I∆Bn) = 4µ(I∆An) → 0,

which shows that µI = (µI)2. Hence, µI = 0 or 1. �

End of proof of Lemma 7.34: Considering an a.s. representation X = f(ξ̂)
and using Proposition 7.31 or 7.33 and Fubini’s theorem, we get a.s.

P [X ∈ ·|Y∅] = P [X ∈ ·|ξ∅] = P{f(ξ̂ \ ξ∅, x) ∈ ·}|x=ξ∅.

Here the array f(ξ̂ \ ξ∅, x) is again exchangeable or rotatable, and it is also
ergodic by Lemma 7.35. Hence, the conditional distribution P [X ∈ ·|Y∅] is
a.s. ergodic. �

We proceed with a rather technical extension result that will be needed
in the next chapter. Here we write NN′

d for the non-diagonal part of NNd

and define N̂N′
d =

⋃
J NN′

J , where NN′
J denotes the non-diagonal part of NNJ for

arbitrary J ∈ 2d. Similarly, if R = N1 × · · · × Nd for some disjoint sets
N1, . . . ,Nd ⊂ NN, we write R̂ =

⋃
J NJ , where NJ denotes the product of the

sets Nj with j ∈ J. Note that N̂N′
d can be regarded as a subset of ZZd

+ and
that R̂ can be identified with N̄1 × · · · × N̄d, where N̄j = Nj ∪ {0} for all j.
However, the joint exchangeability on N̂N′

d is always defined with respect to
permutations on NN.

Lemma 7.36 (extension from rectangular set) Let X be a jointly exchange-
able array on NN′

d such that

Xk = f(ξ̂k) a.s., k ∈ N1 × · · · × Nd ≡ R, (65)

for some disjoint, infinite sets N1, . . . ,Nd ⊂ NN, a measurable function f on
[0, 1]2d, and a U-array ξ on R̂. Then there exists a jointly exchangeable array
η on N̂N′

d with η
d= ξ on R̂ such that

Xk = f(η̂k) a.s., k ∈ NN′
d. (66)

If X is ergodic and the function f(x̂k) is independent of x∅, then even η \ η∅
can be chosen to be ergodic.
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Proof: Since X is jointly exchangeable, Theorem 7.22 yields a represen-
tation

Xk = g(ζ̂k) a.s., k ∈ NN′
d, (67)

in terms of of a U-array ζ on ÑNd and a measurable function g on [0, 1]2d .
Comparing with (65) and using Theorem 7.29, we obtain

g(ζ̂k) = f ◦ ĥ(ζ̂k, ϑ̂k) a.s., k ∈ R, (68)

for some measurable function h on
⋃

J∈2d [0, 1]2·2J that maps λ2 into λ in the
highest order arguments, where ϑ is an arbitrary U-array on ÑNd independent
of ζ. Since the combined U-array (ζ, ϑ) is trivially exchangeable, equation
(68) extends to NN′

d, and we may substitute into (67) to obtain (66) with

ηJ
k = hJ (ζ̂k, ϑ̂k), k ∈ NN′

J , J ∈ 2d. (69)

The joint exchangeability of η follows from that of (ζ, ϑ), and Proposition
7.7 (i) gives η

d= ξ on R̂.
In the ergodic case, let c ∈ [0, 1]2 be arbitrary, and define an array ηc as

in (69), except that we now replace (ζ∅, ϑ∅) by c. Next replace the element
ηc

∅ in ηc by a U(0, 1) random variable χ∅ ⊥⊥ (ζ, ϑ) to form an array χc. Note
that χc is again jointly exchangeable. Since η is a U-array on R̂, Proposition
7.31 shows that the R̂-restriction of η \ η∅ is independent of (ζ∅, ϑ∅), and so
Fubini’s theorem yields χc d= η

d= ξ on R̂ for λ2-almost every c. Next we
see from Lemma 7.35 that X is dissociated, which implies X ⊥⊥ (ζ∅, ϑ∅) by
Proposition 7.33. Defining Xc as in (66), but now with η replaced by ηc or
χc, we get Xc d= X for almost every c by Fubini’s theorem. For any non-
exceptional c, the transfer theorem in FMP 6.10 ensures that (66) remains
true with η replaced by a suitable array η̃

d= χc. Finally, we note that η̃
d= ξ

on R̂ and that η̃ \ η̃∅
d= ηc \ ηc

∅ is ergodic by Lemma 7.35. �

We conclude with a simple algebraic fact concerning the ideal classes in
2d. Let Pd denote the class of partitions of the set {1, . . . , d} into disjoint,
non-empty subsets. We say that a set S is separated by a class of subsets
C ⊂ 2S , if for any x �= y in S there exists a set A ∈ C that contains exactly
one of the points x and y.

Lemma 7.37 (separation) The class Pd is separated by the family

PJ = {π ∈ Pd; π ⊂ J }, J ⊂ 2d ideal.

Proof: Fix any partition π = {J1, . . . , Jm} of {1, . . . , d}, and note that
the classes J =

⋃
k 2Jk and Jk = J \ Jk, k ≤ m, are ideal. We claim that

{π} = PJ ∩ Pc
J1

∩ · · · ∩ Pc
Jm

. (70)
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Here the inclusion ⊂ is obvious, since π ⊂ J and π �⊂ Jk for all k ≤ m.
Conversely, suppose that π′ ∈ Pd belongs to the right-hand side of (70), so
that π′ ⊂ J and π′ �⊂ Jk for all k. Since J \ Jk = {Jk}, we obtain Jk ∈ π′

for all k, which means that π ⊂ π′. Since π, π′ ∈ Pd, it follows that π = π′,
as required.

Now consider any partition π′ ∈ Pd with π′ �= π. Then by (70) we have
either π′ /∈ PJ or π′ ∈ PJk

for some k ≤ m. In the former case, π and π′ are
clearly separated by PJ ; in the latter case they are separated by PJk

. �

7.8 Symmetric Partitions

Here we consider partitions R of NN into finitely or infinitely many disjoint,
non-empty subsets A1, A2, . . . . Writing i ∼ j if i and j belong to the same
set An, we may define the associated indicator array r on NN2 by

rij = 1{i ∼ j}, i, j ∈ NN.

The indicator arrays may be characterized intrinsically by the relations

rii = 1, rij = rji, rijrjk(1 − rik) = 0, (71)

for arbitrary i, j, k ∈ NN. For any mapping p : NN → NN, we note that the class
of non-empty, inverse sets p−1An is again a partition of NN, here denoted by
p−1R. Note that p−1R has the indicator array r ◦ p, given by

(r ◦ p)ij = rpi,pj
, i, j ∈ NN.

Any {0, 1}-valued random array X on NN2 satisfying the restrictions in (71)
defines a random partition R of NN. It is often convenient to identify the two
objects and refer to the process X as a random partition of NN. We say that R

is exchangeable if p−1R
d= R for all permutations p of NN and contractable if the

same relation holds for all sub-sequences p of NN. In terms of the associated
indicator array X, the condition becomes X ◦ p

d= X for all permutations or
sub-sequences p of NN. In other words, R is exchangeable or contractable iff
the array X is jointly exchangeable or contractable, respectively.

More generally, we may consider an arbitrary collection T of injective
maps p : NN → NN and say that the random partition R is T -invariant in
distribution or simply T -symmetric if p−1R

d= R for all p ∈ T . In particular,
this covers the cases of separately or jointly exchangeable or contractable
partitions of NNd for arbitrary d. Our basic result is the fact that X is T -
symmetric iff can be represented in the form

Xij = 1{ξi = ξj}, i, j ∈ NN,

for some T -symmetric sequence of random variables ξ = (ξj).
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We may consider the more general case where a random mark in some
measurable space S is attached to each subset of R. Letting κ1, κ2, . . . be
the sequence of marks associated with the elements of NN, and writing i ∼ j
whenever i and j belong to the same class of R, we define the associated
indicator array X on NN2 by

Xij = κi1{i ∼ j}, i, j ∈ NN. (72)

Then R is said to be T -symmetric if X is jointly T -symmetric, in the sense
that X ◦ p

d= X for every p ∈ T . We may now state the basic representation
theorem for symmetrically distributed partitions of NN.

Theorem 7.38 (paint-box representation, Kingman, Kallenberg) Let R be
a random partition of NN with marks in a Borel space S, and consider a
family T of injective maps on NN. Then R is T -symmetric iff there exist a T -
symmetric sequence of random variables ξ1, ξ2, . . . and a measurable function
b : RR → S, such that R has the indicator array

Xij = b(ξi)1{ξi = ξj} a.s., i, j ∈ NN. (73)

Our proof is based on an elementary algebraic fact. For any partition R
on NN with associated indicator array r, we define the mappings m(r) : NN → NN
and k(r) : NN → S by

mj(r) = min{i ∈ NN; i ∼ j},
kj(r) = rjj ,

j ∈ NN. (74)

Lemma 7.39 (mapping of lead elements) For any indicator array r on NN2

and injection p on NN, there exists an injection q on NN, depending measurably
on r and p, such that

q ◦ m(r ◦ p) = m(r) ◦ p. (75)

Proof: Let A1, A2, . . . be the partition classes associated with r, listed in
their order of first appearance, and define for all k

Bk = p−1Ak, ak = inf Ak, bk = inf Bk,

K = {k ∈ NN; Bk �= ∅},
I = {ak; k ∈ K}, J = {bk; k ∈ K}.

Since |Bk| ≤ |Ak| for all k by the injectivity of p, we see that the NN-
complements Ic and Jc satisfy

|Jc| =
⋃

k∈K
|Bk \ {bk}| =

∑
k∈K

(|Bk| − 1)

≤
∑

k∈K
(|Ak| − 1) =

⋃
k∈K

|Ak \ {ak}| ≤ |Ic|.

Introducing the increasing enumerations

Ic = {i1, i2, . . .}, Jc = {j1, j2, . . .},
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we may define an (r, p)-measurable injection q on NN by

q(bk) = ak, k ∈ K, (76)
q(jn) = in, n ≤ |Jc|.

To verify (75), fix any j ∈ NN, and note that j ∈ Bk for some k ∈ K. Then
pj ∈ Ak, and so by (76)

q(mj(r ◦ p)) = q(bk) = ak = mpj
(r). �

Proof of Theorem 7.38: The sufficiency is immediate from (82), since

(X ◦ p)ij = Xpi,pj
= b(ξpi

)1{ξpi
= ξpj

}, i, j ∈ NN.

Conversely, suppose that X is T -symmetric. Letting ϑ1, ϑ2, . . . be i.i.d.
U(0, 1) and independent of X, we define

ηj = ϑ ◦ mj(X), κj = kj(X), j ∈ NN, (77)

where m and k are given by (74). Since the ϑj are a.s. distinct, we see from
(72) that

Xij = κi1{ηi = ηj}, i, j ∈ NN. (78)

Now fix any p ∈ T . By Lemma 7.39 we may choose a random injection
q(X) on NN satisfying

q(X) ◦ mj(X ◦ p) = m(X) ◦ pj, j ∈ NN. (79)

Using (77) and (79), the T -symmetry of X and exchangeability of ϑ, the
independence of X and ϑ, and Fubini’s theorem, we get for any measurable
function f ≥ 0 on [0, 1]∞ × S∞

Ef(η ◦ p, κ ◦ p) = Ef(ϑ ◦ m(X) ◦ p, k(X) ◦ p)
= Ef(ϑ ◦ q(X) ◦ m(X ◦ p), k(X ◦ p))
= E[Ef(ϑ ◦ q(r) ◦ m(r ◦ p), k(r ◦ p))]r=X

= E[Ef(ϑ ◦ m(r ◦ p), k(r ◦ p))]r=X

= Ef(ϑ ◦ m(X ◦ p), k(X ◦ p))
= E[Ef(t ◦ m(X ◦ p), k(X ◦ p))]t=ϑ

= E[Ef(t ◦ m(X), k(X))]t=ϑ

= Ef(ϑ ◦ m(X), k(X)) = E(η, κ),

which shows that (η, κ)◦p
d= (η, κ). Since p ∈ T was arbitrary, the pair (η, κ)

is then T -symmetric.
Since S is Borel, so is [0, 1] × S, and there exists a Borel isomorphism

g from [0, 1] × S onto a Borel set B ⊂ [0, 1]. The inverse function g−1 can
be extended to a measurable mapping h : [0, 1] → [0, 1] × S, which is clearly
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one-to-one on B with inverse g. Define ξj = g(ηj, κj), and note that the
sequence ξ = (ξj) is again T -symmetric. It is also clear that

ηi = ηj ⇔ (ηi, κi) = (ηj, κj) ⇔ ξi = ξj. (80)

Letting π denote the natural projection [0, 1]×S → S and putting b = π ◦h,
we obtain

b(ξj) = π(ηj, κj) = κj, j ∈ NN. (81)

We may finally combine (78), (80), and (81) to get

Xij = κi1{ηi = ηj} = b(ξi)1{ξi = ξj}, i, j ∈ NN. �

A similar proof yields the following more general multi-variate result,
where we consider a sequence of random partitions R1, R2, . . . of NN, exchange-
able with respect to a class T of injections on NN.

Corollary 7.40 (sequence of partitions) Let R1, R2, . . . be random parti-
tions of NN with marks in a Borel space S, and consider a family T of in-
jections on NN. Then the sequence R = (Rk) is T -symmetric iff there exist a
random array ξ = (ξn

j ) on NN2 which is T -symmetric in index j, along with a
measurable function b : RR → S, such that the Rn have indicator arrays

Xn
ij = b(ξn

i )1{ξn
i = ξn

j } a.s., i, j, n ∈ NN. (82)

Though contractable arrays X on NN2 may not be exchangeable in general,
the two notions are equivalent when X is the indicator array of a random
partition of NN:

Corollary 7.41 (contractable and exchangeable partitions) A marked par-
tition of NN is exchangeable iff it is contractable.

Proof: If the partition R is contractable, then by Theorem 7.38 the as-
sociated indicator process X can be represented as in (73) in terms of a
contractable sequence ξ = (ξj). Since ξ is even exchangeable by Theorem
1.1, (73) shows that the same thing is true for R. �

The equivalence of exchangeability and contractability fails for partitions
of NNd with d > 1. For example, the non-random partition Ak = {(i, j) ∈
NN2; i∧j = k} of NN2 is clearly contractable but not exchangeable. For a more
interesting example, let ηij , i, j ∈ NN, be i.i.d. Bernoulli random variables with
Eηij = 1

2 , and consider the partition R of NN2 generated by the array

ξij = ηij + ηi∧j, i∧j , i, j ∈ NN.

Then R is contractable but not exchangeable, since for ξ̃ = ξ ◦ p with p =
(2, 1, 3, 4, . . .) we have

P{ξ12 = ξ13} = 1/2, P{ξ̃12 = ξ̃13} = 3/8.
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Let us now specialize to the case of exchangeable partitions R of NN.
Here Theorem 7.38 shows that each class Ak of R is either a singleton or an
infinite set with density βk > 0, in the sense that n−1|Ak ∩ [0, n]| → βk a.s. In
fact, writing µ for the directing random measure of the generating sequence
ξ = (ξj), we see that the βk are simply the atom sizes of µ. We denote the
associated marks in S by κk. The mark distribution of the singleton sets is
given by α = µd ◦ b−1, where µd denotes the diffuse component of µ, and we
note that αS +

∑
j βj = 1. We define the directing random measure of R as

the random probability measure

ν = δ0 ⊗ α +
∑

j
βj δβj ,κj

(83)

on [0, 1] × S. Our terminology is justified by the following result.

Proposition 7.42 (continuity, Kingman, Kallenberg) Let X1,X2, . . . be in-
dicator arrays of some exchangeable partitions of NN with marks in a Polish
space S, and let ν1, ν2, . . . denote the associated directing random measures.
Then Xn d→ some X in S∞ iff νn

wd−→ some ν on [0, 1]×S, in which case X
can be chosen to be the indicator array of an exchangeable partition directed
by ν.

Note that the statement contains the corresponding uniqueness assertion,
the fact that the distributions of X and ν determine each other uniquely.
Some lemmas are needed for the proof. First we construct an exchangeable
partition associated with a random probability measure ν as in (83).

Lemma 7.43 (construction) Given a random measure ν as in (83) and an
independent U-sequence ϑ1, ϑ2, . . . , define a random probability measure ν̃ on
[0, 1]2 × S by

ν̃ = δ0 ⊗ λ ⊗ α +
∑

j
βj δβj ,ϑj ,κj

. (84)

Let ξ1, ξ2, . . . be an exchangeable sequence in [0, 1]2×S directed by ν̃, and form
an array X on NN2 as in (73), where b is the natural projection of [0, 1]2 × S
onto S. Then X generates an exchangeable, marked partition of NN with
directing random measure ν.

Proof: The array X clearly generates an exchangeable partition R of NN
with marks in S. Each atom βjδβj ,ϑj ,κj

of ν̃ gives rise to a partition class of
R with density βj and mark κj , and the mark distribution of the singleton
sets in R is given by α. Thus, R has directing random measure ν. �

The purpose of the randomization in (84) was to make sure that the new
marks κ̃j = (ϑj, κj) will be distinct and the new measure α̃ = λ ⊗ α diffuse.
If these conditions are already fulfilled for the original marks κj and measure
α, we can use the same construction based on the random measure ν.

We can now prove the sufficiency part of Theorem 7.42 in a special case.
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Lemma 7.44 (simple, ergodic case) Let X and X1,X2, . . . be indicator ar-
rays of some exchangeable, marked partitions of NN with directing measures
ν and ν1, ν2, . . . , where ν is given by (83) and

νn = δ0 ⊗ αn +
∑

j
βnj δβnj ,κnj

, n ∈ NN.

Assume that α is a.s. diffuse and the κj are a.s. distinct, and similarly for
the measures αn and marks κnj . Then νn

wd−→ ν implies Xn d→ X.

Proof: By Lemmas 7.43 and A2.4 we may assume that the measures ν and
ν1, ν2, . . . are non-random. Introducing an i.i.d. sequence ξ = (ξj) in [0, 1]×S
based on the distribution ν, we see as in Lemma 7.43 that (73) defines an
indicator array X̃

d= X. Similarly, for every n ∈ NN, we can generate an array
X̃n d= Xn by means of an i.i.d. sequence ξn = (ξn

j ) with distribution νn. Since

νn
w→ ν on [0, 1]× S, we see from FMP 4.29 that ξn d→ ξ in [0, 1]∞ × S∞. To

show that Xn d→ X in S∞, we may use Lemma A2.4 again to reduce to the
case where ξ and the ξn are non-random with ξn

j → ξj for every j. Since the
components of ξ lie a.s. in the support of ν and repetition may only occur in
the set (0, 1]× S, we may assume the same properties for the fixed sequence
ξ. A corresponding assumption can be made for every sequence ξn.

By the continuity of the projection b, it is clear that ξn
i → ξi implies

b(ξn
i ) → b(ξi) for all i ∈ NN. Thus, it remains to show that ξn → ξ implies

1{ξn
i = ξn

j } → 1{ξi = ξj}, i, j ∈ NN.

This is obvious when ξi �= ξj , since in that case even ξn
i �= ξn

j for large enough
n. It is also obvious when i = j. It remains to assume that ξi = ξj = (βk, κk)
for some i �= j and k. Since the atoms of ν are isolated, we may choose a
neighborhood G of (βk, κk) such that ν has no other supporting point in the
closure Ḡ. Then by weak convergence

βk = νG ≤ lim infnνnG ≤ lim supnνnḠ ≤ νḠ = βk,

and so νnG → βk. If G is small enough, then from the special form of the
measures νn it is clear that even the latter have eventually only a single atom
in G. Since also ξn

i → ξi and ξn
j → ξj a.s., we conclude that ξn

i = ξn
j for all

sufficiently large n, as required. �

Before proceeding to the general case, we need to show that the random-
ization in Lemma 7.43 is continuous in distribution with respect to the weak
topologies on [0, 1] × S and [0, 1]2 × S.

Lemma 7.45 (randomization) Let ν and ν1, ν2, . . . be random probability
measures on [0, 1] × S of the form (83), and define the associated random
measures ν̃ and ν̃1, ν̃2, . . . on [0, 1]2 × S as in (84). Then νn

wd−→ ν implies
ν̃n

wd−→ ν̃.
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Proof: For any bounded, continuous function f ≥ 0 on [0, 1]2×S, we may
define an associated bounded, measurable function f̃ ≥ 0 on [0, 1] × S by

f̃(r, x) =
{ −r−1 log

∫ 1
0 e−rf (r,t,x) dt, r > 0,∫ 1

0 f(0, t, x) dt, r = 0.

Then FMP 12.2 (iii) yields

E exp(−ν̃f) = E exp(−νf̃),

and similarly for the measures νn and ν̃n. If even f̃ can be shown to be
continuous, then the convergence νn

wd−→ ν implies

Ee−ν̃nf = Ee−νnf̃ → Ee−νf̃ = Ee−ν̃f ,

and so ν̃nf
d→ ν̃f for all f . By Theorem A2.3 it follows that ν̃n

wd−→ ν̃.
To prove the required continuity, we need to show that f̃(rn, xn) → f̃(r, x)

as rn → r in [0, 1] and xn → x in S. This is obvious by dominated convergence
when r > 0, and also when rn ≡ r = 0. In the remaining case where
0 < rn → r = 0, we may use Taylor’s formula and dominated convergence to
obtain

f̃(rn, xn) = −r−1
n log

∫ 1

0
exp(−rnf(rn, t, xn)) dt

= −r−1
n log

∫ 1

0
(1 − rnf(rn, t, xn) + O(r2

n)) dt

= −r−1
n log

(
1 − rn

∫ 1

0
f(rn, t, xn) dt + O(r2

n)
)

=
∫ 1

0
f(rn, t, xn) dt + O(rn)

→
∫ 1

0
f(0, t, x) dt = f̃(0, x) = f̃(r, x). �

Proof of Proposition 7.42: Suppose that νn
wd−→ ν. If ν and the νn are

non-random and satisfy the conditions of Lemma 7.44, then Xn d→ X by the
same lemma. By Lemma A2.4 the last statement extends to any random
measures ν and νn satisfying the same condition. In the general case, define
ν̃ and ν̃n as in (84), and note that ν̃n

wd−→ ν̃ by Lemma 7.45. Using the result
in the special case, we conclude that X̃n d→ X̃, where X̃ and the X̃n are
indicator arrays corresponding to ν̃ and ν̃n, taking values in [0, 1]× S. Then
by continuity

Xn d= b ◦ X̃n d→ b ◦ X̃
d= X,

which implies Xn d→ X.
Conversely, suppose that Xn d→ X. Noting that

Eνn ◦ b−1 = L(κn
i ) = L(Xn

ii)
w→ L(Xii),
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we see from Prohorov’s theorem that the sequence of measures on the left
is tight in M1(S). Then the sequence (Eνn) is tight in M1([0, 1] × S), and
so by Lemma A2.2 it follows that the sequence (νn) is weakly tight on the
same space. Using Prohorov’s theorem in the other direction, we conclude
that any sub-sequence N ′ ⊂ NN contains a further sub-sequence N ′′, such
that νn

wd−→ ν along N ′′ for some random probability measure ν on [0, 1]×S.
Note that ν must then be of the form (83). Now the direct assertion yields
Xn d→ Y along N ′′, where Y is an indicator array corresponding to ν. But
then Y

d= X, and since ν is measurably determined by Y , the distribution
of ν is unique. Hence, the convergence νn

wd−→ ν remains valid along the
original sequence, and we may choose ν to be the directing random measure
of X. �

We conclude with a criterion for extremality.

Lemma 7.46 (extremality) If the array X in Theorem 7.38 is extreme,
then the sequence ξ can be chosen to have the same property. The converse
statement is also true when T is a group.

Proof: Suppose that the T -invariant array X is extreme and represented
as in (73) in terms of a T -invariant sequence ξ. Letting µ denote the distribu-
tion of ξ and writing (73) in the form X = f(ξ), we see that L(X) = µ◦f−1.
Now Theorem A1.3 yields µ =

∫
mν(dm), where ν is a probability mea-

sure on the set of extreme, T -invariant distributions m, and so µ ◦ f−1 =∫
(m ◦ f−1)ν(dm). Here the measures m ◦ f−1 are again distributions of T -

invariant indicator arrays on NN2, and by the extremality of µ ◦ f−1 we have
m ◦ f−1 = µ ◦ f−1 a.s. ν. Fixing an extreme measure m satisfying this re-
lation and choosing a sequence η with distribution m, we obtain X

d= f(η).
Finally, the transfer theorem (FMP 6.10) yields a random sequence η̃

d= η
with X = f(η̃) a.s.

Now let T be a group, and suppose that X = f(ξ) for an extreme, T -
invariant sequence ξ. From Lemma A1.2 we see that ξ is ergodic, and since
X ◦ p = f(ξ ◦ p) for any p ∈ T , even X is ergodic by Lemma A1.1. Since T
is a group, we may use Lemma A1.2 in the other direction to conclude that
X is extreme. �



Chapter 8

Multi-variate Rotations

In this chapter we continue our discussion of multi-variate symmetries with
a study of higher-dimensional rotations. Here the basic representations are
stated, most naturally, in terms of iso-normal Gaussian processes and their
tensor products—the associated multiple Wiener–Itô integrals. Our analysis
also leads to some representations of exchangeable or contractable processes
in higher dimensions.

Several sections of preliminary material are required before we are ready
to establish our main results. Thus, it is not until Section 8.5 that we can
prove the first general representation theorem, for the case of separately rotat-
able arrays and functionals. In the jointly rotatable case, we need to master
the symmetric functionals in Section 8.6, before we are able in Section 8.7 to
deal with the more difficult case of random arrays. Those representations,
in turn, provide the tools for analyzing, in the final Sections 8.8 and 8.9, the
structure of separately or jointly exchangeable or contractable random sheets
on a Euclidean space.

The basic representations are discussed, most conveniently, in an abstract
Hilbert space setting, the basic notation being explained in Section 8.1. Sec-
tion 8.2 contains some auxiliary results for Gaussian processes, and in Section
8.3 we consider some basic propositions for continuous, linear, random func-
tionals (CLRFs) on suitable product spaces. Finally, Section 8.4 provides
some key lemmas needed to prove our main results. Some further discussion
of multiple stochastic integrals is provided by Appendix A3.

8.1 Rotational Symmetries

Throughout this chapter, we let H denote a real, infinite-dimensional, separa-
ble Hilbert space, and we write H⊗n for the n-fold tensor product H⊗· · ·⊗H.
Without loss of generality, we may assume that H = L2(S,S, µ) for some
σ-finite measure µ with infinite support, in which case H⊗n can be identified
with the space L2(Sn,S⊗n, µ⊗n) and

⊗
k≤n fk = f1 ⊗ · · · ⊗ fn with the func-

tion f1(t1) · · · fn(tn) on Sn. Given an ortho-normal basis (ONB) h1, h2, . . . in
H, we recall that the tensor products

⊗
j≤n hkj

with arbitrary k1, . . . , kn ∈ NN
form an ONB in H⊗n.
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By a continuous, linear, random functional (CLRF) X on H we mean a
real-valued process Xf , f ∈ H, enjoying the linearity and continuity prop-
erties

X(af + bg) = aXf + bXg a.s., f, g ∈ H, a, b ∈ RR,

Xfn
P→ 0, f1, f2, . . . ∈ H, ‖fn‖ → 0.

Equivalently, we may think of X as a continuous, linear operator from H to
L0(P ), the space of real-valued random variables on some fixed probability
space (Ω,A, P ), endowed with the topology of convergence in probability.

A basic example is given by an iso-normal Gaussian process (G-process)
on H, defined as a centered Gaussian process η on H satisfying E(ηf ηg) =
〈f, g〉 for all f, g ∈ H, where 〈·, ·〉 denotes the inner product in H. The
latter process is clearly rotatable, in the sense that η ◦U

d= η or η(Uf) d= ηf ,
f ∈ H, for every unitary operator U on H. In fact, we saw in Proposition
1.31 that a linear random functional ξ on l2 is rotatable iff ξ = ση a.s. for
some G-process η on l2 and an independent random variable σ ≥ 0.

To motivate the subsequent developments, we may state the elementary
Proposition 1.31 in the following abstract form.

Lemma 8.1 (rotatable functionals) A CLRF ξ on H is rotatable iff ξ = ση
a.s. for some G-process η and an independent random variable σ ≥ 0. The
latter is then a.s. unique.

Proof: The result is a special case of Theorem 1.37. For a direct proof,
consider an ONB h1, h2, . . . in H, and define ξj = ξhj for all j. Then the
sequence (ξj) is again rotatable, and so by Proposition 1.31 we have ξj = σηj

a.s. for all j, where the ηj are i.i.d. N(0, 1) and σ ≥ 0 is an independent
random variable. Now define a G-process η on H by ηf =

∑
j〈f, hj〉ηj for all

f ∈ H, where the sum converges in L2, and note that a.s.

ξhj = ξj = σηj = σηhj, j ∈ NN.

Using the linearity and continuity of both ξ and η, we conclude that ξ = ση
a.s. �

An advantage with the latter formulation is that it contains not only the
discrete version in Proposition 1.31, but also the corresponding continuous-
time statement, characterizing processes on [0, 1] or RR+ with rotatable incre-
ments in terms of a Brownian motion on the same interval.

To introduce the multi-variate rotations of CLRFs on product spaces, we
define the tensor product of some unitary operators U1, . . . , Ud on H as the
unique, unitary operator

⊗
k Uk on H⊗d satisfying(⊗

k
Uk

)(⊗
k
fk

)
=
⊗

k
(Ukfk), f1, . . . , fd ∈ H.
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In particular, we may write U⊗d for the d-fold tensor product U ⊗ · · · ⊗ U .
Given a CLRF X on H⊗d, we say that X is jointly rotatable if X ◦U⊗d d= X

for every unitary operator U on H and separately rotatable if X ◦⊗k Uk
d=

X for any such operators U1, . . . , Ud. Our primary aim is to characterize
CLRFs with such symmetries through suitable representations in terms of
G-processes and their tensor products. These results will then be used to
derive similar representations of jointly rotatable arrays and exchangeable or
contractable random sheets.

Our basic building blocks are the multiple stochastic integrals formed
by G-processes on H. To define those, we may begin with the case where
η1, . . . , ηn are independent G-processes on some infinite-dimensional, separa-
ble Hilbert spaces H1, . . . ,Hn. Then

⊗
k ηk = η1 ⊗ · · · ⊗ ηn is defined as the

a.s. unique CLRF on the tensor product
⊗

k Hk = H1 ⊗ · · · ⊗ Hn satisfying(⊗
k
ηk

)(⊗
k
fk

)
=
∏

k
ηkfk a.s., fk ∈ Hk, k ≤ n.

If η is instead a single G-process on H, we define η⊗n as the a.s. unique CLRF
on H⊗n satisfying

η⊗n
⊗

k
fk =

∏
k
ηkfk a.s., f1, . . . , fn ∈ H orthogonal. (1)

In this case, η⊗nf is called the n-th order multiple integral of f with respect
to η (FMP 13.21). (We avoid the usual notation Inf , since it is essential in
the present context to exhibit the choice of underlying G-process η.) Note
that the product property in (1) may fail if f1, . . . , fn are not orthogonal.
More generally, for independent G-processes η1, . . . , ηn as above, we need to
consider the CLRFs

⊗
k η⊗rk

k on
⊗

k H⊗rk
k , characterized by the relations

(⊗
k
η⊗rk

k

)(⊗
k

⊗
j
fk,j

)
=
∏

k

∏
j
ηkfk,j a.s.,

where the elements fk,1, . . . , fk,rk
∈ Hk are orthogonal for fixed k, but other-

wise arbitrary.
These multiple integrals are all rotatable in different ways. Thus, η⊗n

is the basic example of a jointly rotatable CLRF on H⊗n. Furthermore,
the CLRF X =

⊗
k ηk is separately rotatable on

⊗
k Hk, in the sense that

X ◦⊗k Uk
d= X for any unitary operators Uk on Hk, k ≤ n. More generally,

the CLRF X =
⊗

k η⊗rk
k satisfies the rotation invariance X ◦⊗k U⊗rk

k
d= X

for any U1, . . . , Un as before. The general separately or jointly rotatable
CLRFs on H⊗d may essentially be written as linear combinations of multiple
stochastic integrals of the indicated types.

For a more precise description, we begin with the case of separately rotat-
able CLRFs on H⊗d. Let Pd denote the class of partitions of the set {1, . . . , d}
into non-empty subsets J. For every J ∈ 2d we consider a G-process ηJ on
H ⊗ H⊗J = H ⊗⊗

j∈J H. Furthermore, we introduce for every π ∈ Pd an
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element απ ∈ H⊗π =
⊗

J∈π H. Then we may show that a CLRF X on H⊗d

is separately rotatable iff it is a mixture of CLRFs of the form

Xf =
∑

π∈Pd

(⊗
J∈π

ηJ

)
(απ ⊗ f), f ∈ H⊗d, (2)

where the various G-processes ηJ are assumed to be independent.
The jointly rotatable case is more complicated. Here the building blocks

are multiple integrals formed by some independent G-processes ηr on H⊗(1+r),
r = 1, . . . , d. It is also important in this case to keep track of the order of the
component spaces. For this purpose, we introduce the class Od of partitions π
of the set {1, . . . , d} into sequences k = (k1, . . . , kr) of positive length |k| = r
and with distinct elements kj ≤ d. The associated sets k̃ = {k1, . . . , kr} will
then form a partition of {1, . . . , d} in the usual sense, but for each partition
class we also need to specify an order of the elements. The general jointly
rotatable CLRF X on H⊗d may now be written as a mixture of CLRFs of
the form

Xf =
∑

π∈Od

(⊗
k∈π

η|k|
)

(απ ⊗ f), f ∈ H⊗d. (3)

Here we define the multiple integral in the π-th term, for any tensor products
α =

⊗
k∈π αk in H⊗π and f =

⊗
j≤d fj in H⊗d with orthogonal factors αk and

fj in H, by the formula

(⊗
k∈π

η|k|
)

(α ⊗ f) =
∏
k∈π

η|k|

(
αk ⊗

⊗
j≤|k|fkj

)
.

It is often suggestive and convenient to write the representations (2) and (3)
symbolically as

X =
∑

π∈Pd

α∗
π

⊗
J∈π

ηJ , X =
∑

π∈Od

α∗
π

⊗
k∈π

η|k|, (4)

where we may think of α∗
π as a formal adjoint of the random operator απ ⊗(·)

from H⊗d to H⊗π ⊗ H⊗d.
To proceed from here to the general representation formulas, we need

only consider the απ as random elements in the appropriate Hilbert spaces,
independent of the G-processes ηJ or ηr. This requires us to make sense of
integrals like Xϕ, where X is a CLRF on H and ϕ is an independent random
element in H. Here we need ϕ to be measurable, in the sense that 〈ϕ, f〉 is a
random variable for every f ∈ H. Fixing an arbitrary ONB h1, h2, . . . in H,
we may then define

Xϕ =
∑

i
〈ϕ, hi〉Xhi,

where the sum converges in probability and the limit is a.s. independent of
the choice of basis. When interpreted in this way, the integrals in (2) and
(3) are well-defined even for random απ , and the two formulas yield the most
general representations of separately or jointly rotatable CLRFs X on H⊗d.
For convenience, we may still write these formulas as in (4).
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The preceding equations can also be written in coordinate form, for any
choice of ONB h1, h2, . . . in H. Let us then introduce the d-dimensional
random array

Xk = Xk1,...,kd
= X

⊗
j≤d

hkj
, k = (k1, . . . , kd) ∈ NNd,

and note that (Xk) is separately or jointly rotatable in the obvious sense iff
the corresponding property holds for the underlying CLRF X. Using the Itô
expansion of multiple stochastic integrals in terms of Hermite polynomials
(FMP 13.25), we may then write (2) and (3) in an elementary form, involving
suitable G-arrays of random variables. (A G-array is defined as an array of
independent N(0, 1) random variables.) In particular, for two-dimensional,
separately rotatable arrays, we get the a.s. representation

Xij = α0 η0
ij +

∑
h,k

αhk η1
hi η

2
kj , i, j ∈ NN,

where the variables η0
ij , η1

hi and η2
kj form a G-array, independent of the set of

coefficient variables α0 and αhk. By a suitable diagonalization, we can reduce
this to the simpler formula

Xij = α0 η0
ij +

∑
k
αk η1

ki η
2
kj , i, j ∈ NN, (5)

involving a possibly different G-array (ηk
ij).

In the jointly rotatable case, we get instead

Xij = α0 η0
ij + α′

0 η0
ji +

∑
h,k

αhk (ηhi ηkj − δij δhk), i, j ∈ NN. (6)

When X is symmetric, in the sense that Xij = Xji, we can simplify the latter
representation to

Xij = α0 (η0
ij + η0

ji) +
∑

k
αk (ηki ηkj − δij), i, j ∈ NN. (7)

Though (5) gives the most general representation of a separately rotatable ar-
ray on NN2, the expressions in (6) and (7) require an additional diagonal term
ρδij , to allow for an arbitrary jointly rotatable array X to be representable.

The situation in higher dimensions is similar, except that now the diag-
onal terms become more complicated and may even involve some Gaussian
random variables. Those terms did not show up in the original representa-
tions, because the associated operators turn out to be discontinuous.

Our proofs of the mentioned representations rely in a crucial way on the
results for exchangeable arrays in the preceding chapter. More surprisingly,
we may also proceed in the opposite direction and derive representations
of exchangeable or contractable random sheets, using the present represen-
tations of rotatable arrays and CLRFs. Here a random sheet on a product
space RRd

+×[0, 1]d′ is defined as a continuous random field X, such that X = 0
on all d + d′ coordinate hyper-planes. We say that X is separately or jointly
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exchangeable or contractable if, for any regular, cubic grid with a vertex at 0,
the associated array of increments has the corresponding invariance property.

For the latter representations, the proofs are based on the simple obser-
vation that any continuous process on RR+ or [0, 1] with X0 = 0, taking values
in a Euclidean space RRm , is exchangeable iff it can be expressed in the form
Xt = αt+σBt a.s. for some d-dimensional Brownian motion or bridge B, re-
spectively, and an independent pair of random vectors α and σ. Subtracting
the drift term αt, we are left with a process σBt that is essentially rotatable.
Exploiting a similar connection in higher dimensions, where the drift coeffi-
cients are again rotatable but of lower order, and proceeding recursively, we
obtain a finite decomposition of X, where each term can in turn be described
in terms of rotatable processes.

The argument suggests the representation of an arbitrary separately ex-
changeable random sheet X on RRd

+ in the form

Xt =
∑
J∈2d

∑
π∈PJ

(
λJc ⊗

⊗
I∈π

ηI

)
(απ ⊗ [0, t]), t ∈ RRd

+,

where the ηI are independent G-processes on appropriate Hilbert spaces,
and the summations extend over all sets J ∈ 2d and partitions π of J into
disjoint, non-empty subsets I. The same representation holds for separately
exchangeable random sheets on [0, 1]d, except that now the processes ηI need
to be replaced by suitably reduced versions η̂I . The representation of jointly
exchangeable random sheets on RRd

+ is similar but more complicated. In
particular, some additional diagonal terms are needed in this case, similar to
those required for the jointly exchangeable random arrays.

To gain a better understanding of the indicated formulas, we may con-
sider some explicit coordinate versions, valid in the relatively simple two-
dimensional case. Beginning with the separately exchangeable random sheets
on RR2

+, we get a representation

Xs,t = ρst + σAs,t +
∑

j

(
αj Bj

s Cj
t + βj tBj

s + γj sCj
t

)
, s, t ≥ 0,

for some independent Brownian motions B1, B2, . . . and C1, C2, . . . and an
independent Brownian sheet A. The same formula holds for separately ex-
changeable sheets on [0, 1]2, except that the processes Bj and Cj are now
Brownian bridges, and A is a correspondingly tied-down or pinned Brownian
sheet. For jointly exchangeable processes on RR2

+, we get instead a represen-
tation of the form

Xs,t = ρst + σAs,t + σ′At,s + ϑ (s ∧ t)

+
∑

i,j
αij

(
Bi

s Bj
t − (s ∧ t) δij

)
+
∑

j

(
βj tBj

s + β′
j sBj

t + γj Bj
s∧t

)
, s, t ≥ 0,

where B1, B2, . . . are independent Brownian motions and A is an independent
Brownian sheet.
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In all the quoted formulas, the coefficients are themselves random and
independent of the Brownian processes A, Bj and Cj . They also need to be
suitably square summable, to ensure that the series occurring in the various
representations will converge in probability.

8.2 Gaussian and Rotatable Processes

Here we begin with an infinite-dimensional version of Proposition 1.31, which
provides the basic connection between rotatable and Gaussian processes.

Lemma 8.2 (rotatable sequences in RR∞, Dawid) Let X = (Xk) be an infi-
nite random sequence in RR∞. Then X is rotatable iff the Xk are condition-
ally i.i.d. centered Gaussian. The conditional covariance array ρ is then a.s.
unique and X-measurable, and for any stationary extension X− of X to ZZ−
we have

P [X ∈ ·|ρ] = P [X ∈ ·|X−] a.s.

Proof: Let X be rotatable with a stationary extension X− to ZZ−. In par-
ticular, X is exchangeable and therefore conditionally i.i.d. ν, where ν is a
random probability measure on RR∞. By Proposition 7.31, in the elementary
case where d = 1, it is equivalent to condition on X−, which shows that X is
also a.s. conditionally rotatable. By Maxwell’s theorem 1.32 it follows that
any finite linear combination

∑
j ajX

j
1 is a.s. conditionally centered Gaussian.

Restricting the coefficients to QQ and noting that the set of centered Gaussian
distributions is closed under weak convergence, we conclude that, outside a
fixed P -null set, all finite-dimensional projections of ν are Gaussian. The
uniqueness and X-measurability of the conditional covariance array ρ are
clear from Proposition 1.4, and the last assertion follows by another applica-
tion of Proposition 7.31. �

The following result allows us to move back and forth between continuous,
exchangeable processes on RR+ and [0, 1].

Lemma 8.3 (scaling) For any compact, metric space S, let X and Y be
continuous, C(S)-valued processes on RR+ and [0, 1), respectively, related by
the reciprocal relations

Ys = (1 − s)Xs/(1−s), s ∈ [0, 1), (8)
Xt = (1 + t)Yt/(1+t), t ∈ RR+. (9)

Then X and Y are simultaneously exchangeable. In that case, Y can be
extended to an a.s. continuous process on [0, 1], and X is rotatable iff Y1 = 0
a.s.
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Proof: Employing a monotone-class argument, we may first reduce to the
case where S is finite, so that X and Y take values in a Euclidean space
RRd. In that case, Theorem 3.15 shows that a continuous process X on RR+ or
[0, 1] is exchangeable iff it has an a.s. representation Xt = αt+σBt, where B
is a Brownian motion or bridge, respectively, independent of the pair (α, σ).
Letting X be such a process on RR+ and defining Y by (8), we obtain

Ys = αs + (1 − s)σBs/(1−s) = αs + σB◦
s , s ∈ [0, 1),

where B◦ extends by FMP 13.6 to a Brownian bridge on [0, 1].
Conversely, suppose that Y is continuous and exchangeable on [0, 1).

Then the processes Y and Y ′
t = Y ( 1

2 + t) − Y ( 1
2) have the same distribu-

tion on [0, 1
2), and so by FMP 6.10 we may extend Y ′ to a continuous process

on [0, 1
2 ]. Putting Y1 = Y1/2 + Y ′

1/2, we obtain an a.s. continuous extension
of Y to [0, 1]. The exchangeability of Y extends by continuity to the entire
interval [0, 1], and so we have an a.s. representation Ys = αt + σB◦

t involving
a Brownian bridge B◦. Defining X by (9), we get

Xt = αt + (1 + t)σB◦
t/(1+t) = αt + σBt, t ≥ 0,

where B is a Brownian motion on RR+ by FMP 13.6.
To prove the last assertion, we note that Y1 = 0 iff α = 0, which holds by

Lemma 8.2 iff X is rotatable. �

The next lemma gives an elementary relationship between two Gaussian
processes, corresponding to some standard representations of a Brownian
bridge. Given a CLRF ξ on H ⊗ L2(I) with I = RR+ or [0, 1], we write
ξt = ξ(· ⊗ [0, t]) for all t ∈ I. For any CLRFs ξ on H1 and η on H2, we
say that the tensor product ξ ⊗ η exists, if the mapping (f, g) �→ ξf ηg on
H1 × H2 can be extended to a CLRF ξ ⊗ η on H1 ⊗ H2.

Lemma 8.4 (scaling and centering) For any G-process ξ on H⊗L2([0, 1]),
there exists a G-process ξ̃ on H ⊗ L2([0, 1]), such that whenever ξ ⊗ η exists
for some CLRF η⊥⊥ ξ on H, we have

(1 − s)(ξ ⊗ η)s/(1−s) =
(
(ξ̃ − ξ̃1 ⊗ λ) ⊗ η

)
s

a.s., s ∈ [0, 1). (10)

Proof: It suffices to prove the existence of a G-process ξ̃ satisfying

(1 − s)ξs/(1−s) = (ξ̃ − ξ̃1 ⊗ λ)s a.s., s ∈ [0, 1), (11)

since (10) will then follow by the linearity and continuity of both sides. By
FMP 6.10 it is then enough to show that the processes in (11) have the same
distribution whenever ξ and ξ̃ are both G-processes. Expanding the latter
processes in terms of an ONB in H, we note that the corresponding terms in
(11) are independent on each side. It is then enough to consider each term
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separately, which reduces the discussion to the case of real-valued processes
ξ and ξ̃. But in that case, each side is clearly a Brownian bridge on [0, 1], by
Lemma 8.3 or FMP 13.6. �

We continue with an elementary result for Gaussian processes.

Lemma 8.5 (orthogonality and equivalence) Let X and Y be centered, Gaus-
sian processes on an arbitrary index set T . Then

X ⊥ Y, (X + Y ) ⊥ (X − Y ) ⇒ X
d= Y.

Proof: For any s, t ∈ T , we have

EXsXt − EYsYt = EXsXt − EXsYt + EYsXt − EYsYt

= E(Xs + Ys)(Xt − Yt) = 0.

Hence, X and Y have the same mean and covariance functions, and the re-
lation X

d= Y follows by FMP 13.1. �

To state the next result, recall that a linear mapping I between two
Hilbert spaces H and K is called an isometry if 〈If, Ig〉 = 〈f, g〉 for all
f, g ∈ H. A G-process on H is defined as a linear isometry ξ from H to
L2(P ) such that ξf is centered Gaussian for every f ∈ H. The G-processes
ξ1, ξ2, . . . are said to be jointly Gaussian if ξ1f1 + · · · + ξnfn is Gaussian for
all n ∈ NN and f1, . . . , fn ∈ H.

Lemma 8.6 (Gaussian representation) For any jointly Gaussian G-proces-
ses ξ1, ξ2, . . . on H, there exist a G-process ξ and some linear isometries
I1, I2, . . . on H such that ξk = ξ ◦ Ik a.s. for all k.

Proof: Let K be the closed linear subspace in L2(P ) spanned by ξ1, ξ2, . . . .
Fix a G-process η on H and a linear isometry I : K → H, and define

Ik = I ◦ ξk, ηk = η ◦ Ik, k ∈ NN,

so that
ηkf = η ◦ I ◦ ξkf = η(I(ξkf)), k ∈ NN, f ∈ H.

The ηk are again jointly centered Gaussian, and for any j, k ∈ NN and f, g ∈ H
we get

E(ηjf)(ηkg) = E(ηIξjf)(ηIξkg)
= 〈Iξjf, Iξkg〉 = E(ξjf)(ξkg).

Hence, (ηk)
d= (ξk) by FMP 13.1, and so by FMP 6.10 we may choose some

ξ
d= η such that ξk = ξ ◦ Ik a.s. for every k. �

To state the next result, we say that a process X on a group S is left-
stationary if the shifted process θrX, defined by (θrX)s = Xrs, satisfies
θrX

d= X for every r ∈ S.
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Lemma 8.7 (moving-average representation) For a finite group S, let X =
(Xs

n) be a centered, Gaussian process on S × NN. Then Xs
n is left-stationary

in s ∈ S iff it has an a.s. representation

Xs
n =

∑
r∈S

∑
k∈NN

cr
n,k ηsr

k , s ∈ S, n ∈ NN, (12)

in terms of a G-array η = (ηs
n) on S ×NN and some constants cs

nk indexed by
S × NN2 such that

∑
k(cs

nk)
2 < ∞ for all s and n.

Proof: The sufficiency is clear from the stationarity of η = (ηs
k), since the

shifted process θsX has the same representation in terms of θsη. Conversely,
suppose that X is left-stationary. Choose an ONB ξ1, ξ2, . . . in the L2-space
spanned by X, put p = |S|, and consider the expansion

p−1/2Xs−1

n =
∑

k
cs
n,k ξk, s ∈ S, n ∈ NN. (13)

Letting ζ = (ζs
k) be a G-array on S×NN, we may define a process Y on S×NN

by
Y s

n =
∑

r

∑
k
cr
n,k ζsr

k , s ∈ S, n ∈ NN, (14)

where the inner sum converges since
∑

k(cs
n,k)

2 < ∞ for all s and n. Using
(13) and (14), the ortho-normality of ξ and ζ, the group property of S, the
left stationarity of X, and the definition of p, we get for any s, t ∈ G and
m,n ∈ NN

E(Y s
m Y t

n ) =
∑

u,v

∑
h,k

cu
m,h cv

n,k δsu,tv δh,k

=
∑

r

∑
k
c
(rs)−1

m,k c
(rt)−1

n,k

= p−1
∑

r
E(Xrs

m Xrt
n ) = E(Xs

m Xt
n).

Since X and Y are both centered Gaussian, it follows that X
d= Y (FMP

13.1). We may finally use the transfer theorem, in the version of FMP 6.11,
to obtain a G-array η = (ηs

k) satisfying (12). �

8.3 Functionals on a Product Space

By a random element in a Hilbert space H we mean a mapping ϕ : Ω → H
such that 〈ϕ, h〉 is measurable, hence a random variable, for every h ∈ H.
Equivalently (FMP 1.4), ϕ may be regarded as a random element in H,
endowed with the σ-field H generated by all projections πh : f �→ 〈f, h〉 on
H, h ∈ H. A CLRF X on H is said to be measurable if Xf : (ω, f) �→ X(ω)f
is a product measurable function on Ω × H. In this case, the composition
Xϕ is clearly a random variable for every random element ϕ in H (FMP 1.7
and 1.8).
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Lemma 8.8 (measurability) Every CLRF X on H has a measurable ver-
sion X̃, and for any random element ϕ⊥⊥X and ONB h1, h2, . . . in H, we
have ∑

k≤n
〈ϕ, hk〉Xhk

P→ X̃ϕ.

Proof: By the continuity of X, we may choose some positive constants
δn ↓ 0 such that

E(|Xf | ∧ 1) ≤ 2−n, f ∈ H with ‖f‖ ≤ δn, n ∈ NN.

Fixing an ONB h1, h2, . . . in H, we define for any f ∈ H and n ∈ NN

fn =
∑

k≤n
〈f, hk〉hk,

mn(f) = inf{k ∈ NN; ‖f − fk‖ ≤ δn},
Ff,n = fmn(f ).

Then

E
∑

n
(|Xf − XFf,n| ∧ 1) =

∑
n
E(|Xf − XFf,n| ∧ 1)

≤
∑

n
2−n < ∞,

and so the sum on the left converges a.s., which implies XFf,n → Xf
a.s. Constructing the variables XFf,n by linearity from any fixed versions
of Xh1,Xh2, . . . , we may now define X̃f = limn XFf,n when the limit exists,
and put X̃f = 0 otherwise. It is easy to verify that X̃ is a measurable version
of X.

Now assume that X is measurable. Then the homogeneity, additivity,
and continuity properties of X extend to

X(αf) = αXf a.s.,
X(ϕ + ψ) = Xϕ + Xψ a.s.,

‖ϕn‖ → 0 a.s. ⇒ Xϕn
P→ 0,

whenever the random variable α and elements ϕ, ψ, and ϕn are independent
of X. In fact, by Fubini’s theorem and the linearity of X, we have

P{X(αf) = αXf} = EP{X(af) = aXf}|a=α = 1,
P{X(ϕ + ψ) = Xϕ + Xψ} = EP{X(f + g) = Xf + Xg}|(f,g)=(ϕ,ψ) = 1.

Similarly, assuming ‖ϕn‖ → 0 a.s. and using Fubini’s theorem, the continuity
of X, and dominated convergence, we get

E(|Xϕn| ∧ 1) = EE(|Xf | ∧ 1)|f=ϕn → 0,

which means that Xϕn
P→ 0.
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Now fix any ONB h1, h2, . . . of H and a random element ϕ⊥⊥X in H.
Putting ϕn =

∑
k≤n〈ϕ, hk〉hn and using the extended homogeneity and addi-

tivity properties of X, we obtain

Xϕn =
∑

k≤n
〈ϕ, hk〉Xhk a.s.

Since ‖ϕ − ϕn‖ → 0 a.s., we conclude from the extended additivity and
continuity properties that

Xϕn = Xϕ − X(ϕ − ϕn) P→ Xϕ.

The final assertion follows by combination of the last two relations. �

By the last result, we may henceforth assume that any CLRF X on H is
measurable. We say that X is Lp-bounded if ‖Xf‖p <

�
‖f‖. Let us also say

that a CLRF X on H⊗d has the form X1 ⊗ · · · ⊗ Xd for some independent
CLRFs X1, . . . ,Xd on H, if

X
⊗

k
fk =

∏
k
Xkfk a.s., f1, . . . , fd ∈ H.

Lemma 8.9 (conditional expectation) Let X be an L1-bounded CLRF on
H⊗d of the form X1 ⊗ · · · ⊗ Xd, where X1, . . . ,Xd are independent CLRFs
on H with mean 0, and consider a random element ϕ⊥⊥X in H⊗d. Then

E[Xϕ|X1, . . . ,Xk, ϕ] = 0, 0 ≤ k < d.

Proof: Fix any ONB h1, h2, . . . in H, and let ϕn be the projection of ϕ
onto H⊗d

n , where Hn denotes the linear span of h1, . . . , hn. By Lemma 8.8,

Xϕn =
∑

k1,...,kd≤n

〈
ϕ,
⊗

j
hkj

〉 ∏
j
Xjhkj

a.s., n ∈ NN,

and so, by Fubini’s theorem,

E[Xϕn|X1, . . . ,Xk, ϕ] = 0 a.s., n ∈ NN, k < d.

Writing Yk = (X1, . . . ,Xk) and using Jensen’s inequality, Fubini’s theorem,
and the L1-boundedness of X, we obtain a.s.

E[|E[Xϕ|Yk, ϕ]| |ϕ] = E[|E[X(ϕ − ϕn)|Yk, ϕ]| |ϕ]
≤ E[|X(ϕ − ϕn)| |ϕ]
<
�

‖ϕ − ϕn‖ → 0,

which implies E[Xϕ|Yk, ϕ] = 0 a.s. �

Our next aim is to construct suitably reduced versions of G-processes
on H ⊗ L2([0, d]d), which will be needed to represent exchangeable random
sheets on [0, 1]d. For any f ∈ H ⊗ L2([0, 1]d) and J ∈ 2d, we define the
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J-average f̄J ∈ H ⊗ L2([0, 1]Jc) by

〈f̄J , h〉 = 〈f, h ⊗ [0, 1]J 〉, h ∈ H ⊗ L2([0, 1]J
c

),

where the existence and uniqueness follow from Riesz’ theorem. Similarly,
given a CLRF ξ on H ⊗L2([0, 1]d), we define a CLRF ξ̄J on H ⊗L2([0, 1]Jc)
by

ξ̄J f = ξ(f ⊗ [0, 1]J ), f ∈ H ⊗ L2([0, 1]J
c

).

Writing PJ for the operator f �→ f̄J ⊗ [0, 1]J on H ⊗ L2([0, 1]d), let Nj

be the null space of Pj = P{j} and put NJ =
⋂

j∈J Nj . Let AJ denote the
orthogonal projection onto NJ . For any CLRF ξ on H ⊗ L2([0, 1]d), we
introduce the dual projection ξ̂J = A∗

J ξ given by ξ̂J f = ξ(AJf), which is
again a CLRF on H ⊗ L2([0, 1]d). If ξ is a G-process, then ξ̂J is clearly
centered Gaussian with covariance function E(ξ̂J f)(ξ̂J g) = 〈AJf,AJg〉.

The following result gives some basic relations between the various aver-
ages and projections.

Lemma 8.10 (projections and averages)
(i) The operators AJ commute and are given by

AJf =
∑

I⊂J
(−1)|I | (f̄I ⊗ [0, 1]I), f ∈ H ⊗ L2([0, 1]d), J ∈ 2d.

(ii) For any CLRF ξ on H ⊗ L2([0, 1]d), we have

ξ̂J = A∗
J ξ =

∑
I⊂J

(−1)|I | (ξ̄I ⊗ λI), J ∈ 2d.

Proof: (i) For any f ∈ H ⊗ [0, 1]d and h ∈ H ⊗ [0, 1]Jc , we have

〈PJf, h ⊗ [0, 1]J 〉 = 〈f̄J ⊗ [0, 1]J , h ⊗ [0, 1]J 〉
= 〈f̄J , h〉 = 〈f, h ⊗ [0, 1]J 〉,

which shows that PJ is the orthogonal projection onto the subspace of ele-
ments h ⊗ [0, 1]J . In particular, Aj = I − Pj for all j ≤ d.

For any disjoint sets I, J ∈ 2d and elements

f ∈ H ⊗ L2([0, 1]I
c

), h ∈ H ⊗ L2([0, 1]J
c

),

where h = h′ ⊗ h′′ with h′′ ∈ L2([0, 1]I), we have

〈PJ (f ⊗ [0, 1]I), h ⊗ [0, 1]J 〉 = 〈f ⊗ [0, 1]I , h ⊗ [0, 1]J 〉
= 〈f, h′ ⊗ [0, 1]J 〉 〈[0, 1]I , h′′〉
= 〈PJf, h′ ⊗ [0, 1]J 〉 〈[0, 1]I , h′′〉
= 〈PJf ⊗ [0, 1]I , h ⊗ [0, 1]J 〉,

which extends by linearity and continuity to arbitrary h. Hence,

PJ (f ⊗ [0, 1]I) = PJf ⊗ [0, 1]I , I ∩ J = ∅.
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Since for any I, J ∈ 2d,

〈PIPJf, h ⊗ [0, 1]I∪J 〉 = 〈f, h ⊗ [0, 1]I∪J 〉
= 〈PI∪Jf, h ⊗ [0, 1]I∪J 〉,

we conclude that PIPJ = PI∪J . In particular, the operators PJ commute and
satisfy PJ =

∏
j∈J Pj for all J.

The commutative property carries over to the projections Aj = I − Pj

and their products, and for any J ∈ 2d we get

A′
J ≡

∏
j∈J

Aj =
∏
j∈J

(I − Pj) =
∑
I⊂J

(−1)|I |PI.

The latter operator is again a projection, and its range is clearly NJ , which
means that A′

J = AJ .
(ii) For any tensor product f = f ′ ⊗ f ′′ with f ′ ∈ H ⊗ L2([0, 1]Jc) and

f ′′ ∈ L2([0, 1]J ), we have

〈f̄J , h〉 = 〈f, h ⊗ [0, 1]J 〉
= 〈f ′, h〉 〈f ′′, [0, 1]J 〉 = 〈f ′, h〉λJf ′′,

which implies f̄J = (λJf ′′)f ′. Hence,

ξPJf = ξ(f̄J ⊗ [0, 1]J )
= ξ(f ′ ⊗ [0, 1]J ) (λJf ′′)
= (ξ̄J f ′) (λJf ′′) = (ξ̄J ⊗ λJ )f.

This extends by linearity and continuity to arbitrary f , and we get ξ ◦ PJ =
ξ̄J ⊗ λJ . Using (i), we conclude that

ξ̂J = ξ ◦ AJ =
∑
I⊂J

(−1)|I | (ξ ◦ PI) =
∑
I⊂J

(−1)|I | (ξ̄I ⊗ λJ ). �

8.4 Preliminaries for Rotatable Arrays

The next result shows that every ergodic, separately rotatable array has finite
moments of all orders.

Lemma 8.11 (moments of rotatable arrays) For any ergodic, separately
rotatable array X on NNd, we have

E|Xk|p < ∞, k ∈ NNd, p > 0.

Proof: Let Y be a stationary extension of X to ZZd. We claim that, for
any p > 0 and m ∈ {0, . . . , d},

E[|Yk|p|Y∅] < ∞ a.s., k1, . . . , km > 0 ≥ km+1, . . . , kd. (15)
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The statement is obvious for m = 0, since Yk is Y∅-measurable for k1, . . . , kd ≤
0. Now assume (15) to be true for some m < d. Proceeding by induction,
we define ξj = Y1,...,1,j,0,...,0, where index j occurs in position m + 1. The
sequence (ξj) is rotatable, and so by Lemma 8.2 and FMP 6.10 it has an
a.s. representation ξj = σηj , j ∈ ZZ, in terms of a G-sequence (ηj) and an
independent random variable σ ≥ 0. By a conditional version of the Cauchy–
Buniakovsky inequality, we get for any j, n ∈ NN

EY∅|ξj |p = EY∅
(
η2

j σ
2
)p/2

= EY∅

(
η2

j (ξ2
−1 + · · · + ξ2

−n)
η2

−1 + · · · + η2
−n

)p/2

≤
(
EY∅

(
η2

j

η2
−1 + · · · + η2

−n

)p

EY∅
(
ξ2
−1 + · · · + ξ2

−n

)p
)1/2

.

Using Minkowski’s inequality and the induction hypothesis, we get for the
second factor on the right

EY∅(ξ2
−1 + · · · + ξ2

−n)p ≤ np EY∅|ξ−1|2p < ∞ a.s.

Even the first factor is a.s. finite when n > 2p, since it has expected value

E

(
η2

j

η2
−1 + · · · + η2

−n

)p

= E|ηj |2p E
(
η2

−1 + · · · + η2
−n

)−p

<
�

∫ ∞

0
r−2p e−r2/2 rn−1 dr < ∞.

This shows that (15) remains true for m+ 1, which completes the induction.
In particular, we get for m = d

E|Xk|p = EY∅|Yk|p < ∞, k ∈ NNd,

since Y is dissociated by Lemma 7.35. �

The following lemma plays a key role in the proofs of our main results.

Lemma 8.12 (separation of variables, Aldous) Consider an array X on
NN3, given by

Xn
ij =

∑
k
cn
k ϕn

ik ψn
jk, i, j, n ∈ NN,

in terms of some constants cn
k with

∑
k(cn

k )2 < ∞ for all n and some inde-
pendent arrays (ϕn

jk) and (ψn
jk), each of which is i.i.d. in index j and ortho-

normal in k for fixed j and n. Further suppose that X = (Xn
ij) is rotatable

in index i. Then the array

ζn
ik = cn

k ϕn
ik, i, k, n ∈ NN, (16)

is centered, Gaussian and rotatable in index i.
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Proof: By FMP 3.22 we may choose some measurable functions fn
k and

gn
k on [0, 1], k, n ∈ NN, such that

λ ◦ (fn
k )−1 = P ◦ (ϕn

1k)
−1, λ ◦ (gn

k )−1 = P ◦ (ψn
1k)

−1.

In particular, the sequences fn
1 , fn

2 , . . . and gn
1 , gn

2 , . . . are ortho-normal in
L2(λ) for each n. Letting ξ1, ξ2, . . . and η1, η2, . . . be independent U-sequences
on the basic probability space, we conclude from the i.i.d. assumption on
(ϕn

jk) and (ψn
jk) that

{(fn
k (ξi), gn

k (ηj)); i, j, k, n ∈ NN} d= {(ϕn
ik, ψ

n
jk); i, j, k, n ∈ NN}.

By FMP 6.10 we may then assume that a.s.

ϕn
jk = fn

k (ξj), ψn
jk = gn

k (ηj), j, k, n ∈ NN,

where the exceptional P -null set can be eliminated by a modification of the
variables ϕn

jk and ψn
jk, which affects neither hypotheses nor assertion.

The tensor products fn
k ⊗ gn

k are again ortho-normal in k for fixed n, and
the condition on the cn

k allows us to define

hn =
∑

k
cn
k (fn

k ⊗ gn
k ) a.e. λ2, n ∈ NN,

in the sense of convergence in L2(λ2). Then the functions

ĥn(y) = hn(·, y), y ∈ [0, 1], n ∈ NN,

satisfy ĥn(y) ∈ L2(λ) for y ∈ [0, 1] a.e. λ, and we may choose versions of
the hn such that ĥn(y) ∈ L2(λ) holds identically. It is easy to check that
ĥ1, ĥ2, . . . are then measurable functions from [0, 1] to L2(λ). Introducing
the closed supports Bn of the probability measures µn = λ ◦ ĥ−1

n on L2(λ),
we note that ĥn(y) ∈ Bn for y ∈ [0, 1] a.e. λ, and again we may modify
the functions hn on the exceptional null sets such that ĥn(y) ∈ Bn holds
identically.

For any versions of the functions hn, we get

Xn
ij = hn(ξi, ηj) a.s., i, j, n ∈ NN.

By Proposition 7.31 and Lemma 7.34, the array X = (Xn
ij) remains a.s.

rotatable in i, conditionally on η = (ηj). By Lemma 8.2, the functions
ĥn1(y1), . . . , ĥnm(ym) are then jointly centered, Gaussian for any m and n1,
. . . , nm ∈ NN and for (y1, . . . , ym) ∈ [0, 1]m a.e. λm . Since the product measure
µn1⊗· · ·⊗µnm on (L2(λ))m has support Bn1×· · ·×Bnm and the set of centered,
Gaussian distributions is closed under weak convergence, the whole collection
{ĥn(y)} is then jointly centered, Gaussian.

For each n ∈ NN, let An denote the set of all y ∈ [0, 1] such that∑
k
cn
k gn

k (y) fn
k = ĥn(y) in L2(λ).
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By the ortho-normality of gn
1 , gn

2 , . . . and Fubini’s theorem, we have∫ 1

0

∑
k
(cn

k gn
k (y))2 dy =

∑
k
(cn

k )2 ‖gn
k ‖2 =

∑
k
(cn

k )2 < ∞,

and so the sum on the left converges a.e., which implies λAn = 1. Next
let Hn denote the closed subspace of l2 spanned by the sequences cn

kg
n
k (y),

k ∈ NN, with y ∈ An, and note that the sums
∑

k rkf
n
k with (rk) ∈ Hn, n ∈ NN,

are jointly centered, Gaussian. To identify Hn, let (rk) ⊥ Hn in l2, so that∑
k
rk cn

k gn
k (y) = 0, y ∈ An.

Using the ortho-normality of the gn
k and the fact that λAn = 1, we conclude

that ∑
k
rk cn

k gn
k = 0 in L2(λ),

which implies rkc
n
k = 0 for all k. Thus, the orthogonal complement of Hn

consists of all sequences (rk) ∈ l2 such that rk = 0 when cn
k �= 0, and so

the space Hn itself is spanned by the sequences (0, . . . , 0, cn
k , 0, . . .) with cn

k

in the kth position. This shows that the functions cn
kf

n
k are jointly centered,

Gaussian. The same thing is then true for the array (ζn
ik) in (16), and the

assertion follows by the assumed i.i.d. property in index i. �

We may now establish a Gaussian representation for separately rotatable
arrays of a special kind.

Lemma 8.13 (arrays of product type, Aldous, Kallenberg) Consider a sep-
arately rotatable array on NNd of the form

Xk = f(ξ1,k1 , . . . , ξd,kd
), k = (k1, . . . , kd) ∈ NNd, (17)

where (ξjk) is a U-array on d× NN and f is a measurable function on [0, 1]d.
Then

Xk =
∑
p∈NNd

cp

∏
i≤d

ηi
ki,pi

a.s., k ∈ NNd, (18)

for a G-array (ηi
k,p) on d × NN2 and some real constants cp, p ∈ NNd, with∑

p c2
p < ∞.

Proof: By Lemma 7.35 we note that X is ergodic, and so by Lemma 8.11
it has finite moments of all orders, and in particular f ∈ L2(λd). We shall
prove that f ∈ H1 ⊗ · · · ⊗ Hd, where each Hj is a Hilbert space of centered,
Gaussian functions on the Lebesgue unit interval. Then assume that, for
fixed m < d,

f ∈ H1 ⊗ · · · ⊗ Hm ⊗ L2(λd−m), (19)

with H1, . . . ,Hm such as stated. To extend the result to index m+1, we may
use Lemma A3.1 to express f in the form

∑
jbj(gj⊗hj), for some orthonormal

sequences

gj ∈ H1 ⊗ · · ·Hm ⊗ L2(λd−m−1), hj ∈ L2(λ),
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where the factor hj occurs in coordinate m+1. Writing Hm+1 for the Hilbert
space in L2(λ) spanned by the functions bjhj , we see that (19) remains true
for index m + 1. To complete the induction, it remains to note that the
functions bjhj are jointly centered, Gaussian by Lemma 8.12.

For every i ≤ d, we may now choose an ONB hi1, hi2, . . . in Hi, so that
the random variables

ηi
k,p = hi,p(ξi,k), i, k, p ∈ NN, (20)

become i.i.d. N(0, 1). Since the tensor products h1,p1 ⊗ · · · ⊗ hd,pd
form an

ONB in H1 ⊗ · · · ⊗ Hd, we have an expansion

f =
∑
p∈NNd

cp

⊗
i≤d

hi,pi

with
∑

p c2
p < ∞, and (18) follows by means of (17) and (20). �

For any k ∈ NNd and J ∈ 2d, we write kJ = (kj ; j ∈ J) and XJ
h = (Xk;

kJ = h), h ∈ NNJ , so that the XJ
h are sub-arrays of X corresponding to

fixed values of the indices kj with j ∈ J. We say that X is J-rotatable if
its distribution is invariant under arbitrary rotations in the indices kJ ∈ NNJ .
This holds by Lemma 8.2 iff the arrays XJ

h , h ∈ NNJ , are conditionally i.i.d.
centered, Gaussian. An array X on NNd that is J-rotatable for J = {1, . . . , d}
is said to be totally rotatable. The following result gives a condition for a
separately rotatable array to be J-rotatable.

Proposition 8.14 (J-rotatable arrays, Aldous, Kallenberg) Let X be an
RR∞-valued, separately rotatable array on NNd, representable in terms of a U-
array ξ on J ∩ {J}, where J ⊂ 2d is ideal and J /∈ J , and suppose that
E[X|ξJ ] = 0 a.s. Then X is J-rotatable.

Proof: We may clearly assume that |J| ≥ 2. For fixed j ∈ J, we see
from Lemma 8.2 that the arrays Xj

k , k ∈ NN, on NNd−1 are conditionally i.i.d.,
centered, Gaussian, given the associated random covariance function ρ on
(NNd−1)2. By the same lemma, it is equivalent to condition on Ŷ jc for any
stationary extension Y of X to ZZd, where jc = {j}c = {1, . . . , d} \ {j}.
Writing Jj = {I ∈ J ; j /∈ I}, we see from Proposition 7.31 that even

P [X ∈ ·|ρ] = P [X ∈ ·|ξJj ] = P [X ∈ ·|Y Jj ]. (21)

Now consider any h, k ∈ NNd with hj = kj but hJ �= kJ , and note that
Xh ⊥⊥ξJ Xk since ξJ

hJ
⊥⊥ξJ ξJ

kJ
. Writing h′ = hjc and k′ = kjc , and using (21),

along with the chain rule for conditional expectations and the hypothetical
relation E[X|ξJ ] = 0, we obtain

ρh′,k′ = E[XhXk| ξJj ]

= E
[
E[XhXk| ξJ ]

∣∣∣ ξJj

]
= E

[
E[Xh|ξJ ] E[Xk|ξJ ]

∣∣∣ ξJj

]
= 0. (22)
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Next let T be a rotation in an arbitrary index i ∈ J \ {j}, and use (21)
and (22), together with the relations TY Jj = (TY )Jj and TY

d= Y , to obtain

E[(TX)h (TX)k| ρ] = E[(TX)h (TX)k|Y Jj ]
= E[(TX)h (TX)k| (TY )Jj ]
d= E[XhXk|Y Jj ] = ρh′,k′ = 0. (23)

In particular, we may fix any p �= q in NN and choose T such that

(TX)i
p =

Xi
p + Xi

q√
2

, (TX)i
q =

Xi
p − Xi

q√
2

. (24)

Using (22) and (23), the latter with T as in (24), we see from Lemma 8.5
that

P [Xi
p ∈ ·|ρ] = P [Xi

q ∈ ·|ρ], p, q ∈ NN, i ∈ J,

and iterating this for different values of i ∈ J yields

P [XJ
h ∈ ·|ρ] = P [XJ

k ∈ ·|ρ], h, k ∈ NNJ .

Combining with (22), we see that the arrays XJ
k , k ∈ NNJ , are conditionally

i.i.d. centered Gaussian, which implies the asserted J-rotatability of X. �

We proceed to show that any separately rotatable collection of totally
rotatable arrays is again totally rotatable.

Corollary 8.15 (combined arrays) Let X = (Xn) be a separately rotatable
family of totally rotatable arrays X1,X2, . . . on NNd. Then X is again totally
rotatable.

Proof: Since X is separately exchangeable, it can be represented in terms
of a U-array ξ on

⋃
J NNJ . By Lemma 8.2 we have also a representation of

each sub-array Xn in the form Xn
k = σnη

n
k , k ∈ NNd, for a G-array ηn = (ηn

k )
on NNd and an independent random variable σn. Applying Proposition 7.31
with J = 2d \ {1, . . . , d} gives

E[Xn|ξJ ] = E[Xn|σn] = 0, n ∈ NN,

and so X is totally rotatable by Proposition 8.14. �

Next we show that any J-rotatable arrays XJ on NNJ , J ∈ 2d, are condi-
tionally independent whenever the whole family is separately exchangeable.
Here the exchangeability is with respect to permutations of the indices in NNJ

for every J; the sets J are not affected.

Proposition 8.16 (conditional independence) Let X be a separately ex-
changeable family of RR∞-valued arrays XJ on NNJ , J ∈ ÑN, such that XJ

is J-rotatable for every J. Then the XJ are conditionally independent, given
X∅ and the set of conditional covariance arrays ρJ .
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Proof: By martingale convergence (FMP 7.23), it is enough to consider
the arrays XJ with J ⊂ {1, . . . , d} for a fixed d ∈ NN. Let X̄J denote the Jc-
invariant extension of XJ to NNd, and note that the combined array X̄ = (X̄J )
remains separately exchangeable. Introduce a stationary extension Y of X̄
to ZZd, and write Y J for the restriction of Y to NNJ × ZZJc

− . Note that XJ is
trivially Y J -measurable by construction, and that ρJ is Y ∅-measurable by
the law of large numbers.

Now fix an ideal class J ⊂ 2d different from ∅ and 2d, along with a set
J ∈ 2d \ J . Letting ξ be a representing U-array of X, we get by Proposition
7.31

P [XJ ∈ ·|ρJ ] = P [XJ ∈ ·|ξJ ] = P [XJ ∈ ·|Y J ] a.s.,

and since ρJ is Y J -measurable, we obtain XJ ⊥⊥ρJ
Y J by FMP 6.6. Since

also α = X∅, ρ = (ρJ ), and all the XI , I ∈ J , are Y J -measurable, we
conclude that

XJ ⊥⊥α,ρ (XI ; I ∈ J ), J /∈ J , J ⊂ 2d ideal. (25)

Choosing an enumeration 2d = {J1, . . . , J2d} with |J1| ≤ · · · ≤ |J2d | and
noting that the sets Jk = {J1, . . . , Jk} are ideal, we get by (25)

(XJ1, . . . ,XJk
)⊥⊥α,ρ XJk+1 , k < 2d,

and the asserted conditional independence follows by FMP 3.8. �

We also need the following coupling of ergodic, rotatable arrays.

Lemma 8.17 (coupling) Let X and Y1, Y2, . . . be random arrays on NNd

such that the pairs (X,Yk) are separately or jointly rotatable. Then there
exist some arrays Ỹk with (X, Ỹk)

d= (X,Yk) such that the whole family
(X, Ỹ ) = (X, Ỹ1, Ỹ2, . . .) is separately or jointly rotatable. If the pairs (X,Yk)
are ergodic, we can arrange for (X, Ỹ ) to have the same property.

Proof: By FMP 6.10 and 6.13, we may assume that Y1, Y2, . . . are con-
ditionally independent given X. Arguing as in the proof of Lemma 7.2, we
see that the combined array U = (X,Y1, Y2, . . .) is again separately or jointly
rotatable. Letting U∅ be a stationary extension of U to ZZd

− and using Lemma
7.34, we conclude that U is ergodic, separately or jointly rotatable, condi-
tionally on U∅. Since the pairs (X,Yk) are already ergodic, hence extreme
by Lemma A1.2, it follows that P [(X,Yk) ∈ ·|U∅] = L(X,Yk) a.s. for ev-
ery k. Now fix any ω ∈ Ω outside the exceptional P -null sets, and define
µ = P [U ∈ ·|U∅](ω). By another application of FMP 6.10, we may choose
arrays Ỹ1, Ỹ2, . . . such that Ũ = (X, Ỹ1, Ỹ2, . . .) has distribution µ. Then Ũ is
ergodic, separately or jointly rotatable, and (X, Ỹk)

d= (X,Yk) for all k. �
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8.5 Separately Rotatable Arrays and Functionals

We are now ready to prove the basic representation theorem for separately
rotatable random functionals on a tensor product H⊗d, stated in terms of
independent G-processes and the associated multiple stochastic integrals.
Recall that Pd denotes the class of partitions π of the set {1, . . . , d} into
non-empty subsets J.

Theorem 8.18 (separately rotatable functionals) A CLRF X on H⊗d is
separately rotatable iff it has an a.s. representation

Xf =
∑

π∈Pd

(⊗
J∈π

ηJ

)
(απ ⊗ f), f ∈ H⊗d, (26)

in terms of some independent G-processes ηJ on H ⊗H⊗J , J ∈ 2d \ {∅}, and
an independent collection of random elements απ in H⊗π , π ∈ Pd. The latter
can then be chosen to be non-random iff X is ergodic.

The result is essentially equivalent to the following representation of sep-
arately rotatable arrays on NNd, which will be proved first.

Lemma 8.19 (separately rotatable arrays, Aldous, Kallenberg) A random
array X on NNd is separately rotatable iff it has an a.s. representation

Xk =
∑

π∈Pd

∑
l∈NNπ

απ
l

∏
J∈π

ηJ
kJ ,lJ

, k ∈ NNd, (27)

in terms of a G-array ηJ
kl, k ∈ NNJ , l ∈ NN, J ∈ 2d \ {∅}, and an independent

collection of random variables απ
l , l ∈ NNπ , π ∈ Pd, with

∑
l(απ

l )2 < ∞ a.s.
The latter can then be chosen to be non-random iff X is ergodic.

Proof: First suppose that X has the stated representation. Note that the
inner sum in (27) converges a.s. in L2, conditionally on the coefficients απ

l ,
since the products of η-variables are orthonormal. In particular, the sum is
then a.s. independent of the order of terms. The separate rotatability of X
is clear from the sufficiency part of Lemma 8.2. When the coefficients are
non-random, we see from Lemma 7.35 that X is ergodic.

Now consider any separately rotatable array X on NNd. Since X is sepa-
rately exchangeable, it can be represented as in Corollary 7.23 in terms of a
U-array ξ on ZZd

+. By Proposition 7.31, Lemma 7.34, and Lemma A1.5 it is
enough to show that, whenever X is representable in terms of ξ \ ξ∅, it can
also be represented as in (27) with constant coefficients.

This holds for d = 1 by Lemma 8.2. Proceeding by induction, we assume
the statement to be true for all separately rotatable arrays of dimension
< d. Turning to the d-dimensional case, we may fix an enumeration 2d =
{J1, . . . , J2d} with |J1| ≤ · · · ≤ |J2d |, and note that the sets Jk = {J1, . . . , Jk}
are ideal. Now define

Xd+1 = E[X|ξJd+1 ] = E[X|ξ1, . . . , ξd],
Xk = E[X|ξJk ] − E[X|ξJk−1 ], d + 2 ≤ k ≤ 2d, (28)
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where the conditional expectations exist by Lemma 8.11, and note that X =
Xd+1 + · · · + X2d . The combined array (Xk) is again separately rotatable
by Proposition 7.31 and Lemma 7.34, and Xk is representable in terms of
ξJk \ ξ∅ for every k. In particular, the combined array (Xk) is then ergodic
by Lemma 7.35.

For k ≥ d + 2 we see from (28) that E[Xk|ξJk ] = 0 a.s., and so the array
Xk is Jk-rotatable by Lemma 8.14. We also note that Xk remains ergodic
with respect to the larger class of Jk-rotations. Since |Jk| ≥ 2, the induction
hypothesis yields a representation of Xk as in (27), though with non-random
coefficients, in terms of a G-array γk. A similar representation holds for Xd+1

by Lemma 8.13.
From (27) we see that the pairs (Xk, γk) are separately rotatable, and

they are further ergodic by Lemma 7.35. Hence, Lemma 8.17 allows us to
choose versions of the arrays γk, such that the combined array γ = (γk)
becomes ergodic, separately rotatable. For each J ∈ 2d, the sub-array γJ of
NNJ -indexed random variables is then J-rotatable by Corollary 8.15. Since it
is also inherits the ergodicity from γ, it is centered Gaussian by Lemma 8.2.
Finally, we see from Proposition 8.16 that the γJ are independent.

For every sub-array γJ
i , we may now introduce an ONB (ηJ

ij) in the gen-
erated Hilbert space to obtain a representation

γJ
ik =

∑
j
cJ
kjη

J
ij , i ∈ NNJ , k ∈ NNJc

, J ∈ 2d, (29)

where we can choose the coefficients cJ
kj to be independent of i since the γJ

i

have the same distribution for fixed J. The ηJ
i are clearly independent G-

arrays, and so the whole collection η = (ηJ
ij) is again a G-array. To deduce

(27), it remains to substitute (29) into the earlier representations of the Xk

in terms of γk. �

Now consider any separately rotatable CLRF X on H⊗d. Given any ONB
h1, h2, . . . in H, we may introduce the associated array

Xk = X
⊗

j≤d
hkj

, k = (k1, . . . , kd) ∈ NNd, (30)

which is again separately rotatable. Conversely, we proceed to show that any
separately rotatable array (Xk) can be extended to a separately rotatable
CLRF X on (l2)⊗d, in the sense that (30) holds for the coordinate sequences
hj = (0, . . . , 0, 1, 0, . . .) with 1 occurring in the jth position. To appreciate
this result, we note that the corresponding statement in the jointly rotatable
case is false.

For an explicit construction, suppose that (Xk) is given by (27). We will
show that the associated CLRF X can then be represented as in (26), where
the G-processes ηJ on H ⊗ H⊗J and the random elements απ in H⊗π are
determined by the equations



372 Probabilistic Symmetries and Invariance Principles

ηJ
lk = ηJ

(
hk ⊗

⊗
j∈J

hlj

)
, k ∈ NN, l ∈ NNJ , J ∈ 2d \ {∅}, (31)

απ
k =

〈
απ,

⊗
J∈π

hkj

〉
, k ∈ NNπ, π ∈ Pd. (32)

Proposition 8.20 (extension) Any separately rotatable array (Xk) on NNd

admits an a.s. unique extension to a separately rotatable CLRF X on (l2)⊗d.
Specifically, if (Xk) is given by (27) in terms of a G-array (ηJ

kl) and an inde-
pendent set of coefficients απ

l , we may define X by (26), where the G-processes
ηJ and random elements απ are given by (31) and (32). Furthermore, (Xk)
and X are simultaneously ergodic.

Proof: The random element απ is a.s. determined by (32) since
∑

k(απ
k )2 <

∞ a.s. As for ηJ , it extends by linearity to an isonormal, centered, Gaussian
process on the linear span of the basis elements in H⊗HJ , and then by con-
tinuity to a G-process on the entire space. The multiple stochastic integrals⊗

J∈π ηJ are again CLRFs on the associated tensor products H⊗π ⊗ H⊗d,
and the expression in (26) is well defined by Lemma 8.8. The separate ro-
tatability of X is clear from the corresponding property of the G-processes
ηJ . The extension property (30) is an easy consequence of formulas (31) and
(32), and the a.s. uniqueness follows from (30) together with the linearity
and continuity of X.

To prove the last assertion, we note that the distributions µ = L({Xk})
and µ̃ = L(X) determine each other uniquely via (30). If µ = aµ1 + bµ2

for some a, b > 0 with a + b = 1 and some separately rotatable distributions
µ1 and µ2, then µ̃ has the corresponding decomposition aµ̃1 + bµ̃2, and con-
versely. Since µ1 = µ2 iff µ̃1 = µ̃2, we see that µ and µ̃ are simultaneously
extreme. It remains to note that, in either case, the notions of extremality
and ergodicity are equivalent by Lemma A1.2. �

It is now easy to complete the proof of the main result.

Proof of Theorem 8.18: Suppose that X is separately rotatable. For any
ONB h1, h2, . . . in H, we may define an associated separately rotatable array
(Xk) on NNd. By Lemma 8.19, the latter can be represented as in (27) in
terms of a G-array (ηJ

kl) and an independent set of coefficients απ
l . Defining

the G-processes ηJ and random elements απ by (31) and (32), we see as in
Proposition 8.20 that (30) holds for the CLRF X̃ on H⊗d given by (26). By
linearity and continuity we have X = X̃ a.s., which shows that X itself has
the a.s. representation (26). Conversely, any CLRF X of the form (26) is
clearly separately rotatable.

From Proposition 8.20 we see that X and (Xk) are simultaneously ergodic,
and Lemma 8.19 shows that (Xk) is ergodic iff the coefficients απ

l can be
chosen to be non-random. By (32) it is equivalent that the random elements
απ be non-random, and the last assertion follows. �
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We now examine to what extent the representation in Theorem 8.18 is
unique. By a random isometry on H we mean a random, linear operator I
on H such that 〈If, Ig〉 = 〈f, g〉 a.s. for any f, g ∈ H. Here If is required to
be measurable, hence a random variable, for every f ∈ H. By Lemma 8.8 we
can then choose I to be product measurable on Ω×H, which ensures Iϕ to
be well defined, even for random elements ϕ of H. For any random isometries
I1, . . . , Id on H, the tensor product

⊗
k Ik is clearly a random isometry on

H⊗d.

Theorem 8.21 (uniqueness) Let X and Y be separately rotatable CLRFs
on H⊗d, representable as in Theorem 8.18 in terms of some random arrays
α = (απ) and β = (βπ), respectively, on Pd. Then

(i) X = 0 a.s. iff α = 0 a.s.;
(ii) X = Y a.s. iff the πth terms agree a.s. for every π ∈ Pd;
(iii) α and β may represent the same separately rotatable CLRF, iff there

exist some random isometries IJ and I ′
J on H, J ∈ 2d \ {∅}, such that

a.s. (⊗
J∈π

IJ

)
απ =

(⊗
J∈π

I ′
J

)
βπ, π ∈ Pd; (33)

(iv) X
d= Y iff there exist some random isometries IJ and I ′

J on H, J ∈
2d \ {∅}, such that (33) holds in distribution.

The first property in (iii) means that there exist some G-processes η =
(ηJ )⊥⊥α and ζ = (ζJ )⊥⊥β as in Theorem 8.18 such that∑

π∈Pd

(⊗
J∈π

ηJ

)
(απ ⊗ f) =

∑
π∈Pd

(⊗
J∈π

ζJ

)
(βπ ⊗ f), (34)

a.s. for every f ∈ H⊗d. For convenience, we may often write the tensor prod-
ucts in (33) as Iπ and I ′

π , and those in (34) as ηπ and ζπ .

Proof: (ii) We shall prove the assertion when both summations in (34)
are restricted to some set S ⊂ Pd. The statement is trivially true when
|S| = 1. Proceeding by induction, we assume the statement to be true
whenever |S| < m for some m > 1. Now let |S| = m. Then by Lemma 7.37
we may choose an ideal class J ⊂ 2d, such that the associated family PJ of
partitions π ⊂ J satisfies 0 < |S ∩ PJ | < m. By Proposition 7.31 we have

E[X|α, ηJ ] = E[X|β, ζJ ] a.s.,

which is equivalent, by Lemma 8.9, to equation (34) with both summations
restricted to S ∩ PJ . Subtracting this from the original relation (34), we
obtain the same formula with summations over S ∩ Pc

J . In either case,
the desired term-wise equality follows by the induction hypothesis. This
completes the induction and proves the assertion for every S. It remains to
take S = Pd.
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(i) If X = 0, then by (ii)

ξπ(απ ⊗ f) = 0 a.s., π ∈ Pd, f ∈ H⊗d.

This remains a.s. true under conditioning on α, and so by Lemma 8.8 and
Fubini’s theorem we may assume that α is non-random. Since ξπ is an
isometry from H⊗d to L2(P ), we get

‖απ‖2‖f‖2 = ‖απ ⊗ f‖2 = E|ξπ(απ ⊗ f)|2 = 0.

Choosing f �= 0, we conclude that απ = 0.
(iii) First assume (33). Introduce some independent G-processes ξJ

k on
H, k ∈ NNJ , J ∈ 2d \ {∅}, and define

(ηJ
k , ζJ

k ) = ξJ
k ◦ (IJ , I ′

J ), k ∈ NNJ , J ∈ 2d \ {∅}. (35)

Since the IJ and I ′
J are isometries, we see from Fubini’s theorem that the

arrays η = (ηJ
k ) and ζ = (ζJ

k ) are again G-processes satisfying η⊥⊥α and
ζ ⊥⊥β. Fixing any ONB h1, h2, . . . in H, we define the G-processes ξJ , ηJ ,
and ζJ on H ⊗ H⊗J by

(ξJ , ηJ , ζJ )
(
· ⊗

⊗
j∈J

hkj

)
= (ξJ

k , ηJ
k , ζJ

k ), k ∈ NNJ , J ∈ 2d \ {∅}. (36)

From (33) and (35) we may conclude that

∑
π∈Pd

ηπ(απ ⊗ f) =
∑

π∈Pd
ξπ(Iπαπ ⊗ f)

=
∑

π∈Pd
ξπ(I ′

πβπ ⊗ f)

=
∑

π∈Pd
ζπ(βπ ⊗ f),

a.s. for every f ∈ H⊗d, which proves (34).
To prove the reverse implication, suppose that X is represented by both

expressions in (34), for some non-random α and β. Since the pairs (X, η)
and (X, ζ) are ergodic, separately rotatable, there exist by Lemma 8.17 some
G-processes η̃ and ζ̃ with (X, η̃) d= (X, η) and (X, ζ̃) d= (X, ζ), such that the
pair (η̃, ζ̃) is again ergodic, separately rotatable. To simplify the notation,
we may assume the same property already for (η, ζ). Then Corollary 8.15
shows that the pair (ηJ , ζJ ) is ergodic, J-rotatable for every J, and so by
Lemma 8.2 the associated coordinate processes (ηJ

k , ζJ
k ) in (36) are centered

Gaussian and i.i.d. in k ∈ NNJ for fixed J. We also note that the pairs (ηJ , ζJ )
are independent by Proposition 8.16.

By Lemma 8.6 we may choose some isometries IJ and I ′
J and some inde-

pendent G-processes ξJ
k on H, k ∈ NNJ , J ∈ 2d \{∅}, satisfying (35). Defining
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the G-processes ξJ by (36), we see from (34) and (35) that∑
π∈Pd

ξπ(Iπαπ ⊗ f) =
∑

π∈Pd

ξπ(I ′
πβπ ⊗ f) a.s., f ∈ H⊗d.

Relation (33) now follows by means of (i).
For general, possibly random α and β, we see from Proposition 7.31,

Lemma 8.8, and Fubini’s theorem that

Qα = P [X ∈ ·|α] = P [X ∈ ·|β] = Qβ a.s., (37)

where Qα denotes the distribution of X in Theorem 8.18 when the underlying
array α = (απ) is non-random. Assuming first that Qα = Qβ for some
non-random α and β, we see from FMP 6.10 that (34) holds for suitable
G-processes η and ζ. By the non-random version of (iii), we conclude that
even (33) is true for some isometries IJ and I ′

J . For general α and β, we may
fix any ω ∈ Ω outside the exceptional null set in (37), and conclude from the
previous case that (33) holds a.s. for suitable isometries IJ (ω) and I ′

J (ω).
To choose measurable versions of the functions IJ and I ′

J , we may write
condition (33), together with the isometry properties of I = (IJ ) and I ′ =
(I ′

J ), in the form g(α, β, I, I ′) = 0 for some measurable function g on a
suitable space. Then the set

A = {(ω, I, I ′); g(α(ω), β(ω), I, I ′) = 0}

is product measurable, and the previous argument shows that the projection
Ā onto Ω satisfies P (Ā) = 1. By the general section theorem in FMP A1.4,
we may then choose some (α, β)-measurable functions I and I ′ such that
(ω, I(ω), I ′(ω)) ∈ A a.s. The associated components IJ and I ′

J are random
isometries satisfying (33) a.s.

(iv) First assume that (33) holds in distribution. By FMP 6.10 we may
then choose a pair (Ĩ ′, β̃) d= (I ′, β) satisfying (33) a.s. By part (iii) we
conclude that (34) holds with β replaced by β̃, for suitable choices of η and
ζ. Letting ζ̃

d= ζ be independent of β, we obtain (β, ζ̃) d= (β̃, ζ), and so the
CLRF Y based on β and ζ̃ satisfies Y

d= X.
Conversely, suppose that X

d= Y . By FMP 6.10 we may choose a β̃
d= β

such that both α and β̃ represent X. Then part (iii) yields the existence of
some random isometries IJ and I ′

J satisfying (33), though with β replaced by
β̃. By FMP 6.10 we may next choose a set of random isometries Ĩ ′ = (Ĩ ′

J )
such that (β, Ĩ ′) d= (β̃, I ′). Then (33) remains true in distribution for the
original β, except that now the isometries I ′

J need to be replaced by Ĩ ′
J . �

We may next extend Theorem 8.18 to sets of random functionals of dif-
ferent dimension. As before, we use ÑN to denote the class of finite subsets of
NN. For any J ∈ 2d, let PJ be the class of partitions π of J into non-empty
subsets I.
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Corollary 8.22 (combined random functionals) For any CLRFs XJ on
H⊗J , J ∈ ÑN, the combined array X = (XJ ) is separately rotatable iff it
has an a.s. representation

XJf =
∑

π∈PJ

(⊗
I∈π

ηI

)
(απ ⊗ f), f ∈ H⊗J , J ∈ ÑN, (38)

in terms of some independent G-processes ηJ on H ⊗H⊗J , J ∈ ÑN \ {∅}, and
an independent collection of random elements απ in H⊗π , π ∈ PJ , J ∈ ÑN.
The latter can then be chosen to be non-random iff X is ergodic.

Proof: Suppose that X is separately rotatable. To prove (38), it suffices
by Lemma A1.5 to assume that X is ergodic, and to prove that X has then
the desired representation for some non-random elements απ . Now Theo-
rem 8.18 shows that each process XJ has such a representation in terms of
some elements απ ∈ H, π ∈ PJ , and some independent G-processes γJ

I on
H ⊗ H⊗I , ∅ �= I ⊂ J. By Lemma 8.17 we may choose the combined ar-
ray γ = (γJ

I ; I ⊂ J ∈ ÑN) to be ergodic, separately rotatable. The array
γI = (γJ

I ; J ⊃ I) is then I-rotatable for every I by Corollary 8.15, and the
processes γI are independent by Proposition 8.16. By Lemma 8.6 we may
then represent the processes γJ

I as isometric images of some independent G-
processes ηI on H ⊗ H⊗I , I �= ∅, and (38) follows by substitution into the
original formulas. �

The next result requires a minimality condition on the representation in
Lemma 8.19, akin to the notion of minimality for ortho-normal expansions on
tensor products of Hilbert spaces, discussed in connection with Lemma A3.1.
Here we fix a separately rotatable array X on NNd, admitting a representation
as in (27) with constant coefficients απ

l . For any J ∈ 2d \ {∅} and k ∈ NNJ ,
consider the Gaussian Hilbert spaces HJ

k ⊂ L2(P ) spanned by all variables
ηJ

kl, such that απ
l �= 0 for some π ∈ Pd with J ∈ π. It is sometimes possible for

some J to reduce HJ
k to a proper sub-space, by applying a unitary operator

to the associated G-array ηJ . By Zorn’s lemma there exists a minimal choice
of spaces HJ

k such that no further reduction is possible. The associated
representations are also said to be minimal.

The following lemma deals with the subtle problem of extending the sepa-
rate rotatability of a sequence of arrays X1,X2, . . . on NNd to a given family of
representing G-arrays ηn,J . Such a result will be needed in the next section,
to prove the representation theorem for jointly rotatable CLRFs.

Lemma 8.23 (rotatability of representing arrays) Let X be a separately
rotatable family of arrays Xn on NNd, each having a minimal representation
as in Lemma 8.19 with constant coefficients an,π

l in terms of a G-array ηn on⋃
J (NNJ ×NN), such that the whole family η = (ηn) is separately exchangeable.

Then η is again separately rotatable.
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Proof: Writing the representations of Lemma 8.19 in the form Xn =∑
π Xn,π , we note that the array (Xn,π ; π ∈ Pd) is again ergodic, separately

rotatable for every n ∈ NN. By Lemma 8.17 we may choose some decomposi-
tions Xn =

∑
π X̃n,π with

(X̃n,π ; π ∈ Pd)
d= (Xn,π ; π ∈ Pd), n ∈ NN,

such that the combined array (X̃n,π ; π ∈ Pd, n ∈ NN) is separately rotat-
able. But then X̃n,π = Xn,π a.s. by Theorem 8.21 (ii), and so the original
array (Xn,π ; π ∈ Pd, n ∈ NN) has the same property. For each n and π, we
may reduce ηn to a minimal array ηn,π representing Xn,π , and it suffices to
show that the combined array (ηn,π ; π ∈ Pd, n ∈ NN) is separately rotatable.
This reduces the argument to the case where each Xn consists of a single
component Xn,π with associated partition π = πn.

By symmetry it is enough to show that η is rotatable in the first index,
or 1-rotatable. By the minimality of η and Lemma A3.1, we may then write
the representation of each Xn in diagonal form as

Xn
ij =

∑
k
cn
k ζn

ik Zn
jk, i ∈ NNIn, j ∈ NNIc

n, (39)

where cn
k > 0 for all n and k, and the summation is allowed to be finite. Here

In denotes the component of πn containing 1, ζn = (ζn
ik) is the associated G-

array of variables ηn,In

ik , and Zn = (Zn
jk) is the corresponding array on NNIc

n×NN,
which can be chosen to be ortho-normal in k for fixed j and separately
rotatable in j with a representation of the form

Zn
jk =

∑
h∈NNπ′

n

an
hk

∏
J∈π′

n

ηn,J
jJ ,hJ

, j ∈ NNIc
n, k ∈ NN, (40)

where π′
n = πn \ {In}. To prove the asserted rotatability of η, it remains to

show that the combined array ζ = (ζn
ik) is 1-rotatable.

Since η is separately exchangeable, it can be represented as in Corollary
7.23 in terms of a U-array ξ on N̂Nd =

⋃
J∈2d NNJ . (For our present purposes,

the latter index set is more convenient than ZZd
+.) From Proposition 7.31 and

Lemma 7.34 we see that all hypotheses remain conditionally true given ξ∅,
and so it suffices to prove the asserted 1-rotatability of η under the same
conditioning. By Fubini’s theorem it is equivalent to replace ξ∅ by a suitable
constant, so that η becomes ergodic and represented by ξ \ ξ∅.

Now introduce the ideal class J = 21c , consisting of all subsets of 1c =
{2, . . . , d}. Using Proposition 7.31, along with the one-dimensional version
of Lemma 7.34 (i), we see that X remains conditionally 1-rotatable given
ξJ . By an obvious re-labeling of the elements, we obtain the corresponding
statement for any stationary extension X̄ of X to ZZd, together with a con-
sistent extension ξ̄ of ξ to ẐZd. By the chain rule for conditional expectations
we conclude that even X̄ is conditionally 1-rotatable given ξJ . The same ar-
gument shows that each array ζn remains conditionally 1-rotatable given ξJ .
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Now the ζn are G-arrays, hence already ergodic, and so their distributions
are unaffected by this conditioning. In other words, ζn ⊥⊥ ξJ for every n.

Consistently with ξ̄, we may now introduce for every n ∈ NN a stationary
extension Z̄n of Zn to ZZIc

n × NN. Writing q̄ = (q, . . . , q) in all dimensions, we
may next define the arrays Y n on NNd+1 by

Y n
jq = X̄n

jIn ,−q̄ =
∑

k
cn
k ζn

jIn ,k Z̄n
−q̄,k , j ∈ NNd, q, n ∈ NN,

where the second equality follows from the extended version of (39). The
combined array Y = (Y n) is again conditionally 1-rotatable given ξJ , since
its construction from X̄ commutes with 1-rotations. It is also clear from
(40), together with the representation of η in terms of ξ, that the array
(Zn

−q̄,k) is i.i.d. in q ∈ NN and independent of ξ. Both properties clearly
remain conditionally true given ξJ . Finally, we see from the representation
in terms of ξ that the combined array ζ = (ζn

jIn ,k) is i.i.d. in j1 under the
same conditioning. We may now apply Lemma 8.12 to the array

Un
p,q = (Y n

p,i,q ; i ∈ NNd−1), p, q, n ∈ NN,

subject to the ξJ -conditional distributions, to see that ζ is conditionally 1-
rotatable given ξJ . This yields immediately the corresponding unconditional
property. �

8.6 Jointly Rotatable Functionals

Here we extend the representation theorem of the previous section to the
jointly rotatable case. Recall that Od denotes the class of partitions π of
{1, . . . , d} into ordered subsets k of size |k| ≥ 1.

Theorem 8.24 (jointly rotatable functionals) A CLRF X on H⊗d is jointly
rotatable iff it has an a.s. representation

Xf =
∑

π∈Od

(⊗
k∈π

η|k|
)
(απ ⊗ f), f ∈ H⊗d, (41)

in terms of some independent G-processes ηm on H⊗(1+m), 1 ≤ m ≤ d, and
an independent collection of random elements απ in H⊗π , π ∈ Od. The latter
can then be chosen to be non-random iff X is ergodic.

Introducing an ONB h1, h2, . . . in H, we may define the components απ
l

and ηm
kl through the formulas

απ =
∑
l∈NNπ

απ
l

⊗
s∈π

hls , π ∈ Od, (42)

ηm
kl = ηm

(
hl ⊗

⊗
r≤m

hkr

)
, l ∈ NN, k ∈ NNm, m ≤ d, (43)
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and express the off-diagonal part of the array Xk = X
⊗

j hkj
, k ∈ NNd, in the

form

Xk =
∑

π∈Od

∑
l∈NNπ

απ
l

∏
s∈π

η
|s|
k◦s,ls

a.s., k ∈ NN′
d, (44)

where NN′
d denotes the non-diagonal part of NNd. We show that the two rep-

resentations are equivalent.

Lemma 8.25 (off-diagonal uniqueness criteria) Let X and Y be jointly ro-
tatable CLRFs on H⊗d. Then

(i) X = Y a.s. iff

X
⊗

j≤d
hj = Y

⊗
j≤d

hj a.s., h1, . . . , hd ∈ H orthogonal;

(ii) X
d= Y if there exists an ONB h1, h2, . . . in H such that

X
⊗

j≤d
hkj

= Y
⊗

j≤d
hkj

a.s., k1, . . . , kd ∈ NN distinct. (45)

Proof: (i) We may clearly assume that H = L2([0, 1], λ), and identify
H⊗d with L2([0, 1]d, λd). Introduce the dyadic intervals

Ink = 2−n(k − 1, k], k ≤ 2n, n ∈ NN,

and note that the associated indicator functions fnk are orthogonal for fixed
n. Letting Ln denote the set of all linear combinations of tensor products
fn,k1 ⊗ · · · ⊗ fn,kd

with distinct k1, . . . , kd ≤ 2n, we obtain X = Y a.s. on⋃
n Ln, and it is enough to show the latter class is dense in L2(λd). Since the

continuous functions on [0, 1]d are dense in L2(λd) by FMP 1.35, it remains to
show that every continuous function can be approximated in L2 by functions
in Ln. But this is clear by uniform continuity, together with the fact that
the diagonal parts Dn of the 2−n-grids in [0, 1]d satisfy λdDn <

�
2−n → 0.

(ii) Let L denote the linear sub-space of H⊗d spanned by the tensor prod-
ucts hk1 ⊗ · · · ⊗ hkd

with distinct k1, . . . , kd ∈ NN, and note that (45) extends
by linearity to Xf = Y f , a.s. for every f ∈ L. By the joint rotatability of X

and Y , we obtain X ◦ U⊗d d= Y ◦ U⊗d on L for every unitary operator U on
H, which means that X

d= Y on U⊗dL. As before, it remains to note that
the latter class is dense in H⊗d. �

We proceed to examine how the representation in (44) are affected by a
change of basis. Writing Sm for the group of permutations of {1, . . . ,m},
we define Sπ for any π ∈ Od to be the class of functions p on π such that
ps ∈ S|s| for every s ∈ π.
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Lemma 8.26 (change of basis) Let the array X on NN′
d be given by (44),

in terms of a G-array η = (ηm
i,k) and an independent array of coefficients

α = (απ
k ), and suppose that η is given in terms of another G-array ξ = (ξm

i,k)
through a linear isometry of the form

ηm
i,n =

∑
p∈Sm

∑
k∈NN

cm,p
n,k ξm

i◦p,k, i ∈ NNm, m ≤ d, n ∈ NN. (46)

Then (44) remains valid with η replaced by ξ and with α replaced by the array

βπ
k =

∑
p∈Sπ

∑
n∈NNπ

απ◦p−1

n

∏
s∈π

c
|s|,ps

ns,ks
, k ∈ NNπ, π ∈ Od. (47)

Proof: Substituting (46) into (44), we get for any i ∈ NN′
d

Xi =
∑

π∈Od

∑
n∈NNπ

απ
n

∏
s∈π

∑
p∈S|s|

∑
k∈NN

c
|s|,p
ns,k ξ

|s|
i◦s◦p, k

=
∑

π∈Od

∑
p∈Sπ

∑
k,n∈NNπ

απ
n

∏
s∈π

c
|s|,ps

ns,ks
ξ

|s|
i◦s◦ps, ks

=
∑

π′∈Od

∑
p∈Sπ′

∑
k,n∈NNπ′

απ′◦p−1

n

∏
t∈π′

c
|t|,pt

nt,kt
ξ

|t|
i◦t, kt

=
∑

π∈Od

∑
k∈NNπ

βπ
k

∏
t∈π

ξ
|t|
i◦t, kt

,

as required. Here the second equality is obtained by a term-wise multiplica-
tion of infinite series, followed by a change in the order of summation, the
third equality results from the substitutions π ◦ p = π′ and s ◦ p = t, and the
fourth equality arises from another change of summation order. �

The transformations (46) and (47) may be written in coordinate-free no-
tation as

ηm = ξm ◦
∑

p∈Sm

(Cm
p ⊗ Tp), m ≤ d, (48)

βπ =
∑

p∈Sπ

(⊗
s∈π

C|s|
ps

)
απ◦p−1, π ∈ Od, (49)

in terms of some bounded linear operators Cm
p on H, p ∈ Sm , m ≤ d, where

Tp denotes the permutation operator on H⊗d induced by p ∈ Sm . We can
now translate the last result into a similar statement for the representations
of CLRFs in (41).

Corollary 8.27 (isometric substitution) Let the CLRF X on H⊗d be given
by (41), in terms of some independent G-processes ηm and an independent set
of random elements απ , and suppose that ηm is given by (48) in terms of some
independent G-processes ξm. Then (41) remains true with (ηm) replaced by
(ξm) and with (απ) replaced by the array (βπ) in (49).
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Proof: Define the CLRF Y as in (41), though with η replaced by ξ and
with α replaced by β. Since the permutation operator Tp in (48) commutes
with any unitary operator on H⊗d of the form U⊗d, we see that the pair
(ξ, η) is jointly rotatable, and so the same thing is true for the pair (X,Y ).
Furthermore, (45) holds by Lemma 8.26 for any ONB h1, h2, . . . in H. Hence,
Lemma 8.25 (i) yields X = Y a.s. �

We are now ready to prove our crucial lemma, which gives a representation
outside the diagonals of any jointly rotatable array on NNd. The diagonal
terms are more complicated in general, and the complete representation will
not be derived until the next section.

Lemma 8.28 (off-diagonal representation) Let X be a jointly rotatable ar-
ray on NNd. Then (44) holds a.s. for a G-array ηm

kl , k ∈ NNm, l ∈ NN, m ≤ d,
and an independent collection of random variables απ

l , l ∈ NNπ , π ∈ Od, with∑
l(απ

l )2 < ∞ a.s. for all π.

Proof: In view of Proposition 7.33 and Lemmas 7.34 (i), 7.35, and A1.5,
we may assume that X is ergodic, in which case we need to show that X
has an off-diagonal representation as in (44) with non-random coefficients
απ

l . Then fix any disjoint, infinite sets N1, . . . ,Nd ⊂ NN, and note that X is
separately rotatable on R = N1 × · · · × Nd. Applying Lemma 7.35 to both
X itself and its restriction to R, we see that even the latter array is ergodic.
Hence, it can be represented as in Lemma 8.19 in terms of a G-array ξJ

ik,
i ∈ NJ , k ∈ NN, J ∈ 2d \ {∅}, and a non-random collection of coefficients. We
may clearly assume that the representation is minimal, in the sense of the
preceding section. By Lemma 7.36 we can modify ξ, if necessary, such that
the same representation holds on the non-diagonal index set NN′

d, for some
ergodic, jointly exchangeable extension of ξ to N̂N′

d \ {0}.
The array of reflections X̃ = (Xk◦p; k ∈ NNd, p ∈ Sd) is again ergodic,

separately rotatable on R by Lemma 7.35, and it is representable on the
same set by the combined array ξ̃ = (ξ̃J ), where ξ̃J consists of all reflections
of the processes ξI with |I| = |J|, so that ξ̃J

k = (ξI
k◦p) for arbitrary sets I ∈ 2d

with |I| = |J| and associated bijections p : I → J. Since ξ̃ is again separately
exchangeable on R, it is even separately rotatable on the same index set
by Lemma 8.23. Hence, Corollary 8.15 shows that ξ̃J is J-rotatable on NJ

for every J ∈ 2d \ {∅}, and so by Lemma 8.2 and the ergodicity of ξ it is
i.i.d. centered Gaussian. Furthermore, the arrays ξ̃J are independent on R
by Proposition 8.16. Applying Proposition 7.7 twice, first part (i) and then
part (ii), we conclude that the jointly contractable arrays ξ̃m = ξ̃{1,...,m} on
∆ÑNm = {k ∈ NNm ; k1 < · · · < km}, 1 ≤ m ≤ d, are mutually independent
with i.i.d. entries.

The joint exchangeability of ξ implies that the array ξ̃m
k◦q = (ξI

k◦q◦pI ,n) is
left-stationary in q ∈ Sm for fixed m, where pI denotes the unique, increasing
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bijection |I| → {1, . . . ,m}. Hence, for any m ≤ d and k ∈ ÑNm , Lemma 8.7
yields an a.s. representation

ξI
k◦q◦pI ,n =

∑
r∈Sm

∑
h∈NN

cI,r
n,h ηk◦qr,h, |I| = m, q ∈ Sm, n ∈ NN, (50)

where the variables ηl,h form a G-array on (k◦Sm)×NN. By the independence
properties of ξ̃ and FMP 6.10, we may choose a G-array η on the combined
space

⋃
m(NN′

m×NN) satisfying (50) for all m and k. Taking q to be the identity
permutation on Sm and inserting the simplified version of (50) into the ear-
lier representation for X, we get as in Lemma 8.26 the desired representation
(44). �

Proof of Theorem 8.24: The CLRF X in (41) is clearly jointly rotatable
for any choice of random elements απ . Conversely, suppose that X is a
jointly rotatable CLRF on H⊗d. Fix any ONB h1, h2, . . . in H, and define
Xk = X

⊗
j hkj

, k ∈ NNd. Then the array (Xk) is jointly rotatable on NNd, and
so by Lemma 8.28 it has an off-diagonal representation (44), in terms of a G-
array (ηm

kl ) and an independent set of coefficients απ
l such that

∑
l(απ

l )2 < ∞
a.s. for all π. Now define the random elements απ and G-processes ηm by
(42) and (43), and let Y be the associated CLRF in (41). Then Y is again
jointly rotatable, and (45) holds by construction. Hence, X

d= Y by Lemma
8.25 (ii), and the desired representation follows by FMP 6.10 and Lemma
8.8.

Now let µa denote the distribution of X when α = a is non-random,
so that in general L(X) = Eµα. If X is ergodic, then Lemma A1.2 yields
L(X) = µα a.s., and we may choose a fixed array a = (aπ) such that L(X) =
µa. By FMP 6.10 we may finally choose a G-array η = (ηm) such that X
satisfies (41) with the απ replaced by aπ .

Conversely, suppose that the απ are non-random. Then the associated
array (Xk) is ergodic by Lemma 7.35. If L(X) = cL(X ′) + (1 − c)L(X ′′) for
some jointly rotatable CLRFs X ′ and X ′′ and a constant c ∈ (0, 1), then a
similar relation holds for the associated arrays (Xk), (X ′

k), and (X ′′
k ). The

ergodicity of (Xk) yields (X ′
k)

d= (X ′′
k ), which implies X ′ d= X ′′. This shows

that X is extreme, and the required ergodicity follows by Lemma A1.2. �

Turning to the matter of uniqueness, we say that two partitions in Od

are equivalent if the corresponding unordered partitions agree, and write [π]
for the equivalence class containing π. The following result gives some a.s.
and distributional uniqueness criteria, corresponding to those for separately
rotatable functionals in Theorem 8.21. Due to the added subtleties in the
jointly rotatable case, the present conditions are inevitably more complicated.
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Theorem 8.29 (uniqueness) Let X and Y be jointly rotatable CLRFs on
H⊗d, representable as in Theorem 8.24 in terms of some random arrays
α = (απ) and β = (βπ), respectively, on Od. Then

(i) X = 0 a.s. iff α = 0 a.s.;

(ii) X = Y a.s. iff the sums over [π] agree a.s. for every π ∈ Od;

(iii) α and β may represent the same jointly rotatable CLRF, iff there exist
some random isometries on H⊗(1+m), 1 ≤ m ≤ d, of the form

Im =
∑

p∈Sm

(Am
p ⊗ Tp), Jm =

∑
p∈Sm

(Bm
p ⊗ Tp), (51)

such that, a.s. for every π ∈ Od,∑
p∈Sπ

(⊗
s∈π

A|s|
ps

)
απ◦p−1 =

∑
p∈Sπ

(⊗
s∈π

B|s|
ps

)
βπ◦p−1 ; (52)

(iv) X
d= Y iff there exist some random isometries Im and Jm as in (51)

such that (52) holds in distribution.

Proof: (ii) For any π ∈ Od, let Xπ and Y π denote the partial sums over
[π] for the two representations. Then Xπ and Y π are both jointly rotatable,
and so by Lemma 8.25 (i) it is enough to show that Xπ ⊗

j hj = Y π ⊗
j hj ,

a.s. for any ONB h1, h2, . . . in H. Then fix any disjoint, countable subsets
N1, . . . ,Nd ⊂ NN with j ∈ Nj for all j, and note that the array Xn = X

⊗
j hnj

is separately rotatable on the index set R = N1×· · ·×Nd. Furthermore, any
representation (44) on NN′

d yields an associated representation on R, similar
to the one in Lemma 8.19. In particular, the πth term of the latter repre-
sentation arises from the partial sum in (44) over the associated equivalence
class [π]. Now Theorem 8.21 (ii) shows that the πth terms agree for the
representations based on α and β. The corresponding statement is then true
for the partial sums over [π] in (44), and the desired relation follows as we
take nj = j for all j.

(i) By Lemma 8.8 and Fubini’s theorem we may assume that α is non-
random, and from part (ii) we see that X = 0 implies

∑
p∈Sπ

ξπ(απ◦p ⊗ Tpf) = 0 a.s., f ∈ H⊗d, (53)

where ξπ =
⊗

k∈π ξ|k|. Now let Pπ denote the class of mappings q ∈ Sd

that only permutes components in π of equal length, and let T ′
q denote the

associated permutation operators on H⊗π . Choose f =
⊗

j hj for some ortho-
normal elements h1, . . . , hd ∈ H, and note that the ortho-normality carries
over to the elements Tpf in H⊗d for arbitrary permutations p ∈ Sd. Using
the symmetry and isometry properties of the multiple stochastic integrals ξπ

(FMP 13.22), we get from (53)
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‖απ‖2 ≤
∑

p∈Sπ

∑
q∈Pπ

∥∥∥T ′
qαπ◦p ⊗ Tq◦pf

∥∥∥2

=
∥∥∥∥∑p∈Sπ

∑
q∈Pπ

(T ′
qαπ◦p ⊗ Tq◦pf)

∥∥∥∥2

<
�

E

∣∣∣∣ξπ ◦
∑

p∈Sπ

∑
q∈Pπ

(T ′
qαπ◦p ⊗ Tq◦pf)

∣∣∣∣2
<
�

E

∣∣∣∣∑p∈Sπ
ξp(απ◦p ⊗ Tpf)

∣∣∣∣2 = 0,

which implies απ = 0.
(iii) First suppose that α and β are related by (52), for some random

isometries Im and Jm as in (51). Introducing some independent G-processes
ξm on H⊗(1+m), 1 ≤ m ≤ d, independent even of α and β, we consider for
every m the processes ηm = ξm ◦ Im and ζm = ξm ◦ Jm . By the isometric
property of Im and Jm together with Fubini’s theorem, we see that η1, . . . , ηd

are again mutually independent G-processes, independent even of α, and
similarly for ζ1, . . . , ζd. Letting γπ denote the common expression in (52)
and using Corollary 8.27, we get for any f ∈ H⊗d

∑
π∈Od

ηπ(απ ⊗ f) =
∑

π∈Od

ξπ(γπ ⊗ f) =
∑

π∈Od

ζπ(βπ ⊗ f),

and similarly for η and ζ. This shows that the pairs (α, η) and (β, ζ) represent
the same jointly rotatable CLRF.

Conversely, suppose that the jointly rotatable CLRF X can be repre-
sented in terms of both α and β, along with the associated G-processes
η = (ηm) and ζ = (ζm). Arguing as in the proof of Theorem 8.21, we may
assume that α and β are non-random and the pair (η, ζ) is ergodic, jointly
rotatable. By Lemma 8.7 we may then represent η and ζ as in (48), in terms
of some independent G-processes ξm on H⊗(1+m), m ≤ d, and some isometries
Im and Jm as in (51). By Corollary 8.27 we obtain the new representations

Xf =
∑

π∈Od

ξπ(α̃π ⊗ f) =
∑

π∈Od

ξπ(β̃π ⊗ f),

where α̃π and β̃π denote the left- and right-hand sides of (52). Then (i) yields
α̃π = β̃π a.s. for all π ∈ Od, as required.

(iv) Here we may argue as in the proof of Theorem 8.21. �

8.7 Jointly Rotatable Arrays

In Proposition 8.20 we saw that every separately rotatable array on NNd can
be extended to a separately rotatable CLRF on (l2)⊗d. The corresponding
statement in the jointly rotatable case is false in general, since a jointly rotat-
able array may include diagonal terms, whose associated random functionals
fail to be continuous.
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For any partition π ∈ Pd, the associated diagonal space Dπ consists of all
t ∈ RRd

+ such that ti = tj whenever i and j belong to the same set J ∈ π. By
λπ we denote the natural projection of Lebesgue measure on RRπ

+ onto Dπ .
More precisely, letting eπ : RRπ

+ → Dπ be given by

eπ,j(t) = tJ , j ∈ J ∈ π, t ∈ RRπ
+,

we define λπ as the image of Lebesgue measure on RRπ
+ under the mapping

eπ .
To construct a CLRF extending a given array X, we need to consider an

underlying space L2
c(µ), consisting of all functions f ∈ L2(µ) with compact

support. Continuity is then defined in the local sense, in terms of functions
with uniformly bounded support. We also write P2

d for the class of collections
π of disjoint sets J ∈ 2d with |J| = 2, and put πc =

⋂
J∈π Jc. Finally, OJ

denotes the class of partitions κ of J into ordered sets k of size |k| ≥ 1.

Theorem 8.30 (jointly rotatable arrays) An array X on NNd is jointly ro-
tatable iff it can be extended to a CLRF on L2

c(
∑

π∈P2
d
λπ) of the form

Xf =
∑

π∈P2
d

∑
κ∈Oπc

(
λπ ⊗

⊗
k∈κ

η|k|
)
(απ,κ ⊗ f),

for some independent G-processes ηm on H ⊗ L2(λm), 1 ≤ m ≤ d, and an
independent set of random elements απ,κ in H⊗κ, π ∈ P2

d , κ ∈ Oπc. The
latter can then be chosen to be non-random iff X is ergodic.

Here the random functional Y is said to extend the array X if Xk = Y (Ik)
for all k ∈ NNd, where Ik denotes the unit cube (k − 1, k] in RRd

+, 1 being the
vector (1, . . . , 1). Several lemmas are needed for the proof, beginning with a
simple self-similarity property, where we write mIk = (m(k − 1),mk].

Lemma 8.31 (scaling) Let X be a jointly rotatable family of arrays Xd on
NNd, d ∈ ZZ+, and define

Xm
d (k) = Xd(mIk) =

∑
l∈mIk

Xd(l), k ∈ NNd, m ∈ NN, d ∈ ZZ+.

Then
(Xm

d ; d ∈ ZZ+) d= (md/2Xd; d ∈ ZZ+), m ∈ NN. (54)

Proof: Given any m,n ∈ NN, we may choose an orthogonal matrix u =
(uij) of dimension mn× mn such that

uij = m−1/21{i ∈ mIj}, i ≤ mn, j ≤ n.

Letting U denote the corresponding unitary operator on l2 that affects only
the first mn coordinates, we obtain

(Xd ◦ U⊗d)k = m−d/2Xd(mIk), k1, . . . , kd ≤ n.

Since X is jointly rotatable, (54) holds on the set
⋃

d{1, . . . , n}d, and the
assertion follows since n was arbitrary. �
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Our next aim is to characterize certain jointly rotatable diagonal arrays.

Lemma 8.32 (binary arrays) Let X be a random array on {0, 1}d such that
Xk = 0 unless k1 = · · · = kd. Then X is jointly rotatable iff X00 = X11 a.s.
when d = 2, and iff X = 0 a.s. when d > 2.

Proof: Introduce the orthogonal matrix

U =
1√
2

(
1 1

−1 1

)
.

For d = 2, we may use the joint rotatability of X to get

0 = X01
d= (X ◦ U⊗2)01 = (UT XU)01 = 1

2(X11 − X00),

which implies X00 = X11 a.s. Conversely, diagonal arrays with this property
are trivially jointly rotatable, since I ◦ U⊗2 = UT IU = UT U = I.

For d > 2, we define

Um = U⊗m ⊗ I⊗(d−m), m ≤ d.

Using the joint rotatability of X and noting that rotations preserve the Eu-
clidean norm, we get

0 =
∑

k
X2

01k
d=
∑

k
(X ◦ Ud)2

01k

=
∑

k
(X ◦ Ud−1)2

01k = · · · =
∑

k
(X ◦ U2)2

01k

= (X ◦ U2)2
010 + (X ◦ U2)2

011

= (X2
0 + X2

1)/4,

where 0 = (0, . . . , 0) and 1 = (1, . . . , 1) in any dimension, and all summa-
tions extend over k ∈ {0, 1}d−2. This implies X2

0 = X2
1 = 0 a.s. �

Let us now write Id for the class of bounded rectangles in RRd
+ determined

by binary rational coordinates, and put Id
01 = Id ∩ (0, 1]d. The next re-

sult shows how a jointly rotatable process on Id can be viewed as a jointly
rotatable array on NNd, whose entries are themselves processes on Id

01.

Lemma 8.33 (array of grid processes) Let X be a finitely additive, jointly
rotatable process on Id, fix an n ∈ NN, and define the processes Yj on Id

01 by

Yj(B) = X(2−n(B + j)), B ∈ Id
01, j ∈ ZZd

+.

Then the array Y = (Yj) is again jointly rotatable.
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Proof: We need to show that Y ◦ U⊗d d= Y for any rotation U on l2 that
affects only finitely many coordinates. Then fix any m ∈ NN, and define for
j ∈ ZZd

+ and k ∈ (0, 2m1]

Zjk = Yj(2−mIk) = X(2−n(2−mIk + j))
= X(2−m−n(Ik + j2m))
= X(2−m−nIk+j2m).

The array Z = (Zjk) is clearly jointly rotatable in the pair (j, k). We need
to show that Zjk is also jointly rotatable in index j alone. This will follow if
we can show that every rotation in j is also a rotation in the pair (j, k). The
last statement follows from the fact that, for any orthogonal r × r matrix
U = (Uij), the matrix V(i,h),(j,k) = Uijδhk is again orthogonal of dimension
r2m × r2m . �

The next result concerns extensions of processes on the non-diagonal part
I ′

d of Id. Given such a process X, we introduce the associated family of
reflections X̃ = (Xp), where p is an arbitrary permutation of 1, . . . , d and

Xp(2−nIk) = X(2−nIk◦p), n ∈ NN, k ∈ NN′
d.

Lemma 8.34 (off-diagonal component) Let X be a finitely additive, jointly
exchangeable process on I ′

d, such that the associated family of reflections is
separately rotatable on every rectangle in I ′

d. Then X can be extended to a
jointly rotatable CLRF on L2(λd).

Proof: For every n ∈ ZZ, let Xn denote the restriction of X to the non-
diagonal, cubic grid of mesh size 2n, regarded as an array on NN′

d. We claim
that Xn can be represented as in (44), in terms of a G-array η = (ηm

kl )
and an independent array of random coefficients απ

l . Then note that Xn

is again jointly exchangeable, and is therefore representable in terms of a
U-array ξ. By Proposition 7.33 and Lemma 7.34 we see that, conditionally
on ξ∅, the array Xn is ergodic, jointly exchangeable, whereas the associated
array of reflections X̃n = (Xp

n) is separately rotatable on every non-diagonal
rectangle. We may now derive the desired representation of Xn, first in the
ergodic case, as in the proof of Lemma 8.28, and then in general by means
of Lemma A1.5.

Now fix any ONB h1, h2, . . . in L2(λ), and define the random elements απ

in L2(λ) as in (42), based on the coefficients απ
k in the representation of X0.

Introducing some independent G-processes ηm on L2(λm+1), m = 1, . . . , d,
we may next define a jointly rotatable CLRF Y on L2(λd) by the right-hand
side of (41). Let Yn denote the restriction of Y to the non-diagonal cubic
grid in RRd

+ of mesh size 2n, and note that Y0
d= X0 by construction. Since

every Xn and Yn can be extended to a jointly rotatable array on NNd, we get
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by Lemma 8.31

Xn
d= 2nd/2X0

d= 2nd/2Y0
d= Yn, n ∈ ZZ,

which implies X
d= Y on I ′

d. Finally, by FMP 6.10, there exists a CLRF
X̄

d= Y on L2(λd) such that X = X̄ a.s. on I ′
d. �

Given a sub-class C ⊂ Pd, we say that a partition π ∈ C is maximal in
C if π ≺ π′ ∈ C implies π = π′, where π ≺ π′ means that π′ is a refinement
of π. Defining the restriction of a process X on Id to a set B ⊂ RRd

+ as
the restriction to the class of dyadic subsets A ∈ Id ∩ B, we say that X is
supported by B if its restriction to Bc vanishes a.s. For any π ∈ Pd, we write
Xπ for the restriction of X to the class of rectangles A1 × · · · × Ad ∈ Id,
such that Ai ∩Aj = ∅ whenever i and j belong to different sets in π. If X is
supported by

⋃
π∈C Dπ and π is maximal in C, then Xπ is clearly supported

by Dπ . We may refer to Xπ as the restriction of X to the non-diagonal part
D′

π = Dπ ∩ ⋂π′ Dc
π′ , where the last intersection extends over all partitions

π′ ≺ π with π′ �= π. For any π ∈ Pd and k ≤ d, we define πk = {I ∈ π;
|I| = k}.

Lemma 8.35 (maximal components) Let X be a finitely additive, jointly
rotatable process on Id, supported by

⋃
π∈C Dπ for some C ⊂ Pd. For any

maximal partition π ∈ C, let Xπ be the restriction of X to D′
π . Then Xπ = 0

a.s. unless π = π1∪π2, in which case Xπ can be extended to a CLRF on L2
c(λ

π)
of the form λπ2 ⊗ Yπ , where Yπ is a jointly rotatable CLRF on L2(λπ1).

Proof: For every n ∈ NN, let Xn be the array of contributions of X to
the regular cubic grid of mesh size 2n, and note that Xn is again jointly
rotatable. Fix any maximal partition π ∈ C and a set J ∈ π with |J| ≥ 2,
and put π′ = π \ {J}. Let m ∈ Dπ′ ∩ NNJc be based on distinct numbers
mI ∈ NN, I ∈ π′, and choose h �= k in NN \ {mI ; I ∈ π′}. Since π is maximal
in C, the array Xn vanishes a.s. outside the main diagonal of the cubic array
{h, k}J × {m}. Considering joint rotations involving only indices h and k,
we see from Lemma 8.32 that Xn

k,...,k,m is a.s. independent of k and equals
0 when |J| > 2. Since J was arbitrary, it follows that Xn

π = 0 a.s. unless
π = π1∪π2, in which case Xn

π depends only on the indices in π1. In the latter
case, we denote the corresponding array on NN′

π1
by Y n.

To see how the arrays Y n are related for different n, fix any m < n in NN,
and choose r ∈ NNπ1 and k ∈ NNπ2 such that the sets Ik × Ir and Ik × 2n−mIr

are both non-diagonal in RRπ
+. Using the additivity and invariance properties

of the arrays Xn, we get

Y m(2n−mIr) = Xm(I2
k × 2n−mIr)

= 2−(n−m)|π2|Xm(2n−m(I2
k × Ir))

= 2−(n−m)|π2|Xn(I2
k × Ir)

= 2−(n−m)|π2|Y n(Ir).
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Without ambiguity, we may then define a finitely additive, random set func-
tion Yπ on I ′

π1
through the formula

Yπ(2nIr) = 2−n|π2|Y n(Ir), r ∈ NN′
π1

, n ∈ ZZ.

The joint rotatability of Xn implies that Y n is jointly exchangeable, and
also that the corresponding array of reflections Ỹ n is separately rotatable
on every non-diagonal rectangle in NNπ1 . The process Yπ has then the same
properties, and so by Lemma 8.34 it extends to a jointly rotatable CLRF on
L2(λπ1). To see that the CLRF λπ2 ⊗Yπ on L2

c(λ
π) is an extension of Xπ , we

may consider any k and r as before and conclude from the definitions of Xn,
Y n, Yπ , λπ2 , and λπ2 ⊗ Yπ that

Xπ(2n(I2
k × Ir)) = Xn(I2

k × Ir) = Y n(Ir)
= 2n|π2| Yπ(2nIr)
= λπ2(2nI2

k ) Yπ(2nIr)
= (λπ2 ⊗ Yπ)(2n(I2

k × Ir)). �

The next result ensures that the various diagonal components combine
into a jointly rotatable process.

Lemma 8.36 (combined grid processes) Let X be a finitely additive, jointly
rotatable process on Id. Fix a linear sub-space D ⊂ RRd with invariant mea-
sure λD , and let A be a finite union of linear sub-spaces of RRd such that
λDA = 0. Write X ′ for the restriction of X to Ac, and assume that X ′ can
be extended to a CLRF Y on L2

c(λD). Then the pair (X,Y ) is again jointly
rotatable on Id.

Proof: Introduce the arrays Xm and Y m , recording the contributions of X
and Y to the regular cubic grid of mesh size 2−m . We need to show that the
pair (Xm, Y m) is jointly rotatable for every m ∈ NN. Then for every n ≥ m,
consider the union An of all cubes in the regular 2−n-grid intersecting A, and
form the periodic continuations

Am =
⋃

k
(A + k2−m), Am

n =
⋃

k
(An + k2−m).

Write Y m
n for the array of contributions of Y to the complementary sets

2−mIk \Am
n . Since X and Y agree on (Am

n )c, Lemma 8.33 shows that the pair
(Xm, Y m

n ) is jointly rotatable for fixed n. Now by dominated convergence as
n → ∞, for any bounded Borel set B ⊂ RRd

+, we have

λD(Am
n ∩ B) → λD(Am ∩ B) = 0.

Hence, the continuity of Y yields Y m
n

P→ Y m , and so the joint rotatability of
(Xm, Y m

n ) carries over to the pair (Xm, Y m). �

We may now derive the required diagonal decomposition, using a recursive
argument based on the last two lemmas.
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Lemma 8.37 (diagonal decomposition) Every finitely additive, jointly ro-
tatable process X on Id can be extended to a CLRF on L2

c(
∑

π∈P2
d
λπ) of the

form
X =

∑
π∈P2

d

(λπ2 ⊗ Yπ) a.s., (55)

for some jointly rotatable family of CLRFs Yπ on L2(λπ1), π ∈ P2
d . This

decomposition is a.s. unique.

Proof: Assume that X is supported by
⋃

π∈C Dπ for some C ⊂ Pd. We
claim that X is then representable as in (55), with the summation restricted
to C. The desired decomposition will then follow as we take C = Pd.

The statement is vacuously true for C = ∅. Next, assuming the result
to be true for |C| < m, we proceed to the case where |C| = m. Letting
π be a maximal partition in C, we may introduce the restriction Xπ of X
to D′

π , the non-diagonal part of Dπ . By Lemma 8.35 we have Xπ = 0 a.s.
when π �= π1 ∪ π2, in which case C can be replaced by the set C \ {π} with
cardinality m− 1. The assertion then follows by the induction hypothesis.

If instead π = π1 ∪ π2, then Xπ extends by Lemma 8.35 to a CLRF on
L2(λπ) of the form λπ2⊗Yπ , where Yπ is a jointly rotatable CLRF on L2(λπ1).
Furthermore, we see from Lemma 8.36 that the pair (X,Xπ) is again jointly
rotatable. But then X ′ = X − Xπ is jointly rotatable and supported by⋃

π′∈C′ Dπ′ , where C ′ = C \ {π}, and so the induction hypothesis yields an
a.s. representation X ′ =

∑
π′∈C′(λπ′

2 ⊗ Yπ′), for some CLRFs Yπ′ on L2(λπ′
1)

such that the entire family Y ′ = (Yπ′) is jointly rotatable. Here the pairs
(X ′,Xπ), (X ′, Y ′), and (Xπ, Yπ) are jointly rotatable, and since Yπ and Y ′

are measurable functions of Xπ and X ′, respectively, the joint rotatability
extends by Lemma 8.17 to the whole collection (Y ′, Yπ). This completes the
induction and establishes the desired decomposition.

The uniqueness can be proved recursively by a similar argument. Thus,
assuming that X has two decompositions as in (55), both with summation
restricted to C ⊂ Pd, we note that X is supported by

⋃
π∈C Dπ . For any max-

imal element π ∈ C, we may introduce the restriction Xπ of X to D′
π , which

agrees a.s. with the corresponding terms in (55) when π = π1∪π2, and equals
0 otherwise. In the former case, the factorization Xπ = λπ2 ⊗ Yπ is clearly
a.s. unique. Subtracting the common πth term from the two decompositions,
we may reduce the discussion to the case of summation over C ′ = C \ {π}. �

Proof of Theorem 8.30: For every n ∈ NN, we may define a finitely additive
set function Xn on the cubic grid Id

n = (2−nIk; k ∈ NNd) by

Xn(2−nIk) = 2−ndXk, k ∈ NNd, n ∈ NN.

Then Lemma 8.31 yields Xm d= Xn on Id
m for all m < n, and so by FMP

6.14 there exists a finitely additive process X on Id satisfying X(Ik) = Xk
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a.s. for all k ∈ NNd, and such that moreover(
X(2−nIk); k ∈ NNd

)
d=
(
2−ndXk; k ∈ NNd

)
, n ∈ ZZ+.

In particular, we note that X is again jointly rotatable.
By Lemma 8.37 we may extend the process X to a CLRF on the space

L2
c(
∑

π∈P2
d
λπ) and obtain a decomposition as in (55), in terms of a jointly

rotatable array of CLRFs Yπ on L2(λπ1), π ∈ P2
d . Proceeding as in the proof

of Theorem 8.24, we may finally construct the required representation of the
functionals Yπ , in terms of some independent G-processes ηm on H⊗L2(λm),
1 ≤ m ≤ d, along with an independent collection of random elements απ,κ

in suitable Hilbert spaces. The last statement can be proved by a similar
argument as before. �

8.8 Separately Exchangeable Sheets

We may now use the methods and results of the previous sections to derive
representations of exchangeable random sheets. By a random sheet on a rect-
angular space T = RRd′

+ × [0, 1]d′′ we mean a continuous random process X on
T such that Xt = 0 whenever

∏
j tj = 0. Separate or joint exchangeability of

X is defined in terms of the d-dimensional increments of X over an arbitrary
cubic grid in T , where d = d′ + d′′.

Let P̂d denote the class of families π of disjoint subsets J ∈ 2d \ {∅}, so
that P̂d =

⋃
J∈2d PJ , where PJ is the class of partitions of J into non-empty

subsets I. Put πc =
⋂

J∈π Jc. Given a random functional η and a measurable
set B, we often write ηB instead of η1B .

Theorem 8.38 (separately exchangeable sheets on RRd
+) A process X on RRd

+
is separately exchangeable with a continuous version iff it has an a.s. repre-
sentation

Xt =
∑

π∈P̂d

(
λπc ⊗

⊗
J∈π

ηJ

)
(απ ⊗ [0, t]), t ∈ RRd

+, (56)

in terms of some independent G-processes ηJ on H ⊗ L2(λJ ), J ∈ 2d \ {∅},
and an independent collection of random elements απ in H⊗π , π ∈ P̂d. The
latter can then be chosen to be non-random iff X is ergodic.

Our proof is based on a sequence of lemmas. Our first aim is to show
that the processes in (56) are continuous.

Lemma 8.39 (Hölder continuity) The process X in (56) has a version that
is a.s. locally Hölder continuous with exponent p for every p ∈ (0, 1

2). This re-
mains true if

⊗
J ηJ is replaced by

⊗
J η|J | for some independent G-processes

ηk on H ⊗ L2(λk), k ≤ d.
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Proof: By Fubini’s theorem and Lemma 8.8 we may assume that the
elements απ are non-random. It is also enough to consider a single term

Xπ
t =

(∏
j∈πc

tj

) (⊗
J∈π

ηJ

)
(απ ⊗ [0, t′]), t ∈ RRd

+,

for an arbitrary π ∈ P̂d, where t′ = (tj ; j /∈ πc). Write Y π for the second
factor on the right and put m =

∑
J∈π |J|. Using Lemma A3.3, we get for

fixed q > 0 and arbitrary s, t ∈ RRm
+

‖Y π
s − Y π

t ‖q <
�

∥∥∥απ ⊗ (1[0,s] − 1[0,t])
∥∥∥

= ‖απ‖ ‖1[0,s] − 1[0,t]‖2

<
�

‖απ‖
(
|s − t|(|s| ∨ |t|)m−1

)1/2
.

Hence, for fixed q > 0 and α and for bounded s, t ∈ RRm
+ ,

E|Y π
s − Y π

t |q <
�

|s − t|q/2. (57)

Fixing any p ∈ (0, 1
2), we may now choose q so large that q > 2(m + pq).

Then the bound in (57) can be replaced by |s− t|m+pq , and we may conclude
from the Kolmogorov–Chentsov criterion in FMP 3.23 that Y π has a locally
Hölder continuous version with exponent p. The same thing is then true for
the original process Xπ on RRd

+, and the assertion follows. �

The main idea behind the proof of Theorem 8.38 is to decompose X into
rotatable processes, each of which can be represented as in Theorem 8.18.
We begin with an elementary decomposition of processes on [0, 1]d.

Lemma 8.40 (centering decomposition) Given a set T ⊂ [0, 1] containing
0 and 1, let X be a process on Td such that Xt = 0 whenever

∏
j tj = 0. Then

X has a unique decomposition

Xt =
∑
J∈2d

XJ
tJ

∏
i /∈J

ti, t = (t1, . . . , td) ∈ Td, (58)

where each XJ is a process on TJ such that XJ
t = 0 whenever

∏
j tj(1− tj) =

0. When T = [0, 1], the process X is [ergodic] separately exchangeable iff the
family (XJ ) has the same properties.

Proof: Assuming the XJ to have the stated properties, we get by (58) for
any J ∈ 2d

XJ
tJ

= Xt −
∑
I∈Ĵ ′

XI
tI

∏
i∈J\I

ti, t ∈ TJ × {1}Jc

, (59)

where Ĵ ′ denotes the class of proper subsets of J. The asserted uniqueness
now follows by induction on |J|. Conversely, we may construct the XJ re-
cursively by means of (59), and for d = {1, . . . , 1} we note that (58) and (59)
are equivalent. We also see from (59) that XJ

t = 0 when
∏

j tj = 0.
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To see that XJ
t = 0 even when maxj∈J tj = 1, assume this to be true

for all processes XI with |I| < |J|. Fix any j ∈ J and put K = J \ {j}.
Applying (59) to both J and K and using the induction hypothesis, we get
for any t ∈ TK × {1}Kc

XJ
tJ

= Xt −
∑
I∈Ĵ ′

XI
tI

∏
i∈Ic

ti = Xt −
∑
I⊂K

XI
tI

∏
i∈Ic

ti = 0.

This completes the induction and proves the claim. The last assertion follows
easily by means of Lemma A1.1. �

Combining the last result with Lemma 8.3, we obtain a similar decom-
position of a separately rotatable random sheet X on RRd

+ into separately
rotatable components XJ .

Lemma 8.41 (rotatable decomposition) Any separately exchangeable ran-
dom sheet X on RRd

+ has an a.s. unique decomposition (58) on RRd
+, in terms

of a separately rotatable family of random sheets XJ on RRJ
+, J ∈ 2d.

Proof: Applying the first transformation of Lemma 8.3 in each coordinate,
we obtain a separately exchangeable random sheet Y on [0, 1]d. Next we may
decompose Y as in Lemma 8.40, in terms of some continuous processes Y J

on [0, 1]J , J ∈ 2d, satisfying Y J
t = 0 whenever

∏
j tj(1 − tj) = 0, and such

that the whole array (Y J ) is separately exchangeable. Applying the second
transformation in Lemma 8.3 to each component Y J , we obtain a separately
rotatable array of random sheets XJ on RRJ

+, J ∈ 2d, and we note that (58)
remains valid on RRd

+ for the processes X and XJ .
To prove the asserted uniqueness, suppose that X has also a decomposi-

tion (58) in terms of a separately rotatable array of random sheets X̃J on RRJ
+.

Applying the first transformation in Lemma 8.3 to the processes X and X̃J ,
we obtain a representation of Y in terms of some processes Ỹ J with Ỹ J

t = 0
whenever

∏
j tj(1 − tj) = 0. The uniqueness in Lemma 8.40 yields Ỹ J = Y J

a.s. for every J, and we may finally employ the second transformation in
Lemma 8.3 to get X̃J = XJ a.s. for all J. �

We also need a criterion for ergodicity. Let us say that a random sheet X
is dissociated if the corresponding increment process Y has this property. If
X is separately or jointly exchangeable, then Y can be extended to a process
on RRd with the same property, and we write Y∅ for the restriction of the latter
process to RRd

−.

Lemma 8.42 (ergodicity) Let X be a separately or jointly exchangeable ran-
dom sheet on RRd

+ with extension Y to RRd. Then X is conditionally ergodic
exchangeable given Y∅, and X is ergodic iff it is dissociated.
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Proof: The last assertion can be proved in the same way as the equiva-
lence of (i) and (ii) in Lemma 7.35. To prove the first assertion, we note as in
Lemma 7.34 that X remains separately or jointly exchangeable, conditionally
on Y∅. Applying the mentioned results to the increments over an arbitrary
cubic grid, we see that X is also conditionally dissociated, and the asserted
ergodicity follows as before. �

Proof of Theorem 8.38: A process X with representation (56) is clearly
separately exchangeable, and by Lemma 8.39 it has a continuous version.
Conversely, let X be a separately exchangeable random sheet on RRd

+. Then
Lemma 8.41 yields a decomposition as in (58), in terms of some random sheets
XJ on RRJ

+, J ∈ 2d, such that the whole array (XJ ) is separately rotatable.
By Lemma 8.22, supplemented by FMP 6.10, there exist some independent
G-processes ηJ on H ⊗ L2(RRJ

+), J ∈ ÑN \ {∅}, and an independent collection
of random elements απ in H⊗π , π ∈ PJ , J ∈ ÑN, such that a.s.

XJ
t =

∑
π∈PJ

(⊗
I∈π

ηI

)
(απ ⊗ [0, t]), t ∈ NNJ , J ∈ 2d. (60)

To extend the representation to arbitrary t ∈ RRJ
+, J ∈ 2d, we define the

processes Y J on RRJ
+ by the right-hand side of (60). For every m ∈ NN, we

may next introduce the arrays

XJ,m
k = XJ

k/m, Y J,m
k = Y J

k/m, k ∈ NNJ , J ∈ 2d.

Then for fixed m, Lemma 8.31 yields

(XJ,m) d= (m−|J |/2 XJ,1) = (m−|J |/2 Y J,1) d= (Y J,m),

which implies (XJ ) d= (Y J ) on QQd
+. By FMP 6.10 we may then assume that

(60) holds a.s. on QQJ
+, J ∈ 2d. The representations extend to the index sets

RRJ
+ by the continuity of each side, and (56) follows.

To prove the last assertion, let Qα be the distribution of X when α = (απ)
is non-random, and note that P [X ∈ ·|α] = Qα a.s. in general by Lemma 8.8
and Fubini’s theorem. If X is ergodic, it is also extreme by Lemma A1.2, and
so the measure Qα is a.s. non-random. But then L(X) = Qa for some fixed
array a = (aπ), and so by FMP 6.10 we have an a.s. representation (56) with
α = a. Conversely, if (56) holds for some non-random α, then X is clearly
dissociated, and the ergodicity follows by Lemma 8.42. �

Given a CLRF ξ on H⊗L2(RRJc

+ ×[0, 1]J ), we refer to the associated process
ξ̂ = ξ̂J in Lemma 8.10 as the reduced version of ξ. Writing Xt = ξ(· ⊗ [0, t])
and X̂t = ξ̂(· ⊗ [0, t]) for any t ∈ [0, 1]J , we note that X̂t vanishes on the
boundary of [0, 1]J . In fact, assuming tj = 1 and putting J ′ = J \ {j}, we
get

AJ (f ⊗ [0, t]) = AJ ′Aj(f ⊗ [0, t])
= AJ ′(I − Pj)(f ⊗ [0, t]) = 0,

by Lemma 8.10 (i) and the definition of Pj .
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In the special case where ξ is a G-process on L2(RRJc

+ × [0, 1]J ), we recall
from Lemma 8.39 that X has a continuous version, which is of course a
Brownian sheet on RRJc

+ ×[0, 1]J . The corresponding process X̂ is often referred
to, suggestively, as a pinned Brownian sheet or a Brownian sail on the same
space. The existence of the associated multiple integrals is clear from Lemmas
A3.4 and 8.10.

After all these preparations, we are ready to state the representation
theorem for separately exchangeable random sheets on RRJc

+ × [0, 1]J . Note
that Theorem 8.38 gives the special case where J = ∅.

Theorem 8.43 (separately exchangeable sheets on [0, 1]J × RRJc

+ ) For any
J ∈ 2d, a process X on [0, 1]J × RRJc is separately exchangeable with a con-
tinuous version iff it has an a.s. representation as in (56), though with each
ηI replaced by its reduced version η̂I on H ⊗ L2([0, 1]I∩J × RRI\J

+ ).

Proof: Applying the second transformation in Lemma 8.3 to each coor-
dinate j ∈ J, we obtain a separately exchangeable random sheet on RRd

+,
which can be represented as in Theorem 8.38 in terms of some independent
G-processes ηI and an independent set of random elements απ . By Lemma
8.4 the reverse transformations are equivalent to the dual projections A∗

j ,
applied successively, in each coordinate j ∈ I ∩ J, to some independent G-
processes η̃I on H ⊗ L2([0, 1]I∩J × RRI\J

+ ). According to Lemma 8.10, the
latter construction amounts to replacing each process η̃I by its reduced ver-
sion A∗

I∩J η̃I = η̂I . �

8.9 Jointly Exchangeable or Contractable Sheets

The aim of this section is to derive some representations of jointly exchange-
able or contractable random sheets on RRd

+. Beginning with the exchangeable
case, we introduce the class Ôd of disjoint collections of non-empty, ordered
subsets of {1, . . . , d}, so that Ôd =

⋃
J∈2d OJ , where OJ denotes the class of

partitions κ of J into ordered subsets k of length |k| ≥ 1. For any t ∈ RRd
+

and π ∈ Pd, we define the vector t̂π = (t̂π,J ) ∈ RRπ
+ by t̂π,J = minj∈J tj , J ∈ π.

Theorem 8.44 (jointly exchangeable sheets) A process X on RRd
+ is jointly

exchangeable with a continuous version iff it has an a.s. representation

Xt =
∑

π∈Pd

∑
κ∈Ôπ

(
λκc ⊗

⊗
k∈κ

η|k|
)
(απ,κ ⊗ [0, t̂π ]), t ∈ RRd

+,

in terms of some independent G-processes ηm on H ⊗ L2(λm), 1 ≤ m ≤ d,
and an independent collection of random elements απ,κ in H⊗κ, κ ∈ Ôπ ,
π ∈ Pd. The latter can then be chosen to be non-random iff X is ergodic.

Some lemmas are needed for the proof, beginning with the following
uniqueness assertion. Recall that NN′

d denotes the non-diagonal part of NNd.
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Lemma 8.45 (centering decomposition) Let X be a random array on NN′
d

of the form
Xk =

∑
J∈2d

XJ
kJ

, k ∈ NN′
d,

for some jointly rotatable arrays XJ on NNJ , J ∈ 2d. Then this decomposition
is a.s. unique on NN′

d.

Proof: To prove the uniqueness for a given k = (k1, . . . , kd) ∈ NN′
d, we

may choose some disjoint, infinite sets N1, . . . ,Nd ⊂ NN containing k1, . . . , kd,
respectively, and prove the uniqueness on R = N1 × · · · × Nd. Since the XJ

are separately rotatable on R, we may transform the index set and assume
instead that XJ is separately rotatable on NNJ for every J ∈ 2d.

Then define the arrays S on ZZd
+ and SJ on ZZJ

+, J ∈ 2d, by

Sn =
∑
k≤n

Xk, SJ
n =

∑
k≤n

XJ
k ,

and note that S and the SJ satisfy the relation in Lemma 8.40 on the index
set ZZd

+. Applying the first transformation of Lemma 8.3 in each coordinate,
we see that the resulting processes Y and Y J satisfy the same relation on the
index set Td, where T = {n/(1 + n); n ∈ ZZ+}. By the separate rotatability
of the SJ and Lemma 8.2, we have n−1

j SJ
n → 0 a.s. as nj → ∞ for fixed

njc , j ∈ J, which implies Y J
tj

→ 0 a.s. as tj → 1 along T . This suggests
that we define Y J

t = 0 when maxj∈J tj = 1. From (58) we see that even Y
extends by continuity in each variable, so that the formula remains a.s. true
on the closure T̄ d. Then Lemma 8.40 shows that the processes Y J are a.s.
unique. The a.s. uniqueness carries over to the summation processes SJ and
their underlying arrays of increments XJ , via the second transformation in
Lemma 8.3. �

To state the next result, recall that I ′
d denotes the set of non-diagonal,

dyadic rectangles in RRd
+. Given an additive process X on I ′

d, we say that X
generates a continuous process on the rectangle I = (a, b] ∈ I ′

d, if the process
Xa(t) = X(a, t], defined for dyadic t ∈ [a, b], has a continuous extension to
the whole rectangle.

Lemma 8.46 (off-diagonal representation) Let X be a finitely additive,
jointly exchangeable process on I ′

d, generating a continuous process on ev-
ery non-diagonal rectangle. Then X can be extended to a CLRF on L2

c(λ
d)

of the form

Xf =
∑

π∈Ôd

(
λπc ⊗

⊗
k∈π

η|k|
)
(απ ⊗ f), f ∈ L2

c(λ
d), (61)

for some independent G-processes ηm on H ⊗ L2(λm), 1 ≤ m ≤ d, and an
independent set of random elements απ in H⊗π , π ∈ Ôd.
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Proof: First we may reduce to the ergodic case by means of Lemmas
8.8, 8.42, and A1.5. Fixing any disjoint, infinite sets N1, . . . ,Nd ⊂ NN, we
note that the process X̃ of reflections is separately exchangeable on the cor-
responding union of unit cubes. By the second statement in Lemma 8.42,
applied in both directions, we see that X̃ is dissociated and hence ergodic.
It is also clear that the stated continuity property of X carries over to X̃.
Applying a vector-valued version of Theorem 8.38 to the latter process, we
obtain an a.s. representation as in (56), in terms of some independent G-
processes ηJ on H ⊗ L2(λJ ) and some non-random elements απ,p ∈ H⊗π ,
π ∈ P̂d, p ∈ Sd. In particular, this gives an a.s. decomposition of X̃, as
in Lemma 8.41, in terms of some processes XJ on I ′

J , such that the as-
sociated family of reflections X̃J is separately rotatable on the index set
R = N1 × · · · × Nd.

Now let XJ,n denote the restriction of XJ to the non-diagonal cubic grid
of mesh size 2−n. Proceeding as in Lemma 8.28 for fixed n ∈ ZZ+, we may
derive a representation of the array (XJ,n) consistent with (61). The expres-
sion for n = 0 extends by FMP 6.10 to a CLRF Y on L2

c(λ
d) as in (61),

and we may write Y n and Y J,n for the associated restrictions to the regular
cubic grid of size 2−n. The latter arrays clearly satisfy the scaling relations in
Lemma 8.31, and by Lemma 8.45 the same relations hold for the arrays XJ,n.
Arguing as in the proof of Theorem 8.38, we conclude that (XJ,n) d= (Y J,n)
for every n, which implies X

d= Y on I ′
d. By FMP 6.10 we may then redefine

Y , along with the underlying G-processes ηJ , such that X = Y a.s. on I ′
d.

This gives the desired extension of X. �

We also need the following decomposition of a jointly exchangeable ran-
dom sheet X into its diagonal components.

Lemma 8.47 (diagonal decomposition) Any jointly exchangeable random
sheet X on RRd

+ has an a.s. unique decomposition

Xt =
∑

π∈Pd

Xπ(t̂π), t ∈ RRd
+, (62)

in terms of a jointly exchangeable family of random sheets Xπ on RRπ
+, gen-

erated by some CLRFs Y π on L2
c(λ

π), π ∈ Pd.

Proof: Let Y be the process of increments associated with X, and suppose
that Y is supported by

⋃
π∈C Dπ for some C ⊂ Pd. We shall prove by induction

that Y has a decomposition as in (62) with summation over π ∈ C. This is
trivially true when C = ∅. Assuming the statement to hold when |C| < m,
we proceed to the case where |C| = m. Then choose a maximal partition
π ∈ C, and define an associated process Y π on I ′

π by

Y π
⊗
J∈π

BJ = Y
⊗
J∈π

BJ
J , (63)
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for any disjoint, dyadic intervals BJ , J ∈ π. The maximality of π implies
that Y π is finitely additive, and Y π inherits the joint exchangeability from Y .
We also note that Y π generates a continuous process on every non-diagonal
rectangle. Hence, Y π extends by Lemma 8.46 to a CLRF on L2

c(λ
π).

Now introduce the associated process Xπ
t = Y π [0, t], t ∈ RRπ

+, and conclude
from Lemmas 8.39 and 8.46 that Xπ is again jointly exchangeable and admits
a continuous version. Define X ′

t = Xt−Xπ(t̂π), t ∈ RRd
+, and let Y ′ denote the

corresponding increment process. Then (63) shows that Y ′ is supported by⋃
π′∈C′ Dπ′ , where C ′ = C\{π}. Furthermore, the pair (X ′,Xπ) is again jointly

exchangeable by Lemma A1.1. In particular, the induction hypothesis yields
a decomposition of X ′ as in (62), in terms of some processes Xπ′ , π′ ∈ C′,
with the required properties.

To complete the induction, we need to show that the entire family {(Xπ′),
Xπ} is jointly exchangeable. Then recall that the pairs {X ′, (Xπ′)} and
(X ′,Xπ) are both jointly exchangeable. By Lemma 7.2 (i) we can then
choose some processes X̃π′ , π′ ∈ C, with {X ′, (X̃π′)} d= {X ′, (Xπ′)}, such
that the whole triple {X ′, (X̃π′),Xπ} is jointly exchangeable. By the obvi-
ous uniqueness of the decomposition, the original triple {X ′, (Xπ′),Xπ} has
the same property, and the assertion follows. �

Proof of Theorem 8.44: By the usual argument based on Lemma A1.5,
it is enough to consider the ergodic case. First we may decompose X as
in Lemma 8.47 in terms of some random sheets Xπ on RRπ

+, π ∈ Pd, such
that each process Xπ is generated by a CLRF Y π on L2

c(λ
π). Next we may

decompose each Y π as in Lemma 8.46, in terms of some jointly rotatable
processes Y π,J , J ⊂ π. The combined array is then jointly exchangeable, by
the uniqueness of the decompositions together with Lemma 7.2 (i). Proceed-
ing as in the proof of Lemma 8.28, we may finally represent the processes
Y π,J as in Theorem 8.24, in terms of a common collection of independent
G-processes ηm on H ⊗ L2(λm), 1 ≤ m ≤ d. The desired representation of
X arises as the integrated form of the resulting representation for Y . �

Turning to the contractable case, let P̃d denote the class of partitions of
{1, . . . , d} into sequences π = (J1, . . . , Jk) of disjoint, non-empty subsets. For
every m ∈ NN, we consider the tetrahedral region ∆m = {t ∈ RRm

+ ; t1 ≤ · · · ≤
tm} and define ∆(t) = ∆m ∩ [0, t], t ∈ RRm

+ .

Theorem 8.48 (jointly contractable sheets) A process X on RRd
+ is jointly

contractable with a continuous version iff it has an a.s. representation

Xt =
∑

π∈P̃d

∑
κ∈P̂π

(
λκc ⊗

⊗
J∈κ

η|J |
)(

απ,κ ⊗ ∆(t̂π)
)
, t ∈ RRd

+, (64)

in terms of some independent G-processes ηm on H ⊗ L2(∆m), 1 ≤ m ≤ d,
and an independent collection of random elements απ,κ in H⊗κ, κ ∈ P̂π ,
π ∈ P̃d.
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Again we need a couple of lemmas. The basic relationship between
jointly exchangeable and contractable random sheets is given by the fol-
lowing continuous-time version of the fundamental Corollary 7.16. Here we
define ∆I ′

d = ∆d ∩ I ′
d.

Lemma 8.49 (exchangeable extension) Let X be a finitely additive, jointly
contractable process on ∆I ′

d, generating a continuous process on every non-
diagonal rectangle. Then X can be extended to a jointly exchangeable process
on I ′

d with the same properties.

Proof: Let Xn denote the restriction of X to a regular cubic grid in ∆I ′
d

with mesh size 2−n. By Corollary 7.16 we may extend each Xn to a jointly
exchangeable array Yn on the corresponding cubic grid in I ′

d. Using the
same notation Yn for the generated additive process, we see that Yn remains
jointly exchangeable on the 2−m-grid in I ′

d for every m ≤ n. In particular,
the distribution of Yn(B) is independent of n ≥ m for every non-diagonal
2−m-cube B. Defining Yn = 0 on the 2−m-grids with m > n, we conclude
that the sequence (Yn) is tight on the countable index set I ′

d, and hence
converges in distribution along a sub-sequence toward a process Y on I ′

d.
In particular, we have Y

d= X on ∆I ′
d, and so by FMP 6.10 we may

assume that Y = X a.s. on ∆I ′
d. The finite additivity and joint exchange-

ability of the arrays Yn clearly extend to the limit Y . In particular, the
finite-dimensional distributions of Y within a fixed rectangle B ∈ I ′

d agree
with those of X within the reflected rectangle B̃ ∈ ∆I ′

d, apart from the order
of coordinates. Since X generates a continuous process on B̃, the same thing
is a.s. true for the process Y on B, again by virtue of FMP 6.10. �

The last result enables us to use the previously established represen-
tations of jointly exchangeable processes to derive similar formulas in the
contractable case. This will first be accomplished in a non-diagonal setting.

Lemma 8.50 (off-diagonal representation) Any process X as in Lemma
8.49 can be extended to a CLRF on L2

c(∆d) of the form

Xf =
∑

π∈P̂d

(
λπc ⊗

⊗
J∈π

η|J |
)
(απ ⊗ f), f ∈ L2

c(∆d), (65)

for some independent G-processes ηm on H ⊗ L2(∆m), 1 ≤ m ≤ d, and an
independent collection of random elements απ in H⊗π , π ∈ P̂d.

Proof: By Lemma 8.49 we may extend X to a finitely additive, jointly
exchangeable process on I ′

d. The latter may in turn be represented as in
Lemma 8.46, in terms of some independent G-processes ηm on H ⊗ L2(λm),
1 ≤ m ≤ d. The representation may be written in the form (65), except
that η1, . . . , ηd are now replaced the corresponding reflected processes η̃m on
Hm ⊗ L2(λm), 1 ≤ m ≤ d, where Hm is the direct sum of m! copies of H.
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Now the representation on ∆d involves only the restrictions of the processes
η̃m to the sub-spaces Hm⊗L2(∆m), which are again independent G-processes,
since their components are obtained from the ηm by reflection from disjoint
tetrahedral regions. Since the Hilbert spaces Hm are isomorphic to H, we
may finally derive the desired representation by a suitable set of isometric
transformations. �

Proof of Theorem 8.48: Using Lemma 8.50 recursively as in the proof of
Lemma 8.47, we may decompose X into diagonal components Xπ on RRπ

+,
π ∈ Pd, where each Xπ is generated by a CLRF Y π on L2

c(λ
π). Next we may

represent each process Y π in terms of the corresponding reflected array Ỹ π

on ∆π , whose components are CLRFs on L2
c(∆|π|). By a semi-group version

of Lemma A1.1, the whole collection (Ỹ π) is jointly contractable.
Proceeding as in Lemma 8.49, we may next extend the array (Ỹ π) to

a jointly exchangeable family of processes Zπ , π ∈ P̃d, where each Zπ is a
CLRF on L2

c(λ
π). The array (Zπ) may be represented as in Lemma 8.46, in

terms of some independent G-processes ηm on H⊗L2(RRm
+ ), 1 ≤ m ≤ d, along

with an independent set of random elements απ,κ. The resulting representa-
tion of the original, tetrahedral array (Ỹ π) may be simplified as in Lemma
8.50, and (64) follows as we rewrite the latter expression in integrated form. �

In conclusion, we conjecture that the representation in Theorem 8.44 re-
mains valid for jointly exchangeable random sheets on [0, 1]d, provided we
replace the G-processes ηm by their reduced versions, as defined in the pre-
vious sections. The statement is clearly equivalent to a jointly exchangeable,
multi-variate version of Lemma 8.3.



Chapter 9

Symmetric Measures in the Plane

In this final chapter, we consider yet another case of multi-variate symme-
tries, now for exchangeable random measures on a finite or infinite rectangle,
which leads to representations in terms of Poisson processes and sequences of
independent U(0, 1) random variables. In two dimensions there are only five
different cases to consider, depending on whether the symmetry is separate
or joint and the rectangle is a square, a quadrant, or an infinite strip. Here
the representations on a square are derived in Section 9.3, the one on a strip
in Section 9.4, and those on a quadrant in Section 9.6.

The remaining sections deal with various introductory material, needed
for the proofs of the main results. Thus, the basic symmetries are considered
in Section 9.1, along with a brief discussion of the contractable case. Some
auxiliary propositions for product symmetries and ergodic decompositions
appear in Section 9.2. Finally, Section 9.5 contains some technical lemmas
needed to establish the representations in the quadrant case. Some proofs in
this chapter also rely on results from the general theory of ergodic decompo-
sitions, as summarized in Appendix A1.

9.1 Notions of Invariance

A random measure ξ on a rectangle R = I1 × · · · × Id in RRd is said to
be separately exchangeable, if for any measure-preserving transformations
f1, . . . , fd on I1, . . . , Id, respectively, we have

ξ ◦
(⊗

j
fj

)−1
d= ξ. (1)

When I1 = · · · = Id = I, we also say that ξ is jointly exchangeable if (1)
holds for any measure-preserving transformation f1 = · · · = fd = f on I. Our
aim is to derive general representations of separately or jointly exchangeable
random measures on a two-dimensional rectangle I1 × I2. Here there are
clearly five cases to consider, depending on whether I1 and I2 are finite or
infinite. Though similar representations can be expected to hold in higher
dimensions, the technical and notational complications when d > 2 seem
bewildering.
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For technical reasons, it is often convenient to restrict f1, . . . , fd in (1)
to the set of finite permutations of dyadic intervals, in which case we need
to consider only transpositions of such intervals, in the sense of Chapter 1.
This approach has the advantage that each symmetry is defined in terms of
a countable group of transformations, which allows us to apply some pow-
erful results from the general theory of ergodic decompositions. An obvious
disadvantage is the loss of mathematical elegance and flexibility.

An even more elementary approach would be to consider an arbitrary
rectangular grid, and require the corresponding discrete symmetry condition
to be satisfied for the associated array of increments. In the case of joint ex-
changeability, we need the grid to be cubic and invariant under permutations
of the coordinates. This approach has the benefits of a reduction to the more
elementary case of exchangeable arrays, discussed extensively already in the
previous chapter. A disadvantage is that the underlying transformations are
no longer applied to ξ itself, as required by the general theory.

Fortunately no distinctions are necessary, since all three approaches to
multi-variate exchangeability for random measures turn out to be equiva-
lent. This allows us to move freely between the various interpretations of
symmetry. A similar result holds in the contractable case, to be addressed
in Proposition 9.3.

Proposition 9.1 (equivalent symmetries) For random measures ξ on a rect-
angle I1 × · · · × Id in RRd, it is equivalent to base the definitions of separate
or joint exchangeability on the following classes of transformations:

(i) the measure-preserving transformations on I1, . . . , Id,
(ii) the transpositions of dyadic intervals in I1, . . . , Id,
(iii) the permutations of the increments over any dyadic grid.

The result implies the equivalence of the corresponding notions of ex-
tremality, and by Lemma A1.2 it is also equivalent that ξ be ergodic for the
transformations in (ii). If nothing else is said, ergodicity will henceforth be
understood in the sense of (ii).

A simple lemma will be helpful for the proof. Here an interval of the form
In
k = 2−n(k − 1, k], k ∈ NN, is said to be n-dyadic.

Lemma 9.2 (approximation) For any λ-preserving transformation f on
[0, 1], there exist some λ-preserving transformations fn → f a.e. λ, such
that each fn permutes the n-dyadic intervals in [0, 1].

Proof: Define An
k = f−1In

k for n ∈ NN and k ≤ 2n, and note that the
sets An

k are disjoint for fixed n with λAn
k = 2−n. Arguing as in the proof

of Theorem 1.18, we may next choose some disjoint, dyadic sets Bn
k ⊂ [0, 1]

such that
λBn

k = 2−n,
∑

k
λ(An

k ∆ Bn
k ) < 2−n.



9. Symmetric Measures in the Plane 403

Define fn to be the unique function on [0, 1] such that, for every k ≤ 2n, the
restriction of fn to Bn

k is increasing and λ-preserving with range In
k . Then

each fn is clearly λ-preserving on [0, 1] and satisfies

λ{|fn − f | > 2−n} < 2−n, n ∈ NN.

Hence, by the Borel–Cantelli lemma,

λ{fn �→ f} ≤ λ{‖fn − f | > 2−n i.o.} = 0,

which means that fn → f a.e. λ. Changing the numbering, if necessary, we
can finally ensure that each fn permutes only n-dyadic intervals. �

Proof of Proposition 9.1: The three notions of exchangeability are clearly
related by (i) ⇒ (ii) ⇒ (iii), and by a monotone class argument we have
even (iii) ⇒ (ii). Thus, it remains to prove that (ii) ⇒ (i). Here we consider
only the case of joint exchangeability, the separately exchangeable case being
similar. By a simple truncation argument, we may further reduce to the case
of random measures on [0, 1]d.

Then let the random measure ξ on [0, 1]d be jointly exchangeable in the
sense of (ii). Fix any λ-preserving transformation f on [0, 1]. By Lemma 9.2
we may choose some transformations f1, f2, . . . of type (ii) such that fn → f
a.e. λ. In other words, we have fn → f on some measurable set A ⊂ [0, 1]
with λA = 1. This clearly implies f⊗d

n → f⊗d on Ad.
The one-dimensional projections ξ1, . . . , ξd on [0, 1] are again exchange-

able in the sense of (ii), and this remains true in the sense of (i) by Theorem
1.18. In particular, ξiA

c = 0 a.s. for 1 ≤ i ≤ d, and therefore ξ(Ad)c = 0 a.s.
But then ξ{f⊗d

n �→ f⊗d} = 0 a.s., and so by FMP 4.7

ξ
d= ξ ◦ (f⊗d

n )−1 w→ ξ ◦ (f⊗d)−1,

which implies ξ ◦ (f⊗d)−1 d= ξ. Since f was arbitrary, we conclude that ξ is
also jointly exchangeable in the sense of (i). �

Contractability of random measures is defined, most naturally, on the
tetrahedral regions

∆d = {(s1, . . . , sd) ∈ RRd
+; s1 < · · · < sd}, d ∈ NN.

Again we may identify three different versions of the definition, corresponding
to the notions of exchangeability considered in Proposition 9.1. The follow-
ing version of Corollary 7.16 and Lemma 8.49 characterizes multi-variate
contractability for random measures in terms of the corresponding exchange-
able notion.

Proposition 9.3 (contractable random measures, Casukhela) A random
measure on ∆d is contractable, in either sense of Proposition 9.1, iff it can
be extended to an exchangeable random measure on RRd

+.
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Proof: The sufficiency is clear, since for any exchangeable random mea-
sure ξ on RRd

+, the restriction of ξ to ∆d is contractable in the sense of either
definition. Conversely, suppose that ξ is contractable on ∆d in the sense
of (iii). By a monotone class argument, the contractability remains true in
the sense of (ii). For every n ∈ NN, let ηn denote the array of restrictions
of ξ to the n-dyadic cubes 2−n[k − 1, k), k ∈ NNd ∩ ∆d. Then ξn is again
contractable, and so by Corollary 7.16 it has an exchangeable extension η̃n

to the non-diagonal part of NNd. Define ξ̃n as the corresponding extension of
ξ to RRd

+.
Let Un denote the set of finite unions of n-dyadic cubes in RRd

+. For any
B ∈ B(RRd

+), write B̂ for the reflection of B into ∆̄d, and note that

P{ξ̃nB > r} ≤ 2dP{ξB̂ > r2−d}, B ∈ Um, m ≤ n, r > 0. (2)

In particular, the sequence (ξ̃n) is tight, and so we have convergence ξ̃n
d→ ξ̃

along a sub-sequence N ′ ⊂ NN for some random measure ξ̃ on RRd
+.

To see that ξ̃ is exchangeable, fix any B ∈ U =
⋃

n Un, and choose some
sets C1, C2, . . . ∈ U such that

∂B ⊂ C◦
k ⊂ Ck ↓ ∂B.

Fixing any r > 0 and k ∈ NN and using FMP 4.25 and (2), we get for n
restricted to N ′

P{ξ̃∂B > r} ≤ P{ξ̃C◦
k > r} ≤ lim infnP{ξ̃nC

◦
k > r}

≤ lim infnP{ξ̃nCk > r}
≤ 2dP{ξĈk > r2−d}.

Letting k → ∞ and noting that ξ∂̂B = 0 a.s. by contractability, we get

P{ξ̃∂B > r} ≤ 2dP{ξ∂̂B ≥ r2−d} = 0, r > 0,

which shows that ξ̃∂B = 0 a.s. for every B ∈ U .
For any B1, . . . , Bk ∈ U , we may now apply FMP 16.16 to obtain

(ξ̃nB1, . . . , ξ̃nBk)
d→ (ξ̃B1, . . . , ξ̃Bk).

Assuming B1, . . . , Bk to be disjoint, non-diagonal, and m-dydic cubes, and
using the exchangeability of η̃n for n ≥ m, we conclude that ξ̃ is again ex-
changeable on Um . Since m was arbitrary, it follows that ξ̃ is exchangeable
in the sense of (ii), and so by Proposition 9.1 it remains exchangeable in the
sense of (i). Noting that ξ̃n = ξ on ∆d for every n, we have also ξ̃

d= ξ on ∆d,
and so by FMP 6.10 we may assume that ξ̃ = ξ a.s. on ∆d. Then ξ̃ is indeed
an exchangeable extension of ξ to RRd

+. �
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9.2 General Prerequisites

In this section we prove some general results, needed to prove the multi-
variate representations in subsequent sections. We begin with a common
situation where the symmetry of a pair of random elements is preserved by
a measurable function. Given a family T of measurable transformations of a
space S, we say that a random element ξ in S is T -symmetric if Tξ

d= ξ for
every T ∈ T . Exchangeability is clearly a special case.

Lemma 9.4 (composite symmetries) Let S, S′, and S′′ be measurable spaces
equipped with families of measurable transformations T , T ′, and T ′′, respec-
tively. Fix a measurable function f : S′×S′′ → S, and suppose that for every
T ∈ T there exist some T ′ ∈ T ′ and T ′′

x ∈ T ′′, x ∈ S′, such that T ′′
x y is

product measurable on S′ × S′′ and

T ◦ f(x, y) = f(T ′x, T ′′
x y), x ∈ S′, y ∈ S′′.

Then for any independent, T ′- and T ′′-symmetric random elements ξ in S′

and η in S′′, their image ζ = f(ξ, η) in S is T -symmetric.

Proof: For any T ∈ T , choose T ′ ∈ T ′ and T ′′
x ∈ T ′′, x ∈ S′, with the

stated properties, and consider any measurable function g ≥ 0 on S′ × S′′.
By Fubini’s theorem and the independence and symmetry of ξ and η, we
have

Eg(T ′ξ, T ′′
ξ η) = (Eg(T ′x, T ′′

x η))x=ξ

= (Eg(T ′x, η))x=ξ = Eg(T ′ξ, η)
= (Eg(T ′ξ, y))y=η

= (Eg(ξ, y))y=η = Eg(ξ, η).

In particular, we may take g = 1A ◦f for any measurable set A ⊂ S to obtain

P{Tζ ∈ A} = P{f(T ′ξ, T ′′
ξ η) ∈ A}

= P{f(ξ, η) ∈ A} = P{ζ ∈ A},

which shows that ζ is T -symmetric. �

We continue with some results for invariance on product spaces. Given
some measurable spaces Sk equipped with families of measurable transfor-
mations Tk, we say that a random element ξ = (ξ1, . . . , ξn) in the product
space S = S1×· · ·×Sn is separately symmetric if its distribution is invariant
under arbitrary transformations T1 ⊗ · · · ⊗ Tn in T1 × · · · × Tn, in the sense
that

(T1ξ1, . . . , Tnξn) d= (ξ1, . . . , ξn), Tk ∈ Tk, k ≤ n.

We may also consider the notion of separate ergodicity with respect to the
same class of transformations on S1 × · · · × Sn.
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Lemma 9.5 (separate product symmetries) For every k ≤ n, let Sk be a
Borel space endowed with a countable group of measurable transformations
Tk and associated invariant σ-field Ik. Consider a random element ξ =
(ξ1, . . . , ξn) in S1 × · · · × Sn, and put Jk = ξ−1

k Ik. Then these conditions are
equivalent:

(i) ξ is separately symmetric,
(ii) ξk is conditionally symmetric given (ξj ; j �= k) for every k ≤ n,
(iii) the ξk are conditionally independent and symmetric given J1∨· · ·∨Jn.

When those statements are true, we have ξk ⊥⊥Jk
(ξj ; j �= k) for all k, and ξ

is ergodic iff the same property holds for ξ1, . . . , ξn.

Proof: Assuming (i), we get for any k ≤ n and T ∈ Tk

P [Tξk ∈ ·| ξj ; j �= k] = P [ξk ∈ ·| ξj ; j �= k] a.s.,

and (ii) follows since Tk is countable. Since (ii) trivially implies (i), the two
conditions are equivalent. It is also clear that (iii) implies (i). Conversely,
we see from (i) and the definition of Jk that, for any k ≤ n and T ∈ Tk,

(Tξk,J1, . . . ,Jn) d= (ξk,J1, . . . ,Jn),

which shows that ξ1, . . . , ξn are conditionally symmetric, given J1 ∨ · · · ∨Jn.
Next we note that

P [ξk ∈ ·| Jk] = E[P [ξk ∈ ·| Jk; ξj, j �= k]| Jk] a.s.

Writing this in terms of regular conditional distributions, and noting that
the left-hand side is a.s. ergodic and hence extreme by Lemmas A1.2 and
A1.4, we obtain

P [ξk ∈ ·| Jk; ξj, j �= k] = P [ξk ∈ ·| Jk] a.s.,

which means that
ξk ⊥⊥Jk

(ξj, j �= k), k ≤ n.

This implies
ξk ⊥⊥

J1 ∨ · · · ∨ Jn

(ξj, j �= k), k ≤ n,

and so ξ1, . . . , ξn are conditionally independent given J1 ∨ · · · ∨ Jn. This
completes the proof of the implication (i) ⇒ (iii), and shows that all three
conditions (i)–(iii) are equivalent.

To prove the last assertion, we may assume that ξ is defined on the
canonical probability space, so that

Jk = S1 × · · · × Sk−1 × Ik × Sk+1 × · · · × Sn, 1 ≤ k ≤ n.

Letting ξ be ergodic and noting that J1, . . . ,Jn are invariant under T1⊗· · ·⊗
Tn, we see that the latter σ-fields are trivial, which means that even ξ1, . . . , ξn
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are ergodic. Conversely, assuming ξ1, . . . , ξn to be ergodic, we see from (iii)
that they are independent, and so the distribution µ = L(ξ) can be written
as µ1 ⊗ · · · ⊗ µn. If µ = cµ′ + (1 − c)µ′′ for some invariant distributions µ′

and µ′′ and a constant c ∈ (0, 1), then J1, . . . ,Jn remain trivial under µ′ and
µ′′, and we conclude as before that

µ′ = µ′
1 ⊗ · · · ⊗ µ′

n, µ′′ = µ′′
1 ⊗ · · · ⊗ µ′′

n,

for some invariant distributions µ′
k and µ′′

k. But then

µk = cµ′
k + (1 − c)µ′′

k, k = 1, . . . , n,

and since the µk are ergodic, hence even extreme by Lemma A1.2, we con-
clude that µ′

k = µ′′
k = µk for all k. Then also µ′ = µ′′ = µ, which shows that

µ is extreme and hence ergodic by the same lemma. �

For the corresponding notions of joint symmetry or ergodicity to make
sense, we need the component spaces Sk with associated classes of transfor-
mations Tk to be the same for all k. Given a class T of measurable trans-
formations on a measurable space S, we say that ξ = (ξ1, . . . , ξn) is jointly
symmetric if its distribution is invariant under any mapping T⊗n with T ∈ T ,
so that

(Tξ1, . . . , Tξn) d= (ξ1, . . . , ξn), T ∈ T .

Joint ergodicity is defined with respect to the same class of transformations
T⊗n. Here we need only a simple result in the two-dimensional case.

Lemma 9.6 (joint product symmetries) Let T be a group of measurable
transformations on a measurable space S. Consider some random elements
ξ and η in S, where ξ is T -symmetric, η is conditionally T -symmetric given
ξ, and the pair (ξ, η) is jointly T -ergodic. Then ξ and η are independent and
ergodic, T -symmetric.

Proof: The symmetry of η is clear from the corresponding conditional
property. If I ⊂ S is measurable and T -invariant a.s. L(ξ), then I × S is
T -invariant in S2, a.s. with respect to (ξ, η), and so

P{ξ ∈ I} = P{(ξ, η) ∈ I × S} = 0 or 1.

This shows that ξ is T -ergodic. The same argument shows that even η is
T -ergodic. Since T is a group, we conclude from Lemma A1.2 that L(η)
is extreme as a T -invariant distribution. In particular, the decomposition
P{η ∈ ·} = EP [η ∈ ·|ξ] yields P [η ∈ ·|ξ] = P{η ∈ ·} a.s., and the asserted
independence ξ⊥⊥ η follows. �

We proceed with some useful conditions for extremality.
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Lemma 9.7 (extremality) Consider some Borel spaces S, T , U, V , a mea-
surable mapping f : T ×U → S, and a random element γ in U. Let C be the
convex hull of the measures mt = L(ξt), t ∈ T , where ξt = f(t, γ). Suppose
that the functions g : S → V and h : T → V are measurable and satisfy

(i) g(ξt) = h(t) a.s., t ∈ T ,
(ii) h(s) = h(t) implies ms = mt, s, t ∈ T .

Then the mt are extreme in C. This holds in particular if there exists a
measurable mapping F : S × [0, 1] → S such that, for any U(0, 1) random
variable ϑ⊥⊥ γ, the random elements ξ̃t = F (ξt, ϑ) satisfy ξt

d= ξ̃t ⊥⊥ ξt.

Proof: Suppose that mt =
∫

msµ(ds) for some t ∈ T and µ ∈ M1(T ).
Then Fubini’s theorem yields ξt

d= ξτ , where τ ⊥⊥ γ with distribution µ. By
(i) and Fubini’s theorem we get h(t) = h(τ) a.s., and so by (ii) we have
mt = mτ a.s., which means that ms = mt for s ∈ T a.e. µ. This shows that
mt is extreme in C.

Now let F be such as stated. Define

g(s) = L(F (s, ϑ)), s ∈ S; h(t) = mt, t ∈ T,

and note that (ii) is trivially true. To prove (i), we may use the definitions of
g, h, ξ̃t, and mt, the independence relations γ ⊥⊥ϑ and ξ⊥⊥ ξ̃t, and Fubini’s
theorem to write

g(ξt) = P [F (ξt, ϑ) ∈ ·|ξt]
= P [ξ̃t ∈ ·|ξt] = P{ξ̃t ∈ ·}
= P{ξt ∈ ·} = mt = h(t),

a.s. for any t ∈ T . The asserted extremality now follows from the previous
statement. �

The last lemma leads to an easy construction of a directing element,
associated with a symmetric random element ξ. By this we mean an a.s.
ξ-measurable and invariant random element ρ, such that the distributions of
ξ and ρ determine each other uniquely.

Lemma 9.8 (directing element) In the context of Lemma 9.7, let T be a
family of measurable transformations on S, and suppose that C consists of all
T -invariant distributions on S. Then every T -symmetric random element ξ

in S has an a.s. representation f(τ, γ̃) for some γ̃
d= γ and τ ⊥⊥ γ̃, and

ρ = h(τ) is a directing element of ξ.

Proof: The first assertion follows from Lemma A1.5. Letting π ∈ T be
arbitrary and using Fubini’s theorem, condition (i) of Lemma 9.7, and the
T -invariance of the measures mt, we get
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P{g(πξ) = ρ} = P{g ◦ πf(τ, γ̃) = h(τ)}
= E(P{g ◦ πf(t, γ̃) = h(t)})t=τ

= E(P{g(πξt) = h(t)})t=τ

= E(P{g(ξt) = h(t)})t=τ = 1,

which shows that g(πξ) = g(ξ) = ρ a.s. Hence, ρ is a.s. a measurable and
T -invariant function of ξ. In particular, L(ρ) is uniquely determined by L(ξ).

To prove the converse statement, consider another T -symmetric random
element ξ′ = f(τ ′, γ′) such that h(τ ′) d= h(τ) = ρ. The transfer theorem
allows us to choose τ̃

d= τ ′ such that h(τ̃) = h(τ) a.s. Then (ii) yields
mτ = mτ̃

d= mτ ′ a.s., and so

L(ξ) = Emτ = Emτ ′ = L(ξ′),

which shows that L(ξ) is also determined by L(ρ). �

The following result is often useful to verify the extremality criterion in
Lemma 9.7.

Lemma 9.9 (kernel criterion) Fix three Borel spaces S, U, V , an index set
T , and some measurable mappings ft : U × V → S, t ∈ T . Consider some
independent random elements α in U and η in V , let ϑ⊥⊥ (α, η) be U(0, 1),
and define

ξt = ft(α, η), t ∈ T. (3)
Suppose that

P [ξt ∈ ·|α] = ν(ξt; ·) a.s., t ∈ T, (4)

for some kernel ν on S. Then there exist a measurable mapping g : S × [0, 1]
→ S and some random elements ηt

d= η with ηt ⊥⊥ (α, ξt), t ∈ T , such that

ξ′
t ≡ g(ξt, ϑ) = ft(α, ηt) a.s., t ∈ T. (5)

Proof: We may clearly assume that S = RR. Letting Ht and G be the
distribution functions associated with the kernels in (4), we obtain

Ht(α, x) = P [ξt ≤ x|α] = ν(ξt, (−∞, x]) = G(ξt, x), x ∈ RR, (6)

a.s. for each t ∈ T . By right continuity we note that Ht and G are prod-
uct measurable, and the latter property clearly carries over to the right-
continuous inverses ht and g. Hence, by (6) and Fubini’s theorem,

ξ′
t ≡ g(ξt, ϑ) = ht(α, ϑ) a.s., t ∈ T. (7)

Since ϑ is U(0, 1) and independent of α, we see from (6) and (7) that

P [ξ′
t ∈ ·|α] = P [ξt ∈ ·|α] a.s., t ∈ T,
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which implies
(ξ′

t, α) d= (ξt, α), t ∈ T. (8)

Now choose η̃
d= η to be independent of (α, η, ϑ), and note that (8) remains

true with ξt replaced by ξ̃t = ft(α, η̃). Since η⊥⊥ (α, η̃, ϑ), we conclude that

(ξ′
t, α, η) d= (ξ̃t, α, η) = (ft(α, η̃), α, η), t ∈ T.

Hence, the transfer theorem (FMP 6.10) ensures the existence of some ran-
dom triples

(αt, η
′
t, ηt)

d= (α, η, η̃), t ∈ T,
satisfying

(ξ′
t, α, η) = (ft(αt, ηt), αt, η

′
t) a.s., t ∈ T.

In particular, αt = α and η′
t = η a.s., and so (5) holds with ηt

d= η̃
d= η and

ηt ⊥⊥ (α, η). Finally, ηt ⊥⊥ (α, ξt) follows by virtue of (3). �

The next result often allows us to extend results involving parametric
representations to a functional setting.

Lemma 9.10 (parametric representation) Let C be the class of measurable
functions from a σ-finite measure space (S, µ) to a Borel space T . Then there
exist a measurable function F : [0, 1] × S → T and a functional p : C → [0, 1]
such that

f = F (p(f), ·) a.e. µ, f ∈ C.

Proof: We may clearly assume that µ is bounded and T ∈ B[0, 1], so that
C ⊂ L2(S, µ) ≡ H. Fixing any ortho-normal basis h1, h2, . . . in H, we define
a function h : l2 → L2(S) by

h(a, ·) =
∑

j
ajhj, a = (aj) ∈ l2.

By FMP 4.32 we may choose a product measurable version of h on l2 × S.
Next we define a mapping g : C → l2 by

gj(f) = 〈f, hj〉, j ∈ NN, f ∈ C,

so that f =
∑

j gj(f)hj in L2(S), and hence

f = h(g(f), ·) a.e. µ, f ∈ C.

Introducing a Borel isomorphism r : l2 → B ∈ B[0, 1] and writing p = r ◦ g,
we obtain f = F (p(f), ·) a.e. µ, where

F (x, ·) = h(r−1(x), ·), x ∈ B.

We may finally modify F to satisfy F (x, s) ∈ T for all x ∈ B and s ∈ S, and
choose a constant value F (x, s) = t0 ∈ T when x /∈ B. �
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In particular, we can use the last result to extend Lemma A1.5 to suitable
functional representations. To be precise, suppose that the distribution L(η)
is a mixture of measures belonging to a class of the form

M = {L(g(ξ, f(ζ))); f ∈ C},

defined in terms of a measurable function g and some random elements ξ and
ζ on suitable spaces. As before, we may then conclude that

η = g(ξ̃, F (τ, ζ̃)) a.s.,

for a fixed, product-measurable function F and some random elements ξ̃, ζ̃,
and τ such that τ ⊥⊥ (ξ̃, ζ̃) d= (ξ, ζ). Applications of this type will often be
made in the sequel, without further comments.

9.3 Symmetries on a Square

Recall that a random measure ξ on [0, 1]d or RRd
+ is said to be separately

or jointly exchangeable if, for any regular cubic grid (Ik1,...,kd
) in RRd

+, the
associated array

Xk1,...,kd
= ξIk1,...,kd

, k1, . . . , kd ∈ NN,

is separately or jointly exchangeable, respectively, in the sense of Chapter
7. In the separately exchangeable case, it is equivalent by Proposition 9.1
to require ξ ◦ (f1 ⊗ · · · ⊗ fd)−1 d= ξ for any λ-preserving transformations
f1, . . . , fd on RR+. To define joint exchangeability, we may instead impose
the weaker condition ξ ◦ (f⊗d)−1 d= ξ, in terms of a common, λ-preserving
transformation f on RR+. The definition of contractable random measures
is similar. Separate (but not joint) exchangeability can also be defined for
random measures on RR+ × [0, 1].

In this section, we characterize the classes of separately or jointly ex-
changeable random measures on [0, 1]2, through explicit representations in-
volving U-sequences. Similar, though more complicated, representations for
exchangeable random measures on RR+ × [0, 1] and RR2

+ will be derived in
subsequent sections.

Theorem 9.11 (separate exchangeability on a square) A random measure
ξ on [0, 1]2 is separately exchangeable iff a.s.

ξ =
∑

i,j
αij δτi,τ ′

j
+
∑

i
βi(δτi

⊗ λ) +
∑

j
β′

j(λ ⊗ δτ ′
j
) + γλ2,

for some independent U-sequences τ1, τ2, . . . and τ ′
1, τ

′
2, . . . and an independent

set of random variables αij, βi, β
′
j , γ ≥ 0, i, j ∈ NN. The latter can then be

chosen to be non-random iff ξ is extreme.
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To state the corresponding result in the jointly exchangeable case, let λD

denote Lebesgue measure along the main diagonal D = {(s, t)∈ [0, 1]2; s= t},
normalized to have total mass one.

Theorem 9.12 (joint exchangeability on a square) A random measure ξ on
[0, 1]2 is jointly exchangeable iff a.s.

ξ =
∑

i,j
αij δτi,τj

+
∑

j

(
βj(δτj

⊗ λ) + β′
j(λ ⊗ δτj

)
)

+ γλ2 + ϑλD,

for a U-sequence τ1, τ2, . . . and an independent set of random variables αij,
βi, β

′
j , γ, ϑ ≥ 0, i, j ∈ NN. The latter can then be chosen to be non-random iff

ξ is extreme.

Throughout the subsequent proofs, we shall often write A · µ for the re-
striction of a measure µ to the measurable set A.

Proof of Theorem 9.11: Any random measure of the stated form is clearly
separately exchangeable. To prove that, conversely, every separately ex-
changeable random measure ξ on [0, 1]2 has the stated representation, it is
enough, e.g. by Theorem A1.4 and Lemma A1.5, to assume that ξ is ergodic,
and to prove that ξ has then the required representation with non-random
coefficients. Then introduce the random sets

M1 = {s ∈ [0, 1]; ξ({s} × [0, 1]) > 0},
M2 = {t ∈ [0, 1]; ξ([0, 1] × {t}) > 0},

and conclude from Lemma A1.1 and Theorem 1.25 that, a.s.,

(Mc
1 × [0, 1]) · ξ = λ ⊗ η2, ([0, 1] × Mc

2) · ξ = η1 ⊗ λ, (9)

for some exchangeable random measures η1 and η2 on [0, 1]. In particular,
we have a.s.

(Mc
1 × Mc

2) · ξ = (η1M
c
1) λ2 = (η2M

c
2) λ2,

where c = η1M
c
1 = η2M

c
2 is a.s. non-random since ξ is ergodic. By the

invariance of the measure cλ2, we note that ξ−cλ2 is again separately ergodic
exchangeable. Thus, we may henceforth assume that ξ(Mc

1 × Mc
2) = 0.

In that case, (9) shows that ξ has an a.s. representation

ξ =
∑

i,j
αijδσi,σ′

j
+
∑

i
βi(δσi

⊗ λ) +
∑

j
β′

j(λ ⊗ δσ′
j
), (10)

in terms of some ξ-measurable random variables αij, βj, β
′
j ≥ 0 and σi, σ

′
j ∈

[0, 1], i, j ∈ NN, where the latter are a.s. distinct. We may enumerate those
variables such that the sequences

ri = ξ({σi} × [0, 1]) = βi +
∑

jαij , i ∈ NN,

r′
j = ξ([0, 1] × {σ′

j}) = β′
j +

∑
iαij , j ∈ NN,
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become non-increasing, in which case the ri and rj will be invariant and
hence a.s. non-random, due to the ergodicity of ξ. Then so are the quantities

i0 = sup{i ∈ NN; ri > 0}, j0 = sup{j ∈ NN; r′
j > 0}.

For definiteness, we may further assume that the σi are increasing for fixed
ri > 0, and similarly for the σ′

j when r′
j > 0 is fixed.

Independently of ξ, we next introduce some i.i.d. U(0, 1) random variables
ϑ1, ϑ2, . . . and ϑ′

1, ϑ
′
2, . . . , and consider on [0, 1]4 the random measure

ξ̂ =
∑

i,j
αijδσi,ϑi,σ′

j ,ϑ′
j
+
∑

i
βi(δσi,ϑi

⊗ λ2) +
∑

j
β′

j(λ
2 ⊗ δσ′

j ,ϑ′
j
), (11)

with projection ξ onto the first and third coordinates. From Lemma 9.4
we see that ξ̂ remains separately exchangeable under transformations in the
corresponding variables. Decomposing the distribution of ξ̂ into ergodic mea-
sures Q, we note that, due to the ergodicity of ξ, the projection ξ has the
same distribution under each Q, as originally under L(ξ̂). Invoking the trans-
fer theorem, we may then reduce to the case where the measure ξ̂ in (11) is
ergodic, separately exchangeable. Though in the ergodic case the variables
ϑi and ϑ′

j may no longer be i.i.d. U(0, 1), they remain a.s. distinct.
Let us now change the order of enumeration, so that the quantities ri and

r′
j remain non-increasing, but the marks ϑi rather than the times σi become

increasing for fixed ri > 0, and similarly for the ϑ′
j when r′

j > 0 is fixed. This
leads to a possibly different representation of ξ̂, which we may write as

ξ̂ =
∑

i,j
aijδτi,ui,τ ′

j ,u′
j
+
∑

i
bi(δτi,ui

⊗ λ2) +
∑

j
b′
j(λ

2 ⊗ δτ ′
j ,u′

j
). (12)

The purpose of this random permutation of indices was to ensure that
the new coefficients aij , bi, and b′

j will be invariant, hence a.s. non-random.
To verify the invariance, note that the ui and u′

j are trivially invariant for
i ≤ i0 and j ≤ j0. Since clearly

aij = ξ̂([0, 1] × {ui} × [0, 1] × {u′
j}), i ≤ i0, j ≤ j0,

we note that even the aij are invariant functions of ξ̂. To deal with the bi and
b′
j , we may first subtract the first sum in (12), which is obviously invariant.

The remaining expression ξ̂′ satisfies

bi = ξ̂′([0, 1] × {ui} × [0, 1]2), i ≤ i0,

b′
j = ξ̂′([0, 1]3 × {u′

j}), j ≤ j0,

which shows that even bi and b′
j are invariant functions of ξ̂.

Now introduce on [0, 1] × NN the marked point processes

η =
∑

i≤i0
δτi,i, η′ =

∑
j≤j0

δτ ′
j ,j ,
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and conclude from Lemma A1.1 that the pair (η, η′) is ergodic, separately
exchangeable in the sense of symmetries on product spaces, where the under-
lying symmetries may be defined in terms of measure-preserving transforma-
tions on [0, 1]. Next we see from Lemma 9.5 that η and η′ are independent
and ergodic, exchangeable. Finally, Lemma 1.24 shows that η and η′ are
uniform randomizations of their projections onto NN, which means that the
sequences {τi} and {τ ′

j} are i.i.d. U(0, 1). Projecting the representation (12)
onto the sub-space spanned by the first and third coordinates, we obtain the
required representation of ξ, with coefficients that are all non-random.

It remains to show that ξ is ergodic whenever it admits a representation
with non-random coefficients aij , bi, b′

j , and c. By Lemma 9.7 it is then
enough to construct a fixed, measurable function F : M([0, 1]2) × [0, 1] →
M([0, 1]2) such that, for any U(0, 1) random variable ϑ⊥⊥ ξ, the random
measure ξ̃ = F (ξ, ϑ) satisfies ξ

d= ξ̃⊥⊥ ξ. To simplify the writing, we may
then omit the term cλ2, which is clearly ξ-measurable and non-random. Next
we may return to the representation of ξ in (10), in terms of the previously
chosen, ξ-measurable random variables αij , βi, β′

j , σi, and σ′
j . Comparing

this with the representation

ξ =
∑

i,j
aijδτi,τ ′

j
+
∑

i
bi(δτi

⊗ λ) +
∑

j
b′
j(λ ⊗ δτ ′

j
),

we note that the variables σi, σ′
j , τi, and τ ′

j are related by

τi = σ ◦ πi, τ ′
j = σ′ ◦ π′

j , (13)

for some random permutations (πi) and (π′
j) of the indices i ≤ i0 and j ≤ j0,

respectively.
Now introduce some i.i.d. U(0, 1) random variables σ̃1, σ̃2, . . . and σ̃′

1, σ̃
′
2,

. . . , independent of ξ and all the variables τi and τ ′
j , and define

ξ̃ =
∑

i,j
αijδσ̃i,σ̃′

j
+
∑

i
βi(δσ̃i

⊗ λ) +
∑

j
β′

j(λ ⊗ δσ̃′
j
).

Comparing with (13), we see that the variables

τ̃i = σ̃ ◦ πi, τ̃ ′
j = σ̃′ ◦ π′

j

satisfy
ξ̃ =

∑
i,j

aijδτ̃i,τ̃ ′
j
+
∑

i
bi(δτ̃i

⊗ λ) +
∑

j
b′
j(λ ⊗ δτ̃ ′

j
).

Since the permutations (πi) and (π′
j) are independent of the sequences (σ̃i)

and (σ̃′
j), the variables τ̃i and τ̃ ′

j are again i.i.d. U(0, 1) and independent of
ξ. Hence, ξ̃ is indeed independent of ξ with the same distribution. �

Proof of Theorem 9.12: Consider any ergodic, jointly exchangeable ran-
dom measure ξ on [0, 1]2. From Lemma A1.1 we see that the random measure
ξD = (D · ξ)(· × [0, 1]) is ergodic, exchangeable on [0, 1]. Hence, by Theorem
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1.25, the diffuse component of ξD equals cDλ a.s. for some constant cD ≥ 0,
which means that D · ξ has a.s. the diffuse component cDλD , as required.
Subtracting this term from ξ, if necessary, we may henceforth assume that
cD = 0.

Now introduce the random set

M = {s ∈ [0, 1]; ξ({s} × [0, 1]) ∨ ξ([0, 1] × {s}) > 0},

and note that

(D · ξ)(Mc × [0, 1]) = (D · ξ)([0, 1] × Mc) = 0

since D · ξ is purely atomic. Using the fact that ξ is separately exchangeable
on U×V for any disjoint, finite, dyadic interval unions U and V , we see from
Theorem 9.11 that

(Mc × [0, 1]) · ξ = λ ⊗ η2, ([0, 1] × Mc) · ξ = η1 ⊗ λ,

for some random measures η1 and η2 on [0, 1]. In particular,

(Mc × Mc) · ξ = (η1M
c)λ2 = (η2M

c)λ2,

where c = η1M
c = η2M

c is a.s. non-random. Subtracting the term cλ2 from
ξ, we may henceforth assume that even c = 0.

The measure ξ may now be written in the form (10), except that it is
now preferable to enumerate the variables σi and σ′

j as a single sequence
σ1, σ2, . . . , arranged such that the sums

rj = βj + β′
j +

∑
i
(αij + αji), j ∈ NN,

become non-increasing and the σj increasing for fixed rj > 0. The se-
quence (rj) will again be a.s. non-random, and hence so is the number
j0 = sup{j ∈ NN; rj > 0}. Now introduce an independent sequence of i.i.d.
U(0, 1) random variables ϑ1, ϑ2, . . . , and define ξ̂ as in (11), though with
σ′

j = σj and ϑ′
j = ϑj . Re-numbering the terms, such that the marks ϑj

rather than the times σj become increasing for fixed rj > 0, we obtain a
representation as in (12), though with τ ′

j = τj and u′
j = uj , and we may

show as before that both the coefficients aij , bi, b′
j and the marks uj are

a.s. non-random. By Lemma A1.1, the marked point process η =
∑

j δτj ,j is
exchangeable in the first coordinate, and so by Lemma 1.24 the variables τj

are i.i.d. U(0, 1).
This proves the desired representation in the ergodic case. The remaining

parts of the argument follow closely the preceding proof, and may therefore
be omitted. �
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9.4 Symmetry on a Strip

For random measures on the infinite strip RR+ × [0, 1], only the notion of
separate exchangeability makes sense. Our aim is to characterize random
measures with this property through a general representation formula in-
volving U-arrays and Poisson processes.

Theorem 9.13 (separate exchangeability on a strip) A random measure ξ
on RR+ × [0, 1] is separately exchangeable iff a.s.

ξ =
∑

i,j
fj(α, ϑi) δσi,τj

+
∑

i,k
gk(α, ϑi) δσi,ρik

+
∑

i
h(α, ϑi)(δσi

⊗ λ) +
∑

j
βj(λ ⊗ δτj

) + γλ2, (14)

for some measurable functions fj, gk, h ≥ 0 on RR2
+, a unit rate Poisson pro-

cess {(σi, ϑi)} on RR2
+, some independent U-arrays (τj) and (ρik), and an

independent set of random variables α, βj, γ ≥ 0. The latter can then be
chosen to be non-random iff ξ is extreme.

For the proof we need some consequences of the one-dimensional repre-
sentation in Proposition 1.21. Recall that |A| denotes the cardinality of the
set A.

Lemma 9.14 (supporting lines) Let the random measure ξ on RR+ × [0, 1]
be exchangeable along RR+ and directed by (α, ν), and define

ψt = α{t} +
∫

(1 − e−µ{t}) ν(dµ), t ∈ [0, 1].

Then the set M = {t ∈ [0, 1]; ψt > 0} is a.s. covered by some ξ-measurable
random variables τ1, τ2, . . . in [0, 1] satisfying ψτn ↓ 0 a.s., and we have a.s.

| supp ξ(· × {t})| ≤ 1, t /∈ M. (15)

Proof: Assuming first that the pair (α, ν) is non-random and writing
ξr = ξ([0, r] × ·), we note that

ψt = − log Ee−ξ1{t}, t ∈ [0, 1]. (16)

Since for any distinct numbers t1, t2, . . . ∈ [0, 1],∑
n
ξ1{tn} ≤ ξ1[0, 1] < ∞ a.s.,

we have ξ1{tn} → 0 a.s., and so by (16) and dominated convergence we get
ψtn → 0. Hence, the set M = {ψt > 0} is countable and may be covered by
a sequence t1, t2, . . . such that ψtn ↓ 0.

In the general exchangeable case, we show that for fixed r > 0, the atoms
of the random measure ξr may be covered by some distinct, ξr-measurable
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random variables σr
1, σ

r
2, . . . . Then for each n, divide [0, 1) into dyadic in-

tervals Ink = 2−n[k − 1, k), and let γn
1 , γn

2 , . . . denote the right endpoints of
the intervals Ink with ξrInk ≥ ε. When fewer than k such intervals exist,
we put γn

k = 1. As n → ∞, the γn
k converge toward the sites γ1, γ2, . . . of

the atoms ≥ ε, with the same convention when there are fewer than k such
atoms. Combining the lists for different ε > 0, we obtain a cover of all atoms
of ξr by a single sequence σr

k. The required measurability is clear by con-
struction, and we can easily re-arrange the list, so as to make the σr

k distinct.
Finally, we may combine the lists for different r > 0 into a single sequence of
ξ-measurable random variables σ1, σ2, . . . , covering the atoms of ξr for all r.

Next we show that the process ψ is product measurable. Then let In(t)
denote the n-dyadic interval Inj containing t, and note that the step process

ψn
t = αIn(t) +

∫
(1 − e−µIn(t)) ν(dµ), t ∈ [0, 1),

is trivially product measurable for each n. Since ψn
t → ψt by dominated

convergence as n → ∞, the measurability carries over to ψ. In particular,
the random variables βk = ψσk

are ξ-measurable, and we may order the
σk according to the associated β-values to obtain a ξ-measurable sequence
τ1, τ2, . . . such that ψτj

↓ 0.
By a similar argument based on the approximation ψn

t ↓ ψt, we can also
construct directly a sequence of (α, ν)-measurable random variables τ ′

1, τ
′
2, . . .

covering M . Using the disintegration theorem, we get as r → ∞ for fixed j

E[exp(−ξr{τ ′
j})|α, ν] = exp(−rψτ ′

j
) → 0 a.s. on {ψτ ′

j
> 0},

which implies ξr{τ ′
j} → ∞, a.s. on {ψτ ′

j
> 0}. This shows that, outside a

fixed P -null set,
ξ(RR+ × {t}) = ∞, t ∈ M.

In particular, M was already covered a.s. by the variables σj , and hence also
by the original sequence τ1, τ2, . . . .

To prove the last assertion, fix any k ∈ NN and s > r > 0 in QQ, let
a ∈ [0, 1] with a /∈ M a.s., and define

σ = σr
k + (a− σr

k) 1M (σr
k).

Noting that σ is (α, ν, ξr)-measurable and (ξs − ξr)⊥⊥(α,ν) ξr, we see from the
disintegration theorem that

E ξr{σ} (ξs − ξr){σ} = E ξr{σ}E[(ξs − ξr){σ}|α, ν, ξr]
= E ξr{σ} (E[ξs−r{t}|α, ν])t=σ = 0.

Since k was arbitrary and ξr{t} = 0 when t /∈ {σr
1, σ

r
2, . . .}, we obtain

ξr{t} (ξs − ξr){t} = 0, t /∈ M, (17)



418 Probabilistic Symmetries and Invariance Principles

outside a fixed P -null set, which can also be chosen to be independent of r
and s. If | supp ξ(· × {t})| > 1 for some t /∈ M , there exist some rational
numbers r < s such that the support of ξ(· × {t}) intersects both [0, r) and
(r, s). This contradicts (17), and (15) follows. �

We are now ready to prove the main result of this section.

Proof of Theorem 9.13: A random measure with the stated representa-
tion is clearly separately exchangeable. To prove the converse assertion, we
consider first the case where ξ is an ergodic, separately exchangeable random
measure on RR+ × [0, 1]. Then introduce the countable random sets

M1 = {s ≥ 0; ξ({s} × [0, 1]) > 0},
M2 = {t ∈ [0, 1]; ξ(RR+ × {t}) > 0},

and note as before that a.s.

(Mc
1 × [0, 1]) · ξ = λ ⊗ η2, (RR+ × Mc

2) · ξ = η1 ⊗ λ, (18)

for some random measures η1 on RR+ and η2 on [0, 1]. In particular, we get
(Mc

1 × Mc
2) · ξ = cλ2 a.s., where c = η2M

c
2 is invariant and hence a.s. non-

random. Subtracting the term cλ2 from ξ, we may henceforth assume that
ξ(Mc

1 × Mc
2) = 0 a.s.

Now define the process ψ on [0, 1] as in Lemma 9.14. The same result
yields the existence of some ξ-measurable random variables τ1, τ2, . . . in [0, 1]
such that rj = ψτj

↓ 0 a.s. Since the directing pair (α, ν) in Lemma 9.14 is
a.s. determined by ξ, via the law of large numbers, it is clear that the rj are
invariant functions of ξ, and so by ergodicity they are a.s. non-random. The
same thing is then true for the number j0 = sup{j ∈ NN; rj > 0} of non-zero
elements rj . Until further notice, we assume the τj to be increasing for fixed
rj > 0. Define

M = {t ∈ [0, 1]; ψt > 0} = {t ∈ [0, 1]; ξ(RR+ × {t}) = ∞}.

Next we choose a measurable enumeration σ1, σ2, . . . of M1, which is pos-
sible since the cardinality |M1| is invariant and hence a.s. constant. For every
index i, we may finally enumerate the atom sites of ξ({σi}× ·) outside M as
ρi1, ρi2, . . . , where we may take ρik = 0 if there are fewer than k such atoms.
Then from (18) we see that ξ has an a.s. representation of the form

ξ =
∑

i,j
αijδσi,τj

+
∑

i,k
γikδσi,ρik

+
∑

i
β′

i(δσi
⊗ λ) +

∑
j
βj(λ ⊗ δτj

), (19)

where we may take the γik to be non-increasing in k for fixed i.
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We now introduce an independent sequence of i.i.d. U(0, 1) random vari-
ables κ1, κ2, . . . , and consider on RR+ × [0, 1]2 the random measure

ξ̂ =
∑

i,j
αijδσi,τj ,κj

+
∑

i,k
γik(δσi,ρik

⊗ λ)

+
∑

i
β′

i(δσi
⊗ λ2) +

∑
j
βj(λ ⊗ δτj ,κj

)

with projection ξ on RR+ × [0, 1]. Note that ξ̂ remains separately exchange-
able in the first two coordinates by Lemma 9.4. Arguing as in the proof of
Theorem 9.11, we may reduce to the case where ξ̂ is ergodic under the same
transformations, and then re-order the variables τj such that the κj become
increasing for fixed rj > 0. The κj and βj will then be invariant and hence
a.s. non-random.

To every variable σi we now attach a mark ϑi, composed of all coefficients
in (19) associated with the time σi. More precisely, we define

ϑi = (Σi, β
′
i, {αij}j , {γik}k), i ≥ 1,

where the redundant marks

Σi = ξ({σi} × [0, 1]) = β′
i +

∑
j
αij +

∑
k
γik, i ≥ 1,

have been added to ensure that the set of pairs (σi, ϑi) will be locally finite in
the infinite product space RR+ × K with K = (0,∞) × RR∞

+ . The coefficients
αij , γik, and β′

i may be recovered from ϑi through suitable projections fj , gk,
and h, respectively, so that

αij = fj(ϑi), γik = gk(ϑi), β′
i = h(ϑi). (20)

Inserting these expressions into (19) yields the desired representation formula
(14), except for the expected lack of any global parameter α.

To identify the joint distribution of the various variables in (14), we in-
troduce the marked point processes

η =
∑

i
δσi,ϑi

, ζ =
∑

j
δτj ,j ,

defined on RR+×K and [0, 1]×NN, respectively. Using the separate exchange-
ability and ergodicity of ξ̂, we see from Lemma A1.1 that the pair (η, ζ) has
the same properties, but now in the sense of symmetries on product spaces.
The processes η and ζ are then independent by Lemma 9.5, and the variables
τ1, τ2, . . . are i.i.d. U(0, 1) by Lemma 1.24, whereas ζ is Poisson by Lemma
1.20 with an intensity measure of the form λ ⊗ ν.

Here ν is a σ-finite measure on the Borel space K, and so by FMP 3.22
it can be generated as the image of Lebesgue measure λ on RR+ under some
measurable mapping T : RR+ → RR∞

+ . Letting η′ be a Poisson process on RR2
+

with intensity measure λ2, we see from FMP 12.3 that η′ ◦ (I ⊗ T )−1 d= η
on RR+ × K, where I denotes the identity mapping on RR+. Hence, by FMP



420 Probabilistic Symmetries and Invariance Principles

6.10, we may assume that η = η′ ◦ (I ⊗T )−1 a.s., where η′ is Poisson λ2 with
η′ ⊥⊥η ξ̂. Writing η′ =

∑
i δσi,ϑ′

i
, we get from (20)

αij = fj ◦ T (ϑ′
i), γik = gk ◦ T (ϑ′

i), β′
i = h ◦ T (ϑ′

i).

Here we may clearly assume that {(σi, ϑ
′
i)}⊥⊥η′ ξ̂. For convenience, we may

henceforth drop the primes and take the process η =
∑

i δσi,ϑi
to be Poisson

on RR2
+ with intensity measure λ2. This allows us to replace the awkward

compositions fj ◦ T , gk ◦ T , and h ◦ T by their simplified versions fj , gk, and
h, respectively.

The induced point process η̃ = η ◦ (I ⊗ T )−1, our previous η, is clearly
invariant under measure-preserving transformations of ξ̂ along [0, 1] of the
special permutation type, which shows that ξ̂ is conditionally exchangeable
given η̃. By conditional independence, this remains true under conditioning
on the new process η, and even on the associated sequence of pairs (σi, ϑi).
By Lemma A1.1 the conditional exchangeability carries over to the pair of
marked point processes

ζ =
∑

j
δτj ,j , ζ ′ =

∑
i,k

δρik,γik,σi
.

Recalling that the times τj and ρik are a.s. distinct by Lemma 9.14, we see
from Lemma 1.24 that the pair (ζ, ζ ′) is conditionally a uniform randomiza-
tion of its projection onto the associated mark space. In other words, the
conditional distribution of (ζ, ζ ′) is the same as if the τj and ρik were replaced
by some independent i.i.d. U(0, 1) random variables. The same thing is then
true for the unconditional distribution of ξ̂, and by FMP 6.10 we may assume
that the original variables τj and ρik have the stated distribution.

This proves the representation (14) in the ergodic case, for some non-
random parameters β1, β2, . . . and γ, with no need for any additional variable
α. To extend the result to the non-ergodic case, we may use Lemma 9.10 to
write the functions fj , gk, and h in parametric form as

fj(t) = Φ(αj, t), gk(t) = Φ(α′
k, t), h(t) = Φ(α0, t),

for a universal, measurable function Φ and some constants αj , α′
k, and α0 in

[0, 1]. In view of Lemmas A1.4 and A1.5, it is now sufficient to replace the
parameters αj , α′

k, α0, βj , and γ by suitable random quantities, independent
of all remaining variables. Invoking FMP 3.22 and 6.10, we may finally
express the quantities αj , α′

k, and α0 as measurable functions of a single
random variable α, which yields the desired representation.

It remains to show that ξ is ergodic, whenever it admits a representation
(14) with non-random α, γ, and β1, β2, . . . . By Lemma 9.7 it is then enough
to construct a measurable function F , independent of all functions fj , gk,
h and parameters α, βj , and γ, such that the random measure ξ̃ = F (ξ, ϑ)
satisfies ξ

d= ξ̃⊥⊥ ξ, where ϑ is an independent U(0, 1) random variable. We
proceed in two steps.
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First we note that, for fixed α, βj , γ and conditionally on the variables
τ1, τ2, . . . in (14), the random measure ξ has stationary, independent incre-
ments along RR+. Hence, by the law of large numbers, there exists a kernel
ν, independent of all parameters and functions in (14), such that

P [ξ ∈ ·| τ1, τ2, . . .] = ν(ξ; ·) a.s.

Lemma 9.9 then ensures the existence of a measurable function G and some
random variables σ̃i, ϑ̃i, ρ̃ik, i, k ∈ NN, independent of ξ and τ1, τ2, . . . and with
the same joint distribution as σi, ϑi, ρik, i, k ∈ NN, such that ξ′ = G(ξ, ϑ) has
the same representation as ξ, apart from a change from (σi, ϑi) to (σ̃i, ϑ̃i)
and from ρik to ρ̃ik.

For the second step in our construction, we use a method already em-
ployed in the proof of Theorem 9.11. Omitting the trivial term γλ2, we
may represent ξ′ in the form (19), except that the original random variables
τ1, τ2, . . . are now denoted by τ ′

1, τ
′
2, . . . , so that τ = τ ′ ◦ π for some ran-

dom permutation π. Next we introduce some i.i.d. U(0, 1) random variables
τ̃ ′
1, τ̃

′
2, . . . , independent of all previously considered random elements, and use

the same permutation π to define τ̃ = τ̃ ′◦π. Replacing the variables τ ′
1, τ

′
2, . . .

by τ̃ ′
1, τ̃

′
2, . . . in the representation (19) of ξ′, we obtain a new random measure

ξ̃ on RR+ × [0, 1]. It is clearly equivalent to replace τ1, τ2, . . . by τ̃1, τ̃2, . . . in
the representation (14) of ξ′.

Since τ̃ ′
1, τ̃

′
2, . . . are i.i.d. U(0, 1) and independent of ξ, π, and all the σ̃i,

ϑ̃i, and ρ̃ik, we note that τ̃1, τ̃2, . . . have the same properties. Hence, the
variables τ̃j , σ̃i, ϑ̃i, and ρ̃ik are i.i.d. U(0, 1) and independent of ξ, which
shows that ξ̃ is independent of ξ with the same distribution. Note that ξ̃
was measurably obtained from ξ, ϑ, and the τ̃ ′

j only, independently of all
functions and parameters occurring in (14). Using a single randomization
variable ϑ̃ to construct ϑ and all the τ̃ ′

j , we may write ξ̃ in the form F (ξ, ϑ̃)
for a suitable choice of measurable function F . �

It remains to examine when the expression for ξ in Theorem 9.13 con-
verges, in the sense that the right-hand side of (14) represents an a.s. locally
finite random measure on RR+ × [0, 1]. It is then enough to consider the ex-
treme case, where α, γ, and the βj are all constants. In that case, we may
omit α from our notation and write λf = λf(α, ·) for any function of the
form f(α, ·).

Proposition 9.15 (local summability) For fixed α, γ, and βj , the random
measure ξ in Theorem 9.13 is a.s. locally finite iff

λ
(
1 ∧

(∑
j
(fj + gj) + h

))
+
∑

j
βj < ∞.

Proof: By exchangeability it is enough to consider the contribution of ξ
to the square [0, 1]2. Omitting α from our notation, we get
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ξ[0, 1]2 =
∑

i,j
fj(ϑi)1{σi ≤ 1} +

∑
i,k

gk(ϑi)1{σi ≤ 1}
+
∑

i
h(ϑi)1{σi ≤ 1} +

∑
j
βj + γ

= η
(∑

j
(fj + gj) + h

)
+
∑

j
βj + γ,

where η =
∑

iδϑi
1{σi ≤ 1}. Since η is a unit rate Poisson process on RR+, the

stated criterion now follows from FMP 12.13 or Theorem A3.5. �

9.5 Technical Preparation

Before proceeding to the representation theorems on a quadrant, we need
to prove some preliminary results that follow from previously established
theorems. Let us then put

D1 = {(s, t) ∈ [0, 1]2; s = t}, W1 = {(s, t) ∈ [0, 1]2; s ≤ t}.

For random measures ξ on [0, 1]2 and s, t ∈ [0, 1], we define

ξ̃(ds dt) = ξ(dt ds), ξs(dt) = ξ({s} × dt), ξ̃t(ds) = ξ(ds × {t}).

Let us also write

A1 = {rδt; r ≥ 0, t ∈ [0, 1]} = {µ ∈ M([0, 1]); | supp µ| ≤ 1}.

We begin with some criteria for complete exchangeability, defined as ex-
changeability in the one-dimensional sense with respect to the measure λ2.

Lemma 9.16 (complete exchangeability) For any random measure ξ on
[0, 1]2, the following three conditions are equivalent:

(i) ξ is [ergodic] completely exchangeable;
(ii) ξ is [ergodic] separately exchangeable, and ξs, ξ̃s ∈ A1 for all s ∈ [0, 1]

a.s.;
(iii) ξ is [ergodic] jointly exchangeable, ξD1 = 0 a.s., and ξs + ξ̃s ∈ A1 and

ξs ∧ ξ̃s = 0 for all s ∈ [0, 1] a.s.

Furthermore, the next two conditions are related by (iv) ⇒ (v):

(iv) ξ is jointly exchangeable, ξD1 = 0 a.s., and ξs+ξ̃s ∈ A1 for all s ∈ [0, 1]
a.s.;

(v) (ξ, ξ̃) is completely exchangeable on W1, and ξ
d= ξ̃.

Proof: The implications (i) ⇒ (ii) ⇒ (iii) being obvious, it suffices to
show that (iii) ⇒ (i) and (iv) ⇒ (v). Since the two proofs are very similar,
we consider only the latter. Thus, assume that ξ satisfies (iv). Since the
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conditions in (v) are preserved by convex combinations, we may add the
hypothesis that ξ be ergodic. Then Theorem 9.12 yields the representation

ξ =
∑

i,j
aij δτi,τj

+ cλ2 a.s.,

for some constants aij ≥ 0 and c ≥ 0 and some i.i.d. U(0, 1) random variables
τ1, τ2, . . . . The condition ξD1 = 0 a.s. implies aii = 0 for all i, and since
a.s. ξs + ξ̃s ∈ A1 for all s, the array (aij + aji) has at most one positive
entry in every row or column. Hence, the variables τj come in disjoint pairs
(σk, σ

′
k) = (τik , τjk

), so that

ξ =
∑

k

(
aik,jk

δσk,σ′
k
+ aik,jk

δσ′
k
,σk

)
+ cλ2 a.s. (21)

By independence it is enough to show that each term in (21) satisfies the
conditions in (v).

The case ξ = cλ2 being trivial, it remains to take

ξ = a δσ,τ + b δτ,σ

for some constants a, b ≥ 0 and some independent U(0, 1) variables σ and τ .
Then

(ξ, ξ̃) = (a, b) δσ,τ + (b, a) δτ,σ,

and the symmetry ξ
d= ξ̃ follows from the relation (σ, τ) d= (τ, σ). Next we

note that on W1

(ξ, ξ̃) =
{

(a, b) δσ,τ when σ < τ,
(b, a) δτ,σ when τ < σ.

The asserted complete exchangeability now follows from the fact that

P [(σ, τ) ∈ ·|σ < τ ] = P [(τ, σ) ∈ ·| τ < σ] = 2λ2 on W. �

Since each of the following results has versions for both the separately
and the jointly exchangeable case, it is convenient first to discuss the for-
mer case in detail, and then indicate how the argument may be modified to
cover even the latter case. Our first aim is to characterize the component
of ξ with independent increments, using the characterizations of completely
exchangeable random measures on [0, 1]2 in Lemma 9.16. Then define

D = {(s, t) ∈ RR2
+; s = t}, W = {(s, t) ∈ RR2

+; s ≤ t}.

The relevant representations of ξ are now of the form

ξ =
∑

j
f(αj) δσj ,τj

+ cλ2, (22)

ξ =
∑

j

(
f(αj) δσj ,τj

+ g(αj) δτj ,σj

)
+ cλ2. (23)
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Lemma 9.17 (independent increments) For any random measure ξ on RR2
+,

the following three conditions are equivalent:

(i) ξ is ergodic, separately exchangeable, and (ξs + ξ̃s)RR+ < ∞ for all s ≥ 0
a.s.;

(ii) ξ has stationary, independent increments;
(iii) ξ has an a.s. representation (22), for some measurable function f ≥ 0

on RR+, a unit rate Poisson process {(σi, τi, αi)} on RR3
+, and a constant

c ≥ 0.

So are the next three conditions:

(iv) ξ is ergodic, jointly exchangeable, ξD = 0 a.s., and (ξs + ξ̃s)RR+ < ∞
for all s ≥ 0 a.s.;

(v) (ξ, ξ̃) has stationary, independent increments on W , and ξ̃
d= ξ;

(vi) ξ has an a.s. representation (23), for some measurable functions f, g ≥
0 on RR+, a unit rate Poisson process {(σi, τi, αi)} on RR3

+, and a con-
stant c ≥ 0.

Proof: First assume (i). Then Lemma 9.14 yields a.s. ξs, ξ̃s ∈ A1 for
all s ≥ 0, and so ξ is completely exchangeable by Lemma 9.16. Since, con-
versely, every completely exchangeable random measure is trivially separately
exchangeable, ξ remains extreme in the sense of complete exchangeability, by
the extremality in (i). Hence, (ii) follows from the obvious two-dimensional
extension of Proposition 1.21.

Using the same result or FMP 15.4, we infer from (ii) that ξ has a repre-
sentation

ξ = cλ2 +
∑

j
βj δσj ,τj

a.s.,

for some constant c ≥ 0 and a Poisson process {(σj, τj , βj)} on RR3
+ with

intensity measure of the form λ2 ⊗ ν. Choosing f ≥ 0 to be a measurable
function on RR+ such that λ ◦ f−1 = ν on (0,∞), we see from FMP 12.3 that
ξ has the same distribution as the process in (iii), and the corresponding a.s.
representation follows by FMP 6.10.

Next (iii) implies that ξ is separately exchangeable with (ξs + ξ̃s)RR+ < ∞
for all s ≥ 0 a.s. To show that ξ is also ergodic in the sense of separate
exchangeability, let η be an invariant function of ξ, and note that η remains
invariant under measure-preserving transformations in one coordinate. Con-
sidering transformations of permutation type and using the Hewitt–Savage
zero-one law, combined with independence properties of the Poisson process,
we conclude that η is a.s. a constant. Thus, ξ is ergodic and (i) follows. This
proves that (i)–(iii) are equivalent.

Now assume instead condition (iv), and note that ξ + ξ̃ is again jointly
exchangeable by Lemma A1.1. In particular, it is separately exchangeable
on every set of the form (a, b) × (RR+ \ (a, b)) with a < b. By Lemma 9.14
it follows that, with probability one, the restriction of ξs + ξ̃s to RR+ \ (a, b)
belongs to A1 for every s ∈ (a, b). Since this holds simultaneously for all
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rational a < b and since ξD = 0 a.s. by hypothesis, we conclude that a.s.
ξs + ξ̃s ∈ A1 for all s ≥ 0. Hence, Lemma 9.16 shows that the pair (ξ, ξ̃) is
completely exchangeable on W with ξ

d= ξ̃. Then by Proposition 1.21 the
random measures ξ and ξ̃ have diffuse components γλ2 and γ̃λ2 on W for
some random variables γ and γ̃, and their atomic parts on W are given by a
Cox process on W × RR2

+ with directing random measure of the form λ2 ⊗ ν.
Here γ and γ̃ are clearly jointly invariant functions of ξ, and so is ν by the
law of large numbers. By the joint ergodicity of ξ it follows that γ, γ̃, and
ν are a.s. non-random, which means that (ξ, ξ̃) has stationary, independent
increments on W . This shows that (iv) implies (v).

Next assume (v), and note that the pair (ξ, ξ̃) has a representation on
W as before, in terms of some constants c, c̃ ≥ 0 and a measure ν. The
condition ξ

d= ξ̃ on RR2
+ yields (ξ, ξ̃) d= (ξ̃, ξ), which shows that c = c̃, whereas

ν is symmetric under reflection in the diagonal D. In particular, ξ has a.s.
the diffuse component cλ2, and we may henceforth assume that ξ is purely
atomic. Now choose a measurable function (f, g) : RR+ → RR2

+ such that
λ ◦ (f, g)−1 = ν/2 on RR2

+ \ {0}. Let η be a Poisson process on RR3
+ with

intensity λ3, write η̃(ds dt × ·) = η(dt ds × ·), and define a random measure
ξ′ on RR2

+ by

ξ′B =
∫

f(u) η(B × du) +
∫

g(u) η̃(B × du), B ∈ B(RR2
+). (24)

Letting I be the identity mapping on RR2
+ and putting

ζ = η ◦ (I ⊗ (f, g))−1, ζ̃ = η̃ ◦ (I ⊗ (f, g))−1,

we obtain

(ξ′, ξ̃′) =
∫

(f, g)(u) η(· × du) +
∫

(g, f)(u) η̃(· × du)

=
∫

(x, y) (ζ + ζ̃)(· × dxdy).

Since ζ and ζ̃ are independent Poisson processes on W × (RR2
+ \ {0}) with

intensity measure λ2 ⊗ ν/2, their sum is again Poisson on the same set with
intensity λ2 ⊗ ν. Hence, (ξ′, ξ̃′) d= (ξ, ξ̃) on W , which implies ξ′ d= ξ on RR2

+.
By FMP 6.10 we infer that even ξ can be represented as in (24), which is
equivalent to the representation in (vi).

Finally, assume (vi). Then the last two conditions in (iv) are obvious,
whereas the joint exchangeability of ξ follows from the corresponding prop-
erty of the underlying Poisson process η =

∑
j δσj ,τj ,αj

. To prove the ergod-
icity of ξ, we note that if µ = L(ξ) is a convex combination of some jointly
exchangeable distributions µ1 and µ2, then even the latter satisfy the last
two conditions in (iv). It is then enough to prove the extremality of µ within
the set of mixtures of type (vi) distributions. But this is clear from Lemma
9.7, since the parameters γ and ν, hence the entire distribution µ, can be
measurably recovered from ξ by the law of large numbers. Thus, (vi) implies
(iv), which shows that even (iv)–(vi) are equivalent. �
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Next we consider some conditional symmetry properties of separately or
jointly exchangeable random measures. For convenience, we may regard a
quadruple (ξ1, ξ2, ξ3, ξ4) of random measures on [0, 1]2 as a single RR4

+-valued
random measure ξ on the same space. The notions of separate or joint
exchangeability of ξ then refer to the coordinates in [0, 1]2. We begin with
the separately exchangeable case.

Lemma 9.18 (conditional, separate exchangeability) Consider a separately
exchangeable, RR4

+-valued random measure ξ = (ξ1, ξ2, ξ3, ξ4) on [0, 1]2, such
that a.s.

(i) ξ1, ξ2, ξ3, and ξ4 are mutually singular;
(ii) ξs ∈ A1 for every s ∈ [0, 1] with ξ1

s + ξ4
s �= 0, and similarly for ξ̃s when

ξ̃2
s + ξ̃4

s �= 0.

Then

(iii) ξ4 is separately exchangeable, conditionally on (ξ1, ξ2, ξ3);
(iv) ξ1 is exchangeable in the first coordinate, conditionally on (ξ2, ξ3), and

similarly for ξ̃2, given (ξ1, ξ3).

Proof: Since any a.s. property of ξ is a.s. shared by its extremal com-
ponents, and since the conditional properties in (iii) and (iv) are preserved
by convex combinations of the ξ-distributions, we may assume that ξ is er-
godic. Then ξ can be represented as in Theorem 9.11, though with non-
random coefficients in RR4

+. From (ii) we see that, if ξ4
τi
�= 0 for some i, then

ξτi
∈ A1, and so by (i) we have (ξ1, ξ2, ξ3)τi

= 0. Similarly, ξ̃4
τ ′
j
�= 0 implies

(ξ̃1, ξ̃2, ξ̃3)τ ′
j

= 0. Hence, (ξ1, ξ2, ξ3) and ξ4 are represented in terms of dis-
joint subsets of the variables τj and τ ′

j , and so (ξ1, ξ2, ξ3)⊥⊥ ξ4. This implies
P [ξ4 ∈ ·|ξ1, ξ2, ξ3] = P{ξ4 ∈ ·} a.s., and (iii) follows.

Next we see from (i) and (ii) that ξ1 and (ξ2, ξ3) are represented in terms
of disjoint sets of variables τi, and that ξ1

τi
�= 0 implies ξ1

τi
∈ A1. By suitable

re-labeling we obtain an a.s. representation

ξ1 =
∑

i
aiδτi,σi

+
∑

i
bi(λ ⊗ δσi

) + cλ2,

where the τi are i.i.d. U(0, 1) and independent of (ξ2, ξ3) and all the σj . Since
the joint distribution of τ1, τ2, . . . is invariant under measure-preserving trans-
formations of [0, 1], it follows that ξ1 is conditionally exchangeable in the first
coordinate, given (ξ2, ξ3) and σ1, σ2, . . . , which implies the first part of (iv).
A similar argument proves the second part. �

We turn to the corresponding result for jointly exchangeable random mea-
sures. Here we need the further notation

ξ̄ = ξ + ξ̃; ξ̄s = ξs + ξ̃s, s ∈ [0, 1].
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Lemma 9.19 (conditional, joint exchangeability) Consider a jointly ex-
changeable, RR4

+-valued random measure ξ = (ξ1, ξ2, ξ3, ξ4) on [0, 1]2, such
that a.s.

(i) ξ1 + ξ̃2, ξ̃1 + ξ2, ξ̄3, and ξ̄4 are mutually singular;

(ii) ξ̄1
s + ξ̄2

s + ξ̄3
s + ξ̄4

s ∈ A1 for every s ∈ [0, 1] with ξ1
s + ξ̃2

s + ξ̄4
s �= 0.

Then

(iii) ξ4 is jointly exchangeable, conditionally on (ξ1, ξ2, ξ3);

(iv) (ξ1, ξ̃2) is exchangeable in the first coordinate, conditionally on ξ3.

Proof: As in the preceding proof, we may assume that ξ is ergodic, and
hence can be represented as in Theorem 9.12, though with non-random, RR4

+-
valued coefficients. If ξ̄4

τi
�= 0 for some i, then (ii) yields ξ̄τi

∈ A1, and so by
(i) we have (ξ̄1 + ξ̄2 + ξ̄3)τi

= 0. This shows that ξ4 ⊥⊥ (ξ1, ξ2, ξ3), and (iii)
follows.

Next suppose that (ξ1, ξ̃2)τi
�= 0 for some i. Then by (i) and (ii) we have

(ξ1, ξ̃2)τi
∈ A1 and (ξ̃1, ξ2, ξ̄3)τi

= 0. We also see from (i) that (ξ1, ξ̃2)D = 0.
Thus, the representation of (ξ1, ξ̃2) can be simplified to

(ξ1, ξ̃2) =
∑

i
(ai, a

′
i)δτi,σi

+
∑

i
(bi, b

′
i)(λ ⊗ δσi

) + (c, c′)λ2,

where the τi are i.i.d. U(0, 1) and independent of ξ3 and all the σj . Condition
(iv) now follows as before from the distributional invariance of the sequence
τ1, τ2, . . . under measure-preserving transformations of [0, 1]. �

The next result gives a decomposition of ξ into conditionally independent
components, defined by their relations to the horizontal and vertical support-
ing lines, given by Lemma 9.14. More precisely, we introduce the random
sets

M1 = {s ≥ 0; ξ({s} × RR+) = ∞},
M2 = {t ≥ 0; ξ(RR+ × {t}) = ∞},
M = M1 ∪ M2 ∪ {s ≥ 0; ξ{(s, s) > 0},

and define

ξ1 = 1M c
1×M2 · ξ, ξ2 = 1M1×M c

2
· ξ,

ξ3 = 1M1×M2 · ξ, ξ4 = 1M c
1×M c

2
· ξ. (25)

Since M1, M2, and M are ξ-measurable by the quoted lemma, it follows easily
that the ξi are measurable functions of ξ.
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Lemma 9.20 (support-line decomposition)
(i) Let ξ be an ergodic, separately exchangeable random measure on RR2

+,
and define ξ1, . . . , ξ4 by (25). Then there exist some random measures α1, α2

on RR+ and ν1, ν2 on RR+ × (0,∞), such that ξ1 and ξ2 have a.s. diffuse com-
ponents λ ⊗ α1 and α2 ⊗ λ, respectively, and their atom positions and sizes
are given by Cox processes η1, η2 directed by λ⊗ ν1 and ν2 ⊗λ. Furthermore,
ξ4 and (α1, α2, ν1, ν2, ξ3) are ergodic, separately exchangeable, and

ξ4⊥⊥ (ξ1, ξ2, ξ3), η1⊥⊥ν1 (α1, ξ2, ξ3), η2⊥⊥ν2 (α2, ξ1, ξ3).

(ii) Let ξ be an ergodic, jointly exchangeable random measure on RR2
+, and

define ξ1, . . . , ξ4 as in (25), though with M1 and M2 replaced by M. Then
there exist some random measures α1, α2 on RR+ and ν on RR+ × (RR2

+ \ {0}),
such that ξ1 and ξ2 have a.s. diffuse components λ⊗α1 and α2⊗λ, respectively,
and the atom positions and sizes of (ξ1, ξ̃2) are given by a Cox process η
directed by λ ⊗ ν. Furthermore, ξ4 and (α1, α2, ν, ξ3) are ergodic, jointly
exchangeable, and

ξ4⊥⊥ (ξ1, ξ2, ξ3), η⊥⊥ν (α1, α2, ξ3).

Here the separate and joint exchangeability or ergodicity of the vectors
(α1, α2, ν1, ν2, ξ3) and (α1, α2, ν, ξ3), respectively, are defined by the corre-
sponding properties for

(λ ⊗ α1, α2 ⊗ λ, λ ⊗ ν1, λ ⊗ ν2, ξ3), (λ ⊗ α1, λ ⊗ α2, λ ⊗ ν, ξ3).

Proof: (i) By Lemma A1.1 the ergodic, separate exchangeability of ξ car-
ries over to ξ1, . . . , ξ4, and even to the associated diffuse and atomic compo-
nents. By Lemma 9.14 it follows that a.s. ξ1({s}×·) ∈ A1 and ξ2(·×{t}) ∈ A1

for all s, t ≥ 0. Thus, Proposition 1.21 yields the stated forms of the diffuse
and atomic components of ξ1 and ξ2, in terms of some random measures
α1, α2 on RR+ and ν1, ν2 on RR+ × (0,∞). Noting that the αi and νi are
measurably determined by ξ and using Lemma A1.1 again, we see that even
(α1, α2, ν1, ν2, ξ3) is ergodic, separately exchangeable.

From Lemma 9.14 we see that the hypotheses of Lemma 9.18, hence
also the two conclusions, are fulfilled on every square [0, a]2. By martingale
convergence, the two results extend to the entire quadrant. In particular,
ξ4 is conditionally, separately exchangeable, given (ξ1, ξ2, ξ3). Since ξ4 is
ergodic, the conditional distribution is a.s. constant, which means that ξ4 is
independent of (ξ1, ξ2, ξ3). Next we see that ξ1 is conditionally exchangeable
in the first coordinate, given (ξ2, ξ3). Since α1 and ν1 are measurable functions
of ξ1, a.s. invariant under measure-preserving transformations of ξ1 in the
first coordinate, we conclude that ξ1 remains conditionally exchangeable,
given (α1, ν1, ξ2, ξ3). The same thing is then true for the random measure η1.
Since η1 is stationary Poisson, hence ergodic exchangeable, already under
conditioning on ν1, it follows that η1 ⊥⊥ν1 (α1, ξ2, ξ3). A similar argument
yields η2 ⊥⊥ν2 (α2, ξ1, ξ3).
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(ii) From Lemma A1.1 we see that ξ4 and (ξ1, ξ̃2), along with their dif-
fuse and atomic parts, are again ergodic, jointly exchangeable. Proceeding
as in the proof of the implication (iv) ⇒ (v) in Lemma 9.17, we can easily
verify the hypotheses of Lemma 9.19 for the restrictions of ξ1, . . . , ξ4 to an
arbitrary square [0, a]2. Both hypotheses and conclusions are then fulfilled
even on RR2

+. In particular, (ξ1, ξ̃2) is exchangeable in the first coordinate,
and (ξ1 + ξ̃2)({s} × ·) ∈ A1 for all s ≥ 0 a.s. Hence, Proposition 1.21 shows
that ξ1 and ξ2 have a.s. diffuse components of the form λ ⊗ α1 and α2 ⊗ λ,
respectively, and η is Cox with directing random measure of the form λ⊗ ν.
Furthermore, it is clear from Lemma A1.1 and the law of large numbers that
even (α1, α2, ν, ξ3) is ergodic, jointly exchangeable. The independence and
conditional independence assertions may be proved as in case (i), except that
Lemma 9.19 should now be used instead of Lemma 9.18. �

Next we examine the structure of separately or jointly exchangeable point
processes of the form

ξ =
∑

i,j
δσi,τj ,αij

, (26)

where the sequences (σi) and (τj) are strictly increasing, and the marks αij

are random elements in an arbitrary Borel space. The following result is a
two-dimensional version of Theorem 1.23. Our characterizations are in terms
of the array A and simple point processes η and ζ, given by

A = (αij ; i, j ∈ NN), η =
∑

i
δσi

, ζ =
∑

j
δτj

. (27)

Lemma 9.21 (separation of sites and marks) Let ξ be a simple point process
on RR2

+ × S of the form (26), where S is Borel and the sequences (σi) and
(τj) are increasing, and define the array A and the point processes η and ζ
by (27).

(i) If ξ is ergodic, separately exchangeable, then A, η, and ζ are indepen-
dent, and A is ergodic, separately exchangeable, whereas η and ζ are homo-
geneous Poisson.

(ii) If ξ is ergodic, jointly exchangeable and η = ζ, then A⊥⊥ η, and A is
ergodic, jointly exchangeable, whereas η is homogeneous Poisson.

Proof: (i) Lemma A1.1 shows that η and ζ are ergodic, exchangeable,
and so by Lemma 1.20 they are homogeneous Poisson. Regarding ξ as a
point process on RR+ with sites σi and associated marks κi = (τj, αij , j ∈ NN)
in (RR2

+)∞, i ∈ NN, we may infer from the latter lemma that ξ is Cox with
directing measure of the form λ⊗ ν. Thus, by FMP 12.3 the point process η
and the sequence (κi) are conditionally independent and exchangeable, given
ν. Since η is already ergodic and hence extreme, it must then be independent
of (κi) and hence of the pair (ζ,A). Interchanging the roles of η and ζ, we
conclude that η, ζ, and A are all independent.

The exchangeability of the sequence (κi) yields the corresponding prop-
erty of A in the first index, and the symmetric argument shows that A is
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exchangeable in the second index as well. To see that A is ergodic, suppose
that the distribution µ = L(A) is a mixture of some separately exchange-
able distributions µ1 and µ2. Then Lemma 9.4 shows that the corresponding
distributions of ξ are again separately exchangeable. Since the original dis-
tribution of ξ was ergodic and hence extreme, it follows that µ1 = µ2, which
means that even A is extreme and hence ergodic.

(ii) Here Lemmas A1.1 and 1.20 show that η is homogeneous Poisson.
Now define for any t > 0

ηt = 1[0,t] · η, ηt = η[0, t], At = (αij ; i, j ≤ ηt),

and note that ξ remains separately exchangeable on [0, t]2, conditionally on
ηt. Hence, by Theorem 9.12, there exists for every n ∈ NN a random per-
mutation π = (π1, . . . , πn) of (1, . . . , n) such that, conditionally on ηt = n,
the random variables σ′

j = σπj
, j ≤ n, are i.i.d. U(0, 1) and independent of

At ◦ π = (απi,πj
; i, j ≤ n). Writing π′ for the inverse permutation π−1 and

noting that the marked point process

η̂t =
∑

j≤n
δσj ,π′

j
=
∑

k≤n
δσ′

k
,k

is conditionally ergodic, exchangeable given ηt = n, we see from Theorem 1.23
that ηt and π′ are conditionally independent and exchangeable. Combining
this with the previously noted independence, we conclude that At◦π◦π′ = At

is jointly exchangeable and independent of ηt, conditionally on ηt = n. In
particular, the matrix An = (αij ; i, j ≤ n) is jointly exchangeable, condition-
ally on ηt ≥ n, and the joint exchangeability of A follows as we let t → ∞
and then n → ∞.

From the previous discussion it is also clear that ηt is independent of At

and exchangeable on [0, t], conditionally on ηt. Hence, for any s < t, the
process ηs is conditionally exchangeable given At and ηt, which implies that
ηs is conditionally exchangeable, given the matrix An and the event ηs ≤ n.
Letting n → ∞ and then s → ∞, we conclude that η is conditionally ex-
changeable given A. Since η was shown to be ergodic and hence extreme, the
conditional distribution is a.s. independent of A, which means that η and A
are independent. The ergodicity of A can now be proved as in case (i). �

We may finally combine the last result with Proposition 7.30 to obtain
Poisson and functional representations for the lattice component of a sep-
arately or jointly exchangeable, marked point process ξ on RR2

+. Since the
projection of ξ onto RR2

+ may no longer be locally finite, we need to introduce
an extra mark in each coordinate. Thus, we consider marked point processes
of the form

ξ =
∑

i,j
δσi,τj ,αi,βj ,γij

, (28)

where the marks αi and βj can be chosen to be RR+-valued, and the γij take
values in an arbitrary Borel space S. We assume the variables in (28) to be
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such that the random measures

ηn =
∑

i
δσi

1{αi ≤ n}, ζn =
∑

j
δτj

1{βj ≤ n}, n ∈ NN, (29)

are locally finite, simple point processes on RR+. The notions of separate or
joint exchangeability or ergodicity are now defined in terms of transforma-
tions of the variables σi and τj .

Lemma 9.22 (lattice component) Let ξ be a point process on RR4
+×S of the

form (28), where S is Borel and the projections ηn and ζn in (29) are simple
and locally finite.

(i) If ξ is ergodic, separately exchangeable, there exist some measurable
functions f, g : RR+ → RR+ and h : RR2

+ × [0, 1] → K, a U-array (γ′
ij) on NN2,

and some independent, unit rate Poisson processes {(σ′
i, α

′
i)} and {(τ ′

j , β
′
j)}

on RR2
+, such that (28) holds a.s. on RR4

+ ×K with σi, τj , αi, βj, γij replaced by
the variables

σ′
i, τ ′

j , f(α′
i), g(β′

j), h(α′
i, β

′
j , γ

′
ij), i, j ∈ NN. (30)

(ii) If ξ is ergodic, jointly exchangeable with σi = τi and αi = βi, there
exist some measurable functions f : RR+ → RR+ and h : RR2

+ × [0, 1] → K, a U-
array (γ′

{i,j}) on ÑN2, and an independent, unit rate Poisson process {(σ′
i, τ

′
i )}

on RR2
+, such that (28) holds a.s. on RR4

+ × K with σi = τi, αi = βi, and γij

replaced by the variables

σ′
i, f(α′

i), h(α′
i, α

′
j , γ

′
{i,j}), i, j ∈ NN.

Proof: (i) By Lemma 9.21 the point processes ηn and ζn are homogeneous
Poisson, say with densities an and bn, respectively. Choosing n0 large enough
that an0 ∧ bn0 > 0, we may write

ηn =
∑

i
δσni

, ζn =
∑

j
δτnj

, n ≥ n0,

where the σni and τnj are increasing for fixed n. Comparing with (29), we
see that

σni = σκni
, τnj = τκ′

nj
, i, j ∈ NN, n ≥ n0,

for some random indices κni and κ′
nj . We may introduce the corresponding

quantities

αni = ακni
, βnj = βκnj

, γnij = γκni,κnj
, i, j ∈ NN, n ≥ n0,

and form the arrays

Xn
ij = (αni, βnj, γnij), i, j ∈ NN, n ≥ n0.

The Xn are separately exchangeable by Lemmas A1.1 and 9.21, and they
are further nested in the sense of Chapter 7. Hence, Proposition 7.30 ensures
the existence of a measurable function F : RR2

+ × [0, 1] → RR2
+ × S and some

random variables α′
ni, β′

nj , γ′
nij , i, j ∈ NN, n ≥ n0, where the latter are inde-

pendent for fixed n and uniformly distributed on the intervals [0, an], [0, bn],
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and [0, 1], respectively, such that a.s.

Xn
ij = F (α′

ni, β
′
nj, γ

′
nij), i, j ∈ NN, n ≥ n0.

Since αni is independent of j and βnj of i, Fubini’s theorem yields the sim-
plified representation

αni = f(α′
ni), βnj = g(β′

nj), γnij = h(α′
ni, β

′
nj, γ

′
nij), i, j ∈ NN, n ≥ n0,

for some measurable functions f, g : RR+ → RR+ and h : RR2
+ × [0, 1] → S.

Since Xn, ηn, and ζn are independent for fixed n ≥ n0 by Lemma 9.21, the
sequences (σni) and (τnj) are independent. By FMP 6.10 we may even choose
the array (α′

ni, β
′
nj, γ

′
nij), i, j ∈ NN, to be independent of the two sequences.

Recalling that the σni form a Poisson process with constant rate an, whereas
the α′

ni are i.i.d. U(0, an), we see from FMP 12.3 that the pairs (σni, α
′
ni),

i ∈ NN, form a Poisson process on RR+ × [0, an] with intensity measure λ2.
Similarly, the pairs (τnj, β

′
nj), j ∈ NN, form a Poisson process on RR+ × [0, bn]

with intensity λ2, and the two processes are mutually independent and inde-
pendent of the array γ′

nij , i, j ∈ NN.
Now consider any set of random variables σ′

i, τ ′
j , α′

i, β′
j , γ′

ij , i, j ∈ NN,
with the stated joint distribution, and define ξ′ as in (28), but based on the
variables in (30). Then clearly ξ′ d= ξ on RR2

+ × [0, n]2 × S for every n, and so
the two distributions agree on RR4

+ ×S by FMP 1.1. Hence, FMP 6.10 allows
us to re-define the σ′

i, τ ′
j , α′

i, β′
j , and γ′

ij such that ξ′ = ξ a.s. This proves the
required representation of ξ.

(ii) Here the previous proof applies with obvious changes. �

9.6 Symmetries on a Quadrant

Here our aim is to characterize the classes of separately and jointly exchange-
able random measures on the quadrant RR2

+. Let us first state the represen-
tations in the two cases.

Theorem 9.23 (separate exchangeability on a quadrant) A random mea-
sure ξ on RR2

+ is separately exchangeable iff a.s.

ξ =
∑

i,j
f(α, ϑi, ϑ

′
j , ζij)δτi,τ ′

j
+
∑

k
l(α, ηk)δρk,ρ′

k
+ γλ2

+
∑

i,k
g(α, ϑi, χik)δτi,σik

+
∑

j,k
g′(α, ϑ′

j , χ
′
jk)δσ′

jk
,τ ′

j

+
∑

i
h(α, ϑi)(δτi

⊗ λ) +
∑

j
h′(α, ϑ′

j)(λ ⊗ δτ ′
j
), (31)

for some measurable functions f ≥ 0 on RR4
+, g, g′ ≥ 0 on RR3

+, and h, h′, l ≥ 0
on RR2

+, a U-array (ζij) on NN2, some independent, unit rate Poisson pro-
cesses {(τj, ϑj)}, {(τ ′

j , ϑ
′
j)}, and {(σij, χij)}j ,{(σ′

ij , χ
′
ij)}j , i ∈ NN, on RR2

+ and
{(ρj, ρ

′
j , ηj)} on RR3

+, and an independent pair of random variables α, γ ≥ 0.
The latter can then be chosen to be non-random iff ξ is extreme.
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Here it is understood that the Poisson processes are not only mutually
independent, but also independent of all previously mentioned random ele-
ments. We may think of the σi and τj as the random times s and t where
ξ({s}×RR+) = ∞ and ξ(RR+ ×{t}) = ∞. The sets {σi}×RR+ and RR+ ×{τj}
form Poisson processes of vertical and horizontal lines, and the various sums
represent the contributions of ξ to the intersection points (σi, τj), the remain-
ing parts of the lines, and the area between the lines.

Theorem 9.24 (joint exchangeability on a quadrant) A random measure ξ
on RR2

+ is jointly exchangeable iff a.s.

ξ =
∑

i,j
f(α, ϑi, ϑj, ζ{i,j})δτi,τj

+ βλD + γλ2

+
∑

j,k

(
g(α, ϑj, χjk)δτj ,σjk

+ g′(α, ϑj, χjk)δσjk,τj

)
+
∑

j

(
h(α, ϑj)(δτj

⊗ λ) + h′(α, ϑj)(λ ⊗ δτj
)
)

+
∑

k

(
l(α, ηk)δρk,ρ′

k
+ l′(α, ηk)δρ′

k
,ρk

)
, (32)

for some measurable functions f ≥ 0 on RR4
+, g, g′ ≥ 0 on RR3

+, and h, h′, l, l′ ≥
0 on RR2

+, a U-array (ζ{i,j}) on ÑN2, some independent, unit rate Poisson
processes {(τj, ϑj)} and {(σij, χij)}j , i ∈ NN, on RR2

+ and {(ρj, ρ
′
j , ηj)} on RR3

+,
and an independent set of random variables α, β, γ ≥ 0. The latter can then
be chosen to be non-random iff ξ is extreme.

Before proving these results, we show that the representation in Theorem
9.23 is an easy consequence of the one in Theorem 9.24.

Proof of Theorem 9.23 from Theorem 9.24: A separately exchangeable
random measure ξ is also jointly exchangeable and can therefore be repre-
sented as in Theorem 9.24. Now define

F (x, y) = (x + [x], y + [y] + 1), x, y ≥ 0,

and note that F has range R × (R + 1), where R =
⋃

k∈NN[2k − 1, 2k). The
separate exchangeability of ξ yields ξ ◦ F

d= ξ, where (ξ ◦ F )B = ξ(F (B))
for any Borel set B ⊂ RR2

+. The desired representation now follows from the
fact that the various Poisson processes in Theorem 9.24 have independent
increments and therefore give independent contributions to the disjoint sets
R and R + 1. �

We now prove the main results of this section. Though Theorem 9.23
was shown to be a simple consequence of Theorem 9.24, it may be helpful to
prove the former result first, and then indicate how the proof can be modified
to cover the more difficult case of Theorem 9.24.
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Proof of Theorem 9.23: To prove that any random measure ξ with a
representation as in (31) is separately exchangeable, it is clearly enough to
show that the marked point process

η =
∑

i,j
δτi,τ ′

j ,ϑi,ϑ′
j ,ζij

is separately exchangeable under measure-preserving transformations in the
first two coordinates. Now η is a uniform randomization of the product
measure

η1 ⊗ η2 =
∑

i
δτi,ϑi

⊗
∑

j
δτ ′

j ,ϑ′
j
=
∑

i,j
δτi,ϑi,τ ′

j ,ϑ′
j
,

where η1 and η2 are independent, unit rate Poisson processes on RR2
+. By FMP

12.3 (ii) it is then enough to prove the separate exchangeability of η1 ⊗ η2,
which holds by part (i) of the same result.

Now suppose that ξ is ergodic, separately exchangeable, and define ξ1, . . . ,
ξ4 by (25). Then Lemma 9.20 (i) shows that ξ4 is again ergodic, separately
exchangeable and independent of (ξ1, ξ2, ξ3). By the implication (i) ⇒ (iii)
of Lemma 9.17 it can be represented as in (22), which yields the second and
third terms of (31), with constant α and γ. To simplify the writing, we may
henceforth assume that ξ4 = 0.

By Lemma 9.14 we can next choose some random variables σ1, σ2, . . . and
σ′

1, σ
′
2, . . . such that M1 ⊂ {σi} and M2 ⊂ {σ′

j} a.s. The cardinalities |M1|
and |M2| are invariant and hence a.s. constant, and by FMP 11.1 we have
either Mk = ∅ a.s. or |Mk| = ∞ a.s. for each k. In the latter case we may
clearly assume that M1 = {σi} or M2 = {σ′

j}, respectively. We also recall
that the subsets {s ≥ 0; ψs > ε} and {s ≥ 0; ψ′

s > ε} are locally finite for
every ε > 0, where the ψs and ψ′

s are defined as in Lemma 9.14.
Changing the notation, we now let α,α′ and ν, ν′ denote the random

measures α2, α1 and ν2, ν1 in Lemma 9.20 (i). Since ξ1 is supported by RR+ ×
M2 and ξ2 by M1 × RR+, we see from the law of large numbers that α and
α′ are a.s. supported by M1 and M2, respectively, whereas ν and ν′ are a.s.
supported by M1 × (0,∞) and M2 × (0,∞). For i, j ∈ NN, define

αi = α{σi}, α′
j = α′{σ′

j}, γij = ξ3{(σi, σ
′
j)},

νi = ν({σi} × ·), ν′
j = ν′({σ′

j} × ·), (33)

and introduce the marked point process

ζ =
∑

i,j
δσi,σ′

j ,αi,α′
j ,νi,ν ′

j ,γij
. (34)

If |M1| = |M2| = ∞ a.s., then Lemma A1.1 shows that the process ζ
is ergodic, separately exchangeable in the first two coordinates. Hence, by
Lemma 9.22 (i), there exist some measurable functions f ≥ 0 on RR2

+ × [0, 1]
and h, h′ ≥ 0 on RR+, some kernels G,G′ from RR+ to (0,∞), a U-array (ζij)
on NN2, and some independent, unit rate Poisson processes {(τi, ϑi)} and
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{(τ ′
j , ϑ

′
j)} on RR2

+, such that (34) remains true with the random variables or
measures σi, σ

′
j , αi, α

′
j , νi, ν

′
j , and γij replaced by

τi, τ ′
j , h(ϑi), h′(ϑ′

j), G(ϑi), G′(ϑ′
j), f(ϑi, ϑ

′
j , ζij), i, j ∈ NN.

Comparing with (33), we note that for all i, j ∈ NN,

α{τi} = h(ϑi), α′{τ ′
j} = h′(ϑ′

j),
ν({τi} × ·) = G(ϑi), ν′({τ ′

j} × ·) = G′(ϑ′
j),

ξ3{(τi, τ
′
j)} = f(ϑi, ϑ

′
j , ζij). (35)

If instead |M1| = ∞ and M2 = ∅ a.s., then ξ1 = ξ3 = 0 a.s., and we may
consider the marked point process

ζ1 =
∑

i
δσi,αi,νi

, (36)

which is ergodic, exchangeable in the first coordinate by Lemma A1.1. Hence,
Lemma 1.20 shows that ζ1 is homogeneous Poisson, and so there exist a
measurable function h ≥ 0 on RR+, a kernel G from RR+ to (0,∞), and a unit
rate Poisson process {(τi, ϑi)} on RR2

+, such that (36) remains fulfilled with
the random variables σi, αi and measures νi replaced by τi, h(ϑi), and G(ϑi),
respectively. Note that (35) remains valid in this case, for τ ′

j , ϑ′
j , and ζij as

before and with f = h′ = G′ = 0. The same argument applies to the case
where M1 = ∅ and |M2| = ∞ a.s. Finally, we may take f = h = h′ = G =
G′ = 0 when M1 = M2 = ∅ a.s.

By FMP 3.22 we may next choose some measurable functions g, g′ ≥ 0
on RR2

+, such that on (0,∞)

λ ◦ (g(x, ·))−1 = G(x),
λ ◦ (g′(x, ·))−1 = G′(x), x ≥ 0. (37)

We also introduce some independent, unit rate Poisson processes {(σjk, χjk)}k

and {(σ′
jk, χ

′
jk)}k on RR2

+, j ∈ NN, and define

ξ′
1 =

∑
j,k

g′(ϑ′
j , χ

′
jk) δσ′

jk
,τ ′

j
+
∑

j
h′(ϑ′

j) (λ ⊗ δτ ′
j
),

ξ′
2 =

∑
i,k

g(ϑi, χik) δτi,σik
+
∑

i
h(ϑi) (δτi

⊗ λ). (38)

In view of (35), we have∑
j
h′(ϑ′

j) (λ ⊗ δτ ′
j
) = λ ⊗

∑
j
α′{τ ′

j} δτ ′
j
= λ ⊗ α1,∑

i
h(ϑi) (δτi

⊗ λ) =
∑

i
α{τi} δτi

⊗ λ = α2 ⊗ λ,

which shows that the diffuse parts of ξ′
1 and ξ′

2 agree with those of ξ1 and ξ2.
Next let η′

1 and η′
2 denote the point processes of atom sizes and positions

of ξ′
1 and ξ′

2. Using (35), (37), and FMP 12.3, we see that, conditionally on
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the pairs (τ ′
j , ϑ

′
j) or (τi, ϑi), respectively, the processes η′

1 and η′
2 are Poisson

with intensities ∑
j
λ ⊗ δτ ′

j
⊗ ν′({τ ′

j} × ·) = λ ⊗ ν1,∑
i
δτi

⊗ ν({τj} × ·) ⊗ λ = ν2 ⊗ λ.

Under the same conditioning, it is also clear that η′
1 is independent of the

triple (α1, ξ
′
2, ξ3) while η′

2 is independent of (α2, ξ
′
1, ξ3), which implies

η′
1⊥⊥ν1 (α1, ξ

′
2, ξ3), η′

2⊥⊥ν2 (α2, ξ
′
1, ξ3).

Hence, ξ′
1 and ξ′

2 are conditionally independent given (α1, α2, ν1, ν2, ξ3), with
the same conditional distributions as ξ1 and ξ2, and it follows that (ξ′

1, ξ2, ξ3)
d= (ξ1, ξ2, ξ3). By FMP 6.10 we can then re-define the sequences {(σ′

ik, χ
′
ik)}

and {(σjk, χjk)}, with the same properties as before, such that ξ1 = ξ′
1 and

ξ2 = ξ′
2 a.s. This proves the representation (31) in the ergodic case, with

constant values of α and γ.
To extend the representation to the general case, we may first use Lemma

9.10 to express the functions f , g, g′, and h, h′, l in terms of some universal
functions Φ4, Φ3, and Φ2 of different dimensions, along with some associated
parameters α4, α3, α

′
3 and α2, α

′
2, α

′′
2. From Theorem A1.4 we see that the

general distribution L(ξ) is a mixture of ergodic ones, and by Lemma A1.5
we get a representation in the general case, simply by substituting random
variables for all parameters in the ergodic formula. To convert the resulting
representation into the required form, it remains to express all randomization
variables α4, α3, . . . in terms of a single random variable α.

Now suppose that ξ is representable as in (31), with α and γ non-random.
Then ξ is clearly dissociated in the sense of Chapter 7, and so the distribution
L(ξ) can be a.s. recovered from ξ by the law of large numbers. The required
ergodicity of ξ now follows from Lemma 9.7 with h(t) = mt. �

Proof of Theorem 9.24: First suppose that ξ is represented as in (32).
Letting (ζij) be a U-array on NN2, independent of all representing variables,
and arguing as in the preceding proof, we see that the marked point process

η =
∑

i,j
δτi,τj ,ϑi,ϑj ,ζij

is jointly exchangeable under measure-preserving transformations in the first
two coordinates. This implies the same property for the symmetrized version
of η, where ζij is replaced by

ζ̃{i,j} = ζij + ζji, i, j ∈ NN.

By a simple transformation in the last coordinate, we may extend the joint
exchangeability to the version with ζ̃ij replaced by ζ{i,j}, which shows that ξ
is jointly exchangeable.
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Now let ξ be jointly exchangeable. By Lemma A1.1 the diffuse mass
along the diagonal D is ergodic, exchangeable, and so by Proposition 1.21 it
is proportional to λD . The remainder of ξ4 satisfies condition (iv) of Lemma
9.17, and hence is representable as in condition (vi) of the same result. Thus,
ξ4 can be represented by the second, third, and last terms of (32), for some
constants α, β, γ, some measurable functions l, l′, and a unit rate Poisson
process {(ρj, ρ

′
j , ηj)} on RR3. Since ξ4 is independent of the triple (ξ1, ξ2, ξ3)

by Lemma 9.20 (ii), it remains to derive the representation of the latter.
The case where M = ∅ a.s. being trivial, we may assume that |M| = ∞

a.s. By Lemma 9.14, applied to any non-diagonal sets of the form I × Ic or
Ic × I, we can choose some random variables σ1, σ2, . . . such that M = {σj}
a.s. The random measures (α,α′) = (α2, α1) and ν of Lemma 9.20 (ii) are
a.s. supported by M and M × (RR2

+ \ {0}), respectively, and for any i, j ∈ NN
we may put

αj = α{σj}, α′
j = α′{σj},

νj = ν({σj} × ·), γij = ξ3{(σi, σj)}. (39)

Now introduce the marked point process

ζ =
∑

i,j
δσi,σj ,αi,α′

j ,νi,γij
. (40)

From Lemma A1.1 we see that ζ is ergodic, jointly exchangeable in the
first two coordinates. Hence, Lemma 28 (ii) yields the existence of some
measurable functions f ≥ 0 on RR2

+ × [0, 1] and h, h′ ≥ 0 on RR+, a kernel G

from RR+ to RR2
+ \ {0}, a U-array (ζ{i,j}) on ÑN2, and an independent, unit rate

Poisson process {(τj, ϑj)} on RR2
+, such that (40) remains true with σi, αi, α′

j ,
νi, and γij replaced by

τi, h(ϑi), h′(ϑj), G(ϑi), f(ϑi, ϑj, ζ{i,j}), i, j ∈ NN.

Comparing with (39), we get the relations

α{τi} = h(ϑi), α′{τi} = h′(ϑi),
ν({τi} × ·) = G(ϑi),
ξ3{(τi, τj)} = f(ϑi, ϑj, ζ{i,j}). (41)

By FMP 3.22 we may choose some measurable functions g, g′ ≥ 0 on RR+

such that

λ ◦ (g′(x, ·), g(x, ·))−1 = G(x) on RR2
+ \ {0}, x ≥ 0. (42)

We may further introduce some independent, unit rate Poisson processes
{(σik, χik)}k on RR2

+, i ∈ NN. Define ξ′
1 and ξ′

2 as in (38), except that τ ′
j , ϑ′

j ,
σ′

jk, and χ′
jk are now replaced by τj , ϑj , σjk, and χjk, respectively. Then

ξ′
1 and ξ′

2 have a.s. diffuse components λ ⊗ α1 and α2 ⊗ λ. Next we see
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from (41), (42), and FMP 12.3 that the point process η′ of atom sizes and
positions of the pair (ξ′

1, ξ̃
′
2) is conditionally Poisson λ ⊗ ν and independent

of (α1, α2, ξ3), given the points (τi, ϑi), hence also given ν. Comparing with
the properties of ξ1 and ξ2 obtained in Lemma 9.20 (ii), we conclude that
(ξ′

1, ξ
′
2, ξ3)

d= (ξ1, ξ2, ξ3). By FMP 6.10 we can then re-define the random
variables σik and χik such that equality holds a.s. The proof may now be
completed as in case of Theorem 9.23. �

It remains to derive convergence criteria for the series in Theorems 9.23
and 9.24. Again it is enough to consider the extreme case, where the param-
eters α, β, and γ are constants. As before, we may then simplify the notation
by omitting α from our notation. It is also convenient to write f̂ = f ∧1 and

f1 = λ2
23f̂ , f2 = λ2

13f̂ , g1 = λ2ĝ,

where λ2
23 denotes two-dimensional Lebesgue measure in the second and third

coordinates, and similarly for λ2
13 and λ2.

Proposition 9.25 (local summability) For fixed α, the random measure ξ
in Theorem 9.23 is a.s. locally finite iff these four conditions are fulfilled:

(i) λ(l̂ + ĥ + ĥ′) < ∞,
(ii) λ(ĝ1 + ĝ′

1) < ∞,
(iii) λ{fi = ∞} = 0 and λ{fi > 1} < ∞ for i = 1, 2,
(iv) λ[f̂ ; f1 ∨ f2 ≤ 1] < ∞.

In Theorem 9.24, local finiteness is equivalent to (i)–(iv), together with the
condition

(v) λl̂′ + λDλf̂ < ∞.

Proof: It is enough to consider the convergence on [0, 1]2. Omitting the
constant α from our notation, we get

ξ[0, 1]2 =
∑

i,j
f(ϑi, ϑ

′
j , ζij)1{τi ∨ τ ′

j ≤ 1}
+
∑

k
l(ηk)1{ρk ∨ ρ′

k ≤ 1} + γ

+
∑

i,k
g(ϑi, χik)1{τi ∨ σik ≤ 1}

+
∑

j,k
g′(ϑ′

j , χ
′
jk)1{τ ′

j ∨ σ′
jk ≤ 1}

+
∑

i
h(ϑi)1{τi ≤ 1} +

∑
j
h′(ϑ′

j)1{τ ′
j ≤ 1}. (43)

Introducing the unit rate Poisson processes on RR+,

η =
∑

k
δηk

1{ρk ∨ ρ′
k ≤ 1},

ϑ =
∑

i
δϑi

1{τi ≤ 1}, ϑ′ =
∑

j
δϑ′

j
1{τ ′

j ≤ 1},
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we may write the second and last two terms of (43) as ηl + ϑh + ϑ′h′, which
converges by FMP 12.13 or Theorem A3.5 iff our present condition (i) is
fulfilled.

Next recall from FMP 4.14 that, for any independent random variables
γ1, γ2, . . . ≥ 0, the series

∑
j γj converges a.s. iff

∑
jE(γj ∧ 1) < ∞. Hence,

by Fubini’s theorem, the first sum in (43) converges a.s. iff∑
i,j

λf̂(ϑi, ϑ
′
j , ·)1{τi ∨ τ ′

j ≤ 1} = ϑϑ′f̂ < ∞ a.s.,

which occurs iff conditions (i)–(iii) in Theorem A3.5 are fulfilled for the func-
tion F (s, t) = λf̂(s, t, ·). Noting that F ≤ 1 and hence F̂ = F , we see that
the mentioned requirements are equivalent to our present conditions (iii) and
(iv).

By the cited criterion from FMP 4.14 together with Fubini’s theorem, the
third and fourth sums in (43) converge a.s. iff∑

i
E
[
1 ∧

∑
k
g(ϑi, χik)1{σik ≤ 1}

∣∣∣ϑi, τi

]
1{τi ≤ 1} < ∞,∑

j
E
[
1 ∧

∑
k
g′(ϑ′

j , χ
′
jk)1{σ′

jk ≤ 1}
∣∣∣ϑ′

j , τ
′
j

]
1{τ ′

j ≤ 1} < ∞. (44)

Noting that 1∧x � 1−e−x = ψ(x) and applying Lemma A3.6 (i) to the unit
rate Poisson processes

χi =
∑

k
δχik

1{σik ≤ 1}, χ′
j =

∑
k
δχ′

jk
1{σ′

jk ≤ 1},

we see that the conditions in (44) are equivalent to∑
i
ψ(λψ(g(ϑi, ·))1{τi ≤ 1} � ϑ(ψ ◦ ĝ1) < ∞,∑

j
ψ(λψ(g′(ϑ′

j , ·))1{τ ′
j ≤ 1} � ϑ′(ψ ◦ ĝ′

1) < ∞.

Finally, by FMP 12.13 or Theorem A3.5, the latter conditions are equivalent
to (ii).

This completes the proof for separately exchangeable random measures.
The proof in the jointly exchangeable case is similar, except that the last
assertion of Theorem A3.5 is then needed to characterize convergence of the
first term in the representation of Theorem 9.24. Noting that the sum

ζ =
∑

i
δϑi,ζi

1{τi ≤ 1}

represents a unit rate Poisson process on RR+×[0, 1], we get in this case the ex-
tra condition λDλf̂ < ∞. Finally, the term

∑
kl

′(α, ηk)δρ′
k
,ρk

converges a.s. iff
λl̂′ < ∞, by the same argument as for the accompanying sum involving l. �



Appendices

Most of the material included here is needed, in one way or another, for the
development in the main text. Results have been deferred to an appendix
for various reasons: They may not fit naturally into the basic exposition, or
their proofs may be too technical or complicated to include in the regular
text. In fact, some of the longer proofs are omitted altogether and replaced
by references to the standard literature.

We begin, in Appendix A1, with a review of some basic results about
extremal or ergodic decompositions. Though referred to explicitly only in
the later chapters, the subject is clearly of fundamental importance for the
entire book. Unfortunately, some key results in the area are quite deep, and
their proofs often require methods outside the scope of the present exposition.
Some more specialized results in this area appear in Section 9.2.

Appendix A2 contains some technical results about convergence in dis-
tribution, especially for random measures, needed in Chapter 3. In Ap-
pendix A3 we review some results about multiple stochastic integrals, re-
quired in Chapters 8 and 9, where the underlying processes may be either
Gaussian or Poisson. In particular, we give a short proof of Nelson’s hyper-
contraction theorem for multiple Wiener–Itô integrals. Next, to fill some
needs in Sections 1.6 and 1.7, we list in Appendix A4 some classical re-
sults about completely monotone and positive definite functions, including
the Hausdorff–Bernstein characterizations and the celebrated theorems of
Bochner and Schoenberg. Finally, Appendix A5 reviews the basic theory of
Palm measures and Papangelou kernels, required for our discussion in Sec-
tion 2.7.

A1. Decomposition and Selection

Given a family T of measurable transformations on a probability space
(S,S, µ), we say that a set I ∈ S is (strictly) T -invariant if T−1I = I
for every T ∈ T and a.s. T -invariant if µ(I ∆ T−1I) = 0 for every T ∈ T ,
where A∆ B denotes the symmetric difference of A and B. Furthermore, we
say that µ is ergodic if µI = 0 or 1 for every a.s. T -invariant set I ∈ S, and
weakly ergodic if the same condition holds for every strictly invariant set I.
A random element ξ of S is said to be T -symmetric if its distribution µ is
T -invariant, in the sense that µ ◦ T−1 = µ for every T ∈ T , and we say that
ξ is T -ergodic if the corresponding property holds for µ.



Appendices 441

Let us begin with a common situation where the symmetry or ergodicity
of a random element is preserved by a measurable mapping.

Lemma A1.1 (preservation laws) Let T and T ′ be families of measurable
transformations on some measurable spaces S and S′, and fix a measurable
mapping f : S → S′ such that

{f ◦ T ; T ∈ T } = {T ′ ◦ f ; T ′ ∈ T ′}.

Then for any T -symmetric or T -ergodic random element ξ in S, the random
element η = f(ξ) in S is T ′-symmetric or T ′-ergodic, respectively.

Proof: Suppose that ξ is T -symmetric. Letting T ′ ∈ T ′ be arbitrary and
choosing T ∈ T with f ◦ T = T ′ ◦ f , we get

T ′ ◦ η = T ′ ◦ f ◦ ξ = f ◦ T ◦ ξ
d= f ◦ ξ = η,

which shows that η is T ′-symmetric.
Next we note that the invariant σ-fields I in S and J in S′ are related

by f−1J ⊂ I. In fact, letting J ∈ J and T ∈ T be arbitrary and choosing
T ′ ∈ T ′ with T ′ ◦ f = f ◦ T , we get a.s. L(ξ)

T−1f−1J = f−1T ′−1
J = f−1J.

Hence, if ξ is T -ergodic,

P{η ∈ J} = P{ξ ∈ f−1J} = 0 or 1, J ∈ J ,

which means that η is T ′-ergodic. �

For any class T of measurable transformations on a measurable space
S, the set of T -invariant probability measures µ on S is clearly convex.
A T -invariant distribution µ is said to be extreme if it has no non-trivial
representation as a convex combination of invariant measures. We examine
the relationship between the notions of ergodicity and extremality.

Lemma A1.2 (ergodicity and extremality) Let T be a family of measurable
transformations on a measurable space S, and consider a T -invariant distri-
bution µ on S. If µ is extreme, it is even ergodic, and the two notions are
equivalent when T is a group. For countable groups T , it is also equivalent
that µ be weakly ergodic.

Proof: Suppose that µ is not ergodic. Then there exists an a.s. T -invariant
set I ∈ S such that 0 < µI < 1, and we get a decomposition

µ = µ(I) µ[ · |I] + µ(Ic) µ[ · |Ic].
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Here µ[·|I] �= µ[·|Ic], since µ[I|I] = 1 and µ[I|Ic] = 0. Furthermore, the
invariance of I and µ implies that, for any T ∈ T and B ∈ S,

µ(I) µ[T−1B|I] = µ(T−1B ∩ I) = µ ◦ T−1(B ∩ I)
= µ(B ∩ I) = µ(I) µ[B|I],

which shows that µ[·|I] is again invariant. Hence, µ is not extreme either.
Now let T be a group, and assume that µ is ergodic. Consider any convex

combination
µ = cµ1 + (1 − c)µ2,

where µ1 and µ2 are T -invariant distributions on S and c ∈ (0, 1). Introduce
the Radon–Nikodým density f = dµ1/dµ. Letting T ∈ T and B ∈ S be
arbitrary and using the invariance of µ1 and µ, we get

µ1B = µ1(TB) =
∫

T B
fdµ =

∫
T B

fd(µ ◦ T−1) =
∫

B
(f ◦ T )dµ.

The uniqueness of f yields f ◦ T = f a.s., and so for any a ≥ 0

T−1{f ≥ a} = {f ◦ T ≥ a} = {f ≥ a} a.s. µ,

which means that the set {f ≥ a} is a.s. invariant. Since µ is ergodic, we get
µ{f ≥ a} = 0 or 1 for every a, and it follows that f is a.s. a constant. But
then µ1 = µ2 = µ, and the stated decomposition is trivial. This shows that
µ is extreme.

If T is a countable group and I is a.s. invariant, then the set I ′ =⋂
T ∈T T−1I is strictly invariant with µ(I∆I ′) = 0. Assuming µ to be weakly

ergodic, we get µI = µI ′ = 0 or 1, which shows that µ is even ergodic. �

The following result identifies two cases where every invariant distribution
has an integral representation in terms of extreme points. This decomposition
may not be unique in general.

Theorem A1.3 (extremal decomposition, Choquet, Kallenberg) Let T be a
class of measurable transformations on a measurable space S, and assume
one of these conditions:

(i) S = B∞ for some Borel space B, and T is induced by a class of trans-
formations on NN;

(ii) S is Polish, and the set of T -invariant distributions on S is weakly
closed.

Then every T -invariant probability measure on S is a mixture of extreme,
T -invariant distributions.

Proof: (i) Embedding B as a Borel set in [0, 1], we may regard µ as an
invariant distribution on the compact space J = [0, 1]∞. The space M1(J)
is again compact and metrizable (cf. Rogers and Williams (1994), Theorem
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81.3), and the sub-set M of T -invariant distributions on J is convex and
closed, hence compact. By a standard form of Choquet’s theorem (cf. Alfsen
(1971)), any measure µ ∈ M has then an integral representation

µA =
∫

m(A) ν(dm), A ∈ B(J), (1)

where ν is a probability measure on the set ex(M) of extreme elements in
M . In particular, we note that ν{m; mB∞ = 1} = 1. Writing R(m) for the
restriction of m to B∞ and putting πAm = m(A), we get for any Borel set
A ⊂ B∞

µA = µ(A ∩ B∞) =
∫

m(A ∩ B∞) ν(dm)

=
∫

(πA ◦ R) dν =
∫

πA d(ν ◦ R−1)

=
∫

m(A) (ν ◦ R−1)(dm). (2)

It remains to note that if m ∈ ex(M) with mB∞ = 1, then m is an extreme,
T -invariant distribution on B∞.

(ii) Here we may embed S as a Borel sub-set of a compact metric space
J (cf. Rogers and Williams (1994), Theorem 82.5). The space M1(J) is
again compact and metrizable, and M1(S) can be identified with the sub-set
{µ ∈ M1(J); µS = 1} (op. cit., Theorem 83.7). Now the set M of all T -
invariant distributions on S remains convex as a sub-set of M1(J), and its
closure M in M1(J) is both convex and compact. Thus, Choquet’s theorem
yields an integral representation as in (1), in terms of a probability measure
ν on ex(M).

Since µ is restricted to S, we may proceed as before to obtain a repre-
sentation of type (2), where R(m) now denotes the restriction of m to S. It
remains to show that ex(M)∩M1(S) ⊂ ex(M). But this follows easily from
the relation M ∩M1(S) = M , which holds since M is closed in M1(S). �

Under suitable regularity conditions, the ergodic decomposition is unique
and can be obtained by conditioning on the invariant σ-field.

Theorem A1.4 (decomposition by conditioning, Farrel, Varadarajan) Let
T be a countable group of measurable transformations on a Borel space S,
and consider a T -symmetric random element ξ in S with distribution µ and
invariant σ-field Iξ. Then the conditional distributions P [ξ ∈ ·|Iξ ] are a.s.
ergodic and T -invariant, and µ has the unique ergodic decomposition

µ =
∫

mν(dm), ν = L(P [ξ ∈ ·|Iξ ]).

Proof: See Dynkin (1978) or Maitra (1977). �

The following result allows us to extend a representation from the ergodic
to the general case through a suitable randomization.
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Lemma A1.5 (randomization) Given some Borel spaces S, T , and U, a
measurable mapping f : S × T → U, and some random elements ξ in S and
η in U, define mt = L(f(ξ, t)), t ∈ T . Then L(η) is a mixture over the class
C = {mt} iff η = f(ξ̃, τ) a.s. for some random elements ξ̃

d= ξ in S and
τ ⊥⊥ ξ̃ in T . If even P [η ∈ ·|I] ∈ C a.s. for some σ-field I, we can choose τ
to be I-measurable.

Proof: Put M = M1(U), and note that M is again Borel. In M × T we
may introduce the product measurable set

A = {(µ, t) ∈ M × T ; µ = L(f(ξ, t))}.

Then, by hypothesis, L(η) =
∫

µν(dµ) for some probability measure ν on
M satisfying ν(πA) = ν(C) = 1, where πA denotes the projection of A onto
M . Hence, the general section theorem (FMP A1.4) yields a measurable
mapping g : M → T satisfying

ν{µ = L(f(ξ, g(µ)))} = ν{(µ, g(µ)) ∈ A} = 1.

Letting α⊥⊥ ξ be a random element in M with distribution ν, we get η
d=

f(ξ, g(α)) by Fubini’s theorem. Finally, the transfer theorem (FMP 6.10)
yields a random pair (ξ̃, τ) d= (ξ, g(α)) in S × T satisfying η = f(ξ̃, τ) a.s.

If P [η ∈ ·|I] ∈ C a.s., we may instead apply the section theorem to the
product-measurable set

A′ = {(ω, t) ∈ Ω × T ; P [η ∈ ·|I](ω) = L(f(ξ, t))},

to obtain an I-measurable random element τ in T satisfying

P [η ∈ ·|I] = L(f(ξ, t))|t=τ a.s.

Letting ζ
d= ξ in S with ζ ⊥⊥ τ and using Fubini’s theorem, we get a.s.

P [f(ζ, τ) ∈ ·|τ ] = P{f(ζ, t) ∈ ·}|t=τ = µτ = P [η ∈ ·|τ ],

which implies (f(ζ, τ), τ) d= (η, τ). By FMP 6.11 we may then choose a
random pair (ξ̃, τ̃) d= (ζ, τ) in S × T such that

(f(ξ̃, τ̃), τ̃) = (η, τ) a.s.

In particular, we get τ̃ = τ a.s., and so η = f(ξ̃, τ) a.s. Finally, we note that
ξ̃

d= ζ
d= ξ, and also that ξ̃⊥⊥ τ since ζ ⊥⊥ τ by construction. �

We proceed with a result on measurable selections.

Lemma A1.6 (measurable selection) Let ξ and η be random elements in
some measurable spaces S and T , where T is Borel, and let f be a measurable
function on S×T such that f(ξ, η) = 0 a.s. Then there exists a ξ-measurable
random element η̂ in T satisfying f(ξ, η̂) = 0 a.s.



Appendices 445

Proof: Define a measurable set A ⊂ S × T and its S-projection πA by

A = {(s, t) ∈ S × T ; f(s, t) = 0},
πA =

⋃
t∈T

{s ∈ S; f(s, t) = 0}.

By the general section theorem (FMP A1.4), there exists a measurable func-
tion g : S → T satisfying

(ξ, g(ξ)) ∈ A a.s. on {ξ ∈ πA}.

Since (ξ, η) ∈ A implies ξ ∈ πA, we also have

P{ξ ∈ πA} ≥ P{(ξ, η) ∈ A} = P{f(ξ, η) = 0} = 1.

This proves the assertion with η̂ = g(ξ). �

A2. Weak Convergence

For any metric or metrizable space S, let M̂(S) denote the space of bounded
measures on S, write M̂c(S) for the sub-set of measures bounded by c, and
let Mc(S) be the further sub-class of measures µ with µS = c. For any
µ ∈ M̂(S), we define µ̂ = µ/(µS ∨ 1). On M̂(S) we introduce the weak
topology, induced by the mappings µ �→ µf =

∫
fdµ for any f belonging to

the space Ĉ+(S) of bounded, continuous, non-negative functions on S. Then
the weak convergence µn

w→ µ means that µnf → µf for every f ∈ Ĉ+(S).
A set M ⊂ M̂(S) is said to be tight if

inf
K∈K

sup
µ∈M

µKc = 0,

where K = K(S) denotes the class of compact sets in S. We begin with a
simple extension of Prohorov’s theorem (FMP 16.3).

Lemma A2.1 (weak compactness, Prohorov) For any Polish space S, a set
M ⊂ M̂(S) is weakly, relatively compact iff

(i) supµ∈M µS < ∞,
(ii) M is tight.

Proof: First suppose that M is weakly, relatively compact. Since the
mapping µ �→ µS is weakly continuous, we conclude that the set {µS; µ ∈
M} is relatively compact in RR+, and (i) follows by the Heine–Borel theorem.
To prove (ii), we note that the set M̂ = {µ̂; µ ∈ M} is again weakly, relatively
compact by the weak continuity of the mapping µ �→ µ̂. By (i) we may then
assume that M ⊂ M̂1(S). For fixed s ∈ S, define µ′ = µ + (1 − µS)δs.
The mapping µ �→ µ′ is weakly continuous on M̂1(S), and so the set M ′ =
{µ′; µ ∈ M} in M1(S) is again relatively compact. But then Prohorov’s
theorem yields (ii) for the set M ′, and the same condition follows for M .
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Conversely, assume conditions (i) and (ii), and fix any µ1, µ2, . . . ∈ M . If
lim infn µnS = 0, then µn

w→ 0 along a sub-sequence. If instead lim infn µnS >
0, then by (i) we have µnS → c ∈ (0,∞) along a sub-sequence N ′ ⊂ NN. But
then by (ii) the sequence µ̃n = µn/µnS, n ∈ N ′, is tight, and so by Pro-
horov’s theorem we have µ̃n

w→ µ along a further sub-sequence N ′′. Hence,
µn = (µnS)µ̃n

w→ cµ along N ′′, which shows that M is weakly, relatively
compact. �

Next we prove a tightness criterion for a.s. bounded random measures.

Lemma A2.2 (weak tightness, Prohorov, Aldous) Let ξ1, ξ2, . . . be a.s.
bounded random measures on a Polish space S. Then (ξn) is tight for the
weak topology on M̂(S) iff

(i) (ξnS) is tight in RR+,
(ii) (Eξ̂n) is weakly tight in M̂(S).

Proof: First suppose that (ξn) is weakly tight. Since the mapping µ �→ µS
is weakly continuous on M̂(S), condition (i) follows by FMP 16.4. Using the
continuity of the mapping µ �→ µ̂, we see from the same result that (ξ̂n) is
weakly tight. Hence, there exist some weakly compact sets Mk ⊂ M̂1(S)
such that

P{ξ̂n /∈ Mk} ≤ 2−k−1, k, n ∈ NN.

By Lemma A2.1 we may next choose some compact sets Kk ⊂ S such that

Mk ⊂ {µ; µKc
k ≤ 2−k−1}, k ∈ NN.

Then for any n and k

Eξ̂nK
c
k ≤ P{ξ̂n /∈ Mk} + E[ξ̂nK

c
k; ξn ∈ Mk] ≤ 2−k,

and (ii) follows.
Conversely, assume conditions (i) and (ii). We may then choose some

constants ck > 0 and some compact sets Kk ⊂ S such that

P{ξnS > ck} ≤ 2−k, Eξ̂nK
c
k ≤ 2−2k, k, n ∈ NN.

Now introduce in M̂(S) the sets

Mm = {µ; µS ≤ cm} ∩
⋂

k>m

{µ; µ̂Kc
k ≤ 2−k}, m ∈ NN,

which are weakly, relatively compact by Lemma A2.1. Using the countable
sub-additivity of P and Chebyshev’s inequality, we get

P{ξn /∈ Mm} = P
(
{ξnS > cm} ∪

⋃
k>m

{ξ̂nK
c
k > 2−k}

)
≤ P{ξnS > cm} +

∑
k>m

P{ξ̂nK
c
k > 2−k}

≤ 2−m +
∑

k>m
2kEξ̂nK

c
k

≤ 2−m +
∑

k>m
2−k = 2−m+1 → 0,

which shows that (ξn) is weakly tight in M̂(S). �
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The last result leads to some useful criteria for convergence in distribution
of a.s. bounded random measures on a metrizable space S. When S is Polish,
we write ξn

wd−→ ξ for such convergence with respect to the weak topology
on M̂(S). In the special case where S is locally compact, we may also
consider the corresponding convergence with respect to the vague topology,
here denoted by ξn

vd−→ ξ. In the latter case, write S for the one-point
compactification of S. With a slight abuse of notation, we say that (Êξn) is
tight if

inf
K∈K

lim sup
n→∞

E[ξnK
c ∧ 1] = 0.

Theorem A2.3 (convergence in distribution) Let ξ, ξ1, ξ2, . . . be a.s. boun-
ded random measures on a Polish space S. Then these two conditions are
equivalent:

(i) ξn
wd−→ ξ,

(ii) ξnf
d→ ξf for all f ∈ Ĉ+(S).

If S is locally compact, then (i) is also equivalent to each of the following
conditions:

(iii) ξn
vd−→ ξ and ξnS

d→ ξS,

(iv) ξn
vd−→ ξ and (Êξn) is tight,

(v) ξn
vd−→ ξ on S.

Proof: If ξn
wd−→ ξ, then ξnf

d→ ξf for all f ∈ Ĉ+(S) by continuous
mapping, and (Êξn) is tight by Prohorov’s theorem and Lemma A2.2. Hence,
(i) implies conditions (ii)–(v).

Now assume instead condition (ii). Then the Cramér–Wold theorem
(FMP 5.5) yields (ξnf, ξnS) d→ (ξf, ξS) for all f ∈ Ĉ+, and so ξ̂nf

d→ ξ̂f
for the same functions f , where ξ̂ = ξ/(ξS ∨ 1) and ξ̂n = ξn/(ξnS ∨ 1), as
before. Since ξ̂S ≤ 1 and ξ̂nS ≤ 1 for all n, it follows that Eξ̂n

w→ Eξ̂, and
so by Lemma A2.1 the sequence (Eξ̂n) is weakly tight. Since also ξnS

d→ ξS,
Lemma A2.2 shows that the random sequence (ξn) is tight with respect to
the weak topology. Then Prohorov’s theorem (FMP 16.3) shows that (ξn)
is also relatively compact in distribution. In other words, any sub-sequence
N ′ ⊂ NN has a further sub-sequence N ′′, such that ξn

wd−→ η along N ′′ for
some random measure η on S with ηS < ∞ a.s. Thus, for any f ∈ Ĉ+, we
have both ξnf

d→ ξf and ξnf
d→ ηf , and then also ξf

d= ηf . Applying the
Cramér–Wold theorem once again, we obtain

(ξf1, . . . , ξfn) d= (ηf1, . . . , ηfn), f1, . . . , fn ∈ Ĉ+.

By a monotone-class argument we conclude that ξ
d= η, on the σ-field C

generated by the mappings µ �→ µf for arbitrary f ∈ Ĉ+. Noting that C
agrees with the Borel σ-field on M̂(S) since the latter space is separable, we
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obtain ξ
d= η. This shows that ξn

wd−→ ξ along N ′′, and (i) follows since N ′

was arbitrary.
Now suppose that S is locally compact. In each of the cases (iii)–(v) it

suffices to show that (ξn) is weakly tight, since the required weak convergence
will then follow as before, by means of Prohorov’s theorem. First we assume
condition (iii). For any compact set K ⊂ S, continuous function f on S with
0 ≤ f ≤ 1K , and measure µ ∈ M̂(S), we note that

1 − e−µKc ≤ 1 − e−µ(1−f ) ≤ eµS(e−µf − e−µS).

Letting c > 0 with ξS �= c a.s., we obtain

E(1 − e−ξnKc

) ≤ E[1 − e−ξnKc

; ξnS ≤ c] + P{ξnS > c}
≤ ecE(e−ξnf − e−ξnS) + P{ξnS > c}
→ ecE(e−ξf − e−ξS) + P{ξS > c}.

Here the right-hand side tends to 0 as f ↑ 1 and then c → ∞, which shows
that (Êξn) is tight. The required tightness of (ξn) now follows by Lemma
A2.2.

Now assume condition (iv). By the tightness of (Êξn), we may choose
some compact sets Kk ⊂ S such that

E[ξnK
c
k ∧ 1] ≤ 2−k, k, n ∈ NN.

Next, for every k ∈ NN, we may choose some fk ∈ CK (S) with fk ≥ 1Kk
.

Since ξnKk ≤ ξnfk
d→ ξfk, the sequences (ξnKk) are tight in RR+, and we may

choose some constants ck > 0 such that

P{ξnKk > ck} ≤ 2−k, k, n ∈ NN.

Letting rk = ck + 1, we get by combination

P{ξnS > rk} ≤ P{ξnKk > ck} + P{ξnK
c
k > 1}

≤ 2−k + 2−k = 2−k+1,

which shows that the sequence (ξnS) is tight in RR+. By Lemma A2.2 it
follows that (ξn) is weakly tight in M̂(S).

Finally, we assume condition (v). If S is compact, then S = S, and the
weak and vague topologies coincide. Otherwise, we have ∞ ∈ Kc in S for
K ⊂ K(S), and every f ∈ CK (S) may be extended to a continuous function
f̄ on S satisfying f̄(∞) = 0. By continuous mapping,

ξnf = ξnf̄
d→ ξf̄ = ξf, f ∈ CK (S),

and so ξn
vd−→ ξ on S by FMP 16.16. Since also 1 ∈ CK (S), we get

ξnS = ξnS
d→ ξS = ξS.

This reduces the proof to the case of (iii). �
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The following lemma is often useful to extend a convergence criterion
from the ergodic to the general case.

Lemma A2.4 (randomization) Let µ, µ1, µ2, . . . be probability kernels be-
tween two metric spaces S and T such that sn → s in S implies µn(sn, ·) w→
µ(s, ·) in M1(T ). Then for any random elements ξ, ξ1, ξ2, . . . in S with
ξn

d→ ξ, we have Eµn(ξn, ·) w→ Eµ(ξ, ·). This remains true when the con-
stants s, s1, s2, . . . and random elements ξ, ξ1, ξ2, . . . are restricted to some
measurable subsets S0, S1, . . . ⊂ S.

Proof: For any bounded, continuous function f on T , the integrals µf
and µnf are bounded, measurable functions on S such that sn → s implies
µnf(sn) → µf(s). Hence, the continuous-mapping theorem in FMP 4.27
yields µnf(ξn) d→ µf(ξ), and so Eµnf(ξn) → Eµf(ξ). The assertion follows
since f was arbitrary. The extended version follows by the same argument
from the corresponding extension of FMP 4.27. �

We also need the following elementary tightness criterion.

Lemma A2.5 (hyper-contraction and tightness) Consider some random
variables ξ1, ξ2, . . . ≥ 0, σ-fields F1,F2, . . ., and constant c ∈ (0,∞) such
that a.s.

E[ξ2
n|Fn] ≤ c(E[ξn|Fn])2 < ∞, n ∈ NN.

Then, assuming (ξn) to be tight, so is the sequence ηn = E[ξn|Fn], n ∈ NN.

Proof: Fix any r, ε, and p1, p2, . . . ∈ (0, 1) with pn → 0. Using the
Paley–Zygmund inequality in FMP 4.1, we have a.s. on {ηn > 0}

0 <
(1 − r)2

c
≤ (1 − r)2 (E[ξn|Fn])2

E[ξ2
n|Fn]

≤ P [ξn > rηn| Fn]
≤ P [pnξn > rε| Fn] + 1{pnηn < ε}, (1)

which is also trivially true when ηn = 0. The tightness of (ξn) yields pnξn
P→ 0

by the criterion in FMP 4.9, and so the first term on the right of (1) tends
to 0 in L1, hence also in probability. Since the sum is bounded from below,
we obtain 1{pnηn < ε} P→ 1, which shows that pnηn

P→ 0. Using FMP 4.9 in
the opposite direction, we conclude that even (ηn) is tight. �

A3. Multiple Stochastic Integrals

Multiple Gaussian and Poisson integrals are needed to represent processes
with higher-dimensional symmetries. The former are defined, most natu-
rally, on tensor products

⊗
i Hi = H1 ⊗ · · · ⊗Hd of Hilbert spaces, which are
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understood to be infinite-dimensional and separable, unless otherwise spec-
ified. Given an ortho-normal basis (ONB) hi1, hi2, . . . in each Hi, we recall
that the tensor products

⊗
i hi,ji

= h1,j1 ⊗ · · · ⊗ hd,jd
form an ONB in

⊗
i Hi.

Since the Hi are isomorphic, it is often convenient to take Hi = H for all i,
in which case we may write

⊗
i Hi = H⊗d.

For any f ∈ H1 ⊗ · · · ⊗ Hd, we define the supporting spaces M1, . . . ,Md

of f to be the smallest closed, linear sub-spaces Mi ⊂ Hi, i ≤ d, such that
f ∈ M1 ⊗ · · · ⊗ Md. More precisely, the Mi are the smallest closed, linear
sub-spaces of Hi such that f has an orthogonal expansion in terms of tensor
products h1 ⊗ · · · ⊗ hd with hi ∈ Mi for all i. (Such an expansion is said
to be minimal if it is based on the supporting spaces Mi.) For a basis-free
description of the Mi, write H′

i =
⊗

j �=i Hj , and define some bounded, linear
operators Ai : H′

i → Hi by

〈g,Aih〉 = 〈f, g ⊗ h〉, g ∈ Hi, h ∈ H ′
i , i ≤ d.

Then Mi equals R(Ai), the closed range of Ai.
The orthogonal representation of an element f ∈ H1 ⊗ · · · ⊗ Hd clearly

depends on the choice of ortho-normal bases in the d spaces. In the two-
dimensional case, however, there is a simple diagonal version, which is essen-
tially unique.

Lemma A3.1 (diagonalization) For any f ∈ H1 ⊗ H2, there exist a finite
or infinite sequence λ1, λ2, . . . > 0 with

∑
j λ2

j < ∞ and some ortho-normal
sequences ϕ1, ϕ2, . . . in H1 and ψ1, ψ2, . . . in H2, such that

f =
∑

j
λj (ϕj ⊗ ψj). (1)

This representation is unique, apart from joint, orthogonal transformations
of the elements ϕj and ψj , within sets of indices j with a common value
λj > 0. Furthermore, the expansion in (1) is minimal.

Proof: Define a bounded linear operator A : H2 → H1 and its adjoint
A∗ : H1 → H2 by

〈g,Ah〉 = 〈A∗g, h〉 = 〈f, g ⊗ h〉, g ∈ H1, h ∈ H2. (2)

Then A∗A is a positive, self-adjoint, and compact operator on H2, and so
it has a finite or infinite sequence of eigen-values λ2

1 ≥ λ2
2 ≥ · · · > 0 with

associated ortho-normal eigen-vectors ψ1, ψ2, . . . ∈ H2. For definiteness, we
may choose λj > 0 for all j. It is easy to check that the elements ϕj =
λ−1

j Aψj ∈ H1 are ortho-normal eigen-vectors of the operator AA∗ on H1

with the same eigen-values, and that

Aψj = λjϕj, A∗ϕj = λjψj. (3)
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This remains true for any extension of the sequences (ϕi) and (ψi) to ONBs
of H1 and H2. Since the tensor products ϕi ⊗ ψj form an ONB in H1 ⊗ H2,
we have a representation

f =
∑

i,j
cij (ϕi ⊗ ψj),

for some constants cij with
∑

i,j c2
ij < ∞. Using (2) and (3), we obtain

cij = 〈f, ϕi ⊗ ψj〉 = 〈Aψj, ϕi〉 = λj〈ϕj, ϕi〉 = λjδij ,

and (1) follows.
Conversely, suppose that (1) holds for some constants λj > 0 and ortho-

normal elements ϕj ∈ H1 and ψj ∈ H2. Combining this with (2) yields (3),
and so the λ2

j are eigen-values of A∗A with associated ortho-normal eigen-
vectors ψj . This implies the asserted uniqueness of the λj and ψj . Since any
other sets of eigen-vectors ψ′

j and ϕ′
j must satisfy (3), the two sets are related

by a common set of orthogonal transformations. Finally, the minimality of
the representation (1) is clear from (3). �

A process η on a Hilbert space H is said to be iso-normal if ηh ∈ L2

for every h ∈ H and the mapping η preserves inner products, so that
E(ηhηk) = 〈h, k〉. By a G-process on H we mean an iso-normal, centered
Gaussian process on H. More generally, we define a continuous, linear, ran-
dom functional (CLRF) on H as a process η on H such that

η(ah + bk) = aηh + bηk a.s., h, k ∈ H, a, b ∈ RR,

ηhn
P→ 0, ‖hn‖ → 0.

We need the following basic existence and uniqueness result, valid for multiple
stochastic integrals based on independent or identical G-processes.

Theorem A3.2 (multiple Gaussian integrals, Wiener, Itô) Let η1, . . . , ηd

be independent G-processes on some Hilbert spaces H1, . . . ,Hd, and fix any
k1, . . . , kd ∈ NN. Then there exists an a.s. unique CLRF η =

⊗
i η

⊗ki on
H =

⊗
i H

⊗ki
i such that(⊗

i
η⊗ki

i

) (⊗
i,j

fij

)
=
∏

i,j
ηifij ,

whenever the elements fij ∈ Hi are orthogonal in j for fixed i. The functional
η is L2-bounded with mean 0.

Proof: The result for d = 1 is classical (cf. FMP 13.21). In general, we
may introduce the G-process ζ =

⊕
i ηi on the Hilbert space H =

⊕
i Hi and

put χ = ζ⊗k, where k =
∑

i ki. The restriction η of χ to
⊗

i H
⊗ki
i has clearly

the desired properties. �

We also need some norm estimates for multiple Wiener–Itô integrals.
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Lemma A3.3 (hyper-contraction, Nelson) Let η1, . . . , ηd be independent G-
processes on some Hilbert spaces H1, . . . ,Hd, and fix any p > 0 and k1, . . . ,
kd ∈ NN. Then we have, uniformly in f ,∥∥∥(⊗

i
η⊗ki

i

)
f
∥∥∥

p
<
�

‖f‖, f ∈
⊗

i
H⊗ki

i .

Proof: Considering the G-process η = η1 + · · ·+ηd in H =
⊕

i Hi, we may
write the multiple integral (

⊗
i η

⊗ki
i )f in the form η⊗kg for a suitable element

g ∈ H⊗k with ‖g‖ = ‖f‖, where k =
∑

i ki. It is then enough to prove that,
for any p > 0 and n ∈ NN,

‖η⊗nf‖p <
�

‖f‖, f ∈ H⊗n. (4)

Here we may take H = L2(RR+, λ) and let η be generated by a standard
Brownian motion B on RR+, in which case f may be regarded as an element
of L2(λn). Considering separately each of the n! tetrahedral regions in RRn

+,
we may further reduce to the case where f is supported by the set

∆n = {(t1, . . . , tn) ∈ RRn
+; t1 < · · · < tn}.

Then η⊗nf can be written as an iterated Itô integral (FMP 18.13)

η⊗nf =
∫

dBtn

∫
dBtn−1 · · ·

∫
f(t1, . . . , tn) dBt1

=
∫

(η⊗(n−1)f̂t) dBt, (5)

where f̂tn(t1, . . . , tn−1) = f(t1, . . . , tn).
For n = 1 we note that ηf is N(0, ‖f‖2

2), and therefore

‖ηf‖p = ‖η(f/‖f‖2)‖p ‖f‖2 <
�

‖f‖2, f ∈ L2(λ),

as required. Now suppose that (4) holds for all multiple integrals up to order
n − 1. Using the representation (5), a BDG-inequality from FMP 17.7, the
extended Minkowski inequality in FMP 1.30, the induction hypothesis, and
Fubini’s theorem, we get for any p ≥ 2

‖η⊗nf‖p =
∥∥∥∥∫ (η⊗(n−1)f̂t) dBt

∥∥∥∥
p

<
�

∥∥∥∥∫ (η⊗(n−1)f̂t)2 dt

∥∥∥∥1/2

p/2

≤
(∫

‖η⊗(n−1)f̂t‖2
p dt

)1/2

<
�

(∫
‖f̂t‖2

2 dt
)1/2

= ‖f‖2.

Taking p = 2 and using Jensen’s inequality, we get for any p ≤ 2

‖η⊗nf‖p ≤ ‖η⊗nf‖2 <
�

‖f‖2, f ∈ L2(λn).

This completes the induction and proves (4). �
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Next we construct the tensor product X ⊗ h of a CLRF X on H with a
fixed element h ∈ H.

Lemma A3.4 (mixed multiple integrals) For any CLRF X on H and ele-
ment h ∈ H, there exists an a.s. unique CLRF X ⊗ h on H⊗2 such that

(X ⊗ h)(f ⊗ g) = (Xf) 〈h, g〉 a.s., f, g ∈ H. (6)

Proof: For any h ∈ H, define a linear operator Ah from H to H⊗2 by
Ahf = f ⊗ h, f ∈ H, and note that Ah is bounded since

‖Ahf‖ = ‖f ⊗ h‖ = ‖f‖ ‖h‖, f ∈ H.

The adjoint A∗
h is a bounded, linear operator from H⊗2 to H, and we may

define a CLRF X ⊗ h on H⊗2 by

(X ⊗ h)f = XA∗
hf, f ∈ H⊗2. (7)

For any f, g, k ∈ H, we have

〈k,A∗
h(f ⊗ g)〉 = 〈Ahk, f ⊗ g〉 = 〈k ⊗ h, f ⊗ g〉 = 〈k, f〉 〈h, g〉,

which implies
A∗

h(f ⊗ g) = 〈h, g〉 f, f, g ∈ H.

Combining with (7) and using the linearity of X, we obtain (6). To prove the
asserted uniqueness, fix any ONB h1, h2, . . . of H and apply (6) to the the
tensor products hi ⊗ hj , i, j ∈ NN, which form an ONB in H⊗2. The required
uniqueness now follows by the linearity and continuity of X. �

We turn our attention to double Poisson integrals of the form ξηf or
ξ2f , where ξ and η are independent Poisson processes on some measurable
spaces S and T . We assume the underlying intensity measures Eξ and Eη
to be σ-finite, and to simplify the writing we may take S = T = RR+ and
Eξ = Eη = λ. The existence poses no problem, since the mentioned integrals
can be defined as path-wise, Lebesgue-type integrals with respect to the
product measures ξ ⊗ η and ξ2 = ξ ⊗ ξ, respectively. It is less obvious when
these integrals converge.

The following result gives necessary and sufficient conditions for the a.s.
convergence of the stochastic integrals ξf , ξ2f , or ξηf , where ξ and η are
independent, unit rate Poisson processes on RR+ and f ≥ 0 is a measurable
function on RR+ or RR2

+, respectively. Given a measurable function f ≥ 0 on
RR2

+, we define f1 = λ2f̂ and f2 = λ1f̂ , where f̂ = f ∧ 1, and λif denotes the
Lebesgue integral of f in the i-th coordinate. Also put f∗ = sups |f(s)|, and
write λD for normalized Lebesgue measure along the diagonal D = {(x, y) ∈
RR2

+; x = y}.
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Theorem A3.5 (convergence of Poisson integrals, Kallenberg and Szulga)
Let ξ and η be independent, unit rate Poisson processes on RR+. Then for
any measurable function f ≥ 0 on RR+, we have ξf < ∞ a.s. iff λf̂ < ∞. If
f ≥ 0 is instead measurable on RR2

+ and fi = λjf̂ for i �= j, we have ξηf < ∞
a.s. iff these three conditions are fulfilled:

(i) λ{fi = ∞} = 0 for i = 1, 2,
(ii) λ{fi > 1} < ∞ for i = 1, 2,
(iii) λ2[f̂ ; f1 ∨ f2 ≤ 1] < ∞.

Finally, ξ2f < ∞ a.s. iff (i)–(iii) hold and λDf̂ < ∞.

Our proof is based on a sequence of lemmas. We begin with some ele-
mentary moment formulas, where we write ψ(t) = 1 − e−t for t ≥ 0.

Lemma A3.6 (moment identities) Let ξ and η be independent, unit rate
Poisson processes on RR+. Then for any measurable set B ⊂ RR+ or function
f ≥ 0 on RR+ or RR2

+, we have

(i) Eψ(ξf) = ψ(λ(ψ ◦ f)),
(ii) P{ξB > 0} = ψ(λB),
(iii) E(ξf)2 = λf2 + (λf)2, Eξηf = λ2f ,
(iv) E(ξηf)2 = λ2f2 + λ(λ1f)2 + λ(λ2f)2 + (λ2f)2.

Proof: Statements (i) and (ii) appear in FMP 12.2. For claim (iii), note
that E(ξB)2 = λB + (λB)2, and extend by linearity, independence, and
monotone convergence. To prove (iv), conclude from (iii) and Fubini’s theo-
rem that

E(ξηf)2 = E(ξ(ηf))2 = Eλ1(ηf)2 + E(λ1ηf)2

= λ1E(ηf)2 + E(η(λ1f))2

= λ2f2 + λ1(λ2f)2 + λ2(λ1f)2 + (λ2f)2. �

We proceed to estimate the tails in the distribution of ξηf . For simplicity
we let f ≤ 1, so that fi = λjf for i �= j.

Lemma A3.7 (tail estimate) Let ξ be a unit rate Poisson process on RR+,
and consider a measurable function f : RR2

+ → [0, 1] with λ2f < ∞. Then

P
{
ξηf > 1

2λ
2f
}

>
�

ψ

(
λ2f

1 + f∗
1 ∨ f∗

2

)
.

Proof: We may clearly assume that λ2f > 0. By Lemma A3.6 we have
Eξηf = λ2f and

E(ξηf)2 ≤ (λ2f)2 + λ2f + f∗
1 λf1 + f∗

2 λf2

= (λ2f)2 + (1 + f∗
1 + f∗

2 )λ2f,
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and so the Paley–Zygmund inequality in FMP 4.1 yields

P
{
ξηf > 1

2λ
2f
}

≥ (1 − 1
2)

2(λ2f)2

(λ2f)2 + (1 + f∗
1 ∨ f∗

2 )λ2f

>
�

(
1 +

1 + f∗
1 ∨ f∗

2

λ2f

)−1

>
�

ψ

(
λ2f

1 + f∗
1 ∨ f∗

2

)
. �

Lemma A3.8 (decoupling) Let ξ and η be independent, unit rate Poisson
processes on RR+. Then for any measurable functions f ≥ 0 on RR2

+ with f = 0
on D, we have

Eψ(ξ2f) � Eψ(ξηf).

Proof: We may clearly assume that f is supported by the wedge W =
{(s, t); 0 ≤ s < t}. It is equivalent to show that

E[(V · ξ)∞ ∧ 1] � E[(V · η)∞ ∧ 1],

where Vt = ξf(·, t) ∧ 1. Here V is clearly predictable with respect to the
right-continuous and complete filtration induced by ξ and η (FMP 25.23).
The random time

τ = inf{t ≥ 0; (V · η)t > 1}
is then optional (FMP 7.6), and so the process 1{τ ≥ t} is again predictable
(FMP 25.1). Noting that ξ and η are both compensated by λ (FMP 25.25),
we get (FMP 25.22)

E[(V · ξ)∞; τ = ∞] ≤ E(V · ξ)τ = E(V · λ)τ = E(V · η)τ

≤ E[(V · η)∞ ∧ 1] + 2P{τ < ∞},

and therefore

E[(V · ξ)∞ ∧ 1] ≤ E[(V · ξ)∞; τ = ∞] + P{τ < ∞}
≤ E[(V · η)∞ ∧ 1] + 3P{τ < ∞}
≤ 4E[(V · η)∞ ∧ 1].

The same argument applies with the roles of ξ and η interchanged. �

Proof of Theorem A3.5: To prove the first assertion, let f ≥ 0 on RR+.
Then Lemma A3.6 (i) shows that ξf = ∞ a.s. iff λf̂ ≥ λ(ψ ◦ f) = ∞, and
so by Kolmogorov’s zero-one law we have ξf < ∞ a.s. iff λf̂ < ∞.

Turning to the second assertion, let f ≥ 0 on RR2
+. Since ξ ⊗ η is a.s.

simple, we have ξηf < ∞ iff ξηf̂ < ∞ a.s., which allows us to take f ≤ 1.
First assume conditions (i)–(iii). Here (i) yields

Eξη[f ; f1 ∨ f2 = ∞] ≤
∑

i
λ2[f ; fi = ∞] = 0,
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and so we may assume that f1, f2 < ∞. Then the first assertion yields
ηf(s, ·) < ∞ and ξf(·, s) < ∞ a.s. for every s ≥ 0. Furthermore, (ii) implies
ξ{f1 > 1} < ∞ and η{f2 > 1} < ∞ a.s. By Fubini’s theorem we get a.s.

ξη[f ; f1 ∨ f2 > 1] ≤ ξ[ηf ; f1 > 1] + η[ξf ; f2 > 1] < ∞,

which allows us to assume that even f1, f2 ≤ 1. Then (iii) yields Eξηf =
λ2f < ∞, which implies ξηf < ∞ a.s.

Conversely, suppose that ξηf < ∞ a.s. for some function f into [0, 1]. By
Lemma A3.6 (i) and Fubini’s theorem we have

Eψ(λψ(tηf)) = Eψ(tξηf) → 0, t ↓ 0,

which implies λψ(tηf) → 0 a.s., and hence ηf < ∞ a.e. λ ⊗ P . By the
first assertion and Fubini’s theorem we get f1 = λ2f < ∞ a.e. λ, and the
symmetric argument yields f2 = λ1f < ∞ a.e. This proves (i).

Next, Lemma A3.6 (i) yields, on the set {f1 > 1},

Eψ(ηf) = ψ(λ2(ψ ◦ f)) ≥ ψ((1 − e−1)f1)
≥ ψ(1 − e−1) ≡ c > 0.

Hence, for any measurable set B ⊂ {f1 > 1},

Eλ[1 − ψ(ηf); B] ≤ (1 − c)λB,

and so, by Chebyshev’s inequality,

P{λψ(ηf) < 1
2cλB} ≤ P{λ[1 − ψ(ηf); B] > (1 − 1

2c)λB}

≤ Eλ[1 − ψ(ηf); B]
(1 − 1

2c)λB
≤ 1 − c

1 − 1
2c

.

Since B was arbitrary, we conclude that

P{λψ(ηf) ≥ 1
2cλ{f1 > 1}} ≥ 1 − 1 − c

1 − 1
2c

=
c

2 − c
> 0.

Noting that λψ(ηf) < ∞ a.s. by the one-dimensional result and Fubini’s
theorem, we obtain λ{f1 > 1} < ∞. This, together with the corresponding
result for f2, proves (ii).

Finally, we may apply Lemma A3.7 to the function f1{f1 ∨ f2 ≤ 1} to
obtain

P
{
ξηf > 1

2λ
2[f ; f1 ∨ f2 ≤ 1]

}
>
�

ψ
(

1
2λ

2[f ; f1 ∨ f2 ≤ 1]
)
.

This implies (iii), since the opposite statement would yield the contradiction
P{ξηf = ∞} > 0.
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Now turn to the last assertion. Since 1D · ξ2 has coordinate projections ξ,
the one-dimensional result shows that ξ2f1D < ∞ a.s. iff λDf̂ < ∞. Thus,
we may henceforth assume that f = 0 on D. Then Lemma A3.8 yields

Eψ(tξ2f) � Eψ(tξηf), t > 0,

and so, as t → 0,
P{ξ2f = ∞} � P{ξηf = ∞},

which shows that ξ2f < ∞ a.s. iff ξηf < ∞ a.s. �

A4. Complete Monotonicity

For any infinite sequence c0, c1, . . . ∈ RR, put ∆ck = ck+1 − ck, and define
recursively the higher order differences by

∆0ck = ck, ∆n+1ck = ∆(∆nck), k, n ≥ 0,

where all differences are with respect to k. We say that (ck) is completely
monotone if

(−1)n∆nck ≥ 0, k, n ≥ 0. (1)

The definition for finite sequences is the same, apart from the obvious re-
strictions on the parameters k and n.

Next we say that a function f : RR+ → RR is completely monotone, if the
sequence f(nh), n ∈ ZZ+, is completely monotone in the discrete-time sense
for every h > 0. Thus, we require

(−1)n∆n
hf(t) ≥ 0, t, h, n ≥ 0, (2)

where ∆hf(t) = f(t + h)− f(t), and the higher order differences are defined
recursively by

∆0
hf(t) = f(t), ∆n+1

h f(t) = ∆h(∆n
hf(t)), t, h, n ≥ 0,

where all differences are now with respect to t. For functions on [0, 1] the
definitions are the same, apart from the obvious restrictions on t, h, and n.
When f ∈ Ck(RR+) or Ck[0, 1], it is easy to verify by induction that

∆n
hf(t) =

∫ h

0
· · ·

∫ h

0
f (n)(t + s1 + · · · + sn) ds1 · · · dsn,

for appropriate values of t, h, and n, where f (n) denotes the nth derivative
of f . In this case, (2) is clearly equivalent to the condition

(−1)nf (n)(t) ≥ 0, t ∈ I◦, n ≥ 0. (3)

Sometimes it is more convenient to consider the related notion of absolute
monotonicity, defined as in (1), (2), or (3), respectively, except that the
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factor (−1)n is now omitted. Note that a sequence (ck) or function f(t) is
absolutely monotone on a discrete or continuous interval I iff (c−k) or f(−t)
is completely monotone on the reflected interval −I = {t; −t ∈ I}.

We may now state the basic characterizations of completely monotone
sequences and functions. For completeness, we include the elementary case
of finite sequences, using the notation

n(k) =
n!

(n− k)!
= n(n− 1) · · · (n− k + 1), 0 ≤ k ≤ n.

Theorem A4.1 (complete monotonicity, Hausdorff, Bernstein)

(i) A finite sequence c0, . . . , cn ∈ RR is completely monotone with c0 = 1 iff
there exists a random variable κ in {0, . . . , n} such that

ck = Eκ(k)/n(k), k = 0, . . . , n.

(ii) An infinite sequence c0, c1, . . . ∈ RR is completely monotone with c0 = 1
iff there exists a random variable α in [0, 1] such that

ck = Eαk, k ∈ ZZ+.

(iii) A function f : [0, 1] → RR is completely monotone with f(0) = f(0+) =
1 iff there exists a random variable κ in ZZ+ such that

f(t) = E(1 − t)κ, t ∈ [0, 1].

(iv) A function f : RR+ → RR is completely monotone with f(0) = f(0+) = 1
iff there exists a random variable ρ ≥ 0 such that

f(t) = Ee−ρt, t ≥ 0.

In each case, the associated distribution is unique.

Proof: See Feller (1971), pp. 223, 225, 439. �

Next we say that a function f : RRd → CC is non-negative definite if∑
h,k

chc̄kf(xh − xk) ≥ 0, c1, . . . , cd ∈ CC, x1, . . . , xd ∈ RRd.

The following result characterizes non-negative definite functions in terms of
characteristic functions.

Theorem A4.2 (non-negative definite functions, Bochner) A function f :
RRd → CC is continuous and non-negative definite with f(0) = 1 iff there exists
a random vector ξ in RRd such that

f(t) = Eeitξ, t ∈ RRd.
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Proof: See Feller (1971), p. 622, for the case d = 1. The proof for d > 1
is similar. �

The next result gives a remarkable connection between non-negative def-
inite and completely monotone functions. Given a function f on RR+, we
define the functions fn on RRn by

fn(x1, . . . , xn) = f(x2
1 + · · · + x2

n), x1, . . . , xn ∈ RR. (4)

Theorem A4.3 (Fourier and Laplace transforms, Schoenberg) A contin-
uous function f : RR+ → RR with f(0) = 1 is completely monotone iff the
function fn in (4) is non-negative definite on RRn for every n ∈ NN.

Proof: See Schoenberg (1938a), Theorem 2, Donoghue (1969), pp. 201–
206, or Berg et al. (1984), pp. 144–148. �

A5. Palm and Papangelou Kernels

Given a random measure ξ on a measurable space (S,S), we define the as-
sociated Campbell measure C on S ×M(S) by

Cf = E
∫

f(s, ξ) ξ(ds), f ∈ (S ×M(S))+,

where (S × M(S))+ denotes the class of measurable functions f ≥ 0 on
S × M(S). Since ξ is assumed to be a.s. σ-finite, the same thing is true
for C, and we may choose f to be strictly positive with Cf < ∞, in which
case the projection ν = (f · C)(· × M) is bounded and satisfies νB = 0 iff
ξB = 0 a.s. for every B ∈ S. Any σ-finite measure ν with the latter property
is called a supporting measure for ξ, and we note that ν is unique up to an
equivalence, in the sense of mutual absolute continuity. In particular, we
may choose ν = Eξ when the latter measure is σ-finite.

If S is Borel, then so is M(S), and there exists a kernel Q = (Qs) from
S to M(S) satisfying the disintegration formula

Cf =
∫

ν(ds)
∫

f(s, µ) Qs(dµ), f ∈ (S ×M(S))+, (1)

or simply C = ν ⊗ Q. This can be proved in the same way as the existence
of regular conditional distributions (FMP 6.3–4). The Palm measures Qs

of ξ are a.e. unique up to a normalization, and they can be chosen to be
probability measures—the Palm distributions of ξ—iff ν = Eξ is σ-finite.

When ξ is a point process (i.e. integer-valued), we can also introduce the
reduced Campbell measure C′ on S ×N (S), given by

C′f = E
∫

f(s, ξ − δs) ξ(ds), f ∈ (S ×N (S))+,
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and consider the disintegration of C′ into reduced Palm measures,

C′f =
∫

ν(ds)
∫

f(s, µ) Q′
s(dµ), f ∈ (S ×N (S))+,

or C′ = ν ⊗ Q′. Comparing with (1), we see that∫
B

ν(ds)
∫

f(µ) Q′
s(dµ) = E

∫
B

f(ξ − δs) ξ(ds)

=
∫

B
ν(ds)

∫
f(µ − δs) Qs(dµ),

which implies Q′
s = Qs ◦ (µ − δs)−1 a.e. ν, in the sense that∫

f(µ) Q′
s(dµ) =

∫
f(µ − δs) Qs(dµ), s ∈ S a.e. ν.

If Eξ is σ-finite, then again we may choose ν = Eξ, in which case Q′
s may

be thought of as the conditional distribution of ξ − δs, given that ξ{s} > 0.
We may also consider a disintegration of C′ in the other variable. This

is especially useful when C′(S × ·) ! L(ξ), in the sense that P{ξ ∈ A} = 0
implies C′(S × A) = 0, since we can then choose the supporting measure
on N (S) to be equal to L(ξ). Unfortunately, the stated absolute continuity
may fail in general, which makes the present theory more complicated. In
the following we shall often write 1B · ξ = 1Bξ, for convenience.

Theorem A5.1 (disintegration kernel, Papangelou, Kallenberg) Let C′ be
the reduced Campbell measure of a point process ξ on a Borel space S. Then
there exists a maximal kernel R from N (S) to S such that

E
∫

f(s, ξ) R(ξ, ds) ≤ C′f, f ∈ (S ×N (S))+, (2)

where the random measure η = R(ξ, ·) is given on (supp ξ)c by

1Bη =
E[1Bξ; ξB = 1|1Bcξ]

P [ξB = 0|1Bcξ]
a.s. on {ξB = 0}, B ∈ S. (3)

If ξ is simple, we have η = 0 a.s. on supp ξ, and equality holds in (2) iff

P [ξB = 0|1Bcξ] > 0 a.s. on {ξB = 1}, B ∈ S, (4)

which then remains true on {ξB < ∞}.

By the maximality of R we mean that, if R′ is any other kernel satis-
fying (2), then R′(ξ, ·) ≤ R(ξ, ·) a.s. The maximal solution R is called the
Papangelou kernel of ξ, and we may refer to the associated random measure
η = R(ξ, ·) on S as the Papangelou measure. The requirement (4) for abso-
lute continuity is often referred to as condition (Σ).
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Proof: Since C′ is σ-finite, we may fix a measurable function g > 0 on
S ×N (S) with C′g < ∞ and introduce the projection ν = (g ·C′)(S × ·) on
N (S). Then ν is a supporting measure of C′ in the second variable, in the
sense that C′(S × M) = 0 iff νM = 0 for any measurable set M ⊂ N (S).
Now consider the Lebesgue decomposition ν = νa + νs with respect to L(ξ)
(FMP 2.10), and fix a measurable subset A ⊂ N (S) with νsA = 0 and
P{ξ ∈ Ac} = 0, so that νa = 1A · ν. Then C′(S × (A ∩ ·)) ! L(ξ), in the
sense that the left-hand side vanishes for any set M with P{ξ ∈ M} = 0,
and we may introduce the associated disintegration

E
∫

f(s, ξ) R(ξ, ds) = (1S×A · C′)f ≤ C′f, f ∈ (S ×N (S))+.

If R′ is any other kernel satisfying (2), then for any f as above,

E
∫

f(s, ξ) R′(ξ, ds) = E
[∫

f(s, ξ) R′(ξ, ds); ξ ∈ A
]

≤ C′(1S×Af) = (1S×A · C′)f

= E
∫

f(s, ξ) R(ξ, ds).

Choosing g > 0 as before with C′g < ∞, we get a similar relationship between
the kernels

R̃(ξ, ds) = g(s, ξ)R(ξ, ds), R̃′(ξ, ds) = g(s, ξ)R′(ξ, ds).

In particular, for any B ∈ S, we may take

f(s, ξ) = 1B(s) 1{R̃(ξ,B) < R̃′(ξ,B)}
to obtain

E[R̃(ξ,B) − R̃′(ξ,B); R̃(ξ,B) < R̃′(ξ,B)] ≥ 0,

which implies R̃(ξ,B) ≥ R̃′(ξ,B) a.s. Starting from countably many such
relations and extending by a monotone-class argument, we conclude that
R̃(ξ, ·) ≥ R̃′(ξ, ·) and hence R(ξ, ·) ≥ R′(ξ, ·), outside a fixed null set, which
establishes the required maximality.

Next we show that

1{ξB = 0} ! P [ξB = 0|1Bcξ] a.s., B ∈ S, (5)

where a relation a ! b between two quantities a, b ≥ 0 means that b = 0
implies a = 0. Formula (5) follows from the fact that

P{P [ξB = 0|1Bcξ] = 0, ξB = 0}
= E[P [ξB = 0|1Bcξ]; P [ξB = 0|1Bcξ] = 0] = 0.

Fixing any B ∈ S and letting M ⊂ N (S) be measurable with

M ⊂ M0 ≡ {µ; µB = 0, P [ξB = 0|1Bcξ ∈ dµ] > 0},

we obtain
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C′(B × M) = P{1Bcξ ∈ M, ξB = 1, P [ξB = 0|1Bcξ] > 0}
! E[P [ξB = 0|1Bcξ]; 1Bcξ ∈ M ]
= P{ξB = 0, 1Bcξ ∈ M} ≤ P{ξ ∈ M},

which shows that C′(B × ·) ! L(ξ) on M0. Combining (5) with the maxi-
mality of R, we get for any A ∈ S ∩ B

E[E[ξA; ξB = 1|1Bcξ]; 1Bcξ ∈ M, P [ξB = 0|1Bcξ] > 0]
= E[ξA; 1Bcξ ∈ M, ξB = 1, P [ξB = 0|1Bcξ] > 0]
= C′(A× (M ∩ M0)) = E[ηA; ξ ∈ (M ∩ M0)]
= E[ηA; 1Bcξ ∈ M, ξB = 0, P [ξB = 0|1Bcξ] > 0]
= E[R(1Bcξ,A); 1Bcξ ∈ M, ξB = 0]
= E[R(1Bcξ,A) P [ξB = 0|1Bcξ]; 1Bcξ ∈ M ].

Since M was arbitrary, it follows that

E[ξA; ξB = 1|1Bcξ] 1{P [ξB = 0|1Bcξ] > 0}
= R(1Bcξ,A) P [ξB = 0|1Bcξ],

and so by (5) we have

ηA =
E[ξA; ξB = 1|1Bcξ]

P [ξB = 0|1Bcξ]
a.s. on {ξB = 0},

which extends to (3) since both sides are random measures on B.
From this point on, we assume that ξ is simple. Applying (2) to the

product-measurable function

f(s, µ) = µ{s}, s ∈ S, µ ∈ N (S),

we obtain

E
∫

η{s} ξ(ds) = E
∫

ξ{s} η(ds) ≤ C′f

= E
∫

(ξ − δs){s} ξ(ds)

= E
∫

(ξ{s} − 1) ξ(ds) = 0.

Hence,
∫

η{s}ξ(ds) = 0 a.s., which implies η = 0 a.s. on supp ξ.
Now suppose that (4) is fulfilled. Fix any B ∈ S with ξB < ∞ a.s., and

consider any measurable subset M ⊂ N (S) with P{ξ ∈ M} = 0. Assuming
first that M ⊂ {µB = 0}, we get by (4)

C′(B × M) = E
∫

B
1{(ξ − δs)B = 0, 1Bcξ ∈ M} ξ(ds)

= P{ξB = 1, 1Bcξ ∈ M}
! E[P [ξB = 0|1Bcξ]; 1Bcξ ∈ M ]
= P{ξB = 0, 1Bcξ ∈ M}
≤ P{ξ ∈ M} = 0,

which shows that C′(B × M) = 0.
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Next let M ⊂ {µB < m} for some m ∈ NN. Fix a nested sequence of
countable partitions of B into measurable subsets Bnj , such that any two
points s �= t of B eventually lie in different sets Bnj . By the result for m = 1
and dominated convergence, we obtain

C′(B × M) =
∑

j
C′(Bnj × M)

=
∑

j
C′(Bnj × (M ∩ {µBnj > 0}))

=
∑

j
E
∫

Bnj

1{ξ − δs ∈ M, ξBnj > 1} ξ(ds)

≤ m
∑

j
P{ξB ≤ m, ξBnj > 1}

= mE
[∑

j
1{ξBnj > 1}; ξB ≤ m

]
→ 0,

which shows that again C′(B × M) = 0. The result extends by monotone
convergence, first to the case M ⊂ {µB < ∞}, and then to B = S for general
M . Thus, (4) implies C′(S × ·) ! L(ξ).

Conversely, suppose that C′(S × ·) ! L(ξ). Then for any n ∈ NN, B ∈ S,
and measurable M ⊂ N (S), we have

nP{ξB = n, 1Bcξ ∈ M} = E[ξB; ξB = n, 1Bcξ ∈ M ]
= C′(B × {µB = n− 1, 1Bcµ ∈ M})
! P{ξB = n− 1, 1Bcξ ∈ M}.

Iterating this relation and then summing over n, we obtain

P{ξB < ∞, 1Bcξ ∈ M} ! P{ξB = 0, 1Bcξ ∈ M},

which together with (5) yields

P{ξB < ∞, P [ξB = 0|1Bcξ] = 0}
! P{ξB = 0, P [ξB = 0|1Bcξ] = 0} = 0.

This shows that P [ξB = 0|1Bcξ] > 0, a.s. on {ξB < ∞}. �



Historical and Bibliographical Notes

Only publications closely related to topics in the main text are
mentioned. No completeness is claimed, and I apologize in ad-
vance for inevitable errors and omissions. References to my own
papers are indicated by K(·).

1. The Basic Symmetries

The notion of exchangeability was introduced by Haag (1928), who derived
some formulas for finite sequences of exchangeable events, some of which are
implicit already in the work of de Moivre (1718–56). Further information
about the early development of the subject appears in Dale (1985).

The characterization of infinite, exchangeable sequences as mixtures of
i.i.d. sequences was established by de Finetti, first (1929, 1930) for ran-
dom events, and then (1937) for general random variables. The result was
extended by Hewitt and Savage (1955) to random elements in a compact
Hausdorff space. Dubins and Freedman (1979) and Freedman (1980)
showed by examples that de Finetti’s theorem fails, even in its weaker mix-
ing form, without some regularity conditions on the underlying space.

De Finetti’s study of exchangeable sequences was continued by many
people, including Khinchin (1932, 1952), de Finetti (1933a,b), Dynkin
(1953), Loève (1960–63), Aldous (1982a,b), and Ressel (1985). Olshen
(1971, 1973) noted the equivalence of the various σ-fields occurring in the
conditional form of the result. The paper by Hewitt and Savage (1955)
also contains the celebrated zero-one law named after these authors, exten-
sions of which are given by Aldous and Pitman (1979).

The connection between finite, exchangeable sequences and sampling from
a finite population has been noted by many authors. A vast literature deals
with comparative results for sampling with or without replacement, trans-
lating into comparisons of finite and infinite, exchangeable sequences. A
notable result in this area is the inequality of Hoeffding (1963), which has
been generalized by many authors, including Rosén (1967) and Pathak
(1974). Our continuous-time version in Proposition 3.19 may be new. Error
estimates in the approximation of finite, exchangeable sequences by infinite
ones are given by Diaconis and Freedman (1980b).

For infinite sequences of random variables, Ryll-Nardzewski (1957)
noted that the properties of exchangeability and contractability are equiv-
alent. The result fails for finite sequences, as noted by Kingman (1978a).
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In that case, the relationship between the two notions was investigated in
K(2000). Part (i) of Theorem 1.13 was conjectured by Ivanoff and We-
ber (personal communication) and proved by the author.

Processes with exchangeable increments were first studied by Bühlmann
(1960), who proved a version of Theorem 1.19. Alternative approaches ap-
pear in Accardi and Lu (1993) and in Freedman (1996). Exchangeable
random measures on [0, 1] were first characterized in K(1973b, 1975a); the
corresponding characterizations on the product spaces S ×RR+ and S × [0, 1]
appeared in K(1990a). The relationship between contractable sequences and
processes, stated in Theorem 1.23, is quoted from K(2000). General symme-
try properties, such as those in Theorems 1.17 and 1.18, were first noted for
random measures in K(1975–86). The fact that exchangeability is preserved
under composition of independent processes was noted in K(1982).

Feller (1966–71) noted the connection between exchangeable sequences
and Hausdorff’s (1921) characterization of absolutely monotone sequences.
Further discussion on the subject appears in Kimberling (1973). The cor-
responding relationship between exchangeable processes and Bernstein’s
(1928) characterization of completely monotone functions was explored in
K(1972, 1975–86), and independently by Daboni (1975, 1982). Related re-
marks appear in Freedman (1996). The fact, from K(1973a), that any
exchangeable, simple point process on [0, 1] is a mixed binomial process was
also noted by both Davidson (1974) and Matthes, Kerstan, and Mecke
(1974–82). The characterization of mixed Poisson processes by the order-
statistics property in Corollary 1.28 (iii) goes back to Nawrotzki (1962)
(see also Feigin (1979)). The result in Exercise 12 was explored by Rényi
(1953), in the context of order statistics. The description of the linear birth
(or Yule) process in Exercise 13 is due to Kendall (1966), and alternative
proofs appear in Waugh (1970), Neuts and Resnick (1971), and Athreya
and Ney (1972).

Maxwell (1875, 1878) derived the normal distribution for the velocities
of the molecules in a gas, assuming spherical symmetry and independence in
orthogonal directions. The Gaussian approximation of spherically symmetric
distributions on a high-dimensional sphere seems to be due to Maxwell (op.
cit.) and Borel (1914), though the result is often attributed to Poincaré
(1912). (See the historical remarks in Everitt (1974), p. 134, and Diaconis
and Freedman (1987).) Related discussions and error estimates appear in
McKean (1973), Stam (1982), Gallardo (1983), Yor (1985), and Dia-
conis and Freedman (1987).

Random sequences and processes with more general symmetries than
exchangeability have been studied by many authors, beginning with de
Finetti himself (1938, 1959). In particular, Freedman (1962–63) obtained
the discrete- and continuous-time versions of Theorem 1.31. Alternative
proofs and further discussion appear in papers by Kelker (1970), King-
man (1972b), Eaton (1981), Letac (1981), and Smith (1981). The result
was later recognized as equivalent to the celebrated theorem of Schoenberg
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(1938a,b) in classical analysis.
Related symmetries, leading to mixtures of stable distributions, have been

studied by many authors, including Bretagnolle, Dacunha-Castelle,
and Krivine (1966), Dacunha-Castelle (1975), Berman (1980), Res-
sel (1985, 1988), and Diaconis and Freedman (1987, 1990). The un-
derlying characterization of stable distributions goes back to Lévy (1924,
1925). The general operator version in Theorem 1.37 is quoted from K(1993).
Our Lp-invariance is related to a notion of “pseudo-isotropy,” studied by
Misiewicz (1990). For p �= 2, every linear isometry on Lp[0, 1] is essentially
of the type employed in the proof of Lemma 1.39, according to a character-
ization of Lamperti, quoted by Royden (1988). In the Hilbert-space case
of p = 2, a much larger class of isometries is clearly available.

The only full-length survey of exchangeability theory, previously avail-
able, is the set of lecture notes by Aldous (1985), which also contain an
extensive bibliography. The reader may also enjoy the short but beautifully
crafted survey article by Kingman (1978a). Brief introductions to exchange-
ability theory appear in Chow and Teicher (1997) and in K(2002).

De Finetti himself, one of the founders of Bayesian statistics, turned
gradually (1972, 1974–75) away from mathematics to become a philosopher
of science, developing theories of subjective probability of great originality,
where his celebrated representation theorem plays a central role among the
theoretical underpinnings. An enthusiastic gathering of converts payed trib-
ute to de Finetti at a 1981 Rome conference, held on the occasion of his 75th
birthday. The ensuing proceedings (eds. Koch and Spizzichino (1982))
exhibit a curious mix of mathematics and philosophy, ranging from abstract
probability theory to the subtle art of assigning subjective probabilities to
the possible outcomes of a soccer game.

2. Conditioning and Martingales

The first use of martingale methods in exchangeability theory may be cred-
ited to Loève (1960–63), who used the reverse martingale property of the
empirical distributions to give a short proof of de Finetti’s theorem. A re-
lated martingale argument had previously been employed by Doob (1953)
to give a simple proof of the strong law of large numbers for integrable, i.i.d.
random variables. Though Loève himself (1978) eventually abandoned his
martingale approach to exchangeability, the method has subsequently been
adopted by many text-book authors. The present characterizations of ex-
changeability in terms of reverse martingales, stated in Theorems 2.4, 2.12,
and 2.20, appear to be new.

Martingale characterizations of special processes go back to Lévy (1937–
54), with his celebrated characterization of Brownian motion. A similar
characterization of the Poisson process was dicovered by Watanabe (1964).
Local characteristics of semi-martingales were introduced, independently, by
Jacod (1975) and Grigelionis (1975, 1977), both of whom used them to
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characterize processes with independent increments. The criteria for mixed
Lévy processes in Theorem 2.14 (i) were obtained by Grigelionis (1975),
and a wide range of further extensions and applications may be found in
Jacod and Shiryaev (1987).

The relationship between exchangeability and martingale theory was ex-
plored more systematically in K(1982), which contains the basic discrete-
and continuous-time characterizations of exchangeability in terms of strong
stationarity and reflection invariance, as well as a primitive version of The-
orem 2.15. For finite exchangeable sequences, the relation ξτ

d= ξ1 was also
noted, independently, by Blom (1985). Further semi-martingale character-
izations in discrete and continuous time, including some early versions of
Theorems 2.13 and 2.15, were established in K(1988a). The paper K(2000)
provides improved and extended versions of the same results, gives the basic
norm relations for contractable processes in Theorem 2.23, and contains the
regularization properties in Theorems 2.13 and 2.25. Martingale character-
izations of exchangeable and contractable arrays were recently obtained by
Ivanoff and Weber (1996, 2003, 2004). A property strictly weaker than
strong stationarity has been studied by Berti, Pratelli, and Rigo (2004).

The general representation of exchangeable processes in Theorem 2.18,
originating with K(1972), was first published in K(1973a). The obvious
point-wise convergence of the series of compensated jumps was strength-
ened in K(1974a) to a.s. uniform convergence, after a similar result for Lévy
processes had been obtained by Ferguson and Klass (1972). Hyper-con-
traction methods were first applied to exchangeability theory in K(2002).

The discrete super-martingale in Proposition 2.28 was discovered and ex-
plored in K(1975c), where it was used, along with some special continuous-
time versions, to study stochastic integration with respect to Lévy processes.
The special case of f(x) = x2 had been previously considered by Dubins and
Freedman (1965), and a related maximum inequality appears in Dubins
and Savage (1965). The proof of the general result relies on an elemen-
tary estimate, due to Esseen and von Bahr (1965). The growth rates in
Theorem 2.32, originally derived for Lévy processes by Fristedt (1967) and
Millar (1971, 1972), were extended to more general exchangeable processes
in K(1974b). Finally, a version of Proposition 2.33 appears in K(1989b).

Pure and mixed Poisson processes were characterized by Slivnyak (1962)
and Papangelou (1974b), through the invariance of their reduced Palm
distributions. The general characterization of mixed Poisson and binomial
processes appeared in K(1972, 1973c), and the version for general random
measures was obtained in K(1975a). Motivated by problems in stochas-
tic geometry, Papangelou (1976) also derived related characterizations of
suitable Cox processes, in terms of invariance properties of the associated
Papangelou kernels. Various extensions and asymptotic results were derived
in K(1978a,b; 1983–86).
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3. Convergence and Approximation

Central-limit type theorems for sampling from a finite population and for
finite or infinite sequences of exchangeable random variables have been es-
tablished by many authors, including Blum, Chernoff, Rosenblatt,
and Teicher (1958), Bühlmann (1958, 1960), Chernoff and Teicher
(1958), Erdös and Rényi (1959), Teicher (1960), Bikelis (1969), Moran
(1973), and Klass and Teicher (1987). Asymptotically invariant sampling
from stationary and related processes was studied in K(1999a).

Criteria for Poisson convergence have been given by Kendall (1967),
Ridler-Rowe (1967), and Benczur (1968), and convergence to more gen-
eral limits was considered by Hájek (1960) and Rosén (1964). More re-
cent developments along those lines include some martingale-type limit theo-
rems of Eagleson and Weber (1978), Weber (1980), Eagleson (1982),
and Brown (1982), and some extensions to Banach-space valued random
variables, due to Daffer (1984) and Taylor, Daffer, and Patterson
(1985). Limit theorems for exchangeable arrays were obtained by Ivanoff
and Weber (1992, 1995).

Functional limit theorems for general random walks and Lévy processes
go back to the seminal work of Skorohod (1957). The first genuine finite-
interval results are due to Rosén (1964), who derived criteria for convergence
to a Brownian bridge, in the context of sampling from a finite population. His
results were extended by Billingsley (1968) to summation processes based
on more general exchangeable sequences. Hagberg (1973), still working in
the special context of sampling theory, derived necessary and sufficient con-
ditions for convergence to more general processes. The general convergence
criteria for exchangeable sequences and processes, here presented in Sections
3.1 and 3.3, were first developed in K(1973a), along with the general rep-
resentation theorem for exchangeable processes on [0, 1]. (The latter result
appeared first in K(1972), written independently of Hagberg’s work.)

The restriction and extension results for exchangeable processes, here
exhibited in Section 3.5, also originated with K(1973a). In K(1982), the basic
convergence criterion for exchangeable processes on [0, 1] was strengthened
to a uniform version, in the spirit of Skorohod (1957); the even stronger
coupling result in Theorem 3.25 (iv) is new. The remaining coupling methods
of Section 3.6 were first explored in K(1974b), along with applications to a
wide range of path properties for exchangeable processes. The underlying
results for Lévy processes, quoted in the text, were obtained by Khinchin
(1939), Fristedt (1967), and Millar (1971, 1972).

Though a general convergence theory for exchangeable random measures
on [0, 1] or RR+ was developed already in K(1975a), the more general results
in Section 3.2, involving random measures on the product spaces S × [0, 1]
and S × RR+, appear to be new. The one-dimensional convergence criteria
of Section 3.5 were first obtained in K(1988c), along with additional results
of a similar nature. Finally, an extensive theory for contractable processes
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was developed in K(2000), including the distributional coupling theorem and
related convergence and tightness criteria.

The sub-sequence principles have a rich history, going back to some early
attempts to extend the classical limit theorems of probability theory to the
context of orthogonal functions and lacunary series. (See Gaposhkin (1966)
for a survey and extensive bibliography.) For general sequences of random
variables, sub-sequence principles associated with the law of large numbers
were obtained by Révész (1965) and Komlós (1967). Chatterji (1972)
stated the sub-sequence property for arbitrary limit theorems as an heuristic
principle, and the special cases of the central limit theorem and the law of
the iterated logarithm were settled by Gaposhkin (1972), Berkes (1974),
and Chatterji (1974a,b).

In independent developments, Rényi and Révész (1963) proved that
exchangeable sequences converge in the stable sense, a mode of convergence
previously introduced by Rényi (1963). Motivated by problems in functional
analysis, Dacunha-Castelle (1975) proved that every tight sequence of
random variables contains an asymptotically exchangeable sub-sequence. A
related Banach-space result was obtained, independently, by Figiel and
Sucheston (1976). The stronger version in Theorem 3.32 is essentially due
to Aldous (1977), and the present proof follows the approach in Aldous
(1985).

Kingman (unpublished) noted the subtle connection between the two
sub-sequence problems, and Aldous (1977), in a deep analysis, proved a
general sub-sequence principle for broad classes of weak and strong limit the-
orems. Berkes and Péter (1986) proved Theorem 3.35, along with some
more refined approximation results, using sequential coupling techniques akin
to our Lemma 3.36, previously developed by Berkes and Philipp (1979).
A further discussion of strong approximation by exchangeable sequences ap-
pears in Berkes and Rosenthal (1985).

4. Predictable Sampling and Mapping

Doob (1936) proved the optional skipping property for i.i.d. sequences of ran-
dom variables, thereby explaining the futility of the gambler’s attempts to
beat the odds. His paper is historically significant for being possibly the first
one to employ general optional times. Modernized versions of the same result
are given by Doob (1953), Theorem III.5.2, and Billingsley (1986), The-
orem 7.1, and some pertinent historical remarks appear in Halmos (1985),
pp. 74–76.

The mentioned result was extended in K(1982) to any finite or infinite,
exchangeable sequence, and in K(1988a) the order restriction on the sam-
pling times τ1, . . . , τm was eliminated. Furthermore, the optional skipping
property was extended in K(2000) to arbitrary contractable sequences. The
cited papers K(1982, 1988a, 2000) also contain continuous-time versions of
the same results. The optional skipping and predictable sampling theorems
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were extended by Ivanoff and Weber (2003, 2004) to finite or infinite,
contractable or exchangeable arrays.

The fluctuation identity of Sparre-Andersen (1953–54) was “a sensa-
tion greeted with incredulity, and the original proof was of an extraordinary
intricacy and complexity,” according to Feller (1971). The argument was
later simplified by Feller (op. cit.) and others. The present proof, based on
the predictable sampling theorem, is quoted from K(2002), where the result
is used to give simple proofs of the arcsine laws for Brownian motion and
symmetric Lévy processes.

The time-change reduction of a continuous local martingale to a Brownian
motion was discovered, independently, by Dambis (1965) and Dubins and
Schwarz (1965), and the corresponding multi-variate result was proved by
Knight (1970, 1971). The similar reduction of a quasi-left-continuous, sim-
ple point process to Poisson was proved, independently, by Meyer (1971)
and Papangelou (1972). Cocozza and Yor (1980) derived some more
general reduction theorems of the same type. The general Gauss–Poisson
reduction in Theorem 4.5 is taken from K(1990b).

The invariance criteria for the Brownian motion and bridge are quoted
from K(1989b). Integrability criteria for strictly stable Lévy processes were
first established in K(1975b), and a more careful discussion, covering even the
weakly stable case, appears in K(1992a). The time-change representations
in Theorem 4.24 were obtained for symmetric processes by Rosiński and
Woyczyński (1986), and independently, in the general case, in K(1992a).
(Those more general results were first announced in an invited plenary talk
of 1984.) The general invariance theorem for stable processes appears to be
new.

Apart from the publications already mentioned, there is an extensive lit-
erature dealing with Poisson and related reduction and approximation results
for point processes, going back to the seminal papers of Watanabe (1964)
and Grigelionis (1971). Let us only mention the subsequent papers by
Karoui and Lepeltier (1977), Aalen and Hoem (1978), Kurtz (1980),
Brown (1982, 1983), Merzbach and Nualart (1986), Pitman and Yor
(1986), and Brown and Nair (1988a,b), as well as the monograph of Bar-
bour, Holst, and Janson (1992). Our present development in Section 4.5
is based on results in K(1990b).

5. Decoupling Identities

For a random walk Sn = ξ1 + · · · + ξn on RR and for suitable optional times
τ < ∞, the elementary relations ESτ = Eτ Eξ and ES2

τ = Eτ Eξ2 were
first noted and explored by Wald (1944, 1945), in connection with his de-
velopment of sequential analysis. The formulas soon became standard tools
in renewal and fluctuation theory. Elementary accounts of the two equa-
tions and their numerous applications appear in many many texts, including
Feller (1971) and Chow and Teicher (1997).
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Many authors have improved on Wald’s original statements by relaxing
the underlying moment conditions. Thus, Blackwell (1946) established
the first order relation under the minimal conditions Eτ < ∞ and E|ξ| < ∞.
When Eξ = 0 and Eξ2 < ∞, the first order Wald equation ESτ = 0 remains
true under the weaker condition Eτ1/2 < ∞, as noted by Burkholder
and Gundy (1970), and independently by Gordon (as reported in Chung
(1974), p. 343). The latter result was extended by Chow, Robbins, and
Siegmund (1971), who showed that if Eξ = 0 and E|ξ|p < ∞ for some
p ∈ [1, 2], then the condition Eτ1/p < ∞ suffices for the validity of ESτ = 0.
The ultimate result in this direction was obtained by Klass (1988), who
showed that if Eξ = 0, then ESτ = 0 holds already under the minimal
condition Eaτ < ∞, where an = E|Sn|.

We should also mention an extension of the first order Wald identity to
dependent random variables, established by Franken and Lisek (1982) in
the context of Palm distributions. The result also appears in Franken,
König, Arndt, and Schmidt (1981).

The continuous-time Wald identities EBτ = 0 and EB2
τ = Eτ , where B

is a standard, one-dimensional Brownian motion, have been used extensively
in the literature, and detailed discussions appear in, e.g., Loève (1978) and
Karatzas and Shreve (1991). Here the first order relation holds when
Eτ1/2 < ∞ and the second order formula is valid for Eτ < ∞. Those
equations, along with some more general, first and second order moment
identities for the Itô integral V ·B, follow from the basic martingale properties
of stochastic L2-integrals, first noted and explored by Doob (1953).

The general decoupling identities for exchangeable sums and integrals
on bounded or unbounded index sets were originally obtained in K(1989b),
where the connection with predictable sampling was also noted. The tetrahe-
dral moment identities for contractable sums and integrals were first derived,
under more restrictive boundedness conditions, in K(2000).

Predictable integration with respect to Lévy processes was essentially
covered already by the elementary discussion of the stochastic L2-integral
in Doob (1953). The theory is subsumed by the more general, but also
more sophisticated, semi-martingale theory, as exhibited in Chapter 26 of
K(2002). A detailed study of Lévy integrals was undertaken in Millar
(1972) and K(1975b). The quoted norm conditions, presented here without
any claims to optimality, were originally derived in K(1989b), along with
similar estimates in the general, exchangeable case.

6. Homogeneity and Reflections

The notions of local homogeneity and reflection invariance were first intro-
duced and studied in K(1982), where versions can be found for random sets
of the basic representation theorems. The same paper includes a discussion
of the multi-state case and its connections with the Markov property, and it
also contains a simple version of the uniform sampling Theorem 6.17.
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Excursion theory and the associated notion of local time can be traced
back to a seminal paper of Lévy (1939). Building on Lévy’s ideas, Itô
(1972) showed how the excursion structure of a Markov process can be rep-
resented in terms of a Poisson process on the local time scale. Regenerative
sets with positive Lebesgue measure were studied extensively by Kingman
(1972a). An introduction to regenerative processes and excursion theory ap-
pears in Chapter 22 of K(2002), and a more detailed exposition is given by
Dellacherie, Maisonneuve, and Meyer (1987, 1992), Chapters 15 and
20.

Exchangeable partitions of finite intervals arise naturally in both theory
and applications. In particular, they appear to play a significant role in game
theory. Their Hausdorff measure was studied in K(1974b), where results for
regenerative sets were extended to the finite-interval case. The associated
distributions also arose naturally in K(1981), as Palm measures of regener-
ative sets. The latter paper further contains discussions, in the regenerative
case, of continuity properties for the density of the local time intensity mea-
sure Eξ. Similar results on a finite interval were obtained in K(1983), where
a slightly weaker version of Theorem 6.16 appears.

Both Carleson and Kesten, in independent work, proved that a sub-
ordinator with zero drift and infinite Lévy measure will a.s. avoid any fixed
point in (0,∞), a result originally conjectured by Chung. Their entirely dif-
ferent approaches are summarized in Assouad (1971) and Bertoin (1996),
Theorem III.4. The corresponding result for exchangeable partitions of [0, 1]
was established by Berbee (1981). Our simple proof, restricted to the reg-
ular case, is adapted from K(1983). The asymptotic probability for an ex-
changeable random set in RR+ or [0, 1] to hit a short interval was studied
extensively in K(1999c, 2001, 2003), along with the associated conditional
distribution. Some extensions of those results to higher dimensions were
derived by Elalaoui-Talibi (1999).

Blumenthal and Getoor (1968) noted that the strong Markov prop-
erty follows from a condition of global homogeneity, in a version for optional
times that may take infinite values. (To obtain a true Markov process, in
the sense of the usual axiomatic definition, one needs to go on and construct
an associated transition kernel, a technical problem addressed by Walsh
(1972).) Connections with exchangeability were noted in K(1982), and some
related but less elementary results along the same lines, though with homo-
geneity defined in terms of finite optional times, were established in K(1987)
(cf. Theorem 8.23 in K(2002) for a short proof in a special case). In K(1998),
the homogeneity and independence components of the strong Markov prop-
erty were shown, under suitable regularity conditions, to be essentially equiv-
alent. A totally unrelated characterization of mixed Markov chains was noted
by Diaconis and Freedman (1980a) and subsequently studied by Zaman
(1984, 1986).
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7. Symmetries on Arrays

The notion of partial exchangeability of a sequence of random variables—
the invariance in distribution under a sub-group of permutations—goes back
to de Finetti (1938, 1959, 1972), and has later been explored by many
authors. Separately (or row-column) exchangeable arrays X = (Xij), first
introduced by Dawid (1972), arise naturally in connection with a Bayesian
approach to the analysis of variance. Jointly exchangeable, set-indexed ar-
rays X = (X{i,j}) (often referred to as weakly exchangeable) arise naturally in
the context of U-statistics, a notion first introduced by Hoeffding (1948).
Dissociated and exchangeable arrays were studied in some early work of
McGinley and Sibson (1975), Silverman (1976), and Eagleson and
Weber (1978).

A crucial breakthrough in the development of the subject came with the
first representation theorems for row-column and weakly exchangeable ar-
rays, established independently by Aldous (1981) and Hoover (1982a),
using entirely different methods. While the proof appearing in Aldous
(1981), also outlined in Aldous (1985) and attributed by the author to
Kingman, is purely probabilistic, the proof of Hoover (1982a), also out-
lined in Hoover (1982b), is based on profound ideas in symbolic logic and
non-standard analysis. The underlying symmetry properties were considered
much earlier by logicians, such as Gaifman (1961) and Krauss (1969), who
obtained de Finetti-type results in the two cases, from which the functional
representations can be derived.

Hoover (1979), in a formidable, unpublished manuscript, went on to
prove the general representation theorems for separately or jointly exchange-
able arrays on NNd, d ≥ 1, using similar techniques from mathematical logic.
His paper also provides criteria for the equivalence of two representing func-
tions, corresponding to our condition (iii) in Theorems 7.28 and 7.29. (Con-
dition (ii) was later added in K(1989a, 1992b, 1995).) A probabilistic ap-
proach to Hoover’s main results, some of them in a slightly extended form,
was provided in K(1988b, 1989a, 1992b, 1995). Contractable arrays on ÑN
were studied in K(1992b), where the corresponding functional representation
and equivalence criteria were established.

A different type of representation was obtained by Dovbysh and Su-
dakov (1982), in the special case of positive definite, symmetric, jointly
exchangeable arrays of dimension two. Hestir (1986) shows how their re-
sult can be deduced from Hoover’s representation.

Conditional properties of exchangeable arrays have been studied by many
authors. In particular, extensions and alternative proofs of the basic Lemma
7.6 have been provided by Lynch (1984), K(1989a), and Hoover (1989).
The conditional relations presented here were developed in K(1995). Conver-
gence criteria and martingale-type properties for exchangeable arrays have
been studied extensively by Ivanoff and Weber (1992, 1995, 1996, 2003).
The relevance of such arrays and their representations, in the contexts of the
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analysis of variance and Bayesian statistics, has been discussed by Kingman
(1979), Speed (1987), and others.

An application to the study of visual perception was considered by Dia-
conis and Freedman (1981), who used simulations of exchangeable arrays
of zeros and ones to disprove some conjectures in the area, posed by the
psychologist Julesz and his followers. Such considerations lead naturally to
the statistical problem of estimating (a version of) the representation func-
tion for an exchangeable array, given a single realization of the process. The
problem was solved in K(1999b), to the extent that a solution seems at all
possible. A non-technical introduction to exchangeable arrays appears in
Aldous (1985), where more discussion and further references can be found.

Motivated by some problems in population genetics, Kingman (1978b,
1982b) studied exchangeable partitions of NN and proved the corresponding
special case of the so-called paint-box representation in Theorem 7.38. (The
term comes from the mental picture, also suggested by Kingman, of an in-
finite sequence of objects, painted in randomly selected colors chosen from
a possibly infinite paint box, where one considers the partition into classes
of objects with the same color.) The present result for general symmetries
is new; its proof was inspired by the first of two alternative approaches to
Kingman’s result suggested by Aldous (1985). A continuity theorem for
exchangeable partitions appears in Kingman (1978c, 1980). Some algebraic
and combinatorial aspects of exchangeable partitions have been studied ex-
tensively by Pitman (1995, 2002) and Gnedin (1997).

8. Multi-variate Rotations

The early developments in this area were motivated by some limit theorems
for U-statistics, going back to Hoeffding (1948). Here the classical theory
is summarized in Serfling (1980), and some more recent results are given by
Dynkin and Mandelbaum (1983) and Mandelbaum and Taqqu (1984).
Related results for random matrices are considered in Hayakawa (1966) and
Wachter (1974).

Jointly rotatable matrices may have been mentioned for the first time
in Olson and Uppuluri (1970, 1973), where a related characterization is
proved. Infinite, two-dimensional, separately and jointly rotatable arrays
were introduced by Dawid (1977, 1978), who also conjectured the general
representation formula in the separate case. The result was subsequently
proved by Aldous (1981), for dissociated arrays and under a moment con-
dition, restrictions that were later removed in K(1988b). The latter paper
also characterizes two-dimensional, jointly rotatable arrays, as well as sepa-
rately or jointly exchangeable random sheets. It further contains some related
uniqueness and continuity criteria.

Independently of K(1988b), Hestir (1986) derived the representation
formula for separately exchangeable random sheets on RR2

+, in the special case
of vanishing drift components and under a moment condition, using a char-
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acterization of jointly exchangeable, positive definite arrays from Dovbysh
and Sudakov (1982). Other, apparently independent, developments include
a paper by Olshanski and Vershik (1996), where a related representation
is established for jointly rotatable, Hermitian arrays.

The general theory of separately or jointly rotatable random arrays and
functionals of arbitrary dimension was originally developed in K(1994, 1995),
with some crucial ideas adopted from Aldous (1981), as indicated in the
main text. The paper K(1995) also provides characterizations of exchange-
able and contractable random sheets of arbitrary dimension. Brownian sheets
and related processes have previously been studied by many authors, includ-
ing Orey and Pruitt (1973) and Adler (1981).

9. Symmetric Measures in the Plane

The topic of exchangeable point processes in the plane first arose in dis-
cussions with Aldous (personal communication, 1979), and a general rep-
resentation in the ergodic, separately exchangeable case was conjectured in
Aldous (1985). The five basic representation theorems for exchangeable
random measures in the plane were subsequently established in K(1990a).
The extension theorem for contractable random measures was proved by Ca-
sukhela (1997).

Appendices

The general theory of integral representations over extreme points was de-
veloped by Choquet (1960), and modern expositions of his deep results
may be found in Alfsen (1971) and in Dellacherie and Meyer (1983),
Chapter 10. The special case of integral representations of invariant distri-
butions has been studied extensively by many authors, including Farrell
(1962), Varadarajan (1963), Phelps (1966), Maitra (1977), and Ker-
stan and Wakolbinger (1981). The connection with sufficient statistics
was explored by Dynkin (1978), Diaconis and Freedman (1984), and
Lauritzen (1989). Our general extremal decompositions are adapted from
K(2000). Ergodicity is usually defined in terms of strictly invariant sets,
which may require an extra condition on the family of transformations in
Lemma A1.2. The randomization and selection Lemmas A1.5 and A1.6 are
quoted from K(1988b) and K(2000), respectively, and the simple conserva-
tion law in Lemma A1.1 is adapted from K(1990a).

The equivalence of tightness and weak relative compactness, for probabil-
ity measures on a Polish space, was established by Prohorov (1956). The
general criteria were applied in Prohorov (1961) to random measures on
a compact metric space. Tightness criteria for the vague topology on a Pol-
ish space were developed by Debes, Kerstan, Liemant, and Matthes
(1970–71) and Harris (1971), and the corresponding criteria in the locally
compact case were noted by Jagers (1974). The relationship between the
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weak and vague topologies for bounded random measures on a locally com-
pact space was examined in K(1975–86). The present criterion for weak
tightness of bounded random measures on a Polish space is adapted from
Aldous (1985). The associated convergence criterion may be new.

The theory of multiple integrals with respect to Brownian motion was
developed in a seminal paper of Itô (1951). The underlying idea is implicit
in Wiener’s (1938) discussion of chaos expansions of Gaussian functionals.
For a modern account, see Chapters 13 and 18 of K(2002). The associated
hyper-contraction property was discovered by Nelson (1973), and related
developments are surveyed in Dellacherie et al. (1992) and Kwapień and
Woyczyński (1992). Convergence criteria for Poisson and related integrals
were derived by Kallenberg and Szulga (1989).

The characterization of completely monotone sequences is due to Haus-
dorff (1921), and the corresponding results for completely monotone func-
tions on RR+ and [0, 1] were obtained by Bernstein (1928). Simple, proba-
bilistic proofs of these results were given by Feller (1971), pp. 223–225 and
439–440. Bochner (1932) proved his famous characterization of positive
definite functions, after a corresponding discrete-parameter result had been
noted by Herglotz (1911). Simple proofs of both results appear in Feller
(1971), pp. 622 and 634. The fundamental relationship between completely
monotone and positive definite functions was established by Schoenberg
(1938a,b). Modern proofs and further discussion appear in Donoghue
(1969) and Berg, Christensen, and Ressel (1984).

The idea of Palm probabilities goes back to Palm (1943), and the modern
definition of Palm distributions, via disintegration of the Campbell measure,
is due to Ryll-Nardzewski (1961). The Papangelou kernel of a simple
point process was introduced in a special case by Papangelou (1974b),
and then in general in K(1978a). Nguyen and Zessin (1979) noted the
profound connection between point process theory and statistical mechanics,
and Matthes, Warmuth, and Mecke (1979) showed how the Papangelou
kernel can be obtained, under the regularity condition (Σ), through disinte-
gration of the reduced Campbell measure. The present approach, covering
even the general case, is based on K(1983–86).
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skreis. Ber. verh. Sächs. Ges. Wiss. Leipzig, Math.-Phys. Kl. 63, 501–511.

Hestir, K. (1986). The Aldous representation theorem and weakly exchangeable
non-negative definite arrays. Ph.D. dissertation, Statistics Dept., Univ. of
California, Berkeley.

Hewitt, E., Savage, L.J. (1955). Symmetric measures on Cartesian products.
Trans. Amer. Math. Soc. 80, 470–501.

Hill, B.M., Lane, D., Sudderth, W. (1987). Exchangeable urn processes.
Ann. Probab. 15, 1586–1592.

Hirth, U., Ressel, P. (1999). Random partitions by semigroup methods.
Semigr. For. 59, 126–140.

Hoeffding, W. (1948). A class of statistics with asymptotically normal distri-
butions. Ann. Math. Statist. 19, 293–325.

— (1963). Probability estimates for sums of bounded random variables. J. Amer.
Statist. Assoc. 58, 13–30.

Hoover, D.N. (1979). Relations on probability spaces and arrays of random
variables. Preprint, Institute of Advanced Study, Princeton.

— (1982a). A normal form theorem for the probability logic Lω1P , with applica-
tions. J. Symbolic Logic 47.

— (1982b). Row-column exchangeability and a generalized model for probability.
In Koch and Spizzichino (eds.), pp. 281–291.

— (1989). Tail fields of partially exchangeable arrays. J. Multivar. Anal. 31,
160–163.

Hsu, Y.S. (1979). A note on exchangeable events. J. Appl. Probab. 16, 662–664.

Hu, T.C. (1997). On pairwise independent and independent exchangeable ran-
dom variables. Stoch. Anal. Appl. 15, 51–57.

Hu, Y.S. (1979). A note on exchangeable events. J. Appl. Probab. 16, 662–664.

Huang, W.J., Su, J.C. (1999). Reverse submartingale property arising from
exchangeable random variables. Metrika 49, 257–262.

Hudson, R.L., Moody, G.R. (1976). Locally normal symmetric states and an
analogue of de Finetti’s theorem. Z. Wahrsch. verw. Geb. 33, 343–351.
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Koch, G, Spizzichino, F. (eds.) (1982). Exchangeability in Probability and
Statistics. North-Holland, Amsterdam.

Komlós, J. (1967). A generalization of a problem of Steinhaus. Acta Math.
Acad. Sci. Hungar. 18, 217–229.

Krauss, P.H. (1969). Representations of symmetric probability models. J.
Symbolic Logic 34, 183–193.

Krickeberg, K. (1974). Moments of point processes. In: Stochastic Geometry
(eds. E.F. Harding, D.G. Kendall), pp. 89–113. Wiley, London.

Kuritsyn, Y.G. (1984). On monotonicity in the law of large numbers for ex-
changeable random variables. Theor. Probab. Appl. 29, 150–153.

— (1987). On strong monotonicity of arithmetic means of exchangeable random
variables. Theor. Probab. Appl. 32, 165–166.

Kurtz, T.G. (1980). Representations of Markov processes as multiparameter
time changes. Ann. Probab. 8, 682–715.
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respect to p-stable motion: inner clock, integrability of sample paths, double
and multiple integrals. Ann. Probab. 14, 271–286.

Royden, H.L. (1988). Real Analysis, 3rd ed. Macmillan, New York.

Ryll-Nardzewski, C. (1957). On stationary sequences of random variables
and the de Finetti’s [sic] equivalence. Colloq. Math. 4, 149–156.

— (1961). Remarks on processes of calls. In: Proc. 4th Berkeley Symp. Math.
Statist. Probab. 2, 455–465.

Saunders, R. (1976). On joint exchangeability and conservative processes with
stochastic rates. J. Appl. Probab. 13, 584–590.

Scarsini, M. (1985). Lower bounds for the distribution function of a k-dimen-
sional n-extendible exchangeable process. Statist. Probab. Lett. 3, 57–62.

Scarsini, M., Verdicchio, L. (1993). On the extendibility of partially ex-
changeable random vectors. Statist. Probab. Lett. 16, 43–46.

Schoenberg, I.J. (1938a). Metric spaces and completely monotone functions.
Ann. Math. 39, 811–841.

— (1938b). Metric spaces and positive definite functions. Trans. Amer. Math.
Soc. 44, 522–536.

Scott, D.J., Huggins, R.M. (1985). A law of the iterated logarithm for weakly
exchangeable arrays. Math. Proc. Camb. Phil. Soc. 98, 541–545.

Seneta, E. (1987). Chuprov on finite exchangeability, expectation of ratios, and
measures of association. Hist. Math. 14, 249–257.

Serfling, R.J. (1980). Approximation Theorems of Mathematical Statistics.
Wiley, New York.

Shaked, M. (1977). A concept of positive dependence for exchangeable random
variables. Ann. Statist. 5, 505–515.

Silverman, B.W. (1976). Limit theorems for dissociated random variables.
Adv. Appl. Probab. 8, 806–819.



494 Probabilistic Symmetries and Invariance Principles

Skorohod, A.V. (1957). Limit theorems for stochastic processes with indepen-
dent increments. Theory Probab. Appl. 2, 138–171.

Slivnyak, I.M. (1962). Some properties of stationary flows of homogeneous
random events. Th. Probab. Appl. 7, 336–341; 9, 168.

Slud, E.V. (1978). A note on exchangeable sequences of events. Rocky Mtn. J.
Math. 8, 439–442.

Smith, A.M.F. (1981). On random sequences with centered spherical symmetry.
J. Roy. Statist. Soc. Ser. B 43, 208–209.

Sparre-Andersen, E. (1953–54). On the fluctuations of sums of random vari-
ables, I–II. Math. Scand. 1, 263–285; 2, 193–194, 195–223.

Speed, T. (1987). What is an analysis of variance? Ann. Statist. 15, 885–910.
Spizzichino, F. (1982). Extendibility of symmetric probability distributions and

related bounds. In Koch and Spizzichino (eds.), pp. 313–320.
Stam, A.J. (1982). Limit theorems for uniform distributions on high dimensional

Euclidean spaces. J. Appl. Probab. 19, 221–228.
Sun, Y. (1998). The almost equivalence of pairwise and mutual independence

and the duality with exchangeability. Probab. Theor. Rel. Fields 112, 425–
456.

Szczotka, W. (1980). A characterization of the distribution of an exchangeable
random vector. Bull. Acad. Polon., Ser. Sci. Math. 28, 411–414.
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Probabilités VI. Lect. Notes in Math. 258, 215–232. Springer, Berlin.

Watanabe, S. (1964). On discontinuous additive functionals and Lévy measures
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Poincaré, H., 465
Poisson, S.D., 14–5, 21–3, 43, 55, 68, 112,

134, 173, 279, 401, 416ff, 432, 449,
453–5

Popescu, O., 491
Pratelli, L., 467
Prohorov, Y.V., 126ff, 445–8, 475
Pruitt, W.E., 475
Pruss, A.R., 492

Radon, J., 124
Rao, C.R., 492
Regazzini, E., 483, 492
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O, OJ , Od, Ôd, 18, 353, 378, 385, 395
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ψ, ψt, 416, 454
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(Σ), 123, 460
σ, 43, 90
σ±

t , σ̃±
t , 287

T , 268, 270, 272
Tp, T ′

q , 380, 383
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W , W1, 422f
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w→, wd−→, 9, 126, 445, 447
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ξ̂, ξd, ξt, 6, 78, 115, 357
ξd, ξ̂d, 309, 315
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2d, 2J , 235, 302, 335
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, 7, 27, 302, 325, 342f
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[·, ·], 〈·, ·〉, 83, 351
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∫
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