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Preface

This book develops the theory of stochastic relations as a foundation for
Markov transition systems. Central topics such as congruences and mor-
phisms are investigated and applied to the monoidal structure. Bisimilarity
and behavioral equivalence are defined and investigated within this frame-
work; developments from the general theory of coalgebras are viewed from
the context provided by the subprobability functor. It is shown with these
tools that bisimilarity, behavioral and logical equivalence are the same for gen-
eral modal logics and for continuous time stochastic logic with and without
fixed point operator.

The book starts with an extensive and gentle introduction to the basic
mathematical tools from topology, measure theory and categories.

Motivation

A coalgebra for the endofunctor F : C → C is a pair 〈x, t〉, where t : x →
F (x) is a morphism in category C. The study of coalgebras provides many
interesting vistas into the landscape of (theoretical) computer science and
algebra, as can be witnessed for example from the survey paper (Rutten,
2000). Particularly interesting are the connections to modal logics (Blackburn
et al., 2001), in which the power set functor Pow in the category of sets plays
a prominent rôle. For example, a coalgebra 〈x, t〉 for Pow may be identified
with a relation on set x.

Consider this example. A formula in a simple modal logic with A and AP
as set of actions resp. atomic propositions is defined recursively through

φ ::= � | p | φ′ ∧ φ′′ | 〈a〉φ′

Thus � is a formula indicating truth, each atomic proposition p ∈ AP is a
formula, the conjunctions of two formulas is one, and whenever we have a
formula, then prefixing it with 〈a〉 for an action a ∈ A will yield a formula
again. The intuitive meaning of 〈a〉φ is “it is possible that φ holds after action
a” (just like the diamond is interpreted in ordinary modal logic as indicating
possibility). An interpretation will take a set S of states, assign to each
action a ∈ A a relation Ra ⊆ S × S, and to each atomic proposition p ∈ AP
a subset L(p) ⊆ S of states. L(p) indicates the set of states in which p is

xi
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valid. The underlying Kripke model K = (S,AP, (Ra)a∈A) holds these data
as a container and is used for defining the semantics, which is done recursively
through (p ∈ AP, a ∈ A, writing Ra as →a):

K, s |= � ⇔ s ∈ S
K, s |= p ⇔ s ∈ L(p)

K, s |= φ′ ∧ φ′′ ⇔ K, s |= φ′ and K, s |= φ′′

K, s |= 〈a〉φ ⇔ K, s′ |= φ for some s′ with s→a s
′.

Thus we have K, s |= 〈a〉φ iff we can find a →a-successor s′ to s so that
K, s′ |= φ.

In terms of coalgebras, this Kripke structure can be seen essentially as a
coalgebra 〈S, t〉 for the functor that maps each set X to Pow (A×X).

Now look at this: We have a system composed of two processors which may
fail, but which may be repaired; the processors work independently and in
parallel.

A

B

C

D

sw1

sw2

sw0

sw0

sw0

rep2

rep1

rep12

op1

op0

op2

op12

The atomic propositions tell us which processor works, so that

AP = {op0, op1, op2, op12},

the actions either indicate the failure of a processor, saying which processor
survives (e.g., if both processors are operational, action sw1 indicates that
processor 2 fails and processor 1 survives; if at least one processor operates,
action sw0 has the effect that all processors fail), or indicate a repair action,
telling us which processor has to be repaired, hence

A = {sw2, sw1, sw0, rep1, rep2, rep12}.
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The figure gives a Kripke structure; each arrow has an action as a label,
the label indicates, too, to which relation the pair belongs.

In state A, both processors are operational; in state D, none is. State B
has system 2 fail, etc. The map L is evident from the figure as well.

Put

φ1 := 〈rep12〉〈sw2〉〈sw0〉op0,
φ2 := 〈rep12〉〈sw1〉〈sw0〉op0,

then it is easy to see that both, e.g., D |= φ1 and D |= φ2, hold; so state
D cannot distinguish between these formulas. So it is not really important
whether processor 1 fails, or processor 2. But probably it is.

Assume that probabilities are attached to the state transitions, as indicated
in the figure below (to be precise, sub-probabilities, because the values do not
add up to unity). Computing the respective probabilities, it is clear that the
probability for D accepting φ1 is 4, 5 ·10−2, whereas for φ2 it is 18 ·10−2, thus
D can distinguish φ1 and φ2 now on the, say, 10% level. Thus probabilities
add to a more precise understanding of this system.

A

B

C

D

sw1

sw2

sw0

sw0

sw0

rep2

rep1

rep12

op1

op0

op2

op12

0,6

1,0

0,5

0,1

0,4

0,8

0,9

0,4

Addressing the question what kind of model might be adequate for proba-
bilistic modeling, one wants to pursue a development that runs in parallel to
the coalgebraic one above and considers coalgebras for the probability functor
P. Thus a coalgebra for the functor S 
→ Pow (A× S) would be replaced by
a coalgebra for the functor S 
→ P (A× S) where P (A× S) is the set of all
probabilities over the set A×S. Though straightforward, this approach raises
some questions and needs to be refined. First, we have assumed implicitly
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that the sets we are dealing with are finite. If A and S are finite, so are
Pow (A× S), but P (A× S) is an uncountable set as soon as A× S contains
more than one element; so we leave the realm of finite sets with this con-
struction. Thus it is conceptually difficult to iterate this construction, even
for finite base sets; this, however, may be necessary when discussing monads.
Moreover, some applications are intrinsically based on nonfinite sets: consider,
e.g., a continuous time logic, where the residence times for the states may be
nonnegative real numbers. Second, when the universe may no longer assumed
to be finite or countable, it may be difficult assigning positive probabilities to
single elements; subsets are a more adequate domain.

But we know that we end up in considerable foundational difficulties when
assuming that we assign a probability to each subset of an arbitrary set (El-
strodt, 1999; Wagon, 1981). Thus we need a structured subset of the power
set as the domain for the probabilities, the structure being, as a student of
measure theory knows, a σ-algebra. So we are poised to consider coalgebras
for the functor that no longer takes an arbitrary setX but rather a measurable
space (X,A) and assigns it all probabilities P (A×X,H⊗A) on the measur-
able space (A×X,H⊗A) (since we assume that the actions are coming from
a measurable space (A,H) as well). Note that this switch entails changing
the base category from the category of all sets with maps to the category of
measurable spaces with measurable maps as morphisms.

But this is not yet enough. We want to model properties for these coal-
gebras that permit sensible applications like the study of bisimulations of
various sorts or modeling probabilistically infinite paths in a logic for reactive
systems. This is nearly hopeless to do in general measurable spaces, because
these spaces are not rich enough for supporting an interesting probabilistic
structure. It is well known that Polish spaces, i.e., topological spaces that
have a countable dense subset and for which a complete metric exists, pro-
vide enough support for the probability measures defined on their Borel sets
(the smallest σ-algebra containing the open subsets) to permit the kind of
constructions that we need. Examples of Polish spaces are countable discrete
spaces (with the discrete topology), the real numbers R, open or closed subsets
of some Euclidean space, and even the measures on a Polish space under the
weak topology; Polish spaces are closed under countable sums and products,
and the general topological structure of Polish spaces has long been known
very well. Thus if we have a Polish space S, e.g., the space

∏
i∈N

(R+ × S)
of all infinite paths with timing information, is Polish. Consequently we will
work in the base category of all Polish spaces with Borel maps as morphisms,
occasionally assuming continuity for the morphisms. Sometimes we will be
able to extend the results to analytic spaces, so we can even go a step further
and consider for most applications analytic spaces, hence measurable spaces
that are the Borel images of Polish spaces.

Let us briefly return to the basic configuration of a coalgebra 〈x, t〉 with
t : x→ F (x). Here the domain x for the dynamic t coincides with the domain
for the functor F. This is sometimes an uneasy restriction, so it is sometimes
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more adequate to work in a scenario that would look like t : x → F (y) .
Separating the domain of the morphism t from the functor’s domain gives rise
to a finer mode of description. For example a morphism g : 〈x, t〉 → 〈y, s〉 in
the coalgebraic case is a morphism g : x → y with s ◦ g = F (g) ◦ t, making
this diagram commutative.

x
g � y

F (x)

t

�

F (g)
� F (y)

s

�

The extended case requires a morphism 〈x, y, t〉 → 〈a, b, s〉 to be a pair 〈g, h〉
of morphisms g : x → a and h : y → b with g ◦ t = F (h) ◦ s. This makes the
diagram

x
g � a

F (y)

t

�

F (h)
� F (b)

s

�

commutative. This observation permits separating the concerns of the domain
from the codomain, which will be helpful in understanding some phenomena,
as we will see.

Another instance where this separation of concerns pays is the description
of congruences. In the coalgebraic case a congruence on 〈x, t〉 is essentially an
equivalence relation on the carrier x of the coalgebra that is compatible both
with the dynamics t and the functor F. In the extended case we deal with a
pair of equivalence relations (α, β) that has to satisfy compatibility conditions
with respect to both the dynamics and the functor. This separation will be
of advantage in many places, for example when discussing Kripke models.

To summarize, we will discuss here morphisms of the kind x → F (y) with
F as the probability functor or one of its close relatives, defined usually on the
category of Polish spaces. Again using the analogy to the power set functor
we will see the objects we are dealing with as relations, albeit as stochastic
ones. What we discuss will be outlined next.
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Overview

We give a brief overview of the chapters’ contents, the graph indicating the
dependencies between the sections1.

4

3

2

1

5

6

1.1

1.2

1.31.41.5

3.2

5.1

6.1

4.3

5.6

2.2

3.4

4.2

5.7

6.4

2.1

2.3

3.53.6

3.1

3.3

4.1

5.5

5.3

5.4

5.2

6.3

5.8

6.2

Chapter 1 The reader is assumed to be familiar with the basic properties of
topological spaces, and we assume that the very fundamental constructions in
probability theory are known up to and including the Radon-Nikodym The-
orem. This is not sufficient, however, for the purposes of exploring Markov
transition systems in depth. It becomes clear rather rapidly that Polish and

1The book’s web site can be found at the address
http://ls10-www.cs.uni-dortmund.de/momts.
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analytic spaces are needed for meaningful constructions: the former, because
they balance generality with applicability, the latter because they permit fac-
torizations (which Polish spaces do not). The reader finds an introduction to
these spaces here, together with a careful study of Borel sets, culminating in
Souslin’s Theorem, a classic that will turn out to be most helpful. From a
measure theoretic point of view it is necessary to know a wee bit about the
topology of weak convergence in the space of all subprobabilities over a Polish
space, and to know about disintegration of measures on products. And, yes,
sometimes one can establish the existence of a badly needed object through
a selection argument, which then yields a completely new and unexpected in-
sight for Markov transition systems as well. This is why a brief introduction
to measurable selectors is provided as well.

Algebraically, the reader should have some basic understanding of category
theory; adjunctions, monads and Eilenberg-Moore algebras will be discussed
here.

We have made an attempt to make this book self contained. Hence material
that is deemed necessary for the mastery of the material outlined here but
that is scattered in the vast literature and somewhat difficult to find in one
place has been collected and compiled.

Chapter 2 This chapter will investigate categorial and probabilistic prop-
erties of stochastic relations. We take the properties of set-theoretic relations
as a firm guide by looking at the power set functor on the category of sets
with maps as morphisms. This functor assigns each set its power set, and
it is the functorial part of the Manes monad (Section 2.2). In parallel, we
define the functor on measurable spaces that assigns each measurable space
all its sub-probabilities. Under a suitable chosen σ-algebra, this is a mea-
surable space again, so the functor is an endofunctor, and it can be seen as
well as the functorial part of a monad, the Giry monad. It is shown that this
is actually a monad; all this is done in Section 2.3. These Sections define
and investigate the Kleisli construction for each monad, fairly basic for the
discussions to follow. Since both Kleisli constructions have similar properties,
we investigate in the case study in Section 2.4 how these similarities can be
exploited. A simple software architecture is modeled through a monad that
enjoys a tensorial strength operator (both the Giry monad and the Manes
monad belong to this family).

Chapter 3 The investigation of the subprobability functor and the Giry
monad would not be complete without having a look at the algebras that are
associated with the monad. Mac Lane argues that the Kleisli construction and
the Eilenberg-Moore algebras live at opposite ends of the spectrum of adjoint
pairs of those functors which define a given monad; thus, having investigated
the Kleisli construction, it is challenging to explore the other end. We iden-
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tify the algebras for the Giry monad through positive convex structures in
Section 3.4; some illustrating examples are given in Section 3.5.

As always, the free algebra 〈S (X) ,mX〉 is an Eilenberg-Moore algebra
for each Polish space X , where S is the subprobability functor and m is
the multiplication for the Giry monad. This example helps to identify in
Section 3.6 the left adjoint to the forgetful functor that associates with each
algebra the associated Polish space.

This chapter lives in the category of Polish spaces with continuous maps.
Transferring the results to the more general category of Polish spaces with
Borel measurable maps (or even to the category of analytic spaces with Borel
maps) is an open question.

Chapter 4 Many constructions in the theory of coalgebras depend on the
assumption that the functor involved has at least weak pullbacks, see, e.g.,
Rutten’s survey (Rutten, 2000) for an overview. For practical purposes like
the study of bisimulations it would be good to know whether or not the
subprobability functor has a weak pullback as well. These hopes are shattered
rather quickly, so what one wants to look for is the existence of semi-pullbacks
(thus each co-span of morphisms has a span, so that a commutative diagram
is created). By formulating this problem as a selection problem and using
the theory of measurable selectors, it is shown that in Polish spaces semi-
pullbacks do exist. This solution can even be carried over to analytic spaces.
Most work for a solution to this problem in Section 4.4 concerns actually
a measure extension problem — in probabilistic terms, a distribution on a
sub-σ-algebra of the Borel sets has to be extended to the full Borel sets; see
Section 4.3. The problem is tackled using tools from classical analysis, based
partially on the axiom of choice.

Chapter 5 Stochastic interpretations of modal logic show that equivalence
relations are of interest that are countably generated, or, what amounts to
the same, that are represented as the kernel of a Borel map. We study these
relations that are called smooth in Section 5.2. The interest in these relations
stems in part from the fact that factoring an analytic space with a smooth
relation yields an analytic space again; this is well known (Srivastava, 1998;
Kechris, 1994; Arveson, 1976). We stress in particular the rôle of invariant
Borel sets. They are important for two reasons: first, the inverse images of the
Borel sets on the factor space under the factor map are just the invariant Borel
sets. Second, this σ-algebra determines the equivalence relation uniquely (an
observation that will be capitalized upon later, in Section 6.4). These prop-
erties are investigated in greater detail in Section 5.2; they are being made
use of heavily for understanding congruences for stochastic relations. A pair
(α, β) of smooth equivalence relations is called a congruence for a stochastic
relation iff objects that cannot be separated through α and β cannot be sep-
arated through the relation; see Section 5.3. This section studies algebraic
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properties of congruences as well. An Isomorphism Theorem quite akin to
the one in classical algebra can be established, providing the proper algebraic
context.

Congruences are right at the heart of bisimulations. This is not really ev-
ident at first: bisimulations are introduced in Section 5.4 essentially through
spans of morphisms. This is a rather fruitful notion for investigating modal
logics in Chapter 6, but we have a look at immediate properties first, deriving
a criterion for two stochastic relations to be bisimilar. Here we employ smooth
equivalence relations and simulation equivalent congruences — roughly, the
relation may simulate each other. This leads to an intrinsic condition for
bisimilarity: one looks only at the relations and does not have another, exter-
nal, institution like a logic that assists in the decision. It has the interesting
consequence that two relations are bisimilar provided they have isomorphic
factor spaces. This criterion is also sufficient for compact metric spaces. The
question remains open, however, whether or not this condition is sufficient in
the general Polish or analytic case. While bisimilarity requires a span, be-
havioral equivalence of stochastic relations is defined through the existence
of a cospan. It is shown that simulation equivalent congruences permit the
construction of such a cospan through factoring.

Thus, in order to investigate bisimilarity of stochastic relations or for finding
out about their behavioral equivalence, it is helpful to find congruences and to
show that they are simulation equivalent. This will then permit constructing a
span or a cospan of morphisms. The span will be constructed through a semi-
pullback as in Section 4.4; the cospan will be constructed through factoring
as in Section 5.4.

A case study shows that bisimilarity does not break easily: we show that
forming the converse of a stochastic relation — an interesting problem in
itself — respects bisimilarity. If two relations are bisimilar, then their con-
verses are as well; the properties of the converse relation are also explored,
see Section 5.8.

Bisimilarity may be specialized by taking projections as the morphisms
involved; this is introduced in Section 5.6 and leads to the notion of 2-
bisimulation. Here the connections between bisimulations and congruences
becomes fully visible: we show that each congruence can be used as the ba-
sis for a 2-bisimulation on a stochastic relation. This fairly deep property is
reformulated as a selection problem and then solved through a measurable
selector. Once we know that, we are in a good position to tackle simple
stochastic relations. These are those relations that have no nontrivial sub-
systems. It can be shown that they are completely characterized through
injective Borel maps, providing a rather easy criterion for recognizing them
(when encountering them in the street, say). As a consequence one derives
that the subprobability functor does not have a final system save for the case
of proper probabilistic relations.

The interplay between bisimulations and simple systems is used in the the-
ory of coalgebras for a calculus of coinduction, see (Rutten, 2000; Rutten,
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2002; Arbab and Rutten, 2002). Given the very simple structure of simple
systems for the functor considered here, such an application does not seem
to be realistic. Section 5.9 shows, however, that not all is lost. We indi-
cate in this case study that the knowledge of simple systems permits at least
some transfer results between discrete and continuous probability spaces when
analyzing algorithms.

Chapter 6 This final chapter is devoted to stochastic interpretations of
modal and continuous time logics. We extend the usual notion of modal log-
ics for probabilistic purposes (incorporating into the language the notion of
a probability with which a formula should be satisfied). Stochastic relations
are required here in full generality. The interpretation needs not be confined
to labeled Markov transition systems; rather, a treatment of general Kripke
models becomes feasible. This is proposed in Section 6.2. The relationship
between stochastic Kripke models and those based on set theoretic relations
is investigated in this section as well, where we capitalize on the support func-
tion for rendering a nondeterministic Kripke model from a stochastic one. The
relationship between bisimulations and the Hennessy-Milner equivalence rela-
tion is scrutinized. It is shown how the characterization of bisimilar stochastic
relations can be used as a basis for establishing that bisimilarity behavioral
and logical equivalence are really the same.

Whereas modal logic deals with finite paths, continuous stochastic logic is
used to model reactive systems; hence infinite paths have to be taken into
account. These paths are usually written down as sequences alternating be-
tween states the system is in and residence times for indicating how long
the system remains in this state before a state change occurs. Probabilisti-
cally, this is modeled through the projective limit of a process in which state
changes and residence times are stochastically independent (this refers to one
step in the system); see Section 6.3. The logic, dubbed CSL, distinguishes
state formulas, which display some sort of local behavior, from path formulas,
which entertain properties that are manifested in the long run. We discuss in
Section 6.4 another kind of bisimilarity: call two states F -bisimilar iff they
satisfy exactly the same formulas from a given set F of state formulas. Be-
cause F is at most countable, this relation is smooth; hence it gives rise to a
congruence on the interpreting relation. And here we are again: we can use
the invariant sets of this smooth equivalence to determine sets G for which F -
bisimilarity and G-bisimilarity are identical. One wants these sets G of course
to be as large as possible for maximizing the effect with minimal resources.
It will help solving the problem of deciding whether for the set AP of atomic
propositions AP -bisimilarity is equal to LAP -bisimilarity, where LAP is the
set of all formulas.

It is clear that this question is motivated through practical considerations:
If the answer would be in the positive, one would have only to test the atomic
propositions in order to make statements regarding the entire set of formulas.



Preface xxi

These questions are investigated in Section 6.4; unfortunately, there is no
clear-cut, simple answer: as usual, it depends, in this case on the invariant
sets. We define in this section the extension of a set F of formulas as the
set of all formulas that have the same invariant sets as F and investigate an
equivalence result involving 2-bisimulations.

The problem of bisimilarity, logical and behavioral equivalence is discussed
again for the logic μCSL, a variant to CSL that also has the mu-operator.
Bisimilarity is related to behavioral and logical equivalence essentially through
properties that are determined by theories for states and paths. It turns out
that the functor which assigns to each state space the space of infinite paths
of residence times and states plays a rather decisive rôle, albeit indirectly,
hinting at a more general picture that may be painted through coalgebraic
logic.
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1.1 Introduction

The study of Markov transition systems and stochastic relations as their
mathematical foundation requires some familiarity with concepts from topol-
ogy and measure theory when one wants to investigate phenomena that go
beyond elementary observations. For example, when discussing behavioral
equivalence, one wants to factor the state space of the transition system, and
encounters then the problem that one has to determine the structure of the
factor space. Thus one is led to an analysis of an analytic space. Similarly,
when looking for the converse of a stochastic relation one is all of a sudden
confronted with problems of disintegration of a measure on a product space.

The mathematical tools for this enterprise are coming from topology and
measure theory. They are somewhat scattered in the literature, and, as far
as I could see, not available in a single place. Hence one has to hunt for
properties of, say, analytic spaces in one place while properties of measures
can be found in another source, and where do I learn about the existence or
the nonexistence of the right inverse for a measurable map?

So I tried to provide a single source for all the crucial topological and mea-
sure theoretic properties that occurred to me as being important for working
in this area. Of course, one has to start somewhere. I assume that the reader
is familiar with the basic notions from topology (like open sets, continuity
and the like, most likely from discussing the real line) and from measure the-
ory. Here I assume some familiarity with the concept of Lebesgue integration
which is usually given in an advanced course on Calculus or an introductory
course to Probability Theory. Between the continents of topology and mea-

1



2 1.2 Measurable Spaces

sure theory lies the ocean of Borel sets; I will make also some results from the
theory of Borel sets available which are used here but which are to be found
only in more specialized treatises. This includes in particular some glances at
the theory of measurable selectors which permit to establish some existential
statements that are difficult to obtain otherwise.

The final part of this overview deals with categories, in particular with
constructions related to monads and to Eilenberg-Moore algebras through
adjunctions. Since categories are somewhat more familiar in Theoretical Com-
puter Science than, say, Polish spaces, the representation is a little bit more
sketchy for categories than for the topics related to measures and all that. I
did make an attempt, however, to keep things self contained (for example,
only Yoneda’s Lemma is really required).

1.2 Measurable Spaces

A measurable space (M,M) consists of a set M with a σ-algebraM, which
is an algebra of subsets of M that is closed under countable unions (hence
countable intersections or countable disjoint unions). If M0 is a family of
subsets of M , then

σ (M0) =
⋂
{M | M is a σ-algebra on M with M0 ⊆M}

is the smallest σ-algebra on M which contains M0. This construction works
since the power set P(M) is a σ-algebra onM . Take for example as a generator
I all open intervals in the real numbers R, then σ(I) =: B(R) is the σ-algebra
of real Borel sets. We will encounter the Borel sets again in Section 1.3.

An important tool is the π-λ-Theorem which makes it sometimes simpler
to identify the σ-algebra generated from some family of sets.

THEOREM 1.1
(π-λ-Theorem) Let P be a family of subsets of a set X that is closed under
finite intersections (a π-class). Then σ(P) is the smallest λ-class containing
P, where a family L of subsets of X is called a λ-class iff it is closed under
complements and countable disjoint unions.

PROOF 1. Let L be the smallest λ-class containing P , then we show that
L is a σ-algebra.

2. We show first that it is an algebra. Being a λ-class, L is closed under
complementation. Let A ⊆ X , then LA := {B ⊆ X | A ∩B ∈ L} is a λ-class
again: if A ∩B ∈ L, then

A ∩ (X \B) = A \B = X \ ((A ∩B) ∪ (X \A)),
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which is in L, since (A ∩B) ∩X \A = ∅, and since L is closed under disjoint
unions.

If A ∈ P , then P ⊆ LA, because P is closed under intersections. Because
LA is a λ-system, this implies L ⊆ LA for all A ∈ P . Now take B ∈ L, then
the preceding argument shows that P ⊆ LB, and again we may conclude that
L ⊆ LB. Thus we have shown that A ∩B ∈ L, provided A,B ∈ L, so that L
is closed under finite intersections. Thus L is a Boolean algebra.

3. L is a σ-algebra as well. It is enough to show that L is closed under
countable unions. But since

⋃

n∈N

An =
⋃

n∈N

(

An \
n−1⋃

i=1

Ai

)

,

this follows immediately.

If (N,N ) is another measurable space, then a map f : M → N is called
M-N -measurable iff the inverse image under f of each set in N is a member
of M, hence iff f−1 [G] ∈M holds for all G ∈ N .

Checking measurability is made easier by the observation that it suffices for
the inverse images of a generator to be measurable sets.

LEMMA 1.2
Let (M,M) and (N,N ) be measurable spaces, and assume that N = σ(N0)

is generated by a family N0 of subsets of N . Then f : M → N is M-N -
measurable iff f−1 [G] ∈M holds for all G ∈ N0.

PROOF Clearly, if f is M-N -measurable, then f−1 [G] ∈M holds for all
G ∈ N0.

Conversely, suppose f−1 [G] ∈ M holds for all G ∈ N0, then we need to
show that f−1 [G] ∈ M for all G ∈ N . In fact, consider the set G for which
the assertion is true,

G := {G ∈ N | f−1 [G] ∈ M}.

An elementary calculation shows that the empty set and N are both members
of G, and since f−1 [N \G] = M \f−1 [G], G is closed under complementation.
Because

f−1

[
⋃

i∈I
Gi

]

=
⋃

i∈I
f−1 [Gi]

holds for any index set I, G is closed under finite and countable unions. Thus
G is a σ-algebra, so that σ(G) = G holds. By assumption, N0 ⊆ G, so that

M = σ(N0) ⊆ σ(G) = G ⊆M
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is inferred. Thus all elements of N have their inverse image in M.

An example is furnished by a real valued function f : M → R on M which
is M-B(R)-measurable iff {m ∈ M | f(m) � t} ∈ M holds for each t ∈ R;
the relation � may be taken from <,≤,≥, > . This observation will be used
frequently.

The proof’s technique deserves some attention as well. The strategy is that
we have a look at all objects that have the desired property, and that we
show that this set of good guys is a σ-algebra. This is similar to showing
in a proof by induction that the set of all natural numbers having a certain
property is closed under constructing the successor. Then we show that the
generator of the σ-algebra is contained in the good guys, which is rather
similar to establishing the start of the induction. Taking both steps together
then yields the desired properties for the induction case as well as for the case
of σ-algebras. We will encounter this pattern of proof over and over again.

If (M,M) is a measurable space and f : M → N is a map, then

N := {D ⊆ N | f−1 [D] ∈M}

is the largest σ-algebra N0 on N that renders f M-N0-measurable (N is
the final σ-algebra w.r.t. f). In fact, because the inverse set operator f−1

is compatible with the Boolean operations, it is immediate that N is closed
under the operations for a σ-algebra, and a little moment’s reflection shows
that this is also the largest σ-algebra with this property.

Symmetrically, if g : P →M is a map, then

g−1 [M] := {g−1 [E] | E ∈M}

is the smallest σ-algebra P0 on P that renders g : P0 → M measurable
(accordingly, g−1 [M] is called initial w.r.t. f). Similarly, g−1 [M] is a σ-
algebra, and it is fairly clear that this is the smallest one with the desired
property. In particular, the inclusion iQ : Q → M becomes measurable for a
subset Q ⊆M when Q is endowed with the σ-algebra {Q∩B | B ∈M}. It is
called the trace of M on Q and is denoted — in a slight abuse of notation —
by M∩Q.

Initial and final σ-algebras generalize in an obvious way to families of maps.
For example, σ

(⋃
i∈I g

−1
i [Mi]

)
is the smallest σ-algebra P0 on P which makes

all the maps gi : P → Mi P0-Mi-measurable for a family ((Mi,Mi))i∈I of
measurable spaces.

This is an intrinsic, universal characterization of the initial σ-algebra for a
single map.

LEMMA 1.3
Let (M,M) be a measurable space and f : M → N be a map. The following

conditions are equivalent:
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a. The σ-algebra N on N is final with respect to f .

b. If (P,P) is a measurable space, and g : N → P is a map, then the M-P-
measurability of g ◦ f implies the N -P-measurability of g.

PROOF 1. Taking care of a⇒b, we note that

(g ◦ f)−1 [P ] = f−1
[
g−1 [P ]

]
⊆M.

Consequently, g−1 [P ] is one of the σ-algebras N0 with f−1 [N0] ⊆M. Since
N is the largest of them, we have g−1 [P ] ⊆ N . Hence g is N -P-measurable.

2. In order to establish b⇒ a, we have to show that N0 ⊆ N whenever
N0 is a σ-algebra on N with f−1 [N0] ⊆ M. Put (P,P) := (N,N0), and
let g be the identity idN . Because f−1 [N0] ⊆ M, we see that idN ◦ f is
N0-M-measurable. Thus idN is N -N0-measurable. But this means N0 ⊆ N .

We will use the final σ-algebra mainly for factoring through an equivalence
relation. In fact, let α be an equivalence relation on a set X , where (X,M)
is a measurable space. Then the factor map

ηα :

{
X → X/α

x 
→ [x]α

that maps each element to its class can be made measurable by taking the
final σ-algebra M/α with respect to ηα and M as the σ-algebra on X/α.

Dual to Lemma 1.3, the initial σ-algebra is characterized.

LEMMA 1.4
Let (N,N ) be a measurable space and f : M → N be a map. The following

conditions are equivalent:

a. The σ-algebra M on M is initial with respect to f .

b. If (P,P) is a measurable space, and g : P → M is a map, then the P-N -
measurability of f ◦ g implies the P-M-measurability of g.

Let ((Mi,Mi))i∈I be a family of measurable spaces, then the product-σ-
algebra

⊗
i∈IMi denotes that initial σ-algebra on

∏
i∈IMi for the projections

πj : 〈mi | i ∈ I〉 
→ mj.

It is not difficult to see that
⊗

i∈IMi = σ(Z) with

Z := {
∏

i∈I
Ei | ∀i ∈ I : Ei ∈Mi, Ei = Mi for almost all indices}
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as the collection of cylinder sets (use Theorem 1.1 and the observation that
Z is closed under intersection); we will make frequent use of cylinders when
dealing with infinite products for interpreting continuous time stochastic logics
in Chapter 6.

For I = {1, 2}, the σ-algebra M1 ⊗M2 is generated from the set of mea-
surable rectangles

{E1 × E2 | E1 ∈M1, E2 ∈ M2}.

Dually, the sum (M1 +M2,M1 +M2) of the measurable spaces (M1,M1)
and (M2,M2) is defined through the final σ-algebra on the sum M1 + M2

for the injections Mi → M1 + M2. This is the special case of the coproduct⊕
i∈I(Mi,Mi), where the σ-algebra

∐
i∈IMi is initial with respect to the

injections.
We need occasionally the representation of sets through indicator functions.

Define for A ⊆ N the indicator function

χA(x) :=

{
1, if x ∈ A
0, if x /∈ A.

Clearly, if N is a σ-algebra on N , then A ∈ N iff χA is a N -B(R)-measurable
function. This is so since we have for the inverse image of an interval under
χA

χ−1
A [[0, q]] =

⎧
⎪⎨

⎪⎩

∅, if q < 0,
X \A, if 0 ≤ q < 1,
X, if q ≥ 1.

A measurable step function

f =
n∑

i=1

αi · χAi

is a linear combination of indicator functions with Ai ∈ N . The following
statement is folklore in measure theory (Halmos, 1950, Chapter IV), where
it is used among others for the construction of the Lebesgue integral. It will
come in quite handy in many situations when we have information about the
behavior of a construction for measurable sets (i.e., for indicator functions),
when the construction is linear, and when we can guarantee closedness under
monotone convergence.

PROPOSITION 1.5
Denote for a measurable space (N,N ) by

F (N,N ) := {f : N → R | f is N − B(R) measurable and bounded}

the linear space of all bounded measurable real functions on N . Then
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a. For f ∈ F (N,N ) with f ≥ 0 there exists an increasing sequence (fn)n∈N

of step functions fn ∈ F (N,N ) with

f(x) = sup
n∈N

fn(x)

for all x ∈ X.

b. For f ∈ F (N,N ) there exists a sequence (fn)n∈N of step functions fn ∈
F (N,N ) with

f(x) = lim
n→∞ fn(x)

for all x ∈ X.

Convention. Measurability of real-valued functions always means measura-
bility with respect to the Borel sets B(R) of the real numbers, unless otherwise
stated.

1.3 Polish and Analytic Spaces

General measurable spaces are sometimes too general for supporting specific
structures. We deal with Polish and analytic spaces which are general enough
to support interesting applications but have specific properties which help
establishing vital properties. We remind the reader first of some basic facts
and provide then some helpful tools for working with Polish spaces, and their
more general cousins, analytic spaces.

A topology T on a set X is a family of subsets that is closed under finite
intersections and arbitrary unions, and that contains the empty set and the
entire set X ; the pair (X, T ) is called a topological space. The elements of T
are called the open sets ; their complements are called closed sets. The space
(X, T ) is called a Hausdorff space iff two distinct points can be separated
through disjoint open sets. Thus, given x �= y, there exist disjoint open sets
U, V with x ∈ U, y ∈ V .

All topological spaces considered here will be Hausdorff spaces, ever.

A family B of open subsets of X is called a base for topology T iff each
element of T can be represented as the union of elements of B. This is
equivalent to saying that

⋃
{B | B ∈ B} = X, and that we can find for each

x ∈ B1 ∩B2 with B1, B2 ∈ B an element B3 ∈ B with x ∈ B3 ⊆ B1 ∩ B2. A
subbase S for T has the property that the set {

⋂
F | F ⊆ S finite} of finite

intersections of elements of S forms a base for T .
Given another topological space (Y,S), a map f : X → Y is called T -S-

continuous iff the inverse image of an open set from Y is open in X again,
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i.e., iff f−1 [S] ⊆ T . The topological spaces (X, T ) and (Y,S) are called
homeomorphic iff there exists a T -S-continuous bijection f : X → Y the
inverse of which is S-T -continuous.

Proceeding in analogy to measurable spaces, a topology T on a set X is
called initial for a map f : T → S with a topological space (Y,S) iff T is the
smallest topology T0 on X rendering f a T0-S-continuous map. For example,
if Y ⊆ X is a subset, then the topological subspace (Y, {Y ∩ G | G ∈ T }) is
just the initial topology with respect to the inclusion map iY : Y → X .

Dually, if (X, T ) is a topological space and f : X → Y is a map, then
the final topology S on Y is the largest topology S0 on Y making f T -S0-
continuous. Both initial and final topologies generalize to families of spaces
and maps.

The topological product
∏
i∈I(Xi, Ti) of the topological spaces ((Xi, Ti))i∈I

is the Cartesian product
∏
i∈I Xi endowed with the initial topology with re-

spect to the projections, and the topological sum
∐
i∈I(Xi, Ti) of the topolog-

ical spaces ((Xi, Ti))i∈I is the direct
∐
i∈I Xi endowed with the final topology

with respect to the injections.
Given a topological space (X, T ), a measurable structure comes for free:

denote by B(X, T ) the smallest σ-algebra on X that contains the open sets,
so that B(X, T ) = σ(T ). These sets are called the Borel sets of (X, T ); mea-
surability of maps with respect to the Borel sets is referred to as Borel mea-
surability.

An immediate consequence of Lemma 1.2 is that continuity implies Borel
measurability.

LEMMA 1.6

Let (X1, T1) and (X2, T2) be topological spaces. Then f : X1 → X2 is
B(X1, T1)-B(X2, T2) measurable, provided f is T1-T2-continuous.

1.3.1 Metric Spaces

Metric spaces are particularly important topological spaces.

DEFINITION 1.7 A metric d on a set X is a map d : X × X → R+

such that for all x, y, z ∈ X

a. d(x, y) = 0⇔ x = y,

b. d(x, y) = d(y, x) (symmetry),

c. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

holds. The pair (X, d) is called a metric space.
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d1 d2 d3

Figure 1.1: Unit Balls

EXAMPLE 1.8
Let X := R

2 be the Euclidean plane, and define

a. d1(〈x1, x2〉, 〈y1, y2〉) := max{|x1 − y1|, |x2 − y2|},

b. d2(〈x1, x2〉, 〈y1, y2〉) := |x1 − y1|+ |x2 − y2|,

c. d3(〈x1, x2〉, 〈y1, y2〉) :=
√
|x1 − y1|2 + |x2 − y2|2.

Then these are metrics on X for the usual topology.
Each set M can be made into a metric space (M,d) upon setting

d(x, y) :=

{
1, if x �= y

0, if x = y

(d is called the discrete metric).

Given a metric space (X, d), define for x ∈ X, r > 0 the open ball around x
with radius r

Br,d(x) := Br(x) := {x′ ∈ X | d(x, x′) < r}.

EXAMPLE 1.9
If (M,d) is discrete, then

Br(x) =

{
{x}, if r ≤ 1
M, if r > 1.

The unit ball around the origin for the metrics d1, d2, d3 on the plane from
Example 1.8 are shown in Figure 1.1.

Call G ⊆ X open iff given x ∈ G there exists r > 0 such that the open
ball around x with radius r is entirely contained in G, so that Br(x) ⊆ G.
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Open balls are open sets: let G := Br(x) be the open ball around x, and take
y ∈ Br(x), so that s := r − d(x, y) > 0. We claim that Bs(y) ⊆ Br(x). In
fact, if z ∈ Bs(y), then

d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + r − d(x, y) = r

by the triangle inequality.
The open sets for a metric space form a topology (the metric topology); the

topology is said to be metrized through the metric. Vice versa, a topological
space is called metrizable iff its topology comes from a metric; we sometimes
talk simply about metrizable spaces . A metrizable topology is Hausdorff:
given x �= y, we know that s := d(x, y) > 0, so balls with radius s/3 are open
sets that separate these points. Continuity now takes this — probably more
familiar — form:

LEMMA 1.10
Let (X1, d1) and (X2, d2) be metric spaces, and denote by Ti the topology on

Xi induced by di. The following conditions are equivalent for a map f : X1 →
X2.

a. f is T1-T2-continuous.

b. Given x1 ∈ X1 and ε > 0, there exists δ > 0 such that

d1(x1, x
′
1) < δ ⇒ d2(f(x1), f(x′1)) < ε.

PROOF The proof is rather immediate, because the implication in con-
dition b may be rephrased as Bδ,d1(x1) ⊆ f−1 [Bε,d2(f(x1))] .

Let (X, d) be metric, then define for x ∈ X and for A ⊆ X the distance
d(x,A) of x to A through

d(x,A) := inf
y∈A

d(x, y)

(with (d(x, ∅) := 0). Thus we know that a point x has a distance to A �= ∅ of
less than r > 0 iff we can find y ∈ Y with d(x, y) < r. Because

|d(x,A) − d(y,A)| ≤ d(x, y),

we know that x 
→ d(x,A) is uniformly continuous. If F ⊆ X is closed,
then x ∈ F iff d(x, F ) = 0 (take a sequence (xn)n∈N of elements in F with
d(xn, x) < 1/n). F can be written as

F = {x ∈ X | d(x, F ) = 0} =
⋂

n∈N

{x ∈ X | d(x, F ) <
1
n
},
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the latter being a countable intersection of open sets. Thus a closed set in a
metric space is a Gδ-set:

DEFINITION 1.11 The countable intersection of open sets in a topo-
logical space is called a Gδ-set; the countable union of closed sets is called an
Fσ-set.

Whenever feasible, we will omit the notation of a topology or a metric from
a space.

Recall that a subset D in a topological space is said to be dense iff D meets
each nonempty open set. A metric space has a countable dense subset iff its
topology has a countable base. This is fairly obvious: take in this case from
each element of the base an arbitrary element, then this will form a countable
dense subset. Conversely, if D is the countable dense set, then all balls with
rational radii, {Br(x) | 0 < r ∈ Q, d ∈ D}, will form a countable base. Spaces
with a countable base can be embedded into the cube [0, 1]∞ :=

∏
n∈N

[0, 1],
the Hilbert cube as we will see in Theorem 1.23 (by the way, we define

X∞ :=
∏

n∈N

X = XN

for any set X).

DEFINITION 1.12 A metric space is called separable iff it has a count-
able dense subset, or, equivalently, iff its topology has a countable base.

1.3.2 Polish Spaces: Elementary Properties

Neither general topological spaces nor metric spaces offer a structure rich
enough for the study of the transition systems that we will enter into. We
need to restrict the class of topological spaces to a particularly interesting
class of spaces that are traditionally called Polish (rumor (Kellerer, 1972) has
it that Bourbaki (Bourbaki, 1989, Definition IX.6.1) proposed this name for
honoring the contributions of the Polish School of Topology to this field).

Remember that a metric space (X, d) is called complete iff each Cauchy
sequence has a limit.

DEFINITION 1.13 A Polish space X is a topological space the topology
of which is metrizable through a complete metric, and which has a countable
dense subset.

Familiar spaces are Polish, as these examples show.
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EXAMPLE 1.14
Denote by R the reals with their usual topology, which is induced by the

open intervals. Then this is a Polish space.

EXAMPLE 1.15
The open unit interval ]0, 1[ with the usual topology induced by the open

intervals form a Polish space.
This comes probably as a surprise, because ]0, 1[ is known not to be complete

with the usual metric. But all we need is a dense subset (take the rationals
Q∩]0, 1[), and a metric that generates the topology, and that is complete.
Define

d(x, y) :=
∣
∣
∣
∣ln

x

1− x − ln
y

1− y

∣
∣
∣
∣ ,

then this is a complete metric for ]0, 1[. This is so since x 
→ ln(x/(1 − x)) is
a continuous bijection from ]0, 1[ to R, and the inverse y 
→ ey/(1+ ey) is also
a continuous bijection.

LEMMA 1.16
Let X be a Polish space, and assume that F ⊆ X is closed, then the subspace
F is Polish as well.

PROOF Because F is closed, each Cauchy sequence in F has its limit in
F , so F is complete. The topology that F inherits from X has a countable
base and is metrizable, so F has a countable dense subset, too.

LEMMA 1.17
Let (Xn)n∈N be a sequence of Polish spaces, then the product

∏
n∈N

Xn and
the coproduct

∐
n∈N

Xn are Polish spaces.

PROOF Assume that the topology Tn on Xn is metrized through metric
dn, where it may be assumed that dn ≤ 1 holds (otherwise use for Tn the
complete metric dn(x, y)/(1 + dn(x, y))). Then

d((xn)n∈N, (yn)n∈N) :=
∑

n∈N

2−ndn(xn, yn)

is a complete metric for the product topology
∏
n∈N

Tn. For the coproduct,
define the complete metric

d(x, y) :=

{
2, if x ∈ Xn, y ∈ Xm, n �= m

dn(x, y), if x, y ∈ Xn.

All this is established through standard arguments.
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EXAMPLE 1.18
The set N of natural numbers with the discrete topology is a Polish space on
account of being the topological sum of its elements. Thus the set N

∞ of all
infinite sequences is a Polish space. The sets

Σα := {τ ∈ N
∞ | α is an initial piece of τ}

for α ∈ N
∗, the free monoid generated by N, constitute a base for the product

topology.

This last example will be discussed in much greater detail later on. It
permits sometimes reducing the discussion of properties for general Polish
spaces to an investigation of the corresponding properties of N

∞, the structure
of the latter space being more easily accessible than that of a general space.
We apply Example 1.18 directly to show that all open subsets of a metric
space X with a countable base can be represented through a single closed set
in N

∞ ×X .
Define for D ⊆ X × Y the vertical cut

Dx := {y ∈ Y | 〈x, y〉 ∈ D}

and the horizontal cut

Dy := {x ∈ X | 〈x, y〉 ∈ D}.

Note that ((X × Y ) \D)x = Y \Dx.

PROPOSITION 1.19
Let X be a separable metric space. Then there exists an open set U ⊆ N

∞×X
and a closed set F ⊆ N

∞ ×X with these properties:

a. For each open set G ⊆ X there exists τ ∈ N
∞ such that G = Uτ .

b. For each closed set C ⊆ X there exists τ ∈ N
∞ such that C = Fτ .

PROOF 0. It is enough to establish the property for open sets; taking
complements will prove it for closed ones.

1. Let (Vn)n∈N be a basis for the open sets in X with Vn �= ∅ for all n ∈ N.
Define

U := {〈τ, x〉 | x ∈
⋃

n∈N

Vτn},

then U ⊆ N
∞ × X is open. In fact, let 〈τ, x〉 ∈ U , then there exists n ∈ N

with x ∈ Vn, thus
〈τ, x〉 ∈ Σn × Vn ⊆ U,

and Σn × Vn is open in the product.
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2. Let G ⊆ X be open. Because (Vn)n∈N is a basis for the topology, there
exists a sequence τ ∈ N

∞ with G =
⋃
n∈N

Vτn = Uτ .

The set U is usually called a universal open set, similar for F . These
universal sets will be used rather heavily when we discuss analytic sets.

Let us briefly look into the order structure of N
∞. We can lexicographically

order this set by saying that τ � τ ′ iff there exists k ∈ N such that τk ≤ τ ′k,
and τ� = τ ′� for all � with 1 ≤ � < k. Then � defines a total order. This
construction will be needed in Section 1.6.1.

LEMMA 1.20
Each nonempty closed set F ⊆ N

∞ has a minimal element in the lexico-
graphic order.

PROOF Let n1 be the minimal first component of all elements of F , n2

be the minimal second component of those elements of F that start with n1,
etc. This defines an element τ := 〈n1, n2, . . .〉 which is in F since F is closed
(because τ is an accumulation point of elements in F ).

We have seen that a closed subset of a Polish space is a Polish space in its
own right; a similar argument shows that an open subset of a Polish space is
Polish as well. Both observations turn out to be special cases of the charac-
terization of Polish subspaces through Gδ-sets.

We need an auxiliary statement due to Kuratowski which permits the ex-
tension of a continuous map from a subspace to a Gδ-set containing it — just
far enough to be interesting to us. Denote by cl (A) the topological closure of
a set A.

LEMMA 1.21
Let Y be a complete metrizable space, W a metric space, then a continuous

map f : A → Y can be extended to a continuous map f∗ : G → Y with G a
Gδ-set such that A ⊆ G ⊆ cl (A).

PROOF (Sketch) 0. We may and do assume that the complete metric d
for Y is bounded by 1. Define the diameter diam(Q) of Q ⊆ Y as

diam(Q) := sup{d(y1, y2) | y1, y2 ∈ Q}.

The oscillation øf(x) of f at x ∈ cl (A) is defined as the smallest diameter of
the image of an open neighborhood of x, formally,

øf (x) := inf{diam(f [A ∩ V ]) | x ∈ V, V open}.

Because f is continuous on A, we have øf (x) = 0 for each element of A.
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1. Put
G := {x ∈ cl (A) | øf (x) = 0},

then A ⊆ G ⊆ cl (A), and G is a Gδ in W . In fact, represent G as

G =
⋂

n∈N

{x ∈ cl (A) | øf(x) <
1
n
},

where

{x ∈ cl (A) | øf(x) < q} =
⋃
{V ∩ cl (A) | diam(f [V ∩A]) < q}

is open in cl (A), and note that cl (A) is — as a closed set — a Gδ in W .
2. Now take an element x ∈ G ⊆ cl (A). Then there exists a sequence

(xn)n∈N of elements xn ∈ A with xn → x. Given ε > 0, we find a neighborhood
V of x with diam(f [A ∩ V ]) < ε. Since xn → x, we know that xm ∈ V ∩ A
for all m > nε, so that the sequence (f(xn))n∈N is a Cauchy sequence in Y ;
it converges because Y is complete. Put

f∗(x) := lim
n→∞ f(xn).

It is then not difficult to see that the map f∗ is well defined and extends f ,
and that f∗ is continuous.

This technical Lemma is an important step in establishing a far reaching
characterization of subspaces of Polish spaces that are Polish in their own
right.

THEOREM 1.22
Let Y be a Polish space. Then the subspace X ⊆ Y is a Polish space iff X

is a Gδ-set.

PROOF (Sketch) 1. LetX be a complete subset of Y , then by Lemma 1.21
the inclusion idX : X → Y can be extended to a continuous map g∗ : G→ Y
for a Gδ-set G with X ⊆ G ⊆ cl (X) . Since X is dense in G, we see ig∗ = idX
and X = G.

2. Assume that X =
⋂
n∈N

Gn with open sets Gn. Let d be the complete
metric for Y , then put for x, y ∈ X

d′(x, y) := d(x, y) +
∑

n∈N

min
{

2n+1,

∣
∣
∣
∣

1
d(x, Y \Gn)

− 1
d(y, Y \Gn)

∣
∣
∣
∣

}

.

One shows that the identity idY : (Y, d) → (Y, d′) is continuous in both
directions. Thus the open sets are the same for both metrics.

The next step is to show that (X, d′) is complete. In fact, let (xn)n∈N ⊆ X
be a d′-Cauchy sequence, then it is a d-Cauchy sequence in Y , so there exists
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x ∈ Y with xn → x. But for each n the sequence (1/d(xj , Y \ Gn))j∈N con-
verges as well, and we have d(xj , Y \Gn)→ d(x, Y \Gn) �= 0 by construction.
This means that x /∈ Y \Gn for each n ∈ N, thus x ∈ X is established. Hence
(X, d′) is complete.

Conversely, each Polish space can be represented as a Gδ-set in the Hilbert
cube [0, 1]∞; this is the famous characterization of Polish spaces due to Alexan-
drov (Kuratowski, 1966, III.33.VI), which will be used, e.g., in Section 4.3.2.

THEOREM 1.23

(Alexandrov) Let X be a separable metric space, then X is homeomorphic
to a subspace of the Hilbert cube. If X is Polish, this subspace is a Gδ.

PROOF 1. We may and do assume that the metric d is bounded by
1. Let (xn)n∈N be a countable and dense subset of X , and put f(x) :=
〈d(x, x1), d(x, x2), . . . 〉. Then f is injective and continuous. Define g : f [X ]→
X as f−1, then g is continuous as well: assume that f(ym)→ f(y) for some y,
hence limm→∞ d(ym, xn) = d(y, xn) for each n ∈ N. Since (xn)n∈N is dense,
we find for a given ε > 0 an index n with d(y, xn) < ε; by construction we find
for n an index m0 with d(ym, xn) < ε whenever m > m0. Thus d(ym, y) < 2 ·ε
for m > m0, so that ym → y. This demonstrates that g is continuous, thus f
is a homeomorphism.

2. If X is Polish, f [X ] ⊆ [0, 1]∞ is Polish as well. Thus the second assertion
follows from Theorem 1.22.

Recall that a topological Hausdorff space X is compact iff each open cover
of X contains a finite cover of X . These properties of compact spaces will be
used from time to time.

THEOREM 1.24

Let X be a topological Hausdorff space. Then

a. If Y is a compact subspace of X, then Y is closed.

b. If X is compact and Y is closed, then Y is compact.

c. The union of a finite number of compact sets is compact.

d. The continuous image of a compact set into a Hausdorff space is compact.

e. The product of compact spaces is compact (Tihonov’s Theorem).

f. If X is metrizable, then X is compact iff every sequence has a convergent
subsequence.



A Gentle Tutorial to All Things Considered 17

g. If X is metrizable, then X is compact iff it is complete and totally bounded
(thus given ε > 0, there exists a finite subset {x1, . . . , xn} ⊆ X with X ⊆
Bε(x1) ∪ · · · ∪Bε(xn)) (Bolzano-Weierstraß Theorem).

The Bolzano-Weierstraß Theorem implies that compact metrizable spaces
are Polish. It is inferred from Tihonov’s Theorem that the Hilbert cube [0, 1]∞

is compact, because the unit interval [0, 1] is compact, again by the Bolzano-
Weierstraß Theorem. Thus Alexandrov’s Theorem 1.23 embeds a Polish space
as a Gδ into a compact metric space, the closure of which will be compact by
Proposition 1.24, part b.

1.3.3 Manipulating Polish Topologies

We will show now that Borel maps between Polish spaces can be turned
into continuous maps. Specifically, we will show that, given a measurable
map between Polish spaces, we can find on the domain a finer Polish topology
with the same Borel sets which renders the map continuous. This will be
established through a sequence of auxiliary statements, each of which will be
of interest and of use in its own right.

We fix for the discussion to follow a Polish space X with topology T .

LEMMA 1.25
Let F be a closed set in X. Then there exists a Polish topology T ′ such

that T ⊆ T ′ (hence T ′ is finer than T ), F is clopen in T ′, and B(X, T ) =
B(X, T ′).

(Recall that a set is clopen in a topological space iff it is both closed and
open.)

PROOF Both F and X \F are Polish by Theorem 1.22, so the topological
sum of these Polish spaces is Polish again by Lemma 1.17. The sum topology
is the desired topology.

LEMMA 1.26
Let (Tn)n∈N be a sequence of Polish topologies Tn with T ⊆ Tn.

a. The topology T∞ generated by
⋃
n∈N

Tn is Polish.

b. If Tn ⊆ B(X, T ), then B(X, T∞) = B(X, T ).

PROOF 1. The product
∏
n∈N

(Xn, Tn) is by Lemma 1.17 a Polish space,
where Xn = X for all n. Define the map f : X →

∏
n∈N

Xn through x 
→
〈x, x, . . . 〉, then f is T∞-

∏
n∈N

Tn-continuous by construction. One infers that
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f [X ] is a closed subset of
∏
n∈N

Xn: if (xn)n∈N /∈ f [X ], take xi �= xj with
i < j, and let Gi and Gj be disjoint open neighborhoods of xi resp. xj . Then

∏

�<i

X� ×Gi ×
∏

i<�<j

X� ×Gj ×
∏

�>j

X�

is an open neighborhood of (xn)n∈N that is disjoint from f [X ]. By Lemma 1.16,
the latter set is Polish. On the other hand, f is a homeomorphism between
(X,T∞) and f [X ], which establishes part a.

2. Tn has a countable basis {Ui,n | i ∈ N}, with Ui,n ∈ B(X, T ). This
implies that T∞ has {Ui,n | i, n ∈ N} as a countable basis, which entails
B(X, T∞) ⊆ B(X, T ). The other inclusion is obvious, giving part b.

As a consequence, we may add to a Polish topology a Borel set without
destroying the property of the space to be Polish or changing the Borel sets.
This is true as well for sequences of Borel sets, as we will see now.

PROPOSITION 1.27
If (Bn)n∈N is a sequence of Borel sets in X, then there exists a Polish

topology T0 on X such that T0 is finer than T , T and T0 have the same Borel
sets, and each Bn is clopen in T0.

PROOF 1. We show first that we may add just one Borel set to the
topology without changing the Borel sets. In fact, call a Borel set B ∈ B(X, T )
neat if there exists a Polish topology TB that is finer than T such that B ∈ TB ,
and B(X, T ) = B(X, TB).

H := {B ∈ B(X, T ) | B is neat}.

Then T ⊆ H, and each closed set is a member of H by Lemma 1.25. Fur-
thermore, H is closed under complements and under countable unions by
Lemma 1.26. Thus we may now infer that H = B(X, T ), so that each Borel
set is neat.

2. Now construct inductively Polish topologies Tn that are finer than T
with B(T ) = B(Tn). Start with T0 := T . Adding Bn+1 to the Polish topology
Tn according to the first part yields a finer Polish topology Tn+1 with the
same Borel sets. Thus the assertion follows from Lemma 1.26.

This permits turning a Borel map into a continuous one, whenever the
domain is Polish and the range is a second countable metric space.

PROPOSITION 1.28
Let (Y,S) be a separable metric space with topology S. If f : X → Y is a

B(X, T )-B(Y,S)-Borel measurable map, then there exists a Polish topology T ′
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on X such that T ′ is finer than T , T and T ′ have the same Borel sets, and
f is T ′-S continuous.

PROOF The metric topology S is generated from the countable basis
(Hn)n∈N. Construct from the Borel sets f−1 [Hn] and from T a Polish topol-
ogy T ′ according to Proposition 1.27. Because ∀n ∈ N : f−1 [Hn] ∈ T ′, the
inverse image of each open set from S is T ′-open, hence f is T ′-S continuous.
The construction entails T and T ′ having the same Borel sets.

This property is most useful, because it permits rendering measurable maps
continuous, when they go into a second countable metric space (thus in par-
ticular into a Polish space).

Having a countable dense subset for a metric space, we can use the corre-
sponding base for a fairly helpful characterization of the Borel sets. The next
Lemma says that the Borel sets are in this case countably generated.

LEMMA 1.29
Let Y be a separable metric space. Then

B(Y ) = σ({Br(d) | r > 0 rational, d ∈ D}),

where D is countable and dense.

PROOF Because an open ball is an open set, we infer that

σ({Br(d) | r > 0 rational, d ∈ D}) ⊆ B(Y ).

Conversely, let G be open. Then there exists a sequence (Bn)n∈N of open
balls with rational radii such that

⋃
n∈N

Bn = G, accounting for the other
inclusion.

This representation implies that the Borel sets B(X) of our Polish space X
are countably generated.

Also the characterization of Borel sets in a metric space as the closure of
the open (closed) sets under countable unions and countable intersections will
be occasionally helpful.

LEMMA 1.30
The Borel sets in a metric space Y are the smallest collection of sets that

contains the open (closed) sets and that are closed under countable unions and
countable intersections.

PROOF The smallest collection G of sets that contains the open sets and
that is closed under countable unions and countable intersections is closed
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under complementation. This is so since each closed set is a Gδ by Theo-
rem 1.22. Thus B(Y ) ⊆ G; on the other hand G ⊆ B(Y ) by construction.

As a preparation for dealing with analytic sets, we will show now that each
Borel subset of the Polish space X is the continuous image of N

∞. We begin
with a reduction of the problem space: it is sufficient to establish this property
for closed sets.

LEMMA 1.31
Assume that each closed set in X is a continuous image of N

∞. Then each
Borel set of X is a continuous image of N

∞.

PROOF (Sketch) 1. Let

G := {B ∈ B(X) | B = f [N∞] for f : N
∞ → X continuous}

be the set of all good guys. Then G contains by assumption all closed sets.
We show that G is closed under countable unions and countable intersections.
Then the assertion will follow from Lemma 1.30.

2. Suppose Bn = fn [N∞] for the continuous map fn, then

M := {〈τ1, τ2, . . . 〉 | f1(τ1) = f2(τ2) = . . . }

is a closed subset of (N∞)∞, and defining f : 〈τ1, τ2, . . . 〉 
→ f1(τ1) yields a
continuous map f : M → X with f [M] =

⋂
n∈N

Bn. M is homeomorphic to
N

∞. Thus G is closed under countable intersections.
3. Suppose Bn = fn [N∞] for the continuous map fn, then define Mj :=

Σj = {σ ∈ N
∞ | σ1 = j}. This set is clopen in N

∞ for each j ∈ N. Adjust fj
to a continuous map f̃j : Mj → Bj with Bj = f̃j [Mj], and define f : N

∞ → X

so that f(τ) = f̃j(τ) if τ ∈Mj. Then f is continuous, and f [N∞] =
⋃
n∈N

Bn.

Thus G is closed under countable unions.

Thus it is sufficient to show that each closed subset of a Polish space is the
continuous image on N

∞. But since a closed subset of a Polish space is Polish
in its own right, we will restrict our attention to Polish spaces proper.

PROPOSITION 1.32
There exists a continuous map f : N

∞ → X with f [N∞] = X.

PROOF 0. We will define recursively a sequence of closed sets indexed
by elements of N

∗ that will enable us to define a continuous map on N
∞.

1. Let d be a metric that makes X complete. Represent X as
⋃
n∈N

An
with closed sets An �= ∅ such that the diameter diam(An) < 1 for each n ∈ N
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(the diameter of a set was introduced in the proof of Lemma 1.21). Assume
that for a word α ∈ N

∗ of length k the closed set Aα �= ∅ is defined, and write
Aα =

⋃
n∈N

Aαn with closed sets Aαn �= ∅ such that diam(Aαn) < 1/(k+1) for
n ∈ N. This yields for every τ = 〈n1, n2, . . . 〉 ∈ N

∞ a sequence of nonempty
closed sets (An1n2..nk

)k∈N with diameter diam(An1n2..nk
) < 1/k. Because the

metric is complete,
⋂
k∈N

An1n2..nk
contains exactly one point, which is defined

to be f(τ). This construction renders f : N
∞ → X well defined.

2. Because we can find for each x ∈ X an index n′
1 ∈ N with x ∈ An′

1
,

an index n′
2 with x ∈ An′

1n
′
2
, etc.; the map just defined is onto, so that

f(〈n′
1, n

′
2, n

′
3, . . . 〉) = x for some τ ′ := 〈n′

1, n
′
2, n

′
3, . . . 〉 ∈ N

∞. Suppose
ε > 0 is given, and since the diameters tend to 0, we can find k0 ∈ N with
diam(An′

1n
′
2..n

′
k
) < ε for all k > k0. Put α′ := n′

1n
′
2..n

′
k0

, then Σα′ is an open
neighborhood of τ ′ with f [Σα′ ] ⊆ Bε,d(f(τ ′)). Thus we find for an arbitrary
open neighborhood V of f(τ ′) an open neighborhood U of τ ′ with f [U ] ⊆ V ,
equivalently, U ⊆ f−1 [V ]. Thus f is continuous.

Proposition 1.32 permits sometimes the transfer of arguments pertaining
to Polish spaces to arguments using infinite sequences. Thus a specific space
is studied instead of an abstractly given one, the former permitting some
rather special constructions. This will be seen in the investigation of some
astonishing properties of analytic sets which we will study now.

1.3.4 Analytic Spaces

An analytic set B is the projection of a Borel subset of X ×X , where X is
a Polish space; the complement of an analytic set is called a co-analytic set.
One may wonder whether these projections are Borel sets, but we will show in
a moment that there are strictly more analytic sets than Borel sets, whenever
the underlying Polish space is uncountable. Thus analytic sets are a proper
extension to Borel sets. On the other hand, analytic sets arise fairly naturally
from factoring Polish spaces through equivalence relations that are generated
from a countable collection of Borel sets; see Proposition 1.53. Consequently
it is sometimes more adequate to consider analytic sets rather than their Borel
cousins.

This is a first characterization of analytic sets (using πX for the projection
to X).

PROPOSITION 1.33
Let X be a Polish space. Then the following statements are equivalent for

A ⊆ X:

a. A is analytic.

b. There exists a Polish space Y and a Borel set B ⊆ X×Y with A = πX [B].

c. There exists a continuous map f : N
∞ → X with f [N∞] = A.
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d. A = πX [C] for a closed subset C ⊆ X × N
∞.

PROOF The implication a ⇒ b is trivial, b ⇒ c follows from Propo-
sition 1.32: B = g [N∞] for some continuous map g : N

∞ → X × Y , so
put f := πX ◦ g. We obtain c ⇒ d from the observation that the graph
{〈τ, f(τ)〉 | τ ∈ N

∞} of f is a closed subset of N
∞ ×X the first projection of

which equals A. Finally, d⇒a is obtained again from Proposition 1.32.

As an immediate consequence we obtain that a Borel set is analytic. Just
for the record:

COROLLARY 1.34
Each Borel set in a Polish space is analytic.

PROOF Proposition 1.33 together with Proposition 1.32.

The converse does not hold, as we will show now. This statement is not
only of interest in its own right. Historically it initiated the study of analytic
and co-analytic sets as a separate discipline in set theory (what is called now
Descriptive Set Theory).

PROPOSITION 1.35
Let X be an uncountable Polish space. Then there exists an analytic set that

is not Borel.

We show as a preparation for the proof of Proposition 1.35 that analytic sets
are closed under countable unions, intersections, direct and inverse images of
Borel maps. Before doing that, we establish a simple but useful property of
the graphs of measurable maps.

LEMMA 1.36
Let (M,M) be a measurable space, f : M → Z be a M-B(Z)-measurable

map, where Z is a separable metric space. The graph of f ,

graph(f) := {〈m, f(m)〉 | m ∈M},

is a member if M⊗B(Z).

PROOF 1. Let (Vn)n∈N be the basis for the metric topology of Z, then

(M × Z) \ graph(f) =
⋃

n∈N

(
f−1 [Vn]× (Z \ Vn) ∪M \ f−1 [Vn]× Vn

)
,
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which is plainly a member of M⊗B(Z).

Analytic sets have closure properties that are similar to those of Borel
sets, but not quite the same: they are closed under countable unions and
intersections, and under the inverse image of Borel maps. They are closed
under the direct image of Borel maps as well, but suspiciously missing is the
closure under complementation (which will give rise to Souslin’s Theorem).

PROPOSITION 1.37
Analytic sets in a Polish space X are closed under countable unions and

countable intersections. If Y is another Polish space, with analytic sets A ⊆ X
and B ⊆ Y , and f : X → Y is a Borel map, then f [A] ⊆ Y is analytic in Y ,
and f−1 [B] is analytic in X.

PROOF 1. Using the characterization of analytic sets in Proposition 1.33,
one shows exactly as in the proof to Lemma 1.31 that analytic sets are closed
under countable unions and under countable intersections.

2. Note first that the set Y × A is analytic in the Polish space Y ×X by
Proposition 1.33. Since y ∈ f [A] iff 〈x, y〉 ∈ graph(f) for some x ∈ A, we
write

f [A] = πY [Y ×A ∩ {〈y, x〉 | 〈x, y〉 ∈ graph(f)}] .
The set {〈y, x〉 | 〈x, y〉 ∈ graph(f)} is Borel in Y ×X by Lemma 1.36, so the
assertion follows for the direct image. The assertion is proved in exactly the
same way for the inverse image.

PROOF (of Proposition 1.35) 1. We will deal with the case X = N
∞

first. Let F ⊆ N
∞ × (N∞ × N

∞) be a universal closed set according to
Proposition 1.19. Thus each closed set C ⊆ N

∞ × N
∞ can be represented

as C = Fα for some α ∈ N
∞. Taking first projections, we conclude that

there exists a universal analytic set U ⊆ N
∞ × N

∞ such that each analytic
set A ⊆ N

∞ can be represented as Uτ for some τ ∈ N
∞.

Now set
A := {ζ | 〈ζ, ζ〉 ∈ U}.

Because analytic sets are closed under inverse images by Proposition 1.37, A
is an analytic set. Suppose that A is a Borel set, then N

∞ \A is also a Borel
set, hence analytic. Thus we find ξ ∈ N

∞ such that N
∞ \A = Uξ. But now

ξ ∈ A⇔ 〈ξ, ξ〉 ∈ U ⇔ ξ ∈ Uξ ⇔ ξ ∈ N
∞ \A.

This is a contradiction.
2. The general case is reduced to the one treated above by observing that an

uncountable Polish space contains a homeomorphic copy on N
∞. But since we

are interested mainly in showing that analytic sets are strictly more general
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than Borel sets, we refrain from a discussion of this case and refer the reader
to (Srivastava, 1998, Remark 2.6.5).

The representation of an analytic set through a continuous map on N
∞

has the remarkable consequence that we can separate two disjoint analytic
sets by disjoint Borel sets (Lusin’s Theorem). This in turn implies a pretty
characterization of Borel sets due to Souslin which says that an analytic set
is Borel iff it is co-analytic as well. Since the latter characterization will be
most valuable to us, we will discuss it in greater detail now.

We start with Lusin’s Theorem.

PROPOSITION 1.38
Given disjoint analytic sets A and B in a Polish space X, there exist disjoint

Borel sets E and F with A ⊆ E and B ⊆ F .

PROOF 0. Call two analytic sets A and B separated by Borel sets iff
A ⊆ E and B ⊆ F for disjoint Borel sets E and F . Observe that if two
sequences (An)n∈N and (Bn)n∈N have the property that Am and Bn can be
separated by Borel sets for all m,n ∈ N, then

⋃
n∈N

An and
⋃
m∈N

Bm can
be separated by Borel sets. In fact, if Em,n and Fm,n separate An and Bm,
then E :=

⋂
m∈N

⋃
n∈N

Em,n and F :=
⋃
m∈N

⋂
n∈N

Fm,n separate
⋃
n∈N

An
and

⋃
m∈N

Bm.
1. Now suppose that A = f [N∞] and B = g [N∞] cannot be separated

by Borel sets, where f, g : N
∞ → X are continuous and chosen according to

Proposition 1.33. Because N
∞ =

⋃
j∈N

Σj , (Σα is defined in Example 1.18),
we find indices k1 and �1 such that f [Σj1 ] and g [Σ�1 ] cannot be separated
by Borel sets. For the same reason, there exist indices k2 and �2 such that
f [Σj1j2 ] and g [Σ�1�2 ] cannot be separated by Borel sets. Continuing with
this, we define infinite sequences κ := 〈k1, k2, . . . 〉 and λ := 〈�1, �2, . . . 〉 such
that for each n ∈ N the sets f [Σj1j2...jn ] and g [Σ�1�2...�n ] cannot be separated
by Borel sets. Because f(κ) ∈ A and g(λ) ∈ B, we know f(κ) �= g(λ), so we
find ε > 0 with d(f(κ), g(λ)) < 2 · ε. But we may choose n large enough so
that both f [Σj1j2...jn ] and g [Σ�1�2...�n ] have a diameter smaller than ε each.
This is a contradiction since we now have separated these sets by open balls.

We obtain as a consequence Souslin’s Theorem.

THEOREM 1.39
(Souslin) Let A be an analytic set in a Polish space. If X \ A is analytic,

then A is a Borel set.

PROOF Let A and X \ A be analytic, then they can be separated by
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disjoint Borel sets E with A ⊆ E and F with X \A ⊆ F by Lusin’s Theorem
Proposition 1.38. Thus A = E is a Borel set.

Souslin’s Theorem is important when one wants to show that a set is a
Borel set that is given for example through the image of another Borel set. A
typical scenario for its use is establishing for a Borel set B and a Borel map
f : X → Y that both A = f [B] and Y \A = f [X \B] hold. Then one infers
from Proposition 1.37 that both A and Y \A are analytic, and from Souslin’s
Theorem that A is a Borel set.

We make the properties of analytic sets a bit more widely available by
introducing analytic spaces. Roughly, an analytic space is Borel isomorphic
to an analytic set in a Polish space; to be more specific:

DEFINITION 1.40 A measurable space (M,M) is called an analytic
space iff there exists a Polish space X and an analytic set A in X such that
the measurable spaces (M,M) and (A,B(X) ∩A) are Borel isomorphic. The
elements of M are then called the Borel sets of M . M is denoted by B(M).

We will omit the σ-algebra from the notation of an analytic space.
Analytic spaces share many favorable properties with analytic sets, and

with Polish spaces, but they are a wee bit more general: whereas an analytic
set lives in a Polish space, an analytic space does only require a Polish space
to sit in the background somewhere and to be Borel isomorphic to it. This
makes life considerably easier, since we are not always obliged to present a
Polish space directly when dealing with properties of analytic spaces.

An immediate consequence is that the image of an analytic space under a
Borel map into a Polish space is analytic again.

PROPOSITION 1.41
Let f : X → Y be a Borel map from the analytic space X to the Polish space
Y , then f [X ] is an analytic set in Y .

PROOF This is a mere reformulation from Proposition 1.37.

Take a Borel measurable bijection between two Polish spaces. It is not a
priori clear whether or not this map is an isomorphism. Souslin’s Theorem
gives a helpful hand here as well. We will need this property in a moment for
a characterization of countably generated sub-σ-algebras of Borel sets, but it
appears to be interesting in its own right.

PROPOSITION 1.42
Let X and Y be analytic spaces and f : X → Y be a bijection that is Borel

measurable. Then f is a Borel isomorphism.
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PROOF 1. It is no loss of generality to assume that we can find Polish
spaces P and Q such that X and Y are subsets of P resp. Q. We want to
show that f [X ∩B] is a Borel set in Y , whenever B ∈ B(P ) is a Borel set.
For this we need to find a Borel set G ∈ B(Q) such that f [X ∩B] = G ∩G.

2. Clearly, both f [X ∩B] and f [X \B] are analytic sets in Q by Propo-
sition 1.41, and because f is injective, they are disjoint. Thus we can find
a Borel set G ∈ B(Q) with f [X ∩B] ⊆ G ∩ Y , and f [X \B] ⊆ Q \ G ∩ Y .
Because f is surjective, we have f [X ∩B]∪f [X \B], thus f [X ∩B] = G∩Y

Call a measurable space (M,M) separable iff the σ-algebraM has a count-
able set (An)n∈N of generators which separates points, i.e., given x, x′ ∈ M
with x �= x′ there exists An which contains exactly one of them. A Polish
space is separable as a measurable space, so is an analytic space, as we will
show now.

Separable measurable spaces are characterized through subsets of Polish
spaces.

LEMMA 1.43
The measurable space (M,M) is separable iff there exists a Polish space X

and a subset P ⊆ X such that the measurable spaces (M,M) and (P,B(X)∩P )
are Borel isomorphic.

PROOF 1. Because B(X) is countably generated for a Polish space
X by Lemma 1.29, the σ-algebra B(X) ∩ P is countably generated. Since
this property is not destroyed by Borel isomorphisms, the condition above is
sufficient.

2. It is also necessary. Let (An)n∈N be a generator for M, and define

f(t) := 〈χA1(t), χA2(t), . . . 〉

(χA is the indicator function for set A), then f : M → {0, 1}∞ is injective,
because (An)n∈N separates points. Put X := {0, 1}∞ and equip X with the
product topology, then X is compact, hence Polish. Put P := f [M ], and let

Bn := {τ ∈ P | τn = 1} = P ∩ χ−1
An

[{1}] .

Since B(X) is generated from the sequence ({τ ∈ X | τn = 1})n∈N
, we infer

that f is a Borel isomorphism between (M,M) and (P,B(X) ∩ P ).

Thus analytic spaces are separable.

COROLLARY 1.44
An analytic space is a separable measurable space.
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A second consequence is that separable measurable spaces are derived from
separable metric spaces in a rather straightforward way.

LEMMA 1.45
For a separable measurable space (X,A) there exists a separable metric

topology T on X such that B(X, T ) = A.

By the way, this innocently looking statement has some remarkable conse-
quences for our context. Just as an appetizer:

COROLLARY 1.46
Let (M,M) be a separable measurable space. Then

a. The diagonal is measurable in the product, i.e.,

ΔM×M := {〈t, t〉 | t ∈M} ∈ M⊗M.

b. If fi : Xi → M is Ai −M-measurable, where (Xi,Ai) is a measurable
space (i = 1, 2), then

f−1
1 [M]⊗ f−1

2 [M] = (f1 × f2)−1 [M⊗M] .

PROOF 1. Let (An)n∈N be a generator for M that separates point, then

(M ×M) \ΔM×M =
⋃

n∈N

(An ×M \An ∪M \An ×An) ,

which is a member of M⊗M.
2. The product σ-algebra M⊗M is generated by the rectangles B1 × B2

with Bi taken from some generator B0 for B (i = 1, 2). Since

(f1 × f2)−1 [B1 ×B2] = f−1
1 [B1]× f−1

2 [B2] ,

we see that
(f1 × f2)−1 [B ⊗ B] ⊆ f−1

1 [B]⊗ f−1
2 [B] .

This is true without the assumption of separability. Now let T be a second
countable metric topology on Y with B = B(Y, T ) and let T0 be a countable
base for the topology. Then

Tp := {T1 × T2 | T1, T2 ∈ T0}

is a countable base for the product topology T ⊗ T , and (this is the crucial
property)

B ⊗ B = B(Y × Y, T ⊗ T )
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holds: because the projections from X × Y to X and to Y are measurable,
we observe B ⊗ B ⊆ B(Y × Y, T ⊗ T ); because Tp is a countable base for the
product topology T ⊗ T , we infer the other inclusion.

3. Since for T1, T2 ∈ T0 clearly

f−1
1 [T1]× f−1

2 [T2] ∈ (f1 × f2)−1 [Tp] ⊆ (f1 × f2)−1 [B ⊗ B]

holds, the nontrivial inclusion is inferred from the fact that the smallest σ-
algebra containing {f−1

1 [T1]×f−1
2 [T2] | T1, T2 ∈ T0} equals f−1

1 [B]⊗f−1
2 [B] .

COROLLARY 1.47
Let f : M → Z be a M-N -measurable map, where (M,M) and (N,N ) are

measurable spaces, the latter being separable. Then the kernel of f

ker (f) := {〈m1,m2〉 | f(m1) = f(m2)}

is a member of M⊗M.

PROOF The map f × f : 〈m1,m2〉 
→ 〈f(m1), f(m2)〉 is M⊗M-N ⊗N -
measurable, and the diagonal ΔN×N is a member of B(Z) ⊗ B(Z). Since
ker (f) = (f × f)−1 [ΔZ×Z ] , the assertion follows.

Returning to analytic spaces, have a brief look at countably generated sub-
σ-algebras of an analytic space. This will help us to establish that the factor
space for a particularly interesting and important class of equivalence relations
is an analytic space.

PROPOSITION 1.48
Let X be an analytic space, B0 a countably generated sub-σ-algebra of B(X)

that separates points. Then B0 = B(X).

PROOF 1. (X,B0) is a separable measurable space, so there exists a
Polish space P and a subset Y ⊆ P of P such that (X,B0) is Borel isomorphic
to P,B(P ) ∩ Y by Lemma 1.43. Let f be this isomorphism, then B0 =
f−1 [B(P ) ∩ Y ].

2. f is a Borel map from (X,B(X)) to (Y,B(P )∩Y ), thus Y is an analytic
set with B(Y ) = B(X) ∩ P by Proposition 1.41. By Proposition 1.42, f
is an isomorphism, hence B(X) = f−1 [B(P ) ∩ Y ]. But this establishes the
assertion.

This gives an interesting characterization of measurable spaces to be ana-
lytic, provided they have a separating sequence of sets, to be specific:
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LEMMA 1.49
Let X be analytic, f : X → Y B(X)-N -measurable and onto for a measurable

space (Y,N ) which has a sequence of sets in N that separate points. Then
(Y,N ) is analytic.

PROOF 1. Let (Bn)n∈N be the sequence of sets that separates points, take
an arbitrary setN ∈ N and define the σ-algebra B0 := σ({Bn | n ∈ N}∪{N}).
Then (Y,B0) is a separable measurable space, so by Lemma 1.43 we can find a
Polish space P with Y ⊆ P and B0 is the trace of B(P ) on Y . Proposition 1.41
tells us that Y = f [X ] is analytic with B0 = B(Y ) = σ({Bn | n ∈ N}), the
latter equality being implied by Proposition 1.48. Because N was arbitrary,
and because Bn ∈ N , this yields N = σ({Bn | n ∈ N}) = B(Y ).

We will use Lemma 1.49 for demonstrating that the factor space of an
analytic space for a smooth equivalence relation is analytic again. This class
of relations will be defined now and briefly characterized here; later chapters
will use them extensively.

We give a definition in terms of a determining sequence of Borel sets and
relate other characterizations of smoothness in Lemma 1.52.

DEFINITION 1.50 Let X be an analytic space and ρ an equivalence
relation on X. Then ρ is called smooth iff there exists a sequence (An)n∈N of
Borel sets such that

x ρ x′ ⇔ ∀n ∈ N : [x ∈ An ⇔ x′ ∈ An].
(An)n∈N is said to determine the relation ρ.

We obtain immediately from the definition that a smooth equivalence rela-
tion — seen as a subset of the Cartesian product — is a Borel set:

COROLLARY 1.51
Let ρ be a smooth equivalence relation on the analytic space X, then ρ is a

Borel subset of X ×X.

PROOF Suppose that (An)n∈N determines ρ. Since x ρ x′ is false iff there
exists n ∈ N with 〈x, x′〉 ∈ (An × (X \An)) ∪ ((X \An)×An) , we obtain

(X ×X) \ ρ =
⋃

n∈N

(An × (X \An)) ∪ ((X \An)×An) .

This is clearly a Borel set in X ×X .

The following characterization of smooth equivalence relations is sometimes
helpful and shows that it is not necessary to look only at sequences of sets.
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It indicates that the kernels of Borel measurable maps and smooth relations
are intimately related.

LEMMA 1.52
Let ρ be an equivalence relation on an analytic set X. Then these conditions

are equivalent:

a. ρ is smooth.

b. There exists a sequence (fn)n∈N of Borel maps fn : X → Z into an analytic
space Z such that ρ =

⋂
n∈N

ker (fn) .

c. There exists a Borel map f : X → Y into an analytic space Y with ρ =
ker (f) .

PROOF 1. a⇒b: Let (An)n∈N determine ρ, then

x ρ x′ ⇔ ∀n ∈ N : [x ∈ An ⇔ x′ ∈ An]
⇔ ∀n ∈ N : χAn(x) = χAn(x′).

Thus take Z = {0, 1} and fn := χAn .
2. b⇒c: Put Y := Z∞. This is an analytic space in the product σ-algebra,

and

f :

{
X → Y

x 
→ (fn(x))n∈N

is Borel measurable with f(x) = f(x′) iff ∀n ∈ N : fn(x) = fn(x′).
3. c ⇒ a: Since Y is analytic, it is separable; hence the Borel sets are

generated through a sequence (Bn)n∈N which separates points. Put An :=
f−1 [Bn] , then (An)n∈N is a sequence of Borel sets, because the base sets Bn
are Borel in Y , and because f is Borel measurable. We claim that (An)n∈N

determines ρ:

f(x) = f(x′) ⇔ ∀n ∈ N : [f(x) ∈ Bn ⇔ f(x′) ∈ Bn]
(since (Bn)n∈N separates points in Z)

⇔ ∀n ∈ N : [x ∈ An ⇔ x′ ∈ An].

Thus each smooth equivalence relation may be represented as the kernel of
a Borel map, and vice versa.

The interest in analytic spaces comes from the fact that factoring an analytic
space through a smooth equivalence relation will result in an analytic space
again. This requires first and foremost the definition of a measurable structure
induced by the relation. The natural choice is the structure imposed by the
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factor map. The final σ-algebra on X/ρ with respect to the Borel sets on
X and the natural projection ηρ will be chosen; it is denoted by B(X)/ρ.
Recall that B(X)/ρ is the largest σ-algebra C on X/ρ rendering ηρ a B(X)-
C-measurable map. Then it turns out that B(X/ρ) coincides with B(X)/ρ :

PROPOSITION 1.53
Let X be an analytic space, and assume that α is a smooth equivalence

relation on X. Then X/α is an analytic space.

PROOF In accordance with the characterization of smooth relations in
Lemma 1.52 we assume that α is given through a sequence (fn)n∈N of mea-
surable maps fn : X → R. The factor map is measurable and onto. Put
En,r := {[x]α | x ∈ X, fn(x) < r}, then E := {En,r | n ∈ N, r ∈ Q} is a
countable set of element of the factor σ-algebra that separates points. The
assertion now follows without difficulties from Lemma 1.49.

The Blackwell-Mackey-Theorem analyzes those Borel sets that are unions
of A-atoms for a sub-σ-algebra A ⊆ B(X). Recall that a set W ∈ A is an
A-atom (or simply an atom) iff for each V ∈ A with V ⊆ W either V = ∅
or V = W holds. If A is countably generated by, say, (An)n∈N, then it is not
difficult to see that an atom in A can be represented as

⋂

i∈T
Ai ∩

⋂

i∈N\T
(X \Ai)

for a suitable subset T ⊆ N.

THEOREM 1.54
(Blackwell-Mackey) Let X be an analytic space and A ⊆ B(X) be a count-
ably generated sub-σ-algebra of the Borel sets of X. If B ⊆ X is a Borel set
that is a union of atoms of A, then B ∈ A.

PROOF Let A be generated by (An)n∈N, and define

f : X → {0, 1}∞

through
x 
→ 〈χA1(x), χA2(x), χA3 (x), . . . 〉.

Then f is A-B({0, 1}∞)-measurable. We claim that f [B] and f [X \B] are
disjoint. Suppose not, then we find t ∈ {0, 1}∞ with t = f(x) = f(x′) for
some x ∈ B, x′ ∈ X \ B. Because B is the union of atoms, we find a subset
T ⊆ N with x ∈ An, provided n ∈ T , and x /∈ An, provided n /∈ T . But
since f(x) = f(x′), the same holds for x′ as well, which means that x′ ∈ B,
contradicting the choice of x′.
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Because f [B] and f [X \B] are disjoint analytic sets, we find through
Souslin’s Theorem 1.39 a Borel set C with

f [B] ⊆ C, f [X \B] ∩ C = ∅.

Thus f [B] = C, and we are done.

Sometimes one starts not with a topological space and its Borel sets but
rather with a measurable space: A Standard Borel space (X,A) is a measur-
able space such that the σ-algebra A equals B(X, T ) for some Polish topology
T on X . But we will not use this construction extensively.

1.4 Measurable Selectors

Assume that X and Z are sets. Consider a set valued map R : X →
Pow (Z) , equivalently, a relation R ⊆ X × Z. We will not distinguish too
narrowly between relations and set valued maps, so that for a relation R the
set R(x) will be defined as well. We define for R and a set G ⊆ Z the weak
inverse

∃R(G) := {x ∈ X | R(x) ∩G �= ∅}
and the strong inverse as

∀R(G) := {x ∈ X | R(x) ⊆ G}.

EXAMPLE 1.55
Both weak and strong inverse of a relation invoke an analogy to modal logic.
The formulas of this logic are given in its simplest form through

ϕ ::= � | p | ¬ϕ | ϕ1 ∧ ϕ2 | �ϕ

with p an atomic sentence. Assume that M = (S,R, V ) is a Kripke model
for the basic modal logic, S being the state space, R ⊆ S × S the transi-
tion relation, and V the valuation for the atomic sentences. We define the
semantics of formulas inductively, starting with [[p]]M := V (p). The meaning
of negation and conjunction are given as usual, and the semantics for �ϕ is
defined through

M, s |= �ϕ⇔ ∃s′ ∈ S : 〈s, s′〉 ∈ R ∧M, s′ |= ϕ.

Thus

s ∈ [[�ϕ]]M ⇔ ∃s′ : s′ ∈ R(s) ∧ s′ ∈ [[ϕ]]M
⇔ R(s) ∩ [[ϕ]]M �= ∅
⇔ s ∈ ∃R([[ϕ]]M).
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Similarly, the semantics for �ϕ which is as usual defined to equal ¬�¬ϕ is
shown to be ∀R([[ϕ]]) = [[�ϕ]].

This relationship between both inverses and modal logics will be exploited in
Chapter 6 in the context of stochastic relations. Nondeterministic refinements
will be investigated as well; see Section 6.2.2.

We will discuss here the relationship of measurable relations and those
measurable maps that always select an element from the range of such a
relation. For this, we endow X and Z with a measurable resp. a Polish
structure. Assume that X is a measurable space, and that Z is Polish.

Assume that R(x) always takes closed and nonempty values. If the weak
inverse ∃R(G) is a measurable set, whenever G ⊆ Z is open, then R is called
a weakly measurable relation on X × Z. Relation R is called a measurable
relation iff the strong inverse ∀R(F ) is measurable, whenever F ⊆ Z is closed.
R is called C-measurable iff for any compact set C ⊆ Z the weak inverse ∃R(C)
of C is a Borel set in X .

Weakly measurable relations can be represented through measurable selec-
tors (sometimes called a Castaing representation). This representation implies
in particular that a weakly measurable set valued map has a measurable se-
lector. Formally:

DEFINITION 1.56 Given the measurable space X and the Polish space
Z, assume that ∅ �= R(x) ⊆ Z takes always closed values.

a. A measurable map f : X → Z is called a measurable selector for R iff
f(x) ∈ R(x) holds for all x ∈ X.

b. The sequence (fn)n∈N of measurable selectors fn : X → Z is called a
Castaing representation for the relation R ⊆ X × Z iff

R(x) = cl ({fn(x) | n ∈ N})

holds for all x ∈ X.

Thus for relation R to have a Castaing representation it is a necessary
condition that R(x) is nonempty and closed for each x ∈ X . We will establish
the following characterization.

PROPOSITION 1.57
Given the measurable space X and the Polish space Z. Let R ⊆ X × Z be

a relation with ∅ �= R(x) ⊆ Z is closed for every x ∈. Then the following
conditions are equivalent:

a. R is weakly measurable.

b. There exists Castaing representation for R.
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c. If R is C-measurable.

This statement will be proved through a sequence of auxiliary statements.

LEMMA 1.58
Assume that X is a measurable space, Z is a Polish space, and assume that

R ⊆ X × Z is weakly measurable. Then there exists a measurable selector f
for R.

PROOF 1. Fix a complete metric d for the topology on Z, and assume
that (zn)n∈N is a dense sequence in Z. We define inductively a sequence of
measurable maps (fn)n∈N with the following properties:

i. d(fn(x), R(x)) < 2−n,

ii. d(fn+1(x), fn(x)) < 2 · 2−n.

Put f0(x) := zn, where n = n(x) is the smallest integer such that R(x) ∩
B1(zn) �= ∅. Because

{x ∈ X | f1(x) = xn} = ∃R(B1(xn)) ∩
⋃

m<n

∃R(B1(xm)),

this defines a measurable map.
2. Suppose that f0, . . . , fn is chosen with the desired properties, then let

Xi := {x ∈ X | fn(x) = zi}.

This is a measurable set, and if x ∈ Xi, we know that R(x) ∩ B2−i(xi) �= ∅.
This is so since fn(x) = zi implies d(fn(x), R(x)) < 2−n. If x ∈ Xi is given,
define fn+1(x) := zk iff k is the smallest index with

R(x) ∩B2−n(zi) ∩B2−(n+1)(xk) �= ∅.

Thus fn+1 is measurable, we have d(fn+1(x), R(x)) < 2−(n+1), and

d(fn+1(x), fn(x)) ≤ d(fn+1(x), zi) + d(zi, fn(x)) < 2−(n+1) + 2−n = 2 · 2−n.

This implies that (fn(x))n∈N is a Cauchy sequence, which converges, be-
cause (Z, d) is complete. The limit f is a measurable map with f(x) ∈ R(x),
as desired.

A closer analysis of the arguments in the previous Lemma will show now
that we even get a Castaing representation.

LEMMA 1.59
Under the conditions of Lemma 1.58 there exists a Castaing representation

for R.
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PROOF 1. Let again (zn)n∈N be dense in Z, and put for n, k ∈ N

Rn,k(x) :=

{
R(x) ∩B2−k(zn), x ∈ ∃R(B2−k(zn)
R(x), otherwise.

If G ⊆ Z is an open set, then

{x ∈ X | cl (Rn,k(x)) ∩G �= ∅} = {x ∈ X | Rn,k(x) ∩G �= ∅}
= ∃R(B2−k(zn) ∩ U) ∪

(∃R(U) ∩ (X \ ∃R(B2−k(zn))) .

This is a measurable set, thus x 
→ cl (Rn,k(x)) constitutes a weakly measur-
able relation, for which there exists a measurable selector fn,k according to
Lemma 1.58.

2. We claim that

R(x) = cl ({fn,k(x) | n, k ∈ N})

holds. In fact, take ε > 0 and select k ∈ N so that 2 · 2−k < ε. Given x ∈
X, z ∈ R(x), we can find n with d(zn, z) < 2−k, thus x ∈ ∃R(B2−k(zn)), and
fn,k(x) ∈ cl (B2−k(zn)). Hence d(fn,k(x), z) ≤ d(fn,k(x), zn) + d(zn, z) < ε.

PROOF (of Proposition 1.57) 1. The implication b ⇒ a follows from
Lemma 1.59. For a ⇒ b we argue as follows. Let (fn)n∈N be a Castaing
representation for R, G ⊆ Z open, then

∃R(G) = {x ∈ X | cl ({fn(x) | n ∈ N}) ∩G �= ∅}
= {x ∈ X | {fn(x) | n ∈ N} ∩G �= ∅}
=

⋃

n∈N

f−1
n [G] .

This is a measurable set.
2. For b⇒ c, we assume that R(x) = cl (fn(x) | n ∈ N}) holds, where the

fn are measurable selectors for R. Let C ⊆ Z be compact, and define for
a compatible and complete metric d on Z the open set Km := {z ∈ Z |
d(z, C) < 1/m}. Clearly, C =

⋂
m∈N

Km, and we show that

∃R(C) =
⋂

m∈N

∃R(Km)

holds. If x ∈ ∃R(C), then clearly x ∈ ∃R(Km) for anym ∈ N. Take conversely
zm ∈ R(x) ∩ Km, and select ym ∈ C with d(ym, zm) < 1/m. Since C is
compact, we can find a convergent subsequence ymk

and y ∈ C with ymk
→ y,

thus zmk
→ y, hence y ∈ R(x) ∩ C, which means x ∈ ∃R(C). Consequently,

we can represent ∃R(C) as

∃R(C) =
⋂

m∈N

⋃

n∈N

f−1
n [Km] ,
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so that R is C-measurable.
3. It remains to establish c⇒ a. We know that Z is a dense subset of

a compact metric space W by Alexandrov’s Theorem 1.23. Thus R0(x) :=
cl (R(x))W maps X to the nonempty closed subsets of W , cl (·)W denoting the
closure in W . Since each open set in a metric space is the countable union of
closed sets, and since each closed set in W is compact, C-measurability implies
that R0 is weakly measurable, and since

cl (R(x))W ∩ U �= ∅ ⇔ R(x) ∩ U �= ∅,

whenever U ⊆ Z is open, it follows that R is weakly measurable.

1.5 Probability Measures

Stochastic relations and Markov transition systems are based eventually on
subprobability measures. We will discuss these measures now and point out
some salient features from which we will develop some algebraic properties.

Dealing first with properties of individual measures, the attention shifts
soon to the set of all subprobabilities on a Polish space. This space is endowed
with a topology, rendering it a Polish space again, and some properties of
this topology will be investigated. We need in the sequel some particular
constructions (like projective limits for the interpretation of logics operating
on infinite sequences); these constructions will be provided here as well.

A probability measure on the measurable space (N,N ) is a monotone and
σ-additive map μ : N → [0, 1] with μ(∅) = 0 and μ(N) = 1. That μ is
σ-additive means that

μ(
⋃

i∈N

Di) =
∑

i∈N

μ(Di)

holds whenever (Dn)n∈N is a countable family of mutually disjoint sets in N .
Denote by P (N,N ) the set of all probability measures on (N,N ). We will
use subprobability measures as well: they are defined like probability measures
with the exception that the entire spaces is assigned a mass which does not
exceed unity; S (N,N ) is the set of all subprobability measures on (N,N ).

A rather important tool is the well-known Monotone Convergence Theo-
rem (Halmos, 1950, Theorem 27.B), which yields the analogue to σ-additivity
for the integral. Recall that the elements of F (M,M) are bounded.

PROPOSITION 1.60
Let f ∈ F (M,M) for the measurable space (M,M) be a nonnegative and

bounded measurable function with f ≥ 0, assume that 0 ≤ f1 ≤ f2 ≤ . . . is a
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monotonically increasing sequence (fn)n∈N ⊆ F (M,M) with f = supn∈N
fn,

and let μ ∈ S (N,M) be a subprobability measure. Then
∫

M

f dμ = lim
n→∞

∫

M

fn dμ.

An easy and occasionally very practical first consequence of Proposition 1.60
is the representation of an integral with respect to an arbitrary measure
through an integral on the real line, what is sometimes called the Choquet
representation. This representation builds a bridge between the classical Rie-
mann integral and Lebesgue integral, since it permits computing a Lebesgue
integral for a nonnegative function f through the area

{〈x, t〉 ∈M × R | 0 ≤ t < f(x)}

under its graph.

PROPOSITION 1.61
Let f ∈ F (M,M) for the measurable space (M,M) be a nonnegative and

bounded measurable function with f ≥ 0, then
∫

M

f dμ =
∫ ∞

0

μ({x ∈M | f(x) > t}) dt.

PROOF Define for f ≥ 0 the set

C(f) := {〈x, t〉 ∈M × R | 0 ≤ t < f(x)},

we claim that C(f) ∈ M⊗B(R) and
∫

M

f dμ = (μ⊗ λ)(C(f))

holds, where λ is Lebesgue measure, and μ⊗ λ is the product measure. Con-
sider these cases.

1. If f = χA with A ∈M, then C(f) = M \A×{0}∪A× [0, 1[∈M⊗B(R)
thus ∫

M

χA dμ = μ(A) = (μ⊗ λ)(C(f)).

2. If f is represented as a step function with a finite number of mutually
disjoint steps, say, f =

∑k
i=1 ri · χAi with ri ≥ 0 and all Ai ∈M, then

C(f) =

(

M \
k⋃

i=1

Ai

)

× {0} ∪
k⋃

i=1

Ai × [0, ri[∈ M⊗B(R),
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and
∫

M

f dμ =
k∑

i=1

∫

Ai

ri dμ = (μ⊗ λ)(C(f)).

3. If f is represented as a monotone limit of step function (fn)n∈N with
fn ≥ 0 according to Proposition 1.5, then C(f) =

⋃
n∈N

C(fn), thus
C(f) ∈ M⊗B(R), and, by Proposition 1.60,

∫

M

f dμ = lim
n→∞

∫

M

fn dμ

= lim
n→∞(μ⊗ λ)(C(fn))

= (μ⊗ λ)(C(f)).

Thus we have for f ≥ 0 the representation
∫

M

f dμ = (μ⊗λ)(C(f)) =
∫ ∞

0

μ(C(f)t) dt =
∫ ∞

0

μ({x ∈M | f(x) > t}) dt,

the latter equality being derived from Fubini’s Theorem for product integra-
tion.

Here μ⊗ λ is the product measure with factors μ and λ. Recall that given
μi ∈ S (Ni,Ni) there exists a unique measure μ1⊗μ2 ∈ S (N1 ×N2,N1 ⊗N2)
such that μ1 ⊗ μ2(b1 ×B2) = μ1(B1) · μ2(B2) whenever B1 ∈ N1, B2 ∈ N2.

1.5.1 Regularity and Tightness

Now let X be a Polish space. We write S (X) for S (X,B(X)), similarly
for P. Each μ ∈ S (X) is regular in the following sense: given a Borel set
B, μ(B) can be approximated from within through closed sets; symmetrically
for open sets. This property is called regularity and will help us to show that
in a Polish space each Borel set can be approximated from the inside even
through compact sets.

LEMMA 1.62
For each μ ∈ S (X) and each Borel set B ∈ B(X),

μ(B) = sup{μ(G) | G ⊇ B open} = sup{μ(F ) | F ⊆ B closed}.

PROOF 0. The assertion says that we can find for each B ∈ B(X) and
for each ε > 0 a closed set Fε ⊆ B and an open set Gε with B ⊆ Gε such that
μ(Gε \ Fε) < ε.

1. Let

R := {B ∈ B(X) | μ(B) = inf
G⊇B open

μ(G) = sup
F⊆B closed

μ(F )}.
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It is clear that R is closed under complementation.
2. Let F be a closed set, then F =

⋂
n∈N

Gn, where (Gn)n∈N is a decreas-
ing sequence of open sets. This is so since each closed set is a Gδ-set by
Section 1.3.1. Thus μ(F ) = infn∈N μ(Gn) by σ-additivity, so that F ∈ R.

3. R is closed under countable disjoint unions as well. Let (Bn)n∈N be a
countable disjoint sequence of sets in R, select for ε > 0 a closed set Fn ⊆
Bn with μ(Bn \ Fn) < ε/2−(n+1), and choose an open set Gn ⊇ Bn with
μ(Gn \Bn) < ε/2−n. Then there exists k ∈ N so that

μ(
k⋃

n=1

Fn) > μ(
∞⋃

n=1

Fj)− ε/2;

thus we have for B :=
⋃
n∈N

Bn and the closed set F :=
⋃k
n=1 Fn that μ(B \

F ) < ε holds. Similarly, G :=
⋃
n∈N

Gn is an open set that contains B, and
we have

μ(G \B) ≤
∑

n∈N

μ(Gn \Bn) < ε.

Thus B =
⋃
n∈N

Bn ∈ R.
4. Thus R is a λ-system containing the closed sets. The π-λ-Theorem 1.1

now shows that R = B(X).

Consequently, we can approximate the probability for an arbitrary event
by a topologically closed event implying it and by an topologically open one
implied by it up to arbitrary precision. The approximation from the inside
can be rendered considerably more convenient by taking compact rather than
closed sets. Thus we will show that given ε > 0 there exists for each Borel set
B a compact set K ⊆ B with μ(B \ K) < ε. This means that the measure
lives essentially on a compact set, which in turn will permit us to capitalize
on the properties of compact sets, at least under favorable circumstances.

We first need an auxiliary characterization of compact sets for showing this.

LEMMA 1.63
Let C be a closed subset of a complete metric space X, and assume that for

each n ∈ N there exists a finite number Kn,1, . . . ,Kn,kn of closed balls with
radius not exceeding 1/n with C ⊆

⋃kn

j=1Kn,j. Then C is compact.

PROOF It is by Theorem 1.24 enough to show that each sequence (xn)n∈N

in C has a convergent subsequence.
We find an index n1 such thatK1,n1 contains infinitely many elements of the

sequence; since K1,n1 is covered by a subset of the closed balls K2,1, . . . ,K2,k2 ,
we find an index n2 such that K2,n2 contains an infinite number of members
of the sequence, and K2,n2 ⊆ K1,n1 . Continuing this process, we find for each
m an index km so that K1,n1 ⊇ K2,n2 ⊇ · · · ⊇ Km,nm , and Km,nm contains
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infinitely many elements of the sequence. Since diam(Km,nm) ≤ 1/m, and
since the space is complete, the intersection

⋂
m∈N

Km,nm contains exactly
one point x. Each neighborhood of x contains by construction infinitely many
elements of the sequence, so that we can find a subsequence converging to x.

We derive from this observation that each subprobability lives essentially
on a compact set, provided the base space is Polish. We will use the criterion
for compactness from Lemma 1.63 together with the fact that a Polish space
has a countable dense subset for constructing a compact set the probability
of which will be sufficiently close to that of the space proper.

PROPOSITION 1.64

Let X be a Polish space, μ ∈ S (X) be a subprobability measure. Given
ε > 0, there exists a compact subset Cε ⊆ X with μ(X \ Cε) < ε.

PROOF Because X is Polish, it contains a countable dense subset. Thus
we can coverX for each n ∈ N by a countable number of closed balls (Kn,�)�∈N

with a radius not greater than 1/n. Fix ε > 0, then we can find for each n an
index kn such that

μ(X \
kn⋃

j=1

Kn,j) ≥ 1− ε

2n
.

Then Xn :=
⋃kn

j=1Kn,j is closed, being the finite union of closed sets, and
Cε :=

⋂
n∈N

Xn is compact by Lemma 1.63. We obtain

μ(X \Cε) ≤
∑

n∈N

μ(X \Xn) ≤
∑

n∈N

ε

2n
= ε.

As a consequence we obtain that each Borel set can be approximated
through a compact set from the inside; this property is usually called tight .

PROPOSITION 1.65

Given μ ∈ S (X) for Polish X and ε > 0 there exists a compact subset
C ⊆ X with μ(X \ C) < ε.

PROOF This follows immediately from Proposition 1.64 together with
Lemma 1.62, since a closed subset of a compact set is compact again.
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1.5.2 Weak Topology

We will define the topology of weak convergence on S (X), and we show
that we can find a metric for it. If X is Polish, the weak topology will be
shown to be Polish as well. The Borel sets for this topology will also be
investigated. They will be a valuable tool for the investigations to follow even
without the weak topology being present explicitly.

Let X be a metric space, then S (X) = S (X,B(X)) is equipped with the
topology of weak convergence. This is the smallest topology on S (X) which
makes the map μ 
→

∫
X
f dμ continuous for each continuous and bounded

f : X → R. Denote by C(X) the linear space of all these functions, and by
⇀w convergence in this topology.

A base for the weak topology is furnished through sets of the form

U(μ0, ε, f1, . . . , fn) :=

{μ ∈ S (X) |
∣
∣
∣
∣

∫

X

fi dμ−
∫

X

fi dμ0

∣
∣
∣
∣ < ε for 1 ≤ i ≤ n}

with ε > 0, μ0 ∈ S (X) , f1, . . . , fn ∈ C(X). This topology is characterized
through the famous Portmanteau Theorem :

PROPOSITION 1.66
The following conditions are equivalent for a sequence (μn)n∈N and a measure
μ ∈ S (X), whenever X is a Polish space:

a. μn ⇀w μ.

b.
∫
X f dμn →

∫
X f dμ for each bounded and continuous f : X → R.

c.
∫
X f dμn →

∫
X f dμ for each bounded and uniformly continuous f : X →

R.

d. lim infn→∞ μn(G) ≥ μ(G) for each open subset G ⊆ X, and μn(X) →
μ(X).

e. lim supn→∞ μn(F ) ≤ μ(F ) for each closed subset F ⊆ X, and μn(X) →
μ(X).

PROOF 1. The equivalence a⇔ b is a mere restatement of the definition
of the weak topology; the equivalence d⇔ e is obvious as well. The implica-
tion b⇒c is trivial, since each uniformly continuous function is continuous.

2. In order to establish d⇒ c, we may and do assume that f ≥ 0, because
the integral is linear. Then we can represent the integral through its Choquet
representation(Proposition 1.61)

∫

X

f dν =
∫ ∞

0

ν({x ∈ X | f(x) > t}) dt.
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Since f is continuous, the set {x ∈ X | f(x) > t} is open. By Fatou’s
Lemma (Halmos, 1950, Theorem 27.F) we obtain from the assumption

lim inf
n→∞

∫

X

f dμn = lim inf
n→∞

∫ ∞

0

μn({x ∈ X | f(x) > t}) dt

≥
∫ ∞

0

lim inf
n→∞ μn({x ∈ X | f(x) > t}) dt

≥
∫ ∞

0

μ({x ∈ X | f(x) > t}) dt

=
∫

X

f dμ.

Because f ≥ 0 is bounded, we find T ∈ R such that f(x) ≤ T for all x ∈ X ,
hence g(x) := T − f(x) defines a nonnegative and bounded function. Then
by the preceding argument lim infn→∞

∫
X g dμn ≥

∫
X g dμ. Since μn(X) →

μ(X), we infer

lim sup
n→∞

∫

X

f dμn ≤
∫

X

f dμ,

which implies the desired equality.
3. Now take for c⇒d an open set G, let d be a suitable metric on X , and

define for k ∈ N the uniformly continuous map fk(x) := min{1, k ·d(x,X \G)}
(fk is uniformly continuous because |d(x1, X \G)− d(x2, X \G)| ≤ d(x1, x2),
as noted above). Then

0 ≤ f1(x) ≤ f2(x) ≤ . . . χG(x),

so that ∫

X

fk dμn ≤
∫

X

χG dμn = μn(G).

Moreover fk(x) → χG(x). Since the convergence is monotone, we have

lim
k→∞

∫

X

fk dμ =
∫

X

χG dμ

by Proposition 1.60, and we know from the assumption that

lim
n→∞

∫

X

fk dμn =
∫

X

fk dμ.

But this implies

lim
n→∞

∫

X

fk dμn ≤ lim inf
n→∞ μn(G),

hence
μ(G) ≤ lim inf

n→∞ μn(G).



A Gentle Tutorial to All Things Considered 43

d2 d3
d1

Figure 1.2: Neighborhood of Unit Balls

It is clear that μn ⇀w μ does not imply that μn(A) → μ0(A) for all
Borel sets holds (this would be a case for the topology of strong convergence,
which is by far not that interesting — for us, that is). The following simple
example illustrates the point. Recall that the Dirac measure δx is defined
through δx(A) := χA(x), so δx(A) = 1 iff x ∈ A, and δx(A) = 0 otherwise.
Topologically, x 
→ δx yields a homeomorphic embedding of X into S (X).

EXAMPLE 1.67

Take X := [0, 1], let μn := δ1/n, and consider the Borel set A :=]0, 1]. Since∫
X f dμn = f(1/n), we see that μn ⇀w δ0, but μn(A) = 1, δ0(A) = 0.

Denote by bd (A) the boundary of a set A ⊆ X , thus

bd (A) = cl (A) \
(⋃

{G | G ⊆ A open}
)

(
⋃
{G | G ⊆ A open} is just the largest open set that is contained in A). Then

the Portmanteau Theorem entails

COROLLARY 1.68

μn ⇀w μ iff limn→∞ μn(A) = μ(A) for each Borel set A with μ(bd (A)) = 0.

Hence in order to learn something about the weak limit of a sequence
(μn)n∈N of measures, we could compute the setwise limit of (μn(A))n∈N, but
only for those sets A to which the boundary is assigned the value zero by the
limiting measure. Consequently, determining the limit probability through
the limit of sequences of probabilities for sets is close to hopeless.

Let (X, d) be a metric space, and define for A ⊆ X, r > 0 the r-neighbor-
hood of A by

Ar := {x ∈ X | d(x,A) < r}.

Thus {x}r = Br,d(x), so Ar builds a kind of a measured cloud around A.
Figure 1.2 gives small neighborhoods for the unit balls from Figure 1.1.

We have the following elementary properties.
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LEMMA 1.69
Let r, s > 0, μ1, μ2 ∈ S (X), then

a. Ar = (cl (A))r for A ⊆ X,

b. (Ar)s ⊆ Ar+s for A ⊆ X,

c. The inequality μ1(A) ≤ μ2(Ar) + r holds for all A ∈ B(X) iff it holds for
all closed sets A ⊆ X iff it holds for all open sets A ⊆ X.

PROOF 1. Part a. follows from d(x,A) = d(x, cl (A)).
2. x ∈ (Ar)s iff there exists y ∈ Ar with d(x, y) < s. Thus there exists

z ∈ A with d(y, z) < r. Consequently, d(x, z) < r + s, hence x ∈ Ar+s. This
establishes part b.

3. The statement in part c referring to closed sets follows from A ⊆ cl (A)
and from part a. The assertion for open sets follows from the observation that
F =

⋂
n∈N

F 1/n holds, and since F 1/n is open.

Now define the Prohorov metric dP on S (X) is through

dP (μ1, μ2) :=
inf{ε > 0 | ∀A ∈ B(X) : μ1(A) ≤ μ2(Aε) + ε and μ2(A) ≤ μ1(Aε) + ε}.

We see from Lemma 1.69 that we can restrict our attention to closed (or to
open) sets.

LEMMA 1.70
(S (X) ,dP ) is a metric space.

PROOF 1. Let dP (μ1, μ2) = 0, then μ1(F ) ≤ μ2(F ε) + ε and μ2(F ) ≤
μ1(F ε) + ε holds for all ε > 0 and for all closed sets F . Letting ε → 0,
we obtain μ1(F ) = μ2(F ) for all closed sets (making use of the observation
that F = {x ∈ X | d(x, F ) = 0} holds for closed sets; this equality is not
available for all Borel sets, of course). The π-λ-Theorem 1.1 now shows that
μ1(B) = μ2(B) is true for any Borel set B.

2. Symmetry is trivial. The triangle inequality follows from Lemma 1.69,
part b.

Relating the Prohorov metric and the topology of weak convergence, we
note first that metric convergence implies weak convergence. This is a simple
application of the Portmanteau Theorem 1.66.

LEMMA 1.71
If dP (μn, μ)→ 0, then μn ⇀w μ. Thus each set which is open in the metric

topology is open in the weak topology.
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PROOF Let F ⊆ X be closed, ε < 0. There exists δ > 0 so that
μ(F δ) < μ(F ) + ε (this is so since μ(F ) = infn∈N μ(F 1/n), because μ is σ-
additive). Let η > 0 be smaller than both ε and δ, then we find m ∈ N with
μn(F ) ≤ μ(F η) + η, whenever n ≥ m. Thus

lim inf
n→∞ μn(F ) = inf

m∈N

sup
n≥m

μm(F ) ≤ μ(F η) + η ≤ μ(F ) + 2 · ε.

Because |μn(X)− μ(X)| ≤ dP (μn, μ), we see that also μn(X) → μ(X).
This establishes weak convergence through the Portmanteau Theorem.

The converse is considerably more involved. Recall that the Boolean al-
gebra generated from some finite set {A1, . . . , An} of subsets has at most 2n

elements. This is so since this algebra is just the set

{
⋂

i∈T
Ai ∩

⋂

i/∈T
X \Ai | T ⊆ {1, . . . , n}}

The second point which will be helpful is the observation that the sets A with
μ(bd (A)) = 0 form a Boolean algebra. A point x is in the boundary of a
set A iff each neighborhood of x intersects both A and X \A. Consequently,
bd (X \A) = bd (A) , and bd (A1 ∪A2) ⊆ bd (A1) ∪ bd (A2) . Hence these sets
form a Boolean algebra indeed.

Armed with these tools, we enter the discussion of

PROPOSITION 1.72
Let X be a metric space with a countable dense subset. Then each open set

in the weak topology is open in the metric topology.

PROOF 1. Let (xn)n∈N be a countable dense subset of X . We can find
for an arbitrary ε > 0 a sequence (An)n∈N of subsets with these properties

i. (An)n∈N covers X , hence X =
⋃
n∈N

An,

ii. diam(An) < ε for all n ∈ N,

iii. μ0(bd (An)) = 0 for all n ∈ N.

This is so since (xn)n∈N is dense in X , so that we may cover X with balls of
radius ε. The boundary bd (Br(x)) of a ball of radius r is contained in the
set {y | d(x, y) = r}; all these sets are disjoint, so there is always a radius the
corresponding set of which has measure zero.

Because the sets the boundary of which has mass zero form a Boolean
algebra, we may and do assume that the sequence (An)n∈N consists of mu-
tually disjoint sets (otherwise define a new sequence (A′

n)n∈N with A′
1 :=

A1, . . . , A
′
n+1 := An+1 \ (A1 ∪ · · · ∪An) without losing the properties above).
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We can find an index n ∈ N such that μ(X \ (
⋃n
i=1Ai)) < ε/3. Denote for

simplicity the Boolean algebra generated by {A1, . . . , An} by A.
2. We claim that whenever μ ∈ S (X) with |μ(A)− μ0(A)| < ε/3 for all

A ∈ A, then we have μ(B) ≤ μ0(Bε)+ε and μ0(B) ≤ μ(Bε)+ε for any Borel
set B ∈ B(X). Well, put

A :=
⋃
{Ak ∈ A | Ak ∩B �= ∅, 1 ≤ k ≤ n} ∈ A,

then

i. A ⊆ Bε, because if x ∈ A, there exists exactly one index k with x ∈ Ak,
and there exists b ∈ B with b ∈ Ak, hence d(x,B) ≤ d(x, b) < ε,

ii. B ⊆ A ∪X \ (A1 ∪ · · · ∪An) follows directly from the construction.

But now

μ(B) ≤ μ(A) + μ(X \ (A1 ∪ · · · ∪An))
≤ μ0(A) + ε/3 + μ0(X \ (A1 ∪ · · · ∪An)) + ε/3
≤ μ0(A) + ε

≤ μ0(Bε) + ε.

Interchanging the rôles of μ0 and μ yields μ0(B) ≤ μ(Bε) + ε.
3. Recall the construction in the third part of the Portmanteau Theorem

Proposition 1.66, where we approximated the indicator function of an open
set from below by continuous functions. We find for each A ∈ A two con-
tinuous maps f� ≤ χA ≤ fu with

∫
X(fu − f�) dμ0 < ε/6. This is so since

we can approximate the indicator function for the largest open set contained
in A from below, and similarly χcl(A) from above by continuous functions to
arbitrary precision; taking into account that the boundary has μ0-mass zero,
the assertion follows.

Thus, if we have
∣
∣
∫
X
f dμ−

∫
X
f dμ0

∣
∣ < ε/6, for f = f� and for f = fu,

then
|μ(A)− μ0(A)| < ε/3

follows: since
∣
∣
∣
∣

∫

X

f dμ− μ0(A)
∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

X

f dμ−
∫

X

f dμ0

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

X

f dμ0 − μ0(A)
∣
∣
∣
∣ ,

the assertion follows from
∫
X
f� dμ ≤ μ(A) ≤

∫
X
fu dμ.

4. Now we are done: select bounding functions fA,� ≤ χA ≤ fA,u for
each A ∈ A according to part 3, then

∣
∣
∫
X
fk dμ−

∫
X
fk dμ0

∣
∣ < ε/6 for all

fk ∈ {fA,�, fA,u | A ∈ A} implies dP (μn, μ0) < ε.

Thus we have established that the metric topology and the topology of weak
convergence are the same.
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THEOREM 1.73
Let X be a separable metric space, then the Prohorov metric is a metric for

the topology of weak convergence.

It is easy to find a dense subset in S (X). As one might expect, the measures
living on discrete subsets are dense.

PROPOSITION 1.74
Let X be a separable metric space. The set of

{
∑

k∈N

rk · δxk
| xk ∈ X, rk ≥ 0,

∑

k∈N

rk ≤ 1}

discrete measures is dense in the topology of weak convergence.

PROOF 1. Fix μ ∈ S (X). CoverX for each k ∈ N with mutually disjoint
Borel sets (An,k)n∈N, each of which has a diameter not less that 1/k. Select
an arbitrary xn,k ∈ An,k. We claim that μn :=

∑
k∈N

μ(An,k) ·δxn,k
converges

weakly to μ.
2. Let f : X → R be a uniformly continuous and bounded map. Since f is

uniformly continuous,

ηn := sup
k∈N

(

sup
x∈An,k

f(x)− inf
x∈An,k

f(x)

)

tends to 0, as n→∞. Thus

∣
∣
∣
∣

∫

X

f dμn −
∫

X

f dμ

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

∑

k∈N

(∫

An,k

f dμn −
∫

An,k

f dμ

)∣
∣
∣
∣
∣

≤ ηn ·
∑

k∈N

μ(An,k)

≤ ηn

→ 0.

COROLLARY 1.75
If X is a separable metric space, then S (X) is a separable metric space in

the topology of weak convergence.

PROOF Because
∑

1≤k≤n
rk · δxk

⇀w

∑

k∈N

rk · δxk
,
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as n→∞, and because the rationals Q are dense in the reals, we obtain from
Proposition 1.74 that

{
∑

1≤k≤n
rk · δxk

| xk ∈ D, 0 ≤ rk ∈ Q, n ∈ N,
∑

1≤k≤n
rk ≤ 1}

is a countable and dense subset of S (X), whenever D ⊆ X is a countable
and dense subset of X .

We will show now that S (X) is a Polish space, provided X is one; thus
applying the S-functor to a Polish space does not leave the realm of Polish
spaces. We will show later that this functor is actually an endofunctor on the
category of Polish spaces; for the time being, however, we will lay the ground
work for this.

In order to establish this property, we will need to recall the celebrated Riesz
Representation Theorem (Parthasarathy, 1967, Theorem II.5.8). It states that
a linear and positive map from the continuous functions on a compact metric
spaceX to the reals that maps the constant function 1 to a value not exceeding
1 can be represented uniquely through a subprobability measure on the Borel
sets on X . Since we need it later on anyway, we quote it here for easier
reference.

THEOREM 1.76
(Riesz Representation Theorem) Let X be a compact metric space, and

Λ : C(X)→ R be a map with the following properties

a. Λ(r1 · f1 + r2 · f2) = r1 · Λ(f1) + r2 · Λ(f2) for all f1, f2 ∈ C(X) and all
r1, r2 ∈ R,

b. If f ≥ 0, then Λ(f) ≥ 0,

c. Λ(1) ≤ 1.

Then there exists a unique subprobability measure μ ∈ S (X) such that

Λ(f) =
∫

X

f dμ.

We know by Alexandrov’s Theorem 1.23 that a separable metrizable space
is Polish iff it can be embedded as a Gδ-set into the Hilbert cube. We show
first that for compact metric X the space S (X) with the topology of weak
convergence is itself a compact metric space. This is established by embedding
it as a closed subspace into [−1,+1]∞.

LEMMA 1.77
Let X be a compact metric space. Then S (X) is a compact metric space.
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PROOF (Sketch) 1. The space C(X) of continuous maps into the reals is
for compact metric X a Banach space. The closed unit ball

C1 := {f ∈ C(X) | ‖f‖∞ ≤ 1}

is a separable metric space in its own right. Here

‖f‖∞ := sup
x∈X

|f(x)|

is as usual the sup-norm. Let (gn)n∈N be a countable sense subset in C1, and
define

Θ : S (X) � μ 
→ 〈
∫

X

g1 dμ,

∫

X

g2 dμ, . . . 〉 ∈ [−1, 1]∞.

Then Θ is injective, and we show that Θ [S (X)] is closed, hence compact.
2. In fact, let (μn)n∈N be a sequence in S (X) such that (Θ(μn))n∈N

con-
verges in [−1, 1]∞, put αi := limn→∞

∫
X
gi dμn. For each f ∈ C1 there exists

a subsequence (gnk
)k∈N such that ‖f − gnk

‖∞ → 0 as k →∞. Thus

Λ(f) := lim
n→∞

∫

X

f dμn

exists. Define for r ∈ R Λ(r · f) := r · Λ(f), then it is not difficult to show
that Λ : C(X)→ R is linear and that Λ(f) ≥ 0, provided f ≥ 0.

3. The Riesz Representation Theorem 1.76 now gives a unique μ ∈ S (X)
with

Λ(f) =
∫

X

f dμ,

and the construction shows that

lim
n→∞Θ(μn) = 〈

∫

X

g1 dμ,

∫

X

g2 dμ, . . . 〉.

Thus Θ [S (X)] is closed, hence compact.

This is the decisive step, the next step being nearly canonic. If X is a
Polish space, it may be embedded as a Gδ-set into a compact space X̃, the
subprobabilities of which are topologically a closed subset of [−1,+1]∞, as we
have just seen. Wouldn’t it be wonderful if S (X) would be a Gδ in S

(
X̃
)

as well? Well, it is, as the proof below demonstrates.

PROPOSITION 1.78

Let X be a Polish space. Then S (X) is a Polish space in the topology of
weak convergence.
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PROOF 1. Embed X as a Gδ-subset into a compact metric space X̃ ,
hence X ∈ B(X̃). Put

S0 := {μ ∈ S

(
X̃
)
| μ(X̃ \X) = 0},

so S0 contains exactly those subprobabilities on X̃ that are concentrated on
X . Then S0 is homeomorphic to S (X).

2. Represent X =
⋂
n∈N

Gn, where (Gn)n∈N is a sequence of open sets in
X̃ . Given r > 0, the set

Γk,r := {μ ∈ S

(
X̃
)
| μ(X̃ \Gk) < r}

is open in S

(
X̃
)
. In fact, if μn /∈ Γk,r with μn ⇀w μ0, then

μ0(X̃ \Gk) ≥ lim sup
n→∞

μn(X̃ \Gk) ≥ r

by the Portmanteau Theorem 1.66, since X̃ \ Gk is closed. Consequently,
μ0 /∈ Γk,r. This shows that Γk,r is open, because its complement is closed.
Thus

S0 =
⋂

n∈N

⋂

k∈N

Γn,1/k

is a Gδ-set, and the assertion follows.

This proof rested on the embedding of a Polish space into a compact metric
space, solving the problem there, and transporting the solution back into
the original environment. The solution for the compact case then depends
on a classical tool like the Riesz Representation Theorem. We will use this
technique again in Chapter 4 for the construction of a semi-pullback.

It can actually be shown that the Prohorov metric is complete. The proof
of this is considerably more complicated. It rests also on the Riesz Theorem.
But since we need merely the fact that S (X) is Polish for Polish X , we do
not want to delve into the complexities of that proof.

The σ-algebra of Borel sets for the topology of weak convergence is just the
weak*-σ-algebra. The latter σ-algebra can be described for each measurable
space.

DEFINITION 1.79 Let (M,M) be a measurable space. The initial
σ-algebra M• which makes all evaluation maps μ 
→ μ(E) for E ∈ M mea-
surable is called the weak-*-σ-algebra.

Two remarks are in order. First, to show for a measurable space (N,N )
that a map Φ : N → S (M,M) is N -M•-measurable it is sufficient to show
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that for B ∈ M the set {n ∈ N | Φ(n)(B) � q} is a member of N by
Lemma 1.2, when � is taken from the relational operators ≤, <,>,≥; the
set B may even be taken from a generator for M. This observation makes
handling measurable maps into S (M,M) more versatile than meets the eye
at first. Second, if M0 is a generator from M, then we may deduce from
Lemma 1.2

M• = σ({{μ ∈ S (M,M) | μ(B) � q} | q ∈ Q, B ∈ M0}),

so that M• is countably generated whenever M0 is.
The weak-*-σ-algebra constitute the Borel sets for the topology of weak

convergence.

PROPOSITION 1.80
If X is a separable metric space, then B(X)• = B(S (X)).

PROOF 1. By the Portmanteau Theorem 1.66 the set {μ ∈ S (M,M) |
μ(B) > q} is closed, whenever F is closed: if (μn)n∈N is a set with μn(B) ≥ q
for all n, then q ≤ lim infn→∞ μn(B) ≤ μ(B). This implies that B(X)• ⊆
B(S (X)).

2. On the other hand, μ 
→
∫
X
f dμ is B(X)•-measurable, whenever f :

X → R is Borel measurable. This is clear if f = χA by the definition of
the weak-*-σ-algebra, because μ(A) =

∫
X
χA dμ. Thus it is true if f is a

measurable step function, hence we may deduce it for all f by approximating
it through step functions Proposition 1.60 (decompose f = f+ − f− with
f+, f− ≥ 0 and approximate each map separately).

Thus μ 
→
∫
X f dμ is also measurable for continuous f . Consequently each

element of a base U(μ0, ε, f1, . . . , fn) is an element of B(X)•; hence each open
set, being a countable union of base elements, is in B(X)•. This implies
B(S (X)) ⊆ B(X)•.

1.5.3 Disintegration

We will occasionally encounter the situation that we need to decompose a
measure on a product of two spaces (Section 4.4.1, Section 5.8). This problem
is of course easiest dealt with when one can deduce that the measure is the
product of measures on the coordinate spaces; probabilistically, this would
correspond to the distribution of two independent random variables. But
sometimes one is not so lucky, and there is some hidden dependence, or one
simply cannot assess the degree of independence. Then one has to live with
a somewhat weaker result: in this case one can decompose the measure into
a measure on one component and a transition probability. This will be made
specific in the discussion to follow.
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Because it will not cost substantially more attention, we will treat the
question a bit more generally. Let (X,A), (Y,B), and (Z, C) be measurable
spaces, assume that μ ∈ S (X,A), and let f : X → Y and g : X → Z be
measurable maps. Then μf (B) := μ(f−1 [B]) and μg(C) := μ(g−1 [C]) define
subprobabilities on (Y,B) resp. (Z, C). This is so since the inverse image is
compatible with the set operations, and because the maps are measurable.
Consider the probability for the event that f(x) ∈ B and g(x) ∈ C. μf and
μg can be interpreted as the probability distribution of f resp. g under μ.

We will show that we can represent the joint distribution as

μ({x ∈ X | f(x) ∈ B, g(x) ∈ C}) =
∫

B

K(y)(C) μf (dy),

where K : Y × C → [0, 1] is a measurable map in one component, and a
subprobability on C in the other. This requires Z to be a Polish space with
C = B(Z).

Let us see how this corresponds to the initially stated problem. Suppose
X := Y ×Z with A = B⊗C, and let f := πY , g := πZ , then μf (B) = μ(B×Z),
μg(C) = μ(Y ×Z), and μ({x ∈ X | f(x) ∈ B, g(x) ∈ C}) = μ(B×C). Granted
that we have established the decomposition, we can then write

μ(B × C) =
∫

B

K(y)(C) μf (dy);

thus we have decomposed the probability on the product into a probability on
the first component, and, conditioned on the value the first component may
take, a probability on the second factor.

DEFINITION 1.81 Using the notation from above, K is called a regular
conditional distribution of g given f iff

μ({x ∈ X | f(x) ∈ B, g(x) ∈ C}) =
∫

B

K(y)(C) μf (dy)

holds for each B ∈ B, C ∈ C, where K : Y ×C → [0, 1] is a sub-Markov kernel,
on (X,A) and (Z, C). This means that K has these properties

1. y 
→ K(y)(C) is B-measurable for all C ∈ C,

2. K(y) ∈ S (Z, C) for all y ∈ Y .

If K satisfies only property 1, then it will be called a conditional distribution
of g given f .

Sub-Markov kernels are also called transition subprobability functions. We
will discuss them later as stochastic relations.

The existence of regular conditional distribution will be established, pro-
vided Z is Polish with C = B(Z). This will happen in several steps: first
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the existence of a conditional distribution will be shown using the well known
Radon-Nikodym Theorem. The latter construction will then be scrutinized.
It will turn out that there exists a set of measure zero outside of which the
conditional distribution behaves like a regular one, but at first sight only on an
algebra of sets, not on the entire σ-algebra. But don’t worry, using a classical
extension argument will then do the job and yield a regular conditional distri-
bution on the Borel sets, just as we want it. The proofs are actually a kind of
a round trip through the first principles of measure theory, where the Radon-
Nikodym Theorem together with the classical Hahn Extension Theorem are
the main vehicles. It displays also some nice and helpful proof techniques.

We fix (X,A), (Y,B), and (Z, C) as measurable spaces, assume that μ ∈
S (X,A), and take f : X → Y and g : X → Z to be measurable maps. The
measures μf and μg are defined as above as the distribution of f resp. g under
μ.

The existence of a conditional distribution of g given f is established first,
and it is shown that it is essentially unique.

LEMMA 1.82
Using the notation from above, then

a. there exists a conditional distribution K0 of g given f ,

b. if there is another conditional distribution K ′
0 of g given f , then there exists

for any C ∈ C a set NC ∈ B with μf (NC) = 0 such that K0(y)(C) = K ′
0(C)

for all y /∈ C.

PROOF 1. Fix C ∈ C, then

�C(B) := μ(f−1 [B] ∩ g−1 [C])

defines a subprobability measure �C on B which is absolutely continuous
with respect to μg, because μg(B) = 0 implies �C(B) = 0. The classic
Radon-Nikodym Theorem(Halmos, 1950, Theorem 31.A) now gives a density
hC ∈ F (Y,B) with

�C(B) =
∫

B

hC dμf

for all B ∈ B. Setting K0(y)(C) := hC(y) yields the desired conditional
distribution.

2. Suppose K ′
0 is another conditional distribution of g given f , then we

have for all C ∈ C

∀B ∈ B :
∫

B

K0(y)(C) μf (dy) =
∫

B

K0(y)(C) μf (dy),

which implies that the set on which K0(·)(C) disagrees with K ′
0(·)(C) is μf -

null.
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Essential uniqueness may strengthened if the σ-algebra C is countably gen-
erated, and if the conditional distribution is regular.

LEMMA 1.83
Assume that K and K ′ are regular conditional distributions of g given f ,

and that C has a countable generator. Then there exists a set N ∈ B with
μf (N) = 0 such that K(y)(C) = K ′(y)(C) for all C ∈ C and all y /∈ N .

PROOF If C0 is a countable generator of C, then

Cf := {
⋂
E | E ⊆ C0 is finite}

is a countable generator of C well, and Cf is closed under finite intersections;
note that Z ∈ Cf . Construct for D ∈ Cf the set ND ∈ B outside of which
K(·)(D) and K ′(·)(D) coincide, and define

N :=
⋃

D∈Cf

ND ∈ B.

Evidently, μf (N) = 0.We claim thatK(y)(C) = K ′(y)(C) holds for all C ∈ C,
whenever y /∈ N . In fact, fix y /∈ N , and let

C1 := {C ∈ C | K(y)(C) = K ′(y)(C)},

then C1 contains Cf by construction, and is a π-λ-system. This is so since it is
closed under complements and countable disjoint unions. Thus C = σ(Cf ) ⊆
C1, by the π-λ-Theorem 1.1, and we are done.

We will show now that a regular conditional distribution of g given f exists.
This will be done through several steps, given the construction of a conditional
distribution K0:

A. A set Na ∈ B is constructed with μf (Na) = 0 such that K0(y) is additive
on a countable generator Cz for C.

B. We construct a set Nz ∈ B with μf (Nz) = 0 such that K0(y)(Z) ≤ 1 for
y /∈ Nz.

C. For each element G of Cz we will find a set NG ∈ B with μf (NG) = 0 such
that K0(y)(G) can be approximated from inside through compact sets,
whenever y /∈ NG.

D. Then we will combine all these sets of μf -measure zero to produce a set
N ∈ B with μf (N) = 0 outside of which K0(y) is a premeasure on the
generator Cz, hence can be extended to a measure on all of C.
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Well, this looks like a full program, so let us get on with it.

THEOREM 1.84

Given measurable spaces (X,A) and (Y,B), a Polish space Z, a subprobability
μ ∈ S (X,A), and measurable maps f : X → Y , g : X → Z, there exists a
regular conditional distribution K of g given f . K is uniquely determined up
to a set of μf -measure zero.

PROOF 0. Since Z is a Polish space, its topology has a countable base.
We infer from Lemma 1.29 that B(Z) has a countable generator C. Then the
Boolean algebra C1 generated by C is also a countable generator of B(Z).

1. Given Cn ∈ C1, we find by Proposition 1.65 a sequence (Ln,k)k∈N of
compact sets in Z with

Ln,1 ⊆ Ln,2 ⊆ Ln,3 . . . ⊆ Cn

such that

μg(Cn) = sup
k∈N

μg(Ln,k).

Then the Boolean algebra Cz generated by C ∪ {Ln,k | n, k ∈ N} is also a
countable generator of B(Z).

2. From the construction of the conditional distribution of g given f we
infer that for disjoint C1, C2 ∈ Cz
∫

Y

K0(y)(C1 ∪C2) μf (dy) = μ({x ∈ X | f(x) ∈ B, g(x) ∈ C1 ∪ C2})

= μ({x ∈ X | f(x) ∈ B, g(x) ∈ C1}) +
μ({x ∈ X | f(x) ∈ B, g(x) ∈ C2})

=
∫

Y

K0(y)(C1) μf (dy) +
∫

Y

K0(y)(C2) μf (dy).

Thus there exists NC1,C2 ∈ B with μf (NC1,C2) = 0 such that

K0(y)(C1 ∪ C2) = K0(y)(C1) +K0(y)(C2)

for y /∈ NC1,C2 . Because Cz is countable, we may deduce (by taking the union
of NC1,C2 over all pairs C1, C2) that there exists a set Na ∈ B such that K0

is additive outside Na, and μf (Na) = 0. This accounts for part A in the plan
above.

3. It is by the previous arguments easy to construct a set Nz ∈ B with
μf (Nz) = 0 such that K0(y)(Z) ≤ 1 for y /∈ Nz (part B).
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4. Because
∫

Y

K0(y)(Cn) μf (dy) = μ(f−1 [Y ] ∩ g−1 [Cn])

= μg(Cn)
= sup

k∈N

μg(Ln,k)

= sup
k∈N

∫

Y

K0(y)(Ln,k) μf (dy)

=
∫

Y

sup
k∈N

K0(y)(Ln,k) μf (dy)

we find for each n ∈ N a set Nn ∈ B with

∀y /∈ Nn : K0(y)(Cn) = sup
k∈N

K0(y)(Ln,k)

and μf (Nn) = 0. This accounts for part C.
5. Now we may begin to work on part D. Put

N := Na ∪Nz ∪
⋃

n∈N

Nn,

then N ∈ B with μf (N) = 0. We claim that K0(y) is a premeasure on Cz
for each y /∈ N . It is clear that K0(y) is additive on Cz, hence monotone, so
merely σ-additivity has to be demonstrated: let (D�)�∈N be a sequence in Cz
that is monotonically decreasing with

η := inf
�∈N

K0(y)(D�) > 0,

then we have to show that ⋂

�∈N

D� �= ∅.

We approximate the setsD� now by compact sets, so we assume thatD� = Cn�

for some n� (otherwise the sets are compact themselves). By construction we
find for each � ∈ N a compact set Ln�,k�

⊆ C� with

K0(y)(Cn�
\ Ln�,k�

) < η · 2�+1,

then

Lr :=
r⋂

i=�

Ln�,k�
⊆ Cnr = Dr

defines a decreasing sequence of compact sets with

K0(y)(Lr) ≥ K0(y)(Cnr )−
r∑

i=�

K0(y)(Ln�,k�
) > η/2,
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thus Lr �= ∅. Since Lr is compact and decreasing, we know that the sequence
has a nonempty intersection (otherwise one of the Lr would already be empty).
We may infer ⋂

�∈N

D� ⊇
⋂

r∈N

Lr �= ∅.

6. The classic Hahn Extension Theorem (Halmos, 1950, Theorem 13.A) now
tells us that there exists a unique extension of K0(y) from Cz to a measure
K(y) on σ(Cz) = B(Z), whenever y /∈ N . If, however, y ∈ N , then we define
K(y) := ν, where ν ∈ S (Z) is arbitrary. Because

∫

B

K(y)(C) μf (dy) =
∫

B

K0(y)(C) μf (dy) = μ({x ∈ X | f(x) ∈ B, g(x) ∈ C})

holds for C ∈ Cz, the π-λ-Theorem 1.1 asserts that this equality is valid for
all C ∈ B(Z) as well.

Measurability of y 
→ K(y)(C) needs to be shown, and then we are done.
Put

E := {C ∈ B(Z) | y 
→ K(y)(C) is B −measurable}.
Then E is a σ-algebra, and E contains the generator Cz by construction, thus
E = B(Z).

The scenario in which the space X = Y × Z with a measurable space
(Y,B) and a Polish space Z with A = B ⊗ B(Z) with f and g as projections
deserves particular attention. In this case we decompose a measure on A into
its projection onto Z and a conditional distribution for the projection onto Z
given the projection onto Y . This is sometimes called the disintegration of a
measure μ ∈ S (Y × Z).

We state the corresponding Proposition explicitly, since we will use it in
this specialized form.

PROPOSITION 1.85
Given a measurable space (Y,B) and a Polish space Z, there exists for every

subprobability μ ∈ S (Y × Z,B ⊗ B(Z)) a regular conditional distribution of
πZ given πY .

1.5.4 Applications of the π-λ-Theorem

The π-λ-Theorem is used typically in the following scenario: we have a
property P for which we know the following

i. P (A) holds for all elements A of a generator A of a σ-algebra B.
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ii. P (A) implies P (X \A) with X as the basic set.

iii. if P (An) holds for all n ∈ N, and (An)n∈N is mutually disjoint, then
P (

⋃
n∈N

An) holds.

We then have a look at
G := {A ∈ B | P (A)}

(G stands of course for the good guys), then P (A) holding for all A ∈ A
translates into A ⊆ G, and the other two properties make sure that G is a
π-λ-system. We conclude then from the π-λ-Theorem 1.1 that G = σ(A) = B,
provided A is closed under finite intersections. This was the argumentation
for example in the proofs of Lemma 1.62 and Lemma 1.70. It shows that this
Theorem is a rather versatile tool.

We want to demonstrate its application when exploring measure extensions,
and for settling questions of measurability, which is also somewhat typical for
getting it to work later on. The existence of projective limits which is estab-
lished in Proposition 1.88 may also be listed among its useful applications.

Suppose that μn is a probability measure on the measurable space (Xn,An)
for each n ∈ N, and define for a cylinder set

μ̂

(
∏

n∈N

An

)

:=
∏

n∈N

μn(An).

Observe that in this infinite product all but a finite number of factors equal
unity. Then μ̂ extends uniquely to a probability measure μ# on the product
(
∏
n∈N

An,
⊗

n∈N
An); in particular,

μ#(A1 × . . . An ×
∏

j>n

Xj) = μ1(A1) · . . . · μn(An)

holds. Accordingly, μ# is called the product measure of (μn)n∈N and denoted
by

⊗
n∈N

μn. Of course, a finite product is also available. The π-λ-Theorem
assures us that the extension is unique.

Another application is given when applying horizontal or vertical cuts from
a measurable set in a product and then asking about measurability of associ-
ated maps.

LEMMA 1.86
Let (X,A) and (Y,B) be measurable spaces, and fix D ∈ A ⊗ B. The map

〈ν, x〉 
→ ν(Dx) is a B• ⊗A-measurable map on S (Y,B)×X.

PROOF Consider

D := {D ∈ A⊗ B | 〈ν, x〉 
→ ν(Dx) is B• ⊗A−measurable}.
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Since ((X × Y ) \D)x = Y \ (Dx) and

(
⋃

n∈N

Dn)x =
⋃

n∈N

(Dn)x,

it is clear that D is closed under taking complements and countable disjoint
unions. Now let D = A×B with A ∈ A, B ∈ B. Then ν(Dx) = χA(x) · ν(B),
thus 〈ν, x〉 
→ ν(Dx) is evidently B• ⊗ A-measurable. But this implies that
all measurable rectangles are members of D, and since the set of all these
rectangles is closed under finite intersections, D equals the σ-algebra generated
from them, which coincides with A ⊗ B. The assertion is hence true for all
measurable subsets of the product.

Lemma 1.86 entails that both x 
→ ν(Dx) and ν 
→ ν(Dx) are measurable
(but the Lemma says considerably more: it establishes joint measurability).

1.5.5 Projective Systems

We need for the interpretation of the continuous time stochastic logics CSL
and μCSL in Chapter 6 the projective limit of a projective family of stochastic
relations. Denote by X∞ :=

∏
k∈N

X the infinite product of X with itself.

DEFINITION 1.87 Let X be a Polish space, and (μn)n∈N a sequence of
probability measures μn ∈ P (Xn). This sequence is called a projective system
iff μn(A) = μn+1(A×X) for all n ∈ N and all Borel sets A ∈ B(Xn). A prob-
ability measure μ∞ ∈ P (X∞) is called the projective limit of the projective
system (μn)n∈N iff

μn(A) = μ∞(A×
∏

j>n

X)

for all n ∈ N and A ∈ B(Xn).

Thus a sequence of measures is a projective system iff each measure is the
projection of the next one; its projective limit is characterized through the
property that its values on cylinder sets coincides with the value of a member
of the sequence, after taking projections.

It is not immediately obvious that a projective limit exists. The basic idea
is to define the limit on the cylinder sets and then to extend this premeasure
— but it has to be established that it is indeed a premeasure. The crucial
property is that μnk

(Ak)→ 0 whenever (An)n∈N is a sequence of cylinder sets
Ak (with at most nk components that do not equal X) that decreases to ∅.
This property is difficult to establish without topological assumptions. This
is why we did postulate the base space X to be Polish.

The central statement is
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PROPOSITION 1.88
Let X be a compact metric space. Then a unique projective limit μ∞ exists

for the projective system (μn)n∈N.

PROOF 1. Let A = A′
k ×

∏
j>kX be a cylinder set with A′

k ∈ B(Xk);
then define μ∗(A) := μk(A′

k). Then μ∗ is well defined, since the sequence
forms a projective system. In order to show that μ∗ is a premeasure on the
cylinder sets, we have to take a decreasing sequence (An)n∈N of cylinder sets
with

⋂
n∈N

An = ∅ and show that infn∈N μ
∗(An) = 0. In fact, suppose that

(An)n∈N is decreasing with μ∗(An) ≥ δ for all n ∈ N, then we show that⋂
n∈N

An �= ∅.
We can write An = A′

n ×
∏
j>kn

X for some A′
n ∈ B(Xkn). From Proposi-

tion 1.65 we get for each n a compact set K ′
n ⊆ A′

n such that μkn(A′
n \K ′

n) <
δ/2n. Because X∞ is compact by Tichonov’s Theorem,

K ′′
n := K ′

n ×
∏

j>kn

X

is a compact set, and Kn :=
⋂n
j=1K

′′
j ⊆ An is compact as well, with

μ∗(An \Kn) ≤ μ∗(
n⋃

j=1

A′′
n \K ′′

j ) ≤

n∑

j=i

μ∗(A′′
j \K ′′

j ) =
n∑

j=1

μkj (A
′
j \K ′

j) ≤
∞∑

j=1

δ/2j = δ.

Thus (Kn)n∈N is a decreasing sequence of nonempty compact sets; conse-
quently,

∅ �=
⋂

n∈N

Kn ⊆
⋂

n∈N

An.

2. Since the cylinder sets generate the Borel sets of X∞, and since μ∗ is a
premeasure, we know that there exists a unique extension μ∞ ∈ P (X∞) to
it. Clearly, if A ⊆ Xn is a Borel set, then

μ∞(A×
∏

j>n

X) = μ∗(A×
∏

j>n

X) = μn(A),

so we have constructed a projective limit.
3. Suppose that μ′ is another probability measure in P (X∞) that has the

desired property. Consider

D := {D ∈ B(X∞) | μ∞(D) = μ′(D)}.

It is clear the D contains all cylinder sets, that it is closed under complements,
and under countable disjoint unions. By the π-λ-Theorem 1.1 D contains the
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σ-algebra generated by the cylinder sets, hence all Borel subset of X∞. This
establishes uniqueness of the extension.

The proof makes critical use of the tightness property for finite measures on
Polish spaces that says that we can approximate the measure of a Borel set
arbitrarily well by compact sets; see Proposition 1.65. It is also important that
compact sets have the finite intersection property: if each finite intersection
of a family of compact sets is nonempty, the intersection of the entire family
cannot be empty (see the proof of Theorem 1.84, where exactly this property
was crucial as well). Consequently the proof given above works in general
Hausdorff spaces, provided the measures under consideration are tight.

The construction from above can be made use of when we work in Proposi-
tion 1.88 in a compact scenario. We liberate us from that restrictive assump-
tion using the Alexandrov embedding of Polish spaces into compact metric
spaces that we will also put to good use in Section 4.3.2, when we transport
a measure extension from a compact to a general Polish space.

PROPOSITION 1.89

Let X be a Polish space, (μn)n∈N be a projective system on X. Then there
exists a unique projective limit μ∞ ∈ P (X∞) for (μn)n∈N.

PROOF X is a dense measurable subset of a compact metric space X̃
by (Kechris, 1994, Theorem 4.14). Defining μ̃n(B) := μn(B ∩ Xn) for the
Borel set B ⊆ X̃n yields a projective system (μ̃n)n∈N

on X̃ with a projective
limit μ̃∞ by Proposition 1.88. Since by construction μ̃∞(X∞) = 1, restrict
μ̃∞ to the Borel sets of X∞, then the assertion follows.

Our interest in this construction comes from sub-Markov kernels that may
form a projective system. We will show now that there exists such a kernel
which may be thought as the (pointwise) projective limit.

COROLLARY 1.90

Let X and Y be Polish spaces, and assume that J (n) is a sub-Markov kernel
on X and Y n for each n ∈ N such that the sequence

(
J (n)(x)

)
n∈N

forms a
projective system on Y for each x ∈ X, in particular J (n)(x)(Y n) = 1 for all
x ∈ X. Then there exists a unique sub-Markov kernel J∞ on X and Y∞ such
that J∞(x) is the projective limit of

(
J (n)(x)

)
n∈N

for each x ∈ X.

PROOF 0. Let for x fixed J∞(x) be the projective limit of the projective
system

(
J (n)(x)

)
n∈N

. By the definition of a sub-Markov kernel we need to
show that the map x 
→ J∞(x)(B) is measurable for every B ∈ B(Y∞).
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1. In fact, consider

D := {B ∈ B(Y∞) | x 
→ J∞(x)(B) is measurable}

then the general properties of measurable functions imply that D is a σ-
algebra on Y∞. Take a cylinder set B = B0 ×

∏
j>k Y with B0 ∈ B(Y k)

for some k ∈ N, then, by the properties of the projective limit, we have
J∞(x)(B) = J (k)(x)(B0). But x 
→ J (k)(x)(B0) constitutes a measurable
function on X . Consequently, B ∈ D, and so D contains the cylinder sets
which generate B(Y∞). Thus measurability is established for each Borel set
B ⊆ Y∞, arguing with the π-λ-Theorem as in the last part of the proof for
Proposition 1.88.

This construction will be needed when interpreting a path logic over infinite
paths in Chapter 6.

1.6 Categories

A category C consists of a collection of objects, and for any objects a and b
a set of arrows f : a → b from a to b; a is called the domain, b the codomain
or the range of f ; an arrow is also called a morphism. Given arrows f : a→ b
and g : b → c, there is an operation ◦ called composition that composes
arrows, so that g ◦ f : a → c is an arrow in C from a to c. Composition is
associative, for each object a there exists an identity arrow ida : a → a so
that f ◦ ida = f = idb ◦ f holds, whenever f : a → b is an arrow of C. The
collection C(a, b) denotes all morphisms a→ b of C, the hom-set of a and b.

EXAMPLE 1.91
Let us consider some simple example categories.

1. The objects in category Set are sets; morphisms between sets are maps
with composition as the usual composition of maps. The identity ida is just
the identity map a→ a.

The example illustrates that the collection of objects is not necessarily a
set, but that the morphisms between two objects may form one.

2. The objects of a category NoNameP are the elements of a fixed ordered
set (P,≤); there exists a morphism between objects a and b iff a ≤ b holds.
Reflexivity corresponds to the existence of an identity arrow, transitivity of
the order relation translates into associativity of the composition.

The example illustrates that the morphisms in a category do not need to
be maps.

3. The category Top has as objects topological spaces. Morphisms are the
continuous maps.
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4. Meas has measurable spaces as objects. Morphisms are the measurable
maps.

5. Borel has as objects the Borel sets of Polish spaces; a morphism B(S)→
B(T ) is a map mf : B(S) → B(T ) corresponding to the inverse image f−1 of
a Borel map f : T → S with mf (B) := f−1 [B], whenever B ∈ B(S). mf is
a map because measurability of f implies that the inverse image of a Borel
set is a Borel set again. Note that the transition from f to mf reverses the
direction of the arrows.

The category Cop opposite or dual to C has just the objects from C, and
a morphism a → b in Cop is a morphism b → a in C, so that the arrows are
reversed.

Let f : a → b, g : b → d and h : a → c, i : c → d be arrows in C such that
g ◦ f = i ◦ h, then the pictorial representation

a
f � b

c

h

�

i
� d

g

�

yields a commutative diagram.

DEFINITION 1.92 Given two categories C and D.

a. A covariant functor F : C → D maps each object a in C into an object
F (a) in D, and maps each morphism f : a → b in C into a morphism
F (f) : F (a)→ F (b) with these properties:

i. F (ida) = idF(a) holds for all objects a in C,

ii. F (f ◦C g) = F (f) ◦D F (g) holds, whenever f ◦C g is defined in C.

b. A contravariant functor F : C → D is a (covariant) functor F : C → Dop

Thus a covariant functor preserves identities as well as the composition of
arrows (we will of course continue writing ◦ rather than ◦C; the reader should
be aware of the composition being specific for the category), a contravariant
functor reverses the order of the composition. When talking about functors
without characterizing them as co- or contravariant, we always have a covari-
ant functor in mind.

If the categories coincide, then F is called an endofunctor ; the identity 1lC

is a trivial example for an endofunctor. For defining a functor F one has to
define how F acts on objects. Additionally one has to say what F does to
morphisms.
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EXAMPLE 1.93
1. Assign to each topological space the set it is based on, and assign each

continuous map itself. Then this yields a functor U : Top→ Set which forgets
the structure (hence is called forgetful).

2. Assign to each topological space (X,S) the associated measurable space
(X,B(X,S)), and map each S-T -continuous map f : X → Y to itself. Because
f is B(X,S)-B(Y, T )-measurable by Lemma 1.6, this yields a functor Top →
Meas.

3. Let f : P → Q an order morphism between the ordered sets (P,≤) and
(Q,�), thus f(a) � b(b) provided a ≤ b. Then a 
→ f(a) induces a functor
NoNameP → NoNameQ (which for reasons of consistency remains anonymous
as well).

4. Let B (X) := B(X), whenever X is a Polish space, and define for the
Borel map f : X → Y the map B(Y ) → B(X) through B (f) (D) := f−1 [D]
(this is mf from Example 1.91). Then B : Pol → Borel

op is a covariant
functor, equivalently, B : Pol→ Borel is a contravariant functor.

5. Let a and b objects of C, then C(a,−) : x 
→ C(a, x) defines a covariant
functor C(a,−) : C → Set upon defining for the morphism f : c→ d the map

C(a, f) := f∗ :

{
C(a, c) → C(a, d)
g 
→ f ◦ g.

The properties of a functor are elementary. Similarly, C(−, b) : x 
→ C(a, x)
defines a contravariant functor C(−, b) : C → Set upon defining for the mor-
phism f : c→ d the map

C(f, b) := f∗ :

{
C(d, b) → C(c, b)
g 
→ g ◦ f.

This functor is commonly called the covariant hom-set functor, its contravari-
ant cousin C(b,−) is defined similarly.

If F is an endofunctor on category C, then the pair 〈c, f〉 consisting of an
object c and a morphism f : F (c) → c is called an F-algebra. Suppose that
〈d, g〉 is another F-algebra, and φ : c → d is a morphism in C such that the
diagram

c
φ � d

F (c)

f

�

F (φ)
� F (d)

g

�

commutes, then φ : 〈c, f〉 → 〈d, g〉 is an F-algebra morphism. Dually, a pair
〈c, f〉 consisting of an object c and a morphism f : c → F (c) is called an F-
coalgebra. A F-coalgebra morphism φ : 〈c, f〉 → 〈d, g〉 is a morphism ψ : c→ d
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in C such that F (ψ) ◦ f = g ◦ ψ holds. Both algebras and coalgebras for a
given functor form a category with these morphisms.

1.6.1 The Subprobability Functor

Recall that (S (X,A) ,A•) is a measurable space, whenever (X,A) is one
(the weak-*-σ-algebra A• is defined in Definition 1.79). Let f : X → Y be
A-B-measurable, where (Y,B) is another measurable space, and define

S (f) (μ)(B) := μ(f−1 [B]).

PROPOSITION 1.94
S is an endofunctor on the category Meas of measurable spaces with mea-

surable maps as morphisms.

PROOF Given a measurable map f , the induced map S (f) : S (X,A)→
S (Y,B) is A•-B•-measurable. For this, we have to establish

S (f)−1 [B•] ⊆ A•,

hence we have to show that for each W ∈ B• its inverse image under S (f) is
in A•. The construction of the weak-*-σ-algebra entails that by Lemma 1.2 we
may assume W = {ν ∈ S (Y ) | ν(B) < t} for some measurable B ⊆ Y, t ∈ R,
since sets of this form generate the weak-*-σ-algebra B•. But then

μ ∈ S (f)−1 [W ]⇔ μ ∈ {μ′ ∈ S (X) | μ′(f−1 [B]) < t},
because of the assumption on f ’s measurability, f−1 [B] ⊆ X is measurable.
This establishes the measurability of S (f)

S (f) (μ) is the image of measure μ under measurable map f ; it is prob-
abilistically interpreted as the distribution of random variable f under μ.
Lacking this notation, we introduced the distribution of f under μ as μf
in Section 1.5.3 for discussing disintegration and regular conditional distribu-
tions. Integration with respect to the image measure may be captured through
the Change of Variable formula which will be somewhat helpful in the sequel.

PROPOSITION 1.95
(Change of Variables) Let g ∈ F (Y,B) be a bounded and measurable

function, then

(‡)
∫

Y

g(y) S (f) (μ)(dy) =
∫

X

(g ◦ f) (x) μ(dx).

PROOF (Sketch) We have a look at all g for which the assertion is true:

F0 := {g ∈ F (Y,B) | (‡) holds for g}.
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Then χB ∈ F0, provided B ∈ B is measurable. This is so since
∫

Y

χB dS (f) (μ) = S (f) (μ)(B)

= μ(f−1 [B])

=
∫

X

χB ◦ f dμ.

It is clear from the integral’s additivity that F0 is a linear space, so that
measurable step functions are contained in F0. Since for each g ∈ F (Y,B)
with g ≥ 0 there exists an increasing sequence (gn)n∈N of measurable step
functions such that g = supn∈N gn (Proposition 1.5), we obtain

∫

Y

g dS (f) (μ) = lim
n→∞

∫

Y

gn dS (f) (μ)

= lim
n→∞

∫

X

gn ◦ f dμ

=
∫

Y

g ◦ f dμ.

Consequently, F0 contains each nonnegative measurable and bounded func-
tion. Since each function g can be written as g = max(g, 0) + min(g, 0), it
follows that F0 = F (Y,B) , hence the assertion is true for all measurable and
bounded functions on Y .

The reader is probably more familiar with a version that permits changing
real variables. It says that for a monotone and continuous differentiable map
g with domain [a, b] and range [α, β] the equality

∫ β

α

f(y) dy =
∫ b

a

(f ◦ g)(x)· | g′(x) | dx

holds, whenever f is integrable over [α, β]. This is the classical version of Cal-
culus, and it is in fact a special case of the Proposition above. It is discussed
at length in (Hewitt and Stromberg, 1965, Chapter 20.2).

Returning to properties of functor S, we infer from Proposition 1.95 that
S is an endofunctor on the category of Polish spaces. Denote by cPol the
category of Polish spaces with continuous maps as morphisms, and by BPol

the category of Polish spaces with Borel maps as morphisms.

COROLLARY 1.96
Equip S (X) with the topology of weak convergence, whenever X is a Polish

space. Then S : cPol→ cPol is an endofunctor.

PROOF We know from Proposition 1.78 that S (X) is Polish, provided
X is Polish, so we are left to show that for continuous f : X → Y the map
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S (f) : S (X) → S (X) is continuous. Let (μn)n∈N be a sequence in S (X)
with μn ⇀w μ, and let g ∈ C(Y ) be continuous and bounded. Then an
application of the Change of Variables Formula yields

∫

Y

g dS (f) (μn) =
∫

X

g ◦ f dμn

→
∫

X

g ◦ f dμ

=
∫

Y

g dS (f) (μ).

Thus S (f) (μn) ⇀w S (f) (μ).

Strictly speaking, one should distinguish the subprobability functor oper-
ating on Meas from the one working on cPol or on other categories. But this
would lead to a flurry of definitions and notations for functors that do essen-
tially the same, so we use our mathematical licence and are a bit negligent as
far as notation is concerned.

COROLLARY 1.97
Equip S (X) with the topology of weak convergence, whenever X is a Polish

space. Then S : BPol→ BPol is an endofunctor.

We will work often in a category of Polish or analytic spaces with morphisms
that are surjective Borel maps, and we require the image of a surjective Borel
map under the subprobability functor to be surjective again. The proof of
this fact is far from being trivial and requires the concept of universal mea-
surability.

But let us have a closer look at the problem. Given f : X → Y as a
surjective Borel map, we want to find for each ν ∈ S (Y ) a subprobability
μ ∈ S (X) with S (f) (μ) = ν. Hence we want ν(B) = μ(f−1 [B]) for all
B ∈ B(Y ). Now suppose that we can find g : Y → X so that f ◦g = idY , then
B = g−1

[
f−1 [B]

]
, so that μ := S (g) (ν) would do the job. This requires in

turn that g is well behaved. We will not be able to guarantee that g is a Borel
map, but we will come quite close to it, in fact so close that the difference
will not be discernible to us. Thus we are looking for a right inverse to f
that is suitably close to being a Borel map, and we will see that universal
measurability is the concept to work with here.

First we will recall the σ-algebra of universal measurable sets (Halmos,
1950, § 13). Let μ ∈ S (X,A) be a subprobability on the measurable space
(X,A), then A ⊆ X is called μ-measurable iff there exist M1,M2 ∈ A with
M1 ⊆ A ⊆ M2 and μ(M1) = μ(M2). The μ-measurable subsets of X form
a σ-algebra Mμ(A); this is easy to see. The measure μ is extended silently
from A to a measure on the σ-algebra Mμ(A) upon setting μ(A) := μ(M1),
if A ∈Mμ(A) is sandwiched between M1,M2 ∈ A with μ(M1) = μ(M2).
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The σ-algebra U (A) of universally measurable sets is defined by

U (A) :=
⋂
{Mμ(A) | μ ∈ S (X,A)}

(in fact, one considers usually all finite or σ-finite measures; these definitions
lead to the same universally measurable sets). If f : X1 → X2 is an A1-A2-
measurable map between the measurable spaces (X1,A1) and (X2,A2), then
it is well known that f is also U (A1)-U (A2)-measurable; the converse does
not hold, and one usually cannot conclude that a map g : X1 → X2 which is
U (A1)-A2-measurable is also A1-A2-measurable.

LEMMA 1.98
Let X be a Polish space.

a. B(X) ⊆ U (B(X))

b. If A ⊆ X is analytic, then A ∈ U (B(X)).

PROOF Part a is trivial. Part b requires a quite elaborate construction.
The reader is referred to (Srivastava, 1998, Theorem 4.3.1) or to (Kechris,
1994, Theorem 21.10).

We will first formulate a sequence of auxiliary statements that deal with
finding for a surjective map f : X → Y a map g : Y → X such that f◦g = idY .
This map g should have some sufficiently pleasant properties, otherwise we
could just pick arbitrarily for each y ∈ Y an element x ∈ X with f(x) = y
and put g(y) := x (this is brought to you by the Axiom of Choice). Hence
this simple approach does not work.

Thus in order to make the first step in the strategy outlined above it turns
out to be helpful focussing the attention to analytic sets being the continuous
images of N

∞. The latter space is ordered, as we have seen in the discussion
of structural issues in Section 1.3.2. We will capitalize on this order, to be
more precise, on the interplay between the order and the topology.

LEMMA 1.99
Let X be Polish, Y ⊆ X analytic with Y = f [N∞] for some continuous

f : N
∞ → X. Then there exists g : Y → N

∞ such that

a. f ◦ g = idY ,

b. g is U (B(Y ))-U (B(N∞))-measurable.

PROOF 1. Since f is continuous, the inverse image f−1 [{y}] for each
y ∈ Y is a closed and nonempty set in N

∞. Thus this set contains a minimal
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element g(y) in the lexicographic order � by Lemma 1.20. It is clear that
f(g(y)) = y holds for all y ∈ Y .

2. Denote by
A(τ ′) := {τ ∈ N

∞ | τ ≺ τ ′},

then A(τ ′) is open: let τ ≺ τ ′ and k be the first component in which τ differs
from τ ′, then Στ1...τk−1 is an open neighborhood of τ that is entirely contained
in A(τ ′). It is easy to see that {A(τ ′) | τ ′ ∈ N

∞} is a generator for the Borel
sets of N

∞.
3. We claim that

g−1 [A(τ ′)] = f [A(τ ′)]

holds. In fact, let y ∈ g−1 [A(τ ′)], so that g(y) ∈ A(τ ′), then y = f(g(y)) ∈
f [A(τ ′)] . If, on the other hand, y = f(τ) with τ ≺ τ ′, then by construction
τ ∈ f−1 [{y}], thus g(y) � τ ≺ τ ′, settling the other inclusion.

This equality implies that g−1 [A(τ ′)] is an analytic set, because it is the
image of an open set under a continuous map. Consequently, g−1 [A(τ ′)] is
universally measurable for each A(τ ′) by Lemma 1.98. Thus g is a universally
measurable map.

This will help us to establish that a right inverse exists for surjective Borel
maps between an analytic space and a separable measurable space.

PROPOSITION 1.100
Let X be an analytic space, (Y,B) a separable measurable space and f :

X → Y a surjective measurable map. Then there exists g : Y → X with these
properties:

a. f ◦ g = idY ,

b. g is U (B)-U (B(X))-measurable.

PROOF 1. We may and do assume by Lemma 1.49 that Y is an analytic
subset of a Polish space Q, and that X is an analytic subset of a Polish
space P . x 
→ 〈x, f(x)〉 is a bijective Borel map from X to the graph of f , so
graph(f) is an analytic set by Proposition 1.37. Thus we can find a continuous
map F : N

∞ → P × Q with F [N∞] = graph(f). Consequently, πQ ◦ F is a
continuous map from N

∞ to Q with

(πQ ◦ F ) [N∞] = πQ [graph(f)] = Y.

Now let G : Y → N
∞ be chosen according to Lemma 1.98 for πQ ◦ F . Then

g := πP ◦ F ◦G : Y → X is the map we are looking for:

i. g is universally measurable, because G is, and because πP ◦F are contin-
uous, hence universally measurable as well,
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ii. f ◦ g = f ◦ (πP ◦ F ◦G) = (f ◦ πP ) ◦ F ◦ G = πQ ◦ F ◦G = idY , so g is
right inverse to f .

Now we are in a position to show that the image of a surjective map under
the subprobability functor is onto again.

PROPOSITION 1.101
Let X be an analytic space, Y a second countable metric space. If f : X → Y

is a surjective Borel map, so is S (f) : S (X)→ S (Y ) .

PROOF 1. From Proposition 1.100 we find a map g : Y → X such that
f ◦ g = idY and g is U (B(Y ))− U (B(X))-measurable.

2. Let ν ∈ S (Y ), and define μ := S (g) (ν), then μ ∈ S (X,U (B(X))) by
construction. Restrict μ to the Borel sets on X , obtaining μ0 ∈ S (X,B(X)) .
Since we have for each set B ⊆ Y the equality g−1

[
f−1 [B]

]
= B, we see that

for each B ∈ B(Y )

S (f) (μ0)(B) = μ0(f−1 [B]) = μ(f−1 [B]) = ν(g−1
[
f−1 [B]

]
) = ν(B)

holds.

This has as a consequence that S is an endofunctor on the category of Polish
or analytic spaces with surjective Borel maps as morphisms; it displays a
pretty interaction of reasoning in measurable spaces and arguing in categories.
We will use this fact throughout without further reference. The category
driven investigation of probabilistic structures will of course be continued as
well.

We will continue now with the discussion of general constructions in cate-
gories.

1.6.2 Natural Transformations

Let F,G : C → D be functors. Then η : F
•→ G is called a natural transfor-

mation of F and G iff

i. ηC : F (C)→ G (C) is a morphism in D for each object C in C,

ii. this diagram commutes whenever f : C1 → C2 is a morphism in C:

F (C1)
ηC1� G (C1)

F (C2)

F (f)

�

ηC2

� G (C2)

G (f)

�
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The morphism ηC is sometimes called the component of η at C.
Let H : C → D be another functor with a natural transformation θ : G

•→ H.
Define

(θ ◦ η)C := θC ◦ ηC ,

then it is immediate that θ ◦ η : F
•→ H by pasting diagrams for the morphism

f : C1 → C2:

F (C1)
ηC1� G (C1)

θC1� H (C1)

F (C2)

F (f)

�

ηC2

� G (C2)

G (f)

�

θC2

� H (C2)

H (f)

�

This entails that natural transformations are the morphisms in the category
of all functors, which has as objects all functors, and for the functors F,G :
C → D the natural transformations F

•→ G as morphisms.
Given η : F

•→ G for the functors F,G : C → D and K : D → E, it is clear
that K ◦ F : C → E and K ◦ G : C → E are functors. Define for the object C
in C the morphism

(Kη)C := K(ηC),

then Kη : K ◦ F
•→ K ◦G. For the functor L : B→ C a natural transformation

ηL : F ◦ L
•→ G ◦ L. is defined through

(ηL)B := ηL(B).

EXAMPLE 1.102

Define for the Polish space X , the Borel set C ∈ B(X) and the real number
r ∈ R the set

λrX(C) := {μ ∈ S (X) | μ(C) ≤ r}.

We claim that λr : B
•→ B◦S is a natural transformation (B : Pol→ Borel

op

is defined in Example 1.93).
From Proposition 1.80 it is inferred that λrX(C) ∈ B(S (X)), whenever

C ∈ B(X), thus λrX : B(X)→ B(S (X)). Let f : X1 → X2 be a morphism in
Pol, then so is S (f) : S (X1) → S (X2), and the Borel

op-morphism B (f) :
B(X1) → B(X2) corresponds to the map B (f) : B(X2) → B(X1), similar for
the Borel

op-morphism B (S (f)) : B(S (X1)) → B(S (X2)). Hence we have to
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show that this diagram of maps

B(X1)
λX1� B(S (X1))

B(X2)

B (f)
�

λX2

� B(S (X2))

B (S (f))
�

commutes (note the direction of the arrows). Now let C ∈ B(X2), then we
have

B (S (f))
(
λrX2

(C)
)

= S (f)−1 [
λrX2

(C2)
]

= {μ ∈ S (X1) | S (f)μ(C) ≤ r}
= {μ ∈ S (X1) | μ(f−1 [C]) ≤ r}
= λrX1

(f−1 [C])

= (λrX1
◦B (f))(C).

1.6.3 Adjunctions, Monads, Algebras and the Kleisli Con-
struction

We will define in this section monads and the corresponding Kleisli con-
struction. Each monad is based on an endofunctor for a category, so each
monad has algebras associated with it. The Eilenberg-Moore algebras are
particularly interesting, and they will be investigated later on for the monad
which is defined somewhat naturally through the subprobability functor.

On first sight, all these constructions appear somewhat unrelated, but it
is well known that they are tied together through adjunctions. Thus we will
define adjunctions as well, state the fundamental characterization through
a pair of natural transformations and relate monads and Eilenberg-Moore
algebras to adjunctions.

Adjunctions. We define the basic notion of an adjunction and show that an
adjunction defines a pair of natural transformations through universal arrows
(which is sometimes taken as the basis for adjunctions).

DEFINITION 1.103 Let X and A be categories. Then (F,G, ϕ) is called
an adjunction iff

a. F : X → A and G : A → X are functors,
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b. for each object a in A and x in X there is a bijection

ϕx,a : A(F (x) , a)→ X(x,G (a))

which is natural in x and a.

F is called the left adjoint to G, G is called the right adjoint to F.

That ϕx,a is natural for each x, a means that for all morphisms f : a → b
in A and g : x→ y in X both diagrams commute:

A(F (x) , a)
ϕx,a� X(x,G (a)) A(F (x) , a)

ϕx,a� X(x,G (a))

A(F (x) , b)

f∗

�

ϕx,b
� X(x,G (b))

(G (f))∗

�
A(F (y) , a)

(F (g))∗

�

ϕy,a
� X(y,G (a))

g∗

�

Here f∗ := A(F (x) , f) and g∗ := X(g,G (a)) are the hom-set functors
associated with f resp. g, similar for (G (f))∗ and for (F (g))∗; for the hom-
set functors see Example 1.93.

An adjunction induces natural transformations which make this important
construction easier to handle, and which helps indicating connections of ad-
junctions to monads and Eilenberg-Moore algebras in the sequel. Before en-
tering the discussion, universal arrows are introduced.

DEFINITION 1.104 Let S : C→ D be a functor, and c an object in C.

a. u : c → S (r) is called a universal arrow from c to S iff for any arrow
f : c → S (d) there exists a unique arrow f ′ : r → d in C such that
f = S (f ′) ◦ u.

b. v : S (r) → c is called a universal arrow from S to c iff for any arrow
f : S (d) → c there exists a unique arrow f ′ : d → r in C such that
f = v ◦S (f ′).

Thus, if c → S (r) is universal from c to S, then each arrow c → S (d) in
D factors uniquely through the S-image of an arrow r → d in C. Similarly,
if S (r) → c is universal from S to c, then each D-arrow S (d) → c factors
uniquely through the S-image of an C-arrow d→ r.

Universal arrows will be used now for a characterization of adjunctions in
terms of natural transformations (we will omit the indices for the natural
transformation ϕ that comes with an adjunction).
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THEOREM 1.105
Let (F,G, ϕ) be an adjunction for the functors F : X → A and G : A → X.

Then there exist natural transformations η : 1lX
•→ G ◦ F and ε : F ◦G→ 1lA

with these properties:

a. the arrow ηx is universal from G to x for each x in X, and ϕ(f) = G (f)◦ηx
holds for each f : F (x)→ a,

b. the arrow εa is universal from a to F for each a in A, and ϕ−1(g) = εa◦F (g)
holds for each g : x→ G (a),

c. the composites

G
ηG� G ◦ F ◦G F

Fη� F ◦G ◦ F

G

Gε

�

id
G

�

F

εF

�

id
G

�

are the identities for G resp. F.

PROOF (Sketch) 1. Define ηx := ϕ(idF(x)), then the well known Yoneda
Lemma (MacLane, 1997, Proposition III.2.1) entails that ηx is a universal
arrow from x to G. Let h : x→ y be a morphism in X, then

G (F (h)) ◦ ϕ(idF(x)) = ϕ(F (h) ◦ idF(x)) = ϕ(idF(y) ◦ F (h)) = ϕ(idF(y)) ◦ h,

because ϕ is natural. This implies the commutativity of the diagram

x
ηx� G (F (x))

y

h

�

ηy
� G (F (y))

G (F (h))

�

Thus η : 1lX
•→ G ◦ F is natural.

2. Let f : F (x) → a be a morphism in A, then the naturality of ϕ implies

ϕ(f) = ϕ(f ◦ idF(x)) = G (f) ◦ ϕ(idF(x)) = G (f) ◦ ηx.

3. Define for the object a in A the morphism εa := ϕ−1(idG(a)), then an
argumentation quite similar to the one above shows that ε : F ◦ G

•→ 1lA

is a natural transformation, and that for each morphism g : x → G (a) the
equality ϕ−1(g) = εa ◦ F (g) holds.
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4. From ϕ(f) = G (f) ◦ ηx we obtain

idG(a) = ϕ(εa) = Gεa ◦ ηG(a),

so that Gε ◦ ηG is the identity transformation on G. Similarly, ηF ◦ Fε is the
identity for F.

The transformation η is sometimes called the unit of the adjunction, whereas
ε is called its counit. The converse to Theorem 1.105 holds as well: from two
transformations η and ε with the signatures as above one can construct an
adjunction. The proof is a straightforward verification.

PROPOSITION 1.106
Let F : X → A and G : A → X. be functors, and assume that natural

transformations η : 1lX
•→ G ◦ F and ε : F ◦ G → 1lA are given so that

(Gε) ◦ (ηG) is the identity of G, and (εF) ◦ (Fη) is the identity of F. Define
ϕ(f) := G (f)◦ηx, whenever f : F (x) → a is a morphism in A. Then (F,G, ϕ)
defines an adjunction.

Thus for identifying an adjunction it is usually sufficient to identify its unit
and its counit; this includes verifying the identity laws of the functors for the
corresponding compositions. In Section 3.6 we will, however, take the direct
road and verify the laws of an adjunction according to Definition 1.103.

Monads. An endofunctor T : C → C together with the natural transforma-
tions e : 1lC

•→ T (the unit) and m : T2 •→ T (the multiplication) is a monad
iff these diagrams commute

T
3 Tm � T

2
T

eT � T
2 � Te

T

T
2

mT

�

m
� T

m

�
T

m

��

1lC
1l
C

�

The commutativity of the leftmost diagram is expressed for an object x of C
through

mx ◦ T(mx) = mx ◦mT(x),

while the commutativity of the rightmost diagram is written down as

mx ◦ eT(x) = idx = mx ◦ T(ex).

These expressions are sometimes easier to handle than the purely functorial
notation in the diagrams above.
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Two monads will be discussed extensively: the one based on the power set
functor in the category of sets, and the one based on the subprobability functor
on the category of Polish spaces. Since the former monad is well known, it will
serve mainly as a paragon for proceeding in the latter. Chapter 3 discusses
these monads together with an application to software architecture.

Now let (F,G, ϕ) be an adjunction with functors F : X → A and G : A → X,
the unit η and the counit ε. Define the functor T through T := G ◦ F. Then
T : X → X defines an endofunctor on category X with ma := (GεF) (a) =
G

(
εF(a)

)
as a morphism ma : T2 (a)→ T (a) . Because εa : F (G (a)) → a is a

m morphism in A, and because ε : F ◦G
•→ 1lA is natural, the diagram

(F ◦G ◦ F ◦G) (a)
εF(G(a))� (F ◦G) (a)

(F ◦G) (a)

(F ◦G) (εa)

�

εa
� A

εa

�

is commutative. This means that in the functor category the diagram

F ◦G ◦ F ◦G
ε (F ◦G)� F ◦G

F ◦G

(F ◦G) ε

�

ε
� 1lA

ε

�

commutes. Multiplying from the left with G and from the right with F yields
this diagram.

G ◦ F ◦G ◦ F ◦G ◦ F
Gε (F ◦G ◦ F)� G ◦ F ◦G ◦ F

G ◦ F ◦G ◦ F

(G ◦ F ◦G) εF

�

GεF
� G ◦ F

GεF

�

When rotated along the left-to-right diagonal, this diagram shows that m :
T2 •→ T satisfies the laws of a multiplication in a monad. Define e := η,
then e : 1lX

•→ T is a natural transformation. By multiplying the leftmost
diagram in Theorem 1.105, part c from the right with F, and the diagram on
the right hand side with G, upon gluing these diagrams together one obtains
the diagram which gives the laws of a unit for a monad.
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We have shown

PROPOSITION 1.107
Each adjunction defines a monad.

The converse of this holds as well: each monad defines an adjunction, as
we will show below. We need for this Eilenberg-Moore algebras which will be
defined and considered presently. For an extensive discussion of these algebras
in the context of the monad induced by the subprobability functor, the reader
is referred to Chapter 3.

Eilenberg-Moore Algebras. Given a monad (T, e,m) in a category C, a
pair 〈x, h〉 consisting of an object x and a morphism h : T (x) → x in C is
called an Eilenberg-Moore algebra for the monad iff the following diagrams
commute

T2 (x)
T (h)� T (x) x

ex� T (x)

T (x)

mx

�

h
� x

h

�
x

h

�

id
x

�

An algebra morphism f : 〈x, h〉 → 〈x′, h′〉 between the algebras 〈x, h〉 and
〈x′, h′〉 is a morphism f : x→ x′ in C which makes the diagram

T (x)
h � x

T (x′)

T (f)

�

h′
� x′

f

�

commute. Eilenberg-Moore algebras together with their morphisms form a
category Alg(T,e,m). We will usually omit the reference to the monad.

Fix for the moment (T, e,m) as a monad in category C, and let Alg :=
Alg(T,e,m) be the associated category of Eilenberg-Moore algebras.

We state a sequence of auxiliary statements that will assist in showing that
the monad defines an adjunction, and that the monad associated with this
adjunction is the originally given one.

LEMMA 1.108
The pair 〈T (x) ,mx〉 is a T-algebra for each x in C.
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PROOF This is immediate from the laws for e and m in a monad.

These algebras are usually called the free algebras for the monad. Mor-
phisms in C translate into morphisms in Alg through functor T.

LEMMA 1.109
If f : x→ y is a morphism in C, then T (f) : 〈T (x) ,mx〉 → 〈T (y) ,my〉 is a

morphism in Alg.

PROOF Because m : T2 •→ T, we see my ◦ T2 (f) = T (f) ◦ mx. This is
just the defining equation for a morphism in Alg.

This yields as an immediate consequence:

COROLLARY 1.110
Define F (x) := 〈T (x) ,mx〉 for an object x in C, and F (f) := T (f) for an

arrow f : x→ y in C. Then F : C → Alg is a functor.
Define G (〈x, h〉) := x for the T-algebra 〈x, h〉, and put G (f) := f for the

algebra morphism f , then G : Alg → C is a functor as well.

For this pair of functors we are about to define unit and counit for the
adjunction. This is straightforward for the unit and quite immediate for the
counit. To be specific:

LEMMA 1.111
Define ηx := T (x) for the object x in C, and ε〈x,h〉 := 〈T (x) ,mx〉 for the

T-algebra 〈x, h〉. Then η : 1lC
•→ G ◦ F and ε : F ◦ G

•→ 1lAlg are natural
transformations.

PROOF One first notes that h : 〈T (x) ,mx〉 → 〈x, h〉 is a morphism of
T-algebras, whenever 〈x, h〉 is a T-algebra. Then one notes that the diagram

〈T (x) ,mx〉
h� 〈x, h〉

〈T (y) ,my〉

T (f)

�

h′
� 〈y, h′〉

f

�

commutes, whenever f : 〈x, h〉 → 〈y, h′〉 is an algebra morphism. Now the
assertion follows from the observation that (F ◦G)(〈x, h〉) = 〈T (x) ,mx〉 and
(F ◦G)(f) = T (f) holds.
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This yields the desired result: we did define an adjunction, and this ad-
junction yields the originally given monad as its monad according to Propo-
sition 1.107.

PROPOSITION 1.112

If (T, e,m) is a monad in the category C with Alg as its category of T-algebras,
then 〈F,G, η, ε〉 defines an adjunction. The monad given by this adjunction
is (T, e,m).

PROOF It is straightforward to verify that (Gε) ◦ (ηG) is the identity
of G, and (εF) ◦ (Fη) is the identity of F. Thus Proposition 1.106 says that
we have in fact an adjunction. Because (GεF)(x) = G

(
εF(x)

)
= G (mx) , the

multiplication of the monad defined by the adjunction is the originally given
multiplication; similarly one shows that the units coincide.

The Kleisli Construction. If (T, e,m) is a monad in category C, then a
Kleisli morphism f : a � b between objects a and b is a morphism f : a →
T (b). The composition g ∗ f of Kleisli morphisms f : a � b and g : b � c is
defined through

g ∗ f := mc ◦ T (g) ◦ f,

where ◦ is the composition in C. The properties of a monad take care of
associativity and the fact that the identity morphism in the original monad
gives rise to an identity for the Kleisli composition. Let f : a → b, g : b → c
and h : c→ d be morphisms. Then

eb∗f = f = f∗ea,

since

eb∗f = ma ◦ T (ea) ◦ f = ma ◦ eT(ea) ◦ f = f =

idb ◦ f = mb ◦ eT(eb) ◦ f = mb ◦ T (f) ◦a
()
= f∗ea.

Equation (�) uses the naturalness of e : 1lC
•→ T, which implies that the

diagram on the left hand side commutes.

a
ea � T (a) T

2 (c)
mc� T (c)

(�) (�)

T (a)

f

�

eT(a)

� T (T (a))

T (f)

�
T

3 (d)

T2 (h)

�

mT(d)

� T
2 (d)

T (h)

�
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Similarly, composition is associative, since

h∗(g∗f) = md ◦ T (h) ◦mc ◦ T (g) ◦ f =

md ◦ (T (h) ◦mc) ◦ T (g) ◦ f (�)
= md ◦

(
mT(a) ◦ T

2 (h)
)
◦ T (g) ◦ f =

ma ◦ T (ma) ◦ T
2 (h) ◦ T (g) ◦ f = ma ◦ T (h∗g) ◦ f = (h∗g)∗f.

Again, naturalness is used in equation (�), this time of the multiplication
m : T2 •→ T, which makes sure that the above diagram on the right hand side
is commutative.

The category so constructed is usually called the Kleisli category for the
monad. This category can be used to build an adjunction which in turn
has exactly the monad under consideration as its monad. To be specific, let
(T, e,m) be a monad in category C, and denote the associated Kleisli category
by K. If f ∈ X(a,T (b)) is a morphism in X, make κ(f) ∈ K(a, b) the associated
Kleisli morphism. Define F : X → K as the identity on objects, and put
F (f) := κ(eb ◦ f) for f ∈ X(a,T (b)). Define the functor G : K → X through
G (a) := T (a), and set G (t) := mb ◦ T (t) for t ∈ K(a, b).

PROPOSITION 1.113
With the notations from above,

a. F : X → K and G : K → X are functors,

b. define ϕ = ϕa,b as the bijection that is given through

K(F (a) , b) = K(a, b) ∼= X(a,T (b)) = X(a,G (b)),

then ϕ is natural in a and b, (F,G, ϕ) is an adjunction,

c. the monad associated with this adjunction is (T, e,m).

PROOF 1. From the discussion above it is clear that F and G are functors,
and it is easily checked that ϕ is natural in a and b. For example, if f : b→ c
in X, then

ϕa,c(f∗(g)) = ϕa,c(f ◦ g) =
T (f ◦ g) = T (f) ◦ T (g) = (T (f))∗(T (g)) = T (f)∗ (ϕa,b(g)),

whenever g : a→ b is an arrow in X. Thus ϕa,− is natural.
Consequently, (F,G, ϕ) is an adjunction. Computing the unit η for this

adjunction, we see

ηa = ϕ(idF(a)) = ϕ(κ(ηa)) = ea,

and we have κ(εa) = κ(idT(a)) for the counit, so that we obtain

(GεF)(a) = Gεa = G (()κ(idT(a))) = ma ◦ T
(
idT(a)

)
= ma
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for the multiplication. This completes the proof.

Thus we see that the Kleisli construction can also be obtained from an
adjunction. But this is not the end of the story, which should be told for the
sake of completeness. Mac Lane (MacLane, 1997, Chapter VI.5) shows that for
a given monad all those adjunctions which define the monad form a category,
the initial object of which is the Kleisli construction, and the terminal object
is given through the Eilenberg-Moore algebras. Thus the Kleisli construction
and the Eilenberg-Moore algebras form the opposite and extreme ends of a
whole spectrum of adjunctions.

1.7 Bibliographic Notes

Borel Sets, Analytic Spaces. The classical reference to Borel sets, an-
alytic sets and their interplay is of course Kuratowski’s monograph (Kura-
towski, 1966), albeit the notation is quite arcane and somewhat outdated.
Most results in these introductory pages are folklore and can be found in
many monographs; the exposition in Parthasarathy’s classic on probability
measures on metric spaces (Parthasarathy, 1967) is particularly noteworthy.
I found the expositions in Srivastava’s book (Srivastava, 1998) on Borel sets
and in Kechris’ book (Kechris, 1994) on descriptive set theory most helpful,
so I used these books as guides both for the exposition and for most of the
proofs. No claim for originality is being made here with this material. The
discussion of analytic sets in Arveson’s book (Arveson, 1976, Chapter 3) is
particularly concise, so I tried to come close to his style of presenting this
somewhat technical topic. The discussion on universal measurability and the
proof for the existence of a universally measurable right inverse are taken from
Arveson as well.

Measurable Selectors. Measurable relations are a valuable tool in such
diverse fields as stochastic dynamic programming (Wagner, 1977) and descrip-
tive set theory (Kechris, 1994). Overviews are provided in (Srivastava, 1998,
Chapter 5) and (Himmelberg, 1975; Wagner, 1977). The monograph (Cas-
taing and Valadier, 1977) is a concise overview of the field by the end of the
1970s. The proofs for Proposition 1.57 are partly taken from there, partly
from (Himmelberg and van Vleck, 1974) and from (Castaing, 1967).

Probability Measures The weak topology on the probability measures
on a Polish space is a standard topic in Probability Theory; see for example
(Shiryaev, 1996; Loève, 1962; Billingsley, 1995). Billingsley (Billingsley, 1968)
and Parthasarathy (Parthasarathy, 1967) did devote part of their monograph
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to it; (Billingsley, 1999) is an update that is much less technical than its pre-
decessor. The proofs of the crucial statements are taken from (Parthasarathy,
1967) and from (Kellerer, 1972) with an occasional glance towards (Kechris,
1994).

Categories The standard reference is Mac Lane’s treatise (MacLane, 1997);
(Borceux, 1994a; Borceux, 1994b) gives an encyclopaedic overview. (Barr and
Wells, 1999) provides a representation the topics of which are oriented to the
needs of computer science; (Fiadeiro, 2005) caters for the needs of software
engineers. The present discussion of adjunctions and their relation to monads
and to Eilenberg-Moore algebras follows rather closely the one given by Mac
Lane (MacLane, 1997, Chapters IV, VI) and the one given by Barr and Wells
in (Barr and Wells, 1985, 3.2). The reader is referred to Mac Lane’s book for a
discussion of the relationship between monads, algebras and adjunctions that
is briefly mentioned at the end of Section 1.6.3. (Wadler, 1992) discusses the
interaction between functional programming and monads in a graded series
of examples.
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2.1 Introduction

Consider a relation R ⊆ X × Y that relates an input x ∈ X to a set
R(x) ⊆ Y of outputs. Each output carries the same weight, so each output
has the same chance of being selected. But this is sometimes too coarse a
description. It basically outlines all possibilities and selects — in the absence
of other criteria — one of them. In a quantitatively oriented scenario one
would attach some weight to each possible outcome and select the output
with the highest weight. This can be done through assigning each outcome
a probability, so that K(x) is a probability distribution over Y . Looking at
the alternative between the nondeterministic and the probabilistic approach,
we see that in the nondeterministic case R is modeled as a map from X to
the power set Pow (Y ) of Y , K in turn is modeled as a map from X to
the set P (Y ) of all probabilities over Y . In the finite case one can convert
between these models, albeit not without loss of information: given R, put
K(x) := card(R(x))/card(Y ), given K, define R(x) := {y ∈ Y | K(x)(y) > 0},
so that K appears as a kind of refinement to K.

But this similarity is somewhat superficial, the relationship between re-
lations and their stochastic cousins lies much deeper, and this is the story
which this chapter is going to tell. We will find out that there is a common
underlying structure for both of them by looking at the construction from a
category theory point of view by showing that both arise through the same
kind of construction from a monad. We show that the Kleisli construction
provides an informal link between these kinds of relations by establishing that
both kinds of relations arise through this construction, albeit over different
monads. Selecting as a base category the category of sets and the monad
related to the power set functor, we will obtain nondeterministic relations
through the Kleisli construction. Selecting the category of measurable spaces
and the monad for the subprobability functor, we will obtain stochastic rela-
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84 2.1 Introduction

tions through this construction. They will be defined formally here as a result
of these discussions.

This is the rough picture, which will be refined somewhat. We will point
out systematically some similarities. This is done through a discussion of the
corresponding monads. When having a monad, one usually wants to know
what the algebras for this monad looks like (because the algebras permit a
reconstruction of an adjunction giving rise to that monad, just as the Kleisli
construction does). We make this step as well for both monads, where the
development for the monad based on the power set functor is well known, but
not completely for one based on the subprobability functor. It will be shown
in Chapter 3 what the algebras for the latter functor look like, and here we
obtain also an explicit characterization.

We are dealing in this chapter mainly with categorical constructions, and we
investigate the category of stochastic relations a bit more closely. We prepare
for dealing with the problem of the existence of pullbacks, which then will
be undertaken in Chapter 4 in detail. This question in turn will be later of
some significance, when we discuss bisimulations, behavioral equivalence, and
their relations to modal and temporal logic through logical equivalence. The
problem of finding a pullback is quite trivial for nondeterministic relations
(you basically write the pullback down explicitly), but it is far too strongly
posed for stochastic relations. Even the request for weak pullbacks is not weak
enough. We will show in Chapter 4 that semi-pullbacks exist in the category
of stochastic relations over analytic spaces, and that this is the most we can
expect: no weak pullbacks usually exist, as an example shows. Reflecting
this on the background of similarities between both kinds of relations, we
see that constructions that are easily carried out for the set-theoretic case
are undertaken with difficulties for the probabilistic case (if at all). We will
encounter this phenomenon later on again. It suggests that a construction like
an abstract specification of relations that can be interpreted sensibly both over
nondeterministic and over stochastic relations may work in special cases, but
may be difficult to pursue in general.

Functorial Issues. The present chapter introduces first the subprobability
functor on the category of measurable spaces. It investigates this functor,
shows that it gives rise to a monad, has a look at the Kleisli product and
identifies for a special case the algebras for this functor.

To emphasize the similarities between nondeterministic and stochastic rela-
tions, we first look at the monad that is defined through the power set functor
on Set. When modeling a software architecture in Section 2.4, we will require
an additional argument to the indication of the system’s work, and we assume
for this purpose that this is modeled through a monoid H with 1 as an iden-
tity. Such a monoid could be a group, the free semigroup over an alphabet, or
a ∨-semilattice with a smallest element. This additional argument will enter
the constructions here at little additional cost but will provide an additional
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amount of flexibility and demonstrates the flexibility and adaptability of this
construction.

Case Study. This chapter contains a case study as well, indicating the
broad range of the concepts defined and investigated here. It deals with
architectural modeling, demonstrating that architectural models for a very
popular software architecture may be formulated relationally. Since the basic
mathematical demands for a relational model are identical for nondetermin-
istic and for stochastic relations, the model is formulated sufficiently general,
so that both families of relations are covered (actually, the incorporation of
the monoid permits tuning the functor a bit by incorporating additional in-
formation that may be used for bookkeeping and the like).

This chapter as a whole shows that the similarities between these fami-
lies of relations considered are plentiful and interesting. They are translated
from properties of the associated monads, in particular from the respective
functors, which sit in their rôle as masterminds in the background and con-
trol the properties of their Kleisli products, sometimes remaining discreetly
in the background, sometimes entering the bright sunlight through a direct
argument.

2.2 The Manes Monad

The power set functor Pow assigns to each set X its power set Pow (X),
and assigns to each map f : X → Y the map Pow (f) : Pow (X)→ Pow (Y ) ,
mapping A ⊆ X to

Pow (f) (A) := f [A] := {f(x) | x ∈ A}.

Define m : Pow
2 •→ Pow through

mX : Pow (Pow (X)) � A 
→
⋃
A ∈ Pow (X)

and e : I
•→ Pow (X) through

eX : X � x 
→ {x} ∈ Pow (X) .

Elementary calculations show that both m and e form indeed natural trans-
formations: Let f : X → Y be a map, then this diagram is commutative:

Pow (Pow (X))
mX� Pow (X)

Pow (Pow (Y ))

Pow (Pow (f))

�

mY

� Pow (Y )

Pow (f)

�
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In fact, if A ∈ Pow (Pow (X)) , then

(mY ◦Pow (Pow (f))) (A) =
⋃
{f [x] | x ∈ A} = (Pow (f) ◦mX) (A).

It is also not difficult to establish that 〈Pow, e,m〉 satisfies the laws of a
monad; this monad will be referred to as the Manes monad .

Augmenting the construction by adding semigroup H , we define

M (X) := Pow (H ×X) ,

and if f : X → Y is a map, A ⊆ H ×X , then

M (f) (A) := {〈h, f(x)〉 | 〈h, x〉 ∈ A}

defines the action of the functor on the morphisms of Set. Now define

mX : M (M (X))→M (X)

upon setting
mX(A) :=

⋃

〈h1,b〉∈A
{〈h1h2, x〉 | 〈h2, x〉 ∈ b},

then an easy but somewhat space consuming calculation reveals that m :
M2 •→M is a natural transformation. The natural transformation e : ISet

•→
M is defined by eX : x 
→ {〈1, x〉}. A standard calculation shows then that
〈M, e,m〉 is a monad in Set.

A Kleisli morphism for the augmented monad between sets X and Y is a
relation between X and H×Y . This is well investigated for the case that the
monoid H is trivial, cf. (Barr and Wells, 1999, 16.1.4); it generalizes to the
present case. If R : X → M (Y ) and S : Y → M (Z) are Kleisli morphisms,
then we may either see R and S as maps to the corresponding power sets, or
we interpret R ⊆ X × (H ×Y ) and S ⊆ Y × (H ×Z) as relations; both views
will be made use of interchangeably, depending on the convenience of use.

The (Kleisli-) product of R and S is identified in Proposition 2.1 which
summarizes this example.

PROPOSITION 2.1
〈M, e,m〉 is a monad in the category Set. The Kleisli product for the relations
R ⊆ X × (H × Y ) and S ⊆ Y × (H × Z) is given through

(S ∗ R)(x) = {〈h1h2, z〉 | ∃y ∈ Y : 〈h1, y〉 ∈ R(x) ∧ 〈h2, z〉 ∈ S(y)}.

Assume that the semigroup H is trivial, then functor M equals the power
set functor Pow; the natural transformations m and e are adjusted as well.
We obtain as a consequence of Proposition 2.1 this well-known version:
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COROLLARY 2.2

〈Pow, e,m〉 is a monad in the category Set. The Kleisli product for the
relations R ⊆ X × Y and S ⊆ Y × Z is given through

(S ∗ R)(x) = {z | ∃y ∈ Y : y ∈ R(x) ∧ z ∈ S(y)}.

2.3 The Giry Monad

We will investigate now the probabilistic counterpart to the Manes monad.
It assigns to each measurable space its subprobability measures. We know
from Section 1.6 that S : Meas →Meas is a functor; before we investigate it
further and closer, we will augment its work by a monoid as well.

2.3.1 Adding a Monoid

The Giry monad on Meas assumes the monoid H being endowed with a
σ-algebra H which makes multiplication measurable, when H ×H carries the
product σ-algebra H⊗H.

Examples for measurable monoids are given by topological monoids; the
Borel sets then form the canonical measurable structure. Topological groups
are probably the most prominent examples. If H is a ∨-semilattice with a
smallest element, then it is not difficult to see that ∨ is a continuous operation,
when H is endowed with the interval topology (i.e., the topology which has
open intervals as subbase). Taking again the Borel sets for this topology, we
see that these semilattices yield measurable monoids, too.

We state as a preparation for the definition of the monad’s multiplication.
Assume that X and Y are measurable spaces.1

LEMMA 2.3

Let f : X → Y be a measurable map, and assume that C is a measurable
subset of H × Y . Then ΓC(ν, s) := ν({〈t, x〉 | 〈st, f(x)〉 ∈ C}) is a real-valued
measurable map on S (H ×X)×H.

1Unless there is the danger of ambiguity, we will omit the notation of the σ-algebras from
now on. They are assumed to be fixed. The following conventions will be adhered to: The
space of sub-probabilities will be endowed with the corresponding weak-*-σ-algebra (see
Section 1.5.2 for a definition), products will carry the product σ-algebra of their factors,
and Polish or analytic spaces will always have their Borel sets, unless otherwise indicated.
Deviations from these conventions will be made explicit.
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PROOF 1. Consider the set C of all members C of H ⊗ B for which ΓC
has the desired property. We will analyze the properties of C now with the
goal of showing that C equals H⊗ B.

2. Assume that C = G ×D with G ∈ H and D ∈ B. Since the semigroup
multiplication is measurable, we know that G′ := {〈g, h〉 | gh ∈ G} is an
element of H⊗H, so that

{〈t, x〉 | 〈st, f(x)〉 ∈ G×D} = G′
s × f−1 [D]

(recall that G′
s is the vertical cut of G′ at s, see Section 1.5.4, and that

f−1 [D] ⊆ X is measurable). Hence

ΓG×D(ν, s) = ν(G′
s × f−1 [D]).

An argument very similar to that establishing Lemma 1.86 shows that

〈ν, s〉 
→ ν(Qs ×W )

is (H⊗A)• ⊗H-measurable, whenever Q ∈ H⊗H and W ∈ A. This implies
that ΓG×D constitutes a measurable map, so that all measurable rectangles
are members of C. The measurable rectangles form a family of sets which is
closed under finite intersections.

3. Because subprobabilities are finitely and countably additive, we have

Γ(H×X)\C(ν, s) = ν(H ×X)− ΓC(ν, s),

thus C is closed under complementation, and

ΓS
n∈N

Cn
(ν, s) =

∑

n∈N

ΓCn(ν, s),

whenever (Cn)n∈N is a disjoint sequence, thus C is closed under disjoint count-
able unions. From the π-λ-Theorem 1.1 we infer now that C contains all sets
C ∈ H⊗ B. This establishes the claim.

Lemma 2.3 states that ΓC is jointly measurable in both arguments. This
entails that we may use ΓC as an integrand, given a subprobability on its
domain for integration. It has also as a consequence that upon fixing one
argument, the arising partial map is measurable, so that ΓC is measurable
separately in each variable (it is well known that joint measurability is strictly
stronger than separate measurability in each variable). We will make use of
this observation as well.

Now define after these somewhat lengthy preparations for x ∈ X , the mea-
surable subset A ⊆ H × X and the measure μ ∈ S (H ×S (H ×X)) the
functor G, unit e and multiplication m through
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G (X) := S (H ×X,H⊗A)
eX(x) := δ〈1,x〉

mX(μ)(A) :=
∫

H×S(H×X)

p({〈h, x〉 | 〈gh, x〉 ∈ A}) μ(d〈g, p〉).

Lemma 2.3 tells us that the integrand for the definition of mX is actually
measurable.

If f : X → Y is measurable, we put

G (f) (μ)(B) := μ({〈h, x〉 | 〈h, f(x)〉 ∈ B})
= μ

(
(idH × f)−1[B]

)

= S(idH × f)(μ)(B).

Consequently, G (f) : S (X) → S (Y ) is measurable, and if ψ ∈ F (H × Y ),
the Change of Variable formula (Proposition 1.95) implies that

∫

H×Y
ψ(h, y) G (f) (μ)(d〈h, y〉) =

∫

H×X
ψ(h, f(x)) μ(d〈h, x〉)

holds.
We are now in a position to show that 〈G, e,m〉 is a monad in Meas, adapting

and extending Giry’s proofs (Giry, 1981) to the situation at hand.

LEMMA 2.4
G is an endofunctor in Meas, e : IMeas

•→ G and m : G2 •→ G are natural
transformations.

PROOF 1. It is immediate that G : Meas →Meas is a functor, and that
e is a natural transformation.

2. Let f : X → Y be a measurable map, then we know that for μ ∈ G (Y )
and for the measurable subset B ⊆ H × Y these equations hold

(
mY ◦ G

2f
)
(μ)(B) =

∫

H×S(H×Y )

(Gf)(q)({〈h, y〉 | 〈gh, y〉 ∈ B}) μ(d〈s, q〉) =
∫

H×S(H×X)

q({〈h, x〉 | 〈gh, f(x)〉 ∈ B}) μ(d〈s, q〉).

Again, an appeal to Lemma 2.3 makes sure that we are permitted to com-
pute the integral, since the integrand constitutes a bounded function that is
measurable jointly in both variables.
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The latter expression coincides with (Gf ◦ mX) (μ)(B). Thus we have es-
tablished that (

mY ◦ G
2f

)
= (Gf ◦ mX)

holds. Consequently, μ : G2 •→ G is a natural transformation.

This is a preparation for establishing:

PROPOSITION 2.5
〈G, e,m〉 is a monad in Meas.

PROOF 1. We need to demonstrate that both the associative and the
unit laws hold. The Change of Variable formula implies that

∫

G×G(X)

ψ d (GeX)) (μ) =
∫

H×X
ψ(h, eX)(x)) p(d〈h, x〉),

whenever μ ∈ G (X), and ψ ∈ F (H ×G (X)) is measurable and bounded.
Consequently,

(mX ◦ GeX)(μ)(B) =
∫

H×X
eX({〈g, x〉 | 〈hg, x〉 ∈ B}) μ(d〈h, x〉)

= μ(B)
=

(
mX ◦ eG(X)

)
(μ)(B)

is true for every μ ∈ G (X), and for every measurable subset B of H × X .
This establishes the unit laws.

2. As far as the associative law is concerned, fix r ∈ G3(X), and a mea-
surable subset E of H × G (X). The Change of Variable formula implies
that

(
mX ◦ mG(X)

)
(r)(E) =

∫

H×G(X)

q({〈g, y〉 | 〈hg, y〉 ∈ E}) mG(X)(r)(d〈h, q〉) =

∫

H×G2(X)

(∫

H×G(X)

q({〈j, y〉 | 〈ghj, y〉 ∈ E}) p(d〈h, q〉)
)

r(d〈g, p〉).

On the other hand, expanding the definitions, and applying the Change of
Variables formula suitably, it is seen that these transformations hold:

(mX ◦ GmX) (r)(E) =
∫

H×G(X)

p({〈h, y〉 | 〈gh, y〉 ∈ E}) GmX(r)(d〈g, p〉) =
∫

H×G2X

mX(q)({〈h, y〉 | 〈gh, y〉 ∈ E}) r(d〈g, q〉) =
(
mX ◦ mG(X)

)
(r)(E).
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This shows that the associative law is valid.

We identify the product in the Kleisli category associated with this monad:

PROPOSITION 2.6

Let X,Y and Z be measurable spaces. Assume that K : X � Y and
L : Y � Z are Kleisli morphisms for the monad 〈G, e,m〉. Then the Kleisli
product L ∗ K for K and L is given through

(L ∗ K) (x)(C) =
∫

H×Y
L(y)({〈h, x〉 | 〈gh, x〉 ∈ C}) K(x)(d〈g, y〉).

PROOF 1. Let C be a measurable subset of H × Z, then the definition
of the Kleisli product yields

(L ∗ K) (x)(C) = (mZ ◦G (L) ◦K) (x)(C)
= mZ ((G (L) ◦K)(x)) (C)

=
∫

H×G(Z)

μ({〈t, z〉 | 〈st, z〉 ∈ C}) (G (L) ◦K) (x)(d〈s, μ〉).

2. If ψ ∈ F (H ×G (Z)) and μ ∈ G (Y ) , the Change of Variables formula
implies that

∫

H×G(Z,C)

ψ dG (L) (μ) =
∫

H×Y
ψ(t, L(y)) μ(d〈t, y〉).

Inserting this into the equation above, the result follows.

2.3.2 Stochastic Relations

Summarizing the discussion for a trivial monoid, we obtain as an extension
to Proposition 1.94 the following Corollary. It is stated separately because we
will use it over and over again.

COROLLARY 2.7

〈S, e,m〉 is a monad in the category Meas of measurable spaces with mea-
surable maps as morphisms. Assume that K : X � Y and L : Y � Z are
Kleisli morphisms for this monad. Then the Kleisli product L ∗ K for K and
L is given through

(L ∗ K) (x)(C) =
∫

Y

L(y)(C) K(x)(dy).
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We will investigate these Kleisli morphisms in greater detail: they con-
stitute just the stochastic relations. The name suggests the similarity with
set-theoretic (or nondeterministic) relations.

DEFINITION 2.8 A stochastic relation K = (X,Y,K) between the mea-
surable spaces X and Y is a Kleisli morphism K : X � Y for the monad
〈S, e,m〉.

This is another, easier to handle characterization of stochastic relations
which probably comes as a surprise: the Kleisli morphisms are the sub-Markov
kernels introduced in Section 1.5.3.

PROPOSITION 2.9
The following statements are equivalent for measurable spaces X and Y :

a. K : X � Y is a stochastic relation.

b. K : X × B → [0, 1] is a map such that

i. x 
→ K(x)(B) is measurable for each B ∈ B,
ii. K(x) ∈ S (Y ) for each x ∈ X.

Here B is the σ-algebra on Y .

PROOF 1. Suppose that K is a stochastic relation, then K : X → S (Y )
is a measurable map. The definition of the weak-*-σ-algebra implies that the
evaluation map x 
→ K(x)(B) is measurable for each B ∈ B.

2. Assume conversely that K has the properties from part b. It is clear
that K maps X to S (Y ), so measurability has to be established. Again, this
follows readily from the definition of the weak-*-σ-algebra.

Stochastic relations were introduced as sub-Markov kernels (see Defini-
tion 1.81), and they have been studied already in the context of regular
conditional probabilities and of disintegration. We want to emphasize the
relational nature, so we rather stick to the name of stochastic relations from
now on. It is closer to the Computer Science point of view.

COROLLARY 2.10
Assume that K : X � Y is a stochastic relation, and D ∈ A ⊗ B, where

A and B are the respective σ-algebras. Then x 
→ K(x)(Dx) is a measurable
map.

PROOF Consider

D := {D ∈ A⊗ B | x 
→ K(x)(Dx) is measurable}.
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Evidently both ∅ and X × Y are members of D, and since we can calculate
Dx for D = A×B as

Dx =

{
B, x ∈ A,
∅, x /∈ A,

we see that all measurable rectangles are members of D; this generator is
closed under finite intersections. If D ∈ D, then

((X × Y ) \D)x = Y \Dx,

and
K(x)(Y \Dx) = K(x)(Y )−K(x)(Dx)

(compare Section 1.3.2). Consequently, D is closed under complementation.
Similarly, if (Dn)n∈N ⊆ D is a sequence of disjoint sets, then, since

(
⋃

n∈N

Dn

)

x

=
⋃

n∈N

(Dn)x ,

and since the infinite sum of a sequence of measurable functions is measurable
again, provided it exists (which it does in this case), we may conclude that⋃
n∈N

Dn ∈ D. Thus D is closed under complementation and disjoint unions,
and it contains a generator that is closed under finite intersections. From the
π-λ-Theorem 1.1 we see that

D = σ ({A×B | A ∈ A, B ∈ B}) ,

hence the assertion is true for all product measurable sets.

Discussion. Proposition 2.9 supports the view that a stochastic relation
models randomly changing phenomena. Assume first that K : S � S is a
stochastic relation on a state space S for some system. If the system is in
state s ∈ S, then K(s)(T ) is interpreted as the probability that the system
will change its state to a member of the measurable set T ⊆ S. Second, assume
that X and Y are interpreted as the spaces of inputs and outputs of some
randomly operating device. Then the value K(x)(B) for a stochastic relation
K : X � Y is interpreted as the probability for an output to be a member of
the measurable set B ⊆ Y after the system has received input x ∈ X . Models
like this are particularly attractive when outputs come from an uncountable
set: here it is not always reasonable to assign to each individual y ∈ Y a
probability, because these individuals may be difficult to capture individually,
or because they do not carry enough weight by themselves. On the other hand
it appears sensible to assign sets of outputs the probability to be involved. It
should be mentioned that methods of nonstandard analysis (Lindstrøm, 1988;
Keisler, 1988) try to balance these seemingly irreconcilable points of view.

Another point worth mentioning is that there may exist inputs x for which
the probability K(x)(Y ) that an output is delivered at all is not unity (for
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otherwise we would have postulated that K maps X to P (Y ) rather than
to S (Y )). This permits modeling systems that may encounter situations in
which no output at all will be given, e.g., because the computation leading to
an output does not terminate; see (Morgan et al., 1996).

Suppose that the base spaces X and Y are identical, then a stochastic re-
lation may be interpreted as a coalgebra for the subprobability functor S;
see, e.g., (Rutten, 2000). This is of interest when modeling state transitions
as hinted at above. The coalgebraic point of view appears quite attractive
structurally, because it suggests to fit stochastic relations tightly under the
roof of coalgebras, making tried and tested approaches available for investi-
gating problems of stochastic relations. Unfortunately, this route can only be
followed with partial success. There are two reasons for this: First, we will
see that the subprobability functor has some idiosyncratic properties making
work with it sometimes a little strenuous (for example, due to the lack of
weak pullbacks, see Proposition 4.14). Second, a coalgebra 〈x, c〉 for functor
F is defined as a morphism c : x→ Fx, so the codomain of morphism c is just
the image of its domain under F. This is rather restrictive, both structurally
and regarding applications. “Unfolding” domain and codomain into two inde-
pendent objects provides much needed maneuverability, as we will experience
almost everywhere.

Morphisms. Given two stochastic relations K1 and K2 with Ki : Xi �
Yi, i = 1, 2 a morphism f : K1 → K2 is composed of two maps φ : X1 → X2

and ψ : Y1 → Y2. Both maps should be measurable, and we will assume that
both maps are onto. This is due to the observation that in the target system
each element should be traced back to an element in the source system (so
that there is no overabundance of elements in K2 relative to K1). We formulate
as the compatibility condition relating the probabilistic structures K1 and K2

that
K1(x1)(ψ−1 [B2]) = K2(φ(x1))(B2)

holds for each x1 ∈ X1 and each B2 ∈ B2. Staying with the input-output
model, we postulate that the probability of answering with an element of B2

after input φ(x1) equals the probability of answering after input x1 with an
element which will be mapped by ψ to B2 (thus with an element of ψ−1 [B2]).
The equation above may be reformulated as

S (ψ) ◦K1 = K2 ◦ φ

(composition ◦ denoting composition of maps), and this leads to the following
fundamental definition:

DEFINITION 2.11 Given two stochastic relations Ki : (Xi,Ai) �
(Yi,Bi) with i = 1, 2, a morphism f : K1 → K2 is a pair f = (φ, ψ) of surjective
maps such that
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a. φ : X1 → X2 is A1-A2-measurable,

b. ψ : Y1 → Y2 is B1-B2-measurable,

c. the diagram

X1
φ � X2

S (Y1,B1)

K1

�

S (ψ)
� S (Y2,B2)

K2

�

is commutative.

Listing Some Categories. We will usually not work in the very general
category of all measurable spaces but rather restrict ourselves to some more
specialized base categories like BPol, the category of Polish spaces with
Borel measurable maps as morphisms or the category Anl of analytic spaces,
also with Borel measurable maps as morphisms. The category Stoch has
stochastic relations K = (X,Y,K) for measurable spaces X,Y as objects and
pairs of surjective maps according to Definition 2.11 as morphisms. Stochastic
relations will be investigated also over these more specialized categories, and
morphisms between stochastic relations are available there as well. PolStoch

and anStoch denote the category of all stochastic relations where the basic
objects are taken from BPol resp. Anl. The objects of PolStoch will some-
times be called Polish objects, and, accordingly, analytic objects will be the
objects in category anStoch.

2.4 Case Study: Architectural Modeling through Mon-
ads

Nondeterministic and stochastic relations are for some problems really in-
stances of the same relational phenomenon: we need little beyond the corre-
sponding monads, and the relevant aspects of the applications will be taken
care of through the Kleisli morphisms for that monad. This basic observation
lies at the heart of Moggi’s λc-calculus, but in contrast to Moggi’s work we
are interested here in exploring the commonalities and the differences of two
very specific monads. We will investigate the problem of modeling a pop-
ular, simple software architecture with this approach: given a monad with
some additional features, we investigate modeling this architecture, and we
show that both the Manes monad and the Giry monad are instances of it. It
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will be argued at the end that, since the architecture is so simple, this uni-
form approach of modeling is successful, and that a slightly more complicated
software architecture will need more sophisticated categorial properties.

A pipeline is a popular architecture which connects computational compo-
nents (filters) through connectors (pipes) so that computations are performed
in a stream like fashion. The data are transported through the pipes be-
tween filters, gradually transforming inputs to outputs. This kind of stream
processing has been made popular through UNIX pipes that serially connect
independent components for performing a sequence of tasks. Because of its
simplicity and its easy to grasp functionality it is a pet architecture for demon-
strating ideas about formalizing the architectural design space (not unlike the
data type Stack for algebraic specifications or abstract data types). We will
show in this section how to formalize this architecture in terms of monads,
hereby including specifications through set theoretic or probabilistic relations
as special cases.

Software Architectures. The structural aspects of a large programming
system are captured through its (software) architecture. Initially, this term
was used rather loosely. Work being done during the 1990s, in particular
by M. Shaw and her associates, has established a body of knowledge in the
software engineering community about methods for structuring large systems.
This translates into practical tools like architectural design languages.

An architecture for a system separates computation from control on the
system’s level; while the former is represented by algorithms formulated in
a programming language, the latter is formulated in terms of components
(which carry out the computations) and connectors (which transport data
from one component to another one). Connectors are elevated to first class
rank making it possible to reason explicitly about connecting components.
Considering an architecture then means identifying connectors and compo-
nents and describing the interplay between them. Since the emphasis is on
structure, formalizing an architecture helps in investigating its salient features;
formalizations can be proposed on different levels.

The formalization of an architecture permits reasoning about it since it
provides precise and abstract models that usually come with analytical tech-
niques. This is in marked contrast to architectural techniques where the shape
of an architecture and its architectural parameters are determined experimen-
tally ((Doberkat et al., 2000) provides an example for constructing a substan-
tial real life system). Shaw and Garlan (Shaw and Garlan, 1996, Sec.6) discuss
architectural formalisms. They distinguish three levels of formalization:

The architecture of a specific system. This permits a precise character-
ization of the system-level functions that determine the overall product
functionality.

The formalization of an architectural style. By describing architectural
abstractions it becomes possible to analyze various static or dynamic
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properties of common architectural patterns or reference architectures
which are used informally, e.g., as reference architectures. Essential
ingredients in such a formalization are provided by connectors and by
components.

A theory of software architecture. By classifying architectures with a math-
ematical machinery, a deductive basis for analyzing systems is provided.

We will focus on the intermediate level and investigate an architecture where
the computational elements are represented through relations.

Relations. Nondeterministic and probabilistic constructions share, as we
have seen in the previous sections, a common structure in representing the
Kleisli construction for a monad. The case of nondeterministic relations is cov-
ered through the power set functor on the category of sets, and the stochastic
case through the functor which assigns each measurable set the space of all
subprobability measures, as we have seen in the discussion in Section 2.3.
Thus monads (and their associated Kleisli categories) form the common ab-
straction for both cases, bringing us into the realm of Moggi’s compelling
argumentation and well known that monads form a suitable basis for model-
ing computations.

Consequently, the architectural modeling will be done on the basis of a
monad.

Categories vs. Architectures. Categories with their emphasis on struc-
ture are a suitable formal tool for modeling software architectures. Focussing
on structure implies the independence on any representation in a specifica-
tion or programming language; technically this is achieved through the use of
morphisms and functors. Synthesizing a design sometimes means formulating
the components and combining them through a suitable colimit, cf. (Fiadeiro
and Maibaum, 1996). Wermelinger and Fiadeiro (Wermelinger and Fiadeiro,
1998) discuss some salient features of an architectural modeling through cat-
egories in the context of their modeling mobile programs. Specifically they
point out that this approach represents programs as objects. Morphisms show
how programs can be composed; the explicit use of connectors facilitates the
separation of computation and coordination. Moreover they point out that
the mechanisms for interconnecting components yielding complex systems are
formalized using universal constructs, in this way providing a stage for arguing
about these mechanisms formally.

When modeling an architecture, one has to take care at least of the com-
putational components and the connectors. Working in a category, the con-
nectors are represented as objects while the computational components are
modeled as morphisms between the objects. Since computations will be repre-
sented as monads, the most natural way is representing a component through
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Figure 2.1: A Pipeline as a System of Pipes and Filters

the work of the corresponding functor T. Here the Kleisli construction en-
ters the game: suppose for simplicity that the input and the output for a
component λ are modeled respectively through the objects x and y, then
the computation performed by λ is represented through a Kleisli morphism
x → Ty. These assignments are described when modeling a particular archi-
tecture, and the work of an instance of this architecture is described in terms
of these assumptions. We will outline this point for a pipeline architecture,
the architectural style being simple enough to be studied without being capti-
vated in the intricacies of a discussion of an overwhelming number of technical
and architecture specific issues. It is rather general, hence not tied to a par-
ticular domain or application, and it is semantically rich enough to illustrate
the concepts proposed and investigated here.

Pipelines. Filters transform streams of data functionally; each filter has
input ports from which data are read, and output ports, to which results are
written. Computation is performed incrementally and locally: a portion of
the data available at the input ports is read, transformed, and written to the
output ports which in turn serve as input ports for other components or as
outputs for the system. The filters may be assumed to work concurrently. It
is characteristic for this style that the data passing through a filter enters only
through its input ports, and leaves only through its output ports; global data
are not available. A pipe links an input port to an output port and transmits
data from one component to another. Pipelines are in this taxonomy a sub-
style which performs the computations without cycles.

Figure 2.1 shows an example for a simple pipeline. The system has two
inputs w1 and w2 and two outputs b1 and b2. It has four independent com-
ponents 1, . . . , 4. The edges are labeled with the types of the inputs the
components accept, and produce, resp.: for example, component 1 accepts
inputs of type X1 and produces outputs of types X3 and X4, the former serv-
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ing as an input to component 2 together with an input of type X2, the latter
serving as an input to component 3 together with an input of type X5, which
is produced by component 2. The entire system accepts two inputs of type
X1 and X2 and produces two outputs of type X7 and X8.

We assume that the system forms a directed graph with filters as nodes
and pipes as edges. The graph is assumed to be acyclic, so that loops among
filters are not permitted; hence we will address the linear substyle of the
architecture. The common pipelines are usually linear: think of UNIX pipes
or of linear arrangements in which data are generated and collected from
different sources.

Nevertheless, acyclicity is an assumption which from the mathematical
point of view quite notably restricts a general model of pipes and filters. Sup-
pose that we have a component C which has among its output ports the ports
r and s, r being a “backward” port, s being a forward one. Here backward
means that r’s output is being fed into the input port of another component
the output of which is pipelined directly or indirectly into one of the input
ports of component C. With other words: C lies on a cycle in the graph
constituting the system’s topology. The functional character of the compo-
nents implies that each input is associated with some output for all ports,
so that an undefined value at one of these ports must not occur. Modeling
this situation requires taking care of this iterative structure, and providing
a neutral element of some sorts, indicating that the functional output of C
flows through s only in certain situations. We will return to this point when
discussing possible extensions in Section 2.4.7.1.

But before entering the discussion with formal machinery, we will first have
a look at a simple example, so that the ideas will become more transparent.

2.4.1 A First Example

Consider the pipeline system of pipes and filters represented through the
graph in Figure 2.1 again. It has the roots {w1, w2}, the leaves {b1, b2} and
the filters {1, 2, 3, 4}. This graph exhibits a little irregularity in that paths
to a node from different roots may differ in length. Thus a signal from root
w1 to node 2 is routed through node 1 before arriving at node 2, whereas a
signal originated from root w2 arrives directly at node 2. In order to get a
uniform treatment, we introduce noops which are to have the effect that all
paths from a root to a node have the same length (we will call graphs with
this property stratified later on, cf. Definition 2.19). Thus the graph is not
stratified, but the version in Figure 2.2 is. Note that we have introduced two
new artificial nodes Δ2 and Δ4.

We partition the set of nodes into classes Sj such that a node n is in Sj iff
the length of a path from a root to n is exactly j. Hence we have these sets
S0, . . . , S4:

S0 = {w1, w2}, S1 = {1,Δ2}, S2 = {Δ4, 2}, S3 = {3, 4}, S4 = {b1, b2}.
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Figure 2.2: Stratified Pipeline

We will associate sets with the edges, and relations between the corresponding
sets with the nodes. Sets are meant to indicate the type of information flowing
along that edge, relations associated with a node to indicate the processing
being performed by this node. Hence we have for node 2 relationR2 with R2 ⊆
(X2 ×X3) × (X5 ×X6) . The noop nodes are associated with no processing
at all, thus the information is just passed unchanged through them, indicated
by Δ, and we have

Δ2 := {〈x, x〉 | x ∈ X2},
Δ4 := {〈x, x〉 | x ∈ X4}.

Work in these partitions proper is characterized by independent processing
of the partition’s nodes, thus we take the Cartesian product of the sets labeling
the incoming edges as the input sets for the partition, similarly for the output
sets. The construction yields, e.g., for component S2 this relation:

{〈x2, x3, x4, x4, x5, x6〉 | x4 ∈ X4, 〈x2, x3, x5, x6〉 ∈ R2}.

The work of the entire pipeline is then described through the product of the
relations that represent the work of the individual partitions. This yields a
relation which is a subset of (X1 ×X2)×(X7 ×X8) . The result is, as expected:

{〈x1, x2, x7, x8〉 | ∃x3 ∈ X3, x4 ∈ X4, x5 ∈ X5, x6 ∈ X6 :
〈x1, x3, x4〉 ∈ R1, 〈x2, x3, x5, x6〉 ∈ R2, 〈x4, x5, x7〉 ∈ R3, 〈x6, x8〉 ∈ R4}.

This relation may be manipulated further. It may take part in horizontal
and vertical operations. Horizontal operations form architectures by concate-
nating components, so that the resulting pipelines get longer and longer; ver-
tical operations refine an architecture by replacing a component through an
entire subsystem (we are a bit in conflict with the notion of horizonal and ver-
tical composition in category theory, cp. (MacLane, 1997, II.4, II.5 and XII.3)
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where these terms are used for the composition of natural transformations
for different functors; the present terminology is, however, quite graphically
used in Software Engineering, too, so we stick to it here). These fundamental
architectural operations will be discussed in detail in Section 2.4.6.

2.4.2 First Steps

This section serves as a preparation for things to come: we formulate a
compatibility condition which relates the product in the category under con-
sideration to the monad which is used for modeling the computations.

The category X(n) has as objects n-tuples of objects of X, and n-tuples of
morphisms, the composition being defined componentwise. Define functors
G

(n)
T ,H

(n)
T : X(n) → X upon setting (n ≥ 1)

G
(n)
T 〈x1, . . . , xn〉 := Tx1 × · · · × Txn

H
(n)
T 〈x1, . . . , xn〉 := T (x1 × · · · × xn) ,

and, if φi : xi → yi are morphisms in X, then

G
(n)
T 〈φ1, . . . , φn〉 := Tφ1 × · · · × Tφn

H
(n)
T 〈φ1, . . . , φn〉 := T (φ1 × · · · × φn) .

T models the computations performed in the components, and which are
partially done in parallel. This in turn will be modeled through finite prod-
ucts. Hence T should be naturally related to the product in X; the present
proposal assumes compatibility which mediates between T (x)×T (y)×T (z)
and T (x× y × z) using the natural transformation 1T : T

•→ T and introduc-
ing another one between G

(2)
T and H

(2)
T . To be specific:

DEFINITION 2.12 Monad T is compatible with the product in X iff
there exists a natural transformation θ : G

(2)
T

•→ H
(2)
T which makes this diagram

commutative:

T (x)× T (y)× T (z)
(1T × θ)〈x,y,z〉� T (x)× T (y × z)

T (x× y)× T (z)

(θ × 1T)〈x,y,z〉

�

θ〈x×y,z〉
� T (x× y × z)

θ〈x,y×z〉

�

θ is called the mediating transformation.

A mediating transformation θ spawns a sequence (θ(n))n≥1 of natural trans-
formations

θ(n) : G
(n)
T

•→ H
(n)
T
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in the following way:

θ(1)x := 1Tx

θ
(2)
〈x,y〉 := θ〈x,y〉

θ
(n+1)
〈x1,...,xn+1〉 := θ〈x1×···×xn,xn+1〉◦

(
θ(n) × 1T

)

〈x1,...,xn+1〉

LEMMA 2.13

Suppose that T is compatible with the product in X, and let θ be the mediating
transformation. Defining θ as above, the sequence (θ(n))n∈N has the following
properties:

a. θ(n) is a natural transformation,

b. for all k, � ∈ N and for all objects xi, yi we have

θ〈x1×···×xk,y1×···×y�〉◦
(
θ(k) × θ(�)

)

〈x1,...,xk,y1,...,y�〉
= θ

(k+�)
〈x1,...,xk,y1,...,y�〉

PROOF 1. The first part is established by induction on n, since the
composition of natural transformations is again a natural transformation.

2. The second part is proved by induction on �, the start of the induction
representing just the inductive definition from above. The induction step is
established through the commutativity of this diagram:

(∏k

i=1
Tai

)

×
(∏�

i=1
Tbi

)

× T (b)

T

(∏k

i=1
ai

)

× T

(∏�

i=1
bi

)

× T (b)

α
�

κ
� T

(∏k

i=1
ai ×

∏�

i=1
bi

)

× T (b)

γ

�

T

(∏k

i=1
ai

)

× T

(∏�

i=1
bi × b

)

β
�

λ
� T

(∏k

i=1
ai ×

∏�

i=1
bi × b

)

δ
�
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with

α :=
(
θ(k) × θ(�) × 1T

)

〈a1,...,ak,b1,...,b�,b〉
β := (1T × θ)〈Qk

i=1ai,
Q�

i=1bi×b〉

γ :=
(
θ(k+�) × 1T

)

〈a1,...,ak,b1,...,b�,b〉
δ := θ〈Qk

i=1ai×
Q�

i=1bi,b〉
κ := (θ × 1T)〈Qk

i=1ai,
Q�

i=1bi,b〉
λ := θ〈Qk

i=1ai,
Q�

i=1bi×b〉.

The upper triangle is commutative because of the induction hypothesis; the
lower square is just the condition on θ from Definition 2.12. Then the assertion
follows, since λ ◦ β ◦ α = δ ◦ κ ◦ α = δ ◦ γ, and

β ◦ α =
(
θ(k) × θ(�+1)

)

〈a1,...,ak,b1,...,b�,b〉

δ ◦ γ = θ
(k+�+1)
〈a1,...,ak,b1,...,b�,b〉.

Our sample categories have mediating transformations.

LEMMA 2.14

The map
{

M (X)×M (Y ) →M (X × Y )
〈A,B〉 
→ {〈h1h2, x, y〉 | 〈h1, x〉 ∈ A, 〈h2, y〉 ∈ B}

defines a natural transformation that mediates between the functor and the
product in Set.

Let us discuss the Giry monad. Define for the measurable subset C of
H×X1×X2 and for μi ∈ G (Xi) (i = 1, 2) their H-product μ1⊗H μ2 through

(μ1 ⊗H μ2)(C) :=
∫

H×X1

μ2 ({〈h2, y〉 | 〈h1h2, x, y〉 ∈ C}) μ1(d〈h1, x〉),

then μ1 ⊗H μ2 ∈ G (X1 ×X2). In fact, we can say more:

LEMMA 2.15

The H-product is associative, it constitutes a natural mediating transforma-
tion G

(2)
G

•→ H
(2)
G .
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PROOF 1. Associativity of the H-product is an easy consequence of
Fubini’s Theorem on product integration.

2. Let f : X → X ′ and g : Y → Y ′ be measurable maps, then we have for
the measures μ1 ∈ G (X) , μ2 ∈ G (Y ) and for the measurable subset C′ of
H ×X ′ × Y ′

(G (f) (μ1)⊗H G (g) (μ2)) (C′) =
∫

H×X
μ2({〈h2, y〉 | 〈h1h2, f(x), g(y)〉 ∈ C ′}) μ1(d〈h1, x〉) =

(μ1 ⊗H μ2) ({〈h, x, y〉 | 〈g, f(x), g(y)〉 ∈ C ′}) =
G (f × g) (〈μ1, μ2〉 
→ μ1 ⊗H μ2)(C′).

But this means that the H-product is natural for G
(2)
G and H

(2)
G . It is easy to

see that this transformation is mediating.

The product in X defines together with T an associative operation:

DEFINITION 2.16 Let τ : a→ Tb and τ ′ : a′ → Tb′ be morphisms, then
define τ ×T τ

′ : a× a′ → T (b× b′) upon setting τ ×T τ
′ := θ〈b,b′〉 ◦ τ × τ ′.

Example 2.17 will show that ×T does not exhibit the universal properties
which would be necessary to form a product (thus the category XT does not
necessarily have finite products, even if X has them).

EXAMPLE 2.17
Let, for simplicity, H be the trivial monoid {1}, which we omit from the

notation. Suppose that ×G is a product in MG, and fix two nonempty mea-
surable spaces X1 and X2. There exists a measurable space X and the two
projections pi : X → G (Xi) such that, whenever Ki : S → G (Xi) (i = 1, 2) is
a morphism, we can find a morphism K : S → G (X) such that Ki = pi ∗ K
holds for i = 1, 2. This means that

Ki(s)(Bi) =
∫

X

pi(x)(Bi) K(s)(dx)

always holds. Now let always Ki(s)(Xi) equal 1. This implies that pi(x)(Xi)
equals 1 K(s)-almost everywhere for each s, and for each K which can be so
constructed. Note that p1, p2 do not depend on the specific choice of K1,K2.
But then we have for any Li : S → G (Xi) with product L:

L1(s)(X1) =
∫

X

p1(x)(X1) L(s)(dx)

=
∫

X

p2(x)(X2) L(s)(dx)

= L2(s)(X2).
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Since we cannot always maintain L1(s)(X1) = L2(s)(X2) it follows that MG

does not have finite products.

We have, however:

COROLLARY 2.18

Let τ : a → Tb, τ : a′ → Tb′, τ : a′′ → Tb′′ be morphisms in X, then
(τ ×T τ

′)×T τ
′′ = τ ×T (τ ′ ×T τ

′′) .

PROOF Lemma 2.13 shows that both sides of this equation equal

θ
(3)
〈b,b′,b′′〉 ◦ (τ × τ ′ × τ ′′) .

2.4.3 The Basic Construction

We will associate a computation to a pipeline by composing computations
performed in its components. This construction will be first carried out due
to technical reasons for graphs that exhibit a certain regularity: the nodes are
partitioned into layers so that the information flows strictly from one layer
to the next one. This restriction is introduced for reasons of synchronization:
the inputs at each port of a component in a layer are uniformly available at
the same time, and so are the outputs. It makes modeling somewhat easier,
but it is really only a technical device. We remove it in Section 2.4.5, after
we have shown in Section 2.4.4 how to manipulate a dag (a directed acyclic
graph) so that it is satisfied.

Fix in this section a finite dag G = (V,E) with roots W and leaves B; for
convenience we assume the set V of nodes to be somehow linearly ordered.
Put for node n

•n := {m ∈ V | 〈m,n〉 ∈ E}
n• := {m ∈ V | 〈n,m〉 ∈ E}

as the sets of nodes which have an edge into that node or out of it, resp. G is
not supposed to have any isolated nodes, i.e., nodes n with •n ∪ n• = ∅.

We define sets (Sj)0≤j≤k through

S0 := W,

Sj+1 := {n ∈ V | •n ⊆ Sj} (j ≥ 0).
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DEFINITION 2.19 The dag G = (V,E) is called stratified iff the sets
(Sj)0≤j≤k form a partition of V for some k. The maximal index k such that
Sk �= ∅ is denoted by Λ(G).

Let for the rest of this section G be a stratified graph.

LEMMA 2.20

The set of inputs {〈m,n〉 | 〈m,n〉 ∈ E, n ∈ Sj} into the set Sj of nodes
equals the set of outputs {〈m, �〉 | 〈m, �〉 ∈ E,m ∈ Sj−1} from the sets Sj−1

for j ≥ 1.

PROOF This follows directly from the fact that G is stratified.

This observation shows that each node n is in some uniquely determined
set Sj . If n is an inner node (thus if j > 0 and j < k), then 〈m,n〉 ∈ E
implies m ∈ Sj−1, and 〈n,m〉 ∈ E implies m ∈ Sj+1. Depicting S0, . . . , Sk as
blocks from left to right, information flows into n only from nodes in Sj−1,
thus from nodes on the left, and flows from n only into nodes in Sj+1, hence
into nodes on the right.

We associate now objects from category X with edges, and nodes with
morphisms in XT. To be specific, each edge 〈k, n〉 ∈ E is assigned an object
γ〈k,n〉 in X. If T is the Manes functor M, this means that an edge 〈k, n〉
is assigned a set which represents the flow from node k to node n. For T

as the Giry functor G, the edge is assigned a measurable space which also
represents the flow along this edge: if it is used as an input, then it is the
sample space of all inputs for a probabilistic relation; if it is used as an output,
then it represents the space of all probability measures over this space, cf.
Example 2.21.

The input to node n and the output from this node are then reflected
respectively through the respective products

i (γ, n) :=
∏
{γ〈k,n〉 | k ∈ •n} (n /∈W )

o (γ, n) :=
∏
{γ〈n,k〉 | k ∈ n•} (n /∈ B)

Each inner node n is labeled with a Kleisli morphism

a (γ, n) : i (γ, n)→ T (o (γ, n)) ,

so that a (γ, n) models the work being performed by node n.

EXAMPLE 2.21

Suppose that •n = {m1, . . . ,mr} and n• = {�1, . . . , �s}.
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1. For the Manes monad we assign the edges 〈m1, n〉, . . . , 〈mr, n〉 to the
sets X1, . . . , Xr, and sets Y1, . . . , Ys to the edges 〈n, �1〉, . . . , 〈n, �s〉. The
node n itself is assigned a relation

a (γ, n) ⊆ (X1 × · · · ×Xr)× (H × Y1 × · · · × Ys) .

Suppose that 〈x1, . . . , xr〉 ∈ X1 × · · · ×Xr is an input to node n which
is related to output 〈h, y1, . . . , ys〉. That tuple represents the node’s
work, and we have two kinds of results: the tuple 〈y1, . . . , ys〉 which
in turn is being communicated to other nodes in the pipeline, and h ∈
H which may be interpreted as an immediate result which could be
read off this processing element. Proposition 2.1 indicates that all these
results, which will not be communicated as input to other filters, will
be accumulated as control percolates through the system.

2. For the Giry monad, Xi and Yj are measurable spaces, and

a (γ, n) : X1 × · · · ×Xr � H × Y1 × · · · × Ys

is a stochastic relation. Thus for an input 〈x1, . . . , xr〉 ∈ X1 × · · · ×Xr,
and for a measurableB ⊆ H×Y1×· · ·×Ys we get a (γ, n) (x1, . . . , xr) (B)
as the probability that the computation in node n terminates, and that
〈h, y1, . . . , ys〉 will be a member of B; the interpretation of the compo-
nents for this tuple is the same as above.

This indicates that a relational environment for modeling the basic scenario
for a pipeline architecture is provided, capturing both the nondeterministic
and the probabilistic case.

DEFINITION 2.22 Call 〈G, γ〉 a pipeline system (abbreviated as PF-
system) over the monad 〈T, e,m〉 iff the following conditions hold:

• G = 〈V,E〉 is a directed graph with W and B as the sets of roots, and
leaves, resp.

• ∀〈n,m〉 ∈ E : γ〈n,m〉 is an object in X,

• ∀n ∈ V \ (W ∪B) : a (γ, n) : i (γ, n)→ T (o (γ, n)) is a morphism in X.

The system 〈G, γ〉 is called stratified iff G is stratified.

Since the monad will be fixed in the sequel, we will not mention it explicitly
when talking about PF-systems; unless explicitly mentioned, PF-systems will
be stratified in this section.

Now define for 0 < j ≤ k the object

g (γ, Sj) :=
∏
{i (γ, n) | n ∈ Sj},
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then g (γ, Sj) indicates the kind of flow into Sj (which is, because of Obser-
vation 2.20, the flow out of Sj−1); hence the component Sj has what could
be called the input signature g (γ, Sj−1) and the output signature g (γ, Sj).

The work being done in Sj can be represented through the Kleisli morphism

A (γ, Sj) : g (γ, Sj−1)→ T (g (γ, Sj)) ,

with
A (γ, Sj) := θ

(#Sj)

〈n|n∈Sj〉 ◦
∏
{a (γ, n) | n ∈ Sj},

where θ is the natural transformation which mediates between T and the prod-
uct in X, cf. Definition 2.12. The linear order on V makes θ(#Sj)

〈n|n∈Sj〉 uniquely
determined. The work of the entire system is then represented through

P (G, γ) := A (γ, Sk−1) ∗ . . . ∗ A (γ, S1) .

The construction shows that

P (G, γ) : g (γ, S1)→ T (g (γ, Sk))

is a Kleisli morphism between the inputs to the system and the outputs from
it, thus representing the system’s work.

The example that follows discusses a particular pipeline system, stratifies
the graph and exercises the construction proposed here for the Giry monad.
The set theoretic case has already been dealt with in Section 2.4.1.

EXAMPLE 2.23

We discuss the example outlined in Section 2.4.1 (Figure 2.2) again, this
time for the stochastic case. We assume that the monoid carries a measurable
structure which makes multiplication measurable, cf. Section 2.3.1. The
Δi (i = 2, 4) are Dirac kernels: we put

Δi(x) := δ〈1,x〉 ∈ G (Xi) .

Node n is this time represented through a stochastic relation Kn between the
appropriate sets, e.g.,

K2 : X2 ×X3 � H ×X5 ×X6.

The construction gives then, e.g., for component S2:

A (γ, S2) (x2, x3, x4) = K2(x2, x3)⊗H Δ4(x4);

thus the probability that the computation in components S2 will give an ele-
ment of the measurable set D ⊆ H×X4×X5×X6 after input of 〈x1, x2, x3〉 ∈
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X1 ×X2 ×X3 is computed as

A (γ, S2) (x2, x3, x4) (D) =
∫

H×X5×X6

Δ4(x4) ({〈h4, x
′
4〉 | 〈h2h4, x

′
4, x5, x6〉 ∈ D})×

×K2(x2, x3)(d〈h2, x5, x6〉) =
K2(x2, x3) ({〈h2, x5, x6〉 | 〈h2, x4, x5, x6〉 ∈ D}) .

Let f : H ×X4 ×X5 ×X6 → R be a bounded and measurable function, then
a computation of the Kleisli product according to Proposition 2.6 shows that
(x1 ∈ X1, x2 ∈ X2)

∫

H×X4×X5×X6

f d ((A (γ, S2) ∗ A (γ, S1))) (x1, x2) =
∫

H×X3×X4

∫

H×X5×X6

f(gh, x4, x5, x6) K2(x2, x3)(d〈h, x5, x6〉)×

K1(x1)(d〈g, x3, x4〉).

We get in this way for 〈x1, x2〉 ∈ X1 × X2 and the measurable subset F ⊆
H ×X7 ×X8

P (G, γ) (x1, x2)(F )

=
∫

H×X4×X5×X6

A (γ, S3) (x4, x5, x6) ({〈h, x7, x8〉 | 〈gh, x7, x8 ∈ F})×

× d (A (γ, S2) ∗ A (γ, S1)) (x1, x2)(d〈g, x4, x5, x6〉)

=
∫

H×X3×X4

∫

H×X5×X6

∫

H×X7

K4(x6)({〈h1, x8〉 | 〈g1hgh1, x7, x8〉 ∈ F})×

×K3(x4, x5)(d〈g, x7〉)K2(x2, x3)(d〈h, x5, x6〉)K1(x1)(d〈g1, x3, x4〉)

as the work of the entire pipeline.

We will now prepare for removing the condition that a PF-system should
be stratified.

2.4.4 Stratifying Graphs

The assumption in carrying out the basic construction in Section 2.4.3 has
been that the graph underlying the PF-system is stratified. But graphs rarely
are, so it becomes necessary to make provisions for generalizing the construc-
tion to general directed graphs. The strategy is to devise a way of stratifying
a graph, to perform the construction on the new graph, and to make sure
that all graphs that are stratified versions of the given one perform the same
work. The present section is auxiliary in character and provides an algorithm
for stratifying. Section 2.4.5 will do the generalization.
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ALGORITHM 2.24

Edges := E; Nodes := V ; zeta := 0;
while Edges �= ∅ do

forall n ∈ range Edges do
H(n) := {a | 〈a, n〉 ∈ Edges, α(a) = 0};

od;
forall a ∈ domain H do

d(a) := zeta;
od;
Edges := Edges \ {〈a, n〉 | 〈a, n〉 ∈ Edges, α(a) = 0};
forall n ∈ Nodes do

r := #{k | 〈k, n〉 ∈ Edges};
if r = 0 then

α(n) := 0;
else

for j := r + 1 to α(n) do
choose m from H(n);
H(n) := H(n) \ {m};
q := newq();
α(q) := 0; V := V ∪ {q};
E := (E \ {〈m,n〉}) ∪ {〈m, q〉, 〈q, n〉};
Edges := Edges ∪ {〈q, n〉};

od; -- forall
fi;

od; -- forall
zeta := zeta+ 1;

od; -- while ♣

Figure 2.3: Algorithm Stratify

Algorithm 2.24 produces from G = (V,E) a stratified graph G′ = (V ′, E′)
with V ⊆ V ′ and E′ ∩ (V × V ) ⊆ E. It assumes that G does not have any
isolated nodes, and that each node lies on a path from a root to a leaf. We
assume that we have a source Q of fresh nodes which is disjoint from V ∪ E;
invoking the function newq() will produce a fresh node. The map α initially
gives the in-degree of a node; we use some auxiliary values which will be
needed and discussed in the sequel.

Thus we iterate over all edges, removing roots as we go; for a node n we
use H(n) for recording which nodes have edges leading into n that will be
removed. When we see that a node n has no longer any edges having n as
a target, this node will be promoted to a root (and removed in due course);
promotion to a root means changing the in-degree α(n) to 0. If it turns out,
however, that there are still edges going into that node (note that in this case
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#H(n) equals α(n)− r), we replace each edge 〈m,n〉 by a pair of edges 〈m, q〉
and 〈q, n〉, where q is a fresh node which is put into the set V of nodes.

Since each dag has roots, and since G is assumed to have no isolated nodes,
it is not difficult to see that Algorithm 2.24 terminates. It is also evident that
the new graph G′ = (V ′, E′) has the given one as a subgraph in the sense that
V ⊆ V ′ and E′ ∩ (V × V ) ⊆ E both hold.

LEMMA 2.25
Let n ∈ E′ be a node in G′, and assume that there exists a path from a root

of G′ to n. Then this path has length d(n).

PROOF 1. We proceed by induction on the value of zeta. The beginning
is trivial, since exactly the roots of G are removed, and no new roots are
introduced.

2. Now let zeta = k, and assume that d(n) equals k + 1. This means that
α(n) is set to 0 when zeta has the value k. We distinguish the case that n is
a new node introduced in this step from the case that α(n) is set to 0 because
r = 0 holds.

• If n is a new node, we can find an edge 〈m1, n1〉 which gave rise to
this creation, hence that edge is replaced by the pair of edges 〈m1, n〉
and 〈n, n1〉. Edge 〈m1, n1〉 is a member of the set Edges before control
enters the body of the actual loop, thus will be removed. The induction
hypothesis makes sure that each path from a root to m in the graph
constructed so far has length k, thus d(n) = k + 1.

• If n is no new node, the assumption that there is a path in the new
graph to n implies that, since there is no node m with 〈m,n〉 ∈ Edges,
there are edges 〈m,n〉 which have been deleted in the step before. For
all these m we have d(m) = k. In the new graph all these nodes m have
the property that each path from a root to them has length k.

This implies the assertion.

An immediate consequence of Lemma 2.25 is

PROPOSITION 2.26
Algorithm 2.24 produces a stratified graph.

PROOF Using the notation from above, put Sj := {n ∈ V ′ | d(n) = j}.
Then S0 is the set of roots for G′ as well as for G, and if node n is in Sj+1,
then all its predecessors (w. r. t. G′) are in Sj. These sets are mutually
disjoint, and Sk′ = ∅ for all k′ ≥ k for some minimal index k. Since n ∈ Sd(n)

holds for each node n ∈ V ′, we see that (Sj)0≤j≤k forms a partition of V ′.
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Armed with this tool, we now enter the discussion of the general case.

2.4.5 The General Case

We will demonstrate that all the stratified PF-systems which can be con-
structed from a given one will do the same work, so that this morphism is an
invariant, and that it is sensible to assign it to a nonstratified PF-system as
its work. This has as a remarkable consequence that two constructions can be
carried out that help in composing larger systems from smaller ones: we show
in Section 2.4.6 how two PF-systems can be glued together (as a horizontal
extension), and that hierarchical refinement is available as construction tech-
nique, permitting the expansion of a node by an entire subsystem. This is a
vertical extension.

Both the PF-system 〈G, γ〉, and G = 〈V,E〉 as the graph underlying it are
fixed. The sets W and B denote the roots, and the leaves of G, resp. We fix
also the set Q which serves as a reservoir of fresh nodes for stratification.

We begin with an adaptation of Algorithm 2.24 to PF-systems by taking
the labels for edges and nodes coming with such a system into account. To
be specific, suppose we replace an edge 〈m,n〉 from the set of edges by the
pair 〈m, q〉 and 〈q, n〉 with the fresh node q ∈ Q. Then we put

γ〈m,q〉 := γ〈m,n〉,
γ〈q,n〉 := γ〈m,n〉,

a (γ, q) := eγ〈q,n〉

(remember that e denotes the unit for the corresponding monad). Thus if
the edge 〈m,n〉 carries type a, where a is an object in X, then the new edges
carry this type, and the node inserted is assigned the Kleisli morphism ea;
note that the natural transformation e provides the identities in the Kleisli
category XT. In terms of pipelines, by inserting eγ〈q,n〉 we insert a noop into
the system, since the filter introduced in this way evidently does not do any
other work than transporting inputs unchanged to outputs. In this way we
obtain from 〈G, γ〉 a stratified PF-system 〈G1, γ〉, reusing γ for simplicity.

The graph constructed by Algorithm 2.24 is an extension of the given graph.
This is made precise now.

DEFINITION 2.27 The graph G′ = (V ′, E′) is called a Q-extension to
G iff

a. G′ is stratified with E′ ∩ (V × V ) ⊆ E, and G′ has the same roots as G,

b. V ⊆ V ′, and V ′ \ V ⊆ Q,

c. if 〈n,m〉 ∈ E \E′, then there exists a unique path n = q0, . . . , qk = m from
n to m in G′ with 〈qi, qi+1〉 ∈ E′ for 0 ≤ i < k,
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d. for all q ∈ V ′ \ V , #(•q) = #(q•) = 1.

Thus a Q-extension has new nodes from the fountain Q of nodes only, an
edge in E is either an edge in E′, or its endpoints are connected through
a unique path that runs entirely through Q (apart from the endpoints, of
course). The new nodes in G′ do not have a rich social life by being neighbor
to only two other nodes, thus such a node receives inputs from exactly one
node and propagates it to a unique other node.

LEMMA 2.28
The graph constructed from Algorithm 2.24 is an Q-extension to G.

PROOF If G′ is the graph constructed from G, then G′ has been shown to
be stratified in Proposition 2.26. The construction makes sure that the other
conditions from Definition 2.27 are satisfied.

Any Q-extension can be decorated as indicated above: the nodes from Q
receive ex as their function, where x is an appropriate object which labels the
edges leading into that node, and out of it, resp. This leads to the notion of
an Q-extension to a PF-system which will not be formally defined since the
definition is obvious (the reader is invited to formulate it).

We want to establish that the work of a PF-system is an invariant for all
Q-extensions to a given PF-system. For this we should make sure that the
composition of Kleisli morphisms and the operation ×T which resembles a
product so closely relate to each other like composition and product:

DEFINITION 2.29 The monad 〈T, e,m〉 satisfies the �-condition iff

a. ea×b = ea ×T eb for all objects a and b in X,

b. for the morphisms fi : ai → Tbi, gi : bi → Tci (i = 1, 2) the equality

(g1 ×T g2)∗(f1 ×T f2) = (g1∗f1)×T (g2∗f2)

holds.

Thus the identity on a×b in XT is obtained from the respective identities on
a and b by performing the ×T-operation. In terms of computation, combining
the identities on a and on b independently to a component yields the identity in
a×b. The second condition explains the name: viewing the Kleisli composition
∗ as a horizontal operation along the flow of information which indicates
piping, and ×T as a vertical operation modeling independent composition, the
equation is visualized in Figure 2.4. Hence piping of composed computations
is tantamount to composing piped computations.
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Figure 2.4: (g1 ×T g2)∗(f1 ×T f2) vs. (g1∗f1)×T (g2∗f2)

Let us investigate our reference categories:

PROPOSITION 2.30
Both the Manes and the Giry category satisfy the �-condition, provided the

monoid H which comes with the respective monads is commutative.

PROOF 1. The first condition is readily established for both monads.
2. Let Ri : Ai → M (Bi) , Si : Bi → M (Ci) (i = 1, 2) be morphisms with

M as the functor underlying the Manes monad. Then these equalities hold
for 〈a1, a2〉 ∈ A1 ×A2:

((S1 ×M S2)∗(R1 ×M R2)) (a1, a2) =
{〈h1h2h3h4, c1, c2〉 | ∃b1, b2 : 〈h1, b1〉 ∈ R1(a1), 〈h2, b2〉 ∈ R2(a2),

〈h3, c1〉 ∈ S1(b1), 〈h4, c2〉 ∈ S2(b2)},

and

((S1∗R1)×M (S2∗R2)) (a1, a2) =
{〈h1h2h3h4, c1, c2〉 | ∃b1, b2 : 〈h1, b1〉 ∈ R1(a1), 〈h2, c2〉 ∈ S1(b1),

〈h3, b2〉 ∈ R2(a2), 〈h4, c2〉 ∈ S2(b2)}

3. Let Ki : Ai → G (Bi) , Li : Bi → G (Ci) (i = 1, 2) be morphisms with G

as the functor underlying the Manes monad. Here Ai, Bi, Ci are measurable
spaces, and the monoid H is assumed to be measurable as well. Now

((L1 ×G L2)∗(K1 ×G K2)) (a1, a2)

is a finite measure on H × C1 × C2, and so is

((L1∗K1)×M (L2∗K2)) (a1, a2),
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hence it is sufficient for establishing equality to show that the integrals for an
arbitrary measurable and bounded function ψ : H × C1 × C2 → R coincide.
A calculation using Fubini’s Theorem on product integration establishes that

∫

H×C1×C2

ψ d ((L1 ×G L2)∗(K1 ×G K2)) (a1, a2) =
∫

H×B1

∫

H×B2

∫

H×C1

∫

H×C2

ψ(h1h2h3h4, c1, c2) L2(b2)(d〈h4, c2〉)×

L1(b1)(d〈h3, c1〉)× K2(a2)(d〈h2, b2〉) K1(a1)(d〈h1, b1〉)

and
∫

H×C1×C2

ψ d ((L1 ×G L2)∗(K1 ×G K2)) (a1, a2) =
∫

H×B1

∫

H×C1

∫

H×B2

∫

H×C2

ψ(h1h2h3h4, c1, c2) L2(b2)(d〈h4, c2〉)×

K2(a2)(d〈h3, b2〉)× L1(b2)(d〈h2, c1〉) K1(a1)(d〈h1, b1〉).

4. These equalities establish the claim. It is interesting to observe in which
way in both cases the roles of h2 and h3 get interchanged, reflecting the way
in which morphisms change positions.

An easy induction using the second assertion in Lemma 2.13 establishes
that the Kleisli identity on a1 × · · · × an can be calculated through the iden-
tities on the components. The �-condition makes also sure that we may shift
computations between products (the easy inductive proof is left to the reader):

LEMMA 2.31
Assume that the �-condition holds. Then

a. The equality
ea1×···×an = ea1 ×T . . .×T ean

holds for all objects a1, . . . , an in X,

b. If σi : ai → Tbi and τi : bi → Tci are morphisms in X, then

(τ1 ×T . . .×T τn) ∗ (σ1 ×T . . .×T σn) =
(τ1 ×T . . .×T τj−1 ×T (τj∗σj)×T τj+1 ×T . . .×T τn) ∗
∗
(
σ1 ×T . . .×T σj−1 ×T eaj ×T σj+1 ×T . . .×T σn

)
=

(
τ1 ×T . . .×T τj−1 ×T ebj ×T τj+1 ×T . . .×T τn

)
∗

∗ (σ1 ×T . . .×T σj−1 ×T (τj∗σj)×T σj+1 ×T . . .×T σn) .
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The equations in part b of Lemma 2.31 are useful in our context: σ1 ×T

. . .×Tσn and τ1×T . . .×T τn represent the computations in consecutive blocks
of a PF-system. Then we may shift the computation of a component out of a
block into the next or the previous one without changing the result; shifting
means among others replacing the morphism by the appropriate identity. We
will use this observation in the proof of Proposition 2.34 for establishing the
invariance result.

From now on we assume that the �-condition is satisfied.

A Little Digression. In fact, we can say more about representing ×T-
products of morphisms: they can be written as Kleisli-products of a very
special kind. The discerning reader will no doubt observe that the kind of
representation derived from the discussion that follows will not be needed
for the present constructions of PF-systems. It appears to be interesting,
nevertheless.

DEFINITION 2.32 Assume n > 1, let τi : ai → Tbi be morphisms for
1 ≤ i ≤ n, and let ξ be a permutation of {1, . . . , n}. Then 〈σ1, . . . , σn〉 is the
ξ-expansion of 〈τ1, . . . , τn〉 iff σj can be written as ζj,1×T . . .×T ζj,n such that

a. each ζj,i is either eai , ebi or one of τ1, . . . , τn,

b. ζj,k ∈ {τ1, . . . , τn} iff ξ(j) = k,

c. if ζj,k = τi, then

ζ�,k =

{
eai , � > j

ebi , � < j.

For example, the permutation (13)(2) of {1, 2, 3} corresponds to

⎛

⎝
ζ1,1 ζ1,2 ζ1,3
ζ2,1 ζ2,2 ζ2,3
ζ3,1 ζ3,2 ζ3,3

⎞

⎠ =

⎛

⎝
eb1 eb2 τ3
eb1 τ2 ea3

τ1 ea2 ea3

⎞

⎠ .

Thus if 〈σ1, . . . , σn〉 is a ξ-expansion of 〈τ1, . . . , τn〉, then assuming ξ(j) = i,
σj can be written as

eb1 ×T . . .×T ebi−1 ×T τi ×T eai+1 ×T . . .×T ean

indicating that τi is doing its work, whereas τ1, . . . , τi−1 did do their work
already (thus the identity on the range is incorporated) and that τi+1, . . . , τn
will still have to do their work (hence the identity of the respective domains
are incorporated into the ×T-product).
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LEMMA 2.33
Let, under the assumptions of Definition 2.32, 〈σ1, . . . , σn〉 be an ξ-expansion

of 〈τ1, . . . , τn〉, then

τ1 ×T . . .×T τn = σ1∗ . . . ∗σn

holds.

PROOF 1. The proof proceeds by induction on n. For n = 2 the only
ξ-expansions of 〈τ1, τ2〉 are 〈eb1 ×T τ2, τ1×T ea2〉 and 〈τ1×T eb2ea1 ×T τ2〉. The
�-condition then permits directly establishing the claim.

2. The inductive step considers the ξ-expansion 〈σ1, . . . , σn+1〉 of the n+1-
tuple 〈τ1, . . . , τn+1〉. Then ξ(jn+1) = n+ 1, and we can write

σi =

{
σ′
i ×T ebn+1 , i < jn+1

σ′
i ×T ean+1 , i > jn+1

for some σ′
i. It is easy to see that

〈σ′
1, . . . , σ

′
jn+1−1, σ

′
jn+1+1, . . . , σn+1〉

is an ξ′-expansion for 〈τ1, . . . , τn〉, where ξ′ is the permutation of {1, . . . , n}
derived from ξ. Now write σjn+1 = ec1 ×T . . . ×T ecn where ci ∈ {ai, bi} is
suitably chosen according to the definition of the expansion, then we have by
the induction hypothesis, by the �-condition, and by Lemma 2.31

σ1∗ . . . ∗σn+1 =
(
σ′

1 ×T ebn+1

)
∗ . . . ∗

(
σ′
jn+1−1 ×T ebn+1

)
∗

∗ σjn+1∗
(
σ′
jn+1+1 ×T ean+1

)
∗ . . . ∗

(
σ′
n+1 ×T ean+1

)

=
(
σ′

1∗ . . . ∗σ′
jn+1−1∗ (ec1 ×T . . .×T ecn)

)
×T τn+1∗

∗
(
σ′
jn+1+1∗ . . . ∗σ′

n+1

)
×T ean+1

=
(
σ′

1∗ . . . ∗σ′
jn+1−1∗ ec1×···×cn ∗σ′

jn+1+1∗ . . . ∗ σ′
n+1

)
×T τn+1

=
(
σ′

1∗ . . . ∗σ′
jn+1−1∗σ′

jn+1+1∗ . . . σ′
n+1

)
×T τn+1

= τ1 ×T . . .×T τn+1.

This establishes the claim.

Returning To The Discussion. Assume that n is an inner node in G with

a (γ, n) :
∏
{γ〈k,n〉 | k ∈ •n} → T

(∏
{γ〈n,k〉 | k ∈ n•}

)



118 2.4 Case Study: Architectural Modeling through Monads

as its label, and assume that the edge 〈k, n〉 is replaced by the edges 〈k, q〉 and
〈q, n〉 for some q ∈ Q. The new edges are labeled through the object γ〈k,n〉,
and the new node n carries the label eγ〈k,n〉 . Other edges leading into node n
are also replaced. The net effect of inserting a node just in front of node n is
replacing a (γ, n) by

a (γ, n) ∗eQ{γ〈k,n〉|k∈•n}

which equals of course a (γ, n). Similarly, replacing an edge 〈n, k〉 by edges
〈n, q〉, 〈q, k〉 and introducing labels on edges and on q ∈ Q accordingly has the
effect of replacing a (γ, n) by

eQ{γ〈n,k〉|k∈n•}∗a (γ, n) ,

equalling a (γ, n), too. This is a translation of the idea of inserting “neutral”
nodes into the graph in order to render it stratified. In fact, two Q-extensions
to G differ only by such neutral nodes on paths between nodes taken from G.

PROPOSITION 2.34

Suppose 〈G, γ〉 is a PF-system with 〈G1, γ〉 and 〈G2, γ〉 as Q-extensions. Then
P (γ,G1) = P (γ,G2) .

PROOF 1. The proof proceeds by induction on

N := max{Λ(G1),Λ(G2)}.

The jth partition element of graph Gi will denoted by S(i)
j .

2. The induction starts at N = 2. This step inspects each node n of G in
turn. Suppose n ∈

(
S

(1)
1 \ S(2)

1

)
∩ V, then, since graph G2 is an Q-extension

to G, for each predecessor w of n in G1 there exists a node qw ∈ Q such that
〈w, qw〉, 〈qw, n〉 are edges in G2 which are labeled by the object γ〈w,n〉; node qw
itself carries the label eγ〈w,n〉 . Lemma 2.31 implies that the morphism a (γ, n)
which participates in defining P (γ,G2) has a factor

eγ〈w1,n〉×···×γ〈wr,n〉

to the right, where w1, . . . , wr are in that order all predecessors of n in G1.
A similar argument applies to n ∈

(
S

(2)
1 \ S(1)

1

)
∩ V, so that P (γ,G1) differs

only by factors from P (γ,G2) which are identity Kleisli morphisms. Hence
the assertion holds for N = 2.

3. Let max{Λ(G1),Λ(G2)} = N + 1. We may and do assume w.l.g. that
V ∩

(
S

(2)
1 ∪ S(1)

1

)
�= ∅, for, otherwise, no node of V is directly connected to a

root in either extension, so we may construct new graphs by eliminating the
respective sets S1 without changing the work of either graph.
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We construct from the PF-system 〈G1, γ〉 a PF-system 〈G3, γ〉 which is an
Q-extension to 〈G, γ〉 such that

S
(3)
1 = {n ∈ V | ∃w ∈W : w →∗

Q n in G1}
∪ {n ∈ V | ∃w ∈ W : w →∗

Q n in G2},

where →∗
Q indicates that there exists a (unique) path of nonnegative length

that runs — with the exception of the endpoints — entirely through Q. More-
over, P (γ,G1) = P (γ,G3) will hold.

Initially, 〈G3, γ〉 := 〈G1, γ〉. Assume n ∈ V ∩ S(1)
1 such that n ∈ S

(2)
t for

some t > 1. Let w1, . . . , wr be all predecessors to n in G1. Since G2 is an
Q-extension, there exist nodes q1,2, . . . , q1,t−1, . . . , qr,2, . . . , qr,t−1 in Q such
that

w1 = q1,1 . . . q1,t = n

...
...

wr = qr,1 . . . qr,t = n

form paths that run with the exception of their endpoints entirely through Q.
The edges on the ith path are labeled with the object γ〈wi,n〉, and a (γ, qi,j) =
eγ〈wi,n〉 .

Let k1, . . . , ks be all successors to n in G2. Remove the nodes {qi,j | 1 ≤ i ≤
r, 2 ≤ i ≤ t−1} and the edges, including 〈wi, qi,2〉 and 〈qi,t−1, n〉 for 1 ≤ i ≤ r
from G3, and add nodes q′1,2, . . . , q

′
1,t−1, . . . , q

′
s,2, . . . , q

′
s,t−1 as well as edges so

that we have the paths

n = q′1,1 . . . q
′
1,t = k1

...
...

n = q′s,1 . . . q
′
s,t = ks.

Put γ〈q′i,j ,q
′
i,j+1〉 := γ〈n,ki〉, and set γ(q′i,j) := eγ〈n,ki〉 (i > 1, j < t).

Consequently, graph G3 remains anQ-extension to G, and from Lemma 2.31,
part b, we see that P (γ,G1) = P (γ,G3) holds. Working in this way through
V ∩

(
S

(1)
1 ∪ S(2)

1

)
will eventually produce the desired graph.

In the same manner we construct a PF-system 〈G4, γ〉 with S(4)
1 = S

(2)
1 such

that P (γ,G2) = P (γ,G4) holds.

Remove the roots from G3; this yields the graph G̃3 which is an Q-extension
to

G̃ := (V \W,E ∩ (V \W × V \W )) .
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Similarly, remove the roots from G4 yielding G̃4, which is also an Q-extension
to G̃. Since max{Λ(G̃3),Λ(G̃4)} ≤ N, the induction hypothesis applies, so that

P (γ,G1) = P (γ,G3)

= P
(
γ, G̃3

)
∗A

(
S

(3)
1 , γ

)

= P
(
γ, G̃4

)
∗A

(
S

(4)
1 , γ

)

= P (γ,G4)
= P (γ,G2)

holds.

This proposition shows that the work described by an Q-extension of a
PF-system does only depend on the underlying PF-system, so that we are
now in a position to define the work of such a system — which need not be
stratified — through its stratified step-twins.

DEFINITION 2.35 We define the work P (γ,G) being done by the PF-
system 〈G, γ〉 as the work P (γ,G1) of one of its Q-extensions 〈G1, γ〉.

Consequently the work of a PF-system may be conveniently computed
through one of its Q-extensions.

2.4.6 System Evolution

Our constructions support system evolution in a quite general sense. A
PF-system may evolve horizontally or vertically. Horizontal evolution concate-
nates pipelines, with data transformations possibly serving as glue between
the parts. Vertical evolution refines a pipeline by substituting a component
through an entire subsystem. Both operations are vital in composing systems
from smaller ones, so that larger systems can be built up through a suitable
sequence of them.

2.4.6.1 Concatenation

Let 〈G1, γ〉 and 〈G2, χ〉 be two PF-systems, Gi = 〈Vi, Ei〉. The idea in
concatenating both is to pipe the output from the first system to the input of
the second one, hence

V1 ∩ V2 = B1 = W2

should hold: the output nodes from the first system should coincide with
the input nodes for the second one; otherwise, these systems do not share
nodes. Neither an input node nor an output node carries any functionality
in our model, but by lumping them together, we may wish to perform some
work (combining pipes often requires some transformation, e.g., of formats,
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between input and output). Hence we assume for each node n ∈ B1 = W2

the existence of a Kleisli morphism

a (τ, n) :
∏
{γ〈k,n〉 | 〈k, n〉 ∈ E1} → T

(∏
{χ〈n,j〉 | 〈n, j〉 ∈ E2}

)
.

This permits defining the τ-concatenation 〈G1, γ〉+τ 〈G2, χ〉 as 〈H, κ〉 with

H := 〈V1 ∪ V2, E1 ∪ E2〉,

κ〈k,n〉 :=

{
γ〈k,n〉, 〈k, n〉 ∈ E1,

χ〈k,n〉, otherwise,

a (κ, n) :=

⎧
⎪⎨

⎪⎩

a (γ, n) , n ∈ V1 \ (W1 ∪B1),
a (τ, n) , n ∈ B1,

a (χ, n) , n ∈ V2 \ (W2 ∪B2).

We get as a consequence of Proposition 2.34:

PROPOSITION 2.36
Under the conditions above, 〈H, κ〉 := 〈G1, γ〉+τ 〈G2, χ〉 is a PF-system, and

P (κ,H) = P (χ,G2) ∗ (a (τ, n1)×T . . .×T a (τ, nk)) ∗P (γ,G1) ,

where B1 = W2 = {n1, . . . , nk}.

Thus τ provides the glue for composing the PF-systems, and the work being
done exhibits the work performed when combining both systems. The glue
alluded at here is different from but similar in function to the glue introduced
in (Wermelinger and Fiadeiro, 1998).

2.4.6.2 Substitution

Systems are often built through successive stages of refinements, where a
part of a system is first represented as a node, and this node is then replaced in
subsequent steps by an entire subsystem. This may graphically be described
as glass-box refinement .

Let Gi = 〈Vi, Ei〉 be dags with respective roots Wi and leaves Bi, and let
n ∈ V1 be a node such that (dots taken in G1)

•n = W2, n• = B2.

Thus an incoming edge for n comes from a root in G2, and an outgoing edge
goes to a leaf in G2. For technically simplifying the representation, we assume
that only the nodes in W2 ∪B2 are common to V1 and V2. We assume further
that we have a selection map

ψ : W2 ∪B2 → V2 \ (W2 ∪B2)
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which will help constructing new edges when absorbing G2 into G1 by associ-
ating with each root or leaf an inner node as source or target of an edge, as
we will see. We require that ψ[W2] ∩ ψ[B2] = ∅, since otherwise cycles in the
replacement graph would result. Define the ψ-replacement

G1[G2\ψn]

of node n through graph G2 as the graph 〈U,D〉 by

U := (V1 \ {n}) ∪ V2,

D :=
(
E1 ∩ (V1 \ {n})2

)
∪ E2 ∪

{〈w,ψ(w)〉 | w ∈W2} ∪ {〈ψ(b), b〉 | b ∈ B2}.

Thus we build the new graph by combining all nodes with the exception of n,
the node to be replaced. All edges leading into n or out of it are removed, and
replaced by edges into G2: if 〈w, n〉 ∈ E1 is an edge in G1, the node w must
be a root in G2, then this edge will be replaced in the replacement graph by
the edge 〈w,ψ(w)〉, similarly for edges 〈n, b〉 ∈ E1. Since the graphs G1 and
G2 do not have cycles, and since ψ assigns by assumption different nodes to
roots and to leaves, 〈U,D〉 does not have any cycles either.

We apply this construction to PF-systems now. Suppose that in addition to
the assumptions made so far 〈G2, γ〉 and 〈G2, χ〉 are PF-systems. For getting
our machinery going, the new edges need labels from X; these edges should
not violate the typing constraints imposed on node n. Call the selection map
ψ viable iff

∀w ∈ W2 : γ〈w,n〉 = χ〈w,ψ(w)〉 ∧ ∀b ∈ B2 : γ〈n,b〉 = χ〈ψ(b),b〉

holds. This entails that the Kleisli morphisms a (γ, n) and P (χ,G2) have the
same signatures.

We define the PF-system

〈G1[G2\ψn], γ[χ\ψn]〉

in the obvious way by taking the values γ, and χ for edges in E1 or in E2,
resp., depending on where they come from, and by setting for the new edges

γ[χ\ψn]〈w,ψ(w)〉 := γ〈w,n〉,

similarly for γ[χ\ψn]〈ψ(b),b〉. The labels for the nodes are left unchanged, com-
ing either from γ or from χ. Then Proposition 2.34 implies that we may
compute the work for the composed system in these steps:

• compute P (χ,G2), hence the work of the system which is to refine node
n,

• substitute for a (γ, n) the morphism P (χ,G2), leaving the rest of γ alone;
technically: form γ[P (χ,G2) \n],
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Figure 2.5: Replacing Subsystem

• compute the work done by the PF-system based on graph G1 with the
modified value for γ.

Formally:

PROPOSITION 2.37

P (γ[χ\ψn],G1[G2\ψn]) = P (γ[P (χ,G2) \n],G1) , provided the selection map
ψ is viable.

Reading this equation from left to right, we see what happens when a node
is substituted by an entire subsystem. Reading it from right to left it permits
us to state the effect of shrinking a subsystem into a single node — this
may be helpful when system evolution goes both ways, expanding nodes to
subsystems, and replacing a subsystem by another one.

To illustrate: The PF-system in Figure 2.1 shall be refined as an extension
to and a continuation of the discussion in Section 2.4.1. Node 2 will be
replaced by the subsystem depicted in Figure 2.5.

Assign relations with the following signatures to the inner nodes:

RA ⊆ (X2 ×X3)× (Y1 × Y2) ,
RB ⊆ Y1 ×X5,

RC ⊆ Y2 ×X6.

The work being done by this subsystem is then given by

{〈x2, x3, x5, x6〉 | ∃y1 ∈ Y1, y2 ∈ Y2 :
〈x2, x3, y1, y2〉 ∈ RA, 〈y1, x5〉 ∈ RB, 〈y2, x6〉 ∈ RC}.

The reader is invited to formulate 〈G2, χ〉 and a viable map ψ. Proposition 2.37
then gives the work of the entire system, when the replacement has been done,
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Figure 2.6: System after Replacement

as

{〈x1, x2, x7, x8〉 | ∃x3 ∈ X3, x4 ∈ X4, x5 ∈ X5, x6 ∈ X6∃y1 ∈ Y1, y2 ∈ Y2 :
〈x1, x3, x4〉 ∈ R1, 〈x2, x3, y1, y2〉 ∈ RA, 〈y1, x5〉 ∈ RB, 〈y2, x6〉 ∈ RC

〈x4, x5, x7〉 ∈ R3, 〈x6, x8〉 ∈ R4}.

The resulting system is given in Figure 2.6.
For the stochastic case one assumes similarly that stochastic relations

KA : X2 ×X3 � H × Y1 × Y2,

KB : Y1 � H ×X5,

KC : Y2 � H ×X6

are assigned to the subsystem’s nodes. In view of Proposition 2.30 the monoid
H should be commutative. The work is computed through the Kleisli product,
yielding an expression for the measure K2(x2, x3) in terms of KA, KB and
KC which is then substituted into the integral elaborated in Example 2.23.
Specifically, the subsystem’s work is described by the stochastic relation Ks :
X2 ×X3 � H ×X5 ×X6 such that for Q ⊆ H ×X5 ×X6

Ks(x2, x3)(Q) =
∫

H×Y1×Y2

(KB(y1)⊗H KC(y2))×

× ({〈h, x5, x6〉 | 〈hah, x5, x6〉 ∈ Q})KA(x1, x2)(d〈ha, y1, y2〉)

=
∫

H×Y1×Y2

∫

H×X6

KB(y1) ({〈hb, x5〉 | hahchb, x5, x6〉 ∈ Q})×

×KC(y2)(d〈hc, x6〉) KA(x1, x2)(d〈ha, y1, y2〉).
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Consequently, we have for f : H ×X5 ×X6 → R measurable and bounded
∫

H×X5×X6

f(h, x5, x6) dKs(x2, x3)(d〈h, x5, x6〉)

=
∫

H×Y1×Y2

∫

H×X6

∫

H×X5

f(hahbhc, x5, x6) KB(y1)(d〈hb, x5〉)×

×KC(y2)(d〈hc, x6〉) KA(x1, x2)(d〈ha, y1, y2〉).

Note the accumulating behavior of the monoid’s elements.
This integral is needed, because the final equation describing the system’s

work before replacement in Example 2.23 requires us to describe integration
with respect to K2(x1, x3). Substituting, we get from that equation

∫

H×X3×X4

∫

H×Y1×Y2∫

H×X6

∫

H×X5

∫

H×X7

K4(x6)({〈h1, x8〉 | 〈g1(hahchb)gh1, x7, x8〉 ∈ F})×

K3(x4, x5)(d〈g, x7〉)KB(y1)(d〈hb, x5〉)KC(y2)(d〈hc, x6〉)×
KA(x1, x2)(d〈ha, y1, y2〉)K1(x1)(d〈g1, x3, x4〉).

This formidable expression describes the probability that input 〈x1, x2〉 pro-
duces an element of the Borel set F ⊆ H ×X7 ×X8. It is interesting to see
how each component leaves its trace in the result’s monoid compartment.

2.4.7 Related Approaches

Modeling of pipelines through the specification language Z summarized and
discussed, e.g., in (Shaw and Garlan, 1996; Shaw, 2001; Abowd et al., 1993)
is evidently much closer to an implementation than the approach proposed
in the present paper. Thus a person intending to implement a system with
such an architecture is probably better off looking at a Z-specification, using
well-known refinement techniques like the ones discussed by Spivey (Spivey,
1989, Ch. 5) for coming even closer to a realization as a running system.

The difference to the present approach, however, lies deeper: Shaw at al.
emphasize the first class rank of architectural connectors (Shaw and Garlan,
1996; Abowd et al., 1993; Shaw, 2001; Shaw et al., 1995; Shaw and Garlan,
1995). This implies that filters and pipes are treated on the same eye-level.
The scenario here marks a contrast: connectors are represented through ob-
jects in a category, components through morphisms of a rather special kind,
putting these two kinds of entities on different levels. It may much be said in
favor of dealing uniformly with connectors and with components, but it seems
that an asymmetric treatment helps the intuition: computations are concep-
tually different from data transport, however complex the latter may be. The
present approach reflects an approach like “Tell me, what your data are, then
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we will talk about computations on them”, so useful in object-oriented soft-
ware construction.

The approach proposed by Fiadeiro et al., see, e.g., (Wermelinger and Fi-
adeiro, 1998; Fiadeiro and Maibaum, 1996), using categories for modeling
architectures, shows how different kinds of functors, in particular interface
functors, may be put to use for constructing systems. This is illustrated
in (Wermelinger and Fiadeiro, 1998) where a diagram is “compiled” through
computing its colimit, leading to the early version of a program. Moreover,
fundamental kinds of interactions of program components are studied using
the patterns constructed in that paper. The focus lies on modeling just the
interactions for a particular class of mobile programs, emphasizing the impor-
tance of connectors: “Software Architecture has put forward the concept of
connector to express complex relationships between system components, thus
facilitating the separation of coordination from computation” is the very first
sentence in the paper’s abstract. The computation proper, however, has not
been addressed, and this is what we propose in the present paper. Reflecting
the mobile nature of the programs discussed in (Wermelinger and Fiadeiro,
1998), and taking into account that no fixed topology is available for the
computing nodes in such a scenario, another difference becomes visible: the
topology of the communication and the direction of data flow remains fixed
here but may be subject to change dynamically in a mobile context. But this
is a completely different story, since PF-systems exhibit a fixed structure by
their very nature.

Program evolution is supported by concatenating, and by hierarchically
composing PF-systems. While the first operation is easily modeled in the
Z-approach, only a hint at supporting the hierarchical composition is given
in (Abowd et al., 1993), making it difficult to compare both approaches in
this respect.

The Reo calculus introduced by Arbab and Rutten is based on timed data
streams; it supports a topology of connections that is inherently dynamic,
and it is based on a distinctive separation of data and time. Examples ex-
hibit the intriguing yet powerful simplicity of this calculus (which also may
accommodate mobility). Because we focus in the present work on a fixed
communication topology, a comparison between Reo and the constructions
proposed here shows that Reo is both more general and more specific: Reo
focusses on set-theoretic relations only, monads are not mentioned. Timing
plays a crucial role, so timed sequences are used. On the other hand, arbitrary
relations are allowed, so are arbitrary compositions, which permits coinduc-
tion as the guiding principle for proofs. Finally, the calculus has all kinds of
channels, not only pipes. The central difference is, however, that coordination
forms a first class concept in this approach.

Barbosa (Barbosa, 2001) considers components, i.e., state-based dynamical
systems. He models them as coalgebras for a class of endofunctors in the
category of sets and shows how to obtain a behavioral model through param-
eterizations by a strong monad. This permits him to capture some important
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behavioral features like partiality or nondeterminism. The guiding proof prin-
ciple is a variant of coinduction. Probabilistic settings are outside this rich
thesis.

The Focus approach due to M. Broy and K. Stølen outlined in (Broy and
Stølen, 2001) provides specification, refinement and verification techniques
for the development of interactive systems, thus is not tied to one particu-
lar architecture. The basic construction is that of a timed stream of data,
refinement is the basic architectural operation, where different kinds of re-
finements are investigated. For example, Broy and Stølen discuss glass-box
refinements which is the exact counterpart to the substitution operation in-
vestigated in Section 2.4.6, and they discuss composing systems through an
operator style (Broy and Stølen, 2001, 14.5 resp. 5.3.3). Focus has a much
broader spectrum of application than the present approach. This is due to
the fact that no particular architecture is aimed at; there is, however, no ex-
plicit notion of computation there, while the present approach encapsulates
computations through monads.

2.4.7.1 Possible Extensions

The present discussion excludes those PF-systems that are cyclic by dis-
cussing linear pipelines only; further work should admit systems that contain
cycles, and, more generally, by admitting decisions which component to in-
voke next. Here the extensive categories investigated, e.g., in (Carboni et al.,
1993; Taylor, 1999) are helpful. Extensive categories stress the use of pull-
backs somewhat; on the other hand, Corollary 4.15 will show that pullbacks
in the category of stochastic relations with surjective measurable maps as
morphisms do not exist. A first and very encouraging step towards investi-
gating layered architectures within the framework of extensive categories can
be found in (Lajios, 2006).

Introducing timing and explicit synchronization is another area that needs
further consideration — the present model is abstract enough not to unduly
constrain the modeler, but on the other hand some support could be offered,
even at the price of restricting the model. As far as properties of the models
are concerned, proof rules which permit stating properties for systems that are
evolving according to Section 2.4.6 are of interest. For a different probabilistic
approach to synchronization using automata see (D’Argenio, 1999; Bryans
et al., 2003).

It is challenging to see how other architectural styles are tackled, and how
to model dynamically changing communication topologies. On the relational
side, we have narrowed down monads which represent the two major kinds
of relations. The natural transformations θ and the �-condition seem to be
ingredients to a monad which models relations.
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2.5 Bibliographic Notes

Categorial Aspects Of Probabilities. M. Giry’s paper (Giry, 1981) is
the first systematic investigation of categorial aspects of probability spaces
on Polish and general measurable spaces (while at that time there was a
substantial body of results on the connection between measure spaces on
compact spaces and convex sets (Semadeni, 1973)); the main line of develop-
ment pursued here is taken from that paper. P. Panangaden (Panangaden,
1998; Panangaden, 1997) used Giry’s construction to elaborate on the analogy
between set-theoretic and probabilistic relations; this line of argumentation
has also been emphasized in the present exposition. Panangaden’s construc-
tion in (Panangaden, 1998) is slightly different from the one discussed here:
he takes two measurable spaces X and Y and uses a stochastic transforma-
tion as a morphism between X and Y ; composition of morphisms is then
given by the Kleisli product (in analogy to policies and randomized policies in
stochastic dynamic optimization (Schäl, 1974), one might call them random-
ized morphisms). In later papers, e.g., (Desharnais et al., 2002; Desharnais
et al., 2000), however, the model presented here has been used, albeit usu-
ally in a coalgebraic context, for modeling state transitions. One important
field of investigations has been labeled Markov transition systems. They are
constituted of a state space S, a set A of actions, and for each action a prob-
abilistic relation ka : S � S, so that ka(s)(T ) indicates the probability that
the system’s state will be a member of Borel set T ⊆ S upon action a ∈ A
in state s ∈ S. Such a transition system serves as a probabilistic Kripke
model for a very simple modal logic without negation that, as K. Larsen and
A. Skou (Larsen and Skou, 1991) have forcefully demonstrated, is useful in
testing. Bisimilarity of systems with its intimate connections to testing is
illustrated through the Hennessy-Milner Theorem and its ramifications. We
will discuss this in Chapter 5.

This treatise concentrates on systems that are usually based on Polish or
analytic spaces, hence work in a nonfinite scenario. But the finite case is in-
teresting, nevertheless. Some of its categorical and coalgebraic aspects have
been investigated in depth in A. Sokolova’s thesis (Sokolova, 2005), in partic-
ular questions pertaining to composition and different forms of bisimulations.
That the finite case is not really a peculiar special case but may be used for
(hyperfinite) approximations is shown in (Doberkat, 2006a)

Other constructions in the literature that relate the product in a category
with a monad might be of interest. Mac Lane (MacLane, 1997, Ch. XI.2)
defines a monoidal functor between monoidal categories which comes close to
the compatibility definition proposed here for an endofunctor, where the rôle
of the tensor product there is played by the product here. The present defini-
tion does not require any conditions on the terminal elements and its image
under the functor, thus it is weaker. Mac Lane formulates a transformation
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quite similar to the one given in Lemma 2.13. The proof in (MacLane, 1997)
refers, however, to a coherence theorem and appears a bit inaccessible by not
making the construction transparent. Consequently, a direct proof is given
here. Moggi (Moggi, 1991, Def. 3.2) on the other hand defines a strong monad
in a category which is closed under finite products by postulating the existence
of a natural transformation ta,b : a× Tb → T (a× b) having some properties
which relate T to the product in the category (t called a tensorial strength).
In (Moggi, 1989, 3.2.3) it is shown how the tensorial strength induces a natural
transformation G

(2)
T

•→ H
(2)
T in the terminology used here. Barbosa (Barbosa,

2001, 3.51 – 3.55) discusses a strength catalogue for distributive categories.

Architectural Issues. Since software architecture is a lively field of re-
search in software engineering that has already entered most curricula in this
area (Pleumann, 2004; Doberkat et al., 2005), many different approaches on
diverse levels can be found in the literature. Apart from formal approaches, ar-
chitectural description languages formulate abstractions closer to implementa-
tions than, say, an approach resting on category theory; see (Shaw and Garlan,
1995) for a discussion and assessment of these languages. Other formalisms
are used as well. The paper (Medvidovics et al., 2002) by Medvidovics et al.
investigates the suitability of the Unified Modeling Language for architectural
descriptions. Probably more important, it discusses some desiderata for the
language to be usable for architectural descriptions. Pipes and filters are tar-
geted in the work reported in (Abowd et al., 1993; Shaw and Garlan, 1996).
The discussion centers around a formulation of this architecture through a de-
notational framework for developing formal models of architectural styles. It is
based on the specification language Z. Arbab and Rutten present Reo, a calcu-
lus of component connectors based on coinduction (Arbab and Rutten, 2002);
coalgebras play a leading role in Barbosa’s work on components (Barbosa,
2001) as well. A formal calculus of connectors is given in (Bruni et al., 2005),
assigning connectors the rôle as mediators for the interaction between other
computational components and connectors; formally, this model is an attempt
to conciliate between categorical and the algebraic approaches to interaction.
The Focus calculus developed by Broy and Stølen (Broy and Stølen, 2001)
should be mentioned here as well. Category theory is used in formalizations,
e.g., of architectures for mobile programs based on UNITY (Wermelinger and
Fiadeiro, 1998; Fiadeiro and Maibaum, 1996). Finally, Lajios (Lajios, 2006)
shows that additional assumptions are needed when decisions are to be mod-
eled in an architecture (a decision might involve the selection for the next
component to be visited); he models layered architectures using lextensive
categories (Carboni et al., 1993) and shows that tools gleaned from graph
transformations are a most welcome addition to modeling architectural trans-
formations.
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3.1 Introduction

It is shown at the end of Section 1.6.3 that the adjunction constructed from
the Eilenberg-Moore algebras and the one constructed through the Kleisli
category form in some sense the extreme points in a category of all adjunc-
tions from which the given monad can be recovered. From this, the algebraic
interest to identify these algebras is derived. The algebras for the power set
monad (dubbed here the Manes monad) are well known, and briefly discussed
in Section 3.1. We will identify the algebras for the subprobability functor
through smooth equivalence relations and through positive convex structures
in this chapter, first through the equivalence relations they induce on the
set of subprobability measures. This will be a vehicle for an identification of
these algebras without having to refer to the underlying probabilistic struc-
ture. It is done initially for the subprobability functor and, with some small
adjustments, for the probability functor as well. We provide some examples
to illustrate the algebras. Finally, the left adjoint of the forgetful functor
that assigns each algebra the underlying Polish space is identified; it is just
the functor that maps each Polish space to all its subprobabilities (with the
monad’s multiplication as the associated algebra). We work in this chapter in
the category cPol of Polish spaces with continuous maps as morphisms. A
possible and desirable extension to the discussion here would be identification
of Eilenberg-Moore algebras for the subprobability functor on analytic spaces
with Borel measurable maps as morphisms.

131
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An Exercise: Algebras for the Manes Monad. The Kleisli construc-
tion that was introduced and briefly investigated in Section 1.6.3 helps in
constructing an adjunction from which the monad can be recovered. Techni-
cally this is done by constructing a functor from the category into the Kleisli
category, from which an adjoined pair of functors is easily determined, as we
have seen. This observation was historically the original motivation for hav-
ing a closer look at the Kleisli construction. Eilenberg-Moore algebras are
another way of doing this, as we have seen in Section 1.6.3 as well. We will
discuss and identify the Eilenberg-Moore algebras for the Giry monad.

Before doing this, and in order to indicate what we aim at with this iden-
tification, we mention as an illustration the algebras for the Manes monad
〈Pow, e,m〉 in the category Set of sets that has been mentioned very briefly
in Section 2.2. It is well known that the algebras for this monad may be iden-
tified with the complete sup-semi lattices (MacLane, 1997, Exercise VI.2.1).
Doing this exercise is instructive for observing the components of a monad at
work.

Assume first that ≤ is a partial order on a set X that is sup-complete, so
that sup a exists for each a ⊆ X. Define h(a) := supa, then we have for each
A ∈ Pow (Pow (X)) from the familiar properties of the supremum

sup(
⋃
A) = sup {supa | a ∈ A}.

This translates into (h ◦mX) (A) = (h ◦Pow (h)) (A). Because x = sup{x}
holds for each x ∈ X , we see that 〈X,h〉 defines an algebra.

Assume on the other hand that 〈X,h〉 is an algebra, and put for x, x′ ∈
X x ≤ x′ iff h({x, x′}) = x′. This defines a partial order: reflexivity and
antisymmetry are obvious. Transitivity is seen as follows: assume x ≤ x′ and
x′ ≤ x′′, then

h({x, x′′}) = h({h({x}), h({x′, x′′}))
= (h ◦Pow (h)) ({{x}, {x′, x′′}})
= (h ◦mX) ({{x}, {x′, x′′}})
= h({x, x′, x′′})
= (h ◦mX) ({{x, x′}, {x′, x′′}})
= (h ◦Pow (h)) ({{x, x′}, {x′, x′′}})
= h({x′, x′′})
= x′′.

It is clear from {x}∪∅ = {x} for every x ∈ X that h(∅) is the smallest element.
Finally, it has to be shown that h(a) is the smallest upper bound for a ⊆ X
in the order ≤. We may assume that a �= ∅. Suppose that x ≤ t holds for all
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x ∈ a, then

h(a ∪ {t}) = h

(
⋃

x∈a
{x, t}

)

= (h ◦mX) ({{x, t} | x ∈ a})
= (h ◦Pow (h)) ({{x, t} | x ∈ a})
= h ({h({x, t}) x ∈ a})
= h({t})
= t.

Thus, if x ≤ t for all x ∈ a, hence h(a) ≤ t, thus h(a) is an upper bound to a,
and similarly, h(a) is the smallest upper bound.

We will turn now to a characterization of the Eilenberg-Moore algebras for
the Giry monad over some Polish space X that will be fixed throughout.

3.2 Characterization through Equivalence Relations

We show in this section that an algebra may be characterized in the way
its fibres, i.e., the inverse images of points, partition the domain S (X). The
aspect that interests here is that these partitions are positive convex and take
closed values. They observe an additional constraint due to continuity. This
yields necessary and sufficient conditions for the characterization of parti-
tions spawned by these algebras; a characterization of the morphisms in the
category of all algebras is also derived.

3.2.1 Preparations

We need some elementary properties for later reference. They are collected
in the next Lemma. First, however, we define

Ω := {〈α1, . . . , αk〉 | k ∈ N, αi ≥ 0,
k∑

i=1

αi ≤ 1}

for the rest of the chapter, the elements of Ω being called positive convex
tuples or simply positive convex.

LEMMA 3.1

a. Let f : A→ B be a map between the Polish spaces A and B, and let

μ = α1 · δa1 + . . .+ αn · δan
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be the linear combination of Dirac measures for a1, . . . , an ∈ A with positive
convex 〈α1, . . . , αn〉 ∈ Ω. Then S (f) (μ) = α1 · δf(a1) + . . .+ αn · δf(an).

b. Let μ1, . . . , μn be subprobability measures on X, and let

M = α1 · δμ1 + . . .+ αn · δμn

be the linear combination of the corresponding Dirac measures in S (S (X))
with positive convex coefficients 〈α1, . . . , αn〉 ∈ Ω. Then mX(M) = α1 ·μ1+
. . .+ αn · μn.

PROOF The first part follows directly from the observation δx(f−1 [D]) =
δf(x)(D), and the second one is easily inferred from

mX(δμ)(Q) =
∫

S(X)

ρ(Q) δμ(dρ)

= μ(Q)

for each Borel subset Q ⊆ X, and from the linearity of the integral.

Both eX and mX are morphisms in cPol for Polish X , as the following
Lemma shows.

LEMMA 3.2
eX : X → S (X) and mX : S (S (X)) → S (X) are continuous.

PROOF 1. Continuity of eX is clear, since xn → x implies
∫

X

f deX(xn) =
∫

X

f dδxn = f(xn)→ f(x) =
∫

X

f deX(x),

whenever f ∈ C(X) is continuous and bounded. Thus eX(xn) ⇀w eX(x).
2. Let (Mn)n∈N be a sequence in S (S (X)) with Mn ⇀w M0, then we get

for f ∈ C(X) through the Change of Variable formula, and because

μ 
→
∫

X

f dμ

is a member of C(S (X)), this chain
∫

S(X)

f dmX(Mn) =
∫

S(X)

(∫

X

f dμ

)

Mn(dμ) →
∫

S(X)

(∫

X

f dμ

)

M0(dμ) =
∫

S(X)

f dmX(M0).

Thus mX(Mn) ⇀w mX(M0) is established, as desired.
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3.2.2 Positive Convex Partitions

The natural approach is to think of these algebras in terms of an equiva-
lence relation which may be thought to identify probability distributions, and
to investigate either these relations or the partitions associated with them.
These characterizations lead to the identification of the algebras as exactly
the positive convex structures on their base space.

Assume that the pair 〈X,h〉 is an algebra, and define for each x ∈ X

Gh(x) := {μ ∈ S (X) | h(μ) = x}
(
= h−1 [{x}]

)
.

Then Gh(x) �= ∅ for all x ∈ X due to h being onto. The algebra h will be
characterized through properties of the set-valued map Gh. We will need the
weak inverse ∃R for a set-valued map R : X → Pow (Y )\{∅}; see Section 1.4.
If Y is a topological space, if R takes closed values, and if ∃R(W ) is compact
in X whenever W ⊆ Y is compact, then R is called k-upper-semicontinuous
(abbreviated as k.u.s.c.). If Y is compact, this is the usual notion of upper-
semicontinuity known from topology.

The importance of being k.u.s.c. becomes clear at once from

LEMMA 3.3
Let f : A→ B be a surjective map between the Polish spaces A and B, and

put Gf (b) := f−1 [{b}] for b ∈ B. Then f is continuous iff Gf is k.u.s.c.

PROOF A direct calculation for the weak inverse shows ∃Gf (A0) = f [A0]
for each subset A0 ⊆ A. The assertion now follows from the well-known fact
that a map between metric spaces is continuous iff it maps compact sets to
compact sets.

Applying this observation to the set-valued map Gh, we obtain:

PROPOSITION 3.4
The set-valued map x 
→ Gh(x) has the following properties:

a. δx ∈ Gh(x) holds for each x ∈ X.

b. Gh := {Gh(x) | x ∈ X} is a partition of S (X) into closed and positive
convex sets.

c. x 
→ Gh(x) is k.u.s.c.

d. Let ∼h be the equivalence relation on S (X) induced by the partition Gh.
If μi ∼h μ′

i (1 ≤ i ≤ n), then

(α1 · μ1 + . . .+ αn · μn) ∼h (α1 · μ′
1 + . . .+ αn · μ′

n)

for the positive convex coefficients 〈α1, . . . , αn〉 ∈ Ω.
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PROOF Because {x} is closed, and h is continuous, Gh(x) = h−1 [{x}]
is a closed subset of S (X). Because h is onto, every Gh takes nonempty
values; it is clear that {Gh(x) | x ∈ X} forms a partition of S (X). Because
h is continuous, Gh is k.u.s.c. by Lemma 3.3. Positive convexity will follow
immediately from part d.

Assume that h(μi) = h(μ′
i) = xi (1 ≤ i ≤ n), and observe that h(δx) = x

holds for all x ∈ X . Using Lemma 3.1, we get:

h(α1 · μ1 + . . .+ αn · μn) = (h ◦mX) (α1 · δμ1 + . . .+ αn · δμn)
= (h ◦S (h)) (α1 · δμ1 + . . .+ αn · δμn)
= h

(
α1 · δh(μ1) + . . .+ αn · δh(μn)

)

= h (α1 · δx1 + . . .+ αn · δxn)

In a similar way, h(α1 · μ′
1 + . . . + αn · μ′

n) = h (α1 · δx1 + . . .+ αn · δxn) is
obtained. This implies the assertion.

Thus Gh is invariant under taking positive convex combinations. It is a
positive convex partition in the sense of the following definition.

DEFINITION 3.5 An equivalence relation ρ on S (X) is said to be
positive convex iff μi ρ μ

′
i for 1 ≤ i ≤ n and 〈α1, . . . , αn〉 ∈ Ω together imply

(α1 · μ1 + . . .+ αn · μn) ρ (α1 · μ′
1 + . . .+ αn · μ′

n)

for each n ∈ N. A partition of S (X) is called positive convex iff its associated
equivalence relation is.

Note that the elements of a positive convex partition form positive convex
sets. The converse to Proposition 3.4 characterizes algebras:

PROPOSITION 3.6
Assume G = {G(x) | x ∈ X} is a positive convex partition of S (X) into

closed sets which is indexed by X such that δx ∈ G(x) for each x ∈ X, and
such that x 
→ G(x) is k.u.s.c. Define h : S (X) → X through h(μ) = x iff
μ ∈ G(x). Then 〈X,h〉 is an algebra for the Giry monad.

PROOF 1. It is clear that h is well defined and surjective, and that

∃G(F ) = h [F ]

holds for each subset F ⊆ S (X). Thus h [K] is compact whenever K is
compact, because G is k.u.s.c. Hence h is continuous by Lemma 3.3.

2. An easy induction establishes that h respects positive convex combina-
tions: if h(μi) = h(μ′

i) for i = 1, . . . , n, and if α1, . . . , αn are positive convex
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coefficients, then

h(
n∑

i=1

αi · μi) = h(
n∑

i=1

αi · μ′
i).

We claim that
(h ◦mX)(M) = (h ◦S (h))(M)

holds for each discrete M ∈ S (S (X)) . In fact, let

M =
n∑

i=1

αi · δμi

be such a discrete measure, then Lemma 3.1 implies that

mX(M) =
n∑

i=1

αi · μi,

thus

(h ◦mX)(M) = h

(
n∑

i=1

αi · μi

)

= h

(
n∑

i=1

αi · δh(μi)

)

= (h ◦S (h))(M),

because we know also from Lemma 3.1 that

S (h) (M) =
n∑

i=1

αi · δh(μi)

holds.
3. Since the discrete measures are dense in the weak topology (see Sec-

tion 1.5.2), we find for M0 ∈ S (S (X)) a sequence (Mn)n∈N of discrete mea-
sures Mn with Mn ⇀w M0. Consequently, we get from the continuity of both
h and mX (Lemma 3.2) together with the continuity of S (h)

(h◦mX)(M0) = lim
n→∞(h◦mX)(Mn) = lim

n→∞(h◦S (h))(Mn) = (h◦S (h))(M0).

This proves the claim.

We have established

PROPOSITION 3.7
The algebras 〈X,h〉 for the Giry monad for Polish spaces X are exactly the

positive convex k.u.s.c. partitions {G(x) | x ∈ X} into closed subsets of S (X)
such that δx ∈ G(x) for all x ∈ X.
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For characterizing the category Alg of all Eilenberg-Moore algebras for the
Giry monad we package the properties of partitions representing algebras into
the notion of a G-partition. They will form the objects of category GPart.

DEFINITION 3.8 G is called a G-partition for X iff

a. G = {G(x) | x ∈ X} is a positive convex partition for S (X) into closed
sets indexed by X,

b. δx ∈ G(x) holds for all x ∈ X,

c. the set-valued map x 
→ G(x) is k.u.s.c.

Define the objects of category GPart as pairs 〈X,G〉 where X is a Polish
space, and G is a G-partition for X . A morphism f between G and G′ will
map elements of G(x) to G′(f(x)) through its associated map S (f). Thus an
element μ ∈ G(x) will correspond to an element S (f) (μ) ∈ G′(f(x)).

DEFINITION 3.9 A morphism for GPart f : 〈X,G〉 → 〈X ′,G′〉 is a
continuous map f : X → X ′ such that

G(x) ⊆ S (f)−1 [G′(f(x))]

holds for each x ∈ X.

Define the functor F : Alg → GPart by associating with each algebra
〈X,h〉 its Giry partition F (X,h) according to Proposition 3.7. Assume that
f : 〈X,h〉 → 〈X ′, h′〉 is a morphism in Alg, and let G = {G(x) | x ∈ X} resp.
G′ = {G′(x′) | x′ ∈ X ′} be the corresponding partitions. Then the properties
of an algebra morphism yield

μ ∈ S (f)−1 [G′(f(x))] ⇔ S (f) (μ) ∈ G′(f(x))
⇔ (h′ ◦S (f)) (μ) = f(x)
⇔ (f ◦ h)(μ) = f(x).

Thus μ ∈ S (f)−1 [G′(f(x))] , provided μ ∈ G(x). Hence f is a morphism in
GPart between F (X,h) and F (X ′, h′). Conversely, let f : 〈X,G〉 → 〈X ′,G′〉
be a morphism in GPart with 〈X,G〉 = F (X,h) and 〈X ′,G′〉 = F (X,h′).
Then

h(μ) = x ⇔ μ ∈ G(x)
⇒ S (f) (μ) ∈ G′(f(x))
⇔ h′(S (f) (μ)) = f(x),

thus h′ ◦S (f) = f ◦h is inferred. Hence f constitutes a morphism in category
Alg.
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Summarizing, we have shown

PROPOSITION 3.10
The category Alg of Eilenberg-Moore algebras for the Giry monad is isomor-

phic to the category GPart of G-partitions.

3.2.3 Smooth Relations

The characterization of algebras so far encoded the crucial properties into a
partition of S (X), thus indirectly into an equivalence relation on that space.
We can move directly to a particular class of these relations when looking
at an alternative characterization of the algebras through smooth equivalence
relations. In contrast to the characterization in 3.2 that started from the
fibres h−1 [{x}] we study here the kernel of h, i.e., the set

ker (h) = {〈μ, μ′〉 | h(μ) = h(μ′)}.

We characterize then algebras in terms of the kernel for the associated map,
and we indicate how an algebra may be constructed from such a partition. The
characterization is interesting in its own right and permits another character-
ization of morphisms for algebras, but it will also help in giving an intrinsic
characterization of algebras in terms of positive convex structures.

Recall that an equivalence relation ρ on a Polish space A is called smooth
iff there exists a Polish space B and a Borel measurable map f : A→ B such
that ρ = ker (f) . A brief first characterization of smooth relations is given in
Lemma 1.52. Proposition 1.53 gives a rather important property of smooth
relations, viz., that their factor space is smooth again. These relations will
turn out to be most interesting in the investigation of stochastic relations, so
we will return to them later in Chapter 5 and study them in greater detail
there. Despite the later and more systematic treatment of the topic, we will
state some properties that will be needed here immediately.

For the Polish space A with topology T let T /ρ be the final topology on
A/ρ with respect to the given topology T and ηρ, i.e., the largest topology
T ′ on A/ρ which makes ηρ T -T ′-continuous. Clearly a map g : A/ρ → B
for a topological space (B,S) is T /ρ-S-continuous iff g ◦ ηρ : A→ B is T -S-
continuous; compare Lemma 1.3. We will need this observation in the proof
of Proposition 3.11.

Now let 〈X,h〉 be an algebra for the Giry monad. Obviously ρh := ker (h)
defines a smooth equivalence relation ρh on the Polish space S (X) .

PROPOSITION 3.11
The equivalence relation ρh is positive convex, each equivalence class [μ]ρh

is
closed and positive convex, and the factor space S (X)/ρh is homeomorphic to
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X when the former is endowed with the topology W/ρh, W being the topology
of weak convergence on S (X).

PROOF 1. Positive convexity of ρh follows from the properties of h
exactly as in the proof of Proposition 3.4. Positive convexity of the classes is
inferred from this as well. Continuity of h implies that the classes are closed
sets.

2. Define χh([μ]ρh
) := h(μ) for μ ∈ S (X) . Then χh : X/ρh → X is well

defined and a bijection. Let G ⊆ X be an open set, then

η−1
ρh

[
χ−1
h [G]

]
= h−1 [G] .

Because W/ρh is the largest topology on S (X)/ρh that renders ηρh
contin-

uous, and because h−1 [G] ⊆ S (X) is open by assumption, we infer that
χ−1
h [G] is W/ρh-open. Thus χh is continuous. On the other hand, if (xn)n∈N

is a sequence in X converging to x0 ∈ X , then δxn ⇀w δx0 in S (X), thus
[δxn ]ρh

→ [δx0 ]ρh
in W/ρh by construction. Consequently χ−1

h is also contin-
uous.

Thus each algebra induces a G-triplet consisting of its kernel and a home-
omorphism:

DEFINITION 3.12 A G-triplet 〈X, ρ, χ〉 is a Polish space X with a
smooth and positive convex equivalence relation ρ on S (X) such that χ :
S (X)/ρ → X is a homeomorphism with χ([δx]ρ) = x for all x ∈ X. Here
S (X)/ρ carries the final topology with respect to the weak topology on S (X)
and ηρ.

Now assume that a G-triplet 〈X, ρ, χ〉 is given. Define h(μ) := χ([μ]ρ) for
μ ∈ S (X). Then 〈X,h〉 is an algebra for the Giry monad: h(δx) = x follows
from the assumption, and because h = χ ◦ ηρ, the map h is continuous. An
argument very similar to that used in the proof of Proposition 3.4 shows that
h ◦mX = h ◦S (h) holds; this is so since ρ is assumed to be positive convex.

DEFINITION 3.13 The continuous map f : X → X ′ between the Polish
spaces X and X ′ constitutes a G-triplet morphism f : 〈X, ρ, χ〉 → 〈X ′, ρ′, χ′〉
iff these conditions hold:

a. μ ρμ′ implies S (f) (μ) ρ′ S (f)μ′,
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b. the diagram

S (X)/ρ
S (f)ρ,ρ′� S (X ′)/ρ′

X

χ

�

f
� X ′

χ′

�

commutes, where

S (f)ρ,ρ′
(
[μ]ρ

)
:= [S (f) (μ)]ρ′ .

G-triplets with their morphisms form a category GTrip.

LEMMA 3.14

Each algebra morphism f : 〈X,h〉 → 〈X ′, h′〉 induces a G-triplet morphism
f : 〈X, ρh, χh〉 → 〈X ′, ρh′ , χh′〉.

PROOF 1. It is an easy calculation to show that S (f) (μ) ρh′ S (f) (μ)
holds, provided μ ρh μ′. This is so because f is a morphism for the algebras.

2. Since for each μ ∈ S (X) there exists x ∈ X such that [μ]ρh
= [δx]ρh

(in
fact, h(μ) would do, because h(μ) = h

(
δh(μ)

)
, as shown above), it is enough

to demonstrate that

χ′
h′

(
S (f)ρh,ρ′h′

(
[δx]ρh

))
= f(χh([δx]ρh

))

is true for each x ∈ X . Because S (f) (δx) = δf(x), a little computation shows
that both sides of the above equation boil down to f(x).

The morphisms between G-triplets are just the morphisms between algebras
(when we forget that these games play in different categories).

PROPOSITION 3.15

Let f : 〈X, ρ, χ〉 → 〈X ′, ρ′, χ′〉 be a morphism between G-triplets, and let
〈X,h〉 resp. 〈X ′, h′〉 be the associated algebras. Then f : 〈X,h〉 → 〈X ′, h′〉 is
an algebra morphism.

PROOF Given μ ∈ S (X) we have to show that (f ◦ h)(μ) equals (h′ ◦
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S (f))(μ). Since h(μ) = χ([μ]ρ), we obtain

(f ◦ h)(μ) = f
(
χ([μ]ρ)

)

= χ′
(
S (f)ρ,ρ′ ([μ]ρ)

)

= χ′
(
[S (f) (μ)]ρ′

)

= (h′ ◦S (f))(μ).

Putting all these constructions with their properties together, we obtain as
a second characterization

PROPOSITION 3.16

The category Alg of algebras for the Giry monad is isomorphic to the category
GTrip of G-triplets.

Albeit being treated similarly, the probabilistic case requires a separate
discussion. We define an equivalence relation ρ on P (X) to be convex iff
for each n ∈ N the conditions μi ρ μ′

i for 1 ≤ i ≤ n and 〈α1, . . . , αn〉 ∈ Ωc

together imply (
∑n

i=1 αi · μi) ρ (
∑n

i=1 αi · μ′
i) , where

Ωc := {〈α1, . . . , αk〉 | αi ≥ 0, α1 + · · ·+ αk = 1}

are all convex coefficients. Then the ρ-classes form convex subsets of P (X).
We introduce PG-triplets 〈X, ρ, χ〉 for a Polish space X , a smooth convex
equivalence relation ρ and a homeomorphism χ : P (X)/ρ → X such that
χ
(
[δx]ρ

)
= x for all x ∈ X. A continuous map f : X → X ′ then is a PG-

triplet morphism 〈X, ρ, χ〉 → 〈X ′, ρ′, χ′〉 iff

a. μ ρ μ′ ⇒ P (f) (μ) = P (f) (μ′),

b. χ′ ◦P (f)ρ,ρ′ = f ◦ χ.

Here P (f)ρ,ρ′ is defined in analogy to S (f)ρ,ρ′ in Definition 3.13 as

P (f)ρ,ρ′
(
[μ]ρ

)
:= [P (f) (μ)]ρ′ .

We see then that each algebra morphism f : 〈X,h〉 → 〈X ′, h′〉 induces a PG-
triplet morphism f : 〈X, ρh, χh〉 → 〈X ′, ρh′ , χh′〉, and vice versa. The reader
is invited to fill in the details.

Summarizing, this yields:
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PROPOSITION 3.17

The category of algebras for the Giry monad for the probability functor is
isomorphic to the full subcategory of G-triplets 〈X, ρ, χ〉 with a smooth and
convex equivalence relation such that χ : P (X)/ρ→ X is a homeomorphism.

This prepares us for another and more self-contained characterization of
algebras. We will show now that StrConv is isomorphic to Alg.

3.3 Positive Convex Structures

Suppose the Polish space X is embedded as a positive convex set into a lin-
ear space V over the reals as a positive convex structure. This means that, if
x1, . . . , xk ∈ X , 〈α1, . . . , αk〉 ∈ Ω, then

∑k
i=1 αi · xi ∈ X. In addition, forming

positive convex combinations should be compatible with the topological struc-
ture on X , so it should be continuous. This entails of course that xi,n → xi,0
and αn → α0 with α0, αn ∈ Ω together imply

∑k
i=1 αi,n·xi,n →

∑k
i=1 αi,0·xi,0.

These requirements are quite comparable to those for a topological vector
space, postulating continuity of addition and scalar multiplication.

These observations meet the intuition about positive convexity, but it has
the drawback that we have to look for a linear space V into which X to
embed. It has the additional shortcoming that once we did identify V , the
positive convex structure on X is fixed through the vector space, but we
will see soon that we need some flexibility. Consequently, we propose an
abstract description of positive convexity, much in the spirit of Pumplün’s
approach (Pumplün, 2003). Thus the essential properties (for us, that is) of
positive convexity are described intrinsically for X without having to resort
to a vector space. This leads to the definition of a positive convex structure.

DEFINITION 3.18 A positive convex structure P on the Polish space
X has for each α = 〈α1, . . . , αn〉 ∈ Ω a continuous map αP : Xn → X which
we write as

αP(x1, . . . , xn) =
P∑

1≤i≤n
αi · xi,

such that

a.
∑P

1≤i≤n δi,k · xi = xk, where δi,j is Kronecker’s δ (thus δi,j = 1 if i = j,
and δi,j = 0, otherwise),
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b. the identity

P∑

1≤i≤n
αi ·

⎛

⎝
P∑

1≤k≤m
βi,k · xk

⎞

⎠ =
P∑

1≤k≤m

⎛

⎝
P∑

1≤i≤n
αiβi,k

⎞

⎠ · xk

holds whenever 〈α1, . . . , αn〉, 〈βi,1, . . . , βi,m〉 ∈ Ω, 1 ≤ i ≤ n.

Property a looks quite trivial, when written down this way. Rephrasing it
states that the map

〈δ1,k, . . . , δn,k〉P : T n → T,

which is assigned to the n-tuple 〈δ1,k, . . . , δn,k〉 through P acts as the pro-
jection to the kth component for 1 ≤ k ≤ n. Similarly, property b may be
re-coded in a formal but less concise way. Thus we will use freely the nota-
tion from vector spaces, omitting in particular the explicit reference to the
structure whenever possible. Hence simple addition α1 · x1 + α2 · x2 will be
written rather than

∑P
1≤i≤2 αi · xi, with the understanding that it refers to a

fixed positive convex structure P on X .
It is an easy exercise that for a positive convex structure the usual rules

for manipulating sums in vector spaces apply, e.g., 1 · x = x,
∑n

i=1 αi · xi =∑n
i=1,αi =0 αi · xi, or the law of associativity, (α1 · x1 + α2 · x2) + α3 · x3 =

α1 ·x1 +(α2 ·x2 +α3 ·x3). Nevertheless, care should be observed, for of course
not all rules apply: we cannot in general conclude x = x′ from α · x = α · x′,
even if α �= 0.

A morphism θ : 〈X1,P1〉 → 〈X2,P2〉 between continuous positive convex
structures is a continuous map θ : X1 → X2 such that

θ

⎛

⎝
P1∑

1≤i≤n
αi · xi

⎞

⎠ =
P2∑

1≤i≤n
αi · θ(xi)

holds for x1, . . . , xn ∈ X and 〈α1, . . . , αn〉 ∈ Ω. In analogy to linear algebra, θ
will be called an affine map. Positive convex structures with their morphisms
form a category StrConv.

3.4 Algebras through Positive Convex Structures

The algebras are also described without having to resort to S (X). This
is done through an intrinsic characterization using positive convex structures
with affine maps. This characterization is comparable to the one given by
Manes for the power set monad (which also does not resort explicitly to the
underlying monad or its functor); see page 132.
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LEMMA 3.19
Given an algebra 〈X,h〉, define for x1, . . . , xn ∈ X and the positive convex

coefficients 〈α1, . . . , αn〉 ∈ Ω
n∑

i=1

αi · xi := h(
n∑

i=1

αi · δxi).

This defines a positive convex structure on X.

PROOF 1. Because

h

(
n∑

i=1

δi,j · δxi

)

= h(δxj ) = xj ,

property a in Definition 3.18 is satisfied.
2. Proving property b, we resort to the properties of an algebra and a

monad:
n∑

i=1

αi ·
(

m∑

k=1

βi,k · xk

)

= h

(
n∑

i=1

αi · δPm
k=1 βi,k·xk

)

(3.1)

= h

(
n∑

i=1

αi · δh(P
m
k=1 βi,k·δxk)

)

(3.2)

= h

(
n∑

i=1

αi ·S (h)
(
δP

m
k=1 βi,k·δxk

)
)

(3.3)

= (h ◦S (h))

(
n∑

i=1

αi · δP
m
k=1 βi,k·δxk

)

(3.4)

= (h ◦mX)

(
n∑

i=1

αi · δPm
k=1 βi,k·δxk

)

(3.5)

= h

(
n∑

i=1

αi ·mX

(
δPm

k=1 βi,k·δxk

)
)

(3.6)

= h

(
n∑

i=1

αi ·
(

m∑

k=1

βi,k · δxk

))

(3.7)

= h

(
m∑

k=1

(
n∑

i=1

αi · βi,k

)

δxk

)

(3.8)

=
m∑

k=1

(
n∑

i=1

αi · βi,k

)

xk. (3.9)

The equations (3.1) and (3.2) reflect the definition of the structure, equa-
tion (3.3) applies δh(τ) = S (h) (δτ ), equation (3.4) uses the linearity of S (h)
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according to Lemma 3.1, equation (3.5) is due to h being an algebra. Winding
down, equation (3.6) uses Lemma 3.1 again, this time for mX , equation (3.7)
uses that mX ◦ δτ = τ, equation (3.8) is just rearranging terms, and equa-
tion (3.9) is the definition again.

Let conversely such a positive convex structure be given. We show that we
can define a G-triplet from it. Let

TX := {
n∑

i=1

αi · δxi | n ∈ N, x1, . . . , xn ∈ X, 〈α1, . . . , αn〉 ∈ Ω},

then TX is dense in S (X) . Put

h0

(
n∑

i=1

αi · δxi

)

:=
n∑

i=1

αi · xi,

then h0 : TX → X is well defined. This is so since
n∑

i=1

αi · δxi =
m∑

j=1

α′
j · δx′

j

implies that
n∑

i=1,αi =0

αi · δxi =
m∑

j=1,α′
j =0

α′
j · δx′

j
,

hence given i with αi �= 0 there exists j with α′
j �= 0 such that xi = x′j and

vice versa. Consequently,
n∑

i=1

αi · xi =
n∑

i=1,αi =0

αi · xi =
n∑

j=1,α′
j =0

α′
j · x′j =

n∑

j=1

α′
j · x′j

is inferred from the properties of positive convex structures.
The map h0 is uniformly continuous, because

d

⎛

⎝h0(
n∑

i=1

αi · δxi), h0(
m∑

j=1

dj · δyj)

⎞

⎠ ≤ dP

⎛

⎝
n∑

i=1

αi · δxi ,

m∑

j=1

dj · δyj

⎞

⎠ ,

dP denoting the Prohorov metric; see Section 1.5. We need uniform continuity
here, because it is well known that otherwise a unique, continuous extension
from the dense subset of discrete measures to the set of all measures cannot
be guaranteed.

Define ρ0 as the kernel of h0, then ρ0 is a smooth equivalence relation on
TX , and it is not difficult to see that the set of topological closures

{cl
(
[t]ρ0

)
| t ∈ TX}

forms a partition of S (X) through the following arguments:



Eilenberg-Moore Algebras for Stochastic Relations 147

a. the closures of different equivalence classes are disjoint,

b. given μ ∈ S (X), one can find a sequence (tn)n∈N in TX with tn ⇀w μ.
Since X is Polish, in particular complete, the sequence (h0(tn))n∈N con-
verges to some t0, and because h0 is uniformly continuous, one concludes
that μ ∈ cl

(
[t0]ρ0

)
. Thus each member of S (X) is in some class.

This yields an equivalence relation ρ on S (X). Uniform continuity of h0 gives
a unique continuous extension h of h0 to S (X), thus ρ equals the kernel of h,
hence ρ is a smooth equivalence relation, and it is evidently positive convex.
Defining on S (X)/ρ the metric

D([μ1]ρ , [μ2]ρ) := d(h(μ1), h(μ2)),

it is rather immediate that the metric space (S (X)/ρ,D) is homeomorphic
to X with metric d, and that the topology induced by the metric is just the
final topology with respect to the weak topology on S (X) and ηρ.

It is clear that each affine and continuous map between positive convex
structures gives rise to a morphism between the corresponding G-triplets,
and vice versa. Thus we have established:

PROPOSITION 3.20
The category of Alg of algebras for the Giry monad is isomorphic to the

category StrConv of positive convex structures with continuous affine maps as
morphisms.

For the probability functor we again mirror the development, but this time
we need not go into details. We obtain eventually this characterization for the
category pAlg of algebras for the Giry monad, when restricted to the proba-
bility functor (with the obvious necessary adjustments made for morphisms):

PROPOSITION 3.21
The category of algebras for the Giry monad for the probability functor is

isomorphic to the full subcategory of continuous convex structures.

For a partial history of this result see the Bibliographic Notes at the end of
this chapter.

3.5 Examples

We illustrate the concept and propose some examples by looking at some
well-known situations. Most of this section is not really new, probably apart
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from the proposed point of view. We first show that the monad carries for
each Polish space an instance of an algebra with it. Then we prove that in
the finite case an algebra exists only in the case of a singleton set. Finally a
geometrically oriented example is discussed by investigating the barycenter of
a probability on a compact and convex subset of R

n.
In each case the geometry of the underlying space imposes a natural positive

convex structure, and it invites itself to compare this structure with the one
that can be constructed through the algebra. It turns out in each of these
cases that the convex structure associated with the algebra is the natural one.

3.5.1 Monad Multiplication

We know that 〈S (X) ,mX〉 is an algebra whenever X is a Polish space; this
is actually a special case of the observation that 〈T (x) ,mx〉 is a T-algebra in
any monad (T, e,m); see Lemma 1.109. It shows for this specific case that
each Polish space is associated in a natural fashion with a strongly convex
structure. This association entails actually more than meets the eye: we will
show in Section 3.6 that X 
→ 〈S (X) ,mX〉 is the object part of the left
adjoint to the forgetful functor Alg → Pol.

PROPOSITION 3.22
The pair 〈S (X) ,mX〉 is an algebra for each Polish space X.

Since

mX(α1 · μ1 + · · ·+ αn · μn) = α1 ·mX(μ1) + · · ·+ αn ·mX(μn),

the positive convex structure induced on S (X) by this algebra is the natural
one.

3.5.2 The Finite Case

The finite case can also easily be characterized: there are no algebras for
{1, . . . , n} unless n = 1. This will be shown now. Since the base space needs
to be connected for entertaining an algebra, we obtain a simple geometric de-
scription as a necessary condition for the existence of algebras as a byproduct.

We need a wee bit elementary topology for this.

DEFINITION 3.23 A metric space A is called connected iff the de-
composition A = A1 ∪ A2 with disjoint open sets A1, A2 implies A1 = ∅ or
A2 = ∅.

Thus a connected space cannot be decomposed into two nontrivial open
sets, so that the only clopen sets are the empty set and the space itself. The
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connected subspaces of the real line R are just the open, half-open or closed
finite or infinite intervals. The rational numbers Q are not connected. A
subset ∅ �= A ⊆ N of the natural numbers which carries the discrete topology
(because we assume that it is a Polish space) is connected as a subspace iff
A = {n} for some n ∈ N.

The following elementary facts about connected spaces are well known and
readily established.

LEMMA 3.24

Let A be a metric space.

a. If A is connected, and f : A → B is a continuous and surjective map to
another metric space B, then B is connected.

b. If two arbitrary points in A can be joined through a connected subspace of
A, then A is connected.

This has as a consequence a geometric description of the space underlying
a monad.

COROLLARY 3.25

If 〈X,h〉 is an algebra for the Giry monad, then X is connected.

PROOF If μ1, μ2 ∈ S (X) are arbitrary probability measures on X , then
the line segment {c · μ1 + (1 − c) · μ2 | 0 ≤ c ≤ 1} is a connected subspace
which joins μ1 and μ2. This is so because it is the image of the connected unit
interval [0, 1] under the continuous map c 
→ c · μ1 + (1− c) · μ2. Thus S (X)
is connected by Lemma 3.24. Since h is onto, its image X is connected.

Consequently it is hopeless to search for algebras for, say, the natural num-
bers or a nontrivial subset of it:

PROPOSITION 3.26

A subspace A ⊆ N has an algebra for the Giry monad iff A is a singleton
set.

PROOF It is clear that a singleton set has an algebra. Conversely, if A
has an algebra, then A is connected by Lemma 3.25, and this can only be the
case when A is a singleton.
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3.5.3 The Unit Interval

The next example deals with the unit interval.

PROPOSITION 3.27
The map

h : S ([0, 1]) � μ 
→
∫ 1

0

t μ(dt) ∈ [0, 1]

defines an algebra 〈[0, 1] , h〉.

PROOF In fact, h(μ) ∈ [0, 1] because μ is a subprobability measure.
It is clear that h(δx) = x holds, and — by the very definition of the weak
topology — that μ 
→ h(μ) is continuous. Thus it remains to show by Propo-
sition 3.6 that the partition induced by h is positive convex. This is a fairly
simple calculation. Consequently, the partition induced by h is a G-partition,
showing that h is indeed the morphism part of an algebra.

It is not difficult to see that the positive convex structure induced on [0, 1]
is the natural one.

This is the only algebra that has an integral representation through Lebes-
gue measure: suppose that

h∗(μ) =
∫ 1

0

f(t) μ(dt)

for some continuous f . Then h∗(δx) = f(x), from which f(x) = x is inferred
for each x ∈ [0, 1].

3.5.4 Barycenter

The final example has a more geometric touch to it and deals only with
the probabilistic case. We work with bounded and closed subsets of some
Euclidean space and show that the construction of a barycenter yields an
algebra. Fix X ⊆ R

n as a bounded, closed and convex subset of the Euclidean
space R

n (for example, X could be a closed ball or a cube in R
n).

Denote for two vectors x, x′ ∈ R
n by

x • x′ :=
n∑

i=1

xi · x′i

their inner product. Then λx.x • x′ constitutes a continuous linear map on
R
n for fixed x′. In fact, each linear functional on R

n can be represented in
this way.
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DEFINITION 3.28 The vector x∗ ∈ R
n is called a barycenter of the

probability measure μ ∈ P (X) iff

x • x∗ =
∫

X

x • y μ(dy)

holds for each x ∈ X.

Because X is compact, the integrand is bounded on X , thus the integral is
always finite.

Since the proofs for the existence and membership properties of a barycenter
would lead us too far from our path of investigating stochastic relations (we
would have to study the geometry of compact convex sets), we refer the reader
to the literature. Basic facts about barycenters can be found, e.g., in the
massive overview of measure theory assembled by Fremlin (Fremlin, 2003).

PROPOSITION 3.29
The barycenter of b(μ) of μ ∈ P (X) exists, it is uniquely determined, and

it is an element of X. 〈X, b〉 is an algebra for the Giry monad.

PROOF 0. Once we know that the barycenter exists, uniqueness follows
from the well-known fact that the linear functionals on R

n separate points.
The existence of the barycenter is established in (Fremlin, 2003, Theorem
461 E); its membership in X follows from (Fremlin, 2003, Theorem 461 H).
Granted this, the proof that 〈X,h〉 is an algebra is sketched now along the
following lines.

1. From the construction and the uniqueness of the barycenter it is clear
that b(δx) = x holds for each x ∈ X.

2. Assume that (μn)n∈N is a sequence in P (X) with μn ⇀w μ0. Put x∗n :=
b(μn) as the barycenter of μn, then (x∗n)n∈N is a sequence in the compact set
X , thus has a convergent subsequence (which we take w.l.g. as the sequence
itself). Let x∗0 be its limit. Then we have for all x ∈ X :

x • x∗n =
∫

X

x • y μn(dy)→
∫

X

x • y μ0(dy) = x • x∗0.

Hence b is continuous. Approximating μ through a convex combination of
discrete measures, the above argumentation together with the convexity of X
shows also that b(μ) ∈ X.

3. It remains to show that the partition induced by b is convex. This,
however, follows immediately from the linearity of y 
→ λx.x • y.

Calculating the convex structure for b, we infer from affinity of the integral
as a function of the measure and from

x • b(μ) =
∫

X

x • y μ(dy)
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that (0 ≤ c ≤ 1, μi ∈ P (X))

b(c · μ1 + (1− c) · μ2) = c · b(μ1) + (1− c) · b(μ2)

that the convex structure induced by b is the natural one.
It should be mentioned that this example can be generalized considerably

to metrizable topological vector spaces (Fuchssteiner and Lusky, 1981; Frem-
lin, 2003). The terminological effort is, however, somewhat heavy, and the
example remains essentially the same. Thus we refrain from a more general
discussion.

Although the characterization of algebras in terms of positive convex struc-
tures yields a somewhat uniform approach, it becomes clear from these exam-
ples that the specific instances of the algebras provide a rather colorful picture
unified only through the common abstract treatment.

3.6 The Left Adjoint

The identification of the algebras for the Giry monad and the observation
from Proposition 3.22 that 〈S (X) ,mX〉 is always an algebra puts us in a
position where we are able to identify the left adjoint for the forgetful functor
U : Alg → Pol. Define

L (X) := 〈S (X) ,mX〉,

for a Polish space X , and put

L (f) := S (f) ,

for the continuous map f : X → Y . Then we know from Proposition 3.22 that
L (X) is an algebra. From Lemma 3.1 we see that L (f) : L (X) → L (Y ) , is
a morphism in Alg, and since m : S2 •→ S is a natural transformation, L (f)
is an algebra morphism. Thus L : Pol→ Alg is a functor.

We will write as usual C(a, b) for the morphisms a→ b in category C.

LEMMA 3.30
Let θ : L (X) → 〈Y, h〉 be a morphism in Alg, and put Θ(θ)(x) := θ(δx).

This defines a bijection Θ : Alg(L (X) , 〈Y, h〉)→ Pol(X,Y ).

PROOF 1. Since x 
→ δx defines a continuous map X → S (X), and since
the morphisms in Alg are continuous as well, Θ(θ) ∈ Pol(X,Y ) whenever
θ ∈ Alg(L (X) , 〈Y, h〉).

2. Now suppose that Θ(θ1)(x) = Θ(θ2)(x) holds for all x ∈ X , thus θ1(δx) =
θ2(δx) for all x ∈ X. Let τ =

∑m
i=1 αi·δxi be a discrete subprobability measure,
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then

θ1(τ) = θ1

(
m∑

i=1

αi · δxi

)

=
P∑

1≤i≤m
αi · θ1(δxi) =

P∑

1≤i≤m
αi · θ2(δxi) = θ2(τ).

Here P is the positive convex structure associated with the algebra 〈Y, h〉
by Proposition 3.20. Thus θ1 agrees with θ2 on all discrete measures. Since
these measures are dense in the weak topology, and since θ1 as well as θ2 are
continuous, we may conclude that θ1(τ) = θ2(τ) holds for all τ ∈ S (X). Thus
Θ is injective.

3. Let f : X → Y be continuous, and put θ̃ := h ◦S (f) , the composition
being formed in Alg. We claim that θ̃ ∈ Alg(L (X) , 〈Y, h〉).

In fact, consider the diagram

S (S (X))
S

(
θ̃
)

� S (Y )

S (X)

mX

�

θ̃
� Y

h

�

We have

h ◦S

(
θ̃
)

= h ◦S (h) ◦S (S (f))

= h ◦mY ◦S (S (f)) (because 〈Y, h〉 is an algebra)
= h ◦S (f) ◦mX (since S (f) is an Alg-morphism)

= θ̃ ◦mX

which implies that the diagram is commutative, establishing the claim. Since
for each x ∈ X

Θ(θ̃)(x) = h (S (f) (δx)) = h(δf(x)) = f(x)

we conclude that Θ(θ̃) = f , thus Θ is onto.

In order to establish the properties of an adjunction, we need to establish
the naturalness of Θ = ΘX,〈Y,h〉; see the remarks following Definition 1.103.
This means that we have to establish the commutativity of the diagrams
below, given the morphisms f ∈ Alg(〈Y, h〉, 〈Y ′, h′〉) and g ∈ Pol(X ′, X).
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The first diagram takes care of the covariant hom-set functor Alg(L (X) ,−).

Alg(L (X) , 〈Y, h〉) Θ� Pol(X,Y )

Alg(L (X) , 〈Y ′, h′〉)

f∗

�

Θ
� Pol(X,Y )

U (f)∗

�

Here
f∗ : Alg(L (X) , 〈Y, h〉) � θ 
→ f ◦ θ ∈ Alg(L (X) , 〈Y ′, h′〉)

is composition from the left, similarly U (f)∗; see Example 1.93. We see

U (f)∗ (Θ(θ))(x) = (f ◦Θ(θ))(x) = f(Θ(θ)(x)) = f(θ(δx)),

and
Θ(f∗(θ))(x) = f∗(θ)(x) = f(θ(δx)),

hence the diagram commutes. The second diagram takes care of the con-
travariant hom-set functor Alg(−, 〈Y, h〉) :

Alg(L (X) , 〈Y, h〉) Θ� Pol(X,Y )

Alg(L (X ′) , 〈Y, h〉)

L (f)∗

�

Θ
� Pol(X ′, Y )

f∗

�

Here
f∗ : Pol(X,Y ) � g 
→ g ◦ f ∈ Pol(X ′, Y )

is composition from the right, similarly for L (f)∗ . Because

f∗(Θ(θ))(x′) = (Θ(θ) ◦ f)(x′) = θ(δf(x′)),

and since

Θ(L (f)∗ (θ))(x′) = L (f)∗ (θ)(δx′) = (θ ◦S (f))(δx′) = θ(δf(x′))

we see that this diagram commutes as well.
Summarizing, we have established:

PROPOSITION 3.31
The functor L : Pol → Alg with L (X) := 〈S (X) ,mX〉 and L (f) := S (f)

is left adjoint to the forgetful functor U : Alg → Pol.
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The probabilistic case is dealt with using the same arguments. The only es-
sential place where the difference between subprobability measures and prob-
ability measures enters the discussion formally is in the proof of Lemma 3.30.
Proving surjectivity of Θ, one has to take a convex combination of discrete
measures, rather than a positive convex combination, as in the proof above.
With this minor adjustment all proofs carry over verbatim.

We obtain for the category pAlg of algebras for the probabilistic version of
the Giry monad (the category has been introduced in Proposition 3.21).

PROPOSITION 3.32
The functor Lprob : Pol → pAlg with Lprob (X) := 〈P (X) ,mX〉 and

Lprob (f) := P (f) is left adjoint to the forgetful functor U : pAlg→ Pol.

Hence the forgetful functor on the algebras for the Giry monad has the
subprobability functor resp. the probability functor, both augmented by the
monad’s multiplication, as a left adjoint. This emphasizes the close ties be-
tween positive convex resp. convex structures and probabilities and sheds
further light on these functors. It also adds a formal underpinning to the in-
tuitive understanding prevailing in Computer Science, which often expresses
the probability of an outcome as a convex combination of all the possible out-
comes, see, e.g., (Morgan et al., 1996; van Breugel et al., 2002) for accounts in
different fields. The interplay between convexity and probability is strikingly
present for example in Heckmann’s work (Heckmann, 1994) (in fact, he often
interchanges both), but surprisingly not made explicit.

It seems that — roughly speaking — the rôle played by ordered structures
in the context of the power set monad translates into one for positive convex
structures for the subprobability based Giry monad.

3.7 Bibliographic Notes

The characterization of the algebras for the probability functor through
convex structures has been known for the case that X is a compact Hausdorff
space (Fedorchuk, 1991, 2.14) (the attribution to Swirszcz’s work (Swirszcz,
1974) in (Fedorchuk, 1991) is slightly unclear). The methods for the proof
are, however, rather different: the compact case makes essential use of the
right adjoint of the probability functor, seen as a functor between the respec-
tive categories of compact Hausdorff spaces and compact convex sets. Thus
Corollary 3.21 generalizes the known characterization to Polish spaces. In the
subprobabilistic case that is of interest here convexity is evidently not strong
enough and has to be replaced by positive convexity. The positive convex
structures that have been of use in other investigations could be put to use
here as well; we took the definition from Pumplün’s work (Pumplün, 2003).
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4.1 Introduction

A category is said to have semi-pullbacks if, whenever f : a → b, g : c → b
is a pair of morphisms with the same target, there exists in the category
an object d together with morphisms r : d → a, s : d → c such that f ◦ r =
g◦s. The existence of semi-pullbacks makes sure that bisimulations, which are
defined as spans of morphisms, are transitive; bisimulations will be introduced
in Chapter 5.

For stochastic relations, semi-pullbacks will be helpful when investigating
the relationship between modal logics and bisimilar stochastic Kripke models.
The argumentation goes like this: given two stochastic Kripke models K1 and
K2 that accepts exactly the same formulas, we construct a third Kripke model
L and morphisms Φ1 and Φ2 that form a co-span

K1
Φ1 � L � Φ2 K2.

If the category under consideration has semi-pullbacks, then the upper left
corner of the diagram below may be completed

M Ψ1 � K1

K2

Ψ2

�

Φ2

� L

Φ1

�

From this a bisimulation is constructed. The crucial point is not the construc-
tion of L (which nevertheless is quite involved in its own right) but rather the
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existence of the semi-pullback, i.e., the existence of the object M together
with the morphisms Ψ1 and Ψ2. This argumentation will be refined in Chap-
ter 5.

The present chapter investigates the construction of semi-pullbacks in the
category of stochastic relations over Polish resp. analytic spaces. The task of
construction is rather formidable and requires some nontrivial constructions,
using such marvels as the Hahn-Banach Theorem and the Riesz-Representa-
tion Theorem. It capitalizes on Alexandrov’s famous embedding of a Polish
space as a Gδ-set into the Hilbert cube (see Theorem 1.23) — the gist being
that a Polish space can be embedded as a measurable set with compact closure
into a compact set. As useful byproducts we obtain several extensions of
stochastic relations from smaller to larger σ-algebras.

The problem of establishing the existence of semi-pullbacks has been solved
for analytic spaces with universally measurable transition functions by A.
Edalat (Edalat, 1999). We will refer occasionally to Edalat’s approach and
comment on the differences in the Bibliographic Notes at the end of this
chapter. This positive result is complemented by a consideration of extending
semi-pullbacks to pullbacks or at least to weak pullbacks. It would be nice if
that could be brought to work, since then various techniques that have been
useful for coalgebras could be made available also for the stochastic case.
Unfortunately, this cannot be the case: we conclude with the negative result
that not even weak pullbacks do exist for stochastic relations. Thus we do
have to invent our own techniques for exploring, e.g., simple systems, rather
than imitate and adapt the machinery from coalgebra.

Once the general availability of semi-pullbacks is ensured, a Hennessy-
Milner Theorem on the equivalence of accepting the same formulas and bisim-
ilarity can be established for a general class of modal logics; see Chapter 6,
in particular Section 6.2. The investigation of bisimilarity of stochastic rela-
tions is facilitated through this result. For example it can be shown that two
stochastic relations are bisimilar provided they have isomorphic factors; the
converse holds under the assumption of compactness as well, so that one might
speculate whether bisimilarity and having isomorphic factors are equivalent.
This will be discussed in greater detail in Section 5.4.

4.2 A Road Map

In order to prepare for things to come, and to provide an antidote to getting
the feeling that one gets lost in the measure-theoretic jungle, we will first
discuss the problem and an outline of its solution in Section 4.2. At the heart
of the solution lies a measure extension which is provided in Section 4.3,
and Section 4.4 constructs a solution to the existence of semi-pullbacks for
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stochastic relations over Polish and then over analytic spaces. This looks
somewhat unrelated to the problem at hand, but it turns out that the key
to solving the existence problem will be just this. The reason will become
apparent soon.

Let K = (X,Y,K) be a stochastic relation over the Polish spaces X and Y .
Assume that K is the target of two morphisms

K1
f1 � K � f2

K2

with, say, fi = (φi, ψi). We are looking for a stochastic relation L and two
morphisms

K1
� g1

L
g2 � K2

such that f1 ◦ g1 = f2 ◦ g2 holds.
An expansion of the first flat diagram in terms of the defining properties

yields the following commutative diagram:

X1
φ1 � X � φ2

X2

S (Y1)

K1

�

S (ψ1)
� S (Y )

K

�
�
S (ψ2)

S (Y2)

K2

�

Written as a comprehensive diagram, the second flat diagram entails that in
addition to f1 ◦ g1 = f2 ◦ g2 these diagrams should commute:

X1
� α1

A
α2 � X2

S (Y1)

K1

�
�
S (β1)

S (B)

L

�

S (β2)
� S (Y2)

K2

�

Here L = (A,B,L) is the relation involved, and gi = (αi, βi) is the morphism
gi : L→ Ki for i = 1, 2. We will define

A := {〈x1, x2〉 ∈ X1 ×X2 | φ1(x1) = φ2(x2)}
B := {〈y1, y2〉 ∈ Y1 × Y2 | ψ1(y1) = ψ2(y2)},

then we will argue why A and B may be assumed to be Polish. Taking αi, βi
as the projections

αi : A � 〈x1, x2〉 
→ xi ∈ Xi,

βi : B � 〈y1, y2〉 
→ yi ∈ Yi,
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we need to find a stochastic relation L = (A,B,L) which makes gi := (αi, βi)
into a morphism gi : L → Ki for i = 1, 2. Thus L : A � B should satisfy the
following constraints for all 〈x1, x2〉 ∈ A:

a. L(x1, x2) ∈ S (B) ,

b. S (β1) (L(x1, x2)) = K1(x1),

c. S (β2) (L(x1, x2)) = K2(x2).

Reformulating again, we put

Γ(x1, x2) := {μ ∈ S (B) | S (β1) (μ) = K1(x1) and S (β2) (μ) = K2(x2)},

hence L(x1, x2) ∈ Γ(x1, x2) for all 〈x1, x2〉 ∈ A. We want L : A → S (B)
to be a measurable selector for Γ, thus L : A � B is a stochastic relation
(accounting for the measurable in measurable selector) such that ∀a ∈ A :
L(a) ∈ Γ(a) (accounting for the selector).

Thus the problem is massaged into finding a measurable selector for the
set-valued map Γ. The existence of such a selector can be asserted under the
following conditions:

a. Γ(x1, x2) is a closed subset of S (B) for each 〈x1, x2〉 ∈ A,

b. the set {〈x1, x2〉 ∈ A | Γ(x1, x2) ∩ C �= ∅} is a measurable subset of A,
whenever C ⊆ S (B) is compact,

c. Γ(x1, x2) �= ∅ for each and any 〈x1, x2〉 ∈ A.

These properties characterize Γ as a C-measurable relation; see Section 1.4.
It will not be difficult to show that property a is satisfied, and property b

will also easily be seen to be fulfilled. The real crucial property is the third
one.

The Crucial Point. Fix 〈x1, x2〉 ∈ A. We will find without much ado a
measure μ0 ∈ S (B) such that these equations

S (β1) (μ0)(E1) = K1(x1)(E1) (4.1)
S (β2) (μ0)(E2) = K2(x2)(E2) (4.2)

are true whenever Ei = ψ−1
i [Fi] for some Borel set Fi ⊆ Y .

This is equivalent to saying that the measures S (βi) (μ0) and Ki(xi) coin-
cide on the σ-algebra ψ−1

i [B(Y )]. The latter is usually a proper sub-σ-algebra
of B(Yi), hence we cannot guarantee offhand equality in the equations 4.1
and 4.2 on the full Borel sets B(Yi) with i = 1, 2. If, however, we can find a
measure, say μ1 ∈ S (B), such that S (βi) (μ1)(Ei) = Ki(xi)(Ei) for all Ei
ranging over all of B(Yi), we may conclude μ1 ∈ Γ(x1, x2), and then the
latter set is in fact shown to be nonempty.
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Thus the problem is reduced to finding a single measure on B that has
suitable marginal distributions. We will demonstrate that we can extend the
marginal distributions of μ0 to a measure with the desired properties.

This measure extension can be done in two different ways, depending on
the nature of the space Y which otherwise sits quietly in the background and
serves patiently as a target space.

1. If Y is Polish, we can and do refer to a special case of Edalat’s result,
and we are done. This precludes, however, a more general solution that
includes analytic spaces.

2. If Y is more generally a separable metric space, then still an extension
can be found; this assumption will be crucial when the analytic case is
targeted. The machinery from mathematical analysis for tackling this
general case is well established, but somewhat heavy, including the Riesz
Representation Theorem and the Hahn-Banach Theorem.

It is the latter way we will propose to go here because it opens up the avenue
of establishing this result also for analytic spaces.

Discussion. The solution provided by Edalat can be considered construc-
tive: it works with conditional distributions and their properties. These dis-
tributions do exist essentially due to the Radon-Nikodym Theorem which in
turn leans heavily on the way the Lebesgue-Daniell integral is constructed.
The basic idea for the more general solution lies in a measure extension pro-
cess. It works in three steps: the first is to consider the integral of the given
measure, which is a linear functional, then to formulate the extension problem
in terms of extending this linear functional to a linear functional on a broader
domain that corresponds to our needs, and finally to represent the extended
functional as an integral again. Representing the measure as an integral is
easy, since only the standard techniques of integration are involved; doing the
extension is technically a bit more involved and requires the Hahn-Banach
Theorem, and converting the linear functional back to a measure can be done
through the Riesz Representation Theorem. It is this last step that gives us
the measure we are looking for.

Through the use of the Hahn-Banach Theorem we make indirectly use of
Zorn’s Lemma, which in turn is known to be equivalent to the Axiom of
Choice. Thus we propose a stronger solution but we pay more for it. This
sounds probably a bit more dramatic and unusual than it really is: when
constructing the product of an arbitrary family of sets or when looking into
the ultrafilter extension of a Kripke model (Blackburn et al., 2001, Theorem
5.38) we silently take the Axiom of Choice for granted.

The Road Map. We will first delve into the problem of extending a mea-
sure with given marginal distributions; this is done in Section 4.3. Then we
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Hahn-Banach � Measure extension,
compact case,

Sect. 4.3.1

� Riesz Representation

Alexandrov embedding � Measure extension,
Polish case,
Sect. 4.3.2

�

Existence of
semi-pullbacks,

Polish case,
Sect. 4.4.1

�

Existence of
semi-pullbacks,
analytic case,

Sect. 4.4.2

�

Figure 4.1: The Road Map

are in a good condition for tackling the problem along the lines sketched here
in Section 4.4; see Figure 4.1.

4.3 Extending Semi-Pullbacks of Measures

The main argument in establishing the existence of a semi-pullback in the
category of stochastic relations will be a selection argument: we will show that
a certain set-valued map will have a (measurable) selector. This will require
that this map always takes nonempty values. This section will be devoted
to establishing a property of semi-pullbacks for measure spaces which in turn
will be crucial for proving nonemptiness. Since it is rather technical in nature,
it is convenient to encapsulate this development into a separate section.

We will consider the category Prob of probability spaces which has as ob-
jects tuples (X,A, μ) with μ ∈ P (X,A) for the measurable space (X,A).
Because for some arguments the σ-algebra is crucial, we abstain from the
convention of dropping it from the notation for the space and write it down
explicitly again. ψ : (X,A, μ)→ (Y,B, ν) is a morphism in Prob if ψ : X → Y
is a surjective and A − B-measurable map which is measure preserving, i.e.,
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ν = P (ψ) (μ) holds. Prob is closed under forming products (see Section 1.5),
in particular it contains with two objects (X,A, μ) and (Y,B, ν) their product
(X × Y,A⊗ B, μ⊗ ν) , with μ⊗ ν as the product measure which is uniquely
determined through (μ⊗ ν) (A×B) = μ(A) · ν(B).

We fix for the discussion the Polish spaces X1 and X2 with the respective
Borel sets as σ-algebras. (Z, C) is assumed to be a separable measurable space.
Recall that F (X,A) is the linear space of all A-B(R)-measurable bounded
functions f : X → R; A 
→ F (X,A) is monotone, hence A ⊆ B implies that
F (X,A) is a linear subspace of F (X,B) .

Now let

(X1,B(X1), μ1)
ψ1� (Z, C, ν) �ψ2 (X2,B(X2), μ2)

be a pair of morphisms in Prob with a common target, and assume that

(S,A, θ) π2� (X2,B(X2), μ2)

(∗)

(X1,B(X1), μ1)

π1

�

ψ1

� (Z, C, ν)

ψ2

�

is a semi-pullback diagram in Prob with

S := {〈x1, x2〉 | ψ1(x1) = ψ2(x2)} ∈ ψ−1
1 [C]⊗ ψ−1

2 [C]
A := S ∩

(
ψ−1

1 [C]⊗ ψ−1
2 [C]

)

= S ∩ (ψ1 × ψ2)
−1 [C ⊗ C] .

The πi are again the projections. The last equality addressing A holds by
Corollary 1.46; thus A is the smallest σ-algebra on S which makes

ψ1 × ψ2 : 〈x1, x2〉 
→ 〈ψ1(x1), ψ2(x2)〉

measurable.
S is a Borel set, and the crucial step in the technical development will consist

in “lifting“ this pullback so that the object (S,B(S), μ) for some suitable
μ ∈ P (S,B(S)) stands in the upper left corner of the diagram. The essential
difference is in the σ-algebras on S: starting with the initial σ-algebra with
respect to ψ1 × ψ2 we claim that we can find a measure μ on the Borel sets
of S so that the properties of a semi-pullback will be preserved.
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PROPOSITION 4.1
The semi-pullback (∗) in Prob may be extended to a semi-pullback

(S,B(S), μ)
π2� (X2,B(X2), μ2)

(X1,B(X1), μ1)

π1

�

ψ1

� (Z, C, ν)

ψ2

�

in Prob.

This entails essentially an extension process, extending θ ∈ P (S,A) to a
suitable μ ∈ P (S,B(S)) . We establish the existence of this extension in two
steps. The first step will assume that X1 and X2 are compact Polish spaces,
and the second will show how to reduce the general case to the compact one.

We will need to make precise statements regarding the measurability of
a Borel map in the course of the proof. For easier reference, the technical
statement below is recorded:

PROPOSITION 4.2
Let X be a Polish space, (Y,B) be a separable measurable space, and assume

that g : X → Y is B(X)-B-measurable and onto. If f : X → Y is B(X)-B-
measurable such that f is constant on the atoms of g−1 [B] , then f is g−1 [B]−
B -measurable.

PROOF Separability implies that {y} ∈ B for all y ∈ Y . The atoms of
g−1 [B] are just the inverse images g−1[{y}] of the points y ∈ Y , because these
sets are clearly atomic in that σ-algebra, and since they form a partition of
X . Now let B ∈ B be a measurable set, then by assumption f−1[B] is a Borel
set in X which is the union of atoms of g−1 [B] . Thus the assertion follows
from the Blackwell-Mackey-Theorem (Theorem 1.54).

4.3.1 The Compact Case

The line of attack for the case of a compact metric space will be as follows:
we will construct a linear subspace of F (S,B(S)) which contains F (S,A) and
some other functions of interest to us, and we will extend the positive linear
functional f 
→

∫
S
f dθ linearly to this subspace.

The next step requires the Hahn-Banach Theorem for ordered linear spaces,
which may be found in (Jacobs, 1978, Lemma IX.1.4), and which is quoted
here for completeness.
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THEOREM 4.3

Assume that (H,≤) is a partially ordered vector space with a linear subspace
H0 ⊆ H, and that L0 : H0 → R is a linear map such that L0(f) ≥ 0 whenever
0 ≤ f ∈ H0. Then there exists a linear map L : H → R with the following
properties:

a. L extends L0, thus if f ∈ H0, then L(f) = L0(f),

b. L is positive, thus f ≥ 0 implies L(f) ≥ 0.

A further extension using this Hahn-Banach Theorem brings us to a positive
linear functional Λ on F (S,B(S)) which then can be represented through a
measure μ ∈ P (S,B(S)) , so that

Λ(f) =
∫

S

f dμ

holds. Clearly, μ extends θ and is the measure we are looking for.
The commutativity of the diagram entails by the usual folklore arguments

from measure theory that (i = 1, 2)

∀fi ∈ F
(
Xi, ψ

−1
i [C]

)
:
∫

Xi

fi dμi =
∫

S

fi ◦ πi dθ

holds, and by the same token it is sufficient to find for θ ∈ P (S,A) an
extension μ ∈ P (S,B(S)) such that (i = 1, 2)

∀fi ∈ F (Xi,B(Xi)) :
∫

Xi

fi dμi =
∫

S

fi ◦ πi dμ

holds.

PROOF (of Proposition 4.1)
1. Put for i = 1, 2

Di := {fi ◦ πi | fi ∈ F (Xi,B(Xi))},

then Di ⊆ F (S,B(S)) , and

Λ0(fi ◦ πi) :=
∫

Xi

fi dμi.

Then Λ0 : D1 ∪ D2 → R is well defined. In fact, let g ∈ D1 ∩ D2, thus there
exist functions fi ∈ F (Xi,B(Xi)) with

g = f1 ◦ π1 = f2 ◦ π2.
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We claim that f1 is constant on the atoms of ψ−1
1 [C] . Take x1, x

′
1 ∈ X1 with

ψ1(x1) = ψ1(x′1), then there exists x2 ∈ X2 such that 〈x1, x2〉 ∈ S, 〈x′1, x2〉 ∈
S. Hence

f1(x1) = g(x1, x2) = f2(x2) = g(x′1, x2) = f1(x′1).

Thus f1 is ψ−1
1 [C]-measurable by Proposition 4.2, and consequently,

∫

S

g dθ =
∫

S

f1 ◦ π1 dθ =
∫

X1

f1 dμ1.

Similarly, ∫

S

g dθ =
∫

X2

f2 dμ2

is established. This implies that Λ0 is well defined.
2. Let the linear functional Λ1 : F (S,A) → R be defined through

Λ1(f) :=
∫

S

f dθ.

We will look for a joint extension of Λ0 and Λ1 to the linear space spanned
by F (S,A)∪D, where D := D1 ∪D2. This requires both functionals yielding
the same value on the intersection F (S,A) ∩ (D1 ∪ D2) . Assume first that
g ∈ F (S,A)∩D1, thus g = f1 ◦π1 for some f1 ∈ F (X1,B(X1)) . Since g does
not depend on the second component, we may infer from the definition of A
that f1 is even ψ−1

1 [C]− measurable, hence

Λ1(g) =
∫

S

g dθ =
∫

S

f1 ◦ π1 dθ =
∫

X1

f1 dμ1 = Λ0(g).

The argumentation for g ∈ F (S,A) ∩ D2 is similar.
Let Λ2 be the joint linear extension of Λ1 on F (S,A) and of Λ0 on D to

the linear space spanned by F (S,A) and D.
From the construction it is clear that Λ2(1) = 1 holds, and that Λ2 is

monotone.
3. The Hahn-Banach Theorem 4.3 for ordered linear spaces gives a positive

linear operator Λ : F (S,B(S)) → R that extends Λ2. Since each continuous
and bounded map f : X1 ×X2 → R becomes a member of F (S,B(S)) when
restricted to S, we obtain a positive linear operator Λ′(f) := Λ(f |S) on the
linear space of all continuous mapsX1×X2 → R. BecauseX1×X2 is compact,
the Riesz Representation Theorem 1.76 yields a probability measure

μ′ ∈ P (X1 ×X2,B(X1 ×X2))

with

Λ′(f) =
∫

X1×X2

f dμ′ =
∫

S

f dμ′
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for each f ∈ F (X1 ×X2,B(X1 ×X2)) . Define for B ∈ B(S) the measure μ
through restricting μ′ to B(S), thus μ(B) := μ′(B ∩ S), then μ ∈ P (S,B(S))
will now be shown the measure we are looking for.

4. Let f ∈ F (S,A) , then
∫

S

f dθ = Λ1(f) = Λ2(f) = Λ′(f) =
∫

S

f dμ,

thus μ extends θ. Let fi ∈ F (X1,B(Xi)) , then fi ◦ πi ∈ Di ⊆ D, hence
∫

Xi

fi dμi = Λ0(fi ◦ πi) = Λ2(fi ◦ πi) = Λ′(fi ◦ πi) =
∫

S

fi ◦ πi dμ,

rendering the diagram commutative.

The compactness assumption was used in the proof only to establish the
existence of a measure, given a suitable linear functional on the space of
continuous functions. This functional is then represented as the integral for
this measure through the Riesz Theorem.

4.3.2 The General Polish Case

In the general case we do not have the Riesz Representation Theorem di-
rectly at our disposal, but compactness may nevertheless be capitalized upon
since each Polish space may be embedded into a compact metric space as a
measurable subspace. In particular, a Polish space is a measurable and dense
subset of a compact metric space by Theorem 1.23. We will capitalize on this:
X1 and X2 will be embedded into compact metric spaces, and this embedding
will take ψ1, ψ2 and the measure θ with it. We then apply the extension proce-
dure for the compact case. Restricting what we got from there to the original
scenario, we conclude that the assertion holds also for the noncompact case.

PROOF (of Proposition 4.1)
1. Xi is a dense measurable subset of a compact metric space X̃i by Alexan-

drov’s Theorem 1.23, and ψi : Xi → Z may be extended to a Borel measurable
map ψ̃i : X̃i → Z by (Srivastava, 1998, Proposition 3.3.4).

Define μ̃i(Bi) := μi(Bi ∩Xi) for Bi ∈ B(X̃i), and put

S0 := {〈x1, x2〉 ∈ X̃1 × X̃2 | ψ̃1(x1) = ψ̃2(x2)}.

Then S0 =
(
ψ̃1 × ψ̃2

)−1 [
ΔfX1× fX2

]
, thus

S0 ∈
(
ψ̃1 × ψ̃2

)−1

[B(Z × Z)]

= ψ̃1

−1
[C]⊗ ψ̃2

−1
[C] .
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Since Xi ∈ ψ̃i
−1

[C], and since S = S0∩ (X1×X2), we see that S ∈ ψ̃1

−1
[C]⊗

ψ̃2

−1
[C] . Now put θ̃(E) := θ(E ∩ S) for E ∈ ψ̃1

−1
[C]⊗ ψ̃2

−1
[C] , then θ̃(S0 \

S) = 0, because θ̃ is concentrated on S.
2. The construction shows that

(
S0,A0, θ̃

) π̃2�
(
X̃2,B(X̃2), μ̃2

)

(
X̃1,B(X̃1), μ̃1

)

π̃1

�

ψ̃1

� (Z, C, ν)

ψ̃2

�

commutes, where

A0 :=
(
ψ̃1

−1
[C]⊗ ψ̃2

−1
[C]

)
∩ S0.

The compact case applies, hence we can find an extension μ̃ ∈ P (S0,B(S0))
for θ̃ ∈ P (S0,A0) which lets this diagram commute:

(S0,B(S0), μ̃)
π̃2�

(
X̃2,B(X̃2), μ̃2

)

(
X̃1,B(X̃1), μ̃1

)

π̃1

�

ψ̃1

� (Z, C, ν)

ψ̃2

�

3. We now roll back compactification. Put for the Borel set B ⊆ S

μ(B) := μ̃(B ∩ S),

then μ ∈ P (S,B(S)) , since

μ̃(S0 \ S) = θ̃(S0 \ S) = 0.

The other properties are obvious, so that we are done with the general case,
too.

The crucial point in this argumentation has been to prevent any mass from
vanishing, i.e., to see that μ(S) = 1 holds, which in turn could be established
from the fact that μ̃ extends θ̃, and for which the incorporation of F (S,A)
into the extension process was responsible.

We reformulate Proposition 4.1 in terms of subprobability distributions.
It states that there exists sometimes a common distribution for two random
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variables with values in a Polish space with preassigned marginal distributions.
This is a cornerstone for the construction leading to the proof of Theorem 4.9;
it shows in particular where Edalat’s work could enter the present discussion.

PROPOSITION 4.4
Let X1 and X2 be Polish spaces, (Z, C) a separable measurable space, and

assume that
ψi : Xi → Z (i = 1, 2)

are measurable and surjective maps. Define

S := {〈x1, x2〉 ∈ X1 ×X2 | ψ1(x1) = ψ2(x2)},

endow S with the trace B(S) of the product σ-algebra, and assume that sub-
probability measures μ1 ∈ S (X1) , μ2 ∈ S (X2) , θ ∈ S (S) are given such
that

∀Ei ∈ ψ−1
i [C] : S (πi) (θ)(Ei) = μi(Ei) (i = 1, 2)

holds, where π1 : S → X1, π2 : S → X2 are the projections. Then there exists
μ ∈ S (S) such that

∀Ei ∈ B(Xi) : S (πi)(μ)(Ei) = μi(Ei) (i = 1, 2)

holds.

PROOF 1. We want to apply Proposition 4.1, so we need to show how
to construct diagram (*) from page 163. From the assumption we see that

μ1(X1) = θ(π−1
1 [X1]) = θ(S ∩ (X1 ×X2)) = θ(S),

similarly for μ2, so that μ1(X1) = μ2(X2) = θ(S). If θ(S) = 0 the assertion
is pretty obvious, so we may assume that θ(S) > 0, hence it is no loss of
generality to assume that all measures are probability measures.

2. Let C ∈ C, then

μ1(ψ−1
1 [C]) = P (π1) (θ)(ψ−1

1 [C]) = P (π2) (θ)(ψ−1
2 [C]) = μ2(ψ−1

2 [C]),

since π1 ◦ ψ1 = π2 ◦ ψ2 holds on S. So put ν(C) := μ1(ψ−1
1 [C]), then ν ∈

P (Z, C) such that
ψi : (Xi,B(Xi), μi) → (Z, C, ν)

is a morphism in Prob for i = 1, 2. The assumption implies that

πi : (S,A, θ) → (Xi,B(Xi), μi)

is a morphism for i = 1, 2, where A is the trace of the σ-algebra ψ−1
1 [C] ⊗

ψ−1
2 [C] on S. Consequently the assertion follows from Proposition 4.1.
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In important special cases, there are other ways of establishing the Propo-
sition, as will be discussed briefly.

REMARK 4.5 1. If Z is also a Polish space, and if ψi : Xi → Z are
bijections, then the Blackwell-Mackey Theorem (Theorem 1.54) shows that
ψ−1
i [C] = B(Xi). In this case the given measure θ ∈ S (S) is the desired one.

This is so since the trace σ-algebra A equals B(S):

A = S ∩ ψ−1
1 [C]⊗ ψ−1

2 [C]
= S ∩ B(X1)⊗ B(X2)
= S ∩ B(X1 ×X2)
= B(S),

hence θ has the desired properties on the proper σ-algebra.
2. The maps ψi : Xi → Z are morphisms in Edalat’s category of probability

measures on Polish spaces (Edalat, 1999), provided Z is a Polish space. The
assertion can then be deduced from tracing the development in (Edalat, 1999,
Cor. 5.4). The proof given above applies to Edalat’s situation as well, but
it should be clear that the present proof is independent of Edalat’s. The
development for the latter one depends substantially on the theory of regular
conditional probabilities on analytic spaces, so that the impression might arise
that the existence of the measure in question depends on these probabilities,
too. The proof for Proposition 4.1 shows that this is not the case, that rather
a straightforward proof can be given. Hence we are in the lucky position of
having two independent proofs for the Polish case. Which one is preferred is
largely a matter of taste: Edalat’s proof working in analytic spaces, or the one
proposed here depending on the Hahn-Banach Theorem as a classical tool in
analysis (but making use of the sometimes dreaded axiom of choice).

We will need an extension theorem for stochastic relations in order to secure
the existence of semi-pullbacks for analytic spaces. We begin with a statement
on the extension of a probability measure on a sub-σ-algebra. Note that we
do not claim the uniqueness of the extension. This is different from the usual
measure extensions in measure theory.

LEMMA 4.6

Let A be a sub-σ-algebra of the Borel sets of a Polish space X, and assume
that θ is a probability measure on A. Then θ can be extended to a probability
measure on all of B(X).

PROOF 0. We need only to sketch the proof, since the main work has
already been done in the proof of Proposition 4.1. Although the assertion is
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a bit different, the pattern of the argumentation is very similar to the one
presented already.

1. First X is assumed to be compact, then a combination of the Hahn-
Banach-Theorem and the Riesz Representation Theorem yields the existence
of the desired measure.

2. If X is not compact, it is embedded as above as a measurable subset into
a compact metric space. There the existence of an extension is established,
and exactly the same technique as above moves that measure to the Borel
sets of X .

The application interesting us here is the possibility to establish an ex-
tension to probabilistic relations. Before we state and prove a corresponding
property, we remark that each probability on the product of two Polish spaces
can be decomposed into a stochastic relation and a measure on one of the fac-
tors; see Section 1.5.3.

But let us continue with the discussion of our extension problem. We will
combine disintegration and the possibility of extending a measure from a sub-
σ-algebra to a larger one in order to obtain

PROPOSITION 4.7
Let X and Y be Polish spaces, assume that B ⊆ B(Y ) is a countably generated
σ-algebra, and let K0 : (X,B(X)) � (Y,B) be a stochastic relation. Then K0

can be extended to a stochastic relation K : (X,B(X)) � (Y,B(Y )).

PROOF 0. We will construct a probability measure on the product
B(Y ) ⊗ B, extend this measure and then obtain the desired extension to the
probabilistic relation through disintegration.

1. Let μ be a probability measure on B(X), and define for D ∈ B(Y ) ⊗ B
the measure

μ0(D) :=
∫

X

K0(x)(Dx) μ(dx),

where, as usual, Dx := {y ∈ Y | 〈x, y〉 ∈ D}, and by standard arguments
Dx ∈ B for any D ∈ B(Y ) ⊗ B. Let μ1 be an extension of μ0 to all of
B(X × Y ). This extension exists by Lemma 4.6. Since μ1 is a measure on
the product of two Polish spaces, there exists by Theorem 1.84 a stochastic
relation K1 : (X,B(X)) � (Y,B(Y )) such that

μ1(D) =
∫

X

K1(x)(Dx) μ(dx)

holds for all D ∈ B(X × Y ). K1 is not uniquely determined, so we have to
smooth this relation somewhat.

2. Let B0 := {Bn | n ∈ N} be a countable generator of the σ-algebra B; we
may and do assume that B0 is closed under finite intersections (otherwise form
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all finite intersections of elements of B0, then this is still a countable generator
with the desired property). Now let E ∈ B, then μ0(E × Y ) = μ1(E × Y )
holds by the construction of this extension, thus there exists for each E ∈ B
a set N(E) ∈ B(X) with μ(N(E)) = 0 such that

∀x ∈ X \N(E) : K0(x)(E) = K1(x)(E).

Now put N :=
⋃
n∈N

N(Bn) as the set of all possibly violating x, then N ∈
B(X), and μ(N) = 0 holds.

3. We claim that for any x ∈ X \ N the equality K0(x)(E) = K1(x)(E)
holds for every Borel set E ∈ B. In fact, put

E := {E ∈ B | ∀x ∈ X \N : K0(x)(E) = K1(x)(E)},

then B0 ⊆ E by construction, E contains Y , and E is closed under comple-
mentation and disjoint countable unions. Thus E = B is inferred by the
π−λ-Theorem 1.1. Now let μ2 be an arbitrary probability measure on B(Y ),
and define the stochastic relation K by cases as follows:

K(x)(D) :=

⎧
⎪⎨

⎪⎩

K1(x)(D), x /∈ N,D ∈ B(Y )
K0(x)(D), x ∈ N,D ∈ B
μ2(D), x ∈ N,D /∈ B.

This relation has the desired properties.

The result applies directly to making a pair of surjective and measurable
maps into morphisms under a rather weak condition of separability.

LEMMA 4.8

Let M := (A,B,M) be a stochastic relation between the measurable spaces
A and B, and assume that B is separable. If X and Y are Polish spaces with
measurable and surjective maps φ : X → A,ψ : Y → B, then there exists
a stochastic relation K := (X,Y,K) which makes f := (φ, ψ) a morphism
f : K→ M.

PROOF Let B be the σ-algebra on B, then ψ−1 [B] is a countably gener-
ated sub-σ-algebra of B(Y ). Define for x ∈ X and D ∈ B K0(x)(ψ−1 [D]) :=
M(φ(x))(D), then K0 : (X,B(X)) � (Y, ψ−1 [B]) is a stochastic relation
which can be extended to a stochastic relation K : (X,B(X)) � (Y,B(Y ))
by Proposition 4.7. It is plain from the construction that S (ψ) ◦K = M ◦ φ
holds.
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4.4 The Existence of Semi-Pullbacks

We will show now that semi-pullbacks exist in a rather general setting,
generalizing the constructions in (Edalat, 1999). This will ultimately lead to
showing that semi-pullbacks exist for analytic objects, and it will turn out
that the object underlying such a semi-pullback is Polish.

4.4.1 The Polish Case

The central Lemma reads as follows:

LEMMA 4.9

Let Ki be Polish objects, and assume that K = (X,Y,K) is a stochastic
relation, where X,Y are separable measurable spaces. In Stoch each diagram

K1

K2
f2 � K

f1

�

has a semi-pullback

M
g1 � K1

K2

g2

�

f2
� K

f1

�

with a Polish object M.

PROOF 1. Assume Ki = (Xi, Yi,Ki) with fi = (φi, ψi), i = 1, 2. In
view of Lemma 1.45 we may and do assume that the respective σ-algebras
on X and Y are the Borel sets of second countable metric spaces. Because
of Proposition 1.28 we may assume that the respective σ-algebras on X1 and
X2 are obtained from Polish topologies which render φ1 and K1 as well as φ2

and K2 continuous. These topologies are fixed for the proof. Put

A := {〈x1, x2〉 ∈ X1 ×X2 | φ1(x1) = φ2(x2)},
B := {〈y1, y2〉 ∈ Y1 × Y2 | ψ1(y1) = ψ2(y2)},
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then both A and B are closed, hence Polish. αi : A → Xi and βi : B → Yi
are the projections, i = 1, 2. The diagrams

X1
φ1 � X � φ2

X2

S (Y1)

K1

�

S (ψ1)
� S (Y )

K

�
�
S (ψ2)

S (Y2)

K2

�

are commutative by assumption, thus we know that for xi ∈ Xi

K(φ1(x1)) = S (ψ1) (K1(x1)),
K(φ2(x2)) = S (ψ2) (K2(x2))

both hold. The construction implies that (ψ1 ◦ β1)(y1, y2) = (ψ2 ◦ β2)(y1, y2)
is true for 〈y1, y2〉 ∈ B, and ψ1 ◦ β1 : B → Y is surjective.

2. Fix 〈x1, x2〉 ∈ A. Separability of the target spaces now enters: Corol-
lary 1.46 shows that the image of a surjective map under S is onto again, so
that there exists μ0 ∈ S (B) with S (ψ1 ◦ β1) (μ0) = K(φ1(x1)), consequently,
S (ψi ◦ βi) (μ0) = S (ψi) (Ki(xi)) (i = 1, 2). But this means

∀Ei ∈ ψ−1
i [B(Y )] : S (βi) (μ0)(Ei) = Ki(xi)(Ei) (i = 1, 2).

Put

Γ(x1, x2) := {μ ∈ S (B) | S (β1) (μ) = K1(x1) ∧S (β2) (μ) = K2(x2)},

then Proposition 4.4 shows that Γ(x1, x2) �= ∅.
3. Since K1 and K2 are continuous, Γ : A→ F(S (B)) is easily established.

The set
∃Γ(C) = {〈x1, x2〉 ∈ A | Γ(x1, x2) ∩ C �= ∅}

is closed in A for compact C ⊆ S (B) . In fact, let (〈x(n)
1 , x

(n)
2 〉)n∈N be a

sequence in this set with x
(n)
i → xi, as n → ∞ for i = 1, 2, thus 〈x1, x2〉 ∈

A. There exists μn ∈ C such that S (βi) (μn) = Ki(x
(n)
i ). Because C is

compact, there exists a converging subsequence μs(n) and μ ∈ C with μ =
limn→∞ μs(n) in the topology of weak convergence. Continuity of Ki implies
that S (βi) (μ) = Ki(xi), consequently 〈x1, x2〉 ∈ ∃Γ(C); thus this set is
closed, hence measurable.

4. From Proposition 1.57 it is now inferred that there exists a measur-
able map M : A → S (B) such that M(x1, x2) ∈ Γ(x1, x2) holds for every
〈x1, x2〉 ∈ A. Thus M : A � B is a stochastic relation with

K1 ◦ α1 = S (β1) ◦M,

K2 ◦ α2 = S (β2) ◦M.
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Hence M := (A,B,M) is the desired semi-pullback.

This statement includes several interesting special cases:

THEOREM 4.10
Semi-pullbacks exist in the category PolStoch of stochastic relations over

Polish spaces.

PROOF This follows immediately from Lemma 4.9.

COROLLARY 4.11
Suppose that in the diagram of Lemma 4.9 the target object K is an analytic

object. Then a Polish semi-pullback of that diagram exists in Stoch.

PROOF This also follows immediately from Lemma 4.9.

4.4.2 The Analytic Case

We obtain from Theorem 4.10 together with Corollary 4.11 the generaliza-
tion to analytic spaces that is of interest to us through essentially an extension
argument. Suppose that we have an analytic object M, then we can find a
Polish object K and a morphism g : K → M by Lemma 4.8. This is so since
analytic spaces are surjective images of Polish spaces under measurable maps,
and since analytic spaces are — as measurable spaces — separable. This ob-
servation has as a somewhat unexpected consequence that semi-pullbacks do
exist for analytic spaces:

COROLLARY 4.12
Let Mi be an analytic object for i = 1, 2 and assume that M := (A,B,M) is

a stochastic relation for the separable measurable spaces A,B. For the pair

M1
f1 � M � f2

M2

there exist both a Polish object K and morphisms

M1
� g1

K
g2 � M2

forming a semi-pullback.

PROOF We can find Polish objects Ki and morphisms in Stoch extending
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the diagram
K1 K2

M1

h1

� f1 � M � f2
M2

h2

�

by Lemma 4.8. Now, using Lemma 4.9, find a semi-pullback

K1
� t1

K
t2 � K2

for the diagram

K1
h1 ◦ f1� M �h2 ◦ f2

K2

Here K is a Polish object, and t1, t2 are morphisms in Stoch. Putting gi :=
hi ◦ ti for i = 1, 2 now establishes the claim.

Thus we have in particular established:

THEOREM 4.13
The category anStoch of stochastic relations over analytic spaces has semi-

pullbacks. They may be chosen as Polish objects.

We close with a negative result, indicating that it is not possible to streng-
then the results obtained here towards the existence of weak pullbacks or to
pullbacks. Recall that a semi-pullback r : d → a, s : d → c for a pair of
morphisms f : a → b, g : c → b is a weak pullback iff the following holds:
whenever r′ : d′ → a, s′ : d′ → c forms a commutative diagram with f and
g (i.e., f ◦ r′ = g ◦ s′ holds), then there exists a morphism h : d′ → d with
r′ = r ◦ h, s′ = s ◦ h. If morphism h is uniquely determined, then d together
with r and s is called a pullback.

The category PolProb is the full subcategory of Prob (cf. Section 4.3)
which has probability spaces based on Polish spaces as objects.

PROPOSITION 4.14
Let (X,μ) and (Y, ν) be objects in PolProb, and assume that φ : (X,μ) →

(Y, ν) is a morphism in PolProb such that φ : X → Y is not bijective. Then
the kernel pair

(X,μ)
φ� (Y, ν) � φ

(X,μ)

does not have a weak pullback in PolProb.

PROOF Assume that (P, ρ) is a weak pullback for that kernel pair with
morphisms based on the maps π1 : P → X and π2 : P → X . Because the
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category of Polish spaces with surjective Borel maps has finite products and
equalizers, we conclude that

P = {〈x1, x2〉 ∈ X ×X | φ(x1) = φ(x2)}

and that π1, π2 are just the projections. Because the identity idX : (X,μ) →
(X,μ) is plainly a morphism with f ◦ idX = f ◦ idX , we find a morphism
χ : (X,μ) → (P, ρ) such that π1 ◦ χ = π2 ◦ χ. Thus each element of P must
be of the form 〈x, x〉, contradicting the fact that φ is not injective.

Because PolProb is a full subcategory of PolStoch, we may conclude

COROLLARY 4.15

Neither PolStoch nor anStoch have weak pullbacks.

When comparing the present situation for the probability functor with the
scenario in general coalgebras, the reader may wish to consult the survey (Rut-
ten, 2000) and to observe that many of the main theorems and constructions
require the existence of a weak pullback for the functor governing the coalge-
bra. Corollary 4.15 is in part responsible for the fact that many constructions
that are quite similar to the ones performed for coalgebras will have to de-
velop their own, specific proof for stochastic relations, which does not agree
or even resemble a coalgebraic argument. The discussion of simple systems in
Section 5.7 will demonstrate this rather convincingly. This is also the deeper
reason why modeling software architectures in categories like PolStoch will
be confined to linear models, because modeling decisions in them is difficult;
see (Lajios, 2006), and the discussion in Section 2.4.7.1.

4.5 Bibliographic Notes

The problem to secure the existence of a semi-pullback has been addressed
in a variety of ways, varying the base category suitably. Edalat (Edalat,
1999) considers a category of Markov processes with the state space an ana-
lytic space, and the transition probability function as universally measurable.
The solution to this instance of the problem is essentially based on an explicit
construction using regular conditional probabilities which are available due to
the Polish descent of analytic spaces. Once this problem is solved, it becomes
possible to tackle the equivalence of bisimilarity and accepting the same for-
mulas for a whole family of modal logics with a countable number of diamonds,
all interpreted over analytic spaces with a labeled Markov transition system
based on universally measurable transition functions; see (Desharnais et al.,
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2002). In (Doberkat, 2003) Markov processes over Polish spaces are consid-
ered, where the transition probability function is Borel measurable. The prob-
lem is transformed into finding a measurable selector for a set-valued map, as
in the present discussion. Based on this solution, it is shown that bisimilarity
and accepting the same set of formulas are equivalent for a simple negation
free modal logic with a countable number of diamonds. The labeled Markov
transition processes come from Borel functions based on Polish spaces, and
the technical condition was that one of the processes is small, i.e., has a Borel
section (Srivastava, 1998).

We did refine here the technique employed in (Doberkat, 2003) in order to
show that semi-pullbacks exist in categories of Markov processes over analytic
spaces when the transition probability functions are Borel measurable (rather
than universally measurable). For practical purposes, the difference between
universal and Borel measurability is probably negligible; for structural pur-
poses it is not. Borel measurability is defined in terms of the inverse image
of Borel sets (in exactly the same way as continuity is defined in terms of the
inverse image of the open sets, or as uniform continuity is in terms of the in-
verse image of neighborhoods). Universal measurability requires additionally
the concept of completing the Borel sets through all finite measures, and thus
requires the additional concept of a finite measure. Hence Borel measurability
is conceptually simpler and appears as more fundamental.
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5.1 Introduction

This chapter will study smooth equivalence relations in greater detail. They
constitute important tools for the investigation of stochastic relations. We
have seen already that smooth relations occur naturally when looking at a
classification of relations through algebras for the associated monad in Sec-
tion 3.1. There we had a look at an equivalence relation that occurred as the
kernel of a Borel map.

We will now investigate these kernels more systematic and from different
angles. As it turns out, these relations occur quite naturally in another dis-
guise: take for example a Kripke model K with state space S for the simple
modal logic introduced in the Introduction with its set Φ of formulas. If the
set A of actions and the set AP of atomic propositions are countable, Φ is
countable as well. Now define

s ≡ s′ iff ∀ϕ ∈ Φ : [K, s |= ϕ⇔ K, s′ |= ϕ].

Then the relation ≡ is smooth, as we will show, and the invariant sets for this
relation become of interest: A set B ⊆ S is ≡-invariant iff s ∈ B and if s′

satisfies exactly the same formulas as s together imply s′ ∈ B, or, using ≡, if
s ∈ B and s′ ≡ s imply s′ ∈ B, thus iff B is the union of the ≡-equivalence
classes. The invariant Borel sets form a σ-algebra which uniquely identifies
the relation. A variant of this theme will be interesting as well: Say that
s ≡F s′ iff s and s′ satisfy exactly the same formulas from F ⊆ Φ. When
investigating a continuous time stochastic logic in 6.4, we will expand the

179



180 5.1 Introduction

reach of ≡F in the sense that we are looking for a larger set G of formulas
so that ≡F equals ≡G (which means that it is enough to check the formulas
in F in order to collect sufficient information regarding the formulas in G).
Although it is far from evident, the invariant sets help here, too.

We will investigate these relations in this chapter, introduce congruences
for stochastic relations based on smooth relations, and show how to factor
stochastic relations with congruences. Factor systems will be an important
tool for the investigation of bisimulations, which will also be introduced here.
First, bisimulations will be introduced as spans of morphisms with an addi-
tional property that ties the bisimilar objects together. We will develop a
sufficient condition for two stochastic relations to be bisimilar. This condi-
tion is based on congruences that in some sense are generating each other, a
condition that we describe as simulation equivalence. Later we will see that
a natural condition like the one in the Hennessy-Milner Theorem for modal
logics can be derived from it. In a special case the condition can be shown
to be sufficient: this requires the mediating system to be a compact metric
space (of which finite systems are a special case).

The criterion says that we need only to look at the subsystems of two
stochastic relations. If we detect subsystems that are isomorphic, then we
do not only know that the systems are behavioral equivalent (since we have
identified a cospan of morphisms), but that they are bisimilar. This hints at
the very close relationship of bisimilarity and behavioral equivalence which
will be exploited; simulation equivalent congruences play a mediating rôle;
they will arise in Chapter 6 through the theories for the logics CSL and its
close cousin μCSL. Thus these congruences will be used as a peg to hang
equivalent models on.

One of the techniques for the investigation of bisimilar systems is factoring a
system. This is investigated here as well, building the bridge to classical alge-
braic systems like groups, modules and the like. Because we have congruences
at our disposal, we may look at the factor system and see which properties
it has, and how the morphisms relate to factoring. One of the results will be
that for a morphism f : K → K′ an isomorphism between K/ker (f) and K′

can be established (morphisms are epis). If d is a congruence on the factor
relation K/c, then we show that (K/c)/d is isomorphic to K/c • d, where c • d
is a congruence of K that is coarser than c and encodes the properties of d on
the level of the base system. This basically entails that all the properties of
a factor system may be derived from the base system itself, so that iterative
factoring does not lead to unpleasant surprises. This isomorphism is similar to
the ones captured in classical group theory through the Second Isomorphism
Theorem.

We deal in this chapter also with systems that are simple in the sense that
they do not have any interesting subsystems. So a stochastic relation K is
simple if a factor system K/c is either trivial or equal to K itself. These systems
are of considerable coalgebraic interest, because — via final systems — they
form the basis for the proof principle of coinduction. If we could identify final
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systems in a sensible way, then we could establish probabilistic coinduction as
well. But this hope cannot be supported: final systems are much too simple
to be of any interest. We identify simple systems through their bisimulations
(this is truly in the coalgebraic spirit), but then have a look at what this entails
with respect to final systems, provided they exist, and here coalgebraic hope
will leave us.

5.2 Smooth Equivalence Relations

An equivalence relation ρ on an analytic space is smooth (or countably
generated) iff it can be decided whether or not two elements are equivalent
by looking at a countable family of Borel sets; see Definition 1.50.

The relation’s invariant Borel sets will be a powerful tool for investigating
smooth relations. In order to appreciate this σ-algebra fully, we show that
it is often enough to establish a property related to the equivalence relation
for the generators, then it will hold on the generated σ-algebra. This will
be interesting when we investigate various logics: here the generators are
determined by the formulas of the logic, yielding a rather captivating interplay
of formulas in the logic and a σ-algebra determined by their semantics.

LEMMA 5.1
Assume that an equivalence relation ∼ is defined for a set M through

m ∼ m′ iff ∀G ∈ G : [m ∈ G⇔ m′ ∈ G],

where the elements of G are subsets of M . Then

m ∼ m′ iff ∀G ∈ σ(G) : [m ∈ G⇔ m′ ∈ G].

PROOF It is not difficult to see that the set

H := {G ∈ σ(G) | m ∈ G⇔ m′ ∈ G}

is a σ-algebra, where m,m′ ∈ M are fixed. For example, if G1, G2 ∈ H and
m ∈ G1 ∪ G2, then m ∈ G1 or m ∈ G2. Depending on which case applies,
m′ ∈ G1 or m′ ∈ G2, thus m′ ∈ G1 ∪G2, and vice versa. But by assumption
G ⊆ H, thus σ(G) ⊆ H, and the conclusion follows.

This Lemma tells us that invariance with respect to an equivalence relation,
which will be defined below, is carried over from a generator to its σ-algebra.
This implies that we have some degrees of freedom when selecting a generator.
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DEFINITION 5.2 Let ρ be a smooth equivalence relation on an analytic
space X.

a. A subset A ⊆ X is called ρ-invariant iff x ∈ A and x ρ x′ together imply
x′ ∈ A.

b. Denote by INV (B(X), ρ) the σ-algebra of ρ-invariant Borel subsets of X.

Thus a ρ-invariant set A can be written as the union of the equivalence
classes of its sets, A =

⋃
{[x]ρ | x ∈ A}. We see further that the invariant

Borel subsets constitute the σ-algebra of (An)n∈N which determines ρ. This
will be investigated further in a moment.

These are quite simple examples:

LEMMA 5.3

The identity relation ΔX and the universal relation UX are for each Polish
space X smooth equivalence relations with

INV (B(X),ΔX) = B(X),
INV (B(X), UX) = {∅, X}.

PROOF The assertion is trivial for the universal relation. One argues for
the identity relation as follows: the Borel sets of X are countably generated,
and one can find such a countable generator G that separates points. This
implies that ΔX has G as the determining family, and since σ(G) = B(X), the
assertion follows.

We have seen in Proposition 1.53 that factoring an analytic space with
a smooth equivalence yields an analytic space again. This closure property
above is fairly fundamental for the development of the algebraic theory of
stochastic relations, being one of the reasons for sometimes preferring analytic
spaces over Polish ones, since the latter ones are not closed under factoring
through a smooth relation. It will enable factoring through a congruence
(see Section 5.3) without running the risk that the arising structure will lose
essential properties. This will be discussed in due course.

5.2.1 Invariant Borel Sets

The invariant Borel sets may be characterized through the factor map by
the inverse image of the Borel sets of a factor space. This will give a fairly
practical handle on the invariant sets. The next Lemma is a bit more general
by considering general surjective Borel maps, and we will see that this is
helpful indeed.
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LEMMA 5.4
Let X,Y be analytic spaces, and assume that f : X → Y is a surjective

Borel map. Then f−1 [B(Y )] = INV (B(X), ker (f)) .

PROOF 1. Given A ∈ INV (B(X), ker (f)) , we show first that

f−1 [f [A]] = A

holds. In fact, A ⊆ f−1 [f [A]] is always true. Let s ∈ f−1 [f [A]] , thus
f(s) = f(s′) for some s′ ∈ A. Since A is ker (f)-invariant, this implies s ∈ A,
accounting for the other inclusion.

2. Let again A ∈ INV (B(X), ker (f)) , then f [A] ⊆ Y is analytic. We
claim that

f [X \A] = Y \ f [A]

holds. For, if y ∈ f [S \A], we can find x /∈ B with f(x) = y. Assuming that
y = f(x′) for some x′ ∈ A, we would infer that x ∈ A due to the ker (f)-
invariance of A, and since 〈x, x′〉 ∈ ker (f) . This is a contradiction. This
settles the nontrivial inclusion. From the representation just established we
see that Y \ f [A] is analytic, and from Souslin’s Theorem (Theorem 1.39) we
infer now that f [A] is Borel in Y .

3. It is clear that for each B ∈ B(Y ) its inverse image f−1 [B] under f
is a Borel set which is ker (f)-invariant. On the other hand, if A ∈ B(X) is
ker (f)-invariant, we write A = f−1 [f [A]] by part 1, and f [A] ∈ B(Y ) by
part 2. This implies the desired equality.

As a by-product we obtain a characterization of ρ-invariant Borel sets in an-
alytic spaces through the generating sequence (An)n∈N. This result is known
for Polish spaces; it seems to be new for the analytic case. As a consequence,
we can characterize the ρ-invariant Borel set through the canonic projection
ηρ.

PROPOSITION 5.5
Let X be an analytic space with a smooth equivalence relation ρ, then the

ρ-invariant Borel sets of X are exactly the inverse images of the canonic
projection ηρ, viz.,

INV (B(X), ρ) = η−1
ρ [B(X/ρ)]

holds. Moreover, if ρ is determined by the sequence (An)n∈N of Borel sets
An ⊆ X, then

INV (B(X), ρ) = σ ({An | n ∈ N}) .

PROOF 1. X/ρ is an analytic space, and ηρ : X → X/ρ is surjective and
onto. Thus the first assertion follows from Lemma 5.4 upon observing that
ρ = ker (ηρ) holds.
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2. Let A ∈ B(X/ρ) be a Borel set in X/ρ. Plainly,

A =
⋃
{{[x]ρ} | [x]ρ ∈ A},

so it is enough to show that each {[x]ρ} constitutes an atom in the σ-algebra
σ ({ηρ [An] | n ∈ N}) .

Granted that, we can argue as follows: The Blackwell-Mackey-Theorem
(Theorem 1.54) implies that B(X/ρ) = σ ({ηρ [An] | n ∈ N}) holds, thus C ∈
INV (B(X), ρ) iff C = η−1

ρ [B] for some

B ∈ η−1
ρ [σ ({ηρ [An] | n ∈ N})] = σ ({An | n ∈ N}) .

3. It is easy to see that
⋂
{ηρ [An] | t ∈ An} ∩

⋂
{X/ρ \ ηρ [An] | t /∈ An}

contains the class [x]ρ as its only element, and that

(X/ρ) \ ηρ [An] = ηρ [T \An] ,

because An is ρ-invariant, cp. part 2 of the proof of Lemma 5.4. Thus the
atom {[x]ρ} is a member of σ ({ηρ [An] | n ∈ N}) .

We obtain as a Corollary that a smooth equivalence relation is determined
uniquely by its invariant sets:

COROLLARY 5.6
If C ⊆ B(X) is a countably generated sub-σ-algebra of the Borel sets of

X, then there exists a unique smooth equivalence relation ρC on X with C =
INV (B(X), ρC) .

5.2.2 Operations on Smooth Relations

We will study briefly operations with smooth equivalence relations. These
operations will shape useful tools for constructions on stochastic relations.
The interplay between smooth relations and measurable maps is further illus-
trated by the technique of transporting a smooth relation backwards along a
measurable map.

LEMMA 5.7
Let α be a smooth equivalence relation on the analytic space A so that

α = ker (h) for some measurable map h : A→W , W being an analytic space.
Define for the Polish space X and the Borel map f : X → A on X the smooth
relation αf := ker (h ◦ f) . If E ⊆ X is an αf -invariant Borel set, then
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a. f [E] is an α-invariant Borel set in A,

b. E = f−1 [f [E]].

Consequently, the invariant Borel sets of αf are just the inverse images of the
invariant Borel set of α under f , viz.,

INV (B(X), αf) = f−1 [INV (B(A), α)] .

PROOF 1. Let E0 := f−1 [F ] be the inverse image of an α-invariant set
F ⊆ A, and assume that x ∈ E0 with x αf x

′. Since f(x) ∈ F , and since
h(f(x)) = h(f(x′)), we have f(x′) ∈ F , thus x′ ∈ E0. Consequently, E0 is
αf -invariant, and we have shown that

INV (B(X), αf) ⊇ f−1 [INV (B(A), α)]

holds.
2. Let E ∈ INV (B(X), αf) , then we assert that

E′ := f [E] ∈ INV (B(A), α) .

Since E is αf -invariant, f [E] is α-invariant by construction. The hard part
is showing that E′ is a Borel set. First it is clear that E′ is an analytic set,
because it is the image of a Borel set under a Borel map. We claim that
f [X \ E] = A \ f [E] . From this we may conclude that E′ is also co-analytic,
thus is a Borel set by Souslin’s famous theorem (Theorem 1.39).

We first repeat the argumentation in the proof of Lemma 5.4 in showing that
f [X \ E] ⊆ A\f [E] holds: Suppose a ∈ f [X \ E] , then we can find x ∈ X\E
with a = f(x). If a would be a member of f [E], we could find x′ ∈ E with
a = f(x′). Since x αf x′ and since E is αf -invariant, we would find x ∈ E,
contradicting the choice of x. This establishes the desired equality and shows
that E′ is in fact a Borel set. But we can say more: E = f−1 [f [E]] will be
shown to hold. Let x ∈ f−1 [f [E]], thus f(x) ∈ f [E] , hence f(x) = f(x′) for
some x′ ∈ E. But this implies x ∈ E since the latter set is αf -invariant, and
x αf x

′. The other inclusion is trivial again.
3. The argument shows that each element of INV (B(X), αf) can be rep-

resented as the inverse image of an element from INV (B(A), α) under f ,
thus

INV (B(X), αf) ⊆ f−1 [INV (B(A), α)]

is established.

It should be noted that the image of a Borel set under a Borel map is
usually not a Borel set. This is an immediate consequence of the observation
in Proposition 1.35 that there are strictly more analytic sets than Borel sets.
Hence the first property in Lemma 5.7 indicates that invariance paired with
smoothness is fairly strong a property.
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When investigating different morphisms for a stochastic relation, a relation
derived from the images will be helpful. Abbreviate for two maps g1, g2 : V →
W with common domain V and common range W (V and W are for the time
being arbitrary sets) the common product image by

"g1‖g2# := {〈g1(v), g2(v)〉 | v ∈ V }.

If g1 and g2 model processes, "g1‖g2#may be visualized as having the processes
run in parallel. It will turn out that the equivalence relation generated from
this relation is quite closely connected to the events common to these pro-
cesses. Denote the smallest equivalence relation that contains a given relation
R by �(R).

The events common to two morphisms can be identified through �("·‖·#).
We will need this representation when dealing with properties of morphisms
for simple relations in Section 5.7.1.

LEMMA 5.8
Assume B is a Polish space, and let ψ1, ψ2 : B → Y be surjective Borel

maps. Assume further that �("ψ1‖ψ2#) is smooth. Let

C := {C ∈ B(Y ) | ψ−1
1 [C] = ψ−1

2 [C]}

be the σ-algebra of events common to both ψ1 and ψ2. Then these common
events are exactly the �("ψ1‖ψ2#)-invariant Borel sets, thus

C = INV (B(Y ), �("ψ1‖ψ2#)) .

PROOF 1. It is not difficult to see that if C ∈ C is a common event
then y ∈ C and 〈y, y′〉 ∈ �("ψ1‖ψ2#) together imply y′ ∈ C. This is so since
〈y, y′〉 ∈ �("ψ1‖ψ2#) implies that there exist y0, . . . , yn ∈ Y with y0 = y, yn =
y′ and 〈yi, yi+1〉 ∈ "ψ1‖ψ2# for 1 ≤ i ≤ n− 1. This yields

C ⊆ INV (B(Y ), �("ψ1‖ψ2#))

in terms of the σ-algebras involved.
2. Now let

C ∈ INV (B(Y ), �("ψ1‖ψ2#)) = η−1
�(�ψ1‖ψ2�) [B(Y )/�("ψ1‖ψ2#)] ,

the latter equality holding by Proposition 5.5. Thus we can find

D ∈ B(Y )/�("ψ1‖ψ2#)

with C = η−1
�(�ψ1‖ψ2�) [D] . Consequently,

ψ−1
1 [C] = ψ−1

2 [C]⇐⇒
(
η�(�ψ1‖ψ2�) ◦ ψ1

)−1 [D] =
(
η�(�ψ1‖ψ2�) ◦ ψ2

)−1 [D] .
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Since by construction η�(�ψ1‖ψ2�) ◦ ψ1 = η�(�ψ1‖ψ2�) ◦ ψ2, the latter equality
follows. Hence C is a common event, establishing the nontrivial inclusion.

The invariant sets leave a trace on the product: consider for an invariant
set P all pairs 〈x, x′〉 ∈ α with x ∈ P . Properties on this trace include the
extendability of measurable sets as well as measures on the base space to it
in a natural way.

LEMMA 5.9

Let α be a smooth equivalence relation on the analytic space X. Then

a. If P ∈ INV (B(X), α), then (P ×X) ∩ α = (X × P ) ∩ α = (P × P ) ∩ α

b. ⊗ [X,α] := {(P ×X) ∩ α | P ∈ INV (B(X), α)} is a σ-algebra on α,

c. If μ ∈ S (X, INV (B(X), α)) is a subprobability measure on the α-invari-
ant Borel sets of X, then μ•((P ×X)∩α) := μ(P ) defines a subprobability
measure on ⊗ [X,α] .

PROOF 1. Part a is proved by a direct calculation, and part b is estab-
lished by checking the defining properties of a σ-algebra.

2. For proving part c it is observed that μ• is well defined, since (P1 ×
X) ∩ α = (P2 ×X) ∩ α implies P1 = P2 for the α-invariant sets P1, P2. The
properties of a finite measure are then easily established.

When dealing with bisimulations, we will closely look at properties of a
smooth relation as a subset of the Cartesian product. Here Lemma 5.9 will
come in handy.

Factoring a factor space through a smooth relation will not really bring
new structural information: we will show that the iterated factor space is
isomorphic to a factor space that can be obtained from a relation on the base
space. This will be an occasion to introduce a kind of multiplicative operation
on relations for later use. Then we will show that other operations such as
sums, intersections and countable products of smooth relations will also lead
to smooth relations.

Assume that ρ is a smooth equivalence relation on the analytic space X ,
and that τ is a smooth equivalence on X/ρ. Define for x, x′ ∈ X

x (τ • ρ) x′ ⇔ [x]ρ τ [x′]ρ .

PROPOSITION 5.10

The equivalence relation τ •ρ is smooth, and the analytic spaces X/τ • ρ and
(X/ρ)/τ are Borel isomorphic.
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PROOF 0. Since τ is smooth, there exists a sequence (An)n∈N of Borel
sets An ⊆ X/ρ which determines it. Then

(
η−1
ρ [An]n∈N

)
determines τ • ρ. Its

members are by construction Borel sets in X .
1. Define

gρ,τ

(
[x]τ•ρ

)
:=

[
[x]ρ

]

τ
,

then gρ,τ : X/τ • ρ→ (X/ρ)/τ is well defined and turns out to be a bijection.
The construction shows that gρ,τ ◦ ητ•ρ = ητ ◦ ηρ holds; putting hρ,τ := g−1

ρ,τ ,
we see that ητ•ρ = hρ,τ ◦ ητ ◦ ηρ. This is also noted for later use.

2. Let E ⊆ (X/ρ)/τ be a Borel set, we need to show that g−1
ρ,τ [E] is a Borel

set in X/τ • ρ, equivalently by Proposition 5.5, that E0 := η−1
τ•ρ

[
g−1
ρ,τ [E]

]
is

an τ • ρ-invariant Borel set in X . But E0 = (ηρ ◦ ητ )−1 [E] , so that E0 is
a Borel set by the measurability of the projections, and this set is clearly
τ • ρ-invariant. Thus we get the measurability of E0 again from Lemma 5.5.

3. Let F ⊆ X/τ • ρ be a Borel set, hence F0 := η−1
τ•ρ [F ] is a Borel set in X ,

thus there exists a Borel set F1 ⊆ (X/ρ)/τ, such that F0 = η−1
ρ

[
η−1
τ [F1]

]
since

F0 is ρ-invariant. Hence F1 = h−1
ρ,τ [F ] , so hρ,τ is measurable, establishing the

claim.

The definition of τ • ρ translates a partition of the ρ-classes into a partition
of the base set. The generated τ • ρ-partition is coarser than the ρ-partition,
since ρ ⊆ τ • ρ. The converse holds as well: whenever we have two partitions
coming from smooth equivalence relations, we may find a factor in terms of •
relating them to each other. Surprisingly, this result about the containment of
equivalence relations may be used in Section 5.2.3 to show that two completely
unrelated equivalences may give rise to some sort of confluence.

COROLLARY 5.11

The following conditions are equivalent for smooth equivalence relations ρ
and σ on X:

a. ρ ⊆ σ,

b. there exists a smooth equivalence relation θ on X/ρ such that σ = θ • ρ.

PROOF 1. The direction b⇒a is trivial, so we are left with the proof for
a⇒b.

2. Define f
(
[x]ρ

)
:= [x]σ for [x]ρ ∈ X/ρ then f : X/ρ → X/σ is well

defined and surjective. We claim that f is B(X/ρ)-B(X/ρ)-measurable. In
fact, we need to show that f−1 [D] ∈ INV (B(X), ρ) whenever D ∈ B(X/ρ).
Since by Corollary 5.5

D ∈ B(X/ρ)⇔ η−1
σ [D] ∈ INV (B(X), σ) ,
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the claim follows from η−1
ρ

[
f−1 [D]

]
= η−1

σ [D] and from INV (B(X), σ) ⊆
INV (B(X), ρ) , which is inferred from ρ ⊆ σ by a trivial calculation. Since
Lemma 5.4 tells us that ker (f) is smooth, we can set θ := ker (f) and are
done.

We turn now to sums and products. Knowing that smooth equivalence
relations are closed under the sum operation is helpful when discussing con-
gruences on the sum of stochastic relations. It is clear that the sum and the
product of a countable number of analytic spaces is analytic again; this can
easily be established through Proposition 1.33.

LEMMA 5.12
Let X and Y be analytic spaces with smooth equivalence relations α resp. β.

Then α+ β := α ∪ β is a smooth equivalence relation on X + Y .

PROOF If (An)n∈N and (Bn)n∈N determine α resp. β, then the countable
set of Borel sets {An +Bm | n,m ∈ N} determines α+ β.

Smooth equivalence relations are closed under intersections and under coun-
tably infinite products.

LEMMA 5.13
If ρ, ρ′ are smooth equivalence relations on the analytic space X, then ρ∩ ρ′

is smooth, and INV (B(X), ρ ∩ ρ′) = σ (INV (B(X), ρ) ∪ INV (B(X), ρ′)) .

PROOF Assume that (An)n∈N and (A′
n)n∈N determine ρ resp. ρ′. Then

the sequence (An ∩ A′
m)n,m∈N determines ρ ∩ ρ′. The representation for the

invariant Borel sets for ρ ∩ ρ′ follows then easily from Proposition 5.5.

The closure under countably infinite products will resort to the construction
of the Borel sets on an infinite product through cylinder sets (cp. Section 1.2).

LEMMA 5.14
Assume that (Xn)n∈N is a sequence of analytic spaces, and let ρn be a smooth

equivalence relation on Xn for each n ∈ N. Define

(an)n∈N (×n∈N ρn) (a′n)n∈N ⇐⇒ ∀n ∈ N : an ρn a′n.

Then

a. ×n∈N ρn is a smooth equivalence relation on
∏
n∈N

Xn.

b. INV
(
B(

∏
n∈N

Xn),×n∈N ρn
)

=
⊗

n∈N
INV (B(Xn), ρn) .
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PROOF 1. Abbreviate the equivalence relation ×n∈N ρn by ρ∞. Assume
that ρn is determined by the sequence (Zn,m)m∈N of Borel sets Zn,m ⊆ Xn.
Define for n1 . . . nk ∈ N

∗ the cylinder set

Wn1...nk
:= Z1,n1 × · · · × Zk,nk

×
∏

j>k

Xj .

Then it is easy to see that

(an)n∈N ρ∞ (a′n)n∈N

⇔ ∀v ∈ N
∗ : [〈a1, . . . , ak〉 ∈Wv ⇐⇒ 〈a′1, . . . , a′k〉 ∈Wv] .

This implies that ρ∞ is generated through a countable family of Borel sets.
2. Since for each index v ∈ N

∗ the set Wv is a ρ∞-invariant Borel set which
is comprised from ρn-invariant factors, we have

INV
(

B(
∏

n∈N

Xn), ρ∞
)

⊆
⊗

n∈N

INV (B(Xn), ρn) ;

on the other hand, ⊗

n∈N

INV (B(Xn), ρn)

is generated by cylinder sets of the form

B1 × . . .×Bn ×
∏

j>n

Xj ,

which are ρ∞-invariant. This implies the other inclusion.

A finite version is here available as well: the product of two smooth equiv-
alence relations is smooth again, and the invariant Borel sets for the product
are just the product of the Borel sets for the factors.

5.2.3 A Confluence Property

We will establish a confluence property that will be helpful for understand-
ing the relationship between congruences and bisimulations in a special sit-
uation. Then this confluence property will be used in a crucial way for es-
tablishing that bisimilar relations have isomorphic factors. Quite apart from
this, it gives some insight into the manipulation of relations, and it indicates
a rather surprising connection to selections of set-valued maps.

An equivalence relation ρ on a set X can be viewed as a set-valued map
x 
→ [x]ρ that assigns element x ∈ X its equivalence class [x]ρ, hence a
particular nonempty set. The existence of a measurable selector f for this
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set-valued map [·]ρ implies that ρ is smooth, provided we know that X/ρ is
an analytic space. This is so since

x ρ x′ ⇔ [x]ρ = [x′]ρ ⇔ f(x) = f(x′),

so that ρ = ker (f) , hence Lemma 1.52 applies.
This is essentially the outline for the proof of the confluence property that

relates two smooth relations on a compact metric space.

PROPOSITION 5.15
Let T be a compact metric space, and assume that ρ = ker (φ) , σ = ker (ψ)

for some continuous maps φ : T → N and ψ : T → N ′ with metric spaces
N,N ′. There exist smooth equivalence relations θ on T/σ and θ′ on T/ρ such
that

a. θ′ • ρ = θ • σ,

b. θ and θ′ are minimal: if θ′0 • ρ = θ0 •σ, for smooth equivalence relations θ0
on T/σ and θ′0 on T/ρ, then θ ⊆ θ0 and θ′ ⊆ θ′0.

The diagram visualizes this claim and suggests the characterization as a
confluence property. •

• �

ρ

•

σ

�

• �...
....
....
....
....
....
....
....
.

θ

.................................

θ ′
�

Note that the universal relations on the respective factor spaces would sat-
isfy the first condition. The statement is then somewhat trivial, so minimality
will make sure that we may apply it in a sensible way.

The proof will be broken into several parts. Because of Corollary 5.11 we
will first find a smooth equivalence relation θ on T/σ such that ρ ⊆ θ • σ
holds. We will assume through the end of the proof of Proposition 5.15 that
T is a compact metric space, and that ρ = ker (φ) , σ = ker (ψ) .

CLAIM 5.16
T/σ is a compact metric space when endowed with the final topology for ησ.

PROOF Let d′ be the metric on N ′, and put for t, t′ ∈ T

D([t]σ , [t
′]σ) := d′(ψ(t), ψ(t′)),
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then D is a metric on T/σ (since σ = ker (ψ) by assumption). Let T be
the topology on T/σ induced by ησ, then a set G ⊆ T/σ which is D-open
is also T -open. This follows easily from the continuity of ψ. Conversely,
let F be T -closed, and assume that ([tn]σ)n∈N

be a sequence in F such
that D([tn]σ , [t]σ) → 0, as n → ∞. Select an arbitrary xn ∈ [tn]σ , thus
xn ∈ η−1

σ [F ] , the latter is a closed, hence compact set. Thus we can find
a convergent subsequence (which we take w.l.g. the sequence itself), so that
there exists x∗ ∈ η−1

σ [F ] with xn → x∗. By the continuity of ψ we may con-
clude ψ(xn) → ψ(x∗). This implies x∗ ∈ [t]σ , thus [t]σ ∈ F . Hence F is also
metrically closed, and the topologies coincide.

Claim 5.16 shows among others that the Borel sets in T/σ come from a
compact metric space. This observation will make some arguments easier.
When talking about the topology on T/σ, we refer interchangeably to the
metric topology and the topology induced by the canonic projection.

CLAIM 5.17
Put

ζ := {〈s, s′〉 | s, s′ ∈ T/σ, s× s′ ∩ ρ �= ∅}.
Then ζ ⊆ (T/σ)2 is reflexive, symmetric, and a closed subset of (T/σ)2.

PROOF Since ρ is reflexive and symmetric, ζ is. Now let 〈sn, s′n〉 ∈ ζ
be a convergent sequence, say sn → s, s′n → s′. For sn there exists by the
construction of ζ a pair 〈tn, t′n〉 ∈ ρ with tn ∈ sn, t

′
n ∈ s′n. In particular,

φ(tn) = φ(t′n). Compactness implies the existence of a subsequence (q(n))n∈N

and of elements t, t′ such that tq(n) → t, t′q(n) → t′, as n → ∞. Continuity

implies 〈t, t′〉 ∈ ker (φ) = ρ, and s = [t]σ , s
′ = [t′]σ . Thus ζ is closed.

Now define inductively the n-fold composition of ζ:

ζ(1) := ζ

ζ(n+1) := ζ(n) ◦ ζ,

where ◦ denotes the usual relational composition.
The following properties are easily established through a compactness ar-

gument using induction on n:

CLAIM 5.18
For each n ∈ N

a. ζ(n) ⊆ T/σ is closed,

b. if C ⊆ T/σ is compact, then the set

∃ζ(n)(C) = {s ∈ T/σ | ∃s′ ∈ C : 〈s, s′〉 ∈ ζ(n)}
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is closed.

CLAIM 5.19
The transitive closure θ of ζ is a smooth equivalence relation on T/σ.

PROOF It is clear from the properties of ζ that θ is an equivalence rela-
tion. Smoothness needs to be shown, and we will exhibit a Borel measurable
map into a Polish space with θ as its kernel. Write θ as

θ =
⋃

n∈N

ζ(n),

and let C ⊆ T/σ be a compact set, then

∃θ(C) = {s ∈ T/σ | ∃s′ ∈ C : 〈s, s′〉 ∈ θ}

is a measurable subset of T/σ by Claim 5.18. By Proposition 1.57 we can
find a measurable selector w for the set valued map s 
→ ηθ(s), hence a Borel
measurable map w : T/σ → T/σ such that w(s) ∈ [s]θ for each s ∈ T/σ. Now
we know that T/σ is a Polish space, and from θ = ker (w) we infer that θ is
smooth.

We are in a position now to establish Proposition 5.15.

PROOF (of Proposition 5.15). 1. It is sufficient for the first part to
establish ρ ⊆ θ • σ. In fact, let t ρ t′, then [t]σ × [t′]σ ∩ ρ �= ∅. This implies
〈[t]σ , [t′]σ〉 ∈ ζ ⊆ θ, which in turn establishes the inclusion and hence the
Proposition.

2. Now assume that θ′0 • ρ = θ0 • σ, for smooth equivalence relations θ0 on
T/σ and θ′0 on T/ρ holds, thus from Corollary 5.11 we infer σ ⊆ θ′0 • ρ and
ρ ⊆ θ0 • σ. In order to establish θ ⊆ θ0 it is enough to show that ζ ⊆ θ0. But
if 〈s, s′〉 ∈ ζ, we know that s × s′ ∩ θ0 • σ �= ∅, thus 〈t, t′〉 ∈ θ0 • σ for some
t ∈ s = [t]σ , t

′ ∈ s′ = [t′]σ . Consequently, s θ0 s′ holds. Interchanging the
rôles of ρ and σ establishes that θ′ ⊆ θ′0 also holds.

For later use we record a property of θ-invariant Borel sets that characterizes
these sets in terms of the equivalence relations from which θ is constructed.
It gives an easy criterion on invariance and indicates that the relation θ will
have some use in the discussions to follow.

LEMMA 5.20
Under the assumptions of Proposition 5.15, let D ⊆ T/σ be a Borel set, where
θ is defined as in Claim 5.19 as the equivalence relation generated through
{〈s, s′〉 | s, s′ ∈ T/σ, s× s′ ∩ ρ �= ∅}. Then these conditions are equivalent:
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a. D is θ-invariant,

b. η−1
σ [D] ∈ INV (B(T ), σ) ∩ INV (B(T ), ρ) .

PROOF 1. a⇒b: We know from Lemma 5.4 that η−1
σ [D] ∈ INV (B(T ), σ)

because D ⊆ T/σ is a Borel set. Now let t ∈ η−1
σ [D] with t ρ t′. Then [t]σ ∈ D

and [t]σ × [t′]σ ∩ ρ �= ∅, thus 〈[t]σ , [t′]σ〉 ∈ θ, and, since D is θ-invariant,
t′ ∈ η−1

σ [D] . Hence η−1
σ [D] is also ρ-invariant.

2. The implication b⇒ a is established through a routine argument using
induction accounting for the construction of θ.

5.2.4 Simulation Equivalence

We will construct a way of transporting a smooth equivalence relation along
a map between equivalence classes. Such a map will be employed as a bridge
between the relations; in particular we will transport vital properties along
it. These properties will become apparent later, when we develop criteria for
the bisimilarity of stochastic relations. Quite independent of this particular
application the concept of spawning yields some insight into the nature of
smooth equivalence relation in terms of the Borel structure on their factor
spaces.

As a preparation for the definition of how two smooth relations relate to
each other we will have a quick look at how the atoms of a countably generated
σ-algebra are characterized through the generators.

LEMMA 5.21
Let E = σ({En | n ∈ N}) be a countably generated σ-algebra over a set E.

Define A1 := A,A0 := E \A for A ⊆ E, and put

E(s) :=
⋂

n∈N

Es(n)
n

for s ∈ {0, 1}N. Then there exists F ⊆ {0, 1}N such that {E(s) | s ∈ F} are
exactly the atoms of E.

PROOF 0. We first note that as in the proof of Lemma 5.1

Ga,b := {A ⊆ E | a ∈ A⇔ b ∈ A}

is a σ-algebra. It is clear that the sets E(α) are elements of E . Define F as
the set of all indices s for which E(s) �= ∅.

1. Now let s ∈ F, then E(s) is an atom of E . Suppose it is not, then there
exists B ∈ E with ∅ �= B ⊂ E(s), so we can pick a, b ∈ E(s) with a ∈ B and



Congruences and Bisimulations 195

b /∈ B. From part 0. we infer that there exists an index m ∈ N such that Em
contains exactly one of a, b. On the other hand, we see that the construction
implies [a ∈ En ⇔ b ∈ En] for each n ∈ N. This is a contradiction, so E(s) is
an atom of E .

2. Let A be an atom of E , and put

h(A) :=
⋂
{En | A ⊆ En} ∩

⋂
{E \ En | A ∩ En = ∅},

then there exists s ∈ {0, 1}N such that h(A) = E(s). Now A ⊆ h(A) is
immediate. Because h(A) is an atom as well, we see A = h(A) = E(s).

We are poised to give a technical definition that permits stating how a
smooth equivalence relation is transported through a map between classes in
such a way that important properties are maintained. We call this spawning.
This definition of spawning is at present on the level of equivalence relations.
It will be later extended to incorporate congruences.

DEFINITION 5.22 Let α and β be smooth equivalence relations on the
analytic spaces X resp. Y , and assume that Υ : X/α → Y/β is a map
between the equivalence classes. We say that α spawns β via (Υ,A0) iff A0

is a countable generator of INV (B(X), α) such that

a. A0 is closed under finite intersections,

b. {ΥA | A ∈ A0} is a generator of INV (B(Y ), β), where ΥA :=
⋃
{Υ ([x]α) |

x ∈ A}.

Thus if α spawns β, then the measurable structure induced by α on X is
all we need for constructing the measurable structure induced by β on Y : the
map Υ can be made to carry over the generator A0 from INV (B(X), α) to
INV (B(Y ), β) and — in the light of Lemma 5.21 — to transport the atoms
from one σ-algebra to the other. This is of particular interest since the atoms
are just the equivalence classes. Hence α together with Υ and the generator
A0 is all we may care to know or to learn about β.

The first condition reflects a measure-theoretic precaution: we will need to
make sure, e.g., in the construction of the direct sum of stochastic relations
that measures are uniquely determined by their values on a set of generators.
This, however, can best be guaranteed if the generator is stable against tak-
ing finite intersections. Note that ΥA1∩A2 = ΥA1 ∩ ΥA2 also holds, so that
closedness under intersections is inherited through Υ.

Whenever we have two smooth equivalence relations such that one spawns
the other we obtain on the sum of the underlying spaces a unique smooth
relation the traces of which on the summands are just the given relations.
Since we will introduce later on the sum of two relations, this effect will be
studied now carefully.
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LEMMA 5.23

Let X,Y, Z be analytic spaces, and assume that f : X → Z and g : Y → Z are
surjective Borel maps. Assume f(x) = g(y), then put Υ : [x]ker(f) 
→ [y]ker(g)
and Θ : [y]ker(g) 
→ [x]ker(f) . Let C be a countable generator of B(Z) that
separates points and is closed under intersections. Then

a. ker (f) spawns ker (g) via (Υ, f−1 [C]),

b. ker (g) spawns ker (f) via (Θ, g−1 [C]).

PROOF 1. It is clear that both Υ and Θ are well defined, and that f−1 [C]
as well as g−1 [C] are closed under intersections. Because C separates points,
f−1 [C] determines ker (f), since f(x) = f(x′) is equivalent to f(x) ∈ C ⇔
f(x′) ∈ C for all C ∈ S. Similarly for ker (g). Since the identity relation is a
smooth equivalence relation on Z as well, Lemma 5.7 implies that

INV (B(X), ker (f)) = σ(f−1 [C]),
INV (B(Y ), ker (g)) = σ(g−1 [C]).

2. Let C ∈ C, then Υf−1[C] = g−1 [C], since y ∈ Υf−1[C] iff we can find
x ∈ f−1 [C] with y ∈ Υ([x]ker(f)). Thus f(x) = g(y) ∈ C, hence y ∈ g−1 [C] .
This implies the first part. The second part follows with exactly the same
arguments.

We will use this Lemma later, e.g., in Section 5.4, for an investigation of
the behavioral equivalence of stochastic relations.

LEMMA 5.24

Let α and β be smooth equivalence relations on the analytic spaces X resp.
Y which spawn each other through the spawning maps Υ : X/α → Y/β resp.
Ξ : Y/β → X/α. Then

a. There exists a unique smooth equivalence relation α&β on X+Y with these
properties

i. [x]α�β ∩X = [x]α and [x]α�β ∩ Y = Υ([x]α) for all x ∈ X.

ii. [y]α�β ∩ Y = [y]β and [y]α�β ∩X = Ξ([y]β) for all y ∈ Y .

b. Both X/α and Y/β are Borel isomorphic to (X + Y )/α & β.

PROOF 1. We consider the equivalence relation α & β generated from
{An + ΥAn | n ∈ N} with A0 = {An | n ∈ N}. Relation α & β is evidently
smooth, and it is uniquely determined through α and β. Let x ∈ X , then we
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can find y ∈ Y with Υ([x]α) = [y]β , since Υ maps X/α to Y/β. It is easy to
see that

Υ([x]α) =
⋂
{ΥAn | An ∈ A0, x ∈ An} ∩

⋂
{Y \ΥAn | An ∈ A0, x /∈ An}.

2. The claim in the second part of part a. follows from the observation
that β is the relation on Y which is generated from {ΥAn | n ∈ N}, and
that α is the relation on X which is generated from {ΘBn | n ∈ N} where
B0 = {Bn | n ∈ N}.

3. Define the map ξ : X/α → (X + Y )/α & β through ξ([x]α) := [x]α�β .
Then ξ is well defined. It is onto: let [y]α�β ∈ (X + Y )/α & β for some y ∈ Y ,
thus

[y]α�β ∩X = Ξ([y]β) = [x]α

for some x ∈ X , so that

ξ([x]α) = [x]α�β = [y]α�β .

If [x]α�β = [x′]α�β for some x, x′ ∈ X , then x α x′; hence ξ is injective.
4. Now let G ∈ B((X + Y )/α & β) be a Borel subset of (X + Y )/α & β, so

that η−1
α�β [G] ∈ INV (B(X + Y ), α & β) . Then

η−1
α

[
f−1 [G]

]
= η−1

α�β [G] ∩X ∈ INV (B(X), α) ,

which in turn implies that f−1 [G] ∈ B(X/α). Thus ξ is Borel measurable.
Take Borel set H ∈ B(X/α), equivalently η−1

α [H ] ∈ INV (B(X), α), then the
argumentation above shows that η−1

α�β [H ] = H∪ΥH . This is an α&β-invariant
Borel set in X + Y , so that the image f [H ] of H is a Borel set.

The isomorphism of two factor systems is an illustration of the concept of
spawning.

PROPOSITION 5.25
Let T, T ′ be analytic spaces with smooth equivalence relations ρ resp. ρ′.

Assume that Υ : T/ρ→ T ′/ρ′ is a Borel isomorphism, and let A be a countable
generator of INV (B(X), ρ) which is closed under finite intersections. Then
ρ spawns ρ′ via (Υ,A).

PROOF 0. The assumption that the generator A is closed under finite
intersections is easily met: take an arbitrary countable generator A0, then

{
⋂
F | F ⊆ A0 is finite}

is a countable generator which is closed under finite intersections.
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1. If A ∈ INV (B(T ), ρ) is a ρ-invariant Borel set, then ΥA is ρ′-invariant,
and it is easily established that

ΥA = η−1
ρ′ [Υ [ηρ [A]]]

holds. From Proposition 5.5 we infer that C1 is a generator for B(T/ρ), where

C1 := ηρ [INV (B(T ), ρ)] .

Consequently, {ΥA | A ∈ A} is a generator for the ρ′-invariant Borel sets
INV (B(T ′), ρ′) , because we may conclude

INV (B(T ′), ρ′) = η−1
ρ′ [B(T ′/ρ′)] (by Lemma 5.4)

= η−1
ρ′ [Υ [B(T ′/ρ′)]] (since Υ is a Borel isomorphism)

= σ
(
{η−1
ρ′ [Υ [C]] | C ∈ C1}

)
(by construction of C1)

= σ ({ΥA | A ∈ INV (B(T ), ρ)})
= σ ({ΥA | A ∈ A}) (since A generates INV (B(T ), ρ)).

The proof is technically a bit laborious. The statement, however, will be
most useful in permitting us to show that stochastic relations are bisimilar,
provided they have isomorphic factors. Working with isomorphisms alone for
characterizing bisimilarity may be too strong a condition. In the application
to modal logic in Section 6.2 we will see that the equivalence relation which
is induced on states through having the same logic satisfies the condition on
spawning, but it is far from clear in this case whether or not the corresponding
factor spaces are Borel isomorphic. Consequently, it seems to be worthwhile
to work with the weaker condition.

5.3 Factoring

Observing a stochastic relation K = (X,Y,K), elements with equivalent
behavior are identified. This leads to a pair (α, β) of equivalence relations
on the inputs X resp. the outputs Y with the idea that equivalent inputs
lead to equivalent outputs. While equivalent inputs can be described directly
through α, the equivalence of outputs requires a description on the level of
measurable sets. This leads then naturally to the notion of a congruence,
which will be defined in this section. We will investigate congruent systems
and present some technical properties that shed some light on the underlying
invariant sets. This in turn will help us to investigate properties of specific
congruences.
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5.3.1 Congruences

Think of a stochastic relation K = (X,Y,K) as a model that relates inputs
and outputs, and assume that there are equivalences α and β on inputs resp.
outputs. Two inputs x, x′ ∈ X cannot be distinguished through α iff they are
α-equivalent. It is less intuitive to describe distinguishing outputs through β,
in particular when we do not have a handle on specific outputs but rather on
sets of them. We argue that a set B ⊆ Y cannot be distinguished through β
iff whenever y ∈ B and y β y′ we have y′ ∈ B as well (or: it must not happen
that y′ with y′ β y fails to be a member of B, but y ∈ B holds). This entails
that B is invariant with respect to β.

This consideration leads to the fairly fundamental definition of a congruence
for K.

DEFINITION 5.26 A congruence c = (α, β) for the stochastic relation
K = (X,Y,K) over the analytic spaces X and Y is a pair of smooth equivalence
relations α on X and β on Y such that K(x)(D) = K(x′)(D) holds whenever
xα x′ and D is an β-invariant measurable subset of Y .

In algebraic theories, kernels of morphisms and congruences are basically
the same thing. This is also true in the present case. Denote for the morphism
f : K1 → K2 with f = (φ, ψ) its kernel ker (f) by the pair (ker (φ) , ker (ψ)).

PROPOSITION 5.27

If f : K → K′ is a morphism for the stochastic relations K and K′, then ker (f)
is a congruence for K.

PROOF Let K = (X,Y,K) and K′ = (X ′, Y ′,K ′) with f = (φ, ψ). Let
x1 ker (φ) x2 and D ⊆ Y be a ker (ψ)-invariant Borel subset of Y . Lemma 5.4
shows that D = ψ−1 [D′] for some Borel set D′ ⊆ Y ′. Thus

K(x1)(D) = K(x1)(ψ−1 [D′])
= (S (ψ) ◦K) (x1)(D′)
= (K ′ ◦ φ) (x1)(D′)
= K(φ(x1))(D′)
= K(φ(x2))(D′)
= K(x2)(D),

since f = (φ, ψ) is a morphism.

This construction permits introducing factor objects. They will be heavily
used throughout.
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PROPOSITION 5.28
Let c = (α, β) be a congruence on the stochastic relation K = (X,Y,K) with

analytic spaces X and Y , and define

Kα,β([x]α)(D) := K(x)(η−1
β [D])

for x ∈ X,D ∈ B(Y/β), then

a. Kα,β : X/α � Y/β defines a stochastic relation K/c over the analytic
spaces X/α and Y/β,

b. ηc := (ηα, ηβ) : K → K/c is a morphism.

We call
K/c := (X/α, Y/β,Kα,β)

the factor object (of K with respect to c).

PROOF 0. We know from Proposition 1.53 that the factor spaces X/α
and Y/β are analytic spaces.

1. Given D ∈ B(Y/β), η−1
β [D] is an invariant Borel set, thus

x 
→ K(x)(η−1
β [D])

does depend only on the α-class of x ∈ X . Consequently, Kα,β is well defined.
2. Kα,β : X/α � Y/β is a stochastic relation. In fact, it is plain that

Kα,β ([x]α) is a subprobability measure on B(Y/β), so it remains to show that
t 
→ Kα,β(t)(D) is a B(X/α)-measurable map for each D ∈ B(Y/β). Fix such
a D and a Borel set F ⊆ R, then

FD := {x ∈ X | K(x)(η−1
β [D]) ∈ F}

is a Borel set in X , and since η−1
β [D] is β-invariant, FD is α-invariant with

{t ∈ X/α | Kα,β(t)(D) ∈ F} = ηα [FD] ∈ B(X/α)

by Corollary 5.5. This establishes measurability.
3. The construction of Kα,β yields Kα,β ◦ ηα = S (ηβ) ◦ K, hence ηc is a

morphism.

Let us see what happens if the second component β is the universal relation.
If fact, let K = (X,Y,K) be a Polish object such that for simplicityK(x)(Y ) =
1 holds for each x ∈ X . Since we know that for the universal relation UY on Y
the invariant Borel sets are just {∅, Y } (see page 182), it is clear that (α,UY )
is a congruence for an arbitrary smooth relation α on X . But it says only
that K(x)(Y ) = K(x′)(Y ) and K(x)(∅) = K(x′)(∅) hold, whenever x α x′, so
it is quite trivial.
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DEFINITION 5.29 Call a congruence c = (α, β) for a stochastic relation
K = (X,Y,K) nontrivial iff β �= UY .

We will have to take care of the nontriviality of congruences when investi-
gating the problem of the bisimilarity of relations.

Restricting a stochastic relation to the invariant sets of a congruence yields
a stochastic relation again; this will be of use when discussing sets of states
that accept the same formula of a logic (cp. Section 6.4). Interestingly, the
converse holds as well, as we will see now.

LEMMA 5.30
Let α and β be smooth equivalence relations on the analytic spaces X resp.

Y , and assume K : X � Y is a stochastic relation. Then the following
conditions are equivalent:

a. (α, β) is a congruence for K.

b. K : (X, INV (B(X), α)) � (Y, INV (B(Y ), β)) is a stochastic relation.

PROOF 1. We need to establish for a ⇒ b the following: If B ∈
INV (B(Y ), β) is a β-invariant Borel set in Y , and E ⊆ R+ is a Borel set in
the real line, then

(K(·)(B))−1 [E] = {x ∈ X | K(x)(B) ∈ E}

is an α-invariant Borel set in X . In fact, let K(x)(B) ∈ E, and assume that
x α x′. Since B ∈ INV (B(Y ), β) , we know that K(x)(B) = K(x′)(B). This
establishes the assertion, since {x ∈ X | K(x)(B) ∈ E} is a Borel set on
account of K : (X,B(X)) � (Y,B(Y )) being a stochastic relation.

2. Assume for b⇒ a that x α x′, and that B ∈ INV (B(Y ), β) is a β-
invariant Borel set in Y . We show K(x)(B) = K(x′)(B). Since K(·)(B) is
an INV (B(X), α)-measurable function by assumption, we know that the set
{x̂ ∈ X | K(x̂)(B) ≤ q} is α-invariant for each real number q. Thus we see
K(x)(B) ≤ q iff K(x′)(B) ≤ q. Since q is arbitrary, we may conclude that in
fact K(x)(B) = K(x′)(B) holds.

We obtain as a consequence that the integral for functions that are measur-
able with the respect to the invariant sets have some invariance properties.

COROLLARY 5.31
Let (α, β) be a congruence for the stochastic relation K : X � Y . As-

sume furthermore that f : Y → R is a bounded real-valued function which is
INV (B(Y ), β)-B(R)-measurable. Then

∫

W

f dK(x) =
∫

W

f dK(x′),
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whenever x α x′.

PROOF Because f can be decomposed into a positive and a negative part,
we may and do assume that f : Y → R+ holds. We know from Proposition 1.5
that f can be approximated from below by step functions, i.e., by functions
of the form fn :=

∑kn

i=0 qn,i · χAn,i with coefficients qn,i ≥ 0 and An,i ∈
INV (B(Y ), β). Thus f1(y) ≤ f2(y) ≤ f3(y) . . . , and f(y) = supn∈N fn(y)
holds for all y ∈ Y. But then we obtain from the Bounded Convergence The-
orem for x α x′:

∫

Y

f dK(x) = lim
n→∞

∫

Y

fn dK(x)

= lim
n→∞

kn∑

i=0

qn,i ·K(x)(An,i)

= lim
n→∞

kn∑

i=0

qn,i ·K(x′)(An,i)

= lim
n→∞

∫

Y

fn dK(x′)

=
∫

Y

f dK(x′).

This settles the assertion.

REMARK 5.32 An alternative to the proof above uses the Choquet
representation from Proposition 1.61

∫

Y

f dK(x) =
∫ ∞

0

K(x)({f > t}) dt,

where {f > t} := {y ∈ Y | f(y) > t}. and f ≥ 0. The latter is a β-invariant
Borel subset of Y . Because of this set’s invariance, we see that

K(x)({f > t}) = K(x′)({f > t})

holds for each t, establishing the claim.

This section has provided us with a small set of quite effective tools. Ques-
tions pertaining to smooth equivalence relations will occur over and over again,
so that we provide here a concise, central locus of information.

5.3.2 Isomorphism Theorems

Now fix an analytic object K = (X,Y,K), and let c = (ρ, τ) be a congruence
on K. Assume that d = (κ, λ) is a congruence of K/c. Define d•c := (κ•ρ, λ•τ).
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PROPOSITION 5.33
d • c is a congruence on K, and K/d • c is isomorphic to (K/c)/d.

PROOF 1. The first assertion follows from Corollary 5.27 together with
the observation that (κ • ρ, λ • τ) = (ker (ηκ ◦ ηρ) , ker (ηλ ◦ ητ )) holds.

2. Construct the Borel isomorphisms gρ,κ : X/κ • ρ → (X/ρ)/κ and gτ,λ :
Y/λ • τ → (Y/τ)/λ with their respective inverses hρ,κ and hτ,λ as in the proof
of Proposition 5.10. We show that the inner and the outer diagram

X/κ • ρ
gρ,κ ��
hρ,κ

(X/ρ)/κ

S (Y/λ • τ )

Kκ•ρ,λ•τ

�
�S (hτ,λ)

S (gτ,λ)
� S ((Y/τ)/λ)

(Kρ,τ )κ,λ
�

both commute.
3. Let B ∈ B((Y/τ)/λ), a Borel set in (Y/τ)/λ, then

Kκ•ρ,λ•τ ([x]κ•ρ)
(
g−1
τ,λ [B]

)
= K(x)(η−1

λ•τ
[
g−1
τ,λ [B]

]
)

= K(x)(η−1
τ

[
η−1
λ [B]

]
)

= Kρ,τ ([x]ρ)(η
−1
λ [B])

= (Kρ,τ )κ,λ (gρ,κ([x]ρ))(B),

because gτ,λ ◦ηλ•τ = ηλ ◦ητ . Thus the outer diagram commutes. This implies
that

g := (gρ,κ, gβ,τ) : K/d • c → (K/c)/d

is a morphism.
4. Suppose that G ∈ B(Y/λ • τ ) is a Borel set, then

Kκ•ρ,λ•τ (hρ,κ(
[
[x]ρ

]

κ
)(G) = Kκ•ρ,λ•τ ([x]κ•ρ)(G)

= K(x)(η−1
λ•τ [G])

= Kρ,τ ([x]ρ)(η
−1
λ

[
h−1
τ,λ [G]

]
)

= (Kρ,τ )κ,λ (
[
[x]ρ

]

λ
)(h−1

β,τ [G]).

This is so since ηλ•τ = hτ,λ ◦ ηλ ◦ ητ holds (see the proof of Proposition 5.10).
Thus the inner diagram commutes. This implies that

h := (hρ,κ, hβ,τ ) : (K/c)/d→ K/d • c

is a morphism. It is plain that h is left- and right inverse to g.
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Factoring a stochastic relation with a congruence entails identifying inputs
resp. outputs that have been observed as representing identical behavior.
Proposition 5.33 says then that identifying identical behavior in observing
the factor system amounts to a system that can also be obtained through
a single observational step from the original system. This means that there
are no arbitrary long chains of factor systems which could not have been
obtained directly from the original system, or, that factoring does not change
the fundamental behavior of a system (after all, a system is bisimilar to its
factor systems, bisimilarity requesting the existence of a span of morphisms,
as we will see in Section 5.4).

Algebraically, this proposition is quite similar to the well-known Second
Isomorphism Theorem of Group Theory, cp. (Lang, 1965, § I.4): Factoring
the quotient of a normal subgroup gives a group isomorphic to a factor. A
similar but slightly stronger construction for coalgebras is carried out by Rut-
ten (Rutten, 2000, Theorem 7.4) in the context of bisimulation relations for
coalgebras. Proposition 5.33 and Rutten’s Theorem are not directly com-
parable, however, since the functor underlying the coalgebra is assumed to
preserve weak pullbacks (which is no realistic assumption for stochastic rela-
tions by Corollary 4.15), and since the relationship between bisimulations and
congruences is slightly less involved in the coalgebraic case.

Let (α, β) and (α′, β′) be pairs of equivalence relations, and define

(α, β) � (α′, β′) ⇔ α ⊆ α′ and β ⊆ β′.

Thus (α, β) � (α′, β′) iff α refines α′ and β refines β′ simultaneously. It is
clear that c � d • c for each congruence d.

PROPOSITION 5.34

Assume that f : K → K′ is a morphism, and let c be a congruence on K
such that c � ker (f) . Then there exists a unique morphism fc : K/c→ K′ with
f = fc ◦ ηc.

PROOF 1. Let K = (X,Y,K),K′ = (X ′, Y ′,K ′) with φ : X → X ′, ψ :
Y → Y ′ constituting morphism f, and c = (α, β). Because α ⊆ ker (φ) , β ⊆
ker (ψ) , the maps

φα([x]α) := φ(x),
ψβ([y]β) := ψ(y)

are well defined. Since φ is B(X)-B(X ′)-measurable, and since B(X)/α is the
final σ-algebra on X/α with respect to ηα, B(X)/α-B(X ′)-measurability of
φα is inferred. A similar argument is used for ψβ . Clearly, these maps are
onto.
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2. It remains to show that fc := (φα, ψβ) is a morphism. In fact, let D′ ⊆ Y ′

be a Borel set, then

K ′(φα([x]α))(D′) = K ′(φ(x))(D′) = K(x)(ψ−1 [D′]) =

Kα,β([x]α)(ψ−1
β [D′]) = (S (ψβ) ◦Kα,β) ([x]α)(D′),

because ψ−1 [D′] = η−1
β

[
ψ−1
β [D′]

]
, and because (ηα, ηβ) is a morphism. Con-

sequently, the equality K ′ ◦φα = S (ψβ)◦Kα,β has been established. Unique-
ness follows, since ηc is an epi.

COROLLARY 5.35
Assume that f : K → K′ is a morphism. Then there exists a unique isomor-

phism f : K/ker (f) → K′ with f = f ◦ ηker(f).

PROOF Define f := fker(f), then the maps constituting this morphism
are bijective Borel maps, so by (Srivastava, 1998, Proposition 4.5.1) they are
Borel isomorphisms. The equations establishing the morphism property for
fker(f) show that the inverses also constitute a morphism.

COROLLARY 5.36
Let c and d be congruences on K, then the following statements are equivalent:

a. c � d

b. d = e • c for some congruence e on K.

PROOF The implication b⇒a is obvious. Assume that c � d = ker (ηd)
holds. Then the assertion follows from Proposition 5.34 together with Corol-
lary 5.27.

This property is somewhat surprising in that it relates the refinement of
congruences to factor spaces. If congruence c is finer than congruence d, then
d can be obtained through observing and factoring the behavior in the factor
system for c (so that the original system does not have to be observed but
rather a simplified one).

5.4 Bisimulations

Bisimulations are introduced as spans of morphisms such that common
events exist. They relate two systems in terms of their elements, hence in
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terms of nondeterministic relations of their state spaces. In fact, assume that
(S, (→a)a∈A) and (S′, (→′

a)a∈A) are two labeled transition systems, then a
relation R ⊆ S × S′ is called a bisimulation iff

• Whenever 〈s, s′〉 ∈ R and s →a s1, then there exists s′1 with s′ →′
a s

′
1

and 〈s1, s′1〉 ∈ R.

• Whenever 〈s, s′〉 ∈ R and s′ →′
a s

′
1, then there exists s1 with s →a s1

and 〈s1, s′1〉 ∈ R.

Interpreting a labeled transition system as a coalgebra (S, αS) for the func-
tor F := Pow(A× ·), it is an easy exercise to show that R is a congruence iff
there exists a coalgebraic structure αR on R such that this diagram commutes:

S � πS
R

πS′ � S′

F (S)

αS

�
�
F (πS)

F (R)

αR

�

F (πS′)
� F (S′)

αS′

�

In Section 5.6 we will specialize the discussion to the case that the morphisms
are projections, and relate the different notions of bisimulations to each other.
The present section is devoted to the general case, which turns out to be rich
enough.

DEFINITION 5.37 The stochastic relations K = (X,Y,K) and L =
(V,W,L) are called bisimilar iff there exists a stochastic relation M = (A,B,M)
and morphisms f = (φ, ψ) : M→ L, g = (γ, δ) : M → L such that

a. the diagram

X � φ
A

γ � V ′

S (Y )

K

�
�
S (ψ)

S (B)

M

�

S (δ)
� S (W )

L

�

is commutative,

b. the σ-algebra ψ−1 [B(Y )]∩ δ−1 [B(W )] is nontrivial, i.e., contains not only
∅ and B.

The relation M is called mediating.
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The first condition on bisimilarity states that f and g form a span of Stoch-
morphisms

K � f
M

g � L,

thus we have for each a ∈ A,D ∈ B(Y ), E ∈ B(W ) the equalities

K(φ(a))(D) = (S (φ) ◦M)(a)(D) = M(a)(φ−1 [D])

and
L(ψ(a))(E) = (S (ψ) ◦M)(a)(E) = M(a)(ψ−1 [E]).

The second condition states that we can find an event C∗ ∈ B(B) which is
common to both K and L in the sense that

ψ−1 [D] = C∗ = δ−1 [E]

for some D ∈ B(Y ) and E ∈ B(W ) such that both C∗ �= ∅ and C∗ �= B hold
(note that for C∗ = ∅ or C∗ = W we can always take the empty and the full
set, resp.). Given such a C∗ with D and E from above we get for each a ∈ A

K(φ(a))(D) = M(a)(ψ−1 [D])
= M(a)(C∗)
= M(a)(δ−1 [E])
= L(γ(a))(E),

thus the event C∗ ties K and L together. Loosely speaking, ψ−1 [B(Y )] ∩
δ−1 [B(W )] can be described as the σ-algebra of common events, which is
required to be nontrivial. If Y = W , another interpretation of common events
is discussed in Lemma 5.8 in terms of invariant Borel sets. The discussion
there, however, addresses different issues than in the present context.

Note that without the second condition two relations K and L which are
strictly probabilistic (i.e., for which the entire space is always be assigned
probability one) would always be bisimilar: Put A := X × V,B := Y ×W
and set for 〈x, v〉 ∈ A as the mediating relation M(x, v) := K(x)⊗L(v), then
the projections will make the diagram commutative. It is also clear that this
argument does not work for the subprobabilistic case. This curious behavior
of probabilistic relations is a bit surprising, but these relations step out of line
in other situations as well: e.g., it will be shown that the full subcategory of
probabilistic relations in anStoch has a final object, while anStoch itself does
not have one; see Section 5.7, in particular Corollary 5.59 and the discussion
leading to it. The second condition in Definition 5.37 serves to prevent this
somewhat anomalous behavior; it is technically not too restrictive, as we will
see below.

An important instance of congruences and factor spaces is furnished through
simulation equivalent congruences.
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DEFINITION 5.38 Let K = (X,Y,K) and K′ = (X ′, Y ′,K ′) be Polish
objects with congruences c = (α, β) and c′ = (α′, β′), respectively.

a. Congruence c simulates c′ (symbolically c ∝ c′) iff α spawns α′ via (Υ,A0),
β spawns β′ via (Θ,B0) such that

∀x ∈ X∀x′ ∈ Υ([x]α)∀B ∈ B0 : K(x)(B) = K ′(x′)(ΘB).

b. Call these congruences simulation equivalent iff both c ∝ c′ and c′ ∝ c
hold.

Thus simulation equivalent congruences behave in exactly the same way.
The same behavior is exhibited on each atom, i.e., equivalence class, as far
as the input is concerned, and on the respective invariant output sets. It
becomes visible now that a characterization of equivalent behavior through
congruences exhibits the double face of congruences: it is certainly necessary
to use the equivalence relation on the input spaces; but since the behavior on
the output spaces is modeled through probabilities, we need also the invariant
Borel sets for a characterization.

We will show now how simulation equivalent congruences on stochastic
relations give rise to a factor object built on their sum. This construction will
be of use in Proposition 5.39 for investigating the bisimilarity of stochastic
relations.

Assume that c and c′ are simulation equivalent congruences on the Polish
objects K = (X,Y,K), and K′ = (X ′, Y ′,K ′), respectively. Construct for K
and K′ the direct sum

K⊕ K′ := (X +X ′, Y + Y ′,K ⊕K ′) ,

where the only nonobvious construction is K ⊕ K ′: put for the Borel set
E ⊆ Y + Y ′

(K ⊕K ′)(z)(E) :=

{
K(z)(E ∩ Y ), if z ∈ X
K ′(z)(E ∩ Y ′), if z ∈ X ′,

then clearly K ⊕K ′ : X +X ′ � Y + Y ′. Define on X +X ′ resp. Y + Y ′ the
σ-algebras

G := {C + C′ | C ∈ INV (B(X), α) , C ′ ∈ INV (B(X ′), α′)}
H := {D +D′ | D ∈ INV (B(Y ), β) , D′ ∈ INV (B(Y ′), β′)},

then G and H are countably generated sub-σ-algebras of the respective Borel
sets. Because the σ-algebras in question are countably generated, so is their
sum, and because the congruences are simulation equivalent, we claim that
z (α & α′) z′ implies (K ⊕ K ′)(z)(F ) = (K ⊕ K ′)(z′)(F ) for all F ∈ H. To
establish this, fix z ∈ X, z′ ∈ X ′, and consider

S := {F ∈ H | (K ⊕K ′)(z)(F ) = (K ⊕K ′)(z′)(F )}.
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Since the congruences are simulation equivalent, this is a σ-algebra containing
the generator {Dn+ ΘDn | n ∈ N}, where β spawns β′ via (Θ, {Dn | n ∈ N}).
Since the generator is closed under finite intersections, measures are uniquely
determined by the π-λ-Theorem 1.1. This implies H ⊆ σ(S), thus H = S.
Consequently,

G = INV (B(X +X ′), α & α′)
H = INV (B(Y + Y ′), β & β′) ,

and c & c′ := (α & α′, β & β′) is a congruence on K⊕ K′.
The factor object (K⊕ K′)/(c & c′) constructed in this way will be investi-

gated more closely in Proposition 5.39 below. There we will establish that
K and K′ are bisimilar, provided they have simulation equivalent nontrivial
congruences.

Simulation equivalent congruences give rise to bisimilar stochastic relations;
thus if we are presented with two stochastic relations for which we can estab-
lish the existence of nontrivial simulation equivalent congruences, then the
relations are bisimilar. This is a rather far-reaching generalization of the by
now well-known characterization of bisimilarity of labeled Markov transition
systems through mutually equivalent states, which will be discussed at length
in Section 6.2. Note that we give here is an intrinsic characterization of bisim-
ilarity: we investigate the relations and their congruences on their own, but we
do not need an external instance (like a logic) to determine bisimilarity. The
technical tool for establishing this property is the existence of semi-pullbacks,
which we have established in Theorem 4.13.

PROPOSITION 5.39
If there exists nontrivial congruences ci on the Polish objects Ki for i = 1, 2

that are simulation equivalent, then

a. there are morphisms

K1
f1� (K1 ⊕ K2)/(c1 & c2) �f2 K2

b. K1 and K2 are bisimilar.

PROOF 1. Assume Ki = (Xi, Yi,Ki) and ci = (αi, βi) for i = 1, 2.
Construct the sum K1⊕K2 as above, and let (κi, λi) be the corresponding in-
jections, which are, however, no morphisms. Let (ηα1�α2 , ηβ1�β2) : K1 ⊕K2 →
(K1 ⊕ K2)/(c1 & c2) be the factor map, then (ηα1�α2 ◦ κi, ηβ1�β2 ◦ λi) consti-
tutes a morphism Ki → (K1 ⊕ K2)/(c1 & c2), as will be shown now. Surjectiv-
ity has to be established, and we have to show that the σ-algebra of common
events is nontrivial.

2. Each equivalence class a ∈ (X1 + X2)/(α1 & α2) can be represented as
a = [x1]α1

+[x2]α2
for some suitably chosen x1 ∈ X1, x2 ∈ X2. Similarly, each
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equivalence class b ∈ (Y1 + Y2)/(β1 & β2) can be written as b = [y1]β1
+ [y2]β2

for some y1 ∈ Y1, y2 ∈ Y2. Conversely, the sum of classes is a class again. This
follows from Lemma 5.24.

3. Now we have the following diagram:

K1

K2 (ηα1�α2 ◦ κ2, ηβ1�β2 ◦ λ2)
� (K1 ⊕ K2)/(c1 & c2)

(ηα1�α2 ◦ κ1, ηβ1�β2 ◦ λ1)

�

This yields part a.
4. The semi-pullback of the pair of morphisms with a joint target con-

structed in the first step exists by Corollary 4.12. It is a Polish object
(A,B,M), where

A := {〈x1, x2〉 ∈ X1 ×X2 | [x1]α1�α2
= [x2]α1�α2

},
B := {〈y1, y2〉 ∈ Y1 × Y2 | [y1]β1�β2

= [y2]β1�β2
}.

We need to establish that there are indeed nontrivial common events. Since
c is nontrivial, we can find an invariant Borel set D ∈ INV (B(Y1), β1) with
∅ �= D �= Y1. Assume that β1 spawns β2 via (Θ, {Dn | n ∈ N}), then ∅ �=
ΘD �= Y2 also holds. Because D is β1-invariant,

π−1
1,Y1

[D] = {〈y1, y2〉 | y1 ∈ D} = {〈y1, y2〉 | y2 ∈ ΘD} = π−1
2,Y2

[ΘD]

thus
π−1

1,Y1
[D] ∈ π−1

1,Y1
[B(Y1)] ∩ π−1

2,Y2
[B(Y2)] ,

and we are done once it is shown that π−1
1,Y1

[D] �= B. Since D �= Y1 is invariant,
there exists y1 with

[y1]β1�β2
∩D = [y1]β1

∩D = ∅.

Let [y2]β2
:= Θ([ψ1]β1

), then [y2]β1�β2
∩ΘD = [y2]β2

∩ΘD = ∅. Consequently,
〈y1, y2〉 ∈ B \ π−1

1,Y1
[D] . This shows that π−1

1,Y1
[B(Y1)] ∩ π−1

2,Y2
[B(Y2)] is non-

trivial.

We note for later use with a view back at Lemma 5.24:

COROLLARY 5.40
Under the conditions of Proposition 5.39,(K1 ⊕ K2)/(c1 & c2) is isomorphic

to K1/c1 and to K2/c2.
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The strategy of the proof to Proposition 5.39 has been to make sure that
the classes associated with the congruences are distributed evenly among the
summands in the sense that each class in the sum is the sum of appropri-
ate classes. This then implies that we can construct surjective maps, and
from them morphisms through some general mechanisms. The idea works in
particular with isomorphic factor spaces.

PROPOSITION 5.41
Let K and K′ be analytic objects such that K/c is isomorphic to K′/c′ for

some nontrivial congruences c and c′. Then

a. c and c′ are simulation equivalent,

b. K and K′ are bisimilar.

PROOF 0. Let K = (X,Y,K) with c = (α, β), similar for K′ and c′. As-
sume that f = (Φ,Ψ) is the isomorphism K/c → K′/c′ which is composed of
the Borel isomorphisms Φ : X/α→ X ′/α′ and Ψ : Y/β → Y ′/β′. Let more-
over A and B be countable generators of INV (B(X), α) and INV (B(Y ), β)
which are closed under finite intersections. We know from Proposition 5.25
that α spawns α′ via (Φ,A), and that β spawns β′ via (Ψ,B). Hence we have
to establish for each x ∈ X,x′ ∈ Φ([x]α) and for each β-invariant Borel subset
B ⊆ Y that K(x)(B) = K ′(x′)(ΨB) holds. This will imply that c simulates
c′; interchanging the rôles of c and c′ then will yield simulation equivalence.

1. Given B ∈ INV (B(Y ), β) we know from Lemma 5.4 that we can find
a Borel set B1 ∈ B(Y/β) such that B = η−1

β [B1] . Since Ψ is a Borel iso-
morphism, we find B2 ∈ B(Y ′/β′) with B1 = Ψ−1 [B2] . A routine calculation
shows that ΨB = η−1

β′ [B2] . Now assume that x ∈ X,x′ ∈ Φ([x]α), then the
following chain of equations is obtained from the argumentation above, and
from the assumption that f is an isomorphism.

K(x)(B) = K(x)(η−1
β

[
Ψ−1 [B2]

]
)

= Kα,β([x]α)(Ψ−1 [B2])
= K ′

α′,β′(Φ([x]α)(B2)

= K ′(x′)(η−1
β′ [B2])

= K ′(x′)(ΨB).

This establishes the desired relation c ∝ c′ and completes the proof for the
first part.

2. Bisimilarity now follows by Proposition 5.39.

Thus isomorphic factor spaces make sure that the relations are bisimilar.
These factor spaces arise, e.g., when considering blocks that partition the
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target spaces of a relation into pairs of pieces that have the same size each.
This idea is expressed in the following definition.

DEFINITION 5.42 Let K = (X,Y,K) and L = (X,Z,L) be analytic
objects. Call J = {〈Bi, Ci〉 | i ∈ I} a block for K, L iff

a. the index set I �= ∅ is at most countable,

b. {Bi | i ∈ I} and {Ci | i ∈ I} are partitions of Y resp. Z into Borel sets,

c. K(x)(Bi) = L(x)(Ci) holds for all x ∈ X and all i ∈ I.

Thus a block J cuts Y and Z into the same number of nonempty pieces,
and corresponding pieces have the same probability for all x ∈ X .

The existence of a block makes sure that K and L are bisimilar.

COROLLARY 5.43
The analytic objects K = (X,Y,K) and L = (X,Z,L) are bisimilar, provided

there exists a block of size at least two for them.

PROOF 0. We will show that the existence of a block enables us to
construct isomorphic factor spaces for suitable nontrivial congruences. This
will then imply the assertion through Proposition 5.41.

1. Let J = {〈Bi, Ci〉 | i ∈ I} be the block which contains at least two
elements. The partition {Bi | i ∈ I} induces a smooth equivalence relation
β on Y such that the equivalence classes are exactly the partition elements.
Thus [y]β = Bi iff y ∈ Bi. The invariant Borel sets for β are isomorphic to
the power set of I,

INV (B(Y ), β) = {
⋃

i∈I0
Bi | I0 ⊆ I}.

This is so because INV (B(Y ), β) = σ({Bi | i ∈ I}), and because the Bi form
a partition of Y .

Put c := (ΔX , β), then c is a nontrivial congruence for K. Computing the
factor relation KΔX,β , we see that

KΔX ,β(x)(E) =
∑

i∈I0
K(x)(Bi),

provided η−1
β [E] =

⋃
i∈I0 Bi holds for the Borel set E ∈ B(Y/β); see Proposi-

tion 5.5. Similarly, define the smooth equivalence γ on Z through the partition
{Ci | i ∈ I}, then d := (ΔX , γ) is a nontrivial congruence for L. We have

LΔX ,γ(x)(F ) =
∑

i∈I0
K(x)(Ci),
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whenever η−1
γ [F ] =

⋃
i∈I0 Ci holds for the Borel set F ⊆ Z/γ.

2. Now team up each element in the partition for Y with its partner in Z:
put

ψ : Y/β � Bi 
→ Ci ∈ Z/γ,

then ψ : Y/β → Z/γ is a measurable bijection, and it is immediate from the
definition of a block that (idX , ψ) : K/c→ L/d is an isomorphism.

This result is intuitively quite satisfactory: two relations defined over the
same source which divide up their respective targets in exactly the same way
are certainly prime candidates for being bisimilar.

EXAMPLE 5.44
Let K : S � S and L : S � S be stochastic relations over the analytic space
S such that

a. K(s)(S) = L(s)(S) �= 0 for all s ∈ S,

b. there exists points sK �= sL in S with K(s)({sK}) = L(s)({sL}) for all
s ∈ S.

Then (S, S,K) and (S, S, L) are bisimilar. This follows at once from Corol-
lary 5.43, because

{〈{sK}, {sL}〉, 〈S \ {sK}, S \ {sL}〉}

is a block for these relations.

We have seen in Proposition 5.41 that isomorphic factor spaces make sure
that the relations are bisimilar. The natural question is whether or not the
converse also holds: given bisimilar relations, do they have isomorphic factor
spaces? A first step towards an answer is done in

PROPOSITION 5.45
If the Polish objects K and K′ are bisimilar such that the mediating object

is compact with continuous morphisms, then K and K′ have isomorphic non-
degenerate factor spaces.

PROOF 1. Let

K � f
M

f′ � K′

be the span of morphisms constituting bisimilarity. Because K is isomorphic
to M/ker (f) by Corollary 5.35, we may restrict our attention to factors of M.
Thus we assume that K = M/c,K′ = M/c′, where both c and c′ are the kernels
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of continuous morphisms. Suppose that we can find congruences d and d′ such
that d • c = d′ • c′. Then

K/d = (M/c)/d
∼= M/d • c (by Proposition 5.33)
= M/d′ • c′

= (M/c′)/d′

∼= K′/d′

(∼= indicating isomorphism), and we are done, provided K/d is shown to be
nondegenerate, or, equivalently, d not to have the universal relation as its
second component. When looking for suitable congruences d and d′, in view
of Corollary 5.36 it is sufficient to find a congruence d′ = (γ, δ) with c � d′ •c′

for the given congruences c and c′, and δ is not universal.
2. Assume M = (X,Y,M), and suppose c = (α, β), c′ = (α′, β′). We know

that there exist smooth equivalence relations γ and δ with α ⊆ γ •α′ and β ⊆
δ • β′; moreover we know for a δ-invariant Borel subset D ∈ INV (Y/β′, δ)
that η−1

β′ [D] ∈ INV (B(Y ), β) ∩ INV (B(Y ), β′) . This was shown in Propo-
sition 5.15 and Lemma 5.20.

We show that d = (γ, δ) is a congruence, thus we have to show that
Kα′,β′(s)(D) = Kα′,β′(s′)(D), whenever D is a δ-invariant Borel subset of
Y/β′, and s γ s′.

Assume first that

〈s, s′〉 ∈ γ0 := {〈t, t′〉 | t, t′ ∈ X/α′, t× t′ ∩ α �= ∅}.

Then we can find 〈x, x′〉 ∈ α such that s = [x]α′ , s′ = [x′]α′ , and [x]α = [x′]α .
Thus we obtain from D’s invariance properties

Kα′,β′(s)(D) = K(x)(η−1
β′ [D]) = K(x′)(η−1

β′ [D]) = Kα′,β′(s′)(D).

This means that the assertion is true for all 〈s, s′〉 ∈ γ0.
Now consider

γ̂ := {〈t, t′〉 | t, t′ ∈ X/α′,Kα′,β′(t)(D) = Kα′,β′(t′)(D)},

then γ̂ is an equivalence relation which contains γ0, and consequently it con-
tains γ, as the construction of γ as the transitive closure of γ0 shows (see
Section 5.2.3, Claim 5.19 on page 193).

3. Since M/c and M′/c′ are bisimilar, we can find F ∈ INV (B(Y ), β) ∩
INV (B(Y ), β′) with ∅ �= F �= Y (this is so since e.g. INV (B(Y ), β) =
η−1
β [B(Y/β)] by Lemma 5.4). Now minimality of the construction leading to

Proposition 5.15 enters the argumentation: from Lemma 5.20 we infer that

η−1
β′ [INV (B(Y/β′), δ)] = INV (B(Y ), β) ∩ INV (B(Y ), β′)
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holds, thus we can find F0 ∈ INV (B(Y/β′), δ) with ∅ �= F0 �= Y/β′. Conse-
quently, δ is not universal, and we are done.

Summarizing, we have established the following characterization of bisimi-
larity through congruences:

THEOREM 5.46
Consider for analytic objects K and K′ the statements

a. There exist simulation equivalent congruences c and c′ on K resp. K′.

b. There exist nontrivial congruences c and c′ on K resp. K′ such that K/c
and K′/c′ are isomorphic.

c. K and K′ are bisimilar.

Then a ⇔ b ⇒ c holds always, and c ⇒ b holds in case the mediating object
is compact and the associated morphisms are continuous.

This is an intrinsic characterization of bisimilarity through congruences,
because it suffices to look only at the stochastic relations and decide whether
they are bisimilar. It would be most valuable to lift the rather strong condi-
tion on compactness. The proofs given above, in particular in Section 5.2.3,
Claims 5.16 through 5.19, rely on compact spaces via the possibility to ex-
tract a converging subsequence from each sequence (hence on sequential com-
pactness, to be specific). Otherwise smoothness cannot be guaranteed, but
smoothness is crucial since it makes sure that the factor space is analytic.

Conjecture. The characterization of bisimilarity through isomorphic factor
spaces is valid for all stochastic relations over analytic spaces.

5.5 Behavioral Equivalence and a Portmanteau

While bisimilar stochastic relations are related through a span of mor-
phisms, we think of behavioral equivalent relations as relations for which a
cospan exists.

DEFINITION 5.47 Let K1 and K2 be stochastic relations, then K1 and
K2 are called behavioral equivalent iff there exists a stochastic relation L and
morphisms

K1
f1 � L � f2

K2
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Assume fi = (fi, gi),Ki = (Xi, Yi,Ki) and L = (X,Y, L). The condition
says that we can find for each given x1 ∈ X1 an element x2 ∈ X2 such that
f1(x1) = f2(x2) with this property: for each B ∈ B(Y ) with Bi = g−1

i [B] , i =
1, 2, we have due to f1 and f2 being morphisms,

K1(x1)(B1) = K1(x1)(g−1
1 [B])

= L(f1(x1))(B)
= L(f2(x2))(B)
= K2(x2)(B2).

Hence the probability of hitting throughK1 the setB1 = g−1
1 [B] starting from

x1 equals the probability of hitting the set B2 = g−1
2 [B] from x2 through K2,

if the observations for x1 and for x2 coincide.
We will see that behavioral equivalent relations have simulation equivalent

congruences, and, using factoring just as in the proof of Proposition 5.39, that
relations having simulation equivalent congruences are behavioral equivalent.
Thus dealing with a cospan of morphisms seems to be easier than dealing with
a span. Looking behind the curtain, this is not really a surprise, since the
construction of a cospan requires factoring, whereas the construction of a span
requires handling a semi-pullback. Nevertheless, the difference in complexity
for solving apparently symmetric problems is striking.

LEMMA 5.48

If the analytic objects K1 and K2 are behavioral equivalent with morphisms
fi : Ki → L for some analytic object L, then ker (f1) and ker (f2) are simulation
equivalent congruences.

PROOF 0. Assume Ki = (Xi, Yi,Ki) with fi = (fi, gi), i = 1, 2. Assume
furthermore that L = (A,B,L).

1. We know that ker (f1) and ker (f2) are congruences (Proposition 5.27). It
is inferred from Lemma 5.23 that they spawn each other.

2. Let C be a countable generator of B(B) that also separates points, so
that ker (g1) spawns ker (g2) via (Ξ, g−1

1 [C]) with Ξ : [y1]ker(g1) 
→ [y2]ker(g2) iff
g1(y1) = g2(y2) as in the proof for Lemma 5.23. If x1 ∈ X1, x2 ∈ X2 with
f1(x1) = f2(x2), then we have for all C ∈ C

K1(x1)(g−1
1 [C]) = L(f1(x1))(C) = L(f2(x2))(C) = K2(x2)(g−1

2 [C]).

Since Ξg−1
1 [C] = g−1

2 [C] , this implies that ker (f1) and ker (f2) are simulation

equivalent.

As a companion to Theorem 5.46 we obtain:



Congruences and Bisimulations 217

PROPOSITION 5.49
For analytic objects K and K′ these statements are equivalent:

a. there exist simulation equivalent congruences c and c′ on K resp. K′,

b. K and K′ are behavioral equivalent

PROOF We infer b ⇒ a from Lemma 5.48; the implication a ⇒ b is
obtained from part a. of Proposition 5.39.

The question arises under which condition all these notions of characterizing
behavior coincide. A glimpse at the topological conditions in Theorem 5.46
suggests that additional properties will be necessary for such a characteri-
zation. We will deal in Chapter 6 with yet another notion of equivalence,
viz., logical equivalence. It will be formulated for Kripke models, and we
will relate it to bisimilarity and behavioral equivalence, since it will turn out
this additional notion of equivalence can be subsumed under the existence of
simulation equivalent congruences.

A Portmanteau. The diagram in Figure 5.1 gives the implications that
we found between the existence of simulation equivalent congruences, behav-
ioral equivalence and bisimilarity of stochastic relations. Thus, in order to
investigate bisimilarity of stochastic relations or for finding out about their
behavioral equivalence, it is helpful to find congruences and to show that they
are simulation equivalent. This will then permit constructing a span or a
cospan of morphisms. The span will be constructed through a semi-pullback
as in Section 4.4; the cospan will be constructed through factoring as in Sec-
tion 5.4.

We will see that these results for stochastic relations need to be adapted for
the situation at hand, viz., for constructing models for modal and continuous
time logics, that we will investigate in Chapter 6. Hence we will look into
these specific constructions in order to transform the corresponding stochastic
relation into the model we are looking for.

5.6 2-Bisimulations

A bisimulation between the stochastic relations K1 and K2 has been defined
in Section 5.4 through a stochastic relation M (the mediating object) together
with two morphisms

K1
� f1

M
f2 � K2
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K/c ∼= K′/c′
5.41 �� c and c′ are

simulation
equivalent

5.49.a ��
5.40

��

5.39

��

K and K′ are
behavioral
equivalent

5.49.b
��

K and K′ are
bisimilar

compactness

��

Figure 5.1: Bisimilarity and behavioral equivalence vs. simulation
equivalence

that share some common event, cp. Definition 5.37. If K1 and K2 coincide,
this is called a bisimulation on K1. We will in this section specialize this
notion: rather than considering general morphisms, we consider projections.
Consequently, we have domains and ranges of the mediating object as rela-
tions. These relations may have interesting properties, for example when we
discuss bisimulations on a single relation. There the question arises whether
or not the underlying sets are equivalence relations, are smooth, etc.

Formally, let
M = ((A,X ), (B,Y),M)

be the mediating object with suitable σ-algebras X and Y on A resp. B.
If A and B are measurable subsets of X1 × X2 resp. Y1 × Y2, and if f1 =
(π1,X1 , π1,Y1), f2 = (π2,X2 , π2,Y2) — π indicating the projections — then the
bisimulation is called a 2-bisimulation. Thus a 2-bisimulation renders this
diagram commutative:

X1
� π1,X1

A
π2,X2 � X2

S (Y1,A1)

K1

�
�
S (π1,Y1)

S (B,Y)

M

�

S (π2,Y2)
� S (Y2,B2)

K2

�

We require for 2-bisimulations A and B only to be measurable subsets of
X1 × X2 resp. Y1 × Y2, and the σ-algebras X and Y chosen so that the
projections are morphisms, i.e., surjective and measurable maps. Note also
that the condition on a nontrivial σ-algebra of common events now reads that
there exists Borel sets C1 ⊆ Y1, C2 ⊆ Y2 with

∅ �= B ∩ (C1 × Y2) = B ∩ (Y1 × C2) �= B.
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Having congruences available permits specializing the notion of a bisimulation
further (and these specializations will be used later on when characterizing
simple systems).

DEFINITION 5.50 Let α and β be smooth equivalence relations on X
resp. Y .

a. A 2-bisimulation M = (α, β,M) on K is called a smooth 2-bisimulation on
K.

b. If the stochastic relation N = ((α,B(α)), (β,⊗ [Y, β]), N) has the property
that

(S (π1,Y ) ◦N(a1, a2)) (E) = K(a1)(E) and
(S (π2,Y ) ◦N(a1, a2)) (E) = K(a2)(E)

hold whenever 〈a1, a2〉 ∈ α and E is a β-invariant Borel set of Y , then N
is called a weak 2-bisimulation on K.

Let β �= UY , then there exist a β-invariant Borel set ∅ �= P �= Y (since
there exists y1, y2 ∈ Y with 〈y1, y2〉 /∈ β, one may take P := [y1]β ). Because
by Lemma 5.9, part a,

∅ �= β ∩ (P × Y ) = β ∩ (P × P ) = β ∩ (Y × P ) �= β,

we see that the σ-algebra of common events is in this case not empty.
Smooth 2-bisimulations correspond to the bisimulation equivalences stud-

ied in coalgebras, as we will see soon. Weak 2-bisimulations restrict their
attention to the β-invariant Borel sets of Y (rather than on all Borel sets),
N(a) ((B × Y ) ∩ β) is defined for a ∈ α and for the β-invariant Borel set
B ∈ B(Y ); see Lemma 5.9, part b. This looks of course much more restrictive
than for a smooth 2-bisimulation: Clearly a smooth 2-bisimulation is a weak
one, and we will show in Proposition 5.51 that we can even produce a smooth
2-bisimulation from a weak one, provided the relation K is a Polish object.

We will begin with an observation relating congruences, smooth and weak
2-bisimulations. Fix for the discussion that follows the stochastic relation
K = (X,Y,K) and a pair c = (α, β) of smooth equivalence relations on the
analytic spaces X resp. Y .

PROPOSITION 5.51
Consider the following conditions:

a. c = (α, β) is a nontrivial congruence on K.

b. There exists N : (α,B(α)) � (β,⊗ [Y, β]) such that the stochastic relation
((α,B(α)), (β,⊗ [Y, β]), N) is a weak 2-bisimulation on K.
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c. There exists M : α � β such that (α, β,M) is a smooth 2-bisimulation on
K.

Then the following holds:

a. c ⇒ b ⇒ a is true for the analytic spaces X and Y ,

b. If both X and Y are Polish, then all conditions are equivalent.

PROOF 0. c⇒ b is quite obvious, since each smooth 2-bisimulation is
a weak one, so for the general case the implication b⇒a, and for the Polish
case the implication a⇒c needs to be established.

1. b⇒a: Let C ∈ INV (B(Y ), β) be a β-invariant Borel subset of Y , then

(C × Y ) ∩ β = (Y × C) ∩ β = (C × C) ∩ β

has been established in Lemma 5.9, part a. Thus we obtain for 〈x, x′〉 ∈ α
the following chain of equations from ((α,B(α)), (β,⊗ [Y, β]), N) being a 2-
bisimulation

K(x)(C) = K(π1,X(x, x′))(C)
= S (π1,Y ) (N(x, x′))(C)
= N(x, x′)((C × Y ) ∩ β)
= N(x, x′)((Y × C) ∩ β)
= S (π2,Y ) (N(x, x′))(C)
= K(π2,X(x, x′))(C)
= K(x′)(C).

2. a⇒c: This part is harder. We need to construct a stochastic relationM :
α � β so that (α, β,M) forms a 2-bisimulation. The plan is very similar to the
plan pursued for the existence of semi-pullbacks in Section 4.4.1, in particular
for the proof of the central Lemma 4.9. There are subtle differences in the
respective scenarios, so we adapt the proof mutatis mutandis ; the central
arguments, however, remain in each case the same. The plan goes as follows:
we show that this problem can again be considered a selection problem. For
this, we define on α a suitable set-valued map Γ that takes on closed sets of
measures on β and that satisfies the conditions of Proposition 1.57 for the
existence of a selector. The main difficulty will again lie in showing that Γ
takes in fact nonempty values, and here invariant sets come in. Before doing
all that, it is shown that the stage we are working on can be set up through
closed sets and continuous maps.

Since β is smooth, there exists a Polish space W and a Borel measurable
map g : Y → W such that β = ker (g) by Lemma 1.52. We can find by
Proposition 1.28 a finer Polish topology on Y with the same Borel sets B(Y )
that makes g continuous. Thus β may be assumed a closed subset of Y × Y .
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Since Y is a Polish space, the space S (Y ) is Polish as well. Because α is
smooth, we find a Polish space V and a Borel measurable map h : X → V
such that α = ker (h). Applying the same argument as above, we can find a
Polish topology on X which makes h : X → Y as well as K : X → S (Y )
continuous maps, rendering in particular α a closed, hence Polish, subset of
X ×X .

Given 〈x1, x2〉 ∈ α, the set

Γ(x1, x2) := {μ ∈ S (β) | S (π1,Y ) (μ) = K(x1),S (π2,Y ) (μ) = K(x2)}

will be scrutinized with the goal of finding a measurable selector for Γ. It is
immediate that it is a closed subset of S (β), because the projections induce
continuous maps on the respective spaces of subprobabilities. Whenever C ⊆
S (β) is compact, the weak inverse

∃Γ(C) = {〈x1, x2〉 ∈ α | Γ(x1, x2) ∩ C �= ∅}

of C is a closed subset of α: let (〈x1,n, x2,n〉n∈N) ⊆ ∃Γ(C) be a sequence with

lim
n→∞〈x1,n, x2,n〉 = 〈x1, x2〉.

For each n ∈ N there exists γn ∈ C with γn ∈ Γ(x1,n, x2,n). Since C is
compact, there exists a subsequence s and γ ∈ C with γs(n) → γ. Continuity
of K and closedness of α together imply that γ ∈ Γ(x1, x2), thus 〈x1, x2〉 ∈
∃Γ(C).

We show first that Γ(x1, x2) �= ∅, whenever 〈x1, x2〉 ∈ α. For this the
techniques developed in Section 4.2 are used. Put Z := Y/β with C :=
B(Y/β), then (Z, C) is an analytic space; hence it is separable; see 1.3.3. The
map ψ : y 
→ [y]β is measurable from Y onto Z, and we have

S := {〈y1, y2〉 | ψ(y1) = ψ(y2)} = β.

We know moreover from Proposition 5.5 that η−1
β [C] = INV (B(Y ), β) holds.

Now fix 〈x1, x2〉 ∈ α and put ν1 := K(x1), ν2 := K(x2), then a measure θ1 on
the σ-algebra ⊗ [Y, β] is defined through

(∗) θ1((B ×B) ∩ β) = ν1(B) (= ν2(B)) ;

see Lemma 5.9, part c. An appeal to Proposition 4.4 yields an extension of θ1
to a measure θ which is defined on all of B(S). Thus we have now θ ∈ S (S)
such that

∀Ei ∈ ψ−1 [C] : S (πi,Y ) (θ)(Ei) = νi(Ei), i = 1, 2.

From Proposition 4.4 we obtain a measure μ ∈ S (S) such that

∀Ei ∈ B(S) : S (πi,Y ) (μ)(Ei) = νi(Ei), i = 1, 2.



222 5.6 2-Bisimulations

But this means that Γ(x1, x2) �= ∅, thus we can apply the selection theorem
and obtain through Proposition 1.57 a measurable selector M for Γ, conse-
quently, M : α � β. Thus M := (α, β,M) is a stochastic relation. From M
being a selector to Γ one sees that M is a 2-bisimulation for K, since

(S (π1,Y ) ◦M) (x1, x2) = K(x1)
(S (π2,Y ) ◦M) (x1, x2) = K(x2)

is true for all 〈x1, x2〉 ∈ α.

Thus we have established a very close relationship between congruences
and 2-bisimulations for stochastic relations. The basic idea has been again to
extend a stochastic relation that is defined on a small and fairly easy to handle
σ-algebra to a larger one. But this is complicated, because we do not have
direct access to the Borel sets, when we need it: the Borel sets are defined in
terms of a closure operation and not through some explicit procedure, so we
cannot put a handle on them directly (in fact, this is a white lie: the Borel sets
can be defined stepwise through transfinite induction, see, e.g., (Srivastava,
1998) or (Aumann, 1952); but this process is rather complicated and will not
help us here at all). Hence we have to walk a by-path again: we show through
a selection argument that such a measure must exist.

Albeit there are subtle variations here and in Section 4.4.1, both arguments
work essentially as follows:

a. We know that the situation is easily managed on a small σ-algebra which
we start from (this is like the begin of a proof by induction: the picture is
nice and clear in the beginning).

b. We know also that our request for an extension is not unreasonable, since
our map Γ has some reasonable properties (this is like the induction hy-
pothesis).

c. From this we conclude that we can find an extension through a selector
(this is much like the inductive step itself).

Quite apart from the involved technical development, this close relationship
between bisimilarity and congruences is somewhat akin to the scenario for
general coalgebras. The situation cannot be mirrored, however, since for
coalgebras one usually requires a functor which preserves weak pullbacks;
see, e.g., (Rutten, 2000). The structure for the subprobability functor S is
slightly more involved because the hope for establishing weak pullbacks is vain.
Consequently it seems to be difficult to fit general coalgebras and stochastic
relations too tightly under one common roof.

Anyway, Proposition 5.51 provides us with a considerable degree of freedom.
It will be of use when investigating simple relations: we can select the proper
scenario in investigating simple relations without having to be afraid that we
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lose important properties, as will be seen in Section 5.7. This holds at least in
the Polish case. In the case of an analytic object we have to be a bit careful,
but Proposition 5.51 tells us as well where to install watch dogs.

A partial converse to Proposition 5.51 is furnished through

LEMMA 5.52
Let α and β be smooth equivalence relations on X resp. Y . Assume that

M := ((α,B(α)), (β,⊗ [Y, β]),M)

is a weak 2-bisimulation on K. Then (α, β) is a congruence of K.

PROOF Let B ∈ INV (B(Y ), �(β)) , then we know from Lemma 5.9,
part a that (B×Y )∩β = (Y ×B)∩β holds. Thus we get from the assumption
that M is a bisimulation on K the equality K(x1)(B) = K(x2)(B) for all
〈x1, x2〉 ∈ α.

Proposition 5.51 builds the much needed bridge between congruences and
bisimulations. Quite apart from being of considerable interest unto its own,
we will cross this bridge when investigating simple systems.

5.7 Simple Relations

An algebraic structure which is isomorphic to each of its nontrivial factor
spaces is called simple. Take, e.g., a simple and nontrivial group G and an
epimorphism φ : G → H , then φ is an isomorphism (Lang, 1965, p. 104).
Since simple systems do not have nontrivial subsystems, a system S is simple
if each epimorphism S → T is an isomorphism. The very close connection
between simple systems and trivial bisimulations is well known in the theory
of coalgebras: a system is simple iff it has only trivial bisimulations.

Simple systems will be characterized both for Polish and analytic spaces.
We deal first with the Polish case which is a bit easier to handle, and turn
then to the analytic case. A technique for reducing the analytic to the Polish
case is developed, so that we may capitalize on previous results. A complete
characterization of simple relations can be given for the analytic case.

Call a congruence c = (α, β) onX and Y plain iff both equivalence relations
are the identity, viz., iff both α = ΔX and β = ΔY hold. Similarly, call a
smooth or weak 2-bisimulation plain iff the underlying congruence is plain.

DEFINITION 5.53 A stochastic relation K is called simple iff each
morphism with domain K is an isomorphism.
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Figure 5.2: Simple systems: the Polish case

This definition looks a bit stronger than usual, since usually epimorphisms
emanating from a simple structure are assumed to be isomorphisms. But
since all our morphisms are epis, we deal only with surjective maps, thus the
common definition applies in this context as well.

Looking first at relations based on Polish spaces, things are rather satisfy-
ingly characterized through equivalences of smooth and weak 2-bisimulations
and plain congruences. There is even a characterization through morphisms
going into the relation in question. The case of analytic relations is a bit
more involved, since the equivalence of smooth and weak 2-bisimulations is
not guaranteed; so it is relegated to a separate discussion.

5.7.1 The Polish Case

We characterize simple systems if both spaces on which the relation is de-
fined are Polish. The following characterization is summarized in Figure 5.2.

THEOREM 5.54
Consider these statements for the Polish object K

(a). K is simple.

(b). Each smooth 2-bisimulation on K is plain.

(c). Each weak 2-bisimulation on K is plain.

(d). Let f1, f2 : M → K be morphisms, where M is a Polish object, then f1 = f2.

(e). Each congruence on K is plain.

Then

a. These implications hold always: (a) ⇔ (b)⇔ (c) ⇔ (e)⇐ (d).

b. Let in (d) fi = (φi, ψi). If both �("φ1‖φ2#) and �("ψ1‖ψ2#) are smooth,
then (e)⇒ (d) holds as well.
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The proof for Theorem 5.54 is broken into several pieces:
(e)⇒ (a): Let f : K → L be a morphism, then f can be factored through

K/ker (f) as f = f′ ◦ ηker(f) with an isomorphism f′ by Corollary 5.35. ker (f) is
a congruence which is plain by assumption. Thus f is an isomorphism.

(a)⇒(e): If c is a congruence on K, then ηc : K → K/c is a morphism.
(b)⇒(e): This is a special case of Proposition 5.51.
(d)⇒(b): Let M := (A,B,M) be a smooth bisimulation on K, then

(π1,X , π1,Y ), (π2,X , π2,Y ) : M→ K

are morphisms which are equal by assumption.
This settles the proof of part a. Turning to the proof of part b, assume that

(e) holds in addition to (�("φ1‖φ2#), �("ψ1‖ψ2#)) being smooth. We note from
the proof of Lemma 5.8 that a �("ψ1‖ψ2#)-invariant Borel set D ⊆ Y has the
property that ψ−1

1 [D] = ψ−1
2 [D] holds, hence that D is an event common to

ψ1 and ψ2. Now define the equivalence relation

RD := {〈x1, x2〉 | K(x1)(D) = K(x2)(D)},

then "ψ1‖ψ2# ⊆ RD follows from f1, f2 : M → K being morphisms: suppose
〈x1, x2〉 = 〈φ1(a), φ2(a)〉, and E = ψ−1

1 [D] = ψ−1
2 [D] , we obtain

K(x1)(D) = (K ◦ φ1)(a)(D)
= (S (ψ1) ◦M)(a)(D)
= M(a)(E)
= (S (ψ2) ◦M)(a)(D)
= K(x2)(D).

Since RD is an equivalence relation for each D, and �("φ1‖φ2#) is the smallest
equivalence relation containing "φ1‖φ2#, this implies

�("φ1‖φ2#) ⊆
⋂
{RD | D ∈ INV (B(Y ), �(T ))}

which in turn yields that (�("φ1‖φ2#), �("ψ1‖ψ2#)) is a congruence on K. This
congruence is plain by assumption, yielding f1 = f2, as desired.

5.7.2 The Analytic Case

We will reduce the case of relations on analytic spaces to the one where
we have Polish spaces at our disposal, and we have seen that we can move
smooth equivalence relations along arrows (albeit reversing the direction) in
Lemma 5.7. This will be used now to move congruences.

PROPOSITION 5.55
Let K = (X,Y,K) be a Polish object, L = (A,B,L) be an analytic object,

assume that f = (φ, ψ) : K → L is a morphism, and that c = (α, β) is a
congruence on L. Then cf := (αφ, βψ) is a congruence on K.
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PROOF We know from the constructions that both αφ and βψ are smooth
equivalence relations. Now let a αφ a′, thus φ(a) α φ(a′). Assume that E ⊆ Y
is a βψ-invariant Borel set; from Lemma 5.7 we infer that E = ψ−1 [E0] for
some β-invariant Borel set E0 ⊆ B. Then

K(a)(E) = K(a)
(
ψ−1 [E0]

)

= (S (ψ) ◦K) (a)(E0)
= L(φ(a))(E0)
= L(φ(a′))(E0)
= K(a)(E),

because (φ, ψ) is a morphism, and because (α, β) is a congruence on L. This
shows that cf is in fact a congruence on K.

For a characterization of simple stochastic relations analogous to Theo-
rem 5.54, we fix an analytic object K = (X,Y,K) together with Polish spaces
and surjective Borel maps f : X0 → X and g : Y0 → Y which define the
analytic structure on X resp. Y . We establish for K the following property:

PROPOSITION 5.56
These conditions are equivalent for K:

a. Each weak 2-bisimulation on K is plain.

b. Each congruence on K is plain.

PROOF 0. Since each weak 2-bisimulation is defined on a congruence,
the implication b ⇒ a is obvious from Lemma 5.52. In order to establish
the other implication, we will construct from a given congruence c = (α, β)
on K together with the derived pair cf,g := (αf , βg) a stochastic relation
K0 := (X0, Y0,K0) on which cf,g is a congruence. Then construct a smooth
2-bisimulation M0 = (αf , βg,M0) on K0, and use this for constructing a weak
2-bisimulation M = (α, β,M) on K.

1. The relations αf and βg are smooth equivalence relations on X0 resp.
Y0. Define for E ∈ INV (B(Y ), β) and x0 ∈ X0

K ′
0(x0)(g−1 [E]) := K(f(x0))(E),

then we see from Lemma 5.7 that K ′
0 : (X0,B(X0)) � (Y0, INV (B(Y0), βg))

is a stochastic relation, so by Proposition 4.7 we can find a stochastic relation

K0 : (X0,B(X0)) � (Y0,B(Y0))

extending K ′
0. Then cf,g is a congruence on K0: let 〈x0, x1〉 ∈ αf , and

E0 ∈ INV (B(Y0), βg) be an invariant Borel set in Y0. We know then that
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〈f(x0), f(x1)〉 ∈ α, and that E0 = g−1 [g [E0]] with g [E0] ∈ INV (B(Y ), β) .
Hence

K0(x0)(E0) = K0(x0)(g−1 [g [E0]])
= K(f(x0))(g [E0])
= K(f(x1))(g [E0])
= K0(x1)(E0).

From Proposition 5.51 we get a smooth 2-bisimulation M0 = (αf , βg,M0) on
K0. We show that this implies

M0(x0, x1)((P × Y0) ∩ βg) = M0(x′0, x
′
1)((P × Y0) ∩ βg),

provided P ∈ INV (B(Y0), βg) is a βg-invariant Borel set in Y0, and we have
〈x0, x1〉, 〈x′0, x′1〉 ∈ αf with f(x0) = f(x′0) or f(x1) = f(x′1). This is done
through the bisimulation property for M0: assume that f(x0) = f(x′0), then

M0(x0, x1)((P × Y0) ∩ βg) = M0(x0, x1)(π−1
1,Y0

[P ])
= (S (π1,Y0) ◦M0) (x0, x1)(P )
= (K0 ◦ π1,X0) (x0, x1)(P )
= K0(x0)(P )
(∗)
= K0(x′0)(P )
= M0(x′0, x

′
1)((P × Y0) ∩ βg).

Eq. (∗) follows from the observation that f(x0) = f(x′0) implies 〈x0, x
′
0〉 ∈ αf .

Now introduce the stochastic relation M = ((α,B(α)), (β,⊗ [Y, β]),M) by
defining the subprobability

M(a, a′)((B × Y ) ∩ β) := M0(x0, x
′
0)(

(
g−1 [B]× Y0

)
∩ βg)

for 〈a, a′〉 = 〈f(x0), f(x′0)〉 ∈ α and for B ∈ INV (B(Y ), β) .
The discussion above shows that M is well defined, provided we can es-

tablish that (g−1 [B] × Y0) ∩ βg ∈ ⊗ [Y0, βg] is true. But we know that
g−1 [B] ∈ INV (B(Y0), βg) holds.

2. It remains to show that M is indeed a weak 2-bisimulation. Let 〈a, a′〉 ∈ α
with a = f(x0), a′ = f(x′0), and take a β-invariant Borel set E ⊆ Y . Then
π−1

1,Y [E] = (E × Y ) ∩ β.
Putting all this together, we obtain

M(a, a′)(π−1
1,Y [E]) = M(f(x0), f(x′0))((E × Y ) ∩ β)

= M0(x0, x
′
0)((g

−1 [E]× Y ) ∩ βg)
= K0(x0)(g−1 [E])
= K(f(x))(E)
= K(a)(E).
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As a consequence the analogue to Theorem 5.54 is obtained for analytic
objects. Figure 5.3 suggests a pictorial summary.

THEOREM 5.57
Consider these statements for the analytic object K

(a). K is simple.

(b). Each smooth 2-bisimulation on K is plain.

(c). Each weak 2-bisimulation on K is plain.

(d). Let f1, f2 : M → K be morphisms, where M is an analytic object, then
f1 = f2.

(e). Each congruence on K is plain.

Then these implications hold: (d)⇒ (a) ⇔ (e)⇒ (b) ⇒ (c)⇐ (e).

We are now in a position to characterize simple systems over analytic spaces
completely. Let 1l := {∗} be the one-element space with the discrete topology
(which is Polish) and Pow (1l) as its Borel sets. This space plays a distin-
guished rôle:

PROPOSITION 5.58
The analytic objects (X, 1l,K) such that x 
→ K(x)(1l) is injective are exactly

the simple analytic objects.

PROOF 1. Let K = (X, 1l,K) be such an object, and assume that

f = (φ, ψ) : K → L = (A,B,L)

is a morphism. Then B can have only one element. Since x 
→ K(x)(1l)
is one-to-one, we see that x �= x′ implies L(φ(x))(B) �= L(φ(x′))(B), hence
φ(x) �= φ(x′). Consequently f is an isomorphism. Thus K is simple.
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2. Let conversely K = (X,Y,K) be a simple stochastic relation, and define
the smooth equivalence relation α̃ through α̃ := ker (K(·)(Y )) . Put ω̃ := Y×Y,
then ω̃ is also smooth. It is not difficult to see that c := (α̃, ω̃) is a congruence
on K, since {∅, Y } is the σ-algebra of ω̃-invariant subsets. By Theorem 5.57,
c is plain, thus α̃ = ΔX and ω̃ = ΔY . Hence Y can only have one element,
and α is the kernel of an injective map.

Thus the simple objects in the category of stochastic relations over analytic
spaces are in one-to-one correspondence with the injective Borel maps from
analytic spaces to the unit interval. Proposition 5.58 is the stochastic coun-
terpart to the coalgebraic characterization of simple systems which says that
a system S is simple iff it is isomorphic to S/≡, where ≡ is the greatest bisim-
ulation on S (Rutten, 2000, Theorem 8.1). This construction is not directly
applicable in the present context since the notion of a greatest bisimulation
is not available here.

Call finally an object F final iff given another object M there exists exactly
one morphism f : M → F. In view of Theorem 5.54, a final object is sim-
ple. The category of stochastic relations does not have final objects: Being
simple, a final object would have the shape F = (X, 1l, F ) according to Propo-
sition 5.58. But X cannot have more than one element, thus F = (1l, 1l, F )
with F (∗)(1l) = r for some r, 0 ≤ r ≤ 1. But then there would be a unique
morphism (1l, 1l,K) → (1l, 1l,K ′) with K ′(∗)(1l) = r′ �= r. This is evidently
impossible.

We have, however, the following positive result:

COROLLARY 5.59

The full subcategory of stochastic relations (X,Y,K) with K(x)(Y ) = 1 for
all x ∈ X has a final object (1l, 1l, F ).

5.8 Case Study: The Converse of a Stochastic Relation

Bisimilarity is quite robust a relation; this will be demonstrated for the con-
verse of a stochastic relation. Quite apart from this observation, the problem
is interesting in its own right, because it suggests an occasion for investigating
some similarities between forming the converse for set-theoretic relations and
their stochastic cousins. It is shown how the converse is constructed through
a disintegration argument (in marked contrast to the set-theoretic case, where
merely the order of the pairs needs to be reversed).

For introducing the problem, let R be a set-relation on a set of states. If
〈x, y〉 ∈ R, then this can be written as x →R y and interpreted as a state
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Figure 5.4: A Stochastic Relation and Its Converse

transition from x to y. The converse R� shifts attention to the goal of the
transition: y →R� x is interpreted as y being the goal of a transition from x.

Now let p(x, y) be the probability that there is a transition from x to y, and
the question arises with which probability state y is the goal of a transition
from x. This question cannot be answered unless we know the initial prob-
ability μ for the states. Then we can calculate p�μ (y, x) as the probability
to make a transition from x to y weighted by the probability to start from x
conditional to the event to reach y at all, i.e.,

p�μ (y, x) :=
μ(x) · p(x, y)

∑
t μ(t) · p(t, y) .

Consider as an example the simple transition system p on three states given
in the left hand side of Fig. 5.4. The converse p�μ for the initial probability
μ := [1/2 1/4 1/4] is given on the right hand side.

The transition probabilities p are given through
⎡

⎢
⎢
⎣

1/4 1/2 1/4

1/5 1/2 3/10

1/3 1/3 1/3

⎤

⎥
⎥
⎦

with initial probabilities according to the vector μ := [1/2, 1/4 1/4, ] . The
converse p�μ is then computed as

⎡

⎢
⎢
⎣

15
31

6
31

10
31

6
11

3
11

2
11

15
34

9
34

5
17

⎤

⎥
⎥
⎦ .
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The situation is of course more complicated in the nonfinite case. We
assume as usual that we work in Polish spaces. A definition of the converse
K�
μ of a stochastic relation K given an initial distribution μ is proposed in

terms of disintegration. An interpretation of the converse in terms of random
variables is given, and it is shown that the converse behaves with respect to
composition like its set-theoretic counterpart, viz., (K∗L)�μ = L�K•(μ)∗K�

μ ,

where K•(μ) denotes the image distribution of μ under K (Lemma 5.60), and
the composition is the Kleisli composition for the Giry monad (Section 2.3).
This is of course the probabilistic counterpart to the corresponding law for
relations R and S, which reads (R∗S)� = S�∗R�.

Before entering the discussion on the converse, we study briefly the interplay
between stochastic relations and the measures on the codomain.

LEMMA 5.60
Let X and Y be Polish spaces, K : X � Y be a stochastic relation, and put

for μ ∈ S (X) , B ∈ B(B)

K•(μ)(B) :=
∫

X

K(x)(B) μ(dx).

Then

a. K• defines a map K• : S (X)→ S (Y ) such that
∫

Y

g dK•(μ) =
∫

X

∫

Y

g(y) K(x)(dy) μ(dx)

holds for each g ∈ F (Y ) .

b. (μ⊗K) (D) :=
∫
X K(x)(Dx) μ(dx) assigns μ ∈ S (X) and K a subproba-

bility on X × Y such that
∫

X×Y
g d (μ⊗K) =

∫

Y

∫

X

g(x, y) K(x)(dy) μ(dx)

is true whenever g ∈ F (X × Y ) .

PROOF The proofs work along the following pattern, so often encoun-
tered here already: One first shows that the claim is correct for the case of
indicator functions, then establishes that things work as expected for step
functions as the linear combinations of indicator functions. Using a monotone
approximation for nonnegative bounded and measurable functions, the inte-
gral’s monotone continuity shows that the claim is justified for these functions;
finally, a decomposition of a map into the difference of nonnegative functions
yields the claim for general measurable and bounded maps. The reader is
invited to fill in the details.
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The map K• : S (X)→ S (Y ) defined in Lemma 5.60 is usually called the
Kleisli extension to K : X � Y . This construction is a helpful tool when
investigating Kleisli morphisms.

Let us illustrate these constructions for the discrete case.

EXAMPLE 5.61
Assume that p : {1, . . . , n} � {1, . . . ,m} is a stochastic relation, and let
μ ∈ S ({1, . . . , n}) be an initial distribution. Then

1. p•(μ)(j) =
∑n
i=1 μ(i) · p(i, j) is the probability that response j is pro-

duced, given the initial probability μ.

2. (μ⊗ p) (〈i, j〉) = μ(i) · p(i, j) gives the probability for the input/output
pair 〈i, j〉 to occur, given the initial probability μ (which is responsible
for input i), and the probability p(i, j) for output j after input i.

These properties are easily established using elementary computations.

It is remarkable that the construction in part b of Definition 5.60 can be
reversed, and this is in fact the cornerstone for constructing the converse of
a stochastic relation. Reversing the construction means that each measure
on the product of two Polish spaces can be represented as a product of a
stochastic relation with a measure.

PROPOSITION 5.62
Given ν ∈ S (X × Y ) there exists μ ∈ S (X) and K : X � Y with ν = μ⊗K.

PROOF This is but a reformulation of Proposition 1.85.

Recall that the stochastic relation K is known as the regular conditional
distribution of πY given πX ; see Section 1.5.3. Relation K is sometimes called
a version of the disintegration of ζ w.r.t. S (πX×Y,X) (ζ).

EXAMPLE 5.63
Let ζ ∈ S ({1, . . . , n} × {1, . . . ,m}), then the probability p(i, j) for input
i generating output j is the probability ζ(〈i, j〉) for the pair 〈i, j〉 to occur
conditioned on the probability

∑m
t=1 ζ(〈i, t〉) that input i is produced at all.

Thus relation p satisfies the equation

ζ(〈i, j〉) =

(
m∑

t=1

ζ(〈i, t〉)
)

· p(i, j).

This is the discrete version of Proposition 1.85. In contrast to the discrete case,
however, the version of the disintegration of ζ with respect to its projection
usually cannot be computed explicitly in the general case.
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There is a rather helpful interplay between the projection of μ ⊗K to the
second component and K•(μ) which will be exploited later on.

LEMMA 5.64
If μ ∈ S (X) is a subprobability measure, and K : X � Y is a stochastic

relation, then
S (πX×Y,Y ) (μ⊗K) = K•(μ).

PROOF Let B ⊆ Y be a Borel set, then

S (πX×Y,X) (μ⊗K) (B) = (μ⊗K) (X ×B)

=
∫

X

K(x) ((X ×B)x) μ(dx)

=
∫

X

K(x)(B) μ(dx)

= K•(μ)(B).

5.8.1 Converse Relations

Given a substochastic matrix

(p(i, j))1≤i≤n,1≤j≤m

representing a stochastic relation

{1, . . . , n}� {1, . . . ,m}

and an initial distribution, we saw above that the probability p�μ (j)(i) of
responding with j ∈ {1, . . . ,m} on a stimulus i ∈ {1, . . . , n} is calculated as

p�μ (j)(i) =
μ(i) · p(i, j)

∑
t μ(t) · p(t, j) .

The probability p�μ under consideration reverses p given an initial distri-
bution, so is regarded as the converse of p (inverse might at first sight be
considered a better name, but this seems to suggest invertibility of the matrix
associated with p).

In view of Examples 5.63 and 5.61, this amounts to the disintegration of
μ⊗ p with respect to the distribution p•(μ) = S (πX×Y,Y ) (μ⊗ p) .

This observation guides the way for the definition of the converse for a
general stochastic relation. Fix a stochastic relation K : X � Y , and a
subprobability measure μ ∈ S (X). Then μ ⊗ K ∈ S (X × Y ) has a kind
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of natural converse: define τ := S (r) (μ⊗K) , where r : X × Y → Y × X
switches components. Thus

r[R] = R� := {〈y, x〉 | 〈x, y〉 ∈ R},

whenever R ⊆ X × Y is a relation, so r produces the converse.
Because τ ∈ S (Y ×X), this measure is (according to Proposition 1.85)

representable through a stochastic relation K�
μ : Y � X and its projection

S (πY×X,Y ) (τ) upon writing

τ = S (πY×X,Y ) (τ)⊗K�
μ .

Since S (πY×X,Y ) (τ) = K•(μ) by Lemma 5.64, the definition of the converse
of a stochastic relation now reads as follows.

DEFINITION 5.65 The μ-converse K�
μ of the stochastic relation K

with respect to the input probability μ is defined by the equation

S (r) (μ⊗K) = K•(μ)⊗K�
μ ,

where r : X × Y � 〈x, y〉 
→ 〈y, x〉 ∈ Y ×X switches components.

It is remarked that by Proposition 1.85 the converse K�
μ always exists, and

that it is unique μ-almost everywhere. Since

μ(A) = (μ⊗K)(A× Y ) = (K•(μ)⊗K�
μ )((Y ×A)�)

is true for the Borel set A ⊆ X ,

μ(A) =
∫

X

∫

Y

K�
μ (A) K(x)(dy) μ(dx) =

∫

Y

K�
μ (A) K•(μ)(dy),

we infer that
μ =

(
K�
μ

)•(K•(μ)) = (K ∗ K�
μ )•(μ)

holds. Hence the converse K�
μ solves the equation μ = (K ∗ T )•(μ) for T .

This equation does, however, not determine the converse uniquely. This is so
because it is an equation in terms of the Borel sets of X , hence may only be
carried over to the “strip” {A× Y | A ∈ B(X)} on the product X × Y . This
is not enough to determine a measure on the entire product.

A probabilistic interpretation using regular conditional distributions may
be given as follows: Let (Ω,A,P) be a probability space, ζi : Ω → Xi random
variables with values in the Polish spaces Xi (i = 1, 2). Let μ be the joint
distribution of 〈ζ1, ζ2〉, and let μi be the marginal distribution of ζi. If πi :
X1 ×X2 → Xi are the projections, then clearly μi = S (πi) (μ). K denotes
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the regular conditional distribution of ζ2 given ζ1, thus we have for the Borel
sets Ai ⊆ Xi

P({ω ∈ Ω | ζ1(ω) ∈ A1, ζ2(ω) ∈ A2}) = μ(A1 ×A2)

=
∫

A1

K(x1)(A2) μ1(dx1).

We will show now that K�
μ1

is the regular conditional distribution of ζ1 given
ζ2. In fact, let L be the latter distribution, then the definitions of K and L,
resp., imply

K•(μ1) = μ2 and L•(μ2) = μ1.

Let Ai ⊆ Xi be Borel sets, then

(K•(μ1)⊗ L) (A2 ×A1) =
∫

A2

L(x2)(A1) K•(μ1)(dx2)

=
∫

A2

L(x2)(A1) μ2(dx2)

=
∫

A1

K(x1)(A2) μ!(dx2)

= (μ1 ⊗K) (A1 ×A2).

Interpreting a stochastic relation as a regular conditional distribution of a
random variable ζ1 given ζ2, its converse may be interpreted as the conditional
distribution of ζ2 given ζ1. The start probability μ in the definition of K�

μ is
then interpreted as a marginal distribution.

Returning to the general case, the defining equation for the converse is
spelled out in terms of an integral:

∫

X

K(x)(Dx) μ(dx) =
∫

Y

K�
μ (y)(Dy) K•(μ)(dy).

This will be generalized and made use of later:

LEMMA 5.66
Let f ∈ F (X × Y ) , then this identity holds:
∫

X

∫

Y

f(x, y) K(x)(dy) μ(dx) =
∫

Y

∫

X

f(x, y) K�
μ (y)(dx) K•(μ)(dy).

Thus the order of integration of f may be interchanged, as in Fubini’s
Theorem, but in contrast we need to adjust the measures used for integration
(nevertheless it could be called Fubinito’s Lemma).

Some properties of forming the converse will be investigated now. We begin
with an analogue of the property R�� = R which holds for the set theoretic
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converse. Taking the initial distribution into account, this property is very
similar for the probabilistic case.

PROPOSITION 5.67
If K : X � Y , and if μ ∈ S (X), then (K�

μ )�
K•(μ)

= K holds everywhere
except possibly on a set of μ-measure zero.

PROOF The stochastic relation (K�
μ )�

K•(μ)
is determined by the equation

(K•(μ)⊗K�
μ )� = η ⊗ (K�

μ )�
K•(μ)

with η := K�
μ (K•(μ)). The defining equation implies η = μ, consequently

μ⊗K equals μ⊗ (K�
μ )�

K•(μ)
, as expected.

The question under what condition a stochastic relation may be represented
as the converse of another relation is a little more difficult to answer than for
the set-valued case. In view of the probabilistic interpretation using condi-
tional distributions, however, the following solution arises naturally.

COROLLARY 5.68
Let L : Y � X be a stochastic relation, and μ ∈ S (X). Then these

conditions are equivalent:

a. μ = L•(ν) for some ν ∈ S (Y ),

b. L = K�
μ for some K : X � Y .

Thus L : Y � X may be written in a variety of ways as the converse of a
stochastic relation, viz., L = (Kν)

�
L•(ν) for an arbitrary ν ∈ S (Y ) (where the

relation X � Y depends on ν). This is in marked contrast again to the set-
theoretic case, where the converse of the converse of a relation is the relation
itself, hence is uniquely determined.

Compatibility of composition and forming the converse is an important
property in the world of set-theoretic relations. In that case it is well known
that (R ∗ S)� = S� ∗ R� always holds (which might be called an anti-
commutative law). The corresponding property for stochastic relations reads

PROPOSITION 5.69
Let K : X � Y, L : Y � T be stochastic relations, and let μ ∈ S (X) be an

initial distribution. Then (K ∗ L)�μ = L�K•(μ) ∗ K�
μ holds.

PROOF We will make use of Lemma 5.66 by showing that both relations
have the same properties on measurable and bounded functions. Let f ∈
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F (X × Z) , then
∫

X×Z
f d (μ⊗ (K ∗ L))

(1)
=

∫

X

∫

Z

f(x, z) (K ∗ L) (x)(dz) μ(dx)
(2)
=

∫

X

∫

Y

∫

Z

f(x, z) L(y)(dz) K(x)(dy) μ(dx)
(3)
=

∫

Y

∫

X

∫

Z

f(x, z) L(y)(dz) K�
μ (y)(dx) K•(μ)(dy)

(4)
=

∫

Y

∫

Z

∫

X

f(x, z) K�
μ (y)(dx) L(y)(dz) K•(μ)(dy)

(5)
=

∫

Z

∫

Y

∫

X

f(x, z) K�
μ (y)(dx) L�K•μ(z)(dy) L

• (K•(μ)) (dz)
(6)
=

∫

Z

∫

X

f(x, z)
(
L�K•(μ) ∗ K�

μ

)
(z)(dx) L• (K•(μ)) (dz)

Equation (1) applies the definition of μ ⊗ (K ∗ L) to the first integral.
In equation (2) the definition of K ∗ L is expanded, and in equation (3)
Lemma 5.66 is applied to the two outermost integrals, similarly for equa-
tion (5). Fubini’s Theorem is used for interchanging integrals in equations (4)
and (6). The latter equation applies the definition of the composition of ker-
nels to L�K•(μ) and K�

μ .
On the other hand,

∫

X×Z
f d (μ⊗ (K ∗ L)) =

∫

X

∫

Z

f(x, z) (K ∗ L) (x)(dz) μ(dx)

=
∫

Z

∫

X

f(x, z) (K ∗ L)�μ (z)(dx) L• (K•(μ)) (dz)

is inferred from Lemma 5.66. Comparing the results established the claim.

This is again a place to note algebraic similarities between set-theoretic
and stochastic relations, but also to record exceptions. Take, e.g., Schröder’s
Cycle Rule

Q∗R ⊆ S ⇔ Q�∗S ⊆ R⇔ S∗R� ⊆ Q,

the bar denoting complementation. This rule is very helpful in practical ap-
plications, but it does not enjoy a direct counterpart for stochastic relations,
since the respective notions of negation, and of containment do not carry over.

REMARK 5.70 It can be shown that the converse has a quite interesting
topological property, because it forms essentially a relatively compact subset
of S (X). To be specific, it can be shown:
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Given K : X � Y with X,Y Polish, and μ ∈ S (X), then there exists a
Borel set A ⊆ Y with K(x)(A) = 0 for μ-almost all x ∈ X , so that the set
{K�

μ (y) | y /∈ A} is a relatively compact subset of S (X).
This is established through the observation that the converse as a whole

lives essentially on a compact subset of X which is in turn produced through
tightness of μ (see Section 1.5.1). Thus {K�

μ (y) | y /∈ A} is uniformly
tight, which by Prohorov’s characterization of compactness on spaces on mea-
sures (Parthasarathy, 1967, Theorem II.6.7) implies that this set is relatively
compact. The reader is referred to (Doberkat, 2004, Proposition 7).

5.8.2 Preserving Bisimilarity

We will show that bisimilar relations give rise to bisimilar converses, so
that bisimilarity is preserved under forming converses. We have to take into
account, however, that forming the converse does not only depend on the rela-
tion itself, but that also an initial distribution is needed. Hence we extend the
notion of bisimilarity to subprobabilities as well by treating them as constant
stochastic relations.

We have discussed different notions of bisimilarity with ties to congruences
in this chapter. The variant that fits here best is 2-similarity, because domain
and range of the mediating relation are part of the Cartesian product of the
domain resp. range of the given relations, rather than being somewhat un-
related, abstractly given spaces. Thus bisimilar means in this section always
2-bisimilar.

DEFINITION 5.71 Let X1, X2 be Polish spaces with μi ∈ S (Xi) (i =
1, 2). Then 〈X1, μ1〉 is said to be 2-bisimilar to 〈X2, μ2〉 iff there exists a subset
Z ⊆ X1 ×X2 and ζ ∈ S (Z) such that

a. Z is a Borel subset of X1 ×X2,

b. μ1 = S (πZ,X1 ) (ζ) and μ2 = S (πZ,X2 ) (ζ),

c. there exists Borel sets C1 ⊆ X1, C2 ⊆ X2 with

∅ �= Z ∩ (C1 ×X2) = Z ∩ (X1 × C2) �= Z.

〈Z, ζ〉 is said to mediate for 〈X1, μ1〉 and 〈X2, μ2〉.

The first condition is quite necessary for otherwise it would be difficult to
define a measure on Z, the second one is just a translation of the requirement
that the corresponding diagram should be commutative, and the third one
postulates that there is a nontrivial common event; see Section 5.6.
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EXAMPLE 5.72
In the discrete setting, the mediating subprobability measure may be rep-

resented as a matrix. In fact, let 〈{1, . . . , n}, μ1〉 and 〈{1, . . . ,m}, μ2〉 be
bisimilar with mediating 〈Z, ζ〉. Then ζ is represented as an n × m matrix
(ai,j)1≤i≤n,1≤j≤m such that

a. 0 ≤ ai,j ≤ 1,

b. for each i, the sum
∑m

j=1 ai,j equals μ1(i),

c. for each j, the sum
∑n
i=1 ai,j equals μ2(j).

The set Z is determined as the set of indices 〈i, j〉 for which ai,j �= 0.
Let X1 = {1, 2, 3}, μ1 = [1/2, 1/4, 1/4] and X2 = {1, 2}, μ2 = [3/8, 5/8].

Then 〈Z, ζ〉 mediates between 〈X1, μ1〉 and 〈X2, μ2〉, where

Z := {〈1, 2〉, 〈2, 1〉, 〈2, 2〉, 〈3, 1〉}

and ζ is given through the matrix
⎡

⎢
⎢
⎣

0 1/2

1/8 1/4

1/8 0

⎤

⎥
⎥
⎦

Bisimulations are maintained by forming products, and by transporting a
measure through a stochastic relation, as we will see now:

PROPOSITION 5.73
Let Ki = 〈Xi, Yi,Ki〉 be 2-bisimilar Polish objects (i = 1, 2) for which

N : U � V mediates, and assume that μi ∈ S (Xi) such that 〈X1, μ1〉 and
〈X2, μ2〉 are 2-bisimilar with mediating 〈Z, ζ〉. Assume that Z ⊆ U holds,
then

a. 〈Y1,K1
•(μ1)〉 is 2-bisimilar to 〈Y2,K2

•(μ2)〉 with mediating 〈V,N•(ζ)〉,

b. 〈X1 × Y1, μ1 ⊗ K1〉 is 2-bisimilar to 〈X2 × Y2, μ2 ⊗ K2〉 with mediat-
ing 〈t[E],S (t) (ζ ⊗N)〉, where E := Z × V and t switches components,
t(x1, x2, y1, y2) := 〈x1, y1, x2, y2〉.

PROOF 0. Because Z ⊆ U , we know that for z ∈ Z the equality
πZ,X1 (z) = πU,X1(z) holds, so that

K1(πZ,X1 (z)) = K1(πU,X1(z)) = S (πV,Y1) (N(z))

is true; similarly for K2.
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1. For establishing a, let f1 ∈ F (Y1), then
∫

Y1

f1 dK1
•(μ1) =

∫

X1

∫

Y1

f1(y1) K1(x1)(dy1) μ1(dx1)

=
∫

Z

∫

Y1

f1 dK1(πZ,X1 (z)) ζ(dz)

=
∫

Z

∫

B

(f1 ◦ πV,Y1) dN(z) ζ(dz)

=
∫

B

f1 ◦ πV,Y1 dN
•(ζ).

This implies K1
•(μ1) = S (πV,Y1) (N•(ζ)) . In the same way, K2

•(μ2) =
S (πV,Y2) (N•(ζ)) is established. This proves the first part of the assertion,
because the σ-algebra of common events for K1 and K2 can be used for the
common events of 〈Y1,K1

•(μ1)〉 and 〈Y2,K2
•(μ2)〉.

2. An argument very similar to the preceding one shows that for f1 ∈
F (X1 × Y1) these equalities hold:

∫

X1×Y1

f1 d (μ1 ⊗K1) =
∫

X1

∫

Y1

f1(x1, y1) K1(x1)(dy1) μ1(dx1)

=
∫

E

f1 d (P (πE,X1×Y1) (ζ ⊗N)) .

A similar calculation shows for f2 ∈ F (X2 × Y2) that
∫

X2×Y2

f2 d (μ2 ⊗K2) =
∫

E

f2 d (P (πE,X2×Y2) (ζ ⊗N)) .

This implies the assertion, since the isomorphism t only serves to reorder
variables.

The argumentation above shows that bisimilar relations and bisimilar initial
distributions lead to bisimilar measures on the product. The process can be
reversed: the idea is that disintegrating 2-bisimilar measures on a product
leads to 2-bisimilar stochastic relations.

LEMMA 5.74
Let Xi, Yi be Polish spaces, μi ∈ S (Xi × Yi) for i = 1, 2. Assume that

〈X1 × Y1, μ1〉 is 2-bisimilar to 〈X2 × Y2, μ2〉. Define the Polish objects Ki :=
〈Xi, Yi,Ki〉 through the disintegrations of μi w.r.t S (πXi×Yi,Xi) (μi) . Then
there exists a Polish object M = 〈X1 ×X2, Y1 × Y2,M〉 that mediates between
K1 and K2.

PROOF 1. Assume that 〈E, ζ〉 is mediating between 〈X1 × Y1, μ1〉 and
〈X2×Y2, μ2〉. Put E0 := t[E], ζ0 := S (t) (ζ) , where t rearranges components,
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as in Proposition 5.73. Let γ := S (πE0,X1×X2) (ζ0) ∈ S (X1 ×X2) , and let
M ′ be the disintegration of ζ0 with respect to γ.

2. Let Gi be a countable generator for the σ-algebra on Xi × Yi, so that Gi
is closed under finite intersections (i = 1, 2). Let G ∈ G1, then

μ1(G) = ζ0(G×X2 × Y2)

=
∫

X1×X2

S (πY1×Y2,Y1) (M ′(x1, x2)) (Gx1) γ(d〈x1, x2〉),

and
μ1(G) =

∫

X1

K1(x1)(Gx1) S (πX1×Y1,X1) (μ1)

by the definition of K1. Since

S (πX1×Y1,X1) (μ1) = S (πX1×Y1,X1) (S (πE0,X1×Y1) (ζ0))
= S (πE0,X1) (ζ0)
= S (πX1×X2,X1) (γ) ,

the latter integral may be expressed as

μ1(G) =
∫

X1×X2

K1(x1)(Gx1 ) γ(d〈x1, x2〉).

Thus

AG := {〈x1, x2〉 ∈ X1×X2 | K1(x1)(Gx1) �= S (πY1×Y2,Y1) (M ′(x1, x2)) (Gx1)}

is a measurable subset of X1 ×X2 which has γ-measure 0. Put

A1 :=
⋃
{AG | G ∈ G1},

then clearly γ(A1) = 0, and K1(x1)(Gx1) = S (πY1×Y2,Y1) (M ′(x1, x2)) (Gx1)
holds for all measurable subsets G ⊆ X1 × Y1 whenever 〈x1, x2〉 /∈ A1. This
is so since by the π-λ-Theorem 1.1 a ∩-stable generator uniquely determines
a finite measure, and since the equation above is true for all G ∈ G1. In a
similar way a measurable subset A2 of X1×X2 can be found with γ(A2) = 0,
so that for 〈x1, x2〉 /∈ A2 and for all measurable subsets G ⊆ X1 × Y2 the
equality

K2(x2)(Gx2) = S (πY1×Y2,Y2) (M ′(x1, x2)) (Gx2)

holds.
3. Define M as M ′ outside A1∪A2, and set M(x1, x2) := K1(x1)⊗K2(x2),

for 〈x1, x2〉 ∈ A1∪A2, then M : X1×X2 � Y1×Y2 has the desired properties.

Showing that bisimilarity is maintained when forming the converse is now
an easy consequence:
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PROPOSITION 5.75

Let Ki = 〈Xi, Yi,Ki〉 be 2-bisimilar Polish objects (i = 1, 2) between which
N : U � V mediates, and assume that μi ∈ S (Xi) such that 〈X1, μ1〉 and
〈X2, μ2〉 are 2-bisimilar with mediating 〈Z, ζ〉. Assume that Z ⊆ U holds.
Then K�

1,μ1
is 2-bisimilar to K�

2,μ2
.

PROOF We know from Proposition 5.73 that 〈X1 × Y1, μ1 ⊗ K1〉 and
〈X2 × Y2, μ2 ⊗ K2〉 are 2-bisimilar. Bisimilarity is plainly not destroyed by
interchanging coordinates. The assertion follows from Lemma 5.74, because
the common events for 〈X1, μ1〉 and 〈X2, μ2〉 are also common events for the
disintegrations.

5.9 Case Study: Simple Relations for Counting

The characterization of simple systems helps in analyzing the average be-
havior of algorithms by discussing two examples. The results are not new,
the approach, however, is. Rutten (Rutten, 2002; Rutten, 2003) shows how
a stream calculus based on coinduction is used for counting, and hence for
some aspects of the average case analysis of algorithms. This is made possible
through the existence of final systems for the functor considered. By Corol-
lary 5.59, the situation discussed here is different in that for the probabilistic
case only a trivial final system exists, and it may be doubted whether this can
be put to significant use.

Despite this somewhat restricted situation simple relations may be put to
work; we will discuss the average case analysis of two algorithms and show how
the continuous and the discrete case interact. This suggests the formal jus-
tification for using continuous models in the average case analysis of discrete
algorithms. Various relations will be constructed that are simple. Through
Proposition 5.58 quantities that otherwise can be obtained only with diffi-
culties are derived. Denote in the discussion that follows by Vn the set of
permutations on {1, . . . , n}.

5.9.1 Left to Right Maxima

Given an array a[1..n] of natural numbers, the following algorithm iden-
tifies the index m of the maximal element.

ALGORITHM 5.76
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m := 1;
for i := 2 to n do

if a[m] < a[i] then m := i; fi;
end for; ♣

The expected number of times the variable m changes its value in Algo-
rithm 5.76 is asked for; Knuth discusses this algorithm and arrives at the
result that this expectation equals Hn − 1, where Hn :=

∑n
i=1 i

−1 is the
nth harmonic number, provided the array has n mutually different compo-
nents (Knuth, 1973a, Section 1.2.10). To be more specific, he shows that the
number pn,k of permutations on {1, . . . , n} for which the step in question is
executed exactly k times equals

pn,k =
1
n!
·
[

n

k + 1

]

with
[
n
k

]
as a Stirling number of the first kind (Knuth, 1973a, Section 1.2.10,

Equation (9)). These numbers are defined through

z · (z + 1) · . . . (z + n− 1) =
∑

k

[n

k

]
· zk.

They are interpreted combinatorially through cycles:
[
n
k

]
is the number of

ways to arrange n objects into k cycles; see (Graham et al., 1989, Section
6.1).

Define the stochastic relation Kn := ({1, . . . , n}, 1l,Kn) with Kn(k)(1l) :=
pn,k, and assume that the values pn,0, . . . , pn,n are mutually different (if they
are not, factor). Then Kn is a simple relation, thus for each other relation K
there exists at most one morphism into it.

We want to compute the expected value when we have continuous data. Let
(Ω,A,P) be a probability space, ζ : Ω → [0, 1]n be a uniformly distributed
random variable, and τ : Ω → N the number of times the value corresponding
to m is changed. Thus if ω ∈ Ω is observed, the vector ζ(ω) is the input to
the algorithm; τ(ω) = Z(ζ(ω)) counts the corresponding number, where Z is
the function for counting. We are looking for the expected value E(τ). Since
τ takes only discrete values, and since

E(τ) =
∞∑

k=1

k · P(τ = k),

it is sufficient to compute the probability P(τ = k) that the random variable
τ has the value k. Now put K(x)(1l) := P({ω ∈ Ω | ζ(ω) = Z(x)}). Then
the simplicity of Kn implies that defining K(x)(1l) := pn,Z(x) is the only way
to define the stochastic relation K = ([0, 1]n , 1l,K) making Z : K → Kn a
morphism. Consequently, P(τ = k) = pn,k, and E(τ) = Hn − 1, as in the
discrete case.
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This illustrates how the transfer between discrete and continuous stochastic
systems works: the behavior is known in the discrete case, and defining an
appropriate simple system helps in transporting that knowledge to the con-
tinuous case. The example gives insight into the relationship between discrete
and continuous systems. The quantitative result is not new, however, and the
central recurrence from which Knuth derives the expected value, viz.,

pn,k =
1
n
· pn−1,k−1 +

n− 1
n

· pn−1,k, and p1,k = δ0,k

can be easily derived directly for the continuous case.

5.9.2 Williams’ Algorithm to Construct Heaps

Recall that a permutation p ∈ Vn is a heap iff p�i/2� < pi holds for each
index i with 2 ≤ i ≤ n. Heaps are usually represented through binary trees
with node 1 as the root and node "i/2# as the father of node i, so that the
heap condition entails that each node has a label pi which is larger than the
label p�i/2� of its father. Denote by Hn all elements of Vn that are heaps.

Let x ∈ [0, 1]n be a vector of n components taken from [0, 1] which are
mutually different, then ℘n(x) ∈ Vn is the permutation that arises from x
by order statistics, i.e., if ℘n(x) = p, then pi = k iff xi is the kth-largest
component of x. We will deal in the sequel with uniformly distributed elements
of [0, 1]n. Since equality of components happens only on a set of measure zero,
those elements can be neglected, so that ℘n is defined almost everywhere on
[0, 1]n.

Assume that n has the binary representation /1bν−1 . . . b0/2, then the node

t(n, κ) := /1bν−1 . . . bν−κ/2

is called the special node on level κ (Knuth, 1973b, Exercise 5.2.3.20).
Now let

Sn+1,0 := {p ∈ Vn+1 | ℘n(p1, . . . , pn) ∈ Hn, pn+1 > pt(n+1,1)},
Sn+1,κ := {p ∈ Vn+1 | ℘n(p1, . . . , pn) ∈ Hn, pt(n+1,κ) > pn+1 > pt(n+1,κ+1)}

(1 ≤ κ ≤ ν := "log2(n+ 1)#),
Sn+1,ν := {p ∈ Vn+1 | ℘n(p1, . . . , pn) ∈ Hn, pt(n+1,ν) > pn+1}.

The task at hand is to count the number of elements in Sn+1,0, . . . ,Sn+1,ν .
This is important for determining the average complexity of Williams’ al-
gorithm to insert an element into a heap: Suppose p ∈ Vn+1 is a permu-
tation with n + 1 elements such that p1, . . . , pn forms a heap, then pn+1 is
inserted into this heap according to Williams’ algorithm, which searches the
path n + 1, "(n+ 1)/2#, .., 1 that goes from node n + 1 to the root for the
correct position of pn+1 and inserts it there, specifically:
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ALGORITHM 5.77

j := n+1; i := "j/2#; q := pn+1

while (i > 0) && (q < pi) do
pj := pi; j := i; i := "i/2#;

od;
pj := q; ♣

This algorithm may be used for iteratively building up a heap, it is one
of the classics (Williams, 1964; Knuth, 1973b). Nevertheless, the average
case analysis is surprisingly complicated (Doberkat, 1981). We will show
here through simple stochastic relations that probabilistic arguments help in
counting permutations. Put

Wn := {x ∈ [0, 1]n | x is a heap},
G := Wn × [0, 1] .

We will assume the inputs from Wn and from [0, 1] are uniformly distributed
with λn as Lebesgue measure on (the Borel sets of) [0, 1]n. It is claimed for
later use that

λn+1({x ∈ G | ℘n+1(x) = p}) =
λn(Wn)
n+ 1

independently of p ∈ Vn+1. One first notes that the Change of Variable
formula (Proposition 1.95) implies that

λn+1({x ∈ G | ℘n+1(x) = p}) = λn+1({x ∈ G | ℘n+1(x) = p′})

with p′ as the element of Vn+1 the first n components of which form a heap,
and p′n+1 < p′1. This is so since the Jacobian of a permutation for the coordi-
nates equals 1. Thus we obtain

λn+1({x ∈ G | ℘n+1(x) = p}) = λn+1({x ∈ G | ℘n+1(x) = p′})
(†)
=

∫ 1

0

λn({y ∈ [0, 1]n | y is a heap, x < y1}) dx

(‡)
= λn(Wn) ·

∫ 1

0

(1− x)n dx

=
λn(Wn)
n+ 1

.

Equation (†) is Fubini’s Theorem on product integration. Equation (‡) is
again the Change of Variable formula, since the transformation

(y1, . . . , yn) 
→ ((1− x) · y1 + x, . . . , (1 − x) · yn + x)

which maps all heaps with n elements

{y ∈ [0, 1]n | y is a heap}
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bijectively to those heaps the root of which is greater than x,

{y ∈ [0, 1]n | y is a heap, x < y1}

has the Jacobian (1 − x)n.
Now let g(n, i) be the number of nodes in the subtree rooted at node i, then

Knuth (Knuth, 1973b, Equation 5.2.3-14) shows that

g(n, /bν−1 . . . bκ/2) = /1bκ−1 . . . b0/2,

and that, if node i is on level κ,

g(n, i) =

{
2ν−κ − 1 i is a right node,
2ν−κ+1 − 1 i is a left node

where right and left are relative to the node’s position with respect to the
special node on that level.

It follows from (Knuth, 1973b, Equation 5.2.3-16, Exercise 5.1.4-20) that
for the number hn of heaps on n elements

hn =
n∏

i=1

g(n, i)

holds; from this the equality

λn(Wn) =
n∏

i=1

g(n, i)−1 =: χn

is easily established (Doberkat, 1981). Now let for 0 ≤ κ ≤ "log2(n+ 1)#

S(κ) := {x ∈ G | ℘n+1(x) ∈ Sn+1,κ}
= Z−1 [{κ}] .

Here

Z :

{
G → Qn+1

x 
→ κ, if ℘n+1(x) ∈ Sn+1,κ

(with Qn+1 := {p ∈ Vn+1 | (p1, . . . , pn) is a heap}) has the rôle of an index
map, since ℘n+1(x) ∈ Sn+1,Z(x) holds for all x ∈ G. Thus the membership of x
in S(κ) determines the number of levels the new element climbs up the heap,
hence from it the complexity of Algorithm 5.77 can be computed. Note that
| Qn+1 |= (n+ 1) · hn holds. It can be shown (Doberkat, 1981, Proposition 3)

PROPOSITION 5.78
If n+ 1 has the binary representation /1cν−1 . . . c0/2, then

λn+1(S(κ)) =
χn

/1cκ−1 . . . c0/2
·

ν∏

j=κ+1

/1cj−1 . . . c0/2 − 1
/1cj−1 . . . c0/2

.



Congruences and Bisimulations 247

Now define the stochastic relation K = (G, 1l,K) through K(x)(1l) :=
λn+1(S(Z(x))), and put K′ := ({0, . . . , "log2(n+ 1)#}, 1l,K ′) with

K ′(κ)(1l) :=
χn
n+ 1

· | Sn+1,κ | .

We claim that K(x)(1l) = K ′(Z(x))(1l) holds for each x ∈ G, rendering Z a
morphism K → K′. In fact,

| Sn+1,κ |=
∑

p∈Sn+1,κ

1 =

n+ 1
χn

·
∑

p∈Sn+1,κ

λn+1({x ∈ S(κ) | ℘n+1(x) = p}) =

n+ 1
χn

· hn · λn+1({x ∈ G | ℘n+1(x) ∈ Sn+1,κ}) =

n+ 1
χn

· hn · λn+1(S(κ)).

This is a cornerstone for establishing

PROPOSITION 5.79

The number | Sn+1,κ | of permutations p on {1, . . . , n+1} such that p1, . . . pn
is a heap, and pn+1 climbs up κ levels during Williams’ algorithm equals

(n+ 1) · hn
/1cκ−1 . . . c0/2

·
ν∏

j=κ+1

/1cj−1 . . . c0/2 − 1
/1cj−1 . . . c0/2

,

assuming that n+ 1 has the binary representation /1cν−1 . . . c0/2.

PROOF We assume again without loss of generality that the numbers in
question are mutually different. Then they represent the only way of defining
the simple system K′ in such a way that Z becomes a morphism.

This explicit result is apparently new. It should be noted, however, that
results of this kind cannot be used for exploiting the average complexity of
Williams’ algorithm. It makes essential use of the fact that the underly-
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ing probability is uniform, but it is well known that uniform distribution
is destroyed by inserting an element into a heap through this algorithm (or
removing an element from it using Floyd’s).

5.10 Bibliographic Notes

Bisimilarity. Bisimilarity is introduced in its coalgebraic version as a span
of morphisms (Joyal et al., 1996; Rutten, 2000). For coalgebras based on
the category of sets, this definition agrees with the one through relations,
originally given by Milner (see (Rutten, 2000); (van Breugel et al., 2005)
work with a relationally oriented definition of bisimulation). Given the broad
interest in this subject, it is of course impossible to indicate the history of
the subject. Behavioral equivalence was studied by Kurz (Kurz, 2000); see
Pattinson (Pattinson, 2004). In (Desharnais et al., 2000) the authors call a
bisimulation what we introduced as a congruence, albeit that paper restricts
itself to labeled Markov transition systems, thus technically to families of
stochastic relations S � S for some state space S. It seems conceptually to
be clearer to distinguish spans of morphisms from equivalence relations, thus
we make this distinction here.

The close relationships between bisimulations and certain equivalence rela-
tions have been known since at least the Hennessy-Milner Theorem (Hennessy
and Milner, 1980). Having a closer look at the relation that is defined there,
it is evident that the relation defined through

s ≡ s′ ⇐⇒ ∀φ : [s |= φ⇔ s′ |= φ]

is countably generated. Once one can show in a probabilistic interpretation of
modal logics that the sets of states for which a formula is valid is measurable,
the relation is recognized as smooth, so the tools from the theory of Borel
sets (Kechris, 1994; Srivastava, 1998; Arveson, 1976) developed for countably
generated equivalence relations become available; this is exactly how we will
proceed in Section 6.2.

The observation that factoring an analytic space through a smooth equiv-
alence relation will yield an analytic space again is the reason that analytic
spaces figure prominently in this development; on the other hand it shows
upon factoring that these relations will not lead to bizarre spaces that are
technically difficult to grasp.

The Converse. Abramsky, Blute, and Panangaden (Abramsky et al., 1999)
investigate the category PRel of probability spaces, hereby introducing the
converse of a probabilistic relation as we do through the product measure
(Abramsky et al., 1999, Section 7). The process by which they arrive at this
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construction is quite similar to disintegration, as proposed here but makes
heavier use of absolute continuity (in fact, morphisms in PRel use absolute
continuity in a crucial way). The argumentation that has been used in the
present discussion seems to be closer to the set-theoretic case by looking at
what happens when we compute the probability for a converse relation. Fur-
ther investigations of the converse do not include the anti-commutative law
Proposition 5.69. This is probably due to the fact that integration techniques
are directly used in the present paper, whereas (Abramsky et al., 1999) prefers
arguing using absolute continuity, and consequently, with the Radon-Nikodym
Theorem.

The analogy between set-theoretic and stochastic relations is like a central
thread to many investigations in this area, since it is sometimes annoying,
sometimes exciting to see that constructions that can be carried out with-
out great difficulties for relations can be done only with great effort for the
probabilistic case. An example is given through the converse, another one
is apparent when studying pullbacks. The monograph (Freyd and Sc̆edrov,
1990) is a general approach to fit relations under a single roof.

Simple Systems. Simple systems are of course a topic in algebra (Lang,
1965). The work in coalgebras for which (Rutten, 2000) stands as a represen-
tative has given a tight relationship between simplicity and certain forms of
bisimulations. This is not only for reasons to better explore the structure of
coalgebras but also because final systems are at the basis of the proof prin-
ciple of coinduction. It is based on the observation that a final system has
exactly one morphism going into it, so it constructs its argument usually by
constructing scenarios from which the desired properties are inferred through
uniqueness. This requires the existence of a final system, which in turn is
sometimes a rather complicated business, and usually the underlying functor
must at least preserve weak pullbacks. This situation is analyzed in a paper
by Gumm and Schröder for the category of sets, and it is shown that the
functor governing the coalgebra preserves kernel pairs iff every congruence is
a bisimulation (Gumm and Schröder, 2005, Theorem 5.7). It is interesting
to compare this statement with Proposition 4.14 and Proposition 5.51 for the
subprobability functor.

In (Moss and Viglizzo, 2004) the probability functor P is considered on
measurable spaces that are endowed with a initial σ-algebra related to the
weak-*-σ-algebra. Given a discrete space I, final coalgebras for a functor de-
rived from P yielding a type space over category Meas

I are discussed. Besides
establishing the existence of a final coalgebra for the functor through satisfied
theories, the main result states that functors polynomial in the original type
functor have final coalgebras as well. This result is extended in (Viglizzo,
2005) using the final sequence of the functor under consideration, where the
method is shown to work for other, set-valued functors as well. In (Ĉırstea,
2004) coalgebraic simulation is considered, and one of the application areas
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for the discussion is probabilistic transition systems. They are modeled as
coalgebras for the functor that assigns each set its discrete probability mea-
sures. All this shows that special assumptions and constructions are needed
for securing the existence of a final system that is related with the probability
functor even over finite spaces.
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6.1 Introduction

Consider the simple modal logic the formulas of which are given through

ϕ ::= � | p | ϕ1 ∧ ϕ2 | �ϕ,

where p ∈ P with P a set of atomic propositions. A Kripke model R =
(S,R, V ) is given by a set S of states (the possible worlds), a relationR ⊆ S×S
and a map V : P → Pow (S). V (p) indicates for an atomic proposition in
which worlds it holds. Given s ∈ S, we say that formula �ϕ holds in s iff we
can find s′ ∈ S with 〈s, s′〉 ∈ R such that ϕ holds in s′. Thus [[�ϕ]] = ∃R([[ϕ]]),
see Example 1.55, where as usual [[ϕ]] is the set of all states in which formula
ϕ holds.

A probabilistic counterpart for Kripke models cannot restrict itself to stat-
ing that a formula holds (or that it doesn’t) but should provide quantitative
arguments: we want to know the probability with which a formula is true.
Thus we want to know the probability for �ϕ to hold, subject to ϕ being true.
Hence we replace the relation R ⊆ S × S by a stochastic relation K : S � S,
and the single diamond � by a whole family (�q)0≤q≤1 indicating the degree
to which �ϕ holds, and state formally that in world s ∈ S the formula �qϕ
is true iff K(s)([[ϕ]]) ≥ q holds. This is the faithful probabilistic counterpart
to the model above.

This chapter studies probabilistic interpretations of modal and temporal
logics. It does not cost much more to replace the very simple modal logic
from above by a more comfortable one which commands a collection of modal
operators of arbitrary arity, and which includes negation. We will define in
Section 6.2 nondeterministic and stochastic Kripke models, give examples for
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some well-known logics, and we will compare the nondeterministic and the
stochastic approach. A stochastic Kripke model is seen as a quantitative
model, while a nondeterministic one obviously stresses the qualitative charac-
ter. Consequently it is sensible to relate nondeterministic to stochastic models
through a refinement relation: if a formula holds in the stochastic model with
probability one, then it should hold as well in the nondeterministic one. This
relation between models is investigated, and we show under which conditions
a nondeterministic model can be refined stochastically. Not surprisingly, se-
lection theorems for set-valued maps enter the argumentation.

But the really interesting topic is bisimilarity in its relation to behavioral
and logical equivalence — under what conditions are two stochastic Kripke
models bisimilar? We show that the Hennessy-Milner Theorem provides an
answer in this scenario as well: bisimilarity and logical equivalence are the
same. This requires, however, a careful discussion of morphisms and the
bisimulations associated with them. At this point we harvest from the in-
vestment we undertook in discussing bisimulations from a very general and
abstract point of view, since we can just stretch out our hands and pluck the
results, once the scenario is set up properly. This, then, gives a rather general
result for stochastic Kripke models, and the Bibliographic Notes at the end
of the present chapter will put things into the proper context.

We will turn our attention then to temporal logics and propose interpreta-
tions for the logics CSL and its closed relative μCSL; the latter logic includes
a fixed point operator. The important point to be made is to show first how to
interpret path formulas, i.e., formulas the validity of which depends on an in-
finite path. This requires some measure-theoretic preparations, since we have
to build up a probability that works on infinite paths from the probabilities
for just one step being performed. The main tool to use will be the projective
limit of a suitable projective system.

Characteristic features of both CSL and μCSL include the explicit incor-
poration of residence times, and we will show that the tools we collected from
smooth equivalence relations and from congruences can be put to good use for
investigating subsets of all formulas that govern the behavior of a model on all
formulas. Putting it less cryptically, we take a subset F ⊆ LP of all formulas,
and ask the question, under what conditions the equivalence relation

s ≡F s′ ⇔ ∀φ ∈ F : [s |= φ⇔ s′ |= φ]

equals the equivalence relation≡LP addressing the set LP of all formulas (with
P again as the set of atomic formulas). It is clear that the answer is interesting
for model checking, since such a set F of formulas eases the task of a model
checker tremendously. We will look into the case that F = P , identifying
under which conditions the simplest possible case will do. Surprisingly, it
turns out that the invariant Borel sets for the smooth relation ≡F will play a
leading rôle.

The stochastic interpretation of both logics proposed here is new. In con-
trast to the traditional approach that starts from a rate function, this ap-
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proach assumes only a stochastic law governing state changes and residence
times. This may be specialized to assuming the stochastic independence of
both, but for the development of the theory this is not vital. We use rather an
interpretation as a stochastic relation, enabling the use of the tools developed
for investigating these relations.

The main contributions of this approach to CSL and the understanding
of stochastic logics in general lie in investigation of bisimulations for these
logics in terms of congruences, together with the development of criteria for
the equivalence of different notions of bisimulations. Another point worth
emphasizing is that this approach permits the formulation of a general ap-
proach for the investigation of bisimulations for this type of logic through the
theory of congruences for stochastic relations (which, in turn, is developed
further). These logics all have their roots in approaches to model checking,
thus they have a pronounced practical side. For the logic at hand this means
that computational issues are important, and it becomes evident that struc-
tural properties need to be looked at not only for their own interest. The
results for CSL entail such practical considerations.

The investigations into μCSL take up a trail that was laid for stochastic
relations in general and for Kripke models for modal logics in particular: we
want to characterize the relationship of bisimilarity and logical equivalence.
But with this logic — as with CSL — we are in a multi-layered scenario by
having to discuss both state formulas and path formulas. This will affect the
discussion, because congruences as the tool of choice for these investigations
become somewhat awkward to handle. Nevertheless we will find that all these
ways of describing the behavior of models are closely related. The approach
emphasizes the usefulness of congruences for these investigations, and it shows
that criterion for bisimilarity given in Section 5.4 is quite general and versatile,
opening up the road to investigations of coalgebraic stochastic logics.

6.2 Modal Logics

We have established a criterion for bisimilarity through simulation equiv-
alent congruences and discussed bisimilarity in terms of isomorphic factor
spaces; see in particular Section 5.4. We will now apply this to modal logic.
This section defines the logic we will be working with, and Kripke models
are defined in their usual nondeterministic and their stochastic versions, to-
gether with their satisfaction relation. In Section 6.2.1 some examples are
given in order to exhibit probabilistic models for specific logics, and we relate
in Section 6.2.2 nondeterministic to stochastic interpretations by introducing
probabilistic refinements.

Let P be a countable set of propositional letters which is fixed throughout,
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O �= ∅ is a set of modal operators. Following (Blackburn et al., 2001), τ =
(O, ρ) is called a modal similarity type iff O �= ∅, and if ρ : O → N is a map,
assigning each modal operator ) its arity ρ()) ≥ 1. We will not deal with
modal operators of arity zero, since they do not have to be dealt with as modal
constants in an interpretation. The similarity type τ will be fixed.

We define three modal languages based on τ and P . The formulas of the
basic modal language Modb(τ, P ) are given by the syntax

ϕ ::= p | � | ϕ1 ∧ ϕ2 | ¬ϕ | )(ϕ1, . . . ϕρ(�)),

where p ∈ P . If we have O′ = {�} with ρ(�) = 1, we obtain the formulas
of the basic modal language with negation. Omitting negation in Modb(τ, P )
defines the formulas in the negation free basic modal language Mod1(τ, P ).
Finally the extended modal language Mods(τ, P ) is defined through the syntax

ϕ ::= p | � | ϕ1 ∧ ϕ2 | ¬ϕ | )q(ϕ1, . . . ϕρ(�)),

where q ∈ Q ∩ [0, 1] is a rational number, and p ∈ P is a propositional letter.
Again, if we deal with O = O′, then we get an entire line of new formulas
through (�q)q∈Q∩[0,1].

A nondeterministic τ- Kripke model R = (S,Rτ , V ) consists of a state space
S, a family Rτ = ((R�)�∈O) of set valued maps R� : S → Pow

(
Sρ(�)

)
and

a set valued map V : P → Pow (S) .
The satisfaction relation |= for a nondeterministic τ -Kripke model R is

defined as usual for Modb(τ, P ):

• R, s |= p⇔ s ∈ V (p)

• R, s |= ¬ϕ⇔R, s �|= ϕ

• R, s |= ϕ1 ∧ ϕ2 ⇔R, s |= ϕ1 and R, s |= ϕ2

• R, s |= )(ϕ1, . . . , ϕρ(�)) ⇔ there exists 〈s1, . . . , sρ(�)〉 ∈ R�(s) with
R, si |= ϕi for 1 ≤ i ≤ ρ()).

Denote by
[[ϕ]]R := {s ∈ S | R, s |= ϕ}

the set of states for which formula ϕ is valid, and by

ThR(s) := {ϕ ∈Modb(τ, P ) | R, s |= ϕ}

the theory of state s in R.
An easy calculation shows that

R, s |= )(ϕ1, . . . , ϕρ(�)) ⇔ R�(s) ∩ [[ϕ1]]R × . . .× [[ϕρ(�)]]R �= ∅
⇔ s ∈ ∃R�([[ϕ1]]R × . . .× [[ϕρ(�)]]R).
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In analogy, a stochastic τ-Kripke model K = (S,Kτ , V ) has a state space S
which is endowed with a σ-algebra A, a family Kτ = (K�)�∈O of stochastic
relations K� : S � Sρ(�) and a set valued map V : P → A. We will always
assume that S is a Polish space, and that the σ-algebra are the Borel sets.

The interpretation of formulas in Mods(τ, P ) for a stochastic τ -Kripke
model K is fairly straightforward, the interesting case arising when a modal
operator is involved:

K, s |= )q(ϕ1, . . . , ϕρ(�))

holds iff there exists measurable subsets A1, . . . , Aρ(�) of S such that K, si |=
ϕi holds for all si ∈ Ai for 1 ≤ i ≤ ρ()), and

K�(s)(A1 × . . .×Aρ(�)) ≥ q.

Arguing from the point of view of state transition systems, this interpreta-
tion of validity reflects that upon the move indicated by )q, a state s satisfies
)q(ϕ1, . . . , ϕρ(�)) iff we can find states si satisfying ϕi with a K�-probability
exceeding q. Note that the usual operators ) and ∇ are replaced by a whole
spectrum of operators )q which permit a finer and probabilistically more
adequate notion of satisfaction.

Again, let [[ϕ]]K be the set of all states for which ϕ ∈ Mods(τ, P ) is satisfied
under K, and

ThK(s) := {ϕ ∈Mods(τ, P ) | K, s |= ϕ}
the theory for state s ∈ S.

It turns out that the sets [[ϕ]]K are measurable, so that they may be used
as arguments for the stochastic relations we are working with:

LEMMA 6.1
[[ϕ]]K is a measurable subset of S for each ϕ ∈Mods(τ, P ).

PROOF The proof proceeds by induction on ϕ. If ϕ = p ∈ P , then
[[ϕ]]K = V (p) holds, which is measurable by assumption. Since the measurable
sets are closed under complementation and intersection, the only interesting
case is again the one in which a modal operator is involved. Because

[[)q(ϕ1, . . . , ϕρ(�)]]K = {s ∈ S | K�(s)([[ϕ1]]K × . . .× [[ϕρ(�)]]K) ≥ q},

the assertion follows from the induction hypothesis and the fact that K� is a
stochastic relation.

As in the case of stochastic relations we need to exclude trivial cases:

DEFINITION 6.2 A τ-Kripke model K with state space S is called
degenerate iff [[ϕ]]K = S or [[ϕ]]K = ∅ holds for each formula ϕ ∈Mods(τ, P ).
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Hence a degenerate model does usually not carry useful information. The
restriction is quite similar to not permitting the universal relation as a part
of a congruence, and of requesting the existence of nontrivial common events
for bisimulations. We will see that these constraints are closely related.

6.2.1 Examples

We show how some popular logics may be interpreted through Kripke mod-
els, indicating that specific logics require specific probabilistic arguments. But
first we indicate that each stochastic relation may be “trained” to interpret a
modal logic simply by interpreting the subformulas of a compound formula as
stochastically independent. Then we introduce the well-known logic associ-
ated with labeled transition systems. This example is of historic significance,
given the seminal work of Larsen and Skou (Larsen and Skou, 1991). It is
shown also that the basic temporal language may be interpreted stochasti-
cally by reversing a relation. Arrow logic as a popular logic modeling simple
programming constructs is interpreted through a simple transformation of a
distribution.

In presenting these examples we follow essentially the representation of the
respective logics in (Blackburn et al., 2001).

A stochastic relation on the state space induces a stochastic τ -Kripke model.
This is illustrated through the following example.

EXAMPLE 6.3
Let K : S � S be a stochastic relation on the state space S, and define for
s ∈ S and for the modal operator )

K�(s) :=
ρ(�)⊗

i=1

K(s),

then K� : S � Sρ(�) is a stochastic relation. Let V : P → B(S), then

KK,V := (S, (K�)�∈O, V )

is a stochastic τ -Kripke model such that

KK,V , s |= )q(ϕ1, . . . , ϕρ(�))⇔ K(s)([[ϕ1]]KK,V ) · . . . ·K(s)([[ϕρ(�)]]KK,V ) ≥ q.

Thus the arguments to each modal operator are stochastically independent.
Consequently, KK,V , s |= )q(ϕ1, . . . , ϕρ(�)) holds if we can make a move
to states s1, . . . , sρ(�) so that KK,V , si |= ϕi holds independently from each
other.

EXAMPLE 6.4
Suppose that L is a countable alphabet of actions. Each action a ∈ L is
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associated with a binary modal operator 〈a〉, so put τ := (O, ρ) with O :=
{〈a〉 | a ∈ L} and ρ(〈a〉) := 1.

A nondeterministic τ -Kripke model is based on a labeled transition system
(S, (→a)a∈L) which associates a binary relation →a⊆ S × S with each action
a. Thus

s |= 〈a〉ϕ⇔ ∃s′ : s→a s
′ ∧ s′ |= ϕ.

A stochastic τ -model is based on a labeled Markov transition system, say
(S, (ka)a∈L), which associates with each action a a stochastic relation ka :
S � S. Thus

s |= 〈a〉qϕ⇔ ka(s)([[ϕ]]) ≥ q;

hence making a transition is replaced by a probability with which a transition
can happen.

Variants of the logic Mods(τ, P ) with P = ∅ were investigated in the litera-
ture by Larsen and Skou, and by Desharnais, Edalat and Panangaden with a
reference to the logic investigated by Hennessy and Milner; we refer to them
also as Hennessy-Milner logic.

EXAMPLE 6.5
The basic temporal language has two unary modal operators F (forward)

and B (backward), so that O = {F,B}. A nondeterministic τ -Kripke model
interprets the forward operator F through a relation R ⊆ S × S and the
backward operator B through the converse R� of relation R, thus R� :=
{〈s′, s〉 | 〈s, s′〉 ∈ R}. Consequently, we have

s |= Bϕ⇔ ∃t ∈ S : 〈t, s〉 ∈ R ∧ t |= ϕ.

A probabilistic interpretation interprets F through a stochastic relation
K : S � S, so that

s |= Fqϕ⇔ K(s)([[ϕ]]) ≥ q.

The backward operator B is interpreted through the converse K�
μ : S � S,

provided the state space S is Polish and an initial probability μ is given. It
was shown in Section 5.8 that the converse K�

μ of stochastic relation K given
μ is the stochastic relation L : S � S such that

∫

S

K(s)(Bs) μ(ds) =
∫

S

L(s′)(Bs
′
) μ(ds′)

holds for each Borel set B ⊆ S × S. We know from Lemma 5.64 that for
Polish S the converse relation exists. Thus

s |= Bqϕ⇔ K�
μ (s)([[ϕ]]) ≥ q.

An easy calculation shows that

s |= B1F1ϕ⇔ K�
μ (s) ({s′ | K(s′)([[ϕ]]) = 1}) = 1

⇔
∫

S

K(s′)([[ϕ]]) K�
μ (s)(ds′) = 1.
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Note that the definition of the converse requires an initial probability (this
is intuitively clear: if the probability for a backward running process is de-
scribed, one has to say where to start). It is also noteworthy that a topological
assumption has been made; if the state space is not a Polish space, then the
technical arguments permitting the definition of the converse are not avail-
able.

EXAMPLE 6.6
Arrow logic has three modal operators modeling reversal, composition and

skip, resp., thus O = {1,⊗, ◦}. with respective arities ρ(1) = 0, ρ(⊗) =
1, ρ(◦) = 2. The usual interpretation of arrow logic is done over a world of
pairs, so the base state space is S × S for some S, with associated relations

R1 = {〈s, s〉 | s ∈ S},
R⊗ = {〈〈s0, s1〉, 〈s1, s0〉〉 | s0, s1 ∈ S},
R◦ = {〈〈s0, s1〉, 〈s0, s〉, 〈s, s1〉〉 | s, s0, s1 ∈ S}.

Thus, e.g.,

〈s, s′〉 |= φ ◦ ψ ⇔ ∃s0 : 〈s, s0〉 |= φ ∧ 〈s0, s′〉 |= ψ

and
〈s, s′〉 |= ⊗φ⇔ 〈s′, s〉 |= φ.

Now assume again that S is a Polish space, and let μ ∈ S (S) be a sub-
probability. Put for A ∈ B(S × S)

μ̂(A) := μ({s ∈ S | 〈s, s〉 ∈ A}),

thus μ̂ transports a Borel set in S to a Borel set in the diagonal of S × S.
Interpret the composition operator ◦q through the stochastic relation

K◦(s, s′) := δs ⊗ μ̂⊗ δs′ .

Note that the operator ⊗ is somewhat overloaded: it denotes the modal oper-
ator for reversal, and the product operator for measures. The context should
make it clear which version is meant.

We obtain then

K◦(s, s′)([[φ]] × [[ψ]]) = (δs ⊗ μ̂⊗ δs′) ([[φ]] × [[ψ]])
= μ̂({〈s1, s2〉 | 〈s, s1〉 ∈ [[φ]], 〈s2, s′〉 ∈ [[ψ]]})
= μ({s1 | 〈s, s1〉 ∈ [[φ]], 〈s1, s′〉 ∈ [[ψ]]}).

Consequently,

〈s, s′〉 |= φ ◦1 ψ ⇔ 〈s, s1〉 |= φ ∧ 〈s1, s′〉 |= ψ for μ-almost all s1
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(here μ-almost all s1 means as usual that the set of all s1 for which the
property does not hold has μ-measure 0). More generally, 〈s, s′〉 |= φ ◦q ψ iff
〈s, s1〉 |= φ∧〈s1, s′〉 |= ψ for all s1 from a Borel set S0 with μ(S0) ≥ q. Finally,
put K⊗(s, s′) := δ〈s,s′〉, then 〈s, s′〉 |= ⊗qφ ⇔ 〈s′, s〉 |= φ, for all rational q
with 0 ≤ q ≤ 1 (which is evidently independent of q), and let

K1(s, s′) :=

{
0, s �= s′

δ〈s,s〉, s = s′

(here 0 is the null measure), then

〈s, s′〉 |= 1⇔ s = s′.

Note that in general we did exclude modal constants, i.e., modal operators of
arity 0, when defining modal similarity types. The example shows that it is
possible to include them nevertheless without much ado.

6.2.2 Refinements

Given a nondeterministic and a stochastic interpretation, we want to com-
pare both. Intuitively, the stochastic interpretation is more precise than its
nondeterministic cousin: whereas nondeterministically we can only talk about
possibilities, we can assign weights to these possibilities using probabilities.
To say that after a certain input the output will be a, b or c conveys certainly
less information than saying that the probabilities for these outputs will be,
respectively, p(a) = 1/100, p(b) = 1/50 and p(c) = 97/100.

Since negation has its own problems, we will restrict the discussion to the
negation free logic Mod1(τ, P ), and we will deal in the present Section 6.2.2
exclusively with stochastic relations which assign always the whole space prob-
ability one.

DEFINITION 6.7 Let R and K be a nondeterministic and a stochastic τ-
Kripke model, and assume that K�(s)(S×. . .×Sρ(�)) = 1 holds for each s ∈ S
(we will call these models probabilistic). K is said to refine R (abbreviated as
K � R) iff [[ϕ]]K ⊆ [[ϕ]]R holds for all ϕ ∈Mod1(τ, P ).

Consequently, given the interpretations K and R, we have K � R if R, s |=
ϕ holds only if K, s |= ϕ is true for each formula ϕ in the negation free
fragment of the logic.

We will investigate the relationship between nondeterministic and stochastic
satisfaction by showing that for each stochastic interpretation K we can find
a nondeterministic one R with K � R by simply taking all possible state
changes and making it into a Kripke model. Conversely, we will look into the
possibility of refining a given nondeterministic Kripke model into a stochastic
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model. This requires some topological assumptions (for otherwise the notion
all possible states cannot be made precise). Thus from now on the state space
S is a Polish space with its Borel sets as σ-algebra.

The set of all states possible for a probability μ on a Polish space is captured
through the support of a probability μ.

LEMMA 6.8
Let μ ∈ S (X) , μ �= 0 for the Polish space X. Then there exists a unique

closed set Cμ ⊆ X with the following properties

a. μ(Cμ) = μ(X),

b. if D ⊆ X is a closed set with μ(D) = μ(X), then Cμ ⊆ D,

c. x ∈ Cμ iff μ(U) > 0 for all open neighborhoods U of x.

PROOF 1. Let Uμ :=
⋃
{U | U open with μ(U) = 0}, then Uμ is open.

There exist countably many open sets (Un)n∈N with Uμ =
⋃
n∈N

Un. This is
so since X is Polish, hence has a countable base for its topology. Thus

μ(Uμ) ≤
∑

n∈N

μ(Un) = 0.

Put Cμ := X \ Uμ, then plainly Cμ is closed with μ(Cμ) = μ(X). If D ⊆ X
is closed with μ(D) = μ(X), the construction of Uμ yields X \D ⊆ Uμ, thus
Cμ ⊆ D.

2. If x ∈ Cμ and U is an open neighborhood of x with μ(U) = 0, we
have U ⊆ Uμ, which contradicts x ∈ Cμ. If x /∈ Cμ, the set Uμ is an open
neighborhood if x with μ(Uμ) = 0.

DEFINITION 6.9 Let 0 �= μ ∈ S (X) for the Polish space X. The set
Cμ constructed in Lemma 6.8 is denoted by supp(μ) and is called the support
of μ.

Having a look at the properties of the support in Lemma 6.8, we see that
this is exactly what we want: a set in which all points have the property that
all neighborhoods have positive measure.

PROPOSITION 6.10
Let K =

(
S, (K�)�∈O , V

)
be a probabilistic τ-Kripke model. Define for the

modal operator ) ∈ O the set valued map

RK
�(s) := supp(K�(s)).

Put
RK :=

(
S,

(
RK

�
)
�∈O , V

)
,
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then K � RK.

PROOF The proof proceeds by induction on the structure of the formulas.
Assume that ) is a modal operator, and that we know [[ϕi]]K ⊆ [[ϕi]]RK for
1 ≤ i ≤ ρ()). Now suppose RK

�, s �|= )1(ϕ1, . . . , ϕρ(�)) for some state
s. Thus RK

�(s) ∩ [[ϕ1]]RK × . . . × [[ϕρ(�)]]RK = ∅, and, consequently, by the
hypothesis, RK

�(s)∩[[ϕ1]]R×. . .×[[ϕρ(�)]]R = ∅. But this meansK�(s)([[ϕ1]]R×
. . .× [[ϕρ(�)]]R) < 1, hence K, s �|= )1(ϕ1, . . . , ϕρ(�)).

Thus each probabilistic Kripke model carries a nondeterministic one with it,
and it refines this companion (one is tempted to perceive this as a nondeter-
ministic shadow : a shadow as a coarser, black-and-white image of a probably
more colorful and picturesque original).

It will be shown now that the converse of Proposition 6.10 is also true:
Given a nondeterministic Kripke model, there exists a stochastic one refining
it. Intuitively, and in the finite case, one simply assigns a uniform weight as
a probability to all possible outcomes. This observation is the starting point
for the nonstandard approach to probability; see (Lindstrøm, 1988, Example
II.2.1).

Actually, this is basically what we will do here, too, but we have to be
a bit more careful since in an uncountable setting this idea requires some
additional underpinning. It is provided by the structure of the support map
when combined with a stochastic relation, yielding a set-valued map with
favorable properties.

It is immediate that the support produces a measurable relation for a prob-
abilistic relation K : Y � Z: put

RK := {〈y, z〉 ∈ Y × Z | z ∈ supp(K(y))},

then
∀RK(F ) = {y ∈ Y | K(y)(F ) = 1}

for the closed set F ⊆ Z, and

∃RK(G) = {y ∈ Y | K(y)(G) > 0}

for the open set G ⊆ Z. Both sets are measurable.
It is also plain that a representation of R through a stochastic relation K

which is given by
(∗) ∀y ∈ Y : R(y) = supp(K(y))

implies that R has to be a measurable relation.
Given a set-valued relation R, a probabilistic relation K with (∗) can be

found. For this, R has to take closed values, and a condition of measurability is
imposed. We will obtain the existence of such a relation from Proposition 1.57.
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LEMMA 6.11
Let R ⊆ Y × Z be a measurable relation for Y, Z Polish. There exists a

probabilistic relation K : Y � Z such that R(y) = supp(K(y)) holds for each
y ∈ Y .

PROOF Because R is measurable we obtain from Proposition 1.57, part b,
a sequence (fn)n∈N of measurable maps fn : Y → Z such that {fn(y) | n ∈ N}
is dense in R(y) for each y ∈ Y. Define Kn(y) :=

∑n
i=1 2−i · δfi(y), then

Kn : Y � Z, with

supp(Kn(y)) = {fi(y) | 1 ≤ i ≤ n} ⊆ R(y).

It is not difficult to see that

Kn(y) ⇀w K(y) :=
∑

j∈N

2−j · δfj(y),

that K : Y � Z, and that

supp(K(y)) = cl ({fj(y) | j ∈ N}) = R(y).

Thus we can find a probabilistic Kripke structure refining a given nonde-
terministic one, provided we impose a measurability condition:

PROPOSITION 6.12
Suppose R :=

(
S, (R�)�∈O , V

)
is a nondeterministic τ-Kripke model such

that

a. V (p) ∈ B(S) for all p ∈ P ,

b. R� is a measurable relation on S × Sρ(�) for each ) ∈ O.

Then there exists a probabilistic τ-Kripke model K =
(
S, (K�)�∈O , V

)
with

K � R.

PROOF Applying Lemma 6.11, one finds for each modal operator) ∈ O a
transition probability K� : S � Sρ(�) such that R�(s) = supp(K�(s)) holds
for all s ∈ S. The argumentation in the proof of Lemma 6.10 establishes the
claim.

It is clear that the probabilistic τ -Kripke model is underspecified by merely
requiring it to be a refinement to a nondeterministic one. This is supported
through the following observation:
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COROLLARY 6.13

Let R be a nondeterministic τ-Kripke model satisfying the conditions of
Proposition 6.12. Assume that Ki =

(
S, (K�,i)�∈O , V

)
is a probabilistic

τ-Kripke model with Ki � R for each i ∈ N. Let (αi)i∈N be a sequence
of positive real numbers such that

∑
i∈N

αi = 1, and define for ) ∈ O the
stochastic relation

K�(s) :=
∑

i∈N

αi ·K�,i(s).

Then
(
S, (K�)�∈O , V

)
� R.

PROOF Let (μi)i∈N be a sequence of probability measures. Since all αi
are positive, the definition of the support function yields that

supp(
∑

i∈N

αi · μi) = cl

(
⋃

i∈N

supp(μi)

)

holds. Thus R� equals supp(K�). The assertion now follows from Proposi-
tion 6.12.

Thus we know that not only a probabilistic τ -Kripke model is the refinement
of a probabilistic one, but also that refinements offer a considerable degree
of freedom, because they are closed under countable convex combinations (in
fact, it can also be shown that it is closed under integration as the general-
ization of convex combinations). This supports the intuitive feeling that a
probabilistic model conveys much more information than a nondeterministic
one, but that it is also much harder to obtain.

6.2.3 Bisimulations for Kripke Models

This section investigates morphisms for stochastic τ -Kripke models; we
want to relate bisimilarity and logical equivalence to each other. To this
end we first discuss morphisms that are based on morphisms for stochastic
relations — a τ -Kripke model is built from a family of stochastic relations,
after all — and indicate that this notion of morphism is not adequate for our
purposes and propose the notion of a strong morphism. We show that strong
morphisms are suitable for our purposes.

Assume first that the set P of propositional letters is empty, rendering
the initial discussion a bit less technical. Then a stochastic τ -Kripke model
K := (S, (K�)�∈O)) is determined through the Polish state space S and the
family K� : S � Sρ(�) of stochastic relations. A morphism

Φ : (S, (K�)�∈O))→
(
S′, (K ′

�)�∈O)
)
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for stochastic τ -Kripke models is then a family Φ = ((φ�, ψ�)�∈O) of mor-
phisms

(φ�, ψ�) : (S, Sρ(�),K�)→ (S′, (S′)ρ(�),K ′
�)

for the associated relations.
Consider a modal operator ). The σ-algebra A� generated by

{[[ϕ1]]K × . . .× [[ϕρ(�)]]K | ϕ1, . . . , ϕρ(�) ∈Mods(τ, P )}

is evidently countably generated, thus gives rise to a smooth equivalence re-
lation β� on Sρ(�), and the relation

sα�s′ ⇔ ∀B ∈ A� : K�(s)(B) = K�(s′)(B)

is smooth due to A� being countably generated. Consequently, (α�, β�) is
a congruence for K� : S � Sρ(�), and if K is nondegenerate, this congruence
is nontrivial.

Let K′ =
(
S′, (K ′

�)�∈O
)

be another τ -Kripke model which is logical equiv-
alent to the first one in the sense that for the states the corresponding theories
mutually coincide. To be more precise:

DEFINITION 6.14 The stochastic τ-Kripke models K and K′ are said
to be logical equivalent (abbreviated as K ∼ K′) iff {ThK(s) | s ∈ S} =
{ThK′(s′) | s′ ∈ S′}.

Thus K ∼ K′ iff given s ∈ S there exists s′ ∈ S′ such that ThK(s) =
ThK′(s′), and vice versa.

Assume both K and K′ are nondegenerate. Construct for K′ the congruence
(α′

�, β
′
�) for each modal operator ) as above, then it can be shown that

K ∼ K′ implies that the congruences (α�, β�) and (α′
�, β

′
�) are simulation

equivalent. From Proposition 5.39 we see that K� and K ′
� are bisimilar for

each modal operator), so that there exists a span of morphisms

(S, Sρ(�),K�) �(φ�, ψ�)
(A�, B�,M�)

(φ′�, ψ
′
�)
� (S′, (S′)ρ(�),K ′

�).

This is rather satisfying from the point of view of stochastic relations, but
not when considering stochastic τ -Kripke models. This is so since in general
((A�, B�,M�)�∈O) fails to be such a model, because there is no way to
guarantee that all A� coincide with, say, a Polish space T , and so that B�
equals T ρ(�).

Consequently, we have to strengthen the requirements for a morphism in
order to achieve some uniformity. This will be done now, and we admit
propositional letters again. The basic idea is to have just one map φ between
the state spaces so that

K ′
�(φ(s))(A) = K�(s)({〈s1, . . . , sρ(�)〉 | 〈φ(s1), . . . , φ(sρ(�))〉 ∈ A})
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holds for each state s ∈ S and each Borel set A ⊆ (S′)ρ(�), making the
diagram

S
φ � S′

S

(
Sρ(�)

)

K�
�

S
(
φρ(�)

)� S

(
(S′)ρ(�)

)

K ′
�

�

commutative (where φn : 〈x1, . . . , xn〉 
→ 〈φ(x1), . . . , φ(xn)〉 distributes φ into
the components), and we want to have s ∈ V (p) iff φ(s) ∈ V ′(p) for each
propositional letter p. This leads to

DEFINITION 6.15 Let K and K′ be stochastic τ-Kripke models with
K = (S, (K�)�∈O), V ) and K′ =

(
S′, (K ′

�)�∈O), V ′
)
. A strong morphism

φ : K → K′ is determined through a measurable and surjective map φ : S → S′

so that these conditions are satisfied:

a. ∀p ∈ P : V (p) = φ−1 [V ′(p)] ,

b. for each modal operator ),

K ′
� ◦ φ = S

(
φρ(�)

)
◦K�

holds.

Thus, if φ : K → K′ is a strong morphism, then

(φ, φρ(�)) : (S, Sρ(�),K�)→ (S′, (S′)ρ(�),K ′
�)

is a morphism between the corresponding stochastic relations for each modal
operator) ∈ O. Note that we take also the propositional letters into account.

It is clear that stochastic τ -Kripke models over general measurable spaces
form a category pKripke with this notion of morphism, because the composition
of strong morphisms is again a strong morphism, and because the identity is a
strong morphism, too. Furthermore, each modal operator) induces a functor
F� : pKripke → Stoch which forgets all but K�. We will below make (rather
informal) use of this functor.

Because we work on the safe grounds of a category, we have bisimulations
at our disposal, which can be defined again as spans of strong morphisms.
Similarly, we define behavioral equivalence through a cospan of morphisms,
essentially mimicking the corresponding definition for stochastic relations.

DEFINITION 6.16
Let K1 and K2 be stochastic τ-Kripke models.
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a. K1 and K2 are called strongly bisimilar iff there exists a stochastic τ-Kripke

model M and strong morphisms K1
� φ1 M φ2 � K2, such that

the σ-algebra of common events φ−1
1 [B(S1)]∩φ−1

2 [B(S2)] is nontrivial (here
Si is the state space of Ki, i = 1, 2).

b. K1 and K2 are called behavioral equivalent iff there exists a stochastic

τ-Kripke model L and strong morphisms K1
φ1 � L � φ2 K2.

Since the product σ-algebra is the smallest σ-algebra which contains all the
measurable rectangles, it is not difficult to see that φ−1

1 [B(S1)] ∩ φ−1
2 [B(S2)]

is nontrivial iff for each modal operator ) ∈ O the σ-algebra

ρ(�)⊗

i=1

φ−1
1 [B(S1)] ∩

ρ(�)⊗

i=1

φ−1
2 [B(S2)]

is nontrivial. Thus the second part of condition a in Definition 6.16 will imply
that this notion of bisimilarity is compatible to the one used for stochastic
relations in general. Similarly, behavioral equivalence is adapted to Kripke
models.

We will relate logical equivalence, strong bisimilarity and behavioral equiv-
alence of Kripke models K and K′, provided the models are based on Pol-
ish spaces. Fix the stochastic τ -Kripke models K := (S, (K�)�∈O), V ) and

K′ :=
(
S′, (K ′

�)�∈O, V ′
)
.

It is well known that morphisms preserve theories for the Hennessy-Milner
logic (Desharnais et al., 2002). This is also true for stochastic relations:

LEMMA 6.17

If φ : K → K′ is a strong morphism, then ThK(s) = ThK′(φ(s)) holds for
all states s ∈ S.

PROOF 1. We show by induction on the formula ϕ ∈ Mods(τ, P ) that

K, s |= ϕ⇔ K′, φ(s) |= ϕ

holds; putting it slightly different, we want to show

(∗) [[ϕ]]K = [[ϕ]]K′

for all these ϕ.
2. If ϕ = p ∈ P , this follows from V (p) = φ−1 [V ′(p)]. The interesting case

in the induction step is the application of a n-ary modal operator )q with
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rational q. Suppose the assertion is true for [[ϕ1]]K, . . . , [[ϕn]]K, then

K, s |= )q(ϕ1, . . . , ϕn) ⇔ K�(s)([[ϕ1]]K × . . .× [[ϕn]]K) ≥ q

(†)⇔ K�(s)((φn)−1 [[[ϕ1]]K′ × . . .× [[ϕn]]K′ ]) ≥ q

⇔ (S (φn) ◦K�) (s)([[ϕ1]]K′ × . . .× [[ϕn]]K′) ≥ q

(‡)⇔ K ′
�(φ(s))([[ϕ1]]K′ × . . .× [[ϕn]]K′) ≥ q

⇔ K′, φ(s) |= )q(ϕ1, . . . , ϕn).

In (†) we use reformulation (∗) for the induction hypothesis; in (‡) we make
use of the defining equation of a (strong) morphism.

Define the equivalence relation α on state space S through

s1 α s2 ⇔ ThK(s1) = ThK(s2),

thus two states are α-equivalent iff they satisfy exactly the same formulas in
Mods(τ, P ); in a similar way α′ is defined on S′. Because we have at most
countably many formulas, α and α′ are smooth equivalence relations. Define
the equivalence relation β� on Sρ(�) through

〈s1, . . . , sρ(�)〉 β� 〈t1, . . . , tρ(�)〉 ⇔ s1 α t1 ∧ · · · ∧ sρ(�) α tρ(�),

then β� is smooth, and we know that the σ-algebra of β-invariant sets can
be written in terms of the α-invariant sets, viz., INV

(
B(Sρ(�)), β�

)
=

⊗ρ(�)
i=1 INV (B(S), α) (see Lemma 5.14). The relation β′

� is defined in the
same way for α′.

The equivalence of K and K′ makes these relations into simulation equiva-
lent congruences:

LEMMA 6.18
If K ∼ K′ for the nondegenerate Kripke models K and K′, then (α, β�) and

(α′, β′
�) are simulation equivalent and nontrivial congruences for the stochas-

tic relations F�(K) and F�(K′).

PROOF 1. The equivalence relations involved are all smooth, so it first
has to be demonstrated that each pair forms indeed a congruence. Assume
that s1αs2 holds, then

K�(s1)([[ϕ1]]K × . . .× [[ϕρ(�)]]K) = K�(s2)([[ϕ1]]K × . . .× [[ϕρ(�)]]K)

follows (otherwise we could find a rational number q with

K, s1 |= )q(ϕ1, . . . , ϕρ(�))
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but
K, s2 �|= )q(ϕ1, . . . , ϕρ(�)),

or vice versa). Because

B0 := {[[ϕ1]]K × · · · × [[ϕρ(�)]]K | ϕ1, . . . , ϕρ(�) ∈Mods(τ, P )}

forms a generator for INV
(
B(Sρ(�)), β�

)
, we infer that (α, β�) is a congru-

ence for F�(K). The same arguments show that also (α′, β′
�) is a congruence

for F�(K′).
2. A0 := {[[ϕ]]K | ϕ ∈ Mods(τ, P )} is a countable generator of the σ-

algebra INV (B(S), α), and since the logic is closed under conjunction, A0 is
closed under finite intersections. Given s ∈ S there exists s′ ∈ S′ such that
ThK(s) = ThK′(s′) holds; define Υ([s]α) := [s′]α′ , then Υ : S/α → S′/α′

is well defined, and Υ[[ϕ]]K = [[ϕ]]K′ holds. Consequently, {ΥA | A ∈ A0}
generates INV (B(S′), α′). Hence α spawns α′ via (Υ,A0).

3. The construction of β� yields
[
〈s1, . . . , sρ(�)〉

]
β�

= [s1]α × . . .×
[
sρ(�)

]
α
.

An argument very similar to that used above shows that β� spawns β′
� via

(Θ,B0), where

Θ :
[
〈s1, . . . , sρ(�)〉

]
β�

→ Υ([s1]α)× . . .×Υ(

[
sρ(�)

]
α
),

and B0 is defined above.
4. An argumentation very close to the first part of the proof shows that

ThK(s) = ThK′(s′) for s ∈ S, s′ ∈ S′ implies for all formulas ϕ1, . . . , ϕρ(�)

that

K�(s)([[ϕ1]]K × . . .× [[ϕρ(�)]]K) = K ′
�(s′)([[ϕ1]]K′ × . . .× [[ϕρ(�)]]K′)

(cp. part 2 of the proof of Lemma 6.17). Thus (α, β�) simulates (α′, β′
�), and

in the same way, interchanging the roles of K and K′, we infer that (α′, β′
�)

simulates (α, β�).
5. Because K is nondegenerate, the σ-algebra

INV (B(S), α) = σ({[[ϕ]]K | ϕ ∈Mods(τ, P )})

is nontrivial; because

INV
(
B(Sρ(�)), β�

)
=

ρ(�)⊗

i=1

INV (B(S), α) ,

we see that INV
(
B(Sρ(�)), β�

)
contains a set of the form Bρ(�) for some

B with ∅ �= B �= S, thus we may conclude that β� is not the universal
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relation. Thus (α, β�) is a nontrivial congruence. Replacing K by K′, this is
also established for the congruence (α′, β′

�). This completes the proof.

Accordingly, we know from Proposition 5.39 that for logical equivalent Krip-
ke models K and K′ and for each modal operator ) the stochastic relations
F�(K) and F�(K′) are bisimilar. All the mediating relations can be collected
to form a mediating Kripke model. This requires, however, that we know a
wee bit about the internal structure of the semi-pullback which is constructed
along the way. We will see this in the proof of the following result, the
extended Hennessy-Milner Theorem for stochastic τ -Kripke models:

THEOREM 6.19
Assume that K and K′ are nondegenerate stochastic τ-Kripke models over

Polish spaces, then the following statements are equivalent:

a. K and K′ are strongly bisimilar,

b. K and K′ are logical equivalent.

c. K and K′ are behavioral equivalent.

PROOF 1. Because both a⇒ b and c⇒ b follow from Lemma 6.17, we
may concentrate on the respective proofs for b⇒a and b⇒c.

2. We deal with b⇒ a first. Since K ∼ K′, we know from Lemma 6.18
that the congruences c� := (α, β�) and c′� := (α′, β′

�) are simulation equiva-
lent for each modal operator ). Let M� = (M�, N�, L�) be the mediating
stochastic relation, which exists by Proposition 5.39. The proof of Theo-
rem 4.10 shows that (n := ρ()))

M� = {〈s, s′〉 ∈ S × S′ | s (α & α′) s′},
N� = {〈s1, s′1, . . . , sn, s′n〉 ∈ (S × S′)n | si (α & α′) s′i for 1 ≤ i ≤ n},

which may be rendered Polish spaces. Note that S′′ := M� does not de-
pend at all on the modal operator, and that N� depends only on its arity.
Furthermore, we may infer for the P−Stoch-morphisms

F�(K) �f� M�
f′�� F�(K′)

that f� = (π1,S , π
n
1,S), f′� = (π2,S′ , πn2,S′) holds, where the π denote the pro-

jections.
Now define for the propositional letter p ∈ P

W (p) := {〈s, s′〉 ∈M� | s ∈ V (p), s′ ∈ V ′(p)},

then it is immediate that the equations W (p) = π−1
1 [V (p)] = π−1

2 [V ′(p)]
hold. Consequently, M := (S′′, (L�)�∈O,W ) is a stochastic τ -Kripke model
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with

K � π1,S M
π2,S′� K′

in pKripke.
3. We need additionally to show that the σ-algebra π−1

1,S [B(S)]∩π−1
2,S′ [B(S′)]

is nontrivial. This is essentially the same argument as the one used in the
third part of the proof to Proposition 5.39. Since K is nondegenerate, we can
find a formula ϕ with ∅ �= [[ϕ]]K �= S. The set [[ϕ]]K is an α-invariant Borel
subset of S. We know from the proof of Lemma 6.18 that α spawns α′ via
(Υ, {[[ϕ]]K | φ ∈Mods(τ, P )}) for some suitably chosen Υ. Thus

π−1
1,S [[[ϕ]]K] = π−1

2,S′
[
Υ[[ϕ]]K

]
,

consequently we see that

π−1
1,S [[[ϕ]]K] ∈ π−1

1,S [B(S)] ∩ π−1
2,S′ [B(S′)] .

Since ∅ �= [[ϕ]]K �= S we conclude that ∅ �= π−1
1,S [[[ϕ]]K] �= M�, hence the

σ-algebra in question is indeed not trivial.
4. Turning to b⇒ c, we know that (K� +K ′

�)/(c� & c′�) is isomorphic to
K�/c� and to K ′

�/c
′
� by Corollary 5.40. From the construction of the factor

relation it is inferred that K�/c� = (S/α, Sρ(�)/β�,K�,c�). Now it is easy
to see that Sρ(�)/β� is Borel isomorphic to (S/α)ρ(�). Let

K̃� : S/α � (S/α)ρ(�)

be the corresponding stochastic relation. Because we have for s ∈ S, s′ ∈ S′

with [s]α�α′ = [s′]α�α′ that s ∈ V (p) iff s′ ∈ V ′(p), whenever p ∈ P is a
propositional letter, we put Ṽ (p) := ηα [V (p)] and note that Ṽ (p) is a Borel
set in S/α by Lemma 5.7. Thus

K̃ := (S/α,
(
K̃�

)

�∈O
, Ṽ )

defines a stochastic Kripke model for which we can find strong morphisms

K φ1 � K̃ � φ2 K′.

Looking back at the development, it is noted that Theorem 6.19 is derived
from Proposition 5.39, hence from a condition that arose from the consider-
ation of stochastic relations alone. This is in marked contrast to the proofs
proposed in (Desharnais et al., 2002; Doberkat, 2003) which start from the
logic and develop the properties of simulation equivalent congruences implic-
itly. It is also clear that the model constructed in the last part of the proof will
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usually not be defined over a Polish space. This is so since factoring destroys
Polishness.

The following example gives a brief illumination.

EXAMPLE 6.20

Consider Kripke models for the basic modal language that has just one modal
operator, traditionally denoted by �, which is unary. Assume that there are
at least two propositional letters. Let K = (S,K�, V ) and L = (S,L�,W )
be stochastic Kripke models such that {〈V (p),W (p)〉 | p ∈ P} is a block for
K�, L� (see Definition 5.42). Then K ∼ L.

This is so since the Kripke models are strongly bisimilar by Corollary 5.43
and by Theorem 6.19.

Logical equivalence appears here as a catalyst which permits proving that
bisimilarity and behavioral equivalence describe the same phenomenon, a link
that is missing in the general development of stochastic relations; see Sec-
tion 5.4. There we have simulation equivalent congruences at our disposal,
which are always tied to a relation, while the logic serves here as an arbitrator
which is completely independent of a Kripke model interpreting it.

6.3 Projective Limits for Interpreting Temporal Logics

The interpretation of modal logics rests on relational properties, e.g., we
say that

s |= )q(ϕ1, . . . , ϕρ(�)) ⇔ K�(s)([[ϕ1]]× [[ϕρ(�)]]) ≥ q,

so we use the relation associated with the modal operator ) to associate
a probability to the finite path of those words of length ρ()) that satisfy
ϕ1, . . . , ϕρ(�). Changing to infinite paths, we basically could do the same:
assign a probability to that set of paths that we want to consider. This
requires relations that work on those paths which unfortunately are usually
not given offhand. Modeling a reactive system with possibly nonterminating
computations, we have to piece together the probabilities for these infinite
paths from their finite components. They are usually given through relations
that describe what happens in a single step. This is what we will discuss
next. Since finding an adequate probability is sometimes a bit intricate, we
will first have a look at the measure-theoretic mechanisms. Then we will
apply this by showing how the machinery developed so far may be put to use
for discussing the continuous time stochastic logics CSL and μCSL, which
incorporate time explicitly. They offer a very powerful approach to describing
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systems, and an additional challenge for the treatment of its probabilistic
properties, in particular to the important problem of bisimilar states.

6.3.1 Setting the Stage: Infinite Paths

Fix a Polish state space S over which the logics will be interpreted. A path
σ is an element of the set (S × R+)∞. Path σ = 〈s0, t0, s1, t1, . . . 〉 may be
written as s0

t0−→ s1
t1−→ . . . with the interpretation that ti is the time spent

in state si. Given i ∈ N, denote si by σ[i] as the (i+ 1)st state of σ, and let
δ(x, i) := ti. Let for t ∈ R+ the index i be the smallest index k such that
t <

∑k
i=0 ti, and put σ@t := σ[i], if i is defined; set σ@t := #, otherwise

(here # is a new symbol not in S ∪R+). S# denotes S ∪{#}; this is a Polish
space when endowed with the sum σ-algebra. The definition of σ@t makes
sure that for any time t we can find a rational time t′ with σ@t = σ@t′.

We will deal only with infinite paths. This is no loss of generality because
events that happen at a certain time with probability 0 will have the effect
that the corresponding infinite paths occur only with probability 0. Thus we
do not prune the path; this makes the notation somewhat easier to handle
without losing any substance.

The Borel sets B((S×R+)∞) are the smallest σ-algebra which contains all
the cylinder sets

{
n∏

j=1

(Bj × Ij)×
∏

j>n

(S × R+) | n ∈ N, I1, . . . , In rational intervals,

B1, . . . , Bn ∈ B(S)}.

Thus a cylinder set is an infinite product that is determined through the finite
product of an interval with a Borel set in S; see Section 1.2. It will be helpful
to remember that the intersection of two cylinder sets is again a cylinder set.

The following Lemma looks innocent, but will turn out to be an important
device:

LEMMA 6.21

〈σ, t〉 
→ σ@t is a Borel measurable map from (S × R+)∞ × R+ to S#. In
particular, the set {〈σ, t〉 | σ@t ∈ S} is a measurable subset of (S×R+)∞×R+.

Before we prove it, we need a simple auxiliary statement

LEMMA 6.22

Let (N,N ) be a measurable space, f : N → R be a Borel measurable map.
Then

{〈n, x〉 | f(n) > x} ∈ N ⊗ B(R).
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PROOF Put f0(n, x) := 〈f(n), x〉, then f0 : N ×R→ R×R is N ⊗B(R)-
B(R× R)-measurable. This is so since

D := {B ∈ B(R× R) | f−1
0 [B] ∈ N ⊗ B(R)}

is a σ-algebra, and since f−1
0 [B × E] = f−1 [B] × E, hence we know that D

contains all measurable rectangles, thus D = B(R× R).
Since {〈n, x〉 | f(n) > x} = f−1

0 [L] with L := {〈u, v〉 | u > v} ∈ B(R× R),
the assertion is established.

The set {〈n, x〉 | f(n) > x} may be visualized for N = R as the area below
the graph of f .

PROOF of Lemma 6.21
0. Note that we claim joint measurability in both components (which is

strictly stronger than measurability in each component). Thus we have to
show that {〈σ, t〉 | σ@t ∈ A} is a measurable subset of (S × R+)∞ × R+,
whenever A ⊆ S# is Borel.

1. Because for fixed i ∈ N the map σ 
→ δ(σ, i) is a projection, δ(·, i) is
measurable, hence σ 
→

∑j
i=0 δ(σ, i) is. Consequently,

{〈σ, t〉 | σ@t = #} = {〈σ, t〉 | ∀j : t ≥
j∑

i=0

δ(σ, i)}

=
⋂

j≥0

{〈σ, t〉 | t ≥
j∑

i=0

δ(σ, i)}.

This is clearly a measurable set.
2. Put

Stop(σ, t) := inf{k ≥ 0 | t <
k∑

i=0

δ(σ, i)},

thus

Xk := {〈σ, t〉 | Stop(σ, t) = k} = {〈σ, t〉 |
k−1∑

i=0

δ(σ, i) ≤ t <

k∑

i=0

δ(σ, i)}

is a measurable set by Lemma 6.22. Now let B ∈ B(S) be a Borel set, then

{〈σ, t〉 | σ@t ∈ B} =
⋃

k≥0

{〈σ, t〉 | σ@t ∈ B, Stop(σ, t) = k}

=
⋃

k≥0

{〈σ, t〉 | σ[k] ∈ B, Stop(σ, t) = k}

=
⋃

k∈N

(

Xk ∩
(
∏

i<k

(S × R+)× (B × R+)×
∏

i>k

(S × R+)

))

.
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Because Xk is measurable, the latter set is measurable. This establishes mea-
surability of the @-map.

As a consequence, we obtain the measurability of some sets and maps which
will be important for the later development. A notational convention for
improving readability is met: the letter σ will always denote a generic element
of (S ×R+)∞, and the letter τ always a generic element of R+ × (S ×R+)∞.

PROPOSITION 6.23
We observe the following properties:

a. The set of Zeno paths {σ |
∑

i≥0 δ(σ, i) exists and is finite} is a measurable
subset of (S × R+)∞,

b. {〈σ, t〉 | limi→∞ δ(σ, i) = t} is a measurable subset of (S × R+)∞ × R+,

c. both
s 
→ lim inf

t→∞ N∞(s)({τ | 〈s, τ〉@t ∈ A})

and
s 
→ lim sup

t→∞
N∞(s)({τ | 〈s, τ〉@t ∈ A})

are measurable maps X → R+ for each Borel set A ⊆ S, provided N∞ :
S � (R+ × S)∞ is a stochastic relation.

PROOF 0. The proof makes crucial use of the fact that the real line is
a complete metric space (so each Cauchy sequence converges), and that the
rational numbers are dense, forming a countable set.

1. Since
∑
i≥0 δ(σ, i) exists and is finite iff given ε > 0 there exists n ∈ N

such that |
∑n2
i=n1

δ(σ, i) |< ε whenever n1, n2 ≥ n, we see that

{σ |
∑

i≥0

δ(σ, i) exists and is finite} =

⋂

Q�ε>0

⋃

n∈N

⋂

n1,n2≥n
{σ |

∣
∣
∣
∣
∣

n2∑

i=n1

δ(σ, i)

∣
∣
∣
∣
∣
< ε}.

Measurability of σ 
→ δ(σ, i) for each i follows from Lemma 6.21. This implies
measurability of the set in part a, since the union and the intersections are
defined over countable index sets.

2. The same argument applies basically to set of all paths and those times
the timing labels converge to in part b:

{〈σ, t〉 | lim
i→∞

δ(σ, i) = t} =
⋂

Q�ε>0

⋃

n∈N

⋂

m≥n
{〈σ, t〉 || δ(σ,m)− t |< ε}.
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By Lemma 6.21, the set

{〈σ, t〉 || δ(σ,m)− t |< ε} = {〈σ, t〉 | δ(σ,m) > t− ε}∩{〈σ, t〉 | δ(σ,m) < t+ ε}

is a measurable subset of (S × R+)∞ × R+, and since the union and the
intersections are countable, measurability is inferred.

3. From the definition of the @-operator it is immediate that given an
infinite path σ and a time t ∈ R+, there exists a rational t′ with σ@t = σ@t′.
Thus we obtain for an arbitrary real number x, an arbitrary Borel set A ⊆ S
and s ∈ S

lim inf
t→∞ N∞(s)({τ | 〈s, τ〉@t ∈ A}) ≤ x⇔

sup
t≥0

inf
r≥t

N∞(s)({τ | 〈s, τ〉@r ∈ A}) ≤ x⇔

sup
Q�t≥0

inf
Q�r≥t

N∞(s)({τ | 〈s, τ〉@r ∈ A}) ≤ x⇔

s ∈
⋂

Q�t≥0

⋃

Q�r≥t
Ar,x

with
Ar,x := {s′ | N∞(s′)({τ | 〈s′, τ〉@r ∈ A}) ≤ x}.

We infer that Ar,x is a measurable subset of S from the fact that N∞ is
a stochastic relation and from Lemma 1.86. Since a map f : W → R is
measurable iff each of the sets {w ∈ W | f(w) ≤ s} is a measurable subset
of W , the assertion follows for the first map in part a. The second part is
established in exactly the same way, using that f : W → R is measurable iff
{w ∈ W | f(w) ≥ s} is a measurable subset of W , and observing

lim sup
t→∞

N∞(s)({τ | 〈x, τ〉@t ∈ A}) ≥ x⇔

inf
Q�t≥0

sup
Q�r≥t

N∞(x)({τ | 〈s, τ〉@r ∈ A}) ≥ x.

As a consequence we obtain that the set on which the asymptotic behavior
of the transition times is reasonable in the sense that it tends probabilistically
to a limit is well behaved in terms of measurability:

COROLLARY 6.24
Let A ⊆ X be a Borel set, and assume that N∞ : S � (R+ × S)∞ is a

stochastic relation. Then

a. the set QA := {s ∈ S | limt→∞N∞(s)({τ | 〈s, τ〉@t ∈ A}) exists} on which
the limit exists is a Borel subset of S,
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b. s 
→ limt→∞N∞(s)({τ | 〈s, τ〉@t ∈ A} is a measurable map QA → R+.

PROOF Since s ∈ QA iff

lim inf
t→∞ N∞(x)({τ | 〈s, τ〉@t ∈ A}) = lim sup

t→∞
N∞(x)({τ | 〈s, τ〉@t ∈ A}),

and since the set on which two Borel measurable maps coincide is a Borel set
itself, the first assertion follows from Proposition 6.23, part c. This implies
the second assertion.

When dealing with the semantics of the until operator later, we will also
need to establish measurability of certain sets. Preparing for that, we state:

LEMMA 6.25
Assume that A1 and A2 are Borel subsets of S, and let I ⊆ R+ be an interval,

then

U(I, A1, A2) := {σ | ∃t ∈ I : σ@t ∈ A2 ∧ ∀t′ ∈ [0, t[: σ@t′ ∈ A1}

is a measurable set of paths, thus U(I, A1, A2) ∈ B((S × R+)∞).

PROOF 0. Remember that, given a path σ and a time t ∈ R+, there
exists a rational time tr ≤ t with σ@t = σ@tr. Consequently,

U(I, A1, A2) =
⋃

t∈Q∩I

⎛

⎝{σ | σ@t ∈ A2} ∩
⋂

t′∈Q∩[0,t]

{σ | σ@t′ ∈ A1}

⎞

⎠ .

The inner intersection is countable and is performed over measurable sets by
Lemma 6.21, thus forming a measurable set of paths. Intersecting it with a
measurable set and forming a countable union yields a measurable set again.

We want to capture paths with our probabilistic model as well, so we need
to compute probabilities for sets of paths. LetM : S � R+×S be a stochastic
relation. Fix a state s ∈ S, and proceed inductively: Put M1(s) := M(s),
and set in the inductive step for the Borel set D ⊆ (R+ × S)n+1

Mn+1(s)(D) :=
∫

(R+×S)n

M(sn) ({〈t, s〉 | 〈t0, s1, . . . , tn−1, sn, t, s〉 ∈ D})×

×Mn(s)(d〈t0, s1, . . . , tn−1, sn〉) =
∫

(R+×S)n

M(�S(w))(Dw) Mn(s)(dw),
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where we have set �S(t0, s1, . . . , tn−1, sn) := sn for simplifying the notation.
Thus the argument to M(sn) = M(�S(w)) is the set of all times and states
〈t, s〉 such that 〈w, t, s〉 = 〈t0, s1, . . . , tn−1, sn, t, s〉 is a member of D. Analyz-
ing the expression further, we see that at step n + 1 the probability for the
pair that consists of timing a transition and changing a state is an element of
{〈t, s〉 | 〈t0, s1, . . . , tn−1, sn, t, s〉 ∈ D} equals

M(�S(w))(Dw) = M(sn) ({〈t, s〉 | 〈t0, s1, . . . , tn−1, sn, t, s〉 ∈ D}) ,

provided the corresponding times and states that have been run through dur-
ing steps 1, . . . , n are given by w = 〈t0, s1, . . . , tn−1, sn〉 which in turn is
captured through Mn(s)(dw).

Standard arguments show that Mn : S � (R+×S)n is a stochastic relation.
For each state s ∈ S the sequence (Mn(s))n∈N forms a projective system
(Definition 1.87), provided M(s)(R+ × S) = 1 holds for each s ∈ S: for each
Borel set B ⊆ (R+ × S)n the equality

Mn+1(B × (R+ × S)) = Mn(s)(B)

holds. Consistency of this family has as a consequence that the measures can
be extended to Borel sets of infinite sequences. We obtain from Corollary 1.90
the existence of the projective limit.

PROPOSITION 6.26

Given a stochastic relation M : S � R+ × S with

∀s ∈ S : M(s)(R+ × S) = 1,

there exists a unique stochastic relation M∞ : S � (R+ × S)∞ such that

M∞(s)

⎛

⎝B ×
∏

j>n

(R+ × S)

⎞

⎠ = Mn(s)(B)

for each Borel set B ∈ B((R+ × S)n) and each state s ∈ S. M∞ is called the
projective limit of (Mn)n∈N.

The projective limit displays indeed limiting behavior: suppose B is an
infinite measurable cube

∏
n∈N

Bn with Bn ∈ B(R+×S) as Borel sets. Because

B =
⋂

n∈N

⎛

⎝
∏

1≤j≤n
Bj ×

∏

j>n

(R+ × S)

⎞

⎠ ,
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is represented as the intersection of a monotonically decreasing sequence, we
have for s ∈ S

M∞(s)(B) = lim
n→∞M∞(s)(

∏

1≤j≤n
Bj ×

∏

j>n

(R+ × S))

= lim
n→∞Mn(s)(

∏

1≤j≤n
Bj).

Hence we obtain M∞(s)(B) as the limit of the probabilities Mn(s)(Bn) at
step n.

In this way models based on a Polish state space S yield stochastic relations
S � (R+ × S)∞ through projective limits. Without this limit it would be
difficult to model the transition behavior on infinite paths; the assumption
that we work in Polish spaces makes sure that these limits in fact do exist.
We need to assume that given a state s ∈ S, there is always a state to change
into after a finite amount of time. Thus we make this assumption for the rest
of this chapter.

All stochastic relations assign probability one to their target space.

As a first consequence of the construction for the projective limit we obtain
a recursive formulation for the transition law M : X � (R+ × S)∞ that
reflects the domain equation (R+ × S)∞ = (R+ × S)× (R+ ×X)∞.

LEMMA 6.27
If D ∈ B((R+ × S)∞), then

M∞(s)(D) =
∫

R+×S
M∞(s′)(D〈t,s′〉) M1(s)(d〈t, s′〉)

holds for all s ∈ S.

PROOF Recall that D〈t,s′〉 = {τ | 〈t, s′, τ〉 ∈ D}. Let

D = (H1 × . . .×Hn+1)×
∏

j>n

(R+ ×X)

be a cylinder set with Hi ∈ B(R+ × S), 1 ≤ i ≤ n + 1. The equation in
question in this case boils down to

Mn+1(s)(H1 × . . .×Hn+1) =
∫

H1

Mn(s′)(H2 × . . .×Hn+1)M1(s)(d〈t, x′〉).

This may easily be derived from Lemma 6.28. Consequently, the equation in
question holds for all cylinder sets, thus the π-λ-Theorem (Proposition 1.1)
implies that it holds for all Borel subsets of (R+ × S)∞.
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This decomposition indicates that we may first select in state s a new
state and a transition time; with these data the system then works just as
if the selected new state would have been the initial state. New states and
transition times are being averaged over, since we select these items according
to a probability law. Lemma 6.27 may accordingly be interpreted as a Markov
property for a process the behavior of which is independent of the specific step
that is undertaken.

6.3.2 Independence and Zeno Paths

Assume that the state transitions are given through a stochastic relationK :
S � S and the times are triggered through another relation L : S � R+, so
that the probability for jumping from a state s to another state occurs within
the time interval [t1, t2] is given through L(s)([t1, t2]). If state transitions and
times are stochastically independent, then M(s) := L(s) ⊗K(s) governs the
system’s behavior.

We state for later use:

LEMMA 6.28
Let f : (R+×S)n → R be measurable and bounded, and assume that M(s) =
K(s)⊗ L(s) holds for each s ∈ S. Then

∫

(R+×S)n

f dMn(s) =
∫

S

. . .

∫

S

∫ ∞

0

. . .

∫ ∞

0

f(t0, s1, . . . , tn−1, sn)×

× L(sn−1)(dtn−1)L(sn−2)(dtn−2) . . . L(s)(dt0)×
×K(sn−1)(dsn)K(sn−2)(dsn−1) . . .K(s)(ds1).

PROOF (Sketch) One first shows that the representation on the right
hand side is true if f = χA for some Borel set A ⊆ (R+ × S)n. Correctness
follows in this case from the definition, since

∫

(R+×S)n

χA dMn(s) = Mn(s)(A).

The validity for indicator functions implies the validity for step functions,
i.e., functions f of the form f =

∑n
i=0 αi · χAi with Borel sets Ai and real

αi through the integral’s additivity. One then observes that each nonnega-
tive bounded Borel map can be approximated by an increasing sequence of
step functions from below, thus the equality is true for nonnegative f by the
monotone convergence theorem (Proposition 1.60). The general case writes
f = f+ + f− with f+(s) := max(f(s), 0), f−(s) := min(f(s), 0) and applies
the previous case.

The last step rearranges the integrals according to the dependencies of their
integration variables. This is admissible through Fubini’s Theorem on product
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integration, which permits interchanging the order of integration for product
measures, in this case over the domains S and R+.

Observation 1 The usual approach to interpreting Markov chains with con-
tinuous time runs via a rate function. Assume that R represents the rate,
then

a. R(s) is for every s ∈ S a finite measure on S such that E(s) := R(s) > 0
is always strictly positive,

b. s 
→ R(s)(B) is for every B ∈ B(S) a measurable function S → R+.

The rate function models the transition rate: if the system is in state s, then
the transition rate for jumping to a new state that is a member of the Borel
set D ⊆ S is given by R(s)(D). This transition rate is assumed to be finite.
We also assume in the rate model that there is no blind state, so transitions
are assumed to be possible from all states, thus E(s) > 0.

Put

K(s)(D) :=
R(s)(D)
E(s)

and set for the probability of making a transition from state s within t time
units

L(s)([0, t]) := 1− e−E(s)·t,

then

L(s)(F ) =
1

E(s)
·
∫

F

e−E(s)·t dt.

Consequently, the approach discussed here fits into the usual set up to model
continuous time Markov processes, and generalizes it.

6.3.2.1 Zeno Paths

We have seen in Proposition 6.23 that the set

Z := {σ |
∑

i≥0

δ(σ, i) exists and is finite}

of all Zeno paths is measurable in the universe of our paths. Math 101 tells
us that Z ⊆ C with C as the set of all paths the transition times of which
tend to zero, thus

C := {σ | lim
i→∞

δ(σ, i) = 0}.

By Proposition 6.23 this is also a measurable set. We will show now that a
Zeno path will only occur with probability 0, provided the probability L that
governs the transitions does not concentrate its mass close to zero (this means
that very short transition times will occur quite infrequently).
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We establish this property of Zeno paths under the assumption that the
relation L is uniformly bounded at the origin, but we treat the problem a wee
bit more generally.

DEFINITION 6.29 The stochastic relation L : S � R+ is called bounded
at time t iff given ε > 0 there is δ > 0 such that

sup
s∈S

L(s)([t− δ, t+ δ] ∩ R+) < ε.

Thus bounded at t means for L that no positive mass is associated with
t, uniformly for all states. Consequently t is a time in which state changes
cannot occur with positive probability for any state.

Observation 2 Assume that we work in the rate model. Let as in Observa-
tion 1

L(s)(F ) :=
1

E(s)
·
∫

F

e−E(s)·t dt,

and assume that ρ := sups∈S R(s)(S) is finite. Then the relation L is bounded
at each time t. This is so since

L(s)([t1, t2]) = e−E(s)·t1 ·
(
1− e−E(s)·(t2−t1)

)
≤ 1− e−ρ·(t2−t1).

This difference, which is independent of state x, can be brought arbitrarily
close to 0.

Boundedness has as a consequence that the Zeno paths can be neglected,
when we are working under stochastic independence of state changes and
residence times.

PROPOSITION 6.30
Assume that M(s) = L(s) ⊗ K(s) for each s ∈ S, where K : S � S and

L : S � R+. Then the following holds for each s ∈ S

a. M∞(s)({τ | limi→∞ δ(σ, i) = t}) = 0, provided L is bounded at t,

b. M∞(s)({τ |
∑

i≥0 δ(〈s, τ〉, i) exists and is finite}) = 0, provided L is boun-
ded at the origin. Consequently, the set of all Zeno paths is negligible.

PROOF 0. The remarks preceding Definition 6.29 imply that we only
have to establish part a; part b will then follow immediately for t = 0. Fix
t ∈ R+ and assume that L is bounded at t.

1. Since

lim
i→∞

δ(σ, i) = t⇔ ∀ε > 0∃n ∈ N∀k ≥ n :| δ(σ, j)− t |< ε,
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we can represent C as
C =

⋂

Q�ε>0

⋃

n∈N

Nε,n

with
Nr,n := {σ || δ(σ, n+ j)− t |< r for all j ∈ N}.

It is clear from the definition that

Nr,n =
⋂

k≥0

N ′
r,n,k,

where

N ′
r,n,k := {σ || δ(σ, n+ j)− t |< r for 0 ≤ j ≤ k}

= N ′′
r,n,k ×

∏

j>n+k

(R+ ×X).

The sequence (N ′
r,n,k)k∈N is monotonically decreasing, hence

M∞(s)({τ | 〈s, τ〉 ∈ Nr,n}) = inf
k∈N

M∞(s)({τ | 〈s, τ〉 ∈ N ′
r,n,k}).

From the construction of M∞(s) as projective limit of (Mn)n∈N
we see that

M∞(s)({τ | 〈s, τ〉 ∈ N ′
r,n,k}) = Mn+k(s)({τ | 〈x, τ〉 ∈ N ′′

r,n,k}),
which by Lemma 6.28 may be evaluated as

Mn+k(s)({τ | 〈s, τ〉 ∈ N ′′
r,n,k}) =

∫

S

. . .

∫

S

L(sn+k−1)([t − r, t+ r] ∩ R+) · · · · · L(sn−1)([t− r, t+ r] ∩ R+)×

×K(sn+k−2)(dsn+k−1) . . .K(s1)(dx2)K(s)(ds1).

Well, that’s not too bad.
2. Now if 0 < ε < 1 is given, we can find η > 0 such that

L(s)([t− η, t+ η] ∩ R+) < ε

is true for all s ∈ S due to L being bounded at the origin. Consequently,

Mn+k(s)({τ | 〈s, τ〉 ∈ N ′′
η,n,k}) ≤ εk+1,

which implies

M∞(s)({τ | 〈x, τ〉 ∈ Nη,n}) ≤ inf
k∈N

εk = 0.

But this trivially implies

M∞(s)({τ | lim
i→∞

δ(σ, i) = t}) = 0.

If we assume that L is bounded at each point in time, then the mass as-
sociated with each L(s) is not concentrated at any time t, for otherwise the
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probability of hitting arbitrary small intervals [t− δ, t+ δ] around t cannot be
made arbitrary small. Thus there is no preferred, pointed timing behavior.

6.4 F-Bisimulations for CSL

The continuous time stochastic logic CSL will be analyzed in greater detail
now. In particular we will look at equivalence relations that are given through
subsets of formulas.

Fix P as a countable set of atomic propositions. We define recursively state
formulas and path formulas for CSL:

State formulas are defined through the syntax

ϕ ::= � | a | ¬ϕ | ϕ ∧ ϕ′ | S�p(ϕ) | P�p(ψ).

Here a ∈ P is an atomic proposition, ψ is a path formula, � is one of
the relational operators <,≤,≥, >, and p ∈ [0, 1] is a rational number.

Path formulas are defined through

ψ ::= X I ϕ | ϕ UI ϕ′

with ϕ, ϕ′ as state formulas, I ⊆ R+ a closed interval of the real numbers
with rational bounds (including I = R+).

We denote the set of all state formulas by LP .
The operator S�p(ϕ) gives the steady-state probability for ϕ to hold with

the boundary condition �p; the formula P replaces quantification: the path-
quantifier formula P�p(ψ) holds in a state s iff the probability of all paths
starting in s and satisfying ψ is specified by �p. Thus ψ holds on almost
all paths starting from s iff s satisfies P≥1(ψ), a path being an alternating
infinite sequence σ = 〈s0, t0, s1, t1, . . . 〉 of states xi and of times ti. Note that
the time is being made explicit here. The next-operator X I ϕ is assumed to
hold on path σ iff s1 satisfies ϕ, and t0 ∈ I holds. Finally, the until-operator
ϕ1 UI ϕ2 holds on path σ iff we can find a point in time t ∈ I such that the
state σ@t which σ occupies at time t satisfies ϕ2, and for all times t′ before
that, σ@t′ satisfies ϕ1.

The basic operators are introduced now more formally. We will also have a
look at issues of measurability: the basic operators will be shown to represent
measurable functions. This will help in establishing that many of the sets of
paths and, derived from them, sets of states that occur in conjunction with set
and path formulas are measurable, thus lie in the domain of the probabilities
that we will be working with (suppose in the contrary that an important set
is not measurable, then we cannot measure it, we cannot assign a probability



284 6.4 F-Bisimulations for CSL

to it. This would jeopardize the programme of a stochastic interpretation of
CSL). As a consequence the sets of states resp. paths on which a formula is
valid are measurable.

6.4.1 Interpreting the Logic

Now that we know how to probabilistically describe the behavior of paths,
we are ready for a probabilistic interpretation of CSL. We assume that we
have a stochastic relation M : S � R+ × S with M(s)(R+ × S) = 1 for all
s ∈ S according to the general assumption from page 278 from which the
stochastic relation M∞ : S � R+ × (S × R+)∞ has been constructed. The
interpretations for the formulas are established, and we show that the sets of
states resp. paths on which formulas are valid are Borel measurable.

To get started on the formal definition of the semantics, we assume that
we know for each atomic proposition which state it is satisfied in, so we fix a
map L that maps P to B(S), assigning each atomic proposition a Borel set of
states.

The semantics is described as usual recursively through relation |= between
states resp. paths, and formulas as follows:

a. s |= � is true for all s ∈ S.

b. s |= a iff s ∈ L(a).

c. s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2.

d. s |= ¬ϕ iff s |= ϕ is false.

e. s |= S�p(ϕ) iff limt→∞M∞(s)({τ | 〈s, τ〉@t |= ϕ}) exists and is �p.

f. s |= P�p(ψ) iff M∞(s)({τ | 〈s, τ〉 |= ψ}) � p.

g. σ |= X I ϕ iff σ[1] |= ϕ and δ(σ, 0) ∈ I.

h. σ |= ϕ1 UI ϕ2 iff ∃t ∈ I : σ@t |= ϕ2 and ∀t′ ∈ [0, t[: σ@t′ |= ϕ1.

Denote by [[ϕ]] again the set of all states for which the state formula ϕ holds,
resp. the set of all paths for which the path formula ϕ is valid. We do not
distinguish notationally between these sets, as far as the basic domains are
concerned, since it should always be clear whether we describe a state formula
or a path formula.

We show that we are dealing with measurable sets. Most of the work for
establishing this has been done already, so we have to fit in the patterns that
we have set up in Proposition 6.23 and its Corollaries.

PROPOSITION 6.31
The set [[ϕ]] is Borel, whenever ϕ is a state formula or a path formula.
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PROOF 0. The proof proceeds by induction on the structure of the
formula ϕ. The induction starts with the formula �, for which the assertion
is true, and with the atomic propositions, for which the assertion follows from
the assumption on L: [[a]] = L(a) ∈ B(S). We assume for the induction step
that we have established that [[ϕ]], [[ϕ1]] and [[ϕ2]] are Borel measurable.

1. For the next-operator we write

[[X I ϕ]] = {σ | σ[1] ∈ [[ϕ]] and δ(σ, 0) ∈ I}.

This is the cylinder set (S × I × [[ϕ]]× R+)× (S×R+)∞, hence is a Borel set.
2. The until-operator may be represented through

[[ϕ1 UI ϕ2]] = U(I, [[ϕ1]], [[ϕ2]]),

which is a Borel set by Lemma 6.25.
3. Since M∞ : S � (R+ × S)∞ is a stochastic relation, we know that

[[P�p(ψ)]] = {s ∈ S |M∞(s)({τ | 〈s, τ〉 ∈ [[ϕ]]}) � p}

is a Borel set.
4. We know from Corollary 6.24 that the set

Q[[ϕ]] := {s ∈ S | lim
t→∞M∞(s)({τ | 〈s, τ〉@t ∈ [[ϕ]]}) exists}

is a Borel set, and that

�ϕ : Q[[ϕ]] � s 
→ lim
t→∞M∞(x) ({τ | 〈s, τ〉@t ∈ [[ϕ]]}) ∈ [0, 1]

is a Borel measurable function. Consequently,

[[S�p(ϕ)]] = {s ∈ Q[[ϕ]] | �ϕ(s) � p}

is a Borel set.

Measurability of the sets on which a given formula is valid is of course a
prerequisite for computing interesting properties. So we can compute, e.g.,

P≥0.5((¬down) U [10,20] S≥0.8(up2 ∨ up3)))

as the set of all states that with probability at least 0.5 will reach a state
between 10 and 20 time units so that the system is operational (up2, up3 ∈ P )
in a steady state with a probability of at least 0.8; prior to reaching this state,
the system must be operational continuously (down ∈ P ).



286 6.4 F-Bisimulations for CSL

6.4.2 Definition and Properties of ρF

Returning to the logic, fix a set F of state formulas, and define the central
equivalence relation

s ρF s′ ⇔ ∀ϕ ∈ F : [s |= ϕ⇔ s′ |= ϕ] ,

then ρF is smooth due to F being countable. We will investigate in this
section the equivalence ρF . First, the closure wrap (F ) of F will be defined as
the smallest set of formulas containing F and being closed under the logic’s
operators, and it will be investigated under which conditions ρwrap(F ) = ρF
holds. An answer to this question makes life easier, since testing satisfaction
only on F is presumably much easier than testing on wrap (F ), in particular
when F = P (so that wrap (F ) = LP ). We will examine an enabling condition,
using smooth equivalence relations and congruences as the decisive tool. This
leads to a discussion of bisimulations; the results obtained for congruences
will be transported for an investigation of bisimilar states. Conditions under
which P -bisimilarity and the satisfaction of the same formulas are related will
be formulated at the end of this section.

The closure wrap (F ) of F is defined as the smallest set of formulas in LP

which contains F and which is closed under the defining operations for the
logic. Formally, wrap (F ) is the set of all F -state formulas which are defined
through the following rules:

F -state formulas are defined through the syntax

ϕ ::= � | Φ | ¬ϕ | ϕ ∧ ϕ′ | S�p(ϕ) | P�p(ψ).

Here Φ ∈ F is a formula in F , ψ is an F -path formula, � is one of the
relational operators <,≤,≥, >, and p ∈ [0, 1] is a rational number.

F -path formulas are defined through

ψ ::= X I ϕ | ϕ UI ϕ′

with ϕ, ϕ′ as F -state formulas, I ⊆ R+ a closed interval of the real
numbers with rational bounds.

Thus we start in building up F -formulas from elements of F as the base, just
as we started building up LP from the set P of atomic propositions. Observe
that wrap (P ) = LP . We will investigate the smooth relations ρF and ρwrap(F )

and will establish that under a mildly restrictive condition ρF = ρwrap(F ) holds.
This result looks rather modest, but it has some interesting consequences in
terms of bisimulations. They will be discussed after the proof.

The mild condition that will enable us to establish the relations’ equality
was detected by Desharnais and Panangaden in (Desharnais and Panangaden,
2003) for the fragment of CSL investigated there.
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DEFINITION 6.32 A set F of formulas is said to satisfy the DP-
condition iff F has these properties: F is closed under conjunctions, and
P�p(X I ϕ) ∈ F whenever ϕ ∈ F, p ∈ [0, 1] is rational, and I ⊆ R+ is a closed
interval with rational endpoints.

We will see that the closedness under conjunction will later enable us to
apply the π-λ-Theorem for making sure that a condition carries over from the
set of generators (in this case {[[ϕ]] | ϕ ∈ F}) to the σ-algebra generated from
it. Closedness under the next operator will have a special consequence, as we
will see in a moment.

The DP-condition makes sure that the probabilities for a transition of ρF -
equivalent states into a state in which a formula in F is valid are identical.
This is quite comparable to the observation one makes for stochastic Kripke
models for modal logics: there it is well known that the probabilities for
making a move into a state in which the same formula is satisfied after an
action coincide for equivalent states as well; see Lemma 6.18.

DEFINITION 6.33 Define for a set B ∈ B(S) the probability that a
move is made from state s ∈ S into B by K(s)(B) := M(s)(R+ ×B).

It is apparent that K : S � S characterizes the transition behavior in just
one step. This is interesting when investigating the probabilities for which
state s moves into another state that satisfies a formula in F .

LEMMA 6.34
If s ρF s′ and ϕ ∈ F , then K(s)([[ϕ]]) = K(s′)([[ϕ]]), provided F satisfies the

DP-condition.

PROOF Suppose that we find for s ρF s′ a formula ϕ′ ∈ F such that

K1(s)([[ϕ′]]) < r ≤ K1(s′)([[ϕ′]]),

where r may be assumed to be rational. Since

{τ | 〈s, τ〉 |= XR+ ϕ′} = (R+ × [[ϕ′]])× (R+ × S)∞,

we conclude that

K(s)([[ϕ′]]) = M∞(s)({τ | 〈s, τ〉 |= XR+ ϕ′}).

But this implies that s |= P<r(XR+ ϕ′), similarly, s′ �|= P<r(XR+ ϕ′). But the
DP-condition implies that P<r(XR+ ϕ′) ∈ F, which is a contradiction.

This Lemma is actually a first step towards establishing that ρF generates
a congruence for M . It requires an extension of the equivalence relation ρF
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on S to (R+ × S)∞. The basic idea is to relate the alternating states in such
a sequence through ρF , and to leave the residence times alone, which means
to relate them through the identity relation ΔR+ . Thus 〈t0, s1, t1, . . .〉 will be
related to 〈t′0, s′1, t′1, . . .〉 iff si ρF s′i and ti = t′i for all indices i. In view of
Lemma 5.14 we form the product relation ×n∈N

(
ΔR+ × ρF

)
= (ΔR+ ×ρF )∞.

To alleviate the heavy notation somewhat, we abbreviate

ρ
(n)
F := (ΔR+ × ρF )n,

ρ
(∞)
F := (ΔR+ × ρF )∞.

PROPOSITION 6.35
Assume that F satisfies the DP-condition, then

cF := (ρF , ρ
(∞)
F )

is a congruence for M : S � (R+ × S)∞.

PROOF 0. We need to show that

(†) M∞(s)(D) = M∞(s′)(D)

holds for each ρ
(∞)
F -invariant Borel set D, provided s ρF s′ holds. We know

that

INV
(
B((R+ × S)∞), ρ(∞)

F

)
=

⊗

n∈N

INV
(
B(R+ × S),ΔR+ × ρF

)

holds (Lemma 5.14), and from the construction of the infinite product of
measurable spaces we see that we may restrict our attention to cylinder
sets the factors of which are ΔR+ × ρF -invariant. But since the σ-algebra
INV

(
B(R+ × S),ΔR+ × ρF

)
is generated by

{I × [[ϕ]] | I ⊆ R+ is an interval, ϕ ∈ F},

it is sufficient for establishing Eq. (†) that the equation

(‡) Mn(s) ((I1 × [[ϕ1]])× . . .× (In × [[ϕn]])) =
Mn(s′) ((I1 × [[ϕ1]])× . . .× (In × [[ϕn]]))

holds, whenever s ρF s′, where I1, . . . , In are intervals in R+ with rational
endpoints and ϕ1, . . . , ϕn are formulas in F . This is done by induction on n.

Fix s, s′ with s ρF s
′, intervals (In)n∈N in R+ with rational endpoints, and

formulas (ϕn)n∈N in F , and put Bn := [[ϕn]] as the set of states in which ϕn
is valid.
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1. The induction starts at n = 1 with the observation that

M1(s)(I1 ×Bn) = M∞(s)({τ | 〈s, τ〉 ∈ I1 ×B1} =

M∞(s)({τ | 〈s, τ〉 |= X I1 ϕ1}.

Thus we have for an arbitrary rational p

M1(s)(I1 × B1) ≤ p⇔ s |= P�p(X I1 ϕ1)
⇔ s′ |= P�p(X I1 ϕ1) (since s ρF s′)
⇔ M1(s′)(I1 ×B1) ≤ p.

Consequently, M1(s)(I1 ×B1) = M1(s′)(I1 ×B1) is established.
2. Assume for the induction step that the assertion is true for n. This

implies in particular that (ρF , ρ
(n)
F ) is a congruence for Mn : S � (R+ × S)n.

From the Markov property in Lemma 6.27 we infer that

Mn+1(s)((I1 ×B1)× · · · × (In+1 ×Bn+1)) =
∫

I1×B1

Mn(y)((I2 ×B2)× · · · × (In+1 ×Bn+1)) M1(s)(d〈t, y〉) =
∫

R+×S
χI1×B1(t, y) ·Mn(y)((I2 ×B2)× · · · × (In+1 ×Bn+1)) M1(s)(d〈t, y〉)

(recall that χ indicates the indicator function of a set). We claim that

〈t, y〉 
→ χI1×B1(t, y) ·Mn(y)((I2 ×B2)× · · · × (In+1 ×Bn+1))

is a INV
(
B(R+ × S),ΔR+ × ρF

)
-B(R+)-measurable function. This inferred

from the fact that I1 × B1 is ΔR+ × ρF -invariant, and from the observation
that (ρF , ρ

(n)
F ) is a congruence for Mn, using Lemma 5.30. Consequently, we

may infer from s ρF s′ in conjunction with Lemma 5.30 that

∫

R+×S
χI1×B1(t, y)·Mn(y)((I2×B2)×· · ·×(In+1×Bn+1)) M1(s)(d〈t, y〉) =

∫

R+×S
χI1×B1(t, y) ·Mn(y)((I2×B2)×· · ·× (In+1×Bn+1)) M1(s′)(d〈t, y〉),

which implies equation (‡) also for n+ 1.

Reflecting on the proof, we see that the DP-condition on F is needed to
establish the initial step in this induction. It is also responsible for maintaining
invariance in the induction step through the integral representation rendering
the Markov property.
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The intermediate goal is to prove that ρF = ρwrap(F ) holds. Because by
construction F ⊆ wrap (F ), and because F 
→ ρF is anti-monotonic, we need
to show that ρF ⊆ ρwrap(F ) is true for establishing the equality above. We will
first investigate ρF -invariant Borel sets with respect to a smooth equivalence
relation on (S × R+)∞ related to ρF and ΔR+ .

Some auxiliary operators are introduced: let A,A1, A2 be subsets of S, B
be a subset of (S×R+)∞, and I ⊆ R+ an interval with rational bounds, then

P�p(B) := {s ∈ S |M∞(s)({τ | 〈s, τ〉 ∈ B}) � p}
QA := {s ∈ S | lim

t→∞M∞(s)({τ | 〈s, τ〉@t ∈ A}) exists}

fA(s) := lim
t→∞M∞(s)({τ | 〈s, τ〉 ∈ A}), if s ∈ QA

S�p(A) := {s ∈ QA | fA(s) � p}
X(I, A) := {σ | σ[1] ∈ A ∧ δ(σ, 0) ∈ I}.

We observe the following properties:

LEMMA 6.36
Let F be a set of formulas, and recall that ρF × ΔR+ denotes the smooth

equivalence relation

〈s, t〉 (ρF ×ΔR+) 〈s′, t′〉 ⇐⇒ s ρF s′ ∧ t = t′,

on S × R+. Assume that F satisfies the DP-condition.

a. If B ∈ INV
(
B((S × R+)∞), (ρF ×ΔR+)∞

)
, then P�p(B) is a member of

the σ-algebra INV (B(S), ρF ) .

b. If A ∈ INV (B(S), ρF ), then

i. QA ∈ INV (B(S), ρF ),

ii. S�p(A) ∈ INV (B(S), ρF ) ,

iii. X(I, A) ∈ INV
(
B((S × R+)∞), (ρF ×ΔR+)∞

)
.

c. If A1, A2 ∈ INV (B(S), ρF ), then

U(I, A1, A2) ∈ INV
(
B((S × R+)∞), (ρF ×ΔR+)∞

)
.

PROOF 1. Since F satisfies the DP-condition, we know from Proposi-
tion 6.35 that cF is a congruence for M∞ : S � (R+×S)∞. From Lemma 5.30
and Corollary 2.10 we infer that s 
→M∞(s)(Bs) is a INV (B(S), ρF )-B(R+)-
measurable function, where Bs is as usual the cut {τ | 〈s, τ〉 ∈ B} at s. This
implies the assertion in part a.

2. Define for t ∈ R+ the set JA := {σ | σ@t ∈ A}, then JA will be shown
to be a member of INV

(
B((S × R+)∞), (ρF ×ΔR+)∞

)
. In fact, suppose
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σ (ρF × ΔR+)∞ σ′, then δ(σ, i) = δ(σ′, i) holds for all i (this is so since
the equivalence does not affect the timing information), thus Stop(σ, r) =
Stop(σ′, r) for all r ≥ 0. Consequently, we obtain (cf. the proof for Lemma 6.21)

σ ∈ JA ⇔ σ@t ∈ A
⇔ ∃k : Stop(σ, t) = k, σ[k] ∈ A
⇔ ∃k : Stop(σ′, t) = k, σ[k] ∈ A
⇔ σ′ ∈ JA,

establishing the invariance of JA. Clearly, JA is a Borel set by Lemma 6.21.
Again, we infer that s 
→ M∞(s)({τ | 〈s, τ〉 ∈ JA}) is INV (B(S), ρF )-

B(R+)-measurable, hence

At,s := {s′ |M∞(s′)({τ | 〈s′, τ〉@t ∈ A}) ≤ s}

defines an ρF -invariant Borel set. We know from the proof of Proposition 6.23
that

lim inf
t→∞ M∞(s)({τ | 〈s, τ〉@t ∈ A}) ≤ x⇔ s ∈

⋂

Q�t≥0

⋃

Q�r≥t
Ar,x,

thus
s 
→ lim inf

t→∞ M∞(s)({τ | 〈s, τ〉@t ∈ A})

defines a INV (B(S), ρF )-B(R+)-measurable map, so does

s 
→ lim sup
t→∞

M∞(s)({τ | 〈s, τ〉@t ∈ A}).

Since these maps coincide on QA, this establishes the first part of b.
3. Represent X(I, A) for the ρF -invariant Borel set A ⊆ S and the interval

I ⊆ R+ with rational endpoints as X(I, A) = (S×I)×(A×R+)×(S×R+)∞,
then it is clear that this is a cylinder set which is (ρF ×ΔR+)∞-invariant. This
establishes the second part of b.

4. Represent for the ρF -invariant Borel sets A1, A2 and the interval I ⊆ R+

with rational endpoints the set U(I, A1, A2) as in the proof of Lemma 6.25 as

U(I, A1, A2) =
⋃

t∈Q∩I

⎛

⎝{σ | σ@t ∈ A1} ∩
⋂

t′∈Q∩[0,t]

{σ | σ@t′ ∈ A2}

⎞

⎠ ,

and observe that the sets involved are all invariant Borel sets, as shown in
part 2 of the present proof, then part c follows readily.

This Lemma will be instrumental in establishing our main result on bisim-
ulations. Its proof is somewhat awkward due to the necessity of keeping track
of many smooth relations at once. It indicates on the other hand that smooth
equivalence relations are a versatile tool for these investigations.
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6.4.3 Closure Operations

We show that ρF coincides with a finer equivalence relation that is generated
by F ’s closure under the operations offered by the logic. This closure is not
the only one of interest: we will close F also towards the future; thus, when
we know that ϕ ∈ F , then we also know that X Iϕ will be a member of F . The
reason for this closure under the DP-condition will become apparent soon.

PROPOSITION 6.37

Let F �= ∅ be a set of formulas, denote by ρF the equivalence relation on
the set of states imposed by F , and let wrap (F ) be the closure of F under
the logic’s operators. Then ρF = ρwrap(F ) holds, provided F satisfies the DP-
condition.

PROOF 1. Because ρwrap(F ) ⊆ ρF is trivial, we need to establish the
other inclusion, and since ρwrap(F ) is determined by the countable set {[[ϕ]] |
ϕ ∈ wrap (F )} of Borel sets, it is sufficient to show that [[ϕ]] ∈ INV (B(S), ρF )
for each ϕ ∈ wrap (F ) .

2. Since for each ϕ ∈ F we have trivially [[ϕ]] ∈ INV (B(S), ρF ) , an
inductive reasoning with Lemma 6.36 on the structure of F -state formulas
and of F -path formulas establishes the assertion.

As an interesting direct and first consequence of Proposition 6.37 we obtain
that the equivalence of states on the atomic propositions determines their
equivalence of all formulas, provided the DP-condition is satisfied. If it is not,
we force it: Define for a set F of formulas

dp(F ) :=
⋂
{G ⊆ LP | F ⊆ G,G has the DP-condition}

as the smallest set of formulas that satisfy the DP-condition (this construction
is sensible because the set LP of all formulas satisfies the condition under
consideration).

We obtain from Proposition 6.37 right away:

COROLLARY 6.38

ρdp(P ) = ρLP .

This result is not yet fully satisfying; in practice it means that one has
to have a look at the formulas in DP-closure for concluding whether or not
a given property holds for all formulas. It is, however, desirable to restrict
oneself to observing properties on the atomic propositions alone, and then to
say that this property holds for the entirety of formulas. This is what we
investigate now. The basic idea is to find a suitable representation for dp(F )
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and then to capitalize on Corollary 5.6 for identifying the equivalence relation
as ρdp(F ).

Let F be a nonempty set of formulas. Define for Ψ ⊆ LP the set valued
map

H(Ψ) := F ∪ {
∧

1≤i≤n
ϕi | n ∈ N, ϕ1, . . . , ϕn ∈ Ψ}∪

{P�p(X [a,b] ϕ) | ϕ ∈ Ψ, a, b, p rational},

then the least fixed point
H∗ := μΨ.H(Ψ)

exists by the Kleene-Knaster-Tarski Fixed Point Theorem, and

H∗ =
⋃

n∈N

H(n)(∅)

holds, with H(n) as the nth iterate of H . Similarly, define for a family A of
Borel sets in S

h(A) := {[[ϕ]] | ϕ ∈ F} ∪ A ∪ {P�p(X([a, b], A)) | A ∈ A, a, b, p rational}.

Again invoking the Kleene-Knaster-Tarski Theorem, we know that the
smallest fixed point

C∗ := μA.h(A)

exists, and can be computed through

C∗ =
⋃

n∈N

h(n)(∅).

Here h(n) is of course the nth iterate of h.
As witnessed by the use of the path quantifier, both constructs are closely

related:

LEMMA 6.39
Construct the set H∗ of formulas and the family C∗ of Borel sets as above.

Then

a. H∗ = dp(F ),

b. the ρdp(F )-invariant sets are generated from H∗, thus

σ(C∗) = INV
(
B(S), ρdp(F )

)

holds.



294 6.4 F-Bisimulations for CSL

PROOF 1. It is clear from the definition of the map H that μΨ.H(Ψ)
satisfies the DP-condition, and it is equally clear that each set of formulas that
satisfies this condition and contains F contains also H(n)(∅) for each n ∈ N.

2. If ϕ ∈ H∗, then the representation of μΨ.H(Ψ) shows that [[ϕ]] ∈ C∗. On
the other hand, it is not difficult to see that

h([[ϕ]] | ϕ ∈ Ψ}) ⊆ {[[ϕ]] | ϕ ∈ H(Ψ)} ⊆ σ({[[ϕ]] | ϕ ∈ H∗}).

This shows that
σ({[[ϕ]] | ϕ ∈ H∗}) = σ(C∗),

establishing the second claim.

Looking at the maps — which yield equivalent representations for the dp()-
closure — it is noticeable that H as the version catering for formulas takes
the conjunction into account, while its set-theoretic cousin h does not. This
is due to the observation that the σ-algebra of invariant Borel sets uniquely
determines the equivalence relation by Corollary 5.6, but that this σ-algebra
can have many different generators which may or may not be closed with
respect to finite intersection.

6.4.4 F -Bisimulations

Let us define F -bisimulations in order to put these results into the proper
context. Define for F ⊆ LP and for each state s ∈ S the set

LF (s) := {ϕ ∈ F | s |= ϕ}

as the set of all formulas in F that are satisfied by s.

DEFINITION 6.40 Let F be a set of formulas, then a smooth equivalence
relation ≡F is called an F -bisimulation iff

a. LF (s) = LF (s′), whenever s ≡F s′.

b. K(s)(D) = K(s′)(D), whenever s ≡F s′ and D ∈ INV (B(S),≡F ).

An F -bisimulation is focussed on the behavior that manifests itself on the
states, rather than on paths. Hence we use for its formulation the relation
K rather than M . If ≡F is an F -bisimulation, condition b. tells us that this
relation is in particular a congruence for K (see Definition 5.26), so we may
define the factor relation

K≡F ([s]≡F
)(D) := K(s)((η−1

≡F
[D]))

whenever D ∈ B(S/≡F ) in a Borel set in the factor space. It has the ad-
ditional property that the map LF : S → F is constant on the equivalence



Interpreting Modal and Temporal Logics 295

classes. This observation yields a characterization of F -bisimulations in terms
of congruences:

PROPOSITION 6.41
The following statements are equivalent for a smooth equivalence relation ρ

on S

a. ρ is an F -bisimulation.

b. ρ is a congruence for K with s ρ s′ ⇒ LF (s) = LF (s′).

Consequently, F -bisimilar states accept exactly the same formulas in F ,
and they behave in exactly the same way on the ≡F -invariant Borel sets. As
a first result towards relating the results obtained so far to F -bisimulations,
we see that under the mild condition of F being closed under conjunctions,
ρF is actually one:

PROPOSITION 6.42
The relation ρF is an F -bisimulation for each F ⊆ LP , provided F is closed

under conjunctions.

PROOF The definition of ρF guarantees that LF (x) = LF (x′) is true
whenever s ρF s′. Thus we need to show that K(s)(D) = K(s′)(D) for
s ρF s′ and for each D ∈ INV (B(S), ρF ) holds. Define for fixed states s, s′

that are ρF -related

D := {D ∈ INV (B(S), ρF ) | K(s)(D) = K(s′)(D)}.

Then D is a σ-algebra, and it will be enough to show that a generator of
INV (B(S), ρF ) that is closed under finite intersection is contained in D. We
know from Lemma 6.34 that K(s)([[ϕ]]) = K(s′)([[ϕ]]) holds for each ϕ ∈ F .
But this implies with the π-λ-Theorem 1.1 the following chain:

INV (B(S), ρF ) = σ ({[[ϕ]] | ϕ ∈ F}) ⊆ σ(D) ⊆ D ⊆ INV (B(S), ρF ) ,

establishing the assertion.

The relation ρF is provided naturally with F , so it plays a prominent role
among all the F -bisimulations (there are other F -bisimulations, e.g., the iden-
tity is one, but probably not the most interesting among all the candidates):

DEFINITION 6.43 The states s, s′ ∈ S are called F -bisimilar iff s ρF s′

holds.

This is a characterization of F -bisimilarity:
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THEOREM 6.44
Let ∅ �= F ⊆ LP be a set of formulas which satisfy the DP-condition, then two

states are F -bisimilar iff they satisfy exactly the same formulas in wrap (F ).

PROOF This follows immediately from Proposition 6.37 in conjunction
with Proposition 6.42.

Specializing to the set of atomic formulas, we obtain at once:

COROLLARY 6.45
Two states are dp(P )-bisimilar iff they satisfy exactly the same formulas in

LP .

This is not yet completely satisfying for practical purposes, because one has
to construct the closure dp(P ) of the set of all atomic propositions, which may
be done iteratively through the computation of a fixed point, as the discussion
leading to Lemma 6.39 shows. Nevertheless it leads to an infinite process,
handling a countable set of objects. But suppose we are in the situation in
which both the state transitions K and the jump times L are determined
through a rate function R (cp. Observation 1). Now

s |= P�p(X I ϕ)⇔ (L(s)(I) ·K(s)([[ϕ]])) � p

as an easy computation reveals. Thus the σ-algebra of ρdp(P )-invariant Borel
sets is determined by the ρP -invariant Borel sets and by the smallest σ-
algebra TR on S that renders the map s 
→ R(s)(A) measurable for each
A ∈ INV (B(S), ρP ). This is so by Lemma 6.39. This observation yields

COROLLARY 6.46
If s 
→ R(s)(A) is a INV (B(S), ρP )-B(R+) -measurable map for each ρP -

invariant Borel set A, then the following conditions are equivalent for any two
states s, s′ ∈ S:

a. s and s′ are P -bisimilar.

b. s and s′ satisfy exactly the same formulas in LP .

PROOF The condition implies that

INV (B(S), ρP ) = INV
(
B(S), ρdp(P )

)
= INV (B(S), ρLP ) ,

because all sets that are added when constructing INV
(
B(S), ρdp(P )

)
through

the process described in Lemma 6.39 are INV (B(S), ρP ) - measurable. Thus
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we infer from Corollary 5.6 the first equality. The second equality comes from
Corollary 6.45. Given this equality, the assertion follows from Theorem 6.44.

The proof capitalizes on the uniqueness of the invariant sets for a smooth
equivalence relation: since we are able to identify these sets, we may conclude
what shape the relation has. This shows that a closer inspection of the invari-
ant Borel sets bears some — probably unexpected — fruits. The condition
imposed in Corollary 6.46 above is satisfied in the finite case whenever the rate
function is constant on the equivalence classes for ≡P . This can be checked
quite efficiently once the classes are computed.

Bisimilarity for stochastic relations was discussed extensively in particular
in Chapter 5, so the question of relating F -bisimilarity to that more general
notion arises. A first step towards a characterization is

PROPOSITION 6.47
Let ∅ �= F ⊆ LP be a set of formulas which satisfy the DP-condition, then

there exists a smooth 2-bisimulation N : ρF � (ΔR+ × ρF )∞ for M : S �
(R+ × S)∞.

PROOF From Proposition 6.35 we know that
(
ρF , (ΔR+ × ρF )∞

)
is a

congruence for M , because F satisfies the DP-condition. Thus the assertion
follows from Proposition 5.51.

The DP-condition turns out to be crucial as a necessary condition for the
two notions of bisimilarity to be related. It can be said actually a bit more.
We introduce for this the extension of F ,

ext (F ) := {ϕ | [[ϕ]] ∈ INV (B(S), ρF )}.

Thus ϕ ∈ ext (F ) iff [[ϕ]] is ρF -invariant, so it is immediate that F ⊆ ext (F ) ,
and that INV (B(S), ρF ) = INV

(
B(S), ρext(F )

)
. The reason for introducing

the extension is quite obviously of a strategic nature: we cannot lay our hands
on F directly, but we can determine whether or not a formula is in ext (F ) by
having a look at the invariant Borel sets.

PROPOSITION 6.48
The following conditions are equivalent for a set ∅ �= F ⊆ LP of formulas:

a. ext (F ) satisfies the DP-condition.

b. There exists a smooth 2-bisimulation N : ρF � (ΔR+ × ρF )∞ for M∞ :
S � (R+ × S)∞.

c.
(
ρF , (ΔR+ × ρF )∞

)
is a congruence for M .
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PROOF 1. We know from Proposition 5.51 that the conditions b and
c are equivalent, and we know from INV (B(S), ρF ) = INV

(
B(S), ρext(F )

)

that ρF = ρext(F ) by Corollary 5.6. Thus a⇒b is just Proposition 6.47.
2. b⇒a Abbreviate as above ρ(∞)

F := (ΔR+ × ρF )∞. We claim that the set

As := {τ | 〈s, τ〉 ∈ X I ϕ}

is ρ(∞)
F -invariant, whenever [[ϕ]] ∈ INV (B(S), ρF ) and s ∈ S. In fact, let

〈s, τ〉 ∈ [[X I ϕ]] and assume that τ ρ(∞)
F τ ′. By definition, 〈s, τ〉[1] |= ϕ and

δ(〈s, τ〉, 0) ∈ I. But 〈s, τ〉[1] ρF 〈s, τ ′〉[1] and δ(〈s, τ〉, 0) = δ(〈s, τ ′〉, 0), so that
we may conclude 〈s, τ ′〉[1] |= ϕ and δ(〈s, τ ′〉, 0) ∈ I. Consequently, 〈s, τ ′〉 ∈
[[X I ϕ]], so that τ ′ ∈ As. Note that As does not really depend on s by the
definition of [[X I ϕ]]. Because As is a member of INV

(
B((R+ × S)∞), ρ(∞)

F

)
,

we infer from Lemma 5.9, part a, that for 〈s, s′〉 ∈ ρF the following holds (here
πi : ρ(∞)

F → (R+ × S)∞ are the corresponding projections, i = 1, 2):

M∞(s)({τ | 〈s, τ〉 ∈ X I ϕ}) = N(〈s, s′〉)(π−1
1 [As])

= N(〈s, s′〉)(π−1
1 [As] ∩ ρ(∞)

F )

= N(〈s, s′〉)(π−1
2 [As′ ] ∩ ρ(∞)

F )
= N(〈s, s′〉)(π−1

2 [A′
s])

= M∞(s′)({τ | 〈s′, τ〉 ∈ X I ϕ}).

But this means that s |= P�p(X I ϕ) iff s′ |= P�p(X I ϕ) whenever s ρF s′ and
[[ϕ]] ∈ INV (B(S), ρF ). Consequently, [[P�p(X I ϕ)]] is an ρF -invariant Borel
set, thus P�p(X I ϕ) ∈ ext (F ) .

6.5 Logical Equivalence for μCSL

The logic μCSL to be investigated now will be quite similar to CSL (in fact,
the latter superficially looks like a fragment of the former). It will contain the
μ-operator, and we will have a look at the interplay of bisimilarity, behavioral
and logical equivalence. While for CSL the question was investigated how
far a set of formulas may be pushed for answering questions pertaining to all
(state) formulas, we will deal here with the interplay of state and path formulas
when it comes to understand what it means that two models have the same
theories for states and paths. Thus we have to be careful about the interplay
between state and path formulas, for example, we close path formulas under
the next operator rather than making the operator a bridge between state and
path formulas. We also close path formulas under conjunction. Introducing
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the μ-operator means that we have to care about variables, rendering models
a bit more involved.

The other interesting formulas from CSL like path quantification or the
steady state operator will be defined for μCSL as well, so that some proper-
ties from CSL are carried over. The fixed point operator, however, requires
special attention when, e.g., measurability is to be established, but somewhat
surprisingly it does not substantially enter the discussion on bisimilarity or
logical and behavioral equivalence.

We will first define the logic formally, then define models and their mor-
phisms and the interpretation of μCSL. Some standard properties like Borel
measurability are established, and logical equivalence is defined. We deal with
properties on states and on paths; the corresponding equivalence relations are
investigated and related to each other. This happens on the basis of the un-
derlying stochastic relations. The machinery from Chapters 4 and 5 is put into
action, and the relations obtained from these constructions are modified so
that they fit into the mold of the models for the logic. The main result is that
logical equivalence and bisimilarity are equivalent, and that this holds also
for behavioral equivalence, provided the factor space induced by the theory of
states is a Polish space again (this is so since the projective limit construction,
on which interpretations are based, does not seem to work for general analytic
spaces, but only for their Polish brethren).

6.5.1 The Logic μCSL

State formulas and path formulas for μCSL are again defined recursively:

State formulas are defined through the syntax

ϕ ::= � | a | Z | ¬ϕ | ϕ ∧ ϕ′ | S�p(ϕ) | P�p(ψ).

Here a ∈ AP is an atomic proposition, Z ∈ SV is a state variable, ψ is
a path formula, � is one of the relational operators <, ≤, >, ≥, and
p ∈ [0, 1] is a rational number.

Path formulas are defined through

ψ ::= P | ¬ψ | ψ ∧ ψ′ | X I ψ | ϕ UI ϕ′ | μP.ψ

with P ∈ PV as a path variable, ϕ, ϕ′ as state formulas, I ⊆ R+ a closed
interval of the real numbers with rational bounds (including I = R+);
these intervals will be called rational intervals. The operator μ describes
the smallest fixed point; it binds variables in the usual sense. We assume
that the variable bound by it is in the range of an even number of
negations.

The sets AP, SV and PV are assumed to be mutually disjoint and countable.
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6.5.2 Models for μCSL and Their Morphisms

We are ready for the definition of models for μCSL and their morphisms.
Since we will work again with projective limits for interpreting path formulas,
models will be based on Polish spaces rather more generally on analytic spaces.

DEFINITION 6.49 M = (S,M, I, V ) is called a model for μCSL iff

a. S is a Polish space, the state space of M,

b. M : S � R+ × S is a stochastic relation, the law of change of M,

c. I = (Σ,Π) interprets the variables,

(a) Σ : SV → B(S) assigns each state variable a Borel set in S,

(b) Π : PV → B(Paths(S)) assigns each path variable a Borel set of paths,

d. V : AP → B(S) maps each atomic proposition to a Borel set of states.

Thus a model says how residence times and state changes are to be handled:
if s ∈ S is the present state, then M(s)(I×B) gives the probability that after
t ∈ I time units a state change will happen, and that the new state will be
a member of Borel set B ⊆ S. Each model says how the variables are to be
interpreted; this is written down through the maps Σ and Π, and we say what
sets the atomic propositions are taken from. Note that we assume in each case
that the sets under consideration are Borel. Otherwise we could not assign
them any probability directly or indirectly; hence this assumption is made for
keeping the model within the realm of probabilistic reasoning.

Let M = (S,M, (Σ,Π), V ) be a model. Given a state variable Z and a
Borel set Q ∈ B(S), denote by M[Z\Q] the model (S,M, (Σ′,Π), V ) with
Σ′(Z) := Q, otherwise Σ′ coincides with Σ. Similarly, the model M[P\U ]
is defined for the path variable P and the Borel set U ∈ B((S × R+)∞).
Substituting values in this way may be iterated.

We define a morphism Φ : M→ N for the models M and N . It is based
on a map Φ : S → S′ between state spaces, which is extended to a map
Φ∞ : (S × R+)∞ → (S′ × R+)∞ upon setting

Φ∞(〈s0, t0, s1, t1, . . . 〉) := 〈Φ(s0), t0,Φ(s1), t1, . . . 〉,

thus we transform the states according to Φ but leave the residence times
alone; define additionally idR+×Φ : 〈t, s〉 
→ 〈t,Φ(s)〉, and similarly, Φ× idR+ .

DEFINITION 6.50 Let M = (S,M, I, V ) and N = (S′, N, I ′, V ′) be
models for μCSL. Then Φ :M→N is called a morphism from M to N iff

a. Φ : S → S′ is a surjective and Borel measurable map between the state
spaces,
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b. (Φ, idR+×Φ) : M → N is a morphism for the associated stochastic relations
M and N ,

c. Φ−1 [Σ′(Z)] = Σ(Z) for each state variable Z,

d. Φ−1∞ [Π′(P )] = Π(P ) for each path variable P ,

e. Φ−1 [V ′(a)] = V (a) for each atomic proposition a.

We require the map underlying a morphism to be onto since we want to be
able to trace each state in S′ back to a state in S, inheriting the correspond-
ing property from the basic stochastic relations. Condition b says that this
diagram is commutative:

S
Φ � S′

P (R+ × S)

M

�

P
(
idR+ × Φ

)� P (R+ × S′)

N

�

Thus we have in particular

N(Φ(s))(I ×B) = M(s)
(
I × Φ−1 [B]

)

for every state s ∈ S, every rational interval I and every Borel set B ∈
B(S). Conditions c to e relate the interpretations of variables and atomic
propositions. For example, condition c says that for a state s and a state
variable Z we have s ∈ Σ(Z) iff Φ(s) ∈ Σ′(Z).

Morphisms are compatible with substitutions.

LEMMA 6.51
Let Φ : M→ N be a morphism for the models M and N , assume that S′

is the state space for N . Then

Φ :M[Z\Φ−1 [Q] , P\Φ−1
∞ [R]]→ N [Z\Q,P\R]

is a morphism whenever Z is a state variable, P is a path variable, Q ∈ B(S′)
and R ∈ B((S′ × R+)∞) are Borel sets.

We will show now that model morphisms may be interpreted as morphisms
between these projective limits. To be specific:

PROPOSITION 6.52
Let M and N be models, Φ : M→ N be a morphism from M to N , then

(Φ,Φ∞) : M∞ → N∞ is a morphism between the stochastic relations M∞ and
N∞.
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PROOF 0. We have to show that N∞ ◦Φ = P (Φ∞) ◦M∞, equivalently,
that for each s ∈ S and each Borel set F ⊆ R+ × (S′ × R+)∞ the equation

N∞(Φ(s))(F ) = M∞(s)(Φ−1
∞ [F ])

holds. We consider first the case that

F =
n∏

j=1

(Ij ×B′
j)×

∏

j>n

(R+ × S)

holds, where I1, . . . , In are rational intervals, and B′
1, . . . , B

′
n are Borel sets in

S′. Since we are dealing with projective limits, and since in this case F is a
cylinder set, we have

N∞(Φ(s))(F ) = Nn(Φ(s))

⎛

⎝
n∏

j=1

(Ij ×B′
j)

⎞

⎠ ;

similarly we see

M∞(s)(Φ−1
∞ [F ]) = Mn(s)

⎛

⎝
n∏

j=1

(Ij × Φ−1
[
B′
j

]
)

⎞

⎠ .

Hence it is enough to show in this case that

Nn(Φ(s))

⎛

⎝
n∏

j=1

(Ij ×B′
j)

⎞

⎠ = Mn(s)

⎛

⎝
n∏

j=1

(Ij × Φ−1
[
B′
j

]
)

⎞

⎠

holds. This is done by induction on n.
1. The induction’s beginning at n = 1 is trivial by the definition of a

morphism for models. The induction step works as follows:

Nn+1(Φ(s))
(
(I1 ×B′

1)× · · · × (In+1 ×B′
n+1)

)
=

∫

Q
n
j=1(Ij×B′

j)

N(�S′(w′))(In+1 ×B′
n+1) Nn(Φ(s))(dw′) =

∫

(R+×S′)n

χQn
j=1(Ij×B′

j)
(w′)N(�S′(w′))(In+1 ×B′

n+1)Nn(Φ(s))(dw′) =
∫

(R+×S)n

χQn
j=1(Ij×Φ−1[B′

j ])(w)N(�S′(w))(In+1 × Φ−1
[
B′
n+1

]
)Mn(s)(dw) =

∫

Q
n
j=1(Ij×Φ−1[B′

j])
M(�S(w))(In+1 × Φ−1

[
B′
n+1

]
)Mn(s)(dw) =

Mn+1(s)((I1 × Φ−1 [B′
1])× · · · × (In+1 × Φ−1

[
B′
n+1

]
)
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by the Change of Variables Formula (Proposition 1.95) and by the fact that
Φ induces a morphism (Φ, idR+ × Φ) : M → N.

2. Now define

D := {F ∈ B((S × R+)∞) | N∞(Φ(s))(F ) = M∞(s)(Φ−1
∞ [F ])}

then part 1. of the proof shows that D contains all the cylinder sets, and
it is clear that D is a σ-algebra. Thus D contains the σ-algebra generated
from the cylinder sets, which are just the Borel sets. Hence D coincides with
B((S × R+)∞).

6.5.3 Interpreting μCSL

We are now ready for an interpretation of μCSL. Fix a model M =
(S,M, I, V ) over the Polish space S and let M∞ : S � R+ × (S × R+)∞ be
the associated stochastic relation that relates (initial) states to paths.

6.5.3.1 The semantics

The semantics of μCSL is then described recursively through relation |=
between states resp. paths, and formulas as described below. We again denote
by

[[ϕ]]M := {s ∈ S | M, s |= ϕ}

and
[[ψ]]M := {σ ∈ (S × R+)∞ | M, σ |= ψ}

the set of all states resp. paths for which the respective formula holds. The se-
mantics is very similar to that for CSL given in Section 6.4.1; it is nevertheless
given in full for the sake of completeness.

a. M, s |= � is true for all s ∈ S.

b. M, s |= a iff s ∈ V (a).

c. M, s |= Z iff s ∈ Σ(Z) for Z ∈ SV.

d. M, s |= ϕ1 ∧ ϕ2 iff M, s |= ϕ1 and M, s |= ϕ2.

e. M, s |= ¬ϕ iff M, s |= ϕ is false.

f. M, s |= S�p(ϕ) iff limt→∞M∞(s)({τ | 〈s, τ〉@t |= ϕ}) exists and is �p.

g. M, s |= P�p(ψ) iff M∞(s)({τ | 〈s, τ〉 |= ψ}) � p.

h. M, σ |= P iff σ ∈ Π(P ) for P ∈ PV.

i. M, σ |= ψ1 ∧ ψ2 iff M, σ |= ψ1 and M, σ |= ψ2.
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j. M, σ |= ¬ψ iff M, σ |= ψ is false.

k. M, σ |= X I ψ iff M, σ[1 . . . ] |= ψ and δ(σ, 0) ∈ I.

l. M, σ |= ϕ1 UI ϕ2 iff ∃t ∈ I :M, σ@t |= ϕ2 and ∀t′ ∈ [0, t[:M, σ@t′ |= ϕ1.

m. M, σ |= μP.ψ iff σ ∈
⋃
i≥0Ri, where Ri is recursively determined through

R0 := [[ψ]]M[P\∅], Ri+1 := [[ψ]]M[P\Ri].

Define the theory ThM(s) of a state s as above as the formulas which hold
in s,

ThM(s) := {ϕ | ϕ is a state formula, M, s |= ϕ}.

Similarly, the theory ThM(σ) of a path σ is defined:

ThM(σ) := {ψ | ψ is a path formula, M, σ |= ψ}.

We need to show that the sets of states and paths, resp., in which formulas
hold are Borel measurable. This is done exactly as in Section 6.4.1, in par-
ticular in Proposition 6.31, with the exception of the μ-operator, which needs
to be treated separately.

For this, define a modelM′ being based on model M iff either M′ coincides
with M, or if M′ is of the form M0[P\R] with a Borel set R ⊆ (S × R+)∞,
P a path variable, and model M0 based on M.

LEMMA 6.53
Assume that [[ψ]]M′ ∈ B((S×R+)∞) holds for every model M′ that is based

on M. Then [[μP.ψ]]M ∈ B((S × R+)∞).

PROOF Define inductively, as above R0 := [[ψ]]M[P\∅], and Ri+1 :=
[[ψ]]M[P\Ri]. An easy induction on i shows that M[P\Ri] is based on M, so
[[μP.ψ]]M is the countable union of Borel sets, which is a Borel set again.

PROPOSITION 6.54
Let M′ be a model based on M. Then

a. [[ϕ]]M′ ∈ B(S) for all state formulas ϕ,

b. [[ψ]]M′ ∈ B((S × R+)∞) for all path formulas ψ.

PROOF Using structural induction on path formulas and Lemma 6.53.

Consequently, we get for the given model:
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COROLLARY 6.55
[[ϕ]]M ∈ B(S) for all state formulas ϕ, and [[ψ]]M ∈ B((S × R+)∞) for all

path formulas ψ.

Of course it is important to know that the sets under consideration are
Borel, for otherwise the corresponding sets are not in the range of the corre-
sponding probability, and one cannot compute probabilities like M∞(s)({τ |
〈s, τ〉 |= ψ}).

6.5.3.2 Fixed point properties

The μ-operator plays a special rôle: intuitively, it models the smallest fixed
point. This is true here as well:

PROPOSITION 6.56
[[μP.ψ]]M is the smallest fixed point of R 
→ [[ψ]]M[P\R].

For establishing Proposition 6.56 we need some auxiliary considerations.

DEFINITION 6.57 Let P be a path variable, ψ be a path formula. Then

a. ψ is said to be P -even iff each free occurrence of P lies within an even
number of negations.

b. ψ is said to be P -odd iff each free occurrence of P lies within an odd number
of negations.

Recall that the variable P bound by the fixed point operator μP.ψ is re-
quired to be in the range of an even number of negations, so that ψ then
should be P -even.

In a similar way, we describe the effect of a substitution, looking for growing
or shrinking sets.

DEFINITION 6.58 Let P be a path variable, ψ be a path formula. Then

a. ψ is called P -monotone iff for R 
→ [[ψ]]M0[P\R] is a monotone map for
each model M0 based on M.

b. ψ is called P -antitone iff for R 
→ [[ψ]]M0[P\R] is an antitone map for each
model M0 based on M.

The map R 
→ [[ψ]]M0[P\R] is defined from B((S × R+)∞) into itself.

Now define PF0 as the set of all path formulas ψ, such that for all path
variables P the following holds:
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1. if ψ is P -even, then ψ is P -monotone,

2. if ψ is P -odd, then ψ is P -antitone.

LEMMA 6.59
The set PF0 has the following properties:

a. If P is a path variable, then P ∈ PF0.

b. PF0 is closed under negation, conjunction and under the next operator.

c. PF0 is closed under the until operator for state variables: if ϕ1, ϕ2 are
state variables, and I is a rational interval, then ϕ1 UI ϕ2 ∈ PF0.

PROOF 1. The assertion is evident for path variables, and for the nega-
tion.

2. Assume that ψ1, ψ2 ∈ PF0 such that ψ := ψ1 ∧ ψ2 is P -even, then
both ψ1 and ψ2 are P -even (the conjunction serving as a demarcation line
for negations), so ψ ∈ PF0; similarly we show that ψ ∈ PF0, provided ψ is
P -odd. Thus PF0 is closed under conjunction. The argumentation both for
the next operator and for the until operator is the same.

The discussion for the μ-operator needs a simple case analysis, so it is
separated.

LEMMA 6.60
Let ψ′ ∈ PF0, and assume that Q is a path variable. Then μQ.ψ′ ∈ PF0.

PROOF Put ψ := μQ.ψ′. Assume that the path variable P is different
from Q, then ψ and ψ′ share the characteristic of being P -even or P -odd, so
the assertion follows directly.

Now consider the case that P equals Q, then we see that

[[ψ′]](M0[Q\R1])[Q\R2] = [[ψ′]]M0[Q\R2].

But this means that R 
→ [[ψ]]M0[Q\R] is independent of R, hence is monotone
as well as antitone.

We are poised for giving a proof to Proposition 6.56.

PROOF (of Proposition 6.56) From the previous lemmata we infer that
PF0 equals the set of all path formulas. Since the variable P bound by the
μ-operator is in the range of an even number of negations, we know that ψ
is P -monotone. Since all operations in the logic are finitary, we infer that
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R 
→ [[ψ]]M[P\R] is ∪-continuous. Thus the assertion follows from the classical
Knaster-Tarski Fixed Point Theorem.

A little speculation. This fixed point property will play no rôle in the
discussions and constructions to follow. It has been discussed to provide a
(traditionally oriented) motivation for the construction of the semantics for
the μ-operator. Other, similar definitions for the semantics are conceivable
without altering the probabilistic properties of the semantics with the pro-
vision that it operates within the realm of measurable operations. This is a
brief list:

Intersection R0 := [[ψ]]M[P\S], and continuing inductively, define Ri+1 as
[[ψ]]M[P\Ri]. The sequence (Rn)n∈N may or may not be decreasing. Put
[[μP.ψ]]M :=

⋂
j≥0 Rj .

Lower limit Define the sequence (Rn)n∈N as above, and put [[μP.ψ]]M :=⋃
i≥0

⋂
j≥iRj .

Upper limit Put [[μP.ψ]]M :=
⋂
i≥0

⋃
j≥iRj .

Note that both the lower limit and the upper limit could be defined with
an arbitrary Borel set S∗ as the starting point for defining R0. Since we will
be working with sub-σ-algebras, S∗ could be taken from one of them as well
and deliver a member of the same σ-algebra as the set of states in which the
formula is valid, as the proofs below indicate. But we do not want to dwell
upon this marginal point.

Interpreting Ri as the set of states for which ψ is valid after i process steps,
the intersection semantics would of course give the largest fixed point. The
lower limit semantics would describe those states in which ψ eventually holds,
whereas the upper limit semantics would describe those states in which ψ
holds infinitely often. Given a satisfactory interpretation of these semantics,
it is only important from a probabilistic point of view that the operations
performed are those of a σ-algebra.

Returning. But let us return to the interpretation of the μ-operator as the
smallest fixed point given in Section 6.5.3.1, which will be the one assumed
for the rest of the paper.

We will show now that theories are invariant under model morphisms,
specifically we will prove:

PROPOSITION 6.61
Let M and M′ be models for μCSL, and assume that Φ : M → M′ is a

morphism. Then we have

a. [[ϕ]]M = Φ−1 [[[ϕ]]M′ ] for all state formulas ϕ.
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b. [[ψ]]M = Φ−1
∞ [[[ψ]]M′ ] for all state formulas ψ.

This will be established through a series of auxiliary lemmata. To make
the notation a bit less heavy, denote by τ and τ ′ generic elements of R+ ×
(S × R+)∞ resp. R+ × (S′ × R+)∞, s and s′ are typical states in S and S′,
respectively. We assume unless further notice that M and M′ are models,
and that Φ :M→M′ is a morphism.

We start with an auxiliary statement that will come in handy when manip-
ulating probabilities involving Borel subsets of paths.

LEMMA 6.62
Let B′ ∈ B((S′ × R+)∞), then

M∞(s)({τ | 〈s, τ〉 ∈ Φ−1
∞ [B′]}) = M ′

∞(Φ(s))({τ ′ | 〈Φ(s), τ ′〉 ∈ B′}).

PROOF An easy calculation yields

〈s, τ〉 ∈ Φ−1
∞ [B′]⇔ τ ∈ (idR+ × Φ∞)−1

[
B′

Φ(s)

]
.

Consequently, because (Φ,Φ∞) : M∞ → M ′
∞ is a morphism between the

stochastic relations,

M∞(s)
(
{τ | 〈s, τ〉 ∈ Φ−1

∞ [B′]}
)

= M∞(s)((idR+ × Φ∞)−1
[
B′

Φ(s)

]
)

= M ′
∞(Φ(s))(B′

Φ(s))

= M ′
∞(Φ(s))({τ ′ | 〈Φ(s), τ ′〉 ∈ B′}).

This establishes the desired equality.

LEMMA 6.63
Assume that ψ is a path formula with [[ψ]]M = Φ−1

∞ [[[ψ]]M′ ] . Then

a. [[P�p(ψ)]]M = Φ−1 [[[P�p(ψ)]]M′ ] ,

b. [[X I ψ]]M = Φ−1
[
[[X I ψ]]M′

]
.

PROOF 1. Applying Lemma 6.62 to the definition of the semantics of
the path quantifier, we obtain

[[P�p(ψ)]]M = {s |M∞(s)({τ | 〈s, τ〉 ∈ [[ψ]]M}) � p}
= {s |M∞(s)({τ | 〈s, τ〉 ∈ Φ−1

∞ [[[ψ]]M′ ]}) � p}
= {s |M ′

∞(Φ(s))(([[ψ]]M′ )Φ(s)) � p}
= Φ−1 [{s′ |M ′

∞(s′)({τ ′ | 〈s′, τ ′〉 ∈ [[ψ]]M′}) � p}]
= Φ−1 [[[P�p(ψ)]]M′ ] .
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2. The assertion is obvious for the next operator.

The first part of this proof is like a pattern for the proofs to the following
statements.

LEMMA 6.64
Assume that [[ϕi]]M = Φ−1 [[[ϕi]]M′ ] (i = 1, 2) for the state formulas ϕ1, ϕ2.

Then

a. [[S�p(ϕ1)]]M = Φ−1 [[[S�p(ϕ1)]]M′ ] ,

b. [[ϕ1 UI ϕ2]]M = Φ−1
[
[[ϕ1 UI ϕ2]]M′

]
.

PROOF The assertion for the steady state operator follows from the
observation

M∞(s)({τ | 〈s, τ〉@t ∈ [[ϕ]]M}) = M ′
∞(Φ(s))({τ ′ | 〈Φ(s), τ ′〉@t ∈ [[ϕ]]M′})

which is established using Lemma 6.62. The assertion for the until operator
follows from the observation that σ@t ∈ [[ϕi]]M iff Φ∞(σ)@t ∈ [[ϕi]]M′ .

LEMMA 6.65
Assume that ψ is a path formula with [[ψ]]M = Φ−1∞ [[[ψ]]M′ ] . Then

[[μP.ψ]]M = Φ−1 [[[μP.ψ]]M′ ] .

PROOF 0. We observe first that [[ψ]]M = Φ−1
∞ [[[ψ]]M′ ] entails the equality

[[ψ]]M[P\Φ−1∞ [R′]] = Φ−1
∞

[
[[ψ]]M′[P\R′]

]
for the Borel set R′ ⊆ (S′ × R+)∞.

1. Put R0 := [[ψ]]M[P\∅] and R′
0 := [[ψ]]M′ [P\∅], then the assumption and

part 0. together imply R0 = Φ−1
∞ [R′

0] . Arguing inductively and assuming
that we have shown Ri = Φ−1∞ [R′

i] , we see

Ri+1 := [[ψ]]M[P\Ri] = [[ψ]]M[P\Φ−1∞ [R′
i]] = Φ−1

∞
[
[[ψ]]M′[P\R′

i]

]
= Φ−1

∞
[
R′
i+1

]
.

This establishes the claim, then:

[[μP.ψ]]M =
⋃

i≥0

Ri =
⋃

i≥0

Φ−1
∞ [R′

i] = Φ−1
∞

⎡

⎣
⋃

i≥0

R′
i

⎤

⎦ = Φ−1
∞ [[[μP.ψ]]M′ ] .

We are now in a position to prove that a morphism preserves the sets of
validity.
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PROOF (of Proposition 6.61) The proof is done by induction on the
structure of the formulas. The cases of atomic propositions, of state and of
path variables are covered by the properties of morphisms; the case of Boolean
connectives are obvious. Structured formulas are dealt with by Lemmas 6.63 -
6.65.

6.5.4 Congruences

We will define two equivalence relations on states respectively on paths.
These relations will be studied carefully, since they will be fundamental for
discussing bisimilarity and behavioral as well as logical equivalence later on.

Fix the model M = (S,M, I, V ) and define

s ζM s′ ⇔ ThM(s) = ThM(s′),
σ ωM σ′ ⇔ ThM(σ) = ThM(σ′).

Then both ζM and ωM are smooth equivalence relations on S resp. (S×R+)∞.
This is so since there are only countably many formulas, and because we have

s ζM s′ ⇔ [M, s |= ϕ⇔M, s′ |= ϕ] for all state formulas ϕ,
⇔ [s ∈ [[ϕ]]M ⇔ s′ ∈ [[ϕ]]M] for all state formulas ϕ.

From this it is clear that the countable set {[[ϕ]]M | ϕ is a state formula}
determines the relation ζM, and that

INV (B(S), ζM) = σ({[[ϕ]]M | ϕ is a state formula}).

In a similar way we see that ωM is smooth, and that

INV (B((S × R+)∞), ωM) = σ({[[ψ]]M | ψ is a path formula})

holds as well. These two relations will be studied now in some detail. It will
turn out that the relationship of ζM and ωM is closer than meets the eye.

First we show that they form essentially a congruence for M∞.

PROPOSITION 6.66
The pair (ζM,ΔR+ × ωM) of smooth equivalence relations is a congruence

for M∞ : S � R+ × (S × R+)∞.

PROOF 0. We show first that

M∞(s1)(I × [[ψ]]M) = M∞(s2)(I × [[ψ]]M)

for rational intervals I, and for path formulas ψ, whenever s1 ζM s2. Based
on this, we show that the equality in question holds for all invariant sets.
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1. Fix a rational interval I and a path formula ψ, and assume s1 ζM s2.Thus
we have for each rational number p: s1 ∈ [[P≤p(ψ)]]M ⇔ s2 ∈ [[P≤p(ψ)]]M,
equivalently, M∞(s1)(I × [[ψ]]M) ≤ p⇔M∞(s2)(I × [[ψ]]M) ≤ p. This means
that these probabilities are equal.

2. Now consider as in the proof of Proposition 6.52 the set

D := {D ∈ B(R+)⊗INV (B((S × R+)∞), ωM) |M∞(s1)(D) = M∞(s2)(D)}.

Here still s1 ζM s2 is assumed. The first part of this proof shows that D
contains the set

{I × [[ψ]]M | I is a rational interval , ψ is a path formula},

which is a generator for B(R+) ⊗ INV (B((S × R+)∞), ωM) . By the π-λ-
Theorem 1.1, D equals the latter σ-algebra. This implies the assertion, since
we see from Lemma 5.14 that

INV
(
B(R+ × (S × R+)∞),ΔR+ × ωM

)
=

INV
(
B(R+),ΔR+

)
⊗ INV (B((S × R+)∞), ωM) =

B(R+)⊗ INV (B((S × R+)∞), ωM) .

6.5.4.1 Relating the relations

We will show that two infinite paths are ωM-equivalent iff their state com-
ponents are ζM-equivalent (and the timing information is identical). This
will support the investigation of logical equivalence later on, mainly since the
information available for states is easier to handle than the one for infinite
paths. It turns out, however, that this equality is not easily obtained and
requires a careful look at the invariant Borel sets.

One inclusion is rather immediate.

LEMMA 6.67
ωM ⊆ (ζM ×ΔR+)∞.

PROOF 0. Fix infinite paths σ and σ′ with σ ωM σ′, then we have to
establish that both δ(σ, i) = δ(σ′, i) and σ[i] ζM σ′[i] hold for each i ≥ 0. It
is obvious that the timing information for σ and σ′ coincides, so we have to
take care of the state components. Define inductively for rational intervals
I1, I2, . . . , and for the path formula ψ the path formula

XI1
1 ψ := X I1 ψ,

X
I1,...In+1
n+1 ψ := X In+1

(
XI1,...,In
n ψ

)
.
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1. Since σ ωM σ′ we know that for an arbitrary state formula ϕ and for an
arbitrary rational time t

M, σ |= ϕ U [0,t] � ⇔M, σ′ |= ϕ U [0,t] �

thus σ[0] ∈ [[ϕ]]M iff σ′[0] ∈ [[ϕ]]M, hence σ[0] ζM σ′[0].
2. Now let i > 0, then we have for arbitrary rational times t > 0 and for

an arbitrary state formula ϕ the following equivalences

M, σ[i] |= ϕ⇔M, σ |= X
R

i
+

i (ϕ U [0,t] �)

⇔M, σ′ |= X
R

i
+

i (ϕ U [0,t] �)
⇔M, σ′[i] |= ϕ.

Consequently, σ[i] ζM σ′[i]. This establishes the claim.

This has two interesting consequences:

COROLLARY 6.68
We have

INV
(
B((S × R+)∞), (ζM ×ΔR+)∞

)
⊆ INV (B((S × R+)∞), ωM)

and

M∞ : (S, INV (B(S), ζM)) �
(R+ × (S × R+)∞, INV

(
B(R+ × (S × R+)∞), (ΔR+ × ζM)∞

)
)

is a stochastic relation.

PROOF The first assertion follows from the observation that

ρ 
→ INV (B((S × R+)∞), ρ)

is antitone. The second one follows from the first: since (ζM,ΔR+ ×ωM) is a
congruence for M∞ by Proposition 6.66, we know from Lemma 5.30 that

M∞ : (S, INV (B(S), ζM)) �
(R+ × (S × R+)∞, INV

(
B(R+ × (S × R+)∞),ΔR+ × ωM

)
)

is a stochastic relation. Consequently it is also a stochastic relation when we
choose a smaller σ-algebra on the target space.

PROPOSITION 6.69
ωM = (ζM ×ΔR+)∞.
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The proof of this statement is again preceded by a series of lemmata.

DEFINITION 6.70 A model M[P1\R1, . . . , Pn\Rn] is called M-invari-
ant iff

a. P1, . . . , Pn are mutually distinct path variables,

b. Ri ∈ INV
(
B((S × R+)∞), (ζM ×ΔR+)∞

)
for 1 ≤ i ≤ n.

Fix for the auxiliary statements to come K as an M-invariant model.

LEMMA 6.71

[[P�p(ψ)]]K ∈ INV (B(S), ζM) provided [[ψ]]K ∈ INV (B((S × R+)∞), ωM)
holds for the path formula ψ.

PROOF By Corollary 2.10, the map s 
→ M∞(s)({τ | 〈s, τ〉 ∈ [[ψ]]K}) is
INV (B(S), ζM)-measurable, because

M∞ : (S, INV (B(S)), ζM) �
(R+ × (S × R+)∞, INV

(
B(R+ × (S × R+)∞),ΔR+ × ωM

)

is a stochastic relation by Lemma 5.30. This implies the assertion, since

[[P�p(ψ)]]K = {s |M∞(s)({τ | 〈s, τ〉 ∈ [[ψ]]K}) � p}.

LEMMA 6.72

[[S�p(ϕ)]]K ∈ INV (B(S), ζM), provided [[ϕ]]K ∈ INV (B(S), ζM) holds for
the state formula ϕ.

PROOF 0. We show first that

BA := {τ | 〈s′, τ〉@t ∈ A}

defines a member of INV
(
B(R+ × (S × R+)∞), (ΔR+ × ζM)∞

)
for any ζM-

invariant Borel set A ∈ INV (B(S), ζM) , for every time t, and for any s′ ∈ S.
In fact, let 〈s′, τ〉@t = τ [k] ∈ A, and assume that τ (ΔR+ × ζM)∞ τ ′, then
〈s′, τ ′〉@t = τ ′[k]. Consequently, BA is (ΔR+ × ζM)∞-invariant; it is a Borel
set by Lemma 6.21.
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1. We infer from Corollary 6.68 that for every A ∈ INV (B(S), ζM) and
for every time t the set {s | M∞(s)({τ | 〈s, τ〉@t ∈ A}) � p} is a member of
INV (B(S), ζM) . Consequently, the maps

fA : s 
→ lim inf
t→∞ M∞(s)({τ | 〈s, τ〉@t ∈ A})

gA : s 
→ lim sup
t→∞

M∞(s)({τ | 〈s, τ〉@t ∈ A})

both define INV (B(S), ζM)-measurable maps (see Proposition 6.23). This
implies the assertion upon setting A = [[ϕ]]K, since

[[S�p(ϕ)]]K = {s | f[[ϕ]]K(s) = g[[ϕ]]K(s)} ∩ {s | f[[ϕ]]K(s) � p}

is the intersection of ζM-invariant Borel sets.

LEMMA 6.73
If [[ϕ1]]K, [[ϕ2]]K ∈ INV (B(S), ζM) for the state variables ϕ1, ϕ2, then

[[ϕ1 UI ϕ2]]K ∈ INV
(
B((S × R+)∞), (ζM ×ΔR+)∞

)
.

PROOF 0. We show exactly as in the proof of Lemma 6.72 that

{σ | σ@t ∈ A} ∈ INV
(
B((S × R+)∞), (ζ×ΔR+)∞

)
,

provided A ∈ INV (B(S), ζM) .
1. Because

[[ϕ1 UI ϕ2]]K =
⋃

t∈Q∩I

⎛

⎝{σ | σ@t ∈ [[ϕ2]]K} ∩
⋂

t′∈Q∩[0,t]

{σ | σ@t′ ∈ [[ϕ1]]K}

⎞

⎠ ,

we infer from Lemma 6.25 the assertion.

LEMMA 6.74
Assume that [[ψ]]L ∈ INV

(
B((S × R+)∞), (ζM ×ΔR+)∞

)
for the path for-

mula ψ and for every M-invariant model L. Then

[[μP.ψ]]K ∈ INV
(
B((S × R+)∞), (ζM ×ΔR+)∞

)
.

PROOF Define inductively

K0 := K[P\∅], R0 := [[ψ]]K0 ,Ki+1 := K[P\Ri], Ri+1 := [[ψ]]Ki+1 .

Then an easy inductive argument shows that

1. Ki is an M-invariant model,



Interpreting Modal and Temporal Logics 315

2. Ri ∈ INV
(
B((S × R+)∞), (ζM ×ΔR+)∞

)
.

Since [[μP.ψ]]K =
⋃
i≥0 Ri, the assertion is established.

We have now enough details for establishing that the equivalence relation
ωM coincides with

(
ζM ×ΔR+

)∞.

PROOF (of Proposition 6.69) By Corollary 5.6 it is enough to show that

INV (B((S × R+)∞), ωM) = INV
(
B((S × R+)∞), (ζM ×ΔR+)∞

)

are identical; in view of Corollary 6.68 it is enough to show that

INV (B((S × R+)∞), ωM) ⊆ INV
(
B((S × R+)∞), (ζM ×ΔR+)∞

)

holds. Since the σ-algebra INV (B((S × R+)∞), ωM) is generated by the sets
[[ψ]]M for path variables ψ, it is enough to show that these sets are (ζM ×
ΔR+)∞-invariant. But this is now immediate from Lemma 6.71–Lemma 6.74.

The consequence of this equality is that we may check the equivalence
of paths locally, i.e., through the equivalence of states. This represents a
considerable reduction in complexity, because the equivalence relation ωM
that operates on infinite paths is uniquely determined through the relation ζM
which in turn operates on states. This will be reflected in the representation
of the equivalence classes, as we will see in Corollary 6.75. The reduction
makes checking some properties of course much easier. It has also technical
advantages when it comes to check the semi-pullback of two models, as we
will in the next section.

We give a first consequence of this equality in terms of a representation of
the equivalence classes.

COROLLARY 6.75

Given σ ∈ (S × R+)∞, the ωM-class of σ = s0
t0−→ s1

t1−→ . . . can be
represented as

[σ]ωM =
∏

j≥0

(
[sj ]ζM × {tj}

)
.

Moreover, we have Borel isomorphisms between these analytic spaces

(S × R+)∞/ωM ∼=
(
(S × R+)/(ζM ×ΔR+)

)∞ ∼= ((S/ζM)× R+)∞ .

We are now in a position to define the logical equivalence of models, and
to relate it to spans of morphisms.
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6.5.5 Logical Equivalence and Bisimilarity

Logical equivalence between two models says roughly that, given a state
in one model, there exists a state in the other model so that in both exactly
the same formulas are valid, similarly for paths. This equivalence is modeled
after the corresponding equivalence that has been investigated in modal logics;
see Definition 6.14. We have seen that it is closely tied to the notion of
bisimulation through the Hennessy-Milner Theorem, both for the classical case
of nondeterministic Kripke models (see the discussion in (Blackburn et al.,
2001, Chapter 2.2), in particular Theorem 2.24), and for stochastic Kripke
models in Theorem 6.19. The relationship of this equivalence to bisimulations
will be discussed now.

Let M = (S,M, I, V ) and N = (S′, N,J ,W ) be models for μCSL. We
assume that M is nondegenerate, i.e., that there exists a state formula ϕ with
∅ �= [[ϕ]]M �= S. Being nondegenerate implies that the factor space S/ζM is
not trivial. Corollary 6.75 entails that there exists also a path formula ψ such
that ∅ �= [[ψ]]M �= (S × R+)∞.

6.5.5.1 Basic definitions

Define the modelsM and N as logical equivalent iff they accept exactly the
same formulas. This is similar to logical equivalence for Kripke models; see
the discussion in Section 6.2.3. In addition and contrast, however, it has to
take two levels into account, since we are dealing here with state formulas and
with path formulas, so that formulas may hold in states or on paths — this
situation is familiar from model checking where one has this dichotomy as
well.

DEFINITION 6.76 The models M and N are called logical equivalent
(M≈ N ) iff both

{ThM(s) | s ∈ S} = {ThN (s′) | s′ ∈ S′}

and

{ThM(σ) | σ ∈ (S × R+)∞} = {ThN (σ′) | σ′ ∈ (S′ × R+)∞}

hold.

Thus the models are logical equivalent iff these conditions are satisfied:

1. Given a state s ∈ S, there exists a state s′ ∈ S′ such that [M, s |= ϕ⇔
N , s′ |= ϕ] holds for all state formulas ϕ, and vice versa,

2. Given a path σ ∈ (S ×R+)∞, there exists a path σ′ ∈ (S′×R+)∞ such
that [M, σ |= ψ ⇔ N , σ′ |= ψ] holds for all path formulas ψ, and vice
versa.
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If we can find a morphism betweenM and N , then these models are equiv-
alent (see Lemma 6.17, Lemma 5.23).

PROPOSITION 6.77
Let Φ :M→N be a morphism. Then M and N are logical equivalent.

PROOF Proposition 6.61 implies that M, s |= ϕ iff N ,Φ(s) |= ϕ for each
state formula ϕ and each state s ∈ S, and that M, σ |= ψ iff N ,Φ∞(σ) |= ψ
for each path formula ψ and each path σ ∈ (S × R+)∞. Since both Φ and
Φ∞ are onto, the assertion follows.

We will show that logical equivalent models are bisimilar. Bisimilarity is
again introduced as a span of morphisms.

DEFINITION 6.78 Let M and N be nondegenerate models for μCSL.

a. M and N are said to be bisimilar iff there exists a model Q for μCSL and
morphisms

M � Φ Q Ψ � N .

b. M and N are said to be behavioral equivalent iff there exists a model Q
for μCSL and morphisms

M Γ � R � Λ N .

It is clear that bisimilar models are logical equivalent, because this notion
of equivalence is transitive; see Proposition 6.61. Now suppose model M =
(S,M, I, V ) is bisimilar to model N = (S′, N,J ,W ) with mediating model
Q over the state space S′′ and the morphisms according to Definition 6.78.
Then the condition on bisimilarity implies

1. M(Φ(s′′))(I × B) = N(Ψ(s′′))(I × B′) for every state s′′ ∈ S′′, every
rational interval I and all common events B ∈ B(S), B′ ∈ B(S′) (thus
every pair of events B,B′ such that Φ−1 [B] = Ψ−1 [B′], as the discus-
sion following Definition 5.37 indicates). Consequently, the probability
for M changing the state during interval I and entering a state in B
from state Φ(s′′) equals the probability for N to change the state dur-
ing time interval I and entering a state in B′ from state Ψ(s′′). This
illustrates again the mediating work done through model Q.

2. for a state s′′ ∈ S′′, Φ(s′′) is a member of the valuation for a state
variable Z in model M iff Ψ(s′′) is a member for this variable in model
N , and similar for path variables, and for atomic propositions.
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The situation is a bit different with behavioral equivalence. By implication,
the model in range of the cospan is based on a Polish space. Otherwise
we could not always conclude that behavioral equivalent models are logical
equivalent as well. This is so since computing the set of all states in which a
given formula is valid requires the knowledge of a projective limit, and we did
establish the existence of such a limit only for the case of Polish spaces, not
for analytic ones. On the other hand, these cospans are constructed usually
through factoring (see, e.g., Proposition 5.39 and Proposition 6.86 below),
and the factor space of a Polish space is not always a Polish one. So we need
to exercise some care. Specifically, the behavioral equivalence of the models
means that, if Γ(s) = Λ(s′) for states s ∈ S, s′ ∈ S′

1. then M(s)(I × Γ−1 [B′′]) = N(s′)(I × Λ−1 [B′′]), whenever B′′ ∈ B(S′′)
is a Borel set in S′′, and I is a rational interval. Consequently, the
probability for M changing the state during interval I and entering a
state s• ∈ S with Γ(s•) ∈ B′′ from state s equals the probability for N
to change the state during time interval I and entering a state s� ∈ S′

with Λ(s�) ∈ B′′ from state s′.

2. s is a member for the valuation of a state variable Z in model M iff s′

is a member for the valuation of a state variable Z in model N , similar
for path variables, and for atomic propositions.

Returning to the general discussion, fix the models M = (S,M, I, V ) and
N = (S′, N,J ,W ) such that M≈ N , hence both models are logical equiva-
lent. Each model has the equivalence relations ζM and ωM resp. ζN and ωN
associated with it, as defined in Section 6.5.4.

The stochastic relations M∞ and N∞ will be investigated with respect to
bisimilarity first, and it will be shown first that they are bisimilar as stochastic
relations on Polish spaces.

LEMMA 6.79
ζM and ζN spawn each other, so do ωM and ωN .

PROOF 0. We will show only that ζM spawns ζN ; interchanging the rôles
of M and N will show that ζN spawns ζM. The argumentation for ωM and
ωN is nearly verbatim the same, so the reader is invited to fill in the details.

1. Define for the state s ∈ S the map Υ([s]ζM) := [s′]ζN , whenever
ThM(s) = ThN (s′). Because s1 ζM s2 iff ThM(s1) = ThM(s2), and simi-
lar for N , the map is well defined. For the state formula ϕ its class [[ϕ]]M can
be represented as ⋃

{[s]ζM | M, s |= ϕ},

thus it is readily verified that Υ[[ϕ]]M = [[ϕ]]N . Consequently,

{Υ[[ϕ]]M | ϕ is a state formula}
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is a generator of INV (B(S′), ζN ) . This generator is closed under intersec-
tions, since the conjunction of two state formulas is again one.

We know that both (ζM,ΔR+ ×ωM) and (ζN ,ΔR+ ×ωN ) are congruences
for the stochastic relations M∞ resp. N∞. We will show in Proposition 6.80
that they are simulation equivalent, so that the situation is here very similar
to that prevailing for logical equivalent modal logics in Section 6.2.3.

PROPOSITION 6.80
Let M and N be logical equivalent models. Then the congruences cM :=

(ζM,ΔR+ × ωM) and cN := (ζN ,ΔR+ × ωN ) are simulation equivalent.

PROOF 1. We know that ζM and ζN are in a mutually spawning rela-
tionship, so are ωM and ωN . Consequently, ΔR+ × ωM and ΔR+ × ωN are
related through spawning as well, where

{I × [[ψ]]M | I is a rational interval, ψ is a path formula}

and
{I × [[ψ]]N | I is a rational interval, ψ is a path formula}

are the generators that relate to each other.
2. Using the map Υ : S/ζM → S′/ζN defined in the proof of Lemma 6.79,

we show that
M∞(s)(I × [[ψ]]M) = N∞(s′)(I × [[ψ]]N )

for each s ∈ S, s′ ∈ Υ([s]ζM), and for each rational interval I and each path
formula ψ. Because s′ ∈ Υ([s]ζM) means ThM(s) = ThN (s′), we obtain for
an arbitrary rational number p:

M∞(s)(I × [[ψ]]M) ≤ p⇔M, s |= P≤p(X I ψ)
⇔ N , s′ |= P≤p(X I ψ)
⇔ N∞(s′)(I × [[ψ]]M) ≤ p,

consequently, both probabilities are identical. This implies that (ζM,ΔR+ ×
ωM) simulates (ζN ,ΔR+ × ωN ). Interchanging the rôles of M and N gives
the result now.

This yields the properties we are interested in for the associated stochastic
relations.

PROPOSITION 6.81
Let M and N be logical equivalent models. Then the associated stochastic

relations M∞ : S � (R+×S)∞ and N∞ : S′ � (R+×S′)∞ are bisimilar and
behavioral equivalent.
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PROOF Since we have identified simulation equivalent congruences on the
stochastic relations in question, the assertion follows from Proposition 5.39 for
bisimilarity and from Proposition 5.49 for behavioral equivalence.

6.5.5.2 Tuning the mediator

This result is quite gratifying when being looked at from the point of view of
stochastic relations: Given two models for μCSL that are logical equivalent,
we can show that the associated stochastic relations are bisimilar. It does
not help us, however, in this present and preliminary form in finding a model
that mediates between M and N (a similar situation has been encountered
already with stochastic Kripke models in Section 6.2.3). An analysis of the
construction leading to the mediating relation will again provide information
for the construction of a model L and the desired morphisms L → M and
L → N . The construction leading to Proposition 6.81 is again based on a
semi-pullback construction. This together with the proof of Lemma 4.9 yields
a finer description of the mediating stochastic relation.

LEMMA 6.82

Let M and N be models for μCSL with M≈ N . Define

A := {〈s, s′〉 ∈ S × S′ | ThM(s) = ThN (s′)},
B := {〈〈t, σ〉, 〈t, σ′〉〉 ∈ (R+ × (S × R+)∞)× (R+ × (S′ × R+)∞) |

ThM(σ) = ThN (σ′)}.

Then A and B are Polish spaces, and there exists a stochastic relation L0 :
A � B that mediates between M∞ and N∞. The morphisms are composed
from the corresponding projections.

We know from Proposition 6.69 that ωM = (ζM × ΔR+)∞ similar for ζN
and ωN . Thus B is essentially the set of all paths over A.

COROLLARY 6.83

Define A and B according to Lemma 6.82. There exists a bijection Λ : B →
(A× R+)∞ that is also a Borel isomorphism.

Define L′ := P (Λ) ◦ L0; then this is a stochastic relation L′ : A �
R+ × (A × R+)∞ that mediates between M∞ and N∞. But, still, this is
not enough, because we cannot ascertain that L′ is actually generated from
a model, because we do not know whether or not L′ is actually a projective
limit of some sorts. Alas, the semi-pullback is a rather flexible construction,
and we will show now that we may construct from L′ a mediator L0 with the
desired shape, viz., L0 = L∞ for some stochastic relation L : A � R+ ×A.
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In fact, put for 〈s, s′〉 ∈ A and for E ∈ B(R+ ×A)

L(s, s′)(E) := L′(s, s′)

⎛

⎝E ×
∏

j>1

(R+ ×A)

⎞

⎠ .

Thus the semi-pullback is restricted to its first component, yielding a stochas-
tic relation L : A � R+×A, for which the projective limit can be constructed.
This is what we will have a closer look at now.

Define for n ∈ N the map �n : (R+ ×A)n → (R+ × S)n through

�n(t1, s1, s′1, . . . , tn, sn, s
′
n) := 〈t1, s1, . . . , tn, sn〉,

the map rn : (R+ ×A)n → (R+ × S′)n is defined analogously.

LEMMA 6.84
Define Ln : A � (R+ × A)n inductively from L in the same way as Mn is

defined from M in Proposition 6.26, and let πi be the ith projection. Then the
diagram

S � π1
A

π2 � S′

P ((R+ × S)n)

Mn

�
�
P (�n)

P ((R+ ×A)n)

Ln

�

P (rn)
� P ((R+ × S′)n)

Nn

�

commutes for every n ∈ N.

PROOF 1. The proof proceeds by induction on n. For n = 1 there is not
much to show: By construction, L′ mediates between M∞ and N∞, and the
latter relations are projective limits, so that for 〈s, s′〉 ∈ A and E ∈ B(R+×S)

M1(s)(E) = M∞(s)

⎛

⎝E ×
∏

j>1

(R+ × S)

⎞

⎠

= L′(s, s′)

⎛

⎝�−1
1 [E]×

∏

j>1

(R+ ×A)

⎞

⎠

= L1(s, s′)(�−1
1 [E]).

Similarly, the right hand side of the diagram above is shown to commute for
n = 1.
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2. Now assume the assertion is established for n, then we get from the
induction hypothesis together with the Change of Variables Formula (Propo-
sition 1.95) for g : (R+×S)n → R measurable and bounded, and for 〈s, s′〉 ∈ A
the equality

∫

(R+×S)n

g(v) Mn(s)(dv) =
∫

(R+×A)n

(g ◦ �n)(w) Ln(s, s′)(dw).

This is shown first for g = χA for A ∈ B((R+×S)n), whence it is equivalent to
the induction hypothesis, then it is shown for step functions by the linearity of
the integral, subsequently for nonnegative measurable and bounded g by the
Monotone Convergence Theorem, and finally for general g by decomposing
the map into a positive and a negative part.

3. But now we can perform the induction step: Let 〈s0, s′0〉 ∈ A and
F ∈ B((R+ × S)n+1) be a Borel set, then

Mn+1(s0)(F )

=
∫

(R+×S)n

M(�S(v))({〈t, s〉 | 〈v, t, s〉 ∈ F}) Mn(s0)(dv)

=
∫

(R+×A)n

M(π1(�A(w)))({〈t, s〉 | 〈w, t, s, s′〉 ∈ �−1
n+1 [F ]})Ln(s0, s′0)(dw)

=
∫

(R+×A)n

L(�A(w))({〈t, s, s′〉 | 〈w, t, s, s′〉 ∈ �−1
n+1 [F ]})Ln(s0, s′0)(dw)

= Ln+1(s0, s′0)(�
−1
n+1 [F ]).

Now extend �n and rn to the corresponding infinite products, yielding maps
�∞ resp. r∞.

PROPOSITION 6.85
Assume that M and N are Hennessy-Milner equivalent; construct the Polish

space A and stochastic relation L : A � R+ ×A as above. Then

i. (π1, �∞) : L∞ →M∞ and (π2, r∞) : L∞ → N∞ are morphisms.

ii. M∞ and N∞ are bisimilar with L∞ as a mediator.

PROOF 1. We establish first that both M∞ ◦ π1 = P (�∞) ◦ L∞ and
M∞ ◦ π2 = P (r∞) ◦ L∞ hold, and deal only with the first equality (the
second one is established in exactly the same way, mutatis mutandis). In
order to prove the first equality we have to show that

M∞(s)(F ) = L∞(s, s′)(�−1
∞ [F ])
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holds, whenever F ∈ B((S × R+)∞) and 〈s, s′〉 ∈ A. By an argument exactly
as in the proof of Proposition 6.66 we may capitalize on the fact that we are
dealing with projective limits, permitting us to put the focus on cylinder sets.
But by showing that the double diagram above is commutative for each n ∈ N

we have established the claim for these sets.
2. The σ-algebra of common events is nontrivial. This will be established

now. Because the models under consideration are nondegenerate, there exists
a state formula ψ with ∅ �= [[ψ]]M �= (S × R+)∞. We know that ΔR+ × ζM
spawns ΔR+ × ζN via (Υ, {I × [[ψ′]]M | I rational, ψ′ is a path formula}) for
some suitably chosen map Υ. Thus

�−1
∞ [I × [[ψ]]M] = r−1

∞ [I × [[ψ]]N ] ,

because [[ψ]]N = Υ[[ψ]]M; see the proof of Lemma 6.79. It is also immediate
that

∅ �= �−1
∞ [I × [[ϕ]]M] �= (A× R+)∞.

Consequently, the σ-algebra

�−1
∞ [B(R+ × (S × R+)∞)] ∩ r−1

∞ [B(R+ × (S′ × R+)∞)]

is nontrivial.

We are nearly ready for the main result, but we did not yet deal with
behavioral equivalence. This will happen now.

PROPOSITION 6.86
Let M and N be logical equivalent models for μCSL. If S/ζM is a Polish

space, then M and N are behavioral equivalent.

PROOF 0. Because cM and cN are simulation equivalent by Proposi-
tion 6.80, we know by Lemma 5.24 that S/ζM is Polish space iff S/ζM is
Polish space. Proposition 6.69 implies that (R+ × s)∞/(ΔR+ × ζM) is Borel
isomorphic to (R+ × S/ζM)∞ . We know from Theorem 5.46 that M∞/cM
and N∞/cN are isomorphic stochastic relations.

1. We deal first with model M. The stochastic relation

M∞/cM : S/ζM � (R+ × S/ζM)∞

yields a stochastic relation

M̃ : S/ζM � R+ × S/ζM

with M̃∞ = M∞/cM by the Markov property Lemma 6.27. Consequently,

ΦM := (ηζM ,ΔR+ × ηζM) : M → M̃
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is a morphism for the stochastic relations. From Lemma 5.7 it is inferred that
ηζM [Σ(S)] is a Borel set in S/ζM with

η−1
ζM [ηζM [Σ(S)]] = Σ(S)

for each state variable S. Define for S ∈ SV, P ∈ PV and for a ∈ AP

ΣM(S) := ηζM [Σ(S)] ,Π
M((P ) := ηωM [Σ(S)] , V M((a) := ηζM [V (a)] ,

then
ΦM :M→M/ζM := (S/ζM, M̃ , (ΣM,Π

M), V M)

yields a morphism between these models.
2. In a similar way we construct together with a model a morphism

ΦN : N → N/ζN .
Since M∞/cM and N∞/cN are isomorphic, so are M/ζM and N/ζN . This
establishes the claim.

This, now, is the main result:

THEOREM 6.87
Let M and N be nontrivial models for μCSL. Consider these statements:

a. M and N are behavioral equivalent.

b. M and N are logical equivalent.

c. M and N are bisimilar.

Then a⇒ b⇔ c, and if S/ζM is a Polish space, then all three statements are
equivalent.

PROOF 1. The implications c⇒ b and a⇒ b both follow from Proposi-
tion 6.77. If S/ζM is Polish, then b⇒a follows from Proposition 6.86, so that
we have to take care of b⇒c.

2. Construct the Polish space A and the stochastic relation L : A �
R+ × (A× R+)∞ together with the maps �∞ and r∞ as in Proposition 6.85.
Assume that the interpretation J for model N is J = (Σ′,Π′), and define

L := (L,A, (Σ∗,Π∗), V ∗)

with

1. V ∗ := (V (a)×W (a)) ∩A for the atomic propositions a ∈ AP,

2. Σ∗(Z) := (Σ(Z)× Σ′(Z)) ∩A for the state variable Z ∈ SV,

3. Π∗(P ) := {ρ ∈ (A×R+)∞ | �∞(ρ) ∈ Π(P ), r∞(ρ) ∈ Π′(P )} for the path
variable P ∈ PV.

Then both �∞ : L →M and r∞ : L → N are morphisms.



Interpreting Modal and Temporal Logics 325

Remark. Investigating probabilistic interpretations of the logics CSL and
μCSL with tools coming from stochastic relations displays this pattern: a
congruence relation is defined through the satisfaction relation. In the case
of logical equivalence this yields a pair of congruences that are bisimulation
equivalent. From this both a span and a cospan of morphisms for the under-
lying stochastic relations are constructed, which are then manipulated into
models for the corresponding logics. This proposes a more general treatment.

The context provided by coalgebraic logic may be of interest as well. Coalge-
braic logic (Moss, 1999; Cı̂rstea and Pattinson, 2004) investigates behavioral
properties of models in terms of coalgebras and predicate liftings. Assume
that (S, γ) is a coalgebra for a functor in the category of sets with maps as
morphisms. The general idea is that a modal formula 〈λ〉φ is valid for a
state s ∈ S iff the set [[ϕ]] of states for which formula φ is valid is trans-
formed through predicate lifting λ into the set λS([[ϕ]]) which contains γ(s)
as a member, so that [[〈λ〉φ]] = {s ∈ s | γ(s) ∈ λS([[ϕ]])}, or, equivalently,
[[〈λ〉φ]] = γ−1 ◦ λS([[ϕ]]). Here predicate liftings play the rôle of modal opera-
tors, a predicate lifting being a natural transformation for the contravariant
power set functor and the functor governing the coalgebra. It can be shown
that the usual semantic operations can be formulated in terms of suitably cho-
sen predicate liftings. The coalgebraic approach permits a clearer view of the
semantic mechanisms underlying the logic: it becomes clear which properties
are attributed to the coalgebra, and which are due to the modal structure
which in turn is modeled through predicate liftings.

These ideas may be translated into the realm of stochastic coalgebras for
an investigation of bisimilarity and behavioral equivalence of stochastic coal-
gebras, using a logics for this that is based essentially on predicate liftings.
The collection of predicate liftings requires then a certain selectivity simi-
lar to the separation properties proposed by Pattinson (Pattinson, 2004). It
can be shown under that bisimilarity, behavioral and logical equivalence are
equivalent under separation conditions, provided the underlying functor is
compatible with the congruences involved; see (Doberkat, 2006b). It might
be observed that in set based coalgebras the functor on is assumed to preserve
at least weak pullbacks, and it is known that the probability functor proper
does not have this property by Corollary 4.15.

6.6 Bibliographic Notes

Hennessy and Milner introduced in their 1980 paper (Hennessy and Mil-
ner, 1980) a very simple and negation free modal logic and related bisimilar-
ity of image-finite Kripke models to the equivalence relation “accepting the
same formulas” on states. Subsequently, the seminal paper by Larsen and
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Skou (Larsen and Skou, 1991) introduced stochastic Kripke models, albeit
over discrete state spaces, and established a Hennessy-Milner like Theorem
for simple modal logics, among others a variant of the Hennessy-Milner logic
(in which the diamond operator �ϕ is replaced by a family of diamond op-
erators �qϕ with 0 ≤ q ≤ 1). Changing the stage from discrete to analytic
state spaces, Desharnais, Edalat and Panangaden investigated the problem of
bisimilarity again. The research reported in (Desharnais et al., 2002) takes
an analytic state space with universally measurable transition functions as a
basic scenario. A Hennessy-Milner theorem is proved; the proof’s idea is to
produce a co-span of morphisms through injections into a suitably factored
sum. This idea has left its traces in various parts of the present exposition.
But the situation considered here is structurally subtly different: universal
measurability, as assumed in (Desharnais et al., 2002), requires a somewhat
elaborate completion process using all finite measures on that space. This
is mainly due to the fact that the existence of semi-pullbacks could only be
established under these circumstances. After the existence of semi-pullbacks
could be established also for relations on the Borel sets of an analytic space
(see Chapter 4 and (Doberkat, 2003)), the question of bisimulations became
tractable also for the more general and natural case of analytic spaces with
their Borel structure. These spaces are structurally much simpler and do not
need additional considerations, since they are given through the morphisms
of measurable spaces and nothing else (so one could work with them even if
one would want to do without the real numbers).

In (Doberkat, 2003) a generalization of (Desharnais et al., 2002) is estab-
lished for those labeled Markov transition systems which work over a Polish
(rather than an analytic) state space and which have a certain smallness prop-
erty. This technical condition is lifted in the present exposition. This is so
since the technique of factoring stochastic relations is better understood now.
Apart from a much wider class of modal logics which can be dealt with now
(as witnessed in Section 3.5), the present discussion proposes a more general
technical approach.

The logic CSL (Baier et al., 2003) is a stochastic version and variant of the
popular logic CTL for model checking (Clarke et al., 1999). The logic has
considerable expressive power, as is demonstrated convincingly in (Baier et al.,
2003). Recently, Desharnais and Panangaden (Desharnais and Panangaden,
2003) have proposed an interpretation of a subset of CSL over a continuous
domain, hereby providing a general framework for the treatment of bisimula-
tions. The originally given interpretation in (Baier et al., 2003) is based on
a finite state space in order to investigate the computational side of model
checking using CSL. A comparison with (Desharnais and Panangaden, 2003)
suggests that the wide and well-assorted toolkit provided by probabilities over
analytic spaces is a welcome addition for investigating the properties of this
logic. This is particularly true when it comes to investigating bisimulations.
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A.1 Categories

1lC Identity functor on category C p. 63
C(a, b) Hom-set of a and b in category C p. 64
C(a,−),C(−, b) Co- and contravariant hom-set functors in cate-

gory C

p. 64

Cop Category dual (or opposite) to category C p. 63
Set All sets with maps p. 62
Meas Measurable spaces with measurable maps p. 63
cPol Polish spaces with continuous maps p. 66
BPol Polish spaces with Borel maps p. 66
Anl Analytic spaces with Borel maps p. 95
Stoch Stochastic relations over measurable spaces p. 95
PolStoch Stochastic relations over Polish spaces p. 95
anStoch Stochastic relations over analytic spaces p. 95
StrConv Positive convex structures with continuous affine

maps
p. 144

GPart G-partitions with partition respecting continu-
ous maps

p. 138

Alg Algebras for the Giry monad with algebra mor-
phisms

p. 138

pAlg Subcategory of Alg for probabilistic objects p. 147
GTrip G-triplets with G-triplet morphisms p. 141
Prob Measurable spaces with probability measures p. 162
PolProb Full subcategory of Prob based on Polish spaces p. 176
pKripke Stochastic Kripke models p. 265
•→ Natural transformation between functors p. 70
� Kleisli morphism p. 79
e,m Unit and multiplication of a monad p. 75
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A.2 Spaces

F (N,N ) N -B(R)-measurable and bounded functions
N → R

p. 6
⊗

i∈I(Xi,Ai) Product of the measurable spaces (Xi,Ai)i∈I p. 5⊕
i∈I(Xi,Ai) Coproduct of the measurable spaces (Xi,Ai)i∈I p. 6∏
i∈I(Xi, Ti) Product of the topological spaces (Xi, Ti)i∈I p. 8∐
i∈I(Xi, Ti) Coproduct of the topological spaces (Xi, Ti)i∈I p. 8

S (N,N ) Subprobability measures on the measurable
space (N,N )

p. 36

P (N,N ) Probability measures on the measurable space
(N,N )

p. 36

C(X) All bounded continuous functions X → R p. 41

A.3 Other

N Natural numbers 1, 2, 3, . . .
Q Rational numbers
R Real numbers
R+ Nonnegative real numbers
σ(M) Smallest σ-algebra containing M p. 2
χA Indicator function for set A p. 6
M∩A Trace of σ-algebra M on set A p. 4
[·]ρ Equivalence class for equivalence relation ρ p. 5
ηρ Factor map for equivalence relation ρ p. 5
X/ρ Factor space for equivalence relation ρ p. 5
Br(x), Br,d(x) Ball with center x and radius r for metric d p. 9
B(X) Borel sets of X , X is a topological or an analytic

space
p. 8

diam(A) Diameter of set A p. 14
d(x,A) Distance of point x to set A p. 10
X∞ All infinite sequences over set X p. 11
graph(f) Graph of map f p. 22
ker (f) Kernel of map f p. 28
cl (·) Topological closure p. 14
∃F (C), ∀F (C) Weak and strong inverse of set-valued map F p. 32
A• Weak-*-σ-algebra on S (X,A) p. 50
dP Prohorov metric on S (X) for the metric space

X
p. 44
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δa Dirac measure on the point a p. 43
⇀w Weak convergence for probability measures p. 41
Dx, D

y Horizontal and vertical cuts of D ⊆ X × Y p. 13⊗
n∈N

μn Product of the measures (μn)n∈N pp. 38, 58
δi,j Kronecker’s δ p. 144
Ω Set of positive convex coefficients p. 133
Ωc Set of convex coefficients p. 142
�(R) Equivalence relation generated from R p. 186
⊗ [X,α] Trace of the α-invariant Borel sets on α p. 187
×n∈N ρn Infinite product of equivalence relations p. 189
INV (B(X), ρ) ρ-invariant Borel sets of an analytic space X p. 190
ρ+ σ Sum of the equivalence relations ρ and σ p. 189
ρ & σ Spawning sum for equivalence relations ρ and σ p. 196
τ • ρ Collects smooth equivalence relations τ and ρ p. 150
ΔX , UX Identity relation resp. universal relation on X pp. 27, 182
ker (f) Kernel of morphism f p. 199
Kα,β,K/c Factor relation p. 200
c • d Collects congruences c and d p. 202
(α, β) � (α′, β′) Refinement of congruences p. 204
c ∝ c′ Simulation of congruences p. 208

K⊕ K′ Direct sum of stochastic relations K and K′ p. 208
K• Kleisli extension to K p. 231
μ⊗K Product of measure μ and relation K p. 231
K�
μ Converse of stochastic relation w.r.t. initial

probability μ
p. 234

Modb(τ, P ) Basic modal language p. 254
Mod1(τ, P ) Negation free basic modal language p. 254
Mods(τ, P ) Extended modal language p. 254
|= Satisfaction relation pp. 254, 255
ρ()) Arity of modal operator ) p. 254
ThR(s) Theory for state s with Kripke model R p. 254
K � R K refines R p. 259
supp(μ) Support of probability measure μ p. 260
K ∼ K′ Logical equivalence of Kripke models K and K′ p. 264
LP All state formulas in CSL p. 283
S�p(ϕ) Steady-state operator in CSL, μCSL pp. 283, 299
P Path quantifier in CSL, μCSL pp. 283, 299
X I ϕ Next operator in CSL, μCSL pp. 283, 299
ϕ1 UI ϕ2 Until operator in CSL, μCSL pp. 283, 299
σ@t State occupied by σ at time t p. 283
μP.ψ Fixed point of ψ in μCSL p. 299
ThM(σ) Theory for path σ in μCSL p. 304
M[Z\Q] Model with substitution p. 300
M≈M′ Logical equivalence of μCSL-modelsM andM′ p. 316
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