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Preface

It is known that in spite of its great success Boltzmann–Gibbs statistical mechan-
ics is actually not completely universal. A class of physical ensembles involving
long-range interactions, long-time memories, or (multi-)fractal structures can
hardly be treated within the traditional statistical-mechanical framework. A re-
cent nonextensive generalization of Boltzmann–Gibbs theory, which is referred
to as nonextensive statistical mechanics, enables one to analyze such systems.
This new stream in the foundation of statistical mechanics was initiated by
Tsallis’ proposal of a nonextensive entropy in 1988. Subsequently it turned out
that consistent generalized thermodynamics can be constructed on the basis of
the Tsallis entropy, and since then we have witnessed an explosion in research
works on this subject.

Nonextensive statistical mechanics is still a rapidly growing field, even at a
fundamental level. However, some remarkable structures and a variety of inter-
esting applications have already appeared. Therefore, it seems quite timely
now to summarize these developments.

This volume is primarily based on The IMS Winter School on Statistical Me-
chanics: Nonextensive Generalization of Boltzmann–Gibbs Statistical Mechan-
ics and Its Applications (February 15-18, 1999, Institute for Molecular Science,
Okazaki, Japan), which was supported, in part, by IMS and the Japanese Society
for the Promotion of Science. The volume consists of a set of four self-contained
lectures, together with additional short contributions. The topics covered are
quite broad, ranging from astrophysics to biophysics. Some of the latest devel-
opments since the School are also included herein.

We would like to thank Professors W. Beiglböck and H.A. Weidenmüller for
their advice and encouragement.

Funabashi, Sumiyoshi Abe
Okazaki, Yuko Okamoto
November 2000
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I. Nonextensive Statistical Mechanics
and Thermodynamics: Historical Background
and Present Status

C. Tsallis

Department of Physics, University of North Texas
P.O. Box 311427, Denton, Texas 76203-1427, USA
tsallis@unt.edu
and
Centro Brasileiro de Pesquisas Fı́sicas
Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro-RJ, Brazil
tsallis@cbpf.br

Abstract. The domain of validity of standard thermodynamics and Boltzmann-Gibbs
statistical mechanics is focused on along a historical perspective. It is then formally
enlarged in order to hopefully cover a variety of anomalous systems. The generalization
concerns nonextensive systems, where nonextensivity is understood in the thermody-
namical sense. This generalization was first proposed in 1988 inspired by the proba-
bilistic description of multifractal geometry, and has been intensively studied during
this decade. In the present effort, we describe the formalism, discuss the main ideas,
and then exhibit the present status in what concerns theoretical, experimental and
computational evidences and connections, as well as some perspectives for the future.
The whole review can be considered as an attempt to clarify our current understanding
of the foundations of statistical mechanics and its thermodynamical implications.

1 Introduction

The present effort is an attempt to review, in a self-contained manner, a one-
decade-old nonextensive generalization [1,2] of standard statistical mechanics
and thermodynamics, as well as to update and discuss the recent associated de-
velopments [3]. Concomitantly, we shall address, on physical grounds, the domain
of validity of the Boltzmann-Gibbs (BG) formalism, i.e., under what restrictions
it is expected to be valid. Although only the degree of universality of BG thermal
statistics will be focused on, let us first make some generic comments.

In some sense, every physical phenomenon occurs somewhere at some time
[4]. Consistently, the ultimate (most probably unattainable!) goal of physical
sciences is, in what theory concerns, to develop formalisms that approach as
much as possible universality (i.e., valid for all phenomena), ubiquity (i.e., valid
everywhere) and eternity (i.e., valid always). Since these words are very rich in
meanings, let us illustrate what we specifically refer to through the best known
physical formalism, namely Newtonian mechanics. After its plethoric verifica-
tions along the centuries, it seems fair to say that in some sense Newtonian
mechanics is ”eternal” and ”ubiquitous”. However, we do know that it is not

S. Abe and Y. Okamoto (Eds.): LNP 560, pp. 3–98, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



4 C. Tsallis

universal. Indeed, we all know that, when the involved velocities approach that
of light in the vacuum, Newtonian mechanics becomes only an approximation
(an increasingly bad one for velocities increasingly closer to that of light) and
reality appears to be better described by special relativity. Analogously, when
the involved masses are as small as say the electron mass, once again Newto-
nian mechanics becomes but a (bad) approximation, and quantum mechanics
becomes necessary to understand nature. Also, if the involved masses are very
large, Newtonian mechanics has to be extended into general relativity. To say
it in other words, we know nowadays that, whenever 1/c (inverse speed of light
in vacuum) and/or h (Planck constant) and/or G (gravitational constant) are
different from zero, Newtonian mechanics is, strictly speaking, false since it only
conserves an asymptotic validity.

Along these lines, what can we say about BG statistical mechanics and stan-
dard thermodynamics? A diffuse belief exists, among not few physicists as well
as other scientists, that these two interconnected formalisms are eternal, ubiqui-
tous and universal. It is clear that, after more than one century highly successful
applications of standard thermodynamics and the magnificent Boltzmann’s con-
nection of Clausius macroscopic entropy to the theory of probabilities applied to
the microscopic world , BG thermal statistics can (and should!) easily be con-
sidered as one of the pillars of modern science. Consistently, it is certainly fair
to say that BG thermostatistics and its associated thermodynamics are eternal
and ubiquitous, in precisely the same sense that we have used above for New-
tonian mechanics. But, again in complete analogy with Newtonian mechanics,
we can by no means consider them as universal. It is unavoidable to think that,
like all other constructs of human mind, these formalisms must have physical
restrictions, i.e., domains of applicability, out of which they can at best be but
approximations.

The precise mathematical definition of the domain of validity of the BG sta-
tistical mechanics is an extremely subtle and yet unsolved problem (for example,
the associated canonical equilibrium distribution is considered a dogma by Tak-
ens [5]); such a rigorous mathematical approach is out of the scope of the present
effort. Here we shall focus on this problem in three steps. The first one is deeply
related to Krylov’s pioneering insights [6] (see also [7–9]). Indeed, Krylov argued
(half a century ago!) that the property which stands as the hard foundation
of BG statistical mechanics, is not ergodicity but mixing, more precisely, quick
enough, exponential mixing, i.e., positive largest Liapunov exponent. We shall
refer to such situation as strong chaos. This condition would essentially guaran-
tee physically short relaxation times and, we believe, thermodynamic extensivity.
We argue here that whenever the largest Liapunov exponent vanishes, we can
have slow, typically power-law mixing (see also [8,9]). Such situations will be
referred as weak chaos. It is expected to be associated with algebraic, instead
of exponential, relaxations, and to thermodynamic nonextensivity, hopefully for
large classes of anomalous systems, of the type described in the present review.

The second step concerns the question of what geometrical structure can be
responsible for the mixing being of the exponential or of the algebraic type. The
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picture which emerges (details will be seen later on) is that when the physically
relevant phase space (or analogous quantum concept) is smooth, Euclidean-like
(in the sense that it is continuous, differentiable, etc.), the mixing is of the
exponential type. In contrast, if that space has a multifractal structure, then the
mixing becomes kind of uneasy, and tends to be of the algebraic (or even slower)
type.

The third and last step concerns the question of what kind of physical cir-
cumstances can produce a smooth (translationally invariant in some sense) or,
instead, a multifractal (scaling invariant in some sense) structure for the rele-
vant phase space. At first approximation the scenario seems to be as follows.
If the effective microscopic interactions are short-ranged (i.e., close spatial con-
nections) and the effective microscopic memory is short-ranged (i.e., close time
connections, for instance Markovian-like processes) and the boundary conditions
are smooth, non(multi)fractal and the initial conditions are standard ones and no
peculiar mesoscopic dissipation occurs (e.g., like that occurring in various types
of granular matter), etc, then the above mentioned space is smooth, and BG sta-
tistical mechanics appears to correctly describe nature. If one or more of these
restrictions is violated (long-range interactions and/or irreducibly nonmarko-
vian microscopic memory [10] and/or multifractal boundary conditions and/or
quite pathological initial conditions are imposed and/or some special types of
dissipation are acting, etc., then the above mentioned space can be multifrac-
tally structured, and anomalous, nonextensive statistical mechanics seem to be
necessary to describe nature (see also [11]).

To summarize the overall picture, we may say, roughly speaking, that a
smooth relevant phase space tends to correspond to BG statistical mechanics,
exponential mixing, energy-dependence of the canonical equilibrium distribution
(i.e., the celebrated Boltzmann factor) and time-dependence of typical relaxation
processes, and extensive thermodynamics (entropy, thermodynamic potentials
and similar quantities proportional to the number of microscopic elements of
the system). In contrast, a multifractally structured phase space tends to cor-
respond to anomalous statistical mechanics (hopefully, for at least some of the
typical situations herein described in some detail), power-law mixing, energy-
dependence of the canonical equilibrium distribution and time-dependence of
typical relaxation processes, and nonextensive thermodynamics (anomalous en-
tropy, thermodynamic potentials and similar quantities). The basic group of
symmetries would be continuous translations (or rotations) in the first case, and
dilatations in the second one. (This opens, of course, the door to even more
general scenarios, respectively associated to more complex groups of symmetries
[12], but again this is out of our present scope). The actual situation is naturally
expected to be more complex and cross-imbricated that the one just sketched
here, but these would nevertheless be the essential guiding lines.

Before entering into the nonextensive thermostatistical formalism herein ad-
dressed, let us mention at least some of the thermodynamical anomalies that
we have in mind as physical motivations. As argued above, it is nowadays quite
well known that a variety of physical systems exists for which the powerful (and
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beautiful!) BG statistical mechanics and standard thermodynamics present se-
rious difficulties, which can occasionally achieve the status of just plain failures.
The list of such anomalies increases every day. Indeed, here and there, features
are pointed out which defy (not to say, in some cases, that plainly violate!) the
standard BG prescriptions. The violation is, in some examples, clear; in others,
the situation is different. Either an explanation within the BG framework is,
perhaps, possible but it has not yet been exhibited convincingly. Or the prob-
lem indeed lies out of the realm of standard equilibrium and nonequilibrium BG
statistics. Our hope and belief is that the present nonextensive statistics might
correctly cover at least some of the known anomalies. Within a long list that
will be systematically focused on later on with more details, we may mention
at this point systems involving long-range interactions [13–17] (e.g., d = 3 grav-
itation [18,19], ferromagnetism [20], spin-glasses [21]), long-range microscopic
memory (e.g., nonmarkovian stochastic processes, on which much remains to be
known, in fact) [10,22,23], pure-electron plasma two-dimensional turbulence [24],
Lévy anomalous diffusion [25], granular systems [26], phonon-electron anomalous
thermalization in ion-bombarded solids [27,28], solar neutrinos [29], peculiar ve-
locities of galaxies [30], inverse bremsstrahlung in plasma [31], black holes [32],
cosmology [33], high energy collisions of elementary (or more complex) parti-
cles [34–39], quantum entanglement [40], among others. Some of these examples
clearly appear to be out of the domain of validity of the standard formalisms;
others might be considered as more controversial. In any case, the present status
of all of them, and even some others, will be discussed in Sections 3, 4 and 5.

2 Formalism

2.1 Entropy

As an attempt to overcome at least some of the difficulties mentioned in the
previous Section, a proposal has been advanced, one decade ago [1], (see also
[41,42]), which is based on a generalized entropic form, namely

Sq = k
1−∑W

i=1 p
q
i

q − 1

(
W∑
i=1

pi = 1; q ∈ R
)

, (1)

where k is a positive constant and W is the total number of microscopic pos-
sibilities of the system. For the q < 0 case, care must be taken to exclude
all those possibilities whose probability is not strictly positive, otherwise Sq

would diverge. Such care is not necessary for q > 0; due to this property,
the entropy is said to be expansible for q > 0; more explicitly, we can ver-
ify that Sq(p1, p2, ..., pW , 0) = Sq(p1, p2, ..., pW ) (∀{pi};∀q). Expression (1) re-
covers (using pq−1

i = e(q−1) ln pi ∼ 1 + (q − 1) ln pi) the usual BG entropy
(−kB

∑W
i=1 pi ln pi) in the limit q → 1, where kB is the Boltzmann constant.

The constant k presumably coincides with kB for all values of q; however, nothing
that we are presently aware of forbids it to be proportional to kB , the proportion-
ality factor being (for dimensional reasons) a pure number which might depend
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on q (clearly, this pure number must be unity for q = 1). In many of the ap-
plications along this text, we might without further notice (and without loss of
generality) consider units such that k = 1.

The quantum version of expression (1) is given [43] by

Sq = k
1− Tr ρq

q − 1
(Tr ρ = 1) , (2)

where ρ is the density operator. Of course, in the particular instance when ρ is
diagonal in a W -dimensional Hilbert space, we recover Eq. (1).

The classical version of expression (1) is given by

Sq = k
1− ∫ d(x/σ) [σ p(x)]q

q − 1
(
∫
dx p(x) = 1) , (3)

where x ≡ (x1, x2, ..., xd) and σ ≡ Πd
r=1σr, σr being, for all values of r, a

characteristic constant whose dimension equals that of xr, in such a way that
all {xr/σr} are pure numbers. If all {xr} are already pure numbers, then σr =
1 (∀r), hence σ = 1. Of course, if σp(x) =

∑W
i=1 δ(x − xi), δ(...) being the

d-dimensional Dirac delta, we recover Eq. (1).
It is important that we point out right away that the Boltzmann entropy can

be clearly differentiated (see for instance [44]) from the Gibbs entropy in what
concerns the variables to which they apply. Moreover, besides Boltzmann and
Gibbs, many other scientists, such as von Neumann, Ehrenfest, Szilard, Shannon,
Jaynes, Kolmogorov, Sinai, Prigogine, Lebowitz, Zurek, have given invaluable
contributions to the subject of the statistical entropies and their connections to
the Clausius entropy. However, for simplicity, and because we are focusing on
the functional form of the entropy, we shall here indistinctly refer to the q = 1
particular cases of Eqs. (1-3) as the Boltzmann-Gibbs entropy.

Another historical point which deserves to be mentioned at this stage is that,
as we discovered along the years after 1988, the form (1) (occasionally with some
different q-dependent factor) had already been introduced in the community of
cybernetics and information long ago. More precisely, by Harvda and Charvat
[45] in 1967, further discussed by Vajda [46] (who quotes [45]) in 1968, and again
re-discovered in the initial form by Daroczy [47] (who apparently was unaware
of his predecessors) in 1970. There are perhaps others, especially since in that
community close to 25 (!) different entropic forms [48] have been advanced for
a variety of specific purposes (e.g., image processing). Daroczy’ s work became
relatively known nowadays; ourselves, we mentioned it in 1991 [41], and some
historical review was done in 1995 [49]; however, we are not aware of any exhaus-
tive description of all these entropic forms and their interconnections. In fact,
this would be a quite heavy task! Indeed, to the 20-25 entropic forms introduced
in communities other than Physics, we must now add several more entropic forms
that appeared (see, for instance, references [42,50–60] as well as the end of the
present subsection 5.5) within the Physics community after paper [1]. In any
case, at least as far as we know, it is allowed to believe that no proposal before
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this 1988 paper was advanced for generalizing, along the present nonextensive
path, standard statistical mechanics and thermodynamics.

The entropic index q (intimately related to and determined by the micro-
scopic dynamics, as we shall argue later on) characterizes the degree of nonex-
tensivity reflected in the following pseudo-extensivity entropy rule

Sq(A+B)
k

=
Sq(A)
k

+
Sq(B)
k

+ (1− q)
Sq(A)
k

Sq(B)
k

, (4)

where A and B are two independent systems in the sense that the probabilities
of A + B factorize into those of A and of B (i.e., pij(A + B) = pi(A)pj(B)).
We immediately see that, since in all cases Sq ≥ 0 (nonnegativity property),
q < 1, q = 1 and q > 1 respectively correspond to superadditivity (superexten-
sivity), additivity (extensivity) and subadditivity (subextensivity). The pseudo-
extensivity property (4) can be equivalently written as follows:

ln[1 + (1− q)Sq(A+B)/k]
1− q

=
ln[1 + (1− q)Sq(A)/k]

1− q
+

ln[1 + (1− q)Sq(B)/k]
1− q

. (5)

We shall come back onto this form later on in connection with the widely
known Renyi’s entropy [61] (in fact first introduced, according to Csiszar [62],
by Schutzenberger [63]).

Let us mention at this point that expression (1) exhibits a property which
has apparently never been focused before, and which we shall from now on refer
to as the composability property. It concerns the nontrivial fact that the entropy
S(A + B) of a system composed of two independent subsystems A and B can
be calculated from the entropies S(A) and S(B) of the subsystems, without any
need of microscopic knowledge about A and B, other than the knowledge of some
generic universality class, herein the nonextensive universality class, represented
by the entropic index q, i.e., without any knowledge about the microscopic possi-
bilities of A and B nor their associated probabilities. This property is so obvious
for the BG entropic form that the (false!) idea that all entropic forms automat-
ically satisfy it could easily install itself in the mind of most physicists. To show
counterexamples, it is enough to check that the recently introduced Anteneodo-
Plastino’s [50] and Curado’s [55] entropic forms satisfy a variety of interesting
properties, and nevertheless are not composable. See [64] for more details.

Another important (since it eloquently exhibits the surprising effects of nonex-
tensivity) property is the following. Suppose that the set of W possibilities is
arbitrarily separated into two subsets having respectively WL and WM possibil-
ities (WL +WM = W ). We define pL ≡∑WL

i=1 pi and pM ≡∑W
i=WL+1 pi, hence

pL + pM = 1. It can then be straightforwardly established that

Sq({pi}) = Sq(pL, pM ) + pqL Sq({pi/pL}) + pqM Sq({pi/pM}) , (6)

where the sets {pi/pL} and {pi/pM} are the conditional probabilities. This would
precisely be the famous Shannon’s property were it not for the fact that, in front
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of the entropies associated with the conditional probabilities, appear pqL and pqM
instead of pL and pM . This fact will play, as we shall see later on, a central role in
the whole generalization of thermostatistics. Indeed, since the probabilities {pi}
are generically numbers between zero and unity, pqi > pi for q < 1 and pqi < pi for
q > 1, hence q < 1 and q > 1 will respectively privilege the rare and the frequent
events. This simple property lies at the heart of the whole proposal. Santos has
recently shown [65], strictly following along the lines of Shannon himself, that, if
we assume (i) continuity (in the {pi}) of the entropy, (ii) increasing monotonicity
of the entropy as a function of W in the case of equiprobability, (iii) property
(4), and (iv) property (6), then only one entropic form exists, namely that given
in definition (1).

The generalization of Eq. (6) to the case where, instead of two, we have R
nonintersecting subsets (W1 + W2 + ... + WR = W ) is straightforward [49]. To
be more specific, if we define

πj ≡
∑

Wj terms

pi (j = 1, 2, ..., R) , (7)

(hence
∑R

j=1 πj = 1), Eq. (4) is generalized into

Sq({pi}) = Sq({πj}) +
R∑

j=1

πqjSq({pi/πj}) , (8)

where we notice, in the last term, the emergence of what we shall soon introduce
generically as the unnormalized q-expectation value (of the conditional entropies
Sq({pi/πj}), in the present case).

Another interesting property is the following. The Boltzmann-Gibbs entropy
S1 satisfies the following relation [66]:

−k
[
d

dα

W∑
i=1

pαi

]
α=1

= −k
W∑
i=1

pi ln pi ≡ S1 . (9)

Moreover, Jackson introduced in 1909 [67] the following generalized differential
operator (applied to an arbitrary function f(x)):

Dq f(x) ≡ f(qx)− f(x)
qx− x

, (10)

which satisfies D1 ≡ limq→1Dq = d
dx . Abe [66] recently remarked that

−k
[
Dq

W∑
i=1

pαi

]
α=1

= k
1−∑W

i=1 p
q
i

q − 1
≡ Sq . (11)

This property provides an intuitive insight into the generalized entropic form
Sq. Indeed, the inspiration for its use in order to generalize the usual thermal
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statistics came [1] from multifractals, and its applications concern, in one way
or another, systems which exhibit scale invariance. Therefore, its connection
with Jackson’s differential operator appears to be rather natural. Indeed, this
operator “tests” the function f(x) under dilatation of x, in contrast to the usual
derivative, which “tests” it under translation of x [68].

Another property which no doubt must be mentioned in the present intro-
duction is that Sq is consistent with Laplace’s maximum ignorance principle,
i.e., it is extremum at equiprobability (pi = 1/W, ∀i). This extremum is given
by

Sq = k
W 1−q − 1

1− q
(W ≥ 1) , (12)

which, in the limit q → 1, reproduces Boltzmann’s celebrated formula S =
k ln W (carved on his marble grave in the Central Cemetery of Vienna). In the
limit W → ∞, Sq/k diverges if q ≤ 1, and saturates at 1/(q − 1) if q > 1. By
using the q-logarithm function [69,70] (see Appendix), Eq. (12) can be rewritten
in the following Boltzmann-like form:

Sq = k lnq W . (13)

Finally, let us close the present set of properties by reminding that Sq has,
with regard to {pi}, a definite concavity for all values of q (Sq is always con-
cave for q > 0 and always convex for q < 0). In this sense, it contrasts with
Renyi’s entropy (quite useful in the geometrical characterization of strange at-
tractors and similar multifractal structures; see [71] and references therein)
SR
q ≡ (ln

∑W
i=1 p

q
i )/(1 − q) = {ln [1 + (1 − q)Sq/k]}/(1 − q), which does not

have this property for all values of q, but only for q ≤ 1.
Let us now introduce, for an arbitrary physical quantity A, the following

unnormalized q-expectation value

〈A〉q ≡
W∑
i=1

pqi Ai , (14)

as well as the normalized q-expectation value

〈〈A〉〉q ≡
∑W

i=1 p
q
i Ai∑W

i=1 p
q
i

. (15)

We verify that both 〈A〉1 and 〈〈A〉〉1 coincide with the standard mean value 〈A〉
of a A. We also verify that

〈〈A〉〉q =
〈A〉q
〈1〉q , (16)

and notice that, whereas 〈〈1〉〉q = 1 (∀q), in general 〈1〉q �= 1.
Let us now go back to the nonextensive entropy. We can easily verify that

Sq = k〈− lnq pi〉q (17)



Nonextensive Statistical Mechanics and Thermodynamics 11

and that
Sq = k〈lnq(1/pi)〉1 . (18)

For the q = 1 case, the quantity − ln pi = ln(1/pi) has been eloquently called
surprise by Watanabe [72], and unexpectedness by Barlow [73]. The question
which now arises is which quantity should we call q-surprise (or q-unexpectedness),
− lnq pi or lnq(1/pi)? The question is more than semantics since it will point the
natural physical quantity whose appropriate average provides Sq. We can easily
check that (i) − ln0 pi = 1−pi plays the role of a separatrix, − lnq pi being convex
for all q > 0 and concave for all q < 0; (ii) ln2(1/pi) = 1−pi also plays the role of
a separatrix, lnq(1/pi) being convex for all q < 2 and concave for all q > 2. Since
concavity of Sq changes sign at q = 0, there is a compelling reason for having a
separatrix at that value, whereas no such reason exists for q = 2. Consistently it
is − lnq pi that we shall adopt as the q-quantity generalizing − ln pi. We notice
also that it is the q-expectation values, and not the standard mean values, which
naturally enter into the formalism. This is consistent with Eq. (8), for instance,
and will prove to be of extreme mathematical utility in replacing divergent sums
and integrals by finite analogous sums and integrals (see later on our discussion
of Lévy-like anomalous superdiffusion).

If our system is a generic quantum one we must use, as already mentioned,
the density operator ρ. The unnormalized and normalized q-expectation values
of an observable A (which not necessarily commutes with ρ) are respectively
given by

〈A〉q ≡ Tr ρqA (19)

and
〈〈A〉〉q ≡ Tr ρqA

Tr ρq
. (20)

In particular, the entropy Sq is given by

Sq = 〈Ŝq〉q , (21)

where the entropy operator is given by

Ŝq ≡ −k lnq ρ . (22)

It is worthy mentioning that the following pseudo-extensivity holds for the op-
erators:

Ŝq(A+B)
k

=
Ŝq(A)
k

+
Ŝq(B)
k

+ (q − 1)
Ŝq(A)
k

Ŝq(B)
k

, (23)

where we must notice the appearance of a (q − 1) factor in front of the cross
term, where there was a (1 − q) factor in Eq. (4)!

The same type of considerations hold, mutatis mutandis, in the case when
our system is a generic classical one.
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2.2 Canonical Ensemble

Once we have a generalized entropic form, say that given in Eq. (1) (or an
even more general one, or a different one), we can use it in a variety of ways.
For instance, if we are interested in cybernetics, information theory, some op-
timization algorithms, image processing, among others, we can take advantage
of a particular form in a variety of manners. However, if our primary interest is
Physics, this is to say the (qualitative and quantitative) description and possible
understanding of phenomena occurring in nature, then we are naturally led to
use the available generalized entropy in order to generalize statistical mechanics
itself and, if unavoidable, even thermodynamics. It is along this line that we
shall proceed from now on (see also [74]). To do so, the first nontrivial (and
quite ubiquitous) physical situation is that in which a given system is in contact
with a thermostat at temperature T . To study this, we shall follow along Gibbs’
path and focus on the so called canonical ensemble. More precisely, to obtain the
thermal equilibrium distribution associated with a conservative (Hamiltonian)
physical system in contact with the thermostat we shall extremize Sq under
appropriate constraints. These constraints are [42]

W∑
i=1

pi = 1 (norm constraint) (24)

and

〈〈εi〉〉q ≡
∑W

i=1 p
q
i εi∑W

i=1 p
q
i

= Uq (energy constraint) , (25)

where {εi} are the eigenvalues of the Hamiltonian of the system. We refer to
〈〈...〉〉q as the normalized q-expectation value, as previously mentioned, and to
Uq as the generalized internal energy (assumed finite and fixed). It is clear that,
in the q → 1 limit, these quantities recover the standard mean value and internal
energy respectively.

The outcome of this optimization procedure is given by

pi =

[
1− (1− q)β(εi − Uq)/

∑W
j=1 (pj)

q
] 1

1−q

Z̄q
(26)

with

Z̄q(β) ≡
W∑
i=1


1− (1− q)β(εi − Uq)/

W∑
j=1

(pj)
q




1
1−q

. (27)

It can be shown that, for the case q < 1, the expression of the equilibrium
distribution is complemented by the auxiliary condition that pi = 0 whenever
the argument of the function becomes negative (cut-off condition). Also, it can
be shown [42] that

1/T = ∂Sq/∂Uq, ∀q (T ≡ 1/(kβ)) . (28)
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Furthermore, it is important to notice that, if we add a constant ε0 to all {εi},
we have (as it can be self-consistently proved) that Uq becomes Uq + ε0, which
leaves invariant the differences {εi−Uq}, which, in turn, (self-consistently) leaves
invariant the set of probabilities {pi}, hence all the thermostatistical quantities.
It is also trivial to show that, for the independent systems A and B mentioned
previously, Uq(A + B) = Uq(A) + Uq(B), thus recovering the same form of the
standard (q = 1) thermodynamics.

It can be shown that the following relations hold:

W∑
i=1

(pi)q = (Z̄q)1−q , (29)

hence
Sq = k lnq Z̄q (30)

(which recovers Eq. (13) at the T → ∞ limit), and also

Fq ≡ Uq − TSq = − 1
β

(Zq)1−q − 1
1− q

= − 1
β

lnq Zq (31)

and

Uq = − ∂

∂β

(Zq)1−q − 1
1− q

= − ∂

∂β
lnq Zq , (32)

where Zq is defined through

(Zq)1−q − 1
1− q

=
(Z̄q)1−q − 1

1− q
− βUq , (33)

or, more compactly,
lnq Zq = lnq Z̄q − βUq . (34)

At this stage it is convenient to discuss thermodynamic stability for the
present canonical ensemble. In other words, we desire to check that small fluc-
tuations of the energy do not modify the macroscopic state of the system at
equilibrium. For this to be so, Sq must be a concave function of Uq (typically
∂2Sq/∂U

2
q < 0) if q > 0, and a convex function (typically ∂2Sq/∂U

2
q > 0) if

q < 0. But
∂

∂Uq

∂Sq

∂Uq
=

∂

∂Uq

1
T

= − 1
T 2

∂T

∂Uq
= − 1

T 2Cq
, (35)

where we have used the fact that Cq ≡ T∂Sq/∂T = ∂Uq/∂T . Thermodynamic
stability is therefore guaranteed if Cq/q ≥ 0, for all q and all Hamiltonians
(characterized by the spectra {εi}). da Silva et al. [75] have recently proved the
following relation (in quantum notation for brevity):

Cq

qk
=

β2(Z̄q)3(q−1)Tr{ρ[ρq−1(H− Uq)]2}
1 + 2q(q − 1)β2(Z̄q)4(q−1)Tr{ρ[ρq−1(H− Uq)]2} . (36)
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Consequently , if q ≥ 1 or q < 0, Cq/q ≥ 0 as desired. The situation is more com-
plex for 0 < q < 1. A general proof is missing for this case. However, the analysis
of some particular examples suggests a scenario which is quite satisfactory.

In [42,75,76] a one-body problem, namely when the energy spectrum is given
by εn = anr (a > 0; r > 0; n = 0, 1, 2, ...; r = 1 corresponds to a harmonic
oscillator; r = 2 corresponds to a particle confined in a infinitely deep square
well), has been discussed. In the classical limit when n can be considered as a
continuous variable (and sums are to be replaced by integrals), the following
result has been obtained:

Cq

qk
∝ (

kT

a
)

1−q
r−1+q (37)

with a nonnegative proportionality coefficient. Consequently, in all cases, Cq/q ≥
0, as desired.

In the quantum case, it has been shown [75] that the interval 0 < q < 1 can
be separated in two cases, namely 0 < q < q∗ (with q∗ < 1), and q∗ ≤ q < 1.
In the latter, Cq ≥ 0 as desired. In the former, regions of kT/a exist for which
formally Cq would be negative. However, fortunately enough, as conjectured
in [42,56] and illustrated in [77], a Maxwell-like equal-area construction takes
place in such a manner that Cq ≥ 0 for all values of kT/a and all values of
q ∈ (0, q∗). Indeed, two branches can appear in Fq versus T , but the lowest one
(which is therefore the physically relevant one) has the desired curvature! The
general proof for the interval 0 < q < 1 would of course be very welcome; in the
meanwhile, everything we are aware of at the present moment points to a generic
thermodynamical stability for the canonical ensemble. Moreover, it might well
generically happen in the thermodynamic limit (N → ∞) that discontinuities
(in value or derivatives) in the thermal dependance of the specific heat become
gradually washed out while N increases (see [78] for such examples).

Let us now make an important remark. If we take out as factors, in both
numerator and denominator of Eq. (26), the quantity[
1 + (1− q)βUq/

∑W
j=1 (pj)

q
]
, and then cancel them, we obtain

pi(β) =
[1− (1− q)β′εi]

1
1−q

Z ′
q


Z ′

q ≡
W∑
j=1

[1− (1− q)β′εj ]
1

1−q


 (38)

with
β′ =

β∑W
j=1 (pj)

q + (1− q)βUq

(T ′ ≡ 1/(kβ′)) , (39)

where β′ is an increasing function of β [77].
Let us now comment on the all important question of the connection be-

tween experimental numbers (those provided by measurements), and the quan-
tities that appear in the theory. The definition of the internal energy Uq, and
consistently of Aq ≡ 〈〈A〉〉q associated with an arbitrary observable A, suggests
that it is Aq the mathematical object to be identified with the numerical value
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provided by the experimental measure. Later on, we come back onto this crucial
point.

At this point let us make some observations about the set of escort probabil-
ities [79] {P (q)

i } defined through

P
(q)
i ≡ pqi∑W

j=1 p
q
j

(
W∑
i=1

P
(q)
i = 1) (40)

from which follows the inverse relation

pi =
[P (q)

i ]
1
q∑W

j=1[P
(q)
j ]

1
q

, (41)

hence
W∑
i=1

pqi =
1

[
∑W

i=1[P
(q)
i ]

1
q ]q

. (42)

The W = 2 illustration of P (q)
i is shown in Fig. 1.

As anticipated, q < 1 (q > 1) privileges the rare (frequent) events. Eqs.
(40) and (41) have, within the present formalism, a role somehow analogous to
the direct and inverse Lorentz transformations in Special Relativity (see [80]
and references therein). These transformations have an interesting structure.
Let us mention a few of their features. If we consider a set of nonvanishing
probabilities {pi} (pi > 0, ∀i) associated with a set of W possibilities (or an
infinite countable set, i.e., W → ∞) and a nonvanishing real number q, we can
define the transformation Tq as follows:

Tq({pi}) ≡
{ pqi∑W

j=1 p
q
j

}
. (43)

Tq transforms the set {pi} into the set {P (q)
i }. We can easily verify that (i) T −1

q =
T1/q , (ii) TqTq′ = Tq′Tq = Tqq′ , and (iii) T1 is the identity element; in other
words, the set of transformations {Tq} exhibits the structure of a commutative
Abelian group. Furthermore, if the {pi} are ordered in such a way that p1 ≥ p2 ≥
p3 ≥ ... ≥ pW > 0, Tq preserves (inverts) the ordering if q > 0 (q < 0). A trivial
corollary is that Tq preserves equiprobability (p1 = p2 = p3 = ... = 1/W ) for any
value of q. A full and rigorous study of the mathematical properties associated
with these transformations is missing and would be very welcome.

Let us now focus on the expectation values. We notice that Oq becomes an
usual mean value when expressed in terms of the probabilities {P (q)

i }, i. e.,

Oq ≡
∑W

i=1 p
q
iOi∑W

j=1 p
q
j

=
W∑
i=1

P
(q)
i Oi , (44)

and
W∑
i=1

P
(q)
i εi = Uq . (45)
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Fig. 1. W = 2 illustration of the escort probabilities: P (q) = pq

pq+(1−p)q .

The final equilibrium distribution reads

P
(q)
i =

[1− (1− q)β′εi]
q

1−q∑W
k=1 [1− (1− q)β′εk]

q
1−q

. (46)

If the energy spectrum {εi} is associated with the set of degeneracies {gi},
then the above probability leads to the following one (associated with the level
εi and not the state i)

P (εi) =
gi[1− (1− q)β′εi]

q
1−q∑

all levels gk[1− (1− q)β′εk]
q

1−q

. (47)

If the energy spectrum {εi} is so dense that can practically be considered as a
continuum, then the discrete degeneracies yield the function density of states
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g(ε), hence

P (ε) =
g(ε)[1− (1− q)β′ε]

q
1−q∫

dε′ g(ε′)[1− (1− q)β′ε′]
q

1−q

. (48)

The density of states is of course to be calculated for every specific Hamiltonian
(given the boundary conditions). For instance, for a d-dimensional ideal gas
of particles or quasiparticles, it is given [81] by g(ε) ∝ ε

d
r−1, where r is the

exponent characterizing the energy spectrum ε ∝ Kr where K is the wavevector
(e.g., r = 1 corresponds to the harmonic oscillator, r = 2 corresponds to a
nonrelativistic particle in an infinitely high square well, etc.). In Figs. 2 and 3
we see typical energy distributions for the particular case of a constant density
of states. Of course, the q = 1 case reproduces the celebrated Boltzmann factor.
Notice the cut-off for q < 1 and the long algebraic tail for q > 1.

Since we have optimized the entropy, all the above considerations refer,
strictly speaking, to thermodynamic equilibrium. The word thermodynamicmakes
allusion to “very large” (N → ∞, where N is the number of microscopic par-
ticles of the physical system). The word equilibrium makes allusion to asymp-
totically large times (t → ∞ limit) (assuming a stationary state is eventually
achieved). The question arises: which of them first? Indeed, although both possi-
bilities clearly deserve the denomination ”thermodynamic equilibrium”, nonuni-
form convergences might be involved in such a way that limN→∞ limt→∞ could
differ from limt→∞ limN→∞. To illustrate this situation, let us imagine a clas-
sical Hamiltonian system including two-body interactions decaying at long dis-
tances as 1/rα in a d-dimensional space, with α ≥ 0 (we also assume that the
potential presents no nonintegrable singularities, typically at the origin). If α > d
the interactions are essentially short- ranged, the two limits just mentioned are
basically interchangeable, and the prescriptions of standard statistical mechanics
and thermodynamics are valid, thus yielding finite values for all the physically
relevant quantities. In particular, the Boltzmann factor certainly describes real-
ity, as very well known. But, if 0 ≤ α ≤ d, nonextensivity is expected to emerge,
the order of the above limits becomes important because of nonuniform conver-
gence, and the situation is certainly expected to be more subtle. More precisely, a
crossover (between q �= 1 and q = 1 behaviors) is expected to occur at t = τ(N).
If limN→∞ τ(N) = ∞, then we would indeed have two (or even more) differ-
ent and equally legitimate states of thermodynamic equilibrium, instead of the
familiar unique state. The conjecture is illustrated in Fig. 4. We could of course
reserve the expression ”thermodynamical equilibrium” for the global extrema of
the appropriate thermodynamical energy. However, if the system is going to re-
main practically for ever in a local extremum, the distinction becomes physically
artificial.

Since we are discussing thermodynamical equilibrium, it is relevant to say a
few words on the present status of knowledge concerning the so-called 0th prin-
ciple of thermodynamics, or in other words, what happens with the transitivity
of thermodynamical equilibrium between systems if q �= 1 ? This important
question is far from being transparent; it has already been addressed [82,83]
though, in our opinion, only preliminarily. However, after the instructive illus-
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Fig. 2. Generalization (Eq. (48)) of the Boltzmann factor (recovered for q = 1) as
function of the energy E at a given renormalized temperature T ′, assuming a constant
density of states. From top to bottom at low energies: q = 0, 1/4, 1/2, 2/3, 1, 3, ∞
(the vertical line at E/T ′ = 1 belongs to the limiting q = 0 distribution; the q → ∞
distribution collapses on the ordinate). All q > 1 curves have a (T ′/E)q/(q−1) tail; all
q < 1 curves have a cut-off at E/T ′ = 1/(1− q).

tration recently provided by Abe [84], a plausible scenario starts emerging. Let us
assume a composed isolated Hamiltonian system A+B (microcanonical ensem-
ble) such that (in some sense to be further qualified) we consider (i) H(A+B) ∼
H(A) +H(B), and (using quantum notation) (ii) ρ(A+B) ∼ ρ(A)⊗ ρ(B) (i.e.,
A and B are essentially independent in the sense of the theory of probabilities).
We shall also assume that (iii) A and B are in thermal equilibrium, i.e., their
energy distributions are essentially given by Eqs. (26) and (27). These three as-
sumptions seem at first sight incompatible, since the power-law of a sum does
not coincide with the product of the power-laws. In other words, the simultane-
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Fig. 3. Log-log plot of some cases like those of Fig. 2 (T ′ = 1, 5 for each value of q).

ous demand of the three hypothesis seems to lead to only one type of statistics,
namely the q = 1 statistics. For this reason, it is stated in [82] that the present
generalized statistics is incompatible with the 0th principle, hence with ther-
modynamics. We believe this standpoint might be too narrow; it might well be
that q = 1 is sufficient but not necessary for the compatibility of the above three
hypothesis. Indeed, the thermodynamic limit (N → ∞) might play a crucial role
in the problem, as elegantly illustrated on a simple example by Abe [84]! This
limit can be very subtle: for instance, several evidences are available [76,78,85]
which show that the N → ∞ and q → 1 can be not commutative. (Since at
t → ∞ for fixed N we expect q = 1, this non commutativity might be directly
related to the previously mentioned (N, t) → (∞,∞) noncommutativity). Let
us now proceed with our argument. The three above assumptions imply that

Uq(A+B) ∼ Uq(A) + Uq(B) (49)
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Fig. 4. One of the central conjectures of the present work, assuming a Hamiltonian sys-
tem which includes two-body (attractive) interactions which, at long distances, decay as
r−α. Only one long-standing macrostate is expected for α/d > 1. More than one long-
standing macrostates are expected for 0 ≤ α/d ≤ 1. The crossover at t = τ is expected
to be slower than indicated in the figure (for space reasons). We are assuming that
limN→∞ τ(N) = ∞. The rescaling factor Ñ ≡ N∗ + 1 = [N1−α/d − (α/d)]/[1− (α/d)]
is (is not) necessary if 0 ≤ α/d ≤ 1 (α/d > 1).

and (taking k = 1 in Eq. (4))

Sq(A+B) ∼ Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B) (50)

which can be rewritten as

ln[1 + (1− q)Sq(A+B)]
1− q

∼ ln[1 + (1− q)Sq(A)]
1− q

+
ln[1 + (1− q)Sq(B)]

1− q
. (51)
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Since the system is isolated and at equilibrium, Uq(A + B) and Sq(A + B) are
constants hence, by differentiating Eqs. (49) and (51), we obtain

δUq(A) ∼ −δUq(B) (52)

and
δSq(A)

Tr[ρ(A)]q
∼ − δSq(B)

Tr[ρ(B)]q
, (53)

where we have used the definition of Sq. By dividing one by the other these two
equations and using that ∂Sq/∂Uq = 1/T we straightforwardly obtain that

Tq(A) = Tq(B) , (54)

where
Tq ≡ T Trρq . (55)

Also Rajagopal (see Section 6 of [86]) has obtained and commented Eq. (54)
[87], as well as the analogous equalities for chemical potentials and pressures.

If our three primary hypothesis turn out to indeed be simultaneously compat-
ible under some circumstances (presumably in the t → ∞ limit of the N → ∞
limit for long-range-interacting Hamiltonian systems), this generalized equality
will play the role of 0th principle. If we have in thermal contact systems with
different entropic indexes, say qA and qB , it seems plausible that at equilibrium
we have something like

TqA(A) = TqB (B) (∀(qA, qB)) . (56)

See also [88]. The present result implies that, for positive temperatures, Tq is
larger, equal or smaller than T1 ≡ T if q is smaller, equal or larger than unity
(we remind that, say for q > 1, ρq < ρ hence Trρq < Trρ = 1). Moreover,
to measure temperatures Tq of all kinds of systems a standard thermometer
should suffice. It is clear that the reader must be well aware of the speculative
grounds on which we have discussed this important thermodynamic criterion.
The subject is still unclear and can easily generate controversy. However, it is
no doubt suggestive the fact that what appears in the equilibrium distribution
(see Eq. (26)) precisely is Tq. Also, some suggestive evidences do exist for the
above scenario. Indeed, at least three examples are available in the literature
where values of q larger than unity seem to be accompanied by an effective
temperature (presumably playing the role of Tq) which is below T . These three
examples are: (i) Fig. 2(b) of [89] (remark that, while N increases, a finite, N -
independent and time-independent temperature is emerging; for the infinitely-
ranged model used in the paper we expect a long-tailed energy distribution, i.e.,
q > 1); (ii) in the fitting of the experimental data shown in [35], values of q
above unity appear together with temperatures below those that would provide
any Hagedorn-like (q = 1) fitting; (iii) in the diffusion of a quark in plasma,
it has been recently obtained [39] q > 1 and a temperature below that of the
thermal bath. In spite of these evidences, one must be extremely cautious in
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such a delicate matter. Just to play the devil’s advocate, one could for instance
wonder how correct the numerical value attributed in [89] to the temperature T
is. Indeed, in that molecular dynamics work, to each degree of kinetic freedom
the value 1

2kT has been associated by the authors. This association is obviously
correct for any classical Hamiltonian system, as long as the velocities distribution
is Maxwellian. However, for the metastable state of a long-range-interacting
system the velocities distribution are more likely to be non Maxwellian! (possibly
not even Gaussian). Under these circumstances, and even if the linearity with T
was maintained, the corresponding factor would not be 1/2! (see [90]).

A wealth of works has shown that the above described nonextensive sta-
tistical mechanics retains much of the formal structure of the standard theory.
Indeed, many important properties have been shown to be q-invariant. Among
them, it is mandatory to mention
(i) the Legendre transformations structure of thermodynamics [41,42];
(ii) the H-theorem (macroscopic time irreversibility), more precisely, that, in the
presence of some irreversible, master-equation-like physical evolution, dSq/dt ≥
0, = 0 and ≤ 0 if q > 0, = 0 and < 0, respectively, the equalities holding for
equilibrium [91,92];
(iii) the Ehrenfest theorem (correspondence principle between classical and quan-
tum mechanics) [43];
(iv) the Onsager reciprocity theorem (microscopic time reversibility) [93,94];
(v) the Kramers and Wannier relations (causality) [94];
(vi) the factorization of the likelihood function (Einstein’ 1910 reversal of Boltz-
mann’s formula) [49]; more precisely,

Wq(A+B) = Wq(A) Wq(B) (∀q) (57)

if A and B are independent, the likelihood function being given by

Wq({pi}) ∝ eSq({pi})q ; (58)

(vii) the Bogolyubov inequality [95]; more precisely,

F (0)
q + 〈〈H −H0〉〉(0)q ≥ Fq, (59)

where Fq is the exact free energy associated with the Hamiltonian H we want
to solve, and F

(0)
q is the free energy associated with the variational Hamiltonian

H0 we have adopted to discuss H, otherwise unsolvable;
(viii) thermodynamic stability (i.e., a definite sign for the specific heat: Cq/q ≥ 0)
[96,75];
(ix) classical equipartition theorem (in particular, 〈〈total kinetic
energy〉〉q = NdkTq/2) and virial theorem [97,98];
(x) the Pesin equality [99].

In contrast with the above quantities and properties, which are q-invariant,
some others do depend on q, such as
(i) the specific heat [100];
(ii) the magnetic susceptibility [101];
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(iii) the fluctuation-dissipation theorem (of which the two previous properties
can be considered as particular cases) [101];
(iv) the Chapman-Enskog expansion, the Navier-Stokes equations and related
transport coefficients [102];
(v) the Vlasov equation [103,104];
(vi) the Langevin, Fokker-Planck and Lindblad equations [105–109];
(vii) stochastic resonance [110];
(viii) the mutual information or Kullback-Leibler entropy [92,111];
(ix) the Lie-Trotter formula [112].

A remark is necessary with regard to both sets just mentioned. Indeed, these
properties have in fact been studied, whenever applicable, mostly within un-
normalized q-expectation values for the constraints, rather than within the nor-
malized ones that we are using herein. Nevertheless, in principle they still hold
because they have been established for fixed β, which, through Eq. (39), implies
fixed β′. However, the proofs using normalized q-expectation values should be
checked case by case. Various of these checks can be found in Ref. [86], entirely
written in terms of normalized q-expectation values.

Finally, let us mention various important theoretical tools which enable the
thermostatistical discussion of complex nonextensive systems, and which are
now available (within the unnormalized and/or normalized versions for the q-
expectation values) for arbitrary q. We refer to
(i) Linear response theory [94];
(ii) Perturbation expansion [113];
(iii) Variational method (based on the Bogoliubov inequality) [113];
(iv) Many-body Green functions [114];
(v) Path integral and Bloch equation [115], as well as related properties [116];
(vi) Dynamical themostatting for the canonical ensemble [117];
(vii) Simulated annealing and related optimization, Monte Carlo and Molecular
dynamics techniques [118–129];
(viii) Information theory and related issues (see [43,74,130,131] and references
therein);
(ix) Entropic lower and upper bounds [132–134] (related to Heinberg uncertainty
principle);
(x) Quantum statistics [135] and those associated with the Gentile and the Hal-
dane exclusion statistics [136,137]. In particular, Fermi-Dirac and Bose-Einstein
(escort) distributions could be generalizable as follows

nk =
1

[1 + (q − 1)β(εk − µ]
q

q−1 ± 1
, (60)

where k is the wave vector, β and µ are effective inverse temperature and chemi-
cal potential respectively, and ± respectively correspond to fermions and bosons.
The degree of validity of this expression needs to be further clarified in at least
three points: (a) It has been originally deduced [135] using a factorization which
is in principle valid only for q ≈ 1 (but which perhaps becomes valid for ar-
bitrary q in the N → ∞ limit; see also [138]); (b) It has been deduced for an
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ideal gas, for which the possible need for q �= 1 is far from transparent; (c) Its re-
deduction in the framework of normalized q-expectation values is needed. In spite
of these fragilities, and interestingly enough, it has in its favor an impressively
good fitting of high temperature experimental data obtained in electron-positron
collisions [35].

3 Theoretical Evidence and Connections

3.1 Lévy-Type Anomalous Diffusion

An enormous amount of phenomena in Nature follow the Gaussian distribution:
measurement error distributions, height and weight distributions in biological
individuals of given species, Brownian motion of particles in fluids, Maxwell-
Boltzmann distribution of particle velocities in a variety of systems, noise distri-
bution in uncountable electronic devices, energy fluctuations at thermal equilib-
rium of many systems, to only mention a few. Why is it so? Or, equivalently, what
is their (thermo)statistical foundation? This fundamental problem has already
been addressed, particularly by Montroll, and satisfactorily answered (see [25]
and references therein). The answer basically relies onto two pillars, namely the
BG entropy and the standard central limit theorem. However, the Gaussian is not
the only ubiquitous distribution: we also similarly observe Lévy distributions (in
micelles [139], supercooled laser [140], fluid motion [141], wandering albatrosses
[142], heart beating [143], turbulence [144], DNA [145], financial data [146–148],
among many others). So, once again, what is the (thermo)statistical foundation
of their ubiquity? This relevant question has also been addressed, once again by
Montroll and collaborators [25] among others. In this case however, a satisfactory
answer has been missing for a long time. The first successful step toward (what
we believe to be) the solution was performed in 1994 by Alemany and Zanette
[149], who showed that the generalized entropic form Sq was able to provide a
power-law (instead of the exponential-law associated with Gaussians) decrease at
long distances. Many other works followed along the same lines [150,151]. In [151]
it was exhibited how the Lévy-Gnedenko central limit theorem (see, for instance,
[152] and references therein) also plays a crucial role by transforming, through
successive iterations of the jumps, the power- law obtained from optimization of
Sq into the specific power-law appearing in Lévy distributions. Summarizing, in
complete analogy with the above mentioned Gaussian case (and which is recov-
ered in the more powerful present formalism as the q = 1 particular case), the
answer once again relies onto two pillars, which now are the generalized entropy
Sq and the Lévy-Gnedenko central limit theorem.

The arguments have been very recently re-worked out [90] on the basis of the
normalized q-expectation values introduced in [42]. These are the results that
we briefly recall here.

Let us write Sq as follows:

Sq[p(x)] = k
1− ∫∞

−∞
dx
σ [σ p(x)]q

q − 1
, (61)



Nonextensive Statistical Mechanics and Thermodynamics 25

where x is the distance of one jump, and σ > 0 is the characteristic length of
the problem. We optimize (maximize if q > 0, and minimize if q < 0) Sq with
the norm constraint

∫∞
−∞ dx p(x) = 1, as well as with the constraint

〈〈x2〉〉q ≡
∫∞

−∞ dx x2 [p(x)]q∫∞
−∞ dx [p(x)]q

= σ2 . (62)

We straightforwardly obtain the following one-jump distribution.
If q > 1:

pq(x) =
1
σ

[ q − 1
π (3− q)

]1/2 Γ ( 1
q−1 )

Γ ( 3−q
2(q−1) )

1[
1 + q−1

3−q
x2

σ2

]1/(q−1) . (63)

If q = 1:

pq(x) =
1
σ

[ 1
2π

]1/2
e−(x/σ)2/2 . (64)

If q < 1:

pq(x) =
1
σ

[ 1− q

π (3− q)

]1/2Γ ( 5−3q
2(1−q) )

Γ ( 2−q
1−q )

[
1− 1− q

3− q

x2

σ2

]1/(1−q)
(65)

if |x| < σ[(3− q)/(1− q)]1/2 and zero otherwise.
We see that the support of pq(x) is compact if q ∈ (−∞, 1), an exponential

behavior is obtained if q = 1, and a power-law tail is obtained if q > 1 (with
pq(x) ∝ (σ/x)2/(q−1) in the limit |x|/σ → ∞). Also, we can check that 〈〈x2〉〉1 =
〈x2〉1 =

∫∞
−∞ dx x2 pq(x) is finite if q < 5/3 and diverges if 5/3 ≤ q ≤ 3 (the

norm constraint cannot be satisfied if q ≥ 3). Finally, let us mention that the
Gaussian (q = 1) solution is recovered in both limits q → 1 + 0 and q → 1 − 0
by using the q > 1 and the q < 1 solutions respectively. This family of solutions
is illustrated in Fig. 5.

We focus now the N -jump distribution pq(x,N) = pq(x) ∗ pq(x) ∗ ... ∗ pq(x)
(N -folded convolution product). If q < 5/3, the standard central limit theorem
applies, hence, in the limit N → ∞, we have

pq(x,N) ∼ 1
σ

[ 5− 3q
2π(3− q)N

]1/2
exp

(
− 5− 3q

2(3− q)N
x2

σ2

)
, (66)

i.e., the attractor in the distribution space is a Gaussian, consequently we have
normal diffusion. If, however, q > 5/3, then what applies is the Lévy-Gnedenko
central limit theorem, hence, in the limit N → ∞, we have

pq(N,x) ∼ Lγ(x/N1/γ) , (67)

where Lγ is the Lévy distribution with index γ < 2 given by

γ =
3− q

q − 1
(5/3 < q < 3) (68)
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Fig. 5. The one-jump distributions pq(x) for typical values of q. The q → −∞ distribu-
tion is the uniform one in the interval [−1, 1]; q = 1 and q = 2 respectively correspond
to Gaussian and Lorentzian distributions; the q → 3 is completely flat. For q < 1 there
is a cut-off at |x|/σ = [(3− q)/(1− q)]1/2.

Through the Fourier transforms of both Eq. (66) and (67), we can character-
ize the width ∆q (dimensionless diffusion coefficient) of pq(x,N). We
obtain

∆q ≡ 3− q

5− 3q
(q < 5/3) (69)

and

∆q =
2

π1/2

[q − 1
3− q

] 3−q
2(q−1)

Γ
[ 3q − 5
2(q − 1)

]
(5/3 < q < 3) . (70)

These results are depicted in Fig. 6. This result should be measurable in specif-
ically devised experiments. More details can be found in [90] and references
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therein. What we wish to retain in this short review is that the present formal-
ism is capable of (thermo)statistically founding, in an unified and simple manner,
both Gaussian and Lévy behaviors, very ubiquitous in Nature (respectively as-
sociated with normal diffusion and a certain type of anomalous superdiffusion).

The special values q = 5/3 and q = 3 correspond to the d = 1 case that
we have considered here. In d dimensions, these values respectively become (see
the article by Tsallis et al. in the book edited by Shlesinger et al. [25]) q =
(4 + d)/(2 + d) and q = (2 + d)/d. These results together with some illustrative
values obtained from experimental data are shown in Fig. 7 (from Zanette’s
article in the Brazilian Journal of Physics [150]).

Fig. 6. The q-dependence of the dimensionless diffusion coefficient ∆q (width of the
properly scaled distribution pq(x,N) in the limitN → ∞). In the limits q → 5/3−0 and
q → 5/3+0 we respectively have ∆q ∼ [4/9]/[(5/3)−q] and∆q ∼ [4/(9π1/2]/[q−(5/3)];
also, limq→3 ∆q = 2/π1/2.
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Fig. 7. From Zanette’s article in Brazilian Journal of Physics [150]. The relevant re-
gions in the (q, d) space for Lévy-like anomalous diffusion. The special points in the
superdiffusive region correspond to experimental measurements: [144] for turbulence,
[142] for the albatross flight and [145] for the DNA.

3.2 Correlated-Type Anomalous Diffusion

There are some phenomena exhibiting anomalous (super and sub) diffusion of a
type which differs from the one discussed in the previous subsection. We refer to
the so called correlated-type of diffusion. We consider here a quite large class of
them, namely those associated with the following generalized, Fokker-Planck-like
equation [107]:

∂

∂t
[p(x, t)]µ = − ∂

∂x
{F (x)[p(x, t)]µ}+D

∂2

x2
[p(x, t)]ν , (71)
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where (µ, ν) ∈ R2, D is a dimensionless diffusion-like constant, F (x) ≡ −dV/dx
is a dimensionless external force (drift) associated with a potential V (x), and
(x, t) is a dimensionless 1 + 1 space-time. If µ = 1, we can interpret p(x, t)
as a probability distribution since

∫
dx p(x, t) = 1, ∀t can be satisfied. If

µ �= 1, then p(x, t) must be seen as a density function. The word “correlated”
is frequently used in this context due to the fact that D(∂2/∂x2)[p(x, t)]ν =
(∂/∂x){Dν[p(x, t)]ν−1 (∂/∂x) p(x, t)}, i.e., an effective diffusion emerges, for
ν �= 1, which depends on p(x, t) itself, a feature which is natural in the presence
of correlations. The µ = 1 particular case of this nonlinear equation is com-
monly denominated “Porous medium equation”, and corresponds to a variety
of physical situations (see [107] and references therein for several examples; see
also [153]).

The first connection of Eq. (71) with the present nonextensive statistical
mechanics was established in 1995 by Plastino and Plastino [106]. They con-
sidered a particular case, namely µ = 1 and F (x) = −k2x with k2 > 0 (so
called Uhlenbeck-Ornstein processes), and found an exact solution which has
the form of Eq. (63-65). Their work was generalized in [107] where arbitrary µ
and F (x) = k1 − k2x were considered. The explicit exact solution of Eq. (71),
for all values of (x, t), was once again found by proposing an Ansatz of the form
of Eqs. (63-65), i.e., the form which optimizes Sq with the associated simple
constraints. This form eventually turns out to be the Barenblatt one. By intro-
ducing this Ansatz into Eq. (71) we can verify, after some tedious but rather
elementary algebra, that an exact solution is given by [107]

pq(x, t) =
{1− (1− q)β(t)[x− xM (t)]2}1/(1−q)

Zq(t)
, (72)

where
q = 1 + µ− ν (73)

and
β(t)
β(0)

=
[Zq(0)
Zq(t)

]2µ
(74)

with

Zq(t) = Zq(0)
[(

1− 1
K2

)
e−t/τ +

1
K2

]1/(µ+ν)
, (75)

K2 ≡ k2
2νDβ(0)[Zq(0)]µ−ν

, (76)

xM (t) =
k1
k2

+
[
xM (0)− k1

k2

]
e−k2t , (77)

and
τ ≡ µ

k2(µ+ ν)
. (78)

An extreme case of this class of solutions would be when at t = 0 we have a
Dirac delta (i.e., pq(x, 0) = δ(x)); this case corresponds to the limit β(0) → ∞.
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Summarizing, by using the form which optimizes Sq, it has been possible to
find the physically relevant solution of a nonlinear equation in partial derivatives
with integer derivatives. It can be shown [154] that the problem that was solved
in the previous subsection corresponds to a linear equation in partial derivatives
but with fractional derivatives. We believe that we are allowed to say that an
unusual mathematical versatility has been observed, within the present nonex-
tensive formalism, in this couple of nontrivial examples of anomalous diffusion.
The discussion of an unifying equation which simultaneously is nonlinear and
has fractional derivatives remains to be done. Let us finally mention that equa-
tions similar to Eq. (71) but also including either an absorbing term [155] or
a nonlinear reaction term [156] have as well been exactly solved recently. The
simultaneous inclusion of both terms also remains to be done.

3.3 Charm Quark Diffusion in Quark–Gluon Plasma

In a recent theoretical work, Walton and Rafelski [39] used a Fokker-Planck
equation and perturbative Quantum Chromodynamics techniques to calculate
the energy dependence of the energy loss per unit distance traveled by a quark
inside a quark-gluon plasma. They applied their theory to a charm quark with
mass mc = 1.5 GeV interacting with thermal gluons at Tb = 500 MeV (b stands
for bath). In their phenomenological approach, q and TT were left as fitting
parameters (of course, TT = Tb if q = 1). Their results are exhibited in Fig.
8, and their best fitting was obtained for q = 1.114 and TT = 135.2 MeV. We
notice that, as other analogous systems, the fact that q > 1 comes together with
TT < Tb. We also notice that a small discrepancy of q from unity can carry
substantial modifications in measurable physical quantities (the case of the solar
neutrino problem is even more remakable in this sense).

3.4 Self-Gravitating Systems

It is known since long [19] that self-gravitating systems exhibit anoma-
lous thermodynamics. This comes from a two-folded cause: the short-distance
singularity of the gravitational potential, as well as its long-distance tail. The
first one is in some sense less severe since, on physical grounds, a cut-off is ulti-
mately expected to exist (for instance, due to quantum effects). The second one
is heavier in thermodynamical consequences. Indeed, if we have, say, a classical d-
dimensional system with a two-body interacting potential which decays, at long
distances, like r−α, it is long known [15] that standard, extensive thermodynam-
ics are perfectly well defined if α/d > 1 (from now on referred to as short-range
interactions). But nonextensivity is expected to emerge if 0 ≤ α/d ≤ 1 (long-
range interactions). Newtonian gravitation (d = 3 and α = 1) clearly belongs to
the anomalous class. (In fact, d-dimensional gravitation, i.e., α = d− 2 belongs
to the anomalous class for d ≥ 2). One of the known thermodynamical anoma-
lies associated with Newtonian gravitation is the fact that, within BG statistical
mechanics, it is not possible to have the total mass, the total energy and the
total entropy simultaneously finite, as physically desirable. This was, in fact, the
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Fig. 8. Quark energy dependence of the loss of energy per unit distance traveled by the
quark (with a 1.5 MeV mass) in the gluon plasma at a temperature of 500 MeV (dia-
monds: perturbative QCD calculation; dashed line: q = 1 scenario (Boltzmann) with a
500 MeV temperature; solid line: q = 1.114 scenario with a 135.2 MeV temperature).

first physical application of nonextensive statistics. Indeed, without entering in
details now, Plastino and Plastino [103] were the first to show, in 1993, that
this physically desirable situation can be achieved if we allow q to sufficiently
differ from unity ! In fact, it can be shown (by considering the Vlasov equation
in d-dimensional Schuster spheres) that the problem becomes a mathematically
well posed one if q < q∗, where the critical value q∗ is given [103] (see also [104])
by

q∗ =
8− (d− 2)2

8− (d− 2)2 + 2(d− 2)
. (79)
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For d = 3 we recover the (by now quite well known) 7/9 value. Also, we notice
that D = 2 implies q∗ = 1, which is very satisfactory since it is known that d < 2
gravitation is tractable within standard thermodynamics.

The present formalism has in fact been applied to a variety of astrophysical
([157] and references therein) and cosmological [158] self-gravitating systems. In
fact, similar types of anomalies have already been encountered in long-range Ising
ferromagnets [20], and are generically known since many decades [13,15,16,18].

3.5 Zipf–Mandelbrot Law

The problem we focus here first appeared in Linguistics. However, its relevance
is quite broad, as it will soon become clear. Suppose we take a given text, say
Cervante’s Don Quijote, and order all of its words from the most to the less
frequent; we refer to the ordered position of a given word as its rank R (low rank
means high frequency ω of appearance in the text, and high rank means low
frequency). Zipf [159] discovered that, in this as well as in a variety of similar
problems, the following law is satisfied:

ω = A R−ξ (Zipf law) , (80)

where A > 0 and ξ > 0 are constants (the value initially adopted by Zipf was
ξ = 1). Later on, Mandelbrot [146] suggested that such behavior was reflecting
a kind of fractality hidden in the problem; moreover, he suggested how the Zipf
law could be numerically improved:

ω =
A

(D +R)ξ
(Zipf −Mandelbrot law; D > 0) . (81)

This expression has been useful in a variety of analysis, and has provided satis-
factory fittings with experimental data. The connection we wish to mention here
is that in 1997 Denisov [160] showed that, by extending (to arbitrary q) the well
known Sinai-Bowen- Ruelle thermodynamical formalism of symbolic dynamics
(i.e., by considering Sq instead of S1), the Zipf-Mandelbrot law can be deduced.
He obtained

ξ =
1

q − 1
, (82)

hence
ω ∝ 1

[1 + (q − 1)R/d]1/(q−1) (q > 1) , (83)

where d ≡ (q − 1)D > 0. Clearly, to make the discussion complete, a model
would be welcome, which would provide quantities such as q and d. Nevertheless,
Denisov’s arguments have the deep interest of explicitly exhibiting that the Zipf-
Mandelbrot law can be seen as having a nonextensive foundation. Fittings with
experimental data will be shown later on in connection with the citations of
scientific papers.
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3.6 Theory of Financial Decisions: Risk Aversion

An important problem in the theory of financial decisions is how to take into
account extremely relevant phenomena such as the risk aversion human beings
(hence financial operators) quite frequently feel. This kind of problem has, since
long, been extensively studied by Tversky [161] and co-workers. The situation
can be illustrated as follows. What do you prefer, to earn 85,000 dollars or to
play a game in which you have 0.15 probability of earning nothing and 0.85
probability of earning 100,000 dollars ? You are allowed to participate in the
game only once! In fact, most people prefer to take the money. The problem of
course is the fact that the expectation value for the gain is one and the same
(more precisely 85,000 dollars) for both choices, and therefore this mathematical
tool does not reflect reality ! The same problem appears if one expects to loose
85,000 and the chance is given for playing a game in which, if you win, you pay
nothing, but, if you loose, you pay 100,000 dollars. In this case, most people
choose to play. So, the experimental facts are that most human beings are risk-
averse when they expect to gain, and risk-seeking when they expect to loose
! The problem is how to put this into mathematics. One traditional manner
is to make standard averages, not on the gain, but on the utility, defined as
a nonlinear function of the gain. We wish to show here a different possibility,
which places the nonlinearity on the probabilities themselves. (Nothing forbids
of course to consider nonlinearities on both the utility and the probabilities).

Following along the lines of [162], let us introduce, for the above gain problem,
normalized q-expectation values as follows:

〈〈gain〉〉take the money
1 = 85, 000 (84)

and

〈〈gain〉〉play the game
q =

100, 000× 0.85q + 0× 0.15q

0.85q + 0.15q

=
100, 000× 0.85q

0.85q + 0.15q
. (85)

Since most people would prefer the money, this means that most people have
q < 1 for this particular decision problem.

For the loss problem we have:

〈〈gain〉〉pay the money
1 = −85, 000 (86)

and

〈〈gain〉〉play the game
q =

−100, 000× 0.85q + 0× 0.15q

0.85q + 0.15q

=
−100, 000× 0.85q

0.85q + 0.15q
. (87)

Since in this case most people would prefer to play, this means that, consistently
with the previous result, most people have q < 1 for the particular decision
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problem we are considering now. In some sense, we have some epistemological
progress! Indeed, the statement “most people have (for this type of amount of
money) q < 1”, unifies the previous two separate statements concerning expec-
tation to gain and expectation to loose.

Let us address now the following question: how can we measure the value of q
associated with a particular individual ? We illustrate this interesting point with
the example of the gain. The person is asked to choose between having V dollars
or playing a game in which, if the person wins, the prize will be 100, 000 dollars
and, if the person looses, he (she) will receive nothing. As before, the person is
informed that his (her) probability of winning is 0.85 (hence, the probability of
loosing is 0.15). Then we keep gradually changing the value V and asking what
is the preference. At a certain critical value, noted Vc, the person will change
his (her) mind. Then, the value of q to be associated with that person, for that
problem, is given by the following equality

100, 000× 0.85q

0.85q + 0.15q
= Vc . (88)

(See Fig. 9.) The ideally rational operator corresponds to q = 1. For this gain
problem, the risk-averse operators correspond to q < 1, and the risk-seeking ones
to q > 1.

This particular manner of formulating the problem is no doubt appealing.
However, is it the only one along nonextensive lines? The answer is no. Let us
be more specific. We can use unnormalized q-expectation values instead of the
normalized ones we have just used. In this case Eqs. (84) and (85) are to be
replaced by

〈gain〉take the money
1 = 85, 000 (89)

and

〈gain〉play the game
q = 100, 000× 0.85q + 0× 0.15q = 100, 000× 0.85q (90)

and Eq. (88) is to be replaced by

100, 000× 0.85q = Vc . (91)

If so formulated, the conclusion is that most people have q > 1 (instead of q < 1
obtained in the previous formulation). The analysis of the loss problem also
provides for most people q > 1. Consequently, also in this formulation we have
the benefit of unification of the gain and loss problems.

At this point we have to face an ambiguity: both criteria, respectively using
normalized and unnormalized q-expectation values, unify the gain and the loss
problems but the former attributes to most people values of q < 1, whereas the
latter attributes q > 1 ! Which one is the correct one for this particular problem?

As an attempt to solve the ambiguity, let us address a different, though
similar, problem. We propose to the candidate to choose to play with one of
two boxes. He (she) is informed that in box A there are (exactly) 100 balls, 50
of them being red, the other 50 being white. The person will have to declare a
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Fig. 9. The index q to be associated with a person whose critical value corresponding
to Eq. (88) is Vc. People with q < 1 (q > 1) tend to avoid (seek) risks for that particular
game. The case q = 1 corresponds to an ideally rational agent.

color, and then randomly take off a ball. If it has the chosen color, the person will
earn 100 dollars. If it has the other color, the person will receive nothing. The
person is also informed that in box B there are also (exactly) 100 balls, some are
red, some are white, but nobody knows how many of each, though we do know
that no other colors are in the box. As before, the person will have to declare
a color, and then randomly take off a ball. As for the other box, if the ball has
the chosen color, the person will receive 100 dollars; if it has the other color, he
(she) will receive nothing. These are the two choices. The person will be given
only one opportunity for playing. The person is now asked to choose one box for
playing. The experimental outcome is that most people choose box A (possibly
because their anxiety is smaller with regard to that particular box, because
they have some supplementary information about it... though this information
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is completely useless!). Let us write down the associated expectation values. If
we use the normalized ones we have

〈〈gain〉〉box A
1 = 100× 0.5 + 0× 0.5 = 50 (92)

and
〈〈gain〉〉box B

q =
100× 0.5q + 0× 0.5q

0.5q + 0.5q
= 50 (∀q) . (93)

Since both possibilities yield one and the same result for all values of q, this
criterion is unable to reproduce reality, i.e., the fact that most people choose the
box A. This is a consequence – regrettable in the present occasion! – of the fact
that escort distributions preserve equiprobability.

If we use, instead, the unnormalized q-expectation values, we have

〈gain〉box A
1 = 100× 0.5 + 0× 0.5 = 50 (94)

and
〈gain〉box B

q = 100× 0.5q + 0× 0.5q = 50× 0.5q−1 . (95)

Most people have, within the present model, the feeling that 〈gain〉box A
1 >

〈gain〉box B
q , hence q > 1. So, this criterion not only is capable of differentiating

the two boxes, but also unifies this game with the 85,000 game. Summarizing, the
comparison of unnormalized q-expectation values yields the unified conclusion
that ”most people have q > 1” for three different games, namely the 85,000 gain,
the 85,000 loss and the box games. For the box game, the value q of a given
person can be ”measured” by using

100× 0.5q = Vc × 0.5 , (96)

where Vc is the value to be offered (instead of 100) if the person chooses to play
with box A, whereas 100 is maintained if the person chooses to play with the
other box.

We can formalize these games and the associated decisions as follows. The
person is offered to choose, for playing a single time, between two games, one
of them being perceived as ”safe” (to be therefore calculated using q = 1), the
other one perceived as ”unsafe” (to be therefore calculated using q �= 1). In the
safe game the probability of wining is ps and that of loosing (1 − ps), receiving
respectively V s

gain and V s
loss. In the unsafe game, the probability of wining is pu

and that of loosing (1−pu), receiving respectively V u
gain and V u

loss. We then have

〈gain〉(s)1 = ps × V s
gain + (1− ps)× V s

loss (97)

and
〈gain〉(u)q = pu × V u

gain + (1− pu)× V u
loss , (98)

and the critical point (which allows for the measure of q for a given person)
satisfies

ps × V s
gain + (1− ps)× V s

loss = pu × V u
gain + (1− pu)× V u

loss . (99)
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All three games that we have discussed above are particular instances of these
last equations. Summarizing, it appears that unnormalized q-expectation values
can be used to modelize the fact that most people are risk-averse when expect-
ing to gain something substancial (”A bird in the hand is worth two in the
bush”, says the popular dictate), and risk seeking when expecting to loose. This
situation corresponds to q > 1, hence

∑
i p

q
i < 1 (which we might call subaddi-

tive probabilities). A few people are the other way around, which corresponds to
q < 1, hence

∑
i p

q
i > 1 (which we might call superadditive probabilities). It is

clear that models for stock exchange can be formulated by using these remarks.
Such an effort is presently in progress [163].

3.7 Physiology of Vision

Physiological perceptions such as the visual perception are since long known to
focus upon rare events (e.g., a red spot on a white wall). Barlow [73], among
others, has recurrently stressed our attention on the fact that, at the action de-
cision level, the various possibilities should enter with a weight proportional to
− ln pi, and not proportional to pi, pi being the a priori probability of occurrence
of that particular event; indeed, − ln pi diverges when pi → 0. He even argues
that evolutionary arguments hold very well together with such hypothesis. To
privilege rare events is precisely what happens, in the present formalism, when-
ever q < 1. Let us be more specific: if we consider the 0 < q << 1 limit, we
obtain [164]

Sq/k =
1−∑W

i=1 p
q
i

q − 1
∼ W − 1 + q[W − 1−

W∑
i=1

(− ln pi)] , (100)

〈O〉q ≡
W∑
i=1

pqi Oi ∼
W∑
i=1

Oi − q

W∑
i=1

(− ln pi) Oi , (101)

and

〈〈O〉〉q ≡
∑W

i=1 p
q
i Oi∑W

i=1 p
q
i

∼
∑W

i=1Oi

W

{
1 + q

[∑W
i=1(− ln pi)

W
−
∑W

i=1(− ln pi) Oi∑W
i=1Oi

]}
, (102)

where O is an arbitrary observable. Leaving aside several constant quantities that
appear above, we immediately observe the prominent role which − ln pi plays in
these expressions. Consistently, the q → 0 limit of the present formalism could
well be of some utility in the theoretical analysis of a variety of physiological
phenomena.
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4 Experimental Evidence and Connections

4.1 D = 2 Turbulence in Pure-Electron Plasma

A few years ago, in 1994, Huang and Driscoll [24] exhibited some quite interest-
ing nonneutral plasma experimental results obtained in pure-electron plasma
(confined in a 20 cm long and 6 cm wide metallic cylindrical Penning trap
with a 10−10 torr vacuum in its interior) in the presence of an external axial
magnetic field (507 Gauss). In the interval 2-100 ms after every single electric
shot (generating the electron plasma), it was observed a turbulent axisymmetric
metaequilibrium state, the electronic density radial distribution of which was
measured. Its average (over typically 100 shots) monotonically decreased with
the radial distance, disappearing at some radius sensibly smaller than the ra-
dius of the container (i.e., a cut-off was observed). The experiment was recently
redone [165] under slightly modified experimental conditions (a slow external
rotation was imposed in such a way as to compensate the small energy dissipa-
tion existing in the plasma), and essentially the same metaequilibrium state was
observed during lapses of time as long as 27 hours, or even longer! In addition to
the 1994 experiment, the authors also proposed [24] a phenomenological theory
trying to reproduce the experimentally observed profile. Their proposal consisted
on the optimization, for a given model, of a functional of the electron density
ρ(r) under constraints, namely conservation of total mass, angular momentum
and energy. They presented four different attempts. The first one (Point Vortex
Maximum Entropy) consisted in optimizing, for a point vortex representation
of the plasma, the BG entropy: it failed in reproducing the experimental data.
The second attempt (Fluid Maximum Entropy) was essentially the same as the
previous one, but using a fluid model for the plasma: the failure was even big-
ger. They assumed next that the problem possibly relied, not so much in the
particular plasma model, but rather in the chosen functional to be optimized.
In their third attempt (Global Minimum Enstrophy), they turned back to the
point vortex model, but optimized the enstrophy instead of the BG entropy.
The result was better than the two first attempts, but had the physically un-
acceptable feature of producing a negative electron density at sufficiently high
radius. They then addressed their fourth attempt (Restricted Minimum Enstro-
phy), whose only difference with the third one was the fact of introducing an
out-of-the pocket cut-off of the electron density at the proper value of the radius.
This procedure was, finally, successful, and a very good first-approximation fit-
ting was obtained! The effort done by Huang and Driscoll was, on top of the
high merit of a remarkable experiment, extremely pedagogical and elucidating:
the main theoretical problem was not the model, but rather the choice of the
functional to be optimized, i.e., the statistics.

The next important step in this story was done by Boghosian. He realized in
1995 and published [104] in 1996 that the Huang and Driscoll fourth, successful
attempt precisely corresponds to the optimization of Sq with q = 1/2! Indeed, by
following the recipes of the present generalized thermostatistics, he re-obtained,
for the electron density profile, the same differential equation produced within
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the Restricted Minimum Enstrophy phenomenological theory, with the supple-
mentary bonus of not having to introduce, in an ad hoc manner, the necessary
cut-off. Indeed, as already argued, all q < 1 cases exhibit a cut-off intrinsic to
the formalism, and the radial position of that cut-off nicely fits the experimental
value.

The next step was performed in 1997 by Anteneodo and myself [166] (in fact,
after related remarks by Boghosian himself). The Restricted Minimum Enstro-
phy theory is based on the enstrophy functional, which belongs to the general
discussion of Casimir invariants; its form is in fact that of the order 2 Casimir
invariant. Consequently, an epistemologically conservative theoretical viewpoint
is to appreciate Boghosian’s effort as just a formal interesting remark, with no
real physical necessity. It happens, however, that, for r → rc−0, (rc ≡ cut-off ra-
dius) the enstrophy theory yields ρ(r) ∝ (rc − r) whereas the experimental data
fit much better a vanishing derivative at rc! We followed along Boghosian’s lines
and generalized his theory for arbitrary q [166]. We obtained the generalized
differential equation for ρ(r) and showed that ρ(r) ∝ (rc − r)q/(1−q). Conse-
quently, the experimental data fit better for q slightly above 1/2. This, together
with the numerical solution of the differential equation, advanced q � 0.55 as
a better value for a satisfactory overall fitting. (Better fittings would probably
demand for a model more sophisticated than the point vortex one used here).
The conceptually important point of this discussion is that Casimir invariants
are characterized by integer exponents (in ρ(r)), hence none of them can be
related to a value of q close to 0.55.

The last step of this analysis was performed very recently by Anteneodo [167],
and addressed the type of q-expectation values to be used. Indeed, the calcu-
lations above recalled [104,166] were done by using unnormalized q-expectation
values. However, as already mentioned and used in the present review, it has
been recently argued [42] that normalized q-expectation values should be used
instead. It is therefore important to check that the present discussion and results
for turbulence remain essentially invariant. This is now done [167], and it is this
theory that we present in what follows.

The generalized entropy and associated constraints are given by

Sq[g] ≡ 1
q − 1

∫
(g − gq)d2r , (103)

∫
gd2r = 1 (mass conservation) ,∫
r2gqd2r∫
gqd2r

= Lq ≡ L (angular momentum conservation) ,

− 1
2

∫
φ
φ	 g

qd2r∫
gqd2r

= Uq ≡ U (energy conservation) , (104)
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where g(r) is the probability distribution. Moreover, the scaled electrostatic po-
tential

φ(r)
φ*

≡
∫
gq(r′)G(r, r′)d2r′∫

gqd2r
with ∇2G(r, r′) = 4πδ(r− r′), (105)

satisfies
∇2 φ

φ*
= 4π

gq∫
gqd2r

. (106)

The constrained optimization of Sq[g] (δ(Sq−α
∫
gd2r−λLq−βUq)) now yields

1− q gq−1
q

q − 1
− α− λ

N
qr2 gq−1

q +
β

N
q
φq
φ*

gq−1
q

+q(L
λ

N
− 2U

β

N
)gq−1

q = 0 , (107)

(where
∫
gqd2r ≡ N) or

g1−q
q − q

q − 1
− αq1−q − λ

N
qr2 +

β

N
q
φq
φ*

+ q(L
λ

N
− 2U

β

N
) = 0 , (108)

or, taking the Laplacian of both sides,

[1 + α(1− q)]
∇2g1−q

q

q − 1
− 4

λ

N
q + 4π

β

N2 qg
q
q = 0 (109)

which can be rewritten as

g′′
q − q

(g′
q)

2

gq
+
g′
q

r
= gqq(B

†gqq −A†) , (110)

where A† ≡ 4q λ
N /[1 + α(1− q)] and B† ≡ 4πq β

N2 /[1 + α(1− q)].

Alternatively, identifying ρq ≡ gqq/N , we have

ρ′′
q − 2q − 1

q

(ρ′
q)

2

ρq
+
ρ′
q

r
= qρ

2q−1
q

q (Bρq −A) , (111)

with A ≡ A†N
q−1
q and B ≡ B†N

2q−1
q . This equation precisely is the one ap-

pearing in [166], which, for q = 1/2, recovers that of [104]. For any chosen q,
the values of the parameters (A,B) are obtained by imposing the experimental
values of total angular momentum and energy. This phenomenological theory
has, therefore, only one fitting parameter (q). As said before, q = 1/2 exactly
reproduces the Huang and Driscoll’s Restricted Minimum Enstrophy profile. As
already mentioned, the best overall fitting is, however, obtained for a value of q
slightly above 1/2, like q ≈ 0.55. From this point of view, the present formalism
appears to us as the only satisfactory phenomenological theoretical approach
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available in the literature at the present time. It is but fair to mention here
that, in a recent paper, Brands et al. [168] disagree with this standpoint. They
claim to have proved that the nonextensive approach is unsatisfactory. However,
they have incorrectly used it (more precisely, they have not used normalized q-
expectation values, among other controversial statements), so their conclusions
can be subject for doubt. A point which obviously remains to be dynamically
explained is what is the microscopic reason for q having that particular value
which fits the data.

4.2 Solar Neutrino Problem

As easily conceivable, the core of the Sun is a very complex and turbulent plasma,
within which an enormous amount of nuclear reactions take place. Many of
them constitute chains of nuclear reactions in which neutrinos are produced. For
instance, the p-p chain is described in [169]. Through a quite complete analysis
of the production of neutrinos within the so called Solar Standard Model (SSM),
it is possible to predict the neutrino flux onto the Earth. However, the actual flux
measured in a variety of underground laboratories (Gallex, Sage, Kamiokande,
Super-Kamiokande, Homestake) roughly amounts to only half of the predicted
value ! This problem is currently referred to as the ”solar neutrino problem”.
Two nonexclusive sources of explanation of this enigmatic discrepancy are: (i) the
possible neutrino oscillations, which would make that only part of the predicted
value would be detectable on the Earth; (ii) the current use of the SSM might
be incorrect because it uses BG thermal statistics, which could be inappropriate
for the solar plasma. Clayton [29] was the first to address the second possibility,
as far as 25 years ago! Indeed, he assumed an hypothetic distribution of energies
essentially given by

p(E) ∝ e−βE e−δ(βE)2 . (112)
The particular value δ = 0 obviously recovers BG statistics. Clayton showed
that a small value of δ (δ � 0.01) was enough to make the theory consistent
with the experimental data that were available at that time. Quarati and co-
workers remarked (preliminarily in 1996 [170], and in more refined calculations
since then [157]) that, since the needed δ is very small, the Ansatz distribution
could as well be the power-law one which appears in the present formalism. By
identifying the first corrections (to BG) of both distributions, they obtained

δ =
1− q

2
. (113)

Consequently, values of q quite close to unity are enough to fit the solar neutrino
discrepancy. Once again, we verify the extreme efficiency that modifications of
the statistics can have. The reason for which it is so in this particular probem
is eloquently shown in Fig. 10 (from Coraddu et al. in [157]).

4.3 Peculiar Velocities in Sc Galaxies

From the data obtained by the Cosmic Background Explorer (COBE), it has
been possible to infer the distribution of peculiar velocities of certain groups
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Fig. 10. From Coraddu et al. in [157]. The penetration factor independs from the
statistics, hence from q. On the contrary, the thermal distribution of course depends
on q, and the authors have illustrated the cases q = 1 (solid line) and q = 0.98 (dashed
line); since only the tails of the distributions are relevant in this case, the distributions
are here multiplied by a huge factor 400, to make the tiny effect visible. The Gamow
peak, which effectively determines the flux of neutrinos, is given by the product of the
penetration factor and the thermal distribution: We can see how different the Gamow
peak is for q = 1 (solid line) and for q = 0.98 (dashed line)! This effect is therefore in
principle capable of explaining sensible deffects in the number of neutrinos arriving on
Earth.
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of spiral (Sc) galaxies (we recall that by peculiar velocity we mean the resid-
ual velocity after the global universe expansion velocity has been subtracted).
Bahcall and Oh [30] developed four theoretical attempts (namely Cold Dark
Matter with Ω = 0.3 and with Ω = 1.0, Hot Dark Matter with Ω = 1.0 and
Primeval Barionic Isotropic with Ω = 0.3). All the attempts were done within
BG statistics. The less unsatisfactory fitting was obtained for the CDM model
with Ω = 0.3. In fact, all the attempts exhibit a long tail towards high velocities,
whereas the experimental data show a pronounced cut-off at about 500 Km s−1.
It is relevant to mention that all the models that were used had several fitting
parameters, and nevertheless could not get rid of the tail. A fitting was then
advanced [171] using the present formalism with only two free parameters, one
of them being q and the other one a characteristic velocity. The function that
was used was the q-generalized Maxwell distribution, essentially corresponding
to an ideal classical gas. The quality of the fitting is quite remarkable, far better
than those corresponding to the already mentioned four attempts. Once again,
one sees that modifications of the statistics can be sensibly more efficient than
modifications of the model. A famous example along this line is provided by
the completely different physics associated with a gas of free fermions or of free
bosons, i.e., a Fermi-Dirac ideal gas or a Bose-Einstein ideal gas (same model
but different statistics).

4.4 Nonlinear Inverse Bremsstrahlung Absorption
in Low Pressure Argon Plasma

Liu et al. [31] provided in 1994 strong evidence of the existence of non-Maxwellian
velocity distributions in a specific plasma experiment, where low pressure ar-
gon is exposed to pulsed discharges. During the afterglow, measurements of the
inverse bremsstrahlung of intense microwaves is performed. The experimental
setting is such that Coulombian collisions are dominant. The experimental data
were fitted with the following flat-topped distribution:

f(v) ∝ exp[−(v/vm)m] (114)

with m ≥ 2. Souza and myself [172] showed in 1997 that the same data can
equally well be fitted with

f(v) ∝ [1− (1− q)(v/vq)2]q/(1−q) (115)

with q ≥ 1. In both fittings, the exponents m and q depend on the microwave
power. In order to discriminate between the two fitting functions, quite precise
and systematic experiments would be needed, in particular exploring the actual
dependence of the results on the power.

4.5 Cosmic Microwave Background Radiation

The most accurate data concerning the cosmic microwave background radiation
have been obtained with the FIRAS (Far-infrared absolute spectrophotometer)
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instrument in the COBE (Cosmic background explorer) satellite [173]. These
data are known to follow, in the 2 − 20 cm−1 region, Planck’s black-body law.
In 1995, Sa Barreto, Loh and myself [174], as well as Plastino, Plastino and
Vucetich [175] (and several others since then), analyzed within what precision
one is allowed to assume q = 1. The result that has systematically come out
from these analyses is |q− 1| < 10−4. If new observations were performed in the
future which would be say 10 times more precise than the available ones [173],
this bound would be attained. Consequently, we would know better within what
degree of confidence extensive thermostatistics can be used for this cosmological
problem. If q �= 1 turns out to be clearly confirmed, it is not excluded that we
would have to revise our notions about the structure of space-time at the ap-
propriate scales (possibly, Planck’s length). It might come out that the physics
at that level are better described by finite-difference equations than by differ-
ential equations! If so, the notion of a smooth and continuous space-time would
probably have to be abandoned, as suspected by Einstein in his last years! [176].

4.6 Electron–Positron Collisions

The electron-positron annihilation into a virtual photon and the subsequent
creation of a quark-antiquark pair provides the cleanest environment for the
hadroproduction. Each of the two initial partons begins a complex cascade re-
lated to the strong-coupling long-distance regime of Quantum Chromodynamics.
A partially successful global description of the hadroproduction has been pro-
vided through a thermodynamical equilibrium approach, mainly that of Hage-
dorn in 1965 [177]. This theory provides the following prediction:

1
σ

dσ

dpT
� cp

3/2
t exp−pt/T0 (pt > T0) , (116)

where σ is the distribution of the transverse momenta pt, T0 is a characteris-
tic temperature which Hagedorn predicts to be independent from the electron-
positron collision energy W in the mass center referential, and c is a constant.
The physical cause of this insensibility to W of T0 would be the impossibility
of heating the system above T0; indeed, larger W would induce the creation of
more mesons instead of further heating. This theory fits the data quite well for
small W , say W < 10 Gev, but exhibits a pronounced failure for W increasing
up to say 160 Gev. Very recently, Bediaga, Curado and Miranda [35] have used,
along Hagedorn’s lines, the present generalized statistics. To be more precise,
Hagedorn arrived [177] at expression

1
σ

dσ

dpt
= cpt

∫ ∞

0
dplP (pl) (117)

and used P (pl) = exp[− 1
T0

(p2l +p2t +m2)1/2], where m is the rest mass of the par-
ticles. Solving this integral within the realistic assumption that m,T0 << |pt|,
Hagedorn finally arrived to Eq. (116). What Bediaga et al. essentially did was to
phenomenologically use P (pl) = [1− 1−q

T0
(p2l +p2t +m2)1/2]q/(1−q), which recovers
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Hagedorn’s Boltzmann weight as the q = 1 particular case. The solution of this
integral leads to an expression involving several hypergeometric functions, hence
becoming a tractable problem. The results are indicated in Figs. 11 and 12. Re-
mark that (i) q varies smoothly and monotonically with varying W (Hagedorn’s
theory is recovered in the W → 0 limit), and (ii) T0 � 0.12 Gev (which is of
the order of magnitude of the meson mass!) and practically independs from W
as desirable from Hagedorn’s arguments. Due to the considerable experimental
span (almost 5 decades in the ordinate and 3 in the abcissa), these results can
be considered as a strong evidence of the applicability of the nonextensive ther-
mostatistics to specific anomalous systems. Further studies are welcome in order
to enlighten the microscopic mechanism (e.g., increase of the effective range of
nonmarkovian microscopic memory) which produces the phenomenological de-
pendence of q on W .

The nonextensivity-like phenomenon observed in electron-positron annihila-
tion also is observed in several others high-energy collisions, in particular in-
volving heavy ions. For instance, Wilk and co-workers [37] have satisfactorily
fitted an experimental [38] distribution of transverse momenta in S − S colli-
sions with q = 1.015. Also very recently, Alberico et al. [178] have proposed a
possible nonextensive origin of the so-called blue shift factor in Pb − Pb and
similar collisions.

4.7 Emulsion Chamber Observation of Cosmic Rays

Cosmic rays can be observed by using a variety of detectors (such as Pb detectors;
see [179] and references therein). Typically, showers of (clustered or individual)
elementary particles appear which start at the so called vertex. These vertex are
localized at various depths. The distribution of their depths can be measured
(see [34] and references therein for the measurements done at the Mount Pamir
lead chambers) . This distribution was recently fitted by Wilk and Wlodarcsyc
[34] with the q = 1.3 function which emerges within the present formalism.

4.8 Reassociation of Heme–Ligands in Folded Proteins

In the folded conformational state, proteins might exhibit fractal effects. One
such case might be the time evolution of the re-association of molecules that
have been taken away from their natural positions. For instance, if O2 molecules
are dissociated, through light flashes, from their natural Fe positions in a heme
protein and reach positions outside the heme pocket, they tend to start rebind-
ing, and, for so doing, they might have to follow a fractal path, or be under
the dynamical influence of fractal excitations (e.g., fractons). Anyhow, this re-
association phenomenon has been lengthily studied by Frauenfelder et al. [180].
If we define ξ ≡ N(t)/N(0) where N(t) is the number of molecules that have not
yet re-associated at time t, the ξ(t) monotonically vanishes with t. The results
obtained by photo-dissociating CO molecules from Sigma Type 2 sperm whale
Myoglobin (Mb) dissolved in a glycerol-water solution are shown in Fig. 10. For
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Fig. 11. Distribution of the transverse momenta pT obtained in electron-positron
frontal collisions of energy W varying from 14 to 161 Gev. The dotted line corre-
sponds to q = 1 (i.e., a Hagedorn type of fitting as given by Eq. (116)) for all values of
W . The solid lines correspond to q �= 1 fittings.

times not too long, the experimental data have been fitted by Frauenfelder et
al. [180] with

ξ = (1 + t/t0)−n , (118)

where t0 and n smoothly depend on the temperature T . Bemski, Mendes and
myself [181] have argued that, within the generalized formalism, the following
equation naturally appears:

dξ

dt
= −λq ξq (λq ≥ 0; q ≥ 1) . (119)



Nonextensive Statistical Mechanics and Thermodynamics 47

Fig. 12. The values of q and T0 used in the fittings of Fig. 11. When W approaches
zero, q approaches unity, i.e., Hagedorn’s theory; T0 is essentially insensitive to W , as
physically desirable.

Its solution is given by

ξ =
1

[1 + (q − 1)λqt]
1

q−1
. (120)

This expression recovers, for q = 1, the usual exponential relaxation (i.e., ξ =
e−λ1t), and reproduces the Frauenfelder form through the identifications 1/(q−
1) ≡ n and 1/[(q−1)λq] ≡ t0. Besides reobtaining the Frauenfelder empirical law,
the present scheme allows for a better approximation if a crossover is admitted.
More precisely, the above differential equation can be generalized as follows:

dξ

dt
= −µr ξr − (λq − µr) ξq (r ≤ q) . (121)
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The general solution involves [181] a hypergeometric function, hence it is tracta-
ble. The fitting is shown in Figs. 13 and 14. To better understand the physical
regions involved in Eq. (121), we have exhibited in Fig. 15 two typical situations,
namely corresponding to r = 1 and to r > 1.

A microscopic model which would justify the above phenomenological differ-
ential equation would be welcome. Such model would have the uneasy task of
simultaneously recovering, in the experimental temperature range, the following
behaviours:
(i) 1/(q − 1) ∝ T ;
(ii) r(T ) ≈ 2;
(iii) λq ∼ Aλe

BλT ;
(iv) µr ∼ Aµe

BµT with Aµ << Aλ and Bµ ≈ 2Bλ.

4.9 Diffusion of Hydra Vulgaris

Upadhyaya et al. [182] are presently performing interesting experiments on Hy-
dra Vulgaris (a cylindrical body column with inner and outer cells, respectively
referred to as endodermal and ectodermal respectively) in physiological solution.
The endodermal cells are more adhesive than the ectodermal ones. The authors
have measured the velocity distribution P (|Vy|) of the “vertical” component
of the velocity during the diffusion of endodermal Hydra cells in an ectoder-
mal aggregate. The results are presented in Fig. 16, where the velocity unit is
10−6m/hour and the probability is represented by the histogram of the number
of counts. These results were fitted with

P (|Vy|) =
a

(1 + b|Vy|2)c (122)

with the values of (a, b, c) indicated in the figure. Through the identifications

a = P (0) , b = (q − 1)/V 2
0 , c =

q

q − 1
, (123)

we precisely have the law which emerges within the present formalism, namely

P (|Vy|) =
P (0)

[1 + (q − 1)(Vy/V0)2]q/(q−1) (124)

with q = 1.53. The next desirable step of course is to formulate a specific model
for Hydra which would lead to this law, but this remains to be done.

4.10 Citations of Scientific Papers

An interesting study was recently done by Redner [183], in which the statistics
of citations of scientific papers is focused. He exhibited the number N(x) of
papers which have been cited x times for two long series, namely one (6 716 198
citations of 783 339 papers) from the Institute of Scientific Information (ISI)
and another one (351 872 citations of 24 296 papers) from the Physical Review
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Fig. 13. Time evolution of ξ ≡ N(t)/N(0) associated with MbCO in glycerol-water.
Dots: experimental data. Dashed lines: fittings with Frauenfelder’s empirical law (Eq.
(118) or Eq. (120)). Solid lines: fittings with the solutions of Eq. (121) (see Fig. 14).

D (PRD). As expected, in both examples, N(x) monotonically decreases with
x. Redner fitted the (relatively) low-x data with a stretched exponential of the
form

N(x) = N(0) e−(x/x0)β (125)

with β = 0.44 and 0.39 for the series ISI and PRD respectively. Also, he remarked
that the large- x data exhibit a power law, namely close to ∝ 1/x3. He argues
that this different functional behavior for low and large values of x must reflect
different phenomenologies in these two regimes. In contrast with this viewpoint,
Albuquerque and myself [184] argue that this is not necessarily so since the data
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of Fig. 13: (a) the exponents, and (b) the coefficients.

can be quite satisfactorily fitted with a single function, namely

N(x) =
N(0)

[1 + (q − 1)λx]q/(q−1) (126)

with q = 1.53 and 1.64 for the series ISI and PRD respectively: see Fig.17. The
satisfactory quality of the fittings is, after all, not so surprising, since we have
mentioned earlier in this paper the connection [160] of this formalism with the
Zipf law.

4.11 Electroencephalographic Signals of Epilepsy

It is since long known that the analysis of signals can be done within formalisms
which use entropic forms. One such application has been recently done on EEG
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ξ linearly decreases with t; for t∗q << t << t∗∗
r , ξ ∝ 1/t

1
q−1 ; for t∗∗

r << t, ξ ∝ 1/t
1

r−1

if r > 1 (ξ exponentially decreases with t if r = 1). The two examples exhibited in the
figure correspond to q = 2.7, λq = 1, µr = 10−5 and r = 1, 1.7. Erratum in [181]:
where we see in this figure t∗∗

1.7 (correct), we see in [181] t∗∗
2.7 (wrong).

records of epileptic humans and turtles [185]. The simultaneous use of wavelet-
based multiresolution analysis including the nonextensive entropy Sq leads to
signals whose interpretation can be clinically neat and pharmacologically conve-
nient. The authors of this novel processing suggest perspectives for building up
automatic detection devices.
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Fig. 16. Distribution of the “vertical” velocities during diffusion of endodermal Hydra
cells in an ectodermal aggregate. The abcissa units are 10−6 m/hour. The fitting was
obtained using q = 1.53 (see the text).

4.12 Cognitive Psychology

The development of artificial neural networks and their connections with statis-
tical mechanics (e.g., the Hopfield model for associative memory) makes quite
natural the approach of cognitive problems with the present nonextensive for-
malism. Within this philosophy, we performed [186] an experiment of learn-
ing/memorization (of 5 × 5 and 7 × 7 square matrix having circles and crosses
randomly distributed once for ever) with students of the University level; 150
students were interviewed, the first 30 in order to optimize the experimental
protocol, and the other 120 to make the measurements of the time-evolution
of the total amounts of errors when the original matrix was successively shown
and hidden. The average results were then fitted with those obtained, for the
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Fig. 17. Distribution of ISI and PRD papers having received x citations. (a) and (b)
exhibit the fittings in [183]; (c) and (d) exhibit our present fittings (see the text).

same task, with a learning machine [187] having a perceptron architecture and
an internal dynamics based on the Langevin equation [105] generalized by Star-
iolo to arbitrary q. The (average) learning time of the machine turned out to
monotonically increase with q, exhibiting a practically divergent derivative at
q = 1. The best human-machine fit occurred for q slightly above unity. More
experiments and comparisons along these lines would be very welcome. Indeed,
they would help better understanding some cognitive phenomena, on one hand,
and could generate efficient machines for specific tasks, on the other.

4.13 Fully Developed Turbulence and Financial Markets

In 1996 Ghashghaie et al. [188] compared financial data with those obtained
from turbulent measurements such as those exhibited in Fig. 18, and showed
very similar behaviors when appropriate scalings are used. Ramos et al. [189]
have recently shown that all these data can be satisfactorily fitted with the
functional form which emerges from the present formalism. Olsen and Associates
data containing bid-ask quotes for (US dollar)-(German mark) exchange rates
(1,472,241 records) are presented in Fig. 19 (probability density Pτ (zτ ) of price
changes; zτ ≡ z(t) − z(t + τ) with τ = 640s, 5120s, 40960s and 163840s
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from top to bottom in the figure). The turbulent flow data presented in Fig.
18 are those in [190] (probability density Pr(vr) of velocity differences; vr ≡
v(x)− v(x+ r) for spatial scale differences r = 3.3η, 18.5η, 138η and 325η from
top to bottom in the figure, where η is the Kolmogorov scale, i.e., the critical limit
for occurrence of viscous dissipation). All these curves exhibit a slight left-right
asymmetry (skewness), which has been phenomenologically taken into account
by Ramos et al. by using the same q for both sides but different widths (i.e.,
allowing for β− �= β+).

Besides these fittings the authors developed a theory which essentially uses
only one experimental value, namely that of the intermittency exponent µ,
known to be close to 0.25 [190]. The results they obtained are shown in Fig.
20. Let us remind at this point the definition of µ. The energy spectrum (iner-
tial range) is given by

Ek ∝ ε2/3 k−5/3 (k/K)−µ/9 , (127)

where ε is the energy input rate, and k and K are respectively the wave numbers
associated with the eddies and that associated with L, the largest size of the grid.
Within Kolmogorov theory µ = 0.

The next step connecting the present nonextensive formalism with fully de-
veloped turbulence was accomplished by Arimitsu and Arimitsu [191]. By using
a scenario similar to the binomial multiplicative one, they obtained the following
relation between q and µ:

q = 1− 1 + µ+
{
log2

[
1 + (1− 2−µ)1/2

]} {
log2

[
1− (1− 2−µ)1/2

]}
log2

[
1 + (1 + 2−µ)1/2

]− log2
[
1 + (1− 2−µ)1/2

] (128)

where log2 denotes the logarithm with basis 2. The authors used the experimental
value [192] µ ≈ 0.235 and obtained q ≈ 0.237. They then used this value of q and
obtained a distribution of turbulent kinetic energy remarkably close to both the
experimental one and to that obtained in the theory which assumes binomial
multiplicative processes.

The next contribution to this fascinating phenomenon, also using nonexten-
sive thermostatistics, is due to Beck [193]. Using a Langevin-like equation, he
obtained the following distribution (normalized to unit variance) for the radial
velocity difference u between two points separated by r:

p(u) =
1
Zq

{
1 + β(q − 1)

[
u2

2
− 1

R
1/2
λ

(
u− u3

3

)]}− 1
q−1

, (129)

where Zq and β are determined (as functions of q) by
∫∞

−∞ du p(u) = 1 and
〈u2〉 − 〈u〉2 = 1 (hence, if Rλ >> 1, β ≈ 2/(5 − 3q)). The entropic index q is in
turn determined by

1
1− q

= 1 + log2
r

η
. (130)

It should be noticed that, in contrast with the two, already quite satisfactory,
preceding theoretical approaches [189,191] (which both used one free parameter,
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namely µ) this is a no-free-parameter theory. Once the experimental values for
(Rλ, η, r) are chosen, the distribution p(u) completely follows. The results are
exhibited in Fig. 21. Let us also stress that, within this attempt, the necessary
skewness emerges as well. In addition to this, the moment scaling exponents
ζm (defined through 〈|u|m〉 ∼ rζm) for m= 2, 3, ..., 8 were calculated. The
values obtained are respectively 0.68 [0.705], 1 [1] (by construction), 1.30 [1.305],
1.58 [1.595], 1.82 [1.79], 2.02 [2.06] and 2.16 [2.225], where between brackets we
have indicated the average of two sets of experimental data. The average of the
absolute values of the discrepancies is 1.6%, which is quite remarkable.

Finally, the most recent contribution to this saga was provided by Arimitsu
and Arimitsu [195]. Indeed, in an approach related to their first one (and which
again uses the experimental value for µ as the unique parameter which is external
to the theory) they focused on the m-dependence of ζm. We reproduce in Fig. 22
their result compared to those obtained within other available theories, as well
as to experimental data. Their curve satisfactorily fits the data up to m = 30,
which is quite remarkable. As a comparison, notice that the range presently
illustrated by Beck only goes up to m = 8.

As a final comment, let us stress that, whereas both Ramos et al. and Beck
theories yield q > 1, the Arimitsu’s approach yields q < 1. There is nevertheless
no contradiction. Although using the same notation, they are referring in fact
to different indexes. Indeed, the Arimitsu’s refer to the sensitivity to the initial
conditions, whereas the other two theories refer to energy-like indexes. This
delicate point is not yet well understood and is further analyzed in subsection
5.7.

5 Computational Evidence and Connections

5.1 Thermalization of a Hot Gas Penetrating in a Cold Gas

In 1991, Waldeer and Urbassek [27] made, assuming d = 3 Newtonian mechanics,
a computational simulation in which a certain amount of high energy particles
penetrate into a cold gas and are thermalized through the interactions between
molecules. The cold gas is initially put at BG thermal equilibrium at temper-
ature TC . The high energy particles at time t = 0 are randomly distributed
in energy at a quite high energy per particle. The interaction potential was as-
sumed to be hard sphere at short distances and decreasing, at long distances, like
r−α. They analyzed three typical situations, one with α → ∞, hence well above
d (i.e., very short range interactions), the second one with α = 4 (i.e., short
range interactions), and the last one with α = 8/3, which is below d (i.e., long
range interactions). In their simulation, they follow the time evolution of the en-
ergy distribution of the hot particles. After a transient, this distribution evolves
with a regular pattern. For α > d, this pattern basically is the BG distribu-
tion with a temperature T (t) which gradually approaches TC from above (with
limt→∞ T (t) = TC), in other words, through curves which approximately are
straight lines in a log-linear plot. For α < d, this approximation occurs through
curves which are close to straight lines... in a log-log plot! See Figs. 1, 2 and 3
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Fig. 18. Standardized distributions of velocity differences vr ≡ v(x)− v(x+ r) where
r is the spatial scale, with L/η = 454, L and η being respectively the integral and
Kolmogorov scales. From top to bottom: r/L= 0.0073, 0.0407, 0.3036 and 0.7150. The
experimental data are from [190]. The solid curves have been obtained through fittings
using asymmetric q-distributions (see the text). From top to bottom: (q, β−, β+)=
(1.26,0.69,0.88), (1.20,0.66,0.82), (1.11,0.55,0.76) and (1.08,0.62,0.70). For better visi-
bility the curves have been vertically shifted with respect to each other.

of [27]. Notice that the curvature in these log-log plots tends to be even slightly
upwards for α < d, whereas it is downwards for α > d. This power-law behavior
is typical of q > 1. This peculiarity was invoked by Koponen [28] in 1997 as a jus-
tification for using the present generalized formalism to discuss electron-phonon
relaxation in ion-bombarded solids if the interactions are long-ranged. A study
like that of Waldeer and Urbassek [27] which would systematically address the
details of that thermalization by gradually varying α across d is missing and
would certainly be very welcome.
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Fig. 19. Standardized distributions of price changes zτ ≡ z(t) − z(t + τ) for (US
dollar)-(German mark) exchange rates where τ is the temporal scale, with the inte-
gral scale τL = 186, 265s. From top to bottom: τ/τL= 0.0035, 0.0276, 0.2210, 0.8838.
The experimental data are from Olsen and Associates (see [188]). The solid curves
have been obtained through fittings using asymmetric q-distributions (see the text).
From top to bottom: (q, β−, β+)= (1.35,1.12,0.98), (1.26,0.83,0.72), (1.16,0.75,0.61)
and (1.11,0.75,0.77). For better visibility the curves have been vertically shifted with
respect to each other.
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Fig. 20. Dependence of q on normalized spatial (r/L) and temporal (τ/τL) scales,
respectively corresponding to turbulence and financial markets. Turbulence: solid line
(theory by Ramos et al.), open squares (asymmetric fitting; see Fig. 18) and solid
squares (symmetric fitting, i.e., imposing β+ = β− ≡ β). Financial markets: dotted
line (theory by Ramos et al.), open triangles (asymmetric fitting; see Fig. 19) and solid
triangles (symmetric fitting, i.e., imposing β+ = β− ≡ β).

5.2 Long-Range Classical Hamiltonian Systems: Static Properties

Let us focus here on what we refer to as weak violation of BG statistics. We
use this expression to distinguish it from what we call strong violation of BG
statistics. Both of them lead to nonextensive quantities, but, whereas the strong
violation concerns q �= 1, the weak one concerns q = 1 calculations. To make
all this explicit we shall here focus on classical systems, i.e., all observables are
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Fig. 21. Distribution of velocity differences (normalized to have unity variance) for
Reynolds number Rλ = 852. From top to bottom: r/η= 3.3, 23.6 and 100. The exper-
imental data are from [194]. The curves are from Beck’s theory. For better visibility
the curves have been vertically shifted with respect to each other.

assumed to commute. Let us consider the following paradigmatic Hamiltonian:

H =
1

2m

N∑
i=1

p2i +
∑
i 
=j

V (rij) , (131)

where m is a microscopic mass, {pi, ri} are the d-dimensional linear momenta
and positions associated with N particles, and rij ≡ rj − ri. A typical situation
is that of a finite confined system but, if some care is taken, the system could
as well be thought of as having periodic boundary conditions. To be specific, let
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Fig. 22. Them-dependence of the scaling exponent ζm. Theoretical curves (from top to
bottom): 1941 Kolmogorov theory, β-model (withDβ = 2.8), p-model (with µ = 0.235),
log-Poisson model (fitted), present Arimitsu and Arimitsu model (solid curve; with
µ = 0.235, which here corresponds to q = 0.370, instead of q = 0.237 obtained in their
previous approach [191]) and log-normal mode (with µ = 0.235). Experimental data:
solid triangles from Anselmet et al. in [192]; squares and cercles from [196].

us assume

V (rij) =
A

r12ij
− B

rαij
(A > 0; B > 0; 0 ≤ α < 12) , (132)

where, in order to avoid any singularity at the origin (for any dimension d not
exceedingly high), we have assumed, for the repulsive term, the Lennard-Jones
exponent 12. What we desire to focus on in the present discussion is possi-
ble singularities associated with infinite distances, i.e., the effects of long-range
(attractive) interactions. The case (α, d) = (6, 3) precisely recovers the standard
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Lennard-Jones fluid; the case (α, d) = (1, 3) is asymptotically equivalent to New-
tonian gravitation; the case (α, d) = (d − 2, d) is asymptotically equivalent to
d-dimensional gravitation (i.e., the one associated with the solutions of the d-
dimensional Poisson equation); the case (α, d) = (3, 3) basically reproduces the
distance dependence of permanent dipole-dipole interaction. The range of the
(attractive) interaction increases when α decreases; α → 12 corresponds to very
short-ranged interactions, whereas α = 0 corresponds to the situation of the
Mean Field Approximation, where every particle (attractively) interacts with
every other with the same strength, in all occasions.

A typical quantity to be calculated within BG statistics is the following one
(basically related to the T = 0 internal energy per particle):∫ ∞

1
dr rd−1 r−α , (133)

where the distances r have been expressed in units of a characteristic length
of the problem. We immediately verify that this integral converges if α > d,
and diverges if 0 ≤ α ≤ d. Consequently, thermodynamic calculations in the
0 ≤ α ≤ d case have to be done with some care, and not blindly following the
standard rules associated with BG statistics (i.e., q = 1). It is in this sense that
we use the expression “weak” violation of BG statistics. The care to which we
refer is the fact that we have to strictly consider the finite size of the physical
system. Consistently, a relevant quantity that emerges naturally is

N∗ ≡ d

∫ N1/d

1
dr rd−1 r−α =

N1−α/d − 1
1− α/d

. (134)

We can check that, in the N → ∞ limit, we have

N∗ ∼




1
α/d−1 if α/d > 1 ,

ln N if α/d = 1 ,
N1−α/d

1−α/d if 0 ≤ α/d < 1 .

(135)

As it will become transparent later on, what these regimes imply is that the sys-
tem is extensive for α/d > 1 (hence standard thermodynamics apply), whereas it
is nonextensive for 0 ≤ α/d ≤ 1, and special scalings become necessary [197,198]
in order to have both a mathematically well posed problem, and a physical un-
folding (or qualification) of the nonextensive region. The α/d > 1 regime has
since long been analyzed [15], and it is well known that extensivity (or, stability,
as also referred to) is lost for α/d ≤ 1. However, to the best of our knowledge,
the scalings associated with the quantity N∗, as well as its numerically efficient
collapsing properties, were introduced for the first time by Jund et al. [198] in
1995.

A quantity related to N∗, namely Ñ turns out to be even more convenient.
It is defined through (see Eq. (102) of [3])

Ñ ≡ N∗ + 1 =
[N1−α/d − α/d]

1− α/d
. (136)
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In the N → ∞ limit, we have

Ñ ∼




α/d
α/d−1 if α/d > 1 ,

ln N if α/d = 1 ,
N1−α/d

1−α/d if 0 ≤ α/d < 1 .

(137)

In the limit α/d → ∞, Ñ → 1; in the limit α/d → 1 + 0, Ñ ∼ 1/(α/d − 1);
in the limit α/d → 0, Ñ ∼ N . Roughly speaking, Ñ characterizes the effective
number of neighbors that can be associated with a given particle. This is the
convenience to which we referred above. See Fig. 23.
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Fig. 23. The rescaling function Ñ(N,α/d) versus α/d for typical values of N (a), and
versus N for typical values of α/d (b). For fixed α/d ≥ 0, Ñ monotonically increases
with N increasing form 1 to ∞; for fixed N > 1, Ñ monotonically decreases for α/d
increasing from 0 to ∞. Ñ(N, 0) = N , thus recovering the Mean Field Approximation
usual rescaling; limN→∞ Ñ diverges for 0 ≤ α/d ≤ 1, thus separating the extensive from
the nonextensive region; N(∞, α/d) = (α/d)/[(α/d) − 1] if α/d > 1; limα/d→∞ Ñ =
1, thus recovering precisely the traditional intensive and extensive thermodynamical
quantities; Ñ(N, 1) = lnN .

We are ready now to present the kind of size-scalings we expect to be nec-
essary for thermodynamically describing a generic classical Hamiltonian system
with the type of interactions above mentioned. Let us focus on a simple fluid,
and start with the standard case, i.e., α > d. Its Gibbs energy G(T, p,N) is given
by

G(T, p,N)
N

∼ U(T, p,N)
N

− T
S(T, p,N)

N
+ p

V (T, p,N)
N

, (138)

where U, S, V, N, T and p respectively are the total internal energy, total
entropy, total volume, total number of particles, temperature and pressure. In
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the N → ∞ limit, we obtain

g(T, p) = u(T, p)− T s(T, p) + p v(T, p) , (139)

where the corresponding densitary variables have been introduced.
In contrast with the above, if we have 0 ≤ α ≤ d, the scalings are different,

namely

G(T, p,N)
N Ñ

∼ U(T, p,N)
N Ñ

− T

Ñ

S(T, p,N)
N

+
p

Ñ

V (T, p,N)
N

. (140)

Consistently we have

g(T̃ , p̃) = u(T̃ , p̃)− T̃ s(T̃ , p̃) + p̃ v(T̃ , p̃) , (141)

where
T̃ ≡ T

Ñ
, p̃ ≡ p

Ñ
. (142)

These equations recover the previous ones (i.e., Eqs. (138,139)), i.e., those asso-
ciated with α > d, as a particular case. Indeed, for α > d, Ñ becomes a constant.
This constant becomes unity in the α/d → ∞ limit, hence T̃ → T , p̃ → p, etc.;
this is a nice illustration of what was already mentioned, namely that Ñ is more
convenient that N∗.

So, we see that long range interactions have important thermodynamical
consequences, namely

(i) the energy quantities (G, U , which, in the usual Legendre-transform struc-
ture, appear alone), which are extensive for α > d, loose their extensivity;

(ii) the non-energy quantities (S, V , which normally appear, in the Legendre
structure, in canonical pairs with intensive quantities), which are extensive for
α > d, preserve their extensivity, though with rescaled control parameters;

(iii) the control parameters (T, p), that are intensive for α > d, loose their
intensivity.

Consistently, to have mathematically well defined and physically useful equa-
tions of states and related quantities, everything must refer to finite quantities,
hence, we must express all relations with the above rescaled variables. This does
not imply that thermal equilibrium occurs through sharing equal values of T̃ , p̃,
etc. The zero-th principle of thermodynamics appears to hold in the usual way,
even if we have long range interactions in the system. Although we have illus-
trated these features on a fluid, it is clear that the same considerations hold for
all types of thermodynamical systems (magnets, dielectric substances, elastic
solids, etc.).

Two particular remarks must be made at this point:
(i) When every element of the system equally interacts with each other (i.e.,

α = 0), Ñ = N , and consequently T̃ = T/N . In what concerns the thermo-
statistical approach of a system, this is equivalent to dividing the microscopic
coupling constants by N , a familiar feature that is artificially imposed in all
Mean Field calculations. We have used the word “artificial” because, whenever
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α ≤ d, the Hamiltonian which includes the microscopic interactions indeed is
nonextensive! (and so is U). To divide the two-body coupling constants by N
when α = 0 (or, by Ñ , when α > 0) certainly is an artificial manner of forcing to
be extensive a Hamiltonian which physically is not. This practice is traditionally
frequent among magneticiens (who divide J by N), but certainly not among as-
tronomers, who normally do not even think about what would be a very strange
way of renormalizing the gravitational constant G!

(ii) If a singularity (for example, a critical phenomenon) occurs under par-
ticular physical conditions, it must generically occur at finite values of T̃ , p̃,
etc., and not at finite values of T, p, etc. Let us illustrate this for the simple
case of a critical temperature: T̃c must be finite, hence, if α/d > 1, it must
be Tc(α, d) ∝ 1/(α/d − 1) This implies that Tc must generically diverge for all
classical systems at the extensive-nonextensive frontier. More precisely

Tc(α, d) ∼ A(d)
α/d− 1

(α/d → 1 + 0) , (143)

where A(d) is a system-dependent finite constant. In fact, let us anticipate that
this precise behavior has been observed in the systems available in the literature
[198] (d = 2 and d = 3 Lennard-Jones-like fluids, d = 1 and d = 2 Ising and Potts
ferro- and antiferromagnets, etc.), with no exception. To illustrate the connection
between fluid models like the extended Lennard-Jones one above considered, and
localized spin systems, let us briefly focus on the Ising ferromagnet. The simplest
long-range N -spin cubic-lattice Hamiltonian of this kind is given by [20]

H = −J
∑
i 
=j

SiSj

rαij
(J > 0; α ≥ 0; Si = ±1 ∀i) , (144)

where, for d = 1, rij =1, 2, 3, ...; for d = 2, rij = 1, 21/2, 2, ...; for d = 3,
rij = 1, 21/2, 21/3, 2, ... ; and so on. Clearly, the limit α → ∞ recovers the
first- neighbor d-dimensional spin 1/2 ferromagnet, whereas α = 0 corresponds
to the Mean Field Approximation. For this model, kTc(α, d)/J diverges for
0 ≤ α/d < 1, decreases for α/d increasing above unity, and approaches the
first-neighbor value (0 for d = 1, 2.269... for d = 2, etc.) for α/d → ∞. Also,
kTc/J ∼ A(d)/[(α/d)−1] in the α/d → 1+0 limit. The introduction of T̃ nicely
enables the unfolding of the region where Tc diverges. Indeed, kT̃c/J ≡ kTc/(JÑ)
is finite in both extensive (α/d > 1) and nonextensive (0 ≤ α/d ≤ 1) regions, thus
providing an enlightening unification. Finally, let us mention that, it seems that
all equations of states (e.g., limN→∞ M(T,N)/N can be, for all α/d ≤ 1, mapped
into that associated with the Molecular Field Approximation. This simplifying
feature appears to hold only for the static thermodynamic properties, and not
for the dynamical ones, as will become clear later on (in subsection 5.7).

(iii) It is interesting to illustrate, say on the internal energy U , the role played
by N . At fixed temperature T̃ , in the N → ∞ limit, we have for any fixed value
λ > 0 that

U(λN) ∼ (Nλ)1−α/d − α/d

N1−α/d − α/d
λ U(N) . (145)
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This relation implies that, for α/d ≥ 1,

U(λN) ∼ λ U(N) (146)

and that, for 0 ≤ α/d < 1,

U(λN) ∼ λ2−α/d U(N) . (147)

So, if we eat an ice-cream whose weight is the double of another one, we shall
get into our body the double of calories. But, were it not for the gravitational
singularity at the origin which introduces complications, if we ”eat” a double-
mass galaxy (i.e., α = 1 and d = 3), instead of a single-mass one, we would
get 25/3 ≈ 3.2 as much calories! As we see, size scaling at the thermodynamical
limit ignores the microscopic interactions if they are short-ranged, but it does
”remember” the ratio α/d if the interactions are long-ranged.

To close this subsection, let us emphasize that what we have been focusing
on here is what we refer to as the weak violation of BG statistical mechanics (see
Fig. 4). These are analytical or Monte Carlo q = 1 calculations (i.e., the energy
distribution obeys by imposition the Boltzmann factor), but the variables must
be scaled with Ñ , which is not at all necessary for the standard, short-ranged
interacting systems.

5.3 Long-Range Tight-Binding Systems

In the previous subsection we addressed classical systems. It is clear, however,
that similar nonextensivity is expected to emerge in quantum systems if long-
range interactions are present. One such Hamiltonian is the tight-binding-like
which follows [199,200]:

H =
N∑
i=1

εic
+
i ci +

∑
i,j 
=i

V

rαij
c+i cj (α ≥ 0; rij = 1, 2, 3, ...) , (148)

where c+i and ci are the creation and annihilation operators associated with elec-
trons on site i, the {εi} are the on-site energies, and V is the inter-site energy.
The T = 0 electron diffusive properties corresponding to this Hamiltonian ex-
hibit a variety of anomalies intimately related to Ñ , as preliminary shown by
Nazareno and Brito [199]. More details have been recently exhibited by Borland,
Menchero and myself [200]: see Fig. 24.

5.4 Granular Systems

In 1995, Taguchi and Takayasu [26] simulated a vertically vibrated bed of powder
with inelastic collisions and studied the distribution of horizontal velocities. In
the lower layers (so called solid phase) they observed a standard Maxwellian
(Gaussian) distribution of velocities. The situation was sensibly different in the
upper layers (so called fluidized phase). Indeed, there the distribution was a
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Fig. 24. Some of the various anomalies present in this quantum problem are shown for
the time evolution of the mean square displacement, namely the α-dependences of the
exponents κ and γ (a), and of the amplitude ∆α (b).

Student’s t-distribution, precisely the one appearing in Eq. (63) with q = 5/3
(precisely the value which, for d = 1, separates the Gaussian from the Lévy
regime!), and assuming an energy proportional to the (velocity)2 (together with
d = r = 2, hence a constant density of states). This anomaly must be related to
the fractal-like granular clusterization which occurs in real space [201] but a deep
analysis would be welcome. Also would further simulations, for instance of the
cooling type. Studies of such computational models, either externally forced or
just left to their own isolated evolution, can provide important physical insights,
especially if quantities like the energy distribution, the Liapunov spectrum (or
at least its maximum value) or possible multifractality are focused on.
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5.5 d = 1 Dissipative Systems

One-dimensional maps constitute the simplest systems which might present
chaos. Basically they consist of the following recurrent equation:

xt+1 = h(xt; a) (t = 0, 1, 2, ...) , (149)

where h(x; a) is a rather simple nonlinear function of x, and a is a control param-
eter. Typically, both x and a are real numbers (but higher-dimensional situations
are of course possible, and frequently studied). The logistic map, for instance,
exhibits this structure. Typically, for a < ac, the system exhibits simple orbits,
the attractor being a cycle whose number of elements is finite. For a > ac, the
system can exhibit attractors with an infinite number of elements. The value
ac is the critical one, usually referred to as the chaos threshold; the associated
attractor typically constitutes a multifractal characterized by the so called mul-
tifractal function f(αH), where αH is the Holder (or crowding) exponent. The
f(αH) function is generically concave, attains its maximum at a value of αH

in the interval [αmin
H , αmax

H ] and this maximum equals the fractal or Hausdorff
dimension df . An important feature of this type of maps is the sensitivity to the
initial conditions (and, of course, to the rounding at any intermediate calcula-
tion). More precisely, if we note ∆x(0) a small variation in the initial condition
x0, and follow its time evolution ∆x(t), we can define the sensitivity function
ξ(t) as ξ(t) ≡ lim∆x(0)→0

∆x(t)
∆x(0) . At most values of a, ξ(t) satisfies dξ/dt = λ1ξ,

hence
ξ = exp(λ1 t) , (150)

where λ1 is the so called Liapunov exponent. If λ1 > 0 (λ1 < 0) the system is said
strongly sensitive (insensitive) to the initial conditions. The λ1 = 0 possibility
can also occur and is referred to as the marginal case. In this situation ξ(t)
satisfies [99,202,203] dξ/dt = λq ξ

q, hence

ξ = [1 + (1− q)λq t]
1

1−q (151)

which recovers Eq. (150) as the q = 1 case. Two generic λ1 = 0 possibilities
exist for which ξ is finite and nonvanishing for all values of t, namely q < 1 with
λq > 0 (weakly sensitive to the initial conditions), and q > 1 with λq < 0 (weakly
insensitive to the initial conditions). For instance, the logistic map exhibits q = 1
for almost all values of a but exhibits q < 1 at the chaos threshold and q > 1 at
every doubling-period as well as tangent bifurcations. More two generic λ1 = 0
possibilities exist in principle, namely q < 1 with λq < 0 (which makes ξ to
vanish at a finite time t0 = 1/[(q − 1)λq]), and q > 1 with λq > 0 (which makes
ξ to diverge at a finite time t∞ = 1/[(q− 1)λq]). Finally, an extremely marginal
case can in principle occur, namely that for which λq vanishes for all values of
q. In that case, the sensitivity or insensitivity to the initial conditions must be
extremely weak (for instance, of the logarithmic type).

Of all the above possibilities, by far the most interesting is in some sense
the first of them, i.e., when q < 1 and λq > 0. Indeed, in this case we do have
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permanent mixing, but at a slow (power-law) rate. It is this situation that we
primarily focus on in what follows. First of all, for this case, Eq. (151) must be
understood only as the upper bound of ξ(t). Indeed, ξ(t) presents complex, large,
and ever lasting fluctuations as t increases (see also [204], where this behavior is
described; these references contain the first observations and discussions of the
ξ ∝ t1/(1−q) law, which can be now seen as the asymptotic region t >> 1 of Eq.
(151)).

The sensitivity to the initial conditions of three different families of maps
at their respective edges of chaos have been recently studied [99,202,203] in a
systematic numerical way. These families of maps are natural generalizations
(to arbitrary power at their extremum) of the logistic, periodic and circle maps.
They are respectively defined as follows:

xt+1 = 1− a|xt|zL
(t = 0, 1, 2, ...; xt ∈ [−1, 1]; 0 < a ≤ 2; zL ≥ 1) , (152)

xt+1 = d cos(π|xt − 1/2|zP /2)
(t = 0, 1, 2, ...; xt ∈ [−d, d]; d > 0; zP ≥ 1) , (153)

θt+1 = Ω +
[
θt − 1

2π
sin(2πθt)

]zC/3

[mod(1)]

(t = 0, 1, 2, ...; θt ∈ [0, 1]; 0 ≤ Ω ≤ 1; zC > 0) , (154)

where

zL = 2 : the usual logistic map ,

zP = 2 : the usual periodic map ,

zC = 3 : the usual circle map , (155)

respectively. The logistic-like and the periodic-like families belong to the same set
of universality classes, namely characterized by zL = zP . The circle-like family
belongs to a different set of universality classes, characterized by zC . Some of
the results are exhibited in Fig. 25, where we see (q∗, df ) for typical values of
the exponents zL = zP and zC (q∗ denotes the value, appearing in Eq. (151),
which characterizes the upper bound mentioned above). As we see, df = 1 does
not guarantee q = 1, which would be the false idea we could have if we only
knew the results associated with say logistic-like maps. Consequently, the idea is
reinforced that what is relevant for nonextensivity is not the degree of occupancy
of the phase space, but rather the speed at which mixing occurs within it.

It has been shown that a large class of such systems (for which f(αmin
H ) =

f(αmax
H ) = 0) verify, at the chaos threshold, the following scaling law [203]:

1
1− q∗ =

1
αmin
H

− 1
αmax
H

(156)

This is a fascinating relation. Indeed, its left-hand member concerns the dynam-
ics of the sensitivity to initial conditions of the map, whereas its right-hand mem-
ber concerns pure, though nontrivial, geometry. Under what precise mathemat-
ical conditions does it hold? How should it be generalized in order to also cover
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maps (zL = zP ) and cercle-like familiy of maps (zC); the solid lines that run between
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BG corner. However, it can be shown that limzL→∞ q∗(zL) < 1; probably the same
occurs for zC .

the standard case of Euclidean geometry (αmin
H = αmax

H = df = 1) for which one
expects q∗ = 1? (Should we also consider simultaneously f(αmin

H ) = f(αmax
H ) = 1

?; Could Eq. (156) be generalized into say 1/(1 − q∗) = 1/[αmin
H − f(αmin

H )] −
1/[αmax

H − f(αmax
H )], the Euclidean case thus corresponding to a special limit of

the type αmin
H /f(αmin

H ) = αmax
H /f(αmax

H ) = q∗ = 1 ?). What happens for two- or
more-dimensional maps? What happens if, instead of maps, we have ordinary (or
even partial) differential equations? To answer all these questions, computational
effort is invaluable in order to prepare the road to analytical proofs.
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Let us make at this point an important clarification to avoid an easy confusion
in the mind of more than one reader. In multifractal theory there exists an index
frequently noted q, but which we shall here note qM (M stands for multifractal).
The f(αH) function appears as a convenient Legendre transfom (see for instance
[79]) which involves qM . This transformation provides the relation αH(qM ). The
quantities αmin

H and αmax
H earlier introduced, and appearing in Eq. (147), satisfy

αmin
H = lim

qM→∞αH(qM ) (157)

and
αmax
H = lim

qM→−∞αH(qM ) . (158)

Consequently, although multifractals inspired the definition of Sq and although
several mathematical properties exhibit naturally the same (or similar) form (see
for instance [79]), the two formalisms are deeply different. In multifractal theory,
as just mentioned, a Legendre transformation is operated on qM , thus yielding
αH , whereas, in nonextensive statistical mechanics, q is maintained fixed all the
way long (since it is determined by the microscopic, or mesoscopic, dynamics of
the system). The Legendre transform of the latter is precisely that usually done
in standard, extensive thermodynamics. The Legendre transform of the former is
a convenient manner for describing the complex geometry of multifractals. These
comments might seem absolutely dispensable for many readers, but experience
has proved just the opposite!

Before proceeding, it is mandatory to clarify what the index q appearing in
the differential equation yielding Eq. (151) has to do with the one appearing
in the present generalized entropy. In fact, they are one and the same, and the
connection is established through a generalization of the so called Pesin equality
or identity. Let us illustrate the basic ideas on the logistic map herein considered,
fixing a = 2 (which corresponds to its largest Liapunov exponent, namely ln 2).
Assume that we make a partition of the x interval into a large number W of
equally small windows, chose arbitrarily one of those windows and randomly
put a large number N of points inside. By identifying the probabilities with
the ratios of points in each one of the W windows (the approximation becomes
exact in the N → ∞ limit), we can calculate the entropy at each value of time
t. More precisely, we allow all the N points to evolve according to the map,
which in turn determines the time evolution of the entropy. The t = 0 value
of the BG entropy vanishes for all values of W , i.e., S1(0) = 0. The N points
will evolve until the attractor is achieved. The entropy S1(t) will evolve with t
until arrival to a saturation value S1(∞) which depends on (W,N); necessarily
limN→∞ S1(∞) < ln W (this upper bound is attained if and only if we have
uniform occupancy of the entire phase space, which is not the generic case, and
certainly not the a = 2 logistic map case). In the W → ∞ limit, the asymptotic
growth of S1(t) is in fact linear (see, for instance, [205]), which enables the
following characterization of the so called Kolmogorov-Sinai entropy:

K1 = lim
t→∞ lim

W→∞
lim

N→∞
S1(t)
t

. (159)
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Quite generically, the Pesin inequality holds, i.e., (for one-dimensional nonlinear
dynamical systems)

K1 ≤ λ1 if λ1 > 0 (160)

and K1 = 0 otherwise. The simplest situation occurs when there is no escape (see
[9]). In this case the equality holds. Let us from now on address those particular
systems for which this is true [9,206], i.e.,

K1 = λ1 if λ1 > 0 (161)

and K1 = 0 otherwise.
This type of analysis is convenient either if we have simple orbits (i.e., strong

insensitivity to the initial conditions, i.e., for λ1 < 0) or if we have strong chaos
(i.e., strong sensitivity to the initial conditions, i.e., λ1 > 0). But this analysis
is a very poor one at say the edge of chaos, where λ1 = 0 and we have weak
sensitivity to the initial conditions. It is to unfold this type of situation that Sq

becomes extremely useful. Let us show how. At the chaos threshold we haveK1 =
λ1 = 0. But if we follow the same procedure we just described for calculating
K1, but using instead Sq(t), an interesting phenomenon can be revealed, which
we describe now. Let us first define the following generalized Kolmogorov-Sinai
entropy:

Kq = lim
t→∞ lim

W→∞
lim

N→∞
Sq(t)
t

. (162)

A value q∗ is generically expected to exist [207] such that, for q > q∗ (q < q∗),
Kq = 0 (Kq diverges), and Kq∗ is finite! Furthermore, it can be argued [99] that
the above Pesin equality can be generalized as follows:

Kq∗ = λq∗ if λq∗ > 0 (163)

and Kq∗ = 0 otherwise. It is through this important type of (in)equality that
the connection emerges between Sq and the power-law time-dependence of the
sensitivity to the initial conditions. The particular value q∗ above described is
what was numerically calculated in [99,202,203], and satisfies the scaling (156).

Some of the above statements can be trivially checked with the logistic map
at its chaotic region (i.e., for λ1 > 0). We know in that case that S1(t) ∝ t, hence
(assuming that the scaling with time is essentially the same as for the simple
case of equiprobability, for which S1 = lnW ) the total number of possibilities
W (t) grows exponentially with t. For any q > 1, Sq(t) is always bounded, then
Kq necessarily vanishes. For any q < 1, Sq(t) grows like the 1/(1 − q) power of
W (t), which in turn, as said before, grows exponentially with t, hence necessarily
Kq → ∞. We conclude that q∗ = 1! An analogous picture holds [208,209] for
weak chaos, but with q∗ < 1. See Fig. 26 and Fig. 27.

Summarizing, we have verified that, for maps like the logistic one at its edge
of chaos, a special value of q, noted q∗ can be found in at least three different
manners. These are (i) through the sensitivity to the initial conditions (slope in
the log-log plot of ξ(t) versus t); (ii) through the multifractal function f(αH)
(measuring αmin

H and αmax
H and using Eq. (156)); (iii) through the time evolution
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of Sq (value of q for which, in the limit of very large W and even larger N , Sq

increases linearly with t). This scenario is expected to be much more ubiquitous,
appearing in a vast class of nonlinear dynamical systems, and not only in the
logistic map.
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Fig. 26. Time dependence of Sq for the logistic map for the control parameter a = 2
(positive Liapunov exponent, i.e., strong chaos). The mathematical objects we are
interested in emerge at the limit W → ∞, where W is the number of intervals in our
partition of the phase space. In that limit, the scenario which numerically emerges is
that, for q = 1, limt→∞(Sq/t) is finite, whereas it vanishes for any q > 1 and diverges
for any q < 1; we say that in this case q∗ = 1. The fact that, in a situation like this
one, limt→∞(S1/t) is finite is well expected. This known result is now placed in a wider
perspective.

At this point a clarification might be useful. It is quite common (and we
have ourselves here inclined to this tendency) that the expression Kolmogorov-
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Fig. 27. Time dependence of Sq for the logistic map at the edge of chaos, i.e., for the
control parameter a = 1.40115519 (zero Liapunov exponent, i.e., weak chaos). Once
we have taken the W → ∞ limit, the limt→∞(Sq/t) is now finite only for q = q∗ ≡
0.2445...; it vanishes for any q > q∗ and diverges for any q < q∗. For instance, see
in one of the insets how S1 is bending approaching saturation. In the other inset, a
conveniently defined linearity coefficient R (strictly zero only when the curve is ideally
linear) is depicted as a function of q: we verify that its minimum indeed occurs in the
neighborhood of q∗. These results and those shown in Fig. 26 become unified within
the present framework.
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Sinai entropy (K) is indistinctly used for the case where the entropy is defined
through a single trajectory visiting the elements of a partition of phase space (i.e.,
the time evolution associated with one initial condition, in a Boltzmann-type
scenario), and for the case where the entropy is defined through a distribution
of probabilities associated with the partition in phase space (i.e., the parallel
time evolution of many initial conditions, in a Gibbs-type scenario). Although
it is believed that almost always both constructions eventually lead to the same
number for K, by all means this must be proved case by case, and the original
definition of Kolmogorov-Sinai exclusively concerns the first definition, i.e., that
using a single trajectory.

Let us briefly present a conjecture [210] concerning the more general situation
where some escape does exist. Let us denote by γ1 the escape rate whenever
we are facing a repeller, instead of an attractor. This quantity is defined as
follows. At time t = 0 we distribute (say homogeneously) M(0) >> 1 points
in the phase space, and let them evolve according to a map which makes (for
instance, through a hole) regularly disappear some of them. It is generically
expected that the asymptotic time behavior of the number of points M(t) still
remaining in the system is given [9] by M(t)/M(0) ∼ e−γ1t. The repeller is
defined as the set of all points in phase space that never disappear; it typically
has zero measure. Then, Pesin inequality can be transformed into an equality,
namely [9], γ1 = λ1(repeller) − K1(repeller). The Pesin equality is recovered
for γ1 = 0. Now, what happens whenever we are at a possible edge of chaos
of the dynamical system (i.e., when λ1(repeller) = 0)? It obviously becomes
very natural to expect that a power-law replaces the exponential behavior we
had for λ1 > 0. Consistently, we expect now the escape to asymptotically follow
something like M(t)/M(0) ∼ [1 − |(1 − q)γq|t]−|1/(1−q)|, and we expect also
something like γq = λq(repeller) − Kq(repeller). The particular case γq = 0
recovers the structure of Eq. (163). The particular case q = 1 recovers the result
known [9] for exponential escape. Analytical or numerical evidences along this
conjecture would of course be extremely welcome.

Let us end this Section by a short remark which further clarifies the connec-
tions of the present formalism with notions currently used for chaotic systems.
A possible generalization of the usual thermodynamical formalism for chaos (see
[79]) has been recently proposed by Johal and Rai [59]. Following along their
lines, we can define a quite general entropic form as follows:

Sq,q′ ≡ lnq′
∑

i p
q
i

1− q
. (164)

We can straightforwardly verify that

Sq,0 =
1−∑i p

q
i

q − 1
, (165)

which is the entropy used here;

Sq,1 =
ln
∑

i p
q
i

1− q
, (166)
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which is Renyi’s entropy;

Sq,2 =
1

q − 1

[
1∑
i p

q
i

− 1
]
, (167)

which is the entropy discussed in [53,54,58]; and

S1/q,1+q =
1

q − 1

[
1− 1

(
∑

i p
1/q
i )q

]
, (168)

which is the (auxiliary) entropy introduced in [42] and discussed in detail in [56].
We also verify that S1,q′ recovers the B-G entropy, ∀q′. However, let us make it
clear that we do not attribute to definition (164) any special physical meaning.
Were it not for the application (in order to set a nonextensive thermodynamical
description of chaos) that, for this particular function of

∑
i p

q
i , is done in [59],

we would consider it not much more than an unifying mathematical curiosity.

5.6 Self-Organized Criticality

In the previous example, fine tuning (e.g., a = ac) is necessary to observe the
anomalous (q �= 1) behavior. Let us address dissipative systems with many
degrees of freedom, very particularly those which do not need fine tuning. Would
robust systems like those exhibiting self-organized criticality [211] (SOC) also
present q �= 1 behavior? The answer is yes, as it has been clearly exhibited [212]
in at least three computational systems, namely the Bak-Sneppen model for
biological evolution, the Suzuki-Kaneko model for imitation games and the Bak-
Tang-Wiesenfeld model for sandpiles. In these systems, the Hamming distance
plays the role played by ξ in the previous ones (i.e., the Hamming distance is
proportional to t1/(1−q)). Also, the relevance of the order of the t → ∞ and N →
∞ limits has been exhibited. Like in the conjectural Fig. 4, the q �= 1 behavior
is observed only in the limt→∞ limN→∞ order. On what model ingredients does
q depend? Is a taxonomy in universality classes analogous to that of standard
critical phenomena possible? Is a relevant multifractal f(αH) function hidden
somewhere? Does a scaling law like that of Eq. (156) still hold? Additional
computational effort is very welcome.

5.7 Long-Range Classical Hamiltonian Systems:
Dynamic Properties

Let us finally focus on the “heart” of statistical mechanics, the dynamics of the
systems on which Boltzmann himself was meditating, namely the Hamiltonian
systems with many degrees of freedom. Although lots of interesting quantum
nonextensive phenomena exist, here we shall restrict ourselves to the classical
ones. We expect them to be able to provide nonextensive anomalies in a kind of
pure, or simpler manner. Since a classical canonical Hamiltonian must satisfy the
Liouville theorem, the Liapunov spectrum must be symmetric with respect to
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zero, the corresponding eigenvalues being necessarily coupled in pairs of positive
and negative values with the same absolute value. Consequently, to study the
sensitivity to the initial conditions it suffices to study the maximum Liapunov
exponent. If it is positive, the system will generically be strongly chaotic, and
will therefore easily satisfy the ergodic/mixing hypothesis (equality of time and
ensemble averages). If, however, the maximum Liapunov exponent vanishes, the
entire spectrum will necessarily vanish, hence the system will be, at most, weakly
chaotic, and will therefore have difficulties in satisfying the ergodic/mixing hy-
pothesis, at least before extremely large times (reflecting the macroscopic size
of the system). The d = 1 coupled planar rotators N -body model with a two-
body coupling constant proportional to 1/rα (r ≡ distance between two given
rotators) has been recently studied (for α = 0 in [89,213], and, for α ≥ 0 in
[214]) in the microcanonical ensemble. It has been established that, above a
critical (conveniently normalized) total energy, the maximum (conveniently nor-
malized) Liapunov exponent is, in the N → ∞ limit, positive (zero) for α > 1
(0 ≤ α ≤ 1). More precisely, this maximum Liapunov exponent is proportional
to 1/Nκ where κ(α) appears to be a monotonic function which decreases from
κ(0) to zero while α increases from 0 to 1, and remains zero for all α ≥ 1 (for
α = 1 it might well be that the maximum Liapunov exponent decreases like
1/ lnN). It must be recalled that it is only for α > 1 that the standard BG pre-
scriptions provide finite integrals in the relevant calculations. Preliminary results
are already available for the d = 1 classical Heisenberg-ferromagnet-like rotators
(i.e., three-dimensional rotators instead of planar ones) [215] as well as for the
d = 1 classical Lennard-Jones-like fluid [216]. In these three d = 1 models, the
numerical results are well fitted by κ = (1− α)/(3− α).

If we were to discuss the d-dimensional versions of the same models (Lennard-
Jones-like fluids as well as coupled n-vector classical rotators, where n = 2 cor-
responds to the planar ones, n = 3 corresponds to the Heisenberg-like ones
and n → ∞ corresponds to the spherical ones) we would certainly have an α-
dependence of κ. It is certainly possible that, within these classes of models,
it is κ(α, d), i.e., the same for all values of n and for the fluid (and even for
d-dimensional gravitation if the singularity at the origin is excluded by some rel-
atively hard core). Heuristic arguments as well as some recent numerical results
[217] for the (d, n) = (2, 2) and (3, 2) models suggest a fitting like the following
one:

κ =
1 + (α/d)2

3 + (α/d)2
(0 ≤ α/d ≤ 1) . (169)

This fitting clearly satisfies the trivial expectation that, for α = 0, κ does not
depend on d since all elements (rotators, particles) of the model are coupled to
all other elements with the same strength. It also satisfies the recent exact result
[218] for the α = 0 case of the (d, n) = (1, 2) model, namely that κ = 1/3.

In a recent paper, an essentially α = 0 model was considered [219], and, un-
der certain circumstances, a crossover was found between anomalous (at times
smaller than τ(N)) and normal (at times larger than τ(N)) diffusion, with
τ(N) ∝ N . What happens if α > 0? Does τ scale like Ñ ≡ N∗ +1 = (N1−α/d −
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α/d)/(1 − α/d) ? What happens for other models? The behaviors observed for
this particular model that was studied, as well as for the α = 0 case of the
(d, n) = (1, 2) model [89], are consistent with Fig. 4. But is it exactly that con-
jecture that is going on? Only the study of the energy distributions (of single
particles or of relatively large subsystems of the N -body system) themselves
can provide the answer. What about the distributions of velocities? Are they
Maxwellian (i.e., Gaussian) for α/d > 1 and non-Maxwellian otherwise? Are
they Lévy’s or Student’s t-distributions for α/d ≤ 1? If so, what is the depen-
dence of q(α, d) ? Maybe q(α/d) ? Are the associated fluctuations anomalously
time-correlated? Can nonmarkovian processes be present when the system is
nonextensive (i.e., when 0 ≤ α/d < 1)? Plenty of intriguing questions that,
sooner or later, will have to be answered, partly through computational work
(at least the first approaches). Better sooner than later!

Before ending this Section, let us mention that the scenario which apparently
emerges for 0 ≤ α/d ≤ 1 is that the sensitivity to the initial conditions seems to
be generically characterized by qS ≤ 1 (S stands for sensitivity; qS is sometimes
noted Q as well as q∗ in the literature and in the present review), whereas the
energy distribution seems to be generically characterized by qE ≥ 1 (E stands
for energy). Naturally, we expect a universal relationship qE = g(qS) such that
g(1) = 1 (corresponding to α/d ≥ 1). This relationship probably is very simple;
one such possibility is qE+qS = 2. Indeed, in this case, qS varying from 1 to −∞
would imply qE varying from 1 to ∞, hence the exponent qE/(qE−1) associated
with the escort distribution would be larger that unity (limit of integrability,
up to infinity, of 1/εqE/(qE−1)). Also, qS = 0 would correspond to the exponent
1/(qE − 1) = 1 (limit of integrability, up to infinity, of 1/ε1/(qE−1)).

5.8 Symbolic Sequences

An important progress has been recently done [220] by Grigolini and co-workers
which, in addition to its intrinsic interest, provides an important insight on
what is expected to occur for the long-range Hamiltonians just considered. The
authors focused on a simple model which provides stochastic one-dimensional
binary symbolic sequences. The symbols are sequentially chosen with a power-
law correlation, more precisely the probability p(l) of generating at the next step
an l-sized string with the same symbol is assumed to be proportional to 1/lα+2

(α ≥ 0). Then the q-generalized Kolmogorov-Sinai entropy Kq was numerically
studied. This is to say the entropy Sq was studied as a function of ”time” (sub-
sequence fixed width to be run along the entire chain), and the special value q∗

was determined for which Sq increases linearly with time (i.e., Kq is finite for
q = q∗, vanishes for q > q∗ and diverges for q < q∗). Grigolini et al. exhibited
the very eloquent fact that q∗ monotonically increases from 0 to 1 when α in-
creases from 0 to 1, and q∗ remains equal to unity for all values of α ≥ 1, thus
recovering well known results for short-range problems. Notice that the second
moment 〈l2〉 ≡∑∞

l=1 p(l) l
2 is finite for α > 1, whereas it diverges for α ≤ 1.

At this point it is convenient to make a few generic remarks. For the standard,
extensive systems we have the following Kolmogorov-Sinai scenario. For strongly
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chaotic systems, the Liapunov spectrum contains positive exponents so that the
number W of phase space visited regions grows exponentially with time t, i.e.,
lnW ∝ t, hence the entropy S1, which scales as lnW , increases linearly with
time. Consequently, K1 is finite and q∗ = 1. In contrast with this picture, if the
mixing is weak (power-law) because all Liapunov exponents are zero, we expect
W ∝ tδ for long times, with δ > 0. In this case we expect Sq to scale, for long
times, like [W 1−q − 1]/[1 − q], i.e., like W 1−q, which is proportional to tδ(1−q).
Consequently, Sq increases linearly with time if and only if q = q∗ where q∗

satisfies
1− q∗ =

1
δ

(δ ≥ 0) . (170)

The corollary is that two typical behaviors are anticipated, namely (i) if δ varies,
for a class of systems, between 0 and ∞, then q∗ varies from −∞ to 1 (as for
the logistic-like maps, examined in subsection 5.5); (ii) if δ varies, for another
class of systems, between 1 and ∞, then q∗ varies from 0 to 1 (as for the model
of symbolic sequences described in the present subsection).

5.9 Optimization Techniques; Simulated Annealing

The so called Optimization problem consists basically in determining the global
minimum (or minima, if degeneracy is present) of a given cost function E(x),
where x is a discrete or continuous d-dimensional variable. This problem can be-
come extremely complex depending on the cost function having a large number
of local minima, and on the dimension d being high. For the ubiquitous cases
(in physics, chemistry, neural networks, engineering, finances, etc.) for which
analytic discussion is not tractable, a variety of computational algorithms have
been developed. A special place among these is occupied, because of its effi-
ciency and paradigmatic value, by the Simulated Annealing (SA) introduced in
1983 by Kirkpatrick et al. [221]. Its denomination comes from its total anal-
ogy with the well known annealing technique, frequently used in Metallurgy for
making a molten metal to reach its crystalline state (global minimum of the
relevant thermodynamic energy). In SA, one or more artificial temperatures are
introduced and gradually cooled, acting as a source of stochasticity, extremely
convenient for eventually detrapping from local minima. Near the end of the pro-
cess, the system hopefully is in the attractive basin of one of the global minima,
the temperature is practically zero, and the algorithm asymptotically becomes
a steepest descent one. The challenge is to cool the temperature the quickest we
can but still having the guarantee that no definitive trapping in any local min-
imum will occur. More precisely speaking, we search for the quickest annealing
(i.e., in some sense approaching a quenching) which preserves the probability
of ending in a global minimum being equal to one. SA strictly follows a BG
scheme. Let us illustrate for continuous x. The system “tries” to visit, accord-
ing to a visiting distribution assumed to be Gaussian in the neighborhood of
its actual state. The jump is always accepted if it is “downhill”, i.e., if the cost
function decreases. If it is “uphill”, the jump might be accepted with a prob-
ability given by the Boltzmann factor corresponding to that cost function. It



Nonextensive Statistical Mechanics and Thermodynamics 79

has been shown that the probability of ending on the global minimum equals
unity if T (t) decreases logarithmically with time t. This algorithm is sometimes
referred to as Classical Simulated Annealing (CSA) or Boltzmann machine. We
easily recognize that, if instead of decreasing, the temperature was maintained
fixed, this procedure precisely would be the well known Metropolis et al. one for
simulating BG thermostatistical equilibrium.

This optimization machine has been generalized within the present statistics
as follows [118]. The visiting distribution is generalized to be a qV -Gaussian, and
the acceptance Boltzmann factor is generalized to be a qA-generalized factor,
where qV and qA respectively are the visiting and acceptance entropic indexes.
The cooling schedule is generalized as follows:

T (t) = T (1)
lnq [1/2]

lnq [1/(t+ 1)]
(t = 1, 2, 3, ...) . (171)

This is the Generalized Simulated Annealing. This machine is characterized by
(qV , qA). The choice (1, 1) corresponds to CSA, and the choice (2, 1) corresponds
to the so called Fast Simulated Annealing (FSA). The CSA corresponds to a
cooling given by

T (t) = T (1)
ln 2

ln(1 + t)
(t = 1, 2, 3, ...) . (172)

The FSA corresponds to a faster cooling given by

T (t) = T (1)
1
t

(t = 1, 2, 3, ...) . (173)

The limiting case qV = 3 corresponds to

T (t) = T (1)
3

(t+ 1)2 − 1
(t = 1, 2, 3, ...) . (174)

These particular cases illustrate the great computational advantage that can be
obtained by speeding up the algorithm by conveniently choosing qV (see also
[128]). In practice, a convenient choice for qV is somewhat below 3, the exact
value depending on the phase space dimension d. The choice of qA seems to be
more model-dependent. Details can be seen in a by now vast literature [119–
126], in which applications have been done and variations have been performed
concerning a variety of classical and quantum physical problems, the Travel-
ing Salesman Problem, and many others. The first application [127] in quantum
chemistry concerned simple molecules of the series CH3−R and some others, in-
cluding the H203 one, by using the MOPAC program package. Nowadays, Straub
(in Boston), Okamoto (in Okazaki), Bisch (in Rio de Janeiro) and Ellis-Mundim
(respectively in Chicago and Salvador), to name but a few, are currently improv-
ing and applying these techniques to complex molecules such as polypeptides, in
particular with the aim of studying the important, though hard, protein folding
problem. The quickly expanding bibliography in these optimization applications
of nonextensivity is included in [2].
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6 Final Remarks

Boltzmann-Gibbs statistical mechanics and standard thermodynamics do not
seem to be universal. They have domains of applicability quite poorly known
nowadays. The precise knowledge of the restrictions for their validity is concep-
tually and practically very important. A nonextensive generalization of these for-
malisms is now available [1,41,42]; see Table 1 (Appendix). It has been developed
to cover at least some of these difficulties. Several important types of systems
have been focused on in the present paper, which should substantially clarify
the situation. These efforts span a wide epistemological variety, which goes from
clear-cut theories to phenomenological ones, to quite well or less well understood
fittings and connections. As exhibited at length here, the areas on which this
formalism has been satisfactorily applied includes physics, astronomy, chemistry,
mathematics, biology, economics, linguistics, cognitive psychology, etc. However,
in spite of all this sensible progress, some inter-related crucial points are still to
be understood and established on a neat and transparent basis. These include
(i) the zeroth principle of thermodynamics and its connections with the ther-
modynamic limit, properties which would in principle exhibit the mathematical
connection of the weak violation of the BG statistics (i.e., introduction of Ñ
within the q = 1 formalism) with the strong one (q �= 1);
(ii) the functional dependence of q on (α, d) for long-range interacting Hamilto-
nians (0 ≤ α/d ≤ 1) and its connection with anomalous diffusion. Why for these
systems universality classes seem to emerge whose structure greatly resembles
that of traditional critical phenomena (in the sense that q depends only on a few
structural ingredients), whereas for other systems, such as the electron-positron
annihilation experiments (and similar high energy reactions) and turbulence, q
continuously varies with some energy-like variables (e.g., the collision energy W
for the electron-positron experiments, r/η for turbulence)? The latter clearly re-
mind what occurs in the d = 2 XY model where, below the Kosterlitz-Thouless
temperature, the critical exponents are known to continuously depend on tem-
perature;
(iii) the physical interpretation of the {pi} distribution and of the escort one
{Pi}, as well as clear-cut prescriptions for using one or the other when fitting
experimental data (in the meanwhile, it appears that {Pi} is the one to be used
for equilibrium distributions of kinetic, potential or total energies, whereas {pi}
is the one to be used for real-space diffusive nonequilibrium phenomena, either
Lévy or Student’s [222] distributions according to whether correlations between
jumps are suspected to be absent or present);
(iv) what are the generic physical conditions for using the microcanonical, canon-
ical and grand-canonical ensembles, under what exact and fully specified condi-
tions they are expected to be thermodynamically equivalent, and the possible
relevance for the so called thermogravitational catastrophe;
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(v) the clear connection with microscopic dynamic properties such as (partial)
lack of ergodicity and mixing, the generalization (to weak chaos) of the Pesin
inequality, the complete domain of validity of scaling relations connecting q to
multifractality, and the possible relevance for SOC, spin-glasses and similar phe-
nomena;
(vi) the clear physical connection with quantum groups and, in general, defor-
mations of relevant Lie algebras, and through these, the possible relevance for
quantum gravity and the deep (possibly discrete, multifractal- like) structure of
space-time;
(vii) the clear physical meaning of the connections that are nowadays emerging
between nonextensivity and quantum entanglement. Indeed, a pure state |ψ〉 of
a quantum system composed by subsystems A and B is said to be entangled
if it cannot be written in the tensor product form |ψ〉 = |ψA〉 ⊗ |ψB〉 (see, for
instance, [223]). Consistently, we consider a statistical mixture characterized by
the density operator ρ to be entangled if it cannot be written as ρ = ρA ⊗ ρB .
This is what opens the door to consider that there is entanglement whenever
Sq(A+B) �= Sq(A)+Sq(B)+(1−q)Sq(A)Sq(B). What happens when the num-
ber of subsystems is very large?, and when each of them has a very large number
of elements? We have seen in subsection 5.5 that a special, and unique, value
of q exists such that, if the initial state of the nonlinear dynamical system is
appropriately prepared, the entropy asymptotically increases linearly with time.
Could we expect something similar to this with regard to the number of parti-
cles N in the system? Would these considerations be useful for understanding
entanglement within the system, which could nevertheless be disentangled with
the rest of the universe? Answering these questions constitutes to our eyes an in-
teresting research project! Also, perhaps, very useful for quantum computation,
teleportation, cryptographic applications and related matters.

A practical warning might be worthy at this point. Whenever the reader
wants to compare values of q obtained for different specific systems by different
authors, a careful inspection of the corresponding papers is recommended. In-
deed, since along this decade three (slightly) different versions of the formalism
were introduced (see [42]), one must be careful in checking the versions that
those particular papers are using. If we call qI , qII and qIII the entropic indexes
appearing respectively in versions I (standard mean values), II (unnormalized
q-expectation values) and III (normalized q-expectation values), the following
relations hold whenever velocity, energy (or similar) distributions (e.g., pq) are
being focused on:

qI − 1 = 1− qII = 1− qIII . (175)

For the corresponding escort distributions (e.g., proportional to pqq, a concept
which was not present in version I), qII/(1−qII) = qIII/(1−qIII) play the role of
1/(qI−1), hence qII = qIII = 1/qI . The connections between the variables which
play a temperature role, so to say TI , TII and TIII , are somewhat more subtle
(see [42]). Of course, this warning does not apply to whatever only involves the
entropy, without any reference to physical constraints introduced through mean
values For instance, it does not apply to the sensitivity to the initial conditions
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and related concepts such as the multifractal spectrum f(αH) and the present
generalization of the Kolmogorov-Sinai entropy (see also discussion about qS
and qE in subsection 5.7).

On general grounds, one might think of two conjectural contexts, to be clari-
fied (i.e., rigorously formulated), confirmed or refuted. The first of these contexts
can somehow (on intuitive grounds) be formulated as follows. Strongly mixing
phenomena are ubiquitous in Nature; essentially, they are driven by microscopic
interactions which are short-ranged in space-time (short-range forces, short-
range memory, nonfractal boundary conditions); their basic geometry tends to
be continuous, smooth, like the Euclidean one; their thermodynamics is ex-
tensive; their central laws (energy distribution at equilibrium, time-relaxation
towards equilibrium) generically are exponentials; and their thermo statistical
foundation lies within Boltzmann- Gibbs statistics (i.e., q = 1). But weakly mix-
ing phenomena also are ubiquitous in Nature (e.g., biological, socio-economical,
human cognitive phenomena, etc.); essentially, they are driven by microscopic
interactions which are long-ranged in space time (long-range forces, nonmarko-
vian memory, fractal boundary conditions); their basic geometry tends to be
discrete, multifractal-like; their thermodynamics is nonextensive; their central
laws (energy distribution at equilibrium, time-relaxation towards equilibrium)
generically are power-laws; and the thermo statistical foundation of (at least
some of) them (hopefully!) lies within the q �= 1 statistics. The allowance for
nonextensivity, in general, and for a nonextensive entropy, in particular, appears
to be the “price” to be paid in order that Boltzmann’s “mechanical” (i.e., one
system evolving along time) manner of thinking about macroscopic systems co-
incides, at the level of the concrete mathematical results to be compared with
the experimental data, with Gibbs’ “ensemble” (i.e., many systems at a fixed
time) manner of thinking. This coincidence of results is, since one century, well
known and understood for standard systems. Our aim here is to extend it to a
large variety of anomalous systems.

In other words, this conjecture concerns the following logical chain. When-
ever we have quick sensitivity to the initial conditions (i.e., positive Liapunov
exponents), on one hand the relaxation towards equilibrium of a generic physi-
cal observable typically occurs exponentially in time (and the inverse relaxation
time essentially scales with the largest Liapunov exponent), and on the other
hand the entropy which is useful is the BG one (hence extensive with regard
to independent systems). This entropy naturally yields, for Hamiltonian sys-
tems, to an energy distribution which is exponential (Boltzmann factor); this
in turn implies, if the system is classical, that the distribution of velocities is
Maxwellian (i.e., Gaussian). This is the kingdom of the exponential function!
But, generically, whenever we have slow sensitivity to the initial conditions (i.e.,
zero Liapunov exponents), on one hand the relaxation towards equilibrium of
a generic physical observable typically occurs algebraically in time (and the in-
verse relaxation time essentially scales with the largest generalized Liapunov
exponent), and on the other hand the entropic form which appears to be useful
is Sq (hence nonextensive with regard to independent systems). This entropy
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naturally yields, for Hamiltonian systems, to an energy distribution which is a
power-law; this in turn implies, if the system is classical, that the distribution
of velocities is not Maxwellian (i.e., non Gaussian; perhaps a Lévy distribution
or a Student’s t-distribution). This is the kingdom of the power function!

The second of these conjectural contexts is, at the present moment, so hard to
rationalize that I dare to mention it here only because, after having been exposed
to so many mathematical and physical arguments (that have been included in the
present review), the reader might accept to honor me with his (her) indulgence,
and have a look at the following few, intuitive lines. I believe that a deep anal-
ogy (maybe a kind of isomorphism, through the use of mathematical structures
like the co-homology groups) exists between crystallographic structures such as
crystal - quasicrystal - fluid, and nonlinear dynamics such as integrable - (weak)
chaotic - (strong) chaotic. In some sense, they appear as space and time ver-
sions of the same mathematical structures. The first case concerns crystals (i.e.,
d-dimensional Bravais lattices) and integrable dynamics (i.e., motion on simple
orbits), and its essential invariance is the discrete translational one. The third
case concerns strongly disordered systems like fluids (liquid, gases) and strongly
chaotic dynamics, and its essential invariance is the continuous translational one.
Finally, the second, and intermediate, case is by far the most subtle one (and
probably this is why it is the one that humanity took the longest time to dis-
cover), and concerns quasicrystals (e.g., Penrose tilings, amorphous substances
like glasses, spin-glasses, and other structures known to have (multi)fractal scal-
ings; probably most of the so called complex spatial phenomena belong to this
group) and weakly ergodic dynamics (e.g., edge of chaos, strange attractors, self-
organized criticality, probably most of the so called complex time phenomena);
its essential invariance is the dilatation one. In the first case we have the (space
or time) highest predictability, and statistical methods are out of place. In the
third case we have the (space or time) lowest predictability, and statistical meth-
ods exhibit their full power. Finally, in the second case, we have an intermediate
predictability, and the statistical methods have to be “intrinsically nonlinear” in
some sense, in order to be applicable and useful. There will be no surprise for the
reader if, at this point, I admit that I believe that the statistical mechanics to be
associated with the third present case of course is the BG one, whereas it might
be the q �= 1 statistical mechanics the one to be associated with the present
second case ! (see also [224], where some preliminary, but nevertheless concrete,
calculations exhibit this kind of connections). Let us now remind that Wiles’
1995 celebrated proof [225] of Fermat’s last theorem was deeply related to qua-
sicrystals since it was based on the proof of the Taniyama-Shimura conjecture
about modular elliptic curves and used certain Hecke algebras. Consequently, I
hardly dare to explicitly state a simple and unavoidable corollary, namely that,
if my present second conjecture turns out to be, in some nontrivial and precise
sense, correct, then the q �= 1 statistical mechanics must be related to Fermat’s
last theorem!

Through the complete analysis, in more detailed terms, of the various aspects
tackled in the present review, we should be able to learn a lot and, very espe-
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cially, (precisely) when the celebrated Boltzmann factor is the correct theoretical
description of natural systems at thermal equilibrium! This famous, ubiquitous,
and so useful factor could then cease to be a “dogma”, as referred to by Takens
[5], and could climb to the status of a theorem!
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Appendix: q-Exponential and q-Logarithm Functions

Let us define as follows the q-exponential function [69,70]:

exq ≡ [1 + (1− q) x]
1

1−q (x ∈ R; q ∈ R) . (176)

Its inverse, q-logarithm function is given by

lnq x ≡ x1−q − 1
1− q

(x ∈ R+; q ∈ R) . (177)

We easily verify that

ex1 ≡ lim
q→1+0

exq = lim
q→1−0

exq = ex (∀x) , (178)

ln1 x ≡ lim
q→1+0

lnq x = lim
q→1−0

lnq x = ln x (∀x) , (179)

as well as that
elnq x
q = lnq exq = x (∀x; ∀q) . (180)

Let us be more detailed about the above definitions. For q < 1, the q-
exponential function vanishes for x ≤ −1/(1− q) and continuous and monoton-
ically increases from 0 to ∞ when x increases from −1/(1− q) to ∞. For q > 1,
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the q-exponential function continuous and monotonically increases from 0 to ∞
when x increases from −∞ to 1/(q − 1), remaining divergent for x > 1/(q − 1).
See Fig. 28.
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Fig. 28. The q-exponential function for typical values of q. For all q < 1 the function
vanishes for x ≤ −1/(1 − q); for all q > 1 the function diverges at x = 1/(q − 1) (the
dotted line indicates the vertical asymptote for q = 2).

The following property is satisfied:

[e−qx
1/q ]1/q =

1
exq

(∀x; ∀q) , (181)

or, equivalent and more symmetrically,

[ex/q
1/2

q ]q
1/2

e
−q1/2x]1/q

1/2

1/q = 1 (∀x; ∀q) , (182)
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as well as their corresponding inverse ones, namely

−1
q
ln1/q(1/xq) = lnq x (∀x; ∀q) , (183)

and, equivalently and more symmetrically,

q1/2 lnq x
1

q1/2 +
1

q1/2
ln1/q(1/xq

1/2
) = 0 (∀x; ∀q) . (184)

Also,

e−x
2−q =

1
exq

(∀x; ∀q) , (185)

or, equivalent and more symmetrically,

ex1+q e
−x
1−q = 1 (∀x; ∀q) , (186)

as well as their corresponding inverse ones, namely

− ln2−q(1/x) = lnq x (∀x; ∀q) , (187)

and, equivalently and more symmetrically,

ln1+q x+ ln1−q(1/x) = 0 (∀x; ∀q) . (188)

Other interesting properties are:

ex+y+(1−q)xy
q = exq e

y
q (∀(x, y); ∀q) , (189)

and

lnq(xy) = lnq x+ lnq y + (1− q)(lnq x)(lnq y) (∀(x, y); ∀q) , (190)

as well as

d

dx
exq = (exq )

q (∀x ∀q) , (191)

d

dx
lnq x =

1
xq

(∀x ,∀q) , (192)

lnq(
x

y
) =

1
y1−q

[lnq x− lnq y] (∀(x, y); ∀q) , (193)

lnq
1
x

= − 1
x1−q

lnq x (∀x, ∀q) . (194)

The following expansions are useful in a variety of applications:

exq = 1 + x+
q

2
x2 +

q(2q − 1)
6

x3 +
q(2q − 1)(3q − 2)

24
x4 + ...

+
1
n!

[
Πn−1

i=1 (iq − i+ 1)
]
xn + ... (∀q; x → 0) , (195)
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lnq(1 + x) = x− q

2
x2 +

q(q + 1)
6

x3 − q(q + 1)(q + 2)
24

x4 + ...

+
(−1)n+1

n!

[
Πn−2

i=0 (q + i)
]
xn + ... (∀q; x → 0) , (196)

exq = ex
[
1 +

x2

2
(q − 1) +

8x3 + 3x4

24
(q − 1)2

+
12x4 + 8x5 + x6

48
(q − 1)3 + ...

]
(∀x; q → 1) . (197)

Finally, the following integral formula can be applied in a variety of circum-
stances (it shows [226] in particular that renormalizability can occur without
factorizability): ∫ ∞

−∞
dx2 eq(−a1|x1|z1 − a2|x2|z2)

= A2 eq′(−a′
1|x1|z1) (a1, a2, z1, z2 > 0) , (198)

where
1

1− q′ =
1

1− q
+

1
z2

, (199)

a′
1(1− q′) = a1(1− q) , (200)

and

A2 =
∫ ∞

−∞
dξ eq(−a2|ξ|z2) =

2Γ
(
1 + 1

z2

)
a
1/z2
2

×




Γ(1+ 1
1−q )

(1−q)1/z2Γ
(
1+ 1

z2
+ 1

1−q

) for q < 1

1 for q = 1
Γ
(

1
q−1 − 1

z2

)
(q−1)1/z2Γ( 1

q−1 )
for q > 1

. (201)

Many other elegant properties concerning the generalization of the geometric
and hyperbolic functions [70] as well as of Laplace transform [227] are available
in the literature.

As we can see in Table 1, the present functions and their properties enable
the expression of important relationships in a convenient Boltzmann-Gibbs-like
form.
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Table 1. Some useful formulae written in a Boltzmann-Gibbs-like form

Equiprobability entropy Sq = k lnq W

Generic entropy Sq = −k〈lnq ρ〉q
Canonical equilibrium distribution ρq =

e
−β(H−Uq)/Trρqq
q

Tr e
−β(H−Uq)/Trρqq
q

=
e

−β′H
q

Tre−β′H
q

(β′ ≡ β

Trρqq+(1−q)βUq
)

Partition functions Z̄q = Tr e
−β(H−Uq)/Trρqq
q

(lnq Zq = lnq Z̄q − βUq)
Internal energy Uq = − ∂

∂β
lnq Zq

Free energy Fq = Uq − TSq = − 1
β
lnq Zq

Anomalous diffusion probability distribution pq(x) =
e

−βx2
q∫

dy e
−βy2
q

Sensitivity to the initial conditions (d = 1) lim∆x(0)→0
∆x(t)
∆x(0) = e

λq t
q

Rate of increase of entropy limt→∞
Sq(t)
t
= λq

Likelihood function Wq({pi}) ∝ e
Sq({pi})
q

Power-law interactions (∝ R−α) U(N,T )
NÑ

∼ u( T
Ñ
)

(Ñ ≡ N∗ + 1; N∗ ≡ ln[α/d] N)
Simulated annealing (cooling rythm) T (t)

T (1) =
lnq [1/2]

lnq [1/(t+1)]
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32, 209 (1983); Lévy Flights and Related Topics in Physics, eds. M. F. Shlesinger,
G. M. Zaslavsky, and U. Frisch (Springer-Verlag, Berlin, 1995); P. Allegrini, P.
Grigolini, and B. J. West, Phys. Rev. E 54, 4760 (1996); B. J. West and P.
Grigolini, Phys. Rev. E 55, 99 (1997); P. Grigolini, A. Rocco, and B. J. West,
Phys. Rev. E 59, 2603 (1999); B. J. West, Physiology, Promiscuity and Prophecy
at the Millenium: A Tale of Tails (World Scientific, Singapore, 1999).

26. Y.-H. Taguchi and H. Takayasu, Europhys. Lett. 30, 499 (1995).
27. K. T. Waldeer and H. M. Urbassek, Physica A 176, 325 (1991).
28. I. Koponen, Phys. Rev. E 55, 7759 (1997).
29. D. C. Clayton, Nature 249, 131 (1974).
30. N. A. Bahcall and S. P. Oh, Astrophys. J. 462, L49 (1996).
31. J. M. Liu, J. S. De Groot, J. P. Matte, T. W. Johnston,

and R. P. Drake, Phys. Rev. Lett. 72, 2717 (1994).
32. J. Maddox, Nature 365, 103 (1993).
33. H. P. de Oliveira, S. L. Sautu, I. D. Soares, and E. V. Tonini, Phys. Rev. D 60,

121301 (1999).
34. G. Wilk and Z. Wlodarcsyk, Nucl. Phys. B (Proc. Suppl.) 75A, 191 (1999);

G. Wilk and Z. Wlodarcsyk, Phys. Rev. D 50, 2318 (1994); G. Wilk and Z.
Wlodarcsyk, Phys. Rev. Lett. 84, 2770 (2000); M.L.D. Ion and D.B. Ion, Phys.
Lett. B 482, 57 (2000).



Nonextensive Statistical Mechanics and Thermodynamics 91

35. I. Bediaga, E. M. F. Curado, and J. Miranda, Physica A 286, 156 (2000); C.
Beck, Physica A 286, 164 (2000).

36. O. V. Utyuzh, G. Wilk, and Z. Wlodarcsyk, preprint (1999) [hep-ph/9906442].
37. O. V. Utyuzh, G. Wilk, and Z. Wlodarcsyk, preprint (1999) [hep-ph/9906500].
38. T. Alber et al., Eur. Phys. J. C 2, 643 (1998).
39. D. B. Walton and J. Rafelski, Phys. Rev. Lett. 84, 31 (2000).
40. S. Abe and A. K. Rajagopal, Phys. Rev. A 60, 3461 (1999); A. Vidiella-Barranco,

Phys. Lett. A 260, 335 (1999).
41. E. M. F. Curado and C. Tsallis, J. Phys. A 24, L69 (1991); (Corrigenda) 24, 3187

(1991) and 25, 1019 (1992).
42. C. Tsallis, R. S. Mendes, and A. R. Plastino, Physica A 261, 534 (1998).
43. A. R. Plastino and A. Plastino, Phys. Lett. A 177, 177 (1993).
44. J. L. Lebowitz, Physica A 194, 1 (1993); Physics Today 46, 32 (1993); Physica

A 263, 516 (1999), and references therein.
45. J. Harvda and F. Charvat, Kybernetica 3, 30 (1967).
46. I. Vajda, Kybernetika 4, 105 (1968) [in Czech].
47. Z. Daroczy, Inf. and Control 16, 36 (1970).
48. A. Wehrl, Rev. Mod. Phys. 50, 221 (1978); I. J. Taneja, Advances in Electron-

ics and Electron Physics 76, 327 (1989); M. Behara, Additive and Nonadditive
Measures of Entropy (Wiley Eastern, New Delhi, 1990); M. Basseville, Institut de
Recherche en Informatique et Systemes Aleatoires -IRISA (France), Report 1020
(May 1996).

49. C. Tsallis, Chaos, Solitons and Fractals 6, 539 (1995).
50. C. Anteneodo and A. R. Plastino, J. Phys. A 32, 1089 (1999).
51. A. R. R. Papa, J. Phys. A 31, 5271 (1998).
52. E. P. Borges and I. Roditi, Phys. Lett. A 246, 399 (1998).
53. P. T. Landsberg and V. Vedral, Phys. Lett. A 247, 211 (1998).
54. P. T. Landsberg, in Nonextensive Statistical Mechanics and Thermodynamics,

eds. S. R. A. Salinas and C. Tsallis, Braz. J. Phys. 29, 46 (1999) [accessible at
http://sbf.if.usp.br/WWW−pages/Journals/BJP/Vol29/Num1/index.htm].

55. E. M. F. Curado, in Nonextensive Statistical Mechanics and Thermodynamics,
eds. S. R. A. Salinas and C. Tsallis, Braz. J. Phys. 29, 36 (1999) [accessible at
http://sbf.if.usp.br/WWW−pages/Journals/BJP/Vol29/Num1/index.htm].

56. R. P. Di Sisto, S. Martinez, A. R. Plastino, and A. Plastino, Physica A 265, 590
(1999).

57. R. S. Johal, Phys. Rev. E 58, 4147 (1998).
58. A. K. Rajagopal and S. Abe, Phys. Rev. Lett. 83, 1711 (1999).
59. R. S. Johal and R. Rai, Physica A 282, 525 (2000).
60. R. Rossignoli and N. Canosa, Phys. Lett. A 264, 148 (1999).
61. A. Renyi, in Proc. Fourth Berkeley Symposium, 1960, Vol. 1 (University of Califor-

nia Press, Berkeley, Los Angeles, 1961), 547; Probability Theory (North-Holland,
1970) and references therein.

62. I. Csiszar, Information measures: A critical survey, in Transactions of the Sev-
enth Prague Conference on Information Theory, Statistical Decision Functions,
Random Processes and the European Meeting of Statisticians, 1974 (Reidel, Dor-
drecht, 1978), p. 73.

63. M. P. Schutzenberger, Contribution aux applications statistiques de la theorie de
l’information, Publ. Inst. Statist. Univ. Paris 3, 3 (1954).

64. M. Hotta and I. Joichi, Phys. Lett. A 262, 302 (1999).
65. R. J. V. dos Santos, J. Math. Phys. 38, 4104 (1997); see also S. Abe, Phys. Lett.

A 271, 74 (2000).



92 C. Tsallis

66. S. Abe, Phys. Lett. A 224, 326 (1997).
67. F. Jackson, Mess. Math. 38, 57 (1909); Quart. J. Pure Appl. Math. 41, 193

(1910).
68. It is not hard to propose Jackson-like generalized differential operators associated

with operations other than dilatations, for instance those associated with the con-
formal group. The procedure can be illustrated on a transformation of a simple,
one-dimensional variable x. We assume x′ = x + f(x, a) with f(x, 0) = 0 (∀x).
The generalized derivative would then be [private discussion with M. A. Rego-
Monteiro] DaF (x) ≡ [F (x′) − F (x)]/[x′ − x]. In the limit a → 0 limit we have,
if f(x, a) is differentiable with respect to a, that f(x, a) ∼ f ′(x, 0)a, hence
x′ ∼ x + f ′(x, 0)a, hence D0F (x) ≡ lima→0 DaF (x) = F ′(x), thus recovering
the usual derivative as the a = 0 special case. Now comes the nontrivial step: if
we knew for this generic situation on what, instead of

∑W

i
pαi , we should apply

Da, we would be able to define classes of entropic forms, respectively associated
with generic symmetry groups. The BG entropy would be the one essentially cor-
responding to translations; the present q �= 1 would correspond to dilatations;
many more could emerge! [12]. This speculative scenario would in fact be physi-
cally appealing: the entropy being a measure of the (lack of) information, it seems
natural that it be adapted to and reflecting some essential symmetry of the system
it is supposed to ”inform” on. To be concrete, if a many-body nonlinear dynamical
system had neither exponential nor power-law time-dependence of the sensitivity
to the initial conditions, but rather say a logarithmic dependence, it would not
be really surprising that the need appeared of an entropic form different from Sq.

69. C. Tsallis, Quimica Nova 17, 468 (1994).
70. E. P. Borges, J. Phys. A 31, 5281 (1998).
71. P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346 (1983) and Phys. Rev.

A 28, 2591 (1983); T. A. Halsey et al., Phys. Rev. A 33, 1141 (1986).
72. S. Watanabe, Knowing and Guessing (Wiley, New York, 1969).
73. H. Barlow, Vision. Res. 30, 1561 (1990); see also G. Toulouse, J. Phys. I (France)

3, 229 (1993).
74. A. Plastino and A. R. Plastino, in Nonextensive Statistical Mechanics and Ther-

modynamics, eds. S. R. A. Salinas and C. Tsallis, Braz. J. Phys. 29, 50 (1999)
[accessible at
http://sbf.if.usp.br/WWW−pages/Journals/BJP/Vol29/Num1/index.htm].

75. L. R. da Silva, E. K. Lenzi, J. S. Andrade, and J. Mendes Filho, Physica A 275,
396 (2000).

76. S. Abe, Phys. Lett. A 263, 424 (1999); (Erratum) 267, 456 (2000).
77. A. R. Lima and T. J. P. Penna, Phys. Lett. A 256, 221 (1999).
78. F. D. Nobre and C. Tsallis, Physica A 213, 337 (1995) [Erratum: 216, 369 (1995)];

F. D. Nobre and C. Tsallis, Phil. Mag. B 73, 545 (1996).
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II. Quantum Density Matrix Description
of Nonextensive Systems
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Abstract. A description of nonextensive systems based on the Tsallis generalization
of the Boltzmann-Gibbs (BG) formalism is given in terms of quantum density matrix.
After developing reasons for using the density matrix description as well as general-
izations of the BG-formalism in the first section, we formulate the theory of quantum
entangled states and information theory in the second section. In the third section, the
maximum Tsallis entropy principle with given normalized q-mean value constraints is
developed in detail, leading to quantum statistical mechanics of nonextensive systems.
In the fourth section, time-dependent unitary dynamics is given. Here, the Green func-
tion theory as well as linear response theory are described in detail. A brief description
of nonunitary (Lindblad) dynamics is outlined in the fifth section. In the final section,
open problems and possible resolution are discussed as concluding remarks. In eight
Tables, the summaries of the various sections are given with a view to give intercom-
parison of the present developments with the familiar ones found in the literature. In
Appendix, several forms of the q-Kullback-Leibler entropy are given in seeking a guide
to introduce invariance principles in the theory of nonextensive Tsallis entropy.

1 General Remarks

It is nearly 130 years since Boltzmann (1866) [1] and Gibbs (1876) [2] laid the
foundation for the statistical description of the thermodynamic equilibrium of
a collection of mutually interacting classical particles by introducing the well-
known entropy functional expressed in terms of a stationary distribution func-
tion of particles in phase space. After this seminal work, many ideas such as the
law of large numbers, ensemble theory, etc. were used to better understand the
Boltzmann-Gibbs description. Several ensembles were introduced but they all
led to one thermodynamics! The dynamical version of the classical distribution
function follows the Liouville equation derived from the classical equations of
motion of the particles composing the system. The stationary solution of this
equation is used in setting up the equilibrium statistical mechanics through the
maximum entropy (maxent) principle. It is in this way that the classical dynam-
ical aspects of the system were incorporated into the description of macroscopic
systems in thermodynamic equilibrium. In 1927, von Neumann [3] gave a gen-
eral description of quantum systems by introducing the density matrix, which
replaces the classical probability distribution by a traceclass (often taken as unit
trace corresponding to the total probability being equal to unity), positive semi-
definite, Hermitian operator, ρ̂, corresponding to the properties of the classical
probability and the concomitant generalization of entropy functional stated now
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in terms of the trace over an appropriate functional of the density matrix. The
trace structure is important in that it makes the entropy functional indepen-
dent of unitary transformations on the state space. Its dynamical version obeys
the von Neumann equation derived from the quantum equations of motion for
the system. This equation is linear so that the superposition principle of quan-
tum theory is incorporated into the formulation. Again its stationary solution
plays an important role in setting up quantum statistical mechanics of systems.
Specifically, the density matrix with unit trace describes “mixed” states when-
ever ρ̂2 < ρ̂ and so the system cannot be described by a wave function. In the
case of “pure” states, wave function description holds. Here, the condition for a
pure state is that the density matrix is idempotent: ρ̂2 = ρ̂ implying that a state
function description suffices where ρ̂ = |Ψ〉〈Ψ | with |Ψ〉 the quantum state. It is
important to point out that Shannon [4] in 1948, in an entirely different context,
introduced the idea of entropy associated with classical discrete probabilities,
thus introducing information theory as a new area of science. This involved the
introduction of the idea of additivity of entropy associated with composite sys-
tems along with their “conditional” and “mutual” entropies. This formulation,
in contrast to the above, did not depend on the underlying mechanism for the
statistical features, but employed only the basic structure of the multivariate
probabilities. Recently, it has become possible to set up quantum communica-
tion system for which the Shannon description is generalized in terms of the
density matrix, without invoking the underlying quantum dynamics, but only
the quantum superposition principle, which leads to new features that are not
in the classical probability framework (e.g., entanglement, the Bell inequalities,
etc.). Unlike the classical probability description, the quantum version involving
the superposition principle leads to the new idea of probability amplitude. In
this respect, quantum information theory is different from its classical Shannon
version. Only in 1957, Jaynes [5] gave a comprehensive maxent principle gen-
eralizing Boltzmann-Gibbs, von Neumann, and incorporating Shannon. He re-
placed the ensembles by linearly independent “constraints” in the maximization
procedure with the introduction of corresponding Lagrange multipliers, which
led to the same thermodynamics as before, in the form of general Legendre
transformations. The Lagrange multipliers must be determined in terms of the
given constraints, which may or may not be possible. Furthermore, the require-
ments of the positivity and finite trace of the resulting density matrix must be
obeyed. Thus Jaynes simplified the statistical mechanical procedures enormously
by avoiding the use of large-numbers approximation, ensembles, heat bath, etc..
Jaynes applied his procedure to examine many issues both in statistical mechan-
ics and in other areas of sciences where probabilistic description is called for. In
the latter cases, judicious choice of constraints placed on the maxent principle
played the role of the Hamiltonian in equilibrium statistical mechanics. In this
way, Jaynes introduced a new method for mathematical analysis of problems
with probabilistic basis. This was considerably generalized beyond what Jaynes
originally imagined to include quantum communication [6] by reformulating the
Shannon theory in terms of the density matrix. (The dynamical description of
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the many-particle system has its own history and is a separate topic in itself.)
With this brief history as introduction, we will now give an account of the new
developments in the formalism that have taken place in the last decade. We will
present this work in terms of the density matrix as it is the most general way
of stating these ideas, provides unified, consistent picture of entangled systems
besides encompassing the classical probability version of the theory of both sta-
tistical mechanics and information theory as special cases. There have been an
enormous number of applications of this formulation over the last decade, as
was the case with the original Jaynes maxent principle. Only a few of these will
be touched upon in this sequel, as they will be discussed in much greater detail
by the other colleagues, especially by Professor Constantino Tsallis in this vol-
ume. Our presentation here is thus hoped to be complementary to these other
presentations.

In this first Section, we provide three examples as motivation for the use
of density matrix approach. Two of these examples are from phenomenological
considerations and one based on a simple Hamiltonian of a system. We also give
arguments for the need for a generalization of the Boltzmann-Gibbs description
of statistical mechanics. We follow this up with a quick derivation of the max-
ent principle of Jaynes [5] to establish a framework for subsequent development
in succeeding sections in the non-Gibbsian context. In Section 2, the ideas of
entanglement, decoherence, and quantum information theory based on the den-
sity matrix are developed. We do this by employing the exactly soluble model
of interacting radiation and a two-level system (the Jaynes-Cummings model,
JC for short) as a guide for the general development given here. This develop-
ment is particularly relevant in the context of quantum devices of nanometric
sizes that are being contemplated currently and perhaps will be fabricated in
the next century. Even though this description is based on the underlying JC
Hamiltonian, the conclusions about the various aspects of the information con-
tent in the density matrix of a composite system are general. In Section 3, the
Tsallis formalism in its most recent version is presented along with the maxent
principle and generalized statistical mechanics that go with it. Also in this sec-
tion, a calculation of the isothermal response of a system property to a static
perturbation is given. In Section 4, we address time-dependent phenomena by
first using the unitary time evolution of the density matrix. A detailed discussion
of the dynamical linear response theory is given. More generally, in this section,
the Green function theory of nonextensive systems is also outlined. In Section
5, a brief description of nonunitary time evolution which is of current interest
in understanding fast dynamical processes on time scales of pico- and femto-
seconds in various contexts such as nanometric electronic devices, fast chemical
reactions, etc., is given. Each of these sections contain respective summaries in
the form of Tables. In the final Section 6, some concluding remarks in the form
of some questions that are worrisome to me personally and prospects for future
work are given in the light of two recent applications of the Tsallis form of the
entropy.
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A. Motivation for Generalization of Boltzmann–Gibbs Description

We first recall that among the statistical distributions, the exponential-class
(e.g., Gaussian) played the central role in the analysis of many phenomena. (See
[5] for a discussion of these aspects.) These can all be derived from a maxent
principle subject to some constraints in which the entropy functional is chosen
to be the Gibbs-von Neumann form, with Trρ̂ = 1:

S1 = −Tr(ρ̂ ln ρ̂) ≡ −〈ln ρ̂〉1 . (1)

Once the density matrix is determined, the mean values of any other physical
quantity represented by a hermitian operator Â of interest can be calculated
by performing a calculation of the trace given by 〈Â〉1 = Tr(Âρ̂). This proce-
dure covers a large class of extensive systems, for which the entropy is additive.
There are many other probability distributions possessing long tails such as
Pareto, Lévy, etc. which are of the monomial-class, not related to the exponen-
tial class. These are not derivable from the maxent principle with the Gibbs-von
Neumann form for the entropy functional which were based on the assumed
additive property of their entropy functional. These cover many other physical
phenomena such as systems with fractally structured space-time, for example,
which do not come under the rubric of “extensive” class of systems traditionally
treated in physical and other sciences because the additive property does not
hold for these systems. It is to encompass both of these situations that Tsallis
[7] in 1988 introduced the following entropy functional:

Sq =
1

q − 1
Tr(ρ̂− ρ̂q) = −Tr(ρ̂Lnqρ̂) ≡ −〈Lnqρ̂〉1 , (2)

where Trρ̂ = 1 and Lnqρ̂ ≡ (
ρ̂q−1 − 1

)
/(q − 1). Here, q is a real parameter

which characterizes the nonextensive feature (nonadditivity) of the system; for
q → 1, Lnqρ̂ → ln ρ̂ and Eq. (2) goes over to the von Neumann entropy, S1,
in Eq. (1). The 1988 version has since evolved [8] to make the formalism more
complete and we use this form in this sequel. The density matrix so determined
may then be used to compute normalized q-mean values of physical quantities
defined by

〈
Â
〉
q
= Tr(ρ̂qÂ)/Trρ̂q, for reasons of consistency of the formulation,

which will be discussed later. It should be remarked that the criterion of using
the limit q = 1 to give the extensive results and the preservation of Legendre
transform properties of the functional used do not lead to a unique form of the q-
entropy. By including a consistent formulation of information theory which now
requires defining “conditional” and “mutual” entropies, along with statistical
mechanics, a complete q-formulation as presented here may be one of the possible
generalizations. (See however a discussion on this point in Section 6. In Table 1,
we display the two formalisms for easy comparison. The difference between the
two lies mainly in their additive properties (see Table 2).

As far as we are aware, there is no mathematical or physical argument to rule
out the applicability of the Tsallis ensemble nor do we know any demonstration
that the exponential-class covers every conceivable situation in physical and
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Table 1. Definitions of entropy

Extensive – von Neumann Nonextensive – Tsallis

S1 = −Tr(ρ̂ ln ρ̂) with Sq = 1
q−1Tr(ρ̂− ρ̂q) ≡ −Tr(ρ̂Lnqρ̂).

Trρ̂ = 1. Here, Lnqρ̂ ≡ 1
q−1

(
ρ̂q−1 − 1

)
,

Trρ̂ = 1 (q: a real number).

〈Â〉1 = Tr(Âρ̂) : mean value of Â 〈Â〉q = Tr(Âρ̂q)/Trρ̂q :
normalized q-mean value of Â.

other sciences so that the universality of the Boltzmann-Gibbs ensemble may be
considered as the only one paramount form. Essentially, then, the exponential
weights that have appeared in the past few decades are found to be replaced by
a monomial weights in the last decade by invoking the maxent principle with
a different form for the entropy functional. In discussing sensitivity to initial
conditions of nonlinear dynamical systems, similar “exponential” and “power”
law sensitivities have been discussed recently [9,10], in the context of the use
of the Kolmogorov-Sinai and classical Tsallis entropies in their quantification.

Table 2. Dissimilar properties of the entropies

Extensive – von Neumann Nonextensive – Tsallis

Additivity property of S1: Additivity property of Sq:

If ρ̂(A ∪B) = ρ̂(A)⊗ ρ̂(B), If ρ̂(A ∪B) = ρ̂(A)⊗ ρ̂(B), then

then S1(A ∪B) = S1(A) + S1(B). Sq(A ∪B) = Sq(A) + Sq(B)+

+(1− q)Sq(A)Sq(B),

which means that it is

superadditive for q < 1 (entropy of

whole is greater than the sum of its

parts) and subadditive for q > 1.

Additivity property of mean values: Additivity property of normalized

q-mean values:

〈Ô〉1(A ∪B) = 〈Ô〉1(A) + 〈Ô〉1(B) 〈Ô〉q(A ∪B) = 〈Ô〉q(A) + 〈Ô〉q(B)
The Kubo dynamic linear response The q-Kubo dynamic linear

function obeys the fluctuation- response function obeys (a different

dissipation theorem. of) form the fluctuation-

disssipation theorem [11].
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Also, the Tsallis ensemble with q different from 1 deals with Hamiltonians of
systems with long-range interactions which may exhibit nontrivial anomalies in
their ergodicity and mixing properties. For systems which are noninteracting
or interacting systems with short-range forces, one has q less than or equal
to 1 (Boltzmann-Gibbs class included). In Table 2, we display the dissimilar
properties of the two entropies. Just as the work of Jaynes spawned a large body
of work in many areas of science, so has the work of Tsallis, and one may access
these by going to the website quoted in [7] where the burgeoning literature on
the subject since 1988 is periodically updated.

B. Motivation for Using Density Matrix Description

There are several reasons for our choice of presenting this work in terms of the
density matrix. Besides the mathematical reasons of generality and elegance, it
covers the quantum probability ideas which include the superposition principle,
not present in classical probability description. We will exhibit this distinction
in several places in the course of this development. Also, density matrix descrip-
tion is eminently suited to discuss many commonly occurring physical situations.
We consider here three such examples. Two of these examples describe phe-
nomenological situations while the third one is based on an underlying system
Hamiltonian.

(a) Photon Polarization (Polarized Light): Light being a transverse vector is
described in terms of the two orthogonal components of its polarization vector.
In nature, light occurs with arbitrary polarization not corresponding to these
directions and by suitable optical means (e. g., Nicol prism), one may obtain
light of given polarization state. We use this phenomenology to construct a
density matrix description of light with arbitrary polarization as a 2× 2 matrix:

ρ̂ =
(
ρ11 ρ12
ρ21 ρ22

)
, Trρ̂ = ρ11 + ρ22 = I , (3)

where I is the intensity of light, and ρ̂ satisfies the hermiticity condition ρ12 =
ρ∗
21. The positive semi-definiteness of the density matrix implies that its eigen-

values are greater than or equal to zero, and whose sum is I, the intensity of
light, as in Eq. (3). An immediate consequence of this is that

detρ̂ = ρ11ρ22 − |ρ12|2 ≥ 0 ,

Trρ̂2 − (Trρ̂)2 = −2detρ̂ ≤ 0 . (4)

In the optics literature, one often expresses the polarization matrix in terms of
the Stokes parameters, which is another way of parametrizing the density matrix
in Eq. (3), which takes account of the various properties of the light polarization
stated here. Thus,

ρ̂ =
I

2

(
1 + η3 η1 − iη2
η1 + iη2 1− η3

)
. (5)



Quantum Density Matrix 105

From the condition derived in Eq. (4), it follows that the Stokes parameters obey
the inequality

P 2 ≡ η21 + η22 + η23 ≤ 1 . (6)

This leads to another important representation of the polarization, called the
Poincare sphere representation. The eigenvalues associated with the density ma-
trix in Eq. (5) are λ1,2 = I(1±P )/2. Once the Stokes parameters are determined,
the character of the light beam is known. The Tsallis information content in the
beam is then represented by the Tsallis entropy, after appropriately redefining it
in terms of the normalized density matrix, which depends only on the parameter,
P , introduced in Eq. (6):

Sq = −
[(

1 + P

2

)
Lnq

(
1 + P

2

)
+
(

1− P

2

)
Lnq

(
1− P

2

)]
. (7)

In the limit q → 1, this goes to the traditional standard result of the information
content in a beam of light. If P = 0, the beam is “unpolarized”, and for P = 1
it is completely polarized as in laser beam, and any other intermediate values of
P , the beam is partially polarized as in Sun light.

(b) Particle Spin Polarization (Magnetism): In the phenomenological description
of magnetic states of electron systems, one employs the spin-1/2 feature of the
electron spin. The density matrix is again of the 2× 2 form as above, separating
the spin-dependence from the space-time dependence, so that the interpretation
of the elements of the density matrix are now in terms of the space and time
coordinate representation of the electron. In this case, we may write it in spin-
space symbolically as

ρ̂(−→r , t;−→r ′, t′) =
(
ρ↑↑(−→r , t;−→r ′, t′) ρ↑↓(−→r , t;−→r ′, t′)
ρ↓↑(−→r , t;−→r ′, t′) ρ↓↓(−→r , t;−→r ′, t′)

)
. (8)

Now the diagonal parts in the space-time representation of this density matrix
has the interpretation in terms of the particle density and spin density vector.
To show this, we represent this matrix in terms of the unit and the Pauli spin
matrices in the spin-space,

I =
(

1 0
0 1

)
, τx =

(
0 1
1 0

)
, τy =

(
0 −i
i 0

)
, τz =

(
1 0
0 −1

)
. (9)

Then we express Eq. (8) in the form

ρ̂(−→r , t;−→r ′, t′) = [Iρ̂0(−→r , t;−→r ′, t′) + τxρ̂x(−→r , t;−→r ′, t′)
+ τyρ̂y(−→r , t; r̄′, t′) + τz ρ̂z(−→r , t;−→r ′, t′)] /2 , (10)

where ρ̂0(−→r , t;−→r ′, t′)=tr[Iρ̂(−→r , t;−→r ′, t′)], ρ̂α(−→r , t;−→r ′, t′)=tr[ταρ̂(−→r , t;−→r ′, t′)],
with α = x, y, z, and tr means the trace over spin space only. In the diagonal
space-time representation, we have then

n(−→r , t) = tr[Iρ̂(−→r , t;−→r , t)] ,−→s (−→r , t) = tr[−→τ ρ̂(−→r , t;−→r , t)] . (11)
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The magnetic properties of the system may then be represented in terms of this
elegant form of the density matrix. Similar representations can be constructed
for scattering problems involving spins.

(c) Systems at Finite Temperature: The most commonly occurring mixed state is
that of a system at finite temperature. Here, the states of the system are weighted
by suitable factors so that the system properties may be studied at any physical
situation. Thus, if we label the energy eigenstates of the Hamiltonian of the
system by a and the corresponding weights by w(a), the density matrix has the
form

ρ̂ =
∑
a

|a 〉w(a) 〈a| , Trρ̂ = 1 =
∑
a

w(a) , (12)

provided that, for simplicity of presentation, a is assumed to be discrete and
nondegenerate. The weights are determined by the maxent principle. One can
see at once that Eq. (12) implies the condition of “mixed” state, namely, ρ̂2 < ρ̂.
In the Gibbsian scheme, the weight factors are proportional to exp[−E(a)/kT ],
where E(a) is the energy state associated with state a, T is the tempersature
of the system, and k is the Boltzmann constant. In the next subsection, these
ideas will be dealt with in some detail.

C. Maximum Entropy Principle
of Jaynes Constraints Replace Ensembles

Let us consider the maxent principle of Jaynes [5] in the context of statistical
mechanics. One could write this principle in a more general form but we focus
here on problems of statistical mechanics. Suppose the system Hamiltonian and
number operators be Ĥ and N̂ , respectively, whose mean values are given by
Tr(ρ̂Ĥ) = Ũ1 and Tr(ρ̂N̂) = Ñ1. The maxent principle requires maximization of
the von Neumann entropy functional of the density matrix subject to these two
constraints along with the normalization of the density matrix. Introducing three
Lagrange multipliers, λ0, λ1, and λ2 corresponding to these three constraints,
we have

δ
{
S1[ρ̂]− λ0Trρ̂− λ1Tr[ρ̂(Ĥ − Ũ1)]− λ2Tr[ρ̂(N̂ − Ñ1)]

}
= 0

=⇒ ln ˆ̃ρ = −λ0 − X̂1(λ1, λ2) ,

ˆ̃ρ =
[
Z̃1(λ1, λ2)

]−1
exp

[
−X̂1(λ1, λ2)

]
,

X̂1(λ1, λ2) = λ1(Ĥ − Ũ1) + λ2(N̂ − Ñ1) ,

Z̃1(λ1, λ2) = Tr exp
[
−X̂1(λ1, λ2)

]
(partition function). (13)

The traditional partition function found in the textbooks does not have the
constant factor exp(λ1Ũ1 + λ2Ñ1), and we write these in the above form to
be consistent with the formulation to be presented later when we consider the
nonextensive theory. In fact, we have

Z̃1(λ1, λ2) = Z1(λ1, λ2) exp(λ1Ũ1 + λ2Ñ1) . (13a)
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where Z1 is the traditional partition function found in standard textbooks. This
derivation shows that for Ũ1 and Ñ1 to be finite, the spectrum of the Hamiltonian
and the number operators must be bounded from below. It is implied in this
derivation that calculating Ũ1 and Ñ1, by using the density matrix found in Eq.
(13), which are now found in terms of the Lagrange multipliers, one can solve for
λ1 and λ2, for a given set of Ũ1 and Ñ1. In the case of classical probabilities, there
are counterexamples to this requirement. One example of this may be mentioned
in passing, namely, given the first two moments, µ1 and µ2, of a probability
distribution defined on a semi-infinite domain, the maxent solution does not
exist for all values of the two given moments if µ2 > 2µ21 [D. C. Dowson and
A. Wragg, IEEE Trans. Info. Theory IT-19, 689 (1973)]. Another problem that
often crops up is that the resulting density matrix must be positive in the space
defined. One suggestion is to use an additional inequality constraint associated
with the requirement of positivity of the density matrix. With these caveats in
mind, then the entropy associated with this density matrix is a function of the
Lagrange multipliers for given Ũ1 and Ñ1:

S1

(
λ1, λ2

∣∣∣Ũ1, Ñ1

)
= − Tr(ˆ̃ρ ln ˆ̃ρ) = ln Z̃1(λ1, λ2) . (14)

This entropy has zero first derivatives with respect to the Lagrange parameters
showing that it is stationary and it must attain its maximum in this parameter
space, for given fixed values of Ũ1 and Ñ1. Indeed we have

∂S1
∂λ1

=
∂ ln Z̃1(λ1, λ2)

∂λ1
= 0 ,

∂S1
∂λ2

=
∂ ln Z̃1(λ1, λ2)

∂λ2
= 0 ,

∂2 ln Z̃1(λ1, λ2)
∂λ21

=
〈(

Ĥ − Ũ1

)2 〉
1 ≡ σ21(Ĥ)

= −∂Ũ1

∂λ1
> 0 ,

∂2 ln Z̃1(λ1, λ2)
∂λ22

=
〈(

N̂ − Ñ1

)2 〉
1 ≡ σ21(N̂)

= −∂Ñ1

∂λ2
> 0 ,

∂2 ln Z̃1(λ1, λ2)
∂λ1∂λ2

=
〈(

Ĥ − Ũ1

)(
Ñ − Ñ1

)〉
1 ≡ σc

1(Ĥ, N̂)

= −∂Ũ1

∂λ2
= −∂Ñ1

∂λ1
,

σ21(Ĥ)σ21(N̂)−
[
σc
1(Ĥ, N̂)

]2
> 0 . (15)

This nicely shows that the maxent principle requires that the fluctuations in
energy and number, and the correlation coefficient between number and energy
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form a negative definite 2 × 2 covariance matrix, as spelled out by Eq. (15). To
make contact with the traditional thermodynamics, one recognizes the Lagrange
multiplier going with the constant energy constraint, λ1, should be identified
with the inverse temperature, β, and the one going with number constraint, λ2,
with −βµ, where µ is the chemical potential of the system and are determined
by the given values of mean energy and number of particles. Moreover, the
Gibbs free energy is identified to be F1(β, µ) = −β−1 lnZ1(β, µ), and hence the
thermodynamic result

F1(β, µ) = Ũ1 − µÑ1 − β−1S1

(
β, µ

∣∣∣Ũ1, Ñ1

)
. (16)

This shows that maxent principle implies a minimum free energy principle! Fur-
thermore, the thermodynamic stability conditions requiring the specific heat
and compressibility to be positive are nothing but the conditions obtained in
Eq. (15) on the second derivatives of the entropy functional. If we use Ũ1 and
Ñ1 as variables with fixed β and µ, Eq. (16) can be used in the sense of a Leg-
endre transformation so that ∂S1

/
∂Ũ1 = β, ∂S1

/
∂Ñ1 = −βµ. The matrix of

the second derivatives of S1 with respect to Ũ1 and Ñ1 is minus the inverse of
that of the the second derivatives of S1 = ln Z̃1 with respect to the Lagrange
multipliers, λ1 and λ2.

In the canonical ensemble description, one uses only the energy constraint
in the maxent procedure, and similar results follow with the chemical poten-
tial dropped in the above analysis. This shows the power of the method of
Jaynes which overcomes the concepts of heat bath, large numbers approxima-
tion, etc.. This derivation also shows that “thermodynamics” is nothing but an
aspect of Legendre transformation and maximum entropy or minimum free en-
ergy principle! An important aspect of this development is that when λ1 goes to
∞ (corresponding to zero temperature in the familiar notation) the entropy S1
goes to zero and the density matrix collapses to the ground state of the system,
which is the lowest eigenstate of the Hamiltonian. This idea is at the heart of
the “annealing algorithm” which provides a way of exploring the lowest state of
a many-body system, for example. It may be interesting to note the following
Lemma which compares entropies when one has different number of constraints.
The lemma states as follows.
LEMMA: The entropy of a system with one constraint is larger than the en-
tropy of the same system with an additional constraint. The proof of this is
based on the Kullback-Leibler inequality concerning two density matrices:

K1(ρ̂1; ρ̂2) = Tr[ρ̂2(ln ρ̂2 − ln ρ̂1)] ≥ 0 , (17)

with Trρ̂2 = Trρ̂1 = 1.
The proof of this inequality will be given in the next Section. We now consider

a system with a given Hamiltonian. We construct two density matrices associated
with it: one, ρ̂2, as in the grand canonical ensemble with two constraints Ũ1 and
Ñ1, and another, ρ̂1, with only one constraint, Ũ1, the same value of the mean
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energy. Then we have

S1(ρ̂1) = ln Z1(β1) + β1Ũ1, ρ̂1 = (Z1)−1 exp(−β1Ĥ) . (18)

From Eq. (17) and the results of the grand canonical ensemble, we have

−S1(ρ̂2) + S1(ρ̂1) ≥ 0 . (19)

More generally, this shows that as we keep increasing the number of constraints
in the maxent procedure, we get a nesting of the entropies as above with the
entropy with one constraint being the largest. Another important consequence
of this is that if ρ̂ is an arbitrary density matrix, then the free energy associated
with it obeys the inequality: F1(ρ̂) = Tr[ρ̂(Ĥ − µN̂ + β−1 ln ρ̂)] ≥ F1(ˆ̃ρ = ρ̂max),
where ˆ̃ρ is given in Eq. (13).

In Table 3, we summarize the definitions of standard ensembles used in sta-
tistical mechanics as well as the corresponding constraints that go with each
of them. It may be of interest to note that in the context of the experimental
investigations on Bose condensation of small number of atoms, the question of
ensembles and fluctuations therein has been discussed in [12].

Table 3. Standard ensembles and relation to maximum entropy principle

Microcanonical Canonical Grand Canonical

Total Number of System in contact with System exchanges N

particles N and bath of given and E with a bath

the total energy E temperature T

prescribed

All configurations Prescribed parameters are Chemical potential,

with N , E equally T and N
(
β = (kT )−1

)
: µ, and T are

probable: W (N,E) Z(N, β), control variables:

ν ≡ e−εβ R(u, ν) = R(µ, T ),

u ≡ eβµ, ν ≡ e−εβ

In the maxent terms, the In the maxent terms,

constraints is the mean the constraints are

energy of the N -particle are the mean energy and

system. Correspondingly, the mean number. The

the Lagrangean parameter Lagrangean parameters

is β. are β and µ.
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2 Theory of Entangled States and Its Implications:
Jaynes–Cummings Model

The motivation for the theory of entangled states is perhaps best illustrated by
studying an exactly soluble model of an interacting system which brings out
various aspects of the underlying concepts associated with any general formula-
tion of several interacting systems, such as “marginal” density matrices of the
subsystems and their entropies, etc.. We use the notations in [13] in setting up
the density matrix for the Jaynes-Cummings (JC) model [14] of a generic two
interacting systems, one being a single-mode radiation field and the other, a
two-level atom. This model has become the paradigm for discussing many of the
current problems in quantum optics [15]. This is also generic model for discussing
interacting two-level system with a boson field. With this model as a guide, we
discuss (a) entanglement and decoherence concepts (b) entropy and information
content in the total system as well as in the subsystems and (c) comparison of
two systems employing the various entropy concepts of the entangled system.

The Hamiltonian of the two-level atom interacting with a single given mode
of quantized radiation field of a given frequency, ω, characterized by the usual
creation, a†, and destruction, a, operators and in the rotating wave approxima-
tion is given by

HA+R = h̄ωa†a+
h̄ω0
2

σz + h̄κ(a†σ− + aσ+) . (20)

The Hamiltonian of the two level atom is represented by the z-component of
the Pauli matrices, the energy separation of the two levels is ω0, and κ is the
interaction strength between the radiation and the atom. Exact solutions of this
interacting system are [13,14]

HA+R |ϕ(n, 1) 〉= h̄ [ω(n+ 1/2) + λn] |ϕ(n, 1) 〉 ,
HA+R |ϕ(n, 2) 〉= h̄ [ω(n+ 1/2)− λn] |ϕ(n, 2) 〉 ,
HA+R |0,−1 〉= −h̄ω0/2 |0,−1 〉 ,
|ϕ(n, 1) 〉= cos θn |n+ 1,−1 〉+sin θn |n,+1 〉 ,
|ϕ(n, 2) 〉= − sin θn |n+ 1,−1 〉+cos θn | n,+1 〉 ,
tan θn = κ

√
(n+ 1)

/
(∆ω/2 + λn) ,

(∆ω) ≡ ω − ω0, λn ≡ [(∆ω/2)2 + κ2(n+ 1)
]1/2

,
∞∑
n=0

[|ϕ(n, 1) 〉〈ϕ(n, 1)|+ |ϕ(n, 2) 〉〈ϕ(n, 2) |]

+ |0,−1 〉〈0,−1 | = 1 , (21)

where the last equation is the completeness relation, and
{|ϕ(n, 1) 〉, |ϕ(n, 2) 〉, |0,−1 〉} form an orthonormal set. Here, n is a positive in-
teger running from zero to infinity labeling the quantum numbers of the photon
field, and +1,−1 represent the upper and lower quantum states of the two-level
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atom. The states {|ϕ(n, i)〉} (i = 1, 2) and |0,−1〉 represent the exact entangled
states of the atom-radiation system. The angles, θn, are measures of the entan-
glement; it is zero in the noninteracting case when there is no entanglement, and
is maximum at resonance, ∆ω = 0 when θn = π/4 for all n. In Eq. (21), we have
also expressed these in terms of the states of the radiation and the atom. The
density matrix of this system is now constructed in this entangled state repre-
sentation by using the maxent principle with a given mean total energy of the
system [13]. This construction provides us a way of realizing the various aspects
of the entanglement – from classical to fully quantum – in terms of the system
parameters, a novel aspect of this model. This density matrix is diagonal in this
representation, given by

ρ̂A+R = |0,−1 〉w(0) 〈0,−1 |

+
∞∑
n=0

[|ϕ(n, 1) 〉w(n, 1) 〈ϕ(n, 1) |+ |ϕ(n, 2) 〉w(n, 2) 〈ϕ(n, 2) |] ,

w(0) = exp (βh̄ω0/2) /ZA+R ,

w(n, 1) = exp {−βh̄ [ω(n+ 1/2) + λn]} /ZA+R ,

w(n, 2) = exp {−βh̄ [ω(n+ 1/2)− λn]} /ZA+R ,

ZA+R =
∞∑
n=0

{exp (−βh̄ [ω(n+ 1/2) + λn])

+ exp (−βh̄ [ω(n+ 1/2)− λn])}+ exp(βh̄ω0/2) . (22)

The weights w(0), w(n, 1), and w(n, 2) are the occupation probabilities of the
entangled eigenstates of the total system Hamiltonian in Eq. (20), that is, |0,−1〉,
|ϕ(n, 1) 〉 , and |ϕ(n, 2) 〉 , respectively. Here, β = T−1 (kB ≡ 1) is the usual
inverse temperature. Clearly, using the orthonormality of the states, we have
the relation ∞∑

n=0

[w(n, 1) + w(n, 2)] + w(0) = Trρ̂A+R = 1 . (23)

We now express the density matrix in terms of the photon and atomic states
using the relations in Eq. (21), which will display explicitly the entangled nature
of the system between the atomic and the photon states:

ρ̂A+R =
∞∑
n=0

|n+ 1,−1 〉〈n+ 1,−1|

× (w(n, 1) cos2 θn + w(n, 2) sin2 θn
)

+w(0) |0,−1 〉〈 0,−1|

+
∞∑
n=0

|n,+1 〉〈n,+1| (w(n, 1) sin2 θn + w(n, 2) cos2 θn
)

+
∞∑
n=0

[|n+ 1,−1〉〈n,+1|+ |n,+1〉〈n+ 1,−1|]

× (w(n, 1)− w(n, 2)) cos θn sin θn . (24)
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The fourth term on the right-hand side of the above equation is off-diagonal in
both the photon number and atom states and thus represents the entanglement
of the atomic and photonic states and hence also the “decoherence” features of
the interacting system. From this expression, we obtain the “marginal” density
matrix of the atomic system by taking trace over the photon number states,
which is found to be diagonal in the atomic states but representing a mixed
character as expected:

f(−) |−1 〉〈 − 1|+ f(+) |+1 〉〈+ 1| = ρ̂A = TrRρ̂A+R ,

f(−) = w(0) +
∞∑
n=0

(w(n, 1) cos2 θn + w(n, 2) sin2 θn) , (24a)

f(+) =
∞∑
n=0

(w(n, 1) sin2 θn + w(n, 2) cos2 θn) .

Thus f(−) and f(+) are the occupation probabilities of the (−1) and (+1) states
of the atom with f(−)+f(+) = 1. Note that these retain the features of the inter-
action. Similarly, the “conditional” density matrix of the radiation is obtained
by taking trace over the atomic states, which is diagonal in the photon number
states:

∞∑
n=0

pn|n〉〈n| = ρ̂R = TrAρ̂A+R ,

p0 = w0 + w(0, 1) sin2 θ0 + w(0, 2) cos2 θ0 ,
pn = w(n, 1) sin2 θn + w(n, 2) cos2 θn + w(n− 1, 1) cos2 θn−1

+ w(n− 1, 2) sin2 θn−1 (n = 1, 2, 3, · · ·) . (24b)

Here, pn are the occupation probabilities of the n-th photon state with
∑∞

n=0 pn=
1, retaining features of the interaction. These reduce to the familiar noninteract-
ing occupation probabilities when the interaction is absent as will be indicated
subsequently.

It should be mentioned that, in Ref. [18], the exact solutions given in Eq.
(21) can also be used in discussing time evolution of an initially specified system
density matrix, from which one can learn about the time dependent features of
the subsystems with a view to elucidate similar ideas about the marginal density
matrices etc. in the quantum optical context.

Having obtained the relevant density matrices, one then constructs the var-
ious entropies in understanding the properties of the interacting system. A for-
mal theoretical discussion of this problem was recently given by Cerf and Adami
(CA) [16,17] who focused mainly on the quantum information theory aspects of
the problem. CA proposed definitions of “conditional” and “mutual” amplitude
operators which generalize their classical probability theory counterparts. The
formalism utilized by Rajagopal et al. [18] differs from CA in that they could
explicitly obtain by appealing to the definitions of “marginal” density matrices
to elucidate the quantum information features in the JC model. An important
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result of the CA investigation is that quantum conditional entropy can be nega-
tive, in contrast to the classical counterpart, which must be positive. This is an
aspect of quantum entanglement. We will now describe how one may construct
such a theory of general entangled pair of systems using the lessons learned by
the exact solutions of the JC model. It is interesting to note that the formal
results of CA seem to be borne out by the work in Ref. [18] in the parameter
space of the ensembles considered. Here, we present this version of the theory of
entangled systems.

Consider now a general entangled pair of interacting systems A and B, whose
composite density matrix is defined in its diagonal form in terms of the appro-
priate complete set of orthonormal entangled states, {|Γ 〉}, with the properties:

〈Γ |Γ ′〉 = δ(Γ, Γ ′) (Kronecker delta) ,∑
Γ

|Γ 〉〈Γ | = Î(A,B) (unit operator) . (25)

We here use a discrete set for the sake of simplicity. Thus we have for the
composite density matrix the representation

ρ̂(A,B) =
∑
Γ

|Γ 〉P (Γ )〈Γ | ,

0 ≤ P (Γ ) ≤ 1 ,
∑
Γ

P (Γ ) = 1 . (26)

We interpret P (Γ ) as the probability of finding the AB-system in the entangled
state |Γ 〉.

The systems A and B, when they are not interacting, are described by their
own private complete orthonormal sets of states, {|a〉} and {|b〉}, respectively as
follows:

〈a|a′〉 = δ(a, a′),
∑
a

|a〉〈a| = Î(A) ,

〈b|b′〉 = δ(b, b′),
∑
b

|b〉〈b| = Î(B) . (27)

Here, Î(A) and Î(B) are the unit operators in A-space and B-space, respectively.
In terms of these states, we may express the interacting AB-system as follows:

|Γ 〉 =
∑
a,b

|a, b〉U (Γ )(a, b) , |a, b〉 = |a〉|b〉 ,
∑
a,b

U (Γ )(a, b)U (Γ ′)∗
(a, b) = δ(Γ, Γ ′) , (28)

∑
Γ

U (Γ )(a, b)U (Γ )∗
(a′, b′) = δ(a, a′)δ(b, b′) .

Then Eq. (26) takes the form

ρ̂(A,B) =
∑
Γ

∑
a,b

∑
a′,b′

| a, b 〉 U (Γ )(a, b)P (Γ )U (Γ )∗
(a′, b′)〈a′, b′ | . (29)
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Taking the trace over the B-space leaves us with an operator in A-space, which
we will now show is the “marginal” density matrix of A within the entangled
system. Thus, we have

ρ̂1(A) = TrB ρ̂(A,B) =
∑
b

〈b|ρ̂(A,B)|b〉 =
∑
a,a′

|a〉ρ1(a, a′)〈a′| ,

ρ1(a, a′) =
∑
Γ

∑
b

U (Γ )(a, b)P (Γ )U (Γ )∗
(a′, b) . (30)

We will now show that these expressions obey the required properties of a density
matrix in A-space by demonstrating hermiticity, positivity, and traceability of
the marginal density matrix of A in Eq. (30).

Hermiticity: Upon taking the complex conjugate of ρ1(a, a′) in Eq. (30), we
have

ρ∗
1(a, a

′) =
∑
Γ

∑
b

U (Γ )∗
(a, b)P (Γ )U (Γ )(a′, b)

= ρ1(a′, a) . (31)

Positivity: Consider a diagonal matrix element of ρ̂1(A) in Eq. (30) in an
arbitrary A-state, we have

〈ψ(A) | ρ̂1(A) | ψ(A)〉 =
∑
Γ

∑
b

| F (Γ )(ψ, b) | 2 P (Γ ) ≥ 0 ,

F (Γ )(ψ, b) =
∑
a

〈ψ | a〉U (Γ )(a, b) . (32)

Traceability: By taking the trace over the A-states of Eq. (30), we have

TrAρ̂1(A) =
∑
Γ

∑
a,b

| U (Γ )(a, b)
∣∣2 P (Γ ) = 1 , (33)

following from Eq. (28).
We now invoke a theorem which states that a positive semi-definite, her-

mitian, traceclass operator (finite trace) necessarily possesses a complete or-
thonormal set of eigenvectors and associated eigenvalues such that a diagonal
representation for it exists. We therefore employ a complete orthonormal set
{|α 〉} , in terms of which ρ̂1(A) is diagonal:

ρ̂1(A) =
∑
α

|α 〉p1(α ) 〈α | ,

p1(α) ≥ 0 ,
∑
α

p1(α) = 1 . (34)

In exactly similar manner, we may define the marginal density matrix of the sys-
tem B and express it in diagonal form in terms of its own orthonormal complete
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set {| β 〉} :

ρ̂2(B) =
∑
β

| β 〉q2(β ) 〈β | ,

q2(β) ≥ 0 ,
∑
β

q2(β) = 1 . (35)

One interprets p1(α) as the probability of finding the system A in the state |α〉
within the entangled AB-system, and similarly the other one. (Compare these
with Eqs. (24a) and (24b) of the JC model.) Henceforth, we shall employ these
bases to re-express equivalently the density matrix of the entangled AB-system.
This will enable us to develop a theory of the entangled system in an economical
and succinct fashion, analogously to the one formulated in [16,17], as follows:

| Γ 〉=
∑
α,β

| α, β 〉 V (Γ )(α, β), | α, β 〉= | α 〉 | β 〉 ,

∑
α,β

V (Γ )(α, β)V (Γ ′)∗
(α, β) = δ(Γ, Γ ′) ,

∑
Γ

V (Γ )(α, β)V (Γ )∗
(α′, β′) = δ(α, α′)δ(β, β′) ,

ρ̂(A,B) =
∑
Γ

∑
α,β

∑
α′,β′

| α, β 〉 V (Γ )(α, β)P (Γ )V (Γ )∗
(α′, β′) 〈 α′, β′ | ,

ρ̂1(A) =
∑
α

| α 〉 p1(α) 〈α | , ρ̂2(B) =
∑
β

| β 〉q2(β ) 〈β | ,

p1(α) =
∑
Γ

∑
β

| V (Γ )(α, β)
∣∣2 P (Γ ) ,

q2(β) =
∑
Γ

∑
α

| V (Γ )(α, β)
∣∣2 P (Γ ) . (36)

Note that the expressions for the quantum probabilities, p1(α) and q2(β), in
terms of the quantum probability, p(Γ ), of the composite system involve the
absolute magnitudes of the overlap matrix elements of the entangled states with
the product states of the individual A- and B-states defined above, and thus
display the quantum entanglement features of these entities.

We may now express the marginal density matrices in the full Hilbert space
of the entangled system as follows:

ρ̂1(A)⊗ Î(B) , Î(A)⊗ ρ̂2(B) . (37)

An explicit example of the above formulation is the exact solution of
the JC model of the interacting two-level system (atom) with a single
mode of the quantized radiation field presented at the beginning of
this discussion. In this example, as in many others in physics, the
systems A and B when not interacting are independent (i.e., their
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density matrices commute) and they are entangled only when there
is an interaction between the two systems.

We first consider the concepts of conditional and mutual entropies as was
done in Refs. [16,17] but in terms of the density matrices of the subsystems
constructed here. Define the von Neumann entropies associated with the three
density matrices considered above as follows:

S(1)(A) = −TrA[ρ̂1(A) ln ρ̂1(A)] = −
∑
α

p1(α) ln p1(α) ,

S(2)(B) = −TrB [ρ̂2(B) ln ρ̂2(B)] = −
∑
β

q2(β) ln q2(β) , (38)

S(A,B) = −TrA,B [ρ̂(A,B) ln ρ̂(A,B)] = −
∑
Γ

P (Γ ) lnP (Γ ) .

These are all nonnegative. The “conditional entropy” of A given B and vice
versa are then defined as

S(A|B) = S(A,B)− S(2)(B) , S(B|A) = S(A,B)− S(1)(A) . (39)

The “mutual entropy” is defined as

S(A : B) = S(1)(A) + S(2)(B)− S(A,B) . (40)

Using the expressions in Eq. (36), these may be rewritten in the form

S(A|B) = −
∑
Γ

∑
α,β

|V (Γ )(α, β)|2P (Γ ) ln[P (Γ )/q2(β)] ,

S(B|A) = −
∑
Γ

∑
α,β

| V (Γ )(α, β)
∣∣2 P (Γ ) ln[P (Γ )/p1(α)] , (41)

S(A : B) =
∑
Γ

∑
α,β

V (Γ )(α, β)
∣∣2 P (Γ ) ln[P (Γ )/(p1(α)q2(β))] .

When A and B are noninteracting, the composite system density matrix is just
a product of those of the A and B systems. In such a case, the mutual entropy
is zero and is thus a measure of interaction or entanglement!

Special Cases:

(a) Uncorrelated System: Here, ρ̂(A,B) = ρ̂1(A)⊗ ρ̂2(B), so that the eigen-
states of the AB-system are just the product states of A and B, |Γ 〉 = |α〉|β〉,
and the probability of the AB-system is just the product of the probabilities,
P (Γ ) ≡ p1(α)q2(β).

(b) Phase-Correlated System: Here, the above factorization does not oc-
cur but the overlap matrix elements are mere phases: | Γ = (α, β)〉 ≡
|α, β〉eiϕ(α,β), where (α, β) is a composite index and P (Γ )=P (α, β) �= p1(α)q2(β).
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But we do have p1(α) and q2(β) as the marginal probabilities associated with
P (α, β) :

p1(α) =
∑
β

P (α, β) , q2(β) =
∑
α

P (α, β) . (42)

An immediate consequence of this is

P (A|B) =
P (α, β)
q2(β)

≥ 0 , (43)

which is the conditional probability of A given B. Since
∑

α P (α, β)/q2(β) =
1, we have P (α, β) /q2(β ) ≤ 1. Similarly, the other conditional probability is
defined. This in turn implies

S(A|B) ≥ 0 , S(B|A) ≥ 0 . (44)

Since lnx ≥ (1− x−1) for positive x, we have

S(A : B) =
∑
α,β

P (α, β) ln[P (α, β)/(p1(α)q2(β))] ≥ 0 . (45)

We also have the following inequality for the classical entropies:

S(A : B) ≤ min
[
S(1)(A), S(2)(B)

]
. (45a)

(c) Quantum Correlated System: In this case, the interacting state is more
complicated. The inequality Eq. (45) holds but the marginal probabilities are
more complicated than in Eq. (42), and the inequality, P (α, β) /q2(β ) ≤ 1, does
not hold. Therefore Eq. (44) does not hold. Also Eq. (45a) has to be replaced
by the Araki-Lieb inequality:

0 ≤ S(A : B) ≤ 2 min
[
S(1)(A), S(2)(B)

]
. (46)

In fact, we may identify “quantum correlation” by the violation of the inequality
in Eq. (44) or by the statement that the “negative values” of the conditional
entropy. Another way of stating this is that the region between the inequalities
in Eqs. (45a) and (46) depicts the quantum correlation, beyond the classical.
This is the point made in Refs. [16,17] and found explicitly in the example of
the JC model by Rajagopal et al. [18].

We have so far considered the traditional von Neumann entropies. We now
turn our attention to the Tsallis-type entropies. There are two papers, one by
Tsallis [19] and the other by Borland et al. [20], which deal with classical two-
variable probabilities within the Tsallis entropy. The central issue here is the
generalization of the conditional entropy and the mutual entropy defined above.
These papers base their analysis on a generalization of the classical Kullback-
Leibler (KL) entropy:

K(p; p′) ≡
∑
a

p(a) ln[p(a)/p′(a)] ≥ 0 ,

∑
a

p(a) = 1 =
∑
a

p′(a) . (47)
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Our generalization to the Tsallis-type entropy is

Kq(p; p′) =
∑
a

p(a) [Lnqp(a)− Lnqp′(a)] . (48)

Note that this quantity goes to Eq. (47) when q → 1. It is different from the
definition in Refs. [19,20]. (However, it turns out that this quantity may have a
problem with the nonnegativity condition, in general. See Appendix for a further
discussion.) The definition of KL entropy for a pair of density matrices is given
in Eq. (17). The correspondence to Eq. (48) is established as follows. Express
these density matrices in their own diagonal representations:

ρ̂ =
∑
a

| a 〉p(a) 〈 a | , ρ̂′ =
∑
b

| b 〉p′(b) 〈b | ,

0 ≤ p(a), p′(b) ≤ 1 ,
∑
a

p(a) = 1 =
∑
b

p′(b) , (49)

and 〈 a | b 〉�= 0. {| a 〉} and {| b 〉} are complete, orthogonal sets.
Then Eq. (17) takes the form

K1(ρ̂; ρ̂′) =
∑
a,b

|〈a|b〉|2p(a) ln [p(a)/p′(b)] ≥ 0 . (17a)

The inequality follows by the same argument as before. This result goes over to
the classical case when the overlap is unity for a = b and zero otherwise. [This
observation gives the hint as to the generalization of Eq. (48) for the density
matrix description.] It is here that our approach differs from Refs. [16,17] as well
as from Refs. [19,20]. The definitions of the Tsallis-type entropies associated with
the various density matrices given in Eq. (36) are

Sq(A,B) =
1

1− q
Tr
{
ρ̂q(A,B)

[
Î(A,B)− ρ̂1−q(A,B)

]}
= −Tr[ρ̂(A,B)Lnqρ̂(A,B)]

= −
∑
Γ

P (Γ )LnqP (Γ )

= −
∑
Γ

∑
α,β

|V (Γ )(α, β)|2P (Γ )LnqP (Γ ) ,

Lnqρ̂(A,B) ≡ 1
q − 1

[ρ̂q−1(A,B)− Î(A,B)] ,

Sq(1)(A) =
1

1− q
TrA

{
ρ̂q1(A)[Î(A)− ρ̂1−q

1 (A)]
}

= −TrA[ρ̂1(A)Lnqρ̂1(A)]

= −
∑
α

p1(α)Lnqp1(α)

= −
∑
Γ

∑
α,β

|V (Γ )(α, β)|2P (Γ )Lnqp1(α) ,
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Sq(2)(B) =
1

1− q
TrB

{
ρ̂q2(B)[Î(B)− ρ̂1−q

2 (B)]
}

= −TrB [ρ̂2(B)Lnqρ̂2(B)]

= −
∑
β

q2(β)Lnqq2(β)

= −
∑
Γ

∑
α,β

|V (Γ )(α, β)|2P (Γ )Lnqq2(β) . (50)

We then define the conditional q-entropy of entangled systems as follows (see
Note Added):

Sq(A|B) =
1

1− q
Tr
{
ρ̂(A,B)[ρ̂q−1(A,B)− (Î(A)⊗ ρ̂2(B))q−1]

}
= Sq(A,B)− Sq(2)(B) . (51)

We also define the q-mutual entropy by

Sq(A : B) =
1

q − 1
Tr
{
ρ̂(A,B)[ρ̂q−1(A,B)− (ρ̂1(A)⊗ ρ̂2(B))q−1]

}
. (52)

Adding Î(A,B)− Î(A,B) in [· · ·] and noting the identity(
Î(A)− ρ̂q−1

1 (A)
)
⊗
(
Î(B)− ρ̂q−1

2 (B)
)

= Î(A)⊗
(
Î(B)− ρ̂q−1

2 (B)
)

+
(
Î(A)− ρ̂q−1

1 (A)
)
⊗ Î(B)

−
(
Î(A)⊗ Î(B)− ρ̂q−1

1 (A)⊗ ρ̂q−1
2 (B)

)
, (53)

we obtain

Sq(A : B) = Sq(1)(A) + Sq(2)(B)− Sq(A,B)

+
1

1− q
Tr
[
ρ̂(A,B)

(
Î(A)− ρ̂q−1

1 (A)
)
⊗
(
Î(B)− ρ̂q−1

2 (B)
)]

.

(54)

In the above, some of the definitions are different from those given by the
authors of Ref. [20], and some of the results generalize theirs. In Eq. (54), we see
a structure similar to Eq. (40) except for the last term. However, it is fair to say
that establishing a connection between the conditional and mutual entropies in
the nonextensive case is still an open problem.

These results on information theory are summarized below in Tables 4 and
5. The criteria used in defining the above quantities were that they should go to
the known results when the probability of the composite system is the product
of its marginals and when q → 1.
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Table 4. Comparison of classical and quantum information theories (extensive sys-
tems)

Classical Information Theory Quantum Information Theory

(Shannon) (Cerf and Adami)

If A takes a value a (discrete, for If ρ̂(A) represents the density

simplicity) with probability matrix of system A, its

p(a), then the Shannon entropy eigenvalue p(α) is the probability of

is defined by finding A in the eigenstate of ρ̂(A).

S1(A) = −
∑
a

p(a) ln p(a) ≥ 0. Then the von Neumann entropy

is defined by

S1(A) ≡ −Tr[ρ̂(A) ln ρ̂(A)]
= −

∑
α

p(α) ln p(α).

A combined classical system AB is Here, a quantum system AB

is described by its

characterized by a joint probability joint density matrix

P (a, b) and therefore the joint ρ̂(A,B) with its joint entropy

entropy is given by

S1(A,B) = −
∑
a,b

P (a, b) lnP (a, b) ≥ 0. S1(A,B) ≡ −Tr[ρ̂(A,B) ln ρ̂(A,B)]

One also defines “marginal” = −
∑
Γ

P (Γ ) lnP (Γ ),

probabilities given by where Γ is the quantum number of

p1(a) =
∑
b

P (a, b), q2(b) =
∑
a

P (a, b). the AB-system. Tr here is trace

over the eigenstates of the

combined system. The

“marginal” density matrices

are defined by ρ̂1(A)

= TrB ρ̂(A,B), ρ̂2(B) = TrAρ̂(A,B),

where partial traces are taken.
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The “conditional” entropy is defined by The new proposal due to CA for

S1(A|B) = −
∑
a,b

P (a, b) lnP (a|b) defining the quantum conditional

= S1(A,B)− S1(2)(B), where entropy is

P (a|b) = P (a, b)/q2(b) ≤ 1 S1(A|B) = −Tr[ρ̂(A,B) ln ρ̂(A|B)],
is the conditional probability ofA givenB. ln ρ̂(A|B) ≡
The inequality follows from ln ρ̂(A,B)− Î(A)⊗ ln ρ̂(B).∑
a

P (a|b) = 1. The “conditional” matrix defined here

In the Shannon theory, the conditional is a positive Hermitian operator but

entropy is always nonnegative and is not a density matrix! This is due

max[S1(1)(A), S1(2)(B)] ≤ S1(A,B). to “quantum entanglement” and

leads to the difference from the

Shannon result. Explicitly, in

terms of the eigenstates,

S1(A|B) = S1(A,B)− S1(2)(B)

=
∑
Γ

∑
α,β

∣∣V (Γ )(α, β)
∣∣2 P (Γ )

× ln[P (Γ )/q2(β)] ,
q2(β) =

∑
Γ

∑
α

∣∣V (Γ )(α, β)
∣∣2 P (Γ ).

Unlike the classical quantity,

S1(A|B) can be negative.
The “mutual” or “correlation” Shannon The quantum “mutual” entropy

entropy is a measure of the is a measure of entanglement of the

correlation that may exist in the joint two subsystems and is defined by

probability and is defined by

S1(A : B) ≡ −Tr[ρ̂(A,B) ln ρ̂(A : B)]
S1(A : B) = −

∑
a,b

P (a, b) lnP (a : b) = S1(1)(A) + S1(2)(B)− S1(A,B)

= S1(1)(A) + S1(2)(B)− S1(A,B) ≥ 0, =
∑
Γ

∑
α,β

|V (Γ )(α, β)|2P (Γ )

where P (a : b) = p1(a)q2(b)/P (a, b). × ln[P (Γ )/(p1(α)q2(β))].

It also obeys the inequality ln ρ̂(A : B) ≡ − ln ρ̂(A,B)
S1(A : B) ≤ min [S1(1)(A), S1(2)(B)]. + ln(ρ̂1(A)⊗ ρ̂2(B)).

This obeys the inequalities

0 ≤ S1(A : B) ≤ 2min[S1(1)(A), S1(2)(B)].

The second inequality is due to Araki

and Lieb.
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Table 5. Comparison of classical and quantum information theories (nonextensive
systems)

Classical Information Theory Quantum Information Theory

If A takes a value a (discrete, for If ρ̂(A) represents the density matrix of

simplicity) with probability a system A, its eigenvalue p(α) is the

p(a), then the classical Tsallis probability of finding it in the (for

entropy is defined simplicity, discrete) eigenstate of ρ̂(A),

in the form then the quantum Tsallis entropy

Sq(A) = −
∑
a

p(a)Lnqp(a). is defined in the form

Sq(A) ≡ −Tr[ρ̂(A)Lnqρ̂(A)]
= −

∑
α

p(α)Lnqp(α).

A combined classical system AB is Here, a quantum system AB is described

characterized by a joint probability by its joint density matrix

P (a, b) and so the joint Tsallis ρ̂(A,B), with which the joint Tsallis

entropy is entropy is given by

Sq(A,B) = −
∑
a,b

P (a, b)LnqP (a, b). Sq(A,B) ≡ −Tr[ρ̂(A,B)Lnqρ̂(A,B)]

One also defines the marginal = −
∑
Γ

P (Γ )LnqP (Γ ), where

probabilities as Γ is the quantum number of AB-system,

p1(a) =
∑
b

P (a, b), q2(b) =
∑
a

P (a, b). and Lnqρ̂(A,B) ≡ ρ̂q−1(A,B)−Î(A,B)
q−1 .

Here, Tr is trace over the eigenstates of

the combined system.

The marginal density matrices are

defined by

ρ̂1(A) = TrB ρ̂(A,B),

ρ̂2(B) = TrAρ̂(A,B),

where partial traces are taken.
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The “conditional” Tsallis entropy is The new proposal in [21] for defining

defined by the quantum conditional Tsallis

Sq(A|B) ≡ Sq(A,B)− Sq(2)(B) entropy is to employ the

=
∑
a,b

P (a, b)
P q−1(a, b)− qq−1

2 (b)
1− q

. eigenvalues of the marginal

The conditional probability of A given B density matrices defined above. The

is P (a|b) = P (a, b)/q2(b) ≤ 1. “conditional” matrix defined from

The last inequality follows from them is a positive hermitian operator∑
a

P (a|b) = 1. but is not a density matrix! This is

due to “quantum entanglement”

and leads to the

difference from the classical result.

Explicitly, in terms of the eigenstates,

Sq(A|B) ≡ Trρ̂(A,B)

×
{
ρ̂q−1(A,B)−(Î(A)⊗ρ̂2(B))q−1

1−q

}
= Sq(A,B)− Sq(2)(B)

=
∑
Γ

∑
α,β

|V (Γ )(α, β)|2P (Γ )

×Pq−1(Γ )−q
q−1
2 (β)

1−q
,

q2(β) =
∑
Γ

∑
α

|V (Γ )(α, β)|2P (Γ ).

The “mutual” or “correlation” Tsallis The quantum “mutual” Tsallis

entropy is a measure of entropy is a measure of

correlation that may exist in the joint quantum entanglement of the two

probability and is defined by subsystems and is defined by

Sq(A : B) ≡
∑
a,b

P (a, b)

×
{
Pq−1(a,b)−(p1(a)q2(b))q−1

q−1

}
, Sq(A : B) ≡ Trρ̂(A,B)

P (a : b) ≡ p1(a)q2(b)/P (a, b). ×
{
ρ̂q−1(A,B)−(ρ̂1(A)⊗ρ̂2(B))q−1

q−1

}
=
∑
Γ

∑
α,β

|V (Γ )(α, β)|2P (Γ )

×
{
Pq−1(Γ )−(p1(α)q2(β))q−1

q−1

}
.
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3 Variational Principle

We will now discuss statistical mechanics of nonextensive systems employing
the Tsallis entropy. We will discuss (a) the generalized maxent principle using
normalized q-mean values as constraints leading to the formulation of a (b)
generalized statistical mechanics: free energy and Legendre transformation, and
also consider the (c) isothermal response of the system to an external probe.

We maximize the Tsallis entropy given by Eq. (2) subject to the most com-
mon constraints employed in generalized statistical mechanics, namely given
normalized “q-mean values” [8] of energy and number of particles in the system
as in Section 1: 〈

Ĥ
〉
q
= Tr(ρ̂qĤ)/Trρ̂q ≡ Ũq ,〈

N̂
〉
q
= Tr(ρ̂qN̂)/Trρ̂q ≡ Ñq , (55)

where Ĥ and N̂ are the system Hamiltonian operator and the system number
operator, respectively. It is in this form that we get a consistent theory with
all the important properties of the conventional statistical mechanics, as will
be seen presently. Furthermore, the normalized q-mean values defined here lead
to “connected” diagrams in any perturbation expansion of the mean value of
any operator without divergences associated with the disconnected terms, in
complete parallel to the usual formulation of quantum statistical mechanics of
many-body systems. Using the standard method of Lagrange multipliers as in
Section 1, we have the result

ˆ̃ρ = eq

(
−X̂q(λ1, λ2)

)/
Z̃q (λ1, λ2) ,

Z̃q (λ1, λ2) = Treq
(
−X̂q(λ1, λ2)

)
,

X̂q (λ1, λ2) =
[
λ1(Ĥ − Ũq) + λ2(N̂ − Ñq)

]
/cq , (56)

eq(Â) =

{ [
1 + (1− q)Â

]1/(1−q)
, if Spec

[
1 + (1− q)Â

]
≥ 0 ,

0 , otherwise ,

where cq ≡ Trˆ̃ρ
q
. Here, Spec

[
1 + (1− q)Â

]
≥ 0 means that there is a natural

cut off when the spectrum of the operator in the parentheses has negative values,
for reasons of reality of the trace. In the limit q → 1, there is the condition of
the boundedness from below of the spectrum of the Hamiltonian. λ1 and λ2 are
the Lagrange multipliers that go with the energy and number constraints defined
above, with the interpretation of inverse “temperature” and “chemical potential”
which will be introduced later. It is in this form that the Tsallis variational
principle has the desirable properties; invariance with respect to shift of the
origin of the energy, q-mean value of a c-number being itself, and additivity of
the energy. These nice features come with the renormalization of the Lagrange
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multipliers with a self-consistency relation for cq:

cq = Tr[eq(−X̂q(λ1, λ2))]q / (Z̃q)q . (57)

From Eq. (56), we also have a relation between cq and Z̃q. Noting

(
ˆ̃ρZ̃q

)1−q

= 1− (1− q)X̂q(λ1, λ2) ,

we have
cq = (Z̃q)1−q . (58)

From Eqs. (57) and (58), we obtain another expression for Z̃q:

Z̃q = Tr[eq(−X̂q(λ1, λ2))]q . (59)

With these relations, one finds that the normalized q-mean value takes the form〈
Â
〉
q
≡ Ãq = Tr

{[
eq

(
−X̂q(λ1, λ2)

)]q
Â
}
/Z̃q . (55a)

In this form, only the connected terms appear in any diagrammatic expression
for the q-mean value in perturbation theory.

One observes, from Eq. (56) and the definitions in Eq. (55), that the following
relations hold:

∂Z̃q

∂λ1
= 0 =

∂Z̃q

∂λ2
. (60)

The corresponding “fluctuations” calculated from the second derivatives are

(
Z̃q

)−q ∂2Z̃q

∂λ21
= q

(
Z̃q

)−q

×Tr

{[
eq

(
−X̂q(λ1, λ2)

)]2q−1 (Ĥ − Ũq)2

c2q

}
,

(
Z̃q

)−q ∂2Z̃q

∂λ21
= q

(
Z̃q

)−q

×Tr

{[
eq

(
−X̂q(λ1, λ2)

)]2q−1 (N̂ − Ñq)2

c2q

}
,

(
Z̃q

)−q ∂2Z̃q

∂λ1∂λ2
= q

(
Z̃q

)−q

×Tr

{[
eq

(
−X̂q(λ1, λ2)

)]2q−1 (Ĥ − Ũq)(N̂ − Ñq)
c2q

}
. (61)

It is important to point out that these are not the true fluctuations of the type
in Eq. (15) even though these reduce to those given there in the limit q = 1. In
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fact, in the notation of Eq. (15), we have explicitly the following expressions to
exhibit this difference:
(
Z̃q

)−q ∂2Z̃q

∂λ21
= −∂Ũq

∂λ1
≡ σ̃2q (Ĥ)

(
�=
〈
(Ĥ − Ũq)2

〉
q

)
,

(
Z̃q

)−q ∂2Z̃q

∂λ22
= −∂Ñq

∂λ2
≡ σ̃2q (N̂)

(
�=
〈
(N̂ − Ñq)2

〉
q

)
,

(
Z̃q

)−q ∂2Z̃q

∂λ1∂λ2
= −∂Ũq

∂λ2
= −∂Ñq

∂λ1

≡ σ̃c
q(Ĥ, N̂)

(
�=
〈
(Ĥ − Ũq)(N̂ − Ñq)

〉
q

)
. (61a)

In deriving these results, we used Eq. (60) with the equivalent expression for Z̃q

given in Eq. (59), which shows

Tr
{[

eq(−X̂q(λ1, λ2))
]2q−1

(Ĥ − Ũq)
}

= 0 ,

Tr
{[

eq(−X̂q(λ1, λ2))
]2q−1

(N̂ − Ñq)
}

= 0 . (61b)

Eq. (60) assures us of the extremum feature of the Tsallis entropy. Furthermore,
that the Tsallis entropy takes its maximum at these places requires negative
definiteness of the matrix given in Eq. (61a), ∂2Z̃q/∂λi∂λj . This leads to the
requirements that

σ̃2q (Ĥ), σ̃2q (N̂) > 0 ,

σ̃2q (Ĥ) σ̃2q (N̂)−
[
σ̃c
q(Ĥ, N̂)

]2
> 0 . (62)

These are the q-versions of Eq. (15). The connection to thermodynamic language
is obtained when as before we formally identify the Lagrange multipliers λ1 and
λ2 with the inverse temperature β and −βµ with the chemical potential µ,
respectively. We can now define a “partition function” which gives us the usual
results by appropriately shifting the origins of the energy and number. It leads to
the Legendre tranformation when we change our reference from given constraints
to given Lagrange multipliers as in the conventional theory discussed earlier. The
maximum value of the entropy is now given by

Sq = −1− cq
1− q

=

(
Z̃q

)1−q

− 1

1− q
≡ lnq Z̃q , (63)

where lnq x ≡ (x1−q − 1)/(1− q) = x1−qLnqx.
We now define the “q-free energy” as follows:

F̃q ≡ Ũq − µÑq − 1
β
Sq . (64)



Quantum Density Matrix 127

By using the definitions and the relations derived above, the right hand side of
this expression is found to be

F̃q =
1

β(1− q)

[
1−

(
Z̃q

)1−q

+ β(1− q)
(
Ũq − µÑq

)]
. (65)

We redefine the “q-partition function” by

(Zq)
1−q =

(
Z̃q

)1−q

− β(1− q)
(
Ũq − µÑq

)
,

(66)

F̃q = − 1
β

lnq Zq .

From these, we obtain the familiar looking expressions

∂ lnq Zq

∂β
= −Ũq ,

(67)
∂ lnq Zq

∂ (µβ)
= Ñq .

Using Eqs. (60), (66), and (67), we also obtain

∂Sq

∂Ũq

= β ,
∂Sq

∂Ñq

= −βµ . (68)

The matrix of second derivatives of Sq with respect to Ũq and Ñq is then minus
the inverse matrix of the second derivatives of lnq Z̃q w.r.t. λ1 and λ2.

As in the case of the limit q → 1 discussed earlier, in the limit of zero
temperature, λ1 goes to ∞, and we have Sq = 0, thus reaching the lowest
(ground) state of the Hamiltonian with eigenvalue, Ũq → E0. In this limit, we
also have Ñq → 0 and cq → 1. This shows the possible q-generalization of the
annealing algorithm mentioned earlier.

This completes the discussion of the development of equilibrium statistical
mechanics of nonextensive systems using the Tsallis ensemble.

Now, to obtain the expressions for the isothermal admittance, we consider a
static applied force X which couples to the system via a hermitian operator, Â,
and calculate the response of a normalized q-mean value of the required physical
entity represented by a Hermitian operator, B̂, to this external static probing
field. Thus we need to calculate the expression〈

∆B̂
〉(iso)
q

= Tr
[
ˆ̃P
(
Ĥ −XÂ; q, β̃

)
B̂
]
− Tr

[
ˆ̃P
(
Ĥ; q, β̃

)
B̂
]

≡ χ̃
(q)
BA(T )X , (69)

to first order in X, which we have expressed in the conventional linear response
form, and which defines the isothermal admittance, χ̃(q)BA(T ). Here, for simplicity,
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we have employed the canonical ensemble scheme with only the normalized q-
mean value of the Hamiltonian as a constraint in the maxent principle and so
we obtain

ˆ̃P
(
Ĥ; q, β̃

)
= ˆ̃Q

(
Ĥ; q, β̃

)/
Z̃q

(
β̃
)
,

ˆ̃Q
(
Ĥ; q, β̃

)
=
[
eq

(
−β̃
(
Ĥ − Ũq

))]q
,

Z̃q

(
β̃
)

= Treq
(
−β̃
(
Ĥ − Ũq

))
, (70)

where β̃ = β/cq and cq =
[
Z̃q

(
β̃
)]1−q

. It should be stressed that the expressions
given in Eq. (70) are the results following from the application of the maximum
Tsallis entropy procedure subject to the given constraint on the normalized q-
mean value of the Hamiltonian. The notation of tilde on the operators is used to
indicate such maxent solutions. [This feature implies that we have to hold the
constraint fixed while calculating the derivative with respect to the Lagrange
multiplier. Thus, we have the relations of the forms given in Eqs. (60) and
(61b). With these in mind, the following results in the Identity, Theorem A, and
Theorem B can be derived. Also, we must point out that, in the context of linear
response theory, we are considering small deviations from equilibrium even when
an external probe is applied to the system. The interested reader may obtain
the basic steps required in deriving the results below by requesting the author
for a copy of proofs of the Identity, Theorem A, and Theorem B.] To calculate

the difference in Eq. (69), we analyze the operator ˆ̃Q
(
Ĥ −XÂ; q, β̃

)
. We first

give a general result in the form of an identity which is a generalization of that
due to Karplus and Schwinger [22] for the exponential operators to which ours
reduces when q → 1.

Identity:

ˆ̃Q
(
Ĥ −XÂ; q, β̃

)
= ˆ̃Q

(
Ĥ; q, β̃

)
+ qX ˆ̃Q

(
Ĥ; q, β̃

)

×
∫ β̃

0
dλ̃
[
ˆ̃Q
(
Ĥ; q, λ̃

)]−1 ˆ̃A
(
Ĥ, Â; q, λ̃

)
ˆ̃Q
(
Ĥ −XÂ; q, λ̃

)
,

ˆ̃A
(
Ĥ, Â; q, λ̃

)
≡
[
1− λ̃(1− q)

(
Ĥ − Ũq −X

(
Â− Ãq

))]−1

×
(
Â− Ãq

) [
1− λ̃(1− q)

(
Ĥ − Ũq

)]−1
. (71)

This identity is established by calculating the derivative of{[
ˆ̃Q
(
Ĥ; q, β̃

)]−1 ˆ̃Q
(
Ĥ −XÂ; q, β̃

)}
with respect to β̃ explicitly with hold-

ing Ãq and Ũq, rearranging the resulting terms, integrating the expression so
obtained, and finally expressing it in the form given above. To first order in X,
the above expression simplifies to the form

ˆ̃Q
(
Ĥ −XÂ; q, β̃

) ∼= ˆ̃Q
(
Ĥ; q, β̃

)
+ qX ˆ̃Q

(
Ĥ; q, β̃

)
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×
∫ β̃

0
dλ̃
[
ˆ̃Q
(
Ĥ; q, λ̃

)]−1 ˆ̃A
(
Ĥ; q, λ̃

)
ˆ̃Q
(
Ĥ; q, λ̃

)
,

ˆ̃A
(
Ĥ; q, λ̃

)
=
[
1− λ̃(1− q)

(
Ĥ − Ũq

)]−1 (
Â− Ãq

)
×
[
1− λ̃(1− q)

(
Ĥ − Ũq

)]−1
. (72)

Considering a similar equation for eq
(
Ĥ −XÂ; q, β̃

)
, which has the same ap-

pearance as Eq. (72) but with no factor of q and only the operator difference(
Â− Ãq

)
in the second terms of Eq. (72), and taking its trace to obtain the

change in the partition function expressed in the equivalent form in Eq. (70),
due to the presence of the perturbation, we find that there is no change in the
partition function in the presence of the external field to first order in X:

Z̃q

(
Ĥ −XÂ; β̂

) ∼= Z̃q

(
β̃
)

+

X

∫ β̃

0
dλ̃ Tr

{
ˆ̃Q
(
Ĥ; q, β̃

) [
ˆ̃Q
(
Ĥ; q, λ̃

)]−1 (
Â− Ãq

)
ˆ̃Q
(
Ĥ; q, λ̃

)}

= Z̃q

(
β̃
)
, (73)

since the second trace term in Eq. (73) vanishes upon using the cyclic prop-
erty of trace operation. Then, Eq. (72) with this result yields an equation for
ˆ̃P
(
Ĥ −XÂ; q, β̃

)
:

ˆ̃P
(
Ĥ −XÂ; q, β̂

) ∼= ˆ̃P
(
Ĥ; q, β̃

)
+ qX ˆ̃P

(
Ĥ; q, β̃

)

×
∫ β̃

0
dλ̃
[
ˆ̃P
(
Ĥ; q, λ̃

)]−1 ˆ̃A
(
Ĥ; q, λ̃

)
ˆ̃P
(
Ĥ; q, λ̃

)
. (74)

From Eqs. (69) and (74), we finally obtain the isothermal response function in
the form

χ̃
(q)
BA = q

∫ β̃

0
dλ̃Tr

{
ˆ̃P
(
Ĥ; q, β̃

) [
ˆ̃P
(
Ĥ; q, λ̃

)]−1

× ˆ̃A
(
Ĥ; q, λ̃

)
ˆ̃P
(
Ĥ; q, λ̃

)
B̂
}
. (75)

It is important to see if this expression can be derived from the free energy
expression in the form given by Eq. (65) but now calculated for a Hamiltonian
of the form Ĥ −XÂ− Y B̂. Thus

F̃q = − 1
β

lnq Zq ,

(Zq)
1−q =

(
Z̃q

)1−q

− β(1− q)
(
Ũq −XÃq − Y B̃q

)
, (76)

Z̃q = Treq
(
−β̃
[
Ĥ − Ũq −X

(
Â− Ãq

)
− Y

(
B̂ − B̃q

)])
.
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Taking the first partial derivative of this expression with respect to Y yields
(remembering that the mean values appearing in these expressions are held fixed
as given constraints in deriving the above, as in the derivation of Eq. (60))

−∂F̃q

∂Y
= B̃q = Tr

[
ˆ̃P
(
Ĥ −XÂ− Y B̂; q, β̃

)
B̂
]
. (77)

From Eq. (74), we see at once that

∂2F̃q

∂X∂Y

∣∣∣∣∣
X=0=Y

= χ̃
(q)
BA(T ) . (78)

This is a familiar form for the isothermal susceptibility, here derived for the
normalized q-mean value formalism. Maxent implies minimum free energy and so
the stability condition may be stated as the positivity of the isothermal response
matrix, if we have more than one external probing fields. This means that only
then the system is stable with respect to external perturbations.

We give below two theorems in the normalized q-mean value formalism which
generalize similar theorems recently given in Ref. [23].

THEOREM A:

∂ ˆ̃Q
(
Ĥ(λ); q, β̃

)
∂λ

= −q
∫ β̃

0
dũ ˆ̃Q

(
Ĥ(λ); q, β̃

) [
ˆ̃Q
(
Ĥ(λ); q, ũ

)]−1

×∂ ˆ̃A(λ, ũ)
∂λ

ˆ̃Q
(
Ĥ(λ); q, ũ

)
,

∂ ˆ̃A(λ, ũ)
∂λ

=
[
1− ũ(1− q)

(
Ĥ(λ)− Ũq(λ)

)]−1 ∂
(
Ĥ(λ)− Ũq(λ)

)
∂λ

×
[
1− ũ(1− q)

(
Ĥ(λ)− Ũq(λ)

)]−1
. (79)

Here, the Hamiltonian is assumed to depend on a parameter λ.
Proof: Consider

f̂q

(
λ, β̃

)
= ∂ ˆ̃Q

(
Ĥ(λ); q, β̃

)/
∂λ ,

ˆ̃Q
(
Ĥ(λ); q, β̃

)
=
[
eq

(
−β̃
(
Ĥ(λ)− Ũq(λ)

))]q
, (80)

Ũq(λ) = Tr
[
Ĥ(λ) ˆ̃Q

(
Ĥ(λ); q, β̃

)]/
Z̃q

(
λ, β̃

)
.

Differentiating the first expression in Eq. (80) w.r.t. β̃, and interchanging the
orders of differentiation and carrying out the β̃-differen-tiation and remembering
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the constraint while differentiating the various terms in Eq. (80), we obtain

∂f̂q

(
λ, β̃

)
∂β̃

+ q
[
1− β̃(1− q)

(
Ĥ(λ)− Ũq(λ)

)]−1

×
(
Ĥ(λ)− Ũq(λ)

)
f̂q

(
λ, β̃

)

= −q
∂ ˆ̃A
(
λ, β̃

)
∂λ

ˆ̃Q
(
Ĥ(λ); q, β̃

)
,

∂ ˆ̃A
(
λ, β̃

)
∂λ

=
[
1− β̃(1− q)

(
Ĥ(λ)− Ũq(λ)

)]−1 ∂
(
Ĥ(λ)− Ũq(λ)

)
∂λ

×
[
1− β̃(1− q)

(
Ĥ(λ)− Ũq(λ)

)]−1
. (81)

By a direct calculation, this equation may be rewritten in the form

ˆ̃Q
(
Ĥ(λ); q, β̃

) ∂

{[
ˆ̃Q
(
Ĥ(λ); q, β̃

)]−1
f̂q

(
λ, β̃

)}
∂β̃

= −q
∂ ˆ̃A
(
λ, β̃

)
∂λ

ˆ̃Q
(
Ĥ(λ); q, β̃

)
. (82)

Integrating this equation using the facts that ˆ̃Q
(
Ĥ(λ); q, β̃ = 0

)
= 0 and

f̂q

(
λ, β̃ = 0

)
= 0, we obtain the theorem stated above. This theorem reduces

to the Wilcox theorem for an exponential operator in the limit q → 1. An
immediate consequence of this theorem leads to a generalization of a result due
to Kubo [24]:

THEOREM B: If Â is an arbitrary operator, then the commutator[
Â, ˆ̃Q

(
Ĥ; q, β̃

)]
is given by



132 A.K. Rajagopal

[
Â, ˆ̃Q

(
Ĥ; q, β̃

)]
= q ˆ̃Q

(
Ĥ; q, β̃

)∫ β̃

0
dũ
[
ˆ̃Q
(
Ĥ; q, ũ

)]−1

×
[
Ĥ, ˆ̃A(ũ)

]
ˆ̃Q
(
Ĥ; q, ũ

)
,

(83)
ˆ̃A(ũ) =

[
1− ũ(1− q)

(
Ĥ − Ũq

)]−1
Â
[
1− ũ(1− q)

(
Ĥ − Ũq

)]−1
.

Proof: We deduce this theorem by making a similarity transformation of Ĥ as
Ĥ(λ) = eλÂHe−λÂ in Theorem A. Then, it follows that

ˆ̃Q
(
Ĥ(λ); q, β̃

)
= eλÂ ˆ̃Q

(
Ĥ; q, β̃

)
e−λÂ , (84)

and similarly the other operators appearing in Eqs. (80) and (81) upon using
their definitions. Therefore, the following expressions that appear in Eq. (79)
finally lead to Eq. (83):

∂ ˆ̃Q
(
Ĥ(λ); q, β̃

)
∂λ

= eλÂ
[
Â, ˆ̃Q

(
Â; q, β̃

)]
e−λÂ ,

∂ ˆ̃A (λ, ũ)
∂λ

= eλ
ˆ̃A
[
ˆ̃A(ũ), Ĥ

]
e−λ ˆ̃A .

4 Time-Dependence: Unitary Dynamics

In this section, we will discuss the traditional unitary time evolution of the
density matrix, (a) the Liouville-von Neumann equation for the density matrix.
After a few observations about this equation, we derive (b) the dynamical linear
response of a nonextensive system to a time-dependent external probe [11], which
is the counterpart of the isothermal response discussed in the last section. More
generally, (c) unlike the published versions so far [25], the Green function theory
of many-particle systems [26] is developed in terms of the normalized q-mean
values [27].

The density matrix ρ̂(t) obeys the standard quantum Liouville-von Neumann
equation:

ih̄
∂ρ̂(t)
∂t

=
[
Ĥ(t), ρ̂(t)

]
, (85)

where Ĥ(t) is in general a time-dependent hermitian Hamiltonian, with a given
initial condition ρ̂(t = 0) at, say, t = 0. This is a linear equation for ρ̂(t) and thus
the superposition principle of quantum theory is incorporated. One immediate
consequence of this equation is that it preserves the hermiticity of the density
matrix as well as its trace, both of which are easily verified by direct calculation.
Introduce the time evolution operator

Û(t) = T exp
[
− i

h̄

∫ t

0
dt′Ĥ(t′)

]
, (86)
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where T stands for the time-ordering symbol. This operator is unitary, i.e.,
Û†(t)Û(t) = Î = Û(t)Û†(t), where Û†(t) is the hermitian conjugate of the time
evolution operator. It is found that they obey the equations

ih̄
∂Û(t)
∂t

= Ĥ(t)Û(t) , −ih̄ ∂Û†(t)
∂t

= Û†(t)Ĥ(t) . (87)

Often, the first and second equations in Eq. (87) are called the “forward” and the
“backward” propagating equations, respectively. This terminology is useful later,
when we discuss nonunitary time evolution. This shows that the time evolution
of the density matrix is just a unitary transformation of the given initial density
matrix:

ρ̂(t) = Û(t)ρ̂(0)Û†(t) . (88)

Eq. (88) is the solution to Eq. (85), and has the properties of a density ma-
trix. This shows that the trace of the density matrix is independent of time.
Accordingly, the entropy functional in both the forms of Eqs. (1) and (2) are
time-independent and thus do not evolve in time. This is because the time de-
pendence of any well behaved operator functional of the initial density matrix
also evolves in time unitarily:

F̂ [ρ̂(t)] = Û F̂ [ρ̂(0)] Û†(t) . (89)

The mean value of any operator Â(t), which may have its own private time
dependence (time-dependent electric field, for example), is defined by the nor-
malized q-mean value〈

Â(t)
〉
q
= Tr

[
Â(t)ρ̂q(t)

]/
Trρ̂q(t)

= Tr
[
Û†(t)Â(t)Û(t)ρ̂q(0)

]/
Trρ̂q(0) . (90)

This equation shows that there is time evolution of the q-mean value of an oper-
ator, and this fact is used in the next stage of our development of the theory. It
may not be out of place here to point out that the Wigner transformation of the
density matrix defines a quantum phase-space distribution function, fW , which
shares all the properties of the classical phase space distribution except that its
quantum nature reveals itself by not being positive everywhere. The correspond-
ing time-dependent equation arises from Eq. (85) which is the Fokker-Planck-like
equation for fW . These are standard textbook results collected here for easy ref-
erence. It should be pointed out that there is a “stationary action principle” that
replaces the maxent principle in the time-independent case discussed earlier. This
is weaker than the maxent principle in the sense that the action principle only
gives Eq. (85) as the stationary point of the action when the initial condition on
the density matrix is specified. Often, one uses the maxent principle to specify
this initial density matrix. But in quantum optics, for example, one uses the
density matrix of an initially prepared state, such as the coherent state of the
radiation (“laser”) and the initially prepared state of the “atom” as in the JC
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model. See, for example, Ref. [18]. This completes the general discussion of uni-
tary time evolution of the density matrix and the concomitant time evolution of
entropy in general and mean value of any operator.

The first application of the above time-dependent equation is the calculation
of the dynamical response function of a system to an external time-dependent
probe. This is a perturbation theory result. We present here the formulation in
terms of normalized q-mean values unlike in our earlier published work [11]. In
developing the dynamical linear response of a physical quantity represented by
a hermitian operator, B̂, we consider its equilibrium normalized q-mean value〈
B̂
〉(0)
q

considered as the given initial value, being driven away by means of a

time-dependent external fieldX(t). In Table 6, we give some commonly occurring
probing fields and the corresponding linear response functions.

Table 6. Examples of linear response to Hext = −X(t)Â

Â X(t) χAB (Response)

Density, n̂(−→r ) Electric potential, Density-density

φ(−→r , t) longitudinal

dielectric function,

χn,n

Spin density Magnetic field, Magnetic

(magnetization), −→
B (−→r , t) susceptibility

−→
S (−→r ) or −→

M(−→r ) tensor,
↔
χsi,sj

Current density, Vector potential, Current-current
−→
J (−→r , t) −→

A (−→r , t) correlation function,

dieletric tensor

In the usual way, the q-mean value of the deviation B̂ −
〈
B̂
〉(0)
q

≡ ∆B̂ is

given by

〈∆B̂(t)〉q = Tr
[
ρ̂q(t)B̂

]/
Trρ̂q(t)− Tr

[
ρ̂q(0)B̂

]/
Trˆ̃ρ

q
(0)

= Tr
[
ρ̂q(t)∆B̂

]/
Trρ̂q(t) (91)

with Trρ̂(t) = 1 = Trˆ̃ρ(0). Here, ˆ̃ρ(0) is the equilibrium density matrix deter-
mined from the maximum Tsallis entropy of the system for given constraints
and ρ̂(t) is the time-dependent density matrix obeying the quantum Liouville-
von Neumann equation determined by the Hamiltonian incorporating the effect
of X(t):

Ĥ −X(t)Â . (92)
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Â is the operator conjugate to the time-dependent field X(t). For simplicity
of presentation, we use here the equilibrium canonical ensemble prescription
as before. Thus the equilibrium density matrix with temperature (Lagrange)
parameter β is given as in Eq. (70). (See the development above.)
We rewrite Eq. (91) in terms of this notation:〈

∆B̂(t)
〉
q
≡ Tr

[
P̂ (t)B̂

]
− Tr

[
ˆ̃P
(
Ĥ; q, β̃

)
B̂
]
, (93)

where P̂ = ρ̂q(t)
/
Trρ̂q(t). The density matrix ρ̂(t) now obeys the standard quan-

tum Liouville-von Neumann equation

ih̄
∂ρ̂(t)
∂t

=
[
Ĥ −X(t)Â, ρ̂(t)

]
(94)

with the initial condition as given above in Eq. (70). We take the initial condition
specified at some remote past, by considering the initial time t = 0 in Eq.
(91) as now pushed back to that at t = −∞. This time evolution is unitary
as shown above and so the equation obeyed by any power of ρ̂(t) has the same
form as in Eq. (94):

ih̄
∂ρ̂q(t)
∂t

=
[
Ĥ −X(t)Â, ρ̂q(t)

]
. (95)

Taking traces on both sides of this equation, we have the important result that
cq = Trρ̂q(t) is independent of time, t, and hence the equation for P̂ (t) in Eq.
(93) takes the same form as Eq. (95), which we rewrite in the form

ih̄
∂P̂ (t)
∂t

=
[
Ĥ, P̂ (t)

]
−
[
Â, P̂ (t)

]
X(t) (96)

with P̂ (t = −∞) = ˆ̃P
(
Ĥ; q, β̃

)
in Eq. (70). This equation is converted into an

integral equation by a standard procedure so that a solution to linear order in
X(t) can be found as follows:

P̂ (t) = ˆ̃P
(
Ĥ; q, β̃

)
− 1
ih̄

∫ t

−∞
dt′e−iĤ(t−t′)/h̄

×
[
Â, P̂ (t′)

]
X(t′)eiĤ(t−t′)/h̄

∼= ˆ̃P
(
Ĥ; q, β̃

)
− 1
ih̄

∫ t

−∞
dt′e−iĤ(t−t′)/h̄

×
[
Â, ˆ̃P

(
Ĥ; q, β̃

)]
X(t′)eiĤ(t−t′)/h̄ . (97)

From Eqs. (93) and (97), we find

〈
∆B̂(t)

〉
q
=
∫ t

−∞
dt′φ̃(q)BA(t− t′)X(t′) ,
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(98)

φ̃
(q)
BA(t) = − 1

ih̄
Tr
{[
Â, ˆ̃P

(
Ĥ; q, β̃

)]
B̂(t)

}
=

1
ih̄

Tr
{[
Â, B̂(t)

]
ˆ̃P
(
Ĥ; q, β̃

)}
,

where B̂(t) = eiĤt/h̄B̂e−iĤt/h̄. If X(t) = X0 cosωt, which is the usual exper-
imental harmonic applied field, Eq. (98) may be expressed in a more familiar
form, 〈

∆B̂(t)
〉
q
=
∫ t

−∞
dt′φ̃(q)BA(t− t′)X(t′)

=
∫ t

−∞
dt′φ̃(q)BA(t− t′)X0

[
eiωt

′
+ e−iωt′]/

2

=
∫ ∞

0
dxφ̃

(q)
BA(x)X0

[
e−iωxeiωt + eiωxe−iωt

]/
2

= Re
{
χ̃
(q)
BA(ω)X0e

iωt
}
, (99)

where χ̃(q)BA(ω) = limε→+0
∫∞
0 dxφ̃

(q)
BA(x)e−iωx−εx.

We will first deduce from this the counterparts of all the known relationships
in the extensive (q → 1) case. To this end, define the “relaxation function” as
the relaxation of

〈
∆B̂(t)

〉
q

after the removal of the external disturbance as in

Kubo [24]:

Φ̃
(q)
BA(t) = lim

ε→+0

∫ ∞

t

dt′φ̃(q)BA(t′)e−εt′

=
∑
i,j

(
P̃q(i)− P̃q(j)
Ei − Ej

)
〈i|Â|j〉〈j|B̂|i〉ei(Ej−Ei)t/h̄ , (100)

where P̃q(i) ≡
[
1− β̃(1− q)

(
Ei − Ũq

)]q/(1−q)/
Z̃q. We have used the complete

set of eigenfunctions of the Hamiltonian operator Ĥ|i〉 = Ei|i〉 in deriving the
second expression in Eq. (100). From this, we deduce three important relations:

1) Φ̃
(q)
BA(t) is real, which is proved by taking the complex conjugate of both

sides of Eq. (100), interchanging the i, j summations and using the hermitian
characters of the matrix elements.

2) Φ̃(q)
BA(t) = Φ̃

(q)
AB(−t) (time-reversal symmetry). This follows by interchanging

the roles of the operators Â and B̂ , interchanging the i and j summations,
changing t to −t, and comparing the result with the above expression.

3) Defining

σ̃
(q)
BA(ω) =

∫ ∞

0
dt Φ̃

(q)
BA(t)e−iωt , (101)



Quantum Density Matrix 137

we obtain the Onsager relationships

Reσ̃(q)AB(ω) = Reσ̃(q)BA(−ω), Imσ̃
(q)
AB(ω) = −Imσ̃

(q)
BA(−ω) . (102)

This follows from the result 2) above.

4) Defining the normalized q-mean value over the anticommutator combination
of the operators which represents the fluctuation

Ψ̃
(q)
BA(t) =

1
2

Tr
[
ˆ̃P
(
Ĥ; q, β̃

){
ÂB̂(t) + B̂(t)Â

}]

=
∑
i,j

(
P̃q(i)− P̃q(j)

2

)〈
i|Â|j

〉〈
j|B̂|i

〉
ei(Ej−Ei)t/h̄ . (103)

We may now derive the dynamical fluctuation-dissipation theorem by
formally writing ei(Ej−Ei)t/h̄ = eiEjt/h̄e−iEit

′/h̄ and setting t = t′ at the end of
the calculation. We then obtain a relationship between the two functions defined
in Eqs. (100) and (103)

Ψ̃
(q)
BA(t, t′) =

ãq(−∂t′) + ãq(∂t)
2 [ãq (−∂t′)− ãq (∂t)]

ih̄ (∂t′ + ∂t) Φ̃
(q)
BA(t, t′) , (104)

where ãq(∂t) =
[
1− β̃(1− q)

(
−ih̄∂t − Ũq

)]q/(1−q)
. When we take the limit

q → 1, this reduces to the result of Kubo [24] for extensive systems with the
same notations

ΨBA(t) = Eβ(−i∂t)ΦBA(t) , Eβ(x) ≡ h̄x

2
coth

βh̄x

2
. (105)

5) Finally, we find that the Kramers-Kronig relation holds for the real and
imaginary parts of the susceptibility defined by Eq. (100):

χ̃
(q)
BA(ω) = Reχ̃(q)BA(ω) + iImχ̃

(q)
BA(ω) ,

Reχ̃(q)BA(ω) = P.V.
∑
i,j

[
P̃q(i)− P̃q(j)

] 〈
i|Â|j

〉〈
j|B̂|i

〉
h̄ω + Ei − Ej

, (106)

Imχ̃
(q)
BA(ω) = π

∑
i,j

[
P̃q(i)− P̃q(j)

] 〈
i|Â|j

〉〈
j|B̂|i

〉
δ (h̄ω + Ei − Ej) .

Here, P.V. stands for the principal value. We thus note that all the relations
obtained in the statistical mechanics of extensive systems hold in the normalized
q-mean value formalism of the Tsallis ensemble theory, except that the fluctation-
dissipation theorem appears in a different form.

The static limit of the dynamical framework is subtle even for the extensive
case and this continues to be so here also. From Eq. (98), we have φ̃

(q)
BA(t) =



138 A.K. Rajagopal

−(1/ih̄) Tr
{
[Â, ˆ̃P (Ĥ; q, β̃)]B̃(t)

}
. In view of Eq. (83) in Theorem B, after some

manipulation, this takes the form

φ̃
(q)
BA(t) = −qTr

{
ˆ̃P
(
Ĥ; q, β̃

)∫ β̃

0
dũ
[
ˆ̃P
(
Ĥ; q, ũ

)]−1

× ˆ̃A(ũ) ˆ̃P
(
Ĥ; q, ũ

) ˙̂
B(t)

}
. (107)

The overdot on the operator B̂ denotes its time derivative. This is another
version of the linear response function which reduces to the corresponding Kubo
expression in the limit q → 1.

We compare the properties of the extensive and nonextensive theories in
Table 7.

Table 7. Similar properties of the entropies

Extensive – von Neumann Nonextensive – Tsallis

Positivity: S1 ≥ 0, with the Positivity: Sq ≥ 0, with the

equality for pure states equality for pure states

The microcanonical ensemble The microcanonical esemble

has equiprobbility. has equiprobbility.

S1 is concave, Sq is concave for q > 0 and

implying the maxent convex for q < 0,

principle. implying the maxent

principle for q > 0 and the

minimum entropy

principle for q < 0.

For canonical ensemble, For canonical ensemble,
ˆ̃ρ1 = exp

(
−βĤ

)
/Z1, where ˆ̃ρ = eq

(
−β̃
(
Ĥ − Ũq

))
/Z̃q, where

Z1 = Tr exp(−βĤ) is the partition Z̃q = Treq
(
−β̃
(
Ĥ − Ũq

))
with

function. eq(Â) ≡
(
1 + (1− q)Â

)1/(1−q)
is

the q-partition function. β̃ = β/cq

and cq = Trˆ̃ρ
q
=
(
Z̃q
)1−q

.

Note that there is a natural cutoff in

energy when q < 1.
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The Legendre transform structure The Legendre transform structure

of the free energy defined by of the q-free energy defined by

F1 = −β−1 lnZ1 = U1 − TS1 , F̃q = −β−1 lnq Zq = Ũq − β−1Sq ,

U1 = ∂
∂β
(βF1) , where Z1−q

q ≡ Z̃1−q
q − β(1− q)Ũq.

S1 = − ∂F1
∂T
, and ∂S1

∂U1
= β . Ũq = ∂

∂β

(
βF̃q
)
,

Sq = − ∂F̃q
∂T
, and ∂Sq

∂Ũq
= β .

Causality (Kramers-Kronig), time- Causality (Kramers-Kronig), time-

reversal symmetry, and Onsager reversal symmetry, and Onsager

reciprocity are obeyed by reciprocity are obeyed by the

the Kubo dynamic linear response q-Kubo dynamic linear

function. response function [11].

We now turn our attention to the discussion of Green function theory and its
implications in the nonextensive context. The Green function method is perhaps
one of the most powerful field theoretical techniques used to study interactions
and correlations in many particle systems with its constituent particles obeying
either Bose or Fermi statistics. In the Gibbsian ensemble theory of extensive
systems, this method acquired a new look because it could accommodate fi-
nite temperature-dependence equally well as its time-dependence. Given
these, it is natural to inquire if one can develop a corresponding Green function
theory when the Tsallis ensemble is employed for describing nonextensive sys-
tems. This would then complete the program of describing nonextensive systems
in much the same manner as extensive ones. We adopt the second-quantized
creation and annihilation operators of the particle in the Heisenberg representa-
tion as in the book of Kadanoff and Baym (KB) [26] to describe a many-particle
system whose Hamiltonian and number operators are Ĥ and N̂ , respectively. In
this way, we describe the nonextensive bosonic and fermionic systems in equilib-
rium at arbitrary temperatures by maximizing the Tsallis entropy subject to the
constraints of the normalized q-mean values of Ĥ and N̂ [27]. This presentation
is different from the one given in [25]where the normalized q-mean values were
not used. Using the standard method of Lagrange multipliers, we have the result
given in Eq. (56) for the density matrix, which is expressed in a slightly different
notation by introducing the following quantities:

X̂q (λ1, λ2) = Ŷq (λ1, λ2)− aq (λ1, λ2) ,

Ŷq (λ1, λ2) =
(
λ1Ĥ + λ2Ñ

)/
cq (λ1, λ2) , (108)

aq (λ1, λ2) =
(
λ1Ûq + λ2Ñq

)/
cq (λ1, λ2) .
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We now define the tow-point q-Green function (we use units with h̄ = 1):

G(q) (1, 1′;βq, µq) = i
〈
T
(
Ψ(1)Ψ †(1′)

)〉
q

≡ −i
Tr
{[
eq

(
−X̂q(λ1, λ2)

)]q
T
(
Ψ(1)Ψ †(1′)

)}
Tr
[
eq

(
−X̂q(λ1, λ2)

)]q . (109)

Here, 1 refers to a space-time coordinate of a particle situated at position −→r 1
at time t1, and T is the Wick time-ordering symbol

T
(
Ψ(1)Ψ †(1′)

)
= Ψ(1)Ψ †(1′) for t1 > t1′ ,

= ±Ψ †(1′)Ψ(1) for t1 < t1′ . (110)

The creation Ψ †(1′) and annihilation Ψ(1′) operators obey the equal time canon-
ical commutation relations (CCR):

Ψ(−→r , t)Ψ †(−→r ′, t)± Ψ †(−→r ′, t)Ψ(−→r , t) = δ(D)(−→r −−→r ′) ,
(111)

Ψ(−→r , t)Ψ(−→r ′, t)± Ψ(−→r ′, t)Ψ(−→r , t) = 0 and h.c. .

In the above and in subsequent analysis, the upper sign refers to bosons and the
lower to fermions. The definitions of the n-point q-Green functions follow in the
same fashion. It should be noted that the conventional grand canonical ensemble
results given in KB are obtained when we take the limit q → 1 in all the above
expressions. We now use the following integral relationship, which is valid only
for q < 1:

[
eq

(
−X̂q(λ1, λ2)

)]q
=
∫ +∞

−∞
duK̃q(u; aq)e−(1−q)(1+iu)Ŷq(λ1,λ2) ,

(112)

K̃q(u; aq) ≡
Γ
(

1
1−q

)
e(1+iu)[1+(1−q)aq(λ1,λ2)]

2π (1 + iu)1/(1−q) ,

which is obtained from the formula

yz−1

Γ (z)
=

1
2π

∫ −∞

−∞
du

e(1+iu)y

(1 + iu)z

(y > 0 and Rez > 0) .

Then the q-Green function is formally expressed as a parametric integral over
a conventional grand canonical Green function, but with the same Lagrange
parameters λ1 and λ2 as in Eq. (56). This point will be important in later
discussions. The other quantities are also formally expressed similarly in terms
of their q → 1 counterparts. For q > 1, a contour deformation technique is
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employed to rewrite Eq. (112) in a more suitable form [25]. Thus, we have

Z̃q (λ1, λ2) =
∫ +∞

−∞
duK̃q(u; aq)Z1

(
(1− q)(1 + iu)
cq (λ1, λ2)

(λ1;λ2)
)
,

Z1 (λ1, λ2) = Tre−Ŷq(λ1,λ2) , (113)

aq(λ1, λ2) =
1
Z̃q

∫ +∞

−∞
duK̃q(u; aq)Tr

{
e−(1−q)(1+iu)Ŷq(λ1,λ2)Ŷq(λ1, λ2)

}
.

Here, we have introduced the following abbreviation for the two arguments:

(1− q)(1 + iu)
cq (λ1, λ2)

(λ1;λ2)

≡
(

(1− q)(1 + iu)
cq (λ1, λ2)

λ1 ,
(1− q)(1 + iu)
cq (λ1, λ2)

λ2

)
. (113a)

Therefore, we have

G(q)(1, 1′;λ1, λ2) =
1
Z̃q

∫ +∞

−∞
duK̃q(u; aq)Z1

(
(1− q)(1 + iu)
cq(λ1, λ2)

(λ1;λ2)
)

×G(1)
(
1, 1′;

(1− q)(1 + iu)
cq(λ1, λ2)

(λ1;λ2)
)

,

(114)

G(1)(1, 1′;λ1, λ2) = −i
Tr
[
e−Ŷq(λ1,λ2)T

(
Ψ(1)Ψ †(1′)

)]
Tre−Ŷq(λ1,λ2)

.

For q > 1, we use a general contour integral representation of the gamma func-
tion. One may consult [25] for details, as well as for general representations of
the quantities given here. We now introduce the correlation functions which are
related to the full Green functions:

G
(q)
> (1, 1′;λ1, λ2) = −i 〈Ψ(1)Ψ †(1′)

〉
q
,

(115a)

G
(q)
< (1, 1′;λ1, λ2) = ∓i 〈Ψ †(1′)Ψ(1)

〉
q
,

G(q) (1, 1′;λ1, λ2) =

{
G
(q)
> (1, 1′;λ1, λ2) for t1 > t1′ ,

G
(q)
< (1, 1′;λ1, λ2) for t1 < t1′ .

(115b)

Using Eq. (114), each of these correlation functions can be expressed in terms
of the usual (q → 1) Green functions given in KB. Formally, those usual Green
functions have “periodicity”property in a complex time-domain and so can be
expressed in terms of a spectral weight function, A(1, 1′), which reflects only
the properties of the system Hamiltonian. Furthermore, the basic permutation
symmetry of the system is accounted for by the introduction of the occupation
number of a mode of energy ω in the grand canonical ensemble: f(ω;λ1, λ2) ≡
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[exp(λ1ω + λ2)∓ 1]−1. We thus rewrite the expressions for Eqs. (115a) and
(115b) in terms of the frequency variable which is the Fourier transform variable
with respect to time differences, in the following way:

iG
(q)
> (−→r 1,−→r 1′ ;ω;λ1, λ2) =

1
Z̃q

∫ +∞

−∞
duK̃q(u, aq)

×Z1

(
(1− q)(1 + iu)
cq(λ1, λ2)

(λ1;λ2)
)

×
[
1± f

(
ω;

(1− q)(1 + iu)
cq(λ1, λ2)

(λ1;λ2)
)]

×A(−→r 1,−→r 1′ ;ω) , (116a)

iG
(q)
< (−→r 1,−→r 1′ ;ω;λ1, λ2) =

1
Z̃q

∫ +∞

−∞
duK̃q(u, aq)

×Z1

(
(1− q)(1 + iu)
cq(λ1, λ2)

(λ1;λ2)
)

×
[
±f
(
ω;

(1− q)(1 + iu)
cq(λ1, λ2)

(λ1;λ2)
)]

×A(−→r 1,−→r 1′ ;ω) . (116b)

From this, we see that the spectral weight function is just

i
{
G
(q)
> (1, 1′;λ1, λ2)−G

(q)
< (1, 1′;λ1, λ2)

}
= A(1, 1′) (117)

in view of the CCR given in Eq. (111). An important sum rule regarding the
spectral weight reflecting the equal-time commutation relation is then given as
follows:

i

∫ +∞

−∞

dω

2π

{
G
(q)
> (−→r 1,−→r 1′ ;ω;λ1, λ2)−G

(q)
< (−→r 1,−→r 1′ ;ω;λ1, λ2)

}

=
∫ +∞

−∞

dω

2π
A (−→r 1,−→r 1′ ;ω) = δ(D) (−→r 1 −−→r 1′) . (118)

It is worth pointing out that the physical interpretation of the correlation
functions for any q as transition probabilities for adding and removing a particle
holds as for the case q → 1 described by KB. Also, many important mean values
of physical quantities of an interacting system may be expressed in terms of the
spectral weight function and the occupation probabilities. We give here a few
of these which will be useful for later discussions. Following KB, the q-mean
energy of an interacting uniform system of particles in D-dimensions contained
in a volume Ω, having the usual two-body interactions, is found to be

Ũq

Ω
=

1
Z̃q

∫ +∞

−∞
duK̃q(u; aq)Z1

(
(1− q)(1 + iu)
cq(λ1, λ2)

(λ1;λ2)
)
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×
∫ +∞

−∞

dω

2π

∫
dD−→p
(2π)D

(
ω +−→p 2/2m

2

)

× f

(
ω;

(1− q)(1 + iu)
cq(λ1, λ2)

(λ1;λ2)
)
A(−→p ;ω) , (119)

where A(−→p ;ω) is the spatial Fourier transform of A (−→r 1,−→r 1′ ;ω). Similarly, the
single-particle momentum distribution function is

Ñq(−→p ) =
1
Z̃q

∫ +∞

−∞
duK̃q(u; aq)Z1

(
(1− q)(1 + iu)
cq(λ1, λ2)

(λ1;λ2)
)

×
∫ +∞

−∞

dω

2π
f

(
ω;

(1− q)(1 + iu)
cq(λ1, λ2)

(λ1;λ2)
)
A(−→p ;ω) , (120)

and the single-particle frequency distribution function is

Ñq(ω) =
Ω

Z̃q

∫ +∞

−∞
duK̃q(u; aq)Z1

(
(1− q)(1 + iu)
cq(λ1, λ2)

(λ1;λ2)
)

×f
(
ω;

(1− q)(1 + iu)
cq(λ1, λ2)

(λ1;λ2)
)∫

dD−→p
(2π)D

A(−→p ;ω) . (121)

The chemical potential is determined by the expression for the q-mean value of
the total number operator:

Ñq =
Ω

Z̃q

∫ +∞

−∞
duK̃q(u; aq)Z1

(
(1− q)(1 + iu)
cq(λ1, λ2)

(λ1;λ2)
)

×
∫ +∞

−∞

dω

2π

∫
dD−→p
(2π)D

× f

(
ω;

(1− q)(1 + iu)
cq(λ1, λ2)

(λ1;λ2)
)
A(−→p ;ω) . (122)

Experimentally, one can measure the momentum distribution function in Eq.
(120) either by Compton scattering or by positron annihilation.

For the sake of completeness, it is also important to examine the fluctuations
given in Eq. (61) in terms of the integral representation:

∂2Z̃q

∂λ21
= qTr



[
eq

(
−X̂q(λ1, λ2)

)]2q−1

(
Ĥ − Ũq

)2
c2q(λ1, λ2)


 ,

∂2Z̃q

∂λ22
= qTr



[
eq

(
−X̂q(λ1, λ2)

)]2q−1

(
N̂ − Ñq

)2
c2q(λ1, λ2)


 ,

∂2Z̃1

∂λ1∂λ2
=
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qTr



[
eq

(
−X̂q(λ1, λ2)

)]2q−1

(
Ĥ − Ûq

)(
N̂ − Ñq

)
c2q(λ1, λ2)


 ,

[
eq

(
−X̂(λ1, λ2)

)]2q−1
=
∫ +∞

−∞

du

2π

Γ
(

q
1−q

)
e(1+iu)(1+(1−q)aq)

(1 + iu)q/(1−q)

×e
−
(1 + iu)(1− q)
cq(λ1, λ2)

(
λ1Ĥ + λ2N̂

)
. (123)

We will now illustrate some consequences of this theory by examining the “free
particle” systems for which q = 1 results are known.

Ideal free gas:
Recall that the Gibbsian “fugacity” is defined by

z = eλ2 . (124)

For the ideal gas, the energy eigenvalues are given by ε(−→p ) = −→p 2/2m, m is
the mass and −→p is the linear momentum of the particle. Therefore the spectral
weight function is given by

A(−→p ;ω) = 2π δ
(
ω −−→p 2/2m

)
. (125)

We consider three dimensional systems so that D = 3 in the formulas derived
above. Then the grand partition functions for the fermi (F ), bose (B), and
maxwell (M) systems are given in any standard text book (e.g., [28]), and we
will recast them here in our notation:

lnZF
1 (λ1, λ2) = Ω

(
m

2πλ1

)3/2 ∞∑
l=1

(−1)l+1e−λ2l

l5/2
, (126)

lnZB
1 (λ1, λ2) = Ω

(
m

2πλ1

)3/2 ∞∑
l=1

e−λ2l

l5/2
− ln

(
1− e−λ2

)
, (127)

lnZM
1 (λ1, λ2) = Ω

(
m

2πλ1

)3/2

e−λ2 . (128)

Note that we need to evaluate only the formal structure of the partition functions
in the limit q → 1 because the Lagrange multipliers of the original Tsallis maxent
problem are the same as those in the above expressions. We now evaluate all the
relevant quantities using these expressions and finally examine the results. For all
these noninteracting cases, q can only be less than 1 as otherwise the expressions
diverge.

Case (a): Maxwellons:
We first consider the case of classical ideal gas composed of N particles confined
in the volume Ω, Using Eq. (128) in Eq. (113), with corresponding modifications,
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we have

Z̃M
q =

∫ +∞

−∞
duK̃q (u; aq)

1
(1− q)(1 + iu)

× exp

{
Ω

(
mcq(λ1, λ2)

2π(1− q)(1 + iu)λ1

)3/2

e−(1−q)(1+iu)λ2/cq(λ1,λ2)

}

=
∞∑

N=0

[
Ω
(
mcq(λ1,λ2)
2π(1−q)λ1

)3/2]N
Γ
(
2−q
1−q

)
N !Γ

(
2−q
1−q + 3

2 N
)

× [1 + (1− q) (aq −Nλ2/cq(λ1, λ2))]
1

1−q+
3
2 N

≡
∞∑

N=0

˜̃Z
M

q (N ;λ1, λ2) . (129a)

From Eqs. (59) and (112), we also have an equivalent expression for the partition
function, which reads

Z̃M
q =

∫ +∞

−∞
duK̃q (u; aq)

× exp

{
Ω

(
mcq(λ1, λ2)

2π(1− q)(1 + iu)λ1

)3/2

e−(1−q)(1+iu)λ2/cq(λ1,λ2)

}

=
∞∑

N=0

[
Ω
(
mcq(λ1,λ2)
2π(1−q)λ1

)3/2]N
Γ
(

1
1−q

)
N !Γ

(
1

1−q + 3
2 N

)
× [1 + (1− q) (aq −Nλ2/cq(λ1, λ2))]

q
1−q+

3
2 N

≡
∞∑

N=0

˜̃Z
M

q (N ;λ1, λ2) . (129b)

We now calculate the q-mean value of the energy in Eq. (119) as follows:

ŨM
q

Ω
=

1
Z̃M
q

∫ +∞

−∞
duK̃q(u; aq)ZM

1

(
(1− q)(1 + iu)
cq(λ1, λ2)

(λ1;λ2)
)

×
∫

d3−→p
(2π)3

e
− (1−q)(1+iu)

cq(λ1,λ2) (λ1
−→p 2

/2m+λ2)
−→p 2

2m

=
1

ΩZ̃M
q

3cq(λ1, λ2)
2λ1

∞∑
N=0

N

[
Ω
(
mcq(λ1,λ2)
2π(1−q)λ1

)3/2]N
Γ
(
2−q
1−q

)
N !
(
2−q
1−q + 3

2 N
)

× [1 + (1− q) (aq −Nλ2/cq(λ1, λ2))]
1

1−q+
3
2 N

. (130)
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Similarly, the q-mean value of the total number operator from Eq. (122) is

ÑM
q

Ω
=

1
Z̃M
q

∫ +∞

−∞
duK̃q(u; aq)ZM

1

(
(1− q)(1 + iu)
cq(λ1, λ2)

(λ1;λ2)
)

×
∫

d3−→p
(2π)3

e
− (1−q)(1+iu)

cq(λ1,λ2) (λ1
−→p 2

/2m+λ2)

=
1

ΩZ̃M
q

∞∑
N=0

N

[
Ω
(
mcq(λ1,λ2)
2π(1−q)λ1

)3/2]N
Γ
(

1
1−q

)
N !
(

1
1−q + 3

2 N
)

× [1 + (1− q) (aq −Nλ2/cq(λ1, λ2))]
q

1−q+
3
2 N

. (131)

Eqs. (130) and (131) have to be solved in terms of the Lagrange multipliers for
given constraints of the q-mean values of the energy and number operators.

Corresponding expressions for the canonical ensemble were obtained by Abe
[29], which are formally reproduced by picking the coefficient of N in the above
series expressions and setting λ2 equal to zero. His results were based on the
normalized q-mean value constraints, and as such while he did not have infinities
in the thermodynamic limit that plagued the earlier non-normalized q-mean
value theory of the classical ideal gas [30], but he obtained the negative q-specific
heat for 0 < q < 1. In the grand canonical expressions given above, it should be
noted that the infinite series in N has a natural cut off given by

1 + (1− q)
(
aq −Nc

λ2
cq(λ1, λ2)

)
= 0 . (132)

so that the series is terminated after N = Nc.
We note that, from Eqs. (129a) and (130), we get an identity

0 =
∞∑

N=0

(
ŨM
q − 3cq(λ1, λ2)

2λ1
N

) [Ω (mcq(λ1,λ2)
2π(1−q)λ1

)3/2]N
Γ
(
2−q
1−q

)
N !Γ

(
2−q
1−q + 3

2 N
)

× [1 + (1− q) (aq −Nλ2/cq(λ1, λ2))]
1

1−q+
3
2 N

. (133)

Similarly, from Eqs. (129b) and (131), we get another identity

0 =
∞∑

N=0

(
ÑM

q −N
)
[
Ω
(
mcq(λ1,λ2)
2π(1−q)λ1

)3/2]N
Γ
(

1
1−q

)
N !Γ

(
1

1−q + 3
2 N

)
× [1 + (1− q) (aq −Nλ2/cq(λ1, λ2))]

q
1−q+

3
2 N

. (134)

These identities are useful in calculating the derivatives of the partition function
in Eq. (129a) with respect to the Lagrange multipliers as in Eqs. (60) and (61)
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to determine “fluctuations” in this formalism. The first derivatives vanish upon
using Eqs. (133) and (134). The second derivatives are nonzero and are simplified
further after using the expressions in Eq. (123). We will not belabor this point
here, as it requires more numerical analysis.

Case (b) Bosons:
We focus on the region of Bose condensation where the chemical potential is set
equal to zero, thereby allowing some simplification. Then, the calculations are
almost parallel to the classical ideal gas case considered above. We have

Z̃B
1 (βc

q) ∼= exp

[
Ω

(
m

2πλc1

)3/2

ζ(5/2)

]
, (135)

where ζ(s) =
∑∞

l=1 l−s is the zeta function of order s. Details of this type
of calculation are given in [25,27] and we will not repeat them here. Further
consequences of these require numerical analysis to include self-consistency and
is being done currently.

5 Time-Dependence: Nonunitary Dynamics

The Lindblad equation is for the density matrix describing the time evolution
of dissipative quantum systems under only the most general requirements of
linearity, locality in time, and conservation of probability (traceclass property
of the density matrix). For a recent description of this and the corresponding
literature, see [33]. By its very nature, this time evolution is nonunitary and
hence the corresponding manipulations are different and more complex, and
such details may be found in [33]. The forward and backward time evolutions
(compare Eq. (87)) are different in this formalism as well as the mean value
of an arbtrary operator for the same reason (compare Eq. (90)). It replaces
the nonunitary stochastic Fokker-Planck dynamics for the classical distribution
function. By taking a Wigner-transform of the Lindblad equation for the density
matrix, a Fokker-Planck-like equation for the quantum phase-space distribution
function is derived. See Table 8 for its comparison with its unitary counterpart.
The time-dependent Tsallis entropy functional is now time-dependent unlike in
the unitary evolution case. This equation has only recently been employed to
discuss real physical phenomena such as time-scale of quantum operation of
nanometric devices [34] etc.. This is a separate subject deserving its own full
discussion. We will be content here with just giving the salient features of its
consequences as presented in Table 8.
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Table 8. Comparison of von Neumann and Lindblad time evolutions

Unitary Evolution – von Neuman Nonunitary Evolution – Lindblad
dρ̂
dt
= − i

h̄

[
Ĥ, ρ̂

]
, dρ̂

dt
= − i

h̄

[
Ĥ, ρ̂

]
ρ̂ is Hermitian. The initial condition is

usually specified to suit the physical - 1
2h̄

∑
i
A(i)

(
Q̂†
i Q̂iρ̂+ ρ̂Q̂†

i Q̂i − 2Q̂iρ̂Q̂
†
i

)
.

situation under study. For example, one

may choose to maximize entropy (von The operators Q̂i are arbitrary and

Neumann or Tsallis) given some represent the decay processes. ρ̂ is

physical constraints such as energy. Hermitian iff A(i) are real. The initial

condition is usually specified to

suit the physical situation under study.

ρ̂ is traceclass: Trρ̂(t) = Trρ̂(0) = 1. ρ̂ is traceclass: Trρ̂(t) = Trρ̂(0) = 1.

ρ̂ is a positive operator; its eigenvalues ρ̂ is a positive operator; its eigenvalues

are positive. are positive, iff A(i) are positive.

von Neumann entropy S1 = −Tr(ρ̂ ln ρ̂) von Neumann entropy S1 = −Tr(ρ̂ ln ρ̂)
is independent of time and so there is depends on time; dS1(t)

dt
≥ 0 provided

no possibility of transition from pure to Q̂†
i = Q̂i. Thus there is possibility of

mixed states and vice versa. transitionfrom pure to mixed states and

vice versa.

Tsallis entropy Sq = −Tr(ρ̂Lnqρ̂) is Tsallis entropy Sq = −Tr(ρ̂Lnqρ̂)
independent of time and so there is no depends on time; provided

possibility of transition from pure to dSq(t)
dt

≥ 0 for q > 0, and so there is

mixed states and vice versa. possibility of transition from pure to

mixed states and vice versa.

ih̄ d
dt
Tr
(
Ô(t)ρ̂(t)

)
= Tr

(
ih̄ ∂Ô(t)

∂t
ρ̂(t)
)

ih̄ d
dt
Tr
(
Ô(t)ρ̂(t)

)
= Tr

(
ih̄ ∂Ô(t)

∂t
ρ̂(t)
)

− Tr
([
Ĥ, Ô(t)

]
ρ̂(t)
)
. −Tr

([
Ĥ, Ô(t)

]
ρ̂(t)
)

− i
2

∑
i
A(i)

×Tr
({

Ô(t)Q̂†
i Q̂i + Q̂†

i Q̂iÔ(t)

−2Q̂†
i Ô(t)Q̂i

}
ρ̂(t)

)
.

Action principle–variational approach Action principle–variational approach

[31] [32,33]
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6 Concluding Remarks

Instead of a summary, we end this description with some thoughts on several
questions that need to be asked in the context of the development of the for-
malism. They fall into two classes. The first class of questions concerns some ex-
perimental consequences of the formalism while the second class concerns some
theoretical points. There are two new papers applying the Tsallis entropy that
have attracted my attention which I will point out. Finally, there is an interesting
question concerning the Boltzmann-Einstein relationship in the Tsallis entropy
context, which will be answered.

Experimental consequences in the q-formalism parallel to those in ordinary
equilibrium statistical mechanics such as thermal, mechanical, and particle equi-
librium as in the standard textbook [35] need to be explored. This depends on
the additive properties of the entropy and the normalized q-mean values defined
in Section 2. Consider a closed system in thermal equilibrium. The value of the
Tsallis entropy will depend on the q-energy, q-number, and external variables
such as volume. Consider now two subsystems, for the present with the same
q-index, in contact with each other and in thermal equilibrium. Thermal equilib-
rium means that the entropy of the total system must be maximum with respect
to small transfers of q-energy from one to the other. Thus we have

δSq(A ∪B) =
δSq(A)
δŨq(A)

[1 + (1− q)Sq(B)] δŨq(A)

+
δSq(B)
δŨq(B)

[1 + (1− q)Sq(B)] δŨq(B) = 0 .

We know also that the total q-energy is held constant, because the system is
thermally closed (microcanonical ensemble or the fixed total energy constraint)
δŨq(A) + δŨq(B) = 0. Therefore, we obtain

δSq(A ∪B) ∝
{
δSq(A)
δŨq(A)

[1 + (1− q)Sq(A)]−1

− δSq(B)
δŨq(B)

[1 + (1− q)Sq(B)]−1
}
δŨq(A) = 0 .

As δŨq(A) is an arbitrary variation, we must have the following relation in
thermal equilibrium:

δSq(A)
δŨq(A)

[1 + (1− q)Sq(A)]−1 =
δSq(B)
δŨq(B)

[1 + (1− q)Sq(B)]−1
.

If we define a quantity βq by

(βq) =
δSq

δŨq

[1 + (1− q)Sq]
−1 ≡ δSq

δŨq

(cq)−1
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after using Eq. (63), then in thermal equilibrium, βq(A) = βq(B). Should we
interpret this as the inverse temperature of the q-system in analogy with the
familiar q = 1 case? By following similar arguments as in [35], this time with the
two systems occupying respective volumes,

δSq(A)
δΩ(A)

[1 + (1− q)Sq(A)]−1 =
δSq(B)
δΩ(B)

[1 + (1− q)Sq(B)]−1

is the condition for mechanical equilibrium. We may define q-pressure by

βqΠq =
δSq

δΩ
[1 + (1− q)Sq]

−1 ≡ δSq

δΩ
(cq)−1 .

Similarly, for particle equlibrium, we obtain

δSq(A)
δÑq(A)

[1 + (1− q)Sq(A)]−1 =
δSq(B)
δÑq(B)

[1 + (1− q)Sq(B)]−1

and the definition of q-chemical potential

−βqµq =
δSq

δÑq

[1 + (1− q)Sq]
−1 ≡ δSq

δÑq

(cq)−1 .

With these new identification of the Lagrange parameters, we may have different
definitions of the q-specific heat and q-compressiblity, which are something that
seemed to be called for in our discussion of fluctuations in the q-formalism in
Section 3. Two other questions come to mind in this context; can we put two
systems with two different q’s in thermal contact? How about one with q = 1
and another with q not equal to unity? This latter question may give us a clue
to measure q-temperature using conventional thermometer?!

On some theoretical points that are still worrisome to me, there is really only
one basic cause for worry in all the three cases presented below:

(1) The non uniqueness in the definition of the Tsallis entropy of nonextensive
systems: Several entropy functionals may be set up [36] such that the nonaddi-
tivity is characterized in a generic Tsallis form given in Table 2, with the only
criterion that it goes to the von Neumann form for extensive systems in the limit
q → 1. For example, we may define another entropy functional, S(a)

q = Sq/cq,
from the definition in Eq. (2). This leads to the pseudoadditivity relation for the
entropy in Table 2 with the nonadditivity term appearing with (q − 1) instead
of (1− q) there. They all possess the Legendre transform structure as well. The
question is whether one can have at least one other criterion to make a unique
choice or, is it that the nature of the beast is such that this non uniqueness allows
for many other forms for the probability distribution which are not either expo-
nential or monomial form and are pertinent to some other hitherto undiscovered
physical situation?

(2) There is a paper [37] claiming to prove the uniqueness of the Tsallis form
similar to the well known one for the Shannon structure from general mathe-
matical axioms. This proof is equally valid under certain conditions for other
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definitions mentioned above [36]! This means that the uniqueness proof depends
on the underlying axioms concerning the form of the non extensive character.

(3) Nonuniquenss in defining information theory based on the Tsallis entropy
(Abe and A. K. R. [38]). In [36], there was a study reported where the authors
suggest that perhaps information theory should be developed in a consistent
fashion. The reason for the various definitions arises from the ambiguous inter-
pretation of Eq. (2), either as 〈Lnqρ̂〉1 which is based on the traditional definition
of the mean value or as the un-normalized q-mean value, or as the normalized
q-mean value, 〈lnq ρ̂〉q, provided that in the latter case we divide the unnormal-
ized expression by cq. The first one is equivalent to the second expression but the
interpretation is different and crucial. All these go to Eq. (1) in the limit q → 1!
My point has been to use the quantum version of the Kullback-Leibler entropy
a là Section 2 as a guide (see Appendix), in which case, as far as the entropy
definition is concerned, we use the structure given in Eq. (2) which is the third
form of the three mentioned above and employ the normalized q-mean value for
calculating mean values which preserves the usual structure that the mean value
of a constant is itself. The reason is that in the quantum version, the overlap of
the wave functions appear, and the definition of the “conditional density matrix”
does not seem to uniquely exist in contrast to the fact that “conditional prob-
ability” exists in the classical description. But we can construct “conditional
entropy”, which has the property that it should go to zero when the density
matrix factorizes.

Much of these uncertain feelings may be traced to the sole guiding princi-
ple that we must get back to the von Neumann entropy in the limit q → 1.
This seems to be at the heart of the non uniqueness! There must be another
principle which makes the definitions unambiguous! Our suggestion at present is
the quantum density matrix approach! A discussion of these points is called for.
At this juncture, part of a rubai’yi # 191 of the Ruba’iyat of Omar Khayyam
(trans. Peter Avery and John Heath-Stubbs, Penguin Classics, 1979) comes to
mind:

“I have meditated for seventy-two years night and day
To learn that nothing has been learned at all.”

Among the recent applications, two studies have attracted my attention.

(1) Correlations in quantum many particle systems by Zeische et al. [39]. These
authors suggest that Tsallis-type entropy defined in terms of the eigenvalues of
one-particle density matrix will exhibit correlation effects in an interacting sys-
tem. They call the Tsallis entropy as the q-order idempotency, which is zero when
there is no correlation, and increases with increasing correlation. This therefore
is a good test for approximation methods which claim to take account of corre-
lations (basis sets, the Slater determinants, etc.) in computations of properties
of many particle systems. The authors test their idea on the two-site Hubbard
model and on the Bardeen-Cooper-Schrieffer model of superconductivity.
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(2) Entropic lower bound for quantum scattering by Ion and Ion [40] based on
Tsallis entropy. These authors define the angular and angular-momentum Tsal-
lis entropies for any quantum scattering states. Since the two basis states are a
Fourier series transform pair, they use the Riesz theorem instead of the Sobolev
inequality (used in [41] for a Fourier integral transform pair of probability ampli-
tudes) to derive an entropic lower bound! They then show that the experimental
pion-nucleus entropies are well described by their optimal entropies.

Another point of interest is to display the nature of the famous Boltzmann
formula for entropy as S = k lnW (N), where W (N) is the degeneracy of the
microstates. In our view for a many particle system, W (N) is just the largest
degeneracy allowed for occupying a given N -particle state with a given energy.
Thus, the density matrix is dominated by the term with n = N in the eigen-
state expansion: ρ̂ =

∑
n

W (n)p(n)|n〉〈n|. Since Trρ̂ = 1, the dominating term

saturates the trace and, therefore, we have p(N)W (N) = 1. Consequently, the
Tsallis entropy given by Eq. (2) in this representation of the density matrix be-
comes Sq =

∑
nW (n)p(n)

[
1− pq−1(n)

] /
(q − 1) ∼= [

W 1−q(N)− 1
] /

(1 − q) ≡
lnq W (N) (k = 1). Hence we get the Tsallis entropy to be lnq W (N). SinceW (N)
is an intrinsic property of the system under consideration, as it depends only
on the symmetry properties of the system, it is the same one that is employed
in examining the fermi or bose or maxwell system of particles. This expression
when used in the von Neumann entropy with large number approximation yields
the traditional statistical number distributions for the fermi, bose, and maxwell
cases.

Note Added
We update here the manuscript originally composed a little more than a

year ago with some new developments that we have been involved with in the
intervening months by giving a brief account of these.

(1) A. K. Rajagopal and S. Abe, “Implications of Form Invariance to the
Structure of Nonextensive Entropies”, Phys. Rev. Lett. 83, 1711 (1999). In this
paper, the form invariance of the maxent principle and the metric structure in
quantum density matrix suitably generalized to nonextensive situations is shown
to determine a structure of possible nonextensive entropies.

(2) S. Abe and A. K. Rajagopal, “Quantum entanglement inferred by the
principle of maximum nonadditive entropy”, Phys. Rev. A 60, 3461 (1999).
By extending the work in A. K. Rajagopal, “Quantum entanglement and the
maximum entropy states from the Jaynes principle”, Phys. Rev. A 60, 4338
(1999) to the nonadditive Tsallis entropy, the problem of quantum-state inference
and the concept of quantum entanglement are studied. In particular, we examine
in detail the 2-qubit system.

(3) S. Abe and A. K. Rajagopal, “Nonadditive conditional entropy and its
significance for local realism”, Physica A (2000), in press. The concept of con-
ditional entropy is extended to the nonadditive composite systems by using the
form invariance of the structures given by Khinchin’s axiomatic foundations of
information theory and the pseudoadditivity of Tsallis entropy. A criterion de-
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duced from this for separability of density matrices for validity of local realism
is examined in detail for the 2-qubit system. In another paper, S. Abe, “Ax-
ioms and uniqueness theorem for Tsallis entropy”, Phys. Lett. A 271, 74 (2000),
the Shannon-Khinchin axioms for ordinary information entropy is generalized to
the nonextensive systems based on the concept of nonadditive conditional en-
tropy, thus providing a complete proof of the uniqueness theorem for the Tsallis
entropy.

(4) S. Abe and A. K. Rajagopal, “Nonuniqueness of canonical ensemble the-
ory arising from microcanonical basis”, Phys. Lett. A (2000), in press, and S. Abe
and A. K. Rajagopal, “Microcanonical foundation for systems with power-law
distributions”, J. Phys. A (2000), in press. In these two papers, by an exam-
ination of the traditional microcanonical foundation of the Boltzmann-Gibbs
canonical distribution, it is revealed that alternate paths exist to understand
nonexponential distributions that also occur so commonly in nature.

(5) S. Abe and A. K. Rajagopal, “Justification of power-law canonical distri-
butions based on generalized central limit theorem”, Europhys. Lett., in press.
This paper employs the generalized law of large numbers (due to Lévy and Gne-
denko) to justify the power law distributions appearing in fractal structures etc.
by extending the discussion given by Khinchin for deriving Gibbsian canonical
ensemble theory based on the well-known law of large numbers (ordinary central
limit theorem).

Acknowledgments: It is a pleasure to thank Professors S. Abe and Y. Okamoto
for providing me this opportunity to present my version of various aspects of
the work on Tsallis ensemble by inviting me to present lectures in their IMS
Winter School on Statistical Mechanics. My words are inadequate to express
my indebtedness to Professors S. Abe, E. K. Lenzi, R. S Mendes, and C. Tsallis
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with my consultation, thus improving the notes considerably from its original
version. This work is supported in part by the United States Office of Naval
Research.

Appendix: q-Kullback–Leibler Entropy as a Guide?

In this, several forms of the definitions of the q-Kullback-Leibler entropy, all of
which lead to the correct known expression for q = 1, are considered and only
one of them is shown to be logically the appropriate choice. The usual expression
for the Kullback-Leibler (KL) entropy is [Eq. (17)]

K1(ρ̂; ρ̂′) = Tr[ρ̂(ln ρ̂− ln ρ̂′)] ≥ 0 . (A.1)
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If one chooses the equilibrium density matrix in the canononical ensemble, for
simplicity, ρ̂′ = ρ̂e exp

[
−λ1(Ĥ − Ũ1)

]
/Z̃1, (which is a slightly modified version

of Eq. (18)), then we have the variational statement that any arbitrary density
matrix one has the inequality

K1(ρ̂; ρ̂e) = S1(ρ̂e)− S1(ρ̂) + λ1Tr[ρ̂(Ĥ − Ũ1)] ≥ 0 . (A.2)

We want to use this as a guide to choose the correct form of the q-KL entropy
which gives us this as the q → 1 result.
A few possible choices of the q-KL entropy are

(a) K(BPT )
q (ρ̂; ρ̂′) = Tr[ρ̂q(lnq ρ̂− lnq ρ̂′)] ≥ 0 ,

(b) K(BPT )(a)
q (ρ̂; ρ̂′) = Tr[ρ̂q (lnq ρ̂− lnq ρ̂′)]/Trρ̂q ≥ 0 , (A.3)

(c) Kq(ρ̂; ρ̂′) = Tr[ρ̂ (Lnqρ̂− Lnqρ̂′)] .

In the above, q ≥ 0 and lnq x = (x1−q−1)/(1−q) = x1−qLnqx. All these go over
to Eq. (A.1) for q → 1. (However, the third one turns out to have a problem
with the nonnegativity condition.) If we put Eq. (2) as our second criterion,
then we have two choices for the equilibrium q-density matrix, one arising from
maxent using the normalized q-mean value constraints on the entropy defined
in Eq. (2), and second arising from the alternate form, S(a)

q (ρ̂) = Sq(ρ̂)/Trρ̂q,
mentioned in Sec. 6. We find that the second expression in Eq. (A.3) with the
maxent associated with S

(a)
q gives the same form as Eq. (A.2) even though limit

the q → 1 is correctly given with either choice of the maxent density matrix
in (a) and (b) whereas (c) does not give the same limit! We therefore give the
answer for case (b) here:

ρ̂(a)e =
[
1− c(a)q λ1(1− q)

(
Ĥ − Ũ (a)

q

)]1/(1−q)/
Z̃(a)
q ,

Z̃(a)
q = Tr

[
1− c(a)q λ1(1− q)

(
Ĥ − Ũ (a)

q

)]1/(1−q)
,

c(a)q =
[
Z̃(a)
q

]1−q

=
[
1− (1− q)S(a)

q

]−1
,

K(BPT )(a)
(
ρ̂; ρ̂(a)e

)
= S(a)

q

(
ρ̂(a)e

)
− S(a)

q (ρ̂) + λ1
Tr[ρ̂q

(
Ĥ − Ũ

(a)
q

)
]

Trρ̂q

≥ 0 . (A.4)
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Abstract. The generalized thermostatistics advanced by Tsallis in order to treat
nonextensive systems has greatly increased the range of possible applications of statisti-
cal mechanics to the description of natural phenomena. Here we consider some aspects
of the relationship between Tsallis’ theory and Jaynes’ maximum entropy (MaxEnt)
principle. We review some universal properties of general thermostatistical formalisms
based on an entropy extremalization principle. We explain how Tsallis formalism pro-
vides a useful tool in order to obtain MaxEnt solutions of nonlinear partial differential
equations describing nonextensive physical systems. In particular, we consider the case
of the Vlasov-Poisson equations, where Tsallis MaxEnt principle leads in a natural way
to the stellar polytrope solutions. We pay special attention to the “P -picture” formu-
lation of Tsallis generalized thermostatistics based on the entropic functional S̃q and
standard linear constraints.

1 Introduction

In spite of its great success, the statistical mechanics paradigm based on the
Boltzmann-Gibbs entropy seems to be unable to deal with many interesting
physical scenarios [1–3]. Astronomical self-gravitat-ing systems constitute an im-
portant illustrative example of these difficulties [4–8]. A considerable effort has
been devoted by astrophysicists to achieve a thermostatistical understanding of
self-gravitating systems along the lines of standard statistical mechanics [6,7].
The nonextensivity effects associated with the long range of the gravitational
interaction were the main reason for the failure of those attempts [5,7].

In 1988 Tsallis advanced a nonextensive generalization of the celebrated
Boltzmann-Gibbs (BG) entropic measure [9]. The new entropy functional in-
troduced by Tsallis [9] along with its associated generalized thermostatistics
[10,11] is nowadays being hailed as the possible basis of a theoretical framework
appropriate for the study of nonextensive systems [12–14]. This entropy has the
form

Sq =
1

q − 1

(
1−

∫
f(x)q dx

)
. (1)

where x is a dimensionless state-variable, f stands for the probability distribution
and the Tsallis parameter q is any real number. The standard Boltzmann-Gibbs
entropy
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S = −
∫
f ln fdx (2)

is recovered in the limit case q → 1. A simple illustration of the nonextensive
character of the Tsallis measure Sq is provided by its behaviour in the case of
a composite system constituted by two statistically independent subsystems A
and B (that is, the joint probabilities verify fA+B(x,x′) = fA(x)fB(x′)). The
Tsallis entropy of the composite system A+B verifies the so called q-additivity
rule,

Sq(A+B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B). (3)

The standard additivity property of the entropy is recovered when q = 1. It is
clear from equation (3) that q can be interpreted as a measure of the degree of
nonextensivity.

Many relevant mathematical properties of the standard thermostatistics are
preserved by Tsallis’ formalism or admit suitable generalizations [12–20]. Tsal-
lis’ proposal was shown to be consistent both with Jaynes’ information theory
formulation of statistical mechanics [21], and with the dynamical thermostatting
approach to statistical ensembles [22].

The recent development of many applications of Tsallis’ theory is beginning
to provide a picture of the kind of physical problems where the new approach may
be useful. Self-gravitating systems were the first concrete physical systems dis-
cussed within the nonextensive thermostatistics [23,24]. That early application,
in turn, inspired Boghosian’s treatment of the two dimensional pure electron
plasma, leading to the first experimental confirmation of Tsallis theory [25]. A
possible solution of the solar neutrino puzzle based on Tsallis thermostatistics
has been advanced [26]. Some cosmological implications of Tsallis proposal have
also been worked out [27]. The behaviour of dissipative low dimensional chaotic
systems [28,29], chaotic Hamiltonian systems with long range interactions [30],
and self organized critical systems [31] have been discussed in connection with the
new approach. Tsallis entropy has also been advanced as the basis of a thermo-
statistical foundation of Lévy flights and distributions [32]. Tsallis nonextensive
statistical formalism proved to be a useful framework for the analysis of many
interesting properties of nonlinear Fokker-Planck equations [33–39]. H-theorems
based upon Sq have been analyzed both in the discrete case through a direct ap-
plication of the master equation[40,41], and in the continuous one in connection
with the Liouville and Fokker-Planck equations [42].

The q-generalization of the maximum entropy principle based upon the ex-
tremalization of Tsallis measure Sq under appropriate constraints plays a fun-
damental role within Tsallis theory and its applications. Consequently, it is to
be expected that the interaction between Jaynes information theory approach to
statistical mechanics, on the one hand, and Tsallis nonextensive formalism, on
the other, will provide a fertile basis for new developments in statistical physics.
We want to discuss here some aspects of the relationship between Jaynes’ and
Tsallis’ ideas. As an illustration, we will consider their application to the study
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of two nonlinear partial differential equations: the nonlinear Fokker-Planck equa-
tions, and the Vlasov-Poisson equations.

2 Jaynes Maximum Entropy Principle

Although we are going to be concerned mainly with classical systems, many of
the ideas and techniques discussed are also applicable to quantum systems. A
classical Hamiltonian system in equilibrium at temperature T is described by the
Gibbs canonical ensemble. The concomitant phase space probability distribution
is

fGibbs(qi, pi) =
1
Z
e−βH(qi,pi), (4)

where β = 1/kT (k stands for the Boltzmann constant) and the partition func-
tion z is given by

z =
∫

e−βH(qi,pi) dΩ. (5)

The canonical distribution (4) is the one that maximizes Boltzmann-Gibbs en-
tropy,

S = −k
∫

f(qi, pi) ln f(qi, pi) dΩ , (6)

under the constraints imposed by normalization∫
f(qi, pi) dΩ = 1, (7)

and the mean value of the energy

〈E〉 =
∫

f(qi, pi)H(qi, pi) dΩ. (8)

In the above equations, the pair (qi, pi) denotes the complete set of phase space
canonical coordinates, and dΩ stands for the corresponding phase space volume
element. The fact that the canonical distribution constitutes an extremum of
the entropy functional under appropriate constraints was already pointed out
by Gibbs himself in his famous book on statistical mechanics [43]. However,
Jaynes was the one to elevate this property to the status of a fundamental
principle [44–48]. Inspired in Shannon’s information theory, Jaynes reinterpreted
and generalized the above mentioned extremum principle. According to Jaynes
maximum entropy (MaxEnt) principle, when we have incomplete information
about a probability distribution f(x) (x ∈ RD stands for a point in the relevant
phase space. In the particular case of a Hamiltonian system’s phase space we
have x = (qi, pi).), we must adopt the probability distribution compatible with
the available data that maximizes the Boltzmann-Gibbs-Shannon entropy
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S[f ] = −
∫

f(x) ln f(x)dx. (9)

Following Shannon’s ideas, Jaynes interpreted the above functional as a measure
of the missing information about the system under consideration. Consequently,
the extremalization of the entropy under the constraints imposed by the known
(incomplete) information yields a probability distribution that incorporates the
available data without assuming any further information that we don’t actually
have [46–49]. In this sense, Jaynes’ MaxEnt prescription can be regarded as a
mathematical formulation of the celebrated “Occam’s razor” principle.

Usually, the input partial information consists of M relevant mean values,

〈Ai〉 =
∫

Ai(x) f(x) dx, (i = 1, . . . ,M). (10)

By introducing appropriate Lagrange multipliers (λi, i = 1, . . . ,M), Jaynes
MaxEnt variational problem leads to the well known solution

f(x) =
1
Z

exp

(
−
∑
i

λiAi(x)

)
, (11)

where the partition function Z is given by

Z =
∫

exp

(
−
∑
i

λiAi(x)

)
dx. (12)

The relevant mean values 〈Ai〉 and the associated Lagrange multipliers λi verify
by the well known Jaynes relations

∂S

∂〈Ai〉 = λi, (13)

and

∂ lnZ
∂λi

= −〈Ai〉. (14)

Within Jaynes approach to Boltzmann-Gibbs thermostatistics, different choices
for the relevant quantities Ai(qi, pi) give rise to the various ensembles of stan-
dard statistical mechanics [46–48]. In particular, if we happen to know only the
mean value of the energy (i.e., the Hamiltonian H(qi, pi) is the only relevant
quantity), the MaxEnt prescription yields the Gibbs canonical ensemble. If we
have as prior information both the mean values of the energy and the number
of particles, we get the macrocanonical ensemble. However, Jaynes approach al-
lows to consider more general statistical ensembles [46–48]. When the relevant
quantities involved are constants of motion, the associated MaxEnt distribution
describes an equilibrium situation. But if the mean values of quantities that
are not constant of motion are included as input information, time dependent
nonequilibrium processes are also within the scope of the theory. In this way,
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Jaynes procedure greatly extends the range of phenomena that can be treated
by the methods of statistical mechanics [47].

Although originally advanced as a new foundation for Boltzmann-Gibbs sta-
tistical mechanics, Jaynes MaxEnt principle is nowadays applied to a wide range
of problems such as image reconstruction and other inverse problems with noisy
and incomplete data [50,51] and time series analysis [52].

The standard MaxEnt principle based on the Boltzmann-Gibbs-Shannon en-
tropy measure, in spite of its numerous and impressive successful applications,
has serious limitations. There are important probability distributions in sta-
tistical physics and related fields that are not derivable from that principle in
a natural way [3,12]. There is a growing body of evidence indicating that the
generalized MaxEnt principle based on Tsallis nonextensive entropy, and the
concomitant thermostatistics, may provide powerful tools for the analysis of
problems outside the scope of the standard Boltzmann-Gibbs-Jaynes formalism
[1–3].

3 General Thermostatistical Formalisms

Tsallis bold attempt to build up a complete thermostatistical formalism based
upon a generalized nonlogarithmic entropy functional has raised many inter-
esting issues related both to the mathematical structure and physical implica-
tions of general thermostatistical formalisms [53–56]. Tsallis pioneering work has
stimulated the exploration of the properties of other generalized or alternative
information measures [57–60]. On the other hand, it has been recently realized
that some physically relevant features are shared by extended families of ther-
mostatistical formalisms based on the extremalization of an entropy functional
[53–56].

We now know that many important probability distribution appearing in
statistical physics and related fields are derivable from an appropriate Max-
Ent prescription [3,60]. In order to specify any particular implementation of the
MaxEnt approach, one needs to provide the entropic functional that is to be
extremalized, and the form of the constraints involved in the concomitant vari-
ational process. One may classify the MaxEnt formalisms in two main groups,
according to the kind of constraints used.

3.1 MaxEnt Formalisms with Standard Linear Constraints

Here we consider generalizations of the canonical ensemble for Hamiltonian sys-
tems. However, all the discussion can easily be extended to the general scenario
(not necessarily Hamiltonian) where more than one relevant mean values de-
scribing a system are known.

Let us now consider the general entropic functional

SG =
∫

C(f) dΩ. (15)
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The associated generalized canonical ensemble is obtained maximizing SG under
the constraints imposed by normalization∫

f(qi, pi) dΩ = 1, (16)

and the mean value of the energy,

〈E〉 =
∫

H(qi, pi) f(qi, pi) dΩ. (17)

By introducing the Lagrange multipliers α and β, associated respectively to the
normalization and the energy constraints, the concomitant variational problem
reads

δ

(
SG − β

∫
H f dΩ − α

∫
f dΩ

)
= 0, (18)

and its solution is given by

C ′(f) = α + βH. (19)

If g(x) denotes the inverse function of C ′(x),

g(C ′(x)) = C ′(g(x)) = x, (20)

the solution of equation (19) may be written as

f(qi, pi) = g
[
α + βH(qi, pi)

]
. (21)

A similar result obtains when we have as prior information the mean values
of more than one relevant quantities. Of course, in that case we have to introduce
as many Lagrange multipliers as constraints.

3.2 MaxEnt Formalisms with Generalized Nonlinear Constraints

Tsallis and Curado introduced the idea of generalized mean values [10]. They
reformulated the original [9] Tsallis entropy maximization principle using q-
generalized constraints of the form [10]

〈H〉q =
∫

H(qi, pi) fq(qi, pi) dΩ. (22)

The probability distribution obtained when Tsallis entropy is extremalized under
the constraints imposed by (standard) normalization and the q-mean value of
the energy reads [10]

f(qi, pi) =
1
Zq

[1− (1− q)βH(qi, pi)]1/(1−q), (23)

where the partition function Zq is defined by



Tsallis Theory, the Maximum Entropy Principle 163

Zq =
∫

[1− (1− q)βH(qi, pi)]1/(1−q) dΩ. (24)

It is important to stress that within this scheme, the canonical q-mean value of
a quantity A(qi, pi),

〈A〉q =
1
Zq
q

∫
A(qi, pi) [1− (1− q)βH(qi, pi)]q/(1−q) dΩ, (25)

is still equal to the average of A computed with a weighting function (i.e., fq)
that depends on the canonical variables (qi, pi) only through the Hamiltonian
function.

A new kind of normalized nonlinear q-mean values (denoted here by double
angle brackets)

〈〈A〉〉q =
∫
fq(qi, pi)A(qi, pi) dΩ∫

fq(qi, pi) dΩ
, (26)

have been recently introduced by Tsallis and coworkers [61]. However, it can be
shown that a MaxEnt formalisms based upon these normalized q-mean values,
after an appropriate redefinition of the entropy functional, is mathematically
equivalent to a MaxEnt scheme based on standard linear constraints. Hence,
these kind of generalized mean values can be incorporated within the MaxEnt
formalisms considered in the previous subsection. This issue, which we think
involves a relevant aspect of Tsallis theory, will be discussed in some detail in
the next section.

3.3 Tsallis Entropy Plus Escort Mean Values

Tsallis and coworkers [61] have recently introduced a slight (but significant)
modification of the original Tsallis nonextensive formalism. This new proposal is
based on two main ingredients, which are i) an entropic (or information) measure,
and ii) an appropriate form for the mean energy constraint. In this section we
consider a system with discrete states because the matters under consideration
are very general and hold both for classical and quantum scenarios. All the
discussion can easily be recast in terms of classical systems with a continuous
phase space.

In order to obtain the q-nonextensive canonical ensemble, Tsallis’ functional
(pi denotes the probability of the microstate i with eigenenergy ei)

Sq =
1−∑i p

q
i

q − 1
, (27)

is to be extremalized under the constraints imposed by normalization,∑
i

pi = 1, (28)

and a normalized version of Tsallis generalized q-mean values,
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〈〈U〉〉q =
∑

i εip
q
i∑

i p
q
i

. (29)

The above MaxEnt procedure leads to the variational problem

δ

{
Sq − β〈〈U〉〉q − α

∑
i

pi

}
= 0 (30)

A detailed analysis of many properties of this formalism is given in [61]. This
new MaxEnt scheme has the remarkable property of being reformulable entirely
in terms of standard linear constraints. This reformulation of the q-nonextensive
formalism is based on the concept of escort distributions [49]. Given the proba-
bility distribution {pi}, the associated escort distribution {Pi} is defined by the
transformation

Pi =
pqi∑
j p

q
j

. (31)

From the normalization requirement on the pi’s, it is easy to arrive at

pqi =
Pi(∑

j P
1/q
j

)q , (32)

which, in turn, allows us to write both the entropy Sq and the energy constraint
〈U〉q in terms of the new variables Pi,

S̃q [Pi] =
1−

(∑
i P

1/q
i

)−q

q − 1
, (33)

and

〈〈U〉〉q =
∑
i

εiPi. (34)

It is also evident that the new variables Pi are appropriately normalized∑
i

Pi = 1. (35)

Making use of the above expressions it is possible now to reformulate our MaxEnt
variational principle under the guise

δ

{
S̃q [Pi]− β〈〈U〉〉q − α

∑
i

Pi

}
= 0. (36)

It is important to stress that the equations (30) and (36) represent one and the
same MaxEnt principle, expressed in terms of two different sets of variables.
In order to distinguish the two (mathematically equivalent) formulations, we
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are going to refer to the version given by equation (30) as the “p-picture”. On
the other hand, the formulation embodied in Equation (36) will be called the
“P -picture”. The new P -picture is just a mathematical reformulation of the
MaxEnt scheme associated with the original p-picture. However, the entropic
functional (33) is a legitimate measure in its own right, whose properties can
be studied without any reference to the associated p-picture. Two interesting
characteristics of the entropy functional (33) are that it complies with Tsallis
q-generalized additivity law, and that its associated MaxEnt canonical ensemble
is invariant under an homogeneous shift of the energy eigenvalues. Of course,
both these features are already known from the p-picture analysis [61]. However,
their reconsideration in terms of the P -picture provides further insight into the
properties of more general thermostatistical formalisms.

3.4 Invariance Under Uniform Shifts
of the Hamiltonian Eigenenergies

One of the most disturbing properties of the Tsallis-Curado MaxEnt variational
principle, which is based upon the q-generalized constraints

〈U〉(TC)
q =

∑
i

εip
q
i , (37)

is that the concomitant generalization of the canonical distribution lacks invari-
ance under uniform shifts of the Hamiltonian’s energy spectrum

{εi} → {εi +∆}. (38)

However, it was recently discovered [61] that this fundamental invariance prin-
ciple of statistical mechanics is recovered if Tsallis entropy Sq is extremalized
under the constraints imposed by the standard normalization prescription, along
with the escort mean values

〈〈U〉〉q =
∑

i εip
q
i∑

i p
q
i

. (39)

The P -picture formulation (36) of the Tsallis MaxEnt principle with normal-
ized q-constraints (30) provides a deeper understanding of the invariance under
uniform energy shifts [56]. The P -picture formulation is characterized by the fact
that both the normalization and the mean value constraints adopt the standard
linear dependence on the probabilities. This means that when the mean values
are computed in the ordinary and intuitively appealing way, the energy shift
invariance holds for a whole monoparametric family of entropies embracing the
standard logarithmic measure as a particular case. This fact immediately sug-
gests the question of how large is the complete set of entropy functionals sharing
this property. Let us consider the general MaxEnt problem of extremalizing the
measure [56]
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SG =
∑
i

C(pi) (40)

under the constraints imposed by normalization∑
i

pi = 1 (41)

and the linear energy mean value

〈U〉 =
∑
i

εipi. (42)

The associated variational problem

δ

{
SG − β 〈U〉 − α

∑
i

pi

}
= 0 (43)

leads to

C ′(pi) = βεi + α (i = 1 . . . , N). (44)

The probabilities {pi} complying with the above set of equations constitute the
“generalized” canonical ensemble

pi = g(α+ βεi) (i = 1 . . . , N), (45)

g(x) being the inverse function of C ′(x). Notice that g(x) is a universal function,
in the sense that its form does not depend on the eigenenergies of the particular
system under consideration. On the other hand, and because of the normalization
condition, the Lagrange multiplier α = α(β) can be regarded as a function of
the inverse temperature β. The form of the function α(β) does depend on the
eigenenergies.

Let us now consider two systems related by a uniform shift in the eigenener-
gies ε′i = εi +∆, and characterized by the same value of β. That is, we compare
two systems that have different energy spectrum but are at the same temper-
ature. The new canonical distribution associated with the shifted eigenenergies
is

p′
i = g(α′ + βε′i) = g(α′ + β∆+ βεi) (1 = 1, . . . , N). (46)

Comparing now the two canonical distributions (45) and (46), it is easy to see
that the normalization requirement implies

α = α′ + β∆, (47)

and consequently

pi = p′
i. (1 = 1, . . . , N). (48)
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We conclude that the invariance under uniform spectral translations is a
UNIVERSAL property of the MaxEnt prescription. It is verified by any entropy
of the form S =

∑
i C(pi), whenever standard linear constraints are adopted

[56]. It is instructive to arrive at the above result by an alternative reasoning
based entirely on the variational problem itself (i.e. without recourse to the
explicit form of the canonical distribution). Let us assume that, in the original
“unshifted” system, the concrete value adopted by the mean energy is U . That
is, we maximize the entropy under the requirements that the mean energy be
equal to U and that the probabilities add up to unity. We also consider the
“shifted” MaxEnt problem, where the mean energy of the shifted Hamiltonian
is U + ∆. The energy constraints associated, respectively, to our original and
shifted Hamiltonians are

U =
∑
i

piεi, (49)

and

U +∆ =
∑
i

piε
′
i =

∑
i

piεi +
∑
i

pi∆. (50)

These two equations, considered simultaneously with the normalization req-
uisite, clearly define the same set of constraints on the probabilities. Hence, the
solution to both variational problems must be one and the same. The specific
functional form of the maximized entropy does not play any role in the above
argument [56].

The above discussion leads to some interesting conclusions:

• The factorizability of the exponential function is not the fundamental reason
for the shift invariance of the standard Gibbs canonical ensemble.

• The first proposal by Tsallis to generalize the Gibbs-Jaynes approach to
thermostatistics [9], based upon his nonextensive entropy, but keeping the
usual linear mean energy constraint, does preserve the shift invariance. This
important property was overlooked because of a misidentification of the La-
grange multiplier associated with the energy [9].

• The underlying reason for the shift invariance exhibited by the nonextensive
thermostatistics when escort mean values are adopt-ed, is that the corre-
sponding formalism can be reformulated entirely in terms of linear mean
values. In fact, any form of generalized escort mean values

〈〈U〉〉φ =
∑

i φ(pi)εi∑
i φ(pi)

(51)

based on an arbitrary function φ(x) would do. However, in the particular case
of Tsallis’ nonextensive formalism, there are plenty of other mathematical
reasons, as well as physical evidences, that point towards a simple power law
as the appropriate choice [61].
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3.5 Other Universal Properties
of General Thermostatistical Formalisms

Other two important universal properties of general thermostatistical formal-
ism are the Legendre transform structure of the concomitant maximum entropy
scheme, and the classical equipartition theorem. The thermostatistical formalism
associated with the extremalization of the general entropy functional (40) under
the constraints of normalization (41) and mean energy (42) complies with the
relations associated with the Legendre transform structure of thermodynamics.
Within general thermostatistical formalisms we have that [53–55]

dSG

d〈U〉 = β. (52)

If we define the Jaynes’ parameter

λJ(β) = SG − β〈U〉, (53)

which is the Legendre transform of SG, then,

dλJ
dβ

= −〈U〉. (54)

Relations (52-54) constitute the core of the connection between statistical me-
chanics and thermodynamics [9,10,55]. They hold true also for generalized non-
linear mean values [53–55], and when more than one relevant mean value is given
as input prior information [53].

There exists also an appropriate generalization of the classical equipartition
theorem that is verified within a large family of thermostatistical formalisms [62].
The contribution to the total mean energy of a system in thermal equilibrium
at temperature T = 1/kβ due to an homogeneous term J of the Hamiltonian is
given by [62]

〈J〉 =
L

γ
kT I(T ), (55)

where L is the number of arguments (canonical coordinates and momenta) en-
tering the function g and γ denotes the corresponding degree of homogeneity.
I(T ) is a function of the temperature that does not depend upon the detailed
form of function g, nor upon its particular arguments, nor on γ. In the particular
case of Boltzmann-Gibbs thermostatistics we have, of course, I = 1.

4 Time Dependent MaxEnt

Within Jaynes approach to time dependent problems one does not try to follow
the evolution of the system in all its full detail. Instead, a reduced description of
its behaviour based on the maximum entropy principle is considered [63–66]. At
each time, the system is described by a probability distribution function (or sta-
tistical operator, in the case of quantum mechanics) that maximizes the Shannon
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entropy (S = − ∫ f(x) ln f(x)dx or S = −Tr(ρ ln ρ)) under the constraints im-
posed by normalization and the instantaneous mean values of an appropriate set
of relevant quantities. This procedure was introduced by Jaynes in order to pro-
vide a new formulation of statistical mechanics based on information theory [46].
Jaynes applied these ideas to the von Neuman equation and the Liouville equa-
tion for Hamiltonian systems. Within that context, all the ensembles appearing
in equilibrium statistical mechanics can be obtained if we choose constants of
motion as relevant constraints. However, Jaynes’ maxent scheme can also be
implemented including non-conserved quantities within the set of relevant ob-
servables. This indeed constitutes one of the most interesting aspects of Jaynes’
approach, since it allows for the description of non-equilibrium situations. For
instance, let us consider a quantum system with Hamiltonian Ĥ described by
the density operator ρ̂ whose evolution obeys the von Neuman equation

dρ̂

dt
= −i [Ĥ, ρ̂], (56)

where Planck’s constant was set equal to 1. The time derivative of the expecta-
tion value of an observable Ôi is then given by

d〈Ôi〉
dt

= i 〈[Ĥ, Ôi]〉. (57)

Now, suppose we have a set of M observables Ôi, i = 1, . . . ,M that close a
semialgebra under commutation with the Hamiltonian operator

[Ĥ, Ôi] =
M∑
j=1

gij Ôj , i = 1, . . . ,M, (58)

where gij are the concomitant structure constants. It is easy to verify that the
mean values of the M observables evolve according to the closed set of linear
ordinary differential equations,

d〈Ôi〉
dt

= i
M∑
j=1

gij 〈Ôj〉, i = 1, . . . ,M. (59)

Under these circumstances, the M observables 〈Ôi〉 are as good as integrals
of motions in order to implement Jaynes approach [63–66]. Solving the linear
differential equations (59), the expectation values 〈Ôi〉(t) at any time t can be
computed from their values at an initial time t0. Consequently, the associated
MaxEnt statistical operator ρ̂ME can be obtained at any time t, as happens
in the equilibrium situation. Indeed, it can be shown that this MaxEnt density
operator constitutes an exact solution to the von Neuman equation.

Of course, the closure condition (58) does not always hold. However, even if
the relevant observables Ôi do not close a semialgebra with the Hamiltonian, it
is still possible to close the set of equations (57) in a nonlinear and approximate
way by recourse to an appropriate maximum entropy scheme. The expectation
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values appearing on the right hand sides of equations (57) can be evaluated
using a maximum entropy density matrix ρ̂Me determined, at each time t, by
the constraints imposed by the M instantaneous expectation values 〈Ôi〉. As
an example of this scheme, let us consider a quantum many body system. If
the set of relevant observables Ôi consists only of one-particle operators, then
the maximum entropy approximate closure scheme leads to the well known time
dependent Hartree-Fock approximation.

These MaxEnt ideas have been applied to a variety of classical evolution
equations. A maximum entropy scheme has been numerically implemented for
the cosmic ray transport equation [67]. The MaxEnt formalism has been applied
to the Liouville equation associated with dynamical systems endowed with diver-
genceless phase space flows [68], to the (linear) Fokker-Planck equation [69], and
to a more general family of evolution equations with the form of linear continuity
equations [70]. The MaxEnt-Minimum Norm approach has been extended to the
time dependent case [71]. The inverse problem of reconstructing the underlying
microscopic dynamics from time-series by recourse to maximum entropy ideas
has also been addressed [52].

5 Time-Dependent Tsallis MaxEnt Solutions
of the Nonlinear Fokker–Planck Equation

5.1 The Nonlinear Fokker-Planck Equation

The nonlinear Fokker-Planck equation is characterized by a diffusion term that
depends on a power η of the probability density, the drift term being linear as in
the ordinary case. When η = 1 the standard linear Fokker-Planck is recovered.
The nonlinear Fokker-Planck equation provides useful mathematical models for a
variety of interesting physical processes such as the percolation of gases through
porous media [72], thin liquid films spreading under gravity [73], surface growth
[74], and some self-organizing phenomena [75]. It has also been used to describe
systems showing anomalous diffusion of the correlated type [38,39]. The nonlin-
ear, generalized N -dimensional Fokker-Planck equation is given by

∂F

∂t
= LR F + LD (F η) , (60)

where F (x, t) is the normalized distribution function, and LR and LD are linear
differential operators.

Earlier work [33–35] on the application of Tsallis formalism to the nonlinear
Fokker-Planck equation was based on the unnormalized Tsallis q-constraints.
Within that formulation of Tsallis theory, the nonlinearity in the diffusion equa-
tion and the entropic index q parametrizing the Tsallis entropy are connected
by the relation η = 2− q. It was shown that there are particular exact solutions
of the nonlinear Fokker-Planck equation characterized by η that maximize the
Tsallis entropy of index q = 2− η [35]. As we shall see, if the q-thermostatistics
with normalized q-values is used, this relation must be changed into q = 1/η.
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The drift term

LR F = −
N∑
i=1

∂(Ki F )
∂xi

(61)

is due to the deterministic forces associated to the drift vector K(x) ∈ RN of
components Ki, while the nonlinear diffusion term

LD (F η) =
N∑

i,j=1

∂

∂xi

(
Dij(x)

∂F η

∂xj

)
(62)

describes the effect of stochastic forces characterized by the diffusion tensor
D(x) ∈ RN×N , of components Dij . Note that the diffusion coefficients may
depend on the state variable x. In the limit case η → 1 we recover the standard
N -dimensional linear Fokker-Planck equation,

∂F

∂t
= LFPF, (63)

which can be written in terms of just one single linear differential operator [76]
LFP = LR + LD.

It will prove useful for our forthcoming discussions to introduce the adjoint
operators L†

R and L†
D, defined by∫
F1 (LR F2) dx =

∫ (
L†
R F1

)
F2 dx, (64)

and ∫
F1 (LD F2) dx =

∫ (
L†
D F1

)
F2 dx, (65)

for any two probability distributions F1 and F2. These adjoint operators are
given by

L†
R =

N∑
i=1

Ki
∂

∂xi
(66)

and

L†
D =

N∑
i,j=1

∂

∂xj
Dij(x)

∂

∂xi
. (67)

Defined in a similar way, the adjoint operator L†
FP = L†

R+L†
D plays an important

role in the study of the linear Fokker-Planck equation [76].
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5.2 Generalized Maximum Entropy Approach

q-Maximum Entropy Approximation As mentioned in Section IV, the main
idea of the MaxEnt approach to time dependent probability distribution func-
tions is to study the behaviour of a relatively small number of relevant mean
values instead of trying to compute the evolution of the complete distribution
f(x, t). Here we shall reformulate these ideas within the q-nonextensive formal-
ism based upon Tsallis entropy and the normalized q-constraints. The q-MaxEnt
approach based on unnormalized q-values was developed in [35]. Let us consider
a set of M normalized q-mean values

〈〈Ai〉〉q =
∫
fq Ai(x) dx∫

fq dx

=
∫

F Ai(x) dx (i = 1, .....,M), (68)

where

F (x) =
fq(x)∫
fq dx

. (69)

The formalism which we are now going to develop can alternatively be obtained
using the unnormalized mean values 〈Ai〉q ≡ ∫

fqAidx [10] as well as by us-
ing the standard mean values 〈Ai〉 =

∫
Aifdx. It is important to stress here

that, among these three types of mean values, the normalized q-mean values
〈〈Ai〉〉q are the ones best suited in order to develop a well-behaved thermostatis-
tical formalism [61]. However, due to the fact that some relevant properties are
shared by the three kinds of mean values (namely, the power-law form of Tsallis
MaxEnt distributions and the Legendre transform structure of the concomitant
thermostatistical formalism) [61], the results of the present application can be
formulated in terms of any of those three types of mean values. Here we choose
to work with the mean values given by (68) in order to illustrate that it is pos-
sible to implement Jaynes approach to time dependent problems on the basis of
the Tsallis formalism with escort constraints. Besides, it is important to consider
a q-MaxEnt scheme using the escort mean values because these ideas may be
indispensable in order to apply Tsallis formalism to other nonlinear equations,
like the Vlasov-Poisson system that we are going to discuss in the next section.
However, if the Tsallis MaxEnt distribution is used only as an ansatz to find
exact solutions for the nonlinear Fokker-Planck equation, the formalism based
upon the unnormalized q-mean values leads, by recourse to simpler mathematical
manipulations, to the same results as the ones we obtain here [35].

We assume that the evolution of the probability F is governed by the non-
linear Fokker-Planck equation (60). Consequently, f(x, t) does not verify that
evolution equation. But f will play no role within our considerations. This im-
plies that we are going to study Tsallis MaxEnt (approximate) solutions within
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the P -picture discussed in section III. We are going to use the P -picture for-
mulation as a MaxEnt formalism in its own right. The concomitant MaxEnt
solutions are to be obtained maximizing the functional

S̃q[F ] =
1− (∫ F 1/qdx

)−q

q − 1
(70)

under appropriate constraints. We want to stress that the functional (70) is just
the standard (!) Tsallis entropy written in terms of the escort “P” variables (now
F ).

The time derivatives of the M relevant moments of F (x, t) are given by (in
this and the next sections we drop both the subindex q and the 〈〈〉〉 notation
from the mean values, since they are ordinary linear mean values on F )

d〈Ai〉
dt

=
∫

{LR F + LD (F η)} Ai dx (i = 1, . . . ,M). (71)

Unfortunately, these equations do not, in general, constitute a closed system of
ordinary differential equations of motion for the mean values 〈Ai〉. The integrals
appearing on the right hand sides of equations (71) are not, in general, equal to
linear combinations of the original mean values 〈Ai〉. Here enters the Maximum
Entropy Principle. We can “close” the set (71), in an approximate way, by evalu-
ating the right hand sides using, at each instant of time, the MaxEnt distribution
FME(x, t) that maximizes Tsallis’ entropy (70) under the constraints imposed
by normalization and the M instantaneous values of 〈Ai〉. The concomitant vari-
ational problem has the analytical solution

FME(x, t) =
{∫

F
1/q
MEdx

} q(1+q)
1−q

×
[
(q − 1)α − (1− q)

M∑
i=1

λi(t) Ai(x)

] q
1−q

, (72)

where the (λi, i = 1, . . . ,M) are appropriate Lagrange multipliers that guar-
antee compliance with the given constraints, and α is the Lagrange multiplier
associated with the normalization requirement. The generalized entropy S̃q, the
relevant mean values, and the concomitant Lagrange multipliers, are related by
Jaynes’ thermodynamical relations,

∂ S̃q

∂ 〈Ai〉 = λi. (73)

Behaviour of the Generalized Entropy S̃q The time derivative of the en-
tropy constitutes one of the most important qualitative features characterizing
the behaviour of probability density functions associated with irreversible pro-
cesses. When that derivative has a definite sign, an H-theorem holds, and a
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useful mathematical realization of “the arrow of time” becomes available. Given
an approximate scheme for solving the evolution equations describing the system
under study, it is crucial to know how close the behaviour of the entropy eval-
uated on the approximate solutions follows the evolution of the entropy of the
exact solutions. Here we shall compare the behaviour of the Tsallis entropy S̃q

corresponding to exact solutions of the nonlinear Fokker-Planck equation, with
the behaviour associated to our MaxEnt solutions.

If F (x, t) is an exact solution of (1), we have

dS̃q

dt
=

1
q − 1

{∫
F 1/qdx)

}−1−q ∫
F

1−q
q {LR F + LD (F η)} dx, (74)

which, after introducing the functional

Dq [F ] =
1

q − 1

{∫
F 1/qdx)

}−1−q ∫
F

1−q
q {LR F + LD (F η)} dx, (75)

can be cast under the guise
dS̃q

dt
= Dq [F ] . (76)

This last expression is preserved by the maximum entropy approach, as can be
seen as follows. We have

dS̃q [FME ]
dt

=
M∑
i=1

∂ S̃q

∂ 〈Ai〉
d〈Ai〉
dt

=
M∑
i=1

λi
d〈Ai〉
dt

(77)

which yields

dS̃q [FME ]
dt

=
∫

{LR FME + LD (F η
ME)}

[
M∑
i=1

λi Ai

]
dx. (78)

But

M∑
i=1

λi Ai =
1

q − 1

[∫
F
1/q
MEdx

]−1−q

F
1−q
q

ME − α (79)

so that

dS̃q [FME ]
dt

=
1

q − 1

∫
{LR FME + LD (F η

ME)}

×
{ [∫

F
1/q
MEdx

]−1−q

F
1−q
q

ME − (q − 1)α

}
dx. (80)

We now assume that (remember that α is just a number and does not depend
on x)
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∫
(LRFME) α dx =

∫ (
L†
Rα
)
FME dx = 0, (81)

and ∫
(LDFME) α dx =

∫ (
L†
Dα
)
FME dx = 0. (82)

These last two equations involve an integration by parts procedure. We assume
that FME verifies appropriate boundary conditions (essentially, it goes to zero
fast enough with |x| → 0) in order for the “integrated part” being zero. Then
we obtain

dS̃q [FME ]
dt

=
1

q − 1

[∫
F
1/q
MEdx

]−1−q

×
∫

{LR FME + LD (F η
ME)} F

1−q
q

ME dx

= Dq [FME ] (83)

and have therewith proved that

dS̃q[FME ]
dt

= Dq [FME ] . (84)

We can conclude that the functional relation giving the time derivative of the
Tsallis entropy S̃q in terms of the approximate maxent ansatz FME is the same
as the one verified in the case of the unknown exact solutions. This important
property is verified in general, for any (exact) solution of the nonlinear Fokker-
Planck equation and regardless of the particular set of relevant mean values
〈Ai〉 employed in order to build up the corresponding Tsallis maximum entropy
approximation. The present derivation explicitly makes use of the q-MaxEnt
form of the (approximate) q-MaxEnt solution. However, it is possible that a
similar property holds within a more general context involving other kinds of
evolution equations endowed with an associated “natural” entropic measure.

Hamiltonian Structure We shall now consider the equations of motion for the
Lagrange multipliers λi, and study how are they related to the equations of mo-
tion of the associated mean values 〈Ai〉. Making use of Jaynes’ thermodynamic
relations, we have

dλi
dt

=
M∑
j=1

∂λi
∂〈Aj〉

d〈Aj〉
dt

=
M∑
j=1

∂2S̃q

∂〈Ai〉q∂〈Aj〉
d〈Aj〉
dt
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=
M∑
j=1

∂λj
∂〈Ai〉

d〈Aj〉
dt

, (85)

which can be recast as

dλi
dt

=
∂

∂〈Ai〉


 M∑
j=1

λj
d〈Aj〉
dt


 −

M∑
j=1

λj
∂

∂〈Ai〉
(
d〈Aj〉
dt

)
. (86)

Making use now of the equations of motion (71) for the relevant mean values,
and of the expression (77) for the time derivative of the entropy, we finally obtain

dλi
dt

=
∂

∂〈Ai〉

[
dS̃q[FME ]

dt

]

−
M∑
j=1

λj
∂

∂〈Ai〉
∫

{LR FME + LD (F η
ME)} Aj dx. (87)

Introducing now the Hamiltonian

H(〈A1〉, . . . , 〈AM 〉, λ1, . . . λM )

= Dq[FME ]−
M∑
j=1

λj

∫
{LR FME + LD (F η

ME)}Ajdx, (88)

the equations of motion for the relevant mean values and their associated La-
grange multipliers can be put in a Hamiltonian way,

d〈Ai〉
dt

= −∂H

∂λi
, (89)

and

dλi
dt

=
∂H

∂〈Ai〉 . (90)

In the expression (88) defining our Hamiltonian function, the MaxEnt distribu-
tion FME should be regarded as parametrized by the set of M relevant mean
values 〈Ai〉. That is to say, the specific values adopted by the M quantities 〈Ai〉
determine, via the MaxEnt recipe, a particular distribution FME . In this way,
the functionals of FME appearing in (88) are functions of the M quantities 〈Ai〉.
Consequently, the only dependence of the Hamiltonian on the Lagrange multi-
pliers is the one explicitly shown in equation (88). It is important to realize that
ours is not a time dependent Hamiltonian, since its functional dependence on
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the relevant mean values and their associated Lagrange multipliers is dictated
by the MaxEnt procedure and does not depend on time.

Note also that although all the solutions of our time dependent MaxEnt
scheme evolve according to the Hamiltonian equations (89,90), not all the or-
bits associated with the Hamiltonian (88) constitute realizations of our MaxEnt
approach. The orbits that are relevant to our problem are those whose initial
conditions verify

〈Aj〉 =
{∫

F
1/q
MEdx)

} q(1+q)
1−q

×
∫ [

(q − 1)α− (1− q)
M∑
i=1

λi(t)Ai(x)

] q
1−q

Aj(x)dx

(i = 1, . . . ,M). (91)

These M equations determine an M -dimensional submanifold of the full 2M
phase space (〈A1〉, . . . , 〈AM 〉q, λ1, . . . , λM ). This submanifold constitutes an in-
variant set of our Hamiltonian dynamical system. That is to say, any orbit with
initial conditions belonging to the set stays within it forever.

Summing up, we conclude that within the present time dependent thermo-
statistical context the relevant mean values and their concomitant Lagrange
multipliers are conjugate variables not only in the thermodynamical sense, but
also in the Hamiltonian phase space sense.

Exact q-MaxEnt Solutions It is known from earlier work [33,34] that the one
dimensional nonlinear Fokker-Planck equation with constant diffusion coefficient
and linear drift has particular exact solutions exhibiting the Tsallis q-MaxEnt
form given by

FME =
1
Z

[
1 − (1− q)β(x− x0)2

]1/(1−q)
, (92)

where Z, β, and x0 are time dependent parameters obeying a system of coupled
ordinary differential equations [33]. Moreover, there are more general nonlinear
Fokker-Planck equations with state-dependent diffusion that are also endowed
with q-MaxEnt exact time dependent solutions [35]. By recourse to a redefinition
of q, as well as an appropriate identification of the other parameters involved, it
is easy to see that the exact solutions (92) constitute a particular instance of the
MaxEnt solutions (72) (which in general are approximate but in this particular
case are exact solutions). An important point is that the solutions (92) were
obtained using the formulation of Tsallis nonextensive thermostatistics based on
the unnormalized q-constraints (22). Within that frame, the Tsallis parameter is
related to the power η in the diffusion term by the relation η = 2−q. Within the
present reformulation that connection adopts a different form. Let us denote the
power appearing in the exact solution (92) by ξ. Then, the power in the solution
and the power in the diffusion term are related by
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ξ =
1

1 + η
. (93)

The above relation characterizes the particular exact solution to the nonlinear
Fokker-Planck equation and does not depend on the particular formulation of
Tsallis formalism used to obtain it. Within the present “P -picture” formulation
of Tsallis thermostatistics with escort constraints we have ξ = q/(1 + q) and
consequently,

q =
1
η
, (94)

which is now the relation between the nonlinearity in the Fokker-Planck equation
and Tsallis parameter.

6 Tsallis Nonextensive Thermostatistics
and the Vlasov–Poisson Equations

The first physical application of Tsallis entropy was concerned with stationary
maxent solutions of the Vlasov-Poisson equations for self-gravitational systems
[23]. It is well known that the standard Boltz-mann-Gibbs thermostatistics is
unable to provide a useful description of this type of systems [4,6–8]. Besides,
the connection between Tsallis entropy and gravitation constituted the first clue
for the characterization of the kind of problems where the generalized formalism
might be useful.

Although the standard Boltzmann-Gibbs formalism (associated with the
value q = 1 of Tsallis parameter) has serious difficulties in dealing with grav-
itation in three dimensional space, it shows no problems in the case of one or
two dimensions. On the other hand, it is possible to obtain (at least in the
Vlasov approximation) physically acceptable answers in D = 3, if we employ
an appropriate value of q < 7/9. These facts suggest that dimensionality plays
an important role in this problem. The aim of the present section is to discuss
some aspects of the application of the Tsallis formalism to the Valsov-Poisson
equations. The Tsallis nonextensive approach to the Vlasov-Poisson equations
will be considered for the general case of D spatial dimensions, in order to pro-
vide an illustrative example of a problem where Tsallis parameter q depends
on the spatial dimentionality. Similar calculations using Tsallis formalism with
unnormalized q-constraints can be found in [77].

6.1 Long-Range Interactions and Nonextensivity

The thermodynamics of self-gravitating systems is characterized by the fact that
the total energy, as well as other variables usually regarded as additive quantities,
lose their extensive character. This suggests that a non-additive entropic mea-
sure, like the one advanced by Tsallis, may be more approrpiate for dealing with
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gravitation than the standard Boltzamnn-Gibbs entropy. The non-extensive be-
haviour exhibited by self-gravitating systems is due to the long range character of
the gravitational interaction. The early applications of Tsallis’ Thermostatistics
to gravitational systems stimulated the exploration, within Tsallis formalism,
of other many body problems showing non-extensive effects due to the pres-
ence of long range interaction [78–81]. These studies considered systems with
Lennard-Jones like interparticle potentials, exhibiting a repulsive behaviour at
short distances together with an attractive long range interaction falling as r−α.
This kind of potentials, while being useful in order to illuminate the thermo-
dynamical implications of long range forces, do differ in an essential way from
the gravitational interaction. The Gibbs canonical ensemble for a system of a N
particles interacting via a Lennard-Jones like potential, enclosed within a box of
volume V , is well defined and has a convergent partition function. On the other
hand, and due to the singularity at the origin of the gravitational potential, the
Gibbs canonical ensemble for a system of N gravitationally interacting particles
(even if they are enclosed within a finite box) has a divergent partition function
and thus is not well defined. The non-extensive properties of the Lennard-Jones
like gases are more apparent when we try to define the N → ∞ thermodynamic
limit. The main results obtained so far in connection with this issue deal with
the exotic scaling laws that are to be employed in orther to define the thermo-
dynamic limit in a sensible way. Cogent evidence has already been obtained,
showing that the correct scaling (with particle number) of the thermodynamic
variables such as internal and free energy, is the one proposed by Tsallis, that
goes with NN∗, where

N∗ =
N (1−(D/α))

1− (D/α)
, (95)

D being the spatial dimension. Unfortunatelly, this scaling with the number of
particles is not applicable to the strict gravitational case, since the canonical
ensemble (for a given finite number of particles) is meaningless. There is an-
other important feature of the thermodynamics of systems endowed with long
range interactions that has not yet been fully addressed by the simplified models
discussed in [78–81]. This property is the breaking of the translational symme-
try of space implicitly assumed in standard thermodynamics [82]. This property
of systems with long range interactions is illustrated by the polytropic model
discussed in [23] and reviewed here.

6.2 The Vlasov–Poisson Equations

The Vlasov-Poisson equations constitute important an widely used mathematical
tools for the study of the structure and evolution of astrophysical self-gravitating
N -body systems like galaxies and galaxy clusters [4,7]. Let us consider a system
of N identical stars of mass m. Vlasov equation reads [4]

∂F

∂t
+ v · ∂F

∂x
− ∂φ

∂x
· ∂F
∂v

= 0, (96)
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where F (x,v)dxdv denotes the number of stars in the 2D-dimension-al volume
element dxdv in position-velocity space, and the gravitational potential φ(x) is
given by the D-dimensional Poisson equation

∇2φ = DV1Gρ. (97)

In the last equation G is the universal gravitational constant, V1 stands for the
volume of a D-dimensional unitary sphere, and the mass density ρ is given by

ρ(x) = m

∫
F (x,v) dv. (98)

The Vlasov equation provides only an approximate description of the dynamics
of a gravitational N -body system. Within this approximation, each particle of
the system is assumed to move under the influence of a smooth gravitational field
generated by the average bulk distribution of mater of the N -body system. This
means that the effect of close encounters between particles are neglected. This is
regarded as a very good approximation for galaxies [4]. However, it is not always
applicable in stellar dynamics. For example, it is not a good approximation for
globular clusters [4].

In the particular case of a central potential φ(r) depending only on the radial
coordinate r, the Laplacian operator adopts the form [83],

∇2φ =
1

rD−1

d

dr

{
rD−1 dφ

dr

}
. (99)

It is sometimes useful to write Vlasov equation under the guise(
dF

dt

)
orbit

= 0, (100)

where the total time derivative is evaluated along the orbit of any individual star
moving in the potential φ. In the case of stationary solutions (i.e. ∂F/∂t = 0),
equation (100) implies that F (x,v) depends on the coordinates and the velocity
components only through integration constants Ci of the motion in the potential
φ. This result,

Fest. = F (C1, . . . CL), (101)

constitutes the well known Jeans’ Theorem in Stellar Dynamics [4].
The solutions describing spherically symmetric systems with iso-tropic veloc-

ity distributions depend only on the energy, and it is convenient to write them
in the form

F = F (ε), (102)

where

ε = Φ(x) − 1
2
v2, (103)
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and

Φ = φ0 − φ. (104)

The quantities ε and Φ are usually called the relative energy and potential
(both per unit mass), respectively [4]. The constant φ0 is chosen in such a way
that the relative potential vanishes at the boundary of the system.

6.3 MaxEnt Stationary Solutions to the Vlasov–Poisson Equations

Present day galaxies are described by stationary solutions to the Vlasov-Poisson
equations. These equilibrium configurations are usually assumed to be the result
of appropriate relaxation processes such as the ones denoted by the names “phase
mixing” and “violent relaxation” [4]. These kind of processes are characterized
by a loss of memory about the initial conditions of the system. It has been
argued that the final equilibrium state should be determined from a MaxEnt
variational principle [6]. The maximization of Boltzmann’ logarithmic entropy
under the constraints imposed by the conservation of the total mass and energy
leads to the stellar isothermal sphere distribution, which in D = 3 looks like

F (ε) = A (2πσ2)−3/2 exp(ε/σ2), (105)

where σ stands for the velocity dispersion and A is an appropriate normaliza-
tion constant. Unfortunately, the isothermal sphere is characterized by an infinite
total mass [6]. The real meaning of this unphysical result is that the posed varia-
tional problem does not have a solution. For any given star distribution F (x,v),
it is always possible to obtain a new distribution F ∗(x,v) with the same mass
and energy but showing a larger Boltzmann entropy [4]. For given values of total
mass and energy, entropy is not bounded from above. An illustration of this fea-
ture of self-gravitating systems is provided by the so-called “red giant structure”.
This configuration is characterized by a high density inner core surrounded by a
diluted extended “atmosphere”. The core accounts for almost all the energy of
the system. The outer envelope makes the main contribution to the total entropy.
By increasing the concentration of the core while simultaneously expanding the
“atmosphere”, the entropy can be raised as much as wanted without changing
the total energy. [4].

Summing up, a MaxEnt approach based on the Gibbs-Boltzmann entropic
measure seems to be unable to characterize relaxed self-gravitating systems. This
fact has motivated the exploration of alternative entropy functionals [8] of the
form

S =
∫

C[F ] dx dv, (106)

C[F ] being a convex function that vanishes for F = 0. Here enters Tsallis gener-
alized entropy Sq. It has been shown that adopting appropriate values for Tsallis
parameter q, the extremization of Tsallis functional
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Sq =
1

q − 1

(
1 −

∫
fqdxdv

)
(107)

under the constraints imposed by the total mass and energy leads to sensible
stellar distributions. Indeed, the so-called stellar polytropes are obtained [23].
These distributions are widely employed in the modelization of astrophysical
objects like galaxies [4], although their relationship with Tsallis entropy was not
known. The mass density of a stellar polytrope behaves in the same fashion as
the density of a self-gravitating sphere constituted by a gas with a polytropic
equation of state,

p = const.× ργ . (108)

The exponent γ in the equation of state is related to the polytropic index n by

γ = 1 +
1
n
. (109)

The gravitational behaviour of polytropic gasses is very important in theoretical
astrophysics. These kind of systems was already introduced by Lord Kelvin in
1862 [84] in considerations relating to the convective equilibrium of fluids under
the influence of gravity. A detailed account of the mathematical properties of
polytropic and isothermal gas spheres has been given by Chandrasekhar [85]

Stellar polytropes constitute the most simple, but still physically acceptable,
models for equilibrium stellar systems. In the earlier days of stellar dynamics,
polytropes where considered as possible realistic models for galaxies and glob-
ular clusters. Nowadays it is known that stellar polytropes do not fit properly
the corresponding observational data. However, they still play an important role
in theoretical astrophysics, and are widely employed as a first theoretical ap-
proach, both in numerical simulations and analytical studies, for the description
of stellar systems. From our point of view, they are relevant because they illus-
trate how a generalized thermostatistical formalism, based on a non-extensive
entropy, is able to deal in a physically sensible way with self-gravitating systems.
Moreover, the present formalism is relevant in connection with the empirical ver-
ifications of Tsallis theory that we have up to now. Bogoshian’s application of
Tsallis entropy to the pure electron plasma [25] is based essentially on the same
formalism as the one developed for the discussion of stellar polytropes. Besides,
it was recently shown [86] that a Tsallis distribution fits the observed velocity
distribution of galaxy clusters in a much better way than other models based
on the standard entropy. The success of Tsallis thermostatistics within this con-
text is presumably due to the long-range gravitational forces involved. And, so
far, the stellar polytropes are the only detailed theoretical model establishing
a link between Tsallis distributions and N -body self-gravitational systems. For
all these reasons we believe that a further study of the relationship between
stellar polytropes and Tsallis statistics is worthwhile, and will contribute to the
understanding of non-extensive systems.
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6.4 Tsallis MaxEnt Solutions to the Vlasov–Poisson Equations

Here we are going to work within the “P -picture” formulation of Tsallis nonex-
tensive formalism with escort constraints (see section III). We will extremize the
Tsallis entropy of the star distribution function F (x,v),

S̃q[F ] =
1

q − 1

[
1 −

(∫
F 1/q dx dv

)−q
]
, (110)

under the constraints imposed by the total mass

M

m
=
∫

F (x,v) dx dv, (111)

and the total energy E,

E

m
=

1
2

∫
F (x,v)

(
v2 + φ(x)

)
dx dv. (112)

In order to avoid some misunderstandings that arose in the literature in connec-
tion with this last formula [25], we must stress that the above expression deals
with the system’s gravitational potential in a self consistent way. The potential
φ appearing in (112) is generated by the mass distribution ρ associated with the
distribution F itself. We are not considering a given external potential. In such
a case, the appropriate expression would be

E∗

m
=
∫

F (x,v)
(

1
2
v2 + φ(x)

)
dx dv. (113)

Introducing now appropriate Lagrange multipliers λ and β, our variational
problem can be put in the form

δ

(
S̃q − β

E

m
− λ

M

m

)
= 0, (114)

yielding the Tsallis MaxEnt solution

FME =
[∫

F
1/q
MEdxdv

] (1+q)q
1−q

[(q − 1)λ − (1− q)βe]
q

1−q

= const× (φ0 − e)
q

1−q , (115)

where

e =
1
2
v2 + φ (116)

is the energy (per unit mass) of an individual star and

φ0 = −λ/β (117)
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Thus, the MaxEnt distribution adopts the form of a stellar polytrope,

FME = Bεα (118)

with

α =
q

1− q
, (119)

B being a constant.
The cut-off condition on the generalized MaxEnt distribution was originally

introduced by Tsallis in a somewhat ad-hoc way. However, within the present
application of Tsallis generalized thermostatistics, the cut-off prescription admits
of a clear physical interpretation. Within the polytrope stellar distributions, the
Tsallis cut-off corresponds to the escape velocity from the system [4].

The mass density distribution associated with the politropic distribution is

ρ(x) = DV1B

∫ √
2Φ

0

(
Φ − 1

2
v2
)α

vD−1 dv (120)

This expression can be simplified making the change of variables

v2 = 2Φ cos2 θ, (121)

wich yields

ρ = 2D/2DV1BΦ
α+D/2

∫ π/2

0
sin2α+1 θ cosD−1 θdθ. (122)

Introducing now the polytropic index

n = α +
D

2
, (123)

we obtain

ρ = 2D/2DV1BΦ
n

∫ π/2

0
sin2n−D+1 θ cosD−1 θdθ. (124)

This last equation can be recast in the simpler form

ρ = C Φn, (125)

where C is now a constant given by

C = 2D/2DV1B

∫ π/2

0
sin2n−D+1 θ cosD−1 θdθ. (126)

Inserting this expression in the D-dimensional Poisson equation (97) we obtain
a non-linear ordinary differential equation for Φ (recall that Φ = φ0 − φ) ,
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1
rD−1

d

dr

[
rD−1 dΦ

dr

]
+ DV1GCΦ

n = 0. (127)

The expression for the mass density ρ also allows us to obtain the radial deriva-
tive of the total mass M(r) contained within radious r,

dM

dr
= DV1r

D−1ρ = DV1r
D−1CΦn. (128)

Inserting this last result in the differential equation verified by Φ, it is easy to
see that [

rD−1 dΦ

dr

]
+ GM(r) = const, (129)

which evaluated in r = 0 leads to[
rD−1 dΦ

dr

]
+ GM(r) = 0. (130)

From this last equation it follows that Φ ∼ r2−D is the limiting asimptotic
behaviour still yielding a finite total mass.

6.5 D-Dimensional Schuster Spheres

In terms of the dimensionless variables

h = Φ/Φ0, (131)

and

y = [DV1GCΦn−1
0 ]1/2 r, (132)

the differential equation for Φ reads

1
yD−1

d

dy

[
yD−1 dh

dy

]
+ hn = 0. (133)

If we adopt the polytropic index

n =
D + 2
D − 2

, (134)

the above equation admits the solution

h(y) =
[
1 +

y2

D(D − 2)

] 2−D
2

, (135)

which, in term of the physical variables reads,
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Φ = Φ0

[
1 +

j2r2

D(D − 2)

] 2−D
2

, (136)

where

j = [DV1GCΦn−1
0 ]1/2. (137)

From equation (130) it follows that the D-dimensional Schuster Sphere shows
the limiting asimptotic behaviour for a finite total mass. Although these solutions
have infinite spacial extent, the density falls rapidly enough so as to have a finite
total mass. Furthermore, they show, within the larger set of Tsallis MaxEnt
solutions, the limiting behaviour between sensible solutions with finite mass and
unphysical solutions with divergent mass.

The exponent α appearing in the stellar polytrope distribution is now

α = n − D

2
=

8 − (D − 2)2

2(D − 2)
. (138)

Notice that for a space dimension D > Dl, where

Dl = 2 + 2
√

2, (139)

the D-dimensional Schuster polytrope is a monotonic increasing function of the
energy.

Since the exponent α of a polytropic distribution is related to q by the equa-
tion α = q/(1− q), it is easy to verify that the Tsallis parameter characterizing
the D-dimensional Schuster distributions is given by

q =
8 − (D − 2)2

8 − (D − 2)2 + 2(D − 2)
. (140)

It is interesting to notice that in the limit D → 2, we obtain q → 1. This
is consistent with the known fact that the standard Boltzmann-Gibbs thermo-
statistics is able to deal in a physically acceptable way with self-gravitating sys-
tems with spatial dimension less than 2 [7,87]. In the case of D = 3, we recover
the known value q = 7/9 [25] corresponding to the limit value of q providing a
polytropic distribution with finit total mass.

6.6 Tsallis MaxEnt Time-Dependent Solutions

By recourse to a Tsallis MaxEnt scheme similar to the one discussed in section V
for the nonlinear Fokker-Plack equation, it is also possible to obtain time depen-
dent approximate solutions to the Vlasov-Poisson equations [24]. This approach,
first developed in [24] is again based on the idea of following the time evolution
of the mean values of a small set of M relevant dynamical quantities Ai(x,v),

〈Ai〉 =
1
h

∫
F (x,v)Ai(x,v) dx dv (i = 1, . . . ,M), (141)
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where h is just a constant with the dimensions of the element of volume in
the pertinent (x,v) space. The q-MaxEnt scheme developed in [24] was based
on the unnormalized q-constraints. However, it can be reformulated in terms
of normalized q-mean values [88]. If the distribution function F (x,v) evolves
according to the Vlasov equation the time derivative of the relevant mean values
is given by

d

dt
〈Ai〉 =

1
h

∫
F (x,v) (v · ∇xAi − ∇φ · ∇vAi) dx dv

(i = 1, . . . ,M). (142)

Unfortunatelly, this last set of equations does not constitute, in general, a closed
set of M ordinary differential equations for the mean values 〈Ai〉. However, the
MaxEnt approach allows us to build up, at each time t, a q-MaxEnt distribution
[88]

FME(xv, t) =
[∫

F
1/q
ME dx dv

] (1+q)q
1−q

×
[
(q − 1)λ0 − (1− q)

M∑
i=1

λi(t)Ai(x,v)

]q/(1−q)

, (143)

taking as constraints the instantaneous values adopted by the relevant moments
〈Ai〉 and introducing appropriate Lagrange multipliers λi (i = 1, . . . ,M). The
right hand sides of equations (142) can then be evaluated by recourse to this
q-MaxEnt approximation. In such a manner a closed system of equations is
formally obtained. The ensuing system, however, becomes highly non-linear. As
a counterpart, the Vlasov equation, a partial differential equation, becomes now
a system of ordinary differential equations for the evolution of the relevant mean
values. In [24] it has been shown that such an approach is indeed useful because
it does preserve some important properties of the exact evolution equation.

The exact equations of motion (142) corresponding to the M chosen relevant
moments are verified by the Tsallis q-MaxEnt approximate solution FME(x,v, t)
by construction. The evolution of the M relevant mean values and their asso-
ciated Lagrange multipliers is governed by a set of 2M ordinary differential
equations that can be cast into a Hamiltonian form [24,88]. This means that
the relevant mean values 〈Ai〉 and their concomitant Lagrange multipliers λi are
canonicaly conjugate dynamical variables. This Hamiltonian structure implies
that the associated flow in phase space does not have sinks, nor does it have
sources. Moreover, the Tsallis entropy S̃q evaluated upon the MaxEnt approxi-
mate solution FME(x,v) is a constant of the motion. Consequently, the evolution
of the system does not exhibit any relaxation process. This is an important char-
acteristic of the exact solutions that is preserved by the q-MaxEnt approxima-
tions. All these general properties of the q-MaxEnt scheme do not depend on the
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dimensionality of the the (one-particle) configuration space. They hold true for
any number of spatial dimensions. However, in the particular case of q = −1 and
D = 1 or D = 3, the MaxEnt approximation generates, if the relevant mean val-
ues are properly chosen, exact solutions to the Vlasov-Poisson equations [24,88].
Indeed, various of the known exact solutions of the Valsov-Poisson equations
constitute particular instances of our general q-MaxEnt approach [24,88].

It is worth remarking that these time dependent q-MaxEnt solutions of the
Vlasov equation are not related in a direct fashion to the previously discussed
stationary MaxEnt solutions. The total energy does not appear as a constraint
within the time dependent scenario, as happens in the stationary case. Conse-
quently, the q = −1 value of the Tsallis parameter yielding exact time dependent
solutions should not be regarded as belonging to the “allowed” q < 7/9 range of
q-values associated with the physially acceptable q-MaxEnt stationary solutions.
These two special q-values, 7/9 and −1, arise from quite different settings and
seem to be completely unrelated.

7 Conclusions

We have discussed some aspects of the relationship between Tsallis’ nonexten-
sive thermostatistical formalism and Jaynes’ information theory approach to
statistical mechanics. We have seen that there are fundamental features of the
maximum entropy principle that are universal and hold true for general thermo-
statistical formalism regardless of the particular form of the entropic functional
used. Tsallis thermostatistics, however, is also endowed with important nonuni-
versal characteristics.

We have shown how Jaynes maxent approach to evolution equations can
be generalized and implemented within Tsallis formalism. As an illustration we
considered its application to the nonlinear Fokker-Planck equation. We have also
considered MaxEnt Tsallis distributions in connection with stationary solutions
of the D-dimensional Vlasov-Poisson equations. In particular, we provided an
analitical relation between Tsallis parameter q and the dimension D of physical
space for the special case of D-dimensional Schuster solutions.
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IV. Computational Methods for the Simulation
of Classical and Quantum Many Body Systems
Arising from Nonextensive Thermostatistics

I. Andricioaei and J.E. Straub

Department of Chemistry, Boston University, Boston, MA 02215, USA

Abstract. This chapter presents a variety of computational methods that make use of
essential features of the non-extensive thermostatistics proposed by Tsallis. The basic
properties of the non-extensive thermostatistics are derived and discussed in the context
of the law of mass action and reaction kinetics. Those results are used to motivate and
derive Monte Carlo and Molecular Dynamics algorithms which isolate low lying energy
minima or effectively sample the extensive or non-extensive thermostatistical distribu-
tions. Algorithmic protocols are defined for cases of equilibrium sampling and simulated
annealing for both classical and quantum simulations of many body systems. A prac-
tical method for the optimization of the resulting simulation algorithms is described.
A method for global optimization based on the simulated annealing Cauchy-Lorentz
“density packets” is also presented. Applications to a variety of problems related to
simulated annealing and enhanced sampling in the context of model, spin, atomic and
biomolecular systems are discussed.

1 Background and Focus

The computer simulation of complex systems such as biomolecules, liquids and
glasses is often made difficult due to the ruggedness of the underlying “energy
landscape.” In a Monte Carlo or Molecular Dynamics simulation, one hopes to
generate the equilibrium Boltzmann distribution of states [1–3]. However, for
many systems of interest, high energetic barriers separate basins on the poten-
tial surface as depicted in Fig. 1. This makes it difficult for a Monte Carlo or
Molecular Dynamics trajectory to move between basins and sample the equilib-
rium distribution of states. This problem is referred to as “broken ergodicity”
[4].

To compute an equilibrium thermodynamic average of a given property one
must average over the statistically relevant configurations of the system. For a
system of N atoms in a d-dimensional space this amounts to computing the
partition function by evaluating a 2dN dimensional phase space integral. Any
point in configuration space (excluding maxima, saddle points and ridges) will
be mapped by a steepest descent to a minimum on the potential energy surface.
The set of all points that map to a given minimum form the basin of attraction.
Therefore, the configuration space can be decomposed into a set of basins of
attraction and the integral over phase space can be expressed as a sum of inte-
grals each over a given basin of attraction. An accurate calculation of the phase
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r

V

basins

barriers

Fig. 1. Schematic showing a rugged energy landscape with multiple basins separated
by barriers of various heights. The energy landscapes of liquid, glass and biomolecular
systems are often characterized by significant numbers of thermodynamically important
basins separated by barriers on many energy scales.

space integral will involve a sum over the local intrabasin averages using the cor-
rect relative interbasin statistical weights. An effective computational method
for evaluating such integrals must couple local sampling of the basins together
with a convenient means of global transportation between basins.

For complex systems these basins are numerous. Moreover, they are con-
nected by energy barriers that can range in size from the minuscule to the enor-
mous on the thermal energy scale. Depending on the details of the connectivity
of such minima, one may find thermostatistically important regions of config-
uration space that are separated by large energy barriers such that transitions
between those regions – using standard Monte Carlo or Molecular Dynamics
simulation methods – occur on a time scale that is very long compared with the
simulation time scale. In such cases, it is essential to employ simulation meth-
ods that can effectively sample all statistically relevant regions in the available
simulation time.

Overcoming broken ergodicity is a non-trivial problem that can be approached
in two ways. One way is to exploit specific features of a system to develop a tai-
lored method. For example, it may be that the energy minima are regularly
distributed in space and can easily be found by symmetry considerations. Such
tailored methods may be effective for a given system but inapplicable to other
problems. A second approach is to develop a general method designed to be ef-
fective for a class of systems. While the development of general methods is more
challenging, the potential impact is also much greater.

The development of such a method is difficult for complex systems that are
characterized by many minima separated by a broad distribution of length scales.
For such systems, random long range moves will typically lead to high energy
regions of the potential surface which are usually rejected. Small steps lead to
slow, activated barrier crossing which is an inefficient means of moving between
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thermodynamically important basins. The key to an effective algorithm is to
identify the optimal balance of the time spent moving between thermodynami-
cally important basin regions of configuration space and the time spent moving
between basins in thermodynamically unimportant (high energy barrier) regions
of the potential.

In this chapter we focus on computational methods that employ the special
features of the non-extensive thermostatistics proposed by Tsallis. As we will
see, special features of the non-extensive statistical mechanics lead to acceler-
ated sampling of configurational space that can effectively address the problem
of broken ergodicity in complex systems. This is accomplished by accelerating
the rate of energy barrier crossing and “smoothing over” phase transitions that
lead to critical slowing down. Moreover, extra “parameters” are needed to define
the relevant ensemble in the non-extensive thermostatistics. By optimizing these
additional variables, a computational method based on the non-extensive ther-
mostatistical distributions may be tailored to a specific problem of interest in
a way that cannot be accomplished for general methods based on the standard
extensive thermostatistics.

In this chapter we begin with a concise summary of essential features of
the non-extensive thermostatistics. We then explore the nature of equilibria and
kinetics in the non-extensive thermostatistics. Those results motivate the devel-
opment of algorithms for enhanced simulated annealing, Monte Carlo averaging,
and Molecular Dynamics that are discussed in detail. An effective technique for
the optimization of the proposed computational methods is described. The clos-
ing sections explore the relationship between the non-extensive statistics and
path integral representations of the density matrix and a novel method for the
simulated annealing of the non-extensive classical density distribution.

2 Basic Properties of Tsallis Statistics

The background that we need to develop the simulation methods described in
this chapter starts with the seminal work of Tsallis describing a possible gener-
alization of the standard Gibbs-Boltzmann statistical mechanics [5]. While this
material is developed in detail in other chapters, it is summarized here for rea-
sons of completeness and the need to define the particular version of the theory
that is employed.

Tsallis began with a reëxpression of the Gibbs-Shannon entropy formula

S = lim
q→1

Sq = lim
q→1

k

q − 1

∫
pq(Γ)(1− [pq(Γ)]q−1)dΓ (1)

= −k
∫
p(Γ) ln p(Γ)dΓ (2)

where dΓ = drNdpN/hdN is a phase space increment. On the right hand side of
this expression, the identity lnx = limn→0(xn−1)/n has been used to transform
the logarithm and q is a real number [5,6]. A similar result was previously pre-
sented in the context of generalized information entropies but had apparently
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not been applied to describe the physical world [7]. Tsallis’s bold move was to do
exactly that and the result has been a productive reëxamination of the central
dogma of thermostatistics.

2.1 From the Thermal Density Distribution to Tsallis Statistics

For the purposes of this chapter, it is more useful to develop the non-extensive
thermostatistics from a reëxpression of the classical density distribution
exp(−βH). Rather than writing

e−βH =
(
e−βH/P

)P
, (3)

as is commonly done in discussions of path integral representations of the density
distribution [8], suppose that we express the exponential as a limit

e−βH = lim
P→∞

(
1

1 + βH/P
)P

. (4)

Now suppose that discard the limit

(
1

1 + βH/P
)P

(5)

and consider the argument for arbitrary P . If we substitute

P =
1

1− q
(6)

we find that P = 1, 2, 3, 4 . . .∞ becomes q = 0, 12 ,
2
3 ,

3
4 . . . 1 and

e−βH → (1− (q − 1)βH)
1

q−1 . (7)

The right hand side of this expression is the Tsallis thermostatistical density
distribution that was originally derived by extremizing the “entropy” Sq subject
to the constraints that the distribution is normalized and that the average energy
is computed in the standard way.

Now suppose that we instead define

P =
1

q − 1
(8)

so that P = 1, 2, 3, 4 . . .∞ becomes q = 2, 32 ,
4
3 ,

5
4 . . . 1. The resulting distribution

is

e−βH → (1− (1− q)βH)
1

1−q . (9)
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The right hand side of the expression is precisely the Tsallis thermostatistical
density distribution pq(Γ) derived by extremizing Sq subject to the constraints
that the distribution is normalized and the average energy is defined in terms of
the “q-expectation” value.

How can we interpret these results? Tsallis showed how a generalized statis-
tics can originate from the Gibbs entropy formula and the identity p ln p =
limn→∞ 1

np(p
n − 1). He then stripped away the limit and interpreted the kernel

where n = q − 1

p ln p → 1
q − 1

p(pq−1 − 1). (10)

However, it is possible to reach the same distribution from a very different start-
ing point – the equilibrium density distribution – by rewriting the density dis-
tribution using the identity exp(−h) =
limP→∞(1 + h/P )−P and removing the limit to interpret the kernel where
P = 1/(q − 1)

e−βH → (1− (1− q)βH)
1

1−q (11)

in the spirit of Tsallis statistics.
For the later expression, derived from Eq. (10) using the constraint based

on the q-expectation value, when P = 1 we have what will prove to be the
interesting case of q = 2. In the limit that P = ∞, we recover the Gibbs-
Boltzmann statistical distribution. Intermediate values of P provide cases in
between these limits.

2.2 Specific Defining Properties
of the Tsallis Statistical Distributions

Tsallis noted a number of properties of Sq, which he referred to as a “generalized
entropy,” and the associated statistical distributions. He found that much of the
standard mathematical structure of Gibbs-Boltzmann statistical mechanics is
preserved. This is interesting in itself. However, even more interesting was what
is not preserved. Thermodynamic state functions such as the entropy and energy
were no longer extensive functions of the system. This prompted the use of a
generalized formalism based on the non-additive function Sq to again derive, for
non-extensive systems, a variety of results of the standard statistical mechanics
(see [9] and references therein).

As is discussed elsewhere in this book, at least three “conventional” versions
of the theory of non-extensive Tsallis thermostatistics exist. The following dis-
cussion is presented to familiarize the reader with the particular incarnation of
the non-extensive Tsallis statistical distributions we will employ. The proper-
ties described are important for the development of the computational methods
summarized in this chapter. However, please note that many of the results re-
lating to the equipartitioning of energy, the treatment of ideal systems, and the
normalization of statistical averages in the non-extensive thermostatistics have
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been developed elsewhere in a slightly different manner in the different context
of the description of physical systems using the non-extensive thermostatistics
[9].

Defining the Temperature When q �= 1 the relative probability of two points
in phase space depends on the choice of the zero of energy [5]. By defining

H̄(Γ) =
1

β(q − 1)
ln [1− (1− q)βH(Γ)] , (12)

the probability of being at a point Γ in phase space can be written in the familiar
form

p(Γ) =
1

ZhdN
exp(−βH̄(Γ)), (13)

where Z is the partition function

Z =
1

hdN

∫
exp(−βH̄(Γ))dΓ. (14)

However, for a constant potential shift ε the relative probability

pq(Γnew)
pq(Γold)

=
[
1− (1− q)β(H(Γnew) + ε)
1− (1− q)β(H(Γold) + ε)

] 1
1−q

(15)

depends on ε. This ratio can be rewritten as

pq(Γnew)
pq(Γold)

=
[
1− (1− q)β′H(Γnew)
1− (1− q)β′H(Γold)

] 1
1−q

, (16)

where potential energy shift ε has been absorbed in an effective “temperature”

1
β′ =

1
β

+ (q − 1)ε. (17)

In the q = 1 limit, the effective temperature equals the standard temperature.
Otherwise, adding a constant shift to the potential energy is equivalent to rescal-
ing the temperature at which the canonical probability distribution is computed.

Weight Dependence on the Zero of Energy In the q �= 1 regime, for certain
points in phase space the probability pq(Γ) may be negative or even imaginary.
We then say that the probability of the system accessing that point in phase
space is zero. This may be the case even when the energy is finite. Of course,
the exact range of phase space over which the probability is set to zero will also
depend on the choice of the zero of energy. In our computational applications, the
zero of energy is typically chosen such that all of configuration space is accessible
(represented by a real, non-negative probability).
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Normalizing q-Expectation Values Equilibrium average properties are cal-
culated using a statistical weighting of the probability pq(Γ) of Eq. (13) raised to
the power of q as required by the generalized statistical mechanics. The so-called
q-expectation value is written

〈. . .〉q =
∫

[pq(Γ)]q . . . dΓ. (18)

In general, 〈1〉q �= 1 for q �= 1. Clearly, this is an odd “average!” It is also
inconvenient as it requires evaluation of Zq. To address this last problem we
employ a simple generalization of the q-expectation average [10]

〈A〉q =
∫ A(Γ)[1− (1− q)βH(Γ)]

q
1−q dΓ∫

[1− (1− q)βH(Γ)]
q

1−q dΓ
. (19)

It is obviously normalized and convenient to apply. Also, unlike one current ver-
sion of the non-extensive thermostatistics, the statistical weight is not dependent
on the thermal average of the potential energy (which in turn depends on the
statistical weight, which depends on the thermal energy, and so . . . and must be
computed by iteration).

Equipartitioning the Kinetic Energy Is the “temperature” 1/β related to
the variance of the momentum distribution as in the classical equipartition the-
orem? It happens that there is no simple generalization of the equipartition
theorem of classical statistical mechanics. For a 2N dimensional phase space
Γ = (x1 . . . xN , p1, . . . pN ) the ensemble average for a harmonic system is

〈p2k〉q
〈1〉q =

∫
[pq(Γ)]qp2kdΓ∫
[pq(Γ)]qdΓ

=
1
β

1
1− (q − 1)N

(20)

where we assume unit mass. For the case of q = 1 we find the standard result that
〈p2k〉 = 1/β. In general we find that the average is proportional to 1/β but not
equal to it. The situation is equally strange for the unnormalized “multifractal”
average where

〈p2k〉q = stuff × 1
β1+(1−q)N/2 (21)

but the “stuff” is a q-dependent constant that may be negative or imaginary!
A related result is that the distribution of momenta cannot be written as a

product of single particle distributions and we find that

〈p2k + p2k〉q �= 2〈p2k〉q. (22)

The result is surprising – there is no simple linear scaling of the variance of the
momentum with the number of degrees of freedom.
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Non-extensivity of the Entropy and Long-Range Interactions When
q = 1 the extensivity of the entropy can be used to derive the Boltzmann entropy
equation S = k lnW in the microcanonical ensemble. When q �= 1, it is the odd
property that the generalization of the entropy Sq is not extensive that leads to
the peculiar form of the probability distribution. The non-extensivity of Sq is
an intriguing property that has led to speculation that Tsallis statistics may be
applicable to a variety of systems where interaction length scales comparable to
the system size violate the assumptions underlying Gibbs-Boltzmann statistics
[11,9].

2.3 Generalized Partition Functions for Ideal Systems

The properties of ideal systems that are predicted by the non-extensive ther-
mostatistics have been described elsewhere with an emphasis on the possible
values of q for an ideal gas or perfect crystal. Our purpose is different. Here we
simply evaluate the partition function, in a given version of the non-extensive
thermostatistics defined above, for two ideal systems to note generic properties
of the results. These results will lead us to recognize a general problem with
the evaluation of non-extensive averages of this kind for systems with a large
number of particles and suggest how we might “fix” it.

Translational Partition Function Let us focus on the q > 1 regime for
systems with a Hamiltonian of the form

H(Γ) =
N∑
k

1
2m
p2k + V(rN ), (23)

in d-dimensional space. The partition function can be written as

Zq =
(

1
Λ
√
q − 1

)dN Γ ( 1
q−1 − dN

2 )

Γ ( 1
q−1 )

×
∫ [

1− (1− q)βV(rN )
] 1

1−q+
dN
2 drN (24)

where Λ =
√
h2β/2πm is the thermal de Broglie wavelength of the kth oscillator.

For an ideal gas of N particles where V = 0 we find

Ztrans
q =

(
L

Λ
√
q − 1

)dN Γ ( 1
q−1 − dN

2 )

Γ ( 1
q−1 )

(25)

where L is the length of a side of a cubic box containing the ideal gas. In the limit
that q → 1 we can use the asymptotic approximation Γ (x+a)/Γ (x+ b) = xa−b,
good for large x, to show that the standard partition function for an ideal gas
is recovered

lim
q→1

Zq =
(
L

Λ

)dN

. (26)
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One Way to Define the Vibrational Partition Function It is clear that
when q �= 1 the thermostatistical weight is not separable into a translational and
configurational component even for a separable Hamiltonian. To make this point
explicit, consider a system of N one-dimensional harmonic oscillators with the
Hamiltonian

H(Γ) =
N∑
k

[
1

2m
p2k +

1
2
mω2

kx
2
k

]
. (27)

The canonical ensemble partition function is the phase space integral

Zq =
1
hN

∫
dxN

∫
dpN [1− (1− q)βH(Γ)]

1
1−q . (28)

The configuration integral can be evaluated and the partition function is

Zq =
(

2π
hβ(q − 1)

)N Γ ( 1
q−1 −N)

Γ ( 1
q−1 )

N∏
k

1
ωk

(29)

Note that there is not a unique separation of the partition function as Zq =
Ztrans
q Zvib

q . However, using the result for the ideal gas translational partition
function

Zvib
q =

(
2π

mβ(q − 1)

)N/2 1
LN

Γ ( 1
q−1 −N)

Γ ( 1
q−1 − N

2 )

N∏
k

1
ωk

(30)

In the limit that q → 1 we see that

lim
q→1

Zq =
(

2π
βh

)N N∏
k

1
ωk

(31)

and the canonical ensemble partition function for N harmonic oscillators in
classical Gibbs-Boltzmann statistics is recovered.

2.4 Problems Arise for Many-Body Systems

Consider a system of N particles in d dimensions. Using the standard procedure
employed above of integrating over the momenta in Cartesian coordinates, we
can write the average of a mechanical property A(rN ) using Eq. (19) as [10]

〈A〉q =

∫ A(rN )
[
1− (1− q)βV(rN )

] q
1−q+

dN
2 drN∫

[1− (1− q)βV(rN )]
q

1−q+
dN
2 drN

. (32)

This definition of the normalized statistical average is based on and proportional
to the q-expectation value. However, it is more useful since it is not necessary to
evaluate the partition function to compute the average. Nevertheless, this result
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is unsatisfactory. It is poorly behaved in the N → ∞ thermodynamic limit. We
will address this problem in the next section in the context of Maxwell-Tsallis
statistics.

It is interesting to compare our Tsallis sampling algorithm with the multi-
canonical sampling method [12]. In the latter, a random walk in energy is the
essential feature used for enhanced sampling with great success in a number of
applications. It has been shown [13], however, that in the thermodynamic limit
the multicanonical algorithm is identical with the regular Metropolis scheme.
The reasoning is that, in a system with a large number of particles N , the en-
tropy S(E) is a smooth function of the energy E, and can thus be expanded to
first order in ∆E. In this case, the acceptance probability of the multicanonical
sampling update becomes

lim
N→∞

exp(−∆S) = exp(− ∂S

∂E
∆E) = exp(−∆E

T
), (33)

where we use the equality ∂S/∂E = 1/T .
In the thermodynamic limit, the Tsallis updating scheme has the form

lim
N→∞

exp(−∆Ē

T
) =

(
E

E +∆E

) q
1−q

(34)

which is basically unity since the energy change ∆E is local (i.e., small) and E
is of order N .
It is ironic that in the N → ∞ limit the Tsallis sampling algorithm has the
main feature for which the multicanonical algorithm was designed – it performs
a random walk in energy – while the multicanonical algorithm loses this feature.

2.5 Enforcing Separability Using Maxwell–Tsallis Statistics

Take the equilibrium distribution to be a hybrid product of (1) a Tsallis statisti-
cal distribution (for the configurations) and (2) a Maxwell distribution (for the
momenta) as [14,10]

pq(rN ,pN ) = exp[−β(T (pN ) + V̄(rN ))] (35)

where

V̄(rN ) =
1

β(q − 1)
ln
[
1− (1− q)βV(rN )

]
(36)

is the transformed potential and

T (pN ) =
N∑
k

1
2mk

p2k (37)

is the kinetic energy of the N -body system defined in the usual way.
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This distribution can also be derived in a more systematic way from the
classical density distribution

e−βH =
(
e−βH/P

)P
=
(
e−βT /P e−βV/P

)P
(38)

where we have separated the kinetic energy and potential energy contributions.
Now suppose that we carry out the approximation described above for the Boltz-
mann factor alone. We find

e−βH ≈ e−βT
(

1
1 + βV/P

)P

. (39)

This is precisely the expression for the Maxwell-Tsallis statistical distribution
where P = 1/(q − 1).

2.6 Corrected Ensemble Averages

Consider a system of N particles in d dimensions. Using the standard procedure
of integrating over the momenta in Cartesian coordinates, we can write the
average of a mechanical property A(rN ) using Eq. (19) as

〈A〉q =

∫ A(rN )
[
1− (1− q)βV(rN )

] q
1−q drN∫

[1− (1− q)βV(rN )]
q

1−q drN
. (40)

This definition is based on and proportional to the q-expectation value. This re-
sult lacks the oddN -dependence in the exponent of the configurational weighting
function found for the case of pure Tsallis statistics in Eq. (32). While it is not
clear which result is “right,” this expression is certainly more satisfying in the
N → ∞ thermodynamic limit.

This definition is not consistent with the current, self-consistent version of
non-extensive Tsallis statistics where the thermostatistical weight depends on
the ensemble averaged energy which depends on the thermostatistical weight
and so on. The definition of the ensemble average employed here is justified in
that it is convenient to use in developing computational algorithms for enhanced
sampling and optimization, it behaves well in the large N limit, and it provides
normalized statistical averages without depending implicitly on the averaged
energy.

3 General Properties of Mass Action and Kinetics

It is useful to explore the generalized forms of the law of mass action and ki-
netic rate constants in the non-extensive thermostatistics. Specific features and
scaling relations emerge that will be essential motivations for the computational
methods presented in the sections that follow. Consider the equilibrium

α ⇀↽ γ. (41)
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Fig. 2. Schematic of the equilibrium probability distributions for reactant (α) and
product (γ) macrostates in a double well potential (thick line). Relative to the standard
Boltzmann distribution (dashed line), the Tsallis statistical distribution (thin line)
shows an enhanced probability for the system to be found in the barrier region.

The general form of the equilibrium constant is

Keq =
Xγ

Xα
=
∫
[pq]qθγ(Γ)dΓ∫
[pq]qθα(Γ)dΓ

(42)

whereXα andXγ are mole fractions of reactants and products, and the Heaviside
functions θα(Γ) and θγ(Γ) are unity for phase space points in well α and γ,
respectively, and zero otherwise (see Fig. 2). zero otherwise. We will restrict our
evaluation to one dimension; extension to many dimensions is straightforward.

In the limit that the barrier height is large compared with the thermal energy,
it is standard practice to expand the potential near the reactant well minimum to
quadratic order and approximate the integral by the contribution near the well
minimum. This approximation is well justified when the thermal distribution is
Gaussian and relatively short-ranged. However, for q > 1 the approximation is
not so easily justified. For q = 2 the equilibrium distribution for a harmonic
well is a Cauchy-Lorentz distribution so that it is likely that significant contri-
butions from anharmonicity far from the well minimum will contribute to the
integral. Aware of this limitation, we carry out the integral using a harmonic
approximation to the α and γ potential wells. For the α state well

V(x) � V(xα) +mω2
α(x− xα)2/2. (43)

We follow this with a low temperature approximation to the integral over the
well’s phase space population. The resulting equilibrium constant is

Keq(β; q) =
Xγ

Xα
=

ωα

ωγ

[
1− (1− q)βV(xγ)
1− (1− q)βV(xα)

] 1
1−q

. (44)
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Fig. 3. Schematic showing the potential energy surface along the reaction coordinate
indicating the transition state dividing surface separating the reactant and product
macrostate distributions.

When q �= 1, the equilibrium distributions are more delocalized and the low
temperature approximation may not be well justified.

3.1 Transition State Theory for Rates of Barrier Crossing

The transition state theory estimate of the rate constant for barrier crossing
provides an upper bound on the rate of transition between well-defined reactant
and product states. An assumption of the theory is that once a reactant acquires
enough energy to cross the barrier, it will cross the transition state and be
deactivated as product. Dynamical recrossings of the transition state, associated
with weak or strong damping, or nonadiabatic transitions, lead to reductions
in the rate of barrier crossing from the transition state theory estimate. In this
section, we examine the transition state theory rate constant for Tsallis statistics.
This discussion is restricted to one-dimension, but the generalization to many
dimensions is straightforward.

To evaluate the rate constant in the transition state theory approximation,
we need only know the form of the equilibrium distribution. Consider a one-
dimensional bistable potential with the transition state positioned along the
reaction coordinate x at x = x‡ as in Fig. 3. The TST rate for forward reaction
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is defined as

kTST (β; q) =
∫
δ(x− x‡)vΘ(v)[pq(Γ)]qdΓ∫
Θ(x‡ − x)[pq(Γ)]qdΓ

(45)

where pq(Γ) = pq(x, v) is the generalized statistical distribution

pq(x, v) =
1

Zqh
[1− (1− q)βH(x, v)]

1
1−q (46)

and

Zq =
1
h

∫ ∞

−∞
dx

∫ ∞

−∞
dv[1− (1− q)βH(x, v)]

1
1−q (47)

is the generalized partition function and H(x, v) = mv2/2 + V(x) is the Hamil-
tonian.

For q < 1 there can be difficulties that arise from distributions which have
zero probability in the barrier region and zero rate constant. In our analysis we
assume that for any q the zero of energy is chosen such that the probability
pq(Γ) is positive and real for all Γ. The transition state theory rate constant as
a function of the temperature and q is

kTST (β; q)

=
Γ ( q

q−1 )

Γ ( q
q−1 − 1

2 )

(
q − 1
2πmβ

)1/2 [
1− (1− q)βV(x‡)

] 1
1−q

1
χ(β; q)

(48)

where

χ(β; q) =
∫ x‡

−∞
[1− β(1− q)V(x)]

q
1−q+

1
2 dx. (49)

We can approximate this fraction of states in the reactant well, by expanding
the potential in a harmonic approximation and assuming that the temperature
is low compared with the barrier height. This leads to an estimate for the rate
constant

kTST (β; q) =
ωα

2π

[
1− (1− q)βV(x‡)
1− (1− q)βV(xα)

] 1
1−q

. (50)

As we expect, in the limit that q → 1 the standard transition state theory result

kTST (β; q = 1) =
ωα

2π
exp[−β(V(x‡)− V(xα))] (51)

is recovered. For the special case of q = 2 we find

kTST (β; q = 2) =
ωα

2π

[
1 + βV(xα)
1 + βV(x‡)

]
. (52)
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Fig. 4. The two-dimensional potential considered in the text has two deep holes, seen
at the bottom of the plot, and a less deep hole centered above them.

This remarkable result, anticipated in earlier examinations of the rate of
the optimal cooling schedule for generalized simulated annealing is that the
temperature dependence of the rate constant is found to be a power law for
the case q > 1 rather than the standard exponential Arrhenius temperature
dependence found for q = 1. This result suggests that the rate of relaxation to the
equilibrium distribution from a non-equilibrium distribution will be substantially
enhanced when q > 1 relative to the q = 1 result. It also suggests that the rate
of sampling phase space should be substantially enhanced through an increased
rate of barrier crossing. These features lead to enhanced simulated annealing
methods as well as algorithms for thermostatistical averaging.

3.2 Master Equations and Relaxation to Equilibrium

The relaxation of a system to equilibrium can be modeled using a master equa-
tion

dPi

dt
=
∑
j 
=i

[LijPj(t)− LjiPi(t)] . (53)

Using the results of the previous section, the elements of the transition matrix
from state j to state i can be estimated in the transition state theory approxi-
mation

Lij =
ωj

2π

[
1 + (q − 1)βV(x‡

ij)
1 + (q − 1)βV(xj)

] 1
1−q

, (54)

where the total phase space probability of the jth state is proportional to

Mj =
2π
βωj

[1 + (q − 1)βV(xj)]
1

1−q . (55)
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Fig. 5. The dependence on q of the non-zero eigenvalues of the two-dimensional, three-
hole model described in the text shows the rapid onset of escape from wells as soon as
q exceeds unity and the saturation at higher values of q.

The symmetric transmission coefficients are defined Bij = LijMi. The general
solutions are of the form

Pi(t) =
∑
n

anφ
(n)
i exp(−λnt) (56)

in terms of the eigenfunctions φ(n)i and eigenvalues λn of the transmission matrix
L̂.

We have calculated the eigenvalues for a two-dimensional model system de-
scribed by a potential function depicted in Fig. 4 and consisting of three holes,
two deeper holes of equal depth, and a more shallow hole. The barrier between
the deeper holes is higher than the other two barriers, which have equal height
[10]. The eigenvalues are shown in Fig. 5 as a function of q. One of the three
eigenvalues is zero, for any q, for reasons of conservation of probability. In the
figure, we plot the other two as a function of q, together with their ratio. There
is to be observed, for a thermal energy of a tenth of the well depth, the quick
increase in the magnitude of the eigenvalues for q > 1. This implies fast relax-
ation to equilibrium even at low temperatures, due to the delocalized character
of the Tsallisian distributions.

Do we expect this model to be accurate for a dynamics dictated by Tsal-
lis statistics? A jump diffusion process that randomly samples the equilibrium
canonical Tsallis distribution has been shown to lead to anomalous diffusion and
Lévy flights in the 5/3 < q < 3 regime [15]. Due to the delocalized nature of
the equilibrium distributions, we might find that the macrostates of our master
equation are not well defined. Even at low temperatures, it may be difficult to
identify distinct macrostates of the system. The same delocalization can lead
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to large transition probabilities for states that are not adjacent in configuration
space. This would be a violation of the assumptions of the transition state theory
– that once the system crosses the transition state from the reactant macrostate
it will be deactivated and equilibrated in the product state. Concerted transi-
tions between spatially far-separated states may be common. This would lead to
a highly connected master equation where each state is connected to a significant
fraction of all other macrostates of the system [16,17].

4 Tsallis Statistics and Simulated Annealing

Versions of the simulated annealing, Monte Carlo and Molecular Dynamics meth-
ods that sample Tsallis thermostatistical distributions have been applied to a
variety of model and molecular systems. These applications consist of two types.
In the first, the Tsallis statistical distributions are generated to produce a trajec-
tory with enhanced sampling of the conformational space of the system. How-
ever, the goal is to compute Gibbs-Boltzmann statistical averages or discover
low-lying energy minima of the system. In such cases, the non-extensive Tsallis
statistics are used as a novel means to a standard end. In the second, the point
is precisely to explore the properties of systems that are well described by the
non-extensive Tsallis statistics. Representative studies in this and the following
sections demonstrate the accomplishments and promise of these methods.

Finding the ground state conformation of biologically important molecules
has an obvious importance, both from the academic and pragmatic points of
view [18]. The problem is hard for biomolecules, such as proteins, because of
the ruggedness of the energy landscape which is characterized by an immense
number of local minima separated by a broad distribution of barrier heights
[19,20]. Algorithms to find the global minimum of an empirical potential en-
ergy function for molecules have been devised, among which a central role is
played by the simulated annealing methods [21,22]. Once a cooling schedule is
chosen, representative configurations of the allowed microstates are generated
by methods either of the molecular dynamics (MD) or Monte Carlo (MC) types.
For biomolecular simulations, simulated annealing is traditionally built on an
MD approach [23] where the dynamics of the system is simulated by integrating
the Newtonian equations of motion and the temperature is controlled through
coupling to a heat bath. If the MC approach is used, after having drawn a new
configuration, it is accepted or rejected according to a probability of, for example,
the Metropolis type [24]

p = min [1, exp (−β∆V)] , (57)

where β = 1/kT and ∆V is the change in potential energy. This acceptance
probability has the desirable features that (i) it obeys detailed balance and (ii)
it reduces to a steepest descent minimizer at low temperature (where only moves
which decrease the potential energy are accepted). In addition to the standard
Metropolis Monte Carlo protocol, several other smarter MC algorithms have
been designed using atomic moves biased by the forces acting upon the atoms
in the molecule [25,26] or by relaxing the restriction to Markov processes [27].
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4.1 Essential Features and Algorithms

Inspired by the non-extensive thermostatistics, a new generalized simulated an-
nealing algorithm was suggested based on the acceptance probability

p = min
[
1, (1− (1− q)β∆V)

1
1−q

]
(58)

where∆V is the change in the potential energy. This probability has the desirable
property that it reduces to a steepest descent in energy for T → 0. This method
was shown [28] to be faster than both the classical simulated annealing and the
fast simulated annealing methods [29] and was employed to find close to optimal
solutions to the traveling salesman problem [30].

However, it is easy to demonstrate that the acceptance criterion Eq. (58)
does not obey detailed balance. It is true that detailed balance is a sufficient
but not necessary condition for the convergence to the equilibrium distribution.
Even so, the acceptance in Eq. (58) does not, in general, converge towards the
generalized distribution of Eq. (13).

We proposed a generalized acceptance probability

p = min


1,(1− (1− q(T ))βVnew

1− (1− q(T ))βVold

) q(T )
1−q(T )


 , lim

T→0
q(T ) = 1, (59)

that obeys detailed balance [31]. Moreover, this acceptance probability does tend
towards the generalized equilibrium distribution in Eq. (13). The parameter q
is varied as a monotonically decreasing function of temperature. Starting with
a convenient value of q at the initial temperature, q tends towards 1 as the
temperature decreases during annealing. Since q → 1 as T → 0, the desirable
reduction to a steepest descent at low temperature is preserved.

Note that the probability is raised to the power of q as required by the
generalized statistical mechanics Eq. (13). In this generalization, the average of
an observable O is defined as O =

∑
pi

qOi and thus the detailed balance must be
written as Wijp

q
i = Wjip

q
j , where Wij are the elements of the transition matrix.

The fact that the probability distribution is raised to the power of q allows one
to use simulation binning to compute average properties of the system according
to the standard definition of the statistical average [32].

This acceptance probability is, in the spirit of the generalized statistical me-
chanics of Tsallis, invariant under the transformation

V̄i → V̄i + V̄0, (60)

where V̄0 is a constant shift in energy and, by definition,

V̄ =
q

β(q − 1)
ln [1− (1− q)βV] . (61)

For q → 1 the property that the probability distribution does not depend on the
choice of the zero of energy is thus recovered. Also, using the definition Eq. (61)
the acceptance probability Eq. (59) can be written in the more familiar form

p = min
[
1, exp

(−β∆V̄)] . (62)
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It was shown [33] that when the maximum entropy formalism is applied
to the entropy postulated by Tsallis Eq. (2) one is able to recover the general
Lévy probability distribution (corresponding to a fractal random walk the di-
mension of which is determined by q). A variational entropic formalism based
on the Boltzmann entropy is unable to do this. Using the acceptance probability
proposed here and an initial value of q(T ) > 1, a Markov chain generated at con-
stant temperature will converge to a Lévy distribution. For the particular case
of q = 2, the Lévy distribution is a Cauchy-Lorentz distribution which is the
same distribution used for the attempted moves in the fast simulated annealing
method of Szu and Hartley [29].

The Metropolis acceptance criterion in Eq. (59) is not the only solution that
guarantees convergence towards the probability distribution in Eq. (13). It is
known that a solution of the type proposed by Barker

Wij = αij
ρj

ρj + ρi
, (63)

where αij is the a priori symmetric transition matrix and ρi the probability
distribution function for the ith state, also satisfies detailed balance [2,3]. Thus,
by constructing the acceptance probability using Eqs. (13) and (63) we recover
the familiar form of acceptance widely used in simulations of spin systems

p =
1
2
[
1− tanh

(
β∆H̄/2)] . (64)

A simulation using this acceptance probability will tend towards the generalized
probability distribution of Tsallis, as does Eq. (59). It will obey detailed balance
and, by making q → 1 as the temperature decreases, it will behave like a steepest
descent at low temperatures.

4.2 Temperature Scaling in Simulated Annealing

Using these results, we can derive a scaling relation for the optimal cooling
schedule in a simulated annealing optimization protocol (see Fig. 6). We sup-
pose that the relevant energy scales of V(rN ) are bounded by ∆V, the difference
in energy between the ground and first excited state minima, and V‡, the high-
est barrier on the potential surface accessed from the global energy minimum.
The final temperature (maximum β) reached in a simulated annealing run must
be small enough so that at equilibrium the mole fraction in the global energy
minimum basin is significant. In other words, based on Eq. (44) we demand that
Kmax

eq = Keq(βmax; q).
The time that the trajectory must spend at βmax to ensure that the equilib-

rium distribution is sampled is at least τmin – the time required to surmount
the largest barrier separating the global energy minimum from other thermody-
namically important states. Using Eq. (50) we find

τmin =
2π
ωα

[
1− (1− 1

η
)
V‡

∆V
] 1

1−q

. (65)
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Fig. 6. Schematic showing the general protocol of simulated annealing.

where

η =
(
ωα

ωγ
Kmax

eq

)q−1

. (66)

Kmax
eq is the maximum allowable equilibrium constant for the ground and first

excited state populations at the final and lowest temperature reached in the
annealing run, βmax. For most cases of interest, we expect that η << 1.

In the limit q → 1 of Gibbs-Boltzmann statistics, using the fact that
limx→0[1− a(1− bx)]1/x = ba, we find that

τmin =
(

2π
ωα

)
η− V‡

∆V . (67)

The time for classical simulated annealing increases exponentially as a function
of the ratio of the energy scales V‡/∆V. However, for q > 1 the situation is
qualitatively different. As a result of the weak temperature dependence in the
barrier crossing times, the time for simulated annealing increases only weakly as
a power law.

4.3 Further Applications of Enhanced Simulated Annealing

Having noted the effect of enhanced diffusion for systems sampling underlying
Tsallis statistical distributions, Tsallis and Stariolo proposed the Generalized
Simulated Annealing (GSA) method [28]. They assigned a visiting distribution
that was Lévy-like (described by a parameter qv) and the acceptance probability
(controlled by a parameter qa). In the GSA method the Monte Carlo walk does
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not converge to the Tsallis probability distribution. However, it does reduce to
a steepest descent at low temperature. The effectiveness of the GSA method
was demonstrated by isolating the global optimization of a model function of 4
variables with 16 minima.

In the work of Moret and coworkers [34], the GSA method of Tsallis and
Stariolo was implemented with a modification – the Lévy form of the visiting
visiting probability distribution was replaced by a distribution of jumps numer-
ically calculated by inverting the power series representation of the cumulative
probability distribution for jumps in GSA. As in the GSA, the Monte Carlo walk
will not sample the Tsallis distribution. The method was applied to study the
conformational optimization of (H2O)3 and polypeptides composed of 5 and 20
residues. Other applications have included linear-chain polymers, ceramics and
ligand-protein interactions [35].

Salazar and Toral [36] have employed a standard Hybrid Monte Carlo method
coupled with a simulated annealing protocol employing an exponential tempera-
ture decay. That work was then generalized to a Hybrid Monte Carlo method for
sampling the Tsallis statistical distribution. They applied their annealing algo-
rithm to find the global minima of a discrete random phase sine-Gordon Model.
The results of their careful study support the conclusions drawn earlier [31,28]
that the simulated annealing method is made more effective for values of q > 1
relative to the standard case of q = 1.

Another important application of the non-extensive thermostatistics has come
in the context of the protein folding problem (specifically the conformational op-
timization of peptides) in our work [14] and that of Okamoto and Hansmann
[37]. In those applications, Monte Carlo annealing methods that sample distri-
butions derived from the non-extensive thermostatistics were found to lead to
enhanced sampling and a more rapid convergence to low lying energy minima.

There have been additional applications of the GSA method and some for-
mal results indicating that the method is weakly ergodic. Xiang and coworkers
studied the Thomson model of N equal point charges constrained to a spherical
surface [38]. They employed a schedule of linearly decreasing negative values
of qa. Nishimori and Inoue [39] also examined the GSA method, proving that
the distribution sampled by the GSA in a sufficiently long Monte Carlo walk is
independent of the starting probability distribution.

To date, all indications are that the Generalized Simulated Annealing meth-
ods based on a sampling of Tsallis statistic distributions show a faster conver-
gence to the global minimum than the Classical Simulated Annealing approach
[21] or the Fast Simulated Annealing method of Szu and Hartley [29].

4.4 The Importance of Detailed Balance

In earlier work on GSA methods, it was noted that two important properties
are that (1) the method should satisfy detailed balance and sample the cor-
rect generalized distribution and (2) that at low temperatures the Monte Carlo
method should reduce to a steepest descent in energy. In the earliest work, one
or the other criterion was met, but not both [30,28]. It is important to note that
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both criteria – the condition of detailed balance and the reduction to a steepest
descent method at low temperature – are met by the form of the generalized
simulated annealing proposed by Andricioaei and Straub [31] but not for the
standard GSA employed in most work to date (see above). While the detailed
balance condition is sufficient but not necessary for sampling the correct under-
lying distribution, there appears to be no good reason why it should be violated.
When the asymptotic distribution is known, arguments for rates of convergence
are easily made. It is strongly advised that the method one employs does satisfy
detailed balance. This is true for optimization methods and even more important
for that case of equilibrium sampling discussed in the following section.

5 Tsallis Statistics and Monte Carlo Methods

The development of a Monte Carlo method that may be used to sample the
Tsallis thermostatistical distributions is useful for two reasons. There is an in-
terest in exploring thermodynamic averages over non-extensive thermostatistical
distributions for complex systems; there is also an interest, which is the focus of
this chapter, on developing optimization and enhanced sampling algorithms for
computing Gibbs-Boltzmann thermal averages using a Monte Carlo walk that
samples the Tsallis thermostatistical distributions.

In this section we describe a variety of Monte Carlo methods for the evalua-
tion of non-extensive and extensive thermostatistical averages. All of the meth-
ods discussed will make use of features of the generalized statistics of Tsallis.

5.1 Monte Carlo Estimates
of Tsallis Statistical Averages

A point in phase space or configuration space can be said to have the probability

pq(rN ) ∼ exp[−βV̄] (68)

where V̄ is the effective potential energy [5]. The question arises, how might we
simulate systems that are well described by the Tsallis statistical distributions
when q �= 1? One possibility is the direct implementation of the Metropolis
Monte Carlo method where the acceptance probability is a function of the change
in the effective potential energy ∆V̄.

1. A new configuration is chosen within a region with uniform constant prob-
ability.

2. The point in configuration space is accepted or rejected according to the
criterion

p = min
[
1, exp[−β∆V̄]

]
(69)

where the change in the effective potential energy is ∆V̄.
3. Repeat the previous steps.
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This Monte Carlo algorithm will satisfy detailed balance and eventually sample
the equilibrium Tsallis distribution.

We have implemented the generalized Monte Carlo algorithm using a hybrid
MD/MC method composed of the following steps.

1. Velocities are randomly chosen from a Maxwell distribution at a given tem-
perature.

2. The positions and velocities are updated for a time step ∆t according to
Newton’s equation of motion using the force deriving from V̄.

3. The point (phase space point or configuration) is accepted or rejected ac-
cording to the criterion

p = min
[
1, exp[−β(∆T +∆V̄)]

]
(70)

where ∆T is the change in standard classical kinetic energy and ∆V̄ is the
change in the effective potential energy

V̄(rN ) =
1

β(q − 1)
ln
[
1− (1− q)βV(rN )

]
. (71)

4. Return to 1.

When the integrator used is reversible and symplectic (preserves the phase
space volume) the acceptance probability will exactly satisfy detailed balance
and the walk will sample the equilibrium distribution [pq(rN )]q.

A similar algorithm has been used to sample the equilibrium distribution
[pq(rN )]q in the conformational optimization of a tetrapeptide [31] and atomic
clusters at low temperature [14]. It was found that when q > 1 the search
of conformational space was greatly enhanced over standard Metropolis Monte
Carlo methods. In this form, the velocity distribution can be thought to be
Maxwellian.

5.2 Monte Carlo Estimates
of Gibbs–Boltzmann Statistical Averages

While the Monte Carlo algorithms described above will sample the generalized
thermostatistical distributions, they can also be used to effectively sample the
configuration space that is statistically important to the standard canonical en-
semble probability density. The first method of this kind was the “q-jumping
Monte Carlo” method of Andricioaei and Straub [14].

1. At random a choice is made to make a uniformly distributed “local” move,
with probability 1− PJ , or a global “jump” move, with probability PJ .

2. Either (a) the local trial move is sampled from a uniform distribution, for
example from a cube of side ∆ or (b) the jump trial move is sampled from
the generalized statistical distribution

T (r→ r′) = pq(r′) (72)

at q > 1.
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Fig. 7. Schematic representation of a q-jumping Monte Carlo trajectory. Initially, a
Monte Carlo walk with q > 1 is run and far separated configurations are stored. A
q-jumping Monte Carlo run is then generated where a local q = 1 Monte Carlo search
is punctuated by random “jump” moves sampled from the the q > 1 distribution.

3. Either (a) the local move is accepted or rejected by the standard Metropolis
acceptance criterion with probability

p = min
[
1, exp[−β∆V̄]

]
. (73)

or (b) the jump trial move is accepted or rejected according to the probability

p = min
[
1, exp[−β∆V̄

(
pq(r)
pq(r′)

)q

]
]

(74)

where the bias due to the non-symmetric trial move has been removed. This
algorithm satisfies detailed balance.

Fig. 7 shows a Monte Carlo walk that might be generated by the q-jumping
Monte Carlo method. The delocalized Tsallis statistical distributions are sam-
pled to provide long range moves between well-separated but thermodynami-
cally significant basins of configuration space. Such long range moves are ran-
domly shuffled with short range moves which provide good local sampling within
the basins. Note that this Monte Carlo walk samples the equilibrium Gibbs-
Boltzmann distribution.

When q > 1, it has been shown that the generalized q-jumping Monte Carlo
trajectories will cross barriers more frequently and explore phase space more
efficiently than standard Monte Carlo (without jump moves). (For a review of
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recent methods for enhanced phase-space sampling see [4].) We have shown how
this property can be exploited to derive effective Monte Carlo methods which
provide significantly enhanced sampling relative to standard methods.

5.3 Monte Carlo Algorithm for Spin Systems

We have explored a modification of the Tsallis statistical MC [40] based on
the Glauber acceptance probability sometimes known as Barker sampling. In
the computation of equilibrium thermodynamic averages for spin systems it was
shown [41] that for two-state problems such as the Ising model the Glauber
(Barker) acceptance is favorable. The so-called asymmetric acceptance in Eq.
(68) is just one of the solutions that guarantees convergence towards the dis-
tribution probability in Eq. (13). It is known from the theory of Monte Carlo
simulation that a symmetrical solution of the type

W (x → x′) = T (x → x′)
ρx′

ρx + ρx′
, (75)

where T (x → x′) is the a priori symmetric transition matrix and ρx the proba-
bility distribution function for the x state, also satisfies detailed balance. Thus,
by constructing the acceptance probability

p =
1
2
[
1− tanh

(
β∆H̄/2)] (76)

where H̄ = q
β(q−1) ln [1− (1− q)βH] , we retrieve a form reminiscent of the

Glauber function [42], widely used in simulations of spin systems. A simula-
tion using this acceptance probability will also tend towards the generalized
probability distribution of Tsallis, just as Eq. (68) does. It will obey detailed
balance,

[pq(x)]qW (x → x′) = [pq(x′)]qW (x′ → x) (77)

where W (x → x′) is an element of the transition matrix and, by making q →
1 as the temperature decreases, it will behave like a steepest descent at low
temperature.

We performed simulations on a two-dimensional Ising spin system, with a
16 site cell with periodic boundary conditions (wraped around a torus) [40].
Because of the form of the Tsallis probability, the energy cannot be negative
for q > 1. For this reason we have chosen the following expression of the Ising
Hamiltonian, with 0 and 1 for the possible values of the spin

H = J
∑

(1− δsi,sj ) (78)

where the sum extends over nearest neighbor spin pairs. The energy associated
with the bond between nearest neighbors is 0 if the spins are parallel and 1 if
anti-parallel. We have implemented the generalized Monte Carlo algorithm using
a single spin flip procedure composed of the following steps.
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1. A spin is picked at random and flipped.
2. The change of energy is calculated. Because of the short range interactions

of the Ising systems, only nearest neighbors count.
3. The spin configuration is accepted or rejected according to the criterion Eq.

(76).
4. Return to 1.

Since this acceptance will exactly satisfy detailed balance, the walk will converge
towards sampling the equilibrium distribution [pq(x)]q.

Applications of this algorithm to explore the nature of simulated anneal-
ing and phase changes in a two dimensional Ising system are discussed in the
following section.

5.4 Further Applications of Generalized Monte Carlo

In the work of Lima, Martins and Penna, the magnetic phase behavior of a two-
dimensional nearest neighbor Ising system was studied using the non-extensive
thermostatistics proposed by Tsallis [43]. Using a combination of a Monte Carlo
method and the broad histogram technique, a nearest-neighbor Ising model was
examined for a range of q values. Two important conclusions were drawn from
this thorough study. The first conclusion is a technical one – while the general-
ized Monte Carlo method of Andricioaei and Straub was found to sample well
the Tsallis distribution, the equivalent Monte Carlo method based on the GSA
algorithm did not. This is a clear demonstration of the importance of satisfying
detailed balance in a Monte Carlo method. The second conclusion is of more
general importance – the finite temperature phase transition exhibited by the
two-dimensional Ising system in the thermodynamic limit for q = 1 appears to
be washed out for the non-extensive case of q > 1. This is a general feature that
appears to be related to the success of simulated annealing method based on
sampling the generalized thermostatistical distributions.

It has long been recognized that when an annealing run is interrupted by
a phase change, the large energy fluctuations and relaxation times necessitate
a long period of time being spent in the cooling schedule moving through the
phase change. Therefore, simulated annealing methods employing cooling rates
inversely proportional to the heat capacity of the system have proved to be more
effective than monotonic cooling schedules [44,45]. Better yet, by avoiding first
order phase transitions altogether, the generalized simulated annealing method
circumvents this problem.

It is also possible to generalize the “parallel tempering” Monte Carlo method
using Tsallis statistical distributions [46,47]. In the standard parallel tempering
method, a set of parallel Monte Carlo walkers are set to run at a variety of tem-
peratures. The manifold of temperatures is chosen such that there is a significant
overlap in the distribution functions of adjacent temperatures. In addition to the
standard Monte Carlo moves at a fixed temperature, moves that exchange walk-
ers at two temperatures (while maintaining the positions of the walkers) are
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Fig. 8. Schematic representation of three Monte Carlo walkers moving over a rugged
energy landscape in the generalized parallel tempering method.

occasionally attempted. Therefore, the path of a single walker will have an en-
hanced probablity of overcoming barriers on the potential energy surface through
excursions at higher temperatures.

The “generalized parallel tempering” Monte Carlo method is depicted in
Fig. 8. For the same reasons that the q-Jumping Monte Carlo method proved to
be superior to the J-Walking Monte Carlo method in the simulation of atomic
clusters [14], one can expect that the generalized parallel tempering method will
provide enhanced sampling relative to the standard parallel tempering method
using the same number of walkers.

6 Tsallis Statistics and Molecular Dynamics

Standard Molecular Dynamics for an ergodic system generates time averages
which agree with averages taken over a microcanonical distribution. To compute
averages such as Eq. (40) for the generalized canonical ensemble probability den-
sity using MD, we will employ a trick. We define a molecular dynamics algorithm
such that the trajectory samples the distribution pq(rN ) by having the trajec-
tory move on a temperature dependent, but static, effective potential [14]. The
equation of motion takes on a simple and suggestive form

mk
d2rk
dt2

= −∇rk V̄ =
−q

[1− (1− q)βV(rN )]
∇rkV(rN ) (79)

for a particle of mass mk, at position rk, and V̄ defined by Eq. (71). It is known
that in the canonical ensemble a constant-temperature molecular dynamics al-
gorithm generates samples from the configuration space according to the Boltz-
mann probability. As a result, this generalized molecular dynamics will sample
the Tsallis statistical distribution pq(rN ).
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The effective force employed is the “exact” force for standard molecular dy-
namics, −∇rkV, scaled by

αq(rN ;β) =
q

1− (1− q)βV(rN )
(80)

which is a function of the potential energy. This scaling function is unity when
q = 1 but can otherwise have a strong influence on the dynamics. Assume that
the potential is defined to be a positive function. In the regime q > 1, the scaling
function αq(rN , β) is largest near low lying minima of the potential. In barrier
regions, where the potential energy is large, the scaling function αq(rN , β) is
small. This has the effect of reducing the magnitude of the force in the barrier
regions. A particle attempting to pass over a potential energy barrier will meet
with less resistance when q > 1 than when q = 1. At equilibrium, this leads
to more delocalized probability distributions with an increased probability of
sampling barrier regions and making transitions between thermodynamically
relevant basins.

6.1 Molecular Dynamics Estimates
of Gibbs–Boltzmann Statistical Averages

The generalized molecular dynamics described above generates trajectories
which, averaged over time, sample the Tsallis statistical distribution. To com-
pute averages over the Gibbs-Boltzmann distribution we may simply reweight
each measurement as

〈A〉 =

〈
A e−βH(Γ)

[1− (1− q)βH(Γ)]
q

1−q

〉
q

×
〈

e−βH(Γ)

[1− (1− q)βH(Γ)]
q

1−q

〉−1

q

. (81)

Using this expression, the standard (q = 1) Gibbs-Boltzmann equilibrium aver-
age properties may be calculated over a trajectory which samples the generalized
statistical distribution for q �= 1 with the advantage of enhanced sampling for
q > 1.

This method leads to an enhanced sampling of configuration space. However,
it suffers a bit from the ease with which the trajectory moves through high energy
regions in the q > 1 regimes [14]. Most of those regions of high potential energy
are not thermodynamically important. It is good to visit them, as the q-jumping
Monte Carlo does, but only on the way to another thermodynamically impor-
tant region. The q-jumping Monte Carlo method has the advantage that the
trajectory directly samples the Gibbs-Boltzmann distribution – no reweighting
is necessary. Therefore, the walk is compelled to spend time in thermodynami-
cally significant regions.
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This effective MD method is consistent with Tsallis statistics in as much as
a long time dynamical average for an ergodic system will provide results iden-
tical to the average over the what might be called a Maxwell-Tsallis statistical
distribution. However, it cannot be said to tell us about the true dynamics of
the system.

6.2 Rate Constants for Maxwell–Tsallis Statistics

The principles of microscopic reversibility and detailed balance dictate relation-
ships between the rate constants for moving between macrostates and the equi-
librium constants for the probability of being found in one macrostate or an-
other. Earlier, we evaluated the rate and equilibrium constants in the “pure”
Tsallis statistics. Here we derive those results using Maxwell-Tsallis statistics
– the statistics appropriate for a system undergoing Molecular Dynamics using
the effective potential V̄.

For q = 1, the normal transition state theory rate constant is independent of
temperature at high temperatures and varies exponentially with temperature in
the limit of low temperatures

kTST ∼ exp(−βV‡) (82)

where kT is small compared with the barrier height V‡.
For Maxwell-Tsallis statistics we expect to find a standard Newtonian dy-

namics on the Tsallis effective potential energy surface V̄. Therefore, the rate of
activated barrier crossing should vary as

kTST ∼ exp(−βV̄‡). (83)

where V̄‡ is the activation energy on the Tsallis effective potential energy surface.
As we have seen, the particular value of V̄‡ will depend on the choice of the zero
of energy in the “true” potential energy function V when q �= 1. In the non-
extensive regime of q �= 1, at low temperature the temperature scaling of the
rate is a weak inverse power law and the rate of activated barrier crossing is
found to be significantly larger than for q = 1. This is the origin of the enhanced
sampling generated by Molecular Dynamics using a Tsallis statistical effective
energy function.

6.3 Further Applications of Generalized Molecular Dynamics

The effectiveness of enhanced sampling generated by Molecular Dynamics meth-
ods that employ the Tsallis thermostatistical effective potential energy function
V̄ has been beautifully demonstrated by Pak and Wang [48]. In their simula-
tions of a 16-residue model peptide, they found that the peptide rapidly found
the global free energy basin corresponding to an α-helical conformation. By in-
creasing the probability of visiting regions of conformational space with high
energy, the generalized Molecular Dynamics method increases the rate of barrier
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crossing in a way that allows the simulation trajectory to sample what appears
to be reversible folding of the peptide.

Using the same method of molecular dynamics on the transformed potential
surface, Pak and Wang have modeled the flexible docking of streptavidin with
biotin and of the protein kinase C with phorbol-13-acetate [49]. The ligands are
fully flexible and a partial flexibility of the receptor active site is allowed. The
authors report, in both cases, accelerated docking and correct prediction of the
docked structures indicating that the method may provide an effective means of
optimization in the important problem of flexible docking and drug design.

7 Optimizing the Monte Carlo or Molecular Dynamics
Algorithm Using the Ergodic Measure

How can a generalized Monte Carlo or Molecular Dynamics algorithm be tailored
to a particular application? How can its performance be optimized? One useful
criterion is to vary the algorithmic parameters (such as step size distribution
and frequency) and additional variables (q and the zero of energy) to maximize
the rate of self-averaging of the property under study. To do this, we employ the
ergodic measure to estimate the rate of self-averaging [50,11,52].

Self-averaging is a necessary but not a sufficient condition for the ergodic hy-
pothesis to be satisfied. The rate of self-averaging for a given property is expected
to be proportional to the rate of phase space sampling. It is most convenient to
use the potential energy metric defined for two independent trajectories α and β.
We define the “move average” over the Monte Carlo trajectory of the potential
energy Vj for the jth particle along the α trajectory after n moves as

$α
j (n) =

1
n

n∑
k

w(rNk )Vj(rNk ). (84)

w(rNk ) is a weighting factor for any property at a given position on the kth
step rNk . For a Metropolis Monte Carlo run the weighting factor is unity. For
a generalized Monte Carlo run the weighting factor is given by Eq. (81). The
ergodic measure is then defined as the sum over N particles

dV(n) =
1
N

∑
j

[
$α

j (n)−$β
j (n)

]2
(85)

so that for an ergodic system if n → ∞ then dV(n) → 0. For either Monte Carlo
or Molecular Dynamics, for large n we expect the form of the convergence to be

dV(n) = dV(0)
1

DVn
(86)

where DV is a rate for self-averaging over the two independent trajectories (see
Fig. 9).
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Fig. 9. Schematic representation of two trajectories on a rugged energy landscape. One
trajectory is effectively trapped in a single basin while a second trajectory effectively
samples the energy surface. Dynamics of the first kind will lead to “broken ergodicity”
– two trajectories initially starting in distinct energy basins will not self-average on
the simulation time scale. Dynamics of the second kind will lead to self-averaging and
ergodic sampling.

We associate rapid and effective sampling of phase space with a large value
of DV . The choice of the potential energy metric is arbitrary. However, it has
been shown to be a good measure of the extent of phase space sampling in a
variety of systems. For the Monte Carlo and Molecular Dynamics algorithms
described in this chapter, we vary the parameters of the algorithm to determine
the optimal parameter set which maximizes DV (see Fig. 10). This provides an
effective means of optimizing the algorithm for the particular problem of interest
by maximizing the rate of self-averaging [14].

8 Tsallis Statistics and Feynman Path Integral Quantum
Mechanics

Our initial presentation of the origin of the Tsallis statistical distributions be-
gan with the expression for the classical density distribution. A similar starting
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q

D
V

q=2

1

Fig. 10. Schematic representation of the generalized diffusion constant DV as a func-
tion of the parameter q. For many applications, the general features of (1) a dramatic
increase in the rate of self-averaging for q > 1 relative to q = 1 and (2) a saturation in
the rate for higher values of q are noted.

point – that of the quantum mechanical thermal density matrix – is commonly
used to derive the path integral formulation of quantum statistical mechanics.
In this section we explore the possibility of a generalized quantum statistical
mechanics that may prove useful as a computational tool for enhanced sampling
and optimization in complex systems.

The starting point for the calculation of any equilibrium average of a many
body quantum system is the density matrix. Written in the position representa-
tion

ρ(r, r′;β) = 〈r|e−βH|r′〉. (87)

The equilibrium average of an operator A can be written

〈A〉 =
1
Z

∫
dr
∫
dr′ρ(r, r′;β)〈r|A|r′〉 (88)

where the partition function is

Z(β) =
∫
drρ(r, r;β). (89)

In the standard formulation of Feynman path integrals [8,53], the density
matrix operator exp(−βH) is rewritten

e−βH =
(
e−βH/P

)P
. (90)
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Interpreting the exponential as a propagator, the ratio β/P is often referred
to as a step in imaginary time. In the position representation, this form of the
density matrix becomes

ρ(r0, rP ;β) =
∫
dr1 . . . drP−1ρ(r0, r1;β) . . . ρ(rP−1, rP ;β) (91)

which is exact for any value of P ≥ 1.
To make this expression useful for the numerical simulation of quantum sys-

tems, the operator expression [54]

e− β
P H+ 1

2 ( βP )2[T ,V] = e− β
P T e− β

P V (92)

where H = T + V and [T ,V] = T V − VT is employed to prove that

e−βH = lim
P→∞

[
e− β

P T e− β
P V
]P

. (93)

In what is known as the primitive approximation, the density matrix is written

ρ(r0, r1;β) ≈
∫
dr 1

2
〈r0|e− β

P T |r 1
2
〉〈r 1

2
|e− β

P V |r1〉 (94)

where the kinetic energy operator can be expressed in an integral approximation
to an eigenfunction expansion as

〈r0|e− β
P T |r 1

2
〉 ≈

(
mP

2h̄2β

)−3N/2

e
− mP

2h̄2β
(r0−r 1

2
)2

(95)

and the potential energy operator is simply

〈r 1
2
|e− β

P V |r1〉 = e
− β
P V(r 1

2
)
δ(r1 − r 1

2
). (96)

In the limit of large enough P , we can combine these last two expressions and
integrate over r 1

2
to obtain a good approximation to ρ(r0, r1;β). Combining this

result with Eq. (91) we arrive at the path integral representation of the density
matrix

ρ(r0, rP ;β) ≈
∫
dr0 . . . drP−1

(
mP

2h̄2β

)−3NP/2

(97)

× exp

(
−

P∑
k=1

[
mP

2h̄2β
(rk−1 − rk)2 + V(rk)

])
.

This expression is only approximate for finite P and only appropriate when the

size of the box in which the particle is contained is large compared to
√
βh̄2/mP .

In the standard interpretation of this result, the quantum density matrix
of an N -body system is approximated as the classical equilibrium average of a
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V/P

classical quantum

V

Fig. 11. Schematic showing the classical and path integral quantum mechanical repre-
sentations of two interacting particles. In the classical case the particles interact with a
potential V while in the path integral case the pseudoparticles interact with a potential
V/P .

system of N ring polymers. Each ring polymer is composed of P beads. The
kth bead of polymer M is joined to its two neighboring beads by a Hooke’s law
potential with force constant κ = mP/h̄2β. For a pairwise additive potential
energy function, the ring polymers interact in a pairwise manner. The kth bead
of one ring polymer interacts with the kth bead of all other ring polymers through
the scaled potential energy function V/P .

8.1 Connection to Tsallis Statistics

A brief reflection on our derivation of the Tsallis thermostatistical probabilities
and that of the primitive form of the path integral propagator suggests a hybrid
formulation of the standard path integral expressions for the density matrix Eqs.
(93) and (97). By defining the effective potential

V̄ =
P

β
ln
(
1 +

β

P
V
)

(98)

and

lim
P→∞

V̄ = V (99)

it follows that

e−βH = e−β(T +V) = lim
P→∞

e−β(T +V̄). (100)
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Following the derivation above we find, up to the leading order terms in 1/P ,
that

e− β
P (T +V̄)+( βP )2[T ,V]− 1

2 ( βP )3[T ,V] ≈ e− β
P T
(

1
1 + β

P V

)
(101)

where we have used the result that [T , V̄] = [T ,V]− (β/2P )[T ,V2]+ . . . and the
fact that the limit of the product of two functions is the product of the limits
[55,54]. Substituting this result in Eq. (100) leads to

e−βH = lim
P→∞

[
e− β

P T
(

1
1 + β

P V

)]P
. (102)

This formula, expressed in the position representation, is the principal result of
this section

ρ(r0, rP ;β) ≈
∫
dr0 . . . drP−1

(
mP

2h̄2β

)−3NP/2

(103)

× exp

(
−

P∑
k=1

[
mP

2h̄2β
(rk−1 − rk)2 + V̄(rk)

])
.

This expression stands as an alternative to the standard path integral formu-
lation of the density matrix in Eq. (97). In this case, for a pairwise additive
potential energy function, the ring polymers interact in a pairwise manner. This
is depicted in Fig. 11. The kth bead of one ring polymer interacting with the
kth bead of all other ring polymers through the scaled, P -dependent, effective
potential energy function V̄/P .

8.2 Feynman–Tsallis Path Integrals for the Simulation
of Quantum Many-Body Systems

It is possible to apply Eq. (104) in path integral simulations of condensed phase
systems. Ordinarily, in systems where quantum effects are most important, one
must approach large values of P before there is convergence to the exact quan-
tum mechanical average. As we have shown, if the necklace samples the Tsallis
statistical distribution it should visit regions of higher potential energy more
frequently and the distribution should be significantly more delocalized than the
standard representation for the same number of beads in the necklace P . This
implies that this representation might provide faster convergence to the quantum
mechanical limit of P → ∞ than the standard form.

It should be noted that while this formalism is intriguing, there is some
cost for the potential gain in using the proposed propagator relative to the
primitive form. The proposed form should lead to enhanced sampling of chain
conformations relative to the primitive form. However, while the proposed form
of the short time propagator is correct to first order in β/P , as it must be, the
primitive form is correct to second order. Numerical tests will demonstrate the
relative merits of each approach.
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Fig. 12. Schematic showing the evolution of a density distribution under the equations
of motion for wave packet dynamics.

9 Simulated Annealing
Using Cauchy–Lorentz “Density Packet” Dynamics

In this section we propose a means of performing simulated annealing by propa-
gation not a point in phase space but the continuous density distribution ρ rep-
resented by a mobile basis set. The motion of the basis set through phase space
is optimally determined through a time-dependent variational principle. This
technique has been explored earlier [56] in the context of the Gibbs-Boltzmann
statistical mechanics. It is attractive for two reasons. (1) It provides enhanced
sampling through the direct simulation of a non-local density distribution that
explores regions of the potential surface at an instant. (2) It also provides the
feature of classical tunneling as a density packet may move through a barrier
whose height is greater than the average energy of the packet [22] (see Fig. 12).
Here we generalize the method to the case of the non-extensive thermostatistics.
We first treat the case of a single particle in d-dimensional space. The many-body
problem extension is discussed at the end of the section.

The density distribution ρ(r,p, t) gives the density of phase points at a point
in phase space (r,p) at time t [57]. It represents an infinite number of iden-
tical systems, continuously distributed in phase space. The average of an ob-
servable property over this collection of systems is an integral over all phase
space of that property weighted by ρ(r,p, t); for example, the average position
is
∫
ddr

∫
ddp ρ(r,p, t) r. Calculating the time evolution of ρ(r,p, t) is equiv-

alent to calculating the trajectories of an infinite number of identical systems,
differing only in their initial positions in phase space.
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The time evolution of ρ(r,p, t) is given by the Liouville equation

∂

∂t
ρ(r,p, t) = −Lρ(r,p, t) (104)

where L is the Liouville operator

L =
p
M

· ∂

∂r
+ F (r) · ∂

∂p
(105)

and where F (r) is the force and M the mass. F (r), r and p are d-dimensional
vectors. Below, we shall work with the positive square root of the density distri-
bution, ψ =

√
ρ, which also satisfies the Liouville equation

∂

∂t
ψ(r,p, t) = −Lψ(r,p, t). (106)

We work with ψ(r,p, t) in part because the variational equations are more
pleasing for ψ(r,p, t), but more importantly because we can show that they con-
serve energy and normalization, regardless of the size of our basis set. In contrast,
experience with most other mobile basis sets in quantum mechanics shows that
most mobile basis sets do not rigorously conserve energy and normalization ex-
cept in the limit that the basis set is complete, i.e., that the solution is exact.
We may hope that many observable properties will not require an exact solution
of ψ(r,p, t), but only certain averaged properties of it. That is, we expect there
to be a hierarchy of gross properties and more detailed, higher order properties
[58]. Therefore it is extremely helpful to have energy and normalization conser-
vation at every order of the basis set expansion. We shall demonstrate norm
conservation later in this section.

Our variational principle, adapted from the Dirac-Frenkel variational princi-
ple for quantum dynamics [59], is a functional least-squares fit to the Liouville
equation for ψ, with the error defined in terms of an error operator η = L+∂/∂t.
The error functional to be minimized is an integral of the square of the error ηψ
integrated over all time and all phase space

I =
∫
dt

∫
ddr

∫
ddp

[
ηψ(r,p, t)

]2
=
∫
dt 〈ηψ(t)|ηψ(t)〉 (107)

where we have adopted the Dirac ket notation

〈f(t)|A(r,p)|g(t)〉 =
∫
ddr

∫
ddp f(r,p, t) A(r,p) g(r,p, t). (108)

Minimizing I by setting δI/δψ̇(r′,p′, t′) equal to zero yields the Liouville equa-
tion for ψ(r′,p′, t′). (The definition of the functional derivative is δf(t)/δf(t′) =
δ(t − t′) [60]). Note that the derivative is with respect to ψ̇ and not ψ itself
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because the Liouville equation is an initial value problem: given ψ, the equation
gives ψ̇.

In practice, we minimize the error functional I by first expanding ψ in terms
of a basis set, and then setting the functional derivative of I with respect to
all the first time derivatives of the parameters in the basis set equal to zero. In
the limit that the basis set is complete (i.e., that the basis set is large enough),
this procedure is equivalent to solving the Liouville equation exactly. In our
past work we have used a basis set of Gaussian functions since the Gaussian
functions represent the canonical ensemble probability for a locally harmonic
potential when q = 1. Here our basis set is chosen to be a sum of Cauchy-Lorentz
functions which appear in the non-extensive thermostatistics as the equilibrium
statistical distribution for a locally harmonic potential when q = 2. Therefore,
ψ can be written

ψ =
L∑

n=1

cnφ
2
n

where

φn(r) =
1

1 + anr2
(109)

and the φn are Cauchy-Lorentz functions.
Setting δI/δχ̇(t′) to zero, where χ(t′) = {cn, . . .} is a set of parameters

defining the wave packet yields a set of coupled equations linear in the χ̇(t′).
The equations are of the form [61]

δI

δχ̇(t′)
= 2

∫
dt 〈 δψ̇(t)

δχ̇(t′)
|ηψ(t)〉 = 0. (110)

To show that the variational equations above preserve the normalization, we
must show 〈ψ|ψ̇〉 = 0. From the variational condition 〈φn|ηψ〉 = 0 by Eq. (110),
the norm preservation condition can be reëxpressed as 〈ψ|Lψ〉 = 0, which can
be rewritten in terms of ρ (after dividing by 2) as∫

ddr
∫
ddp Lρ =

∫
ddr

∫
ddp

( p
M

· ∂

∂r
+ F (r) · ∂

∂p

)
ρ. (111)

since ρ(r,p) goes to zero at r = ±∞ and p = ±∞ integration of the above
expression gives zero.

When many particles are introduced, the density distribution may in the
first approximation be written as a product of the density distributions of the
N individual particles

ρ(rN ,pN , t) =
N∏

k=1

ρk(rk,pk, t). (112)
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This is in the spirit of the Hartree approximation of quantum mechanics. The
force F (r) is taken to be the integral of the force weighted by the total density
distribution integrated over all the other particles; that is, F (r) is averaged over
the positions of all the other particles, a mean field force [62]. For a pairwise
additive potential, the force on particle 1 due to particle k can be written in
terms of the distribution function ρk(rk,pk) for the kth particle

〈F (r1)〉k =
∫
drk

∫
dpkρk(rk,pk)F (|r1 − rk|). (113)

The total force on a single particle will be the sum of the forces of interaction
with all other atoms. Similarly, the potential energy can be written as a sum
over the individual pair interaction energies

〈V〉ij =
N∑

i>j=1

∫
dri

∫
dpi

∫
drj

∫
dpj ρi(ri,pi) ρj(rj ,pj)V(|ri − rj |). (114)

When the potential is not pairwise additive, the density distribution functions
for two or more particles correlations must be used.

How might this method be applied? A set of Cauchy-Lorentz “density pack-
ets” can initially be parameterized to extend broadly over the potential energy
surface. The force used in the Liouville operator may be the standard force or
the scaled effective force of Eq. (80). The exact choice will depend on the nature
of the system studied. The temperature or energy is initially taken to be high
and the packets are propagated in time. The temperature is then then gradually
lowered as the packet is annealed to a low lying basin on the potential energy
surface. Similar annealing schemes using Gaussian packets have been successful
in a variety of optimization problems [22,63]. However, Gaussian packets are rel-
atively local functions. The use of Cauchy-Lorentz packets, which extend more
broadly over the energy surface, should be even more effective in isolating low
lying energy basins on the rugged energy landscapes of peptides and proteins.
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V. Correlation Induced by Nonextensivity
and the Zeroth Law of Thermodynamics

S. Abe

College of Science and Technology, Nihon University, Funabashi, Chiba 274-8501,
Japan

Abstract. To establish the zeroth law of thermodynamics in nonextensive statistical
mechanics, it is essential to realize factorization of the Tsallis probability distribution.
Here, the factorizability and the property of correlation induced by nonextensivity
are discussed. Employing the classical gas model, it is shown how the correlation is
suppressed in the thermodynamic limit.

A nonextensive generalization of Boltzmann-Gibbs statistical mechanics pro-
posed by Tsallis is based on the following postulate for the entropy functional [1]:

Sq[p] =
k

1− q

(∑
n

pqn − 1
)
, (1)

where {pn} is the normalized probability distribution of the system under con-
sideration and q is a positive parameter describing the degree of nonextensivity.
k is the Boltzmann constant and is henceforth set equal to unity for simplicity.
This generalized entropy is concave and satisfies the H-theorem. The discrete no-
tation is employed here but the case of continuous configuration can be treated
in an analogous way. The equilibrium distribution is obtained through maximum
entropy principle under the constraints on normalization of {pn} and the nor-
malized q-expectation value of the energy of the system. The latter is given as
follows [2]:

Uq = < H >q

=
1
cq

∑
n

pqn εn, (2)

cq ≡
∑
n

pqn, (3)

where H and εn are the system Hamiltonian and its value in the nth configu-
ration, respectively. Then, maximization of the Tsallis entropy in Eq. (1) yields
the equilibrium probability distribution

p(e)n =
1

Zq(β)

[
1− (1− q)(β/cq)(εn − Uq)

]1/(1−q)
, (4)
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where

Zq(β) =
∑
n

[
1− (1− q)(β/cq)(εn − Uq)

]1/(1−q)
. (5)

Here, β is the Lagrange multiplier associated with the constraint in Eq. (2).
From eqs. (3)-(5), one finds the identical relation

cq =
[
Zq(β)

]1−q

. (6)

Actually, β is identified with the inverse temperature, since the equilibrium Tsal-
lis entropy S

(e)
q = Sq[p(e)] and the generalized internal energy satisfy Uq the

thermodynamic relation

∂S
(e)
q

∂Uq
= β. (7)

Now, assume the total system be divided into two subsystems, A and B, and
the joint probability distribution be factorized, that is,

pmn(A,B) = pm(A)pn(B). (8)

Then the Tsallis entropy in Eq. (1) satisfies

Sq(A,B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B), (9)

where Sq(A) ≡ Sq[p(A)] and so on. As pointed out by Rajagopal in his con-
tribution to this volume, the maximum entropy condition on the total entropy
S
(e)
q (A,B) at the thermal equilibrium state leads to

0 = δS(e)
q (A,B)

=
∂S

(e)
q (A)

∂Uq(A)

[
1 + (1− q)S(e)

q (B)
]
δUq(A)

+
∂S

(e)
q (B)

∂Uq(B)

[
1 + (1− q)S(e)

q (A)
]
δUq(B). (10)

Since the total internal energy is fixed, holds the identity

δUq(A) + δUq(B) = 0. (11)

Therefore, from Eq. (10), it follows that

∂S
(e)
q (A)

∂Uq(A)

[
1 + (1− q)S(e)

q (A)
]−1

=
∂S

(e)
q (B)

∂Uq(B)

[
1 + (1− q)S(e)

q (B)
]−1

, (12)
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which can also be expressed as

β̃q(A) = β̃q(B), (13)

where β̃q is the renormalized inverse temperature: β̃q = β/cq.
Equation (13) defines the equivalence relation between temperatures of the

subsystems in equilibrium, on which the zeroth law of thermodynamics in nonex-
tensive statistical mechanics can be based. An essential point regarding this re-
lation is the factorization in Eq. (8). In the extensive limit q → 1, the Tsallis en-
tropy converges to the Boltzmann-Shannon entropy, Sq[p]→S[p]=−∑n pn ln pn,
which satisfies the additivity as seen from Eq. (9). The corresponding equilib-
rium probability distribution has the exponential form, p(e)n ∼ exp(−βεn), which
can be obtained from Eq. (4) in the above limit. Therefore, if the subsystems
are dynamically independent, i.e., H = H(A) +H(B), then the joint probabil-
ity distribution is obviously factorized. In the nonextensive case, however, the
probability distribution in Eq. (4) is not apparently factorized and accordingly
correlation is always induced. Thus the validity of the equivalence relation in
Eq. (13) (and therefore the zeroth law of thermodynamics) is highly nontrivial.

In what follows, we report a recent result [3] in the study of the property of
correlation induced by nonextensivity. Specifically we consider the classical ideal
gas model. Since the gas particles in this model are all dynamically independent,
the property of correlation induced by nonextensivity will be revealed in a pure
manner.

The Hamiltonian of the system is given by

H =
N∑
i=1

P 2
i

2m
, (14)

where m is the common particle mass, P i the D-dimensional momentum of the
ith particle and N the number of the particles. In this case, the probability
distribution which maximizes the Tsallis entropy becomes

f (e) (P 1,P 2, · · · ,PN )

=
1

Zq(β)

[
1− (1− q)(β/cq)

(
N∑
i=1

P 2
i

2m
− Uq

)]1/(1−q)

. (15)

The generalized partition function in this equation is

Zq(β) =
V N

N !hDN

∫ N∏
i=1

dDP i

×
[
1− (1− q)(β/cq)

(
N∑
i=1

P 2
i

2m
− Uq

)]1/(1−q)

, (16)

where V and h are the spatial volume of the system and the linear size of the
elementary cell in phase space, respectively. The normalization condition on f (e)
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is

V N

N !hDN

∫ N∏
i=1

dDP i f
(e)(P 1,P 2, · · · ,PN ) = 1. (17)

The normalized q-expectation value of a physical quantity Q =
Q(P 1,P 2, · · · ,PN ) is defined by

< Q >q =
V N

cqN !hDN

∫ N∏
i=1

dDP i Q(P 1,P 2, · · · ,PN )

×
[
f (e)(P 1,P 2, · · · ,PN )

]q
, (18)

where

cq =
V N

N !hDN

∫ N∏
i=1

dDP i

[
f (e)(P 1,P 2, · · · ,PN )

]q
. (19)

It is possible to show that the present model is well defined in the two ranges
of the nonextensivity parameter q: 0 < q < 1 and 1 < q < 1 + 2/(DN). Since
N is very large, the latter essentially collapses to the extensive limit q → 1 + 0.
Therefore, in what follows, we restrict ourselves to the range

0 < q < 1. (20)

In this case, the probability distribution in Eq. (15) can be written in the form

f (e)(P 1,P 2, · · · ,PN ) = C

(
Λ2 −

N∑
i=1

P 2
i

)1/(1−q)

, (21)

where C is the normalization factor and

Λ2 =
2mcq

(1− q)β

[
1 + (1− q)

βUq

cq

]
. (22)

Thus, the support of the distribution function is the interior of the hypersphere
with the radius Λ in the DN -dimensional momentum space.

Using Eq. (15), the generalized partition function Zq in Eq. (16), the gener-
alized internal energy Uq in Eq. (18) with Q = H, and the factor cq in Eq. (19)
are respectively calculated to be

Zq(β) =
Γ
(
2−q
1−q

)
Γ
(
2−q
1−q + DN

2

) V N

N !hDN

[
2πmcq
(1− q)β

]DN/2

×
[
1 + (1− q)

βUq

cq

]1/(1−q)+DN/2

, (23)
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Uq =
DN
2β

[Zq(β)]q
Γ
(
2−q
1−q

)
Γ
(
2−q
1−q + DN

2

) V N

N !hDN

[
2πmcq
(1− q)β

]DN/2

×
[
1 + (1− q)

βUq

cq

]1/(1−q)+DN/2

, (24)

cq =
1

[Zq(β)]q
Γ
(

1
1−q

)
Γ
(

1
1−q + DN

2

) V N

N !hDN

[
2πmcq
(1− q)β

]DN/2

×
[
1 + (1− q)

βUq

cq

]q/(1−q)+DN/2

. (25)

A point is that equations (24) and (25) give rise to the relation

βUq

cq
=

DN

2
. (26)

This enables us to evaluate all physical quantities in the closed forms. For ex-
ample, from eqs. (6), (25) and (26), the solution for cq is obtained as follows:

cq =

{
Γ
(

1
1−q

)
Γ
(

1
1−q + DN

2

) V N

N !hDN

[
2πm

(1− q)β

]DN/2

×
[
1 + (1− q)

DN

2

]q/(1−q)+DN/2} 2(1−q)
2−(1−q)DN

. (27)

Now, we wish to discuss the property of correlation between the Hamilto-
nians of the ith and jth particles, Hi = P 2

i /2m and Hj = P 2
j/2m. For this

purpose, we define the generalized variance, covariance, and correlation coeffi-
cient respectively as follows:

(∆qHi)2 =< H2
i >q− < Hi >

2
q, (28)

Cq(Hi, Hj) =< HiHj >q− < Hi >q < Hj >q, (29)

ρq(Hi, Hj) =
Cq(Hi, Hj)√

(∆qHi)2(∆qHj)2
. (30)

Straightforward calculation shows

(∆qHi)2 =
c2q
2β2

× 2D + (1− q)D2(N − 1)
4− 2q + (1− q)DN

, (31)
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Cq(Hi, Hj) = − c2q
2β2

× (1− q)D2

4− 2q + (1− q)DN
, (32)

ρq(Hi, Hj) = − (1− q)D
2 + (1− q)D(N − 1)

. (33)

ρq vanishes in the extensive limit q → 1−0, as it should do. An important point
is that the correlation is suppressed also in the thermodynamic limit, N , V → ∞
with a fixed density N/V :

ρq(Hi, Hj) ∼ − 1
N
, (34)

showing factorization of the distribution function.
The above result suggests that the zeroth law of thermodynamics can be

established in nonextensive statistical mechanics in the thermodynamic limit
based on the equivalence relation prescribed by Eq. (13). The present discus-
sion is however entirely dependent on the simple classical ideal gas model. It
is extremely important to extend the idea to the case of a general Hamiltonian
system.
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Abstract. We prove uniqueness of the equilibrium states of q-thermodynamics for
1 < q ≤ 2, using both the unnormalized and the recently introduced normalized energy
functional. The proof follows from thermodynamic stability of equilibrium states in case
of the unnormalized energy. Dynamic stability is shortly discussed.

1 Introduction

The recent [1] introduction of a normalized energy functional in the formalism
of non-extensive thermodynamics eliminates some anomalies which plagued the
theory. The price one pays is that it is no longer straightforward to establish
the existence and uniqueness of equilibrium states. Therefore the present paper
presents a rather formal treatment of the problem, based on convexity argu-
ments.

We consider quantum systems with a finite number of degrees of freedom.
The state of the system is described by a density matrix \ on a Hilbert space
H. The Hamiltonian H is bounded from below, and has isolated eigenvalues
with finite multiplicity. For such systems one expects thermodynamic stability
of the equilibrium state, which is a stronger statement than just existence and
uniqueness. Still stronger is the concept of dynamic stability. We can present
only preliminary results concerning each of these concepts.

The next section introduces Tsallis entropy and the different choices of the
energy functional. Sect. 3 introduces both linear and nonlinear dynamics. Next
a short discussion is given of dynamic stability. Sect. 5 discusses thermodynamic
stability in the case of unnormalized energy. It is followed by the proof of the
first theorem. Finally, Sect. 7 discusses uniqueness of the equilibrium state in
the case of normalized energy, followed by the proof of the second theorem.

2 Nonextensive Thermodynamics

The canonical ensemble of thermodynamics is based on a pair consisting of an
entropy functional S(\) and an energy functional U(\). Together they determine

S. Abe and Y. Okamoto (Eds.): LNP 560, pp. 243–252, 2001.
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the free energy F(\) at temperature T by

F(\) = U(\)− TS(\) . (1)

The equilibrium state is the density matrix which minimizes (1).
The Tsallis entropy [2] is defined by

Sq(\) = kB
1− Tr \q

q − 1
. (2)

If q > 0, then Sq(\) ≥ 0 for all \. In the limit q = 1 the Shannon entropy is
recovered. Originally [2] the standard expression for the energy U(\) was used.
Given a Hamiltonian H let

U (1)
q (\) = Tr \H . (3)

Quite soon [3] it was observed that it is more natural to replace \ by \q in the
previous expression, i.e. one introduced

U (2)
q (\) = Tr \qH . (4)

Recently [1], the following modification has been proposed

U (3)
q (\) =

Tr \qH
Tr \q

. (5)

The effect on thermodynamics of replacing U (2)
q by U (3)

q is not so big. In fact,
the equilibrium states remain the same but the temperature scales are modified.
Using U (3)

q the temperature is always positive and the low temperature limit
corresponds to the ground state of the system, as one is used to. Using U (2)

q the
temperature has a lower bound, which can even be negative, and the formalism
is not invariant under shifts of the origin of the energy scale. Hence U (3)

q is the
preferred expression. However U (2)

q is used below as an intermediate step in the
study of U (3)

q .

3 Nonlinear von Neumann Equation

There are two ways to associate a quantum mechanical time evolution with the
energy functional (5). Introduce a new density matrix σ by

σ =
\q

Tr \q
. (6)

In terms of σ the conventional expression for the average energy U (3)
q (\) = TrσH

is obtained. The corresponding choice of time evolution is that of the Heisenberg
picture

σ(t) = e−ih̄−1Htσeih̄
−1Ht . (7)
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It satisfies the von Neumann equation

ih̄
dσ
dt

= [H,σ] . (8)

Alternatively, an equation of motion is derived following the procedure of [4]
(note that in [4] the energy functional U (2)

q was used instead of U (3)
q ). Write (5)

in a 1-homgeneous way

U (3)
q (\) = (Tr \)

Tr \qH
Tr \q

. (9)

Introduce an effective Hamiltonian Ĥ(\) by

Ĥ(\) =
δ

δ\
U (3)
q (\) . (10)

The precise meaning of this expression is that in a suitable orthonormal basis
{ψn}n one has

〈ψn|Ĥ(\)|ψm〉 =
∂U (3)

q (\)
∂\n,m

(11)

with \n,m = 〈ψm|\|ψn〉. The 1-homogeneity implies

U (3)
q (\) = Tr \Ĥ(\) . (12)

The corresponding choice of time evolution is described by the nonlinear von
Neumann equation

ih̄
d\
dt

= [Ĥ(\), \] . (13)

An important property of (13) is that it conserves the spectrum of \. Note that
the effective Hamiltonian satisfies

[Ĥ(\), \] =
Tr \
Tr \q

[H, \q] . (14)

If [H, \] = 0 then it is easy to calculate Ĥ(\) from the definition (10). One
obtains, putting Tr \ = 1,

Ĥ(\) = U (3)
q (\)1+ q\q−1H − U (3)

q (\)1
Tr \q

. (15)

Both equations of motion (8) and (13) are important in the context of the
q ↔ 1/q duality introduced in [1] (see [5]). Nonlinear equations of the type (13)
occur often in the literature, although not with Ĥ(\) of the form (15).
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4 Dynamic Stability

Sufficient conditions for a density matrix \0 to be dynamically stable are that
\0 is invariant under the time evolution and that there exists a norm || · || such
that the distance ||\(t) − \0|| does not depend on time for any other density
matrix \. See [6] for a definition of dynamic stability in the context of classical
mechanics, or [7] for an introductory text. Such an invariant norm exists, as
is shown below. Hence all invariant density matrices satisfying [H, \0] = 0 are
dynamically stable.

Fix a Hamiltonian H with discrete spectrum, and a constant γ such that
1+ γH is strictly positive (by which it is meant that 1 + γEm > 0 with Em the
ground state energy of H). Introduce an operator norm || · ||γ by

||A||2γ = Tr (1+ γH)|A|2 . (16)

Then one has for any pair of density matrices \, \0, with [\0, H] = 0,

||\− \0||2γ = Tr (1+ γH)(\− \0)2

= Tr \2 − 2Tr \\0 + Tr \20
+γ TrH\2 − 2γ TrH\\0 + γ TrH\20 . (17)

Each of the terms in the latter expression is time-invariant, for any of the dy-
namics discussed in the previous section. Hence ||\(t)−\0||γ does not depend on
time t. Therefore any invariant density matrix \0 is dynamically stable w.r.t. any
of the || · ||γ norms. Note that || · ||0 is the Hilbert-Schmidt norm. The stability
of invariant density matrices for the time evolution of the linear von Neumann
equation w.r.t. the Hilbert-Schmidt norm belongs to the common knowledge.

The above result suggests that the dynamics of quantum systems is more
regular than that of classical mechanics. In fact it is so regular that any invariant
density matrix is dynamically stable w.r.t. an infinite set of norms. However, in
classical mechanics it is implicitly understood that the energy functional U(\)
is continuous in the norm w.r.t. which \0 is dynamically stable. In the present
context this extra condition is in general not satisfied because the Hamiltonian
H can be unbounded. Hence dynamic stability in a more strict sense is still an
open issue.

One way to obtain stronger results is by the energy-Casimir method (see [7]).
The method starts by finding a conserved quantity C(\) (typically a Casimir of
the Lie bracket which defines the dynamics) such that the function Uq(\)+C(\)
is extremal at \0. In the present situation the obvious choice is C(\) = −TS(\)
because the equilibrium density matrix \0 minimizes the free energy. The next
step of the method is to find quadratic forms which bound the energy and the
entropy from below and from above. In the quantum context this means that
one should find quadratic forms Q1 and Q2 such that for all variations δ\ of \0

Q1(δ\) ≤ Uq(\0 + δ\)− Uq(\0)− Tr Ĥ(\0)δ\ (18)

and
Q2(δ\) ≤ C(\0 + δ\)− C(\0)− Tr

δC

δ\
(\0)δ\ . (19)
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Require that Q1(δ\) + Q2(δ\) > 0 for all δ\ �= 0. Then these quadratic forms
determine a norm || · || by

||δ\||2 = Q1(δ\) +Q2(δ\) . (20)

Given these quadratic forms, and the associated norm, one has to prove conti-
nuity of U and C in the vicinity of \0, in the following sense:

|Uq(\0 + δ\)− Uq(\0)| ≤ K1||δ\||α (21)

and
|C(\0 + δ\)− C(\0)| ≤ K2||δ\||α (22)

for constants K1 > 0, K2 > 0, and α > 0, and for sufficiently small ||δ\||. We
did not succeed to complete this step. Probably, progress can be made by first
studying explicit examples.

5 Thermodynamic Stability

The invariant density matrix \0 is formally stable if the free energy F(\) is
minimal at \0 and the matrix of second order variations is positive definite.

A short calculation shows that the free energy F (2)(\) = U (2)
q (\)− TSq(\) is

minimal at \ = \0, with the equilibrium density matrix \0 given by

\0 =
1

ζ(β, q)
(1+ β(q − 1)H)1/(1−q) (23)

and with
ζ(β, q) = Tr (1+ β(q − 1)H)1/(1−q) (24)

(assuming 1+ β(q − 1)H > 0 and β = 1/kBT ).
We can now formulate our first result.

Theorem 1. Assume that 1 < q ≤ 2. Take a Hamiltonian H and an inverse
temperature β = 1/kBT such that simultaneously 1+β(q−1)H is strictly positive
and H−1/(q−1) has a finite trace. Let \0 be the equilibrium density matrix given
by (23) and γ = β(q − 1). Then

F (2)(\)−F (2)(\0) ≥ q

2
kBT ||\− \0||2γ (25)

for all density matrices \.

The theorem shows that, if a state \ has a free energy which differs only
slightly from that of \0, then the distance between \ and \0 is small in the || · ||γ
norm. The converse is not necessarily true. The theorem shows further that the
density matrix \0 is formally stable, and is an absolute minimum of the free
energy F (2). For this reason it is called a a thermodynamic equilibrium state.
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6 Proof of Theorem 1

Two lemmas are needed. The following result is a variant of the Klein inequality
(see e.g. [8], 2.5.2, [9], 2.1.7).

Lemma 1. Let A, B and C be self-adjoint operators with discrete spectrum. Let
f be a convex function. Assume C ≥ 0 and CB = BC. Then

TrC (f(A)− f(B)− (A−B)f ′(B)) ≥ 0 . (26)

Proof. Let {φi}i be a basis in which A is diagonal, and {ψi}i a basis in which
B and C are diagonal. Let Aφi = aiφi, Bψi = biψi and Cψi = ciψi. Denote
λi,j = 〈φi|ψj〉. Then

〈φi|C (f(A)− f(B)− (A−B)f ′(B))φi〉
=
∑
j

cj |λi,j |2 (f(ai)− f(bj)− (ai − bj)f ′(bj)) ≥ 0. (27)

This proves the lemma.

Take
f =

q

2
f2 − fq with fq(x) =

x− xq

q − 1
. (28)

One has Sq(\) = kB Tr fq(\). It is easy to check that f is convex on the interval
[0, 1], provided 0 < q ≤ 2. Hence Klein’s inequality implies that

q

2
TrC (f2(A)− f2(B)− (A−B)f ′

2(B))

≥ TrC
(
fq(A)− fq(B)− (A−B)f ′

q(B)
)

(29)

for operators A and B with spectrum in [0, 1], and any positive operator C
commuting with B.

Lemma 2.

Tr (\− \0)H = kBT Tr (1+ β(q − 1)H)(\− \0)f ′
q(\0) . (30)

Proof.

Tr (1+ β(q − 1)H)(\− \0)f ′
q(\0)− β TrH(\− \0)

= Tr (\− \0)f ′
q(\0) + β(q − 1)TrH(\− \0)f ′

q(\0)
− β TrH(\− \0)

= Tr (\− \0)f ′
q(\0) + β TrH(\− \0)(1− q\q−1

0 )
− β TrH(\− \0)

= Tr (\− \0)f ′
q(\0)− βqTrH(\− \0)\

q−1
0

=
1

q − 1
Tr (\− \0)

(
1− q\q−1

0 (1+ β(q − 1)H)
)

= 0 . (31)

The latter follows because (23) implies that \q−1
0 (1 + β(q − 1)H) is a multiple

of 1. This proves the lemma.
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Recall that

U (2)
q (\) = Tr \qH = Tr \H − (q − 1)Tr fq(\)H . (32)

Hence, assuming Tr \ = 1, one has

F (2)
q (\) = Tr \H − kBT TrCfq(\) (33)

with C = 1+ β(q − 1)H. Therefore

F (2)
q (\)−F (2)

q (\0) = Tr (\− \0)H
− kBT TrC(fq(\)− fq(\0)) . (34)

Using the result of Lemma 2 one finds

F (2)
q (\)−F (2)

q (\0)
= −kBT TrC(fq(\)− fq(\0)− (\− \0)f ′

q(\0)) . (35)

From (29) with A = \, B = \0, then follows

F (2)
q (\)−F (2)

q (\0) ≥ −kBT q2 TrC (f2(\)− f2(\0)− (\− \0)f ′
2(\0))

= kBT
q

2
TrC(\− \0)2

= kBT
q

2
||\− \0||2γ (36)

with γ = β(q − 1). This ends the proof of the theorem.

7 Minima of F (3)

The variational principle states that the free energy (1) is minimal in equilibrium.
Its origin is that entropy Sq(\) should be maximal under the constraint that the
energy Uq(\) has a given value. To study F (3) it is easier to consider the problem
of minimizing U (3)

q (\) under the constraint that the entropy S(3)
q (\) has a given

value. The reason for this is that at constant entropy the denominator of (5)
is also constant. By the method of Lagrange multipliers, the minimum of F (3)

is the solution of the problem of minimizing U (3)
q (\) given S(3)

q (\). By variation
of the value of S(3)

q (\) one then obtains a solution of the original variational
principle. The study of F (3) which follows below is based on this idea.

From now on assume that 1 < q ≤ 2 – the situation for 0 < q < 1 is more
complicated due to the possibility of a high energy cutoff, as discussed in [1];
theorem 1 is only valid for q ≤ 2. The equilibrium state is of the form \0 = \α
with

\α =
1
ζα

(
1

α1+H

)1/(q−1)

(37)

and

ζα = Tr
(

1
α1+H

)1/(q−1)

. (38)
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(See [1].) The parameter α should be such that α1 + H is strictly positive, in
order to guarantee that the denominator is strictly positive.

Note that

\qαH = ζ1−q
α

\αH

α1+H
= ζ1−q

α \α

(
1− α1

α1+H

)
= ζ1−q

α \α − α\qα . (39)

From (39) it follows that

U (3)
q (\α) =

1
ζq−1
α

1
Tr \qα

− α . (40)

Hence the free energy equals

F (3)
q (\α) =

1
ζq−1
α

1
Tr \qα

− α− 1
β(q − 1)

(1− Tr \qα) (41)

with β = 1/kBT as usual. Variation w.r.t. α gives

∂

∂α
F (3)
q (\α) = −(q − 1)

1
ζqα

1
Tr \qα

∂ζα
∂α

− 1

−
(

1
ζq−1
α

1
(Tr \qα)2

− 1
β(q − 1)

)
∂

∂α
Tr \qα . (42)

Using
∂

∂α
ζα = − 1

q − 1
Tr

1
(α1+H)q/(q−1) = − 1

q − 1
ζqα Tr \qα (43)

there follows

∂

∂α
F (3)
q (\α) =

(
1

β(q − 1)
− 1
ζq−1
α

1
(Tr \qα)2

)
∂

∂α
Tr \qα . (44)

One can show that Tr \qα is a strictly decreasing function of α (see the appendix).
Therefore the extrema of F (3)

q (\α) are reached when α is solution of

β(q − 1) = ζq−1
α ( Tr \qα)

2 . (45)

This equation can be written out as

β(q − 1) =

(
Tr (α1+H)−q/(q−1)

)2
(
Tr (α1+H)−1/(q−1)

)1+q . (46)

One can convince oneself that this equation has a unique solution α(β) for each
β > 0 (see the appendix).

We can now formulate our main result.

Theorem 2. Assume that 1 < q ≤ 2 and that H−1/(q−1) has a finite trace.
Then the free energy F (3)

q (\) has a unique minimum. It occurs at \ = \α with α
the unique solution of (46).
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8 Proof of Theorem 2

Let \ be an arbitrary density matrix. There exists γ such that Sq(\) = Sq(\γ).
Now Theorem 1 implies

U (2)
q (\)− T ′Sq(\) ≥ U (2)

q (\γ)− T ′Sq(\γ) (47)

with kBT ′ = γ(q−1). But because the entropies are equal one has also F (3)
q (\) ≥

F (3)
q (\γ). Because α is the solution of (46) one has F (3)

q (\γ) ≥ F (3)
q (\α). The

two inequalities together yield

F (3)
q (\) ≥ F (3)

q (\α) . (48)

Finally, equality in (48) implies γ = α and \ = \γ because of the underbound of
Theorem 1. Hence the theorem is proved.

9 Conclusions

Our results bring additional support for the recently introduced normalized en-
ergy functional. Theorem 2 proves the uniqueness of the equilibrium density
matrix \0 at any positive temperature for 1 < q ≤ 2. The situation for 0 < q < 1
is more complicated and has not been treated here. The stronger result of ther-
modynamic stability with an underbound as obtained in Theorem 1 could only
be proved in the context of the unnormalized energy functional. It is quite likely
that a similar result holds in the context of the normalized energy functional.
However, it is not clear how to tackle this problem. Concerning dynamic stabil-
ity, which is the strongest of the stability properties under consideration here, no
result could be obtained. Probably progress can be made by studying dynamic
stability in explicit examples.
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Appendix

We show that Tr \qα is a strictly decreasing function of α and that (46) has a
unique solution for each β > 0.

First note that

∂ζα
∂α

=
1

1− q
Tr (α1− β(1− q)H)q/(1−q)

=
1

1− q
ζqα Tr \qα . (49)
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A short calculation using (49) gives

(q − 1)
∂

∂α
Tr \q = (q − 1)

∂

∂α
ζ−q
α Tr (α1− β(1− q)H)q/(1−q)

= −q(q − 1)ζ−q−1
α Tr (α1− β(1− q)H)q/(1−q) ∂ζα

∂α
−qζ−q

α Tr (α1− β(1− q)H)(2q−1)/(1−q)

= qζ−q−1
α

[
f(q)2 − f(1)f(2q − 1)

]
(50)

with
f(x) = Tr (α1− β(1− q)H)x/(1−q) . (51)

Now, the function f is strictly log-convex (assume that H is not a multiple of the
identity). Hence the r.h.s. of (50) is negative. This shows that Tr \qα is strictly
decreasing.

Equation (46) has at least one solution, because its rhs tends to +∞ as α
tends to −Em and to zero as α goes to +∞. Hence it takes on all positive values.
Therefore a solution exists for any β > 0.

Take the logarithm of the r.h.s. of (46). Its derivative w.r.t. α equals

− 2q
q − 1

fα(2q − 1)
fα(q)

+
1 + q

q − 1
fα(q)
fα(1)

(52)

with
fα(x) = Tr (α1+H)−x/(q−1) . (53)

Since fα is strictly log-convex, and q + 1 < 2q, and q = (1/2)1 + (1/2)(2q − 1),
expression (52) is negative. This implies that the r.h.s. of (46) is decreasing in
α. Hence (46) has a unique solution which is denoted α(β). Moreover, α(β) is a
decreasing function of β.
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Abstract. Recently, the Tsallis generalized distribution of states has been adapted
to various optimization algorithms. New Monte Carlo acceptance probabilities have
been worked out and tested in a number of physical systems. In the paper we have
applied the generalized simulated annealings to a ± J spin glass of 70 × 70 spins on
a square lattice. Since the system ground-state energy was known exactly the ability
of the generalized acceptance probabilities to find low-energy states has been checked
out. Efficiency of the new annealing procedures has also been compared with that of
the traditional method with respect to the number of annealing steps.

1 Generalized Acceptance Probabilities

Simulated annealing (SA) is a computational tool to deal with hard optimization
problems [1]. The method proceeds in such a way that at each annealing step
n the temperature T (n) is given and the system is allowed to walk on its phase
space long enough so that it will thermalize at T (n). Then the temperature is
decreased according to a given annealing schedule and the process is repeated
till the final temperature is sufficiently low. Some of the recent applications
of SA [2,3] have been based on the Tsallis statistics which unlike the usual
Boltzmann-Gibbs theory can be used for nonextensive systems [4,5].

The paper is organized as follows. We first recall the generalized simulated
annealings (SAs) based on the Tsallis formalism. Next, we describe the system
considered and the organization of the programs. The exact knowledge of the
system ground-state energy enables us not only to examine the time and energy
characteristics of the generalized SAs but also to check their efficiency quantita-
tively.

The Tsallis generalized acceptance probability (AP) is defined as

p = min[1, [1− (1− q)β∆E]
1

(1−q) ], (1)

where ∆E = Enew − Eold, β = 1/kT (Enew and Eold are energies after and
before a random reconfiguration; in the following k = 1 is used) and q is the
Tsallis parameter [5]. For q → 1 the standard AP is recovered. Since (1) does
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not obey detailed balance, Andricioaei and Straub have recently replaced it by
another AP [3]

p = min


1,(1− [1− q(T )]βEnew

1− [1− q(T )]βEold

) q(T )
[1−q(T )]


 ,

lim
T→0

q(T ) = 1. (2)

In (1) q is kept constant whereas in (2) it is a monotonically decreasing function
of temperature T .

2 Model and Simulations

In our work we have tested the above SAs for the 2D Edward-Anderson spin
glass system of 70 × 70 spins whose ground state energy is known to us [6].
Ising spins are located at each site of a square lattice with periodical boundary
conditions. The ferromagnetic and antiferromagnetic bonds Jij = ±1 between
the nearest neighbouring sites are distributed randomly and uniformly so that
the fraction of each of them is c = 0.5. The system energy is given by

E = −
∑
i<j

JijSiSj + 2N, (3)

where Si, Sj = ±1 are Ising spins, N is their total number, and the sum on the
right hand side runs over the nearest neighbouring sites. The last term in (3) is
a shift in the energy scale so that it becomes nonnegative [7]. The SAs are tested
by applying Monte Carlo (MC) algorithms within single-spin dynamics [8] which
consist of the following steps:
1. Set the temperature T and q (the initial temperature Ti is chosen considerably
higher than the largest ∆E).
2. Pick a spin at random.
3. Compute Enew, Eold, and the energy change associated with that flip.
4. Calculate the acceptance probability p for that flip.
5. Draw a random number z uniformly distributed between zero and unity.
6. If z < p flip the spin, otherwise do not flip it.
7. Repeat step 2. T and q are kept constant for 100N trial reconfigurations or
for 10N successful rearrangements, whichever comes first [2].
8. Record the energy.
9. Change T (and q) according to the annealing schedule. Start with step 2.

The initial temperature Ti is lowered according to T = Ti

(
Tf
Ti

) n
Na , where

n = 0, 1, 2, ..., Na, and Na is the number of annealing steps. Tf is the final
temperature. In (2) the initial Tsallis parameter q = qi is also decreased expo-
nentially to one, starting from values higher than one [3]. The AP (1) is set to
zero whenever the argument of the power law acceptance function is negative.
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3 Results

For each of the APs we have carried out 20 independent runs of Na = 1000 steps
for one special sample of the system size N = 70×70. As measured in annealing
steps (Fig. 1) low energies are found faster with (1) for q < 1. It is particularly
the case for q < 0 which seems consistent with Penna’s solution of the traveling
salesman problem [2]. However, the minimizing process stops at relatively high
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Fig. 1. The energy E versus temperature T for the average of 20 runs. A 70 × 70
spin system with the ground-state energy of 2976 (dashed line) is used. Ti = 20,
Tf = 0.1. From the bottom right hand side corner to the top left hand side one: a)
AP (1) with q = −2, 0, 0.8, respectively. In this case the energy decreases very rapidly
even in the ’zeroth’ annealing step. b). The standard SA (q = 1). c). AP (2) with
qi = 1.0001, 1.01, 2, respectively.

temperatures and the system is trapped in a set of isoenergetic states. For q
nearly one no major difference from the regular SA can be seen, and for q > 1
there is no energy decrease at all. The SA (2) gives different results. Only for
qi extremely close to one the annealing looks similar to the traditional one. In
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Fig. 2. The energy E versus MC steps per spin for the average of 20 runs for the same
system as in Fig 1. The same order as in Fig. 1 but from the bottom left hand side
corner to the top right hand side one.

other cases most of the annealing steps the energy fluctuates around a constant
value and drops at the end. No special advantage over the standard SA can be
observed in this approach. With respect to the number of MC steps per spin
(Fig. 2), as previously, eq. (1) leads to low energies extremely fast for q < 0, and
an immediate trapping in local energy minima is present. The algorithm (2) is
slower and for qi nearly one it can only be as fast as the regular SA.

We also have been interested in the precise values of the energies found at the
end of each run (Tab. I). Using (1) the closer to one q is the lower are both the
lowest final energy El and its average < El > (a). However, the energies found
are not qualitatively lower than those obtained using the standard scheme (b).
For q = −2 the minimizing is very fast but the system is trapped in a subspace
of states with relatively high energies. When applying (2), for qi slightly larger
than one we have arrived at relatively low final energies (c). Although some
of the El values are even a little lower than those in (b) we doubt that the
difference is sufficient to consider this AP as more efficient. The tendency is
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Table 1. The same system as in Fig. 1. The lowest final energy El out of 20 independent
runs found for each pair of Ti and Tf using: a) AP (1), b) standard SA, c) AP (2).
< El > is the average over the 20 runs of El obtained in each of them.

a Ti Tf q El < El > b q El < El > c qi El < El >

20 0.1 0.8 3012 3032.00 1 3008 3026.20 2 3152 3217.80
10 0.1 0.8 3012 3027.00 1 3012 3024.80 1.01 3044 3066.00
20 0.1 0 3044 3069.89 1 1.01 3036 3060.60
10 0.1 -2 3096 3122.67 1 1.0001 3004 3020.60
10 0.001 -2 3096 3124.20 1 3020 3031.4 1.0001 3012 3025.80
20 0.1 -2 3092 3125.33 1 1.0001 3008 3024.40
20 0.001 -2 3076 3119.40 1 3008 3031.4 1.0001 3004 3030.00

such that for larger qi both El and < El > are higher as well. Although, none
of the algorithms has arrived at the true ground state, the precise knowledge of
its energy (Eground = 2976, i. e. Eground

N − 2 = −1.393) enables us to conclude
that in terms of energy the final states found were relatively close to it. Actually,
the ratio | El−Eground

Eground−2N | is of the order of only 0.4 percent. Otherwise, the lowest
found state with the energy El = 3004 belongs to the 7th excited level above
the exact ground one.

4 Summary

In the paper we have performed Monte Carlo simulations of ±J spin glass us-
ing Tsallis generalized mechanics. We have discussed two proposals for the use
of Tsallis weights in simulated annealing simulated annealing algorithms and
compared them to the standard one. In frames of the described cooling proto-
col none of the generalized schemes has proven qualitatively more efficient in
finding states of low energies than that one based on the Metropolis acceptance
probability. After a carefull choice of the free parameters it is only possible to
arrive at states whose energies compare with those found with the standard
Monte Carlo method. However, if one is only interested in very quick but rather
imperfect minimization the Tsallis generalized algorithm seems the most useful.
This approach could be used, for instance, as an introductory step for further
deterministic optimization. Of course, our results are not fully general because
they refer only to one cooling schedule which actually is very widespread in the
literature but not the only. However, after comparing them with those obtained
for other systems, they seem to confirm the general opinion that the presented
methods are strongly model dependent. Therefore, we think that each of them
should be exactly tested before a serious application to a certain system.
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Abstract. We review uses of Tsallis statistical mechanics as a generalized-ensemble
simulation algorithm in the protein folding problem. A simulation based on this al-
gorithm performs a random walk in energy space, and it allows one not only to find
the global-minimum-energy conformation but also to obtain probability distributions
in canonical ensemble for a wide temperature range from only one simulation run. The
folding properties of a penta peptide, Met-enkephalin, are studied by this algorithm.

1 Introduction

The protein folding problem is one of the most challenging problems in theoret-
ical molecular science and biophysics (for reviews, see, for instance, Refs. [1,2]).
Proteins under their native physiological conditions spontaneously fold into
unique three-dimensional structures (tertiary structures) in the time scale of
miliseconds to minutes. Although the tertiary structures of proteins appear to
be dependent on various environmental factors within the cell, it was shown
by experiments in vitro that unfolded proteins can refold back into their na-
tive conformations once the denaturants are removed, implying that the three-
dimensional structure of a protein is determined solely by its amino-acid sequence
information [3]. This gave many theoreticians a hope that protein folding can be
reproduced by computer simulations. However, this has not been accomplished
to date even for small proteins.

The difficulty comes from the fact that the number of possible conformations
for each protein is astronomically large [4]. Simulations by conventional methods
such as Monte Carlo or molecular dynamics algorithms in canonical ensemble
will necessarily get trapped in one of many local-minimum states in the energy
function. In order to overcome this multiple-minima problem, many methods
have been proposed (for reviews, see, for example, Refs. [5]-[8]). Generalized-
ensemble algorithms, most well-known of which is the multicanonical approach
[9], are powerful ones and were first introduced to the protein-folding problem in
Ref. [10]. Simulations in the multicanonical ensemble perform 1D random walk
in energy space, which allows the system to overcome any energy barrier. Besides
multicanonical algorithms, simulated tempering [11] and 1/k-sampling [12] have
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been shown to be equally effective generalized-ensemble methods in the protein
folding problem [13]. The simulations are usually performed with Monte Carlo
(MC) scheme, but recently molecular dynamics (MD) version of multicanonical
algorithm was also developed [14]-[16].

The generalized-ensemble approach is based on non-Boltzmann probability
weight factors, and in the above three methods the determination of the weight
factors is non-trivial. We have shown that a particular choice of the Tsallis
weight factor [17] can be used for generalized-ensemble simulations [18,19]. (For
a review, see Ref. [20]. Similar ideas based on the Tsallis weight were also pursued
in Refs. [21,22]. See the lecutre notes by Straub in this volume.) The advantage
of this ensemble is that it greatly simplifies the determination of the weight
factor. We remark that simulated annealing versions of the method have been
applied to the protein folding problem in Refs. [21,23].

In this article, we review a generalized-ensemble algorithm based on Tsallis
statistics. The performances of the algorithm are tested with the system of an
oligopeptide, Met-enkephalin, and the free energy landscape of this peptide is
studied in the context of the protein folding problem.

2 Methods

2.1 Energy Function of Protein Systems

The total potential energy function Etot that we used is one of the standard ones.
Namely, it is given by the sum of the electrostatic term EC , 12-6 Lennard-Jones
term ELJ , and hydrogen-bond term EHB for all pairs of atoms in the molecule
together with the torsion term Etor for all torsion angles:

Etot = EC + ELJ + EHB + Etor ,

EC =
∑
(i,j)

332 qiqj
ε rij

,

ELJ =
∑
(i,j)

(
Aij

r12ij
− Bij

r6ij

)
, (1)

EHB =
∑
(i,j)

(
Cij

r12ij
− Dij

r10ij

)
,

Etor =
∑
i

Ui

(
1± cos(niχi)

)
.

Here, rij is the distance (in Å) between atoms i and j, ε is the dielectric constant,
and χi is the torsion angle for the chemical bond i. Each atom is expressed by
a point at its center of mass, and the partial charge qi (in units of electronic
charges) is assumed to be concentrated at that point. The factor 332 in EC is a
constant to express energy in units of kcal/mol. These parameters in the energy
function as well as the molecular geometry were adopted from ECEPP/2 [24].
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The computer code KONF90 [25] was used for the present simulations. We ne-
glected the solvent contributions for simplicity and set the dielectric constant ε
equal to 2. The peptide-bond dihedral angles ω were fixed at the value 180◦ for
simplicity. The remaining dihedral angles φ and ψ in the main chain and χ in the
side chains thus constitute the variables to be updated in the simulations (there
are 19 such angles for Met-enkephalin). One MC sweep consists of updating all
these angles once with Metropolis evaluation [26] for each update.

2.2 Generalized-Ensemble Algorithm with Tsallis Statistics

In the canonical ensemble at temperature T each state with potential energy E
is weighted by the Boltzmann factor

wB(E, T ) = e−βE , (2)

where the inverse temperature is given by β = 1/kBT with Boltzmann con-
stant kB . This weight factor gives the usual bell-shaped canonical probability
distribution of energy:

PB(E, T ) ∝ n(E) wB(E, T ) , (3)

where n(E) is the density of states. For systems with many degrees of freedom,
it is usually very difficult to generate a canonical distribution at low tempera-
tures. This is because there are many local minima in the energy function, and
simulations will get trapped in states of these local minima.

Generalized-ensemble algorithms are the methods that perform random walks
in energy space, allowing simulations to escape from any state of energy local
minimum. To name a few, multicanonical algorithms [9], simulated tempering
[11], and 1/k-sampling [12] are such algorithms. Here, we discuss one of the lat-
est examples of simulation techniques in generalized ensemble [18,19], which is
based on Tsallis statistics [17]. The probability weight factor of Tsallis statistics
is given by

w(E) ∝ [1 + (q − 1)βE]−
1

q−1 , (4)

which tends to the Boltzmann factor of Eq. (2) for q → 1, and therefore reg-
ular statistical mechanics is recovered in this limit. In our formalism of Tsallis
statistics as a generalized-ensemble simulation algorithm, we use the following
probability weight factor:

w(E) =
(
1 + β0

E − EGS

m

)−m

, (5)

where T0 = 1/kBβ0 is a low temperature, EGS is the global-minimum potential
energy, and m(> 0) is a free parameter, the optimal value of which will be given
below. This is the Tsallis weight of Eq. (4) at a fixed temperature T0 with the
following choice of q parameter:

q = 1 +
1
m

. (6)
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Note that through the substraction of EGS it is ensured that the weight will al-
ways be positive definite, which is required for computer simulations (otherwise,
the quantity can become complex).

The above choice of the weight was motivated by the following reasoning [18].
We are interested in an ensemble where not only the low-energy region can be
sampled efficiently but also the high-energy states can be visited with finite prob-
ability. In this way the simulation can overcome energy barriers and escape from
local minima. The probability distribution of energy should resemble that of an
ideal low-temperature canonical distribution, but with a tail to higher energies.
The Tsallis weight of Eq. (5) at low temperature T0 has the required properties
when the parameter m is carefully chosen. Namely, for suitable m > 0 it is a
good approximation of the Boltzmann weight wB(E, T0) = exp(−β0(E −EGS))
for β0(E − EGS)/m ) 1, while at high energies it is no longer exponentially
suppressed but only according to a power law with the exponent m.

In this work we consider a system with continuous degrees of freedom. At
low temperatures the harmonic approximation then holds, and the density of
states is given by

n(E) ∝ (E − EGS)
nF
2 , (7)

where nF is the number of degrees of freedom of the system under consideration.
Hence, by Eqs. (5) and (7) the probability distribution of energy for the present
ensemble is given by

P (E) ∝ n(E)w(E) ∝ (E − EGS)
nF
2 −m , (8)

for β0
E−EGS

m * 1. This implies that we need m > nF
2 . For, otherwise, the

sampling of high-energy configurations will be enhanced too much. On the other
hand, in the limit m → ∞ our weight tends for all energies to the Boltzmann
weight and high-energy configurations will not be sampled.

In order for low-temperature simulations to be able to escape from energy lo-
cal minima, the weight should start deviating from the (exponentially damped)
Boltzmann weight at the energy near its mean value (because at low tempera-
tures there are only small fluctuations of energy around its mean). In Eq. (5) we
may thus set

β0
< E >T −EGS

m
=

1
2
. (9)

The mean value at low temperatures is given by the harmonic approximation:

< E >T = EGS +
nF
2
kBT0 = EGS +

nF
2β0

. (10)

Substituting this value into Eq. (9), we obtain the optimal value for the exponent
m:

mopt = nF . (11)

Hence, the optimal weight factor is given by [18]

w(E) =
(
1 + β0

E − E0

nF

)−nF

, (12)
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where E0 is the best estimate of the global-minimum energy EGS .
We remark that the calculation of the weight factor is much easier than

in other generalized-ensemble techniques, since it requires one to find only an
estimator for the ground-state energy EGS . Once the weight factor is given, we
can implement the Metropolis MC algorithm [26] in a straightforward manner.
We remark that the molecular dynamics algorithm in this generalized ensemble
has also been developed in Ref. [19] (see also Ref. [22]).

As in the case of other generalized ensembles, we can use the reweighting
techniques [27] to construct canonical distributions at various temperatures T .
This is because the simulation by the present algorithm samples a large range
of energies. The thermodynamic average of any physical quantity A can be
calculated over a wide temperature range by

< A >T =

∫
dx A(x) w−1(E(x)) e−βE(x)

∫
dx w−1(E(x)) e−βE(x)

, (13)

where w(E) is the weight in Eq. (12) and x stands for configurations.

3 Results

The effectiveness of the algorithm presented in the previous section is tested for
the system of an oligopeptide, Met-enkephalin. This peptide has the amino-acid
sequence Tyr-Gly-Gly-Phe-Met.

It is known from our previous work that the global-minimum value of KONF90
energy for Met-enkephalin is EGS = −12.2 kcal/mol [28]. This ground-state
structure, which is referred to as Structure A below, is shown in Fig. 1. (This
structure is essentially the same as the ground-state conformation found previ-
ously in Refs. [29,30].) The figure was created with Molscript [31] and Raster3D
[32]. It is a superposition of ball-and-stick and space-filling representations. The
latter representation was added in order to give a rough idea of the volume of
the peptide as discussed below.

The peptide has essentially a unique three-dimensional structure at temper-
atures T ≤ 50 K, and the average energy is about −11 kcal/mol at T = 50
K [30,28]. Hence, in the present work we always set T0 = 50 K (or, β0 = 10.1
[ 1
kcal/mol ]) in our new probability weight factor in Eq. (12). All simulations were

started from completely random initial configurations (Hot Start).
To demonstrate that thermalization is greatly enhanced in our ensemble, we

first compare the “time series” of energy as a function of MC sweep. In Fig. 2 we
show the results from a regular canonical MC simulation at temperature T = 50
K (dotted curve) and those from a generalized-ensemble simulation of the new
algorithm (solid curve). Here, the weight we used for the latter simulation is given
by Eq. (12) with nF = 19 and E0 = EGS = −12.2 kcal/mol. For the canonical
run the curve stays around the value E = −7 kcal/mol with small thermal
fluctuations, reflecting the low-temperature nature. The run has apparently
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Fig. 1. Ground-state structure (Structure A) of Met-enkephalin for KONF90 energy
function. The figures were created with Molscript [31] and Raster3D [32].

been trapped in a local minimum, since the mean energy at this temperature
is < E >T= −11.1 kcal/mol as found by a multicanonical simulation in Ref. [28].
On the other hand, the simulation based on the new weight covers a much wider
energy range than the canonical run. It is a random walk in energy space, which
keeps the simulation from getting trapped in a local minimum. It indeed visits
the ground-state region several times in 1,000,000 MC sweeps. These properties
are common features of generalized-ensemble methods.

We now examine the dependence of the simulations on the values of the
exponent m in our weight (see Eqs. (5) and (12)) and demonstrate that m = nF
is indeed the optimal choice. Setting E0 = EGS = −12.2 kcal/mol, we performed
10 independent simulation runs of 50,000 MC sweeps with various choices of m.
In Table 1 we list the lowest energies obtained during each of the 10 runs for
five choices of m values: 9.5 (= nF

2 ), 14, 19 (= nF ), 50, and 100. The results
from regular canonical simulations at T = 50 K with 50,000 MC sweeps are also
listed in the Table for comparison. If m is chosen to be too small (e.g., m = 9.5),
then the weight follows a power law in which the suppression for higher energy
region is insufficient (see Eq. (8)). As a result, the simulations tend to stay at
high energies and fail to sample low-energy configurations. On the other hand,
for too large a value of m (e.g., m = 100), the weight is too close to the canonical
weight, and therefore the simulations will get trapped in local minima. It is clear
from the Table that m = nF is the optimal choice. In this case the simulations
found the ground-state configurations 80 % of the time (8 runs out of 10 runs).
This should be compared with 90 % and 40 % for multicanonical annealing
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Fig. 2. Time series of the total energy Etot (kcal/mol) from a regular canonical sim-
ulation at temperature T = 50 K (dotted curve) and that from a simulation of the
present method with the parameters: E0 = −12.2 kcal/mol, nF = 19, and T = 50 K
(solid curve).

and simulated annealing algorithms, respectively, in simulations with the same
number of MC sweeps [28].

The weight factor of the present algorithm just depends on the knowledge
of the global-minimum energy EGS (see Eq. (12)). If its value is known, which
is the case for some systems, the weight is completely determined. However, if
EGS is not known, we have to obtain its best estimate E0. In Table 2 we list
the lowest energies obtained during each of 10 independent simulation runs of
200,000 MC sweeps with m = nF = 19. Four choices were considered for the E0
value: −12.2, − 13.2, − 14.2, and −15.2 kcal/mol. We remark that E0 has to
underestimate EGS to ensure that E − E0 cannot become negative. Our data
show that an accuracy of 1 ∼ 2 kcal/mol in the estimate of the global-minimum
energy is required for Met-enkephalin.

Since the simulation by the present algorithm samples a large range of en-
ergies (see Fig. 2), we can use the reweighting techniques [27] of Eq. (13) to
construct canonical distributions and calculate thermodynamic quantities as a
function of temperature over a wide temperature range.

All thermodynamic quantities were then calculated from a single production
run of 1,000,000 MC sweeps which followed 10,000 sweeps for thermalization.
At the end of every fourth sweep we stored the energy of the conformation, the
corresponding volume, and the overlaps of the conformations with the (known)
reference states for further analyses. Here, we approximate the volume of the
peptide by its solvent excluded volume (in Å3) which is calculated by a variant
[33] of the double cubic lattice method [34]. Our definition of the overlap, which
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Table 1. Lowest energy (in kcal/mol) obtained by the present method with several
different choices of the exponent m.

E0 EGS = −12.2 −12.2 −12.2 −12.2 −12.2

m nF
2 = 9.5 14 nF = 19 50 100 ∞a

Run

1 0.8 −5.2 −11.8 −6.9 −6.8 −4.2
2 −1.4 −2.6 −11.5 −7.1 −7.7 −5.2
3 0.1 −6.8 −11.5 −6.9 −4.9 −11.8
4 0.5 −5.5 −11.7 −8.2 −9.9 −7.1
5 −1.0 −3.4 −11.6 −7.4 −12.0 −3.3
6 1.1 −6.4 −11.6 −10.1 −8.8 0.9

7 −1.3 −5.1 −8.5 −8.7 −8.7 −5.3
8 0.4 −3.3 −9.7 −10.8 −9.5 −6.3
9 1.2 −8.1 −11.6 −12.0 −6.8 −6.4
10 1.2 −3.3 −11.9 −10.8 −9.5 −4.7

< Emin >
b 0.2 (1.0) −5.0 (1.8) −11.1 (1.1) −8.9 (1.9) −8.5 (2.0) −5.3 (3.2)

nGS
c 0/10 0/10 8/10 1/10 1/10 1/10

a The case for m = ∞ stands for a regular canonical run at T = 50 K.
b < Emin > is the average of the lowest energy obtained by the 10 runs (with the
standard deviations in parentheses).
c nGS is the number of runs in which a conformation with E ≤ −11.0 kcal/mol (the
average energy at T = 50 K) was obtained.

measures how much a given conformation resembles a reference state, is given
by

O(t) = 1− 1
90 nF

nF∑
i=1

∣∣∣α(t)i − α
(RS)
i

∣∣∣ , (14)

where α(t)i and α
(RS)
i (in degrees) stand for the nF dihedral angles of the con-

formation at t-th Monte Carlo sweep and the reference state conformation, re-
spectively. Symmetries for the side-chain angles were taken into account and the
difference α(t)i −α

(RS)
i was always projected into the interval [−180◦, 180◦]. Our

definition guarantees that we have

0 ≤ < O >T ≤ 1 . (15)

We remark that the average overlap < O >T approaches its limiting value zero
(for T → ∞) only very slowly as the temperature increases. For instance, at
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Table 2. Lowest energy (in kcal/mol) obtained by the present method with several
different choices of the free parameter E0.

E0 EGS = −12.2 −13.2 −14.2 −15.2

m nF = 19 19 19 19

Run

1 −11.8 −11.1 −10.5 −9.0
2 −11.9 −10.8 −8.3 −10.3
3 −11.9 −11.3 −11.6 −9.7
4 −11.9 −10.2 −10.9 −10.8
5 −11.8 −11.2 −6.9 −9.2
6 −11.3 −11.5 −10.8 −9.6
7 −11.9 −11.3 −8.3 −10.3
8 −11.8 −11.4 −5.9 −6.8
9 −12.0 −11.5 −10.6 −8.6
10 −11.7 −10.0 −10.3 −8.9

< Emin >
a −11.8 (0.2) −11.0 (0.5) −9.4 (1.9) −9.3 (1.1)

nGS
a 10/10 7/10 1/10 0/10

a The definitions for < Emin > and nGS are given in the caption of Table 1.

T = 1000 K we found that the overlap OA with the ground-state conformation
(Structure A) still has an average value of < OA >≈ 0.3. This is because
< O >T = 0 corresponds to a completely random distribution of dihedral
angles which is energetically highly unfavorable due to the steric hindrance of
both main and side chains. Note the obvious limit: OA → 1, as T → 0, indicating
that only the ground-state conformation exists at T = 0 K.

We expect the folding of proteins and peptides to occur in a multi-stage
process. A common scenario for folding may be that first the polypeptide chain
collapses from a random coil to a compact state. This coil-to-globule transition
is characterized by the collapse transition temperature Tθ. In the next stage, a
set of compact structures are explored and there exists a transition from one of
many local minima in the set of compact structures into the native (ground-state)
conformation. This second transition is characterized by the folding temperature
Tf (≤ Tθ).

The first process is connected with a collapse of an extended coil structure
into an ensemble of compact structures. This transition should be connected
with a pronounced change in the average volume of the peptide as a function
of temperature. The transition temperature Tθ can then be located from the
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position of the maximum of

d < V >T

dT
≡ β2 (< V Etot >T − < V >T< Etot >T ) . (16)

The average volume and its derivative as a function of temperature are shown in
Fig. 3. The second quantity measures the steepness of the decrease in volume. To
quantify its value we divided our time series in 4 bins corresponding to 250,000
sweeps each, determined the position of the maximum for both quantities in each
bin and averaged over the bins. In this way we found a transition temperature
Tθ = 310± 20 K [35].

Fig. 3. Average volume < V >T and its derivative d < V >T /dT as a function of
temperature.

The second transition which should occur at a lower temperature Tf is that
from a set of compact structures to the “native conformation” that is considered
to be the ground state of the peptide. This transition should be characterized
by a rapid change in the average overlap < OA >T with the ground-state con-
formation (see Eq. (14)) and a corresponding maximum in

d < OA >T

dT
≡ β2 (< OAEtot >T − < OA >T< Etot >T ) . (17)

Both quantities are displayed in Fig. 4, and we indeed find the expected behavior.
The rapid change in the overlap is clearly visible and occurs at a temperature
lower than the first transition temperature Tθ. We again try to determine its
value by searching for the peak in d < OA >T /dT in each of the 4 bins and
averaging over the obtained values. In this way we find a transition temperature
of Tf = 230± 30 K [35].
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Fig. 4. Average overlap < OA >T with the ground-state conformation and its deriva-
tive −d < OA >T /dT as a function of temperature.

We now apply the above algorithm to a more direct evaluation of the free-
energy landscape of Met-enkephalin [36]. The ensemble of low-temperature con-
formations of this peptide has been studied in detail [30,28,37,38]. These stud-
ies imply that there are two major groups of well-defined compact structures
which are characterized (and stabilized) by specific hydrogen-bonding patterns.
In Fig. 5 we show a sketch of the two structures. The figures were created with
RasMol [39]. Structure A is the ground-state conformation in ECEEP/2 and
is stabilized by the hydrogen bonds between Gly-2 and Met-5. Structure B,
the second-lowest energy state, is characterized by the hydrogen bonds between
Tyr-1 and Phe-4.

Since it is not feasible to plot the free energy G as a function of all order
parameters, we only plot G as a function of a suitable combination of the relevant
order parameters of the molecule. We chose to plot the free energy G(V,OA) as
a function of volume V and overlap OA with the known ground state (Structure
A) and G(OA, OB) as a function of the overlaps with the ground state (OA) and
with Structure B (OB), where we have

G(V,OA) = −kBT logP (V,OA) , (18)

and
G(OA, OB) = −kBT logP (OA, OB) . (19)

Here, P (V,OA) and P (OA, OB) are respectively the probabilities to find a pep-
tide conformation with values V , OA and OA, OB . We study these quantities
for temperatures T = 1000 K, T = Tθ = 300 K, T = Tf = 230 K, and T = 150
K. They are shown in Figs. 6 and 7 [36].
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Fig. 5. Backbone structures of the two dominant low-energy structures with their
characteristic hydrogen bonding: (a) Structure A, the ground state in ECEPP/2 (with
a KONF90 energy of −12.2 kcal/mol) and (b) Structure B, the local minimum with the
second-lowest potential energy (−11.0 kcal/mol in KONF90). The figures were created
with RasMol [39].

In Fig. 6(a) we show the free energy landscape as a function of volume and
overlap with the known ground state (Structure A) at the high-temperature re-
gion (T = 1000 K). In the contour plots, the contour lines mark multiples of kBT
(therefore different for different temperatures but appropriate to understand the
folding mechanism). We see that the free energy has its minimum at large vol-
umes (≈ 1470 Å3) and values of the overlap OA ≈ 0.3. Small volumes and larger
values of the overlap are suppressed by many orders of kBT . Hence, extended
random coil structures are favored at this temperature. The picture changes dra-
matically once we reach the collapse temperature Tθ, shown in Fig. 6(b). At this
temperature a large part of the V -OA space can be sampled in a simulation. The
contour plot shows that regions with both small and large volumes and almost
all values of OA lie within the 2 kBT contour. This indicates that at this tem-
perature the cross over between extended and compact structures happens with
a small thermodynamic barrier between them. By lowering the temperature to
Tf = 230 K, we now observe strong evidence for a funnel-like landscape [40,41]
(Fig. 6(c)). At this temperature the drive towards the native configuration is
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Fig. 6. Free energy G(V,OA) (in kcal/mol) as a function of both peptide volume V
(in Å3) and overlap OA (as defined in the text) for (a) T = 1000 K, (b) T = 300 K,
(c) T = 230 K, and (d) T = 150 K. Both the free energy surface and the contour plot
are shown. The contour lines are multiples of kBT . G(V,OA) was normalized such that
min(G(V,OA)) = 0.

dominant and no long-lived traps exist. There is clearly a gradient towards the
ground-state structure (OA ≈ 1), but other structures with similar volume (char-
acterized by values of OA ≈ 0.5) are only separated by free energy barriers of
order 1 kBT . Below this temperature we expect that the ground state is clearly
favored thermodynamically and separated from other low energy states by free
energy barriers of many orders of kBT . This can be seen in Fig. 6(d) where at
T = 150 K where other low energy states have free energies of 3 kBT higher
than the ground state and are separated by an additional barrier of 2 kBT .

The above picture is supported by the plots for the free energy as a function
of both the overlap OA with the ground state and the overlap OB with Struc-
ture B. Fig. 7(a) shows again the high-temperature situation. The free energy
has its minimum at small values of the overlap indicating that both conformers
appear with only very small frequency at high temperature. At T = 300 K, the
collapse temperature, again a large part of the space of possible configurations
(characterized by values of OA and OB) lies within the 2kBT contour as is clear
from Fig. 7(b). At the folding temperature Tf = 230 K a funnel in the energy
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Fig. 7. Free energy G(OA, OB) as a function of both overlaps OA and OB (as defined
in the text) for (a) T = 1000 K, (b) T = 300 K, (c) T = 230 K, and (d) T = 150
K. Both the free energy surface and the contour plot are shown. The contour lines are
multiples of kBT . G(OA, OB) was normalized such that min(G(OA, OB)) = 0.

landscape appears with a gradient towards the ground state, but Fig. 7(c) shows
that there are various other structures, the most notable of which is Structure B
(where OB ≈ 1), with free energies 3 kBT higher than the ground-state confor-
mation but separated from each other and the ground state only by free energy
barriers less than 1 kBT . No other long-lived traps are populated. Hence, the
funnel at Tf is reasonably smooth. Folding routes include direct conversion from
random-coil conformations into Structure A or some short trapping in Structure
B region before reaching Structure A region, but at the folding temperature it is
possible to reach the ground state from any configuration without getting kinet-
ically trapped. Canonical Monte Carlo runs at a fixed temperature (T = 230 K)
were performed and confirmed this picture (data not shown). We observed that
some of the runs went directly from the unfolded state to the ensemble of folded
conformations in State A, while in other runs trapping in State B occurred first
before folding into the ground-state structure. These kinetic runs therefore sup-
port our observation that Met-enkephalin is a good folder. Fig. 7(d) shows the
situation for T = 150 K where we expect an onset of glassy behavior. Again one
sees a funnel-like bias toward the ground state, however, the funnel is no longer
smooth and the free energy landscape is rugged. Free energy barriers of many
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kBT now separate different regions and would act as long-lived kinetic traps in
a canonical simulation rendering folding at this temperature extremely difficult.

4 Conclusions

In this article we have reviewed the uses of Tsallis statistical mechanics in the
protein folding problem. A generalized-ensemble algorithm based on Tsallis prob-
ability weight factor was introduced. While the determination of the optimal
weight factor for other generzlized-ensemble algorithms is non-trivial, its deter-
mination in the Tsallis generalized-ensemble algorithm is greatly simplified. The
effectiveness of the method was tested for a penta peptide, Met-enkephalin, and
the folding properties of this peptide were elucidated.
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