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Chapter 1
Introduction

The subject of computation in electricity and magnetism has so advanced in the
past 40 years, since the advent of digital computers and thanks to the development
of numerical methods, that today it urges and deserves adequate collocation also
in curricula for electrical engineering. However, the time allotted to the subject in
general is not very large in undergraduate studies, where more emphasis is still usually
attributed to circuits and systems than to fields. Moreover, field models are generally
not very popular among students, who are by far more familiar with circuit models.
Even if one considers the quasi-static case, however, not only is electromagnetism
fundamental for people dealing with electric and magnetic devices, but it provides the
basis for, e.g. semiconductor device design, bioengineering applications and so forth.

In the authors’ opinion, therefore, time has come to present field models in elec-
tricity and magnetism, in the frame of an introductory textbook to be used by senior
undergraduate or graduate students in the area of electrical and computer engineering.
Elementary electromagnetism, basic vector analysis and fundamentals of numerical
analysis are assumed to be known subjects.

Having this in mind, the authors have collected the experience they have accumu-
lated in teaching electromagnetic theory at various levels and in different countries;
they intend to offer a book on applied electricity and magnetism, describing the prob-
lems of calculating electromagnetic fields and the integral parameters connected with
them in sufficiently clear and short form.

The aim is that of writing a textbook containing the necessary background, i.e.
laws explaining electromagnetic phenomena, mathematical operators and equations
as well as methods for electromagnetic field calculation. The latter include both
analytical and numerical methods applied to the analysis as well as to the synthesis
of electromagnetic devices.

Classical analytical methods are first presented and closed-form solutions to some
problems are obtained by making the simplifying assumptions required. Numerical
methods are then discussed and it is shown how they are able to provide a solution
to practically any complicated problem. Special emphasis, among the numerical
schemes, is attributed to the finite element method because it is largely and commonly
used for field simulation. A peculiar feature of the book is the fact that the accent
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2 1 Introduction

is always put on field vectors rather than potentials, because the former represent
the quantity of main physical interest; consequently, the differential formulation
of Maxwell’s equations is preferred with respect to the integral one. An effort is
accordingly made to develop both analytical and numerical methods for solving the
electromagnetic problem in terms of field components directly.

Chapter 2 starts with a basic introduction to the world of vector fields. The reader is
guided through definitions, properties, theorems and equations in simply connected
domains, both bounded and unbounded. Scalar and vector potentials associated to
fields are presented as well. Then electric, magnetic and conduction fields under
steady conditions are considered separately.

Chapter 3 presents the most common analytical methods for solving boundary-
value problems which are applicable to simple domains.

For more complicated domains, numerical methods are required. Accordingly,
Chapter 4 deals with the finite-element method which has become the most general
and powerful method to solve field problems in these domains.

A general introduction to time-varying electromagnetic fields is presented in
Chapter 5, where Maxwell’s equations are presented and solved in some funda-
mental cases.

Finally, in Chapters 6 and 7 the authors move from direct to inverse prob-
lems, which in the past decade have increasingly attracted the attention not just
of researchers but also of practitioners in the field of electricity and magnetism.
Nowadays, in fact, the association of powerful low-price and high-speed comput-
ers with available advanced numerical methods makes it possible to try solutions
for inverse problems of various kind, with the ultimate target of offering engineers
the possibility of implementing the so-called automated optimal design. In these
two chapters, after giving definitions and a general presentation of the background,
strategies to solve inverse problems are presented and some case studies are solved.

Throughout the book theoretical concepts are illustrated by practical examples,
following a problem-solving approach and never forgetting that the engineering task
is just that of formulating and solving electromagnetic problems in a computational
fashion. It has been decided, in particular, to solve a single test problem by different
methods so that, from the comparison, limitations and advantages of each approach
are made clear.

The book is mainly recommended and addressed to undergraduate and graduate
students of electrical and computer engineering; however, it could also be helpful
for students preparing their Ph.D. projects, as well as for researchers and engineers
working in the broad area of electromagnetism. Finally the book, although written
by the authors who had in mind their own students in Italy and Poland, is intended
hopefully to be valid for a wider international audience.

Pavia, Łódź Paolo Di Barba, Antonio Savini, Sławomir Wiak
August 2007



Chapter 2
Vector Fields

2.1 Basic Operators and Equations

2.1.1 Vector Fields and Operators

In a three-dimensional domain (Fig. 2.1), given a reference frame, a vector function
V can be defined in

(i) a system of rectangular coordinates

V = Vxix + Vyiy + Vziz (2.1)

(ii) a system of cylindrical coordinates

V = Vrir + Vϕiϕ + Vziz (2.2)

(iii) a system of spherical coordinates

V = Vrir + Vϕiϕ + Vϑ īϑ (2.3)

Two first-order differential operators, namely curl and divergence, can be defined for
a given vector function V, hereinafter assumed to be regular enough.

In a system of rectangular coordinates, introducing the operator ∇ which is
defined as

∇ ≡ ∂

∂x
ix + ∂

∂y
iy + ∂

∂z
iz (2.4)

curl and divergence are expressed by the following formulas

curl V ≡ ∇ × V =
(

∂Vz

∂y
− ∂Vy

∂z

)
ix +

(
∂Vx

∂z
− ∂Vz

∂x

)
iy +

(
∂Vy

∂x
− ∂Vx

∂y

)
iz

(2.5)

3



4 2 Vector Fields

Fig. 2.1 Three systems of coordinates

and

div V ≡ ∇ · V = ∂Vx

∂x
+ ∂Vy

∂y
+ ∂Vz

∂z
(2.6)

respectively.
A vector function V can be obtained from a scalar function U by means of the

differential operator gradient:

V ≡ grad U = ∇U = ∂U

∂x
ix + ∂U

∂y
iy + ∂U

∂z
iz (2.7)

Two second-order differential operators can be also defined, as follows
Laplacian of a scalar function

∇2U ≡ div(grad U) = ∇ · (∇U
)

(2.8)

Laplacian of a vector function

∇2
V ≡ ∇ (∇ · V

)− ∇ × (∇ × V
)

(2.9)

In a system of rectangular coordinates, the former operator becomes

∇2U = ∂2U

∂x2
+ ∂2U

∂y2
+ ∂2U

∂z2
(2.10)

while the latter, if ∇ · V = 0, reduces to

∇2
V =

(
∇2Vx

)
ix +

(
∇2Vy

)
iy +

(
∇2Vz

)
iz (2.11)

Surfaces to which V is tangent are called flux (or field) surfaces. In each point of the
domain we can draw one and only one flux surface. In rectangular coordinates, the
equations of a flux surface are

dx

Vx
= dy

Vy
= dz

Vz
(2.12)
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In a two-dimensional domain the curl of a vector V = (Vx, Vy) is actually a scalar
quantity; in fact

∇ × V =
(

∂Vy

∂x
− ∂Vx

∂y

)
īz (2.13)

i.e. it exhibits a single non-zero component. Moreover, through a π
2 rotation of V in

the clockwise direction, the following vector can be defined

V
⊥ = (Vy, −Vx

)
(2.14)

Then, one has
∣∣∇ × V

∣∣ = ∣∣∣∇ · V
⊥∣∣∣ (2.15)

namely, curl and divergence identify the same operator.

2.1.2 Definition of a Vector Field

A vector field V is defined in a simply-connected domain Ω, giving its divergence
and curl in Ω as well as its normal component on the boundary Γ (Helmholtz’s
theorem).

In a domain Ω bounded by Γ, given

∇ · V = s in Ω (2.16)

∇ × V = c (2.17)

V · n = h along Γ (2.18)

where n is the outward normal versor, the vector field V is defined in a unique way.
In fact, let us assume that both V1 and V2 fulfil the above equations. It follows

∇ · V1 = ∇ · V2 = s then ∇ · (V1 − V2
) = 0 (2.19)

∇ × V1 = ∇ × V2 = c then ∇ × (V1 − V2
) = 0 (2.20)

V1 · n = V2 · n = h then
(
V1 − V2

) · n = 0 (2.21)

For the vector W = V1 − V2, from (2.20) one has

∇ × W = 0 (2.22)

It is so possible to find a scalar Ψ so that, if Ω is simply connected,

W = ∇Ψ (2.23)

and

W · n = ∇Ψ · n = 0 (2.24)
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Moreover, being

∇ · W = 0 (2.25)

one has also

∇ · ∇Ψ = 0 = ∇2Ψ (2.26)

By applying the Gauss’s theorem (see A.10) to Ψ∇Ψ one obtains
∫

Γ

Ψ∇Ψ · ndΓ =
∫

Ω

∇ · (Ψ∇Ψ
)
dΩ =

∫
Ω

(
∇Ψ · ∇Ψ + Ψ∇2Ψ

)
dΩ (2.27)

Taking (2.24) and (2.26) into account, it results
∫

Ω

∇Ψ · ∇ΨdΩ = 0 (2.28)

Therefore, it must be everywhere

∇Ψ = W = 0 (2.29)

i.e.

V1 = V2 (2.30)

So, the two vectors V1 and V2 are identical

V = V1 = V2 (2.31)

The following remarks can be put forward:

(i) The value of s, c and h, which are the sources of the field, cannot be chosen
arbitrarily.
In fact:

(a) c must be divergence-free (solenoidal)

∇ · (∇ × V
) = ∇ · c = 0 (2.32)

(b)
∫

Ω

∇ · V dΩ =
∫

Γ

V · n dΩ (2.33)

i.e. ∫
Ω

s dΩ =
∫

Γ

h dΓ (2.34)
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(ii) Specifying just ∇ · V = s is not enough to determine V since also V + ∇ × W
fulfils (2.16)

∇ · (V + ∇ × W
) = ∇ · V + ∇ · ∇ × W = s (2.35)

Conversely, V is not determined by just ∇ × V = c since V + ∇Ψ also
obeys (2.17)

∇ × (V + ∇Ψ
) = ∇ × V + ∇ × ∇Ψ = c + 0 (2.36)

(iii) If s = 0, the field is called solenoidal.
(iv) If c = 0, the field is called irrotational.

The problem of finding the field V in a domain, knowing its sources and normal
component on the boundary, is normally referred to as a boundary-value problem.
As shown by the Helmholtz’s theorem, this problem has, at most, a unique solution.

2.1.3 Decomposition of a Field

Every vector field V with vanishing normal component at the boundary is the
sum of a curl-free field V1 and a divergence-free field V2, both of which with
vanishing normal component at the boundary.

In fact, it is assumed that V1 subject to

∇ · V1 = s in Ω (2.37)

∇ × V1 = 0 (2.38)

and to

V1 · n = 0 along Γ (2.39)

is known, together with V2 for which

∇ · V2 = 0 in Ω (2.40)

∇ × V2 = c (2.41)

and

V2 · n = 0 along Γ (2.42)

hold. Then, for

V = V1 + V2 (2.43)

one has

∇ · V = ∇ · (V1 + V2
) = ∇ · V1 = s (2.44)

∇ × V = ∇ × (V1 + V2
) = ∇ × V2 = c in Ω (2.45)

V · n = (V1 + V2
) · n = 0 along Γ (2.46)

Therefore V in (2.43) is defined in a unique way.
It can be proven that the result holds, in general, also for other boundary conditions.
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2.1.4 Scalar and Vector Potentials

Every field V in an unbounded, homogeneous and simply-connected three-
dimensional domain can be expressed by means of a scalar potential φ and
a vector potential A.

It is assumed that

V = −∇φ + ∇ × A (2.47)

with

φ(r) = 1

4π

∫
Ω

s

r
dΩ (2.48)

and

A(r) = 1

4π

∫
Ω

c

r
dΩ (2.49)

where r = ∣∣rP − rQ
∣∣ is the distance between source (s or c) point Q and field point

P. If ΩQ ⊂ Ω is the subdomain represented by all source points and ΩP ⊂ Ω is the
subdomain of all field points, it is assumed that ΩQ ∪ ΩP = Ω and ΩQ ∩ ΩP = 0.

It is possible to show that V fulfils

∇ · V = s (2.50)

∇ × V = c (2.51)

so that it is defined in unique way.
In fact, taking the divergence of (2.47) one has (see A.5 and A.8)

∇ · V = −∇ · ∇φ + ∇ · ∇ × A = −∇ · ∇φ = −∇2φ =
= − 1

4π
∇2
(∫

Ω

s

r
dΩ

)
= − 1

4π

∫
Ω

s∇2
(

1

r

)
dΩ = s (2.52)

On the other hand, taking the curl of (2.47) and assuming ∇ · A = 0 one obtains (see
A.5 and A.9)

∇ × V = −∇ × (∇φ
)+ ∇ × ∇ × A = ∇ × ∇ × A = ∇ (∇ · A

)− ∇2
A =

= − 1

4π

∫
Ω

c∇2
(

1

r

)
dΩ = c (2.53)

It can be proven that the result is valid also for bounded domains.
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2.1.5 Green’s Theorem

Any two scalar and regular functions φ and ψ defined in a domain Ω bounded
by Γ fulfil the following reciprocity relation (Green’s theorem or Green’s second
identity).

∫
Γ

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
dΓ =

∫
Ω

(
φ∇2ψ − ψ∇2φ

)
dΩ (2.54)

In fact, applying the divergence theorem (see A.10) to φ∇ψ, one has∫
Γ

(
φ∇ψ

) · n dΓ =
∫

Ω

∇ · (φ∇ψ
)

dΩ (2.55)

and ∫
Γ

φ
∂ψ

∂n
dΓ =

∫
Ω

(
∇φ · ∇ψ + φ∇2ψ

)
dΩ (2.56)

Equation (2.56) is called Green’s first identity and can be put into the form∫
Ω

φ∇2ψdΩ =
∫

Γ

φ
∂ψ

∂n
dΓ−

∫
Ω

∇φ · ∇ψdΩ (2.57)

which expresses the rule of integration by parts.
Doing the same for ψ∇φ, one obtains∫

Γ

(
ψ∇φ

) · n dΓ =
∫

Ω

∇ · (ψ∇φ
)

dΩ (2.58)

and ∫
Γ

ψ
∂φ

∂n
dΓ =

∫
Ω

(
∇ψ · ∇φ + ψ∇2φ

)
dΩ (2.59)

Subtracting (2.59) from (2.56) gives
∫

Γ

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
dΓ =

∫
Ω

(
φ∇2ψ − ψ∇2φ

)
dΩ (2.60)

2.1.6 Green’s Formula

In a three-dimensional domain Ω a function φ can be expressed as a function
of ∇2φ in Ω and of φ and ∂φ

∂n on Γ.

In fact, from (2.60), for ψ = 1
r , one has (see A.5)

∫
Γ

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
dΓ = −

∫
Ω

4πφδ(r)dΩ −
∫

Ω

ψ∇2φ dΩ (2.61)
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and ∫
Γ

φ
∂ψ

∂n
dΓ −

∫
Γ

ψ
∂φ

∂n
dΓ +

∫
Ω

ψ∇2φ dΩ = −4πφ (2.62)

Finally

φ = 1

4π

{∫
Γ

ψ
∂φ

∂n
dΓ −

∫
Γ

φ
∂ψ

∂n
dΓ −

∫
Ω

ψ∇2φ dΩ

}
(2.63)

is obtained, which is the Green’s formula.
In particular, for an unbounded domain, it results

φ = − 1

4π

∫
Ω

1

r
∇2φ dΩ (2.64)

Comparing (2.64) with (2.48), φ is the scalar potential if ∇2φ = −s, where s is the
field source.

In terms of scalar potential, the boundary-value problem becomes that of finding
the potential φ in the domain Ω, knowing the field source s and the values of potential
(Dirichlet’s problem) or normal derivative of the potential (Neumann’s problem) on
the boundary Γ.

2.2 Electrostatic Field

In a domain Ω with boundary Γ, filled in by an insulating medium, in the presence of
free electric charges distributed with density ρ (C m−3) in Ω and/or electric charges
distributed with density σ (C m−2) along Γ, the electrostatic field is defined by field
intensity E (V m−1) as well as by flux density D (C m−2). The medium is supposed
to be at rest with respect to the observer of the field. The two vectors are linked by
the constitutive law, which, if the medium is isotropic and linear and in the absence
of permanent polarization, is

D = εE (2.65)

The parameter ε is called permittivity (F m−1).

2.2.1 Maxwell’s Equations for Electrostatics

The electrostatic field is governed by the following equations in Ω

∇ × E = 0 (2.66)

∇ · D = ρ (2.67)
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and along Γ

n × E = 0 (2.68)

if Γ is a perfect conductor (flux lines perpendicular to Γ), or

n · D = σ (2.69)

if Γ carries charge density σ (C m−2), or

n · D = 0 (2.70)

if Γ is a perfect insulator (flux lines parallel to Γ).
In terms of just vector E, the equations governing the electrostatic field for a

homogeneous, isotropic and linear medium become in Ω

∇ × E = 0 (2.71)

∇ · E = ρ

ε
(2.72)

and along Γ

n × E = 0 (2.73)

or, for Γ conducting

n · E = σ

ε
(2.74)

and, for Γ insulating

n · E = 0 (2.75)

respectively.
According to theorem (2.2) E is uniquely defined and, because of (2.66), it is

irrotational.
Moreover, if both σ and ρ are given, then according to (2.67), (2.69) and Gauss’s

theorem (see A.10) it must be
∫

Γ

|σ| dΓ =
∫

Ω

|ρ| dΩ (2.76)

i.e. the total charge sums up to zero; in other words, surface charge density on Γ and
volume charge density in Ω are not independent.

In a two-dimensional domain, at the interface between two different media of
permittivity ε1 and ε2, respectively (Fig. 2.2), in the presence of free charge of
density σ (C m−2) at the interface, from (A.10), integrating D along a closed surface
including point P, the following two transmission conditions hold
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Ω1

Ω2

P

t1
n2

n1

t2

Fig. 2.2 Interface between two field regions

First of all

n1 · D2 + n2 · D1 = n1 · D2 − n1 · D1 = n1 · (D2 − D1
) = σ (2.77)

If σ = 0, the normal component of D is continuous.
Then, from (A.11), integrating E along a closed rectangular line surrounding point

P, one has

t1 · E1 + t2 · E2 = t1 · E1 − t1 · E2 = t1 · (E1 − E2
) = 0 (2.78)

i.e. the tangential component of E is continuous.
In the case of a non-homogeneous medium, the following remark can be put

forward. After (2.65) and (2.66), considering vector identity (A.16), it turns out to be

∇ × ε−1D = ε−1∇ × D + ∇ε−1 × D = 0 (2.79)

Apparently, field D is irrotational if ∇ε−1 and D are parallel vectors; this means that
lines separating layers of different ε are orthogonal to field lines of D. If ∇ε−1 = 0
(homogeneous medium), then D is always irrotational.

Conversely, in a charge-free domain, after (2.65) and (2.67), considering vector
identity (A.14), one has

∇ · εE = ε∇ · E + ∇ε · E = 0 (2.80)

In the case of a non-homogeneous medium, field E is solenoidal if ∇ε and E are
orthogonal vectors; this means that lines separating layers of different ε are parallel
to field lines of E.

Finally, an extension of constitutive law (2.65) is considered. When a permanent
polarization D0 is present in the insulating medium (electret), the constitutive law
becomes

D = εE + D0 (2.81)
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Then, the field equations are

∇ × E = 0 (2.82)

∇ · (εE
) = ρ − ∇ · D0 (2.83)

in terms of E, and

∇ · (ε∇U
) = −ρ + ∇ · D0 (2.84)

in terms of U, respectively (see (2.85)).

2.2.2 Electrostatic Potentials

(i) If Ω is simply connected, because of (2.66) it is always possible to introduce a
scalar function U (potential (V)) defined as

E = −∇U (2.85)

This way, the field is oriented from higher to lower values of potential. Therefore
(2.67) becomes

∇ · (ε∇U
) = −ρ (2.86)

This is the Poisson’s equation governing potential U, which reduces to

∇2U = −ρ

ε
(2.87)

for a homogeneous, isotropic and linear domain Ω.
In the case of ρ = 0, (2.87) is called Laplace’s equation and the potential

function U fulfilling it is said to be harmonic.
It must be remarked that, adding any constant k to U, all the equations defined

above are fulfilled as well; in order to have U uniquely defined, boundary
conditions must be added.

In a two-dimensional domain, along the boundary Γ with normal versor
n = (nx, ny) and tangential versor t = (tx, ty) = (−ny, nx) (Fig. 2.3), the
condition (2.75) in terms of field E = (Ex, Ey) becomes, in terms of potential U,

n · E = nxEx + nyEy = −nx
∂U

∂x
− ny

∂U

∂y
= −n · ∇U = −∂U

∂n
= 0 (2.88)

(homogeneous Neumann’s condition).
Similarly, condition (2.73) becomes

n × E = iz(nxEy − nyEx) = −īz

(
ty

∂U

∂y
+ tx

∂U

∂x

)
= −iz

∂U

∂t
= 0 (2.89)

In this case U is constant along Γ (Dirichlet’s condition).



14 2 Vector Fields

P
Ω

t

n

Fig. 2.3 Normal and tangential versors along the domain boundary

Lines of equal U are called equipotential lines.
A boundary-value problem is one in which (2.86) is the governing equation,

subject to known boundary conditions which may be (2.88) (Neumann’s prob-
lem) or (2.89) (Dirichlet’s problem) or, more generally, (2.88) and (2.89) along
Γ1 and Γ2, respectively, with Γ = Γ1 ∪ Γ2 and 0 = Γ1 ∩ Γ2.

(ii) If ρ = 0 in Ω, then, along with scalar potential U, a vector potential A (flux,
stream (C m−1)) can be uniquely defined, specifying its curl

D = ∇ × A (2.90)

and its divergence (gauge condition)

∇ · A = 0 (2.91)

In fact, since ∇ · (∇ × A) = 0 holds, (2.67) is always fulfilled, while (2.66)
becomes

∇ × 1

ε
(∇ × A) = 0 (2.92)

The latter is Laplace’s vector equation governing flux A. It has to be observed
that the gradient of an harmonic function η may be added to A, having all the
above equations fulfilled. In fact, if ∇ × A = 0 holds, then

A = −∇η (2.93)

and, due to (2.91), it results

−∇ · A = ∇ · ∇η = ∇2η = 0 (2.94)

In view to have A defined uniquely, suitable boundary conditions along Γ and,
if necessary, cuts in Ω must be introduced, transforming a multiply-connected
domain into a simply connected one (Fig. 2.4).

For a homogeneous domain, Laplace’s equation (2.92) becomes

1

ε
∇ × (∇ × A

) = 0 (2.95)

and therefore

∇(∇ · A) − ∇2
A = 0 (2.96)

or, because of (2.91)

−∇2
A = 0 (2.97)
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Ω

Γ1

Γ2

Γ1 ∪ Γ2 =  ∂Ω

Ω

Γ

Γ  =  ∂Ω

Fig. 2.4 Transforming a doubly connected domain in a simply connected one

2.2.3 Electrostatic Energy

Given an electrostatic field characterized by intensity E and flux density D in a linear
non-dissipative medium, the specific energy (J m−3) stored in the field is defined as
1
2 E · D.

Taking into account (A.14), one has

E · D = −∇U · D = U∇ · D − ∇ · (UD
)

(2.98)

Then, the total energy W (J) stored in a region Ω of boundary Γ, is

W = 1

2

∫
Ω

E · D dΩ = 1

2

∫
Ω

Uρ dΩ − 1

2

∫
Ω

∇ · (UD
)

dΩ =

= 1

2

∫
Ω

Uρ dΩ − 1

2

∫
Γ

UD · n dΓ (2.99)

The equation above represents an expression of the total energy as a function of
potential U, source ρ in the region Ω and source σ = D · n on the boundary Γ.

If the medium is isotropic, the energy W (J) stored in region Ω is given by:

W = 1

2

∫
Ω

ED dΩ (2.100)

Under the same assumptions, if the constitutive relationship of the dielectric material
is non-linear, the specific energy is

∫ D
0 E dD′ and the total energy W is

W =
∫

Ω

(∫ D

0
E dD′

)
dΩ (2.101)
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In some cases it is convenient to introduce the specific co-energy
∫ E

0 D dE′ so that
the total co-energy W′ is

W′ =
∫

Ω

(∫ E

0
D dE′

)
dΩ (2.102)

In the case of a linear medium W = W′ results.

2.2.4 Field of a Charged Plane in a Rectangular Domain

A conducting plane (y, z) of infinite extension with a uniform distribution σ (C m−2)

of charge is considered. Due to the field symmetry one has D = (D, 0, 0) so that the
problem can be formulated as:

∇ · D = σδ(x) = ∂(εE)

∂x
(2.103)

where δ(x) is the delta function (or Dirac’s delta) at x = 0 (see Appendix). By
integrating the latter equation along x ∈ (−∞, ∞), one has

σ

ε
= E(∞) − E(−∞) (2.104)

Taking into account the field orientation with respect to the plane, the boundary
condition

E(∞) = −E(−∞) (2.105)

can be set up. Therefore one obtains

E(x) = σ

2ε
sgn(x) (2.106)

The potential is

U(x) = σ

2ε
|x| (2.107)

2.2.5 Field of a Point Charge in a Spherical Domain

A point charge q (C), located at the origin of a system of spherical coordinates
(r, ϑ, ϕ), is considered.

The symmetry implies D = (D, 0, 0); after (A.19), the field equation is

∇ · D = r−2 ∂(r2D)

∂r
= ∂D

∂r
+ 2

r
D = qδ(r), r > 0 (2.108)
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where D vanishes as r approaches infinity. Treating (2.108) as a first-order differen-
tial equation in terms of r2D, one has

r2D(r) =
∫ r

0
qδ(ρ)ρ2dρ + k (2.109)

where k is the integration constant; then, the general solution is:

D(r) = r−2
(

q
∫ r

0
ρ2δ (ρ) dρ + k

)
(2.110)

The Dirac’s δ in a spherical geometry can be approximated by

δ = lim
α→0

δα, α > 0 (2.111)

with δα = 3
4πα3 if ρ ≤ α and δα = 0 elsewhere. Consequently, field D can be

approximated as

D = lim
α→0

Dα (2.112)

For r ≤ α one has

Dα = 1

r2

(
q
∫ r

0
ρ2δα dρ + kα

)
= 1

r2

(
3q

4πα3

r3

3
+ kα

)
(2.113)

namely

Dα = qr

4πα3
+ kα

r2
(2.114)

Since δα is a regular function near the origin, also Dα will be regular near zero;
therefore kα = 0.
For r ≥ α one has

Dα = 1

r2

(
q
∫ α

0
ρ2δα dρ + kα

)
= 1

r2

3q

4πα3

∫ α

0
ρ2dρ = 1

r2

3q

4πα3

α3

3
= q

4πr2

(2.115)

hence

Dα(r) = qr

4πα3
, r ≤ α (2.116)

and

Dα(r) = q

4πr2
, α < r (2.117)

Coulomb’s law follows

D(r) = lim
α→0

Dα(r) = q

4πr2
, r > α (2.118)

Finally, the potential results

U(r) = −
∫ r

∞
q

4περ2
dρ = q

4πεr
, r > 0 (2.119)
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2.2.6 Field of a Dipole

A dipole consisting of a point charge −q located at a distance d from a point charge
+q is considered (Fig. 2.5). In a system of spherical coordinates, the dipole moment is
defined as p = qd = −qdiz, if oriented from the negative charge to the positive one.

The potential at a distance r from the centre of the dipole is the superposition of
the potentials due to −q and +q, respectively (see 2.119)

U = q

4πεr1
− q

4πεr2
= q

4πε

(
r2 − r1

r1r2

)
(2.120)

If r >> d, then r1r2
∼= r2 and r2 − r1 ∼= d cos ϑ. In fact one has

r1 =
[

r2 + d2

4
− rd cos(π − ϑ)

] 1
2

= r

[
1 + d2

4r2
− d

r
cosϑ

] 1
2 ∼=

∼= r

2

[
d2

4r2
− d

r
cos ϑ

]
(2.121)

and

r2 =
[

r2 + d2

4
+ rd cos ϑ

] 1
2

= r

[
1 + d2

4r2
+ d

r
cosϑ

] 1
2 ∼=

∼= r

2

[
d2

4r2
+ d

r
cosϑ

]
(2.122)

respectively; it follows

r2 − r1 ∼= r

2

[(
d2

4r2
+ d

r
cosϑ

)
−
(

d2

4r2
− d

r
cosϑ

)]
= dcos ϑ (2.123)

· ·

·

q −q

0−d/2 d/2 z

r1
r

r2

P

θ

P

Fig. 2.5 Electric dipole
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Therefore, the potential

U = q

4πε

dcos ϑ

r2
= p · ir

4πεr2
(2.124)

and the electrostatic field

E = −∇U = −
(

∂U

∂r
ir + 1

r

∂U

∂ϑ
iϑ

)
=

= −
(

∂U

∂r
ir + 1

r

∂U

∂ϑ
iϑ

)
= qdcos ϑ

2πεr3
ir + qdsinϑ

4πεr3
iϑ (2.125)

follow, respectively.
In particular, along the line joining the two charges the potential is given by

U(z) = q

4πε

d

z2
for ϑ = 0, z �= 0 (2.126)

U(z) = − q

4πε

d

z2
for ϑ = π, z �= 0 (2.127)

Comparing the electrostatic field (2.125) due to a dipole with that due to a single
charge (monopole) (2.118), it can be realized that, while the former varies inversely
with r3, the latter varies inversely with r2.

2.2.7 Field of a Line Charge in a Cylindrical Domain

Let a line charge be located at r = 0 and let λ be the associated uniform charge
density (C m−1). The line charge is infinitely extended in the z direction. In a system
of cylindrical coordinates (r, ϕ, z) the symmetry implies D = (D, 0, 0); after (2.67)
and (A.17), the field equation is

∇ · D = r−1 ∂(rD)

∂r
= ∂D

∂r
+ r−1D = λδ(r), r > 0 (2.128)

where D vanishes as r approaches infinity. Treating (2.128) as a first-order differential
equation in terms of rD, one has

rD(r) =
∫ r

0
λδ(ρ)ρdρ + k (2.129)

and then the general solution is

D(r) = 1

r

(∫ r

0
λδ(ρ)ρdρ + k

)
(2.130)

where k is the integration constant.
The Dirac’s δ in a cylindrical geometry can be approximated by

δ = lim
α→0

δα, α > 0 (2.131)



20 2 Vector Fields

with δα = 1
πα2 if ρ ≤ α and δα = 0 elsewhere. Consequently, the field D can be

approximated as

D = lim
α→0

Dα (2.132)

For r ≤ α one has

Dα = 1

r

(∫ r

0
λδαρdρ + kα

)
= 1

r

(
λ

πα2

∫ r

0
ρdρ + kα

)
=

= 1

r

(
λ

πα2

r2

2
+ kα

)
(2.133)

Dα = λr

2πα2
+ kα

r
(2.134)

Since δα is a regular function near the origin, also Dα will be regular near zero;
therefore kα = 0.

For r ≥ α one has

Dα = 1

r

(∫ α

0
λδαρdρ + kα

)
= 1

r

(
λ

πα2

∫ α

0
ρdρ

)
=

= 1

r

(
λ

πα2

α2

2

)
= λ

2πr
(2.135)

The electric field turns out to be

E = λ

2πεr
(2.136)

The potential with respect to the point r = r0 is

U(r) = −
∫ r

r0

λ

2περ
dρ = λ

2πε
ln

r0

r
, r > 0, r0 > 0 (2.137)

2.2.8 Field of a Surface Charge on a Sphere

If a is the radius of the sphere and σ the surface uniform charge density, from Gauss’s
theorem (A.10) one has

E = 0, 0 < r < a (2.138)

E = q

4πεr2
, r ≥ a (2.139)

with q = ∫
Γ

σdΓ = 4πσa2. Therefore, from (2.85) by integration one has

U = −
∫ r

∞
q

4περ2
dρ = q

4πεr
, r ≥ a (2.140)

U = q

4πεa
, 0 < r < a (2.141)

Note that U is continuous with respect to r, while E is not (Fig. 2.6).
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Fig. 2.6 Surface charge distribution on a sphere

Moreover for r = a it results

E = ∂U

∂n
= σ

ε
, σ = ε

∂U

∂n
(2.142)

Like the current case, the cases described in Sections 2.2.4, 2.2.5 and 2.2.7 can be
solved also easily by means of the integral approach.

In fact, in the rectangular case, a parallelepiped surface with an axis orthogonal
to the metallic plate can be taken as integration surface. Due to the field symmetry,
the application of the Gauss’s theorem gives

D · 2S = 2εES = σS (2.143)

where S is the area of the rectangular surface parallel to the plate. It results

E = σ

2ε
(2.144)

In turn, in the spherical case, taking a spherical surface having radius r and centre in
the point charge q, one has

D4πr2 = εE4πr2 = q (2.145)

and therefore

E = q

4πεr2
(2.146)

U = q

4πεr
, if U → 0 for r → ∞ (2.147)

Finally, in the cylindrical case, considering a cylindrical surface of radius r, height l
and coaxially located with respect to the line charge distributed with density λ,
one gets

D2πrl = εE2πrl = λl (2.148)

whence

E = λ

2πεr
(2.149)

and

U = λ

2πε
ln

r

r0
, if U = 0 for r = r0 (2.150)
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2.2.9 Energy and Forces in the Electrostatic Field

In order to evaluate the mechanical effect on structures located in the field region,
three methods can be applied.

Principle of Virtual Work

Given the structure, on which force F is to be calculated, a virtual linear displacement
ds in the direction of F, supposing that the field source q is constant, mechanical work
Fds and variation of internal energy dW take place so that

Fds + dW = 0 (2.151)

Hence, the force acting on the structure can be evaluated as

F = −dW

ds
(2.152)

Similarly, in the case of a virtual angular displacement dϑ, the torque T with respect
to the rotation axis is

T = −dW

dϑ
(2.153)

The system spontaneously tends to assume the configuration corresponding to the
minimum energy stored.

On the other hand, if the structure has constant voltage U, one gets

Fdx + dW = Udq (2.154)

Fdx = d(qU − W) (2.155)

F = d

dx
(qU − W) (2.156)

where qU is the electric work done to keep U constant.
Correspondingly, the torque is

T = d

dϑ
(qU − W) (2.157)

The quantity qU-W, denoted by W′, is called complementary energy or co-energy
(see (2.102)) of the system; if the latter is linear, W′ and W coincide.

If U is kept constant, the system evolution is towards the geometry of maximum
co-energy.

The geometric interpretation of energy and co-energy in the charge-potential plane
is straightforward (Fig. 2.7).

There are two possible ways, in fact, to move the system from the initial point
(0, 0) to the final point (U, q), namely:
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U [V]

q

[C]

W

W’

Fig. 2.7 Electrostatic energy and co-energy

(i) From 0 to q by means of increments of free charge on the electrodes; in this
case, the system is electrically insulated and the total work done is W (energy)

(ii) From 0 to U by, by means of increments of voltage between the electrodes; in
this case, the system is electrically connected to a voltage source and the total
work done is W′ (co-energy)

It is always W + W′ = qU, while, if the system is linear, W = W′ = 1
2 qU holds.

Coulomb’s Method

It is based on the definition of electric field; the force F exerted on the free charge
distributed with density ρ in the region Ω is

F =
∫

Ω

ρEdΩ =
∫

Ω

(∇ · D
)
EdΩ (2.158)

where E is the external field, i.e. the field in the absence of charge. Directions of
force and electric field are coincident.

Method of Maxwell’s Stress Tensor

Defined a closed surface Γ enclosing the structure, then the force F is evaluated as

F =
∫

Γ

T · ndΓ (2.159)

where n is the outward normal versor.
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The Maxwell’s electric stress tensor T can be represented as a matrix whose
elements are specific energies related to the field; assuming a system of rectangular

coordinates, in a three-dimensional domain, tensor T is

T =
⎡
⎢⎣

1
2 (ExDx − EyDy − EzDz) ExDy ExDz

EyDx
1
2 (EyDy − ExDx − EzDz) EyDz

EzDx EzDy
1
2 (EzDz − ExDx − EyDy)

⎤
⎥⎦

(2.160)

The integration surface must not be coincident with the boundary between materials
with different values of permittivity, for tensor to be properly defined.

2.2.10 Force between the Plates of a Capacitor

Let us consider a capacitor made of a pair of parallel plates of infinite extension,
which carry a surface charge density equal to σ and −σ, respectively (Fig. 2.8).

Knowing the field of a single charged plate, after the principle of superposition
one gets from (2.108)

x < −d

2
, E = − σ

2ε
+ σ

2ε
= 0, U = 0 (2.161)

− d

2
< x <

d

2
, E = 2

σ

2ε
= σ

ε
, U = −σ

ε

(
x + d

2

)
(2.162)

x >
d

2
, E = σ

2ε
− σ

2ε
= 0, U = −σ

ε
d (2.163)

0
x

ε+σ −σ

−d/2 d/2

Fig. 2.8 Single-layer plane capacitor
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If a capacitor with plates of finite area S is considered, the capacitance C is
defined as

C = q

U
= ε

S

d
(2.164)

where q = σS is the charge on each plate of the capacitor and U = σd
ε

is the voltage.
If the capacitor is subject to a constant voltage U, the co-energy is W′ = 1

2 CU2

and the force acting on a plate is from (2.156)

F = ∂W′

∂d
= 1

2
U2 ∂C

∂d
= −1

2
U2 εS

d2
(2.165)

If, in turn, the charge is constant, the energy is W = q2

2C and the force is from (2.152)

F = −∂W

∂d
= −σ2S

2ε
= −1

2
U2 εS

d2
(2.166)

In both cases, the negative sign denotes an attractive force.
Resorting to the Coulomb’s method, supposing the charge to be constant and

uniformly distributed, the field external to the plate located at x = d
2 is equal to σ

2ε
while the charge carried by the plate itself is equal to −σS. Therefore, the force acting
on the plate of surface S results − σ2S

2ε
= − 1

2 U2 εS
d2 ; the force is attractive.

Finally, on the basis of the Maxwell’s stress tensor, considering a parallelepiped
surface, with an axis orthogonal to a plate and enclosing a portion S of it, one can
easily obtain

T =
⎡
⎣

1
2 ExDx 0 0

0 − 1
2 ExDx 0

0 0 − 1
2 ExDx

⎤
⎦ (2.167)

with n = (−1, 0, 0) and then∣∣∣T · n
∣∣∣ = −1

2
εE2

x (2.168)

F = −1

2
εE2

xS = −1

2
U2 εS

d2
(2.169)

The force is attractive.

2.2.11 Force at the Interface between Two Dielectric Materials

Let two layers of dielectric materials characterized by permittivities ε1 and ε2,
respectively, and subject to an applied voltage V as shown in Fig. 2.9, be considered.

If the boundary is charge-free, voltages and field intensities in each layer are such
that

E1x + E2(h − x) = V1 + V2 = V (2.170)
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(1,0)

(−1,0)

ε2

ε1

S
x

h

0

V1

V2

U = V

U = 0

ξ

Fig. 2.9 Two-layer plane capacitor

and

ε1E1 = ε2E2 (2.171)

following (2.85) in its integral form and (2.77), respectively.
Therefore, one has

E1 = ε2V

ε1(h − x) + ε2x
, E2 = ε1V

ε1(h − x) + ε2x
(2.172)

The co-energy of the system is

W′(x) = 1

2
ε1E2

1Sx + 1

2
ε2E2

2S(h − x) = 1

2
ε1ε2

V2S

ε1(h − x) + ε2x
(2.173)

By means of the principle of virtual work (2.156), the force between the two layers
results

F = ∂W′

∂x
= 1

2
(ε1 − ε2)

ε1ε2V2S

[ε1(h − x) + ε2x]2
(2.174)

If ε1 �= ε2 the dielectric with higher permittivity tends to penetrate into the other
one; if ε1 = ε2 the force is zero.

By means of Maxwell’s stress tensor, a parallelepiped surface, incorporating the
inner boundary between the two dielectric materials and parallel to it, is considered
as the integration surface. It results:
inside layer 1

∣∣∣T · n
∣∣∣ = −1

2
ε1E2

1 (2.175)

F1 = −1

2
ε1E2

1S = − ε1ε
2
2V2S

2 [ε1(h − x) + ε2x]2
(2.176)
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inside layer 2

∣∣∣T · n
∣∣∣ = 1

2
ε2E2

2 (2.177)

F2 = 1

2
ε2E2

2S = ε2
1ε2V2S

2 [ε1(h − x) + ε2x]2
(2.178)

Therefore, the total force at the interface between layers 1 and 2 is

F = F1 + F2 = −1

2
(ε1 − ε2)

ε1ε2V2S

[ε1(h − x) + ε2x]2
(2.179)

Resorting to the Coulomb’s method, supposing the charge to be constant and
uniformly distributed, the field Ẽ(h) external to the plate located at ξ = h is equal to

Ẽ(h) = 1

2
E2 = ε1V

2 [ε1(h − x) + ε2x]
(2.180)

while the charge carried by the plate itself is equal to

q2 = D2S = ε2E2S = ε1ε2VS

ε1(h − x) + ε2x
(2.181)

Then, the force acting on the plate of surface S at ξ = h is

F2 = q2Ẽ (h) = ε2
1ε2V2S

2 [ε1(h − x) + ε2x]2
(2.182)

Conversely, the field Ẽ(0) external to the plate located at ξ = 0 is equal to

Ẽ(0) = 1

2
E1 = ε2V

2 [ε1(h − x) + ε2x]
(2.183)

while the charge carried by the plate itself is equal to

q1 = −D1S = −ε1E1S = − ε1ε2VS

ε1(h − x) + ε2x
(2.184)

Then, the force acting on the plate of surface S at ξ = 0 is

F1 = q1Ẽ(0) = − ε1ε
2
2V2S

2 [ε1(h − x) + ε2x]2
(2.185)

Finally, the total force acting on the surface at ξ = x between the two dielectric
layers is

F = 1

2
(ε1 − ε2)

ε1ε2V2S

[ε1(h − x) + ε2x]2
(2.186)
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2.3 Magnetostatic Field

In a domain Ω with boundary Γ, containing permanent magnets i.e. aggregates of
magnetic dipoles or, from now on, steady electric current distributed with density
J (A m−2), a magnetostatic field is set up; it is defined by field intensity H (A m−1)

as well as flux density B (Wb m−2 = T). In general, the link between H and B,
i.e. the constitutive law of the medium, is complicated. Neglecting hysteresis, the
law is single-valued and can be expressed, for an isotropic medium in the absence
of permanent magnetization, by

B = μH (2.187)

where μ is called permeability (H m−1) and, in the most general case, is a function
of
∣∣H∣∣; the inverse of μ is called reluctivity ν. The medium is supposed to be at rest

with respect to the observer of the field.

2.3.1 Maxwell’s Equations for Magnetostatics

The equations governing the magnetic field are in Ω

∇ · B = 0 (2.188)

∇ × H = J (2.189)

and along Γ

n · B = 0 (2.190)

if Γ is a flux line (flux lines parallel to Γ), or

n × B = μJS (2.191)

if current of surface density JS (A m−1) is present, or

n × H = 0 (2.192)

if flux lines are perpendicular to Γ.
For an isotropic and linear medium, in terms of B, the equations become in Ω

∇ · B = 0; ∇ × B = μJ (2.193)

with, along Γ

n · B = 0 (2.194)

or

n × B = μJS (2.195)
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or

n × H = 0 (2.196)

The equations written above unambiguously define the magnetostatic field which,
because of (2.188), is solenoidal.

If both JS and J are given, then it must be
∫

Γ

∣∣Js
∣∣ dΓ =

∫
Ω

∣∣J∣∣ dΩ (2.197)

i.e. the total current sums up to zero: therefore, densities JS and J cannot be
independent.

In a non-homogeneous domain at the interface between two media of permeability
μ1 and μ2 (Fig. 2.2), from (2.188) it holds

n1 · (B2 − B1
) = 0 (2.198)

so that the normal component of B is continuous.
If there is a current of density JS (A m−1), then from (2.189)

t1 · (H1 − H2
) = Js (2.199)

If Js = 0, the tangential component of H is continuous. Equations (2.198) and (2.199)
are called transmission conditions.

In the case of a non-homogeneous medium, the following remark can be put
forward. After (2.187) and (2.188), considering vector identity (A.14), one has

∇ · μH = μ∇ · H + ∇μ · H = 0 (2.200)

In the case of a non-homogeneous medium, field H is solenoidal if ∇μ and H are
orthogonal vectors; this implies that lines separating layers of different μ are parallel
to field lines of H.

Conversely, after (2.187) and (2.189), considering vector identity (A.16), it turns
out that

∇ × μ−1B = μ−1∇ × B + ∇μ−1 × B = J (2.201)

It appears that, in a current-free medium (i.e. J = 0), field B is irrotational if ∇μ−1

and B are parallel vectors; this implies that lines separating layers of different μ are
orthogonal to field lines of B. If ∇μ−1 = 0 and J = 0 (homogeneous current-free
medium), then B is always irrotational.

Finally, an extension of constitutive law (2.187) is considered.
In the presence of a permanent magnetization B0 in the magnetic material

(permanent magnet) the constitutive law is

B = μH + B0 (2.202)
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In this case the field equations are

∇ · B = 0 (2.203)

∇ × B = μJ + ∇ × B0 (2.204)

In particular, the field inside a permanent magnet is described by (2.204) with J = 0;
it follows that the magnet can be modelled by an equivalent distribution of current
given by Jeq = μ−1∇ × B0.

2.3.2 Magnetostatic Potentials

(i) From (2.188), since, for any vector A, ∇ · (∇ × A
) = 0 holds (see A.8), it

is possible to define a vector function A (Wb m−1) called vector potential by
means of

∇ × A = B (2.205)

and the gauge condition

∇ · A = 0 (2.206)

This way (2.188) is fulfilled, while (2.189) becomes

∇ × 1

μ
(∇ × A) = J (2.207)

For a homogeneous domain, after (A.12) and (2.206) it turns out to be

∇2
A = −μJ (2.208)

This is the (Poisson’s) vector equation governing A. In a system of rectangular
coordinates it corresponds to the following scalar equations

(
∇2

A
)

x
= ∂2Ax

∂x2
+ ∂2Ax

∂y2
+ ∂2Ax

∂z2
= −μJx

(
∇2

A
)

y
= −μJy(

∇2
A
)

z
= −μJz (2.209)

In general, the gradient of an harmonic function may be added to A, having all
the equations satisfied. Of course, suitable boundary conditions on Γ must be
added in order to define the field in a unique way.
In particular, after (2.208) and (2.204), the potential inside a permanent magnet

is given by ∇2
A = −∇ × B0.
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(ii) In a two-dimensional domain, vectors J and so A have only one non-zero compo-
nent; hence, vector potential can be treated as a scalar quantity. Since Bx = ∂A

∂y

and By = − ∂A
∂x , the boundary conditions (2.194) and (2.196), in terms of

B = (
Bx, By

)
along the boundary Γ with normal versor n = (

nx, ny
)

and
tangential versor t = (tx, ty

) = (ny, −nx
)
, become, in terms of A,

n · B = nxBx + nyBy = nx
∂A

∂y
− ny

∂A

∂x

= −ty
∂A

∂y
− tx

∂A

∂x
= −t · ∇A = −∂A

∂t
= 0 (2.210)

i.e. A = const. along Γ and

n × B = (nxBy − nyBx)iz =
(

−nx
∂A

∂x
− ny

∂A

∂y

)
iz

= −(n · ∇A
)

iz = −∂A

∂n
iz = 0 (2.211)

i.e. ∂A
∂n = 0 along Γ, respectively.

(iii) If J = 0 in Ω and Ω is simply connected, then, along with A, the field H can be
described by a scalar function ϕ (potential, (A)) defined as

H = −∇ϕ (2.212)

In fact, (2.189) is automatically satisfied, while from (2.188) we obtain in Ω

∇ · μ∇ϕ = 0 (2.213)

The latter is the Laplace’s equation governing magnetic scalar potential ϕ with
suitable boundary conditions.

The condition of simply connected domain can be obtained by suitable cuts,
if necessary. If this condition is not fulfilled, nevertheless ϕ can be still defined,
apart from multiples of a constant.

(iv) When in (2.187) permeability μ depends on
∣∣H∣∣, one has

∣∣B∣∣ = μ
(∣∣H∣∣) ∣∣H∣∣

and for the solution of (2.208) one should resort to an iterative procedure.
According to the Newton-Raphson method, the residual r(A) of each governing
equations (2.209) is developed in Taylor’s series, truncating the development
at the first order

r(Ak) = r(Ak−1) +
(

dr

dA

∣∣∣∣
A=Ak−1

)
(Ak − Ak−1) + o(Ak) (2.214)
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If a prediction of the solution Ak−1 at the (k − 1)th iteration is available, the
subsequent prediction Ak at the kth iteration is given by (2.214) imposing r(Ak) = 0.
It results

Ak = Ak−1 −
[

dr

dA

∣∣∣∣
A=Ak−1

]−1

r (Ak−1) (2.215)

Then, μ and so
∣∣H∣∣ are updated by means of the new estimation of A and the problem

is solved again. The procedure stops when the error between two successive solutions
is less than the prescribed threshold. It is necessary to know an initial prediction A0
and the value of the derivative dr

dA at each iteration; under these assumptions, it can
be proven that the procedure converges quadratically.

2.3.3 Magnetostatic Energy

Given a magnetostatic field characterized by intensity H and flux density B in a linear
medium, the specific energy (J m−3) of the field is defined as 1

2 H · B; if the medium
is isotropic, the energy W(J) stored in an unbounded region Ω is given by

W = 1

2

∫
Ω

HB dΩ (2.216)

If the constitutive relationship of the magnetic material is non-linear, the specific
energy is

∫ B
0 HdB′ and so that total energy is

W =
∫

Ω

(∫ B

0
H dB′

)
dΩ (2.217)

In some cases it is convenient to introduce the specific co-energy
∫ H

0 B dH′ so that
the total co-energy is

W′ =
∫

Ω

(∫ H

0
B dH′

)
dΩ (2.218)

In the case of linear medium W = W′ results.
In the linear case, taking into account the following identity (see A.13)

H · B = H · (∇ × A
) = A · (∇ × H

)− ∇ · (H × A
) = A · J − ∇ · (H × A

)
(2.219)

and (2.189), the total energy stored in a region Ω of boundary Γ is

W = 1

2

∫
Ω

H · B dΩ = 1

2

∫
Ω

A · J dΩ − 1

2

∫
Γ

(H × A) · n dΓ (2.220)

The equation above reduces to W = 1
2

∫
Ω

A · J dΩ, if either A ×n = 0 or H×n = 0
along Γ.
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2.3.4 Field of a Line Current in a Three-Dimensional Domain:
Differential Approach

A current I (A), concentrated at r = 0 and directed along the z axis in a system of
cylindrical coordinates (r, ϕ, z), is considered (Fig. 2.10).

The symmetry implies H = (0, H, 0) and the field equation is from (2.189):

∇ × H = 1

r

∂rH

∂r
= ∂H

∂r
+ 1

r
H = Iδ(r), r > 0 (2.221)

where H vanishes as r approaches infinity. The general solution (see Section 2.2.7) is:

H(r) = 1

r

(
I
∫ r

0
ρδ(ρ)dρ + k

)
(2.222)

The Dirac’s δ in a cylindrical geometry can be approximated by:

δ = lim
α→0

δα, α > 0 (2.223)

with δα = 1
πα2 , r ≤ α and δα = 0 elsewhere. Consequently, the field H can be

approximated as

H = lim
α→0

Hα (2.224)

For r ≤ α one has

Hα = 1

r

(
I
∫ r

0
ρδαdρ + kα

)
= 1

r

(
I

πα2

r2

2
+ kα

)
= Ir

2πα2
+ kα

r
(2.225)

Since δα is a regular function near the origin, also Hn will be regular near zero;
therefore kα = 0.

r

P

I

Fig. 2.10 Line current
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For r ≥ α one has

Hα = 1

r

(
I
∫ α

0
ρδαdρ + kα

)
= 1

r

(
I

πα2

∫ α

0
ρdρ

)
=

= 1

r

(
I

πα2

α2

2

)
= I

2πr
, r > 0 (2.226)

The Biot-Savart’s law follows:

H(r) = lim
α→0

Hα(r) = I

2πr
, r > 0 (2.227)

Alternatively, the Stokes’s theorem can be applied to (2.189), giving
∮
λ

H · t dλ = I,
if λ is a closed line linking the conductor once. Thanks to the field geometry, λ can
be taken as a circular line centred at r = 0; hence, (2.227) results.

From (2.227) and (2.205) the vector potential results:

A = I

2πν
ln riz, r > 0 (2.228)

2.3.5 Energy and Forces in the Magnetostatic Field

Principle of Virtual Work

Given a structure in the field region, on which force F is to be calculated, a virtual
linear displacement ds in the direction of F, supposing that the magnetic system is
supplied by a constant current I creating a linkage flux Φ, the sum of mechanical
work Fds and variation of magnetic energy dW is equal to the input energy IdΦ

so that

Fds + dW = IdΦ

Fds = d(IΦ − W)

F = d

ds
(IΦ − W) (2.229)

In the case of an angular displacement dϑ, the torque T with respect to the rotation
axis is

T = d

dϑ
(IΦ − W) (2.230)

The quantity IΦ − W, denoted by W′, is the complementary energy or co-energy of
the system.

On the other hand, if the magnetic system is isolated, mechanical work Fds and
variation of magnetic energy dW take place so that

Fds + dW = 0 (2.231)
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Hence the force can be evaluated as

F = −dW

ds
(2.232)

while the torque is

T = −dW

dϑ
(2.233)

If the system is linear, W′ and W coincide.

Lorentz’s Method

It is based on the definition of flux density; the force F exerted on current distributed
with density J in the region Ω is

F =
∫

Ω

J × B dΩ (2.234)

where B is the external field, i.e. the flux density in the absence of current. Directions
of force, flux density and current density are mutually orthogonal.

Method of Maxwell’s Stress Tensor

Defined a closed surface Γ enclosing the structure, then force F on it is evaluated as

F =
∫

Ω

∇ · T dΩ =
∫

Γ

T · n dΓ (2.235)

where n is the outward normal versor.
The Maxwell’s magnetic stress tensors T, assuming a system of rectangular

coordinates, in a three-dimensional domain can be represented in matrix form as

T =
⎡
⎢⎣

1
2 (HxBx − HyBy − HzBz) HxBy HxBz

HyBx
1
2 (HyBy − HxBx − HzBz) HyBz

HzBx HzBy
1
2 (HzBz − HxBx − HyBy)

⎤
⎥⎦

(2.236)

In order the tensor be uniquely defined, surface Γ should not be coincident with the
interface between materials having different permeability.

Remarks

There is a link between Lorentz’s and Maxwell’s approach to force calculation.
In fact, using (2.187), (2.189) and (2.234), the force density f (Nm−3) takes the
expression

f = J × B = (∇ × νB
)× B (2.237)
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In particular, the x-directed component is

fx = νBz
∂Bx

∂z
− νBz

∂Bz

∂x
− νBy

∂By

∂x
+ νBy

∂Bx

∂y
(2.238)

After adding and subtracting the term ν
2

∂B2
x

∂x one has

fx = ν
2

∂B2
x

∂x
+ νBz

∂Bx

∂z
+ νBy

∂Bx

∂y
+

− ν
2

∂

∂x

(
B2

x + B2
y + B2

z

)
(2.239)

It follows

fx = ν
2

∂B2
x

∂x
+ ν

∂(BxBz)

∂z
− νBx

∂Bz

∂z
+ ν

∂(BxBy)

∂y
+

− νBx
∂By

∂y
− νBx

∂Bx

∂x
− ν

2

∂

∂x

(
B2

y + B2
z

)
(2.240)

fx = ν
[

∂

∂x

(
B2

x − 1

2

∣∣B∣∣2
)

+ ∂(BxBy)

∂y
+ ∂(BxBz)

∂z
− Bx∇ · B

]
(2.241)

Due to (2.188) the last term of (2.241) is zero; then, if vector

v1 = ν
(

B2
x − 1

2

∣∣B∣∣2 , BxBy, BxBz

)
=

=
(

1

2

(
HxBx − HyBy − HzBz

)
, HxBy, HxBz

)
(2.242)

is defined, fx can be viewed as its divergence, apart from a constant k which can be
set to zero, namely

fx = ∇ · v1 (2.243)

A similar result holds for force density components fy and fz; one has

v2 =
(

HyBx,
1

2
(HyBy − HxBx − HzBz), HyBz

)
(2.244)

such that

fy = ∇ · v2 (2.245)

and

v3 =
(

HzBx, HzBy,
1

2
(HzBz − HxBx − HyBy)

)
(2.246)

such that

fz = ∇ · v3 (2.247)

respectively. Therefore, according to (2.235), the force F(N) can be written as the

integral of the divergence of tensor T represented by matrix (2.236), in which the
row entries are the components of vectors vk, k = 1, 3.
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2.3.6 Force on an Electromagnet

Let us consider an electromagnet with a movable part (Fig. 2.11).
The iron core is supposed to have infinite permeability. The air gaps in the x

direction are supposed to be much smaller than the air gap t in the y direction.
The circulation of the magnetic field H, along a line linking the excitation current

NI and crossing the air gap t in the normal direction, reduces to

NI = Ht (2.248)

Therefore at the air gap

H = NI

t
(2.249)

while in the iron part H = 0. Following (2.218), the co-energy stored in the air gap
is given by

W′ = 1

2
μ0H2St = μ0(NI)2S

2t
(2.250)

where S is the cross-section of the central limb and μ0 is the air permeability.
If NI is constant, according to (2.229), the force acting on the movable part is

Ft = ∂W′

∂t
= −μ0S

2

(
NI

t

)2

(2.251)

The force is negative, i.e. opposite to the direction of increasing t; therefore, it is
attractive, regardless of the sign of I.

In order to apply the method of Maxwell’s stress tensor, an integration surface Γ

enclosing the movable part is considered having n as its outward normal versor.
Taking into account the field distribution, one actually has:

T =
[− 1

2 HyBy 0
0 1

2 HyBy

]
(2.252)

F =
∫

Γ

T · n dΓ =
(

0,
1

2
HyByS

)
(2.253)

Fig. 2.11 Model of the electromagnet
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Therefore it results:

Fy = 1

2
μ0H2

yS = 1

2
μ0S

(
NI

t

)2

(2.254)

The force is attractive, because variables t and y are oriented in opposite directions.

2.3.7 Test Problems

Throughout the book, the problem of the computation of the magnetic field in some
test cases is considered. The first case is that of the air-gap of a single-side slotted
electrical machine. The model of one half of the field region is shown in Fig. 2.12.
The slot accommodates a concentrated or distributed current, whereas the surrounded
iron is assumed of infinite permeability.

In terms of vector potential, the following boundary conditions for the field region
are set up: fixed values ofAalong a flux line (A = 0) and vanishing normal derivative

at the symmetry line
(

∂A
∂n = 0

)
.

Other test cases are presented in Fig. 2.13.
They correspond to a single slot produced in an iron core with one side facing

the air-gap (magnetically open slot: case a) and to a slot fully embedded in an iron
core (magnetically closed slot: case b). The relevant boundary conditions can be
approximately set up as shown.

These test problems proposed might represent a benchmark because they deal
with a simple, clear and meaningful example; in electrical engineering, in fact, a
broad class of devices includes a magnetic pole formed by a current-carrying slot.

A = 0

iron core
air

slot iron core

A = 0

A = 0

0=
∂n

∂A

⊗
μ0, J

Fig. 2.12 Single-side slotted electrical machine: one half of the field region
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Fig. 2.13 Single slot: one half of the field region

2.4 Steady Conduction Field

In a domain Ω, composed of a conducting material, having boundary Γ, when Γ or a
part of it is kept at a non-zero potential constant with time, a steady conduction field
is set up, defined by field intensity E (V m−1) and current density J (A m−2). These
two vectors are linked by the constitutive relation which, if the medium is linear and
isotropic, is

J = σE (2.255)

The parameter σ qualifying the medium is called conductivity (Ω−1 m−1).

2.4.1 Maxwell’s Equations for Conduction Field

The field is governed by the following Maxwell’s equations in Ω

∇ × E = 0 (2.256)

∇ · J = 0 (2.257)

and along Γ

n · J = J0 (2.258)

if Γ is a perfectly conducting boundary and J0 is the current density impressed along
it, or

n · J = 0 (2.259)

if Γ is a perfectly insulating boundary.
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In terms of E the above equations for a homogeneous medium become in Ω

∇ × E = 0 (2.260)

∇ · E = 0 (2.261)

and along Γ

n · E = E0 (2.262)

if E0 is the conduction field impressed along the boundary, or

n · E = 0 (2.263)

In the case of a non-homogeneous medium, the following remark can be put forward.
After (2.255) and (2.256), considering vector identity (A.16), it results

∇ × σ−1J = σ−1∇ × J + ∇σ−1 × J = 0 (2.264)

If ∇σ−1 = 0 (homogeneous medium), then J is always irrotational. More generally,
for J to be irrotational, ∇σ−1 and J should be parallel vectors; this means that lines
separating layers of different σ are orthogonal to field lines of J. If this condition
applies, J is both irrotational and solenoidal.

Conversely, after (2.261) and (A.14), one has

∇ · E = ∇ · σ−1J = σ−1∇ · J + ∇σ−1 · J = 0 (2.265)

Due to (2.257), it results

∇σ−1 · J = 0 (2.266)

i.e. field E is solenoidal if ∇σ−1 and J are orthogonal vectors; this means that lines
separating layers of different σ are parallel to field lines of J. If this condition applies,
E is both irrotational and solenoidal.

2.4.2 Potentials

If Ω is simply connected, starting from (2.256) the field can be defined by a scalar
function U (potential (V)) as

E = −∇U (2.267)

Starting from (2.257), substitution of (2.267) in it, taking into account (2.255), gives

∇ · (σ∇U
) = 0 (2.268)
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In rectangular coordinates (2.268) becomes

∂

∂x

(
σ
∂U

∂x

)
+ ∂

∂y

(
σ
∂U

∂y

)
+ ∂

∂z

(
σ
∂U

∂z

)
= 0 (2.269)

In the case of a homogeneous domain (2.268) reduces to

∇2U = 0 (2.270)

which is Laplace’s equation governing potential U.
Any constant may be added to U, keeping all the equations valid.
In particular, in a two-dimensional domain, using rectangular coordinates, the

field intensity E = (Ex, Ey
)

defined by (2.267) has components

Ex = −∂U

∂x
, Ey = −∂U

∂y
(2.271)

Conversely, starting from (2.257), according to (A.8), it is possible to introduce a
vector function A (flux (A m−1)) defined as

J = ∇ × A (2.272)

In a two-dimensional domain, by virtue of the definition of curl as well of that of
field intensity J = (Jx, Jy

)
, similarly to what discussed in Section 2.3.2, A turns out

to be a single-component vector perpendicular to the domain, namely A = (0, 0, A).
Therefore the components of J result

Jx = ∂A

∂y
, Jy = −∂A

∂x
(2.273)

Substituting (2.272) into (2.256), after multiplication by σ and taking into account
(2.255), one obtains

∇ × 1

σ
∇ × A = 0 (2.274)

In a two-dimensional domain this, in turn, becomes

∂

∂x

(
1

σ

∂A

∂x

)
+ ∂

∂y

(
1

σ

∂A

∂y

)
= 0 (2.275)

In the case of homogeneous domain (2.275) reduces to

∇2A = 0 (2.276)

which is Laplace’s equation governing flux A.
The gradient of an harmonic function, having all the equations satisfied as well,

may be added to A; by imposing the gauge condition

∇ · A = 0 (2.277)
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A is unambiguously defined. In a two-dimensional domain the latter condition is
automatically fulfilled.

Comparing (2.271) and (2.273) one has

∂A

∂y
= −σ

∂U

∂x
; ∂A

∂x
= σ

∂U

∂y
(2.278)

The latter represent the relationships of orthogonality between contour lines of the
two potentials.

Boundary conditions (2.262) and (2.263) become U = const and ∂U
∂n = 0,

respectively; in turn, (2.262) and (2.263) become ∂A
∂n = 0 and A = const.

2.4.3 Power Loss

Given a conduction field characterized by intensity E and current density J, the
specific power (W m−3) transferred from the field to movables charges is defined as
E · J = σE2 and, therefore, the power loss (W) in domain Ω is given by:

P =
∫

Ω

σE2dΩ (2.279)

2.4.4 Analytic Functions of Complex Variable

In a two-dimensional domain, A and σU (or U and A
σ

) may be considered as the
real and imaginary components (conjugate functions), respectively, of a complex
function

F(z) = A + jσU or G(z̄) = U + j
A

σ
(2.280)

with z = x + jy, j ≡ √−1, for which (2.278) represent the Cauchy-Riemann
equations, i.e. ∇(σU) · ∇A = 0.

2.4.5 Field of a Cylindrical Conductor

Let a cylindrical homogenous conductor of radii R1 and R2, carrying current I for
unit length in the radial direction, be considered (Fig. 2.14).

From (2.270), according to (A.18), one has

∇2U = d2U

dr2
+ r−1 dU

dr
= r−1 d

dr

(
r
dU

dr

)
= 0, r > 0 (2.281)
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rO R1 R2

U = 0

U = V

σ

Fig. 2.14 Cross-section of a cylindrical conductor

and therefore

U = k ln r + h (2.282)

The application of boundary conditions

r = R1, U = 0; r = R2, U = V (2.283)

gives

U = V
ln r − ln R1

ln R2 − ln R1
, R1 ≤ r ≤ R2 (2.284)

In the formulation in terms of flux A, after making a radial cut at ϑ = 0 in order to
have a simply connected domain, the boundary conditions are

ϑ = 0, A = 0; ϑ = 2π, A = I (2.285)

r = R1,
∂A

∂n
= 0; r = R2,

∂A

∂n
= 0 (2.286)

From (2.276), one gets

r−2 d2A

dϑ2
= 0, r > 0 (2.287)

and therefore

A = k′ϑ + h′ (2.288)

By the application of boundary conditions, it results

A = I

2π
ϑ, 0 ≤ ϑ ≤ 2π (2.289)

The following complex function may be set up

F(r, ϑ) = A(ϑ) + jσU(r) (2.290)

The Cauchy-Riemann equations reduce to

J = I

2πr
= −σ

V

ln R2 − ln R1

1

r
= σE (2.291)

i.e. the constitutive relationship of the material.



Chapter 3
Analytical Methods for Solving
Boundary-Value Problems

3.1 Method of Green’s Function

The potential of a unit source s, located in Q at a distance r from the field point P in
an unbounded homogeneous domain Ω, is called Green’s function and is given the
symbol G′.

Let ΩQ ⊂ Ω be the subdomain represented by all source points and let ΩP ⊂ Ω

be the subdomain of all field points, such that ΩQ ∪ ΩP = Ω and ΩQ ∩ ΩP = 0.
In a three-dimensional unbounded domain, after (2.48) for s = δ(rQ) one has

G′(rP , rQ) = 1

4π
∣∣rP − rQ

∣∣ = 1

4πr
(3.1)

where r = ∣∣rP − rQ
∣∣ is the distance between source and field point (see Appendix,

Fig. A1).
From (2.48) the potential fulfilling Poisson’s equation ∇2φ = −s is

φ(rP) =
∫

Ω

G′(rP , rQ) s(rQ) dΩ (3.2)

Therefore, knowing G′ and s, by means of (3.2) it is possible to calculate φ. The
Green’s function G′ is called the fundamental solution of the Poisson’s equation.

For a bounded domain with boundary Γ the modified Green’s function G is the
potential due to a unit source plus that, g, due to the unit source distributed along the
boundary

G(rP , rQ) = 1

4π
∣∣rP − rQ

∣∣ + g(rP , rQ) (3.3)

Knowing g, and so G, and substituting ψ with 4πG in the Green’s formula (2.63), it
is possible to calculate φ.

By definition, the Green’s function is symmetrical, i.e. it is the same, exchanging
the source and the field point G′(rP, rQ) = G′(rQ, rP).

45
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Following the same procedure, in a two-dimensional unbounded domain Ω the
Green’s function G′ results

G′(rP , rQ) = 1

2π
ln
∣∣rP − rQ

∣∣ (3.4)

3.1.1 Green’s Formula for Electrostatics

In a homogeneous three-dimensional domain Ω with boundary Γ = Γ1 ∪ Γ2 and
permittivity ε, from (2.63) taking φ = u and ∇2φ = ∇2u = − ρ

ε
and substituting ψ

with 4πG, one has

u(x) =
∫

Ω

G(x, y)
ρ(y)

ε
dΩ +

∫
Γ1

G(x, y)
∂u(y)

∂n
dΓ +

−
∫

Γ2

u(y)
∂G(x, y)

∂n
dΓ (3.5)

where n is the normal versor of Γ while the space vectors x ≡ rP and y ≡ rQ identify
field and source point, respectively.

Formula (3.5) is the Green’s formula for electrostatics. Using it to determine u,
the actual problem is to know the modified Green’s function G related to the given
field domain Ω.

3.1.2 Green’s Functions for Boundary-Value Problems

The particular case of Ω, denoted by B(0, R), representing the region within a sphere
(n = 3) or a circle (n = 2) is considered. The modified Green’s function, related to
the domain and to Poisson’s equation

−∇2u = f (3.6)

subject to Dirichlet’s or Neumann’s conditions, is to be found.
To this end, let the compound function v – called Kelvin’s transformation of u –

be considered. It is defined by the formula

v(x) = |x|n−2 R−n+2u(a(x)), n = 2, 3 (3.7)

where the transform a(y), given by the formula

a(y) = R2 |y|−2 y, y ∈ Rn\ {0} (3.8)

leaves the boundary ∂B(0, R) invariant. In fact, for y = R it results

a(y) = y, v(x) = |x|n−2 R−n+2u(x) (3.9)
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The equation satisfied by u is now found; for this task, the radial symmetry is
exploited.

In the case n = 3 (sphere), using spherical coordinates (r, ϕ, ϑ), setting

ũ(r, ϕ, ϑ) = u(r cos ϕ sin ϑ, r sin ϕ sin ϑ, r cos ϑ) (3.10)

with r ∈ (0, R) ; ϕ ∈ (0, 2π), ϑ ∈ (0, π), and

ṽ(r, ϕ, ϑ) = Rr−1u
(

R2r−1 cos ϕ sin ϑ, R2r−1 sin ϕ sin ϑ, R2r−1 cos ϑ
)

=
= Rr−1ũ

(
R2r−1, ϕ, ϑ

)
(3.11)

with r ∈ (R, +∞) ; ϕ ∈ (0, 2π), ϑ ∈ (0, π), developing the Laplacian in spherical
coordinates (see A.20)

∇2 = 1

r2
Dr(r

2Dr) + 1

r2
D2

ϑ + cot(ϑ)

r2
Dϑ + 1

r2 sin2 ϑ
D2

ϕ (3.12)

where Dr ≡ ∂
∂r , Dϕ ≡ ∂

∂ϕ
, Dϑ ≡ ∂

∂ϑ
, the following relations hold

r2Drṽ(r, ϕ, ϑ) = −Rũ
(

R2r−1, ϕ, ϑ
)

+
− R3r−1Drũ

(
R2r−1, ϕ, ϑ

)
(3.13)

r−2Dr

(
r2Drṽ

)
(r, ϕ, ϑ) = 2R3r−4Drũ

(
R2r−1, ϕ, ϑ

)
+

+ R5r−5D2
r ũ
(

R2r−1, ϕ, ϑ
)

(3.14)

Dj
ϑṽ (r, ϕ, ϑ) = Rr−1Dj

ϑũ
(

R2r−1, ϕ, ϑ
)
, j = 1, 2 (3.15)

Dj
ϕṽ (r, ϕ, ϑ) = Rr−1Dj

ϕũ
(

R2r−1, ϕ, ϑ
)
, j = 1, 2 (3.16)

Consequently, it can be deduced

∇2ṽ(r, ϕ, ϑ) = R5r−5
[
D2

r ũ
(

R2r−1, ϕ, ϑ
)

+ 2R−2rDrũ
(

R2r−1, ϕ, ϑ
)

+

+
(

Rr−2
)−2

D2
ϑũ
(

R2r−1, ϕ, ϑ
)]

+

+ R5r−5
[

cot ϑ
(

Rr−2
)−2

Dϑũ
(

R2r−1, ϕ, ϑ
)

+

+ 1

sin2 ϑ

(
Rr−2

)−2
D2

ϕũ
(

R2r−1, ϕ, ϑ
)]

=

= R5r−5∇2ũ
(

R2r−1, ϕ, ϑ
)

=
= −R5r−5f̃

(
R2r−1, ϕ, ϑ

)
(3.17)

with r ∈ (R, +∞), ϕ ∈ (0, 2π), ϑ ∈ (0, π).
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If ω represents the region outside the sphere B(0, R), (3.17) proves that function
v satisfies the Dirichlet’s boundary-value problem

∇2v(x) = f̂ (x), in ω =
{

x ∈ R3 : |x| > R
}

(3.18)

v(x) = g(x), on ∂ω =
{

x ∈ R3 : |x| = R
}

(3.19)

with

f̂ (x) = −R5|x|−5f
(
R2|x|−2x

)
, x ∈ ω (3.20)

and g(x) given function of the boundary.
The case n = 2 (circular domain) is now considered. As in the three-dimensional

case, the functions

ũ(r, ϕ) = u(r cos ϕ, r sin ϕ) (3.21)

with r ∈ (0, R), ϕ ∈ (0, 2π), and

ṽ(r, ϕ) = u
(

R2r−1 cos ϕ, R2r−1 sin ϕ
)

= ũ
(

R2r−1, ϕ
)

(3.22)

with r ∈ (R, +∞), ϕ ∈ (0, 2π), are introduced. Developing the Laplacian in polar
coordinates (see A.18), one has

∇2 = D2
r + 1

r
Dr + 1

r2
D2

ϕ (3.23)

Accordingly, the following relations hold

Drṽ(r, ϕ) = −R2r−2Drũ
(

R2r−1, ϕ
)

(3.24)

D2
r ṽ(r, ϕ) = R4r−4D2

r ũ
(

R2r−1, ϕ
)

+ 2R2r−3Drũ
(

R2r−1, ϕ
)

(3.25)

Dj
ϕṽ(r, ϕ) = Dj

ϕũ
(

R2r−1, ϕ
)
, j = 1, 2 (3.26)

Consequently, it results

∇2ṽ (r, ϕ) = R4r−4
[

D2
r ũ
(

R2r−1, ϕ
)

+
(

R2r−1
)2

Drũ
(

R2r−1, ϕ
)

+

+
(

Rr−2
)−2

D2
ϕũ
(

R2r−1, ϕ
)]

=

= R4r−4∇2u
(

R2r−1, ϕ
)

= R4r−4f̃
(

R2r−1, ϕ
)
, r ∈ (R, +∞)

(3.27)

Therefore, it has been shown that function v fulfils the Dirichlet’s boundary-value
problem
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∇2v(x) = f̂ (x), in ω =
{

x ∈ R2 : |x| > R
}

(3.28)

v(x) = g(x), on ∂ω =
{

x ∈ R2 : |x| = R
}

(3.29)

with

f̂ (x) = R4|x|−4f
(

R2 |x|−1 x
)
, x ∈ ω (3.30)

and g(x) given function of the boundary.
It is now possible to determine the Green’s function GD related to the Dirichlet’s

condition when n = 2 and n = 3. It is given by the formula

GD(x, y) = G′(x − y) − G′ (R−1 |y| (x − a(y))
)
, x, y ∈ B(0, R) (3.31)

where

a(y) = R2|y|−2y, y ∈ Rn\ {0} , n = 2, 3 (3.32)

and G′ stands for the fundamental solution of the Laplacian operator, i.e.

G′(x) = (2π)−1 ln |x|, if n = 2 (3.33)

and

G′(x) = (4π)−1 |x|−1 , if n = 3 (3.34)

assuming that the unit source is located at y = 0.
It is necessary to show that

GD(x, y) = 0, x ∈ ∂B(0, R), y ∈ B(0, R) (3.35)

To this purpose, the identity

|x − y|2 = |x|2 + |y|2 − 2x · y (3.36)

holding for any pair of vectors x, y ∈ Rn, is used. In particular, for any x ∈ ∂B (0, R),
i.e. |x| = R, and for any y ∈ B(0, R) it turns out to be

R−2|y|2|x − a(y)|2 = R−2 |y|2
[
|x|2 + |a(y)|2 − 2x · a(y)

]
=

= R−2 |y|2
[
R2 + R4 |y|−2 − 2R2 |y|−2 x · y

]
=

= |y|2 + R2 − 2x · y = |y|2 + |x|2 − 2x · y = |x − y|2
(3.37)

implying that (3.36) holds.
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x

y

O

γ P

Q

Fig. 3.1 Inner spherical domain Ω

Now, the Green’s function related to a sphere B(0, R) when n = 3 can be
determined. It is given by the formula:

GD (x, y) = 1

4π
(
r2 − 2rρux · uy + ρ2

) 1
2

+

− R

4π
(
r2ρ2 − 2rR2ρux · uy + R4

) 1
2

(3.38)

where x = rux and y = ρuy. In other words, r and ρ are the Euclidean norms of
vectors x and y, respectively, while ux and uy are the unit vectors in the directions of x
and y, respectively. The situation is represented in Fig. 3.1, where γ = cos−1

(
ux · uy

)
Comparing (3.3) and (3.38), it follows

g(x, y) = − R

4π
(
r2ρ2 − 2rR2ρux · uy + R4

) 1
2

(3.39)

Moreover, from (3.38), the following relation can be deduced:

Dn(y)GD(x, y) = Dρ

[
GD
(
rux, ρuy

)]
= ρ − rux · uy

4π
(
r2 − 2rρux · uy + ρ2

) 3
2

+

+ R
(
r2ρ − rR2ux · uy

)
4π
(
r2ρ2 − 2rR2ρux · uy + R4

) 3
2

, x, y ∈ B(0, R) (3.40)

where the operator Dn(y) stands for the normal derivative along the direction of
vector y; in particular, the relation

Dρ

[
GD
(
rux, Ruy

)] = − R − rux · uy

4π
(
r2 − 2rRux · uy + R2

) 3
2

+

+ r
(
r − Rux · uy

)
4Rπ

(
r2 − 2rRux · uy + R2

) 3
2

=

= r2 − R2

4Rπ
(
r2 − 2rRux · uy + R2

) 3
2

(3.41)
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with x ∈ B(0, R), y ∈ ∂B(0, R), can be obtained. Consequently, the following
representation holds:

Dn(y)GD(x, y) = |x|2 − R2

4Rπ |x − y|3 , x ∈ ∂B(0, R), y ∈ B(0, R) (3.42)

Therefore, it can be concluded that the solution to the Dirichlet’s problem in Ω =
B(0, R)

−∇2u(x) = f (x) (3.43)

with u(x) = g(x) on Γ = ∂B(0, R), according to (3.5) is given by the formula

u (x) =
∫

Ω

GD(x, y)f (y) dΩ −
∫

Γ

g(y)Dn(y)GD(x, y) dΓ (3.44)

where the functions GD and Dn(y)GD have been explicitly computed.
In the case n = 2, the Green’s function is given by the formula

GD(x, y) = 1

4π

{
ln(ρ) − ln(R) + ln

(
r2 − 2rρux · uy + ρ2

)
+

− log
(

r2ρ2 − 2rR2ρux · uy + R4
)}

(3.45)

Then, one gets

2πDn(y)GD(x, y) = 2πDρ

[
GD
(
rux, ρuy

)] =

= 1

ρ
+ ρ − rux · uy

r2 − 2rρux · uy + ρ2
− r2ρ − R2rux · uy

r2ρ2 − 2rR2ρux · uy + R4

(3.46)

and

2πDn(y)GD
(
x, Ruy

) = 1

R
+ R − rux · uy

r2 − 2Rrux · uy + R2
− r2 − Rrux · uy

R
(
r2 − 2Rrux · uy + R2

) =

= 1

R
+ R2 − r2

R
(
r2 − 2Rrux · uy + R2

) (3.47)

In turn, this gives

Dn(y)GD(x, y) = 1

2πR
+ R2 − r2

2πR
(
r2 − 2Rrux · uy + R2

) (3.48)

with x ∈ B(0, R), y ∈ ∂B(0, R).
Therefore, it can be concluded that, according to (3.5), the solution to the

Dirichlet’s problem

−∇2u(x) = f (x) in Ω = B(0, R), u(x) = g(x) on Γ = ∂B(0, R) (3.49)
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Fig. 3.2 Outer spherical domain ω

is given by the formula

u(x) =
∫

Ω

GD(x, y)f (y) dΩ −
∫

Γ

g(y)Dn(y)GD(x, y) dΓ (3.50)

Finally the solution to the Dirichlet’s problem for the domain ω and its boundary ∂ω

outside the domain Ω can now be obtained (Fig. 3.2).
Using (3.43) and (3.20) the representation for the solution v to the problem (3.18)–

(3.19) can be deduced from the solution u to the Dirichlet’s problem for the sphere,
where B(0, R) = Ω and B(0, R)c = ω:

−∇2u(x) = f (x) in B(0, R), u(x) = g(x) on ∂B(0, R) (3.51)

where f is defined through the equation

f̂ (x) = −R5|x|−5f
(

R2|x|−2x
)
, x ∈ ω (3.52)

The solution to the equation R2|x|−2x = y, x �= {0} is x = R2|y|−2y. Indeed, if a
solution x exists, then |x| = R2|y|−1, so that x = R−2|x|2y = R2|y|−2y. Of course,
it is easy to check that x = R2 |y|−2 y solves the given equation. In other words,
the inverse transform coincides with the transform itself. Consequently, it is easy to
verify that f can be expressed in terms of f̂ by the formula

f (y) = −R5|y|−5f̂
(

R2|y|−2y
)
, y ∈ ω (3.53)

Then u can be expressed as follows

u(x) = R5
∫

B(0,R)

GD(x, y) |y|−5 f̂
(

R2 |y|−2 y
)

dω(y) +

+
∫

∂B(0,R)

g(y)Dn(y)GD(x, y) dσ(y) =

= u1(x) +
∫

∂B(0,R)

g(y)Dn(y)GD(x, y) dσ(y) (3.54)
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Achange of variable in the volume integral defining u1 is convenient. To this purpose,
the Jacobian J(η) of the transformation y = R2 |η|−2 η is to be computed. Assuming

yk = R2|η|−2ηk, Dηj yk = −2R2|η|−4ηjηk + R2|η|−2δj,k (3.55)

with j, k = 1, . . . , n, n = 2, 3, where δj,k = (−1)j+k is the Kronecker’s index, it
turns out to be

J(η) = 2R2|η|−10 (3.56)

whence the formula

u1(x) = 1

2
R5
∫

B(0,R)

GD(x, y) |y|−5 f̂
(

R2 |y|−2 y
)

dω(y) =

= R−5
∫

B(0,R)c
GD

(
x, R2|η|−2η

)
|η|5f̂ (η)dω(η) (3.57)

is obtained. Since the solution v to the problem (3.28) and (3.29) is related to u by
the formula v(ξ) = u

(
R2|ξ|−2ξ

)
, from (3.57) the desired representation

v
(
ξ
) = 1

2
R−5

∫
B(0,R)c

GD

(
R2
∣∣ξ∣∣−2

ξ, R2 |η|−2 η
)

|η|5 f̂ (η) dω(η) +

+
∫

∂B(0,R)

g(η) Dn(η)GD

(
R2
∣∣ξ∣∣−2

ξ, η
)

dσ(η) (3.58)

is derived.
Finally, in the two-dimensional case one has

f (y) = R4 |y|−4 f̂
(

R2 |y|−1 y
)
, y ∈ B(0, R) (3.59)

and

J(η) = R2 |η|−4 (3.60)

It follows

u1(x) = R2
∫

B(0,R)

GD(x, y) |y|−4 f̂
(

R2 |y|−2 y
)

dω(y) =

= R−4
∫

B(0,R)c
GD

(
x, R2 |η|−2 η

)
|η|4 f̂ (η) dω(η) (3.61)

and

v
(
ξ
) = R−4

∫
B(0,R)c

GD
(
R2
∣∣ξ∣∣−2

ξ, R2 |η|−2 η
) |η|4 f̂ (η)dω(η) +

+
∫

∂B(0,R)

g(η)Dn(η)GD

(
R2
∣∣ξ∣∣−2

ξ, η
)

dσ(η) (3.62)

respectively.
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3.1.3 Field of a Point Charge Surrounded by a Spherical Surface
at Known Potential

The source charge +q gives rise to an induced charge −q on the sphere; in addition
to it, the free charge on the sphere, originating the potential U = k, is q′ = 4πεRk
(see 2.119).

From Gauss’s theorem the field turns out to be

E(r) = q

4πεr2
, 0 < r < R; E (r) = Rk

r2
, r > R (3.63)

Independently, the problem can be solved using the method of Green’s function.
When f (y) = q

ε
δ(y) and |x| < R, from (3.44) with g(y) = k, it turns out to be

U(x) =
∫

Ω

q

ε
GD(x, y)δ(y)dΩ −

∫
Γ

kDn(y)GD(x, y)dΓ (3.64)

After (3.38) and (3.41) one has
∫

Ω

q

ε
GD(x, y)δ(y)dΩ = q

ε
GD(x, 0) = q

ε

(
1

4πr
− 1

4πR

)
, r < R (3.65)

and ∫
Γ

kDn(y)GD(x, y)dΓ = k
∫

Γ

|x|2 − R2

4πR
∣∣x − Ruy

∣∣3 dΓ = −k (3.66)

respectively.
It can be verified that U(r) = k solves the particular case of q = 0, for which

∇2U(r) = D2
r U(r) + 2

r
DrU(r) = 0, U(R) = k (3.67)

holds.
The potential is given by

U(r) = q

ε

(
1

4πr
− 1

4πR

)
+ k, 0 < r < R (3.68)

x

y

P

Q
n

Γ

+q

Fig. 3.3 Point charge surrounded by a sphere at potential k
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whence (3.63) follows.
In turn, when R < |x|, from (3.58) with f̂ (η) = 0 and g(η) = k one has

v(ξ) =
∫

Γ

kDn(η)GD

(
R2
∣∣ξ∣∣−2

ξ, η
)

dΓ = Rk

r
, r > R (3.69)

Again, it can be verified that u(r) solves the particular case of q = 0, for which

∇2U(r) = D2
r U(r) + 2

r
DrU(r) = 0, U(R) = k, U(∞) = 0 (3.70)

holds.
Potential and field are represented in Figs. 3.4 and 3.5, respectively.
At r = R, U is continuous for any k, while E is not if k �= q

4πεR . The particular
cases of a grounded sphere and a supplied sphere follow, when k = 0 with q �= 0
and k �= 0 with q = 0, respectively.

r

U

k

R

Fig. 3.4 Potential vs position

R r

E

q

4πεR2

R

k

Fig. 3.5 Field vs position (q > 4πεRk)
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Fig. 3.6 Surface dipole distribution on a sphere

3.1.4 Field of a Surface Dipole Distributed on a Sphere
of Radius R

Let a double-layer distribution of charge be considered, characterized by a uni-
form dipole density τ̄ = q

4πR ir (Fig. 3.6). According to (2.124), the potential of a
single dipole of moment p is given by p·ir

4πεr2 , r �= 0; summing elementary contribu-
tions, the potential due to the surface dipole distribution is

U(r) =
∫

Γ

τ · ir
4πεr2

dΓ = τ
4πεR2

∫
Γ

dΓ = τ
ε

= q

4πεR
, 0 < r < R (3.71)

The latter holds when the field point P is within the sphere; when P crosses the sphere,
the solid angle subtended by the surface has a discontinuity equal to 4π. Consequently,
the potential has a discontinuity equal to τ

ε
determining U(r) = 0, r > R.

Remarks

The following remark can be put forward. Denoting by σ = ε ∂U
∂n the charge density

(C m−2) on Γ and with τ = εU the dipole density ((C m−1), see Section 2.2.6) on
Γ, respectively, Green’s formula (3.5) can be also expressed as

U(x, y) =
∫

Ω

ρ(y)

ε
G(x, y) dΩ +

∫
Γ1

σ(y)

ε
G(x, y) dΓ +

−
∫

Γ2

τ(y)

ε

∂G(x, y)

∂n
dΓ (3.72)

Hence, the electrostatic potential U in a domain Ω bounded by Γ is known, knowing
G′ and ρ in the domain, σ and τ on the boundary. The three terms are called volume
term, single-layer term and double-layer term, respectively.

In the case of the surface dipole distributed on a sphere, using (3.72) with ρ =
0, σ = 0 and taking G = 1

4πr and U = τ
ε
, the potential results
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U(r) = −
∫

Γ

τ
ε

∂G

∂n
dΓ =

∫
Γ

τ
ε

1

4πr2
dΓ =

= q

4πεR

1

4πR2

∫
Γ

dΓ = q

4πεR
, 0 < r < R (3.73)

with U(r) = 0, r > R.
It can be noted that, at r = R, both U and E are not continuous (Fig. 3.6); in

particular, the field is singular and can be expressed as E(r) = q
4πεR δ(r − R)ir .

As a final example, let a surface distribution of charges and dipoles be identified,
such that the field external to the sphere of radius R is zero, while the inner field is
that due to a point charge +q located at the centre.

To this end, forcing a uniform charge distribution of density σ = − q
4πR2 on

the sphere, the relevant potential is Uσ(r) = − q
4πεR , 0 < r < R and Uσ(r) = − q

4πεr ,
R < r.

Then, adding a surface dipole distribution of density τ = q
4πR the contributions

Uτ(r) = q
4πεR , 0 < r < R and Uτ(r) = 0, R < r to the potential originate.

Since the potential due to the point charge is U0(r) = q
4πεr , r �= 0, summing the

three terms above, one obtains U(r) = q
4πεr , 0 < r < R and U(r) = 0, R < r.

3.1.5 Green’s Formula for Two-Dimensional Magnetostatics

The formula of vector potential A corresponding to (3.5) is

A =
∫

Ω

GμJ dΩ +
∫

Γ1

G
∂A

∂n
dΓ−

∫
Γ2

A
∂G

∂n
dΓ (3.74)

where Γ = Γ1 ∪ Γ2 = ∂Ω and Γ1 ∩ Γ2 = 0; in the latter G′ is the modified Green’s
function and μ is the permeability (H m−1) of the material.

3.1.6 Field of a Line Current in a Three-Dimensional Domain:
Integral Approach

Let a straight conductor, placed in an unbounded three-dimensional domain and
carrying direct current of density J, be considered. Assuming cylindrical coordinates,
from (3.74) it follows

A = Aiz, J = Jiz, A = μ
4π

∫
Ω

J

|r| dΩ (3.75)

where r is the distance between the fixed field point P and the source point Q (Fig. 3.7)
oriented from Q to P and Ω is the conductor volume.

Moving from potential to field, at point P one has

B = ∇P × A = μ
4π

∫
Ω

∇P × J

|r| dΩ (3.76)
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Fig. 3.7 Line current

where the operator ∇P acts on the coordinates of point P. The following identity holds

∇P × J

|r| = 1

|r|∇P × J − J × ∇P
1

|r| (3.77)

Since J depends on the coordinates of point Q and not on those of point P, it follows
that ∇P × J = 0; then, according to (A.3), it comes out that

−J × ∇P
1

|r| = J × r

|r|3 (3.78)

and therefore

B = μ
4π

∫
Ω

J × r

|r|3 dΩ (3.79)

which is called Laplace’s law of the elementary action.
Since the conductor is cylindrical and the current density is uniform, J dΩ = I dz

and the volume integral becomes a line integral

B = μ
4π

∫ +∞

−∞
Iiz × r

|r|3 dz = μI

4π

∫ +∞

−∞
iϑ |r| sin α

|r|3 dz = iϑ
μI

4π

∫ +∞

−∞
sin α
|r|2 dz

(3.80)

Substituting r cos β = R and cos β dz = r dβ, since sin α = cos β, finally it results

B = iϑ
μI

4πR

∫ + π
2

− π
2

cos β dβ = iϑ
μI

2πR
(3.81)

and

H = iϑ
I

2πR
(3.82)

coincident with (2.227) when β = 0, so that r ≡ R.
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3.1.7 Field of a Current-Carrying Conductor of Rectangular
Cross-Section

In a two-dimensional unbounded domain, which is supposed to be homogeneous
and free of ferromagnetic material, after (3.4) the Green’s function for a cylindrical
conductor carrying a constant current I is given by

A(r) = μ0I

2π
ln r, r > 0 (3.83)

Let a conductor of rectangular cross-section, having width 2a and height 2b and car-
rying a constant current distributed with uniform density J, be considered (Fig. 3.8).
At the gravity centre of the conductor cross-section the origin of a rectangular system
of coordinates is placed.

After integrating the elementary contributions, the potential of the rectangular
conductor is given by

A(x, y) = μ0J

2π

∫ a

−a

∫ b

−b
ln
[
r
(
x, y, x′, y′)] dy′dx′ =

= μ0J

4π

∫ a

−a

∫ b

−b
ln
[(

x − x′)2 + (y − y′)2] dy′dx′ (3.84)

where (x′, y′) and (x, y) are source point Q and field point P, respectively. It turns
out to be

A(x, y) = μ0J

4π

{
(a − x) (b − y) ln

[
(a − x)2 + (b − y)2

]
+

+ (a + x) (b − y) ln
[
(a + x)2 + (b − y)2

]
+

+ (a − x) (b + y) ln
[
(a − x)2 + (b + y)2

]
+

+ (a + x) (b + y) ln
[
(a + x)2 + (b + y)2

]
+

a−a

−b

b

x

y

P (x,y)

Q(x’,y’)

⊗

Fig. 3.8 Conductor of rectangular cross-section
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+ (a − x)2
(

arctg
b − y

a − x
+ arctg

b + y

a − x

)
+

+ (a + x)2
(

arctg
b − y

a + x
+ arctg

b + y

a + x

)
+

+ (b − y)2
(

arctg
a − x

b − y
+ arctg

a + x

b + y

)
+

+ (b + y)2
(

arctg
a − x

b + y
+ arctg

a + x

b + y

)}
(3.85)

for x �= ±a, y �= ±b. If the assumption b << a holds, the model of the current
sheet follows. It turns out to be

A(x, y) = μ0J

4π

∫ a

−a
ln
[(

x − x′)2 + y2
]

dx′ =

= μ0J

4π

{
(a + x) ln

[
(a + x)2 + y2

]
+ (a − x) ln

[
(a − x)2 + y2

]
+

+ 2y

(
arctg

a + x

y
+ arctg

a − x

y

)
− 4a

}
, y �= 0 (3.86)

where J is the line current density (A m−1). After (3.85) or (3.86), from (2.205) the
components of induction field can be obtained.

3.2 Method of Images

Field problems characterized by concentrated sources in non-homogeneous domains
with simple boundaries can be solved by the method of images.

Electrostatic images

Let a dielectric half-space Ω of permittivity ε with a point charge q at a distance h
from a conducting half-space be considered. The field in the dielectric region Ω is
uniquely specified by the charge q and the boundary condition of the region, where
E · t = 0 holds. Comparing this field with that produced in an unbounded dielectric
domain of permittivity ε by two point charges q and −q at a distance 2h, one can
conclude that in the dielectric region Ω the fields are the same. Therefore in this
region the field is equal to that produced by charge q and its image −q placed at
distance 2h in a homogeneous domain of permittivity ε (Fig. 3.9).

Therefore, according to (2.118) the electric field is expressed by

E = 1

4πε
q

1

x2 + (y − h)2
ir1 − 1

4πε
q

1

x2 + (y + h)2
ir2 , y > 0 (3.87)
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Fig. 3.9 Point charge near the boundary with a conducting half space: source and image charge

where the radial unit vectors are defined as follows

ir1 =
⎛
⎜⎝ x√

x2 + (y − h)2
,

y − h√
x2 + (y − h)2

⎞
⎟⎠, y > 0 (3.88)

ir2 =
⎛
⎜⎝ x√

x2 + (y + h)2
,

y + h√
x2 + (y + h)2

⎞
⎟⎠, y > 0 (3.89)

In turn, the electric field for y < 0 is given by E = 0.
Field lines are plotted in Fig. 3.10.
More generally, let a dielectric medium of permittivity ε1 be considered, filling

the upper half-space where a point charge q is located; at a distance h from the charge,
let another dielectric medium of permittivity ε2 fill the lower half-space (Fig. 3.11).

In this case, the field in the upper half-space is equivalent to that produced in a
homogeneous region of permittivity ε1 by both source charge q and image charge
q′ = −αq with 0 ≤ α < 1, placed at a distance 2h from q.

In an analogous way, the field in the lower half-space is equivalent to that produced
by a second image charge q′′ = βq with 0 ≤ β < 1, placed instead of q in a
homogeneous region of permittivity ε2.

In fact, at the interface y = 0, the transmission conditions for tangential compo-
nent of electric field and normal component of induction (2.78) and (2.77) imply

Ex − αEx = βEx, y = 0+ (3.90)

ε1Ey + ε1αEy = ε2βEy, y = 0− (3.91)

respectively. It is easily found that

α = ε2 − ε1

ε1 + ε2
; β = 2ε1

ε1 + ε2
(3.92)
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Fig. 3.10 Electrostatic images: field lines for y > 0

Fig. 3.11 Point charge near the boundary of two dielectric half-spaces

Therefore, the electric field for y > 0 is expressed by

E = 1

4πε1
q

1

x2 + (y − h)2
ir1 − 1

4πε1

ε2 − ε1

ε1 + ε2
q

1

x2 + (y + h)2
ir2 (3.93)

ir1 =
⎛
⎜⎝ x√

x2 + (y − h)2
,

y − h√
x2 + (y − h)2

⎞
⎟⎠ (3.94)

ir2 =
⎛
⎜⎝ x√

x2 + (y + h)2
,

y + h√
x2 + (y + h)2

⎞
⎟⎠ (3.95)
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Fig. 3.12 Image of a charge with respect to a grounded sphere

In turn, the electric field for y < 0 is given by

E = 1

4πε2

2ε1

ε1 + ε2
q

1

x2 + (y − h)2
ir1 (3.96)

Now, let a point charge q1 be located at point P1 externally to a conducting sphere,
of radius r0 and centre O, having potential U = 0; the distance between P1 and the
centre of the sphere is d.

The field distribution does not change if the spherical surface is replaced by
an equivalent point-charge q2, located at a suitable point P2, such that the sphere
represents its zero-potential surface; in that case q2 is called the image charge of q1
with respect to the sphere. The problem is that of identifying: (i) distance a between
P1 and P2; (ii) displacement b of P2 with respect to the sphere centre O; (iii) value
q2 of the image charge, knowing the value q1 of source charge and the distance
d = a + b (Fig. 3.12).

From (2.119) the potential at point P is

U = 1

4πε0

(
q1

r1
+ q2

r2

)
(3.97)

where r1 and r2 are the distances of P from P1 and P2, respectively.
All points of the domain for which U = 0 should fulfil

q1

r1
+ q2

r2
= 0 (3.98)

or
r1

r2
= −q1

q2
= k (3.99)

In a two-dimensional domain they belong to a circle surrounding the point P2 where
the image charge should be located. Equation (3.99) for points A and B gives

a + b − r0

r0 − b
= a + b + r0

r0 + b
= k (3.100)

The last two equations yield

k = d

r0
(3.101)
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Fig. 3.13 Contour plot of potential for two unlike charges of different magnitude

a = d2 − r2
0

d
(3.102)

b = r2
0

d
(3.103)

q2 = −q1

k
(3.104)

It should be noted that source and image charge are unlike and have different
magnitude.

Assuming q1 = 4 μC, d = 40 cm, r0 = 12 cm, one has 1
k = 0.3, q2 =

−1.2 μC, a = 36.4 cm and b = 3.6 cm; the corresponding potential lines are shown
in Fig. 3.13.

Finally, if the potential of the sphere is U = U0 �= 0, the problem can be solved
as above with the addition of a second image charge q3 = 4πε0r0U0 placed at the
centre of the sphere.

Magnetostatic images

A magnetic region Ω of permeability μ with a line current I, located at a distance h
from a half-space of infinite permeability and parallel to the space itself, is considered.

The field in the magnetic region Ω is uniquely specified by the current I and the
boundary condition, where H · t = 0 holds. Comparing this field with that produced
in an unbounded magnetic domain by two line currents of equal magnitude and equal
sign at a distance 2h, one can conclude that in the magnetic region the fields are the
same. Therefore in this region the field is equal to that of current I and its image I at
distance 2h placed in a homogeneous domain of permeability μ (Fig. 3.14).
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Fig. 3.14 Source and image currents

Therefore, the flux density for y > 0 is expressed by

B = μ
2π

I
1√

x2 + (y − h)2
it1 + μ

2π
I

1√
x2 + (y + h)2

it2 (3.105)

where the tangential unit vectors are defined as follows

it1 =
(

− y − h√
x2 + (y − h)2

,
x√

x2 + (y − h)2

)
(3.106)

it2 =
(

− y + h√
x2 + (y + h)2

,
x√

x2 + (y + h)2

)
(3.107)

In turn, the flux density for y < 0 is given by B = 0.
Field lines for y > 0 are plotted in Fig. 3.15.
More generally, let a line current I, placed in a half-space of permeability μ1 at

a distance h from the boundary of a half-space of permeability μ2, be considered
(Fig. 3.16).

In analogy to the electrostatic case, the magnetic field in the upper half-space is
equivalent to that produced, in a homogeneous region of permeability μ1, by both
source current I and image current I′ = αI with 0 ≤ α < 1 placed at a distance 2h
from I.

In a similar way, the field in the lower half-space is equivalent to that produced by
a second image current I′′ = βI with 0 ≤ β < 1 placed instead of I in a homogeneous
region of permeability μ2.

The transmission conditions for tangential component of magnetic field and
normal component of induction at y = 0 imply

Hx − αHx = βHx, y = 0+ (3.108)

μ1Hy + μ1αHy = μ2βHy, y = 0− (3.109)

0 ≤ α < 1 0 ≤ β < 1 (3.110)
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Fig. 3.15 Magnetostatic images: vector plot for y > 0

y
h•I

μ1

μ2

x

Fig. 3.16 Line current near the boundary of two magnetic half-spaces

respectively. It is easily found that

α = μ2 − μ1

μ1 + μ2
; β = 2μ1

μ1 + μ2
(3.111)

Therefore, the flux density for y > 0 is expressed by

B = μ1

2π
I

1√
x2 + (y − h)2

it1 + μ1

2π
μ2 − μ1

μ1 + μ2
I

1√
x2 + (y + h)2

it2 (3.112)

it1 =
⎛
⎜⎝− y − h√

x2 + (y − h)2
,

x√
x2 + (y − h)2

⎞
⎟⎠ (3.113)
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Fig. 3.17 Line current: field of source and image current (μ2 = 20μ1)

it2 =
⎛
⎜⎝− y + h√

x2 + (y + h)2
,

x√
x2 + (y + h)2

⎞
⎟⎠ (3.114)

In turn, the flux density for y < 0 is given by

B = μ2

2π
2μ1

μ1 + μ2
I

1√
x2 + (y − h)2

it1 (3.115)

In Fig. 3.17 the contour plot of flux lines is reported in the case μ2 = 20μ1.

3.2.1 Magnetic Field of a Line Current in a Slot

Let the test case shown in Fig. 2.13b be considered.Arectangular slot, having width a
and height b is surrounded by ferromagnetic material of infinite permeability (closed
slot). A constant line current I is concentrated at the gravity centre of the slot where
the origin of a system of rectangular coordinates is placed (Fig. 3.18). Due to the
presence of ferromagnetic material, the following boundary conditions hold:

Bx = 0 for y =
(

+b

2

)−
and y =

(
−b

2

)+
(3.116)

By = 0 for x =
(
+ a

2

)−
and x =

(
− a

2

)+
(3.117)

for an observer located in the slot (flux lines orthogonal to the air/iron boundary).
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Fig. 3.18 Closed slot and images

Table 3.1 Location of images for the closed slot (single images)

Image k xk yk

1 a 0
2 a b
3 0 b
4 −a b
5 −a 0
6 −a −b
7 0 −b
8 a −b

If images due to multiple reflections in x and y directions are neglected, then eight
equivalent currents Ik = I, k = 1, 8 approximate the effect of the slot boundary; they
have to be placed symmetrically according to Table 3.1.

The closed slot is characterized by a double air/iron boundary in both x and y
directions: in principle, the images form an infinite series, because each image current
gives rise to a new reflection with respect to the boundaries. A better approximation
of the field in the slot is obtained if a second layer of images is taken into account;
then, twenty-four sources are originated, according to Table 3.2.

The total field is thus given by the superposition of the fields due to source cur-
rent and like image currents, all of them being located in an unbounded domain of
permeability μ0, namely

B = μ0I

2π
√

x2 + y2
it +

∑
k

μ0Ik

2π
√

(x − xk)
2 + (y − yk)

2
it,k

− a

2
≤ x ≤ a

2
, −b

2
≤ y ≤ b

2
, x �= xk, y �= yk

(3.118)
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Table 3.2 Location of images for the closed slot (double images)

Image k xk yk

1 a 0
2 a b
3 0 b
4 −a b
5 −a 0
6 −a −b
7 0 −b
8 a −b
9 2a 0

10 2a b
11 2a 2b
12 a 2b
13 0 2b
14 −a 2b
15 −2a 2b
16 −2a b
17 −2a 0
18 −2a −b
19 −2a −2b
20 −a −2b
21 0 −2b
22 a −2b
23 2a −2b
24 2a −b

with

it =
(

− y√
x2 + y2

,
x√

x2 + y2

)
(3.119)

and

it,k =
⎛
⎜⎝− y−yk√

(x − xk)
2 + (y − yk)

2
,

x − xk√
(x − xk)

2 + (y − yk)
2

⎞
⎟⎠ (3.120)

where (xk, yk) are the coordinates of kth image, while the summation index is
k = 1, . . ., 8 and k = 1, . . ., 24 when single and double images are considered,
respectively.

The case of a magnetically open slot, the height of which is assumed to be much
greater than its width a, accommodating a conductor of height b, can be easily treated;
boundary conditions become

Bx = 0, y =
(

−b

2

)+
(3.121)

By = 0, x =
(
− a

2

)+
,
( a

2

)−
(3.122)
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Again, the field is given by (3.118)–(3.120), this time taking the summation index
k = {1, 5, 6, 7, 8} and k = {1, 5, 6, 7, 8, 9, 17, 18, 19, 20, 21, 22, 23, 24} when sin-
gle and double images are considered, respectively.

The following remark can be put forward. Expanding the field in terms of current
images is equivalent to set a particular solution fulfilling the given boundary condi-
tions. The fact that boundary conditions (3.116) and (3.117) are not fully satisfied is
due to the truncation of multiple images.

3.2.2 Magnetic Field of a Line AC Current over a Conducting
Half-Space

The case of an AC line current located in a magnetic region of permeability μ at a
distance h from a conducting half-space of infinite conductivity is here discussed
(Fig. 3.19). The effect of induced currents in the conducting space gives rise to a flux
barrier, i.e. the conducting plane can be treated as a space of zero permeability located
at a distance h from the current; therefore, the field for y > 0 can be expressed as

B = μ
2π

I
1√

x2 + (y − h)2
it1 +

− μ
2π

I
1√

x2 + (y + h)2
it2, y > 0, y �= h (3.123)

Fig. 3.19 AC line current near a conducting half-space of infinite permeability: field lines
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with

it1 =
⎛
⎜⎝− y − h√

x2 + (y − h)2
,

x√
x2 + (y − h)2

⎞
⎟⎠ (3.124)

and

it2 =
⎛
⎜⎝− y + h√

x2 + (y + h)2
,

x√
x2 + (y + h)2

⎞
⎟⎠ (3.125)

In other words, the field for y > 0, is given by the superposition of source current
I and image current −I located at a distance 2h in an unbounded homogeneous
region of permeability μ; the boundary between magnetic and conducting regions is
a flux line.

3.3 Method of Separation of Variables

In a two-dimensional homogeneous domain Ω, with constant permeability μ and
no current, using rectangular coordinates, Laplace’s equation of magnetic vector
potential A is from (2.208)

∂2A

∂x2
+ ∂2A

∂y2
= 0 (3.126)

If the domain boundaries lay along constant x or constant y lines, then the following
solution can be tried

A(x, y) = X(x)Y(y) (3.127)

where X and Y depend on x only and y only, respectively. Consequently, substituting
(3.127) into (3.126), it turns out to be

Y
d2X

dx2
+ X

d2Y

dy2
= 0,

1

X

d2X

dx2
+ 1

Y

d2Y

dy2
= 0 (3.128)

if X(x) �= 0 for any x and Y (y) �= 0 for any y.
The only way (3.128) are true is that separately

1

X

d2X

dx2
= −k2 (3.129)

1

Y

d2Y

dy2
= k2 (3.130)

where k2 �= 0 is called the separation constant; it is assumed that both X(x) and Y(y)
are non-constant functions.
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Then, the partial differential equations (3.128) reduce to a pair of ordinary
differential equations

d2X

dx2
+ k2X = 0 (3.131)

d2Y

dy2
− k2Y = 0 (3.132)

For k2 �= 0, the two general solutions are given by

X(x) = αk sin(|k| x) + βk cos(|k| x) (3.133)

Y(y) = γksh(|k| y) + δkch(|k| y) (3.134)

If k2 = 0, it results

X(x) = α0 + α1x, Y(y) = β0 + β1y (3.135)

The most general solution of (3.126) is then given by

A(x, y) = c1 + c2x + c3y + c4xy +

+
∞∑

n=1

[
αn sin(n |k| x) + βn cos(n |k| x)

][
γnsh(n |k| y) + δnch(n |k| y)

]

(3.136)

In principle, the separation constant and all unknown coefficients can be determined
by imposing the boundary conditions. The actual problem is to fit the latter; although
there is an infinite number of solutions to Laplace’s equation, it is often impossible
to identify analytically the right set of constants fulfilling field conditions along the
boundary.

In the case of a current source in the field domain, the Poisson’s equation holds

∂2A

∂x2
+ ∂2A

∂y2
= −μJ (3.137)

and a particular solution should be added to the general one in order to take the source
term J into account. In that case, boundary conditions are then imposed on the whole
solution.

Finally, the following remark can be put forward. If the case

d2X

dx2
− h2X = 0 (3.138)

d2Y

dy2
+ h2Y = 0 (3.139)

with h2 �= 0 is considered, the behaviour of X(x) and Y(y) is found to be symmetrical
with respect to the corresponding solutions of the case (3.131)–(3.132).
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Fig. 3.20 Conductor in the slot

3.3.1 Magnetic Field of a Current Uniformly Distributed in a Slot

Let the test problem shown in Fig. 2.13a be considered; the height of the slot
(Fig. 3.20) is assumed to be much greater than its width a.

A conductor of rectangular cross section, having width a and height b, is located
at the bottom of the slot. The conductor carries a constant current I,supposed to be
uniformly distributed inside the cross section. Due to the presence of ferromagnetic
material of infinite permeability, the following boundary conditions hold

A = 0, for y = 0+ (3.140)

∂A

∂x
= 0, for x =

(
+ a

2

)−
and x =

(
− a

2

)+
(3.141)

Because of symmetry, the potential should be an even function of x; taking this into
account, after (3.136) the general solution to the Laplace’s equation in a rectangular
domain can be expressed as

AL =
∞∑

n=1

cnsh(nky) cos(nkx) (3.142)

with k and cn to be determined. A particular solution AP to Poisson’s equation, after
integrating twice the right-hand side of (3.137) with respect to y, is

AP(y) = −1

2
μJy2 with J = I

ab
(3.143)

Consequently, the solution for the potential is

A = AP + AL = −1

2
μJy2 +

∞∑
n=1

cnsh(nky) cos(nkx) (3.144)

with − a
2 ≤ x ≤ a

2 , 0 ≤ y ≤ b.
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In the region y > b, J = 0 and the field tends to be uniform such that
(
Bx, By

) =
(B0, 0) at least for y >> b; accordingly, a suitable expression of the potential in
this region is

ÃL = α + βy +
∞∑

n=1

γne−nky cos(nkx), − a

2
< x <

a

2
, b ≤ y (3.145)

with α, β, γn to be determined.
Boundary conditions are now imposed. It follows

∂A

∂x
= −

∞∑
n=1

nkcnsh(nky) sin(nkx) (3.146)

and

∂A

∂x

∣∣∣∣
x=± a

2

= μ
∞∑

n=1

nkcnsh(nky) sin
(

nk
a

2

)
= 0 (3.147)

which is true if k = 2π
a , cn �= 0.

Moreover A(x, 0) = 0 is automatically fulfilled.
Finally, the asymptotic boundary condition states

lim
y→∞ Bx = B0 (3.148)

lim
y→∞ By = 0 (3.149)

From (3.145), for y > b and − a
2 < x < a

2 , one has

Bx = ∂ÃL

∂y
= β −

∞∑
n=1

nkγn e−nky cos(nkx) (3.150)

and, because of (3.148), it results β = B0.
In turn, one has

By = −∂ÃL

∂x
=

∞∑
n=1

nkγne−nky sin(nkx) (3.151)

and (3.149) is always fulfilled, for y >> b and − a
2 < x < a

2 .

At y = b, the continuity of potential requires AL + AP = ÃL i.e.

−1

2
μJb2 +

∞∑
n=1

cnsh(nkb) cos(nkx) = α + B0b +
∞∑

n=1

γne−nkb cos(nkx) (3.152)

Moreover, the continuity of field components Bx and By requires
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−μJb +
∞∑

n=1

nkcnch(nkb) cos(nkx) = B0 −
∞∑

n=1

nkγne−nkb cos(nkx) (3.153)

and
∞∑

n=1

nkcnsh(nkb) sin(nkx) =
∞∑

n=1

nkγne−nkb sin(nkx) (3.154)

respectively.
It follows

B0 = −μJb (3.155)

α = 1

2
μJb2 (3.156)

γn = −cnenkbch(nkb) = cnenkbsh(nkb) (3.157)

One has γn = cn = 0 if nkb �= 0.
Therefore, one obtains

A = −1

2
μJy2, 0 ≤ y ≤ b (3.158)

A = μJb

(
b

2
− y

)
, b ≤ y (3.159)

Fig. 3.21 Conductor in the slot: plot of flux lines
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Correspondingly, the field components are

Bx = −μJy, 0 ≤ y ≤ b (3.160)

Bx = −μJb, b ≤ y (3.161)

and By = 0 everywhere. Fig. 3.21 shows the plot of flux lines.



Chapter 4
Numerical Methods for Solving
Boundary-Value Problems

4.1 Variational Formulation in Two-Dimensional Magnetostatics

Let the following magnetostatic boundary-value problem be considered

− ∇ ·
(

μ−1∇A
)

= J in Ω (4.1)

A = 0 along ΓD (4.2)

∂A

∂n
= 0 along ΓN (4.3)

where ΓD ∪ ΓN = Γ is the boundary of the two-dimensional simply-connected
domain Ω, while A and μ are vector potential and magnetic permeability, respec-
tively. Assuming rectangular coordinates, one has A = Aiz and J = Jiz, whereas in
cylindrical coordinates A = Aiϕ and J = Jiϕ.

It is assumed that J and the second derivative of A are continuous in Ω so that the
integral of both sides of (4.1) exists.

A way to approximate the solution to (4.1)–(4.3) is to relax the differential formu-
lation of the boundary-value problem (weak formulation); to this end, the average of
both sides of (4.1), weighted by a suitable test function, is considered. Accordingly,
if u is a test function which is continuous up to its second derivative, from (4.1)
one has

u
(
∇ ·
(

μ−1∇A
)

+ J
)

= 0 (4.4)

and, by integrating over the domain, one gets∫
Ω

u∇ ·
(

μ−1∇A
)

dΩ +
∫

Ω

Ju dΩ = 0 (4.5)

Due to vector identity (A.14), taking ϕ = u and V = μ−1∇A, it follows∫
Ω

∇ ·
(

uμ−1∇A
)

dΩ −
∫

Ω

∇u · μ−1∇A dΩ +
∫

Ω

Ju dΩ = 0 (4.6)

77
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By applying Gauss’s theorem one obtains∫
Γ

uμ−1∇A · n dΓ −
∫

Ω

∇u · μ−1∇A dΩ +
∫

Ω

Ju dΩ =

=
∫

ΓD

uμ−1∇A · n dΓ +
∫

ΓN

uμ−1 ∂A

∂n
dΓ +

−
∫

Ω

∇u · μ−1∇A dΩ +
∫

Ω

Ju dΩ = 0 (4.7)

Due to boundary conditions (4.2) and (4.3) the first two terms are zero; therefore,
it results

−
∫

Ω

∇u · μ−1∇A dΩ +
∫

Ω

Ju dΩ = 0 (4.8)

which is the variational equation associated to the differential equation (4.1).
Now, taking u = δA where δA is the elementary variation of A, (4.8) becomes

−
∫

Ω

δ∇A · μ−1∇A dΩ +
∫

Ω

JδA dΩ = 0 (4.9)

or, equivalently

δ
[∫

Ω

(
1

2μ
∇A · ∇A − JA

)
dΩ

]
= 0 (4.10)

which states the necessary condition for A to be a steady point of the functional

χ(A) =
∫

Ω

1

2μ
∇A · ∇A dΩ −

∫
Ω

JA dΩ (4.11)

In other words, if A is a solution of differential equation (4.1) subject to (4.2) and
(4.3), then A is a solution also of variational equation (4.10) and is such to give origin
to a steady point of functional (4.11).

Conversely, having defined the energy functional of the simply connected domain
Ω as

χ =
∫

Ω

1

2μ
∇A · ∇A dΩ −

∫
Ω

JA dΩ (4.12)

or, thanks to (2.15)

χ =
∫

Ω

1

2μ
B · B dΩ −

∫
Ω

JA dΩ (4.13)

where

B =
(

∂A

∂y
, −∂A

∂x
, 0

)
= (∇A

)⊥
(4.14)

(see Section 2.3.2), equation (4.1) follows.
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In fact, let the first-order variation δχ of functional χ, which represents minus
the co-energy of the domain Ω for given current density (see Section 2.3.5), be
considered. It results

δχ =
∫

Ω

1

2μ
δ(∇A · ∇A)dΩ −

∫
Ω

JδA dΩ =

=
∫

Ω

[
1

2μ
∇(δA) · ∇A + 1

2μ
∇A · ∇(δA)

]
dΩ −

∫
Ω

JδA dΩ = (4.15)

=
∫

Ω

μ−1∇A · ∇(δA)dΩ −
∫

Ω

JδA dΩ

Due to (A.14) with ϕ = δA and V = μ−1∇A one has

δχ =
∫

Ω

∇ ·
(

δAμ−1∇A
)

dΩ −
∫

Ω

δA∇ ·
(

μ−1∇A
)

dΩ −
∫

Ω

JδA dΩ (4.16)

Then, applying Gauss’s theorem, it follows

δχ =
∫

Γ

δAμ−1∇A · n dΓ −
∫

Ω

δA
(∇ · μ−1∇A + J

)
dΩ =

=
∫

ΓD

μ−1δA∇A · n dΓ +
∫

ΓN

μ−1δA
∂A

∂n
dΓ −

∫
Ω

δA
(∇ · μ−1∇A + J

)
dΩ

(4.17)

If A fulfils (4.2) and (4.3), one has

δχ = −
∫

Ω

δA
(∇ · μ−1∇A + J

)
dΩ (4.18)

Since the co-energy has a steady point when δχ = 0, the Poisson’s equation

∇ · μ−1∇A + J = 0 (4.19)

is verified; (4.19) is called the Euler’s equation associated to functional (4.12)
As a result, the equivalence between the search of a solution to Poisson’s equation

and the search of a steady point of an energy functional has been proven. The two
approaches are known as Ritz’s method and Galerkin’s method, respectively.

According to the latter, a numerical procedure approximating the minimization
of the energy functional is developed.

The following remarks are applicable:

(i) Dirichlet’s condition (4.2) is an essential boundary condition, because the value
of A must be forced at least in a point of the boundary.

(ii) Homogeneous Neumann’s condition (4.3) is a natural boundary condition,
because it is already taken into account both in (4.7) and (4.17).
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4.2 Finite Elements for Two-Dimensional Magnetostatics

4.2.1 Discretization of Energy Functional

Let the following continuous problem be considered: find the steady point of
χ(A), A = const. along ΓD, ∂A

∂n = 0 along ΓN, where

χ(A) =
∫

Ω

1

2μ

[(
∂A

∂x

)2

+
(

∂A

∂y

)2
]

dΩ −
∫

Ω

JA dΩ (4.20)

is the energy functional associated to a simply-connected domain Ω in which rect-
angular coordinates are assumed. In (4.20) it is supposed that A is continuous up to
its first derivative, while J is assumed to be a continuous function.

Let Ω be discretized by means of a grid of triangular elements subject to the
following constraints (Fig. 4.1):

– Two adjacent elements do not overlap
– No vertex of a triangle belongs to the edge of an adjacent triangle

The following discretization of problem (4.20) is introduced: find the steady point
of χ(A) for the net of triangles of the grid, upon the condition that the restriction of
potential A to an element of the given grid is represented by a linear polynomial and
A = const along ΓD, ∂A

∂n = 0 along ΓN. As a consequence, in the whole domain the
potential A is approximated by a piecewise-linear function.

Given a numbering of grid nodes (i = 1, 2, . . . , n), the piecewise-linear functions

ψi(x, y) = 1 at node i = 1, n

ψj(x, y) = 0 at all the other nodes j = 1, n, j �= i (4.21)

are called global shape functions (Fig. 4.2). A can be written as

A(x, y) =
n∑

i=1

ψi(x, y)Ai (4.22)

where Ai is the unknown value of A(x, y) at ith node and A(x, y) varies linearly.

2

1
1

2
2

1

a b c

Fig. 4.1 Examples of incorrectly (a, b) and correctly (c) shaped triangles
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i

Fig. 4.2 Detail of a grid: representation of the global shape function associated to ith node. Shaded
triangles show the linear variation of the function

After substituting (4.22) in (4.20) one obtains

χ(A1, A2, . . . , An) =
∫

Ω

1

2μ

⎡
⎣
(

n∑
i=1

Ai
∂ψi

∂x

)2

+
(

n∑
i=1

Ai
∂ψi

∂y

)2
⎤
⎦ dΩ +

−
∫

Ω

J
n∑

i=1

AiψidΩ (4.23)

that represents the discrete version of (4.20).
In (4.23) the terms dependent on just Ai can be separated from those independent

of Ai. Explicitly, one gets

χ(A1, A2, . . . , An) = A2
i

∫
Ω

1

2μ

[(
∂ψi

∂x

)2

+
(

∂ψi

∂y

)2
]

dΩ +

+ 2Ai

n∑
j=1
j�=i

Aj

∫
Ω

1

2μ

(
∂ψi

∂x

∂ψj

∂x
+ ∂ψi

∂y

∂ψj

∂y

)
dΩ +

− Ai

∫
Ω

JψidΩ −
n∑

k=1
k �=i

Ak

∫
Ω

JψkdΩ (4.24)

In order A = (A1, A2, . . . , An) to make functional (4.23) steady, it must be

∂χ
∂Ai

= 0, i = 1, 2, . . . , n (4.25)



82 4 Numerical Methods for Solving Boundary-Value Problems

From (4.24) and (4.25) one obtains

Ai

∫
Ω

μ−1

[(
∂ψi

∂x

)2

+
(

∂ψi

∂y

)2
]

dΩ +

+
n∑

j=1
j�=i

Aj

∫
Ω

μ−1
(

∂ψi

∂x

∂ψj

∂x
+ ∂ψi

∂y

∂ψj

∂y

)
dΩ +

−
∫

Ω

JψidΩ = 0, i = 1, 2, . . . , n (4.26)

If should be noted that (4.26) represents a linear system of n equations in n unknowns
Ai. If the system is expressed in matrix form, the entries of the coefficient matrix
H(n, n) become

hij =
∫

Ω

1

μ

(
∂ψi

∂x

∂ψj

∂x
+ ∂ψi

∂y

∂ψj

∂y

)
dΩ, i, j = 1, 2, . . . , n (4.27)

while the entries of the source vector d(n, 1) are

di =
∫

Ω

Jψi dΩ, i = 1, 2, . . . , n (4.28)

Then, system (4.26) can be written in matrix form as

H A = d (4.29)

where H(n, n) is the reluctance (H−1 m) matrix, while A(n, 1) and d(n, 1) are nodal
potential (Wb m−1) and nodal current (A) vectors, respectively.

It is easy to realize that in (4.27) functions ψi, ψj can be interchanged, i.e. matrix
H is symmetric. The problem of finding a steady point of functional (4.23) is then
reduced to the solution of a linear system governed by matrix H and source term d.

It should be noted that system (4.29) is singular; in order its solution to be unique,
it is necessary to fix the value of potential A of all nD nodes where (4.2) holds; at
least one node located along boundary Γ must be constrained.

4.2.2 Local Shape Functions in Rectangular Coordinates

Referring to a triangle of the grid, the following local shape functions

ψk(x, y) = 1 at node k = 1, 2, 3 anticlockwise
ψk(x, y) = 0 at the other two nodes

(4.30)

with linear variation with respect to (x, y) can be introduced; they represent the
restriction of (4.21) to node k of the triangle.
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Referring to a triangle of vertices V1 = (x1, y1), V2 = (x2, y2), V3 = (x3, y3),
the following functions

ψ1(x, y) = 1

2S
[(x2y3 − x3y2) + x(y2 − y3) + y(x3 − x2)]

ψ2(x, y) = 1

2S
[(x3y1 − x1y3) + x(y3 − y1) + y(x1 − x3)] (4.31)

ψ3(x, y) = 1

2S
[(x1y2 − x2y1) + x(y1 − y2) + y(x2 − x1)]

where

S = 1

2

∣∣∣∣∣∣
1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣ (4.32)

is the area of the triangle considered, are linear in both x and y. They fulfil conditions
(4.30) and are the local shape functions. A geometric interpretation of (4.31) is given
in Fig. 4.3.

Considering an inner point V(x, y), the ratio

s

h
= S1

S1 + S2 + S3
= S1

S
(4.33)

is called area coordinate ξ1 referred to vertex 1; in general, area coordinates are
defined as

ξk = Sk

S
, k = 1, 2, 3 (4.34)

The following properties hold

0 ≤ ξk ≤ 1,

3∑
k=1

ξk = 1, k = 1, 2, 3 (4.35)

h-s

s

S1

S2

S3

V3

V2

V1

V

Fig. 4.3 Geometric interpretation of local shape functions
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It can be proven that

ψk = ξk, k = 1, 2, 3 (4.36)

In fact, Sk is obtained by substituting vector [1 x, y] in the kth row of area matrix
determinant (4.32); considering (4.34) and (4.31), (4.36) immediately follows.

Consequently, the restriction of potential A(x, y) to the given triangle is

A(x, y) =
3∑

k=1

ψk(x, y)Ak = [ψ1(x, y) ψ2(x, y) ψ3(x, y)
]⎡⎣A1

A2
A3

⎤
⎦ (4.37)

where A1, A2, A3 are the nodal values of potential in the triangle itself.

4.2.3 Coefficient Matrix and Source Vector

If (4.27) is applied to all the triangular elements composing the grid, the entry hij is
the sum of the contributions of each element e

hij =
∑∫

e
μ−1

(
∂ψi

∂x

∂ψj

∂x
+ ∂ψi

∂y

∂ψj

∂y

)
dx dy, i, j = 1, 2, . . . , n (4.38)

where ψi, ψj are the global shape functions.
However, it is easily seen that the contribution of a triangle e to the integral in

(4.38) is zero if either the ith or the jth node does not belong to triangle e itself. As
a consequence, the majority of terms forming the integral is zero and the matrix is
sparse.

In this respect, it is convenient to define the local coefficient matrix He(3, 3)

associated to a single triangle e having area Se with entries

hkλ =
∫

e
μ−1

(
∂ψk

∂x

∂ψλ

∂x
+ ∂ψk

∂y

∂ψλ

∂y

)
dx dy, k, λ = 1, 2, 3 (4.39)

where ψk, ψλ are local shape functions.
From (4.31), by a cyclic permutation of indices, it results

∂ψk

∂x
= yk+1 − yk+2

2Se
≡ ak

2Se

∂ψk

∂y
= xk+2 − xk+1

2Se
≡ bk

2Se
(4.40)

with k = 1, 2, 3 and x4 = x1, x5 = x2, y4 = y1, y5 = y2. The entries of the local
coefficient matrix (4.39) are then given by

hkλ =
∫

e

(
akaλ + bkbλ

4μS2
e

)
dx dy = akaλ + bkbλ

4μSe
, k, λ = 1, 2, 3 (4.41)
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In practice, the entries of the global matrix are assembled starting from entries of
local matrices, for the correspondence between local and global numbering of nodes
is unique. The assembling rules will be clarified later on by means of an example.

In a similar way, it is possible to construct (4.28) by assembling local contributions;
in fact

di =
∫

Ω

JψidΩ =
∑∫

e
Jψk dx dy, i = 1, 2, . . . , n, k = 1, 2, 3 (4.42)

The local source vector de associated to a single triangle e has entry

dk =
∫

e
Jψk dx dy, k = 1, 2, 3 (4.43)

In particular, if current density J is assumed to be constant in the element considered,
each local source term is equal to JSe

3 .

4.2.4 From Potential to Field

Assuming that the magnetic potential A (x, y) is approximated by a linear polynomial
on each element of the grid, if A1, A2, A3 are the values of potential in vertices
V1 = (x1, y1), V2 = (x2, y2), V3 = (x3, y3) of triangle e, respectively, the
induction field B = (Bx, By, Bz

)
is approximated on each element by

B =
(

∂A

∂y
, −∂A

∂x
, 0

)
(4.44)

From (4.32) and (4.37) it results

[
Bx
By

]
= 1

2Se

[
x3 − x2 x1 − x3 x2 − x1
y3 − y2 y1 − y3 y2 − y1

]⎡
⎣A1

A2
A3

⎤
⎦ = (4.45)

= 1

2Se

[
b1 b2 b3

−a1 −a2 −a3

]⎡
⎣A1

A2
A3

⎤
⎦

Apparently, matrix

1

2Se

[
b1 b2 b3

−a1 −a2 −a3

]
(4.46)

approximates the curl operator.
The following remark can be put forward. At the interface between two triangles,

having an edge in common, both normal component Bn of induction field and tan-
gential component of magnetic field Ht = μ−1Bt are not continuous. In other words,
field components are approximated by means of piecewise constant functions all
over the domain.
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Fig. 4.4 Grid discretizing a half-slot

4.2.5 Magnetic Field in a Slot Solved by the Finite Element Method

Let the test problem shown in Fig. 2.13a be considered. The rectangular domain cor-
responding to half a slot is discretized by means of six triangular elements numbered,
for instance, as shown in Fig. 4.4. The n nodes are numbered from 1 to 8 arbitrarily
within the grid and from 1 to 3 (anticlockwise) inside each triangle.

According to (4.41), the coefficient matrix associated to a triangle e having vertices
V1 = (x1, y1), V2 = (x2, y2) and V3 = (x3, y3) results

He = 1

4μS

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(y2 − y3)
2+

+ (x3 − x2)
2

(y2 − y3) (y3 − y1) +
+ (x3 − x2) (x1 − x3)

(y2 − y3) (y1 − y2) +
+ (x3 − x2)(x2 − x1)

(y3 − y1)
2 +

+ (x1 − x3)
2

(y3 − y1) (y1 − y2) +
+ (x1 − x3) (x2 − x1)

symmetric
(y1 − y2)

2 +
+ (x2 − x1)

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.47)

where μ and S are magnetic permeability and area of the triangle, respectively.
For element 1, given height h and half-width λ of the slot, one has V1 =

(0, 0), V2 = (λ, 0), V3 = (0, h
3 ) and the local coefficient matrix is:

H1 = 1

4μS

⎡
⎢⎣

h2

9 + λ2 − h2

9 −λ2

h2

9 0

symm. λ2

⎤
⎥⎦ (4.48)
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Analogously, for element 2, one has V1 = (λ, 0), V2 = (λ, h
3 ), V3 = (0, h

3 ) and
the local coefficient matrix is:

H2 = 1

4μS

⎡
⎢⎣

λ2 −λ2 0
h2

9 + λ2 − h2

9

symm. h2

9

⎤
⎥⎦ (4.49)

From Fig. 4.4 it can be noted that elements 3 and 5 correspond to element 1 and
keep the same local numbering of nodes as in element 1. The same happens for
elements 4 and 6 with respect to element 2. Therefore, it results: H3 = H1 and
H5 = H1; H4 = H2 and H6 = H2.

Supposing current density J is uniform, local source terms are all equal to JS
3 in

each triangle and

de = JS

3

⎡
⎣1

1
1

⎤
⎦ (4.50)

In general, the global coefficient matrix H can be assembled node by node according
to the following rule:

– Diagonal terms hii are obtained as the sum of the corresponding terms of local
matrices of all triangles having ith node in common

– Off-diagonal terms hij are obtained by summing the corresponding terms of local
matrices of the two triangles sharing the edge between ith node and jth node

For instance, global node 1 belongs to element 1 only, corresponding to local node
1; therefore H(1, 1) = H1(1, 1). Moreover, global node 2 is in common between
elements 1 and 2 for which it corresponds to local nodes 2 and 1, respectively;
therefore H(2, 2) = H1(2, 2) + H2(1, 1). Going on, global node 3 is in common
among elements 1, 2, 3 where it corresponds to local nodes 3, 3, 1 respectively;
therefore H(3, 3) = H1(3, 3) + H2(3, 3) + H3(1, 1).

Passing to off-diagonal terms, for the sake of an example, the edge joining global
node 3 to global node 4 is in common between elements 2 and 3; moreover, global
node 4 corresponds to local node 2 in both elements 2 and 3; therefore one has
H(3, 4) = H2(2, 3) + H3(1, 2) = H(4, 3).

By iterating the assembling algorithm on all global nodes, finally it results:

H = 1

4μS

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h2

9 + λ2 − h2

9 −λ2 0 0 0 0 0
h2

9 + λ2 0 −λ2 0 0 0 0

2 h2

9 + 2λ2 −2 h2

9 −λ2 0 0 0

2 h2

9 + 2λ2 0 −λ2 0 0

2 h2

9 + 2λ2 −2 h2

9 −λ2 0

2 h2

9 + 2λ2 0 −λ2

symmetric h2

9 + λ2 − h2

9
h2

9 + λ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.51)
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It can be noted that H is sparse and has a bandwidth that depends on the global
numbering of the grid nodes; moreover, it exhibits diagonal-dominance, in fact
H(i, i) ≥∑n

j=i+1 |H(i, j)|, i = 1, n − 1. By assembling local contributions node by
node, the source vector d(n, 1) is obtained:

d = JS

3
[1 2 3 3 3 3 2 1]T (4.52)

In this way, the solving system (4.29) results.
In order matrix H(n, n) to be non-singular, the boundary condition of Dirichlet’s

type should be imposed in at least one node. In the test problem: A1 = A2 = 0. In
order to fulfil A1 = 0, the first row and the first column of H are cancelled, while to
fulfil A2 = 0 the second row and the second column of H are cancelled, so obtaining
a matrix H′(n − 2, n − 2) that is non-singular. Correspondingly, the first and the
second terms of source vector are cancelled, obtaining a vector d′(n −2, 1). Finally,
the reduced algebraic system comes out

H′A′ = d′ (4.53)

with

H′ = 1

4μS

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 h2

9 + 2λ2 −2 h2

9 −λ2 0 0 0

2 h2

9 + 2λ2 0 −λ2 0 0

2 h2

9 + 2λ2 −2 h2

9 −λ2 0

2 h2

9 + 2λ2 0 −λ2

symmetric h2

9 + λ2 − h2

9
h2

9 + λ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.54)

and

d′ = JS

3
[3 3 3 3 2 1]T (4.55)

It should be noted that matrix H′ is better conditioned than matrix H owing to the
specification of boundary condition of the Dirichlet’s kind.

More generally, when the potential Ak to be imposed in the kth node is different
from zero, one should proceed as follows:

– Set H(k, j) = 0, j = 1, n, j �= k
– Set H(i, k) = 0, i = 1, n, i �= k
– Leave H(k,k) unaltered
– Replace dk with H(k, k)Ak
– Replace di with di − H(i, k)Ak, i = 1, n, i �= k.

The sizes of matrix H and vector d remain unchanged.
A few physical remarks are worth being considered. The elements of system

matrix, measured in [H−1m], depend on geometry and material property. In turn, the
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source term JS, measured in [A], can be regarded as the current attributed to element
e while JS

3 represents the nodal current.
From the numerical viewpoint, the following data are assumed: h = 6 cm, λ =

1 cm, μ = 1.25610−6 H m−1, J = 105 A m−2.
All triangles have surface area S = 1 cm2. Considering these data, the condition

number of H is 4.5594 1016, while that of H′ is 120. Matrix H′ is definite positive;
therefore, the solution of the linear system is unique. The solution of the reduced
system (4.54)–(4.55) is

⎡
⎢⎢⎢⎢⎢⎢⎣

A3
A4
A5
A6
A7
A8

⎤
⎥⎥⎥⎥⎥⎥⎦

= 10−3

⎡
⎢⎢⎢⎢⎢⎢⎣

0.1256
0.1256
0.2010
0.2009
0.2270
0.2251

⎤
⎥⎥⎥⎥⎥⎥⎦
(

Wb

m

)
(4.56)

Calculation of the induction field

Knowing node potentials, the components of induction field (Wb m−2) can be
obtained applying (4.45) element by element. To this end, the correspondence
between local and global numbering of nodes, shown in Table 4.1, should be taken
into account.

Element 1

[
Bx
By

]
= 1

2S

[−λ 0 λ
h
3 − h

3 0

]⎡
⎣A1

A2
A3

⎤
⎦ = 10−3

[−50 0 50
100 −100 0

]⎡⎣ 0
0

0.1256

⎤
⎦

= 10−3
[

6.2801
0

]

Element 2

[
Bx
By

]
= 1

2S

[−λ λ 0
0 − h

3
h
3

]⎡⎣A2
A4
A3

⎤
⎦ = 10−3

[−50 50 0
0 −100 100

]⎡⎣ 0
0.1256
0.1256

⎤
⎦

Table 4.1 Correspondence between local and global nodes

Element Local nodes Global nodes

1 1, 2, 3 1, 2, 3
2 1, 2, 3 2, 4, 3
3 1, 2, 3 3, 4, 5
4 1, 2, 3 4, 6, 5
5 1, 2, 3 5, 6, 7
6 1, 2, 3 6, 8, 7
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= 10−3
[

6.2799
0

]

Element 3

[
Bx
By

]
= 1

2S

[−λ 0 λ
h
3 − h

3 0

]⎡⎣A3
A4
A5

⎤
⎦ = 10−3

[−50 0 50
100 −100 0

]⎡
⎣0.1256

0.1256
0.2010

⎤
⎦

= 10−3
[

3.7705
0

]

Element 4

[
Bx
By

]
= 1

2S

[−λ λ 0
0 − h

3
h
3

]⎡
⎣A4

A6
A5

⎤
⎦ = 10−3

[−50 50 0
0 −100 100

]⎡
⎣ 0.1256

0.2009
0.2010

⎤
⎦

= 10−3
[

3.7655
1.043410−2

]

Element 5

[
Bx
By

]
= 1

2S

[−λ 0 λ
h
3 − h

3 0

]⎡
⎣A5

A6
A7

⎤
⎦ = 10−3

[−50 0 50
100 −100 0

]⎡⎣0.2010
0.2009
0.2270

⎤
⎦

= 10−3
[

1.3002
1.043410−2

]

Element 6

[
Bx
By

]
= 1

2S

[−λ λ 0
0 − h

3
h
3

]⎡⎣A6
A8
A7

⎤
⎦ = 10−3

[−50 50 0
0 −100 100

]⎡⎣ 0.2009
0.2251
0.2270

⎤
⎦

= 10−3
[

1.2118
1.872310−1

]

Finally, it results⎡
⎢⎢⎢⎢⎢⎢⎣

B1x
B2x
B3x
B4x
B5x
B6x

⎤
⎥⎥⎥⎥⎥⎥⎦

= 10−3

⎡
⎢⎢⎢⎢⎢⎢⎣

6.2801
6.2799
3.7705
3.7655
1.3002
1.2118

⎤
⎥⎥⎥⎥⎥⎥⎦

;

⎡
⎢⎢⎢⎢⎢⎢⎣

B1y
B2y
B3y
B4y
B5y
B6y

⎤
⎥⎥⎥⎥⎥⎥⎦

= 10−6

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0

10.434
10.434
187.23

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.57)

It should be remarked that in odd elements the value of By depends on A1 − A2
and symmetry implies A1 = A2 (indexes 1 and 2 refer to the local numbering);
in an analogous way, in even elements the value of By depends on −A2 + A3 and
symmetry implies A2 = A3 (indexes 2 and 3 refer to the local numbering). Residuals
of By are due to approximation error in computing potentials.
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Table 4.2 Distribution of nodal error (Fig. 4.4)

Node 3 4 5 6 7 8

Y coordinate 0.02 0.04 0.06
Ei −2.3076 2.3076 −2.5961 2.5961 −4.1409 4.1409

10−5 10−5 10−4 10−4 10−3 10−3

Error analysis

The test problem has an exact analytical solution, namely

A = μJ

(
hy − 1

2
y2
)

(4.58)

(
Bx, By

) = (μJ (h − y) , 0) (4.59)

such that A = 0 at y = 0 and 0 < y < h.
As far as potential is concerned, the local error

Ei = 1 − A(i)

Ai
, i = 3, 8 (4.60)

can be defined, where A(i) and Ai are approximated and exact values of potential at
the ith node, respectively. The distribution of error is reported in Table 4.2.

It can be noted that the local error increases with the distance from constrained
nodes 1, 2; moreover, the potential is overestimated at the left-boundary nodes (x =
0) and underestimated at the right-boundary nodes (x = λ).

In order to test the effect of grid on accuracy, the following norms are introduced

‖f‖2 =
√√√√ np∑

i=3

[f (i)]2 (4.61)

and

‖f‖∞ = max
i=3,np

{f (i)} (4.62)

with np = 8 grid nodes.
In terms of the residual it results

f (i) =
∣∣∣∣1 − Ag(i)

Ai

∣∣∣∣ (4.63)

where Ag is the approximated value of potential computed using grid g while Ai is
the exact one.

Having fixed the size of the slot, the test problem can be solved using grids with
an increasing number of triangular elements.
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Table 4.3 Error norms

No. of elements 6 30 46 330 1210

‖f‖2 0.286 10−2 0.160 10−2 0.441 10−3 0.233 10−3 0.140 10−3

‖f‖∞ 0.414 10−2 0.200 10−2 0.504 10−3 0.252 10−3 0.168 10−3

Table 4.4 Error on elements (coarsest grid)

Element 1 2 3 4 5 6

Ee 0.0624784 −0.0714038 0.0994116 −0.1242645 0.2236068 −0.4472136

The results obtained using different grids give rise to the error norms reported
in Table 4.3; the latter decrease monotonically with the number of elements. In
particular, ‖f‖2 and ‖f‖∞ give a measurement of average and maximum error,
respectively.

In turn, the error in terms of x component of induction field can be defined, in
each element, as follows

Ee = 1 − Be

B
(4.64)

where Be and B are approximated and exact value of the x component of the induc-
tion field, respectively; the exact value is that referred to the gravity centre of the
element. In Table 4.4 the distribution of error is reported, referring to the coarsest
grid composed of six elements.

Again, it can be noted that the error increases as long as the distance from
constrained nodes increases.

Finally, Fig. 4.5 shows the plot of flux lines. The results have been obtained using
a grid composed of 736 triangles with linear variation of potential.

Remarks on the topology of the grid

From Table 4.2 it can be remarked that the approximated values of potential in the
left boundary nodes are greater than the values of corresponding right boundary
nodes. This discrepancy can be attributed to the grid asymmetry. In fact, let a new
grid be considered, as the mirror-image with respect to the previous one; it is shown
in Fig. 4.6.

The coefficient matrices of elements 1 and 2 are

H1 = 1

4μS

⎡
⎢⎣

h2

9 − h2

9 0
h2

9 + λ2 −λ2

symm. λ2

⎤
⎥⎦ (4.65)

H2 = 1

4μS

⎡
⎢⎣

λ2 0 −λ2

h2

9 − h2

9

symm. h2

9 + λ2

⎤
⎥⎦ (4.66)
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Fig. 4.5 Open slot: plot of flux lines

Fig. 4.6 Right-oriented grid discretizing half a slot

respectively. Keeping the same local numbering of nodes, one has H3 = H1 and
H5 = H1; H4 = H2 and H6 = H2. In turn, local source terms are equal in all the
elements

d1 = d2 = d3 = d4 = d5 = d6 = 1

3
JS (4.67)
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By assembling local coefficient matrices and source vectors the system

H∗A∗ = d∗ (4.68)

with

d∗ = JS

3
(2, 1, 3, 3, 3, 3, 1, 2)T (4.69)

results. It can be remarked that H∗ is the same as H in the previous case (4.51); in
turn, d∗ has first and second elements exchanged with respect to d, next-to-the-last
and last elements exchanged as well, the other four components being unmodified.

After imposing boundary conditions in nodes 1 and 2 and introducing numerical
data, the non-singular system

3105

⎡
⎢⎢⎢⎢⎢⎢⎣

1.9904 −1.5924 −0.1990 0 0 0
1.9904 0 −0.1990 0 0

1.9904 −1.5924 −0.1990 0
1.9904 0 −0.1990

symmetric 0.9952 −0.7962
0.9952

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

A3
A4
A5
A6
A7
A8

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

3
3
3
3
1
2

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.70)

is obtained, the solution of which is
⎡
⎢⎢⎢⎢⎢⎢⎣

A3
A4
A5
A6
A7
A8

⎤
⎥⎥⎥⎥⎥⎥⎦

= 10−3

⎡
⎢⎢⎢⎢⎢⎢⎣

0.1255
0.1256
0.2009
0.2010
0.2251
0.2270

⎤
⎥⎥⎥⎥⎥⎥⎦
(

Wb

m

)
(4.71)

The mirror-like aspect of the grid gives rise to the exchange of two pairs of
components of the source vector.

As shown in Table 4.5, this exchange has the final effect of making the potentials
at right-boundary nodes overestimated with respect to the corresponding potentials
at left-boundary nodes.

Table 4.5 Distribution of nodal error (Fig. 4.6)

Node 3 4 5 6 7 8

Y coordinate 0.02 0.04 0.06
Ei 3076 10−5 −2.3076 10−5 2.5961 10−4 −2.5961 10−4 4.1409 10−3 −4.1409 10−3
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4.3 Finite Elements for Three-Dimensional Magnetostatics

4.3.1 Surface and Solid Modelling

Generally, the three-dimensional model of an object can be built by means of either
of two techniques: surface modelling and solid modelling, respectively.

According to the former, given a rectangular reference system, the orthogonal
projection of the given object onto one of the three coordinate planes (Oxy, Oyz,
Oxz) defines the base plane, which is then extruded to form volumes. Subsequently,
the finite-element mesh is generated in two steps: first, a surface mesh is created in the
base plane, using triangles or quadrilateral elements; next, the volume mesh follows,
based on tetrahedrons or prisms, if the surface mesh is composed of triangles, or on
hexahedral elements, otherwise.

In turn, solid modelling uses three-dimensional elementary volumes and Boolean
operations to build the model of the object. This technique allows generating an
object through operations such as transformations and combinations. Basic elements
are parallelepipeds, cylinders, discs, spheres, cones, pyramids and thoroids; they
can be generated at any point and then combined. Using Boolean operators, basic
elements can also be merged, intersected or subtracted to model complex geometries.
Finally, the finite-element mesh is generated, based on either tetrahedra or hexahedra
or prismatic elements.

4.3.2 Local Shape Functions in Rectangular Coordinates

The extension of the results of Section 4.2 to the three-dimensional case can be easily
obtained.

Let the domain Ω be discretised by means of a grid of tetrahedral elements,
such that:

– Two adjacent elements do not overlap
– No vertex of a tetrahedron belongs to either the face or the edge of an adjacent

tetrahedron

Moreover, let the magnetic potential be approximated by means of a linear polyno-
mial within the element.

For the sake of simplicity, only the case of a source-free simply-connected field
region is considered; consequently, the scalar magnetic potential φ(x, y, z) can be
used (see 2.212).

Referring to a tetrahedron of vertices vi = (xi, yi, zi) i = 1, 4, the following
functions

ψi(x, y, z) = det(Ci)

det(C)
, i = 1, 4 (4.72)
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can be defined, where

det(C) =

∣∣∣∣∣∣∣∣

1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

∣∣∣∣∣∣∣∣
= 6V (4.73)

In (4.73) V is the volume of the given tetrahedron, det(C) is constant while

det(C1) =

∣∣∣∣∣∣∣∣

1 x y z
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

∣∣∣∣∣∣∣∣
, det(C2) =

∣∣∣∣∣∣∣∣

1 x1 y1 z1
1 x y z
1 x3 y3 z3
1 x4 y4 z4

∣∣∣∣∣∣∣∣

det(C3) =

∣∣∣∣∣∣∣∣

1 x1 y1 z1
1 x2 y2 z2
1 x y z
1 x4 y4 z4

∣∣∣∣∣∣∣∣
, det(C4) =

∣∣∣∣∣∣∣∣

1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x y z

∣∣∣∣∣∣∣∣
(4.74)

are linear functions of the coordinates (x, y, z) of a point P inside the tetrahedron.
A straightforward geometric interpretation in terms of volume coordinates is pos-

sible (Fig. 4.7); in fact, the denominator of (4.72) is proportional to the volume of
the given tetrahedron, while the numerator is proportional to the volume of another
tetrahedron, included into the given one and having the ith vertex coincident with
point P(x, y, z).

It is easy to prove that 0 ≤ ψk ≤ 1, k = 1, 4 and
∑4

k=1 ψk(x, y, z) = 1.
Consequently, (4.72) can be assumed as the local shape functions.

In turn, the restriction of potential φ(x, y, z) to the tetrahedron is

φ(x, y, z) =
4∑

k=1

ψk(x, y, z)φk

= [ψ1(x, y, z) ψ2(x, y, z) ψ3(x, y, z) ψ4(x, y, z)]

⎡
⎢⎢⎣

φ1
φ2
φ3
φ4

⎤
⎥⎥⎦ (4.75)

1 

2 

3 

4 

P(x,y,z) 

Fig. 4.7 Geometric interpretation of 3D local shape functions
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where (φ1, φ2, φ2, φ4) are the nodal values of the potential at the vertices Vi =
(xi, yi, zi), i = 1, 4 of tetrahedron.

The coefficient matrix and source vector are formed and assembled like in
Sections 4.2.3 and 4.2.5, respectively.

A similar procedure applies when passing from the potential to the induction field
B = (Bx, By, Bz

)
which is approximated on each element by

B = −μ
(

∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

)
(4.76)

From (4.72) and (4.75) it follows

⎡
⎣Bx

By
Bz

⎤
⎦ = −μ

⎡
⎢⎢⎣

∂ψ1
∂x

∂ψ2
∂x

∂ψ3
∂x

∂ψ4
∂x

∂ψ1
∂y

∂ψ2
∂y

∂ψ3
∂y

∂ψ4
∂y

∂ψ1
∂z

∂ψ2
∂z

∂ψ3
∂z

∂ψ4
∂z

⎤
⎥⎥⎦
⎡
⎢⎢⎣

φ1
φ2
φ3
φ4

⎤
⎥⎥⎦ (4.77)

where μ is the element permeability.
Since (4.72) are linear in (x, y, z), each entry in the gradient matrix above is

constant; therefore, the induction field in the domain Ω is approximated by means
of a piecewise-constant function.

4.3.3 Comparison of 2D and 3D Simulations of an Electromagnet

Let the electromagnet discussed in Section 2.3.6 be considered again. The magnetic
field is here computed by means of the finite-element method, based on both two-
dimensional and three-dimensional models.

In Fig. 4.8 the two-dimensional mesh of the electromagnet is represented, for an
air-gap t = 1 mm wide; the mesh is composed of 4,500 triangles, approximately.
The resulting vector plot of the induction field is represented in Fig. 4.9; the air-gap

Fig. 4.8 2D finite-element mesh of the electromagnet (t = 1 mm)
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Fig. 4.9 Vector plot of magnetic induction (t = 1 mm)

Fig. 4.10 3D finite-element mesh of the electromagnet (t = 10 mm)

width is comparable with the linear size of the central limb and a consequent leakage
field can be noted.

Using the solid modelling technique, the model shown in Fig. 4.10 is obtained.
From this model a three-dimensional mesh composed of about 250,000 tetrahedra
has been generated. The depth of the magnetic core, in particular, has been taken
equal to the square root of the cross-section of the central limb (30 mm).

The corresponding plot of computed vectors is shown in Fig. 4.11.
The force acting on the movable part of the electromagnet is computed too, by

means of the Maxwell’s stress tensor. A surface embedding the movable core is taken
as the integration surface. The two models can be compared: in Fig. 4.12 the forces
vs air-gap curves are shown for both two- and three-dimensional models.
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Fig. 4.11 Vector plot of magnetic induction (t = 10 mm, winding not shown)

Fig. 4.12 Force vs air-gap curve (+2D, ∗3D)

The discrepancy between the two curves can be attributed to the leakage field in
the z direction, that is neglected in the two-dimensional analysis. In principle, the
three-dimensional analysis gives a more accurate prediction of the force. On the other
hand, the remarkable increase of the number of elements, and so the computational
cost, when passing from two to three dimensions, must be noted as well.



Chapter 5
Time-Varying Electromagnetic Field

5.1 Maxwell’s Equations in Differential Form

In general, the presence of a charge distributed with density ρ (C m−3) and of
an impressed current density J0 (A m−2) variable with time gives origin to the
electromagnetic field described by the following time-dependent vectors:

D electric displacement (C m−2)

E electric field intensity (V m−1)

B magnetic induction (T)
H magnetic field intensity (A m−1)

J current density (A m−2)

As far as the origin of current density is concerned, the following remark can be put
forward. In a solid or liquid medium the conduction current density is a function
of E

J = J(E) (5.1)

For a linear medium the above function becomes

J = σE (5.2)

Another kind of current is originated by the movement of free ions and electrons
(e.g. in gases or vacuum). This convection current density is expressed by the formula

J = ρ+u+ + ρ−u− (5.3)

where ρ+ and ρ− are positive and negative charge densities, respectively, while u+
and u− are the relevant velocities of positive and negative free charges.

Finally, the displacement current density is defined as

J = ∂D

∂t
(5.4)

101
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Considering the principle of charge conservation in any point of the domain, the
following equation always holds (charge continuity equation)

∇ · J + ∂ρ

∂t
= 0 (5.5)

The coupled electric and magnetic fields influence a charge q (C) by exerting a
mechanical force F (N) on it (Lorentz’s equation)

F = q
(
E + u × B

)
(5.6)

where u is the velocity of the charge with respect to the magnetic field. In particular,
the term qE modifies the value of velocity, while the term qu × B modifies also the
direction of velocity.

In a simply-connected domain Ω with boundary Γ filled in by a linear medium
characterized by permittivity ε, permeability μ and conductivity σ, the time-varying
electromagnetic field is described by the following equations:

∇ × E = −∂B

∂t
Faraday’s equation (5.7)

∇ · D = ρ Gauss’s electric equation (5.8)

∇ × H = J + ∂D

∂t
Ampère’s equation (5.9)

∇ · B = 0 Gauss’s magnetic equation (5.10)

In a three-dimensional domain, the above equations represent a set of eight scalar
equations to which constitutive relations (2.65), (2.187), (2.255) must be added.

In total, fifteen scalar unknowns (i.e. field components) have to be determined,
subject to suitable boundary conditions.

The system of eight plus nine equations can be solved since there are two rela-
tions among the unknowns which are automatically satisfied. In fact, taking the
divergence of (5.9) and the time derivative of (5.8), continuity equation (5.5) fol-
lows. Similarly, taking the divergence of (5.7) and the time derivative of (5.10), one
obtains an identity.

It should be remarked that in (5.9), in general,

J = J0 + σE + μσu × H (5.11)

where J0 is the term impressed by an external source, while the last term of the
right-hand side takes into account the current density due to motional effect, if any.

In steady conditions all vectors are independent of time. Therefore, the two equa-
tions governing the electric field, namely (5.7) and (5.8), are decoupled with respect
to the two equations governing the magnetic field, namely (5.9) and (5.10) (see
Section 2.2 and Section 2.3).
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5.2 Poynting’s Vector

Let Maxwell’s equations (5.7) and (5.9) be considered. By means of a vector identity
(see A.13) one obtains

∇ · (E × H
) = H · (∇ × E

)− E · (∇ × H
) = −H · ∂B

∂t
− E · ∂D

∂t
− E · J (5.12)

Referring to the specific energy in the electric and magnetic case and under the
assumption of linear constitutive relationships, one has

1

2

∂

∂t

(
H · B + E · D

) = 1

2

(
H·∂B

∂t
+ B·∂H

∂t

)
+ 1

2

(
E·∂D

∂t
+ D·∂E

∂t

)
=

= H · ∂B

∂t
+ E · ∂D

∂t
(5.13)

Integrating (5.12) over Ω and using Gauss’s theorem (see A.10), it results

∫
Γ

(
E × H

) · ndΓ = − ∂

∂t

∫
Ω

(
H · B

2
+ E · D

2

)
dΩ −

∫
Ω

E · JdΩ (5.14)

Vector

S = E × H (5.15)

is called Poynting’s vector (W m−2).
According to (5.14), its flux out of a closed surface Γ is equal to (minus) the

sum of the power of the electromagnetic field inside the domain Ω and the power
transferred to the current (Poynting’s theorem).

5.3 Maxwell’s Equations in the Frequency Domain

The most important case of time-varying electromagnetic fields occurs when field
sources, namely charge and current densities, vary with sinusoidal law.Agiven vector

V(x, y, z, t) = [V0x(x, y, z) cos(ωt − ϕ), V0y(x, y, z) cos(ωt − ϕ),

V0z(x, y, z) cos(ωt − ϕ)] =
= V0 cos(ωt − ϕ) (5.16)

can be expressed as

V(x, y, z, t) =
[
V0x(x, y, z)Re

{
ej(ωt−ϕ)

}
, V0y(x, y, z)Re

{
ej(ωt−ϕ)

}
,

V0z(x, y, z)Re
{

ej(ωt−ϕ)
}]

=
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= V0Re
{

ej(ωt−ϕ)
}

(5.17)

The algebraic quantity V = V0e−jϕ (phasor) represents the vector V(x, y, z, t) in a
unique way; moreover, in the frequency domain, since d

dt cos(ωt) = ω cos(ωt + π
2 ),

the differential operator ∂
∂t is transformed into the complex operator jω.

Consequently, Maxwell’s equation (5.7), (5.8), (5.9) and (5.10) are transformed
as follows:

∇ × E = −jωB (5.18)

∇ · B = 0 (5.19)

∇ × H = J + jωD (5.20)

∇ · D = ρ (5.21)

The latter equations are referred to as Helmholtz’s equations and are valid at
sinusoidal steady state for frequency f = ω

2π (field equations in the frequency domain).
It should be remarked that field quantities in the latter equations are the phasors

corresponding to the associated time functions; by definition, the amplitude of the
phasor is the maximum value of the corresponding time function.

Considering the constitutive equations, in a non-conducting region free of spatial
charges (ρ = 0) and impressed currents, from vector identity (A.12), taking into
account (5.21) one has

∇ × ∇ × E = ∇ (∇ · E
)− ∇2

E = −∇2
E (5.22)

From (5.18) and (5.20), if μ is a constant and σ = 0, J0 = 0, it follows

∇ × ∇ × E = ∇ × (−jωB
) = −jω∇ × B =

= −jωμ∇ × H = −jωμ(jωD) = ω2μεE (5.23)

Comparing (5.22) and (5.23), Helmholtz’s equation of electric field results

∇2
E = −ω2μεE = k2E (5.24)

with k = jω
√με.

If the same procedure is applied to field H, one obtains

∇2
H = −ω2μεH = k2H (5.25)

At sinusoidal steady state, the Poynting’s vector (phasor) resulting from the time
average of (5.15), considering the root-mean-square value of each vector, is

S = E × H
∗

2
(5.26)

where the star denotes the conjugate phasor.
Referring to a volume Ω with boundary Γ, (5.14) takes the form
∫

Γ

(
E × H

∗

2

)
· n dΓ = −2jω

∫
Ω

(
H · B

∗

4
+ E · D

∗

4

)
dΩ −

∫
Ω

E · J
∗

2
dΩ (5.27)
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Fig. 5.1 Travelling plane electromagnetic wave

5.4 Plane Waves in an Infinite Domain

Let a simply-connected unbounded domain, filled in by a perfectly insulating medium
(ρ = 0, σ = 0), be considered. For the sake of simplicity, let a time-harmonic electric
field E0 cos ωt have only a non-zero component in the y-direction and vary only in
the x direction (Fig. 5.1).

The Helmholtz’s equation (5.24) reduces to

∂2E

∂x2
= −ω2μεE (5.28)

It can be easily proven that the complex function

E = E0e
jω

√με
(

x− 1√με
t
)

(5.29)

with E0 phasor of the given electric field, is a solution of (5.28).
In the time domain it results

E(x, t) = E0 cos
[ω

u
(x − ut)

]
(5.30)

with u = 1√με
(ms−1). It can be verified that also

E(x, t) = E0 cos
[ω

u
(x + ut)

]
(5.31)

once transformed in its complex form E = E0e
jω

√με
(

x+ 1√με
t
)

is a solution of (5.28).
From the physical standpoint, (5.30) and (5.31) represent harmonic waves trav-

elling with velocity u in positive and negative x-direction, respectively.
Owing to (5.18) a time-harmonic field B is associated to E.
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In the frequency domain it results

B =
(

0, 0,
1

jω

∂E

∂x

)
= (0, 0,

√
με E

)
(5.32)

In the time domain one obtains:

B(x, t) = E0

u
cos
[ω

u
(x ± ut)

]
(5.33)

From (5.30), (5.31) and (5.32), it results that the couple of vectors
(
E, B

)
defined

above is a plane wave; E and B are orthogonal vectors; the ratio of electric field
intensity to induction field intensity is equal to the velocity u of propagation in the
dielectric medium.

Moreover, the Poynting’s vector S in the time domain results

S = E × H = E2
0

uμ

[
1 + cos

(
2ω

u
(x ± ut)

)]
ix (5.34)

Therefore, the direction of propagation of the plane wave is orthogonal to both electric
and magnetic field (transverse electromagnetic wave, TEM).

5.5 Wave and Diffusion Equations in Terms of Vectors E and H

Considering the constitutive relations (2.65), (2.187), (2.255), Maxwell’s equa-
tions (5.7)–(5.10) become, in terms of fields E and H,

∇ × E = −μ
∂H

∂t
(5.35)

∇ × H = J0 + σE + ε
∂E

∂t
(5.36)

∇ · E = ρ

ε
(5.37)

∇ · H = 0 (5.38)

where J0 is the impressed current density.
From (5.35) one has

∇ × ∇ × E = − ∂

∂t

(∇ × μH
)

(5.39)

Since (see A.12)

∇ × ∇ × E = ∇(∇ · E
)− ∇2

E (5.40)
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taking into account that, in the absence of free charges (i.e. ρ = 0), if ε is a constant

∇ · E = ∇ · D
ε

= 0, one obtains

−∇2
E = − ∂

∂t

(∇ × μH
)

(5.41)

Then, for a homogeneous medium from (5.41) and (5.36) it results

∇2
E = με

∂2E

∂t2
+ μσ

∂E

∂t
+ μ

∂J0

∂t
(5.42)

namely, the equation governing electric field E; if ∂J0
∂t = 0, the homogeneous wave

equation is obtained.
Similarly, it can be proven that for field H the following equation holds

∇2
H = με

∂2H

∂t2
+ μσ

∂H

∂t
− ∇ × J0 (5.43)

If in (5.36) the displacement current density ε ∂E
∂t can be neglected, then equa-

tions (5.42) and (5.43) become

∇2
E = μσ

∂E

∂t
+ μ

∂J0

∂t
(5.44)

and

∇2
H = μσ

∂H

∂t
− ∇ × J0 (5.45)

respectively; they are the differential equations governing the electromagnetic field
under quasi-static conditions (diffusion equations).

In turn, by taking the divergence of both sides of (5.36) and considering (A.8),
the equation of charge relaxation follows

∇ ·
(

σE + ε
∂E

∂t

)
= −∇ · J0 (5.46)

where the driving term is due to the impressed current density. It can be remarked
that (5.46) states the current density balance in a dissipative dielectric medium,
characterised by both conductivity σ and permittivity ε. In the frequency domain,
(5.46) transforms as

∇ · [(σ + jωε) E
] = −∇ · J0 (5.47)

where the complex conductivity σ + jωε appears; in (5.47) E and J0 are the phasors
corresponding to the associated time functions.
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5.6 Wave and Diffusion Equations in Terms of Scalar
and Vector Potentials

In a simply connected domain Ω filled in by a linear and homogeneous medium, the
magnetic vector potential A(Wb m−1) is defined by the equation (see 2.205)

B = ∇ × A (5.48)

associated to a suitable gauge condition to be specified later on.
By means of (5.7) one has

∇ ×
(

E + ∂A

∂t

)
= 0 (5.49)

This means that the vector in brackets can be expressed as the gradient of a scalar
potential ϕ(V)

E + ∂A

∂t
= −∇ϕ (5.50)

Hence

E = −∇ϕ − ∂A

∂t
(5.51)

Substituting (5.51) into (5.36) one obtains

∇ × H = J0 − σ∇ϕ − σ
∂A

∂t
− ε

∂

∂t
∇ϕ − ε

∂2A

∂t2
(5.52)

From (5.48) one has

∇ × H = ∇ × μ−1∇ × A (5.53)

and

∇ × ∇ × A + με∇ ∂ϕ

∂t
+ με

∂2A

∂t2
= μ

(
J0 − σ∇ϕ − σ

∂A

∂t

)
(5.54)

In the case of a current-free and charge-free ideal dielectric region (J0 = 0, ρ = 0
and σ = 0) it results

∇ × ∇ × A + με∇ ∂ϕ

∂t
+ με

∂2A

∂t2
= 0 (5.55)

On the other hand, substituting (5.50) into (5.37) gives

−∇2ϕ − ∂

∂t

(∇ · A
) = 0 (5.56)

Equations (5.54) and (5.56) represent the link between the two potentials.
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Taking into account that (see A.12)

∇ × ∇ × A = −∇2
A + ∇ (∇ · A

)
(5.57)

and by substituting this expression into (5.55) one has

−∇2
A + ∇ (∇ · A

)+ με∇ ∂ϕ

∂t
+ με

∂2A

∂t2
= 0 (5.58)

or

−∇2
A + ∇

(
∇ · A + με

∂ϕ

∂t

)
+ με

∂2A

∂t2
= 0 (5.59)

If the Lorentz’s gauge

∇ · A + με
∂ϕ

∂t
= 0 (5.60)

is imposed, then from (5.59) one obtains

−∇2
A + με

∂2Ā

∂t2
= 0 (5.61)

which is the wave equation for the magnetic vector potential A, subject to boundary
and intial conditions. After determining A, following (5.60), ϕ is given by

ϕ(t) = ϕ0 − 1

με

∫ t

0
∇ · A(t′)dt′ (5.62)

with ϕ0 to be determined.
Alternatively, imposing gauge (5.60) to equation (5.56), the wave equation for

the electric scalar potential is obtained

−∇2ϕ + με
∂2ϕ

∂t2
= 0 (5.63)

After determining ϕ, A can be recovered.
In the case current J0 and charge ρ are present, (5.61) and (5.63) become

−∇2
A + με

∂2A

∂t2
= μJ0 (5.64)

−∇2ϕ + με
∂2ϕ

∂t2
= ρ

ε
(5.65)

respectively.
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In a three-dimensional unbounded domain Ω, their particular solutions are (see
2.48 and 2.49)

A =
∫

Ω

μJ
′
0

4πr
dΩ (5.66)

ϕ =
∫

Ω

ρ′

4πεr
dΩ (5.67)

where the values J
′
0 and ρ′ are taken at an earlier time t′ = t − r

√με with respect
to the time t at which A and ϕ are observed. The latter two potentials are therefore
called retarded potentials. Additionally, it can be noted that A depends only on J0
and ϕ depends only on ρ. This dependence is, except for the correspondence of time,
the same as in magnetostatics and electrostatics, respectively.

In the case of a conductor (ρ = 0, σ �= 0), by imposing the following gauge

∇ · A + με
∂ϕ

∂t
+ μσϕ = 0 (5.68)

from (5.54) and (5.57) it follows

−∇2
A + ∇

(
∇ · Ā + με

∂ϕ

∂t
+ μσϕ

)
+ με

∂2A

∂t2
+ μσ

∂A

∂t
= μJ0 (5.69)

or

−∇2
A + με

∂2Ā

∂t2
+ μσ

∂A

∂t
= μJo (5.70)

After determining A and so ∇ · A, ϕ can be recovered from (5.68).

5.7 Electromagnetic Field Radiated by an Oscillating Dipole

Let a point charge q(t) = q sin(ωt) oscillate with angular frequency ω along an
element dλ of line λ in a three-dimensional domain, so that the resulting current is
i = ωq cos ωt. If line λ is coincident with the z axis, in the frequency domain the
phasor of the elementary vector potential (see 5.66) can be expressed as

dA = μ0I

4πr
e−j ωr

c dλiz (5.71)

where I is the phasor of current i, r is the distance between field point and source point,
c = 1√

ε0μ0
is the velocity of the electromagnetic wave in free space and the

operator e−j ωr
c accounts for the phase delay of dA with respect to I.
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Fig. 5.2 Field radiated at point P by an oscillating dipole

Assuming spherical coordinates with origin at the gravity centre of the dipole
(Fig. 5.2), the components of vector potential are

dAr = dA cos ϑ

dAϑ = −dA sin ϑ

dAϕ = 0 (5.72)

Since μ0H = ∇ × A, the components of the elementary magnetic field in the
frequency domain are (see A.21–A.23)

dHr = dHϑ = 0

dHϕ = I sin ϑdλ

4πr2

(
1 + j

ωr

c

)
e−j ωr

c (5.73)

Thanks to (5.73), it can be noted that lines of magnetic fields are circular and are
located on planes normal to the direction of z axis.

According to the Lorentz’s gauge (5.60), the phasor of the elementary scalar
potential associated to vector potential is

dϕ = j
c2

ω
∇ · (dA

)
(5.74)

Considering (5.51) and (5.74), the relationship between potentials and electric field

dE = −jωdA − ∇dϕ (5.75)

becomes

dE = −jωdA − j
c2

ω
∇ (∇ · dA

)
(5.76)
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After (5.72), (A.19) and (A.24), the components of the elementary electric field
follow in phasor form

dEr = −j
2I cos ϑdλ

4πε0r3ω

(
1 + j

ωr

c

)
e−j ωr

c

dEϑ = −j
I sin ϑdλ

4πε0r3ω

[
1 + j

ωr

c
−
(ωr

c

)2
]

e−j ωr
c

dEϕ = 0 (5.77)

The situation is represented in Fig. 5.2.
It is interesting to consider the approximated expressions of field components

near the oscillating dipole and far from it, respectively.
Under the approximation ωr

c << 1 of near field, the field components become in
phasor form

dHϕ = I sin ϑdλ

4πr2
(5.78)

dEr = −j
2I cos ϑdλ

4πε0r3ω
(5.79)

dEϑ = −j
I sin ϑdλ

4πε0r3ω
(5.80)

It can be noted that the magnetic field scales as 1
r2 following the Laplace’s law of

the elementary action valid for a steady current (see 3.79); in turn, the electric field
scales as 1

r3 according to the static field of a dipole (see Section 2.2.6).
Conversely, under the approximation ωr

c >> 1 of far field, the field components
become

dHϕ = j
I sin ϑdλ

4πc

(ω

r

)
e−j ωr

c (5.81)

dEϑ = j
I sin ϑdλ

4πε0c2

(ω

r

)
e−j ωr

c (5.82)

The component dEr can be neglected with respect to dEϑ, apart from points in which
| sin ϑ| << 1. It is important to note that electric and magnetic fields are orthogonal,
in phase and tangent to the sphere of radius r; consequently, the Poynting’s vector
has a radial direction only and the corresponding phasor results

dS = dEϑ × dH
∗
ϕ

2
= I2 sin2 ϑ (dλ)2

16π2ε0c3

(ω

r

)2
ir (5.83)

where I is the root-mean-square value of current.
It comes out that the power radiated by the dipole is maximum for ϑ = π

2 (equa-
torial plane) and zero for ϑ = 0 (z axis); furthermore, the average power flowing
through a spherical surface is independent of its radius. Finally, the amplitude of
fields depends on ω

r ; therefore, to make a long-distance transmission, it is necessary
to increase the source frequency.
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5.8 Diffusion Equation in Terms of Dual Potentials

Let a linear homogeneous isotropic medium, characterized by conductivity σ, perme-
ability μ and permittivity ε be considered, where an impressed current J0 is present,
the time variations of which are small, i.e., if time harmonic variations occur, the
angular frequency is much lower than σ

ε
. Then, displacement current density ∂D

∂t
may be neglected with respect to impressed J0 and induced σE current densities
(quasi-static approximation). In this case, Maxwell’s equations reduce to

∇ × E = −∂B

∂t
(5.84)

∇ · D = 0 (5.85)

∇ × H = J = J0 + σE (5.86)

∇ · B = 0 (5.87)

along with the constitutive relations (5.2) and (2.187).
Given appropriate boundary and initial conditions, vectors H (or B) and E (or J

and D) are uniquely defined.
This is a special case of Section 5.1 and is particularly important in low-frequency

applications (eddy current problem).
The electromagnetic field can be also described in terms of potentials in two

different ways.
According to the A − φ method (see Section 5.6) a magnetic vector potential

A(Wb m−1) is introduced by (5.48); moreover, an electric scalar potential φ(V) is
defined according to (5.50).

In order to specify A uniquely, a further condition must be introduced: this may
be the Coulomb’s gauge (2.206) or the Lorentz’s gauge (5.60).

This way E and H can be expressed by means of two potentials (see Section 2.1.4),
namely A and φ.

From (5.86) taking into account (5.48) and (5.51) one has

∇ × μ−1∇ × A = J0 − σ
∂A

∂t
− σ∇φ (5.88)

From (5.5), taking into account (5.51), it follows

∇ ·
(

J0 − σ
∂A

∂t
− σ∇φ

)
= 0 (5.89)

Equations (5.88) and (5.89) with appropriate boundary and initial conditions solve the
electromagnetic problem in terms of A and φ. In a region where σ = 0 (eddy-current
free) the latter reduce to the classical equations of magnetostatics (see Section 2.3.1).
On the other hand, (5.88) is a special case of (5.54).
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Moreover, imposing the gauge ∇ · A + μσφ = 0, from (5.88) one obtains

−∇2
A + μσ

∂A

∂t
= μJ0 (5.90)

that represents the diffusion equation in terms of vector potential; it is an approxima-
tion of equation (5.70) in the quasi-static state. After determining A, scalar potential
ϕ = − (μσ)−1 ∇ · A can be recovered.

Alternatively, following the T − Ω method, in regions free of impressed current
(J0 = 0) an electric vector potential T (A m−1) can be defined as

∇ × T = J (5.91)

Comparing (5.91) and (5.86) it turns out that H and T, which have the same curl,
must differ by the gradient of a function Ω(A) (magnetic scalar potential)

H = T − ∇Ω (5.92)

The electric and magnetic vectors, J and H, have been so expressed in terms of two
potentials.

In order to define T uniquely, a gauge must be introduced.
The equation governing the electromagnetic field can be now expressed in terms

of T and Ω. In fact, from (5.86) taking the curl of both members and taking into
account (5.84) and (5.92), one has

∇ ×
(
σ−1∇ × T

)
= ∇ × σ−1J0 − ∂

∂t
μ
(
T − ∇Ω

)
(5.93)

and from (5.87)

∇ · μ
(
T − ∇Ω

) = 0 (5.94)

In regions where σ = 0 one has J = 0 and therefore, from (5.91), ∇ × T = 0.
Moreover, imposing the gauge ∇ · T = μσ ∂Ω

∂t , from (5.93) and (5.94) one obtains
two independent equations for T and Ω, namely

∇2
T − μσ

∂T

∂t
= −∇ × J0 (5.95)

and

∇2Ω − μσ
∂Ω

∂t
= 0 (5.96)

subject to appropriate boundary conditions. They are

n × T = 0, Ω = 0 (5.97)

or

n · T = 0,
∂Ω

∂n
= 0 (5.98)
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if the boundary is normal to a flux line (i.e. n × B = 0) or it is parallel to a flux line
(i.e. n · B = 0), respectively.

After determining T, Ω is given by

Ω(t) = Ω0 + (μσ)−1
∫ t

0
∇ · T(t′) dt′ (5.99)

with Ω0 to be determined.

5.9 Weak Eddy Current in a Conducting Plane
under AC Conditions

Let a conducting plane of thickness b and infinite extension, as shown in Fig. 5.3, be
considered.

A time-varying magnetic field H = (H, 0, 0), with H = H0 sin ωt, is impressed
to the conductor characterized by conductivity σ.

Thanks to symmetry, all variables depend merely on y coordinate. From (5.35),
∇ × E turns out to be directed along the x axis and to depend merely on the z
component of E. It follows that the electric field E induced within the conductor is
E = (0, 0, E); the same holds for induced current density J = (0, 0, J). Therefore

∇ × E =
(

∂E

∂y
, 0, 0

)
(5.100)

From (5.35), neglecting the magnetic field created by J = σE, one has

∂E

∂y
= −μ0

∂H

∂t
(5.101)

•
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b/2

−b/2
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x

σ = 0

σ =0

σ 0

σ =

=

0

/

/

Fig. 5.3 Conducting plane in a magnetic field
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or

∂E

∂y
= −ωμ0H0 cos ωt (5.102)

Therefore:

E(y, t) = E(y) cos ωt (5.103)

E(y) = −ωμ0H0y + k (5.104)

with k to be determined.
Following (5.86) with J0 = 0 (solenoidality of the specific current σE), the

boundary condition is

E

(
−b

2

)
= −E

(
b

2

)
(5.105)

It follows

1

2
ωμ0H0b + k = 1

2
ωμ0H0b − k (5.106)

Therefore, it results that k = 0 and

E(y, t) = −ωμ0H0y cos ωt (5.107)

In terms of eddy current density one has

J(y, t) = −σωμ0H0y cos ωtiz, −b

2
< y <

b

2
(5.108)

and J(y, t) = 0 elsewhere.
By assuming b = 2 cm, H0 = 104 A m−1, σ = 5.93 107Ω−1m−1, f = 50 Hz,

the amplitude of induced electric field is shown in Fig. 5.4.

5.10 Strong Eddy Current in a Conducting Plane
under AC Conditions

Unlike the previous example, if the magnetic field due to the induced current dom-
inates over the impressed field within the conductor, then the governing equations
become

∇ × E = −μ0
∂H

∂t
(5.109)

∇ × H = σE (5.110)
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Fig. 5.4 Induced electric field in the conductor cross-section (weak reaction)

Thanks to symmetry

∇ × E =
(

∂E

∂y
, 0, 0

)
; ∇ × H =

(
0, 0, −∂H

∂y

)
(5.111)

From (5.109) one has

∂E

∂y
= −μ0

∂H

∂t
(5.112)

and from (5.110)

−∂H

∂y
= σE (5.113)

so that differentiating the latter with respect to y and substituting into the former
yields

1

σ

∂2H

∂y2
= μ0

∂H

∂t
(5.114)

Likewise, after differentiating (5.112) with respect to y and (5.113) with respect to
t, one has

∂2E

∂y2
= −μ0

∂

∂y

∂H

∂t
and − ∂

∂t

∂H

∂y
= σ

∂E

∂t
(5.115)
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respectively. Therefore

μ−1
0

∂2E

∂y2
= σ

∂E

∂t
(5.116)

results.
It is assumed that both H and E are time-harmonic functions

H(y, t) = H(y) cos(ωt + ϕH)

E(y, t) = E(y) cos(ωt + ϕE) (5.117)

or

H(y, t) = �e
{

H(y)ejϕH ejωt
}

= �e
{

Hejωt
}

E(y, t) = �e
{

E(y)ejϕE ejωt
}

= �e
{

Eejωt
}

(5.118)

Combining (5.118) with (5.114) gives

1

σ

∂2H

∂y2
= μ0jωH and

∂2H

∂y2
− jωσμ0H = 0 (5.119)

where H now denotes the phasor corresponding to H(y, t).
Similarly

μ−1
0

∂2E

∂y2
= σjωE and

∂2E

∂y2
− jωσμ0E = 0 (5.120)

holds.
Let quantities

α2 = jωσμ0; k =
√

ωσμ0

2
(m−1); δ = 1

k
(m) (5.121)

be defined, where δ is called penetration depth or skin depth. It results (1 + j)2k2 =
α2 = (1 + j)2δ−2. The general solution to the equation

∂2H

∂y2
− α2H = 0 (5.122)

is

H = C1eαy + C2e−αy (5.123)

The application of the boundary conditions

y = ±b

2
; H = H0 (5.124)
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gives

H0 = C1e−α b
2 + C2e+α b

2

H0 = C1eα b
2 + C2e−α b

2 (5.125)

This implies

e−α b
2 (C1 − C2) = e+α b

2 (C1 − C2)

C1 = C2 (5.126)

and

H0 = C1

(
e−α b

2 + eα b
2

)
= C12ch

(
α

b

2

)

C1 = C2 = H0

2ch
(

α b
2

) (5.127)

Finally, from (5.123) it follows

H = H0
eαy + e−αy

2ch
(

α b
2

) = H0
ch(αy)

ch
(

α b
2

) (5.128)

Because of (5.113), one has

J = −∂H

∂y
= −αH0

sh(αy)

ch
(

α b
2

) (5.129)

Returning to the time domain, the amplitude of time-varying field H inside the
conductor is given by the norm of (5.128). Using the identity |ch(u + jv)| =√

cos2 u + sh2v with u and v real numbers, after (5.121) and (5.128) it follows

∣∣H(y)
∣∣ = ∣∣H0

∣∣
√

cos2 y
δ + sh2 y

δ√
cos2 b

2δ + sh2 b
2δ

; −b

2
< y <

b

2
(5.130)

while
∣∣H(y)

∣∣ = ∣∣H0
∣∣ elsewhere.

By assuming b = 2 cm, H0 = 104 A m−1, σ = 5.93 107Ω−1m−1, f = 103 Hz,
the distribution of magnetic field shown in Fig. 5.5 is obtained. When frequency f
decreases, the magnetic field tends to become constant and equal to H0.

In turn, after (5.129) the amplitude J of the eddy current density is given by:

∣∣J(y)
∣∣ = β

∣∣H0
∣∣

δ

√
cos2 y

δ
sh2 y

δ
+ sin2 y

δ
ch2 y

δ
= β

∣∣H0
∣∣

δ

√
sin2 y

δ
+ sh2 y

δ
(5.131)



120 5 Time-Varying Electromagnetic Field

Fig. 5.5 Magnetic field in the conductor cross section

with β−1 = 1√
2

√
cos2 b

2δ + sh2 b
2δ , δ =

√
2

ωσμ0
, − b

2 < y < b
2 and J(y) = 0

elsewhere.
The maximum value Jm of the induced current density is

Jm = J

(
−b

2

)
= J

(
b

2

)
= √

2

∣∣H0
∣∣

δ

√√√√ sin2 b
2δ + sh2 b

2δ

cos2 b
2δ + sh2 b

2δ
(5.132)

By assuming the previous data, the distribution of electric field E(y) = σ−1J(y)

shown in Fig. 5.6 is obtained. When frequency f decreases, the maximum value of
electric field decreases and its distribution tends to become linear. In turn, when f
increases, the magnetic field decreases in the limits

∣∣H∣∣→ 0, −b

2
< y <

b

2
(5.133)

and

∣∣H∣∣→ ∣∣H0
∣∣ , y = ±b

2
(5.134)

when f tends to infinity.
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Fig. 5.6 Induced electric field in the conductor cross section (strong reaction)

Resorting to the definition of power loss given in Section 2.4.3, the surface power
density P(W m−2) dissipated in the conductor is

P = 1

2

∫ b
2

− b
2

1

σ
|J(y)|2dy = H2

0

σδ2
(

cos2 b
2δ + sh2 b

2δ

)
∫ b

2

− b
2

(
sin2 y

δ
+ sh2 y

δ

)
dy =

= H2
0

2σδ
sh b

δ − sin b
δ

cos2 b
2δ + sh2 b

2δ
= H2

0

2σδ
sh b

δ − sin b
δ

cos b
δ +1
2 +

(
e

b
2δ −e

− b
2δ
)2

4

=

= H2
0

σδ
sh b

δ − sin b
δ

cos b
δ + ch b

δ
= H2

0

√
ωμ0

2σ

sh kb − sin kb

ch kb + cos kb
(5.135)

where k = δ−1.
Alternatively, in the frequency domain, since E and H are orthogonal vectors, the

phasor of the Poynting’s vector (5.26) is

S = E H
∗

2
= −αH2

0

2σ

sh(αy)ch∗(αy)∣∣∣ch
(

αb
2

)∣∣∣2
(5.136)
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It results

sh(αy)ch∗(αy) = sh(2ky) + j sin(2ky)

2
(5.137)

where the star denotes the complex conjugate and

∣∣∣∣ch

(
αb

2

)∣∣∣∣
2

= sh2
(

kb

2

)
+ cos2

(
kb

2

)
(5.138)

respectively. After substitution, it comes out

S = −kH2
0

4σ

[sh (2ky) − sin (2ky)] + j [sh (2ky) + sin (2ky)]

sh2
(

kb
2

)
+ cos2

(
kb
2

) (5.139)

Therefore, the total power dissipated per unit section of the conductor is

P = Re

{
S

(
−b

2

)}
− Re

{
S

(
b

2

)}
= k

∣∣H0
∣∣2

2σ

sh kb − sin kb

sh2 kb
2 + cos2 kb

2

= ∣∣H0
∣∣2
√

ωμ0

2σ

sh kb − sin kb

ch kb + cos kb
(5.140)

coincident with (5.135).

5.11 Eddy Current in a Cylindrical Conductor under Step
Excitation Current

The problem is that of searching for the current density distribution J(r, t) in a con-
ductor of infinite length and circular cross-section of radius R carrying current i(t)
defined as a step function: i(t) = 0 when t < 0 and i(t) = I when t ≥ 0.

According to (5.2) and (5.44), assuming cylindrical coordinates, the following
equation holds

∂2J

∂r2
+ 1

r

∂J

∂r
− μσ

∂J

∂t
= 0, 0 ≤ r ≤ R (5.141)

subject to the boundary condition

∂J

∂r
= 0, r = 0 (5.142)

the integral condition

2π
∫ R

0
J(r, t)r dr = I (5.143)
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and the initial condition

J(r, 0+) = I

2πR
δ−

(r − R) (5.144)

where δ−
(r − R) = lim

r0→R− δ(r − r0). At t = 0+ a step of current is applied; in the

frequency domain, it corresponds to a vanishing penetration depth (see Section 5.10);
accordingly, current I is concentrated at r = R. The laminar current density JS =
J(r, 0+) determines the magnetic field H such that n × H = JS.

The solution to (5.141) can be obtained by means of the separation of variables

J(r, t) = Jm +
∞∑

k=1

Rk(r)Tk(t), 0 ≤ r ≤ R (5.145)

Substituting (5.145) into (5.141) gives

∞∑
k=1

d2Rk

dr2
Tk + 1

r

∞∑
k=1

dRk

dr
Tk − μ0σ

∞∑
k=1

Rk
dTk

dt
= 0 (5.146)

Let one assume that for any k ≥ 1

R
′′
kTk + 1

r
R′

kTk − μ0σRkT′
k = 0 (5.147)

where R′′
k ≡ d2Rk

dr2 , R′
k ≡ dRk

dr and T′
k ≡ dTk

dt respectively.
After dividing each term of (5.147) by RkTk, it results

R
′′
k

Rk
+ 1

r

R′
k

Rk
− μ0σ

T′
k

Tk
= 0 (5.148)

The latter transforms into the following pair of ordinary differential equations (see
Section 3.3)

μ0σ
T′

k

Tk
≡ −λ2

k (5.149)

R
′′
k

Rk
+ 1

r

R′
k

Rk
≡ −λ2

k (5.150)

namely

T′
k + λ2

k

μ0σ
Tk = 0 (5.151)

R
′′
k + 1

r
R′

k + λ2
kRk = 0 (5.152)

where λ2
k �= 0 is the separation constant.
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The solution to (5.151) is of the type

Tk(t) = αke
−

λ2
kt

μ0σ (5.153)

where αk is a coefficient to be determined.
In turn, from (5.152) it results

Rk(r) = βkJ0(λkr) + γkY0(λkr) (5.154)

where βk and γk are coefficients to be determined, while J0(λkr) and Y0(λkr) are
the zero-order Bessel’s functions of first and second kind, respectively. It is to be
noted that J0(λkr) and Y0(λkr) tend to 1 and to minus infinity, respectively, when
r approaches zero. Since at r = 0 current density should take a finite value at any
time, constant γk must be zero. Therefore, it results

J(r, t) = Jm +
∞∑

k=1

ck J0(λkr)e
−

λ2
kt

μ0σ , 0 ≤ r ≤ R (5.155)

where constants Jm, ck ≡ αkβk and λk are to be determined by imposing boundary
and initial conditions.

If R is very large and so the term 1
r

∂J
∂r in (5.141) is neglected, a closed form of

(5.155) can be determined in a straightforward way. In fact, under this assumption
(5.152) and (5.154) become

R
′′
k + λ2

kRk = 0 (5.156)

and

Rk(r) = ak cos(λkr) + bk sin(λkr) (5.157)

respectively, where ak and bk are coefficients to be determined. As a consequence,
(5.145) becomes

J(r, t) = Jm +
∞∑

k=1

e
−

λ2
kt

μ0σ [ak cos(λkr) + bk sin(λkr)] (5.158)

From (5.142) it follows that:

λkbke
−

λ2
kt

μσ = 0 (5.159)

Therefore, bk = 0. In turn, from (5.143) and (5.158) it results

JmπR2 +
∞∑

k=1

2π
λ2

k

dke
−

λ2
kt

μ0σ [λkR sin(λkR) + cos(λkR) − 1] = I (5.160)
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where dk ≡ ak; (5.160) is fulfilled if Jm = I
πR2 , which represents the impressed

current density when t → ∞, and if either dk = 0, k ≥ 1 or

[λkR sin(λkR) + cos(λkR) − 1] = 0, k ≥ 1 (5.161)

Two solutions to (5.161) exist, namely λk = 2kπ
R with k ≥ 1 integer number and{

γk

}
such that λk < γk < λk+1 with k ≥ 1 integer number.

Accordingly, a particular solution is

J(r, 0+) = I

2πR
δ−

(r − R) (5.162)

and

J(r, t) = I

πR2
+

∞∑
k=1

dke
−4k2π2t

μ0σR2
cos
(

2kπ
r

R

)
(5.163)

where coefficient dk is determined for r = 0 by means of (5.144); this implies
∞∑

k=1

dk = − I

πR2
, r ∈ [0, R) (5.164)

Considering the kth contribution to (5.163), it can be noted that the current carried
by the round conductor is distributed sinusoidally in space and diffuses exponen-

tially with a time constant τk = μ0σR2

4k2π2 . At time t the penetration depth can be defined

as δk = 2π
√

t
μ0σ

and the minimum value of current density is located on the axis

of the conductor; t = 0+ is the critical instant, when a laminar current density JS is
originated at r = R such that

∫
Γ

JSdΓ = ∫
Ω

JmdΩ fulfilling condition (5.143).
In the insulating medium surrounding the conductor, the current density is zero,

while the induced electric field E = Eiz fulfils the equation

∂E

∂r
= μ0I

2πr
δ (t) , r > R (5.165)

By integrating the latter with respect to r, the finite variation ΔE of the field between
any position r > R and the boundary r = R of the conductor results

ΔE = E(r) − E(R) = μ0I

2π
ln

r

R
δ (t) , r ≥ R (5.166)

The field is impulsive, i.e. E = 0, t �= 0.

5.12 Electromagnetic Field Equations in Different
Reference Frames

In free space, let us consider an inertial frame of reference O = (x, y, z) in which
the observer perceives an electric field of intensity E and a magnetic field of induction
B at time t.
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Let a second frame of reference O′ = (x′, y′, z′) move at a constant velocity
u = (u, 0, 0) with respect to O at time t′.

Lorentz’s transformation of coordinates, in which any observer measures the
same velocity c of light in the free space, i.e. defines the same wave equation, can be
obtained in the following way. Let time t and time t′ be initialised so that at t = t′ = 0
the axes of the two frames are coincident, namely x′ = x, y′ = y, z′ = z. Owing
to symmetry, it can be stated that O′ moves at a velocity u with respect to O and,
conversely, O moves at a speed −u with respect to O′. This implies

x′ = γ(x − ut) (5.167)

x = γ(x′ + ut′) (5.168)

where γ is a dimensionless coefficient to be determined. To this end, let a light flash,
originated at the origin of both systems at t = t′ = 0, be considered. The light travels
as a spherical wave in both frames with the same speed c; therefore, the equation of
the wavefront is

x2 + y2 + z2 = c2t2 (5.169)

in frame O and

x′2 + y′2 + z′2 = c2t′2 (5.170)

in frame O′. Since y′ = y and z′ = z, it follows

x2 − c2t2 = x′2 − c2t′2 (5.171)

and then

t′2 = x′2

c2
− x2

c2
+ t2 (5.172)

Replacing x′ by means of (5.167) one obtains

t′2 = γ 2 − 1

c2
x2 − 2

γ 2u

c2
xt +

(
γ 2u2

c2
+ 1

)
t2 (5.173)

Independently, taking t′ from (5.168) and using (5.167) one has

t′2 =
(

1 − γ 2

γu

)2

x2 − 2
γ 2 − 1

u
xt + γ 2t2 (5.174)

By equating the corresponding coefficients of (5.173) and (5.174), it results

γ = 1√
1 − u2

c2

(5.175)
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and then

t′ = t − u
c2 x√

1 − u2

c2

(5.176)

Finally, the Lorentz’s transformation from O to O′ results

x′ = γ (x − ut); y′ = y; z′ = z; t′ = γ
(

t − u

c2
x
)

(5.177)

The inverse transformation can be obtained by changing the sign of velocity u, namely

x = γ (x′ + ut′); y = y′; z = z; t = γ
(

t′ + u

c2
x′) (5.178)

Galilean transformation, on the contrary, is:

x′ = x − ut; y′ = y; z′ = z; t′ = t (5.179)

and

x = x′ + ut′; y = y′; z = z′; t = t′ (5.180)

Using Lorentz’s transformation, Maxwell’s equations remain the same, if electric
field intensity E transforms as follows:

E′
x = Ex; E′

y = γ
(
Ey − uBz

) ; E′
z = γ

(
Ez + uBy

)
(5.181)

If u << c, then γ ∼= 1 and

E′
x = Ex; E′

y = Ey − uBz; E′
z = Ez + uBy (5.182)

For vector B, the transformation is

B′
x = Bx; B′

y = γ
(
By + uμ0ε0Ez

) ; B′
z = γ

(
Bz + uμ0ε0Ey

)
(5.183)

If u << c, then

B′
x = Bx; B′

y = By + uμ0ε0Ez; B′
z = Bz + uμ0ε0Ey (5.184)

For the sake of some examples, let us first focus on a point charge q moving at a
constant velocity u with u << c in free space with respect to a fixed frame (Fig. 5.7).

If the observer moves together with the charge, he/she just observes

E
′ = q

4πε0r2
ir

B
′ = 0 (5.185)
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Fig. 5.7 Fields of a moving charge in different frames: (a) moving observer; (b) fixed observer

where r is the radial coordinate. An observer in the fixed frame sees

E = E
′

B = μ0ε0u × E (5.186)

Therefore, it is reasonable to state that magnetism is a relativistic aspect of electricity;
in other words, a magnetic field is given, if a relative motion between charge and
observer is established.

In particular, (5.186) gives the field of a single travelling charge; the induction
field can be expressed as

B = μ0

4π
qu × ir

r2
(5.187)

If ndΩ travelling charges of value q are available in the elementary volume dΩ,
the elementary field is

dB = μ0

4π
nqu × ir

r2
dΩ = μ0

4π
J × ir

r2
dΩ (5.188)

where J = nqu is the current density. If the direction of u, and so J, is coincident
with the z axis, then (5.188) corresponds to (3.79) and by integration the Biot-Savart
law follows (see 3.81).

As a second example, let a rectangular coil placed in a uniform induction field B
orthogonal to it be considered (Fig. 5.8). It is assumed that one of the four sides of
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the coil is movable with a constant velocity u with u << c. While an observer at
rest with respect to a fixed frame measures the magnetic field of induction B and no
electric field, a second observer, located on the movable side, observes an electric
field E parallel to the movable side, the magnitude of which is E = uB.

5.12.1 A Relativistic Example: Steady Motion and Magnetic
Diffusion

Let a pair of plane and parallel electrodes be considered; they are supposed to have
infinite extension in the x direction, along which a finite portion of width w is taken
into account. The length of the electrodes in the z direction is finite and equal to λ

while the distance between them is equal to d (Fig. 5.9). An external circuit forces
a constant current I through a conductive strip, filling the region between the two
electrodes, such that current lines are normal to the electrodes; assuming d << λ,
end effects in the current distribution are neglected.

Current lines when the strip speed is zero are also shown.

Fig. 5.8 Rectangular coil with a movable side in an induction field

Fig. 5.9 Parallel electrodes with a conducting strip: (a) x − y cross-section, (b) z − y cross-section
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The strip of infinite extension, which exhibits conductivity σ and permeability μ0,
is free to slide at a constant speed u = uiz. After (5.45) and (5.11) the induction field
in the strip is governed by the following equation

μ0σ
∂B

∂t
− ∇2

B = μ0σ∇ × (u × B
)

(5.189)

subject to appropriate boundary and initial conditions; thanks to the assumptions
made on the geometry of the electrodes, J = (0, J, 0) and B = (B, 0, 0). The problem
can be tackled in either of two ways.

Steady State in the Fixed Frame

This viewpoint implies that

– the observer is at rest with respect to the electrodes
– the strip slides at a speed u with respect to the observer
– the field is steady, i.e. ∂B

∂t = 0

The governing equation (5.189) reduces to

∂2B

∂z2
= μ0σu

∂B

∂z
(5.190)

As far as the boundary conditions are concerned, the following remark can be put
forward. At z = λ, the Ampère’s law gives −H(0)w + H(λ)w = I. Assuming that
the field is zero at z = 0, it turns out to be

B(0) = 0, B(λ) = μ0I

w
(5.191)

Consequently, the solution to (5.190) is

B(z) =
2∑

i=1

kie
λiz (5.192)

with λi such that λ2
i − μ0σuλi = 0, giving λ1 = 0 and λ2 = μ0σu, respectively.

Applying boundary conditions (5.191), it follows

k1 + k2 = 0, k1 + k2eμ0σuλ = μ0I

w
(5.193)

namely

k1 = μ0I

w

1

1 − eμ0σuλ
, k2 = −k1 (5.194)
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Therefore, it results

B(z) = μ0I

w

1 − eμ0σuz

1 − eμ0σuλ
, u �= 0, 0 < z < λ (5.195)

The distribution of flux lines is non-linear with z.
The associated current density J = μ−1

0 ∇ × B is

J(z) = μ−1
0

∂B

∂z
= μ0I

w

σueμ0σuz

eμ0σuλ − 1
, u �= 0, 0 ≤ z ≤ λ (5.196)

which is non-uniform with z.
In the case u = 0 (strip at rest), after (5.195) and (5.196) it follows

B(z) = μ0I

w
lim
u→0

μ0σzeμ0σuz

μ0σλeμ0σuλ
= μ0I

w

z

λ
(5.197)

and

J(z) = μ0I

w
lim
u→0

σeμ0σuz + μ0σ
2uzeμ0σuz

μ0σλeμ0σuλ
= I

wλ
(5.198)

The distribution of flux lines is linear with z, while the current density is uniform.

Transient State in the Moving Frame

This viewpoint implies that the observer travels at the same speed as the field; there-
fore, in (5.189) u = 0. In order to have a non-uniform field in the strip equal to
(5.195), an appropriate value of the time derivative of B should be prescribed; this
way, a problem of transient magnetic diffusion is set up. In particular, comparing
(5.189) with u = 0 and (5.190), it turns out to be

μ0σ
∂B

∂t
− u

∂2B

∂z2
= 0 (5.199)

with

∂B

∂t
= u

∂B

∂z
= μ2

0I

w

σu2zeμ0σuz

eμ0σuλ − 1
(5.200)

It can be noted that the time derivative varies with coordinates and is constant in
time. Accordingly, the initial condition is

B(z) = μ0I

w

z

λ
, t = 0 (5.201)

Boundary conditions are the same as in the previous case.
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5.12.2 Galileian and Lorentzian Transformations
in Electromagnetism

It can be shown that equations of electromagnetism are invariant with respect to the
Lorentzian transformation, not to the Galilean transformation. In particular, referring
to the one-dimensional wave equation (see Section 5.6), it can be proven that if
φ(x, t) fulfils the equation

∂2φ

∂x2
− 1

c2

∂2φ

∂t2
= 0 (5.202)

then φ(x′, t′) fulfils the equation

∂2φ

∂x′2 − 1

c2

∂2φ

∂t′2
= 0 (5.203)

where (x,t) is related to (x′, t′) through (5.177), in which u is now called v.
In fact, using the chain derivation rule with respect to x′, one has

∂φ

∂x′ = ∂φ

∂x

∂x

∂x′ + ∂φ

∂t

∂t

∂x′ = ∂φ

∂x

(
1 − v2

c2

)− 1
2

+

+ ∂φ

∂t

v

c2

(
1 − v2

c2

)− 1
2

(5.204)

at the first order, and

∂2φ

∂x′2 = ∂2φ

∂x2

(
1 − v2

c2

)−1

+ ∂2φ

∂x∂t

v

c2

(
1 − v2

c2

)− 1
2 ∂x

∂x′ +

+ ∂2φ

∂t∂x

(
1 − v2

c2

)− 1
2 ∂t

∂x′ + ∂2φ

∂t2

v2

c4

(
1 − v2

c2

)−1

(5.205)

at the second order. Since ∂2

∂x∂t = ∂2

∂t∂x , it follows that

∂2φ

∂x′2 = ∂2φ

∂x2

(
1 − v2

c2

)−1

+ 2
∂2φ

∂x∂t

v

c2

(
1 − v2

c2

)−1
∂x

∂x′ +

+ ∂2φ

∂t2

v2

c4

(
1 − v2

c2

)−1

(5.206)

In turn, by deriving with respect to t′, one obtains

∂φ

∂t′
= ∂φ

∂x

∂x

∂t′
+ ∂φ

∂t

∂t

∂t′
= ∂φ

∂x
v

(
1 − v2

c2

)− 1
2

+

+ ∂φ

∂t

(
1 − v2

c2

)− 1
2

(5.207)
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at the first order, and

∂2φ

∂t′2
= ∂2φ

∂x2
v

(
1 − v2

c2

)− 1
2 ∂x

∂t′
+ ∂2φ

∂x∂t

(
1 − v2

c2

)− 1
2 ∂x

∂t′
+

+ ∂2φ

∂t∂x
v

(
1 − v2

c2

)− 1
2 ∂t

∂t′
+ ∂2φ

∂t2

(
1 − v2

c2

)− 1
2 ∂t

∂t′
(5.208)

at the second order. It follows that

∂2φ

∂t′2
= ∂2φ

∂x2
v2
(

1 − v2

c2

)−1

+ 2
∂2φ

∂x∂t
v

(
1 − v2

c2

)−1

+

+ ∂2φ

∂t2

(
1 − v2

c2

)−1

(5.209)

As a result, it turns out to be

∂2φ

∂x′2 − 1

c2

∂2φ

∂t′2
= ∂2φ

∂x2
− 1

c2

∂2φ

∂t2
(5.210)

Conversely, using Galileian transformations (5.179) one has

∂2φ

∂x′2 − 1

c2

∂2φ

∂t′2
= ∂2φ

∂x2

1 − v2

c2

1 − v2

c2

+ 2
∂2φ

∂x∂t

v
c2 − v

c2

1 − v2

c2

+

+ ∂2φ

∂t2

v2

c4 − 1
c2

1 − v2

c2

− 1

c2

∂2φ

∂t2

1 − v2

c2

1 − v2

c2

(5.211)

It follows that

∂2φ

∂x′2 = ∂2φ

∂x2
(5.212)

and

∂2φ

∂t′2
= v2 ∂2φ

∂x2
+ 2v

∂2φ

∂x∂t
+ ∂2φ

∂t2
(5.213)

One obtains

∂2φ

∂x′2 − 1

c2

∂2φ

∂t′2
= ∂2φ

∂x2
− v2

c2

∂2φ

∂x2
− 2

v

c2

∂2φ

∂x∂t
− 1

c2

∂2φ

∂t2
=

=
(

1 − v2

c2

)
∂2φ

∂x2
− 2

v

c2

∂2φ

∂x∂t
− 1

c2

∂2φ

∂t2
(5.214)

Finally, it results

∂2φ

∂x′2 − 1

c2

∂2φ

∂t′2
�= ∂2φ

∂x2
− 1

c2

∂2φ

∂t2
(5.215)



Chapter 6
Inverse Problems

6.1 Direct and Inverse Problems

Typically, direct (or forward) problems are defined as those where, given the input
or the cause of a phenomenon or a process, the purpose is that of finding the output
or the effect.

Inverse problems, conversely, are those where, given the measured or expected
output or effect, one wants to determine the input or the cause; inverse problems
are also those where, given the input and the corresponding output, one tries to
understand their interconnection.

The two types of problems, when applied to the same phenomenon or process,
represent the two logical ways of conceiving it: from input to output or the other
way round. The latter way is central for design applications. This is why students
of engineering, in particular, are invited to get familiar with inverse problems, after
making experience with direct problems.

In applied electricity and magnetism, inverse problems may appear in two forms:

(i) Given measured data, which may be affected by noise or error, in a field region, to
identify, or recover, the relevant field sources or material properties or boundary
conditions of the region (identification or parameter-estimation problems)

(ii) Given desired fields in a device, or given the device performance based on
them, to determine, or to design, sources or materials or shape of the device,
producing the specified performance (synthesis or design problems)

6.2 Well-Posed and Ill-Posed Problems

From the mathematical viewpoint, following the Hadamard’s definition, well-posed
problems (or, properly, correctly-posed problems) are those for which

(i) a solution always exists;
(ii) there is only one solution;

(iii) a small change of data leads to a small change in the solution.

135
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The last property implies that the solution depends continuously upon the data, which
often are measured quantities and therefore are affected by noise or error.

Ill-posed problems, instead, are those for which

(i) a solution may not exist;
(ii) there may be more than one solution;

(iii) a small change of data may lead to a big change in the solution.

The Hadamard’s example of an ill-posed problem is the so called Cauchy’s problem.
For Laplace’s equation in two dimensions it reads:

solve

∂2u

∂x2
− ∂2u

∂y2
= 0, −∞ < x < ∞, y > 0 (6.1)

subject to boundary conditions

u(x, 0) = f (x) and
∂u

∂y
(x, 0) = g(x) (6.2)

where f and g are given functions. For wave equation in one dimension it reads:

solve

∂2u

∂x2
− ∂2u

∂t2
= 0, t > 0 (6.3)

subject to boundary condition

u(x, 0) = f (x) (6.4)

and initial condition

∂u

∂t
(x, 0) = g(x) (6.5)

It can be proved that a small change in boundary/initial conditions produces a big
change in the solution.

In a similar way, another ill-posed problem can be set up. To this end, let the mag-
netic field of a current uniformly distributed in a slot be considered (see Section 3.3.1).
The governing equation in terms of vector potential is

∂2A

∂x2
+ ∂2A

∂y2
= −μ0J, − a

2
< x <

a

2
, y > 0 (6.6)

The solution to the homogeneous equation, subject to boundary conditions

A
(
− a

2
, y
)

= A
( a

2
, y
)

= 0, y > 0 (6.7)
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∂A

∂y
(x, 0) = μ0J

a

2π
sin

(
2πx

a

)
, − a

2
< x <

a

2
(6.8)

is

A (x, y) = μ0J
( a

2π

)2
sin

(
2πx

a

)
sh

(
2πy

a

)
(6.9)

with − a
2 < x < a

2 , y > 0.
The homogeneous solution (6.9) is unstable with respect to a small variation of

parameter a; in fact, the derivative of A with respect to a gives

1

μ0J

∂A

∂a
= a

2π2
sin

(
2πx

a

)
sh

(
2πy

a

)
+

− 1

2π

[
x cos

(
2πx

a

)
sh

(
2πy

a

)
+ y sin

(
2πx

a

)
ch

(
2πy

a

)]
(6.10)

It turns out to be∣∣∣∣∂A

∂a

∣∣∣∣ ≤ a

2π2

∣∣∣∣sh

(
2πy

a

)∣∣∣∣+ |x|
2π

∣∣∣∣sh

(
2πy

a

)∣∣∣∣+ |y|
2π

ch

(
2πy

a

)

≈ e
2πy

a ± e− 2πy
a (6.11)

i.e. a perturbation of the parameter a is magnified exponentially.

6.3 Fredholm’s Integral Equation of the First Kind

In field theory, using an integral approach (Green’s function, Biot-Savart law, etc.),
one frequently encounters an equation of the type:

g(x) =
∫
Ω

H(x, y)f (y)dy, x ∈ Ω, y ∈ Ω (6.12)

where Ω is the domain. This is called Fredholm’s equation of the first kind.
When g is given, f is the unknown and H is the so-called known kernel, the

problem of finding f is an inverse problem. Normally, kernel H is assumed to be
bounded, i.e. a constant M > 0 exists such that |H(x, y)| ≤ M, and symmetrical, i.e.
H(x, y) = H(y, x). It can be shown that f does not depend continuously upon the
given function g. Therefore, the problem is an ill-posed problem.

6.4 Case Study: Synthesis of the Source Producing a Magnetic
Field in Two Dimensions

The problem is that of identifying the density J(x′) with − a
2 ≤ x′ ≤ a

2 of the
current flowing along a linear conductor in air, such that the induction produced in
a controlled subregion Ω0 defined by α1 ≤ x ≤ α2 and β1 ≤ y ≤ β2 (Fig. 6.1) is
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x

y

α1 α2

β1

β2

Ω0

a/2−a/2

Fig. 6.1 Linear conductor producing a prescribed field in Ω0

equal to a prescribed value. From Section 3.1.7, one has that the vector potential,
parallel to J, has amplitude given by

A(x, y) = μ0

4π

∫ a
2

− a
2

ln
[(

x − x′)2 + y2
]

J
(
x′) dx′ (6.13)

where the kernel is equal to the Green’s function in an unbounded two-dimensional
domain.

If induction B = (
Bx, By

)
is given in the controlled subregion, one can get the

corresponding potential A by integrating the relationships Bx = ∂A
∂y and By = − ∂A

∂x .
Therefore, (6.13) becomes a Fredholm’s equation of the first kind. The solution

can be arranged by a numerical technique.

6.5 Under- and Over-Determined Systems of Equations

In general, the numerical solution of problems, including field problems, usually
leads to a system of equations of the type:

Ax = b (6.14)

where A is a rectangular m × n matrix, x is the unknown n-vector and b the known
m-vector.

If m < n, the system is called under-determined. If, on the contrary, m > n, the
system is called over-determined.

Finally, if m = n, the matrix A is square. In this case, if det(A) �= 0, then A is
non singular; therefore A−1 exists and the corresponding system of equations has a
unique solution for any b.
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The effect of a small perturbation of b on x is represented by the condition number
of A:

cond(A) ≡ ‖A‖
∥∥∥A−1

∥∥∥ = λmax

λmin
≥ 1 (6.15)

where λmax and λmin are the maximum and minimum eigenvalues of matrix A,
respectively. If cond(A) is large, then the matrix is called ill-conditioned and the
solution may be perturbed substantially by even a small change of b. An example of
condition number calculation was already reported in Section 4.2.5 for the stiffness
matrix resulting from a finite-element scheme.

For the inversion of a square non-singular matrix there are various methods, the
most popular of which is the Gauss’s factorisation of matrix A = LU into the product
of a lower triangular matrix L by an upper triangular matrix U.

If A is rectangular, theoretically the inverse of A does not exist and the system of
equations has no solution or infinite solutions. However, if m > n and the rank of A
is equal to n (i.e. the n columns of A are linearly independent), a pseudo-inverse of
A can be looked for in terms of a related least-squares problem.

6.6 Least-Squares Solution

If A is a m × n matrix (m > n) of rank n and b is a given m-vector, then a solution to
(6.14) can be found by minimizing a norm, for instance the Euclidean or two-norm,
of the residual Ax − b; this corresponds to solving the least-squares problem

min
x

‖Ax − b‖2 (6.16)

In order to carry out the solution of (6.14), a number of numerical techniques can be
adopted.

A possible way is to solve the normal equations associated to (6.14), which are
defined as

ATAx = ATb (6.17)

where ATA is a square n × n matrix. It can be proven that the vector

x∗ =
(

ATA
)−1

ATb (6.18)

fulfils the condition ∥∥Ax∗ − b
∥∥

2 ≤ ‖Ax − b‖2 (6.19)

for each n-vector x and so x∗ is the least-squares solution to (6.14).
In principle, if A has full column rank, ATA is positive definite; however, from

the numerical viewpoint, this assumption might fail for a twofold reason

– the magnification of ill-conditioning when passing from A to ATA;
– the round-off errors.
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Therefore, the use of normal equations is not recommended because it might lead to
instability.

A more effective approach is given e.g. by the Singular Value Decomposition
(SVD) method; basically, it consists of decomposing the matrix A, which is assumed
to be full column rank (m > n), into the product of three matrices, i.e. a m × m
orthogonal matrix U, a m × n block diagonal matrix S, a n × n orthogonal matrix V,
such that A = USVT. In particular, it results

S =
[

Σ 0
0 0

]
(6.20)

with Σ = diag (σ1, . . . , σn).
The diagonal entries of Σ are the singular values of A. The solution to the least-

squares problem is then given by

x∗ = VS−1UTb (6.21)

with

S−1 =
[

Σ−1 0
0 0

]
(6.22)

and Σ−1 = diag
(
σ−1

1 , . . . , σ−1
n

)
.

Matrix VS−1UT is called also pseudo-inverse of A.
For the sake of an example, let the case

A =
⎡
⎣ 1 1

1 1
0 10−4

⎤
⎦ , b =

⎡
⎣ 1

1
1

⎤
⎦ (6.23)

be considered. Apparently, bad scaling is the source of ill conditioning of A.
The normal-equation matrix and known vector are

ATA =
[

2 2
2 2 + 10−8

]
, ATb =

[
2

2 + 10−4

]
(6.24)

with cond(ATA) = 8 108; the corresponding solution is

x∗ = 104
[−0.9998

0.9999

]
(6.25)

In turn, the SVD decomposition gives

U =
⎡
⎣ −0.7071 2.510−5 0.7071

−0.7071 2.510−5 −0.7071
−3.5310−5 −0.9999 0

⎤
⎦ S =

⎡
⎣ 2 0

0 7.07110−5

0 0

⎤
⎦

V =
[ −0.7071 0.7071

−0.7071 −0.7071

]
(6.26)
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with solution

x∗ = 104
[−0.9999

1

]
(6.27)

The two solutions are practically coincident.

6.7 Classification of Inverse Problems

The formulation of inverse problems in electricity and magnetism implies to associate
a routine for field computation (direct problem) to a routine for the solution of the
inverse problem.

There are many ways to classify inverse problems.Aclassification can be based on
the approach for field computation (integral or differential, analytical or numerical).
Another classification can be made, according to the formulation of the inverse
problem and to the relevant mathematical method employed for the solution.

When the given data come from measurements and the parameters governing field
equations, including field source, are to be found, one has identification problems.

Otherwise, when the given data are arbitrarily taken and the field source or spec-
ifications of the field region (boundary conditions, material properties, etc.) are
required, the problem is called a synthesis problem.

In engineering applications often the goal is to design the geometry of a device or
to select suitable materials and source so that a prescribed performance of the device,
depending on the field, is obtained. This kind of problem is commonly defined as
optimal shape design problem.

The ultimate goal of engineering problems is to perform an Automated Optimal
Design (AOD); in this case, the solution is obtained automatically in terms of the
required or best performance.



Chapter 7
Optimization

7.1 Solution of Inverse Problems by the Minimization
of a Functional

The n unknowns x of an inverse problem are normally called design variables. In
general, they are real values, although in some cases they are integer, belonging to a
feasible region Ω. In multivariate problems, n > 1.

The design variables may be geometric coordinates of the field region or values
of sources or parameters characterizing the region or whatever.

The solution of the inverse problem is generally performed by means of the
optimization (minimization) of a suitable function f(x) called objective function or
cost function or design criterion

given x0 ∈ Ω, find inf
x

f (x), x ∈ Ω (7.1)

where x0 is the initial guess; properly speaking, (7.1) is a problem of unconstrained
optimization. Normally, it is assumed that f is bounded in Ω.

Function f may represent some performance depending on the field or simply the
discrepancy between computed and known field values (error functional), that is the
residual ‖Ax − b‖ in (6.16).

When it is required to maximize an objective function, it must be considered that

sup
x

f (x) = inf
x

[−f (x)] (7.2)

In general, the objective function f, which depends on the field, is not known ana-
lytically. Consequently, the classical conditions of optimality (i.e. null gradient and
positive-definite Hessian matrix) cannot be applied a priori, because the objective
function is known only numerically as a set of values at sample points. Moreover,
in general, f is neither convex nor differentiable or smooth. Therefore, it is not guar-
anteed to get solutions; in particular, f might exhibit some local minima in addition
to the global one. Any way, a solution to (7.1) can be obtained just numerically and
the procedure may be troublesome and time-consuming.

143
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As said before, the numerical solution of inverse problems in electricity and
magnetism requires, as a rule, a routine for calculating the field, which is integrated
with a routine minimizing the objective function.

Usually, the device or system to be optimized is represented by a finite-element
model in two or three dimensions. The main flow of the computation is driven by the
minimization routine, which in the simplest way is carried out step by step. Starting
from x0, an iterative procedure updates the current design point xk as

xk+1 = xk + λsk (7.3)

where λ is a scalar and sk is the current search direction within the feasible region.
Given xk+1, the routine of field analysis generates a new finite-element grid, the field
simulation is restarted and the evaluation of f(x) is so updated.

At the end of computation, the result could represent either a local minimum or
simply a point which is better than the initial one because f has decreased; in the
latter case, a mere improvement (and not the optimization) of f has been achieved. In
general, the optimization trajectory may converge to different local minima, depend-
ing on the initial point, and the global optimum cannot be deduced from the local
behaviour of the objective function.

7.2 Constrained Optimization

In a more advanced formulation, the objective function should fulfil constraints,
which may be expressed as inequalities, equalities and bilateral bounds. Formally,
the problem can be stated as follows

given x0 ∈ Ω, find inf
x

f (x), x ∈ Ω (7.4)

subject to

gj(x) ≤ 0 j = 1, . . . , ni (7.5)

hj(x) = 0 j = ni + 1, . . . , nc

λk ≤ x ≤ uk k = 1, . . . , nb

Constraints and bounds set the limits of the feasible region Ω. A simple technique
to manage constraints is to transform the constrained problem into an unconstrained
one, by adding a penalty term to the objective function, when the design variables
violate the constraints. This way, a sequence of unconstrained problems is solved,
which is assumed to converge to the solution of the constrained problem.

A cost-effective and accurate solution to the optimization problem depends on the
number of design variables and constraints, as well as on the properties of objective
function and constraints.
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7.3 Multiobjective Optimization

In some cases many objective functions are prescribed simultaneously. Problems of
this kind belong to the category of multi-objective or multi-criteria optimization.
Several design problems in electricity and magnetism are characterized by a vector
of nf objective functions in mutual conflict, for which the most general solution is
represented by the Pareto front of non-dominated solutions, i.e. those for which the
decrease of a function is not possible without the simultaneous increase of at least
one of the other functions. Non-dominated solutions are called also non-inferior or
efficient solutions.

Formally, considering nv variables, a multiobjective optimization problem can be
cast as follows

given x0 ∈ Ω, find inf
x

F(x), x ∈ Ω (7.6)

subject to (7.5).
In (7.6), F(x) = {f1(x), . . . , fnf (x)} ⊂ Rnf is the objective vector, assuming

nf ≥ 2. Therefore, F defines a transformation from the design space Rnv to the cor-
responding objective space Rnf . It is assumed that the objectives are bounded and
conflicting, namely

there exists x∗
i such that fi(x

∗
i ) = inf fi(x), i = 1, . . . , nf (7.7)

and x∗
i �= x∗

j , i �= j, j = 1, . . . , nf .
In general, the utopia solution

U = {Ui} = {inf fi(x)}, i = 1, . . . , nf (7.8)

minimizing all fi does not exist and non-dominated solutions x̃ ∈ Ω are accepted.
In this respect, given two feasible solutions xa ∈ Ω and xb ∈ Ω, xa is said to

dominate xb if fi(xa) ≤ fi(xb), i = 1, . . . , nf and fi(xa) < fi(xb) for at least a value
of index i = 1, . . . , nf . Now, let P ⊂ Ω be a set of non-dominated solutions x̃a; if, for
any x̃a ∈ P, there is no xb ∈ Ω dominating x̃a, then P represents the Pareto set and the
corresponding image F(P) is the Pareto front; the latter is called also trade-off curve.

Traditionally, the multiobjective problem is reduced to a single-objective one by
introducing a preference function ψ(x), e.g. the weighted sum of fi(x):

ψ(x) =
nf∑

i=1

cifi(x), 0 < ci < 1,

nf∑
i=1

ci = 1 (7.9)

The numerical identification of the whole Pareto front can be pursued as shown later.

7.4 Gradient-Free and Gradient-Based Methods

Several algorithms for both unconstrained and constrained optimization are avail-
able; basically, they can be sorted into two broad classes, i.e. gradient-free and
gradient-based methods; in the former case, the information about the derivative is
not used while in the latter case it is.



146 7 Optimization

Methods that use only function evaluations (zero-order methods) fall under the
first class; they are suitable for problems characterized by non-linearity and disconti-
nuities of the objective function. The computational efficiency is low, due to repeated
calls to the objective function.

In turn, first-order gradient-based methods basically follow the direction of the
steepest descent; they are more efficient than the zero-order ones. when regular
objective functions are dealt with. The simplest way to approximate the gradient
of the objective function relies on finite differences; e.g. if gi(xi) ≡ ∂f

∂xi
is the ith

component of the gradient, a forward difference gives

gi(xi) ∼= f (xi + h) − f (xi)

h
, i = 1, . . . , n (7.10)

where h is the incremental step. However, it should be noted that the approximation
of the gradient is expensive and represents also an additional source of numerical
ill conditioning (round-off errors in the computation of both objective functions and
finite differences).

Higher-order methods, like Newton’s method, are rarely used because they are
suitable only when the Hessian matrix can be easily computed.

7.5 Deterministic vs Non-Deterministic Search

Regardless of the order, all the aforementioned methods are local in a sense, because
they are able to identify the closest minimum to the starting point, which is a local
one, unless f is convex. For this reason they are said to perform a deterministic search.

To cope with these difficulties, non-deterministic minimization algorithms, which
are derivative-free and perform a stochastic search, have been developed.

Non-deterministic methods offer remarkable advantages over methods that use
only local information to improve the current solution. In fact, they are robust, reli-
able and suitable for non-convex, non-smooth and discontinuous functions, also
with discrete-valued variables. In particular, they give a chance to approximate the
global minimum of the objective function, regardless of the starting point. Another
advantage is that they exhibit an inherent parallelism. The drawbacks are the huge
computational effort and the slow convergence.

Since they have a heuristic background, it has to be pointed out that for non-
deterministic methods convergence is proven just in numerical terms and not on
theoretical basis, contrary to what happens for their deterministic counterpart.

In the non-deterministic category, the most popular methods are: simulated anneal-
ing, evolution strategies, genetic algorithms. More recently, a class of nature-inspired
methods has been developed, among which: ant colony, particle swarm, artificial
immune systems.
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7.6 A Deterministic Algorithm of Lowest Order:
Simplex Method

The simplex method is based on the comparison among the cost function values at
the n + 1 vertices of a polytope (simplex), where n is equal to the dimension of the
search space. In the case of n = 2 (n = 3), the polytope is a triangle (a tetrahedron).

The algorithm begins with n + 1 points, which form the starting polytope, and
the calculation of the associated objective function values. At each iteration a new
polytope is set up by generating a new point to replace the worst vertex of the
old polytope, i.e. the vertex corresponding to the highest value of objective function.
Specifically, the worst vertex is replaced by its reflection with respect to the remaining
n vertices. If the objective function evaluated at the new point is higher than at the
worst vertex, then the new point is rejected and the vertex with the second worst
value is reflected.

When it happens that a vertex belongs to the polytope for a number of iterations
which exceeds the given one, then the polytope is updated by contraction. The whole
procedure is iterated until the diameter of the simplex is less than the specified
tolerance.

7.7 A Non-Deterministic Algorithm of Lowest Order:
Evolution Strategy

Evolution strategy mimics the survival of the fittest individual that is observed in
nature. An algorithm of the lowest order (i.e. a single parent generates a single
offspring) is here shortly presented (Fig. 7.1). The search in the design space begins
in a region of radius d0 (standard deviation) centered at the initial point m0 (mean
value); m0 is externally provided, while d0 is internally calculated on the basis of
the bounds boxing the variation of the design variables.

Setting m = m0 and d = d0 at the initial iteration, the generation of the design
vector x = m + ud then proceeds, resorting to a stochastic sample u ∈ (0, 1);
generally, u is a normally distributed sample. It is verified that x fulfils bounds and
constraints (i.e. that x is feasible), otherwise a new design vector is generated until
it falls inside the feasible region.

The associated objective function f(x) is then evaluated and the test f (x) < f (m)

is performed; if the test is successful, m is replaced by x (the so-called mutation or
selection process), otherwise m is retained.

The next step is concerned with the size of the search region that will be used for
the successive iteration. The underlying rationale is that, when a point better than
the current one is found, the radius of the search region is increased around the new
point to search for further improvements; if no improvement is found, the radius of
the search region is gradually decreased up to convergence (annealing process).

In this respect, the evolutionary algorithm substantially differs from a determinis-
tic one, in which the search region would be narrowed around the better point in order
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Fig. 7.1 Flow-chart of the evolutionary minimization algorithm

to converge towards the corresponding nearest minimum. The drawback, in the latter
case, is that this minimum might be a local one. On the contrary, the evolutionary
algorithm, if successful in finding a better point, covers a larger region of search in
order to see if there might be another good candidate in the neighborhood, and then
does the opposite when this is not possible. This way, there is a non-zero probability
of finding the region where the global optimum of the objective function is located.

The annealing process is ruled by the history of the k previous iterations, used to
establish a trend: if at least a fraction p of the last k iterations were successful (an
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iteration is successful if x is feasible and improves the objective function), then the
trend is said to be positive, while it is negative otherwise. If the trend is positive, the
radius d of the search region is set to q−1d; otherwise, it is set to qd. In particular,
during the first k iterations, d remains unchanged.

The procedure stops when the prescribed accuracy | d
d0

| is achieved. Quantities
p and q are named probability of success and rate of annealing, respectively and
represent the “tuning knobs” of the algorithm; heuristic values for k, p and q are 50,
0.2 and 0.8–0.9, respectively.

7.8 Numerical Case Studies

A few case studies are here presented.
The solution of the direct problem relies on a finite-element analysis of the field,

while the inverse problem is solved by optimizing a suitable objective function
subject to constraints.

All case studies refer to the computational domain shown in Fig. 7.2, which in
Section 2.3.7 has been assumed as a test problem to simulate the so-called slot of
electrical machine.

The direct problem is formulated as follows

find the magnetic potential A(x1, x2) such that in Ω = 4∪
i=1

Ωi

−∇ ·
(
μ−1∇A

)
= JχΩ1 (7.11)

where J is constant and χΩ1
is the characteristic function of Ω1 (i.e. the current

density is uniform in the winding and zero elsewhere); (7.11) is subject to boundary
conditions

A(x1, 0) = 0 (7.12)

Fig. 7.2 Single-side slotted electrical machine: field domain
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and along ∂Ω\ {x2 = 0}
∂A

∂n
= 0 (7.13)

The problem might be either linear or non-linear, depending on the constitutive
relationship assumed for the ferromagnetic material.

Some cases of solution to problem (7.11)–(7.13) are shown in the following.

7.8.1 Identification of the B–H Curve of the Iron Region
of a Magnetic Pole

The problem reads
given the geometry of the pole and the current density in the winding, find the

constitutive relationship B = B(H) of the ferromagnetic region Ω2 ∪ Ω4, such that
the x1-directed component of induction is prescribed along the line x1 = x1(P), 0 ≤
x2 ≤ λ2 passing through point P (Fig. 7.2).

The following analytical model for the iron reluctivity is assumed:

ν
(∣∣B∣∣2) = ν0

1 + γ
∣∣B∣∣2α

μmax + μminγ
∣∣B∣∣2α , 2α > 1, γ > 0 (7.14)

where ν0 is the reluctivity of the free space, while μmax and μmin are maximum and
minimum values of relative permeability, respectively. Fig. 7.3 shows a typical B–H
curve of an iron lamination; it corresponds to

(α, γ) = (5, 5 10−2) and (μmax, μmin) = (5 103, 2 102).

Fig. 7.3 A typical B–H curve of iron lamination
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From the theoretical viewpoint, (7.14) makes the direct problem (7.11)–(7.13) a
non-linear one so that, in principle, existence and uniqueness of the solution are not
given a priori; nevertheless, it could be proven that the derivative d|B|

d|H| = μ(|H|) +
|H| dμ

d|H| = |B|
|H| + |H| dμ

d|H| is bounded for any
∣∣H∣∣ and this makes the direct problem

a well-posed one. To solve it numerically, the Newton-Raphson method (see Sec-
tion 2.3.2) is applied.

Therefore, a bivariate identification problem is set up
given the geometry of the pole and the current density in the winding, find (α, γ)
in (7.14) such that B1 (x1(P), x2) = B0 (x2) , 0 ≤ x2 ≤ λ2, where B0 is the known
air-gap induction.

In practice, the error functional

f (α, γ) = sup
x2

|B1 (x1(P), x2, α, γ) − B0 (x2)| , 0 ≤ x2 ≤ λ2 (7.15)

is minimized with respect to (α, γ), taking α > 1
2 , γ > 0

The prescribed distribution of induction B0 at the air-gap, coming from a finite-
element solution of the direct problem, is shown in Fig. 7.4.

The finite-element mesh used for solving the direct problem is composed of 7,008
triangles with linear variation of the potential; it is shown in Fig. 7.5.

The minimization results are reported in Table 7.1; they have been obtained using
the algorithm presented in Section 7.7.

The starting point corresponds to a permeability constant and equal to μmax
(linear case).

The minimization trajectory in the design space is shown in Fig. 7.6.
The field solution, in terms of the flux lines corresponding to the optimal values

of parameters (α, γ), is represented in Fig. 7.7.

Fig. 7.4 Known air-gap induction
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Fig. 7.5 Finite-element discretization of the computational domain

Table 7.1 B–H curve identification: Results

γ α f

Start 0 0 1.43455
End 3.8737 10−2 5.2541 9.71965 10−4

Tolerance at convergence < 10−6

Iterations 182
Runtime 14,107 [s]
Processor 2 GB, 2 GHz

Fig. 7.6 Optimization trajectory in the design space (start, circle; end, star)
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Fig. 7.7 Identification of B–H curve: geometry and flux lines

7.8.2 Shape Design of a Magnetic Pole (Static Optimization)

Let the vector g = (a1, a2, a3, a4) of geometric variables as in Fig. 7.2 be defined,
such that

α1 ≤ a1 < a2 ≤ α2 (7.16)

and

α3 ≤ a3 < a4 ≤ α4 (7.17)

with αi > 0, i = 1, 4. Then, the problem reads
defined the objective function

f (g) = sup
(x1,x2)∈Ω1

|B2(x1, x2, g)| (7.18)

find the vector g̃ = [ã1, ã2, ã3, ã4] such that

f (g̃) = inf f (g) (7.19)

under the constraint

h(g) ≥ k1 > 0, h(g) = |B1 (x1(P), 0, g)| (7.20)

The objective function (7.18) accounts for the maximum value of the fringing field
in the winding, which is to be minimized, while (7.20) is the air-gap field at point P
(Fig. 7.2) constrained by the threshold k1.

As far as the direct problem is concerned, the current density in the winding and
the material properties are given; in particular, the non-linear relationship (7.14) with
(α, γ) = (5, 5 10−2) is assumed for the ferromagnetic material.

This is a problem of static optimization, because both direct and inverse problems
do not depend on time.



154 7 Optimization

Fig. 7.8 Static optimization: initial geometry and flux lines

Fig. 7.9 Evolutionary algorithm: final geometry and flux lines

The initial geometry shown in Fig. 7.8 has been used to start the optimization.
Using the evolutionary algorithm, the results reported in Figs. 7.9 and 7.10 and

Table 7.2 have been obtained.
For the sake of a comparison, the optimization has been repeated, using the sim-

plex algorithm; in particular, the constraint h(g) > k1 has been taken into account
by means of a penalty term added to the objective function (7.18). The results are
reported in Figs. 7.11 and 7.12 and Table 7.3.

Comparing the two curves of the objective function vs iterations represented in
Figs. 7.10 and 7.12, respectively, it can be remarked that the oscillating behaviour is
particularly evident for more than 80 iterations in the former case while it disappears
after 20 iterations in the latter case. This peculiarity can be attributed to the global
search performed by the evolutionary algorithm with respect to the local search of
the simplex algorithm. On the other hand, the latter requires a runtime remarkably
shorter (see Tables 7.2 and 7.3).

Finally, comparing the results obtained by the two methods it can be remarked
that two different final geometries are found, starting from the same initial geometry.
Certainly, they represent an improvement with respect to the initial solution, but they
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Fig. 7.10 Evolutionary algorithm: history of the objective function

Table 7.2 Evolutionary algorithm: Optimization results

a1 (mm) a2 (mm) a3 (mm) a4 (mm) f (T) h (T)

Start 40 79 12 22 11.8191 10−2 1.13239
End 33 59 8 22 5.5324 10−2 1.00014

Mesh triangles 6,752 (start), 5,712 (end)
Tolerance at convergence < 10−6

Constraint threshold k1 = 1 [T]
Iterations 182
Runtime 18,946 [s]
Processor 2 GB, 2 GHz

Fig. 7.11 Simplex algorithm: final geometry and flux lines
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Fig. 7.12 Simplex algorithm: history of the objective function

Table 7.3 Simplex algorithm: Optimization results

a1 (mm) a2 (mm) a3 (mm) a4 (mm) f (T) h (T)

Start 40 79 12 22 11.8191 10−2 1.13239
End 42 69 12 24 6.0638 10−2 1.0114

Tolerance at convergence < 10−6

Constraint threshold k1 = 1 [T]
Iterations 33
Constraint violations 15
Objective function calls 133
Runtime 339 [s]
Processor 2 GB, 2 GHz

are not coincident because they depend on the tuning knobs of the numerical algo-
rithm; moreover, it cannot be stated that a unique end of the optimization procedure
exists.

7.8.3 Shape Design of a Magnetic Pole (Dynamic Optimization)

The direct problem reads

find the magnetic potential A(x1, x2, t) such that in Ω = 4∪
i=1

Ωi

σ
∂A

∂t
− ∇ ·

(
μ−1∇A

)
= JχΩ1 (7.21)

where χΩ1
is the characteristic function of subdomain Ω1, subject to initial condition

A(x1, x2, 0) = 0 (7.22)
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and boundary conditions
A(x1, 0, t) = 0 (7.23)

and along ∂Ω\{x2 = 0}
∂A

∂n
= 0 (7.24)

A problem of transient magnetic diffusion under current step excitation is set up; the
constitutive relationship of the ferromagnetic material is assumed to be linear.

The time integration of (7.21) is based on a standard Runge-Kutta routine.
As far as the inverse problem is concerned, let the vector g = (a1, a2, a3, a4) of

geometric variables as in Fig. 7.2 be defined, such that

α1 ≤ a1 < a2 ≤ α2 (7.25)

and

α3 ≤ a3 < a4 ≤ α4 (7.26)

with αi > 0, i = 1, 4.
Then, the problem becomes
defined the objective function

f (g) = sup
(x1,x2)∈Ω1

∣∣By(x1, x2, g, t)
∣∣ (7.27)

find the vector g̃ = [ã1, ã2, ã3, ã4] such that

f (g̃) = inf f (g) (7.28)

under the constraint

h(g) ≥ k1 > 0, h(g) = ∣∣Bx
(
x1(P), 0, g, t

)∣∣ (7.29)

It is assumed that t = 1
2 T, where T = λ2 max

i=1,4
(μiσi) with λ = min(a2 − a1, a4 − a3)

is the diffusion time constant.
In other words, the geometry which minimizes the fringing field at time t for

a given air-gap field at the same time instant is searched for. This is a problem of
dynamic optimization, because both direct and inverse problems are time-dependent.
It is important to underline that the actual value of T, and so t, varies with the geometry
g considered; in turn, the ratio of the controlled time t to the time constant T is
prescribed. When t → ∞ the corresponding static case is set up, which was already
developed in the previous Section 7.8.2.

The initial geometry considered for the optimization is shown in Fig. 7.13. The
following data are assumed: μ1 = μ3 = μ0, μ2 = μ4 = 103 μ0, J = 3 106 A m−2,
λ1 = 96 mm, λ2 = 30 mm; the air-gap is 1 mm wide.

Using the evolutionary algorithm, the results reported in Fig. 7.14 and Table 7.4
are obtained.

Considering the distribution of flux lines in Figs. 7.13 and 7.14, it can be remarked
that at time t the magnetic field has not yet diffused completely through the ferro-
magnetic region. Moreover, from Table 7.4 it results that initial and final geometries
are characterized by the same value of diffusion time constant T = 628 ms.
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Fig. 7.13 Dynamic optimization: flux lines at time t for the initial geometry

Fig. 7.14 Dynamic optimization: flux lines at time t for the final geometry

Table 7.4 Dynamic optimization results (t = t)

a1 (mm) a2 (mm) a3 (mm) a4 (mm) f (T) h (T)

Start 40 79 12 22 7.41645 10−2 0.70006
End 42 69 12 24 3.66103 10−2 0.60893

Mesh triangles 6,752 (start), 6,048 (end)
Tolerance at convergence < 10−6

Constraint threshold k1 = 0.6 [T]
Iterations 182
Runtime 6,128 [s]
Processor 2 GB, 2 GHz
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7.8.4 A Multiobjective Approach to the Shape Design
of a Magnetic Pole

Let the vector g = (a1, a2, a3, a4) of geometric variables as in Fig. 7.2 be defined,
such that

α1 ≤ a1 < a2 ≤ α2 (7.30)

and

α3 ≤ a3 < a4 ≤ α4 (7.31)

with αi > 0, i = 1, 4. Then, the following inverse problem is set up
defined the objective functions

f1(g) = |Bx(x1(P), 0, g)| (7.32)

and

f2(g) = sup
(x1,x2)∈Ω1

∣∣By(x1, x2, g)
∣∣ (7.33)

find the family of vectors g̃ = [ã1, ã2, ã3, ã4] such that

f2(g̃) = inf f2(g) (7.34)

under the constraint

f1(g) ≥ k1 > 0 (7.35)

or

f1(g̃) = sup f1(g) (7.36)

under the constraint

f2(g) ≥ k2 > 0 (7.37)

The problem formulation (7.34)–(7.35) or (7.36)–(7.37) leads to the associated Pareto
front when thresholds k1 or k2 are varied, respectively.

A simple numerical procedure to identify the non-dominated solutions of a mul-
tiobjective optimization problem is given by the sample-and-rank method; to this
end, a distribution of samples is generated in the feasible region of the design space,
based on a uniform probability-density function. Samples are then mapped into the
objective space via calculation of the objectives, so determining a distribution that
in general is a non-uniform one. This way, the search space is explored exhaustively.
The criterion of Pareto optimality is then applied and non-dominated solutions are
extracted from the set of samples in the objective space; the corresponding points in
the design space identify the optimal geometries.



160 7 Optimization

Fig. 7.15 Sampled objective space (dot) with non-dominated solutions outlined (circle)

The accuracy of the method in capturing the Pareto front depends on the density
of samples in the design space; the whole computational cost c1 of the method can
be estimated as

c1 ≈ np
nv · nf · c0 (7.38)

where np is the number of points discretizing each of the nv variables, nf is the
number of objectives and c0 is the processor-dependent cost of a single finite-element
analysis.

Fig. 7.15 shows a discrete representation of the objective space (f1, f2) obtained
by random sampling the design space (a1, a2, a3, a4). In particular, 104 points are
generated assuming the following data: μ1 = μ3 = μ0, μ2 = μ4 = 103μ0, J =
3 106 Am−2, λ1 = 96 mm, λ2 = 30 mm; the air-gap is 1 mm wide.

For each point a finite-element mesh composed of about 6,000 triangles with
linear variation of potential is generated and the subsequent analysis of the direct
problem (7.11)–(7.13) is performed. After ranking all the points in the (f1, f2) plane,
146 out of 104 points approximate the Pareto front.

From the technical viewpoint, the Pareto front of non-dominated solutions corre-
sponds to the set of geometries such that the fringing field in the winding is minimum
for a given value of air-gap induction. A posteriori, a single non-dominated solution
can be selected according to an additional criterion of decision making.



Chapter 8
Conclusion

At the end of this short excursion in the domain of static and quasi-static electro-
magnetism, looking back at the pathways run through, the authors realize that it was
possible to highlight just some basic topics of the domain and to describe them in a
very concise and essential way.

When possible, they tried to offer an original insight into well-known topics, but
they do not pretend to have been exhaustive and are happy if they have been clear
and hopefully correct.

The main intention was to provide the readers with methods for modelling elec-
tric and magnetic devices and systems, adopting a problem-solving approach. Both
direct and inverse problems have been proposed and developed. In this respect, the
Euclidean linear space, equipped with the usual norm, has been assumed to describe
the geometry of the electromagnetic field. Therefore, all the analysis of Maxwell’s
equations has been based on the concepts of vector and relevant operators grad, div,
curl. Accordingly, singularities due to lumped sources have been treated directly in
terms of fields rather than potentials.

Throughout the book, in particular, a couple of magnetic test problems has
been considered and solved by different methods. The comparison of the differ-
ent approaches and of the relevant results is left to the readers; nevertheless, the
leading idea is that different methods, both analytical and numerical, can be used to
solve a given class of real-life problems: the actual choice depends on the acceptable
trade-off between cost and accuracy of methods.

The authors will be satisfied if the readers, especially students, find the book
helpful and not too heavy; in any case, they will be pleased to receive comments and
suggestions for improvements.
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Delta Function

Let f(x) be a given real function of real variable x. The so-called delta function
δ(x − x0) (or Dirac’s delta) is an operator which transforms the given function f(x),
supposed to be continuous in x0, into f (x0), namely

∫ b

a
f (x)δ(x − x0)dx = f (x0), a ≤ x0 ≤ b (A.0)

Elementary Vector Analysis

In a three-dimensional domain, using rectangular coordinates, special vectors are the
space vectors rP = (xP, yP, zP) and rQ = (xQ, yQ, zQ), defining field point P and
source point Q, respectively (Fig. A.1).

The Euclidean distance between P and Q is

r = |r| =
[(

xP − xQ
)2 + (yP − yQ

)2 + (zP − zQ
)2] 1

2 = ∣∣rP − rQ
∣∣ (A.1)

A special function is 1
r , r �= 0; it turns out to be:

∇Pr = r

r
, ∇Qr = − r

r
(A.2)

∇P
1

r
= − r

r3
, ∇Q

1

r
= r

r3
(A.3)

∇P · r = 3, ∇Q · r = −3 (A.4)

∇2
P

1

r
= −4πδ(r) (A.5)
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P

Q

x

y

z

r

rP

rQ

O

Fig. A.1 Field point P and source point Q

∇ ×
(

− r

r3

)
= ∇ × ∇ 1

r
= 0 (A.6)

∫
Ω

δ(rQ)

r
dΩ = 1

r
(A.7)

The following formulae hold:

∇ · (∇ × V
) = 0 (A.8)

∇ × ∇φ = 0 (A.9)

Gauss’s or divergence theorem∫
Ω

∇ · B dΩ =
∫

Γ

B · ndΓ (A.10)

with Γ = ∂Ω closed surface enclosing Ω and n outward normal versor.
Stokes’s or circulation theorem∮

λ

A · t dλ =
∫

Γ

(∇ × A
) · n dΓ (A.11)

with λ = ∂Γ closed line representing the border of Γ and t anticlockwise tangential
versor.
Vector identities

∇ × (∇ × A
) = ∇ (∇ · A

)− ∇2
A (A.12)

∇ · (V1 × V2
) = V2 · (∇ × V1

)− V1 · (∇ × V2
)

(A.13)

∇ · (φV
) = V · ∇φ + φ∇ · V (A.14)

∇ × (V1 × V2
) = V1∇ · V2 − V2∇ · V1 + (V2·∇

)
V1 − (V1·∇

)
V2 (A.15)

∇ × φV = φ∇ × V + ∇φ × V (A.16)
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In cylindrical coordinates

∇ · V = r−1 ∂(rVr)

∂r
+ r−1 ∂Vϑ

∂ϑ
+ ∂Vz

∂z
(A.17)

∇2U = ∂2U

∂r2
+ r−1 ∂U

∂r
+ r−2

∂2U

∂ϑ2
+ ∂2U

∂z2
(A.18)

In spherical coordinates

∇ · V = r−2 ∂(r2Vr)

∂r
+ (r sin ϑ)−1 ∂(Vϑ sin ϑ)

∂ϑ
+ (r sin ϑ)−1 ∂Vϕ

∂ϕ
(A.19)

∇2U = r−2 ∂

∂r

(
r2 ∂U

∂r

)
+ r−2 (sin ϑ)−1 ∂

∂ϑ

(
sin ϑ

∂U

∂ϑ

)
+ (r sin ϑ)−2 ∂2U

∂ϕ2

(A.20)

(∇ × V
)

r = (r sin ϑ)−1
(

∂(Vϕ sin ϑ)

∂ϑ
− ∂Vϑ

∂ϕ

)
(A.21)

(∇ × V
)
ϑ

= (r sin ϑ)−1
(

∂Vr

∂ϕ
− ∂(r sin ϑ Vϕ)

∂r

)
(A.22)

(∇ × V
)
ϕ

= r−1
(

∂(rVϑ)

∂r
− ∂ Vr

∂ϑ

)
(A.23)

∇U =
(

∂U

∂r
,

1

r

∂U

∂ϑ
,

1

r sin ϑ

∂U

∂ϕ

)
(A.24)
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Scalar potential, 8, 10, 14, 31, 108, 109, 111,

113, 114
Selection, 147
Separation of variables, 71, 123

Shape
design, 141, 153, 156, 159
function, 80–84, 95, 96

Simplex method, 147
Simply-connected domain, 5, 77, 80, 102
Simulated annealing, 146
Single layer, 24, 56
Singular value decomposition, 140
Skin depth, 118
Slot, 38, 39, 67–69, 73, 75, 86, 91, 93, 136, 149
Slotted electrical machine, 38, 149
Solenoidal, 6, 7, 12, 29, 40, 116
Solid modeling, 95, 98
Source

point, 8, 45, 46, 57, 59, 110
vector, 82, 84, 85, 88, 94, 97

Sparse matrix, 84, 88
Spherical coordinates, 3, 16, 18, 47, 111, 165
Static optimization, 153, 154
Steady

motion, 129
point, 78–80, 82

Step excitation, 122, 157
Stiffness matrix, 139
Stress tensor, 23–26, 35, 37, 98
Stokes’s theorem, 34, 164
Strong eddy current, 116
Surface

charge, 11, 20, 21, 24
dipole, 56, 57
modelling, 95

Symmetry, 16, 19, 21, 33, 38, 47, 73, 90, 92,
115, 117, 126

Synthesis, 1, 135, 137, 141

Tangential versor, 13, 14, 31
Taylor’s series, 31
Time domain, 105, 106, 119
Time-harmonic, 105, 113, 118
Time-varying, 2, 101–103, 115, 119
Torque, 22, 34, 35
Trajectory, 144, 151, 152
Transmission conditions, 11, 29, 61, 65
Travelling charge, 128

Unconstrained optimization, 143
Under-determined system, 138, 139
Unit source, 45, 49

Variation, 22, 34, 77–79, 81, 82, 92, 113, 125,
137, 147, 151, 160

Variational
equation, 78
formulation, 77
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Vector
field, 3, 5, 7
identities, 12, 29, 40, 77, 103, 104, 164
potential, 8, 14, 30, 31, 34, 38, 57, 71, 77,

108–111, 113, 114, 136, 138
Virtual

displacement, 22, 34

work principle, 22, 26, 34
Volume coordinates, 96

Weak eddy current, 115
Weak formulation, 77
Well-posed problems, 135
Work, 22, 23, 26, 34




