
http://www.cambridge.org/9780521847544


PROBLEMS AND SOLUTIONS IN
BIOLOGICAL SEQUENCE ANALYSIS

This book is the first of its kind to provide a large collection of bioinformatics
problems with accompanying solutions. Notably, the problem set includes all of
the problems offered in Biological Sequence Analysis (BSA), by Durbin et al.,
widely adopted as a required text for bioinformatics courses at leading universities
worldwide. Although many of the problems included in BSA as exercises for its
readers have been repeatedly used for homework and tests, no detailed solutions for
the problems were available. Bioinformatics instructors had therefore frequently
expressed a need for fully worked solutions and a larger set of problems for use in
courses.

This book provides just that: following the same structure as BSA, and signific-
antly extending the set of workable problems, it will facilitate a better understanding
of the contents of the chapters in BSA and will help its readers develop problem solv-
ing skills that are vitally important for conducting successful research in the growing
field of bioinformatics. All of the material has been class-tested by the authors at
Georgia Tech, where the first ever M.Sc. degree program in Bioinformatics was held.

Mark Borodovsky is the Regents’ Professor of Biology and Biomedical Engin-
eering and Director of the Center for Bioinformatics and Computational Biology at
Georgia Institute of Technology in Atlanta. He is the founder of the Georgia Tech
M.Sc. and Ph.D. degree programs in Bioinformatics. His research interests are in
bioinformatics and systems biology. He has taught Bioinformatics courses since
1994.

Svetlana Ekisheva is a research scientist at the School of Biology, Georgia
Institute of Technology, Atlanta. Her research interests are in bioinformat-
ics, applied statistics, and stochastic processes. Her expertise includes teaching
probability theory and statistics at universities in Russia and in the USA.





PROBLEMS AND SOLUTIONS IN
BIOLOGICAL SEQUENCE ANALYSIS

MARK BORODOVSKY AND SVETLANA EKISHEVA



CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13    978-0-521-84754-4

ISBN-13    978-0-521-61230-2

ISBN-13 978-0-511-33512-9

© Mark Borodovsky and Svetlana Ekisheva, 2006

2006

Information on this title: www.cambridge.org/9780521847544

This publication is in copyright. Subject to statutory exception and to the provision of 
relevant collective licensing agreements, no reproduction of any part may take place 
without the written permission of Cambridge University Press.

ISBN-10    0-511-33512-1

ISBN-10    0-521-84754-0

ISBN-10    0-521-61230-6

Cambridge University Press has no responsibility for the persistence or accuracy of urls 
for external or third-party internet websites referred to in this publication, and does not 
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

paperback

paperback

eBook (NetLibrary)

eBook (NetLibrary)

hardback

http://www.cambridge.org/9780521847544
http://www.cambridge.org


M. B.:
To Richard and Judy Lincoff

S. E.:
To Sergey and Natasha





Contents

Preface page xi

1 Introduction 1
1.1 Original problems 2
1.2 Additional problems 5
1.3 Further reading 23

2 Pairwise alignment 24
2.1 Original problems 24
2.2 Additional problems and theory 43

2.2.1 Derivation of the amino acid substitution matrices
(PAM series) 46

2.2.2 Distributions of similarity scores 57
2.2.3 Distribution of the length of the longest common

word among several unrelated sequences 62
2.3 Further reading 65

3 Markov chains and hidden Markov models 67
3.1 Original problems 68
3.2 Additional problems and theory 77

3.2.1 Probabilistic models for sequences of symbols: selection
of the model and parameter estimation 86

3.2.2 Bayesian approach to sequence composition analysis:
the segmentation model by Liu and Lawrence 95

3.3 Further reading 102

4 Pairwise alignment using HMMs 104
4.1 Original problems 105
4.2 Additional problems 113
4.3 Further reading 125

vii



viii Contents

5 Profile HMMs for sequence families 126
5.1 Original problems 127
5.2 Additional problems and theory 137

5.2.1 Discrimination function and maximum discrimination
weights 150

5.3 Further reading 161

6 Multiple sequence alignment methods 162
6.1 Original problem 163
6.2 Additional problems and theory 163

6.2.1 Carrillo–Lipman multiple alignment algorithm 164
6.2.2 Progressive alignments: the Feng–Doolittle algorithm 171
6.2.3 Gibbs sampling algorithm for local multiple alignment 179

6.3 Further reading 181

7 Building phylogenetic trees 183
7.1 Original problems 183
7.2 Additional problems 211
7.3 Further reading 215

8 Probabilistic approaches to phylogeny 218
8.1 Original problems 219

8.1.1 Bayesian approach to finding the optimal tree and
the Mau–Newton–Larget algorithm 235

8.2 Additional problems and theory 259
8.2.1 Relationship between sequence evolution models

described by the Markov and the Poisson processes 264
8.2.2 Thorne–Kishino–Felsenstein model of sequence

evolution with substitutions, insertions, and
deletions 270

8.2.3 More on the rates of substitution 275
8.3 Further reading 277

9 Transformational grammars 279
9.1 Original problems 280
9.2 Further reading 290

10 RNA structure analysis 291
10.1 Original problems 292
10.2 Further reading 308



Contents ix

11 Background on probability 311
11.1 Original problems 311
11.2 Additional problem 326
11.3 Further reading 327

References 328

Index 343





Preface

Bioinformatics, an integral part of post-genomic biology, creates principles and
ideas for computational analysis of biological sequences. These ideas facilitate
the conversion of the flood of sequence data unleashed by the recent information
explosion in biology into a continuous stream of discoveries. Not surprisingly, the
new biology of the twenty-first century has attracted the interest of many talented
university graduates with various backgrounds. Teaching bioinformatics to such
a diverse audience presents a well-known challenge. The approach requiring stu-
dents to advance their knowledge of computer programming and statistics prior to
taking a comprehensive core course in bioinformatics has been accepted by many
universities, including the Georgia Institute of Technology, Atlanta, USA.

In 1998, at the start of our graduate program, we selected the then recently pub-
lished book Biological Sequence Analysis (BSA) by Richard Durbin, Anders Krogh,
Sean R. Eddy, and Graeme Mitchison as a text for the core course in bioinformat-
ics. Through the years, BSA, which describes the ideas of the major bioinformatic
algorithms in a remarkably concise and consistent manner, has been widely adopted
as a required text for bioinformatics courses at leading universities around the globe.
Many problems included in BSA as exercises for its readers have been repeatedly
used for homeworks and tests. However, the detailed solutions to these problems
have not been available. The absence of such a resource was noticed by students and
teachers alike.

The goal of this book, Problems and Solutions in Biological Sequence Analysis
is to close this gap, extend the set of workable problems, and help its readers
develop problem-solving skills that are vitally important for conducting successful
research in the growing field of bioinformatics. We hope that this book will facilitate
understanding of the content of the BSA chapters and also will provide an additional
perspective for in-depth BSA reading by those who might not be able to take a formal
bioinformatics course. We have augmented the set of original BSA problems with
many new problems, primarily those that were offered to the Georgia Tech graduate
students.

xi



xii Preface

Probabilistic modeling and statistical analysis are frequently used in bioin-
formatics research. The mainstream bioinformatics algorithms, those for pair-
wise and multiple sequence alignment, gene finding, detecting orthologs, and
building phylogenetic trees, would not work without rational model selection,
parameter estimation, properly justified scoring systems, and assessment of stat-
istical significance. These and many other elements of efficient bioinformatic
tools require one to take into account the random nature of DNA and protein
sequences.

As it has been illustrated by the BSA authors, probabilistic modeling laid the
foundation for the development of powerful methods and algorithms for biolo-
gical sequence interpretation and the revelation of its functional meaning and
evolutionary connections. Notably, probabilistic modeling is a generalization of
strictly deterministic modeling, which has a remarkable tradition in natural science.
This tradition could be traced back to the explanation of astronomic observa-
tions on the motion of solar system planets by Isaac Newton, who suggested a
concise model combining the newly discovered law of gravity and the laws of
dynamics.

The maximum likelihood principle of statistics, notwithstanding the fashion of
its traditional application, also has its roots in “deterministic” science that suggests
that the chosen structure and parameters of a theoretical model should provide the
best match of predictions to experimental observations. For instance, one could
recognize the maximum likelihood approach in Francis Crick and James Watson’s
inference of the DNA double helix model, chosen from the combinatorial number
of biochemically viable alternatives as the best fit to the X-ray data on DNA three-
dimensional structure and other experimental data available.

In studying the processes of inheritance and molecular evolution, where random
factors play important roles, fully fledged probabilistic models enter the picture.
A classic cycle of experiments, data analysis, and modeling with search for a best
fit of the models to data was designed and implemented by Gregor Mendel. His
remarkable long term research endeavor provided proof of the existence of discrete
units of inheritance, the genes.

When we deal with data coming from a less controllable environment, such as
data on natural biological evolution spanning time periods on a scale of millions
of years, the problem is even more challenging. Still, the situation is hopeful. The
models of molecular evolution proposed by Dayhoff and co-authors, Jukes and
Cantor, and Kimura, are classical examples of fundamental advances in modeling
of the complex processes of DNA and protein evolution. Notably these models
focus on only a single site of a molecular sequence and require the further simpli-
fying assumption that evolution of sequence sites occurs independently from each
other. Nevertheless, such models are useful starting points for understanding the



Preface xiii

function and evolution of biological sequences as well as for designing algorithms
elucidating these functional and evolutionary connections.

For instance, amino acid substitution scores are critically important parameters
of the optimal global (Needleman and Wunsch) and local (Smith and Waterman)
sequence alignment algorithms. Biologically sensible derivation of the substitution
scores is impossible without models of protein evolution.

In the mid 1990s the notion of the hidden Markov model (HMM), having been
of great practical use in speech recognition, was introduced to bioinformatics and
quickly entered the mainstream of the modeling techniques in biological sequence
analysis.

Theoretical advances that have occurred since the mid 1990s have shown that
the sequence alignment problem has a natural probabilistic interpretation in terms
of hidden Markov models. In particular, the dynamic programming (DP) algorithm
for pairwise and multiple sequence alignment has the HMM-based algorithmic
equivalent, the Viterbi algorithm. If the type of probabilistic model for a biological
sequence has been chosen, parameters of the model could be inferred by statistical
(machine learning) methods. Two competitive models could be compared to identify
the one with the best fit.

The events and selective forces of the past, moving the evolution of biological
species, have to be reconstructed from the current biological sequence data con-
taining significant noise caused by all the changes that have occurred in the lifetime
of disappeared generations. This difficulty can be overcome to some extent by
the use of the general concept of self-consistent models with parameters adjusted
iteratively to fit the growing collection of sequence data. Subsequently, implement-
ation of this concept requires the expectation–maximization type algorithms able
to estimate the model parameters simultaneously with rearranging data to pro-
duce the data structure (such as a multiple alignment) that fits the model better.
BSA describes several algorithms of expectation–maximization type, including the
self-training algorithm for a profile HMM and the self-training algorithm for a
phylogenetic HMM. Given that the practice with many algorithms described in
BSA requires significant computer programming, one may expect that describing
the solutions would lead us into heavy computer codes, thus moving far away from
the initial concepts and ideas. However, the majority of the BSA exercises have
analytical solutions. On several occasions we have illustrated the implementations
of the algorithms by “toy” examples. The computer codes written in C++ and
Perl languages for such examples are available at opal.biology.gatech.edu/PSBSA.
Note, that in the “Further reading” sections we include mostly papers that were
published later than 1998, the year of BSA publication. Finally, we should men-
tion that the references in the text to the pages in the BSA book cite the 2006
edition.



xiv Preface

Acknowledgements

We thank Sergey Latkin, Svetlana’s husband, for the remarkable help with prepar-
ation of LaTex figures and tables. We are grateful to Alexandre Lomsadze, Ryan
Mills, Yuan Tian, Burcu Bakir, Jittima Piriyapongsa, Vardges Ter-Hovhannisyan,
Wenhan Zhu, Jeffrey Yunes, and Matthew Berginski for invaluable technical assist-
ance in preparation of the book materials; to Soojin Yi, and Galina Glazko for useful
references on molecular evolution; to Michael Roytberg for helpful discussions
on transformational grammars and finite automata. We cordially thank our editor
Katrina Halliday for tremendous patience and constant support, without which this
book would never have come to fruition. We are especially grateful to Richard
Durbin, Anders Krogh, Sean R. Eddy, and Graeme Mitchison, for encouragement,
helpful criticism and suggestions. Further, it is our pleasure to acknowledge firm
support from the Georgia Tech School of Biology and the Wallace H. Coulter
Department of Biomedical Engineering at Georgia Tech and Emory University.
Finally, we wish to express our particular gratitude to our families for great patience
and constant understanding.

M.B. and S.E.



1

Introduction

The reader will quickly discover that the organization of this book was chosen to be
parallel to the organization of Biological Sequence Analysis by Durbin et al. (1998).
The first chapter of BSA contains an introduction to the fundamental notions of
biological sequence analysis: sequence similarity, homology, sequence alignment,
and the basic concepts of probabilistic modeling.

Finding these distinct concepts described back-to-back is surprising at first
glance. However, let us recall several important bioinformatics questions. How
could we construct a pairwise sequence alignment? How could we build an align-
ment of multiple sequences? How could we create a phylogenetic tree for several
biological sequences? How could we predict an RNA secondary structure? None of
these questions can be consistently addressed without use of probabilistic methods.
The mathematical complexity of these methods ranges from basic theorems and
formulas to sophisticated architectures of hidden Markov models and stochastic
grammars able to grasp fine compositional characteristics of empirical biological
sequences.

The explosive growth of biological sequence data created an excellent oppor-
tunity for the meaningful application of discrete probabilistic models. Perhaps,
without much exaggeration, the implications of this new development could
be compared with implications of the revolutionary use of calculus and dif-
ferential equations for solving problems of classic mechanics in the eighteenth
century.

The problems considered in this introductory chapter are concerned with the fun-
damental concepts that play an important role in biological sequence analysis: the
maximum likelihood and the maximum a posteriori (Bayesian) estimation of the
model parameters. These concepts are crucial for understanding statistical infer-
ence from experimental data and are impossible to introduce without notions of
conditional, joint, and marginal probabilities.

1



2 Introduction

The frequently arising problem of model parameterization is inherently difficult
if only a small training set is available. One may still attempt to use methods suitable
for large training sets. But this move may result in overfitting and the generation
of biased parameter estimates. Fortunately, this bias can be eliminated to some
degree; the model can be generalized as the training set is augmented by artificially
introduced observations, pseudocounts.

Problems included in this chapter are intended to provide practice with utilizing
the notions of marginal and conditional probabilities, Bayes’ theorem, maximum
likelihood, and Bayesian parameter estimation. Necessary definitions of these
notions and concepts frequently used in BSA can be found in undergraduate text-
books on probability and statistics (for example, Meyer (1970), Larson (1982),
Hogg and Craig (1994), Casella and Berger (2001), and Hogg and Tanis (2005)).

1.1 Original problems

Problem 1.1 Consider an occasionally dishonest casino that uses two kinds of
dice. Of the dice 99% are fair but 1% are loaded so that a six comes up 50% of
the time. We pick up a die from a table at random. What are P(six|Dloaded) and
P(six|Dfair)? What are P(six, Dloaded) and P(six, Dfair)? What is the probability
of rolling a six from the die we picked up?

Solution All possible outcomes of a fair die roll are equally likely, i.e.
P(six|Dfair) = 1/6. On the other hand, the probability of rolling a six from the
loaded die, P(six|Dloaded), is equal to 1/2. To compute the probability of the com-
bined event (six, Dloaded), rolling a six and picking up a loaded die, we use the
definition of conditional probability:

P(six, Dloaded) = P(Dloaded)P(six|Dloaded). (1.1)

As the probability of picking up a loaded die is 1/100, Equality (1.1) yields

P(six, Dloaded) = 1

100
× 1

2
= 1

200
.

By a similar argument,

P(six, Dfair) = P(six|Dfair)P(Dfair) = 1

6
× 99

100
= 33

200
.

The probability of rolling a six from the die picked up at random is computed as the
total probability of event “six” occurring in combination either with event Dloaded

or with event Dfair:

P(six) = P(six, Dloaded) + P(six, Dfair) = 34

200
= 17

100
.



1.1 Original problems 3

Problem 1.2 How many sixes in a row would we need to see in Problem 1.1
before it is more likely that we had picked a loaded die?

Solution Bayes’ theorem is all we need to determine the conditional probability
of picking up a loaded die, P(Dloaded|n sixes), given that n sixes in a row have been
rolled:

P(Dloaded|n sixes) = P(n sixes|Dloaded)P(Dloaded)

P(n sixes)

= P(n sixes|Dloaded)P(Dloaded)

P(n sixes|Dloaded)P(Dloaded) + P(n sixes|Dfair)P(Dfair)
.

Rolls of both fair or loaded dice are independent, therefore

P(Dloaded|n sixes)= (1/100) × (1/2)n

(99/100) × (1/6)n+(1/100) × (1/2)n
= 1

11 × (1/3)n−2+1
.

This result indicates that P(Dloaded|n sixes) approaches one as n, the length of the
observed run of sixes, increases. The inequality

P(Dloaded|n sixes) > 1/2

tells us that it is more likely that a loaded die was picked up. This inequality holds if(
1

3

)n−2

<
1

11
, n ≥ 5.

Therefore, seeing five or more sixes in a row indicates that it is more likely that the
loaded die was picked up.

Problem 1.3 Use the definition of conditional probability to prove Bayes’
theorem,

P(X|Y) = P(X)P(Y |X)

P(Y)
.

Solution For any two events X and Y such that P(Y) > 0 the conditional probability
of X given Y is defined as

P(X|Y) = P(X ∩ Y)

P(Y)
.

Applying this definition once again to substitute P(X ∩ Y) by P(X)P(Y |X), we
arrive at the equation which is equivalent to Bayes’ theorem:

P(X|Y) = P(X)P(Y |X)

P(Y)
.



4 Introduction

Problem 1.4 A rare genetic disease is discovered. Although only one in a
million people carry it, you consider getting screened. You are told that the
genetic test is extremely good; it is 100% sensitive (it is always correct if you
have the disease) and 99.99% specific (it gives a false positive result only 0.01%
of the time). Using Bayes’ theorem, explain why you might decide not to take
the test.

Solution Before taking the test, the probability P(D) that you have the genetic
disease is 10−6 and the probability P(H) that you do not is 1−10−6. By how much
will the test change this uncertainty? Let us consider two possible outcomes.

If the test is positive, then the Bayesian posterior probabilities of having and not
having the disease are as follows:

P(D|positive) = P(positive|D)P(D)

P(positive)

= P(positive|D)P(D)

P(positive|D)P(D) + P(positive|H)P(H)

= 10−6

10−6 + 0.999999 × 10−4
= 0.0099,

P(H|positive) = P(positive|H)P(H)

P(positive)
= 0.9901.

If the test is negative, the Bayesian posterior probabilities become

P(D|negative) = P(negative|D)P(D)

P(negative)

= P(negative|D)P(D)

P(negative|D)P(D) + P(negative|H)P(H)

= 0

0 + 0.9999 × (1 − 10−6)
= 0,

P(H|negative) = P(negative|H)P(H)

P(negative)
= 1.

Thus, the changes of prior probabilities P(D), P(H) are very small:

|P(D) − P(D|positive)| = 0.0099, |P(D) − P(D|negative)| = 10−6,

|P(H) − P(H|positive)| = 0.0099, |P(H) − P(H|negative)| = 10−6.

We see that even if the test is positive the probability of having the disease changes
from 10−6 to 10−2. Thus, taking the test is not worthwhile for practical reasons.



1.2 Additional problems 5

Problem 1.5 We have to examine a die which is expected to be loaded in some
way. We roll a die ten times and observe outcomes of 1, 3, 4, 2, 4, 6, 2, 1, 2, and
2. What is our maximum likelihood estimate for p2, the probability of rolling a
two? What is the Bayesian estimate if we add one pseudocount per category?
What if we add five pseudocounts per category?

Solution The maximum likelihood estimate for p2 is the (relative) frequency of
outcome “two,” thus p̂2 = 4/10 = 2/5. If one pseudocount per category is added,
the Bayesian estimate is p̂2 = 5/16. If we add five pseudocounts per category, then
p̂2 = 9/40. In the last case the Bayesian estimate p̂2 is closer to the probability of
the event “two” upon rolling a fair die, p2 = 1/6.

In any case, it is difficult to assess the validity of these alternative approaches
without additional information. The best way to improve the estimate is to collect
more data.

1.2 Additional problems

The following problems motivated by questions arising in biological sequence
analysis require the ability to apply formulas from combinatorics (Problems 1.6,
1.7, 1.9, and 1.10), elementary calculation of probabilities (Problems 1.8 and 1.16),
as well as a knowledge of properties of random variables (Problems 1.13 and 1.18).
Our goal here is to help the reader recognize the probabilistic nature of these (and
similar) problems about biological sequences.

Basic probability distributions are used in this section to describe the properties
of DNA sequences: a geometric distribution to describe the length distribution of
restriction fragments (Problem 1.12) and open reading frames (Problem 1.14); a
Poisson distribution as a good approximation for the number of occurrences of
oligonucleotides in DNA sequences (Problems 1.11, 1.17, 1.19, and 1.22). We
will use the notion of an “independence model” for a sequence of independent
identically distributed (i.i.d.) random variables with values from a finite alphabet
A (i.e. the alphabet of nucleotides or amino acids) such that the probability of
occurrence of symbol a at any sequence site is equal to qa,

∑
a∈A qa = 1. Thus, a

DNA or protein sequence fragment x1, . . . , xn generated by the independence model
has probability

∏n
i=1 qxi . Note that the same model is called the random sequence

model in the BSA text (Durbin et al., 1998). The independence model is used to
describe DNA sequences in Problems 1.12, 1.14, 1.16, and 1.17.

The introductory level of Chapter 1 still allows us to deal with the notion of
hypotheses testing. In Problem 1.20 such a test helps to identify CpG-islands in



6 Introduction

a DNA sequence, while in Problem 1.21 we consider the test for discrimination
between DNA sequence regions with higher and lower G + C content.

Finally, issues of the probabilistic model comparison are considered in Problems
1.16, 1.18, and 1.19.

Problem 1.6 In the herpesvirus genome, nucleotides C, G, A, and T occur with
frequencies 35/100, 35/100, 15/100, and 15/100, respectively. Assuming the
independence model for the genome, what is the probability that a randomly
selected 15 nt long DNA fragment contains eight C’s or G’s and seven A’s or
T ’s?

Solution The probability of there being eight C’s or G’s and seven A’s or T ’s in a
15 nt fragment, given the frequencies 0.7 and 0.3 for each group C & G and A & T ,
respectively, is 0.78×0.37 = 0.0000126. This number must be multiplied by

(15
8

) =
15!/8!7!, the number of possible arrangements of representatives of these nucleotide
groups among fifteen nucleotide positions. Thus, we get the probability 0.08.

Problem 1.7 A DNA primer used in the polymerase chain reaction is a one-
strand DNA fragment designed to bind (to hybridize) to one of the strands of a
target DNA molecule. It was observed that primers can hybridize not only to their
perfect complements, but also to DNA fragments of the same length having one
or two mismatching nucleotides. If the genomic DNA is “sufficiently long,” how
many different DNA sequences may bind to an eight nucleotide long primer?
The notion of “sufficient length” implies that all possible oligonucleotides of
length 8 are present in the target genomic DNA.

Solution We consider a more general situation with the length of primer equal
to n. There are three possible cases of hybridization between the primer and the
DNA: with no mismatch, with one mismatch, and with two mismatches. The first
case obviously identifies only one DNA sequence exactly complementary to the
primer. The second case, one mismatch, with the freedom to choose one of three
mismatching types of nucleotides in one position of the complementary sequence,
gives 3n possible sequences. Finally, two positions carrying mismatching nucle-
otides can occur in n(n − 1)/2 ways. Each choice of these two positions generates
nine possibilities to choose two nucleotides different from the matching types. This
gives a total of 9n(n − 1)/2 possible sequences with two mismatches. Hence, for
n = 8, there are

1 + 3 × 8 + 9 × 8 × 7

2
= 277

different sequences able to hybridize to the given primer.



1.2 Additional problems 7

Problem 1.8 A DNA sequencing reaction is performed with an error rate of
10%, thus a given nucleotide is wrongly identified with probability 0.1. To min-
imize the error rate, DNA is sequenced by n = 3 independent reactions, the
newly sequenced fragments are aligned, and the nucleotides are identified by
the following majority rule. The type of nucleotide at a particular position is
identified as α, α ∈ {T , C, A, G}, if more nucleotides of type α are aligned in
this position than all other types combined. If at an alignment position no nucle-
otide type appears more than n/2 times, the type of nucleotide is not identified
(type N).

What is the expected percentage of (a) correctly and (b) incorrectly identified
nucleotides? (c) What is the probability that at a particular site identification is
impossible? (d) How does the result of (a) change if n = 5; what about for n = 7?
Assume that there are only substitution type errors (no insertions or deletions)
with no bias to a particular nucleotide type.

Solution (a) In a given position, we consider the three sequencing reaction calls as
outcomes of the three Bernoulli trials with “success” taking place if the nucleotide
is identified correctly (with probability p = 0.9) and “failure” otherwise (with
probability q = 0.1). Then the probabilities of the following events are described
by the binomial distribution and can be determined immediately:

P3 = P(“success” is observed three times) = p3 = 0.93 = 0.729,

P2 = P(“success” is observed twice) =
(

3

2

)
p2q

= 3 × 0.92 × 0.1 = 0.243.

Under the majority rule, the expected percentage E of correctly identified
nucleotides is given by

Ec
n=3 = P(“success” is observed at least twice) × 100%

= (P3 + P2) × 100% = 97.2%.

(b) To determine the probability of identifying a nucleotide at a given site incor-
rectly, we have to be able to classify the “failure” outcomes; thus, we need to
generalize the binomial distribution to a multinomial one. Specifically, in each
independent trial (carried out at a given sequence site) we can have “success” (with
probability p = 0.9) and three other outcomes: “failure 1,” “failure 2,” and “fail-
ure 3” (with equal probabilities q1 = q2 = q3 = 1/30). To identify a nucleotide
incorrectly would mean to observe at least two “failure i’ outcomes, i = 1, 2, 3,



8 Introduction

among n = 3 trials. Therefore,

P′
3 = (“failure i’ is observed three times) = q3

i = (1/30)3 = 0.000037,

P′
2 = P(“failure i’ is observed twice) = 2

(
3

2

)
q2

i qj +
(

3

2

)
q2

i p

= 6 × (1/30)3 + 3 × (1/30)2 × 0.9 = 0.00356.

Finally, for the expected percentage of wrongly identified nucleotides we have

Ew
n=3 =


 ∑

i=1,2,3

(P′
3 + P′

2)


× 100%

= 3(P′
3 + P′

2) × 100% = 1.1%.

(c) At a particular site, the base calling results in three mutually exclusive events:
“correct identification,” “incorrect identification,” or “identification impossible.”
Then, the probability of the last outcome is given by

P(nucleotide cannot be identified) = 1 − (P3 + P2) − 3(P′
3 + P′

2) = 0.0172.

(d) To calculate the expected percentage Ec
n of correctly identified nucleotides

for n = 5 and n = 7, we apply the same arguments as in section (a), only instead
of three Bernoulli trials we consider five and seven, respectively. We find:

Ec
n=5 = P(at least three “successes” among five trials) × 100%

= p5 + 5 × 0.94 × 0.1 + 10 × 0.930.12 = 99.14%.

Similarly,

Ec
n=7 = P(at least four “successes” among seven trials) × 100% = 99.73%.

As expected, the increase in the number of independent reactions improves the
quality of sequencing.

Problem 1.9 Due to redundancy of genetic code, a sequence of amino acids
could be encoded by several DNA sequences. For a given ten amino acid long
protein fragment, what are the lower and upper bounds for the number of possible
DNA sequences that could carry code for this protein fragment?

Solution The lower bound of one would be reached if all ten amino acids are
methionine or tryptophan, the amino acids encoded by a single codon. In this case
the amino acid sequence uniquely defines the underlying nucleotide sequence. The



1.2 Additional problems 9

Table 1.1. The maximum number Iα of
nucleotides C and G that appear in one of the
synonomous codons for given amino acid α

Iα Amino acid α

1 Asn, Ile, Lys, Met, Phe, Tyr
2 Asp, Cys, Gln, Glu, His, Leu, Ser, Thr, Trp, Val
3 Ala, Arg, Gly, Pro

upper bound would be reached if the amino acid sequence consists of leucine,
arginine, or serine, the amino acids encoded by six codons each. A ten amino acid
long sequence consisting of any arrangement of Leu, Ser, or Arg can be encoded
by as many as 610 = 60 466 176 different nucleotide sequences.

Problem 1.10 Life forms from planet XYZ were discovered to have a DNA and
protein basis with proteins consisting of twenty amino acids. By analysis of the
protein composition, it was determined that the average frequencies of all amino
acids excluding Met and Trp were equal to 1/19, while the frequencies of Met
and Trp were equal to 1/38. Given the high temperature on the XYZ surface,
it was speculated that the DNA has an extremely high G + C content. What
could be the highest average G + C content of protein-coding regions (given the
average amino acid composition as stated above) if the standard (the same as on
planet Earth) genetic code is used to encode XYZ proteins?

Solution To make the highest possible G + C content of protein-coding region
that would satisfy the restrictions on amino acid composition, synonymous codons
with highest G + C content should be used on all occasions. The distribution of
the high G + C content codons according to the standard genetic code is as shown
in Table 1.1 (where Iα designates the highest number of C and G nucleotides in a
codon encoding amino acid α).
Therefore, the average value of the G + C content of a protein-coding region is
given by

〈G + C〉 =
∑
α

Iα
3

fα

= 1

3

(
1

19
(5 × 1 + 9 × 2 + 4 × 3) + 1

38
(1 + 2)

)
= 0.64.

Here fα is the frequency of amino acid α.



10 Introduction

Remark Similar considerations can provide estimates of upper and lower bounds
of G + C content for prokaryotic genomes (planet Earth), where protein-coding
regions typically occupy about 90% of total DNA length.

Problem 1.11 A restriction enzyme is cutting DNA at a palindromic site 6 nt
long. Determine the probability that a circular chromosome, a double-stranded
DNA molecule of length L = 84 000 nt, will be cut by the restriction enzyme
into exactly twenty fragments. It is assumed that the DNA sequence is described
by the independence model with equal probabilities of nucleotides T , C, A, and
G. Hint: use the Poisson distribution.

Solution The probability that a restriction site starts in any given position of the
DNA sequence is p = (1/4)6 = 0.0002441. If we do not take into account the
mutual dependence of occurrences of restriction sites in positions i and j, |i−j| ≤ 6,
the number X of the restriction sites in the DNA sequence can be considered as
the number of successes (with probability p) in a sequence of L Bernoulli trials;
therefore, X has a binomial distribution with parameters p and L. Since L is large
and p is small, we can use the Poisson distribution with parameter λ = pL = 20.5
as an approximation of the binomial distribution. Then

P(X = 20) = e−λ λ20

20! = 0.088.

Notably, the probability of cutting this DNA sequence into any other particular num-
ber of fragments will be lower than P(X = 20). Indeed, the ratio Rk of probabilities
of two consecutive values of X,

Rk = P(X = k + 1)

P(X = k)
= λ

k + 1
,

shows that P(X = k) increases as k grows from 0 to λ, and decreases as k grows
from λ to L, thus attaining its maximum value at point k = λ. In other words, if λ is
not an integer, the most probable value of the Poisson distributed random variable
is equal to [λ], where [λ] stands for the largest integer not greater than λ. Otherwise,
the most probable values are both λ − 1 and λ.

Problem 1.12 Determine the average length of the restriction fragments
produced by the six-cutter restriction enzyme SmaI with the restriction site
CCCGGG. Consider (a) a genome with a G + C content of 70% and (b) a
genome with a G + C content of 30%. It is assumed that the genomic sequence
can be represented by the independence model with probabilities of nucleotides
such that qG = qC , qA = qT . Note that enzyme SmaI cuts the double strand of
DNA in the middle of site CCCGGG.



1.2 Additional problems 11

Solution We denote the probability that the restriction site starts in a particular
sequence position as P and the length of a restriction fragment as L. We associate
the number 1 with a sequence position where the restriction site starts and the
number 0 otherwise. Then in the generated sequence of ones and zeros the lengths
of runs of zeros (equal to the lengths of restriction fragments) can be considered as
values of random variable L. If we do not take into account the mutual dependence
of occurrences of restriction sites at positions i and j, |i−j| ≤ 6, the random variable
L has the geometric distribution: P(L = n) = (1 − P)n−1P. The expected value of
L is defined by

EL =
+∞∑
n=1

n(1 − P)n−1P = P
+∞∑
n=1

−d(1 − P)n

dP

= −P
d
(∑+∞

n=1(1 − P)n
)

dP
= P

P2
= 1

P
.

For (a) we have

Pa = P(CCCGGG) = (0.35)6 = 1.8 × 10−3,

and the average length of restriction fragment is ELa = 1/Pa = 544 nt.
Similarly, for (b),

Pb = P(CCCGGG) = (0.15)6 = 1.14 × 10−5,

and the average length of the restriction fragment is ELb = 87 788 nt. The longer
average length of restriction fragments in (b) could be expected as the G + C-
rich restriction site CCCGGG would appear less frequently in the A + T -rich
genomic DNA.

Problem 1.13 Consider a DNA sequence of length n described by the inde-
pendence model with equal probabilities of nucleotides. Let X be the number of
occurrences of dinucleotide AA and Y be the number of occurrences of dinuc-
leotide AT in this sequence. What are the expected values and variances of
random variables X and Y? For simplicity consider a circular DNA of length n.

Solution Let us define random variables xi and yi, i = 1, . . . , n, as follows:

xi =
{

1, if dinucleotide AA starts in ith position in the sequence,

0, otherwise;

yi =
{

1, if dinucleotide AT starts in ith position in the sequence,

0, otherwise.



12 Introduction

Obviously, X = ∑n
i=1 xi, Y = ∑n

i=1 yi. The expected values of xi and yi, i =
1, . . . , n, under the uniform independence model are given by

Exi = Eyi = P(xi = 1) = P(yi = 1) =
(

1

4

)2

= 1

16
.

Thus, the mean value of X, Y is EX = EY = n/16. Similarly, we can state that the
expected number of occurrences of any other dinucleotide in the sequence is also
n/16.

We denote the shortest distance between positions i and j in the circular DNA as
r(i, j) and find the second moment of X:

EX2 = E

(
n∑

i=1

xi

)2

=
n∑

i=1

Ex2
i +

∑
i,j:r(i,j)≥2

Exixj +
∑

i,j:r(i,j)=1

Exixj. (1.2)

As x2
i = xi, the first sum in (1.2) is

∑n
i=1 Ex2

i = nExi = n/16.
If the distance r(i, j) ≥ 2, the random variables xi and xj are independent and∑

i,j:r(i,j)≥2

Exixj =
∑

i,j:r(i,j)≥2

ExiExj = n(n − 3)

256
.

If r(i, j) = 1, then positions i and j are adjacent and, for certainty, we assume that
position i precedes j. Then product xixj takes the following values:

xixj =
{

1, if triplet AAA starts in position i,

0, otherwise,

and Exixj = P(xixj = 1) = (1/4)3 = 1/64. Therefore, the second moment of X
becomes

EX2 = n

16
+ n(n − 3)

256
+ 2n

64
= n(n + 21)

256
,

and the variance of X is given by

VarX = EX2 − (EX)2 = n(n + 21)

256
− n2

256
= 21n

256
.

Similarly, for the second moment of Y we have:

EY2 = E

(
n∑

i=1

yi

)2

=
n∑

i=1

Ey2
i +

∑
i,j:r(i,j)≥2

Eyiyj +
∑

i,j:r(i,j)=1

Eyiyj. (1.3)

The first two sums in (1.3) are the same as in Equation (1.2). However, if r(i, j) = 1,
the product yiyj is always zero, because dinucleotide AT cannot start in two adjacent
positions i and j of the sequence. Therefore,

EY2 = n

16
+ n(n − 3)

256
= n(n + 13)

256



1.2 Additional problems 13

and

VarY = EY2 − (EY)2 = n(n + 13)

256
− n2

256
= 13n

256
.

We see that the variance of the number of occurrences of a dinucleotide depends on
its structure: if it consists of different letters (thus, the dinucleotide cannot overlap
with the neighbor of the same type), the variance is 13n/256; if dinucleotide consists
of the same letter repeated twice (and can overlap with the neighbor of the same
type), the variance increases to 21n/256.

Remark For an extended discussion of the first and second moments of frequencies
of words in biological sequences, see Pevzner, Borodovsky, and Mironov (1989).

Problem 1.14 A prokaryotic protein-coding gene normally consists of an unin-
terrupted sequence of nucleotide triplets, codons. This sequence starts with a
specific start codon (ATG is most frequent) and ends with one of the three stop
codons: TAA, TAG, TGA. A sequence with such a structure is called an “open read-
ing frame’ (ORF). However, not every ORF found in prokaryotic genomic DNA
is a functional gene. Assuming that ATG is the only possible start codon, what is
the length distribution of ORFs that occur by chance? Consider an independence
model with equal probabilities of four nucleotide types.

Solution There are 43 = 64 triplets (codons) that will appear in the sequence
with equal probabilities. Three out of the sixty four are stop codons. Therefore,
the probability of encountering a stop codon upon scanning a sequence, triplet by
triplet, is 3/64 = 0.047. For the probability of occurrence of ORF of length L (in
codons) we have

P(ORF of length L starts in a given position)

= P(ATG) × P(non-stop codon)L−2 × P(stop codon)

= 1

64
×
(

1 − 3

64

)L−2

× 3

64
= 3

4096

(
61

64

)L−2

.

To derive the ORF length distribution, we use the definition of conditional
probability:

P(length of ORF is equal to L)

= P(ORF of length L starts in a given position)

P(any ORF starts in a given position)



14 Introduction

= P(ORF of length L starts in a given position)∑+∞
L=2 P(ORF of length L starts in a given position)

= (3/4096)(61/64)L−2

1/64
= 3

64

(
61

64

)L−2

.

Thus, we have derived the geometric distribution of the lengths of random ORFs
along with the parameters of the distribution.

Problem 1.15 Assuming that non-coding DNA is described by the independ-
ence model with probabilities of nucleotides equal to 1/4, show that a gene start
(under the assumption that the only start codon is the ATG codon) in 75% of
cases is expected to coincide with the “longest ORF’ start.

Solution Let us assume that a particular ATG codon is a real start of a gene, not
overlapped by an adjacent gene. Then the DNA sequence located upstream to the
ATG is non-coding DNA described by the independence model. Each possible
triplet appears in sequence described by this model with probability 1/64. To find
the probability that a given ATG situated at the real gene start is the 5′-most ATG
in the ORF, we consider the complementary event that there is yet another ATG
upstream to real start that would make an even longer ORF. By examining non-
overlapping triplets upstream to the given ATG one at a time, starting with the one
immediately adjacent to ATG, we observe one of the following possible outcomes.
(i) The picked up triplet is one of sixty that are not ATG, TAA, TGA, TAG. In this
case, we continue the process of triplet examining. (ii) This triplet is one of the
three stop codons (TAA, TGA, TAG). We stop and infer that the initially considered
ATG is the leftmost ATG in the ORF. (iii) The triplet under examination is ATG. We
stop and infer that the initially considered real gene start is not the leftmost ATG
in the ORF. Obviously, the termination of the scanning procedure by reaching one
of the stop codons will occur three times more frequently than the termination by
reaching the ATG codon. Therefore, the ATG start of a real gene in 75% of cases
coincides with the leftmost ATG of the ORF, which defines the longest ORF for the
fixed stop codon on the 3′ end.

Problem 1.16 Suppose we consider two independence models of nucleotide
sequence. The first model, M1, has the same probabilities of nucleotides as
defined in Problem 1.6. The second model, M2, assigns to each nucleotide type
the probability 1/4 to appear in any given position. Given the observed sequence
x = ACTGACGACTGAC, compare the likelihoods of these models.



1.2 Additional problems 15

Solution The likelihood of a model is defined as the conditional probability of
data (sequence x) given the model (Durbin et al. (1998), p. 6). Thus, we have to
compare the probabilities of sequence x under each model. The likelihood of model
M1 is given by

P(x|M1) =
(

3

20

)6 ( 7

20

)7

.

Similarly, for the likelihood of model M2 we have P(x|M2) = (1/4)13. The
likelihood ratio is given by

P(x|M2)

P(x|M1)
= 2013

413 × 36 × 77
= 2.0333 > 1.

Therefore, for the observed sequence x model M2 has a greater likelihood than
model M1.

Problem 1.17 A circular double-stranded DNA of L = 3 400 nt long was cut
by a restriction enzyme. A subsequent gel electrophoresis separation indicated
the presence of five DNA pieces. It turned out that the absent-minded researcher
could not recall the exact type of restriction enzyme that was used. Still, he knew
that the chemical was picked up from a box containing equal number of 4-base
cutters and 6-base cutters (restriction enzymes that cut specific 4 nt long sites
and specific 6 nt long sites, respectively). What is the posterior probability that
the 4-nucleotide cutter was used if the DNA sequence can be represented by the
independence model with equal probabilities of nucleotides T , C, A, G.

Solution The probability of appearance of a restriction site in a particular position
of DNA sequence is p1 = (1/4)4 = 0.003906 for the 4-base cutter and p2 =
(1/4)6 = 0.000244 for the 6-base cutter.

We assume that in both cases the number X of restriction sites in the sequence
can be approximated by the Poisson distribution with parameter λ1 = p1L = 13.28
for the 4-base cutter and λ2 = p2L = 0.83 for the 6-base cutter (see solution to
Problem 1.11). Then we obtain

P(X = 5|4-cutters) = e−λ1
(λ1)

5

5! = 0.00588,

P(X = 5|6-cutters) = e−λ2
(λ2)

5

5! = 0.00143.



16 Introduction

N1 (0) = N2 (0) = 0

N1 (t)

t t

N2 (t)

Figure 1.1. The simplest hylogenetic tree T with a pair of the homologous genes
x1 and x2 being its leaves (see Problem 1.18).

We use Bayes’ theorem to calculate the posterior probability that the 4-base cutter
produced the restriction fragments:

P(4-cutters|X = 5)

= P(X = 5|4-cutters)P(4-cutters)

P(X = 5|4-cutters)P(4-cutters) + P(X = 5|6-cutters)P(6-cutters)

= 0.00588 × 0.5

0.00588 × 0.5 + 0.00143 × 0.5
= 0.804.

With 80.4% chance that the 4-base cutter was used, the initial uncertainty seems to
be resolved.

Problem 1.18 One theory states that the latest common ancestor of birds and
crocodiles lived 120 million years ago (MYA), while another theory suggests that
this time is twice as long. Comparison of homologous genes x1 and x2 of two
species, the Nile crocodile and the Mediterranean seagull, revealed on average
365 differences in 1000 nt long fragments. It is assumed that mutations at different
DNA sites occur independently, and at each site the number of mutations fixed in
evolution is approximated by the Poisson process. The rate of mutation fixation,
p, per nucleotide site per year, is equal to 10−9. Given the observed number of
differences, (a) compare the likelihoods of the two theories, and (b) determine
the maximum likelihood estimate of the divergence time. For simplicity, assume
that no more than one mutation could occur at any given nucleotide site of the
whole lineage.

Solution (a) Assuming that the divergence of the two species occurred t years ago,
we consider the simplest phylogenetic tree T with leaves x1 and x2. The occurrence
of substitutions along branches of the tree can be described by two independent Pois-
son processes N1(τ ) and N2(τ ) both with parameter p. The moment of divergence
corresponds to τ = 0 and the present time to τ = t (see Figure 1.1).



1.2 Additional problems 17

We will compare the likelihoods of tree T for two values of the elapsed time,
t = t1 = 120 MYA and t = t2 = 240 MYA, associated with the competing theories.
The likelihood of a two-leaves tree with a molecular clock property depends on t
only. Then the (conditional) likelihood at site u carrying matching nucleotides in
DNA sequences is given by

Lu(t) = P(x1
u = x2

u|t, no more than one mutation at site i)

= P(N1(t) = 0, N2(t) = 0|N1(t) + N2(t) ≤ 1)

= P(N1(t) = 0, N2(t) = 0, N1(t) + N2(t) ≤ 1)

P(N1(t) + N2(t) ≤ 1)

= P(N1(t) = 0, N2(t) = 0)

P(N1(t) + N2(t) ≤ 1)
. (1.4)

The numerator of the last expression in Equation (1.4) is equal to

P(N1(t) = 0)P(N2(t) = 0) = e−2pt

due to the independence of processes N1(τ ) and N2(τ ), while N1(t) + N2(t) is
again the Poisson random variable (say N3(t)) with parameter 2p due to the known
property of the Poisson distribution. Thus, we have

P(N1(t) + N2(t) ≤ 1) = P(N3(t) ≤ 1) = P(N3(t) = 0) + P(N3(t) = 1)

= e−2pt + 2pte−2pt ,

and the likelihood Lu(t) from Equation (1.4) becomes

Lu(t) = e−2pt

e−2pt + 2pte−2pt
= (1 + 2pt)−1. (1.5)

Similarly, at site u with mismatching nucleotides the likelihood is given by

Lu(t) = P(x1
u 	= x2

u|t, no more than one mutation at site i)

= P(N1(t) = 0, N2(t) = 1|N1(t) + N2(t) ≤ 1)

+ P(N1(t) = 1, N2(t) = 0|N1(t) + N2(t) ≤ 1)

= 2P(N1(t) = 0)P(N2(t) = 1)

P(N1(t) + N2(t) ≤ 1)
= 2e−ptpte−pt

e−2pt + 2pte−2pt
= 2pt(1 + 2pt)−1.

(1.6)

From Equations (1.5) and (1.6) we derive the likelihood of tree T with two leaves
which are genomic sequences of length N aligned with M mismatches:

L(t) =
N∏

u=1

Lu(t) = (1 + 2pt)−N (2pt)M . (1.7)



18 Introduction

To test the two theories, we calculate the log-odds ratio for t1 = 120 MYA and
t2 = 240 MYA:

ln
L(t1)

L(t2)
= N ln(1 + 2pt2) − N ln(1 + 2pt1) + M ln(2pt1) − M ln(2pt2)

= −252.99 < 0.

Therefore, the available data support the theory that birds and crocodiles diverged
240 MYA, since this theory has a greater (conditional) likelihood than the competing
one.

(b) We determine the maximum likelihood estimate t∗ of the time of diver-
gence of the two species as a maximum point of the logarithm of likelihood L(t),
formula (1.7):

d ln L(t)

dt
= − 2Np

1 + 2pt∗
+ 2pM

2pt∗
= 0,

t∗ = M

2p(N − M)
= 2.874 × 108.

Thus, t∗ = 287.4 MYA is the maximum likelihood divergence time, while the
maximum likelihood value per se is given by

Lmax = L(t∗) = (1 + 2pt∗)−N (2pt∗)M = 10−285.

Problem 1.19 It is known that CpG-islands in high eukaryotes are relatively
rich with CpG dinucleotides, while these dinucleotides are discriminated in the
rest of a chromosome. It is assumed that the frequency of occurrences of CpG
dinucleotides in a CpG-island can be approximated by the Poisson distribution
with twenty-five CpG dinucleotides per 250 nt long fragment on average, while in
the rest of the DNA this average is ten CpG per 250 nt. Suggest the Bayesian type
algorithm for CpG-island identification. How will this algorithm characterize a
250 nt long DNA fragment containing nineteen CpG dinucleotides?

Solution We assume that that the numbers of occurrences of CpG dinucleotides in
CpG-islands and non-CpG-islands are both described by the Poisson distribution
with parameter λ1 = 25 and λ2 = 10, respectively.

If a given 250 nt long DNA fragment contains n dinucleotides CpG, how likely
is it that the DNA fragment belongs to a CpG-island? We have to compare two a
posterior probabilities: P1 = P(being a CpG-island given n observed CpG dinuc-
leotides) and P2 = P(being a non-CpG-island given n observed CpG dinucleotides).
Assuming that both alternatives, being a CpG-island and being a non-CpG-island,



1.2 Additional problems 19

are a priori equally likely, we use Bayes’ theorem to calculate P1 and P2:

P1 = P(DNA fragment with n CpC has Poisson distribution with λ1 = 25)

= P(n CpG|λ1 = 25)1
2

P(n CpG|λ1 = 25)1
2 + P(n CpG|λ2 = 10)1

2

= 25ne−25

10ne−10 + 25ne−25
.

In the above we applied the formula for Poisson distribution and canceled the
common factor n!. Similarly,

P2 = P(DNA fragment with n CpC has Poisson distribution with λ2 = 10)

= P(n CpG|λ2 = 10)1
2

P(n CpG|λ1 = 25)1
2 + P(n CpG|λ2 = 10)1

2

= 10ne−10

10ne−10 + 25ne−25
,

or P2 = 1 − P1. The simple identification algorithm for a CpG-island works as
follows. For a given 250 nt long DNA fragment with n observed CpG dinucleotides
value P1 is computed. If P1 > 0.5 (P1 > P2), the DNA fragment is identified
as a part of a CpG-island. Otherwise, the fragment is identified as a part of a
non-CpG-island.

For n = 19 we have

P1 = (25)19e−25

(25)19e−25 + (10)19e−10
= 0.92,

P2 = 1 − P1 = 0.08,

and we conclude that the DNA fragment belongs to a CpG-island.

Problem 1.20 Given the conditions stated in Problem 1.19, the following
decision-making rule is accepted: if more than eighteen CpG dinucleotides
are observed in a 250 nt long DNA fragment, it is identified as a CpG-island.
Determine false positive and false negative rates of this method.

Solution The false positive rate (FPR) is defined as the probability that the rule
would identify a non-CpG-island as a CpG-island. Since the number X of CpG
dinucleotides in a non-CpG-island is described by the Poisson distribution with



20 Introduction

parameter λ = 10, we have

FPR = P(more than eighteen CpG out of 250|non-CpG-island)

= P(X > 18|λ = 10) =
+∞∑
n=19

P(X = n) = 1 −
18∑

n=0

P(X = n)

= 1 −
18∑

n=0

e−10 10n

n! ≈ 0.007.

The false negative rate (FNR) is defined as the probability that a CpG-island is
identified as a non-CpG-island. Since the number Y of CpG dinucleotides in a
CpG-island region has the Poisson distribution with parameter λ = 25, the false
negative rate is given by

FNR = P(less or equal to eighteen CpG out of 250|CpG-island)

= P(Y ≤ 18|λ = 25) =
18∑

n=0

P(Y = n)

=
18∑

n=0

e−25 25n

n! ≈ 0.09.

Note that FPR < FNR. This means that the classification rule is more likely to
decide that CpG-island DNA is non-CpG-island DNA than vice versa.

Problem 1.21 An inhomogeneous DNA sequence is known to contain both
C +G-rich composition regions and regions with unbiased (uniform) nucleotide
composition. We assume that the independence model (P model) with parameters
pT = 1/8, pC = 3/8, pA = 1/8, pG = 3/8, describes the regions with high
C + G content. Regions with uniform nucleotide composition are described by
the independence model (Q model) with parameters qT = 1/4, qC = 1/4,
qA = 1/4, qG = 1/4. For a given DNA fragment X, the log-odds ratio, L =
log2[P(X|P)/P(X|Q)] is determined, and, if L ≥ 0, X is classified as a high C+G
composition fragment; if L < 0, X is classified as compositionally unbiased.
Determine the probabilities of type-one error (false negative rate) and type-two
error (false positive rate) of the classification of a DNA fragment of length n.
Consider n = 10, 20 and 100.

Solution For a DNA sequence X of length n we test the null hypothesis,

H0 = {X belongs to a C + G-rich region} = {X ∈ P},



1.2 Additional problems 21

versus the alternative hypothesis,

Ha = {X belongs to a region with uniform composition} = {X ∈ Q}.
The log-odds ratio is given by

L = log2[P(X|P)/P(X|Q)] = log2

((
pA

qA

)n1
(

pC

qC

)n2
(

pT

qT

)n3
(

pG

qG

)n4
)

= n1 log2
1

2
+ n2 log2

3

2
+ n3 log2

1

2
+ n4 log2

3

2
≈ 0.585(n2 + n4) − (n1 + n3),

where n1, n2, n3, and n4 are numbers of nucleotides A, C, T , and G, respectively,
observed in fragment X. We accept hypothesis H0 (and reject Ha) if L ≥ 0, i.e. if
P(X|P) ≥ P(X|Q); and we reject H0 (and accept Ha) otherwise. For the type-one
error α (significance level of the test) we have

α = P(type-one error) = P(H0 is rejected|H0 is true) = P(L < 0|X ∈ P)

= P(0.585(n2 + n4) − (n1 + n3) < 0|X ∈ P).

Next, we define the Bernoulli trial outcomes by interpreting an occurrence of A or
T at a given site of sequence X as a “success” and an occurrence of C or G as a
“failure.” If p is the probability of “success,” then the number of “successes” in n
Bernoulli trials, S = n1 + n3, has a binomial distribution with parameters n and p.
The type-one error, α, becomes

α = P(0.585(n2 + n4) − (n1 + n3) < 0|X ∈ P)

= P(0.585(n − S) − S < 0|S ∈ B(n, p = 1/4))

= P(S > 0.369n|S ∈ B(n, p = 1/4))

=
∑

k:0.369n<k≤n

(
n

k

)(
1

4

)k (3

4

)n−k

=
(

1

4

)n ∑
k:0.369n<k≤n

(
n

k

)
3n−k .

It follows from the central limit theorem that as n → ∞ the sequence of random
variables (S − ES)/

√
VarS weakly converges to the standard normal distribution.

Therefore, for large n,

α = P(S > 0.369n|S ∈ B(n, p = 1/4)) = P

(
S − ES√

VarS
>

0.369n − ES√
VarS

)

= P

(
S − 0.25n

0.25
√

3n
> 0.2748

√
n

)
≈ 1 − �(0.2748

√
n).

Here

�(x) = 1√
2π

∫ x

−∞
exp

(
− t2

2

)
dt



22 Introduction

is the cumulative distribution function of a standard normal distribution.
Similarly, for the probability of the type-two error we have

β = P(type-two error) = P(H0 is accepted|H0 is false) = P(L ≥ 0|X ∈ Q)

= P(0.585(n2 + n4) − (n1 + n3) ≥ 0|X ∈ Q)

= P(0.585(n − S) − S ≥ 0|S ∈ B(n, p = 1/2))

= P(S ≤ 0.369n|S ∈ B(n, p = 1/2))

=
∑

k:0≤k≤0.369n

(
n

k

)(
1

2

)k (1

2

)n−k

=
(

1

2

)n ∑
k:0≤k≤0.369n

(
n

k

)
.

Again, for large n the application of the central limit theorem leads to equality:

β = P(S ≤ 0.369n|S ∈ B(n, p = 1/2)) = P

(
S − ES√

VarS
≤ 0.369n − ES√

VarS

)

= P

(
S − 0.5n

0.5
√

n
≤ −0.262

√
n

)
≈ �(−0.262

√
n).

For n = 10, 20, 100 we calculate

α10 = P(S ≥ 4|S ∈ B(10, p = 1/4))

= 0.1460 + 0.0584 + 0.0162 + 0.0031 + 0.0004 = 0.2241,

β10 = P(S ≤ 3|S ∈ B(10, p = 1/2))

= 0.001 + 0.0098 + 0.0439 + 0.1172 = 0.171;

α20 = P(S ≥ 8|S ∈ B(20, p = 1/4))

= 0.069 + 0.0271 + 0.0099 + 0.003 + 0.0008 + 0.0002 = 0.1019,

β20 = P(S ≤ 7|S ∈ B(20, p = 1/2))

= 0.0002 + 0.0011 + 0.0046 + 0.0148 + 0.037 + 0.0739 = 0.1316;

α100 = 1 − �(2.748) ≈ 0.0028,

β100 = �(−2.62) ≈ 0.0044.

As we expect,α andβ decrease when the length of the nucleotide sequence increases
and more statistical data become available.

Problem 1.22 Oligonucleotide TTTTAAAA was observed in protein-coding
regions of a partially sequenced bacterial genome with frequency 0.008. The
same oligonucleotide was observed in non-coding regions of the same genome
with frequency 0.003. In a newly sequenced 400 nt long DNA fragment oligo-
nucleotide TTTTAAAA was found four times. Find the posterior probability that



1.3 Further reading 23

this fragment is a part of a protein-coding gene. A prior probability that a ran-
domly selected 400 nt long DNA fragment is located in a protein-coding region
is assumed to be 0.8.

Solution We define the following events:

B1 = {a 400 nt fragment is located in a protein-coding region},
B2 = {a 400 nt fragment is located in a non-coding region},
C = {TTTTAAAA is found four times in a 400 nt fragment}.

It is given that P(B1) = 0.8, P(B2) = 1 − P(B1) = 0.2. The posterior probability
P(B1|C) can be calculated by using Bayes’ theorem:

P(B1|C) = P(C|B1)P(B1)

P(C|B1)P(B1) + P(C|B2)P(B2)
.

We use the Poisson distribution with parameter λ = pN as an approximation of a
binomial distribution of the number of occurrences of oligonucleotide TTTTAAAA
(“successes”) since probability p of “success” is small and the number of trials N is
large. Thus, we have λ1 = 3.2, λ2 = 1.2, for the coding and non-coding sequences,
respectively. The probabilities of finding four oligonucleotides TTTTAAAA are
given by

P(C|B1) = P(four TTTTAAAA|B1) = e−3.2 3.24

4! = 0.1781,

P(C|B2) = P(four TTTTAAAA|B2) = e−1.2 1.24

4! = 0.0260.

Then the posterior probability that the 400 nt long DNA fragment in question is a
part of a protein-coding gene becomes

P(B1|C) = 0.1781 × 0.7

0.1781 × 0.7 + 0.026 × 0.3
= 0.94.

1.3 Further reading

Many textbooks on bioinformatics and computational genomics have been pub-
lished since the mid 1990s. See, for example, Waterman (1995), Baldi and Brunak
(2001), Ewens and Grant (2001), Koonin and Galperin (2003), Jones and Pevzner
(2004), Deonier, Waterman, and Tavaré (2005). They differ with respect to the selec-
tion of covered topics, reflecting the remarkable variety of problems and research
directions in today’s bioinformatics. We would like also to mention (Brown, 1999b)
a text on molecular biology by Brown (1999b) that contains a comprehensive and
concise description of genomics by a molecular biologist.



2

Pairwise alignment

The notion of sequence similarity is perhaps the most fundamental concept in
biological sequence analysis. In the same way that the similarity of morphological
traits served as evidence of genetic and functional relationships between species in
classic genetics and biology, biological sequence similarity could frequently indic-
ate structural and functional conservation among evolutionary related DNA and
protein sequences. Introduction of the biologically relevant quantitative measure
of sequence similarity, the similarity score, is not a trivial task. No simpler is the
other task, developing algorithms that would find the alignment of two sequences
with the best possible score given the scoring system. Finally, the third necessary
component of the computational analysis of sequence similarity is the method of
evaluation of statistical significance of an alignment. Such a method, establish-
ing the cut-off values for the observed scores to be statistically significant, works
properly as soon as the statistical distribution of similarity scores is determined
analytically or computationally.

Chapter 2 of BSA includes twelve problems that require knowledge of the con-
cepts and properties of the pairwise alignment algorithms. This topic is traditionally
best known to biologists due to its utmost practical importance. Indeed, an initial
characterization of any DNA or protein sequence starts with the BLAST analysis,
utilization of a highly efficient heuristic pairwise alignment algorithm for searching
for homologous sequences in a database.

Additional nine problems provide more information for understanding the protein
evolution theory behind the log-odds scores of amino acid substitutions, as well as
the models involved in the assessment of the statistical significance of the observed
sequence similarity scores.

2.1 Original problems

Problem 2.1 Amino acids D, E, and K are all charged; V , I , and L are all
hydrophobic. What is the average BLOSUM50 score within the charged group

24



2.1 Original problems 25

of three? What is it within the hydrophobic group? What about between two
groups? Suggest reasons for the observed pattern.

Solution The BLOSUM50 substitution scores within the group of charged amino
acids and within the group of hydrophobic amino acids were drawn from Table 2.1
and are shown in Table 2.2.

The average substitution score within the charged group is Sch = 2.66 and that
within the hydrophobic group is Sh = 3.22.

The scores of substitution between amino acids from the different groups are
given in Table 2.2(c) (with average S = −3.44).

As expected, the scores of substitution between amino acids with similar
physico-chemical properties (within the charged or the hydrophobic group) are
higher than the scores of substitution between the amino acids with different prop-
erties (between the groups). The sequence alignment algorithms maximizing the
total score will maximize the number of aligned pairs of amino acids with similar
physico-chemical properties.

Problem 2.2 Show that the probability distributions f (g) of the length of gap g
that correspond to the linear and affine gap penalty schemes are both geometric
distributions of the form f (g) = ke−λg.

Solution A gap penalty γ (g) is defined as the log-probability of a gap of a given
length g: γ (g) = log(f (g)). Thus, if a gap penalty γ (g) is scored linearly as
γ (g) = −gd with the gap-open penalty d, then

exp(γ (g)) = e−gd = f (g).

This equality corresponds to the formula f (g) = ke−λg, if k = 1, λ = d.
If a gap penalty is defined by the affine score γ (g) = −d−(g−1)e with gap-open

penalty d and gap-extension penalty e, then

exp(γ (g)) = f (g) = exp(e − d) exp(−ge).

Now again f (g) = ke−λg for k = exp(e − d) and λ = e.

Remark Note that in both cases described above the gap penalty function f (g) does
not define a properly normalized probability distribution of gap lengths. Indeed, for
the linear scheme with any positive gap-open penalty d we have

∞∑
g=0

f (g) =
∞∑

g=0

exp(−gd) = 1

1 − exp(−d)
	= 1.



Ta
bl

e
2.

1.
T

he
B

L
O

SU
M

50
su

bs
ti

tu
ti

on
m

at
ri

x

T
he

lo
g-

od
ds

va
lu

es
ar

e
sc

al
ed

an
d

ro
un

de
d

to
th

e
ne

ar
es

ti
nt

eg
er

.

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

A
5

−2
−1

−2
−1

−1
−1

0
−2

−1
−2

−1
−1

−3
−1

1
0

−3
−2

0
R

−2
7

−1
−2

−4
1

0
−3

0
−4

−3
3

−2
−3

−3
−1

−1
−3

−1
−3

N
−1

−1
7

2
−2

0
0

0
1

−3
−4

0
−2

−4
−2

1
0

−4
−2

−3
D

−2
−2

2
8

−4
0

2
−1

−1
−4

−4
−1

−4
−5

−1
0

−1
−5

−3
−4

C
−1

−4
−2

−4
13

−3
−3

−3
−3

−2
−2

−3
−2

−2
−4

−1
−1

−5
−3

−1
Q

−1
1

0
0

−3
7

2
−2

1
−3

−2
2

0
−4

−1
0

−1
−1

−1
−3

E
−1

0
0

2
−3

2
6

−3
0

−4
−3

1
−2

−3
−1

−1
−1

−3
−2

−3
G

0
−3

0
−1

−3
−2

−3
8

−2
−4

−4
−2

−3
−4

−2
0

−2
−3

−3
−4

H
−2

0
1

−1
−3

1
0

−2
10

−4
−3

0
−1

−1
−2

−1
−2

−3
2

−4
I

−1
−4

−3
−4

−2
−3

−4
−4

−4
5

2
−3

2
0

−3
−3

−1
−3

−1
4

L
−2

−3
−4

−4
−2

−2
−3

−4
−3

2
5

−3
3

1
−4

−3
−1

−2
−1

1
K

−1
3

0
−1

−3
2

1
−2

0
−3

−3
6

−2
−4

−1
0

−1
−3

−2
−3

M
−1

−2
−2

−4
−2

0
−2

−3
−1

2
3

−2
7

0
−3

−2
−1

−1
0

1
F

−3
−3

−4
−5

−2
−4

−3
−4

−1
0

1
−4

0
8

−4
−3

−2
1

4
−1

P
−1

−3
−2

−1
−4

−1
−1

−2
−2

−3
−4

−1
−3

−4
10

−1
−1

−4
−3

−3
S

1
−1

1
0

−1
0

−1
0

−1
−3

−3
0

−2
−3

−1
5

2
−4

−2
−2

T
0

−1
0

−1
−1

−1
−1

−2
−2

−1
−1

−1
−1

−2
−1

2
5

−3
−2

0
W

−3
−3

−4
−5

−5
−1

−3
−3

−3
−3

−2
−3

−1
1

−4
−4

−3
15

2
−3

Y
−2

−1
−2

−3
−3

−1
−2

−3
2

−1
−1

−2
0

4
−3

−2
−2

2
8

−1
V

0
−3

−3
−4

−1
−3

−3
−4

−4
4

1
−3

1
−1

−3
−2

0
−3

−1
5



2.1 Original problems 27

Table 2.2. Substitution scores for the three groups of
aminoacids

(a)

D E K

D 8 2 −1
E 2 6 1
K −1 1 6

(b)

V I L

V 5 4 1
I 4 5 2
L 1 2 5

(c)

V I L

D −4 −4 −4
E −3 −4 −3
K −3 −3 −3

Similarly, for the affine scheme,
∞∑

g=0

f (g) =
∞∑

g=0

exp(e − d) exp(−ge)

= exp(e − d)

∞∑
g=0

exp(−ge) = exp(e − d)

1 − exp(−e)
	= 1.

However, the situation can be corrected by the introduction of normalizing con-
stants: C = 1 − exp(−d) for the linear score; C = 1 − exp(−e)/exp(e − d) for
the affine score. Then the probability distribution of gap lengths can be properly
defined:

P(the gap length is g) = P(g) = Cf (g).

Note that in the final form the probability of the particular gap length in the affine
scheme does not depend on the gap-open penalty d.

Problem 2.3 Typical gap penalty parameters used in practice are d = 8 for the
linear case and d = 12, e = 2 for the affine case (the scores are expressed in
half bits). A bit is the unit obtained when one takes log base 2 of a probability,
so in natural log units these gap penalties correspond to d′ = 8 ln 2/2 and d′ =
12 ln 2/2, e′ = 2 ln 2/2, respectively. What are the corresponding probabilities
of a gap (of any length), starting at some position, and the distributions of gap
length given that there is a gap?

Solution Note that if a quantity x is measured in half bits (y = 2 log2 x) and in
natural log units (z = ln x), then y and z are related by the following formula:

y = 2 log2 x = 2 ln x

ln 2
= 2z

ln 2
.

Thus, if in half bits a gap-open penalty d = 8, then in the natural log units d′ =
8 ln 2/2. Similarly, if in half bits a gap-open penalty d = 12 and a gap-extension
penalty e = 2, then in natural log units d′ = 12 ln 2/2, e′ = 2 ln 2/2.



28 Pairwise alignment

In the linear case (see Problem 2.2) the probability distribution of the gap length
is defined by the following formula:

P(g) = P(the gap length is g) = (1 − exp(−d′)) exp(−gd′).

If d′ = 4 ln 2, then P(g) = (15/16)(1/16)g. For the probability of a gap (of any
length) starting at some position, we have:

P(a gap is present) = 1 − P(no gap) = 1 − P(0) = 1 − 15/16 = 1/16.

Given a gap existence (g > 0), the distribution of the gap length is defined by the
conditional probabilities

P(the gap length is g|a gap exists) = P(g|G) = P(g ∩ G)

P(G)

= P(g)

P(G)
= 16P(g) = 15

(
1

16

)g

.

In the affine case (Problem 2.2) the probability distribution of the gap lengths is
defined by the following formula:

P(g) = (1 − exp(−e′)) exp(−ge′).

(This distribution does not depend on the gap-open penalty d′). If e′ = ln 2, the
probability distribution P(g) becomes P(g) = (1/2)g+1. Similarly to the linear
case, we first calculate the probability of a gap existence at a given position:

P(a gap exists) = 1 − P(g = 0) = 1 − 1

2
= 1

2
.

Finally, the probability of a gap of a certain length g given a gap existence is given by

P(g|a gap exists) = P(g)

P(G)
= 2P(g) =

(
1

2

)g

.

Problem 2.4 Using the BLOSUM50 matrix (Table 2.1) and an affine gap penalty
of d = 12, e = 2, calculate the scores of the two given alignments: (a) the human
alpha globin and leghaemoglobin from yellow lupin:

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHK

++ ++++H+ KV + +A ++ +L+L+++H+ K

LGB2_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSK

(b) the same region of the human alpha globin protein sequence and nematode
glutathione S-transferase homologue named F11G11.2:

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSD----LHAHK
GS+ + G + +D L ++ H+ D+ A +AL D ++AH+

F11G11.2 GSGYLVGDSLTFVDLL--VAQHTADLLAANAALLDEFPQFKAHQ



2.1 Original problems 29

Solution The total score of an alignment is the sum of the substitution scores of
aligned amino acids and the penalties for gaps defined by the formula γ (g) =
−12 − 2(g − 1), where g is the gap length. For the first alignment we calculate

S1 = s(G, N) + s(S, N) + · · · + s(L, G)

= 0 + 1 − 1 + 2 + 1 + 2 + 0 + 10 + 0 − 2 + 6 + 5 − 3 − 1 − 2 + 1 − 2

+ 0 + 5 + 0 − 1 + 1 + 1 − 16(gap) − 1 − 14(gap) − 4 − 1 − 1 − 1

+ 0 + 5 + 0 − 1 + 5 + 0 + 0 + 1 + 10 + 0 − 1 + 6 = 10.

For the second alignment

S2 = s(G, G) + s(G, G) + · · · + s(L, E)

= 8 + 5 + 0 − 1 + 1 − 3 + 8 − 1 + 0 − 3 − 1 − 1 + 0 + 8 − 2

+ 5 − 14(gap) + 0 + 0 − 1 + 10 + 0 − 2 + 8 + 3 − 4 − 1 + 5 − 4

+ 1 + 5 + 5 − 3 + 8 − 18(gap) + 1 + 0 + 5 + 10 + 2 = 39.

Interestingly, the structurally and evolutionary plausible alignment of human alpha
globin to leghaemoglobin (the first alignment) receives a lower score than the align-
ment of human alpha globin to an unrelated nematode protein sequence (the second
alignment). This example emphasizes the importance of the expert assessment in
the homology inference from computer analysis.

Problem 2.5 Show that the number of ways of intercalating two sequences of
lengths n and m to give a single sequence of length n + m, while preserving the
order of the symbols in each, is

(n+m
m

)
.

Solution A process of intercalating a sequence x1, . . . , xn by another sequence
y1, . . . , ym can be described as the filling of a row of n + m empty cells with n + m
symbols x1, . . . , xn, y1, . . . , ym (one symbol per cell) while keeping the order of
symbols in each sequence. Every selection of n cells for symbols x1, . . . , xn defines
only one way to accommodate these symbols which cannot be permutated. As soon
as x’s are placed, the positions for y1, . . . , ym are also determined unambiguously,
as they fill remaining empty cells without permutations. Hence, the total number
of distinct intercalated sequences is the same as the number of ways to choose n
cells out of n + m cells,(

n + m

n

)
=
(

n + m

m

)
= (n + m)!

m!n! .

Problem 2.6 Is it true that by taking alternating symbols from the upper and
lower sequences in an alignment, then discarding the gap characters, one can



30 Pairwise alignment

define a one-to-one correspondence between gapped alignments of the two
sequences and intercalated sequences of the type described in Problem 2.5?

Solution Note that the discussion of this problem is of a significant length. First
we show that the suggested procedure does not establish one-to-one correspond-
ence between gapped alignments of the two sequences and intercalated sequences
introduced in Problem 2.5.

As an example, we consider a gapped alignment A of sequences x = x1, . . . , x4

and y = y1, . . . , y5:

A =
(− x1 − x2 x3 x4

y1 y2 y3 − y4 y5

)
.

Then, by unfolding columns of symbols, we rewrite alignment A as one sequence
(with gap symbols): −, y1, x1, y2, −, y3, x2, −, x3, y4, x4, y5. Omitting gap charac-
ters produces the sequence y1, x1, y2, y3, x2, x3, y4, x4, y5, the intercalated sequence
defined in Problem 2.5. Thus, given alignment A of sequences x and y we construct
exactly one intercalated sequence. Obviously, the same is true for any other gapped
pairwise alignment. However, it can be shown that any intercalated sequence (except
y1, y2, . . . , ym, x1, x2, . . . , xn) corresponds to more than one gapped alignment. For
example, the same intercalated sequence y1, x1, y2, y3, x2, x3, y4, x4, y5 could be
obtained from eight different gapped alignments A1–A8 (and only from them):

A1 =
(− x1 − x2 x3 x4

y1 y2 y3 − y4 y5

)
,

A2 =
(− x1 − − x2 x3 x4

y1 − y2 y3 − y4 y5

)
,

A3 =
(− x1 − x2 x3 − x4

y1 y2 y3 − − y4 y5

)
,

A4 =
(− x1 − x2 x3 x4 −

y1 y2 y3 − y4 − y5

)
,

A5 =
(− x1 − − x2 x3 − x4

y1 − y2 y3 − − y4 y5

)
,

A6 =
(− x1 − − x2 x3 x4 −

y1 − y2 y3 − y4 − y5

)
,

A7 =
(− x1 − x2 x3 − x4 −

y1 y2 y3 − − y4 − y5

)
,

A8 =
(− x1 − − x2 x3 − x4 −

y1 − y2 y3 − − y4 − y5

)
.



2.1 Original problems 31

Figure 2.1. The two-dimensional lattice L of the order (n + 1) × (m + 1).

In general, any intercalated sequence containing k pairs of adjacent symbols xi, yj

corresponds to 2k different gapped alignments of sequences x and y. This implies
not only that there exists no one-to-one correspondence between pairwise gapped
alignments and intercalated sequences, but also that the number Nn,m of possible
alignments of sequences x1, . . . , xn and y1, . . . , ym is strictly greater than

(n+m
m

)
, the

number of intercalated sequences that could be created from sequences x and y (see
Problem 2.5).

The number Nn,m of possible gapped pairwise alignments

To find Nn,m, we turn to a two-dimensional lattice L of the order (n + 1) × (m + 1)

(see Figure 2.1).
The columns of L correspond to elements of sequence x1,…, xn (a column with

index 0 is added to the left side); the rows correspond to elements of sequence
y1,…,ym (a row with index 0 is added to the top). A diagonal arrow leading to cell
(i, j), i = 1, . . . , n, j = 1, . . . , m, corresponds to aligned symbols

(xi
yj

)
; a horizontal

arrow leading to cell (i, •), i = 1, . . . , n, corresponds to xi aligned to a gap
(xi−
)
;

a vertical arrow leading to cell (•, j), j = 1, . . . , m, corresponds to yj aligned to a
gap
(−

yj

)
. Let cell (0, 0) be an original corner and let cell (n, m) be an end corner

of L. It is easy to see that any continuous path (a broken line of arrows) from the
original corner to the end corner uniquely determines a particular gapped alignment
of sequences x and y. Conversely, any alignment of x and y corresponds to only
one continuous path through the lattice L connecting its original and end corners.
Thus, there is one-to-one correspondence between gapped alignments of x and y
and continuous paths through L from the original corner to the end corner. Hence,
finding the number of such full paths will determine Nn,m at the same time.

We assign horizontal, vertical, and diagonal arrows to vectors (1, 0), (0, 1), and
(1, 1), respectively. Every admissible path through L corresponds to a sequence of
vectors (i1, j1), . . . , (iq, jq), where each (il, jl) is either vector (1, 0), or (0, 1), or



32 Pairwise alignment

(1, 1), and
q∑

l=1

(il, jl) = (n, m). (2.1)

On the other hand, every such sequence determines one admissible path, i.e. one
alignment. Now we have to determine how many such sequences exist. If the num-
ber of vectors (1, 1) in the sum in (2.1) is k, k = 0, . . . , min(n, m), then the number
of vectors (1, 0) and (0, 1) must be equal to n − k and m − k, respectively, with
the total number q of terms in the sum in (2.1) equal to n + m − k. The number of
ways to arrange these vectors in sequence (i1, j1), . . . , (in+m−k , jn+m−k) equals the
multinomial coefficient

( n+m−k
k,m−k,n−k

)
. Hence, the number of permitted paths through

L (and the number of gapped alignments of sequences of lengths n and m) is equal to

Nn,m =
min(n,m)∑

k=0

(
n + m − k

k, m − k, n − k

)
. (2.2)

Formula (2.2) leads to several corollaries.

Corollary 1: Recurrent formula for Nn,m

The reductionist approach recommends the reduction of a complex problem to
a combination of simpler ones. We now discuss the implementation of this gen-
eral principle. The whole set of possible alignments could be divided into three
classes: (i) alignments ended with the aligned pair

(xn
ym

)
; (ii) alignments ended

with a gap in sequence x,
(−

ym

)
; (iii) alignments ended with a gap in sequence

y,
(xn−
)
. Therefore, a gapped alignment of sequences x1, . . . , xn and y1, . . . , ym can

be obtained from shorter alignments in one of three possible ways depending on
a pair of symbols in the alignment last column: from an alignment of sequences
x1, . . . , xn−1 and y1, . . . , ym−1 by adding the aligned pair

(xn
ym

)
; from an alignment of

sequences x1, . . . , xn and y1, . . . , ym−1 by adding the pair
(−

ym

)
; or from an alignment

of sequences x1, . . . , xn−1 and y1, . . . , ym by adding the pair
(xn−
)
. This virtual con-

struction gives the following recurrent formula for the number of gapped alignments
of two sequences with lengths n and m:

Nn,m = Nn−1,m−1 + Nn,m−1 + Nn−1,m. (2.3)

The initial values of Nn,m (Nn,0 and N0,m) are defined by the direct application of
formula (2.2):

Nn,0 =
(

n

0, 0, n

)
= n!

0!0!n! = 1,

N0,m =
(

m

0, m, 0

)
= m!

0!m!0! = 1.

(2.4)



2.1 Original problems 33

Table 2.3. Results of Nn,m

computations for small n and m
values

0 1 2 3 4

0 1 1 1 1 1
1 1 3 5 7 9
2 1 5 13 25 41
3 1 7 25 63 129
4 1 9 41 129 321

From Equations (2.4) and (2.3) the values of Nn,m can be computed for any integers n
and m. For instance, for n, m ≤ 4 the values of Nn,m are listed in Table 2.3.

Corollary 2: Number of gapped alignments without aligned pairs of symbols

The term corresponding to k = 0 in (2.2) gives the number of alignments containing
no aligned pairs of symbols. Although the case k = 0 is not of a serious practical
interest, it is easy to see that

a0 =
(

n + m

0, m, n

)
= (n + m)!

0!m!n! =
(

n + m

m

)
,

which means that a0 is equal to the number of intercalated sequences of lengths n
and m (Problem 2.5). One-to-one correspondence between these two sets can be
established by the procedure proposed in the statement of Problem 2.5.

Note that for n, m > 1 the term for k = 1 in formula (2.2) is strictly greater than
a0:

a1 =
(

n + m − 1

1, m − 1, n − 1

)
= (n + m − 1)!

1!(m − 1)!(n − 1)! = nm

n + m

(
n + m

m

)

= nm

n + m
a0 > a0.

Corollary 3: Asymptotic behavior of Nn,n, lower and upper bounds

For sequences x and y with equal lengths, n = m, formula (2.2) becomes

Nn,n =
n∑

k=0

(
2n − k

k, n − k, n − k

)
. (2.5)

As n increases to infinity, an asymptotic behavior of the right-hand side terms in
Equation (2.5) could be elucidated. First we note that the term for k = 0 (see



34 Pairwise alignment

Problem 2.7) is given by

a0 =
(

2n

0, n, n

)
=
(

2n

n

)
� 4n

√
πn

.

The term for k = 1 (see corollary 2) is given by

a1 = n2

2n
a0 � 4n√n

2
√

π
.

For k = n, the case of an ungapped alignment with n aligned pairs of symbols, we
have

an =
(

n

n, 0, 0

)
= n!

n! = 1.

In general, for ak = ( 2n−k
k,n−k,n−k

)
the analysis of the ratio

ak+1

ak
= (n − k)2

(2n − k)(k + 1)

shows that terms of the sum (2.5) increase as k grows from zero to

k∗ =
[

n − 1

4
−

√
8n2 + 8n + 1

4

]
,

and decrease as k grows from k∗ to n. For large n we assume that k∗ ≈ (1−(1/
√

2))n
and find by applying Stirling’s formula that the maximum term in the sum (2.5)
can be approximated by the following expression:

ak∗ � (3 + 2
√

2)n

2πn
.

For large values of n we have

max
k

ak = ak∗ < Nn,n < (n + 1)ak∗ ;

and, therefore, the lower and upper bounds for the number Nn,n of gapped
alignments of two sequences both of length n are as follows:

(3 + 2
√

2)n

2πn
< Nn,n <

(3 + 2
√

2)n

π
.

Remark 1 An asymptotic expression for Nn,n for large n,

Nn,n � 1

25/4
√

π

(3 + 2
√

2)(n+1/2)

√
n

,

was derived by Laquer (1981).



2.1 Original problems 35

Remark 2 Some pairwise alignment algorithms such as the Viterbi algorithm for
a pair hidden Markov model (HMM) discussed in Chapter 4 (see Figure 4.3 and
recurrence Equations (4.5)–(4.7)) admit to competition for optimality only those
alignments of sequences x and y, where x-gap does not follow y-gap and vice
versa. Let An,m be the set of such pairwise alignments of x = x1, . . . , xn and
y = y1, . . . , ym. The number |An,m| is to be determined.

First, note that the procedure described in Problem 2.6 does not establish a one-
to-one correspondence between the set of intercalated sequences of length n + m
and set An,m. While an alignment from An,m corresponds to some intercalated
sequence, there exist intercalated sequences which do not correspond to any align-
ment in An,m. (For example, no alignment from A3,3 corresponds to the intercalated
sequence x1, y1, y2, x2, x3, y3.)

To find |An,m|, the scheme used above to calculate the number Nn,m of all pos-
sible alignments of x and y has to be modified. Now in the sum (2.1) the order of
vectors (1, 1), (1, 0), and (0, 1), corresponding to a pair of aligned symbols, y-gap
and x-gap, respectively, must satisfy the following restriction: vectors (1, 0) and
(0, 1) cannot be adjacent to each other. The number of sequences of vectors (1, 1),
(1, 0), and (0, 1) satisfying this restriction is equal to |An,m|. If the number of vec-
tors (1, 1) in the sum (2.1) is k, 1 ≤ k ≤ min(n, m), they are present in the sum in
the form of i runs, 1 ≤ i ≤ k, that correspond to blocks of successive matches in
the alignment. The number of ways to divide the set of k elements into i non-empty
subsets is equal to N(k, i) = (k−1

k−i

)
, the number of ways to place k undistinguishable

items into i boxes (see Problem 11.14). For each value i, the number of blocks of
vectors (1, 1) within the sum (2.1), there are three possibilities: (a) the sum in (2.1)
starts and ends with blocks of (1, 1); (b) the sum in (2.1) either starts or ends with
block of (1, 1); (c) the sum in (2.1) neither starts nor ends with a block of (1, 1). In
case (a), i − 1 blocks of (0, 1) or blocks of (1, 0) must be located between i blocks
of vectors (1, 1). If n − k vectors (1, 0), corresponding to y-gaps, are divided into
l blocks, l ≤ i − 1 (there are N(n − k, l) ways to do so), then m − k vectors (0, 1),
corresponding to x-gaps, must be divided into i − 1 − l remaining blocks (there are
N(m − k, i − 1 − l) ways to do so). The number of ways to place l blocks of (1, 0)

into i − 1 possible locations while preserving the order of blocks is
(i−1

l

)
. Now the

positions for i − 1 − l blocks of vectors (0, 1) are determined uniquely. When the
order of all blocks (and their lengths) in the sum (2.1) is fixed, the chain of vectors
is uniquely defined. Therefore, the number N1 of sequences corresponding to (a)
becomes

N1 =
min(n,m)∑

k=1

k∑
i=1

N(k, i)
i−1∑
l=0

(
i − 1

l

)
N(n − k, l)N(m − k, i − 1 − l).



36 Pairwise alignment

Similar arguments lead to the formulas for the numbers N2 and N3 of possible
sequences of vectors in the sum (2.1) for cases (b) and (c), respectively:

N2 = 2
min(n,m)∑

k=1

k∑
i=1

N(k, i)
i∑

l=0

(
i

l

)
N(n − k, l)N(m − k, i − l);

N3 =
min(n,m)∑

k=1

k∑
i=1

N(k, i)
i+1∑
l=0

(
i + 1

l

)
N(n − k, l)N(m − k, i + 1 − l).

By combining together the numbers of sequences for cases (a)–(c), we obtain

|An,m| = N1 + N2 + N3

=
min(n,m)∑

k=1

k∑
i=1

(
k − 1

k − i

)[ i−1∑
l=0

(
i − 1

l

)
N(n − k, l)N(m − k, i − 1 − l)

+ 2
i∑

l=0

(
i

l

)
N(n − k, l)N(m − k, i − l)

+
i+1∑
l=0

(
i + 1

l

)
N(n − k, l)N(m − k, i + 1 − l)

]
.

Here N(0, 0) = 1; N(q, 0) = N(0, q) = 0 for q ≥ 1; N(q, j) = (q−1
q−j

)
for j ≥ 1,

q ≥ j; N(q, j) = 0 for j ≥ 1, 1 ≤ q < j.
For example, for two short sequences x = x1, x2 and y = y1, y2, y3, formula (2.2)

yields for the number of all possible gapped alignments of x and y: N2,3 = 25,
while |A2,3| = 5. The five alignments in A2,3 are as follows:(

x1 x2 −
y1 y2 y3

)
,

(− x1 x2

y1 y2 y3

)
,

(
x1 x2 − −
− y1 y2 y3

)
,

(− − x1 x2

y1 y2 y3 −
)

,

(
x1 − x2

y1 y2 y3

)
.

By following the same logic as in Corollary 1, one can derive for |An,m| the ana-
log of formula (2.3) obtained for Nn,m. We leave to the reader to check that the
following recurrent equation holds:

|An,m| = |An−1,m−1| +
m∑

i=2

|An−1,i−2| +
n∑

i=2

|Ai−2,m−1|.

On the right-hand side of the equation the first term is the number of alignments in
An,m with aligned symbols xn and ym; the sum

∑m
i=2 is the number of alignments

in An,m with ym aligned to a gap; and the sum
∑n

i=2 is the number of alignments
in An,m with xn aligned to a gap.



2.1 Original problems 37

Table 2.4. Results of An,m computations
for small numbers n and m

0 1 2 3 4

0 1 1 1 1 1
1 1 1 2 3 4
2 1 2 3 5 8
3 1 3 5 9 15
4 1 4 8 15 27

Assuming that |An,0| = |A0,m| = 1, we calculate the values An,m for n, m ≤ 4
and list them in Table 2.4.

Remark (suggested by Anders Krogh) Let us consider subalignments between
aligned pairs of symbols in a gapped pairwise alignment (with alignment ends as
aligned pairs). In the example

∗ − x X − − X ∗
∗ y − Y y y Y ∗

we put capital letters for aligned pairs and aligned ∗’s at the ends. Let us refer to an
alignment section between aligned pairs as an “unalignment.” Two subsequences
can be “unaligned” in many different ways; for instance, xx and yy can give these
“unalignments”:(− − x x

y y − −
)

,

(− x − x
y − y −

)
,

(
x − − x
− y y −

)
,

(− x x −
y − − y

)
,

(
x − x −
− y − y

)
,

(
x x − −
− − y y

)
.

One may argue that it is senseless to count these as separate alignments, because
there is no reasonable way to discriminate between them (unless you have actually
witnessed the evolution step by step). With affine gap scoring, only the first and
the last would have a chance to survive in the procedure of building the optimal
alignment; and with many programs none of them would, because gaps following
gaps are not allowed. However, if we count all these unalignments once only, and let
them be represented by the alignment with all the y-insertions before x-insertions
(the first form in the example above), then it is easy to see that the number of such
alignments, Nn,m, is equal to

(n+m
n

)
since there is precisely one alignment for any

intercalation and vice-versa.
We will show that there is a one-to-one mapping between intercalations and

alignments in which we allow insertions in the lower (y) sequence before insertions



38 Pairwise alignment

in the upper (x) sequence, but not vice versa. To show this, we need to show that any
alignment maps to one, and only one, intercalation, that any two alignments map
to different intercalations, and that there exists an alignment which maps to any
intercalation. The first part is easy, because there is exactly one intercalation for a
given alignment, which follows from the method of construction of an intercalation
from an alignment described in Problem 2.5.

An intercalation is interpreted as follows.
(1) Any pair xy corresponds to an aligned pair in the alignment. Add virtual

aligned pairs at the ends of the intercalation.
(2) Between two aligned pairs we can have some y’s followed by some x’s in

the intercalation. If the numbers of y’s and x’s are k and l, respectively, it means
that we have k y-insertions followed by l x-insertions in the alignment. Both k and
l may be zero. We cannot have x’s followed by y’s, because this would infer that
we forgot to mark an aligned pair.

This shows that there exists an allowed alignment for any intercalation.
Finally, it is clear that only one allowed alignment maps to a given intercala-

tion. Assume that two alignments give the same intercalation. Then they would
have to have the same set of aligned pairs and the same number of y-insertions and
x-insertions between all the aligned pairs, so the two alignments would be identical.

This concludes the proof of the one-to-one correspondence; hence, Nn,m = (n+m
n

)
.

Problem 2.7 Use Stirling’s formula (x! � √
2πxx+ 1

2 e−x) to prove the following
equation: (

2n

n

)
� 22n

√
πn

.

Solution To prove the above equality, we use Stirling’s formula for (2n)! and n!:(
2n

n

)
= (2n)!

(n!)2
�

√
2π(2n)(2n+ 1

2 )e−2n

2πn2n+1e−2n

= 22n
√

2n(2n+ 1
2 )e−2n

√
2πn2n+1e−2n

= 22n

√
πn

.

Problem 2.8 Find two equal-scoring optimal alignments in the dynamic
programming matrix in Table 2.5.



2.1 Original problems 39

Table 2.5. The sequence alignment matrix obtained by dynamic programming
for sequences HEAGAWGHEE and PAWHEAE

H E A G A W G H E E

0 ← −8 ← −16 ← −24 ← −32 ← −40 ← −48 ← −56 ← −64 ← −72 ← −80
↖ ↖ ↖ ↖ ↖ ↖

P −8 −2 −9 ← −17 ← −25 −33 ← −42 ← −49 ← −57 −65 −73
↑ ↑ ↖ ↖ ↖

A −16 −10 −3 −4 ← −12 −20 ← −28 ← −36 ← −44 ← −52 ← −60
↑ ↑ ↑ ↖ ↖ ↖ ↖

W −24 −18 −11 −6 −7 −15 −5 ← −13 ← −21 ← −29 ← −37
↑ ↖ ↖ ↖ ↖ ↖ ↑ ↖ ↖

H −32 −14 −18 −13 −8 −9 −13 −7 −3 ← −11 ← −19
↑ ↑ ↖ ↑ ↖ ↖ ↑ ↖ ↖ ↖

E −40 −22 −8 ← −16 −16 −9 −12 −15 −7 3 −5
↑ ↑ ↑ ↖ ↖ ↖ ↖ ↑ ↑ ↖

A −48 −30 −16 −3 ← −11 −11 −12 −12 −15 −5 2
↑ ↑ ↑ ↑ ↖ ↖ ↖ ↖ ↖ ↖ ↖

E −56 −38 −24 −11 −6 −12 −14 −15 −12 −9 1

Solution The existence of several equally scoring optimal alignments is betrayed
by “forks” in the traceback graph spanning the dynamic programming (DP) matrix
(Table 2.5). A fork occurs if the traceback procedure recovering the optimal path
arrives at a cell (i, j) of the DP matrix whose optimal value F(i, j) was derived from
more than one “parent” cells. Alternative use of the parent cells by the traceback
procedure generates different paths through the DP matrix and, hence, different
optimal alignments.

In the DP matrix for sequences HEAGAWGHEE and PAWHEAE (Table 2.2), the
value of F(3, 1) on the traceback path can be obtained from both (2, 0) and (2, 1)

cells:
F(3, 1) = F(2, 0) + s(A, P) = −16 − 1 = −17,

F(3, 1) = F(2, 1) − d = −9 − 8 = −17.

These possibilities correspond to two optimal alignments with score 1:

H E A G A W G H E − E
− − P − A W − H E A E

and
H E A G A W G H E − E
− P − − A W − H E A E

Problem 2.9 Calculate the DP matrix and an optimal alignment for the DNA
sequences GAATTC and GATTA, scoring +2 for a match, −1 for a mismatch,
and with a linear gap penalty of d = 2.



40 Pairwise alignment

Table 2.6. The sequence alignment matrix obtained by dynamic
programming for sequences GATTC and GATTA

G A A T T C

0 −2 −4 −6 −8 −10 −12
↖

G −2 2 ← 0 ← −2 ← −4 ← −6 ← −8
↑ ↖ ↖

A −4 0 4 ← 2 ← 0 ← −2 ← −4
↑ ↑ ↖ ↖ ↖

T −6 −2 2 3 4 ← 2 ← 0
↑ ↑ ↖ ↑ ↖ ↖

T −8 −4 0 1 5 6 ← 4
↑ ↑ ↖ ↑ ↑ ↖ ↑ ↖

A −10 −6 2 2 3 4 5

Solution Computation of the DP matrix and subsequent determination of back-
tracking pointers produce the result shown in Table 2.6.

The traceback algorithm recovers two equally scoring optimal alignments (with
score 5):

G A A T T C
G − A T T A

and
G A A T T C
G A − T T A

Problem 2.10 Calculate the score of the example alignment

V L S P A D − K
H L − − A E S K

with d = 12, e = 2.

Solution Use of the substitution scores defined by the BLOSUM50 matrix
(Table 2.1) allows us to compute

S = s(V , H) + s(L, L) − d − e + s(A, A) + s(D, E) − d + s(K , K) = −12.

Problem 2.11 Fill the correct values of c(i, j) for the global alignment of the
example pair of sequences HEAGAWGHEE and PAWHEAE for the first pass of
the linear space algorithm (u = 5).



2.1 Original problems 41

Remark The linear space algorithm (Myers and Miller, 1988) constructs the
optimal alignment of two sequences of lengths n and m using memory space
O(n+m) instead of O(n×m) necessary for the standard DP algorithm. This reduc-
tion is important for sequences of large lengths. The major challenge in devising
the linear space algorithm is to overcome the requirement to store the DP matrix
of scores of the size n × m. It is feasible to find a score of global (or local) pair-
wise alignment using O(n + m) storage since the standard DP algorithm can be
performed column by column (or row by row) while keeping only data needed to
compute a new column (row). Similarly, “extended traceback pointers” c(i, j) can
be computed column by column and kept upon computation of the scores in each
column i, i ≥ u + 1. Thus, the space required for storing extended pointers is also
O(n+m). A result of the first pass of the algorithm is finding the cell (u, c(n, m)), the
intersection of column u, and the optimal path through the DP matrix. This inform-
ation allows to divide the initial dynamic programming problem into two parts by
working on two separate submatrices (with diagonals from (0, 0) to (u, c(n, m)) and
from (u, c(n, m)) to (n, m), respectively). Each of the submatrices can be split in the
same way, and the procedure continues until the submatrices obtained at the last
step contain only one column (or one row). Now, the whole optimal alignment can
be determined uniquely through the collection of cells (u′, v′), where the optimal
path intercepts all m columns of the DP matrix.

Solution The first pass of the algorithm should determine c(i, j) values starting
with the fifth column (u = n/2 = 5). When we calculate c(i, j), using the values
F(i, j) of the DP matrix, we have to remember that, in the real algorithm, after
computation of a new column of values F(i, j) and c(i, j) the data in the previous
column are erased.

We fill in the cells of matrix C by the values c(i, j): c(5, j) = j, for any j; for
i > 5 c(i, j) = c(i′, j′) if value F(i, j) in cell (i, j) of the DP matrix (Table 2.5) is
derived from value F(i′, j′) in cell (i′, j′). The calculations produce the result shown
in Table 2.7.

The value c(10, 7) = 2 defines the extended traceback pointer to cell (u, v) =
(5, 2) that belongs to the optimal path. Cell (5, 2) is the point of splitting of the DP
matrix into two submatrices of sizes 5 × 2 and 5 × 5, which should be used in the
second pass of the linear space algorithm.

Problem 2.12 The linear space algorithm allows us to decrease the memory
required to find the optimal alignment of two sequences of lengths n and m
from O(nm) (as in the standard DP algorithm) to O(n + m). Show that the time
required by the linear space algorithm is only about twice that of the standard
O(nm) algorithm.



42 Pairwise alignment

Table 2.7. The matrix of
c(i, j) values obtained by
the linear space algorithm

c(i, j) 5 6 7 8 9 10

0 0 0 0 0 0 0
1 1 1 1 1 0 0
2 2 2 2 2 2 2
3 3 2 2 2 2 2
4 4 2 2 2 2 2
5 5 4 2 2 2 2
6 6 5 4 2 2 2
7 7 6 5 4 2 2

Solution First, we estimate the time required to run the standard global alignment
algorithm with a linear gap scoring. (An affine gap scoring can be worked out
in a similar way.) The algorithm fills in n × m cells of the score matrix F(i, j),
performing four operations for each cell: calculations of values F(i−1, j−1)+s(i, j),
F(i − 1, j) − d, F(i, j − 1) − d, and their maximum. Hence, the total running time
(measured in the number of operations) of a global alignment algorithm is given
by TSt ≈ 4nm.

For the linear space algorithm the total running time is the sum of the times
required for N passes:

TLS = T1 + T2 + · · · + TN .

In the first pass it computes m×n scores F(i, j), fills in (m×n)/2 values c(i, j), and
eventually finds the value v = c(n, m). So, T1 ≈ 4nm. In the second pass it computes
the elements of two submatrices F1(i, j) and F2(i, j) of approximate size (n/2) ×
(m/2) (actual orders depend on v), fills in values of c1(i, j) and c2(i, j), and finds v1

and v2. Then, T2 ≈ (n/2)×(m/2)×4×2 = 2nm. As the algorithm continues, in the
kth pass it computes elements of 2k−1 submatrices of sizes (n/2k−1) × (m/2k−1),
thus Tk ≈ nm/2k−3. Therefore, the time required for the linear space algorithm is
estimated as

TLS ≈
N∑

i=1

nm

2i−3
= 8nm

N∑
i=1

(
1

2

)i

< 8nm
∞∑

i=1

(
1

2

)i

= 8nm.

Remark The maximum number N of passes of the linear space algorithm can be
estimated as follows. The sizes of the submatrices (n′ × m′) decrease at least twice
during each pass of the algorithm. The “divide and conquer” process continues
until the last remaining submatrix is reduced to only one cell (or to the matrix with



2.2 Additional problems and theory 43

only one row or one column). For the longest branch of the matrix division process
we have

max(n, m)

2N
≈ 1.

Thus, N ≈ [log2 max(n, m)].

2.2 Additional problems and theory

Several problems included in this section deal with the derivation of the substi-
tution score matrix, the cornerstone of a scoring system for pairwise sequence
alignments (Problems 2.15–2.17), as well as with the score distributions of high-
scoring local alignments of two random sequences, needed for the assessment of
statistical significance of the local pairwise alignment (Problems 2.18–2.21).

Since the original work by Dayhoff, Schwartz, and Orcutt (1978) on the derivation
of the PAM family of substitution matrices is rather difficult to find, we provide
an extended discussion of their method in Section 2.2.1. We also illustrate by a
“toy” example (Problem 2.17) the ideas that lead to the derivation of the BLOSUM
family of substitution matrices (Henikoff and Henikoff, 1992).

A brief review of the theoretical results on the distribution of the statistics of the
scores of high-scoring pairs in the alignment of random sequences (ungapped and
gapped cases) is given in the theoretical introductions to Problems 2.18 and 2.19. In
the theoretical introduction to Problem 2.20, we review results on the distribution of
the length of the longest common word among several unrelated random sequences.
The expected number of words of fixed length common to two DNA fragments is
calculated in Problem 2.21.

Problem 2.13 Prove that the running time of the DP algorithm for optimal
pairwise alignment of two sequences of lengths n with a gap penalty function of
a general form is O(n3).

Solution For a gap scoring function γ (g) of a general form the DP equation for
the optimal score F(i, j) is given by the following formula:

F(i, j) = max




F(i − 1, j − 1) + s(xi, yj),

F(k, j) + γ (i − k), k = 0, . . . , i − 1;

F(i, k) + γ (j − k), k = 0, . . . , j − 1.

(2.6)

Here s(xi, yj) is the substitution score for the pair of residues (xi, yj). To determine
F(i, j), Equation (2.6) requires us to perform 2(i + j) + 2 operations. Then, the



44 Pairwise alignment

Table 2.8. The sequence alignment matrix obtained by
dynamic programming for sequences TACGA and ACTGAC

T A C G A

0 −2 −4 −6 −8 −10
↖ ↖ ↖

A −2 −1 0 ← −2 ← −4 ← −6
↖ ↑ ↖ ↑ ↖

C −4 −3 −2 2 ← 0 ← −2
↖ ↖ ↑ ↑ ↖ ↖

T −6 −2 ← −4 0 1 ← −1
↑ ↖ ↑ ↖ ↖

G −8 −4 −3 −2 2 ← 0
↑ ↖ ↖ ↑ ↑ ↖

A −10 −6 −2 ← −4 0 4
↑ ↑ ↖ ↑ ↑

C −12 −8 −4 0 ← −2 2

number of operations required to compute the whole n × n matrix is given by

Tn = 2
n∑

i=0

n∑
j=0

(i + j + 1) = 2


(n + 1)

n∑
i=0

i + (n + 1)

n∑
j=0

j + n2




= 4(n + 1)
n(n + 1)

2
+ n2 = 2n3 + 5n2 + 2n = O(n3).

Problem 2.14 Find the optimal pairwise global alignment of the sequences
TACGAGTACGA and ACTGACGACTGAC with the condition that G nucleotides
shown in bold font must be aligned together. The scoring parameters are defined
as +2 for match, −1 for mismatch, and d = −2 for a linear gap penalty.

Solution It is easy to see that the middle nucleotides G divide each sequence
into two identical subsequences. Hence, if we find the optimal alignment for
subsequences TACGA and ACTGAC, the optimal global alignment satisfying the
defined above condition will be the concatenation of the two “subalignments” with
a pair of aligned G’s between them. We compute the DP matrix (see Table 2.8),
determine the score of the optimal “subalignment,” and, subsequently, construct the
“subalignment” itself by applying a traceback procedure. The score of the optimal
subalignment S̃ = F(5, 6) = 2. The total score of conditional global alignment is
the sum of scores, S = S̃ + s(G, G) + S̃ = 2 + 2 + 2 = 6, and the alignment itself



2.2 Additional problems and theory 45

comes out as

T A C − G A − G T A C − G A −
− A C T G A C G − A C T G A C

Remark It turns out that the conditional optimal alignment shown above coin-
cides with one of the two “unconditional” optimal global alignments of the given
sequences. The second optimal global alignment (with the same score, 6) is given by

T A C − G A G T A C − G A −
− A C T G A C G A C T G A C

In this alignment two G’s are not aligned. Still, the loss of the positive score for
the match is compensated for by the decrease in the number of gaps.

Problem 2.15 A substitution scoring matrix for alignment of nucleotide
sequences is given as follows (with the log-odds scores defined in bits):

T C A G

T 1 0 −1 −1
C 0 1 −1 −1
A −1 −1 1 0
G −1 −1 0 1

(a) Determine the average score per nucleotide pair for DNA sequences
described by the independence model with equal probabilities of nucleotides (1

4 ).
(b) Determine the “target frequencies” of nucleotide pairs this matrix is

designed to search for in alignments of evolutionary related sequences.

Solution (a) In the ungapped alignment of two random nucleotide sequences the
average score H per aligned pair is given by

H =
∑

i,j

qiqjsij.

Here sij are the elements of the substitution scoring matrix, the sum is taken over all
sixteen possible pairs of nucleotides, and qi, qj are the probabilities of nucleotides
of types i and j under the uniform independence model. Therefore,

H = 1

16

∑
i,j

sij = − 4

16
= −0.25.



46 Pairwise alignment

(b) By the definition of the substitution score as the log-odds score,

sij = log2
pij

qiqj
,

where pij are the “target frequencies” of the aligned pair (i, j) of nucleotides. Then
the value of the target frequency pij = (1/qiqj)2sij . For example, pTT = 1/16×2 =
1/8. All the “target frequencies” pij are shown in the following table:

T C A G

T 1/8 1/16 1/32 1/32
C 1/16 1/8 1/32 1/32
A 1/32 1/32 1/8 1/16
G 1/32 1/32 1/16 1/8

2.2.1 Derivation of the amino acid substitution matrices (PAM series)

Discussion of this method requires knowledge of the key notions of phylogenetic
tree construction (Durbin et al. (1998), Chap. 7).

The substitution matrix is an important component of the scoring system for
a pairwise sequence alignment. Dayhoff et al. (1978) offered a solid theoretical
approach to defining the elements of substitution matrices, scaled by evolutionary
distance, from counts of amino acid substitutions. These counts were calculated
as frequencies of aligned residue pairs in carefully crafted alignments of closely
related protein sequences from seventy-one families. Multiple alignments of these
sequences were reduced to seventy-one ungapped alignment blocks (each sequence
in a block had to be at least 85% identical to any other sequence in the block). The
most parsimonious (with minimal number of substitutions along edges) phylo-
genetic tree, or several trees if parsimony was not unique, was constructed for
sequences from each block. To illustrate the method, we use the artificial ungapped
block considered by Dayhoff et al. (1978):

A C G H
D B G H
A D I J
C B I J

(2.7)

The four most parsimonious trees, T1, T2, T3, T4, for sequences from block (2.7) are
shown in Figure 2.2. For each pair of different amino acids (i, j) the total number
aij of substitutions from i to j along the downward directed edges of trees Tk ,
k = 1, . . . , 4, was calculated, and the matrix A of accepted point mutations with
elements Aij = Aji = aij + aji, i 	= j, was produced (see Table 2.9).



2.2 Additional problems and theory 47

ABGH

ABGH

ACGH

B – C

DBGH

A – D

H–J G–I

ABIJ

ADIJ

B – D

CBIJ

A – C

ABIJ

I – GJ – H

ABGH

ACGH

B – C

DBGH

A – D

ABIJ

ADIJ

B – D

CBIJ

A – C

ABIH

I – G

ABGH

ACGH

B – C

DBGH

A – D

H – J

ABIJ

ADIJ

B – D

CBIJ

A – C

ABGJ

J – H

ABGH

ACGH

B – C

DBGH

A – D

G – I

ABIJ

ADIJ

B – D

CBIJ

A – C

Figure 2.2. The most parsimonious trees T1, T2, T3, and T4 (in top down order)
with the “observed” in block (2.7) amino acid sequences at the leaf nodes; each
tree carries a total of six substitutions. The ancestor sequences (unobserved but
inferred) are placed at the root and branch nodes; amino acid substitutions are
indicated along the edges.

Note that we keep the term “accepted point mutation” and the two which
will appear below, “relative mutability” and “mutation probability matrix,” that
were used by Dayhoff et al. (1978), although in contemporary literature the term
“mutation” in this context has been replaced by the term “substitution.”

Next, the relative mutability mj for each amino acid j was determined as follows.
An edge of a tree Tk , k = 1, . . . , 4, is associated with the ungapped pairwise



48 Pairwise alignment

Table 2.9. The matrix A of accepted point mutation
counts

A B C D G H I J

A 0 4 4 0 0 0 0
B 0 4 4 0 0 0 0
C 4 4 0 0 0 0 0
D 4 4 0 0 0 0 0
G 0 0 0 0 0 4 0
H 0 0 0 0 0 0 4
I 0 0 0 0 4 0 0
J 0 0 0 0 0 4 0

Table 2.10. The relative amino acid mutability values mj derived from
the sequence alignment block (2.7)

Amino acid A B I H G J C D
Changes (substitutions) 8 8 4 4 4 4 8 8
Frequency of occurrence 40 40 24 24 24 24 8 8
Relative mutability m 0.2 0.2 0.167 0.167 0.167 0.167 1 1

alignment of two sequences connected by this edge. Thus, any tree Tk in Figure 2.2
generates six alignments; for example, for T1 they are as follows:

A B G H A B G H A B G H
A B G H A B I J A C G H

A B G H A B I J A B I J
D B G H A D I J C B I J

The relative mutability mj is defined as the ratio of the total number of times that
amino acid j has changed in all twenty-four pairwise alignments to the number
of times that j has occurred in these alignments. The values of mj are listed in
Table 2.10.

Now we introduce the effective frequency fj of an amino acid j. This notion takes
into account the difference in variability of the primary structure conservation in
proteins with different functional roles (thus, two alignment blocks corresponding
to two different families may contribute differently to fj, even if the number of
occurrences of amino acid j in these blocks is the same). The effective frequency fj
is defined as

fj = k
∑
Bi

qBi
j Ni,



2.2 Additional problems and theory 49

Table 2.11. The amino acid effective frequencies fj derived from the
sequence alignment block (2.7)

Amino acid A B I H G J C D
Frequencies f 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

Table 2.12. The amino acid effective frequencies fi determined
for the original alignment data (Dayhoff et al. (1978), Table 22)

Gly (G) Ala (A) Leu (L) Lys (K) Ser (S) Val (V) Thr (T)
0.089 0.087 0.085 0.081 0.070 0.065 0.058

Pro (P) Glu (E) Asp (D) Arg (R) Asn (N) Phe (F) Gln (Q)
0.051 0.050 0.047 0.041 0.040 0.040 0.038

Ile (I) His (H) Cys (C) Tyr (Y) Met (M) Trp (W)
0.037 0.034 0.033 0.030 0.015 0.010

where the sum is taken over all alignment blocks Bi, qBi
j is the observed frequency

of amino acid j in block Bi, Ni is the number of substitutions in a tree built for Bi,
and coefficient k is chosen to ensure that the sum of the frequencies fj is 1. In our
example, with only the one block (2.7), the values of effective frequencies are equal
to the values of compositional frequencies (fj = qj) and are shown in Table 2.11.
The effective frequencies of twenty amino acids derived from seventy-one original
alignment blocks (Dayhoff et al., 1978), are given in Table 2.12.

The next step is to find elements of the mutation probability matrix M = (Mij).
The element Mij defines the probability of an amino acid in column j having been
substituted by an amino acid in row i over a given evolutionary time. The non-
diagonal elements of M are defined by the following formula:

Mij = λmjAij∑
k Akj

, (2.8)

where λ is a constant to be determined below, mj is the relative mutability of amino
acid j (Table 2.10), and Aij is an element of the accepted point mutation matrix A
(Table 2.9). For the diagonal elements of M we have

Mjj = 1 − λmj. (2.9)

Note that M is a non-symmetric matrix if mi 	= mj for some i 	= j.
The coefficient λ represents a degree of freedom that could be used to connect

the matrix M with an evolutionary time scale. For instance, the coefficient λ could
be adjusted to ensure that a specified (small) number of substitutions would occur



50 Pairwise alignment

Table 2.13. The example mutation probability matrix for evolutionary
distance 1 PAM calculated from alignment block (2.7)

The element Mij gives the probability of an amino acid in column j having
been substituted by an amino acid in row i over evolutionary time 1 PAM.

A B C D G H I J

A 0.9948 0 0.0131 0.0131 0 0 0 0
B 0 0.9948 0.0131 0.0131 0 0 0 0
C 0.0026 0.0026 0.9740 0 0 0 0 0
D 0.0026 0.0026 0 0.9740 0 0 0 0
G 0 0 0 0 0.9957 0 0.0043 0
H 0 0 0 0 0 0.9957 0 0.0043
I 0 0 0 0 0.0043 0 0.9957 0
J 0 0 0 0 0 0.0043 0 0.9957

on average per hundred residues. This adjustment of λ was done by Dayhoff et al.
(1978) in the following way. The expected number of amino acids that will remain
unchanged in a protein sequence one hundred amino acids long is given by the
formula 100

∑
j fjMjj = 100

∑
j fj(1 − λmj). If only one substitution per hundred

residues is allowed, then λ is calculated from equation

100
∑

j

fj(1 − λmj) = 99. (2.10)

Subsequently, Equations (2.8) and (2.9) are used for the calculation of all elements of
the matrix M. Such a mutation probability matrix is associated with an evolutionary
time interval 1 PAM (one accepted point mutation per hundred amino acids), and is
called the 1PAM matrix. From the sequence data in alignment block (2.7) we obtain
λ = 0.0261 and the example matrix M (Table 2.13). The actual 1 PAM matrix M
derived from the original data in Dayhoff et al. (1978) is shown in Table 2.14.

Further, it is assumed that the mutation probability matrix M serves as the mat-
rix of transition probabilities for the stationary (homogeneous) Markov chain xn,
n ∈ N, the model of the evolutionary change at each site of a protein sequence.
Therefore, the stochastic 1 PAM matrix M associated with one unit (1 PAM) of
evolutionary distance can be used for derivation of the matrices associated with
larger evolutionary distances (multiples of 1 PAM). Then the mutation probabil-
ity matrix for evolutionary distance n PAM will coincide with the matrix Mn of
transition probabilities of the Markov chain xn for n time units, the nth power of
matrix M. (For how to derive a Markov process, which is a continuous-time ver-
sion of Markov chain xn, see Problem 8.18.) It is easy to check by direct calculation
that M3, the mutation probability matrix for time units 3 PAM, is strictly positive;



Ta
bl

e
2.

14
.

M
ut

at
io

n
pr

ob
ab

il
it

y
m

at
ri

x
M

fo
r

th
e

ev
ol

ut
io

na
ry

di
st

an
ce

1
PA

M
(i

.e
.,

on
e

ac
ce

pt
ed

po
in

tm
ut

at
io

n
pe

r
hu

nd
re

d
am

in
o

ac
id

s)

T
he

el
em

en
to

f
th

is
m

at
ri

x,
M

ij
,g

iv
es

th
e

pr
ob

ab
ili

ty
of

an
am

in
o

ac
id

in
co

lu
m

n
j

ha
vi

ng
be

en
su

bs
tit

ut
ed

by
an

am
in

o
ac

id
in

ro
w

io
ve

r
th

e
ev

ol
ut

io
na

ry
tim

e
in

te
rv

al
of

1
PA

M
.T

he
ac

tu
al

tr
an

si
tio

n
pr

ob
ab

ili
tie

s
ar

e
m

ul
tip

lie
d

by
10

00
0

to
si

m
pl

if
y

th
e

m
at

ri
x

ap
pe

ar
an

ce
(D

ay
ho

ff
et

al
.(

19
78

),
Fi

g.
82

).

A
la

A
rg

A
sn

A
sp

C
ys

G
ln

G
lu

G
ly

H
is

Il
e

L
eu

Ly
s

M
et

Ph
e

Pr
o

Se
r

T
hr

T
rp

Ty
r

V
al

A
la

98
67

2
9

10
3

8
17

21
2

6
4

2
6

2
22

35
32

0
2

18
A

rg
1

99
13

1
0

1
10

0
0

10
3

1
19

4
1

4
6

1
8

0
1

A
sn

4
1

98
22

36
0

4
6

6
21

3
1

13
0

1
2

20
9

1
4

1
A

sp
6

0
42

98
59

0
6

53
6

4
1

0
3

0
0

1
5

3
0

0
1

C
ys

1
1

0
0

99
73

0
0

0
1

1
0

0
0

0
1

5
1

0
3

2
G

ln
3

9
4

5
0

98
76

27
1

23
1

3
6

4
0

6
2

2
0

0
1

G
lu

10
0

7
56

0
35

98
65

4
2

3
1

4
1

0
3

4
2

0
1

2
G

ly
21

1
12

11
1

3
7

99
35

1
0

1
2

1
1

3
21

3
0

0
5

H
is

1
8

18
3

1
20

1
0

99
12

0
1

1
0

2
3

1
1

1
4

1
Il

e
2

2
3

1
2

1
2

0
0

98
72

9
2

12
7

0
1

7
0

1
33

L
eu

3
1

3
0

0
6

1
1

4
22

99
47

2
45

13
3

1
3

4
2

15
Ly

s
2

37
25

6
0

12
7

2
2

4
1

99
26

20
0

3
8

11
0

1
1

M
et

1
1

0
0

0
2

0
0

0
5

8
4

98
74

1
0

1
2

0
0

4
Ph

e
1

1
1

0
0

0
0

1
2

8
6

0
4

99
46

0
2

1
3

28
0

Pr
o

13
5

2
1

1
8

3
2

5
1

2
2

1
1

99
26

12
4

0
0

2
Se

r
28

11
34

7
11

4
6

16
2

2
1

7
4

3
17

98
40

38
5

2
2

T
hr

22
2

13
4

1
3

2
2

1
11

2
8

6
1

5
32

98
71

0
2

9
T

rp
0

2
0

0
0

0
0

0
0

0
0

0
0

1
0

1
0

99
76

1
0

Ty
r

1
0

3
0

3
0

1
0

4
1

1
0

0
21

0
1

1
2

99
45

1
V

al
13

2
1

1
3

2
2

3
3

57
11

1
17

1
3

2
10

0
2

99
01



52 Pairwise alignment

therefore, the Markov chain with the matrix M of transition probabilities is a regu-
lar Markov chain. From the theory of stochastic matrices (Berman and Plemmons,
1979; Meyer, 2000) it is known that for a regular Markov chain there exists a unique
strictly positive invariant (stationary) distribution π : Mπ = π , and for any initial
distribution of probabilities of states (amino acids in our case) π0,

πn = Mnπ0 → π (2.11)

as n → +∞. It turns out that vector f of the effective frequencies (f1, f2, . . . , f20)

(Table 2.12), with the order of its components corresponding to the order of rows
(columns) of matrix M, satisfies the equation Mf = f for the stationary distri-
bution. Then convergence in (2.11) implies that f is the vector of equilibrium
frequencies of M:

Mn →




fA fA . . . fA
fR fR . . . fR
. . . . . . . . .

fV fV . . . fV


 (2.12)

as n → +∞. The convergence (2.12) was verified in Dayhoff et al. (1978) by direct
calculation: it was shown that M2034 closely approximates the matrix of equilibrium
frequencies.

The theory described above was used further to derive the matrices of the log-
odds scores for amino acid substitutions. These matrices are critically important
for algorithms of protein sequence alignment. Since we have a family of muta-
tion probability matrices Mn, n = 1, 2, . . ., we can derive a family of substitution
matrices Sn, n = 1, 2, . . ., with elements sn(i, j) of log-odds scores as follows. For
a pair of amino acids (i, j), i, j = 1, . . . , 20, the log-odds score sn(i, j) is defined by
the following formula:

sn(i, j) = log
Mn

ji

fj
,

where Mn
ji = P(xn = j|x0 = i) is an element of matrix Mn. The interpretation of the

substitution score sn(i, j) from the standpoint of protein sequence evolution starts
with the application of the properties of the Markov chain {xk}, k ∈ N:

sn(i, j) = log
Mn

ji

fj
= log

P(xn = j|x0 = i)

fj
= log

fiP(xn = j|x0 = i)

fi fj

= log

∑
a fiP(xn = j|xn/2 = a)P(xn/2 = a|x0 = i)

fi fj
. (2.13)

Note that for large n we have Mn
ij ≈ fi, Mn

ji ≈ fj, since f is the vector of equilibrium
frequencies for matrix M due to (2.12). Therefore, even though the Markov chain
{xk} does not possess the reversibility property (fjMij 	= fiMji for some i 	= j), for



2.2 Additional problems and theory 53

sufficiently large n we can assume that fjMn
ij ≈ fiMn

ji for all i, j. Then Equation
(2.13) becomes

sn(i, j) = log

∑
a fiP(xn = j|xn/2 = a)P(xn/2 = a|x0 = i)

fi fj

≈ log

∑
a faP(xn = j|xn/2 = a)P(xn/2 = i|x0 = a)

fi fj

= log

∑
a faP(xn/2 = j|x0 = a)P(xn/2 = i|x0 = a)

fi fj

= log
P(xn/2 = i, x′

n/2 = j|x0 = x′
0)

fi fj
, (2.14)

where {x′
k} is an independent copy of the Markov chain {xk}. The last expression

in Equation (2.14) is the log-odds ratio that involves the Markovian evolutionary
model with molecular clock property and the independence pair-sequence model
R with parameters defined as the product of the effective fi fj, i, j = 1, . . . , 20.

The numerator in (2.14) is the probability that two aligned protein sequences
diverged from a common ancestor n/2 PAM time units ago would have at a given
site amino acids i and j, assuming that substitutions in proteins are described by the
Markov process {xk}.

The term fi fj in the denominator in (2.14) is the probability of observing amino
acids i and j at a given site of two aligned protein sequences under the independence
pair-sequence model R. Since the same arguments as in Equations (2.13) and (2.14)
are true for the substitution score sn(j, i) = log Mn

ij/fi, we have sn(i, j) ≈ sn(j, i).
Thus, unlike the mutation probability matrix Mn, the substitution matrix Sn is a
symmetric one. For practical convenience, log-odds values sn(i, j) are rescaled (by
multiplying by ten, or by an other scaling factor) and then rounded to the nearest
integer.

Among the PAM substitution matrices, the most frequently used is the 250 PAM
matrix shown in Table 6.1.

With the rapid growth of the protein data, the update of the matrices of PAM
series was undertaken by Jones, Taylor, and Thornton (1992). They used the same
technique for counting amino acid substitutions as Dayhoff et al. (1978). Another
empirical model of protein evolution which combines a parsimony-based counting
and the maximum likelihood approach was derived by Whelan and Goldman (2001).
Extended discussions of the Dayhoff model can be found in Wilbur (1985) and
George, Barker, and Hunt (1990).

The important practical question is how to choose the optimal substitution mat-
rix for the alignment of two given (homologous) protein sequences x and y. The
accurate answer would include the estimation of the evolutionary distance (time)



54 Pairwise alignment

Table 2.15. Correspondence between the observed percent of
amino acid differences d between two aligned homologous
sequences and the evolutionary distance n (in PAM) between them

As the evolutionary distance increases, the probability of multiple
substitutions at the same site reversing initial changes becomes greater
and results in a slower growth of observed percent difference.
(Dayhoff et al. (1978), Table 23).

d 1 5 10 15 20 25 30 34 40 45
n 1 5 11 17 23 30 38 47 56 67

d 50 55 60 65 70 75 80 85
n 80 94 112 133 159 195 246 328

n between x and y, which requires the construction of an alignment of x and y to
determine the percent difference d (the percentage of mismatches in aligned sites).
The correspondence between the percent difference d and evolutionary distance n
(in PAM) could be determined from the following equation:

100
∑

j

fjM
n
jj = 100 − d,

where Mn
jj are elements of the mutation probability matrix Mn for the evolutionary

time n PAM. For a given d, this equation allows us to choose the appropriate muta-
tion probability matrix Mn and the substitution matrix Sn (Table 2.15 derived by
Dayhoff et al. (1978) lists some pairs of corresponding values n and d). However,
construction of an alignment of x and y to find d requires the substitution matrix
in the first place! A possible, but cumbersome, way to break this circular logic is
to use an iterative approach. Additional iterations, however, become prohibitively
expensive for the database searches.

The problem of choosing an appropriate substitution matrix for local sequence
alignment was studied by Altschul (1991) from the information theory perspective.
It was shown that if a single matrix has to be selected then, for database searches,
the 120 PAM matrix is the most appropriate one, while for comparing two specific
proteins with suspected homology the best choice is the 200 PAM matrix.

Finally, to construct alignments with gaps, the scoring system has to be augmen-
ted by the gap scoring scheme. This issue was addressed, for example, by Vingron
and Waterman (1994), Pearson (1996), Mott (1999), and Reese and Pearson (2002).

Problem 2.16 The original 250 PAM substitution matrix (Dayhoff et al., 1978)
scores a substitution of Gly by Arg by negative score −3 (decimal logarithms



2.2 Additional problems and theory 55

and scaling factor 10 are used, with rounding to the nearest integer). The average
frequency of Arg in the protein sequence database is 0.041. Use this information,
as well as the method described in Section 2.2.1, to estimate the probability that
Gly will be substituted by Arg after a 250 PAM time period.

Solution The element sij of the 250 PAM substitution matrix and the frequency of
amino acid qj in a protein sequence database (the data set from which the parameters
of the background independence model are derived) are connected by the following
formula:

sij =
[

10 lg
P(i → j in 250 PAM)

qj

]
.

Therefore, for the probability of substitution of Gly by Arg we have

P(Gly → Arg in 250 PAM) = 0.041 × 10−0.3 = 0.0205.

Problem 2.17 Matrices of the BLOSUM series are frequently used in protein
sequence alignment algorithms. The method of derivation of the amino acid
substitution scores used in the BLOSUM matrices was introduced by Henikoff
and Henikoff (1992). From the following multiple alignment block clustered into
three sections at the 75% threshold

A D A D
A D C D
A C C D

D C A A
D C A A

A A C C
D A C C

define the BLOSUM-type substitution score matrix (3 × 3) using half-bit units.

Solution We define the matrix F of counts with elements fij = fji equal to the
number of (weighted) pairs of amino acids i and j over all columns of the block.
We explain how to calculate fij, taking as an example the weighted count fAA.
First, note that every residue from the first cluster (sequences 1–3) has weight
1/3, and that every residue from the second cluster (sequences 4, 5) and the third
cluster (sequences 6, 7) has weight 1/2, since the total weight of the residues
from sequences of the same cluster (per column) must be equal to 1 (each cluster
contributes into the alignment as a single sequence). In the first column there are
three residues A from the first cluster (each with weight 1/3) and one residue A from



56 Pairwise alignment

the third cluster (with weight 1/3). Thus, the total weighted count (per column 1)
of A-to-A substitutions between different clusters is f 1

AA = 1/3×1/2+1/3×1/2+
1/3 × 1/2 = 1/2. There are no A-to-A substitutions between clusters in columns 2
and 4. The total count of A-to-A substitutions per column 3 is f 3

AA = 1/3 × 1/2 =
1/3. Finally, fAA = f 1

AA + f 2
AA + f 3

AA + f 4
AA = 1/3 + 0 + 1/2 + 0 = 5/6. Repeating

this counting scheme for each pair i and j, we fill in the following symmetric matrix
F of pair counts:

A C D

A 5/6 13/3 11/3
C 13/3 1 5/3
D 11/3 5/3 1/2

The observed frequency of occurrence of pair (i, j) is defined by the following
formula:

qij = fij∑
i
∑i

j=1 fij
,

which produces the following values of qij:

A C D

A 5/72 13/36 11/36
C 1/12 5/36
D 1/24

Next, the expected frequency eij of occurrence for the amino acid pair (i, j) is defined
by eii = p2

i and eij = 2pipj, i 	= j, where pi is the probability of occurrence of
amino acid i. The observed frequencies pi are determined by the following formula:

pi = qii + 1

2

∑
j 	=i

qij.

Thus, we have pA = 29/72, pC = 19/72, pD = 1/3, and the expected frequencies
of pairs eij come out as follows:

A C D

A 0.1622 0.2683 0.2125
C 0.1108 0.1757
D 0.0696



2.2 Additional problems and theory 57

Finally, calculating a log-odds ratios in half-bit units sij = 2 log2 qij/eij and
rounding them to the nearest integer produces the (3×3) substitution score matrix:

A C D

A −2 1 1
C 1 −1 −1
D 1 −1 −1

2.2.2 Distributions of similarity scores

2.2.2.1 Theoretical introduction to Problems 2.19 and 2.20.

The development of comparative and evolutionary genomics would be impossible
without efficient similarity search algorithms. However, as soon as a similarity
characterized by a high score is found in a database search one needs to make
sure that this high score has not occurred by chance. To establish confidence in
identifying similarities, it is natural to study the alignments of random sequences
and determine the statistically significant thresholds for similarity scores. Several
definitions are necessary for an in-depth discussion.

Let a biological (protein) sequence be described by the independence model with
probability qa of occurrence of amino acid a at any position,

∑
a qa = 1. The score

of an ungapped pairwise alignment is determined as the sum of scores for amino
acid pairs, while the score for amino acid pair (a, b) is defined by an element s(a, b)

of the substitution matrix S (such as BLOSUM or PAM matrix). Local ungapped
pairwise alignments whose scores cannot be improved by extension or trimming
are called high-scoring segment pairs (HSPs).

The elements of the substitution matrix and parameters of the independence
model are supposed to satisfy the negative bias condition,∑

a,b

qaqbs(a, b) < 0,

which means that the average score per alignment position is negative. This con-
dition prevents the increase of a total score of a local alignment due to the mere
increase of the length of the alignment. On the other hand, some elements of matrix
S must be positive, otherwise all HSPs will have zero length. Note that the negative
bias condition implies that the function f (λ) =∑a,b qaqbeλs(a,b) − 1 has only one
positive root λ (see Problems 5.3–5.5).

Distributions of statistics of the HSP scores have been studied in numerous
publications, for example Iglehart (1972); Lipman et al. (1984); Reich, Drabsch,



58 Pairwise alignment

and Däumler (1984); Smith, Waterman, and Burks (1985); Karlin and Altschul
(1990, 1993); Karlin, Dembo, and Kawabata (1990); Dembo, Karlin, and Zeitouni
(1994a,b); Altschul and Gish (1996).

It was proved in Dembo, Karlin, and Zeitouni (1994b) that for unrelated (inde-
pendent) sequences X and Y with sufficiently large lengths n and m the distribution
of the number NS of HSPs with scores greater than S can be closely approximated
by the Poisson distribution with parameter � = Knme−λS. Here λ is the positive
root of f (λ), and the constant K depends only on {qa} and the scoring matrix S.
Therefore, the expected number of HSPs with scores greater than S is given by

ENS ≈ � = Knme−λS,

and the probability of observing a certain number z of such HSPs is given by

P(NS = z) ≈ e−� �z

z! .

The distribution of NS can be used to derive the probability distribution of the max-
imum score Smax (the score of the optimal ungapped local alignment for sequences
X and Y ) as follows:

P(Smax ≥ S) = P(NS > 0) = 1 − P(NS = 0) ≈ 1 − e−ENS . (2.15)

The value ENS is called the E-value of the score S; the probability value P(Smax ≥
S) = 1 − e−ENS is called the P-value of the score S. The E-value is frequently
used to characterize the statistical significance of the number of HSPs observed in
database searches.

The normalized sum Tr of the scores S1,…, Sr of r highest-scoring segment pairs,

Tr = λ

(
r∑

k=1

Sk

)
− ln Kr − ln(mn)r ,

can be of interest as well. It was shown in Karlin and Altschul (1993) that for
sufficiently large n and m the probability density function of Tr is approximated by

f (t) = e−t

r!(r − 2)!
∫ ∞

0
yr−2 exp(−e(y−t)/r) dy.

The moments of this distribution can be calculated by the Laplace transform. In
particular,

ETr ≈ r

(
1 + γ −

r∑
k=1

1/k

)
≈ r(1 − ln r) − 1/2,

Var Tr ≈ r2

(
π2/6 −

r∑
k=1

1/k2

)
+ r ≈ 2r − 1/2,

where γ ≈ 0.577 is the Euler constant.



2.2 Additional problems and theory 59

Instead of ungapped alignments and HSPs, Neuhauser (1994) considered local
alignments with insertions and deletions but no mismatches (so xi = yj in a pair
of aligned residues (xi, yj)). Neuhauser proposed an algorithm searching for local
alignments of sequences X and Y with t matching pairs, k gaps, and a length of
each gap at most l ((t, k, l)-alignments). It has been proved that, for independent
sequences X and Y both described by the independence model and with sufficiently
large lengths n and m, the number W of (t, k, l)-alignments found by this algorithm
approximately has the Poisson distribution with parameter

� = Ckmn(1 − p)

(
t − 1

k

)
lkpt−k ,

where the probability of match p and the constant C depend only on the parameters
of the independence model. Then for sufficiently large n and m the largest number
S∗ of matching pairs in any local alignment with k gaps (with length at most l each)
has the following distribution:

P(S∗ < t) ≈ e−�.

Finally, the formula for the P-value of an alignment score was derived for the
general case of gapped local alignment (with mismatches in aligned pairs allowed)
of two independent sequences and a scoring scheme based on the log-odds sub-
stitution matrix S. The results were obtained heuristically by Mott (1999, 2000)
and Mott and Tribe (1999) and analytically by Siegmund and Yakir (2000, 2003).
We outline below the main results on the statistics of the gapped alignments scores
(Siegmund and Yakir, 2000).

It is assumed, as it was for HSPs, that the negative bias condition holds for the
elements of matrix S and parameters of the independence model, and that λ is the
only positive root of function f . For the linear gap scoring function γ (g) = −δg,
for sufficiently large n and m, the tail of the distribution of the maximum score
Sj

max of local alignment with at most j gaps can be approximated by the following
formula:

P(Sj
max ≥ S) ≈ K ′nme−λS (bλS)j

j!
∞∑
l=j

ale
−λδl.

Here constants K ′, b, and al depend only on {qa} and the scoring matrix S, and the
upper bound for al is 1/(exp(λδ) − 1).

For the scoring function γ (g) = −d − δg (the affine gap score), and sufficiently
large n and m, the score Smax of optimal local alignment (with any number of gaps)
approximately has the following distribution:

P(Smax ≥ S) ≈ K ′nme−λS
∞∑

j=0

(bλSe−dλ)j

j!
∞∑
l=j

ale
−λδl. (2.16)



60 Pairwise alignment

In Equation (2.16) K ′, b, and al are the same constants as in the case of the linear
gap scoring function, and it is assumed that λd = ln S + C for some constant C. If,
additionally, the rates of growth of n, m, and S satisfy the condition nm exp(−S) → v
for some finite positive v, then the formula for the P-value becomes

P(Smax ≥ S) ≈ 1 − exp �, (2.17)

where � is defined by the expression on the right-hand side of Equation (2.16).
If in the expression for � we set j = 0 and, therefore, consider ungapped local
alignments only, then Equation (2.17) for the P-value is reduced to Equation (2.15)
derived by Dembo, Karlin, and Zeitouni (1994b). The P-values used in the ori-
ginal program, BLAST (Altscul et al., 1990) for the similarity scores of ungapped
local alignments have been calculated by formula (2.15). Notably, in the gapped
version of the BLAST program Altschul et al. (1997) use the approximate for-
mula (2.17) for P-values with the values of constants involved in the expression
for � estimated numerically for each particular search. Schuler, Atschul, and
Lipman (1991) used an analog of the distribution defined by Equation (2.15)
for the assessment of the statistical significance of the sum-of-pair score of
the ungapped block of several amino acid sequences. Further developments
and discussions of problems related to the score distributions can be found in
Waterman and Vingron (1994), Altschul et al. (2001), Webber and Barton (2001),
Bailey and Gribskov (2002) and Grossman and Yakir (2004). Statistical methods
for sequence analysis were reviewed by Karlin (2005).

The distributions of statistics of pairwise alignment scores NS, Smax, Tr , W , S∗, or
Smax provide a rigorous basis for testing hypotheses on the relatedness of sequences
X and Y . The following two tests for the null hypothesis,

H0 = {X and Y are unrelated (independent) sequences},
versus the alternative hypothesis,

Ha = {X and Y are (evolutionary) related sequences},
could be considered. In Test 1, based on statistic Smax, H0 is accepted (Ha is rejected)
if Smax < S◦; otherwise, H0 is rejected (Ha is accepted). In Test 2, based on statistic
Tr , H0 is accepted (Ha is rejected), if |Tr − ETr| < ε∗; otherwise, H0 is rejected
(Ha is accepted). Note that the cut-off values S◦ and ε∗ should be determined a
priori (before the actual sequences X and Y are observed).

Problem 2.18 Test 1 and Test 2 are applied to establish relatedness of locally
aligned protein sequences X and Y of lengths n = 100 and m = 300. It is
assumed that K = 0.1, λ = 0.7.



2.2 Additional problems and theory 61

(a) Define the cut-off value S◦ corresponding to the significance level α1 (the
false negative rate) of Test 1 equal to 0.05.

(b) Estimate the significance level α2 of Test 2 for the cut-off value ε∗ = 13.8
and r = 5.

(c) Given observed scores S1 = 15, S2 = S3 = 12, S4 = 11, S5 = 10 of
highest-scoring segment pairs, use Tests 1 and 2 with cut-off values defined as
in (a) and (b) to test H0 versus Ha.

Solution (a) From the definition of significance level α1 of the test and
Equation (2.15) we have

α1 = P(type-one error) = P(H0 is rejected|H0 is true)

= P(Smax ≥ S◦|X and Y are unrelated (random) sequences)

≈ 1 − e−ENS◦ .

Thus, the significance level of Test 1 for any cut-off value S◦ is equal to the P-value
of S◦. For a given α1, value S◦ has to satisfy the equation −Kmne−λS◦ = ln(1−α1).
By solving this equation we determine that to test H0 versus Ha at significance level
α1 = 0.05 the cut-off value S◦ = 16 should be used.

(b) To estimate the significance level of Test 2 for a given cut-off value ε∗, we
apply Chebyshov’s inequality in the form (11.10):

α2 = P(type-one error) = P(H0 is rejected|H0 is true)

= P(|Tr − ETr| ≥ ε∗|X and Y are unrelated (random) sequences)

= P(|Tr − ETr| ≥ ε∗|Tr has p.d.f. f (t) ) ≤ VarTr

(ε∗)2
.

For r = 5 the variance of the normalized sum VarT5 ≈ 2 × 5 − 1/2 = 9.5; thus
for the cut-off value ε∗ = 13.8 the significance level of the test α2 ≤ 0.05.

(c) To test hypothesis H0 versus Ha, we calculate statistics Smax (to use in Test 1)
and T5 (to use in Test 2) for the observed alignment scores:

Smax = S1 = 15,

T5 = λ

(
r∑

k=1

Sk

)
− ln Kr − ln(mn)r = 42 − 5 ln 3 − 15 ln 10 = 1.968.

Since Smax = 15 < 16 = S◦, we accept H0 (reject Ha) in Test 1 with significance
level α1 = 0.05. To carry out Test 2, we have to calculate the expectation of
the normalized sum: ET5 = 5(1 − ln 5) − 1/2 = −3.547. Since |T5 − ET5| =
5.515 < 13.8 = ε∗, the null hypothesis is accepted (and the alternative hypothesis
is rejected) in Test 2 with significance level α2 ≤ 0.05. Therefore, the observed



62 Pairwise alignment

scores of the five highest-scoring segment pairs do not support the hypothesis of
a relation between protein sequences X and Y with significance level of the test at
most 0.05.

Problem 2.19 A protein sequence X of m amino acids long is used as a query
for similarity search against a protein sequence database containing k protein
sequences Y1,…, Yk with lengths n1,…, nk . Find the relationships (a) between
the E-values of pairwise comparison of sequences X to Yi, Ei, i = 1, . . . , k, and
the E-value of the whole database search; (b) between the P-values of pairwise
comparisons, Pi, i = 1, . . . , k, and the P-value of the whole database search.

Solution In a search for similarity between sequence X and a database, the expected
number of HSPs with score greater than S is equal to the sum of ENi

S for optimal
local alignments of pairs of sequences X and Yi, i = 1, . . . , k. If we assume that all
sequences in the database as well as sequence X are generated by the independence
model, then for the E-value of the a database search we have

E = ENS =
k∑

i=1

ENi
S =

k∑
i=1

Ei =
k∑

i=1

Kmnie
−λS

= Kme−λS
k∑

i=1

ni = Kmne−λS, (2.18)

where n is the total length of the database sequences. Thus, when calculating the
E-value of a database search, one can treat the database as a single sequence of
length n.

The database search P-value can be determined as a function of P1, P2, …, Pk

from Equation (2.18) as follows:

P = P(Smax ≥ S) ≈ 1 − e−ENS = 1 − e
∑k

i=1 Ei = 1 −
k∏

i=1

eEi = 1 −
k∏

i=1

(1 − Pi).

2.2.3 Distribution of the length of the longest common word among several
unrelated sequences

Theoretical introduction to Problem 2.21 Genomic DNA sequences from dif-
ferent species may possess virtually identical contiguous subsequences which are
strikingly long. The identification and interpretation of such common subsequences
are of substantial biological interest. The related statistical problems can be investig-
ated: what are the properties of the distribution of the length of the longest common



2.2 Additional problems and theory 63

word observed in two (or more) random sequences given the type of the sequence
model? How will the distribution change when at most k mismatches inside the
common word are allowed?

The mathematical study of similar problems was conducted by Erdös and Revesz
(1975), who provided almost sure upper and lower bounds for the longest run
of heads in a sequence of n tosses of a fair coin, as well as for runs of heads
interrupted by at most k tails. For the length of the longest common word M(n, m)

of two sequences with lengths n and m, under the assumption that sequences are
(independently) generated by independence models (not necessarily the same),
Arratia and Waterman (1985) proved that

P

(
lim

n→+∞,m→+∞
M(n, m)

log1/p(mn)
= K

)
= 1.

Here p is the probability of a match, p = P(xi = yj), and the constant K depends
on the ratio of the rates of growth of n and m as well as the sequence model
parameters. This result was generalized to the case of several sequences described
either by independence models or by Markov chains. For the distribution of the
longest contiguous run Mk(n, m) of matches between two independent sequences
allowing at most k mismatches, Arratia, Gordon, and Waterman (1986) determined
the mathematical expectation, the variance, and the limit distribution of Mk(n, m),
as n, m → +∞. If k = 0, the uninterrupted run is considered, and both n and
m grow at the same rate, then M0(n, m) = M(n, m) has approximately the same
distribution as the maximum of (1 − p)nm independent geometrically distributed
(with parameter p) random variables. The expectation and the variance of Mk(n, m)

are given by the following formulas:

EMk(n, m) ≈ log1/p((1 − p)mn) + k log1/p log1/p((1 − p)mn)

+ k log1/p
1 − p

p
− log1/p(k!) + γ log1/p(e) − 1

2
, (2.19)

Var Mk(n, m) ≈ (π log1/p(e))
2

6
+ 1

12
.

Here γ ≈ 0.577 is the Euler constant. Further, Karlin and Ost (1987, 1988) derived
an asymptotic distribution of the length of the longest common word among r
or more out of s independent sequences generated by stationary processes with
uniform mixing.

Problem 2.20 Sequences X and Y of lengths 1000 and 10 000 are generated
(independently from each other) by the independence model with an equal prob-
ability of symbols. What is the expected length of the longest common word



64 Pairwise alignment

between X and Y if mismatches are not allowed (k = 0), and if at most two
mismatches are allowed (k = 2)? (a) Nucleotide and (b) amino acid alphabets
are to be considered.

Solution (a) Since the four nucleotide types have equal probabilities qa = 1/4 to
appear at a given position of sequences X and Y , the probability p = P(xi = yj) of
observing matching symbols in positions i of X and j of Y for any pair i and j is
given by

p =
∑

a

qaqa = 4 × 1

16
= 0.25.

Equation (2.19) for the expected value of Mk(n, m) yields

EM0(1000; 10 000) = log4(0.75 × 1000 × 10 000) − 0.577

ln 0.25
− 1

2
= 11.335;

EM2(1000; 10 000) = EM0(1000; 10 000) + 2 log4 log4(7 500 000)

+ 2 log4 3 − log4 2 = 15.934.

Therefore, the expected length of the longest common word between X and Y
is 11 nt, while the average length of the longest common word with at most two
mismatches is 15 nt.

(b) Since the twenty types of amino acids have equal probabilities qa = 1/20 to
appear at a given position of sequences X and Y , we determine that p =∑a qaqa =
20 × 1/400 = 0.05. We use Equation (2.19) to find the expected length of longest
common word in sequences X and Y :

EM0(1000; 10 000) = log20(0.95 × 1000 × 10 000) − 0.577

ln 0.05
− 1

2
= 5.056;

EM2(1000; 10 000) = EM0(1000; 10 000) + 2 log20 log20(9 500 000)

+ 2 log20 19 − log20 2 = 7.912.

Naturally, the expected length of the longest common word increases as more
mismatches are allowed. Also it would be anticipated that the longest common
word in amino acid sequences on average is shorter than the longest common word
in nucleotide sequences of the same lengths due to the smaller probability p of a
match at a given pair of sequence positions.

Problem 2.21 A dot-plot sequence comparison algorithm identifies similarities
in DNA sequences using the following rule. A pair of DNA fragments of length l
starting at positions i and j of two sequences X and Y , respectively, are considered
a “matching pair” if at least k nucleotides out of l make identical pairs (no



2.3 Further reading 65

insertions or deletions are allowed) with mismatches permitted only in internal
pairs. Determine the expected number of “matching pairs” for 1000 nt long DNA
sequences X and Y for l = 8, k = 6. The sequences are described by the
independence model with probabilities of T , C, A, and G equal to 0.3, 0.2, 0.3
and 0.2, respectively.

Solution Nucleotides occupying positions i in X and j in Y are identical with
probability

P(xi = yj) = P{(xi, yj) = (T , T), or (xi, yj) = (C, C)

or (xi, yj) = (A, A), or (xi, yj) = (G, G)}
= 0.32 + 0.22 + 0.32 + 0.22 = 0.26.

An alignment of two DNA segments generates a sequence of nucleotide pairs asso-
ciated with a sequence of Bernoulli trials where “success” (“nucleotides in a pair are
identical”) occurs with probability 0.26. Then a fragment pair starting at positions
(i, j) will be a ‘matching pair’ with probability

P(matching pair starting at (i, j)) = P(eight “successes” in eight trials)

+ P(seven “successes” in eight trials, including start and end)

+ P(six “successes” in eight trials, including start and end)

= 0.268 + 0.267 × 0.74 × 6 + 0.266 × 0.742 ×
(

6

4

)
= 0.0029.

For two 1000 long DNA sequences there are

N = (1000 − 7)(1000 − 7) = 9932 = 986049

fragment pairs of length 8. Here the Bernoulli scheme is used again. We consider N
Bernoulli trials with “success,” defined as “a fragment pair starting at positions (i, j)
is a matching pair,” taking place with probability p = 0.0029. Then the expected
number of “matching fragment pairs” is given by

E = Np = 986049 × 0.0029 ≈ 2860.

2.3 Further reading

The performance of pairwise sequence alignment algorithms has been assessed and
the scoring systems discussed by many authors, including Pearson (1995, 1996);
Brenner, Chothia, and Hubbard (1998). Shindyalov and Bourne (1998) developed
the combinatorial extension (CE) algorithm for pairwise alignment of two protein



66 Pairwise alignment

sequences. An alignment in the CE algorithm was defined by aligned pairs of protein
fragments, which confer structure similarity. Pairwise alignment algorithms based
on the Bayesian approach were proposed by Zhu, Liu, and Lawrence (1998) and
by Webb, Liu, and Lawrence (2002).

Kann, Qian, and Goldstein (2000) developed a new method of derivation for the
substitution matrix which maximizes the average confidence of the homology iden-
tification verified over a set of homologous and non-homologous pairs of proteins
from the COG database (Tatusov, Galperin, and Koonin, 2000). Another method
of optimization of the substitution matrix which improves the accuracy of homo-
logy searches was proposed by Hourai, Akutsu, and Akiyama (2004). Rost (1999)
analyzed the quality of protein sequence alignments in the twilight zone (for pairs
of sequences with 20–35% identity).

Algorithms for whole genome comparison were developed by Delcher et al.
(1999) and Schwartz et al. (2000). Brudno et al. (2003) developed the LAGAN
algorithm for rapid pairwise alignment of homologous genomic sequences: first,
the optimal set of non-overlapping local alignments is chosen, then the intermediate
sequence fragments are aligned by the Needleman-Wunsch algorithm. Algorithms
for aligning cDNA sequences with genomic DNA sequences were developed by
Florea et al. (1998) (SIM4) and by Kent (2002) (BLAT).

Sequence alignment algorithms were incorporated into the prediction of three-
dimensional protein structure (Martí-Renom et al., 2000), and into identification of
gene-fusion events in complete genomes (Enright et al., 1999).

Sequence alignment algorithms have been frequently used in comparative gen-
omics projects. One of the most important sources of information about human and
other genomes, the Ensembl database (Hubbard et al., 2002; Clamp et al., 2003)
uses the automatic pipeline of gene annotation that includes the tools for homo-
logy search. The KEGG database by Kanehisa et al. (2002) uses a comprehensive
search for similarities by the Smith–Waterman algorithm to transfer functional
annotation of proteins and establish ortholog/paralog relations of protein-coding
genes in complete genomes stored in the SSDB part of KEGG.



3

Markov chains and hidden Markov models

The chapter in BSA that introduces Markov chains and hidden Markov models
plays a critical role in that book. The sequence comparison algorithms described in
Chapter 2 could not be developed without the introduction of the theoretically jus-
tified similarity scores and statistical theory of similarity score distributions. These
developments, in turn, are not feasible without rational choices of probabilistic
models for DNA and protein sequences. Both Markov chains and hidden Markov
models are often remarkably good candidates for the sequence models. Moreover,
hidden Markov models (HMMs) are potentially a more flexible means for biolo-
gical sequence analysis because they allow simultaneous modeling of observable
and non-observable (hidden) states. The presence of the two types of states per-
fectly fits the need to model some important additional information existing beyond
sequences per se, such as the functional meaning of the sequence elements, matches
and mismatches of symbols in pairs of aligned sequences, evolutionary conserved
regions in multiple sequences, phylogenetic relationships, etc.

Chapter 3 of BSA introduces the fundamental algorithms of HMM theory: the
Viterbi algorithm, the forward and backward algorithms, as well as the Baum–Welch
algorithm. All of these algorithms are amenable for a variety of applications in
biological sequence analysis. Of course, some of these HMM constructions exist in
parallel with their non-probabilistic counterparts; for example, consider the Viterbi
algorithm for a pair HMM and the classic dynamic programming algorithm for
pairwise alignment. Both HMM and non-HMM approaches are known for finding
conserved domains, building phylogenetic trees, etc.

In this chapter, the BSA problems focus on deriving the formulas that support
probabilistic modeling and the HMM algorithm construction. The additional prob-
lems focus on applications of the basic HMM algorithms, comparing competitive
models and estimating model parameters. We also discuss an alternative non-HMM
approach to the problem of sequence segmentation into compositionally uniform
segments.

67



68 Markov chains and hidden Markov models

3.1 Original problems

Problem 3.1 The sum of the probabilities of all possible sequences of states of
length L can be written as follows:

∑
x

P(x) =
∑
x1

∑
x2

· · ·
∑
xL

P(x1)

L∏
i=2

axi−1xi .

Show that this sum is equal to 1.

Solution By changing the order of summation and using the definition of the
transition probability, we rewrite the sum as follows:

∑
x

P(x) =
∑
x1

∑
x2

· · ·
∑
xL

P(x1)

L∏
i=2

axi−1xi

=
∑
x2

· · ·
∑
xL

L∏
i=3

axi−1xi

∑
x1

P(x1)ax1x2

=
∑
x2

· · ·
∑
xL

L∏
i=3

axi−1xi

∑
x1

P(x1)P(x2|x1). (3.1)

It is obvious that the inner sum (over x1) gives the probability of x2, because the
summation is made over all possible states at position i = 1. Therefore, the last
expression in Equation (3.1) becomes

∑
x2

· · ·
∑
xL

L∏
i=3

axi−1xi P(x2) =
∑
x3

· · ·
∑
xL

L∏
i=4

axi−1xi

∑
x2

P(x2)P(x3|x2).

Now we can apply the same argument for the inner sum over x2, and so on. After
L − 1 steps we obtain ∑

x

P(x) =
∑
xL

P(xL) = 1.

The last equality holds since the sum includes the probabilities of all possible states
of the Markov chain at position L.

Problem 3.2 Assume that the model has an end state and that the transition from
any state to the end state has probability τ . Show that the sum of the probabilities
over all sequences of length L (and properly terminating by making a transition
to the end state) is τ(1 − τ)L−1.



3.1 Original problems 69

Solution Assuming that the transition probabilities from any state to the end state
ε are equal to τ , we have ax1ε = τ for any state x1, which implies that∑

{x2:x2 	=ε}
ax1x2 = 1 − τ .

Similarly, for any state xi such that xi 	= ε we have∑
{xi+1:xi+1 	=ε}

axixi+1 = 1 − τ ,

with i = 1, . . . , L − 1. Then the sum of probabilities of all sequences of length L
terminating at the end state ε is given by

� =
∑
x1

∑
{x2:x2 	=ε}

· · ·
∑

{xL :xL 	=ε}
P(x1)ax1x2ax2x3 · · · axL−1xL axLε

= τ
∑
x1

∑
{x2:x2 	=ε}

· · ·
∑

{xL−1:xL−1 	=ε}
P(x1)ax1x2 · · · axL−2xL−1


 ∑

{xL :xL 	=ε}
axL−1xL




= τ(1 − τ)
∑
x1

· · ·
∑

{xL−2:xL−2 	=ε}
P(x1)ax1x2 · · · axL−3xL−2


 ∑

{xL−1:xL−1 	=ε}
axL−2xL−1


.

(3.2)

After repeating similar regrouping of terms and factorization (L−1) times, the sum
� in Equation (3.2) becomes

� = τ(1 − τ)L−1
∑
x1

P(x1) = τ(1 − τ)L−1.

Problem 3.3 Show that the sum of the probabilities over all possible sequences
of any length is 1. This proves that the Markov chain really describes a proper
probability distribution over the whole space of sequences.

Solution The goal is to verify the following equality:

∞∑
L=1


∑

x1

∑
x2

xi 	=ε

· · ·
∑
xL

P(x1)ax1x2ax2x3 · · · axL−1xLaxLε


 = 1,

where ε is the end state of the Markov chain. It was proved in Problem 3.2 that the
sum SL of probabilities over all sequences of length L (and properly terminating at
the end state ε) is τ(1 − τ)L−1, where τ is the probability of transition to the end



70 Markov chains and hidden Markov models

state. Then

∞∑
L=1


∑

x1

∑
x2

xi 	=ε

· · ·
∑
xL

P(x1)ax1x2ax2x3 · · · axL−1xL axLε




=
∞∑

L=1

SL =
∞∑

L=1

τ(1 − τ)L−1 = τ

τ
= 1.

Problem 3.4 Let P(x, π) be the joint probability of an observed sequence x and a
state sequence π . We define the most probable path π� as π� = argmaxπP(x, π).
Show that this definition is equivalent to π� = argmaxπP(π |x).

Solution According to the definition of conditional probability, P(π |x) =
P(x, π)/P(x). Since P(x) does not depend on π , one and the same state sequence
π� will deliver the maximum value for both P(x, π) and P(x, π)/P(x):

argmaxπP(x, π) = argmaxπP(π |x) = π�.

Problem 3.5 Derive the formula

P(πi = k, πi+1 = l|x, 
) = fk(i)aklel(xi+1)bl(i + 1)

P(x|
)
, (3.3)

where the forward variable fk(i) = P(x1, . . . , xi, πi = k) is the joint probability
of the observed subsequence x1, . . . , xi and the specific hidden state πi = k; akl

and el(xi) are, respectively, transition and emission probabilities; the backward
variable bk(i) = P(xi+1, . . . , xL, πi = k) is the joint probability of the observed
subsequence xi+1, . . . , xL and the specific hidden state πi = k.

Solution The multiplication theorem of probability,

P(A ∩ B ∩ C) = P(A)P(B|A)P(C|A ∩ B),

allows us to represent the left hand side of Equation (3.3) as follows:

P(πi = k, πi+1 = l|x, 
) = P(πi = k, πi+1 = l, x|
)

P(x|
)

= 1

P(x|
)
× P(x1, . . . , xi, πi = k|
)P(xi+1, πi+1 = l|x1, . . . , xi, πi = k, 
)

× P(xi+2, . . . , xL|x1, . . . , xi, xi+1, πi = k, πi+1 = l, 
). (3.4)



3.1 Original problems 71

Since the state πi+1 in position i + 1 of the first order Markov chain depends
only on the state πi in the previous position i, Equation (3.4) becomes

P(πi =k, πi+1 = l|x, 
)

= P(x1,. . ., xi, πi =k|
)P(xi+1, πi+1 = l|πi =k, 
)P(xi+2,. . ., xL|πi+1 = l, 
)

P(x|
)
.

Finally, we use the definitions of the variables fk(i) and bl(i) as well as akl and
el(xi+1) to obtain

P(πi = k, πi+1 = l|x, 
) = fk(i)aklel(xi+1)bl(i + 1)

P(x|
)
.

Problem 3.6 Derive the following equation:

Ek(b) =
∑

j

1

P(xj)

∑
{i:xj

i=b}
f j
k (i)b

j
k(i)

for the expected number Ek(b) of times that observed state b is emitted from
hidden state k. Here the inner sum is taken over all positions i emitting symbol
b and the outer sum is taken over all training sequences xj.

Solution The formula in question is part of the Baum–Welch algorithm (Baum,
1972), which is used to estimate parameters of a hidden Markov model, including
emission probabilities ek(b), from a set of realizations which serve as a training
set. This algorithm works in iterations. For current estimates e′

k(b) and a′
kl, for-

ward variables f j
k (i) and backward variables bj

k(i) are calculated for each training
sequence xj using the forward and the backward algorithm, respectively. A new
estimate e′′

k (b) is defined as a maximum likelihood estimate:

e′′
k (b) = Ek(b)∑

b′ Ek(b′)
,

where Ek(b) is the expected number of times of symbol b emissions from a hidden
state k and the sum

∑
b′ Ek(b′) gives the expected number of occurrences of state

k for a given set of training sequences. To derive equations for the expectations
Ek(b), we introduce the counting random variable δ

j
i :

δ
j
i =
{

1, if state k appears in position i of sequence xj,

0, otherwise.



72 Markov chains and hidden Markov models

Figure 3.1. Forward connected chain of states.

Then N(k) = ∑j
∑

i δ
j
i is the number of occurrences of state k in the paths of

hidden states, and the expected value of N(k) is given by

EN(k) =
∑

j

∑
i

Eδ
j
i =
∑

j

∑
i

P(π
j
i = k, |xj, 
)

=
∑

j

1

P(xj|
)

∑
i

f j
k (i)b

j
k(i).

Here 
 designates the probabilistic model associated with the set of current estim-
ates of parameters. Similarly, we derive the equation for the expected number
Ek(b) of times that symbol b is emitted from hidden state k given a set of training
sequences. The only difference is that the variables δ

j
i(b) must now count occur-

rences of state k only if it emits symbol b. Thus, we complete the derivation as
follows:

Ek(b) =
∑

xj

∑
{i:xj

i=b}
Eδ

j
i(b) =

∑
xj

∑
{i:xj

i=b}
P(π

j
i = k, |xj, 
)

=
∑

j

1

P(xj|
)

∑
{i:xj

i=b}
f j
k (i)b

j
k(i).

Note that the updated estimate e′′
k (b) of the emission probability in the iterative

procedure becomes

e′′
k (b) = Ek(b)∑

b′ Ek(b′)
= Ek(b)

EN(k)
=
∑

j
1

P(xj|
)

∑
{i:xj

i=b} f j
k (i)b

j
k(i)∑

j
1

P(xj|
)

∑
i f j

k (i)b
j
k(i)

.

Problem 3.7 Calculate the total number of transitions needed in a forward
connected model with a length L in Figure 3.1. Calculate the same for a model
with silent states in Figure 3.2.

Solution In the forward connected chain of L states (Figure 3.1) the total number
of transitions is given by

N1 = (L − 1) + (L − 2) + · · · + 2 + 1 = (L − 1) + 1

2
(L − 1) = L(L − 1)

2
.



3.1 Original problems 73

Figure 3.2. Model with silent states, represented by circles.

p p p p

1 – p 1 – p 1 – p 1 – p

Figure 3.3. Array of states with self-loops.

In the model with silent states (Figure 3.2) there are two transitions from each
‘regular’ state except for the last two states. There are two transitions from each
silent state (there are L − 2 of them) except for the last one. So, the total number
of transitions is given by

N2 = (L − 2)2 + 1 + (L − 3)2 + 1 = 4L − 8.

Models with a smaller number of possible state transitions are preferable. For short
chains (L ≤ 6) N1 is smaller than N2. As L increases, N1 grows faster than N2, and
N1 becomes bigger than N2 for L ≥ 7.

Problem 3.8 Show that the number of paths through an array of n states (similar
to Figure 3.3) is

( l−1
n−1

)
for length l.

Solution Any path of length l through an array of n states (l ≥ n) consists of n − 1
transitions to the next state (with probability 1− p each) and l − n transitions to the
same state (with probability p each). The last transition in a path must be the ‘exit’
from the nth state. Therefore, the number of different paths is equal to the number
of ways to choose l − n transitions returning to the same state out of l − 1 internal
transitions in the path. This number is equal to the binomial coefficient:(

l − 1

l − n

)
=
(

l − 1

n − 1

)
= (l − 1)!

(n − 1)!(l − n)! .
Note that the probability distribution of the length L of paths through this model

is the negative binomial distribution:

P(L = l) =
(

l − 1

l − n

)
pl−n(1 − p)n, (3.5)

where l ≥ n.



74 Markov chains and hidden Markov models

Problem 3.9 (in the new formulation by Anders Krogh) Consider the model of
n states with self-loops (Figure 3.3) giving rise to Equation (3.5). (a) What is the
probability of the most likely path through the model that the Viterbi algorithm
will find? (b) Is this type of length modeling useful with the Viterbi algorithm?

Solution (by Anders Krogh) (a) Any path of length l, l ≥ n, through the model has
probability pl−n(1−p)n. Thus the most likely path would also have this probability,
so the Viterbi algorithm does not ‘see’ the negative binomial distribution. Then the
answer to (b) is ‘no.’

Problem 3.10 A prokaryotic gene is a continuous sequence of nucleotide
triplets, codons. A gene starts with a start codon ATG and ends with one of
three stop codons: TAA, TAG, TGA. Calculate the number of parameters in such
a codon model. The data set contains on the order of 300 000 codons. Would it
be feasible to estimate a second order Markov chain from this data set?

Solution First, we assume that the sequence of codons is modeled by the first order
Markov chain with states defined as sixty-one sense codons. The three stop codons
are clumped together into the end state of the Markov chain. Since a gene starts
with codon ATG, the initial probabilities of the states are determined as follows:
P(ATG) = 1, and zero for all other states. To describe this Markov chain, one
needs to define 61 × 61 = 3721 probabilities of transitions between sense codons,
and 61 × 3 = 183 probabilities of transitions from sense codons to the end state.
Therefore, the total number of the first order model parameters is given by

N1 = 3721 + 183 = 3904.

If the sequence of codons is modeled by the second order Markov chain, the number
of parameters increases dramatically. Indeed, there are sixty-one initial probabilities
for all possible pairs (ATG, XYZ) of initial codons, 613 = 226 981 probabilities of
transitions between sense codons, and 612 ×3 = 11 532 probabilities of transitions
from pairs of sense codons (X1Y1Z1, X2Y2Z2) to the end state. Thus, the total number
of parameters required for the second order Markov chain of codons is given by

N2 = 61 + 226 981 + 11 532 = 238 205.

Could we achieve reliable estimates of these N2 parameters from a data set com-
prising 300 000 codons? A maximum likelihood estimate of transition probability
P(X3Y3Z3|X1Y1Z1, X2Y2Z2) of this second order Markov chain is the ratio N1/N2,
where N1 is a count of the codon triplets (X1Y1Z1, X2Y2Z2, X3Y3Z3) and N2 is a



3.1 Original problems 75

count of the codon pairs (X1Y1Z1, X2Y2Z2) in the data set. It is likely that many out
of 613 = 226 981 different codon triplets may never appear in the sample contain-
ing about 300 000 codon triplets. The observed zero codon triplet counts (unless we
use pseudocounts) produce zero transition probabilities, thus leading to overfitting.
Clearly, the data set containing on the order of 300 000 codons is not sufficient to
estimate parameters of the second order Markov model.

Problem 3.11 Which improvement can be made for the first order Markov
chain model of protein-coding ORF with codon states?

Solution Instead of a Markov chain of codons we can consider an inhomogeneous
Markov chain (IMC) or a hidden Markov model (HMM), both with states defined
as single nucleotides rather than nucleotide triplets. Such IMCs and HMMs have
a substantially smaller number of parameters (see Problem 3.12). It can be shown
(Borodovsky et al., 1986c; Borodovsky and McIninch, 1993; Krogh, Mian, and
Haussler, 1994; Burge and Karlin, 1997) that these models describe nucleotide com-
position patterns in protein-coding and non-coding regions with accuracy sufficient
to design accurate gene finding algorithms.

Problem 3.12 It is well known that in protein-coding genes the three codon
positions have different nucleotide frequency statistics and, therefore, it is natural
to use the inhomogeneous three-periodic Markov chain to model protein-coding
regions (Borodovsky et al., 1986b). The three phases of the model are numbered
1 to 3 according to the position in the codon. Assuming that x1 is in codon
position 1, the probability of x1, x2, x3, . . . will be

a1
x1x2

a2
x2x3

a3
x3x4

a1
x4x5

a2
x5x6

. . . ,

where ak are the elements of the transition probability matrix of phase k.
Describe the HMM that corresponds to this first order inhomogeneous Markov
chain.

Solution The set of hidden states of such an HMM could be defined as

{A1, A2, A3, C1, C2, C3, G1, G2, G3, T1, T2, T3},
where for Xi index i designates the codon position of nucleotide X. The observed
states, the nucleotide symbols A, C, G, T , are emitted from hidden states with
probabilities eX•(X) = 1 and eX•(Y) = 0 for Y 	= X, where X, Y ∈ {A, C, G, T}.

To define this HMM, seventy-two parameters are required: twelve initial prob-
abilities a0X1 , a0X2 , a0X3 ; forty-eight probabilities of transitions between hidden



76 Markov chains and hidden Markov models

states, aX1Y2 , aX2Y3 , aX3Y1 ; and twelve probabilities of transitions to the end state,
aX10, aX20, aX30.

Note that some transitions between hidden states are impossible:

aX1Y1 = aX2Y2 = aX3Y3 = aX1Y3 = aX2Y1 = aX3Y2 = 0.

These zero value parameters are not included in the above counts.

Problem 3.13 Prove that P(x) = ∏L
j=1 sj if scaling variables sj are defined by

the following equations:

f̃l(i) = fl(i)∏i
j=1 sj

,
∑

l

f̃l(i) = 1.

Solution With the scaling variables si, i = 1, . . . , L, chosen to satisfy equations∑
l f̃l(i) = 1 for any i, the forward algorithm equation for the probability P(x) of

sequence x = (x1, . . . , xL) becomes

P(x) =
∑

k

fk(L)ak0 =
(∑

k

f̃k(L)ak0

)
L∏

j=1

sj =
L∏

j=1

sj.

Here the probabilities of transition from any state k to the end state, ak0, are equal
to 1 at position L, thus all sequences have a fixed length L.

For such a choice of si, the following recurrent equations hold:

f̃l(i + 1) = 1

si+1
el(xi+1)

∑
k

f̃k(i)akl,

si+1 =
∑

l

el(xi+1)
∑

k

f̃k(i)akl.

For the backward variables rescaled with the same set of sj, the recurrence equation
becomes

b̃k(i) = 1

si

∑
l

aklb̃l(i + 1)el(xi+1).

Use of the rescaled variables f̃l(i) (b̃k(i)) allows us to avoid an underflow error when
running the forward (the backward) algorithm for long sequences.



3.2 Additional problems and theory 77

Problem 3.14 Use the result of Problem 3.13 to show that the following
equations:

Akl =
∑

j

1

P(xj)

∑
i

f j
k (i)aklel(x

j
i+1)b

j
l(i + 1),

Ek(b) =
∑

j

1

P(xj)

∑
{i:xj

i=b}
f j
k (i)b

j
k(i)

used in the Baum–Welch algorithm for the estimation of parameters of an HMM
simplify when using the scaled variables f̃ and b̃.

Solution With scaling variables si, i = 1, . . . , L, chosen as defined in Problem
3.13, the expected number of transitions from a hidden state k to a hidden state l is
given by the following formula:

Akl =
∑

j

1

P(xj)

∑
i

f̃ j
k (i)

i∏
q=1

sj
qaklel(x

j
i+1)b̃

j
l(i + 1)

L∏
q=i+1

sj
q

=
∑

j

∏L
q=1 sj

q

P(xj)

∑
i

f̃ j
k (i)aklel(x

j
i+1)b̃

j
l(i + 1) =

∑
j,i

f̃ j
k (i)aklel(x

j
i+1)b̃

j
l(i + 1).

Here the sum is taken over all training sequences xj and all positions i. The expected
number of emissions of symbol b in state k becomes

Ek(b) =
∑

j

1

P(xj)

∑
{i:xj

i=b}
f̃ j
k (i)b̃

j
k(i)

L∏
q=1

sj
qsj

i =
∑

{j,i:xj
i=b}

f̃ j
k (i)b̃

j
k(i)s

j
i,

where the sum is taken over all training sequences xj and positions i occupied by
state k emitting symbol b.

3.2 Additional problems and theory

Practice with classic algorithms for a simple HMM has been our target in
Problems 3.15–3.18: the Viterbi algorithm (Problems 3.15 and 3.16), the for-
ward algorithm (Problem 3.17), the backward algorithm (Problem 3.17), the
forward algorithm with scaled forward variables (Problem 3.17), and the posterior
decoding algorithm (Problem 3.18).

Other problems from this section are related to the general topic of model selec-
tion for biological sequences (of course, an HMM is one of such models). In
Problem 3.19, two stochastic models (an independence model and an HMM) are



78 Markov chains and hidden Markov models

compared; the comparison is based on the model likelihoods calculated first as full
probabilities (over all paths) and then as probabilities of the Viterbi paths.

The theoretical introduction to Problems 3.20 and 3.21 describes the basic ideas
of model selection for a biological sequence, model testing, the maximum likeli-
hood approach to parameter estimation, and the basic properties of the maximum
likelihood estimates of parameters of an independence model and a first order sta-
tionary Markov chain. A test on the selection of an appropriate model for a DNA
fragment is carried out in Problem 3.21, the estimation of transition probabilities of
the Markov chain in Problems 3.20 and 3.21. The procedure of sampling the paths
of hidden states from the posterior distribution is described in Problem 3.22. Yet
another model for an empirical sequence, a basic segmentation model, is described
in the theoretical introduction to Problem 3.23, along with a Bayesian approach
to the estimation of parameters of the model. Using these ideas, we find the pos-
terior distributions of unknown parameters and missing data for a given sequence
generated by the segmentation model (Problem 3.23).

Problem 3.15 Hidden Markov models can be used in algorithms of protein
secondary structure prediction. One rather straightforward approach uses the
secondary structure conformations α-helix, β-strand, and turn as the hidden
states emitting observable amino acids. It is assumed that the frequencies of
appearance of each of twenty amino acids in either conformation have been
determined from analysis of the proteins with the three-dimensional structures
known from experiment. Draw the state of the HMM and describe the Viterbi and
the posterior decoding algorithms that could be used for predicting the protein
secondary structure.

Solution The state diagram of the HMM is shown in Figure 3.4. There are three
hidden ‘structural’ states H, E, and T corresponding to α-helix, β-strand, and turn,
respectively. These states emit symbols of amino acid residues with probabilities
eH(j), eE(j), and eT(j), estimated from the frequencies of occurrence of amino acid
j, j = 1, . . . , 20, in corresponding conformations. A begin state B and an end state
E do not emit any symbols. Other parameters of the HMM are: initial probabilities
aBE , aBT , aBH , aBE ; transition probabilities aEE , aEH , aET , aTE , aTH , aTT , aHE , aHH ,
aHT ; termination probabilities aEE , aTE , aHE . The total number of parameters of this
HMM is seventy-six.

For a given protein sequence x = (x1, x2, . . . , xn) the Viterbi algorithm determ-
ines the most probable sequence π = (π1, π2, . . . , πn) of hidden structural states.
For each sequence position i, i = 1, 2, . . . , n, it maximizes the probability

vl(i) = el(xi) max
k

(vk(i − 1)akl)



3.2 Additional problems and theory 79

Figure 3.4. The state diagram of an HMM that can be used in the algorithms of
protein secondary structure prediction. Hidden states H (α-helix), E (β-strand),
and T (turn) emit amino acid symbols (observable states of the HMM).

and essentially determines the subsequence of hidden states up to the sequence
position i which, together with the observed amino acid subsequence (x1, . . . , xi),
has the maximum joint probability. At the last step, the Viterbi algorithm calculates
the joint probability of the full sequence x and the optimal path π :

P(x, π) = max
k

(vk(n)akE).

Then the traceback procedure recovers the path π itself.
The posterior decoding algorithm determines the positional posterior distribu-

tions of the structural hidden states given protein sequence x. For sequence position
i it finds the hidden state k for which, given sequence x, the posterior probability
P(πi = k|x) is maximal.

Both the Viterbi and the posterior decoding algorithms are suitable for finding
the sequence of structural states {H, E, T}: as the optimal or the Viterbi path (by
the Viterbi algorithm), and as the sequence of hidden states singled out by their
maximal posterior probabilities at consecutive positions of the protein sequence
(by the decoding algorithm). These sequences of structural states may not coincide
since at a given position the hidden state with the maximum posterior probability
may not belong to the optimal path. Still, both sequences could be interpreted as
the predicted protein secondary structure.

Remark We are not aware of the direct use of the described HMM for protein
secondary structure prediction. However, a more general HMM with the same
hidden state diagram has been used for protein secondary structure prediction by
Schmidler, Liu, and Brutlag (2000).



80 Markov chains and hidden Markov models

Problem 3.16 Real DNA sequences are inhomogeneous and can be described
by a hidden Markov model with hidden states representing different types of
nucleotide composition. Consider an HMM that includes two hidden states H
and L for higher and lower C + G content, respectively. Initial probabilities
for both H and L are equal to 0.5, while transition probabilities are as follows:
aHH = 0.5, aHL = 0.5, aLL = 0.6, aLH = 0.4. Nucleotides T , C, A, G are emitted
from states H and L with probabilities 0.2, 0.3, 0.2, 0.3, and 0.3, 0.2, 0.3, 0.2,
respectively. Use the Viterbi algorithm to define the most likely sequence of
hidden states for the ‘toy’ sequence x = GGCACTGAA.

Solution The Viterbi algorithm calculations are performed here in logarithmic
mode (base 2), which is recommended in general to avoid an underflow error. We
use a tilde to designate new values of parameters, so ãkl = log2 akl, etc. As the
recursion equations we have

Vl(i + 1) = ẽl(xi+1) + max
k

(Vk(i) + ãkl),

where V is the logarithm of v. The Viterbi algorithm is initialized at the begin state
designated as 0, and scores VH(i), VL(i) are calculated in turn:

i = 0, V0(0) = 0, VH(0) = −∞, VL(0) = −∞;

i = 1, VH(1) = ẽH(G) + ã0H = −2.736966,

VL(1) = ẽL(G) + ã0L = −3.321981;

i = 2, VH(2) = ẽH(G) + VH(1) + ãHH = −5.473931,

VL(2) = ẽL(G) + VH(1) + ãHL = −6.058893;

i = 3, VH(3) = ẽH(C) + VH(2) + ãHH = −8.210897,

VL(3) = ẽL(C) + VH(2) + ãHL = −8.795859;

i = 4, VH(4) = ẽH(A) + VH(3) + ãHH = −11.532825,

VL(4) = ẽL(A) + VH(3) + ãHL = −10.947862;

i = 5, VH(5) = ẽH(C) + VL(4) + ãLH = −14.006756,

VL(5) = ẽL(C) + VL(4) + ãLL = −14.006756;

i = 6, VH(6) = ẽH(T) + VH(5) + ãHH = −17.328684,

VL(6) = ẽL(T) + VL(5) + ãLL = −16.480673;

i = 7, VH(7) = ẽH(G) + VL(6) + ãHH = −19.539581,

VL(7) = ẽL(G) + VL(6) + ãLL = −19.539581;



3.2 Additional problems and theory 81

i = 8, VH(8) = ẽH(A) + VH(7) + ãHH = −22.861509,

VL(8) = ẽL(A) + VL(7) + ãLL = −22.013512;

i = 9, VH(9) = ẽH(A) + VL(8) + ãLH = −25.657368,

VL(9) = ẽL(A) + VL(8) + ãLL = −24.487443.

The most probable path π∗ is determined by the traceback procedure: π∗ =
HHHLLLLLL, while P(x, π∗) = 2VL(9) = 4.251528 × 10−8. For sequence x the
Viterbi path π∗ is unique, because at each step i of the algorithm the maximum
score V•(i) was derived unambiguously from only one of the two previous values
V•(i − 1).

Problem 3.17 For the hidden Markov model defined in Problem 3.16 and the
DNA sequence fragment x = GGCA find P(x) by both the forward algorithm
and the backward algorithm. Repeat the computation by the forward algorithm
with use of scaling variables (Problem 3.13).

Solution The forward algorithm proceeds as follows. Initialization:

i = 0, f0(0) = 1, fH(0) = 0, fL(0) = 0;

i = 1, fH(1) = eH(x1)a0H = 0.3 × 0.5 = 0.15,

fL(1) = eL(x1)a0L = 0.2 × 0.5 = 0.1;

i = 2, fH(2) = eH(G)(fH(1)aHH + fL(1)aLH)

= 0.3(0.15 × 0.5 + 0.1 × 0.4) = 0.0345,

fL(2) = eL(G)(fH(1)aHL + fL(1)aLL)

= 0.2(0.15 × 0.5 + 0.1 × 0.6) = 0.027;

i = 3, fH(3) = eH(C)(fH(2)aHH + fL(2)aLH)

= 0.3(0.0345 × 0.5 + 0.027 × 0.4) = 0.008415,

fL(3) = eL(C)(fH(2)aHL + fL(2)aLL)

= 0.2(0.0345 × 0.5 + 0.027 × 0.6) = 0.00669;

i = 4, fH(4) = eH(A)(fH(3)aHH + fL(3)aLH)

= 0.2(0.008415 × 0.5 + 0.00669 × 0.4) = 0.0013767,

fL(4) = eL(A)(fH(3)aHL + fL(3)aLL)

= 0.3(0.008415 × 0.5 + 0.00669 × 0.6) = 0.00246645.



82 Markov chains and hidden Markov models

At the termination step we have

P(x) = P(GGCA) = fH(4) + fL(4) = 0.00384315.

Here we assume that the probabilities of transitions to the end state aH0 and aL0 are
equal to 1 at position L = 4 since we are dealing with sequences of length 4.

The backward algorithm, starting with position 4, proceeds as follows:

i = 4, bH(4) = 1, bL(4) = 1;

i = 3, bH(3) = aHHeH(A)bH(4) + aHLeL(A)bL(4)

= 0.5 × 0.2 + 0.5 × 0.3 = 0.25,

bL(3) = aLHeH(A)bH(4) + aLLeL(A)bL(4)

= 0.4 × 0.2 + 0.6 × 0.3 = 0.26;

i = 2, bH(2) = aHHeH(C)bH(3) + aHLeL(C)bL(3)

= 0.5 × 0.3 × 0.25 + 0.5 × 0.2 × 0.26 = 0.0635,

bL(2) = aLHeH(C)bH(3) + aLLeL(C)bL(3)

= 0.4 × 0.3 × 0.25 + 0.6 × 0.2 × 0.26 = 0.0612;

i = 1, bH(1) = aHHeH(G)bH(2) + aHLeL(G)bL(2)

= 0.5 × 0.3 × 0.0635 + 0.5 × 0.2 × 0.0612 = 0.015645,

bL(1) = aLHeH(G)bH(2) + aLLeL(G)bL(2)

= 0.4 × 0.3 × 0.0635 + 0.6 × 0.2 × 0.0612 = 0.014964.

At the termination step we have

P(x) = P(GGCA) = eH(G)bH(1)a0H + eL(G)bL(1)a0L

= 0.3 × 0.015645 × 0.5 + 0.2 × 0.014964 × 0.5 = 0.00384315.

As expected, the probability P(x) determined by both the forward and the backward
algorithms is the same.

Now we calculate the probability P(x) again by using the forward algorithm with
rescaled variables f̃ and scaling variables si defined in Problem 3.13. Since variables
si, i = 1, . . . , 4, were defined to make

∑
l f̃l(i) = 1 for any i, then P(x) =∏4

j=1 sj.
The recurrence equations are as follows:

si+1 =
∑

l

el(xi+1)
∑

k

f̃k(i)akl,

f̃l(i + 1) = 1

si+1
el(xi+1)

∑
k

f̃k(i)akl,



3.2 Additional problems and theory 83

with termination P(x) = ∏4
j=1 sj. The iterations proceed as follows (the PERL

and C++ programs are included in the Web Supplemental Materials available at
opal.biology.gatech.edu/PSBSA). At the initialization step we have

i = 0, f̃0(0) = 1, f̃H(0) = 0, f̃L(0) = 0;

i = 1, s1 = 0.25, f̃H(1) = 0.6, f̃L(1) = 0.4;

i = 2, s2 = 0.246, f̃H(2) = 0.560976, f̃L(2) = 0.439024;

i = 3, s3 = 0.245610, f̃H(3) = 0.557100, f̃L(3) = 0.442810;

i = 4, s4 = 0.254429, f̃H(4) = 0.358222, f̃L(3) = 0.641778.

The termination step gives

P(x) = P(GGCA) = s1 × s2 × s3 × s4 = 0.00384315.

The advantage of using rescaled variables f̃ is in avoiding underflow errors that
could occur in computations of vanishingly small f -values for sequences with large
lengths. Even for the short sequence GGCA one can see the rapid decrease of values
of forward variables f and relatively stable behavior of rescaled variables f̃ .

Remark Since sequence x = GGCA is a prefix of the sequence GGCACTGAA
considered in Problem 3.16, the Viterbi pathπ∗ for x can be immediately determined
as a prefix of the Viterbi path found in Problem 3.16. Thus, π∗ = HHHL. The
joint probability value is P(x, π∗) = υ(4) = 0.154 = 0.00050625. Note that the
contribution of the Viterbi path to the full probability of x is about 13%.

Problem 3.18 Find the posterior probability of states H and L at position 4 of
the DNA sequence x = GGCA. Consider the hidden Markov model described
in Problem 3.16.

Solution The posterior probabilities can be found by the following formula:

P(πi = k|x) = fk(i)bk(i)

P(x)
.

The forward and backward variables f (4) and b(4) were determined upon solving
Problem 3.17. Therefore, we have

P(π4 = H|GGCA) = fH(4)bH(4)

P(GGCA)
= 0.0013767 × 1

0.00384315
= 0.35822.

Similarly,

P(π4 = L|GGCA) = fL(4)bL(4)

P(GGCA)
= 0.002466457 × 1

0.00384315

= 0.64178 = 1 − P(π4 = H|GGCA).



84 Markov chains and hidden Markov models

We see that state L is more likely to appear at position 4 than state H. Incidentally,
state L appears at position 4 in the most probable (Viterbi) path π∗ = HHHL (see
the remark to Problem 3.17). Still, we should remember that states of the Viterbi
path and the most probable states obtained by the posterior decoding algorithm do
not necessarily coincide.

Problem 3.19 On a particular day a casino either uses a fair die all the time
(mode F) or uses a fair die most of the time, but occasionally switches to a
loaded die (mode L). While in mode L, the probability of switching from a fair
to a loaded die before each roll is ξ and the probability of switching back is ψ .
Given the following sequence x of 300 rolls observed on a particular day:

315116246446644245311321631164152133625144543631656626566666

651166453132651245636664631636663162326455236266666625151631

222555441666566563564324364131513465146353411126414626253356

366163666466232534413661661163252562462255265252266435353336

233121625364414432335163243633665562466662632666612355245242

describe the procedure of statistical inference discriminating between two modes
F and L of the casino operation. Assume that the parameters of mode L are
ψ = 0.1 and ξ = 0.05 and that the loaded die has probability 0.5 of a six and
probability 0.1 for each of the other numbers.

Solution To discriminate between the modes F and L, the following statistical rule
is suggested: if the ratio S = log P(L|x)/P(F|x) is positive, then the casino is more
likely to operate in mode L; if S is negative, the casino is more likely to operate in
mode F; finally, if S = 0, no decision is made.

Under the assumption that the prior probabilities of modes F and L are equal, S
becomes the log-odds ratio:

S = log
P(L|x)
P(F|x)

= log

(
P(x|L)P(L)

P(x|L)P(L) + P(x|F)P(F)

P(x|L)P(L) + P(x|F)P(F)

P(x|F)P(F)

)

= log
P(x|L)

P(x|F)
.

For mode F (using log base 10)

log P(x|F) = log

(
1

6300

)
= −234 + log 3.586.

Computation of the likelihood P(x|L) is more complicated. Use of a fair or a
loaded die defines a particular hidden state (1 or 2). Transitions between states



3.2 Additional problems and theory 85

and emissions of observed numbers are controlled by the transition probabilities
a11 = 1 − ξ = 0.95, a12 = ξ = 0.05, a21 = ψ = 0.1, a22 = 1 − ψ = 0.9
and the emission probabilities e1(i) = 1/6, for i = 1, . . . , 6, e2(1) = e2(2) =
e2(3) = e(4) = e1(5) = 1/10, e2(6) = 1/2. Now, P(x|L) is defined as the sum of
probabilities of x generated by all possible sequences π of hidden states:

P(x|L) =
∑
π

P(x, π |L).

The full probability P(x|L) is determined by the forward (backward) algorithm.
The forward algorithm starts with initialization: f0(0) = 1, fk(0) = 0 for k >

0; continues with recursion for i = 1, . . . , L: fl(i) = el(xi)
∑

k fk(i − 1)akl; and
terminates with calculation of the full probability of x:

P(x) =
∑

k

fk(L)ak0 = P(x|L).

The general forward algorithm has been implemented in both PERL and C++ lan-
guages (see the Web Supplemental Materials at opal.biology.gatech.edu/PSBSA).
It was found computationally that

log P(x|L) = −225 + log 3.294.

Therefore, the log-odds ratio becomes

S = 8 + log 9.186 = 8.963145 > 0.

Thus, the statistical inference suggests that the given sequence of die rolls x was
observed when the casino operated in mode L.

Remark Yet another approach could be suggested for discrimination between
modes F and L using statistical inference. Instead of the full probabilities of x
given modes F and L, we could compare the Viterbi probabilities, i.e. the probab-
ilities P(x, πL) and P(x, πF) of the most likely paths for x given modes L and F.
The log-odds ratio S∗ is then defined by the following formula:

S∗ = log
P(x, πL)

P(x, πF)
.

In mode F (using the fair die only) there exists only one possible path of hidden
states (consisting of fair die states) for any observed sequence of rolls, thus P(x, πF)

is the same as the full probability P(x|F):

log P(x, πF) = log P(x|F) = −234 + log 3.586.

In mode L the probability P(x, πL) of the most likely path is calculated by the Viterbi
algorithm (see Problem 3.16 and the computer programs in PERL and C++ included



86 Markov chains and hidden Markov models

in the Web Supplementary Materials available at opal.biology.gatech.edu/PSBSA).
For an observed sequence x we obtain

P(x, πL) = argmaxπP(x, π) = 1.585 × 10−236,

S∗ = log
P(x, πL)

P(x, πF)
= log 0.004 < 0.

Interestingly, the statistical inference using the Viterbi paths has led to the conclu-
sion that the casino operated in mode F. This conclusion is in contradiction to what
was inferred with the full probabilistic model!

The reason for switching the decision-making outcome is that the Viterbi path
delivers only a fraction of the full probability of the observed sequence. Therefore,
there is a risk of making incorrect decisions when the Viterbi path is used for the
inference. This issue will be further illustrated by Problems 4.4–4.6.

3.2.1 Probabilistic models for sequences of symbols: selection of the model and
parameter estimation

Theoretical introduction to Problems 3.20 and 3.21

To describe approaches to model selection, we will follow Reinert, Schbath, and
Waterman (2000a). A biological sequence x = x1, . . . , xN can be considered as a
realization of a random sequence of symbols from a finite alphabet A, |A| = 4
for DNA and |A| = 20 for proteins. Sequence x can be described by a variety of
probabilistic models.

The simplest model, a homogeneous independence model M, assumes that the
occurrences of symbols at different sites of the sequence are independent events
and a symbol α, α ∈ A, has probability pα of appearing at any site of the sequence,∑

α∈A pα = 1. If we assume that the observed sequence x is generated by model M
with unknown parameters {pα}, the maximum likelihood estimates of pα are given
by ratios

p̂α = N(α)

N
, (3.6)

where N(α) is the number of symbols α observed in sequence x.
A more general model, the model M(m), is a stationary mth order Markov chain

with transition probabilities

pα1,...,αm,αm+1 = P(xi = αm+1|xi−1 = αm, . . . , xi−m = α1),

αk ∈ A, i = m + 1, . . . , N . Obviously, the independence model M is a Markov
chain of order m = 0, M = M(0). It is known that for a given sequence x generated



3.2 Additional problems and theory 87

by the first order Markov model M(1) with unknown parameters, the maximum
likelihood estimates of the transition probabilities pα,β , α, β ∈ A, are delivered by
the ratios of counts:

p̂α,β = N(αβ)

N(α•)
. (3.7)

Here N(αβ) is the number of occurrences of the pair of adjacent symbols (α, β)

in sequence x and N(α•) = ∑γ∈A N(αγ ). Note that N(α•) = N(α) if xN 	= α

and N(α•) = N(α) − 1 otherwise. Similarly, for sequence x generated by model
M(m) with unknown parameters the maximum likelihood estimates of the transition
probabilities pα1,...,αm,αm+1 are given by

p̂α1,...,αm,αm+1 = N(α1 · · · αmαm+1)

N(α1 · · · αm•)
.

Here N(α1 · · · αk) designates the number of occurrences of a k-letter word
(α1, . . . , αk) in sequence x and N(α1 · · · αm•) =∑γ∈A N(α1 · · · αmγ ).

Selection of the most appropriate model for a sequence x among models M(m),
m ≥ 0, can be achieved on the basis of the χ2-test. First we test whether the
independence model M(0) is an appropriate model for the sequence x. The null
hypothesis of independence,

H0 : P(xi = α, xi+1 = β) = pαpβ , i = 1, . . . , N − 1, α, β ∈ A,

must be tested versus the alternative hypothesis Ha stating that the only restriction
on the joint probabilities P(xi = α, xi+1 = β) is that they do not depend on i. If H0

is true, the maximum likelihood estimate of P(xi = α, xi+1 = β), i = 1, . . . , N −1,
is given by

P̂H0(α, β) = N(α•)

N − 1

N(•β)

N − 1
.

Here N(•β) =∑γ∈A N(γβ). Note that

N(α•)

N − 1

N(•β)

N − 1
= p̂α p̂β ,

where p̂α is the maximum likelihood estimate of pα based on sequence x1, . . . , xN−1,
and p̂β is the maximum likelihood estimate of pβ based on sequence x2, . . . , xN .
If the alternative hypothesis is true, the maximum likelihood estimate of P(xi =
α, xi+1 = β), i = 1, . . . , N − 1, is given by

P̂Ha(α, β) = N(αβ)

N − 1
.



88 Markov chains and hidden Markov models

Then,

χ2 =
∑
α∈A

∑
β∈A

((N − 1)P̂Ha(α, β) − (N − 1)P̂H0(α, β))2

(N − 1)P̂H0(α, β)

=
∑
α∈A

∑
β∈A

((N − 1)N(αβ) − N(α•)N(•β))2

(N − 1)N(α•)N(•β)
(3.8)

defines the Pearson χ2-statistic that under the null hypothesis asymptotically has
a χ2-distribution with (|A| − 1)2 degrees of freedom. Thus we reject H0 when
the sample value of the χ2-statistic (3.8) is larger than a critical value of the χ2-
distribution corresponding to a specified significance level; otherwise, we accept H0.
We have to use theχ2-distribution with nine degrees of freedom for DNA sequences,
and the χ2-distribution with 361 degrees of freedom for protein sequences.

If H0 is rejected, a test for a higher order dependence is due. At the next step, the
null hypothesis stating that the first order Markov chain M(1) is the relevant model
for sequence x can be formulated as follows:

H0 : P(xi = α, xi+1 = β, xi+2 = γ )

= P(xi = α)P(xi+1 = β|xi = α)P(xi+2 = γ |xi = α, xi+1 = β)

= P(xi = α)pα,βpβ,γ =
∑

x1,x2,...,xi−1

π(x1)px1,x2 × · · · × pxi−1,αpα,βpβ,γ

= π(α)pα,βpβ,γ ,

for i = 1, . . . , N − 2, α, β, γ ∈ A. Here π is the stationary distribution of the
Markov chain M(1). The null hypothesis should be tested against the alternative
hypothesis Ha, which assumes that the only restriction on the probabilities P(xi =
α, xi+1 = β, xi+2 = γ ) is that they do not depend on i.

Under the null hypothesis, the maximum likelihood estimate of P(xi = α, xi+1 =
β, xi+2 = γ ), i = 1, . . . , N − 2, is given by

P̂H0(α, β, γ ) = π̂(α)p̂α,β p̂β,γ = N(α • •)

N − 2

N(αβ•)

N(α • •)

N(•βγ )

N(•β•)
= N(αβ•)

N − 2

N(•βγ )

N(•β•)
.

Here N(αβ•) is the number of occurrences of triplets starting with symbols (α, β);
N(α••) =∑β∈A N(αβ•); N(•βγ ) is the number of occurrences of triplets ending
with symbols (β, γ ); N(•β•) =∑γ∈A N(•βγ ).

Under Ha, the maximum likelihood estimate of P(xi = α, xi+1 = β, xi+2 = γ ),
i = 1, . . . , N − 2, is given by

P̂Ha(α, β, γ ) = N(αβγ )

N − 2
.



3.2 Additional problems and theory 89

Then under H0 the Pearson χ2-statistic,

χ2 =
∑
α∈A

∑
β∈A

∑
γ∈A

((N − 2)P̂Ha(α, β, γ ) − (N − 2)P̂H0(α, β, γ ))2

(N − 2)P̂H0(α, β, γ )

=
∑
α∈A

∑
β∈A

∑
γ∈A

(N(αβγ )N(•β•) − N(αβ•)N(•βγ ))2

N(αβ•)N(•βγ )N(•β•)
, (3.9)

asymptotically has a χ2-distribution with (|A|2−1)(|A|−1)−l degrees of freedom,
where l is the number of triplets (α, β, γ ), α, β, γ ∈ A, such that the number of
expected counts (N − 2)P̂H0(α, β, γ ) is equal to zero (thus the corresponding l
terms

((N − 2)P̂Ha(α, β, γ ) − (N − 2)P̂H0(α, β, γ ))2

(N − 2)P̂H0(α, β, γ )

cannot be properly defined and they will be absent from the sum for the
χ2-statistic). Application of this test to DNA sequences at a specified sig-
nificance level requires us to compare the observed value of the χ2-statistic
with the critical value of the χ2-distribution with 45 − l degrees of freedom,
while for protein sequences we need the χ2-distribution with 7581 − l degrees
of freedom. If the null hypothesis is rejected, the test for the second order
Markov chain should be carried out in the analogous way. Detailed descrip-
tions of the statistical tests for the independence, homogeneity, Markovity,
and the order of the Markov chain can be found in the classical publications
by Goodman (1959), Billingsley (1961a,b) and Kullback, Kupperman, and Ku
(1962).

Now we come back to the independence model M(0) and assume that it has
been established by the χ2-test that sequence x = x1, . . . , xN is generated by M(0)

with the unknown parameters pα , α ∈ A. Then, we have the maximum likelihood
estimates in Equation (3.6) for the model parameters and we face a logical question:
how close are these estimates to the true values of parameters? The maximum
likelihood estimates p̂α are unbiased:

Ep̂α = E
N(α)

N
= Npα

N
= pα .

The consistency (p̂α →P pα) and the strong consistency (p̂α → pα with
probability 1) of the estimates p̂α follow from the law of large numbers and the
strong law of large numbers, respectively. These properties imply that the estimate
p̂α , α ∈ A, becomes closer to the true value of pα as the sample size (the sequence
x length) N increases.

We designate Pi = Pαi , i = 1, . . . , k, for an alphabet of size k, A = {α1, . . . , αk}.
The asymptotic normality property of a multidimensional maximum likelihood



90 Markov chains and hidden Markov models

estimator (Cox and Hinkley (1974), Sect. 9.2) implies that a random vector Y =
(P̂ − P)

√
N with components Yi = (p̂i − pi)

√
N , i = 1, . . . , k, is asymptotically

a centered Gaussian vector with the covariance matrix R = (rij) = (cov(Yi, Yj)),
i, j = 1, . . . , k, with elements

rii = pi − p2
i , rij = −pipj, i 	= j.

In particular, this means that each component Yi = (p̂i − pi)
√

N of the vector Y is
asymptotically a centered normal random variable.

Next, for the first order ergodic stationary Markov chain with unknown transition
probabilities estimated by (3.7) and stationary distribution π estimated by π̂(α) =
N(α)/N , it is also easy to show that the maximum likelihood estimates π̂(α) are
unbiased:

Eπ̂(α) = 1

N
EN(α) = 1

N

N∑
i=1

P(xi = α)

= 1

N

N∑
i=1

∑
x1,x2,...,xi−1

π(x1)px1,x2 × . . . × pxi−1,α = N

N
π(α) = π(α).

The estimates π̂(α) are consistent, and vector ξ with components ξi = (π̂(αi) −
π(αi))

√
N , i = 1, . . . , k, is asymptotically a centered Gaussian vector (Billingsley

(1961b), Lemma 3.2, Theorem 3.3).
For an alphabet of size k, A = {α1, . . . , αk}, we designate pij = pαiαj ,

i, j = 1, . . . , k. It is also known that the maximum likelihood estimates of transition
probabilities are consistent: p̂ij →P pij, i, j = 1, . . . , k (Billingsley (1961b), The-
orem 4.1). The k2-dimensional vector η = (η11, . . . , η1k , . . . , ηk1, . . . , ηkk) with
components

ηij = N(αiαj) − N(αi)pij√
N(αi)

,

i, j = 1, . . . , k, is an asymptotically centered normal vector (Billingsley, 1961b)
with covariance matrix R = (rij,kl) = (Eηijηsl), i, j, s, l = 1, . . . , k: rij,sl = 0 for
i 	= s, j, l = 1, . . . , k; rij,ij = pij − p2

ij for i, j = 1, . . . , k; rij,il = −pijpil for
i, j, l = 1, . . . , k, j 	= l.

These theoretical results on the asymptotic properties of the maximum likelihood
estimates can be useful for the evaluation of the possible errors of the estimates of
parameters of the statistical models used in bioinformatic algorithms.

Further discussion of the stochastic models for DNA sequences can be found in:
Gatlin (1972); Almagor (1983); Fitch (1983); Karlin and Ghandour (1985); Boro-
dovsky et al. (1986a,b); Churchill (1989); Tavaré and Song (1989); Cowan (1991);
Karlin and Macken (1991); Karlin and Brendel (1992); Karlin and Dembo (1992);



3.2 Additional problems and theory 91

Karlin, Burge, and Campbell (1992); Kleffe and Borodovsky (1992); Schbath
(2000); Robin and Schbath (2001); Ekisheva and Borodovsky (2006).

Problem 3.20 A 4200 nt long DNA sequence is used as a training set for para-
meter estimation of the DNA statistical model. The observed counts of sixteen
dinucleotides, NXY , are as follows:

T C A G

T 510 380 210 190
C 240 170 360 230
A 370 200 220 210
G 190 170 220 220

Find the maximum likelihood estimates of (a) the transition probabilities PTT ,
PAG of the first order Markov model of the DNA sequence; (b) the transition
probabilities PTT , PAG of the first order Markov model for the DNA sequence
complementary to the given training sequence.

Solution (a) For the first order Markov model the maximum likelihood estimates
of transition probabilities are determined by formula (3.7):

P̂TT = NTT∑
X=A,G,C,T NTX

= 51

129
= 0.395;

P̂AG = NAG∑
X=A,G,C,T NAX

= 21

100
= 0.21.

(b) The dinucleotide TT in the complementary strand corresponds to the dinuc-
leotide AA in the direct strand. Therefore, we use the dinucleotide counts known
for the direct strand:

P̂TT = NAA∑
X=A,G,C,T NXA

= 22

101
= 0.218.

Similarly, for the dinucleotide AG (5′ → 3′ direction) situated in the complementary
strand we use the count of the dinucleotide CT (3′ → 5′ direction) situated in the
direct strand. Therefore, we have

P̂AG = NCT∑
X=A,G,C,T NXT

= 24

136
= 0.176.



92 Markov chains and hidden Markov models

Problem 3.21 The 100 nt long sequence x shown below was observed in a
non-coding region of the human genome:

TGACTTCAGTCTGTTCTGCAGAAGTGATTCTGATGTCATGAAACTGCCTG
CACTTGGCTGAGAGGATGATAGGGGCAGAGAAGGGTTGTTTAAGCCATAT

Determine the simplest probabilistic model for sequence x among models M(m),
m ≥ 0, that would pass the fitness test described above at significance level 0.05.
Provide the maximum likelihood estimates of the parameters of this identified
model.

Solution First we check whether the independence model fits sequence x by
using the independence test described above. We find counts of nucleotides and
dinucleotides in sequence x as follows:

N(A•) = 25, N(C•) = 15, N(G•) = 31, N(T•) = 28,

N(•A) = 25, N(•C) = 15, N(•G) = 31, N(•T) = 28;

N(AA) = 6, N(CA) = 5, N(GA) = 12, N(TA) = 2,

N(AC) = 3, N(CC) = 2, N(GC) = 5, N(TC) = 5,

N(AG) = 9, N(CG) = 0, N(GG) = 8, N(TG) = 14,

N(AT) = 7, N(CT) = 8, N(GT) = 6, N(TT) = 7.

Next, the value of the χ2-statistic is calculated by Equation (3.8):

χ2 =
∑

α,β∈{A,C,G,T}

((N − 1)N(αβ) − N(α•)N(•β))2

(N − 1)N(α•)N(•β)
= 19.22.

Since all expected counts (N − 1)P̂H0(α, β) = N(α•)N(•β)/(N − 1), α, β ∈
{A, C, G, T}, are positive, the null hypothesis is tested by comparing the value of the
χ2-statistic with a critical value of the χ2-distribution with nine degrees of freedom
corresponding to significance level 0.05. We have χ2 = 19.22 > 16.92 = χ2

0.05,9;
therefore, H0 must be rejected at the 5% significance level. In other words, the
independence model M does not fit sequence x according to the testing procedure,
with a probability of 0.05 of rejecting M when it is true.

Next, we test the null hypothesis that x is generated by the first order
Markov model M(1). To apply the test based on the χ2-statistic (3.9), we
need the counts of the triplets from alphabet {A, C, G, T}, which are as



3.2 Additional problems and theory 93

follows:

N(AAT) = N(ACA) = N(ACC) = N(ACG) = N(ATC) = N(CAA)

= N(CAC) = N(CCC) = N(CCG) = N(CGA) = N(CGC) = N(CGG)

= N(CGT) = N(CTA) = N(CTC) = N(GCG) = N(GTA) = N(TAC)

= N(TAG) = N(TCC) = N(TCG) = 0;

N(AAA) = N(AAC) = N(AGC) = N(ATT) = N(CCA) = N(CCT)

= N(GCT) = N(GGT) = N(GTG) = N(TAA) = N(TAT) = N(TTA)

= N(TTT) = 1;

N(AGG) = N(AGT) = N(ATA) = N(CAT) = N(CTT) = N(GAC)

= N(GAG) = N(GCA) = N(GCC) = N(GGA) = N(GGC) = N(GTC)

= N(TCA) = N(TGC) = N(TTG) = 2;

N(ACT) = N(ATG) = N(CAG) = N(GGG) = N(GTT) = N(TCT)

= N(TGG) = N(TGT) = N(TTC) = 3;

N(AAG) = N(AGA) = N(GAA) = N(GAT) = 4;

N(CTG) = N(TGA) = 6.

We calculate the value of the χ2-statistic (3.9) as follows:

χ2 =
∑

α,β,γ∈{A,C,G,T}

(N(αβγ )N(•β•) − N(αβ•)N(•βγ ))2

N(αβ•)N(•βγ )N(•β•)
= 45.32

and compare it with the critical value of the χ2-distribution with 45 − 7 = 38
degrees of freedom (because seven of the expected counts are equal to zero). Since
χ2 = 45.32 < 58.38 = χ2

0.05,38, H0 should be accepted at the 5% significance level.
Therefore, the first order Markov model has passed the fitness test for the sequence
x. The the maximum likelihood estimates (3.7) of the transition probabilities of the
Markov chain are as follows:

p̂A, A = 0.24, p̂C, A = 0.33, p̂G, A = 0.39, p̂T , A = 0.07,

p̂A, C = 0.12, p̂C, C = 0.13, p̂G, C = 0.16, p̂T , C = 0.18,

p̂A, G = 0.36, p̂C, G = 0.00, p̂G, G = 0.26, p̂T , G = 0.50,

p̂A, T = 0.28, p̂C, T = 0.54, p̂G, T = 0.19, p̂T , T = 0.25.

Note that for a sequence of rather small length (100 nt) the estimates p̂ij are not
very reliable in the sense that the probability that the true values of parameters pij

lie in a close neighborhood of estimates p̂ij for all i, j is small. The increase of the



94 Markov chains and hidden Markov models

length of the training sequence ensures a better approximation to the true values of
the transition probabilities.

Nevertheless, we should remember that real biological sequences cannot be con-
sistently treated as realizations of some theoretical random model. This modeling
is always an approximation, with higher or lower degrees of accuracy depending
on the size and the nature of the real sequence.

Problem 3.22 To sample from the posterior distribution of hidden states paths
{π} of an HMM, given the realization x = x1, . . . , xL, the following algorithm
is proposed. First, a matrix of forward variables F = (fj(i)) is determined by
the forward algorithm for sequence x. Secondly, the path π is constructed from
hidden states πi recursively chosen by the stochastic traceback algorithm. The
recursion goes as follows:

• given the end state, the state πL is chosen with probability

aπL0fπL (L)

P(x)
;

• given the πL state, the state πL−1 is chosen with probability

eπL (xL)aπL−1πL fπL−1(L − 1)

fπL (L)
;

• given the πL−1 state, state πL−2 is chosen with probability

eπL−1(xL−1)aπL−2πL−1 fπL−2(L − 2)

fπL−1(L − 1)
;

…
• given the π2 state, state π1 is chosen with probability

eπ2(x2)aπ1π2 fπ1(1)

fπ2(2)
;

• given the π1 state, the begin state is chosen with probability

eπ1(x1)a0π1

fπ1(1)
= 1.

Show that the algorithm indeed samples from the posterior distribution of the
paths of hidden states.

Solution The posterior probability of a path π = π1, . . . , πL given the observed
sequence x is defined by the following formula:

P(π |x) = P(x, π)

P(x)
= a0π1eπ1(x1)aπ1π2eπ2(x2) · · · aπL−1πL eπL(xL)aπL0

P(x)
.



3.2 Additional problems and theory 95

The algorithm of stochastic sampling described above will select path π with a
probability P equal to the product of probabilities Pi of choosing its consecutive
states πi:

P =
1∏

i=L

Pi

= aπL0fπL(L)

P(x)

eπL(xL)aπL−1πL fπL−1(L − 1)

fπL(L)

× eπL−1(xL−1)aπL−2πL−1 fπL−2(L − 2)

fπL−1(L − 1)
· · ·

× eπ2(x2)aπ1π2 fπ1(1)

fπ2(2)

eπ1(x1)a0π1

fπ1(1)
,

We see that in the last ratio the same forward variables fπi(i) appear in both the
numerator and the denominator. After canceling out all fπi(i), we obtain

P = a0π1eπ1(x1)aπ1π2eπ2(x2) . . . aπL−1πL eπL(xL)aπL0

P(x)
= P(π |x).

Thus, the proposed stochastic traceback algorithm is a recurrent implementation of
the sampling from the posterior distribution of the hidden state trajectories given
the sequence x.

3.2.2 Bayesian approach to sequence composition analysis:
the segmentation model by Liu and Lawrence

Theoretical introduction to Problem 3.23

In biological sequence analysis we frequently have to select a particular probabilistic
model (such as an independence model, a Markov chain, an HMM) with statist-
ical properties as close as possible to those observed in a real sequence. Having
selected the model type, traditional statistical inference relies on the point estim-
ates of unknown model parameters, which are routinely obtained by the maximum
likelihood method (see the theoretical introduction to Problems 3.20 and 3.21).

The Bayesian approach to sequence composition analysis also starts with the
selection of the model type. After selecting a probabilistic model, Bayesian stat-
istics treats all unknown parameters of the model, along with observed data and
missing data, as random variables and assigns appropriate prior distributions to
all of them. The goal of this approach is to use the data to obtain the posterior
distributions of all unknown parameters rather than their point estimates, as in
the traditional frequentist approach. Therefore, Bayesian inference relies on the
posterior distributions of parameters.



96 Markov chains and hidden Markov models

Liu and Lawrence (1999) developed a Bayesian method for sequence compos-
ition analysis based on the basic segmentation model (see also Braun and Müller,
1998) which can be described as follows. We consider a set of M independ-
ence models for an alphabet of size D; the ith model has unknown parameters
(θ1,i, θ2,i, . . . , θD,i) = 
i (
i 	= 
i+1, i = 1, . . . , M − 1). The basic segmentation
model can serve as a model for heterogeneity in the composition of DNA or protein
sequences with D = 4 or D = 20, respectively. A sequence x = x1, . . . , xN of
symbols from the alphabet is generated by the basic segmentation model as fol-
lows: the first C1 symbols are generated by the first model, the next C2 symbols
are generated by the second model, and so on. Finally, the last Cµ+1 symbols of
sequence x are generated by the model µ + 1, µ ≤ M − 1. A vector of change
points Am, m = 1, . . . , µ, consists of integers Am = ∑m

i=1 Ci + 1. The number of
change points µ and the vector of change points A = (A1, A2, . . . , Aµ) are unknown.
We assume that the observed data (sequence x), the missing data (the number of
change points µ and the random vector of change points A = (A1, A2, . . . , Aµ)), and
the parameters of the independence models are random variables, and that a priori
� (
1, . . . , 
M) = � and µ are independent. Given the prior probabilities P(µ),
P(A|µ), P(
i), Bayes’ theorem is applied to determine the posterior probability of
random variable ψ (ψ = µ, Am (m = 1, . . . , µ), parameters of the independence
model 
(j) at position j, j = 1, . . . , N):

P(ψ |x) = P(x, ψ)

P(x)
.

The probabilities P(x) and P(x, ψ) can be calculated from the joint distribution of all
variables P(x, A, �, µ) by integration (or summation). Since the joint distribution
can be written as

P(x, A, �, µ) = P(x|A, �)P(A|µ)P(µ)P(�),

for P(x) we have

P(x) =
M∑

m=1

P(µ = m)
∑

A:||A||=m

P(A|µ = m)

∫
�

P(x|A, �) d�. (3.10)

Here the inner sum is taken over all possible sets of m change points. A natural choice
of a prior distribution for parameter 
i = (θ1,i, θ2,i, . . . , θD,i) of the independence
model i is the conjugate prior D(αi), the Dirichlet distribution with parameter
αi = (α1,i, α2,i, . . . , αD,i), such that the mean of θk,i is αk,i/

∑
l αl,i. Then, from



3.2 Additional problems and theory 97

Equation (3.10) we derive

P(x|µ = m) =
∑

A:||A||=m

P(A|µ = m)

∫
�

P(x|A, �)d�

=
∑

A:||A||=m

P(A|µ = m)

m∏
i=1

�(
∑

d αd,i)
∏

d �(nd,i + αd,i)∏
d �(αd,i)�(Ci +∑d αd,i)

. (3.11)

Here �(y) is the gamma function; nd,i is the count of symbols of type d in the
ith segment x[Ai−1 : Ai) = (xAi−1 , . . . , xAi − 1) for the set (A1, A2, . . . , Am, Am+1),
Am+1 = N + 1; and

∑
d nd,i = Ci. Dynamic programming is used to complete the

summation in Equation (3.11). If P(x[i : j]|m) denotes the probability of observing
the subsequence x[i : j] = (xi, . . . , xj) given that it consists of m segments, then for
the recursion equation we have

P(x[1 : j]|m) =
∑
l<j

P(x[1 : l]|m − 1)P(x[l : j]|1). (3.12)

The posterior distribution of Am can be determined from the following equation:

P(for some m Am = l|x) = 1

P(x)

∑
µ≤M

µ∑
m=1

P(x[1 : l]|m)P(x(l : j]|µ − m).

(3.13)

Since the change points A1, A2, . . . , Aµ are mutually dependent random variables,
the posterior distribution of the random vector A cannot be determined as a product
of distributions (3.13) of components Am. However, an approximate distribution
of A can be obtained by applying Monte Carlo sampling: we take a draw from the
posterior distribution of µ = m, fix Am, and find the change points A1, A2, . . . , Am−1

by recursively sampling backward from the distribution:

P(Ai−1 = j|x, Ai = k) = P(x[1 : j]|i − 1)P(x(j : k]|1)

P(x[1 : k]|i) .

Averaging over the draws yields a distribution which converges to the posterior
distribution of the random vector of change points as the number of draws increases.
Finally, the posterior distribution of the symbol probabilities at each position can
also be obtained from the symbol frequencies given a segmentation by averaging
over all possible segmentations.

Problem 3.23 To illustrate the Bayesian approach to DNA sequence analysis,
we consider a ‘toy’ nucleotide sequence x = GGCA (the same as in Problem
3.17, where x was assumed to be generated by an HMM with two hidden states).
Now we consider x in the context of the basic segmentation model with M = 4.



98 Markov chains and hidden Markov models

The prior probabilities are as follows: P(µ = m) = 1/4, m = 0, 1, 2, 3; P(A :

||A|| = m|µ = m) = (Nm)−1 = (4m)−1
(thus, all possible segmentations with m

change points are equally likely given µ = m); for all independence models 
i,
i = 1, . . . , 4, the prior distribution of parameters (frequencies of nucleotides) is
D(1, 1, 1, 1), the Dirichlet distribution with parameters (αA,i, αC,i, αG,i, αT ,i) =
(1, 1, 1, 1).

Compute the posterior distributions of the number µ of change points, of
the change points Am, m = 1, . . . , µ, and of the probabilities of nucleotides

(j) = (θA(j), θC(j), θG(j), θT (j)) at all positions j of the sequence.

Remark We realize that x is too short to demonstrate anything but the algorithm
itself. Also, since x is a short sequence, we do not use dynamic programming recur-
sions defined by Equations (3.12) and (3.13) to compute the posterior distributions;
instead, we carry out direct computations by considering all possible segmentations.

Solution To calculate P(x|µ = m), m = 0, 1, 2, 3, we apply Equation (3.11). If
µ = 0, sequence x is described by the only independence model with parameters

1, and we have

P(x|µ = 0) = P((GGCA) ∼d 
1) = �(4)

(�(1))4

�(3)(�(2))2�(1)

�(8)
= 1

420
,

P(x|µ = 0)P(µ = 0) = 1

420
× 1

4
= 0.0006. (3.14)

For µ = 1, three segmentations are possible: with A = 2, A = 3, or A = 4. Using
the independence of the distributions, we calculate

P(x|A = 2) = P((G) ∼d 
1)P((GCA) ∼d 
2) = (3!)2

4!6! = 0.0021,

P(x|A = 3) = P((GG) ∼d 
1)P((CA) ∼d 
2) = (3!)22!
(5!)2

= 0.005,

P(x|A = 4) = P((GGC) ∼d 
1)P((A) ∼d 
2) = (3!)22!
4!6! = 0.0042;

P(x|µ = 1)P(µ = 1) = P(x|A = 2, µ = 1)P(A = 2|µ = 1)P(µ = 1)

+ P(x|A = 3, µ = 1)P(A = 3|µ = 1)P(µ = 1)

+ P(x|A = 4, µ = 1)P(A = 4|µ = 1)P(µ = 1)

= 1

12
(P(x|A = 2) + P(x|A = 3) + P(x|A = 4) = 0.0009. (3.15)



3.2 Additional problems and theory 99

Similarly, for µ = 2 and µ = 3 we obtain

P(x|µ = 2)P(µ = 2) = 1

12
(P(x|A = (2, 3), µ = 2) + P(x|A = (2, 4), µ = 2)

+ P(x|A = (3, 4), µ = 2)) = 0.001,

P(x|µ = 3)P(µ = 3) = 1

4
P(x|A = (2, 3, 4), µ = 3)

= 1

4

(3!)4

(4!)4
= 0.001. (3.16)

Equations (3.10) and (3.14)–(3.16) yield the total probability of the sequence x
under the segmentation model:

P(x) =
3∑

m=0

P(x|µ = m)P(µ = m) = 0.0036.

The posterior distribution of the number of change points µ can be found
immediately from Bayes’ theorem as follows:

P(µ = 0|x) = P(x|µ = 0)P(µ = 0)

P(x)
= 0.1676,

P(µ = 1|x) = P(x|µ = 1)P(µ = 1)

P(x)
= 0.264,

P(µ = 2|x) = P(x|µ = 2)P(µ = 2)

P(x)
= 0.2933,

P(µ = 3|x) = P(x|µ = 3)P(µ = 3)

P(x)
= 0.275.

For the posterior distribution of change point Am, Bayes’ theorem gives

P(Am =j for some m|x) =
3∑

i=0

P(Am = j for some m, µ = i|x)

= 1

P(x)

3∑
i=0

P(x|Am = j for some m, µ = i)

× P(Am = j for some m|µ = i)P(µ = i);



100 Markov chains and hidden Markov models

P(Am =2 for some m|x)

= 1

P(x)

(
1

12
P(x|A = (2), κ = 1) + 1

12
P(x|A = (2, 3), µ = 2)

+ 1

12
P(x|A = (2, 4), µ = 2) + 1

4
P(x|A = (2, 3, 4), µ = 3)

)
= 0.470578;

P(Am =3 for some m|x)

= 1

P(x)

(
1

12
P(x|A = (3), µ = 1) + 1

12
P(x|A = (2, 3), µ = 2)

+ 1

12
P(x|A = (3, 4), µ = 2) + 1

4
P(x|A = (2, 3, 4), µ = 3)

)
= 0.612363;

P(Am =4 for some m|x)

= 1

P(x)

(
1

12
P(x|A = (4), µ = 1) + 1

12
P(x|A = (2, 4), µ = 2)

+ 1

12
P(x|A = (3, 4), µ = 2) + 1

4
P(x|A = (2, 3, 4), µ = 3)

)
= 0.592806;

P (no change points|x) = P(µ = 0|x) = 0.167627.

Finally, the posterior probability density function fj(θA, θC , θG, θT |x) of the
probabilities of nucleotides at site j, j = 1, 2, 3, 4, is given by

fj(θA, θC , θG, θT |x) =
∑

segment covering j

P(segment|
j)P(
j)P(segment).

(3.17)

Formula (3.17) allows us to calculate the posterior density functions:

f1(θA, θC , θG, θT |x) =1

4
D(2, 2, 3, 1) + 1

2
D(1, 1, 2, 1) + 1

6
D(1, 1, 3, 1)

+ 1

12
D(1, 2, 3, 1);

f2(θA, θC , θG, θT |x) =1

4
D(2, 2, 3, 1) + 1

12
D(2, 2, 2, 1) + 1

6
D(1, 1, 3, 1)

+ 1

12
D(1, 2, 3, 1) + 1

3
D(1, 1, 2, 1) + 1

12
D(1, 2, 2, 1);



3.2 Additional problems and theory 101

f3(θA, θC , θG, θT |x) =1

4
D(2, 2, 3, 1) + 1

12
D(2, 2, 2, 1) + 1

6
D(2, 2, 1, 1)

+ 1

12
D(1, 2, 3, 1) + 1

12
D(1, 2, 2, 1) + 1

3
D(1, 2, 1, 1);

f4(θA, θC , θG, θT |x) =1

4
D(2, 2, 3, 1) + 1

12
D(2, 2, 2, 1) + 1

6
D(2, 2, 1, 1)

+ 1

2
D(2, 1, 1, 1). (3.18)

Note that each posterior density function of probabilities of nucleotides is a mixture
of the Dirichlet distributions. From (3.18) we determine the posterior mean estimate
(PME) of probability of each nucleotide at site j, j = 1, 2, 3, 4, as follows:

E1θA = 0.2022, E2θA = 0.2065,

E1θC = 0.2141, E2θC = 0.2323,

E1θG = 0.4128, E2θG = 0.429,

E1θT = 0.1709; E2θT = 0.1634;

E3θA = 0.2343, E4θA = 0.3487,

E3θC = 0.3268, E4θC = 0.2419,

E3θG = 0.2755, E4θG = 0.2453,

E3θT = 0.1634; E4θT = 0.1709.

Remark Use of the HMM defined in Problem 3.16 to the model sequence x =
GGCA allows us to compute the posterior distribution of the ‘change points’ via the
forward and backward variables determined in Problem 3.17. Actually, we should
calculate the posterior probabilities of events Aj =(hidden states at sites j − 1 and
j are not the same), j = 2, 3, 4. Note that P(x) was determined in Problem 3.17 and
is equal to 0.0038. We obtain

P(A2|x) = P(π1 = H, π2 = L|x) + P(π1 = L, π2 = H|x)
= P(π1 = H, π2 = L, x)

P(x)
+ P(π1 = L, π2 = H, x)

P(x)

= 1

P(x)
(P(x1, x2, x3, x4, π1 = H, π2 = L)

+ P(x1, x2, x3, x4, π1 = L, π2 = H))



102 Markov chains and hidden Markov models

= 1

P(x)
[P(x1, x2, π1 = H, π2 = L)P(x3, x4|x1, x2, π1 = H, π2 = L)

+P(x1, x2, π1 = L, π2 = H)P(x3, x4|x1, x2, π1 = L, π2 = H)]

= 1

P(x)
(a0HeH(G)aHLeL(G)bH(2) + a0LeL(G)aLHeH(G)bL(2))

= 0.2389 + 0.1983 = 0.4372.

Similarly, for other posterior probabilities we have

P(A3|x) = 1

P(x)
(P(x1, x2, x3, x4, π2 = H, π3 = L)

+ P(x1, x2, x3, x4, π2 = L, π3 = H))

= 0.2334 + 0.2108 = 0.4442;

P(A4|x) = 1

P(x)
(P(x1, x2, x3, x4, π3 = H, π4 = L)

+ P(x1, x2, x3, x4, π3 = L, π4 = H))

= 0.3279 + 0.1392 = 0.4671.

3.3 Further reading

Since the publication of BSA a remarkably large number of publications have
appeared on the subject of the applications of Markov chains and HMMs for bio-
logical sequences. We are able to provide just a few references to frequently cited
papers published since 1997.

Markov chains and hidden Markov models provide a useful formalism for
genomic sequence modeling and are frequently employed in gene prediction meth-
ods and algorithms. Burge and Karlin (1997) in their gene finding computer
program GENSCAN used a three-periodic (inhomogeneous) fifth order Markov
chain to model coding regions of DNA sequences. The GeneMark.hmm algorithm
(Lukashin and Borodovsky, 1998) uses the HMM framework with gene boundaries
modeled as transitions between hidden states; GLIMMER, an algorithm for gene
finding in microbial genomes (Salzberg et al., 1998), uses the interpolated Markov
models.

Karplus, Barrett, and Hughey (1998) described the SAM-T98 method for finding
remote homologs of protein sequences; Tusnády and Simon (1998) proposed a new
method to search maximum likelihood transmembrane topology among all possible
topologies of a given protein; Bystroff, Thorsson, and Baker (2000) introduced
the HMMSTR, a hidden Markov model for the three-dimensional protein structure
prediction based on the I-sites, the sequence-structure motifs; Gough et al. (2001)



3.3 Further reading 103

suggested a method of assignment of homologs to protein products encoded in
genomes by using a library of HMMs representing all proteins of known structure;
Frith, Hansen, and Weng (2001) described a new method for detecting regulatory
regions in DNA sequences by searching for clusters of cis-elements; Krogh et al.
(2001) designed the TMHMM method for membrane protein topology prediction;
Löytynoja and Milinkovitch (2003) proposed a new algorithm for multiple sequence
alignment that combines an HMM approach, a progressive alignment algorithm,
and a probabilistic model of evolution describing substitutions of nucleotides or
amino acids.



4

Pairwise alignment using HMMs

In the BSA Chapter 3 we learned that a DP algorithm for pairwise sequence
alignment allows a probabilistic interpretation. Indeed, the equivalent equations
appear in the logarithmic form of the Viterbi algorithm for the hidden Markov
model of a gapped sequence alignment. The hidden states of such a model, called a
pair HMM, correspond to the alignment match, the x-gap, and the y-gap positions.
The pair HMM state diagram is topologically similar to the diagram of the finite
state machine (Durbin et al. (1998), Fig. 4.1), although the pair HMM paramet-
ers have clear probabilistic meanings. The optimal finite state machine alignment
found by standard DP is equivalent to the most probable path through the pair HMM
determined by the Viterbi algorithm. Both global and local optimal DP alignment
algorithms have Viterbi counterparts for suitably defined HMMs. Interestingly, the
HMM has an advantage over the finite state machine because the HMM can com-
pute the full probability that sequences X and Y could be generated by a given pair
HMM; thus, a probabilistic measure can be introduced to help establish evolutionary
relationships. This full probabilistic model also defines (i) the posterior distribution
over all possible alignments given sequences X and Y and (ii) the posterior prob-
ability that a particular symbol x of sequence X is aligned to a given symbol y of
sequence Y . However, real biological sequences cannot be considered to be exact
realizations of probabilistic models. This explains the difficulties met by the HMM-
based alignment methods for the similarity search (Durbin et al. (1998), Sect. 4.5),
while more simplistic finite state machine methods perform sufficiently well.

The BSA problems in Chapter 4 illustrate the properties of pair HMMs and
elaborate on the comparison of an HMM and an independence model, both emitting
the symbols from a given alphabet.

The additional problems are concerned with the practical use of pair HMMs for
sequence alignment, computation of the full probability of two aligned sequences,
and computation of either the posterior probability of optimal path or the posterior
probability of a given pair of symbols to be aligned. The relationship between the

104



4.1 Original problems 105

Figure 4.1. Independence random model R emitting a pair of sequences.

parameters of the log-odds score version of the Viterbi algorithm for pair HMM
and the parameters of the classic DP alignment algorithm with affine gap scores is
considered last.

4.1 Original problems

Problem 4.1 An independence pair-sequence model, R, is shown in Figure 4.1.
The main states X and Y emit two full sequences x and y in turn independently of
each other. A silent state S between X and Y , as well as begin and end states, does
not emit any symbols. Each main state has a loop onto itself with probability
1 − η and transition probabilities from Y to end state and from S to end state
are equal to η. What is the probability that sequence x has length t under the
independence pair-sequence model R?

Solution Let Lx, Ly be the lengths of sequences x and y. First, we will find the
probability that Lx = t under conditions Lx ≤ n, Ly ≤ m for some integers n,
m. Since we are interested in the length distributions only, we can leave out the
emission probabilities. For integer t such that t > n,

P(Lx = t|Lx ≤ n, Ly ≤ m) = 0.

If t ≤ n, we obtain

P(Lx = t|Lx ≤ n, Ly ≤ m) = P(Lx = t, Lx ≤ n, Ly ≤ m)

P(Lx ≤ n, Ly ≤ m)

= P(Lx = t, Ly ≤ m)

P(Lx ≤ n, Ly ≤ m)

=
∑m

l=0 P(Lx = t, Ly = l)∑n
k=0
∑m

l=0 P(Lx = k, Ly = l)

=
∑m

l=0 η2(1 − η)t+l∑n
k=0
∑m

l=0 η2(1 − η)k+l
= (1 − η)t∑n

k=0(1 − η)k

= η(1 − η)t

(1 − (1 − η)n)
. (4.1)



106 Pairwise alignment using HMMs

Note that the conditional probability P(Lx = t|Lx ≤ n, Ly ≤ m) does not depend on
m due to the independence of sequences x and y. If the restriction on the sequence
x length is removed (so n = +∞) then Equation (4.1) becomes

P(Lx = t) = η(1 − η)t .

Problem 4.2 What is the expected length of sequences from the independence
pair-sequence model R introduced in Problem 4.1? How should the parameter η

be set?

Solution The formula for the expected length of sequences x and y under conditions
Lx ≤ n and Ly ≤ m for some integers n, m, is derived as a direct continuation
of Problem 4.1. For the conditional expectation of the length Lx we obtain from
Equation (4.1) the following:

E(Lx|Lx ≤ n, Ly ≤ m) =
n∑

k=0

kP(Lx = k|Lx ≤ n, Ly ≤ m)

=
n∑

k=0

k
η(1 − η)k

(1 − (1 − η)n)
= η

(1 − (1 − η)n)

n∑
k=0

k(1 − η)k

= η

(1 − (1 − η)n)

(1 − η)(1 − (n + 1)(1 − η)n + n(1 − η)n+1)

η2

= (1 − η)(1 − (n + 1)(1 − η)n + n(1 − η)n+1)

η(1 − (1 − η)n)
.

Similarly, for the conditional expectation of the length Ly we have

E(Ly|Lx ≤ n, Ly ≤ m) = (1 − η)(1 − (m + 1)(1 − η)m + m(1 − η)m+1)

η(1 − (1 − η)m)
.

Finally, if the lengths of the sequences generated by model R are not restricted, the
expected lengths become

ELx = ELy = 1 − η

η
.

Therefore, if the characteristic length L of sequences x and y is known, it is reas-
onable to set the parameter η in the independence pair-sequence model R equal to
1/(L + 1).

Problem 4.3 An example of uncertainty in positioning a gap is shown below
(three significantly different gap placements in the globin alignments π1, π2, π3



4.1 Original problems 107

with very similar scores):

HBA_HUMAN KVADALTNAVAHVD-----DMPNALSALSDLH
KV + +A ++ +L+ L+++H

LGB2_LUPLU KVFKLVYEAAIQLQVTGVVVTDATLKNLGSVH

HBA_HUMAN KVADALTNAVAHVDDM-----PNALSALSDLH
KV + +A ++ +L+ L+++H

LGB2_LUPLU KVFKLVYEAAIQLQVTGVVVTDATLKNLGSVH

HBA_HUMAN KVADALTNA-----VAHVDDMPNALSALSDLH
KV + +A V V +L+ L+++H

LGB2_LUPLU KVFKLVYEAAIQLQVTGVVVTDATLKNLGSVH

The scores of alignments π1, π2, and π3 calculated using BLOSUM50 (see
Table 2.1) with gap-open penalty −12 and gap-extension penalty −2 are 3, 3
and 6, respectively. The relative scores for gap position variants depend only
on the substitution scores, not the gap scores. Why is this, and what are the
consequences for alignment accuracy using DP algorithms?

Solution Each of the three given alignments has one gap of length 5. Since the gap
penalty depends on the gap length only, the three gaps make equal contributions to
the alignment scores. Hence, the difference between the total alignment scores is
due only to the differences in the substitution scores associated with each alignment.

The first two alignments have equal total scores and, hence, equal sums of sub-
stitution scores, while the sum of substitution scores for the last alignment is larger
by 3 than for the first two alignments.

Such an outcome is natural for the gap penalty function independent of the
gap position in the alignment. The gap score with position dependence could be
introduced for the protein sequence alignment by assignment of higher gap-open
and gap-extension penalties for the polypeptide regions with a regular secondary
structure (α-helix or β-strand). This option, though, comes at a price since at the
pre-processing step it requires the determination of protein secondary structures for
both sequences to be aligned.

To summarize, the sequence alignment DP algorithm with position-independent
gap penalties generates as many optimal alignments as there are possibilities of
shifting gaps around the best alignment without changing the sum of substitution
scores. Such a set of alignments with equal scores has to be reviewed by experts
in order to select the variant adequate from structural, functional, and evolutionary
points of view.



108 Pairwise alignment using HMMs

Figure 4.2. Example HMM.

Problem 4.4 Figure 4.2 shows an example of a simple HMM: state A emits
symbols with probabilities qa and the sequential block B of four states emits
a fixed string abac with probability 1. Show that using the full probabilistic
independence model with this example HMM allows discrimination between
model and random data.

Solution This problem is not a simple one. We consider two stochastic models
generating sequences of symbols from the same alphabet: the HMM shown in
Figure 4.2 (model M) and an independence model (model R), which generates
symbols with the same emission probabilities qa as defined for state A of model
M. For an observed sequence x = x1, . . . , xn we have to identify the most likely
model, M or R, that generates sequence x. To make a decision, we compare the
posterior probabilities of the models, P(M|x) and P(R|x). Assuming that the prior
probabilities of the models are equal, the ratio of posterior probabilities becomes
the odds ratio as follows:

P(M|x)
P(R|x) = P(x|M)

P(x|M) + P(x|R)

P(x|M) + P(x|R)

P(x|R)
= P(x|M)

P(x|R)
.

Thus, all we need is to compare the likelihoods of the models, P(x|M) and P(x|R).
To solve this problem step by step, we start with two special types of sequence x.

(1) If the sequence x = x1, . . . , xn contains no strings abac, then P(x|R) =∏n
i=1 qxi ,

P(x|M) = αn∏n
i=1 qxi , and P(x|R) > P(x|M) for any value of transition probability

α. Therefore, a sequence x with no strings abac is more likely to be produced by the
independence model R.

(2) If x = abac, then P(x|R) = q2
aqbqc, while P(x|M) is determined by the formula of

total probability

P(x|M) = P(x, A|M) + P(x, B|M).



4.1 Original problems 109

Here P(x, A|M) is the probability that abac is generated by state A (in four steps) and
P(x, B|M) is the probability that abac is generated by block B. Therefore,

P(x|M) = α4q2
aqbqc + (1 − α).

To compare the conditional probabilities, it is convenient to analyze the value �:

� = P(x|M) − P(x|R) = α4η + (1 − α) − η = (α − 1)(η(α + 1)(α2 + 1) − 1),

where η stands for q2
aqbqc. Since α − 1 is always negative, the sign of � is determined

by the sign of the second factor. For the function η of three variables,
η = η(x, y, z) = x2yz, with x, y, z all from interval [0, 1] and x + y + z = a ≤ 1,
we have

η(x, y, z) = η(x, y) = x2y(a − x − y) = ax2y − x3y − x2y2.

To determine the maximum value of η for x, y ∈ [0, 1], we solve the following system
of equations:

∂η

∂x
= 2axy − 3x2y − 2xy2 = xy(2a − 3x − 2y) = 0,

∂η

∂y
= ax2 − x3 − 2x2y = x2(a − x − 2y) = 0.

The values of the variables which maximize η are x∗ = a/2, y∗ = a/4, z∗ = a/4, and
the maximum value itself is η(x∗, y∗, z∗) = a4/64. Thus, the parameter η satisfies the
inequality 0 ≤ η ≤ 1/64 for any choice of emission probabilities q, and the term
η(α + 1)(α2 + 1) − 1 is negative. Therefore, � is positive, P(x|M) > P(x|R), and the
odds ratio r becomes

r = P(x|M)

P(x|R)
= α4q2

aqbqc + (1 − α)

q2
aqbqc

= α4η + (1 − α)

η
> 1, (4.2)

with the log-odds ratio S(x) = log P(x|M)/P(x|R) > 0. Thus, the observation of
sequence abac allows us to identify model M as the source of the sequence regardless
of the values of emission and transition probabilities.

(3) Finally, we consider the general case of sequence x = x1, . . . , xn containing k,
0 ≤ k ≤ n/4, strings abac. In this case, the likelihood of the independence model R is
given by

P(x|R) = (q2
aqbqc)

k
∏

xi:xi /∈X

qxi = ηk
∏

xi:xi /∈X

qxi ,

where X is a subsequence of sequence x that makes up k strings abac in x (note that
strings abac cannot overlap). The likelihood of model M is calculated as
P(x|M) =∑π P(x, π |M), where the sum is taken over all paths π generating the
observed sequence x. If path π emits l strings abac from state A (each string in four
consecutive steps) and k − l strings abac from block B, the joint probability of x and
π is given by

P(x, π |M) = (α4q2
aqbqc)

l(1 − α)k−lαn−4k
∏

xi:xi /∈X

qxi .



110 Pairwise alignment using HMMs

The number of such paths π is equal to
(k

l

)
and the likelihood of model M becomes:

P(x|M) =
(

k∑
l=0

(
k

l

)
(α4q2

aqbqc)
l(1 − α)k−lαn−4k

) ∏
xi:xi /∈X

qxi

=
(

k∑
l=0

(
k

l

)
α4lηl(1 − α)k−lαn−4k

) ∏
xi:xi /∈X

qxi

= αnηk

(
k∑

l=0

(
k

l

)(
1 − α

α4η

)k−l
) ∏

xi:xi /∈X

qxi

= αnηk
(

1 + 1 − α

α4η

)k ∏
xi:xi /∈X

qxi .

Then the odds ratio is given by

P(x|M)

P(x|R)
= αn
(

α4η + (1 − α)

α4η

)k

= αn−4k
(

α4η + (1 − α)

η

)k

= αn−4krk ,

where r is defined in Equation (4.2) and r > 1. Therefore, for the log-odds ratio we
have

S(x) = log
P(x|M)

P(x|R)
= (n − 4k) log α + k log r.

Obviously, the value of P(x|M)/P(x|R) depends on parameters n and k. If k = 0, then
sequence x with no strings abac is more likely to be generated by the independence
model R (see case (1) above).

If k = n/4, then
P(x|M)

P(x|R)
= rn/4 > 1

and x is more likely to be generated by model M.
As k increases from zero to n/4, the odds ratio P(x|M)/P(x|R) increases from

αn < 1 to rn/4 > 1 with P(x|M) = P(x|R) when k = k∗, where

k∗ = n log α

4 log α − log r
= n log α

log(α4q2
aqbqc) − log(α4q2

aqbqc + 1 − α)
.

Therefore, we conclude that for k < k∗ sequence x is identified as one generated by
model R; for k > k∗ as one generated by model M; for k = k∗ no model is selected.
As expected, a sequence x with a high ‘density’ of strings abac is identified as one
generated by model M.

Problem 4.5 Compare using the full probabilistic model in Problem 4.4 with
using the Viterbi path in the model M, in which the transition probability to B
has been raised to τ such that τ > PA(abac).



4.1 Original problems 111

Solution We need to return to the solution of Problem 4.4 and use the probability
of the Viterbi path instead of the full probability of the observed sequence.

(1) If sequence x = x1, . . . , xn contains no strings abac, then both models M and R have
only one path of hidden states to generate this sequence, with P(x|R) =∏n

i=1 qxi ,
P(x|M) = αn∏n

i=1 qxi . Then P(x|R) > P(x|M) regardless of the value of transition
probability α, and sequence x is identified as one generated by the independence
model R.

(2) If x = abac, then the likelihood of model R is P(x|R) = q2
aqbqc = η. Given the model

M and the condition τ > PA(abac), the most probable path π∗ goes through block B.
Thus,

P(x, π∗|M) = P(x, B|M) = 1 − α.

Then the odds ratio is given by

r = P(x, π∗|M)

P(x|R)
= 1 − α

q2
aqbqc

= 1 − α

η
. (4.3)

Hence, if α < 1 − η, then r > 1 and model M is identified as the source of sequence x;
if α > 1 − η, then r < 1 and the more likely source of x is the independence model R.

(3) Now, if sequence x = x1, . . . , xn contains k, 0 ≤ k ≤ n/4, strings abac, the likelihood
of model R (with only one path corresponding to x) is the same as it was in
Problem 4.4:

P(x|R) = (q2
aqbqc)

k
∏

xi:xi /∈X

qxi = ηk
∏

xi:xi /∈X

qxi .

To generate x on the Viterbi path π∗ through model M, all k strings abac have
to be emitted from block B. Therefore, the joint probability of x and π∗ is given by

P(x, π∗|M) = (1 − α)kαn−4k
∏

xi:xi /∈X

qxi .

Then we find
P(x, π∗|M)

P(x|R)
= αn−4k

(
1 − α

η

)k

= αn−4krk ,

with r defined as in Equation (4.3). Then, the log-odds ratio becomes

S(x) = log
P(x, π∗|M)

P(x|R)
= (n − 4k) log α + k log r.

If α < 1 − η = 1 − q2
aqbqc, then r > 1 and the value of the odds ratio

P(x, π∗|M)/P(x|R) depends on parameters n and k. From Equation (4.3), we derive
that P(x, π∗|M) = P(x, R) if

k = n log α

4 log α − log r
= n log α

log(α4q2
aqbqc) − log(1 − α)

= k∗.



112 Pairwise alignment using HMMs

Therefore, if string abac occurs in sequence x k times and k < k∗, then model R
is identified as the source of sequence x; for k > k∗, model M is identified as the
source of x.

If α > 1 − η = 1 − q2
aqbqc, then r < 1 and

P(x, π∗|M)

P(x|R)
= αn−4krk < 1.

In this case, regardless of the number k of occurrences of string abac in sequence
x, the independence model R is identified as the source of sequence x.

Remark Here we see again that the use of the Viterbi path probabilities for the
model comparison may lead to a different conclusion when compared with the use
of the full likelihoods of the models (considered in Problem 4.4). Since the full
probabilistic approach is more accurate and produces a more reliable identification
of the model behind the data, we see here again the warning that a shortcut to the
Viterbi path may end up in erroneous decisions in the model selection.

Problem 4.6 We can modify the model further by setting all the emission prob-
abilities at A to the same value, 1/A, where A is the alphabet size. The difference
between this model and the independence model with the same emission prob-
abilities is then precisely the number of strings abac in the data. Is the quality
of discrimination for the modified model the same as for the full probabilistic
model?

Solution We have to go through the solution of Problem 4.5 and make modifica-
tions if necessary.

(1) The case of sequence x = x1, . . . , xn with no strings abac is not affected. The
log-odds ratio is, as before,

S(x) = log
P(x|M)

P(x|R)
= log

αn∏n
i=1 qxi∏n

i=1 qxi

= n log α < 0.

Hence, sequence x is always identified as one generated by independence model R.
(2) If x = abac, then, as proved in Problem 4.5, for the Viterbi path π∗ the odds ratio r is

given by

r = P(x, π∗|M)

P(x|R)
= 1 − α

q2
aqbqc

.

If the transition probability α satisfies the condition

α < 1 − q2
aqbqc = 1 − 1

A4
,

then r > 1 and sequence x is identified as one generated by model M; if
α > 1 − (1/A4), then r < 1 and x is identified as a sequence generated by
independence model R.



4.2 Additional problems 113

(3) In the general case of sequence x = x1, . . . , xn containing k, 0 ≤ k ≤ n/4, strings
abac, the odds ratio involving the Viterbi path π∗ through model M, found in
Problem 4.5, becomes

P(x, π∗|M)

P(x|R)
= αn−4k

(
1 − α

q2
aqbqc

)k

= αn−4k
(

1 − α

A4

)k

.

If α < 1 − (1/A4), then the odds ratio depends on parameters n and k. For

k = k∗ = n log α

4 log Aα − log(1 − α)

no decision can be made since P(x, π∗|M) = P(x|R). If k < k∗, model R is
identified as the source of sequence x; if k > k∗, model M is identified as the
source of sequence x.

If α > 1 − (1/A4), then the odds ratio P(x, π∗|M)/P(x|R) < 1 for any k, and x
is identified as a sequence generated by independence model R.

Here is a summary of the decision-making rules derived from the full probabilistic
approach (Problem 4.4) and the approach using the Viterbi path. We assume that all
emission probabilities q are equal to 1/A. The critical values k∗

1 and k∗
2 are given by

k∗
1 = n log α

4 log(αA) − log((αA)4 + 1 − α)

for the full probabilistic test T1 and

k∗
2 = n log α

4 log(αA) − log(1 − α)

for the test T2 based on the Viterbi path. Note that k∗
1 < k∗

2 .
The source of sequence x of length n with k strings abac is identified as follows.

If α < 1 − (1/A4) there are three possible cases.

(1) For k < k∗
1 both tests identify the independence model R.

(2) For k∗
1 < k < k∗

2 , the tests give different results: test T1 identifies model M, while test
T2 identifies model R.

(3) For k > k∗
2 , both tests identify model M.

If α > 1 − (1/A4), test T2 always identifies model R; however, test T1 identifies
model R for k < k∗

1 , and model M otherwise.

4.2 Additional problems

The four problems included in this section are practical exercises on using pair
HMMs: constructing the optimal alignment of two sequences by using the Viterbi



114 Pairwise alignment using HMMs

Figure 4.3. Full probabilistic version of the pair HMM emitting aligned sequences
x and y.

algorithm (Problem 4.7); calculating the probability that these sequences are related
according to the pair HMM by using the forward algorithm (Problem 4.8); finding
the posterior probabilities of an alignment, an aligned pair of symbols, as well as
the expected accuracy of a given alignment (Problems 4.9 and 4.10).

Derivation of the Viterbi algorithm equations in log-odds terms is the goal of
Problem 4.11. The log-odds scores that replace probabilistic functions naturally
originate from the likelihood ratios of a pair HMM and an independence pair-
sequence model.

Problem 4.7 The pair HMM shown in Figure 4.3 generates two aligned DNA
sequences x and y. State M emits aligned pairs of nucleotides with emission
probabilities Pxiyj defined as follows:

PTT = PCC = PAA = PGG = 0.5, PCT = PAG = 0.05,

PAT = PGC = 0.3, PGT = PAC = 0.15.

The insert states X and Y emit (aligned with gaps) symbols from sequences x and
y, respectively. The emission probabilities are the same for both insert states:

qA = qC = qG = qT = 0.25.

No symbols are emitted by begin and end states. The values of transition
probabilities are as follows:

πBX = πBY = πMX = πMY = δ = 0.2,

πBH = πMH = πXH = πYO = τ = 0.1,

πXX = πYY = ε = 0.1, πXM = πYM = 1 − ε − τ = 0.8,

πBM = πMM = 1 − 2δ − τ = 0.5.



4.2 Additional problems 115

Use the Viterbi algorithm for pair HMM to find the optimal alignment of DNA
sequences x = TTACG and y = TAG.

Solution An optimal alignment is associated with the most probable path through
the pair HMM generating the aligned sequences x and y. The Viterbi algorithm
starts with the following initialization:

vM(0, 0) = 1, all other v•(i, 0), v•(0, j) = 0. (4.4)

Let v•(i, j) be the probability of emission of the aligned subsequences x1, . . . , xi

and y1, . . . , yj by the pair HMM with the subalignment ending with (a) aligned pair
xi and yj (v•(i, j) = vM(i, j)), (b) residue xi aligned to a gap (v•(i, j) = vX(i, j)), and
(c) residue yj aligned to a gap (v•(i, j) = vY (i, j)). Then the recurrence equations
required to compute the probability values v•(i, j) are as follows:

vM(i, j) = Pxi,yj max




πMMvM(i − 1, j − 1),

πXMvX(i − 1, j − 1),

πYMvY (i − 1, j − 1);

(4.5)

vX(i, j) = qxi max

{
πMXvM(i − 1, j),

πXXvX(i − 1, j);
(4.6)

vY (i, j) = qyj max

{
πMY vM(i, j − 1),

πYY vX(i, j − 1).
(4.7)

We start the calculations as follows:

vM(1, 1) = PTTπMMvM(0, 0) = 0.25, vX(1, 1) = 0, vY (1, 1) = 0;

and continue by using Equations (4.5)–(4.7), filling the computed probability values
v•(i, j) in the cells of the DP matrix (Table 4.1). At the termination step we have:

v = τ max(vM(5, 3), vX(5, 3), vY (5, 3)) = 10−5.

The traceback through the DP matrix determines the optimal path:

vM(5, 3) → vX(4, 2) → vM(3, 2) → vX(2, 1) → vM(1, 1).

The highest-scoring alignment associated with the most probable path π∗ through
the states of the pair HMM is given by

T T A C G
T − A − G

The probability of the optimal path π∗ (and the optimal alignment) is found at the
termination step of the Viterbi algorithm: P(x, y, π∗) = v = 10−5.



116 Pairwise alignment using HMMs

Table 4.1. The matrix of probability values v•(i, j) determined by the Viterbi
algorithm for sequences TTACG and TAG

Each cell (i, j) contains three values, vM(i, j), vX(i, j), and vY (i, j), written in top down
order. Entries on the optimal path are shown in bold.

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

1 0 0 0 0 0
j = 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0.25 0 0 0 0
j = 1 0 0 0.0125 3.125 × 10−4 7.813 × 10−6 1.953 × 10−7

0 0 0 0 0 0

0 0 0.0375 0.005 3.75 × 10−5 3.125 × 10−7

j = 2 0 0 0 0.001875 2.5 × 10−4 6.25 × 10−6

0 0.0125 0 0 0 0

0 0 0.0015 9.375 × 10−4 7.5 × 10−4 10−4

j = 3 0 0 0 7.5 × 10−5 4.688 × 10−5 3.75 × 10−5

0 3.125 × 10−4 0.001875 2.5 × 10−4 1.875 × 10−6 1.563 × 10−8

The PERL and C++ implementations of the Viterbi algorithm for the
pair HMM alignment are available in the Web Supplemental Materials at
opal.biology.gatech.edu/PSBSA.

Remark With the initialization conditions of the Viterbi algorithm for the pair
HMM as suggested in Equations (4.4) (Durbin et al., 1998, p 84), the resulting
alignment of two sequences will always start with a matched pair x1, y1 for any two
sequences x and y. Hence, the alignment generated by a pair HMM with such a
restriction on the initialization step may not be the optimal one.

To allow the discovery of an optimal path which starts with a gap, it suffices to
modify the initialization Equations (4.4) of the algorithm as follows:

vM(0, 0) = 1, vX(0, 0) = 0, vY (0, 1) = 0;
vM(i, 0) = 0, vY (i, 0) = 0, i ≥ 1;
vM(0, j) = 0, vX(0, j) = 0, j ≥ 1.

Problem 4.8 Use the forward algorithm to determine the probability that a pair
of DNA sequences x = TTACG and y = TAG could be generated by the pair
HMM described in Problem 4.7.



4.2 Additional problems 117

Solution The full probability is determined by the formula

P(x, y) =
∑
π

P(x, y, π),

where the sum is taken over all possible paths π through the pair HMM generating
pair of sequences x and y. The value of the full probability can be determined by
the forward algorithm for a pair HMM. For each pair (i, j) the algorithm calculates
the total probability f k(i, j) of all aligned subsequences (x1, . . . , xi) and (y1, . . . , yj)

with the final pair of symbols emitted by the hidden state k (M, X, or Y ). The
forward algorithm starts with initialization:

f M(0, 0) = 1, f X(0, 0) = f Y (0, 0) = 0, all f (i, −1), f (−1, j) = 0.

The values f k(i, j) for i = 0, . . . , 5, and j = 0, . . . , 3 are determined by the following
formulas:

f M(i, j) = Pxiyj(πMMf M(i − 1, j − 1) + πXMf X(i − 1, j − 1)

+ πYMf Y (i − 1, j − 1));

f X(i, j) = qxi(πMXf M(i − 1, j) + πXXf X(i − 1, j);

f Y (i, j) = qyj(πMY f M(i, j − 1) + πYY f Y (i, j − 1).

The values of forward variables appear in the cells of matrix F shown in Table 4.2.
At the termination step we have:

f E(5, 3) = τ(f M(5, 3) + f X(5, 3) + f Y (5, 3)) = 3.632 × 10−5.

Hence, the probability that sequences x and y are generated by the pair HMM with
all variants of alignment is given by

P(x, y) = f E(5, 3) = 3.632 × 10−5.

Remark The forward algorithm implementation as computer programs in
PERL and C++ are included in the Web Supplemental Materials available at
opal.biology.gatech.edu/PSBSA.

Problem 4.9 For sequences x = TTACG and y = TAG find the posterior
probability P(π∗|x, y) of the optimal alignment obtained by the Viterbi algorithm
for the pair HMM as described in Problem 4.7.

Solution The posterior probability of path π∗ is given by the formula

P(π∗|x, y) = P(x, y, π∗)
P(x, y)

.



Ta
bl

e
4.

2.
Fo

rw
ar

d
va

ri
ab

le
s

f•
(i

,j
)

fo
un

d
by

th
e

fo
rw

ar
d

al
go

ri
th

m
fo

r
a

pa
ir

of
se

qu
en

ce
s

T
TA

C
G

an
d

TA
G

,a
nd

th
e

pa
ir

H
M

M
de

fin
ed

in
P

ro
bl

em
4.

7

E
ac

h
ce

ll
(i

,j
)

co
nt

ai
ns

th
re

e
va

lu
es

,f
M

(i
,j

),
fX

(i
,j

),
an

d
fY

(i
,j

),
w

ri
tte

n
in

to
p

do
w

n
or

de
r.

i
=

0
i
=

1
i
=

2
i
=

3
i
=

4
i
=

5

1
0

0
0

0
0

j
=

0
0

0.
5

0.
00

12
5

3.
12

5
×

10
−5

7.
81

3
×

10
−7

1.
95

3
×

10
−9

0
0

0
0

0
0

0
0.

25
0.

02
0.

00
03

1.
25

×
10

−6
9.

37
5

×
10

−8
j
=

1
0

0
0.

01
25

0.
00

13
12

5
4.

78
1

×
10

−5
1.

25
8

×
10

−6
0.

05
0

0
0

0
0

0
0.

01
2

0.
03

75
0.

01
1.

8
×

10
−4

1.
94

4
×

10
−6

j
=

2
0

0
0.

00
06

0.
00

18
9

5.
47

3
×

10
−4

2.
26

8
×

10
−5

0.
00

12
5

0.
01

25
0.

00
1

1.
5

×
10

−5
6.

25
×

10
−8

4.
68

8
×

10
−9

0
1.

5
×

10
−4

0.
00

24
0.

00
10

01
5

0.
00

19
6

2.
63

9
×

10
−4

j
=

3
0

0
7.

5
×

10
−6

1.
20

2
×

10
−4

5.
30

8
×

10
−5

9.
91

9
×

10
−5

3.
12

5
×

10
−5

9.
12

5
×

10
−4

2.
5

×
10

−4
5.

00
4

×
10

−4
9.

00
2

×
10

−6
9.

73
0

×
10

−8



4.2 Additional problems 119

The optimal alignment
T T A C G
T − A − G

was constructed in Problem 4.7. This alignment is associated with the most probable
path π∗ through the pair HMM. It was found that its probability is P(x, y, π∗) =
10−5. The probability that aligned sequences x and y are generated by the HMM is
given by P(x, y) = 3.632 × 10−5 (Problem 4.8). Thus,

P(π∗|x, y) = 10−5

3.632 × 10−5
= 0.275.

Note that there is another optimal alignment π∗∗,

T T A C G
− T A − G

with the same probability P(x, y, π∗∗) = P(x, y, π∗). (The remark to Problem 4.7
explains why this second optimal alignment was not recovered by the traceback
procedure of the Viterbi algorithm.) A combined contribution of these two align-
ments to the full probability value exceeds 55%. This relatively large share can
be explained as follows. First, the number of possible alignments (contributing to
the sum of probabilities) of short sequences x and y is rather small. Indeed, the
pair HMM (Figure 4.3) generates gapped alignments of sequences x and y with no
x-gap following a y-gap and vice versa. In the second remark for Problem 2.6 we
calculated the number |An,m| of such alignments for sequences of lengths n and m.
For sequences of lengths 5 and 3, |A5,3| = 24. Some of these twenty-four gapped
alignments have very small probabilities. For example, the alignment π ′

T T A C G −
− − T − A G

has the probability 3 × 10−9, which is 333 times smaller than the probability of
the optimal alignment and contributes less than 1% to the total probability P(x, y).
And π ′ is not the “worst” alignment in this case!

Problem 4.10 For the sequences x and y defined in Problem 4.7 determine (a)
the posterior probabilities of all aligned pairs in the optimal alignment π∗ and
(b) the expected accuracy of π∗.

Solution (a) We use the notation xi � yj for an aligned pair of symbols in an
alignment of sequences x and y. The posterior probability of an aligned pair is
given by

P(xi � yj|x, y) = P(xi � yj, x, y)

P(x, y)
. (4.8)



120 Pairwise alignment using HMMs

Table 4.3. Backward variables b•(i, j) determined by the backward
algorithm

Each cell (i, j) contains three values, bM(i, j), bX(i, j), and bY (i, j), written in top
down order.

i = 5 i = 4 i = 3 i = 2 i = 1

0.1 0.005 1.25 × 10−4 3.125 × 10−6 7.813 × 10−8

j = 3 0.1 0.0025 6.25 × 10−5 1.563 × 10−6 3.91 × 10−8

0.1 0 0 0 0

0.005 0.25 0.0275 1.131 × 10−4 3.234 × 10−6

j = 2 0 0.04 0.0022 6 × 10−5 1.875 × 10−6

0.0025 0.04 0.0012 5 × 10−6 3.75 × 10−7

1.25 × 10−4 0.00213 0.00195 8.38 × 10−4 7.574 × 10−5

j = 1 0 0.0002 0.00301 0.001175 5.653 × 10−5

6.25 × 10−5 0.0012 0.00303 0.0011 2.716 × 10−5

The joint probability on the right hand side of Equation (4.8) can be calculated
by using forward and backward variables f (i, j) and b(i, j) defined for forward and
backward algorithms for a pair HMM as follows:

P(x, y, xi � yj) = f M(i, j)bM(i, j).

The variables f (i, j) were already calculated (Problem 4.8), and all we need is
to compute the values of b(i, j) using the backward algorithm. The initialization
conditions are as follows:

bM(5, 3) = bX(5, 3) = bY (5, 3) = τ , all b(i, 4), b(6, j) = 0.

The recurrence equations have the following form:

bM(i, j) =(1 − 2δ − τ)Pxi+1yj+1bM(i + 1, j + 1)

+ δ(qxi+1bX(i + 1, j) + qyj+1bY (i, j + 1));

bX(i, j) = (1 − ε − τ)Pxi+1yj+1bM(i + 1, j + 1) + εqxi+1bX(i + 1, j);

bY (i, j) = (1 − ε − τ)Pxi+1yj+1bM(i + 1, j + 1) + εqyj+1bY (i, j + 1).

We calculate the variables b(i, j), i = 5, . . . , 1, j = 3, 2, 1, step by step and fill in
the cells of the matrix of backward variables (Table 4.3).

Remark The implementations of the backward algorithm in PERL and
C++ are available as a part of the Web Supplemental Materials at
opal.biology.gatech.edu/PSBSA.



4.2 Additional problems 121

The optimal alignment π∗ for x and y (determined in Problem 4.7) is

T T A C G
T − A − G

To compute the posterior probabilities for all aligned pairs of π∗, we need the value
of the full probability P(x, y) (computed by the forward algorithm in Problem 4.8).
Thus, we have

P(x1 � y1|x, y) = P(x1 � y1, x, y)

P(x, y)
= f M(1, 1)bM(1, 1)

P(x, y)

= 0.25 × 7.574 × 10−5

3.632 × 10−5
= 0.521;

P(x3 � y2|x, y) = P(x3 � y2, x, y)

P(x, y)
= f M(3, 2)bM(3, 2)

P(x, y)

= 0.01 × 0.00275

3.632 × 10−5
= 0.757;

P(x5 � y3|x, y) = P(x5 � y3, x, y)

P(x, y)
= f M(5, 3)bM(5, 3)

P(x, y)

= 2.639 × 10−4 × 0.1

3.632 × 10−5
= 0.727.

(b) The expected accuracy of the alignment π∗ is given by the following formula
(Durbin et al., 1998, p 96):

A(π∗) =
∑

(i,j)∈π∗
P(xi � yj|x, y),

where the sum is taken over all aligned pairs in π∗. Then

A(π∗) = P(x1 � y1|x, y) + P(x3 � y2|x, y) + P(x5 � y3|x, y) = 2.005,

which yields, on average, 0.668 per aligned pair. Let us compare this result with
the one obtained for the far from optimal alignment π ′ considered in Problem 4.9:

T T A C G −
− − T − A G

The expected accuracy of π ′ is given by

A(π ′) = f M(3, 1)bM(3, 1) + f M(5, 2)bM(5, 2)

P(x, y)
= 0.016

with 0.008 on average per aligned pair.



122 Pairwise alignment using HMMs

Problem 4.11 For the pair HMM (model M) shown in Figure 4.3 the probabil-
istic functions vM , vX , vY of the Viterbi algorithm are defined by the recurrence
Equations (4.5)–(4.7). By addition of the independence pair-sequence model R
shown in Figure 4.1, the derive analogs of these equations in log-odds terms.
Show the relations between the parameters of the probabilistic equations and the
log-odds equations of the Viterbi algorithm.

Solution We assume that states X and Y of models M and R emit a symbol a with
the same probability qa. The full independence pair-sequence model R generates a
pair of sequences x = x1, . . . , xn and y = y1, . . . , ym with probability

P(x, y|R) = η2(1 − η)n+m
n∏

i=1

qxi

m∏
j=1

qyj .

The log-odds scores V̂•(i, j), i = 1, . . . , n, j = 1, . . . , m, are defined by the following
equations:

V̂•(i, j) = log
v•(i, j)

w(i, j)
,

where v•(i, j) is the probability of aligned subsequences x1, . . . , xi and y1, . . . , yj

from either Equation (4.5), Equation (4.6), or Equation (4.7), and w(i, j) is the
probability of these subsequences having being generated by model R. We rewrite
the Viterbi equations in terms of the log-odds scores V̂•(i, j) as follows. The
initialization step takes the form:

V̂M(0, 0) = log
1

η2
= −2 log η, all others V̂(i, 0), V̂(0, j) = −∞.

and the recursion i = 1, . . . , n and j = 1, . . . , m:

V̂M(i, j)

= log
Pxi,yj

qxi qyj

+ max




log
1 − 2δ − τ

(1 − η)2
+ log

vM(i − 1, j − 1)

w(i − 1, j − 1)
,

log
1 − ε − τ

(1 − η)2
+ log

vX(i − 1, j − 1)

w(i − 1, j − 1)
,

log
1 − ε − τ

(1 − η)2
+ log

vY (i − 1, j − 1)

w(i − 1, j − 1)
;

= log
Pxi,yj

qxi qyj

+ log
1 − 2δ − τ

(1 − η)2
+ max




V̂M(i − 1, j − 1),

log
1 − ε − τ

1 − 2δ − τ
+ V̂X(i − 1, j − 1),

log
1 − ε − τ

1 − 2δ − τ
+ V̂Y (i − 1, j − 1);



4.2 Additional problems 123

V̂X(i, j) = max




log
δ

1 − η

vM(i − 1, j)

w(i − 1, j)
,

log
ε

1 − η

vX(i − 1, j)

w(i − 1, j)
;

= max




log
δ

1 − η
+ V̂M(i − 1, j),

log
ε

1 − η
+ V̂X(i − 1, j);

V̂Y (i, j) = max




log
δ

1 − η

vM(i, j − 1)

w(i, j − 1)
,

log
ε

1 − η

vY (i, j − 1)

w(i, j − 1)
;

= max




log
δ

1 − η
+ V̂M(i, j − 1),

log
ε

1 − η
+ V̂Y (i, j − 1).

The termination step is as follows:

V̂ = max(V̂M(n, m), V̂X(n, m), V̂Y (n, m)).

The above equations could be converted into the more conventional DP form if we
define the new set of log-odds scores V•(i, j) by the following formulas:

VM(i, j) = V̂M(i, j) = log
vM(i, j)

w(i, j)
,

VX(i, j) = log
1 − ε − τ

1 − 2δ − τ
+ V̂X(i, j) = log

1 − ε − τ

1 − 2δ − τ
+ log

vX(i, j)

w(i, j)
,

VY (i, j) = log
1 − ε − τ

1 − 2δ − τ
+ V̂Y (i, j) = log

1 − ε − τ

1 − 2δ − τ
+ log

vY (i, j)

w(i, j)
.

Next, we define the substitution scores, gap-open and gap-extension penalties as
follows:

s(a, b) = log
Pab

qaqb
+ log

1 − 2δ − τ

(1 − η)2
,

d = − log
δ(1 − ε − τ)

(1 − η)(1 − 2δ − τ)
,

e = − log
ε

1 − η
.

(4.9)



124 Pairwise alignment using HMMs

Then, the recurrence equations of the Viterbi algorithm in the log-odds form become

VM(i, j) = s(xi, yj) + max




VM(i − 1, j − 1),

VX(i − 1, j − 1),

VY (i − 1, j − 1);

VX(i, j) = max

{
VM(i − 1, j) − d,

VX(i − 1, j) − e;

VY (i, j) = max

{
VM(i, j − 1) − d,

VY (i, j − 1) − e.

The termination is given by:

V = max(VM(n, m), VX(n, m) + c, VY (n, m) + c),

with c = log (1 − 2δ − τ)/(1 − ε − τ). The value V is the log-odds score of the
optimal alignment of sequences x and y associated with the Viterbi path. The Viterbi
path and the optimal alignment can be found by the traceback procedure.
Remark It is easy to give a probabilistic interpretation of the parameters of the
pairwise alignment scoring system in Equation (4.9) if in a pair HMM (Figure 4.3)
transition probabilities to the match state M are equal to each other (1 − 2δ − τ =
1 − ε − τ ).

The term log Pab/qaqb in the substitution score s(a, b) is the log-likelihood ratio
of the emission of pair (a, b) under the pair HMM to the emission of this pair under
the independence pair-sequence model R. The term log(1 − 2δ − τ)/(1 − η)2 is the
log-likelihood ratio of the transition to state M in the pair HMM to two transitions in
the independence pair-sequence model R that increase the lengths of both sequences
x and y by one symbol.

For the gap-open penalty d and the gap-extension penalty e the log-likelihood
ratio of emissions is equal to zero, since emission probabilities from X and Y states
of the HMM and the independence pair-sequence model R are equal. Therefore,
the gap-open penalty d = − log δ/(1 − η) equals the negative log-odds ratio of
transition from match state M to state X or state Y in the pair HMM (which corres-
ponds to the beginning of the gap), to a transition in the independence pair-sequence
model which increases the length of one of sequences x or y by one symbol. Simil-
arly, the gap-extension penalty e = − log ε/(1 − η) becomes the negative log-odds
ratio of a loop from either X or Y to itself in the pair HMM, corresponding to the
continuation of the gap, to a transition in R which increases the length of one of
the sequences x or y by one symbol. Note that in this case parameter c = 0 and the
optimal score of aligned sequences x and y generated by the pair HMM becomes

V = max(VM(n, m), VX(n, m), VY (n, m)).



4.3 Further reading 125

Notably, the scoring system (4.9) with parameters s(a, b), d, and e suitable
for aligning sequences with gaps is the generalization of the scoring system for
ungapped alignments, which is defined solely by the scoring matrix with elements
s(a, b). In that case each substitution score s(a, b) is the log-likelihood ratio of the
observing pair (a, b) under some model of substitutions M to observing the pair
(a, b) under the independence pair-sequence model R (see Section 2.2.1).

4.3 Further reading

Traditionally, pairwise sequence alignments have been constructed with DP
algorithms (Needleman–Wunsch, Smith–Waterman, etc.) without direct reference
to pair HMM. However, recent developments in applications of pair HMMs for
gene prediction that use alignments of DNA syntenic regions have been described
by (Meyer and Durbin 2002, 2004), as well as by Pachter, Alexandersson, and
Cawley (2002). The program DOUBLESCAN (Meyer and Durbin (2002)) predicts
genes in two syntenic DNA sequences from closely related species by retrieving
conserved subsequences within protein-coding and non-coding regions. The Pro-
jector program (Meyer and Durbin (2004)) predicts the genes in a DNA sequence
with an unknown gene content by building an alignment of this sequence with an
annotated DNA sequence of related species.

A novel pairwise statistical alignment method using a pair HMM and the model
of sequence evolution with insertions and deletions was proposed by Knudsen and
Miyamoto (2003).



5

Profile HMMs for sequence families

Classifying biological sequences into families is one of the major challenges of
bioinformatics. In fact, to provide the exact definition of the family (for example,
the protein family) is difficult. Even with the introduction of the notion of a con-
served in evolution protein domain as a structural determinant of a protein family,
to classify multidomain proteins consistently is not a simple task. For practical pur-
poses, nevertheless, it is important to develop efficient computational tools able to
assign a protein translated from a newly predicted gene to one of already established
families, thus characterizing the protein based on its amino acid sequence alone.

Computational tools of protein characterization have to recognize the family-
specific features in a new protein sequence. Frequently, these detectable common
features are manifested as statistically significant structural conservations. The com-
putational tools that are required to solve the classification problem should be able
to (i) make use of known structural patterns specific for a given family, (ii) detect the
family patterns in the new protein sequence by alignment of the new protein to the
family model, and (iii) assess the statistical significance of the detected similarity
in order to help correctly identify the true family members.

These three properties of the protein characterization algorithm are similar to
the properties of the pairwise sequence alignment algorithm, but there are signi-
ficant differences. First, the availability of several sequences makes the differential
scoring of amino acid matches feasible; with matches (mismatches) in conserved
positions receiving higher (lower) scores than scores of similar events in non-
conserved positions. Secondly, the algorithm of alignment of a sequence to a
family model has to reflect the natural difference of the alignment partners, con-
trary to the pairwise alignment where two aligned sequences have equal status.
Thirdly, the method of assessment of the statistical significance has to take into
account the details of the alignment score computation. As this score generat-
ing scheme becomes more complicated compared with the generation of scores

126



5.1 Original problems 127

of pairwise alignment, computational rather than analytical approximations to the
score distributions become necessary.

Position-specific scoring matrices (PSSMs) and non-probabilistic profiles have
been the pioneering, early models of the protein domains, the signatures of protein
families. The former technique has been further developed and implemented in
PSI-BLAST (Altschul et al., 1997) which, during the run, iteratively extracts sets
of similar sequences and updates the current PSSM in semiautomatic fashion.
The motifs of the latter technique could be traced in the frequently used heur-
istic algorithm for multiple sequence alignment called CLUSTAL. Again, since the
real biological sequences cannot be viewed as precise realizations of a particular
probabilistic model, there is no theoretically established superiority of a particular
approach to modeling DNA and protein sequence alignments. Parameters of any
initial theoretical model may require additional corrections due to the world realities
that have not been taken into account. For instance, estimation of the profile HMM
parameters from a given training set (a multiple alignment of several sequences)
frequently needs correction to compensate both for a small sample effects (intro-
ducing pseudocounts) and for a possible bias of the training set towards a subset of
the family (introducing sequence weights).

The problems included in Chapter 5 of BSA illustrate the relationships between
the algorithm of local pairwise alignment and the algorithm of local alignment of a
sequence to a profile HMM. Since the analysis of frequencies of amino acid substi-
tutions in aligned sequences of proteins naturally leads to the analysis of properties
of the substitution log-odds scores, several problems deal with the analytical prop-
erties of the amino acid substitution score matrix and its scaling factor λ. Also
covered is the important topic of assignment of the weights to sequences in the
training set.

The additional problems provide practice of the construction of a sequence to a
profile HMM alignment and of the estimation of parameters of the profile HMM and
the PSSM, with and without use of pseudocounts. Approaches to sequence weights
assignment seem to vary significantly; the additional problems extend further the
discussion of the existing weights assignment methods.

5.1 Original problems

Problem 5.1 The profile HMM for local alignment is shown in Figure 5.1.
Show that this profile HMM yields update equations similar to those of the local
pairwise sequence alignment (introduced by Smith and Waterman, 1981).

Solution First, we have to remind ourselves of the equations of the
Smith–Waterman algorithm, constructing the optimal local alignment with



128 Profile HMMs for sequence families

Figure 5.1. The profile HMM for local alignment. Two flanking model states F1
and F2 emit symbols with the same probabilities qa as states X and Y of the inde-
pendence pair-sequence model R shown in Figure 4.1. The looping probability
1 − η to the flanking states is close to one and is the same as the looping probab-
ilities in R. Two silent states S1 and S2 are shown by double circles. All transition
probabilities from the silent state S1 to the match states Mj, j = 1, . . . , L, and from
match states Mj, j = 1, . . . , L, to the silent state S2 are equal to η/L.

affine gap score for two sequences x = x1, . . . , xn and y = y1, . . . , ym. The algorithm
finds the three dynamic programming matrices VM , VX , and VY with elements
defined as the best scores of local alignment up to symbols xi, yi given that (a) xi

is aligned to yj (VM(i, j)), (b) xi is aligned to a gap (VX(i, j)), (c) yj is aligned to a
gap (VY (i, j)). The update equations for the scores are as follows:

VM(i, j) = max




0,

VM(i − 1, j − 1) + s(xi, yj),

VX(i − 1, j − 1) + s(xi, yj),

VY (i − 1, j − 1) + s(xi, yj);

VX(i, j) = max




0,

VM(i − 1, j) − d,

VX(i − 1, j) − e;

VY (i, j) = max




0,

VM(i, j − 1) − d,

VY (i, j − 1) − e.

(5.1)



5.1 Original problems 129

Here s(xi, yj) is the substitution score, d is the gap-open penalty, and e is the
gap-extension penalty. As soon as all elements of matrices VM , VX , and VY are
determined, the algorithm yields

VM(i∗, j∗) = max
i, j

VM(i, j),

the score associated with the optimal local alignments of sequences x and y. The
traceback from cell (i∗, j∗) to cell (i′, j′) with VM(i′, j′) = 0 defines the alignment of
subsequences xi, i = i′ . . . i∗, and yj, j = j′ . . . j∗, the best local alignment of x and y.

To draw an analogy between Equations (5.1) and the equations of the algorithm
constructing the optimal local alignment of sequence xi, i = 1, . . . , N , to the profile
HMM (Figure 5.1), we have to show explicitly the equations that determine the
Viterbi path for sequence x through the profile HMM. For subsequence x1, . . . , xi

let VM
j (i) denote the log-odds score of the highest probability path through the

profile HMM, ending with xi emitted by state Mj. Similarly, VI
j (i) designates the

score of the highest probability path ending with xi emitted by state Ij, VD
j (i) is the

score of the highest probability path ending in state Dj, and VF(i) is the score of
the highest probability path ending with xi emitted by state F2. The initialization
conditions are as follows:

VI
j (1) = −∞,

VD
j (1) = −∞,

VF(1) = −∞,

VM
j (1) = log

P(x1|M)

P(x1|R)
= log

(η2/L)eMj(x1)

(1 − η)qx1

= log
eMj(x1)η

2

qxi L(1 − η)
,

for any j : j = 1, . . . , L. The update equations are as follows:

VM
j (i) = log

eMj(xi)

qxi

+ max




VM
j−1(i − 1) + log

aMj−1Mj

1 − η
,

VI
j−1(i − 1) + log

aIj−1Mj

1 − η
,

VD
j−1(i − 1) + log

aDj−1Mj

1 − η
,

log
η2

(1 − η)L
;

VI
j (i) = max




VM
j (i − 1) + log

aMjIj

1 − η
,

VI
j (i − 1) + log

aIjIj

1 − η
,

VD
j (i − 1) + log

aDjIj

1 − η
;

(5.2)



130 Profile HMMs for sequence families

VD
j (i) = max




VM
j−1(i) + log

aMj−1Dj

1 − η
,

VI
j−1(i) + log

aIj−1Dj

1 − η
,

VD
j−1(i) + log

aDj−1Dj

1 − η
;

VF(i) = max


maxj VM

j (i − 1) + log
η

L
,

VF(i − 1).

Note that the term log η2/(1 − η)L in the equation for VM
j (i) corresponds to the

direct transition from silent state S1 to match state Mj, the case when the first i − 1
residues of the sequence x are emitted from the flanking state F1. Then the log-odds
ratio becomes

log
P(x1, . . . , xi|M)

P(x1, . . . , xi|R)
= (1 − η)i−1∏i−1

l=1 qxlη
2eMj(xi)/L

(1 − η)i
∏i

l=1 qxl

= log
eMj(xi)

qxi

+ log
η2

(1 − η)L
.

At the termination step we have

V = max(max
j

(VM
j (N) − log L), VF(N) − log η).

The value V is the total score of the Viterbi path for sequence x through the local
alignment profile HMM. The path itself is recovered by applying the traceback
procedure. The subsequence of sequence x emitted on the path between the appear-
ances of the first matching state Mj′ and the last matching state Mj∗ , which precedes
the silent state S2, participates in the best local alignment of the sequence x to the
profile HMM. This optimal local alignment is described by the part of the path
between matching states Mj′ and Mj∗ , j′ ≤ j∗.

Comparison of update Equations (5.1) and (5.2) shows that the two algorithms
have much in common. Emission of xi from match state Mj of the profile HMM
corresponds to the aligned pair (xi, yj) in the pairwise alignment; emission of xi

from an insert state corresponds to symbol xi aligned to a gap in the pairwise
alignment; and occurrence of delete state Dj corresponds to symbol yj aligned
to a gap in the pairwise alignment. Note that in the extreme case when the set
of aligned sequences, serving as the training set for the profile HMM, shrinks
to just one sequence designated as y, finding the optimal path through the pro-
file HMM emitting sequence x becomes equivalent to the problem of finding the
optimal pairwise local alignment of sequences x and y. Formally, the optimal current
score VM

j (i) in Equations (5.2) corresponds to VM(i, j) in Equations (5.1), VI
j (i) to



5.1 Original problems 131

VX(i, j), and VD
j (i) to VY (i, j). Interpretation of the substitution score s(xi, yj) in

Equations (5.1) presents some difficulty as in Equations (5.2) it is split into three
terms: log eMj(xi)/qxi + log aMj−1Mj/(1 − η), log eMj(xi)/qxi + log aIj−1Mj/(1 − η),
and log eMj(xi)/qxi + log aDj−1Mj/(1 − η). If all the probabilities of the transitions
to match state Mj are the same, so are the values of these three terms. Similarly,
the gap-open penalty d in Equations (5.1) corresponds to the following terms in
Equation (5.2): − log aMjIj/(1 − η), j = 1, . . . , L − 1, and − log aMj−1Dj/(1 − η),
j = 2, . . . , L − 1. These terms are equal if all permitted transitions from match
states to insert and delete states have equal probabilities. Finally, the gap-extension
penalty e in Equations (5.1) corresponds to the following terms in Equations (5.3):
− log aIjIj/(1 − η), j = 1, . . . , L − 1, and − log aDj−1Dj/(1 − η), j = 3, . . . , L − 1,
which again collapse in just one value if the values of transition probabilities aIjIj

and aDk−1Dk are the same.

Remark The relationship between the probabilistic parameters of a pair HMM
and the parameters of the pairwise alignment algorithm, was discussed in Remark
to Problem 4.11.

Problem 5.2 Explain the reasons (referring to Problem 5.1) for any differences
between the optimal local pairwise alignment algorithm (5.1) and the algorithm
(5.2) for optimal local alignment of a sequence to a profile HMM.

Solution To determine either the best local pairwise alignment of two sequences
x and y or the best alignment of sequence x to the profile HMM with flanking
states, we have to calculate elements of the three dynamic programming matrices
by using Equations (5.1) or Equations (5.2), respectively. To construct the best local
pairwise alignment, we use dynamic programming Equations (5.1) and find values
of VM(i, j), VX(i, j), and VY (i, j) under the assumption that the substitution scores
s(xi, yj), the gap-open penalty d, and the gap-extension penalty e do not depend on
the positions i, j. Parameters of Equations (5.2) used to find the best alignment of x
to profile HMM (Figure 5.1), the emission probabilities eMj(xi), and the transition
probabilities (aMj−1Mj , aIj−1Mj , aDj−1Mj , . . .), explicitly depend on j. Thus, use of
a larger number of parameters in the profile HMM-based algorithm allows us to
incorporate information on position-specific conservation patterns of a biological
sequence. For instance, for protein sequences algorithm (5.1) needs 212 parameters:
210 substitution scores s(a, b), the gap-open penalty d, and the gap-extension pen-
alty e. Note that the total number of parameters, 212, does not depend on the lengths
of sequences x and y. On the other hand, algorithm (5.2) uses the profile HMM with
L match states Mj and two flanking states. This model needs 3(3(L − 2) + 2) =
9L − 12 transition probabilities between hidden states, parameter η, 20L emission



132 Profile HMMs for sequence families

probabilities eMj(xi) for match states, twenty emission probabilities qxi for insert
states (the set qxi , i = 1, . . . , 20, is assumed to be the same for all L −1 insert states
of the profile HMM and to coincide with the set of emission probabilities of the
background independence model used for the definition of the log-odds scores in
Equations (5.2)). Thus, the total number of parameters of the profile HMM, 29L+9,
depends on the number L of its match states, and becomes larger than 212 for L > 7.

One more difference between these two algorithms is that transitions Ij−1 → Dj

and Dj → Ij are normally permitted in a profile HMM (see Figure 5.1), while in a
pairwise alignment, as Equations (5.1) show, an x-gap cannot immediately follow
a y-gap and vice versa.

Problem 5.3 Use the negative bias condition
∑

a,b qaqbs(a, b) < 0 to show that

f (λ) =
∑
a,b

qaqbeλs(a,b) − 1

is negative for small enough λ > 0.

Solution For λ = 0 we have

f (0) =
∑
a,b

qaqb − 1 =
(∑

a

qa

)(∑
b

qb

)
− 1 = 0.

The first derivative of f is defined by the following expression:

f ′(λ) =
∑
a,b

qaqbeλs(a,b)s(a, b),

and, due to the negative bias condition, f ′(0) = ∑a,b qaqbs(a, b) < 0. Near the
point zero differentiable function f (λ) can be expanded as

f (λ) = f (0) + f ′(0)λ + o(λ2).

Therefore, for small enough λ > 0 function f (λ) is negative.

Problem 5.4 Use the condition that there is at least one positive s(a, b) to show
that f (λ) becomes positive for large enough λ.

Solution In the expression

f (λ) =
∑
a,b

qaqbeλs(a,b) − 1

the sum can be split into two sums �1 and �2, where �1 corresponds to s(a, b)

with positive values (there is at least one such term) and �2 corresponds to s(a, b)



5.1 Original problems 133

with non-positive values. As λ > 0 grows, �1 increases exponentially because of
factor(s) eλs(a,b). The second sum �2 is positive and bounded from below. Thus,
for sufficiently large λ, such that �1 > 1, function f (λ) becomes positive and even:

lim
λ→+∞ f (λ) = +∞.

Problem 5.5 Show that the second derivative of f (λ) is positive, and that this
and the results of the previous two problems show that there is one and only one
positive value of λ satisfying f (λ) = 0.

Solution It was shown that function f (λ) possesses the following properties:

(a) f (0) = 0,
(b) f (λ) is negative for a small enough λ > 0,
(c) f becomes positive for a sufficiently large λ and tends to +∞ as λ increases.

Since f is a continuous function, there exists at least one positive λ∗ such that
f (λ∗) = 0. To prove that there is only one positive λ∗: f (λ∗) = 0, we find the
second derivative of f :

f ′′(λ) =
∑
a,b

qaqbeλs(a,b)(s(a, b))2.

It is easy to see that f ′′(λ) > 0; therefore, the first derivative f ′ monotonically
increases on the interval [0; +∞) starting from some negative value at point 0.
Obviously, f ′ has only one root λ′ on this interval with the sign of f ′ changing at λ′
from negative to positive. Thus, at this stationary point λ′, the function f has a local
minimum with negative value. On the interval [λ′, +∞), function f monotonically
increases as λ increases, and the graph of function f intercepts the x-axis at only
one point λ∗: λ∗ > λ′ > 0, f (λ∗) = 0.

Problem 5.6 Compute the weights for the sequence set x1 = AGAA, x2 =
CCTC, x3 = AGTC, using the weighting methods by (a) Thompson, Higgins, and
Gibson (1994a); (b) Gerstein, Sonnhammer, and Chothia (1994); (c) Altschul,
Carroll, and Lipman (1989); (d) Henikoff and Henikoff (1994); (e) Krogh and
Mitchison (1995).

Solution Some of the weighting methods mentioned above need a tree relating
the sequences in question. Therefore, we will start with a tree construction by
the classical clustering procedure, the UPGMA, proposed by Sokal and Michener
(1958). We define the distance dij between sequences xi and xj aligned without
gaps as a fraction of the aligned nucleotide pairs with mismatches. Thus, we obtain
d12 = 4/4 = 1, d13 = 2/4 = 0.5, and d23 = 2/4 = 0.5. At the first step of the



134 Profile HMMs for sequence families

UPGMA algorithm each sequence xi is assigned to its own cluster Ci and a leaf
i for each sequence xi is placed at height zero (the tree will be drawn with leaves
at the bottom level and the root at the top). At‘the next step we have to select two
clusters separated by the minimal distance. Since d13 = d23 = 0.5, we can select
either pair C1 & C3 or C2 & C3. Say we select clusters C2 and C3 and join into a
new cluster C4 = {C2, C3} = {x2, x3}. The distance d14 = 0.75 is defined by the
following formula:

dij = 1

|Ci||Cj|
∑

p∈Ci, q∈Cj

dpq.

Then, node 4 is placed at height t2 = t3 = d23/2 = 0.25 above daughter nodes 2
and 3. With two clusters C1 and C4 remaining, the root, node 5, is placed at height
t1 = d14/2 = 0.375. As result, we have built the following tree:

5

4

t3

t1

1 2 3

(a) Computation of the sequence weights by the “voltage” method by Thompson
et al. (1994a).

It is assumed that the frame of the tree above is made of a conducting wire of
constant thickness and that a voltage V is applied to the root point. With resistance
assigned to be equal to the edge lengths and all the leaf points set to zero potential,
we have to find currents in the edges immediately above the leaves. The values of
the currents will be the sequence weights we are interested in. If the current and
voltage at node n are In and Vn, respectively, then from the following diagram:

I1   

V

 

I2 

V4

I3  

I2 + I3

and Ohm’s law it follows that V4 = 0.25I2 = 0.25I3, V5 = 0.375I1 = 0.125(I2 +
I3) + 0.25I2. Hence, the ratios of the currents (and the weights) come out as:

I1 : I2 : I3 = w1 : w2 : w3 = 4 : 3 : 3.



5.1 Original problems 135

(b) Computation of the sequence weights by the method of Gerstein et al. (1994).
It is assumed that the initial weights of the tree leaves are defined as the lengths

of the leaf edges: w1 = 0.375, w2 = w3 = 0.25. Then, node 4 with the edge
length of 0.125 above it, ancestral to leaves 2 and 3, makes an equal contribution of
0.125/2 = 0.0625 to each of w2 and w3. Thus, w2 = w3 = 0.25+0.0625 = 0.3125.
With w1 = 0.375 we have

w1 : w2 : w3 = 6 : 5 : 5.

(c) Computation of the sequence weights by the Altschul–Carroll–Lipman
method (Altschul et al., 1989).

It is assumed that a continuous variable ξ with a Gaussian distribution is associ-
ated with the tree in the following way. The probability of substituting one value, x,
of ξ by another value, y, along a tree edge with length t is exp −(x − y)2/2t. It can
be shown that the mean value µ of variable ξ at the tree root depends linearly on
the ξ -values xi at the leaves, so µ =∑wixi. A coefficient wi is assigned to be the
weight of the leaf sequence xi, i = 1, 2, 3. For the tree above the sequence weights
are calculated by the following formulas:

w1 = t2t3 + t4(t2 + t3)

t2t3 + (t1 + t4)(t2 + t3)
= 0.4;

w2 = t1t3
t2t3 + (t1 + t4)(t2 + t3)

= 0.3;

w3 = t1t2
t2t3 + (t1 + t4)(t2 + t3)

= 0.3.

The next two methods do not require a tree for the computation of the sequence
weights.

(d) Computation of the sequence weights by the block alignment method of
Henikoff and Henikoff (1994).

Given the ungapped “block” alignment of sequences x1, x2, and x3,

A G A A
C C T C
A G T C

we take counts kiα of letter α in each column (position) i. The first column (k1A = 2
and k1C = 1) has two different types of symbols (m1 = 2). For sequence xi the
weight w1i associated with the first column weight w1i for sequence xi is defined



136 Profile HMMs for sequence families

by the formula w1i = 1/m1k1xk
i
. We obtain

w11 = 1

2 × 2
= 0.25, w12 = 1

2 × 1
= 0.5, w13 = 1

2 × 2
= 0.25.

Here, two sequences x1 and x3 sharing the same symbol A are assigned smaller
weights than x2, because together they contribute to the multiple alignment the
same amount of information about the possible types of symbols in the first column
as does sequence x2 alone. Similar processing of the remaining columns produces
the the following column-specific weights of sequences x1, x2, and x3:

w21 = 0.25, w22 = 0.5, w23 = 0.25;

w31 = 0.5, w32 = 0.25, w33 = 0.25;

w41 = 0.5, w12 = 0.25, w43 = 0.25.

Finally, the column-specific weights for each sequence are summed over all columns
and normalized. We obtain w1 = 0.375, w2 = 0.375, and w3 = 0.25.

(e) Computation of the sequence weights by the maximum entropy method of
Krogh and Mitchison (1995).

The sequence weights are chosen to maximize the sum of the entropies
Hk(w1, w2, w3) = −∑a pka log2 pka, defined for each alignment site k = 1, 2, 3, 4,
given the constraint

∑
i wi = 1. Here pka, the weighted frequency of symbol a at

the kth site, is defined as follows:

pka =
∑

i=1,2,3

I(symbol a appears at site k in sequence i)wi,

where I(A) is an indicator of an event A and the sum is taken over all sequences in
the multiple alignment. Thus, we have

H1(w1, w2, w3) = −(w1 + w3) log2(w1 + w3) − w2 log2 w2;

H2(w1, w2, w3) = −(w1 + w3) log2(w1 + w3) − w2 log2 w2;

H3(w1, w2, w3) = −(w2 + w3) log2(w2 + w3) − w1 log2 w1;

H4(w1, w2, w3) = −(w2 + w3) log2(w2 + w3) − w1 log2 w1.

To find the maximum of the function � = ∑i Hi(w1, w2, w3) with constraint∑
i wi = 1, we have to solve the system of equations with the Lagrange



5.2 Additional problems and theory 137

multiplier λ:

∂�

∂w1
+ λ = −2 log2(w1 + w3) − 2 log2 w1 − 4 + λ = 0;

∂�

∂w2
+ λ = −2 log2(w2 + w3) − 2 log2 w2 − 4 + λ = 0;

∂�

∂w3
+ λ = −2 log2(w1 + w3) − 2 log2(w2 + w3) − 4 + λ = 0.

The system can be reduced to

(w1 + w3)w1 = (w2 + w3)w2 = (w1 + w3)(w2 + w3),

and finally w3 = 0, w1 = w2 = 0.5. The zero value of weight w3 seems unexpected.
However, it could be argued that sequence x3 does not bring any new information
to the alignment as its prefix AG exists in x1 and its suffix TC exists in x2.

5.2 Additional problems and theory

This section illustrates the profile HMM theory by practical applications. A profile
HMM can be built from the multiple alignment of DNA fragments either without
pseudocounts (Problem 5.7) or with pseudocounts defined by the Laplace rule
(Problem 5.8). Similar derivations can be made for the case when the aligned
sequences are weighted (Problem 5.10). To construct an alignment of a sequence
to a profile HMM with a complete state diagram one can use the modified Viterbi
algorithm for a profile HMM (Problem 5.9).

In the theoretical introduction to Problem 5.11, we define the discrimination func-
tion of a profile HMM and the maximum discrimination weights of the sequences.
The fact that these weighted estimates of emission and transition probabilities max-
imize the discrimination function as well as the weighted sum of log-likelihood
ratios is proved in Problem 5.11. A Bayesian approach to the estimation of the para-
meters of a profile HMM is illustrated in the context of Problem 5.12: assuming the
Dirichlet prior for the emission probabilities, the mean values of the posterior distri-
bution and the maximum of the posterior probability (MAP) estimates are derived.

In Problem 5.13 we find the elements (emission probabilities) of the position-
specific scoring matrix (PSSM) given an ungapped alignment of amino acid
sequences.

The PSSMs for DNA sequences are considered in Problems 5.14 and 5.15.
In Problem 5.14 a position-specific independence model R1 is used to describe a
ribosomal binding site in the E. coli genome. In Problem 5.15 the Kullback–Leibler
distance between model R1 and a background independence model Q is com-
pared with the Kullback–Leibler distance between an independence model for a
protein-coding region and model Q.



138 Profile HMMs for sequence families

Problem 5.7 Estimate the parameters of a profile HMM for the following
multiple alignment of DNA sequences:

G C A G
G − − G
G − A G
G C T G
A − A C
G − A C
G − G G
A − A C

(5.3)

Draw the state diagram.

Solution A heuristic rule suggests that an alignment column with a fraction of gap
symbols below 0.5 corresponds to a match state of a profile HMM; otherwise, it
corresponds to an insert state. Therefore, we assign columns in the multiple align-
ment (5.3) but the second one to the match states M1, M2, and M3, respectively.
An HMM state diagram includes a begin state B (the same as M0), an end state
E , along with insert states I0, I1, I2, I3, and delete states D1, D2, D3. The counts
Ek(x) of nucleotide emissions and the counts Akl of the hidden state transition
observed in alignment (5.3) are shown in Table 5.1. Then the maximum like-
lihood estimates of parameters of the profile HMM are given by the following
formulas:

akl = Akl∑
l′ Akl′

, ek(x) = Ek(x)∑
x′ Ek(x′)

. (5.4)

Here, indices k and l designate hidden states; akl and ek(x) are estimates of the
transition and emission probabilities, respectively. Equations (5.4) generate the
estimates of the profile HMM parameters that fill Table 5.2.

Since many of the emission and transition probabilities are zeros, several states
defined for a generic profile HMM are unreachable and do not appear in the final
state diagram (Figure 5.2) showing the rather sparse profile HMM.

Problem 5.8 Estimate the parameters of the profile HMM derived from the same
multiple alignment (5.3) if the emission and transition counts are augmented by
the pseudocounts defined by Laplace’s rule. Draw the state diagram.



5.2 Additional problems and theory 139

Table 5.1. Counts of emissions of nucleotides and transitions between hidden
states observed in the alignment block (5.3)

0 1 2 3

Emission counts for match states A − 2 5 0
C − 0 0 3
G − 6 1 5
T − 0 1 0

Emission counts for insert states A 0 0 0 0
C 0 2 0 0
G 0 0 0 0
T 0 0 0 0

Counts of transitions between hidden states M − M 8 5 7 8
M − D 0 1 0 −
M − I 0 2 0 0
I − M 0 2 0 0
I − D 0 0 0 −
I − I 0 0 0 0
D − M − 0 1 0
D − D − 0 0 −
D − I − 0 0 0

Table 5.2. Values of the estimated parameters of the profile HMM

0 1 2 3

Emission probabilities for match states A − 0.25 0.72 0
C − 0 0 0.375
G − 0.75 0.14 0.625
T − 0 0.14 0

Emission probabilities for insert states A 0 0 0 0
C 0 1 0 0
G 0 0 0 0
T 0 0 0 0

Transition probabilities between hidden states M − M 1 0.625 1 1
M − D 0 0.125 0 −
M − I 0 0.25 0 0
I − M 0 1 0 0
I − D 0 0 0 −
I − I 0 0 0 0
D − M − 0 1 0
D − D − 0 0 −
D − I − 0 0 0



140 Profile HMMs for sequence families

Figure 5.2. The state diagram of the profile HMM derived from the multiple
alignment (5.3) with only states and transitions permitted by the alignment data.

Solution To implement Laplace’s rule, each count shown in Table 5.1 should be
increased by one. Note that the cells corresponding to emissions (or transitions)
that are impossible for the generic profile HMM state diagram are not affected by
this operation. The updated counts can be used directly to estimate the transition
and emission probabilities, akl and ek(x), of the profile HMM by Equations (5.4).
The same estimates can be obtained using the updated equations

akl = Akl + 1∑
l′ Akl′ + mk

, ek(x) = Ek(x) + 1∑
x′ Ek(x′) + K

, (5.5)

with Akl and Ek(x) values taken from Table 5.1. In Equations (5.5) again k and l
designate hidden states and Akl and Ek(x) stand for counts of observed transitions
and emissions, respectively. Also, mk denotes the number of transitions from state
k permitted by the generic state diagram of a profile HMM, while K is the size of
the alphabet. The resulting profile HMM parameters are given in Table 5.3.

The state diagram of the defined profile HMM is shown in Figure 5.3. The use
of Laplace’s rule makes all regular transitions between states of the profile HMM
possible, and the graph of connections between hidden states becomes complete as
compared with the graph constructed earlier (Figure 5.2).

Problem 5.9 Use the log-odds score version of the Viterbi algorithm to align
sequence GCCAG to the profile HMM built in Problem 5.8. To define the log-
odds scores, assume that the background model is an independence model with
P(A) = P(T) = 0.3 and P(C) = P(G) = 0.2.

Solution The optimal (most probable) alignment of a sequence to a profile HMM is
defined by a path of the hidden states, emitting the symbols of the given sequence, as
determined by the Viterbi algorithm. The log-odds version of the algorithm works
as follows. Let VM

j (i) be the log-odds score of the highest scoring alignment of



5.2 Additional problems and theory 141

Table 5.3. The profile HMM parameters estimated using the pseudo counts
defined by Laplace’s rule

0 1 2 3

Emission probabilities for match states A − 0.25 0.55 0.08
C − 0.08 0.09 0.33
G − 0.58 0.18 0.5
T − 0.08 0.18 0.08

Emission probabilities for insert states A 0.25 0.17 0.25 0.25
C 0.25 0.5 0.25 0.25
G 0.25 0.17 0.25 0.25
T 0.25 0.17 0.25 0.25

Transition probabilities between hidden states M − M 0.82 0.55 0.8 0.9
M − D 0.09 0.18 0.1 −
M − I 0.09 0.27 0.1 0.1
I − M 0.33 0.6 0.33 0.5
I − D 0.33 0.2 0.33 −
I − I 0.33 0.2 0.33 0.5
D − M − 0.33 0.5 0.5
D − D − 0.33 0.25 −
D − I − 0.33 0.25 0.5

Figure 5.3. The state diagram of the profile HMM derived from the sequence
alignment (5.3) with parameters estimated with pseudoconts defined by the Laplace
rule.

subsequence x1 . . . xi with symbol xi emitted by state Mj. Similarly, VI
j (i) is the

score of the highest scoring alignment of the same subsequence with xi emitted by
Ij, and VD

j (i) is the score of the highest scoring alignment of subsequence x1, . . . , xi

ending in state Dj. For a profile HMM with N match states and sequence x of
length L, the algorithm goes through the following steps.

The initialization step: VM
0 (0) = 0, VI

0(0) = −∞, VD
0 (0) = −∞.



142 Profile HMMs for sequence families

The update equations for the log-odds scores are as follows:

VM
j (i) = log

eMj(xi)

qxi

+ max




VM
j−1(i − 1) + log aMj−1Mj ,

VI
j−1(i − 1) + log aIj−1Mj ,

VD
j−1(i − 1) + log aDj−1Mj ;

VI
j (i) = log

eIj(xi)

qxi

+ max




VM
j (i − 1) + log aMjIj ,

VI
j (i − 1) + log aIjIj ,

VD
j (i − 1) + log aDjIj ;

VD
j (i) = max




VM
j−1(i) + log aMj−1Dj ,

VI
j−1(i) + log aIj−1Dj ,

VD
j−1(i) + log aDj−1Dj .

The termination step,

V = max{VM
N (L) + log aMN E ; VI

N (L) + log aIN E ; VD
N (L) + log aDN E},

calculates the log-odds score V of the optimal path. Now we apply the
Viterbi algorithm to find the alignment of the given profile HMM (Figure 5.3)
and sequence GCCAG. The algorithm proceeds as follows (natural logarithms
are used):

VM
0 (0) = 0,

VD
1 (0) = VM

0 (0) + ln aM0D1 = 0 + ln 0.09 = −2.408,

VD
2 (0) = VD

1 (0) + ln aD1D2 = −2.408 + ln 0.33 = −3.5166,

VD
3 (0) = VD

2 (0) + ln aD2D3 = −3.5166 + ln 0.25 = −4.903;

VM
1 (1) = ln

eM1(x1)

qx1

+ VM
0 (0) + ln aM0M1 = ln

0.58

0.2
+ ln 0.82 = 0.866,

VM
2 (1) = ln

eM2(x1)

qx1

+ VD
1 (0) + ln aD1M2 = ln

0.18

0.2
− 2.408 + ln 0.33 = −3.622,

VM
3 (1) = ln

eM3(x1)

qx1

+ VD
2 (0) + ln aD2M3 = ln

0.5

0.2
− 3.5166 + ln 0.5 = −3.293;



5.2 Additional problems and theory 143

Table 5.4. The log-odds scores V•
j (i) as determined by the Viterbi algorithm

Entries on the best path are highlighted in bold.

x1 = G x2 = C x3 = C x4 = A x5 = G

M1 0.866 −4.210 −5.095 −5.247 −5.291
M2 −3.622 −0.530 −0.836 −0.125 −3.014
M3 −3.293 −1.041 −0.252 −2.381 0.569
I0 −2.185 −3.070 −3.956 −5.247 −6.132
I1 −3.679 0.473 −0.220 −2.397 −4.169
I2 −4.680 −2.012 −2.299 −3.321 −2.204
I3 −5.373 −2.705 −2.993 −2.737 −2.897
D1 −3.293 −4.179 −5.065 −6.355 −7.241
D2 −0.849 −1.136 −1.829 −4.007 −5.779
D3 −2.235 −2.523 −3.139 −2.427 −3.313

VI
0(1) = ln

eI0(x1)

qx1

+ VM
0 (0) + ln aM0I0 = ln

0.25

0.2
+ ln 0.09 = −2.185,

VI
1(1) = ln

eI1(x1)

qx1

+ VD
1 (0) + ln aD1I1 = ln

0.17

0.2
− 2.408 + ln 0.33 = −3.679,

VI
2(1) = ln

eI2(x1)

qx1

+ VD
2 (0) + ln aD2I2 = ln

0.25

0.2
− 3.5166 + ln 0.25 = −4.680,

VI
3(1) = ln

eI3(x1)

qx1

+ VD
3 (0) + ln aD3I3 = ln

0.25

0.2
− 4.903 + ln 0.5 = −5.373;

VD
1 (1) = VI

0(1) + ln aI0D1 = −2.185 + ln 0.33 = −3.293,

VD
2 (1) = VM

1 (1) + ln aM1D2 = 0.866 + ln 0.18 = −0.849,

VD
3 (1) = VD

2 (1) + ln aD2D3 = −0.849 + ln 0.25 = −2.235.

The calculations continue until all values VM
j (i), VI

j (i), and VD
j (i) for i = 1, . . . , 5,

j = 1, 2, 3 are computed (Table 5.4). We find the score of the optimal alignment
V = VM

3 (5) = 0.569. The traceback procedure starts from VM
3 (5) and reveals the

sequence of log-odds scores

VM
3 (5) → VM

2 (4) → VI
1(3) → VI

1(2) → VM
1 (1) → VM

0 (0)

shown in bold in Table 5.4. The optimal path π associated with this sequence
of the log-odds scores defines the optimal alignment of sequence GCCAG to the



144 Profile HMMs for sequence families

profile HMM. Since the choice of how to put the residues emitted from an insert
state in the alignment constructed by the profile HMM is arbitrary (Durbin et al.,
1998, p. 151), path π also defines two alignments (with permutation of columns 2
and 3) of sequence GCCAG to the multiple alignment (5.3), the training set for the
profile HMM:

G C − A G
G − − − G
G − − A G
G C − T G
A − − A C
G − − A C
G − − G G
A − − A C
G C C A G

G − C A G
G − − − G
G − − A G
G − C T G
A − − A C
G − − A C
G − − G G
A − − A C
G C C A G

Remark Note that the state diagram of the profile HMM derived from the mul-
tiple alignment (5.3) is quite different in the absence of pseudocounts (Figure 5.2).
That profile HMM could accommodate sequences of lengths 2, 3, and 4, but not
of greater length (GCCAG included). Even some short sequences of length 2, 3,
4 will not fit the model (Figure 5.2) due to zero values of emission probabilities
of some nucleotides (See Table 5.2). The use of pseudocounts for the estimation
of the HMM parameters in Equations (5.5) results in the HMM architecture cap-
able of accommodating a wider set of sequences potentially related to the training
sequence set.

Problem 5.10 A multiple alignment of a set of DNA sequences is given as
follows:

C C − − A T C
G C A A A G C
G T A T A T C
G C − − C T G
C C − − A T C

(5.6)

Determine the parameters and the state diagram of a profile HMM for the mul-
tiple alignment (5.6). Take into account the sequence weights defined by the
method suggested in Henikoff and Henikoff (1994). Consider an optional use of
pseudocounts defined by Laplace’s rule.



5.2 Additional problems and theory 145

Solution First, the multiple alignment (5.6) should be reduced to the ungapped
block as follows:

C C A T C
G C A G C
G T A T C
G C C T G
C C A T C

(5.7)

Next, the weights of the sequences in the rows of block (5.7) are derived as a
linear combination of the column-specific weights. The weight wji for sequence i
per column j is calculated by the formula wji = 1/mjkjxj

i
, where mj is the number

of letter types in column j, xj
i is the letter at site (column) j of sequence i, and k

jxj
i

is the number of letters of xj
i in column j. Then, the first column weights w1i are

given by

w11 = 1/4, w12 = 1/6, w13 = 1/6, w14 = 1/6, w15 = 1/4.

Similarly, the column-specific weights for the other four columns are given by

w21 = 1/8, w22 = 1/8, w23 = 1/2, w24 = 1/8, w25 = 1/8;

w31 = 1/8, w32 = 1/8, w33 = 1/8, w34 = 1/2, w35 = 1/8;

w41 = 1/8, w42 = 1/2, w43 = 1/8, w44 = 1/8, w45 = 1/8;

w51 = 1/8, w52 = 1/8, w53 = 1/8, w54 = 1/2, w55 = 1/8.

The summation of the column-specific weights wji for each sequence i, and
subsequent normalization, produce the sequence weights wi:

w1 = 3/20, w2 = 5/24, w3 = 5/24, w4 = 17/60, w5 = 3/20.

Now, to determine the number of match states of the profile HMM from the sequence
alignment, we use the heuristic rule stated earlier: a column with a fraction of gap
symbols below 0.5 is marked as a match state; otherwise, it is marked as an insert
state. Thus, there are five match states M1, . . . , M5 corresponding, respectively, to
columns 1, 2, 5, 6, and 7 of the multiple alignment (5.6). The state diagram should
also include the begin state B, the end state E , the insert states I0, I1, . . ., I5, and the
delete (silent) states D1, D2, . . ., D5. To estimate the parameters of the profile HMM,
we will use weighted emission and transition counts Ew

k (x) and Aw
kl, respectively.

For a given state k, the weighted emission (transition) count is equal to the sum of
the weights of the training sequences where a particular symbol is emitted from state
k (transition is observed). For example, for match state M2, the weighted emission
count of nucleotide C is the sum of the weights of sequences 1, 2, 4, and 5:

Ew
2 (C) = w1 + w2 + w4 + w5 = 3

20
+ 5

24
+ 17

60
+ 3

20
= 19

24
.



146 Profile HMMs for sequence families

Table 5.5. Counts of observed nucleotide emissions and transitions between
hidden states modified by the use of the sequence weights

0 1 2 3 4 5

Emission counts for A − 0 0 43/60 0 0
match states C − 3/10 19/24 17/60 0 43/60

G − 7/10 0 0 5/24 17/60
T − 0 5/24 0 19/24 0

Emission counts for A 0 0 5/8 0 0 0
insert states C 0 0 0 0 0 0

G 0 0 0 0 0 0
T 0 0 5/24 0 0 0

Counts of transitions M − M 1 1 7/12 1 1 1
between hidden states M − D 0 0 0 0 0 −

M − I 0 0 5/12 0 0 0
I − M 0 0 5/12 0 0 0
I − D 0 0 0 0 0 −
I − I 0 0 5/12 0 0 0
D − M − 0 0 0 0 0
D − D − 0 0 0 0 −
D − I − 0 0 0 0 0

The weighted emission and transition counts are listed in Table 5.5. To find estim-
ates of the parameters of the profile HMM, we could either use the modified counts
shown in Table 5.5 and Equations (5.4), or, equivalently, the counts of emissions
and transitions determined in the straightforward way (see Problem 5.7) and the
generalized variants of Equations (5.4):

akl = Aw
kl∑

l′ Aw
kl′

=
∑N

i=1 εkl(i)wi∑
l′
∑N

i=1 εkl′(i)wi
,

ek(x) = Ew
k (x)∑

x′ Ew
k (x′)

=
∑N

i=1 δkx(i)wi∑
x′
∑N

i=1 δkx′(i)wi
.

(5.8)

Here wi, i = 1, . . . , N , is the weight of the ith sequence; εkl(i) is the number of
transitions from hidden state k to hidden state l in training sequence i; δkx(i) is the
number of emissions of symbol x from state k of sequence i. The estimates of the
emission and transition probabilities calculated by Equations (5.8) are shown in
Table 5.6.

The state diagram of this profile HMM (Figure 5.4) shows that all but one insert
states and all the delete states are missing, since the transition probabilities to these



5.2 Additional problems and theory 147

Table 5.6. Parameters of the profile HMM estimated from the alignment of
weighted sequences

0 1 2 3 4 5

Emission probabilities for A − 0 0 0.717 0 0
match states C − 0.3 0.792 0.293 0 0.717

G − 0.7 0 0 0.218 0.293
T − 0 0.218 0 0.792 0

Emission probabilities for A 0 0 0.75 0 0 0
insert states C 0 0 0 0 0 0

G 0 0 0 0 0 0
T 0 0 0.25 0 0 0

Transition probabilities M − M 1 1 0.583 1 1 1
between hidden states M − D 0 0 0 0 0 −

M − I 0 0 0.417 0 0 0
I − M 0 0 0.5 0 0 0
I − D 0 0 0 0 0 −
I − I 0 0 0.5 0 0 0
D − M − 0 0 0 0 0
D − D − 0 0 0 0 −
D − I − 0 0 0 0 0

Figure 5.4. The state diagram of the profile HMM derived from the multiple
alignment (5.6) with only the states and transitions permitted by the alignment data.

missing states are equal to zero. Note that this “reduced” HMM is limited in its abil-
ity to accommodate sequences, though not in terms of restriction on the sequence
length (see the Remark to Problem 5.9) but in terms of their nucleotide composition.
This is yet an other example of how, in the absence of pseudocounts, parameter
estimation from a limited training set may lead to overfitting.

To implement the Laplace rule, one normalized pseudocount 1/5 (in general,
1/N if N is the number of sequences) is added to all weighted counts (Table 5.5)
except counts for those states from which emissions (or transitions) are not possible
in the generic profile HMM architecture. The results are shown in Table 5.7.
Finally, to estimate the profile HMM parameters, we can either plug the counts



148 Profile HMMs for sequence families

Table 5.7. Counts of observed nucleotide emissions and transitions between
hidden states calculated from counts in Table 5.5 using Laplace’s pseudocounts

0 1 2 3 4 5

Emission counts for A − 1/5 1/5 11/12 1/5 1/5
match states C − 1/2 119/120 29/60 1/5 11/12

G − 9/10 1/5 1/5 49/120 29/60
T − 1/5 49/120 1/5 119/120 1/5

Emission counts for A 1/5 1/5 33/40 1/5 1/5 1/5
insert states C 1/5 1/5 1/5 1/5 1/5 1/5

G 1/5 1/5 1/5 1/5 1/5 1/5
T 1/5 1/5 49/120 1/5 1/5 1/5

Counts of transitions M − M 6/5 6/5 47/60 6/5 6/5 6/5
between hidden states M − D 1/5 1/5 1/5 1/5 1/5 −

M − I 1/5 1/5 37/60 1/5 1/5 1/5
I − M 1/5 1/5 37/60 1/5 1/5 1/5
I − D 1/5 1/5 1/5 1/5 1/5 −
I − I 1/5 1/5 37/60 1/5 1/5 1/5
D − M − 1/5 1/5 1/5 1/5 1/5
D − D − 1/5 1/5 1/5 1/5 −
D − I − 1/5 1/5 1/5 1/5 1/5

shown in Table 5.5 into Equations (5.8) modified by the addition of the normalized
pseudocounts:

akl = Aw
kl + 1/N∑

l′ Aw
kl′ + mk/N

=
∑N

i=1(εkl(i) + 1/N)wi∑
l′
∑N

i=1(εkl′(i) + 1/N)wi
,

ek(x) = Ew
k (x) + 1/N∑

x′ Ew
k (x′) + K/N

=
∑N

i=1(δkx(i) + 1/N)wi∑
x′
∑N

i=1(δkx′(i) + 1/N)wi
,

(5.9)

or directly use the counts shown in Table 5.7 to plug into Equations (5.8). In both
cases, the result of computations of the emission and transition probabilities is the
same and shown in Table 5.8.

We see from Table 5.8 that the addition of pseudocounts makes the probab-
ilities of all generic transitions positive and establishes all possible (permitted)
connections between hidden states. Now, the profile HMM shown in Figure 5.5 is
capable to accommodate any nucleotide sequence. The higher alignment scores,
however, will be given to those sequences which carry more affinity to the initial
training set.



5.2 Additional problems and theory 149

Table 5.8. The final estimates of the parameters of the profile HMM

0 1 2 3 4 5

Emission probabilities for A − 0.111 0.111 0.509 0.111 0.112
match states C − 0.278 0.551 0.267 0.111 0.509

G − 0.5 0.111 0.112 0.227 0.267
T − 0.111 0.227 0.112 0.551 0.112

Emission probabilities for A 0.25 0.25 0.505 0.25 0.25 0.25
insert states C 0.25 0.25 0.122 0.25 0.25 0.25

G 0.25 0.25 0.122 0.25 0.25 0.25
T 0.25 0.25 0.25 0.25 0.25 0.25

Transition probabilities M − M 0.75 0.75 0.49 0.75 0.75 0.857
between hidden states M − D 0.125 0.125 0.125 0.125 0.125 −

M − I 0.125 0.125 0.385 0.125 0.125 0.143
I − M 0.33 0.33 0.43 0.33 0.33 0.5
I − D 0.33 0.33 0.14 0.33 0.33 −
I − I 0.33 0.33 0.43 0.33 0.33 0.5
D − M − 0.33 0.33 0.33 0.33 0.5
D − D − 0.33 0.33 0.33 0.33 −
D − I − 0.33 0.33 0.33 0.33 0.5

Figure 5.5. The state diagram of the profile HMM derived from multiple alignment
(5.6) of weighted sequences with parameters estimated using the pseudocounts
defined by Laplace’s rule.

Remark From Equations (5.4) and (5.8) it is easy to see that the estimation of
the parameters of the profile HMM without sequence weights is equivalent to
the case when all sequence weights are equal to 1/N , where N is the number
of sequences in multiple alignment. This type of extrapolation also holds true
for the weighted pseudocounts, as follows from a comparison of Equations (5.5)
and (5.9).



150 Profile HMMs for sequence families

Figure 5.6. The full independence model R generating a single sequence.

5.2.1 Discrimination function and maximum discrimination weights

5.2.1.1 Theoretical introduction to Problem 5.11

The estimation of the profile HMM parameters could be biased if some sequence
families are over-represented in the training set. Several methods designed to
eliminate the bias by weighting training sequences have already been considered
(Problems 5.6 and 5.10). Yet another weighting scheme was proposed by Eddy,
Mitchison, and Durbin (1995). In this scheme the sequence weights w1, w2, . . . , wN ,
to be used in Equations (5.8), are defined as follows:

wi = λ(1 − P(M(
)|xi)),
∑

i

wi = 1. (5.10)

Here M(
) is a probabilistic model with a set of parameters 
. In the case when
M is the profile HMM, 
 is a set of the emission probabilities ek(x) and transition
probabilities akl. Model M is considered along with a background independence
model R (the full probabilistic version of R is shown in Figure 5.6). The motivation
behind the definition given in Equations (5.10) is as follows. Suppose that the set
of parameters 
 maximizes the discrimination function D of model M(
):

D =
N∏

i=1

P(M(
)|xi) =
N∏

i=1

P(xi|M(
))P(M(
))

P(xi|M(
))P(M(
)) + P(xi|R)P(R)
.

The discrimination function D is the product of the posterior probabilities of model
M given the sequences x1, . . . , xN . The set of parameters 
 maximizing the dis-
crimination function D can be found from an algorithm that uses Equations (5.8)
and (5.10) for the iterative re-estimation of the parameters and the sequence weights
(Eddy, Mitchison, and Durbin, 1995). Starting with the initial set of weights,
parameters 
 = {ek(x), akl} are determined by Equations (5.8). The values of
the weights are then updated by Equations (5.10). These two steps are repeated
until a convergence to a (possibly local) maximum of D is reached. At this point,
Equations (5.10) for the sequence weights determine the maximum discrimination
weights.

Re-estimation equations with pseudocounts could be defined by Equations (5.9)
and (5.10), with the normalized simple counts 1/N in Equations (5.9) replaced by
the normalized Dirichlet pseudocounts αi/N (see also Problem 5.13).



5.2 Additional problems and theory 151

Problem 5.11 (a) Show that estimates of the parameters which deliver the max-
imum of the discrimination function D satisfy Equations (5.8) with the sequence
weights w1, . . . , wN defined by Equations (5.10).

(b) Prove that if the set of parameters 
∗ maximizes D then it also maximizes
the weighted sum of the log-odds ratios Lw, where

Lw =
N∑

i=1

wi log
P(xi|M)

P(xi|R)

with weights wi = λ(1 − P(M(
∗)|xi)), i = 1, . . . , N .

Solution (a) We consider two competing models: a profile HMM M(
) with state
diagram and parameters derived from a given multiple alignment of sequences x1,
x2, . . . , xN ; and the independence model R.

Let K be the set of all hidden states (including silent ones) and let K1 be the set
of states emitting observed symbols (match states and insert states), K1 ⊂ K . We
want to find a set 
 of parameters of the profile HMM, 
 = (θ1, θ2, . . . , θL) =
{ek′(x), akl|k′ ∈ K1, k, l ∈ K}, maximizing the discrimination function D (and its
logarithm) under the following conditions:∑

l akl = 1, k ∈ K ,∑
x∈A ek(x) = 1, k ∈ K1.

(5.11)

We assume that the ratio of priors P(R)/P(M) = m does not depend on 
, and we
designate µi = P(xi|R), yi = P(xi|M), for i = 1, . . . , N . Then we have

log D =
N∑

i=1

log P(M|xi) =
N∑

i=1

log
P(xi|M)P(M)

P(xi|M)P(M) + P(xi|R)P(R)

=
N∑

i=1

(log yi − log(yi + mµi)).

Next, for the partial derivatives of log D we have the following expressions:

∂ log D

∂θj
=

N∑
i=1

(
1

yi

∂yi

∂θj
− 1

yi + mµi

∂yi

∂θj

)

= m
N∑

i=1

µi

yi(yi + mµi)

∂yi

∂θj
= m

N∑
i=1

µi

yi + mµi

∂ log yi

∂θj
.

(5.12)

The analytical expression for yi in terms of the parameters of model M is as follows:

yi = P(xi|M) =
∏

k∈K1

∏
x∈A

(ek(x))
δkx(i)
∏

k,l∈K

(akl)
εkl(i).



152 Profile HMMs for sequence families

Here εkl(i) is the number of transitions from the hidden state k to the hidden state
l in sequence xi, and δkx(i) is the number of emissions of symbol x from state k in
sequence xi. Thus, the partial derivative ∂ log yi/∂θj becomes

∂ log yi

∂θj
=




δkx(i)

ek(x)
, if θj = ek(x);

εkl(i)

akl
, if θj = akl.

(5.13)

The conditional optimization problem for log D under the constraints given in Equa-
tions (5.11) can be solved with the use of the Lagrange multipliers λj, j = 1, . . . , L.
Then Equations (5.12) and (5.13) lead to the following system of equations:

∂ log D

∂θj
+ λj = m

∑N
i=1

µi

yi + mµi

δkx(i)

ek(x)
+ λj = 0, if θj = ek(x);

∂ log D

∂θj
+ λj = m

∑N
i=1

µi

yi + mµi

εkl(i)

akl
+ λj = 0, if θj = akl.

(5.14)

Note that the equations for parameters θj, which are the values of probabilities
from the same probability distribution, contain the same λi. From Equations (5.14)
we find

ek(x) = −m
∑N

i=1(µi/yi + mµi)δkx(i)

λj
,

akl = −m
∑N

i=1(µi/yi + mµi)εkl(i)

λj
.

(5.15)

Values of all λj, λ′
j can be determined from Equations (5.11) as follows:

∑
l′

akl′ = − m

λ′
j

∑
l′

N∑
i=1

µi

yi + mµi
εkl′(i) = 1,

∑
x′∈A

ek(x) = − m

λj

∑
x′∈A

N∑
i=1

µi

yi + mµi
δkx′(i) = 1.

Substitution of values λj, λ′
j into Equations (5.15) and use of the definitions of µi

and yi lead to the equations we are looking for:

ek(x) =
∑N

i=1 δkx(i)(1 − P(M|xi))∑
x′
∑N

i=1 δkx′(i)(1 − P(M|xi))
,

akl =
∑N

i=1 εkl(i)(1 − P(M|xi))∑
l′
∑N

i=1 εkl′(i)(1 − P(M|xi))
.

(5.16)



5.2 Additional problems and theory 153

(b) To solve the conditional maximization problem for the function Lw, where

Lw =
N∑

i=1

wi log
P(xi|M)

P(xi|R)
=

N∑
i=1

wi log
yi

µi
,

with constraints as in Equations (5.11), we need the expressions for the partial
derivatives of Lw. These are as follows:

∂Lw

∂θj
=

N∑
i=1

wi
µi

yiµi

∂yi

∂θj
=

N∑
i=1

wi
∂ log yi

∂θj

=



∑N

i=1 wi
δkx(i)

ek(x)
, if θj = ek(x);∑N

i=1 wi
εkl(i)

akl
, if θj = akl.

(5.17)

From Equations (5.17) we obtain the system of equations with the Lagrange
multipliers λj, j = 1, . . . , L as follows:

∂Lw

∂θj
+ λj =∑N

i=1
wiδkx(i)

ek(x)
+ λj = 0, if θj = ek(x);

∂ log D

∂θj
+ λj =∑N

i=1
wiεkl(i)

akl
+ λj = 0, if θj = akl.

Then

ek(x) = −
∑N

i=1 wiδkx(i)

λj
,

akl = −
∑N

i=1 wiεkl(i)

λ′
j

.

With values of λj determined from Equations (5.11):

∑
l′

akl′ = − 1

λj

∑
l′

N∑
i=1

wiεkl(i) = 1,

∑
x∈A

ek(x) = − 1

λj

∑
x∈A

N∑
i=1

wiδkx(i) = 1,



154 Profile HMMs for sequence families

we finally arrive at the equations for the parameters of the HMM which maximize
the weighted sum of the log-odds ratios Lw:

ek(x) =
∑N

i=1 δkx(i)wi∑
x′
∑N

i=1 δkx′(i)wi
,

akl =
∑N

i=1 εkl(i)wi∑
l′
∑N

i=1 εkl′(i)wi
.

(5.18)

One can see that the set of parameters satisfying Equations (5.16) will also sat-
isfy Equations (5.18) with weights wi, i = 1, . . . , N , defined by Equations (5.10).
Therefore, the set of parameters 
∗ of the profile HMM which maximizes the dis-
crimination function D will also maximize the weighted sum of the log-odds ratios
Lw if wi = λ(1 − P(M(
∗)|xi)), i = 1, . . . , N .

Problem 5.12 A basic step in the construction of a profile HMM from a multiple
alignment of N protein sequences is an estimation of the emission probabilities
for a match state associated with a given column x = x1, . . . , xN of the multiple
alignment. Use the Dirichlet priors to find the estimates of emission probabilities
as (a) the mean values of posterior distribution and (b) the maximum a posteriori
probability (MAP) estimates.

Solution First, we introduce some notation and formulas that we need for both
(a) and (b). We designate the emission probabilities from the hidden match state
as e(ai) = pi, i = 1, . . . , K , where K is the size of the alphabet. Next, we assume
that the independence model M with probabilities pi determines the probability
distribution of emissions from the hidden state. Then, the likelihood of model M
for the observed column x = x1, . . . , xN is given by

P(x|M) =
K∏

i=1

pni
i .

Here ni is the number of symbols ai among x1, . . . , xN . We assume that the prior
probability for parameters pi, i = 1, . . . , K , of model M is given by the Dirichlet
distribution with parameters α1, . . . , αK , αi > 0:

P(M) = PD(p1, . . . , pK) = Z−1
K∏

i=1

pαi−1
i ,



5.2 Additional problems and theory 155

where Z = ∏i �(αi)/�(
∑

i αi) is the normalization constant of the Dirichlet
distribution. Therefore, a posterior probability P(M|x) of model M becomes

P(M|x) = P(x|M)P(M)

P(x)
= (ZP(x))−1

K∏
i=1

pni+αi−1
i . (5.19)

(a) Equation (5.19) implies that the posterior distribution of parameters of M is
the Dirichlet distribution with parameters n1 + α1, . . . , nK + αK . Thus, the mean
value estimates of the emission probabilities are given by

ê(ai) = p̂i = ni + αi∑K
j=1(nj + αj)

= ni + αi

N +∑K
j=1 αj

,

i = 1, 2, . . . , K . It is easy to see that the mean value estimates coincide with the
maximum likelihood estimates with the use of pseudocounts αi, i = 1, . . . , K . For
example, if αi = 1, i = 1, . . . , K , p̂i will coincide with the maximum likelihood
estimates derived using Laplace’s pseudocounts.

(b) To determine the MAP estimates of the emission probabilities, we have to
find the point of maximum of the posterior distribution P(M|x). In logarithmic form
(base 2) we have:

log2 P(M|x) =
K∑

i=1

(ni + αi − 1) log2 pi − log2 Z − log2 P(x),

where only the first sum of K terms depends on the parameters pi. For two discrete
distributions P and Q, the relative entropy

H(P|Q) =
∑

i

P(yi) log2
P(yi)

Q(yi)
,

is always non-negative and attains its minimum zero value if and only if P = Q.
Therefore, ∑

i

P(yi) log2 Q(yi) ≤
∑

i

P(yi) log2 P(yi),

with equality if and only if P = Q. If distribution Q is given by the set of probabilities
p1, . . . , pK , and distribution P is given by the set of probabilities

n1 + α1 − 1

N +∑i αi − K
, . . . ,

nK + αK − 1

N +∑i αi − K
,

the sum
∑

i P(yi) log Q(yi) along with log2 P(M|x) becomes maximal when pj =
(nj + αj − 1)/(N +∑i αi − K) for j = 1, . . . , K . Then, the MAP estimates are
defined by the following formulas:

e∗(ai) = p∗
i = ni + αi − 1

N +∑j αj − K
,



156 Profile HMMs for sequence families

i = 1, 2, . . . , K . If αi = 1, i = 1, . . . , K , the MAP estimates coincide with the
maximum likelihood estimates.

Problem 5.13 An alignment of sequence fragments of cytochrome c from
Rickettsia conorii, Rickettsia prowazekii, Bradyrhizobium japonicum, and
Agrobacterium tumefaciens (in top down order) is as follows:

NIPELMKTANADNGREIAKK
NIQELMKTANANHGREIAKK
PIEKLLQTASVEKGAAAAKK
PIAKLLASADAAKGEAVFKK

A position-specific scoring matrix (PSSM) is derived from this alignment block.
Determine the parameters of the (3×3) section of the PSSM containing the scores
for amino acids A, R, and N in columns 4, 5, and 6. Use pseudocounts defined by
the substitution matrix mixtures with parameter Ai = 5Ri, where Ri is the number
of different residue types observed in the ith column. The BLOSUM50 substi-
tution matrix is given in Table 2.1. For simplicity, the background frequencies
of the twenty amino acids are assumed to be equal to 1/20.

Solution The score Si
α of amino acid α in column i is defined by the following

formula:

Si
α = log

ei(α)

qα

,

where qα is the background frequency of amino acid α and ei(α) is the emission
probability of amino acid α in position i. The estimates of the emission probabilities
are given by the substitution matrix mixtures (Henikoff and Henikoff, 1996):

ei(α) = Ciα + giα∑
α′(Ciα′ + giα′)

, (5.20)

where Ciα is the number of occurrences of amino acid α in column i, and the
pseudocount giα is defined by

giα = Aiqα

∑
β

Ciβ

N
eS(α,β).

Here N is the number of aligned sequences and S(α, β) is the log-odds score of
α-to-β substitution taken from the BLOSUM50 substitution matrix. For the given
block of sequences, N = 4, A4 = 5 × 2 = 10. Then, for instance, the pseudocount
for alanine in column 4 is calculated as follows:

g4A = 10

20

(
2

4
eS(A,E) + 2

4
eS(A,K)

)
= 1

4
(e−1 + e−1) = 0.184.



5.2 Additional problems and theory 157

To determine the estimates of the emission probabilities e4(A), e4(R), and e4(N),
we have to use similar formulas to obtain pseudocounts for all twenty amino acids
(calculations are not shown). Then we find by using Equation (5.20):

e4(A) = 0.00084, e4(R) = 0.02394, e4(N) = 0.00227.

Subsequently, the scores for amino acids A, R, and N in column 4 of the PSSM are
as follows (natural logarithms are used):

S4
A = log

e4(A)

qA
= log

0.00084

0.05
= −4.086,

S4
R = log

e4(R)

qR
= log

0.02394

0.05
= −0.736,

S4
N = log

e4(N)

qN
= log

0.00227

0.05
= −3.092.

Similar computations yield the score parameters of the PSSM in columns 5 and 6:

S5
A = log

e5(A)

qA
= log

0.00068

0.05
= −4.298,

S6
A = log

e6(A)

qA
= log

0.00038

0.05
= −4.880,

S5
R = log

e5(R)

qR
= log

0.00025

0.05
= −5.298,

S6
R = log

e6(R)

qR
= log

0.00014

0.05
= −5.878,

S5
N = log

e5(N)

qN
= log

0.00009

0.05
= −6.320;

S6
N = log

e6(N)

qN
= log

0.00012

0.05
= −6.032.

The substitution scores for amino acids A, R, and N rounded to the nearest integer
are shown in the PSSM submatrix of order 3 × 3 as follows:

4 5 6

A −4 −4 −5
R −1 −5 −6
N −3 −6 −6

The negative scores could be expected as amino acids A, R, and N possess
different physico-chemical properties in comparison with amino acids present in



158 Profile HMMs for sequence families

columns 4, 5, and 6 of the alignment, except for the case of R, which, is positively
charged, similar to K (situated in column 4).

Problem 5.14 Parameters of the positional independence model of the E. coli
ribosomal binding site (RBS) were estimated by the experimental positional
nucleotide frequencies shown in Table 5.9.

Table 5.9

1 2 3 4 5 6

T 0.16 0.05 0.01 0.07 0.12 0.24
C 0.08 0.04 0.01 0.03 0.05 0.11
A 0.68 0.11 0.02 0.86 0.16 0.41
G 0.08 0.80 0.96 0.04 0.67 0.24

Determine the parameters of the “logo” graph introduced by Schneider, Stormo,
and Ehrenfeucht (1986). Use the bit units for the entropy and information content
values.

Solution The rules for drawing the “logo” graph suggest that at position j the sum
of heights of four letters is equal to the information content Ij of the position, and

height Hj
α of a letter α is proportional to its probability in this position:

Hj
α = pj

αIj,

Ij = Hmax − Hj.

Thus, the information content in position j is the difference of the maximum entropy,
corresponding to the uniform discrete distribution and the entropy for the nucleotide
frequencies of the RBS model at position j. First, we calculate Hmax and H1:

Hmax = −
∑
α

1

4
log2

1

4
= 2,

H1 = −(p1
T log2 p1

T + p1
C log2 p1

C + p1
A log2 p1

A + p1
G log2 p1

G)

= −(−0.423 − 0.292 − 0.378 − 0.292) = 1.385.

Similarly, we determine the entropy Hj, j = 2, . . . , 6:

H2 = 1.01, H3 = 0.303, H4 = 0.794, H5 = 1.393, H6 = 1.866.

Now we can find the information content Ij and the heights of letters Hj
α , j =

1, . . . , 6. Here we give the value of Ij and the maximal height of the letter in position



5.2 Additional problems and theory 159

Figure 5.7. The “logo” graph for the positional independence model of the nuc-
leotide composition of the E. coli ribosomal binding site (Table 5.9). The vertical
bar on the left corresponds to the maximal possible information content I , 2 bits,
observed in a position where one of the four symbols has probability one.

j, j = 1, . . . , 6. Other values are omitted (however, they are used to draw the “logo”
graph):

I1 = Hmax − H1 = 2 − 1.385 = 0.615, I4 = Hmax − H4 = 2 − 0.794 = 1.21,
H1

A = p1
AI1 = 0.68 . . . 0.615 = 0.4182; H4

A = p4
AI4 = 0.86 . . . 1.21 = 1.04;

I2 = Hmax − H2 = 2 − 1.01 = 0.99, I5 = Hmax − H5 = 2 − 1.393 = 0.607,
H2

G = p2
GI2 = 0.8 . . . 0.99 = 0.792; H5

G = p5
GI5 = 0.67 . . . 0.607 = 0.4067;

I3 = Hmax − H3 = 2 − 0.303 = 1.697, I6 = Hmax − H6 = 2 − 1.866 = 0.134,
H3

G = p3
GI3 = 0.96 . . . 1.697 = 1.63; H6

A = p6
AI6 = 0.41 . . . 0.134 = 0.055.

The “logo” graph is shown in Figure 5.7.

Problem 5.15 Determine the value H(P1||Q) of the relative entropy (Kullback–
Leibler distance) for the RBS positional independence model described in
Problem 5.14 (model P1) assuming that the background model (model Q) for
the E. coli non-coding DNA sequence is the independence model with paramet-
ers qT = 0.26, qC = 0.23, qA = 0.26, qG = 0.25. Determine the length of
the E. coli from protein-coding DNA that would be sufficient to make the same
Kullback–Leibler distance with the same background distribution Q. As a model
of the E. coli protein-coding region use the independence model (model P2) with
parameters pT = 0.23, pC = 0.25, pA = 0.25, pG = 0.27. Note that model P2 is
not the same as model Q.



160 Profile HMMs for sequence families

Solution The relative entropy of two distributions P1 and Q is defined as the sum
of the entropies over six positions (note that distribution P1 is position-dependent
and Q is position-independent)

H(P1||Q) =
6∑

j=1

∑
α=A,T ,C,G

pj
α log2

pj
α

qα

.

As an approximation of probabilities pj
α , j = 1, . . . , 6, we take their maximum

likelihood estimates given in the positional frequency matrix (Table 5.9) to find

H(P1||Q) =
(

0.16 log2
0.16

0.26
+0.08 log2

0.08

0.23
+0.68 log2

0.68

0.26
+0.08 log2

0.08

0.23

)

+
(

0.05 log2
0.05

0.26
+0.04 log2

0.04

0.23
+0.11 log2

0.11

0.26
+0.8 log2

0.8

0.23

)

+
(

0.01 log2
0.01

0.26
+0.01 log2

0.01

0.23
+0.02 log2

0.02

0.26
+0.96 log2

0.96

0.23

)

+
(

0.07 log2
0.07

0.26
+0.03 log2

0.03

0.23
+0.86 log2

0.86

0.26
+0.04 log2

0.04

0.23

)

+
(

0.12 log2
0.12

0.26
+0.05 log2

0.05

0.23
+0.16 log2

0.16

0.26
+0.67 log2

0.67

0.23

)

+
(

0.24 log2
0.24

0.26
+0.11 log2

0.11

0.23
+0.41 log2

0.41

0.26
+0.24 log2

0.24

0.23

)

= 5.125.

Since both distributions P2 and Q are position-independent, the relative entropy
H(P2||Q) for n positions is just n times the relative entropy at one position:

H(P2||Q) = n
∑

α=A,T ,C,G

pα log
pα

qα

= n

(
0.23 log2

0.23

0.26
+0.25 log2

0.25

0.23
+0.25 log2

0.25

0.26
+0.27 log2

0.27

0.23

)

= 0.0066n.

Hence, the relative entropy (Kullback–Leibler distance) between distributions P2

and Q for six positions will be equal to the Kullback–Leibler distance between
distributions P1 and Q for n sites when

H(P2||Q) = 0.0066n = 5.125 = H(P1||Q).

So, we need n = 777 positions, which is much larger than six positions of the RBS,
since the per position value of H(P2||Q) is much less than the average per position
value of H(P1||Q).



5.3 Further reading 161

5.3 Further reading

The PROSITE database has been an important resource of data on evolutionary
conserved protein domains (Bairoch, Bucher, and Hofmann, 1997; Hulo et al.,
2004). PROSITE is a derivative of the SWISS-PROT protein sequence data bank
(Bairoch and Apweiler, 1999) respected for the high standards of functional annota-
tion. Sequence patterns discovered in the conserved protein domains have been
modeled in PROSITE with the aid of regular expressions.

PROSITE gave rise to Pfam, a collection of profile HMMs and multiple align-
ments of protein domain sequences (Sonnhammer et al., 1998). A new version
of Pfam (Bateman et al., 2002) utilizes structural data to improve domain-based
annotation of proteins.

Further development of the BLAST program, Position-Specific Iterated BLAST
(Altschul et al., 1997) became a frequently used tool for detecting homologous
protein sequences. The use of PSI-BLAST requires special care to avoid false
positive matches (Altschul and Koonin, 1998; Schäffer et al., 2001).

The development and improvement of methods, including the profile HMM based
ones, for detecting remote homology is an issue that continue to attract much
attention (Karplus, Barrett, and Hughey, 1998; Park et al., 1997, 1998). Lyngsø,
Pedersen, and Nielsen (1999) proposed several similarity measures between profile
HMMs as well as an algorithm that computes the measures. This approach allows
the comparison of sequence families by comparing profiles of the families instead
of individual members of the families.

The profile HMM technique has not only been used in modeling of protein
sequence domains. A novel profile HMM based algorithm for separating pseudo-
genes from functional genes was introduced by Coin and Durbin (2004) and was
implemented in the computer program PSILC.

Rychlewski et al. (2000) used sequence profiles for the prediction of the protein
three-dimensional structure. Kelley, MacCallum, and Sternberg (2000) proposed a
new method for detecting protein homologues, the 3D-PSSM (three-dimensional
position-specific scoring matrix), which combines multiple-sequence alignments
produced by PSI-BLAST with structure based profiles.

The literature on profile HMM based algorithms and software was reviewed by
Eddy (1998).



6

Multiple sequence alignment methods

The theory described in Chapter 5 of BSA suggests that constructing the multiple
alignment of several biological sequences should be a part of the algorithm of the
profile HMM training. Such an iterative expectation maximization method is sup-
posed to estimate parameters of the profile HMM from unaligned sequences by
means of the construction of the multiple alignment in parallel with the HMM
parameter estimation. The resulting alignment can be evoked at the last step
of the algorithm via an optimal alignment of each individual sequence to the
just built profile HMM. Nevertheless, since this impressive theoretical design
meets many practical difficulties, discussed in great detail in BSA, it has not
yet been implemented in its pure form as an efficient tool for multiple sequence
alignment.

One of the major difficulties on the road to a universal and efficient multiple
sequence alignment algorithm is as follows. Establishing a gold standard for a mul-
tiple sequence alignment that would help to distinguish a good alignment from
a better one is difficult. Since both sequence and structure are evolving and the
ancestral sequences and structures can be reconstructed only by theoretical means,
it is impossible to verify experimentally either alignments or phylogenies. Never-
theless, a formal assignment of the alignment score immediately leads to the notion
of the best alignment for a given set of sequences; however, the implications of a
so defined optimal alignment have to be taken cautiously. There are several biolo-
gically motivated options for the score assignment. For instance, the sum-of-pairs
score is computationally convenient and frequently used, but it has well known
theoretical drawbacks (Durbin et al. (1998), p. 141).

Besides the important topic of alignment score definition, we are interested in a
rigorous algorithm that would deliver the multiple alignment with the best score.
Such an algorithm, the standard dynamic programming (DP) algorithm, is available
in theory, but it is impractical, as it needs time comparable with the age of the Earth

162



6.1 Original problem 163

to align only ten protein sequences of average length (Problem 6.1). Therefore, the
prohibitive computational complexity calls for creative algorithmic solutions that
would be able to find an approximate optimal alignment in a reasonable time.

The burden of significant computational efforts associated with solving multiple
sequence alignment problems limits the number of theoretical problems that could
be offered for an exercise without much computer programming. This consideration
might explain why only one problem was offered in this BSA chapter.

Additional problems provide “toy examples” to practice using the intricate yet
rigorous DP algorithm invented by Carrillo and Lipman (1988) and with the
approximate method of multiple alignment, the progressive alignment algorithm.

6.1 Original problem

Problem 6.1 Assume that we have a number of sequences that are fifty residues
long, and that a pairwise comparison of two such sequences takes one second
of CPU time on our computer. An alignment of four sequences (N = 4) takes
(2L)N−2 = 102N−4 = 104 seconds (a few hours). If we had unlimited memory
and we were willing to wait for the answer until just before the Sun burns out in
five billion years, how many sequences could our computer align?

Solution The time T needed to align N sequences of fifty residues long is T =
(2L)N−2 = 102N−4 seconds. For T = 5 billion years, we have (in seconds):
102N−4 = 5×109 ×365×24×60×60 = 1.57×1017, thus N = 10.6. Therefore,
the full dynamic programming algorithm implemented on that computer will have
enough time to construct the multiple alignment of ten sequences of fifty residues
long, before the Sun burns out in five billion years.

6.2 Additional problems and theory

In this section, we show how to apply the Carrillo–Lipman algorithm for find-
ing the optimal (minimum cost) multiple alignment for three nucleotide sequences
(Problem 6.2). We also give an illustrative example of the application of the heuristic
progressive multiple alignment algorithm by Feng and Doolittle for the construc-
tion of the multiple alignment of four short protein sequences (Problem 6.3). The
construction of an ungapped multiple alignment in parallel with the derivation of
the probabilistic model can be done using the maximum likelihood approach. We
show that such a maximum likelihood alignment will possess minimum entropy
(Problem 6.4).



164 Multiple sequence alignment methods

6.2.1 Carrillo–Lipman multiple alignment algorithm

Theoretical introduction to Problem 6.2

An overall score of a multiple alignment is often defined as the sum of scores of
all the pairwise alignments unambiguously defined by the multiple alignment. This
type of score is called the sum of pairs (SP) score. The maximum SP-score (or the
minimum SP-cost) of an alignment of N sequences of lengths k1, . . . , kN can be
determined by a DP algorithm on an N-dimensional lattice L of size k1 × · · · ×
kN . The optimal multiple alignment (the optimal path through lattice L) is then
determined by the traceback procedure. The running time of such an algorithm is
proportional to the product k1 × · · · × kN , which is practically prohibitive for more
than ten protein sequences of average length (Problem 6.1).

Carrillo and Lipman (1988) proposed an algorithm that reduces the lattice L
to a smaller N-dimensional region which still contains the optimal path with the
minimal cost. Thus, the DP algorithm will need much less computational time to
find the optimal solution.

The algorithm works as follows. For N sequences x1, . . . , xN we define the N-
dimensional lattice L with the original corner corresponding to the first symbols
and the end corner corresponding to the last symbols of all sequences. Lattice L
consists of k1 × · · · × kN N-dimensional cubes. A permitted path γ is defined as
a continuous segmented line through lattice L connecting the original corner and
the end corner, with each segment of the line joining vertices of a single cube in
L. The end point of each segment must be closer to the end corner than the start
point of the segment. It can be shown that any given path γ corresponds to a unique
multiple alignment of x1, . . . , xN and vice versa. A projection pij(γ ) of γ into plane
(i, j) associated with sequences xi, xj defines the pairwise alignment of xi and xj.
The SP-cost S(γ ) of path γ is defined as the sum of costs of path projections pij(γ ):

S(γ ) =
∑

1≤i<j≤N

S(pij(γ )).

Obviously, this definition implies that the scoring of a pairwise alignment induced
by a multiple alignment ignores the sites where the multiple alignment contains
two aligned gap characters in both sequences xi and xj. This happens because the
corresponding segment of path γ is orthogonal to plane (i, j) and, therefore, does
not appear in the path projection pij(γ ).

Let S∗
kl designate the cost of the optimal pairwise alignment of xk and xl. It was

proved (Carrillo and Lipman, 1988) that if γ e is a permitted path through L, then
for any i, j, 1 ≤ i < j ≤ N , value Uij defined by

Uij = S(γ e) −
∑

1≤k<l≤N
(k,l)	=(i,j)

S∗
kl (6.1)



6.2 Additional problems and theory 165

gives the upper bound for the cost of pij(γ
∗), the projection of the optimal path γ ∗

into plane (i, j).
Let X be a set of paths γ ′ through lattice L satisfying the following condition:

S(pij(γ
′)) ≤ Uij, 1 ≤ i < j ≤ N . We need a constructive definition of X to use in

the optimization algorithm. For a two-dimensional lattice L(i, j) we consider a set
yij of cells in L(i, j), which are traversed by two-dimensional paths, each path with
cost smaller than Uij, and then single out a set of cubes Yij of the N-dimensional
lattice L satisfying the condition pij(Yij) = yij. If a set Y is defined as

Y =
⋂

1≤i<j≤N

Yij,

then X ⊂ Y due to Equation (6.1). Therefore, it is sufficient to apply the N-
dimensional DP algorithm just to subregion Y of lattice L to find the optimal path
among all paths in L. Note that the “closer” the selected path γ e to the yet unknown
optimal path γ ∗, the smaller the volume of region Y and the less computationally
expensive the task of dynamic programming.

Problem 6.2 Construct the optimal multiple alignment of sequences x1 =
CTCACA, x2 = CAC, and x3 = GTAC using the Carrillo–Lipman algorithm
with the nucleotide substitution costs

S(A, A) = S(C, C) = S(G, G) = S(T , T) = 0,

S(C, T) = S(T , C) = S(A, G) = S(G, A) = 1,

S(A, T) = S(T , A) = S(A, C) = S(C, A)

= S(G, C) = S(C, G) = S(G, T) = S(T , G) = 2,

the gap-open cost d = 3, and the gap-extension cost e = 2.

Solution We define a path γ e as the path through L corresponding to the following
multiple alignment:

C T C A C A
C − − A C −
G − T A C −



166 Multiple sequence alignment methods

The cost of γ e is given by

S(γ e) =
∑

1≤i<j≤N

S(pij(γ
e))

= S

(
C T C A C A
C − − A C −

)
+ S

(
C T C A C A
G − T A C −

)
+ S

(
C − A C
G T A C

)

= S(C, C) + d + e + S(A, A) + S(C, C) + d + S(G, C) + d + S(C, T)

+ S(A, A) + S(C, C) + d + S(C, G) + d + S(A, A) + S(C, C) = 22.

Optimal (global) pairwise alignment of sequences xi and xj, i, j = 1, 2, 3, along
with the minimal cost S∗

ij can be found by the DP algorithm. For a given pair
(i, j) we consider three types of alignments of sequences xi and xj up to elements
xi(k), xj(l): an alignment with match xi(k) to xj(l) (with the minimal cost SM(k, l));
an alignment with xi(k) aligned to a gap (with the minimal cost SI(k, l)); and an
alignment with xj(l) aligned to a gap (with the minimal cost SJ(k, l)).

The recurrence equations are as follows:

SM(k, l) = S(xi(k), xj(l)) + min




SM(k − 1, l − 1),

SI(k − 1, l − 1),

SJ(k − 1, l − 1);

(6.2)

SI(k, l) = min

{
SM(k − 1, l) + d,

SI(k − 1, l) + e;
(6.3)

SJ(k, l) = min

{
SM(k, l − 1) + d,

SJ(k, l − 1) + e.
(6.4)

For x1 = CTCACA and x2 = CAC, the matrix of costs S•(k, l) is determined by
Equations (6.2)–(6.4) and is shown in Figure 6.1. The entry with minimal value
in the right bottom cell of Figure 6.1 (k = 6, l = 3) defines the minimum cost
S∗

12 = 8. The traceback through the DP matrix recovers two paths with the same
cost. These paths correspond to the two best alignments of sequences x1 and x2

with cost S∗
12 = 8:

(1) C T C A C A (2) C T C A C A
C − − A C − − − C A C −

Similarly, for sequences x1 = CTCACA and x3 = GTAC, Equations (6.2)–(6.4)
produce the optimal alignment with cost S∗

13 = 8:

(3) C T C A C A
G T − A C −



6.2 Additional problems and theory 167

Figure 6.1. The matrix of costs S•(k, l) for x1 and x2 as computed by the DP
algorithm in Equations (6.2)–(6.4). Entries SM(k, l), SI(k, l), and SJ(k, l) of each
cell (k, l) are listed in top down order. Two minimal cost paths through the matrix
are shown by arrows.

Finally, for sequences x2 and x3, the DP algorithm yields the best alignment with
cost S∗

23 = 4:

(4) − C A C
G T A C

Now we can find, by applying Equation (6.1), the upper bounds Uij for the costs of
projections of the yet unknown optimal multiple alignment γ ∗ into planes (i, j):

U12 = S(γ e) − (S∗
13 + S∗

23) = 22 − 12 = 10,

U13 = S(γ e) − (S∗
12 + S∗

23) = 22 − 12 = 10,

U23 = S(γ e) − (S∗
12 + S∗

13) = 22 − 16 = 6.

The next goal is to find sets yij, i < j. For each pair of sequences xi, xj, we apply
the DP algorithm in the backward direction. As a result, for each cell (k, l) of the
two-dimensional lattice L(i, j) we know both the optimal path from the top corner
down to this cell (from the initial forward run of the algorithm) and the optimal path



168 Multiple sequence alignment methods

Figure 6.2. The costs SM
total(k, l), SI

total(k, l), SJ
total(k, l) of optimal paths traversing

through cells (k, l) of the lattice L(1, 2) are shown inside (k, l) cells if their values
satisfy S•(k, l) ≤ U12 = 10. Costs S•

total(k, l) greater than 10 are omitted.

from the bottom corner up to this cell (from the backward run of the algorithm).
Note that the latter path coincides with the optimal path from the cell to the bottom
corner of lattice L(i, j). Two optimal cost values are associated with these two
paths, which meet in cell (k, l). Therefore, for each cell (k, l) in lattice L(i, j), we
determine the optimal path traversing through this cell as a concatenation of these
two optimal paths. The cost S•

total(k, l) of the whole path is the sum of costs of its
parts. If S•

total(k, l) ≤ Uij, then cell (k, l) belongs to set yij. The sets y12, y13, y23 are
shown in Figures 6.2, 6.3, and 6.4 as sets of cells with non-empty entries S•

total(k, l)
on lattices L(1, 2), L(1, 3), L(2, 3), respectively.

Now, from Figure 6.2 we derive a set of pairwise alignments of sequences x1 and
x2 corresponding to the possible projections p12 of the optimal path γ ∗: the above
optimal alignment (3) with cost 8; alignment (5) with cost 9; and alignment (6),
(7), and (8) with cost 10:

(5) C T C A C A
C A C − − −

(6) C T C A C A (7) C T C A C A
− C − A C − − − C A − C

(8) C T C A C A
C − − A − C



6.2 Additional problems and theory 169

Figure 6.3. The costs (as in Figure 6.2) of optimal paths traversing through cells
(k, l) of the lattice L(1, 3).

Similarly, Figure 6.3 allows us to select pairwise alignments of sequences x1 and x3

corresponding to the possible projections p13 of the best path γ ∗: the above optimal
alignment (3) with cost 8; alignments (9) and (10) with cost 9,

(9) C T C A C A (10) C T C A C A
− G T A C − G − T A C −

and alignments (11) and (12) with cost 10,

(11) C T C A C A (12) C T C A C A
G T A − C − G T − A − C

Finally, from Figure 6.4 we derive two pairwise alignments of sequences x2 and
x3 corresponding to possible projections p23 of the optimal path γ ∗: the above
alignment (4) with cost 4 and alignment (13) with cost 5,

(13) G − A C
C T A C



170 Multiple sequence alignment methods

Figure 6.4. The costs (as in Figure 6.2) of optimal paths traversing through cells
(k, l) of the lattice L(2, 3).

It can be shown that the projection alignments (1)–(13) define a set X of seven
three-dimensional paths γ• through the lattice L:

(i) path γ1 and multiple alignment A1 with projections (1), (3), and (13), and cost
S(γ1) = S(1) + S(3) + S(13) = 21:

(A1) C T C A C A
C − − A C −
G T − A C −

(ii) path γ2 and multiple alignment A2 with projections (2), (9), and (4), and cost
S(γ2) = S(2) + S(9) + S(4) = 21:

(A2) C T C A C A
− − C A C −
− G T A C −

(iii) path γ3 and multiple alignment A3 with projections (6), (3), and (4), and cost
S(γ3) = S(6) + S(3) + S(4) = 22:

(A3) C T C A C A
− C − A C −
G T − A C −

(iv) path γ4 and multiple alignment A4 with projections (6), (9), and (13), and cost
S(γ4) = 24:

(A4) C T C A C A
− C − A C −
− G T A C −



6.2 Additional problems and theory 171

(v) path γ5 = γ e and multiple alignment A5 with projections (1), (10), and (13), and
cost S(γ5) = S(γ e) = 22:

(A5) C T C A C A
C − − A C −
G − T A C −

(vi) path γ6 and multiple alignment A6 with projections (2), (10), and (4), and cost
S(γ6) = S(2) + S(10) + S(4) = 21:

(A6) C T C A C A
− − C A C −
G − T A C −

(vii) path γ7 and multiple alignment A7 with projections (8), (12), and (13), and cost
S(γ7) = S(8) + S(12) + S(13) = 25:

(A7) C T C A C A
C − − A − C
G T − A − C

Three paths γ1, γ2, and γ6 have cost 21, the minimal cost among paths from X; hence,
A1, A2, and A6 are the optimal multiple alignments of sequences x1, x2, x3.

6.2.2 Progressive alignments: the Feng–Doolittle algorithm

Theoretical introduction to Problem 6.3

One of the frequently used multiple alignment methods is the progressive alignment,
the principal idea of which is to use a succession of pairwise alignments to align
pairs of sequences, a sequence to a group, and pairs of sequence groups.

Here we remind ourselves of the major steps of the pioneering progressive align-
ment algorithm by Feng and Doolittle (1987). We assume that we are dealing with
N protein sequences x1, . . . , xN .

(1) The distance Dij between sequences xi and xj, i, j = 1, . . . , N , is defined using
the score Sij of the optimal global pairwise alignment of xi and xj determined by
the Needleman–Wunsch algorithm:

Dij = − ln
Sij − Srand

Smax − Srand
. (6.5)

Here Smax = (Sii + Sjj)/2 is the average of the scores of either sequence aligned
to itself and Srand is the expected score for aligning two random sequences of the



172 Multiple sequence alignment methods

same length and residue composition,

Srand = (1/L)
∑
a∈i

∑
b∈j

S(a, b)Ni(a)Nj(b) − N(g)d. (6.6)

In Equation (6.6) Ni(a) (Nj(b)) is the number of times that residue a (b) appears
in sequence xi (xj); S(a, b) is a substitution score of amino acids a and b; N(g) is
the number of gaps in the optimal alignment of sequences xi and xj; d is the gap
penalty; L is the overall length of the alignment of sequences xi and xj. A matrix of
N(N − 1)/2 distances between all pairs of N sequences is calculated.

(2) A guide tree is built from the matrix of distances Dij using the clustering
algorithm by Fitch and Margoliash (1967).

(3) The multiple alignment is constructed in the order suggested by the guide
tree, starting with the pairwise alignment of the two closest sequences. A sequence
addition to an already built alignment is guided by the highest scoring pairwise
alignment of the “new” sequence to a sequence from the aligned group. In the
course of algorithm implementation the guide tree may require the alignment of
two already aligned groups. Then the group-to-group alignment is guided by the
highest scoring alignment between a pair of sequences – one from the first group and
one from the second group. Note that the order of steps in alignment construction
and the resulting multiple alignment itself does not depend on the edge lengths of the
guide tree; only the labeled history associated with the tree matters (see Chapter 7).

A more recent and currently widely used multiple alignment algorithm,
CLUSTALW (Thompson, Higgins, and Gibson, 1994b) uses the progressive
alignment scheme with the pairwise distances Dij as suggested by Kimura (1983):

Dij = − ln(1 − dij − d2
ij/5).

Here dij is the number of mismatches in the optimal alignment of sequences xi

and xj divided by the alignment length, not counting positions with gaps. The
guide tree in CLUSTALW is built from the distance matrix D = (Dij) by the
neighbor-joining algorithm (Saitou and Nei, 1987). To construct sequence-to-group
or group-to-group alignment, CLUSTALW first computes the group profile, the
scoring scheme for which includes position-specific gap penalties as well as the
weights of sequences in the group.

Problem 6.3 Four fragments of proteins from the I-immunoglobulin superfam-
ily, x1, x2, x3 and x4, are shown below (in the top down order):

ILDMDVVEGSAARFDCKVEGYPDPEVMWFKDDNPVKESRHFQIDYDEEGN
RDPVKTHEGWGVMLPCNPPAHYPGLSYRWLLNEFPNFIPTDGRHFVSQTT
ISDTEADIGSNLRWGCAAAGKPRPMVRWLRNGEPLASQNRVEVLA
RRLIPAARGGEISILCQPRAAPKATILWSKGTEILGNSTRVTVTSD



6.2 Additional problems and theory 173

Use the Feng–Doolittle method to construct the multiple alignment of these
sequences. Consider the following sets of parameters:

(a) PAM250 (Table 6.1) and linear gap penalty d = 8;
(b) BLOSUM62 (Table 6.6) and linear gap penalty d = 6.

Both selections (a) and (b) were suggested by Feng and Doolittle (1996).

Solution (a) For each pair of sequences xi, xj, i, j = 1, 2, 3, 4, the Needleman–
Wunsch algorithm produces the optimal alignment Aij with score Sij shown below.

Alignment A12 with score S12 = 31:

ILDMDVVEGSAARFDCKVEG-YPDPEVMWFKDDNPVKESRHFQIDYDEEGN
RDPVKTHEGWGVMLPCNPPAHYPGLSYRWLLNEFPNFIPTD-GRHFVSQTT

Alignment A13 with score S13 = 44:

ILDMDVVEGSAARFDCKVEGYPDPEVMWFKDDNPVKESRHFQIDYDEEGN
ISDTEADIGSNLRWGCAAAGKPRPMVRWLRNGEPL-ASQN-RV--EVLA-

Alignment A14 with score S14 = 13:

ILDMDVVEGSAARFDCKVEGYPDPEVMWFKDDNPVKESRHFQIDYDEEGN
RRLIPAARGGEISILCQPRAAPKATILWSKGTE-ILGNST-RV--TVTSD

Alignment A23 with score S23 = 15:

RDPVKTHEGWGVMLPCNPPAHYPGLSYRWLLNEFPNFIPTDGRHFVSQTT
ISDTEADIGSNLRWGCAAAGKPRPMV-RWLRNGEP--LASQNR--VEVLA

Alignment A24 with score S24 = 16:

RDPVKTHEGWGVMLPCNPPAHYPGLSYRWLLNEFPNFIPTDGRHFVSQTT
RRLIPAARGGEISILCQPRAA-PKATILW-SKG-TEILGNSTRVTVT-SD

Alignment A34 with score S34 = 45:

ISDTEADIGSNLRWGCAAAGKPRPMVRWLRNGEPLASQNRVEVLA-
RRLIPAARGGEISILCQPRAAPKATILWSKGTEILGNSTRVTVTSD

The four sequence self-alignments yield the following scores: S11 = 262, S22 =
287, S33 = 222, S44 = 215. Next, Equations (6.6) and (6.5) give the values of Srand



Ta
bl

e
6.

1.
T

he
25

0
PA

M
lo

g-
od

ds
am

in
o

ac
id

su
bs

ti
tu

ti
on

m
at

ri
x

w
it

h
el

em
en

ts
s(

i,
j)

=
3

lo
g 2

M
ji
/
f j

(i
n

1/
3

bi
tu

ni
ts

)

M
ji

is
th

e
el

em
en

to
f

th
e

25
0

PA
M

m
ut

at
io

n
pr

ob
ab

ili
ty

m
at

ri
x

an
d

f j
is

a
fr

eq
ue

nc
y

of
am

in
o

ac
id

j
(s

ee
Se

ct
io

n
2.

2.
1

on
th

e
de

ri
va

tio
n

of
th

e
PA

M
su

bs
tit

ut
io

n
m

at
ri

ce
s)

.

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

A
2

−2
0

0
−2

0
0

1
−1

−1
−2

−1
−1

−3
1

1
1

−6
−3

0
R

−2
6

0
−1

−4
1

−1
−3

2
−2

−3
3

0
−4

0
0

−1
2

−4
−2

N
0

0
2

2
−4

1
1

0
2

−2
−3

1
−2

−3
0

1
0

−4
−2

−2
D

0
−1

2
4

−5
2

3
1

1
−2

−4
0

−3
−6

−1
0

0
−7

−4
−2

C
2

−4
−4

−5
12

−5
−5

−3
−3

−2
−6

−5
−5

−4
−3

0
−2

−8
0

−2
Q

0
1

1
2

−5
4

2
−1

3
−2

−2
1

−1
−5

0
−1

−1
−5

−4
−2

E
0

−1
1

3
−5

2
4

0
1

−2
−3

0
−2

−5
−1

0
0

−7
−4

−2
G

1
−3

0
1

−3
−1

0
5

−2
−3

−4
−2

−3
−5

0
1

0
−7

−5
−1

H
−1

2
2

1
−3

3
1

−2
6

−2
−2

0
−2

−2
0

−1
−1

−3
0

−2
I

−1
−2

−2
−2

−2
−2

−2
−3

−2
5

2
−2

2
1

−2
−1

0
−5

−1
4

L
−2

−3
−3

−4
−6

−2
−3

−4
−2

2
6

−3
4

2
−3

−3
−2

−2
−1

2
K

−1
3

1
0

−5
1

0
−2

0
−2

−3
5

0
−5

−1
0

0
−3

−4
−2

M
−1

0
−2

−3
−5

−1
−2

−3
−2

2
4

0
6

0
−2

−2
−1

−4
−2

2
F

−3
−4

−3
−6

−4
−5

−5
−5

−2
1

2
−5

0
9

−5
−3

−3
0

7
−1

P
1

0
0

−1
−3

0
−1

0
0

−2
−3

−1
−2

−5
6

1
0

−6
−5

−1
S

1
0

1
0

0
−1

0
1

−1
−1

−3
0

−2
−3

1
2

1
−2

−3
−1

T
1

−1
0

0
−2

−1
0

0
−1

0
−2

0
−1

−3
0

1
3

−5
−3

0
W

−6
2

−4
−7

−8
−5

−7
−7

−3
−5

−2
−3

−4
0

−6
−2

−5
17

0
−6

Y
−3

−4
−2

−4
0

−4
−4

−5
0

−1
−1

−4
−2

7
−5

−3
−3

0
10

−2
V

0
−2

−2
−2

−2
−2

−2
−1

−2
4

2
−2

2
−1

−1
−1

0
−6

−2
4



Ta
bl

e
6.

2.
T

he
B

L
O

SU
M

62
lo

g-
od

ds
am

in
o

ac
id

su
bs

ti
tu

ti
on

m
at

ri
x

w
it

h
el

em
en

ts
gi

ve
n

in
1/

2
bi

tu
ni

ts

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

A
4

−1
−2

−2
0

−1
−1

0
−2

−1
−1

−1
−1

−2
−1

1
0

−3
−2

0
R

−1
5

0
−2

−3
1

0
−2

0
−3

−2
2

−1
−3

−2
−1

−1
−3

−2
−3

N
−2

0
6

1
−3

0
0

0
1

−3
−3

0
−2

−3
−2

1
0

−4
−2

−3
D

−2
−2

1
6

−3
0

2
−1

−1
−3

−4
−1

−3
−3

−1
0

−1
−4

−3
−3

C
0

−3
−3

−3
9

−3
−4

−3
−3

−1
−1

−3
−1

−2
−3

−1
−1

−2
−2

−1
Q

−1
1

0
0

−3
5

2
−2

0
−3

−2
1

0
−3

−1
0

−1
−2

−1
−2

E
−1

0
0

2
−4

2
5

−2
0

−3
−3

1
−2

−3
−1

0
−1

−3
−2

−2
G

0
−2

0
−1

−3
−2

−2
6

−2
−4

−4
−2

−3
−3

−2
0

−2
−2

−3
−3

H
−2

0
1

−1
−3

0
0

−2
8

−3
−3

−1
−2

−1
−2

−1
−2

−2
2

−3
I

−1
−3

−3
−3

−1
−3

−3
−4

−3
4

2
−3

1
0

−3
−2

−1
−3

−1
3

L
−1

−2
−3

−4
−1

−2
−3

−4
−3

2
4

−2
2

0
−3

−2
−1

−2
−1

1
K

−1
2

0
−1

−3
1

1
−2

−1
−3

−2
5

−1
−3

−1
0

−1
−3

−2
−2

M
−1

−1
−2

−3
−1

0
−2

−3
−2

1
2

−1
5

0
−2

−1
−1

−1
−1

1
F

−2
−3

−3
−3

−2
−3

−3
−3

−1
0

0
−3

0
6

−4
−2

−2
1

3
−1

P
−1

−2
−2

−1
−3

−1
−1

−2
−2

−3
−3

−1
−2

−4
7

−1
−1

−4
−3

−2
S

1
−1

1
0

−1
0

0
0

−1
−2

−2
0

−1
−2

−1
4

1
−3

−2
−2

T
0

−1
0

−1
−1

−1
−1

−2
−2

−1
−1

−1
−1

−2
−1

1
5

−2
−2

0
W

−3
−3

−4
−4

−2
−2

−3
−2

−2
−3

−2
−3

−1
1

−4
−3

−2
11

2
−3

Y
−2

−2
−2

−3
−2

−1
−2

−3
2

−1
−1

−2
−1

3
−3

−2
−2

2
7

−1
V

0
−3

−3
−3

−1
−2

−2
−3

−3
3

1
−2

1
−1

−2
−2

0
−3

−1
4



176 Multiple sequence alignment methods

and pairwise distances Dij:

Srand(1, 2) = −66.94, D12 = 1.25;
Srand(1, 3) = −80.28, D13 = 0.95;
Srand(1, 4) = −70.48, D14 = 1.31;
Srand(2, 3) = −82.86, D23 = 1.24;
Srand(2, 4) = −72.52, D24 = 1.30;
Srand(3, 4) = −37.85, D34 = 1.13.

The Fitch–Margoliash algorithm of tree building works as follows. At each step
it selects and joins a pair of closest nodes from the set of available current nodes.
The effective distance between two branch nodes k and l is defined as an average
of distances Dij between all possible pairs i and j, where i is a descendant leaf of
node k and j is a descendant leaf of node l. The node joining step is repeated until
the last two nodes are joined into the root node.

Here we start with the leaf nodes 1, 2, 3, and 4 for sequences x1, x2, x3, and x4,
respectively. The closest leaves are leaves 1 and 3 separated by distance D13 = 0.95.
Their joining creates node 5, and for a new set of nodes 2, 4, and 5 the effective
distances are as follows: D25 = (D21 + D23)/2 = 1.245 and D45 = (D41 +
D43)/2 = 1.22. Distance D24 = 1.30 does not change. Next, we join nodes 4 and 5
and create a new node 6. The last step joins remaining nodes 2 and 6 and produces
the following guide tree:

2

6

4

5

1 3

Now we should add the sequences to the growing multiple alignment in the same
order as the leaves are joined in the guide tree. Alignment A13 of sequences x1 and
x3 is taken from the list of optimal alignments and serves as the initial seed. To
align sequence x4 to A13, we will use as a guidance alignment A34, rather than A14,
since S34 > S14. Gaps in x4 should be inserted in correspondence with A34. This
operation leads to the alignment of x1, x3, x4 (in top down order):

ILDMDVVEGSAARFDCKVEGYPDPEVMWFKDDNPVKESRHFQIDYDEEGN
ISDTEADIGSNLRWGCAAAGKPRPMVRWLRNGEPL-ASQN-RV--EVLA-
RRLIPAARGGEISILCQPRAAPKATILWSKGTEIL-GNST-RV--TVTSD



6.2 Additional problems and theory 177

Finally, sequence x2 is added to the group above as determined by A12, the highest
scoring alignment among Ai2, 1, 3, 4. Therefore, the multiple alignment of four
sequences (in the initial order) is given by

ILDMDVVEGSAARFDCKVEG-YPDPEVMWFKDDNPVKESRHFQIDYDEEGN
RDPVKTHEGWGVMLPCNPPAHYPGLSYRWLLNEFPNFIPTD-GRHFVSQTT
ISDTEADIGSNLRWGCAAAG-KPRPMVRWLRNGEPL-ASQN-RV--EVLA-
RRLIPAARGGEISILCQPRA-APKATILWSKGTEIL-GNST-RV--TVTSD

(b) For another set of the alignment parameters, the amino acid substitution
matrix BLOSUM62 and the linear gap penalty d = 6, the same procedure takes
the following steps. As initial pairwise alignments we have the following:

Alignment A12 with score S12 = 4:

ILDMDVVEGSAARFDCKVEG-YPDPEVMWFKDDNP--V-KESRHFQIDYDEEGN
RDPVKTHEGWGVMLPCNPPAHYPGLSYRWLLNEFPNFIPTDGRHF-V--SQT-T

Alignment A13 with score S13 = 37:

ILDMDVVEGSAARFDCKVEGYPDPEVMWFKDDNPVKESRHFQIDYDEEGN
ISDTEADIGSNLRWGCAAAGKPRPMVRWLRNGEPL-ASQN-RVEV--LA-

Alignment A14 with score S14 = −4:

ILDMDVVEGSAARFDCKVEGYPDPEVMWFKDDNPVKESRHFQIDYDEEGN
RRLIPAARGGEISILCQPRAAPKATILWSKGTEILGNSTRVTVTSD----

Alignment A23 with score S23 = 3:

RDPVKTHEGWGVMLPCNPPAHYPGLSYRWLLNEFPNFIPTDGRHFVSQTT
ISDTEADIGSNLRWGC-AAAGKPRPMVRWLRNGEP--LASQNR--VEVLA

Alignment A24 with score S24 = 9:

RDPVKTHEGWGVMLPCNPPAHYPGLSYRWLLNEFPNFIPTDGRHFVSQTT
RRLIPAARGGEISILCQPRA-APKATILW--SKGTEILGNSTRVTVT-SD

Alignment A34 with score S34 = 24:

ISDTEADIGSNLRWGCAAAGKPRPMVRWLRNGEPLASQNRVEVLA-
RRLIPAARGGEISILCQPRAAPKATILWSKGTEILGNSTRVTVTSD



178 Multiple sequence alignment methods

The self-alignment scores are S11 = 277, S22 = 294, S33 = 238, S44 = 232.
Then we use Equations (6.6) and (6.5) to calculate Srand and Dij for each pair of
sequences:

Srand(1, 2) = −101.65, D12 = 1.30;

Srand(1, 3) = −78.64, D13 = 1.07;

Srand(1, 4) = −75.04, D14 = 1.53;

Srand(2, 3) = −81.38, D23 = 1.42;

Srand(2, 4) = −75.12, D24 = 1.39;

Srand(3, 4) = −45.83, D34 = 1.39.

To construct a guide tree, first we join the closest leaves 1 and 3 (D13 = 1.07) at
node 5 and calculate new pairwise distances: D25 = (D21 + D23)/2 = 1.36 and
D45 = (D41 + D43)/2 = 1.46 (D24 = 1.39 does not change). At the last step,
joining remaining nodes 4 and 6 completes the construction of the guide tree as
follows:

4

6

2

5

1 3

The labeled history of this tree differs from the labeled history of the guide tree
built in part (a). Finally, we align the sequences in the order defined by the guide
tree: we add sequence x2 to alignment A13 (as directed by A12); then sequence x4 is
aligned to the group of three sequences (as directed by A34). The resulting multiple
alignment is as follows:

ILDMDVVEGSAARFDCKVEG-YPDPEVMWFKDDNP--V-KESRHFQIDYDEEGN
RDPVKTHEGWGVMLPCNPPAHYPGLSYRWLLNEFPNFIPTDGRHF-V--SQT-T
ISDTEADIGSNLRWGCAAAG-KPRPMVRWLRNGEP--L--ASQN-RVEV--LA-
RRLIPAARGGEISILCQPRA-APKATILWSKGTEI--L--GNST-RVTV--TSD

Remark Comparison of (a) and (b) is instructive as it shows not only that a lower
gap penalty tolerates extra gaps in the case (b), but also that a change in scoring
matrix can alter the labeled history of the guide tree and bring changes into the
resulting multiple alignment as a whole.



6.2 Additional problems and theory 179

6.2.3 Gibbs sampling algorithm for local multiple alignment

The Gibbs sampling multiple alignment algorithm introduced by Lawrence et al.
(1993) identifies a pattern (ungapped motif of length w) contained in each of the
protein sequences S1, S2, . . . , SN . It is assumed that the occurrences of symbols
within the motif are described by a positional independence model with parameters
qiα (the probability of occurrence of symbol α in site i of the motif, i = 1, . . . , w).
The background independence model with parameters pα describes the symbol
occurrences outside the motif. The initial step of the algorithm is the assignment of
the motif start positions a1, a2, . . . , aN in each of sequences S1, S2, . . . , SN , respect-
ively. The sequences are aligned against positions a1, a2, . . . , aN , therefore, the
motifs are aligned as one ungapped block. Then the algorithm proceeds as follows:

(1) The estimation step. One of the sequences, say Sj = (x1, . . . , xm), chosen
either at random or in a specified order, is removed from the set. For the remaining
N−1 sequences, parameters qiα and pα are re-estimated by the maximum likelihood
method from the counts of symbol α in the corresponding sites within or outside
the motif, respectively. Pseudocounts bα could be used for small N .

(2) The sampling step. A new starting position aj of the motif in sequence Sj is
selected with probability P(aj) equal to the normalized value of the odds ratio Raj :

Raj =
q1xaj

q2xaj+1 × · · · × qwxaj+w−1

pxaj
pxaj+1 × · · · × pxaj+w−1

,

P(aj) = Raj∑
a′

j
Ra′

j

.

Thus, the set of starting positions a1, . . . , aN of the motif is redefined, and the
algorithm returns to step (1).

As the likelihood L =∏N
j=1 Raj is expected to increase at each step of the iterat-

ive procedure, the algorithm converges to the set of starting positions a∗
1, a∗

2, . . . , a∗
N

of the motif, which maximizes the likelihood L, although this could be a local max-
imum. Simultaneously, the alignment finds the ungapped optimal local alignment
associated with numbers a∗

1, a∗
2, . . . , a∗

N , which mark the starting positions of the
motif in sequences S1, S2, . . . , SN .

The algorithm can be modified to deal with multiple motifs within sequences and
to determine the optimal motif width w in the process of iterations. To avoid being
locked into a non-optimal local maximum, the authors suggest that shifts in all
current starting positions a1, . . . , aN should be introduced after a fixed number of
iterations. These shifts are made at random with the probability of selecting a new
set of starting positions proportional to the likelihood L of alignment associated
with the set. The running time of the algorithm is M × N × L × w, where L is the



180 Multiple sequence alignment methods

average length of aligned sequences and M is the number of iterations (for a single
motif the average number of iterations before convergence is expected to be at most
one hundred).

A detailed description of the Gibbs sampling can be found in Liu (2001).

Problem 6.4 Show that an ungapped local multiple alignment with maximum
likelihood possesses the minimum value of the sum of the positional entropies.
Assume that a positional independence model is chosen as the statistical model
for a motif associated with the ungapped local multiple alignment.

Solution The likelihood of the sequence alignment block of size w (without gaps)
is defined as a product of the likelihoods of sequences xk , k = 1, 2, . . . , N ,
participating in the alignment:

L =
N∏

k=1

P(xk) =
N∏

k=1

p1
x1

k
p2

x2
k
p3

x3
k
· · · pw

xw
k

.

Here pi
x, the parameter of the positional independence model, is the probability of

occurrence of symbol x from the alphabet of size M in position i. We transform
the expression for L from a “row-based” product to a “column-based” product as
follows:

L = p1
x1

1
p2

x2
1
· · · pw

xw
1

p1
x1

2
p2

x2
2
· · · pw

xw
2

p1
x1

N
p2

x2
N

· · · pw
xw

N

=
N∏

i=1

p1
x1

i

N∏
i=1

p2
x2

i
· · ·

N∏
i=1

pw
xw

i

=
M∏

m=1

(p1
m)n1

m

M∏
m=1

(p2
m)n2

m · · ·
M∏

m=1

(pw
m)nw

m .

Here nj
m stands for the number of occurrences of symbol m in position j, and

nj
m � pj

mN for sufficiently large N . Then

log2 L � N
M∑

m=1

p1
m log2 p1

m + N
M∑

m=1

p2
m log2 p2

m + · · · + N
M∑

m=1

pw
m log2 pw

m

= −N
w∑

i=1

Hi. (6.7)

Equation (6.7) implies that −log2 L/N = H , where H is the sum of positional
entropy values Hi. Therefore, for the ungapped alignment with the maximum
likelihood L the entropy value H is minimal.



6.3 Further reading 181

Remark The problem statement was proved for sequences described by the
inhomogeneous Markov chain by Borodovsky and Peresetsky (1994).

6.3 Further reading

Several new multiple sequence alignment algorithms have been introduced since the
mid 1990s. Brocchieri and Karlin (1998) proposed the symmetric-iterative method
for multiple alignment of protein sequences. This method combines a statistical
motif-finding procedure with a local dynamic programming. In the DIALIGN
algorithm developed by Morgenstern et al. (1998), a multiple alignment is based
on a set of ungapped pairwise local alignments (associated with matrix diagon-
als). The score of the whole alignment is defined as the sum of weights of the
participating diagonals (no gap penalties are employed). The new version of this
program, DIALIGN 2 (Morgenstern, 1999), selecting fewer but longer diagonals,
works considerably faster than DIALIGN. The T-Coffee algorithm of progressive
type was proposed by Notredame, Higgins, and Heringa (2000). This algorithm
uses a position-specific scoring scheme to align the sequences instead of the sub-
stitution matrix used in traditional progressive alignment methods. Löytynoja and
Milinkovitch (2003) introduced an algorithm combining a progressive alignment
algorithm with a profile HMM and a probabilistic model of DNA or protein evolu-
tion. Reinert, Stoye, and Will (2000b) proposed an iterative weighted sum-of-pairs
algorithm that uses the divide-and-conquer strategy (DCA; see Tönges et al.,
1996) together with dynamic programming on the reduced search space. Brudno
et al. (2003) developed Multi-LAGAN, the progressive alignment algorithm for
homologous genomic sequences. The pairwise alignments in Multi-LAGAN are
constructed by the LAGAN program (Brudno et al., 2003) which selects an optimal
set of non-overlapping local alignments with subsequent alignment of intermediate
sequence fragments by the Needleman–Wunsch algorithm. Knudsen (2003) pro-
posed an algorithm for optimal parsimony alignment with affine gap cost for any
number of sequences related by a tree (to reduce the required memory this algorithm
uses the linear space algorithm by Hirschberg, 1975). Probabilistic consistency, a
modification of the sum-of-pairs scoring system, incorporating HMM-derived pos-
terior probabilities and three-way alignment consistency, was introduced by Do
et al. (2005). The same group proposed a protein progressive multiple alignment
algorithm, ProbCons, based on the probabilistic consistency scoring function.

Another objective function for a multiple alignment, norMD, was introduced
by Thompson et al. (2001). The norMD, a column-based scoring scheme, uses
the mean distance (MD) scores employed in CLUSTALX. The MD scores are
normalized with respect to the number of aligned sequences and their lengths.



182 Multiple sequence alignment methods

The propagation model of multiple alignment presented by Liu, Neuwald, and
Lawrence (1999) combines a profile HMM approach with a block-based Gibbs
sampling.

Thompson, Plewniak, and Poch (1999a) evaluated ten frequently used multiple
alignment algorithms. The authors used as a benchmark the BAliBASE set of struc-
turally verified alignments (Thompson, Plewniak, and Poch, 1999b). An alignment
produced by each algorithm in the study was evaluated by several objective func-
tions assessing the closeness of the alignment to the corresponding benchmark
alignment. This comparative assessment of multiple alignment algorithms allowed
the identification of alignment strategies most suitable for a given set of sequences.

The features of the multiple alignment programs, such as robustness, portability,
and user-friendliness, undergo continuous improvement (see, for example, Chenna
et al. (2003) regarding the latest updates in the CLUSTAL series of programs).



7

Building phylogenetic trees

The discussion of the concept of pairwise sequence alignment and algorithms for
finding optimal alignments was divided in BSA into two chapters (Chapters 2 and
3). Chapter 2 was devoted to conventional non-probabilistic dynamic programming
algorithms and Chapter 3 described the full probabilistic approach to the pairwise
sequence alignment using a pair HMM.

Similarly, the discussion of phylogenetic tree concepts and algorithms of phylo-
genetic tree building was divided in BSA between Chapters 7 and 8. Chapter
7 introduced the non-probabilistic methods and included basic definitions, an
inventory of tree topologies, the elucidation of evolutionary distance properties,
and a description of conventional non-probabilistic algorithms such as cluster-
ing (UPGMA), neighbor-joining, and parsimony algorithms. This comprehensive
material was completed by the description of non-probabilistic algorithms of simul-
taneous alignment and phylogeny. The translation of the phylogenetic tree building
theory into probabilistic terms was left for Chapter 8.

The problems included in Chapter 7 require knowledge of combinatorics and
graph theory. The level of difficulty of some of these problems is perhaps one of
the highest in BSA.

The additional problems offer practice with the UPGMA and the neighbor-
joining tree building methods and a chance to derive a useful combinatorial formula
for the number of labeled histories.

7.1 Original problems

Problem 7.1 Draw the rooted trees obtained by adding the root in all seven
possible positions to the unrooted tree in the picture on the following page.

183



184 Building phylogenetic trees

1

7
8

5

4

3

2
6

Solution Adding a root in turn to each of the seven edges generates seven trees
with a distinct labeled patterns, as shown in Figure 7.1.

1

root root

7
2

6

7
3

1
8

4 5

8

5

3
6

2
7

8 4 8

rootrootroot

5

4
7

1 6

2 3

5
7

6
1

2 3

8
1

4 5

432

6

6

2 3
1

4 5

7

1

2 3

6 4 5

8

8

7

root root

Figure 7.1. The seven trees built as required in Problem 7.1



7.1 Original problems 185

Problem 7.2 For both rooted and unrooted trees, how many leaves do there have
to be to obtain more than one unlabeled branching pattern? Find a recurrence
relation for the number of rooted trees.

Solution Let Nn be the number of rooted trees with n leaves. Obviously, N1 =
N2 = N3 = 1, and these unlabeled branching pattern types (topologies) are as
follows:

For a rooted tree with four leaves, there are two distinct topologies (N4 = 2):

Therefore, to allow for more than one unlabeled branching pattern, a rooted tree
must have at least four leaves.

Let us consider unrooted trees. Trees with three, four, and five leaves all have
only one unlabeled branching pattern:



186 Building phylogenetic trees

For a tree with six leaves there are two possible unlabeled branching patterns, as
follows:

Hence, to allow for more than one topology, an unrooted tree must have at least six
leaves.

To derive the recurrence formula for Nn, one can count all the possible ways to
obtain a rooted tree with n leaves by joining two rooted trees with l and n− l leaves
(l ≤ n − l) at their roots.

If n is an odd number, n = 2k + 1, k > 0, any two “subtrees” will have a
different number of leaves l and n− l (l < n− l) and necessarily will have different
topologies just because of the different number of leaves. Therefore, joining a tree
with l leaves and a tree with n− l leaves at their roots will produce NlNn−l different
topologies. Hence, the recurrence formula is given by

Nn = N2k+1 =
k∑

l=1

NlNn−l.

For n = 2k, k > 1, in a similar formula we have to make an adjustment for the
N 2

k term, corresponding to joining “subtrees” with k leaves each, to avoid multiple
counting of mirror symmetrical topologies. The term N 2

k should be replaced by(Nk
2

)+Nk , where
(Nk

2

)
is the number of possible pairs of distinct topologies among

Nk , and Nk is the number of pairs of trees with the same topology types. Thus, the
recurrence relation is given by

Nn = N2k =
k−1∑
l=1

NlNn−l + Nk(Nk − 1)

2
+ Nk

=
k−1∑
l=1

NlNn−l + Nk(Nk + 1)

2
.

For small n the recurrence formulas yield: N5 = 3, N6 = 6, N7 = 11, N8 = 23,
N9 = 46, N10 = 98.



7.1 Original problems 187

Problem 7.3 All trees considered so far have been binary, but one can envisage
ternary trees that, in their rooted form, have three branches descending from a
branch node. The unrooted trees therefore have four edges radiating from every
branch node. If there are m branch nodes in an unrooted ternary tree, how many
leaves are there and how many edges?

Solution We designate the numbers of leaves and edges of an unrooted ternary tree
with m branch nodes as Lm and Em, respectively. A minimal ternary tree with m = 1
internal node has four leaves and four edges, thus L1 = E1 = 4. A ternary tree with
m − 1 nodes can be transformed into a ternary tree with m nodes by replacing one
of the leaves into a new node with three leaves. Therefore, Lm = Lm−1 + 2 and
Em = Em−1 + 3, and we have

Lm = Lm−1+2 = (Lm−2+2)+2 = · · · = L1+2(m−1) = 4+2m−12 = 2m+2,

Em = Em−1+3 = (Em−2+3)+3 = · · · = E1+3(m−1) = 4+3m−3 = 3m+1.

Problem 7.4 Consider a composite unrooted tree with m ternary branch nodes
and n binary branch nodes. How many leaves are there, and how many edges?
Let Nm,n denote the number of distinct labeled branching patterns of this tree.
Extend the counting argument for binary trees to show that

Nm,n = (3m + 2n − 1)Nm,n−1 + (n + 1)Nm−1,n+1. (7.1)

Solution First, for a binary tree with n branch nodes the number of leaves Ln and
the number of edges En are defined by Ln = n+2, En = 2n+1, which immediately
follow from the recurrence equations Ln = Ln−1 + 1, En = En−1 + 2, with L1 = 3,
E1 = 3.

Now, we designate the numbers of leaves and edges of a composite unrooted tree
with m ternary branch nodes and n binary branch nodes as Lm,n and Em,n, respect-
ively. By adding a root node to a particular edge, we get a rooted tree with m ternary
nodes, n binary nodes, and a root node (the root node is not counted as a binary
node). By enumeration of the edges via traversing down the tree (starting with the
two edges descending from the root), we will pass through three edges descending
from each ternary node, with a total of 3m edges, and two edges descending from
each binary node with a total of 2n edges. Finally, by adding the edge topped by
the root we obtain

Em,n = Em + En − 1 = 3m + 1 + 2n + 1 − 1 = 3m + 2n + 1.



188 Building phylogenetic trees

The same logic allows us to derive the formula for the number of leaves Lm,n. Again
by traversing down the tree from the root we will descend along 3m +2n +2 edges
of the tree (the edge with the root is counted twice). Descending along an edge will
bring us either to a branch node or to a leaf node. We will encounter branch nodes
m + n times and leaves (3m + 2n + 2) − (m + n) times. Therefore,

Lm,n = (3m + 2n + 2) − (m + n) = 2m + n + 2.

Now let Nm,n denote the number of distinct labeled branching patterns of the com-
posite tree in question. This tree can be built either (i) from a composite tree
with m ternary nodes and n − 1 binary nodes by adding a new edge to one of
Em,n−1 = 3m + 2n − 1 existing edges, thus creating an additional binary node;
or (ii) from a composite tree with m − 1 ternary nodes and n + 1 binary nodes by
adding an edge at one of n + 1 binary nodes, thus producing a new ternary node.
Therefore, we have the recurrence formula for Nm,n as follows:

Nm,n = (3m + 2n − 1)Nm,n−1 + (n + 1)Nm−1,n+1.

Here 3m + 2n − 1 is the number of ways to add a new edge to an existing edge
of a tree with m ternary nodes and n − 1 binary nodes, i.e. the number of the tree
edges Em,n−1 = 3m + 2(n − 1) + 1 = 3m + 2n − 1; similarly, n + 1 is the number
of ways to add a new edge at a binary node of a tree with m − 1 ternary nodes and
n + 1 binary nodes, which is obviously n + 1.

Remark Note that for binary trees with n branch nodes (m = 0) we have N0,n =
(2n − 1)N0,n−1 with N0,1 = 1. Then N0,n = (2n − 1)!!, or, in terms of the number
of leaves, NEn = (2En − 5)!!

Problem 7.5 Use the recurrence relationship from Problem 7.4 to calculate
Nm,0, the number of distinct pure ternary trees with m branch nodes, for small
values of m. Check that the calculated numbers satisfy

Nm,0 =
m∏

i=1

(
1 + 9i(i − 1)

2

)
. (7.2)

Prove formula (7.2).

Solution First, we use the recurrence formula (7.1) to determine the number of
distinct labeled branching patterns of ternary trees with m branch nodes for several



7.1 Original problems 189

small values of m. Since Nm,−1 = 0, we have

N1,0 = N0,1 = (2 − 1)!! = 1,

N2,0 = N1,1 = 4N1,0 + 2N0,2 = 4 + 2(3!!) = 10,

N3,0 = N2,1 = 7N2,0 + 2N1,2 = 70 + 2(6N1,1 + 3N0,3)

= 70 + 2(60 + 3(5!!)) = 280,

N4,0 = N3,1 = 10N3,0 + 2N2,2 = 2800 + 2(9N2,1 + 3N1,3)

= 2800 + 2[9(7N2,0 + 2N1,2) + 3(8N1,2 + 4N0,4)]
= 2800 + (9 × 280 + 3 × 1260) = 15 400.

Obviously, Nm,0 grows very quickly as m increases. It is easy to check that the
calculated values of Nm,0 satisfy the equation Nm,0 =∏m

i=1(1 + 9i(i − 1)/2):

N1,0 = 1 = (1 + 9 × 1 × 0/2),

N2,0 = 10 = N1,0(1 + 9 × 2 × 1/2),

N3,0 = 280 = N2,0(1 + 9 × 2 × 3/2),

N4,0 = 15 400 = N3,0(1 + 9 × 3 × 4/2).

Secondly, we show how to prove Equation (7.2). We will verify that for n ≥ 3
there is a one-to-one correspondence between trees Tn with n labeled (branch and
leaf) nodes and nn−2 sequences (a1, a2, . . . , an−2) that can be formed from num-
bers 1, 2, . . . , n. This statement appears as Theorem 2.1 in Moon (1970) with a
reference to much earlier work by Cayley (1889). We begin the a proof of the one-
to-one correspondence by verifying that a tree with n nodes defines a sequence (a1,
a2, . . . , an−2). The procedure of generating this sequence for tree Tn with nodes
labeled by integers 1, 2, . . . , n is called the Prüfer construction (Prüfer, 1918). We
identify a leaf node with the smallest label and remove this node and its incid-
ent edge from Tn. The label of the node to which the removed node was attached
becomes a1. We repeat this process for the reduced tree Tn−1 to determine a2 and
continue until only two nodes, joined by an edge, are left. Different trees Tn, T ′

n
determine different sequences (a1, a2, . . . , an−2), (B1, B2, . . . , Bn−2).

It remains to show that a sequence An−2 = (a1, a2, . . . , an−2) of n − 2 numbers
sampled from numbers 1, 2, . . . , n uniquely defines tree Tn. This can be shown by
a step-by-step reconstruction of tree edges that we have earlier removed one after
another upon implementation of the Prüfer algorithm. We define a list of integers
Ln−2 = (b1, . . . , bk), 1 ≤ b1 < b2 < · · · < bk ≤ n, consisting of numbers absent
in An−2 (there are at least two elements in Ln−2). Obviously, due to the rules of
the Prüfer construction, b1 is a leaf connected to a1. At the first step we remove a1

from An−2, b1 from Ln−2, and obtain An−3 = (a2, . . . , an−2). If a1 appears in An−3,



190 Building phylogenetic trees

we define a new list as Ln−3 = (b2, . . . , bk); otherwise Ln−3 = (b2, . . . , bk , a1).
After rearranging elements of sequence Ln−3 (if necessary) in increasing order, we
obtain Ln−3 = (b′

1, . . . , b′
k) (or Ln−3 = (b′

1, . . . , b′
k−1)) and infer that b′

1 is a node
connected to a2. At the next step we remove a2 from An−3, b′

1 from Ln−3, repeat
the procedure described above to determine a node b′′

1 attached to a3 in tree Tn, and
so on. When this algorithm is advanced to the step n − 3, we will have the one-
element sequence A1 = (an−2), and we can prove that a list L1 will have exactly
two elements b∗

1, b∗
2. Indeed,

|L1| = k − (n − 3) + (n − k + 1) = 2,

where k is the size of initial list Ln−2, n − 3 is the number of mandatory removals
of the smallest members of the lists, and n − k + 1 is the number of insertions of
elements a• to the lists Ln−3, . . . , L2, equal to the number of different elements
among (a1, a2, . . . , an−3) not equal to an−2. At this (next to the final) step, b∗

1 joins
an−2. Then an−2 is reinserted in A0 and b∗

2 joins an−2 as well. As a result we have a
sequence of n − 1 edges (b1, a1), (b′

1, a2), (b′′
1, a3), . . . , (b∗

1, an−2), (b∗
2, an−2), that

uniquely defines tree Tn (all edges are different, because at each step after joining
a• the minimal b• is removed from the list; each number from 1 to n is the end of
at least one edge in the set (b1, a1), . . . , (b∗

2, an−2)). Moreover, by using the Prüfer
algorithm for Tn, we should get the same sequence An−2 = (a1, a2, . . . , an−2).
Hence, Prüfer’s construction defines the one-to-one correspondence between these
sequences and the trees Tn.

From the proved statement we can derive a quite general corollary about the
number of labeled trees in terms of degrees of their nodes. The degree of a node is
defined as the number of edges incident to the node. We can associate with tree Tn

a degree sequence (d1, d2, . . . , dn), where di is the degree of node i, i = 1, . . . , n.
In the sequence (a1, a2, . . . , an−2) built for tree Tn by Prüfer’s construction, each
number i, i = 1, . . . , n, will appear exactly di − 1 times. For tree Tn with a given
sequence of node degrees the number of ways to choose positions for labels is equal
to the multinomial coefficient(

n − 2

d1 − 1, d2 − 1, . . . , dn − 1

)
.

Therefore, due to one-to-one correspondence between trees and sequences, the
number N of trees with n labeled (branch and leaf) nodes 1, 2, . . . , n, and a degree
sequence (d1, d2, . . . , dn) is given by the same multinomial coefficient:

N =
(

n − 2

d1 − 1, d2 − 1, . . . , dn − 1

)
. (7.3)

Let us consider a ternary tree T with m branch nodes. According to the formula
proved in Problem 7.3, this tree has 2m +2 leaf nodes. The total number of (branch



7.1 Original problems 191

and leaf) nodes of T is 3m + 2; let the leaves be labeled by numbers from 1 to
2m + 2 and the branch nodes by numbers from 2m + 3 to 3m + 2. Then the degree
sequence corresponding to tree T is (1, . . . , 1, 4, . . . , 4) with 2m + 2 ones and
m fours. According to Equation (7.3), the number of trees with such degree sequence
is given by(

(3m + 2) − 2

0, . . . , 0, 3, . . . , 3

)
=
(

3m

0, . . . , 0, 3, . . . , 3

)
= (3m)!

(3!)m
= (3m)!

6m
.

To determine the number N∗
m of ternary trees with labeled leaves (and unlabeled

branch nodes), we note that among all (3m)!6−m trees there are groups of size
m! with fixed leaf nodes and all possible permutations of labels for branch nodes
that identify the same tree with labeled leaves and unlabeled branch nodes. Hence,
we have

N∗
m = (3m)!

6mm! . (7.4)

It is not obvious, but formulas (7.2) and (7.4) are equivalent. Indeed,

Nm,0 =
m∏

i=1

(
1 + 9i(i − 1)

2

)

=
m∏

i=1

2 + 9i2 − 9i

2
=

m∏
i=1

(3i − 2)(3i − 1)

2

= 1 × 2 × 4 × 5 × 7 × 8 × · · · × (3m − 2)(3m − 1)

2m

= (3m)!
(2m)3 × 6 × 9 × · · · × (3m)

= (3m)!
6mm! = N∗

m.

Remark 1 Interestingly, formula (7.3) for the number of trees in terms of degrees
of tree nodes can be used to derive an explicit formula for the number Nm,n of
composite trees with m ternary and n binary branch nodes, and labeled leaves
(see Problem 7.4).

Any composite tree with m ternary and n binary branch nodes has Lm,n = 2m +
n + 2 leaves (it was proved in Problem 7.3). The total number of (branch and leaf)
nodes of the tree is 3m + 2n + 2; we assign to leaves numbers from 1 to 2m + n + 2
and to branch nodes numbers from 2m + n + 3 to 3m + 2n + 2. There are

(m+n
m

)
degree sequences (d1, d2, . . . , d3m+2n+2) corresponding to composite trees with
such labelling of nodes (since there are

(m+n
m

)
possibilities to choose m positions to

place fours among d2m+n+3, . . . , d3m+2n+2; d1 = · · · = d2m+n+2 = 1). According



192 Building phylogenetic trees

to Equation (7.3), each of these degree sequences defines

(3m + 2n)!
(3!)m(2!)n

= (3m + 2n)!
6m2n

composite trees with labeled branch and leaf nodes. To determine the number Nm,n

of composite trees with labeled leaves (and unlabeled branch nodes), we note that
(m + n)! different trees with fixed labels for leaves and all possible permutations of
labels for branch nodes (among

(m+n
m

)
(3m + 2n)!6−m2−n trees with labeled branch

and leaf nodes) identify the same tree with labeled leaves and unlabeled branch
nodes. Thus we obtain

Nm,n =
(m+n

m

)
(3m + 2n)!

6m2n(m + n)! = (3m + 2n)!
6m2nm!n! . (7.5)

Remark 2 Equation (7.4) is a special case of Equation (7.5) for n = 0.

Remark 3 The recurrence relationship given by Equation (7.1) can also be derived
from Equation (7.5):

(3m+2n − 1)Nm,n−1 + (n + 1)Nm−1,n+1

= (3m + 2n − 1)
(3m + 2n − 2)!

6m2n−1m!(n − 1)! + (n + 1)
(3m + 2n − 1)!

6m−12n+1(m − 1)!(n + 1)!
= (3m + 2n − 1)!

6m2n−1m!(n − 1)! + (3m + 2n − 1)!
6m−12n+1(m − 1)!n!

= (3m + 2n − 1)!
6m−12n−1(m − 1)!(n − 1)!

(
1

6m
+ 1

4n

)

= (3m + 2n − 1)!
6m−12n−1(m − 1)!(n − 1)!

3m + 2n

12mn
= (3m + 2n)!

6m2nm!n! = Nm,n.

A further discussion on counting multifurcating trees can be found in Felsenstein
(2004).

Problem 7.6 Show that, if distances between clusters are defined by

dij = 1

|Ci||Cj|
∑

p∈Ci, q∈Cj

dpq (7.6)

and if Ck = Ci ∪ Cj, then dkl for any l is given by

dkl = dil|Ci| + djl|Cj|
|Ci| + |Cj| .



7.1 Original problems 193

Solution If Ck = Ci ∪ Cj and Cl is any other cluster, then from the definition of
the distance between clusters given above, we have∑

p∈Cl , q∈Ck

dpq =
∑

p∈Cl , q∈Ci

dpq +
∑

p∈Cl , q∈Cj

dpq

= dil|Ci||Cl| + djl|Cj||Cl|. (7.7)

Since |Ck| = |Ci| + |Cj|, Equation (7.7) allows to rewrite the formula for dkl as
follows:

dkl = 1

|Cl||Ck|
∑

p∈Cl , q∈Ck

dpq = dil|Ci||Cl| + djl|Cj||Cl|
|Cl|(|Ci| + |Cj|)

= dil|Ci| + djl|Cj|
|Ci| + |Cj| .

Problem 7.7 Show that in a tree constructed by UPGMA, a node always lies
above its daughter nodes.

Solution Upon building a rooted tree by UPGMA, at each step we choose two
clusters i and j with minimal distance dij, join them into new cluster k, and place
a new node at height hij = dij/2. Then we remove the minimal value dij from a set
of all pairwise distances and substitute all distances dil, djl (l is any other cluster) by
the distances dkl between the new cluster k and cluster l defined by Equation (7.6).
We will show that

di′j′ ≥ dij (7.8)

for any distance di′j′ in the set of pairwise distances defined for the next step of
UPGMA. If di′j′ does not involve a new cluster k, the inequality (7.8) holds because
dij was selected as the minimum distance after comparing all di′j′ , while di′j′ stays
the same for pairs i′, j′ such that i′, j′ 	= i, j. Now

dkl ≥ min(dil, djl)

for any cluster l, since dkl is a weighted average of distances dil and djl (see
Problem 7.6). On the other hand, inequalities dil ≥ dij, djl ≥ dij hold for any
l, as dij was chosen as the minimum distance, thus dkl ≥ dij for any l. This proves
inequality (7.8). Finding the minimum among distances di′j′ (say, di∗j∗) will define
a new pair of clusters i∗ and j∗ to join into a new node with height hi∗j∗ = di∗j∗/2.
We have hi∗j∗ ≥ hij, and see that the sequence of heights of the nodes built in
subsequent steps of UPGMA is not decreasing. For any daughter node the parent



194 Building phylogenetic trees

node will be found at one of the later steps of the algorithm and, hence, no daughter
node can lie above its parent node.

Remark Here is a simple example when the daughter node height is equal to the
height of the parent node. Assume that three sequences x1, x2, x3 satisfy d12 =
d23 = d13 = d. At the first step of the clustering procedure, we can choose any pair
of leaves to join in new cluster 4. We choose leaves 1 and 2, and place node 4 at
height d/2. A new distance d43 = d13 = d23 = d; thus, next we join cluster 4 and
leaf 3, and place node 5 at height d/2. Since the daughter node 4 and the parent
node 5 have equal heights, they merge and create a ternary node. Thus, sequences
x1, x2, x3 become daughters of the ternary node, which would be the best way to
build a tree for these sequences.

Problem 7.8 The distances between sequences are said to be ultrametric if, for
any triplet of sequences xi, xj, xk , the distances dij, djk , dik are either all equal,
or two are equal and the remaining one is smaller. It can be shown that if the
distances dij are ultrametric, and if a tree is constructed from these distances by
UPGMA, then the distances obtained from this tree by taking twice the heights
of the node on the path between i and j are identical to the dij. Check that this
is true in the example of UPGMA applied to five sequences if the distances are
ultrametric.

Solution To check this property, we consider three possible distinct unlabeled
patterns of rooted trees with five leaves. All trees are assumed to be constructed by
UPGMA from distances satisfying the ultrametric condition. In each case the tree
leaves are labeled for convenience.

(a) For the following branching pattern below (denoted as (((2 + 1) + 1) + 1)):

9

8

7

6

1 2 3 4 5



7.1 Original problems 195
the closest clusters at the first pass of UPGMA are leaves 1 and 2. Distance d12

is twice as large as the height of node 6. Next, leaves 1 and 2 are joined into new
cluster 6, and all distances d6i, i = 3, 4, 5, satisfy d6i = 1

2 (d1i+d2i) = d1i = d2i due
to the ultrametric property. The second pass joins the closest clusters 6 and 3, while
the distance d63 = d13 = d23 is twice as large as the height of node 7. Now we join
cluster 6 and leaf 3 into the new cluster 7, and for distances d7i, i = 4, 5, we have
d7i = 1

3(d1i +d2i +d3i) = d1i = d2i = d3i due to the ultrametric property. The next
pair of closest clusters are cluster 7 and leaf 4, and distance d74 = d14 = d24 = d34

is as large as the height of node 8. Cluster 7 and leaf 4 are joined into the new
cluster 8, while d85 = 1

4(d15 + d25 + d35 + d45) = d15 = d25 = d35 = d45 due
to the ultrametric property. The last node, 9, is placed at height 1

2 d85 = 1
2 d15 =

1
2 d25 = 1

2 d35 = 1
2 d45. Thus, we have verified that distance dij between leaves i and

j is twice as large as the height of the highest node of the tree between i and j.
(b) For the second branching pattern ((2 + 2) + 1):

9

8

6

7

1 2 3 4 5

the closest clusters at the first pass of UPGMA are leaves 1 and 2. Distance d12 is
twice as large as the height of node 6. We join leaves 1 and 2 into the new cluster 6,
and all distances d6i, i = 3, 4, 5, satisfy d6i = 1

2 (d1i + d2i) = d1i = d2i due to
the ultrametric property. At the second pass the closest clusters are leaves 3 and 4,
and distance d34 is twice as large as the height of node 7. Next, leaves 3 and 4 are
joined into the new cluster 7, and then d76 = 1

4(d13 + d23 + d14 + d24) = d13 =
d23 = d14 = d24 with d75 = 1

2 (d35 + d45) = d35 = d45 due to the ultrametric
property. The next pair of closest clusters are clusters 6 and 7, and distance d67 =
d13 = d23 = d14 = d24 is twice as large as the height of node 8. We define a new
cluster 8 by joining clusters 6 and 7, while d85 = 1

4(d15 +d25 +d35 +d45) = d15 =
d25 = d35 = d45. Therefore, for the last node, 9, placed at height 1

2 d85, we have
d85 = d15 = d25 = d35 = d45, which completes the proof for case (b).

(c) For the last branching pattern ((2 + 1) + 2):



196 Building phylogenetic trees

9

7

8

6

1 2 3 4 5

the closest clusters at the first pass of UPGMA are leaves 1 and 2. The distance d12

is twice as large as the height of node 6. We join leaves 1 and 2 into the new cluster 6,
and for all distances d6i, i = 3, 4, 5, equality d6i = 1

2 (d1i + d2i) = d1i = d2i holds
due to the ultrametric property. At the second pass the closest clusters are 6 and 3,
and distance d63 = d13 = d23 is twice as large as the height of node 7. We introduce
a new cluster, 7, by joining cluster 6 and leaf 3, and for both distances we have
d7i = 1

3(d1i + d2i + d3i) = d1i = d2i = d3i due to the ultrametric property. The
next pair of closest clusters are leaves 4 and 5, and distance d45 is twice as large
as the height of node 8. Leaves 4 and 5 are joined into a new cluster, 8. Now for
distance d78 we have d78 = 1

6(d14 + d15 + d24 + d25 + d34 + d35) = d14 = d15 =
d24 = d25 = d34 = d35. Therefore, for the last node, 9, placed at height 1

2 d78, we
have d78 = d14 = d15 = d24 = d25 = d34 = d35. The proof is complete.

Problem 7.9 For a tree with additive edge lengths d we define the distance Dij

between leaves i and j as follows:

Dij = dij − (ri + rj), (7.9)

where

ri = 1

|L| − 2

∑
k∈L

dik

and |L| denotes the size of the set of leaves L. Show that the smallest distances
Dij in the tree below correspond to neighboring leaves.



7.1 Original problems 197

1 2

3 4

0.1 0.1 0.1

0.4 0.4

Solution Here |L| = 4, and we proceed by using Equation (7.9):

r1 = 1

2
(0.5 + 0.3 + 0.6) = 0.7,

r2 = 1

2
(0.5 + 0.3 + 0.6) = 0.7,

r3 = 1

2
(0.5 + 0.6 + 0.9) = 1,

r4 = 1

2
(0.5 + 0.6 + 0.9) = 1.

Therefore

D12 = d12 − (r1 + r2) = 0.3 − (0.7 + 0.7) = −1.1,

D13 = d13 − (r1 + r3) = 0.5 − (0.7 + 1) = −1.2,

D14 = d14 − (r1 + r4) = 0.6 − (0.7 + 1) = −1.1,

D23 = d23 − (r2 + r3) = 0.6 − (0.7 + 1) = −1.1,

D24 = d24 − (r2 + r4) = 0.5 − (0.7 + 1) = −1.2,

D34 = d34 − (r3 + r4) = 0.9 − (1 + 1) = −1.1.

We can see that two equal minimum values of D, D13 = D24 = −1.2, indeed
correspond to the pairs of neighboring leaves: (1, 3) and (2, 4).

Remark Note that D defined by Equation (7.9) does have the usual distance prop-
erties. As we saw, Dij can be negative and, surprisingly, Dii = dii −2ri = −2ri 	= 0.

Problem 7.10 Show that, for a tree with four leaves, values Dij for a pair of
neighbors is less than D for all other pairs by the “bridge length,” i.e. the length
of the edge joining the two branch nodes in the tree.



198 Building phylogenetic trees

d2 d3

d4
d1

d

1

2 3

4

Figure 7.2. The edge notation used in Problem 7.10.

Solution Note that in Problem 7.9 the values D13 and D24 for pairs of neighbors are
indeed less than Dij for other pairs of leaves by the “bridge length,” 0.1. Proof of this
property for a general four-leaf tree, |L| = 4, is straightforward (see Figure 7.2).

Given the equalities

r1 = 1

2
(d1 + d2 + d1 + d + d3 + d1 + d + d4) = d + 3d1 + d2 + d3 + d4

2
,

r2 = 1

2
(d2 + d1 + d2 + d + d3 + d2 + d + d4) = d + d1 + 3d2 + d3 + d4

2
,

r3 = 1

2
(d3 + d4 + d3 + d + d1 + d3 + d + d2) = d + d1 + d2 + 3d3 + d4

2
,

r4 = 1

2
(d4 + d3 + d4 + d + d1 + d4 + d + d2) = d + d1 + d2 + d3 + 3d4

2
,

we find

D12 = d12 − (r1 + r2) = d1 + d2 − r1 − r2 = −2d − d1 − d2 − d3 − d4,

D13 = d13 − (r1 + r3) = d1 + d + d3 − r1 − r3 = −d − d1 − d2 − d3 − d4,

D14 = d14 − (r1 + r4) = d1 + d + d4 − r1 − r4 = −d − d1 − d2 − d3 − d4,

D23 = d23 − (r2 + r3) = d2 + d + d3 − r2 − r3 = −d − d1 − d2 − d3 − d4,

D24 = d24 − (r2 + r4) = d2 + d + d4 − r2 − r4 = −d − d1 − d2 − d3 − d4,

D34 = d34 − (r3 + r4) = d3 + d4 − r3 − r4 = −2d − d1 − d2 − d3 − d4.

Thus, the property holds for this tree: if D′ is the value for two neighbors (D12 or
D34) and D′′ is the value for non-neighbors, then D′′−D′ = d, where d is the length
of the edge joining the two branch nodes of the tree.

Problem 7.11 Show that the traditional parsimony algorithm (Sankoff and
Cedergren, 1983) gives the same cost as that for weighted parsimony (Fitch,
1971) using weights S(a, a) = 0 for all a, and S(a, b) = 1 for all a 	= b.



7.1 Original problems 199

Solution We will use the mathematical induction with respect to the number of
tree leaves. For a given sequence site u we will compare the tree costs defined by
the weighted parsimony and by the traditional parsimony.

First, we consider tree T2 with two leaves. If both sequences x1 and x2 have
residue a at site u, the traditional parsimony algorithm assigns the list of residues
RC3 = a ∩ a = {a} to root node 3, and the traditional parsimony cost of tree T2, the
minimal number of substitutions at site u, is zero (CT2 = C3 = 0) for the ancestral
residue a at the root. The weighted parsimony algorithm works for T2 as follows.
At each leaf the cost of residue a is zero, and the cost of any other residue is +∞.
Then S3(a) = 0, and S3(b) = 2, b 	= a. Thus, the list of minimal cost residues at
the root is RS3 = {a} and the weighted parsimony cost of T2 is ST2 = S3(a) = 0.
Hence, ST2 = CT2 .

If residues a and b at site u are different, then for traditional parsimony the list
of residues at root node 3 is RC3 = a ∪ b = {a, b}, and the traditional cost CT2

is 1, the minimal number of substitutions. The weighted parsimony gives S3(a) =
S3(b) = 1, S3(x) = 2, if x 	= a, b. Then the weighted parsimony cost of the tree is
the same as the cost of any residue from list RC3 at the root: ST2 = S3(a) = S3(b).
Once again, ST2 = CT2 .

Similarly, the equality ST3 = CT3 can be verified for tree T3 with three leaves. We
consider now tree TN with N leaves. Suppose that for two daughters, i and j, of the
root we have Si = Ci, Sj = Cj, and for each node the list of minimal cost and list
of parsimonious residues kept by both algorithms are identical: RSi = RCi = Ri,
RSj = RCj = Rj. We will show that at the root the list of ancestral residues with the
minimum number of substitutions and the list of minimum cost Sk residues are the
same and we prove that ST = CT .

If Ri ∩Rj = ∅, then the list Rk of residues for the traditional parsimony algorithm
is Rk = Ri ∪ Rj and the cost of tree TN is CT = Ck = Ci + Cj + 1. We suppose that
Ri = {a1, . . . , am}, Rj = {b1, . . . , bn}, and therefore that

Sk(al) = Si(al) + Sj(b1) + 1 = Ci + Cj + 1,

Sk(bq) = Si(a1) + 1 + Sj(bq) = Ci + Cj + 1,

Sk(x) = Si(a1) + 1 + Sj(b1) + 1 = Ci + Cj + 2,

for all x /∈ Rk , l = 1, . . . , m, q = 1, . . . , n. Thus, the weighted parsimony cost of
tree TN is equal to

ST = Sk(a1) = · · · = Sk(am) = Sk(b1) = · · · = Sk(bn) = Ci + Cj + 1 = CT

and the list of the minimal cost residues at the root is given by

RSk = {a1, . . . , am, b1, . . . , bn} = Ri ∪ Rj = RCk .



200 Building phylogenetic trees

Finally, we assume that lists Ri and Rj have a non-empty intersection: Ri ∩ Rj =
{c1, . . . , ct}. Then list Rk for traditional parsimony algorithm is Rk = {c1, . . . , ct},
and the cost of tree TN is CT = Ck = Ci + Cj. At the same time, the weighted cost
of residues at the root is given by

Sk(cp) = Si(cp) + Sj(cp) = Ci + Cj,

Sk(al) = Si(al) + Sj(b1) + 1 = Ci + Cj + 1,

Sk(bq) = Si(a1) + 1 + Sj(bq) = Ci + Cj + 1,

Sk(x) = Si(a1) + 1 + Sj(b1) + 1 = Ci + Cj + 2,

for all p = 1, . . . , t, al /∈ Rk , bq /∈ Rk , x /∈ Ri ∪ Rj. Thus, the list of the minimal
weighted cost residues at the root is given by

RSk = {c1, . . . , ct} = Rk

and the weighted parsimony cost of tree TN is

ST = Sk(c1) = · · · = Sk(ct) = Ci + Cj = CT .

Therefore, we have proved that the traditional parsimony algorithm gives the same
cost as that for the weighted parsimony algorithm with the weight function S such
that S(a, a) = 0 and S(a, b) = 1 for a 	= b.

Problem 7.12 Show that the minimal cost with weighted parsimony is inde-
pendent of the position of the root, provided the substitution cost is a metric,
i.e. that it satisfies S(a, a) = 0, symmetry S(a, b) = S(b, a), and the triangle
inequality

S(a, c) ≤ S(a, b) + S(b, c),

for all a, b, c.

Solution First, we derive a formula for cost ST of a rooted tree T under the
assumption that we have completed the post-order traversal procedure of weighted
parsimony. We assume that i and j are daughter nodes of root k as shown in the
following:

i
k

l m

j



7.1 Original problems 201

Assume also that we know costs Si(a) and Sj(b) of subtrees descending from i and
j for any residues a and b. Then

Sk(c) = min
a

(Si(a) + S(c, a)) + min
b

(Sj(b) + S(b, c))

and

ST = min
c

Sk(c) = Sk(c
∗) = Si(a

∗) + S(c∗, a∗) + Sj(b
∗) + S(b∗, c∗). (7.10)

Note that c∗ should necessarily be either a∗ or b∗ to minimize the right-hand side
in (7.10). Indeed, if c∗ = a∗ (or c∗ = b∗) we have, for any other c′,

ST = Si(a
∗) + S(c∗, a∗) + Sj(b

∗) + S(b∗, c∗)
≤ Si(a

∗) + S(c′, a∗) + Sj(b
∗) + S(b∗, c′)

due to the triangle inequality. Therefore we deduce that

ST = min
a,b

(Si(a) + Sj(b) + S(a, b)).

Now we want to show that the cost of tree will not change if we move the root to
another edge. Without loss of generality we consider moving the root to one of the
edges descending from node i with two daughter nodes l and m:

l
k

i

m j

With the new root k′ located at edge (i, l) the cost of tree T ′ becomes

ST ′ = min
a,d

(S′
i(a) + Sl(d) + S(a, d)).

Here d designates a symbol attached to node l and S′
i(a) is the cost of the subtree

descending from node i (a different subtree in T ′ compared with the subtree des-
cending from i in T ). Now we will work with the expressions for ST and ST ′ using
recurrence equations (e is the symbol located at node m) as follows:

ST = min
a,b

(
min

e
(Sm(e) + S(e, a)) + min

d
(Sl(d) + S(d, a)) + Sj(b) + S(a, b)

)
,

(7.11)

ST ′ = min
a,d

(
min

e
(Sm(e) + S(e, a)) + min

b
(Sj(b) + S(a, b)) + Sl(d) + S(a, d)

)
.

(7.12)



202 Building phylogenetic trees

Both right-hand expressions in Equations (7.11) and (7.12) are equivalent to

min
a

(
min

e
(Sm(e) + S(e, a)) + min

d
(Sl(d) + S(d, a)) + min

b
(Sj(b) + S(a, b))

)
.

Therefore ST = ST ′ , which means that the minimal cost of a tree defined by weighted
parsimony is independent of the root position if the substitution cost is a metric.

Problem 7.13 Hein’s algorithm (Hein, 1989) can be extended to general weights
S(a, b) by attaching a set of minimal cost Sl(a) (as in the weighted parsimony
algorithm) to each edge in a sequence graph instead of the set Rl. (a) Show that
the equality

S(x, z) + S(z, y) = S(x, y)

can be satisfied by having z share a residue with x or y provided that S(a, a) = 0
for all a. (b) Evaluate the minimal cost (assuming a nucleotide or DNA alphabet)
of a tree T

TAC

CAC

CTC ACA

using Hein’s algorithm for the sequence graphs.

Solution (a) Suppose that sequences x and y are associated with the daughter nodes
of node l, and the minimal cost alignment of x and y is found by using the dynamic
programming equations with weights S(a, b). At node l we determine the minimal
cost ancestral sequence z aligned to both sequences x and y as follows. At any site,
z shares a symbol with either x or y (or both of them). Suppose that at a given site
the optimal alignment of x and y has a match, with residue xi aligned to yj. Then,
if zk = xi, we obtain

S(xi, zk) + S(zk , yj) = S(xi, xi) + S(xi, yj) = S(xi, yj);

if zk = yj, we have

S(xi, zk) + S(zk , yj) = S(xi, yj) + S(yj, yj) = S(xi, yj).

If the alignment of the sequences has a gap at a site (say, y-gap), we choose either
a gap or residue xi for the ancestral sequence z. Then at this site the contributions



7.1 Original problems 203

to both sides of the equality S(x, z) + S(z, y) = S(x, y) are the same and equal to
either the gap-open cost d (if the gap follows a match) or the gap-extension cost e
(if the gap follows another y-gap). One more rule controls the choice of z-residues.
If several consecutive gaps in one sequence occur in the optimal alignment of x and
y, then the ancestral sequence z must either skip the entire set of residues aligned
to the gap or include them all.

(b) Now we will find the minimal cost S of tree T with leaves z = TAC, y = CAC,
and x = CTCACA by the dynamic programming algorithm for sequence graphs
introduced by Hein (1989). We have to calculate current costs, compare them ,and
choose the minimum value to fill the cells of dynamic programming matrices.
The algorithm parameters are selected as follows: substitution costs S(A, T) =
S(T , A) = S(A, C) = S(C, A) = S(G, C) = S(C, G) = S(G, T) = S(T , G) =
2, S(C, T) = S(T , C) = S(A, G) = S(G, A) = 1; gap-open cost d = 3, and
gap-extension cost e = 2.

To implement this procedure, we associate sequences x, y, and z with graphs
G1, G2, and G3, respectively, defined as follows. Each of these graphs is a simple
linear graph with the number of edges equal to the length of the corresponding
sequence. Additionally, we attach to edge i, i = 1, . . . , 6, of graph G1 the vec-
tor of substitution costs [S(A, xi), S(C, xi), S(G, xi), S(T , xi)]; to edge j, j = 1, 2, 3,
of graph G2 the vector of substitution costs [S(A, yj), S(C, yj), S(G, yj), S(T , yj)];
and to edge l, l = 1, 2, 3, of graph Gl the vector of substitution costs
[S(A, zl), S(C, zl), S(G, zl), S(T , zl)].

Then we obtain the following simple linear graphs:

G1 •
[2,0,2,1] [2,1,2,0] [2,0,2,1] [0,2,1,2] [2,0,2,1] [0,2,1,2]

G2 •
[2,0,2,1] [0,2,1,2] [2,0,2,1]

G3 •

•

•

•

•

•

•

•

•

•

• • •

[2,1,2,0] [0,2,1,2] [2,0,2,1]

The cost S(G, G∗) between sequence graphs G and G∗ is defined as the minimal
cost of pairwise alignment between sequences s and s∗, s ∈ G, s∗ ∈ G∗. For simple
graphs (identifying one sequence each) such as G1 and G2, the cost S(G1, G2) is
just the cost of optimal alignment of these two sequences. To determine S(G1, G2)

and construct the optimal alignments of x and y, we use dynamic programming for
graphs G1 and G2. Let SM(i, j), SX(i, j), SY (i, j) denote the minimum cost of the
graph alignments up to elements xi, yj, with SM(i, j) corresponding to match (xi, yj),
SX(i, j) to xi aligned to a gap, and SY (i, j) to yj aligned to a gap. The recurrence



204 Building phylogenetic trees

Figure 7.3. The matrix of current costs S•(i, j) for graphs G1 and G2. Each
cell (i, j) has three entries SM(i, j), SX(i, j), and SY (i, j) shown in top down order.
Two optimal paths are shown by arrows.

equations are as follows:

SM(i, j) = min
K=A,C,G,T

(S(K , xi) + S(K , yj)) + min




SM(i − 1, j − 1),

SX(i − 1, j − 1),

SY (i − 1, j − 1);

(7.13)

SX(i, j) = min

{
SM(i − 1, j) + d,

SX(i − 1, j) + e;
(7.14)

SY (i, j) = min

{
SM(i, j − 1) + d,

SY (i, j − 1) + e.
(7.15)

We apply these equations to fill out the matrix of current costs S•(i, j) shown in
Figure 7.3. We find the minimum cost S(G1, G2) = 8 as a minimum entry in the
right bottom cell of Figure 7.3 (i = 6, j = 3) and use the traceback procedure to
determine the optimal path through the cost matrix. There are two optimal paths



7.1 Original problems 205

Figure 7.4. The sequence graph G4 derived from the paths through the matrix in
Table 7.1. (a) The graph with the dummy edges (marked by δ). (b) The same graph
with the dummy edges replaced by edges labeled by vectors of substitution costs.

that define the following two optimal alignments of sequences x and y:

(1) C − − A C − (2) − − C A C −
C T C A C A C T C A C A

with costs S(1) = S(2) = S(G1, G2) = 2d + e = 8. To find the possible ancestral
sequences of x and y, we derive a new sequence graph G4 (shown in Figure 7.4) from
alignments (1) and (2). Each path through graph G4 (Figure 7.4b) uniquely defines
a nucleotide sequence by vectors of substitution costs attached to the edges on this
path. There are four paths through G4 identifying four sequences CTCACA, CAC,
CTCAC, and CACA. Any sequence s ∈ G4, satisfies the condition S(s, x)+S(s, y) =
S(G1, G2) = 8. These sequences can be considered as ancestor-candidates for x
and y in the minimum cost tree T .

Now we repeat the dynamic programming for graphs G4 and G3 with modified
recurrence equations (7.13)–(7.15): for i = 1, . . . , 6, j = 1, 2, 3, as follows:

SM(i, j) = min
i′,j′


 min

K=A,C,G,T
(S(K , xi′) + S(K , yj′)) + min




SM(i′, j′),
SX(i′, j′),
SY (i′, j′);




SX(i, j) = min
i′

min

{
SM(i′, j) + d,

SX(i′, j) + e;

SY (i, j) = min
j′

min

{
SM(i, j′) + d,

SY (i, j′) + e.

Here the minimum is taken over all predecessor nodes i′ of node i in graph G4 and
all predecessor nodes j′ of node j in graph G3. Since G3 is a single sequence graph,
j′ = j−1. Upon calculation of the current costs S•(i, j), we fill out cells of the matrix
shown in Figure 7.5. The minimum cost S(G3, G4) = 1 is the minimal entry in the
right bottom cell of Figure 7.5 (i = 6, j = 3). The traceback procedure recovers



206 Building phylogenetic trees

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

j = 0 0 − − − − − − 

− 3 5 7 9 11 13

− − − − − − − 

j = 1 − 

− 

1 3 1

                         
9 10 10

−   4 6 4 6 6

3 − − − − − − 

j = 2 − 5 3 5 1

                
6 6

−  −  8 6 8 4 4

5 4 6 4 12 13 13

j = 3 − 5 5 3 6 1 1

−  −  8 8 6 8 4

7 6 6 6 4 9 9

Figure 7.5. The matrix of current costs S•(i, j) for graphs G4 and G3. Each cell
(i, j) has three entries SM(i, j), SX(i, j), and SY (i, j) shown in top down order. The
optimal backtracking path is shown by arrows.

only one optimal path through the matrix of current costs. This path corresponds
to the optimal alignment of sequences z ∈ G3 and y ∈ G4:

(3) T A C
C A C

with cost S(3) = S(G3, G4) = S(T , C) = 1. To find a set of possible ancestral
sequences for the root node of tree T , we derive from alignment (3) a new sequence
graph G5:

•
[2,0,2,1]

[2,1,2,0]

• • •
[0,2,1,2] [2,0,2,1]

Two paths through G5 identify two sequences y = CAC and z = TAC as pos-
sible ancestral sequences associated with the root node. Graph G5 derived from
the optimal path for G3 and G4 possesses the important property that there exist



7.1 Original problems 207

CAC

TAC

1

CAC

CAC
CTCACA

8

TAC

TAC
CAC

1

CAC
CTCACA

8

Figure 7.6. Two possible choices of ancestral sequences which produce the
minimum tree cost ST = 9.

sequences s ∈ G3 and s∗ ∈ G4 such that S(y, s) + S(y, s∗) = S(G3, G4) = 1. The
same is true for z.

Now we see that an arrangement of ancestral sequences always includes sequence
y at the branch node and y or z at the root node. These two possible choices of
ancestors are shown in Figure 7.6. Each choice minimizes the cost of the tree:
min ST = S(G1, G2) + S(G3, G4) = 9.

Problem 7.14 A neighbor-joining procedure for reconstructing an unrooted
binary tree T proposed by Saitou and Nei (1987) at each iteration finds the
minimum of function Dij and joins corresponding leaves i and j into a single
parental node. The function D is defined by Equations (7.9) for given distances
dkl, k, l = 1, . . . , N , possessing an additive property. Show that this procedure
reconstructs true neighbors, i.e. that the minimal value Dij identifies neighboring
leaves i and j in the case when the parental node of j (or i) is a parent to two
leaves.

Solution The problem has already been solved directly for a four-leaf tree directly
(Problem 7.10). Now we consider a tree T with N ≥ 5 leaves.

Let us assume that the value Dij is the minimal one, but that i and j are not
neighbors. We seek a contradiction.

It is stated that the other daughter of the parental node k of leaf j is a leaf, say
leaf m. Since i and j are not neighboring leaves, there are at least two nodes on the
path between them, say l and k, as shown in the following diagram:

x
m

k

j
i

e
l

z



208 Building phylogenetic trees

Let Ll be a set of Nl leaves (Nl > 0) derived from the third edge radiating from l
(neither edge (l, i) nor path (l, k) of edges). We define set Lk containing just leaf m,
and set Lx with Nx leaves (Nx ≥ 0) containing all leaves x derived from path (l, k).
Obviously, N = Nl + Nx + 3.

We will show that Dij > Djm. By the definition (7.9) of value D we have
Dij = dij − (ri + rj), Djm = djm − (rj + rm), where

ri = 1

N − 2

∑
all leaves u

diu.

We consider the difference between Dij and Djm and use the additivity property of
the distance d:

Dij − Djm = dil + dlk + dkj − djk − dkm − ri − rj + rj + rm

= dil + dlk + dkm − 1

N − 2

( ∑
all leaves u

diu −
∑

all leaves u

dmu

)
.

The sum

�1 =
∑

all leaves u

diu

has a term dii equal to zero; the same is true for dmm from the second sum

�2 =
∑

all leaves u

dmu.

Sums �1 and �2 also have a pair of equal terms (dim and dmi). Other terms in �1

are as follows:

dij = dil + dlk + dkj,

diz = dil + dlz,

dix = dil + dle + dex,

for any z ∈ Ll, x ∈ Lx. Similarly, for the terms in �2,

dmj = dmk + dkj,

dmz = dmk + dkl + dlz,

dmx = dmk + dke + dex.

Thus, �1 − �2 becomes

�1 − �2 = (N − 2)dil − (N − 2)dmk − (Nl − 1)dlk +
∑
x∈Lx

dle −
∑
x∈Lx

dke



7.1 Original problems 209

(note that distances dle and dke in last two sums depend on x). Therefore,

Dij − Djm = dil + dlk + dkm − 1

N − 2
(�1 − �2)

= 1

N − 2


(N − Nl − 1)dlk −

∑
x∈Lx

dle +
∑
x∈Lx

dke




= 1

N − 2


Nxdlk + 2dlk −

∑
x∈Lx

dle +
∑
x∈Lx

dke




= 1

N − 2


2
∑
x∈Lx

dke + 2dlk


 > 0.

We have proved that Dij > Djm, which contradicts the initial assumption that while
the value Dij is minimal, leaves i and j are not neighbors. Hence, leaves i and j are
neighboring leaves.

Problem 7.15 Complete the proof of the theorem stated in Problem 7.14 for
the case when the set of leaves Lk contains at least two leaves m and n, as shown
in the following diagram:

z

l

e
ki

j

x
y

m

np

Solution We will show again that Dij > Dmn. We will assume that Nl ≥ Nk (for
designations, see the solution of Problem 7.14); otherwise we would consider two
neighbors from set Ll instead of leaves m and n from Nk .

For any leaf y in Lk , y 	= m, y 	= n, it holds by additivity that diy+djy = dij +2dky.
Similarly, dmy + dny = dmn + 2dpy. Thus,

diy + djy − dmy − dny = dij + 2dky − 2dpy − dmn. (7.16)



210 Building phylogenetic trees

If y = n, y = m, we have, respectively, din + djn = dij + 2dkn, dim + djm =
dij + 2dkm and

din + djn − dmn = dij + 2dkn − dmn,

dim + djm − dmn = dij + 2dkm − dmn. (7.17)

For any leaf z in set Ll it holds that diz +djz = dij +2dlz, dmz +dnz = dmn +2dpk +
2dkl + 2dlz, and then

diz + djz − dmz − dnz = dij − 2dpk − 2dkl − dmn. (7.18)

Finally, for any leaf x from Lx we have dix + djx = dij + 2dex, dmx + dnx =
dmn + 2dpk + 2dke + 2dex, thus

dix + djx − dmx − dnx = dij − dmn − 2dpk − 2dke. (7.19)

From the definition (7.9) of Dij,

Dij − Dmn = dij − dmn − 1

N − 2

∑
all leaves u

(diu + dju − dmu − dnu).

By using Equations (7.16)–(7.19) for leaves u and the fact that for u = i and u = j

dij − dmi − dni + dij − dmj − dnj = −4dpk − 2dmn,

we derive the following:

Dij − Dmn = dij − dmn − 1

N − 2


∑

y∈Lk

(dij + 2dky − dmn − 2dpy) + 2dmn

−4dpk − 2dmn +
∑
z∈Ll

(dij − 2dpk − 2dkl − dmn)

+
∑
x∈Lx

(dij − dmn − 2dpk − 2dke)


 .

We have used the fact that the term 2dpy is absent in Equations (7.17), which implies
that terms −2dpy for y = m, y = n, could be included in the sum over all leaves in
Lk , provided that we add 2dpm + 2dpn = 2dmn to the sum. The coefficients of dij

and dmn, summed over all leaves, are N − 2 and −(N − 2), respectively. Thus,

Dij − Dmn

= 1

N−2


∑

y∈Lk

(2dpy−2dky)+4dpk +
∑
z∈Ll

(2dpk +2dkl)+
∑
x∈Lx

(2dpk +2dke)


 .



7.2 Additional problems 211

(Note that distances dpy and dky depend on y and that dke depends on x). Recalling
the inequality dpy − dky > −dpk , we have

Dij − Dmn >
2dpk(−Nk + 2 + Nl + Nx)

N − 2
> 0

for any Nx ≥ 0 due to the assumption Nl ≥ Nk . Therefore, the inequality Dij > Dmn

contradicts the assumption that the Dij value is minimal while i and j are not
neighbors. Hence, leaves i and j must be neighbors.

7.2 Additional problems

In this section we deal with the construction of a phylogenetic tree for a given
set of protein fragments: we have to build a rooted tree with the molecular clock
property by the UPGMA (Problem 7.16) or we have to find an unrooted tree by
the neighbor-joining algorithm (Problem 7.17). Also we derive a formula for the
number of labeled histories with n leaves (Problem 7.18).

Problem 7.16 An ungapped multiple alignment of the fragments of cyto-
chrome c from four different species – Rickettsia conorii, Rickettsia prowazekii,
Bradyrhizobium japonicum and Agrobacterium tumefaciens – is shown below
(with the sequences in top down order):

NIPELMKTANADNGREIAKK
NIQELMKTANANHGREIAKK
PIEKLLQTASVEKGAAAAKK
PIAKLLASADAAKGEAVFKK

Use the evolutionary distance, defined by the formula dij = − ln(1 − pij), where
pij is the fraction of mismatches in the pairwise alignment of sequences i and
j, to build a rooted phylogenetic tree for the given sequences by the UPGMA.
Show that distances d∗

ij defined by a tree built by the UPGMA do not always
coincide with the initial distances dij.

Solution Let xi, i = 1, 2, 3, 4, denote the ith protein sequence of the given align-
ment in top down order. From the counts of mismatches in the pairwise alignment
of sequences xi and xj, we determine the pairwise distance dij, i, j = 1, . . . , 4



212 Building phylogenetic trees

7

5

1

d1

d5 d6

d2 d3 d4

2

6

3 4

Figure 7.7. The rooted tree constructed by the UPGMA for the sequences given
in Problem 7.16.

as follows:

d12 = − ln(1 − 3/20) = 0.1625,

d13 = − ln(1 − 12/20) = 0.9163,

d14 = − ln(1 − 13/20) = 1.0498,

d23 = − ln(1 − 12/20) = 0.9163,

d24 = − ln(1 − 13/20) = 1.0498,

d34 = − ln(1 − 9/20) = 0.5978.

To implement the UPGMA, we assign each sequence xi to its own cluster Ci,
i = 1, . . . , 4, as well as to leaf i of a four-leaf tree. The minimal distance among dij

is d12 = 0.1625, thus we define a new cluster C5 = C1 ∩ C2 and place node 5 at
height h5 = d12/2 = 0.0813. Then, we remove clusters C1 and C2 from the list of
clusters and calculate the following new distances:

d53 = 1

2
(d13 + d23) = 0.9163,

d54 = 1

2
(d14 + d24) = 1.0498.

The minimal distance among the distances d53, d54, and d34 is d34 = 0.5978. So,
we introduce C6 = C3 ∩ C4, place a new node 7 at height h6 = d34/2 = 0.2989,
and determine the distance between clusters C5 and C6 as follows:

d56 = 1

4
(d13 + d14 + d23 + d24) = 0.9831.

With only two clusters C5 and C6 remaining, we define C7 = C5 ∩ C6 and
place root node 7 at height h7 = d56/2 = 0.4915. The tree is completed
(see Figure 7.7).



7.2 Additional problems 213

The lengths of the tree edges are now defined as follows:

d1 = d2 = h5 = 0.0813,

d3 = d4 = h6 = 0.2989,

d5 = h7 − d1 = 0.4102,

d6 = h7 − d3 = 0.1926.

Now, it is easy to see that the pairwise distances d∗
ij defined by the newly built tree

are not always the same as the evolutionary distances dij:

d∗
12 = d1 + d2 = 0.1625 = d12,

d∗
13 = d1 + d5 + d6 + d3 = 2h7 = 0.9831 	= 0.9163 = d13,

d∗
14 = d1 + d5 + d6 + d4 = 2h7 = 0.9831 	= 1.0498 = d14,

d∗
23 = d2 + d5 + d6 + d3 = 2h7 = 0.9831 	= 0.9163 = d23,

d∗
24 = d2 + d5 + d6 + d4 = 2h7 = 0.9831 	= 1.0498 = d24,

d∗
34 = d3 + d4 = 0.5978 = d34.

Problem 7.17 Given the protein sequences in Problem 7.16 with evolutionary
distances dij (a) build an unrooted tree T by the neighbor-joining method and
show that the additivity property holds; (b) show that a molecular clock property
fails for any rooted tree derived from tree T by adding a root.

Solution (a) We calculate values of ri and Dij for i, j = 1, . . . , 4 by Equation (7.9):

r1 = 1

2

4∑
j=1

d1j = 1

2
(0.1625 + 0.9163 + 1.0498) = 1.0643,

r2 = 1

2

4∑
j=1

d2j = 1

2
(0.1625 + 0.9163 + 1.0498) = 1.0643,

r3 = 1

2

4∑
j=1

d3j = 1

2
(0.9163 + 0.9163 + 0.5978) = 1.2152,

r4 = 1

2

4∑
j=1

d4j = 1

2
(1.0498 + 1.0498 + 0.5978) = 1.3487;



214 Building phylogenetic trees

D12 = d12 − (r1 + r2) = −1.9661,

D13 = d13 − (r1 + r3) = −1.3632,

D14 = d14 − (r1 + r4) = −1.3432,

D23 = d23 − (r2 + r3) = −1.3632,

D24 = d24 − (r2 + r4) = −1.3632,

D34 = d34 − (r3 + r4) = −1.9661.

To start building a tree, we take the pair of leaves 1 and 2 with minimal D12 and
join them into a new node 5. The new edges have lengths d51 = 1

2 (d12 + r1 − r2) =
0.08125 and d52 = d12 − d51 = 0.08125. Then we the find distances from node 5
to leaves 3 and 4:

d53 = 1

2
(d13 + d23 − d12) = 0.83505,

d54 = 1

2
(d14 + d24 − d12) = 0.96855.

We remove leaves 1 and 2, add node 5 to the set of leaves, and determine r5 and
Dij for i, j = 3, 4, 5:

r5 = 1

2
(d53 + d54) = 0.9018,

D34 = d34 − (r3 + r4) = −1.9661,

D35 = d35 − (r3 + r5) = −1.28195,

D45 = d45 − (r4 + r5) = −1.28195.

Next, we choose leaves 3 and 4 for which D34 is minimal and join them into
a new node 6 by edges with lengths d36 = 1

2 (d34 + r3 − r4) = 0.23215 and
d46 = d34 − d36 = 0.36565. Finally, we join the two remaining nodes 5 and 6
by a new edge of length d56 = 1

2 (d53 + d54 − d34) = 0.6029 to obtain the tree T
(Figure 7.8).

The additivity property holds for tree T , as it can be directly verified that:

d12 = d15 + d52,

d13 = d15 + d56 + d63,

d14 = d15 + d56 + d64,

d23 = d25 + d56 + d63,

d24 = d25 + d56 + d64.

(b) Obviously, if a new root 7 is added to one of the edges (1, 5), (2, 5), or (5, 6),
then d73 < d74. If root 7 is added to edge (3, 6), then d73 < d74. If root 7 is added



7.3 Further reading 215

d25
d56

d36

d46

d15

2

5 6

3

4

1

Figure 7.8. The unrooted tree constructed using the neighbor-joining method for
the same sequences as in Figure 7.7.

to edge (4, 6), then d74 < d71 = d56 + d51. Thus, any choice of position of the root
creates a rooted tree that does not possess the molecular clock property.

Problem 7.18 Edwards (1970) introduced the following notion of a labeled
history. A set of trees with the molecular clock property defines the same labeled
history if these trees have the same topology and the same order of branch nodes
in time. Show that the number Ln of labeled histories for trees with n leaves is
given by the following formula:

Ln = n!(n − 1)!
2n−1

.

Solution The labeled history is defined if the order of branch nodes in time is
chosen. We consider the set of branch nodes as a set of common ancestors that we
have to trace back in time. For n leaves, the number of ways to choose the first two
to join (back in time) is equal to

(n
2

) = (n(n − 1))/2. The next two nodes to join are
chosen among the remaining n − 2 leaf nodes and the branch node (the ancestor)
obtained at the first step. The number of ways to do so is

(n−1
2

) = ((n−1)(n−2))/2.
We continue the process of joining the parentless nodes and counting the number
of choices at each step, until the last two parentless nodes remain, and we join them
in the only one possible way. Thus, the total number of possible orders of joining
all the nodes of the tree is given by

Ln = n(n − 1)

2
× (n − 1)(n − 2)

2
× · · · × 2 × 1

2
= n!(n − 1)!

2n−1
.

7.3 Further reading

The neighbor-joining (NJ) algorithm by Saitou and Nei (1987) has been frequently
used for the reconstruction of phylogenetic trees. Several modifications of the NJ



216 Building phylogenetic trees

have been proposed: Gascuel (1997) suggested a generalization of the formula for
evolutionary distance reducing the variance of the estimates of the new distances
at each iteration. Bruno, Socci, and Halpern (2000) introduced a version of the NJ
algorithm with distance weights compensating for errors in the estimates of the
longer distances and increasing the likelihood of a reconstructed tree.

The quartet puzzling, a maximum likelihood based algorithm for the reconstruc-
tion of the topology of a phylogenetic tree, was presented by Strimmer and von
Haeseler (1996). This algorithm is a three-step procedure, first reconstructing all
possible quartet maximum likelihood trees, then repeatedly incorporating the quar-
tet trees in an overall tree, and finally computing the majority rule consensus of all
intermediate trees, the quartet puzzling tree. Parallelization of the quartet puzzling
algorithm was performed by Schmidt et al. (2002). One more algorithm, IQPNNI,
based on the quartet concept was introduced by Vinh and von Haeseler (2004).
Guindon and Gascuel (2003) proposed a simple algorithm, implemented in the
computer program PHYML. At each step PHYML modifies the current tree for the
given data to increase the likelihood of the tree; only a few iterations are sufficient
to reach the convergence.

The algorithms mentioned above (Strimmer and von Haeseler, 1996; Guindon
and Gascuel, 2003; Vinh and von Haeseler, 2004) converge quickly; however, the
space of trees examined by these algorithms is still just a small subset of the space
of all possible trees. For example, the PHYML algorithm considers at most 3(n−3)

unrooted topologies for n leaf sequences upon adjusting branch lengths to increase
the likelihood, while there exist (2n − 5)!! distinct topologies (Problem 7.4). Even
for small n (n > 4) the algorithm traverses less than half of the topologies, while
for large n it stops upon examining a vanishingly small fraction of all possible
topologies: for n = 20 we have 3(n − 3) = 51 and (2n − 5)!! ≈ 2.22 × 1020

(Felsenstein, 2004). Therefore, the success of such algorithms in building a tree
close to the optimal one (with the maximum likelihood) critically depends on a
good choice of the initial tree.

Grishin (1995, 1999) suggested new formulas to estimate the evolutionary dis-
tances between homologous protein sequences (traditionally defined as the average
number of substitutions per site). Under the assumption of the independence of
substitutions at different sites, the author provided a rigorous treatment of multiple
and back substitutions as well as substitution rate variability among amino acids
and among sequence sites. Using these “corrected” evolutionary distances, Feng,
Cho, and Doolittle (1997) calculated the divergence times of the principal groups
of eukaryotes and reconstructed the principal eukaryotic phylogeny. Huynen and
Bork (1998) applied Grishin’s formulas to determine divergence times from the
complete genome sequences of nine archaeal and bacterial species. The compar-
ison of complete genomes has led to new ways of measuring evolutionary distance



7.3 Further reading 217

and phylogenetic tree construction (Fitz-Gibbon and House, 1999; Snel, Bork, and
Huyen, 1999; Tekaia, Lazcano, and Dujon, 1999; Brown et al., 2001; Li et al.,
2001; Gubser et al., 2004; Qi, Wang, and Hao, 2004). A comprehensive review of
the whole genome-based methods of the phylogenetic tree building can be found
in Snel, Huynen, and Dutilh (2005).

Issues of estimation of the divergence times and tree reconstruction were
addressed by the following groups: Kumar and Hedges (1998) (for some vertebrate
species); Arnason, Gullberg, and Janke (1998) (for primate species); Nei, Xu, and
Glazko (2001) (for some mammalian species); Glazko and Nei (2003) (for major
lineages of primate species); Korber et al. (2003) (for viruses from HIV-1 M group);
Wolf, Rogozin, and Koonin (2004) (for plants, animals, and fungi species).

A comprehensive review by Arbogast et al. (2002) described recent advances
in estimating the divergence time from molecular data on both phylogenetic and
population genetic time scales. The authors emphasized the importance of model
testing for divergence time estimation.

Compatibility of the molecular clock hypothesis with estimates of divergence
times for the metazoan species derived from paleontology data has been shown by
Ayala, Rzhetsky, and Ayala (1998). An extended discussion of the molecular clock
property can be found in Bromham and Penny (2003).

The tree building methods are typically used not only for reconstructing phylo-
genies, but also for visualizing relationships among biological sequences. A new
approach to such a visualization was proposed by Grishin and Grishin (2002). This
method provides an isometric transformation of a set of protein sequences with
evolutionary distances between them (defined as the average number of substi-
tutions per site) into the points of a multidimensional Euclidean space. Then the
points are grouped together according to the newly designed clustering procedure
utilizing the mixture of multidimensional Gaussian probability densities.



8

Probabilistic approaches to phylogeny

Establishing phylogenetic relationships between species is one of the central prob-
lems of biological science. While in Chapter 7 the reader was introduced to
non-probabilistic methods of building phylogenetic trees for DNA and protein
sequences, Chapter 8 continues the subject from the standpoint of consistent prob-
abilistic methodology. The evolution of biological sequences has been largely
viewed as a random process, and several probabilistic models with varying levels
of complexity have been proposed. Therefore, the reconstruction of phylogenetic
relationships can be formulated in probabilistic terms as well.

Several introductory BSA problems in Chapter 8 are concerned with the properties
of the simplest probabilistic models of evolution, such as the Jukes–Cantor and the
Kimura models.

Given a set of sequences (associated with the leaves of a tree) and a model of the
process of substitutions in a DNA or protein sequence, it is important to know how
to compute the likelihood of a tree with a given topology. The Felsenstein algorithm
addresses this issue using the post-order traversal. Felsenstein also developed an
EM-type algorithm for finding the optimal (maximum likelihood) lengths of the tree
edges. However, as the number of leaves increases, the number of tree topologies
grows too quickly to be processed in a reasonable time.

Therefore, finding the optimal tree among all possible trees for a rather large
number of sequences (leaves) is one of the major challenges. The mainstream
approach to managing such a problem is sampling from the posterior distribution
on the space of trees.

The tree HMM concept described in BSA could be used for phylogenetic
tree construction utilizing most general models of the sequence evolution. How-
ever, full implementation of this impressive theoretical approach as an efficient
computational tool presents a yet unsurmounted challenge due to the complexity
of the algorithm.

218



8.1 Original problems 219

Most of the BSA problems in this chapter are concerned with properties of the
simple probabilistic models of evolution of biological sequences. Realistic models,
which allow for variable rates at different sequence sites as well as insertions and
deletions, are becoming too complicated in practice without excessive use of a com-
puter. However, one of the models of this kind, the TKF model (Thorne, Kishino, and
Felsenstein,1991) is used in one of the additional problems. Finally, two more theor-
etical problems focus on the probabilistic interpretation of the algorithms described
in Chapter 7, the parsimony and distance method, as well as the algorithm of sim-
ultaneous tree reconstruction and alignment (Sankoff and Cedergren, 1983; Hein,
1989).

8.1 Original problems

Problem 8.1 Show that the Jukes–Cantor and Kimura nucleotide substitution
matrices introduced by Jukes and Cantor (1969) and Kimura (1980), respectively,
are multiplicative: S(t)S(s) = S(t + s) for all values of s and t.

Solution (a) The Jukes–Cantor substitution matrix for time t has the follow-
ing form:




1

4
(1 + 3e−4αt)

1

4
(1 − e−4αt)

1

4
(1 − e−4αt)

1

4
(1 − e−4αt)

1

4
(1 − e−4αt)

1

4
(1 + 3e−4αt)

1

4
(1 − e−4αt)

1

4
(1 − e−4αt)

1

4
(1 − e−4αt)

1

4
(1 − e−4αt)

1

4
(1 + 3e−4αt)

1

4
(1 − e−4αt)

1

4
(1 − e−4αt)

1

4
(1 − e−4αt)

1

4
(1 − e−4αt)

1

4
(1 + 3e−4αt)




Here Sij(t) = P(Aj|Ai, t) is the probability of a nucleotide of type Ai being substi-
tuted by a nucleotide of type Aj over time t. To prove multiplicativity, we have to
show that for any i, j = 1, . . . , 4

(S(t)S(s))ij = Sij(t + s).



220 Probabilistic approaches to phylogeny

This equality holds for the diagonal elements as follows:

(S(t)S(s))ii =
4∑

k=1

Sik(t)Ski(s)

= 1

16
(1 + 3e−4αt)(1 + 3e−4αs) + 3

16
(1 − e−4αt)(1 − e−4αs)

= 1

16
(1 + 3e−4αt + 3e−4αs + 9e−4α(t+s) + 3 − 3e−4αt − 3e−4αs

+ 3e−4α(t+s)) = 1

4
(1 + 3e−4α(t+s)) = Sii(t + s).

Similarly, for the non-diagonal elements,

(S(t)S(s))ij =
4∑

k=1

Sik(t)Skj(s)

= 1

16
(1 + 3e−4αt)(1 − e−4αs) + 1

16
(1 + 3e−4αs)(1 − e−4αt)

+ 2

16
(1 − e−4αt)(1 − e−4αs)

= 1

16
(1 − e−4αt + 3e−4αs − 3e−4α(s+t)

+ 1 − e−4αs + 3e−4αt − 3e−4α(s+t) + 2 − 2e−4αt − 2e−4αs

+ 2e−4α(s+t)) = 1

4
(1 − e−4α(t+s)) = Sij(t + s).

Hence, the family of Jukes–Cantor matrices is multiplicative.
(b) The Kimura nucleotide substitution matrix


rt qt ut qt

qt rt qt ut

ut qt rt qt

qt ut qt rt




has elements

qt = 1

4
(1 − e−4βt),

ut = 1

4
(1 + e−4βt − 2e−2(α+β)t),

rt = 1 − 2qt − ut .

Again we need to show that for any i, j = 1, . . . , 4

(S(t)S(s))ij = Sij(t + s).



8.1 Original problems 221

The equality holds for the diagonal elements as follows:

(S(t)S(s))ii =
4∑

k=1

Sik(t)Ski(s) = rtrs + 2qtqs + utus

= 2

16
(1 − e−4βt)(1 − e−4βs)

+ 1

16
(1 + e−4βt − 2e−2(α+β)t)(1 + e−4βs − 2e−2(α+β)s)

+ 1

16
(1 + e−4βt + 2e−2(α+β)t)(1 + e−4βs + 2e−2(α+β)s)

= 1

4
+ 1

4
e−4β(t+s) + 1

2
e−2(α+β)(t+s) = Sii(t + s).

For the non-diagonal entries Sij, such that i + j is an odd number, we have

S12(t + s) = S14(t + s) = S21(t + s) = S23(t + s) = S32(t + s)

= S34(t + s) = S41(t + s) = S43(t + s) = qt+s

= 1

4
(1 − e−4β(t+s)).

On the other hand,

(S(t)S(s))12 = (S(t)S(s))14 = (S(t)S(s))21 = (S(t)S(s))23

= (S(t)S(s))32 = (S(t)S(s))34 = (S(t)S(s))41 = (S(t)S(s))42

= rtqs + qtrs + utqs + qtus

= 1

16
(1 + e−4βt + 2e−2(α+β)t)(1 − e−4βs)

+ 1

16
(1 + e−4βs + 2e−2(α+β)s)(1 − e−4βt)

+ 1

16
(1 + e−4βt − 2e−2(α+β)t)(1 − e−4βs)

+ 1

16
(1 + e−4βs − 2e−2(α+β)s)(1 − e−4βt)

= 1

4
(1 − e−4β(t+s)).

Finally, for the non-diagonal entries Sij, such that i + j is an even number, we have

S13(t + s) = S24(t + s) = S31(t + s) = S42(t + s) = ut+s

= 1

4
(1 + e−4β(t+s) − 2e−2(α+β)(t+s)),



222 Probabilistic approaches to phylogeny

and corresponding elements of the product of matrices S(t) and S(s) are as follows:

(S(t)S(s))13 = (S(t)S(s))24 = (S(t)S(s))31 = (S(t)S(s))42

= rtus + 2qtqs + utrs

= 1

16
(1 + e−4βt + 2e−2(α+β)t)(1 + e−4βs − 2e−2(α+β)s)

+ 2

16
(1 − e−4βt)(1 − e−4βs)

+ 1

16
(1 + e−4βt − 2e−2(α+β)t)(1 + e−4βs + 2e−2(α+β)s)

= 1

4
(1 + e−4β(t+s) − 2e−2(α+β)(t+s)).

We have directly demonstrated that the matrix product S(t)S(s) has the same ele-
ments as the matrix S(t + s); therefore, the multiplicative property holds for the
family of the Kimura substitution matrices.

Problem 8.2 Let P(a(t2)|b(t1)) denote the probability of a residue b, present
at time t1, having been substituted by a residue a by time t2. The stationarity
means that we can write this as P(a|b, t2 − t1). The Markov property means that
P(a(t2)|b(t1), c(t0)) = P(a(t2)|b(t1)) if t0 < t1, i.e. that the probability of the
substitution of b by a is not influenced by the event that the residue was c at the
earlier time t0. Show that∑

b(t)

P(a(s + t)|b(t), c(0))P(b(t)|c(0)) = P(a(s + t)|c(0)), (8.1)

and deduce that multiplicativity holds.

Solution The Markov property allows us to transform each term on the left-hand
side of Equation (8.1):

P(a(s + t)|b(t), c(0))P(b(t)|c(0)) = P(a(s + t)|b(t))P(b(t)|c(0)).

The stationarity condition allows us to write

P(a(s + t)|b(t))P(b(t)|c(0)) = P(a|b, s + t − t)P(b|c, t − 0) = P(a|b, s)P(b|c, t).

By returning to the sum over all possible types of residues b(t) at moment t, we
obtain the following expression:∑

b(t)

P(a|b, s)P(b|c, t) = P(a|c, s + t),



8.1 Original problems 223

which is the probability that residue c will be substituted by residue a over time
s + t. Once again, use of the stationarity condition leads to

P(a|c, s + t) = P(a|c, s + t − 0) = P(a(s + t)|c(0)),

which completes the proof of equality (8.1).
The multiplicative property S(s)S(t) = S(s + t) immediately follows from∑

b

P(a|b, s)P(b|c, t) = P(a|c, s + t),

which shows that an element of the substitution matrix S(s+t) can be obtained from
the elements of matrices S(s) and S(t) by the rule of matrix multiplication.

Problem 8.3 Let rt denote a diagonal element of the Jukes–Cantor substitution
matrix, rt = 1

4(1 + 3e−4αt), and let st denote a non-diagonal element of this
matrix, st = 1

4(1 − e−4αt). Show that rt1rt2 + 3st1st2 and 2st1st2 + st1rt2 + st2rt1
are terms arising from the product of the Jukes–Cantor matrices for times t1 and
t2, and deduce that they can be written as rt1+t2 and st1+t2 , respectively.

Solution Let a matrix

A =




a b b b

b a b b

b b a b

b b b a




designate the product of the Jukes–Cantor substitution matrices S(t1) and S(t2) for
times t1 and t2, respectively, i.e. A = S(t1)S(t2). The rule of matrix multiplication
implies a = rt1 + 3st1st2 and b = rt1st2 + rt2st1 + 2st1st2 . On the other hand,
S(t1)S(t2) = S(t1 + t2) since matrices S(t) possess the multiplicative property (see
Problem 8.1). Therefore,

rt1+t2 = a = rt1 + 3st1st2 ,

st1+t2 = b = rt1st2 + rt2st1 + 2st1st2 .

Problem 8.4 Let P(x1, x2, x3|T , t1, t2, t3) be a likelihood of the trifurcating tree
T with edge lengths t1, t2, t3 and leaves x1, x2, x3, where x1, x2, x3 are three



224 Probabilistic approaches to phylogeny

nucleotide sequences composed only of C’s and G’s:

x1

x2

x3

t3
t2t1

Show that if an ungapped alignment of sequences x1, x2, x3 contains n1 sites
with residues of the same type, n2 sites with residues of type CCG or GGC, n3

sites with residues of type CGC or GCG, and n4 sites with residues of type GCC
or CGG, then

P(x1, x2, x3|T , t1, t2, t3) = 4−3(n1+n2+n3+n4)a(t1, t2, t3)
n1b(t1, t2, t3)

n2

× b(t1, t3, t2)
n3b(t3, t2, t1)

n4 ,

where a(t1, t2, t3) and b(t1, t2, t3) are given by

a(t1, t2, t3) = 1 + 3e−4α(t1+t2) + 3e−4α(t1+t3) + 3e−4α(t2+t3) + 6e−4α(t1+t2+t3)

and

b(t1, t2, t3) = 1 + 3e−4α(t1+t2) − e−4α(t1+t3) − 3e−4α(t2+t3) − 2e−4α(t1+t2+t3).

Solution Suppose that the three given nucleotide sequences have length N ; then,
under the assumption of the site independence, we can write

P(x1, x2, x3|T , t1, t2, t3) =
N∏

u=1

P(x1
u , x2

u , x3
u|T , t1, t2, t3).

Now we consider the possible combinations of nucleotides at a given site u. The
probability of C occuring at site u in all three leaf sequences expressed in terms
of the substitution probabilities, the elements of the Jukes–Cantor matrix, and the
probability qa of a residue a to appear at the tree root is given by

P(x1
u , x2

u , x3
u|T , t1, t2, t3)

= P(CCC|T , t1, t2, t3)

= qCP(C|C, t1)P(C|C, t2)P(C|C, t3) + qGP(C|G, t1)P(C|G, t2)P(C|G, t3)

+ qAP(C|A, t1)P(C|A, t2)P(C|A, t3) + qT P(C|T , t1)P(C|T , t2)P(C|T , t3)

= qCrt1rt2rt3 + qGst1st2st3 + qAst1st2st3 + qCst1st2st3 .



8.1 Original problems 225

Under the assumption that the nucleotide frequencies at the root are equal to the
equilibrium frequencies of the Jukes–Cantor matrix, qA = qC = qG = qT = 1/4,
we have

P(CCC|T , t1, t2, t3) = 1

4
(rt1rt2rt3 + 3st1st2st3)

= 4−4((1 + 3e−4αt1)(1 + 3e−4αt2)

× (1 + 3e−4αt3) + 3(1 − e−4αt1)

× (1 − e−4αt2)(1 − e−4αt3))

= 4−3(1 + 3e−4α(t1+t2) + 3e−4α(t1+t3)

+ 3e−4α(t2+t3) + 6e−4α(t1+t2+t3)).

Due to the substitution process symmetry, the expression for the probability
P(GGG|T , t1, t2, t3) of G occurring at site u will be just the same. The likelihoods
for the other combinations of the nucleotides at site u will be given by the following
expressions. For GCC (and CGG):

P(GCC|T , t1, t2, t3) = qCst1rt2rt3 + qGrt1st2st3 + qAst1st2st3 + qT st1st2st3

= 1

4
(rt1st2st3 + st1rt2rt3 + 2st1st2st3)

= 4−3(1 − e−4α(t1+t2) − e−4α(t1+t3)

+ 3e−4α(t2+t3) − 2e−4α(t1+t2+t3));

for GGC (and CCG):

P(GGC|T , t1, t2, t3) = qCst1st2rt3 + qGrt1rt2st3 + qAst1st2st3 + qT st1st2st3

= 1

4
(st1st2rt3 + rt1rt2st3 + 2st1st2st3)

= 4−3(1 − e−4α(t1+t3) − e−4α(t2+t3)

+ 3e−4α(t1+t2) − 2e−4α(t1+t2+t3));

for GCG (and CGC):

P(GCG|T , t1, t2, t3) = qCst1rt2st3 + qGrt1st2rt3 + qAst1st2st3 + qT st1st2st3

= 1

4
(st1rt2st3 + rt1st2rt3 + 2st1st2st3)

= 4−3(1 − e−4α(t1+t2) − e−4α(t2+t3)

+ 3e−4α(t1+t3) − 2e−4α(t1+t2+t3)).

Therefore, if the alignment of sequences x1, x2, x3 contains n1 sites with residues
of the same type (CCC or GGG), n2 sites of CCG or GGC type, n3 sites of CGC or



226 Probabilistic approaches to phylogeny

GCG types, and n4 sites of GCC or CGG types, then the likelihood of the trifurcating
tree T becomes

P(x1, x2, x3|T , t1, t2, t3) = 4−3(n1+n2+n3+n4)a(t1, t2, t3)
n1b(t1, t2, t3)

n2

× b(t1, t3, t2)
n3b(t3, t2, t1)

n4 .

Here

a(t1, t2, t3) = 1 + 3e−4α(t1+t2) + 3e−4α(t1+t3) + 3e−4α(t2+t3) + 6e−4α(t1+t2+t3)

and

b(t1, t2, t3) = 1 + 3e−4α(t1+t2) − e−4α(t1+t3) − 3e−4α(t2+t3) − 2e−4α(t1+t2+t3).

Problem 8.5 A family of substitution matrices S(t) for the three-residue
alphabet {A, B, C} is defined by

S(t) =

rt st ut

ut rt st

st ut rt




with elements

rt = 1

3

(
1 + 2e−3αt/2 cos

(√
3αt

2

))
,

st = 1

3

(
1 − e−3αt/2 cos

(√
3αt

2

)
+ √

3e−3αt/2 sin

(√
3αt

2

))
,

ut = 1

3

(
1 − e−3αt/2 cos

(√
3αt

2

)
− √

3e−3αt/2 sin

(√
3αt

2

))
.

Show that this family is multiplicative, has positive entries, and that the
substitution rates are given by the following matrix:

−α α 0
0 −α α

α 0 −α




Find the limiting distribution and show that the reversibility property, i.e.

P(b|a, t)qa = P(a|b, t)qb,

fails for almost all t > 0.



8.1 Original problems 227

Solution (1) To prove multiplicativity, we need to show that for any i, j = 1, 2, 3,

(S(t)S(s))ij = Sij(t + s).

By direct multiplication and comparison for the diagonal elements Sii(•), i = 1, 2, 3,
we have on the right-hand side:

Sii(t + s) = r(t + s) = 1

3

(
1 + 2e−3α(t+s)/2 cos

(√
3α(t + s)

2

))

= 1

3
+ 2

3
e−3α(t+s)/2 cos

(√
3αt

2

)
cos

(√
3αs

2

)

+ 2

3
e−3α(t+s)/2 sin

(√
3αt

2

)
sin

(√
3αs

2

)
.

On the left-hand side:

(S(t)S(s))ii = rtrs + stus + utss

= 1

9

(
1 + 2e−3αt/2 cos

(√
3αt

2

))(
1 + 2e−3αs/2 cos

(√
3αs

2

))

+ 1

9

(
1 − e−3αt/2 cos

(√
3αt

2

)
+ √

3e−3αt/2 sin

(√
3αt

2

))

×
(

1 − e−3αs/2 cos

(√
3αs

2

)
− √

3e−3αs/2 sin

(√
3αs

2

))

+ 1

9

(
1 − e−3αt/2 cos

(√
3αt

2

)
− √

3e−3αt/2 sin

(√
3αt

2

))

×
(

1 − e−3αs/2 cos

(√
3αs

2

)
+ √

3e−3αst/2 sin

(√
3αs

2

))

= 1

3
+ 2

3
e−3α(t+s)/2 cos

(√
3αt

2

)
cos

(√
3αs

2

)

+ 2

3
e−3α(t+s)/2 sin

(√
3αt

2

)
sin

(√
3αs

2

)
.

A similar demonstration for the two types of the non-diagonal elements, st and ut ,
is left to the reader.



228 Probabilistic approaches to phylogeny

(2) To show that elements of S(t) are positive, we introduce functions fi, i =
1, 2, 3, of variable x, x = √

3αt/2 ≥ 0:

f1(x) = 3rt = 1 + 2e−√
3x cos x,

f2(x) = 3st = 1 − e−√
3x cos x + √

3e−√
3x sin x,

f3(x) = 3ut = 1 − e−√
3x cos x − √

3e−√
3x sin x.

To prove that fi is positive, it is sufficient to show that fi is positive at the point(s)
of the global minimum of fi. For the derivative f ′

1(x), we have

f ′
1(x) = −2

√
3e−√

3x cos x − 2e−√
3x sin x

= −4e−√
3x

(√
3

2
cos x + 1

2
sin x

)
= −4e−√

3x sin
(π

3
+ x
)

.

We find that f ′
1(x) = 0 for x = −(π/3)+πn, n is a positive integer, while f ′

1(x) < 0
for x ∈ (−(π/3)+2πn, (2π/3)+2πn). Therefore, points x = (2π/3)+2πn (n is a
positive integer) are points of minimum of f1(x), since f ′

1 changes sign from negative
to positive at these points. Since

f1

(
2π

3
+ 2πn

)
= 1 − e−√

3( 2π
3 +2πn) > 0,

the diagonal element rt = f1(x)/3 of matrix S(t) is positive for any t > 0.
Similarly, for f2 we have

f2(x) = 1 − e−√
3x cos x + √

3e−√
3x sin x

= 1 − 2e−√
3x

(
1

2
cos x −

√
3

2
sin x

)

= 1 − 2e−√
3x sin
(π

6
− x
)

,

f ′
2(x) = 2

√
3e−√

3x sin
(π

6
− x
)

+ 2e−√
3x cos

(π
6

− x
)

= 4e−√
3x

(√
3

2
sin
(π

6
− x
)

+ 1

2
cos
(π

6
− x
))

= 4e−√
3x sin
(π

3
− x
)

.

The function f2 attains the minimum values at points x = (4π/3) + 2πn, n is a
positive integer, with

f2

(
4π

3
+ 2πn

)
= 1 − e−√

3((4π/3)+2πn) > 0.



8.1 Original problems 229

Hence, st > 0 for any t > 0 (s0 = 0).
Finally,

f3(x) = 1 − e−√
3x cos x − √

3e−√
3x sin x

= 1 − 2e−√
3x

(
1

2
cos x +

√
3

2
sin x

)

= 1 − 2e−√
3x sin
(π

6
+ x
)

,

f ′
3(x) = 2

√
3e−√

3x sin
(π

6
+ x
)

− 2e−√
3x cos

(π
6

+ x
)

= 4e−√
3x

(√
3

2
sin
(π

6
+ x
)

− 1

2
cos
(π

6
+ x
))

= 4e−√
3x sin x.

Function f3 reaches minimal values at points x = 2πn, n is a positive integer, with

f3(2πn) = 1 − e−2−√
3πn > 0.

Hence, ut > 0 for any t > 0 (u0 = 0). Thus, we have shown that all elements of
the substitution matrix S(t) are positive for any t > 0 (s0 = u0 = 0).

(3) If R is a matrix of substitution rates for the family S(t), t ≥ 0, then S′(t) =
S(t)R. At t = 0 with S(0) = I (I is the identity matrix of order 3), this equation
becomes S′(0) = IR = R. To compute the derivatives of the elements of matrix S,
we once again use the derivatives of fi(x), i = 1, 2, 3, x = (

√
3/2)αt. We have

rt = 1

3
f1(x), st = 1

3
f2(x), ut = 1

3
f3(x),

r′
0 = − 2√

3
α sin

π

3
= −α; s′

0 = 2√
3
α sin

π

3
= α; u′

0 = 2√
3
α sin 0 = 0.

Therefore,

R = S′(0) =

r′

0 s′
0 u′

0
u′

0 r′
0 s′

0
s′

0 u′
0 r′

0


 =

−α α 0

0 −α α

α 0 −α


 .

(4) When t tends to infinity, the rows of the substitution matrix S(t) converge to
the stationary distribution of residues. From the analytical expressions for elements
rt , st , and ut , we obtain

lim
t→∞ S(t) =




1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3


 =

qA qB qC

qA qB qC

qA qB qC


 ,



230 Probabilistic approaches to phylogeny

j

j

t
tj

ti

i

2n – 1

i(a) (b)

Figure 8.1. (a) Initial unrooted tree T . (b) Addition of the root node (2n − 1) to
the edge (i, j).

where A, B, and C designate the residue types. Thus, all equilibrium frequencies
are equal, i.e. qA = qB = qC = 1

3 .
Let a and b be two different types of residues. The reversibility property holds

if and only if

P(b|a, t)qa = P(a|b, t)qb,

for all t > 0, which leads to P(b|a, t) = P(a|b, t) if qa = qb. This requires
that sij = sji for any i 	= j, i, j = 1, 2, 3, i.e. that S(t) must be a symmetric matrix.
However, the symmetry does not take place in our case. For instance, P(B|A, t) = ut

and P(A|B, t) = st and the values of these two matrix elements are not the same for
t 	= 2πn/

√
3α, n is a positive integer. Hence, the reversibility property fails.

Problem 8.6 The reversibility property of the probabilistic model of the
mutation process means that

P(b|a, t)qa = P(a|b, t)qb

for any residues a, b, and any time t. It can be shown that this property and the
multiplicativity of the substitution matrix make a tree likelihood independent of
the root position. What happens when the root is moved to one of the leaf nodes?

Solution Assume that n sequences of length N are associated with the leaves of an
unrooted tree T . We also assume that sequence xi is associated with the leaf node i
connected to the branch node j by edge (i, j) with length t (Figure 8.1a).

If the root node (2n−1) is added to the edge (i, j) (Figure 8.1b), thus creating two
edges with lengths ti and tj, then at site u the likelihood P(L2n−1|a) for tree T given
residue a at the root could be computed by Felsenstein’s algorithm (Felsenstein,
1981) as follows:

P(L2n−1|a) =
∑
b,c

P(b|a, ti)P(Li|b)P(c|a, tj)P(Lj|c).



8.1 Original problems 231

Then the likelihood of tree T with edge lengths t• at site u becomes

Lu
T = P(x•

u|T , t•) =
∑

a

P(L2n−1|a)qa =
∑
a,c

P(xi
u|a, ti)P(c|a, tj)P(Lj|c)qa.

Here we have taken into account that, since i is the leaf node, P(Li|b) = 1 if b = xi
u,

and P(Li|b) = 0 otherwise. The reversibility and multiplicativity properties allow
us to eliminate the dependence of the likelihood Lu

T on the root residue a as follows:

Lu
T =
∑
a,c

P(xi
u|a, ti)P(a|c, tj)qcP(Lj|c)

=
∑

c

(∑
a

P(xi
u|a, ti)P(a|c, tj)

)
P(Lj|c)qc

=
∑

c

P(xi
u|c, ti + tj)P(Lj|c)qc =

∑
c

P(xi
u|c, t)P(Lj|c)qc.

Assuming independence of sequence sites, we have, for the likelihood of tree T ,

LT =
N∏

u=1

Lu
T =

N∏
u=1

∑
c

P(xi
u|c, t)P(Lj|c)qc. (8.2)

If the root node coincides with the leaf node i, then a new tree T∗ has n − 1 leaves,
and the sequence at the root node i is xi:

j

t

i

For site u, the probability of appearance of residue xi
u at the root is qxi

u
, and the

likelihood of tree T∗ with edge lengths t∗• becomes:

Lu
T∗ = P(L2n−1|xi

u)qxi
u

=
∑

c

P(c|xi
u, t)qxi

u
P(Lj|c).

The likelihood of tree T∗ over all sites is given by

LT∗ =
N∏

u=1

Lu
T∗ =

N∏
u=1

qxi
u

∑
c

P(c|xi
u, t)qxi

u
P(Lj|c).

Now, Equation (8.2) and the reversibility property imply

LT =
N∏

u=1

∑
c

P(c|xi
u, t)P(Lj|c)qxi

u
=

N∏
u=1

qxi
u

∑
c

P(c|xi
u, t)P(Lj|c) = LT∗ .



232 Probabilistic approaches to phylogeny

Therefore, the likelihood of a tree does not change if its root moves to one of the
leaf nodes.

Problem 8.7 Only two types of nucleotides, C and G, are present in sequences
x1 and x2 of equal length. Given the ungapped alignment of x1 and x2, calculate
the likelihood of a tree relating these sequences, assuming the Jukes–Cantor
model. Show that the maximum likelihood edge lengths, t1 and t2, satisfy the
following equation:

t1 + t2 = 1

4α
ln

3(n1 + n2)

3n1 − n2
.

Here n1 is the number of alignment sites with identical (matching) residues, and
n2 is the number of sites with mismatches.

Solution We consider tree T with leaves x1 and x2 and edge lengths t1 and t2:

t1 t2

x2x1

At a site u there are four possible choices of nucleotide pairs on the leaves of the
tree: CC, CG, GC, and GG. For pair CC we have

P(x1
u , x2

u|T , t1, t2) = P(CC|T , t1, t2)

= qCP(C|C, t1)P(C|C, t2) + qGP(C|G, t1)P(C|G, t2)

+ qAP(C|A, t1)P(C|A, t2) + qT P(C|T , t1)P(C|T , t2)

= qCrt1rt2 + qGst1st2 + qAst1st2 + qCst1st2 .

Here rt and st are elements of the Jukes–Cantor substitution matrix and qa is the
probability of a nucleotide a at the tree root. Assuming that qa = 1/4 for all
nucleotide types, the likelihood at site u with pair CC on the leaves becomes

P(CC|T , t1, t2) = 1

4
(rt1rt2 + 3st1st2)

= 4−3((1 + 3e−4αt1)(1 + 3e−4αt2) + 3(1 − e−4αt1)(1 − e−4αt2))

= 1

16
(1 + 3e−4α(t1+t2)).



8.1 Original problems 233

The likelihood for pair GG will have the same expression due to the substitution
process symmetry. If site u has the CG pair on the leaves, then the likelihood is
given by

P(CG|T , t1, t2) = qCrt1st2 + qGst1rt2 + qAst1st2 + qT st1st2

= 1

4
(rt1st2 + st1rt2 + 2st1st2)

= 1

16
(1 − e−4α(t1+t2)).

Exactly the same expression will appear for P(GC|T , t1, t2). Finally, if n1 sites have
matches (CC or GG) and n2 sites have mismatches (CG or GC), then the likelihood
of tree T is given by

P(x1, x2|T , t1, t2) =
n1+n2∏
u=1

P(x1
u , x2

u|T , t1, t2)

= 1

16n1+n2
(1 + 3e−4α(t1+t2))n1(1 − e−4α(t1+t2))n2 .

This likelihood is a function of two variables t1 and t2: P(x1, x2|T , t1, t2) = P(t1, t2).
Formally, finding the maximum of P(t1, t2) would require taking partial derivatives
∂P/∂t1 and ∂P/∂t2, setting them to zero, etc. However, it is easy to see that P(t1, t2)
is, in fact, a function of one variable, t = t1 + t2.

To simplify further calculations, we switch from P(t) to ln P(t). The natural log-
arithm is a monotonically increasing function, thus P and ln P attain the maximum
value at the same point t∗. Thus, we find

ln P(t) = −(n1 + n2) ln 16 + n1 ln(1 + 3e−4αt) + n2 ln(1 − e−4αt),

(ln P(t))′ = −12αn1e−4αt

1 + 3e−4αt
+ 4αn2e−4αt

1 − e−4αt
.

Solving the equation (ln P(t∗))′ = 0 yields

t∗ = 1

4α
ln

3(n1 + n2)

3n1 − n2
.

The maximum value of P(t) reached at t∗ is given by

P(t∗) = P(x1, x2|T , t1, t2) = 1

16n1+n2−1

n1n2

3(n1 + n2)
.

Here the edge lengths t1, t2 satisfy the equation t1 + t2 = t∗. Interestingly, although
the point of maximum, t∗ = t1+t2, depends on the parameter α of the Jukes–Cantor
model, the maximum likelihood value does not.



234 Probabilistic approaches to phylogeny

As an example, we consider two nucleotide sequences of length 11:

C C G G C C G C G C G
C G G G C C G G C C G

where n1 = 8 and n2 = 3. For the Jukes–Cantor model with α = 10−9, we calculate
the maximum likelihood value as follows:

P(x1, x2|T , t1, t2) = 8

11 × 1610
= 6.61 × 10−13,

which is reached when the evolutionary time t∗ = t1 + t2 between sequences is
t∗ = 113 million years. Under the molecular clock property this means that the
divergence time for sequences x1 and x2 is t1 = t2 = 56.5 MYA.

Problem 8.8 Consider a simplified phylogenetic space consisting of two trees
T and T̃ with probabilities P(T) and P(T̃). If the proposal procedure always
proposes the other tree, i.e. the one that is not the current tree, show that the
Metropolis algorithm produces a sequence where the frequencies of T and T̃
converge to their probabilities.

Solution The Metropolis algorithm is a sampling procedure that generates a
sequence of trees, each new tree depending on a previous one. Let P1 =
P(T , t•|x•) = P(T) (or P(T̃)) be the posterior probability of a current tree, then
P2 = P(T̃ , t̃•|x•) = P(T̃) (P(T)) is the probability of a proposed new tree. If
P2 ≥ P1, the new tree is unconditionally accepted as the next item in the tree
sequence; if P2 < P1, the new tree is accepted with probability P2/P1.

First, let us consider the case when P(T) = P(T̃) = 1
2 . The proposal procedure

proposes T̃ as a new tree when T is a current tree. Then, since P(T) = P(T̃), T̃ is
accepted as the next tree by the Metropolis rule. At the next step, tree T is proposed
and accepted as the next tree for the same reason, and so on. Therefore, the result
is a strictly alternating sequence: either T , T̃ , T , T̃ , T , T̃ , . . . or T̃ , T , T̃ , T , T̃ , T , . . ..
In both cases, the frequencies of T and T̃ converge to their probabilities:

lim
n→∞

nT

n
= 1

2
= P(T), lim

n→∞
nT̃

n
= 1

2
= P(T̃).

In the general case, when P(T) 	= P(T̃) (suppose that P(T) > P(T̃)), the Met-
ropolis procedure works as follows. If the current tree is T , the proposal procedure
offers T̃ , and the next tree will be T̃ with probability q = P(T̃)/P(T), and T with
probability p = 1 − q. However, if the current tree is T̃ , the next tree will be T with
probability 1. The sequence of trees obtained by the Metropolis algorithm can be
described by the Markov chain with two states 1 (T ) and 2 (T̃ ), and the transition
probabilities p11 = p, p12 = q, p21 = 1, p22 = 0. Let n1 (n2) be the number of



8.1 Original problems 235

trees T (T̃ ) in a sequence of length n (n = n1 + n2). According to the weak law of
large numbers for an ergodic Markov chain with finite number of states (Freedman,
1983), we have

n1

n
→P π1,

n2

n
→P π2,

where (π1, π2) is a stationary distribution of the states of the Markov chain. The
ergodic theorem for the Markov chains states that the stationary probabilities satisfy
the following linear system:

π1 + π2 = 1,

π1 = π1p + π2,

π2 = π1q.

The solution of this system, π1 = P(T), π2 = P(T̃), indicates that the frequencies
of occurrences of trees T and T̃ in the tree sequence generated by the Metropolis
algorithm converge in probability to the probabilities of these trees:

n1

n
−→P P(T),

n2

n
−→P P(T̃).

8.1.1 Bayesian approach to finding the optimal tree and the
Mau–Newton–Larget algorithm

Theoretical introduction to Problems 8.9 and 8.10

Finding the maximum likelihood tree requires the solution of an optimization prob-
lem for an algorithmically determined function of many variables. Such problems
are notoriously computationally expensive unless an efficient strategy is proposed
for searching the maximum.

Another alternative can be the Bayesian approach to finding the optimal tree.
Mau, Newton, and Larget (1999) adapted the Metropolis algorithm, one of the
Markov chain Monte Carlo (MCMC) methods, to sample from the posterior distri-
bution π on the space T of phylogenetic trees with the molecular clock property.
(The algorithm was later generalized by Larget and Simon (1999) to include rooted
trees without the molecular clock property.) The approximate posterior distribution
of the trees could be determined given sequence data, a stochastic model for the
data, and a prior distribution on T . To define the proposal rule Q of the Metropolis
algorithm, a tree T with n leaves, T ∈ T , is identified by its canonical representation
(σ , t). Here σ = (σ (1), . . . , σ(n)) is the left–right order of leaf nodes of T (the per-
mutation of numbers 1, 2, . . . , n), and t = (t1, . . . , tn−1) is the vector of associated



236 Probabilistic approaches to phylogeny

divergence times: ti = Dσ(i),σ(i+1)/2, i = 1, . . . , n − 1, with Dij defined as the dis-
tance between leaves i and j in tree T . For example, for tree T1 shown in Figure 8.1(a)
the canonical representation is (σ , t) = ((1, 2, 3, 4, 5), (h6, h9, h8, h7)).

The proposal rule Q is implemented in two steps and works with a current tree T
as follows. For the tree T with n leaves there exist 2n−1 trees (T included) obtained
by all possible permutations of n − 1 pairs of edges emanating from each internal
node of T . The first step of the proposal rule Q, Q1, selects with equal probability
1/2n−1 one of these 2n−1 trees with permutated edges. Thus, after the step Q1 a new
order of leaves σ ∗ is generated as the one associated with the newly selected tree.
At the second step, Q2, the components of t are modified independently from each
other. Specifically, value t∗i , a component of the new vector t∗, is sampled from the
uniform distribution on the interval (ti − δ, ti + δ), where δ is a tuning constant.
To reconstruct a proposed tree from the canonical representation (σ ∗, t∗), one must
place the leaf nodes along a horizontal axis in the order defined by σ ∗. Then from
each midpoint between adjacent leaves σ ∗(i) and σ ∗(i + 1) draw a vertical line
and place a node at the height equal to the corresponding divergence time t∗i . The
highest constructed node will be the root of the tree. Next, working from top to
bottom, branches are drawn from each internal node to the highest parentless nodes
on both the left and right sides. For example, the canonical representation of tree
T1 in Figure 8.2(b) can be transformed by the proposal rule Q to the canonical
representation (σ , t∗) = ((1, 2, 3, 4, 5), (h6, h9, h7, h8)) (with Q1 choosing the same
orientation for all branches and Q2 decreasing the divergence time t3 = D34/2 = h8

by h8 − h7, and increasing the divergence time t4 = D45/2 = h7 by h8 − h7).
Proposed tree T2 reconstructed from the new canonical representation is shown in
Figure 8.2(b).

Note that Q1 does not change the topology of the tree, while Q2 may or may
not change it: a greater value of δ provides more chances to switch to a different
topology. The proposal rule Q = Q2 ◦ Q1 is symmetric in the sense that for any
two trees T1 and T2 from T the probability to proposing T2 when a current tree is
T1 is equal to the probability of proposing T1 when a current tree is T2.

Finally, the standard acceptance rule of the Metropolis algorithm replaces a
current tree T1 by a newly proposed tree T2 with probability

min

(
1,

π(T2)

π(T1)

)
= min

(
1,

LT2P(T2)

LT1P(T1)

)
.

Here LTi and P(Ti) are the likelihood and the prior probability of tree Ti, respectively.
The resulting sequence of trees is the Markov chain that has the important property
(Liu (2001), Sect. 5): for almost all realizations of this Markov chain the (relative)
frequency of a particular tree T observed along a tree sequence converges to the



8.1 Original problems 237

(a)

(b)

Figure 8.2. Tree T1 (a) changes to tree T2 (b) as a result of switching the heights
of nodes 7 and 8 (at step Q2 of the proposal rule Q).

tree posterior probability π(T) (see Problem 8.8). (The same statement holds for a
particular tree topology or a particular property of the tree.) Therefore, the tree with
the highest posterior probability will have the highest frequency in a sufficiently
long realization of the Markov chain and, hence, can be detected by the MCMC
method.

Problem 8.9 The transformation of a tree from space T resulting from step Q2

of the proposal procedure suggested by Mau et al. (1999) is called the profile
change. Consider the profile change transforming tree T1 to tree T2 (Figure 8.2).
Suppose that nodes 8 and 7 of tree T1 in Figure 8.2 are at heights h8 and h7, and
their heights are switched to h7 and h8. Show that the resulting change in the
likelihood tends to zero as h8 − h7 tends to zero.

Solution Let hi designate the height of internal node i of the current tree T1,
i = 1, 2, 3, 4. In tree T2 node 7′ is placed at height h8, while node 8′ is placed at
height h7. Let sequences xi, i = 1, . . . , 5, be leaves of trees T1 and T2. We will use
Felsenstein’s algorithm to estimate the change in the tree likelihood value resulting
from the switch of the node heights. First, we determine the likelihood of tree T1



238 Probabilistic approaches to phylogeny

at site u. Working it out in bottom-up order, we obtain

P(L6|b) = P(x1
u|b, h6)P(x2

u|b, h6),

P(L7|d) = P(x4
u|d, h7)P(x5

u|d, h7),

P(L8|c) =
∑

d

P(x3
u|c, h8)P(d|c, h8 − h7)P(L7|d)

=
∑

d

P(x3
u|c, h8)P(d|c, h8 − h7)P(x4

u|d, h7)P(x5
u|d, h7),

P(L9|a) =
∑
b,c

P(b|a, h9 − h6)P(L6|b)P(c|a, h9 − h8)P(L8|c)

=
∑
b,c,d

P(b|a, h9 − h6)P(x1
u|b, h6)P(x2

u|b, h6)

× P(c|a, h9 − h8)P(x3
u|c, h8)P(d|c, h8 − h7)P(x4

u|d, h7)P(x5
u|d, h7).

Therefore, the likelihood at site u is given by

P(x•
u|T1, t•) = P(x1

u , x2
u , x3

u , x4
u , x5

u|T1)

=
∑

a

qaP(L9|a)

=
∑

a,b,c,d

qaP(b|a, h9 − h6)P(x1
u|b, h6)P(x2

u|b, h6)

× P(c|a, h9 − h8)P(x3
u|c, h8)P(d|c, h8 − h7)P(x4

u|d, h7)P(x5
u|d, h7).

We assume that the alignment of sequences xi, i = 1, . . . , 5, has N independent
sites. Then we have for the likelihood of tree T1

L1 = P(x1, x2, x3, x4, x5|T1) =
N∏

u=1

P(x•
u|T1)

=
N∏

u=1

∑
a,b,c,d

qaP(b|a, h9 − h6)P(x1
u|b, h6)P(x2

u|b, h6)

× P(c|a, h9 − h8)P(x3
u|c, h8)P(d|c, h8 − h7)P(x4

u|d, h7)P(x5
u|d, h7).



8.1 Original problems 239

Similarly, the likelihood of tree T2 with the same set of leaf sequences is given by

L2 = P(x1, x2, x3, x4, x5|T2) =
N∏

u=1

P(x•
u|T2)

=
N∏

u=1

∑
a,b,c,d

qaP(b|a, h9 − h6)P(x1
u|b, h6)P(x2

u|b, h6)

× P(c|a, h9 − h8)P(x5
u|c, h8)P(d|c, h8 − h7)P(x3

u|d, h7)P(x4
u|d, h7).

The change �L in the likelihood can be written as follows:

�L = L1 − L2

=
∑

ai,bi,ci,di

N∏
i=1

qai P(bi|ai, h9 − h6)P(x1
i |bi, h6)P(x2

i |bi, h6)

× P(ci|ai, h9 − h8)P(di|ci, h8 − h7)P(x4
i |d, h7)�, (8.3)

where
� = P(x3

i |ci, h8)P(x5
i |di, h7) − P(x3

i |di, h7)P(x5
i |ci, h8).

Now we find the limit of �L as h8 − h7 → 0, taking into account that the trans-
ition probabilities P(x|y, t), the elements of substitution matrices, are continuous
functions of variable t.

The sum in Equation (8.3) has two types of terms. For all terms with ci 	= di,

lim
h8−h7→0

P(di|ci, h8 − h7) = P(di|ci, 0) = 0,

since the substitution matrix for t = 0 is the identity matrix. With all other factors
bounded, we have

lim
h8−h7→0

∑
ai,bi,ci,di:ci 	=di

N∏
i=1

qai P(bi|ai, h9 − h6)P(x1
i |bi, h6)P(x2

i |bi, h6)

× P(ci|ai, h9 − h8)P(di|ci, h8 − h7)P(x4
i |di, h7)� = 0. (8.4)

For all terms with ci = di,

lim
h8→h7

� = lim
h8→h7

(P(x3
i |ci, h8)P(x5

i |ci, h7) − P(x3
i |ci, h7)P(x5

i |ci, h8)) = 0.

All other factors are bounded; therefore,

lim
h8−h7→0

∑
ai,bi,ci

N∏
i=1

qai P(bi|ai, h9 − h6)P(x1
i |bi, h6)P(x2

i |bi, h6)

× P(ci|ai, h9 − h8)P(ci|ci, h8 − h7)P(x4
i |ci, h7)� = 0. (8.5)



240 Probabilistic approaches to phylogeny

Equalities (8.4) and (8.5) lead to

lim
h8−h7→0

�L = 0.

Hence, the likelihood function changes continuously upon small changes in the
node heights, even if these changes of heights lead to “quantum” leaps in the tree
topology.

Problem 8.10 Show that non-adjacent leaves cannot become evolutionary
neighbors as a result of profile change.

Solution First, note that at step Q1 of the proposal rule Q any two leaves may
become adjacent, but Q1 does not change the topology of the tree, thus all the
neighbors remain the same. At step Q2, however, shifting heights of internal nodes
up and down may generate a new tree topology and, thus, new neighbors. The
example of how adjacent leaves have become neighbors after step Q2 is shown in
Figure 8.2 (leaves 3 and 4).

Let us show that non-adjacent leaves cannot become neighbors after changing
node heights. It follows from the rules of reconstruction of a tree from the canon-
ical representation that for adjacent leaves i and j the node on the vertical line
drawn from a midpoint between them is the last common ancestor of i and j.
Then for any two leaves i and j (adjacent and non-adjacent alike) the last com-
mon ancestor will be the highest node situated above interval (i, j). Assuming that
there are leaves l1, . . . , lk between i and j, we denote the divergence time between
i and l1 as t1, the divergence time between l1 and l2 as t2, and so on, and the
divergence time between lk and j as tk+1. Then the divergence time between i
and j will be t = max(t1, . . . , tk+1). The distance between i and j in the tree
with the molecular clock property dij = 2 max(t1, . . . , tk+1). Similarly, dil1 = 2t1,
dil2 = 2 max(t1, t2), . . . , dilk = 2 max(t1, . . . , tk); thus

dil1 ≤ dil2 ≤ · · · ≤ dilk ≤ dij.

We assume that i and j are neighbors and we seek a contradiction. A necessary
condition that the distance dij between two neighboring leaves should satisfy is
dij = minm 	=i dim. The minimum taken over the set of all leaves except i is not
greater than the minimum taken over its subset {l1, l2, . . . , lk , j}. Therefore,

dij = min
m 	=i

dim ≤ dil1 < dij,



8.1 Original problems 241

if t1 	= max{t1, . . . , tk+1}. If t1 = max{t1, . . . , tk+1}, the same logic as above applied
to the distances djlk , djlk−1 , . . . , dji yields

dij = min
m 	=j

djm ≤ djlk < dji,

since t1 	= tk+1 and tk+1 < max{t1, . . . , tk+1}. Thus we arrive at the contradiction
dij < dij. Therefore, at step Q2 of the tree proposal procedure a pair of non-adjacent
leaves cannot become evolutionary neighbors.

Problem 8.11 The flat prior on edge lengths assigns a prior to any topology
that is obtained by integrating over all possible edge lengths for that topology.
This integral will be defined if, following Mau et al. (1999), we impose a bound
on the total edge length from the root to any leaf; call this bound B. Consider the
case where there is a molecular clock, and show that the tree with four leaves
and topology ((12)(34)) has integrated prior probability B3/3; show that this
integral is B3/6 for the topology ((1(23))4). This shows that different topologies
can have different priors. Show, however, that if one defines a labeled history to
be a specific ordering for the times of branch nodes relative to the present time
(assuming a molecular clock), then all labeled histories for four leaves have the
same prior probability. Extend this to n leaves.

Solution For a four leaf tree T1 with topology ((12)(34)) as follows:

5

1

t1

2

____

t3

  _ _ _

6

7

3

t2

4

variables t1, t2, t3 are the molecular clock times associated with the branch nodes
of tree T1. A prior probability of T1 is defined by a triple integral as follows:

P(T1) =
∫ B

0

(∫ t3

0

(∫ t3

0
dt1

)
dt2

)
dt3.

Here the upper bound for time t3 is set to B. Integration leads to a simple formula:

P(T1) =
∫ B

0

(∫ t3

0
t3 dt2

)
dt3 =

∫ B

0
t2
3 dt3 = B3

3
.



242 Probabilistic approaches to phylogeny

For a four-leaf tree T2 with topology ((1(23))4) as follows:

7

4

t3

6

1

t2

5

2

t1

3

variables t1, t2, t3 are the molecular clock times associated with the branch nodes
of tree T2. Then the prior probability of tree T2 is given by

P(T2) =
∫ B

0

(∫ t3

0

(∫ t2

0
dt1

)
dt2

)
dt3

=
∫ B

0

(∫ t3

0
t2 dt2

)
dt3 =

∫ B

0

(
t2
3

2
dt3

)
= B3

6
.

The difference in priors P(T1) and P(T2) is an obvious result of the difference in the
upper bounds of the integrals dictated by tree topologies. While topology ((1(23))4)
establishes the dependence between the heights of branch nodes 5 and 6, topology
((12)(34)) allows either nodes 5 or 6 be higher than the other. However, if an order
of node heights or a labeled history is defined, then, assuming the molecular clock
property, both integrals will have the same set of intervals of integration, and the
flat priors for T1 and T2 will be equal:

P(T1) = P(T2) =
∫ B

0

(∫ t3

0

(∫ t2

0
dt1

)
dt2

)
dt3 = B3

6
.

The same is true for any four-leaf tree T4: given the labeled history the flat prior
for T4 is B3/6.

The last statement can be extended to an n-leaf tree Tn with molecular clock. If
an order of the branch node heights is known, a flat prior for Tn is given by

P(Tn) =
∫ B

0

(∫ tn−1

0

(∫ tn−2

0
· · ·
(∫ t2

0
dt1

)
· · · dtn−3

)
dtn−2

)
dtn−1

=
∫ B

0

tn−2
n−1

(n − 2)! dtn−1 = Bn−1

(n − 1)! .

Remark We have shown that all labeled histories with n leaves have the same
flat prior Bn−1/(n − 1)!, where B is the upper bound on the total edge length
from the root to any leaf of the tree with the molecular clock property. There are



8.1 Original problems 243

n!(n − 1)!/2n−1 labeled histories with n leaves (see Problem 7.18). Therefore, to
define a proper flat prior distribution on the set of labeled histories, we have to use
the flat density function with normalizing constant Cn = (2/B)(n!)−1/(n−1). In this
case, we will have for the sum of the prior probabilities over all labeled histories:

n!(n − 1)!
2n−1

P(Tn)

= n!(n − 1)!
2n−1

∫ B

0
Cn

(∫ tn−1

0
Cn · · ·

(∫ t2

0
Cndt1

)
· · · dtn−2

)
dtn−1

= n!(n − 1)!
2n−1

2n−1

n!(n − 1)! = 1.

However, if the flat prior distribution is defined to be used at the acceptance
step of the Metropolis algorithm, the normalization is not necessary. Indeed, if
a current labeled history of the generated sequence is T1, a new labeled his-
tory T2 is accepted as the next element of the sequence with probability equal
to min(1, LT2P(T2)/LT1P(T1)), where Li and P(Ti) are the likelihood and the prior
of tree Ti, respectively. Then the equal normalizing coefficients for the prior prob-
abilities P(T1) and P(T2) will be cancelled out. Actually, since flat priors of the
labeled histories are equal to each other, the ratio in the acceptance rule becomes
the ratio of the likelihoods of labeled histories T2 and T1.

Problem 8.12 Under a Yule process, the probability density for no split occur-
ring during the interval 0 to t is given by the limit of (1 − λδt)t/δt as δt → 0,
and is therefore exp(−λt). Deduce that the Yule prior for a tree with n leaves is
proportional to exp(−λ

∑
ti), where the ti are all edge lengths. Following the

same reasoning as in the previous problem, show that the priors for all labeled
histories on four leaves are equal under the Yule prior. Extend this to the case of
n leaves.

Solution For the sake of illustration, we interpret the Yule process Et , t ≥ 0, as the
size of a population at time t. We assume that each member of the population can
divide and produce two descendants at a random moment of time independently of
other members. The division rate λ is the same for all members of the population.
The probability that no division occurs in a single lineage during time interval [0, t)
is exp(−λt).

Let T be a molecular clock tree with n leaves (see Figure 8.3), such that the
sum of the edge lengths from the root node 2n − 1 to each of the leaves 1, 2, . . . , n
is T . We can consider such a tree as the realization of the Yule process Et , 0 ≤
t ≤ T , with initial condition E0 = 2. In tree T each branch node k, k = n +
1, . . . , 2n − 1, represents a division event and an appearance of two descendants;



244 Probabilistic approaches to phylogeny

0_________

t�1

t�2

t�3

t�n – 1

  _ _ _ _ _ __ _ _ _ _ _ _ _ _

  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_______________________

T  _ _ _
1 2 3 n

 

2n –1

2n – 3

n + 2

2n – 2

Figure 8.3. Tree T with n leaves and the molecular clock property represents a
realization of the Yule process through the time interval [0, T ]: each branch node
corresponds to a division (reproduction) event, and n leaves represent a population
at time T .

n − 1 horizontal dashed lines (except the bottom one) correspond to the times of
these division (reproduction) events. The number of intersections of the tree edges
with a horizontal line indicating time t, 0 ≤ t ≤ T (not coinciding with any of the
dashed lines), is equal to the population size Et at time t. In particular, ET = n.

We will find the prior probability of tree T with edge lengths t1, . . . , t2n−1. First,
we note that n horizontal dashed lines create a partition of the time interval [0, T ]
into n−1 time segments t′i , i = 1, . . . , n−1. Inside the time segment i the population
size is equal to i + 1. As the history of each member is independent from all the
others, the probability Pi of a slice of tree T within the ith time segment is the
product of i + 1 equal probabilities that no descendant is produced during the time
interval t′i by a member of the population:

Pi =
i+1∏

1

exp{−λt′i} = exp{−λ(i + 1)t′i}.



8.1 Original problems 245

The probability of division at a given moment t for a single individual is equal to
zero (in contrast with a time interval). This implies that the probability of division
at a given moment for any finite number of individuals is zero too. Hence, the prior
probability of T is the product of Pi over all time intervals t′1, . . . , t′n−1:

P(T) =
n−1∏
i=1

Pi = exp

{
−λ

n−1∑
i=1

(i + 1)t′i

}
.

We can express P(T) in terms of the lengths of edges t1, . . . , t2n−1 of tree T, since,
due to the choice of the partition, there is a simple relationship between t′1, . . . , t′n−1
and t1, . . . , t2n−1:

n−1∑
i=1

(i + 1)t′i =
2n−1∑
j=1

tj.

Thus, the prior probability of tree T with given edge lengths becomes

P(T, t1, . . . , t2n−1) = exp


−λ

2n−1∑
j=1

tj


 . (8.6)

Now we will determine the Yule prior for a tree with n leaves and a given labeled
history assuming that the upper bound on the time from the root to any leaf is B
(similar to Problem 8.11).

We start with the case n = 4. Let T4 be a four-leaf tree, with labeled history
((1(23))4) and time variables t1, t2, t3 associated with the branch nodes as follows:

7

4

6

1

t2 t1

t35

2 3

Equation (8.6) gives for the prior probability of tree T4 with edge lengths
t1, t1, t2, t2 − t1, t3, t3 − t2:

P(T4, t1, t1, t2, t2 − t1, t3, t3 − t2)

= exp{−λ(t1 + t1 + t2 + (t2 − t1) + t3 + (t3 − t2))}
= exp{−λ(t1 + t2 + 2t3)}.



246 Probabilistic approaches to phylogeny

Integration of the probability density function over the values of variables t1, t2, t3
permitted by the labeled history produces the Yule prior for the labeled history as
in tree T4:

P(T4) =
∫ B

0
2λe−2λt3

(∫ t3

0
λe−λt2

(∫ t2

0
λe−λt1 dt1

)
dt2

)
dt3

=
∫ B

0
2λe−2λt3

(∫ t3

0
λe−λt2(1 − e−λt2)dt2

)
dt3

=
∫ B

0
2λe−2λt3 (1 − e−λt3)2

2
dt3

= (1 − e−λB)3
(

1

12
+ 1

4
e−λB
)

.

These arguments remain valid for a four-leaf tree associated with any other labeled
history.

Similarly, we assume that in a tree Tn with n leaves the time variables t1, t2,…,
tn−1 associated with the branch nodes of the tree have been enumerated in the order
determined by the labeled history of Tn (ti < ti+1). We apply Equation (8.6) to
determine the Yule prior of Tn with edge lengths t1, t1, t2, t2−t1, . . . , tn−1, tn−1−tn−2

as follows:

P(Tn, t1, t1, t2, t2 − t1, . . . , tn−1, tn−1 − tn−2)

= exp{−λ(t1 + t2 + · · · + tn−2 + 2tn−1)}. (8.7)

Integration over all permitted domains of variables t1, t2, . . . , tn−1 gives the Yule
prior for the labeled history associated with Tn:

P(Tn) =
∫ B

0
2λe−2λtn−1

(∫ tn−1

0
λe−λtn−2 · · ·

(∫ t2

0
λe−λt1dt1

)
· · · dtn−2

)
dtn−1

=
∫ B

0
2λe−2λtn−1

(1 − e−λtn−1)n−2

(n − 2)! dtn−1

= 2

(n − 2)!n (1 − e−λB)n−1
(

1

n − 1
+ e−λB

)
.

Once again, all the arguments and hence the formula for the Yule prior P(Tn) hold
true for a tree with n leaves with any labeled history on the condition that time
variables t1, t2, . . . , tn−1 are chosen as described above.

Similarly to the case of the flat prior (Problem 8.11), we have shown that the
labeled histories of all trees with n leaves and total height at most B have equal
Yule priors. It is easy to see that the statement remains true even without restriction
on the “age” of a tree, since the integrals of the exponentially decreasing functions



8.1 Original problems 247

are finite over both bounded and unbounded domains of integration. Here is the
difference with the flat prior case, where the restriction on the total height of the
tree provides a necessary and sufficient condition for the finiteness of integrals and
therefore properly defines flat prior probabilities for the labeled histories. For the
normalization of the priors and to discover why the normalization is non-necessary
for priors used in the Metropolis algorithm, see the Remark to Problem 8.11.

Remark For the Yule process the transition probability Pkn(t) = P(Et = n|E0 =
k), n > k, is given by the following formula (Feller, 1971):

Pkn(t) =
(

n − 1

n − k

)
e−kλt(1 − e−λt)n−k .

It is interesting to establish a relationship between the transition probability Pkn(t)
and the Yule prior distribution of trees discussed above.

Note that the Yule process is a special case of the well studied birth-and-death
process with the death rate set to zero. As we have already seen, any tree with
the molecular clock and the probability density λ exp(−λt) along its edges repres-
ents a realization of the Yule process with birth (reproduction, splitting) rate λ and
beginning state E0 = 2. The transition probability P2n(t) can be found from Equa-
tion (8.7) by setting a height tn−1 of the root node to t and integrating with respect
to all branch node heights t1, t2, . . . , tn−2 (corresponding to the further descendants
of the root node) over the same interval [0, t). Thus, if time variable tn−1 is chosen
to be the root node height, we obtain the probability

e−2λt
n−2∏
i=1

(∫ t

0
λe−λti dti

)
= e−2λt(1 − e−λt)n−2.

Since there are (n − 1) ways to choose the root node height among time variables
t1, t2, . . . , tn−1, the transition probability becomes

P2n(t) = (n − 1)e−2λt(1 − e−λt)n−2.

Therefore, we have derived the formula of the transition probability for the Yule
process for k = 2. In the theory of stochastic processes, such formulas are derived
by solving the Kolmogorov system of differential equations (Feller, 1971).

Problem 8.13 Assuming a molecular clock, calculate the expected lengths of
all the branches of rooted trees with two, three, or four leaves under the Yule
prior with splitting rate λ and the coalescent prior with population size θ .



248 Probabilistic approaches to phylogeny

Solution We begin with a tree T2 with two leaves. Due to the molecular clock
property, two edges of T2 have equal length; it is defined as a random variable L,
taking values t, 0 ≤ t < +∞. Under the Yule prior (Problem 8.12) the probability of
T2 is PY (T2, t, t) = e−2λt and the probability density function is pY (t) = 2λe−2λt .
Then for the expected value of the edge length we have

EY L =
∫ +∞

0
tp(t) dt =

∫ +∞

0
2tλe−2λt dt

=
∫ +∞

0
t d(−e−2λt) = −te−2λt

∣∣∣+∞
t=0

+
∫ +∞

0
e−2λt dt

= −e−2λt

2λ

∣∣∣∣
+∞

t=0
= 1

2λ
.

Under the coalescent prior with population size θ , the probability of T2 is
Pc(T2, t, t|θ) = (2/θ) exp(−2t/θ) and the probability density function is pc(t) =
(2/θ) exp(−2t/θ). Therefore,

EcL =
∫ +∞

0
tp(t) dt =

∫ +∞

0

2t

θ
exp

(
−2t

θ

)
dt = θ

2
.

Now we consider a tree T3 with three leaves as follows:

t1
t2

We assume that the lengths of the edges of the tree are defined by the random
variables L1 and L2 taking values t1 and t2, respectively, 0 ≤ t2 < +∞, 0 ≤ t1 < t2.
Under the Yule prior, the probability of T3 is given by

PY (T3, t1, t1, t2, t2 − t1) = e−2λt2e−λt1 ,

and the probability density function is given by

pY (t1, t2) = λe−λt12λe−2λt2 .



8.1 Original problems 249

Then

EY L1 =
∫ +∞

t2=0

∫ t2

t1=0
t1p(t1, t2) dt1 dt2 =

∫ +∞

0
2λe−2λt2

(∫ t2

0
t1λe−λt1dt1

)
dt2

=
∫ +∞

0
2λe−2λt2

(
−t2e−λt2 − e−λt2

λ
+ 1

λ

)
dt2 = − 2

9λ
− 2

3λ
+ 1

λ
= 1

9λ
;

EY L2 =
∫ +∞

t2=0

∫ t2

t1=0
t2p(t1, t2) dt1 dt2 =

∫ +∞

0
2t2λe−2λt2

(∫ t2

0
λe−2λt1 dt1

)
dt2

=
∫ +∞

0
2t2λe−2λt2

(
1 − e−λt2

)
dt2 = 1

2λ
− 2

9λ
= 5

18λ
.

Under the coalescent prior, tree T3 has the probability

Pc(T
3, t1, t1, t2, t2 − t1|θ) =

(
2

θ

)2

exp

(
−2t2

θ

)
exp

(
−4t1

θ

)
,

and the probability density function is given by

pc(t1, t2) = 4

θ
exp

(
−4t1

θ

)
2

θ
exp

(
−2t2

θ

)
.

Then for the expected values of L1 and L2 we have

EcL1 =
∫ +∞

t2=0

∫ t2

t1=0
t1p(t1, t2) dt1 dt2

=
∫ +∞

0

2

θ
exp

(
−2t2

θ

)(∫ t2

0

4t1
θ

exp

(
−4t1

θ

)
dt1

)
dt2

=
∫ +∞

0

2

θ
exp

(
−2t2

θ

)(
−t2 exp

(
−4t2

θ

)
− θ

4
exp

(
−4t2

θ

)
+ θ

4

)
dt2

= − θ

18
− θ

12
+ θ

4
= θ

9
;

EcL2 =
∫ +∞

t2=0

∫ t2

t1=0
t2p(t1, t2) dt1 dt2

=
∫ +∞

0

2t2
θ

exp

(
−2t2

θ

)(∫ t2

0

4

θ
exp

(
−4t1

θ

)
dt1

)
dt2

=
∫ +∞

0

2t2
θ

exp

(
−2t2

θ

)(
1 − exp

(
−4t2

θ

))
dt2

= θ

2
− θ

18
= 4θ

9
.



250 Probabilistic approaches to phylogeny

Finally, we consider four-leaf trees with two possible topologies. Let T4
1 be a tree

with topology ((12)(34)) and edge lengths t1, t1, t2, t2, t3 − t1, t3 − t2:

t1
t2

t3

____

  _ _ _

We assume that the random variables L1, L2, L3 define the branch node heights
of the tree and take values t1, t2, t3, respectively, 0 ≤ t3 < +∞, 0 ≤ t1 < t3,
0 ≤ t2 < t3. Under the Yule prior, the probability of T4

1 is given by

PY (T4
1 , t1, t1, t2, t2, t3 − t1, t3 − t2) = e−2λt3e−λt2e−λt1 ,

and the probability density function is given by

pY (t1, t2, t3) = λe−λt1λe−λt22λe−2λt3 .

Then

EY L1 =
∫ +∞

t3=0

∫ t3

t2=0

∫ t3

t1=0
t1pY (t1, t2, t3) dt1 dt2 dt3

=
∫ +∞

0
2λe−2λt3

(∫ t3

0
t1λe−λt1 dt1

)(∫ t3

0
λe−λt2dt2

)
dt3

=
∫ +∞

0
2λe−2λt3

(
−t3e−λt3 − e−λt3

λ
+ 1

λ

) (
1 − e−λt3

)
dt3

= − 2

9λ
+ 1

8λ
− 4

3λ
+ 1

2λ
+ 1

λ
= 5

72λ
;

EY L2 =
∫ +∞

t3=0

∫ t3

t2=0

∫ t3

t1=0
t2pY (t1, t2, t3) dt1 dt2 dt3

=
∫ +∞

0
2λe−2λt3

(∫ t3

0
λe−λt1 dt1

)(∫ t3

0
t2λe−λt2 dt2

)
dt3

=
∫ +∞

0
2λe−2λt3

(
−t3e−λt3 − e−λt3

λ
+ 1

λ

) (
1 − e−λt3

)
dt3

= 5

72λ
;



8.1 Original problems 251

EY L3 =
∫ +∞

t3=0

∫ t3

t2=0

∫ t3

t1=0
t3pY (t1, t2, t3) dt1 dt2 dt3

=
∫ +∞

0
2t3λe−2λt3

(∫ t3

0
λe−λt1 dt1

)(∫ t3

0
λe−λt2dt2

)
dt3

=
∫ +∞

0
2t3λe−2λt3

(
1 − e−λt3

)2
dt3

= 1

2λ
− 4

9λ
+ 1

8λ
= 11

72λ
.

Under the coalescent prior, tree T4
1 has the probability

Pc(T
4
1 , t1, t1, t2, t2, t3 − t1, t3 − t2|θ)

=
(

2

θ

)3

exp

(
−2t3

θ

)
exp

(
−4t2

θ

)
exp

(
−6t1

θ

)
,

and the probability density function is given by

pc(t1, t2, t3) = 6

θ
exp

(
−6t1

θ

)
4

θ
exp

(
−4t2

θ

)
2

θ
exp

(
−2t3

θ

)
.

To find the expected values of L1, L2, and L3, we have to complete the following
integration:

EcL1 =
∫ +∞

t3=0

∫ t3

t2=0

∫ t3

t1=0
t1p(t1, t2, t3) dt1 dt2 dt3

=
∫ +∞

0

2

θ
exp

(
−2t3

θ

)(∫ t3

0

4

θ
exp

(
−4t2

θ

)
dt2

∫ t3

0

6t1
θ

exp

(
−6t1

θ

)
dt1

)
dt3

=
∫ +∞

0

2

θ
exp

(
−2t3

θ

)(
1 − exp

(
−4t3

θ

))

×
(

−t3 exp

(
−6t3

θ

)
− θ

4
exp

(
−6t3

θ

)
+ θ

6

)
dt3

= − θ

32
− θ

16
+ θ

6
+ θ

72
+ θ

24
− θ

18
= 7θ

96
;



252 Probabilistic approaches to phylogeny

EcL2 =
∫ +∞

t3=0

∫ t3

t2=0

∫ t3

t1=0
t2p(t1, t2, t3) dt1 dt2 dt3

=
∫ +∞

0

2

θ
exp

(
−2t3

θ

)(
1 − exp

(
−6t3

θ

))(∫ t3

0

4t2
θ

exp

(
−4t2

θ

)
dt2

)
dt3

=
∫ +∞

0

(
−2t3

θ
exp

(
−6t3

θ

)
− 1

2
exp

(
−6t3

θ

)
+ 1

2
exp

(
−2t3

θ

)

+2t3
θ

exp

(
−12t3

θ

)
+ 1

2
exp

(
−12t3

θ

)
− 1

2
exp

(
−8t3

θ

))
dt3

= − θ

18
− θ

12
+ θ

4
+ θ

72
+ θ

24
− θ

16
= θ

72
;

EcL3 =
∫ +∞

t3=0

∫ t3

t2=0

∫ t3

t1=0
t3p(t1, t2, t3) dt1 dt2 dt3

=
∫ +∞

0

2t3
θ

exp

(
−2t3

θ

)(
1 − exp

(
−4t3

θ

))(
1 − exp

(
−6t3

θ

))
dt3

=
∫ +∞

0

(
2t3
θ

exp

(
−2t3

θ

)
− 2t3

θ
exp

(
−8t3

θ

)

−2t3
θ

exp

(
−6t3

θ

)
+ 2t3

θ
exp

(
−12t3

θ

))
dt3

= θ

2
− θ

32
− θ

18
+ θ

72
= 59θ

288
.

Note that the expected heights L1 and L2 of the branch nodes of T4
1 are equal under

the Yule prior, but have different values (EcL1 > EcL2) under the coalescence prior.
The symmetry of the probability density function pY versus the non-symmetry of
pc with respect to variables t1 and t2 explains this difference.

The final case is the tree T4
2 with topology (((12)3)4) and edge lengths

t1, t1, t2, t2 − t1, t3, t3 − t2:

t1

t2

t3

We assume that the random variables L1, L2, L3 define unequal branch node heights
and take values t1, t2, t3, respectively, 0 ≤ t3 < +∞, 0 ≤ t1 < t2, 0 ≤ t2 < t3.



8.1 Original problems 253

Under the Yule prior, the probability of T4
2 is given by

PY (T4
2 , t1, t1, t2, t2 − t1, t3, t3 − t2) = e−2λt3e−λt2e−λt1 ,

and the density function pY is given by

pY (t1, t2, t3) = λe−λt1λe−λt22λe−2λt3 .

Then

EY L1 =
∫ +∞

t3=0

∫ t3

t2=0

∫ t2

t1=0
t1pY (t1, t2, t3) dt1 dt2 dt3

=
∫ +∞

0
2λe−2λt3

(∫ t3

0

(
−λt2e−2λt2 − e−2λt2 + e−λt2

)
dt2

)
dt3

=
∫ +∞

0

(
λt3e−4λt3 3

2
e−4λt3 + 1

2
e−2λt3 − 2e−3λt3

)
dt3

= 1

16λ
+ 3

8λ
+ 1

4λ
− 2

3λ
= 1

48λ
;

EY L2 =
∫ +∞

t3=0

∫ t3

t2=0

∫ t2

t1=0
t2pY (t1, t2, t3) dt1 dt2 dt3

=
∫ +∞

0
2λe−2λt3

(∫ t3

0

(
λt2e−λt2 − λt2e−2λt2

)
dt2

)
dt3

=
∫ +∞

0

(
2t3λe−3λt3 − 2e−3λt3 + 3

2
e−2λt3 + λt3e−4λt3 + 1

2
e−4λt3

)
dt3

= 2

9λ
− 2

3λ
+ 3

4λ
+ 1

16λ
+ 1

8λ
= 11

144λ
;

EY L3 =
∫ +∞

t3=0

∫ t3

t2=0

∫ t2

t1=0
t3pY (t1, t2, t3) dt1 dt2 dt3

=
∫ +∞

0
t3λe−2λt3

(
1 − 2λe−λt3 + e−2λt3

)
dt3

= 1

4λ
− 2

9λ
+ 1

16λ
= 13

144λ
.

Under the coalescent prior, the probability of tree T4
2 is the same as the probability

of tree T4
1 :

Pc(T
4
2 , t1, t1, t2, t2 − t1, t3, t3 − t2|θ)

=
(

2

θ

)3

exp

(
−2t3

θ

)
exp

(
−4t2

θ

)
exp

(
−6t1

θ

)
.



254 Probabilistic approaches to phylogeny

Thus, the probability density function pc is the same as for T4
1 :

pc(t1, t2, t3) = 6

θ
exp

(
−6t1

θ

)
4

θ
exp

(
−4t2

θ

)
2

θ
exp

(
−2t3

θ

)
.

Integration yields the following expected values of L1, L2, and L3:

EcL1 =
∫ +∞

t3=0

∫ t3

t2=0

∫ t2

t1=0
t1p(t1, t2, t3) dt1 dt2 dt3

=
∫ +∞

0

2

θ
exp

(
−2t3

θ

)(∫ t3

0

4

θ
exp

(
−4t2

θ

)

×
(∫ t2

0

6t1
θ

exp

(
−6t1

θ

)
dt1

)
dt2

)
dt3

=
∫ +∞

0

2

θ
exp

(
−2t3

θ

)(∫ t3

0

4

θ
exp

(
−4t2

θ

)

×
(

−t2 exp

(
−6t2

θ

)
− θ

4
exp

(
−6t2

θ

)
+ θ

6

)
dt2

)
dt3

=
∫ +∞

0

(
4t3
5θ

exp

(
−12t3

θ

)
− 4

75
exp

(
−12t3

θ

)

− 2

25
exp

(
−2t3

θ

)
+ 1

3
exp

(
−6t3

θ

))
dt3

= θ

60
− θ

225
− θ

25
+ θ

18
= θ

25
;

EcL2 =
∫ +∞

t3=0

∫ t3

t2=0

∫ t2

t1=0
t2p(t1, t2, t3) dt1 dt2 dt3

=
∫ +∞

0

2

θ
exp

(
−2t3

θ

)(∫ t3

0

4t2
θ

exp

(
−4t2

θ

)(
1 − exp

(
−6t1

θ

))
dt2

)
dt3

=
∫ +∞

0

2

θ
exp

(
−2t3

θ

)

×
(∫ t3

0

(
4t2
θ

exp

(
−4t2

θ

)
− 4t2

θ
exp

(
−10t2

θ

))
dt2

)
dt3

=
∫ +∞

0

(
−2t3

θ
exp

(
−6t3

θ

)
− 1

2
exp

(
−6t3

θ

)

+21

50
exp

(
−2t3

θ

)
+ 4t3

5θ
exp

(
−12t3

θ

)
+ 2

25
exp

(
−12t3

θ

))
dt3

= − θ

18
− θ

12
+ 21θ

100
+ θ

45
+ θ

150
= θ

10
;



8.1 Original problems 255

EcL3 =
∫ +∞

t3=0

∫ t3

t2=0

∫ t2

t1=0
t3p(t1, t2, t3) dt1 dt2 dt3

=
∫ +∞

0

2t3
θ

exp

(
−2t3

θ

)(∫ t3

0

4

θ
exp

(
−4t2

θ

)(
1 − exp

(
−6t1

θ

))
dt2

)
dt3

=
∫ +∞

0

(
6t3
5θ

exp

(
−2t3

θ

)
− 2t3

θ
exp

(
−6t3

θ

)
+ 4t3

5θ
exp

(
−12t3

θ

))
dt3

= 3θ

10
− θ

18
+ θ

15
= 14θ

45
.

Problem 8.14 For sufficiently large N , the posterior distribution P(p|mH, nT)

for the probability of a head p given by a Dirichlet distribution has the following
normal approximation:

P(p|mH , nT) � N + 1√
2πNp(1 − p)

exp

(
− (m − Np)2

2Np(1 − p)

)
.

Similarly, the maximum likelihood estimate P(pML = p) derived from the boot-
strap data asymptotically follows the normal approximation, i.e. for sufficiently
large N

P(pML = p) � N + 1√
2πmn/N

exp

(
−(m − Np)2

2mn/N

)
.

Show that both probabilities are either very small or else take nearly equal values.

Solution We consider a coin tossing with probability p of gettting a head. Suppose
that N tosses produced m heads (H) and n tails (T ). For large N we have that, almost
surely,

m

N
� p,

n

N
� 1 − p

due to the strong law of large numbers. Therefore, for large N

mn

N
� p(1 − p)N

and

N + 1√
2πmn/N

exp

(
−(m − Np)2

2mn/N

)
� N + 1√

2πNp(1 − p)
exp

(
− (m − Np)2

2Np(1 − p)

)
.

Thus, the distributions P(pML = p) and P(p|mH , nT) approximate each other for
large N .



256 Probabilistic approaches to phylogeny

Problem 8.15 Show that finding the most parsimonious tree using weighted
parsimony with the costs S(a, a) = − log α, S(a, b) = − log β, for a 	= b and
the condition β < α, is equivalent to traditional parsimony with a substitution
cost of 1.

Remark Parameters α and β are interpreted as the elements of a substitution
matrix, with diagonal elements equal to α and non-diagonal elements equal to β.

Solution First we note that the inequality β < α implies that S(a, a) < S(a, b) for
a 	= b. Suppose we have to identify the most parsimonious tree for n sequences
x1, . . . , xn each of length N . For a given tree T we calculate the minimum cost Su(T)

at each site u, u = 1, . . . , N , and then the minimum cost of the tree T is given by

S(T) =
N∑

u=1

Su(T).

There are (2n − 3)!! rooted trees with n leaves, and the most parsimonious tree
among them is given by

T∗ = argmin
T

S(T).

We will show that one and the same tree T∗ minimizes both the cost of weighted
parsimony Sw(T) and the cost of traditional parsimony Str(T). If ku is the number
of substitutions at site u for tree T , then the weighted parsimony cost at site u is
equal to −(log β)ku − (log α)(n − 1 − ku), since a rooted tree with n leaves has
n − 1 branch nodes, and the total number of matches and substitutions along the
edges of tree T is n − 1.

For tree T the traditional parsimony cost Str is equal to the sum of the minimal
numbers of substitutions ku at each site u as follows:

Str(T) =
N∑

u=1

ku,

while the weighted parsimony cost is given by

Sw(T) =
N∑

u=1

(− log βku − log α(n − 1 − ku))

= (log α − log β)

N∑
u=1

ku − log α(n − 1),



8.1 Original problems 257

with the same numbers of substitutions k1, . . . , kN . The set k1, . . . , kN minimizing
Str and Sw is the same since log α − log β > 0.

Therefore, the same tree T∗ minimizes the weighted parsimony and the traditional
parsimony costs:

T∗ = argmin
T

Sw(T) = argmin
T

Str(T).

Problem 8.16 Obtain the Jukes–Cantor distance from the minimum relative
entropy principle.

Remark The relative entropy H(P|Q) for two discrete distributions P and Q taking
non-negative values on one and the same set {yj} is defined by the following formula:

H(P|Q) =
∑

i

P(yi) log
P(yi)

Q(yi)
,

The fact that for any P and Q the relative entropy H(P|Q) is always non-negative
and takes zero value if and only if P = Q follows from the inequality (x > 0):

log x ≤ x − 1,

with equality only for x = 1. If x = Q(yi)/P(yi), then

−H(P|Q) =
∑

i

P(yi) log
Q(yi)

P(yi)
≤
∑

i

P(yi)

(
Q(yi)

P(yi)
− 1

)

=
∑

i

Q(yi) −
∑

i

P(yi) = 1 − 1 = 0,

with equality only for P = Q. Therefore,∑
i

P(yi) log Q(yi) ≤
∑

i

P(yi) log P(yi), (8.8)

with equality if and only if P = Q.

Solution We assume that the ungapped alignment of DNA sequences x1 and x2

of length N has n1 matches and n2 mismatches. The maximum likelihood distance
(MLD) between x1 and x2 is defined as

dML
12 = argmax

t

(
N∏

u=1

P(x2
u|x1

u , t)

)
.



258 Probabilistic approaches to phylogeny

Under the Jukes–Cantor model the MLD becomes

dML
12 = argmax

t
(rt)

n1(st)
n2 ,

where rt = P(a|a, t) = 1
4(1+3e−4αt) and st = P(a|b, t) = 1

4(1−e−4αt) are respect-
ively, the diagonal and the non-diagonal elements of the Jukes–Cantor substitution
matrix.

The maximization of function P(t) = (rt)
n1(st)

n2 could be achieved by standard
methods of calculus (Problem 8.7), and the point of maximum of P(t) is given by

t∗ = dML
12 = 1

4α
ln

3(n1 + n2)

3n1 − n2
= − 1

4α
ln

(
1 − 4

3
f

)
. (8.9)

Here f = n2/N is the fraction of sites with mismatches (variable sites).
The Jukes–Cantor distance d is defined as the expected number of substitutions

per site over the time dML. Since in the Jukes–Cantor model the expected number
of substitutions per site per unit time is 3α, we have

d(x1, x2) = 3αdML
12 = −3

4
ln

(
1 − 4

3
f

)
.

Now we will show that the non-negative property (8.8) of the relative entropy can be
used to obtain the same result. Taking the natural logarithm of P(t) = (rt)

n1(st)
n2

yields the following expression:

ln P(t) = n1 ln rt + n2 ln st

= N
(n1

N
ln rt + n2

3N
ln st + n2

3N
ln st + n2

3N
ln st

)
=
∑

i

P(yi) ln Q(yi),

where Q and P are discrete distributions defined on the same four-point set with
probabilities rt , st , st , st , and n1/N , n2/3N , n2/3N , n2/3N , respectively. According
to Equation (8.8),

∑
i P(yi) ln Q(yi) attains its maximum when P = Q. By solving

with respect to t the system of two equations

rt = 1

4

(
1 + 3e−4αt

)
= n1

N
,

st = 1

4

(
1 − e−4αt

)
= n2

3N
,



8.2 Additional problems and theory 259

we find the point of maximum

t∗∗ = dML
12 = − 1

4α
ln

(
1 − 4n2

3N

)
= − 1

4α
ln

(
1 − 4

3
f

)
.

We see that t∗∗ = t∗ = dML
12 ; therefore, the Jukes–Cantor distance d between the

sequences x1 and x2,

d(x1, x2) = 3αdML
12 = −3

4
ln

(
1 − 4

3
f

)
,

has been derived from the properties of the relative entropy. Whereas finding t∗ =
dML

12 was accomplished by finding the point of maximum of P(t) via the standard
necessary conditions of the stationary point, finding t∗∗ was achieved directly from
condition P = Q by solving algebraic equations.

Remark The meaning of the requirement P = Q is as follows. Probabilities rt =
P(a|a, t) and st = P(b|a, t), a 	= b, determine expected fractions of “constant”
and “variable” sites, respectively, as time t elapses. The maximum likelihood for
observed data will be reached when rt = n1/N and st = n2/(3N), since n1/N is
the observed fraction of constant sites and n2/(3N) is the observed average fraction
of variable sites for one of the three types of mismatches.

8.2 Additional problems and theory

This section contains theoretical and computational problems dealing with the
probabilistic models of molecular evolution.

Several problems are devoted to the Jukes–Cantor model. We show that the
maximum likelihood tree for a set of three given nucleotide sequences differs
from the tree composed of the pairwise maximum likelihood distances (times)
(Problem 8.17). Under the Jukes–Cantor model, we compare likelihoods of the
trees corresponding to competing hypotheses on the divergence time of the two
species and compute the most probable divergence time (Problem 8.18). In the
theoretical introduction to Problem 8.18 we prove that the stochastic process
counting the number of substitutions controlled by the stationary Markov pro-
cess is the Poisson process, if the diagonal elements of the matrix of substitution
rates are all the same (both the Jukes–Cantor and the Kimura models satisfy this
condition).

The continuous-time Markov process of amino acid substitution similar to the
Jukes–Cantor and the Kimura models of DNA evolution (Problem 8.19) has been



260 Probabilistic approaches to phylogeny

derived (generalized) from the stationary Markov chain with the matrix of transition
probabilities 1 PAM (Section 2.2.1). However, there is an important difference as
well: the family of substitution matrices t PAM, t ≥ 0, and the matrix of rates of
substitution (also derived in Problem 8.19) do not depend on parameters, unlike the
Jukes–Cantor and the Kimura matrices.

A probabilistic model of evolution of DNA or protein sequences allowing sub-
stitutions, insertions, and deletions (the links or TKF model by Thorne et al. 1991)
combines the continuous-time Markov process describing substitutions and the
birth–death process with immigration describing insertions and deletions (see the
theoretical introduction to Problem 8.20). We use this model to compute the prob-
ability of sequence x having transformed to sequence y over time t and to find the
likelihood of a tree with given nodes and branch lengths (Problem 8.20).

Finally, a brief description of the models taking into account the variability of
the substitution rates among sequence sites is presented in Section 8.2.3.

Problem 8.17 It is assumed that nucleotide sequences x1, x2, and x3 (shown
below in top down order)

C C G G C C G C G C G
C G G G C C G G C C G
G C C G C C G G G C C

have evolved from a common ancestor. Assuming the Jukes–Cantor model, show
that the maximum likelihood tree for these sequences is not composed of their
pairwise maximum likelihood distances.

Solution The maximum likelihood distance dML
ij between nucleotide sequences xi

and xj is given by Equation (8.9) assuming the Jukes–Cantor model (two approaches
to the derivation of Equation (8.9) are discussed in Problems 8.7 and 8.16). There-
fore, for pairwise maximum likelihood distances of sequences x1, x2, and x3,
we have

dML
12 = − 1

4α
ln

(
1 − 4

3
f12

)
= − 1

4α
ln

(
1 − 4

3
× 3

11

)
= − 1

4α
ln

7

11
,

dML
13 = − 1

4α
ln

(
1 − 4

3
f13

)
= − 1

4α
ln

(
1 − 4

3
× 4

11

)
= − 1

4α
ln

17

33
,

dML
23 = − 1

4α
ln

(
1 − 4

3
f23

)
= − 1

4α
ln

(
1 − 4

3
× 5

11

)
= − 1

4α
ln

13

33
.

Here fij, i, j = 1, 2, 3, are fractions of mismatches in sequences xi and xj aligned
without gaps, and α is the parameter of the Jukes–Cantor model.



8.2 Additional problems and theory 261

Now we assume that x1, x2, and x3 are related by the unrooted three-leaf tree T̃
with edge lengths t̃1, t̃2, t̃3 as follows:

x2              

x1              

x3

t2
~

t1
~

t3
~

If t̃1, t̃2, and t̃3 satisfy the following equations:

t̃1 + t̃2 = dML
12 ,

t̃1 + t̃3 = dML
13 ,

t̃2 + t̃3 = dML
23 ,

then for the branch lengths we have

t̃1 = − 1

8α
ln

119

143
= 0.0230

α
,

t̃2 = − 1

8α
ln

91

187
= 0.0900

α
,

t̃3 = − 1

8α
ln

221

693
= 0.1429

α
.

Now we can show that T̃ is not the maximum likelihood tree for x1, x2, and x3.
The likelihood of a tree T with branch lengths t1, t2, t3 and the leaf sequences

x1, x2, and x3 is as follows (Problem 8.4):

L(T , t1,t2, t3) = P(x1, x2, x3|T , t1, t2, t3)

= 4−3(n1+n2+n3+n4)a(t1, t2, t3)
n1b(t1, t2, t3)

n2b(t1, t3, t2)
n3b(t3, t2, t1)

n4 .

Here n1 is the number of sites with CCC or GGG; n2, n3, and n4 are the numbers
of sites with CCG or GGC, CGC or GCG, GCC or CGG, respectively, while

a(t1, t2, t3) = 1 + 3e−4α(t1+t2) + 3e−4α(t1+t3) + 3e−4α(t2+t3) + 6e−4α(t1+t2+t3)

and

b(t1, t2, t3) = 1 + 3e−4α(t1+t2) − e−4α(t1+t3) − 3e−4α(t2+t3) − 2e−4α(t1+t2+t3).

In the maximum likelihood tree the branch lengths must maximize the likelihood
function L (and its logarithm ln L). At the point of maximum of the function ln L,



262 Probabilistic approaches to phylogeny

it is necessary that for i = 1, 2, 3

∂ ln L

∂ti
= 0. (8.10)

Direct computations of the left parts of Equation (8.10) using a MATLAB package
with the substitution of t̃1, t̃2, t̃3 of tree T̃ and n1 = 5, n2 = 3, n3 = 2, and n4 = 1
yield

∂ ln L

∂t1
(t̃1, t̃2, t̃3)

= n1

a(t̃1, t̃2, t̃3)

∂a(t1, t2, t3)

∂t1
(t̃1, t̃2, t̃3) + n2

b(t̃1, t̃2, t̃3)

∂b(t1, t2, t3)

∂t1
(t̃1, t̃2, t̃3)

+ n3

b(t̃1, t̃3, t̃2)

∂b(t1, t3, t2)

∂t1
(t̃1, t̃2, t̃3) + n4

b(t̃3, t̃2, t̃1)

∂b(t3, t2, t1)

∂t1
(t̃1, t̃2, t̃3)

= −206.44α 	= 0. (8.11)

Similarly, we compute

∂ ln L

∂t2
(t̃1, t̃2, t̃3) = 2363.7α 	= 0,

∂ ln L

∂t3
(t̃1, t̃2, t̃3) = 353.71α 	= 0.

(8.12)

Equations (8.11) and (8.12) show that the necessary conditions in Equation (8.10)
for the stationary point are not satisfied. Therefore, a tree T̃ built of pairwise max-
imum likelihood distances is not the maximum likelihood tree for the sequences
x1, x2, and x3. It would be interesting to extend this statement to the general case
of n sequences.

Problem 8.18 (Revisiting Problem 1.18) One theory states that the last com-
mon ancestor of birds and crocodiles lived 120 million years ago, while another
theory suggests that this time is twice as large. Comparison of fragments of
homologous genes of two species (Nile crocodile and Mediterranean seagull)
revealed on average 365 differences in 1000 nt long fragments. It was assumed
(Problem 1.18) that substitutions at different DNA sites occur independently,
and at each site the number of substitutions is described by the Poisson process
with parameter p equal to 10−9 substitutions per year. Assuming the validity
of the Jukes–Cantor model (a) compare the likelihood of the two theories; (b)
determine the maximum likelihood distance between the two species.

Solution The Jukes–Cantor matrix of rates of nucleotide substitutions must have
the parameter α such that 3α = p = 10−9, thus α = 3.33 × 10−10.



8.2 Additional problems and theory 263

(a) We assume that DNA sequences x1 and x2 of two species and sequence y of
their last common ancestor are related by the following tree T with the molecular
clock property:

y

t

x1 x2

t

The likelihood of each theory is defined as a likelihood of tree T with branch length t
equal to the divergence time proposed by a particular theory (t = t1 = 120 000 000
years or t = t2 = 240 000 000 years).

Given that substitutions along two edges of the tree are independent, while revers-
ibility and the Markovian property hold for the Jukes–Cantor model, the likelihood
Lu at site u is given by

Lu(t) = P(x1
u , x2

u|T , t, t) = P(x1
u , x2

u|t) =
∑
yu

qyuP(x1
u|yu, t)P(x2

u|yu, t)

=
∑
yu

qx1
u
P(yu|x1

u , t)P(x2
u|yu, t) = qx1

u
P(x2

u|x1
u , t).

Hence, for site u with matching nucleotides (x1
u = x2

u), the likelihood is given by

Lu(t) = P
1

16
(1 + 3e−4α(t+t)) = 1

16
(1 + 3e−8αt).

Similarly, for site u with a mismatch (x1
u 	= x2

u) we have

Lu(t) = 1

16
(1 − e−4α(t+t)) = 1

16
(1 − e−8αt).

Further, assuming independence of substitutions at different sites, we derive the
likelihood of the tree T with edge lengths t and leaf sequences x1 and x2:

L(t) = P(x1, x2|T , t, t) =
N∏

u=1

Lu(t) = 16−N (1 + 3e−8αt)N−M(1 − e−8αt)M .

(8.13)
Here N is the length of both DNA sequences, M is the number of sites with mis-
matches. For N = 1000, M = 365, and α = 3.33 × 10−10 the log-likelihood ratio



264 Probabilistic approaches to phylogeny

for trees with edge lengths t1 and t2 is given by

R = ln
L(t1)

L(t2)
= ln

(1 + 3e−8αt1)635(1 − e−8αt1)365

(1 + 3e−8αt2)635(1 − e−8αt2)365

= 635(ln(1 + 3e−0.32) − ln(1 + 3e−0.64))

+ 365(ln(1 − e−0.32) − ln(1 − e−0.64))

= 132.00 − 199.23 = −67.23 < 0.

Therefore, the Jukes–Cantor model with parameter α = 3.33 × 10−10 suggests
that the observed data support the theory that the Nile crocodile and Mediterranean
seagull diverged from the common ancestor 240 MYA.

Here we have arrived to the same conclusion as in the solution to Problem 1.18,
when the occurrence of substitutions was described by the Poisson process with
rate p = 3α. An advantage of the Jukes–Cantor model is that it removes a rather
unrealistic assumption that no more than one substitution could occur at one site
over the time of divergent evolution. For more details on the connection between
an evolutionary model of substitutions (the Markov process) and a Poisson process
describing the number of substitutions, see Section 8.2.1.

(b) The evolutionary distance between two species connected by a path in a
phylogenetic tree is equal to the sum of all branches in the path. We recall the
formula for a sum of edge lengths of a two-leaf tree T maximizing the likelihood
L(T) of the tree relating the sequences x1 and x2 (Problems 8.7 and 8.16):

τ1 + τ2 = − 1

4α
ln

(
1 − 4M

3N

)
.

Here τ1 and τ2 are edge lengths in the tree. Therefore, the maximum likelihood
(evolutionary) distance between sequences x1 and x2 of the two species is τ1 +τ2 =
500 000 000 (500 million years). The molecular clock property suggests that these
two lineages diverged from the last common ancestor 250 MYA.

8.2.1 Relationship between sequence evolution models described
by the Markov and the Poisson processes

If a stationary Markov process X(t), t ≥ 0, with a state space S = {A, C, G, T}
is used as a model for DNA evolution, we assume that nucleotide substitutions
at a given site of DNA sequence are considered as transitions between states of
process X(t) described by the family of matrices of substitution probabilities, S(t) =
(si,j(t)), i, j ∈ S, t ≥ 0, and matrix R = (ri,j), i, j ∈ S, of substitution rates.

We define a random process N(t), t ≥ 0, as the number of changes of states
(nucleotides) of process X(t) over the time interval [0, t]. We will show that if all



8.2 Additional problems and theory 265

elements of the main diagonal of matrix R are equal, ri,i = −p for any i ∈ S, then
the stochastic process N(t) is the Poisson process with rate p (note that all diagonal
elements of R are negative, so p > 0).

We should verify that N(t), t ≥ 0, satisfies the definition of the Poisson process
with rate p:

(1) N(0) = 0;
(2) the process has stationary increments, i.e. N(t2) − N(t1) and N(t2 + s) − N(t1 + s)

have the same distribution for any 0 ≤ t1 ≤ t2, s > 0;
(3) the process has independent increments, i.e. N(t4) − N(t3) and N(t2) − N(t1) are

independent random variables for any t1 ≤ t2 ≤ t3 ≤ t4;
(4) P(N(t) = n) = e−pt(pt)n/n!, for n ≥ 0.

Obviously, property (1) holds: there is no change over the time interval [0, 0]. The
stationarity of the process increments follows from the stationarity of the Markov
process X(t): the distribution of the number of changes of X(t) states over a time
interval depends only on the length of this interval. Since (t2+s)−(t1+s) = t2−t1,
N(t2) − N(t1) and N(t2 + s) − N(t1 + s) are identically distributed.

To prove that properties (3) and (4) hold, we define a random variable Tj, j ≥ 1,
as the time between the (j − 1)th and jth changes of states of process X(t). It is
known from the theory of stochastic processes (Ross, 1996) that if process X(t) is in
state i, i ∈ S, after the (j − 1)th change of state, then Tj is exponentially distributed
with parameter −ri,i, and random variables Tj, j ≥ 1, are independent. In our case
−ri,i = p for all i ∈ S, and random variables Tj are independent and identically
distributed with probability density function f (t) = pe−pt . Next we determine the
distribution function Fn(t) of random variable Tn = ∑n

j=1 Tj, the time it takes to
observe n changes of states of process X(t). For n = 1, 2, 3 we have

F1(t) = P(T1 ≤ t) = P(T1 ≤ t) = 1 − e−pt ,

F2(t) = P(T2 ≤ t) = P(T1 + T2 ≤ t) =
∫ t

0
f (y)P(T1 + T2 ≤ t|T1 = y)dy

=
∫ t

0
f (y)P(T2 ≤ t − y|T1 = y)dy =

∫ t

0
f (y)P(T2 ≤ t − y)dy

=
∫ t

0
pe−py(1 − e−p(t−y))dy = 1 − e−pt − pte−pt , (8.14)

F3(t) = P(T3 ≤ t) = P(T1 + T2 + T3 ≤ t) =
∫ t

0
f (y)P(T2 + T3 ≤ t|T3 = y)dy

=
∫ t

0
f (y)F2(t − y)dy = 1 − e−pt − pte−pt − (pt)2

2
e−pt .



266 Probabilistic approaches to phylogeny

The expressions for the distribution functions Fn, n = 1, 2, 3, have a pattern that
allows us to suggest the general formula for Fn(t) as follows:

Fn(t) = P(Tn ≤ t) = 1 − e−pt
n−1∑
i=0

(pt)i

i! . (8.15)

We prove equality (8.15) by mathematical induction. The basis of this induction
was established in Equations (8.14). Now we assume that

Fn−1(t) = 1 − e−pt
n−2∑
i=0

(pt)i

i!
and find Fn(t) as follows:

Fn(t) = P(Tn−1 + Tn ≤ t) =
∫ t

0
f (y)P(Tn−1 + Tn ≤ t|Tn = y)dy

=
∫ t

0
f (y)Fn−1(t − y)dy =

∫ t

0
pe−py

(
1 − e−p(t−y)

n−2∑
i=0

(p(t − y))i

i!

)
dy

=
∫ t

0
pe−py dy − e−pt

n−2∑
i=0

∫ t

0

pi+1(t − y)i

i! dy

= 1 − e−pt −
n−2∑
i=0

(pt)i+1

(i + 1)! = 1 − e−pt
n−1∑
i=0

(pt)i

i! .

Thus, we have checked that formula (8.15) is correct. It immediately leads to an
analytical expression for the probability density function fn of Tn:

fn(t) = F ′
n(t) = pntn−1

(n − 1)!e
−pt . (8.16)

Now we will show that property (4) holds. Indeed, from Equation (8.15) we derive

P(N(t) = n) = P(N(t) ≤ n) − P(N(t) ≤ n − 1)

= P(N(t) < n + 1) − P(N(t) < n) = P(Tn+1 > t) − P(Tn > t)

= (1 − Fn+1(t)) − (1 − Fn(t))

=
(

1 − e−pt
n−1∑
i=0

(pt)i

i!

)
−
(

1 − e−pt
n∑

i=0

(pt)i

i!

)
= e−pt (pt)n

n! .

Finally, we turn to property (3). Since increments of N(t) are stationary
(from property (2)), it is sufficient to prove property (3) for increments



8.2 Additional problems and theory 267

N(t1) − N(0) = N(t1) and N(t3) − N(t2), 0 ≤ t1 ≤ t2 ≤ t3. In fact, we will verify
the independence of three increments N(t1), N(t2) − N(t1), and N(t3) − N(t2):

P(N(t1) = n, N(t2) − N(t1) = l, N(t3) − N(t2) = m)

= P(N(t1) = n)P(N(t2) − N(t1) = l)P(N(t3) − N(t2) = m) (8.17)

For any positive integers n, l, and m. Obviously, if the three increments are
mutually independent, then any two of them are independent too. The station-
arity of increments and property (4) allows us to rewrite the right-hand side of
Equation (8.17) as

P(N(t1) = n)P(N(t2) − N(t1) = l)P(N(t3) − N(t2) = m)

= e−pt1 (pt1)n

n! e−p(t2−t1) (p(t2 − t1))l

l! e−p(t3−t2) (p(t3 − t2))m

m!
= e−pt3 pn+l+m

n!l!m! tn
1(t2 − t1)

l(t3 − t2)
m.

On the other hand, the left-hand side of Equation (8.17) can be transformed into
the same expression as above by the same arguments as in Equations (8.14):

P(N(t1) = n, N(t2) − N(t1) = l, N(t3) − N(t2) = m)

= P(Tn ≤ t1, Tn+1 > t1, Tn+l ≤ t2, Tn+l+1 > t2, Tn+l+m ≤ t3, Tn+l+m > t3)

=
∫ t1

y1=0

∫ t2−y1

y2=t1−y1

∫ t2−y1−y2

y3=0

∫ t3−y1−y2−y3

y4=t2−y1−y2−y3

∫ t3−y1−y2−y3−y4

y5=0
(fn(y1)

× f (y2)fl−1(y3)f (y4)fm−1(y5)

× P(Tn+l+m+1 > t3 − y1 − y2 − y3 − y4 − y5))dy1 dy2 dy3 dy4 dy5

=
∫ (

pnyn−1
1

(n − 1)!e
−py1pe−py2

pl−1yl−2
3

(l − 2)! e−py3pe−py4

× pm−1ym−2
5

(m − 2)! e−py5e−p(t3−y1−y2−y3−y4−y5)

)
dy1 dy2 dy3 dy4 dy5

= e−pt3 pn+l+m

n!l!m! tn
1(t2 − t1)

l(t3 − t2)
m.

This completes the proof of Equation (8.17). Therefore, we have shown that the
process N(t), t ≥ 0, satisfies the definition of the Poisson process.

One of the implications of this statement is that for both the Jukes–Cantor and
Kimura models of DNA evolution, the number N(t) of changes of states (nuc-
leotides) over a time interval [0, t] is the Poisson process with rate 3α for the
Jukes–Cantor model and rate 2β + α for the Kimura model. Thus, the Poisson



268 Probabilistic approaches to phylogeny

Table 8.1. The set of eigenvalues λ1, . . . , λ20 of the mutation
probability matrix 1PAM = S(1)

1(Ala) 2(Arg) 3(Asn) 4(Asp) 5(Cys) 6(Gln) 7(Glu)
0.978 0.981 1.000 0.983 0.984 0.985 0.987

8(Gly) 9(His) 10(Ile) 11(Leu) 12(Lys) 13(Met) 14(Phe)
0.987 0.998 0.997 0.997 0.989 0.990 0.996

15(Pro) 16(Ser) 17(Thr) 18(Trp) 19(Tyr) 20(Val)
0.995 0.991 0.993 0.993 0.992 0.992

model of substitutions used in Problem 1.18 can be considered as a model associ-
ated with the Jukes–Cantor model (Problem 8.18). This associated Poisson model
allows us to count the substitutions (as changes of states), but lacks information
about the current type of nucleotide at a given site, because the Poisson process
N(t) cannot distinguish between nucleotides (states) of the Markov process X(t).
In other words, process X(t) unambiguously determines the Poisson process N(t),
but the converse does not hold; X(t) cannot be recovered from N(t).

The difference in Equations (1.7) and (8.13) for the likelihood of a tree with
two leaves and branch length t (Problems 1.18 and 8.18) stems from the fact that in
Problem 1.18 we computed the likelihood assuming that no more than one substitu-
tion could occur in one site in the whole lineage. If we include the same condition in
the statement of Problem 8.18, the (conditional) likelihood would be the same is in
Equation (1.7), and the maximum likelihood estimate of the divergence time would
change from 250 MYA to 287.4 MYA. (If no more than one substitution per site is
allowed, the greater divergence time is necessary for the observed mismatches M
to appear.)

Problem 8.19 In Section 2.2.1 it was shown in detail how to derive PAM
matrices under the assumption that amino acid substitutions in proteins could
be described by a stationary Markov chain. This method produces a series of
mutation probability matrices n PAM corresponding to discrete evolutionary
time intervals multiple of the 1 PAM time unit.

Derive the mutation probability matrix t PAM, explicitly depending on con-
tinuous time t ≥ 0, an analog of the substitution matrix S(t) defined for the
Jukes–Cantor and Kimura models of DNA evolution. Matrix R of the rates of
substitution has to be derived as well.

Solution We will use the designation S(1) for the 1 PAM matrix with elements Mij

(Table 2.7).



8.2 Additional problems and theory 269

Table 8.2. The values of parameters µi, µi = − ln λi, i = 1, . . . , 20,
used in Equation (8.20)

1 2 3 4 5 6 7 8 9 10
0.022 0.020 0.000 0.018 0.017 0.016 0.014 0.013 0.002 0.003

11 12 13 14 15 16 17 18 19 20
0.003 0.011 0.011 0.004 0.005 0.009 0.007 0.007 0.008 0.008

Matrix S(1) could be interpreted as the matrix of a linear operator S in a basis
e1, . . . , e20 of R20. All eigenvalues λi, i = 1, . . . , 20, of operator S are distinct
(Table 8.1). Therefore, in R20 there exists a basis of eigenvectors e′

1, . . . , e′
20 of linear

operator S. Then, matrix S(1) can be written as S(1) = VDV−1, where matrix D is
a diagonal matrix with values λi, i = 1, . . . , 20, on the diagonal (D is the matrix of
operator S in basis e′

1, . . . , e′
20), V is the matrix of a coordinate transformation from

basis e1, . . . , e20 to basis e′
1, . . . , e′

20, and V−1 is the inverse matrix for V . Matrices
V and V−1 are shown in Tables 1 and 2 of the Web Supplemental Materials available
at opal.biology.gatech.edu/PSBSA.

Since all eigenvalues λi, i = 1, . . . , 20, belong to interval (0, 1] (Table 8.1),
we can write them in the form λi = exp(−µi), µi ≥ 0. For S(n), the matrix of
probabilities of amino acid substitutions at a time equal to n PAM units, we have:

(S(1))n = S(n) = (VDV−1)n = VDV−1VDV−1 · · · VDV−1 = VDnV−1. (8.18)

Therefore, from Equation (8.18) for the elements of matrix S(n) we have

Sij(n) =
∑

k

vikλ
n
kv−1

kj =
∑

k

vik exp(−µkn)v−1
kj . (8.19)

Here vik , v−1
kj are the elements of matrices V and V−1, respectively. Values of

µk , k = 1, . . . , 20, are shown in Table 8.2. Replacing n in Equation (8.19) by a
continuous variable t, t ≥ 0, gives the formula for the elements of matrix S(t),
t ≥ 0. Thus, the probability that an amino acid in column j will be substituted by
an amino acid in row i after time t is

Sij(t) =
20∑

k=1

vik exp(−µkt)v−1
kj . (8.20)

Note that similarly to the elements of substitution matrices in the Jukes–Cantor and
Kimura models, Sij(t) is a linear combination of the exponential functions.



270 Probabilistic approaches to phylogeny

The elements of matrix R which are the rates of amino acid substitution can be
derived from Equation (8.20) and S′(0) = R as follows:

Rij =
20∑

k=1

−µkvik exp(−µk0)v−1
kj =

20∑
k=1

−µkvikv−1
kj .

Matrix R is shown in Table 8.3.
Another approach to modeling the continuous-time Markov process of amino

acid substitution related to the model of Dayhoff et al. (1978) was proposed by
Wilbur (1985).

The family of continuous-time substitution matrices, (8.20) is useful for applic-
ations such as the determination of the maximum likelihood evolutionary distance
between two protein sequences, the comparison of the likelihoods of candidate
evolutionary trees for a given set of leaf sequences, finding the most probable
lengths of branches for a given tree topology, etc. Note that solving such problems
is computationally expensive for real sequences.

For the sake of giving a “toy” example, we determine the maximum likelihood
distance t∗ (in PAM units) between two amino acid sequences x = KVAD and
y = KVFK . Under the assumption of independence of sites, we have the following
product of the t PAM elements defined by Equation (8.20):
P(t) = P(x has been changed to y over time t) = S12,12(t)S20,20(t)S14,1(t)S12,4(t)

=
20∑

k,l,m,q=1

v12,kv−1
k,12v20,lv

−1
l,20v14,mv−1

m,1v12,qv−1
q,4 exp(−(µk + µl + µm + µq)t).

The MATLAB package allows us to find the point of maximum of P(t), t∗ ≈
119.75 PAM, with P(x has been changed to y over time t∗) = 0.00010279. Note
that t∗ is the evolutionary distance between sequences x and y.

8.2.2 Thorne–Kishino–Felsenstein model of sequence evolution with
substitutions, insertions, and deletions

Theoretical introduction to Problem 8.20

A probabilistic model of evolution of DNA or protein sequences as a process of sub-
stitutions, insertions, and deletions (the links or the TKF model) was proposed by
Thorne, Kishino, and Felsenstein (1991) and was later generalized to allow multiple-
base insertions and deletions by Thorne et al. (1992). The TKF model provides
a base for the new alignment algorithms developed by Hein et al. (2000) and
Holmes and Bruno (2001). In what follows we will use DNA sequence terminology;
however, all arguments could be applied to amino acid sequences as well.

The TKF model combines the continuous-time Markov process describing the
nucleotide substitutions with the birth–death process with immigration describing



Ta
bl

e
8.

3.
M

at
ri

x
R

of
ra

te
s

of
su

bs
ti

tu
ti

on
of

am
in

o
ac

id
s

fo
r

th
e

co
nt

in
uo

us
-t

im
e

ve
rs

io
n

of
th

e
D

ay
ho

ff
m

od
el

of
pr

ot
ei

n
ev

ol
ut

io
n

T
he

el
em

en
tR

ij
is

th
e

in
st

an
ta

ne
ou

s
ra

te
of

su
bs

tit
ut

io
n

of
an

am
in

o
ac

id
in

co
lu

m
n

j
to

an
am

in
o

ac
id

in
ro

w
i.

A
ll

el
em

en
ts

of
th

e
m

at
ri

x
ha

ve
be

en
m

ul
tip

lie
d

by
10

4
an

d
ro

un
de

d
to

th
e

cl
os

es
ti

nt
eg

er
fo

r
vi

su
al

iz
at

io
n

co
nv

en
ie

nc
e.

N
ot

e
th

at
th

e
co

nc
ep

to
f

in
st

an
ta

ne
ou

s
ch

an
ge

fr
om

am
in

o
ac

id
a

to
am

in
o

ac
id

b
su

ch
th

at
m

or
e

th
an

on
e

nu
cl

eo
tid

e
in

a
co

do
n

sh
ou

ld
be

ch
an

ge
d

is
no

t
en

tir
el

y
re

al
is

tic
;t

he
re

fo
re

,t
hi

s
m

od
el

is
no

ts
ui

ta
bl

e
fo

r
sm

al
lt

.

A
la

A
rg

A
sn

A
sp

C
ys

G
ln

G
lu

G
ly

H
is

Il
e

L
eu

Ly
s

M
et

Ph
e

Pr
o

Se
r

T
hr

T
rp

Ty
r

V
al

A
la

−1
34

2
9

10
3

8
17

21
2

6
4

2
6

2
22

35
32

0
2

18
A

rg
1

−8
8

1
0

1
10

0
0

10
3

1
19

4
1

4
6

1
8

0
1

A
sn

4
1

−1
80

37
0

4
6

6
21

3
1

13
0

1
2

20
9

1
4

1
A

sp
6

0
43

−1
42

0
6

54
6

4
1

0
3

0
0

1
5

3
0

0
1

C
ys

1
1

0
0

−2
7

0
0

0
1

1
0

0
0

0
1

5
1

0
3

2
G

ln
3

9
4

5
0

−1
25

27
1

23
1

3
6

4
0

6
2

2
0

0
1

G
lu

10
0

7
57

0
35

−1
36

4
2

3
1

4
1

0
3

4
2

0
1

2
G

ly
21

1
12

11
1

3
7

−6
5

1
0

1
2

1
1

3
21

3
0

0
5

H
is

1
8

18
3

1
20

1
0

−8
8

0
1

1
0

2
3

1
1

1
4

1
Il

e
2

2
3

1
2

1
2

0
0

−1
29

9
2

12
7

0
1

7
0

1
33

L
eu

3
1

3
0

0
6

1
1

4
22

−5
3

2
45

13
3

1
3

4
2

15
Ly

s
2

37
25

6
0

12
7

2
2

4
1

−7
5

20
0

3
8

11
0

1
1

M
et

1
1

0
0

0
2

0
0

0
5

8
4

−1
27

1
0

1
2

0
0

4
Ph

e
1

1
1

0
0

0
0

1
2

8
6

0
4

−5
4

0
2

1
3

28
0

Pr
o

13
5

2
1

1
8

3
2

5
1

2
2

1
1

−7
5

12
4

0
0

2
Se

r
28

11
35

7
11

4
6

16
2

2
1

7
4

3
17

−1
61

38
5

2
2

T
hr

22
2

13
4

1
3

2
2

1
11

2
8

6
1

5
32

−1
30

0
2

9
T

rp
0

2
0

0
0

0
0

0
0

0
0

0
0

1
0

1
0

−2
4

1
0

Ty
r

1
0

3
0

3
0

1
0

4
1

1
0

0
21

0
1

1
2

−5
5

1
V

al
13

2
1

1
3

2
2

3
3

58
11

1
17

1
3

2
10

0
2

−1
00



272 Probabilistic approaches to phylogeny

the insertions and deletions. Similarly to the Jukes–Cantor and the Kimura models,
the Markov process is defined by a family of substitution matrices S(t) = (st(a, b)),
t ≥ 0. An element st(a, b) of S(t) determines the probability that a nucleotide a
has been substituted by a nucleotide b over time t. At any time the birth–death
process allows a single nucleotide to give birth to a child nucleotide, or to die. The
child nucleotide is inserted adjacent to the parent on its right, a dead nucleotide
is removed from the sequence. To allow insertions at the left end of the sequence,
where nucleotides cannot appear as a result of birth events, the immigration events
regulate appearances of new nucleotides (insertions) at the left end of the sequence.
The rate of such insertions (immigration) is assumed to be equal to the birth rate for
an individual nucleotide. Therefore, the insertions at the beginning of the sequence
correspond to the immigration events of the birth–death process. The condition
λ < µ on the birth and immigration rate λ and the death rate µ prevents both
infinite growth and complete disappearance of the sequence and is necessary for
the existence of the equilibrium distribution of sequence lengths. The TKF model
defines a stationary distribution on DNA sequences:

P(s) =
(

1 − λ

µ

)(
λ

µ

)l

π
nA
A π

nC
C π

nG
G π

nT
T ,

where l, l ≥ 0, is the length of the sequence; πA, πC , πG, and πT are equilibrium
frequencies of nucleotides, na is the number of occurrences of nucleotide a in
sequence s. Let pn(t) be the probability that a given nucleotide has survived and
has given birth to n − 1 descendants over time t; let qn(t) be the probability that by
time t a nucleotide has died, leaving n descendants; and let gn(t) be the probability
that n immigrant nucleotides are inserted at the left end of the sequence by time
t. These probability functions have to satisfy a system of differential equations
(Holmes and Bruno, 2001) with the solution in the following analytical form:

p0 = 0,
pn(t) = α(t)(β(t))n−1(1 − β(t)), n ≥ 1,
q0(t) = (1 − α(t))(1 − γ (t)),
qn(t) = (1 − α(t))(1 − β(t))γ (t)(β(t))n−1, n ≥ 1,
gn(t) = (1 − β(t))(β(t))n, n ≥ 0.

Here
α(t) = e−µt ,

β(t) = λ(1 − e(λ−µ)t)

µ − λe(λ−µ)t
,

γ (t) = 1 − µ(1 − e(λ−µ)t)

(1 − e−µt)(µ − λe(λ−µ)t)
.



8.2 Additional problems and theory 273

Given the family of substitution matrices S(t), t ≥ 0, and parameters λ and µ,
one can determine the probabilities of various events in DNA sequence evolution,
such as the probability that sequence x has evolved into sequence y over time t, the
likelihood of phylogenetic trees with given leaves and edge lengths ti, etc.

Problem 8.20 Assuming that nucleotide substitutions in the TKF model occur
according to the Jukes–Cantor model with parameter α′ = 2 × 10−9, while
the insertion and deletion rates are λ = 10−9 and µ = 2 × 10−9, respectively,
find (a) the probability P(y|x, t = 108) that sequence x = CA has evolved
into sequence y = AAA over time t = 100 million years; (b) the probability
P(x, y, z|T , t1, t2) that sequences x, y, and z = GA are related by tree T with edge
lengths t1 = t2 = 108 shown below.

x

t1

z y

t2

Solution (a) To determine P(y|x, t = 108) for x = (x1, . . . , xn) and y =
(y1, . . . , ym), we apply the recurrent procedure (Hein et al., 2000), which allows,
us to decompose the probability of subsequence P(y1, . . . , yj|x1, . . . , xi, t), j ≤ m,
i ≤ n, into probabilities of independent events involving either x1, . . . , xi−1 or xi:

P(y1, . . . , yj|x1, . . . , xi, t) = q0(t)P(y1, . . . , yj|x1, . . . , xi−1, t)

+
∑

1≤k≤j

P(y1, . . . , yj−k|x1, . . . , xi−1, t)

× (pk(t)s(xi, yj−k+1)π(yj−k+2, . . . , yj) + qk(t)π(yj−k+1, . . . , yj)), (8.21)

P(y1, . . . , yj|x0, t) = gj(t)π(y1, . . . , yj); (8.22)

where π(sequence) denotes
∏

a∈sequence π(a). Under the Jukes–Cantor model with

substitution rate α′ = 2×10−9, we have the following probabilities of substitutions
over t = 100 million years:

s(a, a) = 1

4
(1 + 3e−4α′t) = 0.5870,

s(a, b) = 1

4
(1 − e−4α′t) = 0.1377,



274 Probabilistic approaches to phylogeny

with equilibrium frequency πa = 0.25 for any nucleotide a. For λ = 10−9, µ = 2×
10−9, and t = 108, computation of several initial values of probabilistic functions
pn(108) = pn, qn(108) = qn, and gn(108) = gn yields

p0 = 0.0000, q0 = 0.1738, g0 = 0.9131,
p1 = 0.7476, q1 = 0.0068, g1 = 0.0793,
p2 = 0.0650, q2 = 0.0006, g2 = 0.0069,
p3 = 0.0056, q3 = 0.0001, g3 = 0.0006.

From Equations (8.21) and (8.22) for sequences x = CA and y = AAA (x0, y0, and
z0 below, the elements of sequences with index zero, all assumed to be the empty
sets) we have:

P(y0|x0, t = 108) = g0 = 0.9131,

P(y1|x0, t = 108) = g1πA = 0.0198,

P(y1, y2|x0, t = 108) = g2π
2
A = 0.0004,

P(y1, y2, y3|x0, t = 108) = g3π
3
A = 0.00001.

(8.23)

As recursion continues, after several steps we obtain

P(y|x, t = 108) = P(y1, y2, y3|x1, x2, t = 108) = q0P(y|x1, t = 108)

+ P(y1, y2|x1, t = 108)(p1s(A, A) + q1πA)

+ P(y1|x1, t = 108)(p2s(A, A)πA + q2π
2
A)

+ P(y0|x1, t = 108)(p3s(A, A)π2
A + q3π

3
A) = 0.00299.

Now we find the probability that sequences x and y are related:

P(x, y|t = 108) = P(x)P(y|x, t = 108)

=
(

1 − λ

µ

)(
λ

µ

)2

πCπAP(y|x, t = 108) = 2.33 × 10−5.

The probability P(x, y|t = 108) is the sum of probabilities of all possible align-
ments of sequences x and y. To find the alignment with the largest probability (the
optimal alignment of x and y), one needs to modify Equation (8.21) by replacing
the summation with the operation of taking maximum and carry out this modified
recursion up to the last step, when the probability of the optimal alignment will be
determined. The optimal alignment itself can be identified by a traceback procedure.

(b) Since evolution events along different edges of tree T are independent, the
likelihood of the tree with edge lengths t1 = t2 = 108, sequence x at the root and
leaf sequences y and z is given by

P(x, y, z|T , t1 = t2 = 108) = P(x)P(y|x, t = 108)P(z|x, t = 108).



8.2 Additional problems and theory 275

We have already calculated P(x)P(y|x, t = 108); to find P(z|x, t = 108), we apply
recursion Equations (8.21) and (8.22). The first three steps produce the same results
as in Equations (8.23). We proceed and obtain

P(z|x, t = 108) = P(z1, z2|x1, x2, t = 108) = q0P(z|x1, t = 108)

+ P(z1|x1, t = 108)(p1s(A, A) + q10.25)

+ P(z0|x1, t = 108)(p2s(A, G)0.25 + q20.252) = 0.0447.

Finally, we find the likelihood of tree T :

P(x, y, z|T , t1 = t2 = 108) = 2.33 × 10−5 × 0.044701 = 1.05 × 10−6.

Remark Generally speaking, the TKF model allows us to generalize the results
obtained for the tree-building problems utilizing ungapped sequence alignments
to the problems concerned with tree construction using the gapped alignments.
These problems include: finding the optimal edge lengths for a tree with given
topology, leaf, and branch nodes; determining optimal ancestral sequences at the
branch nodes given tree and leaf sequences; building the maximum likelihood tree
for a given set of leaf sequences. Solving these and related problems, however, is
a computationally and analytically much more demanding task than solving such
problems using the Jukes–Cantor or the Kimura models, since the probabilistic
functions of the TKF model are much more complicated.

8.2.3 More on the rates of substitution

The models of DNA and protein evolution described earlier (Jukes–Cantor, Kimura,
and Dayhoff) require an assumption that the rates of substitution at all sites of DNA
or protein sequence are equal. Several attempts have been made to overcome this
limitation. For example, Goldman, Thorne, and Jones (1996) utilized the three dis-
tinct reversible stationary Markov processes describing the amino acid substitutions
at protein sites that were supposed to be situated within the three different types of
secondary structure: α-helix, β-sheet, and loop, interpreted as hidden states of an
HMM (with each hidden state characterized by its own matrix of instantaneous rates
of substitution rather than by a set of emission probabilities). The authors estimated
transition probabilities between hidden states using protein sequences with known
secondary structures. The rates of amino acid substitution were derived from evolu-
tionary closely related protein pairs under the assumption that the evolutionary time
separating these sequences is small enough and that the probability of substitution
is approximately equal to the product of the rate of substitution and the elapsed
time.



276 Probabilistic approaches to phylogeny

Nei, Chakraborty, and Fuerst (1976) introduced the distribution of the relative
substitution rates among sites in the form of the gamma density (x ≥ 0):

ρ(x) = αα

�(α)
xα−1e−αx. (8.24)

Here � is the gamma function and α is the parameter of the gamma distribution.
Under the assumption that the distribution of relative substitution rates among

sites does not change with time (but allowing the absolute rates for individual sites
to change), Grishin, Wolf, and Koonin (2000) determined approximate intraprotein
and interprotein rate distributions. Here the intraprotein rate distribution reflects
the site variation of substitution rates within the proteins of one family, while the
interprotein rate reflects the variation of substitution rates between proteins of dif-
ferent families. For the intraprotein rate distribution in the form of Equation (8.24)
the authors estimated parameter α from multiple alignments of fourteen large pro-
tein families. These alignments produced the fraction of unchanged sites u and the
average number of substitutions per site d(u). Further, an assumption was made
that u, d, and ρ are related by the following formula:

u(d) =
∫ +∞

0
ρ(x)e−xd dx.

Then u(d) is the moment-generating function of the intraprotein rate distribution
with expected value and the variance 1 and 1/α, respectively. The first estimate of
parameter α was derived from 1/α = d2u

dd2 (0)−1. The second, independent estimate
of α was obtained as a minimum point of the chi-square statistics composed of the
differences between distributions of the normalized evolutionary distances for all
pairs of nineteen complete genomes. Remarkably, both methods have led to the
same result, α ≈ 0.31.

The empirical interprotein rate distribution was generated from pairs of ortholog-
ous proteins found as reciprocal best hits of the BLAST program (Altschul et al.,
1997) in all-against-all searches in nineteen completely sequenced genomes. The
probability density function η determined as the best fit to the data was given by

η(x) = b(b + c)

c
(1 − e−cx)e−bx.

Here x ≥ 0, b = 1.01, and c = 5.88. The authors argue that the presence of the expo-
nential tail in the interprotein rate distribution makes this distribution compatible
with the constant mutation rate. Therefore, the protein change at large evolutionary
intervals is reasonably approximated by the molecular clock hypothesis.



8.3 Further reading 277

8.3 Further reading

Several frequently used models of nucleotide and amino acid substitution were
described and compared by Whelan, Liò, and Goldman (2001). The authors also
reviewed up-to-date statistical tools available in the molecular phylogenetics:
maximum likelihood inference, testing of evolutionary models, testing of tree topo-
logies, etc. The issues of testing models of nucleotide substitution and selecting the
best-fit model, given empirical data, were discussed by Posada and Crandall (2001).

An empirical model of protein evolution combining a parsimony-based counting
(as in the model by Dayhoff et al., 1978) and the maximum likelihood approach
was suggested by Whelan and Goldman (2001). The codon-based model of nuc-
leotide substitution for protein-coding DNA sequences, introduced independently
by Goldman and Yang (1994) and by Muse and Gaut (1994), was later modified
(Yang, 1998) to accommodate the so-called acceptance rate ω defined as the ratio
dN/dS of the number of non-synonymous substitutions to the number of synonym-
ous substitutions per site. Under this model the maximum likelihood estimates for
ω were obtained and the positive selection (corresponding to the values ω > 1)
was detected for some genes (Yang et al., 2000). Statistical methods of estimating
dN and dS and measuring molecular adaptation were further developed by Yang
and Bielawski (2000), and Yang and Nielsen (2000). Using a modification of the
method described by Yang and Nielsen (2000), Clark et al. (2003) tested hypotheses
on the presence of positive selection in human genes. The codon-based models, as
well as secondary structure-based models of sequence evolution, were reviewed by
Lewis (2001).

Two phylogeny reconstructing methods based on discrete Fourier calculus have
been developed: the method of invariants (Cavender and Felsenstein, 1987; Lake,
1987; Evans and Speed, 1993; Székely, Steel, and Erdös, 1993) and the Hadamard
conjugation method (Hendy, Penny, and Steel, 1994; Steel, Hendy, and Penny,
1998). These methods are applicable to DNA sequences with substitutions described
by the Kimura three-parameter model, the Kimura two-parameter model (the
Kimura model in BSA), and the Jukes–Cantor model.

Yang and Rannala (1997) proposed a Bayesian method for estimating phylogen-
etic trees using DNA sequence data. This method uses the birth–death process to
define the prior distribution on the tree space and the Markov chain Monte Carlo
method to determine the maximum posterior probability tree. Comparative ana-
lysis of the maximum likelihood-based methods versus the Bayesian approach for
estimating phylogenetic trees can be found in Suzuki, Glazko, and Nei (2002),
Holder and Lewis (2003), Douady et al. (2003). Kishino and Hasegawa (1989)
proposed a method for estimating the standard error and the confidence intervals
for the difference in the log-likelihoods between two distinct topologies (KH test).



278 Probabilistic approaches to phylogeny

The KH test has been often used in practice, even for comparing several topologies.
In the latter case the test could lead to overconfidence for a wrong tree. There-
fore, Shimodaira and Hasegawa (1999) developed a modification of the KH test
to deal with multiple-comparison tests. The KH test and other likelihood-based
tests of topologies of phylogenetic trees were reviewed by Goldman, Anderson,
and Rodrigo (2000).

CONSEL, the program for assessing the confidence of a tree selection by giv-
ing P-values for the trees, was developed by Shimodaira and Hasegawa (2001).
Shimodaira (2002) introduced the approximately unbiased (AU) test for testing
tree topologies. The AU test provides yet another procedure for assessing the con-
fidence of the tree selection and makes corrections for the selection bias ignored in
the bootstrap algorithm and the KH test.

The Molecular Evolutionary Genetics Analysis (MEGA) software developed by
Kumar, Tamura, and Nei (1993) focuses on the analysis of the evolutionary changes
in DNA and protein sequences. The latest version, MEGA3 (Kumar, Tamura, and
Nei, 2004) contains routines for sequence alignment, web-based mining of data-
bases, inference of the phylogenetic trees, estimation of evolutionary distances, and
testing evolutionary hypotheses.



9

Transformational grammars

The one-dimensional string is too simple a model to reflect fully the properties
of a real biological molecule, which have, after all, been determined by its three-
dimensional structure selected in the course of evolution. Physical interactions of
amino acids and nucleotides in the three-dimensional folds have to be described
by the models that would go beyond the short range correlations which are the
typical targets of the Markov chain models. The long range correlations are more
important for proteins than for DNA, which has a rather uniform double helix
structure. However, the structure of another nucleic acid, RNA, commonly has a
significant number of long range interactions of special type, which could be a
target for yet another class of probabilistic models.

Chapter 9 introduces the Chomsky hierarchy of deterministic transformational
grammars, the models developed originally for natural languages and then applied
to computer languages. These grammars could be readily used for the description
of a protein (a regular grammar could generate amino acid sequences described
as the PROSITE patterns) and RNA (a context-free grammar could generate RNA
sequences with a given secondary structure).

Further generalization of these deterministic grammar classes to stochastic ones
increases opportunities for sequence modeling. Stochastic regular grammars could
be shown to be equivalent to hidden Markov models. Stochastic context-free gram-
mars (SCFGs) are useful for modeling RNA sequences. Major SCFG algorithms
solve tasks strikingly similar to those of the major algorithms for hidden Markov
models (Chapter 3 of BSA): the CYK alignment algorithm finds the optimal
alignment of a sequence to an already parameterized SCFG; the inside–outside
algorithm finds the probability of a sequence given a parameterized SCFG; and the
expectation–maximization algorithm estimates the SCFG parameters from a set of
training sequences by using the inside and outside variables.

Chapter 9 includes twelve problems which facilitate understanding of the major
concepts introduced in this chapter and their relationships. The problems offer

279



280 Transformational grammars

Figure 9.1. This finite state automaton recognizes FMR-1 triplet repeat regions
containing any number of CGG or AGG nucleotide triplets

practice with the use of grammar derivation rules for decoding input sequences,
creating grammar rules for particular sequence classes and complete languages,
converting the grammar production rules into the Chomsky normal form. Finally,
these problems elucidate the relationships between (i) the finite state automaton
and the Moore machine, (ii) deterministic and non-deterministic automata, (iii) the
push-down automata and the stochastic context-free grammars, and (iv) the HMM
and the stochastic regular grammars.

9.1 Original problems

Problem 9.1 Convert the FMR-1 automaton in Figure 9.1 to a Moore machine in
which each state accepts a particular symbol, instead of each transition accepting
a particular symbol.

Solution To build the Moore machine, each transition-state pair designated as (x, n)

in the FMR-1 automaton is converted into the Moore machine’s state accepting the
symbol associated with transition. We use S as the start non-terminal, Gi, Ci, Ai,
and Ti as the non-terminals corresponding to the states of the Moore machine. In
the conversion of the FMR-1 automaton, the initial state S remains the same. The
transition-state pair (g, 1) in the FMR-1 gives a new state G1, pair (c, 2) – state C2,
etc. until state 6 in the FMR-1 automaton is reached. Exit from state 6 is possible via
one of the three transition-state pairs. In the continuation of the convergence process,
(c, 7) produces state C7 of the Moore machine, (c, 4) produces state C4, and (a, 4)

makes additional state A6′ . States C7, C4, A6′ accept symbols c, c, a, respectively.
The straightforward addition of the remaining states, T8 and G9, completes the
Moore machine shown in Figure 9.2.

Problem 9.2 Convert the FMR-1 automaton to a deterministic automaton.

Solution The FMR-1 automaton is non-deterministic, since state 6 has two possible
transitions for the same symbol c of the input language. A non-deterministic finite
automaton (NDFA) can be converted into a deterministic one by the following
general procedure (Carroll and Long, 1989).



9.1 Original problems 281

Figure 9.2. The Moore machine that recognizes FMR-1 triplet repeat regions
containing any number of CGG or AGG triplets

If a given non-deterministic finite automaton (NDFA) named N with a set of
states S is supposed to be converted to a deterministic finite automaton (DFA) A,
we have to keep track of all states that can be reached by some string in the NDFA.
As the first step, we define a state space of A as the power set of S, i.e. a set of all
subsets of S. Thus, each state in the new machine will be labeled by some subset of S.

Further, we designate an NDFA as N = (S, �, δ, q, F) with a set of states S, an
alphabet of an input language �, a set of starting states q, a set of accepting (final)
states F, and a transition function δ, δ : S × � → ρ(S). Here ρ(S) is a power set
of S. Function δ is such that: for any s ∈ S, σ ∈ � : δ(s, σ) = {s1, . . . , sn}, where
si ∈ S, and δ(s, ε) = {s} for an empty string ε.

The designation for the corresponding DFA is A = (S′, �, δ′, q′, F ′), where
S′ = ρ(S), q′ = q, F ′ = {T ∈ S′|T ∩ F 	= ∅}. To implement our general strategy
“to remember” all the states that can be reached by means of some input string, we
define a transition function δ′, δ′ : S′ ×� → S′, as follows: for any T ∈ S′, σ ∈ �,

δ′(T , σ) =
⋃
t∈T

δ(t, σ) and δ′(T , ε) = T .

For an FMR-1 NDFA with S = {S0, W1, W2, W3, W4, W5, W6, W7, W8, W9},
� = {g, c, a, t}, the set of starting states q = {S0} and the set of final states
F = {W9}, the state transition function δ is defined by Table 9.1.

The corresponding DFA has 210 states, but most of them are not reachable by
transitions that are permitted by the transition function δ′. Only the reachable states
of the DFA are listed in Table 9.2. The DFA with states and transitions listed in
Table 9.2 is shown in Figure 9.3. For clarity, the starting state {S0} is shown as S,
the final state {W9} is shown as ε, the intermediate states {W1}, . . . , {W8} are shown
as numbered circles 1, . . . , 8, and state {W4, W7} is shown as circle 7.

Problem 9.3 The PROSITE pattern (Bairoch et al., 1997) for a C2H2 zinc
finger, an important DNA binding protein motif, is

C − x(2, 4) − C − x(3) − [LIVMFYWC] − x(8) − H − x(3, 5) − H.

Draw a finite automaton that accepts this pattern.



282 Transformational grammars

Table 9.1. State transitions of the
NDFA FMR-1

g c t a

S0 {W1} ∅ ∅ ∅
W1 ∅ {W2} ∅ ∅
W2 {W3} ∅ ∅ ∅
W3 ∅ {W4} ∅ ∅
W4 {W5} ∅ ∅ ∅
W5 {W6} ∅ ∅ ∅
W6 ∅ {W4, W7} ∅ {W4}
W7 ∅ ∅ {W8} ∅
W8 {W9} ∅ ∅ ∅
W9 ∅ ∅ ∅ ∅

Table 9.2. State transitions of DFA
FMR-1

g c t a

{S0} {W1} ∅ ∅ ∅
{W1} ∅ {W2} ∅ ∅
{W2} {W3} ∅ ∅ ∅
{W3} ∅ {W4} ∅ ∅
{W4} {W5} ∅ ∅ ∅
{W5} {W6} ∅ ∅ ∅
{W6} ∅ {W4, W7} ∅ {W4}
{W4, W7} {W5} ∅ {W8} ∅
{W8} {W9} ∅ ∅ ∅
{W9} ∅ ∅ ∅ ∅

Figure 9.3. The deterministic finite FMR-1 automaton.

Solution It is easy to see that the length of this motif varies from twenty-one to
twenty-five residues. The motif includes four positions with highly conserved C and
H as well as the stretches of amino acid sequence with low conservation, where any
amino acid, x, could occur. It would be cumbersome to draw a finite automaton with



9.1 Original problems 283

Figure 9.4. Automaton for recognition of the C2H2 zinc finger PROSITE pattern.

Figure 9.5. Sequences 1 and 2 are forming a hairpin structure with stem and loop.

twenty amino acid transitions shown individually, hence we use one transition with
x instead. Similarly, we designate as z a symbol from a set {L, I , V , M, F, Y , W , C}.

The diagram of the finite automaton for a C2H2 zinc finger PROSITE pattern is
shown in Figure 9.4. Note that this is a deterministic automaton.

Problem 9.4 Write derivations for seq1 and seq2 shown in Figure 9.5 using the
context-free grammar (CFG) described below:

S → aW1u|cW1g|gW1c|uW1a,

W1 → aW2u|cW2g|gW2c|uW2a,

W2 → aW3u|cW3g|gW3c|uW3a,

W3 → gaaa|gcaa.

Solution The derivation for seq1 is

S ⇒ cSg ⇒ caSug ⇒ cagScug ⇒ caggaaacug;

while the derivation for seq2 is

S ⇒ gSc ⇒ gcSgc ⇒ gcuSagc ⇒ gcugcaaagc.



284 Transformational grammars

Problem 9.5 Write a regular grammar that generates seq1 and seq2 but not
seq3 in the example given in Figure 9.5.

Solution The problem does not specify if a regular grammar should generate only
seq1 and seq2, or if it may generate numerous sequences, seq1 and seq2 among
them, but should not generate seq3. We will show solutions for both interpretations.

First, we will write a regular grammar that generates seq1 and seq2 only. It forks
at the first symbol and then simply proceeds with generation of either seq1 or seq2:

S → cW1|gW2,

W1 → aW3, W2 → cW4,

W3 → gW5, W4 → uW6,

W5 → gW7, W6 → gW8,

W7 → aW9, W8 → cW10,

W9 → aW11, W10 → aW12,

W11 → aW13, W12 → aW14,

W13 → cW15, W14 → aW16,

W15 → uW17, W16 → gW18,

W17 → g, W18 → c.

Now we will write a regular grammar that generates seq1, seq2, and a few others
made of the same alphabet, such as ccggaaacgg, but not seq3:

S → cW1|gW1,

W1 → aW2|cW2, W7 → cW11,

W2 → gW3|uW3, W8 → aW9,

W3 → gW4, W9 → aW10,

W4 → aW5|cW8, W10 → aW11,

W5 → aW6, W11 → uW12|gW12,

W6 → aW7, W12 → g|c.

A fork after state W4 leads to the generation of fragments aaac and caaa from
sequences seq1 and seq2, respectively. Neither of the fragments appear in seq3;
thus, the grammar does not generate fragment caac of seq3 and therefore is not
able to generate seq3.



9.1 Original problems 285

Problem 9.6 Consider the complete language generated by the CFG in
Problem 9.4. Describe a regular grammar that generates exactly the same lan-
guage. Does describing this sequence family with a regular grammar seem like
a good idea?

Solution The language generated by the grammar consists of ten-symbol
sequences. In each sequence the first three symbols complement the last three
symbols, as defined by rules S, W1, and W2 of CFG (Problem 9.4). A regular gram-
mar should “remember” the first three symbols of a sequence to generate a correct
ending. Therefore, a regular grammar will consist of:

• four rules for generation of the first symbol;
• sixteen rules for the second symbol;
• sixty-four rules for the third symbol;
• sixty-four rules for the fourth symbol, which is g for all of them;
• 128 rules for the fifth symbol, which is either a or c;
• sixty-four rules for the sixth symbol, which is a;
• sixty-four rules for the seventh symbol, which is a;
• sixty-four rules for the eighth symbol;
• sixtgeen rules for the ninth symbol;
• four rules for the tenth symbol.

Thus, the regular grammar consists of 488 production rules instead of fourteen in
CFG. So it is probably not a good idea to use a regular grammar to describe this
sequence family.

Problem 9.7 Modify the push-down automaton parsing algorithm so that it ran-
domly generates one of the possible valid sequences in a context-free grammar’s
language.

Solution The modified push-down automaton will generate a sequence from left
to right. The automaton’s stack is initialized by pushing the start non-terminal onto
it. The following steps are then made in iteration until the stack is empty.

Pop a symbol off the stack.
If the popped symbol is a non-terminal:

• choose a production at random from the set of allowed production rules for this
non-terminal.

• push the right-hand side of the expression for the chosen production rule onto the stack,
rightmost symbols first.



286 Transformational grammars

If the popped symbol is a terminal:

• produce this terminal symbol as a part of a sequence.

Problem 9.8 G − U pairs are accepted in base paired RNA stems but occur
with lower frequency than G−C and A−U Watson–Crick pairs. Make the RNA
stem loop context-free grammar from Problem 9.4 into a stochastic context-
free grammar, allowing G − U pairs in the stem with half the probability of a
Watson–Crick pair.

Solution To allow G − U pairs, the original CFG must be supplemented with
production rules allowing transitions Wi → gWi+1u, Wi → uWi+1g, i = 0, 1, 2,
W0 = S. To convert the CFG into a stochastic one, we have to assign probabilities
to the production rules of the original CFG. Finally, the production rules of SCFG
and their probabilities should be defined as follows:

S → aW1u, S → cW1g, S → gW1c,

(0.2) (0.2) (0.2)

S → uW1a, S → gW1u, S → uW1g,

(0.2) (0.1) (0.1)

W1 → aW2u, W1 → cW2g, W1 → gW2c,

(0.2) (0.2) (0.2)

W1 → uW2a, W1 → gW2u, W1 → uW2g,

(0.2) (0.1) (0.1)

W2 → aW3u, W2 → cW3g, W2 → gW3c,

(0.2) (0.2) (0.2)

W2 → uW3a, W2 → gW3u, W2 → uW3g,

(0.2) (0.1) (0.1)

W3 → gaaa, W3 → gcaa.

(0.5) (0.5)



9.1 Original problems 287

Problem 9.9 Extend the push-down automaton algorithm from Problem 9.7 to
generate sequences from a stochastic context-free grammar according to their
probability. (Note: this gives an efficient algorithm for sampling sequences from
any SCFG, including the more complex RNA SCFGs in Chapter 10.)

Solution The modified push-down automaton generates a sequence from left to
right. The automaton’s stack is initialized by pushing the start non-terminal onto it.
Then the following steps are iterated until the stack is empty.

Pop a symbol off the stack.
If the popped symbol is a non-terminal:

• choose a production rule for the non-terminal according to its probability;
• push the right-hand side of the expression for the chosen production rule onto the stack,

rightmost symbols first.

If the popped symbol is a terminal:

• produce this terminal symbol as a part of a sequence.

Problem 9.10 Consider a simple HMM that models two kinds of base com-
position in DNA. The model has two states fully interconnected by four state
transitions. State 1 emits C + G-rich sequences with probabilities of symbols
(pa, pc, pg, pt) = (0.1, 0.4, 0.4, 0.1) and state 2 emits A + T -rich sequences with
probabilities of symbols (pa, pc, pg, pt) = (0.3, 0.2, 0.2, 0.3).

(a) Draw this HMM.
(b) Set the transition probabilities so that the expected length of a run of state

1s is 1000 bases, and the expected length of a run of state 2s is 100 bases.
(c) Give the same model in stochastic regular grammar form with terminals,

non-terminals, and production rules with their associated probabilities.

Solution (a) The HMM diagram is as follows:

The transition probabilities between states are supposed to be such that p11 = p,
p12 = 1 − p, p22 = q, p21 = 1 − q, where p and q are from interval (0, 1). States
1 and 2 emit four symbols A, C, G, T with probabilities e1(A) = 0.1, e1(C) = 0.4,
e1(G) = 0.4, e1(T) = 0.1, and e2(A) = 0.3, e2(C) = 0.2, e2(G) = 0.2, e2(T) =
0.3, respectively.



288 Transformational grammars

(b) The transition probabilities are determined as follows. If a random variable
L1 is the length of a sequence of symbols generated by state 1, then L1 has values
n = 1, 2, . . . with the following probabilities: P(L1 = n) = qpn−1(1 − p) (the first
transition must be from state 2 to state 1, followed by n − 1 transitions from state 1
to itself, and the last transition must be from state 1 to state 2). Similarly, we define
a random variable L2 as the length of a run of state 2, with values k = 1, 2, ... and
probabilities P(L2 = k) = pqk−1(1 − q). The expected values of L1 and L2 are
given by

EL1 =
+∞∑
n=1

nqpn−1(1 − p) = q(1 − p)

(1 − p)2
= q

1 − p
;

EL2 =
+∞∑
k=1

kpqk−1(1 − q) = p(1 − q)

(1 − q)2
= p

1 − q
.

Conditions EL1 = 1000, and EL2 = 100 lead to two equations for parameters p
and q. Solving the system gives p = 0.999, q = 0.99.

(c) The regular grammar form of the model in question consists of non-terminals
W1 and W2 and the following production rules:

W1 → aW1|cW1|gW1|tW1|aW2|cW2|gW2|tW2, (9.1)

W2 → aW1|cW1|gW1|tW1|aW2|cW2|gW2|tW2. (9.2)

To convert a regular grammar into a stochastic regular grammar, we need to assign to
the eight production rules (9.1) for W1 the following transition probabilities: e1(A)p,
e1(C)p, e1(G)p, e1(T)p, e1(A)(1−p), e1(C)(1−p), e1(G)(1−p), e1(T)(1−p), in
the order established by Equation (9.1); and to the eight production rules (9.2) for W2

the transition probabilities e2(A)(1−q), e2(C)(1−q), e2(G)(1−q), e2(T)(1−q),
e2(A)q, e2(C)q, e2(G)q, e2(T)q, in the order established by (9.2). Therefore, we
have the following list of stochastic regular grammar production rules and their
probabilities:

W1 → aW1, W1 → cW1, W1 → gW1, W1 → tW1,

(0.0999) (0.3996) (0.3996) (0.0999)

W1 → aW2, W1 → cW2, W1 → gW2, W1 → tW2,

(0.0001) (0.0004) (0.0004) (0.0001)



9.1 Original problems 289

W2 → aW1, W2 → cW1, W2 → gW1, W2 → tW1,

(0.003) (0.002) (0.002) (0.003)

W2 → aW2, W2 → cW2, W2 → gW2, W2 → tW2.

(0.297) (0.198) (0.198) (0.297)

Problem 9.11 Convert the production rule W → aWbW to Chomsky normal
form. If the probability of the original production is p, show the probabilities for
the productions in your normal form version.

Solution Since the Chomsky normal form requires that all production rules are of
the form Wv → WyWz or Wv → a, the rule W → aWbW is replaced with the
following sequence of rules:

W → Ŵ1Ŵ2, Ŵ1 → WaW , Ŵ2 → WbW , Wa → a, Wb → b.

Only one production rule exists for each of the non-terminals Ŵ1, Ŵ2, Wa, Wb;
hence, probability 1 should be assigned to each production rule. The rule W →
Ŵ1Ŵ2 inherits the probability of the original production rule. Therefore, for the
Chomsky normal form we have

W → Ŵ1Ŵ2,

(p)

Ŵ1 → WaW , Ŵ2 → WbW , Wa → a, Wb → b.

(1) (1) (1) (1)

Problem 9.12 Convert the production rules W3 → gaaa|gcaa from the RNA
stem model grammar in Problem 9.4 to Chomsky normal form. Assuming that
W3 → gaaa has probability p1 and W3 → gcaa has probability p2 = 1 − p1,
assign probabilities to your normal form productions. Show that your normal
form version correctly assigns probabilities p1 and p2 for GAAA and GCAA
loops, respectively.

Solution Similarly to the previous problem, we convert the context-free grammar
production rule to the following Chomsky normal form:

W3 → WgŴ1,

(1)



290 Transformational grammars

Ŵ1 → WaŴ2, Ŵ1 → WcŴ2,

(p1) (p2)

Ŵ2 → WaWa, Wg → g,

(1) (1)

Wa → a, Wc → c.

(1) (1)

For the probabilities of loops GAAA and GCAA, we have

P(GAAA) = P(W3 → WgŴ1)P(Ŵ1 → WaŴ2)P(Ŵ2 → WaWa)

× P(Wg → g)P(Wa → a)P(Wa → a)P(Wa → a) = p1,

P(GCAA) = P(W3 → WgŴ1)P(Ŵ1 → WcŴ2)P(Ŵ2 → WaWa)

× P(Wg → g)P(Wc → c)P(Wa → a)P(Wa → a) = p2.

The results confirm that the normal form correctly assigns probabilities to GAAA
and GCAA loops.

9.2 Further reading

In addition to the texts mentioned in Section 9.7 of Durbin et al. (1998), the follow-
ing textbooks can be useful for the reader as systematic and detailed descriptions
of the theory of formal languages, transformational grammars, and the automata
theory: Carroll and Long (1989); Kozen (1999); Simon (1999); Khoussainov and
Nerode (2001); Motwani, Ullman, and Hopcroft (2003); Gopalakrishnan (2006).
Recent advances in the automata theory are described in Salomaa, Wood, and Yu
(2001); and Ito (2004).



10

RNA structure analysis

Stochastic transformational grammars, particularly stochastic context-free
grammars, turned out to be effective modeling tools for RNA sequence analysis.
Two biologically interesting problems are the prediction of RNA secondary struc-
ture and the construction of multiple alignments of RNA families. Non-stochastic
algorithms for the RNA secondary structure prediction were developed more than
twenty years ago (by Nussinov et al. (1978) and by Zuker and Stiegler (1981)).
Notably, the Nussinov algorithm could be immediately rewritten in SCFG terms as
a version of the Cocke–Younger–Kasami (CYK) algorithm. The SCFG interpreta-
tion provides an insight into the probabilistic meaning of parameters of the original
Nussinov algorithm and also suggests statistical procedures for parameter estima-
tion. A similar translation into SCFG terms is possible for the Zuker algorithm.

Interestingly, equivalence between the non-probabilistic dynamic programming
sequence alignment algorithm and the Viterbi algorithm for a pair HMM is ana-
logous to equivalence between the non-probabilistic algorithm of RNA structure
prediction and the CYK algorithm for a SCFG. There is also an analogy between
the use of the profile HMM for alignment of multiple DNA or protein sequences
and the use of the SCFG-based RNA structure profiles, called covariance models
(CMs), for constructing structurally sound alignments of multiple RNAs. Further-
more, parameters of the covariance models could be derived by the inside–outside
expectation maximization algorithm (compare with the simultaneous profile HMM
parameter estimation and construction of multiple sequence alignment). Finally, the
CYK algorithm for local alignment of genomic DNA to a given covariance model
could be used to search a nucleotide sequence database for a particular type of RNA
genes (compare with searching for homologs in a database of proteins using the
algorithm of local alignment of a protein sequence to a profile HMM representing
the protein domain).

The problems in Chapter 10 provide useful illustrations of application of both
deterministic and probabilistic algorithms of the RNA sequence analysis. They also

291



292 RNA structure analysis

emphasize the relationships between the algorithms, for example the relationship
between the deterministic algorithm of the RNA secondary structure prediction
and the CYK algorithm that finds the maximum probability secondary structure
for a given RNA. The use of the CYK, the inside and the outside algorithms, their
elements, and modifications is the subject of several problems.

10.1 Original problems

Problem 10.1 Calculation of the mutual information by the following formula:

Mij =
∑
xi,xj

fxixj log2

fxixj

fxi fxj

requires counting frequencies of all sixteen different base pairs. This has the
advantage that it makes no assumptions about Watson–Crick base pairing, so
mutual information can be detected between covarying non-canonical pairs, such
as A − A and G − G. On the other hand, the calculation requires a large number
of aligned sequences to obtain reasonable frequencies for sixteen probabilities.
Write down an alternative information theoretic measure of base-pairing cor-
relation that considers only two classes of i, j identities instead of all sixteen:
Watson–Crick and G − U pairs grouped in one class, and all other pairs grouped
in the other. Compare the properties of this calculation to the Mij calculation
both for small numbers of sequences and in the limit of infinite data.

Solution For two columns, i and j, of the structurally correct multiple alignment of
N RNA sequences x1, x2, . . . , xN the mutual information Mij is defined as the sum
of sixteen terms, each carrying information about a frequency of a particular pair
of ribonucleotides (in the specified order). For instance, for the pair (A, G) such a
term is given by

fij(AG) log2
fij(AG)

fi(A)fj(G)
. (10.1)

Here fij(AG) is the frequency of (A, G) in columns i and j, and fi(A) (fj(G)) is the
frequency of base A (G) in column i (j).

Now we define two classes of base pairs. The first class CP (complementary
pairs) consists of Watson–Crick pairs (G, C), (C, G), (A, U), (U, A), along with
(G, U), (U, G) pairs. The second class NCP consists of another ten base pairs. We
define the distributions µij and νij on the two-point space {CP, NCP} as follows:
µij(CP) is the frequency of CP-pairs observed in columns i and j, µij(NCP) is the
frequency of NCP-pairs observed in columns i and j, νij(CP) is the probability of
observing a CP-pair in two independent columns with the same base frequencies



10.1 Original problems 293

as in columns i and j, νij(NCP) is the probability of observing an NCP-pair in
two independent columns with the same base frequencies as in columns i and j.
Obviously,

µij(CP) =
∑

(a,b)∈CP

fij(ab),

µij(NCP) =
∑

(a,b)∈NCP

fij(ab),

νij(CP) =
∑

(a,b)∈CP

fi(a)fj(b),

νij(NCP) =
∑

(a,b)∈NCP

fi(a)fj(b).

We define the new information measure Mij between the columns i and j as follows:

Mij = µij(CP) log2
µij(CP)

νij(CP)
+ µij(NCP) log2

µij(NCP)

νij(NCP)
.

According to this definition, Mij is in fact the Kullback-Leibler distance between
the distributions µij and νij.

Let us compare the properties of Mij and Mij. First of all, unlike Mij, the inform-
ation measure Mij is sensitive to complementary pairs. For example, for two pairs
of columns:

i j i k

A C A U

A C A U

C G C G

C G C G

Mij = Mik = 1, while Mij < Mik (Mij = 1 − 1
2 log2 3, Mik = 1).

For a small number of sequences we can expect that many of the frequencies
fij(ab) are equal to zero, making the corresponding terms in the sum for Mij zeroes,
too. For Mij, however, we expect that both terms contribute positive values to the
sum, even for small N . When the number of sequences N grows and the frequencies



294 RNA structure analysis

Figure 10.1. The traceback path produced by the Nussinov folding algorithm for
the sequence GGGAAAUCC. The scores on the optimal path are indicated circles.
The starting point of the path is located at the top right-hand corner. The secondary
structure (1) associated with the optimal path is shown on the right.

converge to the values of probabilities, we have

lim
N→+∞ Mij =

∑
a,b

pij(ab) log2
pij(ab)

pi(a)pj(b)
,

lim
N→+∞ Mij =


 ∑

(a,b)∈CP

pij(ab)


 log2

∑
(a,b)∈CP pij(ab)∑

(a,b)∈CP pi(a)pj(b)

+

 ∑

(a,b)∈NCP

pij(ab)


 log2

∑
(a,b)∈NCP pij(ab)∑

(a,b)∈NCP pi(a)pj(b)
.

Here pij(ab) is the probability of occurrence of the base pair (a, b) (in the specified
order) in columns i and j, pi(a) is the probability of occurrence of base a in column
i, and pj(b) is the probability of occurrence of base b in column j.

Problem 10.2 Use the traceback stage of the Nussinov RNA folding algorithm
(Durbin et al., 1998, p. 272) to find two more optimal structures for the sequence
GGGAAAUCC with three base pairs besides the one in Figure 10.1. Modify the
traceback algorithm so it finds one of new structures instead of the one obtained
in Figure 10.1.

Solution The traceback stage of the Nussinov RNA folding algorithm (Nussinov
et al., 1978) is as follows.

Initialization: push (1, L) onto stack.



10.1 Original problems 295

Figure 10.2. Eight alternative secondary structures (with three base pairs) of
sequence GGGAAAUCC.

Recursion: repeat until stack is empty:

• pop (i, j);
• if i >= j continue;
• else if γ (i + 1, j) = γ (i, j) push (i + 1, j);
• else if γ (i, j − 1) = γ (i, j) push (i, j − 1);
• else if γ (i + 1, j − 1) + δ(i, j) = γ (i, j)

• record i, j base pair
• push (i + 1, j − 1);

• else for k = i + 1 to j − 1: if γ (i, k) + γ (k + 1, j) = γ (i, j):

• push (k + 1, j)
• push (i, k)

• break.

The traceback algorithm recovers the path through the semi-matrix shown in Fig-
ure 10.1 along with the corresponding RNA secondary structure. Although the
structure has three Watson–Crick pairs (the maximum possible number of pairs
for this sequence), it is topologically unlikely to make a zero length hairpin loop
by forming hydrogen bonds between adjacent ribonucleotides. Eight other folding
structures could have three base pairs (Figure 10.2). Each of the eight structures
can be recovered by a proper modification of the traceback algorithm. For instance,
structure (7) can be found by the following algorithm.

Initialization: push (1, L) onto stack.
Recursion: repeat until stack is empty:

• pop (i, j);
• if i >= j continue;



296 RNA structure analysis

Figure 10.3. The same matrix of base pair scores as in Figure 10.2. The circles
show the traceback path corresponding to secondary structure (7) in Figure 10.2.

• else if δ(i, j) = γ (i, j) and δ(i, j) = 1

• record i, j base pair
• push (i + 1, j − 1);

• else if γ (i + 1, j) = γ (i, j) push (i + 1, j);
• else if γ (i, j − 1) = γ (i, j) push (i, j − 1);
• else if γ (i + 1, j − 1) + δ(i, j) = γ (i, j)

• record i, j base pair
• push (i + 1, j − 1);

• else for k = i + 1 to j − 1: if γ (i, k) + γ (k + 1, j) = γ (i, j):

• push (k + 1, j)
• push (i, k)

• break.

The path through the semi-matrix for the given sequence is shown in Figure 10.3.

Problem 10.3 The Nussinov algorithm, as it was defined, can produce non-
sensical ‘base pairs’ between adjacent complementary residues (for example,
several structures admitted in the preceding problem contains such an AU base
pair). Modify the Nussinov folding algorithm so that hairpin loops must have a
minimum length of h. Give the new recursion equations for the fill and traceback.

Solution To guarantee that the secondary structure prediction algorithm generates
no hairpin loops with a length below h, the semi-matrix produced by the Nussinov
algorithm should have zeroes in h+1 sub-diagonals. This type of algorithm initial-
ization precludes pairing and forming a hairpin loop within at least h consecutive



10.1 Original problems 297

bases. The modified Nussinov RNA folding algorithm operates as follows. For a
given RNA sequence x = (x1, . . . , xL) we define δ(i, j) = 1 if xi and xj make a
complementary base pair; otherwise, δ(i, j) = 0. For each pair (i, j), score γ (i, j)
denotes the maximal number of pairs that can be formed by subsequence xi, . . . , xj

with the hairpin loop length at least h. Therefore, at the initialization step of the
algorithm, we assign

γ (i, i − 1) = 0 for i = 2 to L;
γ (i, i + k) = 0 for i = 1 to L − k, k = 0 to h.

At the recursion step for j − i + 1 = h + 1, . . . , L we calculate

γ (i, j) = max




γ (i + 1, j),

γ (i, j − 1),

γ (i + 1, j − 1) + δ(i, j),

maxi<k<j(γ (i, k) + γ (k + 1, j)).

The traceback rules are the same as for the Nussinov algorithm with h = 0.

Problem 10.4 Show that the Nussinov folding algorithm can be trivially exten-
ded to find a maximally scoring structure wherea base pair between residues a
and b gets a score s(a, b).

Solution The only part of the algorithm that should be changed is the definition of
δ(i, j). Now we define δ(i, j) = s(xi, xj). There is no change in the matrix fill stage
of the algorithm.

Initialization:

γ (i, i − 1) = 0 for i = 2 to L;
γ (i, i) = 0 for i = 1 to L.

Recursion: starting with all subsequences of length 2, to length L:

γ (i, j) = max




γ (i + 1, j),

γ (i, j − 1),

γ (i + 1, j − 1) + s(i, j),

maxi<k<j(γ (i, k) + γ (k + 1, j)).

Having completed the matrix fill stage for a given RNA sequence, we obtain the
maximum score located in the top-right cell of the semi-matrix.



298 RNA structure analysis

Problem 10.5 The Cocke–Younger–Kasami (CYK) algorithm (Kasami, 1965;
Younger, 1967; Cocke and Schwartz, 1970), for Nussinov-style RNA SCFA
that finds the maximum probability secondary structure is defined as fol-
lows. Let the probability parameters of the SCFG be denoted by p(aS),
p(aSu), etc.

Initialization:

γ (i, i − 1) = −∞ for i = 2 to L;

γ (i, i) = max

{
log p(xiS)

log p(Sxj)
for i = 1 to L.

Recursion: for i = 1 to L − 1, j = i + 1 to L:

γ (i, j) = max




γ (i + 1, j) + log p(xiS);

γ (i, j − 1) + log p(Sxj);

γ (i + 1, j − 1) + log p(xiSxj);

maxi<k<j(γ (i, k) + γ (k + 1, j) + log p(SS)).

Upon completion, the algorithm finds γ (1, L), the log-likelihood of the optimal
secondary structure under the SCFG model. Write down a traceback algorithm
for determining the optimal RNA secondary structure.

Solution The traceback stage of the RNA folding SCFG is similar to the traceback
stage of the Nussinov algorithm. It operates as follows.

Initialization: push (1, L) onto stack.
Recursion: repeat until stack is empty:

• pop (i, j).
• if i >= j continue;
• else if γ (i + 1, j) + log p(xiS) = γ (i, j) push (i + 1, j);
• else if γ (i, j − 1) + log p(Sxj) = γ (i, j) push (i, j − 1);
• else if γ (i + 1, j − 1) + log p(xiSxj) = γ (i, j)

• record i, j base pair
• push (i + 1, j − 1).

• else for k = i + 1 to j − 1: if γ (i, k) + γ (k + 1, j) + log p(SS) = γ (i, j):

• push (k + 1, j)
• push (i, k)

• break.



10.1 Original problems 299

Problem 10.6 Devise an SCFG which uses different non-terminals to model
bulge loops, hairpin loops, and single strands.

Solution We consider the SCFG containing five non-terminals S, W1,…, W5, with
W1 and W2 to model single strands, W3 to model hairpin loops, W4 to model bulge
loops, and W5 to model multifurcation loops. The SCFG allows us to determine the
probabilities of different parts of RNA secondary structure, as well as probabilities
of individual bases. The grammar rules (without the probability parameters) are as
follows:

S → W1S | SW2 (1) single strands,

S → aW3 | gW3 | cW3 | uW3 (2) hairpin loops,

S → W4S | SW4 (3) bulge loops,

S → W5S (4) multifurcation,

S → aSu | cSg | gSc | uSa (5) the Watson–Crick pairs;

W1 → aW1 | cW1 | gW1 | uW1 | a | c | g | u (6),

W2 → W2a | W2c | W2g | W2u | a | c | g | u (7),

W3 → aW3 | cW3 | gW3 | uW3 | a | c | g | u (8),

W4 → aW4 | cW4 | gW4 | uW4 | a | c | g | u (9),

W5 → W5S | S.

As one can see, the sets of production rules (6), (8), and (9) appear to be identical, and
the sets (1) and (3) define essentially the same language. However, those production
rules are different in the semantic meaning and the actual probability parameters
involved.

Problem 10.7 Write down the inside algorithm, outside algorithm, and inside–
outside re-estimation equations for the Nussinov-style RNA folding SCFG given
below:

S → aS | cS | gS | uS (i unpaired),

S → Sa | Sc | Sg | Su (j unpaired),

S → aSu | cSg | gSc | uSa (i, j pair),

S → SS bifurcation.

(10.2)



300 RNA structure analysis

Solution The inside algorithm, outside algorithm, and inside–outside re-estimation
equations can be defined for any SCFG in the Chomsky normal form. To convert
the given SCFG (10.2), to the Chomsky normal form, we use W1 as the start
non-terminal along with the nine non-terminals W1, . . . , W9:

W1 → W6W1 | W7W1 | W8W1 | W9W1 (i unpaired),

W1 → W1W6 | W1W7 | W1W8 | W1W9 (j unpaired),

W1 → W6W2 | W7W3 | W8W4 | W9W5 (i, j pair),

W1 → W1W1 bifurcation,

W2 → W1W9, W6 → a,

W3 → W1W8, W7 → c,

W4 → W1W7, W8 → g,

W5 → W1W6, W9 → u.

We assume that the probability parameters of the SCFG are denoted by p(aS),
p(aSu), etc. Then the probabilities associated with the SCFG production rules are
as follows:

t1(6, 1) = p(aS), t1(7, 1) = p(cS), t1(8, 1) = p(gS), t1(9, 1) = p(uS),

t1(1, 6) = p(Sa), t1(1, 7) = p(Sc), t1(1, 8) = p(Sg), t1(1, 9) = p(Su),

t1(6, 2) = p(aSu), t1(7, 3) = p(cSg), t1(8, 4) = p(gSc), t1(9, 5) = p(uSa),

t1(1, 1) = p(SS),

t2(1, 9) = 1, t3(1, 8) = 1, t4(1, 7) = 1, t5(1, 6) = 1,

e6(a) = 1, e7(c) = 1, e8(g) = 1, e9(u) = 1.

All other values of tv(y, z), ev(a), ev(c), ev(g), ev(u), for v, y, z = 1, . . . , 9 are equal
to zero.

For an RNA sequence x = (x1, . . . , xL), xi ∈ {a, c, g, u}, the inside algorithm (Lari
and Young, 1990) determines the probability α(i, j, v) of a parse subtree rooted at
the non-terminal Wv for the subsequence xi, . . . , xj for all possible i, j, and v. The
algorithm includes the following steps.

Initialization: for i = 1 to L, v = 1 to 9,

α(i, i, v) = ev(xi).

Iteration: for i = 1 to L − 1, j = i + 1 to L, v = 1 to 9,

α(i, j, v) =
9∑

y=1

9∑
z=1

j−1∑
k=i

α(i, k, y)α(k + 1, j, z)tv(y, z).



10.1 Original problems 301

Termination: P(x|θ) = α(1, L, 1).
Thus, the inside algorithm determines the probability (score) of a sequence x

generated by the SCFG, Equation (10.2), with the set of parameters designated
as θ .

The outside algorithm (Lari and Young, 1990) finds the probability β(i, j, v) of a
parse tree rooted at the start non-terminal W1 for the complete sequence x, excluding
the parse subtree for the subsequence xi, . . . , xj rooted at the non-terminals Wv for
all possible i, j, and v. The outside algorithm assumes that the ‘inside’ probabilities
α(i, j, v) are known. The algorithm proceeds as follows.

Initialization: β(1, L, 1) = 1; for v = 2 to 9: β(1, L, v) = 0.
Iteration: for i = 1 to L, j = L to i, v = 1 to 9,

β(i, j, v) =
∑
y,z

i−1∑
k=1

α(k, i − 1, z)β(k, j, y)ty(z, v)

+
∑
y,z

L∑
k=j+1

α(j + 1, k, z)β(i, k, y)ty(v, z).

Termination:

P(x|θ) =
9∑

v=1

β(i, i, v)ev(xi) for any i.

The probabilities of production rules for the non-terminals Wi, i = 1, . . . , 9
could be estimated by the expectation maximization (EM) re-estimation equations
(Dempster, Laird, and Rubin, 1977). For the non-terminal W1 we have

t̂1(y, z) =
∑L−1

i=1
∑L

j=i+1
∑j−1

k=i β(i, j, 1)α(i, k, y)α(k + 1, j, z)t1(y, z)∑L
i=1
∑L

j=i α(i, j, 1)β(i, j, 1)
,

where pairs (y, z) assume values of (1,1), (1,6), (1,7), (1,8), (1,9), (6,1), (6,2), (7,1),
(7,3), (8,1), (8,4), (9,1), and (9,5). All other values of t̂1(y, z) are equal to zero.

The EM re-estimation equation for the probabilities of production rules for the
non-terminals W2, . . . , W5 is given by

t̂v(1, 11 − v) =
∑L−1

i=1
∑L

j=i+1
∑j−1

k=i β(i, j, v)α(i, k, 1)α(k + 1, j, 11 − v)∑L
i=1
∑L

j=i α(i, j, v)β(i, j, v)
,

where v = 2, . . . , 5. For all other pairs of (y, z), t̂2(y, z), . . . , t̂9(y, z) are equal
to zero.



302 RNA structure analysis

Finally, for the non-terminals W6, . . . , W9 we have

ê6(a) =
∑

i:xi=a β(i, i, 6)∑L
i=1
∑L

j=i α(i, j, 6)β(i, j, 6)
,

ê7(c) =
∑

i:xi=c β(i, i, 7)∑L
i=1
∑L

j=i α(i, j, 7)β(i, j, 7)
,

ê8(g) =
∑

i:xi=g β(i, i, 8)∑L
i=1
∑L

j=i α(i, j, 8)β(i, j, 8)
,

ê9(u) =
∑

i:xi=u β(i, i, 9)∑L
i=1
∑L

j=i α(i, j, 9)β(i, j, 9)
.

The values of all other êv(a), êv(c), êv(g), and êv(u) are equal to zero.

Problem 10.8 By analogy to profile HMM suboptimal alignment sampling, give
an algorithm for sampling structures probabilistically from your inside matrix.

Solution Suppose we have completed the inside algorithm and filled out the cells of
the three-dimensional dynamic programming matrix α(i, j, v) of the order L×L×M
(where L is the length of sequence x and M is the number of non-terminals in
the SCFG). The value α(1, L, 1) of the total probability of sequence x given the
SCFG, is the sum of probabilities of all possible parses of x, given SCFG (the
sum of probabilities of all possible folding structures of x). We have to define
the probability distribution over all possible structures such that the probability of
each structure is proportional to the contribution of this structure to α(1, L, 1). To
generate a sample structure, we trace back through the three-dimensional matrix
α(i, j, v) and assign the probabilities to the parse subtrees as follows. Suppose we
reach a cell (i, j, v) associated with a parse subtree rooted at the non-terminal Wv

for the subsequence xi, . . . , xj. The probability α(i, j, v), i = 1, . . . , L − 1, j =
i + 1, . . . , L, v = 1, . . . , M, of this parse subtree is given by the inside algorithm as
follows:

α(i, j, v) =
M∑

y=1

M∑
z=1

j−1∑
k=i

α(i, k, y)α(k + 1, j, z)tv(y, z).

For a pair of states y, z and index k, k = i, . . . , j − 1, we consider a parse subtree
Ti,j,v(y, z, k) rooted at state v that includes a pair of parse subtrees for y and z and



10.1 Original problems 303

shorter subsequences xi, . . . , xk and xk+1, . . . , xj:

To subtree Ti,j,v(y, z, k) we assign the following probability:

P(Ti,j,v(y, z, k)) = α(i, k, y)α(k + 1, j, z)tv(y, z)

α(i, j, v)
.

Then the smallest trees Ti,i+1,v(y, z, i), i = 1, . . . , L − 1, have the following
probabilities:

P(Ti,i+1,v(y, z, i)) = α(i, i, y)α(i + 1, i + 1, z)tv(y, z)

α(i, i + 1, v)
= ey(xi)ez(xi+1)tv(y, z)

α(i, i + 1, v)
.

Upon completing the traceback procedure we determine the probability of any
folding structure of x as follows. For each structure we find the consistent sequence
of subtrees as described above (starting with a tree T1,L,1(y, z, k) for states y, z,
and index k and ending with the smallest subtrees Ti,i+1,v(p, q, i), for all i, i =
1, . . . , L − 1, and some states p and q). Then the probability of the structure is the
product of the probabilities of participating subtrees. Therefore, we have defined
the probability distribution over the set of all possible secondary structures of the
sequence x given the SCFG.

Problem 10.9 Show how to use your inside and outside variables to calculate
the probability that positions i, j are base paired and summed over all structures.
The functional form of the answer will be analogous to your inside–outside
re-estimation equations.

Solution The RNA folding SCFG in the Chomsky normal form (Problem 10.7)
implies that positions i, j are base paired when the productions

W1 → W6W2 | W7W3 | W8W4 | W9W5

are executed. Let us assume that a particular production, say W1 → W6W2, has
the transition probability t1(6, 2). The probability of the event that the subsequence
xi, . . . , xj is parsed using this production rule is equal to the probability of the parse
of the whole sequence, excluding subsequence xi, . . . , xj. This value is defined
as the product of the value β(i, j, 1) determined by the outside algorithm and the



304 RNA structure analysis

(a)

(b)

(c)

Figure 10.4. (a) Graphical representation of the ungapped RNA SCFG example.
Boxes labeled P represent sixteen pairwise production rules; boxes labeled L
and R represent four leftwise and four rightwise production rules, respectively;
boxes labeled S, B, and E represent start, bifurcation, and end terminals, respect-
ively. (b) The RNA consensus structure is redrawn to correspond more closely to
the tree structure of the SCFG. (c) A parse tree for this RNA structure with the
ribonucleotides assigned to states in the SCFG.

probability of the parse subtrees rooted at the chosen production rule, which is
given by

t1(6, 2)
∑j−1

k=i α(i, k, 6)α(k + 1, j, 2)∑L
i′=1
∑L

j′=i′ α(i′, j′, 1)β(i′, j′, 1)
.

Then, the probability p(i, j) that positions i, j are base paired is equal to the sum of
such probabilities for all four production rules:

p(i, j) = β(i, j, 1)
∑

(y,z)∈� t1(y, z)
∑j−1

k=i α(i, k, y)α(k + 1, j, z)∑L
i′=1
∑L

j′=i′ α(i′, j′, 1)β(i′, j′, 1)
,

where � = {(6, 2), (7, 3), (8, 4), (9, 5)}.

Problem 10.10 Rewrite the list of production rules from the ungapped RNA
model such that symbols are emitted independently of the previous state, as in an
HMM. This is the formal stochastic transformational grammar that corresponds
to the graphical SCFG representation in Figure 10.4.

Solution Following the logic used in Problem 9.1, we use the non-terminals
W2, . . . , W23 to model state transitions. The non-terminals involved in symbols
emission, Pi, Li, and Ri, will retain the same meaning as in the original grammar.



10.1 Original problems 305

Stem 1 Stem 2

S 1 → W 2 S 5 → W 6 S 15 → W 16

W 2 → aL 2 | . . . W 6 → gP6c| . . . W 16 → uL 16 | . . .

L 2 → W 3 P6 → W 7 L 16 → W 17

W 3 → aL 3 | . . . W 7 → aP7u | . . . W 17 → gP17 c| . . .

L 3 → B4 P7 → W 8 P17 → W 18

B 4 → S5 S 15 W 8 → R 8a| . . . W 18 → gP18 c| . . .

R 8 → W 9 P18 → W 19

W 9 → cP9g| . . . W 19 → cL 19 | . . .

P9 → W 10 L 19 → W 20

W 10 → uL 10 | . . . W 20 → gP20 c| . . .

L 10 → W 11 P20 → W 21

W 11 → uL 11 | . . . W 21 → aL 21 | . . .

L 11 → W 12 L 21 → W 22

W 12 → cL 12 | . . . W 22 → cL 22 | . . .

L 12 → W 13 L 22 → W 23

W 13 → gL13 | . . . W 23 → aL 23 | . . .

L 13 → E 14 L 23 → E 24

E 14 → ε E 24 → ε 

Figure 10.5. Production rules of the stochastic transformational grammar of the
ungapped RNA model.

Each of the sixteen pairwise productions will be associated with one of the sixteen
production probabilities (for all possible pairs); a single nucleotide emission by the
four leftwise and the four rightwise productions will be defined by the two groups of
four probabilities. Other productions (bifurcation, start, end) will have a probability
of one.

The whole stochastic transformational grammar is then described by the pro-
ductions shown in Figure 10.5 (for brevity, only one of the possible productions is
shown for each non-terminal).

Problem 10.11 Suppose that we are given a long nucleotide sequence and
our task is to find one or more subsequences that match the RNA covariance
model. By employing a transformation of the dynamic programming matrix
coordinate system, we can implement an efficient algorithm (CYK, inside, or
outside algorithm) for the local subsequence database search.

Compared to CYK, the inside algorithm has the advantage that it sums over
the probabilities of all possible structures and alignments for the subsequences,



306 RNA structure analysis

yet it is no more computationally complex than the CYK version. Give the inside
algorithm for searching for local subsequence matches no greater than length D.

Solution We consider a covariance model (CM) with M states (non-terminals)
denoted by W1, . . . , WM . Seven types of states are labeled as P, L, R, D, S, B,
and E, for pairwise emitting, leftwise (5′) emitting, rightwise (3′) emitting, delete,
start, bifurcation, and end, respectively; W1 is the start (the root) state for the whole
CM. The seven state types are associated with the symbol emission and the state
transition probabilities (Table 10.1). The dynamic programming matrix is indexed
by v, j, d (instead of v, i, j for SCFG), where d is the length of the subsequence
xi, . . . , xj (d = j − i + 1) and d ≤ D. For convenience, we will use the notation
ev(xi, xj) for all emission probabilities. For L states ev(xi, xj) = ev(xi), for R states
ev(xi, xj) = ev(xj), and for non-emitting states ev(xi, xj) = 1. Numbers �L

v and
�R

v are the numbers of symbols emitted by state v to the left and to the right,
respectively. Let sv be the state type, s ∈ {P, L, R, D, S, B, E}, indicating one of the
seven possible types of production rule. Let Cv be the set of possible children of
state v, represented by the list of one or more indices y of states Wy that state Wv can
make a transition to. The convention of numbering states here implies that y > v
for all y ∈ Cv, except for the insert states, where y ≥ v for all y ∈ Cv.

The inside algorithm searching for local subsequence matches proceeds as
follows.

Initialization: for j = 0 to L, v = M to 1,

αv(j, 0) =




for sv = E : 1;

for sv ∈ D,S :
∑

y∈Cv
tv(y)αy(j, 0);

for sv = B, Cv = (y, z) : αy(j, 0)αz(j, 0);

for sv ∈ P,L,R : 0.

Recursion: for j = 1 to L, d = 1 to min(D, j), v = M to 1,

αv(j, d) =




for sv = E : 0;

for sv = P, and d < 2 : 0;

for sv = B, Cv = (y, z) :
∑d

k=0 αy(j − k, d − k)αz(j, k);

otherwise:

ev(xj−d+1, xj)
∑

y∈Cv
tv(y)αy(j − �R

v , d − �L
v − �R

v ).

When the recursion is completed, cells α1(j, d) should contain the probabilities of
matches for subsequences xj−d+1, . . . , xj with lengths no greater than D.



10.1 Original problems 307

Table 10.1. The seven types of states of a covariance
model

State (sv) Production �L
v �R

v Emission Transition

P Wv → xiWyxj 1 1 ev(xi, xj) tv(y)
L Wv → xiWy 1 0 ev(xi) tv(y)
R Wv → Wyxj 0 1 ev(xj) tv(y)
D Wv → Wy 0 0 1 tv(y)
S Wv → Wy 0 0 1 tv(y)
B Wv → WyWz 0 0 1 1
E Wv → ε 0 0 1 1

Problem 10.12 Modify the CYK algorithm so that it keeps traceback inform-
ation in each cell to assist in recovering the optimal parse tree. What is the
minimum information that needs to be kept for tracing back from the bifurcation
state? What is the minimum information that needs to be kept for tracing back
from any other state?

Solution We will modify the CYK algorithm with the index system described in
Problem 10.11. For every value γv(j, d), we will keep the corresponding traceback
value τv(j, d). The modified CYK algorithm works as follows.

Initialization: for v = M, . . . , 1,

• if sv = E, then γv(0, 0) = 0, τv(0, 0) = ∅,
• else if sv ∈ D, S, then

γv(0, 0) = max
y∈Cv

(γy(0, 0) + log tv(y)),

τv(0, 0) = argmax
y∈Cv

(γy(0, 0) + log tv(y)),

• else if sv = B, with Cv = (y, z), then

γv(0, 0) = γy(0, 0) + γz(0, 0), τv(0, 0) = 0,

• else γv(0, 0) = −∞, τv(0, 0) = ∅;
• for j = 1, . . . , L, γv(j, 0) = γv(0, 0), τv(j, 0) = τv(0, 0).

Recursion: for j = 1, . . . , L, d = 1, . . . , min(j, D), v = M, . . . , 1,

• if sv = E, then γv(j, d) = −∞, τv(j, d) = ∅,
• else if sv = P and d < 2, then γv(j, d) = −∞, τv(j, d) = ∅,



308 RNA structure analysis

• else if sv = B, with Cv = (y, z), then

γv(j, d) = max
k=0,...,d

(γy(j − k, d − k) + γz(j, k)),

τv(j, d) = argmax
k=0,...,d

(γy(j − k, d − k) + γz(j, k)),

• else

γv(j, d) = max
y∈Cv

(γy(j − �R
v , d − �L

v − �R
v ) + log tv(y))

+ log êv(xj−d+1, xj),

τv(j, d) = argmax
y∈Cv

(γy(j − �R
v , d − �L

v − �R
v ) + log tv(y)).

Here êv(a, b) = log(ev(a, b)/fafb) for sv = P; log(ev(a)/fa) for sv = L; and
log(ev(b)/fb) for sv = R; fa, fb are the frequencies of individual bases.

The traceback starts from γ1(j, d) for the highest-scoring subsequence of length
d ending at position j and works back. Note that for a global rather than a local
alignment, the traceback starts from γ1(L, L). The traceback algorithm works as
follows:

For score γv(j, d),

• if τv(j, d) = ∅, then stop;
• if sv = B, with Cv = (y, z), then let k = τv(j, d), make bifurcation to γy(j − k, d − k) and

γz(j, k);
• else let y = τv(j, d), go to γy(j − �R

v , d − �L
v − �R

v ).

The minimum information that needs to be kept for tracing back from a bifurcation
state is the subsequence fork point k that gives the maximum score. The minimum
information that needs to be kept for tracing back from any other state is the non-
terminal state index y that gives the maximum score.

10.2 Further reading

The stochastic context-free grammars continue to be employed as the efficient
modeling tools for the algorithms of RNA secondary structure prediction. A new
algorithm using SCFGs and evolutionary history for finding the maximum a posteri-
ori probability (MAP) secondary structure for a set of RNA sequences was proposed
by Knudsen and Hein (1999). Later this algorithm was implemented as the soft-
ware program Pfold able to construct an alignment of up to fourty sequences of 500
bases long (Knudsen and Hein, 2003). Holmes and Rubin (2002) proposed several
dynamic programming algorithms (the inside algorithm, the CYK algorithm, the
inside–outside algorithm) for pair SCFGs generalizing a concept of (single) SCFGs.
Dowell and Eddy (2004) evaluated the accuracy of different SCFG designs for the



10.2 Further reading 309

single-sequence RNA secondary structure prediction on the benchmark of RNA
sequences with verified structures. A comparison with the accuracy of predictions
made by the energy minimization methods was also provided.

A dynamic programming algorithm for aligning a target RNA sequence with
unknown structure to a query sequence with a known structure was proposed
by Eddy (2002). This algorithm uses the covariance model of RNA secondary
structure and employs a divide-and-conquer strategy that significantly reduces the
memory requirement when compared with the SCFG-based algorithms, which
makes possible the computation of optimal structural alignments for large RNAs.

Several algorithms have been developed to predict RNA secondary structure with
pseudoknots. The approach proposed by Tabaska et al. (1998) uses the maximum
weighted matching algorithm of Gabow (1973) to find an optimal set of base-pairing
interactions, including pseudoknots and other ternary pairs. This algorithm works
in polynomial time and memory. Rivas and Eddy (1999) have developed a dynamic
programming algorithm that generates the minimal energy structure for a single
RNA sequence. This algorithm uses the standard RNA folding thermodynamic
parameters including ones describing the thermodynamic stability of pseudoknots.

Mathews et al. (1999) augmented the conventional energy minimization dynamic
programming algorithm for RNA secondary structure prediction with new ther-
modynamic parameters that define the secondary structure motif stabilities with
expanded sequence dependence. Further refinement of these parameters along with
the experimental determination of the chemical modification constraints allowed for
additional improvement of this algorithm (Mathews et al., 2004). The free energy
minimization algorithms were reviewed by Zuker (2000).

Juan and Wilson (1999) developed a computational method which uses a com-
bination of free energy and covariational analysis to identify an evolutionary
conserved secondary structure in a set of aligned homologous RNA sequences. Ding
and Lawrence (2003) proposed a statistical RNA secondary structure prediction
algorithm which works by sampling from the Boltzmann equilibrium probability
distribution defined on a set of possible secondary structures for a given RNA. New
RNA secondary structure prediction algorithms were also developed by Gorodkin,
Stricklin, and Stormo (2001) and by Perriquet, Touzet, and Dauchet (2003).

Several RNA sequence databases and RNA processing servers are currently avail-
able: the Ribonuclease P database (Brown, (1999a) is a compilation of RNase P
sequences, RNA sequence alignments, secondary structures, and three-dimensional
models; the ribosomal database project (Maidak et al., 2000) includes both sequence
data and the software for aligning rRNA sequences, building phylogenetic trees, and
predicting rRNA secondary structure; the European Large Subunit Ribosomal RNA
database (Wuyts et al., 2001) contains the complete list of LSU rRNA sequences,



310 RNA structure analysis

the RNA multiple alignments, and the secondary structures predicted from compar-
ative sequence analysis; the Pfam database (Griffiths-Jones et al., 2003) includes
a collection of multiple sequence alignments and covariance models represent-
ing non-coding RNA families; the tmRNA database (Zwieb et al., 2003) provides
the regularly updated list of tmRNAs, the multiple alignments, the secondary and
ternary structure of each tmRNA molecule. Cannone et al. (2002) developed the
comparative RNA web site (CRW), a database of comparative sequence and struc-
ture information for ribosomal, intron, and other RNAs. The Vienna RNA secondary
structure server (Hofacker, 2003), offers prediction of RNA secondary structure
from a single sequence, prediction of the consensus secondary structure for a set of
aligned sequences, and designs RNA sequences that fold into a predefined structure.



11

Background on probability

The last chapter of BSA gives a brief review of some important probabilistic concepts
and analytical results, including the properties of frequently used probability dis-
tributions, a discussion of the notions of entropy and mutual entropy, the maximum
likelihood principle, and principles of rational sampling and parameter estimation.
The chapter ends with the description of the general expectation maximization
(EM) algorithm, which underlies several important and perhaps the most complex
algorithms discussed in BSA, such as estimation of parameters of a profile HMM
in parallel with the construction of multiple sequence alignment, and estimation
of parameters of a covariance model in parallel with the construction of multiple
alignment of RNA sequences. The problems offered in this chapter further illustrate
the major mathematical concepts used in biological sequence analysis.

11.1 Original problems

Problem 11.1 Calculate the mean and variance of the binomial distribution.

Solution For a random variable X binomially distributed with parameters p and N ,
thus P(X = k) = (Nk )pk(1 − p)N−k , k = 0, 1, . . . , N , 0 ≤ p ≤ 1, the formulas for
the mean value m and variance VarX may be derived in three different ways.

(1) By definition,

m = EX =
N∑

k=0

k

(
N

k

)
pk(1 − p)N−k =

N∑
k=1

kN !
k!(N − k)!pk(1 − p)N−k

= pN
N∑

k=1

(N − 1)!
(k − 1)!(N − k)!pk−1(1 − p)N−k .

311



312 Background on probability

After changing the summation index to l = k − 1 and using the binomial expansion,
we have

m = pN
N−1∑
l=0

(N − 1)!
l!(N − 1 − l)!pl(1 − p)N−1−l = pN(p + (1 − p))N−1 = pN . (11.1)

Since

VarX = EX2 − (EX)2 = EX2 − m2,

we only need the expression for the second moment EX2. We introduce new
summation indexes l = k − 1 and j = k − 2 and proceed as follows (note that 0! = 1):

EX2 =
N∑

k=0

k2
(

N

k

)
pk(1 − p)N−k =

N∑
k=1

kN !
(k − 1)!(N − k)!pk(1 − p)N−k

=
N∑

k=1

(k − 1)N !
(k − 1)!(N − k)!pk(1 − p)N−k +

N∑
k=1

N !
(k − 1)!(N − k)!pk(1 − p)N−k

=
N∑

k=2

N !
(k − 2)!(N − k)!pk(1 − p)N−k + pN

N−1∑
l=0

(N − 1)!
l!(N − 1 − l)!pl(1 − p)N−1−l

= p2N(N − 1)

N−2∑
j=0

(N − 2)!
j!(N − 2 − j)!pj(1 − p)N−2−j + pN(p + (1 − p))N−1

= p2N(N − 1)(p + (1 − p))N−2 + pN = p2N2 − p2N + pN .

Thus, we obtain

VarX = p2N2 − p2N + pN − p2N2 = Np(1 − p). (11.2)

(2) The random variable X can be considered as a sum of N independent Bernoulli
variables Y1, . . . , YN . This representation can be used to derive Equations (11.1) and
(11.2) in a rather easy way. Each of Yi, i = 1, . . . , N , has the probability distribution
P(Yi = 1) = p, P(Yi = 0) = 1 − p. Therefore,

EYi = 1 × p + 0 × (1 − p) = p,

VarYi = EY2
i − (EYi)

2 = 12 × p + 02 × (1 − p) − p2 = p(1 − p).

For X =∑N
i=1 Yi we have

m = EX = E

(
N∑

i=1

Yi

)
=

N∑
i=1

EYi = Np,

VarX = Var

(
N∑

i=1

Yi

)
=

N∑
i=1

VarYi = Np(1 − p).



11.1 Original problems 313

(3) Finally, we show an approach that illustrates an application of one important analytical
technique. We consider the binomial expansion for the two variables p and q:

(p + q)N =
N∑

k=0

(
N

k

)
pkqN−k (11.3)

and differentiate both parts of Equation (11.3) with respect to variable p:

N(p + q)N−1 =
N∑

k=1

k

(
N

k

)
pk−1qN−k . (11.4)

By multiplying both parts of Equation (11.4) by p we have

Np(p + q)N−1 =
N∑

k=1

k

(
N

k

)
pkqN−k . (11.5)

Now, if q = 1 − p, Equation (11.5) becomes

Np =
N∑

k=1

k

(
N

k

)
pk(1 − p)N−k =

N∑
k=0

k

(
N

k

)
pk(1 − p)N−k = m.

Similarly, by differentiating the binomial expansion in Equation (11.3), twice with
respect to variable p we have

N(N − 1)(p + q)N−2 =
N∑

k=2

k(k − 1)

(
N

k

)
pk−2qN−k =

N∑
k=1

k(k − 1)

(
N

k

)
pk−2qN−k

=
N∑

k=1

k2
(

N

k

)
pk−2qN−k −

N∑
k=1

k

(
N

k

)
pk−2qN−k

=
N∑

k=0

k2
(

N

k

)
pk−2qN−k −

N∑
k=0

k

(
N

k

)
pk−2qN−k .

We multiply both parts of the last equality by p2, and for q = 1 − p we obtain

N(N − 1)p2 = EX2 − EX.

Therefore,
EX2 = N2p2 − Np2 + EX = N2p2 − Np2 + Np.

Finally,

VarX = EX2 − (EX)2 = N2p2 − Np2 + Np − N2p2 = Np − Np2 = Np(1 − p).

Problem 11.2 Assume a model in which pi(a) is the probability of amino acid
a occurring in the ith position of a sequence of length l. The amino acids are
considered independent. What is the probability P(x) of a particular sequence



314 Background on probability

x = x1, . . . , xl? Show that the average of the log of the probability is the negative
entropy

∑
P(x) log P(x), where the sum is over all possible sequences x of

length l.

Solution Assuming independence of the amino acids at different positions of the
sequence, the probability of sequence x is given by

P(x) = P(x1, . . . , xl) = p1(x1) × · · · × pl(xl) =
l∏

i=1

pi(xi). (11.6)

Equation (11.6) defines the probability distribution P over all amino acid sequences
of length l. The entropy of this distribution is given by

H(P) = −
∑

x

P(x) log P(x).

On the other hand, the average of the logarithm of the probability of sequence x is
given by

E(log P(x)) =
∑

x

P(x) log P(x) = −H(P).

Problem 11.3 Prove the equivalence of information content and relative entropy
when Q is uniform.

Solution The relative entropy (or the Kullback–Leibler distance) for two discrete
distributions P and Q taking non-negative values on one and the same set {xi} is
defined as follows:

H(P||Q) =
∑

i

P(xi) log
P(xi)

Q(xi)
,

If the distribution Q is uniform over x1, . . . , xN , then the relative entropy becomes

H(P||Q) =
∑

i

P(xi) log
P(xi)

1/N
=
∑

i

P(xi) log P(xi) −
∑

i

P(xi) log(1/N)

= −H(P) − log(1/N) = −H(P) −
∑

i

1/N log(1/N)

= −H(P) + H(Q)

Here H(P) and H(Q) are the entropies of the distributions P and Q, respectively. We
can interpret the value H(Q) = log N as the entropy of distribution on x1, . . . , xN

defined a priori (the prior distribution is supposed to be uniform), while H(P) is the
entropy of the empirical distribution (with the probabilities of outcomes observed in



11.1 Original problems 315

the experiment defined as the outcome frequencies). Therefore, for the information
content I we have

I = Hbefore − Hafter = H(Q) − H(P) = H(P||Q).

Problem 11.4 Show that M(X; Y) = M(Y ; X).

Solution We consider the random variables X and Y that take values {xi} and
{yj}, respectively, with probabilities P(xi) and P(yj). The random vector (X, Y)

takes values (xi, yj) with probabilities P(xi, yj). The mutual information M(X; Y) is
defined by the following formula:

M(X; Y) =
∑

i,j

P(xi, yj) log
P(xi, yj)

P(xi)P(yj)
.

This formula is symmetric with respect to X and Y ; thus, M(X; Y) = M(Y ; X).

Problem 11.5 Show that

M(X; Y) = H(X) + H(Y) − H(Y , X), (11.7)

where H(Y , X) is the entropy of the joint distribution P(X, Y).

Solution Definitions of the mutual information and the entropy allow us to derive
the chain of equalities as follows:

M(X; Y) =
∑

i,j

P(xi, yj) log
P(xi, yj)

P(xi)P(yj)

=
∑

i,j

P(xi, yj) log P(xi, yj) −
∑

i,j

P(xi, yj) log P(xi)P(yj)

= −H(Y ; X) −
∑

i,j

P(xi, yj) log P(xi) −
∑

i,j

P(xi, yj) log P(yj).

We have to show that the last two sums define the entropies H(X) and H(Y). Indeed,

−
∑

i,j

P(xi, yj) log P(xi) = −
∑

i


∑

j

P(xi, yj) log P(xi)




= −
∑

i

P(xi) log P(xi) = H(X),



316 Background on probability

−
∑

i,j

P(xi, yj) log P(yj) = −
∑

j

(∑
i

P(xi, yj) log P(yj)

)

= −
∑

j

P(yj) log P(yj) = H(Y).

Thus, the proof of formula (11.7) is complete.

Problem 11.6 The weak law of large numbers says that the mean of a sample
of size N differs from the true mean by an amount d or more with probability
σ 2/(Nd2), where σ 2 is the variance of the distribution. Show that this implies that
ni/
∑

nk tends to P(ωi) as
∑

nk → ∞, where ni is the frequency of occurrence
of ωi.

Solution The weak law of large numbers is a corollary of Chebyshov’s inequality.
We prove below the statements we need.

(1) If a random variable ξ is non-negative almost surely, then for any ε > 0 the following
Chebyshov’s inequality holds:

P(ξ ≥ ε) ≤ Eξ

ε
. (11.8)

We note that

ξ = I{ξ ≥ ε}ξ + I{ξ < ε}ξ ≥ I{ξ ≥ ε}ξ ≥ I{ξ ≥ ε}ε, (11.9)

where I{A} designates the indicator of event A. By taking expectations of both sides of
Equation (11.9), we obtain Chebyshov’s inequality in the form of (11.8). Similarly,
for any integer n,

Eξn ≥ P(ξ ≥ ε)εn.

(2) As a consequence of (11.8) we can state that for a random variable ξ , a positive ε and
an integer n the following inequalities hold:

P(|ξ | ≥ ε) ≤ E|ξ |n
εn

,

P(|ξ − Eξ | ≥ ε) ≤ E|ξ − Eξ |n
εn

.

The last inequality is especially well known for n = 2:

P(|ξ − Eξ | ≥ ε) ≤ Varξ
ε2

. (11.10)

Now, we consider a sample x = (x1, . . . , xN ) from a distribution with expectation
Exi = d and variance Varxi = σ 2, i = 1, . . . , N . The sample mean x̄ = (1/N)

∑
i xi

has the expectation Ex̄ = (1/N)
∑

i Exi = d, and the variance



11.1 Original problems 317

Varx̄ = (1/N2)
∑

i Varxi = (σ 2/N). For the random variable x̄ and a positive ε,
Chebyshov’s inequality, Equation (11.10), implies

P(|x̄ − d| ≥ ε) ≤ σ 2

Nε2
.

If the sample size N tends to infinity while the variance σ 2 < +∞, the right-hand
side of the inequality converges to zero and

P(|x̄ − d| ≥ ε) → 0.

The last statement is equivalent to the definition of convergence in probability. Thus,
when N → +∞,

x̄ →P Ex̄ = d.

In fact, since x1, . . . , xn are independent and σ 2 is finite, the sample mean obeys the
strong law of large numbers by Kolmogorov, namely

x̄ → Ex̄ = d

almost surely.
In particular, if an elementary event w has occurred n times among N independent

repetitions of a random experiment, then for xi, i = 1, . . . , N , defined as the indicator
of occurrence of w in the ith experiment, we have: x̄ = (n/N), d = EI(w) = P(w),
σ 2 = P(w)(1 − P(w)) < +∞. Now the law of large numbers yields that for the
elementary event w

n

N
→ P(w).

Problem 11.7 Let f (x) = 2(1 − x) be a density on [0, 1]. Show how this
transforms to a density on y under x = y2. Show that the peak and the posterior
mean estimator (PME) of the density both shift under this transformation.

Solution If a random variable X has the probability density function f , and a ran-
dom variable Y is defined as X = Y2, several methods to determine the probability
density function g of Y are available. Here we use two basic methods.

(1) First we use the definition of the cumulative distribution function (CDF) and the
relationship between the CDF and the density function. For the CDF of X we have

F(x) =
∫ x

−∞
f (τ ) dτ =




0, x ≤ 0,∫ x

0
(2 − 2τ) dτ = 2x − x2, 0 < x ≤ 1,

∫ 1

0
(2 − 2τ) dτ = 1, x > 1.



318 Background on probability

Then, the formula for the cumulative distribution function G of Y comes straight from
the definition of CDFs:

G(x) = P(Y ≤ x) = P(
√

X ≤ x) =
{

0, x < 0,

P(X ≤ x2) = F(x2), x ≥ 0;

=




0, x < 0,

2x2 − x4, 0 ≤ x ≤ 1,

1, x > 1.

Then, the probability density function g of Y is given by

g(x) = G′(x) =
{

4x − 4x3, 0 ≤ x ≤ 1,

0, elsewhere.

(2) Next, we use the transformation rule: if X = φ(Y), then

g(y) = f (φ(y))|φ′(y)|.

In our case φ(y) = y2, and

g(y) = f (y2)2y = 2(1 − y2)2y = 4y − 4y3.

Since the random variable X takes values on interval [0, 1], Y = X2 takes values on
[0, 1], too. Hence,

g(y) =
{

4y − 4y3, 0 ≤ y ≤ 1,

0, elsewhere.

To verify that g is a density function, we check the normalization condition:

∫ +∞

−∞
g(x) dx =

∫ 1

0
(4x − 4x3) dx =

(
4x2

2
− 4x4

4

)∣∣∣∣
1

x=0
= 2 − 1 = 1.

The density function f (x) has its maximum at x = 0, maxx f (x) = f (0) = 2. However,
the density function g(x) attains its maximum at the point x = 1/

√
3,

maxx g(x) = g(1/
√

3) = 8/3
√

3. The transformation from X to Y also changes the
expectation:

EX =
∫ +∞

−∞
xf (x) dx =

∫ 1

0
2x(1 − x) dx = 1

3
,

EY =
∫ +∞

−∞
xg(x) dx =

∫ 1

0
x(4x − 4x3) dx = 8

15
.



11.1 Original problems 319

Problem 11.8 Show that the function

g(y) = αλλyλ−1

(αλ + yλ)2

is a density on 0 ≤ y < ∞. Show that picking x uniformly from (0, 1) and
mapping x to y = α(x/(1 − x))1/λ samples from g(y).

Solution The function g(y) is positive for all y ≥ 0 and we need to verify the
normalization condition:

I =
∫ +∞

−∞
g(y) dy =

∫ +∞

0

αλλyλ−1

(αλ + yλ)2
= 1.

Indeed, the use of a new variable z = αλ + yλ, dz = λyλ−1 dy, with z taking values
on the interval [αλ, +∞) leads to the following equality:

I = αλ

∫ +∞

αλ

dz

z2
= −αλ

z

∣∣∣∣
+∞

αλ

= αλ

αλ
= 1.

It means that g is a probability density function.
Let X be a uniform random variable on [0, 1], and Y = α(X/(1 − X))1/λ. We

want to prove that the function g is the probability density function of the random
variable Y . The CDF of random variable X is given by

F(x) =




0, x ≤ 0,

x, 0 < x ≤ 1,

1, x > 1.

Then, the cumulative distribution function G of Y is defined as follows:

G(y) = P(Y ≤ y) = P

(
α

(
X

1 − X

)1/λ

≤ y

)

=




0, y < 0,

P

(
X ≤ yλ

yλ + αλ

)
= F

(
yλ

yλ + αλ

)
, y ≥ 0.

The value yλ/(yλ + αλ) belongs to interval [0, 1] for any positive y; therefore, we
have that

G(y) =




0, y < 0,
yλ

yλ + αλ
, y ≥ 0.



320 Background on probability

Finally, the probability density function of random variable Y is given by

G′(y) =




0, y < 0,
αλλyλ−1

(αλ + yλ)2
, y ≥ 0,

or, G′(y) = g(y). The proof has been completed.

Problem 11.9 Define a mapping φ from the variables (x, y) to (u, w) by x = uw,
y = (1 − u)w. Show that J(φ) = w, where J is the Jacobean.

Solution The Jacobean of the multivariable mapping φ : y → x, xi =
φi(y1, . . . , yn), i = 1, . . . , n, is the determinant J(φ) = |aij| of the order n with
elements defined by partial derivatives: aij = ∂φi/∂yj. Therefore, we have

J = ∂x/∂u ∂x/∂w
∂y/∂u ∂y/∂w

= w u
−w 1 − u

= w(1 − u) + uw = w.

Problem 11.10 Suppose we pick two random variables X1 and X2 in the range

[0, 1] and map (x1, x2) to the sample point cos(2πx1)

√
ln(1/x2

2). Prove that this
samples correctly from a Gaussian. This is called the Box–Muller method.

Solution The Box–Muller method (Box and Muller,1958) was designed to gen-
erate two independent standard Gaussian random variables from two independent
uniformly distributed random variables. It works as follows. Let X1 and X2 be
independent uniform random variables on [0, 1]. We define Y1 and Y2 as follows:

Y1 =
√

ln
1

(X2)2
cos(2πX1),

Y2 =
√

ln
1

(X2)2
sin(2πX1).

To show that Y1 and Y2 are independent standard Gaussian random variables, we
start with finding the CDF FR of random variable R = √ln(1/(X2)2). If x < 0,
then FR(x) = P(R ≤ x) = 0. If x is non-negative, then

FR(x) = P(R ≤ x) = P(R2 ≤ x2) = P

(
ln

1

(X2)2
≤ x2
)

= P
(
(X2)

2 ≥ e−x2
)

= P
(

X2 ≥ e−x2/2
)

= 1 − FX2

(
e−x2/2

)
.



11.1 Original problems 321

Here FX2 is the CDF of the uniform distribution on [0, 1]. As e−x2/2 belongs to
[0, 1], FR becomes

FR(x) =
{

0, x < 0,

1 − e−x2/2, x ≥ 0.

The associated probability density function is given by

fR(x) = F ′
R(x) =

{
0, x < 0,

xe−x2/2, x ≥ 0.

To compute the joint density function of a random vector (Y1, Y2), we have to
determine the map φ: X1 = φ1(Y1, Y2), R = φ2(Y1, Y2), which appears to be as
follows:

X1 = 1

2π
arctan

Y2

Y1
,

R =
√

Y2
1 + Y2

2 .

Then, for the Jacobean of the map φ we have

J(φ) =

∣∣∣∣∣∣∣∣
∂φ1

∂y1

∂φ1

∂y2

∂φ2

∂y1

∂φ2

∂y2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
− y2

2π(y2
1 + y2

2)

y1

2π(y2
1 + y2

2)

y1√
y2

1 + y2
2

y2√
y2

1 + y2
2

∣∣∣∣∣∣∣∣∣
= − 1

2π

√
y2

1 + y2
2

.

Finally, the joint probability density function of the random vector (Y1, Y2) is given
by the multivariate version of the transformation formula:

g(y1, y2) = fX1(φ1(y1, y2))fR(φ2(y1, y2))|J(φ)|
=
√

y2
1 + y2

2e−(y2
1+y2

2)/2 1

2π

√
y2

1 + y2
2

= 1√
2π

e−y2
1/2 1√

2π
e−y2

2/2

= g1(y1)g2(y2).

Here g1, g2 are the probability density functions of the standard normal distribution.
Thus, we have established that Y1 and Y2 are independent standard Gaussian random
variables.

Problem 11.11 Show that the formula

D(u, v) =
∫∞

0 δ(u + v − 1)e−uw(uw)α1−1evw(vw)α2−1wdw

�(α1)�(α2)

= uα1−1vα2−1δ(u + v − 1)

�(α1)�(α2)

∫ ∞

0
e−wwα1+α2−1 dw

= uα1−1vα2−1δ(u + v − 1)
�(α1 + α2)

�(α1)�(α2)
= D(u, v|α1, α2)



322 Background on probability

can be extended to the case of K gamma distributions, i.e. that sampling from
g(x, αi, 1), for i = 1, . . . , K , then averaging, is equivalent to sampling from the
Dirichlet D(
1, . . . , 
K |α1, . . . , α2).

Solution Suppose we sample the values x1, . . . , xK from the K gamma distributions
with parameters α1, . . . , αK , respectively, and define K values u1, . . . , uK as ui =
xi/�ixi. Equivalently, we can set xi = φi(u1, . . . , uK−1, w) = uiw, i = 1, . . . , K−1,
xK = φK(u1, . . . , uK−1, w) = (1 −∑K−1

i=1 ui)w and integrate over variable w. The
Jacobean of the map φ : (u1, . . . , uK−1, w) → (x1, . . . , xK) is given by

J(φ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂φ1

∂u1

∂φ1

∂u2

∂φ1

∂u3
. . .

∂φ1

∂w
∂φ2

∂u1

∂φ2

∂u2

∂φ2

∂u3
. . .

∂φ2

∂w
∂φ3

∂u1

∂φ3

∂u2

∂φ3

∂u3
. . .

∂φ3

∂w
. . . . . . . . . . . . . . .

∂φK

∂u1

∂φK

∂u2

∂φK

∂u3
. . .

∂φK

∂w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

w 0 0 . . . u1

0 w 0 . . . u2

0 0 w . . . u3

. . . . . . . . . . . . . . .

−w −w −w . . . 1 −∑K
i=1 ui

∣∣∣∣∣∣∣∣∣∣
.

To compute J(φ), we add to the last row of the determinant all other rows and
obtain J(φ) = wK−1. The joint density D of u1, . . . , uK becomes

D(u1, u2, . . . , uK) =
∫∞

0 δ(
∑K

i=1 ui − 1)
(∏K

i=1 e−uiw(uiw)αi−1
)

wK−1 dw∏K
i=1 �(αi)

= δ(
∑K

i=1 ui − 1)
∏K

i=1 uαi−1
i∏K

i=1 �(αi)

∫ ∞

0
e−ww�K

i=1αi−1 dw

= δ

(
K∑

i=1

ui − 1

)
K∏

i=1

uαi−1
i

�(
∑K

i=1 αi)∏K
i=1 �(αi)

.

Since the last expression is the density D(u1, u2, . . . , uK |α1, α2, . . . , αK) of the
Dirichlet distribution with parameters α1, . . . , αK , the problem has been solved.



11.1 Original problems 323

Problem 11.12 Prove that for the probability density function g(x, α, 1) of a
gamma-distribution, g(x, α, 1) = e−xxα−1/�(α), x > 0, and a function

f (x) = 4e−ααλ+αxλ−1

�(α)(αλ + xλ)2
,

the inequality g(x, α, 1) ≤ f (x) holds for all x > 0, α > 1, and 1 ≤ λ <√
2α − 1. What happens when λ ≥ √

2α − 1?

Solution To prove that g(x, α, 1) ≤ f (x) for all positive x and given values of
parameters α and λ, we take the ratio R(x) = f (x)/g(x) and check that R(x) ≥ 1
for all positive x. We write R(x) in the following form:

R(x) = f (x)

g(x)
= 4

(αλ + xλ)2
ex−ααλ+αxλ−α .

Note that if λ−α > 0, R(x) → 0 as x → 0. Thus, the condition λ ≤ α is necessary
for R(x) ≥ 1.

To study a behavior of R, we consider

ln R(x) = ln 4 − 2 ln(αλ + xλ) + (x − α) + (α + λ) ln α + (λ − α) ln x.

We calculate the derivative of ln R(x) as follows:

d ln R(x)

dx
= xλ+1 + (−α − λ)xλ + αλx + (λ − α)αλ

x(αλ + xλ)
, (11.11)

then introduce a new variable t, x = αt, and denote (11.11) as Q(t); thus,

Q(t) = αtλ+1 + (−α − λ)tλ + αt + (λ − α)

αtλ+1 + αt
.

The derivative,

dQ(t)

dt
= (α + λ)t2λ + 2(α − λ2)tλ + (α − λ)

αt2(tλ + 1)2
, (11.12)

is positive for all t > 0 if and only if the numerator of (11.12) is positive. Therefore,
if 4(α − λ2)2 − 4(α + λ)(α − λ) < 0 (which holds if λ <

√
2α − 1), then

dQ(t)/dt > 0. Since both Q(t) and t = x/α are monotonic increasing functions
(for t > 0, x > 0), their composition d ln R(x)/dx is also a monotonic increasing
function on the interval (0, +∞). It grows from large negative values (in the vicinity
of x = 0) to 1 (as x tends to +∞) and therefore has only one root x = α. Hence,
both ln R(x) and R(x) have one and the same critical point, x = α, which is the
common minimum point of these two functions. We have

R(x) = f (x)

g(x)
≥ min

x>0
R(x) = R(α) = 1,

and conclude that f (x) ≥ g(x) for all positive x, α > 1, and 1 ≤ λ <
√

2α − 1.



324 Background on probability

If λ ≥ √
2α − 1, then dQ(t)/dt = 0 has either one or two positive solutions.

Therefore, there might be not one but several intervals of monotonicity of Q(t) and,
consequently, d ln R(x)/dx = 0 might have more than one solution and R(x) =
f (x)/g(x) might have more than one minimum point. For example, if λ = α = 1,
then d ln R(x)/dx = (x − 1)/(x + 1) and R(x) has only one minimum point, x = 1.
If λ = 2 and α = 2.1, then

d ln R(x)

dx
= x3 − 4.1x2 + 4.41x − 0.441

x(x2 + 4.41)
,

and R(x) has three positive critical points: the maximum point x1 = (2 + √
3.16)/2

and the two minimum points, x2 = (2 − √
3.16)/2 and x3 = 2.1. Therefore, the

arguments considered above for 1 ≤ λ <
√

2α − 1 cannot be applied if λ ≥√
2α − 1; there are many subcases which must be treated separately.

Problem 11.13 A random vector (X, Y) has the following density function:

f (x, y) = 0.5I[0,1]×[0,1](x, y) + 0.5I[0.99,1.99]×[0.99,1.99](x, y),

where IA is the indicator of set A. The Gibbs sampling chooses points from
the conditional distributions P(X|Y), P(Y |X), P(X|Y), P(Y |X), . . .. What is the
expected number of samples within one region, before a crossover occurs into
the other?

Solution First we find the probability density functions of X and Y , and the con-
ditional density functions f (x|y) and f (y|x). Let g(x) designate the pdf of random
variable X:

g(x) =
∫ +∞

−∞
f (x, y) dy

=
∫ +∞

−∞
(0.5I[0,1]×[0,1](x, y) + 0.5I[0.99,1.99]×[0.99,1.99](x, y)) dy

= 0.5I[0,1](x) + 0.5I[0.99,1.99](x),

f (y|x) = f (x, y)

g(x)
= I[0,1]×[0,1](x, y) + I[0.99,1.99]×[0.99,1.99](x, y)

I[0,1](x) + I[0.99,1.99](x)
.

Due to symmetry, the density function of Y is g(y), and the conditional density is
given by

f (x|y) = f (x, y)

g(y)
= I[0,1]×[0,1](x, y) + I[0.99,1.99]×[0.99,1.99](x, y)

I[0,1](y) + I[0.99,1.99](y)
.

We designate two squares, the supports of the density f (x, y), as S1 = [0, 1] ×
[0, 1] and S2 = [0.99, 1.99] × [0.99, 1.99]. Following Casella and George (1992),



11.1 Original problems 325

we generate the ‘Gibbs sequence’ of random variables Y ′
0, X ′

0, Y ′
1, X ′

1, Y ′
2, X ′

2, . . .
by the following rule. For an initial value Y ′

0 = y′
0 the rest of the sequence is

obtained iteratively by generating values from X ′
j with distribution f (x|Y ′

j = y′
j)

and subsequent generation of Y ′
j with the distribution f (y|X ′

j = x′
j). Now we define

a random sequence Z = (Zi) as follows:

Z2i+1 = 1, if Y ′
i ∈ [0, 1],

Z2i+1 = 2, if Y ′
i ∈ [1, 1.99],

Z2i = 1, if X ′
i ∈ [0, 1],

Z2i = 2, if X ′
i ∈ [1, 1.99].

We check that (Zi) is the Markov chain with two states {1, 2} and determine its
initial distribution and transition probabilities. For any i,

P(Z2i+1 = k2i+1|Z1 = k1, Z2 = k2, . . . , Z2i = k2i)

= P(Y ′
i ∈ A(k2i+1)|Y ′

0 ∈ A(k1), X ′
0 ∈ A(k2), . . . , X ′

i ∈ A(k2i))

= P(Y ′
i ∈ A(k2i+1)|X ′

i ∈ A(k2i)) = P(Z2i+1 = k2i+1|Z2i = k2i).

Here kj is either state 1 or state 2, while A(1) = [0, 1], A(2) = [1, 1.99]. Similarly,
the Markov property holds for all members Z2i. For the initial distribution of the
Markov chain Z , we have

p1 = P(Z1 = 1) = P(Y ′
0 ∈ [0, 1]) =

∫ 1

0
g(y) dy

=
∫ 1

0
(0.5I[0,1](y) + 0.5I[0.99,1.99](y)) dy = 0.5 + 0.5 × 0.01 = 0.505,

p2 = P(Z1 = 2) = P(Y ′
0 ∈ [1, 1.99]) = 1 − p1 = 0.495;

and for transition probabilities

p11 = P(Z2 = 1|Z1 = 1) = P(X ′
0 ∈ [0, 1]|Y ′

0 ∈ [0, 1])

=
∫ 1

0
P(X ′

0 ∈ [0, 1]|Y ′
0 = y0) dy0 =

∫ 1

0

∫ 1

0
f (x|y) dx dy

=
∫ 1

0

∫ 1

0

I[0,1]×[0,1](x, y) + I[0.99,1.99]×[0.99,1.99](x, y)

I[0,1](y) + I[0.99,1.99](y)
dx dy

=
∫ 1

0

1

I[0,1](y) + I[0.99,1.99](y)
(I[0,1](y) + 0.01I[0.99,1.99](y)) dy

= 0.99 + 1.01

2
0.01 = 0.99505,

p12 = P(Z2 = 2|Z1 = 1) = P(X ′
0 ∈ [0.99, 1.99]|Y ′

0 ∈ [0, 1])
= 1 − p11 = 0.00495.



326 Background on probability

Let ξ be the number of points (X ′
j , Y ′

j ) of the ‘Gibbs sequence,’ such that (X ′
j , Y ′

j ) ∈
S1, before the first transition to region S2/S1 occurs (S2/S1 = S2 − (S2 ∩ S1)). To
find the distribution of random variable ξ with values 0, 1, 2, . . ., we use the Markov
chain Z:

P(ξ = n)

= P(Y ′
0 ∈ [0, 1], X ′

0 ∈ [0, 1], . . . , Y ′
n ∈ [0, 1], X ′

n ∈ [0, 1], (Y ′
n+1, X ′

n+1) ∈ S2/S1)

= P(Z1 = 1, Z2 = 1, . . . , Z2n−1 = 1, Z2n = 1, Z2n+1 = 2)

+ P(Z1 = 1, Z2 = 1, . . . , Z2n−1 = 1, Z2n = 1, Z2n+1 = 1, Z2n+2 = 2)

= p1p2n−1
11 p12 + p1p2n

11p12 = p1p2n−1
11 p12(1 + p11).

Then we find the expected value of ξ as follows:

Eξ =
+∞∑
n=0

np1p2n−1
11 p12(1 + p11) = p1p12p11(1 + p11)

+∞∑
n=1

n(p2
11)

n−1

= p1p12p11(1 + p11)

(1 − p2
11)

2
= p1p11

p12(1 + p11)
= 0.505 × 0.99505

0.00495 × 1.99505
≈ 50.8835.

Due to symmetry, the expected number of points sampled within square S2 before
a transition to S1 is also equal to Eξ ≈ 50.8835. Hence, on average, fifty-one
sample points in a row are situated within one of the squares S1 or S2 before the
first transition to the other square.

11.2 Additional problem

Problem 11.14 is a combinatorial exercise. We want to prove an auxiliary statement
used in Remark 2 (Problem 2.5) to derive for sequences of lengths n and m the
number An,m of pairwise alignments in which the x-gap does not follow the y-gap
and vice versa.

Problem 11.14 It was proved (Shiryaev, 1996, Sect. 1, Ex. 6) that the number
of ways to place k undistinguishable items into i boxes is equal to the binomial
coefficient

(i+k−1
k

)
. Show that this number becomes

(k−1
k−i

)
under the additional

restriction that no box remains empty.

Solution Let N(k, i) be the number of ways to place k undistinguishable items into
i boxes provided that each box contains at least one item. Obviously, if k < i, then
N(k, i) = 0.

For k ≥ i we will prove the formula N(k, i) = (k−1
k−i

)
by using mathematical

induction. It is easy to see that N(m, 1) = 1 = (m−1
m−1

)
and N(m, 2) = m−1 = (m−1

m−2

)



11.3 Further reading 327

for all m, m ≤ k. Next, we suppose that N(m, i) = (m−1
m−i

)
, m ≤ k, and check

that N(k, i + 1) = ( k−1
k−(i+1)

)
. The number N(k, i + 1) is equal to the number of

vectors x = (x1, . . . , xi+1) of length i + 1 with positive integer components, such
that x1 + x2 + · · · + xi+1 = k (component xl denotes the number of items in
the lth box, l = 1, . . . , i + 1). Obviously, xi+1 can take integer values from 1 to
k − (i−1) = k − i+1. If xi+1 = 1, then the sum of the first i components of x must
be equal to k − 1; thus, the number of possible vectors x is N(k − 1, i). If xi+1 = 2,
the sum of the first i components of x must be equal to k − 2 and the number of
possible vectors x is N(k − 2, i). Finally, for the maximal possible number of items
xi+1 = k − i + 1 in the (i + 1)th box there is the only one way, N(i, i) = 1, to
choose the remaining components: x1 = 1, x2 = 1,…, xi = 1. Hence, we arrive at
the recurrent formula:

N(k, i + 1) = N(k − 1, i) + N(k − 2, i) + · · · + N(i + 1, i) + N(i, i). (11.13)

Next, to every term but the last one on the right-hand side of Equation (11.13) we
apply the induction assumption. By using the property of the binomial coefficients,(m

l

) = (m+1
l

)− ( m
l−1

)
, we derive

N(k, i + 1) =
(

k − 2

k − 1 − i

)
+
(

k − 3

k − 2 − i

)
+ · · · +

(
i

1

)
+
(

i − 1

0

)

=
((

k − 1

k − 1 − i

)
−
(

k − 2

k − 2 − i

))
+
((

k − 2

k − 2 − i

)
−
(

k − 3

k − 3 − i

))

+ · · · +
((

i + 1

1

)
−
(

i

0

))
+
(

i − 1

0

)
. (11.14)

On the right-hand side of Equation (11.14) the sums of the second and the third
binomial coefficients, the fourth and the fifth, etc., and the two last ones are all
equal to zero. Therefore, we obtain the equality

N(k, i + 1) =
(

k − 1

k − 1 − i

)
=
(

k − 1

k − (i + 1)

)
,

which is equivalent to the required one. The proof is complete.

11.3 Further reading

Several references to the popular textbooks on the theory of probability and statistics
have already been provided in the introduction to Chapter 1. The following are
references on information theory: Shannon and Weaver (1963), Ash (1990), Cover
and Thomas (1991), Reza (1994), MacKay (2003), and Goldman (2005).



References

Almagor, H. (1983). A Markov analysis of DNA sequences. Journal of Theoretical
Biology 104, 633–645.

Altschul, S. F. (1991). Amino acid substitution matrices from an information theoretic
perspective. Journal of Molecular Biology 219, 555–565.

Altschul, S. F. and Gish, W. (1996). Local alignment statistics. Methods in Enzymology
266, 460–480.

Altschul, S. F. and Koonin, E. V. (1998). Iterated profile searches with PSI-BLAST – a
tool for discovery in protein databases. Trends in Biochemical Sciences 23,
444–447.

Altschul, S. F., Carroll, R. J., and Lipman, D. J. (1989). Weights for data related by a tree.
Journal of Molecular Biology 207, 647–653.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990), Basic local
alignment search tool. Journal of Molecular Biology 215, 403–410.

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and
Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein
database search programs. Nucleic Acids Research 25, 3389–3402.

Altschul, S. F., Bundschuh, R., Olsen, R., and Hwa, T. (2001). The estimation of statistical
parameters for local alignment score distributions. Nucleic Acids Research 29,
351–361.

Arbogast, B. S., Edwards, S. V., Wakeley, J., Beerli, P., and Slowinski, J. B. (2002).
Estimating divergence times from molecular data on phylogenetic and population
genetic time scales. Annual Review of Ecology and Systematics 33, 707–740.

Arnason, U., Gullberg, A., and Janke, A. (1998). Molecular timing of primate divergences
as estimated by two nonprimate calibration points. Journal of Molecular Evolution
47, 718–727.

Arratia, R. and Waterman, M. S. (1985). Critical phenomena in sequence matching. The
Annals of Probability 13, 1236–1249.

Arratia, R., Gordon, L., and Waterman, M. (1986). An extreme value theory for sequence
matching. The Annals of Statistics 14, 971–993.

Ash, R. B. (1990). Information Theory (New York: Dover Publications).
Ayala, F. J., Rzhetsky, A., and Ayala, F. J. (1998). Origin of the metazoan phyla:

Molecular clocks confirm paleontological estimates. Proceedings of the National
Academy of Sciences of the USA 95, 606–611.

Bailey, T. L. and Gribskov, M. (2002). Estimating and evaluating the statistics of gapped
local-alignment scores. Journal of Computational Biology 9, 575–593.

328



References 329

Bairoch, A. and Apweiler, R. (1999). The SWISS-PROT protein sequence data bank and
its supplement TrEMBL in 1999. Nucleic Acids Research 27, 49–54.

Bairoch, A., Bucher, P., and Hofmann, K. (1997). The PROSITE database, its status in
1997. Nucleic Acids Research 25, 217–221.

Baldi, P. and Brunak, S. (2001). Bioinformatics: The Machine Learning Approach,
2nd edn (Cambridge, MA: The MIT Press).

Bateman, A., Birney, E., Cerruti, L. et al. (2002). The Pfam protein families database.
Nucleic Acids Research 30, 276–280.

Baum, L. E. (1972). An equality and associated maximization technique in
statistical estimation for probabilistic functions of Markov processes. Inequalities
3, 1–8.

Berman, A. and Plemmons, R. J. (1979). Nonnegative Matrices in the Mathematical
Sciences (New York: Academic Press).

Billingsley, P. (1961a). Statistical Inference in Markov Processes (Chicago, IL: The
University of Chicago Press).

Billingsley, P. (1961b). Statistical methods in Markov chains. The Annals of Mathematical
Statistics 32, 12–40.

Borodovsky, M. and McIninch, J. (1993). GeneMark: Parallel gene recognition for both
DNA strands. Computers & Chemistry 17, 123–133.

Borodovsky, M. and Peresetsky, A. (1994). Deriving non-homogeneous DNA Markov
chain models by cluster analysis algorithm minimizing multiple alignment entropy.
Computers & Chemistry 18, 259–267.

Borodovsky, M. Y., Sprizhitsky, Y. A., Golovanov, E. I., and Alexandrov, A. A. (1986a).
Statistical patterns in the primary structure of the functional regions of the
Escherichia coli genome. I. Frequency characteristics. Molecularnaya Biologia 20,
826–833 (English translation).

Borodovsky, M. Y., Sprizhitsky, Y. A., Golovanov, E. I., and Alexandrov, A. A. (1986b).
Statistical patterns in the primary structure of the functional regions of the
Escherichia coli genome. II. Nonuniform Markov models. Molecularnaya Biologia
20, 833–840 (English translation).

Borodovsky, M. Y., Sprizhitsky, Y. A., Golovanov, E. I., and Alexandrov, A. A. (1986c).
Statistical patterns in the primary structure of the functional regions of the
Escherichia coli genome. III. Computer recognition of coding regions.
Molecularnaya Biologia 20, 1144–1150 (English translation).

Box, G. E. P. and Muller, M. E. (1958). A note on the generation of random normal
deviates. The Annals of Mathematical Statistics 29, 610–611.

Braun, J. V. and Müller, H-G. (1998). Statistical methods for DNA sequence
segmentation. Statistical Science 13, 142–162.

Brenner, S. E., Chothia, C. and Hubbard, T. J. P. (1998). Assessing sequence comparison
methods with reliable structurally identified distant evolutionary relationships.
Proceedings of the National Academy of Sciences of the USA 95, 6073–6078.

Brocchieri, L. and Karlin, S. (1998). A symmetric-iterated multiple alignment of protein
sequences. Journal of Molecular Biology 276, 249–264.

Bromham, L. and Penny, D. (2003). The modern molecular clock. Nature Reviews
Genetics 4, 216–224.

Brown, J. R., Douady, C. J., Italia, M. J., Marshall, W. E., and Stanhope, M. J. (2001).
Universal trees based on large combined protein sequence data sets. Nature Genetics
28, 281–285.

Brown, J. W. (1999a). The ribonuclease P database. Nucleic Acids Research 27, 314.
Brown, T. A. (1999b). Genomes (New York: John Wiley & Sons, Inc.).



330 References

Brudno, M., Do, C. B., Cooper, G. M. et al. (2003). LAGAN and Multi-LAGAN: Efficient
tools for large-scale multiple alignment of genomic DNA. Genome Research 13,
721–731.

Bruno, W. J., Socci, N. D., and Halpern, A. L. (2000). Weighted neighbor joining:
A likelihood-based approach to distance-based phylogeny reconstruction. Molecular
Biology and Evolution 17, 189–197.

Burge, C. and Karlin, S. (1997). Prediction of complete gene structures in human genomic
DNA. Journal of Molecular Biology 268, 78–94.

Bystroff, C., Thorsson, V., and Baker, D. (2000). HMMSTR: A hidden Markov model for
local sequence-structure correlations in proteins. Journal of Molecular Biology 301,
173–190.

Cannone, J. J., Subramanian, S., Schnare, M. N. et al. (2002). The comparative RNA web
(CRW) site: An online database of comparative sequence and structure information
for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 2–33.

Carrillo, H. and Lipman, D. (1988). The multiple sequence alignment problem in biology.
SIAM Journal of Applied Mathematics 48, 1073–1082.

Carroll, J. and Long, D. (1989). Theory of Finite Automata: With an Introduction to
Formal Languages (Englewood Cliffs, N.J.: Prentice Hall).

Casella, G. and Berger, R. L. (2001). Statistical Inference, 2nd edn (Pacific Grove, CA:
Duxbury Press).

Casella, G. and George, E. I. (1992). Explaining the Gibbs sampler. The American
Statistician 46, 167–174.

Cavender, J. A. and Felsenstein, J. (1987). Invariants of phylogenies in a simple case with
discrete states. Journal of Classification 4, 57–71.

Cayley, A. (1889). A theorem on trees. Quarterly Journal of Mathematics 23,
376–378.

Chenna, R., Sugawara, H., Koike, T. et al. (2003). Multiple sequence alignment with the
Clustal series of programs. Nucleic Acids Research 31, 3497–3500.

Churchill, G. A. (1989). Stochastic models for heterogeneous DNA sequences. Bulletin of
Mathematical Biology 51, 79–94.

Clamp, M., Andrews, D., Barker, D. et al. (2003). Ensembl 2002: Accommodating
comparative genomics. Nucleic Acids Research 31, 38–42.

Clark, A. G., Glanowski, S., Nielson, R. et al. (2003). Inferring nonneutral evolution from
human-chimp-mouse orthologous gene trios. Science 302, 1960–1963.

Cocke, J. and Schwartz, J. T. (1970). Programming Languages and their Compilers:
Preliminary Notes. Technical report, Courant Institute of Mathematical Sciences,
New York University.

Coin, L. and Durbin, R. (2004). Improved techniques for the identification of
pseudogenes. Bioinformatics 20 (suppl. 1), i94–i100.

Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory (New York:
Wiley).

Cowan, R. (1991). Expected frequencies of DNA patterns using Whittle’s formula.
Journal of Applied Probability 28, 886–892.

Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics (London: Chapman and Hall).
Dayhoff, M. O., Schwartz, R. M., and Orcutt, B. C. (1978). A model of evolutionary

change in proteins. In Dayhoff, M. O., ed., Atlas of Protein Sequence and Structure,
vol. 5, supplement 3 (Washington, D.C.: National Biomedical Research Foundation),
pp. 345–352.

Delcher, A. L., Kasif, S., Fleischmann, R. D., Peterson, J., White, O., and Salzberg, S. L.
(1999). Alignment of whole genomes. Nucleic Acids Research 27, 2369–2376.



References 331

Dembo, A., Karlin, S., and Zeitouni, O. (1994a). Critical phenomena for sequence
matching with scoring. The Annals of Probability 22, 1993–2021.

Dembo, A., Karlin, S., and Zeitouni, O. (1994b). Limit distribution of maximal
non-aligned two-sequence segmental score. The Annals of Probability 22,
2022–2039.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM Algorithm. Journal of the Royal Statistical Society
39, 1–38.

Deonier, R., Tavaré, S., and Waterman, M. (2005). Computational Genome Analysis: An
Introduction (New York: Springer-Verlag).

Ding, Y. and Lawrence, C. E. (2003). A statistical sampling algorithm for RNA secondary
structure prediction. Nucleic Acids Research 31, 7280–7301.

Do, C. B., Mahabhashyam, M. S. P., Brudno, M., and Batzoglou, S. (2005). ProbCons:
Probabilistic consistency-based multiple sequence alignment. Genome Research 15,
330–340.

Douady, C. J., Delsuc, F., Boucher, Y., Doolittle, W. F., and Douzery, E. J. P. (2003).
Comparison of Bayesian and maximum likelihood bootstrap measures of
phylogenetic reliability. Molecular Biology and Evolution 20, 248–254.

Dowell, R. D. and Eddy, S. R. (2004). Evaluation of several lightweight stochastic
context-free grammars for RNA secondary structure prediction. BMC Bioinformatics
5, 71–85.

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids (Cambridge: Cambridge
University Press).

Eddy, S. R. (1998). Profile hidden Markov models. Bioinformatics 14, 755–763.
Eddy, S. R. (2002). A memory-efficient dynamic programming algorithm for optimal

alignment of a sequence to an RNA secondary structure. BMC Bioinformatics
3, 18–34.

Eddy, S. R., Mitchison, G., and Durbin, R. (1995). Maximum discrimination hidden
Markov models of sequence consensus. Journal of Computational Biology
2, 9–23.

Edwards, A. W. F. (1970). Estimation of the branch points of a branching diffusion
process. Journal of the Royal Statistical Society B 32, 155–174.

Ekisheva, S. and Borodovsky, M. (2006). Probabilistic models for biological sequences:
Selection and maximum likelihood estimation. International Journal of
Bioinformatics Research and Applications 2 (3).

Enright, A. J., Iliopoulos, I., Kyrpides, N. C., and Ouzounis, C. A. (1999). Protein
interaction maps for complete genomes based on gene fusion events. Nature 402,
86–90.

Erdös, P. and Revesz, P. (1975). On the length of the longest head-run; Topics in
Information Theory. Colloqia Math. Soc. J. Bolyai 16, 219–228.

Evans, S. N. and Speed, T. P. (1993). Invariants of some probability models used in
phylogenetic inference. The Annals of Statistics 21, 355–377.

Ewens, W. J. and Grant, G. R. (2001). Statistical Methods in Bioinformatics: An
Introduction (New York: Springer-Verlag).

Feller, W. (1971). An Introduction to Probability Theory and its Applications, 2nd edn,
Vols I, II (New York: John Wiley & Sons).

Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood
approach. Journal of Molecular Evolution 17, 368–376.

Felsenstein, J. (2004). Inferring Phylogenies (Sunderland, MA: Sinauer Associates, Inc.).



332 References

Feng, D-F. and Doolittle, R. F. (1987). Progressive sequence alignment as a prerequisite to
correct phylogenetic trees. Journal of Molecular Evolution 25, 351–360.

Feng, D-F. and Doolittle, R. F. (1996). Progressive alignment of amino acid sequences
and construction of phylogenetic trees from them. Methods in Enzymology 266,
368–382.

Feng, D-F., Cho, G., and Doolittle, R. F. (1997). Determining divergence times with a
protein clock: Update and reevaluation. Proceedings of the National Academy of
Sciences of the USA 94, 13 028–13 033.

Fitch, W. M. (1971). Toward defining the course of evolution: Minimum change for
specific tree topology. Systematic Zoology 20, 406–416.

Fitch, W. M. (1983). Calculating the expected frequencies of potential secondary structure
in nucleic acids as a function of stem length, loop size, base composition and
nearest-neighbor frequencies. Nucleic Acids Research 11, 4655–4663.

Fitch, W. M. and Margoliash, E. (1967). Construction of phylogenetic trees. Science 155,
279–284.

Fitz-Gibbon, S. T. and House, C. H. (1999). Whole genome-based phylogenetic analysis
of free-living microorganisms. Nucleic Acids Research 27, 4218–4222.

Florea, L., Hartzell, G., Zhang, Z., Rubin, G. M., and Miller, W. (1998). A computer
program for aligning a cDNA sequence with a genomic DNA sequence. Genome
Research 8, 967–974.

Freedman, D. (1983). Markov Chains (New York: Springer-Verlag).
Frith, M. C., Hansen, U., and Weng, Z. (2001). Detection of cis-element clusters in higher

eukaryotic DNA. Bioinformatics 17, 878–889.
Gabow, H. W. (1973). Implementations of algorithms for maximum matching on

nonbipartite graphs. Ph.D. Dissertation, Department of Computer Science, Stanford
University.

Gascuel, O. (1997). BIONJ: An improved version of the NJ algorithm based on a simple
model of sequence data. Molecular Biology and Evolution 14, 685–695.

Gatlin, L. L. (1972). Information Theory and the Living System (New York: Columbia
University Press).

George, D. G., Barker, W. C., and Hunt, L. T. (1990). Mutation data matrices and its uses.
Methods in Enzymology 183, 333–353.

Gerstein, M., Sonnhammer, E. L. L., and Chothia, C. (1994). Volume changes in protein
evolution. Journal of Molecular Biology 236, 1067–1078.

Glazko, G. V. and Nei, M. (2003). Estimation of divergence times for major lineages of
primate species. Journal of Molecular Evolution 20, 424–434.

Goldman, N. and Yang, Z. (1994). A codon-based model of nucleotide substitution for
protein-coding DNA sequences. Molecular Biology and Evolution 11, 725–736.

Goldman, N., Thorne, J. L., and Jones, D. T. (1996). Using evolutionary trees in protein
secondary structure prediction and other comparative sequence analyses. Journal of
Molecular Biology 263, 196–208.

Goldman, N., Anderson, J. P., and Rodrigo, A. G. (2000). Likelihood-based tests of
topologies in phylogenetics. Systematic Biology 49, 652–670.

Goldman, S. (2005). Information Theory (New York: Dover Publications).
Goodman, L. A. (1959). On some statistical tests for M-th order Markov chains. The

Annals of Mathematical Statistics 30, 154–164.
Gopalakrishnan, G. (2006). Computational Engineering: Applied Automata Theory and

Logic (New York: Springer).
Gorodkin, J., Stricklin, S. L., and Stormo, G. D. (2001). Discovering common stem-loop

motifs in unaligned RNA sequences. Nucleic Acids Research 29, 2135–2144.



References 333

Gough, J., Karplus, K., Hughey, R., and Chothia, C. (2001). Assignment of homology: to
genome sequences using a library of hidden Markov models that represent all
proteins of known structure. Journal of Molecular Biology 313, 903–919.

Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., and Eddy, S. R. (2003). Rfam:
An RNA family database. Nucleic Acids Research 31, 439–441.

Grishin, N. V. (1995). Estimation of the number of amino acid substitutions per site when
the substitution rate varies among sites. Journal of Molecular Evolution 41, 675–679.

Grishin, N. V. (1999). A novel approach to phylogeny reconstruction from protein
sequences. Journal of Molecular Evolution 48, 264–273.

Grishin, N. V., Wolf, Y. I., and Koonin, E. V. (2000). From complete genomes to measures
of substitution rate variability within and between proteins. Genome Research 10,
991–1000.

Grishin, V. N. and Grishin, N. V. (2002). Euclidian space and grouping of biological
objects. Bioinformatics 18, 1523–1533.

Grossman, S. and Yakir, B. (2004). Large deviations for global maxima of independent
superadditive processes with negative drift and an application to optimal sequence
alignments. Bernoulli 10, 829–845.

Gubser, C., Hué, S., Kellam, P., and Smith, G. L. (2004). Poxvirus genomes: A
phylogenetic analysis. Journal of General Virology 85, 105–117.

Guindon, S. and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate
large phylogenies by maximum likelihood. Systematic Biology 52, 696–704.

Hein, J. (1989). A new method that simultaneously aligns and reconstructs ancestral
sequences for any number of homologous sequences, when the phylogeny is given.
Molecular Biology and Evolution 6, 649–668.

Hein, J., Wiuf, C., Knudsen, B., Møller, M. B., and Wibling, G. (2000). Statistical
alignment: Computational properties, homology testing and goodness-of-fit. Journal
of Molecular Biology 302, 265–279.

Hendy, M. D., Penny, D., and Steel, M. A. (1994). A discrete Fourier analysis for
evolutionary trees. Proceedings of the National Academy of Sciences of the USA 91,
3339–3343.

Henikoff, J. G. and Henikoff, S. (1996). Using substitution probabilities to improve
position-specific scoring matrices. Computer Applications in the Biosciences 12,
135–143.

Henikoff, S. and Henikoff, J. G. (1992). Amino acid substitution matrices from protein
blocks. Proceedings of the National Academy of Sciences of the USA 89,
10 915–10 919.

Henikoff, S. and Henikoff, J. G. (1994). Position-based sequence weights. Journal of
Molecular Biology 243, 574–578.

Hirschberg, D. S. (1975). A linear space algorithm for computing maximal common
subsequences. Communications of the ACM 18, 341–343.

Hofacker, I. L. (2003). Vienna RNA secondary structure server. Nucleic Acids Research
31, 3429–3431.

Hogg, R. V. and Craig, A. T. (1994). Introduction to Mathematical Statistics, 5th edn
(Upper Saddle River, N.J.: Prentice Hall).

Hogg, R. V. and Tanis, E. A. (2005). Probability and Statistical Inference, 7th edn (Upper
Saddle River, N.J.: Prentice Hall).

Holder, M. and Lewis, P. O. (2003). Phylogeny estimation: Traditional and Bayesian
approaches. Nature Reviews Genetics 4, 275–284.

Holmes, I. and Bruno, W. (2001). Evolutionary HMMs: A Bayesian approach to multiple
alignment. Bioinformatics 17, 803–820.



334 References

Holmes, I. and Rubin, G. M. (2002). Pairwise RNA structure comparison with stochastic
context-free grammars. Pacific Symposium on Biocomputing 2002 (Singapore: World
Scientific), pp. 163–174.

Hourai, Y., Akutsu, T., and Akiyama, Y. (2004). Optimizing substitution matrices by
separating score distributions. Bioinformatics 20, 863–873.

Hubbard, T., Barker, D., Birney, E. et al. (2002). Ensembl genome database project.
Nucleic Acids Research 30, 38–41.

Hulo, N., Sigrist, C. J. A., Le Saux, V. et al. (2004). Recent improvements to the
PROSITE database. Nucleic Acids Research 32 (Database issue), D134–D137.

Huynen, M. A. and Bork, P. (1998). Measuring genome evolution. Proceedings of the
National Academy of Sciences of the USA 95, 5849–5856.

Iglehart, D. L. (1972). Extreme values in the GI/G/1 queue. Annals of Mathematical
Statistics 43, 627–635.

Ito, M. (2004). Algebraic Theory of Automata & Languages (Singapore: World Scientific).
Jones, D. T., Taylor, W. R., and Thornton, J. M. (1992). The rapid generation of mutation

data matrices from protein sequences. Computer Applications in Biosciences 8,
275–282.

Jones, N. C. and Pevzner, P. A. (2004). An Introduction to Bioinformatics Algorithms
(Cambridge, MA: The MIT Press).

Juan, V. and Wilson. C. (1999). RNA secondary structure prediction based on free energy
and phylogenetic analysis. Journal of Molecular Biology 289, 935–947.

Jukes, T. H. and Cantor, C. (1969). Evolution of protein molecules. In Munro, H. N. and
Allison, J. B., eds, Mammalian Protein Metabolism (New York: Academic Press),
pp. 21–132.

Kanehisa, M., Goto, S., Kawashima, S., and Nakaya, A. (2002). The KEGG databases at
GenomeNet. Nucleic Acids Research 30, 42–46.

Kann, M., Qian, B., and Goldstein, R. A. (2000). Optimization of a new score function for
the detection of remote homologs. Proteins: Structure, Function, and Genetics 41,
498–503.

Karlin, S. (2005). Statistical signals in bioinformatics. Proceedings of the National
Academy of Sciences of the USA 102, 13 355–13 362.

Karlin, S. and Altschul, S. F. (1990). Methods for assessing the statistical significance of
molecular sequence features by using general scoring schemes. Proceedings of the
National Academy of Sciences of the USA 87, 2264–2268.

Karlin, S. and Altschul, S. F. (1993). Applications and statistics for multiple high-scoring
segments in molecular sequences. Proceedings of the National Academy of Sciences
of the USA 90, 5873–5877.

Karlin, S. and Brendel, V. (1992). Chance and statistical significance in protein and DNA
sequence analysis. Science 257, 39–49.

Karlin, S. and Dembo, A. (1992). Limit distributions of maximal segmental score among
Markov-dependent partial sums. Advances in Applied Probability 24, 113–140.

Karlin, S. and Ghandour, G. (1985). Comparative statistics for DNA and protein
sequences: Single sequence analysis. Proceedings of the National Academy of
Sciences of the USA 82, 5800–5804.

Karlin, S. and Macken, C. (1991). Assessment of inhomogeneities in an E.Coli physical
map. Nucleic Acids Research 19, 4241–4246.

Karlin, S. and Ost, F. (1987). Counts of long aligned word matches among random letter
sequences. Advances in Applied Probability 19, 293–351.

Karlin, S. and Ost, F. (1988). Maximal length of common words among random letter
sequences. The Annals of Probability 16, 535–563.



References 335

Karlin, S., Dembo, A., and Kawabata, T. (1990). Statistical composition of high-scoring
segments from molecular sequences. The Annals of Statistics 18, 571–581.

Karlin, S., Burge, C., and Campbell, A. M. (1992). Statistical analyses of counts and
distributions of restriction sites in DNA sequences. Nucleic Acids Research 20,
1363–1370.

Karplus, K., Barrett, C., and Hughey, R. (1998). Hidden Markov models for detecting
remote protein homologies. Bioinformatics 14, 846–856.

Kasami, T. (1965). An efficient recognition and syntax algorithm for context-free
algorithms. Technical Report AFCRL-65-758, Air Force Cambridge Research
Laboratory Bedford, MA.

Kelley, L. A., MacCallum, R. M., and Sternberg, M. J. E. (2000). Enhanced genome
annotation using structural profiles in the program 3D-PSSM. Journal of Molecular
Biology 299, 499–520.

Kent, W. J. (2002). BLAT – the BLAST-like alignment tool. Genome Research 12,
656–664.

Khoussainov, B. and Nerode, A. (2001). Automata Theory and its Applications (Boston,
MA: Birkhauser).

Kimura, M. (1980). A simple method for estimating evolutionary rates of base
substitutions through comparative studies of nucleotide sequences. Journal of
Molecular Evolution 16, 111–120.

Kimura, M. (1983). The Neutral Theory of Molecular Evolution (Cambridge: Cambridge
University Press).

Kishino, H. and Hasegawa, M. (1989). Evaluation of the maximum likelihood estimate of
the evolutionary tree topologies from DNA sequence data, and the branching order in
Hominoidea. Journal of Molecular Evolution 29, 170–179.

Kleffe, J. and Borodovsky, M. (1992). First and second moment of counts of words in
random texts generated by Markov chains. Computer Applications in Biosciences 8,
433–441.

Knudsen, B. (2003). Optimal multiple parsimony alignment with affine gap cost using a
phylogenetic tree. In Benson, G. and Page, R., eds, Proceedings of Algorithms in
Bioinformatics, Third International Workshop, Lecture Notes in Computer Science
2812 (Berlin: Springer), pp. 433–446.

Knudsen, B. and Hein, J. (1999). RNA secondary structure prediction using stochastic
context-free grammars and evolutionary history. Bioinformatics 15, 446–454.

Knudsen, B. and Hein, J. (2003). Pfold: RNA secondary structure prediction using
stochastic context-free grammars. Nucleic Acids Research 31, 3423–3428.

Knudsen, B. and Miyamoto, M. M. (2003). Sequence alignment and pair hidden
Markov models using evolutionary history. Journal of Molecular Biology 333,
453–460.

Koonin, E. V. and Galperin, M. Y. (2003). Sequence – Evolution – Function:
Computational Approaches in Comparative Genomics (Norwell, MA: Kluwer
Academic Publishers).

Korber, B., Muldoon, M., Theiler, J. et al. (2000). Timing the ancestor of the HIV-1
pandemic strains. Science 288, 1789–1796.

Kozen, D. C. (1999). Automata and Computability (New York: Springer).
Krogh, A., Larsson, B., Heijne, G. von, and Sonnhammer, E. L. L. (2001). Predicting

transmembrane protein topology with a hidden Markov model: Application to
complete genomes. Journal of Molecular Biology 305, 567–580.

Krogh, A., Mian, I. S., and Haussler, D. (1994). A hidden Markov model that finds genes
in E. coli DNA. Nucleic Acids Research 22, 4768–4778.



336 References

Krogh, A. and Mitchison, G. (1995). Maximum entropy weighting of aligned sequences
of proteins or DNA. In Rawlings, C., Clark, D., Altman, R., Hunter, L., Lengauer, T.,
and Wodak, S., eds Proceedings of the Third International Conference on Intelligent
Systems for Molecular Biology (Menlo Park, CA: AAAI Press), pp. 215–221.

Kullback, S., Kupperman, M., and Ku, H. H. (1962). Tests for contingency tables and
Markov chains. Technometrics 4, 573–608.

Kumar, S. and Hedges, S. B. (1998). A molecular timescale for vertebrate evolution.
Nature 392, 917–920.

Kumar, S., Tamura, K., and Nei, M. (1993). Manual for MEGA: Molecular Evolutionary
Genetics Analysis Software (Philadelphia, PA: Pennsylvania State University).

Kumar, S., Tamura, K., and Nei, M. (2004). MEGA3: Integrated software for Molecular
Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics
5, 150–163.

Lake, J. A. (1987). A rate-independent technique for analysis of nucleic acid sequences:
Evolutionary parsimony. Molecular Biology and Evolution 4, 167–191.

Larget, B. and Simon, D. L. (1999). Markov chain Monte Carlo algorithms for the
Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16,
750–759.

Lari, K. and Young, S. J. (1990). The estimation of stochastic context-free grammars
using the inside-outside algorithm. Computer Speech and Language 4, 35–56.

Laquer, H. T. (1981). Asymptotic limits for a two-dimensional recursion. Studies in
Applied Mathematics 64, 271–277.

Larson, H. J. (1982). Introduction to Probability Theory and Statistical Inference, 3rd edn
(New York: Wiley).

Lawrence, C. E., Altschul, S. F., Boguski, M. S., Liu, J. S., Neuwald, A. F., and Wootton,
J. C. (1993). Detecting subtle sequence signals: A Gibbs sampling strategy for
multiple alignment. Science 262, 208–214.

Lewis, P. O. (2001). Phylogenetic systematics turns over a new leaf. Trends in Ecology
and Evolution 16, 30–37.

Li, M., Badger, J. H., Chen, X., Kwong, S., Kearney, P., and Zhang, H. (2001). An
information-based sequence distance and its application to whole mitochondrial
genome phylogeny. Bioinformatics 17, 149–154.

Lipman, D. J., Wilbur, W. J., Smith, T. F., and Waterman, M. S. (1984). On the
statistical significance of nucleic acid similarities. Nucleic Acids Research 12,
215–226.

Liu, J. S. (2001). Monte Carlo Strategies in Scientific Computing (New York:
Springer-Verlag).

Liu, J. S. and Lawrence, C. E. (1999). Bayesian inference on biopolymer models.
Bioinformatics 15, 38–52.

Liu, J. S., Neuwald, A. F., and Lawrence, C. E. (1999). Markovian structures in biological
sequence alignments. Journal of American Statistical Association 94, 1–15.

Löytynoja, A. and Milinkovitch, C. (2003). A hidden Markov model for progressive
multiple alignment. Bioinformatics 19, 1505–1513.

Lukashin, A. V. and Borodovsky, M. (1998). GeneMark.hmm: New solutions for gene
finding. Nucleic Acids Research 26, 1107–1115.

Lyngsø, R. B., Pedersen, C. N. S., and Nielsen, H. (1999). Metrics and similarity measures
for hidden Markov models. Proceedings of International Conference in Intelligent
Systems for Molecular Biology (Menlo Park, CA: AAAI Press), pp. 178–186.

MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms
(Cambridge: Cambridge University Press).



References 337

Maidak, B. L., Cole, J. R., Lilburn, T. G. et al. (2000). The RDP (Ribosomal Database
Project) continues. Nucleic Acids Research 28, 173–174.

Martí-Renom, M. A., Stuart, A. C., Fiser, A., Sánchez, R., Melo, F., and Šali, A. (2000).
Comparative protein structure modeling of genes and genomes. Annual Review of
Biophysics and Biomolecular Structure 29, 291–325.

Mathews, D. H., Sabina, J., Zuker, M., and Turner, D. H. (1999). Expanding sequence
dependence of thermodynamic parameters improves prediction of RNA secondary
structure. Journal of Molecular Biology 288, 911–940.

Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M., and Turner,
D. H. (2004). Incorporating chemical modification constraints into a dynamic
programming algorithm for prediction of RNA secondary structure. Proceedings of
the National Academy of Sciences of the USA 101, 7287–7292.

Mau, B., Newton, M. A., and Larget, B. (1999). Bayesian phylogenetic inference via
Markov chain Monte Carlo methods. Biometrics 55, 1–12.

Meyer, C. D. (2000). Matrix Analysis and Applied Linear Algebra (Philadelphia, PA:
Society for Industrial and Applied Mathematics).

Meyer, I. M. and Durbin, R. (2002). Comparative ab initio prediction of gene structure
using pair HMM. Bioinformatics 18, 1309–1318.

Meyer, I. M. and Durbin, R. (2004). Gene structure conservation aids similarity based
gene prediction. Nucleic Acids Research 32, 776–783.

Meyer, P. L. (1970). Introductory Probability and Statistical Applications, 2nd edn
(Reading, MA: Addison-Wesley).

Moon, J. W. (1970). Counting Labelled Trees. Canadian Mathematical Monographs
(London and Beccles: William Clowes and Sons Ltd).

Morgenstern, B. (1999). DIALIGN 2: Improvement of the segment-to-segment approach
to multiple sequence alignment. Bioinformatics 15, 211–218.

Morgenstern, B., Frech, K., Dress, A., and Werner, T. (1998). DIALIGN: Finding local
similarities by multiple sequence alignment. Bioinformatics 14, 290–294.

Mott, R. (1999). Local sequence alignments with monotonic gap penalties. Bioinformatics
15, 455–462.

Mott, R. (2000). Accurate formula for P-values of gapped local sequence and profile
alignments. Journal of Molecular Biology 300, 649–659.

Mott, R. and Tribe, R. (1999). Approximate statistics of gapped alignments. Journal of
Computational Biology 6, 91–112.

Motwani, R., Ullman, J. D., and Hopcroft, J. E. (2003). Introduction to Automata Theory,
Languages, and Computation, 2nd edn (Upper Saddle River, N.J.: Pearson
Education).

Muse, S. V. and Gaut, B. S. (1994). A likelihood approach for comparing synonymous and
nonsynonymous nucleotide substitution rates, with application to the chloroplast
genome. Molecular Biology and Evolution 11, 715–724.

Myers, E. W. and Miller, W. (1988). Optimal alignments in linear space. Computer
Applications in the Biosciences 4, 11–17.

Nei, M., Chakraborty, R., and Fuerst, P. A. (1976). Infinite allele model with varying
mutation rate. Proceedings of the National Academy of Sciences of the USA 73,
4164–4168.

Nei, M., Xu, P., and Glazko, G. (2001). Estimation of divergence times from multiprotein
sequences for a few mammalian species and several distantly related organisms.
Proceedings of the National Academy of Sciences of the USA 98, 2497–2502.

Neuhauser, C. (1994). A Poisson approximation for sequence comparisons with insertions
and deletions. The Annals of Statistics 22, 1603–1629.



338 References

Notredame, C., Higgins, D. G., and Heringa J. (2000). T-Coffee: A novel method for fast
and accurate multiple sequence alignment. Journal of Molecular Biology 302,
205–217.

Nussinov, R., Pieczenik, G., Griggs, J. R., and Kleitman, D. J. (1978). Algorithms for loop
matchings. SIAM Journal of Applied Mathematics 35, 68–82.

Pachter, L., Alexandersson, M., and Cawley, S. (2002). Applications of generalized pair
hidden Markov models to alignment and gene finding problems. Journal of
Computational Biology 9, 389–399.

Park, J., Teichmann, S. A., Hubbard, T., and Chothia, C. (1997). Intermediate sequences
increase the detection of homology between sequences. Journal of Molecular
Biology 273, 349–354.

Park, J., Karplus, K., Barrett, C. et al. (1998). Sequence comparisons using multiple
sequences detect three times as many remote homologues as pairwise methods.
Journal of Molecular Biology 284, 1201–1210.

Pearson, W. R. (1995). Comparison of methods for searching protein sequence databases.
Protein Science 4, 1145–1160.

Pearson, W. R. (1996). Effective protein sequence comparison. Methods in Enzymology
266, 227–258.

Perriquet, O., Touzet, H., and Dauchet, M. (2003). Finding the common structure shared
by two homologous RNAs. Bioinformatics 19, 108–116.

Pevzner, P. A., Borodovsky, M. Yu., and Mironov, A. A. (1989). Linguistics of nucleotide
sequences I: The significance of deviations from mean statistical characteristics and
prediction of the frequencies of occurrence of words. Journal of Biomolecular
Structure and Dynamics 5, 1013–1026.

Posada, D. and Crandall, K. A. (2001). Selecting the best-fit model of nucleotide
substitution. Systematic Biology 50, 580–601.

Prüfer, H. (1918). Neuer Beweis eines Satzes über Pemutationen. Archiv für Mathematik
und Physik 27, 142–144.

Qi, J., Wang, B., and Hao, B. I. (2004). Whole proteome prokaryote phylogeny without
sequence alignment: K-string composition approach. Journal of Molecular Evolution
58, 1–11.

Reese, J. T. and Pearson, W. R. (2002). Empirical determination of effective gap penalties
for sequence comparison. Bioinformatics 18, 1500–1507.

Reich, J. G., Drabsch, H., and Däumler, A. (1984). On the statistical assessment of
similarities in DNA sequences. Nucleic Acids Research 12, 5529–5543.

Reinert, G., Schbath, S., and Waterman, M. S. (2000a). Probabilistic and statistical
properties of words: An overview. Journal of Computational Biology 7, 1–46.

Reinert, K., Stoye, J., and Will, T. (2000). An iterative method for faster sum-of-pairs
multiple sequence alignment. Bioinformatics 16, 808–814.

Reza, F. M. (1994). An Introduction to Information Theory (New York: Dover
Publications).

Rivas, E. and Eddy, S. R. (1999). A dynamic programming algorithm for RNA
structure prediction including pseudoknots. Journal of Molecular Biology 285,
2053–2068.

Robin, S. and Schbath, S. (2001). Numerical comparison of several approximations of the
word count distribution in random sequences. Journal of Computational Biology 8,
349–359.

Ross, S. M. (1996). Stochastic Processes, 2nd edn (New York: John Wiley & Sons, Inc.).
Rost, B. (1999). Twilight zone of protein sequence alignments. Protein Engineering 12,

85–94.



References 339

Rychlewski, L., Jaroszewski, L., Li, W., and Godzik, A. (2000). Comparison of sequence
profiles. Strategies for structural predictions using sequence information. Protein
Science 9, 232–241.

Saitou, N. and Nei, M. (1987). The neighbor-joining method: A new method for
reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.

Salomaa, A., Wood, D., and Yu, S., eds (2001). A Half-Century of Automata Theory:
Celebration and Inspiration (Singapore: World Scientific).

Salzberg, S. L., Delcher, A. L., Kasif, S., and White, O. (1998). Microbial gene
identification using interpolated Markov models. Nucleic Acids Research 26,
544–548.

Sankoff, D. and Cedergren, R. J. (1983). Simultaneous comparison of three or more
sequences related by a tree. In Sankoff, D. and Kruskal, J. B., eds, Time Warps,
String Edits, and Macromolecules: The Theory and Practice of Sequence
Comparison (Reading, MA: Addison-Wesley), Chap. 9, pp. 253–264.

Schäffer, A. A., Aravind, L., Madden, T. L. et al. (2001). Improving the accuracy of
PSI-BLAST protein database searches with composition-based statistics and other
refinements. Nucleic Acids Research 29, 2994–3005.

Schbath, S. (2000). An overview on the distribution of word counts in Markov chains.
Journal of Computational Biology 7, 193–201.

Schmidler, S. C., Liu, J. S., and Brutlag, D. L. (2000). Bayesian segmentation of protein
secondary structure. Journal of Computational Biology 7, 233–248.

Schmidt, H. A., Strimmer, K., Vingron, M., and Haeseler, A. von (2002).
TREE-PUZZLE: Maximum-likelihood phylogenetic analysis using quartets and
parallel computing. Bioinformatics 18, 502–504.

Schneider, T. D., Stormo, G. D., Gold, L., and Ehrenfeucht, A. (1986). Information
content of binding sites on nucleotide sequences. Journal of Molecular Biology 188,
415–431.

Schuler, G. D., Altschul, S. F., and Lipman, D. J. (1991). A workbench for multiple
alignment construction and analysis. Proteins: Structure, Function, and Genetics 9,
180–190.

Schwartz, S., Zhang, Z., Frazer, K. A. et al. (2000). PipMaker – a web server for aligning
two genomic DNA sequences. Genome Research 10, 577–586.

Shannon, C. E. and Weaver, W. (1963). The Mathematical Theory of Communication
(Urbana-Champaign: University of Illinois Press).

Shimodaira, H. (2002). An approximately unbiased test of phylogenetic tree selection.
Systematic Biology 51, 492–508.

Shimodaira, H. and Hasegawa, M. (1999). Multiple comparisons of log-likelihoods with
applications to phylogenetic inference. Molecular Biology and Evolution 16,
1114–1116.

Shimodaira, H. and Hasegawa, M. (2001). CONSEL: For assessing the confidence of
phylogenetic tree selection. Bioinformatics 17, 1246–1247.

Shindyalov, I. N. and Bourne, P. E. (1998). Protein structure alignment by incremental
combinatorial extension (CE) of the optimal path. Protein Engineering 11,
739–747.

Shiryaev, A. N. (1996). Probability, 2nd edn (New York: Springer-Verlag).
Siegmund, D. and Yakir, B. (2000). Approximate P-values for local sequence alignments.

The Annals of Statistics 28, 657–680.
Siegmund, D. and Yakir, B. (2003). Correction: Approximate P-values for local sequence

alignments. The Annals of Statistics 31, 1027–1031.
Simon, M. (1999). Automata Theory (Singapore: World Scientific).



340 References

Smith, T. F. and Waterman, M. S. (1981). Identification of common molecular
subsequences. Journal of Molecular Biology 147, 195–197.

Smith, T. F., Waterman, M. S., and Burks, C. (1985). The statistical distribution of nucleic
acid similarities. Nucleic Acids Research 13, 645–656.

Snel, B., Bork, P., and Huynen, M. A. (1999). Genome phylogeny based on gene content.
Nature Genetics 21, 108–110.

Snel, B., Huynen, M. A., and Dutilh, B. E. (2005). Genome trees and the nature of
genome evolution. Annual Reviews in Microbiology 59, 191–209.

Sokal, R. R. and Michener, C. D. (1958). A statistical method for evaluating systematic
relationships. University of Kansas Scientific Bulletin 28, 1409–1438.

Sonnhammer, E. L. L., Eddy, S. R., Birney, E., Bateman, A., and Durbin, R. (1998). Pfam:
Multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids
Research 26, 320–322.

Steel, M., Hendy, M. D., and Penny, D. (1998). Reconstructing phylogenies from
nucleotide pattern probabilities: A survey and some new results. Discrete Applied
Mathematics 88, 367–396.

Strimmer, K. and Haeseler, A. von (1996). Quartet puzzling: A quartet
maximum-likelihood method for reconstructing tree topologies. Molecular Biology
and Evolution 13, 964–969.

Suzuki, Y., Glazko, G. V., and Nei, M. (2002). Overcredibility of molecular phylogenies
obtained by Bayesian phylogenetics. Proceedings of the National Academy of
Sciences of the USA 99, 16 138–16 143.

Székely, L. A., Steel, M. A., and Erdös, P. L. (1993). Fourier calculus on evolutionary
trees. Advances in Applied Mathematics 14, 200–216.

Tabaska, J. E., Cary, R. B., Gabow, H. N., and Stormo, G. D. (1998). An RNA folding
method capable of identifying pseudoknots and base triples. Bioinformatics 14,
691–699.

Tatusov, R. L., Galperin, M. Y., Natale, D.A., and Koonin, E. V. (2000). The COG
database: A tool for genome-scale analysis of protein functions and evolution.
Nucleic Acids Research 28, 33–36.

Tavaré, S. and Song, B. (1989). Codon preference and primary sequence structure in
protein coding regions. Bulletin of Mathematical Biology 51, 95–115.

Tekaia, F., Lazcano, A., and Dujon, B. (1999). The genomic tree as revealed from whole
proteome comparisons. Genome Research 9, 550–557.

Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994a). Improved sensitivity of profile
searches through the use of sequence weights and gap excision. Computer
Applications in the Biosciences 10, 19–29.

Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994b). CLUSTAL W: Improving the
sensitivity of progressive multiple sequence alignment through sequence weighting,
position specific gap penalties and weight matrix choice. Nucleic Acids Research 22,
4673–4680.

Thompson, J. D., Plewniak, F., and Poch, O. (1999a). A comprehensive comparison
of multiple sequence alignment programs. Nucleic Acids Research 27,
2682–2690.

Thompson, J. D., Plewniak, F., and Poch, O. (1999b). BAliBASE: A benchmark
alignment database for the evaluation of multiple alignment programs.
Bioinformatics 15, 87–88.

Thompson, J. D., Plewniak, F., Ripp, R., Thierry, J-C., and Poch, O. (2001). Towards a
reliable objective function for multiple sequence alignments. Journal of Molecular
Biology 314, 937–951.



References 341

Thorne, J. L., Kishino, H., and Felsenstein, J. (1991). An evolutionary model for
maximum likelihood alignment of DNA sequences. Journal of Molecular Evolution
33, 114–124.

Thorne, J. L., Kishino, H., and Felsenstein, J. (1992). Inching toward reality: An improved
likelihood model of sequence evolution. Journal of Molecular Evolution 34, 3–16.

Tönges, U., Perrey, S. W., Stoye, J., and Dress, A. W. M. (1996). A general method for
fast multiple sequence alignment. Gene 172, GC33–GC41.

Tusnády, G. E. and Simon, I. (1998). Principles governing amino acid composition of
integral membrane proteins: Application to topology prediction. Journal of
Molecular Biology 283, 489–506.

Vingron, M. and Waterman, M. S. (1994). Sequence alignment and penalty choice: Review
of concepts, case studies and implications. Journal of Molecular Biology 235, 1–12.

Vinh, L. S. and Haeseler, A. von (2004). IQPNNI: Moving fast through tree space and
stopping in time. Molecular Biology and Evolution 21, 1565–1571.

Waterman, M. S. (1995). Introduction to Computational Biology (New York: Chapman
and Hall).

Waterman, M. S. and Vingron, M. (1994). Rapid and accurate estimates of statistical
significance for sequence data base searches. Proceedings of the National Academy
of Sciences of the USA 91, 4625–4628.

Webb, B-J. M., Liu, J. S., and Lawrence, C. E. (2002). BALSA: Bayesian algorithm for
local sequence alignment. Nucleic Acids Research 30, 1268–1277.

Webber, C. and Barton, G. J. (2001). Estimation of P-values for global alignments of
protein sequences. Bioinformatics 17, 1158–1167.

Whelan, S. and Goldman, N. (2001). A general empirical model of protein evolution
derived from multiple protein families using a maximum-likelihood approach.
Molecular Biology and Evolution 18, 691–699.

Whelan, S., Liò, P., and Goldman, N. (2001). Molecular phylogenetics: State-of-the-art
methods for looking into the past. Trends in Genetics 17, 262–272.

Wilbur, W. J. (1985). On the PAM matrix model of protein evolution. Molecular Biology
and Evolution 2, 434–447.

Wolf, Y. I., Rogozin, I. B., and Koonin E. V. (2004). Coelomata and not Ecdysozoa:
Evidence from genome-wide phylogenetic analysis. Genome Research 14, 29–36.

Wuyts, J., De Rijk, P., Peer, Y. Van de, Winkelmans, T., and De Wachter, R. (2001). The
European Large Subunit Ribosomal RNA database. Nucleic Acids Research 29,
175–177.

Yang, Z. (1998). Likelihood ratio tests for detecting positive selection and application to
primate lysozyme evolution. Molecular Biology and Evolution 15, 568–573.

Yang, Z. and Bielawski, J. P. (2000). Statistical methods for detecting molecular
adaptation. Tree 15, 496–503.

Yang, Z. and Nielsen, R. (2000). Estimating synonymous and nonsynonymous
substitution rates under realistic evolutionary models. Molecular Biology and
Evolution 17, 32–43.

Yang, Z. and Rannala, B. (1997). Bayesian phylogenetic inference using DNA sequences:
A Markov chain Monte Carlo method. Molecular Biology and Evolution 14,
717–724.

Yang, Z., Nielsen, R., Goldman, N., and Pedersen, A-M. K. (2000). Codon-substitution
models for heterogeneous selection pressure at amino acid sites. Genetics 155,
431–449.

Younger, D. H. (1967). Recognition and parsing of context-free languages in time n3.
Information and Control 10, 189–208.



342 References

Zhu, J., Liu, J. S., and Lawrence, C. E. (1998). Bayesian adaptive sequence alignment
algorithms. Bioinformatics 14, 25–39.

Zuker, M. (2000). Calculating nucleic acid secondary structure. Current Opinion in
Structural Biology 10, 303–310.

Zuker, M. and Stiegler, P. (1981). Optimal computer folding of large RNA sequences
using thermodynamic and auxiliary information. Nucleic Acids Research 9, 133–148.

Zwieb, C., Gorodkin, J., Knudsen, B., Burks, J., and Wower, J. (2003). tmRDB (tmRNA
database). Nucleic Acids Research 31, 446–447.



Index

accuracy of alignment, 119
affine gap penalty, 25, 28
algorithms

backward, 81, 85
backward for pair HMM, 120
Baum–Welch, 71, 77
Bayesian type, 18
Carrillo–Lipman, 164
CLUSTAL W, 172
CYK, 298, 305, 307
dynamic programming, 44, 97, 164, 167, 203
Felsenstein’s, 230, 237
Feng–Doolittle progressive alignment, 163,

171, 173
Fitch–Margoliash, 172
forward, 76, 81, 85
Gibbs sampling for local multiple

alignment, 179
global alignment, 43
Hein’s, 202
inside, 299, 302, 305
linear space, 41, 43
Metropolis, 234–236
Needleman–Wunsch, 171, 173
neighbor-joining by Saitou and Nei, 207, 213
Nussinov RNA folding, 294, 296–298
outside, 299, 305
posterior decoding, 78
Prüfer, 189
progressive alignment, 171
sequence comparison, 65
Smith–Waterman for local alignment, 127
traditional parsimony, 198
UPGMA, 133; see also UPGMA
Viterbi, 74, 78, 80, 115
Viterbi for pair HMM, 115, 122
weighted parsimony, 198, 202

alignments
gapped, 30
multiple, 180, 292
optimal, 39, 40, 44, 115
optimal local, 127
progressive, 103, 171, 172, 181

ungapped, 180
automata

deterministic, 280, 283
finite state, 280, 281
push-down, 285, 287

backward algorithm, 81, 85
for pair HMM, 120

backward variable, 71
basic segmentation model, 96
Baum–Welch algorithm, 71, 77
Bayes’ theorem, 3, 4, 16, 18, 23, 96
Bayesian estimate, 5
begin state, 78, 80, 114
Bernoulli trials, 7, 21, 66
binary tree, 187
binomial coefficient, 73
binomial distribution, 7, 21, 23, 311
binomial expansion, 312
birth–death process, 247, 271
BLAST, 24, 61, 161, 277
BLOSUM substitution matrix, 56
BLOSUM50, 107, 156
BLOSUM62, 173
Box–Muller method, 320

canonical representation of tree, 235, 240
Carrillo–Lipman algorithm, 164
casino, 2, 84
central limit theorem, 21
CFG, 283, 285, 286
Chebyshov’s inequality, 62, 316
chi-square distribution, 89, 92
Chomsky normal form, 289, 300
CLUSTAL W, 172
coalescent prior, 248
Cocke–Younger–Kasami algorithm, 298;

see also CYK algorithm
codon, 9, 13, 14, 74, 75
composite tree, 187, 191
conditional probability, 2, 3, 70

343



344 Index

covariance model, 306
CpG-island, 5, 18, 19
CYK algorithm, 298, 305, 307

Dayhoff, Schwartz, and Orcutt model of protein
evolution, 47

delete state, 138
deterministic automaton, 280, 283
Dirichlet distribution, 96, 154, 322
Dirichlet prior, 96, 137, 154
discrimination function, 150
distributions

binomial, 7, 21, 23
chi-square (χ2), 89, 92
Dirichlet, 96, 154, 322
gamma, 277, 322
Gaussian, normal, 21, 22, 135, 320, 321
geometric, 11, 14, 25, 64
multinomial, 7
negative binomial, 73
Poisson, 10, 15, 18, 23, 59
uniform, 314, 319, 321

dynamic programming algorithm, 44, 97, 164,
167, 203

dynamic programming matrix, 39, 45, 302, 306

emission probability, 70, 71, 75, 78, 80, 108,
114, 131, 138

end state, 68, 69, 78, 105, 114
entropy, 158, 314, 315
equilibrium frequencies, 53, 230, 273
estimates

Bayesian, 5
MAP, 154
maximum likelihood, 5, 156, 232

E-value, 59, 63
evolutionary distance, 52, 55, 211
expectation maximization, 301

false negative rate, 19, 20, 61
false positive rate, 19, 20
Felsenstein’s algorithm, 230, 237
Feng–Doolittle progressive alignment

algorithm, 163, 171, 173
finite state automaton, 280, 281
first order Markov model, 91
flanking state, 128
flat prior, 241
FMR-1 automaton, 280
forward algorithm, 76, 81, 85
forward connected model, 72
forward variable, 71

gamma distribution, 277, 322
gap penalty function, 44
gap-extension penalty, 25, 107, 129, 165, 203
gap-open penalty, 25, 107, 129, 165, 203
gapped alignment, 30
Gaussian distribution, normal, 21, 22, 135, 320,

321
gene finding, 75, 102
genome, 6, 10, 22, 67, 92, 102, 216, 277
geometric distribution, 11, 14, 25, 64
Gibbs sampling, 324
Gibbs sampling algorithm for local multiple

alignment, 179
global alignment algorithm, 43
guide tree, 172

Hein’s algorithm, 202
hidden Markov model, 67; see also HMM
high-scoring segment pairs, 58
HMM, 67, 75, 77, 78, 80, 83, 104, 108, 287
homologs, 16, 24, 55, 66, 67, 102, 161, 181,

216, 263, 309

independence model, 5, 6, 10, 11, 13–15, 20,
46, 58, 60, 63–65, 86, 92, 95, 96, 108,
111, 112, 137, 140, 150, 159, 179

independence pair-sequence model, 54, 105,
106, 114, 122, 124, 125, 128

information content, 158, 314
inhomogeneous Markov chain, 75
insert state, 138, 145
inside algorithm, 299, 302, 305
inside variable, 303

joint distribution, 315, 321
joint probability, 111
Jukes–Cantor distance, 258
Jukes–Cantor model, 219, 223, 224, 232, 259,

261, 263, 274

Kimura distance, 172
Kimura model, 219, 268
Kullback–Leibler distance, 159, 293, 314

labeled history, 215, 241–243, 245, 246
Laplace’s rule, 138
likelihood of model, 14
linear gap penalty, 25, 40, 45, 173
linear space algorithm, 41, 43
local multiple alignment, 179



Index 345

log-odds matrix, 55, 56
log-odds ratio, 18, 20, 21, 54, 58, 84, 85,

109, 122
logo graph, 158
longest common word, 64

majority rule, 7
MAP estimate, 154
Markov chain, 51, 53, 67–69, 74, 102, 181, 234,

236, 269, 325
Markov chain Monte Carlo (MCMC)

method, 235
Markov process, 265, 271
Markov property, 53, 222, 264, 325
match state, 131, 138, 145
maximum discrimination weights, 150
maximum entropy weights, 136
maximum likelihood distance, 258, 261,

263, 271
maximum likelihood estimate, 5, 156, 232
maximum likelihood tree, 235, 261
Metropolis algorithm, 234–236
minimum cost alignment, 163–165
minimum cost tree, 198, 200, 202, 257
models

basic segmentation, 96
covariance, 306
Dayhoff, Schwartz, and Orcutt, 47
forward connected, 72
independence, 5, 6, 10, 11, 13–15, 20, 46, 58,

60, 63–65, 86, 92, 95, 96, 108, 111, 112,
137, 140, 150, 159, 179

independence pair-sequence, 54, 105, 106,
114, 122, 124, 125, 128

Jukes–Cantor, 219, 223, 224, 232, 259, 261
Kimura, 219
links or TKF, 271
positional independence, 158, 159,

179, 180
random sequence, 5
with silent states, 72

molecular clock, 213, 215, 235, 240, 241, 243,
248, 264

Moore machine, 280
most parsimonious tree, 47, 257
most probable path, 70, 81
motif, 179, 180, 281
multinomial coefficient, 32, 190
multinomial distribution, 7
multiple alignment, 138, 154, 164, 171,

180, 292
multiplicativity, 219, 222, 227
mutual information, 292, 315

Needleman–Wunsch algorithm, 171, 173
negative binomial distribution, 73
neighbor-joining algorithm by Saitou and Nei,

172, 207, 213
non-terminals, 280, 285, 287, 289
normal distribution, 21, 22, 135, 320, 321
Nussinov RNA folding algorithm, 294, 296–298

optimal alignment, 39, 40, 115, 164, 171
optimal local alignment, 127
optimal multiple alignment, 164
optimal structure, 294
open reading frame (ORF), 13, 14
orthologs, 67, 277
outside algorithm, 299, 305
outside variable, 303

pair HMM, 114, 117
pairwise alignment, 25, 44, 104
PAM mutation probability matrix, 47, 52
parsimony

traditional, 198, 257
weighted, 198, 200, 258

penalties
affine score, 25
gap-extension, 25
gap-open, 25
linear score, 25, 173

Poisson distribution, 10, 15, 18, 23, 59
Poisson process, 16, 263, 266
position-specific scoring matrix, 156
positional independence model, 158, 159,

179, 180
posterior decoding algorithm, 78
posterior probability, 4, 16, 22, 79, 83, 117, 119
Prüfer algorithm, 189
probabilities

conditional, 2, 3, 70
emission, 70, 71, 75, 78, 80, 108, 114,

131, 138
posterior, 4, 16, 22, 79, 83, 117, 119
transition, 69, 70, 72, 74, 76, 78, 80, 82, 91,

105, 108, 114, 128, 138, 287
profile change, 237
profile HMM, 126, 131, 138, 140, 154, 302
progressive alignment, 103, 172, 181
PROSITE, 281
pseudocount, 5, 138, 144, 156
PSI-BLAST, 127, 161
PSSM, see position-specific scoring matrix, 156
push-down automaton, 285, 287
P-value, 59, 63



346 Index

random sequence model, 5
regular grammar, 284, 285, 288
relative entropy, 159, 258, 259, 314
relative mutability, 49
reversibility, 53, 226, 230, 264
rooted tree, 183, 185
rules

Laplace’s, 138, 144
majority, 7
transformation, 318

Saitou–Nei algorithm, 207, 213
SCFG, 287, 298, 299, 302, 304
score matrix, 43
scores

alignment, 28
BLOSUM50, 25
substitution, 46, 53
sum-of-pairs, 164

second order Markov chain, 74
sequence comparison algorithm, 65
sequence graph, 203, 205
silent state, 72, 105, 128
similarity, 58, 63
Smith–Waterman algorithm, 127
stationarity, 222
Stirling’s formula, 39
stochastic context-free grammar, 286;

see also SCFG
stochastic regular grammar, 287
stochastic transformational grammar, 304
strong law of large numbers, 256, 317
suboptimal alignment sampling, 302
substitution cost, 200
substitution matrix, 54, 58, 219, 223, 232,

259, 269
substitution score, 44, 46, 53, 107, 129
sum-of-pairs scoring, 164

target frequencies, 46
terminals, 286, 287
ternary tree, 187, 188
theorems

Bayes’, 3, 4, 16, 18, 23
central limit, 21
ergodic for Markov chain, 235
multiplication, 70

Thorne, Kishino, and Felsenstein model, 271
traceback procedure, 40, 45, 129, 143, 164, 204,

298, 303
traditional parsimony, 198, 257
training set, 71, 91, 127, 130, 144, 147, 148, 150
transition probability, 68–70, 72, 74, 76, 78, 80,

82, 87, 91, 105, 108, 114, 128, 138, 287
tree topology, 186, 215, 216, 236, 240–242,

251, 271, 276
250 PAM log-odds matrix, 54, 55, 173

ultrametric distance, 194
ungapped alignment, 180
uniform distribution, 314, 319, 321
unrooted tree, 183, 185, 187
unweighted pair group method using arithmetic

averages, 133; see also UPGMA
UPGMA, 133, 193, 194, 211

Viterbi algorithm, 74, 78, 80, 115, 140
Viterbi algorithm for pair HMM, 115, 122
Viterbi path, 81, 83, 110, 113
voltage method, 134

Watson–Crick pairs, 286, 292, 295
weak law of large numbers, 316
weighted parsimony, 198, 200, 202, 257, 258
weights of sequences

Altschul, Carroll, and Lipman, 135
Gerstein, Sonnhammer, and Chothia, 135
Henikoff and Henikoff, 135, 145
maximum discrimination, 150
maximum entropy, 136
voltage method, 134

Yule prior, 243, 248
Yule process, 243


