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Geochemical reaction modeling plays an increasingly vital role in a number of
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environmental preservation and remediation to economic and petroleum geology
to geomicrobiology.

This book provides a comprehensive overview of reaction processes in the
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exposition of the underlying equations and calculation techniques is balanced
by a large number of fully worked examples. The book uses The Geochemist’s
Workbench® modeling software, developed by the author and installed at over
1000 universities and research facilities worldwide. The reader can, however, also
use the software of his or her choice. The book contains all the information needed
for the reader to reproduce calculations in full.

Since publication of the first edition, the field of reaction modeling has continued
to grow and find increasingly broad application. In particular, the description of
microbial activity, surface chemistry, and redox chemistry within reaction models
has become broader and more rigorous. Reaction models are commonly coupled
to numerical models of mass and heat transport, producing a classification now
known as reactive transport modeling. These areas are covered in detail in this new
edition.

This book will be of great interest to graduate students and academic researchers
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geomicrobiology, and numerical modeling.
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Preface

In the decade since I published the first edition of this book,1 the field of geochemi-

cal reaction modeling has expanded sharply in its breadth of application, especially

in the environmental sciences. The descriptions of microbial activity, surface chem-

istry, and redox chemistry within reaction models have become more robust and

rigorous. Increasingly, modelers are called upon to analyze not just geochemical

but biogeochemical reaction processes.

At the same time, reaction modeling is now commonly coupled to the problem

of mass transport in groundwater flows, producing a subfield known as reactive

transport modeling. Whereas a decade ago such modeling was the domain of

specialists, improvements in mathematical formulations and the development of

more accessible software codes have thrust it squarely into the mainstream.

I have, therefore, approached preparation of this second edition less as an update

to the original text than an expansion of it. I pay special attention to developing

quantitative descriptions of the metabolism and growth of microbial species, under-

standing the energy available in natural waters to chemosynthetic microorganisms,

and quantifying the effects microorganisms have on the geochemical environment.

In light of the overwhelming importance of redox reactions in environmental bio-

geochemistry, I consider the details of redox disequilibrium, redox kinetics, and

effects of inorganic catalysts and biological enzymes.

I expand treatment of sorption, ion exchange, and surface complexation, in terms

of the various descriptions in use today in environmental chemistry. And I integrate

all the above with the principals of mass transport, to produce reactive transport

models of the geochemistry and biogeochemistry of the Earth’s shallow crust. As

in the first edition, I try to juxtapose derivation of modeling principles with fully

worked examples that illustrate how the principles can be applied in practice.

In preparing this edition, I have drawn on the talents and energy of a number

1 Geochemical Reaction Modeling, Oxford University Press, 1996.

xiii
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of colleagues. First and foremost, discussion of the kinetics of redox reactions and

microbial metabolism is based directly on the work my former graduate student

Qusheng Jin undertook in his years at Illinois. My understanding of microbiology

stems in large part from the tireless efforts of my colleague Robert Sanford. In

modeling the development of zoned microbial communities, I use the work of my

students Qusheng Jin, Jungho Park, Meng Li, Man Jae Kwon, and Dong Ding.

Tom Holm found in the literature he knows so well sorption data for me to use, and

Barbara Bekins shared data from her biotransformation experiments. Finally, I owe

a large combined debt to the hundreds of people who have over the years reviewed

our papers, commented on our software, sent email, talked to us at meetings, and

generally pointed out the errors and omissions in our group’s thinking.

I owe special thanks to colleagues who reviewed draft chapters: Patrick Brady at

Sandia National Laboratories; Glenn Hammond, Pacific Northwest National Lab-

oratory; Thomas Holm, Illinois Water Survey; Qusheng Jin, University of Oregon;

Thomas McCollom, University of Colorado; David Parkhurst, US Geological Sur-

vey; Robert Sanford, University of Illinois; Lisa Stillings, US Geological Survey;

and Brian Viani, Lawrence Livermore National Laboratories.

Finally, the book would not have been possible without the support of the in-

stitutions that underwrote it: the Centre for Water Research at the University of

Western Australia and UWA’s Gledden Fellowship program, the Department of Ge-

ology at the University of Illinois, the US Department of Energy (grant DE-FG02-

02ER15317), and a consortium of research sponsors (Chevron, Conoco Phillips,

Exxon Mobil, Idaho National Engineering and Environmental Laboratory, Law-

rence Livermore Laboratories, Sandia Laboratories, SCK CEN, Texaco, and the

US Geological Survey).



Preface to first edition

Geochemists have long recognized the need for computational models to trace the

progress of reaction processes, both natural and artificial. Given a process involving

many individual reactions (possibly thousands), some of which yield products that

provide reactants for others, how can we know which reactions are important, how

far each will progress, what overall reaction path will be followed, and what the

path’s endpoint will be?

These questions can be answered reliably by hand calculation only in simple

cases. Geochemists are increasingly likely to turn to quantitative modeling tech-

niques to make their evaluations, confirm their intuitions, and spark their imagina-

tions.

Computers were first used to solve geochemical models in the 1960s, but the

new modeling techniques disseminated rather slowly through the practice of geo-

chemistry. Even today, many geochemists consider modeling to be a “black art,”

perhaps practiced by digital priests muttering mantras like “Newton–Raphson” and

“Runge–Kutta” as they sit before their cathode ray altars. Others show little fear in

constructing models but present results in a way that adds little understanding of

the problem considered. Someone once told me, “Well, that’s what came out of the

computer!”

A large body of existing literature describes either the formalism of numerical

methods in geochemical modeling or individual modeling applications. Few refer-

ences, however, provide a perspective of the modeling specialty, and some that do

are so terse and technical as to discourage the average geochemist. Hence, there are

few resources to which someone wishing to construct a model without investing a

career can turn.

I have written this book in an attempt to present in one place both the concepts

that underpin modeling studies and the ways in which geochemical models can be

applied. Clearly, this is a technical book. I have tried to present enough detail to

help the reader understand what the computer does in calculating a model, so that

xv



xvi Preface to first edition

the computer becomes a useful tool rather than an impenetrable black box. At the

same time, I have tried to avoid submerging the reader in computational intricacies.

Such details I leave to the many excellent articles and monographs on the subject.

I have devoted most of this book to applications of geochemical modeling. I de-

velop specific examples and case studies taken from the literature, my experience,

and the experiences over the years of my students and colleagues. In the examples,

I have carried through from the initial steps of conceptualizing and constructing a

model to interpreting the calculation results. In each case, I present complete input

to computer programs so that the reader can follow the calculations and experiment

with the models.

The reader will probably recognize that, despite some long forays into hydro-

logic and basin modeling (a topic for another book, perhaps), I fell in love with

geochemical modeling early in my career. I hope that I have communicated the

elegance of the underlying theory and numerical methods as well as the value of

calculating models of reaction processes, even when considering relatively simple

problems.

I first encountered reaction modeling in 1980 when working in Houston at

Exxon Production Research Company and Exxon Minerals Company. There, I read

papers by Harold Helgeson and Mark Reed and experimented with the programs

“EQ3/EQ6,” written by Thomas Wolery, and “Path,” written by Ernest Perkins and

Thomas Brown.

Computing time was expensive then (about a dollar per second!). Computers

filled entire rooms but were slow and incapacious by today’s standards, and graph-

ical tools for examining results almost nonexistent. A modeler sent a batch job to a

central CPU and waited for the job to execute and produce a printout. If the model

ran correctly, the modeler paged through the printout to plot the results by hand.

But even at this pace, geochemical modeling was fun!

I returned to modeling in the mid 1980s when my graduate students sought to

identify chemical reactions that drove sediment diagenesis in sedimentary basins.

Computing time was cheaper, graphics hardware more accessible, and patience

generally in shorter supply, so I set about writing my own modeling program, GT,

which I designed to be fast enough to use interactively. A student programmer,

Thomas Dirks, wrote the first version of a graphics program GTPLOT. With the

help of another programmer, Jeffrey Biesiadecki, we tied the programs together,

creating an interactive, graphical method for tracing reaction paths.

The program was clearly as useful as it was fun to use. In 1987, at the request of a

number of graduate students, I taught a course on geochemical reaction modeling.

The value of reaction modeling in learning geochemistry by experience rather than

rote was clear. This first seminar evolved into a popular course, “Groundwater

Geochemistry,” which our department teaches each year.
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The software also evolved as my group caught the interactive modeling bug. I

converted the batch program GT to REACT, which was fully interactive. The user

entered the chemical constraints for his problem and then typed “go” to trigger the

calculation. Ming-Kuo Lee and I added Pitzer’s activity model and a method for

tracing isotope fractionation. Twice I replaced GTPLOT with new, more powerful

programs. I wrote ACT2 and TACT to produce activity–activity and temperature–

activity diagrams, and RXN to balance reactions and compute equilibrium constants

and equations.

In 1992, we bundled these programs together into a package called “The Geo-

chemist’s Workbench®” which is owned by The Board of Trustees of the Univer-

sity of Illinois and can be licensed inexpensively for educational or commercial

purposes. Within a few months of its completion the software was in use at dozens

of universities and companies around the world.

We find that the programs allow us to try fresh approaches to teaching aqueous

geochemistry. Once a student can reliably balance reactions by hand, the task

quickly becomes a chore. After calculating a few Eh–pH diagrams, what does one

learn by manually producing more plots? For many students, trees quickly come

to obscure a beautiful forest. The computer can take over the mechanics of basic

tasks, once they have been mastered, freeing the student to absorb the big picture

and find the broad perspective. This approach has proved popular with students and

professors. Many examples given in this book were developed originally as class

assignments and projects.

I should not, however, give the impression that geochemical modeling is of any

greater value in education than in scientific and practical application. The devel-

opment of our modeling software, as evident in the case studies in this book, re-

flects the practical needs of petroleum geology and environmental geochemistry

expressed to us over nearly a decade by a consortium of industrial and governmen-

tal affiliates to the Hydrogeology Program. These affiliates, without whom neither

the software nor this book would exist, are: Amoco Production Research; ARCO Oil

and Gas Company; British Petroleum Research; Chevron Petroleum Technology

Company; Conoco, Incorporated; Du Pont Company; Exxon Production Research;

Hewlett Packard, Incorporated; Illinois State Geological Survey; Japan National

Oil Company; Lawrence Livermore National Laboratory; Marathon Oil Company;

Mobil Research and Development; Oak Ridge National Laboratory; Sandia Na-

tional Laboratories; SiliconGraphics Computer Systems; Texaco, Incorporated;

Union Oil Company of California; and the United States Geological Survey.

I can thank just a few of my colleagues and students who helped develop the

case studies in this book. John Yecko and William Roy of the Illinois State Geo-

logical Survey first modeled degradation of the injection wells at Marshall, Illinois.

Rachida Bouhlila provided analyses of the brines at Sebkhat El Melah, Tunisia.
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Amy Berger helped me write Chapter 10 (Surface Complexation), and Chapter 31

(Acid Drainage) is derived in part from her work. Edward Warren and Richard Wor-

den of British Petroleum’s Sunbury lab contributed data for calculating scaling in

North Sea oil fields, Richard Wendlandt first modeled the effects of alkali floods on

clastic reservoirs, and Kenneth Sorbie helped write Chapter 30 (Petroleum Reser-

voirs). I borrowed from Elisabeth Rowan’s study of the genesis of fluorite ores at

the Albigeois district, Wendy Harrison’s study of the Gippsland basin, and a num-

ber of other published studies, as referenced in the text.

The book benefited enormously from the efforts of a small army of colleagues

who served as technical reviewers: Stephen Altaner, Tom Anderson, and Amy

Berger (University of Illinois); Greg Anderson (University of Toronto); Paul

Barton, Jim Bischoff, Neil Plummer, Geoff Plumlee, and Elisabeth Rowan (US

Geological Survey); Bill Bourcier (Livermore); Patrick Brady and Kathy Nagy

(Sandia); Ross Brower and Ed Mehnert (Illinois State Geological Survey); David

Dzombak (Carnegie Mellon University); Ming-Kuo Lee (Auburn University); Pe-

ter Lichtner (Desert Research Institute); Benoit Madé and Jan van der Lee (Ecole

des Mines); Mark Reed (University of Oregon); Kenneth Sorbie (Heriot-Watt

University); Carl Steefel (Battelle); Jim Thompson (Harvard University); and John

Weare (University of California, San Diego). I learned much from them. I also

thank Mary Glockner, who read and corrected the entire manuscript; my editor

Joyce Berry, and Lisa Stallings at Oxford for their unwavering support; and Bill

Bourcier and Randy Cygan, who have always been willing to lend a hand, and

often have.

I thank the two institutions that supported me while I wrote this book: the

Department of Geology at the University of Illinois and the Centre d’Informatique

Géologique at Ecole Nationale Supérieure des Mines de Paris in Fontainebleau,

France. I began writing this book in Fontainebleau while on sabbatical leave in

1990 and completed it there under the sponsorship of the Académie des Sciences

and Elf Aquitaine in 1995.



A note about software

The geochemical modeler’s milieu is software and the computer on which it runs.

A number of computer programs have been developed over the past twenty years

to facilitate geochemical modeling (sources of the current versions of popular pro-

grams are listed in Appendix 1). Each program has its own capabilities, limitations,

and indeed, personality. Some programs work on personal computers, others on sci-

entific workstations, and a few run best on supercomputers. Some provide output

graphically, others produce printed numbers. There is no best software, only the

software that best meets a modeler’s needs.

No discussion of geochemical modeling would be fully useful without specific

examples showing how models are configured and run. In setting up the examples

in this book, I employ a group of interactive programs that my colleagues and I

have written over the past twenty or so years. The programs, RXN, ACT2, TACT,

SPECE8, REACT, GTPLOT, X1T, X2T, XTPLOT are known collectively as “The

Geochemist’s Workbench®.” To run all of the examples in this book, you will need

to have installed version 7.0 or later.

The package, which runs on personal computers, can be licensed for educational

and commercial use. This book is not intended to serve as documentation for these

programs; a separate, comprehensive set of User’s Guides is available for that

purpose.

I chose to use this software for reasons that extend beyond familiarity and

prejudice: the programs are interactive and take simple commands as input. As

such, I can include within the text of this book scripts that in a few lines show the

precise steps taken to calculate each result. Readers can, of course, reproduce the

calculations by using any of a number of other modeling programs, such as those

listed in Appendix 1. Following the steps shown in the text, they should be able to

construct input in the format recognized by the chosen program.
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1

Introduction

As geochemists, we frequently need to describe the chemical states of natural

waters, including how dissolved mass is distributed among aqueous species, and

to understand how such waters will react with minerals, gases, and fluids of the

Earth’s crust and hydrosphere. We can readily undertake such tasks when they

involve simple chemical systems, in which the relatively few reactions likely to

occur can be anticipated through experience and evaluated by hand calculation. As

we encounter more complex problems, we must rely increasingly on quantitative

models of solution chemistry and irreversible reaction to find solutions.

The field of geochemical modeling has grown rapidly since the early 1960s,

when the first attempt was made to predict by hand calculation the concentrations

of dissolved species in seawater. Today’s challenges might be addressed by using

computer programs to trace many thousands of reactions in order, for example, to

predict the solubility and mobility of forty or more elements in buried radioactive

waste.

Geochemists now use quantitative models to understand sediment diagenesis

and hydrothermal alteration, explore for ore deposits, determine which contam-

inants will migrate from mine tailings and toxic waste sites, predict scaling in

geothermal wells and the outcome of steam-flooding oil reservoirs, solve kinetic

rate equations, manage injection wells, evaluate laboratory experiments, and study

acid rain, among many examples. Teachers let their students use these models to

learn about geochemistry by experiment and experience.

Many hundreds of scholarly articles have been written on the modeling of geo-

chemical systems, giving mathematical, geochemical, mineralogical, and practical

perspectives on modeling techniques. Dozens of computer programs, each with

its own special abilities and prejudices, have been developed (and laboriously de-

bugged) to analyze various classes of geochemical problems. In this book, I attempt

to treat geochemical modeling as an integrated subject, progressing from the the-

oretical foundations and computational concerns to the ways in which models can

1



2 Introduction

be applied in practice. In doing so, I hope to convey, by principle and by example,

the nature of modeling and the results and uncertainties that can be expected.

1.1 Development of chemical modeling

Hollywood may never make a movie about geochemical modeling, but the field has

its roots in top-secret efforts to formulate rocket fuels in the 1940s and 1950s. Any-

one who reads cheap novels knows that these efforts involved brilliant scientists en-

dangered by spies, counter-spies, hidden microfilm, and beautiful but treacherous

women.

The rocket scientists wanted to be able to predict the thrust that could be ex-

pected from a fuel of a certain composition (see historical sketches by Zeleznik

and Gordon, 1968; van Zeggeren and Storey, 1970; Smith and Missen, 1982). The

volume of gases exiting the nozzle of the rocket motor could be used to calculate

the expected thrust. The scientists recognized that by knowing the fuel’s composi-

tion, the temperature at which it burned, and the pressure at the nozzle exit, they

had uniquely defined the fuel’s equilibrium volume, which they set about calculat-

ing.

Aspects of these early calculations carry through to geochemical modeling.

Like rocket scientists, we define a system of known composition, temperature,

and pressure in order to calculate its equilibrium state. Much of the impetus for

carrying out the calculations remains the same, too. Theoretical models allowed

rocket scientists to test fuels without the expense of launching rockets, and even

to consider fuels that had been formulated only on paper. Similarly, they allow

geoscientists to estimate the results of a hydrothermal experiment without spending

time and money conducting it, test a chemical stimulant for an oil reservoir without

risking damage to the oil field, or help evaluate the effectiveness of a scheme to

immobilize contaminants leaking from buried waste before spending and perhaps

wasting millions of dollars and years of effort.

Chemical modeling also played a role in the early development of electronic

computers. Early computers were based on analog methods in which voltages rep-

resented numbers. Because the voltage could be controlled to within only the accu-

racy of the machine’s components, numbers varied in magnitude over just a small

range. Chemical modeling presented special problems because the concentrations

of species vary over many orders of magnitude. Even species in small concentra-

tions, such as HC in aqueous systems, must be known accurately, since concentra-

tions appear not only added together in mass balance equations, but multiplied by

each other in the mass action (equilibrium constant) equations. The mathematical

nature of the chemical equilibrium problem helped to demonstrate the limitations

of analog methods, providing impetus for the development of digital computers.
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1.1.1 Controversy over free-energy minimization

Brinkley (1947) published the first algorithm to solve numerically for the equilib-

rium state of a multicomponent system. His method, intended for a desk calculator,

was soon applied on digital computers. The method was based on evaluating equa-

tions for equilibrium constants, which, of course, are the mathematical expression

of the minimum point in Gibbs free energy for a reaction.

In 1958, White et al. published an algorithm that used optimization theory to

solve the equilibrium problem by “minimizing the free energy directly.” Free-

energy minimization became a field of study of its own, and the technique was

implemented in a number of computer programs. The method had the apparent

advantage of not requiring balanced chemical reactions. Soon, the chemical com-

munity was divided into two camps, each of which made extravagant claims about

guarantees of convergence and the simplicity or elegance of differing algorithms

(Zeleznik and Gordon, 1968).

According to Zeleznik and Gordon, tempers became so heated that a panel con-

vened in 1959 to discuss equilibrium computation had to be split in two. Both sides

seemed to have lost sight of the fact that the equilibrium constant is a mathemat-

ical expression of minimized free energy. As noted by Smith and Missen (1982),

the working equations of Brinkley (1947) and White et al. (1958) are suspiciously

similar. As well, the complexity of either type of formulation depends largely on

the choice of components and independent variables, as described in Chapter 3.

Not surprisingly, Zeleznik and Gordon (1960, 1968) and Brinkley (1960) proved

that the two methods were computationally and conceptually equivalent. The bal-

anced reactions of the equilibrium constant method are counterparts to the spe-

cies compositions required by the minimization technique; in fact, given the same

choice of components, the reactions and expressions of species compositions take

the same form.

Nonetheless, controversy continues even today among geochemical modelers.

Colleagues sometimes take sides on the issue, and claims of simplified formula-

tions and guaranteed convergence by minimization are still heard. In this book,

I formalize the discussion in terms of equilibrium constants, which are familiar

to geochemists and widely reported in the literature. Quite properly, I treat mini-

mization methods as being computationally equivalent to the equilibrium constant

approach, and do not discuss them as a separate group.

1.1.2 Application in geochemistry

When they calculated the species distribution in seawater, Garrels and Thompson

(1962) were probably the first to apply chemical modeling in the field of geo-

chemistry. Modern chemical analyses give the composition of seawater in terms of
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dissociated ions (NaC, CaCC, MgCC, HCO�
3 , and so on), even though the solutes

are distributed among complexes such as MgSO4(aq) and CaClC as well as the

free ions. Before advent of the theory of electrolyte dissociation, seawater analyses

were reported, with equal validity, in terms of the constituent salts NaCl, MgCl2,

and so on. Analyses can, in fact, be reported in many ways, depending on the ana-

lyst’s choice of chemical components.

Garrels and Thompson’s calculation, computed by hand, is the basis for a class

of geochemical models that predict species distributions, mineral saturation states,

and gas fugacities from chemical analyses. This class of models stems from the dis-

tinction between a chemical analysis, which reflects a solution’s bulk composition,

and the actual distribution of species in a solution. Such equilibrium models have

become widely applied, thanks in part to the dissemination of reliable computer

programs such as SOLMNEQ (Kharaka and Barnes, 1973) and WATEQ (Truesdell

and Jones, 1974).

Garrels and Mackenzie (1967) pioneered a second class of models when they

simulated the reactions that occur as a spring water evaporates. They began by

calculating the distribution of species in the spring water, and then repeatedly re-

moved an aliquot of water and recomputed the species distribution. From concepts

of equilibrium and mass transfer, the reaction path model was born. This class of

calculation is significant in that it extends geochemical modeling from considering

state to simulating process.

Helgeson (1968) introduced computerized modeling to geochemistry. Inspired

by Garrels and Mackenzie’s work, he realized that species distributions and the

effects of mass transfer could be represented by general equations that can be

coded into computer programs. Helgeson and colleagues (Helgeson et al., 1969,

1970) demonstrated a generalized method for tracing reaction paths, which they

automated with their program PATHI (“path-one”) and used to study weathering,

sediment diagenesis, evaporation, hydrothermal alteration, and ore deposition.

Two conceptual improvements have been made since this early work. First,

Helgeson et al. (1970) posed the reaction path problem as the solution to a sys-

tem of ordinary differential equations. Karpov and Kaz’min (1972) and Karpov et

al. (1973) recast the problem algebraically so that a reaction path could be traced

by repeatedly solving for a system’s equilibrium state as the system varied in com-

position or temperature. Wolery’s (1979) EQ3/EQ6, the first software package for

geochemical modeling to be documented and distributed, and Reed’s (1977, 1982)

SOLVEQ and CHILLER programs used algebraic formulations. This refinement sim-

plified the formulations and codes, separated consideration of mass and heat trans-

fer from the chemical equilibrium calculations, and eliminated the error implicit in

integrating differential equations numerically.

Second, modelers took a broader view of the choice of chemical components.
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Aqueous chemists traditionally think in terms of elements (and electrons) as com-

ponents, and this choice carried through to the formulations of PATHI and EQ3/EQ6.

Morel and Morgan (1972), in calculating species distributions, described compo-

sition by using aqueous species for components (much like the seawater analysis

described at the beginning of this section; see also Morel, 1983). Reed (1982) for-

mulated the reaction path problem similarly, and Perkins and Brown’s (1982) PATH

program also used species and minerals as components. Chemical reactions now

served double duty by giving the compositions of species and minerals in the sys-

tem in terms of the chosen component set. This choice, which allowed models to

be set up without even acknowledging the existence of elements, simplified the

governing equations and provided for easier numerical solutions.

1.2 Scope of this book

In setting out to write this book, I undertook to describe reaction modeling both

in its conceptual underpinnings and its applications. Anything less would not be

acceptable. Lacking a thorough introduction to underlying theory, the result would

resemble a cookbook, showing the how but not the why of modeling. A book

without detailed examples spanning a range of applications, on the other hand,

would be sterile and little used.

Of necessity, I limited the scope of the text to discussing reaction modeling itself.

I introduce the thermodynamic basis for the equations I derive, but do not attempt

a complete development of the field of thermodynamics. A number of texts already

present this beautiful body of theory better than I could aspire to in these pages.

Among my favorites: Prigogine and Defay (1954), Pitzer and Brewer (1961), Den-

bigh (1971), Anderson and Crerar (1993), and Nordstrom and Munoz (1994). I

present (in Chapter 8) but do not derive models for estimating activity coefficients

in electrolyte solutions. The reader interested in more detail may refer to Robinson

and Stokes (1968), Helgeson et al. (1981), and Pitzer (1987); Anderson and Crerar

(1993, Chapter 23) present a concise but thorough overview of the topic.

Finally, I do not discuss questions of the measurement, estimation, evaluation,

and compilation of the thermodynamic data upon which reaction modeling de-

pends. Nordstrom and Munoz (1994, Chapters 13 and 14) provide a summary and

overview of this topic, truly a specialty in its own right. Haas and Fisher (1976),

Helgeson et al. (1978), and Johnson et al. (1991) treat aspects of the subject in

detail.





2

Modeling overview

A model is a simplified version of reality that is useful as a tool. A successful model

strikes a balance between realism and practicality. Properly constructed, a model

is neither so simplified that it is unrealistic nor so detailed that it cannot be readily

evaluated and applied to the problem of interest.

Geologic maps constitute a familiar class of models. To map a sedimentary

section, a geologist collects data at certain outcrops. He casts his observations

in terms of the local stratigraphy, which is itself a model that simplifies reality

by allowing groups of sediments to be lumped together into formations. He then

interpolates among his data points (and projects beneath them) to infer positions

for formation contacts, faults, and so on across his field area.

The final map is detailed enough to show the general arrangement of formations

and major structures, but simplified enough, when drawn to scale, that small de-

tails do not obscure the overall picture. The map, despite its simplicity, is without

argument a useful tool for understanding the area’s geology. To be successful, a

geochemical model should also portray the important features of the problem of

interest without necessarily attempting to reproduce each chemical or mineralogi-

cal detail.

2.1 Conceptual models

The first and most critical step in developing a geochemical model is conceptual-

izing the system or process of interest in a useful manner. By system, we simply

mean the portion of the universe that we decide is relevant. The composition of a

closed system is fixed, but mass can enter and leave an open system. A system has

an extent, which the modeler defines when he sets the amounts of fluid and mineral

considered in the calculation. A system’s extent might be a droplet of rainfall, the

groundwater and sediments contained in a unit volume of an aquifer, or the world’s

oceans.

7
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Mass In

Heat Transfer

Mass out

Buffer

Equilibrium

System

Fig. 2.1. Schematic diagram of a reaction model. The heart of the model is the equilib-
rium system, which contains an aqueous fluid and, optionally, one or more minerals. The
system’s constituents remain in chemical equilibrium throughout the calculation. Transfer
of mass into or out of the system and variation in temperature drive the system to a series
of new equilibria over the course of the reaction path. The system’s composition may be
buffered by equilibrium with an external gas reservoir, such as the atmosphere.

The “art” of geochemical modeling is conceptualizing the model in a useful

way. Figure 2.1 shows schematically the basis for constructing a geochemical

model. The heart of the model is the equilibrium system, which remains in some

form of chemical equilibrium, as described below, throughout the calculation.

The equilibrium system contains an aqueous fluid and optionally one or more

minerals. The temperature and composition of the equilibrium system are known

at the beginning of the model, which allows the system’s equilibrium state to be

calculated. Pressure also affects the equilibrium state, but usually in a minor way

under the near-surface conditions considered in this book (e.g., Helgeson, 1969;

but also see Hemley et al., 1986), unless a gas phase is present.

In the simplest class of geochemical models, the equilibrium system exists as

a closed system at a known temperature. Such equilibrium models predict the

distribution of mass among species and minerals, as well as the species’ activities,

the fluid’s saturation state with respect to various minerals, and the fugacities

of different gases that can exist in the chemical system. In this case, the initial

equilibrium system constitutes the entire geochemical model.

More complicated models account for the transport of mass or heat into or out

of the system, so that its composition or temperature, or both, vary over the course

of the calculation. The system’s initial equilibrium state provides the starting point
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for this class of reaction path models. From this point, the model traces how mass

entering and leaving the system, or changes in temperature, affect the system’s

equilibrium state.

Conceptualizing a geochemical model is a matter of defining (1) the nature of

equilibrium to be maintained, (2) the initial composition and temperature of the

equilibrium system, and (3) the mass transfer or temperature variation to occur

over the course of the reaction process envisioned.

2.1.1 Types of equilibrium

It is useful at this point to differentiate among the ways in which we can define

equilibrium. In a classic sense (e.g., Pitzer and Brewer, 1961; Denbigh, 1971), a

system is in equilibrium when it occupies a specific region of space within which

there is no spontaneous tendency for change to occur. In this case, which we

will call complete equilibrium, all possible chemical reactions are in equilibrium.

Assuming complete equilibrium, for example, we can predict the distribution of

dissolved species in a sample of river water, if the water is not supersaturated with

respect to any mineral.

Geochemical models can be conceptualized in terms of certain false equilibrium

states (Barton et al., 1963; Helgeson, 1968). A system is in metastable equilibrium

when one or more reactions proceed toward equilibrium at rates that are vanish-

ingly small on the time scale of interest. Metastable equilibria commonly figure in

geochemical models. In calculating the equilibrium state of a natural water from a

reliable chemical analysis, for example, we may find that the water is supersatu-

rated with respect to one or more minerals. The calculation predicts that the water

exists in a metastable state because the reactions to precipitate these minerals have

not progressed to equilibrium.

In tracing a reaction path, likewise, we may find a mineral in the calculation

results that is unlikely to form in a real system. Quartz, for example, would be

likely to precipitate too slowly to be observed in a laboratory experiment conducted

at room temperature. A model can be instructed to seek metastable solutions by not

considering (suppressing, in modeling parlance) certain minerals in the calculation,

as would be necessary to model such an experiment.

A system in complete equilibrium is spatially continuous, but this requirement

can be relaxed as well. A system can be in internal equilibrium but, like Swiss

cheese, have holes. In this case, the system is in partial equilibrium. The fluid

in a sandstone, for example, might be in equilibrium itself, but may not be in

equilibrium with the mineral grains in the sandstone or with just some of the grains.

This concept has provided the basis for many published reaction paths, beginning
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with the work of Helgeson et al. (1969), in which a rock gradually reacts with its

pore fluid.

The species dissolved in a fluid may be in partial equilibrium, as well. Many

redox reactions equilibrate slowly in natural waters (e.g., Lindberg and Runnells,

1984). The oxidation of methane

CH4(aq) C 2 O2(aq) ! HCO�
3 C HC C H2O (2.1)

is notorious in this regard. Shock (1988), for example, found that although carbon-

ate species and organic acids in oil-field brines appear to be in equilibrium with

each other, these species are clearly out of equilibrium with methane. To model

such a system, the modeler can decouple redox pairs such as HCO�
3 � CH4 (e.g.,

Wolery, 1983), denying the possibility that oxidized species react with reduced

species.

A third variant is the concept of local equilibrium, sometimes called mosaic

equilibrium (Thompson, 1959, 1970; Valocchi, 1985; Knapp, 1989). This idea

is useful when temperature, mineralogy, or fluid chemistry vary across a system

of interest. By choosing a small enough portion of a system, according to this

assumption, we can consider that portion to be in equilibrium. The concept of local

equilibrium can also be applied to model reactions occurring in systems open to

groundwater flow, using the “flow-through” and “flush” models described in the

next section. The various types of equilibrium can sometimes be combined in a

single model. A modeler, for example, might conceptualize a system in terms of

partial and local equilibrium.

2.1.2 The initial system

Calculating a model begins by computing the initial equilibrium state of the system

at the temperature of interest. By convention but not requirement, the initial system

contains a kilogram of water and so, accounting for dissolved species, a somewhat

greater mass of fluid. The modeler can alter the system’s extent by prescribing a

greater or lesser water mass. Minerals may be included as desired, up to the limit

imposed by the phase rule, as described in the next chapter. Each mineral included

will be in equilibrium with the fluid, thus providing a constraint on the fluid’s

chemistry.

The modeler can constrain the initial equilibrium state in many ways, depending

on the nature of the problem, but the number of pieces of information required is

firmly set by the laws of thermodynamics. In general, the modeler sets the temper-

ature and provides one compositional constraint for each chemical component in

the system. Useful constraints include

� The mass of solvent water (1 kg by default),
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� The amounts of any minerals in the equilibrium system,

� The fugacities of any gases at known partial pressure,

� The amount of any component dissolved in the fluid, such as NaC or HCO�
3 ,

as determined by chemical analysis, and

� The activities of a species such as HC, as would be determined by pH mea-

surement, or the oxidation state given by an Eh determination.

Unfortunately, the required number of constraints is not negotiable. Regardless

of the difficulty of determining these values in sufficient number or the apparent

desirability of including more than the allowable number, the system is mathemat-

ically underdetermined if the modeler uses fewer constraints than components, or

overdetermined if he sets more.

Sometimes the calculation predicts that the fluid as initially constrained is su-

persaturated with respect to one or more minerals, and hence, is in a metastable

equilibrium. If the supersaturated minerals are not suppressed, the model proceeds

to calculate the equilibrium state, which it needs to find if it is to follow a reaction

path. By allowing supersaturated minerals to precipitate, accounting for any min-

erals that dissolve as others precipitate, the model determines the stable mineral

assemblage and corresponding fluid composition. The model output contains the

calculated results for the supersaturated system as well as those for the system at

equilibrium.

2.1.3 Mass and heat transfer: The reaction path

Once the initial equilibrium state of the system is known, the model can trace a

reaction path. The reaction path is the course followed by the equilibrium system

as it responds to changes in composition and temperature (Fig. 2.1). The measure

of reaction progress is the variable �, which varies from zero to one from the

beginning to end of the path. The simplest way to specify mass transfer in a reaction

model (Chapter 13) is to set the mass of a reactant to be added or removed over the

course of the path. In other words, the reaction rate is expressed in reactant mass

per unit �. To model the dissolution of feldspar into a stream water, for example,

the modeler would specify a mass of feldspar sufficient to saturate the water. At

the point of saturation, the water is in equilibrium with the feldspar and no further

reaction will occur. The results of the calculation are the fluid chemistry and masses

of precipitated minerals at each point from zero to one, as indexed by �.

Any number of reactants may be considered, each of which can be transferred

at a positive or negative rate. Positive rates cause mass to be added to the system;

at negative rates it is removed. Reactants may be minerals, aqueous species (in

charge-balanced combinations), oxide components, or gases. Since the role of a
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reactant is to change the system composition, it is the reactant’s composition, not

its identity, that matters. In other words, quartz, cristobalite, and SiO2(aq) behave

alike as reactants.

Mass transfer can be described in more sophisticated ways. By taking � in the

previous example to represent time, the rate at which feldspar dissolves and product

minerals precipitate can be set using kinetic rate laws, as discussed in Chapter 16.

The model calculates the actual rates of mass transfer at each step of the reaction

progress from the rate constants, as measured in laboratory experiments, and the

fluid’s degree of undersaturation or supersaturation.

The fugacities of gases such as CO2 and O2 can be buffered (Fig. 2.1; see

Chapter 14) so that they are held constant over the reaction path. In this case,

mass transfer between the equilibrium system and the gas buffer occurs as needed

to maintain the buffer. Adding acid to a CO2-buffered system, for example, would

be likely to dissolve calcite,

CaCO3

calcite

C 2HC ! CaCC C H2O C CO2(g) : (2.2)

Carbon dioxide will pass out of the system into the buffer to maintain the buffered

fugacity.

Reaction paths can be traced at steady or varying temperature; the latter case is

known as a polythermal path. Strictly speaking, heat transfer occurs even at con-

stant temperature, albeit commonly in small amounts, to offset reaction enthalpies.

For convenience, modelers generally define polythermal paths in terms of changes

in temperature rather than heat fluxes.

2.2 Configurations of reaction models

Reaction models, despite their simple conceptual basis (Fig. 2.1), can be configured

in a number of ways to represent a variety of geochemical processes. Each type

of model imposes on the system some variant of equilibrium, as described in

the previous section, but differs from others in the manner in which mass and

heat transfer are specified. This section summarizes the configurations that are

commonly applied in geochemical modeling.

2.2.1 Closed-system models

Closed-system models are those in which no mass transfer occurs. Equilibrium

models, the simplest of this class, describe the equilibrium state of a system com-

posed of a fluid, any coexisting minerals, and, optionally, a gas buffer. Such models
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pH (25 °C)

pH (300 °C) = ?

Fig. 2.2. Example of a polythermal path. Fluid from a hydrothermal experiment is sam-
pled at 300 °C and analyzed at room temperature. To reconstruct the fluid’s pH at high
temperature, the calculation equilibrates the fluid at 25 °C and then carries it as a closed
system to the temperature of the experiment.

are not true reaction models, however, because they describe state instead of pro-

cess.

Polythermal reaction models (Section 14.1), however, are commonly applied to

closed systems, as in studies of groundwater geothermometry (Chapter 23), and in-

terpretations of laboratory experiments. In hydrothermal experiments, for example,

researchers sample and analyze fluids from runs conducted at high temperature, but

can determine pH only at room temperature (Fig. 2.2). To reconstruct the original

pH (e.g., Reed and Spycher, 1984), assuming that gas did not escape from the fluid

before it was analyzed, an experimentalist can calculate the equilibrium state at

room temperature and follow a polythermal path to estimate the fluid chemistry at

high temperature.

There is no restriction against applying polythermal models in open systems. In

this case, the modeler defines mass transfer as well as the heating or cooling rate in

terms of �. Realistic models of this type can be hard to construct (e.g., Bowers and

Taylor, 1985), however, because the heating or cooling rates need to be balanced

somehow with the rates of mass transfer.

2.2.2 Titration models

The simplest open-system model involves a reactant which, if it is a mineral, is un-

dersaturated in an initial fluid. The reactant is gradually added into the equilibrium

system over the course of the reaction path (Fig. 2.3). The reactant dissolves irre-

versibly. The process may cause minerals to become saturated and precipitate or
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Fig. 2.3. Configuration of a reaction path as a titration model. One or more reactants are
gradually added to the equilibrium system, as might occur as the grains in a rock gradually
react with a pore fluid.

drive minerals that already exist in the system to dissolve. The equilibrium system

continues to evolve until the fluid reaches saturation with the reactant or the reac-

tant is exhausted. A model of this nature can be constructed with several reactants,

in which case the process proceeds until each reactant is saturated or exhausted.

This type of calculation is known as a titration model because the calculation

steps forward through reaction progress �, adding an aliqout of the reactant at each

step ��. To predict, for example, how the a rock will react with its pore fluid, we

can titrate the minerals that make up the rock into the fluid. The solubility of most

minerals in water is rather small, so the fluid in such a calculation is likely to be-

come saturated after only a small amount of the minerals has reacted. Reacting on

the order of 10�3 moles of a silicate mineral, for example, is commonly sufficient

to saturate a fluid with respect to the mineral.

In light of the small solubilities of many minerals, the extent of reaction pre-

dicted by this type of calculation may be smaller than expected. Considerable

amounts of diagenetic cements are commonly observed, for example, in sedimen-

tary rocks, and crystalline rocks can be highly altered by weathering or hydrother-

mal fluids. A titration model may predict that the proper cements or alteration

products form, but explaining the quantities of these minerals observed in nature

will probably require that the rock react repeatedly as its pore fluid is replaced.

Local equilibrium models of this nature are described later in this section.
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2.2.3 Fixed-fugacity and sliding-fugacity models

Many geochemical processes occur in which a fluid remains in contact with a

gaseous phase. The gas, which could be the Earth’s atmosphere or a subsurface

gas reservoir, acts to buffer the system’s chemistry. By dissolving gas species from

the buffer or exsolving gas into it, the fluid will, if reaction proceeds slowly enough,

maintain equilibrium with the buffer.

Reaction paths in which the fugacities of one or more gases are buffered by an

external reservoir (Fig. 2.1) are known as fixed-fugacity paths (Section 14.2). Be-

cause Garrels and Mackenzie (1967) assumed a fixed CO2 fugacity when they cal-

culated their pioneering reaction path by hand (see Chapter 2), they also calculated

a fixed-fugacity path. Numerical modelers (e.g., Delany and Wolery, 1984) have

more recently programmed buffered gas fugacities as options in their software.

The results of fixed-fugacity paths can differ considerably from those of simple

titration models. Consider, for example, the oxidation of pyrite to goethite,

FeS2

pyrite

C 5=2 H2O C 15=4 O2(aq) ! FeOOH

goethite

C 4HC C 2 SO��
4 (2.3)

in a surface water. In a simple titration model, pyrite dissolves until the water’s

dissolved oxygen is consumed. Water equilibrated with the atmosphere contains

about 10 mg kg�1 O2(aq), so the amount of pyrite consumed is small. In a fixed-

fugacity model, however, the concentration of O2(aq) remains in equilibrium with

the atmosphere, allowing the reaction to proceed almost indefinitely.

Reaction paths in which the fugacities of one or more gases vary along � instead

of remaining fixed are called sliding-fugacity paths (Section 14.3). This type of

path is useful when changes in total pressure allow gases to exsolve from the fluid

(e.g., Leach et al., 1991). For example, layers of dominantly carbonate cement are

observed along the tops of geopressured zones in the US Gulf of Mexico basin

(e.g., Hunt, 1990). The cement is apparently precipitated (Fig. 2.4) as fluids slowly

migrate from overpressured sediments in overlying strata at hydrostatic pressure.

The pressure drop allows CO2 to exsolve,

CaCC C 2 HCO�
3 ! CaCO3

calcite

C H2O C CO2(g) (2.4)

causing calcite to precipitate.

Fixed-activity and sliding-activity paths (Sections 14.2–14.3) are analogous to

their counterparts in fugacity, except that they apply to aqueous species instead

of gases. Fixed-activity paths are useful for simulating, for example, a laboratory

experiment controlled by a pH-stat, a device that holds pH constant. Sliding-
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Geopressured

Hydrostatic

Fig. 2.4. Example of a sliding-fugacity path. Deep groundwaters of a geopressured zone in
a sedimentary basin migrate upward to lower pressures. During migration, CO2 exsolves
from the water so that its fugacity follows the variation in total pressure. The loss of CO2

causes carbonate cements to form.

activity paths make easy work of calculating speciation diagrams, as described in

Chapter 14.

2.2.4 Kinetic reaction models

In kinetic reaction paths (discussed in Chapter 16), the rates at which minerals

dissolve into or precipitate from the equilibrium system are set by kinetic rate

laws. In this class of models, reaction progress is measured in time instead of by

the nondimensional variable �. According to the rate law, as would be expected,

a mineral dissolves into fluids in which it is undersaturated and precipitates when

supersaturated. The rate of dissolution or precipitation in the calculation depends

on the variables in the rate law: the reaction’s rate constant, the mineral’s surface

area, the degree to which the mineral is undersaturated or supersaturated in the

fluid, and the activities of any catalyzing and inhibiting species.

Kinetic and equilibrium-controlled reactions can be readily combined into a

single model. The two descriptions might seem incompatible, but kinetic theory

(Chapter 16) provides a conceptual link: the equilibrium point of a reaction is the

point at which dissolution and precipitation rates balance. For practical purposes,

mineral reactions fall into three groups: those in which reaction rates may be

so slow relative to the time period of interest that the reaction can be ignored

altogether; those in which the rates are fast enough to maintain equilibrium; and

the remaining reactions. Only those in the latter group require a kinetic description.
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Fig. 2.5. “Flow-through” configuration of a reaction path. A packet of fluid reacts with
an aquifer as it migrates. Any minerals that form as reaction products are left behind and,
hence, isolated from further reaction.

2.2.5 Local equilibrium models

Reaction between rocks and the groundwaters migrating through them is most ap-

propriately conceptualized by using a model configuration based on the assumption

of local equilibrium (Section 13.3).

In a flow-through reaction path, the model isolates from the system minerals

that form over the course of the calculation, preventing them from reacting further.

Garrels and Mackenzie (1967) suggested this configuration, and Wolery (1979)

implemented it in the EQ3/EQ6 code. In terms of the conceptual model (Fig. 2.1),

the process of isolating product minerals is a special case of transferring mass out

of the system. Rather than completely discarding the removed mass, however, the

software tracks the cumulative amount of each mineral isolated from the system

over the reaction path.

Using a flow-through model, for example, we can follow the evolution of a

packet of fluid as it traverses an aquifer (Fig. 2.5). Fresh minerals in the aquifer

react to equilibrium with the fluid at each step in reaction progress. The minerals

formed by this reaction are kept isolated from the fluid packet, as though the packet

has moved farther along the aquifer and is no longer able to react with the minerals

produced previously.

In a second example of a flow-through path, we model the evaporation of seawa-

ter (Fig. 2.6). The equilibrium system in this case is a unit mass of seawater. Water

is titrated out of the system over the course of the path, concentrating the seawa-

ter and causing minerals to precipitate. The minerals sink to the sea floor as they
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Fig. 2.6. Example of a “flow-through” path. Titrating water from a unit volume of seawater
increases the seawater’s salinity until evaporite minerals form. The product minerals sink
to the sea floor, where they are isolated from further reaction.

form, and so are isolated from further reaction. We carry out such a calculation in

Chapter 24.

In a flush model, on the other hand, the model tracks the evolution of a system

through which fluid migrates (Fig. 2.7). The equilibrium system in this case might

be a specified volume of an aquifer, including rock grains and pore fluid. At each

step in reaction progress, an increment of unreacted fluid is added to the system,

displacing the existing pore fluid. The model is analogous to a “mixed-flow reactor”

as applied in chemical engineering (Levenspeil, 1972; Hill, 1977).

Flush models are useful for applications such as studying the diagenetic reac-

tions resulting from groundwater flow in sedimentary basins (see Chapter 25) and

predicting formation damage in petroleum reservoirs and injection wells (Fig. 2.8;

see Chapters 29 and 30). Stimulants intended to increase production from oil wells

(including acids, alkalis, and hot water) as well as the industrial wastes pumped into

injection wells commonly react strongly with geologic formations (e.g., Hutcheon,

1984). Reaction models are likely to find increased application as well operators

seek to minimize damage from caving and the loss of permeability due to the for-

mation of oxides, clay minerals, and zeolites in the formation’s pore space.

Flush models can also be configured to simulate the effects of dispersive mixing.

Dispersion is the physical process by which groundwaters mix in the subsurface

(Freeze and Cherry, 1979). With mixing, the groundwaters react with each other
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Fig. 2.7. “Flush” configuration of a reaction model. Unreacted fluid enters the equilibrium
system, which contains a unit volume of an aquifer and its pore fluid, displacing the reacted
fluid.

Fig. 2.8. Example of a “flush” model. Fluid is pumped into a petroleum reservoir as a
stimulant, or industrial waste is pumped into a disposal well. Unreacted fluid enters the
formation, displacing the fluid already there.

and the aquifer through which they flow (e.g., Runnells, 1969). In a flush model,

two fluids can flow into the equilibrium system, displacing the mixed and reacted

fluid (Fig. 2.9).

A final variant of local equilibrium models is the dump option (Wolery, 1979).

Here, once the equilibrium state of the initial system is determined, the minerals
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Fig. 2.9. Use of a “flush” model to simulate dispersive mixing. Two fluids enter a unit vol-
ume of an aquifer where they react with each other and minerals in the aquifer, displacing
the mixed and reacted fluid.

in the system are jettisoned. The minerals present in the initial system, then, are

not available over the course of the reaction path. The dump option differs from

the flow-through model in that while the minerals present in the initial system are

prevented from back-reacting, those that precipitate over the reaction path are not.

As an example of how the dump option might be used, consider the problem of

predicting whether scale will form in the wellbore as groundwater is produced from

a well (Fig. 2.10). The fluid is in equilibrium with the minerals in the formation,

so the initial system contains both fluid and minerals. The dump option simulates

movement of a packet of fluid from the formation into the wellbore, since the min-

erals in the formation are no longer available to the packet. As the packet ascends

the wellbore, it cools, perhaps exsolves gas as it moves toward lower pressure,

and leaves behind any scale produced. The reaction model, then, is a polythermal,

sliding-fugacity, and flow-through path combined with the dump option.

2.2.6 Reactive transport models

Beginning in the late 1980s, a number of groups have worked to develop reactive

transport models of geochemical reaction in systems open to groundwater flow.

As models of this class have become more sophisticated, reliable, and accessible,

they have assumed increased importance in the geosciences (e.g., Steefel et al.,

2005). The models are a natural marriage (Rubin, 1983; Bahr and Rubin, 1987) of

the local equilibrium and kinetic models already discussed with the mass transport
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Surface T, f

Reservoir T, f

Fig. 2.10. Use of the “dump” option to simulate scaling. The pore fluid is initially in equi-
librium with minerals in the formation. As the fluid enters the wellbore, the minerals are
isolated (dumped) from the system. The fluid then follows a polythermal, sliding-fugacity
path as it ascends the wellbore toward lower temperatures and pressures, depositing scale.

models traditionally applied in hydrology and various fields of engineering (e.g.,

Bird et al., 1960; Bear, 1972).

By design, this class of models predicts the distribution in space and time of

the chemical reactions that occur along a groundwater flow path. Among the many

papers discussing details of how the reactive transport problem can be formulated

are those of Berner (1980), Lichtner (1985, 1988, 1996), Lichtner et al. (1986),

Cederberg et al. (1985), Ortoleva et al. (1987), Cheng and Yeh (1988), Yeh and

Tripathi (1989), Liu and Narasimhan (1989a, 1989b), Steefel and Lasaga (1992,

1994), Yabusaki et al. (1998), and Malmstrom et al. (2004).

In a reactive transport model, the domain of interest is divided into nodal blocks,

as shown in Figure 2.11. Fluid enters the domain across one boundary, reacts with

the medium, and discharges at another boundary. In many cases, reaction occurs

along fronts that migrate through the medium until they either traverse it or assume

a steady-state position (Lichtner, 1988). As noted by Lichtner (1988), models of

this nature predict that reactions occur in the same sequence in space and time as

they do in simple reaction path models. The reactive transport models, however,

predict how the positions of reaction fronts migrate through time, provided that

reliable input is available about flow rates, the permeability and dispersivity of the

medium, and reaction rate constants.

Reactive transport models are, naturally, more challenging to set up and compute
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(a)
(b)

(c)

Fig. 2.11. Configurations of reactive transport models of water–rock interaction in a sys-
tem open to groundwater flow: (a) linear domain in one dimension, (b) radial domain in
one dimension, and (c) linear domain in two dimensions. Domains are divided into nodal
blocks, within each of which the model solves for the distribution of chemical mass as
it changes over time, in response to transport by the flowing groundwater. In each case,
unreacted fluid enters the domain and reacted fluid leaves it.

than are simple reaction models. The model results reflect the kinetic rate constants

taken to describe chemical reaction, as well as the hydrologic properties assumed

for the medium. Notably, these data normally comprise the most poorly known

parameters in the natural system.

Since a valid reaction model is a prerequisite for a continuum model, the first

step in any case is to construct a successful reaction model for the problem of

interest. The reaction model provides the modeler with an understanding of the

nature of the chemical process in the system. Armed with this information, he is

prepared to undertake more complex calculations. Chapters 20 and 21 of this book

treat in detail the construction of reactive transport models.

2.3 Uncertainty in geochemical modeling

Calculating a geochemical model provides not only results, but uncertainty about

the accuracy of the results. Uncertainty, in fact, is an integral part of modeling that

deserves as much attention as any other aspect of a study. To evaluate the sources

of error in a study, a modeler should consider a number of questions:

� Is the chemical analysis used sufficiently accurate to support the modeling

study? The chemistry of the initial system in most models is constrained by a

chemical analysis, including perhaps a pH determination and some description

of the system’s oxidation state. The accuracy and completeness of available
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chemical analyses, however, vary widely. Routine tests made of drinking wa-

ter supplies and formation fluids from oil wells are commonly too rough and

incomplete to be of much use to a modeler. Sets of analyses retrieved unselec-

tively from water quality databases such as WATSTORE at the US Geological

Survey are generally not suitable for modeling applications (Hem, 1985). Care-

ful analyses such as those of Iceland’s geothermal waters made for scientific

purposes (Arnorsson et al., 1983; see Chapter 23), on the other hand, are in-

valuable.

As Hem (1985) notes, a chemical analysis with concentrations reported to

two or three, and sometimes four or five, significant figures can be misleadingly

authoritative. Analytical accuracy and precision are generally in the range

of ˙2 to ˙10%, but depend on the technique used, the skill of the analyst,

and on whether or not the constituent was present near the detection limit of

the analytical method. The third digit in a reported concentration is seldom

meaningful, and confidence should not necessarily be placed on the second.

Care should be taken in interpreting reported pH values, which may have

been determined in the field or in the laboratory after the sample had been

stored for an unknown period of time. Only the field measurement of pH is

meaningful and, in the case of a groundwater, even the field measurement is

reliable only if it is made immediately after sampling, before the water can

exchange CO2 with the atmosphere.

Significant error is introduced when a sample is acidified to “preserve” it,

if the sample is not first carefully filtered to remove sediment and colloids (as

illustrated in Section 6.2). Until the 1950s, it was normal procedure to sample

unfiltered waters, and this practice continues in some organizations today. Even

today’s common practice of passing samples through a 0.45-�m filter in the

field fails to remove colloidal aluminum and iron (e.g., Kennedy et al., 1974);

a 0.10-�m filter is usually required to separate these colloids. By adding acid,

the sampler dissolves any colloids and some of any suspended sediments, the

constituents of which will appear in the chemical analysis as though they had

originally been in solution.

Samples of formation water taken from drill-stem tests during oil explo-

ration are generally contaminated by drilling fluids. The expense of keeping a

drilling rig idle generally precludes pumping the formation fluid long enough

to produce uncontaminated fluid, a procedure that might require weeks. As

only rough knowledge of groundwater composition is needed in exploration,

there is little impetus to improve procedures. Samples obtained at the well head

after a field has been in production (e.g., Lico et al., 1982) may be preferable to

analyses made during drill-stem tests, but care must be taken: samples obtained

in this way may have already exsolved CO2 or other gases before sampling.
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� Does the thermodynamic dataset contain the species and minerals likely to be

important in the study? A set of thermodynamic data, especially one intended

to span a range of temperatures, is by necessity a balance between complete-

ness and accuracy. The modeler is responsible for assuring that the database

includes the predominant species and important minerals in the problem of

interest.

The following example shows why this is important. The calculations in this

book make use of the dataset compiled by Thomas Wolery, Ken Jackson, and

numerous co-workers at Lawrence Livermore National Laboratory (the LLNL

dataset; Delany and Lundeen, 1989), which is based in part on a dataset devel-

oped by Helgeson et al. (1978). The dataset includes a number of Cu-bearing

species and minerals, including the cupric species CuCC and Cu(OH)C that are

dominant at room temperature under oxidized conditions in acidic and neutral

solutions.

At pH values greater than about 9.5, the species Cu(OH)2, Cu(OH)�3 , and

Cu(OH)�
4 � dominate the solubility of cupric copper by some orders of mag-

nitude (Baes and Mesmer, 1976); these species, however, are not included in

the database version used in this book. To construct a valid model of copper

chemistry in an oxidizing, alkaline solution, the modeler would need to extend

the database to include these species.

The same requirement extends to the minerals considered in the calculation.

Minerals in nature occur as solid solutions in which elements substitute for

one another in the mineral’s crystal structure, but thermodynamic datasets

generally contain data for pure minerals of fixed composition. A special danger

arises in considering the chemistry of trace metals. In nature, these would be

likely to occur as ions substituted into the framework of common minerals

or sorbed onto mineral or organic surfaces, but the chemical model would

consider only the possibility that the species occur as dissolved species or as

the minerals of these elements that are seldom observed in nature.

� Are the equilibrium constants for the important reactions in the thermody-

namic dataset sufficiently accurate? The collection of thermodynamic data is

subject to error in the experiment, chemical analysis, and interpretation of the

experimental results. Error margins, however, are seldom reported and never

seem to appear in data compilations. Compiled data, furthermore, have gener-

ally been extrapolated from the temperature of measurement to that of interest

(e.g., Helgeson, 1969). The stabilities of many aqueous species have been de-

termined only at room temperature, for example, and mineral solubilities many

times are measured at high temperatures where reactions approach equilibrium

most rapidly. Evaluating the stabilities and sometimes even the stoichiometries

of complex species is especially difficult and prone to inaccuracy.
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For these reasons, the thermodynamic data on which a model is based vary

considerably in quality. At the minimum, data error limits the resolution of

a geochemical model. The energetic differences among groups of silicates,

such as the clay minerals, is commonly smaller than the error implicit in

estimating mineral stability. A clay mineralogist, therefore, might find less

useful information in the results of a model than expected.

� Can the species’ activity coefficients be calculated accurately? An activity

coefficient relates each dissolved species’ concentration to its activity. Most

commonly, a modeler uses an extended form of the Debye–Hückel equation

to estimate values for the coefficients. Helgeson (1969) correlated the activity

coefficients to this equation for dominantly NaCl solutions having concentra-

tions up to 3 molal. The resulting equations are probably reliable for elec-

trolyte solutions of general composition (i.e., those dominated by salts other

than NaCl) where ionic strength is less than about 1 molal (Wolery, 1983; see

Chapter 8). Calculated activity coefficients are less reliable in more concen-

trated solutions. As an alternative to the Debye–Hückel method, the modeler

can use virial equations (the “Pitzer equations”) designed to predict activity

coefficients for electrolyte brines. These equations have their own limitations,

however, as discussed in Chapter 8.

� Do the kinetic rate constants and rate laws apply well to the system being

studied? Using kinetic rate laws to describe the dissolution and precipitation

rates of minerals adds an element of realism to a geochemical model but can be

a source of substantial error. Much of the difficulty arises because a measured

rate constant reflects the dominant reaction mechanism in the experiment from

which the constant was derived, even though an entirely different mechanism

may dominate the reaction in nature (see Chapter 16).

Rate constants for the dissolution and precipitation of quartz, for example,

have been measured in deionized water (Rimstidt and Barnes, 1980). Dove

and Crerar (1990), however, found that reaction rates increased by as much

as one and a half orders of magnitude when the reaction proceeded in dilute

electrolyte solutions. As well, reaction rates determined in the laboratory from

hydrothermal experiments on “clean” systems differ substantially from those

that occur in nature, where clay minerals, oxides, and other materials may coat

mineral surfaces and hinder reaction.

� Is the assumed nature of equilibrium appropriate? The modeler defines an

equilibrium system that forms the core of a geochemical model, using one of

the equilibrium concepts already described. The modeler needs to ask whether

the reactions considered in an equilibrium system actually approach equilib-

rium. If not, it may be necessary to decouple redox reactions, suppress miner-
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als from the system, or describe mineral dissolution and precipitation using a

kinetic rate law in order to calculate a realistic chemical model.

� Most importantly, has the modeler conceptualized the reaction process cor-

rectly? The modeler defines a reaction process on the basis of a concept of

how the process occurs in nature. Many times the apparent failure of a calcula-

tion indicates a flawed concept of how the reaction occurs rather than error in a

chemical analysis or the thermodynamic data. The “failed” calculation, in this

case, is more useful than a successful one because it points out a basic error in

the modeler’s understanding.

Errors in conceptualizing a problem are easy to make but can be hard to dis-

cover. A modeler, distracted by the intricacies of his tools and the complexities

of his results, can too easily lose sight of the nature of the conceptual model

used or the assumptions implicit in deriving it. A mistake in the study of sed-

iment diagenesis, for example, is to try to explain the origin of cements in a

marine orthoquartzite by heating the original quartz grains and seawater along

a polythermal path, to simulate burial.

The rock in question might contain a large amount of calcite cement, but

the reaction path predicts that only a trace of calcite forms during burial.

Considering this contradiction, the modeler realizes that this model could not

have been successful in the first place: there is not enough calcium or carbonate

in seawater to have formed that amount of cement. The model in this case was

improperly conceptualized as a closed rather than open system.

Given this array of error sources, how can a geochemical modeler cope with

the uncertainties implicit in his calculations? The best answer is probably that the

modeler should begin work by integrating experimental results and field observa-

tions into the study. Having successfully explained the experimental or field data,

the modeler can extrapolate to make predictions with greater confidence.

The modeler should also take heart that his work provides an impetus to deter-

mine more accurate thermodynamic data, derive better activity models for elec-

trolyte solutions, and measure reaction rates under more realistic conditions.
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Equilibrium in natural waters
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The equilibrium state

Aqueous geochemists work daily with equations that describe the equilibrium

points of chemical reactions among dissolved species, minerals, and gases. To

study an individual reaction, a geochemist writes the familiar expression, known as

the mass action equation, relating species’ activities to the reaction’s equilibrium

constant. In this chapter we carry this type of analysis a step farther by developing

expressions that describe the conditions under which not just one but all of the

possible reactions in a geochemical system are at equilibrium.

We consider a geochemical system comprising at least an aqueous solution

in which the species of many elements are dissolved. We generally have some

information about the fluid’s bulk composition, perhaps directly because we have

analyzed it in the laboratory. The system may include one or more minerals, up to

the limit imposed by the phase rule (see Section 3.4), that coexist with, and are in

equilibrium with the aqueous fluid. The fluid’s composition might also be buffered

by equilibrium with a gas reservoir (perhaps the atmosphere) that contains one or

more gases. The gas buffer is large enough that its composition remains essentially

unchanged if gas exsolves from or dissolves into the fluid.

How can we express the equilibrium state of such a system? A direct approach

would be to write each reaction that could occur among the system’s species,

minerals, and gases. To solve for the equilibrium state, we would determine a set of

concentrations that simultaneously satisfy the mass action equation corresponding

to each possible reaction. The concentrations would also have to add up, together

with the mole numbers of any minerals in the system, to give the system’s bulk

composition. In other words, the concentrations would also need to satisfy a set of

mass balance equations.

Such an approach, however, is unnecessarily difficult to carry out. Dissolving

even a few elements in water produces many tens of species that need to be

considered, and complex solutions contain many hundreds of species. Each species

represents an independent variable, namely its concentration, in our scheme. For

29
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any but the simplest of chemical systems, the problem would contain too many

unknown values to be solved conveniently.

Fortunately, few of these variables are truly independent. Geochemists have de-

veloped a variety of numerical schemes to solve for equilibrium in multicomponent

systems, each of which features a reduction in the number of independent variables

carried through the calculation. The schemes are alike in that each solves sets of

mass action and mass balance equations. They vary, however, in their choices of

thermodynamic components and independent variables, and how effectively the

number of independent variables has been reduced.

In this chapter we develop a description of the equilibrium state of a geochem-

ical system in terms of the fewest possible variables and show how the resulting

equations can be applied to calculate the equilibrium states of natural waters. We

reserve for the next two chapters discussion of how these equations can be solved

by using numerical techniques.

3.1 Thermodynamic description of equilibrium

To this point we have used a number of terms familiar to geochemists without

giving the terms rigorous definitions. We have, for example, discussed thermody-

namic components without considering their meaning in a strict sense. Now, as

we begin to develop an equilibrium model, we will be more careful in our use of

terminology. We will not, however, develop the basic equations of chemical ther-

modynamics, which are broadly known and clearly derived in a number of texts (as

mentioned in Chapter 2).

3.1.1 Phases and species

A geochemical system can be thought of as an assemblage of one or more phases of

given bulk composition. A phase is a region of space that is physically distinct, me-

chanically separable, and homogeneous in its composition and properties. Phases

are separated from one another by very thin regions known as surfaces over which

properties and commonly composition change abruptly (e.g., Pitzer and Brewer,

1961; Nordstrom and Munoz, 1994).

The ancient categories of water, earth, and air persist in classifying the phases

that make up geochemical systems. For purposes of constructing a geochemical

model, we assume that our system will always contain a fluid phase composed of

water and its dissolved constituents, and that it may include the phases of one or

more minerals and be in contact with a gas phase. If the fluid phase occurs alone,

the system is homogeneous; the system when composed of more than one phase is

heterogeneous.
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Species are the molecular entities, such as the gases CO2 and O2 in a gas, or

the electrolytes NaC and SO��
4 in an aqueous solution, that exist within a phase.

Species, unlike phases, do not have clearly identifiable boundaries. In addition,

species may exist only for the most fleeting of moments. Arriving at a precise

definition of what a species is, therefore, can be less than straightforward.

In aqueous solutions, geochemists generally recognize dissociated electrolytes

and their complexes as species. For example, we can take CaCC as a species in

itself, rather than combined with its sphere of hydration as CaCC � n H2O. Simi-

larly, we can represent the neutral species of dissolved silica SiO2(aq) as H4SiO4,

or silicic acid, just by adjusting our concept of the species’ boundaries. In elec-

trolyte brines, cations and anions occur so close together that the degree of com-

plexing among ions, and hence the extent of a species in solution, is difficult to

determine. Keeping in mind the unlikeliness of arriving at a completely unambigu-

ous definition, we will define (following, e.g., Smith and Missen, 1982) a species

as a chemical entity distinguishable from other entities by molecular formula and

structure, and by the phase within which it occurs.

3.1.2 Components and the basis

The overall composition of any system can be described in terms of a set of one

or more chemical components. We can think of components as the ingredients in a

recipe. A certain number of moles of each component go into making up a system,

just as the amount of each ingredient is specified in a recipe. By combining the

components, each in its specified mass, we reproduce the system’s bulk composi-

tion.

Whereas species and phases exist as real entities that can be observed in nature,

components are simply mathematical tools for describing composition. Expressed

another way, a component’s stoichiometry but not identity matters: water, ice, and

steam serve equally well as component H2O. Since a component needs no identity,

it may be either fictive or a species or phase that actually exists in the system. When

we express the composition of a fluid in terms of elements or the composition of

a rock in terms of oxides, we do not imply that elemental sodium occurs in the

fluid, or that calcium oxide is found in the rock. These are fictive components. If

we want, we can invent components that exist nowhere in nature.

On the other hand, when we express the chemical analysis of a fluid in terms

of the ions NaC, CaCC, HCO�
3 , and so on, we use a set of components with

the stoichiometries of species that really appear in the fluid. In this case, the

distinction between species and component is critical. The bicarbonate component,

for example, is distributed among a number of species: HCO�
3 , CO2(aq), CO��

3 ,

CaHCOC
3 , NaCO�

3 , etc. Hence, the number of moles of component HCO�
3 in the
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Free energy,

G

Extent of reaction

B + C only

D + E only

Equilibrium
point

Fig. 3.1. Variation in free energy G with reaction progress for the reaction bB C cC �

dD C eE. The reaction’s equilibrium point is the minimum along the free energy curve.

system would differ, perhaps by orders of magnitude, from that of the HCO�
3

species. Similarly, the other components would be distributed among the various

species NaC, NaCl, CaSO4, and so on.

As a second example, we choose quartz (or any silica polymorph) as a compo-

nent for a system containing an aqueous fluid and quartz. Now the mole number

for the quartz component includes not only the silica in the quartz mineral, the real

quartz, but the silica in solution in species such as SiO2(aq) and H3SiO�
4 . Again,

the mole numbers of component quartz and real quartz are not the same. A common

mistake in geochemical modeling is confusing the components used to describe the

composition of a system with the species and phases that are actually present.

The set of components used in a geochemical model is the calculation’s basis.

The basis is the coordinate system chosen to describe composition of the overall

system of interest, as well as the individual species and phases that make up the

system (e.g., Greenwood, 1975). There is no single basis that describes a given

system. Rather, the basis is chosen for convenience from among an infinite number

of possibilities (e.g., Morel, 1983). Any useful basis can be selected, and the basis

may be changed at any point in a calculation to a more convenient one. We discuss

the choice of basis species in the next section.

3.1.3 Chemical potentials, activities, and fugacities

The tools for calculating the equilibrium point of a chemical reaction arise from

the definition of the chemical potential. If temperature and pressure are fixed, the

equilibrium point of a reaction is the point at which the Gibbs free energy function

G is at its minimum (Fig. 3.1). As with any convex-upward function, finding the

minimum G is a matter of determining the point at which its derivative vanishes.
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To facilitate this analysis, we define the chemical potential � of each species

that makes up a phase. The chemical potential of a species B,

�B � @GB

@nB
(3.1)

is the derivative of the species’ free energyGB with respect to its mole number nB.

The value of � depends on temperature, pressure, and the mole numbers of each

species in the phase. Since � is defined as a partial derivative, we take its value

holding constant each of these variables except nB.

Knowing the chemical potential function for each species in a reaction defines

the reaction’s equilibrium point. Consider a hypothetical reaction,

bB C cC � dD C eE (3.2)

among species B, C, etc., where b, c, and so on are the reaction coefficients. The

free energy is at a minimum at the point where driving the reaction by a small

amount forward or backward has no effect on G. From the definition of chemical

potential (Eqn. 3.1), the point of minimum G satisfies

d�D C e�E � b�B � c�C D 0 ; (3.3)

since d moles of D and e moles of E are produced in the reaction for each b moles

of B and c moles of C consumed.

We can find the reaction’s equilibrium point from Equation 3.3 as soon as we

know the form of the function representing chemical potential. The theory of ideal

solutions (e.g., Pitzer and Brewer, 1961; Denbigh, 1971) holds that the chemical

potential of a species can be calculated from the potential �o
B of the species in its

pure form at the temperature and pressure of interest. According to this result, a

species’ chemical potential is related to its standard potential by

�B D �o
B C RTK lnXB : (3.4)

Here, R is the gas constant, TK is absolute temperature, and XB is the mole fraction

of B in the solution phase. Using this equation, we can calculate the equilibrium

point of reactions in ideal systems directly from tabulated values of standard po-

tentials �o.

Unfortunately, phases of geochemical interest are not ideal. As well, aqueous

species do not occur in a pure form, since their solubilities in water are limited,

so a new choice for the standard state is required. For this reason, the chemical

potentials of species in solution are expressed less directly (Stumm and Morgan,

1996, and Nordstrom and Munoz, 1994, e.g., give complete discussions), although

the form of the ideal solution equation (Eqn. 3.4) is retained.
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3.1.3.1 Aqueous species

The chemical potential of an aqueous species Ai is given by,

�i D �o
i C RTK lnai : (3.5)

The mole fraction X in the previous equation is replaced with a new unitless

variable ai , the species’ activity. The standard potentials �o
i are defined at a new

standard state: a hypothetical one-molal solution of the species in which activity

and molality are equal, and in which the species properties have been extrapolated

to infinite dilution.

This choice of a standard state seems like impossible mental gymnastics, but

it allows activity to follow a molal scale, so that in dilute solutions activity and

molality – despite the fact that activity is unitless – are equivalent numerically. A

species’ molality mi , the number of moles of the species per kilogram of solvent,

is related to its activity by

ai D �imi : (3.6)

The constant of proportionality �i is the species’ activity coefficient, which ac-

counts for the nonideality of the aqueous solution. The species’ activity coefficients

approach unity in very dilute solutions,

�i ! 1 and ai ! mi (3.7)

so that the species’ activities and molalities assume nearly equal values.

3.1.3.2 Minerals

Chemical potentials for the constituents of minerals are defined in a similar manner.

All minerals contain substitutional impurities that affect their chemical properties.

Impurities range from trace substitutions, as might be found in quartz, to widely

varying fractions of the end-members of solid solutions series. Solid solutions of

geologic significance include clay minerals, zeolites, and plagioclase feldspars,

which are important components in most geochemical models.

The chemical potential of each end-member component of a mineral,

�k D �o
k

C RTK lnak (3.8)

is given in terms of a standard potential �o
k

, representing the end-member in pure

form at the temperature and pressure of interest, and an activity ak . A geochemical

model constructed in the most general manner would account for the activities of

all of the constituents in each stable solid solution.

Models can be constructed in this manner (e.g., Bourcier, 1985), but most mod-

elers choose for practical reasons to consider only minerals of fixed composition.

The data needed to calculate activities in even binary solid solutions are, for the
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most part, lacking at temperatures of interest. The solid solutions can sometimes

be assumed to be ideal, so that activities equate to mole fractions, but in many cases

this assumption leads to errors more severe than those produced by ignoring the so-

lutions altogether. As well, there are several conceptual and theoretical problems

(e.g., Glynn et al., 1990) that increase the difficulty of incorporating solid solution

theory into reaction modeling in a meaningful way.

In our models, we will consider only minerals of fixed composition. Each min-

eral, then, exists in its standard state, so that its chemical potential and standard

potential are the same

�k D �o
k (3.9)

and its activity is unity

ak D 1 : (3.10)

This equality will allow us to eliminate the ak terms from the governing equations.

We will carry these variables through the mathematical development, however, so

that the results can be readily extended to account for solid solutions, even though

we will not apply them in this manner.

3.1.3.3 Gases

The chemical potential of a gas species,

�m D �o
m C RTK lnfm (3.11)

is given in terms of a standard potential of the pure gas at 1 atm and the temperature

of interest, and the gas’ fugacity fm. Fugacity is related to partial pressure,

fm D �mPm (3.12)

by a fugacity coefficient �m. At low pressures,

�m ! 1 and fm ! Pm ; (3.13)

so that fugacity and partial pressure become numerically equivalent.

3.1.4 The equilibrium constant

The equilibrium constant expresses the point of minimum free energy for a chem-

ical reaction, as set forth in Equation 3.3, in terms of the chemical potential func-

tions above. The criterion for equilibrium becomes,

d�o
DCe�o

E�b�o
B�c�o

C D �RTK .d lnaD C e lnaE � b lnaB � c lnaC/ ; (3.14)
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when we substitute the chemical potential functions into Equation 3.3. (If the

reaction involves a gas species, we would replace the appropriate activity with the

gas’ fugacity.)

The left side of this equation is the reaction’s standard free energy,

�Go D d�o
D C e�o

E � b�o
B � c�o

C : (3.15)

The equilibrium constant is defined in terms of the standard free energy as,

lnK D ��G
o

RTK
: (3.16)

Equation 3.14 can be written,

lnK D d lnaD C e lnaE � b lnaB � c lnaC ; (3.17)

or, equivalently,

K D ad
D a

e
E

ab
B a

c
C

; (3.18)

which is the familiar mass action equation.

3.2 Choice of basis

The first decision to be made in constructing a geochemical model is how to choose

the basis, the set of thermodynamic components used to describe composition.

Thermodynamics provides little guidance in our choice. Given this freedom, we

choose a basis for convenience, subject to three rules:

� We must be able to form each species and phase considered in our model from

some combination of the components in the basis.

� The number of components in the basis is the minimum necessary to satisfy

the first rule.

� The components must be linearly independent of one another. In other words,

we should not be able to write a balanced reaction to form one component in

terms of the others.

The third rule is, in fact, a logical consequence of the first and second, but we write

it out separately because it provides a useful test of a basis choice.

The way we select components to make up the basis is similar to the way a

restaurant chef might decide what foodstuffs to buy. The chef needs to be able to

prepare each item on the menu from a pantry of ingredients. For various reasons

(to simplify ordering, account for limited storage, minimize costs, allow the menu

to be changed from day to day, and keep the ingredients fresh), the chef keeps

only the minimum number of ingredients on hand. Therefore, the pantry contains
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no ingredient that can be prepared from the other ingredients on hand. There is

no need to store cake mix, since a mixture of flour, sugar, eggs, and so on, serves

the same purpose. The chef chooses foodstuffs the same way we choose chemical

components.

A straightforward way to choose a basis is to select elements as components. Ac-

counting for redox reactions, the basis also includes the electron or some measure

of oxidation state. Clearly, this choice satisfies the three rules mentioned, since any

species or phase is composed of elements, and reactions converting one element to

another is the stuff of alchemy or nuclear physics, both of which are beyond the

scope of this book.

Such a straightforward choice, although commonly used, is seldom the most

convenient way to formulate a geochemical model. The chef in our restaurant, if

talented enough, could prepare any dish from such ingredients as elemental carbon,

hydrogen, and oxygen, instead of flour, eggs, sugar, and so on. (But our analogy

is not perfect, since there are more basic ingredients in a kitchen than chemical

elements in the foodstuffs; the reader should not take it too literally.) Like the

chef’s work, our job gets easier if we pick as components certain species or phases

that actually go into making up the system of interest.

3.2.1 Convention for choosing the basis

Throughout this book, we will choose the following species and phases as compo-

nents:

� Water, the solvent species,

� Each mineral in equilibrium with the system of interest,

� Each gas species set at known fugacity in the external buffer, and

� Enough aqueous species, preferably those abundantly present in solution, to

complete the basis set.

The aqueous species included in the basis are known as basis species, while the

remaining species in solution comprise the set of secondary species.

This choice of basis follows naturally from the steps normally taken to study a

geochemical reaction by hand. An aqueous geochemist balances a reaction between

two species or minerals in terms of water, the minerals that would be formed or

consumed during the reaction, any gases such as O2 or CO2 that remain at known

fugacity as the reaction proceeds, and, as necessary, the predominant aqueous

species in solution. We will show later that formalizing our basis choice in this way

provides for a simple mathematical description of equilibrium in multicomponent

systems and yields equations that can be evaluated rapidly.
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Choosing the basis in this manner sometimes leads to some initial confusion,

because we select species present in the system to serve as components. There is

a risk of confusing the amount of a component, which describes bulk composition

but not the actual state of the system, with the amount of a species or mineral that

exists in reality.

3.2.2 Components with negative masses

Perhaps the most clear-cut distinction between components and species occurs

when a component is present at negative mass. To see how this can occur, we

return to our restaurant analogy. The dessert menu includes cakes, which contain

whole eggs, and meringue pies made from egg whites. The chef could stock both

egg yolks and whites in his pantry, but this would hardly be convenient. He would

prefer to stock whole eggs and discard the yolks when necessary. His cake and

meringue, then, contain a positive number of eggs, but the meringue contains

negative egg yolks.

The same principle applies to a chemical system. Let us consider an alkaline

water and assume a component set that includes H2O and HC. Each hydroxyl ion,

H2O � HC ! OH� ; (3.19)

is made up of a water molecule less a hydrogen ion. Since the solution contains

more hydroxyl than hydrogen ions, the overall solution composition is described

in terms of a positive amount of water component and a negative amount of the HC

component. The molality of the HC species itself, of course, is positive.

As a second example, consider a solution rich in dissolved H2S. If our basis

includes SO��
4 , HC, and O2(aq), then H2S(aq) is formed,

SO��
4 C 2HC � 2O2(aq) ! H2S(aq) (3.20)

from a negative amount of O2(aq). The overall solution composition might well

include a negative amount of O2(aq) component, although the O2(aq) species

would be present at a small but positive concentration.

3.3 Governing equations

At this point we can derive a set of governing equations that fully describes the

equilibrium state of the geochemical system. To do this we will write the set of

independent reactions that can occur among species, minerals, and gases in the

system and set forth the mass action equation corresponding to each reaction. Then

we will derive a mass balance equation for each chemical component in the system.

Substituting the mass action equations into the mass balance equations gives a set
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Table 3.1. Constituents of a geochemical model: the cast of characters

Aw Water, the solvent

Ai Aqueous species in the basis, the basis species

Aj Other aqueous species, the secondary species

Ak Minerals in the system

Al All minerals, even those that do not exist in the system

Am Gases of known fugacity

An All gases

of governing equations, one for each component, that can be solved directly for the

system’s equilibrium state.

3.3.1 Independent reactions

To derive the governing equations we need to identify each independent chemical

reaction that can occur in the system. It is possible to write many more reactions

than are independent in a geochemical system. The remaining or dependent reac-

tions, however, are linear combinations of the independent reactions and need not

be considered.

Since a geochemical model needs to be cast in general form, the species occur-

ring in reactions are represented symbolically (Table 3.1). Depending on the nature

of the problem, we have chosen a basis,

B D .Aw ; Ai ; Ak ; Am/ (3.21)

according to the convention in the previous section. Here, Aw is water, Ai are the

aqueous species, Ak the minerals, and Am the gases in the basis. These variables

are labels rather than numerical values. For example, Aw is “H2O” and Ai might

be “NaC”.

The independent reactions are those between the secondary species and the

basis. In general form, the reactions are,

Aj � �wjAw C
X

i

�ijAi C
X

k

�kjAk C
X
m

�mjAm : (3.22)

Here, � represents the reaction coefficients: �wj is the number of moles of water in

the reaction to form Aj , �ij is the number of moles of the basis species Ai , and so

on for the minerals and gases.

Need we consider any other reactions? From the previous section, according to
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Basis

Species A

Species B

Species C

Species D

Fig. 3.2. Independent (solid lines) and dependent (dashed lines) reactions in a chemical
system composed of a basis and four secondary species A through D. Only the independent
reactions need be considered.

the criteria for a valid basis set, we know that no reactions can be written among the

basis species themselves. We could write reactions among the secondary species,

but such reactions would not be independent. In other words, since we have already

written Equation 3.22 specifying equilibrium between each secondary species and

the basis, any reaction written among the secondary species is redundant (Fig. 3.2).

Taking a basis that contains H2O, HC, and HCO�
3 , for example, the reactions

for secondary species CO2(aq) and CO��
3 are,

CO2(aq) � HCO�
3 C HC � H2O ; (3.23)

and

CO��
3 � HCO�

3 � HC : (3.24)

The reaction between these two secondary species,

CO2(aq) C H2O � CO��
3 C 2HC (3.25)

is simply the first reaction above less the second, and so need not be considered

independently.

It is fortunate that we do not have to consider the dependent reactions. Given

Nj secondary species, there are justNj reactions with the basis, but .N 2
j �Nj /=2

reactions could be written among the secondary species. The formula for the latter

number, for example, is the number of handshakes if everyone in a group shook

everyone else’s hand. This is practical at a small party, but impossible at a con-

vention. In chemical systems with many hundreds of species, taking the dependent

reactions into account might tax even the most powerful computers.

It is worth noting that the Reaction 3.22 serves two purposes. First, it defines
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the compositions of all the species Aj in terms of the current component set, the

basis B. Second, it represents the chemical reactions, each of which has its own

equilibrium constant, between the secondary species Aj and the basis species Aw ,

Ai , Ak , and Am.

If we had chosen to describe composition in terms of elements, we would need

to carry the elemental compositions of all species, minerals, and gases, as well as

the coefficients of the independent chemical reactions. Our choice of components,

however, allows us to store only one array of reaction coefficients, thereby reducing

memory use on the computer and simplifying the forms of the governing equations

and their solution. In fact, it is possible to build a complete chemical model (ex-

cluding isotope fractionation) without acknowledging the existence of elements in

the first place!

3.3.2 Mass action equations

Each independent Reaction 3.22 in the system has an associated equilibrium con-

stant Kj at the temperature of interest and, hence, a mass action equation of the

form

Kj D a
�wj

w �
iQ
.�imi /

�ij �
kQ
a

�kj

k
�

mQ
f

�mj

m

�jmj

: (3.26)

Here, we have represented the activities of aqueous species with the product � �m
of the species’ activity coefficients and molalities, according to Equation 3.6. The

symbol … in this equation is the product function, the analog in multiplication to

the summation†. Table 3.2 lists the meaning of each variable in this and following

equations.

A goal in deriving the governing equations is to reduce the number of indepen-

dent variables by eliminating the molalities mj of the secondary species. To this

end, we can rearrange the equation above to give the value ofmj ,

mj D 1

Kj �j

2
4a�wj

w �
iY
.�imi /

�ij �
kY
a

�kj

k
�

mY
f

�mj
m

3
5 ; (3.27)

in terms of the molality and activity coefficient of each aqueous species in the basis

and the activity or fugacity of each of the other basis entries. This expression is the

mass action equation in its final form.
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Table 3.2. Variables in the governing equations

Bulk composition, moles

Mw Water component

Mi Species components

Mk Mineral components

Mm Gas components

Solvent mass, molalities, mole numbers

nw Solvent mass, kg

mi Molalities of basis species

mj Molalities of secondary species

nk Mole numbers of minerals

Activities and fugacities

aw Water activity

ai Activities of basis species

aj Activities of secondary species

ak Mineral activities

fm Gas fugacities

Activity coefficients

�i Basis species

�j Secondary species

Reaction coefficients

�wj , �ij , �kj Secondary species

�wl , �il , �kl Minerals

�wn , �in, �kn Gases

Equilibrium constants

Kj Secondary species

Kl Minerals

Kn Gases

3.3.3 Mass balance equations

The mass balance equations express conservation of mass in terms of the compo-

nents in the basis. The mass of each chemical component is distributed among the

species and minerals that make up the system. The water component, for example,

is present in free water molecules of the solvent and as the water required to make
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up the secondary species. According to Equation 3.22, each mole of species Aj is

composed of �wj moles of the water component. The mole number Mw of water

component is given by,

Mw D nw

0
@55:5C

X
j

�wjmj

1
A ; (3.28)

where 55.5 (more precisely, 55.5087) is the number of moles of H2O in a kilogram

of water. Multiplying molality units by the mass nw of solvent water gives result

in moles, as desired.

Similar logic gives the mass balance equations for the species components. The

mass of the i th component is distributed among the single basis species Ai and

the secondary species in the system. By Equation 3.22, there are �ij moles of

component i in each mole of secondary species Aj . There is one mole of NaC

component, for example, per mole of the basis species NaC, one per mole of the

ion pair NaCl, two per mole of the aqueous complex Na2SO4, and so on. Mass

balance for species component i , then, is expressed

Mi D nw

0
@mi C

X
j

�ijmj

1
A ; (3.29)

in terms of the solvent mass nw and the molalitiesmi and mj .

Mineral components are distributed among the mass of actual mineral in the sys-

tem and the amount required to make up the dissolved species. In a system contain-

ing a mole of quartz, for example, there is (in the absence of other silica-bearing

components) somewhat more than a mole of component quartz. The additional

component mass is required to make up species such as SiO2(aq) and H3SiO�
4 .

Since �kj moles of mineral component k go into making up each mole of sec-

ondary species j , mass balance is expressed as,

Mk D nk C nw

X
j

�kjmj ; (3.30)

where nk is the mole number of the mineral corresponding to the component.

Mass balance on gas components is somewhat less complicated because the

gas buffer is external to the system. In this case, we need only consider the gas

components that make up secondary species:

Mm D nw

X
j

�mjmj ; (3.31)

where �mj is the reaction coefficient from Equation 3.22.
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3.3.4 Substituted equations

The final form of the governing equations is given by substituting the mass action

equation (Eqn. 3.27) for each occurrence of mj in the mass balance equations

(Eqns. 3.28–3.31). The substituted equations are,

Mw D nw

8<
:55:5C

X
j

�wj

Kj �j

2
4a�wj

w �
iY
.�imi /

�ij �
kY
a

�kj

k
�

mY
f

�mj
m

3
5
9=
;

(3.32)

Mi D nw

8<
:mi C

X
j

�ij

Kj �j

2
4a�wj

w �
iY
.�imi /

�ij �
kY
a

�kj

k
�

mY
f

�mj
m

3
5
9=
;
(3.33)

Mk D nk C nw

X
j

�kj

Kj �j

2
4a�wj

w �
iY
.�imi /

�ij �
kY
a

�kj

k
�

mY
f

�mj
m

3
5 (3.34)

Mm D nw

X
j

�mj

Kj �j

2
4a�wj

w �
iY
.�imi /

�ij �
kY
a

�kj

k
�

mY
f

�mj
m

3
5 : (3.35)

Writing the appropriate governing equation for each chemical component produces

a set of equations that completely describes the equilibrium state of the chemical

system. As such, the set will include Equation 3.32 written once, Equation 3.33

written individually for each species component, and Equations 3.34 and 3.35 for

each mineral and gas component.

Like all formulations of the multicomponent equilibrium problem, these equa-

tions are nonlinear by nature because the unknown variables appear in product

functions raised to the values of the reaction coefficients. (Nonlinearity also enters

the problem because of variation in the activity coefficients.) Such nonlinearity,

which is an unfortunate fact of life in equilibrium analysis, arises from the differ-

ing forms of the mass action equations, which are product functions, and the mass

balance equations, which appear as summations. The equations, however, occur in

a straightforward form that can be evaluated numerically, as discussed in Chapter 4.

We have considered a large number of values (including the molality of each

aqueous species, the mole number of each mineral, and the mass of solvent water)

to describe the equilibrium state of a geochemical system. In Equations 3.32–3.35,

however, this long list has given way to a much smaller number of values that con-

stitute the set of independent variables. Since there is only one independent variable

per chemical component, and hence per equation, we have succeeded in reducing

the number of unknowns in the equation set to the minimum possible. In addition,
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Equation 3.34 is linear with respect to nk and, as discussed below, Equation 3.35

need only be evaluated for Mm and hence is linear in its unknown. As we will

discuss in the next chapter, the partial linearity of the governing equations leaves

them especially easy to evaluate.

To see how the governing equations might be solved, we consider a system that

contains an aqueous fluid and several minerals but has no gas buffer. If we know

the system’s bulk composition in terms of Mw , Mi , and Mk , we can evaluate

Equations 3.32–3.34 to give values for the unknown variables: the solvent mass

nw , the basis species’ molalitiesmi , and the mineral mole numbers nk .

The other variables in Equations 3.32–3.34 are either known values, such as the

equilibrium constants K and reaction coefficients �, or, in the case of the activity

coefficients �i ; �j and activities aw ; ak , values that can be considered to be known.

In practice, the model updates the activity coefficients and activities during the

numerical solution so that their values have been accurately determined by the

time the iterative procedure is complete.

In solving the equations, we can consider the set of bulk compositions (Mw ,

Mi , Mk) to be the “boundary conditions” from which we determine the system’s

equilibrium state. The result is given in terms of the values of (nw , mi , nk). Once

these values are known, the dependent variables mj can be set immediately using

Equation 3.27. Note that we have demonstrated the conjecture of the first chapter:

that the equilibrium state of any system at known temperature and pressure can be

calculated once the system’s bulk composition is known.

It is commonly convenient, however, to apply some of the governing equations

in the reverse manner. A modeler may specify the value for one or more of the

variables nw ,mi , or nk that we considered independent in the previous paragraph.

Such situations are quite common. The modeler may know the mass of solvent wa-

ter or of the minerals in the system, or the molalities or activities of certain species.

He may wish to constrain aHC, for example, on the basis of a pH measurement.

In these cases, the equation in question is evaluated to give the mole number

Mw , and so on, of the corresponding component. In the presence of a gas buffer,

the values of one or more fugacities fm are fixed. Now, the mole number Mm of

the gas component remains to be determined. In general, the value of eitherMw or

nw needs to be set to evaluate Equation 3.32, and either Mi or mi is required for

each Equation 3.33. Each Equation 3.34 can be solved knowing either Mk or nk ,

whereas Equation 3.35 is generally evaluated directly for Mm.

3.3.5 Charge balance

The principle of electroneutrality requires that the ionic species in an electrolyte

solution remain charge balanced on a macroscopic scale. The requirement of elec-
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troneutrality arises from the large amount of energy required to separate oppositely

charged particles by any significant distance against Coulombic forces (e.g., Den-

bigh, 1971). Because of this requirement, we cannot obtain a flask of sodium ions

at the chemistry supply room, nor can we measure the activity coefficients of indi-

vidual ions directly.

The electroneutrality condition can be expressed by the condition of charge

balance among the species in solution, according toX
i

zimi C
X

j

zjmj D 0 : (3.36)

Here, zi and zj are the ionic charges on basis and secondary species. It is useful to

note, however, that electroneutrality is assured when the components in the basis

are charge balanced.

To see this, we can use Equation 3.22 to write the ionic charge on a secondary

species,

zj D
X

i

�ij zi (3.37)

in terms of the charges on the basis species. Substituting, the electroneutrality

condition becomes,

X
i

zi

0
@mi C

X
j

�ijmj

1
A D 0 : (3.38)

According to the mass balance Equation 3.28, the expression in parentheses is

Mi . Further, the charge Zi on a species component is the same as the charge zi

on the corresponding basis species, since components and species share the same

stoichiometry. Substituting, the electroneutrality condition becomes,X
i

ZiMi D 0 ; (3.39)

which requires that components be charge balanced.

This relation is useful because it effectively removes the requirement thatMi be

known for one of the basis species. Instead of setting this value directly, it can be

determined by balance from the mole numbers of the other basis species. When

charged species appear in the basis, in fact, it is customary for equilibrium models

to force charge balance by adjusting Mi for a component chosen either by the

modeler or the computer program.

The electroneutrality condition is almost always used to set the bulk concen-

tration of the species in abundant concentration for which the greatest analytic

uncertainty exists. In practice, this component is generally Cl� because most com-

mercial labs, unless instructed otherwise, report a chloride concentration calculated
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by a rough charge balance (i.e., one that excludes the HC component and perhaps

others) rather than a value resulting from direct analysis. If we were to use the re-

ported chloride content to constrain by rigorous charge balance the concentration

of another component, we would at best be propagating the error in the laboratory’s

rough calculation.

A special danger of the automatic implementation of the electroneutrality condi-

tion within computer codes is that the feature can be used to give calculated values

for species in small concentration, pH, and even oxidation state. Such values are,

however, almost always meaningless because they merely reflect analytical error or

even the rough charge balance calculation made by the analytical lab. To see why

such calculations fail, consider an attempt to back-calculate the pH of a neutral

groundwater. Hydrogen ions are present at a concentration of about 10�7 molal. In

order to resolve such a small concentration by charge balance, the analyses of all

of the other components would have to be accurate to at least 10�8 molal, which

is of course impossible. Even worse, if the lab reported a chloride concentration

calculated to give the appearance of charge balance, then the computed pH would

merely reflect the rounding error in the lab’s calculation!

3.3.6 Mineral saturation states

Once we have calculated the distribution of species in the fluid, we can determine

the degree to which it is undersaturated or supersaturated with respect to the many

minerals in the thermodynamic database. Only a few of the minerals can exist in

equilibrium with the fluid, which is therefore undersaturated or supersaturated with

respect to each of the rest. For any mineral Al , we can write a reaction,

Al � �wlAw C
X

i

�ilAi C
X

k

�klAk C
X
m

�mlAm (3.40)

in terms of the basis. Here, Al is a mineral that can be formed by combining

components in the basis. We could not, for example, write a reaction to form

muscovite in a system devoid of potassium.

Reaction 3.34 has an activity product Ql in the form,

Ql D a
�wl
w �

iQ
.�imi /

�il �
kQ
a

�kl

k
�

mQ
f

�ml
m

al

; (3.41)

where ak and al have values of unity, since we are considering only minerals of

fixed composition, and are carried as a formality. Since this equation has the same

form as the mass action equation, the reaction is in equilibrium if Ql equals the

reaction’s equilibrium constant Kl . In this case, the fluid is saturated with respect
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to Al . As a test of our calculations, for example, we would expect the fluid to be

saturated with respect to any mineral in the equilibrium system.

The fluid is undersaturated if Ql is less than Kl . This condition indicates that

Reaction 3.34 has not proceeded to the right far enough to reach the saturation

point, either because the water has not been in contact with sufficient amounts of

the mineral or has not reacted with the mineral long enough. Values of Ql greater

than Kl , on the other hand, indicate that the reaction needs to proceed to the left

to reach equilibrium. In this case, the fluid is supersaturated with respect to the

mineral.

A fluid’s saturation with respect to a mineral Al is commonly expressed in terms

of the saturation index

SIl D logQl � logKl D log.Ql=Kl/ (3.42)

which is the ratio of activity product to equilibrium constant, expressed as a log-

arithm. From this equation, an undersaturated mineral has a negative saturation

index, a supersaturated mineral has a positive index, and a mineral at the point of

saturation has an index of zero. A positive saturation index indicates that the calcu-

lated state of the system is a metastable equilibrium because of the thermodynamic

drive for Reaction 3.34 to precipitate the supersaturated mineral.

3.3.7 Gas fugacities

Having determined the distribution of species in solution, we can also calculate

the fugacity of the various gases with respect to the fluid. For any gas An in the

database that can be composed from the component set, we can write a reaction,

An � �wnAw C
X

i

�inAi C
X

k

�knAk C
X
m

�mnAm (3.43)

in terms of the basis. By mass action, the fugacity fn of this gas is

fn D a�wn
w �

iQ
.�imi /

�in �
kQ
a

�kn

k
�

mQ
f �mn

m

Kn
; (3.44)

where Kn is the equilibrium constant for Reaction 3.37.

The fugacities calculated in this way are those that would be found in a gas phase

that is in equilibrium with the system, if such a gas phase were to exist. Whether a

gas phase exists or is strictly hypothetical depends on how the modeler has defined

the system, but not on the gas fugacities given by Equation 3.44.
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3.3.8 The pe and Eh

The pe and Eh are equivalent electrochemical descriptions of oxidation state for a

system in equilibrium. For an aqueous solution, any half-cell reaction

n e�
� �wnAw C

X
i

�inAi C
X

k

�knAk C
X
m

�mnAm ; (3.45)

where e� is the electron and n its reaction coefficient, sets the pe and Eh. The

electron, of course, does not exist as a free species in solution (e.g., Thorstenson,

1984) and so has no concentration. Species in the fluid can donate and accept

electrons from a metallic electrode, however, so we can define and measure the

electron’s free energy and equilibrium activity (Hostettler, 1984). For example, the

reaction,

e� C 1=4 O2(aq) C HC
� 1=2 H2O ; (3.46)

which has a log equilibrium constantKe� of about 25.5 at 25 °C, fixes the equilib-

rium electron activity when pH and the oxygen and water activities are known.

The pe, by analogy to pH, is defined as,

pe D � logae�

D �1
n

log
Qe�

Ke�
;

(3.47)

where n is the number of electrons consumed in the half-cell reaction and Qe�

is the activity product for the half-cell reaction, calculated accounting for each

species except the electron. The analogy to pH is imperfect because whereas HC

is a species that exists in solution, e� does not. The Nernst equation,

Eh D �2:303RTK

nF
log

Qe�

Ke�

D 2:303RTK

F
pe

(3.48)

gives the Eh value corresponding to any half-cell reaction. Here, R is the gas

constant, TK absolute temperature, and F the Faraday constant.

Many natural waters, including most waters at low temperature, do not achieve

redox equilibrium (e.g., Lindberg and Runnells, 1984; see Chapter 7). In this case,

no single value of pe or Eh can be used to represent the redox state. Instead, there is

a distinct value for each redox couple in the system. Applying the Nernst equation

to Reaction 3.46 gives a pe or Eh representing the hydrolysis of water. Under

disequilibrium conditions, this value differs from those calculated from reactions

such as,

8 e� C SO��
4 C 9 HC

� HS� C 4 H2O (3.49)
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and

e� C FeOOH

goethite

C 3 HC
� FeCC C 2 H2O ; (3.50)

which represent redox couples for sulfur and iron. The variation among the re-

sulting values of pe or Eh provides a measure of the extent of disequilibrium in a

system. Techniques for modeling waters in redox disequilibrium are discussed in

Chapter 7.

3.4 Number of variables and the phase rule

The most broadly recognized theorem of chemical thermodynamics is probably

the phase rule derived by Gibbs in 1875 (see Guggenheim, 1967; Denbigh, 1971).

Gibbs’ phase rule defines the number of pieces of information needed to determine

the state, but not the extent, of a chemical system at equilibrium. The result is the

number of degrees of freedom NF possessed by the system.

The phase rule says that for each phase beyond the first that occurs at equilibrium

in a system, NF decreases by one. Expressed in general form, the phase rule is,

NF D NC �N� C 2 ; (3.51)

where NC is the number of chemical components in the system, and N� is the

number of phases. If temperature and pressure in the system are fixed (i.e., they

have equilibrated with some external medium), as we have assumed here, the rule

takes the simplified form,

NF D NC �N� : (3.52)

The proof of the phase rule is actually implicit in the derivation of the governing

equations (Eqns. 3.32–3.35), and is not repeated here. It is interesting, nonetheless,

to compare this well-known result with the governing equations, if only to demon-

strate that we have reduced the problem to the minimum number of independent

variables.

The number of components in our geochemical system is given by,

NC D 1CNi CNk CNm ; (3.53)

where 1 accounts for water, Ni is the number of aqueous species serving as com-

ponents (the basis species), and Nk and Nm are the numbers of mineral and gas

components. Phases in the system include the fluid, each mineral, and each gas at

known fugacity, so

N� D 1CNk CNm : (3.54)

Since the gases are buffered independently, each counts as a separate phase.
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The phase rule (Eqn. 3.52), then, predicts that our system has NF D Ni degrees

of freedom. In other words, given a constraint on the concentration or activity of

each basis species, we could determine the system’s equilibrium state. To constrain

the governing equations, however, we need NC pieces of information, somewhat

more than the degrees of freedom predicted by the phase rule.

The extra pieces of information describe the extent of the system – the amounts

of fluid and minerals that are present. It is not necessary to know the system’s

extent to determine its equilibrium state, but in reaction modeling (see Chapter 13)

we generally want to track the masses of solution and minerals in the system; we

also must know these masses to search for the system’s stable phase assemblage

(as described in Section 4.4).

Providing an additional piece of information about the size of each phase pre-

dicts that a total ofNi CN� , orNC, values is needed to constrain the system’s state

and extent. This total matches the number of variables we must supply in order to

solve the governing equations. Hence, although we can make no claim that we have

cast the governing equations in simplest form, we can say that we have reduced the

number of independent variables to the minimum allowed by thermodynamics.





4

Solving for the equilibrium state

In Chapter 3, we developed equations that govern the equilibrium state of an

aqueous fluid and coexisting minerals. The principal unknowns in these equations

are the mass of water nw , the concentrationsmi of the basis species, and the mole

numbers nk of the minerals.

If the governing equations were linear in these unknowns, we could solve them

directly using linear algebra. However, some of the unknowns in these equations

appear raised to exponents and multiplied by each other, so the equations are non-

linear. Chemists have devised a number of numerical methods to solve such equa-

tions (e.g., van Zeggeren and Storey, 1970; Smith and Missen, 1982). All the tech-

niques are iterative and, except for the simplest chemical systems, require a com-

puter. The methods include optimization by steepest descent (White et al., 1958;

Boynton, 1960) and gradient descent (White, 1967), back substitution (Kharaka

and Barnes, 1973; Truesdell and Jones, 1974), and progressive narrowing of the

range of the values allowed for each variable (the monotone sequence method;

Wolery and Walters, 1975).

Geochemists, however, seem to have reached a consensus (e.g., Karpov and

Kaz’min, 1972; Morel and Morgan, 1972; Crerar, 1975; Reed, 1982; Wolery, 1983)

that Newton–Raphson iteration is the most powerful and reliable approach, espe-

cially in systems where mass is distributed over minerals as well as dissolved spe-

cies. In this chapter, we consider the special difficulties posed by the nonlinear

forms of the governing equations and discuss how the Newton–Raphson method

can be used in geochemical modeling to solve the equations rapidly and reliably.

4.1 Governing equations

The governing equations are composed of two parts: mass balance equations that

require mass to be conserved, and mass action equations that prescribe chemical

equilibrium among species and minerals. Water Aw , a set of species Ai , the min-

53
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erals in the system Ak, and any gases Am of known fugacity make up the basis B:

B D .Aw ; Ai ; Ak; Am/ : (4.1)

The remaining aqueous species are related to the basis entries by the reaction

Aj D �wjAw C
X

i

�ijAi C
X

k

�kjAk C
X
m

�mjAm ; (4.2)

which has an equilibrium constantKj .

The mass balance equations corresponding to the basis entries are

Mw D nw

0
@55:5C

X
j

�wjmj

1
A (4.3)

Mi D nw

0
@mi C

X
j

�ijmj

1
A (4.4)

Mk D nk C
X

j

�kjmj (4.5)

Mm D nw

X
j

�mjmj : (4.6)

Here, Mw , Mi , Mk , and Mm give the system’s composition in terms of the basis

B, and mj is the concentration of each secondary species Aj .

At equilibrium,mj is given by the mass action equation,

mj D 1

Kj �j

0
@a�wj

w �
iY
.�imi /

�ij �
kY
a

�kj

k
�

mY
f

�mj

m

1
A : (4.7)

Here the aw and ak are the activities of water and minerals, and the fm are gas

fugacities. We assume that each ak equals one, and that aw and the species’ activity

coefficients � can be evaluated over the course of the iteration and thus can be

treated as known values in posing the problem.

By substituting this equation for each occurrence of mj in the mass balance

equations, we find a set of equations, one for each basis entry, that describes the

equilibrium state in terms of the principal variables. The form of the substituted

equations appears in Chapter 3 (Eqns. 3.32–3.35), but in this chapter we will carry

the variable mj with the understanding that it represents the result of evaluating

Equation 4.7.

In some cases, we set one or more of the values of the principal variables as con-

straints on the system. For example, specifying pH sets mHC , and setting the mass
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of solvent water or quartz in the system fixes nw or nQuartz. To set the bulk com-

positions Mw and so on, in these cases, we need only evaluate the corresponding

equations after the values of the other variables have been determined. Gases ap-

pear in the basis as a constraint on fugacity fm, so Equation 4.6 is always evaluated

in this manner.

We pose the problem for the remaining equations by specifying the total mole

numbers Mw , Mi , and Mk of the basis entries. Our task in this case is to solve

the equations for the values of nw , mi , and nk . The solution is more difficult

now because the unknown values appear raised to their reaction coefficients and

multiplied by each other in the mass action Equation 4.7. In the next two sections

we discuss how such nonlinear equations can be solved numerically.

4.2 Solving nonlinear equations

There is no general method for finding the solution of nonlinear equations directly.

Instead, such problems need to be solved indirectly by iteration. The set of values

that satisfies a group of equations is called the group’s root. An iterative solution

begins with a guess of the root’s value, which the solution procedure tries to im-

prove incrementally until the guess satisfies the governing equations to the desired

accuracy.

Of such schemes, two of the most robust and powerful are Newton’s method for

solving an equation with one unknown variable, and Newton–Raphson iteration,

which treats systems of equations in more than one unknown. I will briefly describe

these methods here before I approach the solution of chemical problems. Further

details can be found in a number of texts on numerical analysis, such as Carnahan

et al. (1969).

4.2.1 Newton’s method

In Newton’s method, we seek a value of x that satisfies

f .x/ D a ; (4.8)

where f is an arbitrary function that we can differentiate, and a is a constant. To

start the iteration, we provide a guess x.o/ at the value of the root. Unless we are

incredibly lucky (or have picked an easy problem that we have already solved),

our guess will not satisfy the equation. The inequality between the two sides of the

equation is the residual

R.x/ D f .x/ � a : (4.9)

We can think of the residual as a measure of the “badness” of our guess.
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R(x)

−Δx

x(o)x(1)

R(x(o) )
Root

0

(a)

R(x)

x(o)x(1)x(2)x(3)

Root

0

(b)

Fig. 4.1. Newton’s method for solving a nonlinear equation with one unknown variable.
The solution, or root, is the value of x at which the residual functionR.x/ crosses zero. In

(a), given an initial guess x.o/, projecting the tangent to the residual curve to zero gives an

improved guess x.1/. By repeating this operation (b), the iteration approaches the root.

The method’s goal is to make the residual vanish by successively improving our

guess. To find an improved value x.1/, we take the tangent line to the residual

function at point x.o/ and project it to the zero line (Fig. 4.1). We repeat the

projection from x.1/ to give x.2/, and so on. The process continues until we reach

a value x.q/ on the .q/-th iteration that satisfies our equation to within a small

tolerance.

The method can be expressed mathematically by noting that the slope of the

residual function plotted against x is df=dx. Geometrically, the slope is rise over

run, so,

df

dx
D � R.x.q//

x.qC1/ � x.q/
D �R.x

.q//

�x
: (4.10)

At any iteration .q/, then, the correction �x is,

�x D �R.x
.q//

df=dx
: (4.11)
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As an example, we seek a root to the function

2x3 � x2 D 1 ; (4.12)

which we can see is satisfied by x = 1. We iterate from an initial guess of x = 10

following the Fortran program

implicit real*8 (a-h,o-z)

x = 10.

do iter = 1, 99

resid = 2.*x**3 - x**2 - 1.

write (6,*) iter-1, x, resid

if (abs(resid).lt.1.d-10) stop

dfdx = 6.*x**2 - 2.*x

x = x - resid/dfdx

end do

end

with the results

Iteration, .q/ x.q/ R.x.q//

0 10 1900

1 6.72 560

2 4.55 170

3 3.10 49

4 2.15 14

5 1.54 3:9

6 1.19 0:94

7 1.033 0:14

8 1.001 3 5:2 � 10�3

9 1.000 002 1 8:5 � 10�6

10 1.000 000 000 005 7 2:3 � 10�11

Some words of caution are in order. Many nonlinear functions have more than

one root. The choice of an initial guess controls which root will be identified by

the iteration. As well, the method is likely to work only when the function is

somewhat regular between initial guess and root. A rippled function, for example,

would produce tangent lines that project along various positive and negative slopes.

Iteration in this case might never locate a root. In fact, the Newton’s method can

diverge or cycle indefinitely, given a poorly chosen function or initial guess.
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Tangent to R1

Tangent to R2

(x(o), y(o))

(x(1), y(1))

R = 0

y

x

Fig. 4.2. Newton–Raphson iteration for solving two nonlinear equations containing the
unknown variables x and y. Planes are drawn tangent to the residual functionsR1 and R2

at an initial estimate .x.o/; y.o// to the value of the root. The improved guess .x.1/; y.1// is
the point at which the tangent planes intersect each other and the plane R D 0.

4.2.2 Newton–Raphson iteration

The multidimensional counterpart to Newton’s method is Newton–Raphson itera-

tion. A mathematics professor once complained to me, with apparent sincerity, that

he could visualize surfaces in no more than twelve dimensions. My perspective on

hyperspace is less incisive, as perhaps is the reader’s, so we will consider first a

system of two nonlinear equations f D a and g D b with unknowns x and y.

To solve the equations, we want to find x and y such that the residual functions,

R1.x; y/ D f .x; y/ � a
R2.x; y/ D g.x; y/ � b (4.13)

nearly vanish. Imagine that x and y lie along a table top, and z normal to it with

the table surface representing z of zero. Plotting the values of R1 and R2 along

z produces two surfaces that might extend above and below the table surface

(Fig. 4.2). The surfaces intersect along a curved line that, if the problem has a

solution, passes through the table top at one or more points. Each such point is a

root .x; y/ to our problem.

To improve an initial guess .x.o/; y.o//, we reach above this point and project

tangent planes from the surfaces of R1 and R2. The improved guess is the point
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.x.1/; y.1// where these tangent planes intersect each other and the table top. We

repeat this process until each residual function is less than a negligible value.

The corrections�x and�y to x and y are those that will project toR D 0 along

the tangent planes, according to,

@R1

@x
�x C @R1

@y
�y D �R1

@R2

@x
�xC @R2

@y
�y D �R2 :

(4.14)

Written in matrix form,0
BBB@
@R1

@x

@R1

@y

@R2

@x

@R2

@y

1
CCCA
�
�x

�y

�
D
��R1

�R2

�
; (4.15)

the corrections �x and �y are given by the solution to two linear equations.

This equation can be seen to be the counterpart in two dimensions to the equation

(Eqn. 4.11) giving �x in Newton’s method. The equations differ in that there are

now vectors of values for the residuals and corrections, and a matrix of partial

derivatives replacing the ordinary derivative df=dx.

In general, the matrix, known as the Jacobian, contains entries for the partial

derivative of each residual function Ri with respect to each unknown variable xi .

For a system of n equations in n unknowns, the Jacobian is an n � n matrix with

n2 entries:

.J/ �

0
BBBBBBBBB@

@R1

@x1

@R1

@x2
: : :

@R1

@xn

@R2

@x1

@R2

@x2
: : :

@R2

@xn
:::

:::
: : :

:::
@Rn

@x1

@Rn

@x2
: : :

@Rn

@xn

1
CCCCCCCCCA
: (4.16)

Writing the residual functions and corrections as vectors,

.R/ D .R1; R2; : : : ; Rn/ (4.17)

.�x/ D .�x1; �x2; : : : ; �xn/ (4.18)

gives the general equation for determining the correction,

.J/ .�x/ D � .R/ (4.19)

in a Newton–Raphson iteration.
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Like Newton’s method, the Newton–Raphson procedure has just a few steps.

Given an estimate of the root to a system of equations, we calculate the residual

for each equation. We check to see if each residual is negligibly small. If not, we

calculate the Jacobian matrix and solve the linear Equation 4.19 for the correction

vector. We update the estimated root with the correction vector,

.x/.qC1/ D .x/.q/ C .�x/ (4.20)

and return to calculate new values for residuals. The solution procedure, then,

reduces to the repetitive solution of a system of linear equations, a task well suited

to modern computers.

4.3 Solving the governing equations

In this section we consider how Newton–Raphson iteration can be applied to solve

the governing equations listed in Section 4.1. There are three steps to setting up the

iteration: (1) reducing the complexity of the problem by reserving the equations

that can be solved linearly, (2) computing the residuals, and (3) calculating the

Jacobian matrix. Because reserving the equations with linear solutions reduces the

number of basis entries carried in the iteration, the solution technique described

here is known as the “reduced basis method.”

4.3.1 The reduced problem

The computing time required to evaluate Equation 4.19 in a Newton–Raphson

iteration increases with the cube of the number of equations considered (Dongarra

et al., 1979). The numerical solution to Equations 4.3–4.6, therefore, can be found

most rapidly by reserving from the iteration any of these equations that can be

solved linearly. There are four cases in which equations can be reserved:

� If the mass of water nw is a constraint on the system, Equation 4.3 can be

evaluated directly for Mw .

� When the system chemistry is constrained by the concentrationmi (or activity

ai ) of a basis species, Equation 4.4 gives Mi directly.

� Equation 4.5 can always be reserved, because the mineral mass nk is linear in

the equation.

� Equation 4.6 can also be reserved because the gas fugacities fm are known.

The nonlinear portion of the problem, then, consists of just two parts:

� Equation 4.3, when nw is unknown, and

� Equation 4.4, for each basis species at unknown concentrationmi .
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The basis entries corresponding to these two cases are given by the “reduced

basis,”

Br D .Aw ; Ai/r (4.21)

We will carry the subscript r (for “reduced”) to indicate that a vector or matrix

includes only entries conforming to one of the two nonlinear cases.

4.3.2 Residual functions

The residual functions measure how well a guess .nw ; mi /r satisfies the governing

Equations 4.3–4.4. The form of the residuals can be written,

Rw D nw

0
@55:5C

X
j

�wjmj

1
A �Mw (4.22)

Ri D nw

0
@mi C

X
j

�ijmj

1
A �Mi (4.23)

to represent the inequalities involved in evaluating these equations. The vector of

residuals corresponding to the reduced basis Br is

Rr D .Rw ; Ri/r (4.24)

4.3.3 Jacobian matrix

The Jacobian matrix contains the partial derivatives of the residuals with respect to

each of the unknown values .nw ; mi/r. To derive the Jacobian, it is helpful to note

that

@mj

@nw
D 0 and

@mj

@mi
D �ij

mj

mi
; (4.25)

as can be seen by differentiating Equation 4.7. The Jacobian entries, given by

differentiating Equations 4.22–4.23, are

Jww D @Rw

@nw
D 55:5C

X
j

�wjmj (4.26)

Jwi D @Rw

@mi

D nw

mi

X
j

�wj �ijmj (4.27)

Jiw D @Ri

@nw
D mi C

X
j

�ijmj (4.28)
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Concurrent loops

do 3 i1 =1, nbasis_spec
do 2 i2 =1, nbasis_spec

Vector loop

sum = 0.0
do 1 j = 1, n_species

1 sum = sum + ni1,j * ni2,j * mj

2 Ji1,i2 = nw * sum/mi2
3 Ji1,i1 = Ji1,i1 + nw

Fig. 4.3. Calculation of the entries Ji i 0 in the Jacobian matrix on a vector-parallel com-
puter, using a concurrent-outer, vector-inner (COVI) scheme. Each summation in the Jaco-
bian can be calculated as a vector pipeline as separate processors calculate the entries in
parallel.

and

Ji i 0 D @Ri

@mi 0
D nw

0
@ıi i 0 C

X
j

�ij �i 0jmj =mi 0

1
A ; (4.29)

where ıi i 0 is the Kronecker delta function,

ıi i 0 D
(
1 if i D i 0

0 otherwise
: (4.30)

From a computational point of view, the forms of the Jacobian entries above are

welcome because they conform to the architectural requirements of vector, parallel,

and vector-parallel computers (Fig. 4.3)

4.3.4 Newton–Raphson iteration

The Newton–Raphson iteration works by incrementally improving an estimate to

values .nw ; mi/r of the unknown variables in the reduced basis. The procedure

begins with a guess at the variables’ values. The first guess might be supplied by the

modeler, but more commonly the model sets the guess using an ad hoc procedure

such as assigning 90% of the mole numbersMw andMi to the basis species. If the

procedure is invoked while tracing a reaction path, the result for the previous step

along the path probably provides the best first guess. The guess can be optimized

to better assure convergence in difficult cases, as described later in this section.
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Fig. 4.4. Comparison of the computing effort, expressed in thousands of floating point
operations (kFLOP), required to factor the Jacobian matrix for a 20-component system
(Nc D 20) during a Newton–Raphson iteration. For a technique that carries a nonlinear
variable for each chemical component and each mineral in the system (top line), the
computing effort increases as the number of minerals increases. For the reduced basis
method (bottom line), however, less computing effort is required as the number of minerals
increases.

From Equation 4.19, the correction to an estimated solution is given by solving

the system,

�
Jww Jwi

Jiw Ji i 0

�
r

�
�nw

�mi

�
r

D
��Rw

�Ri

�
r

(4.31)

for .�nw ; �mi/r. The equation system can be solved by a variety of methods using

widely available software, such as the Linpack library (Dongarra et al., 1979). The

correction is added to the current values of the unknown variables, and the iteration

continues until the magnitudes of the residual functions fall below a prescribed

tolerance.

At this point we can see the advantage of working with the reduced problem.

Most published algorithms carry a nonlinear variable for each chemical component

plus one for each mineral in the system. The number of nonlinear variables in the

method presented here, on the other hand, is the number of components minus

the number of minerals. Depending on the size of the problem, the savings in

computing effort in evaluating Equation 4.31 can be dramatic (Fig. 4.4).
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4.3.5 Non-negativity

There are, in fact, a number of solutions to the governing equations, but usually (see

Chapter 12) only one with positive mole numbers and concentrations. Fortunately,

the latter answer is of interest to all but the most abstract-thinking geochemist.

The requirement that the iteration produce positive masses is known in chemical

modeling as the non-negativity constraint.

One method of assuring positive values is to carry the logarithms of the un-

known variables through the solution, since this function is not defined for nega-

tive numbers (van Zeggeren and Storey, 1970; Wolery, 1979). An alternative and

perhaps more straightforward method is to begin the iteration with positive values

for the unknown variables and then to scale back corrections that would drive any

value negative. This technique in numerical analysis is called under-relaxation.

The method is the computational equivalent of the childhood riddle: If Marco Polo

traveled each day half way to China, how long would it take to get there? Marco’s

journey would shorten by half each day so that he would never quite reach his

destination. Similarly, values in the under-relaxed iteration can approach zero but

never become negative.

We force non-negativity upon a Newton–Raphson iteration by defining an under-

relaxation factor,

1

ıUR
D max

 
1; � �nw

1=2 n
.q/
w

; � �mi

1=2 m
.q/
i

!
r

: (4.32)

The updated values are calculated according to,�
nw

mi

�
r.qC1/

D
�
nw

mi

�
r.q/

C ıUR

�
�nw

�mi

�
r

: (4.33)

By these equations, the correction is allowed to reduce any variable by no more

than half its value.

4.3.6 Examples of convergence

The resulting iteration scheme converges strongly, with each iteration likely to

reduce the residuals by an order of magnitude or more. Figure 4.5 shows how the

iteration converges when the initial residuals take on large negative and positive

values. The figure also shows the convergence when the activity coefficients and

water activity are set to one. The extra nonlinearity introduced by the activity

coefficients slows convergence by two or three iterations in these tests. From

experience, the iteration can be expected to converge within about ten iterations;

solutions requiring more than a hundred iterations are rather uncommon.



4.3 Solving the governing equations 65

Greatest

residual

(moles)

10–12

10–10

10– 8

10– 6

10– 4

.01

1

100

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

Iteration

Positive Residuals Negative Residuals

Fig. 4.5. Convergence of the iteration to very small residuals in the reduced basis method,
for systems contrived to have large positive and negative residuals at the start of the
iteration. The tests assume Debye–Hückel activity coefficients (�) and an ideal solution
in which the activity coefficients are unity (�).

4.3.7 Optimizing the starting guess

The Newton–Raphson iteration usually converges to a solution rapidly enough that

the choice of a starting guess is of little practical importance. Sometimes, however,

an aqueous species that will end up at extremely low concentration appears in the

basis. For example, the basis used to solve for the species distribution in a reduced

fluid might contain O2(aq). The oxidized species begins at high concentration, so

by the mass action equations the reduced species such as H2(aq) and H2S(aq) start

with impossibly large molalities. Hence, the residual for this basis entry becomes

extremely large, sometimes in excess of 10100.

Such a situation is dangerous because even though the iteration many times

converges nicely, seemingly against impossible odds, the algorithm sometimes

diverges to the pseudoroot nw D 0 to Equation 4.23. An effective strategy is to

repeatedly halve the starting guess for the basis species corresponding to very large

positive residuals until the residuals reach a manageable size, perhaps less than 103.

4.3.8 Activity coefficients

To this point, we have assumed that the activity coefficients �i and �j as well as

the activity of water aw are known values. In fact, these values vary with mi . Our
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strategy is to ignore this variation while calculating the Jacobian matrix and then

update the activity coefficients and water activity after each step in the iteration.

Such a scheme is sometimes called a “soft” Newton–Raphson formulation be-

cause the partial derivatives in the Jacobian matrix are incomplete. We could, in

principle, use a “hard” formulation in which the Jacobian accounts for the devia-

tives @�=@mi and @aw=@mi . The hard formulation sometimes converges in fewer

iterations, but in tests, the advantage was more than offset by the extra effort in

computing the Jacobian. The soft method also allows us to keep the method for cal-

culating activity coefficients (see Chapter 8) separate from the Newton–Raphson

formulation, which simplifies programming.

4.3.9 Charge balance

Our numerical solution must also honor charge balance among the dissolved spe-

cies. As shown in Chapter 3, species are charge balanced when the components

balance. In calculations constrained by known values ofMi , charge balance can be

checked before beginning the solution.

A modeler, however, sometimes constrains one or more components in terms

of a basis species’ free concentration mi (i.e., by specifying pH). Charge balance

cannot be assured a priori because the system’s bulk composition is not known

until the iteration has converged. To force electrical neutrality, the model adjusts

the mole numberMi of a charged component such as Cl� after each iteration. This

adjustment may be of little practical importance, because laboratories commonly

report chloride concentrations computed from charge balance rather than from

direct analysis of the element.

4.3.10 Mineral masses

As we have noted, the mole numbers nk of minerals in the system appear as

linear terms in Equation 4.5. For this reason, these equations are omitted from

the reduced basis. After the iteration is complete, the values of nk , when unknown,

are calculated according to,

nk D Mk � nw

X
j

�kjmj ; (4.34)

which is obtained by reversing Equation 4.5. Note that there is nothing in the solu-

tion procedure that prevents negative values of nk , a useful feature in determining

the stable mineral assemblage (see Section 4.4).
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4.3.11 Bulk composition

The remaining step is to compute the system’s bulk composition, if it is not fully

known, according to the mass balance equations. The mole numbersMw , Mi , and

Mk are not known when the modeler has constrained the corresponding variable

nw , mi , or nk . In these cases, the mole numbers are determined directly from

Equations 4.3–4.5. Where gases appear in the basis, the mole numbers Mm of gas

components are similarly calculated from Equation 4.6.

4.4 Finding the stable phase assemblage

The calculation described to this point does not predict the assemblage of minerals

that is stable in the current system. Instead, the assemblage is assumed implicitly

by setting the basis B before the calculation begins. A solution to the governing

equations constitutes the equilibrium state of the system if two conditions are met:

(1) no mineral in the system has dissolved away and become undersaturated, and

(2) the fluid is not supersaturated with respect to any mineral.

A calculation procedure could, in theory, predict at once the distribution of

mass within a system and the equilibrium mineral assemblage. Brown and Skinner

(1974) undertook such a calculation for petrologic systems. For an n-component

system, they calculated the shape of the free energy surface for each possible solid

solution in a rock. They then raised an n-dimensional hyperplane upward, allowing

it to rotate against the free energy surfaces. The hyperplane’s resting position

identified the stable minerals and their equilibrium compositions. Inevitably, the

technique became known as the “crane plane” method.

Such a method has seldom been used with systems containing an aqueous fluid,

probably because the complexity of the solution’s free energy surface and the

wide range in aqueous solubilities of the elements complicate the numerics of the

calculation (e.g., Harvie et al., 1987). Instead, most models employ a procedure

of elimination. If the calculation described fails to predict a system at equilibrium,

the mineral assemblage is changed to swap undersaturated minerals out of the basis

or supersaturated minerals into it, following the steps in the previous chapter; the

calculation is then repeated.

4.4.1 Undersaturated minerals

Minerals that have become undersaturated are revealed in the iteration results by

negative mole numbers nk . A negative mass, of course, is not meaningful physi-

cally beyond demonstrating that the mineral was completely consumed, perhaps to

form another mineral, in the approach to equilibrium.

Minerals that develop negative masses are removed from the basis one at a time,
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and the solution is then recalculated. When a mineral is removed, an aqueous

species must be selected from among the secondary species Aj to replace it in

the basis. The species selected should be in high concentration to assure numerical

stability in the iterative scheme described here and must, in combination with the

other basis entries, form a valid component set (see Section 3.2). The species best

fitting these criteria satisfies

max
j

�
mj � j�kj j� ; (4.35)

where �kj is the reaction coefficient for the undersaturated mineral in the reaction

to form the secondary species.

4.4.2 Supersaturated minerals

The saturation state of each mineral that can form in a model must be checked once

the iteration is complete to identify supersaturated minerals. A mineral Al , which

is not in the basis, forms by the reaction

Al D �wlAw C
X

i

�ilAi C
X

k

�klAk C
X
m

�mlAm ; (4.36)

which has an associated equilibrium constant Kl . The saturation state is given by

the ratio Ql=Kl , where Ql is the mineral’s activity product:

Ql D a�wl
w �

iY
.�imi /

�il �
kY
a

�kl

k
�

mY
f �ml

m : (4.37)

Ratios greater than one identify supersaturated minerals that need to be swapped

into the basis and allowed to precipitate.

Choosing the location in the basis for the new mineral is a matter of identifying

a basis species Ai that is similar in composition to the mineral to be removed and

preferably in small concentration. The best species to be displaced from the basis

satisfies

max
i

� j�il j
mi

�
; (4.38)

where �il are the coefficients for the basis species in the reaction to form the

supersaturated mineral.

4.4.3 Swap procedure

A calculated solution may have just one supersaturated or undersaturated mineral,

in which case calculating the solution for the new mineral assemblage will give

the equilibrium state. Not uncommonly, however, more than one mineral appears
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Yes

No

Yes

No

Solve for equilibrium state

given current mineral assemblage

Any undersaturated minerals in system?

Remove most undersaturated mineral –

most negative nk

Any supersaturated minerals? –

Q/K > 1

Add most supersaturated mineral –

largest Q/K

Stable mineral assemblage

Fig. 4.6. Procedure for finding the stable mineral assemblage in a system of known com-
position.

under- or supersaturated. Such a situation is best handled one swap at a time,

according to a set algorithm coded into the model.

No algorithm is guaranteed to arrive at the equilibrium state in this manner

(Wolery, 1979), but the procedure outlined in Figure 4.6 gives good results in

solving a wide range of problems. The procedure first checks for undersaturated

minerals. If any exist, the one with the most negative nk is removed from the basis

and the governing equations solved once again.

Once there are no undersaturated minerals, the procedure checks for supersat-

urated minerals. If any exist, the most supersaturated mineral, identified by the

largest Ql=Kl , is swapped into the basis and the governing equations are solved.

Precipitating a new mineral, however, may dissolve another away, so now the pro-

cess begins anew by checking for undersaturated minerals. Once a solution has

been found that includes neither undersaturated nor supersaturated minerals, the

true equilibrium state has been located.
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4.4.4 Apparent violation of the phase rule

Sometimes when a mineral becomes supersaturated, there is no logical aqueous

species in the basis with which to swap the mineral. Such a situation occurs when

no species appear in the reaction to form the mineral. Wolery (1979) and Reed

(1982) refer to such a situation as an “apparent violation of the phase rule,” because

adding the mineral to the basis would produce more phases in the system than there

are components.

To include the supersaturated mineral in the basis in this case, another mineral

must be removed. Although different schemes have been suggested for identifying

the mineral to be removed, the most straightforward is to recognize that the reaction

to form the supersaturated mineral,

�wlAw C
X

k

�klAk C
X
m

�mlAm ! Al (4.39)

will proceed until a mineral Ak in the basis is exhausted. The mineral satisfying

min
k

�
nk

�kl

�
(4.40)

is the first mineral exhausted and hence the entry to be swapped out of the basis.
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Changing the basis

To this point we have assumed the existence of a basis of chemical components

that corresponds to the system to be modeled. The basis, as discussed in the

previous chapter, includes water, each mineral in the equilibrium system, each gas

at known fugacity, and certain aqueous species. The basis serves two purposes:

each chemical reaction considered in the model is written in terms of the members

of the basis set, and the system’s bulk composition is expressed in terms of the

components in the basis.

Since we could not possibly store each possible variation on the basis, it is

important for us to be able at any point in the calculation to adapt the basis to

match the current system. It may be necessary to change the basis (make a basis

swap, in modeling vernacular) for several reasons. This chapter describes how basis

swaps can be accomplished in a computer model, and Chapter 11 shows how this

technique can be applied to automatically balance chemical reactions and calculate

equilibrium constants.

The modeler first encounters basis swapping in setting up a model, when it may

be necessary to swap the basis to constrain the calculation. The thermodynamic

dataset contains reactions written in terms of a preset basis that includes water

and certain aqueous species (NaC, CaCC, KC, Cl�, HCO�
3 , SO��

4 , HC, and so

on) normally encountered in a chemical analysis. Some of the members of the

original basis are likely to be appropriate for a calculation. When a mineral appears

at equilibrium or a gas at known fugacity appears as a constraint, however, the

modeler needs to swap the mineral or gas in question into the basis in place of one

of these species.

Over the course of a reaction model, a mineral may dissolve away completely

or become supersaturated and precipitate. In either case, the modeling software

must alter the basis to match the new mineral assemblage before continuing the

calculation. Finally, the basis sometimes must be changed in response to numer-

ical considerations (e.g., Coudrain-Ribstein and Jamet, 1989). Depending on the

71
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numerical technique employed, the model may have trouble converging to a so-

lution for the governing equations when one of the basis species occurs at small

concentration. Including such a species in the basis can lead to numerical insta-

bility because making small corrections to its molality leads to large deviations in

the molalities of the secondary species, when they are calculated using the mass

action equations. In such a case, the modeling software may swap a more abundant

species into the basis.

Fortunately, the process of changing the basis is straightforward and quickly

performed on a computer using linear algebra, as we will see in this chapter.

Modeling software, furthermore, performs basis changes automatically, so that the

details need be of little concern in practice. Nonetheless, the nature of the process

should be clear to a modeler. There are four steps in changing the basis: finding

the transformation matrix, rewriting reactions to reflect the new basis, altering the

equilibrium constants for the reactions, and reexpressing bulk composition in terms

of the new basis. The process is familiar to mathematicians, who will recognize it

as a linear, nonorthogonal transformation of coordinates.

5.1 Determining the transformation matrix

Initially, a basis vector,

B D .Aw ; Ai; Ak ; Am/ (5.1)

describes a system. We wish to transform B to a new basis B0. The new basis, which

also contains water, is

B0 D .Aw ; A
0
i; A

0
k ; A

0
m/ : (5.2)

Each entry A0
i , A

0
k

, or A0
m is a species or mineral that can be formed according

to a swap reaction as a combination of the entries in the original basis. If Aj , a

secondary species under the original basis, is to be swapped into basis positionA0
i ,

the corresponding swap reaction is,

A0
i D Aj D �wjAw C

X
i

�ijAi C
X

k

�kjAk C
X
m

�mjAm : (5.3)

Alternatively, the reaction for swapping a mineral Al or gas An into positionA0
k

or

A0
m is,

A0
k D Al D �wlAw C

X
i

�ilAi C
X

k

�klAk C
X
m

�mlAm (5.4)

A0
m D An D �wnAw C

X
i

�inAi C
X

k

�knAk C
X
m

�mnAm : (5.5)
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An equilibrium constant Ksw is associated with each swap reaction. The swap

reactions, written ensemble, form a matrix equation,

0
BB@
Aw

A0
i

A0
k

A0
m

1
CCA D .ˇ/

0
BB@
Aw

Ai

Ak

Am

1
CCA (5.6)

that gives the new basis in terms of the old. Here, .ˇ/ is a matrix of the stoichio-

metric coefficients,

.ˇ/ D

0
BB@
1 0 0 0

�wj �ij �kj �mj

�wl �il �kl �ml

�wn �in �kn �mn

1
CCA (5.7)

from the swap reactions. Writing the old basis in terms of the new, then, is simply

a matter of reversing the equation to give,

0
BB@
Aw

Ai

Ak

Am

1
CCA D .ˇ/�1

0
BB@
Aw

A0
i

A0
k

A0
m

1
CCA : (5.8)

Here .ˇ/�1, the inverse of .ˇ/, is the transformation matrix, which is applied

frequently in petrology (e.g., Brady, 1975; Greenwood, 1975; Thompson, 1982),

but somewhat less commonly in aqueous geochemistry.

5.1.1 Example: Calculating the transformation matrix

These equations are abstract, but an example makes their meaning clear. In calcu-

lating a model, we might wish to convert a basis,

B D �
H2O;CaCC;HCO�

3 ;H
C
�

(5.9)

to a new basis,

B0 D �
H2O;CaCC;Calcite;CO2(g)

�
; (5.10)

in order to take advantage of a known CO2 fugacity and the assumption of equilib-

rium with calcite. The swap reactions (including “null” swaps for H2O and CaCC)
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are

H2O D H2O

CaCC D CaCC

Calcite D CaCC � HC C HCO�
3

CO2(g) D �H2O C HC C HCO�
3 ;

(5.11)

or, in matrix form,0
BB@

H2O

CaCC

Calcite

CO2(g)

1
CCA D

0
BB@
1 0 0 0

0 1 0 0

0 1 1 �1
�1 0 1 1

1
CCA
0
BB@

H2O

CaCC

HCO�
3

HC

1
CCA : (5.12)

Inverting the matrix of coefficients gives reactions to form the old basis in terms of

the new, 0
BB@

H2O

CaCC

HCO�
3

HC

1
CCA D

0
BB@
1 0 0 0

0 1 0 0
1=2 �1=2 1=2 1=2

1=2 1=2 �1=2 1=2

1
CCA
0
BB@

H2O

CaCC

Calcite

CO2(g)

1
CCA : (5.13)

Written in standard form, the four reactions represented in the matrix equation may

appear unusual because of the choice of components, but can be verified to balance.

The transformation matrix for this change of basis is,

.ˇ/�1 D

0
BB@
1 0 0 0

0 1 0 0
1=2 �1=2 1=2 1=2

1=2 1=2 �1=2 1=2

1
CCA : (5.14)

5.1.2 Test for a valid basis

The process of determining the transformation matrix provides a chance to check

that the current basis is thermodynamically valid. In the previous chapter we noted

that if a basis is valid, it is impossible to write a balanced reaction to form one entry

in terms of the other entries in the basis.

An equivalent statement is that no row of the coefficient matrix .ˇ/ can be

formed as a linear combination of the other rows. Since the matrix’s determinant

is nonzero when and only when this statement is true, we need only evaluate the

determinant of .ˇ/ to demonstrate that a new basis B0 is valid. In practice, this test

can be accomplished using a linear algebra package, or implicitly by testing for

error conditions produced while inverting the matrix, since a square matrix has an

inverse if and only if its determinant is not zero.
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5.2 Rewriting reactions

Each time we change the basis, we must rewrite each chemical reaction in the sys-

tem in terms of the new basis. This task, which might seem daunting, is quickly

accomplished on a computer, using the transformation matrix. Consider the reac-

tion to form an aqueous species,

Aj D Aw�wj C
X

i

�ijAi C
X

k

�kjAk C
X
m

�mjAm : (5.15)

The reaction can be written in vector form,

Aj D �
�wj ; �ij ; �kj ; �mj

�
0
BB@
Aw

Ai

Ak

Am

1
CCA (5.16)

in terms of the old basis. Substituting the transformation to the new basis (Eqn. 5.6)

gives,

Aj D �
�wj ; �ij ; �kj ; �mj

�
.ˇ/�1

0
BB@
A0

w

A0
i

A0
k

A0
m

1
CCA : (5.17)

The new reaction coefficients for the species Aj , then, are simply the matrix

products of the old coefficients and the transformation matrix:�
�0

wj
; �0

ij
; �0

kj
; �0

mj

�
D �

�wj ; �ij ; �kj ; �mj

�
.ˇ/�1 : (5.18)

Similarly, the products�
�0

wl
; �0

il
; �0

kl
; �0

mk

� D �
�wl ; �il ; �kl ; �ml

�
.ˇ/�1 (5.19)�

�0
wn ; �

0
in
; �0

kn
; �0

mn

� D �
�wn; �in; �kn; �mn

�
.ˇ/�1 (5.20)

give the revised reaction coefficients for minerals Al and gases Am.

Following our example from above, we write the reaction to form, as an example,

carbonate ion,

CO��
3 D �

0; 0; 1;�1�
0
BB@

H2O

CaCC

HCO�
3

HC

1
CCA

D �
0; 0; 1;�1�

0
BB@
1 0 0 0

0 1 0 0
1=2 �1=2 1=2 1=2

1=2 1=2 �1=2 1=2

1
CCA
0
BB@

H2O

CaCC

Calcite

CO2(g)

1
CCA ;

(5.21)



76 Changing the basis

using the transformation matrix that we already calculated (Eqn. 5.14). Multiplying

the numeric terms gives the reaction to form this species in terms of the new basis:

CO��
3 D �

0;�1; 1; 0�
0
BB@

H2O

CaCC

Calcite

CO2(g)

1
CCA ; (5.22)

or simply

CO��
3 D Calcite � CaCC : (5.23)

5.3 Altering equilibrium constants

The third step in changing the basis is to set the equilibrium constants for the

revised reactions. The new equilibrium constant K0
j for a species reaction can be

found from its valueKj before the basis swap according to

logK0
j D logKj �

X
i

�0
ij logKsw

i �
X

k

�0
kj logKsw

k
�
X
m

�0
mj logKsw

m : (5.24)

Here, Ksw
i , Ksw

k
, and Ksw

m are the equilibrium constants for the reactions by which

we swap species, minerals, and gases into the basis.

In matrix form, the equation is,

logK0
j D logKj �

�
�0

wj
; �0

ij
; �0

kj
; �0

mj

�0BB@
0

logKsw
i

logKsw
k

logKsw
m

1
CCA : (5.25)

The equilibrium constants for mineral and gas reactions are calculated from their

revised reaction coefficients in similar fashion as,

logK0
l D logKl � �

�0
wl
; �0

il
; �0

kl
; �0

ml

�
0
BB@

0

logKsw
i

logKsw
k

logKsw
m

1
CCA ; (5.26)

and

logK0
n D logKn � �

�0
wn; �

0
in; �

0
kn
; �0

mn

�
0
BB@

0

logKsw
i

logKsw
k

logKsw
m

1
CCA : (5.27)
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Basis entries that do not change over the swap have no effect in these equations,

since they are represented by null swap reactions (e.g., H2O = H2O) with equilib-

rium constants of unity.

What is the equilibrium constant for CO��
3 in the example from the previous

section? The value at 25 °C for the reaction written in terms of the original basis is

1010:34 , and the equilibrium constants of the swap reactions for calcite and CO2(g)

are 101:71 and 10�7:82. The new value according to the equation above is,

logK0
CO��

3
D .10:34/� �

0;�1; 1; 0�
0
BB@

0

0

1:71

�7:82

1
CCA (5.28)

or 108:63. To verify this result, we can calculate the equilibrium constant directly

by elimination,

CO��
3 D HCO�

3 � HC logK D 10:34

HCO�
3 C CaCC � HC D Calcite logK D �1:71

CO��
3 D Calcite � CaCC logK D 8:63

(5.29)

and arrive at the same value.

5.4 Reexpressing bulk composition

The final step in changing the basis is to recalculate the system’s bulk composition

in terms of the new component set. Composition in terms of the old and new bases

is related by the stoichiometric coefficients,0
BB@
Mw

Mi

Mk

Mm

1
CCA D .ˇ/T

0
BB@
M 0

w

M 0
i

M 0
k

M 0
m

1
CCA ; (5.30)

where .ˇ/T is the transpose of .ˇ/

.ˇ/T D

0
BB@
1 �wj �wl �wn

0 �ij �il �in

0 �kj �kl �kn

0 �mj �ml �mn

1
CCA (5.31)

(i.e., the coefficient matrix flipped on its diagonal). This relationship holds because

reaction coefficients give the amounts of the old basis entries that go into making

up the new entries, as noted in the previous chapter.
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Reversing this equation shows that the composition in terms of the new basis is

given immediately by the transpose of the transformation matrix,0
BB@
M 0

w

M 0
i

M 0
k

M 0
m

1
CCA D .ˇ/�1T

0
BB@
Mw

Mi

Mk

Mm

1
CCA (5.32)

(because the inverse of a transposed matrix is the same as the transposed inverse).

In other words, the entries in the transformation matrix can simply be flipped (or,

in practice, their subscripts reversed) to revise the bulk composition.

Continuing our example from the previous section, we want to use this formula

to revise bulk composition in a system in which Calcite and CO2(g) have been

swapped for HCO�
3 and HC. The old and new compositions are related by,0
BB@
MH2O

MCaCC

MHCO�
3

MHC

1
CCA D

0
BB@
1 0 0 �1
0 1 1 0

0 0 1 1

0 0 �1 1

1
CCA
0
BB@
MH2O

MCaCC

MCalcite

MCO2(g)

1
CCA ; (5.33)

which we write by transposing the coefficient matrix for the swap reactions (from

Eqn. 5.12).

To find the new composition, we need only flip the elements in the transforma-

tion matrix about its diagonal, giving,0
BB@
MH2O

MCaCC

MCalcite

MCO2(g)

1
CCA D

0
BB@
1 0 1=2 1=2

0 1 �1=2 1=2

0 0 1=2 �1=2

0 0 1=2 1=2

1
CCA
0
BB@
MH2O

MCaCC

MHCO�
3

MHC

1
CCA : (5.34)

In interpreting this equation, it is important to recall that the total mole numbers

M of the components provide a mathematical tool for describing the system’s

composition, but do not give the amounts of species, minerals, or gases actually

present in the system.

According to the equation, we expect more water component when the system

is defined in terms of the new basis rather than the old because hydrogen occurs

in the new basis only in H2O, whereas it was also found in the HC and HCO�
3

components of the old basis. (Of course, the amount of actual water remains

the same, since we are expressing the same bulk composition in different terms.)

Similarly, the calcium in the original system will be distributed between the CaCC

and Calcite components of the new system, and so on.

To complete the example numerically, we take as our system a solution of

10�3 moles calcium bicarbonate dissolved in one kg (55.5 moles) of water. For
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simplicity, we set the HC component to zero moles, which corresponds to a pH of

about 8. The system’s composition expressed in terms of the two bases is,0
BB@
MH2O

MCaCC

MHCO�
3

MHC

1
CCA D

0
BB@
55:5

0:001

0:002

0

1
CCA

0
BB@
MH2O

MCaCC

MCalcite

MCO2(g)

1
CCA D

0
BB@
55:501

0

0:001

0:001

1
CCA (5.35)

where we have calculated the second set of values from the first according to

Equation 5.34. We can quickly verify that each composition is charge balanced,

and that the two vectors contain the same mole numbers of the elements hydrogen,

oxygen, calcium, and carbon. The compositions expressed in terms of the two

component sets are, in fact, equivalent.
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Equilibrium models of natural waters

Having derived a set of equations describing the equilibrium state of a multicom-

ponent system and devised a scheme for solving them, we can begin to model the

chemistries of natural waters. In this chapter we construct four models, each posing

special challenges, and look in detail at the meaning of the calculation results.

In each case, we use program SPECE8 or REACT and employ an extended form

of the Debye–Hückel equation for calculating species’ activity coefficients, as

discussed in Chapter 8. In running the programs, you work interactively following

the general procedure:

� Swap into the basis any needed species, minerals, or gases. Table 6.1 shows

the basis in its original configuration (as it exists when you start the program).

You might want to change the basis by replacing SiO2(aq) with quartz so that

equilibrium with this mineral can be used to constrain the model. Or to set a

fugacity buffer you might swap CO2(g) for either HC or HCO�
3 .

� Set a constraint for each basis member that you want to include in the calcula-

tion. For instance, the constraint might be the total concentration of sodium in

the fluid, the free mass of a mineral, or the fugacity of a gas. You may also set

temperature (25 °C, by default) or special program options.

� Run the program by typing go.

� Revise the basis or constraints and reexecute the program as often as you wish.

In this book, input scripts for running the various programs are set in a “type-

writer” typeface. Unless a script is marked as a continuation of the previous script,

you should start the program anew or type reset to clear your previous configura-

tion.

81
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Table 6.1. Basis species in the LLNL database

H2O CrCCC LiC RuCCC

AgC CsC MgCC SO��
4

AlCCC CuC MnCC SeO��
3

AmCCC EuCCC NO�
3 SiO2(aq)

As(OH)�
4 F� NaC SnCCCC

AuC FeCC NiCC SrCC

B(OH)3 HC NpCCCC TcO�
4

BaCC HCO�
3

O2(aq) ThCCCC

Br� HPO��
4

PbCC UCCCC

CaCC HgCC PuO
CC
2

VCCC

Cl� I� RaCC ZnCC

CoCC KC RbC

6.1 Chemical model of seawater

For a first chemical model, we calculate the distribution of species in surface sea-

water, a problem first undertaken by Garrels and Thompson (1962; see also Thomp-

son, 1992). We base our calculation on the major element composition of seawater

(Table 6.2), as determined by chemical analysis. To set pH, we assume equilib-

rium with CO2 in the atmosphere (Table 6.3). Since the program will determine

the HCO�
3 and water activities, setting the CO2 fugacity (about equal to partial

pressure) fixes pH according to the reaction,

HC C HCO�
3 � CO2(g) C H2O : (6.1)

Similarly, we define oxidation state according to,

O2(aq) � O2(g) (6.2)

by specifying the fugacity of O2(g) in the atmosphere.

The latter two assumptions are simplistic, considering the number of factors

that affect pH and oxidation state in the oceans (e.g., Sillén, 1967; Holland, 1978;

McDuff and Morel, 1980). Consumption and production of CO2 and O2 by plant

and animal life, reactions among silicate minerals, dissolution and precipitation of

carbonate minerals, solute fluxes from rivers, and reaction between convecting sea-

water and oceanic crust all affect these variables. Nonetheless, it will be interesting

to compare the results of this simple calculation to observation.

To calculate the model with REACT, we swap CO2(g) and O2(g) into the basis

in place of HC and O2(aq), and constrain each basis member. The procedure is
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Table 6.2. Major element composition of seawater (Drever, 1988)

Concentration

(mg kg�1)

Cl� 19 350

NaC 10 760

SO��
4 2 710

MgCC 1 290

CaCC 411

KC 399

HCO�
3

142

SiO2(aq) 0.5–10

O2(aq) 0.1–6

Table 6.3. Partial pressures of some gases in the atmosphere (Hem, 1985)

Gas Pressure (atm)

N2 0:78

O2 0:21

H2O 0:001 � 0:23

CO2 0:0003

CH4 1:5 � 10�6

CO .0:06 � 1/ � 10�6

SO2 1 � 10�6

N2O 5 � 10�7

H2 Ï 5 � 10�7

NO2 .0:05 � 2/ � 10�8

swap CO2(g) for H+

swap O2(g) for O2(aq)

log f CO2(g) = -3.5

f O2(g) = 0.2

TDS = 35080

Cl- = 19350 mg/kg

Ca++ = 411 mg/kg

Mg++ = 1290 mg/kg

Na+ = 10760 mg/kg
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K+ = 399 mg/kg

SO4-- = 2710 mg/kg

HCO3- = 142 mg/kg

SiO2(aq) = 6 mg/kg

print species=long

go

Here, we define the total dissolved solids (in mg kg�1) for early releases of the

REACT program (GWB 6.0 and previous), so the software can correctly convert our

input constraints from mg kg�1 to molal units, as carried internally (i.e., variables

mi and mj ). The print command causes the program to list in the output all of

the aqueous species, not just those in greatest concentration. Typing go triggers the

model to begin calculations and write its results to the output dataset.

6.1.1 Species distribution

The program produces in its output dataset a block of results that shows the con-

centration, activity coefficient, and activity calculated for each aqueous species

(Table 6.4), the saturation state of each mineral that can be formed from the basis,

the fugacity of each such gas, and the system’s bulk composition. The extent of the

system is 1 kg of solvent water and the solutes dissolved in it; the solution mass is

1.0364 kg.

In the calculation results, we can quickly identify the input constraints: the

fugacities of CO2(g) and O2(g) and the bulk composition expressed in terms of

components Cl�, CaCC, and so on. Note that the free species concentrations do not

satisfy the input constraints, which are bulk or total values. The free concentration

of the species CaCC, in other words, accounts for just part of the solution’s calcium

content.

The predicted pH is 8.34, a value lying within but toward the alkaline end

of the range 7.8 to 8.5 observed in seawater (Fig. 6.1). The dissolved oxygen

content predicted by the calculation is 215 �mol kg�1, or 6.6 mg kg�1. This value

compares well with values measured near the ocean surface (Fig. 6.2).

It is clear from the species distribution that the dissolved components in seawater

react to varying extents to form complex species (Table 6.5). Components NaC

and Cl� are present almost entirely as free ions. Only a few percent of their masses

appear in complexes, most notably the ion pairs MgClC, NaSO�
4 , CaClC, and NaCl

(Table 6.4). Components CaCC, SO��
4 , and HCO�

3 , on the other hand, complex

strongly; complex species account for a third to a half of their total concentrations.

Some of the species concentrations predicted by the mathematical model are

too small to be physically meaningful. The predicted concentration of H2(aq),

for example, is 4 � 10�45 molal. Multiplying this value by Avogadro’s number
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Table 6.4. Calculated molalities (m), activity coefficients (� ), and log activities

(a) of the most abundant species in seawater

Species m � loga

Cl� 0:5500 0.6276 �0:4619

NaC 0:4754 0.6717 �0:4958

MgCC 0:3975 � 10�1 0.3160 �1:9009

SO��
4 0:1607 � 10�1 0.1692 �2:5657

KC 0:1033 � 10�1 0.6276 �2:1881

MgClC 0:9126 � 10�2 0.6717 �2:2125

NaSO�
4 0:6386 � 10�2 0.6717 �2:3676

CaCC 0:5953 � 10�2 0.2465 �2:8334

MgSO4 0:5767 � 10�2 1.0 �2:2391

CaClC 0:3780 � 10�2 0.6717 �2:5953

NaCl 0:2773 � 10�2 1.0 �2:5571

HCO�
3 0:1498 � 10�2 0.6906 �2:9851

CaSO4 0:8334 � 10�3 1.0 �3:0792

NaHCO3 0:4447 � 10�3 1.0 �3:3519

O2(aq) 0:2151 � 10�3 1.1735 �3:5980

MgHCO
C
3 0:1981 � 10�3 0.6717 �3:8760

KSO�
4 0:1869 � 10�3 0.6717 �3:9013

MgCO3 0:1068 � 10�3 1.0 �3:9715

SiO2(aq) 0:8188 � 10�4 1.1735 �4:0174

KCl 0:5785 � 10�4 1.0 �4:2377

CO��
3 0:5437 � 10�4 0.1891 �4:9879

Table 6.5. Extent of complexing of major cations and anions in seawater

Total concentration Free concentration Complexes

Species mg kg�1 molal molal % of total % of total

NaC 10 760 0.485 0 0.475 4 98 2

MgCC 1 290 0.055 01 0.039 75 72 28

CaCC 411 0.010 63 0.005 953 56 44

Cl� 19 350 0.565 8 0.550 0 97 3

SO��
4 2 710 0.029 24 0.016 07 55 45

HCO�
3 142 0.002 412 0.001 498 62 38
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Fig. 6.1. pH of surface seawater from the western Pacific Ocean (Skirrow, 1965), as
measured in situ during oceanographic cruises (various symbols). Line shows pH predicted
by the model for seawater in equilibrium with atmospheric CO2 at a fugacity of 10�3:5.
Dashed lines show pH values that result from assuming larger fugacities of 10�3:3 and
10�3:1.

(6.02 × 1023 mol�1) and the volume of the Earth’s oceans (1400 × 1018 l), the

concentration is equivalent to just three molecules in all of the world’s seas!

We can calculate a more realistic H2(aq) concentration from the partial pressure

of H2(g) in the atmosphere (Table 6.3) and the equilibrium constant for the reaction

H2(g) � H2(aq) (6.3)

which is 10�3:1. In this case, the molality of H2(aq) in equilibrium with the atmo-

sphere is about 5 × 10�10. This value, while small, is tens of orders of magnitude

greater than the value calculated at equilibrium. Clearly, the equilibrium value is a

mathematical abstraction.

6.1.2 Mineral saturation

Thirteen minerals appear supersaturated in the first block of results produced by

the chemical model (Table 6.6). These results, therefore, represent an equilibrium

achieved internally within the fluid but metastable with respect to mineral precip-

itation. It is quite common in modeling natural waters, especially when working

at low temperature, to find one or more minerals listed as supersaturated. Unfortu-

nately, the error sources in geochemical modeling are large enough that it can be

difficult to determine whether or not a water is in fact supersaturated.
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Fig. 6.2. Profile of dissolved oxygen versus depth at GEOSECS site 226 (Drever, 1988,
p. 267). Arrow marks oxygen content predicted by the model, assuming equilibrium with
oxygen in the atmosphere.

Table 6.6. Calculated saturation indices of various minerals in seawater and the

mass of each precipitate in the stable phase assemblage

Initial SI Amount

Mineral Composition (log Q/K) formed (mg)

Antigorite Mg24Si17O42:5.OH/31 44:16 —

Tremolite Ca2Mg5Si8O22.OH/2 7:73 —

Talc Mg3Si4O10.OH/2 6:68 —

Chrysotile Mg3Si2O5.OH/4 4:72 —

Sepiolite Mg4Si6O15.OH/2 � 6H2O 3:93 —

Anthophyllite Mg7Si8O22.OH/2 3:48 —

Dolomite CaMg.CO3/2 3:46 50

Dolomite-ord CaMg.CO3/2 3:46 —

Huntite CaMg3.CO3/4 2:13 —

Dolomite-dis CaMg.CO3/2 1:91 —

Magnesite MgCO3 1:02 —

Calcite CaCO3 0:81 —

Aragonite CaCO3 0:64 —

Quartz SiO2 �0:02 1
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Many natural waters are supersaturated at low temperature, primarily because

less stable minerals dissolve more quickly than more stable minerals precipitate.

Relatively unstable silica phases such as chalcedony or amorphous silica, for ex-

ample, may control a fluid’s SiO2 concentration because quartz, the most stable

silica mineral, precipitates slowly.

Uncertainty in the calculation, however, affects the reliability of values reported

for saturation indices. Reaction logKs for many minerals are determined by ex-

trapolating the results of experiments conducted at high temperature to the condi-

tions of interest. The error in this type of extrapolation shows up directly in the

denominator of logQ=K. Error in calculating activity coefficients (see Chapter 8),

on the other hand, directly affects the computed activity product Q. The effect is

pronounced for reactions with large coefficients, such as those for clay minerals.

Error in the input data can also be significant. The saturation state calculated for

an aluminosilicate mineral, for example, depends on the analytical concentrations

determined for aluminum and silicon. These analyses are difficult to perform ac-

curately. As discussed in the next section, the presence of colloids and suspended

particles in solution often affects the analytical results profoundly.

Averaging analytical data from different fluids commonly leads to inflated sat-

uration indices. Scientists generally regard averaging as a method for reducing

uncertainty in measured values, but the practice can play havoc in geochemical

modeling. Waters with a range of CaCC and SO��
4 concentrations, for exam-

ple, can be in equilibrium with anhydrite (CaSO4), so long as the activity product

aCaCC � aSO��
4

matches the equilibrium constant for the dissolution reaction. The

averaged composition of two fluids (A and B) with differing CaCC to SO��
4 ra-

tios is, in the absence of activity coefficient effects, invariably supersaturated. This

point can be shown quickly:

QA D .aCaCC/A.aSO��
4
/A D K (6.4)

QB D .aCaCC/B .aSO��
4
/B D K (6.5)

Qave D 1

2

�
.aCaCC/A C .aCaCC/B

	 � 1

2

�
.aSO��

4
/A C .aSO��

4
/B
	

D 1

2
K C 1

4
.aCaCC/A.aSO��

4
/B C 1

4
.aCaCC/B .aSO��

4
/A � K :

(6.6)

The activity product Qave corresponding to the averaged analysis (ignoring vari-

ation in activity coefficients) equals the equilibrium constant K only when fluids

A and B are identical; otherwise Qave exceeds K and anhydrite is reported to be

supersaturated. To demonstrate this inequality, we can assume arbitrary values for

aCaCC and aSO��
4

that satisfy Equations 6.4–6.5 and substitute them into Equation

6.6.

The physical analogy to the averaging problem occurs when a sample consists
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of a mixture of fluids, as can occur when a well draws water from two or more

producing intervals. In this case, the mixture may be supersaturated even when the

individual fluids are not.

In the seawater example (Table 6.6), the saturation indices are inflated somewhat

by the choice of a rather alkaline pH, reflecting equilibrium with atmospheric CO2.

If we had chosen a more acidic pH within the range observed in seawater, the

indices would be smaller. The choice of large formula units for the phyllosilicate

minerals, as discussed later in this section, also serves to inflate the saturation

indices reported for these minerals.

Calculating the saturation state of dolomite presents an interesting problem.

Geochemists have generally believed that ordered dolomite is supersaturated in

seawater but prevented from precipitating by kinetic factors (e.g., Kastner, 1984;

Hardie, 1987). The stability of dolomite at 25 °C, however, is poorly known (Car-

penter, 1980). The mineral might be more soluble, and hence less supersaturated in

seawater, than shown in the LLNL database, which uses an estimate by Helgeson et

al. (1978) derived by extrapolating data from a metamorphic reaction to room tem-

perature. On the basis of careful experiments at lower temperatures, Lafon et al.

(1992) suggest that seawater is close to equilibrium with dolomite. The saturation

index predicted by our model, therefore, may be unrealistically high.

6.1.3 Mass balance and mass action

Because we formulated the governing equations from the principles of mass bal-

ance and mass action, we should now be able to show that our calculation results

honor these principles. Demonstrating that the computer performed the calcula-

tions correctly is an important step for a geochemical modeler. No programmer is

incapable of erring, no storage device is incorruptible, and no computer is infalli-

ble; the responsibility of showing correctness ultimately lies with the modeler. In

geochemical modeling, fortunately, we can accomplish this relatively easily.

To show mass balance, we add the molalities of each species containing a com-

ponent (but not species concentrations in mg kg�1, since the mole weight of each

species differs) to arrive at the input constraint. Taking component SO��
4 as an ex-

ample, we find the total mole number (Mi ) from the molalities (mi and mj ) of the

sulfur-bearing species
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SO��
4 0.01607

NaSO�
4 0.006386

MgSO4 0.005767

CaSO4 0.0008334

KSO�
4 0.0001869

HSO�
4 1:8 � 10�9

H2SO4 5:5 � 10�21

HS� 1:4 � 10�142

H2S(aq) 3:6 � 10�144

S�� 1:2 � 10�147

0.02924 molal

Converting units,

.0:02924 molal/� .1 kg solvent/� .96:058 g SO4 mol�1/�
.1000 mg g�1/=.1:0364 kg solution/D 2710 mg SO4 .kg solution/�1;

(6.7)

which is the input value from Table 6.2.

Repeating the procedure for component CaCC

CaCC 0.005953

CaClC 0.003780

CaSO4 0.0008334

CaHCOC
3 0.00003545

CaCO3 0.00002481

CaH3SiOC
4 1:29 � 10�7

CaOHC 9:64 � 10�8

CaH2SiO4 5:81 � 10�9

Ca.H3SiO4/2 2:08 � 10�10

0.01063 molal

gives

.0:01063 molal/� .1 kg solvent/� .40:080 g Ca mol�1/�
.1000 mg g�1/=.1:0364 kg solution/D 411 mg Ca .kg solution/�1 :

(6.8)

Again, this is the input value.

To demonstrate mass action, we show that for any possible reaction the activity

product Q matches the equilibrium constant K. This step is most easily accom-

plished by computing logQ as the sum of the products of the reaction coefficients

and log activities of the corresponding species. The reaction for the sodium-sulfate

ion pair, for example,

NaSO�
4 � NaC C SO��

4 (6.9)
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has a logK of �0:694, according to the LLNL database. Calculating logQ

NaC 1 � �0:4958
SO��

4 1 � �2:5657
NaSO�

4 �1 � �2:3676
�0:6939

gives the value of logK, demonstrating that the reaction is indeed in equilibrium.

The procedure for verifying mineral saturation indices is similar. The program

reports that logQ=K for the dolomite reaction,

CaMg(CO3/2
dolomite

C 2 HC
� CaCC C MgCC C 2 HCO�

3 (6.10)

is 3.457. The logK for the reaction is 2.5207. Determining logQ as before

MgCC 1 � �1:9009
CaCC 1 � �2:8334
HCO�

3 2 � �2:9851
HC �2 � �8:3411

5:9777

gives the expected result,

logQ=K D logQ � logK D 3:457 : (6.11)

6.1.4 Stable phase assemblage

After finding the equilibrium distribution of species in the initial fluid, the program

sets about determining the system’s theoretical state of true equilibrium. To do so,

it searches for the stable mineral assemblage, following the procedure described in

Section 4.4. A second block of results in the program output shows the equilibrium

state corresponding to the predicted stable assemblage of fluid, dolomite, and

quartz. These results are largely of academic interest: you could leave a bottle of

seawater on a shelf for a very long time without fear that dolomite or quartz would

form.

The search procedure, which we can trace through the flow chart shown in

Fig. 4.6, is of interest. The steps in the procedure are:
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1. Calculate initial species distribution; thirteen minerals are supersaturated.

2. Remove fugacity buffers.

Swap MgCO3 for CO2(g), O2(aq) for O2(g).

3. Swap antigorite for MgCO3.

Iteration converges, six minerals are supersaturated.

4. Swap dolomite for SiO2(aq).

Iteration converges, antigorite has dissolved away.

5. Swap SiO2(aq) for antigorite.

Iteration converges, quartz is supersaturated.

6. Swap quartz for SiO2(aq).

Iteration converges, there are no supersaturated minerals.

The program begins (step 1) with the distribution of species, as already de-

scribed. Before beginning to search for the stable phase assemblage, it sets a closed

system (step 2) by eliminating the fugacity buffers for CO2(g) and O2(g). It does

so by swapping the aqueous species MgCO3 and O2(aq) into the basis. If these

gases had been set as fixed buffers using the fix command, however, the program

would skip this step.

Next (step 3), the program swaps antigorite, the most supersaturated mineral

in the initial fluid, into the basis in place of species MgCO3. With antigorite in

the system, six minerals are supersaturated. In the next step (step 4), the program

chooses to swap dolomite into the basis in place of SiO2(aq). This swap seems

strange until we write the reaction for dolomite in terms of the current basis:

CaMg.CO3/2
dolomite

C 1:6 H2O C 0:7 SiO2(aq) �

0:04 Mg24Si17O42:5.OH/31

antigorite

C CaCC C 2 HCO�
3 :

(6.12)

Since antigorite holds the place of magnesium in the basis, dolomite contains a

negative amount of silica.

Dolomite precipitation consumes magnesium and produces HC, causing the

antigorite to dissolve completely. The resulting pH shift also causes quartz, which

is most soluble under alkaline conditions, to become supersaturated. The program

(step 5) replaces antigorite with SiO2(aq), leading to a solution supersaturated

with respect to only quartz. Including quartz in the mineral assemblage (step 6),

the program converges to a saturated solution representing the system’s theoretical

equilibrium state.
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6.1.5 Interpreting saturation indices

It is tempting to place significance on the relative magnitudes of the saturation in-

dices calculated for various minerals and then to relate these values to the amounts

of minerals likely to precipitate from solution. The data in Table 6.6, however, sug-

gest no such relationship. Thirteen minerals are supersaturated in the initial fluid,

but the phase rule limits to ten the number of minerals that can form; only two

(dolomite and quartz) appear in the final phase assemblage.

For a number of reasons, using saturation indices as measures of the mineral

masses to be formed as a fluid approaches equilibrium is a futile (if commonly

undertaken) exercise. First, a mineral’s saturation index depends on the choice of

its formula unit. If we were to write the formula for quartz as Si2O4 instead of

SiO2, we would double its saturation index. Large formula units have been chosen

for many of the clay and zeolite minerals listed in the LLNL database, and this

explains why these minerals appear frequently at the top of the supersaturation list.

Second, at a given saturation index, supersaturated minerals with high solubil-

ities have the potential to precipitate in greater mass than do less soluble ones.

Consider a solution equally supersaturated with respect to halite (NaCl) and gyp-

sum (CaSO4�2H2O). Of the two minerals, halite is the more soluble and hence more

of it must precipitate for the fluid to approach equilibrium.

Third, for minerals with binary or higher order reactions, there is no assurance

that the reactants are available in stoichiometric proportions. We could prepare

solutions equally supersaturated with respect to gypsum by using differing CaCC

to SO��
4 ratios. A solution containing these components in equal amounts would

precipitate the most gypsum. Solutions rich in CaCC but depleted in SO��
4 , or rich

in SO��
4 but depleted in CaCC, would produce lesser amounts of gypsum.

Finally, common ion effects link many mineral precipitation reactions, so the

reactions do not operate independently. In the seawater example, dolomite precip-

itation consumed magnesium and produced hydrogen ions, significantly altering

the saturation states of the other supersaturated minerals.

6.2 Amazon River water

We turn our attention to developing a chemical model of water from the Amazon

River, using a chemical analysis reported by Hem (1985, p. 9). The procedure in

SPECE8 is

pH = 6.5

SiO2(aq) = 7. mg/kg

Al+++ = .07 mg/kg

Fe++ = .06 mg/kg

Ca++ = 4.3 mg/kg
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Table 6.7. Calculated molalities (m), activity coefficients (� ), and log activities

(a) of the most abundant species in Amazon River water

Species m � loga

HCO�
3 0:181 � 10�3 0:974 �3:75

O2(aq) 0:181 � 10�3 1:000 �3:74

Cl� 0:138 � 10�3 0:973 �3:87

CO2(aq) 0:130 � 10�3 1:000 �3:89

SiO2(aq) 0:116 � 10�3 1:000 �3:93

CaCC 0:106 � 10�3 0:899 �4:02

NaC 0:783 � 10�4 0:973 �4:12

MgCC 0:450 � 10�4 0:901 �4:39

SO��
4

0:305 � 10�4 0:898 �4:56

Mg++ = 1.1 mg/kg

Na+ = 1.8 mg/kg

HCO3- = 19. mg/kg

SO4-- = 3. mg/kg

Cl- = 1.9 mg/kg

O2(aq) = 5.8 free mg/kg

balance on Cl-

go

Here, we use SPECE8, which does not account for precipitation of supersaturated

minerals, rather than REACT, since we are not especially interested in the fluid’s

true equilibrium state.

The resulting species distribution (Table 6.7), as would be expected, differs

sharply from that in seawater (Table 6.4). Species approach millimolal instead

of molal concentrations and activity coefficients differ less from unity. In the

Amazon River water, the most abundant cation and anion are CaCC and HCO�
3 ; in

seawater, in contrast, NaC and Cl� predominate. Seawater, clearly, is not simply

concentrated river water.

In the river water, as opposed to seawater, the neutral species O2(aq), CO2(aq),

and SiO2(aq) are among the species present in greatest concentration. Complexing

among species is of little consequence in the river water, so the major cations and

anions are present almost entirely as free ions.

The calculation predicts that a number of aluminum-bearing and iron-bearing

minerals are supersaturated in the river water (Fig. 6.3). As discussed in the pre-
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Fig. 6.3. Saturation indices of Amazon River water with respect to various minerals (left)
calculated directly from a chemical analysis, and (right) computed assuming that equilib-
rium with kaolinite and hematite controls the fluid’s aluminum and iron content.

vious section, interpreting saturation indices calculated for natural waters can be

problematic, since data errors can affect the predicted values so strongly.

In this case, a likely explanation for the apparent supersaturation is that the

chemical analysis included not only dissolved aluminum and iron, but also a cer-

tain amount of aluminum and iron suspended in the water as colloids and fine

sediments. Analytical error of this type occurs because the standard sampling pro-

cedure calls for passing the sample through a rather coarse filter of 0.45 �m pore

size and then adding acid to “preserve” it during transport and storage.

Acidifying the sample causes colloids and fine sediments that passed through the

filter to gradually dissolve, yielding abnormally high concentrations of elements

such as aluminum, iron, silicon, and titanium when the fluid is analyzed. Figure

6.4, from a study of this problem by Kennedy et al. (1974), shows how the pore

size of the filter paper used during sample collection affects the concentrations

determined for aluminum and iron.
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Fig. 6.4. Effects of the pore size of filter paper used during fluid sampling on the analytical
concentrations reported for aluminum and iron (Kennedy et al., 1974). Samples were
acidified, stored for 19 (�) or 94 (�) days, and analyzed by standard wet chemical methods.
Dotted lines show dissolved concentrations determined by a solvent extraction technique.

To construct an alternative model of Amazon River water, we assume that equi-

librium with kaolinite (a clay mineral, Al2Si2O5.OH/4) and hematite (ferric oxide,

Fe2O3) controls the aluminum and iron concentrations:

(cont’d)

swap Kaolinite for Al+++

swap Hematite for Fe++

1 free cm3 Kaolinite

1 free cm3 Hematite

go

Here, we arbitrarily specify the amounts of the minerals that coexist with the fluid.

The amount chosen (in this case, 1 cm3), of course, has no effect on the predicted

fluid composition. We set “free” constraints because we wish to specify amounts

of actual minerals (nk ), rather than mineral components (Mk).

According to the second model (Fig. 6.3), only the nontronite clay minerals (e.g.,

Ca:165Fe2Al:33Si3:67O10.OH/2) are supersaturated by any significant amount. The

nontronite minerals appear supersaturated so frequently in modeling natural wa-

ters that they are almost certainly erroneously stable in the database. In fact, the

stabilities of iron-bearing alumino-silicate minerals are problematic in general be-
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causes of the special difficulties entailed in controlling redox state during solubility

experiments.

The second model is perhaps more attractive than the first because the predicted

saturation states seem more reasonable. The assumption of equilibrium with kaoli-

nite and hematite can be defended on the basis of known difficulties in analyzing

for dissolved aluminum and iron. Nonetheless, on the basis of information available

to us, neither model is correct or incorrect; they are simply founded on differing

assumptions. The most that we can say is that one model may prove more useful

for our purposes than the other.

6.3 Red Sea brine

We turn our attention now to the hydrothermal brines of the Red Sea. An oceanic

survey in 1963 discovered pools of hot, saline, and metal-rich brines along the

axial rift of the Red Sea (Degens and Ross, 1969; Hoffmann, 1991). The dense

brines pond in the rift’s depressions, or deeps. The Atlantis II deep contains the

largest pool, which measures 5 � 14 km and holds about 5 km3 of supersaline

brine. The deep holds two layers of brine. The lower brine contains about 25 wt.%

dissolved salts and exists at temperatures up to 60 °C. Table 6.8 shows the brine’s

average composition. A somewhat cooler, less saline water overlies the lower brine,

separating it from normal seawater.

According to various lines of evidence (Shanks and Bischoff, 1977), subsea hot

springs feed the brine pool by discharging each year about ten billion liters of brine,

at temperatures of 150 to 250 °C, upward across the sea floor. The springs have yet

to be located.

The Red Sea deeps attracted the attention of geologists because of the metallifer-

ous sediments that have accumulated as muds along the sea floor. The muds contain

sulfide minerals including pyrite, chalcopyrite, and sphalerite, as well as hematite,

magnetite, barite, and clay minerals. The minerals apparently precipitated from the

brine pool over the past 25 000 years, accumulating into a metal-rich layer about

20–30 m thick. Geologists study the deeps to look at the process of ore deposition

in a modern environment and thus gain insight to how ancient mineral deposits

formed.

Modeling the chemistry of highly saline waters is perilous (as discussed in

Chapter 8) because of the difficulty in computing activity coefficients at high ionic

strengths. Here, we employ an extension of the Debye–Hückel method (the B-dot

equation; see Section 8.1), using an ionic strength of 3 molal, the limiting value for

the correlations, instead of the actual ionic strength, which is greater than 5 molal.

In Chapter 8, we examine alternative methods for estimating activity coefficients

in brines.
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Table 6.8. Chemical composition of the lower brine, Atlantis II deep, Red Sea

(Shanks and Bischoff, 1977)

NaC.mg kg�1/ 92 600

KC 1 870

MgCC 764

CaCC 5 150

Cl� 156 030

SO��
4 840

HCO�
3

140

BaCC 0.9

CuC 0.26

F� 5

FeCC 81

PbCC 0.63

ZnCC 5.4

T (°C) 60

pH (25 °C, measured) 5.5

pH (60 °C, estimated) 5.6

We attempt the calculation in the hope that error in estimating activity coeffi-

cients will not be so large as to render the results meaningless. In fact, the situation

may be slightly better than might be feared; because the activity coefficients appear

in the numerator and denominator of the mass action equations, the error tends to

cancel itself.

To model the brine’s chemistry, we need to estimate its oxidation state. We could

use the ratio of sulfate to sulfide species to fix aO2
, but chemical analysis has not

detected reduced sulfur in the brine, which is dominated by sulfate species. A less

direct approach is to assume equilibrium with a mineral containing reduced iron

or sulfur, or with a pair of minerals that form a redox couple. Equilibrium with

hematite and magnetite, for example,

3 Fe2O3

hematite

� 2 Fe3O4

magnetite

C 1=2 O2(aq) (6.13)

fixes aO2
, as does the coexistence of sphalerite,

ZnCC C SO��
4 � ZnS

sphalerite

C 2 O2(aq) (6.14)
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given constraints on the ZnCC and SO��
4 concentrations. We will assume the latter.

We further constrain the BaCC concentration by assuming equilibrium with barite

BaCC C SO��
4 � BaSO4

barite

: (6.15)

This assumption provides a convenient check on the calculation’s accuracy, since

we already know the fluid’s barium content.

The calculation procedure in REACT is to swap sphalerite and barite into the

basis in place of O2(aq) and BaCC

swap Sphalerite for O2(aq)

swap Barite for Ba++

and then to set temperature and constrain each basis entry

(cont’d)

T = 60

pH = 5.6

TDS = 257000

Na+ = 92600 mg/kg

K+ = 1870 mg/kg

Mg++ = 764 mg/kg

Ca++ = 5150 mg/kg

Cl- = 156030 mg/kg

SO4-- = 840 mg/kg

HCO3- = 140 mg/kg

Cu+ = .26 mg/kg

F- = 5 mg/kg

Fe++ = 81 mg/kg

Pb++ = .63 mg/kg

Zn++ = 5.4 mg/kg

1.e-9 free grams Sphalerite

1.e-9 free grams Barite

print species=long

go

Here, we set a vanishingly small free mass for each mineral so that only negligible

amounts can dissolve during the calculation’s second step, when supersaturated

minerals precipitate from the fluid.

The species distribution (Table 6.9) calculated for the brine differs from that

of seawater and Amazon River water in the large molalities predicted and the

predominance of ion pairs such as NaCl, CaClC, and MgClC. The complex species

make up a considerable portion of the brine’s dissolved load.

It is interesting to compare the effects of complexing in the three waters we

have studied so far. As shown in Table 6.10, the complexed fraction of each of the
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Table 6.9. Calculated molalities (m), activity coefficients (� ), and log activities

(a) of the most abundant species in the Red Sea brine

Species m � loga

Cl� 5:183 0.6125 0:5017

NaC 4:861 0.7036 0:5341

NaCl 0:5512 1.0 �0:2587

CaClC 0:1276 0.7036 �1:047

KC 0:5951 � 10�1 0.6125 �1:438

CaCC 0:4445 � 10�1 0.1941 �2:064

MgClC 0:2496 � 10�1 0.7036 �1:756

MgCC 0:1692 � 10�1 0.2895 �2:310

NaSO�
4 0:7906 � 10�2 0.7036 �2:255

KCl 0:4736 � 10�2 1.0 �2:325

SO��
4 0:2675 � 10�2 0.0985 �3:579

CO2(aq) 0:1809 � 10�2 1.0 �2:743

Table 6.10. Extent of complexing in three natural waters

Amazon River Seawater Red Sea deep

I .molal/ 0:0006 0.65 5.3

TDS .mg kg�1/ 45 35 000 260 000

NaC .% complexed/ 0:03 2 10

KC — 3 8

MgCC 0:5 28 60

CaCC 0:8 44 74

Cl� Ï 0 3 12

SO��
4 2:4 45 77

HCO�
3 C CO2(aq) 0:1 37 28

major dissolved components increases with salinity. Whereas complex species are

of minor importance in the Amazon River water, they are abundant in seawater and

account for about three-quarters of the calcium and sulfate and more than half of

the magnesium in the Red Sea brine.

The principle of mass action explains the relationship between concentration

and complexation. The abundance of ion pairs in aqueous solution is controlled by
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reactions such as,

NaC C Cl� � NaCl (6.16)

and

CaCC C Cl� � CaClC (6.17)

Starting with a dilute solution, for each doubling of the activities of the free ions

on the left of these reactions, the activities of the ion pairs on the right sides must

quadruple. As concentration increases, the ion pairs become progressively more

important and eventually can come to overwhelm the free ions in solution. The

higher temperature of the Red Sea brine also favors complexing because ion pairs

gain stability relative to free ions as temperature increases.

We can check our results for the Red Sea brine against two independent pieces of

information. In our results, sulfate species such as NaSO�
4 dominate reduced sulfur

species such as H2S(aq) and HS�, in seeming accord with the failure of analysis

to detect reduced sulfur in the brine. The predominance of sulfate over sulfide

species in our calculation reflects the oxidation state resulting from our assumption

of equilibrium with sphalerite.

To check that this oxidation state might be reasonable, we determine the total

concentration of sulfide species to be

Species Molality

H2S(aq) 5:2 � 10�8

HS� 6:6 � 10�9

S�� 1:4 � 10�15

S��
2 8:6 � 10�19

S��
3 7:4 � 10�23

S��
4 2:7 � 10�24

S��
5 1:4 � 10�28

S��
6 3:7 � 10�33

5:9 � 10�8

or about 0.002 mg kg�1 as H2S. The detection limit for reduced sulfur in a typical

chemical analysis is about 0.01 mg kg�1. The sulfide concentration and oxidation

state, therefore, do not appear unreasonable.

Second, the total barium concentration in solution, which is constrained by equi-

librium with barite, is 6.6 �molal or 0.68 mg kg�1. The concentration reported by

chemical analysis (Table 6.8) is 0.9 mg kg�1, in close agreement with the calcu-

lation. Considering the uncertainties in the calculation, these values are probably

fortuitously similar.
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The calculation predicts that the brine is supersaturated with respect to seven

minerals: bornite (Cu5FeS4), chalcopyrite (CuFeS2), chalcocite (Cu2S), pyrite

(FeS2), fluorite (CaF2), galena (PbS), and covellite (CuS). The saturation index for

bornite, the most supersaturated mineral, is greater than 7, indicating significant

supersaturation. The predicted saturation indices reflect in large part the calculated

values for activity coefficients and, in the case of the sulfide minerals, the oxidation

state. Unfortunately, the activity coefficient model and oxidation state represent

two of the principal uncertainties in the calculation.

Uncertainties aside, it is interesting to pursue the question of whether the brine

has the potential to precipitate sulfide minerals. In the second step of the calcu-

lation, where the model allows precipitation reactions to progress to the system’s

equilibrium state, three minerals form in small quantities:

Mineral Mass (g)

Fluorite, CaF2 7:3 � 10�3

Chalcocite, Cu2S 9:3 � 10�6

Barite, BaSO4 5:8 � 10�8

Less than 10 �g of sulfide mineral formed as the fluid (which has a total mass of

1.25 kg) equilibrated. Bornite, the most supersaturated mineral, failed to form at

all.

From the perspective of ore genesis, these results seem disappointing in light

of the fluid’s high degree of supersaturation. Shanks and Bischoff (1977), for

example, estimate that about 60 mg of sphalerite alone precipitate from each kg

of ore fluid feeding the Atlantis II deep. The reaction to form chalcocite,

2 CuC C H2S(aq) � Cu2S

chalcocite

C 2 HC (6.18)

explains why so little of that mineral formed. Since the fluid is nearly depleted

in reduced sulfur species, the reaction can proceed to the right by only a minute

increment. As noted in Section 6.1, a large saturation index does not guarantee that

the reactants needed to form a mineral are available in suitable proportions for the

reaction to proceed to any significant extent.

Because little mass can precipitate from it, the brine, if related to deposition of

the metalliferous muds, is likely to be a residuum of the original ore fluid. As it

discharged into the deep, the ore fluid was richer in metals than in reduced sulfur.

Mineral precipitation depleted the fluid of nearly all of its reduced sulfur without

exhausting the metals, leaving the metal-rich brine observed in the deep.
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Redox disequilibrium

The equilibrium model, despite its limitations, in many ways provides a useful if

occasionally abstract description of the chemical states of natural waters. However,

if used to predict the state of redox reactions, especially at low temperature, the

model is likely to fail. This shortcoming does not result from any error in formulat-

ing the thermodynamic model. Instead, it arises from the fact that redox reactions

in natural waters proceed at such slow rates that they commonly remain far from

equilibrium.

Complicating matters further is the fact that the platinum electrode, the standard

tool for measuring Eh directly, does not respond to some of the most important

redox couples in geochemical systems. The electrode, for example, responds in-

correctly or not at all to the couples SO��
4 -HS�, O2-H2O, CO2-CH4, NO�

3 -N2,

and N2-NH4 (Stumm and Morgan, 1996; Hostettler, 1984). In a laboratory ex-

periment, Runnells and Lindberg (1990) prepared solutions with differing ratios

of selenium in the Se4C and Se6C oxidation states. They found that even under

controlled conditions the platinum electrode was completely insensitive to the se-

lenium composition. The meaning of an Eh measurement from a natural water,

therefore, may be difficult or impossible to determine (e.g., Westall, 2002).

7.1 Redox potentials in natural waters

Geochemists (e.g., Thorstenson et al., 1979; Thorstenson, 1984) have long recog-

nized that at low temperature many redox reactions are unlikely to achieve equi-

librium, and that the meaning of Eh measurements is problematic. Lindberg and

Runnells (1984) demonstrated the generality of the problem. They compiled from

the WATSTORE database more than 600 water analyses that provided at least two

measures of oxidation state. The measures included Eh, dissolved oxygen content,

concentrations of dissolved sulfate and sulfide, ferric and ferrous iron, nitrate and

ammonia, and so on.

103
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They calculated species distributions for each sample and then computed redox

potentials for the various redox couples in the analysis, using the Nernst equation,

Eh D �2:303RTK

nF
log

Q

K
(7.1)

(Eqn. 3.48). Variable R in this equation is the gas constant (8.3143 J mol�1K�1

or V C mol�1K�1), TK is absolute temperature (K), n is the number of electrons

consumed in the half-reaction, F is the Faraday constant (96 485 C mol�1), Q is

the half-reaction’s ion activity product, and K is its equilibrium constant.

For example, when they found an analysis reporting concentrations of both

sulfate and sulfide, they calculated the Nernst Eh for the reaction

8 e� C SO��
4 C 9 HC

� HS� C 4 H2O (7.2)

according to

Eh D �2:303RTK

8F

 
log

aHS� a4
H2O

aSO��
4
a9

HC

� logK

!
: (7.3)

Given a measurement of dissolved oxygen, they similarly computed the Eh corre-

sponding to the reaction

4 e� C O2(aq) C 4 HC
� 2 H2O (7.4)

according to

Eh D �2:303RTK

4F

 
log

a2
H2O

aO2(aq) a
4
HC

� logK

!
: (7.5)

In this way, they could calculate a redox potential for each redox couple reported

for a sample.

Their results show that the redox couples in a sample generally failed to achieve

equilibrium with each other. For a given sample, the Nernst Eh values calculated

for different redox couples varied over a broad range, by as much as 1000 mV. If

the couples had been close to redox equilibrium, they would have yielded Nernst

Eh values similar to each other. In addition, the authors could find little relationship

between the Nernst values and Eh measured by platinum electrode. Criaud et

al. (1989) computed similarly discordant Nernst Eh values for low temperature

geothermal fluids from the Paris basin.

There are, fortunately, some instances in which measured Eh values can be

interpreted in a quantitative sense. Nordstrom et al. (1979), for example, showed

that Eh measurements in acid mine drainage accurately reflect the aFeCCC /aFeCC

ratio. They further noted a number of other studies establishing agreement between

measured and Nernst Eh values for various couples. Nonetheless, it is clearly
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dangerous for a geochemical modeler to assume a priori that a sample is in internal

redox equilibrium or that an Eh measurement reflects a sample’s redox state.

7.2 Redox coupling

A flexible method for modeling redox disequilibrium is to divide the reaction

database into two parts. The first part contains reactions between the basis species

(e.g., Table 6.1) and a number of redox species, which represent the basis species in

alternative oxidation states. For example, redox species FeCCC forms a redox pair

with basis species FeCC, and HS� forms a redox pair with SO��
4 . These coupling

reactions are balanced in terms of an electron donor or acceptor, such as O2(aq).

Table 7.1 shows coupling reactions from the LLNL database.

The second part of the database contains reactions for the various secondary

species, minerals, and gases. These reactions are balanced in terms of the basis

and redox species, avoiding (to the extent practical) electron transfer. Species and

minerals containing ferric iron, for example, are balanced in terms of the redox

species FeCCC,

Fe2O3

hematite

C 6 HC � 3 H2O C 2 FeCCC ; (7.6)

whereas those containing ferrous iron are balanced with basis species FeCC,

FeSO4 � FeCC C SO��
4 : (7.7)

The mineral magnetite (Fe3O4) contains oxidized and reduced iron, so its reaction,

Fe3O4

magnetite

C 8 HC
� 2 FeCCC C FeCC C 4 H2O (7.8)

contains both the basis and redox species.

The modeler controls which redox reactions should be in equilibrium by inter-

actively coupling or decoupling the redox pairs. For each coupled pair, the model

uses the corresponding coupling reaction to eliminate redox species from the reac-

tions in the database. For example, if the pair FeCCC-FeCC is coupled, the model

adds the coupling reaction to the reaction for hematite,

Fe2O3 C 6 HC
� 3 H2O C 2 FeCCC

2 � Œ FeCCC C 1=2 H2O � FeCC C HC C 1=4 O2(aq) 	

Fe2O3

hematite

C 4HC
� 2 H2O C 2 FeCC C 1=2 O2(aq)

(7.9)
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Table 7.1. Some of the redox couples in the LLNL database

Redox pair Coupling reaction

AsH3.aq/ � As.OH/�
4 AsH3.aq/ C H2O C 3=2 O2(aq) � As.OH/�

4 C HC

AsO���
4 � As.OH/�

4 As.OH/�
4 C 1=2 O2(aq) � AsO���

4 C H2O C 2 HC

AuCCC � AuC 2 HC C AuC C 1=2 O2(aq) � AuCCC C H2O

CH3COO� � HCO�
3 CH3COO� C 2 O2(aq) � 2 HCO�

3 C HC

CH4(aq) � HCO�
3 CH4(aq) C 2 O2(aq) � H2O C HC C HCO�

3

ClO�
4 � Cl� Cl� C 2 O2(aq) � ClO�

4

CoCCC � CoCC CoCC C HC C 1=4 O2(aq) � CoCCC C 1=2 H2O

CrCC � CrCCC CrCC C HC C 1=4 O2(aq) � 1=2 H2O C CrCCC

CrO��
4 � CrCCC CrCCC C 5=2 H2O C 3=4 O2(aq) � CrO��

4 C 5 HC

CrO���
4 � CrCCC CrCCC C 3 H2O C 1=2 O2(aq) � CrO���

4 C 6 HC

CuCC � CuC CuC C HC C 1=4 O2(aq) � CuCC C 1=2 H2O

EuCC � EuCCC EuCC C HC C 1=4 O2(aq) � 1=2 H2O C EuCCC

FeCCC � FeCC FeCC C HC C 1=4 O2(aq) � FeCCC C 1=2 H2O

H2(aq) � O2(aq) H2(aq) C 1=2 O2(aq) � H2O

HS� � SO��
4 HS� C 2 O2(aq) � SO��

4 C HC

Hg
CC
2 � HgCC Hg

CC
2 C 2 HC C 1=2 O2(aq) � 2 HgCC C H2O

MnO�
4 � MnCC MnCC C 3=2 H2O C 5=4 O2(aq) � MnO�

4 C 3 HC

MnO��
4 � MnCC MnCC C 2 H2O C O2(aq) � MnO��

4 C 4 HC

N2(aq) � NO�
3 N2(aq) C H2O C 5=2 O2(aq) � 2 HC C 2 NO�

3

NH
C
4 � NO�

3 NH
C
4 C 2 O2(aq) � NO�

3 C 2 HC C H2O

NO�
2 � NO�

3 NO�
2 C 1=2 O2(aq) � NO�

3

Se�� � SeO��
3 Se�� C 3=2 O2(aq) � SeO��

3

SeO��
4 � SeO��

3 SeO��
3 C 1=2 O2(aq) � SeO��

4

SnCC � SnCCCC SnCC C 2 HC C 1=2 O2(aq) � SnCCCC C H2O

UCCC � UCCCC UCCC C HC C 1=4 O2(aq) � UCCCC C 1=2 H2O

UO
C
2 � UCCCC UCCCC C 3=2 H2O C 1=4 O2(aq) � UO

C
2 C 3 HC

UO
CC
2 � UCCCC UCCCC C H2O C 1=2 O2(aq) � UO

CC
2 C 2 HC

VOCC � VCCC VCCC C 1=2 H2O C 1=4 O2(aq) � VOCC C HC

VO���
4 � VCCC VCCC C 3 H2O C 1=2 O2(aq) � VO���

4 C 6 HC

to eliminate the redox species FeCCC. The same procedure is applied to the reac-

tions for the other species and minerals that contain ferric iron.

A coupling reaction commonly links a redox species to a basis species, as in the

examples above, but it is also possible to define couples among the redox species

themselves. If HCO�
3 appears in the basis, for example, methane might be linked
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to it by the coupling reaction,

CH4(aq) C 2 O2(aq) � HCO�
3 C HC C H2O : (7.10)

Then, the couple for acetate ion can be written as a dismutation reaction,

CH3COO� C H2O � HCO�
3 C CH4(aq) (7.11)

in terms of the redox species methane, rather than as a simple oxidation to the basis

species bicarbonate. Disengaging the first but not the second coupling reaction, a

model could be constructed in which acetate is in redox equilibrium with bicar-

bonate and methane, even though those species are not in equilibrium with each

other.

Models of natural waters calculated assuming redox disequilibrium generally

require more input data than equilibrium models, in which a single variable con-

strains the system’s oxidation state. The modeler can decouple as many redox pairs

as can be independently constrained. A completely decoupled model, therefore,

would require analytical data for each element in each of its redox states. Unfortu-

nately, analytical data of this completeness are seldom collected.

7.3 Morro do Ferro groundwater

As an example of modeling a fluid in redox disequilibrium, we use an analysis,

slightly simplified from Nordstrom et al. (1992), of a groundwater sampled near

the Morro do Ferro ore district in Brazil (Table 7.2). There are three measures of

oxidation state in the analysis: the Eh value determined by platinum electrode, the

dissolved oxygen content, and the distribution of iron between ferrous and ferric

species.

To calculate an equilibrium model in SPECE8, the procedure is,

T = 22

pH = 6.05

O2(aq) = 4.3 free mg/l

HCO3- = 1.8 mg/l

Ca++ = 0.238 mg/l

Mg++ = 0.352 mg/l

Na+ = 0.043 mg/l

K+ = 0.20 mg/l

Fe++ = 0.73 mg/l

Mn++ = 0.277 mg/l

Zn++ = 0.124 mg/l

SO4-- = 1.5 mg/l

balance on Cl-
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Table 7.2. Chemical analysis of a groundwater from near the Morro do Ferro

deposits, Brazil (Nordstrom et al., 1992)

HCO�
3 (mg l�1) 1.8

CaCC 0.238

MgCC 0.352

NaC 0.043

KC 0.20

Fe (II) 0.73

Fe (total) 0.76

MnCC 0.277

ZnCC 0.124

SO��
4 1.5

Cl� <2.0

Dissolved O2 4.3

T (°C) 22

pH 6.05

Eh (mV) 504

print species = long

go

Here, we set oxidation state in the model using the dissolved oxygen content and

calculate the distribution of species assuming redox equilibrium.

To account for the possibility of redox disequilibrium among iron species, we

use the analysis for ferrous as well as total iron:

(cont’d)

decouple Fe+++

Fe+++ = 0.03 mg/l

Fe++ = 0.73 mg/l

go

By decoupling the ferric–ferrous reaction with the decouple command, we add

FeCCC as a new basis entry in the calculation, setting up a model in which O2

and iron are held in redox disequilibrium. We constrain the new entry using the

difference between the total and ferrous iron contents.

As shown in Table 7.3, the two calculations predict broadly differing species

distributions for iron. In the first calculation, the fluid is almost devoid of ferrous

iron species, reflecting the high concentration of dissolved oxygen. This result
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Table 7.3. Concentrations (molal) of predominant iron species in Morro do Ferro

groundwater, calculated assuming equilibrium and redox disequilibrium

Species Equilibrium Disequilibrium

Ferrous

FeCC 0:11 � 10�12 0:13 � 10�4

FeSO4 0:24 � 10�15 0:32 � 10�7

FeHCO
C
3 0:20 � 10�16 0:24 � 10�8

FeClC 0:66 � 10�17 0:12 � 10�8

FeOHC 0:64 � 10�17 0:77 � 10�9

Ferric

Fe.OH/
C
2 0:90 � 10�5 0:37 � 10�6

Fe.OH/3 0:38 � 10�5 0:16 � 10�6

FeOHCC 0:29 � 10�7 0:12 � 10�8

Fe.OH/�
4 0:91 � 10�9 0:37 � 10�10

contradicts the dominance of ferrous over ferric species reported in the chemical

analysis. The disequilibrium calculation, in which we separately constrain the

fluid’s ferrous and ferric iron contents, provides a species distribution in which

ferrous iron species predominate, in accord with the analytical data.

We can compare the Eh measured for the Morro do Ferro groundwater (Ta-

ble 7.2) with the Nernst Eh values (Eqn. 7.1) given by the reactions for dissolved

oxygen and iron oxidation, as reported in the program output:

Eh (mV)

Measured by electrode 504
1=4 O2(aq) C HC C e� � 1=2 H2O 861

FeCCC C e� � FeCC 306

The ratio of ferrous to ferric species represents a redox state considerably less

oxidizing than suggested by the dissolved oxygen content. The measured Eh falls

between these values. Because the values vary over a range of more than 500 mV,

this water clearly is not in redox equilibrium; assuming that it is gives an incorrect

distribution of iron species.
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7.4 Energy available for microbial respiration

In recent years, geochemists have come to appreciate that chemotrophic microor-

ganisms pervade the upper kilometers of the Earth’s crust and play a profound

role in controlling the chemistry of water in the hydrosphere (e.g., Banfield and

Nealson, 1997; Chapelle, 2001). Although microbes of this class are primary pro-

ducers of biomass, they take the energy they need to live and grow not from the

sun by photosynthesis, but from chemical energy found in the natural environ-

ment. Chemolithotrophs derive energy from inorganic species, whereas chemo-

heterotrophs obtain energy from organic molecules. Because the ability of the mi-

crobes to grow depends on geochemical conditions in the environment, and the

microbes in turn can affect the environment so significantly, the study of microbial

processes in the geosphere has become an active and fertile area of inquiry.

The chemotrophs take advantage of the redox disequilibrium found in the natu-

ral environment to derive the energy they need to synthesize new cells and maintain

those already formed. Many such microbes work by respiration, transferring elec-

trons from a reduced donor species to an oxidized acceptor species. To respire, a

microbe uses a special enzyme in its cell membrane to strip one or more electrons

from the electron donor, leaving behind a more oxidized species. The electron cas-

cades through a series of enzymes and coenzymes in the cell membrane, known

as the electron transport chain, before reaching a terminal enzyme. The terminal

enzyme transfers one or more electrons onto the accepting species, leaving that

species reduced.

As an electron passes through the electron transport chain, it releases energy

that the microbe conserves in its cytoplasm in the form of adenosine triphosphate

(ATP), which it synthesizes from adenosine diphosphate (ADP) and free phosphate

ions. Adenosine triphosphate is a relatively unstable molecule that serves as the

cell’s primary energy store. By coupling the energetically favorable breakdown of

ATP (to form ADP) to energetically unfavorable reactions, a microbe accomplishes

critical tasks such as creating the molecules it needs to grow and reproduce. In this

way, respiring microbes work by using their enzymes to catalyze electron transfer

reactions that would otherwise proceed too slowly to approach equilibrium. From

the geochemist’s perspective, a microbe might be described as a self-replicating

bundle of enzymes, and chemotrophic growth as an autocatalytic reaction.

By analogy to higher animals, we might expect that respiring microbes would

use reduced carbon compounds as electron donors and O2 as the electron accep-

tor; indeed, aerobic bacteria that do just this are common in oxic environments.

Microbes, however, are notably versatile, employing H2, H2S, NHC
4 , CH4, FeCC,

and many other species as electron donors. They can similarly use SO��
4 , NO�

3 ,

NO�
2 , HCO�

3 , and so on as electron acceptors. The microbes can even use ferric
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and oxidized Mn minerals as electron acceptors, in effect “breathing” the rocks and

sediments in which they live.

Respiration, as we have described, drives two half-reactions, one to donate elec-

trons and one to accept them. Iron-reducing bacteria, for example, can live on ac-

etate, which is produced during the breakdown of organic matter. Oxidizing acetate

provides electrons,

CH3COO� C 4 H2O ! 2 HCO�
3 C 9 HC C 8 e� (7.12)

to the cell. The electrons are eventually consumed by reducing ferric iron,

Fe.OH/3
ferric hydroxide

C 3 HC C e� ! FeCC C 3 H2O (7.13)

which is insoluble at neutral pH and hence commonly available in the environment

as hydrous ferric oxide. The overall reaction,

CH3COO� C 8 Fe.OH/3
ferric hydroxide

C 15 HC !

2 HCO�
3 C 8 FeCC C 20 H2O

(7.14)

is the sum of the half-cell reactions, weighted to conserve electrons.

A second class of chemotrophs works by fermentation instead of respiration.

In fermentation, an energy source such as acetate reacts to form two species,

one more reduced than the energy source, and one more oxidized. Acetotrophic

methanogens, for example, cleave the acetate ion to form methane and bicarbon-

ate. The energy source for a fermenting microbe serves as both electron donor and

acceptor, and the energy available to it can be analyzed in the same way as for a

respiring organism by writing the fermentation reaction as the sum of an oxidizing

half-reaction and a reducing half-reaction. For an acetotrophic methanogen, for ex-

ample, we would write a half-reaction by which acetate is oxidized to bicarbonate,

and one in which it is reduced to methane.

Understanding energy availability in natural waters requires that we consider

many possible combinations of donor and acceptor species. Respiration can pro-

ceed only for combinations in which the electron transfer is energetically favorable;

i.e., the overall reaction must release free energy (Thauer et al., 1977). It is, fur-

thermore, in the microbe’s interest to respire only under conditions where the elec-

tron transfer liberates enough energy for a cell to synthesize ATP (Jin and Bethke,

2002). The possibility of a given microbial metabolism proceeding in the natu-

ral environment, therefore, depends directly on the extent of redox disequilibrium

there.

The difference�Eh between the redox potentials for the electron accepting and
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donating reactions (Ehacc and Ehdon, respectively) provides a convenient measure

of the energy available in an environment (e.g., Madigan and Martinko, 2006). This

value is a measure of the energy change of reaction �Gr (J mol�1, or V C mol�1)

for the overall reaction catalyzed by a microbe’s metabolism. The relationship

between the potential difference and �Gr is,

�Eh D Ehacc � Ehdon D ��Gr

nF
(7.15)

where n is the number of electrons accepted or donated and F is the Faraday

constant (96 485 C mol�1).

A microbe can derive energy only from a reaction with a negative �Gr; hence

the Eh for the electron donor must be smaller than that of the electron acceptor for

the microbe’s metabolism to proceed. As noted, the reaction must liberate enough

energy for the microbe to synthesize ATP. The potential difference required to re-

lease this amount of energy varies depending on the microbe’s metabolism (Jin and

Bethke, 2005), ranging from perhaps 50 mV for hydrogenotrophic methanogens to

as much as 500 mV for aerobic respirers.

The SPECE8 input script below describes the analysis of a hypothetical ground-

water, assuming equilibrium with ferric hydroxide and a soil gas in which fCO2
D

10�2. In the script, we decouple a number of redox pairs so that we can constrain

the amounts of several elements in two or more redox states.

decouple CH3COO-

decouple CH4(aq)

decouple Fe+++

decouple H2(aq)

decouple HS-

decouple NH4+

decouple NO2-

swap CO2(g) for HCO3-

swap Fe(OH)3(ppd) for Fe+++

pH = 6

f CO2(g) = .01

1 free cm3 Fe(OH)3(ppd)

Cl- = 15 mg/kg

Na+ = 10 mg/kg

Ca++ = 15 mg/kg

Mg++ = 2 mg/kg

SO4-- = 35 mg/kg

Fe++ = .2 mg/kg

H2(aq) = .004 free umolal

HS- = .05 mg/kg

O2(aq) = .1 free mg/kg
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CH4(aq) = .4 mg/kg

NO3- = 2 mg/kg

NO2- = .4 mg/kg

NH4+ = .1 mg/kg

CH3COO- = .3 mg/kg

go

The program reports in its output the resulting redox potential for each redox

couple, as calculated from the Nernst equation. The Nernst potentials, arranged

in decreasing order, are

Eh (mV)

e� C 1=4 O2(aq) C HC � 1=2 H2O 836

2 e� C 2 HC C NO�
3 � H2O C NO�

2 481

8 e� C 10 HC C NO�
3 � 3 H2O C NHC

4 443

6 e� C 8 HC C NO�
2 � 2 H2O C NHC

4 430

e� C FeCCC � FeCC 322

8 e� C 9 HC C SO��
4 � 4 H2O C HS� �126

4 e� C 9=2 HC C 1=2 CH3COO� � H2O C CH4(aq) �145
8 e� C 9 HC C HCO�

3 � 3 H2O C CH4(aq) �187
2 e� C 2 HC � H2(aq) �197
8 e� C 9 HC C 2 HCO�

3 � 4 H2O C CH3COO� �230
Reactions at the top of this list are most favored in this environment to accept

electrons, and those at the bottom most prone to donate them.

In considering energy availability, it is helpful to remember that “electrons fall

uphill.” In other words, if the overall reaction is to liberate energy, the donating

half-reaction in a list ordered as shown must appear below the accepting half-

reaction, to give a positive �Eh. The oxidation of acetate (Ehdon = �230 mV)

by ferric iron (Ehdon = C322 mV) is, then, strongly favored, since �Eh for this

pairing is C552 mV. The oxidation of methane by O2 is strongly favored (�Eh =

C1023 mV), as we might expect. Hydrogenotrophic methanogenesis in this water

yields only C10 mV, not enough to synthesize ATP, and reduction of sulfate by

ferrous iron is not favored to proceed, since�Eh is �448 mV.
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Activity coefficients

Among the most vexing tasks for geochemical modelers, especially when they

work with concentrated solutions, is estimating values for the activity coefficients

of electrolyte species. To understand in a qualitative sense why activity coefficients

in electrolyte solutions vary, we can imagine how solution concentration affects

species activities. In the solution, electrical attraction draws anions around cations

and cations around anions. We might think of a dilute solution as an imperfect

crystal of loosely packed, hydrated ions that, within a matrix of solvent water,

is constantly rearranging itself by Brownian motion. A solution of uncharged,

nonpolar species, by contrast, would be nearly random in structure.

The electrolyte solution is lower in free energy G than it would be if the spe-

cies did not interact electrically because of the energy liberated by moving ions of

opposite charge together while separating those of like charge. The chemical po-

tentials �i of the species, for the same reason, are smaller than they would be in

the absence of electrostatic forces. By the equation,

�i � @Gi

@ni

D �o
i C RTK ln �imi (8.1)

(Eqn. 3.5, taking ai D �imi ), the reduction in a species’ chemical potential is

reflected by a decreased value (relative to one in an ideal solution) for its activity

coefficient. By Coulomb’s law, electrostatic forces vary inversely with the square of

the distance of ion separation. For this reason, activity coefficients in dilute fluids

decrease as concentration increases because the coulombic forces become stronger

as ions pack together more closely.

When electrical attraction and repulsion operate over distances considerably

larger than the hydrated sizes of the ions, we can compute species’ activities quite

well from electrostatic theory, as demonstrated in the 1920s by the celebrated

physical chemists Debye and Hückel. At moderate concentrations, however, the

ions pack together rather tightly. In a one molal solution, for example, just a few

115
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molecules of solvent separate ions. Because electrical interactions at short range are

complicated in nature, it is no longer sufficient to treat ions as points of electrical

charge, as Debye and Hückel did in their analysis. Rather, we need to account for

the distribution of electrical charge throughout the hydration sphere of each ion.

Since this distribution is complex, simple analysis cannot account for the energetics

of attraction and repulsion among closely packed ions.

In concentrated solutions, the energetic effect of ion repulsion seems to domi-

nate. This effect is sometimes termed “hard core repulsion.” With increasing con-

centration, furthermore, much and then most of the water in the solution is taken up

in the species’ hydration spheres, reducing the amount of water acting as solvent.

These two effects cause the activity coefficients to increase. Increasing concentra-

tion, on the other hand, leads to greater degrees of ion association, which serves

to decrease a species’ free molality and, hence, activity relative to that expected

if the ion were fully dissociated. Depending on the activity model employed, the

effects of ion association may be accounted for directly by mass action (thereby

decreasing activity by lowering species concentration) or indirectly, by adjusting

activity coefficients while assuming complete dissociation.

The modeler should bear in mind a further complication: the requirement of

electroneutrality (as discussed in Chapter 3) precludes the possibility of observing

either the chemical potential of a charged species or its activity coefficient. We can

measure only the mean activity coefficient of the ions comprising a salt. This value

can be separated into the coefficients for single ions by following any of a number

of conventions. The MacInnes convention, which is commonly but not universally

employed in geochemical calculations, holds that the coefficients for KC and Cl�

are equal in a solution of a given ionic strength. The modeler must guard against

mixing activity coefficients determined using differing conventions.

Geochemical modelers currently employ two types of methods to estimate ac-

tivity coefficients (Plummer, 1992; Wolery, 1992b). The first type consists of ap-

plying variants of the Debye–Hückel equation, a simple relationship that treats a

species’ activity coefficient as a function of the species’ size and the solution’s

ionic strength. Methods of this type take into account the distribution of species in

solution and are easy to use, but can be applied with accuracy to modeling only

relatively dilute fluids.

Virial methods, the second type, employ coefficients that account for interactions

among the individual components (rather than species) in solution. The virial meth-

ods are less general, rather complicated to apply, require considerable amounts of

data, and allow little insight into the distribution of species in solution. They can,

however, reliably predict mineral solubilities even in concentrated brines.

The following sections describe the two estimation techniques. The discussion

here leans toward the practical aspects of estimating activity coefficients. For an
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understanding of the theoretical basis of the activity models, the reader may refer

to a thermodynamics text (such as Robinson and Stokes, 1968, or Anderson and

Crerar, 1993) and the papers referenced herein.

8.1 Debye–Hückel methods

In 1923, Debye and Hückel published their famous papers describing a method

for calculating activity coefficients in electrolyte solutions. They assumed that ions

behave as spheres with charges located at their center points. The ions interact

with each other by coulombic forces. Robinson and Stokes (1968) present their

derivation, and the papers are available (Interscience Publishers, 1954) in English

translation.

The result of their analysis, known as the Debye–Hückel equation,

log �i D � Az2
i

p
I

1C VaiB
p
I

(8.2)

gives the activity coefficient �i of an ion with electrical charge zi . In this chapter

we need not differentiate between the basis and secondary species, Ai and Aj .

Hence, we will let �i , zi , and so on represent the properties of the aqueous species

in general.

Variable Vai in Equation 8.2 is the ion size parameter. In practice, this value is

determined by fitting the Debye–Hückel equation to experimental data. Variables

A andB are functions of temperature, and I is the solution ionic strength. At 25 °C,

given I in molal units and taking Vai in Å, the value ofA is 0.5092, andB is 0.3283.

The ionic strength,

I D 1

2

X
i

miz
2
i (8.3)

is half the sum of the product of each species molality mi and the square of its

charge. In the literature, ionic strength may be reported in molar or molal units, and

may be calculated either by accounting for the effect of ion pairing or assuming

that the electrolyte dissociates completely. We use molal units here and follow

Helgeson’s (1969) terminology regarding the question of ion pairing. Ionic strength

I refers to the “true ionic strength” calculated by Equation 8.3, accounting for the

role of complexing in reducing the number of free ions in solution. We refer to the

value calculated assuming complete dissociation (i.e., neglecting ion pairs) as the

“stoichiometric ionic strength,” which we label IS.

Equation 8.2 is notable in that it predicts a species’ activity coefficient using only

two numbers (zi and Vai ) to account for the species’ properties and a single value
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Fig. 8.1. Activity coefficients �i predicted at 25 °C for a singly charged ion with size Va of
4 Å, according to the Debye–Hückel (Eqn. 8.2), Davies (Eqn. 8.4), and B-dot (Eqn. 8.5)
equations. Dotted line shows the Davies equation evaluated with a coefficient of 0.2 instead
of 0.3.

I to represent the solution. As such, it can be applied readily to study a variety of

geochemical systems, simple and complex.

Unfortunately, the equation becomes inaccurate at moderate ionic strength,

above about 0.1 molal (e.g., Stumm and Morgan, 1996). As can be seen from

Equation 8.2, Debye–Hückel activity coefficients approach unity when ionic

strength nears zero. With increasing ionic strength, the coefficient decreases

monotonically (Fig. 8.1). This decrease reflects the increasing strength of the

long-range coulombic forces in solution, when short-range forces and hydration

effects are ignored.

8.1.1 Davies equation

The Davies (1962) equation is a variant of the Debye–Hückel equation (Eqn. 8.2)

that can be carried to somewhat higher ionic strengths. The equation follows from

Equation 8.2 by noting that at 25 °C the product Vai � B is about one. Including an

empirical term 0:3 I to the correlation gives,

log �i D �Az2
i

 p
I

1C p
I

� 0:3I
!
: (8.4)
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A coefficient of 0.2 is used sometimes instead of 0.3. The only variable specific

to the species in question is the charge zi , which of course is known. For this

reason, the Davies equation is especially easy to apply within geochemical models

designed for work at 25 °C, such as WATEQ (Ball et al., 1979) and its successors,

and PHREEQE (Parkhurst et al., 1980).

As can be seen in Figure 8.1, the Davies equation does not decrease monotoni-

cally with ionic strength, as the Debye–Hückel equation does. Beginning at ionic

strengths of about 0.1 molal, it deviates above the Debye–Hückel function and at

about 0.5 molal starts to increase in value. The Davies equation is reasonably ac-

curate to an ionic strength of about 0.3 or 0.5 molal.

8.1.2 B-dot model

Helgeson (1969; see also Helgeson and Kirkham, 1974) presented an activity

model based on an equation similar in form to the Davies equation. The model,

adapted from earlier work (see Pitzer and Brewer, 1961, p. 326, p. 578, and Ap-

pendix 4, and references therein), is parameterized from 0 °C to 300 °C for solu-

tions of up to 3 molal ionic strength in which NaCl is the dominant solute. The

model takes it name from the “B-dot” equation,

log�i D � Az2
i

p
I

1C VaiB
p
I

C PBI ; (8.5)

which is an extension of the Debye–Hückel equation (Eqn. 8.2). Coefficients A,

B , and PB vary with temperature, as shown in Figure 8.2, whereas the ion size

parameter Vai for each species remains constant.

The B-dot equation is widely applied in geochemical models designed to operate

over a range of temperatures, such as EQ3/EQ6 (Wolery, 1979, 1992b), CHILLER

(Reed, 1982), SOLMINEQ (Kharaka et al., 1988), and SPECE8 and REACT (Bethke,

2007). The equation is considered reasonably accurate in predicting the activities

of NaC and Cl� ions to concentrations as large as several molal, and of other

species to ionic strengths up to about 0.3 to 1 molal. Figure 8.3 shows the activity

coefficients predicted at 25 °C for species of differing charge and ion size.

In the B-dot model, as currently applied (Wolery, 1992b), the activity coefficients

of electrically neutral, nonpolar species [B.OH/3, O2(aq), SiO2(aq), CH4(aq), and

H2(aq)] are calculated from ionic strength using an empirical relationship,

log �o D aI C bI2 C cI3 : (8.6)
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Fig. 8.2. Values of A, B , and PB for the B-dot (modified Debye–Hückel) equation at
0 °C, 25 °C, 60 °C, 100 °C, 150 °C, 200 °C, 250 °C, and 300 °C (squares) and interpolation
functions (lines). Values correspond to I taken in molal and Va in Å. Data from the LLNL

database, after Helgeson (1969) and Helgeson and Kirkham (1974).
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Fig. 8.3. Activity coefficients �i predicted at 25 °C by the B-dot equation (Eqn. 8.5) for
some singly and doubly charged ions, as a function of ionic strength. Corresponding Va
values are 3 Å (KC and Cl�), 4 Å (NaC and SO��

4 ), 6 Å (CaCC), and 9 Å (HC).
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Fig. 8.4. Activity coefficients �o for neutral, nonpolar species as a function of ionic
strength (molal) at 25 °C, 100 °C, and 300 °C, according to the activity model of Helge-
son (1969).

Here, a, b, and c are polynomial coefficients that vary with temperature:

a b c

25 °C 0.1127 �0:01049 1:545 � 10�3

100 °C 0.08018 �0:001503 0:5009 � 10�3

200 °C 0.09892 �0:01040 1:386 � 10�3

300 °C 0.1967 �0:01809 �2:497 � 10�3

Figure 8.4 shows the function plotted against ionic strength at 25 °C, 100 °C, and

300 °C. The rapid increase in value at high ionic strength represents the “salting

out” effect by which gas solubility decreases with increasing salinity. In the model,

polar neutral species are simply assigned activity coefficients of unity.

The ideality of the solvent in aqueous electrolyte solutions is commonly tabu-

lated in terms of the osmotic coefficient 
 (e.g., Pitzer and Brewer, 1961, p. 321;

Denbigh, 1971, p. 288), which assumes a value of unity in an ideal dilute solution

under standard conditions. By analogy to a solution of a single salt, the water ac-

tivity can be determined from the osmotic coefficient and the stoichiometric ionic

strength IS according to,

lnaw D �2IS


55:5
: (8.7)

In the B-dot model, the osmotic coefficient is taken to be described by a power

series,


 D 1 � 2:303A

a3IS



Ob � 2 ln Ob � 1

Ob

�
C bIS

2
C 2cI2

S

3
C 3dI3

S

4
(8.8)
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Fig. 8.5. Water activity aw versus stoichiometric ionic strength IS of NaCl solutions at
25 °C and 300 °C, according to the activity model of Helgeson (1969). Dashed line shows
3 molal limit to the model parameterization; values to right of this line are extrapolations
of the original data.

in terms of regression coefficients a, b, c, and d , which differ from those in

Equation 8.6. Term Ob in this equation is given as,

Ob D 1C a
p
IS ; (8.9)

and representative values of the regression coefficients, which vary with tempera-

ture, are

a b c d

25 °C 1.454 0.02236 9:380 � 10�3 �5:362� 10�4

100 °C 1.555 0.03648 6:437 � 10�3 �7:132� 10�4

200 °C 1.623 0.04589 4:522 � 10�3 �8:312� 10�4

Figure 8.5 shows the predicted water activity at 25 °C and 300 °C, plotted against

IS.

Programs SPECE8 and REACT differ somewhat from other models in that they

set limits to the values for I and IS used to evaluate the B-dot model (Eqns. 8.5–

8.7). Reflecting the fact that there is no basis for extrapolating the B-dot model

to high ionic strength, the programs calculate activity coefficients using the lesser

value of the actual ionic strength (I or IS) and the limiting value. The limiting

values are carried internally as variables timax and simax, which, by default, are

set to 3 molal, but may be reset by the user.
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8.2 Virial methods

Virial equations offer a conceptual alternative to the Debye–Hückel methods for

calculating electrolyte activities. The semi-empirical equations are sometimes

called specific interaction equations, phenomenological equations, or simply the

Pitzer equations, after Kenneth Pitzer, who has been largely responsible for their

development since the 1970s (among his and his co-workers’ many papers on

the subject, see reviews by Pitzer, 1979, 1987). Virial methods are frequently

employed in geochemical modeling because they can be applied with accuracy at

high ionic strength. Programs SOLMINEQ.88 (Kharaka et al., 1988), PHRQPITZ

(Plummer et al., 1988), PHREEQC (Parkhurst, 1995), EQ3/EQ6 (Wolery, 1992a),

and SPECE8 and REACT (Bethke, 2007), for example, include provision for using

the virial methods.

The virial methods differ conceptually from other techniques in that they take

little or no explicit account of the distribution of species in solution. In their

simplest form, the equations recognize only free ions, as though each salt has fully

dissociated in solution. The molality mi of the NaC ion, then, is taken to be the

analytical concentration of sodium. All of the calcium in solution is represented

by CaCC, the chlorine by Cl�, the sulfate by SO��
4 , and so on. In many chemical

systems, however, it is desirable to include some complex species in the virial

formulation. Species that protonate and deprotonate with pH, such as those in the

series CO��
3 –HCO�

3 –CO2(aq) and AlCCC–AlOHCC–Al.OH/C2 , typically need to

be included, and incorporating strong ion pairs such as CaSO4.aq/ may improve

the model’s accuracy at high temperatures. Weare (1987, pp. 148–153) discusses

the criteria for selecting complex species to include in a virial formulation.

In the virial methods, therefore, the activity coefficients account implicitly for

the reduction in the free ion’s activity due to the formation of whatever ion pairs

and complex species are not included in the formulation. As such, they describe not

only the factors traditionally accounted for by activity coefficient models, such as

the effects of electrostatic interaction and ion hydration, but also the distribution

of species in solution. There is no provision in the method for separating the

traditional part of the coefficients from the portion attributable to speciation. For

this reason, the coefficients differ (even in the absence of error) in meaning and

value from activity coefficients given by other methods. It might be more accurate

and less confusing to refer to the virial methods as activity models rather than as

activity coefficient models.

The virial methods work by assuming that the solution’s excess free energy Gex

(i.e., the free energy in excess of that in an ideal solution) can be described by a
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function of the form,

Gex

nwRTK
D f dh.I /C

X
i

X
j

�ij .I /mimj C
X

i

X
j

X
k

�ijkmimjmk : (8.10)

Here, i , j , and k are subscripts representing the various species in solution and

f dh is a function of ionic strength similar in form to the Debye–Hückel equation.

The terms �ij and �ijk are second and third virial coefficients, which are intended

to account for short-range interactions among ions; the second virial coefficients

vary with ionic strength, whereas the third virial coefficients do not.

Equation 8.10 is notable in that it ascribes specific energetic effects to the in-

teractions of the aqueous species taken in pairs (the first summation) and triplets

(second summation). The equation’s general form is not ad hoc but suggested by

statistical mechanics (Anderson and Crerar, 1993, pp. 446–451). The values of the

virial coefficients, however, are largely empirical, being deduced from chemical

potentials determined from solutions of just one or two salts.

An expression for the ion activity coefficients �i follows from differentiating

Equation 8.10 with respect to mi . The result in general form is,

ln �i D ln � dh
i C

X
j

Dij .I /mj C
X

j

X
k

Eijkmjmk : (8.11)

Here, � dh
i is a Debye–Hückel term, and Dij and Eijk are second and third virial

coefficients, defined for each pair and triplet of ions in solution. As before, the

values of Dij vary with ionic strength, whereas the terms Eijk are constant at a

given temperature.

One of the most useful implementations for geochemical modeling, published

by Harvie et al. (1984), is known as the Harvie–Møller–Weare (or HMW) method.

The method treats solutions in the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-

H2O system at 25 °C. Notably absent from the method are the components SiO2

and AlCCC, which are certainly important in many geochemical studies. There is,

in fact, no published dataset regressed to include virial coefficients for both silica

and aluminum.

Tables 8.1–8.3 show the calculation procedure for the HMW method, and Tables

8.4–8.7 list the required coefficients. In these tables, subscripts c, c0, and M refer

to cations, a, a0, and X to anions, and n to species of neutral charge; subscripts i ,

j , and k refer to species in general. In Appendix 2, we carry through an example

calculation by hand to provide a clearer idea of how the method is implemented.

The reader should work through the example calculation before attempting to

program the method.

Considering the rather large amount of data required to implement virial meth-

ods even at 25 °C (e.g., Tables 8.4–8.7), it is tempting to dismiss the methods as
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Table 8.1. Procedure (Part 1) for evaluating the HMW activity model

GIVEN DATA. The following data are known at the onset of the calculation:

For each cation–anion pair: model parameters ˇ
.0/
MX , ˇ

.1/
MX , ˇ

.2/
MX , C

�
MX , and ˛MX .

For each cation–cation and anion–anion pair: model parameters �ij .
For each pairing of an ion with a neutral species: model parameters �ni .
For each cation–cation–anion and anion–anion–cation triplet: model parameters  ijk .
For each species considered: the molalitymi and charge zi .

STEP 1. Calculate solution ionic strength I and the total molal charge Z:

I D 1
2

P
i

miz
2
i

Z D P
i

mi j zi j .

STEP 2. Determine for each possible pairing of like-signed charges the values of the
functions E�ij .I / and E� 0

ij .I / of I by numerical integration or approximation (for

details, see Pitzer, 1987, pp. 130–132; Harvie and Weare, 1980). A computer program for
this purpose is listed in Appendix 2. The functions are zero for like charges and
symmetrical about zero, so only the positive unlike pairings (e.g., 2–1, 3–1, 3–2) need be
evaluated.

STEP 3. For each cation–anion pair MX , evaluate functions g.x/ and g0.x/ for

x D ˛MX

p
I ,

g.x/ D 2 Œ1 � .1C x/ e�x�

x2

g0.x/ D �2
�
1 � �

1C x C x2=2
�

e�x
	

x2
.

STEP 4. Compute for each cation–anion pair the second virial coefficients BMX , B 0
MX ,

B
�
MX ,

BMX D ˇ
.0/
MX C ˇ

.1/
MX g.˛MX

p
I /C ˇ

.2/
MX g.12

p
I /

B 0
MX D ˇ

.1/
MX g

0.˛MX

p
I /=I C ˇ

.2/
MX g

0.12
p
I /=I

B
�
MX D BMX C IB 0

MX .

no more than statistical fits to experimental data. In fact, however, virial methods

take chemical potentials measured from simple solutions containing just one or two

salts to provide an activity model capable of accurately predicting species activi-

ties in complex fluids. Eugster et al. (1980), for example, used the virial method of

Harvie and Weare (1980) to accurately trace the evaporation of seawater almost to



126 Activity coefficients

Table 8.2. Procedure (Part 2) for evaluating the HMW activity model

STEP 5. Calculate for each cation–anion pair the third virial coefficient CMX ,

CMX D C
�
MX

2
pj zM zX j .

STEP 6. Compute for each cation–cation and anion–anion pair the second virial

coefficients ˆij ,ˆ0
ij , ˆ

�
ij ,

ˆij D �ij C E�ij .I /

ˆ0
ij D E� 0

ij .I /

ˆ
�
ij D ˆij C Iˆ0

ij .

STEP 7. Determine the intermediate value F ,

F D �A�

 p
I

1C 1:2
p
I

C 2

1:2
ln
�
1C 1:2

p
I
�!

C
NcP

cD1

NaP
aD1

mcmaB
0
ca C

Nc�1P
cD1

NcP
c0DcC1

mcmc0ˆ0
cc0 C

Na�1P
aD1

NaP
a0DaC1

mama0ˆ0
aa0 .

Here A� D 2:303A=3, where A is the Debye–Hückel parameter.

STEP 8. Calculate activity coefficients �M , �X , and �N for cations, anions, and neutral
species,

ln�M D z2
M
F C

NaP
aD1

ma .2BMa CZCMa/C
NcP

cD1

mc

 
2ˆMc C

NaP
aD1

ma Mca

!

C
Na�1P
aD1

NaP
a0DaC1

mama0 aa0M C j zM j
NcP

cD1

NaP
aD1

mcmaCca C
NnP

nD1

mn .2�nM /

ln�X D z2
XF C

NcP
cD1

mc .2BcX CZCcX /C
NaP

aD1

ma

 
2ˆXa C

NcP
cD1

mc Xac

!

C
Nc�1P
cD1

NcP
c0DcC1

mcmc0 cc0XC j zX j
NcP

cD1

NaP
aD1

mcmaCca C
NnP

nD1

mn .2�nX /

ln�N D
NcP

cD1

mc .2�nc/C
NaP

aD1

ma .2�na/ .

the point of desiccation. Using any other activity model, such a calculation could

not even be contemplated. Other accomplishments in geochemistry (Weare, 1987)
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Table 8.3. Procedure (Part 3) for evaluating the HMW activity model

STEP 9. Calculate the osmotic coefficient � according to

P
i

mi .� � 1/ D 2
h �A�I 3=2

1C 1:2
p
I

C
NcP
cD1

NaP
aD1

mcma

�
B

�
ca CZCca

�

C
Nc�1P
cD1

NcP
c0DcC1

mcmc0

 
ˆ

�
cc0 C

NaP
aD1

ma cc0a

!

C
Na�1P
aD1

NaP
a0DaC1

mama0

 
ˆ

�
aa0 C

NcP
cD1

ma aa0c

!

C
NnP
nD1

NaP
aD1

mnma�na C
NnP
nD1

NcP
cD1

mnmc�nc

i
.

STEP 10. Calculate the activity aw of water from the relation

lnaw D � W

1000

�P
i

mi

�
� ,

where W is the mole weight of water (18.016 g mol�1).

include prediction of mineral precipitation in alkaline lakes and in fluid inclusions

within evaporite minerals.

8.3 Comparison of the methods

It is interesting to compare the Debye–Hückel and virial methods, since each has

its own advantages and limitations. The Debye–Hückel equations are simple to

apply and readily extensible to include new species in solution, since they require

few coefficients specific to either species or solution. The method can be applied

as well over the range of temperatures most important to an aqueous geochemist.

There is an extensive literature on ion association reactions, so there are few limits

to the complexity of the solutions that can be modeled.

The Debye–Hückel methods work poorly, however, when carried to moderate

or high ionic strength, especially when salts other than NaCl dominate the solute.

In the theory, the ionic strength represents all the properties of a solution. For this

reason, a Debye–Hückel method applied to any solution of a certain ionic strength

(whether dominated by NaCl, KCl, HCl, H2SO4, or any salt or salt mixture) gives

the same set of activity coefficients, irregardless of the solution’s composition. This

result, except for dilute solutions, is, of course, incorrect. Clearly, we cannot rely
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Table 8.4. HMW model parameters for cation–anion pairs

c a ˇ
.0/
ca ˇ

.1/
ca ˇ

.2/
ca C

�
ca ˛ca

NaC Cl� :0765 :2664� — :00127 2

NaC SO��
4 :01958 1:113 — :00497 2

NaC HSO�
4 :0454 :398 — — 2

NaC OH� :0864 :253 — :0044 2

NaC HCO�
3 :0277 :0411 — — 2

NaC CO��
3 :0399 1:389 — :0044 2

KC Cl� :04835 :2122 — �:00084 2

KC SO��
4

:04995 :7793 — — 2

KC HSO�
4 �:0003 :1735 — — 2

KC OH� :1298 :320 — :0041 2

KC HCO�
3 :0296 �:013 — �:008 2

KC CO��
3 :1488 1:43 — �:0015 2

CaCC Cl� :3159 1:614 — �:00034 2

CaCC SO��
4 :20 3:1973 �54:24 — 1.4

CaCC HSO�
4

:2145 2:53 — — 2

CaCC OH� �:1747 �:2303 �5:72 — 2

CaCC HCO�
3

:4 2:977 — — 2

CaCC CO��
3 — — — — —

MgCC Cl� :35235 1:6815 — :00519 2

MgCC SO��
4 :2210 3:343 �37:23 :025 1.4

MgCC HSO�
4 :4746 1:729 — — 2

MgCC OH� — — — — —

MgCC HCO�
3 :329 :6072 — — 2

MgCC CO��
3

— — — — —

MgOH Cl� �:10 1:658 — — 2

MgOH SO��
4

— — — — —

MgOH HSO�
4 — — — — —

MgOH OH� — — — — —

MgOH HCO�
3 — — — — —

MgOH CO��
3 — — — — —

HC Cl� :1775 :2945 — :0008 2

HC SO��
4 :0298 — — :0438 —

HC HSO�
4

:2065 :5556 — — 2

HC OH� — — — — —

HC HCO�
3 — — — — —

HC CO��
3 — — — — —

�Corrected value.
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Table 8.5. HMW model parameters for cation–cation pairs and triplets

c c0 �cc0  cc0Cl  cc0SO4
 cc0HSO4

 cc0OH  cc0HCO3
 cc0CO3

NaC KC �:012 �:0018 :010 — — �:003 .003

NaC CaCC :07 �:007 �:055 — — — —

NaC MgCC :07 �:012 �:015 — — — —

NaC MgOH — — — — — — —

NaC HC :036 �:004 — �:0129 — — —

KC CaCC :032 �:025 — — — — —

KC MgCC 0: �:022 �:048 — — — —

KC MgOH — — — — — — —

KC HC :005 �:011 :197 �:0265 — — —

CaCC MgCC :007 �:012 :024 — — — —

CaCC MgOH — — — — — — —

CaCC HC :092 �:015 — — — — —

MgCC MgOH — :028 — — — — —

MgCC HC :10 �:011 — �:0178 — — —

MgOH HC — — — — — — —

Table 8.6. HMW model parameters for anion–anion pairs and triplets

a a0 �aa0  aa0Na  aa0K  aa0Ca  aa0Mg  aa0MgOH  aa0H

Cl� SO��
4

:02 :0014 — �:018 �:004 — —

Cl� HSO�
4

�:006 �:006 — — — — :013

Cl� OH� �:050 �:006 �:006 �:025 — — —

Cl� HCO�
3 :03 �:015 — — �:096 — —

Cl� CO��
3 �:02 :0085 :004 — — — —

SO��
4 HSO�

4 — �:0094 �:0677 — �:0425 — —

SO��
4 OH� �:013 �:009 �:050 — — — —

SO��
4 HCO�

3 :01 �:005 — — �:161 — —

HSO�
4

OH� — — — — — — —

HSO�
4

HCO�
3

— — — — — — —

HSO�
4

CO��
3

— — — — — — —

OH� HCO�
3 — — — — — — —

OH� CO��
3 :10 �:017 �:01 — — — —

HCO�
3 CO��

3 �:04 :002 :012 — — — —
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Table 8.7. HMW model parameters for neutral species–ion pairs

i �CO2 i �CaCO3 i �MgCO3 i

HC 0: — —

NaC :100 — —

KC :051 — —

CaCC :183 — —

MgCC :183 — —

MgOH — — —

Cl� �:005 — —

SO��
4

:097 — —

HSO�
4

�:003 — —

OH� — — —

HCO�
3 — — —

CO��
3 — — —

on a single value to describe how the properties of a concentrated solution depend

on its solute content.

The virial methods, on the other hand, provide remarkably accurate results over

a broad range of solution concentrations and with a variety of dominant solutes.

The methods, however, are limited in breadth. Notably lacking at present are data

for redox reactions and for components such as aluminum and silica with low sol-

ubilities. Data for extending the methods to apply beyond room temperature (e.g.,

Møller, 1988; Greenberg and Møller, 1989), furthermore, are limited currently to

relatively simple chemical systems.

Unlike the Debye–Hückel equations, the virial methods provide little or no in-

formation about the distribution of species in solution. Geochemists like to iden-

tify the dominant species in solution in order to write the reactions that control

a system’s behavior. In the virial methods, this information is hidden within the

complexities of the virial equations and coefficients. Many geochemists, therefore,

find the virial methods to be less satisfying than methods that predict the species

distribution. The information given by Debye–Hückel methods about species dis-

tributions in concentrated solutions, however, is not necessarily reliable and should

be used with caution.

To explore the differences between the methods, we use SPECE8 to calculate

at 25 °C the solubility of gypsum (CaSO4 � 2H2O) as a function of NaCl concen-

tration. We use two datasets: thermo.dat, which invokes the B-dot equation, and

thermo_hmw.dat, based on the HMW model. The logK values for the gypsum dis-
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Fig. 8.6. Solubility of gypsum (CaSO4 � 2H2O) at 25 °C as a function of NaCl concen-
tration, calculated according to the Harvie–Møller–Weare and B-dot (modified Debye–
Hückel) activity models. Circles and squares, respectively, show experimental determina-
tions by Marshall and Slusher (1966) and Block and Waters (1968).

solution reaction vary slightly between the datasets. To limit our comparison to the

activity models, we use the alter command to set logK in each case to the value

of �4:5805 used by Harvie et al. (1984).

To perform the calculation for a one molal NaCl solution, for example, we use

the data command to set the appropriate dataset (thermo.dat or thermo_hmw.dat)

and then enter

swap Gypsum for Ca++

100 free grams Gypsum

balance on SO4--

1 molal Na+

1 molal Cl-

alter Gypsum 0 -4.5805

go

We then repeat the calculation over a range of NaCl concentrations. (To save effort,

we can perform the calculation in one step by titrating NaCl into an initially dilute

solution, as we discuss in Chapter 13, and then plotting the results with GTPLOT.)

Figure 8.6 shows the calculation results plotted against measured solubilities

from laboratory experiments. The HMW calculations closely coincide with the ex-

perimental data, reflecting the fact that these same data were used in parameterizing

the model (Harvie and Weare, 1980). The B-dot results coincide closely with the
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Fig. 8.7. Molal concentrations mi and activities ai of calcium and sulfate species in
equilibrium with gypsum at 25 °C as functions of NaCl concentration, calculated using
the B-dot equation (left) and the HMW activity model (right).

data only at NaCl concentrations less than about 0.5 molal. At 3 molal concentra-

tion, the predicted solubility is about double the measured value.

Whether error of this extent is acceptable depends primarily on the modeler’s

goals (e.g., Weare, 1987, pp. 160–162; Brantley et al., 1984; Felmy and Weare,

1986). If a model is designed to accurately predict mineral solubility in concen-

trated solutions, clearly the B-dot equation would be considered incorrect. A model

created to explore the behavior of a fluid in equilibrium with gypsum might be

useful, however, even though the modeler recognizes that the predicted gypsum

solubility is inaccurate by a factor of two or more. Indeed, as discussed in Chapter

2, errors of this magnitude are not uncommon in geochemical modeling.

Figure 8.7 shows how concentrations and activities of the calcium and sulfate

species vary with NaCl concentration. In the B-dot model, there are three ion

pairs (CaClC, NaSO�
4 , and CaSO4) in addition to the free ions CaCC and SO��

4 .
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The activities of the free ions remain roughly constant with NaCl concentration,

and their concentrations increase only moderately, reflecting the decrease in the

B-dot activity coefficients with increasing ionic strength (Fig. 8.3). Formation of

the complex species CaClC and NaSO�
4 drives the general increase in gypsum

solubility with NaCl concentration predicted by the B-dot model.

In the HMW model, in contrast, CaCC and SO��
4 are the only calcium or sulfate-

bearing species considered. The species maintain equal concentration, as required

by electroneutrality, and mirror the solubility curve in Figure 8.6. Unlike the B-dot

model, the species’ activities follow trends dissimilar to their concentrations. The

CaCC activity rises sharply while that of SO��
4 decreases. In this case, variation in

gypsum solubility arises not from the formation of ion pairs, but from changes in

the activity coefficients for CaCC and SO��
4 as well as in the water activity. The

latter value, according to the model, decreases with NaCl concentration from one

to about 0.7.

8.4 Brine deposit at Sebkhat El Melah

As a test of our ability to calculate activity coefficients in natural brines, we con-

sider groundwater from the Sebkhat El Melah brine deposit near Zarzis, Tunisia

(Perthuisot, 1980). The deposit occurs in a buried evaporite basin composed of

halite (NaCl), anhydrite (CaSO4), and dolomite [CaMg.CO3/2]. The Tunisian gov-

ernment would like to exploit the brines for their chemical content, especially for

the potassium, which is needed to make fertilizer.

Since the deposit contains halite and anhydrite, the brines should be saturated

with respect to these minerals and hence provide a good test of the activity models.

Table 8.8 shows analyses of brine samples from the deposit. Note that the reported

pH values are almost certainly incorrect because pH electrodes do not respond ac-

curately in concentrated solutions. Hence, there is little to be gained by calculating

dolomite saturation.

To model the brine, we set the activity model and enter the chemical com-

position. The SPECE8 commands debye-huckel and hmw, respectively, prescribe

the Debye–Hückel (B-dot) and Harvie–Møller–Weare activity models. The HMW

model does not account for bromine, so we must type remove Br- before invoking

it. Taking the analysis for well RZ-2 as an example, the procedure in SPECE8 to

invoke the Debye–Hückel model is

debye-huckel

K+ = 6.9 g/l

Mg++ = 52.1 g/l

Na+ = 43.1 g/l

Ca++ = .2 g/l

Br- = 2.25 g/l
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Table 8.8. Chemical compositions (g l�1) of brines from the Sebkhat El Melah

brine deposit, Zarzis, Tunisia (Jarraya and El Mansar, 1987)

Well KC MgCC NaC CaCC Br� Cl� SO��
4 HCO�

3 pH

RZ-2 6:90 52:1 43:1 0:20 2:25 195 27:4 0:14 7:15

RZ-7 7:65 47:2 50:0 0:30 2:11 195 26:9 0:19 7:0

RZ-8 7:46 52:3 37:5 0:20 2:60 192 27:9 0:20 6:8

RZ-9 6:70 47:3 50:8 0:20 2:35 188 30:2 0:17 6:8

RZ-10 6:60 34:4 51:3 0:40 1:36 177 21:7 0:16 6:85

RZ-11 7:85 54:7 32:0 0:20 2:32 206 19:2 0:17 6:0

RZ-16 6:80 46:2 47:0 0:20 3:29 195 18:7 0:20 7:1

RZ-17 8:85 55:9 39:3 0:20 3:20 202 28:2 0:18 7:1

RZ-19 7:23 50:0 44:2 0:50 2:00 200 28:8 0:24 6:9

Cl- = 195 g/l

SO4-- = 27.4 g/l

HCO3- = .14 g/l

pH = 7.15

balance on Cl-

go

Continuing, the commands

(cont’d)

hmw

remove Br-

go

implement the Harvie–Møller–Weare activity model.

Figure 8.8 shows the resulting saturation indices for halite and anhydrite, calcu-

lated for the first four samples in Table 8.8. The Debye–Hückel (B-dot) method,

which of course is not intended to be used to model saline fluids, predicts that

the minerals are significantly undersaturated in the brine samples. The Harvie–

Møller–Weare model, on the other hand, predicts that halite and anhydrite are near

equilibrium with the brine, as we would expect. As usual, we cannot determine

whether the remaining discrepancies result from the analytical error, error in the

activity model, or error from other sources.
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Fig. 8.8. Saturation indices of Sebkhat El Melah brine samples with respect to halite (left)
and anhydrite (right), calculated using the B-dot (modified Debye–Hückel) and Harvie–
Møller–Weare models.
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Sorption and ion exchange

An important consideration in constructing certain types of geochemical models,

especially those applied to environmental problems, is to account for the sorption of

aqueous species onto sediment surfaces (e.g., Zhu and Anderson, 2002). Because

of their large surface areas and high reactivities (e.g., Davis and Kent, 1990), many

components of a sediment – especially clay minerals, zeolites, metal oxides and

oxyhydroxides, and organic matter – can sorb considerable masses.

Sorption can significantly diminish the mobility of certain dissolved components

in solution, especially those present in minor amounts. Sorption, for example,

may retard the spread of radionuclides near a radioactive waste repository or the

migration of contaminants away from a polluting landfill (see Chapters 21 and 32).

In acid mine drainages, ferric oxide sorbs heavy metals from surface water, helping

limit their downstream movement (see Chapter 31). A geochemical model useful

in investigating such cases must provide an accurate assessment of the effects of

surface reactions.

In this chapter, we consider several simple models of ion sorption and exchange

that can be applied within the context of a geochemical model. These models in-

clude distribution coefficients, Freundlich and Langmuir isotherms, and ion ex-

change theory. In the following chapter (Chapter 10), we consider surface com-

plexation theory, which is more complicated but in some ways more robust than

the models presented here.

9.1 Distribution coefficient (Kd) approach

The distribution coefficient approach – commonly referred to as the Kd approach

– is the most widely applied method in environmental geochemistry for predicting

the sorption of contaminant species onto sediments. The distribution coefficient

Kd itself is simply the ratio under specific conditions of the sorbed to the dissolved

mass of a contaminant. Sorbed and dissolved mass are expressed in units such as

137
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moles per gram of dry sediment and moles per cm3 fluid, respectively, so Kd has

units such as cm3 g�1.

A Kd is by nature descriptive, but in theKd approach the value is taken over the

range of chemical conditions considered in a model to be constant and predictive.

This assumption, of course, cannot hold in the general sense. A Kd value varies

sharply with pH, contaminant concentration, ionic composition of the fluid, and so

on; its measurement is specific to the fluid and sediment tested. It is imperative that

the modeler keep these points in mind.

The limitations of the Kd approach stem in part from the fact that it makes no

accounting of the number of sorbing sites on the sediment, treating them as if they

are in excess supply. The approach allows a solute to sorb without limit, without

being affected by the sorption of competing species. As well, the approach treats

sorption as a simple process of attachment. It does not consider the possibility of

hydrolysis at the interface between sediment and fluid, so it cannot account for the

effects of pH. Nor does the approach consider electrostatic interactions between

the surface and charged ions.

For these reasons, the Kd approach works best for describing sorption of trace

amounts of nonionized, hydrophobic organic molecules (Stumm and Morgan,

1996). The approach is broadly recognized to describe poorly the behavior of ionic

species, especially metal ions, within soils and sediments (e.g., Reardon, 1981;

Domenico and Schwartz, 1998). Nonetheless, it is commonly applied for just such

purposes, often giving misleading results (Bethke and Brady, 2000).

The Kd approach, as strictly defined, implies but does not specify a chemical

reaction. A variant of the approach known as the reaction Kd model (or activity

Kd model) based on a specific chemical reaction is commonly applied in reaction

modeling. For example, the sorption and desorption of CdCC might be taken to

occur according to the reaction,

>CdCC � CdCC ; (9.1)

where >CdCC is the sorbed form of the cadmium ion. In this model, the distri-

bution coefficient for the reaction is defined to be the ratio of sorbed mass to the

activity of the free ion. It can be expressed

K0
d D m>CdCC

aCdCC

� nw

ns

(9.2)

where m>CdCC is molal concentration of the sorbed species, aCdCC is activity

of the free ion, ns is the mass in grams of dry sediment in the system, and nw,

as before, is the mass of solvent water, in kg. The definition of the distribution

coefficient in this case differs somewhat from the general definition, so we carry it

not as Kd, but as K0
d, which we see has units such as mol g�1. Rearranging gives
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the mass action equation,

m>CdCC D K0
d ns

nw
aCdCC (9.3)

in terms of the distribution coefficient.

The reaction Kd model, as we can see, differs from the general approach in two

ways. The activity rather than the concentration of the dissolved species is carried.

Distribution coefficients calculated in the traditional manner, therefore, need to be

corrected by a factor of the species’ activity coefficient. The value ofK0
d for CdCC

in mol g�1 can be determined from a Kd in cm3 g�1 as,

K0
d D �w

1000 �CdCC
Kd ; (9.4)

assuming the water is dilute. Here, �w is the density of water and �CdCC is the

species’ activity coefficient.

Potentially more significant is the fact that a single ion is used to represent the

dissolved form of the contaminant in question, an assumption that can lead to

serious error. Cadmium in a model calculated at pH 12, for example, is present

primarily as the species Cd.OH/2; almost no free ion CdCC occurs. Employing

the reaction Kd model in terms of CdCC in this case would predict a contaminant

distribution unlike that suggested by the distribution coefficient, applied in the

traditional sense. We see the importance of applying aKd model to systems similar

to that for which it was originally determined.

To generalize this discussion, we start as before with a vector,

B D .Aw ; Ai; Ak ; Am/ (9.5)

of basis entries. Since the Kd model offers no accounting for the number of sorb-

ing sites available, and uncomplexed sorbing sites do not appear in the sorption

reactions, we do not need to include in the basis any entry representing the sorbing

surface itself. The reaction for each sorbed species Aq considered

Aq D Aj (9.6)

can be written in terms of the basis entries as,

Aq D �wjAw C
X

i

�ijAi C
X

k

�kjAk C
X
m

�mjAm (9.7)

by substituting Equation 3.22. The molal concentrationmq of each sorbed species

mq D
K0

dq
ns

nw
aj ; (9.8)
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given by Equation 9.3 can be expressed by the mass action equation,

mq D K0
dq
ns

nw

0
@ 1

Kj

a
�wj
w �

iY
.�imi /

�ij �
kY
a

�kj

k
�

mY
f

�mj
m

1
A (9.9)

by substituting Equation 3.27.

The mass balance equations for a system including sorbing species are given as,

Mw D nw

0
@55:5C

X
j

�wjmj C
X

q

�wqmq

1
A (9.10)

Mi D nw

0
@mi C

X
j

�ijmj C
X

q

�iqmq

1
A (9.11)

Mk D nk C nw

0
@X

j

�kjmj C
X

q

�kqmq

1
A (9.12)

Mm D nw

0
@X

j

�mjmj C
X

q

�mqmq

1
A : (9.13)

These equations are the same as those already considered (3.28–3.31), with the

addition of the summations over the masses of the sorbed species.

9.2 Freundlich isotherms

The Freundlich isotherm (or Freundlich model) is an empirical description of

species sorption similar to theKd approach, but differing in how the ratio of sorbed

to dissolved mass is computed. In the model, dissolved mass, the denominator

in the ratio, is raised to an exponent less than one. The ratio, represented by the

Freundlich coefficient Kf, is taken to be constant, as is the exponent, denoted nf,

where 0<nf<1. As before, the masses of dissolved and sorbed species are entered,

respectively, in units such as moles per gram of dry sediment and moles per cm3

fluid. Since the denominator is raised to an arbitrary exponent nf, the units for Kf

are not commonly reported, and care must be taken to note the units in which the

ratio was determined.

The effect of the exponent nf is to predict progressively less effective sorption as

concentration increases. Where nf approaches one, the isotherm reverts to the Kd

model, in which sorption is equally effective at any concentration. For nf less than

one, a smaller fraction of a component sorbs at high than at low concentration.

This effect is taken as reflecting a heterogeneous distribution of sorbing sites in
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a sediment sample: the more strongly sorbing sites are occupied at low solute

concentration, leaving available only weaker sites as concentration increases. Such

a pattern can in fact arise not from sorption, but the onset of surface precipitation

at high solute concentration.

Geochemical models, as with theKd approach, are commonly formulated with a

variant of the Freundlich isotherm based on a chemical reaction, like Reaction 9.1.

In this approach, known as the reaction Freundlich model or the activity Freundlich

model, the extent of sorption by the reaction can be expressed,

K0
f D m>CdCC

anf

CdCC

� nw

ns
: (9.14)

Here, we represent the Freundlich coefficient as K0
f (mol g�1), as a reminder that

we are not working with Freundlich isotherms in the strictly traditional sense.

Rearranging gives

m>CdCC D K0
f ns

nw

anf

CdCC ; (9.15)

which is the reaction’s mass action equation.

To cast the model in general form, we begin with the basis shown in Equation

9.5 and write each sorption reaction in the form of Equation 9.7. The mass action

equation corresponding to the reaction for each sorbed species Aq is

mq D
K0

fq
ns

nw

0
@ 1

Kj
a

�wj
w �

iY
.�imi /

�ij �
kY
a

�kj

k
�

mY
f

�mj
m

1
A

nf

(9.16)

where K0
fq

is the reaction’s Freundlich coefficient. The mass balance equations,

unchanged from theKd model, are given by Equations 9.10–9.13.

9.3 Langmuir isotherms

The Langmuir isotherm (or Langmuir model) provides an improvement over the

Kd and Freundlich approaches by maintaining a mass balance on the sorbing

sites (Stumm and Morgan, 1996). The model, for this reason, does not predict

that species can sorb indefinitely, since the number of sites available is limited.

When the calculation carries reactions for the sorption of more than one aqueous

species, furthermore, it accounts for competition; such a calculation is known as a

competitive Langmuir model.

In the Langmuir model, a species sorbs and desorbs according to a reaction such

as,

>L W CdCC
� >L W C CdCC ; (9.17)
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where >L W CdCC is a sorbing site occupied by a cadmium ion and >L W is an

unoccupied site. The Langmuir reaction has an equilibrium constantK such that

K D m>LW aCdCC

m>LWCdCC
: (9.18)

Herem>LW andm>LWCdCC are molal concentrations of the unoccupied and occupied

sites, respectively, and aCdCC is the activity of the free ion. Activity coefficients

for the surface sites are not carried in the equation; they are assumed to cancel.

Equilibrium constants reported in the literature are in many cases tabulated in terms

of the concentrations of free species, rather than their activities, as assumed here,

and hence may require adjustment.

To parameterize a Langmuir model, you determine from experimental measure-

ments not only the equilibrium constantK, but the surface’s sorption capacity (or

exchange capacity). The latter value is a measure of the number of sorbing sites and

is commonly reported in moles or electrical equivalents, per gram of dry sediment.

Multiplying the sorption capacity in moles by the mass of sediment in a system

gives the mole number of sorbing sites, which is

M>LW D nw .m>LW Cm>LWCdCC/ : (9.19)

When more than one sorption reaction is considered, of course, the summation

includes the other sorbed species.

Combining Equations 9.18 and 9.19 gives

m>LWCdCC D M>LW

nw

aCdCC

.K C aCdCC/
; (9.20)

which is the well-known Langmuir equation. Where aCdCC is much smaller than

K, by this relation, the sorbed concentration varies in proportion to the concen-

tration of the dissolved species. As aCdCC increases to values greater than K, in

contrast, the sorbed concentration approaches the concentration of sorbing sites,

the limiting value in light of the sediment’s sorption capacity.

To cast the model in general terms, we set a vector of basis entries,

B D �
Aw ; Ai; Ak; Am; Ap

�
(9.21)

that includes the sorbing site>L W, represented as Ap . The reaction for each sorbed

species Aq written in terms of the basis is,

Aq D �wqAw C
X

i

�iqAi C
X

k

�kqAk C
X
m

�mqAm C �pqAp ; (9.22)

where �pq is generally one and carried as a formality, for consistency with models
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to be introduced later. Each such reaction has an associated equilibrium constant

Kq and mass action equation

mq D 1

Kq

0
@a�wq

w

iY
.�imi /

�iq

kY
a

�kq

k

mY
f

�mq
m m

�pq
p

1
A : (9.23)

The mass balance equations are the same as for the Kd model (Eqns. 9.10–9.13),

with the addition of,

Mp D nw

 
mp C

X
q

�pqmq

!
; (9.24)

wheremp is the molal concentration of unoccupied sites. This equation, the general

form of Equation 9.19, enforces mass balance on the sorbing sites Ap .

9.4 Ion exchange

The ion exchange model is most commonly applied in geochemistry to describe the

interaction of major cationic species with clay minerals, or the clay mineral fraction

of a sediment; it has also been applied to zeolites and other minerals, and to ions

besides the major cations (e.g., Viani and Bruton, 1992). As the name suggests, the

model treats not the sorption and desorption of a species on the surface and in the

interlayers of the clay, but the replacement of one ion there by another.

The exchange of KC for NaC, for example, proceeds according to,

>X W NaC C KC
� >X W KC C NaC ; (9.25)

where >X: represents the exchanging site. The mass action equation for this reac-

tion is given as,

K D ˇ>XWKC aNaC

ˇ>XWNaC aKC
; (9.26)

whereK is the exchange coefficient and ˇ represents the activity of a species com-

plexed with an exchange site. In many cases, exchange constants in the literature

have been calculated using the molal or molar concentrations of the aqueous spe-

cies, rather than their activities; such cases require correction by a factor of the

ratio of the species’ activity coefficients in order to bring the Ks into accord with

Equation 9.26.

The activities ˇ may be calculated in different ways (e.g., Appelo and Postma,

1993) and, in collecting exchange constants from the literature, care must be

taken to note the method used. By the Gaines–Thomas convention, the activity
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of >X:NaC, for example, is given in terms of the fraction of the total electrical

equivalents of exchange capacity occupied by sodium ions,

ˇ>XWNaC D meq>XWNaC per 100 g sediment

CEC
: (9.27)

Here, meq is number of milliequivalents and CEC is the cation exchange capacity,

expressed in milliequivalents per 100 g of sediment. According to the Vanselow

convention, alternatively, the activity is expressed as the the fraction of the sites

occupied by the ion,

ˇ>XWNaC D m>XWNaC per 100 g sediment

TEC
; (9.28)

where m is number of moles and TEC is the total exchangeable cations, in moles

per 100 g of sediment.

Where only univalent cations are considered, the activities calculated by Equa-

tions 9.27 and 9.28 are equivalent in value, but this is not the case if divalent ions

are included. The reaction describing exchange of sodium for calcium ions,

2 >X W NaC C CaCC
� >X W2 CaCC C 2 NaC ; (9.29)

has an associated mass action equation,

K D ˇ>XW2CaCC a2
NaC

ˇ2
>XWNaC aCaCC

: (9.30)

Since >X:2CaCC has a double charge, and because the CEC and TEC in this

case differ in value, the activities calculated for the species according to the two

conventions differ.

It is possible to write exchange reactions for divalent ions in an alternative form,

>X W NaC C 1=2 CaCC � >X WCaCC
1=2

C NaC ; (9.31)

in which case the mass balance equation is given as,

K D
ˇ

>XWCa
CC
1=2

aNaC

ˇ>XWNaC a
1=2

CaCC

: (9.32)

The reaction written in this fashion corresponds to the Gapon convention, in which

case the activitiesˇ may be calculated equivalently by either Equation 9.27 or 9.28,

since the exchanging site maintains unit charge.

To allow for its numerical solution, we formalize our discussion of the ion

exchange model by including in the basis a speciesAp (e.g.,>X:NaC) representing

the exchanging site (Eqn. 9.21). This species has a molal concentrationmp , and the
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total mole number of exchanging sites is givenMp; the latter value is set using the

CEC or TEC provided by the user.

There are furthermore one or more additional species Aq (e.g., >X:KC and

>X:2CaCC) formed by ion exchange with Ap . From the reaction to form each

such species,

Aq D �wqAw C
X

i

�iqAi C
X

k

�kqAk C
X
m

�mqAm C �pqAp ; (9.33)

we can write a mass action equation,

ˇq D 1

Kq

0
@a�wq

w

iY
.�imi /

�iq

kY
a

�kq

k

mY
f

�mq
m ˇ

�pq
p

1
A ; (9.34)

where p̌ and ˇq are the activities of Ap and Aq, respectively. The activities are

calculated according to the Gaines–Thomas convention as,

p̌ D zpmp

zpmp CP
q
zqmq

ˇq D zqmq

zpmp CP
q0
zq0mq0

; (9.35)

where we have substituted a mathematical expression of the CEC in the denomi-

nators, or by the Vanselow convention as,

p̌ D mp

mp CP
q
mq

ˇq D mq

mp CP
q0
mq0

; (9.36)

where the denominators represent the TEC. In these expressions, q0 simply repre-

sents a counter independent of q.

Substituting, the mass action equation (Eqn. 9.34) becomes, for the Gaines–

Thomas convention,

mq D z
�pq

p =zq

Kq

0
@a�wq

w

iY
.�imi /

�iq

kY
a

�kq

k

mY
f

�mq

m m
�pq

p

1
A

0
@zpmp C

X
q0

zq0mq0

1
A

1��pq

; (9.37)
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or, for the Vanselow convention,

mq D 1

Kq

0
@a�wq

w

iY
.�imi /

�iq

kY
a

�kq

k

mY
f

�mq
m m

�pq
p

1
A

0
@mp C

X
q0

mq0

1
A

1��pq

: (9.38)

For reactions in which the exchanging ions are of equal charge, the last term in

these equations becomes unity because 1 � �pq D 0. In the Gaines–Thomas

convention, the last term is the exchange capacity of the surface and remains

constant, regardless of the charges on the exchanging ions. For the Vanselow

convention, the final term varies with the proportion of monovalent and divalent

ions sorbed, and this variation must be accounted for when computing the Jacobian

matrix, as described in the next section. The mass balance equations for the ion

exchange model are of the form of Equations 9.10–9.13 and 9.24, as already

described.

9.5 Numerical solution

A speciation calculation including one of the sorption models described above,

or a combination of two or more sorption models, can be evaluated numerically

following a procedure that parallels the technique described in Chapter 4. We begin

as before by identifying the nonlinear portion of the problem to form the reduced

basis,

Br D �
Aw ; Ai ; Ap

�
r
: (9.39)

The basis includes an entry Ap for each sorption model considered, except for the

Kd and Freundlich models, which require no special entry.

For each basis entry we cast a residual function, which is the difference between

the right and left sides of the mass balance equations (Eqns. 9.10, 9.11, and 9.24):

Rw D nw

0
@55:5C

X
j

�wjmj C
X

q

�wqmq

1
A �Mw (9.40)

Ri D nw

0
@mi C

X
j

�ijmj C
X

q

�iqmq

1
A �Mi (9.41)

Rp D nw

 
mp C

X
q

�pqmq

!
�Mp : (9.42)



9.5 Numerical solution 147

We employ the Newton–Raphson method to iterate toward a set of values for

the unknown variables .nw ; mi ; mp/r for which the residual functions become

vanishingly small.

To do so, we calculate the Jacobian matrix, which is composed of the partial

derivatives of the residual functions with respect to the unknown variables. Dif-

ferentiating the mass action equations for aqueous species Aj (Eqn. 4.2), we note

that,

@mj

@nw
D 0

@mj

@mi
D �ij

mj

mi

@mj

@mp
D 0 (9.43)

which simplifies the derivation. The values of the partial derivatives @mq=@nw ,

@mq=@mi , and @mq=@mp , as given by differentiating the mass action equations

for the sorbed species Aq (Eqns. 9.9, 9.16, 9.23, 9.37, and 9.38), depend on the

sorption model chosen.

The entries in the Jacobian matrix are:

Jww D @Rw

@nw
D 55:5C

X
j

�wjmj C
X

q

�wqmq C nw

X
q

�wq
@mq

@nw
(9.44)

Jwi D @Rw

@mi
D nw

mi

X
j

�wj �ijmj C nw

X
q

�wq
@mq

@mi
(9.45)

Jwp D @Rw

@mp
D nw

X
q

�wq
@mq

@mp
(9.46)

Jiw D @Ri

@nw
D mi C

X
j

�ijmj C
X

q

�iqmq C nw

X
q

�iq
@mq

@nw
(9.47)

Ji i 0 D @Ri

@mi 0
D nwıi i 0 C nw

mi 0

X
j

�ij �i 0jmj C nw

X
q

�iq
@mq

@mi 0
(9.48)

Jip D @Ri

@mp
D nw

X
q

�iq
@mq

@mp
(9.49)

Jpw D @Rp

@nw
D mp C

X
q

�pqmq C nw

X
q

�pq
@mq

@nw
(9.50)

Jpi D @Rp

@mi

D nw

X
q

�pq
@mq

@mi

(9.51)

Jpp0 D @Rp

@mp0
D nwıpp0 C nw

X
q

�pq
@mq

@mp0
: (9.52)



148 Sorption and ion exchange

Here, the Kronecker delta function is defined as,

ıi i 0 D
(
1 if i D i 0

0 otherwise
and ıpp0 D

(
1 if p D p0

0 otherwise
: (9.53)

For the Kd and Freundlich models, as mentioned, there is no basis entry Ap and

hence we do not write a residual function of the form Equation 9.42, nor do we

carry Jacobian entries for Equations 9.46 or 9.49–9.52.

To evaluate the Jacobian matrix, we need to compute values for @mq=@nw ,

@mq=@mi , and @mq=@mp . For theKd and Freundlich models,

@mq

@nw

D �mq

nw

; (9.54)

the effect of which is to negate the first summations over q in Equations 9.44,

9.47, and 9.50. This derivative is of zero value for the Langmuir and ion exchange

models. For each model,

@mq

@mi

D �iq
mq

mi

; (9.55)

except for the Freundlich, in which case

@mq

@mi

D nf�iq
mq

mi

: (9.56)

No value for @mq=@mp is needed to evaluate the Kd and Freundlich models. For

the Langmuir model and the ion exchange model under the Gaines–Thomas and

Gapon conventions,

@mq

@mp
D �pq

mq

mp
: (9.57)

Under the Vanselow convention, as previously mentioned, extra work is needed to

figure this set of derivatives. Differentiating Equation 9.38 gives,

@mq

@mp
D �pq

mq

mp
C �

1 � �pq

�
ˇq

0
@1C

X
q0

@mq0

@mp

1
A ; (9.58)

or, rearranging,

@mq

@mp
� �
1 � �pq

�
ˇq

X
q0

@mq0

@mp
D �pq

mq

mp
C �

1 � �pq

�
ˇq : (9.59)
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Writing this relation for each secondary species q gives the matrix equation

0
BBB@
1� �

1 � �p1

�
ˇ1 � �1 � �p2

�
ˇ2 � � �

� �
1 � �p1

�
ˇ1 1 � �

1 � �p2

�
ˇ2 � � �

:::
:::

: : :

1
CCCA

0
BBBBBB@

@m1

@mp

@m2

@mp

:::

1
CCCCCCA

D

0
BBBBB@
�p1

m1

mp
C �

1 � �p1

�
ˇ1

�p2
m2

mp
C �

1 � �p2

�
ˇ2

:::

1
CCCCCA ; (9.60)

where subscripts 1, 2, ::: represent q=1, q=2, ::: This equation is solved numerically

at each iteration in the solution procedure to give the values required for the

derivatives @mq=@mp.

At each step in the Newton–Raphson iteration, we evaluate the residual functions

and Jacobian matrix. We then calculate a correction vector as the solution to the

matrix equation 0
@Jww Jwi Jwp

Jiw Ji i 0 Jip

Jpw Jpi Jpp0

1
A

r

0
@�w

�i

�p

1
A

r

D �
0
@Rw

Ri

Rp

1
A

r

: (9.61)

To assure non-negativity of the unknown variables, we determine an underrelax-

ation factor ıUR according to,

1

ıUR
D max

 
1; � �w

1=2 n
.q/
w

; � �i

1=2 m
.q/
i

; � �p

1=2m
.q/
p

!
r

; (9.62)

and then update values from the current .q/ iteration level,0
@nw

mi

mp

1
A

.qC1/

r

D
0
@nw

mi

mp

1
A

.q/

r

C ıUR

0
@�w

�i

�p

1
A

r

; (9.63)

to give those at the new .q C 1/ level.

As a final note, a variant of the calculation is useful in many cases. Suppose a

chemical analysis of a groundwater is available, giving the amount of a component

in solution, and we wish to compute how much of the component is sorbed to

the sediment. We can solve this problem by eliminating the summations over the

sorbed species (the
P

over q terms) from each of the mass balance equations,
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Fig. 9.1. Sorption of selenate (SeO��
4 ) to a loamy soil, showing mass sorbed per gram

of dry soil, as a function of concentration in solution. Symbols show results of batch
experiments by Alemi et al. (1991; their Fig. 1) and lines are fits to the data using the
reaction Kd, reaction Freundlich, and Langmuir approaches.

except that for surface sites (i.e., from Equations 9.10–9.13, but not from Equation

9.24). Now, the component mole numbers Mw , Mi , etc., refer to the fluid, rather

than the fluid plus sorbate. The summation terms no longer appear in the residual

functionsRw andRi (Eqns. 9.40 and 9.41), nor in the derivatives of these functions

within the Jacobian matrix (9.44–9.49). The Newton–Raphson iteration proceeds

as before, giving the distribution of mass across dissolved and sorbed species, but

honoring the fluid composition specified.

9.6 Example calculations

We consider as a first example sorption of selenate (SeO��
4 ), as predicted by the

reaction Kd, reaction Freundlich, and Langmuir approaches (Sections 9.1–9.3).

Alemi et al. (1991) observed the partitioning of selenate in batch experiments

between 10 g of a loamy soil and 20 ml of a pH 7.5 solution containing small

amounts of Na2SeO4; their results are shown in Figure 9.1.

In fitting these data, we note that at pH 7.5 selenate is present almost exclusively

as the SeO��
4 oxyanion, and the species’ activity coefficient in the dilute fluid

is nearly one. We can, therefore, take the species’ activity as equal to its dissolved

concentration, in mol kg�1. If this had not been the case, we would need to account

for the speciation and activity coefficient in determining the value of aSeO��
4

for

each experiment.
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The parameters of the three sorption models can be determined by linear re-

gression of the experimental observations. The reactionKd model (Eqn. 9.2) holds

that,

K0
d D

m0
>SeO��

4

aSeO��
4

; (9.64)

where m0
>SeO��

4
= nw m>SeO��

4
=ns is the concentration of sorbed selenate, ex-

pressed in mol g�1 soil. The value of K0
d is the limiting slope of the sorption data,

given as the intercept of the best-fit line in a plot of the ratio aSeO��
4
=m0

>SeO��
4

versus aSeO��
4

.

By the reaction Freundlich model (Eqn. 9.16),

m0
>SeO��

4
D K0

f a
nf

SeO��
4
: (9.65)

Since

logm0
>SeO��

4
D logK0

f C nf logaSeO��
4
; (9.66)

logK0
f is the intercept of the best-fit line in a plot of logm0

>SeO��
4

versus

logaSeO��
4

, and nf is the line’s slope.

Finally, the Langmuir model (Eqn. 9.20) is

m>LWSeO��
4

D mT
>LW

aSeO��
4�

K C aSeO��
4
;
� ; (9.67)

where mT
>LW is the total concentration of sorbing sites, complexed and not. Rear-

ranging,

aSeO��
4

m>LWSeO��
4

D K

mT
>LW

C aSeO��
4

mT
>LW

: (9.68)

We see mT
>LW is the reciprocal slope of the best-fit line in a plot of

aSeO��
4
=m>LWSeO��

4
versus aSeO��

4
, and K is the ratio of the line’s intercept

to its slope. The sorption capacity, in mol g�1 soil, then, is given nw mT
>LW=ns.

The parameters determined in this manner for the three sorption models are,

Kd K0
d = 0:065� 10�3 mol g�1

Freundlich K0
f = 0:88 � 10�6 mol g�1

nf = 0.68

Langmuir K = 5:4 � 10�6

Sorption capacity = 0:62� 10�9 mol g�1

and the resulting isotherms are shown in Figure 9.1. The reaction Freundlich model

as stated is equivalent to a standard model with this nf in whichKf is 0:073�10�3,
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as reported by Alemi et al. (1991), if the sorbed and dissolved concentrations are

taken in �mol g�1 and �mol kg�1.

To incorporate the isotherms into a geochemical model, we save the parameters

into datasets “SeO4 Kd.dat”, “SeO4 Fr.dat”, and “SeO4 La.dat”. To model the

Alemi et al. (1991) configuration, we note that per kg of water there are 500 g

of dry soil, or 189 cm3, taking the soil density to be 2.65 g cm�3.

If we take the dissolved selenate concentration to be 5 �molal and use the Kd

approach, the procedure in SPECE8 is

inert = 189

decouple SeO4--

pH = 7.5

balance on Na+

surface_data SeO4_Kd.dat

SeO4-- = 5 umolal

go

For a concentration of 20 �molal, we type

(cont’d)

SeO4-- = 20 umolal

go

The procedure for the Freundlich model is

(cont’d)

surface_data remove SeO4_Kd.dat

surface_data SeO4_Fr.dat

SeO4-- = 5 umolal

go

and

(cont’d)

SeO4-- = 20 umolal

go

The commands to invoke the Langmuir isotherm are

surface_data remove SeO4_Fr.dat

surface_data SeO4_La.dat

exchange_capacity = 0.62e-9 mol/g

SeO4-- = 5 umolal

go

and

SeO4-- = 20 umolal

go
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The sorbed masses predicted for the soil in equilibrium with 5 �molal and 20

�molal selenate solutions are

SeO��
4 sorbed (�mol g�1)

5 �molal 20 �molal

Kd 0:32 � 10�3 1:30 � 10�3

Freundlich 0:22 � 10�3 0:55 � 10�3

Langmuir 0:31 � 10�3 0:49 � 10�3

The values can be seen in Figure 9.1 to correspond to the observed data and fitted

isotherms.

As a second example, we consider ion exchange in an aquifer sediment. The

aquifer contains fresh water initially, but overpumping causes it to be invaded by

seawater. The compositions of the fresh water and seawater are taken to be

Fresh water Seawater

pH 7.5 8.3

CaCC.mg kg�1/ 60 411

MgCC 8 1 290

NaC 20 10 760

HCO�
3 210 142

SO��
4 40 2 710

Cl� 15 19 350

We would like to calculate the amount of CaCC, MgCC, and NaCsorbed at the ex-

changing sites initially, in contact with the fresh water, and then after the sediment

has fully equilibrated with seawater.

We assume CaCC, MgCC, and NaCexchange in the aquifer sediment according

to the reactions,

2 >X W NaC C CaCC
� >X W2 CaCC C 2 NaC (9.69)

and

2 >X W NaC C MgCC
� >X W2 MgCC C 2 NaC ; (9.70)

for which we take exchange coefficients, reported using the Gaines–Thomas con-

vention, of 0.4 and 0.5, respectively (see Appelo and Postma, 1993, p. 160, for a

compilation of exchange coefficients from natural sediments).

To prepare for our calculation, we save these reactions and exchange coefficients

in a dataset “CaMgNa Ix.dat”. We take the sediment’s cation exchange capacity to

be 4 meq (100 g)�1, or 4 � 10�5 eq g�1. We further assume a porosity of 30%, so

that per kg of pore fluid, there is about 2300 cm3 of sediment.
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The procedure in SPECE8 to model equilibrium exchange with the fresh water is

surface_data = CaMgNa_Ix.dat

exchange_capacity = 4e-5 eq/g

inert = 2300

pH = 7.5

Ca++ = 60 mg/kg

Mg++ = 8 mg/kg

Na+ = 20 mg/kg

HCO3- = 210 mg/kg

SO4-- = 40 mg/kg

Cl- = 15 mg/kg

go

The corresponding procedure for seawater is

(cont’d)

pH = 8.3

Ca++ = 411 mg/kg

Mg++ = 1290 mg/kg

Na+ = 10760 mg/kg

HCO3- = 142 mg/kg

SO4-- = 2710 mg/kg

Cl- = 19350 mg/kg

go

Since we are honoring the Gaines–Thomas convention, the activity of a sorbed

ion in the calculation results is the fraction of the total equivalents of the sediment’s

exchange capacity the ion occupies. The resulting values are,

Fresh water Seawater

CaCC 0.833 0.024

MgCC 0.152 0.163

NaC 0.015 0.813
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Surface complexation

Sorption of species from solution, as we noted in the previous chapter (Chapter 9),

controls the mobility of certain species in solution, especially environmental con-

taminants. An accurate description of sorption, therefore, is a critical component of

many geochemical models. The sorption models presented in the previous chapter

are, however, too simplistic to be incorporated into a geochemical model intended

for use under general conditions, such as across a range in pH.

The distribution coefficient (Kd) approach and Freundlich and Langmuir

isotherms are applied widely in groundwater studies (Domenico and Schwartz,

1998) and have been used with considerable success to describe sorption of

uncharged, weakly sorbing organic molecules (Adamson, 1976). Ion exchange

theory can account well for sorption of major cationic species on the clay fraction

of a soil or sediment (Sposito, 1989; Stumm and Morgan, 1996). None of these

models, however, accounts for the electrical state of the surface, which varies

sharply with pH, ionic strength, and solution composition. The Kd and Freundlich

approaches prescribe no concept of mass balance, so that a surface might be pre-

dicted to sorb from solution without limit. Each approach requires that coefficients

be determined experimentally for a given combination of sediment and fluid, and

hence lack generality.

To be useful in modeling electrolyte sorption, a theory needs to describe hydrol-

ysis and the mineral surface, account for electrical charge there, and provide for

mass balance on the sorbing sites. In addition, an internally consistent and suffi-

ciently broad database of sorption reactions should accompany the theory. Of the

approaches available, a class known as surface complexation models (e.g., Adam-

son, 1976; Stumm, 1992) reflect such an ideal most closely. This class includes the

double layer model (also known as the diffuse layer model) and the triple layer

model (e.g., Westall and Hohl, 1980; Sverjensky, 1993).

The double layer model is of the two the more fully developed in the literature

(e.g., Dzombak and Morel, 1987) and hence currently the most useful in geochem-

155
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ical modeling. The constant capacitance model commonly refers to an application

of double layer theory that does not account for variation in the electrical charge

on the sorbing surface. Some researchers prefer the term two layer model to de-

scribe an application of double layer theory that accounts for more than one type

of sorbing site on a single surface, although we will not carry this distinction in our

discussion here.

In this chapter, we discuss double layer theory and how it can be incorporated

into a geochemical model. We will consider hydrous ferric oxide (FeOOH � nH2O),

which is one of the most important sorbing minerals at low temperature under

oxidizing conditions. Sorption by hydrous ferric oxide has been widely studied

and Dzombak and Morel (1990) have compiled an internally consistent database

of its complexation reactions. The model we develop, however, is general and can

be applied equally well to surface complexation with other metal oxides for which

a reaction database is available.

10.1 Complexation reactions

Surface complexation theory is well described in a number of texts on surface

chemistry, including Adamson (1976), Stumm and Morgan (1996), Sposito (1989),

Dzombak and Morel (1990), and Stumm (1992); therefore, we merely summarize

it in this section. According to the theory, the sorbing surface is composed of metal-

hydroxyl sites that can react with ions in solution.

In Dzombak and Morel’s (1990) development, hydrous ferric oxide holds two

site types, one weakly and the other strongly binding. In their uncomplexed forms,

the sites are labeled >(w)FeOH and >(s)FeOH; the notation “>” represents bond-

ing to the mineral structure, and “(w)” and “(s)” signify the weak and strong sites.

Each site can protonate or deprotonate to form surface species such as

>.w/FeOHC
2 and >.w/FeO�. The corresponding reactions are,

>.w/FeOHC
2 � >.w/FeOH C HC (10.1)

>.w/FeO� C HC
� >.w/FeOH : (10.2)

As well, the sites can react with cations and anions from solution to form complexes

such as >.w/FeOCaC and >.w/FeSO�
4 ,

>.w/FeOCaC C HC � >.w/FeOH C CaCC (10.3)

>.w/FeSO�
4 C H2O � >.w/FeOH C SO��

4 C HC : (10.4)

Following our convention, we place surface complexes to the left of the reac-

tions and the uncomplexed sites to the right. For use with the GWB programs, file

“FeOH.dat” contains the database of surface complexation reactions prepared by
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Dzombak and Morel (1990), and file “FeOH+.dat” is the Dzombak and Morel data-

base extended to include reactions for which the binding constants have been only

estimated.

The surface sites and complexes lie in a layer on the mineral surface which,

because of the charged complexes, has a net electrical charge that can be either

positive or negative. A second layer, the diffuse layer, separates the surface layer

from the bulk fluid. The role of the diffuse layer is to achieve local charge balance

with the surface; hence, its net charge is opposite that of the sorbing surface.

Double layer theory, applied to a mixed ionic solution, does not specify which

ions make up the diffuse layer.

To cast the equations in general terms, we use the label Ap to represent each

type of surface site. In the case of hydrous ferric oxide, there are two such entries,

>(w)FeOH and >(s)FeOH. There are Mp total moles of each site type in the sys-

tem, divided between uncomplexed and complexed sites. This value is the product

of the mass (in moles) of the sorbing mineral and the site density (moles of sites

per mole of mineral) for each site type.

Label Aq represents each possible surface complex, including protonated and

deprotonated sites (e.g.,>.w/FeO� and>.w/FeOHC
2 ) and complexes with cations

and anions (>.w/FeOZnC and >.w/FePO��
4 , for example). The molalities of the

uncomplexed and complexed sites, respectively, are mp and mq .

As can be seen by Reactions 10.1–10.4, the state of the Stern layer depends

on the chemistry of the solution it contacts. As pH decreases, the numbers of

protonated sites (e.g., >.w/FeOHC
2 ) and sites complexed with bivalent anions

(e.g., >.w/FeSO�
4 ) increase. If protonated sites dominate, as is likely under acidic

conditions, the surface has a net positive charge.

Increasing pH causes sites to deprotonate and complex with bivalent cations,

forming species such as>.w/FeO� and>.w/FeOCaC. In contact with an alkaline

fluid, deprotonated sites are likely to dominate the surface, and the net charge will

be negative. The point of zero charge (PZC) is the pH at which positive and negative

complexes balance. The pH at which protonated and deprotonated sites achieve

charge balance is the pristine point of zero charge, or PPZC. When there are no

sorbing cations or anions, the PZC and PPZC are equivalent.

We can determine the surface charge directly from the molalities mq of the

surface complexes. The surface charge density 
 (the charge per unit area of the

sorbing surface, in C m�2) is given as,


 D F nw

Asf

X
q

zqmq ; (10.5)

where F is the Faraday constant (96 485 C mol�1), nw is the mass of solvent water
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Fig. 10.1. Relationship (Eqn. 10.6) between surface charge density � and surface potential
‰ for a sorbing surface in contact with solutions of differing ionic strengths I (molal).

(kg), Asf is the sorbing surface area (m2), and zq is the electrical charge on each

complex.

Since the sorbing surface holds a charge, its electrical potential differs from that

of the solution. The potential difference between surface and fluid is known as the

surface potential ‰ and can be expressed in volts. The product e � ‰ is the work

required to bring an elementary charge e from the bulk solution to the sorbing

surface. According to one of the main results of double layer theory, the surface

potential is related to the surface charge density by,


 D �
8RTK ""o I � 103

�1=2
sinh

�
z˙‰F

2RTK

�
: (10.6)

Here, R is the gas constant (8.3143 J mol�1 K�1 or V C mol�1 K�1), TK is absolute

temperature (K), " is the dielectric constant (78.5 at 25 °C), "o is the permittivity of

free space (8:854� 10�12), I is ionic strength (molal), and z˙ is the charge on the

background solute (assumed here to be unity). Ionic strength in this equation serves

as a proxy for solute concentration, as carried in the original derivation, since the

derivation formally considers a solution of a single symmetrical electrolyte, rather

than a mixed solution. Figure 10.1 shows the relationship graphically.

In order for an ion to sorb from solution, it must first move through the electrical

potential field and then react chemically at the surface. To write a mass balance

equation for sorption reactions (such as Reactions 10.1–10.4), therefore, we must
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account for both the electrostatic and chemical contributions to the free energy

change of reaction.

Moving a positively charged ion toward a positively charged surface, for exam-

ple, requires that work be done on the ion, increasing the system’s free energy. An

ion of the same charge escaping the surface would have the opposite energetic ef-

fect. Electrostatic effects, therefore, are important only for reactions that affect a

net change in surface charge.

As before (see Chapter 3), an equilibrium constant K represents the chemical

effects on free energy. MultiplyingK by the Boltzman factor,

exp

�
��z‰F

RTK

�
(10.7)

gives a complete account of the reaction’s free energy, including electrostatic ef-

fects. Here, �z is the change over the reaction in the charge on surface species.

The mass action equation for Reaction 10.1, then, is

K exp

�
‰ F

RTK

�
D m>.w/FeOH aHC

m
>.w/FeOH

C
2

; (10.8)

since �z for the reaction is �1. Note that activity coefficients (i.e., �>.w/FeOH and

�
>.w/FeOH

C
2

) are not defined for the surface species.

Despite the seeming exactitude of the mathematical development, the modeler

should bear in mind that the double layer model involves uncertainties and data

limitations in addition to those already described (Chapter 2). Perhaps foremost is

the nature of the sorbing material itself. The complexation reactions are studied

in laboratory experiments performed using synthetically precipitated ferric oxide.

This material ripens with time, changing in water content and extent of polymer-

ization. It eventually begins to crystallize to form goethite (FeOOH).

Since laboratories follow different aging procedures, results of their studies

can be difficult to compare. Values reported for surface area and site densities

vary over a relatively broad range (Dzombak and Morel, 1990). It is not clear,

furthermore, how closely the synthetic material resembles sorbing ferric oxides

(e.g., ferrihydrite) encountered in nature.

Nearly all of the data are collected at room temperature, and there is no accepted

method for correcting them to other temperatures. Far fewer data have been col-

lected for sorption of anions than for cations. The theory does not account for the

kinetics of sorption reactions nor the hysteresis commonly observed between the

adsorption and desorption of a strongly bound ion. Finally, much work remains to

be done before the results of laboratory experiments performed on simple mineral–

water systems can be applied to the study of complex soils.
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10.2 Governing equations

Because it is based on chemical reactions, the double layer model can be integrated

into the equations describing the equilibrium state of a multicomponent system, as

developed in Chapter 3. The basis appears as before (Table 3.1),

B D �
Aw; Ai ; Ak; Am; Ap

�
; (10.9)

with the addition of an entry Ap for each type of surface site considered.

Parallel to the reactions to form the secondary species (Eqn. 3.22),

Aj D �wjAw C
X

i

�ijAi C
X

k

�kjAk C
X
m

�mjAm ; (10.10)

there is a reaction to form each surface complex,

Aq D �wqAw C
X

i

�iqAi C
X

k

�kqAk C
X
m

�mqAm C
X
p

�pqAp : (10.11)

Here, �wq , �iq , �kq , �mq , and �pq are coefficients in the reaction, written in terms

of the basis B, for surface complex Aq . We have already shown (Eqn. 3.27) that

the molality of each secondary species is given by a mass action equation:

mj D 1

Kj �j

0
@a�wj

w �
iY
.�imi /

�ij �
kY
a

�kj

k
�

mY
f

�mj
m

1
A : (10.12)

In Reaction 10.11 the change �z in surface charge is �zq because the uncom-

plexed sites Ap carry no charge. With this in mind, we can write a generalized

mass action equation cast in the form of Equation 10.8,

mq D 1

Kq ezqF‰=RTK

0
@a�wq

w �
iY
.�imi /

�iq �
kY
a

�kq

k
�

mY
f

�mq
m �

pY
m

�pq
p

1
A

(10.13)

that sets the molality of each surface complex.
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As before, we write mass balance equations for each basis entry. The equations,

Mw D nw

0
@55:5C

X
j

�wjmj C
X

q

�wqmq

1
A (10.14)

Mi D nw

0
@mi C

X
j

�ijmj C
X

q

�iqmq

1
A (10.15)

Mk D nk C nw

0
@X

j

�kjmj C
X

q

�kqmq

1
A (10.16)

Mm D nw

0
@X

j

�mjmj C
X

q

�mqmq

1
A ; (10.17)

differ from Equations 3.28–3.31 by the inclusion in each of a summation over the

surface complexes. The summations account for the sorbed mass of each compo-

nent. We write an additional mass balance equation,

Mp D nw

 
mp C

X
q

�pqmq

!
(10.18)

for each entry Ap in the basis. This equation constrains, for each site type, the

number of uncomplexed sites and surface complexes to the total number of sites

Mp . Together, these relationships form a set of governing equations describing

multicomponent equilibrium in the presence of a sorbing mineral surface.

10.3 Numerical solution

The procedure for solving the governing equations parallels the technique de-

scribed in Chapter 4, with the added complication of accounting for electrostatic

effects. We begin as before by identifying the nonlinear portion of the problem to

form the reduced basis,

Br D �
Aw ; Ai ; Ap

�
r
: (10.19)

For each basis entry we cast a residual function, which is the difference between the

right and left sides of the mass balance equations (Eqns. 10.14, 10.15, and 10.18),

Rw D nw

0
@55:5C

X
j

�wjmj C
X

q

�wqmq

1
A �Mw (10.20)
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Ri D nw

0
@mi C

X
j

�ijmj C
X

q

�iqmq

1
A �Mi (10.21)

Rp D nw

 
mp C

X
q

�pqmq

!
�Mp : (10.22)

We employ the Newton–Raphson method to iterate toward a set of values for

the unknown variables .nw ; mi ; mp/r for which the residual functions become

vanishingly small.

To do so, we calculate the Jacobian matrix, which is composed of the partial

derivatives of the residual functions with respect to the unknown variables. Noting

the results of differentiating the mass action equations (Eqns. 10.12 and 10.13),

@mj

@nw
D 0

@mj

@mi
D �ij

mj

mi

@mj

@mp
D 0

@mq

@nw
D 0

@mq

@mi
D �iq

mq

mi

@mq

@mp
D �pq

mq

mp

(10.23)

simplifies the derivation. The entries in the Jacobian matrix are,

Jww D @Rw

@nw
D 55:5C

X
j

�wjmj C
X

q

�wqmq (10.24)

Jwi D @Rw

@mi
D nw

mi

0
@X

j

�wj �ijmj C
X

q

�wq�iqmq

1
A (10.25)

Jwp D @Rw

@mp
D nw

mp

X
q

�wq�pqmq (10.26)

Jiw D @Ri

@nw

D mi C
X

j

�ijmj C
X

q

�iqmq (10.27)

Ji i 0 D @Ri

@mi 0
D nwıi i 0 C nw

mi 0

0
@X

j

�ij �i 0jmj C
X

q

�iq�i 0qmq

1
A (10.28)

Jip D @Ri

@mp

D nw

mp

X
q

�iq�pqmq (10.29)
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Jpw D @Rp

@nw
D mp C

X
q

�pqmq (10.30)

Jpi D @Rp

@mi
D nw

mi

 X
q

�pq�iqmq

!
(10.31)

Jpp0 D @Rp

@mp0
D nwıpp0 C nw

mp0

 X
q

�pq�p0qmq

!
: (10.32)

Here, the Kronecker delta function is defined as

ıi i 0 D
(
1 if i D i 0

0 otherwise
and ıpp0 D

(
1 if p D p0

0 otherwise
: (10.33)

At each step in the iteration, we evaluate the residual functions and Jacobian

matrix. We then calculate a correction vector as the solution to the matrix equation,0
@Jww Jwi Jwp

Jiw Ji i 0 Jip

Jpw Jpi Jpp0

1
A

r

0
@�w

�i

�p

1
A

r

D �
0
@Rw

Ri

Rp

1
A

r

: (10.34)

To assure non-negativity of the unknown variables, we determine an underrelax-

ation factor ıUR according to

1

ıUR
D max

 
1; � �w

1=2 n
.q/
w

; � �i

1=2 m
.q/
i

; � �p

1=2 m
.q/
p

!
r

; (10.35)

and then update values from the current .q/ iteration level

0
@nw

mi

mp

1
A

.qC1/

r

D
0
@nw

mi

mp

1
A

.q/

r

C ıUR

0
@�w

�i

�p

1
A

r

; (10.36)

to give those at the new .q C 1/ level.

The iteration step, however, is complicated by the need to account for the elec-

trostatic state of the sorbing surface when setting values for mq . The surface po-

tential ‰ affects the sorption reactions, according to the mass action equation

(Eqn. 10.13). In turn, according to Equation 10.5, the concentrations mq of the

sorbed species control the surface charge and hence (by Eqn. 10.6) potential. Since

the relationships are nonlinear, we must solve numerically (e.g., Westall, 1980) for

a consistent set of values for the potential and species concentrations.

The solution, performed at each step in the Newton–Raphson iteration, is ac-

complished by setting Equation 10.5 equal to Equation 10.6. We write a residual
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function for the surface potential,

R‰ D Asf

F nw

�
8RTK ""o I � 103

�1=2
sinh

�
z˙‰F

2RTK

�
�
X

q

zqmq (10.37)

which we wish to minimize. The function’s derivative with respect to ‰ is

dR‰

d‰
D z˙Asf

2 nwRTK

�
8RTK ""o I � 103

�1=2

cosh

�
z˙‰F

2RTK

�
C F

RTK

X
q

z2
qmq :

(10.38)

Using Newton’s method (described in Chapter 4), we can quickly locate the ap-

propriate surface potential by decreasing the residual function until it approaches

zero.

10.4 Example calculation

As an example of an equilibrium calculation accounting for surface complexation,

we consider the sorption of mercury, lead, and sulfate onto hydrous ferric oxide at

pH 4 and 8. We use ferric hydroxide [Fe.OH/3] precipitate from the LLNL database

to represent in the calculation hydrous ferric oxide (FeOOH � nH2O). Following

Dzombak and Morel (1990), we assume a sorbing surface area of 600 m2 g�1 and

site densities for the weakly and strongly binding sites, respectively, of 0.2 and

0.005 mol (mol FeOOH)�1. We choose a system containing 1 kg of solvent water

(the default) in contact with 1 g of ferric hydroxide.

To set up the calculation in SPECE8, we enter the commands

surface_data = FeOH+.dat

sorbate include

decouple Fe+++

swap Fe(OH)3(ppd) for Fe+++

1 free gram Fe(OH)3(ppd)

First, we read in the dataset of complexation reactions and specify that the initial

mass balance calculations should include the sorbed as well as aqueous species.

We disable the ferric–ferrous redox couple (since we are not interested in ferrous

iron), and specify that the system contains 1 g of sorbing mineral.

We set a dilute NaCl solution containing small concentrations of HgCC, PbCC,

and SO��
4 . For the first calculation, we set pH to 4

(cont’d)

Na+ = 10 mmolal

Cl- = 10 mmolal
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Hg++ = 100 umolal

Pb++ = 100 umolal

SO4-- = 200 umolal

balance on Cl-

pH = 4

go

and run the model. We repeat the calculation assuming a pH of 8

(cont’d)

pH = 8

go

Table 10.1 summarizes the calculation results.

The predicted state of the sorbing surface in the two calculations differs con-

siderably. At pH 4, the surface carries a positive surface charge and potential. The

electrical charge arises largely from the predominance of the protonated surface

species>.w/FeOHC
2 , which occupies about two thirds of the weakly binding sites.

At pH 8, however, the surface charge and potential nearly vanish because of the pre-

dominance of the uncomplexed species >(w)FeOH, which is electrically neutral.

We can quickly verify the calculated charge density using Equation 10.5 and

the data in Table 10.1. At pH 4, we add the products of each species charge and

concentration

mmolal

>.w/FeOHC
2 C1 � 1:23

>.w/FeO� �1 � 0:0035

>.w/FeSO�
4 �1 � 0:117

>.w/FeOHSO��
4 �2 � 0:0825

>.s/FeOHC
2 C1 � 0:0056

>.s/FeOPbC C1 � 0:0392

0:989

and then calculate the charge density as,

.96 485 C mol�1/ � .1 kg H2O/ � .0:989 � 10�3 molal/=

.600 m2/ D 0:16 C m�2 ;
(10.39)

or 16�C cm�2. Taking ionic strength as 0.01 molal, we can read the corresponding

surface potential from Figure 10.1. We can verify the results at pH 8 in a similar

fashion.

According to the calculations, the surface’s ability to sorb cations and anions

differs markedly between pH 4 and 8, reflecting both electrostatic influences and

mass action. Nearly all of the sulfate is sorbed at pH 4, whereas most of the lead and
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Table 10.1. Calculated examples of surface complexation

pH = 4 pH = 8

Surface charge (�C cm�2) 16:0 0:4

Surface potential (mV) 168 17:1

SITE OCCUPANCY

Weak sites mmolal % of sites mmolal % of sites

>.w/FeOH
C
2 1:23 65:9 0:129 6:92

>.w/FeOH 0:434 23:2 1:29 69:0

>.w/FeO� 0:350 � 10�2 0:19 0:295 15:8

>.w/FeOHgC 0:415 � 10�6 0:000 0:0984 5:26

>.w/FeOPbC 0:386 � 10�3 0:02 0:0534 2:85

>.w/FeSO�
4 0:117 6:27 0:189 � 10�3 0:010

>.w/FeOHSO��
4 0:0825 4:41 0:377 � 10�2 0:20

1:871 100 1:871 100

Strong sites mmolal % of sites mmolal % of sites

>.s/FeOH
C
2 0:00559 12:0 0:505 � 10�5 0:01

>.s/FeOH 0:00197 4:21 0:504 � 10�4 0:11

>.s/FeO� 0:159 � 10�4 0:03 0:115 � 10�4 0:03

>.s/FeOHgC 0:385 � 10�7 0:000 0:784 � 10�4 0:17

>.s/FeOPbC 0:0392 83:8 0:0466 99:69

0:0468 100 0:0468 100

SORBED FRACTIONS

% sorbed % sorbed

HgCC 0:000 98:45

PbCC 39:59 100

SO��
4 99:95 1:98

all the mercury remain in solution; the opposite holds at pH 8. At pH 4, the surface

carries a positive charge that attracts sulfate ions but repels lead and mercury ions.

The electrostatic effect is almost nil at pH 8, however, where the surface charge
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approaches zero. As well, the complexation reactions,

>.w/FeSO�
4 C H2O � >.w/FeOH C HC C SO��

4 (10.40)

>.s/FeOPbC C HC
� >.s/FeOH C PbCC (10.41)

>.w/FeOHgC C HC
� >.w/FeOH C HgCC ; (10.42)

conspire by mass action to favor complexing of sulfate at low pH and lead and

mercury at high pH. The reaction to form the surface complex >.w/FeOHSO��
4 ,

>.w/FeOHSO��
4 � >.w/FeOH C SO��

4 (10.43)

has no dependence on pH. Electrostatic forces and the variation in the amount of

SO��
4 in solution [depending on the amount sorbed as >.w/FeSO�

4 ] explain the

variation in abundance of this species.
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Automatic reaction balancing

Conveniently, perhaps even miraculously, the equations developed in Chapter 5 to

accomplish basis swaps can be used to balance chemical reactions automatically.

Once the equations have been coded into a computer program, there is no need to

balance reactions, compute equilibrium constants, or even determine equilibrium

equations by hand. Instead, these procedures can be performed quickly and reliably

on a small computer.

To balance a reaction, we first choose a species to appear on the reaction’s

left side, and express that species’ composition in terms of a basis B. The basis

might be a list of the elements in the species’ stoichiometry, or an arbitrary list of

species that combine to form the left-side species. Then we form a second basis

B0 composed of species that we want to appear on the reaction’s right side. To

balance the reaction, we calculate the transformation matrix relating basis B0 to B,

following the procedures in Chapter 5. The transformation matrix, in turn, gives

the balanced reaction and its equilibrium constant.

11.1 Calculation procedure

Two methods of balancing reactions are of interest. We can balance reactions in

terms of the stoichiometries of the species considered. In this case, the existing

basis B is a list of elements and, if charged species are involved, the electron

e�. Alternatively, we may use a dataset of balanced reactions, such as the LLNL

database. Basis B, in this case, is the one used in the database to write reactions.

We will consider each possibility in turn.

11.1.1 Using species’ stoichiometries

A straightforward way to balance reactions is to use as the initial basis the stoi-

chiometries of the species involved. If the species’ free energies of formation are

169
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known, the reaction’s equilibrium constant can be determined as well. In the stoi-

chiometric approach, basis B is the list of elements that will appear in the reaction,

plus the electron if needed. We write swap reactions and calculate a transformation

matrix as described in Section 5.1. The equations in Sections 5.2 and 5.3 give the

balanced reaction and associated equilibrium constant.

The process is best shown by example. Suppose that we wish to balance the

reaction by which calcium clinoptilolite (CaAl2Si10O24 � 8H2O), a zeolite mineral,

reacts to form muscovite [KAl3Si3O10.OH/2] and quartz (SiO2). We choose to

write the reaction in terms of the aqueous species CaCC, KC, and OH�.

Reserving clinoptilolite for the reaction’s left side, we write the stoichiometry of

each remaining species in matrix form,

0
BBBBBBBBB@

H2O

CaCC

KC

Muscovite

Quartz

OH�

e�

1
CCCCCCCCCA

D

0
BBBBBBBBB@

2 1 0 0 0 0 0

0 0 1 0 0 0 �2
0 0 0 1 0 0 �1
2 12 0 1 3 3 0

0 2 0 0 0 1 0

1 1 0 0 0 0 1

0 0 0 0 0 0 1

1
CCCCCCCCCA

0
BBBBBBBBB@

H

O

Ca

K

Al

Si

e�

1
CCCCCCCCCA
: (11.1)

Notice that we have added the electron to B and B0 in order to account for the

electrical charge on the aqueous species. This incorporation provides a convenient

check: the electron’s reaction coefficient must work out to zero in order for the

reaction to be charge balanced.

We reverse the equation by computing the inverse to the coefficient matrix,

giving,

0
BBBBBBBBB@

H

O

Ca

K

Al

Si

e�

1
CCCCCCCCCA

D

0
BBBBBBBBB@

1 0 0 0 0 �1 1

�1 0 0 0 0 2 �2
0 1 0 0 0 0 2

0 0 1 0 0 0 1
4=3 0 �1=3 1=3 �1 �10=3 3

2 0 0 0 1 �4 4

0 0 0 0 0 0 1

1
CCCCCCCCCA

0
BBBBBBBBB@

H2O

CaCC

KC

Muscovite

Quartz

OH�

e�

1
CCCCCCCCCA
: (11.2)

The inverted matrix is the transformation matrix .ˇ/�1.

Now, we write the stoichiometry of the clinoptilolite and substitute the result
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above, giving the balanced reaction,

Ca-clinoptilolite D .16 32 1 0 2 10 0/

0
BBBBBBBBB@

H

O

Ca

K

Al

Si

e�

1
CCCCCCCCCA

D .16 32 1 0 2 10 0/�0
BBBBBBBBB@

1 0 0 0 0 �1 1

�1 0 0 0 0 2 �2
0 1 0 0 0 0 2

0 0 1 0 0 0 1
4=3 0 �1=3 1=3 �1 �10=3 3

2 0 0 0 1 �4 4

0 0 0 0 0 0 1

1
CCCCCCCCCA

0
BBBBBBBBB@

H2O

CaCC

KC

Muscovite

Quartz

OH�

e�

1
CCCCCCCCCA

D .20=3 1 � 2=3 2=3 8 4=3 0/

0
BBBBBBBBB@

H2O

CaCC

KC

Muscovite

Quartz

OH�

e�

1
CCCCCCCCCA
:

(11.3)

More simply,

CaAl2Si10O24 � 8 H2O

Ca-clinoptilolite

C 2=3 KC
� 20=3 H2O C CaCC

C2=3 KAl3Si3O10.OH/2
muscovite

C 8 SiO2

quartz

C 4=3 OH� ;

(11.4)

which is the result we seek.

To calculate the reaction’s equilibrium constant, we note that the free energy

change �Gsw of each of the swap reactions in Equation 11.1 is the negative free

energy of formation from the elements of the corresponding species

�Go
sw D ��Go

f : (11.5)

The sign on the reaction free energies is reversed because the species appear on

the left side of Equation 11.1. In other words, we are decomposing the species
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rather than forming them from the elements. We determine �Go for the reaction

by adding the values for �Go
sw, just as we added logKs in Section 2.1,

�Go D ��Go
f .Ca-clinopt/ C

.20=3 1 � 2=3 2=3 8 4=3 0/

0
BBBBBBBBB@

�Go
f .H2O/

�Go
f .CaCC/

�Go
f .K

C/

�Go
f .Musc/

�Go
f .Qtz/

�Go
f .OH�/

�Go
f .e

�/

1
CCCCCCCCCA
:

(11.6)

Substituting values of �Go
f taken (in kJ mol�1) from Robie et al. (1979) and the

LLNL database, the equation,

�Go D 12 764:67C .20=3 1 � 2=3 2=3 8 4=3 0/

0
BBBBBBBBB@

�237:14
�553:54
�282:49

�5590:76
�856:29
�157:29

0

1
CCCCCCCCCA

(11.7)

predicts a free energy change of 31.32 kJ mol�1. The value can be expressed as an

equilibrium constant using the relation,

logK D � �Go

2:303 RTK
; (11.8)

which gives a value for logK of �5:48.

11.1.2 Using a reaction database

A reaction dataset, such as the LLNL database, provides an alternative method

for balancing reactions. Such a database contains reactions to form a number of

aqueous species, minerals, and gases, together with the corresponding equilibrium

constants. Reactions are written in terms of a generic basis set B, which probably

does not correspond to set B0, our choice of species to appear in the reaction.

To balance a reaction, we write swap reactions relating B0 to B. Returning to

the previous example, we wish to compute the reaction by which Ca-clinoptilolite

transforms to muscovite and quartz. Reserving the clinoptilolite for the reaction’s

left side, we write the swap reactions for the basis transformation in matrix form.
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The reactions and associated equilibrium constants at 25 °C are:

0
BBBBBBB@

H2O

CaCC

KC

Muscovite

Quartz

OH�

1
CCCCCCCA

D

0
BBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

6 0 1 3 3 �10
0 0 0 0 1 0

1 0 0 0 0 �1

1
CCCCCCCA

0
BBBBBBB@

H2O

CaCC

KC

AlCCC

SiO2(aq)

HC

1
CCCCCCCA

logKsw D

0
BBBBBBB@

0

0

0

14:56

�4:00
13:99

1
CCCCCCCA
:

(11.9)

We reverse the equation by inverting the coefficient matrix to give

0
BBBBBBB@

H2O

CaCC

KC

AlCCC

SiO2(aq)

HC

1
CCCCCCCA

D

0
BBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0
4=3 0 �1=3 1=3 �1 �10=3

0 0 0 0 1 0

1 0 0 0 0 �1

1
CCCCCCCA

0
BBBBBBB@

H2O

CaCC

KC

Muscovite

Quartz

OH�

1
CCCCCCCA
: (11.10)

The inverted matrix is the transformation matrix for the basis we have chosen.

The reaction in the LLNL database for Ca-clinoptilolite,

Ca-clinoptilolite D .12 1 0 2 10 � 8/

0
BBBBBBB@

H2O

CaCC

KC

AlCCC

SiO2(aq)

HC

1
CCCCCCCA

(11.11)

has a logK at 25 °C of �9:12. Substituting the transformation matrix and multi-
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plying through gives,

Ca-clinoptilolite D .12 1 0 2 10 � 8/�0
BBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0
4=3 0 �1=3 1=3 �1 �10=3

0 0 0 0 1 0

1 0 0 0 0 �1

1
CCCCCCCA

0
BBBBBBB@

H2O

CaCC

KC

Muscovite

Quartz

OH�

1
CCCCCCCA

D .20=3 1 � 2=3 2=3 8 4=3/

0
BBBBBBB@

H2O

CaCC

KC

AlCCC

SiO2(aq)

HC

1
CCCCCCCA
;

(11.12)

or, as before,

CaAl2Si10O24 � 8 H2O

Ca-clinoptilolite

C 2=3 KC � 20=3 H2O C CaCC

C2=3 KAl3Si3O10.OH/2
muscovite

C 8 SiO2

quartz

C 4=3 OH� :

(11.13)

The formula in Section 5.3 gives the reaction’s equilibrium constant:

logK D �9:12 � .20=3 1 � 2=3 2=3 8 4=3/

0
BBBBBBB@

0

0

0

14:56

�4:00
13:99

1
CCCCCCCA
; (11.14)

or logK D �5:48, as determined in the previous section.

The program RXN performs such calculations automatically. To follow the pro-

cedure above, we enter the commands

react Clinoptil-Ca

swap Muscovite for Al+++

swap Quartz for SiO2(aq)

swap OH- for H+

T = 25 C

go

giving the same result without hand calculation.
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11.2 Dissolution of pyrite

To further illustrate how the basis-swapping algorithm can be used to balance

reactions, we consider several ways to represent the dissolution reaction of pyrite,

FeS2. Using the program RXN, we retrieve the reaction for pyrite as written in the

LLNL database

react Pyrite

go

producing the result,

FeS2

pyrite

C H2O C 7=2 O2(aq) � FeCC C 2 SO��
4 C 2 HC : (11.15)

By this reaction, sulfur from the pyrite oxidizes to form sulfate ions, liberating

protons that acidify the solution.

The above reaction represents, in a simplified way, the origin of acid mine

drainage. Streambeds in areas of acid drainage characteristically become coated

with an orange layer of ferric precipitate. We can write a reaction representing the

overall process by swapping ferric hydroxide in place of the ferrous ion:

(cont’d)

swap Fe(OH)3(ppd) for Fe++

go

The resulting reaction,

FeS2

pyrite

C 7=2 H2O C 15=4 O2(aq) � Fe.OH/3.ppd/

ferric hydroxide

C 2 SO��
4 C 4 HC

(11.16)

consumes more oxygen than the previous result, because not only sulfur but iron

oxidizes.

Pyrite can dissolve into reducing as well as oxidizing solutions. To find the

reaction by which the mineral dissolves to form H2S, we swap this species into

the basis in place of the sulfate ion

(cont’d)

unswap Fe++

swap H2S(aq) for SO4--

go

The result,

FeS2

pyrite

C H2O C 2 HC � FeCC C 2H2S(aq) C 1=2 O2(aq) (11.17)

differs from the previous reactions in that it consumes protons and produces oxy-

gen.



176 Automatic reaction balancing

Is there a reaction by which pyrite can dissolve without changing the overall

oxidation state of its sulfur? To see, we return the sulfate ion to the basis and swap

H2S for dissolved oxygen:

(cont’d)

unswap SO4--

swap H2S(aq) for O2(aq)

go

The reaction written in terms of the new basis is,

FeS2

pyrite

C H2O C 3=2 HC
� FeCC C 1=4 SO��

4 C 7=4 H2S(aq) ; (11.18)

which neither consumes nor produces oxygen. Calculating the transformation ma-

trices in these examples provides an interesting exercise, which is left to the reader.

11.3 Equilibrium equations

A reaction’s equilibrium equation is given directly from the form of the reaction

and the value of the equilibrium constant. Hence, it is an easy matter to extend a

reaction balancing program to report equilibrium lines. For example, the reaction,

Fe2O3

hematite

C 4 HC
� 2 FeCC C 2 H2O C 1=2 O2(aq) (11.19)

has an equilibrium constant at 25 °C of 10�16:9. From the mass action equation

and definition of pH, the general equilibrium line is,

logK D 4 pH C 2 logaFeCC C 2 logaH2O C 1=2 logaO2(aq) ; (11.20)

since the activity of hematite is one. The specific equilibrium line at 25 °C for

aFeCC D 10�10 and aH2O D 1 is,

logaO2(aq) D 6:17 � 8 pH : (11.21)

To use RXN to calculate the equilibrium lines above in general and specific

forms, we type

react Hematite

pH = ?

long

go

T = 25

log a Fe++ = -10

a H2O = 1

go
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The long command tells the program to show the reaction’s equilibrium constant

versus temperature and calculate its equilibrium equation; pH = ? causes the pro-

gram to render the equation in terms of pH instead of log aHC . To find the equilib-

rium lines written in terms of pe and Eh, we type

(cont’d)

swap e- for O2(aq)

pe = ?

go

Eh = ?

go

giving the results,

pe D 23:03 � 3 pH (11.22)

and

Eh D 1:363� 0:178 pH : (11.23)

11.3.1 Equilibrium activity ratio

Many mineralogic reactions involve exchange of cations or anions. Hence,

geochemists commonly need to determine equilibrium lines in terms of activity

ratios. Consider, for example, the reaction at 25 °C between the clay kaolinite

[Al2Si2O5.OH/4] and the mica muscovite. The RXN commands

react Muscovite

swap Kaolinite for Al+++

T = 25

go

give the reaction,

KAl3Si3O10.OH/2
muscovite

C 1:5 H2O C HC
� KC C 1:5 Al2Si2O5.OH/4

kaolinite

(11.24)

whose logK is 3.42. To calculate the equilibrium ratio aKC=aHC , assuming unit

water activity, we type

(cont’d)

swap K+/H+ for H+

a H2O = 1

long

go

giving the result aKC=aHC D 103:42.
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In our second example, we calculate the same ratio for the reaction between mus-

covite and potassium feldspar (KAlSi3O8; “maximum microcline” in the database)

in the presence of quartz:

KC C 1=2 KAl3Si3O10.OH/2
muscovite

C 3 SiO2

quartz

� 3=2 KAlSi3O8

microcline

C HC : (11.25)

The commands

T = 25

react "Maximum Microcline"

swap Muscovite for Al+++

swap Quartz for SiO2(aq)

swap K+/H+ for H+

long

factor 3/2

go

give the result aKC=aHC D 104:84 . For convenience, the factor command above

applies a multiplier of 1.5 to the reaction coefficients. We can quickly recalculate

the equilibrium activity ratio for reaction in the presence of the silica polymorphs

tridymite and amorphous silica:

(cont’d)

swap Tridymite for SiO2(aq)

go

swap Amrph^silica for SiO2(aq)

go

The resulting aKC=aHC values, respectively, are 104:34 and 100:98.

As a final example, we balance the reaction between the zeolite calcium clinop-

tilolite and the mica prehnite [Ca2Al2Si3O10.OH/2] in the presence of quartz, and

calculate at 200 °C the equilibrium activity ratio aCaCC=a2
HC . The commands

react Clinoptil-Ca

swap Prehnite for Al+++

swap Quartz for SiO2(aq)

T = 200

go

give the reaction,

CaAl2Si10O24 � 8 H2O

Ca-clinoptilolite

C CaCC
� 6 H2O C

Ca2Al2Si3O10.OH/2
prehnite

C7 SiO2

quartz

C 2 HC ;

(11.26)

which has a logK of �10:23. To calculate the activity ratio, we type
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swap Ca++/H+^2 for Ca++

a H2O = 1

long

go

which gives, as expected, the value calculated for logK.

11.3.2 Equilibrium temperature

When the activity of each species in a reaction is known, we can determine the

temperature (or temperatures) at which the reaction is in equilibrium. As an exam-

ple, we calculate the temperature at which gypsum (CaSO4 � 2 H2O) dehydrates to

form anhydrite (CaSO4). The RXN commands

react Gypsum

swap Anhydrite for Ca++

long

go

give the reaction,

CaSO4 � 2 H2O

gypsum

� CaSO4

anhydrite

C 2 H2O (11.27)

and equilibrium equation,

logK D 2 logaH2O : (11.28)

The equilibrium temperature for any water activity is the temperature at which

logK satisfies this equality. To find this value when the activity of water is one, we

type

(cont’d)

a H2O = 1

go

The resulting equilibrium temperature, 43.7 °C, is the temperature at which the

logK is zero. For a water activity of 0.7, the equilibrium temperature drops to

11.8 °C. Typing

(cont’d)

a H2O = ?

T = 25 C

we find that the two minerals are in equilibrium at 25 °C when the water activity is

0.815.
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Uniqueness

A practical question that arises in quantitative modeling is whether the results of

a modeling study are unique. In other words, is it possible to arrive at results that

differ, at least slightly, from the original ones but nonetheless satisfy the governing

equations and honor the input constraints?

In the broadest sense, of course, no model is unique (see, for example, Oreskes

et al., 1994). A geochemical modeler could conceptualize the problem differently,

choose a different compilation of thermodynamic data, include more or fewer

species and minerals in the calculation, or employ a different method of estimating

activity coefficients. The modeler might allow a mineral to form at equilibrium

with the fluid or require it to precipitate according to any of a number of published

kinetic rate laws and rate constants, and so on. Since a model is a simplified version

of reality that is useful as a tool (Chapter 2), it follows that there is no “correct”

model, only a model that is most useful for a given purpose.

A more precise question (Bethke, 1992) is the subject of this chapter: in geo-

chemical modeling is there but a single root to the set of governing equations that

honors a given set of input constraints? We might call such a property mathematical

uniqueness, to differentiate it from the broader aspects of uniqueness. The property

of mathematical uniqueness is important because once the software has discovered

a root to a problem, the modeler may abandon any search for further solutions.

There is no concern that the choice of a starting point for iteration has affected

the answer. In the absence of a demonstration of uniqueness, on the other hand,

the modeler cannot be completely certain that another solution, perhaps a more

realistic or useful one, remains undiscovered.

Geochemists, following early theoretical work in other fields, have long con-

sidered the multicomponent equilibrium problem (as defined in Chapter 3) to be

mathematically unique. In fact, however, this assumption is not correct. Although

relatively uncommon, there are examples of geochemical models in which more

than one root of the governing equations satisfy the modeling constraints equally
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well. In this chapter, we consider the question of uniqueness and pose three simple

problems in geochemical modeling that have nonunique solutions.

12.1 The question of uniqueness

As noted in Chapter 1, chemical modeling developed from efforts to calculate the

thrust of a rocket fuel from its bulk composition. Mathematicians of the era (for

example, Brinkley, 1947; White et al., 1958; Boynton, 1960) analyzed the multi-

component equilibrium problem, including the uniqueness of its roots, in detail.

Warga (1963) considered the problem of a thermodynamically ideal solution of

known bulk composition. He showed that the free energy surface representing the

sum of the free energies of individual species, when traced along trajectories satis-

fying mass balance, is concave upward. The surface, hence, has a single minimum

point and therefore a unique equilibrium state. Van Zeggeren and Storey (1970, pp.

31–32) cite several other studies that offer mathematical proofs of uniqueness.

Geochemists have generally believed that the uniqueness proofs hold in their

field. Their proofs, however, are limited in two regards: they consider thermody-

namically ideal solutions and assume that, as in the rocket fuel problem, the cal-

culation is posed in terms of mass balance constraints. The first limitation is not

known to be a serious problem in modeling speciation in aqueous fluids. The sec-

ond limitation is important, however, because in geochemical modeling the bulk

composition of the modeled system is seldom known completely. For this reason,

geochemists generally construct models using a combination of mass balance and

mass action constraints (see Chapter 4).

Mass balance constraints are specifications, when solving the governing equa-

tions (Eqns. 3.32–3.35), of the mole numbersMw ,Mi , andMk of the components

in the basis. Setting the bulk sodium content of a fluid, for example, represents a

mass balance constraint. Mass action constraints include setting a species’ molal-

ity mi or activity ai , the free mass nk of a mineral, or the fugacity fm of a gas.

In setting pH, the volume of quartz in a system, or the CO2 fugacity, the modeler

poses a mass action constraint. By doing so, he violates an underlying assumption

of the uniqueness proofs and opens the possibility of mathematical nonuniqueness.

12.2 Examples of nonunique solutions

To demonstrate nonuniqueness, we pose here three problems in geochemical mod-

eling that each have two physically realistic solutions. In the first example, based

on data from an aluminum solubility experiment, we assume equilibrium with an

alumina mineral to fix the pH of a fluid of otherwise known composition. Setting

pH by mineral equilibrium is a widespread practice in modeling the chemistry of



12.2 Examples of nonunique solutions 183

deep groundwaters, and of fluids sampled from hydrothermal experiments, because

it is difficult to directly measure the in situ pH of hot fluids. In this case, however,

there are two possible solutions because many aluminous minerals, including hy-

droxides, clays, and micas, are amphoteric and hence equally soluble at low and

high pH.

In SPECE8, we prepare our calculation by swapping boehmite (AlOOH) for HC,

swap Boehmite for H+

1 free cm3 Boehmite

so the equilibrium with this mineral controls pH according to reactions such as,

AlOOH

boehmite

C 2 HC
� H2O C AlOHCC ; (12.1)

AlOOH

boehmite

C HC
� Al.OH/C2 ; (12.2)

or

AlOOH

boehmite

C 2 H2O � Al.OH/�4 C HC ; (12.3)

depending on the predominant aluminum species in solution. In general, species

AlOHCC and Al.OH/C2 predominate under acidic conditions, whereas the hydroxy

species Al.OH/�4 dominates under alkaline conditions (Fig. 12.1).

We assume a 0.1 molal KCl solution containing hypothetical amounts of silica,

aluminum, and carbonate. We set temperature to 200 °C and run the calculation

(cont’d)

K+ = 100 mmolal

Cl- = 100 mmolal

SiO2(aq) = 3 mmolal

Al+++ = 10 umolal

HCO3- = 60 umolal

T = 200

print species = long

go

For simplicity, we do not allow supersaturated minerals to precipitate. The result

is an acidic fluid in which AlOHCC and Al.OH/C2 predominate among aluminum

species.

We repeat the calculation, this time swapping Al.OH/�4 into the basis to repre-

sent dissolved aluminum.

(cont’d)

swap Al(OH)4- for Al+++

go
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Fig. 12.1. Solubility diagram for aluminum species in aqueous solution as a function of pH
at 200 °C in the presence of boehmite (solid lines) and kaolinite plus quartz (dashed lines).
Aluminum is soluble at a specific activity (horizontal line) either under acidic conditions

as species Al.OH/C2 , AlOHCC, or AlCCC (e.g., point A), or under alkaline conditions as
Al.OH/�4 (point B).

This swap favors iteration toward a second root at alkaline pH where Al.OH/�4 is

the predominant aluminum species in solution.

The chemistries corresponding to the two roots can be summarized as

Root A Root B

pH 3:1 6:3

total AlCCC (molal) 10:0 � 10�6 10:0 � 10�6

free AlOHCC 4:3 � 10�6 1:5 � 10�12

free Al.OH/C2 3:0 � 10�6 1:8 � 10�9

free Al.OH/�4 5:5 � 10�9 9:2 � 10�6
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Repeating the calculations using minerals such as kaolinite [Al2Si2O5.OH/4] or

muscovite [KAl3Si3O10.OH/2] to fix pH also produces nonunique results.

As a second example, we constrain a fluid’s oxidation state by assuming equi-

librium with pyrite (FeS2). As before, direct information on this variable can be

difficult to obtain, so it is not uncommon for modelers to use mineral equilibrium

to fix a fluid’s redox state. The choice of pyrite to buffer oxidation state, however,

is perilous because pyrite sulfur, which is in the S1� oxidation state, may dissolve

by oxidation to sulfate (S6C),

FeS2

pyrite

C H2O C 7=2 O2(g) � FeCC C 2 SO��
4 C 2HC ; (12.4)

or by reduction to H2S (S2�),

FeS2

pyrite

C H2O C 2 HC
� FeCC C 2 H2S(aq) C 1=2 O2(g) : (12.5)

As such, there are two redox states that satisfy the assumption of equilibrium with

pyrite (Fig. 12.2).

In our example, we know the pH and iron and sulfur contents of a 1 molal NaCl

solution at 100 °C. In SPECE8, we swap pyrite into the basis in place of O2(aq) and

run the model

swap Pyrite for O2(aq)

1 free cm3 Pyrite

Na+ = 1 molal

Cl- = 1 molal

Fe++ = 10 mmolal

SO4-- = 10 mmolal

pH = 4

T = 100

print species = long

go

In this case, the program converges to a relatively oxidized solution in which sulfur

speciation is dominated by sulfate species.

Swapping H2S(aq) into the basis in the place of SO��
4 , on the other hand

(cont’d)

swap H2S(aq) for SO4--

go
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Fig. 12.2. Redox–pH diagram for the Fe–S–H2O system at 100 °C, showing speciation of
sulfur (dashed line) and the stability fields of iron minerals (solid lines). Diagram is drawn
assuming sulfur and iron species activities, respectively, of 10�3 and 10�4. Broken line at
bottom of diagram is the water stability limit at 100 atm total pressure. At pH 4, there are
two oxidation states (points A and B) in equilibrium with pyrite under these conditions.

changes the starting point of the iteration and causes the program to converge to a

more reduced solution nearly devoid of sulfate species. The two roots are

Root A Root B

pH 4:0 4:0

logfO2
�50 �67

total FeCC (molal) 0:010 0:010

total S 0:010 0:010

†SO��
4 0:010 5:0 � 10�34

†H2S(aq) 3:3 � 10�7 0:010
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Here, the notations †SO��
4 and †H2S(aq) refer, respectively, to the sum of the

molalities of the sulfate and sulfide sulfur species in solution.

Analogous examples of nonuniqueness can be constructed using any mineral or

gas of intermediate oxidation state. Buffering the fugacity of N2(g) or SO2(g), for

example, would be a poor choice for constraining oxidation state, since the gases

can either oxidize to NO�
3 and SO��

4 , respectively, or reduce to NH4 and H2S(aq)

species.

As a final example, we consider a fluid of known fluoride concentration whose

calcium content is set by equilibrium with fluorite (CaF2). The speciation of flu-

orine provides for two solutions to this problem. In dilute solutions, in which the

free ion F� dominates, the reaction,

CaF2

fluorite

� CaCC C 2 F� (12.6)

requires that calcium content vary inversely with fluorine concentration. By this

reaction, increasing the fluorine concentration leads to solutions that are less calcic,

and vice versa.

As calcium content increases, especially at elevated temperature, the CaFC

ion pair becomes predominant. The CaFC activity exceeds that of F� at 200 °C

whenever the activity of CaCC is greater than about 10�3; at 300 °C, the ion pair is

favored at CaCC activities as small as 10�4:8. Where CaFC dominates, the reaction

CaF2

fluorite

C CaCC
� 2 CaFC (12.7)

controls fluorite solubility. This reaction, in contrast to this previous one, requires

that fluids become proportionally richer in calcium as their fluorine contents in-

crease.

As shown in Figure 12.3, fluids of identical fluorine content but two distinct

CaCC activities can exist in equilibrium with fluorite. At 200 °C, setting the activity

of dissolved fluorine to 10�3:5 allows two equilibrium activities of CaCC: 10�4:3

and 10�1:6 (points A and B); the corresponding activities at 300 °C are 10�6:5 and

10�3:1.

To use REACT to discover the root at low CaCC concentration, we swap fluorite

for CaCC and arbitrarily set a 1 molal NaCl solution of pH 5 that contains slightly

less than 1 mmolal fluorine. We set temperature to 200 °C

swap Fluorite for Ca++

1 free cm3 Fluorite

F- = 0.8 mmolal

Na+ = 1 molal
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Fig. 12.3. Solubility diagram for fluorite as a function of calcium ion activity at 200 °C
(solid) and 300 °C (dashed lines). Fluorite is soluble at a specific activity (horizontal line)
either as F� at small CaCC activity (point A) or as CaFC at high CaCC activity (point B).

Cl- = 1 molal

pH = 5

T = 200

print species = long

go

and run the model.

It is difficult to persuade REACT to locate the high CaCC root directly. By

experimentation we learn that if we gradually add 1.0165 moles of CaCl2 to the

fluid, the fluid initially becomes supersaturated with respect to fluorite but then

returns to equilibrium.

(cont’d)

react 1 mol of Ca++

react 2 mol of Cl-

reactants times 1.0165

dump

fix pH

precip = off

go

Here, we set the dump option to remove excess fluorite from the system before



12.3 Coping with nonuniqueness 189

beginning the path and fix pH to a constant value to prevent it from wandering as

activity coefficients change with ionic strength.

The end point of the reaction path is the second root to the problem. At 300 °C,

we find by trial and error that we need to add 0:089 92moles of CaCl2 to reach the

second root. The differences among the roots are summarized

200 °C 300 °C

Root A Root B Root A Root B

pH 5:0 5:0 5:0 5:0

CaCC (molal) 0:0026 1:0 0:00013 0:090

F� 0:80 � 10�3 0:80 � 10�3 0:80 � 10�3 0:80 � 10�3

free F� 0:34 � 10�3 0:021 � 10�3 0:73 � 10�3 0:027 � 10�3

free CaFC 0:050 � 10�3 0:75 � 10�3 0:027 � 10�3 0:77 � 10�3

I (molal) 0:91 2:7 1:0 1:1

where I is ionic strength.

12.3 Coping with nonuniqueness

The examples in the previous section demonstrate that nonunique solutions to the

equilibrium problem can occur when the modeler constrains the calculation by as-

suming equilibrium between the fluid and a mineral or gas phase. In each example,

the nonuniqueness arises from the nature of the multicomponent equilibrium prob-

lem and the variety of species distributions that can exist in an aqueous fluid. When

more than one root exists, the iteration method and its starting point control which

root the software locates.

In each of the cases, the dual roots differ from each other in terms of pH, sulfide

content, or ionic strength, so that in a modeling study the “correct” root could

readily be selected. The danger of nonuniqueness is that a modeler, having reached

an inappropriate root, might not realize that a separate, more meaningful root to

the problem exists.

Unfortunately, no software techniques exist currently to automatically search for

additional roots. Instead, modelers must rely on their understanding of geochem-

istry to demonstrate uniqueness to their satisfaction. Activity–activity diagrams

such as those presented in Figures 12.1–12.3 are the most useful tools for identify-

ing additional roots.
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Reaction processes





13

Mass transfer

In previous chapters we have discussed the nature of the equilibrium state in geo-

chemical systems: how we can define it mathematically, what numerical methods

we can use to solve for it, and what it means conceptually. With this chapter we

begin to consider questions of process rather than state. How does a fluid respond

to changes in composition as minerals dissolve into it, or as it mixes with other flu-

ids? How does a fluid evolve in response to changing temperature or variations in

the fugacity of a coexisting gas? In short, we begin to consider reaction modeling.

In this chapter we consider how to construct reactions paths that account for the

effects of simple reactants, a name given to reactants that are added to or removed

from a system at constant rates. We take on other types of mass transfer in later

chapters. Chapter 14 treats the mass transfer implicit in setting a species’ activity

or gas’ fugacity over a reaction path. In Chapter 16 we develop reaction models

in which the rates of mineral precipitation and dissolution are governed by kinetic

rate laws.

13.1 Simple reactants

Simple reactants are those added to (or removed from) the system at constant rates

over the reaction path. As noted in Chapter 2, we commonly refer to such a path

as a titration model, because at each step in the process, much like in a laboratory

titration, the model adds an aliquot of reactant mass to the system. Each reactant

Ar is added at a rate nr , expressed in moles per unit reaction progress, �. Negative

values of nr , of course, describe the removal rather than the addition of the reactant.

Since � is unitless and varies from zero at the start of the path to one at the end, we

can just as well think of nr as the number of moles of the reactant to be added over

the reaction path.

A simple reactant may be an aqueous species (including water), a mineral, a gas,

or any entity of known composition. The only requirement is that we be able to
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form it by a reaction

Ar � �wrAw C
X

i

�irAi C
X

k

�krAk C
X
m

�mrAm (13.1)

among the basis entries. Significantly, we need not know the logK for this re-

action; only the reaction coefficients (�wr , �ir , and so on) come into play in the

calculation. We can therefore employ a substance as a reactant, even if we do not

know its stability.

The calculation procedure for tracing a titration path is straightforward. We be-

gin by calculating the equilibrium state of the initial system, as described in Chap-

ter 4. Once we know the initial equilibrium state, we substitute the resulting bulk

compositions (Mw , Mi , Mk , and Mm) for any free constraints. If we specified

pH to set up the calculation, for example, we now take the value of MHC to con-

strain the governing equation for the HC component, leaving mHC as an unknown

variable. Similarly, we take as a constraint the mole number Mk for each mineral

component, replacing the mineral’s free mass nk . The exceptions to this process

are species set at fixed or sliding activity and gases of fixed and sliding fugacity, as

described in the next chapter; for these exceptions, we retain the free constraints.

Once a substitution of constraints is accomplished, the calculation consists of

incrementally changing the system’s bulk composition as a function of reaction

progress and, after each increment, recalculating the equilibrium state. The bulk

composition is given from the component masses (M o
w , M o

i
, and M o

k
) present at

� D 0, the reaction rates nr , and the reactants’ stoichiometric coefficients (�wr ,

and so on, from Reaction 13.1), according to

Mw.�/ D M o
w C �

X
r

�wrnr (13.2)

Mi.�/ D M o
i C �

X
r

�irnr (13.3)

Mk.�/ D M o
k

C �
X

r

�krnr : (13.4)

Alternatively, we can compute the new composition from the composition at the

end �0 of the previous step as,

Mw.�/ D Mw.�
0/C .� � �0/

X
r

�wrnr (13.5)

Mi.�/ D Mi .�
0/C .� � �0/

X
r

�irnr (13.6)

Mk.�/ D Mk.�
0/C .� � �0/

X
r

�krnr : (13.7)
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The equations expressed in this stepwise manner are somewhat easier to integrate

into certain reaction configurations, such as the flush or flow-through model de-

scribed later in this chapter. We could also updateMm in this manner, but there is

no need to do so. A gas species Am appears in the basis only when its fugacity fm

is known, so the value of each Mm results from solving the governing equations,

as described in Chapter 4.

To trace the reaction path, the model begins with the system at � D 0 and steps

forward in reaction progress by setting � to��, where�� is the size of the reaction

step. It then recomputes the bulk composition using Equations 13.5–13.7 and,

honoring these values, iterates to the new equilibrium state. To start the iteration,

the model takes the values of the unknown variables at the beginning of the step.

The model then takes a further step forward in reaction progress, incrementing � to

a value of 2 ���, and recomputes the equilibrium state. The calculation continues

in this fashion until it reaches � D 1.

We consider as an example the hydrolysis of potassium feldspar (KAlSi3O8), the

first reaction path traced using a computer (Helgeson et al., 1969). We specify the

composition of a hypothetical water

Na+ = 5 mg/kg

K+ = 1 mg/kg

Ca++ = 15 mg/kg

Mg++ = 3 mg/kg

Al+++ = 1 ug/kg

SiO2(aq) = 3 mg/kg

Cl- = 30 mg/kg

SO4-- = 8 mg/kg

HCO3- = 50 mg/kg

pH = 5

and then define a reaction path involving the addition of a small amount of feldspar

(cont’d)

react .15 cm3 of K-feldspar

Typing go triggers the calculation.

Figure 13.1 shows the mineralogical results of the calculation, plotted in log–log,

semilog, and linear coordinates. Note that we have plotted each diagram in terms of

the mass of feldspar reacted into the water. Common practice in reaction modeling

is to present results plotted in terms of �, but this is an unfortunate convention.

The reaction progress variable � has mathematical meaning within the modeling

program, but its physical meaning vests only in terms of how the modeler sets the

reaction rates nr . By choosing a variable with physical meaning (such as reacted

mass) when plotting results, we can present our calculation results in a more direct

manner.
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Fig. 13.1. Mineralogical results of reacting potassium feldspar into a hypothetical water at
25 °C, plotted in linear, semilog (a “spaghetti diagram”), and log–log coordinates.

In the first segment of the reaction path (Fig. 13.1), the feldspar dissolves into

solution, producing kaolinite [Al2Si2O5.OH/4] and quartz (SiO2). The reaction

gradually increases the activity ratio aKC /aHC until the solution reaches equilib-

rium with muscovite [KAl3Si3O10.OH/2]. At this point, the kaolinite begins to dis-

solve, producing muscovite and quartz. The reaction continues after the kaolinite

is consumed until the fluid reaches equilibrium with the feldspar [a small amount

of phengite, KAlMgSi4O10.OH/2, forms just before this point]. Once the fluid is

in equilibrium with it, the feldspar simply accumulates as it is added to the system,

and reaction with the fluid ceases. In the next section of this chapter, we consider

how we can extract the chemical reactions occurring over each segment of the re-

action path.

13.2 Extracting the overall reaction

The ultimate goal in reaction modeling is to discover the overall reaction that

occurs within a system. Strangely, whereas the results of nearly every published

study involving reaction modeling are presented in a “spaghetti diagram” (see, e.g.,

Fig. 13.1), few papers report the overall reaction. For this reason, some of the most
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Fig. 13.2. Results of the reaction path shown in Figure 13.1, plotted to allow the overall
reaction to be extracted using the slopes-of-the-lines method.

important information in the results is obscured. Who could blame the reader for

thinking, “Enough pasta, let’s get to the meatballs!”?

The procedure for determining the overall reaction, fortunately, is straightfor-

ward. The modeler plots the mole numbers of the species and minerals in the sys-

tem against the mass of a reactant added to the system over the reaction path. The

plot must be in linear coordinates with both axes in consistent units, such as moles

or mmoles.

The slopes of the lines in the plot give the reaction coefficients for each species

and mineral in the overall reaction. Species with negative slopes appear to the left

of the reaction (with their coefficients set positive), and those with positive slopes

are placed to the right. The reactant plotted on the horizontal axis appears to the left

of the reaction with a coefficient of one. If there are additional reactants, these also

appear on the reaction’s left with coefficients equal to the ratios of their reaction

rates nr to that of the first reactant.

As an example, we consider the reaction path traced in the previous section

(Fig. 13.1). To extract the overall reaction for each segment of the path, we con-

struct a plot as described above. The result is shown in Figure 13.2. There are three

segments in the reaction path: the precipitation of kaolinite, the transformation of

kaolinite to muscovite, and the continued formation of muscovite once the kaolinite

is exhausted. There is a distinct overall reaction for each segment.

From this plot (and one showing the mass of species H2O, which does not fit on

these axes), we can write down the slope of the line for each species and mineral.

The results, compiled for each segment in the reaction, are
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Segment 1 Segment 2 Segment 3

CO2(aq) �1 0 �0:67
HCO�

3 C1 0 C0:67
KC C1 0 C0:67
H2O �1:5 C1 �0:67
quartz C2 C2 C2
kaolinite C0:5 �1 –

muscovite – C1 C0:33

The values in the first column give the overall reaction for the first segment of the

reaction path,

KAlSi3O8

K-feldspar

C3=2 H2O C CO2(aq) !

2 SiO2

quartz

C 1=2 Al2Si2O5.OH/4
kaolinite

C HCO�
3 C KC :

(13.8)

Similarly, the overall reactions for the second segment,

KAlSi3O8

K-feldspar

C Al2Si2O5.OH/4
kaolinite

!

2 SiO2

quartz

C KAl3Si3O10.OH/2
muscovite

C H2O ;

(13.9)

and third segment,

KAlSi3O8

K-feldspar

C 2=3 CO2(aq) C 2=3 H2O !

2 SiO2

quartz

C 1=3 KAl3Si3O10.OH/2
muscovite

C 2=3 HCO�
3 C 2=3 KC

(13.10)

are given by the coefficients in the second and third columns.

13.3 Special configurations

In Chapter 2 we discussed three special configurations for tracing reaction paths:

the dump, flow-through, and flush models. These models are special cases of mass

transfer that can be implemented within the mathematical framework developed in

this chapter.

In the dump configuration, the model discards the masses of any minerals present
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in the initial equilibrium system before beginning to trace the reaction path. To do

so, the model updates the total composition to reflect the absence of minerals,

Mk D Mk � nk ; (13.11)

and sets the mineral masses nk to zero. Here, of course, we use the “=” to represent

assignment of value, rather than algebraic equivalence. If the model considers sur-

face complexation (Chapter 10), the mole numbers Mp of the surface components

as well as the molalitiesmp and mq of the surface species must also be set to zero

to reflect the disappearance of sorbing mineral surfaces.

The model then swaps aqueous speciesAj into the basis locationsAk held by the

mineral components. The technique for swapping the basis is explained in Chapter

5, and a method for selecting an appropriate species Aj to include in the basis is

described in Chapter 4. When the procedure is complete, the equilibrium system

contains only the original fluid.

In the flow-through model, any mineral mass present at the end of a reaction step

is sequestered from the equilibrium system to avoid back-reaction. At the end of

each step, the model eliminates the mineral mass (including any sorbed species)

from the equilibrium system, keeping track of the total amount removed. To do

so, it applies Equation 13.11 for each mineral component and sets each nk to a

vanishingly small number. It is best to avoid setting nk to exactly zero in order to

maintain the mineral entries Ak in the basis. The model then updates the system

composition according to Equations 13.5–13.7 and takes another reaction step.

In a flush model, reactant fluid displaces existing fluid from the equilibrium

system. It is simplest to implement this model by determining the mass of water

entering the system over a step and eliminating an equal mass of water component

and the solutes it contains from the system. In this case, we ignore any density

differences between the fluids.

The model first determines (from the reaction rate nr for water and the mass

Mw of the water component) the fraction Xdisp of fluid to be displaced from the

system over a step. Typically, the model will limit the size �� of the reaction

step to a value that will cause only a fraction (perhaps a tenth or a quarter) of the

fluid present at the start of the step to be displaced, in the event that the modeler

accidentally sets too large a step size. The formulae for determining the updated

composition become,

Mw.�/ D �
1�Xdisp

�
Mw.�

0/C �
� � �0

�X
r

�wrnr (13.12)

Mi .�/ D �
1 �Xdisp

�
Mi.�

0/C �
� � �0

�X
r

�irnr (13.13)
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Mk.�/ D �
1 �Xdisp

� �
Mk.�

0/ � nk

�C nk C �
� � �0

�X
r

�krnr : (13.14)

These are Equations 13.5–13.7, modified to account for the loss of the displaced

fluid.
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Polythermal, fixed, and sliding paths

In this chapter we consider how to construct reaction models that are somewhat

more sophisticated than those discussed in the previous chapter, including reaction

paths over which temperature varies and those in which species activities and gas

fugacities are buffered. The latter cases involve the transfer of mass between the

equilibrium system and an external buffer. Mass transfer in these cases occurs at

rates implicit in solving the governing equations, rather than at rates set explicitly

by the modeler. In Chapter 16 we consider the use of kinetic rate laws, a final

method for defining mass transfer in reaction models.

14.1 Polythermal reaction paths

Polythermal reactions paths are those in which temperature varies as a function of

reaction progress, �. In the simplest case, the modeler prescribes the temperatures

To and Tf at the beginning and end of the reaction path. The model then varies

temperature linearly with reaction progress. This type of model is sometimes called

a “sliding temperature” path.

The calculation procedure for a sliding temperature path is straightforward. In

taking a reaction step, the model evaluates the temperature to be attained at the

step’s end. Since � varies from zero to one, temperature at any point � in reaction

progress is given by,

T .�/ D To C �.Tf � To/ ; (14.1)

as a function of the initial and final temperatures, as set by the modeler. The model

then reevaluates values for the reaction logKs and the constants used to calculate

activity coefficients (see Chapter 8). If reaction kinetics or isotopic fractionation is

considered (Chapters 16 and 19), the model recalculates the reaction rate constants

and isotopic fractionation factors.

A second type of polythermal path traces temperature as reactants mix into the

201
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equilibrium system. This case differs from a sliding temperature path only in the

manner in which temperature is determined. The modeler assigns a temperature

To to the initial system, as before, and a distinct temperature Tr to the reactants.

By assuming that the heat capacities CPf
, CPk

, and CPr
of the fluid, minerals,

and reactants are constant over the temperature range of interest, we can calculate

temperature T .�/ from energy balance and the temperature T .�0/ at the onset of

the step according to,

T .�/ D A T.�0/C B Tr

AC B

A D 1000 .1 �Xdisp/ CPf
nf C

X
k

CPk
MWk

nk

B D .� � �0/
X

r

CPr
MWr

nr :

(14.2)

In this equation, �0 and � are the values of reaction progress at the beginning and

end of the step; nf is the mass in kg of the fluid (equal to nw , the water mass, plus

the mass of the solutes); nk is the mole number of each mineral; nr is the reaction

rate (moles) for each reactant; MWk
is the mole weight (g mol�1) of each mineral,

and MWr
is the mole weight for each reactant; and Xdisp is the fraction of the fluid

displaced over the reaction step in a flush model (Xdisp is zero if a flush model is

not invoked).

In an example of a sliding temperature path, we consider the effects of cooling

from 300 °C to 25 °C a system in which a 1 molal NaCl solution is in equilibrium

with the feldspars albite (NaAlSi3O8) and microcline (KAlSi3O8), quartz (SiO2),

and muscovite [KAl3Si3O10.OH/2]. To set up the calculation, we enter the com-

mands

swap Albite for Al+++

swap "Maximum Microcline" for K+

swap Muscovite for H+

swap Quartz for SiO2(aq)

1 molal Na+

1 molal Cl-

20 free cm3 Albite

10 free cm3 "Maximum Microcline"

5 free cm3 Muscovite

2 free cm3 Quartz

suppress "Albite low"

to define the fluid in equilibrium with the minerals, which are present in excess

amounts. For simplicity, we suppress the entry “albite low,” which is almost iden-
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Fig. 14.1. Mineralogical results of tracing a polythermal reaction path. In the calculation,
a 1 molal NaCl solution in equilibrium with albite, microcline, muscovite, and quartz cools
from 300 °C to 25 °C.

tical in stability to the entry “albite” in the thermodynamic database. We then set a

polythermal path with the command

(cont’d)

T initial = 300, final = 25

and type go to start the calculation.

In the calculation results (Fig. 14.1), albite reacts to form microcline,

NaAlSi3O8

albite

C KC ! KAlSi3O8

microcline

C NaC (14.3)

as the temperature decreases. The reaction is driven not by mass transfer but

by variation in the stabilities of the minerals and the species in solution. The

composition of the system (fluid plus minerals), in fact, remains constant over

the reaction path. Chapters 22 and 23 give a number of further examples of the

application of polythermal reaction paths.

14.2 Fixed activity and fugacity paths

In a fixed activity path, the activity of an aqueous species (or those of several spe-

cies) maintains a constant value over the course of the reaction path. A fixed fugac-

ity path is similar, except that the model holds constant a gas fugacity instead of a

species activity. Fixed activity paths are useful in modeling laboratory experiments

in which an aspect of a fluid’s chemistry is maintained mechanically. In studying

reaction kinetics, for example, it is common practice to hold constant the pH of
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a solution with a pH-stat. Fixed activity paths are also convenient for calculating

speciation diagrams, which by convention may be plotted at constant pH and oxy-

gen activity. Fixed fugacity paths are useful for tracing reaction paths in which a

fluid remains in contact with a gas phase, such as the atmosphere.

To calculate a fixed activity path, the model maintains within the basis each

species Ai whose activity ai is to be held constant. For each such species, the

corresponding mass balance equation (Eqn. 4.4) is reserved from the reduced basis,

as described in Chapter 4, and the known value of ai is used in evaluating the

mass action equation (Eqn. 4.7). Similarly, the model retains within the basis each

gas Am whose fugacity is to be fixed. We reserve the corresponding mass balance

equation (Eqn. 4.6) from the reduced basis and use the corresponding fugacity fm

in evaluating the mass action equation.

A complication to the calculation procedure for holding an aqueous species at

fixed activity is the necessity of maintaining ionic charge balance over the reaction

path. If the species is charged, the model must enforce charge balance at each

step in the calculation by adjusting the concentration of a specified component, as

discussed in Section 4.3. For example, if the pH is fixed over a path and the charge

balance component is Cl�, then the model will behave as if HCl were added to

or removed from the system in the quantities needed to maintain a constant HC

activity.

In an example of a fixed fugacity path we model the dissolution of pyrite (FeS2)

at 25 °C. We start in REACT with a hypothetical water in equilibrium with hematite

(Fe2O3) and oxygen in the atmosphere

swap O2(g) for O2(aq)

swap Hematite for Fe++

f O2(g) = .2

1 free mg Hematite

pH = 6.5

4 mg/kg Ca++

1 mg/kg Mg++

2 mg/kg Na+

18 mg/kg HCO3-

3 mg/kg SO4--

5 mg/kg Cl-

into which we react a small amount of pyrite

(cont’d)

react 10 mg Pyrite

go

In this initial calculation, we do not fix the oxygen fugacity.
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Fig. 14.2. Mineralogical results (top) of reacting pyrite at 25 °C into a dilute water held
closed to O2, and variation in pH (bottom) over the reaction.

As shown in Figure 14.2, about 8 mg of pyrite dissolves into the water, producing

hematite. The reaction drives pH from the initial value of 6.5 to about 4 before

the water becomes reducing. At this point, the hematite redissolves and the fluid

reaches equilibrium with pyrite, bringing the reaction to an end.

We can write the overall reaction by which hematite forms, using the slopes-of-

the-lines method discussed in Chapter 13. Initially, the reaction proceeds as,

FeS2

pyrite

C 15=4 O2(aq) C 4 HCO�
3 !

1=2 Fe2O3

hematite

C 2 SO��
4 C 4 CO2(aq) C 2 H2O ;

(14.4)

as can be seen from Figure 14.3. As the water becomes more acidic and the supply

of HCO�
3 is depleted, a second reaction,

FeS2

pyrite

C 15=4 O2(aq) C 2 H2O ! 1=2 Fe2O3

hematite

C 2 SO��
4 C 4 HC (14.5)

becomes dominant. Pyrite continues to dissolve until the available O2(aq) has been

consumed.

How would the reaction have proceeded if the oxygen fugacity had been fixed

by equilibrium with the atmosphere? To find out, we repeat the calculation, this

time holding the oxygen fugacity constant
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Fig. 14.3. Variation in the concentrations of aqueous species involved in the dissolution
reaction of pyrite, for the reaction path shown in Figure 14.2.
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Fig. 14.4. Mineralogical results (top) of a fixed fugacity path in which pyrite dissolves at
25 °C into water held in equilibrium with O2 in the atmosphere, and the variation in pH
(bottom) over the path.

(cont’d)

fix f O2(g)

react 1000 mg Pyrite

go

and specifying a hundred-fold increase in the supply of pyrite.

The fixed fugacity path (Fig. 14.4) differs from the previous calculation (in
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Fig. 14.5. Concentrations of species involved in the dissolution of pyrite, for the fixed
fugacity path shown in Figure 14.4.

which the fluid was closed to the addition of oxygen) in that pyrite dissolution

continues indefinitely, since there is an unlimited supply of oxygen gas. Initially,

the reaction proceeds as

FeS2

pyrite

C 15=4 O2(g) C 2 H2O ! 1=2 Fe2O3

hematite

C 2 SO��
4 C 4 HC ; (14.6)

as can be seen from Figure 14.5. Later, a second reaction that produces HSO�
4

instead of SO��
4 ,

FeS2

pyrite

C 15=4 O2(aq) C 2 H2O ! 1=2 Fe2O3

hematite

C 2HSO�
4 C 2HC (14.7)

becomes dominant. The HC produced by these reactions drives pH to values far

more acidic than those in the closed-system case.

14.3 Sliding activity and fugacity paths

Sliding activity and sliding fugacity paths are similar to fixed activity and fixed

fugacity paths, except that the model varies the buffered activity or fugacity over

the reaction path rather than holding it constant. Once the equilibrium state of the

initial system is known, the model stores the initial activity ao
i or initial fugacity

f o
m of the buffered species or gas. (The modeler could set this value as a constraint

on the initial system, but this is not necessary.)

The modeler supplies the final (or target) activity a
f
i or fugacity f

f
m , which will

be achieved at the end of the reaction path, when � D 1. The modeler also specifies
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whether the activity or fugacity itself or the logarithm of activity or fugacity is to be

varied. If the value is to be varied, the model determines it as a function of reaction

progress according to

ai .�/ D ao
i C �

�
a

f
i

� ao
i

�
(14.8)

or

fm.�/ D f o
m C �

�
f f

m � f o
m

�
: (14.9)

If, on the other hand, the value’s logarithm is to be varied, the model calculates the

value according to

logai .�/ D logao
i C �

�
loga

f
i � logao

i

�
(14.10)

or

logfm.�/ D logf o
m C �

�
logf f

m � logf o
m

�
: (14.11)

To see the difference between sliding a value and sliding its logarithm, consider

a path in which fO2
varies from one (100) to 10�30. If �� in this simple example

is 0.2, the model will step along the reaction path in even steps of either fO2
or

logfO2
:

� fO2
logfO2

0 1.0 1

0.2 0.8 10�6

0.4 0.6 10�12

0.6 0.4 10�18

0.8 0.2 10�24

1.0 10�30 .' 0/ 10�30

If we select the linear option (the center column), the path will stop at a series of

oxidizing points followed by a single reducing point. If we choose the logarithmic

option (right column), however, the path will visit a range of oxidation states.

In an example of a sliding fugacity path, we calculate how CO2 fugacity af-

fects the solubility of calcite (CaCO3). We begin by defining a dilute solution in

equilibrium with calcite and the CO2 fugacity of the atmosphere

swap Calcite for Ca++

swap CO2(g) for H+

10 mmolal Na+

10 mmolal Cl-

1/2 free cm3 Calcite

log f CO2(g) = -3.5
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Fig. 14.6. Effect of CO2 fugacity on the solubility of calcite (top) and on pH (bottom),
calculated at 25 °C using a sliding fugacity path.

balance on HCO3-

go

The resulting fluid has a pH of about 8.3. To vary the CO2 fugacity, we set a path

in which fCO2
slides from the initial atmospheric value

(cont’d)

slide f CO2(g) to 1

go

to one.

In the calculation results (Fig. 14.6), increasing the CO2 fugacity decreases the

pH to about 6, causing calcite to dissolve into the fluid. The fugacity increase

drives CO2 from the buffer into the fluid, and most of the CO2 (Fig. 14.7) becomes

CO2(aq). The nearly linear relationship between the concentration of CO2(aq) and

the fugacity of CO2(g) results from the reaction

CO2(g) � CO2(aq) ; (14.12)

which holds aCO2
proportional to fCO2

. Some of the gas, however, dissociates to

produce HCO�
3 and HC, and the resulting acid is largely consumed by dissolv-

ing calcite. The overall reaction (derived using the slopes-of-the-lines method) is

approximately
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Fig. 14.7. Species concentrations (mmolal) in the sliding fugacity path shown in Figure
14.6.

5 CO2(g) C CaCO3

calcite

C H2O ! 4 CO2(aq) C CaCC C 2 HCO�
3 : (14.13)

In a second example, we calculate how pH affects sorption onto hydrous ferric

oxide, expanding on our discussion (Section 10.4) of Dzombak and Morel’s (1990)

surface complexation model. We start as before, setting the dataset of surface reac-

tions, suppressing the ferric minerals hematite (Fe2O3) and goethite (FeOOH), and

specifying the amount of ferric oxide [represented in the calculation by Fe.OH/3
precipitate] in the system

surface_data = FeOH+.dat

sorbate include

decouple Fe+++

suppress Hematite, Goethite

swap Fe(OH)3(ppd) for Fe+++

1 free gram Fe(OH)3(ppd)

We set a 0.1 molal NaCl solution and define a sliding activity path in which pH

varies from 4 to 12

(cont’d)

0.1 molal Na+

0.1 molal Cl-

pH = 4

slide pH to 12

precip = off

go
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Fig. 14.8. Concentrations (mmolal) of sites on a hydrous ferric oxide surface exposed at
25 °C to a 0.1 molal NaCl solution, calculated using a sliding pH path.

Figure 14.8 shows how the concentrations of the surface species vary with pH in

the calculation results.

According to the complexation model, neither NaC nor Cl� reacts with the

surface, so the species consist entirely of surface sites (>(w)FeOH and>(s)FeOH)

in their uncomplexed, protonated

>.w/FeOH C HC � >.w/FeOHC
2 (14.14)

and deprotonated forms

>.w/FeOH � >.w/FeO� C HC ; (14.15)

depending on the HC activity. Protonated sites dominate at low pH, resulting in a

positive surface potential (Fig. 14.9), whereas the predominance of deprotonated

sites at high pH yields a negative potential.

To see how contact with a more complex solution affects the surface, we intro-

duce to the fluid 10 mmoles of CaSO4 and 100 �moles each of HgCC, CrCCC,

As.OH/�4 , and ZnCC

(cont’d)

10 mmolal Ca++

10 mmolal SO4--

100 umolal Hg++

100 umolal Cr+++

100 umolal As(OH)4-

100 umolal Zn++

Typing go triggers the model, which again slides pH from 2 to 12.
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Fig. 14.9. Variation of surface potential‰ (mV) with pH for a hydrous ferric oxide surface
in contact at 25 °C with a 0.1 molal NaCl solution (bold line) and a more complex solution
(fine line) that also contains Ca, SO4, Hg, Cr, As, and Zn.
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Fig. 14.10. Concentrations (mmolal) of surface species on hydrous ferric oxide exposed at
25 °C to a solution containing Ca, SO4, Hg, Cr, As, and Zn, calculated using a sliding pH
path.

In this case (Fig. 14.10), we observe a more complicated distribution of species.

At low pH, the HC activity and positive surface potential drive SO��
4 to sorb

according to the reaction,

SO��
4 C>.w/FeOH C HC

� >.w/FeSO�
4 C H2O : (14.16)
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Fig. 14.11. Concentrations (mmolal) of surface species on hydrous ferric oxide exposed at
25 °C to a solution containing Ca, SO4, Hg, Cr, As, and Zn, calculated using a sliding pH
path.

Under alkaline conditions, on the other hand, reactions such as,

ZnCC C>.w/FeOH � >.w/FeOZnC C HC (14.17)

HgCC C>.w/FeOH � >.w/FeOHgC C HC (14.18)

and

CaCC C>.w/FeOH � >.w/FeOCaC C HC (14.19)

promote the sorption of bivalent cations. These reactions produce negatively

charged surface species at low pH and positively surface charged species at high

pH, thereby reducing the magnitude of the surface charge under acidic as well as

alkaline conditions. Hence, the surface is considerably less charged than it was in

contact with the NaCl solution, as shown in Figure 14.9.

The As.OH/�4 and CrCCC components follow a pattern distinct from the other

metals (Fig. 14.11), sorbing at only near-neutral pH. This pattern results from the

manner in which the metals speciate in solution. As(III) appears as As.OH/3 when

pH is less than 9, and as As.OH/�4 , or AsO2OH�� at higher pH. The sorption

reactions for these species are,

As.OH/3 C>.w/FeOH � >.w/FeH2AsO3 C H2O (14.20)

As.OH/�4 C>.w/FeOH C HC � >.w/FeH2AsO3 C 2 H2O (14.21)

AsO2OH�� C>.w/FeOH C 2 HC
� >.w/FeH2AsO3 C H2O : (14.22)

There is no pH dependence to the reaction for As.OH/3, which sorbs strongly
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when pH is near neutral. Under acidic conditions, however, high HC activities drive

the reactions for protonation and the sorption of SO��
4 , which displace arsenic

from the mineral surface. Arsenic sorbs poorly under alkaline conditions because

low HC activities work against the complexation of As.OH/�4 , or AsO2OH��, as

shown in the reactions for these species.

The chromium follows a similar pattern. The component, present as CrCCC at

low pH, reacts successively to form CrOHCC, Cr.OH/C2 , Cr.OH/3, and Cr.OH/�4
as pH increases. The sorption reactions are,

CrCCC C>.s/FeOH C H2O � >.s/FeOCrOHC C 2 HC (14.23)

CrOHCC C >.s/FeOH � >.s/FeOCrOHC C HC (14.24)

Cr.OH/C2 C >.s/FeOH � >.s/FeOCrOHC C H2O (14.25)

Cr.OH/3 C>.s/FeOH C HC � >.s/FeOCrOHC C 2 H2O (14.26)

Cr.OH/�4 C>.s/FeOH C 2 HC � >.s/FeOCrOHC C 3 H2O : (14.27)

Significantly, the reactions for the species predominant at low pH favor the des-

orption of chromium when the HC activity is high, and those for the species pre-

dominant under alkaline conditions favor desorption when the HC activity is low.

Hence Cr(III), like Ar(III), sorbs strongly only when pH is near neutral.

In a final example of the use of a sliding activity path, we calculate a speciation

diagram, plotted versus pH, for hexavalent uranium in the presence of dissolved

phosphate at 25 °C. We take a 10 mmolal NaCl solution containing 1 mmolal each

of UOCC
2 , the basis species for U(VI), and HPO�

4

decouple UO2++

10 mmolal Na+

10 mmolal Cl-

1 mmolal UO2++

swap H3PO4 for HPO4--

1 mmolal H3PO4

Here we haved swapped H3PO4 for HPO��
4 to help the program converge under

acidic conditions. We specify the initial and final pH values for the calculation,

set the program to avoid precipitating minerals (since we assume a fixed solution

composition)

(cont’d)

pH = 2

slide pH to 10

precip = off

and type go to trigger the calculation. The resulting diagram (Fig. 14.12) shows

the importance of complexing between U(VI) and phosphate. We can, of course,
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Fig. 14.12. Speciation diagram at 25 °C for a 1 mmolal solution of hexavalent uranium
containing 1 mmolal dissolved phosphate, calculated as a sliding activity path.

make many variations on the calculation, such as setting different concentrations,

including other components, allowing minerals to precipitate, and so on.
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Geochemical buffers

Buffers are reactions that at least temporarily resist change to some aspect of a

fluid’s chemistry. A pH buffer, for example, holds pH to an approximately constant

value, opposing processes that would otherwise drive the solution acid or alkaline.

The bicarbonate–CO2 buffer

HCO�
3 C HC ! CO2(aq) C H2O (15.1)

for example, consumes hydrogen ions when they are added to the system and

produces them when they are consumed, thereby resisting variation in pH. The

buffer operates until nearly all of the HCO�
3 is converted to CO2(aq), or vice versa.

The thirsty reader might be interested to know that the concept of buffering (as well

as the notation pH) was introduced by the brewing industry in Europe (Sørensen,

1909; see Rosing 1993) as it sought to improve the flavor of beer.

Buffers such as the bicarbonate reaction are known as homogeneous buffers, be-

cause all of the constituents are found in the fluid phase. Many important buffering

reactions in geochemical systems are termed heterogeneous (e.g., Rosing, 1993)

because, in addition to the fluid, they involve minerals or a gas phase. Reduc-

ing minerals or oxygen in the atmosphere (examples of heterogeneous buffers)

can control a fluid’s oxidation state. Equilibrium with quartz fixes a fluid’s silica

content. Some buffers, such as those provided by assemblages of minerals, can

be rather complex. Many reaction models, in fact, are designed to describe how

buffers behave and how various buffering reactions interact.

In this chapter we construct models of buffering reactions, both homogeneous

and heterogeneous. We concentrate on buffering reactions that are well known

to geochemists, taking the opportunity to explore reaction modeling on familiar

geochemical terrain. The methods discussed here, however, can be readily applied

to more complicated situations, such as those involving multiple buffers or buffers

involving a larger number of phases.
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Fig. 15.1. Calculated effects on pH of reacting hydrochloric acid into a 0.2 molal NaCl
solution and a 0.1 molal Na2CO3 solution, as functions of the amount of HCl added. The
two plateaus on the second curve represent the buffering reactions between CO��

3 and
HCO�

3 , and between HCO�
3 and CO2(aq).

15.1 Buffers in solution

We begin by considering the well-known pH buffer provided by the aqueous car-

bonate system and its effects on the ease with which a fluid can be acidified. We

start with an alkaline NaCl solution containing a small amount of carbonate, and

add 300 mmol of hydrochloric acid to it. The procedure in REACT is

pH = 12

HCO3- = 1 mmolal

Cl- = 200 mmolal

balance on Na+

react 300 mmol HCl

go

As can be seen in Figure 15.1, the effect is to quickly drive the solution acidic. The

only buffer is the presence of OH� ions, which are quickly consumed by reaction

with HC to produce water.

In a second experiment, we reverse the anion concentrations so that the fluid is

dominantly an Na2CO3 solution:

(cont’d)

HCO3- = 100 mmolal

Cl- = 1 mmolal

go
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Fig. 15.2. Concentrations of species in the carbonate buffer in a 0.1 molal Na2CO3 solu-
tion, plotted against pH.

Since the HCO�
3 component is present mostly as the doubly charged species

CO��
3 , its molality is half that of the balancing cation, NaC. In this case (Fig. 15.1),

the fluid resists acidification until more than 200 mmol of HCl have been added.

The buffering occurs in two stages, as shown in Figure 15.2: first the CO��
3

species in solution consume HC ions as they react to produce HCO�
3 , then the

HCO�
3 reacts with HC to make CO2(aq). The two stages are represented in Figure

15.1 by nearly horizontal portions of the pH curve. When all of the CO��
3 and

HCO�
3 species have been consumed, the solution quickly becomes acidic.

We can readily derive the overall reactions in the buffer from Figure 15.3 using

the slopes-of-the-lines method, described in Chapter 13. In the first stage, the

overall reaction is,

0:83 CO��
3 C 0:17 NaCO�

3 C HC ! 0:83 HCO�
3 C 0:17 NaHCO3 : (15.2)

The reaction for the second stage is,

0:83 HCO�
3 C 0:17 NaHCO3 C HC ! CO2(aq) C 0:17 NaC C H2O : (15.3)

It is common practice when writing overall reactions to omit mention of ion pairs

whenever they are not considered important to the point being addressed. We could

well write the reactions above as,

CO��
3 C HC ! HCO�

3 (15.4)

and

HCO�
3 C HC ! CO2(aq) C H2O : (15.5)
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Fig. 15.3. Species masses in the Na2CO3 solution plotted so that the overall reaction can
be determined using the slopes-of-the-lines method.

The simplified form is not as exact but is less cluttered than the full form and shows

more clearly the nature of the buffering reaction. In this book, we will often make

simplifications of this sort.

In a practical example of the use of reaction modeling to trace buffering re-

actions, we consider the problem of interpreting the titration alkalinity of natural

waters. Laboratories commonly report titration alkalinity rather than provide a di-

rect analysis of a solution’s carbonate content. Titration alkalinity is the solution’s

ability to neutralize strong acid (e.g., Snoeyink and Jenkins, 1980; Hem, 1985).

The analyst titrates an acid such as H2SO4 into the solution until it reaches an end-

point pH, as indicated by the color change of an indicator such as methyl orange.

The endpoint pH is generally in the range of 4.5 to 4.8.

The analyst reports the amount of acid required to reach the endpoint, generally

expressed in terms of the number of mg of CaCO3 that could be dissolved by the

acid, per kg solution. Since the mole weight of CaCO3 is 100.09 g and each mole

of carbonate can neutralize two equivalents of acid, the conversion is,

meq acid

kg solution
� 50:05 mg CaCO3

meq acid
D mg CaCO3

kg solution
: (15.6)

Note that there are two equivalents of acid per mole of H2SO4.

At the titration endpoint, most carbonate in solution is present as CO2(aq). We

can expect that each mmol of HCO�
3 originally present in solution will neutralize

one meq of acid, according to the reaction

HCO�
3 C HC ! CO2(aq) C H2O : (15.7)
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Similarly, each mmol of CO��
3 originally present should neutralize two meq of

acid,

CO��
3 C 2 HC ! CO2(aq) C H2O : (15.8)

Therefore, knowing from the initial pH the proportions of HCO�
3 and CO��

3 in the

fluid, we can estimate the total carbonate content.

Unfortunately, such simple estimations can be in error. Hydroxyl, borate, sil-

icate, ammonia, phosphate, and organic species can contribute to the solution’s

ability to buffer acid. For example, each of the reactions,

HPO��
4 C HC ! H2PO�

4 (15.9)

B.OH/�4 C HC ! B.OH/3 C H2O (15.10)

NH3 C HC ! NHC
4 (15.11)

can consume hydrogen ions during the titration. Other possible complications

include the effects of activity coefficients and complex species.

A more rigorous method for interpreting an alkalinity measurement is to use a

reaction model to reproduce the titration. The technique is to calculate the effects

of adding acid to the original solution, assuming various carbonate contents. When

we produce a model that reaches the endpoint pH after adding the acid, we have

found the correct carbonate concentration.

We now consider as an example an analysis (Table 15.1) of water from Mono

Lake, California. The reported alkalinity of 34 818 mg kg�1 as CaCO3 is equiv-

alent to 700 meq of acid or 350 mmol of H2SO4. Since at this pH carbonate and

bicarbonate species are present in roughly equal concentrations, we can quickly

estimate the total carbonate concentration to be about 30 000 mg kg�1. We take

this value as a first guess and model the titration with REACT

TDS = 92540

pH = 9.68

Ca++ = 4.6 mg/kg

Mg++ = 42 mg/kg

Na+ = 37200 mg/kg

K+ = 1580 mg/kg

SO4-- = 12074 mg/kg

Cl- = 20100 mg/kg

B(OH)3 = 2760 mg/kg

F- = 54 mg/kg

HPO4-- = 120 mg/kg

HCO3- = 30000 mg/kg

react 350 mmol of H2SO4

precip = off

go
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Table 15.1. Analysis of water from Mono Lake, California, USA (James Bischoff,

personal communication)

pH 9:68

CaCC .mg kg�1/ 4:6

MgCC 42

NaC 37 200

KC 1 580

SO��
4 12 074

Cl� 20 100

B.OH/3 2 760

F� 54

HPO��
4 120

Alkalinity; as CaCO3 34 818

Dissolved solids 92 540

Testing varying values for the total HCO�
3 concentration,

(cont’d)

HCO3- = 25000 mg/kg

go

we find that 25 100 mg kg�1 gives a titration endpoint of 4.5, as shown in Figure

15.4. The result differs from our initial guess primarily because of the protonation

of the B.OH/�4 and NaB.OH/4 species to form B.OH/3 plus water, as shown in

Figure 15.5.

15.2 Minerals as buffers

In a first example of how minerals can buffer a fluid’s chemistry, we consider how

a hypothetical groundwater that is initially in equilibrium with calcite (CaCO3) at

25 °C might respond to the addition of an acid. In REACT, we enter the commands

swap Calcite for HCO3-

10 free cm3 Calcite

pH = 8

Na+ = 100 mmolal

Ca++ = 10 mmolal

balance on Cl-



15.2 Minerals as buffers 223

H2SO4 reacted (mmol)

pH

4

5

6

7

8

9

0 50 100 150 200 250 300 350

titration endpoint

acid
added

30 000 mg kg−1

25 100 mg kg−1
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total concentration (in this case, 25 100 mg kg�1) is set, the final pH matches the titration
endpoint.
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Fig. 15.5. Concentrations of species in buffer reactions that contribute to the titration
alkalinity of Mono Lake water, plotted against pH.

to set the initial system containing a fluid of pH 8 in equilibrium with calcite. We

then type

(cont’d)

dump
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Fig. 15.6. Effects on pH (top) and CO2 fugacity (bottom) of reacting HCl into a fluid not
in contact with calcite (fine lines) and with the same fluid when it maintains equilibrium
with calcite over the reaction path (bold lines).

react 100 mmol of HCl

go

to define the reaction path and trigger the calculation. With the dump command, we

specify that the calcite be separated from the fluid before the reaction path begins.

The only pH buffer in the calculation is the small concentration of carbonate

species in solution. The buffer is quickly overwhelmed and the fluid shifts rapidly

to acidic pH, as shown in Figure 15.6. The dominant reaction,

HCl ! HC C Cl� (15.12)

is the dissociation of the HCl.

In a second calculation, we trace the same path while maintaining the fluid in

equilibrium with the calcite. To do so, we enter the command

(cont’d)

dump = off

to disable the dump option and type go to start the path. In the calculation results

(Fig. 15.6), pH decreases by only a small amount and the fluid becomes just mildly

acidic. The CO2 fugacity rises steadily during the reaction, finally exceeding a
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Fig. 15.7. Concentrations (mmolal) of the predominant carbonate and calcium species
over the course of a reaction path in which HCl is added to a fluid in contact with calcite.

value of one, at which point we would expect the gas to begin to effervesce against

atmospheric pressure.

The overall reaction for the earliest portion of the reaction path, where HCO�
3 is

the predominant carbonate species, is

2 HCl C CaCO3

calcite

! CaCC C 2 Cl� C HCO�
3 C HC : (15.13)

By this reaction, the fluid becomes more acidic with the addition of HCl. With

decreasing pH, the CO2(aq) species quickly comes to dominate HCO�
3 . At this

point, the principal reaction becomes,

2 HCl C CaCO3

calcite

! CaCC C 2 Cl� C CO2(aq) C H2O : (15.14)

According to this reaction, adding HCl to the fluid no longer affects pH. Instead,

calcite dissolves to neutralize the acid, leaving CaCC and CO2(aq) in solution

(Fig. 15.7).

In nature, the fluid would begin to exsolve CO2(g),

CO2(aq) ! CO2(g) ; (15.15)

once the CO2(aq) activity has built up sufficiently to drive the reaction forward. In

this case, we can see that the acid introduced to the fluid is converted by reaction

with calcite into CO2 (or carbonic acid, equivalently) and then lost from the fluid

by effervescence.

As a second example, we consider how the presence of pyrite (FeS2) can serve

to buffer a fluid’s oxidation state. We set an initial system at 100 °C containing a 1
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molal NaCl solution in equilibrium with 0.2 moles (about 5 cm3) of pyrite and a

small amount of hematite (Fe2O3). In REACT, the procedure is

T = 100

swap Pyrite for Fe++

swap Hematite for O2(aq)

200 free mmol Pyrite

1 free mmol Hematite

pH = 8

Cl- = 1 molal

Na+ = 1 molal

SO4-- = 0.001 molal

go

The reaction between pyrite and hematite fixes the initial oxidation state to a

reducing value (logfO2
D �54). We then set a reaction path in which we add

oxygen to the fluid

(cont’d)

react 800 mmol of O2(aq)

go

simulating what might happen, for example, if O2 were to diffuse into a reducing

geologic formation.

Figure 15.8 shows the calculation results, and in Figure 15.9 the reaction path is

projected onto an fO2
–pH diagram drawn for the Fe–S–H2O system. (To project

the path onto the diagram, we complete the reaction path, start ACT2, enter the

commands

T = 100

swap O2(g) for O2(aq)

diagram Fe++ on O2(g) vs pH

log a Fe++ = -6

log a SO4-- = -3

speciate SO4-- over X-Y

x from 0 to 9

y from -65 to 2

trace

and type go.) In the earliest portion of the path, the system responds to the addition

of oxygen by shifting quickly toward low pH. The system’s rapid acidification

results from the production of HC according to the reaction,

7=2 O2(aq) C FeS2

pyrite

C H2O ! FeCC C 2 SO��
4 C 2 HC (15.16)
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Fig. 15.8. Results of reacting O2 at 100 °C into a system containing pyrite. Pyrite dissolves
(top) with addition of O2. The reaction (bottom) produces bisulfate ions and ferric species
(FeClC and FeCC), which in turn are consumed at the end of the path to form hematite.

(lumping FeClC together with FeCC). As the system moves to lower pH, the

bisulfate species HSO�
4 becomes more abundant than SO��

4 because of protonation

of the sulfate species,

SO��
4 C HC ! HSO�

4 : (15.17)

At pH less than about 3, where bisulfate predominates, the dominant reaction is

7=2 O2(aq) C FeS2

pyrite

C H2O ! FeCC C 2HSO�
4 : (15.18)

Since the reaction written in terms of HSO�
4 produces no HC, the shift to lower pH

slows and then ceases as the SO��
4 in solution is depleted.

At this point, the solution remains almost fixed in oxidation state and pH, ac-

cumulating FeCC and HSO�
4 as the addition of oxygen causes pyrite to dissolve.

When the pyrite is exhausted, the oxygen fugacity begins to rise rapidly. As oxygen

is added, it is consumed in converting the dissolved ferrous iron to hematite,
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1=2 O2(aq) C 2 FeCC C 2 H2O ! Fe2O3

hematite

C 4 HC ; (15.19)

which further acidifies the solution. Only when the ferrous iron is exhausted does

the fluid become fully oxidized.

If we eliminate the pyrite and retrace the calculation

(cont’d)

dump

react 1 mmol of O2(aq)

go

we find that just a small amount of O2 is sufficient to oxidize the system. In this

case, pH changes little over the reaction path.

15.3 Gas buffers

With a final example, we consider how the presence of a gas phase can serve

as a chemical buffer. A fluid, for example, might maintain equilibrium with the

atmosphere, soil gas in the root zone, or natural gas reservoirs in deep strata. Gases

such as O2 and H2 can fix oxidation state, H2S can set the activity of dissolved

sulfide, and CO2 (as we demonstrate in this section) can buffer pH.
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Fig. 15.10. Calculated effects on pH of reacting sodium hydroxide into an initially acidic
solution that is either closed to mass transfer (fine line) or in equilibrium with atmospheric
CO2 (bold line).

In this experiment, we take an acidic water in equilibrium with atmospheric CO2

and titrate NaOH into it. In REACT, the commands

pH = 2

swap CO2(g) for HCO3-

log f CO2(g) = -3.5

Na+ = .2 molal

balance on Cl-

react 1 mole NaOH

go

set up the calculation, assuming an atmospheric CO2 fugacity of 10�3:5.

As shown in Figure 15.10, the fluid quickly becomes alkaline, approaching a pH

of 14. Since the fluid’s carbonate content is small, about 10 �molal, little beyond

the fluid’s initial HC content

NaOH C HC ! NaC C H2O (15.20)

is available to buffer pH. Once the HC is exhausted, adding NaOH to the solution

NaOH ! NaC C OH� (15.21)

simply produces OH�, driving the pH to high values.

Now we consider the same reaction occurring in a water that maintains equilib-

rium with atmospheric CO2. With the REACT commands

(cont’d)

fix fugacity CO2(g)

go
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of a reaction path in which NaOH is added to a fluid that maintains equilibrium with CO2

in the atmosphere.

we fix the CO2 fugacity to its atmospheric value and retrace the path. In this case

(Fig. 15.10), the pH rises initially but then levels off, approaching a value of 10.

The latter path differs from the closed system calculation because of the effect of

CO2(g) dissolving into the fluid. In the initial part of the calculation, the CO2(aq)

in solution reacts to form HCO�
3 in response to the changing pH. Since the fluid is

in equilibrium with CO2(g) at a constant fugacity, however, the activity of CO2(aq)

is fixed. To maintain this activity, the model transfers CO2

CO2(g) ! CO2(aq) (15.22)

from gas to fluid, replacing whatever CO2(aq) has reacted to form HCO�
3 .

The overall reaction for the earliest portion of the path, obtained by the slopes-

of-the-lines method, is,

2 NaOH C CO2(g) ! 2 NaC C HCO�
3 C OH� : (15.23)

In contrast to the unbuffered case (Reaction 15.21), two NaOHs are required to

produce each OH� ion. As pH continues to increase, the HCO�
3 reacts to produce

CO��
3 , as shown in Figure 15.11. At this point, a second overall reaction,

2 NaOH C CO2(g) ! 2 NaC C CO��
3 C H2O (15.24)

becomes increasingly important. According to this reaction, adding NaOH in-

creases the fluid’s sodium and carbonate contents but does not affect pH. The CO2,

an acid gas, neutralizes the alkaline NaOH as fast as it is added. Once Reaction

15.24 comes to dominate Reaction 15.23, pH ceases to change. As long as CO2 is

available in the gas reservoir, the fluid maintains the buffered pH.
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Kinetics of dissolution and precipitation

To this point we have measured reaction progress parametrically in terms of the

reaction progress variable �, which is dimensionless. When in Chapter 13 we

reacted feldspar with water, for example, we tied reaction progress to the amount of

feldspar that had reacted and expressed our results along that coordinate. Studying

reactions in this way is in many cases perfectly acceptable. But what if we want to

know how much time it took to reach a certain point along the reaction path? Or,

when modeling the reaction of granite with rainwater, how can we set the relative

rates at which the various minerals in the granite dissolve? In such cases, we need

to incorporate reaction rate laws from the field of geochemical kinetics.

The differences between the study of thermodynamics and kinetics might be il-

lustrated (e.g., Lasaga, 1981a) by the analogy of rainfall on a mountain. On the

mountaintop, the rainwater contains a considerable amount of potential energy.

With time, it flows downhill, losing energy (to be precise, losing hydraulic poten-

tial, the mechanical energy content of a unit mass of water; Hubbert, 1940), until it

eventually reaches the ocean, its lowest possible energy level. The thermodynamic

interpretation of the process is obvious: the water seeks to minimize its energy

content.

But how long will it take for the rainfall to reach the ocean? The rain might enter

a swift mountain stream, flow into a river, and soon reach the sea. It might infiltrate

the subsurface and migrate slowly through deep aquifers until it discharges in a

distant valley, thousands of years later. Or, perhaps it will find a faster route through

a fracture network or flow through an open drill hole. There are many pathways,

just as there are many mechanisms by which a chemical reaction can proceed.

Clearly, the questions addressed by geochemical kinetics are more difficult to

answer than are those posed in thermodynamics.

In geochemical kinetics, the rates at which reactions proceed are given (in units

such as mol s�1 or mol yr�1) by rate laws, as discussed in the next section.

Kinetic theory can be applied to study reactions among the species in solution.

231
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We might, for example, study the rate at which the ferrous ion FeCC oxidizes by

reaction with O2 to produce the ferric species FeCCC. Since the reaction occurs

within a single phase, it is termed homogeneous. Reactions involving more than

one phase (including the reactions by which minerals precipitate and dissolve and

those involving a catalyst) are called heterogeneous.

In this chapter we consider the problem of the kinetics of the heterogeneous

reactions by which minerals dissolve and precipitate. This topic has received a

considerable amount of attention in geochemistry, primarily because of the slow

rates at which many minerals react and the resulting tendency of waters, especially

at low temperature, to be out of equilibrium with the minerals they contact. We first

discuss how rate laws for heterogeneous reactions can be integrated into reaction

models and then calculate some simple kinetic reaction paths. In Chapter 26,

we explore a number of examples in which we apply heterogeneous kinetics to

problems of geochemical interest.

As discussed already in Chapter 7, redox reactions constitute a second class of

geochemical reactions that in many cases proceed too slowly in the natural envi-

ronment to attain equilibrium. The kinetics of redox reactions, both homogeneous

and those catalyzed on a mineral surface are considered in detail in the next chap-

ter, Chapter 17, and the role microbial life plays in catalyzing redox reactions is

discussed in Chapter 18.

16.1 Kinetic rate laws

Despite the authority apparent in its name, no single “rate law” describes how

quickly a mineral precipitates or dissolves. The mass action equation, which de-

scribes the equilibrium point of a mineral’s dissolution reaction, is independent of

reaction mechanism. A rate law, on the other hand, reflects our idea of how a re-

action proceeds on a molecular scale. Rate laws, in fact, quantify the slowest or

“rate-limiting” step in a hypothesized reaction mechanism.

Different reaction mechanisms can predominate in fluids of differing composi-

tion, since species in solution can serve to promote or inhibit the reaction mecha-

nism. For this reason, there may be a number of valid rate laws that describe the

reaction of a single mineral (e.g., Brady and Walther, 1989). It is not uncommon

to find that one rate law applies under acidic conditions, another at neutral pH, and

a third under alkaline conditions. We may discover, furthermore, that a rate law

measured for reaction with deionized water fails to describe how a mineral reacts

with electrolyte solutions.

In studying dissolution and precipitation, geochemists commonly consider that

a reaction proceeds in five generalized steps:
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(i) diffusion of reactants from the bulk fluid to the mineral surface,

(ii) adsorption of the reactants onto reactive sites,

(iii) a chemical reaction involving the breaking and creation of bonds,

(iv) desorption of the reaction products, and

(v) diffusion of the products from the mineral surface to the bulk fluid

(e.g., Brezonik, 1994). The adsorption and desorption processes (steps 2 and 4)

are almost certainly rapid, so two classes of rate-limiting steps are possible (e.g.,

Lasaga, 1984). If the reaction rate depends on how quickly reactants can reach the

surface by aqueous diffusion and the products can move away from it (steps 1 and

5), the reaction is said to be “transport controlled.” If, on the other hand, the speed

of the surface reaction (step 3) controls the rate, the reaction is termed “surface

controlled.” A reaction may be revealed to be transport controlled if its rate in the

laboratory varies with stirring speed, or if a low value is found for its activation

energy (defined later in this section).

Reactions for common minerals fall in both categories, but many important cases

tend, except under acidic conditions, to be surface controlled (e.g., Aagaard and

Helgeson, 1982; Stumm and Wollast, 1990). For this reason and because of their

relative simplicity, we will consider in this chapter rate laws for surface-controlled

reactions. The problem of integrating rate laws for transport-controlled reactions

into reaction path calculations, nonetheless, is complex and interesting (Steefel

and Lasaga, 1994), and warrants further attention.

Almost all published rate laws for surface-controlled reactions are presented in

a form derived from transition state theory (Lasaga, 1981a, 1981b, 1984, 1998;

Aagaard and Helgeson, 1982). According to the theory, a mineral dissolves by a

mechanism involving the creation and subsequent decay of an activated complex,

which is less stable (of higher free energy per mole) than either the bulk mineral

or product species. The rate at which the activated complex decays controls how

quickly the mineral dissolves.

The dissolution rate, according to the theory, does not depend on the mineral’s

saturation state. The precipitation rate, on the other hand, varies strongly with

saturation, exceeding the dissolution rate only when the mineral is supersaturated.

At the point of equilibrium, the dissolution rate matches the rate of precipitation

so that the net rate of reaction is zero. There is, therefore, a strong conceptual link

between the kinetic and thermodynamic interpretations: equilibrium is the state in

which the forward and reverse rates of a reaction balance.

To formulate a kinetic reaction path, we consider one or more minerals A Ek
whose rates of dissolution and precipitation are to be controlled by kinetic rate

laws. We wish to avoid assuming that the minerals A Ek
are in equilibrium with the
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system, so they do not appear in the basis (i.e., A Ek
… Ak). We can write a reaction,

A Ek
� �

w Ek
Aw C

X
i

�
i Ek
Ai C

X
k

�
k Ek
Ak C

X
m

�
m Ek
Am (16.1)

for A Ek
in terms of the current basis (Aw , Ai , Ak and Am) and calculate the

reaction’s equilibrium constantKEk
.

Following transition state theory, we can write a rate law giving the dissolution

rate rEk
of mineral A Ek

; the rate is the negative time rate of change of the mineral’s

mole number nEk
. The law takes the form,

rEk
D �dnEk

dt
D .AS kC/ Ek

EjY
.m Ej

/
P Ej Ek

 
1 � Q Ek

KEk

!
: (16.2)

Here, AS is the mineral’s surface area (cm2) and kC is the intrinsic rate constant

for the reaction. The concentrations of certain species A Ej
, which make up the rate

law’s promoting and inhibiting species, are denotedm Ej
, and P Ej Ek

are those species’

exponents, the values of which are derived empirically. Q Ek
is the activity product

for Reaction 16.1 (Eqn. 3.41). In the absence of promoting and inhibiting species,

the units of the rate constant are mol cm�2 s�1, and in any case these are the units

of the product of kC and the… term.

The promoting and inhibiting species A Ej
are most commonly aqueous species,

but may also be mineral, gas, or surface species. For aqueous, mineral, and surface

species, m Ej
is formally the volumetric concentration, in units such as mol cm�3

or mol l�1, but in geochemical modeling we commonly carry this variable as

the species’ molality. Sometimes, especially when A Ej
is HC or OH�, m Ej

in this

equation is understood to stand for the species’ activity rather than its molality. For

a gas species,m Ej
represents partial pressure or fugacity.

There are three functional parts of Equation 16.2. The first grouping (AS kC)

requires that the reaction proceed at a rate proportional to the surface area and the

rate constant. The surface area of a sample can be measured by a nitrogen adsorp-

tion technique (the BET method) or estimated from geometric considerations, and

the rate constant is determined experimentally. It is interesting to note that when-

ever AS is zero, the reaction rate vanishes. A mineral that does not exist, therefore,

cannot begin to precipitate until crystal nuclei form. Various theories have been

suggested for describing the rate at which nuclei might develop spontaneously or

on the surfaces of other minerals (e.g., Berner, 1980) and it is possible to integrate

the theories into reaction models (Steefel and Van Cappellen, 1990). Considerable

uncertainties exist in applying nucleation theory to practical cases, however, and

we will not include the theory in the scope of our discussion.

The … grouping in Equation 16.2 represents the role that species in solution
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play in promoting the reaction or inhibiting its progress. A species can promote the

reaction by catalyzing formation of the activated complex (in which case the cor-

responding P Ej Ek
is positive) or it can inhibit the reaction by impeding its formation

(P Ej Ek
is negative). The final grouping represents the thermodynamic drive for reac-

tion. When mineral A Ek
is supersaturated, Q Ek

> KEk
and the mineral precipitates.

When the mineral is undersaturated, it dissolves because Q Ek
< KEk

.

The rate constant in Equation 16.2 can be related to temperature by the phe-

nomenological Arrhenius equation

kC D Ae�EA=RTK (16.3)

(e.g., Lasaga, 1981a). Here, A is the preexponential factor (mol cm�2 s�1), EA is

the activation energy (J mol�1), R is the gas constant (8.3143 J K�1 mol�1), and

TK is absolute temperature (K). The values ofA and EA are determined for a given

reaction by measuring kC at several temperatures and fitting the data in semilog

coordinates.

In an example of the forms rate laws can take, we consider the reaction of albite

(NaAlSi3O8), the dissolution of which was studied by Knauss and Wolery (1986).

They found that the reaction proceeds according to different rate laws, depending

on pH. From their results, we can write a rate law valid at pH values more acidic

than about 1.5 as,

ralb D AS kC aHC

�
1 � Q

K

�
; (16.4)

where at 70 °C, kC D 10�12:2 mol cm�2 s�1. In this case, just one species (HC)

appears in the… terms of Equation 16.2; the corresponding value of the exponent

PHC is one. In the pH range of about 1.5 to 8, a second reaction mechanism is

predominant. In the corresponding rate law,

ralb D AS kC

�
1 � Q

K

�
; (16.5)

in which kC D 10�15:1 mol cm�2 s�1 at 70 °C, there are no species in the …

terms. The reaction rate, therefore, is not affected by solution composition. A third

law,

ralb D AS kC a
�1=2

HC

�
1 � Q

K

�
; (16.6)

with kC D 10�19:5 at 70 °C, describes the dominant mechanism at higher pH. The

exponent PHC in this case is �0:5.

Some caveats about the form presented for the rate law (Eqn. 16.2) are worth

noting. First, although Equation 16.2 is linear in Q Ek
, transition state theory does

not demand that rate laws take such a form. There are nonlinear forms of the rate
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law that are equally valid (e.g., Merino et al., 1993; Lasaga et al., 1994) and that in

some cases may be required to explain observations. Specifically, the termQ Ek
=KEk

can appear raised to an arbitrary (not necessarily integer) exponent, as can the en-

tire .1 � Q Ek
=KEk

/ term (provided that its original sign is preserved). Such rate

expressions have seldom been invoked in geochemistry, if only because most ex-

periments have been designed to study the dissolution reaction under conditions

far from equilibrium, where there is no basis for observing nonlinear effects. Non-

linear rate laws can, nonetheless, be readily incorporated into reaction models, as

described in Appendix 4.

Second, in deriving Equation 16.2 from transition state theory, it is necessary

to assume that the overall reaction proceeds on a molecular scale as a single

elementary reaction or a series of elementary reactions (e.g., Lasaga, 1984; Nagy

et al., 1991). In general, the elementary reactions that occur as a mineral dissolves

and precipitates are not known. Thus, even though the form of Equation 16.2 is

convenient and broadly applicable for explaining experimental results, it is not

necessarily correct in the strictest sense.

16.2 From laboratory to application

The great value of kinetic theory is that it frees us from many of the constraints

of the equilibrium model and its variants (partial equilibrium, local equilibrium,

and so on; see Chapter 2). In early studies (e.g., Lasaga, 1984), geochemists were

openly optimistic that the results of laboratory experiments could be applied di-

rectly to the study of natural systems. Transferring the laboratory results to field

situations, however, has proved to be much more challenging than many first imag-

ined.

Many minerals have been found to dissolve and precipitate in nature at dramati-

cally different rates than they do in laboratory experiments. As first pointed out by

Pačes (1983) and confirmed by subsequent studies, for example, albite weathers in

the field much more slowly than predicted on the basis of reaction rates measured

in the laboratory. The discrepancy can be as large as four orders of magnitude

(Brantley, 1992, and references therein). As we calculate in Chapter 26, further-

more, the measured reaction kinetics of quartz (SiO2) suggest that water should

quickly reach equilibrium with this mineral, even at low temperatures. Equilibrium

between groundwater and quartz, however, is seldom observed, even in aquifers

composed largely of quartz sand.

Geochemists (e.g., Aagaard and Helgeson, 1982) commonly attribute such dis-

crepancies to difficulties in representing the surface area AS of minerals in natural

samples. In the laboratory, the mineral is fresh and any surface coatings have been

removed. The same mineral in the field, however, may be shielded with oxide, hy-
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droxide, or organic coatings. It may be occluded by contact with other materials,

including reaction products, organic matter, and other grains. In addition, the aged

surface of the natural sample is probably smoother than the laboratory material and

hence contains fewer kinks and sharp edges, which are highly reactive.

Even where it is not occluded, the mineral surface may not be reactive. In the va-

dose zone, the surface may not be fully in contact with water or may contact water

only intermittently. In the saturated zone, a mineral may touch virtually immobile

water within isolated portions of the sediment’s pore structure. Fluid chemistry in

such microenvironments may bear little relationship to the bulk chemistry of the

pore water. Since groundwater flow tends to be channeled through the most per-

meable portions of the subsurface, furthermore, fluids may bypass many or most

of the mineral grains in a sediment or rock. The latter phenomenon is especially

pronounced in fractured rocks, where only the mineral surfaces lining the fracture

may be reactive.

There are other important factors beyond the state of the surface that may lead

to discrepancies between laboratory and field studies. Measurement error in the

laboratory, first of all, is considerable. Brantley (1992) notes that rate constants

determined by different laboratories generally agree to within only a factor of about

30. Agreement to better than a factor of 5, she reasons, might not be an attainable

goal.

There is no certainty, furthermore, that the reaction or reaction mechanism stud-

ied in the laboratory will predominate in nature. Data for reaction in deionized

water, for example, might not apply if aqueous species present in nature promote

a different reaction mechanism, or if they inhibit the mechanism that operated in

the laboratory. Dove and Crerar (1990), for example, showed that quartz dissolves

into dilute electrolyte solutions up to 30 times more quickly than it does in pure

water. Laboratory experiments, furthermore, are nearly always conducted under

conditions in which the fluid is far from equilibrium with the mineral, although

reactions in nature proceed over a broad range of saturation states across which the

laboratory results may not apply.

Further error is introduced if reactions distinct from those for which data is avail-

able affect the chemistry of a natural fluid. Consider as an example the problem of

predicting the silica content of a fluid flowing through a quartz sand aquifer. There

is little benefit in modeling the reaction rate for quartz if the more reactive minerals

(such as clays and zeolites) in the aquifer control the silica concentration.

Finally, whereas most laboratory experiments have been conducted in largely

abiotic environments, the action of bacteria may control reaction rates in nature

(e.g., Chapelle, 2001). In the production of acid drainage (see Chapter 31), for ex-

ample, bacteria such as Thiobacillus ferrooxidans control the rate at which pyrite

(FeS2) oxidizes (Taylor et al., 1984; Okereke and Stevens 1991). Laboratory ob-
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servations of how quickly pyrite oxidizes in abiotic systems (e.g., Williamson and

Rimstidt, 1994, and references therein), therefore, might poorly reflect the oxida-

tion rate in the field.

16.3 Numerical solution

The procedure for tracing a kinetic reaction path differs from the procedure for

paths with simple reactants (Chapter 13) in two principal ways. First, progress in

the simulation is measured in units of time t rather than by the reaction progress

variable �. Second, the rates of mass transfer, instead of being set explicitly by the

modeler (Eqns. 13.5–13.7), are computed over the course of the reaction path by a

kinetic rate law (Eqn. 16.2).

From Equations 16.1 and 16.2, we can write the instantaneous rate of change in

the system’s bulk composition as,

dMw

dt
D
X

Ek

�
w Ek
rEk

(16.7)

dMi

dt
D
X

Ek

�
i Ek
rEk

(16.8)

dMk

dt
D
X

Ek

�
k Ek
rEk
: (16.9)

In stepping forward from t 0 to a new point in time t , the instantaneous rate will

change as the fluid’s chemistry evolves. Rather than carrying the rate at t 0 over

the step, it is more accurate (e.g., Richtmyer, 1957; Peaceman, 1977) to take the

average of the rates at t 0 and t . In this case, the new bulk composition (at t ) is given

from its previous value (at t 0) and Equations 16.7–16.9 by,

Mw.t/ D Mw.t
0/C .t � t 0/

2

X
Ek

�
w Ek

h
rEk
.t/C rEk

.t 0/
i

(16.10)

Mi .t/ D Mi .t
0/C .t � t 0/

2

X
Ek

�
i Ek

h
rEk
.t/C rEk

.t 0/
i

(16.11)

Mk.t/ D Mk.t
0/C .t � t 0/

2

X
Ek

�
k Ek

h
rEk
.t/C rEk

.t 0/
i
: (16.12)

We use these relations instead of Equations 13.5–13.7 when tracing a kinetic path.

To solve for the chemical system at t , we use Newton–Raphson iteration to

minimize a set of residual functions, as discussed in Chapter 4. For a kinetic
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path, the residual functions are derived by combining Equations 4.22–4.23 with

Eqns. 16.10–16.11, giving,

Rw D nw

0
@55:5C

X
j

�wjmj

1
A �Mw.t

0/ � .t � t 0/
2

X
Ek

�
w Ek

h
rEk
.t/C rEk

.t 0/
i

(16.13)

Ri D nw

0
@mi C

X
j

�ijmj

1
A �Mi .t

0/ � .t � t 0/
2

X
Ek

�
i Ek

h
rEk
.t/C rEk

.t 0/
i
:

(16.14)

In order to derive the corresponding Jacobian matrix, we need to differentiate rEk
(Eqn. 16.2) with respect to nw and mi . Taking advantage of the relations

@mj

@nw

D 0 and
@mj

@mi

D �ijmj

mi

(16.15)

(Eqn. 4.25), and

@Q Ek

@nw
D 0 and

@Q Ek

@mi
D �

i Ek
Q Ek

mi
(16.16)

(following from the definition of the activity product; Eqn. 3.41), we can show that

drEk
=dnw D 0 and

drEk

dmi
D .AS kC/ Ek

mi

EjY
.m Ej

/
P Ej Ek

2
64��i Ek

Q Ek

KEk

C

0
B@X

Ej

�
i Ej
P Ej Ek

1
CA
 
1 � Q Ek

KEk

!375 :

(16.17)

As discussed in Section 4.3, the entries in the Jacobian matrix are given by dif-

ferentiating the residual functions (Eqns. 16.13–16.14) with respect to the indepen-

dent variables nw and mi . The resulting entries are,

Jww D @Rw

@nw

D 55:5C
X

j

�wjmj (16.18)

Jwi D @Rw

@mi
D nw

mi

X
j

�wj �ijmj � .t � t 0/
2

X
Ek

�
w Ek

drEk

dmi
(16.19)
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Jiw D @Ri

@nw
D mi C

X
j

�ijmj (16.20)

Ji i 0 D @Ri

@mi 0
D nw

0
@ıi i 0 C

X
j

�ij �i 0jmj =mi 0

1
A � .t � t 0/

2

X
Ek

�
i Ek

drEk

dmi 0
;

(16.21)

where the values drEk
=dmi are given by Equation 16.17. Equations 16.18–16.21

take the place of Equations 4.26–4.29 in a kinetic model. As before (Eqn. 4.30),

ıi i 0 is the Kronecker delta function.

The time-stepping proceeds as previously described (Chapter 13), with the slight

complication that the surface areas AS of the kinetic minerals must be evaluated

after each iteration to account for changing mineral masses. For polythermal paths,

each rate constant kC must be set before beginning a time step according to the

Arrhenius equation (Eqn. 16.3) to a value corresponding to the temperature at the

new time level.

16.4 Example calculations

In an example of a kinetic reaction path, we calculate how quartz sand reacts at

100 °C with deionized water. According to Rimstidt and Barnes (1980), quartz

reacts according to the rate law,

rqtz D AS kC

�
1 � Q

K

�
; (16.22)

with a rate constant kC at this temperature of about 2�10�15 mol cm�2 s�1. From

their data, we assume that the sand has a specific surface area of 1000 cm2 g�1.

In REACT, we set a system containing 1 kg of water and 5 kg of quartz

time begin = 0 days, end = 5 days

T = 100

SiO2(aq) = 1 umolal

react 5000 g Quartz

kinetic Quartz rate_con = 2.e-15 surface = 1000

go

and allow it to react for five days. Figure 16.1 shows the calculation results. Quartz

dissolves with time, adding a small amount of SiO2(aq) to solution. The increasing

silica content of the solution causes the saturation stateQ=K of quartz to increase,

slowing the reaction rate. After five days, the reaction has approached equilibrium

(Q=K ' 1) and the reaction nearly ceases.

We can calculate the reaction rate according to Equation 16.22 and compare it
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Fig. 16.1. Results of reacting quartz sand at 100 °C with deionized water, calculated
according to a kinetic rate law. Top diagram shows how the saturation stateQ=K of quartz
varies with time; bottom plot shows change in amount (mmol) of quartz in system (bold
line). The slope of the tangent to the curve (fine line) is the instantaneous reaction rate, the
negative of the dissolution rate, shown at one day of reaction.

with the calculation results. The required quantities at one day of reaction are,

AS D 5000 g � 1000 cm2 g�1 D 5 � 106 cm2

kC D 2 � 10�15 mol cm�2 s�1

Q=K D 10�0:182 D 0:657 :

(16.23)

Entering these values into the rate equation (Eqn. 16.22) gives the dissolution rate,

rqtz D .5 � 106 cm2/ � .2 � 10�15 mol cm�2 s�1/ � .1 � 0:657/
D 3:43 � 10�9 mol s�1 D 0:30 mmol day�1 :

(16.24)

We can confirm that on a plot of the mole number nqtz for quartz versus time

(Fig. 16.1), this value is the slope of the tangent line and hence the dissolution rate

�dnqtz=dt we expect.

In a slightly more complicated example, we calculate the rate at which albite

dissolves at 70 °C into an acidic NaCl solution. We use the rate law shown in

Equation 16.4, which differs from Equation 16.22 by the inclusion of the aHC term,

and a rate constant of 6:3 � 10�13 mol cm�2 s�1 determined for this temperature
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by Knauss and Wolery (1986). We set pH to a constant value of 1.5, as though

this value were maintained by an internal buffer or an external control such as a

pH-stat, and allow 250 grams of the mineral to react with 1 kg of water for thirty

days.

The procedure in REACT is

time begin = 0 days, end = 30 days

T = 70

pH = 1.5

0.1 molal Cl-

0.1 molal Na+

1 umolal SiO2(aq)

1 umolal Al+++

react 250 grams of "Albite low"

kinetic "Albite low" rate_con = 6.3e-13, apower(H+) = 1 n

surface = 1000

fix pH

go

We can quickly verify the calculation results (Fig. 16.2). Choosing day 15 of the

reaction,

AS D 250 g � 1000 cm2 g�1 D 2:5 � 105 cm2

kC D 6:3 � 10�13 mol cm�2 s�1

aHC D 10�1:5 D 3:16 � 10�2

.1�Q=K/ D .1� 10�10:1/ ' 1 :

(16.25)

Substituting into Equation 16.4,

ralb D .2:5� 105 cm2/ � .6:3� 10�13 mol cm�2 s�1/ �
.3:16 � 10�2/ � .1/

D 5:0� 10�9 mol s�1 D 0:43 mmol day�1 ;

(16.26)

we find the dissolution rate �dnalb=dt shown in Figure 16.2. Note that the fluid in

this example remains so undersaturated with respect to albite that the value ofQ=K

is nearly zero and hence has virtually no influence on the reaction rate. For this

reason, the reaction rate remains nearly constant over the course of the calculation.

16.5 Modeling strategy

A practical consideration in reaction modeling is choosing the extent to which

reaction kinetics should be integrated into the calculations. On the one hand, kinetic
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Fig. 16.2. Results of reacting albite at 70 °C with an NaCl solution maintained at pH 1.5,
calculated as a kinetic reaction path. Top diagram shows how the saturation index of albite
varies with time; bottom plot shows change in amount (mmol) of albite.

theory is an important generalization of the equilibrium model that lets us account

for the fact that fluids and minerals do not necessarily coexist at equilibrium. On

the other hand, the theory can add considerable complexity to developing and

evaluating a reaction model.

We might take a purist’s approach and attempt to use kinetic theory to describe

the dissolution and precipitation of each mineral that might appear in the calcu-

lation. Such an approach, although appealing and conceptually correct, is seldom

practical. The database required to support the calculation would have to include

rate laws for every possible reaction mechanism for each of perhaps hundreds

of minerals. Even unstable minerals that can be neglected in equilibrium models

would have to be included in the database, since they might well form in a kinetic

model (see Section 26.4, Ostwald’s Step Rule). If we are to allow new minerals to

form, furthermore, it will be necessary to describe how quickly each mineral can

nucleate on each possible substrate.

The modeling software would have to trace a number of reactions occurring at

broadly different rates. Although certainly feasible, such a calculation can present

practical difficulties, especially at the onset of a reaction path, if the software must

take very small steps to accurately trace the progress of the faster reactions. For

each calculation, furthermore, we would need to be able to set initial conditions,



244 Kinetics of dissolution and precipitation

requiring knowledge of hydrologic factors (flow rates, residence times, and so on)

that in real life are not always available.

A worthwhile strategy for conceptualizing kinetic reaction paths is to divide

mineral reactions into three groups. The first group contains the reactions that

proceed quickly over the time span of the calculation. We can safely assume that

these minerals remain in equilibrium with the fluid. A second group consists of

minerals that react negligibly over the calculation and hence may be ignored or

“suppressed.” The reactions for the remaining minerals fall in the third group, for

which we need to account for reaction kinetics. Our time is best spent attempting

to define the rates at which minerals in the latter group react.



17

Redox kinetics

Reaction kinetics enter into a geochemical model, as we noted in the previous chap-

ter, whenever a reaction proceeds quickly enough to affect the distribution of mass,

but not so quickly that it reaches the point of thermodynamic equilibrium. In Part

I of this book, we considered two broad classes of reactions that in geochemistry

commonly deviate from equilibrium.

The first class, discussed in detail in Chapter 6, was reaction between a fluid and

the minerals it contacts. The kinetics of the reactions by which minerals dissolve

and precipitate was the subject of the preceding chapter (Chapter 16). The second

class of reactions commonly observed to be in disequilibrium in natural waters,

as discussed in Chapter 7, is redox reactions. The subject of this chapter is mod-

eling the rates at which redox reactions proceed within the aqueous solution, or

when catalyzed on a mineral surface or by the action of an enzyme. In the follow-

ing chapter (Chapter 18), we consider the related question of how rapidly redox

reactions proceed when catalyzed in the geosphere by the action of microbial life.

Kinetic redox reactions are simulated within the context of a redox disequilib-

rium model, a geochemical model constructed to account for disequilibrium among

species of differing redox state, as described in Chapter 7. In such models, one or

more redox coupling reactions are disabled. It is worth noting that the development

here, although cast in terms of redox reactions, can be applied equally well to de-

scribe the kinetics of other reaction types, such as the formation and decomposition

of complex species. If a complex species is set in the thermodynamic database to

result from a coupling reaction, that couple can be disabled and the species’ cre-

ation or destruction in a simulation controlled by a kinetic rate law, even though

the reaction in fact involves neither oxidation nor reduction.

245
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17.1 Rate laws for oxidation and reduction

The rate law for a redox reaction predicts the rate at which a species is transformed

by a specific reaction mechanism, or combination of mechanisms, from one oxi-

dation state to another. For example, Wehrli and Stumm (1988, 1989) studied the

oxidation of vanadyl (VIV) to vanadate (VV) by reaction with dissolved O2.

They showed this process can proceed in aqueous solution by the oxidation of

the hydroxy complex VO.OH/C, according to the reaction

VO.OH/C C 1=4 O2(aq) C 3=2 H2O ! H2VO�
4 C 2 HC ; (17.1)

and the oxidation rate is given by the rate law,

rC D �
�

dMVIV

dt

�C

D
�

dMVV

dt

�C

D nw kC m�1
HC mVOCC mO2(aq) ;

(17.2)

where VOCC is the predominant vanadyl species at pH < 6. In this equation, rC

is the rate (mol s�1) at which the reaction proceeds in the forward direction, nw is

the number of kg of solvent water, kC is the rate constant (s�1, in this case), M is

a component mole number, and m represents a species’ molal concentration.

A set of concentration factors appears for the promoting and inhibiting species:

HC, VOCC, and O2(aq), in this case. Promoting and inhibiting species may, but do

not necessarily appear in the redox reaction. As noted in the previous chapter,m is

formally set in volumetric units, but in geochemical modeling is commonly taken

as the species’ molality. The rate constant kC has units such that multiplying it by

the molalities of the promoting and inhibiting species gives a value in molal s�1.

To trace a reaction path incorporating redox kinetics, we first set a model in re-

dox disequilibrium by disabling one or more redox couples, then specify the reac-

tion in question and the rate law by which it proceeds. To model the progress of Re-

action 17.1, for example, we would disable the redox couple between vanadyl and

vanadate species. In a model of the oxidation of FeCC by manganite (MnOOH),

we would likely disable the couples for both iron and manganese.

The redox reaction may include solvent water, basis and secondary aqueous

species, mineral and gas species, and uncomplexed and complexed surface sites.

Each such reaction, denoted Ek, can be written in a generalized form as,

0 ! �
w Ek
Aw C

X
i

�
i Ek
Ai C

X
j

�
j Ek
Aj C

X
l

�
l Ek
Al C

X
n

�
n Ek
An C

X
p

�
p Ek
Ap C

X
q

�
q Ek
Aq :

(17.3)

As before, species with negative reaction coefficients � are reactant species, which
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in a less abstract rendering would appear with positive coefficients on the left side

of the reaction, and those with positive coefficients are product species.

The reaction has an associated equilibrium constantKEk
, which is understood to

carry Boltzman terms accounting for electrostatic effects of any surface complexa-

tion reactions embedded within the redox reaction. The reaction’s activity product

at any point in the simulation is given by,

Q Ek
D a

�
w Ek

w �
iY
.�imi /

�
i Ek �

jY
.�jmj /

�
j Ek �

lY
a

�
l Ek

l
�

nY
f

�
n Ek

n �
pY
m

�
p Ek

p �
qY
m

�
q Ek

q

(17.4)

from the activities, fugacities, and molalities of the various reactant and product

species. The activity al of a mineral species of fixed composition is unity, and

hence the product function over l is carried here as a formality.

Experimental studies of reaction kinetics are commonly carried out under con-

ditions far from equilibrium, where the thermodynamic drive is strong and forward

reaction overwhelms reverse. Rate laws reported in the literature, such as Equa-

tion 17.2, therefore, generally represent the forward reaction rate. The laws can be

expressed in the general form,

rC
Ek

D nw .kC/ Ek

EjY
.m Ej

/
P Ej Ek ; (17.5)

where Ej indexes the promoting and inhibiting species, described in the previous

chapter (Chapter 16). Rate here is expressed in moles of the turnover of Reaction

17.3, per second.

In geochemical modeling, we prefer to use rate laws that predict the net rather

than the forward reaction rate, to avoid the possibility of a reaction running past

the point of equilibrium and continuing in a simulation, impossibly, against the

thermodynamic drive. The net reaction rate rEk
is the difference between the forward

rate, given by the rate law above, and the rate at which reaction proceeds in the

reverse direction,

rEk
D rC

Ek
� r�

Ek
: (17.6)

An important result of nonequilibrium thermodynamics (Boudard, 1976) is that

the ratio of the forward and reverse rates of a chemical reaction varies with the

reaction’s free energy change according to

rC
Ek

r�
Ek

D e�.! �GEk
=RTK/ (17.7)
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Here, �G Ek
is the free energy change of Reaction 17.3 (kJ mol�1), R is the gas

constant (8.3143 J K�1 mol�1), and TK is absolute temperature (K). Factor ! is

the reciprocal of the average stoichiometric number, which can be taken as the

number of times the rate determining step in Reaction 17.3 occurs per turnover of

the reaction (Jin and Bethke, 2005).

According to this equation, a reaction proceeds forward where its free energy

change is negative, and backward where the change is positive. At its equilibrium

point, where the free energy change is zero, the reaction proceeds forward and

backward at equal rates. This is a statement of Tolman’s principle of microscopic

reversibility (see Brezonik, 1994; Lasaga 1998).

Since, from the definitions of the ion activity product and equilibrium constant

(Chapter 3),

�G Ek
D RTK ln

Q Ek

KEk

; (17.8)

we can combine Equations 17.6 and 17.7 with the forward rate law 17.5 to give,

rEk
D nw .kC/ Ek

EjY
.m Ej

/
P Ej Ek

"
1�

 
Q Ek

KEk

!! #
: (17.9)

We see the addition of a thermodynamic term to Equation 17.5 gives the net

reaction rate, and hence a rate law of more general use in geochemical modeling

than a law describing only forward reaction.

It is worth noting that the values of both kC and ! in Equation 17.9 depend on

how the kinetic reaction (Reaction 17.3) is written. If we were to arbitrarily double

each of the reaction’s coefficients, the value of the rate constant kC would be cut in

half, because twice as many of the reactant species would be consumed, and twice

as many product species produced, per reaction turnover. The rate determining

step, furthermore, would occur twice as often per reaction turnover, doubling the

average stoichiometric number and requiring ! to be halved as well.

17.2 Heterogeneous catalysis

Contact with a mineral surface can in many cases allow a redox reaction to proceed

at a rate considerably greater than attainable within an aqueous solution itself. The

catalyzing mineral sorbs the electron donating and accepting species, then, within

its structure or along its surface, conducts electrons from one to the other. Where

electron transfer by this pathway proceeds more rapidly than via a direct transfer

in solution between colliding molecules, the redox reaction proceeds preferentially

by heterogeneous catalysis.
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Catalysis by such a mechanism can be accounted for in a kinetic rate equation

by including as a factor the catalyzing mineral’s surface area. Sung and Morgan

(1981), for example, in studying the oxidation on MnII by dissolved dioxygen,

MnCC C 1=4 O2(aq) C 3=2 H2O ! MnOOH.s/C 2 HC ; (17.10)

in the presence of a ferric oxide surface, suggested a rate law

rC D �
�

dMMnII

dt

�C

D AS kC m
2
OH� mO2(aq) mMnCC ; (17.11)

where AS is the ferric surface area (cm2).

Following development in the previous section, rate laws of this type can be

written in a general form,

rEk
D .AS kC/ Ek

EjY
.m Ej

/
P Ej Ek

"
1 �

 
Q Ek

KEk

!! #
; (17.12)

where the rate constant kC has units of mol cm�2 s�1, divided by the units of the

product term. As was the case for Equation 17.9, this equation predicts the net rate

of reaction, the difference between the forward and reverse rates.

To incorporate into a geochemical model a rate law of this form, it is common

practice to specify the specific surface area (cm2 g�1) of the catalyzing mineral.

The mineral’s surface areaAS, then, is determined over the course of the simulation

as the product of the specific surface area and the mineral’s mass.

A more robust way to write a rate law for a catalytically promoted reaction is

to include the concentrations of one or more surface complexes, in place of the

surface area AS. In this case, the simulation can account not only for the catalyzing

surface area, since the mass of a surface complex varies with the area of the sorbing

surface, but the effects of pH, competing ions, and so on.

Liger et al. (1999), for example, studied the reduction of uranyl (UVI) by dis-

solved ferrous iron,

UOCC
2 C 2 FeCC C 2 H2O ! U.OH/4 C 2 FeCCC ; (17.13)

in the presence of hematite (Fe2O3). They found reaction rate in their experiments

varies directly with the masses of the hydroxy species UO2OHC and FeOHC

sorbed to the hematite surface, according to the rate law,

rC D �
�

dMUVI

dt

�C

D nw kC m>FeO�UO2OH m>FeO�FeOH ; (17.14)

where >FeO � UO2OH and>FeO � FeOH are the species bonded to a deprotonated

surface site,>FeO�. The uranyl, in fact, may bond to a bidentate site as .>FeO/2 �
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UO2, but using the unidentate site provides an equally good fit to the experimental

results.

The rate law is of the form of Equation 17.5 in the previous section, and the

equivalent law giving the net reaction rate is Equation 17.9. We can, therefore,

account for the effect of catalysis on a redox reaction using the same formulation

as the case of homogeneous reaction, if we include surface complexes among the

promoting and inhibiting species. In Chapter 28, we consider in detail how this law

can be integrated into a reaction path simulation.

The example of uranyl reduction shows the utility of this approach. The con-

centrations of the two surface complexes vary strongly with pH, and this variation

explains the observed effect of pH on reaction rate, using a single value for the

rate constant kC. If we had chosen to let the catalytic rate vary with surface area,

according to 17.12, we could not reproduce the pH effect, even using HC and OH�

as promoting and inhibiting species (since the concentration of a surface species

depends not only on fluid composition, but the number of surface sites available).

We would in this case need to set a separate value for the rate constant at each pH

considered, which would be inconvenient.

17.3 Enzymes

An enzyme is an organic molecule, specifically a protein, that catalyzes a chemical

reaction. Or, more simply, an enzyme is a biological catalyst. The enzyme binds

with a reactant species, known as the substrate, to form a reactive intermediate

species. While bound, the substrate can transform to a reaction product that would

not form, or form very slowly, in the absence of the enzyme.

It is in principle possible for a free enzyme to promote reaction in a geochemical

system, but enzyme kinetics are invoked in geochemical modeling most commonly

to describe the effect of microbial metabolism. Microbes are sometimes described

from a geochemical perspective as self-replicating enzymes. This is of course a

considerable simplification of reality, as we will discuss in the following chapter

(Chapter 18), since even the simplest metabolic pathway involves a series of en-

zymes.

Nonetheless, if the microbial population is steady and geochemical conditions

such as pH are controlled, an enzymatic model can be appropriate. Bekins et al.

(1998), for example, considered how the mineralization of phenol,

C6H5OH.aq/

phenol

C 13=2 H2O ! 7=2 CH4.aq/

methane

C 5=2 HCO�
3 C 5=2 HC ; (17.15)

by methanogens in a laboratory experiment might be cast as an enzymatically
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promoted reaction, according to the rate law

rC D nw rmax

mC6H5OH.aq/

mC6H5OH.aq/ CKA
: (17.16)

They used a value of 4:1 � 10�11 molal s�1 for rmax, the maximum reaction rate,

and 1:4�10�5 molal forKA, the half saturation constant. We consider application

of this kinetic law in detail in Chapter 28.

Enzymatic catalysis can be represented more generally by the reaction between

a substrate A and enzyme E,

A C E
k1

�
k2

AE
k3! P C E (17.17)

to give the reactive intermediate AE, which can react to give the product species

P, releasing the enzyme unchanged. Here k1, k2, and k3 are the rate constants for

the constituent reactions in the direction shown, assuming the reactions behave as

though they are elementary.

The total enzyme concentration is the sum of the concentrations of the free and

bound forms, E and AE, and the ratio of the latter values depends only on the sub-

strate concentration and the three rate constants in 17.17. From these observations,

it follows that for an enzymatically promoted kinetic reaction Ek,

rC
Ek

D nw .kC/ Ek
mE

mA

mA CK
A Ek

(17.18)

gives the forward reaction rate (e.g., Brezonik, 1994; Lasaga, 1998). Here, mE is

the total enzyme concentration, the sum of the concentrations of E and AE, and

K
A Ek

is the half saturation constant (molal�1) describing binding between enzyme

and substrate.

This relation is the broadly known Michaelis–Menten equation. The effect of

substrate concentrationmA on the rate predicted by this equation follows a charac-

teristic pattern. Where substrate concentration is considerably smaller than the half

saturation constant .mA � K
A Ek
/, most of the enzyme is present in its free form E

and the concentration of the reactive intermediate EA depends on the availability

of the substrate A. In this case, .mA C K
A Ek
/ ' K

A Ek
and reaction rate rC given

by 17.18 is proportional to mA. For the opposite case, .mA 	 K
A Ek
/, little free

enzyme E is available to complex with A. Now, .mA C K
A Ek
/ ' mA and reaction

rate is invariant with respect to substrate concentration.

The enzyme concentrationmE in a geochemical application is likely to represent

in a general way the amount of biomass in the system. It is not common to attempt

to determine values for kC and mE separately; instead, the product rmax of the two

variables is generally reported, as was the case for Equation 17.16. As well, the
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value of K
A Ek

, formally given from the rate constants as .k2 C k3/=k1, is observed

by laboratory experiment.

In geochemical modeling, as already noted, we prefer rate laws giving the net

rather than forward reaction rate. Writing Reaction 17.17 to account for reverse

reaction,

A C E
k1

�
k2

AE
k3

�
k4

P C E ; (17.19)

the net reaction rate is given by,

rEk
D nw .kC/ Ek

mE

mA

K
A Ek

1C mA

K
A Ek

C mP

K
P Ek

"
1 �

 
Q Ek

KEk

!!#
(17.20)

(e.g., Cox, 1994), where K
P Ek

(molal�1) is the half saturation constant for the re-

verse reaction, equal to .k2 Ck3/=k4. For consistency with previous development,

we can include the possibility of promoting and inhibiting species, giving the rate

law for an enzymatic reaction,

rEk
D nw .kC/ Ek

EjY
.m Ej

/
P Ej Ek mE

mA

K
A Ek

1C mA

K
A Ek

C mP

K
P Ek

"
1�

 
Q Ek

KEk

!!#
(17.21)

in final form.

17.4 Numerical solution

Tracing a kinetic redox path is a matter of redistributing mass among the basis

entries, adding mass, for example, to oxidized basis entries at the expense of

reduced entries. The stoichiometry of the mass transfer is given by the kinetic

reaction 17.3, and the transfer rate rEk
is determined by the associated rate law

(Eqn. 17.9, 17.12, or 17.21).

A set of mass transfer coefficients E� describes how many of each of the basis

entries are created or destroyed (in which case the coefficient is negative) per

turnover of Reaction 17.3. The coefficients are given by,

E�
w Ek

D �
w Ek

C
X

j

�
j Ek
�wj C

X
l

�
l Ek
�wl C

X
n

�
n Ek
�wn C

X
p

�
p Ek
�wp C

X
q

�
q Ek
�wq

(17.22)
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(17.24)

As described in Chapter 3, �wj and so on are the reaction coefficients by which

species are made up from the current basis entries. Mass transfer coefficients

are not needed for gases in the basis, because no accounting of mass balance is

maintained on the external buffer, and the coefficients for the mole numbersMp of

the surface sites are invariably zero, since sites are neither created nor destroyed by

a properly balanced reaction.

Comparing the development here to the accounting for the kinetics of mineral

precipitation and dissolution presented in the previous chapter (Chapter 16), we

see the mass transfer coefficients E�
w Ek

and so on serve a function parallel to the

coefficients �
w Ek

, etc., in Reaction 16.1. The rates of change in the mole number of

each basis entry, accounting for the effect of each kinetic redox reaction carried in

the simulation, for example,

dMw

dt
D
X

Ek

E�
w Ek

rEk
(17.25)

dMi

dt
D
X

Ek

E�
i Ek
rEk

(17.26)

dMk

dt
D
X

Ek

E�
k Ek
rEk
; (17.27)

are given by substituting the mass transfer coefficients into Equations 16.7–16.9,

in place of the reaction coefficients.

Similar substitution into Equations 16.10–16.12 gives masses of the basis entries

at the end of a time step, Equations 16.13–16.14 yields the residual functions, and

Equations 16.18–16.21 gives the entries in the Jacobian matrix. In evaluating the

Jacobian, the derivatives drEk
=dnw and drEk

=dmi can be obtained by differentiating

the appropriate rate law (Eqn. 17.9, 17.12, or 17.21), as discussed in Appendix 4,

or their values determined just as efficiently by finite differences.
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17.5 Example calculation

As an example, we consider the reduction by dihydrogen sulfide (H2S) of hexava-

lent chromium (CrVI) to its trivalent form (CrIII). Kim et al. (2001) report when pH

is in the range 6.5–10, this process can occur via a reaction,

2 CrO��
4 C 3 H2S C 4 HC ! 2 Cr.OH/3.s/C 3 S.s/C 2 H2O (17.28)

that produces a CrIII hydroxide precipitate and native sulfur. The reaction proceeds

according to a second order rate law,

rC D nw kC mH2S(aq) mCrO��
4
; (17.29)

which is first order with respect to both H2S(aq) and CrO��
4 . The rate constant

kC they found, expressed here accounting for the reduction of two chromiums per

reaction turnover, is 0.32 molal�1 s�1.

As pH increases over the range studied, H2S(aq) reacts to form HS�. The reac-

tion rate observed, and that predicted by Equation 17.29, decreases sharply. Ther-

modynamics strongly favors forward progress of the reaction, so reverse reaction is

insignificant and r ' rC. The .1�Q=K/ term in the overall rate law (Eqn. 17.9),

although formally appended to Equation 17.29 and carried in the calculation, there-

fore, remains very close to unity and the effect of thermodynamics on the reaction

rate in this case is negligible.

In setting up a reaction path, we find there is no entry in the “thermo.dat”

database for Cr.OH/3.s/. To write the kinetic reaction, we can use the mineral

Cr2O3 as a proxy, since it is the dehydrated form of the hydroxide phase. This

substitution alters the reaction’s free energy yield, but forward progress is favored

so strongly that the reaction rate predicted is not affected. If this were not the case,

we would need to add to the database a mineral Cr.OH/3.s/ of appropriate stability.

A second complication is that we would like to decouple zero-valent sulfur from

the element’s other redox states, since Reaction 17.28 produces native sulfur, but

the database does not include such a coupling reaction. Situations of this nature are

not uncommon, occurring when an element in a certain oxidation state is stable as a

solid, but no corresponding aqueous species occurs under geochemical conditions.

To work the problem, we invent a ficticious zero-valent species S(aq) with an

arbitrarily low stability. Setting logK for the reaction

S.s/ � S.aq/ (17.30)

to �9, the species will occur in the simulation at only nmolal levels. Combining

this reaction with the reaction for native sulfur (“Sulfur-rhmb” in the database),

S.s/C 3=2 O2(aq) C H2O � SO��
4 C 2 HC ; (17.31)
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which has a logK of 93.23 at 25 °C, gives

S.aq/C 3=2 O2(aq) C H2O � SO��
4 C 2 HC ; (17.32)

for which logK D 102:23. We include Reaction 17.32 in the database as a redox

couple and change the reaction for “Sulfur-rhmb” to Reaction 17.30, saving the

resulting file as “thermo+S0.dat”.

Using the modified thermodynamic database, we simulate reaction over 300

minutes in a fluid buffered to a pH of 7. We prescribe a redox disequilibrium

model by disabling redox couples for chromium and sulfur. We set 10 mmolal

NaCl as the background electrolyte, initial concentrations of 200 �molal for CrVI

and 800 �molal for H2S, and small initial masses of Cr2O3 and S(aq). Finally, we

set Equation 17.29 as the rate law and specify that pH be held constant over the

simulation.

The procedure in REACT is

data = thermo+S0.dat

time end = 300 min

pH = 7

decouple CrO4--

decouple HS-

decouple S(aq)

10 mmolal Na+

10 mmolal Cl-

.2 mmolal CrO4--

.8 mmolal HS-

swap Cr2O3 for Cr+++

.001 free mg Cr2O3

10^-6 mmolal S(aq)

kinetic redox-1 rxn = n

"2 CrO4-- + 4 H+ + 3 H2S(aq) -> Cr2O3 + 5 H2O + 3 Sulfur-Rhmb"n

rate_con = .32, mpower(H2S(aq)) = 1, mpower(CrO4--) = 1

fix pH

Typing go triggers the simulation.

Figure 17.1 shows the calculation results. The mass of CrVI decreases at a rate

mirroring the increase in CrIII mass, which is twice the rate at which Reaction 17.28

proceeds. Dissolved sulfide in the simulation is divided approximately evenly be-

tween HS� and H2S(aq), since pH is held to 7. The reaction consumes H2S(aq) as

well as CrO��
4 , causing the concentration of each to decline. Since the two con-

centrations appear as first order terms in the rate law, reaction rate also decreases

with time.
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Fig. 17.1. Results of simulating the reduction of hexavalent chromium by H2S, as a
function of time. The slope of the tangent to the curve (fine line) is the rate of CrVI reduction
at 120 minutes of reaction.

We can quickly verify correct accounting of the reaction kinetics at any point in

the simulation. At 120 minutes, for example,

dMCrVI

dt
D �dMCrIII

dt

D �2 nw kC mH2S mCrO��
4

D �2 � 1 kg � .0:32 molal�1 s�1/ � .0:267 � 10�3 molal/

� .0:053� 10�3 molal/

D �9:05� 10�9 mol s�1

D �0:543� 10�3 mmol min�1 ;

(17.33)

which is the slope of the line in Figure 17.1 representing CrVI mass versus time.

Chapter 28 includes a number of examples in which redox kinetics are incorpo-

rated into reaction path simulations.
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Microbial kinetics

Redox reactions in the geochemical environment, as discussed in previous chapters

(Chapters 7 and 17), are commonly in disequilibrium at low temperature, their

progress described by kinetic rate laws. The reactions may proceed in solution

homogeneously or be catalyzed on the surface of minerals or organic matter. In

a great many cases, however, they are promoted by the enzymes of the ambient

microbial community.

In this chapter, we consider how the microbial community catalyzes redox re-

actions, perhaps changing in size and composition as it does. The kinetics of such

reactions are of special interest, because of the close relationship between geo-

chemical conditions and microbial ecology. The microbes promote reactions that

change geochemical conditions, many times significantly, and the geochemistry

controls the nature of the microbial community that can exist in a given environ-

ment.

From the geochemist’s perspective, a microbe can be thought of as a self-

replicating bundle of enzymes. Microbes use their collections of enzymes to cat-

alyze redox reactions, harvesting some of the energy released for their own pur-

poses. Since microbial growth increases the ability of the community to catalyze

redox reactions, and catalyzing the reactions provides microbes the energy they

need to grow, a microbially mediated reaction is by nature autocatalytic.

18.1 Microbial respiration and fermentation

Chemosynthetic microorganisms derive the energy they need to live and grow

from chemical species in their environment, reaping the benefits of the redox

disequilibrium characteristic of geochemical environments (see Chapter 7). The

microbes catalyze redox reactions, harvesting some of the energy released and

storing it as adenosine triphosphate, or ATP. This is an unstable molecule and

257
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Fig. 18.1. Generalized depiction of the process of microbial respiration, after Jin and
Bethke (2003). An electron donating species D sorbs to a redox complex in the cell
membrane (left oval), from either outside or inside the cell. The sorbed species gives up
one or more electrons e�, leaving the species in oxidized form DC to desorb and return
to the environment. Electrons pass along an electron transport chain composed of various
enzyme complexes (ovals) and coenzymes (c1, c1C, c2, c2C), driving the translocation
of hydrogen ions HC from the cell’s cytoplasm across the cell membrane. An electron
accepting species A sorbs to a terminal complex and takes up electrons from the transport
chain, thereby being reduced to A�, which desorbs and returns to the environment. The
translocated hydrogen ions HC reenter the cell through ATP synthase (oval on right),
creating ATP from ADP and orthophosphate ions.

hence rich in energy; it serves as the cell’s energy currency, available for purposes

ranging from cell maintenance to growth and reproduction.

The microbes use two general strategies to synthesize ATP: respiration and

fermentation. A respiring microbe captures the energy released when electrons

are transferred from a reduced species in the environment to an oxidized species

(Fig. 18.1). The reduced species, the electron donor, sorbs to a complex of redox

enzymes, or a series of such complexes, located in the cell membrane. The complex

strips from the donor one or more electrons, which cascade through a series of

enzymes and coenzymes that make up the electron transport chain to a terminal

enzyme complex, also within the cell membrane.

The oxidized species, the electron acceptor, sorbs to the terminal complex and

takes up the electrons, becoming reduced. The newly oxidized donating species

and the accepting species, now reduced, desorb from the redox complexes and

move back into the environment. The energy released by the electrons passing

through the transport chain does the critical work, driving hydrogen ions from

within the cell’s cytoplasm across the cell membrane, a process known as proton

translocation. The hydrogen ions, under the drive of strong gradients in electrical
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and chemical potential, reenter the cell through ATP synthase, a special membrane-

bound enzyme. The ATP synthase, activated by movement of the hydrogen ions,

binds together adenosine diphosphate (ADP) and orthophosphate ions in the cell’s

cytoplasm to form ATP.

This process of creating ATP, known as electron transport phosphorylation,

then, involves two half-cell reactions, one at the electron donation site and the other

where the electrons are accepted from the transport chain. Taking aerobic sulfide

oxidation as an example, the donating species H2S(aq) gives up electrons, two at

a time, to a series of redox complexes. With the loss of each pair of electrons, the

sulfide oxidizes first to S0, then thiosulfate, sulfite, and finally sulfate.

The electron donation half-reaction, the sum of the four donation steps, is

H2S(aq) C 4 H2O ! SO��
4 C 10 HC C 8 e� : (18.1)

The electrons, having passed through the transport chain to the terminal enzyme,

are taken up by the reduction of dioxygen,

O2(aq) C 4 HC C 4 e� ! 2 H2O (18.2)

to water. Adding together the half-reactions gives,

H2S(aq) C 2 O2(aq) ! SO��
4 C 2 HC ; (18.3)

which is the redox reaction the microbes exploit.

In environments lacking a suitable external electron acceptor – such as dioxy-

gen, sulfate, or ferric iron – respiration is not possible. Here, many organic com-

pounds may be metabolized by fermenting microorganisms. Microbes of this class

may create ATP by a direct coupling mechanism, using a process known as sub-

strate level phosphorylation, SLP; with an ion translocation mechanism like that

employed by respirers, as already described; or by a combination of SLP and ion

translocation.1

A fermenter in general dismutates its substrate into two compounds, one more

oxidized than the substrate and the other more reduced. Fermenting microbes, for

example, are commonly responsible for breaking down complex organic matter

in clays and shales into simpler, more oxidized organic molecules and H2(aq).

Acetoclastic methanogens, as a second example, dismutate acetate to methane and

carbonate,

CH3COO� C H2O ! CH4(aq) C HCO�
3 (18.4)

using an ion translocation mechanism. The methanogens work by cleaving the

1 For our purposes, fermentation refers to microbial growth on a single substrate in the absence of an external
electron acceptor besides hydrogen ions, without regard for the mechanism of phosphorylation.
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carbon–carbon bond in the acetate ion (Zehnder et al., 1980). Stoichiometrically,

the dismutation reaction is an electron-donating half-reaction,

1=2 CH3COO� C 2 H2O ! HCO�
3 C 9=2 HC C 4 e� (18.5)

combined with an accepting half-reaction,

1=2 CH3COO� C 9=2 HC C 4 e� ! CH4(aq) C H2O : (18.6)

The substrate, as we can see in this example, serves in a fermentation as both the

electron donating and electron accepting species.

18.2 Monod equation

The Monod equation is the relation most commonly applied to describe the rate

at which a microbe metabolizes its substrate (e.g., Panikov, 1995). Taking ace-

totrophic sulfate reduction as an example, the redox reaction,

CH3COO� C SO��
4 ! 2 HCO�

3 C HS� (18.7)

provides the energy the microbes need to live and reproduce. If acetate, the electron

donor, is the limiting reactant, the Monod equation gives reaction rate as,

rC D nw kC ŒX	
mAc

mAc CK0
S

; (18.8)

where rC is the forward reaction rate (mol s�1), nw is water mass (kg), kC is

the rate constant (mol mg�1 s�1), ŒX	 is biomass concentration (mg kg�1), mAc

is acetate concentration (molal), and K0
S is the half-saturation constant (molal) for

the substrate, acetate.

If sulfate rather than acetate is limiting, the equation is written,

rC D nw kC ŒX	
mSO4

mSO4
CK0

S

(18.9)

in terms of the electron acceptor. Here, mSO4
is sulfate concentration (molal) and

K0
S is the corresponding half-saturation constant (molal). Writing the rate law in

the form

rC D nw kC ŒX	
mAc

mAc CK0
D

mSO4

mSO4
CK0

A

(18.10)

where K0
D and K0

A are half-saturation constants (molal) for the donating and ac-

cepting half-reactions, provides for the possibility of the reaction being limited by

either acetate or sulfate, or both; this expression is the dual Monod equation.

As substrate concentration varies, the Monod equation behaves like the

Michaelis–Menten equation discussed in the previous chapter (Eqn. 17.18). IfmAc
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is small relative to K0
S, the ratio mAc=.mAc C K0

S/ in Equation 18.8 is close to

mAc=K
0
S, so reaction rate is proportional to substrate concentration. Where mAc

exceeds K0
S, however, mAc=.mAc C K0

S/ ' 1 and the reaction rate approaches its

maximum value rmax, where rmax D nw kC ŒX	.

The Monod equation differs from the Michaelis–Menten equation in that it

includes as a factor biomass concentration ŒX	, which can change with time. A

microbe as it catalyzes a redox reaction harvests some of the energy liberated,

which it uses to grow and reproduce, increasing ŒX	. At the same time, some

microbes in the population decay or are lost to predation. The time rate of change

in biomass

dŒX	

dt
D Y r

nw
�D ŒX	 (18.11)

is given from the reaction rate r , where Y is the growth yield (mg mol�1), the

amount of biomass created per mole of reaction turnover, and D is the decay

constant (s�1), the fraction of the biomass expected to be lost in an interval of

time.

18.3 Thermodynamically consistent rate laws

The Monod equation predicts the forward rate rC of reaction, rather than the net

rate r , which is the difference rC � r� between the forward and reverse rates. This

distinction is of little practical significance for reactions that liberate significant

amounts of free energy, because for those cases the reverse rate in negligible.

The aerobic oxidation of organic compounds, for example, is so strongly favored

thermodynamically that, in the presence of detectable levels of O2(aq) and the

organic substrate, the forward and net rates are indistinguishable.

Metabolisms such as methanogenesis and bacterial sulfate reduction, conversely,

liberate sufficiently little energy that in common geochemical environments the for-

ward and reverse rates can be of similar magnitude. In constructing a geochemical

model, furthermore, we wish to avoid allowing simulations in which a microbially

catalyzed reaction might proceed, impossibly, beyond its point of equilibrium. We

should, therefore, account for the effect of thermodynamics on the net rate of reac-

tion.

In considering the energetics of a microbially catalyzed reaction, it is important

to recall that progress of the redox reaction (e.g., Reaction 18.7) is coupled to

synthesis of ATP within the cell, so the overall reaction is the redox reaction

combined with ATP synthesis. The free energy liberated by the overall reaction

is the energy liberated by the redox reaction, less that consumed to make ATP. The

overall reaction’s equilibrium point is where this difference vanishes; at this point,
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the forward and reverse rates balance and there is no net reaction. If the redox

reaction were to supply less energy than needed to create ATP, the overall reaction

would run backward. In this case, ATP would be expended and the cell would need

to shut down its electron transport chain, to avoid expending its energy stores.

To account for reverse as well as forward reaction, the Monod (and dual Monod)

equation can be modified by appending to it a thermodynamic potential factor, as

shown by Jin and Bethke (2005), in which case the equation predicts the net rate of

reaction. The thermodynamic factor FT, which can vary from zero to one, is given

by,

FT D 1 � exp

�
�Gr C m�GP

�RTK

�
; (18.12)

where �Gr is the free energy change (J mol�1) of the redox reaction, �GP is

the free energy change (J mol�1) under cellular conditions of the phosphorylation

reaction

ADP C PO3�
4 ! ATP C H2O (18.13)

of ADP to produce ATP,m is the number of ATPs produced per reaction turnover, �

is the average stoichiometric number of the overall reaction, R is the gas constant

(8.3143 J mol�1 K�1), and TK is absolute temperature (K). The value of �GP

under typical physiological conditions is in the range of about 40–50 kJ mol�1

(e.g., White, 2007).

The free energy change of the redox reaction is given by,

�Gr D RTK ln
Q

K
(18.14)

from the reaction’s ion activity product Q and its equilibrium constant K. The

average stoichiometric number � is the number of times the rate controlling step

in the overall reaction, commonly translocation of hydrogen ions across the cell

membrane, occurs per turnover of the overall reaction. For this reason, the value of

� depends on how the reaction is written. If the reaction coefficients were doubled,

for example, � would increase by a factor of two, as would the value of m.

AppendingFT to the Monod equation, we write a thermodynamically consistent

rate law,

rEk
D nw .kC/ Ek

ŒX	
mS

mS CK0

S Ek

FT (18.15)

for a kinetic reaction Ek. Here, rEk
is the reaction’s net rate (mol s�1), mS is sub-

strate concentration (molal), and K0

S Ek
is the substrate’s half-saturation constant

(molal). Similarly, the dual Monod equation in thermodynamically consistent form
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becomes,

rEk
D nw .kC/ Ek

ŒX	
mD

mD CK0

D Ek

mA

mA CK0

A Ek

FT ; (18.16)

where mD and mA are molal concentration of the electron donating and accepting

species, andK0

D Ek
andK0

A Ek
are the corresponding half-saturation constants (molal).

In each case, FT is given by Equation 18.12.

18.4 General kinetic model

In a series of papers, Jin and Bethke (2002; 2003; 2005; 2007) and Jin (2007)

derived a generalized rate expression describing microbial respiration and fermen-

tation. They account in their rate model for an electron-donating half-cell reaction,X
D

�DD !
X
DC

�DCDC C n e� ; (18.17)

an electron-accepting half-reaction,X
A

�AA C n e� !
X
A�

�A�A� ; (18.18)

and an intracellular reaction,

m ADP Cm PO3�
4 ! m ATP Cm H2O (18.19)

to synthesize ATP.

The redox reaction that supplies the microbe with energy from the environment,X
D

�DD C
X

A

�AA !
X
DC

�DCDC C
X
A�

�A� A� (18.20)

is the sum of the first two reactions, and the overall reaction,X
D

�DD C
X

A

�AA Cm ADP Cm PO3�
4 !

X
DC

�DC DC C
X
A�

�A�A� Cm ATP Cm H2O
(18.21)

is the combination of all three. The resulting rate expression is,

rEk
D nw .kC/ Ek

ŒX	 FD FA FT ; (18.22)

where FD and FA are unitless kinetic factors related to the electron-donating and

accepting half-reactions and, as before (Eqn. 18.12), FT is the thermodynamic

potential factor.
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The kinetic factors, which can vary from zero to one, are given by,

FD D
DQ
m

ˇD

D

DQ
m

ˇD

D C KD

DCQ
m

ˇ
DC

DC

(18.23)

and

FA D
AQ
m

ˇA

A

AQ
m

ˇA

A C KA

A�Q
m

ˇA�

A�

; (18.24)

where KD and KA are kinetic constants for the electron-donating and accepting

half-reactions, and ˇD, ˇDC , and so on, are exponents defined for each species in

the redox reaction.

The ˇ values can be determined formally only through careful experiments. Sig-

nificantly, however, ˇ values are needed only for species whose concentrations

change under the conditions of interest; for other species, the quantities mˇ can

be folded into the corresponding kinetic constant, or the kinetic constant and rate

constant. For species whose concentrations are likely to change, such as the reac-

tion substrates, ˇ is commonly taken to be one, in the absence of contradictory

information

If the concentrations of only the electron donor and acceptor are considered to

vary, each mDC is invariant and the term KD

Q
m

ˇ
DC

DC in Equation 18.23 reverts to

a half-saturation constantK0
D. Similarly, the corresponding term in Equation 18.24

may be represented by K0
A. Now, we see the dual Monod equation (Eqn. 18.16) is

a specific simplification of the general rate law (Eqn. 18.22).

The kinetic factorsFD and FA and thermodynamic potential factorFT are largest

where the electron donor and acceptor are abundant, and the reaction products are

not. If under such conditions all three factors are equal to one, as is not uncommon,

the reaction rate predicted by Equation 18.22 reaches its maximum value, rmax D
nw kC ŒX	. As the substrates are depleted with reaction progress, and reaction

products accumulate, the factors eventually decrease toward zero, slowing the

reaction to a near stop.

If one of the kinetic factors approaches zero first, the reaction rate is said to be

kinetically controlled; if the thermodynamic factor falls first, the control is ther-

modynamic. The aerobic consumption of organic species and highly reduced com-

pounds such as H2(aq) and H2S(aq) invariably show kinetic controls, because the

thermodynamic drive for the oxidation of these compounds is quite large. Since

methanogens and sulfate reducers operate under a considerably smaller thermody-

namic drive, in contrast, it is not uncommon for their reaction rates to be controlled

thermodynamically.
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18.5 Example calculation

We consider as an example the growth of sulfate-reducing bacteria on acetate. A

solution, initially sterile, contains 500 mmolal NaCl, 20 mmolal CaSO4, 2 mmolal

FeCO3, and 1 mmolal NaCH3COO; its pH is buffered to 7.2. At t D 0, the solution

is inoculated with enough of the sulfate reducers to bring the initial biomass,

expressed in terms of the dry weight of the cells, to 0.1 mg kg�1. The solution

is incubated for three weeks.

The bacteria in our example promote Reaction 18.7 at a rate given by Equation

18.15, the thermodynamically consistent form of the Monod equation,

r D nw kC ŒX	
mAc

mAc CK0
S

FT ; (18.25)

and grow according to Equation 18.11. From a study of the kinetics of Desulfobac-

ter postgatei by Ingvorsen et al. (1984), we take a rate constant kC of 10�9 mol

mg�1 s�1, a half-saturation constantK0
S of 70 �molal, and a growth yield of 4300

mg mol�1; we ignore decay given the brief duration of the experiment, and in the

presumed absence of predation.

Taking the rate limiting step in the electron transport chain to be trans-membrane

proton translocation, which occurs about five times per sulfate consumed (Rabus et

al., 2006), the average stoichiometric number � (entered into REACT as ! D 1=�)

for Reaction 18.7 is five. Sulfate reducers conserve about 45 kJ mol�1 of sulfate

consumed (Qusheng Jin, unpublished data), so we set �GP to this value and m to

one. From equations 18.12 and 18.14, then, we can write

FT D 1 �
�
Q

K

�1=5

exp

 
45 kJ mol�1

5 RTK

!
; (18.26)

which is the thermodynamic potential factor for this case.

We can expect the sulfide produced by the bacteria to react with the iron in

solution to form mackinawite (FeS), a precursor to pyrite (FeS2). The mineral is

not in the default thermodynamic database, so we add to the file the reaction

FeS

mackinawite

C HC
� FeCC C HS� ; (18.27)

with logK D �3:6 at 25 °C and save the result as “thermo+Mackinawite.dat”.

To run the simulation, we decouple acetate from carbonate, and sulfide from

sulfate, and suppress the iron sulfide minerals pyrite and troilite (FeS), which are

more stable than mackinawite, but unlikely to form. We set the fluid composition,

including an amount of HS� small enough to avoid significantly supersaturating

mackinawite, and define the rate law for the sulfate reducers. The procedure in

REACT is
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data = thermo+Mackinawite.dat verify

time end = 21 days

decouple CH3COO-

decouple HS-

suppress Pyrite, Troilite

Na+ = 501. mmolal

Ca++ = 20. mmolal

Fe++ = 2. mmolal

Cl- = 500. mmolal

SO4-- = 20. mmolal

HCO3- = 2. mmolal

CH3COO- = 1. mmolal

HS- = .3 umolal

pH = 7.2

kinetic microbe-SRB n

rxn = "CH3COO- + SO4-- -> 2*HCO3- + HS-", n

biomass = .1, growth_yield = 4300, n

ATP_energy = -45, ATP_number = 1, order1 = 1/5, n

mpower(CH3COO-) = 1, mpowerD(CH3COO-) = 1, n

rate_con = 10^-9, KD = 70.e-6

fix pH

go

Figure 18.2 shows the calculation results.

Reaction in the simulation begins slowly, but proceeds more rapidly as biomass

accumulates, reflecting the reaction’s autocatalytic nature. The reaction rate con-

tinues to increase until most of the acetate is consumed, at which point it slows

abruptly to a near stop. In the simulation, dissolved ferrous iron is present in ex-

cess amount. The bisulfide produced as a result of bacterial sulfate reduction reacts

with the iron,

FeCC C HS� ! FeS

mackinawite

C HC (18.28)

to form mackinawite, holding sulfide concentration low and maintaining a strong

thermodynamic drive. The kinetic factor FD falls below the thermodynamic factor

FT throughout the simulation, and hence controls the reaction rate. The reaction

rate, in other words, is kinetically controlled.

We can verify the model results by hand calculation. At t = 7 days, the kinetic

factor FD in the rate law (Eqn. 18.25) is given by,

FD D mAc=.mAc CK0
S/

D 0:6663 mmolal=.0:6663mmolal C 0:070mmolal/ D 0:9049 ;
(18.29)

wheremAc is molal concentration of the free acetate ion, not the total concentration
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Fig. 18.2. Results of modeling at 25 °C bacterial sulfate reduction using acetate as the
electron donor, according to a thermodynamically consistent form of the Monod equation.
Labels identify values and line slopes after seven days of reaction.

of the acetate component. To figure FT according to Equation 18.26, we calculate

the logQ for Reaction 18.7,

logQ D 2 logaHCO�
3

C logaHS� � logaAc � logaSO��
4

D 2 .�3:293/ � 6:672C 3:334C 2:638

D �7:286 :
(18.30)
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Then, noting logK for the reaction at 25 °C is 8.404, we compute theQ=K term,

.Q=K/
1=5 D 10.�7:286�8:404/=5 D 10�1:961 D 0:0007278 ; (18.31)

as well as the ATP phosphorylation term,

�GP

5 RTK

D .45 000 J mol�1/=.5/.8:3143 J mol�1 K�1/

� .298:15 K/ D 3:631 ;

(18.32)

giving the thermodynamic potential factor

FT D 1 � .0:0007278/ e.3:631/ D 0:9725 (18.33)

for the sulfate reduction reaction.

The reaction rate, expressed per kg solvent, then, is

r

nw
D � 1

nw

dMAc

dt

D kC ŒX	 FDFT

D .10�9 mol mg�1 s�1/ .1:032 mg kg�1/�
.0:9049/ .0:9725/

D 0:9082� 10�9 molal s�1

D 0:07847mmolal day�1 ;

(18.34)

which is the negative slope of the concentration of the acetate component, plotted

against time (Fig. 18.2). The growth rate is given by,

dŒX	

dt
D rY

nw

D .0:07847 mmolal day�1/ .4:3 mg mmol�1/

D 0:3374 mg kg�1 day�1 ;

(18.35)

which matches the slope of biomass plotted versus time.
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Stable isotopes

Stable isotopes serve as naturally occurring tracers that can provide much informa-

tion about how chemical reactions proceed in nature, such as which reactants are

consumed and at what temperature reactions occur. The stable isotopes of several

of the lighter elements are sufficiently abundant and fractionate strongly enough

to be of special usefulness. Foremost in importance are hydrogen, carbon, oxygen,

and sulfur.

The strong conceptual link between stable isotopes and chemical reaction makes

it possible to integrate isotope fractionation into reaction modeling, allowing us

to predict not only the mineralogical and chemical consequences of a reaction

process, but also the isotopic compositions of the reaction products. By tracing

the distribution of isotopes in our calculations, we can better test our reaction

models against observation and perhaps better understand how isotopes fractionate

in nature.

Bowers and Taylor (1985) were the first to incorporate isotope fractionation

into a reaction model. They used a modified version of EQ3/EQ6 (Wolery, 1979)

to study the convection of hydrothermal fluids through the oceanic crust, along

midocean ridges. Their calculation method is based on evaluating mass balance

equations, as described in this chapter.

As originally derived, however, the mass balance model has an important (and

well acknowledged) limitation: implicit in its formulation is the assumption that

fluid and minerals in the modeled system remain in isotopic equilibrium over the

reaction path. This assumption is equivalent to assuming that isotope exchange

between fluid and minerals occurs rapidly enough to maintain equilibrium compo-

sitions.

We know, however, that isotope exchange in nature tends to be a slow process,

especially at low temperature (e.g., O’Neil, 1987). This knowledge comes from

experimental study (e.g., Cole and Ohmoto, 1986) as well as from the simple

observation that, unless they have reacted together, groundwaters and minerals are

269
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seldom observed to be in isotopic equilibrium with each other. In fact, if exchange

were a rapid process, it would be very difficult to interpret the origin of geologic

materials from their isotopic compositions: the information would literally diffuse

away.

Lee and Bethke (1996) presented an alternative technique, also based on mass

balance equations, in which the reaction modeler can segregate minerals from

isotopic exchange. By segregating the minerals, the model traces the effects of the

isotope fractionation that would result from dissolution and precipitation reactions

alone. Not unexpectedly, segregated models differ broadly in their results from

reaction models that assume isotopic equilibrium.

The segregated model works by defining a subset of the chemical equilibrium

system called the isotope equilibrium system. The isotope system contains (1) the

fluid, (2) any minerals not held segregated from isotope exchange, (3) any segre-

gated minerals that dissolve over the current reaction step, and (4) the increments

in mass of any segregated minerals that precipitate over the step. By holding the

components of just the isotope system in equilibrium, the calculation procedure

assures that the compositions of segregated minerals change only when new mass

precipitates. Conversely, the segregated minerals affect the composition of the fluid

only when they dissolve. In this way, chemical reaction is the only force driving

isotope fractionation.

These ideas might be further developed to model situations in which exchange

among aqueous species occurs slowly. The oxygen in SO��
4 species might not

be allowed to exchange with water, or H2S sulfur might be held segregated from

sulfur in SO��
4 . To date, however, no description of isotope disequilibrium within

the fluid phase has been implemented within a reaction model.

In this chapter, we develop a mass balance model of the fractionation in reacting

systems of the stable isotopes of hydrogen, carbon, oxygen, and sulfur. We then

demonstrate application of the model by simulating the isotopic effects of the

dolomitization reaction of calcite.

19.1 Isotope fractionation

Each species and phase of an element with two or more stable isotopes consists

of light and heavy isotopes in proportions that can be measured by using a mass

spectrometer (e.g., Faure, 1986). The isotope ratio R is the quotient of the number

of moles of a heavy isotope (such as 18O) to the number of moles of a light isotope

(such as 16O).

It is not especially practical, however, to express isotopic composition in terms

of R. One isotope (e.g., 16O) greatly dominates the others (Table 19.1), so values

of R are small, rather inconvenient numbers. In addition, mass spectrometers can
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Table 19.1. The stable isotopes of hydrogen, carbon, oxygen, and sulfur, and their

approximate terrestrial abundances (Wedepohl et al., 1978)

Isotope Abundance (%) Isotope Abundance (%)

Hydrogen Carbon
1H 99.984 12C 98.89

2H 0.016 13C 1.11

Oxygen Sulfur
16O 99.763 32S 94.94

17O 0.0375 33S 0.77

18O 0.1995 34S 4.27

36S 0.02

measure the difference in isotopic composition between two samples much more

accurately than they can determine an absolute ratio R. For these reasons, isotope

geochemists express isotopic composition in a ı notation,

ı D


RSample �RStandard

RStandard

�
� 1000 ; (19.1)

as the permil (‰) deviation from a standard. For example, the ı value for 18O in a

sample is,

ı18O D
"
.18O=16O/Sample � .18O=16O/SMOW

.18O=16O/SMOW

#
� 1000 (19.2)

expressed relative to the SMOW standard; SMOW is the composition of “standard

mean ocean water,” the usual standard for this element. In this notation, a sample

with a positive ı18O is enriched in the heavy isotope 18O relative to the standard,

whereas a negative value shows that the sample is depleted in the isotope.

When species or phases are in isotopic equilibrium, their isotopic ratios differ

from one another by predictable amounts. The segregation of heavier isotopes into

one species and light isotopes into the other is called isotope fractionation. The

fractionation among species is represented by a fractionation factor ˛, which is

determined empirically. The fractionation factor between species A and B is the

ratio

˛A�B D RA

RB
D ıA C 1000

ıB C 1000
: (19.3)

By rearranging this equation, we can express the isotopic composition of species
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A,

ıA D ˛A�B .1000C ıB/ � 1000 (19.4)

from the fractionation factor and the composition of B . The useful expression,

1000 ln˛A�B ' ıA � ıB (19.5)

follows from the approximation lnx ' x � 1 for x ! 1. Since this form gives

the difference in ı values between A and B directly, fractionation factors are

commonly compiled expressed as 1000 ln˛.

As a rule, isotopes fractionate more strongly at low temperatures than they do

at high temperature. Variation of the fractionation factor with absolute temperature

TK can be fit to a polynomial, such as,

1000 ln˛A�B D aC bTK C c

�
103

TK

�
C d

 
106

T 2
K

!
C e

 
109

T 3
K

!
C f

 
1012

T 4
K

!
:

(19.6)

Here, coefficients a through f are determined by fitting measurements to the

polynomial. Equations of this form fit the data well in most cases, but may fail

to describe hydrogen fractionation at high temperature in hydrated minerals or in

minerals containing hydroxyl groups.

In REACT, dataset “isotope.dat” contains polynomial coefficients that define

temperature functions for the fractionation factors of species, minerals, and gases.

The factors describe fractionation relative to a reference species chosen for each

element. The reference species for oxygen and hydrogen is solvent water, H2O.

CO2 and H2S, in either aqueous or gaseous form, serve as reference species for

carbon and sulfur.

19.2 Mass balance equations

The key to tracing isotope fractionation over a reaction path, as shown by Bowers

and Taylor (1985), is writing a mass balance equation for each fractionating ele-

ment. We begin by specifying a part of the chemical system to be held in isotopic

equilibrium, as already described. The isotope system, of course, excludes segre-

gated minerals. At each step over the course of the reaction path, we apply the mass

balance equations to determine, from the bulk composition of the isotope system,

the isotopic composition of each species and phase. In this section, we derive the

mass balance equation for each element; in the next we show how the equations

can be integrated into reaction modeling.

We begin with oxygen. The total number of moles nT
18O

of 18O in the isotope

system is the sum of the mole numbers for this isotope in (1) the solvent, nw
18O

, (2)
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the aqueous species, n
j
18O

, and (3) whatever mineral mass appears in the isotope

system, nk0

18O
. Expressed mathematically,

nT
18O

D nw
18O

C
X

j

n
j
18O

C
X
k0

nk0

18O
: (19.7)

A parallel expression

nT
16O

D nw
16O

C
X

j

n
j
16O

C
X
k0

nk0

16O
(19.8)

applies to 16O. Note that we use the notation k0 to identify the mineral mass carried

in the isotope system; as before, subscript k denotes minerals in the chemical

system, whether in isotopic equilibrium or not.

Using these expressions and Equation 19.2, and recognizing that the mole ratio

n16O=nO of 16O to elemental oxygen is nearly constant, we can show that the total

(or bulk) isotopic composition of the isotope system,

ı18OT ' 1

nT
O

2
4nw

O ı18Ow C
X

j

n
j
O ı

18Oj C
X
k0

nk0

O ı18Ok0

3
5 (19.9)

can be calculated from the ı values of solvent (ı18Ow ), species (ı18Oj ), and

minerals (ı18Ok0).

This equation can be expanded by expressing the compositions of species and

minerals in terms of their fractionation factors and the composition ı18Ow of

solvent water, the reference species. From Equation 19.4,

ı18Oj D j̨ �w

�
1000C ı18Ow

�� 1000 (19.10)

and

ı18Ok0 D ˛k0�w

�
1000C ı18Ow

� � 1000 : (19.11)

By substituting these relations,

nT
O ı

18OT D nw
O ı18Ow C

X
j

n
j
O

�
j̨ �w

�
1000C ı18Ow

�� 1000	
C
X
k0

nk0

O

�
˛k0�w

�
1000C ı18Ow

�� 1000
	 (19.12)
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and solving for the composition of solvent water, we arrive at

ı18Ow D
nT

Oı
18OT � 1000

"P
j

n
j
O

�
j̨ �w � 1�CP

k0

nk0

O .˛k0�w � 1/
#

nw
O CP

j

n
j
O j̨ �w CP

k0

nk0

O ˛k0�w

;

(19.13)

which is the mass balance equation for oxygen.

Equation 19.13 is useful because it allows us to use the system’s total isotopic

composition, ı18OT, to determine the compositions of the solvent and each species

and mineral. The calculation proceeds in two steps. First, given ı18OT and the

fractionation factors j̨ �w and ˛k0�w for the various species and minerals, we

compute the composition of the solvent, applying Equation 19.13. Second, we

use this result to calculate the composition of each species and mineral directly,

according to Equations 19.10 and 19.11.

The equations for the isotope pairs 2H/1H, 13C/12C, and 34S/32S parallel the

relations for 18O/16O, except that the reference species for carbon and sulfur

are CO2 and H2S, rather than solvent water. Carbon and sulfur compositions

are many times reported with respect to the PDB (Pee Dee belemnite) and CDT

(Canyon Diablo troilite) standards, instead of SMOW. It makes little difference

which standard we choose in applying these equations, however, as long as we

carry a single standard for each element through the calculation.

Fractionation of hydrogen, carbon, and sulfur isotopes among the aqueous spe-

cies is set by the relations,

ı2Hj D j̨ �w

�
1000C ı2Hw

� � 1000 (19.14)

ı13Cj D j̨ �CO2

�
1000C ı13CCO2

�� 1000 (19.15)

ı34Sj D j̨ �H2S

�
1000C ı34SH2S

� � 1000 : (19.16)

Similarly, the equations,

ı2Hk0 D ˛k0�w

�
1000C ı2Hw

�� 1000 (19.17)

ı13Ck0 D ˛k0�CO2

�
1000C ı13CCO2

�� 1000 (19.18)

ı34Sk0 D ˛k0�H2S

�
1000C ı34SH2S

�� 1000 (19.19)

define fractionation among minerals.
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Compositions of the reference species are given by,
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(19.22)

which constitute the mass balance equations for these elements.

19.3 Fractionation in reacting systems

Integrating isotope fractionation into the reaction path calculation is a matter of

applying the mass balance equations while tracing over the course of the reaction

path the system’s total isotopic composition. Much of the effort in programming an

isotope model consists of devising a careful accounting of the mass of each isotope.

The calculation begins with an initial fluid of specified isotopic composition.

The model, by mass balance, assigns the initial compositions of the solvent and

each aqueous species. The model then sets the composition of each unsegregated

mineral to be in equilibrium with the fluid. The modeler specifies the composition

of each segregated mineral as well as that of each reactant to be added to the system.

The model traces the reaction path by taking a series of steps along reaction

progress, moving forward each step from �1 to �2. Over a step, the system’s isotopic

composition can change in two ways: reactants can be added or removed, and

segregated minerals can dissolve.

Using 18O as an example, we can calculate the composition ı18OT.�2/ at the
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end of the step according to the equation,

ı18OT.�2/ D 1
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i
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(19.23)

Here, ı18OT.�1/ is the composition at the beginning of the reaction step. �nr

is the number of moles of reactant r added over the step (its value is negative

for a reactant being removed from the system) and nr
O is the number of oxygen

atoms in the reactant’s stoichiometry. For each segregated mineral k ¤ k0 that

dissolves over the step,�n
.�/

k
is the mineral’s change in mass (in moles) and nk

O is

its stoichiometric oxygen content. ı18Or and ı18Ok are the isotopic compositions

of reactant and segregated mineral. The mole number nT
O.�2/ of oxygen at the end

of the step,
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X
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k
nk

O ; (19.24)

is given by summing over the contributions of reactants and dissolving segregated

minerals.

The parallel equations for hydrogen, carbon, and sulfur isotopes are,
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Once we have computed the total isotopic compositions, we calculate the com-

positions of the reference species using the mass balance equations (Eqns. 19.13,

19.20, 19.21, 19.22). We can then use the isotopic compositions of the reference

species to calculate the compositions of the other species (Eqns. 19.10, 19.14,

19.15, 19.16) and the unsegregated minerals (Eqns. 19.11, 19.17, 19.18, 19.19).

To update the composition of each segregated mineral, we average the compo-

sition (e.g., ı18Ok0) of the mass that precipitated over the reaction step and the

composition (e.g., ı18Ok.�1/) of whatever mass was present at the onset. The av-

eraging equation for oxygen, for example, is

ı18Ok.�2/ D nk ı
18Ok.�1/C�n

.C/

k
ı18Ok0

nk.�1/C�n
.C/

k

; (19.31)

where nk is the mole number of mineral k and �n
.C/

k
is the increase in this value

over the reaction step. The compositions of segregated minerals that dissolve over

the step are unchanged.

The precise manner in which we apply the mass transfer equations (Eqns. 19.23–

19.30) depends on how we have configured the reaction path. Table 19.2 provides

an overview of the process of assigning isotopic compositions to the various con-

stituents of the model. When a simple reactant is added to the system (see Chap-

ter 13), the increment �nr added is the reaction rate nr multiplied by the step

length, �2 � �1. The modeler explicitly prescribes the reactant’s isotopic compo-

sition (ı18Or , and so on). When a simple reactant is removed from the system,

the value of �nr is negative and the reactant’s isotopic composition is the value in

equilibrium with the system at the beginning of the step. A mineral reactant that

precipitates and dissolves according to a kinetic rate law (Chapter 16) is treated in

the same fashion, except that the model must calculate the increment �nr (which

is positive when the mineral dissolves and negative when it precipitates) from the

rate law.

In fixed and sliding fugacity paths, the model transfers gas into and out of an

external buffer to obtain the fugacity desired at each step along the path (see

Chapter 14). The increment �nr is the change in the total mole number Mm

of the gas component as it passes to and from the buffer (see Chapter 3). When
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Table 19.2. Assigning isotopic compositions in a reaction model

(Lee and Bethke, 1996)

Initial system

Water & aqueous species In equilibrium with each other,
reflecting fluid’s bulk composition, as
set by modeler.

Unsegregated minerals &
gases

In equilibrium with fluid.

Segregated minerals Set by modeler.

Reactants being added to system

Species, minerals, & gases Set by modeler.

Buffered gases In equilibrium with initial system.

Reactants being removed from system

Species, minerals, gases, &
buffered gases

In equilibrium with system at beginning
of current step.

Chemical system, over course of reaction path

Water, species, &
unsegregrated minerals

In equilibrium with each other,
reflecting system’s bulk composition.

Segregated minerals Increment precipitated over reaction
step forms in equilibrium with fluid;
composition of preexisting mass is
unaffected.

Gases In equilibrium with current system.

gas passes from buffer to system (�nr is positive), it is probably most logical to

take its isotopic composition as the value in equilibrium with the initial system,

at the start of the reaction path. Gas passing from system to buffer (i.e., �nr is

negative) should be in isotopic equilibrium with the system at the start of the current

reaction step. For polythermal paths (Chapter 14), it is necessary to update the

fractionation factors ˛ at each step, according to Equation 19.6, before evaluating

the fractionation and mass balance equations (Eqns. 19.10, 19.14, 19.15, and 19.16;

19.11, 19.17, 19.18, and 19.19; and 19.13, 19.20, 19.21, and 19.22).
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19.4 Dolomitization of a limestone

As an example of how we might integrate isotope fractionation into reaction mod-

eling (borrowing from Lee and Bethke, 1996), we consider the dolomitization of

a limestone as it reacts after burial with a migrating pore fluid. When dolomite

[CaMg.CO3/2] forms by alteration of a carbonate mineral, geochemists commonly

assume that the dolomite reflects the isotopic composition of carbon in the precur-

sor mineral (e.g., Mattes and Mountjoy, 1980; Meyers and Lohmann, 1985). This

assumption seems logical since the reservoir of carbon in the precursor mineral, in

this case calcite (CaCO3), is likely to exceed that available from dissolved carbon-

ate.

Some groundwaters in sedimentary basins, on the other hand, are charged with

CO2. In this case, if dolomite forms by reaction of a limestone with large volumes

of migrating groundwater, the reservoir of dissolved carbon might be considerable.

As we have noted, furthermore, the dolomitization reaction is best considered to

occur in the presence of the carbon provided by dissolving calcite, not the entire

reservoir of carbon present in the rock. Hence, it is interesting to use reaction mod-

eling to investigate the factors controlling the isotopic composition of authigenic

dolomite.

In our example, we test the consequences of reacting an isotopically light (i.e.,

nonmarine) limestone at 60 °C with an isotopically heavier groundwater that is rel-

atively rich in magnesium. We start by defining the composition of a hypothetical

groundwater that is of known CO2 fugacity (we initially set fCO2
to 1) and in

equilibrium with dolomite:

T = 60

swap CO2(g) for H+

swap Dolomite-ord for HCO3-

f CO2(g) = 1

1 free mol Dolomite-ord

Na+ = .1 molal

Cl- = .1 molal

Ca++ = .01 molal

Mg++ = .01 molal

go

The resulting fluid has an activity ratio aMgCC /aCaCC of 1.26. By the reaction

CaMg.CO3/2
dolomite

C CaCC
� 2 CaCO3

calcite

C MgCC ; (19.32)

a fluid in equilibrium with calcite and dolomite has a ratio of 0.08 (as we can
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quickly show with program RXN). Hence, the groundwater is undersaturated with

respect to calcite.

We then “pick up” the fluid from the previous step as a reactant and define

a system representing the limestone and its pore fluid. We specify that the rock

contains 3000 cm3 of calcite, implying a porosity of about 25% since the extent of

the system is 1 kg (about 1 liter) of fluid. The pore fluid is similar to the reactant

fluid, except that it contains less magnesium. The procedure is

(cont’d)

pickup reactants = fluid

swap Calcite for HCO3-

3000 free cm3 Calcite

pH = 6

Ca++ = .02 molal

Na+ = .1 molal

Cl- = .1 molal

Mg++ = .001 molal

reactants times 10

flush

The final commands define a reaction path in which 10 kg of reactant fluid gradu-

ally migrate through the system, displacing the existing (reacted) pore fluid. Typing

go triggers the calculation.

As expected, the fluid, as it migrates through the limestone, converts calcite into

dolomite. For each kg of fluid reacted, about 0.65 cm3 (17.5 mmol) of calcite is

consumed and 0.56 cm3 (8.7 mmol) of dolomite forms.

To trace isotope fractionation over the reaction, we need to set the composition

of the carbon in the initial system and the reactant fluid. We set ı13CPDB of the

initial fluid to �10‰. By equilibrium with this value, the calcite has a composition

of �6:1‰, as might be observed in a nonmarine limestone. We then set the com-

position of dissolved carbonate (HCO�
3 is the carbon-bearing component, as we

can verify by typing show) in the reactant fluid to 0‰, a value typical for marine

carbonate rocks. Finally, we specify that calcite and dolomite be held segregated

from isotopic exchange. The procedure for tracing fractionation at low water–rock

ratios is

(cont’d)

carbon initial = -10, HCO3- = 0

segregate Calcite, Dolomite-ord

go

To carry the calculation to high water–rock ratios, we enter the commands

(cont’d)
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Fig. 19.1. Carbon isotopic composition of dolomite formed by reaction between a lime-
stone and migrating groundwater, calculated by holding minerals segregated from isotope
exchange. In the calculation, calcite in the limestone reacts at 60 °C with the migrating
groundwater, producing dolomite. Solid lines show results calculated assuming differing
CO2 fugacities (from 0.01 to 100) for the migrating fluid, plotted against the number of
times the pore fluid was displaced. Horizontal lines show compositions of calcite in the
limestone, and of dolomite in isotopic equilibrium with the calcite and with CO2 in the
migrating groundwater.

reactants times 4700

go

In this case, enough fluid passes through the system to completely transform the

limestone to dolomite. We can then repeat the entire procedure (taking care each

time to first type reset) for differing CO2 fugacities.

The calculation results (Fig. 19.1) show that the isotopic composition of the

product dolomite depends strongly on the value assumed for CO2 fugacity. At

low fugacity (fCO2
< 0:1), the dolomite forms at compositions similar to the

ı13C of the limestone, consistent with common interpretations in sedimentary

geochemistry. At moderate to high fugacity (fCO2
> 1), however, the dolomite

ı13C more closely reflects the heavier carbon in the migrating pore fluid. Because

of the fractionation of carbon between dolomite and CO2 (1000 ln˛ ' 4:6), the

isotopic composition of dolomite formed from groundwater rich in CO2 can be as

much as about 4‰ heavier than the groundwater ı13C.

For each CO2 fugacity chosen, the dolomite composition during the reaction ap-

proaches a steady state, as can be seen in Figure 19.1. The steady state reflects the
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Fig. 19.2. Isotopic composition (bold lines) of dolomite formed by reaction between a
limestone and migrating groundwater, assuming that minerals maintain isotopic equilib-
rium over the simulation. Fine lines show results of simulation holding minerals segregated
from isotopic exchange, as already presented (Fig. 19.1).

isotopic composition that balances sources (the unreacted fluid that enters the sys-

tem and the calcite that dissolves over a reaction step) and sinks (the fluid displaced

and dolomite precipitated over the step) of carbon to the isotope system. When the

CO2 fugacity is low, the carbon source is isotopically light (being dominated by the

dissolving calcite), and so are the sinks. At high fugacity, conversely, the dominant

carbon source is the heavy carbon in the migrating fluid. The pore fluid in the react-

ing system and the mineral mass that precipitates from it are therefore isotopically

heavy.

How would the results differ if we had assumed isotopic equilibrium among

minerals instead of holding them segregated from isotopic exchange? To find out,

we enter the commands

(cont’d)

unsegregate ALL

reactants times 10

go

Then, to carry the run to high water–rock ratios, we type

(cont’d)

reactants times 4700

go

In the unsegregated case (Fig. 19.2), a family of curves, one for each CO2 fugac-
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ity chosen, represents dolomite composition. At low water–rock ratios, regardless

of CO2 fugacity, the product dolomite forms at the composition in isotopic equi-

librium with the original calcite. Because of the fractionation between the miner-

als, the dolomite is about 1.8‰ lighter than the calcite. As the reaction proceeds,

the compositions of each component of the system (fluid, calcite, and dolomite)

become isotopically heavier, reflecting the introduction of heavy carbon by the

migrating fluid. Transition from light to heavy compositions occurs after a small

number of pore volumes have been displaced by a fluid of high CO2 fugacity, or a

large quantity of fluid of low CO2 fugacity.

These predictions differ qualitatively from the results of the segregated model

(Fig. 19.1), as can be seen by comparing the bold and fine lines in Figure 19.2. In

contrast to the segregated model, the initial and final ı13C values of the dolomite in

the unsegregated model are independent of fCO2
, and the final value does not de-

pend on the original composition of the calcite. Dolomite compositions predicted

by the two models coincide only when CO2 fugacity is quite high (fCO2
' 100),

and then only at high water–rock ratios Under other conditions, the predictions

diverge. Since the unsegregated model depends on the unrealistic premise of main-

taining isotopic equilibrium at low temperature, these results argue strongly for the

importance of holding minerals segregated from isotope exchange when modeling

many types of reaction processes.
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Transport in flowing groundwater

To this point, we have considered relatively simple descriptions of mass transfer:

reactants added to or removed from a chemical system at prescribed rates, the

exchange of gases with external reservoirs, and kinetic rate laws. A general model

of reactions occurring in a system open to groundwater flow would account at each

location in the flow for the rate at which the flowing groundwater delivers reactants,

and how fast it carries away reaction products. The model would consider not only

the solutes carried by the flowing groundwater, but their movement by molecular

diffusion and hydrodynamic dispersion, the mixing within the flow.

Such models are known as reactive transport models and are the subject of the

next chapter (Chapter 21). We treat the preliminaries in this chapter, introducing

the subjects of groundwater flow and mass transport, how flow and transport are

described mathematically, and how transport can be modeled in a quantitative

sense. We formalize our discussion for the most part in two dimensions, keeping

in mind the equations we use can be simplified quickly to account for transport in

one dimension, or generalized to three dimensions.

20.1 Groundwater flow

Transport in flowing groundwater is controlled primarily by the pattern and rate

of flow, which are described by Darcy’s law. Darcy’s law says that groundwater

migrates from high hydraulic potential to low, according to,

qx D �kx

�

@ˆ

@x

qy D �ky

�

@ˆ

@y

(20.1)

(Hubbert, 1940; Freeze and Cherry, 1979). Here, qx and qy are specific discharge

(cm3 cm�2 s�1) in the x and y directions, kx and ky are permeability (cm2)

285
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along those coordinates, � is the fluid viscosity (poise, or g cm�1 s�1), and ˆ

is hydraulic potential (g cm�1 s�2), the mechanical energy contained in a unit

volume of groundwater.

Hydraulic potential is the sum of the V dP work done on the water and its

potential energy. The quantity is given by,

ˆ D P C �gZ ; (20.2)

where P is fluid pressure (g cm�1 s�2), � is fluid density (g cm�3), g the accel-

eration of gravity (cm s�2), and Z elevation (cm) relative to sea level or another

datum. Specific discharge in an arbitrary direction of flow is given by,

q D
q
q2

x C q2
y (20.3)

from the components of the discharge vector.

Darcy’s law can be written in an alternative form in terms of hydraulic head h

(cm), the height to which water would rise above sea level if free to flow into a

well, and hydraulic conductivity Kx , Ky (cm s�1) of the sediment. In this case,

groundwater flows from high head to low, at a discharge given by,

qx D �Kx
@h

@x

qy D �Ky
@h

@y
:

(20.4)

Changes in hydraulic head reflect variation in the hydraulic potential, according to

dˆ D �g dh, and hydraulic conductivity is proportional to permeability,

Kx D �gkx

�
Ky D �gky

�
(20.5)

for a fluid of constant viscosity; hence the forms are equivalent where � does not

vary, or where the conductivity is corrected for the variation.

Neither of these forms of Darcy’s law is correct where fluid density varies, such

as in convecting flows. In this case, the discharge is given by,

qx D �kx

�

�
@P

@x
C �g

@x

@Z

�

qy D �ky

�

�
@P

@y
C �g

@y

@Z

�
:

(20.6)

The flow pattern in this case reflects the distribution of fluid pressure and fluid

density; it cannot be determined from the gradient of any single potential function.

Specific discharge has units such as cm3 of water per cm2 of the saturated

medium per second, so nominally it can be expressed in velocity units, like cm
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s�1. The quantity is, however, properly considered a volume flux and not the

groundwater velocity, which is the average rate at which water molecules translate

through space. Groundwater can move only through the pore space of a sediment

or rock, so the velocity depends on the porosity 
, which is the unitless ratio of

pore volume to bulk volume, according to

vx D qx



vy D qy



: (20.7)

Here vx and vy are the components of the velocity vector in the coordinate direc-

tions. Velocity v in an arbitrary direction is

v D q



(20.8)

or

v D
q
v2

x C v2
y : (20.9)

The value of groundwater velocity within a rock or sediment, then, invariably

exceeds that of specific discharge.

20.2 Mass transport

Chemical mass is redistributed within a groundwater flow regime as a result

of three principal transport processes: advection, hydrodynamic dispersion, and

molecular diffusion (e.g., Bear, 1972; Freeze and Cherry, 1979). Collectively, they

are referred to as mass transport. The nature of these processes and how each can

be accommodated within a transport model for a multicomponent chemical system

are described in the following sections.

20.2.1 Advection

Advective transport, or simply advection, refers to movement of chemical mass

within a flowing fluid or gas. For our purposes, it is most commonly migration

of aqueous species along with groundwater. In constructing a transport model, we

prefer to consider how much of the thermodynamic components – the total masses

of the basis entries Aw , Ai , Ak , and Am – move, rather than track migration of the

free masses of each individual aqueous species.

Taking Cw , Ci , Ck , and Cm as the volumetric concentrations (mol cm�3) of

basis entries mobile in the groundwater, the advective fluxes (mol cm�2 s�1) of
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the components are given from the specific discharge (qx , qy) as,

qA
xw

D qxCw qA
yw

D qyCw (20.10)

qA
xi

D qxCi qA
yi

D qyCi (20.11)

qA
xk

D qxCk qA
yk

D qyCk (20.12)

qA
xm

D qxCm qA
ym

D qyCm : (20.13)

Here, qA
x is the mass of a component carried across a unit plane oriented normal to

the x direction, per unit time, and qA
y is the same for a plane normal to y.

Volumetric concentration is the mobile fraction of a component’s mass at the

nodal block in question, divided by fluid volume there. The concentrations are

given from the component masses (Mw , Mi , Mk , and Mm), adjusted for the

immobile species, and the fluid volume V as,

Cw D 1

V

 
Mw � nw

X
q

�wqmq

!
(20.14)

Ci D 1

V

 
Mi � nw

X
q

�iqmq

!
(20.15)

Ck D 1

V

 
Mk � nk � nw

X
q

�kqmq

!
(20.16)

Cm D 1

V

 
Mm � nw

X
q

�mqmq

!
: (20.17)

As before, mq are the molal concentrations of the sorbing species Aq , and �wq ,

etc., are the coefficients of the reaction forming Aq from the basis. In these equa-

tions, we have taken minerals and sorbed species as being immobile, although this

assumption might be relaxed to account, for example, for the migration of colloids

or suspended sediment.

In treating sorbing surfaces that carry an electrical charge, it is necessary when

evaluating these equations to include within the summations over the sorbed spe-

cies Aq the masses of the aqueous species that make up the diffuse ion layer. The

species in the diffuse layer counterbalance charge on the surface; if they are not

taken to be immobile, charge in the predicted advective flux is imbalanced. The

various sorption and surface complexation theories provide little guidance in pre-

dicting the composition of the diffuse layer, so the modeler may need to construct

it by ad hoc means, such as from the most abundant ion of opposing charge, or as

a mixture of counter ions in proportions reflecting the fluid’s bulk composition.
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20.2.2 Hydrodynamic dispersion

The water molecules and dissolved species making up flowing groundwater do

not pass through the subsurface in an orderly fashion. Instead of following simple

trajectories, they branch continually into threads, moving around grains, into and

out of areas of high conductivity, or along fractures. The threads may combine with

threads of distant origin, or recombine with those from which they have previously

split. Some threads move ahead of the average flow, others are retarded relative to

it; a thread may follow the centerline of the flow or stray far to the side.

In this way, the groundwater continually mixes by mechanical means, an effect

known as hydrodynamic dispersion (e.g., Freeze and Cherry, 1979). Microscopic

dispersion, as the name suggests, arises at the level of the pores and pore throats in

the sediment or rock. It accounts for the branching of the flow around grains and

through microscopic fractures, and the more rapid migration of molecules in the

center of pore throats than along the edges.

Macroscopic dispersion, on the other hand, arises from heterogeneities on a scale

larger than individual pores and grains. Such heterogeneities include laminae, lay-

ers, and formations of contrasting permeability; fractures larger than the micro-

scopic ones already considered; and karst channels, joints and faults. Dispersion of

this sort is sometimes referred to as differential advection.

Hydrodynamic dispersion is in many cases taken to be a “Fickian” process, one

whose transport law takes the form of Fick’s law of molecular diffusion. If flow is

along x only, so that vx D v and vy D 0, the dispersive fluxes (mol cm�2 s�1)

along x and y for a component i are given by,

qD
xi

D �
DL
@Ci

@x

qD
yi

D �
DT
@Ci

@y
:

(20.18)

Here 
 is the porosity of the medium andDL andDT are the coefficients of hydro-

dynamic dispersion (cm2 s�1) in the longitudinal (along the flow) and transverse

(across the flow) directions. Parallel equations are written for components w, k,

and m, in terms of Cw , Ck , and Cm, as defined in the previous section. By these

equations, we see that dispersion transports a component from areas of high to low

concentration, working to smooth out the component’s distribution.

The dispersion coefficients for the case of flow along a coordinate axis are

calculated from the absolute value of the velocity v as,

DL D D� C ˛L jvj
DT D D� C ˛T jvj ; (20.19)

whereD� is the coefficient of molecular diffusion (cm2 s�1) in the medium, and ˛L
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and ˛T are the dispersivity (cm) of the medium in the longitudinal and transverse

directions.

Dispersivity is a property that depends on the nature of the sediment or rock in

question, as well as the scale on which dispersion is observed. There is no typical

value: a dispersivity of 1 cm might be observed in a laboratory experiment, whereas

a value of 100 m (10 000 cm) might be found to apply in a field study. Dispersion is

generally more rapid along the direction of flow than across it, so ˛L > ˛T. Typical

values of the diffusion coefficient D� in porous media are in the range 10�7 to

10�6 cm2 s�1.

Two points in Equation 20.19 are apparent. First, through inclusion of the dif-

fusion coefficient, the dispersion coefficient is defined to encompass not only me-

chanical mixing but molecular diffusion, taking advantage of the Fickian form as-

sumed for the transport equation. There are limitations to lumping dispersion and

diffusion together, as we will discuss. Second, the mechanical component of the

dispersion coefficient, represented by the dispersivity, is proportional to the veloc-

ity of groundwater flow. This is because the rate of mechanical mixing would be

expected to vary directly with flow rate – where flow is most rapid, mixing should

be strongest.

Where groundwater is allowed to flow in an arbitrary direction instead of along

one of the coordinate axes, the dispersion coefficient assumes a tensor rather than

vector form. In this case, the dispersive fluxes are given by,

qD
xi

D �

�
Dxx

@Ci

@x
CDxy

@Ci

@y

�

qD
yi

D �

�
Dyx

@Ci

@x
CDyy

@Ci

@y

�
;

(20.20)

where the entries in the dispersion tensor are,

Dxx D D� C ˛L
v2

x

jvj C ˛T

v2
y

jvj

Dyy D D� C ˛L

v2
y

jvj C ˛T
v2

x

jvj
Dxy D Dyx D .˛L � ˛T/

vxvy

jvj

(20.21)

(e.g., Bear, 1972; 1979). We see that Equation 20.19 is a special form of the

dispersion tensor for the case vy D 0.

The dispersivity of natural sediments and rocks, as we have noted, is a property

notable for its tendency to scale strongly with the scale on which it is observed

(e.g., Neuman, 1990). Dispersivities observed in field studies, for example, are

almost invariably larger than those observed on a smaller scale of study in the
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laboratory. And, in a given field study, dispersivities observed over long distances

are commonly larger than those observed locally.

There are two general strategies for accounting in mass transport simulations for

dispersion, given the strong scaling of dispersivity. The most straightforward is to

represent dispersion at all the scales considered as a Fickian process, using one

value for longitudinal dispersivity, and a second for transverse. The dispersivities

assumed are those appropriate to the domain taken as a whole, and the resulting

dispersion coefficients (Eqns. 20.19 and 20.21) reflect the sum of microscopic and

macroscopic effects. The principal disadvantage to this approach is that it applies

the same dispersivity to transport over small areas of the domain – those covering

just a few nodal blocks – as it does to the domain as a whole, in contradiction to

the observed scaling effect (e.g., Gelhar, 1986).

A more detailed and potentially more realistic approach is to divide dispersion

into two components: one present on the scale of the individual nodal blocks in the

numerical solution, and a second arising from differential advection through the

nodes. The domain is taken to be heterogeneous, with the permeability at individ-

ual nodal blocks assigned according to a stochastic model, using a random number

generator. The first component is represented, as before, as a Fickian process, using

dispersivity values appropriate to the size of the nodal blocks. The second compo-

nent, in contrast, accounts for the dispersion observed at larger scales; it arises from

the preferred flow of groundwater along high-permeability pathways through the

assemblage of nodal blocks. Transport is most rapid along those pathways, giving

rise in the simulation to differential advection and hence macrodispersion.

20.2.3 Molecular diffusion

Molecular diffusion (or self-diffusion) is the process by which molecules show a

net migration, most commonly from areas of high to low concentration, as a result

of their thermal vibration, or Brownian motion. The majority of reactive transport

models are designed to simulate the distribution of reactions in groundwater flows

and, as such, the accounting for molecular diffusion is lumped with hydrodynamic

dispersion, in the definition of the dispersivity.

The accounting for diffusion in these models, in fact, is in many cases a formal-

ity. This is because, as can be seen from Equations 20.19 and 20.21, the contribu-

tion of the diffusion coefficient D� to the coefficient of hydrodynamic dispersion

D is likely to be small, compared to the effect of dispersion. If we assume a disper-

sivity ˛ of 100 cm, for example, then the product ˛v representing dispersion will

be larger than a diffusion coefficient of 10�7–10�6 cm2 s�1 wherever groundwater

velocity v exceeds 10�9–10�8 cm s�1, or just 0.03–0.3 cm yr�1.

It is common practice in groundwater transport modeling to apply a single
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value for the diffusion coefficient to all the aqueous species, then, even though

diffusion coefficients actually vary from species to species, reflecting in large part

variation in hydrated radius. This practice is not valid everywhere. Groundwater,

for example, may flow quite slowly within shale aquitards, intact blocks of igneous

and metamorphic rock, or backfill at waste repositories. In such environments,

diffusion may be more important than dispersion, and accurate values for the

diffusion coefficients may be needed.

A straightforward response to this issue is to remove D� from Equations 20.19

and 20.21 and then calculate the flux of each aqueous species (indexed j ) individ-

ually, according to

qDiff
xj

D �
D�
j

@Cj

@x

qDiff
yj

D �
D�
j

@Cj

@y
:

(20.22)

Here, D�
j is the species’ diffusion coefficient, and Cj its volumetric concentration.

This strategy is fully valid only for uncharged species. If the species are electri-

cally charged, cations will begin diffusing more readily than anions, or vice versa,

creating an electrical potential, which will in turn affect the rate at which the ions

diffuse. Newman and Thomas-Alyea (2004) describe how to model diffusion in

ionic systems in the presence of an electrical potential. If the electrical potential is

ignored in the simulation, local charge balance will be lost.

20.3 Advection–dispersion equation

The effect of advection and dispersion on the distribution of a chemical component

within flowing groundwater is described concisely by the advection–dispersion

equation. This partial differential equation can be solved subject to boundary and

initial conditions to give the component’s concentration as a function of position

and time.

20.3.1 Derivation

The advection–dispersion equation follows directly from the transport laws already

presented in this chapter, and the divergence principle. The latter states that the

time rate of change in the concentration of a component depends on how rapidly

the advective and dispersive fluxes change in distance. If, for example, more of

component i moves into the control volume shown in Figure 20.1 across its left and

front faces than move out across its right and back, the component is accumulating

in the control volume and its concentration there increasing. The time rate of
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qxi

qyi

dx

dy

dz

Fig. 20.1. Control volume of an aquifer, showing the origin of divergence principle. Vol-
ume dimensions are dx � dy � dz. The rate at which a chemical component i accumulates
within the volume depends on the divergence of the mass fluxes; i.e., the rate at which the
component’s mass is transported into the volume along x and y, less the rate it is trans-
ported out.

change in concentration is given by,

@Ci

@t
D � @
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�
(20.23)

(Bear, 1972; 1979; Freeze and Cherry, 1979), which is the negative divergence of

the fluxes. This equation is a statement of the divergence principle, applied to solute

mass.

Substituting the transport laws for advection and dispersion (Eqns. 20.11 and

20.20), and noting that groundwater velocity v is related to specific discharge q

according to Equation 20.7, gives
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(20.24)

which is the advection–dispersion equation in two dimensions. In deriving this

relation, we take porosity 
 as invariant; in the next chapter (Chapter 21), we will

relax this assumption. Parallel forms of the equation, of course, can be written for

any component, in terms of Cw , Ck , and Cm. Considering flow and transport along

only x leaves,

@Ci

@t
D @

@x

�
DL

@Ci

@x

�
� @

@x
.vxCi / ; (20.25)

which is the advection–dispersion equation in one dimension.



294 Transport in flowing groundwater

20.3.2 Péclet number

We see in Equations 20.24 and 20.25 that two types of terms contribute to the

evolution of solute concentration: those representing the effects of advection, and

those accounting for diffusion and dispersion. The non-dimensional Péclet num-

ber1 represents the importance of these processes, relative to one another.

In an interval of time �t , advection carries a non-reacting solute across a dis-

tance L D vx�t , and the solute is dispersed over a characteristic distance L 'p
DL�t (e.g., Crank, 1975). For any given �t , then, advection and dispersion ob-

served at a length scale L are equally important wherever

DL D Lvx : (20.26)

Rearranging gives the Péclet number,

Pe D Lvx

DL

; (20.27)

which is a measure of the effect of advection relative to diffusion and dispersion,

at a given scale of observation.

Where the Péclet number has a value near one, advection and dispersion are of

comparable importance. Values much greater than one signify the dominance of

advection, and those less than one indicate that diffusion or dispersion dominates.

In the presence of groundwater flowing at any appreciable rate, DL ' ˛Lvx (from

Eqn. 20.19), as already discussed, and the Péclet number becomes,

Pe D L

˛L
: (20.28)

Now, Pe depends only on the magnitude of the dispersivity relative to the scale of

observation. The Péclet number of flowing groundwater is generally greater than

one, reflecting the dominance of advection, since dispersivity is invariably found

to be smaller than the scale on which it is observed (e.g., Neuman, 1990).

20.4 Numerical solution

Equation 20.24 can be solved analytically to give closed-formed answers to sim-

ple problems. Many mass transport problems, however, including all but the most

straightforward in reactive transport, require the equation to be evaluated numeri-

cally (e.g., Phillips, 1991). There are a variety of methods for doing so, including

1 We might properly refer to this value as the “apparent Péclet number,” because by many formal definitions the
Péclet number accounts for the relative importance of advection and molecular diffusion, without mention of
hydrodynamic dispersion.
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(I, J)(I–1, J) (I+1, J)

(I, J–1)

(I, J+1)

Δx

Δy

x

y

Fig. 20.2. Indexing of nodal blocks in a finite difference grid, showing point .I; J / and it
nearest neighbors. Properties of the nodal blocks are projected onto nodal points located at
the center of each block.

finite difference, finite element, particle tracking, and so on (e.g., Zheng and Ben-

nett, 2002). Most numerical models of multicomponent reactive transport are based

on the finite difference method, which we describe in this section.

20.4.1 Gridding

The first step in obtaining a finite difference solution is to divide the domain into

nodal blocks, as shown in Figure 2.11. This process is known as discretization, or

more simply as gridding. In a one-dimensional simulation, the domain is divided

into Nx nodal blocks, so for a domain of length L, each nodal block is of length

�x D L=Nx . In two dimensions, there are Nx � Ny blocks, each of dimensions

�x ��y, where for a domain of widthW ,�y D W=Ny.

The nodal blocks are indexed along x by I , and along y by J , where the indices

may be taken to vary from 1 toNx and 1 toNy . Some recent codes use the “pointer

and offset” indexing convention of modern programming languages, in which case

I varies from 0 toNx � 1 and J from 0 to Ny � 1. Either way, the neighbor to the

left of .I; J / is .I�1; J /, the underlying node is .I; J�1/, and so on, as shown in

Figure 20.2.

Each nodal block represents a distinct system, as we have defined it (Fig. 2.1).

Conceptually, the properties of the entire block are projected onto a nodal point at

the block’s center (Fig. 20.2). A single value for any variable is carried per node

in a transport or reactive transport simulation. There is one CaCC concentration,

one pH, one porosity, and so on. In other words, there is no accounting in the finite

difference method for the extent to which the properties of a groundwater or the
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aquifer through which it flows might vary across the finite dimensions of a nodal

block. All such variation exists among the nodal blocks, not within them.

20.4.2 Finite difference approximation

In a finite difference model, the differential equation representing mass transport

(Eqn. 20.24 or 20.25) is converted into an approximate, algebraic form that can

readily be evaluated using a computer. A derivative of concentration in space

evaluated between nodal points .I; J / and .IC1; J /, for example, can be written,

@Ci

@x

ˇ̌̌
ˇ
.IC1=2;J /

' C
.IC1;J /
i � C

.I;J /
i

�x
: (20.29)

Here, .I C 1=2; J / represents the region centered between the nodal blocks in

question, .I; J / and .I C1; J /, and �x is the block spacing along x. The first

derivative of concentration, in other words, is taken as the amount the variable

changes between two nodal blocks, divided by the block spacing. As �x becomes

smaller, the approximation more closely reflects the actual derivative.

Rendering a transport equation in finite difference form is a straightforward and

well known process (e.g., Peaceman, 1977; Smith, 1986). The derivatives of Ci

in time and space are replaced with finite difference equivalents. The resulting

difference equation written at a nodal block .I; J / now includes concentration

at that block and its four neighbors: C
.I;J /
i , C

.I�1;J /
i , C

.IC1;J /
i , C

.I;J �1/
i , and

C
.I;J C1/
i .

The difference equation may be rendered with the spatial derivative evaluated at

the beginning or the end of the time step, or an average of the two, and with the first

derivatives in space (the advection terms) shifted toward or away from the direction

of groundwater flow. Depending on these choices, the resulting equation may be

referred to as either forward- or backward-in-time, and forward- or backward-in-

distance. In this book, we will consider only difference equations that are forward-

in-time (the explicit method) and backward-in-distance (the upstream weighting

method). We defer full details of the derivation until the following chapter (Chapter

21), where we construct a model of the transport of reacting solutes.

A transport model is evaluated using a time marching procedure. Concentration

along the perimeter of the domain is known from the boundary conditions pre-

scribed, and the initial conditions fix C
.I;J /
i at each nodal block, at the onset of the

simulation. Using the difference equation, the model calculates new values for con-

centration, as they vary in response to transport over an interval �t . Now, C
.I;J /
i

is known at the end of the first step, t D �t . The model steps forward again in

time, calculating concentration at t D 2 ��t , t D 3 ��t , and so on, until it reaches

the targeted end point of the simulation.
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20.4.3 Stability and Courant number

In following the time marching procedure, there are specific limits to the length of

the time step that may be taken. If the time step exceeds the limits, the solution will

become unstable: rather than following a smooth trajectory, small errors will be

amplified until the solution oscillates wildly (e.g., Peaceman, 1977; Smith, 1986).

It is important, therefore, for the modeler to choose a suitable time step, or for the

model to impose one.

In the case of diffusion in the absence of advection, the stability of a forward-in-

time solution in one dimension is given by the von Neuman criterion,�
2DL

�x2

�
�t 
 1 : (20.30)

By this relation, the limiting time step varies with the square of the nodal block

spacing. If the number of blocks in a domain is doubled, the spacing is cut in half

and the limiting time step must be reduced by three quarters.

In a backwards-in-distance solution for advective transport in the absence of dis-

persion or diffusion, the Courant criterion limits the time step. In one dimension,

the grid Courant number is the number of nodal blocks the fluid traverses over a

time step. By the Courant criterion, the Courant number Co must not exceed one,

or

Co D
� jvx j
�x

�
�t 
 1 (20.31)

when modeling transport of an unreactive solute. In other words, the solution is

stable only when a time step is chosen so the fluid moves in a time step no farther

than the length of a single nodal block.

Considering dispersion and advection simultaneously, the stability criterion for

the forward-in-time, backward-in-distance procedure becomes,� jvx j
�x

C 2DL

�x2

�
�t 
 1 : (20.32)

In two dimensions, the grid Courant number is,
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�t ; (20.33)

and the stability criterion is given by, 
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20.4.4 Numerical dispersion

By replacing the derivatives in the transport equation with finite difference approx-

imations, we introduce to our numerical solution specific inaccuracies. To see this,

we write a Taylor series expanding the difference between C
.IC1;J /
i and C

.I;J /
i ,

C
.IC1;J /
i � C .I;J /

i D .�x/
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C :::

(20.35)

Comparing this equation to a finite difference approximation (Eqn. 20.29), we see

that in the numerical solution we carry only the first term in the series, the @Ci=@x

term, omitting the higher order entries. The Taylor series is truncated, then, and the

resulting error called truncation error.

Truncation error arises from approximating each of the various space and time

derivatives in the transport equation. The error resulting from the derivative in the

advection term is especially notable and has its own name. It is known as numerical

dispersion because it manifests itself in the calculation results in the same way as

hydrodynamic dispersion.

To see why numerical dispersion arises, consider solute passing into a nodal

block, across its upstream face. Over a time step, the solute might traverse only

a fraction of the block’s length. In the numerical solution, however, solute is dis-

tributed evenly within the block. At the end of the time step, some of it has in effect

flowed across the entire nodal block and is in position to be carried into the next

block downstream, in the subsequent time step. In this way, the numerical proce-

dure advances some of the solute relative to the mean groundwater flow, much as

hydrodynamic dispersion does.

For the transport of a non-reacting solute in one dimension, a coefficient of

numerical dispersion can be defined,

Dnum D 1

2
vx�x .1 � Co/ ; (20.36)

assuming the forward-in-time, backward-in-distance scheme we have been dis-

cussing (Peaceman, 1977; Smith, 1986). As before, Co D v�t=�x is the grid

Courant number. The results of the finite difference solution resemble the exact

solution to the advection–dispersion equation obtained setting the dispersion coef-

ficient to notDL, but DL CDnum.

Where Dnum dominates DL, which is not uncommon, the calculation result
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reflects numerical more than actual dispersion. Substituting the grid Péclet number,

Pe D �x vx

DL
(20.37)

into Equation 20.36 gives

Dnum

DL
D 1

2
Pe .1 � Co/ : (20.38)

From this result, we can be assured a solution reflects hydrodynamic rather than

numerical dispersion – that is,DL > Dnum – wherever Pe < 2.

Numerical dispersion can be minimized in several ways. The nodal block spac-

ing �x can be set small by dividing the domain into as many blocks as practical.

The value specified forDL can be reduced to account for the anticipated numerical

dispersion. And a time step can be chosen to give a grid Courant number Co as

close to one as allowed by the stability criterion (Eqn. 20.32).

None of these options is completely satisfactory. Refining the grid sufficiently to

force Dnum smaller than DL is commonly possible in one dimension, but may not

be practical in two or three, since decreasing nodal block size not only increases

the amount of computing required at each time step, but the number of time steps.

It may be possible in a one-dimensional simulation to decrease DL by the value

of Dnum, but the effective value of Dnum differs between non-reacting and reacting

solutes, because the Courant number for a reacting solute is generally less than for

a non-reacting species. And choosing a time step bringing Co as close to one as

possible is most effective for the non-reacting solutes in a simulation, since they

have larger Courant numbers than the reacting solutes.

20.5 Example calculation

We consider as an example (Fig. 20.3) a model in one dimension of the migration

of an aqueous solute through an aquifer, according to Equation 20.25, assuming

the species undergoes no reaction. The aquifer is 1 km long (L D 1000 m) and

groundwater flows through it at a velocity vx of 100 m yr�1. The groundwater is

initially devoid of the solute, but starting at t D 0 and continuing for two years, it

is present in the recharge at concentration Co; after this interval, concentration in

the recharge returns to zero.

We consider two cases, one with a higher Péclet number than the other. Disper-

sivity ˛L in the first case is set to 0.03 m; in the second, it is 3 m. In both cases,

the diffusion coefficient D� is 10�6 cm2 s�1. Since Pe ' L=˛L, the two cases on

the scale of the aquifer correspond to Péclet numbers of 33 000 and 330. We could

evaluate the model numerically, but Javandel et al. (1984) provide a closed form

solution to Equation 20.25 that lets us calculate the solute distribution in the aquifer
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Fig. 20.3. Transport model of the migration of a chemical species through an aquifer,
calculated for two Péclet numbers, Pe. Species is not present initially, but from t D 0
to t D 2 years recharge at the left boundary contains the species at concentration Co.
After this interval, concentration in recharge returns to zero. Fine line shows result for
dispersivity ˛L of 0.03 m, corresponding to a Péclet number on the scale of the aquifer
(1000 m) of 33 000; bold line shows results for ˛L D 3 m, or Pe D 330.

directly. In the next chapter (Chapter 21), we evaluate this problem numerically, for

reacting as well as non-reacting solutes.

In the calculation results, the solute migrates through the aquifer at the velocity

of the groundwater. In the lower Péclet number case, the sudden appearance and

then disappearance of the solute in the recharge gives rise to a pulse that passes

through the aquifer like a square wave. For the higher Péclet number, however,

the sharp concentration fronts attenuate quickly as groundwater moves away from

the recharge area, in response to hydrodynamic dispersion. In this case, the pulse

broadens considerably, as some solute moves ahead of the average groundwater

flow, and some lags behind it.
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Reactive transport

Many times in geochemical modeling we want to understand not only what reac-

tions proceed in an open chemical system, but where they take place (e.g., Steefel

et al., 2005). In a problem of groundwater contamination, for example, we may

wish to know not only the extent to which a contaminant might sorb, precipitate,

or degrade, but how far it will migrate before doing so.

To this point, we have discussed how to model the reactions occurring within

a single representative volume, as shown in Figure 2.1. Such configurations are

sometimes called lumped parameter models, because the properties of the entire

system are represented by a single set of values. There is one pH for the entire

volume, one ionic strength, a single mass for each chemical component, and so

on. In studying reaction within flowing groundwater, in contrast, we may want to

build a distributed parameter model, a model in which the properties vary across

the system.

To construct models of this sort, we combine reaction analysis with transport

modeling, the description of the movement of chemical species within flowing

groundwater, as discussed in the previous chapter (Chapter 20). The combination

is known as reactive transport modeling, or, in contaminant hydrology, fate and

transport modeling.

21.1 Mathematical model

A reactive transport model, as the name implies, is reaction modeling implemented

within a transport simulation. It may be thought of as a reaction model distributed

over a groundwater flow. In other words, we seek to trace the chemical reactions

that occur at each point in space, accounting for the movement of reactants to that

point, and reaction products away from it.

We formalize the discussion below in terms of Ci , the mobile concentration of

a species component Ai , as defined by Equation 20.15. We bear in mind that, even

301
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though we will not write them explicitly, parallel equations exist for components

Aw , Ak , and Am, written in terms of Cw , Ck , and Cm (Eqns. 20.14, 20.16, and

20.17).

21.1.1 Governing equation

In the previous chapter (Section 20.3), we showed the equation describing transport

of a non-reacting solute in flowing groundwater (Eqn. 20.24) arises from the diver-

gence principle and the transport laws. By this equation, the time rate of change

in the dissolved concentration of a chemical component at any point in the domain

depends on the net rate the component accumulates or is depleted by transport.

The net rate is the rate the component moves into a control volume, less the rate it

moves out.

For a reacting solute, the net rate of accumulation is the rate due to transport, plus

the rate chemical reactions add the component to the groundwater, or less the rate

they remove it. Including the effects of reaction in Equation 20.24, and allowing

porosity 
 to vary with position and time, gives

@.
Ci/

@t
D @

@x

�

Dxx

@Ci

@x

�
C @

@x

�

Dxy

@Ci

@y

�
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�

Dyx
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@x

�
C @

@y

�

Dyy

@Ci

@y

�
�

@
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.
vxCi/ � @

@y

�

vyCi

�C 
Ri :

(21.1)

Here, Ri is reaction rate (mol cm�3 s�1), the net rate at which chemical reactions

add component i to solution, expressed per unit volume of water. As before, Ci is

the component’s dissolved concentration (Eqns. 20.14–20.17), Dxx and so on are

the entries in the dispersion tensor, and .vx; vy/ is the groundwater velocity vector.

For transport in a single direction x, the equation simplifies to,

@.
Ci/

@t
D @

@x

�

DL

@Ci

@x

�
� @

@x
.
vxCi /C 
Ri ; (21.2)

where DL is the coefficient of longitudinal dispersion.

The reaction rate Ri in these equations is a catch-all for the many types of

reactions by which a component can be added to or removed from solution in a

geochemical model. It is the sum of the effects of equilibrium reactions, such as

dissolution and precipitation of buffer minerals and the sorption and desorption

of species on mineral surfaces, as well as the kinetics of mineral dissolution and

precipitation reactions, redox reactions, and microbial activity.

If pH at a point in the domain drops, for example, an aluminosilicate mineral
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in contact with the fluid will likely dissolve, giving a positive reaction rate for

the components making up the mineral. Where contaminated water infiltrates an

aquifer, the contaminant may sorb, leading to a negative Ri . If clean water later

enters, the contaminant may desorb, in which case Ri for the contaminant will be

positive. For a species that oxidizes or is reduced in a redox disequilibrium model,

or a substrate consumed by microbial activity,Ri is negative.

21.1.2 Attenuation and retardation

In environmental hydrology, attenuation means a decrease in a contaminant’s con-

centration or toxicity. Groundwater pollutants may attenuate by precipitating, be-

ing degraded by microorganisms, sorbing to aquifer solids, or being oxidized or

chemically reduced to a less toxic form. Radioisotopes attenuate by radioactive de-

cay. And attenuation results when contaminated water mixes with clean water, by

dilution.

Retardation refers to the process by which chemical reactions slow the transport

of a contaminant plume through the subsurface, relative to the average groundwater

flow. Retardation commonly results from sorption of the contaminant onto aquifer

solids, or from precipitation. A sorbing contaminant introduced to an aquifer, for

example, traverses the aquifer more slowly that the flowing groundwater, because

some of the contaminant is continually removed from solution. The contaminant

will arrive at a point along the aquifer some time after the water that originally

contained it. If clean water is introduced to a contaminated area, conversely, a

sorbing contaminant is flushed from the aquifer more slowly than water migrates

along it. Even under ideal circumstances, groundwater in an aquifer containing a

sorbing pollutant may need to be replaced many times before the aquifer is clean.

In simple cases, the mobility in the subsurface of a sorbing contaminant can be

described by a retardation factor. Where contaminated water passes into a clean

aquifer, a reaction front develops. The front separates clean, or nearly clean water

downstream from fully contaminated water upstream. Along the front, the sorption

reaction removes the contaminant from solution. The retardation factor describes

how rapidly the front moves through the aquifer, relative to the groundwater. A

retardation factor of two means the front, and hence the contamination, will take

twice as long as the groundwater to traverse a given distance.

For a species affected only by an equilibrium sorption reaction, if the species’

sorbed concentration CSi
depends directly on its dissolved concentration Ci , the

reaction rate is,

Ri D �@CSi

@t
D �@CSi

@Ci

@Ci

@t
: (21.3)
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Where sorption can be described by the reaction Kd approach (Section 9.1),

@CSi

@Ci
D 1000

.1 � 
/



�s

�w
�iK

0
d (21.4)

as can be seen by differentiating Equation 9.3. Here �s and �w are the densities of

dry sediment and water (g cm�3), �i is the species’ activity coefficient, and K0
d is

the distribution coefficient. By convention, a value of 2.65 g cm�3 is used for �s .

Substituting these relations into the reactive transport equation (Eqn. 21.2), and

taking porosity to be constant, gives

RF
@Ci

@t
D @

@x

�
DL

@Ci

@x

�
� @

@x
.vxCi / ; (21.5)

where RF,

RF D 1C 1000
.1 � 
/



�s

�w
�jK

0
d ; (21.6)

is the retardation factor. For a weakly sorbing solute, K0
d is small, RF is close

to one, and there is little retardation. A large K0
d, conversely, leads to significant

retardation and a large retardation factor.

By similar logic, the retardation factor for a solute that sorbs according to a

Freundlich isotherm is

RF D 1C 1000 nf
.1 � 
/



�s

�w

.�i/
nf.Ci/

nf�1K0
d (21.7)

as can be seen by differentiating Equation 9.15; here, nf is the Freundlich coeffi-

cient. Likewise, the retardation coefficient corresponding to a Langmuir isotherm

(Eqn. 9.20) is,

RF D 1C K CT

.K C Ci /
2
; (21.8)

where K is the equilibrium constant for the Langmuir reaction and CT is the total

concentration of sorbing sites, whether complexed or not. The retardation factor in

these two cases varies with solute concentration and hence with position and time.

Only where sorption is described by a constant distributioncoefficient is retardation

a property of an aquifer and its sorbing surfaces alone.

Retardation also arises when a fluid undersaturated or supersaturated with re-

spect to a mineral invades an aquifer, if the mineral dissolves or precipitates ac-

cording to a kinetic rate law. When the fluid enters the aquifer, a reaction front,

which may be sharp or diffuse, develops and passes along the aquifer at a rate less

than the average groundwater velocity. Lichtner (1988) has derived equations de-

scribing the retardation arising from dissolution and precipitation for a variety of

reactive transport problems of this sort.



21.1 Mathematical model 305

21.1.3 Damköhler number

In a simple situation of the type just described, water undersaturated or supersat-

urated with respect to a mineral invades an aquifer, where the mineral dissolves

or precipitates according to a kinetic rate law, adding or removing a species to or

from solution. With time, the species’ concentration along the aquifer approaches

a steady state distribution, trending from the unreacted value at the inlet toward the

equilibrium concentration.

Where dissolution or precipitation is sufficiently rapid, the species’ concentra-

tion quickly approaches the equilibrium value as water migrates along the aquifer;

the system is said to be reaction controlled. Alternatively, given rapid enough flow,

water passes along the aquifer too quickly for the species concentration to be af-

fected significantly by chemical reaction. The system in this case is transport con-

trolled. The relative importance of reaction and transport is described formally by

the nondimensional Damköhler number, written Da.

In Chapter 16, we wrote rate laws for simple dissolution and precipitation re-

actions, such as those for the silica minerals forming from SiO2(aq). Rewriting

Equation 16.22 in terms of volumetric concentration Ci , assuming the activity co-

efficient �i does not vary over the reaction, gives the rate law,

@Ci

@t
D .AS=V / kC

Ceq

�
Ceq � Ci

�
; (21.9)

where .AS=V / is mineral surface area per volume of fluid (cm2 cm�3), kC is the

rate constant (mol cm�2 s�1), and Ceq is the equilibrium species concentration

(mol cm�3).

The reaction’s characteristic time �rxn is the interval that would be required for

the reaction to reach equilibrium, if the instantaneous rate were held constant. In

other words,

�rxn
@Ci

@t
D �

Ceq � Ci

�
(21.10)

or, from Equation 21.9,

�rxn D Ceq

.AS=V / kC
: (21.11)

Now, if the system is observed over a distance scale L, the characteristic time

�trans associated with advective transport is simply the time L=vx required for

groundwater to traverse distance L. The Damköhler number, the ratio of the two

characteristic times,

Da D �trans

�rxn

D .AS=V / kC L

vx Ceq

(21.12)

is a measure of the importance of reaction relative to transport, as observed at
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scale L (Knapp, 1989). Where Da 	 1, reaction dominates transport, and where

Da � 1, vice versa.

A notable aspect of this equation is that L appears within it as prominently

as the rate constant kC or the groundwater velocity vx , indicating the balance

between the effects of reaction and transport depends on the scale at which it is

observed. Transport might control fluid composition where unreacted water enters

the aquifer, in the immediate vicinity of the inlet. The small scale of observationL

would lead to a small Damköhler number, reflecting the lack of contact time there

between fluid and aquifer. Observed in its entirety, on the other hand, the aquifer

might be reaction controlled, if the fluid within it has sufficient time to react toward

equilibrium. In this case, L and hence Da take on larger values than they do near

the inlet.

21.2 Numerical solution

In the simplest cases of reactive transport, a species sorbs according to a linear

isotherm (Chapter 9), or reacts kinetically by a zero-order or first-order rate law.

There is a single reacting species, and only one reaction is considered. In these

cases, the governing equation (Eqn. 21.1 or 21.2) can be solved analytically or

numerically, using methods parallel to those established to solve the groundwater

transport problem, as described in the previous chapter (Chapter 20).

A reactive transport model in a more general sense treats a multicomponent

system in which a number of equilibrium and perhaps kinetic reactions occur at the

same time. This problem requires more specialized solution techniques, a variety of

which have been proposed and implemented (e.g., Yeh and Tripathi, 1989; Steefel

and MacQuarrie, 1996). Of the techniques, the operator splitting method is best

known and most commonly used.

In this method, we write the governing equation (Eqn. 21.1 or 21.2) for reactive

transport in the conceptual form,

@Ci

@t
D OT.Ci/C OR.Ci / ; (21.13)

where OT is the transport operator, and OR the reaction operator. The transport

operator applied to Ci returns the terms in the governing equation representing

dispersion and advection, and OR.Ci / simply represents the reaction rate Ri , ac-

counting for whatever reactions are considered in the model.

At each time step, instead of evaluating the entire governing equation at once,

as we did for the transport equation, we treat first the transport terms, then the

reaction terms. The process is shown in Figure 21.1. We have split each step in the
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Set initial, boundary conditions

Evaluate transport equations

Solve chemical equations

At each node (I,J)

At each node (I,J)

t = t + Δt

Fig. 21.1. Operator splitting method for tracing a reactive transport simulation. To step
forward from t = 0, the initial condition, to t = �t , evaluate transport of the chemical
components into and out of each nodal block, using the current distribution of mass. The
net transport is the amount of component mass accumulating in a block over the time step.
Once the updated component masses are known, evaluate the chemical equations to give a
revised distribution of mass at each block. Repeat procedure, stepping to t = 2�t , t = 3�t ,
and so on, until the simulation endpoint is reached.

time marching procedure into two parts, according to operator; hence, the method’s

name.

21.2.1 Operator splitting method

To march forward in time according to the operator splitting method, we divide the

procedure for advancing the time step into four substeps:

(i) Calculate the concentration C
.I;J /
i of the mobile fraction of component i

at each block from the current values of M
.I;J /
i , using Equation 20.15.

For water, mineral, and gas components (components w, k, and m), use

Equations 20.14, 20.16, and 20.17.

(ii) From the concentrations C
.I;J /
i , evaluate the mass fluxes of component i

into and out of each nodal block, due to advection and dispersion.

(iii) Update the component mass M
.I;J /
i

from the mass at the beginning of the

time step, the net rate of mass accumulation, and the length of the time step

�t . To do so, calculate the rate at which i enters the block, less the rate it

leaves. The difference is the net rate at which i is accumulating or being

depleted, in mol s�1.
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(iv) Using the new values of M
.I;J /
i , evaluate the equations describing the

chemistry of the updated system, as described in Chapter 4. Here, we solve

the equations describing the distribution of mass derived in Chapter 3,

accounting as required for redox disequilibrium (Chapter 7), sorption and

surface complexation (Chapters 9 and 10), and chemical kinetics (Chapters

16, 17, and 18).

In the first two substeps we compute the rates of transport, whereas in the last two

we account for the chemical reactions. Details of carrying out substeps (ii) and (iii)

are given below.

21.2.2 Mass fluxes

To carry out substep (ii), we need to compute the mass fluxes across left and right

faces of the control volume (the low and high x sides; see Fig. 20.1), and the front

and back faces (low and high y). The faces are denoted .I � 1=2; J /, .I C 1=2; J /,

.I; J � 1=2/, and .I; J C 1=2/, respectively.

The advective flux (mol cm�2 s�1) of component i (Eqn. 20.11) across the left

side of the control volume is calculated as,

qA
xi

ˇ̌.I�1=2;J / D
8<
:
q

.I�1=2;J /
x C

.I�1;J /
i if q

.I�1=2;J /
x > 0

q
.I�1=2;J /
x C

.I;J /
i if q

.I�1=2;J /
x < 0

; (21.14)

where q
.I�1=2;J /
x is the specific discharge (cm3 cm�2 s�1) from block .I �1; J / to

.I; J /. Variable Ci in Equation 20.11 is represented by concentration (mol cm�3)

at one of the two blocks, depending on whether groundwater flows in the positive

or negative x direction; this formality reflects the choice of a backward-in-space

(or upstream weighted) procedure. The parallel equations for the other faces are,

qA
xi

ˇ̌.IC1=2;J / D
8<
:
q

.IC1=2;J /
x C

.I;J /
i if q

.IC1=2;J /
x > 0

q
.IC1=2;J /
x C

.IC1;J /
i if q

.IC1=2;J /
x < 0

(21.15)

qA
yi
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y C

.I;J �1/
i if q

.I;J �1=2/
y > 0

q
.I;J �1=2/
y C

.I;J /
i if q

.I;J �1=2/
y < 0

(21.16)

qA
yi

ˇ̌.I;J C1=2/ D
8<
:
q

.I;J C1=2/
y C

.I;J /
i if q

.I;J C1=2/
y > 0

q
.I;J C1=2/
y C

.I;J C1/
i if q

.I;J C1=2/
y < 0

: (21.17)

The dispersive mass fluxes (Eqn. 20.20) across the left and right sides of the
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control volume are calculated by,
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(21.19)

where 
 is porosity (unitless), Dxx and so on are the elements of the dispersion

tensor (cm2 s�1), and�x is the nodal block spacing along x. The dispersive fluxes

across the front and back sides are given by,

qD
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(21.21)

where �y is the nodal block spacing along y.

21.2.3 Updated composition

Once the advective and dispersive mass fluxes across each face are known, the

rate of mass accumulation of component i , required in substep (iii) of the operator

splitting procedure, is given by,

@M
.I;J /
i

@t
D Ax

h�
qA

xi
C qD

xi
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qA

xi
C qD
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yi
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qA

yi
C qD

yi

�.I;J C1=2/
i
;

(21.22)
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whereAx andAy are the cross-sectional areas (cm2) of the faces of the nodal block

normal to x and y. The updated component mass is then computed as,

M
.I;J /
i .t C�t/ D M

.I;J /
i .t/C @M

.I;J /
i

@t
�t (21.23)

where �t is the length of the time step.

21.3 Example calculations

We take as an example the fate of benzene (C6H6) as it migrates with groundwater

flowing through an aquifer. Benzene is a common contaminant because it makes

up much of the volatile fraction of gasoline and other petroleum products. It is a

suspected carcinogen with an MCL (maximum contamination level) set by the US

Environmental Protection Agency of 5 �g kg�1.

Dissolved in groundwater, benzene is gradually degraded by a variety of mi-

croorganisms present naturally in the subsurface. Under aerobic conditions, it at-

tenuates by the reaction,

C6H6.aq/

benzene

C 15=2 O2(aq) ! 6 CO2(aq)C 3H2O : (21.24)

In aquifers containing significant amounts of natural organic matter, benzene mi-

gration is retarded by sorption to the organic surfaces.

Alvarez et al. (1991) found that at concentrations less than about 100 mg kg�1,

the degradation rate in sediment from a natural aquifer under aerobic conditions

can be expressed as,

rC D nw kC ŒX	
mA

mA CKA
(21.25)

where kC is the rate constant [mol (g cells)�1 s�1], ŒX	 is biomass concentration

(g cells kg�1), mA is molal concentration of the substrate, benzene, and KA is the

half-saturation constant (molal). This rate law is the Monod equation (Eqn. 18.15),

or for the case of constant biomass, as assumed for this calculation, equivalent to

the Michaelis–Menten equation (Eqn. 17.18), if ŒX	 is taken as enzyme concentra-

tion mE . They report a rate constant kC of 8.3 (g benzene) (g cells)�1 day�1, or

1:2�10�9 mol (g cells)�1 s�1, and a half-saturation constantKA of 12.2 mg kg�1,

or 0:16�10�3 molal. Because benzene oxidation is so strongly favored thermody-

namically, the reverse reaction is not significant.

We assume the same configuration as the example calculation in the previous

chapter (Section 20.5). Groundwater passes along an aquifer 1 km long at a velocity

vx of 100 m yr�1. Setting porosity to 30%, specific discharge qx D 
vx in the

aquifer is 30 m yr�1. Initially, the groundwater is clean, but at t = 0 and continuing
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for two years, water recharging the aquifer contains 1 mg kg�1 benzene. After

this time, the aquifer is flushed with clean water. We set a dispersivity of 30 cm,

although the calculation results will reflect a somewhat higher value due to the

effects of numerical dispersion, as discussed in the previous chapter (Section 20.4).

In a first case, we account for the attenuation of the benzene by biodegradation,

using the rate law above (Eqn. 21.25). To do so, we add to the thermodynamic data

the reaction,

C6H6.aq/

benzene

C 3 H2O C 15=2 O2(aq) � 6 HC C 6HCO�
3 ; (21.26)

with a logK at 25 °C of 537.5 and store the result in a dataset “thermo+Benzene-

.dat”. We take a biomass concentration ŒX	 (or mE ) in our calculation of 1

mg kg�1, or 0.001 (g cells) kg�1.

We assume the initial and recharging waters are dilute and aerobic, with a pH of

5.5 and in equilibrium with CO2 in the atmosphere. The procedure in X1T is

data = thermo+Benzene.dat

decouple Carbon

time start = 0 yr, inlet-2 = 2 yr, end = 10 yr

length = 1000 m

Nx = 400

discharge = 30 m/yr

porosity = 30%

dispersivity = 30 cm

intervals = 2

scope = initial

swap CO2(g) for HCO3-

fugacity CO2(g) = 10^-3.5

10 mmolal Na+

10 mmolal Cl-

8 mg/kg free O2(aq)

pH = 5.5

.001 mg/kg Benzene(aq)

scope inlet-1 = initial

1 mg/kg Benzene(aq)

scope inlet-2 = initial

kinetic redox-1 n

rxn = "Benzene(aq) + 7.5*O2(aq) -> 6*CO2(aq) + 3*H2O", n

rate_con = 1.2e-9, KA = .00016, mE = .001

dxplot .2

go

To compare the results to the non-reactive case, we need only set the rate constant

(cont’d)



312 Reactive transport

kinetic redox-1 rate_con = 0.0

go

to zero.

Figure 21.2 shows how in the calculation results benzene is transported through

the aquifer. The pulse of benzene migrates at the rate of groundwater flow, travers-

ing the aquifer in ten years. As a result of biodegradation by the natural microbial

consortium, however, the benzene concentration decreases markedly with time,

compared to the non-reacting case.

In a second calculation, we assume benzene not only biodegrades, but sorbs to

organic matter in the aquifer

>C6H6 � C6H6.aq/

benzene

(21.27)

according to the distribution coefficient model. A retardation factor RF of two,

which might be observed in an aquifer containing about 1 wt% organic matter,

translates by Equation 21.6 to a distribution coefficient K0
d of 0:16 � 10�3 mol

(g sediment)�1. Storing the sorption reaction in dataset “Benzene Kd.dat”, the X1T

commands

(cont’d)

kinetic redox-1 rate_con = 1.2e-9

surface_data = Benzene_Kd.dat

go

restore the rate constant and set the sorption model.

The calculation results for this case, shown in Figure 21.3, differ from those of

the first simulation. The benzene passes more slowly through the aquifer, moving

at only half the speed of the groundwater flow, reflecting sorption and retardation.

Less benzene degrades by biological activity than in the non-sorbing case, since

at any given time only a fraction of the contaminant is available to the microbial

consortium in aqueous form. The latter effect is an observed consequence of the

compound’s sorption reaction (e.g., Zhang and Bouwer, 1997; Kim et al., 2003).

In a final example, we consider a similar problem in two dimensions. Water

containing 1 mg kg�1 benzene leaks into an aquifer for a period of two years, at a

rate of 300 m3 yr�1. Once in the aquifer, which is 1 m thick, the benzene migrates

with the ambient flow, sorbs, and biodegrades. We model flow and reaction over 10

years, within a 600 m � 60 m area, assuming a dispersivity ˛L along the flow of 30

cm, and ˛T across flow of 10 cm. All other parameters, including the flow velocity,

remain the same as in the previous calculation.

The procedure in X2T is

data = thermo+Benzene.dat
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Fig. 21.2. Transport of benzene within an aerobic aquifer through which groundwater is
flowing at a velocity vx of 100 m yr�1, calculated accounting for biodegradation, assuming

biomass in the aquifer remains constant. Benzene recharges the aquifer at 1 mg kg�1

concentration from t = 0 to t = 2 years, after which time clean water enters the aquifer.
Fine lines show transport calculated assuming the species is non-reactive, for comparison.

surface_data = Benzene_Kd.dat

decouple Carbon

time start = 0 yr, inlet-2 = 2 yr, end = 10 yr
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Fig. 21.3. Transport of benzene within an aerobic aquifer, as depicted in Figure 21.2,
calculated assuming the species not only biodegrades, but sorbs to organic matter in the
aquifer. Benzene in the simulation sorbs with a distribution coefficient of 0:16� 10�3 mol
(g sediment)�1, equivalent to a retardation factor RF of 2. Fine lines show non-reactive
case.

length = 600 m; width = 60 m; height = 1 m

Nx = 200; Ny = 20

discharge left = 30 m/yr

porosity = 30%
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dispersivity long = 30 cm, trans = 10 cm

intervals = 2

scope = initial

swap CO2(g) for HCO3-

fugacity CO2(g) = 10^-3.5

10 mmolal Na+

10 mmolal Cl-

8 mg/kg free O2(aq)

pH = 5.5

.001 mg/kg Benzene(aq)

scope inlet-1 = initial

scope inlet-2 = initial

well 1 x = 50 m, y = 30 m, inject-1 = 300 m3/yr, n

inject-2 = 0 m3/yr

scope inject-1 = initial

1 mg/kg Benzene(aq)

scope inject-2 = initial

kinetic redox-1 n

rxn = "Benzene(aq) + 7.5*O2(aq) -> 6*CO2(aq) + 3*H2O", n

rate_con = 1.2e-9, KA = .00016, mE = .001

go

In the calculation results (Fig. 21.4), benzene again is retarded by sorption and

attenuates due to sorption, biodegradation, and dispersion along the direction of

flow. In this case, it further attenuates due to transverse dispersion, by mixing with

clean water flowing beside the plume.



316 Reactive transport

0

1

0

1

0

1

0

1

0 200 400 600

0

60

0

1

x (m)

y (m)

Benzene

concentration

(mg kg−1)

t = 2 yr

4 yr

10 yr

8 yr

6 yr

source

flow

Fig. 21.4. Transport of benzene within an aerobic aquifer, modeled in two dimensions.

Contaminated water containing 1 mg kg�1 benzene leaks into the aquifer over the course
of two years, at the point indicated. As in the previous model (Fig. 21.3), the benzene
is retarded by sorption to organic matter in the aquifer and attenuates due to sorption,
biodegradation, and dispersive mixing. Plots were rendered using the MATLAB® software.
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Applied reaction modeling
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Hydrothermal fluids

Hydrothermal fluids, hot groundwaters that circulate within the Earth’s crust, play

central roles in many geological processes, including the genesis of a broad variety

of ore deposits, the chemical alteration of rocks and sediments, and the origin of hot

springs and geothermal fields. Many studies have been devoted to modeling how

hydrothermal fluids react chemically as they encounter wall rocks, cool, boil, and

mix with other fluids. Such modeling proliferated in part because hydrothermal

fluids are highly reactive and because the reaction products are commonly well

preserved, readily studied, and likely to be of economic interest. Further impetus

was provided by the development of reliable modeling software in the 1970s, a

period of concern over the availability of strategic and critical minerals and of

heightened interest in economic geology and the exploitation of geothermal energy.

As a result, many of the earliest and most imaginative applications of geochem-

ical modeling, beginning with Helgeson’s (1970) simulation of ore deposition in

hydrothermal veins and the alteration of nearby country rock, have addressed the

reaction of hydrothermal fluids. For example, Reed (1977) considered the origin

of a precious metal district; Garven and Freeze (1984), Sverjensky (1984, 1987),

and Anderson and Garven (1987) studied the role of sedimentary brines in form-

ing Mississippi Valley-type and other ore deposits; Wolery (1978), Janecky and

Seyfried (1984), Bowers et al. (1985), and Janecky and Shanks (1988) simulated

hydrothermal interactions along the midocean ridges; and Drummond and Ohmoto

(1985) and Spycher and Reed (1988) modeled how fluid boiling is related to ore

deposition.

In this chapter, we develop geochemical models of two hydrothermal processes:

the formation of fluorite veins in the Albigeois ore district and the origin of “black

smokers,” a name given to hydrothermal vents found along the ocean floor at

midocean ridges.

319
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Table 22.1. Composition of ore-forming fluids at the Albigeois district, as

determined by analysis of fluid inclusions (Deloule, 1982)

Concentration

Component (molar)

NaC 3.19

KC 0.45

CaCC 0.45

MgCC .0:2 � 1/ � 10�2

FeCC .0:75 � 3/ � 10�2

CuC .0:2 � 3/ � 10�2

Cl� 4.5

HCO�
3

0.2

SO��
4 0.004 – 0.2

22.1 Origin of a fluorite deposit

As a first case study, we borrow from the modeling work of Rowan (1991), who

considered the origin of fluorite (CaF2) veins in the Albigeois district of the south-

west Massif Central, France. Production and reserves for the district as a whole

total about 7 million metric tons, making it comparable to the more famous de-

posits of southern Illinois and western Kentucky, USA.

Like other fluorite deposits, the Albigeois ores are notable for their high grade.

In veins of the Le Burc deposit, for example, fluorite comprises 90% of the ore vol-

ume (Deloule, 1982). Accessory minerals include quartz (SiO2), siderite (FeCO3),

chalcopyrite (CuFeS2), and small amounts of arsenopyrite (AsFeS). The deposits

occur in a tectonically complex terrain dominated by metamorphic, plutonic, and

volcanic rocks and sediments.

Deloule (1982) studied fluid inclusions from the Montroc and Le Burc deposits.

He found that the ore-forming fluid was highly saline at both deposits; Table 22.1

summarizes its chemical composition. Homogenization temperatures in fluorite

from the Le Burc veins range from about 110 °C to 150 °C, and most of the

measurements fall between 120 °C to 145 °C. Assuming burial at the time of ore

deposition to depths as great as 1 km, these values should be corrected upward for

the effect of pressure by perhaps 10 °C and no more than 30 °C. We will assume

here that the ore was deposited at temperatures between 125 °C and 175 °C.

To model the process of ore formation in the district, we first consider the

effects of simply cooling the ore fluid. We begin by developing a model of the
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fluid at 175 °C, the point at which we assume that it begins to precipitate ore. To

constrain the model, we use the data in Table 22.1 and assume that the fluid was

in equilibrium with minerals in and near the vein. Specifically, we assume that the

fluid’s silica and aluminum contents were controlled by equilibrium with the quartz

(SiO2) and muscovite [KAl3Si3O10.OH/2] in the wall rocks, and that equilibrium

with fluorite set the fluid’s fluorine concentration.

We further specify equilibrium with kaolinite [Al2Si2O5.OH/4], which occurs

in at least some of the veins as well as in the altered wall rock. Since we know the

fluid’s potassium content (Table 22.1), assuming equilibrium with kaolinite fixes

pH according to the reaction,

3=2 Al2Si2O5.OH/4
kaolinite

C KC
� KAl3Si3O10.OH/2

muscovite

C 3=2 H2O C HC : (22.1)

By this reaction, we can expect the modeled fluid to be rather acidic, since it

is rich in potassium. We could have chosen to fix pH by equilibrium with the

siderite, which also occurs in the veins. It is not clear, however, that the siderite

was deposited during the same paragenetic stages as the fluorite. It is difficult on

chemical grounds, furthermore, to reconcile coexistence of the calcium-rich ore

fluid and siderite with the absence of calcite (CaCO3) in the district. In any event,

assuming equilibrium with kaolinite leads to a fluid rich in fluorine and, hence, to

an attractive mechanism for forming fluorite ore.

The model calculated in this manner predicts that two minerals, alunite

[KAl3.OH/6.SO4/2] and anhydrite (CaSO4), are supersaturated in the fluid at

175 °C, although neither mineral is observed in the district. This result is not

surprising, given that the fluid’s salinity exceeds the correlation limit for the

activity coefficient model (Chapter 8). The observed composition in this case

(Table 22.1), furthermore, actually represents the average of fluids from many

inclusions and hence a mixture of hydrothermal fluids present over a range of

time. As noted in Chapter 6, mixtures of fluids tend to be supersaturated, even if

the individual fluids are not.

To avoid starting with a supersaturated initial fluid, we use alunite to constrain

the SO4 content to the limiting case, and anhydrite to similarly set the calcium

concentration. The resulting SO4 concentration will fall near the lower end of the

range shown in Table 22.1, and the calcium content will lie slightly above the

reported value.

In the program REACT, the procedure to model the initial fluid is

T = 175

swap Quartz for SiO2(aq)

swap Muscovite for Al+++
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swap Fluorite for F-

swap Alunite for SO4--

swap Kaolinite for H+

swap Anhydrite for Ca++

density = 1.14

TDS = 247500

Na+ = 3.19 molar

K+ = .45 molar

Mg++ = .006 molar

Fe++ = 2.e-2 molar

Cu+ = 1.e-2 molar

HCO3- = 0.2 molar

Cl- = 4.5 molar

1 free mole Quartz

1 free mole Muscovite

1 free mole Fluorite

1 free mole Alunite

1 free mole Kaolinite

1 free mole Anhydrite

go

Since the input constraints are in molar (instead of molal) units, we have specified

the dissolved solid content and the fluid density under laboratory conditions, the

latter estimated from the correlation of Phillips et al. (1981) for NaCl solutions.

The resulting fluid is, as expected, acidic, with a predicted pH of 2.9. Neutral pH

at 175 °C, for reference, is 5.7.

The fluid is extraordinarily rich in fluorine, as shown in Table 22.2, primarily

because of the formation of the complex species AlF3 and AlFC
2 . The importance

of these species results directly from the assumed mineral assemblage,

AlF3 C 3=4 KAl3Si3O10.OH/2
muscovite

C 3=2 CaSO4

anhydrite

C 5=2 H2O �

3=2 CaF2

fluorite

C 5=4 SiO2

quartz

C 3=4 KAl3.OH/6.SO4/2
alunite

C

1=2 Al2Si2O5.OH/4
kaolinite

;

(22.2)

and, in the case of AlFC
2 , the activity of KC:
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Table 22.2. Calculated concentrations of fluorine-bearing species in the

Albigeois ore fluid at 175 °C

Concentration

Species (mmolal)

AlF3 227.5

AlF
C
2 38.8

AlFCC 5.54

HF 1.16

CaFC 0.44

AlF�
4 0.0443

F� 0.0275

total F 767

AlFC
2 C 3=2 KAl3Si3O10.OH/2

muscovite

C CaSO4

anhydrite

C 4 H2O �

CaF2

fluorite

C 1=2 SiO2

quartz

C 1=2 KAl3.OH/6.SO4/2
alunite

C

2 Al2Si2O5.OH/4
kaolinite

C KC

(22.3)

(as can be verified quickly with the program RXN). These complex species make

the solution a potent ore-forming fluid. The fluid’s acidity and fluorine content

might reflect the addition of HF(g) derived from a magmatic source, as Plumlee et

al. (1995) suggested for the Illinois and Kentucky deposits.

To model the consequences of cooling the fluid, we enter the commands

(cont’d)

pickup fluid

T final = 125

and type go to trigger the calculation. REACT carries the modeled fluid over a

polythermal path, incrementally cooling it from 175 °C to 125 °C.

Figure 22.1 shows the mineralogic results of tracing the reaction path. As the

fluid cools by 50 °C, it produces about 1.8 cm3 of fluorite and 0.02 cm3 of quartz.

No other minerals form. From a plot of the concentration of fluorine-bearing spe-

cies (Fig. 22.2), it is clear that the fluorite forms in response to progressive break-
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Fig. 22.1. Calculated mineralogical consequences of cooling (bold lines) the Albigeois ore
fluid from 175 °C to 125 °C, and of quenching it (fine line) with 125 °C water.
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Fig. 22.2. Calculated concentrations of predominant fluorine-bearing species in the Albi-
geois ore fluid as it cools from 175 °C to 125 °C.

down of the AlF3 complex with decreasing temperature. The complex sheds fluo-

ride to produce AlFC
2 according to the reaction,

AlF3 C 1=2 CaClC ! AlFC
2 C 1=2 CaF2

fluorite

C 1=2 Cl� ; (22.4)

yielding fluorite.
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As an alternative to simple cooling, we can test the consequences of quenching

the ore fluid by incrementally mixing cooler water into it. The commands

(cont’d)

react 20 kg H2O

T 175, reactants = 125

set up a polythermal path in which temperature is set by the mixing proportions

of the fluids, assuming each has a constant heat capacity. Typing go triggers the

calculation.

As shown in Figure 22.1, quenching is effective at producing fluorite. The

process, however, is somewhat less efficient than simple cooling because of the

counter-effect of dilution, which limits precipitation and eventually begins to cause

the fluorite that formed early in the reaction path to redissolve. Each mechanism of

fluorite deposition is quite efficient, nonetheless, producing – over a temperature

drop of just 50 °C – about a cm3 or more mineral per kg of water in the ore fluid.

There are considerable uncertainties in the calculation. The fluid has an ionic

strength of about 5 molal, far in excess of the range considered in the correlations

for estimating species’ activity coefficients, as discussed in Chapter 8. Stability

constants for aluminum-bearing species are, in general, rather difficult to deter-

mine accurately (e.g., May, 1992). And the model relies on the equilibria assumed

between the fluid and minerals in the vein and country rock. Nonetheless, the mod-

eling suggests an attractive explanation for how veins of almost pure fluorite might

form and provides an excellent example of the importance of complex species in

controlling mineral solubility in hydrothermal fluids.

22.2 Black smokers

In the spring of 1977, researchers on the submarine ALVIN discovered hot springs

on the seafloor of the Pacific Ocean, along the Galapagos spreading center. Later

expeditions to the East Pacific Rise and Juan de Fuca spreading center found more

springs, some discharging fluids as hot as 350 °C. The hot springs are part of large-

scale hydrothermal systems in which seawater descends into the oceanic crust,

circulates near magma bodies where it warms and reacts extensively with deep

rocks, and then, under the force of its buoyancy, discharges back into the ocean.

Discovery of the hot springs has had an important impact in the geosciences.

Geologists today recognize the importance of hydrothermal systems in controlling

the thermal structure of the ocean crust and the composition of ocean waters, as

well as their role in producing ore deposits. The expeditions, in fact, discovered a

massive sulfide deposit along the Galapagos spreading center. The springs also cre-

ated excitement in the biologic sciences because of the large number of previously

unknown species, such as tube worms, discovered near the vents.
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Where fluids discharge from hot springs and mix with seawater, they cool

quickly and precipitate clouds of fine-grained minerals. The clouds are commonly

black with metal sulfides, giving rise to the term “black smokers.” Some vents

give off clouds of white anhydrite; these are known as “white smokers.” Structures

composed of chemical precipitates tend to form at the vents, where the hot fluids

discharge into the ocean. The structures can extend upward into the ocean for

several meters or more, and are composed largely of anhydrite and, in some cases,

sulfide minerals.

The chemical processes occurring within a black smoker are certain to be com-

plex because the hot, reducing hydrothermal fluid mixes quickly with cool, oxidiz-

ing seawater, allowing the mixture little chance to approach equilibrium. Despite

this obstacle, or perhaps because of it, we bravely attempt to construct a chemical

model of the mixing process. Table 22.3 shows chemical analyses of fluid from the

NGS hot spring, a black smoker along the East Pacific Rise near 21 °N, as well as

ambient seawater from the area.

To model the mixing of the hydrothermal fluid with seawater, we begin by equi-

librating seawater at 4 °C, “picking up” this fluid as a reactant, and then reacting it

into the hot hydrothermal fluid. In REACT, we start by suppressing several miner-

als:

suppress Quartz, Tridymite, Cristobalite, Chalcedony

suppress Hematite

According to Mottl and McConachy (1990), amorphous silica (SiO2) is the only

silica polymorph present in the “smoke” at the site. To allow it to form in the

calculation, we suppress each of the more stable silica polymorphs. We also sup-

press hematite (Fe2O3) in order to give the iron oxy-hydroxide goethite (FeOOH)

a chance to form.

We then equilibrate seawater, using data from Table 22.3,

(cont’d)

T = 4

pH = 8.1

Cl- 559. mmolal

Na+ 480. mmolal

Mg++ 54.5 mmolal

SO4-- 29.5 mmolal

Ca++ 10.5 mmolal

K+ 10.1 mmolal

HCO3- 2.4 mmolal

SiO2(aq) .17 mmolal

Sr++ .09 mmolal

Ba++ .20 umolal
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Table 22.3. Endmember compositions of a hydrothermal fluid and seawater, East

Pacific Rise near 21 °N (Von Damm et al., 1985; Drever, 1988; Mottl and

McConachy, 1990)

NGS field Seawater

Concentration (mmolal)

NaC 529 480

KC 26.7 10.1

MgCC Ï 0 54.5

CaCC 21.6 10.5

Cl� 600 559

HCO�
3 2.0* 2.4

SO��
4 Ï 0 29.5

H2S 6.81 Ï 0

SiO2 20.2 0.17

Concentration (�molal)

SrCC 100.5 90

BaCC >15 0.20

AlCCC 4.1 0.005

MnCC 1039 <0.001

FeCC 903 <0.001

CuC <0.02 0.007

ZnCC 41 0.01

O2(aq) Ï 0 123

T (°C) 273 4

pH 3.8 (25 °C) 7.8 (25 °C)

4.2 (273 °C) 8.1 (4 °C)

*Estimated from titration alkalinity.

Zn++ .01 umolal

Al+++ .005 umolal

Cu+ .007 umolal

Fe++ .001 umolal

Mn++ .001 umolal

O2(aq) 123. free umolal

go
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pickup reactant = fluid

reactants times 10

and pick it up as a reactant. By multiplying the extent of the reactant system tenfold,

we prescribe mixing of seawater into the hydrothermal fluid in ratios as great as

10:1.

Finally, we define a polythermal path by equilibrating the hot hydrothermal fluid

(Table 22.3)

(cont’d)

pH = 4.2

swap H2S(aq) for O2(aq)

Cl- 600. mmolal

Na+ 529. mmolal

K+ 26.7 mmolal

Ca++ 21.6 mmolal

SiO2(aq) 20.2 mmolal

H2S(aq) 6.81 mmolal

HCO3- 2. mmolal

Mn++ 1039. umolal

Fe++ 903. umolal

Sr++ 100.5 umolal

Zn++ 41. umolal

Ba++ 15. umolal

Al+++ 4.1 umolal

Cu+ .02 umolal

Mg++ .01 umolal

SO4-- .01 umolal

dump

T initial 273, reactants = 4

and reacting into it the cold seawater. The dump command causes the program to

remove any minerals present in the initial system, before beginning to trace the

reaction path. The final command sets a polythermal path in which temperature

depends on the proportion of hot and cold fluids in the mixture, assuming that each

has a constant heat capacity. Typing go triggers the calculation.

The calculation results (Fig. 22.3) show that anhydrite is the most abundant

mineral to form. The mineral forms rapidly during the initial mixing

CaCC C SO��
4 ! CaSO4

anhydrite

(22.5)

from reaction of the calcium in the hydrothermal fluid with sulfate in the seawater,

eventually forming about a half cm3 per kg of hydrothermal fluid. At a mixing ratio

somewhat less than 1:1, however, anhydrite begins to redissolve, reflecting dilution
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Fig. 22.3. Mineralogical results (top) of mixing cold seawater into one kg of hot hydrother-
mal fluid from the NGS field. Minerals present in volumes less than 0.01 cm3 are not shown.
These minerals, in order of decreasing abundance, are: sphalerite, barite, potassium mor-
denite, calcium clinoptilolite, and covellite. Also shown (bottom) is the temperature of the
fluid during mixing.

of the hydrothermal calcium as mixing proceeds. The mineral has completely

dissolved by a mixing ratio of about 1.5:1. These results seem in accord with

the observation that anhydrite forms in abundance near the vent sites, where the

hydrothermal fluid is least diluted.

After anhydrite, the most voluminous minerals to form are amorphous silica,

talc [Mg3Si4O10.OH/2], and pyrite (FeS2). Amorphous silica forms because its

solubility decreases with cooling faster than it is diluted. Other minerals that form

in small quantities over the simulation include sphalerite (ZnS), barite (BaSO4), the

zeolites mordenite (KAlSi5O12 � 3H2O) and clinoptilolite (CaAl2Si10O24 � 8H2O),

and covellite (CuS). According to the data of Mottl and McConachy (1990), each

of these minerals (lumping the talc and zeolites into the category of unidentified

aluminosilicates) is observed suspended above the NGS vent. Even though the

smoke at this site is described as black, sulfide minerals make up just a small

fraction of the mineral volume precipitated over the course of the simulation.

A number of the observed minerals (formulae given in Table 22.4) do not form
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Table 22.4. Minerals in samples taken above black smokers of the East Pacific

Rise near 21 °N (Mottl and McConachy, 1990)

“Smoke” in plume

Pyrrhotite, Fe1�xS Anhydrite, CaSO4

Sphalerite, ZnS Barite (trace), BaSO4

Pyrite, FeS2 Cubanite (trace), CuFe2S3

Unidentified Fe–S–Si phases Wurtzite (trace), ZnS

Chalcopyrite, CuFeS2 Covellite (trace), CuS

Amorphous silica, SiO2 Marcasite (trace), FeS2

Elemental sulfur, S Unidentified silicates,

Goethite, etc., FeOOH aluminosilicates (traces)

Particles dispersed in local seawater

Anhydrite, CaSO4 Sphalerite, ZnS

Pyrite, FeS2 Sulfur, S

Gypsum, CaSO4 � 2H2O Pyrrhotite, Fe1�xS

Chalcopyrite, CuFeS2

in the simulation. Wurtzite is metastable with respect to sphalerite, so it cannot be

expected to appear in the calculation results. Similarly, the formation of pyrite in

the simulation probably precludes the possibility of pyrrhotite precipitating. In the

laboratory, and presumably in nature, pyrite forms slowly, allowing less stable iron

sulfides to precipitate. Elemental sulfur at the site probably results from incomplete

oxidation of H2S(aq), a process not accounted for in the simulation. There is no

data in the LLNL database for marcasite or cubanite. Finally, goethite forms after

we run the simulation to higher ratios of seawater to hydrothermal fluid than shown

in Figure 22.3.

An interesting aspect of the calculation is that when oxidizing seawater mixes

into the reduced hydrothermal fluid, the oxygen fugacity decreases (Fig. 22.4).

The capacity of seawater to oxidize the large amount of hydrothermal H2S(aq) is

limited by the supply of O2(aq) in seawater, which is small. Given the reaction,

H2S(aq) C 2 O2(aq) ! SO��
4 C 2 HC (22.6)

and the data in Table 22.3, more than 100 kg of seawater are needed to oxidize each

kg of hydrothermal fluid. The decrease in fO2
shown in Figure 22.4 results from

the shift of the sulfide-sulfate buffer with temperature. As long as any significant

amount of H2S(aq) remains, the oxygen fugacity of the mixed fluid tracks the
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Fig. 22.4. Oxygen fugacity (top) and concentrations of the predominant sulfur species
(bottom) during the mixing simulation shown in Figure 22.3. Decrease in the H2S(aq)
concentration is mostly in response to dilution with seawater, rather than oxidation.

redox buffer as it moves to lower oxygen fugacity during cooling. The ability of

the hydrothermal fluid to remain reducing as it mixes with seawater helps explain

Mottl and McConachy’s (1990) observation that sulfide minerals sampled from

the “smoke” show no evidence under the electron microscope of beginning to

redissolve.

22.3 Energy available to thermophiles

Subsea hydrothermal vents, as mentioned in the previous section, are sites of

intense biological activity, relative to the rest of the ocean floor (e.g., Van Dover,

2000; Zierenberg et al., 2000). Life here ranges in complexity from single cells to

higher forms such as tubeworms. The vent ecosystems are unique in many ways,

including the fact that the primary producers create biomass not by photosynthesis,

as is familiar in more accessible environments, but by chemosynthesis.

As fluid from the hydrothermal vent mixes with seawater, chemolithotrophic

microbes by this process harvest energy from the chemical disequilibrium among

redox reactions, forming the base of the ecosystem’s food chain. Microbes can
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derive energy by converting CO2(aq) to methane using H2(aq) from the vent fluid,

for example, or using the O2(aq) in seawater to oxidize H2S(aq).

We consider in this section the energy available to thermophilic microorganisms

as a hydrothermal fluid mixes with seawater, following the work of McCollom and

Shock (1997) and Jin and Bethke (2005), for a variety of such metabolisms. To

model redox energetics during mixing, we follow the procedure in the previous

section, disengaging all redox couples except between O2(aq) and H2(aq). We

assume the reaction,

2 H2(aq) C O2(aq) ! 2 H2O (22.7)

between these species proceeds spontaneously in the mixture.

We begin in REACT by defining the composition of local seawater. The procedure

is as before

suppress Quartz, Tridymite, Cristobalite, Chalcedony

suppress Hematite

decouple ALL

couple H2(aq)

T = 4

pH = 8.1

Cl- 559. mmolal

Na+ 480. mmolal

Mg++ 54.5 mmolal

SO4-- 29.5 mmolal

Ca++ 10.5 mmolal

K+ 10.1 mmolal

HCO3- 2.4 mmolal

SiO2(aq) .17 mmolal

Sr++ .09 mmolal

Ba++ .20 umolal

Zn++ .01 umolal

Al+++ .005 umolal

Cu+ .007 umolal

Fe++ .001 umolal

Mn++ .001 umolal

O2(aq) 123. free umolal

with the addition of commands to set the redox coupling. Following McCollom and

Shock (1997) and Jin and Bethke (2005), we set small concentrations of acetate,

methane, and sulfide

(cont’d)

CH3COO- 3. umolal

CH4(aq) .002 umolal

HS- .001 umolal

The commands
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(cont’d)

go

pickup reactant = fluid

reactants times 50

cause the program to equilibrate the seawater and pick it up as a reactant.

In a similar fashion, we constrain the composition of fluid from the hydrothermal

vent

(cont’d)

swap H2S(aq) for HS-

swap H2(aq) for O2(aq)

pH = 4.2

Cl- 600. mmolal

Na+ 529. mmolal

K+ 26.7 mmolal

Ca++ 21.6 mmolal

SiO2(aq) 20.2 mmolal

HCO3- 2. mmolal

Mn++ 1039. umolal

Fe++ 903. umolal

Sr++ 100.5 umolal

Zn++ 41. umolal

Ba++ 15. umolal

Al+++ 4.1 umolal

Cu+ .02 umolal

Mg++ .01 umolal

SO4-- .01 umolal

H2(aq) 1.7 mmolal

H2S(aq) 6.81 mmolal

CH4(aq) .07 mmolal

CH3COO- .02 mmolal

The commands

(cont’d)

dump

T initial 273, reactants = 4

dx_init = 10^-4

step_increase = 2

dxplot = 0

go

tell the model to equilibrate the hot vent fluid and gradually add cold seawater into

it. Figure 22.5 shows the calculation results.

During the mixing, concentrations of the H2S(aq), CH4(aq), and CH3COO�

components decrease as the vent fluid is diluted, and the SO��
4 concentration

increases toward that of seawater. H2(aq) in the vent fluid attenuates not only
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Fig. 22.5. Concentrations of components (sulfate, sulfide, carbonate, methane, and acetate)
and species (O2 and H2) that make up redox couples, plotted against temperature, during
a model of the mixing of fluid from a hot subsea hydrothermal vent with cold seawater.
Model assumes redox couples remain in chemical disequilibrium, except between O2(aq)
and H2(aq). As the mixture cools past about 38 °C, the last of the dihydrogen from the
vent fluid is consumed by reaction with dioxygen in the seawater. At this point the anoxic
mixture becomes oxic as dioxygen begins to accumulate.

by dilution, but by reaction with O2(aq). As the mixture reaches a temperature

of about 38 °C, the last of the H2(aq) in the anoxic fluid is oxidized in this way.

Beyond this point, O2(aq) accumulates, leaving the mixture oxic. The temperature

at which the transition from anoxic to oxic conditions occurs reflects the assumed

supply of H2(aq) from the vent fluid, relative to O2(aq) from the seawater. If the

vent produced a fluid poorer in dihydrogen, for example, or ambient seawater was

more oxic, the transition would occur at a higher temperature.

As discussed in detail in Section 7.4, the energy liberated by a redox reaction

depends on the redox potential of the electron-donating half-cell reaction, relative

to the electron-accepting reaction. In the calculation results, we can trace the redox
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Fig. 22.6. Redox potentials (mV) of various half-cell reactions during mixing of fluid
from a subsea hydrothermal vent with seawater, as a function of the temperature of the
mixture. Since the model is calculated assuming O2(aq) and H2(aq) remain in equilibrium,
the potential for electron acceptance by dioxygen is the same as that for donation by
dihydrogen. Dotted line shows currently recognized upper temperature limit (121 °C) for
microbial life in hydrothermal systems. A redox reaction is favored thermodynamically
when the redox potential for the electron-donating half-cell reaction falls below that of the
accepting half-reaction.

potentials of half-cell reactions among sulfur species,

HS� C 4 H2O � SO��
4 C 9 HC C 8 e� (22.8)

and carbon species,

CH3COO� C 4 H2O � 2 HCO�
3 C 9 HC C 8 e� (22.9)

CH4(aq) C 3 H2O � HCO�
3 C 9 HC C 8 e� (22.10)

2 CH4(aq) C 2 H2O � CH3COO� C 9 HC C 8 e� ; (22.11)

as well as the hydrolysis reactions,

H2O � 1=2 O2(aq) C 2 HC C 2 e� (22.12)

and

H2(aq) � 2 HC C 2 e� ; (22.13)

as shown in Figure 22.6. We could extend this list by including in the calculation

both oxidized and reduced form of metals such as iron. The redox potentials for

the last two reactions listed, for electron acceptance by dioxygen and donation
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Table 22.5. Electron donating and accepting redox couples and limiting reactant

species for various anaerobic and aerobic microbial metabolisms favored in fluid

from a subsea hydrothermal vent, as it mixes with seawater

Donating Accepting Limiting

Metabolism couple couple reactant

Anaerobic (T & 38 °C)

H2-trophic sulfate reduction H2–HC SO4–H2S H2(aq)

H2-trophic acetogenesis H2–HC CO2–CH3COO� H2(aq)

H2-trophic methanogenesis H2–HC CO2–CH4 H2(aq)

Ac-trophic sulfate reduction CH3COO�–CO2 SO4–H2S CH3COO�

Ac-clastic methanogenesis CH3COO�–CO2 CH3COO�–CH4 CH3COO�

Aerobic (T . 38 °C)

Sulfide oxidation H2S–SO4 O2–H2O O2 or H2S

Methanotrophy CH4–HCO3 O2–H2O CH4(aq)

Acetotrophy CH3COO�–HCO3 O2–H2O CH3COO�

by dihydrogen, are equivalent in the model results, since we have set O2(aq) and

H2(aq) to be in equilibrium.

Taking the half-cell reactions in pairs, one electron donating and the other ac-

cepting, we can write a number of metabolisms by which microbes might derive

energy during the mixing process, as shown in Table 22.5. Several hydrogentrophic

metabolisms are viable where the fluid mixture is anoxic: sulfate reduction,

SO��
4 C 4 H2(aq) C 2 HC ! H2S(aq) C 4 H2O (22.14)

acetogenesis,

2 CO2(aq) C 4 H2(aq) ! CH3COO� C HC C 2 H2O (22.15)

and methanogenesis,

CO2(aq) C 4 H2(aq) ! CH4(aq) C 2 H2O : (22.16)

Other possible anaerobic metabolisms are acetotrophic sulfate reduction,

SO��
4 C CH3COO� C 3 HC ! H2S(aq) C 2 CO2(aq) C 2 H2O (22.17)

and acetoclastic methanogenesis,

2 CH3COO� C 2 HC ! 2 CH4(aq) C 2 CO2(aq) : (22.18)
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In each case, we write the metabolic reaction for the transfer of eight electrons, so

the resulting energies can be compared on an equal basis.

Where the fluid is oxic, several aerobic metabolisms can proceed, including

sulfide oxidation,

H2S(aq) C 2 O2(aq) ! SO��
4 C 2 HC (22.19)

methanotrophy,

CH4(aq) C 2 O2(aq) ! HCO�
3 C HC C H2O (22.20)

and homoacetotrophy,

CH3COO� C 2 O2(aq) ! 2 HCO�
3 C HC : (22.21)

Reflecting the higher pH of the oxic relative to the anoxic fluid, we have written

these reactions in terms of HCO�
3 , rather than CO2(aq). Again, each reaction is

balanced on an eight electron basis.

The thermodynamic drive for each reaction is its negative free energy change,

��Gr. From Equation 7.15, this quantity is given as,

��Gr D nF �Eh

D nF .Ehacc � Ehdon/
(22.22)

directly from the difference in redox potentials between the electron accepting and

donating half reactions. Here�Gr is in J mol�1, or V C mol�1; n is the number of

electrons transferred, eight in our case; F is the Faraday constant, 96 485 C mol�1;

and Ehacc and Ehdon are the redox potentials (V) of the accepting and donating

reactions.

Figure 22.7 shows how the thermodynamic drive for each metabolism varies as

the fluids mix, as determined from the redox potentials in Figure 22.5. Microbial

life is known to exist near the subsea vents to temperatures as high as 121 °C

(Kashefi and Lovley, 2003) and it seems unlikely that it will be observed beyond

150 °C. We need consider, therefore, only the latter part of the mixing, where

temperature falls below such limits.

Each of the hydrogentrophic metabolisms is favored in the anoxic fluid, but can-

not proceed once the mixture has become oxic, in the absence of dihydrogen. Of

these, sulfate reduction has the largest thermodynamic drive. The other two anaer-

obic metabolisms, acetotrophic sulfate reduction and acetoclastic methanogenesis,

do not depend on the presence of H2(aq) and are favored throughout the mixing.

The organisms that utilize these metabolisms, however, are strict anaerobes (e.g.,

Konhauser, 2007) and so can live only where the mixture is anoxic, regardless of

the energy available to them.

The aerobic metabolisms – sulfide oxidation, methanotrophy, and acetotrophy –
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Fig. 22.7. Thermodynamic driving forces for various anaerobic (top) and aerobic (bottom)
microbial metabolisms during mixing of a subsea hydrothermal fluid with seawater, as
a function of temperature. Since the driving force is the negative free energy change
of reaction, metabolisms with positive drives are favored thermodynamically; those with
negative drives cannot proceed. The drive for sulfide oxidation is the mirror image of that
for hydrogentrophic sulfate reduction, since in the calculation O2(aq) and H2(aq) are in
equilibrium.

cannot proceed in the anoxic fluid, which is devoid of dioxygen, but are strongly

favored in the oxic fluid. The thermodynamic drive for the aerobic processes un-

der oxic conditions is about 800 kJ mol�1, much larger than the drives of less

than about 150 kJ mol�1 observed under anoxic conditions for the anaerobic

metabolisms.

The thermodynamic drives cited are the energy released instantaneously by the

metabolic reaction, at the moment reaction commences. The drives tell whether

the reaction can proceed, and whether it can supply enough energy for a cell to

conserve energy by synthesizing ATP, as discussed in Section 7.4. The values,

however, do not describe how much energy microbes can extract from a fluid, and

hence how much microbial growth the fluid can sustain.

The net amount of energy available from a fluid is its energy yield, given in units
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Fig. 22.8. Energy yields for various anaerobic (top) and aerobic (bottom) metabolisms
during mixing of a subsea hydrothermal fluid with seawater, expressed as a function of
temperature, per kg of hydrothermal water. Energy yields for acetoclastic methanogenesis
and acetotrophic sulfate reduction under oxic conditions are hypothetical, since microbes
from these functional groups are strict anaerobes and cannot live in the presence of dioxy-
gen.

of energy per mass fluid, or J kg�1. Since the thermodynamic drive is given by

Equation 22.22 from a difference in electrical potential (�Eh), we can properly

consider it a voltage. Thinking this way, the energy yield accounts not only for the

reaction’s voltage, but its “capacitance,” the number of electrons in the fluid that

can be transferred.

The simplest way to calculate the energy yield is to multiply the thermodynamic

drive by the mass of the limiting reactant, the reactant that will be first exhausted

from the fluid as the reaction proceeds. Figure 22.8 shows energy yields calculated

in this way, for the various metabolisms considered. An energy yield calculated

in this manner is approximate, since the reaction’s thermodynamic drive does not
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remain constant, but diminishes as its reactants are consumed. This effect, however,

is commonly minor, because the driving force varies with the logarithm of reactant

concentration. Once 90% of a limiting reactant has been consumed, assuming a

reaction coefficient of one, the driving force at 25 °C has been reduced by just 5.7

kJ mol�1; at 99% consumption, the reduction is only 11.4 kJ mol�1.

Taking sulfide oxidation (Reaction 22.19) as an example, when the fluid mixture

reaches 25 °C , there are about 5 mmol of H2S(aq) and 0.6 mmol of O2(aq) in the

unreacted fluid, per kg of vent water. The O2(aq) will be consumed first, after about

0.3 mmol of reaction turnover, since its reaction coefficient is two; it is the limiting

reactant. The thermodynamic drive for this reaction at this temperature is about

770 kJ mol�1. The energy yield, then, is (0:3 � 10�3 mol kg�1) � (770 � 103 J

mol�1), or about 230 J kg�1 vent water (Fig. 22.8). In reality, of course, this entire

yield would not necessarily be available at this point in the mixing. If some of the

O2(aq) had been consumed earlier, or is taken up by reaction with other reduced

species, less of it, and hence less energy would be available for sulfide oxidation.

In the calculation results (Fig. 22.8), we see that while the fluid remains anoxic,

modest amounts of energy are available, most notably to hydrogentrophic sulfate

reducers and hydrogentrophic methanogens. When the mixture turns oxic, how-

ever, much larger amounts of energy become available, primarily to the sulfide ox-

idizers. The total amount of energy that can be supplied to sulfide oxidizers during

the mixing process dwarfs that available to all the other metabolisms combined.

The energetics depicted in this way are in accord with the microbial ecology

observed at deep sea hydrothermal systems (e.g., Kelley et al., 2002; Huber et

al., 2003; Schrenk et al., 2003). Sediments and black smoker walls invaded by

hydrothermal fluids there contain sparse microbial populations of mostly ther-

mophilic methanogens and sulfate reducers. Abundant populations of mesophilic

aerobes dominated by sulfide reducers, in contrast, are found in the open ocean

where hydrothermal fluids mix freely with seawater.



23

Geothermometry

Geothermometry is the use of a fluid’s (or, although not discussed here, a rock’s)

chemical composition to estimate the temperature at which it equilibrated in the

subsurface. The specialty is important, for example, in exploring for and exploiting

geothermal fields, characterizing deep groundwater flow systems, and understand-

ing the genesis of ore deposits.

Several chemical geothermometers are in widespread use. The silica geother-

mometer (Fournier and Rowe, 1966) works because the solubilities of the various

silica minerals (e.g., quartz and chalcedony, SiO2) increase monotonically with

temperature. The concentration of dissolved silica, therefore, defines a unique equi-

librium temperature for each silica mineral. The Na–K (White, 1970) and Na–K–

Ca (Fournier and Truesdell, 1973) geothermometers take advantage of the fact that

the equilibrium points of cation exchange reactions among various minerals (prin-

cipally, the feldspars) vary with temperature.

In applying these methods, it is necessary to make a number of assumptions or

corrections (e.g., Fournier, 1977). First, the minerals with which the fluid reacted

must be known. Applying the silica geothermometer assuming equilibrium with

quartz, for example, would not give the correct result if the fluid’s silica content

is controlled by reaction with chalcedony. Second, the fluid must have attained

equilibrium with these minerals. Many studies have suggested that equilibrium

is commonly approached in geothermal systems, especially for ancient waters at

high temperature, but this may not be the case in young sedimentary basins like the

Gulf of Mexico basin (Land and Macpherson, 1992). Third, the fluid’s composition

must not have been altered by separation of a gas phase, mineral precipitation, or

mixing with other fluids. Finally, corrections may be needed to account for the

influence of certain dissolved components, including CO2 and MgCC, which affect

the equilibrium composition (Pǎces, 1975; Fournier and Potter, 1979; Giggenbach,

1988).

Using geochemical modeling, we can apply chemical geothermometry in a more

341
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generalized manner. By utilizing the entire chemical analysis rather than just a por-

tion of it, we avoid some of the restricting assumptions mentioned in the preceding

paragraph (see Michard et al., 1981; Michard and Roekens, 1983; and especially

Reed and Spycher, 1984). Having constructed a theoretical model of the fluid in

question, we can calculate the saturation state of each mineral in the database, not-

ing the temperature at which each is in equilibrium with the fluid. Hence, we need

make no a-priori assumption about which minerals control the fluid’s composition

in the subsurface.

Given sufficient field data, we can use modeling techniques to restore flashed

gases or precipitated minerals to the fluid, minimizing another potential source of

error. In the final section of this chapter, for example, we use production data from

wet-steam wells to reconstitute geothermal fluids as they existed before gas sepa-

ration. Finally, since the geochemical model is a relatively complete description of

the fluid’s chemistry, we avoid the necessity of the various corrections that might

have to be applied had we used a simpler calculation method. A disadvantage of

applying geochemical modeling, however, is that the technique requires a reason-

ably complete and accurate chemical analysis of the fluid in question, which is not

always available.

In this chapter, we explore how we can use chemical analyses and pH deter-

minations made at room temperature to deduce details about the origins of natural

fluids. These same techniques are useful in interpreting laboratory experiments per-

formed at high temperature, since analyses made at room temperature need to be

projected to give pH, oxidation state, gas fugacity, saturation indices, and so on

under experimental conditions.

23.1 Principles of geothermometry

The most direct way to demonstrate the principles of geothermometry is to con-

struct a synthetic example on the computer. We start by “sampling” a hypothetical

geothermal water at 250 °C and letting it cool to room temperature as a closed

system. We assume a water that is initially in equilibrium with albite (NaAlSi3O8),

muscovite [KAl3Si3O10.OH/2], quartz (SiO2), potassium feldspar (KAlSi3O8;

“maximum microcline” in the LLNL database), and calcite (CaCO3).

In REACT, the commands

T = 250

swap Albite for Na+

swap "Maximum Microcline" for K+

swap Muscovite for Al+++

swap Quartz for SiO2(aq)

swap Calcite for HCO3-
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pH = 5

Ca++ = .05 molal

Cl- = 3. molal

1 free cm3 Albite

1 free cm3 "Maximum Microcline"

1 free cm3 Muscovite

1 free cm3 Quartz

1 free cm3 Calcite

define the initial system. To describe sampling and cooling of the fluid, we enter

the commands

(cont’d)

dump

precip = off

T final = 25

go

which set up a polythermal reaction path.

With the dump command, we cause the program to discard the minerals present

in the initial system before beginning the reaction path. In this way, we simulate

the separation of the fluid from reservoir minerals as it flows into the wellbore. The

precip = off command prevents the program from allowing minerals to precip-

itate as the fluid cools. In practice, samples are acidified immediately after they

have been sampled and their pH determined. Preservation by this procedure helps

to prevent solutes from precipitating, which would alter the fluid’s composition

before it is analyzed.

Since we have provided initial and final temperatures but have not specified any

reactants, the program traces a polythermal path for a closed system (see Chapter

14). The fluid’s pH (Fig. 23.1) changes with temperature from its initial value of

5 at 250 °C to less than 4 at 25 °C. The change is entirely due to variation in the

stabilities of the aqueous species in solution. As shown in Figure 23.2, the HC

concentration increases in response to the dissociation of the HCl ion pair,

HCl ! HC C Cl� (23.1)

and the breakdown of CO2(aq),

CO2(aq) C H2O ! HC C HCO�
3 (23.2)

to form HCO�
3 .

The CO2 fugacity decreases sharply during cooling (Fig. 23.3), as would be ex-

pected, since gas solubility increases as temperature decreases. In the calculation,

the fugacity decrease results almost entirely from variation in the equilibrium con-
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Fig. 23.1. Variation in pH in a computer simulation of sampling, cooling, and then reheat-
ing a hypothetical geothermal fluid. Bold line shows path followed when system is held
closed; fine lines show variations in pH when fluid is allowed to degas CO2 as it cools.

Concentration

change

(mmolal)

Temperature (°C)

–0.1

0

0.1

250 200 150 100 50

H+

CO2(aq)

HCl

Fig. 23.2. Changes in concentration of aqueous species HC, CO2(aq), and HCl with tem-
perature during cooling of a geothermal fluid as a closed system. A positive value indicates
an increase in concentration relative to 250 °C; a negative value represents a decrease.

stant for the reaction

CO2(g) � CO2(aq) : (23.3)

The logK for this reaction increases from �2:12 at 250 °C to �1:45 at 25 °C. The

final CO2 fugacity is about 15, corresponding to a partial pressure considerably

in excess of atmospheric pressure. We would certainly need to take extraordinary

measures to prevent the fluid from effervescing, if we were actually performing

this experiment instead of simulating it.



23.1 Principles of geothermometry 345

Temperature (°C)

0

20

40

60

80

250 200 150 100 50

fCO2

Closed system

Open system
cooling

reheating

Fig. 23.3. Variation in CO2 fugacity in a computer simulation of sampling, cooling, and
then reheating a hypothetical geothermal fluid. Bold line shows path followed when system
is held closed. Fine lines show effects of an open system in which fluid is allowed to degas
CO2 as it cools.

Now that we have simulated sampling the fluid and letting it cool, let us predict

the fluid’s original temperature (which we already know to be 250 °C). The REACT

commands

(cont’d)

pickup

T final = 300

go

cause the program to “pick up” the results at the end of the previous path as the

starting point for the current calculation. In other words, the cooled fluid will

constitute the new initial system. We specify that the program heats the fluid to

300 °C and triggers the calculation.

The values predicted for pH and CO2 fugacity retrace the paths followed during

the cooling calculation (Figs. 23.1 and 23.3). Since the system is closed to mass

transfer, its equilibrium state depends only on temperature. Figure 23.4 shows the

saturation indices calculated for various minerals. There are two salient points to

consider in this plot. First, each of the minerals (albite, muscovite, quartz, potas-

sium feldspar, and calcite) present in the formation when the fluid was sampled

is in equilibrium (i.e., logQ=K D 0) at 250 °C. The minerals are in equilib-

rium together at no other temperature. Second, minerals in the database that were

not present in the formation appear undersaturated at the equilibrium temperature.

These two criteria allow us to uniquely identify the fluid’s original temperature and

hence form the basis of our generalized chemical geothermometer.
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Fig. 23.4. Mineral saturation indices (logQ=K) over the course of simulating the reheat-
ing of a hypothetical geothermal fluid. Bold lines show indices for minerals assumed to
be present in the initial formation; fine lines show values for other minerals. Dashed line
marks sampling temperature (250 °C).

As a second experiment, let us simulate the sampling of the same fluid as an

open system. This time, we allow it to effervesce CO2 as we bring it to the surface

and let it cool. We start as before, but include a slide command to vary CO2

fugacity from its initial value to one, corresponding to the fugacity of this gas in

the atmosphere. The procedure (starting anew in REACT) is

(Enter initial system as before, at the beginning of this section)

dump

precip = off

T final = 25

slide f CO2(g) to 1

go

In the open system, the CO2 fugacity (Fig. 23.3) varies linearly over the reaction

path from about 75 to a value of one, as we prescribed, tracing a path of lower

fugacity than predicted for the closed system. To maintain the lower fugacity, the

program allows CO2 to escape from the fluid into the external gas buffer (see

Chapter 14). The pH (Fig. 23.1) follows a path of higher values than in a closed

system, reflecting the loss of CO2, an acid gas.

Now we apply our geothermometer by simulating the reheating of the fluid:

(cont’d)

pickup
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Fig. 23.5. Mineral saturation indices (logQ=K) over the course of simulating the reheat-
ing of a hypothetical geothermal fluid that degassed CO2 during sampling. Dashed line
marks original formation temperature (250 °C). Although each of the minerals shown was
present in the formation, the saturation profiles do not clearly identify the formation tem-
perature because of the CO2 loss.

T final = 300

go

The system was not closed during cooling, so neither the pH nor CO2 fugacity

(Figs. 23.2 and 23.3) returns to its original value at 250 °C.

The predicted saturation states of the formation minerals (Fig. 23.5), further-

more, no longer identify a unique formation temperature. Whereas the tempera-

tures suggested by albite, quartz, and potassium feldspar are quite close to the

250 °C formation temperature, those predicted by assuming that the fluid was in

equilibrium with muscovite and calcite are too low, respectively, by margins of

about 25 °C and 100 °C. To avoid error of this sort, we would need to determine

the amount of gas lost from the sample and reintroduce it to the equilibrium system

before calculating saturation indices.

23.2 Hot spring at Hveravik, Iceland

To see how we might apply geochemical modeling to the geothermometry of

natural waters, we consider the effluent of a hot spring at Gjögur, Hveravik, Iceland.

The hot spring is part of the surface expression of Iceland’s well-known geothermal

resources, which are developed within basaltic rocks in or near active volcanic

belts. Arnorsson et al. (1983), part of a group noted for its high quality analyses of

geothermal waters, provide the water’s chemical composition (Table 23.1).

The spring yields a Na–Ca–Cl water at about 72 °C with a pH (measured at
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Table 23.1. Chemical composition of water emanating from a hot sping at

Gjögur, Hveravik, Iceland (Arnorsson et al., 1983)

SiO2 .mg kg�1/ 49

NaC 715.5

KC 17.3

CaCC 759.4

MgCC 3.68

FeCC 0.018

AlCCC 0.01

CO2(aq) 13.3

SO��
4

297.6

H2S(aq) <0.01

Cl� 2460

F� 0.82

Dissolved solids 4366

Sampling temperature (°C) 72

pH at 11 °C 7.10

11 °C) of 7.1. The water appears to be oxidized, since there is abundant sulfate but

no detected dissolved sulfide. Details of the origin of the spring water are unknown.

Does it circulate deeply, reaching high temperatures only to cool near the discharge

point? Is it a hot saline water from depth that has mixed with local groundwater

near the spring (and, hence, is likely to be out of equilibrium with most minerals)?

Did it degas significantly as it discharged? Or is it a relatively shallow groundwater

that has reached equilibrium with its host rock near its discharge temperature?

In REACT, the commands

swap CO2(aq) for HCO3-

pH = 7.10

SiO2(aq) = 49.0 mg/kg

Na+ = 715.7 mg/kg

K+ = 17.3 mg/kg

Ca++ = 759.4 mg/kg

Mg++ = 3.68 mg/kg

Fe++ = .018 mg/kg

Al+++ = 0.01 mg/kg

CO2(aq) = 13.3 mg/kg

SO4-- = 297.6 mg/kg

Cl- = 2460. mg/kg

F- = .82 mg/kg
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Fig. 23.6. Calculated saturation indices (logQ=K) of aluminum-bearing minerals plotted
versus temperature for a hot spring water from Gjögur, Hveravik, Iceland. Lines for most
of the minerals are not labeled, due to space limitations. Sampling temperature is 72 °C and
predicted equilibrium temperature (arrow) is about 80 °C. Clinoptilolite (zeolite) minerals
are the most supersaturated minerals below this temperature and saponite (smectite clay)
minerals are the most supersaturated above it.

precip = off

T initial = 11, final = 150

go

set up the geothermometry calculation, as discussed in the previous section.

Figure 23.6 shows the saturation states of the aluminosilicate minerals in the

LLNL database, plotted against temperature. Many minerals are supersaturated at

low and high temperature, but a clear equilibrium point appears at about 80 °C,

slightly warmer than the discharge temperature of 72 °C. At this point, the fluid’s

composition seems to be controlled by calcium and potassium clinoptilolite (zeo-

lites; e.g., CaAl2Si10O24 � 8H2O) and calcium and magnesium saponite [smectite

clays; e.g., Ca:165Mg3Al:33Si3:67O10.OH/2] minerals.

From a plot of the saturation states of the silica polymorphs (Fig. 23.7), the

fluid’s equilibrium temperature with quartz is about 100 °C. Quartz, however, is

commonly supersaturated in geothermal waters below about 150 °C and so can

give erroneously high equilibrium temperatures when applied in geothermometry

(Fournier, 1977). Chalcedony is in equilibrium with the fluid at about 76 °C, a

temperature consistent with that suggested by the aluminosilicate minerals.

According to the calculation, the CO2 fugacity varies in the range 10�2 to
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Fig. 23.7. Calculated saturation indices (logQ=K) of silica minerals for Gjögur hot spring
water. Chalcedony is approximately in equilibrium at 80 °C, but quartz is supersaturated at
this temperature.

10�3, somewhat higher than the atmospheric partial pressure of this gas (10�3:5

atm). The fugacity, however, is much lower than the total atmospheric pressure,

suggesting that the fluid has not effervesced CO2. In light of these results, we

might reasonably argue that the fluid is a fresh water that has circulated to relatively

shallow depths into the geothermal area, obtaining a moderate solute content but

remaining oxidized. The fluid probably circulated through fractures in the basalt,

reacting with zeolites, smectite clays, and chalcedony lining the fracture surfaces.

The fluid last attained equilibrium with these minerals at about 75 °C to 80 °C, a

temperature just slightly higher than the 72 °C discharge temperature at the hot

spring.

23.3 Geothermal fields in Iceland

In a final application, following Reed and Spycher (1984), we consider fluids

produced from wet-steam wells (i.e., wells that produce both vapor and liquid

phases) at three geothermal fields in Iceland. Arnorsson et al. (1983) again supply

the analytical data, given in Table 23.2. The calculations in this case are more

complicated than those for the spring water considered in the previous section

because, before applying our geothermometer, we must recombine the vapor and

liquid phases sampled at the wellhead to find the composition of the original fluid.

To find the mass ratio of vapor to liquid produced, we note the discharge enthalpy

Htot and sampling pressure Ps from Table 23.2. From the steam tables (Keenan

et al., 1969), we find the sampling temperature Ts corresponding to the boiling

point at Ps, and the enthalpies Hliq and Hvap of liquid water and steam at this
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Table 23.2. Chemical compositions of water and steam discharged from

wet-steam geothermal wells in Iceland (Arnorsson et al., 1983)

Reykjanes Hveragerdi Namafjall

Well #8 Well #4 Well #8

Fluid

pH; °C 6.38; 20 8.82; 20 8.20; 22

SiO2 (mg kg�1) 631.1 281.0 446.3

NaC 11150 153.3 154.8

KC 1720 13.4 24.0

CaCC 1705 1.73 4.52

MgCC 1.44 0.002 0.085

FeCC 0.329 0.008 0.019

AlCCC 0.07 0.14 0.10

CO2(aq) 63.1 74.2 88.2

SO��
4 28.4 43.7 48.7

H2S(aq) 2.21 19.2 132.6

Cl� 22835 109.5 16.6

F� 0.21 1.82 0.43

Dissolved solids 39124 765 902

Condensate

CO2 (mg kg�1) 584 627 172

H2S 65.6 84.5 277

Gas with condensate

CO2 (vol. %) 96.2 84.5 36.8

H2S 2.9 3.0 17.0

H2 0.2 2.8 37.4

CH4 0.1 0.3 2.9

N2 0.6 9.4 5.9

l gas (kg condensate)�1; °C 2.63; 20 1.06; 20 6.25; 20

Sampling pressure (bars abs.) 20 6.8 9.8

Discharge enthalpy (kcal kg�1) 275 183 261

temperature. The mass fraction Xvap of vapor produced by the well is given (e.g.,

Henley, 1984) by energy balance,

Xvap D Htot �Hliq

Hvap �Hliq

: (23.4)
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The resulting values for the three wells are,

Htot Ps Ts Hliq Hvap Xvap

Reykjanes #8 275 20 213.1 217.8 668.7 12.7%

Hveragerdi #4 183 6.8 164.4 165.9 659.9 3.5%

Namafjall #8 261 9.8 179.6 181.9 663.5 16.4%

Here, enthalpy is given in kcal kg�1, temperature in °C, and pressure in atm. Note

that the sampling temperatures are considerably lower than subsurface tempera-

tures because of the energy used to produce the vapor phase.

Next, we need to calculate the amount of each component in the vapor phase.

At room temperature, the vapor separates into a condensate that is mostly water

and a gas phase that is mostly CO2. Table 23.2 provides the composition of each.

The mole number of each component (H2O, CO2, and H2S) in the condensate,

expressed per kg H2O in the liquid, is derived by multiplying the concentration (g

kg�1) by the vapor fraction Xvap and dividing by the component’s mole weight.

The mole numbers per kg liquid for the gases (H2O, CO2, H2S, H2, and CH4)

that separated from the condensate are obtained by multiplying the volume fraction

of each by (1) the volume of gas per kg condensate, (2) the mass fraction Xvap of

the vapor phase produced, and (3) the number of moles per liter of gas. The latter

value can be calculated from the ideal gas law PV D nRTK; at 20 °C and 1 atm

pressure, there are 0.0416 moles per liter of gas. The final values for each well,

Reykjanes #8 Hveragerdi #4 Namafjall #8

H2O 7:045 1:941 9:099

CO2 0:01505 1:80� 10�3 0:01633

H2S 6:47 � 10�4 1:33� 10�4 8:58 � 10�3

H2 2:78 � 10�5 4:32� 10�5 0:01595

CH4 1:39 � 10�5 4:63� 10�6 3:59 � 10�3

are sums of the mole numbers for the condensate and gas, expressed in moles per

kg of H2O in the liquid phase.

To run REACT for the Reykjanes #8 well, we start by defining the initial system

TDS = 39124

swap H2S(aq) for O2(aq)

swap CO2(aq) for HCO3-

pH = 6.38

SiO2(aq) = 631.1 mg/kg

Na+ = 11150 mg/kg

K+ = 1720 mg/kg

Ca++ = 1705 mg/kg

Mg++ = 1.44 mg/kg
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Fe++ = .329 mg/kg

Al+++ = .07 mg/kg

CO2(aq) = 63.1 mg/kg

SO4-- = 28.4 mg/kg

H2S(aq) = 2.21 mg/kg

Cl- = 22835 mg/kg

F- = 0.21 mg/kg

Here, we use the ratio of sulfate to sulfide to constrain oxidation state in the fluid.

To invoke our geothermometer, we need to recombine the vapor and fluid phases

and then heat the mixture to determine saturation indices as functions of temper-

ature. We could do this in two steps, first titrating the vapor phase into the liquid

and then picking up the results as the starting point for a polythermal path. We will

employ a small trick, however, to accomplish these steps in a single reaction path.

The trick is to add the vapor phase quickly during the first part of the reaction path

but use the cutoff option to prevent mass transfer over the remainder of the path.

The commands to set the mass transfer are

(cont’d)

react 70.045 moles H2O cutoff = 7.045

react .1505 moles CO2(g) cutoff = .01505

react 6.47e-3 moles H2S(g) cutoff = 6.47e-4

react 2.78e-4 moles H2(g) cutoff = 2.78e-5

react 1.39e-4 moles CH4(g) cutoff = 1.39e-5

The cutoff values are the mole numbers calculated above, and the corresponding

reaction rates are the mole numbers augmented by a factor of ten. We type the

commands

(cont’d)

T initial = 20, final = 300

precip = off

go

to set up the polythermal path and trigger the calculation.

In the calculation results (Fig. 23.8), a number of minerals converge to equilib-

rium with the fluid in the range of about 285 °C to somewhat above 300 °C (slightly

beyond the calculation’s high-temperature limit). The well, for comparison, pro-

duces fluid from seven zones at temperatures ranging from 274 °C to 292 °C

(Arnorsson et al., 1983). Several minerals [i.e, epidote, Ca2FeAl2Si3O12OH,

and calcium saponite, Ca0:165Mg3Al0:33Si3:67O10.OH/2] are supersaturated at

temperatures less than about 300 °C. This result might reasonably be interpreted

to reflect a fluid that equilibrated at a temperature somewhat higher than observed

in the well. Alternatively, the supersaturation may be due to the mixing in the

wellbore of fluids from the well’s various producing zones. As discussed in

Chapter 6, fluid mixing tends to leave minerals supersaturated.
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Fig. 23.8. Calculated saturation indices (logQ=K) of various minerals for the Reyk-
janes #8 wet-steam geothermal well. The well produces from seven intervals at temper-
atures varying from 274 °C to 292 °C. The calculated saturation indices suggest an equilib-
rium temperature between about 285 °C and slightly above 300 °C.

For the Hveragerdi #4 well, we follow the same procedure, using the data in

Table 23.2 and the calculations already shown. In this case, the model predicts

that a number of minerals in the LLNL database are supersaturated near the inflow

temperature of 181 °C. Close examination reveals that each of the supersaturated

minerals contains either MgCC, CaCC, or FeCC, components that are character-

istically depleted in geothermal fluids. The MgCC concentration in this fluid, for

example, is just 2 �g kg�1.

The minor amounts of MgCC, CaCC, and FeCC in the fluid might easily be

accounted for by contamination by a small volume of a shallow groundwater or

even by dissolution of concrete and steel in the wellbore. If we discount the results

for minerals containing these components, we arrive at a well-defined equilibrium

temperature slightly above 200 °C (Fig. 23.9). Again, the equilibrium temperature

is slightly higher than the temperature measured in the wellbore.

The analysis for Namafjall well #8 is similar to that of the Hveragerdi well

in that a number of Ca, Mg, and Fe-bearing minerals appear supersaturated over

the temperature range of interest. Again, this result probably reflects mixing or

contamination. The equilibrium temperatures for quartz, albite, potassium feldspar,

potassium clinoptilolite, and muscovite (Fig. 23.10) bracket a relatively broad

temperature range of 205 °C to 250 °C, which can be compared to the well’s inflow

temperature of 246 °C. In this case, the equilibrium temperature is notably less well
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Fig. 23.9. Calculated saturation indices (logQ=K) of various minerals for the Hveragerdi
#4 wet-steam geothermal well. The inflow temperature is 181 °C. The calculated saturation
indices suggest an equilibrium temperature near 200 °C.
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Fig. 23.10. Calculated saturation indices (logQ=K) of various minerals for the Namafjall
#8 wet-steam geothermal well. The inflow temperature is 246 °C. The calculated saturation
indices suggest an equilibrium temperature in the range 205 °C to 250 °C.

defined than in the previous example, perhaps reflecting the mixing of a significant

amount of shallow groundwater into the geothermal fluid.
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Evaporation

The process of evaporation, including transpiration (evaporation from plants), re-

turns to the atmosphere more than half of the water reaching the Earth’s land sur-

face; thus, it plays an important role in controlling the chemistry of surface wa-

ter and groundwater, especially in relatively arid climates. Geochemists study the

evaporation process to understand the evolution of water in desert playas and lakes

as well as the origins of evaporite deposits. They also investigate environmental

aspects of evaporation (e.g., Appelo and Postma, 1993), such as its effects on the

chemistry of rainfall and, in areas where crops are irrigated, the quality of ground-

water and runoff.

To model the chemical effects of evaporation, we construct a reaction path in

which H2O is removed from a solution, thereby progressively concentrating the

solutes. We also must account in the model for the exchange of gases such as CO2

and O2 between fluid and atmosphere. In this chapter we construct simulations of

this sort, modeling the chemical evolution of water from saline alkaline lakes and

the reactions that occur as seawater evaporates to desiccation.

24.1 Springs and saline lakes of the Sierra Nevada

We choose as a first example the evaporation of spring water from the Sierra

Nevada mountains of California and Nevada, USA, as modeled by Garrels and

Mackenzie (1967). Their hand calculation, the first reaction path traced in geo-

chemistry (see Chapter 1), provided the inspiration for Helgeson’s (1968 and later)

development of computerized methods for reaction modeling.

Garrels and Mackenzie wanted to test whether simple evaporation of groundwa-

ter discharging from the mountains, which is the product of the reaction of rainwa-

ter and CO2 with igneous rocks, could produce the water compositions found in the

saline alkaline lakes of the adjacent California desert. They began with the mean of

357
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Table 24.1. Mean composition of spring water from the Sierra Nevada,

California and Nevada, USA (Garrels and Mackenzie, 1967)

mg kg�1 mmolal

SiO2(aq) 24.6 0.410

CaCC 10.4 0.260

MgCC 1.70 0.070

NaC 5.95 0.259

KC 1.57 0.040

HCO�
3 54.6 0.895

SO��
4

2.38 0.025

Cl� 1.06 0.030

pH 6.8*

*Median value.

analyses of perennial springs from the Sierra Nevada (Table 24.1). The springs are

Na–Ca–HCO3 waters, rich in dissolved silica. Using REACT to distribute species

26.4 mg/kg SiO2(aq)

10.4 mg/kg Ca++

1.7 mg/kg Mg++

5.95 mg/kg Na+

1.57 mg/kg K+

54.6 mg/kg HCO3-

2.38 mg/kg SO4--

1.06 mg/kg Cl-

pH = 6.8

balance on HCO3-

go

we calculate a CO2 fugacity for the water of 10�2:1 , typical of soil waters but

somewhat higher than the atmospheric value of 10�3:5. In their model, Garrels

and Mackenzie assumed that the evaporating water remained in equilibrium with

the CO2 in the atmosphere. To prepare the reaction path, therefore, they computed

the effects of letting the spring water exsolve CO2 until it reached atmospheric

fugacity.

They made several assumptions about which minerals could precipitate from

the fluid. The alkaline lakes tend to be supersaturated with respect to each

of the silica polymorphs (quartz, tridymite, and so on) except amorphous sil-

ica, so they suppressed each of the other silica minerals. They assumed that
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dolomite [CaMg.CO3/2], a highly ordered mineral known not to precipitate at

25 °C except from saline brines, would not form. Finally, they took the clay

mineral sepiolite [Mg4Si6O15.OH/2 � 6H2O] in preference to minerals such as

talc [Mg3Si4O10.OH/2] as the magnesium silicate likely to precipitate during

evaporation.

The procedure to suppress these minerals and adjust the fluid’s CO2 fugacity is

(cont’d)

suppress Quartz, Tridymite, Cristobalite, Chalcedony

suppress Dolomite, Dolomite-ord, Dolomite-dis

suppress Talc, Tremolite, Antigorite

slide f CO2(g) to 10^-3.5

go

The resulting fluid, which provides the starting point for modeling the effects of

evaporation, has a pH of 8.2.

To model the process of evaporation, we take the fluid resulting from the previ-

ous calculation and, while holding the CO2 fugacity constant, remove almost all

(999.9 grams of the original kg) of its water. The procedure is

(cont’d)

pickup fluid

react -999.9 g H2O

fix f CO2(g)

delxi = .001

dxplot = .001

go

The delxi and dxplot commands set a small reaction step to provide increased

detail near the end of the reaction path.

In the calculation results (Fig. 24.1), amorphous silica, calcite (CaCO3), and

sepiolite precipitate as water is removed from the system. The fluid’s pH and ionic

strength increase with evaporation as the water evolves toward an Na–CO3 brine

(Fig. 24.2). The concentrations of the components NaC, KC, Cl�, and SO��
4 rise

monotonically (Fig. 24.2), since they are not consumed by mineral precipitation.

The HCO�
3 and SiO2(aq) concentrations increase sharply but less regularly, since

they are taken up in forming the minerals. The components CaCC and MgCC are

largely consumed by the precipitation of calcite and sepiolite. Their concentrations,

after a small initial rise, decrease with evaporation.

Two principal factors drive reaction in the evaporating fluid. First, the loss of

solvent concentrates the species in solution, causing the saturation states of many

minerals to increase. The precipitation of amorphous silica, for example,
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ing a reaction model simulating at 25 °C the evaporation of Sierra Nevada spring water in
equilibrium with atmospheric CO2, plotted against the concentration factor. For example,
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SiO2(aq) ! SiO2

amorphous

(24.1)

results almost entirely from the increase in SiO2(aq) concentration as water evap-

orates.

A second and critical factor is the loss of CO2 from the fluid to the atmosphere.

Evaporation concentrates CO2(aq), driving CO2(g) to exsolve,

CO2(aq) ! CO2(g) : (24.2)

About 0.5 mmol of CO2, or about 60% of the fluid’s carbonate content at the onset

of the calculation, is lost in this way.

The escape of CO2, an acid gas, affects the fluid’s pH. By mass action, the loss

of CO2(aq) from the system causes readjustment among the carbonate species in

solution,

HCO�
3 C HC ! H2O C CO2(aq) (24.3)

CO��
3 C 2 HC ! H2O C CO2(aq) : (24.4)

The reactions consume HC, driving the fluid toward alkaline pH, as shown in

Figure 24.2. This effect explains the alkalinity of saline alkaline lakes.

Calcite and sepiolite precipitate in large part because of the effects of the escap-

ing CO2. The corresponding reactions are,

CaCC C 2 HCO�
3 ! CaCO3

calcite

C H2O C CO2(g) (24.5)

and

4 MgCC C 6 SiO2(aq) C 8 HCO�
3 C 3 H2O !

Mg4Si6O15.OH/2 � 6H2O

sepiolite

C 8 CO2(g) : (24.6)

Figure 24.3 compares the calculated composition of the evaporated water, con-

centrated 100-fold and 1000-fold, with analyses of waters from six saline alkaline

lakes (compiled by Garrels and Mackenzie, 1967). The field for the modeled water

overlaps that for the analyzed waters, except that CaCC and MgCC are more de-

pleted in the model than in the lake waters. This discrepancy might be explained if

in nature the calcite and sepiolite begin to precipitate but remain supersaturated in

the fluid.

In the reaction path we calculated (Fig. 24.2), the precipitation of calcite con-

sumes nearly all of the calcium originally in solution so that no further calcium-

bearing minerals form. Calcite precipitation, on the other hand, does not deplete



362 Evaporation

mg kg−1

0.01

0.1

1

10

100

1000

10 000

Na++K+ Ca++ Mg++ HCO3
−

SO4
−−

Cl
−

×100

×1000

Fig. 24.3. Calculated composition of evaporated spring water (from the reaction path
shown in Figures 24.1 and 24.2) concentrated 100-fold and 1000-fold (solid lines) com-
pared with the compositions of six saline alkaline lakes (dashed lines), as compiled by
Garrels and Mackenzie (1967).

the dissolved carbonate, because the original fluid was considerably richer in car-

bonate than in calcium (MHCO�
3
>MCaCC). The carbonate concentration, in fact,

increases during evaporation.

If the fluid had been initially richer in calcium than carbonate (MCaCC >

MHCO�
3

), as noted by Hardie and Eugster (1970), it would have followed a

distinct reaction path. In such a case, calcite precipitation would deplete the

fluid in carbonate, allowing the calcium concentration to increase until gypsum

(CaSO4 � 2H2O) saturates and forms. The point at which the calcium and carbonate

are present at equal initial concentration (MCaCC = MHCO�
3

) is known as a

chemical divide.

According to Hardie and Eugster’s (1970) model and its later variants (see dis-

cussions in Eugster and Jones, 1979; Drever, 1988, pp. 232–250; and Jankowski

and Jacobson, 1989), a natural water, as it evaporates, encounters a series of chem-

ical divides that controls the sequence of minerals that precipitate. The reaction

pathway specific to the evaporation of a water of any initial composition can be

traced in detail using a reaction model like the one applied in this section to Sierra

spring water.

24.2 Chemical evolution of Mono Lake

In a second example, we consider the changing chemistry of Mono Lake, a saline

alkaline lake that occupies a closed desert basin in California, USA, and why
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gaylussite [CaNa2.CO3/2 � 5H2O], a rare hydrated carbonate mineral, has begun

to form there. The lake has shrunk dramatically since 1941, when the Los Angeles

Department of Water and Power began to divert tributary streams to supply water

for southern California.

As it shrank, the lake became more saline. Salinity has almost doubled from

50 000 mg kg�1 in 1940 to about 90 000 mg kg�1 in recent years. The change in

the lake’s chemistry threatens to damage a unique ecosystem that supports large

flocks of migratory waterfowl.

In 1988, Bischoff et al. (1991) discovered gaylussite crystals actively forming in

the lake. The crystals were found growing on hard surfaces, especially in the lake’s

deeper sections. Gaylussite had also formed earlier, because psuedomorphs after

gaylussite were observed. The earlier gaylussite has been replaced by aragonite,

leaving the porous skeletal pseudomorphs.

Bischoff et al. (1991) attributed the occurrence of gaylussite to the lake’s in-

crease in NaC content and pH since diversion began. Table 24.2 shows chemical

analyses of lake water sampled at ten points in time from 1956 to 1988. We can

use SPECE8 to calculate for each sample the saturation state of gaylussite. The

procedure for the 1956 sample, for example, is

Ca++ = 4.3 mg/kg

Mg++ = 38 mg/kg

Na+ = 22540 mg/kg

K+ = 1124 mg/kg

SO4-- = 12000 mg/kg

Cl- = 13850 mg/kg

B(OH)3 = 1720 mg/kg

HCO3- = 17600 mg/kg

balance on Cl-

TDS = 67686

pH = 9.49

precip = off

go

Figure 24.4 shows the trend in gaylussite saturation plotted against time and against

the salinity of the lake water.

In the calculation results, gaylussite appears increasingly saturated in the lake

water as salinity increases irregularly over time. The calculations suggest that be-

tween about 1975 and 1980, as salinities reached about 75 000 to 80 000 mg kg�1,

the mineral became supersaturated at summer temperatures.

The solubility of gaylussite, however, varies strongly with temperature. Unlike

calcite and aragonite, gaylussite grows less soluble (or more stable) as temperature
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Table 24.2. Chemical analyses (mg kg�1) of surface water from Mono Lake, 1956

to 1988 (James Bischoff, personal communication*)

1956 1957 1974 1978 1979

CaCC 4.3 4.2 3.5 4.5 4.6

MgCC 38 37 30 34 42

NaC 22 540 22 990 31 100 21 500 37 200

KC 1 124 1 140 1 500 1 170 1 580

SO��
4 12 000 7 810 11 000 7 380 12 074

Cl� 13 850 14 390 18 000 13 500 20 100

B.OH/3 1 720 2 000 1 850 — 2 760

Alkalinity† 21 854 21 600 30 424 21 617 34 818

HCO�
3 ‡ 17 600 15 900 22 700 17 000 25 000

TDS 67 686 59 500 80 370 59 312 92 540

pH 9.49 9.7 9.66 9.6 9.68

1982 1983 1984 1985 1988

CaCC 4.4 4.3 3.1 3.6 3.3

MgCC 37 36 30 34 37

NaC 34 000 29 300 26 600 28 900 32 000

KC 1 980 1 600 1 240 1 300 1 500

SO��
4

11 100 10 700 9 590 10 190 11 200

Cl� 20 400 18 860 17 673 20 370 19 700

B.OH/3 2 460 2 230 1 720 1 720 2 120

Alkalinity† 34 700 31 240 27 240 29 170 31 900

HCO�
3 ‡ 25 300 22 800 18 600 19 600 20 500

TDS 92 200 83 800 74 700 80 600 85 600

pH 9.66 9.68 9.90 9.93 10.03

*From published (see Bischoff et al., 1991) and unpublished sources.

†As CaCO3.

‡Calculated from alkalinity, using method described in Section 15.1.

decreases. We can recalculate mineral solubility under winter conditions by setting

temperature to 0 °C

(cont’d)
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Fig. 24.4. Saturation indices for gaylussite in Mono Lake water at 25 °C for various years
between 1956 and 1988, calculated from analyses in Table 24.2 and plotted against time
(top diagram) and salinity (bottom).

T = 0

go

These calculations (Fig. 24.5) suggest that, to the extent that the analyses in Ta-

ble 24.2 are representative of the wintertime lake chemistry, gaylussite has been

supersaturated in Mono Lake during the winter months since sampling began.

The saturation state of aragonite (Fig. 24.5), on the other hand, is affected little

by temperature. Aragonite remains supersaturated by a factor of about ten (one

log unit) over the gamut of analyses. The supersaturation probably arises from the

effect of orthophosphate, present at concentrations of about 100 mg kg�1 in Mono

Lake water; orthophosphate is observed in the laboratory (Bischoff et al., 1993) to

inhibit the precipitation of calcite and aragonite.

We can use our results to predict the conditions favorable for the transforma-

tion of gaylussite to aragonite. The porous nature of the pseudomorphs and the

small amounts of calcium available in the lake water (Table 24.2) suggest that the

replacement occurs by the incongruent dissolution of gaylussite, according to the
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Fig. 24.5. Saturation indices of gaylussite (�, �) and aragonite (ı, �) calculated for Mono
Lake water in various years from analyses in Table 24.2. Open symbols (�, ı) represent
values calculated for 0 °C and solid symbols (�, �) show those for 25 °C.
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Fig. 24.6. The state (logQ=K) of Reaction 24.7 between gaylussite and aragonite at 0 °C
(�) and 25 °C (�), showing which mineral is favored to form at the expense of the other.

reaction,

CaNa2.CO3/2 � 5H2O

gaylussite

! CaCO3

aragonite

C 2 NaC C CO��
3 C 5 H2O (24.7)

(Bischoff et al., 1991). Figure 24.6 compares the activity product for this reaction to

its equilibrium constant, showing which mineral is favored to form at the expense

of the other. According to the calculations, gaylussite is prone to transform into

aragonite during the summer (even though gaylussite is supersaturated in the lake

water then), but is not likely to be replaced during the winter months.
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24.3 Evaporation of seawater

Since the experimental studies of van’t Hoff at the turn of the century, geochemists

have sought a quantitative basis for describing the chemical evolution of seawater

and other complex natural waters, including the minerals that precipitate from

them, as they evaporate. The interest has stemmed in large part from a desire to

understand the origins of ancient deposits of evaporite minerals, a goal that remains

mostly unfulfilled (Hardie, 1991).

The results of the early experimental studies, although of great significance, were

limited by the complexity of a chemical system that can be portrayed on paper

within a phase diagram. There was little possibility, furthermore, of calculating a

useful reaction model of the evaporation process using conventional correlations

to compute activity coefficients for the aqueous species (see Chapter 8), given the

inherent inaccuracy of the correlations at high ionic strength.

In a series of papers, Harvie and Weare (1980), Harvie et al. (1980), and Eugster

et al. (1980) attacked this problem by presenting a virial method for computing

activity coefficients in complex solutions (see Chapter 8) and applying it to con-

struct a reaction model of seawater evaporation. Their calculations provided the

first quantitative description of this process that accounted for all of the abundant

components in seawater.

To reproduce their results, we trace the reaction path taken by seawater at 25 °C

as it evaporates to desiccation. Our calculations follow those of Harvie et al. (1980)

and Eugster et al. (1980), except that we employ the more recent Harvie–Møller–

Weare activity model (Harvie et al., 1984), which accounts for bicarbonate. We

include an HCO�
3 component in our calculations, assuming that the fluid as it

evaporates remains in equilibrium with the CO2 in the atmosphere.

In a first calculation, we specify that the fluid maintains equilibrium with what-

ever minerals precipitate. Minerals that form, therefore, can redissolve into the

brine as evaporation proceeds. In REACT, we set the Harvie–Møller–Weare model

and specify that our initial system contains seawater

hmw

swap CO2(g) for H+

log f CO2(g) = -3.5

TDS = 35080

Cl- = 19350 mg/kg

Ca++ = 411 mg/kg

Mg++ = 1290 mg/kg

Na+ = 10760 mg/kg

K+ = 399 mg/kg

SO4-- = 2710 mg/kg

HCO3- = 142 mg/kg
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Table 24.3. Minerals formed during the simulated evaporation of seawater

Anhydrite CaSO4

Bischofite MgCl2 � 6H2O

Bloedite Na2Mg.SO4/2 � 4H2O

Carnallite KMgCl3 � 6H2O

Dolomite CaMg.CO3/2

Epsomite MgSO4 � 7H2O

Glauberite Na2Ca.SO4/2

Gypsum CaSO4 � 2H2O

Halite NaCl

Hexahydrite MgSO4 � 6H2O

Kainite KMgClSO4 � 3H2O

Kieserite MgSO4 � H2O

Magnesite MgCO3

Polyhalite K2MgCa2.SO4/4 � 2H2O

just as we did in Chapter 6. We then set a reaction path in which we fix the CO2

fugacity and remove solvent from the system

(cont’d)

fix fugacity of CO2(g)

react -996 grams of H2O

delxi = .001

dxplot = 0

dump

go

The dump command serves to eliminate the small mineral masses that precipitate

when, at the onset of the calculation, the program brings seawater to its theoretical

equilibrium state (see Chapter 6). The delxi and dxplot commands serve to set a

small reaction step, assuring that the results are rendered in sufficient detail.

By removing 996 grams of H2O, we eliminate all of the 1 kg of solvent initially

present in the system; the remaining 4 grams are consumed by the precipitation

of hydrated minerals. In fact, just slightly less than 996 grams of water can be

removed before the system is completely desiccated. The program continues until

less than 1 �g of solvent remains and then abandons its efforts to trace the path. At

this point, it gives a warning message, which can be ignored.

Figure 24.7 shows the minerals that precipitate over the reaction path (Table 24.3

lists their compositions), and Figure 24.8 shows how fluid chemistry in the calcu-
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Fig. 24.7. Volumes of minerals precipitated during a reaction model simulating the evapo-
ration of seawater as an equilibrium system at 25 °C, calculated using the Harvie–Møller–
Weare activity model. Abbreviations: Ep = Epsomite, Hx = Hexahydrite.

lation varies. Initially, dolomite and gypsum precipitate. When the fluid is concen-

trated about ten-fold, the decreasing water activity causes the gypsum to dehydrate,

CaSO4 � 2H2O

gypsum

! CaSO4

anhydrite

C 2 H2O (24.8)

forming anhydrite.

Shortly afterwards, halite becomes saturated and begins to precipitate,

NaC C Cl� ! NaCl

halite

: (24.9)

Halite forms in the calculation in far greater volume than any other mineral, re-

flecting the fact that seawater is dominantly an NaCl solution. The precipitation

reaction represents a chemical divide, as discussed in Section 24.1. Since NaC

is less concentrated (on a molal basis) in seawater than Cl� (MNaC < MCl�), it

becomes depleted in solution. As a result (Fig. 24.8), seawater evolves with evap-

oration from a dominantly NaCl solution into an MgCl2 bittern.

With further evaporation, a small amount of glauberite precipitates,
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Fig. 24.8. Evolution of fluid chemistry during the simulated evaporation of seawater as
an equilibrium system at 25 °C, calculated using the Harvie–Møller–Weare activity model.
Upper figures show variation in salinity, water activity (aw ), and ionic strength (I ) over the
reaction path in Figure 24.7; bottom figure shows how the fluid’s bulk composition varies.

CaSO4

anhydrite

C 2 NaC C SO��
4 ! Na2Ca.SO4/2

glauberite

(24.10)

at the expense of anhydrite. The increasing activities of KC, MgCC, and SO��
4

in solution, however, soon drive the glauberite and some of the anhydrite to form

polyhalite according to the reaction,
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Na2Ca.SO4/2
glauberite

C CaSO4

anhydrite

C 2 KC C MgCC C SO��
4 C

2 H2O ! K2MgCa2.SO4/4 � 2H2O

polyhalite

C 2 NaC :

(24.11)

In accord with these predictions (Harvie et al., 1980), pseudomorphs of glauberite

after gypsum and anhydrite are observed in marine evaporites, and polyhalite, in

turn, is known to replace glauberite.

As it evolves toward a dominantly MgCl2 solution, the fluid becomes supersat-

urated with respect to kieserite and carnallite. The reaction to form these minerals,

K2MgCa2.SO4/4 � 2H2O

polyhalite

CMgCC C 6 Cl� C 12 H2O !

2 MgSO4 � H2O

kieserite

C 2 KMgCl3 � 6H2O

carnallite

C 2 CaSO4

anhydrite

(24.12)

consumes the polyhalite. Finally, when about 4.5 g of solvent remain, bischofite

forms,

MgCC C 2 Cl� C 6 H2O ! MgCl2 � 6H2O

bischofite

(24.13)

in response to the high MgCC and Cl� activities in the residual fluid.

With the precipitation of bischofite, the system reaches an invariant point at

which the mineral assemblage (magnesite, anhydrite, kieserite, carnallite, bischof-

ite, and halite) fully constrains the fluid composition. Further evaporation causes

more of these phases (principally bischofite) to form, but the fluid chemistry no

longer changes, as can be seen in Figure 24.8.

In a second calculation, we model the reaction path taken when the minerals,

once precipitated, cannot redissolve into the fluid. In this model, the solutes in

seawater fractionate into the minerals as they precipitate, irreversibly altering the

fluid composition. As discussed in Chapter 2, we set up such a model using the

“flow-through” configuration. The procedure is

(cont’d)

flow-through

go

The results of the fractionation model (Fig. 24.9) differ from the equilibrium

model in two principal ways. First, the mineral masses can only increase in the

fractionation model, since they are protected from resorption into the fluid. There-

fore, the lines in Figure 24.9 do not assume negative slopes. Second, in the equi-
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Fig. 24.9. Volumes of minerals precipitated during a reaction model simulating the evap-
oration of seawater as a fractionating system (the “flow-through” configuration) at 25 °C,
calculated using the Harvie–Møller–Weare activity model.

librium calculation the phase rule limits the number of minerals present at any

point along the reaction path. In the fractionation calculation, on the other hand, no

limit to the number of minerals present exists, since the minerals do not necessarily

maintain equilibrium with the fluid. Therefore, the fractionation calculation ends

with twelve minerals in the system, whereas the equilibrium calculation reaches an

invariant point at which only six minerals are present.

The fractionation calculation is notable in that it predicts the formation of two

minerals (bloedite and kainite) that did not precipitate in the equilibrium model.

As well, hexahydrite, which appeared briefly in the equilibrium model, does not

form in the fractionation model. The two classes of models, therefore, represent

qualitatively distinct pathways by which an evaporating water can evolve.



25

Sediment diagenesis

Diagenesis is the set of processes by which sediments evolve after they are de-

posited and begin to be buried. Diagenesis includes physical effects such as com-

paction and the deformation of grains in the sediment (or sedimentary rock), as

well as chemical reactions such as the dissolution of grains and the precipitation

of minerals to form cements in the sediment’s pore space. The chemical aspects of

diagenesis are of special interest here.

Formerly, geologists considered chemical diagenesis to be a process by which

the minerals and pore fluid in a sediment reacted with each other in response to

changes in temperature, pressure, and stress. As early as the 1960s and especially

since the 1970s, however, geologists have recognized that many diagenetic reac-

tions occur in systems open to groundwater flow and mass transfer. The reactions

proceed in response to a supply of reactants introduced into the sediments by flow-

ing groundwater, which also serves to remove reaction products.

Hay (1963, 1966), in studies of the origin of diagenetic zeolite, was perhaps

the first to emphasize the effects of mass transport on sediment diagenesis. He

showed that sediments open to groundwater flow followed reaction pathways dif-

ferent from those observed in sediments through which flow was restricted. Sibley

and Blatt (1976) used cathodoluminescence microscopy to observe the Tuscarora

orthoquartzite of the Appalachian basin. The almost nonporous Tuscarora had pre-

viously been taken as a classic example of pressure welding, but the microscopy

demonstrated that the rock is not especially well compacted but, instead, tightly

cemented. The rock consists of as much as 40% quartz (SiO2) cement that was

apparently deposited by advecting groundwater.

By the end of the decade, Hayes (1979) and Surdam and Boles (1979) argued

forcefully that the extent to which diagenesis has altered sediments in sedimen-

tary basins can be explained only by recognition of the role of groundwater flow in

transporting dissolved mass. This view has become largely accepted among geosci-

entists, although it is clear that the scale of groundwater flow might range from the

373
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regional (e.g., Bethke and Marshak, 1990) to circulation cells perhaps as small as

tens of meters (e.g., Bjorlykke and Egeberg, 1993; Aplin and Warren, 1994). Since

the possible reactions occurring in open geochemical systems are numerous and

complex, the study of diagenesis has become a fertile field for applying reaction

modeling (e.g., Bethke et al., 1988; Baccar and Fritz, 1993).

In this chapter we consider how reaction modeling applied to open systems

might be used to study the nature of diagenetic alteration. We develop examples

in which modeling of this type can aid in interpreting the diagenetic reactions

observed to have occurred in sedimentary rocks.

25.1 Dolomite cement in the Gippsland basin

As a first example, we consider the diagenesis of clastic sandstones in the Gipp-

sland basin, southeastern Australia, basing our model on the work of Harrison

(1990). The Gippsland basin is the major offshore petroleum province in Australia.

Oil production is from the Latrobe group, a fluvial to shallow marine sequence of

Late Cretaceous to early Eocence age that partly fills a Mesozoic rift valley.

In the fluvial sandstones, the distribution of diagenetic cements in large part

controls reservoir quality and the capacity for petroleum production. These sand-

stones are composed of quartz and potassium feldspar (KAlSi3O8) grains and de-

trital illite [which we will represent by muscovite, KAl3Si3O10.OH/2], kaolinite

[Al2Si2O5.OH/4], and lithic fragments. Where cementation is minor, reservoir

properties are excellent. Porosity can exceed 25%, and permeabilities greater than

2 darcys (2 � 10�8 cm2) have been noted.

In more diagenetically altered areas, however, cements including dolomite

[CaMg.CO3/2], clay minerals (principally kaolinite), and quartz nearly destroy

porosity and permeability. In these facies, potassium feldspar grains are strongly

leached and pyrite (FeS2) is corroded. Dolomite cement occupies up to 40% of

the rock’s volume, and quartz cement takes up an average of several percent.

Understanding the processes that control the distribution of cements, therefore, is

of considerable practical importance in petroleum exploration.

Harrison (1990) proposed that the diagenetic alteration observed in the Latrobe

group resulted from the mixing within the formation of two types of groundwaters.

Table 25.1 shows analyses of waters sampled from two oil wells, which she took

to be representative of the two water types as they exist in the producing areas of

the basin.

The first water is considerably less saline than seawater and hence is termed a

“fresh” water, although it is far too saline to be potable. This water is apparently

derived from meteoric water that recharges the Latrobe group where it outcrops

onshore. The water flows basinward through an aquifer that extends 60 km offshore
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Table 25.1. Analyses of formation water sampled at two oil wells producing from

the Latrobe group, Gippsland basin (Harrison, 1990)

“Fresh” water Saline water

(Barracouta A-3) (Kingfish A-19)

CaCC .mg l�1/ 32 220

MgCC 9 1 000

NaC 2 943 11 000

SO��
4 1 461 900

HCO�
3 1 135 198

Cl� 2 953 19 000

Dissolved solids 8 530 32 320

pH (measured) 7.0 5.6

pH (corrected to 60 °C) 6.95 5.55

and 2 km subsea. A second, more saline water exists in deeper strata and farther

offshore. This water is very similar in composition to seawater, although slightly

depleted in CaCC and SO��
4 , as can be seen by comparing the analysis to Table 6.2.

On the basis of isotopic evidence, the diagenetic alteration probably occurred at

temperatures of 60 °C or less.

To test whether the mixing hypothesis might explain the diagenetic alteration

observed, we begin by equilibrating the fresh water, assuming equilibrium with the

potassium feldspar (“maximum microcline” in the database), quartz, and muscovite

(a proxy for illite) in the formation. In REACT, we enter the commands

swap "Maximum Microcline" for Al+++

swap Quartz for SiO2(aq)

swap Muscovite for K+

T = 60

TDS = 8530

pH = 6.95

Ca++ = 32 mg/l

Mg++ = 9 mg/l

Na+ = 2943 mg/l

HCO3- = 1135 mg/l

SO4-- = 1461 mg/l

Cl- = 2953 mg/l

1 free cm3 Muscovite
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1 free cm3 Quartz

1 free cm3 "Maximum Microcline"

go

causing the program to iterate to a description of the fluid’s equilibrium state.

To model fluid mixing, we will use the fresh water as a reactant, titrating it into

a system containing the saline water and formation minerals. To do so, we “pick

up” the fluid from the previous step to use as a reactant:

(cont’d)

pickup reactants = fluid

reactants times 100

The latter command multiplies the amount of fluid (1 kg) to be used as a reactant

by 100. Hence, we will model mixing in ratios from zero to as high as 100 parts

fresh to one part saline water.

To prepare the initial system, we use the analysis in Table 25.1 for the saline

water, which we assume to be in equilibrium with potassium feldspar, quartz,

muscovite, and dolomite (“dolomite-ord” is the most stable variety in the database).

The commands

(cont’d)

swap "Maximum Microcline" for Al+++

swap Quartz for SiO2(aq)

swap Muscovite for K+

swap Dolomite-ord for HCO3-

T = 60

TDS = 32320

pH = 5.55

Ca++ = 220 mg/l

Mg++ = 1000 mg/l

Na+ = 11000 mg/l

SO4-- = 900 mg/l

Cl- = 19000 mg/l

10 free cm3 Muscovite

10 free cm3 Quartz

10 free cm3 "Maximum Microcline"

10 free cm3 Dolomite-ord

set the initial system, with the minerals present in excess amounts. Typing go

triggers the reaction path. Figure 25.1 shows the calculation results.

The mixing calculation is interesting in that it demonstrates a common ion effect

by which dolomite precipitation drives feldspar alteration. In the model, dolomite

forms because the saline water is rich in CaCC and MgCC, whereas the fresh water
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Fig. 25.1. Mineralogical consequences of mixing the two fluids shown in Table 25.1 at
60 °C in the presence of microcline, muscovite, quartz, and dolomite. Results shown as the
volume change for each mineral (precipitation is positive, dissolution negative), expressed
per kg of pore water.

contains abundant HCO�
3 . As the fluids mix, dolomite precipitates according to the

reaction,

CaCC C MgCC C 2 HCO�
3 ! CaMg.CO3/2

dolomite

C 2 HC (25.1)

producing HC. Many of the hydrogen ions produced are consumed by driving the

reaction of potassium feldspar,

3 KAlSi3O8

microcline

C 2 HC ! KAl3Si3O10.OH/2
muscovite

C 6 SiO2

quartz

C 2 KC (25.2)

to produce muscovite (illite) and quartz. Hence, the diagenetic reactions for car-

bonate and silicate minerals in the formation are closely linked.

Strangely, Reaction 25.2 proceeds backward in the early part of the calculation

(Fig. 25.1), producing a small amount of potassium feldspar at the expense of

muscovite and quartz. This result, quite difficult to explain from the perspective of

mass transfer, is an activity coefficient effect. As seen in Figure 25.2, the activity

coefficient for KC increases rapidly as the fluid is diluted over the initial segment

of the reaction path, whereas that for HC remains nearly constant. (The activity

coefficients differ because the Va parameter in the Debye–Hückel model is 3 Å

for KC and 9 Å for HC.) As a result, aKC increases more quickly than aHC ,

temporarily driving Reaction 25.2 from right to left.
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Fig. 25.2. Activity coefficients �i for the aqueous species HC and KC over the course of
the mixing reaction shown in Figure 25.1.

The model shown is quite simple and, although certainly useful from a concep-

tual point of view, might be expanded to better describe petrographic observations.

The reaction path shown does not predict that kaolinite forms, because we assumed

rather arbitrarily that the fresh water begins in equilibrium with potassium feldspar

and muscovite. If we choose a lower value for the initial activity ratio aKC /aHC (or

select a less evolved meteoric water than shown in Table 25.1), the reaction eventu-

ally produces kaolinite, once the available microcline is consumed. We could also

account for the oxidation of pyrite as it reacts with dissolved oxygen carried by the

fresh water. Pyrite oxidation produces hydrogen ions, which might further drive the

reactions to produce clay minerals (Harrison, 1990), but the fact that the formation

fluid is depleted in sulfate relative to seawater (Table 25.1) suggests that sulfide

oxidation plays a minor role in the overall diagenetic reaction.

25.2 Lyons sandstone, Denver basin

As a second example, we consider the origin of anhydrite (CaSO4) and dolomite

cements of the Permian Lyons sandstone in the Denver basin, which lies in Col-

orado and Wyoming, USA, to the east of the Front Range of the Rocky Mountains.

The Lyons is locally familiar as a red building stone that outcrops in hogbacks

(known as the Flatirons) along the Front Range. This red facies is a quartz sand

in which the sand grains are coated with iron oxides and clays and cemented by

quartz overgrowths and at least two generations of calcite (CaCO3; Hubert, 1960).

The facies, where buried shallowly, provides a source of potable water.

Petroleum reservoirs, however, occur in a gray facies of the Lyons found in

the deep basin (Levandowski et al., 1973). This facies contains no ferric oxides
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or calcite. Many grains in the facies are coated with bitumen, the remnants of

oil that migrated through the rock, and the rock is cemented with anhydrite and

dolomite. The anhydrite and dolomite cements occupy as much as 25% and 15%,

respectively, of the rock’s precement pore volume. The origin of these cements

is of special interest because of their relationship to the distribution of petroleum

reservoirs in the basin.

Anhydrite and dolomite cements are known to occur together in sediments that,

shortly after burial in a sabkha environment, were invaded by evaporated seawater

(e.g., Butler, 1969). The Denver basin contained evaporite subbasins in the late Pa-

leozoic (Martin, 1965), but textural and isotopic evidence argues that the cements

are unlikely to have formed in a sabkha. Cements in the gray facies overlie bitumen,

so they must have formed after basin strata were buried deeply enough to generate

oil. The oxygen isotopic composition of the dolomite (Levandowski et al., 1973),

for which ı18OSMOW values are as low as +8.8 ‰, argues that the cement precip-

itated after the formation was buried from a fluid containing varying amounts of

meteoric water. The dolomite would be composed of isotopically heavier oxygen

if it had formed at surface temperatures from evaporated seawater.

The cements also might have formed if H2S had migrated into the formation

and oxidized to make anhydrite. The sulfur isotopic composition of the anhydrite,

however, does not allow such an explanation. Values for ı34SCDT, which vary

from +9.6 to +12.5 ‰ (Lee and Bethke, 1994), span the worldwide range for

Permian evaporite minerals, but are much heavier than values associated with H2S

in sedimentary basins. Furthermore, the cements could not have precipitated from

the original pore fluid of the Lyons, because the solubility of anhydrite (as well

as gypsum, CaSO4 � 2H2O) in aqueous solution is much too low to account for the

amounts of cement observed. For these reasons, the cements of the gray facies must

have formed after the Lyons was buried, in a system open to groundwater flow.

Lee and Bethke (1994) suggested that the gray Lyons facies formed as an al-

teration product of the red facies in a groundwater flow regime set up by uplift of

the Front Range, which began to rise in the early Tertiary and reached its peak in

Eocene time (McCoy, 1953). Groundwater in the basin today flows from west to

east (Belitz and Bredehoeft, 1988) in response to the elevation of the Front Range.

Past flow was more rapid than in the present day because erosion has reduced the

elevation of the basin’s western margin. Paleohydrologic models calculated for the

basin (Lee and Bethke, 1994) suggest that in the Eocene groundwater flowed east-

ward through the Lyons at an estimated discharge of about 1 m yr�1.

Flow in the Pennsylvanian Fountain formation, a sandstone aquifer that under-

lies the Lyons and is separated from it by an aquitard complex, was more restricted

because the formation grades into less permeable dolomites and evaporites in the

deep basin. Groundwater in the Fountain recharged along the Front Range and
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flowed eastward at an estimated discharge of about 0.1 m yr�1. Where Fountain

groundwater encountered less permeable sediments along the basin axis, it dis-

charged upward and mixed by dispersion into the Lyons formation.

According to Lee and Bethke’s (1994) interpretation, the gray facies formed

in this zone of dispersive mixing when saline Fountain groundwater reacted with

Lyons sediments and groundwater. To simulate the mixing reaction, we start by

developing chemical models of the two groundwaters, assuming that the mixing

occurred at 100 °C.

To set the initial composition of the Lyons fluid, we use an analysis of modern

Lyons groundwater sampled at 51 °C (McConaghy et al., 1964), which we correct

to the temperature of the simulation by heating it in the presence of calcite and

quartz. In REACT, the commands

T = 51

swap Calcite for H+

swap Quartz for SiO2(aq)

Na+ = 108 mg/kg

Ca++ = 40 mg/kg

K+ = 4.6 mg/kg

Mg++ = 1 mg/kg

Cl- = 9 mg/kg

SO4-- = 36 mg/kg

HCO3- = 340 mg/kg

balance on HCO3-

1 free cm3 Calcite

1 free cm3 Quartz

describe an initial system containing a kilogram of groundwater and excess

amounts of calcite and quartz. The commands

(cont’d)

T final = 100

go

cause the program to equilibrate the fluid and heat it to the temperature of interest.

The resulting fluid is a predominantly sodium–bicarbonate solution (Table 25.2).

Since we have no direct information about the chemistry of the Fountain fluid,

we assume that its composition reflects reaction with minerals in the evaporite

strata that lie beneath the Lyons. We take this fluid to be a three molal NaCl

solution that has equilibrated with dolomite, anhydrite, magnesite (MgCO3), and

quartz. The choice of NaCl concentration reflects the upper correlation limit of the

B-dot (modified Debye–Hückel) equations (see Chapter 8). To set pH, we assume

a CO2 fugacity of 50, which we will show leads to a reasonable interpretation of

the isotopic composition of the dolomite cement.
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Table 25.2. Predicted compositions of Lyons groundwater and Fountain brine,

before mixing (Lee and Bethke, 1994)

Lyons Fountain

NaC .mg kg�1/ 108 56 400

CaCC 16 516

KC 4.6 —

MgCC 0.5 3 450

SiO2(aq) 49 23

HCO�
3 419 28 780

Cl� 9 87 000

SO��
4

36 14 200

pH (100 °C) 6.7 4.6

In fact, the choice of CO2 fugacity has little effect on the mineralogical results

of the mixing calculation. In the model, the critical property of the Fountain fluid

is that it is undersaturated with respect to calcite, so that calcite dissolves when

the fluid mixes into the Lyons. Because we assume equilibrium with dolomite and

magnesite, the saturation index (logQ=K) of calcite is fixed by the reaction

CaCO3

calite

� CaMg.CO3/2
dolomite

� MgCO3

magnesite

(25.3)

to a value of �1:3, and hence, is independent of pH and CO2 fugacity.

To calculate the composition of the Fountain brine, we start anew in REACT,

enter the commands

T = 100

swap CO2(g) for H+

swap Magnesite for Mg++

swap Anhydrite for SO4--

swap Dolomite-ord for Ca++

swap Quartz for SiO2(aq)

Na+ = 3 molal

Cl- = 3 molal

f CO2(g) = 50

1 free mole Magnesite

1 free mole Anhydrite

1 free mole Dolomite-ord

1 free mole Quartz
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balance on HCO3-

and type go. In contrast to the Lyons groundwater, the Fountain brine (Table 25.2)

is a sodium chloride water.

To model the mixing of these fluids in contact with quartz and calcite of the

red Lyons formation, we follow three steps. First, we calculate the composition

of Lyons groundwater, as before, and save it to a file. Second, we compute the

composition of the Fountain brine. Finally, we “pick up” the Fountain brine as a

reactant, multiply its mass by 15 (giving 15 kg of solvent plus the solute mass), and

titrate it into a system containing 1 kg of Lyons groundwater and excess amounts

of quartz and calcite. Here, the factor 15 is largely arbitrary; we choose it to give a

calculation endpoint with a high ratio of brine to Lyons groundwater. The REACT

procedure, starting anew, is:

— Step 1 —

(constrain composition of Lyons groundwater, as before)

T initial = 51, final = 100

go

pickup fluid

save Lyons_100

— Step 2 —

reset

(constrain composition of Fountain brine, as before)

T = 100

go

— Step 3 —

pickup reactants = fluid

reactants times 15

read Lyons_100

swap Quartz for SiO2(aq)

swap Calcite for HCO3-

100 free mol Quartz

100 free mol Calcite

balance on Cl-

go

In the resulting reaction (Fig. 25.3), calcite progressively dissolves as the Foun-

tain brine mixes into the Lyons formation. The CaCC and HCO�
3 added to solution

drive precipitation of anhydrite and dolomite by a common ion effect. The overall

reaction,
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Fig. 25.3. Mineralogical consequences of mixing Fountain brine into the Lyons formation.
Vertical axis shows changes in mineral volume, expressed per kg of Lyons groundwater;
positive changes indicate precipitation and negative, dissolution.

5 CaCO3

calcite

C 2 SO��
4 C 5=2 MgCC !

2 CaSO4

anhydrite

C 5=2 CaMg.CO3/2
dolomite

C 1=2 CaCC

(25.4)

explains the origin of the cements in the gray facies as well as the facies’ lack of

calcite.

We can predict the oxygen and carbon isotopic compositions of the dolomite

produced by this reaction path, using the techniques described in Chapter 19.

Figure 25.4 shows the compositions of calcite and dolomite cements in the Lyons,

as determined by Levandowski et al. (1973). The calcite and dolomite show broad

ranges in oxygen isotopic content. The dolomite, however, spans a much narrower

range in carbon isotopic composition than does the calcite.

To set up the calculation, we specify initial isotopic compositions for the fluid

and calcite. We choose a value of �13 ‰ for ı18OSMOW of the Lyons fluid,

reflecting Tertiary rainfall in the region, and set the calcite composition to +11

‰, the mean of the measured values (Fig. 25.4). We further set ı13CPDB for the

fluid to �12‰. We do not specify an initial carbon composition for the calcite, so

the model sets this value to �11 ‰, in isotopic equilibrium with the fluid. Again,

this value is near the mean of the measurements.

We then set the isotopic compositions of each oxygen and carbon-bearing com-

ponent in the reactant, the Fountain brine, to ı18O and ı13C values of zero, as
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Fig. 25.4. Oxygen and carbon stable isotopic compositions of calcite (�) and dolomite
(�) cements from Lyons sandstone (Levandowski et al., 1973), and isotopic trends (bold
arrows) predicted for dolomite cements produced by the mixing reaction shown in Fig-
ure 25.3, assuming differing CO2 fugacities (25, 50, and 100) for the Fountain brine. Fine
arrows, for comparison, show isotopic trends predicted in calculations which assume (im-
properly) that fluid and minerals maintain isotopic equilibrium over the course of the sim-
ulation. Figure after Lee and Bethke (1996).

might be expected in a sedimentary brine. Finally, we segregate each mineral in

the calculation from isotopic exchange, as discussed in Chapter 19. The procedure

for small water/rock ratios is

(cont’d)

oxygen initial = -13, Calcite = +11

carbon initial = -12

carbon HCO3- = 0

oxygen H2O = 0, SiO2(aq) = 0, HCO3- = 0, SO4-- = 0

segregate Calcite, Quartz, Dolomite-ord, Anhydrite

reactants times 1

go

We then repeat the calculation to carry the model to high ratios with the commands
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(cont’d)

reactants times 50

go

Figure 25.4 shows the predicted isotopic trends for the dolomite produced by

the reaction path, calculated assuming several values for the CO2 fugacity of the

Fountain brine. These results suggest that the cement’s carbon isotopic composition

reflects the composition of a CO2-rich brine more closely than that of the precur-

sor calcite cement, explaining the narrow range observed in ı13C. The spread in

oxygen composition results from mixing of fresh Lyons water and Fountain brine

in varying proportions.

As noted by Lee and Bethke (1996), if we had calculated this model without

holding minerals segregated from isotopic exchange, we would have predicted

broadly different isotopic trends that are not in accord with the observed data. To

verify this point, we enter the command

(cont’d)

unsegregate ALL

and type go. The resulting isotopic trends for the equilibrium case are shown in

Figure 25.4.

As we have demonstrated, reaction modeling provides an explanation of the ob-

served diagenetic mineralogy as well as the isotopic compositions of the cements.

The model also helps explain the association of the gray facies with oil reservoirs.

Fractures that developed along the basin axis when the Front Range was uplifted

provided pathways for oil to migrate by buoyancy upward into the Lyons. Con-

tinued uplift set up regional groundwater flow that drove brine from the Fountain

formation upward along the same pathways as the oil. The petroleum or brine, or

both, reduced iron oxides in the Lyons, changing its color from red to gray. As

brine mixed into the Lyons, it dissolved the existing calcite cement and, by a com-

mon ion effect, precipitated anhydrite and dolomite on top of bitumen left behind

by migrating oil.

Oil in the Cretaceous Dakota sandstone, a shallower aquifer than the Lyons,

has migrated laterally as far as 150 km into present-day reservoirs (Clayton and

Swetland, 1980). In contrast, oil has yet to be found in the Lyons outside the deep

strata where it was generated. The formation of anhydrite and dolomite cements

may have served to seal the oil into reservoirs, preventing it from migrating farther.
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Kinetics of water–rock interaction

In calculating most of the reaction paths in this book, we have measured reaction

progress with respect to the dimensionless variable �. We showed in Chapter 16,

however, that by incorporating kinetic rate laws into a reaction model, we can trace

reaction paths describing mineral precipitation and dissolution using time as the

reaction coordinate.

In this chapter we construct a variety of kinetic reaction paths to explore how

this class of model behaves. Our calculations in each case are based on kinetic rate

laws determined by laboratory experiment. In considering the calculation results,

therefore, it is important to keep in mind the uncertainties entailed in applying

laboratory measurements to model reaction processes in nature, as discussed in

detail in Section 16.2.

In the next chapter (Chapter 27) we show calculations of this type can be in-

tegrated into mass transport models to produce models of weathering in soils and

sediments open to groundwater flow. In later chapters, we consider redox kinetics

in geochemical systems in which a mineral surface or enzyme acts as a catalyst

(Chapter 28), and those in which the reactions are catalyzed by microbial popula-

tions (Chapter 33).

26.1 Approach to equilibrium and steady state

In Chapter 16 we considered how quickly quartz dissolves into water at 100 °C,

using a kinetic rate law determined by Rimstidt and Barnes (1980). In this section

we take up the reaction of silica (SiO2) minerals in more detail, this time working

at 25 °C. We use kinetic data for quartz and cristobalite from the same study, as

shown in Table 26.1.

Each silica mineral dissolves and precipitates in our calculations according to

387
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Table 26.1. Rate constants kC (mol cm�2 s�1) for the reaction of silica minerals

with water at various temperatures, as determined by Rimstidt and Barnes (1980)

T(°C) Quartz ˛-Cristobalite Amorphous silica

25 4:20 � 10�18 1:71 � 10�17 7:32 � 10�17

70 2:30 � 10�16 6:47 � 10�16 2:19 � 10�15

100 1:88 � 10�15 4:48 � 10�15 1:33 � 10�14

150 3:09 � 10�14 6:12 � 10�14 1:49 � 10�13

200 2:67 � 10�13 4:81 � 10�13 9:81 � 10�13

250 1:46 � 10�12 2:55 � 10�12 4:43 � 10�12

300 5:71 � 10�12 1:01 � 10�11 1:51 � 10�11

the rate law,

rSiO2
D AS kC

�
1� Q

K

�
(26.1)

(Eqn. 16.22) as discussed in Chapter 16. Here, rSiO2
is the reaction rate (mol s�1;

positive for dissolution), AS and kC are the mineral’s surface area (cm2) and rate

constant (mol cm�2 s�1), and Q and K are the activity product and equilibrium

constant for the dissolution reaction. The reaction for quartz, for example, is

SiO2

quartz

� SiO2(aq) : (26.2)

According to Knauss and Wolery (1988), this rate law is valid for neutral to acidic

solutions; a distinct rate law applies in alkaline fluids, reflecting the dominance of

a second reaction mechanism under conditions of high pH.

The procedure in REACT is similar to that used in the earlier calculation (Section

16.4)

time end = 1 year

1 mg/kg SiO2(aq)

react 5000 grams Quartz

kinetic Quartz rate_con = 4.2e-18, surface = 1000

go

except that we work at 25 °C and, since reaction proceeds more slowly at low

temperature, set a longer time span. By including 5 kg of quartz sand in the

calculation, we imply that the system’s porosity is about 35%, since the density

of quartz is 2.65 g cm�3. At the specified silica concentration of 1 mg kg�1, the
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Fig. 26.1. Reaction of quartz with water at 25 °C, showing approach to equilibrium
(dashed lines) with time. Top diagram shows variation in SiO2(aq) concentration and bot-
tom plot shows change in quartz saturation. In calculation A, the fluid is initially undersat-
urated with respect to quartz; in B it is supersaturated.

initial fluid is undersaturated with respect to quartz, so we can expect quartz to

dissolve over the reaction path.

In the calculation results (Fig. 26.1), the silica concentration gradually increases

from the initial value, asymptotically approaching the equilibrium value of 6

mg kg�1 after about half a year of reaction. We repeat the calculation, this time

starting with a supersaturated fluid

(cont’d)

12 mg/kg SiO2(aq)

suppress Tridymite, Chalcedony

go

To keep our discussion simple for the moment, we suppress the silica polymorphs

tridymite and chalcedony. In the calculation results (Fig. 26.1), the silica concen-

tration gradually decreases from its initial value and, as in the previous calculation,

approaches equilibrium with quartz after about half a year.

We could have anticipated the results in Figure 26.1 from the form of the rate law

(Eqn. 26.1). If we let mSiO2
represent the molality of SiO2(aq) and meq represent
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this value at equilibrium, we can rewrite the rate law as,

dmSiO2

dt
D � AS kC

nw meq

�
mSiO2

�meq

�
: (26.3)

Here, we have assumed that the activity coefficient �SiO2
does not vary with silica

concentration. As before, nw is the mass of solvent water in the system.

Since we can take each variable except mSiO2
to be constant, Equation 26.3

has the form of an ordinary differential equation in time. We can use standard

techniques to solve the equation for mSiO2
.t/. The solution corresponding to the

initial conditionmSiO2
D mo at t D 0 is,

mSiO2
D �

mo �meq

�
e�.AS kC=nwmeq/t Cmeq : (26.4)

The first term on the right side of the solution represents the extent to which the

silica concentration deviates from equilibrium. Since the term appears as a negative

exponential function in time, its value decays to zero (as can be seen in Fig. 26.1)

at a rate that depends on the surface area and rate constant. As t becomes large, the

first term disappears, leaving only the equilibrium concentrationmeq.

The calculation results in Figure 26.1 suggest that groundwaters in quartz sand

aquifers should approach equilibrium with quartz in less than a year, a short period

compared to typical residence times in groundwater flow regimes. At low temper-

ature, however, groundwaters in nature seldom appear to be in equilibrium with

quartz, often appearing supersaturated. As discussed in Section 16.2, this discrep-

ancy between calculation and observation might be accounted for if the surfaces of

quartz grains in real aquifers were coated in a way that inhibited reaction. Alterna-

tively, the discrepancy may arise from the effects of reactions with minerals other

than quartz that consume and produce silica. If these reactions proceed rapidly

compared to the dissolution and precipitation of quartz, they can control the fluid’s

silica content.

To see how a second kinetic reaction might affect the fluid’s silica concentra-

tion, we add 250 grams of cristobalite to the system. The mass ratio of quartz to

cristobalite, then, is twenty to one. Taking the fluid to be in equilibrium with quartz

initially, the procedure in REACT is

time end = 1 year

swap Quartz for SiO2(aq)

5000 free grams Quartz

react 250 grams of Cristobalite

kinetic Cristobalite rate_con = 1.7e-17 surface = 5000

kinetic Quartz rate_con = 4.2e-18 surface = 1000

suppress Tridymite, Chalcedony

go
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Fig. 26.2. Kinetic reaction of quartz and cristobalite with water at 25 °C. In calculation A
the fluid is originally in equilibrium with quartz, in B with cristobalite. The top diagram
shows how the SiO2(aq) concentration varies with time, and the bottom plot shows the
change in quartz saturation. The reaction paths approach a steady state in which the fluid
is supersaturated with respect to quartz and undersaturated with respect to cristobalite.

Here, we take a specific surface area for cristobalite five times greater than the

value assumed for quartz. To calculate a second case in which the fluid starts the

reaction path in equilibrium with cristobalite, we enter the commands

(cont’d)

swap Cristobalite for SiO2(aq)

250 free grams Cristobalite

react 0 grams Cristobalite

react 5000 grams Quartz

go

Figure 26.2 shows the results of the two calculations.

As in the previous example (Fig. 26.1), silica concentration in the calculations

asymptotically approaches a single value, regardless of the initial concentration.

The final silica concentration, however, does not represent a thermodynamic equi-

librium, since (as we can see in Fig. 26.2) it is supersaturated with respect to quartz

and undersaturated with respect to cristobalite.

Instead, this concentration marks a steady state (or dynamic equilibrium, a term

that persists despite being an oxymoron) at which the rate of cristobalite dissolution
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matches the rate at which quartz precipitates. The steady state concentration will

decay toward equilibrium with continued reaction only to the extent that the surface

area of cristobalite decreases as the mineral dissolves. Because only a few tens

of milligrams of cristobalite dissolve each year (as we can quickly compute using

Equation 26.1), the steady state will persist for a long time, decaying only gradually

over tens of thousands of years.

We can calculate the value of the steady state silica concentration mss directly

from the rate law (Eqn. 26.1). Noting that the steady state is marked by the condi-

tion rqtz D �rcri, we can write,

mss D 1

�SiO2

� .AS kC/qtz C .AS kC/cri

.AS kC=K/qtz C .AS kC=K/cri

: (26.5)

To evaluate this equation, we use the values of the rate constants kC and surface

areas AS (the latter given as the product of specific surface area and mineral mass)

for the two minerals and the equilibrium constants K for quartz (1:00 � 10�4)

and cristobalite (3:56 � 10�4), and take �SiO2
to be one. The resulting steady-

state concentration is 1:57 � 10�4 molal, or 9.4 mg kg�1, which agrees with the

simulation results in Figure 26.2.

It is interesting to note that adding only a small amount of cristobalite to the

system gives rise to a significant departure from equilibrium with the predominant

mineral, quartz. The cristobalite plays a role in the calculation disproportionate to

its abundance because the assumed values for its surface area and rate constant

are considerably larger than those for quartz. In nature, therefore, we might expect

highly reactive minerals to have significant effects on fluid chemistry, even when

they are present in small quantities.

It is further interesting to observe that the behavior of a system approaching

a thermodynamic equilibrium differs little from one approaching a steady state.

According to the kinetic interpretation of equilibrium, as discussed in Chapter 16,

a mineral is saturated in a fluid when it precipitates and dissolves at equal rates.

At a steady state, similarly, the net rate at which a component is consumed by the

precipitation reactions of two or more minerals balances with the net rate at which

it is produced by the minerals’ dissolution reactions. Thermodynamic equilibrium

viewed from the perspective of kinetic theory, therefore, is a special case of the

steady state.

In experimental studies, it is common practice to attempt to “bracket” a mea-

sured solubility by reacting a sample with undersaturated as well as supersaturated

solutions. As is shown in Figure 26.2, however, this technique might equally well

identify a steady-state condition as an equilibrium state.
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26.2 Quartz deposition in a fracture

In a second application, we consider the rate at which quartz might precipitate in

an open fracture as a hydrothermal water flows along it, gradually cooling from

300 °C to surface temperature. We assume that the fracture has an aperture ı and is

lined with quartz. We further assume that the fluid is initially in equilibrium with

quartz and that temperature varies linearly along the fracture. The latter condition

imposes an important constraint on the calculation since at high rates of discharge

the fluid can in reality control temperature along the fracture, causing temperature

to deviate broadly from the assumed linear gradient. To investigate such conditions,

we would want to construct a more sophisticated model in which we specifically

account for advective heat transfer.

In our calculation, we need not be concerned with the dimensions of the fracture

or the velocity of the fluid. Instead, we need specify only the length of time �t it

takes the fluid to travel from high-temperature conditions at depth to cool surface

conditions.

To model the problem, we take a packet of water in contact with the fracture

walls over a polythermal reaction path. The fact that the packet moves relative to

the walls is of no concern, since the fracture surface area exposed to the packet

is approximately constant. Since the system contains 1 kg of water, we can show

from geometry that the surface area AS (in cm2) of the fracture lining is,

AS D 2000  

�ı
: (26.6)

Here,  is the surface roughness (surface area per unit area in cross section) of the

fracture walls, � is fluid density in g cm�3, and the aperture ı is taken in cm. For

our purposes, it is sufficiently accurate to choose a value of 2 for  and set � to 1

g cm�3. In a fracture with an aperture of 10 cm, for example, each kg of water is

exposed to 400 cm2 of quartz surface.

We use the Arrhenius equation,

kC D A e�EA=RTK (26.7)

(Eqn. 16.3) in our calculations to set the rate constant kC as a function of tempera-

ture along the fracture. A preexponential factor A of about 2:35� 10�5 mol cm�2

s�1 and an activation energy EA of 72 800 J mol�1 fit the kinetic data for quartz

in Table 26.1.

To assign the amount of quartz in the system, we arbitrarily specify a specific

surface area of 1 cm2 g�1. Then, we need only set the quartz mass to a value in

grams equal to the desired surface area in cm2. Finally, we set for each run the

amount of time�t it takes the packet of water to flow along the fracture.
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Fig. 26.3. Silica concentration (bold lines) in a fluid packet that cools from 300 °C as
it flows along a quartz-lined fracture of 10 cm aperture, calculated assuming differing
traversal times�t . Fine lines show solubilities of the silica polymorphs quartz, cristobalite,
and amorphous silica.

To model the effects of flow through a 10 cm-wide fracture, assuming a time

span of one year, for example, the procedure in REACT is

time end = 1 year

T initial = 300, final = 25

swap Quartz for SiO2(aq)

400 free grams Quartz

kinetic Quartz surface = 1

kinetic Quartz pre-exp = 2.35e-5, act_eng = 72800

suppress Tridymite Chalcedony Cristobalite Amrph^silica

delxi = .001

go

By suppressing the other silica polymorphs, we prevent them from forming in the

calculation. We will show, however, that except at large �t these minerals tend

to become supersaturated in the low-temperature end of the fracture. In reality,

therefore, these minerals would be likely to form within the fracture under such

conditions.

Figure 26.3 shows how SiO2 concentration in the fluid varies along the fracture,

calculated assuming different traversal times�t . For slow flow rates (values of�t

of about 1000 years or longer), the fluid has enough reaction time to remain near

equilibrium with quartz. When flow is more rapid, however, the fluid maintains

much of its silica content, quickly becoming supersaturated with respect to quartz.

Farther along the fracture, the fluid also becomes supersaturated with respect to
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Fig. 26.4. Fracture sealing rates (cm yr�1) for the quartz precipitation calculations shown
in Figure 26.3.

cristobalite, and at traversal times of less than about 100 years, with respect to

amorphous silica.

It is interesting to examine Figure 26.3 in light of our discussion in Chapter 23 of

the silica geothermometer. If we wish to derive an estimate for the fluid’s original

temperature of 300 °C from its silica content under surface conditions, then our

calculations suggest that under the modeled conditions the fluid must traverse the

fracture (e.g., a fracture through the cap rock in a geothermal field, assuming that

temperature in the cap rock varies linearly with depth) in less than one year.

We can use the calculated reaction rates (Fig. 26.3) to compute how rapidly

quartz precipitation seals the fracture. The sealing rate, the negative rate at which

fracture aperture changes, can be expressed as

�dı

dt
D rqtz MV � ı

1000
: (26.8)

Here, rqtz is the rate of quartz precipitation (mol s�1 from a kg of water) and

MV is the mineral’s molar volume (22.7 cm3 mol�1). Figure 26.4 shows the

resulting sealing rates calculated for several traversal times. For a �t of one year,

for example, we expect the fracture to become occluded near its high-temperature

end over a time scale of about 10 000 years.

26.3 Silica transport in an aquifer

Next we look at how temperature gradients along an aquifer might affect the silica

content of flowing groundwater. We consider a symmetrical aquifer that descends

from a recharge area at the surface to a depth of about 2 km and then ascends to

a discharge area. Temperature in the calculation varies linearly from 20 °C at the

surface to 80 °C at the aquifer’s maximum depth.
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To set up the calculation, we take a quartz sand of the same porosity as in the

calculations in Section 26.1 and assume that the quartz reacts according to the same

rate law (Eqn. 26.1). We let the rate constant vary with temperature according to

the Arrhenius equation (Eqn. 26.7), using the values for the preexponential factor

and activation energy given in Section 26.2. As in the previous section, we need

only be concerned with the time available for water to react as it flows through

the aquifer. We need not specify, therefore, either the aquifer length or the flow

velocity.

To model reaction within the descending leg of the flow path, along which water

warms with depth, the procedure in REACT is

time end = 1 year

T initial = 20, final = 80

swap Quartz for SiO2(aq)

5000 free grams Quartz

kinetic Quartz surface = 1000

kinetic Quartz pre-exp = 2.35e-5 act_eng = 72800

suppress Tridymite, Chalcedony

go

Then, to model the ascending limb, we start with the final composition of the

descending fluid and let it cool. The corresponding commands are

(cont’d)

pickup

T final 20

react 5000 grams Quartz

kinetic Quartz surface = 1000

kinetic Quartz pre-exp = 2.35e-5 act_eng = 72800

go

Here we take a reaction time �t (the time it takes water to descend to maximum

depth or to ascend back to the surface) of one year. We then repeat the calculation

assuming other reaction times.

In the calculation results (Fig. 26.5), silica concentration increases as the fluid

flows downward, reflecting the increase in quartz solubility with depth, and then

decreases as fluid moves back toward the surface. In calculations in which the

reaction time exceeds about ten years, the fluid remains close to equilibrium with

quartz. Given shorter reaction times, however, the fluid does not react quickly

enough to respond to the changing quartz solubility along the flow path. Along

the descending limb, the fluid appears undersaturated with silica, and it becomes

supersaturated along the upflowing leg of the flow path. If we do not suppress the

other silica polymorphs in runs assuming short reaction times, tridymite (the most

stable) tends to precipitate as the fluid cools.
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Fig. 26.5. Calculated silica concentration in a fluid packet flowing through a quartz sand
aquifer. The fluid descends from the surface (T D 20 °C) to a depth of about 2 km (80 °C)
and then returns to the surface (20 °C). Results are shown for time spans �t (representing
half of the time the fluid takes to migrate through the aquifer) of 0.1, 1, and ten years. In
the latter calculation, the fluid remains near equilibrium with quartz.

The results in Figure 26.5 are interesting because they suggest that gradual tem-

perature variations along quartz aquifers are unlikely to produce silica concentra-

tions that deviate significantly from equilibrium, except for fluids that quickly tra-

verse the flow system. The effects of other reactions that consume and produce sil-

ica, as discussed in Section 26.1, would appear more likely to cause disequilibrium

between groundwater and quartz than would flow along temperature gradients.

26.4 Ostwald’s step rule

Ostwald’s step rule holds that a thermodynamically unstable mineral reacts over

time to form a sequence of progressively more stable minerals (e.g., Morse and

Casey, 1988; Steefel and Van Cappellen, 1990; Nordeng and Sibley, 1994). The

step rule is observed to operate, especially at low temperature, in a number of min-

eralogic systems, including the carbonates, silica polymorphs, iron and manganese

oxides, iron sulfides, phosphates, clay minerals, and zeolites.

Various theories, ranging from qualitative interpretations to those rooted in ir-

reversible thermodynamics and geochemical kinetics, have been put forward to

explain the step rule. A kinetic interpretation of the phenomenon, as proposed by

Morse and Casey (1988), may provide the most insight. According to this interpre-

tation, Ostwald’s sequence results from the interplay of the differing reactivities of

the various phases in the sequence, as represented by AS and kC in Equation 26.1,

and the thermodynamic drive for their dissolution and precipitation of each phase,

represented by the .1 �Q=K/ term.

To investigate the kinetic explanation for the step rule, we model the reaction
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of three silica polymorphs – quartz, cristobalite, and amorphous silica – over time.

We consider a system that initially contains 100 cm3 of amorphous silica, the least

stable of the polymorphs, in contact with 1 kg of water, and assume that the fluid is

initially in equilibrium with this phase. We include in the system small amounts

of cristobalite and quartz, thereby avoiding the question of how best to model

nucleation. In reality, nucleation, crystal growth, or both of these factors might

control the nature of the reaction; we will consider only the effect of crystal growth

in our simple calculation.

Each mineral in the calculation dissolves and precipitates according to the ki-

netic rate law (Eqn. 26.1) used in the previous examples and the rate constants

listed in Table 26.1. We take the same specific surface areas for quartz and cristo-

balite as we did in our calculations in Section 26.1, and assume a value of 20 000

cm2 g�1 for the amorphous silica, consistent with measurements of Leamnson et

al. (1969). The procedure in REACT is

time end = 400000 years

swap Amrph^silica for SiO2(aq)

100 free cm3 Amrph^silica

react 0.1 cm3 of Cristobalite

react 0.1 cm3 of Quartz

kinetic Amrph^silica rate_con = 7.3e-17 surface = 20000

kinetic Cristobalite rate_con = 1.7e-17 surface = 5000

kinetic Quartz rate_con = 4.2e-18 surface = 1000

suppress Tridymite, Chalcedony

delxi = .001

dxplot = .001

go

In the calculation results (Fig. 26.6), the initial segment of the path is marked

by the disappearance of the amorphous silica as it reacts to form cristobalite.

The amorphous silica is almost completely consumed after about 10 000 years of

reaction. The mineral’s mass approaches zero asymptotically because (as can be

seen in Equation 26.1) as its surface area AS decreases, the dissolution rate slows

proportionately. During the initial period, only a small amount of quartz forms.

Once the amorphous silica has nearly disappeared, the cristobalite that formed

early in the calculation begins to redissolve to form quartz. The cristobalite dis-

solves, however, much more slowly than it formed, reflecting the slow rate of quartz

precipitation. After about 300 000 years of reaction, nearly all of the cristobalite

has been transformed into quartz, the most stable silica polymorph, and the reaction

has virtually ceased.

The step sequence in the calculation results arises from the fact that the values



26.4 Ostwald’s step rule 399

cm3

0

25

50

75

100

0 100 000 200 000 300 000 400 000

Amorphous

Cristobalite Quartz

Time (years)

0

25

50

75

100

1000 10 000 100 000

Amorphous Cristobalite

Quartz

cm3

Fig. 26.6. Variation in mineral volumes over a kinetic reaction path designed to illustrate
Ostwald’s step sequence. The calculation traces the reaction at 25 °C among the minerals
amorphous silica (fine line), cristobalite (medium line), and quartz (bold line). The top
diagram shows results plotted against time on a linear scale; the time scale on the bottom
diagram is logarithmic. The decrease in total volume with time reflects the differing molar
volumes of the three minerals.

assumed for the specific surface areas Asp (cm2 g�1) and rate constants kC (mol

cm�2 s�1), and hence the product of these two terms, decrease among the minerals

with increasing thermodynamic stability:

Mineral logK Asp kC � 1018 Asp � kC � 1015

Amorphous silica �2:71 20 000 73 1460

Cristobalite �3:45 5 000 17 85

Quartz �4:00 1 000 4.2 4.2

The product Asp � kC for amorphous silica is about 17 times greater than it is for

cristobalite, and this value in turn exceeds the value for quartz about twenty-fold.

The least stable minerals, therefore, are the most reactive.

In the first segment of the calculation, the high reactivity of the amorphous sil-

ica assures that the fluid remains near equilibrium with this mineral, as shown in
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Fig. 26.7. Variation in silica concentration (top) and saturation indices (logQ=K) of the
silica polymorphs (bottom) over the course of the reaction path shown in Figure 26.6. The
dashed lines in the top diagram show SiO2(aq) concentrations in equilibrium with quartz,
cristobalite, and amorphous silica.

Figure 26.7. Only after the mineral has almost disappeared does the silica concen-

tration begin to decrease. Since the surface area and rate constant for cristobalite

are considerably greater than those of quartz, the fluid remains near equilibrium

with cristobalite until it in turn nearly disappears. Finally, after several hundred

thousand years of reaction, the fluid approaches saturation with quartz and hence

thermodynamic equilibrium.

26.5 Dissolution of albite

In a final application of kinetic reaction modeling, we consider how sodium

feldspar (albite, NaAlSi3O8) might dissolve into a subsurface fluid at 70 °C. We

consider a Na–Ca–Cl fluid initially in equilibrium with kaolinite [Al2Si2O5.OH/4],

quartz, muscovite [KAl3Si3O10.OH/2, a proxy for illite], and calcite (CaCO3), and

in contact with a small amount of albite. Feldspar cannot be in equilibrium with

quartz and kaolinite, since the minerals will react to form a mica or a mica-like
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clay mineral such as illite. Hence, the initial fluid is necessarily undersaturated

with respect to the albite.

We assume that albite and quartz react with the fluid according to kinetic rate

laws. We take a rate law for albite,

ralb D AS kC

�
1 � Q

K

�
(26.9)

of the form discussed in Chapter 16 (Eqn. 16.5). According to Knauss and Wolery

(1986), this form is valid at 70 °C over a range in pH of 2.9 to 8.9. The correspond-

ing rate constant kC at this temperature is 7:9 � 10�16 mol cm�2 s�1. The law for

quartz (Eqn. 26.1) is the same one used in the previous examples in this chapter.

The rate constant for quartz at 70 °C (Table 26.1) is 2:3�10�16 mol cm�2 s�1. For

both minerals we assume a specific surface area of 1000 cm2 g�1, which is reason-

able for sand-sized grains. All other minerals in the system remain in equilibrium

with the fluid over the reaction path.

The procedure in REACT is

time end = 1500 years

T = 70

pH = 5.7

Na+ = .3 molal

Ca++ = .05 molal

Cl- = .4 molal

swap Kaolinite for Al+++

swap Quartz for SiO2(aq)

swap Muscovite for K+

swap Calcite for HCO3-

10 free grams Kaolinite

100 free grams Quartz

10 free grams Muscovite

1 free gram Calcite

react 25 grams Albite

kinetic Albite rate_con = 7.9e-16 surface = 1000

kinetic Quartz rate_con = 2.3e-16 surface = 1000

delxi = .001

go

The predicted reaction path (Fig. 26.8) is interesting because the albite twice

achieves saturation with the fluid. In the initial part of the calculation, the albite

dissolves,
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Fig. 26.8. Mineralogical results of a reaction path in which albite dissolves and quartz
precipitates at 70 °C according to kinetic rate laws.

NaAlSi3O8

albite

C 0:4 CO2(aq) C 0:1 HCO�
3 C 1=2 CaCC C 0:1 KCC

0:9 H2O ! NaC C 0:4 Al2Si2O5.OH/4
kaolinite

C

0:1 KAl3Si3O10.OH/2
muscovite

C 1=2 CaCO3

calcite

C 2 SiO2(aq)

(26.10)

to produce kaolinite, muscovite, and calcite and to add silica to the solution. Some

of the silica precipitates to form quartz,

1=2 SiO2(aq) ! 1=2 SiO2

quartz

; (26.11)

but the reaction rate is not sufficient to consume all of the silica produced by

Reaction 26.10. The remaining silica accumulates in solution, quickly causing the

silica polymorph tridymite to become saturated,

3=2 SiO2(aq) ! 3=2 SiO2

tridymite

(26.12)

and precipitate.

When tridymite has formed, the SiO2(aq) activity and hence the saturation state

of quartz is fixed at a constant value (Fig. 26.9). Albite continues to dissolve for

about 100 years until, according to the reaction,
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Fig. 26.9. Variation in quartz and albite saturation (top) and the kinetic reaction rates for
these minerals (bottom) over the course of the reaction path shown in Figure 26.8.

NaAlSi3O8

albite

C 1=2 H2O C HC
� NaC C 1=2 Al2Si2O5.OH/4

kaolinite

C 2 SiO2

tridymite

;

(26.13)

it becomes saturated in the fluid. Note that although albite and kaolinite cannot

achieve equilibrium in the presence of quartz, they can coexist in a metastable

equilibrium with tridymite.

From this point until about 225 years of reaction time, when the last tridymite

disappears, the only reaction occurring in the system,

SiO2

tridymite

! SiO2

quartz

(26.14)

is the conversion of tridymite to quartz. Once the conversion is complete, the

silica activity decreases, causing the albite to become undersaturated once again

(Fig. 26.9). It begins to dissolve,
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NaAlSi3O8

albite

C Al2Si2O5.OH/4
kaolinite

!

NaAl3Si3O10.OH/2
paragonite

C 2 SiO2

quartz

C H2O ;

(26.15)

consuming kaolinite in the process while producing paragonite and quartz

(Fig. 26.8). In this segment of the reaction path, the rate of quartz precipitation

is sufficient to consume the silica produced as the albite dissolves. The reaction

continues until all of the kaolinite in the system is consumed, after which point the

albite and quartz quickly reach equilibrium with the fluid.



27

Weathering

Weathering is the interaction of the atmosphere on Earth with the exposed crust.

It is an especially complex phenomenon, comprising the cumulative effect of a

number of physical, chemical, and biological processes operating at and near the

Earth’s surface. Weathering plays a central role in the formation of soils, the origin

of ores such as alumina, and the regulation of the CO2 content of the atmosphere,

and hence climate change.

In this chapter, we build on applications in the previous chapter (Chapter 26),

where we considered the kinetics of mineral dissolution and precipitation. Here, we

construct simple reactive transport models of the chemical weathering of minerals,

as it might occur in shallow aquifers and soils.

27.1 Rainwater infiltration in an aquifer

In a first reactive transport model (Bethke, 1997), we consider the reaction of sil-

ica as rainwater infiltrates an aquifer containing quartz (SiO2) as the only mineral.

Initially, groundwater is in equilibrium with the aquifer, giving a SiO2(aq) concen-

tration of 6 mg kg�1. The rainwater contains only 1 mg kg�1 SiO2(aq), so as it

enters the aquifer, quartz there begins to dissolve,

SiO2

quartz

! SiO2(aq) : (27.1)

As in the previous chapter (Section 26.1; Eqn. 26.1), we use the rate law,

r D AS kC

�
1 � Q

K

�
(27.2)

to describe the dissolution reaction. Here, r is the reaction rate (mol s�1), AS and

kC are the mineral’s surface area (cm2) and rate constant (mol cm�2 s�1), and Q

andK are the activity product and equilibrium constant for the dissolution reaction.

405
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We use a value for kC at 25 °C of 4:2 � 10�18 mol cm�2 s�1 from Rimstidt and

Barnes (1980), and figure AS assuming a specific surface area Asp for quartz of

1000 cm2 g�1, as given for sand grains by Leamnson et al. (1969).

We consider a portion of the aquifer extending 100 m from the recharge point,

dividing this segment into 200 nodal blocks. The aquifer contains 70% quartz

grains by volume, leaving a porosity of 30%. Groundwater in the aquifer is replaced

with rainwater 100 times over the course of the simulation, which spans 100 years.

Since the domain is 100 m long and the pore volume displaced once per year, flow

velocity vx in the model is 100 m yr�1.

The procedure in X1T is

length = 100 m

Nx = 200

time end = 100 years

discharge = 100 pore_volumes

dispersivity = 10 cm

scope = initial

swap Quartz for SiO2(aq)

Quartz = 70 vol%

scope = inlet

SiO2(aq) = 1 mg/kg

kinetic Quartz rate_con = 4.2e-18, surface = 1000

dxplot log = 0.1

dx_init = 10^-5

go

In order to observe details of how the model responds to the onset of flow, we have

set in the final commands an output interval on a logarithmic scale, and a small

initial time step.

As rainwater enters the aquifer and reaction begins, the dissolution rate, initially

zero, quickly adjusts to an almost constant value (Fig. 27.1), as does silica concen-

tration. The simulation end result is not a steady state, strictly speaking, because

quartz is gradually dissolving, decreasing its surface area and causing the dissolu-

tion rate to diminish slowly with time. Quartz is only sparingly soluble, however,

so it will take many thousands of years to dissolve to any significant extent; over

shorter time intervals, its consumption is hardly perceptible. Lichtner (1988) intro-

duced the term stationary state to refer to such a quasi-steady state.

We can see this point by evaluating the characteristic time required for chemical

reaction to change the concentration of dissolved silica, and that required to affect

the mass of quartz grains. These intervals are the relaxation times (s) for the

groundwater and aquifer minerals (Lasaga and Rye, 1993; Lichtner, 1996). In
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Fig. 27.1. Rate at which quartz sand dissolves at 25 °C in an aquifer invaded by rainwater,
plotted against time at various approximate distances from the recharge point. Beginning
at t D 0, rainwater recharges the aquifer and flows along it at a velocity vx of 100 m yr�1.
Reaction is most rapid near the recharge point and decreases along the direction of flow
as SiO2(aq) accumulates in the groundwater. Reaction rate and groundwater composition
adjust to the infiltration once the rainwater arrives at a point along the aquifer, quickly
approaching a near-steady state.

Chapter 21 (Eqn. 21.11), we determined the former quantity as,

�SiO2(aq) D Ceq

.AS=V / kC
; (27.3)

where Ceq is the equilibrium silica concentration, 0:1�10�6 mol cm�3, and AS=V

is quartz surface area per volume of fluid (cm2 cm�3). Expressing this ratio in

terms of the specific surface area Asp, the relaxation time becomes,

�SiO2(aq) D 


1 � 
 � Ceq

�qtz Asp kC
; (27.4)

where 
 is porosity and �qtz is quartz density, 2.65 g cm�3. By parallel logic, the

relaxation time for minerals in the aquifer is given by,

�qtz D 1

Asp MW kC
; (27.5)

where MW is the mole weight of quartz, 60.08 g mol�1.

In our example, the relaxation time for the groundwater is 2:7�106 s, according

to Equation 27.4, or about 0.1 yr. The relaxation time for the aquifer (Eqn. 27.5), in

contrast, is 4:0�1012 s, or 130 000 yr. The infiltrating fluid adjusts to reaction with

the aquifer on a time scale six orders of magnitude shorter than the scale on which

the aquifer adjusts to the fluid. Whereas we could observe the chemical evolution
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Fig. 27.2. Concentration of dissolved silica and the quartz dissolution rate along a quartz
sand aquifer being recharged at left by rainwater, for the scenario considered in Figure
27.1. Results were calculated assuming a range of flow velocities; rapid flow corresponds
to a Damköhler number Da less than one, whereas Da is greater than one for slow flow.

of the rainwater at any point along the aquifer within less than a month of its arrival,

the aquifer grains dissolve at a rate imperceptible on the human time scale.

We can repeat the simulation for a range of flow velocities, by adjusting the time

span of the simulation. For a simulation spanning one year, for example, we type

the X1T commands

(cont’d)

time end = 1 yr

go

This time span corresponds to a flow velocity of 10 000 m yr�1, whereas in a 1000

year simulation, velocity is 10 m yr�1.

Figure 27.2 shows the results calculated for velocities spanning this range. The

simulations correspond to Damköhler numbers Da (see Chapter 21) much less than

one for rapid flow, to much greater than one when flow is slow. At low Da, transport
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overwhelms reaction and the fluid across the domain remains fully undersaturated

with respect to quartz. Since quartz saturation changes little with position, the

dissolution rate remains nearly constant. At high Da, in contrast, reaction controls

transport and the infiltrating rainwater reacts toward equilibrium before migrating

far from the inlet. In this case, the reaction rate is nearly zero across most of the

domain.

Only for the intermediate cases – those with velocities in the range of about 100

m yr�1 to 1000 m yr�1 – does silica concentration and reaction rate vary greatly

across the main part of the domain. Significantly, only these cases benefit from

the extra effort of calculating a reactive transport model. For more rapid flows, the

same result is given by a lumped parameter simulation, or box model, as we could

construct in REACT. And for slower flow, a local equilibrium model suffices.

Perhaps the most notable observation about these results is how poorly they

reflect field observations. Even in clean orthoquartize aquifers undergoing rapid

recharge, groundwater below about 60 °C is not observed to approach equilibrium

with quartz, or even necessarily follow a clear trend along the direction of flow.

Instead, silica concentration is highly variable and commonly in excess of quartz

saturation, rather than below it.

A number of factors contribute to the disparity between the predictions of kinetic

theory and conditions observed in the field, as discussed in Section 16.2. In this

case, we might infer the dissolution and precipitation of minerals such as opal CT

(cristobalite and tridymite, SiO2), smectite and other clay minerals, and zeolites

help control silica concentration. The minerals may be of minor significance in the

aquifer volumetrically, but their high rate constants and specific surface areas allow

them to react rapidly.

27.2 Weathering in a soil

As a second example, we construct a simple model of how minerals might dissolve

and precipitate as rainwater percolates through a soil (Bethke, 1997). The soil, 1

m thick, is composed initially of 50% quartz by volume, 5% potassium feldspar

(KSiAl3O8), and 5% albite (sodium feldspar, NaSiAl3O8). The remaining 40% of

the soil’s volume is taken up by soil gas (15% of the bulk) and water (25%).

Rainwater recharges the top of the profile and reacted water drains from the bot-

tom. We take discharge through the soil to be 4 m yr�1 and assume the dispersivity

˛L (see Chapter 20) is 1 cm. The rainwater is dilute and in equilibrium with the

CO2 fugacity of the atmosphere, 10�3:5. Within the soil, however, the soil gas is

taken to contain additional CO2 as a result of the decay of organic matter, and root

respiration. The pore fluid is assumed to maintain equilibrium with the soil gas and

CO2 fugacity within the soil is held constant over the simulation, at 10�2.
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Minerals in the soil can dissolve or, if they become supersaturated, precipitate

according to the kinetic rate law in the previous section (Eqn. 27.2). We take a rate

constant of 4:2�10�18 mol cm�2 s�1 for quartz, as before, and of 30�10�18 mol

cm�2 s�1 for potassium feldspar and 100� 10�18 mol cm�2 s�1 for albite, from

Blum and Stillings (1995). We assume a specific surface area of 1000 cm2 g�1,

typical of sand-sized grains (Leamnson et al., 1969), for each of the minerals.

Furthermore, we allow minerals kaolinite [Al2Si2O5.OH/4], gibbsite [Al.OH/3],

and tridymite (SiO2, a proxy here for opal CT) to form in the simulation, according

to the same rate law. We assign rate constants of 10 � 10�18 mol cm�2 s�1 for

kaolinite and 50 � 10�18 mol cm�2 s�1 for gibbsite, from Nagy (1995), and of

6:3 � 10�18 mol cm�2 s�1 for tridymite, from Rimstidt and Barnes (1980). We

further assume specific surface areas of 105 cm2 g�1 for kaolinite (Carroll and

Walther, 1990), 4000 cm2 g�1 for gibbsite (Nagy and Lasaga, 1992), and, as above,

1000 cm2 g�1 for tridymite.

These minerals cannot form directly, according to the kinetic law, since they are

not present initially and hence have no surface area. We must provide a means for

the minerals to nucleate in the simulation, most plausibly by growing on other sur-

faces in the soil. Lacking guidance in specifying the surface area available in a soil

for such heterogeneous nucleation, we rather arbitrarily specify that each mineral

can nucleate and grow on an area of 4000 cm2 (cm fluid)�3. For comparison, the

internal surface areas of soils commonly fall in the range 20 000–300000 cm2 (cm

bulk)�3 (White, 1995). The nucleation area set in this way will exceed the actual

surface areas of these minerals over the course of the simulation and hence control

the rates at which the minerals form.

The procedure in X1T is

time end = 10 years

length = 1 m

Nx = 100

porosity = 25%

discharge = 4 m/yr

dispersivity = 1 cm

scope = inlet

swap CO2(g) for HCO3-

fugacity CO2(g) = 10^-3.5

pH = 5

Na+ = .5 mg/kg

Cl- = 1.3 mg/kg

K+ = .2 mg/kg

Al+++ = 1 ug/kg

SiO2(aq) = .2 mg/kg

scope initial = inlet

fugacity CO2(g) = 10^-2
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fix fugacity of CO2(g)

react 5 vol% K-feldspar

react 5 vol% Albite

react 50 vol% Quartz

kinetic K-feldspar rate_con = 30e-18 surface = 1000

kinetic Albite rate_con = 100e-18 surface = 1000

kinetic Quartz rate_con = 4.2e-18 surface = 1000

kinetic Kaolinite rate_con = 10e-18 n

surface = 1e5 nucleus = 4000

kinetic Gibbsite rate_con = 50e-18 n

surface = 4000 nucleus = 4000

kinetic Tridymite rate_con = 6.3e-18 n

surface = 1000 nucleus = 4000

precip = off

go

As in the previous simulation, the calculation results assume a stationary state

(Fig. 27.3) at which the rates of mineral dissolution and precipitation at any point

in the profile are nearly invariant in time.

In the simulation, CO2 in the soil gas reacts with the feldspars, leading to the

alkali leaching and separation of silica from alumina observed to result from soil

weathering. Near the top of the profile, the reaction produces gibbsite and adds

NaC, KC, and SiO2(aq) to the migrating pore fluid, according to the reactions,

NaAlSi3O8

albite

C CO2(aq) C 2 H2O !

Al.OH/3
gibbsite

C NaC C 3 SiO2(aq) C HCO�
3

(27.6)

and

KAlSi3O8

K-feldspar

C CO2(aq) C 2 H2O !

Al.OH/3
gibbsite

C KC C 3 SiO2(aq) C HCO�
3 :

(27.7)

At the same time, quartz at the top of the profile dissolves congruently,

SiO2

quartz

! SiO2(aq) (27.8)

adding additional silica to solution.

As a result of these reactions, silica activity in the fluid increases with depth.
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Fig. 27.3. Saturation states (top) and reaction rates (bottom) for minerals in a simulation of
weathering in a soil profile, at the calculation’s stationary state. Rainwater in the simulation
recharges the top of the profile (left side of plots) at 4 m yr�1, and reacted fluid drains from
the bottom (right).

Below about 10 cm, as a result, kaolinite becomes saturated and precipitates, and

below about 25 cm the mineral replaces gibbsite as the sink for alumina. The

reactions here are,

NaAlSi3O8

albite

C CO2(aq) C 3=2 H2O !

1=2 Al2Si2O5.OH/4
kaolinite

C NaC C 2 SiO2(aq) C HCO�
3

(27.9)

and
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KAlSi3O8

K-feldspar

C CO2(aq) C 3=2 H2O !

1=2 Al2Si2O5.OH/4
kaolinite

C KC C 2 SiO2(aq) C HCO�
3 :

(27.10)

At about this depth, furthermore, quartz becomes supersaturated and starts to pre-

cipitate,

SiO2(aq) ! SiO2

quartz

(27.11)

rather than dissolve.

The rate of quartz precipitation, however, is insufficient to consume all the excess

silica released by the conversion of feldspar to kaolinite, so silica continues to

accumulate in the migrating fluid. At a depth of about 50 cm, tridymite, a proxy in

the calculation for opal CT, becomes saturated and begins to form,

SiO2(aq) ! SiO2

tridymite

: (27.12)

Near the bottom of the profile, more tridymite forms than quartz, reflecting the

former mineral’s larger rate constant and specific surface area.

The simulation predicts salient features of mineral weathering in a soil – alkali

leaching and the separation of alumina and silica – but just as notable is its limited

scope. Mineral surfaces in a real soil are likely to be occluded by other minerals,

organic matter, and biofilm, but we have no basis for projecting specific surface

areas measured in the laboratory to this setting. Treatment of the heterogeneous

nucleation of secondary minerals, as noted, is of necessity ad hoc. We have taken

no account of seasonal variation in temperature and infiltration. And, despite soils

being the most biologically active zones on Earth, we have reduced biological ac-

tivity, including microbial fermentation and respiration, root activity, and transpi-

ration, to a single value of CO2 fugacity. So far, a full model of weathering within

a soil eludes us.
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Oxidation and reduction

In the previous two chapters (Chapters 26 and 27), we showed how kinetic laws

describing the rates at which minerals dissolve and precipitate can be integrated

into reaction path and reactive transport simulations. The purpose of this chapter

is to consider how we can trace the reaction paths that arise when redox reactions

proceed according to kinetic rate laws.

We take two cases in which mineral surfaces catalyze oxidation or reduction, and

one in which a consortium of microbes, modeled as if it were a simple enzyme,

promotes a redox reaction. In Chapter 33, we treat the question of modeling the

interaction of microbial populations with geochemical systems in a more general

way.

28.1 Uranyl reduction by ferrous iron

The reduction of uranyl (UVI, or UOCC
2 ) is a reaction important to geochemists

because it transforms oxidized uranium, an anthropogenic and naturally occurring

contaminant that is highly mobile, to insoluble reduced forms. Liger et al. (1999)

studied the role ferric oxides play at pH 6–7.5 and 25 °C in catalyzing the reduction

of uranyl by ferrous iron. The study provides a good example of how surface com-

plexation modeling can be used to develop a kinetic description of heterogeneous

catalysis.

Liger et al. (1999) found the reaction,

UOCC
2 C 2 FeCC C 2 H2O ! U.OH/4 C 2 FeCCC (28.1)

proceeds in the presence of hematite (Fe2O3) nanoparticles, a proxy for particulate

matter in natural waters, according to a rate law

r D nw kC m>FeO�UO2OH m>FeO�FeOH

�
1 � Q

K

�
; (28.2)

415
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Table 28.1. Surface complexation reactions considered by Liger et al. (1999) in

describing the kinetics of the catalytic oxidation of uranyl by ferrous iron

Reaction logK

.1/ >FeOH
C
2 � >FeOH C HC �8:08

.2/ >FeO� C HC � >FeOH 8:82

.3/ >FeOFeC C HC � >FeOH C FeCC 1:15

.4/ >FeOFeOH C 2 HC � >FeOH C FeCC C H2O 10:05

.5/ >FeOUO2OH C 2 HC � >FeOH C UO
CC
2 C H2O 4:65

where r is reaction rate (mol s�1), nw is water mass (kg), kC is the rate constant

(molal�1 s�1), and m>FeO�UO2OH and m>FeO�FeOH are the molal concentrations of

two surface complexes, one of uranyl and the other of ferrous iron. The law is first

order with respect to the surface complexes and the rate constant kC is 6.7 molal�1

s�1. The FeCCC ions produced probably precipitate on the hematite surface, or as

a distinct oxide or oxy-hydroxide phase.

The rate law is based on a surface complexation model Liger et al. (1999) devel-

oped for the hematite nanoparticles (see Chapter 10, “Surface Complexation”). The

>FeOH surface sites react by protonation and deprotonation to form >FeOHC
2 and

>FeO�, by complexation with ferrous iron to form >FeOFeC and >FeOFeOH,

and to make a complex >FeOUO2OH with uranyl. Table 28.1 shows the reactions

and corresponding logK values. The nanoparticles are taken to have a specific

surface area of 109 m2 g�1, and a site density of 0.06 per Fe2O3.

To see how we can use the surface complexation model to trace the kinetics of

this reaction, we simulate an experiment conducted at pH 7.5 (Liger et al., 1999,

their Fig. 6). They started with a solution containing 100 mmolar NaNO3, 0.16

mmolar FeSO4, and 0.53 g l�1 of hematite nanoparticles. At t = 0, they added

enough uranyl to give an initial concentration of 5� 10�7 molar, almost all of

which sorbed to the nanoparticles. They then observed how the mass of sorbed

uranyl, which they recovered by NaHCO3 extraction, varied with time.

To run the simulation, we save the surface complexation model to a dataset

“FeOH UO2.dat”, decouple the relevant redox reactions, set the system’s initial

composition, and define the rate law. The procedure in REACT is

time end 80 hours

surface_data = FeOH_UO2.dat

decouple Iron, Uranium, Nitrogen

100 mmolal Na+
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Fig. 28.1. Results (symbols) and simulations (lines) of an experiment at 25 °C by Liger
et al. (1999; their Fig. 6) in which uranyl was oxidized by ferrous iron in the presence of
nanoparticulate hematite, which served as a catalyst. Vertical axis is amount of NaHCO3-
extractable uranyl, which includes uranyl present in solution as well as that sorbed to the
nanoparticles; in the experiment, nearly all the uranyl was sorbed. Broken line shows
results of a simulation assuming uranyl forms a single surface complex, >FeOUO2OH,
which is catalytically active; solid line shows simulation in which a non-catalytic site
of this stoichiometry is also present. Inset is an expanded view of the first few hours of
reaction.

100 mmolal NO3-

.16 mmolal Fe++

.16 mmolal SO4--

5e-4 mmolal UO2++

sorbate include

1e-3 umolal U++++

swap Hematite for Fe+++

.53 free gram Hematite

pH = 7.5

fix pH

balance on NO3-

kinetic redox-1 n

rxn = "UO2++ + 2 H2O + 2 Fe++ -> U(OH)4 + 2 Fe+++", n

rate_con = 6.7, mpower(>FeOFeOH) = 1, mpower(>FeOUO2OH) = 1

delxi = .001

dxplot = 0

go

Figure 28.1 shows the experimental and calculation results.

Reaction in the simulation follows the trend observed in the experiment for about

the first hour. After an hour, however, the rate law (Eqn. 28.2) predicts the reaction

will proceed to completion, consuming the uranyl in about three hours. In the
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experiment, in contrast, reaction proceeds more slowly and a considerable amount

of uranyl remains unreacted after more than sixty hours.

This discrepancy might be explained if after about an hour the reaction ap-

proached equilibrium and slowed due to a diminishing thermodynamic drive. If

the FeCCC produced did not precipitate on the hematite surface, and did not form

either hematite or goethite (FeOOH), it would accumulate in solution and weaken

the drive for uranyl reduction. As the saturation index for hematite reached about

1.7, or about 1.25 for goethite, reaction would cease.

Liger et al. (1999) suggested another explanation that, in fact, better explains

the pattern of their results. Whereas sorbed uranyl commonly shares an edge of its

polyhedron with the hematite octahedron, they proposed that some of the uranyl

shares only an apex. If the apical site were not catalytic, reaction would slow as the

uranyl was depleted at the normal, but not the apical sites. For such a scenario to

explain the data, the site would need to be less abundant than the normal sites, but

sorb uranyl more strongly.

To simulate this effect, we extend the surface complexation model to include a

non-catalytic site, denoted >(s)FeOH, at which uranyl sorbs strongly, forming a

species >.s/FeOUO2OH, according to the reaction in line 5 of Table 28.1. We can

figure the site’s density as about 3:5�10�5 per Fe2O3 from the amount of uranyl

remaining at the end of the experiment and the mass of the hematite. The stability

of the apical complex controls the convexity of the trend in uranyl concentration

with time. Adjusting the stability, we find a logK for the complexation reaction of

about �0:7. Finally, once these changes are made, we find we can better fit the data

at early time using an adjusted rate constant kC of 11 molal�1 s�1.

Saving the revised surface complexation model in dataset “FeOH UO2s.-dat”,

the procedure is

(cont’d)

surface_data = FeOH_UO2s.dat

kinetic redox-1 rate_con = 11

go

and the simulation results are shown in Figure 28.1.

28.2 Autocatalytic oxidation of manganese

An autocatalytic reaction is one promoted by its own reaction products. A good

example in geochemistry is the oxidation and precipitation of dissolved MnII by

O2(aq). The reaction is slow in solution, but is catalyzed by the precipitated surface

and so proceeds increasingly rapidly as the oxidation product accumulates. Morgan

(1967) studied in the laboratory the kinetics of this reaction at 25 °C and pH � 9.
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He added an MnII solution to a stirred beaker containing a pH buffer, through which

a mixture of oxygen and nitrogen gas was being bubbled.

The O2(aq) reacted with the MnII, forming a colloidal precipitate of oxidized

manganese, likely composed of a mixture of MnIII and MnIV. We can write this

reaction in a simple form as,

MnCC C 1=4 O2(aq) C 5=2 H2O ! Mn.OH/3.s/C 2 HC ; (28.3)

where Mn.OH/3.s/ represents the colloidal product. As pH increases above 9,

the MnCC ions in the reaction, in fact, convert progressively to various hydroxy

species, such as Mn2.OH/C3 . Brewer (1975) proposed the rate law,

rC D nw kC mMnII mMn.OH/.s/ mO2(aq) m
2
OH� (28.4)

to describe Morgan’s (1967) experiments. Here,mMnII is the sum of the concentra-

tions of the MnII species in solution, and mMn.OH/.s/ is the catalyst mass per kg of

solvent water. By this equation, the rate of the reaction increases as it proceeds, in

response to accumulation of the catalyst.

As we start to model the reaction, we note the LLNL thermodynamic dataset

“thermo.dat” does not contain a redox couple linking MnIII and MnII, as required

for our purposes, but this is easily remedied by adding to the database the coupling

reaction,

MnCCC C 1=2 H2O � 1=4 O2(aq) C HC C MnCC (28.5)

with a logK of 4.08 at 25 °C. We then rebalance the reactions for the MnIII miner-

als in the database in terms of MnCCC and save the result as “thermo+MnIII.dat”.

The MnIII minerals are: bixbyite (Mn2O3), hausmannite (Mn3O4), manganite

(MnOOH), and Mn.OH/3.c/; we will use only the latter.

A second complication to modeling the reaction is that it is necessary to allow

oxidation at the start of the experiment, so the catalyst can begin to form. The nature

of the initial reaction is not known, but it may be promoted by small amounts of

colloids or particles, perhaps MnCO3, present at the onset. A simple strategy, in

light of our lack of knowledge, is to set in the initial system a small amount of

Mn.OH/3.s/ to represent the system’s initial capacity to catalyze the reaction.

We take the results of a series of experiments conducted by Morgan (1967, his

Fig. 23) at pH 9, 9.3, and 9.5. He used an initial MnII concentration of 4:5 �
10�4 molar, a carbonate concentration of 1:6� 10�3 molar, and an oxygen partial

pressure of 1 atm. We can figure an approximate value for the rate constant kC

from oxidation rate at the end of the experiment, when the mass of catalyst is

known from the depletion of MnII, then estimate the initial catalyst mass from that

value and the oxidation rate at the onset of reaction. Running the simulation, we

can refine the two numbers until prediction matches observation.
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The procedure in REACT to model the experiment at pH 9.5 is

data thermo+MnIII.dat

time end 180 minutes

decouple Manganese

suppress ALL

unsuppress Mn(OH)3(c)

pH 9.5

swap O2(g) for O2(aq)

f O2(g) = 1

.45 mmolal Mn++

swap Mn(OH)3(c) for Mn+++

2 free mg Mn(OH)3(c)

.45 mmolal Cl-

1.6 mmolal HCO3-

1.6 mmolal Na+

balance on Na+

kinetic redox-1 n

rxn = "Mn++ + 1/4 O2(aq) + 5/2 H2O -> Mn(OH)3(c) + 2 H+", n

rate_con = 3e12, n

rate_law = ’Wmass * rate_con * molality("Mn(OH)3(c)") * n

totmolal("Mn++") * molality("O2(aq)") * molality("OH-")^2’

fix pH

go

Here, we take the initial catalyst mass as 2 mg, and set a rate constant of 3� 1012

molal�4 s�1, which gives good results. As shown in Figure 28.2, the reaction starts

slowly, increases in rate as the catalyst accumulates, then decreases to zero as the

supply of reduced manganese is depleted.

To see the autocatalytic nature of the reaction, we can compare the simulation

to one made assuming a constant amount of catalyst. Taking mMn.OH/.s/ to be

4.5�10�4 molal, its value when oxidation in the previous run is complete, the

procedure is

(cont’d)

kinetic redox-1 n

rate_law = ’Wmass * rate_con * 4.5e-4 * n

totmolal("Mn++") * molality("O2(aq)") * molality("OH-")^2’

go

In the result for simple catalysis, shown in Figure 28.2, reaction is most rapid at

the onset of the experiment and decreases with time, in contrast to the autocatalytic

simulation.



28.2 Autocatalytic oxidation of manganese 421

0 20 40 60

0

0.1

0.2

0.3

0.4

Time (min)

A

A

A

A

A

A

A

MnII

concentration

(mmolal)

autocatalytic

catalytic

Fig. 28.2. Variation in the concentration of MnII versus time in a simulation of the auto-
catalytic oxidation of manganese at pH 9.5 and 25 °C. Squares are results of a laboratory
experiment by Morgan (1967). Broken line shows the result of a simulation of catalytic
oxidation, assuming the catalyzing surface has a constant area.

We can model the experiments at pH 9.3 and 9.0 in a similar way. Returning to

the original rate law, the procedure

(cont’d)

kinetic redox-1 n

rate_law = ’Wmass * rate_con * molality("Mn(OH)3(c)") * n

totmolal("Mn++") * molality("O2(aq)") * molality("OH-")^2’

pH 9.3

kinetic redox-1 rate_con = 4.8e12

go

pH 9.0

kinetic redox-1 rate_con = 4e12

go

repeats the simulation at the pH values of interest. We find good fits using the same

value as before for initial catalyst mass, and somewhat differing rate constants of

4:8 � 1012 molal�4 s�1 for the pH 9.3 experiment, and 4 � 1012 molal�4 s�1 at

pH 9.

The oxidation rate should, in principle, be described by a law using a rate

constant independent of pH, as long as a single reaction mechanism is involved.

The rate law (28.4) is unusual in that the rate varies with the concentration of

the MnII component, rather than an individual species. If we hypothesize that

the catalytic activity is promoted by a surface complex >MnOMnOH, a slightly

different form of the rate law may be appropriate. Since the surface complex would
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form according to,

>MnOH C MnCC C 2 OH�
� >MnOMnOH C H2O (28.6)

we might expect to find a rate law,

rC D nw kC mMnCC mMn.OH/.s/ mO2(aq) m
2
OH� (28.7)

that is first order in the concentration of the MnCC free species, and second order

with respect to OH�. We can repeat our simulations

(cont’d)

kinetic redox-1 n

rate_con = 1e13, n

rate_law = ’Wmass * rate_con * molality("Mn(OH)3(c)") * n

molality("Mn++") * molality("O2(aq)") * molality("OH-")^2’

pH 9.5

6 free mg Mn(OH)3(c)

go

pH 9.3

5 free mg Mn(OH)3(c)

go

pH 9.0

.6 free mg Mn(OH)3(c)

go

In this case, we find we can match the experimental results using a single value

for the rate constant, but an initial catalyst mass that depends on pH, as shown

in Figure 28.3. Here, we take the rate constant to be 1013 molal�4 s�1, and use

initial catalyst masses of 6 mg at pH 9.5, 5 mg at pH 9.3, and 0.6 mg at pH 9.

This form of the rate law seems more satisfactory than the previous form, since

we might reasonably expect the amount of catalyst, perhaps an MnCO3 colloid,

initially present to be greatest in the experiments conducted at highest pH, but the

rate constant to be invariant.

28.3 Microbial degradation of phenol

Bekins et al. (1998) followed the concentration of phenol, C6H5OH.aq/, in a

laboratory experiment as it was degraded over time within a microcosm containing

a consortium of methanogens. The degradation can be represented by a reaction,

C6H5OH.aq/

phenol

C 13=2 H2O ! 7=2 CH4.aq/

methane

C 5=2 HCO�
3 C 5=2 HC (28.8)

in which phenol dismutates to methane and bicarbonate.
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molal�4 s�1, and the initial catalyst mass is 0.6 mg (pH 9.0), 5 mg (9.3), and 6 mg (9.5).

The experiment contained sufficient nutrients and phenol was present at suf-

ficiently low levels, about 40 mg kg�1 initially, that the substrate was the rate-

limiting reactant. Methanogenic consortia are slow growing when observed on the

time scale of the experiment, which lasted about 40 days. The biomass concentra-

tion, in fact, was not observed to change significantly. The reaction, furthermore,

remained far from equilibrium, so the reverse reaction rate was negligible, com-

pared to the forward reaction.

We can, therefore, reasonably expect the degradation to behave as an enzymati-

cally catalyzed reaction in which phenol is the substrate and the microbial consor-

tium serves as the enzyme. As discussed in Chapter 17, reaction rate in this case

can be represented as,

rC D nw rmax

mC6H5OH.aq/

mC6H5OH.aq/ CKA
(28.9)

using the Michaelis–Menten equation (Eqn. 17.18).

Since the enzyme concentration was not observed separately from the rate con-

stant, we carry the product kC mE in this equation as rmax, the maximum reaction

rate. Bekins et al. (1998) fitted their results using values of 1.4 mg kg�1 day�1

(or 1:7 � 10�10 molal s�1) for rmax, and 1.7 mg kg�1 (1:8 � 10�5 molal) for KA,

the half-saturation constant. In a field application lasting many years, of course,

the assumption that enzyme concentration remains constant might not be valid,
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and we might need to apply a model accounting for growth of the methanogenic

consortium, as discussed in Chapter 33.

The default thermodynamic dataset does not contain an entry for phenol, so to

trace the reaction we need to add the reaction,

C6H5OH.aq/

phenol

C 7 O2(aq) C 3 H2O � 6 HC C 6 HCO�
3 (28.10)

which has a logK at 25 °C of 503.4, to the database as a redox coupling reaction.

We save the modified version of “thermo.dat” as dataset “thermo+Phenol.dat”.

The REACT procedure

data thermo+Phenol.dat

time end 42 days

decouple Phenol(aq), CH4(aq)

swap CO2(g) for HCO3-

Na+ = 10 mmolal

Cl- = 10 mmolal

f CO2(g) = 10^-3.5

Phenol(aq) = 38.7 mg/kg

CH4(aq) = .01 mg/kg

pH = 7

kinetic redox-1 rxn = "Phenol(aq) + 13/2 H2O -> n

7/2 CH4(aq) + 5/2 HCO3- + 5/2 H+" n

rate_con = 1.7e-10, enzyme = on, mE = 1, KA = 1.8e-5

go

traces progress with time of the degradation reaction, according to the Michaelis–

Menten equation. Note that we have set enzyme concentration to one, so the rate

constant in the model serves to carry the value of rmax.

In the calculation results, shown in Figure 28.4, phenol concentration decreases

with time at a constant rate for about the first 30 days of reaction. Over this interval,

the concentration is greater than the value of KA, the half-saturation constant, so

the ratio m=.mC KA/ in Equation 28.9 remains approximately constant, giving a

zero-order reaction rate. Past this point, however, concentration falls belowKA and

the reaction rate becomes first order. Now, phenol concentration does not decrease

linearly, but asymptotically approaches zero.

We might ask what would happen if instead of taking degradation to be enzy-

matically catalyzed, we instead represent it as a first-order decay reaction, as is

common practice in environmental hydrology. The steps

(cont’d)

kinetic redox-1 enzyme = off, rate_con = 1e-6, n

mpower(Phenol(aq)) = 1

go
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Fig. 28.4. Degradation of phenol by a consortium of methanogens, as observed in a lab-
oratory experiment by Bekins et al. (1998; symbols), and modeled using the Michaelis–
Menten equation (solid line). Inset shows detail of transition from linear or zero-order
trend at concentrations greater thanKA, to asymptotic, first-order kinetics below this level.
Broken line is result of assuming a first-order rather than Michaelis–Menten law.

set and evaluate a first-order law, using a value for the rate constant that reflects the

decay rate over the full course of the experiment. As we can see in the calculation

results (Fig. 28.4), a first-order law cannot explain the pattern of the results, since

reaction in the experiment’s initial leg was limited by the size of the microbial

consortium, rather than the supply of phenol.
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Waste injection wells

Increasingly since the 1930s, various industries around the world that generate

large volumes of liquid byproducts have disposed of their wastes by injecting them

into the subsurface of sedimentary basins. In the United States, according to a

1985 survey by Brower et al. (1989), 411 “Class I” wells were licensed to inject

hazardous and nonhazardous waste into deep strata, and 48 more were proposed

or under construction. Legal restrictions on the practice vary geographically, as

does the suitability of geologic conditions. Nonetheless, the practice of deep-well

injection had increased over time, partly in response to environmental laws that

emphasize protection of surface water and shallow groundwater. More restrictive

regulations introduced in the late 1980s and 1990s have begun to cause a decrease

in the number of operating Class I wells.

Some injected wastes are persistent health hazards that need to be isolated from

the biosphere indefinitely. For this reason, and because of the environmental and

operational problems posed by loss of permeability or formation caving, well

operators seek to avoid deterioration of the formation accepting the wastes and its

confining layers. When wastes are injected, they are commonly far from chemical

equilibrium with the minerals in the formation and, therefore, can be expected to

react extensively with them (Boulding, 1990). The potential for subsurface damage

by chemical reaction, nonetheless, has seldom been considered in the design of

injection wells.

According to Brower et al. (1989; Fig. 29.1), nine wells at seven industrial

sites throughout the state of Illinois were in use in the late 1980s for injecting

industrial wastes into deeply buried formations; these wells accepted about 300

million gallons of liquid wastes per year. In this chapter, we look at difficulties

stemming from reaction between waste water and rocks of the host formation at

several of these wells and consider how geochemical modeling might be used to

help predict deterioration and prevent blowouts.

427
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Natural Gas Pipeline Co. of Amer.

H2S from gas stripping; formation

water from underground storage

US Industrial Chemicals Co.

Runoff from waste gypsum,

contains H2SO4

Jones & Laughlin Steel Corp.

“Pickle liquor’’ from steel processing,

contains FeCl3, HCl, H2CrO4

Allied Chemical Corp.

Byproduct of fluorocarbon

manufacture, contains

HCl, HF, arsenic

Cabot Corp.

HCl from producing fumed silica

Velsicol Chemical Corp.

Wastewater from pesticide

production, contains NaCl, NaOH,

hex, chlordane

Fig. 29.1. Locations of “Class I” injection wells in Illinois, from Brower et al. (1989).

29.1 Caustic waste injected in dolomite

Velsicol Chemical Corporation maintained two injection wells at its plant near

Marshall, Illinois, to dispose of caustic wastes from pesticide production as well as

contaminated surface runoff. In September 1965, the company began to inject the

wastes into Devonian dolomites of the Grand Tower Formation at a depth of about

2600 feet. The wells accepted about 6 million gallons of waste monthly.

The waste contained about 3.5% dissolved solids, 1.7% chlorides, 0.4% sodium

hydroxide, and tens to hundreds of ppm of chlorinated hydrocarbons and chlor-

dane; its pH was generally greater than 13 (Brower et al., 1989). At the time

of drilling, analysis of formation samples indicated that the injection zone was

composed of nearly pure dolomite [CaMg.CO3/2]. The carbonate formation was

thought to be safe for accepting an alkaline waste water because carbonates are

considered stable at high pH.

With time, however, the company encountered problems, including caving of

the formation into the wellbore and the loss of permeability in zones that had

accepted fluid. In June 1987, a number of sidewall cores were taken from the

formation (Mehnert et al., 1990). Mineralogic analysis by x-ray diffraction showed

that significant amounts of calcite (CaCO3) and brucite [Mg.OH/2], as well as

some amorphous matter, had formed from the original dolomite. In some samples,

the dolomite was completely consumed and the rock was found to be composed

entirely of a mixture of brucite and calcite.

The plant eventually closed for environmental reasons, including surface con-
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Fig. 29.2. Mineralogic results of reacting at 35 °C alkaline waste water from the Velsicol
plant with dolomite.

tamination unrelated to the injection wells, causing a loss of jobs in an economi-

cally depressed area. Could geochemical modeling techniques have predicted the

wells’ deterioration? Using REACT, we trace the irreversible reaction of dolomite

into the NaOH–NaCl waste. To calculate the waste’s initial state and then titrate

dolomite into it, we enter the commands

T = 35

pH = 13

balance on Na+

Cl- = .5 molal

Ca++ = 1 mg/kg

HCO3- = 1 mg/kg

Mg++ = .01 ug/kg

react 40 grams Dolomite

go

The fluid contains arbitrarily small amounts of CaCC, MgCC, and HCO�
3 , as is

necessary in order for the program to be able to recognize dolomite. The initial

magnesium content is set small to assure that the hydroxide mineral brucite is not

supersaturated in the alkaline fluid.

Figure 29.2 shows the mineralogic results of the calculation. Dolomite dissolves,

since it is quite undersaturated in the waste fluid. The dissolution adds calcium,

magnesium, and carbonate to solution. Calcite and brucite precipitate from these

components, as observations from the wells indicated. The fluid reaches equilib-

rium with dolomite after about 11.6 cm3 of dolomite have dissolved per kg water.

About 11 cm3 of calcite and brucite form during the reaction. Since calculation
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Fig. 29.3. Variation in pH and species’ concentrations during reaction at 35 °C of alkaline
waste water with dolomite.

predicts a net decrease in mineral volume, damage to the dolomite formation is

evidently not due to loss of porosity. Instead, the reaction products likely formed

a fine-grained, poorly coherent material capable of clogging pore openings and

slumping into the wellbore.

At the point of dolomite saturation, where reaction ceases, pH has decreased

from 13 to about 11.9 (Fig. 29.3). The overall reaction between the fluid and

dolomite,

CaMg.CO3/2
dolomite

C 2 OH� ! CaCO3

calcite

C Mg.OH/2
brucite

C CO��
3 (29.1)

is given by the slopes-of-the-lines method, as discussed in Section 13.2. For sim-

plicity, we have lumped the ion pairs NaOH and NaCO�
3 with the ions OH� and

CO��
3 in writing the reaction.

An interesting further experiment is to test the effects of letting the waste fluid

equilibrate with the atmosphere before it is injected. Because the waste is so

alkaline, its calculated CO2 fugacity is 10�13:5, about ten orders of magnitude

less than the atmospheric value of 10�3:5. To simulate the effects of leaving the

waste in a lagoon long enough to equilibrate with atmospheric CO2, we trace two

reaction steps, which, for simplicity, we assume to occur at the same temperature.
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(cont’d)

remove reactant Dolomite

slide log f CO2(g) to -3.5

go

pickup fluid

react 1 mg Dolomite

go

The first step adjusts the fluid’s CO2 fugacity to the atmospheric value, reducing

pH to less than 10 by the reaction,

CO2(g) C H2O ! CO��
3 C 2 HC : (29.2)

After this step, dolomite appears only slightly undersaturated in the calculation

results. In the second step, which simulates reaction of the formation into the

equilibrated fluid, only about 2 � 10�5 cm3 of dolomite dissolve per kilogram

of waste water. This result suggests that the plant’s waste stream could have been

neutralized inexpensively by aeration.

29.2 Gas blowouts

According to the Illinois Environmental Protection Agency (IEPA), a series of gas

blowouts has occurred at two waste injection wells in the state (Brower et al.,

1989). In each case, well operators were injecting concentrated hydrochloric acid

into a dolomite bed. At its plant near Tuscola, the Cabot Corporation injects acid

waste from the production of fumed silica into the Cambrian Eminence and Potosi

Formations below 5 000 ft (1 500 m) depth. Allied Chemical Corporation injects

acid into the Potosi formation below about 3 600 ft (1 100 m). The acid, which

is contaminated with arsenic, is a byproduct of the manufacture of refrigerant

gas. Since some of the blowouts have caused damage such as fish kills, there is

environmental interest as well as operational concern in preventing such accidents.

The blowouts seem to have occurred at times when especially acidic wastes were

being injected. The acid apparently reacted with carbonate in the formations to

produce a CO2 gas cap at high pressure. In some cases, the injected waste was

more than 31 wt.% HCl. As a temporary measure, the plants are now limited by

the IEPA to injecting wastes containing no more than 6 wt.% HCl.

We can use reaction modeling techniques to test the conditions under which

dolomite will react with hydrochloric acid to produce gas in the injection zones.
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Equivalent values of wt.% and molality for HCl are:

Wt.% HCl molal HCl

2 0.57

4 1.2

6 1.8

10 3.1

20 6.9

30 11.9

To configure a model of the reaction of dolomite with 30 wt.% hydrochloric acid,

we start REACT and enter the commands

T = 50

H+ = 11.9 molal

Cl- = 11.9 molal

Na+ = .01 molal

Ca++ = 1 mg/kg

HCO3- = 1 mg/kg

Mg++ = 1 mg/kg

react 600 grams Dolomite

go

We then repeat the calculation for solutions of differing HCl contents, according to

the chart above.

Reacting dolomite into the waste water increases the pH as well as the CO2

fugacity. The predicted reaction is,

CaMg.CO3/2
dolomite

C 4 HC ! 2 CO2(aq) C CaCC C MgCC C 2 H2O : (29.3)

Here, we lump the ion pairs CaClC and MgClC with the free CaCC and MgCC

ions. When the CO2 fugacity exceeds the confining pressure in the formation, CO2

exsolves as a free gas,

CO2(aq) ! CO2(g) (29.4)

producing a gas cap in the subsurface.

Figure 29.4 shows how pH changes as hydrochloric acid in differing concen-

trations reacts at 50 °C with dolomite, and Figure 29.5 shows how CO2 fugacity

varies. Solutions of greater HCl contents dissolve more dolomite and, hence, pro-

duce more CO2. At 30 wt.%, for example, each kilogram of waste water consumes
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Fig. 29.5. Calculated variation in CO2 fugacity as HCl solutions of differing initial con-
centrations react at 50 °C with dolomite.

almost 200 cm3 of dolomite. At an injection rate of 25 000 kg day�1 at this con-

centration, about 200 000 m3 of dolomite would dissolve each year.

The most acidic solutions, as expected, produce the greatest CO2 fugacities.

For the 30 wt.% fluid, the partial pressure of CO2 escaping from the fluid would

approach 250 atm. Assuming a confining pressure of about 120 atm at the Allied

well, solutions containing more than 15 wt.% HCl are likely to exsolve CO2. The

calculations indicate, on the other hand, that even the most acidic waste can be

injected without fear of a gas blowout if it is first diluted by an equal amount of

water.
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Petroleum reservoirs

In efforts to increase and extend production from oil and gas fields, as well as to

keep wells operational, petroleum engineers pump a wide variety of fluids into the

subsurface. Fluids are injected into petroleum reservoirs for a number of purposes,

including:

� Waterflooding, where an available fresh or saline water is injected into the

reservoir to displace oil toward producing wells.

� Improved Oil Recovery (IOR), where a range of more exotic fluids such as

steam (hot water), caustic solutions, carbon dioxide, foams, polymers, surfac-

tants, and so on are injected to improve recovery beyond what might be ob-

tained by waterflooding alone.

� Near-well treatments, in which chemicals are injected into producing and

sometimes injector wells, where they are intended to react with the reservoir

rock. Well stimulation techniques such as acidization, for example, are in-

tended to increase the formation’s permeability. Alternatively, producing wells

may receive “squeeze treatments” in which a mineral scale inhibitor is injected

into the formation. In this case, the treatment is designed so that the inhibitor

sorbs onto mineral surfaces, where it can gradually desorb into the formation

water during production.

� Pressure management, where fluid is injected into oil fields in order to maintain

adequate fluid pressure in reservoir rocks. Calcium carbonate may precipitate

as mineral scale, for example, if pressure is allowed to deteriorate, especially

in fields where formation fluids are rich in CaCC and HCO�
3 and CO2 fugacity

is high.

In each of these procedures, the injected fluid can be expected to be far from

equilibrium with sediments and formation waters. As such, it is likely to react ex-

tensively once it enters the formation, causing some minerals to dissolve and others

435
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to precipitate. Hutcheon (1984) appropriately refers to this process as “artificial di-

agenesis,” drawing an analogy with the role of groundwater flow in the diagenesis

of natural sediments (see Chapter 25). Further reaction is likely if the injected fluid

breaks through to producing wells and mixes there with formation waters.

There is considerable potential, therefore, for mineral scale, such as barium

sulfate (see the next section), to form during these procedures. The scale may be

deposited in the formation, the wellbore, or in production tubing. Scale that forms

in the formation near wells, known as “formation damage,” can dramatically lower

permeability and throttle production. When it forms in the wellbore and production

tubing, mineral scale is costly to remove and may lead to safety problems if it

blocks release valves.

In this chapter, in an attempt to devise methods for helping to foresee such unfa-

vorable consequences, we construct models of the chemical interactions between

injected fluids and the sediments and formation waters in petroleum reservoirs. We

consider two cases: the effects of using seawater as a waterflood, taking oil fields

of the North Sea as an example, and the potential consequences of using alkali

flooding (i.e., the injection of a strong caustic solution) in order to increase oil

production from a clastic reservoir.

30.1 Sulfate scaling in North Sea oil fields

A common problem in offshore petroleum production is that sulfate scale may form

when seawater is injected into the formation during waterflooding operations. The

scale forms when seawater, which is rich in sulfate but relatively poor in CaCC and

nearly depleted in SrCC and BaCC, mixes with formation fluids, many of which

contain bivalent cations in relative abundance but little sulfate. The mixing causes

minerals such as gypsum (CaSO4 � 2H2O), anhydrite (CaSO4), celestite (SrSO4),

and barite (BaSO4, an almost insoluble salt) to become saturated and precipitate as

scale.

Sulfate scaling poses a special problem in oil fields of the North Sea (e.g., Todd

and Yuan, 1990, 1992; Yuan et al., 1994), where formation fluids are notably rich

in barium and strontium. The scale can reduce permeability in the formation, clog

the wellbore and production tubing, and cause safety equipment (such as pressure

release valves) to malfunction. To try to prevent scale from forming, reservoir engi-

neers use chemical inhibitors such as phosphonate (a family of organic phosphorus

compounds) in “squeeze treatments,” as described in the introduction to this chap-

ter.

Table 30.1 shows the compositions of formation waters from three North Sea

oil fields, and the composition of seawater (from Drever, 1988). The origin of the

scaling problem is clear. Seawater contains more than 2500 mg kg�1 of sulfate but
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Table 30.1. Compositions of formation fluids from three North Sea oil fields

(Edward Warren, personal communication) and seawater

Miller Forties Amethyst Seawater

NaC .mg kg�1/ 27 250 27 340 51 900 10 760

KC 1 730 346 1 100 399

MgCC 110 469 2 640 1 290

CaCC 995 2 615 16 320 411

SrCC 105 534 1 000 8

BaCC 995 235 10 0.01

Cl� 45 150 48 753 121 550 19 350

HCO�
3

1 980 462 85 142

SO��
4

0 10 0 2 710

T (°C) 121 96 88 20

pH (20 °C) 7 7 6.7 8.1

TDS .mg kg�1/ 78 300 80 800 194 600 35 100

little strontium and almost no barium. The formation waters, however, are depleted

in sulfate, but they contain strontium and barium in concentrations up to about 1000

mg kg�1 and significant amounts of calcium. A mixture of seawater and formation

fluid, therefore, will contain high concentrations of both sulfate and the cations,

and hence, will probably be supersaturated with respect to sulfate minerals.

To model the results of the mixing process, we calculate the effects of titrating

seawater into the formation waters. Two aspects of the modeling results are of inter-

est. First, the volume of mineral scale produced during mixing provides a measure

of the potential severity of a scaling problem. Second, in simulations in which scale

is prevented from forming (simulating the case of a completely successful inhibi-

tion treatment), the saturation states of the sulfate minerals give information about

the thermodynamic driving force for precipitation. This information is of value be-

cause it provides a measure of the difficulty of inhibiting scale formation (Sorbie et

al., 1994). In general, to be effective against scaling, the inhibitor must be present

at greater concentration where minerals are highly supersaturated than where they

are less supersaturated (e.g., He et al., 1994).

To start the simulation, we equilibrate seawater (as we did in Chapter 6), using

REACT to carry it to formation temperature, and then “pick up” the resulting fluid

as a reactant in the mixing calculation. The procedure (taking the temperature of

121 °C reported for the Miller field) is
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pH = 8.1

Na+ = 10760 mg/kg

K+ = 399 mg/kg

Mg++ = 1290 mg/kg

Ca++ = 411 mg/kg

Sr++ = 8 mg/kg

Ba++ = .01 mg/kg

Cl- = 19350 mg/kg

HCO3- = 142 mg/kg

SO4-- = 2710 mg/kg

TDS = 35100

T initial = 20, final = 121

go

pickup reactants = fluid

We then equilibrate the formation fluid, using data from Table 30.1. Since pH

measurements from saline solutions are not reliable, we assume that pH in the

reservoir is controlled by equilibrium with the most saturated carbonate mineral,

which turns out to be witherite (BaCO3) or, for the Amethyst field, strontianite

(SrCO3). Using the Miller analysis, the procedure for completing the calculation is

(cont’d)

T = 121

Na+ = 27250 mg/kg

K+ = 1730 mg/kg

Mg++ = 110 mg/kg

Ca++ = 995 mg/kg

Sr++ = 105 mg/kg

Ba++ = 995 mg/kg

Cl- = 45150 mg/kg

HCO3- = 1980 mg/kg

SO4-- = 10 ug/kg

swap Witherite for H+

1 free cm3 Witherite

TDS = 78300

reactants times 10

delxi = .001

dump

go

To model the case in which scale is prevented from forming, we repeat the calcu-

lation

(cont’d)
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Fig. 30.1. Volumes of minerals precipitated during a reaction model simulating the mixing
at reservoir temperature of seawater into formation fluids from the Miller, Forties, and
Amethyst oil fields in the North Sea. The reservoir temperatures and compositions of the
formation fluids are given in Table 30.1. The initial extent of the system in each case is 1
kg of solvent water. Not shown for the Amethyst results are small volumes of strontianite,
barite, and dolomite that form during mixing.

precip = off

go

with mineral precipitation disabled. Figure 30.1 shows the volumes of minerals

precipitated during the mixing reactions for fluids from the three fields; Figure

30.2 shows the saturation states of sulfate minerals during mixing in the absence

of precipitation.

For the Miller fluid, barite precipitates,
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Fig. 30.2. Saturation states (Q=K) of supersaturated sulfate minerals over the courses of
simulations in which seawater mixes at reservoir temperature with formation fluids from
three North Sea oil fields. Reaction paths are the same as shown in Figure 30.1, except that
minerals are not allowed to precipitate.

BaCC C SO��
4 ! BaSO4

barite

(30.1)

early in the mixing reaction. Because of the mineral’s low solubility, virtually all of

the seawater sulfate added to the system is consumed by the precipitation reaction

until the barium is depleted from the fluid. Barite is the only mineral to form in

the simulation, reaching a maximum volume of 0.4 cm3 (per kg of water in the

formation fluid) after reaction with just a small amount of seawater.

The Forties fluid contains less barium but is richer in strontium. Barite forms



30.1 Sulfate scaling in North Sea oil fields 441

initially (according to Reaction 30.1), but in a lesser amount than from the Miller

fluid. Celestite forms,

SrCC C SO��
4 ! SrSO4

celestite

(30.2)

shortly thereafter. In reality, the precipitate would occur as a barium–strontium

solid solution rather than as separate phases. Later in the mixing reaction, as

seawater comes to dominate the mixed fluid, the celestite starts to redissolve,

reflecting the small amount of strontium in seawater. Less than about 0.3 cm3 of

scale forms during the mixing reaction.

The Amethyst fluid is richer in strontium and calcium than the other fluids,

but nearly depleted in barium. Celestite becomes saturated first, and more of this

mineral forms from this fluid than from the Forties fluid. Anhydrite becomes

saturated later in the mixing process and precipitates,

CaCC C SO��
4 ! CaSO4

anhydrite

: (30.3)

More than 2 cm3 of scale form during the simulation, making this fluid potentially

more damaging than the Miller or Forties formation waters by a factor of five or

greater.

In the three simulations, the sulfate minerals form at mixing ratios related to their

solubilities. Barite, the least soluble, forms early, when small amounts of seawater

are added. The more soluble celestite forms only after the addition of somewhat

larger quantities of seawater. Anhydrite, the most soluble of the minerals, forms

from the Amethyst fluid at still higher ratios of seawater to formation fluid.

Comparing the volumes of scale produced in simulations in which minerals are

allowed to form (Fig. 30.1) with the minerals’ saturation states when precipitation

is disabled (Fig. 30.2), it is clear that no direct relationship exists between these

values. In the Forties and Amethyst simulations, the saturation state of barite is

greater than those of the other minerals that form, although the other minerals form

in greater volumes. Whereas the Amethyst fluid is capable of producing about five

times as much scale as fluids from the Miller and Forties fields, furthermore, the

saturation states (Q=K) predicted for it are 1.5 to 2 orders of magnitude lower

than for the other fluids. This result indicates that although the Amethyst fluid

is the most potentially damaging of the three, it is also the fluid for which scale

formation might be most readily inhibited by chemical treatment.

We could, of course, attempt more sophisticated simulations of scale formation.

Since the fluid mixture is quite concentrated early in the mixing, we might use a

virial model to calculate activity coefficients (see Chapter 8). The Harvie–Møller–

Weare (1984) activity model is limited to 25 °C and does not consider barium or
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strontium, but Yuan and Todd (1991) suggested a similar model for the Na–Ca–

Ba–Sr–Mg–SO4–Cl system in which the virial coefficients can be extrapolated to

typical reservoir temperatures in the North Sea.

Given a specific application, we might also include precipitation kinetics in our

calculations, as described in Chapter 16. Wat et al. (1992) present a brief study

of the kinetics of barite formation, including the effects of scale inhibitors on

precipitation rates. For a variety of reasons (see Section 16.2), however, it remains

difficult to construct reliable models of the kinetics of scale precipitation.

30.2 Alkali flooding

Some of the most radical changes to the geochemistry of a petroleum reservoir

are induced by the highly reactive fluids injected in well stimulation and improved

oil recovery (IOR) procedures. Stimulation (e.g., acidization) is generally a near-

well treatment designed to improve the productivity of a formation, sometimes by

reversing previous formation damage. The fluids used in IOR may react with the

formation water, the mineral assemblage in the formation, and with the crude oil

itself. Alkali flooding is an example, considered in this section, of an IOR procedure

employing an extremely reactive fluid.

The purpose of alkali flooding (Jennings et al., 1974) is to introduce alkali into

a reservoir where it can react with organic acids in the oil to produce organic salts,

which act as surfactants. The surfactants (or “petroleum soaps”) generated reduce

the surface tension between the oil and water and this in turn reduces the level of

capillary trapping of the oil. Thus, more oil is recovered because less of it remains

trapped in the formation’s pore spaces.

This type of flood can be successful only if, as the fluid moves through the

reservoir, a sufficient amount of the alkali remains in solution to react with the

oil. Reaction of the flood with minerals and fluid in the reservoir, however, can

consume the flood’s alkali content. Worse, the reactions may precipitate minerals

in the formation’s pore space, decreasing permeability near the wellbore where free

flow is most critical. A special problem for this type of flood is the reaction of clay

minerals to form zeolites (Sydansk, 1982).

The effectiveness of alkali flooding, and, in fact, most reservoir treatments,

varies widely from formation to formation in a manner that is often difficult to

predict. Quantitative techniques have been applied to model the migration and

consumption of alkali as it moves through a reservoir (e.g., Bunge and Radke,

1982; Zabala et al., 1982; Dria et al., 1988). There have been fewer attempts,

however, to predict the specific chemical reactions that might occur in a reservoir

or the effects of the initial mineralogy of the reservoir and the composition of the

flood on those reactions (Bethke et al., 1992).
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To consider how such predictions might be made, we model how three types of

alkali floods might affect a hypothetical sandstone reservoir. The floods, which are

marketed commercially for this purpose, are NaOH, Na2CO3, and Na2SiO3. We

take each flood at 0.5 N strength and assume that reaction occurs at a temperature

of 70 °C.

The reservoir rock in our model is composed of quartz grains, carbonate cement,

and clay minerals in the following proportions, by volume:

Quartz SiO2 85%

Calcite CaCO3 6%

Dolomite CaMg.CO3/2 4%

Muscovite (illite) KAl3Si3O10.OH/2 3%

Kaolinite Al2Si2O5.OH/4 2%

The initial formation fluid is a solution at pH 5 of 1 molal NaCl and 0.2 molal CaCl2
which is in chemical equilibrium with the minerals in the reservoir. The extent of

the system is 1 kg water, which at 15% porosity corresponds to a 1 cm-thick slice

of the formation extending about 20 cm from the wellbore.

Using the “flush” configuration (Chapter 2), we continuously displace the pore

fluid with the flooding solution. In this way, we replace the pore fluid in the system

a total of ten times over the course of the simulated flood, which lasts twenty days.

Because of the short interval selected for the flood, we assume that the pore fluid

does not remain in equilibrium with quartz or framework silicates such as feldspar.

We set quartz dissolution and precipitation according to a kinetic rate law

(Knauss and Wolery, 1988; see Chapter 16),

rqtz D AS kC a
�1=2

HC

�
1 � Q

K

�
(30.4)

valid at 70 °C for pH values greater than about 6, which are quickly reached in the

simulation; the corresponding rate constant kC is 1:6�10�18 mol cm�2 s�1. As

in our calculations in Chapter 26, we assume a specific surface area for quartz of

1000 cm2 g�1. Feldspars are suppressed so they will not precipitate if they become

supersaturated, since these minerals presumably do not have time to nucleate and

grow. We assume, however, that the carbonate and clay minerals in the simulation

maintain equilibrium with the fluid as it moves through the system. In a more

sophisticated simulation, we might also set kinetic rate laws for these minerals.

For the NaOH flood, the complete procedure in REACT is

T = 70

pH = 5

Na+ = 1 molal

Ca++ = 0.2 molal
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Cl- = 1 molal

swap Dolomite-ord for Mg++

swap Muscovite for K+

swap Kaolinite for Al+++

swap Quartz for SiO2(aq)

swap Calcite for HCO3-

365 free cm3 Calcite

235 free cm3 Dolomite-ord

180 free cm3 Muscovite

120 free cm3 Kaolinite

5150 free cm3 Quartz

react 1 kg H2O

react 0.5 moles Na+

react 0.5 moles OH-

suppress Albite, "Albite high", "Albite low"

suppress "Maximum Microcline", K-feldspar, "Sanidine high"

kinetic Quartz rate_con = 1.8e-18, apower(H+) = -1/2 n

surface = 1000

reactants times 10

time end = 20 days

flush

go

To run the Na2CO3 and Na2SiO3 simulations, we need only alter the composition

of the reactant fluid:

(cont’d)

remove reactant OH-

react 0.25 moles CO3--

go

and

(cont’d)

remove reactant CO3--

remove reactant Na+

react 0.25 moles Na2O

react 0.25 moles SiO2(aq)

go

Figures 30.3–30.4 show the results of the simulations.

As the alkaline solution enters the system, pH increases in each of the simula-

tions, eventually reaching a value of about 9.5. In the early portions of the simu-

lations, however, some of the alkali is consumed in the conversion of kaolinite to

paragonite [NaAl3Si3O10.OH/2]. In the NaOH flood, for example, the reaction
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Fig. 30.3. Variation in pH during simulated alkali floods of a clastic petroleum reservoir
at 70 °C, using 0.5 N NaOH, Na2CO3, and Na2SiO3 solutions. Pore fluid is displaced by
unreacted flooding solution at a rate of one-half of the system’s pore volume per day.

2 NaOH C 3 Al2Si2O5.OH/4
kaolinite

! 2 NaAl3Si3O10.OH/2
paragonite

C 5 H2O (30.5)

consumes most of the sodium hydroxide and helps maintain a low pH until the

kaolinite has been exhausted.

Later in the simulations, the zeolite analcime (NaAlSi2O6 � H2O) begins to form,

largely at the expense of micas, which serve as proxies for clay minerals. In the

NaOH flood, the overall reaction (expressed per formula unit of analcime) is,

1:75 NaOH C CaMg.CO3/2
dolomite

C 0:9 SiO2

quartz

C 0:33 KAl3Si3O10.OH/2
muscovite

C

0:36 NaAl3Si3O10.OH/2
paragonite

C 0:6 H2O ! CaCO3

calcite

C

NaAlSi2O6 � H2O

analcime

C 0:75 NaAlCO3.OH/2
dawsonite

C

0:33 KAlMg3Si3O10.OH/2
phlogopite

C 0:4 NaC C 0:15 HCO�
3 C 0:1 CO��

3 :

(30.6)

In part because of the open crystal structure and resulting low density character-

istic of zeolite minerals, analcime is the most voluminous reaction product in the

simulations.

Table 30.2 summarizes the simulation results. In each case, the flood dissolves

clay minerals and quartz. The simulations, however, predict the production of
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Fig. 30.4. Changes in the volumes of minerals in the reservoir rock during the simulated al-
kali floods (Fig. 30.3) of a clastic petroleum reservoir using NaOH, Na2CO3, and Na2SiO3

solutions. Minerals that react in small volumes are omitted from the plots. Abbreviations:
Anal = analcime, Cc = calcite, Daw = dawsonite, Dol = dolomite, Kaol = kaolinite, Musc
= muscovite, Parag = paragonite, Phlog = phlogopite, Qtz= quartz, Trid = tridymite.

significant volumes of analcime, in accord with the observation that zeolites are

prone to form during alkali floods. The volume of analcime produced in each

case is sufficient to offset the volumes of the dissolved minerals and leads to a net
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Table 30.2. Comparison of the alkali flood simulations*

NaOH Na2CO3 Na2SiO3

Net change in mineral volume (cm3)

zeolite C213 C175 C316

carbonate C42 C53 �27

quartz �46 �25 �36

clay (& mica) �111 �126 �118

C98 C77 C135

Change in pore volume (�%) �9 �7 �13

Alkali consumed (%) 78 53 65

*Extent of system is 1 kg water.

decrease in porosity. Of the simulations, the Na2SiO3 flood leads to the production

of the most analcime and to the greatest loss in porosity.

In the simulations, a significant fraction (about 50% to 80%) of the alkali present

in solution is consumed by reactions near the wellbore with the reservoir minerals

(as shown in Reaction 30.6 for the NaOH flood), mostly by the production of

analcime, paragonite, and dawsonite [NaAlCO3.OH/2]. In the clastic reservoir

considered, therefore, alkali floods might be expected to cause formation damage

(mostly due to the precipitation of zeolites) and to be less effective at increasing oil

mobility than in a reservoir where they do not react extensively with the formation.
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Acid drainage

Acid drainage is a persistent environmental problem in many mineralized areas.

The problem is especially pronounced in areas that host or have hosted mining ac-

tivity (e.g., Lind and Hem, 1993), but it also occurs naturally in unmined areas.

The acid drainage results from weathering of sulfide minerals that oxidize to pro-

duce hydrogen ions and contribute dissolved metals to solution (e.g., Blowes et al.,

2005).

These acidic waters are toxic to plant and animal life, including fish and aquatic

insects. Streams affected by acid drainage may be rendered nearly lifeless, their

stream beds coated with unsightly yellow and red precipitates of oxy-hydroxide

minerals. In some cases, the heavy metals in acid drainage threaten water supplies

and irrigation projects.

Where acid drainage is well developed and extensive, the costs of remediation

can be high. In the Summitville, Colorado district (USA), for example, efforts to

limit the contamination of fertile irrigated farmlands in the nearby San Luis Valley

and protect aquatic life in the Alamosa River will cost an estimated $100 million

or more (Plumlee, 1994a).

Not all mine drainage, however, is acidic or rich in dissolved metals (e.g., Ficklin

et al., 1992; Mayo et al., 1992; Plumlee et al., 1992). Drainage from mining

districts in the Colorado Mineral Belt ranges in pH from 1.7 to greater than 8 and

contains total metal concentrations ranging from as low as about 0.1 mg kg�1 to

more than 1000 mg kg�1. The primary controls on drainage pH and metal content

seem to be (1) the exposure of sulfide minerals to weathering, (2) the availability

of atmospheric oxygen, and (3) the ability of nonsulfide minerals to buffer acidity.

In this chapter we construct geochemical models to consider how the availability

of oxygen and the buffering of host rocks affect the pH and composition of acid

drainage. We then look at processes that can attenuate the dissolved metal content

of drainage waters.

449
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31.1 Role of atmospheric oxygen

Acid drainage results from the reaction of sulfide minerals with oxygen in the

presence of water. As we show in this section, water in the absence of a supply of

oxygen gas becomes saturated with respect to a sulfide mineral after only a small

amount of the mineral has dissolved. The dissolution reaction in this case (when

oxygen gas is not available) causes little change in the water’s pH or composition.

In a separate effect, it is likely that atmospheric oxygen further promotes acid

drainage because of its role in the metabolism of bacteria that catalyze both the

dissolution of sulfide minerals and the oxidation of dissolved iron (Nordstrom,

1982).

For these reasons, there is a clear connection between the chemistry of mine

drainage and the availability of oxygen. Plumlee et al. (1992) found that the most

acidic, metal-rich drainage waters in Colorado tend to develop in mine dumps,

which are highly permeable and open to air circulation, and in mineral districts like

Summitville (see King, 1995), where abandoned workings and extensive fracturing

give atmospheric oxygen access to the ores. Drainage waters that are depleted in

dissolved oxygen, on the other hand, tend to be less acidic and have lower heavy

metal concentrations.

To investigate how the presence of atmospheric oxygen affects the reaction of

pyrite (FeS2) with oxidizing groundwater, we construct a simple model in REACT.

First we take a hypothetical groundwater at 25 °C that has equilibrated with atmo-

spheric oxygen but is no longer in contact with it. We suppress hematite (Fe2O3),

which does not form directly at low temperature, and goethite (FeOOH); each of

these minerals is more stable thermodynamically than the ferric precipitate ob-

served to form in acid drainage. To set the initial fluid, we type

swap O2(g) for O2(aq)

f O2(g) = 0.2

pH = 6.8

Ca++ = 10 mg/kg

Mg++ = 2 mg/kg

Na+ = 6 mg/kg

K+ = 2 mg/kg

HCO3- = 75 mg/kg

SO4-- = 2 mg/kg

Cl- = 1 mg/kg

Fe++ = 1 ug/kg

balance on HCO3-

suppress Hematite, Goethite

go

The resulting fluid contains about 8 mg kg�1 (0.25 mmol) of dissolved oxygen.
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Fig. 31.1. Calculated variation in pH during reaction of pyrite with a hypothetical ground-
water at 25 °C, assuming that the fluid is isolated from (fine line) and in contact with (bold
line) atmospheric oxygen.

We then add pyrite to the system

(cont’d)

react 1 cm3 Pyrite

go

letting it react to equilibrium with the fluid. The reaction proceeds until the O2(aq)

has been consumed, dissolving a small amount of pyrite (about 0.08 mmol) accord-

ing to,

FeS2

pyrite

C7=2 O2(aq)C2HCO�
3 ! FeCC C2 SO��

4 C2 CO2(aq)CH2O : (31.1)

The fluid’s pH in the model changes slightly (Fig. 31.1), decreasing from 6.8 to

about 6.6.

To see how contact with atmospheric oxygen might affect the reaction, we repeat

the calculation, assuming this time that oxygen fugacity is fixed at its atmospheric

level

(cont’d)

fix f O2(g)

go

In this case, the reaction proceeds without exhausting the oxygen supply, which in

the calculation is limitless, driving pH to a value of about 1.7 (Fig. 31.1). We could,

in fact, continue to dissolve pyrite into the fluid indefinitely, thereby reaching even

lower pH values.

Initially, pyrite oxidation in the model proceeds according to the reaction
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Fig. 31.2. Masses of species produced by reacting pyrite with a hypothetical groundwa-
ter that is held in equilibrium with atmospheric oxygen, according to the reaction path
calculation shown in Figure 31.1.

FeS2

pyrite

C 15=4 O2(g) C 1=2 H2O ! FeSOC
4 C SO��

4 C HC (31.2)

as shown in Figure 31.2, producing HC and thus driving the fluid acidic. According

to the model, the pyrite dissolution produces ferric iron in an ion pair with sulfate.

As the pH decreases, HSO�
4 comes to dominate SO��

4 and a second reaction,

FeS2

pyrite

C 15=4 O2(g) C 1=2 H2O ! FeSOC
4 C HSO�

4 (31.3)

becomes important. This reaction produces no free hydrogen ions and hence does

not contribute to the fluid’s acidity.

Our calculated reaction path may reasonably well represent the overall reaction

of pyrite as it oxidizes, but it does little to illustrate the steps that make up the

reaction process. Reaction 31.2, for example, involves the transfer of 16 electrons

to oxygen, the electron acceptor in the reaction, from the iron and sulfur in each

FeS2 molecule. Elementary reactions (those that proceed on a molecular level),

however, seldom transfer more than one or two electrons. Reaction 31.2, therefore,

would of necessity represent a composite of elementary reactions.

In nature, at least two aqueous species, O2(aq) and FeCCC, can serve as electron

acceptors during the pyrite oxidation (Moses et al., 1987). In the case of FeCCC,

the oxidation reaction proceeds as,
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FeS2

pyrite

C 14 FeCCC C 8 H2O ! 15 FeCC C 2 SO��
4 C 16 HC : (31.4)

This reaction, while still not an elementary reaction, more closely describes how

the oxidation proceeds on a molecular level. Even where Reaction 31.4 operates,

however, our model may still represent the overall process occurring in nature,

since O2 is needed to produce the FeCCC that drives the reaction forward and is,

therefore, the ultimate oxidant in the system.

Even neglecting the question of the precise steps that make up the overall reac-

tion, our calculations are a considerable simplification of reality. The implicit as-

sumption that iron in the fluid maintains redox equilibrium with the dissolved oxy-

gen, as described in Chapter 7, is especially vulnerable. In reality, the ferrous iron

added to solution by the dissolving pyrite must react with dissolved oxygen to pro-

duce ferric species, a process that may proceed slowly. To construct a more realistic

model, we could treat the dissolution in two steps by disenabling the FeCC/FeCCC

redox couple. In the first step we would let pyrite dissolve, and in the second, let

the ferrous species oxidize.

31.2 Buffering by wall rocks

The most important control on the chemistry of drainage from mineralized areas

(once we assume access of oxygen to the sulfide minerals) is the nature of the

nonsulfide minerals available to react with the drainage before it discharges to the

surface (e.g., Sherlock et al., 1995). These minerals include gangue minerals in

the ore, the minerals making up the country rock, and the minerals found in mine

dumps. The drainage chemistry of areas in which these minerals have the ability to

neutralize acid differs sharply from that of areas in which they do not.

In the Colorado Mineral Belt (USA), for example, deposits hosted by argillically

altered wallrocks (as in Summitville) tend to produce highly acidic and metal-

rich drainage, because the wallrocks have a negligible capacity for buffering acid

(Plumlee, 1994b). In contrast, ores that contain carbonate minerals or are found in

carbonate terrains, as well as those with propylitized wallrocks, can be predicted

to produce drainages of near-neutral pH. These waters may be rich in zinc but are

generally not highly enriched in other metals.

In the historic silver mining districts of the Wasatch Range (Utah, USA), Mayo

et al. (1992) found that few springs in the area discharge acid drainage. Acid

drainage occurs only where groundwater flows through aquifers found in rocks

nearly devoid of carbonate minerals. Where carbonate minerals are abundant in the

country rock, the discharge invariably has a near-neutral pH.

To model the effect of carbonate minerals on drainage chemistry, we continue
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Fig. 31.3. Variation in pH as pyrite reacts at 25 °C with a groundwater held in equilib-
rium with atmospheric O2, calculated assuming that the reaction occurs in the absence of
buffering minerals (fine line, from Fig. 31.1) and in the presence of calcite (bold line).

our calculations from the previous section (in which we reacted pyrite with a

hypothetical groundwater in contact with atmospheric oxygen). This time, we

include calcite (CaCO3) in the initial system

(cont’d)

swap Calcite for HCO3-

10 free cm3 Calcite

balance on Ca++

go

In contrast to the previous calculation, the fluid maintains a near-neutral pH

(Fig. 31.3), reflecting the acid-buffering capacity of the calcite.

As the pyrite dissolves by oxidation, calcite is consumed and ferric hydroxide

precipitates (Fig. 31.4) according to the reaction,

FeS2

pyrite

C 2 CaCO3

calcite

C 3=2 H2O C 15=4 O2(g) !

Fe.OH/3
ferric hydroxide

C 2 CaCC C 2 SO��
4 C 2 CO2(aq) I

(31.5)

CaCC and SO��
4 accumulate in the fluid, eventually causing gypsum (CaSO4 �

2H2O) to saturate and precipitate. At this point, the overall reaction becomes,

FeS2

pyrite

C 2 CaCO3

calcite

C 11=2 H2O C 15=4 O2(g) !

Fe.OH/3
ferric hydroxide

C 2 CaSO4 � 2H2O

gypsum

C 2 CO2(aq) :

(31.6)
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Fig. 31.4. Volumes (cm3) of minerals consumed (negative values) and precipitated (posi-
tive values) as pyrite reacts at 25 °C with a groundwater in equilibrium with atmospheric
O2 in the presence of calcite.

In the calculation, reaction of 1 cm3 of pyrite consumes about 3.4 cm3 of calcite,

demonstrating that considerable quantities of buffering minerals may be required

in mineralized areas to neutralize drainage waters.

The accumulation of CO2(aq) over the reaction path (according to Reactions

31.5–31.6) raises the fluid’s CO2 fugacity to a value greater than atmospheric

pressure. In nature, CO2(g) would begin to effervesce,

CO2(aq) ! CO2(g) ; (31.7)

at about this point in the reaction, causing pH to increase to values somewhat

greater than predicted by the reaction path, which did not account for degassing.

(As a variation of the calculation, we could account for the degassing by reacting

enough pyrite to bring fCO2
to one, “picking up” the calculation results, fixing the

fugacity, and then reacting the remaining pyrite.)

In the two calculations (one including, the other excluding calcite), the resulting

fluids differ considerably in composition. After reaction of 1 cm3 of pyrite at

atmospheric oxygen fugacity, the compositions are

No calcite Calcite

pH 1.7 5.6

Fe (mg kg�1) 2300 0.03

SO4 8000 1800

Ca 9.9 1100

HCO3 74 6000
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Whereas pyrite oxidation in the absence of calcite produces H–Fe–SO4 drainage,

the reaction in the presence of calcite yields a Ca–HCO3–SO4 drainage.

31.3 Fate of dissolved metals

The metal concentrations in acid drainage can be alarmingly high, but in many

cases they are attenuated to much lower levels by natural processes (and sometimes

by remediation schemes) near the drainage discharge area. Attenuation results from

a variety of processes. The drainage, of course, may be diluted by base flow and by

mixing with other surface waters. More significantly, drainage waters become less

acidic after discharge as they react with various minerals, mix with other waters

(especially those rich in HCO�
3 ), and in some cases lose CO2 to the atmosphere.

As pH rises, the metal content of drainage water tends to decrease. Some metals

precipitate directly from solution to form oxide, hydroxide, and oxy-hydroxide

phases. Iron and aluminum are notable is this regard. They initially form colloidal

and suspended phases known as hydrous ferric oxide (HFO, FeOOH � nH2O) and

hydrous aluminum oxide (HAO, AlOOH � nH2O), both of which are highly soluble

under acidic conditions but nearly insoluble at near-neutral pH.

The concentrations of other metals attenuate when the metals sorb onto the sur-

faces of precipitating minerals (see Chapter 10). Hydrous ferric oxide, the behavior

of which is well studied (Dzombak and Morel, 1990), has a large specific surface

area and is capable of sorbing metals from solution in considerable amounts, espe-

cially at moderate to high pH; HAO may behave similarly. The process by which

HFO or HAO form and then adsorb metals from solution, known as coprecipitation,

represents an important control on the mobility of heavy metals in acid drainages

(e.g., Chapman et al., 1983; Johnson, 1986; Davis et al., 1991; Smith et al., 1992).

To see how this process works, we construct a model in which reaction of a hy-

pothetical drainage water with calcite leads to the precipitation of ferric hydroxide

[Fe.OH/3, which we use to represent HFO] and the sorption of dissolved species

onto this phase. We assume that the precipitate remains suspended in solution with

its surface in equilibrium with the changing fluid chemistry, using the surface com-

plexation model described in Chapter 10. In our model, we envisage the precipitate

eventually settling to the stream bed and hence removing the sorbed metals from

the drainage.

We do not concern ourselves with the precipitate that lines sediments in the

stream bed, since it formed earlier while in contact with the drainage, and hence

would not be expected to continue to sorb from solution. Smith et al. (1992), for

example, found that in an acid drainage from Colorado (USA), sorption on the

suspended solids, rather than the sediments along the stream bed, controls the

dissolved metal concentrations.
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As the first step in the coprecipitation process, ferric hydroxide precipitates

either from the effect of the changing pH on the solubility of ferric iron,

FeCCC C 3 H2O ! Fe.OH/3
ferric hydroxide

C 3 HC ; (31.8)

or by the oxidation of ferrous species

FeCC C 1=4 O2(aq) C 5=2 H2O ! Fe.OH/3
ferric hydroxide

C 2 HC (31.9)

in solution. For simplicity, we assume in our calculations that the dissolved iron

has already oxidized, so that Reaction 31.8 is responsible for forming the sorbing

phase.

In REACT, we prepare the calculation by disenabling the redox couple between

trivalent and pentavalent arsenic (arsenite and arsenate, respectively). As well,

we disenable the couples for ferric iron and cupric copper, since we will not

consider either ferrous or cupric species. We load dataset “FeOH+.dat”, which

contains the reactions from the Dzombak and Morel (1990) surface complexation

model, including those for which binding constants have only been estimated. The

procedure is

decouple AsO4---

decouple Cu++

decouple Fe+++

surface_data = FeOH+.dat

We then define an initial fluid representing the unreacted drainage. We set the

fluid’s iron content by assuming equilibrium with jarosite [NaFe3.SO4/2.OH/6]

and prescribe a high content of dissolved arsenite, arsenate, cupric copper, lead,

and zinc. Finally, we suppress hematite and goethite (which are more stable than

ferric hydroxide) two ferrite minerals (e.g., ZnFe2O4), which we consider unlikely

to form, and the PbCO3 ion pair, which is erroneously stable in the thermodynamic

database.

(cont’d)

swap Jarosite-Na for Fe+++

1 free ug Jarosite-Na

pH = 3

Na+ = 10 mg/kg

Ca++ = 10 mg/kg

Cl- = 20 mg/kg

HCO3- = 100 mg/kg

balance on SO4--

As(OH)4- = 200 ug/kg
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AsO4--- = 1000 ug/kg

Cu++ = 500 ug/kg

Pb++ = 200 ug/kg

Zn++ = 18000 ug/kg

suppress Hematite, Goethite, Ferrite-Zn, Ferrite-Cu, PbCO3

To calculate the effect of reacting calcite with the drainage, we enter the command

(cont’d)

react 4 mmol Calcite

delxi = .002

and type go to trigger the calculation.

In the calculation, calcite dissolves into the drainage according to,

CaCO3

calcite

C 2 HC ! CaCC C CO2(aq) C H2O (31.10)

and

CaCO3

calcite

C HC ! CaCC C HCO�
3 ; (31.11)

consuming HC and causing pH to increase. The shift in pH drives the ferric iron in

solution to precipitate as ferric hydroxide, according to Reaction 31.8. A total of

about 0.89 mmol of precipitate forms over the reaction path.

The distribution of metals between solution and the ferric hydroxide surface

varies strongly with pH (Fig. 31.5). As discussed in Sections 10.4 and 14.3, pH

exerts an important control over the sorption of metal ions for two reasons. First,

the electrical charge on the sorbing surface tends to decrease as pH increases, less-

ening the electrical repulsion between surface and ions. More importantly, because

hydrogen ions are involved in the sorption reactions, pH affects ion sorption by

mass action. The sorption of bivalent cations such as CuCC,

>.s/FeOHC
2 C CuCC ! >.s/FeOCuC C 2 HC ; (31.12)

is favored as pH increases, and there is a similar effect for PbCC and ZnCC.

Sorption of arsenite is also favored by increasing pH, according to the reaction

>.w/FeOHC
2 C As.OH/3 ! >.w/FeH2AsO3 C H2O C HC : (31.13)

As a result, the metal ions are progressively partitioned onto the ferric hydroxide

surface as pH increases.

Arsenate sorbs onto the ferric hydroxide surface over the pH range of the calcu-

lation because of its ability to bond tightly with the surface’s weakly sorbing sites.
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Fig. 31.5. Minerals formed during reaction at 25 °C of a hypothetical acid drainage water
with calcite (top), and fractions of the amounts of arsenite, arsenate, copper, lead, and zinc
present initially in solution that sorb onto ferric hydroxide over the course of the reaction
path (bottom). Bottom figure is plotted against pH, which increases as the water reacts with
calcite.

Initially, the arsenate sorbs,

>.w/FeOHC
2 C H2AsO�

4 !> .w/FeH2AsO4 C H2O ; (31.14)

by complexing with the protonated weak sites. As pH increases, the surface species

>.w/FeHAsO�
4 and>.w/FeOHAsO���

4 come to predominate, and the arsenate is

partitioned even more strongly onto the sorbing surface.

It is useful to compare the capacity for each metal to be sorbed (the amount of

each that could sorb if it occupied every surface site) with the metal concentra-

tions in solution. To calculate the capacities, we take into account the amount of

ferric precipitate formed in the calculation (0.89 mmol), the number of moles of

strongly and weakly binding surface sites per mole of precipitate (0.005 and 0.2,

respectively, according to the surface complexation model), and the site types that

accept each metal [As.OH/�4 and AsO���
4 sorb on weak sites only, whereas PbCC,

CuCC, and ZnCC sorb on both strong and weak].
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Comparing the initial metal concentrations to the resulting capacities for sorp-

tion

Maximum sorbed In solution

Component (mg kg�1) (mg kg�1)

As.OH/�4 25.4 0.2

AsO���
4 24.7 1.0

CuCC 11.6 0.5

PbCC 37.8 0.2

ZnCC 11.9 18.0

we see that the precipitate forms in sufficient quantity to sorb the arsenic initially

present in solution as well as the lead and copper, but only a fraction of the zinc. An

initial consideration in evaluating the ability of coprecipitation to attenuate metal

concentrations in a drainage water, therefore, is whether the sorbing mineral forms

in a quantity sufficient to sorb the water’s metal content.
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Contamination and remediation

Groundwater remediation is the often expensive process of restoring an aquifer

after it has been contaminated, or at least limiting the ability of contaminants there

to spread. In this chapter, we consider the widespread problem of the contamination

of groundwater flows with heavy metals. We use reactive transport modeling to

look at the reactions that occur as contaminated water enters a pristine aquifer, and

those accompanying remediation efforts.

The method or methods employed to remediate an aquifer vary, depending on

the type, degree, and extent of contamination. Where pollution is shallow and

dispersed over a small area, the sediments can sometimes be dug up and transported

to a landfill designed especially to isolate the contaminants. Permeable reaction

barriers can be installed to intercept a contaminant plume and strip pollutants from

it, if the plume is shallow and narrowly focused.

Metal contaminants can in some cases be immobilized in situ by oxidation or

reduction, or precipitated by reaction with sulfide. Sulfate reducing bacteria are

sometimes stimulated to produce sulfide, or a sulfur-bearing compound such as

calcium polysulfide can be injected into the subsurface as a reductant and sulfide

source. In certain cases where the contamination poses little immediate threat, it

can safely be left to attenuate naturally (e.g., Brady et al., 1998), a procedure known

as monitored natural attenuation.

Remediation more commonly proceeds by a pump-and-treat scheme in which

contaminated water is drawn from the aquifer and treated at the surface to re-

move contaminant metals, before being discharged or reinjected into the aquifer. A

pump-and-treat remedy can be prolonged, projected not uncommonly to proceed

over the course of many decades before the contaminants might be largely flushed

from the aquifer.

Any remedial scheme involves considerable expense to design, license, imple-

ment, operate, and monitor. As such, there is much emphasis currently on under-
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standing in a quantitative sense the reactions operating during a remedy, in order

to optimize its design and better predict its efficacy and duration.

32.1 Contamination with inorganic lead

We construct in this section a model of how inorganic lead reacts as it infiltrates and

contaminates an aquifer, and then as the aquifer is flushed with fresh water during

pump-and-treat remediation (Bethke, 1997; Bethke and Brady, 2000). We assume

groundwater in the aquifer contacts hydrous ferric oxide [Fe.OH/3, for simplicity]

which sorbs PbCC ions according to the surface complexation model of Dzombak

and Morel (1990), as discussed in Chapter 10.

We employ the LLNL thermodynamic data for aqueous species, as before, omit-

ting the PbCO3 ion pair, which in the dataset is erroneously stable by several orders

of magnitude. The reactions comprising the surface complexation model, includ-

ing those for which equilibrium constants have only been estimated, are stored in

dataset “FeOH+.dat”.

We consider a 100-m length of an aquifer with a porosity of 30% and a nominal

dispersivity of 10 cm; the dispersivity reflected in the calculation results will be

somewhat larger than this value, due to the effects of numerical dispersion. The

domain is divided into 100 nodal blocks, each 1 m long. We assume local equi-

librium, so time enters into the calculation only as a measure of the cumulative

volume of fluid that has passed through the aquifer. Specifying the aquifer’s pore

volume be replaced 30 times over the course of the simulation, and setting the time

span to 30 years, each year in the simulation corresponds to a single replacement

of the aquifer’s pore fluid.

Initially, the aquifer contains a dilute Ca–HCO3 groundwater, including a neg-

ligible amount of PbCC as well as an equal quantity of Br�, which serves in the

calculation as a non-reactive tracer. At the onset of the simulation, water containing

1 mmolal PbCC and Br� passes into the aquifer until half its pore volume has been

displaced. At this point, the composition of water entering the aquifer changes to

that of the initial fluid, uncontaminated water nearly devoid of lead and bromide.

The simulation continues until water in the aquifer has been replaced 30 times.

We assume PbCC during imbibition of the contaminated fluid is retarded by

a factor of two (RF = 2; see Section 21.1). This retardation requires the metal

ion to be sorbed on the ferric surface to its aqueous concentration, 1 mmolal.

Accounting for the concentrations of the two forms of sorbed lead, >.w/FeOPbC

and >.s/FeOPbC, after reaction with the contaminated fluid, this retardation is

expected when the sorbing mineral Fe.OH/3 makes up 0.0085 volume percent of

the aquifer.

The procedure in X1T is
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surface_data = FeOH+.dat

decouple Fe+++

suppress PbCO3

time start = 0 yr, interval-2 = 1/2 yr, end = 30 yr

length = 100 m

Nx = 100

discharge = 30 pore_volumes

porosity = 30%

dispersivity = 10 cm

scope initial

swap Fe(OH)3(ppd) for Fe+++

Fe(OH)3(ppd) = .0085 volume%

pH = 6

Ca++ = 2.0 mmolal

balance on HCO3-

Pb++ = 1e-12 mmolal

Br- = 1e-12 mmolal

scope inlet = initial

Pb++ = 1 mmolal

Br- = 1 mmolal

scope inlet-2 = inlet-1

Pb++ = 1e-12 mmolal

Br- = 1e-12 mmolal

dx_init = 1e-4

dxplot = 1/120

precip = off

go

In the calculation results (Fig. 32.1), PbCC passing into the aquifer sorbs

strongly to the ferric surface,

>.w/FeOH C PbCC ! >.w/FeOPbC C HC

>.s/FeOH C PbCC ! >.s/FeOPbC C HC ;
(32.1)

occupying most of the weak sites and almost all the strong sites. Due to the strong

sorption, the PbCC forms a sharp reaction front that passes along the aquifer at

half the speed of the groundwater flow, which is reflected by the advance of the

non-reacting Br�. The sorbing sites behind the front are almost fully complexed

with the PbCC, which is present in solution at the inlet concentration. Ahead of the

front, the lead has been stripped from the flow, leaving the aquifer and groundwater

there uncontaminated.

When half the aquifer’s pore volume has been displaced, the inlet fluid in the

simulation changes to uncomtaminated water. At this point, the contamination has

progressed across one-quarter of the aquifer, reflecting the retardation factor of two.
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Fig. 32.1. Simulation of the contamination at 25 °C of an aquifer with inorganic lead. The
100-m long section of aquifer contains a small amount of Fe.OH/3, to which PbCC sorbs.
Aquifer is initially uncontaminated, but at t = 0 water containing 1 mmolal PbCC and 1
mmolal Br�, which serves as a non-reactive tracer, passes into the left side. PbCC is taken
to sorb according to surface complexation theory, and the amount of Fe.OH/3 is chosen so
that migration of the metal is retarded by a factor of two relative to the groundwater flow.
After half the groundwater has been displaced by the contaminated water (1/2 p.v.), clean
water is flushed through the aquifer.

Clean water pushes the remaining contaminated water across the reaction front,

causing the residual PbCC to sorb. Contamination in the groundwater attenuates in

this way, as lead is taken up by the sorbing surface.
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Fig. 32.2. Remediation of the aquifer shown in Figure 32.1, as the simulation continues.
After water contaminated with PbCC displaces half of the aquifer’s pore volume, clean
water is flushed through the aquifer until a total of 30 pore volumes have been replaced.
Flushing attenuates PbCC concentration in the groundwater (top), so that it gradually ap-
proaches drinking water standards (MCL, or Maximum Contamination Level), and slowly
displaces most of the sorbed metal from the Fe.OH/3 surface, primarily from the weak
surface sites.

As clean water passes into the aquifer, some of the lead, primarily that sorbed to

weak sites, begins to desorb,

>.w/FeOPbC C HC ! >.w/FeOH C PbCC ; (32.2)

as shown in Figure 32.2. The metal is carried downstream with the flow, where it

sorbs to clean aquifer sediments as it crosses the reaction front (Reactions 32.1). In

this manner, the extent of the contaminated aquifer sediments gradually increases.

The reaction front reaches the end of the aquifer in the simulation after somewhat

less than three pore volumes have been displaced. At this point, the contaminant

begins to pass out of the domain. Remediation of the aquifer, however, proceeds

slowly, as shown in Figure 32.2. Even after 30 pore volumes have been flushed,

some lead remains sorbed to weak sites in the aquifer sediments, and the PbCC

concentration in the groundwater remains above the limits sets as drinking water
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standards (the MCL, or Maximum Contaminant Level, set by the USEPA is 0.015

mg kg�1, or about 7�10�5 mmolal) across half the aquifer.

A notable aspect of the calculation results is their asymmetry: metal sorbs to

the aquifer in a pattern that differs sharply from the way it desorbs. When the

aquifer is invaded by contaminated water, the PbCC complexes strongly with the

ferric surface along a sharply defined reaction front. The front, separating clean

from polluted water, migrates along the aquifer at one half the velocity of the

groundwater flow. Contaminating any portion of the aquifer, and the groundwater

within it, then, requires that the water be replaced with polluted water just twice.

During elution by clean water, in contrast, a well-defined desorption front fails

to develop. Instead, the metal desorbs gradually across a broad area. To clear

enough lead from the aquifer to meet drinking water standards, the pore fluid in the

simulation must be replaced dozens of times, much more often than was required

initially to contaminate the aquifer.

These results differ sharply from the behavior predicted by the distribution co-

efficient (Kd) approach. This approach, despite being broadly acknowledged as

too simplistic to describe the behavior of heavy metals, is nonetheless the sorption

model most commonly applied in studying aquifer remediation.

To compare the approaches, we repeat the simulation using the reaction Kd

method (Section 9.1) instead of surface complexation theory. By Equation 21.6,

the distribution coefficient K0
d corresponding to a retardation factor of two has a

value of 2:4 � 10�4 mol g�1. Saving this value in dataset “Pb Kd.dat”, we enter

the X1T commands

(cont’d)

surface_data OFF

surface_data Pb_Kd.dat

go

to rerun the simulation.

In the calculation results (Fig. 32.3), we see the PbCC contamination migrates

along the aquifer as a pulse, at half the speed of the groundwater flow. Unlike the

previous simulation, in which the contaminant during flushing decreased in con-

centration as it sorbed to an increasingly large portion of the aquifer, metal con-

centration attenuates by dispersive mixing only. Behind the pulse, also in contrast

to the previous simulation, the aqueous and sorbed concentrations of PbCC fall

rapidly to zero, leaving the aquifer and groundwater within it clean.

These results are misleading in two ways (Bethke and Brady, 2000; Brady and

Bethke, 2000). First, they suggest that the lead contamination, once introduced to

the aquifer, is highly mobile. In fact, once the source has been eliminated, the

contaminant can migrate only slowly through the aquifer, because most of the

metal sorbs to the aquifer and desorbs only slowly, limiting mobility. Second, the
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Fig. 32.3. Comparison of the simulation results from Figure 32.1 (solid lines), which were
calculated using a surface complexation model, with a parallel simulation in which sorption
is figured by the reaction Kd approach (dashed lines). In each case, the retardation factor
RF for PbCC transport is two.

Kd results predict that flushing only a few pore volumes of clean water through

the aquifer can displace the contamination, suggesting pump-and-treat remedia-

tion will be quick and effective. Models constructed with the surface complexation

model, in contrast, depict pump-and-treat as a considerably slower and less effec-

tive remedy.
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32.2 Groundwater chromatography

In a second example of contaminant transport in the subsurface (Bethke, 1997),

we consider the phenomenon known as “groundwater chromatography.” When

two or more species in a groundwater flow sorb at different strengths, the species

may be subject to chromatographic effects. Such effects include segregation of the

various species into individual bands in the sorbate and development of species

concentrations in the flow greater than present originally in the unreacted fluid

(Valocchi et al., 1981).

The simulation is similar to the one in the previous section, except the inlet fluid

contains three metal ions, HgCC, PbCC, and ZnCC. The ions sorb to weak sites

according to,

>.w/FeOH C HgCC ! >.w/FeOHgC C HC

>.w/FeOH C PbCC ! >.w/FeOPbC C HC

>.w/FeOH C ZnCC ! >.w/FeOZnC C HC ;

(32.3)

and by parallel reactions for the strong sites, giving >.s/FeOHgC, >.s/FeOPbC,

and >.s/FeOZnC. From the corresponding binding constants

logK.w/ logK.s/

HgCC 6:45 7:76

PbCC 0:30 4:65

ZnCC �1:99 0:99

(the constant for PbCC at weak sites is estimated) we see that HgCC binds more

strongly to hydrous ferric oxide than PbCC, which binds more strongly than ZnCC.

The procedure in X1T is

surface_data = FeOH+.dat

decouple Fe+++

suppress PbCO3

time start = 0 yr, end = 1 yr

length = 100 m

Nx = 100

discharge = 1 pore_volume

porosity = 30%

dispersivity = 10 cm

scope initial

swap Fe(OH)3(ppd) for Fe+++

Fe(OH)3(ppd) = .005 volume%

pH = 6

Ca++ = 2.0 mmolal

balance on HCO3-
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Fig. 32.4. Chromatographic separation of metal contaminants in a groundwater flow at
25 °C, due to differential sorption. According to the surface complexation model used,
HgCC in the simulation sorbs more strongly to the ferric surface in the aquifer than PbCC,
which sorbs more strongly than ZnCC. Plot at top shows concentrations of the metal ions
in groundwater, and bottom plot shows sorbed metal concentrations.
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go

Figure 32.4 shows the calculation results.

As the contaminated fluid in the simulation passes into the aquifer, the HgCC

ions sorb to the ferric surface tightly enough to exclude the other metals. Once the

HgCC is exhausted from the fluid, the PbCC begins to sorb, and the ZnCC sorbs

where the PbCC is depleted, leaving each metal bound within its own chromato-

graphic band. Where HgCC in the migrating fluid passes from the first to second

band, it displaces PbCC,

>.w/FeOPbC C HgCC ! >.w/FeOHgC C PbCC (32.4)
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from the sorbate, since both metals compete for the same sites.

At this point, there are two sources of dissolved PbCC: the metal carried in

solution from the inlet and that desorbed at this interface, due to competition with

HgCC. The PbCC concentration downstream from this reaction, for this reason,

rises well above that of the unreacted fluid. At the interface between the second

and third bands, similarly, PbCC displaces ZnCC,

>.w/FeOZnC C PbCC ! >.w/FeOPbC C ZnCC ; (32.5)

allowing the zinc to build up to levels above those at the inlet. As these reactions

proceed, the interfaces between the bands – and hence the bands themselves –

migrate slowly downstream, as do the pulses of highest PbCC and ZnCC concen-

tration.
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Microbial communities

Geochemists increasingly find a need to better understand the distribution of micro-

bial life within the geosphere, and the interaction of the communities of microbes

there with the fluids and minerals they contact. How do geochemical conditions de-

termine where microbial communities develop, and what groups of microbes they

contain? And how do those communities affect the geochemistry of their environ-

ments?

In many cases, microbial life in nature develops into zones within which com-

munities are dominated by one or a few functional groups, such as aerobes, sulfate

reducers, or methanogens. Distinct zoning is characteristic, for example, of micro-

bial mats (Konhauser, 2007), hot springs (Fouke et al., 2003), marine sediments

and freshwater muds (Berner, 1980), contaminated aquifers (Bekins et al., 1999),

and pristine groundwater flows (Chapelle and Lovley, 1992). Communities develop

as well in laboratory experiments, when microbes are cultivated in pure or mixed

culture.

In this chapter, we consider how to construct quantitative models of the dynam-

ics of microbial communities, building on our discussion of microbial kinetics in

Chapter 18. In our modeling, we take care to account for how the ambient geo-

chemistry controls microbial growth, and the effect of the growth on geochemical

conditions.

33.1 Arsenate reduction by Bacillus arsenicoselenatis

Blum et al. (1998) isolated a bacterial strain Bacillus arsenicoselenatis from muds

of Mono Lake, a hypersaline alkaline lake in northern California (see Section 24.2).

Under anaerobic conditions in saline water, over an optimum pH range of 8.5–10,

the strain can respire using As(V), or arsenate, as the electron acceptor, reducing it

to As(III), arsenite.

In a batch experiment, Blum et al. (1998; their Fig. 4) were able to grow the

471



472 Microbial communities

0

5

10

Lactate

0

5

10

As(V)

0 20 40 60

0

10

20

Time (hours)

Biomass

(mg kg−1)

mmolal

Acetate

mmolal

Cells

(106 ml−1)

0

20

40

A A
A

A
A
A

A
A A A

I I
I

I
I
I I

I I I

B B

B

B

B

B

B

B B B

J J
J

J

J
J

J
J J J

K K
K

K

K

KK

K

zero

As(III)

Fig. 33.1. Results of a batch experiment (symbols) by Blum et al. (1998) in which Bacillus
arsenicoselenatis grows on lactate, using arsenate [As(V)] as an electron acceptor. Solid
lines show results of integrating a kinetic rate model describing microbial respiration and
growth.

strain at 20 °C on arsenate in saline water, using lactate as the electron donor. In this

section, we develop a kinetic description of arsenate reduction in the experiment.

Following Jin and Bethke (2003), we pay attention to thermodynamic as well as

kinetic controls on the reaction rate.

In the experiment (Fig. 33.1), the strain oxidized the lactate to carbonate plus

acetate, according to the reaction

CH3CH.OH/COO�

lactate

C2 HAsO��
4 C 2 H2O !

CO��
3 C CH3COO�

acetate

C 2 As.OH/�4 :

(33.1)
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Capturing energy liberated by the reaction, the microbial population grew almost

40-fold over the course of the experiment, which lasted about 3 days. Reaction

proceeded increasingly rapidly as the microbial population, and hence the system’s

catalytic ability increased. After about a day, however, the reaction started to slow,

and then it stopped altogether, even though all the lactate and arsenate had not been

consumed.

The growth medium was a saline fluid buffered to pH 9.8, containing as back-

ground electrolyte 80 g l�1 NaCl and 2.5 g l�1 Na2CO3, as well as various nutri-

ents. As the experiment progressed, the authors sampled and analyzed the fluid for

its lactate, acetate, arsenate, and arsenite content, and measured its cell density. To

convert cell densities to biomass, we assume here that microbes on average weigh

0.5�10�12 g, as suggested by their dimensions in photomicrographs.1

Following the discussion in Chapter 18, the rate r (mol s�1) at which the strain

catalyzes the progress of Reaction 33.1 can be expressed as,

r D nw kC ŒX	 FDFAFT ; (33.2)

where nw is water mass (kg), kC is the rate constant (mol mg�1 s�1), ŒX	 is

biomass (mg kg�1),FD andFA are unitless kinetic factors representing the electron

donating and accepting reactions, and FT is the thermodynamic potential factor,

also unitless. The latter is given by,

FT D 1 � exp

�
�Gr Cm �GP

� RTK

�
(33.3)

where �Gr is the free energy change of Reaction 33.1, the energy available in

the fluid; m is the number of ATPs produced per reaction turnover; �GP is the

energy (kJ mol�1) needed to synthesize ATP in the cell; � is the reaction’s average

stoichiometric number; R is the gas constant (8.3143 J mol�1 K�1); and TK is

absolute temperature (K).

From the donating and accepting half reactions, we assume in the absence of

other information that the kinetic factors take the following forms:

FD D mLac

mLac CKD mAcmCO��
3

(33.4)

and

FA D mHAsO��
4

mHAsO��
4

CKA mAs.OH/�
4

; (33.5)

where mLac and mAc are the molal concentrations of lactate and acetate ions, the

kinetic constantKD has units of molal�1, andKA is unitless. We will assume these

1 This cell mass differs somewhat from that assumed by Jin and Bethke (2003), leading to slightly different
values of kinetic parameters, when expressed per mg of biomass.
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simple Monod-like forms are sufficiently accurate for our needs, but as discussed

in Chapter 18 the nature of the kinetic factors can be demonstrated rigorously only

through careful experimentation.

We can estimate nATP from energetics, assuming reaction ceases when the en-

ergy available in the fluid balances that needed to synthesize ATP, or indepen-

dently from details of the lactate oxidation and arsenate reduction pathways (Jin

and Bethke, 2003). Either way, the value is about 2.5. We can take �GATP under

cellular conditions to be about 50 kJ mol�1. Assuming the translocation of protons

across the cellular membrane is the rate limiting step, the average stoichiometric

number � is four, since one proton is translocated for each electron passing through

the transport chain, and Reaction 33.1 transfers four electrons. The thermodynamic

potential factor is now given by,

FT D 1 � exp

�
�Gr C 125 kJ mol�1

4 RTK

�
(33.6)

from Equation 33.3.

We use Equation 18.11,

dŒX	

dt
D Y r

nw
�D ŒX	 ; (33.7)

to account for the accumulation of biomass due to microbial growth. The growth

yield Y in this equation is given by the amount of biomass created in the experiment

per mole of lactate consumed, about 5000 mg mol�1, and we take the decay

constant D to be zero over the brief experiment. Finally, the cell density of about

106 ml�1 observed at the onset of the experiment equates to 0.5 mg kg�1 of initial

biomass. The only unknown values needed to integrate the rate law are the rate

constant kC and the kinetic constantsKA and KD.

Before running the model, we need to include lactate ion in the thermodynamic

database. To do so, we add a redox couple,

CH3CH.OH/COO�

lactate

C 3 O2(aq) � 2 HC C 3 HCO�
3 ; (33.8)

with a logK at 20 °C of 231.4 and store the result in a dataset “thermo+Lactate-

.dat”. To model the experiment in REACT, we load the reaction dataset; decouple

redox reactions for lactate, acetate, and arsenate; set the background electrolyte;

and set initial concentrations of lactate and arsenate, and arbitrarily small quantities

of the metabolic products acetate and arsenite

data = thermo+Lactate.dat

time end = 60 hours

T = 20

decouple Lactate, CH3COO-, AsO4---
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swap CO3-- for HCO3-

Na+ = 1448 mmolal

Cl- = 1400 mmolal

CO3-- = 24 mmolal

pH = 9.8

Lactate = 10 mmolal

AsO4--- = 10 mmolal

CH3COO- = .001 mmolal

As(OH)4- = .001 mmolal

We then set a pH buffer and define the microbial rate law

(cont’d)

fix pH

kinetic microbe-Ba n

rxn = "Lactate + 2*HAsO4-- + 2*H2O -> n

CH3COO- + CO3-- + 2*As(OH)4-", n

biomass = .5, growth_yield = 5000, n

ATP_energy = -50, ATP_number = 2.5, order1 = 1/4, n

mpower(Lactate) = 1, mpowerD(Lactate) = 1, n

mpowerD(CH3COO-) = 1, mpowerD(CO3--) = 1, n

mpower(HAsO4--) = 1, mpowerA(HAsO4--) = 1, n

mpowerA(As(OH)4-) = 1

To complete the calculation, we need to find values for the rate constant kC and

kinetic constantsKD and KA.

We set the kinetic constants to zero initially, forcing the kinetic factors FD and

FA to one, their likely values at the onset of reaction. Adjusting kC, we find a rate

constant of 7�10�9 mol mg�1 s�1

(cont’d)

kinetic microbe-Ba KD = 0, KA = 0

kinetic microbe-Ba rate_con = 7e-9

go

reproduces well the results of first stages of reaction. We then adjust KD and KA

to obtain a slightly improved fit to data from later in the experiment

(cont’d)

kinetic microbe-Ba KD = 10, KA = .1

go

settling on values of 10 molal�1 for KD and 0.1 (no units) for KA. Figures 33.1–

33.2 show the modeling results. The results, in fact, are not especially sensitive

to the choice of KD and KA because, as shown in Figure 33.2, for appropriate

choices of these variables the kinetic factors do not deviate from unity until after

the thermodynamic potential factor has started to decrease sharply.
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Fig. 33.2. Factors controlling reaction rate (expressed per kg water, as r=nw ) in the simu-
lation of bacterial arsenic reduction, including kinetic factors FD and FA, thermodynamic
potential factor FT, and biomass concentration ŒX�. Biomass concentration determines the
rate early in the simulation, but later the thermodynamic drive exerts the dominant control.

The principal controls on the microbial reaction rate in our example, then, are

biomass and thermodynamic drive (Fig. 33.2). Initially, in the presence of abundant

lactate and arsenate, the rate is controlled by the size of the microbial population

available to catalyze lactate oxidation. As the population increases, so does reac-

tion rate. Later, as reactants are consumed and products accumulate, the reaction

approaches the point at which the energy liberated by its progress is balanced by

that needed in the cell to synthesize ATP. Reaction rate is governed now by the

energy available to drive forward the cellular metabolism, this energy represented

by the thermodynamic potential factor FT; over the course of the experiment, the

kinetic factors FD and FA play minor roles.

Such a pattern is not typical of microbial metabolisms that exploit more ener-

getically favorable reactions. Aerobic oxidation of organic molecules, for exam-

ple, generally liberates sufficiently large amounts of energy that, in the presence

of detectable organic species and dioxygen, the reaction is favored strongly. As

the reaction progresses, its rate is controlled by the kinetic factors, rather than the

thermodynamic potential factor, which remains close to unity.
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33.2 Zoning in an aquifer

Pristine groundwater flows commonly pass through zones within which the ac-

tivity of a single functional group of microorganisms appears to dominate micro-

bial activity. Groundwater rich in dissolved iron, for example, seems to develop

in anaerobic aquifers where iron-reducing bacteria are more active than sulfate

reducers (Chapelle and Lovley, 1992). Methane accumulates where favored accep-

tors such as dioxygen, ferric iron, and sulfate are absent; under these conditions,

hydrogentrophic methanogens can reduce bicarbonate to methane, and acetoclastic

methanogens can cleave acetate into methane and bicarbonate (Roden and Wetzel,

2003). And where bacterial sulfate reduction dominates microbial activity, the con-

centrations of natural contaminants such as heavy metals and arsenic may be held

low (Kirk et al., 2004).

We consider here how reactive transport modeling might be used to describe the

development of such zoning. We take a clastic aquifer, 200 km long and with a

porosity of 30%, through which groundwater flows at a discharge of 10 m yr�1.

The groundwater contains 1 mmolal CaCC, 2 mmolal HCO�
3 , 40 �molal SO��

4 ,

and negligibly small initial amounts of acetate (CH3COO�), sulfide (HS�), and

methane (CH4); its pH is 7.5. The simulation runs for 100 000 years, long enough

for water to be replaced five times, and for microbial populations and groundwater

composition to approach a steady state.

Aquifer sediments in the model are confined by and interleaved with fine-grained

sediments that contain sedimentary organic matter. The organic matter decays

gradually by microbial fermentation and anaerobic oxidation,

Cn � m H2O

organic matter

! n

2
CH3COO�

acetate

C n

2
HC C .m� n/ H2O (33.9)

to simpler compounds, represented in the simulation by acetate.

At t = 0, acetate begins to diffuse from the fine-grained layers into the aquifer,

where it can serve as the substrate for acetotrophic sulfate reduction,

CH3COO� C SO��
4 ! 2 HCO�

3 C HS� (33.10)

and acetoclastic methanogenesis

CH3COO� C H2O ! CH4(aq) C HCO�
3 : (33.11)

Acetate is added to the aquifer sediments at a rate of 4 �mol m�3 yr�1, within

the range of 2–5 �mol m�3 yr�1 observed by Park et al. (2006) in nonmarine

sediments of a coastal plain aquifer.

The two functional groups of microbes in the aquifer, the sulfate reducing bac-

teria and methanogens, are present initially in small amounts, just 10�6 mg kg�1,

but their populations can grow as they derive energy by metabolizing the acetate.
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The acetotrophic sulfate reducers proceed at a rate r (mol s�1) given by Equation

18.16, the thermodynamically consistent dual Monod equation,

r D nw kC ŒX	
mAc

mAc CK0
D

mSO4

mSO4
CK0

A

FT ; (33.12)

where mAc and mSO4
are the molal concentrations of acetate and sulfate species,

and K0
D and K0

A are the half-saturation constants (molal) for the electron donating

and accepting half-reactions. The thermodynamic potential factor FT is given by

Equation 33.3, and Equation 33.7 describes growth and decay of the microbial

population over the course of the simulation.

Following the calculations in Section 18.5, we take a rate constant kC for sulfate

reduction of 10�9 mol mg�1 s�1, a half-saturation constant K0
D for acetate of 70

�molal, and a growth yield of 4300 mg mol�1 from a study of the kinetics of

Desulfobacter postgatei by Ingvorsen et al. (1984). We set a value for K0
A, the

half-saturation constant for sulfate, of 200 �molal, as suggested by Ingvorsen et

al. (1984) and Pallud and Van Cappellen (2006).

Taking the rate limiting step in the electron transport chain to be trans-membrane

proton translocation, which occurs about five times per sulfate consumed (Rabus et

al., 2006), the average stoichiometric number � (entered into REACT as ! D 1=�)

for Reaction 33.10 is five. Sulfate reducers conserve about 45 kJ mol�1 of sulfate

consumed (Qusheng Jin, unpublished data), so we set �GP to this value and m to

one.

For the methanogens, we use Equation 18.15, the thermodynamically consistent

Monod equation,

r D nw kC ŒX	
mAc

mAc CK0
D

FT (33.13)

as the rate law. From an experimental study by Yang and Okos (1987) of the

growth of Methanosarcina sp., we take a rate constant kC of 2 � 10�9 mol mg�1

s�1, a half-saturation constant K0
D of 20 mmolal, and a growth yield of 2000 mg

mol�1. (The notation K0
D here is arbitrary, since acetate serves in the metabolism

as electron acceptor as well as donor.) The value assumed for the rate constant at

25 °C is one half that observed at 35 °C, since reaction rate approximately doubles

over this temperature interval (Huser et al., 1982).

Experimental studies of Methanosarcina and current understanding of the organ-

ism’s metabolic pathway allow us to estimate the parameters in the thermodynamic

term (Qusheng Jin, personal communication). The methanogens conserve about 24

kJ (mol acetate)�1, so we set �GP to 48 kJ mol�1 and m to one half. A double

proton translocation occurs within the central metabolic pathway, furthermore, so,

if we take these as the rate limiting steps, the average stoichiometric number � is

two.
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It is difficult to estimate the decay constant D from the results of laboratory

experiments, since microbes in the natural environment are more likely to die from

predation (e.g., Jurkevitch, 2007) than spontaneous decay. Instead, we figure a

value from Equation 33.7, setting dŒX	=dt D 0 to reflect the steady state. In this

case, we see the molal reaction rate, expressed per unit biomass,

r

nw ŒX	
D D

Y
(33.14)

equals the ratio of the decay constant to growth yield. Substituting into this equa-

tion the rate law for sulfate reducing bacteria (Eqn. 33.12) and taking mAc to be

� K0
D and mSO4

� K0
A, the decay constant is given by,

D D Y kC
mAc

K0
D

mSO4

K0
A

FT : (33.15)

If we choose as representative conditions 1 �molal acetate, 10 �molal sulfate, and

a thermodynamic factor FT of 0.4, and use the kinetic parameters already cited,D

is about 10�9 s�1, a value we carry for both functional groups of microbes.

To set up the simulation, we use the thermodynamic dataset from the calculation

in Section 18.5, which was expanded to include mackinawite (FeS). As before,

we suppress the iron sulfide minerals pyrite and troilite, and decouple acetate and

methane from carbonate, and sulfide from sulfate. We set the aquifer to include a

small amount of siderite, which serves as a sink for aqueous sulfide,

FeCO3

siderite

C HS� ! FeS

mackinawite

C HCO�
3 : (33.16)

In this way, we avoid having the sulfide produced by the sulfate reducers accumu-

late in solution, inhibiting further reaction.

The procedure in X1T is

data = thermo+Mackinawite.dat

suppress Pyrite, Troilite

decouple CH3COO-, CH4(aq), HS-

time end = .1 m.y.

length = 200 km

Nx = 50

discharge = 10 m/yr

porosity = 30%

dispersivity = 1 m

scope = initial

Ca++ = 1. mmolal

HCO3- = 2. mmolal

SO4-- = .04 mmolal
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CH3COO- = .001 umolal

HS- = .001 umolal

CH4(aq) = .001 umolal

swap Siderite for Fe++

.1 volume% Siderite

pH = 7.5

balance on HCO3-

scope = inlet

Ca++ = 1. mmolal

HCO3- = 2. mmolal

SO4-- = .04 mmolal

CH3COO- = .001 umolal

HS- = .001 umolal

CH4(aq) = .001 umolal

swap Siderite for Fe++

pH = 7.5

balance on HCO3-

react 4 umol/m3yr CH3COO-

react 2 umol/m3yr Ca++

kinetic microbe-SRB n

rxn = "CH3COO- + SO4-- -> 2*HCO3- + HS-", n

biomass = 10^-6, growth_yield = 4300, decay_con = 10^-9, n

ATP_energy = -45, ATP_number = 1, order1 = 1/5, n

mpower(CH3COO-) = 1, mpowerD(CH3COO-) = 1, n

mpower(SO4--) = 1, mpowerA(SO4--) = 1, n

rate_con = 10^-9, KD = 70e-6, KA = 200e-6

kinetic microbe-Meth n

rxn = "CH3COO- + H2O -> CH4(aq) + HCO3-", n

biomass = 10^-6, growth_yield = 2000, decay_con = 10^-9, n

ATP_energy = -48, ATP_number = 1/2, order1 = 1/2, n

mpower(CH3COO-) = 1, mpowerD(CH3COO-) = 1, n

rate_con = 2e-9, KD = 20e-3

theta = 1

dxplot .1 log

Typing go triggers the calculation.

Figures 33.3–33.4 show the results at the end of the simulation, after groundwa-

ter composition and microbial activity across the aquifer have approached steady

state. Once the sulfate initially present is consumed or flushed from the aquifer, the

only source of sulfate is in the recharging groundwater. With time in the simula-

tion, sulfate reducing bacteria grow into a community that consumes sulfate from

the recharging groundwater and some of the acetate diffusing into the aquifer; the

acetate and sulfate are consumed in equal molar proportions, according to Reac-
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Fig. 33.3. Steady-state distribution of microbial activity and groundwater composition in
an aquifer hosting acetotrophic sulfate reduction and acetoclastic methanogenesis, obtained
as the long-term solution to a reactive transport model.

tion 33.10. Biomass in the aquifer evolves at each point in the aquifer to the level

needed for the concentrations of sulfate and acetate to satisfy Equation 33.15, the

steady-state criterion.

Sulfate reducing bacteria exclude methanogens completely from the upstream

portion of the aquifer in an interesting way: they hold acetate concentration to a

level at which acetoclastis proceeds at a rate insufficient to allow methanogens
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(bottom). Factors include the thermodynamic potential factor FT, kinetic factors FD D
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D/ and FA D mSO4
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CK 0
A/, and biomass concentration ŒX�.

to grow as fast as they die. Specifically, as shown by the steady state condition

(Eqn. 33.14), the criterion for maintaining a population of methanogens,

kC
mAc

K0
D

FT D D

Y
; (33.17)

is that reaction rate per unit biomass (the left side of the equation, from Equation

33.13) must match the ratio of the decay constant to growth yield. The sulfate

reducers do not allow this and hence methanogens, even in the presence of a strong

thermodynamic drive for acetoclastis (Fig. 33.4), cannot colonize this portion of

the aquifer.

As groundwater flows along the aquifer, its sulfate content is gradually depleted

by the sulfate reducers. The acetate added to the aquifer is not consumed com-

pletely by the microbes, so acetate concentration gradually rises, as required by

Equation 33.15. About 100 km along the flow, acetate concentration rises to the
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point at which methanogens can maintain a population, according to Equation

33.17.

From this point, sulfate reducers are at a disadvantage. They must compete with

methanogens for acetate, and do so in the presence of little sulfate, the paucity

of which slows their metabolism (Fig. 33.4). Acetoclastis becomes the dominant

metabolism downstream in the aquifer. Methanogens here grow to form a second

microbiological zone, which they dominate. The zone is marked geochemically by

a rise in acetate concentration and the accumulation in the flowing groundwater of

dissolved methane.





Appendix 1

Sources of modeling software

The following is a list, current at the time of publication, of sources of some of the

most popular geochemical modeling software programs and packages. Some of the

packages are available for download at no cost, whereas others may be licensed for

a fee.

The range of modeling packages available, as well as the capabilities of the codes

is continuously expanding. In addition to the sources listed below, you may wish

to consult one of the summary pages available on the web, including

chess.ensmp.fr/chemsites.html

water.usgs.gov/software/geochemical.html

www.fz-rossendorf.de/FWR/VB/modeling.shtml

You should consult the software documentation or web page for details prior to

seeking user assistance, keeping in mind that software authors do not necessarily

provide this service themselves.

CHEMEQL

origin: Beat Müller

Limnological Research Center

EAWAG/ETH

CH-6047 Kastanienbaum, Switzerland

internet: www.eawag.ch/research_e/surf/-

Researchgroups/-

sensors_and_analytic/chemeql.html

reference: Müller (2004)

485
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CHESS, HYTEC

origin: Jan van der Lee

Centre d’Informatique Géologique

Ecole des Mines de Paris

Fontainebleau, France

internet: chess.ensmp.fr

reference: van der Lee (1993)

CHILLER

origin: Mark H. Reed

Department of Geological Sciences

1272 University of Oregon

Eugene, Oregon 97404-1272 USA

internet: mhreed@uoregon.edu

reference: Reed (1982)

CRUNCH

origin: Carl Steefel

Geochemistry Department

Earth Sciences Division

Lawrence Berkeley National Laboratory

1 Cyclotron Road, Mail Stop 90R1116

Berkeley, CA 94720 USA

internet: www.csteefel.com/CrunchPublic/-

WebCrunch.html

references: Steefel and Yabusaki (1996),

Steefel (2001)

EQ3/EQ6

origin: Thomas J. Wolery

Lawrence Livermore National Laboratory

Livermore, California USA

internet: www.llnl.gov/IPandC/technology/-

software/softwaretitles/eq36.php

reference: Wolery (1992a)
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GEOCHEM-PC

origin: David R. Parker

Department of Soil and Environmental Sciences

University of California

Riverside, California 92521 USA

internet: www.envisci.ucr.edu/index.php?-

file=faculty/parker/parker.html

reference: Parker et al. (1995)

The Geochemist’s Workbench®

origin: Hydrogeology Program

Department of Geology

University of Illinois

Urbana, Illinois USA

internet: www.geology.uiuc.edu/Hydrogeology/-

hydro_gwb.htm

www.rockware.com/catalog/pages/gwb.html

reference: Bethke (2007)

GEMS-PSI

origin: Dmitrii A. Kulik

Laboratory for Waste Management

Paul Scherrer Institute

CH-5232 Villigen PSI Switzerland

internet: les.web.psi.ch/Software/GEMS-PSI

reference: Kulik (2002)

HYDROGEOCHEM

origin: Gour-Tsyh Yeh

322 Engineering Building

University of Central Florida

Orlando, Florida 32186 USA

internet: www.scisoftware.com/products/-

hydrogeochem_overview/-

hydrogeochem_overview.html

reference: Cheng and Yeh (1998)
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MINEQL+

origin: Dr. William Schecher

Environmental Research Software

Hallowell, Maine USA

internet: www.mineql.com

references: Westall et al. (1976), Schecher and

McAvoy (1994)

MINTEQA2

origin: US Environmental Protection Agency

National Exposure Research Laboratory

Athens, Georgia USA

internet: www.epa.gov/ceampubl/mmedia/minteq

reference: Allison et al. (1991)

PHREEQC

origin: David Parkhurst

US Geological Survey

Lakewood, Colorado USA

internet: wwwbrr.cr.usgs.gov/projects/GWC_coupled/-

phreeqc

reference: Parkhurst (1995), Parkhurst and Appelo (1999)

SOLMINEQ.88 pc/shell, GAMSPATH.99

origin: E.H. Perkins

Alberta Research Council

P.O. Box 8330

Edmonton, Alberta T6H 5X2 Canada

internet: www.telusplanet.net/public/geogams

reference: Perkins (1992)

TOUGHREACT

origin: Energy Science and Technology Software Center

P.O. Box 1020

Oak Ridge, Tennessee 37831 USA

internet: www-esd.lbl.gov/TOUGHREACT

reference: Xu et al. (2004)
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VISUAL MINTEQ

origin: Jon Petter Gustafsson

Land and Water Resources Engineering

Brinellvägen 28

100 44 Stockholm

Royal Institute of Technology, KTH

Sweden

internet: www.lwr.kth.se/English/OurSoftware/vminteq

references: hem.bredband.net/b108693/-

VisualMINTEQ_references.pdf

WATEQ4F

origin: US Geological Survey

Hydrologic Analysis Software Support Program

437 National Center

Reston, Virginia 20192 USA

internet: water.usgs.gov/software/wateq4f.html

reference: Ball and Nordstrom (1991)

WHAM

origin: Ed Tipping

Centre for Ecology and Hydrology

Lancaster Environment Centre

Library Avenue

Bailrigg, Lancaster, LA1 4AP

internet: windermere.ceh.ac.uk/aquatic_processes/-

wham

reference: Tipping (1994)





Appendix 2

Evaluating the HMW activity model

The best way to fully understand the calculation procedure for the Harvie–Møller–

Weare activity model (Harvie et al., 1984) is to carry through a simple example

by hand. In this appendix, we follow the steps in the procedure outlined in Tables

7.1–7.3, using the model coefficients given in Tables 7.4–7.7.

We take as an example a 6 molal NaCl solution containing 0.01 molal CaSO4.

Since the only species considered for this chemical system are NaC, Cl�, CaCC,

and SO��
4 , we can immediately write down the species molalities mi along with

their charges zi :

mi zi

NaC 6 C1
Cl� 6 �1
CaCC 0:01 C2
SO��

4 0:01 �2

The only task left to us is to calculate the activity coefficients.

GIVEN DATA. The following data are model parameters from Tables 7.4–7.7.

ˇ
.0/
MX Cl� CaCC SO��

4

NaC 0:0765 – 0:01958

Cl� � 0:3159 –

CaCC � � 0:2

ˇ
.1/
MX Cl� CaCC SO��

4

NaC 0:2664 – 1:113

Cl� � 1:614 –

CaCC � � 3:1973

491
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ˇ
.2/
MX Cl� CaCC SO��

4

NaC 0 – 0

Cl� � 0 –

CaCC � � �54:24

C
�
MX Cl� CaCC SO��

4

NaC 0:00127 – 0:00497

Cl� � �0:00034 –

CaCC � � 0

˛MX Cl� CaCC SO��
4

NaC 2 – 2

Cl� � 2 –

CaCC � � 1:4

�ij Cl� CaCC SO��
4

NaC – 0:07 –

Cl� � – 0:02

CaCC � � –

 aa0NaC Cl� CaCC SO��
4

NaC – – –

Cl� � – 0:0014

CaCC � � –

 aa0CaCC Cl� CaCC SO��
4

NaC – – –

Cl� � – �0:018
CaCC � � –

 cc0Cl� Cl� CaCC SO��
4

NaC – �0:007 –

Cl� � – –

CaCC � � –
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 cc0SO��
4

Cl� CaCC SO��
4

NaC – �0:055 –

Cl� � – –

CaCC � � –

There are no neutral species; hence, no �ni .

STEP 1. The solution ionic strength I and total molal charge Z are

I D 1
2
Œ1 � 6 C 1 � 6 C 4 � 0:01 C 4 � 0:01	 D 6:04 molal

Z D 1 � 6 C 1� 6 C 2 � 0:01 C 2 � 0:01 D 12:04 molal

STEP 2. Using the program in Table A2.1, we calculate values for E�ij .I / and
E� 0

ij .I /:

E�ij .I / Cl� CaCC SO��
4

NaC – �0:05933 –

Cl� � – �0:05933
CaCC � � –

E� 0
ij .I / Cl� CaCC SO��

4

NaC – 0:004861 –

Cl� � – 0:004861

CaCC � � –

STEP 3. Values for functions g.x/ and g0.x/, taking x D ˛MX

p
I , are

g.˛MX

p
I/ Cl� CaCC SO��

4

NaC 0:07919 – 0:07919

Cl� � 0:07919 –

CaCC � � 0:1449

g0.˛MX

p
I/ Cl� CaCC SO��

4

NaC �0:07186 – �0:07186
Cl� � �0:07186 –

CaCC � � �0:1129
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Table A2.1. Program (ANSI C) for calculating E�ij .I / and E� 0
ij .I / at 25 °C

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

void calc_lambdas(double is);

void calc_thetas(double is, int z1, int z2,

double *etheta, double *etheta_prime);

double elambda[17], elambda1[17];

void main() {

double etheta, etheta_prime, is;

int z1, z2;

while (printf("Enter I, z1, z2: ")

&& scanf("%lf %i %i", &is, &z1, &z2) == 3) {

if (abs(z1) <= 4 && abs(z2) <= 4 && is > 0) {

calc_lambdas(is);

calc_thetas(is, z1, z2, &etheta, &etheta_prime);

printf("E-theta(I) = %f, E-theta’(I) = %f\n\n", etheta, etheta_prime);

}

else

printf("Input data out of range\n");

}

}

void calc_lambdas(double is) {

double aphi, dj, jfunc, jprime, t, x, zprod;

int i, ij, j;

/* Coefficients c1-c4 are used to approximate the integral function "J";

aphi is the Debye-Huckel constant at 25 C */

double c1 = 4.581, c2 = 0.7237, c3 = 0.0120, c4 = 0.528;

aphi = 0.392; /* Value at 25 C */

/* Calculate E-lambda terms for charge combinations of like sign,

using method of Pitzer (1975). */

for (i=1; i<=4; i++) {

for (j=i; j<=4; j++) {

ij = i*j;

zprod = (double)ij;

x = 6.0* zprod * aphi * sqrt(is); /* eqn 23 */

jfunc = x / (4.0 + c1*pow(x,-c2)*exp(-c3*pow(x,c4))); /* eqn 47 */

t = c3 * c4 * pow(x,c4);

dj = c1* pow(x,(-c2-1.0)) * (c2+t) * exp(-c3*pow(x,c4));

jprime = (jfunc/x)*(1.0 + jfunc*dj);

elambda[ij] = zprod*jfunc / (4.0*is); /* eqn 14 */

elambda1[ij] = (3.0*zprod*zprod*aphi*jprime/(4.0*sqrt(is))

- elambda[ij])/is;

}

}

}

void calc_thetas(double is, int z1, int z2,

double *etheta, double *etheta_prime) {

int i, j;

double f1, f2;

/* Calculate E-theta(I) and E-theta’(I) using method of Pitzer (1987) */

i = abs(z1);

j = abs(z2);

if (z1*z2 < 0) {

*etheta = 0.0;

*etheta_prime = 0.0;

}

else {

f1 = (double)i/(double)(2*j);

f2 = (double)j/(double)(2*i); /* eqn A14 */

*etheta = elambda[i*j] - f1*elambda[j*j] - f2*elambda[i*i];

*etheta_prime = elambda1[i*j] - f1*elambda1[j*j] - f2*elambda1[i*i];

}

}
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STEP 4. The second virial coefficients for cation–anion pairs are

BMX Cl� CaCC SO��
4

NaC 0:09744 – 0:1077

Cl� � 0:4437 –

CaCC � � 0:5386

B 0
MX Cl� CaCC SO��

4

NaC �0:003169 – �0:01324
Cl� � �0:0192 –

CaCC � � �0:03909

B
�
MX Cl� CaCC SO��

4

NaC 0:07845 – 0:02774

Cl� � 0:3277 –

CaCC � � 0:3024

STEP 5. The third virial coefficients for cation–anion pairs are

CMX Cl� CaCC SO��
4

NaC 0:000635 – 0:001757

Cl� � �0:0001202 –

CaCC � � 0

STEP 6. The second virial coefficients for cation–cation and anion–anion pairs are

ˆij Cl� CaCC SO��
4

NaC – 0:01067 –

Cl� � – �0:03933
CaCC � � –

ˆ0
ij Cl� CaCC SO��

4

NaC – 0:004861 –

Cl� � – 0:004861

CaCC � � –
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ˆ
�
ij Cl� CaCC SO��

4

NaC – 0:04003 –

Cl� � – �0:00997
CaCC � � –

STEP 7. From the above results, the value of F is

F D �1:2568

STEP 8. The ion activity coefficients are calculated

NaC CaCC Cl� SO��
4

z2
i
F �1:2568 �5:0271 �1:2568 �5:0271

First sum 1:2194 5:3266 1:2259 1:4303

Second sum �0:0002 �0:1273 �0:0007 �0:4226
Third sum 0:0001 �0:0011 �0:0004 �0:0033
Fourth sum 0:0230 0:0459 0:0230 0:0459

Fifth sum 0:0 0:0 0:0 0:0

ln �i �0:0145 0:2170 �0:0090 �3:9768
�i 0:986 1:242 0:991 0:019

STEP 9. The quantity
P
i

mi .
 � 1/ is calculated

First term �1:4735
First sum 3:1211

Second sum �0:0002
Third sum �0:0001
Fourth sum 0:0

Fifth sum 0:0

1:6474 � 2 = 3.2948
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STEP 10. The activity of water is given

P
i

mi 12:02�P
i

mi

�

 15:3168

lnaw �0:2759
aw 0:759

We can use program REACT to quickly verify our calculations:

hmw

Na+ = 6 molal

Cl- = 6 molal

Ca++ = .01 molal

SO4-- = .01 molal

go

The values for �i and aw in the program output can be compared to the results

obtained in Steps 8 and 10.





Appendix 3

Minerals in the LLNL database

Mineral Chemical formula General type

Acanthite Ag2S sulfide

Akermanite Ca2MgSi2O7

Alabandite MnS sulfide

Albite NaAlSi3O8 feldspar

Albite high NaAlSi3O8 feldspar

Albite low NaAlSi3O8 feldspar

Alstonite BaCa.CO3/2 carbonate

Alunite KAl3.OH/6.SO4/2 sulfate

Amesite-14A Mg4Al4Si2O10.OH/8 serpentine

Amrphˆsilica SiO2 silica

Analc-dehydr NaAlSi2O6 zeolite

Analcime NaAlSi2O6 � H2O zeolite

Andalusite Al2SiO5

Andradite Ca3Fe2.SiO4/3 garnet

Anglesite PbSO4 sulfate

Anhydrite CaSO4 sulfate

Annite KFe3AlSi3O10.OH/2 mica

Anorthite CaAl2Si2O8 feldspar

Antarcticite CaCl2 � 6H2O halide

Anthophyllite Mg7Si8O22.OH/2 amphibole

Antigorite Mg24Si17O42:5.OH/31 serpentine

Aragonite CaCO3 carbonate

Arcanite K2SO4 sulfate

Arsenolite As2O3 oxide

(continues)
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Mineral Chemical formula General type

Arsenopyrite AsFeS sulfide

Artinite Mg2CO3.OH/2 � 3H2O carbonate

Azurite Cu3.CO3/2.OH/2 carbonate

Barite BaSO4 sulfate

Barytocalcite BaCa.CO3/2 carbonate

Bassanite CaSO4 � :5H2O sulfate

Bassetite Fe.UO2/2.PO4/2 phosphate

Beidellit-Ca Ca:165Al2:33Si3:67O10.OH/2 smectite

Beidellit-H H:33Al2:33Si3:67O10.OH/2 smectite

Beidellit-K K:33Al2:33Si3:67O10.OH/2 smectite

Beidellit-Mg Mg:165Al2:33Si3:67O10.OH/2 smectite

Beidellit-Na Na:33Al2:33Si3:67O10.OH/2 smectite

Berlinite AlPO4 phosphate

Bieberite CoSO4 � 7H2O sulfate

Birnessite Mn8O19H10

Bischofite MgCl2 � 6H2O chloride

Bixbyite Mn2O3 oxide

Bloedite Na2Mg.SO4/2 � 4H2O sulfate

Boehmite AlOOH hydroxide

Boltwood-Na Na:7K:3H3OUO2SiO4 � H2O

Boltwoodite K.H3O/UO2.SiO4/

Borax Na2B4O5.OH/4 � 8H2O borate

Boric acid B.OH/3.c/

Bornite Cu5FeS4 sulfide

Brezinaite Cr3S4 sulfide

Brucite Mg.OH/2 hydroxide

Burkeite Na6CO3.SO4/2 sulfide

Ca-Al Pyroxene CaAl2SiO6 pyroxene

Calcite CaCO3 carbonate

Carnallite KMgCl3 � 6H2O halide

Carnotite K2.UO2/2.VO4/2 vanadate

Cattierite CoS2 sulfide

Celestite SrSO4 sulfate

Cerussite PbCO3 carbonate

Chalcedony SiO2 silica

Chalcocite Cu2S sulfide

Chalcopyrite CuFeS2 sulfide

(continues)
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Mineral Chemical formula General type

Chamosite-7A Fe2Al2SiO5.OH/4 7 Å clay

Chloromagnesite MgCl2 halide

Chloropyromorphite Pb5.PO4/3Cl phosphate

Chrysotile Mg3Si2O5.OH/4 serpentine

Cinnabar HgS sulfide

Claudetite As2O3 oxide

Clinochl-14A Mg5Al2Si3O10.OH/8 chlorite

Clinochl-7A Mg5Al2Si3O10.OH/8
Clinoptil-Ca CaAl2Si10O24 � 8H2O zeolite

Clinoptil-K K2Al2Si10O24 � 8H2O zeolite

Clinoptil-Mg MgAl2Si10O24 � 8H2O zeolite

Clinoptil-Na Na2Al2Si10O24 � 8H2O zeolite

Clinozoisite Ca2Al3Si3O12.OH/ epidote

Coffinite USiO4 epidote

Colemanite Ca2B6O8.OH/6 � 2H2O borate

Copper Cu native element

Cordierˆanhy Mg2Al4Si5O18

Cordierˆhydr Mg2Al4Si5O18 � H2O

Corundum Al2O3 oxide

Covellite CuS sulfide

Cristobalite SiO2 silica

Cronstedt-7A Fe4SiO5.OH/4 serpentine

Cuprite Cu2O oxide

Daphnite-14A Fe5Al2Si3O10.OH/8 chlorite

Daphnite-7A Fe5Al2Si3O10.OH/8
Dawsonite NaAlCO3.OH/2 carbonate

Diaspore AlHO2 hydroxide

Diopside CaMgSi2O6 pyroxene

Dolomite CaMg.CO3/2 carbonate

Dolomite-dis CaMg.CO3/2 carbonate

Dolomite-ord CaMg.CO3/2 carbonate

Enstatite MgSiO3 pyroxene

Epidote Ca2FeAl2Si3O12OH epidote

Epidote-ord Ca2FeAl2Si3O12OH epidote

Epsomite MgSO4 � 7H2O sulfate

Eu Eu native element

Eucryptite LiAlSiO4

(continues)



502 Minerals in the LLNL database

Mineral Chemical formula General type

Fayalite Fe2SiO4 olivine

Ferrite-Ca CaFe2O4.c/

Ferrite-Cu CuFe2O4.c/

Ferrite-Mg MgFe2O4.c/

Ferrite-Zn ZnFe2O4

Ferrosilite FeSiO3 pyroxene

Fluorapatite Ca5.PO4/3F phosphate

Fluorite CaF2 fluoride

Forsterite Mg2SiO4 olivine

Galena PbS sulfide

Gaylussite CaNa2.CO3/2 � 5H2O carbonate

Gehlenite Ca2Al2SiO7

Gibbsite Al.OH/3 hydroxide

Goethite FeOOH hydroxide

Gold Au native element

Graphite C native element

Greenalite Fe3Si2O5.OH/4 serpentine

Grossular Ca3Al2Si3O12 garnet

Gummite UO3 oxide

Gypsum CaSO4 � 2H2O sulfate

Haiweeite Ca.UO2/2.Si2O5/3 � 5H2O

Halite NaCl halide

Hausmannite Mn3O4 oxide

Hedenbergite CaFe.SiO3/2 pyroxene

Hematite Fe2O3 oxide

Hercynite FeAl2O4 oxide

Heulandite CaAl2Si7O18 � 6H2O zeolite

Hexahydrite MgSO4 � 6H2O sulfate

Hinsdalite PbAl3.PO4/.SO4/.OH/6 phosphate

Huntite CaMg3.CO3/4 carbonate

Hydroboracite MgCa.B6O11/ � 6H2O borate

Hydromagnesite Mg5.CO3/4.OH/2 � 4H2O carbonate

Hydrophilite CaCl2 halide

Hydroxyapatite Ca5.PO4/3OH phosphate

Hydroxypyromorphite Pb5.PO4/3OH phosphate

Illite K:6Mg:25Al2:3Si3:5O10.OH/2 10 Å clay

Jadeite NaAl.SiO3/2 pyroxene

(continues)
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Mineral Chemical formula General type

Jarosite-K KFe3.SO4/2.OH/6 sulfate

Jarosite-Na NaFe3.SO4/2.OH/6 sulfate

K-feldspar KAlSi3O8 feldspar

Kainite KMgClSO4 � 3H2O sulfate

Kalicinite KHCO3 carbonate

Kalsilite KAlSiO4 feldspathoid

Kaolinite Al2Si2O5.OH/4 7 Å clay

Kasolite PbUO2SiO4 � H2O

Kieserite MgSO4 � H2O sulfate

Kyanite Al2SiO5

Larnite Ca2SiO4 olivine

Laumontite CaAl2Si4O12 � 4H2O zeolite

Lawrencite FeCl2 halide

Lawsonite CaAl2Si2O7.OH/2 � H2O epidote

Leonhardtite MgSO4 � 4H2O sulfate

Lime CaO oxide

Linnaeite Co3S4 sulfide

Magnesite MgCO3 carbonate

Magnetite Fe3O4 oxide

Malachite Cu2CO3.OH/2 carbonate

Manganite MnOOH hydroxide

Manganosite MnO oxide

Margarite CaAl4Si2O10.OH/2 mica

Maximum Microcline KAlSi3O8 feldspar

Melanterite FeSO4 � 7H2O sulfate

Mercallite KHSO4 sulfate

Merwinite Ca3Mg.SiO4/2 olivine

Metacinnabar HgS sulfide

Minnesotaite Fe3Si4O10.OH/2 mica

Mirabilite Na2SO4 � 10H2O sulfate

Misenite K8H6.SO4/7 sulfate

Modderite CoAs arsenide

Molysite FeCl3 halide

Monohydrocalcite CaCO3 � H2O carbonate

Monticellite CaMgSiO4 olivine

Mordenite-K KAlSi5O12 � 3H2O zeolite

Mordenite-Na NaAlSi5O12 � 3H2O zeolite

(continues)
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Mineral Chemical formula General type

Muscovite KAl3Si3O10.OH/2 mica

Nepheline NaAlSiO4 feldspathoid

Nesquehonite Mg.HCO3/.OH/ � 2H2O carbonate

Ningyoite CaU.PO4/2 � 2H2O phosphate

Nontronit-Ca Ca:165Fe2Al:33Si3:67O10.OH/2 smectite

Nontronit-K K:33Fe2Al:33Si3:67O10.OH/2 smectite

Nontronit-Mg Mg:165Fe2Al:33Si3:67O10.OH/2 smectite

Nontronit-Na Na:33Fe2Al:33Si3:67O10.OH/2 smectite

Orpiment As2S3 sulfide

Paragonite NaAl3Si3O10.OH/2 mica

Pargasite NaCa2Al3Mg4Si6O22.OH/2 amphibole

Pentahydrite MgSO4 � 5H2O sulfate

Petalite Li2Al2Si8O20 feldspathoid

Phengite KAlMgSi4O10.OH/2 mica

Phlogopite KAlMg3Si3O10.OH/2 mica

Pirssonite Na2Ca.CO3/2 � 2H2O carbonate

Plumbogummite PbAl3.PO4/2.OH/5 � H2O phosphate

Portlandite Ca.OH/2 hydroxide

Prehnite Ca2Al2Si3O10.OH/2 mica

Przhevalskite Pb.UO2/2.PO4/2 phosphate

Pseudowollastonite CaSiO3

Pyrite FeS2 sulfide

Pyrolusite MnO2 oxide

Pyrophyllite Al2Si4O10.OH/2 mica

Pyrrhotite Fe:875S sulfide

Quartz SiO2 silica

Quicksilver Hg native element

Rankinite Ca3Si2O7

Realgar AsS sulfide

Rhodochrosite MnCO3 carbonate

Rhodonite MnSiO3 pyroxene

Ripidolit-14A Fe2Mg3Al2Si3O10.OH/8 chlorite

Ripidolit-7A Fe2Mg3Al2Si3O10.OH/8
Rutherfordine UO2CO3 carbonate

Safflorite CoAs2 arsenide

Saleeite Mg.UO2/2.PO4/2 phosphate

Sanidine high KAlSi3O8 feldspar

(continues)



Minerals in the LLNL database 505

Mineral Chemical formula General type

Saponite-Ca Ca:165Mg3Al:33Si3:67O10.OH/2 smectite

Saponite-H H:33Mg3Al:33Si3:67O10.OH/2 smectite

Saponite-K K:33Mg3Al:33Si3:67O10.OH/2 smectite

Saponite-Mg Mg3:165Al:33Si3:67O10.OH/2 smectite

Saponite-Na Na:33Mg3Al:33Si3:67O10.OH/2 smectite

Scacchite MnCl2 halide

Schoepite UO2.OH/2 � H2O hydroxide

Scorodite FeAsO4 � 2H2O arsenide

Sepiolite Mg4Si6O15.OH/2 � 6H2O

Siderite FeCO3 carbonate

Sillimanite Al2SiO5

Silver Ag native element

Sklodowskite Mg.UO2/2.SiO4/2O6H14

Smectite-Reykjanes Na:33Ca:66K:03Mg1:29Fe:68� smectite

Mn:01Al1:11Si3:167O10.OH/2
Smectite-high-Fe-Mg Na:1Ca:025K:2Mg1:15Fe:7� smectite

Al1:25Si3:5O10.OH/2
Smectite-low-Fe-Mg Na:15Ca:02K:2Mg:9Fe:45� smectite

Al1:25Si3:75O10.OH/2
Smithsonite ZnCO3 carbonate

Soddyite .UO2/2.SiO4/ � 2H2O

Sphalerite ZnS sulfide

Spinel Al2MgO4 oxide

Spodumene-a LiAlSi2O6 pyroxene

Strengite FePO4 � 2H2O phosphate

Strontianite SrCO3 carbonate

Sulfur-Rhmb S native element

Sylvite KCl halide

Tachyhydrite Mg2CaCl6 � 12H2O halide

Talc Mg3Si4O10.OH/2 mica

Tenorite CuO oxide

Tephroite Mn2SiO4 olivine

Thenardite Na2SO4 sulfate

Thorianite ThO2 oxide

Todorokite Mn7O12 � 3H2O oxide

Torbernite Cu.UO2/2.PO4/2 phosphate

Tremolite Ca2Mg5Si8O22.OH/2 amphibole

(continues)
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Mineral Chemical formula General type

Tridymite SiO2 silica

Troilite FeS sulfide

Tsumebite Pb2Cu.PO4/.OH/3 � 3H2O phosphate

Tyuyamunite Ca.UO2/2.VO4/2 vanadate

Uraninite UO2 oxide

Uranocircite Ba.UO2/2.PO4/2 phosphate

Uranophane Ca.H2O/2.UO2/2.SiO2/2.OH/6 hydroxide

Vivianite Fe3.PO4/2 � 8H2O phosphate

Wairakite CaAl2Si4O10.OH/4 zeolite

Weeksite K2.UO2/2.Si2O5/3 � 4H2O

Whitlockite Ca3.PO4/2 phosphate

Witherite BaCO3 carbonate

Wollastonite CaSiO3

Wurtzite ZnS sulfide

Wustite Fe:947O oxide

Zoisite Ca2Al3Si3O12.OH/ epidote



Appendix 4

Nonlinear rate laws

As noted in Chapter 16, transition state theory does not require that kinetic rate

laws take a linear form, although most kinetic studies have assumed that they do.

The rate law for reaction of a mineral A Ek
can be expressed in the general nonlinear

form,

rEk
D sgn

 
1 � Q Ek

KEk

!
.AS kC/ Ek

EjY
.m Ej

/
P Ej Ek

ˇ̌̌
ˇ̌1 �

 
Q Ek

KEk

!! ˇ̌̌
ˇ̌
�

(A4.1)

where ! and � are arbitrary exponents that are determined empirically (e.g.,

Steefel and Lasaga, 1994). Here, sgn is a function that borrows the sign of its

argument; it equals positive one when the fluid is undersaturated and negative one

when it is supersaturated. This equation resembles the linear form of the rate law

(Eqn. 16.2) except for the presence of the exponents ! and �. When the values of

! and � are set to one, the rate law reduces to its linear form.

To incorporate nonlinear rate laws into the solution procedure for tracing kinetic

reaction paths (Section 16.3), we need to find the derivative of the reaction rate rEk
with respect to the molalitiesmi of the basis species Ai . The derivatives are given

by,

drEk

dmi
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(A4.2)

This formula replaces Equation 16.17 in the calculation procedure.
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Fig. A4.1. Variation of quartz saturation with time as quartz sand reacts at 100 °C with
deionized water, calculated according to nonlinear forms of a kinetic rate law using various
values of ! and 	.

To illustrate the effects of ! and� on reaction rates, we consider the reaction of

quartz with dilute water, from Chapter 16. As before, we begin in REACT

time begin = 0 days, end = 5 days

T = 100

pH = 7

Cl- = 10 umolal

Na+ = 10 umolal

SiO2(aq) = 1 umolal

react 5000 g Quartz

kinetic Quartz rate_con = 2.e-15 surface = 1000

and then set ! and � (keywords order1 and order2, respectively) to differing

values. For example,

(cont’d)

kinetic Quartz order1 = 1/2, order2 = 1

go

Figure A4.1 shows the calculation results.
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Acetate, 473–483
Acetogenesis, 336–340
Acetotrophy, 337–340
Acid drainage, 449–460

controls on metal content, 456–460
reaction with wall rocks, 453–456
role of oxygen, 450–453

Acidic waste, 431–433
Acidification (sample), 23, 95, 343
ACT2 software, xix, 226
Activation energy, see Arrhenius equation
Activity coefficient, 5, 34, 115–134

comparison of calculation methods, 127–133
during iteration, 65
effect on saturation index, 88
in brines, 97, 133–134, 321–325, 367–372, 441
uncertainty in, 25

Activity coefficient effect, 377
Activity, definition of, 34
Adenosine diphosphate (ADP), 110, 258–263
Adenosine triphosphate (ATP), 110, 257–268,

473–474
Advection, groundwater, 287–288
Advection–dispersion equation, 292–299

derivation, 292–293
finite difference approximation, 296
gridding of domain, 295–296
numerical dispersion, 298–299
numerical solution, 294–299
numerical stability, 297

Aeration, 431
Aerobic microbes, 471
Aerobic oxidation (microbial), 261, 264
Albigeois district, 320–325
Albite, dissolution of, 202–203, 400–404
Algebraic formulation (of equilibrium problem), 4
Alkali flooding (of petroleum reservoirs), 442–447
Alkali leaching, 411
Alkalinity, titration, 220–222
Aluminum solubility, 182–185
Aluminum, sorption onto, 456
Amazon River water, 93–97
Analcime formation, 445–447

Anhydrite
conversion to gypsum, 179
diagenetic, 379–385
petroleum reservoirs, 436–442
seafloor hydrothermal vents, 325–331

Arrhenius equation, 235, 240, 393, 396
Arsenate, 471–476
Arsenate reduction, 471
Arsenic, 477
Arsenite, 471–476
Atlantis II deep, 97–102
Atmosphere

access to sulfide minerals, 450
equilibrium with, 431
oxygen from and acid drainage, 450–453

ATP synthase (enzyme), 258
Attenuation, see Contaminant attenuation
Autocatalysis, 257, 266, 418–422
Average stoichiometric number, 262, 265, 473, 474,

478

B-dot model (activity coefficient), 81, 119–122,
127–134

Bacillus arsenicoselenatis, 471
Bacteria, see Aerobic microbes, see Aerobic oxidation

(microbial), see Iron reducing bacteria, see
Methanogenesis, see Methanotrophy, see
Microbes, chemosynthetic, see Microbial
community, see Sulfate reduction, bacterial, see
Sulfide oxidation, microbial

effect on reaction rates, 237
role in sulfide oxidation, 237, 450

Bacterial sulfate reduction, see Sulfate reduction,
bacterial

Barite, production of, 436–442
Basis swapping

and reaction balancing, 169–179
procedure, 71–79
reasons for, 71
to configure a model, 81
to find phase assemblage, 68–69, 91–92

Basis vector, 39, 139, 142
and chemical components, 32
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and swapping, 72
choice of, 36–38
equilibrium calculations, 53
surface complexation calculations, 160–161
test for validity, 74

Benzene, 310–315
Black smokers, 325–340
Brucite, production of, 429
Buffering reactions, 217–230

homogeneous versus heterogeneous, 217
involving a gas, 228–230
involving dissolved species, 218–222
involving minerals, 222–228
pH, see pH, buffering reactions, see pH, buffer

Bulk composition
calculation of, 67
components with negative mass, 38
reexpressing (after basis swap), 77–79

Calcite
buffering by, 222–225, 453–456, 458
conversion to dolomite, 278–283
dissolution of, 382–385
effect of CO2 on solubility of, 208–210
precipitation of, 359–361, 429
saturation state of, 381

Carbon dioxide
buffering by, 228–230
dissolution of, 208–210
effervescence, 225, 346
loss during evaporation, 358–361
production of, 431–433

Carbon dioxide fugacity
acidic waste, 432–433
alkaline waste, 430
during cooling, 343–347
during evaporation, 358–361, 368
effect on calcite solubility, 208–210
effect on isotope fractionation, 278–283
fixing pH, 82–86
hot spring water, 349
mine drainage, 455
spring water, 358

Carbonate buffer, 217–222
Catalysis, 245, 248–250, 257, 415–425
Cation exchange, 341
Cation exchange capacity (CEC), see Exchange

capacity
Celestite, production of, 436–442
Characteristic time, see Relaxation time
Charge balance, 45–47, 288, 292

during iteration, 66
in fixed-activity path, 204

CHEMEQL software, 485
Chemical divides, 362
Chemical potential, 32–36

aqueous species, 34
gas, 35
ideal solution, 33
mineral, 34–35

Chemosynthesis, 110–113, 257, 331–340

CHESS software, 485
CHILLER software, 4, 119, 486
Chromium, 254
Colloid, 23, 95, 422, 456
Competitive Langmuir model, 141
Complexing, see Ion pairing
Component

choice of, 5
definition of, 31

Computers and chemical modeling, 2
Conceptual model, 7–12, 26
Constant capacitance model, 156
Contaminant

attenuation, 303–304, 310
fate, 301
retardation, 303–304, 310

Contamination, sample, 23, 354
Coprecipitation, 456–460
Coulomb’s law, 115
Courant number, 297
CRUNCH software, 486

Damköhler number, 305–306, 408
and scale of observation, 306
reaction control, 305
transport control, 305

Darcy’s law, 285–287
Davies equation, 118–119
Debye–Hückel equation, 117
Debye–Hückel theory, 115, 117–122, 127–134, 377
Decay constant, 261, 474, 478, 479, 482
Deep waste injection wells, see Waste injection wells
Denver basin, 378–385
Deprotonation reactions, 123, 156–157, 211
Desulfobacter postgatei, 265, 478
Determinant (of transformation matrix), 74
Diagenesis, see Sediment diagenesis
Dielectric constant, 158
Diffuse layer theory, see Surface complexation
Diffusion, molecular, 285, 291–292

coefficient of, 291
Dismutation reaction, 259
Dispersion, hydrodynamic, 285, 289–291

as differential advection, 289
coefficient of, 289
dispersion tensor, 290
dispersive flux, 290
macroscopic, 289
microscopic, 289

Dispersivity, 299–300
definition, 289
variation with scale, 290

Distributed parameter model, 301
Distribution coefficient approach, 137–140, 150–153,

155, 304, 312, 466–467
Dolomite

cementation by, 374–385
conversion of limestone, 278–283
isotopic composition of, 278–283, 375, 379–385
reaction with caustic waste, 428–431
reaction with hydrochloric acid, 431–433
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saturation in seawater, 89
Double layer model, see Surface complexation
Dual Monod equation, 260–264, 478
Dump configuration, 19, 198

East Pacific Rise, 325–340
Eh

calculation of, 49–50
definition of, 49
interpretation of, 103–113

Eh electrode, 49, 103–105, 107
El Melah brine deposit, see Sebkhat El Melah
Electrical charge, see Surface charge
Electrical interaction, ionic, 115–116
Electrolyte dissociation, theory of, 4
Electron acceptor, 110, 257–260, 263
Electron donor, 110, 257–260, 263
Electron transport chain, 110, 258
Electron transport phosphorylation, 259
Electroneutrality, see Charge balance
Electrostatic theory, see Debye–Hückel theory
Energy yield, 338–340
Energy, available to microbes, 110–113, 331–340
Environmental concerns

fish kills, 431
groundwater pollution, 461–470
isolation of waste from biosphere, 427
landfill, 137
mine drainage, 137, 449
mobility of contaminants, 155
pesticide production, 428
radioactive waste repository, 137
salinity of Mono Lake, 362

Environmental regulations, 427
Enzyme, 245, 250–252, 257
EQ3/EQ6 software, 4–5, 17, 119, 123, 269, 486
Equilibrium

approach to, 387–392, 401–404, 409
assumption of, 25
definition of, 9
distribution of species, 81–102
dynamic, 391–392
kinetic interpretation, 233
local, 10
metastable, 9, 86, 326–331, 403
partial, 9–10
point of a reaction, 32–36
state in multicomponent systems, 29–51
temperature, 179, 349–350, 353–355

Equilibrium constant
automatic calculation of, 171–172, 174
definition of, 35–36
recalculation (after basis swap), 76–77

Equilibrium equations, 176–179
Equilibrium models, 4, 12–13
Equilibrium system, 8–12
Error

analytical, 22–23, 88
due to averaging, 88–89
due to fluid mixing, 88–89
effect of filtering, 23, 95

in integrating differential equations, 4
in thermodynamic data, 24–25, 88, 96

Evaporation, 357–372
of Mono Lake, 362–366
of seawater, 367–372
of spring water, 357–362

Evaporites, 133–134, 367–372
Exchange capacity, 139, 142, 144, 153
Exchange coefficient, 143
Extracting overall reaction, see

Slopes-of-the-lines-method

Faraday constant, 49, 157
Fate and transport model, see Reactive transport

model
Fermentation, microbial, 111, 257–260, 413, 477
Ferric hydroxide

precipitation of, 450, 454–455
sorption onto, 156–167, 210–214, 457, 462, 468

Fick’s law (of diffusion and dispersion), 289
Fixed-activity path, 15–16, 203–204
Fixed-fugacity path, 15, 203–207
Flow-through configuration, 17–18, 198, 371–372
Fluid cooling, 202–203, 320–340, 343–347
Fluid inclusions, 126, 320
Fluid mixing

and mineral saturation, 88–89
and ore deposition, 324–331
and polythermal path, 201
and reservoir scaling, 436–442
and sediment diagenesis, 375–378, 380–385

Fluorine, complexing with aluminum, 322–325
Fluorite

deposition of, 320–325
dissolution reactions, 187
fixing calcium content, 187–189

Flush configuration, 18–19, 198–200, 202, 280, 443
Formation damage

in petroleum reservoirs, 436–447
near waste injection wells, 427

Fountain formation, 379–385
Fractionation, see Flow-through configuration, see

Isotopes, stable
Free energy

and chemical potential, 32–36
excess, 123

Free energy change of reaction
automatic calculation of, 171–172
Microbial reaction, 262

Free energy minimization, 3
Freundlich isotherm, 137, 140–141, 150–153, 155,

304
Fugacity, see Carbon dioxide fugacity, see Partial

pressure
calculation of, 48
definition of, 35

Fugacity coefficient, 35

Gaines–Thomas convention (ion exchange), 143–146
GAMSPATH.99 software, 488
Gapon convention (ion exchange), 143–146
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Gas blowouts, 431–433
Gas buffer, 12, 29

fixed-fugacity path, 203–207
sliding-fugacity path, 207–215
stable isotopes, 277–278

Gas condensate (geothermal production), 352
Gas constant, 33, 49, 158, 235, 262, 473
Gaylussite, 362–366
GEMS-PSI software, 487
GEOCHEM-PC software, 486
Geochemical zoning, 471–483
Geochemist’s Workbench® software, xix, 487
Geothermal fields, 319, 341, 347–355
Geothermometry, 341–355
Gippsland basin, 374–378
Governing equations, 38–50, 53–55, 60–67, 160–161
Groundwater chromatography, 468–470
Groundwater contamination, 461–470

by lead, 462–470
by mercury, 468–470
by zinc, 468–470

Groundwater flow, 278–283, 285–300, 319, 341, 374,
379–385, 395–397, 405–413, 461–471, 477–483

Groundwater remediation, 461–470
Groundwater velocity, 286
Groundwater, contaminant plume, 461
Growth yield, 261, 265, 474, 478, 479, 482
GTPLOT software, xix, 131
Gypsum

dehydration of, 179
formation of, 436–442, 454
solubility of, 130–133

Half saturation constant, 251, 260, 265, 310, 423, 424,
478

Harvie–Møller–Weare method, 124–134, 491–497
Heat transfer, 8, 12
Heavy metals, 461–470, 477
Hot springs, 319, 347–350, 471
Hveravik, Iceland, 347–350
Hydraulic conductivity, 286
Hydraulic head, 286
Hydraulic potential, 285
Hydrochloric acid, disposal of, 431–433
Hydrodynamic dispersion, see Dispersion,

hydrodynamic
HYDROGEOCHEM software, 487
Hydrothermal fluids, 97–102, 269, 319–340
Hydrothermal veins, 320–325, 393–395
Hydrothermal vents, 325–340
Hydrous aluminum oxide, 456
Hydrous ferric oxide, see Ferric hydroxide

Iceland, 347–355
Independent reactions, 39–41
Independent variables, 30, 50–51
Industrial waste disposal, see Waste injection wells
Injection wells, see Petroleum reservoirs, see Waste

injection wells
Ion exchange, 137, 143–146, 153–155
Ion pairing, 32, 94, 99, 214

and activity coefficients, 116, 123
effect on gypsum solubility, 132

Ion size parameter, 117, 377
Ionic strength

definition of, 117
effect on activity coefficients, 118–127
effect on surface potential, 158
stoichiometric, 117
true, 117

Iron reducing bacteria, 477–483
Isotopes, stable, 269–283

assigning compositions, 277–278
“del” notation, 271
equilibrium, 269–272, 282–283
exchange, 269–270
fractionation, 269–272, 275–283
fractionation factor, 271–272, 278
segregated minerals, 270, 272–283
terrestrial abundances, 270

Isotopic composition of diagenetic cements, 375,
379–385

Isotopic reaction path, 383–385
Iteration, see Newton–Raphson method

Jacobian matrix, 147–150
definition of, 59
equilibrium calculations, 61–62
kinetic path, 239–240
surface complexation calculations, 162–163

Kd approach, see Distribution coefficient approach
Kinetic rate law, 232–236, 405, 507–508

accuracy and applicability of, 25
catalyzing and inhibiting species, 234, 239
microbial reaction, 260–268, 310, 473, 478
nonlinear form, 235, 507–508
redox reaction, 246–256, 415–425
thermodynamically consistent, 261–268, 478
transition state theory, 233–236

Kinetic reaction path, 12, 16, 387–404
modeling strategy, 242–244
numerical solution, 238–240, 507–508
stable isotopes and, 277

Kinetics, 387–404
activated complex, 233–235
application of, 236–238, 242–244
barite precipitation, 441
dissolution and precipitation, 231–244, 405–413
homogeneous versus heterogeneous, 231
microbial, 245, 257–268
reaction of albite, 235, 241–242, 400–404, 409–413
reaction of amorphous silica, 397–400
reaction of cristobalite, 387–393, 397–400
reaction of gibbsite, 410–413
reaction of kaolinite, 410–413
reaction of potassium feldspar, 409–413
reaction of quartz, 240–241, 387–413, 443
reaction of tridymite, 410–413
redox reaction, 245–256, 415–425
reproducibility of results, 237
surface versus transport control, 233
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Lactate, 471–476
Langmuir isotherm, 137, 141, 150–153, 155, 304
Latrobe group (Gippsland basin), 374–378
Local equilibrium, 462
Lumped parameter model, 301
Lyons sandstone, 378–385

Mackinawite, 265, 479
Manganese oxidation, 418–422
Mass action

constraints, 54, 182
in seawater, 89–91

Mass action equation, 29–30, 41, 139, 141–145, 232
equilibrium calculations, 53
surface complexation calculations, 160

Mass balance
constraints, 54, 182
in seawater, 89–90

Mass balance equation, 29–30, 42–43, 140, 143, 146
equilibrium calculations, 54
isotopic, 269–270, 272–275
surface complexation calculations, 160–161

Mass transfer, 8, 11–16, 193–200
and sediment diagenesis, 373–374
equations of, 193–195
isotopic, 275–278
kinetic, 238–240

Mass transfer equation, 252–253
Mass transport, 285–300
Maximum Contaminant Level (MCL), 310, 465
Methane, 477–483
Methane oxidation, microbial, 113
Methanogenesis, 250, 261, 264, 422–425, 471

acetoclastic, 336–340, 477–483
hydrogentrophic, 113, 336–340, 477

Methanosarcina, 478
Methanotrophy, 337–340
Michaelis–Menten equation, 251, 260, 310, 423
Microbes, chemosynthetic, 110–113
Microbial community, 471–483
Microbial mats, 471
Microbiological zoning, 471–483
Mine drainage, see Acid drainage
MINEQL+ software, 487
Mineral mass, calculation of, 66
Minerals

chemical formulae, 499–506
in LLNL database, 499–506

MINTEQA2 software, 488
Model, definition of, 7
Molecular diffusion, see Diffusion, molecular
Monitored natural attenuation, 461
Mono Lake, 221–222, 362–366, 471–476
Monod equation, 260–268, 310, 473, 478
Morro do Ferro district, 107–109
Multiple roots, see Uniqueness

Newton’s method, 55–57, 164
Newton–Raphson method, 53, 58–60, 147–150

and under-relaxation, 64, 163
convergence, 64

equilibrium calculations, 62–66
kinetic path, 238–240
optimizing the starting guess, 65
starting point and uniqueness, 181
surface complexation calculations, 162–164

Nodal block, finite difference grid, 295–296
Non-negativity, 149, 163
Nonlinear equations, solution of, 55–60
Nonuniqueness, see Uniqueness
Nucleation, mineral, 410
Numerical dispersion, 298–299
Numerical solution

of equilibrium problem, 53–70
of isotope equations, 272–278
of kinetic path, 238–240
of sorption equations, 146–150
redox kinetics, 252–253
surface complexation calculations, 161–164

Opal CT, 409
Ore deposits, 97–102, 319–325
Osmotic coefficient, 121–122
Ostwald’s Step Rule, 397–400
Oxidation state

buffered by atmosphere, 204–207
buffering, 185–187, 217, 225–228
fixed by mineral assemblage, 98–101
near hydrothermal vents, 330–340
over sliding-fugacity path, 208
Red Sea brine, 98–101
seawater, 82–86

Partial pressure, gases in atmosphere, 82–86
PATH software, 5
PATHI software, 4–5
PbCO3 ion pair, 462
pe, 49
Péclet number, 294, 299–300
Permeability, 285

loss in petroleum reservoirs, 436, 445
loss near waste injection wells, 427
reservoir, diagenetic controls on, 374

Permeable reaction barrier, 461
Permittivity of free space, 158
Petroleum migration, 385
Petroleum reservoirs, 435–447

formation of scale, 436–442
improved oil recovery, 435
near-well treatments, 435, 442–447
pressure management, 435
squeeze treatments, 435, 436, 441
waterflooding of, 435–442

pH
as pyrite dissolves, 205–207
buffer, 473, 475
buffering reactions, 218–230
during alkali flooding, 444
during evaporation, 359
effect on metal sorption, 164–167, 210–214,

458–460
effect on reaction rates, 235, 241–242
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effect on surface reactions, 155, 164–167
effect on uranium speciation, 214–215
fixed by CO2 fugacity, 82–86
fixed by mineral equilibria, 182, 321
of mine drainage, 449, 451–456
variation with temperature, 343–347

pH-stat, 15, 203, 242
Phase assemblage, 67–69, 91–92
Phase rule, 10–11, 50–51

apparent violation of, 70
number of variables and, 50–51

Phase, definition of, 30
Phenol, 250, 422–425
Phenomenological equations, see Virial activity

models
Phosphate, effect on uranium speciation, 214–215
Photosynthesis, 331
PHREEQC software, 123, 488
PHREEQE software, 119
PHRQPITZ software, 123
Pitzer equations, see Virial activity models
Polythermal path, 12–13, 201–203, 320–340,

342–355
Porosity loss or gain, 429, 445
Potassium feldspar

dissolution of, 195–198, 377
formation of, 202–203

Predation, 478
Preexponential factor, see Arrhenius equation
Principle of microscopic reversibility, 248
Proton translocation, 258
Protonation reactions, 123, 156–157, 211
Pump-and-treat remediation (groundwater), 461, 462
Pyrite

dissolution of, 204–207
dissolution reactions, 175–176
fixing oxidation state, 185–187
oxidation of, 225–228, 449–455

Quartz
deposition in a fracture, 393–395
deposition in an aquifer, 395–397
diagenetic cement, 374–377
reaction rate, 240–241, 387–404, 443
sealing rate of a fracture, 395

Rainwater, 405–413
Rate limiting step, 265
REACT software, xix, 81, 82, 119–123, 187, 204, 218,

221, 222, 226, 229, 240, 242, 255, 265, 272, 321,
326, 332, 342, 348, 352, 358, 367, 375, 380, 381,
388, 390, 393, 396, 398, 401, 416, 419, 424, 429,
432, 437, 443, 450, 457, 474, 508

Reactant mixing (polythermal path), 201
Reactants, simple, 193–196
Reaction balancing, automatic, 169–179

basis swapping and, 75–76
using a database, 172–174
using stoichiometries, 169–172

Reaction Freundlich model, see Freundlich isotherm
Reaction Kd approach, see Distribution coefficient

approach

Reaction path model, 4, 8, 12–20
Reaction progress variable

definition, 11–12
flush configuration, 198–200
isotope path, 275–278
kinetic path, 16, 231
polythermal path, 13, 201–202
sliding-fugacity path, 15, 207
titration path, 14, 193–195

Reactive intermediate, 251
Reactive transport model, 20–22, 285, 301–315,

405–413, 461–470
governing equation, 302–303
mathematical formulation, 301–310
numerical solution, 306–310
operator splitting, 306–308

Red Sea, 97–102
Redox coupling reaction, 105–107, 334–337
Redox disequilibrium, 103–113, 245, 257–268,

331–340
Redox reaction, see Kinetic rate law, redox reaction,

see Kinetics, redox reaction, see Redox coupling
reaction

Reduced basis, 60–61, 146, 161
Relaxation time, 305, 406
Residual function, 146

equilibrium calculations, 61
kinetic path, 238
Newton’s method, 55–57
Newton–Raphson iteration, 58–60
surface complexation calculations, 161

Respiration, microbial, 110–113, 257–260, 413
Retardation, see Contaminant retardation
Retardation factor, 303–304, 312, 462
Reverse reaction rate, 247, 252, 254, 261, 310
Rocket fuel problem, 2, 182
RXN software, xix, 174–179, 279, 323

Saline lakes, 357–366
Salting out effect, 121
Saturation index, see Saturation state

definition of, 48
interpretation of, 93, 101–102

Saturation state, 47–48
effect on reaction rates, 233–236, 240–242
geothermal water, 353–355
hot spring water, 349–350
Mono Lake, 362–366
Red Sea brine, 101–102
seawater, 86–93
silica minerals, 349, 358
sulfate minerals, 437–441
variation with temperature, 345–350

Seawater, 153
circulation through oceanic crust, 325
evaporation of, 367–372
mixing with formation water, 436–442
mixing with hydrothermal fluid, 325–340
species distribution in, 3, 82–93

Sebkhat El Melah brine deposit, 133–134
Secondary species, 37, 39–41
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Sediment diagenesis, 373–385
Selenate, sorption, 150–153
Self-diffusion, see Diffusion, molecular
Separation of silica from alumina (in a soil), 411
Sierra Nevada, springs and saline lakes of, 357–362
Silica

geothermometer, 341, 395
transport in a fracture, 393–395
transport in an aquifer, 395–397

Site densities (on sorbing surface), 164
Sliding-activity path, 15–16, 207–215
Sliding-fugacity path, 15, 207–210
Sliding-pH path, see Sliding-activity path
Sliding-temperature path, see Polythermal path
Slopes-of-the-lines-method, 196–198, 205, 430
Smectite, 409
Software, geochemical modeling, xix, 485–489
Soil, 409–413
Soil gas, 409, 411
Solid solution, 24, 34–35
SOLMINEQ software, 119, 123, 488
SOLMNEQ software, 4
SOLVEQ software, 4
Sorption, see Surface complexation
Sorption capacity, see Exchange capacity
Sorption, ion, 137–154
Spaghetti diagram, 196–197
SPECE8 software, xix, 81, 93, 107, 112, 119–363
Speciation calculations, 4, 81–102
Speciation diagrams, 204, 210–215
Species distribution

in natural waters, 81–102
in seawater, 84–86

Species, definition of, 30
Specific discharge, 285–287
Specific interaction equations, see Virial activity

models
Stationary state, 406
Steady state, 406, 480, 482

isotopic, 281–283
kinetic, 391–392

Sulfate reduction
acetotrophic, 260, 265, 336–340
bacterial, 113, 261, 264, 471, 477–483
hydrogentrophic, 336–340

Sulfate–sulfide ratio, 353
Sulfide minerals

buffering by, 225–228
in smoke, 325–331
oxidation of, 225–228, 449–455

Sulfide oxidation, microbial, 337–340
Summitville mining district, 449, 450, 453
Suppressed reaction, 9
Surface area

of amorphous silica, 398
of gibbsite, 410
of kaolinite, 410
of quartz, 240, 409
of tridymite, 410
sorbing, 164

Surface charge, 157–167, 211–213, 458

Surface charge density, see Surface charge
Surface complexation, 137, 155–167

and catalysis, 415–418
capacity for sorption, 459
effect of pH, 210–214
of heavy metals, 462–470
of metals from acid drainage, 456–460
reactions, 156–160
reproducibility among laboratories, 159

Surface potential, see Surface charge
Surface, definition of, 30
System, chemical

closed versus open, 7
definition of, 7
extent of, 7
homogeneous versus heterogeneous, 30

TACT software, xix
The Geochemist’s Workbench® software, xix, 487
Thermodynamic data

compilation and estimation, 5
completeness, 24
error in, 24–25, 88, 96

Thermodynamic drive, 248, 261–268, 310, 337–340,
418, 475, 476, 482

Thermodynamic potential factor, 264, 265, 473–476,
478

definition, 262
Thermophilic microorganisms, 331–340
Titration model, 13–14, 193–196
Total exchangeable cations (TEC), see Exchange

capacity
TOUGHREACT software, 488
Transformation matrix, 72–79, 169–174
Transpiration, 413
Transport, see Mass transport
Triple layer model, 155
Truncation error, finite difference approximation, 298
Tubeworms, 331
Two layer model, see Surface complexation

Uncertainty in modeling, 22–26
Uniqueness, mathematical, 181–189

coping with nonuniqueness, 189
examples of nonuniqueness, 182–189
proofs of, 182

Uranium, speciation versus pH, 214–215
Uranyl, 249–250, 415–418

Vanadate, 246
Vanadyl, 246
Vanselow convention (ion exchange), 143–146
Vapor phase (geothermal production), 350–352
Virial activity models, 116, 123–134, 367–372, 441,

491–497
Viscosity, fluid, 285
VISUAL MINTEQ software, 488

Wasatch Range mining districts, 453
Waste injection wells, 427–433
WATEQ software, 4, 119
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WATEQ4F software, 489
Weathering, 405–413
WHAM software, 489
White smokers, 325

X1T software, xix, 311, 406, 410, 462, 466, 468, 479
X2T software, xix, 312
XTPLOT software, xix

Zeolite, 409
formation of, 442–447
reactions, 170–174, 178–179
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