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Preface

This is the third volume in a series of graduate level texts on statistical mecha-
nics. Volume 1, Equilibrium Statistical Mechanics (ESM), is a first year graduate
text treating the fundamentals of statistical mechanics. Volume 2, Fluctuations,
Order and Defects (FOD), treats ordering, phase transitions, broken symme-
try, long-range spatial correlations and topological defects. This includes the
development of modern renormalization group methods for treating critical
phenomena. The mathematical level of both texts is typically at the level of
mean-field theory.

In this third volume, Nonequilibrium Statistical Mechanics (NESM), I treat
nonequilibrium phenomena. The book is divided into three main sections. The
first, Chapters 1–4, discusses the connection, via linear response theory, bet-
ween experiment and theory in systems near equilibrium. Thus I develop the
interpretation of scattering and transport experiments in terms of equilibrium-
averaged time-correlation functions. The second part of the book, Chapters 5–
8, develops the ideas of linear hydrodynamics and the generalized Langevin
equation approach. This is also known as the memory-function method. The
theory is applied, in detail, to spin diffusion and normal fluids. In these ap-
plications the Green–Kubo equations connecting transport coefficients and
time integrals over current–current time-correlation functions are established.
It is then demonstrated that this memory-function approach is very useful
beyond the hydrodynamic regime. It is shown in Chapter 7 how these ideas
can be used to develop modern kinetic theory. In Chapter 8 the generalized
Langevin equation approach is used to develop the conventional theory of
dynamic critical phenomena and linearized hydrodynamics in systems with
broken continuous symmetry and traveling Nambu–Goldstone modes.

The third part of the book is devoted to nonlinear processes. In Chapter 9
the generalized Langevin approach is used to derive the generalized Fokker–
Planck equation governing the dynamics of the reduced probability distribu-
tion for a set of slow variables. These dynamic equations lead to the nonlinear
Langevin equations that serve as the basis for the theory of dynamic critical
phenomena and the theory of the kinetics of first-order phase transitions.



XII Preface

Analytic methods of treatment of these nonlinear equations are discussed in
Chapters 9–11. In particular the methods of Ma and Mazenko for carrying
out the dynamic renormalization group are introduced in Chapter 10 in the
important cases of the relaxational time-dependent Ginzburg–Landau (TDGL)
model and the case of the isotropic ferromagnet. In Chapter 11 we discuss the
strongly nonequilibrium behavior associated with phase-ordering systems.

This text is compatible with one of the central themes in FOD. In FOD
we developed the idea of coarse-grained effective Hamiltonians governing
the long-distance equilibrium correlations for a variety of systems: magnets,
superfluids, superconductors, liquid crystals, etc. Here I indicate how one
generates a coarse-grained dynamics consistent with these effective Hamil-
tonians.

The methods of attack on the nonlinear models discussed in Chapters 9
and 10 are very useful for treating systems at the lowest order in perturbation
theory. There exist less physical and mathematically more powerful methods
for handling higher order calculations. These methods will be discussed in the
final volume of this series.

I thank my sister Debbie for crucial help and my wife Judy for her support.

Gene Mazenko
Chicago, July 2006
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FDT Fluctuation-dissipation theorem
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1

1
Systems Out of Equilibrium

1.1
Problems of Interest

The field of nonequilibrium statistical mechanics is wide and far- reaching.
Using the broadest interpretation it includes the dynamics of all macroscopic
systems. This definition is far too inclusive for our purposes here, and cer-
tainly beyond what is generally understood. Rather than discussing matters
in abstract generality, let us introduce some examples of nonequilibrium phe-
nomena of interest:

• A very familiar example of time-dependent phenomena is the propaga-
tion of sound through air from the speaker’s mouth to the listener’s ears.
If the intensity of the sound is not too great, then the velocity of sound
and its attenuation are properties of the medium propagating the sound.
This is a very important point since it says that sound has significance in-
dependent of the mouth and ears generating and receiving it. A question
of interest to us is: how can we relate the sound speed and attenuation
to the microscopic properties of the air propagating the sound?

• Next, consider a thermally insulated bar of some homogeneous material
at a temperature T0. (See Fig. 1.1). We bring one end of this bar into
contact at time t0 with a heat bath at a temperature T1 > T0. For times t >

Fig. 1.1 Thermal conductivity experiment. See text for discussion.

Nonequilibrium Statistical Mechanics
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2 1 Systems Out of Equilibrium

a) b)
Fig. 1.2 Configurations for a set of paramagnetic spins. a Zero external
magnetic field. b Subject to an external magnetic field along the
direction shown.

t0 heat will flow toward the cold end of the bar and eventually the bar
will equilibrate at the new temperature T1. We know from elementary
courses in partial differential equations that this heat flow process is
governed by Fourier’s law [1] , which tells us that the heat current J
is proportional to the gradient of the temperature:

J = −λ�∇T (1)

with the thermal conductivity λ being the proportionality constant. Com-
bining this constitutive relation with the continuity equation reflecting
conservation of energy leads to a description (see Problem 1.1) in terms
of the heat equation. The thermal conductivity is a property of the type
of bar used in the experiment. A key question for us is: How does one
determine the thermal conductivity for a material? From a theoretical
point of view this requires a careful analysis establishing Fourier’s law.

• A paramagnet is a magnetic system with no net magnetization in zero
applied external field. In Fig. 1.2a we represent the paramagnet as a set
of moments (or spins) �μ(R) localized on a periodic lattice at sites R. At
high enough temperatures, in zero externally applied magnetic field,
the system is in a disordered state where the average magnetization
vanishes,

〈M〉 =

〈
∑
R

�μ(R)

〉
= 0 , (2)
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due to symmetry. Each magnetic moment is equally likely to point in any
direction. If one applies an external magnetic field B to a paramagnet the
magnetic moments, on average, line up along the field:

M ≈ B . (3)

As shown in Fig. 1.2b, the spins deviate in detail from the up orientati-
on along B because of thermal fluctuations (for nonzero temperatures).
When we turn off B at time t0, the spins relax to the original disordered
equilibrium state, where 〈M〉 = 0, via thermal agitation. How can we
quantitatively describe this relaxation process? As we discuss in Chap-
ter 5, this process is analogous to heat diffusion.

• Suppose we fill a bowl with water and put it in a freezer. Clearly, over
time, the water freezes. How do we describe the time evolution of this
process? What does this process depend upon? In this case we have
a dynamic process that connects thermodynamic states across a phase
(liquid–solid) boundary.

The common elements in these situations is that we have externally distur-
bed the system by:

1. Mechanically pushing the air out of ones mouth;

2. Putting heat into a bar;

3. Turning off a magnetic field;

4. Drawing heat out of a system.

For the most part in this text we will focus on situations, such as examples
1–3, which can be understood in terms of the intrinsic dynamical properties
of the condensed-matter system probed and do not depend in an essential
way on how the system is probed. Such processes are part of a very important
class of experiments that do not strongly disturb the thermodynamic state of
the system. Thus, when one talks in a room one does not expect to change
the temperature and pressure in the room. We expect the sound velocity and
attenuation to depend on the well-defined thermodynamic state of the room.

In cases 1–3 we have applied an external force that has shifted the system
from thermal equilibrium. If we remove the applied external force the system
will return to the original equilibrium state. These intrinsic properties, which
are connected to the return to equilibrium, turn out to be independent of the
probe causing the nonequilibrium disturbance. Thus the speed of sound and
its attenuation in air, the thermal conductivity of a bar and the paramagnetic
relaxation rates are all properties of the underlying many-body systems.

We need to distinguish weak, linear or intrinsic response of a system from
strong or nonlinear response of a system. Linear response, as we shall discuss
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Fig. 1.3 Schematic of the type of dynamic processes studied in terms
of movement on a generic phase diagram.

in detail, corresponds to those situations where a system remains near thermal
equilibrium during the time-dependent process. In strongly nonlinear proces-
ses one applies strong forces to a system that fundamentally change the state
of the system. The freezing of the bowl of water falls into this second category.
Other nonlinear processes include:

• Nucleation where we rapidly flip the applied magnetic field such that a
system becomes metastable. The system wants to follow but has a barrier
to climb.

• Spinodal decomposition, where we quench the temperature of a fluid
across a phase boundary into an unstable portion of the phase diagram.

• Material deposition where one builds [2] up a film layer by layer.

• Turbulence where we continuously drive a fluid by stirring.

In these examples an understanding of the dynamics depends critically on
how, how hard and when we hit a system.

In organizing dynamical processes we can think of two classes of processes.
The first set, which will be the primary concern in this text, are processes that
connect points on the equilibrium phase diagram. The second set of proces-
ses involves driven systems that are sustained in intrinsically nonequilibri-
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um states. The first set of processes can be roughly summarized as shown in
Fig. 1.3 where five basic situations are shown:

1. intrinsic fluctuations in equilibrium;

2. linear response (perturbations that change the state of the system infini-
tesimally;

3. nonlinear hydrodynamics – substantial jumps in the phase diagram wi-
thin a thermodynamic phase;

4. critical dynamics – dynamic processes near the critical point.

5. kinetics of first-order phase transitions – jumps across phase boundaries.

It is shown in Chapter 2 that processes in categories 1 and 2 are related by
the fluctuation-dissipation theorem. Nonlinear hydrodynamics is developed
and explored in Chapters 9, 10 and 11. Critical dynamics is treated in Chap-
ters 8, 9, and 10. Finally the kinetics of first-order phase transitions is treated
in Chapter 11.

In the second set of processes, like turbulence and interfacial growth [2],
systems are maintained in states well out of equilibrium. In a Rayleigh–Benard
experiment [3] (Fig. 1.4) where we maintain a temperature gradient across a
sample, we can generate states with rolls, defects, chaos and turbulence, which
are not associated with any equilibrium state. These more complicated sets of
problems, such as driven steady-state nonequilibrium problems [4], will not
be treated here.

Fig. 1.4 Schematic of the Rayleigh–Benard experiment. A fluid sample
is between two plates held at different temperatures T2 > T1. As
the temperature difference increases a sequence of nonequilibrium
behaviors occurs, including convection, rolls and turbulence.
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1.2
Brownian Motion

1.2.1
Fluctuations in Equilibrium

Before we begin to look at the formal structure of the theory for systems evol-
ving near equilibrium, it is useful to look at the historically important problem
of Brownian motion [5]. It will turn out that many intuitive notions about the
dynamics of large systems that evolve out of this analysis are supported by
the full microscopic development. Indeed this discussion suggests a general
approach to such problems.

Consider Fig. 1.5, showing the process of Brownian motion as taken from
the work of Jean Perrin [6] near the turn of the previous century. Brownian
motion corresponds to the irregular motion of large particles suspended in
fluids. The general character of this motion was established by Robert Brown
[7] in 1828. He showed that a wide variety of organic and inorganic particles
showed the same type of behavior. The first quantitative theory of Brownian
motion was due to Einstein [8] in 1905. Einstein understood that one needed
an underlying atomic bath to provide the necessary fluctuations to account
for the erratic motion of the large suspended particle. He realized that many
random collisions, which produce no net effect on average, give rise to the
observed random walk behavior [9].

Fig. 1.5 Brownian motion path from cover of Ref. [6].
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Let us consider a very large particle, with mass M and velocity V(t) at time
t, which is embedded in a fluid of relatively small particles. For simplicity
let us work in one dimension. Assume the particle has velocity V0 at time
t0. We are interested in the velocity of the particle for times t > t0. In the
simplest theory the basic assumption is that the force on the large particle can
be decomposed into two parts. The first part is a frictional force F1 opposing
the persistent velocity V of the particle and is proportional to the velocity of
the large particle:

F1 = −MγV , (4)

where γ is the friction constant [10]. The second contribution to the force,
representing the random buffeting the particle suffers from the small particles,
is given by:

F2 = Mη , (5)

where η is called the noise. Newton’s law then takes the form:

MV̇ = −MγV + Mη . (6)

This is in the form of the simplest Langevin equation [11]:

V̇ = −γV + η . (7)

Next we need to solve this equation. The first step is to write:

V(t) = e−γtφ(t) . (8)

Taking the time derivative of this equation gives:

V̇ = −γV + e−γtφ̇ . (9)

Substituting this result back into the Langevin equation we obtain:

e−γtφ̇(t) = η(t) . (10)

Clearly we can integrate this equation using the initial value for V(t) to obtain:

φ(t) = eγt0V0 +
∫ t

t0

dτeγτη(τ) (11)

or in terms of the velocity:

V(t) = e−γ(t−t0)V0 +
∫ t

t0

dτe−γ(t−τ)η(τ) . (12)
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The physical interpretation seems clear. The velocity of the particle loses me-
mory of the initial value V0 exponentially with time. V(t) is determined by the
sequence of bumps with the noise for t � t0.

To go further we must make some simple assumptions about the properties
of the noise. We will assume that the noise is a random variable described by
its statistical properties. The first assumption is that the noise produces no net
force:

〈η(t1)〉 = 0 . (13)

Next we need to specify the variance 〈η(t1)η(t2)〉. Physically we expect that
the kicks due to the small particles will be of very short-time duration and
noise at different times will be uncorrelated. Thus it is reasonable to assume
that we have white noise:

〈η(t1)η(t2)〉 = Aδ(t1 − t2) , (14)

where we will need to consider the proper choice for the value of the constant
A. The other important consideration is causality. The velocity of the large
particle can not depend on the noise at some later time:

〈η(t1)V(t2)〉 = 0 if t1 > t2 . (15)

We can now investigate the statistical properties of the velocity. The average
velocity is given by:

〈V(t)〉 = e−γ(t−t0)〈V0〉 +
∫ t

t0

dτe−γ(t−τ)〈η(τ)〉 . (16)

Since the average of the noise is zero, the average of the velocity is propor-
tional to the average over the initial conditions. If the initial directions of
the velocity of the pollen are randomly distributed (as in the case where the
system – particle plus fluid – is in thermal equilibrium, then 〈V0〉 = 0 and the
average velocity is zero:

〈V(t)〉 = 0 . (17)

Thus if the system is in equilibrium we expect no net motion for a collection of
Brownian particles. If the pollen molecules are introduced with a net average
velocity, the system will lose memory of this as time evolves.

We turn next to the velocity autocorrelation function defined by the average:

ψ(t, t′) = 〈V(t)V(t′)〉 . (18)

If we multiply the solution for V(t), given by Eq. (12), by that for V(t′) and
average we see that the cross terms vanish since:

〈η(t)V0〉 = 0 for t > t0 (19)
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and we have:

ψ(t, t′) =
∫ t

t0

dτ
∫ t′

t0

dτ′e−γ(t−τ)e−γ(t′−τ′)〈η(τ)η(τ′)〉

+e−γ(t+t′−2t0)〈V2
0 〉 . (20)

Using the statistical properties of the noise, Eq. (14), gives:

ψ(t, t′) =
∫ t

t0

dτ
∫ t′

t0

dτ′e−γ(t−τ)e−γ(t′−τ′)Aδ(τ − τ′)

+e−γ(t+t′−2t0)ψ(t0, t0) . (21)

It is left as a problem (Problem 1.2) to show that after performing the τ and τ′

integrations one obtains the result:

ψ(t, t′) =
A
2γ

e−γ|t−t′| +
[

ψ(t0, t0) −
A
2γ

]
e−γ(t+t′−2t0) . (22)

Notice that the initial condition is properly maintained.
Suppose the system is initially in equilibrium at temperature T0. This allows

us to determine the value of:

ψ(t0, t0) = 〈V2
0 〉 . (23)

This is because in equilibrium we can assume that the velocity of the particle
satisfies Maxwell–Boltzmann statistics:

P[V0] ≈ e−β0
M
2 V2

0 , (24)

where β−1
0 = kBT0, where kB is the Boltzmann constant. One can then evaluate

the average velocity squared as:

〈V2
0 〉 =

∫
dV0 V2

0 e−β0
M
2 V2

0∫
dV0 e−β0

M
2 V2

0
. (25)

It is easy enough to evaluate these Gaussian integrals and obtain:

〈V2
0 〉 =

kT0

M
, (26)

which is just a form of the equipartition theorem:

M
2
〈V2

0 〉 =
kT0

2
. (27)

Let us put this back into our expression for the velocity correlation function
and concentrate on the case of equal times t = t′ where we have:

ψ(t, t) =
A
2γ

+
[

kT0

M
− A

2γ

]
e−

2γ
M (t−t0) . (28)
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If the system is in equilibrium, then there is nothing special about the time t0.
Unless we disturb the system from equilibrium it is in equilibrium at all times
t and we expect ψ(t, t) to be time independent and equal to kT0

M . For this to be
true we require:

kT0

M
− A

2γ
= 0 , (29)

which allows us to determine:

A = 2γ
kBT0

M
. (30)

This means that we have determined that the autocorrelation for the noise is
given by:

〈η(t)η(t′)〉 = 2
kBT0

M
γδ(t − t′) . (31)

Thus the level of the noise increases with temperature as expected. Note also
that the noise is related to the friction coefficient. In this particular problem,
because we know that the velocity has a Gaussian (Maxwell–Boltzmann) dis-
tribution, we can infer (see Problem 1.9) that the noise must also have a Gaus-
sian distribution.

Inserting this result for A into Eq. (22) for the velocity autocorrelation func-
tion we now obtain, for an arbitrary initial condition,

ψ(t, t′) =
kT0

M
e−γ|t−t′| +

[
ψ(t0, t0) −

kT0

M

]
e−γ(t+t′−2t0) . (32)

The assumption here is that the background fluid is at some temperature T0
and we can insert a set of Brownian particles at some time t0 with a velocity
correlation ψ(t0, t0) without disturbing the equilibrium of the fluid in any
significant way. Then, as time evolves and t and t′ become large, the system
loses memory of the initial condition and:

ψ(t, t′) =
kT0

M
χV(t − t′) , (33)

where the normalized equilibrium-averaged velocity autocorrelation function
is given by:

χV(t − t′) = e−γ|t−t′| . (34)

This is interpretated as the velocity decorrelating with itself exponentially
with time. There is little correlation between the velocity at time t and that
at t′ if the times are well separated. Note that our result is symmetric in t ↔ t′,
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as we require. Note also that it depends only on the time difference, which
reflects the time-translational invariance of the system in equilibrium.

Since the velocity of the large particle is related to its position by:

V(t) =
dx(t)

dt
, (35)

we can also investigate the root-mean-square displacement of the particle per-
forming Brownian motion. Thus we need to integrate:

d
dt

d
dt′

〈x(t)x(t′)〉 =
kT0

M
e−γ|t−t′| . (36)

These integrations are tedious (see Problem 1.6) and lead to the final result:

〈(x(t)− x(t0))(x(t′) − x(t0))〉 =
kT0

M

∫ t

t0

dτ
∫ t′

t0

dτ′e−γ|τ−τ′ | (37)

=
kT0

Mγ

[
t + t′ − |t − t′| − 2t0 +

1
γ

[
e−γ(t−t0) + e−γ(t′−t0) − 1 − e−γ|t−t′|

]]
.(38)

This is of particular interest for equal times where:

〈[x(t)− x(t0)]2〉 = 2
kT0

Mγ

[
t − t0 −

1
γ

(
1 − e−γ(t−t0)

)]
. (39)

For long times we see that the averaged squared displacement is linear with
time. If we have free particle or ballistic motion (see Problem 1.4), the displa-
cement of the particle is linear in time. The random forcing of the noise causes
the average displacement to go as the square root of time.

It is worth stopping to connect up this development to the behavior of
density fluctuations for large particles moving in a fluid background. If n(x, t)
is the density of the Brownian particles, then because the number of Brownian
particles is conserved, we have the continuity equation:

∂n
∂t

= − ∂J
∂x

, (40)

where J is the particle current. Since the Brownian particles share momentum
with the background fluid, the current J is not, as in a simple fluid, itself
conserved. Instead, for macroscopic processes, J satisfies Fick’s law [12]:

J = −D
∂n
∂x

, (41)

where D is the diffusion coefficient. Clearly Fick’s law is similar to Fourier’s
law, but for particle transport rather than heat transport. We discuss such
constitutive relations in detail in Chapter 5. Putting Eq. (41) back into Eq. (40)
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one finds that on the longest length and time scales the density, n(x, t), satisfies
the diffusion equation:

∂n
∂t

= D
∂2n
∂x2 . (42)

It is shown in Problem 1.7, for initial conditions where the density fluctuation
is well localized in space, near x(t0), so that we can define:

〈[x(t)− x(t0)]2〉 =
1
N

∫
dx x2n(x, t) (43)

and:

N =
∫

dx n(x, t) , (44)

then:

〈[x(t)− x(t0)]2〉 = 2Dt (45)

for long times. Comparing with Eq. (39) we find that the diffusion constant is
related to the friction coefficient by:

D =
kBT0

Mγ
. (46)

It was well known at the time of Einstein’s work [13], starting from the equati-
ons of hydrodynamics, that the drag on a sphere of radius a in a flowing liquid
with viscosity ν is given by the Stoke’s law result:

Mγ = 6πνa . (47)

If we put this back into the equation for the diffusion coefficient we obtain the
Stokes–Einstein relation [13]:

D =
kBT
6πνa

. (48)

If we know the viscosity and temperature of the liquid and measure the diffu-
sion coefficient D through an observation of the Brownian motion, then we
can determine a. If a is known, then this offers a method for determining
Avogadro?s number: NA = R/kB where R is the gas constant. Solving Eq.
(48) for Boltzmann’s constant and using Eq. (45) we find:

NA =
R
kB

=
t

〈(δx)2〉
RT

3πaν
. (49)

Perrin found, for example for gamboge grains, that a ≈ 0.5 μm and NA ≈
80 × 1022.
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1.2.2
Response to Applied Forces

Suppose now that we apply an external force, F(t), to our particle. Clearly our
equation of motion, Eq. (6), is then modified to read:

MV̇(t) = −MγV(t) + Mη(t) + F(t) . (50)

Now the average velocity of the particle is nonzero since the average of the ex-
ternal force is nonzero. Since the average over the noise is assumed to remain
zero (suppose the background particles are neutral while the large particles
are charged) we have, on averaging the equation of motion:

M〈V̇(t)〉 = −Mγ〈V(t)〉+ F(t) . (51)

We assume that the force is weak, such that γ can be assumed to be indepen-
dent of F. We can solve Eq. (51) again using an integrating factor, to obtain:

〈V(t)〉 = e−γ(t−t0)〈V(t0)〉+
1
M

∫ t

t0

dτe−γ(t−τ)F(τ) . (52)

For t � t0 the average loses memory of the initial condition and:

M〈V(t)〉 =
∫ t

t0

dτe−γ(t−τ)F(τ) . (53)

Notice that the response to the force can be written as a product of terms:

M〈V(t)〉 =
∫ t

t0

dτχV(t − τ)F(τ) . (54)

It can be written as a product of an internal equilibrium response of the system
times a term that tells how hard we are forcing the system.

The conclusions we can draw from this simple example have a surprisingly
large range of validity.

• Friction coefficients like γ, which are intrinsic properties of the system,
govern the evolution of almost all nonequilibrium systems near equili-
brium.

• Thermal noise like η is essential to keep the system in thermal equilibri-
um. Indeed for a given γ we require:

〈η(t)η(t′)〉 = 2γ
kBT0

M
δ(t − t′) . (55)

So there is a connection between the friction coefficient and the statistics
of the noise. Clearly the noise amplitude squared is proportional to the
temperature.
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• The response of the system to an external force can be written as a pro-
duct of a part that depends on how the system is driven and a part that
depends only on the fluctuations of the system in equilibrium.

One of the major unanswered questions in this formulation is: how do we
determine γ? A strategy, which turns out to be general, is to relate the kinetic
coefficient back to the velocity correlation function, which is microscopically
defined. Notice that we have the integral:

∫ ∞

0
dt χV(t) =

∫ ∞

0
dt e−γt =

1
γ

= D
M

kT0
. (56)

This can be rewritten in the form:

D =
kT0

M

∫ ∞

0
dt χV(t) =

∫ ∞

0
dt ψ(t, 0). (57)

Thus if we can evaluate the velocity–time correlation function we can deter-
mine D.

You may find it odd that we start with a discussion of such an apparently
complex situation as pollen performing a random walk in a dense liquid. His-
torically, nonequilibrium statistical mechanics was built on the Boltzmann pa-
radigm [14] where there are N spherical particles in an isolated enclosed box,
allowed to evolve in time according to Newton’s laws. Out of this dynamical
process comes the mixing and irreversible behavior from which we can extract
all of the dynamical properties of the system: viscosities, thermal conductivi-
ties and speeds of sound. This situation appears cleaner and more appealing
to a physicist than the Langevin paradigm [15] , where the system of interest is
embedded in a bath of other particles. The appeal of the Boltzmann paradigm
is somewhat illusory once one takes it seriously, since it leads to the difficult
questions posed by ergodic theory [16] and whether certain isolated systems
decay to equilibrium. We will assume that irreversibility is a physical reality.
A system will remain [17] out of equilibrium only if we act to keep the system
out of equilibrium. While the Langevin paradigm appears less universal, we
shall see that this is also something of an illusion. In the Langevin description
there is the unknown parameter γ. However, if we can connect this parameter
back to the equilibrium fluctuations as in Eq. (56), then we have a complete
picture. To do this we must develop a microscopic theory including the back-
ground fluid degrees of freedom to determine χV(t) as a function of time.
Then we can extract 1/γ as an integral over a very short time period. The
Langevin equation then controls the behavior on the longer time scales of
particle diffusion.

The notion of a set of rapid degrees of freedom driving the evolution of
slower degrees of freedom is a vital and robust idea. The separation of time
scales in the case of Brownian motion comes about because of the larger mass
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of the pollen compared to the mass of the particles forming the background
fluid. More generally, we have a separation of time scales for the fundamental
reasons of conservation laws, Nambu–Goldstone modes associated with bro-
ken continuous symmetry and slowing down near certain phase transitions.
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1.4
Problems for Chapter 1

Problem 1.1: If ε is the energy density and J the heat current, then the local
expression of conservation of energy is given by the continuity equation:

∂ε
∂t

= −�∇ · J .

The heat current can be related to the local temperature by Fourier’s law given
by Eq. (1). The energy density density can be related to the local temperature
if the system can be taken to be in local equilibrium:

∂ε
∂t

=
∂ε
∂T

∂T
∂t

,

where the thermodynamic derivative is equal to the specific heat per unit
volume:

cV =
∂ε
∂T

.

Show that these steps lead to the heat equation for the local temperature:

∂T
∂t

= DT∇2T

and identify the thermal diffusivity DT in terms of the other parameters in the
problem.

Consider the problem discussed in the chapter where a plate (half-plane
z > 0), initially at temperature T0, is brought into contact with a constant
heat source at temperature T1 > T0 along the plane z = 0. Solve the initial
boundary value problem for the temperature and show that:

T(z)− T0 = (T1 − T0)er f c
[

z
2
√

DTt

]
.

Problem 1.2: Show that the double integral in Eq. (21) leads to the results given
in Eq. (22).
Problem 1.3: Suppose, instead of white noise, one has colored noise satisfying
the autocorrelation function,

〈η(t)η(t′)〉 =
2kBT

M
γ0e−|t−t′|/τ .

Determine the equilibrium-averaged velocity autocorrelation function for this
case. Focus on the case where γ0τ 
 1.
Problem 1.4: Starting with the expression for the displacement given by Eq.
(39), investigate the behavior for short-times t − t0. Does the result have a
simple physical interpretation?
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Problem 1.5: Determine the correlation between the velocity of a tagged par-
ticle at time t′ and the displacement at time t: 〈δx(t)V(t′)〉.
Problem 1.6: Show that carrying out the integrations in Eq. (37) leads to the
results given in Eq. (38).
Problem 1.7: Suppose the density of tagged particles, n(x, t), satisfies the dif-
fusion equation:

∂n
∂t

= D
∂2n
∂x2 .

Suppose also that the initial conditions are such that the density profile is well
localized in space and we can define the displacement squared:

〈[x(t)− x(t0)]2〉 =
1
N

∫
dx x2n(x, t) ,

where:

N =
∫

dx n(x, t) .

Show, under these conditions, that for long-times,

〈[x(t)− x(t0)]2〉 = 2Dt

Problem 1.8: Extend Problem 1.7 to d dimensions.
Problem 1.9: We know that, in equilibrium, the velocity is governed by the
Maxwell–Boltzmann distribution, which is a Gaussian distribution, and that
one of the properties of a Gaussian distribution is that:

〈V4〉 = 3〈V2〉2 . (58)

On the other hand we know that, in equilibrium,

V(t) =
∫ t

t0

dτe−γ(t−τ)η(τ) .

Show that Eq. (58) is satisfied if the noise is gaussianly distributed and there-
fore satisfies:

〈η(τ1)η(τ2)η(τ3)η(τ4)〉 = 〈η(τ1)η(τ2)〉〈η(τ3)η(τ4)〉
+〈η(τ1)η(τ3)〉〈η(τ2)η(τ4)〉
+〈η(τ1)η(τ4)〉〈η(τ3)η(τ2)〉 .
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2
Time-Dependent Phenomena in Condensed-Matter
Systems: Relationship Between Theory and Experiment

2.1
Linear Response Theory

2.1.1
General Comments

We have all, from our everyday experience, an intuitive feel for speeds of
sound, viscosity and thermal conductivity. Most of us do not have an intuitive
sense for the microscopic origins of these quantities. Why does a certain fluid
have a high viscosity? What is the temperature dependence of the viscosity?
As we discussed in Chapter 1, properties like speeds of sound and transport
coefficients are intrinsic to the systems of interest and independent of the
weak external probe testing the system. This means that we can investigate
such properties by disturbing the system in the most convenient manner. It
seems reasonable that the most convenient probe is an infinitesimal external
field that couples weakly to the degrees of freedom of an otherwise isolated
physical system. In this case we can carry out a complete and theoretical-
ly well-defined analysis of the nonequilibrium situation. This development,
known as linear response theory, has been fundamental in the establishment of
a well-defined theoretical approach to intrinsic dynamic properties. This work
was pioneered in the mid to late 1950s. Substantial credit for the development
of linear response theory goes to Kubo [1] and Green [2]. We follow here an
approach closer to that of Kadanoff and Martin [3, 4] and Forster [5].

2.1.2
Linear Response Formalism

Let us begin with a rather general discussion that highlights the key ass-
umptions in the development. We will return later to a number of specific
examples. We consider a quantum-mechanical system, which, in the absence
of externally applied fields, is governed by a Hamiltonian H. The equilibrium
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state for this system is given by the density matrix [6] or probability operator:

ρeq =
e−βH

Z
, (1)

where:

Z = Tr e−βH (2)

is the partition function, Tr is the quantum-mechanical trace over states, and
β = 1/kBT where T is temperature and kB is Boltzmann’s constant. We will
be interested in the averages of various observables. These observables can
generally be represented as quantum operators A(t) and the time dependence
t is generated by the Heisenberg equations of motion:

−ih̄
∂A(t)

∂t
= [H, A(t)] (3)

where [A, B] = AB − BA is the commutator between the operators A and B.
The equilibrium average of these fields is given by:

〈A(t)〉eq = Tr ρeqA(t) . (4)

As a specific example we can think of the A(t) as the z-component of the total
magnetization in a magnetic system:

Mz(t) = ∑
i

μi
z(t) (5)

where�μi is the magnetic moment of the ith molecule or atom in the system.
We next assume that we can apply to our system an external time-dependent

field h(t). We assume that the total Hamiltonian governing the system can be
written in the form [7]:

HT(t) = H(t)− B(t)h(t) . (6)

The external field couples [8] to the quantum operator B(t), which may be
related to A(t). We assume that h(t) vanishes for times earlier than some time
t0, and the system is in equilibrium for times prior to t0 with the equilibrium
density matrix ρeq given in terms of H by Eq. (1). In our magnetic example the
external field is the externally applied magnetic field H(t) that couples to the
magnetization via the usual Zeeman term. In a given physical system there
is typically a collaborative effort between theory and experiment to identify
the nature of the coupling as represented by the operator B and the external
field h.
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Let us work in the Heisenberg representation [9] where the density matrix is
time independent and operators evolve according to the Heisenberg equations
of motion:

−ih̄
∂A(t)

∂t
= [HT(t), A(t)] . (7)

The operator B(t), which appears in the coupling in Eq. (6), develops in time
according to:

−ih̄
∂B(t)

∂t
= [HT(t), B(t)] . (8)

Nonequilibrium averages can be written in the form:

〈A(t)〉ne = TrρA(t) , (9)

where the operator A, corresponding to an observable, carries the time de-
pendence and the density matrix, ρ, is time independent. This is a particularly
useful approach if we know that the system is initially in equilibrium. Thus
if for t ≤ t0, ρ = ρeq , then, in the Heisenberg representation, we have for all
subsequent times:

ρ = ρeq (10)

and nonequilibrium averages are given by:

〈A(t)〉ne = Tr ρeq A(t) . (11)

The result given by Eq. (11) is really quite simple to understand from the
point of view of classical physics. Suppose we have a system of N particles in
three dimensions. In this case it is clear that if we know the values of the 6N
phase-space coordinates, q(t) = {q1(t), q2(t) . . . q6N(t)}, at some time t = t0,
q(t0) = {q1(t0), q2(t0) . . . q6N(t0)}, then the value can be determined at a later
time as a solution of the initial-value problem. Thus we can write [10]:

A[q(t)] = A[q(0), t] . (12)

The average of A(t) requires knowing the probability distribution governing
the initial configuration: P[q(0)]. Clearly the average of any function of the
phase-space coordinates as a function of time t is given by:

〈A(t)〉 =
∫

dq(0)P[q(0)]A[q(0), t] . (13)

But this equation is just the classical version of Eq. (11). For further discussion
see Problem 2.1.
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It is well known in standard quantum mechanics that one can work either in
the Heisenberg representation, as assumed above, where the density matrix is
time independent and operators evolve according to the Heisenberg equations
of motion, or in the Schroedinger representation where the density matrix
evolves in time and operators (observables) are time independent. We now
want to discuss how we can go between these two representations, since it will
indicate the best strategy for carrying out perturbation theory in the external
field h(t). The first step in the analysis is to define the time evolution operator
U(t, t′) satisfying:

ih̄
∂

∂t
U(t, t′) = Hs

T(t)U(t, t′) (14)

with the boundary condition:

U(t, t) = 1 , (15)

and Hs
T(t) is given by:

Hs
T(t) = H − Bh(t) (16)

where the only time dependence is the explicit time dependence carried by
h(t).

We also define the inverse operator, U−1, by:

U−1(t, t′)U(t, t′) = U(t, t′)U−1(t, t′) = 1 . (17)

Taking the derivative of Eq. (17) with respect to t we obtain:

ih̄
[

∂

∂t
U−1(t, t′)

]
U(t, t′) + U−1(t, t′)ih̄

∂

∂t
U(t, t′) = 0 . (18)

Using the equation of motion given by Eq. (14) and applying U−1 from the
right, we obtain:

ih̄
∂

∂t
U−1(t, t′) = − U−1(t, t′)Hs

T(t) . (19)

Taking the hermitian adjoint of Eq. (14), using (AB)† = B† A†, and the fact
that Hs

T(t) is hermitian we find,

−ih̄
∂

∂t
U†(t, t′) = U†(t, t′)Hs

T(t) . (20)

Comparing Eqs. (19) and (20) we see that U is unitary:

U† = U−1 . (21)
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We introduce U since it can be used to formally integrate the Heisenberg
equations of motion in the form:

A(t) = U−1(t, t0)AU(t, t0) , (22)

where A = A(t0). To prove this assertion we take the time derivative of
Eq. (22):

ih̄
∂A(t)

∂t
=
[

ih̄
∂

∂t
U−1(t, t0)

]
AU(t, t0) + U−1(t, t0)Aih̄

∂

∂t
U(t, t0)

= −U−1(t, t0)Hs
T(t)AU(t, t0) + U−1(t, t0)AHs

T(t)U(t, t0)

= −[HT(t), A(t)] ,

where we have used Eqs. (14) and (19) and identified:

HT(t) = U−1(t, t0)Hs
T(t)U(t, t0) = H(t)− B(t)h(t) . (23)

Clearly this equation of motion agrees with Eq. (6). Thus Eq. (22) gives a for-
mal solution to Eq. (9) where the dependence on the external field is through
U(t, t0).

It is at this stage in the development where we can understand how one
goes back and forth from the Heisenberg to the Schroedinger representation in
the case of an external time-dependent field. In the Heisenberg representation
we have:

〈A(t)〉ne = Tr ρeqU−1(t, t0)AU(t, t0) . (24)

Using the cyclic invariance of the quantum-mechanical trace,

TrAB = TrBA, (25)

for any two operators A and B, we can write:

〈A(t)〉ne = Tr U(t, t0)ρeqU−1(t, t0)A . (26)

This result corresponds to working in the Schroedinger representation where
the density matrix carries the time dependence:

ρ(t) = U(t, t0)ρeqU−1(t, t0) . (27)

Notice that the density matrix satisfies the equation of motion:

ih̄
∂

∂t
ρ(t) = [HT(t), ρ(t)] , (28)

which has the opposite sign from the equation of motion satisfied by operators
corresponding to observables. If we work in the Schroedinger representation,
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then we focus on the time evolution of probability distributions. This is the
conventional path to transport descriptions like the Boltzmann equation.

While we have a well-defined problem at this stage, the analysis for arbi-
trary h(t) is extremely difficult. The problem is simplified considerably if we
assume that h(t) is infinitesimally small. The first step in our development
is to obtain a more explicit expression for the dependence of A(t) on h(t).
This involves organizing the problem in the interaction representation. As a step
toward this development we need to look at the dynamics for the case where
we turn off the external interaction.

When h = 0 the time evolution operator U = U0 satisfies:

i h̄
∂

∂t
U0(t, t0) = H U0(t, t0) , (29)

which has the solution:

U0(t, t0) = e−iH(t−t0)/h̄ . (30)

This is the usual unitary time-evolution operator for a time-independent Ha-
miltonian, and, using Eq. (22), we see that operators evolve in this case accor-
ding to:

A(t) = eiH(t−t0)/h̄Ae−iH(t−t0)/h̄ . (31)

Equilibrium averages, in the absence of an external driving force, are given
by:

〈A(t)〉h=0 =
1
Z

Tr e−βHeiH(t−t0)/h̄ Ae−iH(t−t0)/h̄ . (32)

Since H commutes with itself,

e−βHeiH(t−t0)/h̄ = eiH(t−t0)/h̄e−βH , (33)

and using the cyclic invariance of the trace we have:

〈A(t)〉h=0 =
1
Z

Tr e−iH(t−t0)/h̄eiH(t−t0)/h̄e−βH A = 〈A〉eq . (34)

These averages in equilibrium are time independent [11].
Let us return to the case of nonzero h(t) and define the operator Û via:

U(t, t0) ≡ U0(t, t0)Û(t, t0) . (35)

Taking the time derivative of Eq. (35) and using Eq. (14) we obtain:

ih̄
∂

∂t
U(t, t0) =

[
ih̄

∂

∂t
U0(t, t0)

]
Û(t, t0) + U0(t, t0)ih̄

∂

∂t
Û(t, t0)



2.1 Linear Response Theory 25

= HU0(t, t0)Û(t, t0) + U0(t, t0)ih̄
∂

∂t
Û(t, t0)

= [H + Hs
E(t)]U(t, t0) , (36)

where we define the external contribution to the Hamiltonian in the Schroe-
dinger representation as:

Hs
E(t) = −Bh(t) . (37)

Canceling the HU(t, t0) terms in Eq. (36), we obtain:

U0(t, t0)ih̄
∂

∂t
Û(t, t0) = Hs

E(t)U(t, t0)

= Hs
E(t)U0(t, t0)Û(t, t0) . (38)

Multiplying from the left by U−1
0 we obtain:

ih̄
∂

∂t
Û(t, t0) = U−1

0 (t, t0)Hs
E(t)U0(t, t0)Û(t, t0) . (39)

It is convenient to define:

HI
E(t) = U−1

0 (t, t0)Hs
E(t)U0(t, t0) = −BI(t)h(t) (40)

where:

BI(t) = U−1
0 (t, t0)BU0(t, t0) (41)

is in the interaction representation. Û then satisfies the differential equation:

ih̄
∂

∂t
Û(t, t0) = HI

E(t)Û(t, t0) . (42)

After integrating Eq. (42) from t0 to t and using the boundary condition Û(t0, t0) =
1, we obtain the key integral equation:

Û(t, t0) = 1 − i
h̄

∫ t

t0

d t′ HI
E(t′)Û(t′, t0) . (43)

Then next step is to express the nonequilibrium average in terms of Û. We first
note that:

U−1(t, t0) = U†(t, t0) = [U0(t, t0)Û(t, t0)]† = Û†(t, t0)U†(t, t0) , (44)

then Eq. (24) can be written:

〈A(t)〉ne = Tr ρeqÛ†(t, t0)U†
0 (t, t0)AU0(t, t0)Û(t, t0)

= Tr ρeqÛ†(t, t0)AI(t)Û(t, t0) . (45)
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The entire dependence on HE is now isolated in the operator Û. In general
the best we can do (see Problem 2.2) for arbitrary HE is to write the formal
solution:

Û(t, t0) = T e
[
− i

h̄
∫ t

t0
d t′HI

E(t′)
]

(46)

to the integral equation for Û. In Eq. (46), T is the time-ordering operator
that orders all operators according to time sequence, the latest time standing
furthest to the left, for example,

T [A(t3)B(t2)C(t1)] = C(t1)B(t2)A(t3) (47)

when t1 > t2 > t3.
It is at this point that the assumption of weak coupling or small HE enters.

We can iterate the integral equations for Û to first order in HE to obtain:

Û(t, t0) = 1 − i
h̄

∫ t

t0

d t′HI
E(t′) + . . (48)

Û+(t, t0) = 1 +
i
h̄

∫ t

t0

d t′HI
E(t′) + . . . . (49)

Using these results, we can write the nonequilibrium average as:

〈A(t)〉ne = Trρeq

[
1 − 1

ih̄

∫ t

t0

d t′HI
E(t′) + · · ·

]

×AI(t)
[

1 +
1
ih̄

∫ t

t0

d t′HI
E(t′) + · · ·

]

= Trρeq[AI(t) +
1
ih̄

∫ t

t0

d t′[AI(t)HI
E(t′) − HI

E(t′)AI(t)]

+O(HI
E

2
)

= 〈AI(t)〉eq +
1
ih̄

∫ t

t0

d t′〈[AI(t), HI
E(t′)]〉eq + O(HI

E
2
) . (50)

Inserting the expression for HI
E given by Eq. (40) we have

〈A(t)〉ne = 〈AI
α(t)〉eq −

1
ih̄

∫ t

t0

d t′〈[AI(t), BI(t′)]〉eqh(t′) + O(h2) . (51)

Note that the averages are now over the equilibrium ensemble with a time
dependence governed only by the intrinsic Hamiltonian H. We have already
shown:

〈AI(t)〉eq = 〈A〉eq . (52)
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It will be convenient to drop the label I on the operators A and B in the second
average with the understanding that they evolve with U0.

We now draw out our main result. The deviation from equilibrium due
to a very weak external field can be written as a product of two terms. One
is the external field and the other is an equilibrium-averaged time-correlation
function that is independent of the external field:

δA(t) = 〈A(t)〉ne − 〈A(t)〉eq = 2i
∫ t

t0

d t′χ′′
A,B(t, t′)h(t′) + O(h2) , (53)

where we have defined the response function:

χ′′
A,B(t, t′) =

1
2h̄

〈[A(t), B(t′)]〉eq . (54)

For a simple example see Problem 2.3. We can always choose h(t′) such that
we can extend the lower limit of the time integration to −∞ and we can define
the dynamic susceptibility:

χAB(t, t′) = 2iθ(t − t′)χ′′AB(t, t′) (55)

so that:

δA(t) =
∫ +∞

−∞
d t′χAB(t, t′)h(t′) . (56)

The step function θ occurs naturally in χ since the system is causal. We can
not feel the effects of h until after it has acted. This result, first obtained in
the early 1950s, is one of the most important in the area of nonequilibrium
statistical mechanics. We shall now study this result in some detail in order to
appreciate its significance. A key point is that we have reduced our nonequi-
librium problem to that of equilibrium averaged time-correlation functions. It
is of great advantage that we can use the high symmetry of the equilibrium
state in analyzing χ′′ and χ. As a first example, consider the consequences of
time-translational invariance.

2.1.3
Time-Translational Invariance

Consider the equilibrium-averaged time-correlation function (we drop the sub-
script eq on the average when there is no confusion):

〈A(t)B(t′)〉 = Tr ρeqA(t)B(t′) , (57)

or, writing this out more fully

〈A(t)B(t′)〉 = Tr ρeqU+
0 (t, t0)AU0(t, t0)U+

0 (t′, t0)BU0(t′, t0) . (58)
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The factor between operators A and B can be written in a more convenient
form:

U0(t, t0)U+
0 (t′, t0) = e−iH(t−t0)/h̄e+iH(t′−t0)/h̄

= e−iH(t−t′)/h̄

= U0(t, t′) . (59)

Then we can use the cyclic invariance of the trace to move U0(t′, t0) through
ρeq (since ρeq commutes with U0 and U+

0 ),

U0(t′, t0)ρeq = ρeqU0(t′, t0) , (60)

and then use the adjoint of Eq. (59) to obtain:

〈A(t)B(t′)〉 = Tr ρeqU0(t′, t)AU0(t, t′)B

= Tr ρeqU+
0 (t, t′)AU0(t, t′)B

= 〈A(t − t′)B〉 (61)

Thus we see that time-translational invariance, which is equivalent to the
statement that the time evolution operator U(t, t′) commutes with the density
matrix, demands that equilibrium time-correlation functions depend only on
time differences and not on any time origin (e.g., the choice of t0). This result
for 〈A(t)B(t′)〉 immediately implies, after putting back the indices,

χ′′
AB(t, t′) = χ′′

AB(t − t′) (62)

and:

χAB(t, t′) = χAB(t − t′) . (63)

This means that our expression for δA(t), as in the case of Brownian motion,
is in the form of a convolution:

δA(t) =
∫ +∞

−∞
d t′ χAB(t − t′)h(t′) . (64)

It is therefore natural to introduce Fourier transforms:

δA(ω) =
∫ +∞

−∞
d t eiωtδA(t) , (65)

and the inverse:

h(t) =
∫ +∞

−∞

dω
2π

e−iωth(ω) (66)

to obtain:

δA(ω) = χAB(ω)h(ω) . (67)
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This is our main result. The nonequilibrium response of a system to a weak ex-
ternal field h(ω) is proportional to the response function χ(ω). Consequently
the calculation of the nonequilibrium response of a system to a weak external
field reduces to a purely equilibrium calculation. Calculation of quantities
like χ(ω) are not simple for practical systems, but they are well defined. We
expect that information about transport properties (thermal conductivities,
viscosities, etc) must be available from χ. Our eventual goal is to see how to
extract this information.

2.1.4
Vector Operators

Thus far we have discussed the response of an observable A to an external
perturbation that couples to the observable B. We need to generalize these
results to a set of observables Aα where the α is a discrete index. The simplest
example is where the observable is a vector Aα → A. It is natural in this case
to consider a vector coupling where h → hα, which couples to the vector field
Bα. The discrete set may also range over some set of variables like the number
of particles, the momentum and the energy, as would occur in fluids. It is easy
to see that our linear response results easily generalize to this case in the form:
:

δAα(t) = ∑
β

∫ +∞

−∞
d t′χAαBβ

(t − t′)hβ(t′) (68)

χAαBβ
(t, t′) = 2iθ(t − t′)χ′′AαBβ

(t, t′) (69)

χ′′Aα,Bβ
(t, t′) =

1
2h̄

〈[Aα(t), Bβ(t′)]〉eq . (70)

2.1.5
Example: The Electrical Conductivity

As a first explicit example of our linear response formalism, consider the case
of a uniform, external, slowly varying electric field E(t) applied to a metal.
This initial treatment is somewhat naïve; later we will give a more rigorous
analysis [12]. The interaction energy for a set of N particles, with charge qi
and located at positions ri, is given by:

HI =
N

∑
i=1

qiφ(ri) (71)
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where φ(x) is the electrostatic scalar potential at position x. We can rewrite this
interaction energy as:

HI = ∑
i

qi

∫
ddxδ(x − ri)φ(ri, t) =

∫
ddx ∑

i
qiδ(x − ri)φ(x, t)

=
∫

ddxρ(x)φ(x, t) (72)

where:

ρ(x) =
N

∑
i=1

qiδ(x − ri) (73)

is the charge density and we assume we are working in d spatial dimensions.
The specific case of interest here, an applied a uniform electric field, can be
written in a simpler form. In general, the electric field is related to the scalar
potential by:

E(x, t) = −�∇xφ(x, t) . (74)

If E is a constant in space, then we can write:

φ(x, t) = −x · E(t) (75)

and the interaction energy take the form:

HI =
∫

ddx ∑
i

qiδ(x − ri)(−x · E(t))

= −∑
i

qi ri · E(t) = −R · E(t) (76)

where:

R = ∑
i

qi ri (77)

is the center of charge times the number of particles N. In terms of our original
notation we identify h(t) → E(t) and B(t) → R.

In this case we are interested in the current flow in the system when we
apply the electric field. If Jα(t) is the charge-current density operator, then in
the absence of an applied field, there is no net flow of charge:

〈Jα(t)〉eq = 0 . (78)

In the linear response regime where E(t) is small, we have immediately, using
Eq. (68), that:

〈Jα(t)〉ne = ∑
β

∫ +∞

−∞
d t′ χJα,Rβ

(t − t′)Eβ(t′) . (79)
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Clearly this allows one to define a nonlocal electrical conductivity:

〈Jα(t)〉ne = ∑
β

∫ +∞

−∞
d t′σαβ(t − t′)Eβ(t′) , (80)

where:

σαβ(t − t′) = 2iθ(t − t′)
1

2h̄
〈[Jα(t), Rβ(t′)]〉eq . (81)

Thus we obtain an explicit correlation function expression for the electrical
conductivity. In terms of Fourier transforms, Eq. (79) reduces to:

〈Jα(ω)〉ne = ∑
β

σαβ(ω)Eβ(ω) . (82)

These results can be used to determine σ explicitly for simple model systems.
If we return to our example of Brownian motion in Chapter 1 where the

large particles have a charge q, then the average equation of motion in the
presence of an applied electric field is given by:

M
d
dt

〈Vα(t)〉 = −Mγ〈Vα(t)〉+ qEα(t) (83)

where we have extended our previous results to d dimensions and included
the vector index α on the average velocity and the applied field. If we Fourier
transform over time using:∫ ∞

−∞
dt eiωt d

dt
〈Vα(t)〉 = −iω〈Vα(ω)〉 , (84)

then the equation of motion becomes:

(−iω + γ) 〈Vα(ω)〉 =
q
m

Eα(ω) . (85)

The average charge-current density is given by:

〈Jα(t)〉ne = nq〈Vα(t)〉ne , (86)

where n = N/V is the charge carrier density in the system. Then, after Fourier
transformation of Eq. (86) and using Eq. (85), we obtain the result for the
nonequilibrium charge-current density:

〈Jα(ω)〉ne =
nq2

(−iω + γ)M
Eα(ω) . (87)

Comparing this result with the linear response result, we can identify the
frequency-dependent conductivity:

σαβ(ω) =
nq2

(−iω + γ)M
δαβ . (88)
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This is the Drude theory [13] result for the conductivity. Note that the conduc-
tivity tensor is diagonal. The conductivity is identified in this case with the
low- frequency component:

σ = lim
ω→0

σ(ω) =
nq2

Mγ
. (89)

Recognizing that the inverse friction constant can be interpreted as a relaxati-
on time τ = γ−1, the Drude result can be written in the conventional form:

σ =
nq2τ

M
. (90)

This result can serve as a definition of the relaxation time τ. From measure-
ments of σ we can determine τ. For example [14], for copper at a temperature
of 77 K, τ = 21 × 10−14 s, at 273 K, τ = 2.7 × 10−14 s, and at 373 K, τ =
1.9× 10−14 s.

Notice that Eq. (89) serves as a microscopic definition of the conductivity.
It expresses this transport coefficient in terms of the low-frequency limit, or
time-integral, of the equilibrium-averaged time-correlation function given by
Eq. (81). We discuss this result in more detail in Chapter 4.

In the case of a dielectric material where we apply an external electric field,
we induce a net nonzero polarization field. The coefficient of proportionality
between the applied field and the measured response is a frequency-dependent
dielectric function. We also discuss this result in some detail in Chapter 4.

2.1.6
Example: Magnetic Resonance

There are a number of magnetic resonance experiments [nuclear magnetic
resonance (NMR), electron spin resonance (ESR) etc.] that are interpreted
using linear response theory. There are many texts devoted to this topic [15,
16]. As an introduction to this technique and to give some sense as to the
physical content contained in the dynamic susceptibility, let us consider the
case of a paramagnetic system aligned along a primary external magnetic
field:

H0 = H0ẑ . (91)

This clearly corresponds to a case of constrained equilibrium where the ave-
rage magnetization aligns along the applied field:

〈M〉 = χ0H0 ≡ M0 (92)

where χ0 is the associated static susceptibility. Now, assume that we perturb
this system with a weak, transverse time-dependent external field:

h(t) = hx(t)x̂ + hy(t)ŷ . (93)
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What are the responses of the various components of the magnetization to this
transverse field? If we think of this problem in terms of linear response where
H0 is fixed and the transverse field is small, then the variation of the average
magnetization with transverse field is given by:

〈Mα(ω)〉 = ∑
β

χαβ(ω)hβ(ω) (94)

where:

χαβ(ω) =
∫ ∞

−∞
d(t − t′) eiω(t−t′)χαβ(t, t′) (95)

and:

χαβ(t, t′) = 2iθ(t − t′)
1

2h̄
〈[Mα(t), Mβ(t′)]〉H0

eq (96)

where the equilibrium state used in the average is in the presence of H0.
To go further in understanding the information contained in the linear re-

sponse function in this case we need a model. We adopt the phenomenological
model of Bloch [17] , which captures the essence of the problem. Later, in
Chapter 9, we will discuss a more careful derivation of equations of motion of
this type. Here we rely on physical arguments. The Bloch equation of motion,
satisfied by the average magnetization, consists of two contributions, one of
microscopic origins and one of a more macroscopic source. The first reversible
contribution to the equation of motion comes from a term in the microscopic
Heisenberg equation of motion:[

d
dt

Mα

]
reversible

=
i
h̄
[HZ, Mα] . (97)

where HZ is the Zeeman contribution to the Hamiltonian:

HZ = −M · HT (98)

and HT(t) = H0 + h(t) is the total external magnetic field. Evaluation of this
contribution requires us to be a bit more specific. The total magnetization is
given by M = ∑i�μi where �μi is the magnetic moment of the ith molecule in
the system. If Ji is the total angular momentum for the ith molecule in the
system, then it is proportional to the magnetic moment,

�μi = γJi , (99)

where the proportionality constant γ is the gyromagnetic ratio. The total an-
gular momenta satisfy the quantum-mechanical commutation relations:

[Jα
i , Jβ

j ] = ih̄δij ∑
ν

εαβν Jν
i . (100)
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If we multiply by γ2 and sum over i and j we obtain for the components of the
total magnetization:

[Mα, Mβ] = ih̄γ ∑
ν

εαβνMν . (101)

We therefore have the contribution to the equation of motion for the total
magnetization:

i
h̄
[HZ, Mα] = − i

h̄ ∑
β

Hβ
T[Mβ, Mα]

= − i
h̄ ∑

β
Hβ

Tih̄γ ∑
ν

εβαν Mν

= −γ ∑
βν

εαβνHβ Mν = −γ (HT × M)α , (102)

which is easily recognized as a term that leads to precession of the magnetic
moments.

The second term in the equation of motion is a damping term, like the
frictional term in the Brownian motion example, which tends to drive the
magnetization to the equilibrium value M0

α. Our equation of motion then
takes the general form:

d
dt

Mα = −γ (H(t)× M)α − Γα(H0)
(

Mα − M0
α

)
, (103)

where the Γα are damping (or friction) coefficients. We should allow for the
fact, in the presence of H0, that damping associated with fluctuations along
and perpendicular to the ordering may be different. Following the standard
convention we define: Γz = 1

T1
and Γx = Γy = 1

T2
where T1 and T2 are

functions of H0. In the limit H0 → 0, T1 = T2. Notice that the external field H0
breaks any overall rotational symmetry in the problem. One can still, however,
have rotational symmetry in the xy plane. The Bloch equation, Eq. (103), then
takes the form:

d
dt

Mz = −γ (H(t) × M)z −
1
T1

(Mz − M0) (104)

for the longitudinal component, while in the xy plane,

d
dt

MT = −γ(H(t)× M)T − 1
T2

MT (105)

where the subscript T means in the transverse plane. The applied field can
then be written as the sum:

H(t) = H0ẑ + h(t) , (106)
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where the transverse field h(t) is small in magnitude compared with H0. It is
then easy to estimate that Mz ≈ O(H0) while the two transverse components
of the magnetization are of order h. If we evaluate the cross product terms we
obtain:

[H(t)× M]z = Hx My − Hy Mx , (107)

which is of O(h2). Similarly we obtain, to O(h),

[H(t)× M]x = Hy Mz − Hz My = hy Mz − H0My (108)

and:

[H(t) × M]y = Hz Mx − Hx Mz = H0Mx − hx Mz . (109)

The Bloch equations, keeping terms of O(h), then reduce to:

d
dt

Mz = − 1
T1

(Mz − M0) (110)

[
d
dt

+
1
T2

]
Mx = γH0My − γMzhy(t) (111)

[
d
dt

+
1
T2

]
My = −γH0Mx + γMzhx(t) . (112)

If we look at these equations in a steady-state situation where the fields were
turned on in the distant past (see Problem 2.4), then we see that the consistent
solution for the longitudinal magnetization is that it be a constant:

Mz = M0 . (113)

Thus all of the action at linear order in h(t) is in the transverse directions. Using
Eq. (113) we find that the transverse equations of motion then take the form:[

d
dt

+
1
T2

]
Mx = γH0My − γM0hy(t) (114)

[
d
dt

+
1
T2

]
My = −γH0Mx + γM0hx(t) . (115)

Fourier transforming these equations in time and defining the cyclotron fre-
quency ω0 = γH0, we obtain the coupled set of linear equations:(

−iω +
1
T2

)
Mx(ω) − ω0 My(ω) = −γM0hy(ω) (116)
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ω0 Mx(ω) +
(
−iω +

1
T2

)
My(ω) = γM0hx(ω) . (117)

It is easy enough to invert (see Problem 2.5) this 2 × 2 matrix equation to
obtain:

Mα(ω) = ∑
β

χαβ(ω)hβ(ω) (118)

and we can easily read off the results:

χxx(ω) = χyy(ω) =
ω0γM0

ω2
0 + (−iω + T−1

2 )2
(119)

and:

χyx(ω) = −χxy(ω) =
γM0(−iω + T−1

2 )
ω2

0 + (−iω + T−1
2 )2

. (120)

Let us focus on χxx(ω), which we can write in the form:

χxx(ω) =
ω0γM0

[ω0 + ω + iT−1
2 )][ω0 − ω − iT−1

2 )]
. (121)

Now suppose our probing transverse field is harmonic:

h(t) = h cos(ωpt)x̂ (122)

and we probe at frequency ωp. The Fourier transform of the applied field is:

h(ω) = 2π
h
2
[
δ(ω − ωp) + δ(ω + ωp)

]
(123)

and the measured x-component of the magnetization in the time domain is
given by:

Mx(t) =
∫ dω

2π
eiωtχxx(ω)2π

h
2
[
δ(ω − ωp) + δ(ω + ωp)

]
=

h
2

[
eiωptχxx(ωp) + e−iωptχxx(−ωp)

]
=

h
2

{
cos(ωpt)

[
χxx(ωp) + χxx(−ωp)

]
+ i sin(ωpt)

[
χxx(ωp) − χxx(−ωp)

]}
. (124)

Since we see from inspection of Eq. (119) that:

χxx(−ω) = χ∗
xx(ω) , (125)
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we have:

χxx(ω) + χxx(−ω) = 2χ′xx(ω) (126)

χxx(ω)− χxx(−ω) = 2iχ′′xx(ω) . (127)

Inserting these results back into the expression for the x-component of the
magnetization gives:

Mx(t) = h
[
cos(ωpt)χ′xx(ωp) − sin(ωpt)χ′′xx(ωp)

]
. (128)

The real and imaginary parts of χxx can be easily extracted if we write Eq. (121)
in the form:

χxx(ω) = ω0γM0
[ω0 + ω − iT−1

2 ][ω0 − ω + iT−1
2 ]

[(ω0 + ω)2 + T−2
2 )][(ω0 − ω)2 + T−2

2 )]
(129)

with the results:

χ′xx(ω) = ω0γM0
[ω2

0 − ω2 + T−2
2 ]

[(ω0 + ω)2 + T−2
2 ][(ω0 − ω)2 + T−2

2 ]
(130)

and:

χ′′
xx(ω) = ω0γM0

2ωT−1
2

[(ω0 + ω)2 + T−2
2 ][(ω0 − ω)2 + T−2

2 ]
. (131)

Then, as one sweeps ω, one finds a large response (resonance) as one passes
through ω = ±ω0. The smaller the damping, T−1

2 , the sharper the resonance.
Clearly this method can be used to measure the resonance frequency, ω0, and
the damping T−1

2 .

2.1.7
Example: Relaxation From Constrained Equilibrium

An important set of experiments, particularly from a conceptual point of view,
involve those where we start with a system in equilibrium at t = −∞, adia-
batically turn on an external field, which brings the system into a constrained
equilibrium state, and then, at t = 0, turn off the field. This is the situation de-
scribed earlier for a paramagnet. As a prelude to this case let us first consider
a slightly simpler situation.

Suppose we adiabatically turn on an external field, hB, that couples to obser-
vable B and then maintain this time-independent field for times greater than
some time t1:

hB(t) =
[
eη(t−t1) θ(t1 − t) + θ(t − t1)

]
hB . (132)



38 2 Time-Dependent Phenomena in Condensed-Matter Systems

The adiabatic requirement implies that η is very small. We have, then, combi-
ning Eq. (53) with Eq. (132), that the linear response to this field is:

δA(t) = 2i
∫ t

−∞
d t′χ′′A,B(t − t′)hB[eη(t′−t1)θ(t1 − t′) + θ(t′ − t1)] (133)

It is shown in Problem 2.13 that after introducing the Fourier transform of
χ′′AB(t − t′), the time integral can be carried out and in the adiabatic limit one
obtains:

δA(t) = χA,BhB , (134)

where the static susceptibility is given by:

χA,B =
∫ dω

π
χ′′

A,B(ω)
ω

. (135)

Note that δA(t) is time independent for t > t1. If we allow t1 → −∞ then this
gives the response of the system to a time-independent external field.

As a consistency check this result should be the same as one would obtain
from the equilibrium calculation of 〈A〉 where one has the density matrix:

ρeq = e−β(H+HE)/Tre−β(H+HE) , (136)

with HE = −BhB, which is treated as a perturbation on H. In Problem 2.6 you
are asked to show Eq. (134) holds directly. We will return to this later.

Note, since h is infinitesimal, we have from Eq. (134) the result:

δA
δhB

= χAB . (137)

This relation helps us make the connection with thermodynamic derivatives.
Let us now return to the dynamic situation where we create a disturbance

by turning off an adiabatic field at time t = t1 = 0. Our external field is given
by :

hB(t) = eηthBθ(−t) . (138)

The linear response is given in this case by Eq. (53) with h(t′) replaced by
hB(t′) given by Eq. (138):

δA(t) =
∫ 0

−∞
d t′ 2iθ(t − t′)χ′′A,B(t − t′)eηt′hB . (139)

For t ≥ 0 the step function is equal to 1 and:

δA(t) = hB

∫ dω
2π

2iχ′′
A,B(ω)

∫ 0

−∞
d t′ e(η+iω)t′e−iωt
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= hB

∫ dω
π

χ′′
A,B(ω)ie−iωt 1

η + iω

=
∫ dω

π
χ′′

A,B(ω)e−iωt

ω − iη
hB . (140)

We established previously the static result:

δA(t = 0) = χA,BhB . (141)

We can invert this result to obtain:

hB = [χA,B]−1δA(t = 0) , (142)

which gives an expression for the f orces driving the system in terms of a
static susceptibility and the initial constrained equilibrium values. We can
then write Eq. (140) in the form:

δA(t) = RAB(t)δA(t = 0) , (143)

where the relaxational function:

RAB(t) =
∫ dω

π
χ′′A,B(ω)
ω − iη

e−iωt χA,B
−1 (144)

is independent of the applied forces. Note that we have reduced the problem
to an initial-value problem.

If the observable A and the field h carries a discrete index then we end up
with matrix equations for the initial value of the observable:

δAα(t = 0) = ∑
β

χAα,Bβ
hBβ. (145)

Evaluation of hBβ in terms of the initial value requires the construction of the
matrix inverse:

∑
μ

[
χA,B
]−1

αμ χAμ,Bβ
= δαβ . (146)

Then we have:

hα = ∑
μ

[
χA,B
]−1

αμ δAμ(t = 0) . (147)

Again we can use this result to write the relaxation in terms of a initial value
problem:

δAα(t) = ∑
β

RAαBβ(t)δAβ(t = 0) (148)
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where the relaxational function:

RAαBβ(t) = ∑
γ

∫ dω
π

χ′′
Aα,Bγ

(ω)

ω − iη
e−iωt [χA,B

]−1
γβ (149)

requires the construction of the matrix inverse
[
χA,B
]−1

γβ .

2.1.8
Field Operators

Suppose we further extend our analysis to include observable fields A →
Aα(x) and couplings h → hα(x), which depend on a position variable x.
As a specific example we can think of the Aα(x, t) as the components of the
magnetization density in a magnetic system:

M(x, t) = ∑
i

1
2 [�μi(t)δ(x − ri(t)) + δ(x − ri(t))�μi(t)] (150)

where �μi is the ith magnetic moment in the system located at position ri. In
this case one can couple, in d dimensions, to the magnetization through the
introduction of an inhomogeneous external magnetic field:

Hs
E(t) = −

∫
ddx M(x) · H(x, t) . (151)

In the case of an inhomogeneous scalar potential φ(x, t) applied to a charged
system we found previously:

Hs
E(t) =

∫
ddx ρ(x)φ(x, t) (152)

where ρ(x) is the charge density.
It is then easy to extend our linear response analysis to give the rather

general results:

δAα(x, t) =
∫

ddx′ ∑
β

∫ +∞

−∞
d t′χAαBβ

(x, x′, t − t′)hβ(x′, t′) , (153)

χAαBβ
(x, x′, t − t′) = 2iθ(t − t′)χ′′AαBβ

(x, x′, t − t′) (154)

and:

χ′′Aα,Bβ
(x, x ′; t − t′) =

1
2h̄

〈[Aα(x, t), Bβ(x′, t′)]〉eq . (155)

If we also have translational invariance in space :

χAαBβ
(x, x ′, t − t′) = χAαBβ

(x − x ′, t − t′) , (156)
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then we can Fourier transform over space,

hβ(x, ω) =
∫ ddk

(2π)d e+ik·xhβ(k, ω) , (157)

to obtain the linear response result:

δAα(k, ω) = ∑
β

χAαBβ
(k, ω)hβ(k, ω) + O(h2) . (158)

2.1.9
Identification of Couplings

There are important situations where the response to a perturbation is not
obviously expressible in terms of an interaction Hamiltonian HE(t). Examples
include gradients in temperature and in chemical potential across a sample
that induce heat and mass flow. We can gain some feeling [18] for the situa-
tion by considering a fluid where we set up a small temperature gradient (or
inhomogeneity) in the system holding the system at constant pressure. We
will assume there exists an adiabatic external driving force hB(x) that couples
linearly to an observable field B(x) to produce a temperature gradient. We
assume that the external interaction can be written in the conventional form:

HE(t) = −
∫

ddx B(x)hB(x)[eηtθ(−t) + θ(t)] . (159)

We show in Chapter 6 that if A is a conserved density (it need not be con-
served in the classical limit) and we work in the grand canonical ensemble
(GCE), then the change in the average of A due to changes in temperature and
pressure are given by:

δĀ = χnĀ
δp
n̄

+ χqA
δT
T

, (160)

where the χ’s are the static susceptibilities and q the heat density defined by:

q(x) = ε(x)− (ε̄ + p̄)
n̄

n(x) , (161)

where ε(x) is the energy density, n(x) the particle density and ε̄ and n̄ their
equilibrium averages. From Eq. (160) we can read-off that the external coup-
ling generating thermal gradients is given by:

hq(x) =
δT(x)

T
(162)

and it couples to the heat density:

B(x) = q(x) . (163)
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The external coupling generating thermal gradients can then be written as:

HE(t) = −
∫

ddx q(x)
δT(x)

T

[
eηtθ(−t) + θ(t)

]
. (164)

Similarly pressure variations, at fixed temperature, are produced by:

HE(t) = −
∫

ddx n(x)
δp(x)

n

[
eηtθ(−t) + θ(t)

]
, (165)

and one couples directly to the density. In Eq. (161), ε(x) and n(x) are opera-
tors that can be defined without reference to the thermodynamic state of the
system. This is not true for the heat density, which depends on the equilibrium-
averaged quantities, (ε̄ + p̄)/n̄.

Let us now turn to a discussion of of scattering experiments in a many-
particle system context. This discussion will eventually lead back to χ′′A,B(k, ω).

2.2
Scattering Experiments

2.2.1
Inelastic Neutron Scattering from a Fluid

Let us consider a prototype of a wide class of modern experimental techni-
ques: neutron scattering. Neutron scattering from a condensed matter system
is only one of a large number of scattering experiments where we probe a
system by sending in a small projectile and then look at the end products of
the scattering. We can also use electrons, positrons, helium atoms, visible light
or x-rays. At present, we shall focus on neutron scattering since the kinematics
are the simplest in this case.

Consider the experimental situation where we allow a beam of thermal
neutrons to scatter from some macroscopic sample (see Fig. 2.1). We assume

Fig. 2.1 Schematic of the kinematics of neutron scattering. The
incident neutron has momentum h̄ki and energy εi. The scattered
neutron has momentum h̄k f and energy ε f .
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that the beam of neutrons is incident with energy εi and momentum h̄ki. We
mean by thermal neutrons that εi is on the order of thermal (kBT) energies. Let
us assume for simplicity that the sample is a container of argon gas. Argon,
a noble gas, is one of the simplest fluids. The neutrons, which interact with
argon nuclei via a coupling between their magnetic moments, will be scattered
by the fluid. We then measure, using a bank of neutron detectors, neutrons
scattered in a final state labeled by an energy ε f and a momentum h̄k f . We
assume that initially the argon system can be described by the many-particle
quantum state |i〉. The neutron, through its interaction with the argon, will
cause a transition in the argon to some final state | f 〉.

In a slightly simplified version of the real world (which we will make more
rigorous later), we can assume that the interaction of a neutron at position x
and the N argon atoms at positions rj can be written as a sum of pair interac-
tions:

HI(x) =
N

∑
j=1

V(rj − x) =
∫

ddy n(y)V(x − y) (166)

where V(x) is the interaction potential and n(x, t) is the argon particle density:

n(x, t) =
N

∑
j=1

δ[x − rj(t)]. (167)

Notice that our interaction potential is of the linear response type. In a scat-
tering experiment, when we measure the scattering angle and the change in
energy, we measure the inelastic double differential scattering cross section

per unit solid angle, dΩ, per unit energy, dε f : d2σ(i→ f )
dΩdε f

. The i → f indicates that
the argon is taken from the initial quantum state i to the final state f during
the scattering process. We need a theoretical expression for the scattering cross
section. Since we are only tickling the system (a single neutron will only mildly
effect a large sample), the Born approximation can be used to evaluate the
cross section in the form referred to as Fermi’s golden rule [19]:

d2σ(i → f )
dΩdε f

=
1
V

k f

ki

(
MN

2πh̄2

)2
|〈k f f |HI|iki〉|2 δ(h̄ω − Ef + Ei) , (168)

where MN is the mass of the neutron, V the volume of the sample, h̄ω =
εi − ε f is the energy transfer of the neutron, and Ei and Ef are the initial
and final energies of the argon system. The δ-function corresponds to energy
conservation:

εi + Ei = ε f + Ef . (169)
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The initial and final states are product states since the neutron and argon are
asymptotically uncoupled:

〈k f f | = 〈k f | × 〈 f | , (170)

where 〈k f | is the final plane wave state for the neutron.
We can evaluate the interaction matrix element more explicitly if we assume

the interaction potential between the neutron and argon is Fourier transforma-
ble:

〈k f f |HI|iki〉 =

〈
k f f

∣∣∣∣∣
N

∑
j=1

V(rj − x)

∣∣∣∣∣ iki

〉

=

〈
k f f

∣∣∣∣∣
N

∑
j=1

∫ d3q
(2π)3 V(q)e+iq·(r j−x)

∣∣∣∣∣ iki

〉

=
∫ d3q

(2π)3 V(q)

〈
k f |e−iq·x|ki〉〈 f

∣∣∣∣∣
N

∑
j=1

e+iq·r j

∣∣∣∣∣ i
〉

, (171)

where we have used the separability of the initial and final states into neutron
and argon product states. We can evaluate the neutron matrix element by
recognizing that x, the position operator for the neutron, is diagonal in the
coordinate representation:

x|x ′〉 = x ′|x ′〉 . (172)

Then using the completeness of the coordinate representation:

1 =
∫

d3x′|x′〉〈x ′| , (173)

we have:

〈k f |e−iq·x|ki〉 =
∫

d3x′〈k f |e−iq·x|x ′〉〈x ′|ki〉

=
∫

d3x′e−iq·x′〈k f |x ′〉〈x ′|ki〉 . (174)

Since the free neutron states are plane waves,

〈x′|ki〉 = e+iki·x′ , (175)

then:

〈k f |e−iq·x|ki〉 =
∫

d3x′e−iq·x′e−ik f ·x′e+iki·x′

= (2π)3δ(ki − k f − q) . (176)
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It is convenient to define the neutron momentum exchange in a collision as:

h̄k = h̄ki − h̄k f , (177)

so that the interaction matrix element can be written:

〈k f f |HI|iki〉 =
∫ d3q

(2π)3 V(q)(2π)3δ(k − q)

〈
f

∣∣∣∣∣
N

∑
j=1

e+iq·r j

∣∣∣∣∣ i
〉

= V(k)

〈
f

∣∣∣∣∣
N

∑
j=1

e+ik·r j

∣∣∣∣∣ i
〉

. (178)

The scattering cross section can then be written as:

d2σ(i → f )
dΩdε f

(179)

=
1
V

k f

ki

(
MN

2πh̄2

)2
|V(k)|2δ(h̄ω − Ef + Ei)

∣∣∣∣∣
〈

f

∣∣∣∣∣
N

∑
j=1

e+ik·r j

∣∣∣∣∣ i
〉∣∣∣∣∣

2

.

This expression takes us from an arbitrary initial state |i〉 in the argon fluid to
some final state | f 〉. In reality, we will perform measurements over an ensem-
ble of initial states and we sum over all of the possible final states. What we
measure then is:

d2σ
dΩdε f

= ∑
i, f

ρi
d2σ(i → f )

dΩdε f
, (180)

where ρi is the density matrix or probability distribution governing the initial
argon system in state i. If we assume the system is in thermal equilibrium
initially, then:

ρi =
〈i|e−βH |i〉

∑j〈j|e−βH |j〉 =
e−βEi

Z
, (181)

and we then have for the measured cross section:

d2σ
dΩdε f

=
1
V

k f

ki

(
MN

2πh̄2

)2
|V(k)|2

×∑
i, f

δ(h̄ω − Ef + Ei) ρi

∣∣∣∣∣
〈

f

∣∣∣∣∣
N

∑
j=1

e+ik·r j

∣∣∣∣∣ i
〉∣∣∣∣∣

2

. (182)

Let us now focus on the quantity:

S̄T(k, ω) ≡ h̄2π
V ∑

i, f
δ(h̄ω − Ef + Ei) ρi|

〈
f

∣∣∣∣∣
N

∑
j=1

e+ik·r j

∣∣∣∣∣ i
〉
|2 . (183)
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If we use the integral representation for the δ-function:

2πh̄δ(h̄ω + Ei − Ef ) =
∫ +∞

−∞
dt e+i(ω−(Ef−Ei)/h̄)t , (184)

we can write:

S̄T(k, ω) = ∑
i, f

ρi
1
V

∫ +∞

−∞
dt e+i(ω−(Ef−Ei)/h̄)t

〈
f

∣∣∣∣∣
N

∑
�=1

e+ik·r�

∣∣∣∣∣ i
〉

×
〈

i

∣∣∣∣∣
N

∑
j=1

e−ik·r j

∣∣∣∣∣ f

〉
. (185)

We next observe, remembering

H|i〉 = Ei|i〉 , (186)

that:

e−i(Ef−Ei)t/h̄

〈
i|

N

∑
j=1

e−ik·x j| f

〉
=

〈
i

∣∣∣∣∣eiEit/h̄
N

∑
j=1

e−ik·r j e−iE f t/h̄

∣∣∣∣∣ f

〉

=

〈
i

∣∣∣∣∣eiHt/h̄
N

∑
j=1

e−ik·r je−iHt/h̄

∣∣∣∣∣ f

〉

=

〈
i

∣∣∣∣∣
N

∑
j=1

e−ik·r j(t)

∣∣∣∣∣ f

〉
, (187)

where

rj(t) = eiHt/h̄rje−iHt/h̄ (188)

is the position operator for the jth argon atom at time t. Using this result in
Eq. (185) we obtain:

S̄T(k, ω) =
∫ +∞

−∞

dt
V e+iωt ∑

i, f
ρi

〈
f

∣∣∣∣∣
N

∑
l=1

eik·rl

∣∣∣∣∣ i
〉〈

i

∣∣∣∣∣
N

∑
j=1

e−ik·r j(t)

∣∣∣∣∣ f

〉
. (189)

It is now convenient to rewrite Eq. (189) in terms of the density operator for
the argon system. The density at point x and time t is:

n(x, t) =
N

∑
j=1

δ[x − rj(t)] . (190)
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The Fourier-transform of the density can be defined:

nk(t) =
1√
V

∫
d3x e−ik·xn(x, t)

=
1√
V

N

∑
j=1

e−ik·r j(t) . (191)

We can then write:

S̄T(k, ω) =
∫ +∞

−∞
dt e+iωt ∑

i, f
ρi〈 f |n−k|i〉〈i|nk(t)| f 〉 . (192)

Since the set of final states is complete ∑ f | f 〉〈 f | = 1, we have:

S̄T(k, ω) =
∫ +∞

−∞
dt e+iωt ∑

i
ρi〈i|nk(t)n−k(0)|i〉

=
∫ +∞

−∞
dt e+iωt ∑

i

e−βEi

Z
〈i|nk(t)n−k(0)|i〉

=
∫ +∞

−∞
dt e+iωt 〈nk(t)n−k(0)〉, (193)

and S̄T(k, ω) is just the Fourier transform of a density–density time-correlation
function. Returning to Eqs. (182) and (183) we have our final result, that the
cross section can be written:

d2σ
dΩdε f

=
1

2πh̄
k f

ki

(
MN

2πh̄2

)2
|V(k)|2 S̄T(k, ω) . (194)

We note that the factors multiplying S̄T(k, ω) depend on the interaction of
the neutron with the argon. They depend on how one probes the system.
The quantity S̄T(k, ω) however depends only on the properties of the argon
system. It is completely independent of the nature of the probe. As in the linear
response case, the dynamics intrinsic to the system can be written in terms
of an equilibrium-averaged time-correlation function. Equation (193) can be
written as:

S̄T(k, ω) =
∫ +∞

−∞
dt
∫ d3xd3x′

V e+iωte−ik·(x−x′)S̄T(x, x′, t) , (195)

where:

S̄T(x, x ′, t) = 〈n(x, t)n(x ′, 0)〉 . (196)

The result expressing the double differential scattering cross section in terms
of the dynamic structure factor was first obtained by van Hove [20].
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A key question one should ask: is the correlation function 〈n(x, t)n(x ′, 0)〉
related to the response function 〈[n(x, t), n(x ′, 0)]〉? We shall see that they are
closely related, but it will take some development to make the connection.

Before going on there is one technical point concerning the scattering case
we should straighten out. Since there should be no correlation between den-
sity elements separated by large distances in a system with full translational
invariance, we expect that the correlation function will factorize:

lim
|x−x′|→∞

〈n(x, t)n(x′, 0)〉 → 〈n(x, t)〉〈n(x′, 0)〉 . (197)

It is therefore mathematically desirable to write:

〈n(x, t)n(x′, 0)〉 = S̄(x − x′, t) + 〈n(x, t)〉〈n(x′, 0)〉 (198)

where:

S̄(x − x′, t) = 〈n(x, t)n(x′, 0)〉 − 〈n(x, t)〉〈n(x′, 0)〉
= 〈δn(x, t)δn(x′, 0)〉 (199)

and:

δn(x, t) = n(x, t)− 〈n(x, t)〉 (200)

is the fluctuation in the density about its average value. Note then that:

lim
|x−x′|→∞

S̄(x − x′, t) → 0 . (201)

We have then that Eq. (195) can be written:

S̄T(k, ω) =
∫ +∞

−∞
dte+iωt

∫ d3x√
V

∫ d3x′√
V

e−ik·(x−x ′)

× [S̄(x − x′, t) + 〈n(x′, 0)〉〈n(x, t)〉 ]

= S̄(k, ω) + Sel(k, ω) , (202)

where S̄(k, ω) is the dynamic structure factor and the elastic or forward part of
the scattering is given by:

Sel(k, ω) = n2(2π)4δ(ω)δ(k) (203)

in the case where the system has full translational invariance and 〈n(x, t)〉 is
independent of x and t:

〈n(x, t)〉 = n . (204)

Note we have chosen our normalizations such that:∫ d3x√
V

∫ d3x′√
V

e+ik·(x−x′) =
∫ d3x

V

∫
d3r e+ik·�r =

V
V (2π)3δ(k) . (205)
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In the case of periodic solids, where one has long-range order and the break-
down of translational invariance:

〈n(x, t)〉 = 〈n(x + R, t)〉 (206)

where R is a lattice vector. In Problem 2.7 we discuss the dynamic structure
factor for a solid in the harmonic approximation.

2.2.2
Electron Scattering

In the neutron-scattering case, the interaction potential could be written in the
form:

HI(x) =
∫

d3y V(x − y)n(y) (207)

where n(x) is the particle density. We see that the neutron couples directly to
the density fluctuations of the argon system. In the case of electron scattering,
the interaction between the incident electron and a system of bound charged
particles is given by the Coulomb interaction:

HI =
N

∑
j=1

eqj

|x − rj|
, (208)

where e is the electron charge and qj is the charge of particle j located at
position xj. We can rewrite Eq. (208) in the form:

HI =
∫

d3y
e

|x − y| ρ(y) , (209)

where:

ρ(x) =
N

∑
j=1

qj δ(x − rj) (210)

is the charge-density operator. We can then obtain the scattering cross secti-
on for electron scattering from the neutron-scattering result if we make the
replacements: MN → me = mass of electron, n → ρ and:

V(k) =
∫

d3 x e−ik·x e
|x| =

4πe
k2 . (211)

The scattering cross section is given then by:

d2σ
dΩdε f

=
1

2πh̄
k f

ki

(
me

2πh̄2

)2 (4πe
k2

)2
S̄ρρ(k, ω) (212)
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where S̄ρρ(k, ω) is the charge-density dynamic structure factor. Thus electrons
measure charge fluctuations.

2.2.3
Neutron Scattering: A More Careful Analysis

A main difficulty in connecting theory and scattering experiments is finding
a tractable form for the interaction Hamiltonian HI. The case of electron scat-
tering is very straightforward. Generally things are not so simple and theo-
rists and experimentalists have to work together to determine the appropriate
coupling. A realistic treatment of neutron scattering is slightly more compli-
cated than electron scattering and light scattering is quite complicated. Here
we will first concentrate on neutron scattering.

In the case of thermal neutron scattering, momentum transfers h̄k are suffi-
ciently small that we can assume kL 
 1 where L is the range of the interaction
between the neutron and the argon nucleus. Thus we can replace:

V(k) → V(0) =

(
2πh̄2

MN

)
a , (213)

where a is the Fermi scattering length or pseudo-potential weight. The inter-
action between a neutron and a nucleus typically possesses a spin-interaction,

a → a1 + a2si ·�σN (214)

where si is the spin-operator for the ith nucleus and �σN is the Pauli spin-
matrix for the neutron. The scattering lengths a1 and a2 can be determined
experimentally and are known (see Table 2.1) for many materials.

Table 2.1 Coherent (σc = 4π|a1 |2) and incoherent (σi = 4π|a2|2) neutron-scattering cross
sections in barns= 10−22cm2. Source: [25], except 1H, 2H, 3He, C, and V, which are taken from
[26]

Element σc σi Element σc σi
1H 1.8 80.2 Rb 6.3 0.003
2H 5.6 2 Na 1.6 1.8
3He 4.9 1.2 Sn 4.7 0.2
4He 1.13 0.0 Bi 9.3 0.1
C 5.6 0.0 Pb 11.1 0.3
Ne 2.7 0.2 Al 1.5 0.0
A 76.6 0.54 Cu 7.3 1.2
Ga 6.5 1.0 V 0.02 5.0

The interaction between a neutron and argon atoms can then be written as:

HI(x) =

(
2πh̄2

MN

)
[a1n(x) + a2�σN · S(x)] , (215)



2.2 Scattering Experiments 51

where:

S(x) =
N

∑
i=1

1
2

[siδ(x − ri) + δ(x − ri)si] (216)

is the nuclear spin density for the argon system. The correlation function en-
tering the cross section is then, remembering that the Pauli matrices are her-
mitian,

|a|2〈nk(t)n−k〉 → |a1|2〈nk(t)n−k〉 + a2a∗1〈Sk(t)n−k〉 ·�σN

+a1a∗2〈nk(t)S−k〉 ·�σN

+|a2|2 ∑
αβ
〈Sα

k(t)Sβ
−k〉σ

α
Nσβ

N . (217)

Normally, unless one does spin-polarized neutron scattering, one averages
over the nuclear spins:

〈�σN〉 = 0 (218)

〈σα
Nσβ

N〉 = δαβ〈σασα〉 = δαβ (219)

and

d2σ
dΩdε f

=
1

2πh̄
k f

ki

[
|a1|2 S̄nn(k, ω) + |a2|2 S̄ss(k, ω)

]
, (220)

where S̄nn(k, ω) is the density correlation function discussed earlier and

S̄ss(k, ω) =
∫ +∞

−∞
dt
∫ d3xd3x′

V e+iω(t−t′)e−ik·(x−x′)

×〈S(x, t) · S(x′, t′)〉 (221)

is the spin-density correlation function. It is a matter of practical importance
that one measures a sum of S̄nn and S̄ss in inelastic neutron scattering. There
are several ways of separating S̄nn and S̄ss. The first is to choose a system
where |a1|2 or |a2|2 is very small. Alternatively one can vary a1 and a2 by
changing isotopes (which presumably does not change S̄nn and S̄ss). This then
allows one to measure S̄nn and S̄ss separately. Such a program has been carried
out on argon, for example [21]. In this case measurements were made on
naturally occurring argon, 36A, and separate measurements on a mixture of
36A and 40 A. Values for |a1|2 and |a2|2 are given for a selected set of elements
in Table 2.1.

There are certain situations where the nuclear spins are uncorrelated. This
is true of classical fluids like argon. This is not true of quantum fluids like
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3He at low temperatures. Consider the spin-density correlation function in
the classical limit:

〈S(x, t) · S(x′, t′)〉 =

〈
N

∑
i=1

Si · δ[x − ri(t)]
N

∑
j=1

Sjδ[x′ − rj(t′)]

〉
. (222)

If the spins of different particles are uncorrelated, then:〈
N

∑
i �=j=1

Si · Sjδ[x − ri(t)]δ[x′ − rj(t′)]

〉
= 0 (223)

and:

〈S(x, t) · S(x ′, t′)〉 =

〈
N

∑
i=1

S2
i δ[x − ri(t)]δ[x ′ − rj(t′)]

〉
. (224)

Assuming that the nuclear state is in the well-behaved state of total spin S2
i =

h̄2S(S + 1), we have:

〈S(x, t) · S(x ′, t′)〉 = h̄2S(S + 1)

〈
N

∑
i=1

δ[x − xi(t)]δ[x ′ − xi(t′)]

〉

= h̄2S(S + 1)Ss(x − x′, t − t′) (225)

and Ss is known as the van Hove self-correlation function [20], which measu-
res correlations of a particle with itself as a function of position and time. A
measurement of Ss gives one a method for tagging a particle in a fluid and
measuring single particle properties. We write, finally,

d2σ
dΩdε f

=
1

2πh̄
k f

ki

[
a2

cohS̄nn(k, ω) + a2
inch̄2S(S + 1)S̄s(k, ω)

]
(226)

where a2
coh = |a1|2 is associated with the coherent part of the scattering and

a2
inc = |a2|2 is associated with the incoherent part of the scattering.

In Fig. 2.2 we show the data for liquid argon for both coherent S̄nn(k, ω) and
incoherent S̄s(k, ω) contribution to the neutron-scattering cross sections.

2.2.4
Magnetic Neutron Scattering

A different type of neutron scattering occurs when one scatters from magnetic
atoms or molecules. If we think of spins or total magnetic moments localized
on lattice sites ri, then the interaction is of the form:

HI =
N

∑
i=1

2μNσα
NVαβ(x − ri)sβ

i , (227)
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Fig. 2.2 Example of smoothed data for the coherent and incoherent
dynamic structure factors for liquid argon at 85.2 K. Source: K. Sköld, J.
M. Rowe, G. Ostrowski and P. D. Randolph, Ref. [21].

where μN is the neutron magnetic moment

μN = 1.91 (eh̄/MNc) , (228)

σα
N is the α-component of a Pauli spin matrix for the neutron, sβ

i is the βth
component of the spin at lattice site i. The dipole interaction potential between
the spins is given by:

Vαβ(r) =
1

4π

[
δαβ∇2 −∇α∇β

] 1
r

. (229)

We see then that the interaction given by Eq. (227) can be rewritten as:

HI =
∫

d3x′ 2μNσα
NVαβ(x − x′)Mβ(x′) (230)
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where:

Mβ(x′) =
N

∑
j=1

1
2

[
sβ

j δ(x′ − xj) + δ(x′ − xj)sβ
j

]
(231)

is the magnetization density. It is then clear that we can obtain the scattering
cross section for this case from the neutron-scattering example if we replace
n → Mβ and:

V(k) → 2μNσα
NVαβ(k) . (232)

Then:

d2σ
dΩdε f

=
1

2πh̄
k f

ki

(
MN

2πh̄2

)2

∑
α,β,α′,β′

(2μN)2

×σα
NVαβ(k)(σα′

N Vα′β′(k))†SMβ,Mβ′
(k, ω) . (233)

If we assume we are performing an unpolarized scattering experiment, we
average over the neutron spin polarizations. Using Eq. (219) we obtain:

d2σ
dΩdε f

=
1

2πh̄
k f

ki

(
MN

2πh̄2

)2
(2μN)2

× ∑
α,β,β′

Vαβ(k)Vαβ′(k)SMβ,Mβ′
(k, ω) . (234)

We can easily compute the Fourier transform of the potential:

Vαβ(k) =
∫

d3x e+ik·x(
1

4π
)
[
∇2δαβ −∇α∇β

] 1
|x|

=
1

4π

(
−k2δαβ − (ikα)(ikβ)

) ∫
d3x e+ik·x 1

|x|

=
−1
4π

(
k2δαβ − kαkβ

) 4π
k2 = k̂αk̂β − δαβ . (235)

Putting this result back into Eq. (234) gives the final result:

d2σ
dΩdε f

=
1

2πh̄
k f

ki

(
MN

2πh̄2

)2
(2μN)2

×∑
αβ

(
δαβ − k̂αk̂β

)
S̄MαMβ(k, ω) . (236)

In magnetic neutron scattering we couple to the fluctuations in the magneti-
zation density.



2.2 Scattering Experiments 55

2.2.5
X-Ray and Light Scattering

When we treat the scattering of electromagnetic (EM) radiation from a conden-
sed matter system it is more difficult [22] to identify the appropriate coupling
Hamiltonian HI. We know that the scattering by an atomic system occurs as
a result of interaction between the EM wave and the atomic electrons. If we
have a complicated molecular system, the interaction would be considerably
complicated by the coupling of the radiation to the internal degrees of freedom
of the molecules. If we restrict ourselves to a simple atomic system we can start
with the microscopic expression for the total Hamiltonian:

HT =
N

∑
i=1

1
2mi

(
pi −

qi
c

A(ri)
)2

+
1
2

N

∑
i �=j=1

V(ri − rj) +
N

∑
i=1

qiφ(ri) (237)

where pi, ri, qi and mi are, respectively, the momentum, position, charge and
mass of the ith particle in the sample, and c is the speed of light. A(x) is the
vector potential representing the external electromagnetic field and φ(ri) is the
associated scalar potential. We can then write:

HT = H + HI (238)

where H is the Hamiltonian for a system in the absence of the external field
and the coupling is:

HI = −
N

∑
i=1

qi
2mic

(pi · A(ri) + A(ri) · pi)

+
N

∑
i=1

q2
i

2mic2 A2(ri) +
N

∑
i=1

qiφ(ri)

=
∫

d3x
[
−Jq(x) · A(x)

c
+ ρ(x)φ(x) +

1
2c2 ρq2(x)A2(x)

]
(239)

where:

Jq(x) =
N

∑
i=1

qi
1
2

[
pi
mi

δ(x − ri) + δ(x − ri)
pi
mi

]
(240)

is the charge-current density,

ρ(x) =
N

∑
i=1

qiδ(x − ri) (241)

is the charge density and:

ρq2(x) =
N

∑
i=1

q2
i

mi
δ(x − ri) . (242)
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If all the charges have the same magnitude q2
i = e2 (say electrons and protons)

then:

ρq2(x) =
e2

me
n(x) +

e2

mp
np(x) (243)

where me is the mass of the electrons, mp is the mass of the protons, n(x) the
density of electrons, and np(x) the density of protons. Since mp � me, to a
first approximation, we can neglect the proton contribution.

In the case of electromagnetic radiation we can choose a gauge where φ = 0
and we can write the quantized vector potential:

A(k) =
[

hc2

ω(k)

]1/2

[ak + a†
k ] (244)

where ak is a photon annihilation operator, k · ak = 0 (photons have two
transverse polarizations), and ω = ck where c is the speed of light.

If we use the Born approximation to evaluate the scattering then we see that
only the term in HI proportional to A2 contributes. This is because the matrix
element 〈ki|A|k f 〉, where |ki〉 and |k f 〉 are incident and final one- photon
states, is zero. The analysis of the scattering cross section can then be worked
out in detail [23] with the final result:

d2σ
dΩdε f

=
(

e2

mec2

)2(1 + (k̂i · k̂ f )2

2

)
Snn(k, ω) . (245)

One measures the density–density correlation function in x-ray scattering.
The difference between x-ray and light scattering is that their wavelengths

are very different when compared to typical atomic distances. For x-rays the
electromagnetic wavelength is comparable to the atomic size and therefore
one must treat the scattering from individual electrons. In the case of light
scattering, the electromagnetic wavelength is so much larger than interatomic
distances that the atoms see a nearly uniform electric field. In this case, it is
meaningful to talk about the coupling of the radiation to a fluctuating dielec-
tric constant ε(x, t) for the medium. One then assumes that the fluctuations in
density are responsible for fluctuations in dielectric constant and:

ε(x, t) =
(

∂ε
∂n

)
T

n(x, t) . (246)

One then obtains after a number of semiclassical arguments that:

d2σ
dΩdε f

=
√

ε
4

(
∂ε
∂n

)2

T

(ωi
c

)4 (k̂i × k̂ f )2

(2π)3 Snn(k, ω) . (247)
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For a discussion of various restrictions on the validity of this expression and
further discussion of its derivation see Appendix A in Ref. [24]. In the end it
is useful to remember that for simple atomic fluids one can think of light as
coupling directly to the density.

2.2.6
Summary of Scattering Experiments

We have discussed a number of scattering experiments. In each case, the re-
sults can be interpreted in terms of an equilibrium-averaged time-correlation
function: We list our results in Table 2.2 below. It is important to emphasize
that the characteristic momenta and energies associated with these probes
are quite different. In Table 2.3 we give characteristic values for the incident
wavenumbers and energies for the various probes.

Table 2.2 Summary of couplings in scattering experiments

Scattering Couples Correlation
experiment to function

measured
Neutron scattering Density Snn(k, ω)

Single particle Ss(k, ω)
motion

Magnetic neutron Magnetization SMα,Mβ (k, ω)
scattering density
Electron scattering Charge density Sρρ(k, ω)
X-ray scattering Mass density Snn(k, ω)
Light scattering Mass density Snn(k, ω)

Table 2.3 Characteristic incident wavenumbers and
energies in scattering experiments

ki [Å−1] Ei λi = 2π/ki [Å]

Neutrons 2 10−3 to 1 eV 1–10
Light 10−3 10 eV 6000
X-rays 1 50 keV 0.5–2
Electrons 0.1 50 keV 0.1

We first note that x-rays and electrons are similar in the range of k and ω they
probe. They can lead to rather large momentum transfers and therefore can
sample microscopic regions in space. However, the initial and final energies
are so large compared to the desired energy exchanges (500,000 to 1) that one
cannot, with present techniques, energy analyze x-ray and electron scattering.
One therefore integrates over all ω and effectively measures the structure fac-
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tor:

S̄(k) =
∫ dω

2π
S̄(k, ω) , (248)

in these experiments.
Neutron and light scattering are complementary in that neutrons measure

short-distance, short-time behavior, while light scattering is preferable for lon-
ger wavelengths and time phenomena. Light scattering is particularly useful
in looking at hydrodynamical phenomena.

In this chapter we have discussed both linear response and scattering ex-
periments and both measure, under appropriate circumstances, equilibrium-
averaged time-correlation functions. The rapidly expanding direct visualizati-
on method, the modern version of Perrin’s experiment, are also conveniently
analyzed in terms of time-correlation functions.
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2.4
Problems for Chapter 2

Problem 2.1: Consider a classical set of N harmonic oscillators governed by
the Hamiltonian:

H =
N

∑
i=1

[
p2

i
2m

+
k
2

r2
i

]
,

where the oscillators have mass m and spring constant k. Assume that the
initial phase-space coordinates are governed by a probability distribution:

P[ri(0), pi(0)] = D exp

(
−

N

∑
i=1

[
ap2

i + br2
i

])
,

where D is a normalization constant and a and b are constants. Compute the
average kinetic energy for this system as a function of time.
Problem 2.2: Show that the formal solution to Eq. (43), given by Eq. (46), is
correct by comparing with the direct iteration of Eq. (43) to second order in
HI

E.
Problem 2.3: Consider the one-dimensional harmonic oscillator governed by
the Hamiltonian operator:

Ĥ =
p̂2

2m
+

k
2

x̂2 .

Determine the associated linear response function χ′′
x,p(t, t′) defined by Eq. (54).

Problem 2.4: Consider the equation of motion for the longitudinal component
of the magnetization:

d
dt

Mz = − 1
T1

(Mz − M0) .

Solve this equation as an initial-value problem and determine the long-time
value of Mz(t).
Problem 2.5: Solve the coupled set of equations Eq. (116) and Eq. (117) to
obtain Mα(ω). From this determine:

χαβ(ω) =
∂Mα(ω)
∂hβ(ω)

.
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Problem 2.6: Starting with the constrained equilibrium density matrix:

ρeq = e−β(H+HE)/Tre−β(H+HE) ,

where we treat:

HE = −BhB

as a perturbation, show that the linear response for the average of some ob-
servable A is given by:

δA
δhB

= χAB ,

where χAB is given by Eq. (135).
Problem 2.7: In a solid the density of particles can be written in the form:

n(x) = ∑
R

δ [x − R − u(R)] ,

where R labels the lattice vectors and u(R) is the displacement of the atom
at site R from its equilibrium position. In the harmonic approximation the
Hamiltonian governing the lattice displacement degrees of freedom is given
by:

H = E0 + ∑
R

p2(R)
2m

+
1
2 ∑

R,R′
∑
αγ

uα(R)uγ(R′)Dα,γ(R − R′) ,

where E0 is the classical ground state energy, m is the atomic mass, p(R)
is the momentum of the atom at site R, and Dα,γ(R − R′) is the dynamical
matrix governing the interaction between atomic displacements. Assume you
are given the complete and orthonormal set of eigenfunctions εp

α(k) and the
eigenvalues λp(k) associated with the Fourier transform of the dynamical
matrix:

∑
γ

Dα,γ(k)εp
γ (k) = λp(k)εp

α(k) ,

where the index p labels the eigenvalues. In the classical case, express the
Fourier transform of the atomic displacement time-correlation function:

Gα,γ(k, t − t′) =
1
V ∑

R,R′
e−ik·((R−R′)〈uα(R, t)uγ(R′, t′)〉 ,

in terms of the eigenvalues and eigenfunctions.
Problem 2.8: In this problem, building on the results found in Problem 2.7,
we explore the form of the dynamical structure factor measured in an inelastic
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scattering experiments on simple solids. If we scatter from the particle density,
then we can write the dynamical structure factor in the form:

S̄(k, ω) =
∫ ∞

−∞
dteiω(t−t′)

∫ d3x d3y
V e−ik·(x−y)S̄nn(x, y, t − t′) ,

where the density can be written in the form:

n(x) = ∑
R

δ [x − R − u(R)] ,

where R labels the lattice vectors and u(R) is the displacement of the atom at
site R from its equilibrium position.

(i) We are given the result that in the harmonic approximation the averages
needed over the displacement variables in evaluating the dynamical structure
factor are of the form:

〈e∑R
∫

dt̄A(R,t̄)·u(R,t̄)〉

= exp

[
1
2 ∑

R,R′
∑
αγ

∫
dt̄1

∫
dt̄2Aα(R, t̄1)Aγ(R′, t̄2)Gα,γ(R, R′, t̄1 − t̄2)

]
,

where A(R, t) is an arbitrary vector that depends on lattice position and time
and:

Gα,γ(R, R′, t − t′) = 〈uα(R, t)uγ(R′, t′)〉

is the displacement–displacement equilibrium-averaged time-correlation func-
tion discussed in the previous problem. Express the dynamic structure factor
in terms of integrals and sums over Gα,γ(R, R′, t − t′).

(ii) Assuming that the displacement correlation is small at low Tempera-
tures, expand the structure factor in powers of the displacement correlation
function. As a function of frequency, where would we expect to see peaks in
the dynamic structure factor?
Problem 2.9: Show that one can extract the velocity auto correlation function
from the van Hove self-correlation function Ss(k, t − t′).
Problem 2.10: Show that the scattering length a, defined by Eq. (213), has
dimensions of length.
Problem 2.11: Starting with the Bloch equation for the longitudinal compo-
nent of the magnetization:(

d
dt

+
1
T1

)
Mz =

M0

T1
− γ
(
hx My − hy Mx

)
,

find the second order in h component of Mz that shows the resonance seen at
first order in Mx and My.
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Assume that h = x̂ hcos(ωpt).
Problem 2.12: Assume that our Langevin equation of motion is extended to
include the Lorentz force in response to an applied static magnetic field H:

M
d
dt

〈V(t)〉 = −Mγ〈V(t)〉+ q (E(t) + 〈V〉 × H) .

Assuming E = Eẑ and H = Hx̂ determine the conductivity tensor σαβ(ω)
defined by:

〈Jα〉 = nq〈Vα〉 = ∑
β

σαβ(ω)Eβ(ω) .

Problem 2.13: Consider the expression Eq. (133) for the linear response to an
adiabatic field hB(t) given by Eq. (132). Show, by using the Fourier repre-
sentation of χ′′

A,B(t − t′), that one can do the t′ integration and obtain, in the
adiabatic (η → 0) limit,

δA(t) = χA,BhB

for t ≥ t1. Also find δA(t) in the regime t ≤ t1.
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3
General Properties of Time-Correlation Functions

Presumably we are all now convinced of the central role of equilibrium-averaged
time-correlation functions in treating the kinetics of systems experiencing small
deviations from equilibrium. Let us now focus on some of the general proper-
ties of these time-correlation functions.

3.1
Fluctuation-Dissipation Theorem

Suppose for a given system we can carry out both a linear response expe-
riment and a scattering experiment—what is the relationship between the
information obtained in the two experiments? As a concrete example, look
at the response to an external field that couples to the density in a fluid:

Hext(t) = −
∫

d3x U(x, t)n(x) (1)

and also carry out the neutron-scattering experiment discussed earlier. The
Fourier transform of the linear response of the density to this external field is
given by:

δn(k, ω) = χnn(k, ω)U(k, ω) +O(U2) (2)

where the dynamic susceptibility is given by:

χnn(k, ω) = 2i
∫ +∞

−∞
dt
∫

d3x e+iω(t−t′)e−ik·(x−x ′)

×θ(t − t′)χ′′nn(x − x ′, t − t′) (3)

and the linear response function is defined by:

χ′′nn(x − x′, t − t′) =
1

2h̄
〈[n(x, t), n(x′, t′)]〉 . (4)

In the scattering experiment we measure the dynamic structure factor:

S̄nn(k, ω) =
∫ +∞

−∞
dt
∫

d3xe+iω(t−t′)e−ik·(x−x ′)S̄nn(x − x′, t − t′) (5)
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where:

S̄nn(x − x ′, t − t′) = 〈δn(x, t)δn(x ′, t′)〉 . (6)

Consider the following questions: Do the linear response and scattering ex-
periments give independent information? Put another way: are χ(k, ω) and
S̄(k, ω) related? They are related and establishing their precise relationship
will expose an important underlying physical principle.

In making the connection between S̄ and χ, consider the more general case
of the correlation functions:

S̄AB(t − t′) = 〈A(t)B(t′)〉 (7)

and:

χ′′
AB(t − t′) =

1
2h̄

〈[A(t), B(t′)]〉 , (8)

where A and B are any two operators representing observables. We can always
choose A and B to have zero average, 〈A〉 = 0, by choosing δA = A − 〈A〉.
For clarity we suppress the δ below. Consider first S̄AB. We can write, working
in the canonical ensemble,

S̄AB(t − t′) =
1
Z

Tr e−βH A(t)B(t′)

=
1
Z

Tr e−βH A(t)eβHe−βH B(t′) (9)

since eβHe−βH = 1. Remember that the time evolution of an operator is given
by:

A(t) = eitH/h̄Ae−itH/h̄ . (10)

Extending our definition of time onto the complex plane, we can write:

e−βH A(t)e+βH = e−βHe+itH/h̄Ae−itH/h̄e+βH

= e+i(t+iβh̄)H/h̄ Ae−i(t+iβh̄)H/h̄ = A(t + iβh̄) (11)

and Eq. (9) can be written as:

S̄AB(t − t′) =
1
Z

Tr A(t + iβh̄)e−βH B(t′) . (12)

Using the cyclic invariance of the trace, this can be written as:

S̄AB(t − t′) =
1
Z

Tr e−βH B(t′)A(t + iβh̄) = S̄BA(t′ − t − iβh̄) . (13)
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In terms of Fourier transforms:

S̄AB(ω) =
∫

d(t − t′)e+iω(t−t′)
∫ dω̄

2π
S̄BA(ω̄)e−iω̄(t′−t−iβh̄)

=
∫ dω̄

2π
S̄BA(ω̄)e−βh̄ω̄2πδ(ω + ω̄)

S̄AB(ω) = S̄BA(−ω)e+βh̄ω . (14)

If we work in the grand canonical ensemble then the density matrix is of the
form:

ρ =
e−β(H−μN)

Z
(15)

where N is the number operator. If the operators A and B commute with N
(they are defined for fixed particle number) then everything commutes with:

e+βμN (16)

and all of our arguments can be carried through. The main point is that A(t +
iβh̄) commutes with eβμN . If, however, A or B changes the number of particles,
then we must refine our analysis. This would be necessary, for example, if A
or B are creation and annihilation operators (see Problem 3.1).

The result given by Eq. (14) can be understood using the following argu-
ments. Since, in our neutron-scattering experiment, h̄ω = εi − ε f , we see that
ω > 0 means the neutron lost energy in its collision with the target system.
This means the neutron created an excitation with energy h̄ω in the argon. If
ω < 0, then the neutron picked up energy from the target. In this case the
neutron destroyed an excitation with energy h̄ω. We see that it is consistent
to interpret S̄nn(ω) as proportional to the probability of creating an excitation
with energy h̄ω in the argon and S̄nn(−ω) as proportional to the probability
of destroying an excitation with energy h̄ω in the argon. There are usually no
restrictions on creating excitations, but in order to destroy one the excitation
must exist. The density of excitations with energy h̄ω is proportional to the
Boltzmann factor e−βh̄ω. These arguments lead back to the result:

S̄BA(−ω)/S̄AB(ω) = e−βh̄ω . (17)

We can now use this result in treating the linear response function:

χ′′
AB(t − t′) =

1
2h̄

〈[A(t), B(t′)]〉

=
1

2h̄
[S̄AB(t − t′) − S̄BA(t′ − t)] . (18)

Then, in terms of Fourier transforms,

χ′′AB(ω) =
1

2h̄
[S̄AB(ω) − S̄BA(−ω)]
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and, using Eq. (14),

χ′′
AB(ω) =

1
2h̄

[S̄AB(ω) − S̄AB(ω) e−βh̄ω]

=
(1 − e−βh̄ω)

2h̄
S̄AB(ω) . (19)

We see, at this point, that there is a direct relationship between the response
function and the scattering function. Before commenting on this relationship
it will be convenient, and it is conventional, to introduce the so-called fluctua-
tion function:

SAB(t − t′) = 1
2 〈[A(t), B(t′)]+〉 (20)

= 1
2 〈[A(t)B(t′) + B(t′)A(t)]〉 . (21)

We see that SAB is a symmetrized version of S̄AB and [, ]+ indicates an anti-
commutator. We see that we can write:

SAB(t − t′) = 1
2 [S̄AB(t − t′) + S̄BA(t′ − t)] , (22)

and:

SAB(ω) = 1
2 (S̄AB(ω) + S̄BA(−ω)) . (23)

Using Eq. (14) again, we have:

SAB(ω) = 1
2 S̄AB(ω)(1 + e−βh̄ω) . (24)

Eliminating S̄AB(ω) in favor of SAB(ω) in Eq. (19) leads to:

χ′′
AB(ω) =

(1 − e−βh̄ω)2
2h̄(1 + e−βh̄ω)

SAB(ω)

=
1
h̄

(
e+βh̄ω/2 − e−βh̄ω/2

eβh̄ω/2 + e−βh̄ω/2

)
SAB(ω)

=
1
h̄

tanh
(

βh̄ω
2

)
SAB(ω) (25)

or:

SAB(ω) = h̄coth
(

βh̄ω
2

)
χ′′

AB(ω) . (26)

The relationship connecting the fluctuation function and the response function
is known as the fluctuation-dissipation theorem [1]. The physical content of this
theorem is quite important and was pointed out by Onsager [2] many years
ago. SAB(ω) is the autocorrelation between fluctuations of the operators A
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and B. χAB represents the change one observes in the average of A due to a
small external change in B. Because of the symmetry of the situation it also
gives one the change in the average of B due to a small external change in A.
The fluctuation-dissipation theorem relates spontaneous fluctuations to small
external perturbations. This theorem tells us that a system can not tell whether
a small fluctuation is spontaneous or is caused by a weak external force.

If we now return to our example of the fluid, we easily obtain, choosing
A = n̂(x) and B = n̂(x ′),

S̄nn(k, ω) =
2h̄

(1 − e−βh̄ω)
χ′′nn(k, ω) . (27)

Thus if we map out S̄nn(k, ω) using neutrons, then we calculate χ′′nn(k, ω)
using Eq. (27). Alternatively, if we also perform a resonance experiment, this
is a fundamental consistency check on the scattering experiments.

3.2
Symmetry Properties of Correlation Functions

There are a number of general symmetries of correlation functions that we
can work out. It is convenient to focus first on the response function χ′′AB and
then use the fluctuation-dissipation theorem to obtain the properties of the
fluctuation function SAB.

Let us begin with a quick overview. The basic properties we have at our
disposal are that χ′′ is defined in terms of a commutator, the operators A and
B are hermitian and we presume to know how A and B transform under time
reversal. From this set of ingredients we can determine the basic symmetry
properties of χ′′

AB(t − t′) and χ′′AB(ω).
Starting with the basic definition:

χ′′
AB(t − t′) =

1
2h̄

〈[A(t), B(t′)]〉 , (28)

we use the fact that χ′′
AB is a commutator and is therefore antisymmetric under

interchange of A(t) and B(t′) to obtain:

χ′′
AB(t − t′) = −χ′′

BA(t′ − t) (29)

or, for the Fourier transform,

χ′′AB(ω) = −χ′′
BA(−ω) . (30)

Next we consider the complex conjugate of χ′′. Since χ′′AB is the commutator
of hermitian operators we have:
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χ′′∗
AB(t − t′) =

1
2h̄

〈[A(t), B(t′)]〉∗

=
1

2h̄ ∑
i,j

e−β(Ei−μNi)

Z
[〈i|A(t)|j〉∗〈j|B(t′)|i〉∗

−〈i|B(t′)|j〉∗〈j|A(t)|i〉∗] . (31)

The complex conjugation gives:

〈i|A(t)|j〉∗ = 〈j|A†(t)|i〉 = 〈j|A(t)|i〉 (32)

since A is hermitian. Then Eq. (31) reduces to:

χ′′∗
AB(t − t′) =

1
2h̄ ∑

i,j

e−β(Ei−μNi)

Z
[〈j|A(t)|i〉〈i|B(t′)|j〉

−〈j|B(t′)|i〉〈i|A(t)|j〉]

=
1

2h̄
〈[B(t′), A(t)]〉 = χ′′

BA(t′ − t) . (33)

Then, using the result Eq. (29), we find:

χ′′∗AB(t − t′) = −χ′′
AB(t − t′) , (34)

and we find that χ′′
AB(t − t′) is imaginary. Taking the Fourier transform over

time and using Eq. (34),

χ′′∗AB(ω) =
[∫ +∞

−∞
dt e+iω(t−t′)χ′′AB(t − t′)

]∗

=
∫ +∞

−∞
dt e−iω(t−t′)χ′′∗AB(t − t′)

=
∫ +∞

−∞
dt e−iω(t−t′)[−χ′′

AB(t − t′)]

χ′′
AB(ω)∗ = −χ′′

AB(−ω) (35)

In general χ′′AB(ω) need not [3] be real. The reality properties of χ′′AB(ω)
are connected with time-reversal symmetry. In Appendix A the properties
of the time-reversal operation are discussed. The main point for our present
discussion is that if T is the time-reversal operator, and the density matrix is
time-reversal invariant, Tρ̂T−1 = ρ̂, then we have the symmetry principle,

〈Â〉 =
〈(

TÂT−1
)†
〉

. (36)

Observables corresponding to operators Â(t) have definite signatures under
time reversal:

A′(t) = TA(t)T−1 = εA A(−t) . (37)
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For example, εA = +1 for positions and electric fields, −1 for momenta,
angular momenta and magnetic fields. For an observable field with a definite
signature under time reversal, we have the result:

〈Â〉 = εA〈Â†〉 = εA〈Â〉 (38)

and the average vanishes if εA = −1.
Turning to the time-correlation functions we have:

χ′′AB(t − t′) =
1

2h̄
〈(T[A(t), B(t′)]T−1)†〉 . (39)

Then we have the operator expression:

[
T[A(t), B(t′)]T−1

]†

=
[

TA(t)T−1TB(t′)T−1 − TB(t′)T−1TA(t)T−1
]†

= εAεB

[
A(−t)B(−t′) − B(−t′)A(−t)

]†

= εAεB

[
B(−t′)A(−t)− A(−t′)B(−t)

]
= −εAεB[A(−t), B(−t′)] (40)

where we have used the fact that A and B are hermitian. This leads to the
result:

χ′′
AB(t − t′) = −εAεBχ′′

AB(t′ − t) . (41)

or, for the Fourier transform,

χ′′
AB(ω) = − εAεBχ′′

AB(−ω) . (42)

We can now collect the three basic symmetry properties:

χ′′
AB(ω) = − χ′′

BA(−ω) (43)

χ′′∗
AB(ω) = −χ′′

AB(−ω) (44)

and:

χ′′
AB(ω) = −εAεBχ′′AB(−ω) . (45)

We can rewrite Eq. (45) in the form:

χ′′
AB(−ω) = −εAεBχ′′

AB(ω) . (46)
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Using this on the right-hand sides of Eqs. (43) and (44), we can then collect
these various results in their most useful forms:

χ′′
AB(ω) = εAεBχ′′

BA(ω) (47)

χ′′
AB(ω)∗ = εAεBχ′′AB(ω) (48)

χ′′
AB(ω) = − εAεBχ′′

AB(−ω) . (49)

If εA and εB are the same, then χ′′AB(ω) is even under the exchange of the labels
A and B, and real and odd under ω → −ω. If the signatures of A and B are
different, then χ′′AB(ω) is odd under exchange of A and B, and imaginary and
even under ω → −ω.

If we have an autocorrelation function χ′′
A(ω) ≡ χ′′

AA(ω), then:

χ′′∗A (ω) = χ′′
A(ω) . (50)

χ′′
A(ω) = −χ′′

A(−ω) . (51)

If the system is isotropic, then it is invariant under spatial translations,
rotations, and reflections (parity). These lead to further symmetry relations.
As we shall see these symmetries are rather obvious in physical situations [4].

If we use the fluctuation-dissipation theorem:

SAB(ω) = h̄coth(βh̄ω/2)χ′′AB(ω) , (52)

we can easily write down the symmetry properties satisfied by the fluctuation
function SAB(ω):

SAB(ω) = εAεBSBA(ω) (53)

S∗
AB(ω) = εAεBSAB(ω) (54)

SAB(ω) = εAεBSAB(−ω) . (55)

3.3
Analytic Properties of Response Functions

Let us now turn to a discussion of the analytic properties of response functi-
ons. Remember that it is not χ′′

AB(ω) that we measure directly in a response
experiment, but:

χAB(ω) = 2i
∫ +∞

−∞
dt e+iω(t−t′)θ(t − t′)χ′′AB(t − t′) . (56)
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We can relate χAB(ω) and χ′′
AB(ω) if we use the integral representation (see

Problem 3.4) for the step function:

θ(x) =
∫ +∞

−∞

dω
2πi

e+ixω

(ω − iη)
, (57)

where η is infinitesimally small and positive. We then have:

χAB(ω) = 2i
∫ +∞

−∞
dte+iω(t−t′)

∫ +∞

−∞

dω′

2πi
e+i(t−t′)ω′

(ω′ − iη)
χ′′AB(t − t′)

=
2i

2πi

∫ +∞

−∞

dω′

ω′ − iη

∫ +∞

−∞

dω′′

2π
χ′′AB(ω′′)

×
∫ +∞

−∞
dt e+iω(t−t′)e+iω′(t−t′)e−iω′′(t−t′)

=
∫ +∞

−∞

dω′

π
1

ω′ − iη

∫ dω′′

2π
χ′′

AB(ω′′)2π δ(ω + ω′ − ω′′)

=
∫ dω′′

π
χ′′AB(ω′′)

(ω′′ − ω − iη)
. (58)

If we use the rather general Plemelj relations [5, 6]:

lim
η→0+

1
ω + iη

= P
1
ω
± iπδ(ω) , (59)

where P denotes the principle-value part, we obtain:

χAB(ω) =
∫ dω′′

π
χ′′AB(ω′′)

[
P

1
ω′′ − ω

+ iπδ(ω′′ − ω)
]

= P
∫ dω′′

π
χ′′

AB(ω′′)
ω′′ − ω

+ iχ′′
AB(ω) . (60)

In those typical cases where A and B have the same signature under time re-
versal and χ′′

AB(ω) is real, then we can finally identify χ′′
AB(ω) as the imaginary

part of χAB(ω) and:

χ′AB(ω) = P
∫ dω′

π
χ′′

AB(ω′)
ω′ − ω

(61)

as the real part of χAB. We can now see that the double prime (χ′′AB) is asso-
ciated with it being the imaginary part of χAB(ω). Note also that the real part
of χAB is related to χ′′

AB via an integral relationship. We can find an inverse
relationship if we use the Poincare-Bertrand identity [7]:

P
∫ dω̄

π
1

(ω − ω̄)(ω′ − ω̄)
=
∫ dω̄

π

[
1

ω − ω̄ − iη
− iπδ(ω − ω̄)

]
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×
[

1
ω′ − ω̄ − iη

− iπδ(ω′ − ω̄)
]

= − iπ
π

(
1

ω′ − ω − iη
+

1
ω − ω′ − iη

)
− π2

π
δ(ω − ω′)

= −i(2πi)δ(ω − ω′) − πδ(ω − ω′)

= πδ(ω − ω′) , (62)

where we have used the result:∫ dω̄
π

1
(ω − ω̄ − iη)

1
(ω′ − ω̄ − iη)

= 0 , (63)

which follows if we close the contour integral in the upper half-plane , where
there are no singularities. Letting ω → ω′ in Eq. (61), multiplying by (ω′ −
ω)−1, integrating over ω′, dividing by π and taking the principal value we
obtain:

P
∫ dω′

π
χ′

AB(ω′)
ω′ − ω

= P
∫ dω′

π
1

ω′ − ω

∫ dω′′

π
χ′′

AB(ω′′)
ω′′ − ω′

= −
∫ dω′′

π
χ′′

AB(ω′′)P
∫ dω′

π
1

ω′ − ω
1

ω′ − ω′′

= −χ′′
AB(ω) . (64)

The set of relations:

χ′AB(ω) = P
∫ dω′

π
χ′′

AB(ω′)
ω′ − ω

(65)

χ′′AB(ω) = P
∫ dω′

π
χ′

AB(ω′)
ω − ω′ (66)

are known as Kramers–Kronig relations [8] and mean we need only χ′AB or
χ′′AB to construct all of the correlation functions, including χAB.

The complex response function or susceptibility can be interpreted as the
boundary value as z approaches ω on the real axis from above, of the analytic
function of z,

χAB(z) =
∫ dω′

π
χ′′AB(ω′)
ω′ − z

. (67)

Then, the causal part of this response function is given by:

χAB(ω) = χAB(ω + iη) . (68)

We introduce χAB(z) because, if z is the upper half-plane, χAB(z) is just the
Laplace transform,

χAB(z) = 2i
∫ +∞

0
dt e+izt χ′′AB(t) (69)
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with the imaginary part of z, positive, by Im z > 0. If z is the lower half-plane,
χ(z) is determined from negative times,

χAB(z) = −2i
∫ 0

−∞
dte+iztχ′′AB(t) (70)

for Im z < 0.

3.4
Symmetries of the Complex Response Function

It is useful to stop and look at the properties satisfied by the response function
χAB(ω) when we combine the symmetry properties of χ′′

AB(ω) with the ana-
lytic properties of the last section. At the end of this section we will see that
these rather formal properties lead to very profound physical results.

Let us begin with the general relation connecting the response function to
the dissipation function:

χAB(ω) =
∫ dω′′

π
χ′′

AB(ω′′)
ω′′ − ω − iη

. (71)

If we then use the symmetry relation given by Eq. (47) for the interchange of
A and B for the dissipation function we obtain:

χAB(ω) = εAεBχBA(ω) . (72)

Taking the complex conjugate of Eq. (71) and using the symmetry Eq. (48) we
obtain:

χ∗AB(ω) = εAεB

∫ dω′′

π
χ′′AB(ω′′)

ω′′ − ω + iη
. (73)

Using the Plemelj and Kramers–Kronig relations we easily find:

χ∗
AB(ω) = εAεB

[
χ′AB(ω)− iχ′′AB(ω)

]
. (74)

We showed previously that

χAB(ω) =
[
χ′

AB(ω) + iχ′′
AB(ω)

]
. (75)

Comparing these results we see that if A and B have the same sign under time
reversal then:

χ′AB(ω) = Re χAB(ω) (76)

χ′′AB(ω) = Im χAB(k, ω) . (77)
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If A and B have the opposite sign under time reversal then :

χ′AB(ω) = Im χAB(ω) (78)

χ′′
AB(ω) = Re χAB(ω) . (79)

Using Eq. (49) to flip the frequency of the dissipation function in Eq. (44) we
obtain:

χAB(ω) =
∫ dω′

π
(−εAεB)

χ′′
AB(−ω′)

(ω′ − ω − iη)
. (80)

= (−εAεB)
∫ dω′

π
χ′′AB(ω′)

(−ω′ − ω − iη)
. (81)

= εAεB

∫ dω′

π
χ′′

AB(ω′)
(ω′ + ω + iη)

. (82)

Comparing this result with Eq. (73) we see that:

χAB(ω) = χ∗AB(−ω) . (83)

The symmetry reflected by Eq. (72):

χAB(ω) = εAεBχBA(ω) (84)

has an important physical interpretation: the response of a system as mani-
fested by the nonequilibrium behavior of a variable A as induced by a force
coupling to a variable B is, up to a sign, equivalent to the response of variable
B to a force coupling to variable A. In the case of magnetic resonance, the
application of a field in the y-direction induces a magnetization response in
the x-direction that is equivalent to the application of the same force in the
x-direction driving a response in the y-direction.

Let us consider a less obvious example of a fluid where temperature or
pressure variations couple linearly to the heat density and particle density
respectively. In general the external force is given by the contribution to the
total Hamiltonian:

HE(t) = −
∫

ddx
[

q(x)
δT(x, t)

T
+ n(x)

δp(x, t)
n

]
(85)

where the heat density q is defined by Eq. (2.178), and δT and δp are imposed
variations in temperature and pressure. We can then conclude that the respon-
se of the density to the temperature is equal to the heat density variation with
the pressure variation in the sense:

〈q(k, ω)〉ne

δp(k, ω)/n
= χqn(k, ω) (86)
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〈n(k, ω)〉ne

δT(k, ω)/T
= χnq(k, ω) (87)

and because n and q have the same signature (+1) under time reversal [2]:

χqn(k, ω) = χnq(k, ω) . (88)

3.5
The Harmonic Oscillator

It is appropriate at this point to introduce the simplest of examples of a quan-
tum nonequilibrium system: the driven harmonic oscillator. In this case we
can work everything out. The isolated system Hamiltonian in this case can be
taken to have the form:

H =
p̂2

2m
+

k
2

x̂2 , (89)

the external coupling:

HE(t) = −x̂h(t) , (90)

and the total Hamiltonian is given by:

HT(t) = H + HE(t) . (91)

In the absence of the applied field we assume the system is in thermal equi-
librium at temperature T. With no further work we know that the linear re-
sponse of the average displacement to the external force is given by:

〈x̂(ω)〉ne = χxx(ω)h(ω) , (92)

where χxx(ω) is the response function, which is related by Eq. (58) to the
Fourier transform of the dissipation function:

χ′′xx(t − t′) =
1

2h̄
〈[x̂(t), x̂(t′]〉eq . (93)

Now the simplifying aspect of this example is that we can easily work out the
time dependence of the operators x̂(t) and p̂(t) for the isolated system using
the equal-time canonical commutation relations:

[x̂(t), p̂(t)] = ih̄ . (94)

The solution to the Heisenberg equations of motion (see Problem 3.5) is given
by the usual classical results, but with initial conditions that are operators:

x̂(t) = x̂(0) cos(ω0t) +
p̂(0)
mω0

sin(ω0t) (95)
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p̂(t) = −mω0 x̂(0) sin(ω0t) + p̂(0) cos(ω0t) , (96)

where the oscillator frequency is given by:

ω2
0 =

k
m

. (97)

It is then straightforward to determine the commutator for the displacement
operator at different times:

[x̂(t), x̂(t′] =
[(

x̂(0) cos(ω0t) +
p̂(0)
mω0

sin(ω0t)
)

,(
x̂(0) cos(ω0t′) +

p̂(0)
mω0

sin(ω0t′)
)]

= cos(ω0t)sin(ω0t′)
ih̄

mω0
+ sin(ω0t)cos(ω0t′)

−ih̄
mω0

= − ih̄
mω0

sin(ω0(t − t′)) . (98)

As a check on this result we see that it vanishes when t = t′, as it should since
an operator commutes with itself at equal times. Note that the commutator,
unlike a typical case, is a c-number and the average giving the dissipation
function is trivial:

χ
′′
xx(t − t′) =

(−i)
2mω0

sin[ω0(t − t′)] . (99)

Notice, as expected, that this autocorrelation function is pure imaginary and
odd in t − t′. Taking the Fourier transform we easily find:

χ
′′
xx(ω) = − i

2mω0

∫ ∞

−∞
dt eiω(t−t′))

[
eiω0(t−t′) − e−iω0(t−t′)

2i

]

=
π

2mω0
[δ(ω − ω0) − δ(ω + ω0)] , (100)

which is real and odd under ω → −ω. The fluctuation function is given then
by the fluctuation-dissipation theorem as:

Sxx(ω) = h̄ coth
(

βh̄ω
2

)
χ
′′
xx(ω)

=
h̄π

2mω0
coth

(
βh̄ω0

2

)
[δ(ω + ω0) + δ(ω − ω0)] , (101)

which is real and even in ω.
A very interesting consequence of this result is that we can determine the

equilibrium-averaged squared displacement as:

〈x2〉 =
∫ dω

2π
Sxx(ω) =

h̄
2mω0

coth
(

βh̄ω0

2

)
. (102)
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In the classical limit this reduces to:

〈x2〉 =
kBT
mω2

0
, (103)

which is equivalent to the equipartition theorem result:

k
2
〈x2〉 = 1

2 kBT . (104)

For zero temperature, h̄ω0/kT → ∞ and tanh
(

βh̄ω0
2

)
→ 1 and:

〈x2〉 =
h̄

2mω0
, (105)

which is due to zero-point motion.
We seem to have evaluated the equilibrium average without appearing to

do so! How did this come about? The key is the fluctuation-dissipation theo-
rem, which carries the information about the equilibrium state.

If we look at the cross correlations we find:

χ′′
xp(t − t′) = m

d
dt′

χ′′xx(t − t′) =
i
2

cos
[
ω0(t − t′)

]
. (106)

The Fourier transform is given by:

χ′′
xp(ω) =

iπ
2

[δ(ω + ω0) + δ(ω − ω0)] (107)

and is even in ω and imaginary as we expect for operators with different
signatures under time reversal.

Our explicit results here should be contrasted with those corresponding to
the solution for the response function found earlier for the Bloch equations.
The significant differences are:

• We included phenomenological damping terms in the Bloch equations.

• The treatment of the Bloch equations was essentially classical.

• The fundamental dynamics of the two systems is different. In the oscil-
lator case the fundamental variables satisfy the commutation relations,
[x, p] = ih̄, while for the spin system we have [sα, sβ] = ih̄ ∑γ εαβγsγ (see
Problem 3.6).

3.6
The Relaxation Function

We showed in Chapter 2 that the nonequilibrium dynamics of a variable A
relaxing from constrained equilibrium at t = 0 can be expressed in the form:

δA(t) = RAB(t)χABhB , (108)
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where RAB(t) is the relaxation function:

RAB(t) = χ−1
AB

∫ dω
π

χ′′AB(ω)e+iωt

ω − iη
. (109)

Assuming χ′′AB(ω = 0) = 0, which is true if A and B have the same signature
under time reversal, we can let η → 0 in the denominator.

The complex relaxation function is the Laplace transform of the relaxation
function:

RAB(z) =
∫ +∞

0
dt e+iztRAB(t) , (110)

where z = ω + iη, with η > 0. Then, inserting Eq. (109), we find:

RAB(z) = χ−1
AB

∫ dω
π

χ′′AB(ω)
ω

∫ +∞

0
e+i(z−ω)t

= χ−1
AB

∫ dω
iπ

χ′′AB(ω)
ω(ω − z)

. (111)

This complex relaxation function can be related back to the complex suscepti-
bility,

χAB(z) =
∫ dω

π
χ′′

AB(ω)
ω − z

, (112)

if we use the identity:

1
ω − z

= −1
z

+
ω
z

1
ω − z

. (113)

We then have:

RAB(z) = χ−1
AB

∫ dω
πi

χ′′
AB(ω)

ω

[
−1

z
+

ω
z

1
ω − z

]

=
χ−1

AB
iz

[
−
∫ dω

π
χ′′

AB(ω)
ω

+ χAB(z)
]

=
χ−1

AB
iz

[χAB(z)− χAB] . (114)

So the complex relaxation function can be expressed in terms of the complex
susceptibility, which, in turn, can be expressed in terms of χ′′

AB(ω).
We could have approached this relaxation problem from an alternative point

of view. Suppose for times t < t0 the system is in constrained thermal equili-
brium with the density matrix:

ρC =
e−β(H+HE)

ZC
(115)
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where:

ZC = Tr e−β(H+HE) (116)

and:

HE = −BhB . (117)

At time t0 we switch HE off and the system propagates forward in time go-
verned by the Hamiltonian H. In the Heisenberg representation the density
matrix is time independent, so for t ≥ t0 we have:

〈A(t)〉neq = Tr ρC A(t) , (118)

where:

A(t) = eiH(t−to)/h̄ Ae−iH(t−t0)/h̄ . (119)

If we expand in powers of hB this should be equivalent to our previously
derived result for constrained equilibrium. This is the approach taken in one
of the earliest contributions to linear response theory. Kubo developed pertur-
bation theory for the density matrix rather than for the Heisenberg operators
representing observables.

If one focuses on the quantity:

ρCZC = U(β) ≡ e−β(H+HE) , (120)

then one can follow the treatment of the time evolution operator U(t, t′) given
in Chapter 2. U(β) satisfies the equation of motion:

∂U(β)
∂β

= −(H + HE)U(β) , (121)

and following the development used in treating U(t, t′) (see Problem 3.7), we
find that the density matrix, to first order in HE, is given by:

ρC = ρ0(1 −
∫ β

0
dλδHI

E(λ) + · · ·) , (122)

where:

δHI
E(λ) = eλH HEe−λH − Trρ0HE (123)

and the unconstrained equilibrium density matrix is given by:

ρ0 = e−βH/Tr e−βH . (124)
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Notice in Eq. (122), to first order in hB, that ρC is properly normalized. The
nonequilibrium average is given then to first order in hB by:

〈A(t)〉ne = Trρ0

[
1 −
∫ β

0
dλδHI

E(λ)
]

A(t)

= 〈A(t)〉eq −
∫ β

0
dλ〈δHI

E(λ)A(t)〉 (125)

or:

δA(t) = hBβCAB(t) (126)

where the Kubo response function is defined:

CAB(t − t′) = β−1
∫ β

0
dλ〈eλHδB(t′)e−λHδA(t)〉 . (127)

It is shown in Problem 3.12 that the Kubo response function satisfies the rela-
tion:

∂

∂t
CAB(t − t′) = −2i

β
χ′′

AB(t − t′) . (128)

In terms of Fourier transforms:

χ′′
AB(ω) =

∫ +∞

−∞
dt eiωt βi

2
∂

∂t
CAB(t)

=
(

βω
2

)
CAB(ω) . (129)

and CAB(ω) is simply related to χ′′AB(ω).
The equal-time Kubo response function is related to the static susceptibility

by inserting Eq. (129) into:

CAB(t = 0) =
∫ dω

2π
CAB(ω) =

∫ dω
2π

2
βω

χ′′
AB(ω)

= β−1χAB . (130)

For times t > 0 it is convenient to introduce the complex Kubo function via
the Laplace transform:

CAB(z) = −i
∫ +∞

0
dt e+iztCAB(t)

= −i
∫ +∞

0
dt e+izt

∫ +∞

−∞

dω
2π

e−iωtCAB(ω)
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CAB(z) =
∫ +∞

−∞

dω
2π

CAB(ω)
z − ω

. (131)

In terms of the Laplace transform, we have for the Kubo approach to the
relaxation problem:

δA(z) =
∫ +∞

0
dt e+iztδA(t)

=
∫ +∞

0
dt e+iztβCAB(t)hB

= iβCAB(z)hB . (132)

We can compare this with the result where we adiabatically turned on hB.
Taking the Laplace transform of Eq. (108), remembering Eq. (110), we obtain:

δA(z) = RAB(z)χABhB (133)

and for the two approaches to be equivalent we must have:

iβCAB(z) = RAB(z)χAB (134)

It is left to Problem 3.12 to show that these are equivalent.

3.7
Summary of Correlation Functions

Let us summarize the various definitions of correlation functions we have
introduced:

χ′′AB(t − t′) =
1

2h̄
〈[A(t), B(t′)]〉 (135)

χAB(t − t′) = 2iθ(t − t′)χ′′AB(t − t′) (136)

S̄AB(t − t′) = 〈δA(t)δB(t′)〉 (137)

SAB(t − t′) = 1
2 〈[δA(t)δB(t′) + δB(t′)δA(t)]〉 (138)

CAB(t − t′) = β−1
∫ β

0
dλ〈eλHδB(t′)e−λHδA(t)〉 . (139)

The Fourier transforms of all these quantities are interrelated. We can, for
example, express them all in terms of χ′′(ω):

χAB(ω) =
∫ dω′

π
χ′′AB(ω′)

(ω′ − ω − iη)
(140)
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S̄AB(ω) = 2h̄(1 − e−βh̄ω)−1χ′′AB(ω) (141)

SAB(ω) = h̄ coth(βh̄ω/2)χ′′AB(ω) (142)

CAB(ω) =
2

βω
χ′′

AB(ω) . (143)

We also define the complex susceptibility χAB(z), relaxation function RAB(z)
and Kubo function CAB(z). These are all linearly related since:

χAB(z) =
∫ dω

π
χ′′AB(ω)
ω − z

(144)

RAB(z) =
i
z

χ−1
AB[χAB − χAB(z)] , (145)

where:

χAB = χAB(z = 0) =
∫ dω

π
χ′′

AB(ω)
ω

(146)

is the static susceptibility, and:

CAB(z) =
∫ dω

2π
CAB(ω)
z − ω

= −iβ−1χABRAB(z) . (147)

The complex fluctuation function,

SAB(z) =
∫ dω

2π
SAB(ω)
z − ω

, (148)

can not be expressed directly in terms of χAB(z).
If we eliminate RAB(z) between Eqs. (145) and (147) we find:

χAB(z) = χAB − βzCAB(z) . (149)

We will need this result later.

3.8
The Classical Limit

We will, in many cases, be interested in classical systems. In this limit a num-
ber of our general relationships, summarized above, simplify. First we note
that in the classical limit, where h̄ → 0, the fluctuation-dissipation theorem
becomes:

SAB(ω) =
2

βω
χ′′AB(ω) . (150)
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We see then, since Eq. (129) gives:

CAB(ω) =
2

βω
χ′′

AB(ω) , (151)

that:

SAB(ω) = CAB(ω) . (152)

Classically the fluctuation and Kubo functions are equal. We can easily under-
stand this equality. Classically, operators commute so:

SAB(t − t′) = S̄AB(t − t′) = 〈δA(t)δB(t′)〉 (153)

and, starting with Eq. (139),

CAB(t − t′) = β−1
∫ β

0
dλ〈δB(t′)δA(t) 〉 = 〈δA(t)δB(t′)〉 . (154)

We see that the static susceptibility in the classical limit can be written as:

χAB =
∫ dω

π
χ′′AB(ω)

ω
= β

∫ dω
2π

SAB(ω) (155)

= β〈δAδB〉 (156)

and the susceptibility is simply related [9] to the equal-time correlation func-
tion.

3.9
Example: The Electrical Conductivity

We want to show how these various properties can be used to analyze quan-
tities like the electrical conductivity. We have from Eqs. (2.80) and (2.81) that:

σαβ(t − t′) = χJα,Rβ
(t − t′) (157)

where J is the charge-current density and R = ∑N
i=1 qiri. In term of Fourier

transforms:

σαβ(ω) = χJα,Rβ
(ω) . (158)

Using Eq. (71) we can express the frequency-dependent conductivity in the
form:

σαβ(ω) =
∫ dω′

π

χ′′
Jα,Rβ

(ω′)

ω′ − ω − iη
. (159)
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We can rewrite Eq. (159) as:

σαβ(ω) =
∫ dω′

π
1

(ω′ − ω − iη)ω′ ω
′χ′′

Jα,Rβ
(ω′) . (160)

and look at:

ω′χ′′Jα,Rβ
(ω′) =

∫
dt e+iω′(t−t′)ω′χ′′Jα,Rβ

(t − t′)

=
∫

dt (−i
∂

dt
e+iω′(t−t′))χ′′Jα,Rβ

(t − t′)

= i
∫

dt e+iω′(t−t′) d
∂t

χ′′Jα,Rβ
(t − t′)

= −i
∫

dt e+iω′(t−t′) d
∂t′

χ′′
Jα,Rβ

(t − t′)

= −i
∫

dt e+iω′(t−t′)χ′′
Jα,Ṙβ

(t − t′)

= −iχ′′
Jα,JT

β
(ω′)

= − i
V χ′′

JT
α ,JT

β
(ω′) , (161)

where we have used time-translational invariance and noted that the total
current can be written as:

JT
β (t′) =

d
dt′

Rβ(t′) =
N

∑
i

qiV
β
i (t′) = V Jβ(t′) . (162)

Using Eq. (160) we have:

σαβ(ω) = − i
V

∫ dω′

π(ω′ − ω − iη)ω′ χ
′′
JT
α ,JT

β
(ω′) . (163)

However, since the Kubo correlation function is related to χ′′ by Eq. (129):

CJT
α ,JT

β
(ω) =

2
βω

χ′′JT
α ,JT

β
(ω) , (164)

we have:

σαβ(ω) = − iβ
V

∫ dω′

2π

CJT
α ,JT

β
(ω′)

ω′ − ω − iη
. (165)

The dc-conductivity is then given by:

σαβ(0) = − iβ
V

∫ dω′

2π

CJT
α ,JT

β
(ω′)

ω′ − iη
. (166)



3.10 Nyquist Theorem 85

If we look at the longitudinal conductivity:

σL =
1
3 ∑

α
σαα(0)

=
−iβ
3V ∑

α

∫ dω′

2π
CJT

α ,JT
α
(ω′)

[
P

1
ω′ + iπδ(ω′)

]
. (167)

Since a Kubo autocorrelation function is even under ω → −ω,

CJT
α ,JT

α
(ω) = CJT

α ,JT
α
(−ω) , (168)

and we obtain:

σL =
β

6V ∑
α

CJT
α ,JT

α
(0) . (169)

This can be rewritten as a time integral:

σL =
β

6V

∫ +∞

−∞
dt CJT ·JT(t) =

β
3V

∫ +∞

0
dt CJT ·JT(t) , (170)

over a current–current Kubo function. Relationships of this type, giving a
transport coefficient in terms of an integral over an equilibrium-averaged time-
correlation function, played a central role in the development of linear respon-
se theory. They are called Kubo or Green–Kubo formulae. Such relationships
give one precise definitions of transport coefficients.

One of the most important ramifications of a Kubo formula is easily seen in
the classical limit where:

σL =
β

3V

∫ +∞

0
dt〈JT(t) · JT(0) 〉 . (171)

In this limit one has an integral over a simple current–current time fluctuation
function. This provides a direct and clean method for determining σL using
molecular dynamics: direct numerical simulation of a fluctuating equilibrium
system.

3.10
Nyquist Theorem

Let us see how the results developed in the last section lead to the famous
Nyquist theorem. We start with Eq. (165):

σxx(ω) = − iβ
V

∫ dω′

2π
CJT

x ,JT
x
(ω′)

ω′ − ω − iη
. (172)
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If we take the real part of the conductivity we have:

σ′
xx(ω) = Re

[
− iβ
V

∫ dω′

2π
CJT

x ,JT
x
(ω′)

[
P

1
ω′ − ω

+ iπδ(ω′ − ω)
]]

=
β

2V CJT
x ,JT

x
(ω)

=
1

2kBTV

∫ ∞

−∞
dteiω(t−t′)〈JT

x (t)JT
x (t′)〉 . (173)

Following Kubo [10] we take the inverse Fourier transform to obtain:

〈JT
x (t)JT

x (t′)〉 = 2kBTV
∫ ∞

−∞

dω
2π

σ′
xx(ω)e−iω(t−t′) . (174)

If, over the frequency range we probe current fluctuations, the conductivity
can be taken to be a constant, σ′

xx(ω) ≈ σ, then:

〈JT
x (t)JT

x (t′)〉 = 2kBTσVδ(t − t′) . (175)

The fluctuations in the current in this regime are δ-correlated. It is then con-
sistent to assume that the current density fluctuations can be related to the
voltage fluctuations via:

V(t) = LJx(t)/σ . (176)

The total current can then be written:

JT
x (t) = V Jx =

Vσ
L

V(t) = SσV(t) (177)

=
L
R

V(t) (178)

where S = V/L is the cross-sectional area and the resistance for the sample is
given by R = L/σS. The voltage fluctuations are given then by:

〈V(t)V(t′)〉 = 2kBT
(

R
L

)2
V L

RS
δ(t − t′) . (179)

= 2kBTRδ(t − t′) . (180)

In terms of fluctuations in the frequency domain:

〈V(ω)V(ω′)〉 = 2kBTR2πδ(ω + ω′) . (181)

Looking at the fluctuations in a frequency window Δω:

VΔ =
∫ ω0+Δω

ω0

dω1V(ω1) (182)
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Fig. 3.1 The classic demonstration that Eq. (183) holds is due to J. B.
Johnson, Ref. [1] where 〈V2〉 is plotted versus R.

then the fluctuation in the voltage is proportional to the resistance:

〈V2
Δ〉 = 2kBTR2πΔω . (183)

For several different derivations of this result see the discussion in Kittel [11].
This result is verified in Fig. 3.1.

3.11
Dissipation

Let us consider the work done on our condensed-matter system by the exter-
nally applied time-dependent field h. We have, working in the Schroedinger
representation, that the work done on the system is given by:

W =
∫ ∞

−∞
dt Tr ρne(t)

∂HT

∂t
, (184)

where the derivative is with respect to the explicit time dependence of the
Hamiltonian (which is evident if we work in the Schroedinger representation).
Assuming that the Hamiltonian governing the system is of the form given by
Eq. (2.6), Eq. (184) can be written in the form:

W = −
∫ +∞

−∞
dt Trρne(t) ∑

i
Ai

∂hi(t)
∂t

= −
∫ ∞

−∞
dt ∑

i
〈Ai(t)〉ne

∂hi(t)
∂t

. (185)

If we integrate by parts and assume the applied field vanishes at distant times,

lim
|t|→∞

hi(t)〈Ai(t)〉ne = 0 , (186)
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then:

W =
∫ +∞

−∞
dt ∑

i
hi(t)

∂

∂t
〈Ai(t)〉ne . (187)

If we work to lowest order in h, then we can use the linear response result:

〈Ai(t)〉ne = 〈Ai(t)〉eq + ∑
j

∫ +∞

−∞
dt′χij(t − t′)hj(t′) , (188)

and, since 〈Ai(t)〉eq is time independent,

W =
∫ +∞

−∞
dt
∫ +∞

−∞
dt′ ∑

i,j
hi(t)

∂

∂t
χij(t − t′)hj(t′) + O(h3) . (189)

Replacing χij(t − t′) and the applied fields with their Fourier transforms and
doing the time integrations:

W =
∫ +∞

−∞
dt
∫ +∞

−∞
dt′ ∑

i,j
hi(t)

∫ dω
2π

e−iω(t−t′)(−iω)χij(ω)hj(t′)

= ∑
i,j

∫ dω
2π

h∗i (ω)(−iω)χij(ω)hj(ω) . (190)

If we let ω → −ω [note that hi(t) is real, so h∗i (ω) = hi(−ω)] and let i ↔ j, we
obtain:

W = ∑
i,j

∫ dω
2π

h∗i (ω)(iω)χji(−ω)hj(ω) . (191)

Adding the two expressions for W, Eqs. (190) and (191), and dividing by two
gives:

W = ∑
i,j

∫ dω
2π

h∗i (ω)(−iω)hj(ω) 1
2

[
χij(ω) − χji(−ω)

]
. (192)

Using the symmetries we found previously,

χji(ω) = εiεjχij(ω) (193)

and:

χij(ω) = χ∗ij(−ω) , (194)

we can write the factor:

χij(ω) − χji(−ω) = χij(ω) − εiεjχ∗
ij(ω) (195)
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and obtain:

W = ∑
i,j

∫ dω
2π

h∗i (ω)(−iω)hj(ω) 1
2

[
χij(ω)− εiεjχ∗ij(ω)

]
. (196)

In a stable system (one that is decaying to equilibrium), we require that:

W > 0 . (197)

We must put energy into the system to excite it. Since the fields h∗i (ω)hj(ω) are
arbitrary, we could in principle excite a single mode k, hi = hδi,k with a single
Fourier component to obtain:

W =
∫ dω

2π
|hk(ω)|2(−iω) 1

2 [χkk(ω) − χ∗
kk(ω)]

=
∫ dω

2π
|hk(ω)|2ωχ′′kk(ω) > 0 , (198)

which implies:

ωχ′′
kk(ω) ≥ 0 (199)

for any ω. We also see that we can identify χ′′
ii(ω) with the dissipation in the

system.

3.12
Static Susceptibility (Again)

We showed earlier that the linear response to a static external field is given by:

δA = χABhB +O(h2
B) , (200)

where:

χAB =
∫ dω

π
χ′′AB(ω)

ω
(201)

is the static susceptibility. If A(x) is some observable density and hB(x) coup-
les to the density B(x), then:

δA(x) =
∫

ddy χAB(x − y)hB(y) . (202)

In the case of a uniform external field:

δA(x) = hB

∫
ddy χAB(x − y)

= hBχAB(k = 0) (203)
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and δA(x) is uniform. In the limit, as hB goes to zero, we have the result that
the thermodynamic derivative is related to the small k-limit of a susceptibility:

∂A
∂hB

= lim
k→0

χAB(k) . (204)

Notice that we can write:

χAB(k = 0) =
∫ ddxddy

V χAB(x − y) (205)

=
χATBT

V (206)

where:

AT =
∫

ddxA(x) (207)

is the total amount of A. Then:

∂A
∂hB

=
χATBT

V (208)

or:

∂AT
∂hB

= χATBT
. (209)

Let us consider the static susceptibility:

χATBT
=
∫ dω

π
χ′′

ATBT
(ω)

ω
. (210)

Using Eq. (129) we can write:

χATBT
= β

∫ dω
2π

CATBT (ω)

= βCATBT(tt) . (211)

We can then use Eq. (127) to write:

χATBT
=
∫ β

0
dλ〈eλHδBT(t)e−λHδAT(t)〉 . (212)

If B is conserved it commutes with H and:

χATBT
= β〈δBT(t)δAT(t)〉 . (213)

This also holds if A is conserved. Equations(209) and (213) allow us to write:

∂AT
∂hB

= β〈δBTδAT〉 . (214)
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Let us consider the example of the magnetic susceptibility in the case where
the total magnetization and the applied field are both in the z-direction. The
magnetic susceptibility per unit volume is given in zero external field by:

χM =
1
V

∂〈MT
z 〉

∂B
=

∂〈Mz〉
∂B

(215)

=
β
V 〈(δMT

z )2〉 (216)

where MT
z is the total magnetization in the z-direction.

3.13
Sum Rules

There is one final class of formal properties of time-correlation functions that
can be of some practical use. These properties are known as sum rules and
allow one to calculate quantities like the integral:

∫ dω
π

ωn χ′′
AB(ω) = ωAB(n) (217)

explicitly for certain small integers n. ωAB(n) gives the area under ωnχ′′AB(ω).
To see how we can compute ωAB(n), consider first the identity:[(

i
∂

∂t

)n
χ′′AB(t − t′)

]
t=t′

=
1

2h̄

〈[(
i∂
∂t

)n
A(t), B(t′)

]〉
t=t′

. (218)

If we replace χ′′AB(t − t′) with its Fourier transform, we easily obtain:

ωAB(n)
2

=
∫ dω

2π
ωnχ′′

AB(ω) =
1

2h̄

〈[(
i∂
∂t

)n
A(t), B(t′)

]〉
t=t′

, (219)

or:

ωAB(n) =
1
h̄

〈[(
i∂
∂t

)n
A(t), B(t′)

]〉
t=t′

. (220)

If we further note, on repeated use of the Heisenberg equation of motion, that:

(
i∂
∂t

)n
A(t) =

1
h̄n [. . . [A(t), H], . . . , H] , (221)

and:

ωAB(n) =
1

h̄n+1 〈[[[...[A(t), H], . . . , H] . . . , H], B(t)]〉 . (222)
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The sum rules are given then by commutators at equal times. Looking at n = 0,
we have:

ωAB(0) =
1
h̄
〈 [A(t), B(t)] 〉 =

∫ dω
π

χ′′
AB(ω) (223)

We know from Eq. (45) that:

χ′′
AB(ω) = −εAεBχ′′

AB(−ω) (224)

so:

ωAB(0) = 1
2 (1 − εAεB)

∫ dω
π

χ′′AB(ω) , (225)

and for operators with the same time-reversal signature:

ωAB(0) = 0 , (226)

while it is in general nonzero for those with the opposite time reversal pro-
perties. We note here that the moments ωAB(n) are associated with the large-
frequency behavior of the complex susceptibility.:

χAB(z) =
∫ dω

π
χ′′

AB(ω)
ω − z

. (227)

We can use the identity:

1
ω − z

= − 1
z

(
1

1 − ω/z

)
= − 1

z

∞

∑
n=0

(ω
z

)n
(228)

to write:

χAB(z) = − 1
z

∞

∑
n=0

ωAB(n)
zn . (229)

Clearly this large z expansion can only be asymptotically correct. That is, it
is only valid when |z| is large compared to all frequencies in the system, which
means all frequencies ω for which χ′′

AB(ω) is not effectively zero.
Let us now consider two examples where we can evaluate the sum rules ex-

plicitly. First let us consider the case of the density–density response function.
We see immediately that:

ωn(k, 0) =
∫ dω

π
χ′′

nn(k, ω)

=
∫

d3xe+ik·(x−y) 1
2h̄

〈[n̂(x), n̂(y)]〉 = 0 , (230)
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since the density commutes with itself at different space points. We will be
more interested in the next order sum rule:

ωn(k, 1) =
∫ dω

π
ω χ′′

nn(k, ω)

=
∫

d3xe+ik·(x−y)ωn(x − y, 1)

ωn(x − y, 1) =
1
h̄2 〈[n̂(x), H], n̂(y)〉 . (231)

In a simple fluid, the Hamiltonian is given by:

H =
N

∑
i=1

p2
i

2m
+

1
2

N

∑
i �=j

V(ri − rj) (232)

and:

pi = −ih̄�∇i (233)

in the coordinate representation.
To determine the value of the sum rule given by Eq. (231), we need to

evaluate two commutators. The first commutator is between the density and
Hamiltonian. It is important to recall that this commutator is related to the
time evolution of the density via:

[n, H] = ih̄
∂n
∂t

. (234)

We need to evaluate the commutator:

[n(x), H] = ∑
i,j

[
δ(x − ri),

p2
j

2m

]
, (235)

where we have used the fact that the density n and the potential energy com-
mute. The rest of the evaluation is carried out in Problem 3.8 with the result:

[n(x), H] = − ih̄
m
∇x · g(x, t) , (236)

where g(x, t) is the momentum density,

g(x, t) =
1
2

N

∑
i=1

[piδ(x − ri) + δ(x − ri)pi] (237)

and one has the continuity equation:

∂n(x, t)
∂t

= −∇ · g(x, t)/m , (238)
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which expresses conservation of particle number.
The second commutator to be evaluated in working out ωnn(k, 1) is bet-

ween the particle density and its current g. As we shall see this commutator
plays an important role throughout our discussion. We have then:

[n(x), gα(y)] =
1
2

N

∑
i=1

[
δ(x − ri),

N

∑
k=1

(pα
k δ(y − rk) + δ(y − rk)pα

k )

]

=
1
2

N

∑
i,k=1

(
δ(x − ri)(−ih̄∇α

k )δ(x′ − rk)− (−ih̄∇α
k )δ(y − ri)δ(x − rk)

+δ(x − ri)δ(y − xk)(−ih̄∇α
k )− δ(y − rk)(−ih̄∇α

k )δ(x − ri)

)

=
N

∑
i=1

δ(y − ri)(ih̄∇α
i )δ(x − ri)

= −ih̄∇α
x

N

∑
i=1

δ(y − ri)δ(x − ri)

[n(x), gα(y)] = −ih̄∇α
x [δ(x − y)n(x)] . (239)

We then have for the moment n = 1, using Eqs. (236) and (239) in (231):

ωnn(x − y, 1) = − i
mh̄

∇x · 〈[g(x), n(y)]〉

= − i
mh̄

∇x · 〈ih̄∇y [δ(x − y)n(y)]〉

=
1
m
∇x · ∇yδ(x − y)n̄ (240)

where n̄ is the average density. The Fourier transform is particularly simple:

ωnn(k, 1) =
k2n̄
m

=
∫ dω

π
ωχ′′nn(k, ω) . (241)

Clearly this serves as a convenient normalization check on, for example, the
results of a scattering experiment that gives χ′′nn(k, ω). The result given by Eq.
(241) holds, of course, in the classical limit where we have:

χ′′nn(k, ω) =
βω
2

Snn(k, ω) (242)

and: ∫ dω
2π

ω2 Snn(k, ω) =
k2n̄kT

m
. (243)

In the quantum case, the moments of χ′′
AB(ω) are related to those of the Kubo

function via: ∫ dω
π

ωn χ′′AB(ω) = β
∫ dω

2π
ωn+1CAB(ω) . (244)
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As a second example, consider the electrical conductivity. In that case we
have the complex relation given by Eq. (159):

σαβ(ω) =
∫ dω′

π

χ′′
Jα,Rβ

(ω′)

ω′ − ω − iη
. (245)

We can determine the large-frequency behavior of σαβ(ω) by noting that:

lim
|ω|→∞

ωσαβ(ω) = −
∫ dω′

π
χ′′Jα,Rβ

(ω′)

= − 2
2h̄

〈[Jα, Rβ]〉 (246)

where the charge-current density is given by:

Jα =
1
V

N

∑
i=1

qi pα
i

m
(247)

and the electric dipole moment by:

Rβ =
N

∑
j=1

qjr
β
j . (248)

The commutator is then given by:

[Jα, Rβ] =
1
Vm ∑

i,j
qiqj[pα

i , rβ
j ]

= − ih̄
Vm

N

∑
i=1

q2
i δα,β = − ih̄q2

m
δαβ

N
V (249)

and:

lim
|ω|→∞

ωσαβ(ω) =
ie2

m
δαβn = i

ω2
p

4π
, (250)

where ωp is the plasma frequency. This relation gives a strong constraint on
the frequency-dependent conductivity at large frequencies. Here we have as-
sumed that all of the charged particles have the same q2

i = q2. For an in-depth
discussion of sum rules for charged systems see Ref. [12]. For a discussion of
application to neutral fluids see Ref. [13].
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3.15
Problems for Chapter 3

Problem 3.1: Find the relation analogous to Eq. (3.13) satisfied by:

G<
ij (tt′) = 〈ψ†

i (t)ψj(t′)〉

and:

G>
ij (tt′) = 〈ψi(t)ψ†

j (t′)〉 ,

where the average is over the GCE density matrix and ψ†
i and ψi(t) are the

creation and annihilation operators for the system. These operators satisfy the
commutation (bosons) and anticommutation (fermions) relations:

[ψi, ψ†
j ]± = δij .

Problem 3.2: Assuming that the operators A and B are fields that depend on
position, show that χ′′

AB(k, ω) satisfies Eqs. (47), (48), and (49).
Problem 3.3: If operator A is the magnetization density M(x, t) and B is the
energy density ε(x, t) in a magnetic system, what are the symmetry properties
of χ′′

Mi,ε(k, ω)?
Problem 3.4: Verify that the integral given by Eq. (57) indeed represents a step
function.
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Problem 3.5: Solve the Heisenberg equations of motion explicitly for a harmo-
nic oscillator and verify Eqs. (95) and (96).
Problem 3.6: Consider a set of N spins S(R) on a lattice labeled by site in-
dex R. These spins satisfy the conventional angular momentum commutation
relations:

[Sα(R), Sβ(R′)] = ih̄ ∑
γ

εαβγSγ(R)δR,R′ . (251)

Suppose the dynamics of these spins is governed by the Hamiltonian:

H = −∑
R

μhzSz(R) (252)

where hz is an external magnetic field pointing in the z-direction. Find the
Fourier transform χαβ(k, ω) of the dissipation function:

χαβ(R, R′, tt′) =
1

2h̄
〈[Sα(R, t), Sβ(R′, t′)]〉 .

Problem 3.7: Show that the iterated solution of Eq. (121) leads to the expressi-
on for the equilibrium density matrix given by Eq. (122).
Problem 3.8: Evaluate the commutator defined by Eq. (235) and verify that:

[n(x), H] = − ih̄
m
∇x · g(x, t) ,

where g(x, t) is the momentum density,

g(x, t) =
1
2

N

∑
i=1

[piδ(x − ri) + δ(x − ri)pi]

Problem 3.9: Consider the one-dimensional anharmonic oscillator governed
by the Hamiltonian:

H =
p2

2m
+

k
2

x2 +
u
4

x4 .

Express the n = 1 sum rule satisfied by the momentum–momentum correlati-
on function:

ωPP(n) =
∫ dω

π
ωnχ′′pp(ω)

in terms of equilibrium averages of phase-space coordinates.
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Problem 3.10: In nonrelativistic systems, an established invariance principle
is Galilean invariance. For a system of N particles with position operators
r1, r2, . . . , rN and momentum operators p1, p2, . . . , pN, find the operator G ge-
nerating the transformation:

A′(v) = UG(v)AU†
G(v)

such that:

r′i(v) = ri − vt

and:

p′
i(v) = pi − mv ,

where v is a constant vector.
Hint: UG(v) = eiv·G/h̄

How does the particle density operator n̂(x, t) transform under a Galilean
transformation?

How does the Hamiltonian transform under a Galilean transformation?
Is the conventional grand canonical density matrix invariant under Galilean

transformations?
Extra credit: write the generator G in second-quantized form in terms of

creation and annihilation operators.
How does a second-quantized bosonic annihilation operator ψ(x) trans-

form under a Galilean transformation?
Problem 3.11: If we look at the equilibrium fluctuations of a solid at tempera-
ture T we can consider the simple model:

dxα
dt

=
pα
M

dpα
dt

= −κxα − Γ
M

pα + ηα ,

where xα is the displacement and pα the associated momentum and the noise
satisfies:

〈ηα(t)ηβ(t′)〉 = 2kBTΓδαβδ(t − t′) ,

where the kinetic coefficient Γ > 0.
Compute the momentum correlation function:

Sp
αβ(ω) =

∫ ∞

−∞
dteiω(t−t′)〈pα(t)pβ(t′)〉 .

Find the equal-time quantity 〈pα(t)pβ(t)〉. Does your result make sense?
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Problem 3.12: Starting with the definition of the Kubo response function, de-
fined by Eq. (127), show that:

∂

∂t
CAB(t − t′) = −2i

β
χ′′

AB(t − t′) .

Using this result show that:

χAB = βCAB(tt) .

Finally show that the complex Kubo function, defined by Eq. (127) is related
to the complex relaxation function by:

CAB(z) =
1
iβ

RAB(z)χAB .

Problem 3.13: Verify that the symmetry properties:

χAB(ω) = χ∗
AB(−ω)

χAB(ω) = εAεBχBA(ω) ,

are satisfied by solutions of the Bloch equations describing paramagnetic re-
sonance in Chapter 2.
Problem 3.14: For the case where variables A and B have different signatures
under time reversal, evaluate the relaxation function:

δA(t)
hB

=
∫ dω

π
χ′′

AB
ω − iη

eiωt .

Show that δA(t) is real and look at the short-time regime.
Problem 3.15: Assuming a dispersion relation representation for the frequency-
dependent conductivity:

σ(ω) =
∫ dω′

πi
σ′(ω′)

ω′ − ω − iη
,

find the consequences of Eq. (250).
Problem 3.16: Show that the sum rule given by Eq. (250) is satisfied by σαβ(ω)
given by Eq. (165) in the classical limit.
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4
Charged Transport

4.1
Introduction

One of the most important set of properties of a material is its response to
external electric fields. Interesting electrical properties result typically from
free conduction band electrons in metals or polarization effects in dielectrics. In
both cases we are interested in the influence of an electric field on a condensed-
matter system comprised of charged particles. We discuss here the linear re-
sponse approach to this problem, with care to treat the long-range interactions
between the particles.

We will assume that we have a classical system with full translational sym-
metry [1]. A quantum-mechanical treatment for a system defined relative to a
lattice proceeds along very similar lines. In the first sections of this chapter we
follow the development due to Martin [2, 3].

4.2
The Equilibrium Situation

Let us consider a classical condensed-matter system of volume V comprised
of a set of N charged particles. Let us assume that the ith particle, with mass
mi and charge qi, is located at position ri and has a velocity vi.

The electromagnetic fields in the sample generated by these charges are
governed by Maxwell’s equations in the form:

∇ · E(x, t) = 4πρ(x, t) (1)

∇ · B(x, t) = 0 (2)

∇× E(x, t) = −1
c

∂B(x, t)
∂t

(3)

∇× B =
4πJ

c
+

1
c

∂E(x, t)
∂t

(4)
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where the charge density is given by:

ρ(x, t) =
N

∑
i=1

qiδ[x − ri(t)] , (5)

the charge-current density is given by:

J(x, t) =
N

∑
i=1

vi(t)qiδ[x − ri(t)] (6)

and c is the speed of light. Since electric charge is conserved, the charge den-
sity and current are related by the continuity equation:

∂

∂t
ρ(x, t) + ∇ · J(x, t) = 0 . (7)

These equations must be supplemented by the dynamical equations of motion
satisfied by the particles. The Hamiltonian for this set of particles is given by:

H0 =
N

∑
i=1

1
2mi

(
pi −

qi
c

A(ri)
)2

+
N

∑
i=1

qiφ(xi)

+
1
2 ∑

i,j
Vs(ri − rj) (8)

where pi is the canonical momentum, A(x) is the vector potential, φ(x) the
scalar potential and Vs describes any short-range two-body interactions bet-
ween the charged particles. The electric and magnetic fields are related to the
potentials by:

E = −∇φ − 1
c

∂A
∂t

(9)

B = ∇× A . (10)

The equations of motion satisfied by the particles are given by Hamilton’s
equations:

d
dt

ri = ∇pi H0 (11)

d
dt

pi = −∇ri H0 . (12)

We then have an impressively complicated set of equations to solve. When
we are in thermal equilibrium, the probability distribution (for simplicity we
work in the canonical ensemble) is given by:

Peq =
e−βH0

Z
(13)
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with the partition function:

Z =
∫

d3r1...d3rN
d3 p1

(2πh̄)3 ...
d3 pN

(2πh̄)3 e−βH0 . (14)

The average of any function A of the phase-space coordinates (ri, pi) is given
by:

〈A〉 =
∫

d3r1...d3rN
d3 p1

(2πh̄)3 ...
d3 pN

(2πh̄)3 Peq A(r1, r2, .., p1, p2, ..) . (15)

Taking the average of the microscopic Maxwell’s equations gives:

∇ · 〈E〉 = 4π〈ρ〉 (16)

∇ · 〈B〉 = 0 (17)

∇× 〈E〉 = −1
c

∂〈B〉
∂t

(18)

∇× 〈B〉 =
4π
c
〈J〉 +

1
c

∂

∂t
〈E〉 (19)

and the problem reduces in this case to knowing the average charge density
and the average current density. It is when we begin to look at the problem
from this perspective that we begin to obtain some degree of simplicity. For
a system in the absence of an externally applied electromagnetic field with
no net charge (electrically neutral), the average charge density and charge-
current density are zero: 〈ρ〉 = 0 and 〈J〉 = 0. This says that all of the local
fluctuations in charge and current balance out. The average Maxwell equati-
ons are given then by:

∇ · 〈E〉 = 0 (20)

∇ · 〈B〉 = 0 (21)

∇× 〈E〉 = −1
c

∂

∂t
〈B〉 (22)

∇× 〈B〉 = −1
c

∂

∂t
〈E〉 . (23)

There are several possible solutions to this set of equations:
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1. These equations support wave solutions. This implies either that the sys-
tem is radiating or that electromagnetic waves are bombarding our sample. In
the first case our system would be losing energy and therefore would not be
in equilibrium. We have thus far been assuming there are no external fields
acting. Consequently we can rule out these radiation solutions.

2. There are symmetry-broken solutions [4]:

〈E〉 = E0 (24)

〈B〉 = B0 (25)

where E0 and B0 are independent of time. For example E0 = 0, B0 �= 0
corresponds to a ferromagnet. Alternatively E0 �= 0 and B0 = 0 corresponds
to a ferroelectric.

3. In the third, and most typical situation,

〈E〉 = 〈B〉 = 0 . (26)

Whether case 2 or case 3 is appropriate depends on the material in question
and the thermodynamic state of the system. Thus, for example, PbTiO3 has
〈E〉 = 0 for temperatures greater than 763◦K and 〈E〉 �= 0 for temperatu-
res below 763◦ K. Similarly Fe has 〈B〉 = 0 for temperatures greater than
1043◦ K and is ferromagnetic for temperatures less than 1043◦ K. The tem-
peratures where E0 or B0 go to zero are called the Curie temperatures and
at these temperatures the system is undergoing a phase transition from a
high-temperature paramagnetic or paraelectric to ferromagnetic or ferroelec-
tric phase.

The situation where we have no net charge and no externally applied field
is relatively simple. The system will be in equilibrium and the average electric
and magnetic fields will be uniform in space and unchanging in time.

4.3
The Nonequilibrium Case

4.3.1
Setting up the Problem

Thus far we have assumed that there are no external fields acting on our
system. Let us turn now to the case where we couple electrically to our system.
The situation we discuss is where there is an external charge density ρext(x, t)
and an external charge-current density Jext(x, t) [5]. These external charges
satisfy the continuity equation:

∂ρext(x, t)
∂t

+∇ · Jext(x, t) = 0 . (27)
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These charges will set up external electromagnetic fields satisfying:

∇ · Eext(x, t) = 4π ρext(x, t) (28)

∇ · Bext(x, t) = 0 (29)

∇× Bext(x, t) =
4π
c

Jext(x, t) +
1
c

∂Eext(x, t)
∂t

(30)

∇× Eext(x, t) = −1
c

∂Bext(x, t)
∂t

. (31)

In the presence of these external fields that are varying in space and time, the
Hamiltonian describing our N-particle system is given by:

H(t) =
N

∑
i=1

1
2mi

[
pi −

qi
c

AT(xi, t)
]2

+ Vs , (32)

where the total vector potential is:

AT(x, t) = A(x) + Aext(x, t) , (33)

where Aext is the external vector potential. We will work in a gauge [6] where
the total scalar potential is zero. Vs is the short-ranged part of the interaction
between particles. The Maxwell equations satisfied by the total electric and
magnetic fields are:

∇ · ET(x, t) = 4πρT(x, t) (34)

∇ · BT(x, t) = 0 (35)

∇× ET(x, t) = −1
c

∂BT(x, t)
∂t

(36)

∇× BT(x, t) =
4π
c

JT(x, t) +
1
c

∂ET(x, t)
∂t

(37)

where:

ET(x, t) = −1
c

∂

∂t
AT(x, t) (38)

BT(x, t) = ∇× AT(x, t) . (39)
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and:

ρT(x, t) = ρ(x, t) + ρext(x, t) (40)

JT(x, t) = Js(x, t) + Jext(x, t) , (41)

where, as before, the system contribution to the charge density is given by:

ρ(x, t) =
N

∑
i=1

qiδ[x − ri(t)] (42)

and the system part of the charge-current density is:

Js(x, t) =
N

∑
i=1

qi
mi

(
pi −

qi
c

AT(ri, t)
)

δ[x − ri(t)] , (43)

since the velocity is related to the canonical momentum by:

vi =
1

mi

(
pi −

qi
c

AT(ri, t)
)

. (44)

4.3.2
Linear Response

A general attack on this problem is totally impractical. However, for many
purposes, it is sufficient to analyze the case where the external field is weak
and the system is only slightly removed from equilibrium. Things simplify
greatly in the linear regime. Our basic approximation will be to keep only the
linear term coupling the canonical momentum of the particles to the external
field. We will neglect terms of order A2

ext. We can then write the Hamiltonian
in the form:

H =
N

∑
i=1

1
2mi

[
pi −

qi
c

(A(ri) + Aext(ri, t)
]2

+ Vs

= H0 −
N

∑
i=1

qi
cmi

(
pi −

qi
c

A(ri)
)
· Aext(ri, t) +O(A2

ext)

= H0 −
1
c

∫
d3x J(x) · Aext(x, t) + . . . (45)

where H0 is the Hamiltonian for the system in the absence of external fields
discussed earlier and J(x) is given by:

J(x, t) =
N

∑
i=1

qi
mi

(
pi −

qi
c

A(x, t)
)

δ[x − ri(t)] (46)
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The problem is now clearly in the form where our linear response approach
is valid. Thus the external field is Aext/c, which couples to the charge-current
density. The linear response or induced charge density is given by our result
from Chapter 2, Eq. (2.56), which in this case reads:

〈ρ(k, ω)〉I = ∑
α

χρJα(k, ω)
1
c

Aα
ext(k, ω) . (47)

It is useful to rewrite this result in terms of the associated correlation functi-
on. We showed previously, Eq. (3.149), for general observables A and B the
dynamic susceptibility can be expressed as:

χAB(k, ω) = χAB(k)− βωCAB(k, ω) , (48)

where χAB(k) is the static susceptibility and CAB(k, ω) is the complex (Kubo)
correlation function. Since the complex correlation function is defined:

CAB(k, ω) = −i
∫ ∞

0
dt eiωtCAB(k, t) , (49)

we can use integration by parts and write:

ωCAB(k, ω) =
∫ ∞

0
dt
(
− d

dt
eiωt
)

CAB(k, t)

= CAB(k, t = 0) + iCȦB(k, ω) . (50)

We know from Eq. (3.130) that:

βCAB(k, t = 0) = χAB(k) (51)

Using Eqs. (50) and (51) back in Eq. (48) we obtain the useful result:

χAB(k, ω) = −iβCȦB(k, ω) . (52)

In the very important special case where A is conserved,

∂A
∂t

= −∇ · JA , (53)

where JA is the current associated with A, we have:

∂A(k, t)
∂t

= ik · JA(k, t) . (54)

Using this result in Eq. (52) we find:

χAB(k, ω) = β ∑
μ

kμCJμ
AB(k, ω) . (55)
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Using this result in Eq. (47) we have:

〈ρ(k, ω)〉I = ∑
α,μ

kμ
β
c

CJμ Jα(k, ω)Aα
ext(k, ω) . (56)

If we remember that in the φ = 0 gauge:

Eext(x, t) = −1
c

∂

∂t
Aext(x, t) , (57)

then:

Eext(k, ω) =
iω
c

Aext(k, ω) . (58)

The induced charge density can be written as:

〈ρ(k, ω)〉I = ∑
α,μ

kμβCJμ Jα(k, ω)
Eα

ext(k, ω)
(iω)

. (59)

Let us turn now to the calculation of the average charge-current density. The
total charge-current density is given by Eq. (41):

JT(x, t) = Jext(x, t) + Js(x, t) (60)

where Js is the current given by Eq. (43):

Js(x, t) =
N

∑
i=1

qi
mi

(
pi −

qi
c

AT(x)
)

δ[x − ri(t)] (61)

where AT is the total vector potential. Working to lowest order in the external
field we have for the total charge-current density:

JT(x, t) = Jext(x, t) + J(x, t)−
N

∑
i=1

q2
i

mc
δ[x − ri(t)]Aext(x, t) (62)

where J(x, t) is given by Eq. (46). The average total current density is given
then by:

〈JT(x, t)〉neq = Jext(x, t)−
ω2

p

4πc
Aext(x, t) + 〈J(x, t)〉neq , (63)

where, to linear order in Aext, the average of the term multiplying the explicit
factor of Aext defines the plasma frequency ωp,

ω2
p

4π
=

〈
N

∑
i

q2
i

mi
δ(x − ri)

〉
. (64)



4.3 The Nonequilibrium Case 109

In the case where there are electrons and very heavy ions, we can write to a
good approximation:

ω2
p

4π
≈ q2n

m
(65)

where q is the electron charge, m its mass and n the electron particle density.
It should be clear that the nonequilibrium average of the current is given in

linear response by:

〈Jα(k, ω)〉neq = ∑
μ

χJα Jμ(k, ω)
1
c

Aμ
ext(k, ω) . (66)

Using Eq. (51) in Eq. (48), where A and B are components of the currents:

χJα Jμ(k, ω) = β
[
CJα Jμ(k, t = 0)− ωCJα Jμ(k, ω)

]
. (67)

Using Eq. (58), expressing Aext in terms of Eext, we obtain:

〈Jα(k, ω)〉neq = β ∑
μ

[
iCJα Jμ(k, ω) +

CJα Jμ(k, t = 0)
iω

]
Eμ

ext(k, ω) . (68)

The quantity CJα Jμ(k, t = 0) is evaluated explicitly in Problem 4.1. We find :

CJα Jβ(k, t = 0) = δα,ββ−1 ω2
p

4π
. (69)

Putting this back into Eq. (68) gives:

〈Jα(k, ω)〉neq = ∑
β

[
iβCJα Jβ(k, ω) + δα,β

ω2
p

4πiω

]
Eβ

ext(k, ω) . (70)

The total average charge-current density follows from Eq. (63) and is given by:

〈Jα
T(k, ω)〉neq = Jα

ext(k, ω) −
ω2

p

4πc
Aα

ext(k, ω)

+ ∑
β

[
iβCJα Jβ(k, ω) +

δα,βω2
p

4πiω

]
Eβ

ext(k, ω)

= Jα
ext(k, ω) + ∑

β
(iβ)CJα Jβ(k, ω)Eβ

ext(k, ω) , (71)

where the terms proportional to ω2
p cancel. The induced current density is

given then by:
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〈Jα(k, ω)〉I = 〈Jα
T(k, ω)〉 − 〈Jα

ext(k, ω)〉
= ∑

β
iβCJα Jβ(k, ω)Eβ

ext(k, ω) . (72)

We can write this in the form:

〈Jα(k, ω)〉I = ∑
β

σαβ
0 (k, ω)Eβ

ext(k, ω) , (73)

where we define:

σαβ
0 (k, ω) = iβ CJα Jβ(k, ω) . (74)

We do not identify σ0 as the conductivity, since the conductivity gives the
response to the total electric field not the external field.

Comparing the expressions for the induced density, Eq. (56), expressed in
terms of the external electric field,

〈ρ(k, ω)〉I = −∑
α,β

kα

ω
(σαβ

0 (k, ω)Eβ
ext(k, ω) , (75)

and the induced current density, we see that the continuity equation is satis-
fied:

−iω〈ρ(k, ω)〉I = ik · 〈J(k, ω)〉I . (76)

The next step in the development is to realize that it is conventional to
express the induced current in terms of the total electric field. As shown in
Problem 4.7, in the φ = 0 gauge the Maxwell’s equations for the external vector
potential are given by:

− 1
c

∂

∂t
(∇ · Aext) = 4π ρext(x, t) (77)

and: (
−∇2 +

1
c2

∂2

∂t2

)
Aext +∇(∇ · Aext) =

4π
c

Jext(x, t) . (78)

Since:

Eext(x, t) = −1
c

∂Aext

∂t
, (79)

we can convert Eq. (78) into an equation for Eext:(
−∇2 +

1
c2

∂2

∂t2

)
Eext(x, t) +∇[∇ · Eext(x, t)] = −4π

c2
∂

∂t
Jext(x, t) . (80)
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Similarly, we have for the total system:
(
−∇2 +

1
c2

∂2

∂t2

)
ET(x, t) + ∇[∇ · ET(x, t)] = −4π

c2
∂

∂t
〈 JT(x, t)〉 . (81)

Fourier transforming the last two equations we obtain:

(k2 − ω2/c2)Eext(k, ω) − k[k · Eext(k, ω)] =
4π
c2 (iω)Jext(k, ω) (82)

and:

(k2 − ω2/c2)ET(k, ω) − k[k · ET(k, ω)] =
4π
c2 (iω) 〈 JT(k, ω)〉 . (83)

Subtracting Eq. (82) from Eq. (83) we find:

(k2 − ω2/c2)Eα
T(k, ω) − kα[k · ET(k, ω)]

= (k2 − ω2/c2)Eα
ext(k, ω) − kα[k · Eext(k, ω)]

+
4π
c2 (iω) ∑

β
σαβ

0 (k, ω)Eβ
ext(k, ω) , (84)

where we have used Eqs. (72) and (75). To simplify matters let us assume the
system is isotropic in space. Then:

σαβ
0 (k, ω) = k̂αk̂βσL

0 (k, ω) +
(

δαβ − k̂α k̂β

)
σT

0 (k, ω) (85)

and the electric field can be decomposed into longitudinal and transverse
parts:

ET(k, ω) = k̂EL
T(k, ω) + ET

T(k, ω) , (86)

where k · ET
T(k, ω) = 0. Taking the transverse and longitudinal components

of Eq. (84) gives:
(

k2 − ω2

c2

)
ET(k, ω) =

(
k2 − ω2

c2

)
ET

ext(k, ω)

+
4πiω

c2 σT
0 (k, ω)ET

ext(k, ω) (87)

and: (
−ω2

c2

)
EL

T(k, ω) =
(
−ω2

c2

)
EL

ext(k, ω)

+
4πiω

c2 σL
0 (k, ω)EL

ext(k, ω) . (88)
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We can then express the external fields in terms of the total fields:

ET
ext(k, ω) =

k2 − ω2

c2

k2 − ω2

c2 + 4πiω
c2 σT

0 (k, ω)
ET

T(k, ω) (89)

and:

EL
ext(k, ω) =

ω2

ω2 − 4πiωσL
0 (k, ω)

EL
T(k, ω) . (90)

In terms of components:

〈ρ(k, ω)〉I = − k
ω

σL
0 (k, ω)EL

ext(k, ω)

〈JL(k, ω)〉I = σL
0 (k, ω)EL

ext(k, ω)

〈JT(k, ω)〉I = σT
0 (k, ω)ET

ext(k, ω) . (91)

Using Eqs. (89) and (90) to eliminate Eext in terms of ET we find:

〈ρ(k, ω)〉I = −σL
0 (k, ω)

ω
ω2[kEL

T(k, ω)]
[ω2 − 4πiωσL

0 (k, ω)]
(92)

and:

〈JT(k, ω)〉I =
σT

0 (k, ω)
(
ω2 − c2k2)

[ω2 − c2k2 − 4πiωσT
0 (k, ω)]

ET
T(k, ω) (93)

and:

〈JL(k, ω)〉I =
σL

0 (k, ω)ω2

[ω2 − 4πiωσL
0 (k, ω)]

EL
T(k, ω) . (94)

It is conventional to define the physical conductivity tensor via:

〈Jα(k, ω)〉I = ∑
β

σαβ(k, ω)Eβ
T(k, ω) , (95)

which has the components:

σT(k, ω) =
σT

0 (k, ω)
(
ω2 − c2k2)

ω2 − c2k2 − 4πiωσT
0 (k, ω)

(96)

σL(k, ω) =
σL

0 (k, ω)ω2

ω2 − 4πiωσL
0 (k, ω)

. (97)
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4.4
The Macroscopic Maxwell Equations

Let us see how these results can be used to rewrite Maxwell’s equations. The
induced charge density can be written as:

〈ρ(k, ω)〉I = − k
ω

σL(k, ω)EL
T(k, ω) . (98)

The induced polarization, P, is defined in this case by:

〈ρ(x, t)〉I = −∇ · P(x, t) (99)

or, in terms of Fourier transforms,

〈ρ(k, ω)〉I = ik · P(k, ω) . (100)

Comparing Eqs. (98) and (100) we can identify:

PL,T(k, ω) =
[

σL,T(k, ω)
−iω

]
EL,T

T (k, ω) . (101)

If we put Eq. (99) into Gauss’s law,

∇ · ET(x, t) = 4π〈ρT(x, t)〉
= 4πρext(x, t) + 4π〈ρ(x, t)〉I

= 4πρext(x, t)− 4π∇ · P(x, t) , (102)

we see that it is convenient to introduce the displacement field:

D(x, t) = ET(x, t) + 4πP(x, t) (103)

so that Gauss’s law takes the form:

∇ · D(x, t) = 4πρext(x, t) . (104)

Using our result relating the polarization to the total field, putting Eq. (101)
back into Eq. (103), we obtain:

DL,T(k, ω) =
[

1 − 4πσL,T(k, ω)
iω

]
EL,T

T (k, ω)

= εL,T(k, ω)EL,T(k, ω) , (105)

which defines the generalized dielectric function:

εL,T(k, ω) = 1 − 4πσL,T(k, ω)
iω

. (106)
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Turning to Ampere’s law, we have on Fourier transformation:

−ik × B(k, ω) =
4π
c

〈 JT(k, ω)〉 − iω
c

ET(k, ω) . (107)

We can then write for the current:

〈JT(k, ω)〉 = Jext(k, ω) + 〈 J(k, ω)〉I (108)

where the induced current,

〈JL,T(k, ω)〉I = σL,T(k, ω)EL,T
T (k, ω)

= [εL,T(k, ω) − 1]
(−iω)

4π
EL,T

T (k, ω) , (109)

can be written as:

〈J(k, ω)〉I = − iω
4π

[D(k, ω) − ET(k, ω)] . (110)

Putting this back into Eq. (107) we have:

−ik × B(k, ω) =
4π
c

Jext(k, ω)

− iω
c

[D(k, ω)− ET(k, ω)]− iω
c

ET(k, ω) (111)

and, canceling the terms depending on ET(k, ω), gives:

−ik × B(k, ω) =
4π
c

Jext(q, ω)− iω
c

D(q, ω) (112)

and we obtain, taking the inverse Fourier transforms, the macroscopic Max-
well equations for dielectric or conducting materials:

∇ · D(x, t) = 4π ρext(x, t) (113)

∇× B(x, t) =
4π
c

Jext(x, t) +
1
c

∂

∂t
D(x) . (114)

These equations are supplemented by Eq. (105) giving the displacement
field in terms of the electric field where the dielectric function is defined by
Eq. (106) in terms of the conductivity. The conductivity, in turn, is defined by
Eqs. (96) and (97) in terms of a bare conductivity σ0(k, ω), which is microsco-
pically determined in terms of the current–current correlation function given
by Eq. (74). Furthermore, the induced charge and polarization are given by
Eqs. (98) and (101) respectively. If we can determine CJ J(k, ω), then all of the
other quantities follow. In the next section we see how all of this holds together
for particular physical situations.
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These results for the conductivity and dielectric constant can be written in
somewhat different forms. The first step is to use the continuity equation to
show (see Problem 4.2) that the density and longitudinal current response
function are related by:

ω2χρρ(k, ω) = q2

[
χL

J J(k, ω) −
ω2

p

4π

]
. (115)

We also have from the classical fluctuation-dissipation theorem, Eqs. (67) and
(69),

χL
J J(k, ω) =

ω2
p

4π
− βωCL

J J(k, ω) . (116)

Starting with Eq. (74) we have then, using in turn Eq. (116) and then Eq. (115:

σ0(k, ω) = iβCL
J J(k, ω)

=
i
ω

(
ω2

p

4π
− χL

J J(k, ω)

)

= −i
ω
k2 χρρ(k, ω) . (117)

Putting this result back into Eq. (97) we have for the longitudinal conductivity:

σL(k, ω) = −i
ω
k2

ω2χρρ(k, ω)[
ω2 − 4πiω

(
− i

ω
ω2

k2 χρρ(k, ω)
)]

= −i
ω
k2

χρρ(k, ω)

[1 − 4π
k2 χρρ(k, ω)]

. (118)

The dielectric function can then be written:

εL(k, ω) = 1 +
4πi
ω

σL(k, ω)

= 1 +
4π
k2

χρρ(k, ω)

1 − 4π
k2 χρρ(k, ω)

=
1

1 − 4π
k2 χρρ(k, ω)

. (119)

It is conventional to introduced the screened response function:

χ(s)
ρρ (k, ω) =

χρρ(k, ω)

1 − 4π
k2 χρρ(k, ω)

. (120)
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then the conductivity can be written as:

i
σL(k, ω)

ω
=

χ(s)
ρρ (k, ω)

k2 . (121)

The Kubo formula for the conductivity is given by the double limit:

σL = lim
ω→0

lim
k→0

−i
ω
k2 χ(s)

ρρ (k, ω) . (122)

In this case we can not directly express this result into the form of a time
integral over a current–current correlation function.

In our approach here we have first treated the induced current assuming
the applied external field is small. Then we solved Maxwell’s equation to
find the total electric field in terms of the applied field as given by Eqs. (89)
and (90). In an alternative approach one can treat the total vector potential
contribution to the kinetic energy as small and expand in terms of the total
vector potential, which, in turn, can be expressed in terms of the total electric
field. This is discussed in some detail in Section 3.7 in Ref. [7]. This approach
looks superficially simpler, but leads to some difficult questions of consistency.
In particular one must deal with the fact that the total field is a fluctuating
quantity. See the critique in Ref. [3].

4.5
The Drude Model

4.5.1
Basis for Model

We can gain an appreciation for the formal development in the previous secti-
on by again using the Drude model [8] introduced in Section 2.1.5. While there
are important wavenumber-dependent phenomena in these charged systems,
we will be satisfied with looking at the long wavelength, k = 0, behavior.
Under these circumstances we expect σL and σT to be equal and we write:

σL(0, ω) = σT(0, ω) = σ(0, ω) (123)

εL(0, ω) = εL(0, ω) = ε(0, ω) . (124)

The Drude model was developed to treat charge flow in a solid. In this model
the charged particles are assumed to be acted upon by four types of average
or effective forces.

• The first force we take into account is the force due to electric field that
acts on the particle i with charge q: F1 = qE(t) where E is the total
electric field representing the sum of the externally applied field and
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the average electric field due to the other charged particles. We assume
that E is uniform.

• The second force acting is a viscous or drag force. A particle moving
through a fluid experiences an irreversible frictional force opposing the
motion: F2 = −mγV, where m is the effective mass, V is the velocity
of the particle and γ is the coefficient of friction. The microscopic phy-
sics behind γ is associated with collisions of the charged particles with
ions and impurities. A key physical assumption is that the long-ranged
Coulomb interaction is screened and only the screened electron–electron
interactions contribute to the effective collisions.

• In a solid there is a restoring force [9] in the system attracting the charged
particle back to its equilibrium lattice position, F3 = −kr where k is the
spring constant. To simplify matters somewhat, we assume here that the
equilibrium position of the particle of interest is at the origin. Different
particles will have different equilibrium positions. It is convenient to
introduce an oscillator frequency:

k = mω2
0 . (125)

• There is, as in Chapter 1, a noise �η(t), acting on the particle of interest.
The noise has zero average 〈ηi(t)〉 = 0 and variance:

〈ηi(t)ηj(t′)〉 = 2kBTΓδ(t − t′)δij . (126)

Thus ηi(t) is assumed to be white noise (see Problem 4.6 for the deter-
mination of Γ in terms of γ). The equation of motion satisfied by our
selected particle is given by:

m
d2

dt2 r(t) = qE(t) − mγ
d
dt

r(t) − mω2
0r(t) + m�η(t) . (127)

Taking the average of Eq. (127) we obtain for the average displacement:

m
[

d2

dt2 〈r(t)〉+
d
dt

γ〈r(t)〉+ ω2
0〈r(t)〉

]
= qE(t) . (128)

In this model γ and ω2
0 are phenomenological parameters. We can easily solve

our equation of motion via the Fourier transformation:

〈r(ω)〉 =
∫

dt e−iωt〈r(t)〉 (129)

to obtain:

m[−ω2 − iωγ + ω2
0]〈r(ω)〉 = qE(ω) (130)
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and:

〈r(ω)〉 =
qE(ω)

m[−ω2 − iωγ + ω2
0]

. (131)

The average velocity of our selected particle is given by:

〈V(ω)〉 = −iω〈r(ω)〉 (132)

=
iωqE(ω)

m[ω2 − ω2
0 + iωγ]

. (133)

4.5.2
Conductivity and Dielectric Function

The spatial Fourier-transform of the induced current in our driven system is
given by:

〈J(k, t)〉I =
1
V 〈∑

i
qiVie+ik·ri(t)〉 . (134)

For uniform motion, k → 0 and, assuming the charges of the mobile particles
are equal, we have:

〈J(0, t)〉I =
1
V

〈
N

∑
i=1

qiVi(t)〉 =
Nq
V 〈V(t)

〉
. (135)

as in Chapter 2. Fourier transforming over time:

〈J(0, ω)〉I = nq〈V(ω)〉 ,

and using Eq. (135) we find for the induced current:

〈J(0, ω)〉I =
iωq2

m[ω2 − ω2
0 + iωγ]

nE(ω)

=
1

4π
iωω2

p

[ω2 − ω2
0 + iωγ]

E(ω) , (136)

where in the last step we used ω2
p = 4πnq2/m. Since 〈J〉I = σE, we have for

the conductivity:

σ(ω) =
iω ω2

p

4π[ω2 − ω2
0 + iωγ]

. (137)

The dielectric function is given then by Eq. (106):

ε(ω) = 1 − 4πσ(ω)
iω

= 1 +
ω2

p

−ω2 − iωγ + ω2
0

. (138)
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We can gain some insight into the meaning of the parameters in the model by
going to the dc limit ω → 0. We have then that for small ω that the conductivity
vanishes:

σ(ω) = −
iωω2

p

4πω2
0

(139)

and the dielectric constant is given by:

ε(0) = 1 +
ω2

p

ω2
0

. (140)

As things stand we see that the conductivity goes to zero as ω → 0. This
model does not represent a metal. Clearly it represents an insulator or dielec-
tric material. This is because the charged particles are bound. This binding is
represented by the oscillator frequency ω0. We note that ω2

0 can be empirically
determined from the dielectric function [10]. Clearly ω0 is essentially the Ein-
stein or optical frequency in a dielectric. For nonzero ω0 we have an insulator
for those degrees of freedom. If, for some degrees of freedom ω0 = 0, then
we return to the Drude model of Chapter 2 where the frequency-dependent
conductivity is given by:

σ(ω) =
σ(0)

1 − iωτ
, (141)

where the dc conductivity is given then by:

σ(0) =
nq2τ

m
, (142)

with the relaxation time τ = 1/γ.
Note that in a metal the dielectric constant, Eq. (138) with ω0 = 0 is not

smooth at low frequencies. Indeed, it is a complex quantity and we know that
this is the reason that light does not propagate in a metal.

4.5.3
The Current Correlation Function

It is very interesting to calculate the density–density correlation function that
would be measured in a scattering experiment. Remember that:

σ0(0, ω) = iβCJ J(0, ω) (143)

and the physical conductivity is given by:

σ =
σ0ω2

ω2 − 4πiωσ0
. (144)



120 4 Charged Transport

We can invert this equation to obtain σ0:

σ0(0, ω) =
ω2 σ(0, ω)

ω2 + 4πiωσ(0, ω)
. (145)

Assuming that σ(0, ω) is given by Eq. (137), the bare conductivity is given by:

σ0(0, ω) =
iω(ω2

p/4π)

ω2 + iωγ − ω2
0 − ω2

p
. (146)

The current correlation function in a solid is given by:

CJ J(0, ω) = β−1 iω(ω2
p/4π)

ω2 + iωγ − ω2
0 − ω2

p
. (147)

CJ J in the time regime is explored in Problem 4.5. In contrast to a simple single-
component fluid, the current for a charged neutral system is not conserved.
Momentum is transferred to the lattice in a solid or between types of charge
in a fluid. There is damping even at k = 0. Looking at the denominator of CJ J
we find poles at:

ω = −i
γ
2
±
√

ω2
0 + ω2

p − γ2/4 . (148)

Thus we have damped oscillations for ω2
0 + ω2

p > γ2/4. We expect oscillations
in a solid, which are interpreted as optical phonons. In a metal, where ω0 = 0
we have plasma oscillations [11]. We discuss in Chapter 7 how kinetic theory
can be used to develop a more microscopic approach to charged transport.
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4.7
Problems for Chapter 4

Problem 4.1: Evaluate the classical static charge current–current correlation
function:

CJα Jβ(k, 0) =
∫

d3x e+ik·(x−x′)〈Jα(x)Jβ(x′)〉 .

Problem 4.2: Use the continuity equation to show that the density and current
response functions are related by:

ω2χρρ(k, ω) = k2

[
χL

J J(k, ω) −
ω2

p

4π

]
.

Problem 4.3: Rederive the expression giving the conductivity tensor in terms
of response function in the fully quantum-mechanical case. Show that Eq. (118)
holds in this case where the response functions are the quantum-mechanical
quantities.
Problem 4.4: Show that Eqs. (96) and (97) are consistent with Eqs. (123) and
Eqs. (124).
Problem 4.5: Consider the Langevin equation, Eq. (127), giving the displace-
ment in terms of the noise. Solve for the velocity autocorrelation function in
the absence of a driving external field:

ψ(ω) = 〈|v(ω)|2〉 .

Use the equipartition theorem to determine the noise strength Γ in terms of
the damping γ.
Problem 4.6: Determine the time-dependent current–current correlation func-
tion CJ J(0.t) by taking the inverse Fourier transform Eq. (147).
Problem 4.7: Show that the φ = 0 Maxwell equations lead to Eqs. (77) and
(78).
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5
Linearized Langevin and Hydrodynamical Description
of Time-Correlation Functions

5.1
Introduction

We are now interested in determining the time-correlation functions for the
variety of physical systems of interest. From a fundamental point of view we
could set out to develop completely microscopic, first-principle calculations.
After all the correlation functions are well-defined mathematical objects and
we should simply evaluate them. This is the basic point of view, as we shall see,
in kinetic theory. In practice, such a first-principles analysis of time-correlation
functions is very difficult. In many cases they can be evaluated numerical-
ly using molecular dynamics or Monte Carlo simulations [1]. It turns out,
however, that there are a number of situations where we can gain a feeling
for the physics without solving the entire problem. The most important such
situation is that involving the long-distance and time behavior of a system
with slow variables. In many cases of interest there is a separation of time scales
between these slow variables and the huge number of fast microscopic de-
grees of freedom. In these cases, there is much we can say about the dynamics
of these slow variables. We can identify these slow degrees of freedom for
reasons fundamental to physics. One of the main sources of slow variables are
conservation laws [2]. With every symmetry principle [3] one can identify an
observable that generates the symmetry. Since, by definition, if there is a sym-
metry principle, this observable commutes with the equilibrium probability
distribution or density matrix. This means it commutes with the Hamiltonian.
Since this observable commutes with the Hamiltonian it is conserved; does
not change with time. As we show in detail below, the dynamics of the lo-
cal density associated with the conserved generator is a slow variable. Other
slow variables are associated with the breaking of a continuous symmetry as
one passes into the ordered state. These slow variables are called Nambu–
Goldstone modes [4].

It is fundamental to realize that it is precisely the same reasoning we de-
velop here that is at work in arguing for the existence of thermodynamics.
The slow variables are just the extensive thermodynamic state variables. For
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simple fluid systems with no broken continuous symmetries, the conservation
laws give the state variables: the number of particles N, the energy E, the
total momentum P and the total angular momentum L, and we have the
constraint of a fixed volume V . If the system is not translating or rotating we
can take the total momentum P and total angular momentum L to be zero and
thermodynamics can be organized in terms of N, E, and V . When we break
a continuous symmetry, as in the case of a superfluid or a solid, we generate
slow Nambu–Goldstone variables. These variables must be added to the list
of thermodynamic variables. The classic examples are the elastic displacement
degrees of freedom in a solid. We will return to this issue later.

A third example of a slow variable is the order parameter near a second-
order phase transition where the system is experiencing critical slowing down.
We discuss this in detail in Chapters 8 and 10. Slow variables can occur for
other special reasons: The motion of a very large particle moving in a fluid
of much smaller particles is slow. This was the case in our treatment of a
Brownian particle in earlier chapters.

Let us first discuss from a semiphenomenological point of view the case of a
conserved variable in the very simple case of spin diffusion in a paramagnet.
We will then come back and develop a more general and rigorous approach
to this and other problems.

5.2
Spin Diffusion in Itinerant Paramagnets

5.2.1
Continuity Equation

Let us consider a fluid of N particles of mass m interacting via the usual
Hamiltonian:

H =
N

∑
i=1

p2
i

2m
+

1
2

N

∑
i �=j=1

V(ri − rj) (1)

where pi and ri are the momentum and position of the ith particle. We assume
that these particles carry a spin Si and we assume there is no interaction
between spins on different particles. To keep things as simple as possible
we assume a scalar spin as for an Ising model. We are then interested in the
magnetization density:

M(x, t) =
N

∑
i=1

Siδ[x − ri(t)] . (2)

Since the Hamiltonian is independent of the spin, Si is time independent. The
spins are independent of the phase-space coordinates; the average of a spin at
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a site is zero:

〈Si〉 = 0 , (3)

and averages over products of spins at different sites is zero:

〈SiSj〉 = δij〈S2
i 〉 , (4)

where S2
i = S2 is independent of the particular site.

This is a simplified example of liquid 3He in the normal phase. This model
is restricted to the paramagnetic regime:

〈M(x, t)〉 = 0 .

We choose this example because it has the simplest nontrivial structure of
a conserved variable that does not couple to any other degrees of freedom
in the system. Thus, because of the symmetry of the magnetization density,
for example, the static correlation function between the magnetization and
particle density vanishes:

〈M(x)n(y)〉 = 0 . (5)

Let us first investigate the equation of motion satisfied by M(x, t). We have
the Heisenberg equation of motion:

∂M(x, t)
∂t

=
i
h̄
[H, M(x, t)]

=
i
h̄

N

∑
i=1

[
p2

i (t)
2m

, M(x, t)] (6)

since M(x, t) commutes with the potential energy. We can then work out the
commutation relation between the magnetization density and the kinetic ener-
gy:

∂M(x, t)
∂t

=
i

2mh̄

N

∑
i=1

(pi(t) · [pi(t), M(x, t)]

+[pi(t), M(x, t)] · pi(t)) , (7)

where:

[pi(t), M(x, t)] =
N

∑
j=1

(
−ih̄∇riδ[x − rj(t)]

)
Sj

= ih̄∇xδ[x − ri(t)]Si . (8)

Putting Eq. (8) back into Eq. (6), we arrive at the continuity equation:

∂M(x, t)
∂t

= −∇x ·
N

∑
i=1

Si
1
2

(
pi(t)

m
δ[x − ri(t)] + δ[x − ri(t)]

pi(t)
m

)
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= −∇x · J(x, t) . (9)

J is the magnetization-density current given by:

J(x, t) =
N

∑
i=1

Si
1
2

[
pi(t)

m
, δ[x − ri(t)]

]
+

(10)

and [A, B]+ = AB + BA is the anticommutator. In the classical limit, where pi
and ri commute, this reduces to the expected magnetization-density current:

J(x, t) =
N

∑
i=1

Si
pi(t)

m
δ[x − ri(t)] . (11)

We easily derive from the continuity equation that the total magnetization:

MT(t) =
∫

d3xM(x, t) =
N

∑
i=1

Si (12)

is conserved:

d
dt

MT(t) =
d
dt

∫
d3xM(x, t) = 0 . (13)

This is consistent with the result:

[H, MT] = 0 . (14)

The continuity equation is an operator equation, valid independent of the state
of the system.

5.2.2
Constitutive Relation

Suppose now we take the nonequilibrium average of the continuity equation:

∂

∂t
〈M(x, t)〉ne + ∇ · 〈J(x, t)〉ne = 0 . (15)

This gives us one equation and two unknowns. We can obtain a second equa-
tion by using the fact that 〈M(x, t)〉ne is conserved and in equilibrium the
average of M(x, t) is uniform. Thus if there is a local excess of spins, since
the spin is conserved, it has to be spread over time throughout the rest of
the system not spontaneously destroyed. This means that the magnetization-
density current, in an effort to equilibrate toward a uniform state, will flow
from regions of positive M(x, t) to regions of negative M(x, t). Consider the
following simple situation as shown in Fig. 5.1. Suppose we can determine
the spin density at two points, x − aẑ and x + aẑ, in our fluid. Also suppose
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Fig. 5.1 Schematic of the flow of spin-density current from regions of
positive magnetization density toward regions of negative magnetization
density.

we measure the magnetization-density current flowing in the region between
x− aẑ and x + aẑ. If a is not too large then J will be approximately uniform over
the region of interest. We expect, from the discussion above, that the current
is proportional to the difference in the magnetization densities at the points
x − aẑ and x + aẑ:

Jz(x, t) ≈ [M(x − aẑ, t)− M(x + aẑ, t)] . (16)

We write the constant of proportionality as:

Jz(x, t) =
D
2a

[M(x − aẑ, t)− M(x + aẑ, t)] . (17)

If M(x − aẑ) > M(x + aẑ) we expect a positive current flow, so D should be
a positive number. We divide by 2a since we expect that J will be finite as a
becomes small. In particular, in the limit a → 0,

Jz(x, t) = lim
a→0

D
2a

[M(x, t)− M(x, t)− 2aẑ · ∇x M(x, t) +O(a2)]

= −D
d
dz

M(x, t) . (18)

We can write more generally that:

〈 J(x, t) 〉ne = −D �∇ 〈 M(x, t) 〉ne (19)

when we realize that the current we measure is some nonequilibrium-induced
average current. This relation connecting the average current to the gradient of
the average of a conserved field is called a constitutive relation. Constitutive
relations are valid on a time and distance scale that is large compared to
microscopic processes.
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The proportionality constant in our constitutive equation, D, is a transport
coefficient known [5] as the spin-diffusion coefficient. Constitutive relations,
relating currents to the gradient of a field, show up in many areas of many-
body physics: Ohm’s law [6], Fourier’s law [7], Fick’s law [8], etc.

5.2.3
Hydrodynamic Form for Correlation Functions

If we now insert our constitutive equation into the continuity equation we
obtain the closed equation:

∂

∂t
〈M(x, t)〉ne − D∇2〈M(x, t)〉ne = 0 . (20)

This is, of course, in the form of a heat or diffusion equation and can be solved
by introducing the Fourier–Laplace transform:

δM(k, z) =
∫ +∞

0
dt eizt

∫
d3x eik·x〈δM(x, t)〉ne (21)

where δM(x, t) = M(x, t)−〈M(x, t)〉eq and the equilibrium average of M(x, t)
trivially satisfies the diffusion equation. We find immediately that Eq. (20)
leads to the solution:

δM(k, z) =
i

z + iDk2 〈δM(k, t = 0)〉 . (22)

Notice that δM(k, z) possesses a hydrodynamic pole on the negative imaginary
axis:

zpole = −iDk2 . (23)

If we invert the Laplace transform, we see that the main contribution to the
time dependence is due to this pole and we have in the time domain:

δM(k, t) = e−Dk2tδM(k, 0) . (24)

Consequently δM(k, t) is exponentially damped with a lifetime τ(k) =
(Dk2)−1. It is characteristic of hydrodynamic modes to have a lifetime in-
versely proportional to k2. Consequently, for small k and long wavelengths
hydrodynamic modes decay very slowly. In other words, a long wavelength
excitation of a conserved variable (spread over a large distance) takes a long
time to dissipate or spread throughout the system as a whole. Note that we
require D > 0 for a stable, decaying system.

We now want to connect our hydrodynamic result with our previous dis-
cussion of linear response. We showed, taking the Laplace transform of Eq.
(2.143), that:

δM(k, z) = RM(k, z)δM(k, t = 0) , (25)
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where RM(k, z) is the relaxation function. If we compare with our hydrody-
namic result given by Eq. (22), we easily identify the relaxation function as:

RM(k, z) =
i

z + iDk2 . (26)

We then recall Eq. (3.145), that the relaxation function is related to the complex
response function χM(k, z) by:

RM(k, z) =
1
iz

[χM(k, z)/χM(k)− 1] , (27)

where χM(k) is the static susceptibility. Comparing Eqs. (26) and (27), we
easily identify the dynamic susceptibility:

χM(k, z) =
iDk2χM(k)

z + iDk2 . (28)

χM(k, z) is related to the dissipation function χ′′
M(k, ω) via:

χM(k, z) =
∫ dω′

π
χ′′

M(k, ω′)
ω′ − z

. (29)

From this equation, we see:

χ′′
M(k, ω) = Im χM(k, ω + iη) (30)

and we can then determine:

χ′′
M(k, ω) = χM(k)

ωDk2

ω2 + (Dk2)2 . (31)

This is the hydrodynamical form for the dissipation or linear response functi-
on. We expect it to be valid in the limit of small frequencies and wavenumbers
or long times and distances.

Let us pause to check that χ′′
M has the expected properties. We first note that

we have an autocorrelation function since we couple only to the magnetizati-
on density. Thus, as expected, we find that χ′′M is real and odd as ω → −ω. We
also see that:

ωχ′′M(k, ω) = χM(k)
ω2Dk2

ω2 + (Dk2)2 > 0 (32)

if χM(k) > 0. Recall that in the long wavelength limit χM(k) reduces to a
thermodynamic derivative and for thermodynamic stability we require that
the static susceptibility be positive!

Since we know χ′′M(k, ω), we can calculate the hydrodynamical forms for all
the other correlation functions. The Kubo function measured using incoherent
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neutron scattering from liquid 3He is related to the dissipation function by Eq.
(3.143):

CM(k, ω) =
2

βω
χ′′

M(k, ω) . (33)

In the hydrodynamic regime:

CM(k, ω) = SM(k)
2Dk2

ω2 + (Dk2)2 . (34)

where the static structure factor SM(k), defined by:

SM(k) = 〈|M(k)|2〉 =
∫ dω

2π
CM(k, ω) , (35)

is related to the wavenumber-dependent susceptibility by:

SM(k) = kBTχM(k) . (36)

We find in our neutron-scattering experiment that in the hydrodynamical
region the spectrum is Lorentzian with a width Dk2. As we shall see, typi-
cal hydrodynamic spectra are Lorentzians and have widths proportional to a
transport coefficient times k2.

5.2.4
Green–Kubo Formula

An appropriate question at this point is: what is D? We introduced it through
the constitutive relation as a phenomenological constant. We could simply say
that we measure D. Carry out a scattering experiment in the small k and ω li-
mit and identify the coefficient of k2 as the width D. This is and continues to be
an important experimental question to be investigated for magnetic systems.
For our purposes the interesting theoretical question is: how do we calculate
D? This question could only be answered in a very roundabout fashion before
the pioneering work by Green [9] and Kubo [10] in the 1950s. The calculation
of transport coefficients prior to that time consisted of solving some appro-
ximate nonequilibrium (like the Boltzmann equation) theory for 〈M(k, t)〉ne
directly, take the limit of k → 0, t → ∞ and verify that the solution is of the
decaying form. From this result one could read off the transport coefficient.
This is a very cumbersome procedure and it was very difficult to understand
the nature of the transport coefficient.

With the development of linear response theory and the introduction of
time-correlation functions it became increasingly clear that these transport
coefficients are properties of the equilibrium system and, as long as the de-
viation from equilibrium is small, they are essentially independent of how
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the nonequilibrium situation was set up. It seems reasonable, in analogy with
our earlier treatments of particle diffusion and the electrical conductivity, that
we can express transport coefficients, like D for a spin system, or the shear
viscosity in a fluid, in terms of time-correlation functions.

In the spin problem we have been discussing we can see this rather directly.
We start with the hydrodynamical form for the correlation function in the
classical limit (for simplicity),

CM(k, ω) = 2
SM(k) Dk2

ω2 + (Dk2)2 . (37)

Then if we multiply CM(k, ω) by k−2 and take the limit k → 0, we obtain:

lim
k→0

1
k2 CM(k, ω) = 2

SMD
ω2 (38)

where SM = SM(0). We can then solve [11] for DSM as,

DSM =
1
2

lim
ω→0

lim
k→0

ω2

k2 CM(k, ω) . (39)

This gives D in terms of SM and CM, which are equilibrium correlation func-
tions. While this form for D is useful in some contexts, it is conventional to
write this equation in a slightly different way. We note that we can write:

lim
ω→0

lim
k→0

ω2

k2 CM(k, ω) = lim
ω→0

lim
k→0

∫ +∞

−∞
d(t − t′)e+iω(t−t′)

× 1
k2

∂2

∂t∂t′
CM(k, t − t′) (40)

where we have integrated by parts twice.
At this stage we need to take a brief detour to discuss the relationship of

the spatial Fourier CM(k, t, t′) and the Fourier transform of the field M(x, t).
Using our previous conventions we have:

CM(k, t, t′) =
∫

ddx eik·(x−y)CM(x − y, t, t′) . (41)

Because of translational invariance this expression is independent of y, and
therefore we can write:

CM(k, t, t′) =
∫ ddy

V

∫
ddx eik·(x−y)CM(x − y, t, t′)

=
∫ ddxddy

V eik·(x−y)〈M(x, t)M(y, t′)〉

= 〈M(k, t)M(−k, t′)〉 (42)
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and we have defined the Fourier transform of the microscopic fields in the
symmetric fashion:

M(k, t) =
∫ ddx√

V
eik·xM(x, t) . (43)

With this set of conventions, we can Fourier transform the continuity equation
to obtain:

∂

∂t
M(k, t) + ik · J(k, t) = 0 , (44)

so:

∂

∂t
∂

∂t′
C(k, t − t′) =

〈
∂M(k, t)

∂t
∂M(−k, t′)

∂t′

〉
= ∑

i,j
kikj〈Ji(k, t)Jj(−k, t′)〉 . (45)

Then, for small k,

lim
ω→0

lim
k→0

ω2

k2 CM(k, ω) = lim
ω→0

∫ +∞

−∞
d(t − t′)e+iω(t−t′) lim

k→0

×∑
i,j

kikj

k2
1
V 〈JT

i (t)JT
j (t′)〉 (46)

where:

JT
i (t) =

∫
d3xJi(x, t) . (47)

For an isotropic system in three dimensions:

〈JT
i (t)JT

j (t′)〉 =
1
3

δij〈JT(t) · JT(t′) 〉 . (48)

So, putting this together, the diffusion coefficient is given by:

DSM =
1

2V lim
k→0

lim
ω→0

∫ +∞

−∞
d(t − t′)e+iω(t−t′) k2

k2
1
3
〈JT(t) · JT(t′)〉

=
1

3V lim
ε→0

∫ +∞

0
dt e−εt〈JT(t) · JT(0)〉 , (49)

where we have used the fact that the autocorrelation function is even under
letting t → −t. This is the conventional Green–Kubo form [12] expressing a
transport coefficient in terms of a time integral over a current–current correla-
tion function.

This representation is very convenient because it is a useful starting point
for computer molecular dynamics experiments. One can compute 〈JT(t) · JT(0)〉
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directly from Newton’s equations and from this determine DSM. Since the to-
tal current JT(t) is not conserved, one expects the current–current correlation
function to decay to zero on a microscopic time scale, which is convenient for
simulations. This has been a particularly useful approach in developing the
dynamical theory of liquids.

Note that it is the product form DSM that occurs naturally in the Green–
Kubo equation. It is typical that an associated equilibrium susceptibility like
SM enters the analysis and we need to determine it from a separate calculation.
We will look at this from a more general perspective in the next section.

We show here that we have also treated in this analysis the problem of self-
diffusion. It is shown in Problem 5.2, because the spins at different sites are
uncorrelated, that:

CM(x − y, t − t′) = S2SS(x − y, t − t′) , (50)

where SS is the van Hove self-correlation function. We discuss here how we
can simplify the Green–Kubo equation given by Eq. (49). We first treat the
static correlation function. Working in the classical limit:

S(x − y) = 〈δM(x)δM(y)〉

=
N

∑
i=1

N

∑
j=1

〈SiSjδ(x − Ri)δ(y − Rj)〉

=
N

∑
i=1

N

∑
j=1

δij〈S2〉〈δ(x − Ri)δ(y − Rj)〉

= 〈S2〉〈n〉δ(x − y) = S̄δ(x − y) (51)

where S̄ = S2〈n〉 is a constant and the static structure factor has a constant
Fourier transform:

S(q) = S̄ = nS2 . (52)

Turning to the right-hand side of Eq. (49), we need the spin current given by
Eq. (11) and the total current:

JT(t) =
∫

ddx J(x, t) =
N

∑
i=1

Sivi(t) . (53)

Inserting this result in Eq. (49) we are led to the result:

DnS2 =
1

3V

∫ ∞

0
dt

〈
N

∑
i=1

Sivi(t) ·
N

∑
j=1

Sjvj(0)

〉

=
1

3V

∫ ∞

0
dt S2〈

N

∑
i=1

vi(t) · vi(0)〉
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=
1

3V

∫ ∞

0
dt S2N〈vi(t) · vi(0)〉

=
nS2

3

∫ ∞

0
dt 〈vi(t) · vi(0)〉 . (54)

Canceling common terms gives finally:

D =
1
3

∫ ∞

0
dt 〈vi(t) · vi(0)〉 . (55)

This is the Green–Kubo equation found in Chapter 1.

5.3
Langevin Equation Approach to the Theory of Irreversible Processes

5.3.1
Choice of Variables

Let us investigate a theoretical approach to the determination of time-correlation
functions, which is a generalization of the approximate Langevin equation
approach discussed in Chapters 1, 2 and 4. We learned in the preceding section
that under certain circumstances particular variables, out of the fantastically
large number of degrees of freedom in the system, have relatively simple
long-time and -distance behavior. In general we are only interested in a few
variables ψi in a system.

It will be convenient to allow the subscript i to index the type of variable as
well as any vector or coordinate label. We will, for now , choose ψi such that
it has a zero equilibrium average [13]:

〈ψi〉 = 0 . (56)

For a ferromagnet we might choose ψi to be the magnetization density M(x).
In a fluid we might include in ψi the particle density n(x), the momentum
density g(x) and the energy density ε(x).

5.3.2
Equations of Motion

In general the variables ψi satisfy the Heisenberg equation of motion written
in the form:

∂ψi(t)
∂t

= iLψi(t) , (57)

where L is the Liouville operator. Quantum mechanically:

Lψi =
1
h̄
[H, ψi] (58)
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is just the commutator of the dynamical variable with the Hamiltonian.
It is instructive to look at the form of the equation of motion given by

Eq. (57) in the classical limit. If the variable ψi depends on the phase-space
coordinates {r1, r2, . . . , rN; p1, p2, . . . , pN} for a system of N particles then it
satisfies the equation of motion,

∂ψi(t)
∂t

= ∑
j,α

[
∂ψi(t)
∂rα

j (t)
ṙα

j (t) +
∂ψi(t)
∂pα

j (t)
ṗα

j (t)

]
(59)

where we have used the chain-rule for differentiation. After using Hamilton’s
equations:

ṙα
i (t) =

∂H
∂pα

i (t)
(60)

ṗα
i (t) = − ∂H

∂rα
i (t)

, (61)

the equation of motion for ψi(t) can be written as:

∂ψi(t)
∂t

= ∑
j,α

[
∂ψi(t)
∂rα

j (t)
∂H

∂pα
j (t)

− ∂ψi(t)
∂pα

j (t)
∂H

∂rα
j (t)

]

= {ψi, H} (62)

where we have introduced the Poisson bracket for two variables A and B:

{A, B} = ∑
i,α

[
∂A

∂rα
i (t)

∂B
∂pα

i (t)
− ∂A

∂pα
i (t)

∂B
∂rα

i (t)

]
. (63)

Comparing the classical and quantum equations of motion,

∂ψi(t)
∂t

=
{ψi, H} classical

1
ih̄

[ψi, H] quantum mechanical ,

we find the quantum-classical mapping, first suggested by Dirac [14],

1
ih̄

[A, B] → {A, B} . (64)

The classical form for the Liouville operator is given by:

Lψi =
1
h̄
[H, ψi] → i{H, ψi} (65)
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and we have for the equation of motion:

∂ψi(t)
∂t

= iLψi(t) = −{H, ψi(t)} . (66)

We can formally integrate the equation of motion to obtain:

ψi(t) = eiLtψi ≡ U(t)ψi , (67)

where ψi = ψi(t = 0) and U(t) = eiLt is known as Koopman’s operator [15].
We will find it very convenient to deal with the time Laplace transform of

ψi(t), defined:

ψi(z) = −i
∫ ∞

0
dteiztψi(t) , (68)

where z has a small positive imaginary piece. If we put Eq. (67) into Eq. (68)
we easily obtain:

ψi(z) = R(z)ψi , (69)

where the resolvant operator is defined:

R(z) = (z + L)−1 . (70)

The equation of motion for ψ(z) can now be obtained by using the operator
identity:

zR(z) = 1 − LR(z) . (71)

We find:

zψi(z) = ψi − Lψi(z) . (72)

In the next two sections we work out examples of nontrivial equations of
motion for magnetic and fluid systems.

5.3.3
Example: Heisenberg Ferromagnet

In order to appreciate the content of Eq. (72) and to make things more concrete,
let us consider two examples. First let us consider a quantum-mechanical
Heisenberg ferromagnet [16] described by the Hamiltonian [17]:

H = −1
2 ∑

R �=R′
J(R − R′)M(R) · M(R′) −∑

R
M(R) · B , (73)

where J(R − R′) is the exchange interaction between spins at lattice sites R
and R′ and B is an applied external magnetic field. We can then easily calcu-
late the effect of L on M(R) using the usual spin-commutation relations (we
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adsorb the factors of μ0 relating the magnetic moment and the spin in the
definition of the exchange coupling):

LM(R) =
1
h̄
[H, M(R)] .

The commutator is worked out in Problem 5.3 with the result:

LM(R) = −i ∑
R′

J(R − R′)M(R)× M(R′) − iB × M(R) . (74)

The equation of motion is given for this system by:

∂M(R)
∂t

= iLM(R) = ∑
R′

J(R − R′)M(R)× M(R′) + B × M(R) . (75)

Note that Eq. (75) is explicitly a nonlinear equation for M.
Let us restrict ourselves to the case of zero applied external field, B = 0. It

is easy to show, for this isotropic system, that the total magnetization,

MT = ∑
R

M(R) , (76)

is conserved. Summing Eq. (75) over all R we obtain:

d
dt

MT = ∑
R,R′

J(R − R′)M(R)× M(R′) . (77)

If J(R − R′) = J(R′ − R) (we have translational and rotational invariance),
the sums on the right vanish due to the odd symmetry for R ↔ R′, and MT
is conserved:

dMT
dt

= 0 (78)

LMT = 0 . (79)

Since we have a conservation law we should be able to write a continuity
equation and extract an expression for the spin-density current. Because the
spins are interacting here we expect this process to be a bit more complicated
when compared to the analysis in the first section of this chapter. The first step
is to introduce the spin or magnetization density:

M(x, t) = ∑
R

M(R, t)δ (x − R) . (80)

After multiplying Eq. (75) by δ (x − R) and summing over R, we obtain:

∂M(x)
∂t

= ∑
R,R′

δ (x − R) J(R − R′)M(R)× M(R′)
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=
1
2 ∑

R,R′

(
δ (x − R)− δ

(
x − R′))

×J(R − R′)M(R)× M(R′) . (81)

We can identify the spin-current if we use a trick [18]. Consider the identity,

∂

∂s
δ(x − sR) = −R · ∇xδ(x − sR) , (82)

where s is a real continuous variable. Integrate this expression over s from 0
to 1:

δ(x − R) − δ(x) = −
∫ 1

0
ds R · ∇xδ(x − sR) . (83)

Using this result we can write:

δ(x − R) − δ(x − R′) = −
∫ 1

0
ds ∇x ·

[
Rδ(x − sR) − R′δ(x − sR′)

]
. (84)

Inserting Eq. (84) in Eq. (81), we find:

∂Mi(x, t)
∂t

= −∑
β
∇β

x Ji
β(x, t) , (85)

where:

Ji
β(x, t) =

1
2 ∑

R,R′
∑
jk

εijk

∫ 1

0
ds
[

Rβδ(x − sR) − R′
βδ(x − sR′)

]

×J(R − R′)Mj(R, t)Mk(R′, t) . (86)

Integrating over all x we obtain the total current:

Ji
T,β(t) =

1
2 ∑

R,R′
∑
jk

εijk[R − R′]β J(R − R′)Mj
R(t)Mk

R′(t) . (87)

This expression for the total current can be used in the associated Green–Kubo
expression.

5.3.4
Example: Classical Fluid

As a second example of an equation of motion, we consider a classical fluid
of N point particles with mass m whose dynamics involve the phase-space
coordinates ri and pi. The Hamiltonian describing these particles is assumed
to be of the form:

H =
N

∑
i=1

p2
i

2m
+

1
2

N

∑
i �=j=1

V(ri − rj) , (88)
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where V(r) is the pair potential acting between particles. An interesting dy-
namical variable in this case (a good choice for ψi) is the phase-space density:

f̂ (x, p) =
N

∑
i=1

δ(x − ri)δ(p − pi) . (89)

We can construct the particle density, momentum density and kinetic energy
density from f̂ (x, p) by multiplying by 1, p and p2/2m, respectively, and
integrating over p:

n(x) =
∫

d3 p f̂ (x, p) =
N

∑
i=1

δ(x − ri) (90)

g(x) =
∫

d3 p p f̂ (x, p) =
N

∑
i=1

piδ(x − ri) (91)

K(x) =
∫

d3 p
p2

2m
f̂ (x, p) =

N

∑
i=1

p2
i

2m
δ(x − ri) . (92)

The Liouville operator in this case can be written:

L = i{H, }

= i
N

∑
i=1

(
∇ri H · ∇pi −∇pi H · ∇ri

)

= −i
N

∑
i=1

pi
m

· ∇ri + i
N

∑
i �=j=1

∇riV(ri − rj) · ∇pi

= L0 + LI , (93)

where the free-streaming noninteracting part is given by:

L0 = −i
N

∑
i=1

pi
m

· ∇ri (94)

and the interacting part by:

LI = i
N

∑
i �=j=1

∇ri V(ri − rj) · ∇pi . (95)

It is useful to look at the effect of allowing the Liouville operator to act on the
phase-space density:

L f̂ (x, p) = L0 f̂ (x, p) + LI f̂ (x, p) . (96)
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Let us look first at the free-streaming contribution:

L0 f̂ (x, p) = −i
N

∑
i=1

pi
m

· ∇ri

N

∑
j=1

δ(x − rj)δ(p − pj)

= −i
N

∑
i=1

pi
m

· ∇riδ(x − ri)δ(p − pj)

= i∇x ·
N

∑
i=1

pi
m

δ(x − ri)δ(p − pi)

= i
p · ∇x

m
f̂ (x, p)

≡ −L0(x, p) f̂ (x, p) . (97)

Notice that the operator L0, given by Eq. (94), acts on phase-space coordinates,
while L0(x, p), defined by Eq. (97), acts on the external arguments labeling the
phase-space densities. Turning to the interacting part of the Liouville operator:

LI f̂ (x, p) = i
N

∑
i �=j=1

∇riV(ri − rj) · ∇pi

N

∑
k=1

δ(x − rk)δ(p − pk)

= i
N

∑
i �=j=1

∇riV(ri − rj) · ∇piδ(x − ri)δ(p − pi)

= −i∇p ·
N

∑
i �=j=1

∇riV(ri − rj)δ(x − ri)δ(p − pi) . (98)

In order to write LI f̂ (x, p) as an operator like L0(x, p) acting on a product of
phase-space densities, we insert the identity to obtain:

LI f̂ (x, p) = −i∇p ·
N

∑
i �=j=1

∇riV(ri − rj)
∫

d3x1d3 p1δ(x1 − rj)δ(p1 − pj)

×δ(x − ri)δ(p − pi)

= −i∇p ·
∫

d3x1d3 p1∇xV(x − x1) f̂ (x1, p1) f̂ (x, p)

= −
∫

d3x1d3 p1LI(x − x1, p, p1) f̂ (x1, p1) f̂ (x, p) , (99)

where we define the two-particle interaction part of the Liouville operator:

LI(x − x1, p, p1) = i∇xV(x − x1) · (∇p −∇p1) , (100)

and in the next to the last step in obtaining Eq. (99) we have dropped a self-
interacting term, i = j, which can be eliminated through a careful choice for
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the potential. We can then write the effect of the Liouville operator acting on
the phase-space density in the form:

L f̂ (x, p) = −L0(x, p) f̂ (x, p)

−
∫

d3x1d3 p1LI(x − x1, p, p1) f̂ (x1, p1) f̂ (x, p) . (101)

Note there is a piece of L f̂ that is linear in f̂ (the kinetic energy term) that plays
a formal role similar to the B × M term in the magnetic example. There is also
a nonlinear interaction term ≈ f̂ 2, as in the spin case.

The equation of motion is given then by:

∂

∂t
f̂ (x, p) = −iL0(x, p) f̂ (x, p)

−i
∫

d3x1d3 p1LI(x − x1, p, p1) f̂ (x, p) f̂ (x1, p1) . (102)

We see that we have projected the equation of motion onto the space spanned
by the labels of the phase-space densities. The price we pay is that the equati-
ons of motion are now nonlinear. As discussed in Chapter 7, Eq. (102) serves
as the basis for developing kinetic theory. We get started in such an approach
by assuming we have a low-density system and particles spend most of their
time free streaming, where the nonlinear part of the equation of motion can
be treated as a small perturbation.

Notice that one can use this equation of motion, Eq. (102), to look at the
conservation laws. If we simply integrate over p we obtain the continuity
equation:

∂n(x, t)
∂t

= −∇ · g(x, t)
m

. (103)

If we multiply Eq. (102) by p and integrate over p, we can, after some manipu-
lations discussed in Appendix F of ESM, show that conservation of momen-
tum is expressed locally as:

∂gα(x)
∂t

= −∑
β
∇β

x σαβ(x) , (104)

where the microscopic stress tensor is given by

σαβ(x) =
∫

d3 p
pαpβ

m
f̂ x, p)− 1

4

∫ +1

−1
ds
∫

d3r
rαrβ

r
∂V(r)

∂r
× n(x + (1/2)(s + 1)r, t)n(x + (1/2)(s− 1)r, t) . (105)

Similarly the local statement of conservation of energy is given by:

∂ε(x, t)
∂t

= −∇ · Jε(x, t) , (106)
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where the energy current is given by:

Jα
ε (x, t) =

∫
d3 p
(

p2

2m
+
∫

d3r
1
2

V(x − r)n(r)
)

pα f̂ (x, p, t)

−1
4

∫ +1

−1
ds
∫

d3r
∫

d3 pd3p′ ∑
β

rαrβ

r
∂V(r)

∂r
(pβ + p′β)

× f̂ [x − (1/2)(s + 1)r, p, t] f̂ [x − (1/2)(s − 1)r, p ′, t] . (107)

5.3.5
Summary

In summary we expect that the microscopic equation of motion for the varia-
bles ψi can be written in the generic form:

ψ̇i = ∑
j

iεijψj + iNi , (108)

where Ni represents the nonlinear terms in the equation of motion:

Ni = ∑
jk

Vijkψjψk + . . . . (109)

5.3.6
Generalized Langevin Equation

The equation of motion for ψi(t) is, in general, a complicated nonlinear func-
tional of ψi(t). Thus a direct microscopic attack on the problem appears very
difficult. One should also keep in mind that the examples of equations of
motion discussed above are for the simplest of systems. If we want to look
at more complex systems like liquid crystals and polymers we must develop
a more flexible approach that is less tied to the microscopic details that may
not be important in describing long-distance and long-time motions. Toward
this end, and despite the fact that Lψi(z) is in general a complicated nonlinear
functional of ψi(t), it is useful to assume that Lψi(z) can be written as the sum
of two pieces, one of which is linear in ψi(z) and something that is left over:

−Lψi(z) = ∑
j

Kij(z)ψj(z) + i fi(z) . (110)

In Eq. (110) Kij(z) is a function and fi(z) is a dynamical variable in the same
sense as ψi(z). The first piece on the right-hand side of Eq. (110) can be thought
of as the projection of −Lψi(z) back along ψi(z), and fi(z) is what is left over.
The physics, which we will draw out as we go along, is that the linear piece,
proportional to ∑j Kij(z)ψj, corresponds to the friction terms in the Brownian
motion problem, while fi corresponds to the noise.
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We first note, taking the equilibrium average of Eq. (110), that:

〈 fi(z)〉 = 0 (111)

since 〈ψi(z)〉=0 [from Eq. (57)] and:

〈Lψi(z)〉 = −i
∫ ∞

0
dteizt(−i)

d
dt

〈ψi(t)〉 = 0 , (112)

which follows from time-translational invariance of the equilibrium ensemble.

It should be clear that Eq. (110) is still not unique, since we have one equati-
on and two unknowns. A second equation comes from requiring that the noise
fi(z) have no projection onto the initial value of ψi(t):

〈ψj fi(z)〉 = 0 . (113)

As we shall see, this is a powerful requirement [19]. To keep things simple,
we assume we have a classical theory where the ψ’s commute. This is not a
necessary [20] requirement, but its elimination would necessitate additional,
but essentially unilluminating, further formal development.

As we shall see Eqs. (110) and (113) uniquely determine K and f . If we put
Eq. (110) back into Eq. (72) we obtain the form for the equation of motion:

∑
j
[zδij − Kij(z)]ψj(z) = ψi + i fi(z) . (114)

If we take the inverse Laplace transform (see Problem 5.19), we find:

∂ψi
∂t

(t) + ∑
j

∫ t

0
dt̄Kij(t − t̄)ψj(t̄) = fi(t) . (115)

This equation is known as the generalized Langevin equation. Indeed this is
a generalization of the Langevin equation we studied in our discussion of
Brownian motion. The integral kernel Kij(t − t′) is known as the memory
function . The classic works on the generalized Langevin equation are due
to Zwanzig [21] and Mori [22] who used projection operator techniques. We
will follow a somewhat different procedure [23].

In the Langevin equation formulation one thinks in terms of two sets of
dynamical variables ψi and fi, which are initially independent. As time pro-
ceeds however the ψi and fi are mixed by the nonlinearities in the equation of
motion and ψi(z) has components along both ψi and fi(z). In the next section
we show how Kij(t) can be determined.
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5.3.7
Memory-Function Formalism

We will be interested in calculating the equilibrium-averaged time-correlation
functions:

Cij(t) = 〈ψjψi(t)〉 (116)

for the set of slow variables. It is convenient to introduce the Fourier trans-
form:

C′′
ij(ω) =

∫ ∞

−∞
dt eiωtCij(t) (117)

and the Laplace transform:

Cij(z) = −i
∫ ∞

0
dt eiztCij(t) (118)

=
∫ ∞

−∞

dω
2π

C′′
ij(ω)

(z − ω)
(119)

and obtain the usual relation between the Laplace and Fourier transforms.
Remembering Eq. (68), it is clear that we can identify:

Cij(z) = 〈ψjψi(z)〉 = 〈ψjR(z)ψi〉 . (120)

If we multiply Eq. (114) by ψi, take the equilibrium average and use Eq. (113),
we obtain:

zCij(z) = Sij + ∑
l

Kil(z)Clj(z) , (121)

where:

Sij = 〈ψjψi〉 (122)

is the static or equal-time correlation function among the slow variables. We
assume we know the Sij from equilibrium statistical mechanics. If we know
Kij(z) then we can solve for Cij(z). However, to some extent, Eq. (121) sim-
ply defines the new function Kij(z) in terms of the correlation function. The
introduction of Kij(z) is useful only if it is easier to calculate or approximate
than Cij(z) itself. Obviously this will turn out to be the case or we would not
introduce it.

We now want to show how one can express the memory function Kij(z) in
terms of time-correlation functions. If we multiply Eq. (72) by ψj and take the
equilibrium average we obtain:

zCij(z) = Sij − 〈ψjR(z)Lψi〉 . (123)
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If we compare this equation with Eq. (121) we can identify:

∑
l

Kil(z)Clj(z) = −〈ψjR(z)Lψi〉 . (124)

If we multiply Eq. (124) by z, use Eq. (123) on the left-hand side in Clj(z) and
Eq. (71) on the right-hand side, we obtain:

∑
l

Kil(z)[Slj − 〈ψjLR(z)ψl〉] = −〈ψjLψi〉+ 〈ψjLR(z)Lψi〉 . (125)

After using the property (see Problem 5.8) of the Liouville operator:

〈ALB〉 = −〈(LA)B〉 (126)

(which follows from the time-translational invariance of the equilibrium dis-
tribution function) we can write Eq. (125) in the form:

Kij(z) = K(s)
ij + K(d)

ij (z) , (127)

where:

Γ(s)
ij = ∑

l
K(s)

il Sl j = −〈ψjLψi〉 , (128)

and:

Γ(d)
ij (z) = ∑

l
K(d)

il (z)Slj = −〈(Lψj)R(z)(Lψi)〉

−∑
l

Kil(z)〈(Lψj)R(z)ψl〉 . (129)

If we introduce the matrix inverse:

∑
l

Cil(z)C−1
l j (z) = δij , (130)

then matrix multiply Eq. (124) from the right by C−1(z), we obtain:

Kil(z) = −∑
k
〈ψkR(z)Lψi〉C−1

kl (z) . (131)

Using his result in Eq. (129) gives:

Γ(d)
ij (z) = −〈(Lψj)R(z)(Lψi)〉

+ ∑
k,l
〈ψkR(z)(Lψi)〉C−1

kl (z)〈(Lψj)R(z)ψl〉 . (132)

Let me summarize these results for the memory function:

Γ(d)
ij (z) = ∑

k
K(s)

ik Skj + ∑
k

K(d)
ik (z)Skj , (133)
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where the static or z-independent part of the memory function is given by:

Γ(s)
ij = −〈ψjLψi〉 (134)

and the dynamical part by:

Γ(d)
ij (z) = −〈(Lψj)R(z)(Lψi)〉

+ ∑
k,l
〈ψkR(z)(Lψi)〉C−1

kl (z)〈(Lψj)R(z)ψl〉 . (135)

We note that K(s)
ij is independent of z. Taking the inverse Laplace transform

we see that in the time domain:

K(s)
ij (t) = 2iK(s)

ij δ(t) . (136)

The generalized Langevin equation then takes the form:

∂ψi(t)
∂t

+ i ∑
j

K(s)
ij ψj(t) + ∑

j

∫ t

0
dt̄ K(d)

ij (t − t̄)ψj(t̄) = fi(t) . (137)

The static part of the memory function, K(s) can be expressed in terms of
static correlation functions. The evaluation of the dynamic part, K(d), however,
involves a direct confrontation with the many-body dynamics. In the case of
fluids where ψi → f̂ (x, p), there has been considerable work [23–25] carried
out to evaluate K(d) and Eq. (135) is a convenient starting point for detailed
microscopic calculations. Similarly, for spin systems a rather straightforward
analysis of Eq. (135) leads to the mode-coupling approximation for K(d) dis-
cussed by Resibois and De Leener [26] and by Kawasaki [27]. We discuss this
further below.

The expression for K(d) given by Eq. (135) looks very complicated. There
is one crucial and simplifying property satisfied by K(d). Suppose we can
decompose Lψi into a piece linear in ψ and the rest:

Lψi = ∑
m

εimψm + Ni , (138)

where Ni includes nonlinear products of the ψ’s and contributions that cannot
be expressed in terms of the ψ’s. Let us substitute Eq. (138) into Eq. (135) for
K(d) and focus on the terms proportional to εim. We have the contribution:

−∑
m

εim[〈(Lψj)R(z)ψm〉 − ∑
k,l=1

〈ψkR(z)ψm〉C−1
kl (z)

×〈(Lψj)R(z)ψl〉] , (139)

but in the second term, we have the combination:

∑
k
〈ψkR(z)ψm〉C−1

kl (z) = δlm . (140)



5.3 Langevin Equation Approach to the Theory of Irreversible Processes 147

Using this result in Eq. (139) we see that the two terms cancel. Similarly we
can make the same replacement with respect to Lψj and show:

Γ(d)
ij (z) = −〈NjR(z)Ni〉 + ∑

k,l
〈ψkR(z)Ni〉C−1

kl (z) 〈NjR(z)ψl〉. (141)

One can therefore conclude that any linear part of Lψ does not contribute to
K(d). It is carefully treated by the static part of the memory function. It is in this
sense that K(d) is a one-particle or one-body irreducible quantity. K(d) is determi-
ned by the interactions between variables (nonlinearities) or by fluctuations
that are not included in ψ. If there is a nonlinear coupling u such that Ni ≈ u,
then K(d) ≈ O(u2) and the multiplying correlation functions to lowest order
in u can be evaluated for u = 0. This is discussed in Problems 5.4 and 5.5.

5.3.8
Memory-Function Formalism: Summary

Here we summarize the structure of the memory-function formalism. We con-
sider an equilibrium-averaged time correlation:

Cij(t) = 〈ψjψi(t)〉 (142)

for a set of dynamic variables ψi. The Laplace transform Cij(z), Eq. (118),
satisfies a kinetic equation:

∑
�

[zδi� − Ki�(z)] C�j(z) = Sij (143)

where Sij = 〈ψjψi〉 is the static correlation function and the memory function
Kij(z) is the sum of static and dynamic parts;:

Kij(z) = K(s)
ij + K(d)

ij (z) , (144)

where:

∑
�

K(s)
i� S�j = −〈ψjLψi〉 (145)

with L the Liouville operator for the system, and the dynamic part of the me-
mory function is given by Eq. (135). If Lψi can be separated into a component
linear in ψi and nonlinear contributions, Eq. (138), then the dynamic part of
the memory function can be written in the form given by Eq. (141).

5.3.9
Second Fluctuation-Dissipation Theorem

Now that we have a mechanism for determining the memory function Kij,
we can view Eq. (138) as a defining equation for the noise fi(z). It is the part
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of −Lψi(z) that is not along the vector ψi(z). It is important to note that the
autocorrelation of the noise with itself is given by the simple result:

〈 fj(t′) fi(t)〉 = ∑
l

K(d)
il (t − t′)Slj . (146)

The first step in the proof of Eq. (146) is, as shown in Problem 5.6, establish-
ment of the identity:

ψi(t) = ∑
k,�

Cik(t)S−1
k� ψ� + ∑

k�

∫ t

0
ds Cik(t − s)S−1

k� f�(s) . (147)

Next we define the quantity:

Fi(t) =
∂ψi(t)

∂t
+ i ∑

j
K(s)

ij ψj(t) . (148)

Using the generalized Langevin equation, Eq. (137), we can write:

Fi(t) + ∑
�

∫ t

0
ds iK(d)

i� (t − s)ψ�(s) = fi(t) . (149)

Multiply this equation by ψj and take the equilibrium average:

〈Fi(t)ψj〉 + ∑
�

∫ t

0
ds K(d)

i� (t − s)C�j(s) = 0 , (150)

where we have remembered that fi(t) and ψj are orthogonal. Next we can
write:

〈Fi(t)ψj〉 = 〈Fiψj(−t)〉 . (151)

We have from Eq. (149) at t = 0 that:

Fi = fi , (152)

so:

〈Fi(t)ψj〉 = 〈 fiψj(−t)〉 . (153)

Next we use Eq. (147) for ψj(−t) in Eq. (153):

〈Fi(t)ψj〉 =

〈
fi

[
∑
k,�

Cjk(−t)S−1
k� ψ�

+ ∑
k�

∫ −t

0
ds Cjk(−t − s)S−1

k� f�(s)

]〉
. (154)
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Since 〈 fiψ�〉 = 0, this reduces to:

〈Fi(t)ψj〉 = ∑
k�

∫ −t

0
ds Cjk(−t − s)S−1

k� 〈 fi f�(s)〉 . (155)

Using Eq. (150) to substitute for the left-hand side and letting s → −s on the
right we find:

∑
�

∫ t

0
ds K(d)

i� (t − s)C�j(s) = ∑
k�

∫ t

0
ds Cjk(s − t)S−1

k� 〈 fi f�(−s)〉 . (156)

Let s = t − y on the right, then:

∑
�

∫ t

0
ds K(d)

i� (t − s)C�j(s) = ∑
k�

∫ t

0
dy Cjk(−y)S−1

k� 〈 fi f�(y − t)〉

= ∑
k�

∫ t

0
dy Ckj(y)S−1

k� 〈 fi(t − y) f�〉 , (157)

where we have used time-translational invariance in the equilibrium avera-
ges. Stripping off the common factor of C�j(s) from the right gives:

K(d)
ij (t) = ∑

�

〈 fi(t) f�〉S−1
�j (158)

and we arrive at the desired result:

〈 fi(t) fj〉 = ∑
�

K(d)
i� (t)S�j = Γ(d)

ij (t) . (159)

The result for the autocorrelation of the noise indicates that there is a fun-
damental relationship between the noise and the dynamic part of the memory
function. This is known as the second fluctuation-dissipation theorem [28].

5.4
Example: The Harmonic Oscillator

In order to see how all of this formal structure hangs together let us consider
the simple example of a set of uncoupled harmonic oscillators. This example
is not very realistic since there is no irreversible behavior, but it does indicate
how some of the manipulations in the theory are carried out.

Consider a set of N one-dimensional uncoupled classical harmonic oscilla-
tors described by a Hamiltonian:

H =
N

∑
i=1

[
P2

i
2M

+
κ
2

R2
i

]
, (160)
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where Pi is the momentum of the ith oscillator and Ri the position. The Liou-
ville operator in this case is given by Eqs. (93), (94) and (95), which take the
form here:

L = −i
N

∑
i=1

(
∂

∂Pi
H

∂

∂Ri
− ∂

∂Ri
H

∂

∂Pi

)

= −i
N

∑
i=1

[
Pi
M

∂

∂Ri
− κRi

∂

∂Pi

]
. (161)

We have then, for example:

∂Ri
∂t

= iLRi =
Pi
M

(162)

and:

∂Pi
∂t

= iLPi = −κRi . (163)

From these familiar equations we immediately obtain Newton’s law:

∂2Ri
∂t2 =

1
M

∂Pi
∂t

= − κ
M

Ri . (164)

Defining:

ω2
0 =

κ
M

, (165)

and incorporating the initial conditions we have the usual solutions:

Ri(t) = Ri(0) cos ω0t +
Pi(0)
Mω0

sin ω0t (166)

Pi(t) = −Ri(0)Mω0 sin ω0t + Pi(0) cos ω0t . (167)

The formal structure of the theory requires us to work out the equal-time
correlation functions. Noting that 〈Ri〉 = 〈Pi〉 = 0, we have explicitly:

〈Ri(0)Rj(0)〉 =
1
Z

∫
dR1 . . . dRNdP1 . . . dPN e−βH RiRj

= δij

∫
dRie−βκR2

i R2
i∫

dRie−βκ

= δij
kBT

κ
, (168)

〈Ri(0)Pj(0)〉 = 0 , (169)
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and:

〈Pi(0)Pj(0)〉 = M kBTδij , (170)

which are just statements of the equipartition theorem. Using these results and
Eqs. (166) and (167) in the time-correlation functions we obtain:

〈Ri(t)Rj(0)〉 = δij
kBT

κ
cos ω0t (171)

〈Ri(t)Pj(0)〉 = δij MkBT
sin ω0t

Mω0
(172)

〈Pi(t)Rj(0)〉 = −δij
kBT

κ
Mω0 sin ω0t (173)

〈Pi(t)Pj(0)〉 = δij MkBT cos ω0t . (174)

Note that:

〈Ri(t)Pj(0)〉 = δij
kBT
ωo

sin ω0t = 〈 Ri(0)Pj(−t) 〉, (175)

which follows from time-translational invariance.
Let us turn now to our memory-function formalism. Let us choose as our

variables:

ψα = δα,RR + δα,PP , (176)

where, since lattice sites are uncoupled, we drop the lattice index. One lesson
derived from this example is the virtue of a good choice of notation. We then
need the equal-time matrix:

Sαβ = 〈ψαψβ〉
= δαβ〈ψ2

α〉
= δαβkBTMα , (177)

where we have defined:

Mα = κ−1δα,R + Mδα,P . (178)

Next we need to work out the action of the Liouville operator on the basic
field. Remembering that:

LR = −i
P
M

(179)
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LP = iκR , (180)

we can write the quantity Lψα in a convenient form. We have:

Lψα = δα,R

(
−i

P
M

)
+ δα,P(iκR)

= δα,R

(
− iψP

MP

)
+ δα,P

(
iψR
MR

)

= −i ∑
γ

εαγ
ψγ

Mγ
= −∑

γ
καγψγ , (181)

where we have introduced the antisymmetric tensor:

εRP = 1 = −εPR ; εRR = 0 = εPP , (182)

and, in the last line, we have defined the matrix:

Kαβ = i
εα,β

Mβ
. (183)

Next we consider the static part of the memory function:

∑
γ

K(s)
αγ Sγβ = −〈ψβLψα〉 (184)

and, using Eq. (177) on the left-hand side and Eq. (181) on the right-hand side,
we obtain:

K(s)
αβ MβkBT = ∑

γ
KαγSγβ

= KαβMβkBT , (185)

so:

K(s)
αβ = Kαβ (186)

Clearly, since Lψα is linear in ψ, the dynamic part of the memory function
vanishes and the full memory function is given by Kαβ, which is listed above.

Our general correlation function expression, from Eq. (114) is given by:

zCαβ(z)−∑
γ

KαγCγβ(z) = Sαβ (187)

or, inserting the explicit results from Eqs. (177) and (183),

zCαβ(z) + ∑
γ

iεαγ

M−γ
Cγ,β(z) = δαβ MαkBT . (188)
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The equation is solved in Problem 5.7 with the result:

Cαβ(z) =
kBT

z2 − ω2
0

[zδαβ Mα + iεαβ] . (189)

Suppose we make a poor choice of variables. How does this reflect itself in
the memory-function formalism? Let us make the choice:

ψ = R . (190)

Then:

Lψ = LR = −i
P
M

(191)

and Lψ cannot be expressed in terms of ψ. Then we find that the static part of
the memory function is zero,

K(s)SRR = −〈RLR〉 = 0 , (192)

while the dynamic part, given by Eq. (132), takes the form:

K(d)(z)SRR = −
〈(

−i
P
M

)
R(z)

(
−i

P
M

)〉

+
〈

RR(z)
(
−i

P
M

)〉
C−1

RR(z)
〈(

−i
P
M

)
R(z)R

〉

=
1

M2 CPP(z) − 1
M2 CPR(z)C−1

RR(z)CRP(z) , (193)

or:

K(d)(z)
M2kBT

κ
= CPP(z)− CPR(z)C−1

RR(z)CRP(z) . (194)

The kinetic equation for the correlation function Eq. (121) is trivial to solve in
this case:

CRR(z) =
kBT

κ
1

[z − K(d)(z)]
. (195)

Let us now evaluate K(d) using the known expressions, Eq. (189) for Cαβ(z):

K(d)(z) =
κ

M2kBT
[CPP(z)− CPR(z)C−1

RR(z)CRP(z)]

=
κ

M2(z2 − ω2
0)

[zM − κ
z
]

=
ω2

0
z

. (196)
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Inserting Eq. (196) back into Eq. (195) we recover:

CRR(z) =
kBT

κ
z

z2 − ω2
0

. (197)

Note that K(d)(z) does not have a simple long-time, small-frequency behavior.
This is the indicator that one has chosen in this case the wrong set of variables.
The extension of the theory to the case of a nonlinear oscillator is discussed in
Problems 5.4 and 5.5.

5.5
Theorem Satisfied by the Static Part of the Memory Function

In the case of classical systems, the static part of the memory function satisfies
a very nice theorem that will be useful to us in several contexts. We start with
the general expression:

Γ(s)
αβ ≡ ∑

γ
K(s)

αγ Sγβ = −〈ψβLψα〉 . (198)

The slow variables, in this system, are functions of the phase-space coordina-
tes ri and pi and Poisson brackets are defined as:

{A, B} = ∑
i

(
∂A
∂ri

· ∂B
∂pi

− ∂A
∂pi

· ∂B
∂ri

)
. (199)

We can then use the definition of the Liouville operator in terms of the Poisson
bracket to obtain:

Γ(s)
αβ = −i〈ψβ{H, ψα}〉

= −i
1
Z

Tr e−βHψβ{H, ψα} . (200)

This is written for convenience in the canonical ensemble, but can easily be
worked out in the GCE. Because of the first-order derivatives in the Poisson
bracket, we can write:

e−βH{H, ψα} = −β−1{e−βH , ψα} , (201)

so that:

Γ(s)
αβ = i

β−1

Z
Tr ψβ{e−βH , ψα} . (202)

Consider, then, the quantity:

Tr ψβ{e−βH , ψα}
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= Tr ∑
i

ψβ

[(
∂

∂ri
e−βH

)
· ∂

∂pi
ψi −

(
∂

∂pi
e−βH

)
· ∂

∂ri
ψα

]
. (203)

Integrating by parts with respect to the derivatives of e−βH gives:

Trψβ{e−βH , ψα} = Tr e−βH ∑
i

[
− ∂

∂ri
· (ψβ

∂ψα
∂pi

) +
∂

∂pi
· (ψβ

∂ψα
∂ri

)
]

= Tr e−βH{ψα, ψβ} , (204)

where we have canceled some cross terms. Putting this result back in Eq. (202)
gives the final clean result:

Γ(s)
αβ = iβ−1〈{ψα, ψβ}〉 . (205)

This is a rather nice general result for classical systems. As discussed in Pro-
blem 5.20, this theorem holds for more general definitions of the Poisson brackets.

5.6
Separation of Time Scales: The Markoff Approximation

The basic physical picture we want to associate with our Langevin equation
is that there are two time scales in our problem. A short time scale is asso-
ciated with a set of rapidly decaying variables. A second longer time scale is
associated with slowly decaying variables. The main idea is to include in the
ψi the slowly decaying variables while the noise fi represents the effects of
the rapidly decaying variables. We expect, then, that 〈 fj fi(t)〉 decays to zero
much faster than 〈ψjψi(t)〉. Consequently, if we are interested in long-time
phenomena, then 〈 fj fi(t)〉 can be taken as very sharply peaked near t = 0. We
therefore write,

〈 fj fi(t)〉 = 2Γijδ(t) , (206)

where:

Γij =
∫ ∞

0
dt 〈 fj fi(t)〉 =

∫ ∞

0
dt ∑

�

K(d)
i� (t)S�j , (207)

where in the last step we have used Eq. (159). This Markoffian approximation
[29] for the noise immediately implies, using the relationship derived earlier
between the autocorrelation function for the noise and the dynamic part of the
memory function, that:

∑
l

K(d)
il (t − t′)Slj = 2Γijδ(t − t′) (208)
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or:

K(d)
ij (t − t′) = 2 ∑

l
ΓilS

−1
l j δ(t − t′) . (209)

Inserting this result in the Langevin equation Eq. (115) we obtain:

∂ψi(t)
∂t

+ i ∑
j

K(s)
ij ψj(t) + ∑

l,j
ΓilS

−1
l j ψj(t) = fi(t) . (210)

Within the Markoffian approximation we completely [30] specify the dyna-
mics of a set of variables ψj by giving K(s)

ij , Sij and Γij. Different choices for

K(s), S and Γ characterize different types of dynamical variables. These varia-
bles are typically of three types: relaxational, hydrodynamical and oscillatory.
We have already looked at a simple oscillatory model: the simple harmonic
oscillator.

5.7
Example: Brownian Motion

The simplest example of a relaxational process is the Brownian motion of a
large particle in a solvent. In the case where the mass M of the large particle
is much greater than m, the mass of the solvent, one expects that the velocity
of the Brownian particle will be slow compared to the solvent motions. In this
case it is sensible to choose the velocity of the Brownian particle as our slow
variable:

ψi(t) → V(t) . (211)

The ingredients specifying the Langevin equation are easily chosen in the
Markoffian approximation. Consider first the equilibrium averages (i is now
a vector component label):

Sij = 〈ViVj〉 = δij
kBT
M

(212)

using the equipartition theorem, and:

K(s)
ij

kBT
M

= −〈VjLVi〉 = −δij〈ViLVi〉

= δij〈(LVi)Vi〉 = 0 . (213)

The key assumption is that we can implement the Markoff approximation and
write, using the isotropic symmetry in the system:

Γij = δijΓ . (214)
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The Langevin equation, Eq. (210), is then given by:

∂Vi(t)
∂t

+
ΓM
kBT

Vi(t) = f i(t) (215)

and we have from the second fluctuation-dissipation theorem:

〈 fj(t′) fi(t)〉 = 2Γδijδ(t − t′) . (216)

Comparing Eq. (215) with Eq. (1.6), we can identify the friction coefficient:

γ = M
Γ

kBT
(217)

and the noise has the same variance as in Chapter 1.
If we Fourier transform Eq. (215) over time we obtain:

Vi(ω) =
∫ ∞

−∞
dt eiωtVi(t)

=
f i(ω)

(−iω + γ)
. (218)

We see from Eq. (215) that the noise drives the slow variable and the statistical
properties of Vi are controlled by those of the noise. The average of Vi(ω) is
given by:

〈Vi(ω)Vj(ω′)〉 =
〈 fi(ω) fj(ω′)〉

(−iω + γ)(−iω′ + γ)
. (219)

After Fourier transforming Eq. (216),

〈 f i(ω) f j(ω′) 〉 = 2Γδij2πδ(ω + ω′) , (220)

Eq. (219) can be rewritten as:

Cij(ω)2πδ(ω + ω′) = 〈Vi(ω)Vj(ω′)〉

=
2Γδij2πδ(ω + ω′)

ω2 + γ2 (221)

or:

Cij(ω) =
2Γδij

ω2 + γ2 . (222)

If we take the inverse Fourier transform of Eq. (222) we obtain:

Cij(t) = δij
kBT
M

e−γ|t| (223)
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and the velocity autocorrelation function relaxes exponentially to zero for long
times. This is in agreement with our results in Chapter 1 given by Eqs. (1.33)
and (1.34).

We see that the relaxation rate is given by the dynamic part of the memory
function. We should also note that this approximation is only valid in those
situations where there is a clear separation of time scales between the variables
of interest ψi and the noise fi.

Note that we could have worked directly in terms of the Laplace transform
of the correlation function that satisfies:

∑
k

[
zδik − K(s)

ik + i ∑
�

Γi�S−1
�k

]
Ckj(z) = Sij (224)

in this Markoffian approximation. In the case of Brownian motion, where
Eqs. (212), (213) and (214) hold, this reduces to:

[z + iγ]Cij(z) = δijkBT/M (225)

and:

Cij(z) = δij
kBT/M
z + iγ

. (226)

The complex fluctuation function has a simple pole in the lower half complex
plane.

5.8
The Plateau-Value Problem

There is a calculation we can carry out that sheds some light on the role of
the second (subtraction) term in Eq. (135). Let us first introduce the so-called
force–force correlation function:

γij(t − t′) = 〈F̃i(t)F̃j(t′)〉 , (227)

where the force is defined by:

F̃i(t) =
∂ψi(t)

∂t
= iLψi(t) . (228)

In terms of Laplace transforms we have:

γij(z) = 〈(iLψj)R(z)iLψi〉 = −〈(Lψj)R(z)Lψi〉 , (229)

which we recognize as the first term in the expression Eq. (135) for the dyna-
mic part of the memory function. Let us write Eq. (135) as:

Γ(d)
ij (z) = γij(z) + Pij(z) , (230)
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where:

Pij(z) = ∑
k,�
〈ψkR(z)(Lψi)〉C−1

k� (z)〈(Lψj)R(z)ψ�〉 . (231)

Now remember Eq. (124):

〈ψkR(z)(Lψi)〉 = −∑
s

Kis(z)Csk(z) , (232)

so:

Pij(z) = − ∑
k,�,s

Kis(z)Csk(z)C−1
k� (z)〈(Lψj)R(z)ψ�〉

= −∑
�

Ki�(z)〈(Lψj)R(z)ψ�〉 . (233)

It is left to Problem 5.12 to show:

CAB(z) = −CBA(−z) . (234)

Using this result we have:

〈(Lψj)R(z)ψ�〉 = −〈ψ�R(−z)(Lψj)〉 (235)

Again, using Eq. (124) we have:

〈(Lψj)R(z)ψ�〉 = ∑
k

Kjk(−z)Ck�(−z) (236)

and:

Pij(z) = −∑
k,�

Ki�(z)Ck�(−z)Kjk(−z)

= ∑
k,�

Ki�(z)C�k(z)Kjk(−z) . (237)

It is shown in Problem 5.8 that:

Γ(s)
ij = −〈ψjLψi〉 = −Γ(s)

ji , (238)

while from Problem 5.13 we find:

Γ(d)
ij (z) = −Γ(d)

ji (−z) . (239)

From these last two results it follows that:

∑
�

Ki�(z)S�j = −∑
�

Kj�(−z)S�i (240)
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or:

Kji(−z) = −∑
k,�

S−1
ik Kk�(z)S�j . (241)

Putting this result back into Eq. (237) we have:

Pij(z) = − ∑
k,�,s,m

Ki�(z)C�k(z)S−1
ks Ksm(z)Smj (242)

and we have the equation relating the memory function and the force–force
correlation function:

∑
�

K(d)
i� (z)S�j = γij(z)− ∑

k,�,s,m
Ki�(z)C�k(z)S−1

ks Ksm(z)Smj . (243)

This equation becomes particularly interesting in the case where the correla-
tion functions are diagonal and the static part of the memory function vanis-
hes. This is the case of the Fourier transform of magnetization–magnetization
correlation function for the itinerant magnet. In this case we have for the
fluctuation function (suppressing the wavenumber label):

C(z) =
1

z − K(d)(z)
S , (244)

and Eq. (243) reduces to:

K(d)(z)S = γ(z) − K(d)(z)
1

z − K(d)(z)
SS−1K(d)(z)S . (245)

We can solve this equation for γ(z) giving:

γ(z) =
Sz

z − K(d)(z)
K(d)(z) . (246)

Alternatively we can solve for K(d)(z) in terms of γ(z) to obtain:

K(d)(z) =
zγ(z)

zS + γ(z)
. (247)

We see that we have something interesting here. It is our expectation, if we
have picked the correct slow variables, that after a microscopic short time τs,
we can apply the Markoffian approximation and replace:

K(d)(z) → −iΓS−1 , (248)

where Γ is the physical damping coefficient. This means that in the time re-
gime where K(d)(z) is a constant, the force–force correlation is given by:

γ(z) = − iΓz
z + ΓS−1 . (249)
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We see that γ(z) vanishes as z → 0. It is easier to see what is happening in the
time domain. Taking the inverse Laplace transform we obtain:

γ(t) = 2Γδ(t)− Γ2S−1e−ΓS−1t . (250)

Writing this in terms of the time τ = S/Γ:

γ(t) = Γ
(

2δ(t)− 1
τ

e−t/τ
)

. (251)

we see that we can use γ to estimate Γ for times large compared to τs and short
compared to τ. Thus there is a range of time, a plateau, where one integrates
γ(t) to determine Γ. This plateau-value problem was identified in the 1940s by
Kirkwood [31]. It is investigated in Problem 5.14.

Going back to Eq. (243) we see that there are situations where we can replace
K(d)S with γ(z). If γ(z) can be shown to be small in some perturbation theory
(density expansion) or because ψ is conserved, then in the limit:

K(d)S = γ . (252)

This is what happens in developing the Green–Kubo relation for a conserved
variables where Γ = −iDq2 and we have:

lim
q→0

1
q2 γ(t) = 2Dδ(t) . (253)

All of this means that we must show great case in treating force–force corre-
lations that have delicate long-time contributions. It is advised that one work
with the memory functions that do not have these contributions. Instead, the
second term in Eq. (135) serves to subtract off these slow degrees of freedom.

5.9
Example: Hydrodynamic Behavior; Spin-Diffusion Revisited

Let us return to the system we discussed earlier in this chapter: the itinerate
isotropic ferromagnet with noninteracting spins. In this case the slow variable,
the magnetization density, does not directly couple to the other slow variables,
like the energy density, in the system. Thus we choose:

ψi → M(x) =
N

∑
i=1

Siδ(x − ri) . (254)

Let us proceed to fill in the various formal steps in our Langevin equation
approach. Consider first the static behavior. Since we assume uncorrelated
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spins (see Eqs. (3) and (4)), we can work out the static properties explicitly.
The average magnetization is zero:

〈M(x)〉 = 0 (255)

and our system is paramagnetic. The static structure function was shown ear-
lier to be given by the simple result:

S(q) = S̄ . (256)

The magnetic susceptibility is given by:

χM =
∂〈M(x)〉

∂H
=

β
V

∫
d3xd3y〈δM(x)δM(y)〉

= βSM(q = 0) =
S̄

kBT
, (257)

which is just the Curie law [32].
Turning to the static part of the memory function we have to evaluate:∫

d3wK(s)(x − w)S(w − y) = −〈M(y)LM(x)〉 . (258)

From the continuity equation we know:

iLM(x) = −∇ · J(x) (259)

and the static part of the memory function is zero since:

〈M(y)J(x)〉 = 0 (260)

due to the average over the momentum variable appearing in J.
The kinetic equation, with K(s) = 0, takes the form:

zC(x − y, z)−
∫

d3wK(d)(x − w, z)C(w − y, z) = S(x − y) , (261)

where the dynamic part of the memory function can be written as:∫
d3wK(d)(x − w)S(w − y) = K(d)(x − y)S̄

= −〈[LM(y]R(z)[LM(x)]〉

+
∫

d3w1d3w2〈[LM(y)]R(z)M(w1)〉C−1(w1 − w2, z)

×〈M(w2)R(z)[LM(x)]〉 . (262)

The equations above simplify if we Fourier transform over space. The kinetic
equation reduces to:

[z − K(d)(q, z)]C(q, z) = S̄ (263)
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and the dynamic part of the memory function is given by:

K(d)(q, z)S̄ = −〈[LM(−q)]R(z)[LM(q)]〉
+〈[LM(−q)]R(z)M(q)〉C−1(q, z)〈M(−q)R(z)[LM(q)]〉 . (264)

It is at this stage in the development that we recall the results from our
study of the plateau-value problem. If we introduce the force–force correlation
function:

γ(q, z) = −〈[LM(−q)]R(z)[LM(q)]〉 , (265)

then we showed, Eq. (247), that:

K(d)(q, z) =
zγ(q, z)

zS̄ + γ(q, z)
. (266)

An important ingredient, in evaluating the dynamic part of the memory func-
tion, is the conservation law:

∂M
∂t

= iLM = −∇ · J . (267)

In terms of Fourier transforms:

∂M(q)
∂t

= iLM(q) = iq · J(q) . (268)

Inserting this result into the equation for the force–force correlation function
we obtain:

γ(q, z) = ∑
ij

qjqi〈Jj(−q)R(z)Ji(q)〉 (269)

=
q2

d
〈J(−q) · R(z)J(q)〉 , (270)

where the last step follows for an isotropic system in d spatial dimensions.
In the low-frequency small-wavenumber limit we expect:

K(d)(q, z) = −iDq2 , (271)

which we write more carefully as:

−iD = lim
z→0

lim
q→0

1
q2 K(d)(q, z) . (272)

Substituting for K(d)(q, z), using Eq. (266), we have:

−iD = lim
z→0

lim
q→0

1
q2 γ(q, z)S̄−1 (273)
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= lim
z→0

lim
q→0

1
d
〈J(−q) · R(z)J(q)〉 (274)

or, in the standard Green–Kubo form for the self-diffusion coefficient,

DS̄ =
1

dV

∫ ∞

0
dt 〈JT · JT(t)〉 . (275)

Thus we have reproduced our earlier hydrodynamic results.
Our goal has been to show how the results from linearized hydrodyna-

mics can be derived from a well-defined microscopic analysis. It should be
understood that there are circumstances where this development breaks down
because the various limits (q → 0, ω → 0) do not exist. In particular the
assumption given by Eq. (272) needs to be checked in detail. One can ha-
ve a breakdown [33] in conventional hydrodynamics for low-dimensionality
systems, systems near critical points and in systems like liquid crystals with
strong fluctuations.

We are now in a position to understand the nature of the separation of time
scales in this problem. The point is that M(q, t) will decay back to equilibrium
much more slowly than J(q, t). We can define characteristic times for the two
fields as:

τM(q) =
∫ ∞

0
dt〈M(−q)M(q, t)〉/〈M(−q)M(q)〉 (276)

and:

τJ(q) =
∫ +∞

0
dt〈J(−q) · J(q, t)〉/〈J(−q) · J(q)〉 . (277)

We obtain directly from the inverse Laplace transform of Eq. (263) with Eq.
(271) that:

C(q, t) = S̄e−Dq2t . (278)

Putting Eq. (278) into Eq. (276) we have in the small q limit,

τM(q) =
∫ +∞

0
dt e−Dq2t =

1
Dq2 . (279)

If we use the Green–Kubo formula (see Problem 5.17) we can show:

τJ(0) =
Dm
kBT

. (280)

Then we have the ratio of the two times:

τM
τJ

=
kBT
Dm

1
Dq2 ≡ V2

0
D2q2 (281)



5.10 Estimating the Spin-Diffusion Coefficient 165

and for sufficiently small q,

τM(q) � τJ(0) (282)

and we have our separation of time scales and for many purposes it is appro-
priate to set q and z equal to zero in Γij(q, z).

5.10
Estimating the Spin-Diffusion Coefficient

Let us return to the case of the isotropic Heisenberg model where the basic
slow variable is the magnetization density M(x, t) defined by Eq. (80). The
continuity equation satisfied by M(x, t) is given by Eq. (85). The spin-density
current is now a matrix. We assume that the spin degrees of freedom are
isotropic:

Cij(x − y, t − t′) = 〈Mi(x, t)Mj(y, t′)〉

= δijC(x − y, t − t′) =
δij

d
〈M(x, t) · M(y, t′)〉 . (283)

As in the itinerant magnet example in Section 5.8 we consider the force–
force correlation function:

γij(q, z) = −〈(LMj(−q)R(z)(LMi(q)〉 (284)

= −
δij

d
〈[LM(−q)] · R(z)[LM(q)]〉 . (285)

The continuity equation in this case takes the form:

LM(q) = ∑
α

qαJα(q) , (286)

where the current Jα(q) is the spatial Fourier transform of Eq. (86). The force–
force correlation function takes the form:

γij(q, z) =
δij

d ∑
αβ

qαqβ〈Jβ(−q) · R(z)Jα(q)〉 . (287)

γij(q, z) depends on the lattice structure; however we make the simplifying
assumption that the system is isotropic in space and assume:

γij(q, z) = δij
q2

d ∑
α
〈Jα(−q) · R(z)Jα(q)〉 . (288)

Comparing with Eq. (270) it is easy to see, following the development in the
itinerant magnet case, that the spin-diffusion coefficient for the Heisenberg
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model is given by the Green–Kubo formula:

DS(0) =
1

d2V ∑
α

∫ ∞

0
dt 〈JT,α(t) · JT,α〉 , (289)

where the total current is given by Eq. (87):

Ji
T,β(t) =

1
2 ∑

R,R′
∑
jk

εijk[R − R′]β J(R − R′)Mj
R(t)Mk

R′(t) (290)

and S(0) = 〈|M(0)|2〉. Inserting this result for JT into Eq. (289) we see that
we have a four-field correlation function. In an effort to estimate the spin-
diffusion coefficient we adopt a simple classical approach and assume a de-
coupling approximation:

〈Mj′(R′′, 0)Mk′(R′′′, 0)Mj(R, t)Mk(R′, t)〉
= Cjj′(R, R′′, t)Ckk′(R′, R′′′, t) + Cjk′(R, R′′′, t)Ckj′(R′, R′′, t), (291)

where:

Cjj′(R, R′, t) = 〈Mj(R, t)Mj′(R′, 0)〉 . (292)

The Green–Kubo relation then takes the form:

DS(0) =
1

d2V

∫ ∞

0
dt

1
4 ∑

R,R′,R′′,R′′′
∑

ijkj′k′
∑
α

εijk(R − R′)α J(R − R′)

×εij′k′(R′′ − R′′′)α J(R′′ − R′′′) (293)

×
[

Cjj′(R, R′′, t)Ckk′(R′, R′′′, t) + Cjk′(R, R′′′, t)Ckj′(R′, R′′, t)
]

.

Assuming the system is isotropic in spin-space:

Cjj′(R, R′, t) = δjj′C(R, R′, t) , (294)

we can do the spin sums,

∑
ijkj′k′

εijkεij′k′δjj′δkk′ = 2d (295)

∑
ijkj′k′

εijkεij′k′δjk′δkj′ = −2d , (296)

to obtain:

DS(0) =
1

2dV

∫ ∞

0
dt ∑

R,R′,R′′,R′′′
∑
α

(R − R′)α J(R − R′)(R′′ − R′′′)α J(R′′ − R′′′)
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×
[
C(R, R′′, t)C(R′, R′′′, t)− C(R, R′′′, t)C(R′, R′′, t)

]
. (297)

Next we introduce the Fourier transform:

C(R, R′, t) =
1
N ∑

k
e−ik·(R−R′)C(k, t) , (298)

where N is the number of lattice sites, and we find for the spin-diffusion
coefficient:

DS(0) =
1

2dV

∫ ∞

0
dt

1
N2 ∑

k
∑
q

C(k, t)C(q, t)I(k, q) , (299)

where:

I(k, q) = ∑
R,R′,R′′,R′′′

∑
α

(R − R′)α J(R − R′)(R′′ − R′′′)α J(R′ − R′′′)

×
[
e−ik·(R−R′′)e−ik·(R′−R′′′) − e−ik·(R−R′′′)e−ik·(R′−R′′)

]
.(300)

These sums factorize into the product:

I(k, q) = ∑
α

[Kα(k, q)Kα(−k,−q) − Kα(k, q)Kα(−q,−k)] , (301)

where:

Kα(k, q) = ∑
R,R′

(R − R′)α J(R − R′)e−ik·Re−iq·R′
. (302)

In the sum, let R = R′ + R′′, so:

Kα(k, q) = ∑
R′,R′′

R′′
α J(R′′)e−ik·(R′+R′′)e−iq·R′

= ∑
R′′

R′′
α J(R′′)e−ik·R′′

Nδk,−q

= Nδk,−qσα(k) , (303)

where:

σα(k) = ∑
R′′

R′′
α J(R′′)e−ik·R′′

. (304)

We have then that:

I(k, q) = ∑
α

Kα(k, q) [Kα(−k,−q)− Kα(−q,−k)]

= N2δk,−q ∑
α

σα(k) [σα(−k)− σα(−q)]
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= 2N2δk,−q�σ(k) ·�σ(−k) . (305)

Equation (297) for the Green–Kubo correlation function then reduces to:

DS(0) =
1

dV

∫ ∞

0
dt ∑

k
C2(k, t)�σ(k) ·�σ(−k) . (306)

The sum over reciprocal lattice vectors can be written:

∑
k

= N
∫ d3(ka)

(2π)3 , (307)

where a is a lattice constant and the integral is over the first Brillouin zone.
Equation (306) then takes the form:

DS(0) =
n
3

∫ ∞

0
dt
∫ d3(ka)

(2π)3 C2(k, t)�σ(k) ·�σ(−k) , (308)

where n = N/V is the density. Next note that we can write:

σα(k) = i∇α
k J(k) , (309)

where J(k) is the Fourier transform of the exchange constant:

J(k) = ∑
R

J(R)e−ik·R . (310)

Then:

DS(0) =
n
3

∫ ∞

0
dt
∫ d3(ka)

(2π)3 C2(k, t)
(
�∇k J(k)

)2
. (311)

In the spirit of the Debye theory of solids [34] we assume that the dominant
contribution to the integral comes from small wavenumbers and the hydro-
dynamic mode. We write:

C(k, t) = S̃(k)e−Dk2t (312)

and do the time integration to obtain:

DS(0) =
n
3

∫ d3(ka)
(2π)3 S̃2(k)

(
�∇k J(k)

)2

2Dk2 , (313)

which we can solve for the diffusion coefficient:

D2S(0) =
n
6

∫ d3(ka)
(2π)3 S̃2(k)

(
�∇k J(k)

)2

k2 . (314)
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If we assume a nearest-neighbor model we have for the Fourier transform of
the exchange coupling:

J(k) = 2J
(
cos kxa + cos kya + cos kza

)
. (315)

Assuming it is the small k region that is important, we can expand:

J(k) = 2J[3 − 1
2 (ka)2 + . . .] (316)

and find the quantity in the integral:

(
�∇k J(k)

)2

k2 = 4J2a4 (317)

and:

D2S(0) =
4n
6

J2a4
∫ d3(ka)

(2π)3 S̃2(k) . (318)

It is left to Problem 5.18 to show that S(0) = nS̃(0) so:

D2 =
2
3

J2a4
∫ d3(ka)

(2π)3
S̃2(k)
S̃(0)

. (319)

Finally we need an approximate form for the static structure factor. A simple
mean-field approximation is given by:

S̃(k) =
h̄2

1 − βJ(k)h̄2 , (320)

where we have written explicitly that the structure factor, with our definitions
here, has dimensions h̄2. Again evaluating S̃(k) in the long-wavelength limit
we have the Ornstein–Zernike form:

S̃(k) =
h̄2

r + c(ka)2 , (321)

where:

r = 1 − β6Jh̄2 (322)

c = 2βJh̄2 . (323)

Using this approximation in Eq. (319) and doing the remaining integral in
Problem 5.15, we find:

D2 =
2
π

J2a4h̄2 1
r

( r
c

)3/2
. (324)
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From this expression we see that the scale of D is set by D0 = a2 Jh̄. We can
write:

D = D0
2
π

1
23/4

√
y(y − 6)1/4 , (325)

where y = kBT/Jh̄2. For large temperatures D grows as y3/4 and vanishes as
(T − Tc)1/4 as T → Tc = 6Jh̄2/kB. For a more careful quantum calculation and
further discussion see Ref. [16].
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24 L. Sjögren, A. Sjölander, J. Phys. C 12, 4369
(1979).

25 H. C. Anderson, J. Phys. Chem. B 106,
8326 ( 2002); J. Phys. Chem. B 107, 10226
(2003); J. Phys. Chem. B 107, 10234 (2003).

26 P. Resibois, M. De Leener, Phys. Rev. 152,
305 (1966); Phys. Rev. 152, 318 (1969).

27 K. Kawasaki, Ann. Phys. 61, 1 (1970).
28 We follow the proof of the second

fluctuation dissipation theorem given
by H. Mori in Ref. [22].

29 The use of the word Markoffian stems
from the ideas associated with Markov
process or chains [A. A. Markov, Izv.
Akad. Nauk St. Petersburg 6, 61 (1907)].
These processes, roughly, correspond to
sequences where the next step depends

only on the previous step. In our context
of the generalized Langevin equation the
Markoffian approximation suggests that
the memory function on a long enough
time scale has no memory. We can replace
K(d)(z) with its z = 0 limit.

30 The statistics governing the higher-
order correlation functions are generally
unknown. This point is discussed further
in Chapter 9.

31 J. G. Kirkwood, J. Chem. Phys. 14, 180
(1946).

32 See p. 370 in ESM.

33 The nonlinear processes that lead
to the breakdown of conventional
hydrodynamics are discussed in
Chapter 9.

34 See Chapter 6 in ESM.

5.12
Problems for Chapter 5

Problem 5.1: Extend the calculation for the Green–Kubo relation given by Eq.
(49) to the quantum regime.
Problem 5.2: Show that the time-correlation function:

CM(x − y, t − t′) = 〈M(x, t)M(y, t′)〉

with M(x, t), defined by Eq. (2), is proportional to the van Hove self-correlation
function.
Problem 5.3: Calculate the effect of the Liouville operator L acting on M(R)
in the example of the Heisenberg model. Use the usual spin commutation
relations to evaluate:

LMα(R) =
1
h̄
[H, Mα(R)] .

Problem 5.4: Consider a classical one-dimensional anharmonic oscillator des-
cribed by the Hamiltonian:

H =
p2

2M
+

κ
2

x2 +
u
4

x4 ,

where M, κ and u are all positive. This system is in thermal equilibrium at
temperature T.

Using the memory-function formalism and choosing x and p as your slow
variables, compute the memory function explicitly in a perturbation theory
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expansion in the small parameter u. Keep terms up to but not including terms
of O(u2). Using these results, compute the shift in the resonant frequency from
ω2

0 = κ/M to:

ω2
R = ω2

0[1 + Au +O(u2)] .

Determine the coefficient A.
Problem 5.5: Consider the same system as in Problem 5.4. Compute the dy-
namic part of the memory function to second order in the quartic coupling
u.
Problem 5.6: Starting with the generalized Langevin equation, Eq. (137), show
that:

ψi(t) = ∑
k,�

Cik(t)S−1
k� ψ� + ∑

k�

∫ t

0
ds Cik(t − s)S−1

k� f�(s) .

Problem 5.7: Starting with the kinetic equation for the uncoupled harmonic
oscillator example:

zCαβ(z) + ∑
γ

iεαγ

Mγ
Cγ,β(z) = δαβ MαkBT ,

solve for the complex correlation function Cαβ(z).
Take the inverse Laplace transform to obtain the time-correlation functions

given in this chapter.
Problem 5.8: Show for general A and B, using the properties of the Liouville
operator and equilibrium averages, that:

〈ALB〉 = −〈(LA)B〉 .

This follows essentially from the time-translational invariance of the equilibri-
um distribution function.
Problem 5.9: Given an initial spin disturbance:

M(x, 0) = M0e−
1
2 (x/�)2

,

find the spin configuration at time t. Assume the system is dynamically con-
trolled by Eq. (20).
Problem 5.10: Evaluate the equal-time current–current correlation function
〈Ji

α(x)J j
β(y)〉 for the Heisenberg model in the high-temperature limit.

Problem 5.11: Show that the interaction part of the two-particle Liouville ope-
rator can be written in the form given by Eq. (100).
Problem 5.12: Show that the classical fluctuation function satisfies the sym-
metry condition:

CAB(z) = −CBA(−z) .
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Problem 5.13: Show that:

Γ(d)
ij (z) = ∑

�

K(d)
i� (z)S�j

satisfies the symmetry relation:

Γ(d)
ij (z) = −Γ(d)

ji (−z) .

Problem 5.14: Show that the integral:

Γ̄(τp) =
∫ τp

0
dtγ(t) ,

where the force–force correlation function γ(t) is given by Eq. (251), shows a
plateau as a function of τp.
Problem 5.15: Do the wavenumber integral:

D2 =
2
3

J2a4
∫ d3(ka)

(2π)3
S̃2(k)
S̃(0)

with the choice for the static structure factor:

S̃(k) =
h̄2

r + c(ka)2 .

Problem 5.16: Show that D0 = a2 Jh̄ has dimensions of a diffusion coefficient.
Problem 5.17: We can define a relaxation time for the spin-density current
given by Eq. (277). Use the Green–Kubo formula, Eq. (275), and the necessary
results from equilibrium mechanics to show that τJ(0) = Dm

kT .
Problem 5.18: Show that the structure factor at zero wavenumber, S(0) =
〈|M(0)|2〉, is related to S̃(0), defined by Eq. (312), by S(0) = nS̃(0).
Problem 5.19: If our convention for taking Laplace transforms is given by:

Lz[F(t)] = −i
∫ ∞

0
dt eiztF(t) ,

show that:

Lz[
∫ t

0
dsA(t − s)B(s)] = iLz[A(t)]Lz[B(t)] .

Problem 5.20: Prove the identity:

Γ(s)
αβ = −〈ψβLψα〉 = iβ−1〈{ψα, ψβ}〉 ,

where spin variables ψα satisfy the Poisson bracket structure:

{A, B} = ∑
R

∑
αβγ

εαβγ
∂A

∂ψα(R)
∂B

∂ψβ(R)
ψγ(R) .
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6
Hydrodynamic Spectrum of Normal Fluids

6.1
Introduction

In this chapter we discuss the hydrodynamic spectrum of simple normal fluids
near equilibrium. Thus we consider the dynamics of fluid systems like argon.
This involves application of the general approach developed in the previous
chapter to a fairly complicated system. The real complication, though, is the
thermodynamic interrelationships among the slow variables. The first step in
the program is to select the set of slow variables.

6.2
Selection of Slow Variables

The case of a normal fluid is algebraically complicated because one has five
slow variables corresponding to the five conserved quantities in the problem:

ψ̃α(x, t) = {n(x, t), gi(x, t), ε(x, t)} (1)

where n(x, t) is the number density, g(x, t) is the momentum density, and
ε(x, t) is the energy density. Classically, we can write:

n(x, t) =
N

∑
i=1

δ(x − ri) (2)

g(x, t) =
N

∑
i=1

piδ(x − ri) (3)

ε(x, t) =
N

∑
i=1

[
p2

i
2m

+
1
2

N

∑
j=1

V(ri − rj)

]
δ(x − ri) (4)

where ri and pi are the position and momentum or the ith particle. Each of
these densities satisfies a continuity equation:

∂n
∂t

= iLn = −∇ · g
m

(5)

Nonequilibrium Statistical Mechanics
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∂gi
∂t

= iLgi = −
3

∑
j=1

∇jσij (6)

∂ε
∂t

= iLε = −∇ · Jε , (7)

where L is the Liouville operator for this system, σij is the stress tensor and Jε
is the energy density current. Explicit expressions for σij and Jε were given in
the previous chapter.

The next step is to make sure that the average of the slow variables is zero.
Since 〈n〉 = n0 and 〈ε〉 = ε0, where n0 and ε0 are the ambient particle and
energy densities, we must use δn and δε when constructing our slow varia-
bles. When there is no confusion, we will forgo the subscript 0 on ambient
quantities.

It will be convenient to introduce, instead of the energy density, ε(x, t), the
entropy or heat density:

q(x, t) = ε(x, t)− (ε0 + p0)
n0

n(x, t) (8)

where p0 is the equilibrium pressure. We briefly encountered q in Chapter 2 as
the field that couples to temperature fluctuations. The heat density is conser-
ved since ε(x, t) and n(x, t) are separately conserved. The physical interpreta-
tion of q follows from the thermodynamic identity:

TdS = dE + pdV (9)

at constant particle number. If we change from E and V to the intensive varia-
bles ε = E/V and n = N/V we have:

−dV
V =

dn
n

(10)

and:

dE = d(εV) = εdV + Vdε . (11)

Putting this result in Eq. (9) we have:

TdS = Vdε + (ε + p)(−V)
dn
n

(12)

and dividing by the volume:

T
dS
V = dε − (ε + p)

n
dn = dq . (13)
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Therefore, up to a factor of the ambient temperature, q(x, t) can be identified
with the fluctuating entropy density.

Our set of slow variables with zero average is given by:

ψα(x, t) = {δn(x, t), gi(x, t), δq(x, t)} . (14)

The merits of this choice will become clear when we look below at the static
part of the memory function.

6.3
Static Structure Factor

The second task in working out the hydrodynamic spectrum is to evaluate the
set of equilibrium averages:

Sαβ(x − x′) = 〈ψα(x)ψβ(x′)〉 (15)

in the long-wavelength limit. In this limit we can connect these averages to
thermodynamic derivatives. The reason is that in this limit these correlation
functions correspond to the fluctuations in the extensive variables in the GCE.
We can easily see how this comes about. We have, after taking the spatial
Fourier transform and the long wavelength limit,

Sαβ(0) = lim
k→0

Sαβ(k) =
1
V 〈δΨαδΨβ〉 , (16)

where:

Ψα =
∫

d3x ψα(x) (17)

is the total number particles N, the total momentum, or Q = TS depending
on the index α.

Let us construct the set of correlation functions Sαβ(0) in terms of thermo-
dynamic derivatives. The density–density correlation function follows from
Eq. (16) as:

Snn(0) =
1
V 〈(δN)2〉 . (18)

In the GCE we have:

Snn(0) =
1
V

∂

∂α
Tr e−βH+αN N

ZG
, (19)

where the grand partition function is given by:

ZG = Tr e−βH+αN (20)
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and α = βμ. Equation (19) can then be written as:

Snn(0) =
1
V

∂

∂α
〈N〉 =

(
∂n
∂α

)
β,V

=
(

∂n
∂p

)
β,V

(
∂p
∂α

)
β,V

. (21)

However, in the GCE the pressure is related to the partition function by:

βpV = lnZG , (22)

so when we take the derivative with respect to α we obtain the simple result:(
∂p
∂α

)
β,V

βV = 〈N〉 (23)

or, (
∂p
∂α

)
β,V

= nβ−1 . (24)

Returning to the correlation function of interest we have:

Snn(0) = nβ−1
(

∂n
∂p

)
β,V

= β−1n2κT , (25)

where κT is the isothermal compressibility. This result tells us that the weight
under the frequency spectrum for the density–density correlation function (as
in light scattering) at small wavenumbers is proportional to the isothermal
compressibility: ∫ dω

2π
Cnn(0, ω) = nkT

(
∂n
∂p

)
β,V

. (26)

This result is due to Einstein [1] who was inspired by the suggestions by Smo-
luchowski [2] that fluctuations could scatter light. These ideas were extended
to nonzero wavenumbers by Ornstein and Zernike [3]. All of these results
suggest large scattering near a critical point where (∂n/∂p)T is large. This
leads to an explanation of critical opalescence discovered by Andrews [4] in
the 1860s.

The correlation function between the density and the heat density is given
by:

Sqn(0) = Snq(0) =
1
V 〈δNδQ〉 (27)

where:

Q =
∫

d3x q(x) . (28)
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The evaluation of Sqn(0) and:

Sqq(0) =
1
V 〈(δQ)2〉 (29)

are simplified by noting the following development. Consider the average of
some variable A in the GCE:

Ā = 〈A〉 =
Tre−β(H−μN)A
Tre−β(H−μN) . (30)

If we look at the changes in Ā as we vary T and μ, holding the volume V fixed,
we have:

δĀ =
〈[

(H − μN)
δT
kT2 + N

δμ
kT

]
δA
〉

, (31)

where, inside the average, δA = A − Ā. From the Gibbs–Duhem relation [5]
we have:

δμ =
δp
n

− S
N

δT (32)

and Eq. (31) takes the form:

δĀ =

〈[
(H − μN)

δT
kT2 + N

( δp
n − S

N δT)
kT

]
δA

〉

= 〈NδA〉 δp
nkT

+ 〈(H − μN − TS)δA〉 δT
kT2 . (33)

From the Euler relation [6] we have:

μ +
TS
N

=
E + pV

N
=

ε + p
n

(34)

and we can identify:

H − μN − TS = H − (ε + p)
n

N = Q (35)

and Eq. (33) takes the form:

δĀ = 〈δNδA〉 δp
nkT

+ 〈δQδA〉 δT
kT2 . (36)

This equation was quoted in Chapter 2 in the form:

δĀ = χnA
δp
n

+ χqA
δT
T

(37)
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where the χ’s are the appropriate static susceptibilities. This result holds in the
quantum regime if the variable A is conserved.

Holding the pressure constant in Eq. (36) we have:

〈δQδA〉 = kT2
(

∂Ā
∂T

)
p,V

. (38)

In treating Sqn(0) we need:

〈δQδN〉 = kT2
(

∂N
∂T

)
p,V

. (39)

However: (
∂N
∂T

)
p,V

=
∂(N, p,V)
∂(T, p, N)

∂(T, p, N)
∂(T, p,V)

= −
(

∂V
∂T

)
N,p

n

= −VαTn , (40)

where αT is the isothermal expansion coefficient. Putting Eq. (40) back into Eq.
(39) gives:

〈δQδN〉 = −kT2nαTV (41)

and:

Sqn(0) = Snq(0) = −kT2nαT . (42)

Next, using Eqs. (29), (38) and (35), we can write:

Sqq(0) =
kT2

V

[(
∂E
∂T

)
p,V

−
(

(ε + p)
n

)(
∂N
∂T

)
p,V

]
. (43)

Using the first law of thermodynamics,

TdS = dE − μdN + pdV , (44)

to express: (
∂E
∂T

)
p,V

= T
(

∂S
∂T

)
p,V

+ μ
(

∂N
∂T

)
p,V

. (45)

Then:

Sqq(0) =
kT2

V

[
T
(

∂S
∂T

)
p,V

+
(

μ − (ε + p)
n

)(
∂N
∂T

)
p,V

]
. (46)
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Using Eq. (40) we can evaluate:(
∂S
∂T

)
p,V

=
∂(S,V , p)
∂(T, N, p)

∂(T, N, p)
∂(T,V , p)

=

[(
∂S
∂T

)
N,p

1
n
−
(

∂V
∂T

)
N,p

(
∂S
∂N

)
T,p

]
n

=
Cp

T
− αTV

S
N

n . (47)

Here we have used the thermodynamic identities (see Problem 6.1):(
∂S
∂N

)
T,p

=
S
N

(48)

and:

T
(

∂S
∂T

)
N,p

= Cp , (49)

where Cp is the specific heat at constant pressure. Equation (46) is given then
by:

Sqq(0) =
kT2

V

[
T

Cp

T
− αTV

S
N

n −
(

μ − (ε + p)
n

)
αTVn

(
∂N
∂T

)
p,V

]
. (50)

Using Euler’s equation,

TS + μN − E − pV = 0 (51)

and Eq. (40), we see that the coefficient multiplying
(

∂N
∂T

)
p,V

vanishes and:

Sqq(0) = kT2 Cp

V . (52)

The equal-time correlation functions between the momentum density and
the other slow variables vanishes due to symmetry:

Sgi ,n(0) = Sgi,q(0) = 0 . (53)

The equal-time correlation functions for the momentum density satisfy:

Sgi gj(0) = δijkBTmn , (54)

which follows from the equipartition theorem.
The matrix Sαβ(0) is summarized in Table 6.1.
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Table 6.1 Matrix Sαβ(0)/n0kBT; note that n0κT = (∂n/∂p)|T, and α = −(∂n/∂T)p

n q gj

n n0κT −Tα 0
q −Tα TCp/N 0
gi 0 0 mδij

6.4
Static Part of the Memory Function

Next, we must work out the static part of the memory function for the fluid
system. We have the relationship between the static part of the memory func-
tion K(s) and the matrix Γ(s):

Γ(s)
αβ (x − y) = ∑

γ

∫
d3w K(s)

αγ (x − w)Sγβ(w − y)

= −〈ψβ(y)Lψα(x)〉 . (55)

We must first work out the matrix Γ(s)
αβ . A key observation in carrying out this

analysis is that Lψα has a different signature under time reversal than ψα. This
means (see Problem 6.3) that Γ(s)

αβ is zero unless ψα and ψβ have different si-
gnatures under time reversal. Thus the only nonzero matrix elements between
the hydrodynamic fields are given by Γ(s)

ngi , Γ(s)
gin, Γ(s)

qgi and Γ(s)
giq. These first two

matrix elements can be evaluated using the theorem proved in Section 5.5. We
have,

Γ(s)
ngi (x − y) = iβ−1〈{n(x), gi(y)}〉

= iβ−1〈
(
−∇i

x [δ(x − y)n]
)
〉 , (56)

where the Poisson bracket between the density and momentum density is
evaluated in Appendix B. We then have:

Γ(s)
ngi(x − y) = −iβ−1n0∇i

xδ(x − y) . (57)

Taking the Fourier transform we have the simple result:

Γ(s)
ngi(k) = kiβ−1n0 . (58)

The transpose satisfies:

Γ(s)
gin(x − x′) = −〈n(x′)Lgi(x)〉 = 〈

[
Ln(x′)

]
gi(x)〉 = −Γ(s)

ngi(x′ − x) . (59)

On Fourier transformation we obtain:

Γ(s)
gin(k) = kiβ−1n0 . (60)
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The other matrix elements we need to evaluate are Γ(s)
gi,q and Γ(s)

q,gi . We will

first evaluate Γ(s)
giε and come back to obtain:

Γ(s)
giq = Γ(s)

giε −
(ε + p)

n
Γ(s)

gin . (61)

It is more difficult to evaluate Γ(s)
giε than it is Γ(s)

gin. The Poisson brackets between
gi and ε can not be simply expressed in terms of hydrodynamic fields so we
take a different approach. We remember from the continuity equation for the
momentum density that Lgi is proportional to the gradient of the stress tensor:

Lgi(x) = i ∑
j
∇jσij(x) (62)

and we can write:

Γgiε(x − x′) = −〈δε(x′)Lgi(x)〉

= −〈δε(x′)i
3

∑
j=1

∇jσij(x)〉

= −i
3

∑
j=1

∇j〈δε(x′)σij(x)〉 . (63)

Taking the Fourier transform we obtain:

Γgiε(k) =
3

∑
j=1

kj〈δε(−k)σij(k)〉 . (64)

We are interested in the small k limit where:

lim
k→0

〈δε(−k)σij(k)〉 =
1
V 〈δEσij(0)〉

=
∫ d3x

V 〈δEσij(x)〉 . (65)

Note, however, that we have the derivative relation in the GCE:

∂

∂β
〈σij(x)〉|α=βμ = −〈δEσij(x)〉 , (66)

so:

lim
k→0

〈δε(−k)σij(k)〉 = − ∂

∂β
〈σij(x)〉|α=βμ . (67)

The reason it is convenient to introduce the stress tensor in the way that we
have is because the equilibrium average of the stress tensor is, by definition,
the pressure [7],

pδij = 〈σij(x)〉 . (68)
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Then:

lim
k→0

〈δε(−k)σij(k)〉 = −δij

(
∂p
∂β

)
α

(69)

and:

Γgiε(k) =
3

∑
j=1

kj
(
−δij
) (∂p

∂β

)
α

= −ki

(
∂p
∂β

)
α

. (70)

In order to further evaluate this quantity we need to do a little thermodyna-
mics. Starting with the Gibbs–Duhem relation:

SdT = Vdp − Ndμ . (71)

Since μ = αkBT we have:

dμ = kBTdα + αkBdT (72)

and the Gibbs–Duhem relation can be written as:

(S − αkBN) dT = Vdp − kBTNdα . (73)

We obtain immediately that:(
∂p
∂T

)
α

=
1
V

(
S − μN

T

)

=
1

TV (TS − μN) =
1

TV (E + pV)

=
ε + p

T
. (74)

Taking the derivative with respect to β rather than T gives:(
∂p
∂β

)
α

= −β−1 (ε + p) . (75)

Thus we have the final result:

Γ(s)
gi ,ε(k) = kiβ−1(ε + p) +O(k3) . (76)

In a hydrodynamic theory we keep terms in the memory functions up to and
including O(k2).

Our final goal in this section is to determine the matrix element:

Γ(s)
gi ,q(k) = Γ(s)

gi,ε(k)−
(

ε + p
n

)
Γ(s)

gi,n(k) . (77)
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Inserting our results for Γ(s)
gi,ε and Γ(s)

gi,n we obtain:

Γ(s)
gi,q(k) = kiβ−1(ε + p)− (ε + p)

n
kiβ−1n +O(k3)

= O(k3) . (78)

We see here why we choose the heat mode as one of our slow variables. We
have the result then, to O(k3), that all of the Γ(s) vanish except Γ(s)

n,gα(q). The
various matrix elements are summarized in Table 6.2.

Table 6.2 Matrix Γ(s)
αβ /n0kBT

n q gj

n 0 0 kj
q 0 0 0
gi ki 0 0

Let us now construct K(s)
αβ using these simple results. We must invert the

matrix equation:

Γ(s)
αβ (k) = ∑

γ
K(s)

αγ (k)Sγβ(k) . (79)

This inversion requires constructing the matrix inverse:

∑
γ

Sαγ(k)(S−1)γβ(k) = δαβ . (80)

The inverse matrix can be constructed using Cramer’s rule and the evaluation
of determinants is facilitated by the fact that the momentum index does not
couple to the other two variables. We then obtain:

(S−1)nn =
Sqq

dS
(81)

(S−1)nq = (S−1)qn = −
Snq

dS
(82)

(S−1)qq =
Snn

dS
(83)

(S−1)gigj = δij
1

mnkBT
, (84)
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where the subdeterminant:

dS = SnnSqq − SnqSqn (85)

plays an important role in the development. After inserting the explicit ther-
modynamic expressions for the Sαβ into dS we find, after using one of the
standard thermodynamic relations connecting quantities in the Helmholtz en-
semble to those in the Gibbs ensemble, that (see Problem 6.4):

dS = SnnnkBT2CV/N , (86)

where CV is the specific heat at constant volume and shows up as a natural
second derivative in the Helmholtz ensemble. Our matrix inverse elements
can then be manipulated into their most useful form. Consider first:

(S−1)nn =
nkBT2Cp/N

SnnnkBT2CV /N

=
Cp

CV

1
nkBT

(
∂p
∂n

)
T

=
1

nkBT
mc2 , (87)

where:

mc2 =
Cp

CV

(
∂p
∂n

)
T

=
(

∂p
∂n

)
S

(88)

and c is the adiabatic speed of sound (see Problem 6.5). The matrix element
(S−1)qq can be written as:

(S−1)qq =
N

nkBT2CV
. (89)

The matrix element :

(S−1)nq =
SnqN

SnnnkBT2CV
(90)

can be put in a more convenient form if we use the result:

SnqSqn

Snn
= nkBT2 (Cp − CV

)
/N , (91)

which follows from Eqs. (52), (85) and (86). We have then:

(S−1)nq = − 1
Snq

(
Cp − CV

CV

)
. (92)
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The static part of the memory function is given by:

K(s)
αβ (k) = ∑

γ
Γ(s)

αγ (k)
(

S−1
)

γβ
(k) . (93)

The left index α is nonzero only for α = n or gi. Take the case α = n first.
Then:

K(s)
nβ (k) = ∑

γ
Γ(s)

nγ (k)
(

S−1
)

γβ
(k)

= Γ(s)
ngi(k)

(
S−1
)

giβ
(k) , (94)

using the fact that all Γ(s) vanish except those coupling n and gi. Since
(
S−1)

giβ
(k) is diagonal we have:

K(s)
nβ (k) = Γ(s)

ngi (k)δβgi

(
S−1
)

gigi
(k)

= δβgi
kinkBT

1
mnkBT

= δβgi

ki
m

. (95)

The other nonzero matrix element is given by:

K(s)
giβ

(k) = ∑
γ

Γ(s)
giγ(k)

(
S−1
)

γβ
(k)

= Γ(s)
gin(k)

(
S−1
)

nβ
(k)

= kinkBT
(

S−1
)

nβ
(k) . (96)

This leads to the two contributions:

K(s)
gin(k) = kinkBT

mc2

kBTn
= kimc2 (97)

and:

K(s)
giq(k) = kinkBT

(
CV − Cp

CV

)
1

Snq
. (98)

This completes our determination of the static part of the memory function in
the long wavelength limit. The results are summarized in Table 6.3.
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Table 6.3 Matrix K(s)
αβ (k) for small wavenumbers

n q gj

n 0 0 kj/m
q 0 0 0

gi mc2ki
(Cp − CV)

TαCV
ki 0

6.5
Spectrum of Fluctuations with No Damping

We have shown that K(s) ≈ O(k) with corrections, by symmetry, which are
of O(k3). From our analysis of spin diffusion we would guess, and we shall
show, that K(d) ≈ O(k2). Let us first drop the damping terms and look at the
correlation functions at lowest nontrivial order in k.

Table 6.4 Small wavenumber limit of matrix (z − K(s))αβ

n q gL

n z 0 −k/m
q 0 z 0
gL −K(s)

gn −K(s)
gq z

In this limit, the kinetic equation determining the correlation functions is
given by:

∑
γ

(
zδαγ − K(s)

αγ (k)
)

Cγβ(k, z) = Sαβ(k) . (99)

We are interested in the pole structure of Cαβ(z), which is, of course, associated
with zeros of the determinant of the matrix (z − K(s))αβ given in Table 6.4:

D = det
(

zδαβ − K(s)
αβ

)
= z

(
z2 − ki

m
K(s)

gin

)
= z(z2 − c2k2) . (100)

We see immediately that we have a three-pole structure. D vanishes for z=0
and z = ±ck. Thus we expect very sharp peaks in the correlation functions at
these positions of frequency for fixed wavenumber. In fact for small enough
wavenumbers where the damping is arbitrarily small we have δ-function peaks.

We can compute the residues or weights for the poles by first noting that
there is no coupling at this order in k between the heat mode and the other
modes. Thus if we set α = q in Eq. (99) we find the very simple result:

Cqβ(k, z) =
Sqβ

z
, (101)



6.5 Spectrum of Fluctuations with No Damping 189

the Fourier transform is given by:

Cqβ(k, ω) = 2πδ(ω)Sqβ (102)

and there is a single heat mode centered at ω = 0 for k → 0.
From Eq. (99) we have the set of coupled equations determining the density–

density correlation function:

zCnn − K(s)
ngi Cgin = Snn (103)

zCgin − K(s)
ginCnn = K(s)

giq
Sqn

z
, (104)

where we have used Eq. (101) on the right-hand side of Eq. (104). Solving this
linear set of equations for Cnn gives:

Cnn =
1

zD1

[
z2Snn + K(s)

ngi K
(s)
giqSqn

]
, (105)

where D1 is the determinant:

D1 = z2 − K(s)
ngi K

(s)
gin = z2 − c2k2 . (106)

Putting the various thermodynamic expressions into Eq. (105) gives:

Cnn(k, z) =
1

z (z2 − c2k2)

[
z2Snn +

k2

m
nkBT

(
CV − Cp

CV

)]
. (107)

We can isolated the residues associated with the three poles by using the
identities:

z
z2 − c2k2 =

1
2

[
1

z + ck
+

1
z − ck

]
(108)

and:

c2k2

z2 − c2k2 = −1 +
z2

z2 − c2k2 . (109)

One has then, after substituting for Snn and extracting an overall factor of
nkBT,

Cnn(k, z) = β−1n

{[
1
2

[
1

z + ck
+

1
z − ck

] [(
∂n
∂p

)
T
−

(Cp − CV)/CV

mc2

]]

+
1
z

(Cp − CV)
mCV

1
c2

}
. (110)
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The coefficients of the poles can be put into a much neater forms. First the
coefficient of the sound poles can be written as:(

∂n
∂p

)
T
−

(Cp − CV)/CV

mc2 =
(

∂n
∂p

)
T
−

(Cp − CV)
CV

CV
Cp

(
∂n
∂p

)
T

=
(

∂n
∂p

)
T

[1 − 1 +
CV
Cp

] =
(

∂n
∂p

)
T

CV
Cp

, (111)

where we have used Eq. (88) in the first line. The coefficient of the 1/z term
has the weight:

(Cp − CV)
mCV

1
c2 =

Cp − CV

CV

(
CV
Cp

)(
∂n
∂p

)
T

.

=
(

1 − CV
Cp

)(
∂n
∂p

)
T

. (112)

Putting the results from Eqs. (111) and (112) back into Eq. (110) gives:

Cnn(k, z) = β−1n
(

∂n
∂p

)
T

[(
CV
Cp

)
1
2

[
1

z + ck
+

1
z − ck

]

+
(

1 − CV
Cp

)
1
z

]
. (113)

The dynamic structure factor, which is related to the imaginary part of Cnn(k, z)
with z = ω + iη, is given by:

Cnn(k, ω) = β−1n
(

∂n
∂p

)
T

2π

[
1
2

CV
Cp

[δ(ω + ck) + δ(ω − ck)]

+(1 − CV /Cp)δ(ω)

]
. (114)

We have two sound poles and a heat mode. The weights are governed by the
specific heat ratios. The relative weight of the peaks:

CV/Cp

1 − CV /Cp
(115)

is known as the Landau–Placzek ratio [8]. Notice that the zeroth-order sum
rule: ∫ dω

2π
Cnn(k, ω) = β−1n

(
∂n
∂p

)
T

[
CV
Cp

+ 1 − CV
Cp

]

= β−1n
(

∂n
∂p

)
T
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= Snn(k → 0) (116)

is properly satisfied.
The decomposition of density fluctuations into a sum of three peaks is a

famous result that merits further comment. The central diffusive Rayleigh
peak is centered at ω = 0. The traveling wave Brillouin doublet [9] centered at
ω = ±ck is associated with scattering from sound waves. Notice that it is the
physically correct adiabatic speed of sound that enters. Historically, Newton
asserted that the speed of sound is given by the isothermal compressibili-
ty. This result is experimentally too low by about 20%. Laplace and Poisson
eventually discovered [10] the correct result.

6.6
Dynamic Part of the Memory Function

It is then straightforward to construct all of the other correlation functions
at this level. Let us turn instead to the inclusion of the damping terms and,
equivalently, the evaluation of the dynamical part of the memory function in
the hydrodynamical limit.

At this stage we must be more careful about the vector nature of the problem
entering through the momentum density. We derived previously the result:

Γ(s)
gin = kiβ−1n (117)

and all other Γ(s)
αβ (k) are zero for small k. Notice that this matrix element

vanishes unless g is in the same direction as k. That is, we can break g(k, t)
up into a longitudinal part:

gL(k, t) = k̂ · g(k, t) (118)

and a transverse part gT(k, t), where:

k · gT(k, t) = 0 . (119)

Only the longitudinal part of g couples to the density,

Γ(s)
gT ,n(k) = 0 . (120)

This makes sense if we remember the continuity equation can be written:

∂n
∂t

= −ik · g(k, t) . (121)

Thus the transverse part of the momentum current decouples from the longi-
tudinal part. This is why we only had a 3 × 3 matrix instead of a 5 × 5 matrix
in our analysis above.
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6.7
Transverse Modes

Let us analyze the transverse current fluctuations first. In this case, the kinetic
equation becomes:

∑
�

[zδi� − K(d)
i� (k, z)]C�j(k, z) = Sij(k) , (122)

where:

Cij(k, z) = 〈gj(−k)R(z)gi(k)〉 = δijCt(k, z) (123)

and i, j and � label the two directions transverse to k. If we pick k in the z-
direction, then i, j and � can be either x or y. The corresponding equal-time
correlation functions are given by

Sij(k) = δijβ−1mn . (124)

The dynamic part of the memory function is given by:

∑
k

K(d)
ik (k, z)Skj = −〈Lgj(−k)R(z)Lgi(k)〉

+ ∑
k�

〈Lgj(−k)R(z)gk(k)〉C−1
k� (k, z)〈g�(−k)R(z)Lgi(k)〉 . (125)

Following steps similar to those used in the case of spin diffusion we find,
after remembering:

iLgi(x) = −∑
j
∇j

xσij(x) (126)

and:

iLgi(k) = −∑
j

ikjσij(k) , (127)

that in the long-wavelength limit the dynamic part of the memory function is
given by:

K(d)
ij (k, z)β−1mn = ∑

m,�
kmk�〈σj�(−k)R(z)σim(k)〉+ O(k4)

≡ −i ∑
m,�

kmk�Γim,j� , (128)

where, in the small k and z limit:

Γim,j� = lim
z→0

lim
k→0

i〈σj�(−k)R(z)σim(k)〉
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=
1
V

∫ +∞

0
dt
∫

d3x d3x′ 〈σj�(x′)σim(x, t)〉 . (129)

For an isotropic system:

Γim,j� = Γ1δimδj� + δijδm�Γ2 + δi�δjmΓ3 . (130)

Since the stress tensor σ can be constructed to be symmetric, we require Γ2 =
Γ3. In the case of interest here we have the requirements that m and � are in
the z-direction while j and i are transverse. Therefore in this case,we pick out
only the component:

Γim,j� = Γ2δijδm� (131)

and it is given explicitly by:

Γ2 =
∫ +∞

0
dt
∫ d3x d3x′

V 〈σzx(x ′)σzx(x, t)〉

=
1
V

∫ +∞

0
dt 〈σzx

T σzx
T (t)〉 (132)

and:

K(d)
ij (k, z)β−1mn = δij(−i)Γ2k2 . (133)

In this case the kinetic equation, Eq. (122) is diagonal and the transverse cur-
rent correlation function is given by:

(z + iΓ2k2β/mn)Ct(k, z) = β−1mn , (134)

and the appropriate transport coefficient is the shear viscosity:

Γ2β ≡ η (135)

where:

η =
β
V

∫ +∞

0
dt〈σzx

T σzx
T (t) 〉 (136)

is the corresponding Green–Kubo formula.
The complex transverse current correlation function is given by:

Ct(k, z) =
β−1ρ

z + iηk2/ρ
(137)

where ρ = mn and the fluctuation spectrum is given by:

Ct(k, ω) = 2β−1 ηk2

ω2 + (ηk2/ρ)2 . (138)
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This transverse diffusive spectrum is characteristic of fluids since there are no
transverse shear traveling modes. This contrasts with solids where one finds
the transverse traveling waves (phonons) associated with broken translational
symmetry.

6.8
Longitudinal Modes

We now turn to the damping of the longitudinal modes. This requires treating
the dynamic part of the memory function:

∑
γ

K(d)
αγ (k, z)Sγβ = Γ(d)

αβ (k, z) = −〈
[

Lψβ(−k)
]

R(z)Lψα(k)〉

+ ∑
γ,ν
〈
[

Lψβ(−k)
]

R(z)ψμ(k)〉C−1
μν (k, z)〈ψν(−k)R(z)Lψα(k)〉, (139)

where the indices refer to the three longitudinal variables n, gL = k̂ · g and q.
Note first that:

Γ(d)
nγ (k, z) = Γ(d)

γn (k, z) = 0 (140)

for any γ since Ln = −i∇ · g and linear terms in Lψα do not contribute to Γ(d).
Thus Γ(d) reduces to a 2 × 2 matrix. Remembering the conservation laws,

iLgα(k) = −∑
β

i kβ σαβ(k) (141)

iLq(k) = −ik · Jq(k) , (142)

which introduce the stress tensor and heat current, we are led to the discussion
surrounding the plateau-value problem and the small k and z limits. We find:

lim
z→0

lim
k→0

1
k2 Γ(d)

gzgz(k, z) = −iγ (143)

with:

γ =
∫ +∞

0

dt
V 〈σzz

T σzz
T (t) 〉 (144)

lim
z→0

lim
k→0

1
k2 Γ(d)

gzq(k, z) = −iγzz,z (145)

with:

γzz,z =
∫ +∞

0

dt
V 〈Jq

z σzz
T (t) 〉 , (146)
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and:

lim
z→0

lim
k→0

1
k2 Γ(d)

qq (k, z) = −iγq (147)

γq =
∫ +∞

0

dt
V 〈Jq

z Jq
z (t)〉 (148)

=
1

3V

∫ +∞

0
dt〈Jq · Jq(t)〉 . (149)

Let us consider the cross term proportional to γzz,z. It is left to Problem 6.6 to
show under parity inversion:

qT → +qT (150)

Jq → −Jq (151)

gT → −gT (152)

then:

σαμ
T → +σαμ

T . (153)

Using these results in Eq. (146) we can show:

γzz,z → −γzz,z = 0 (154)

and:

Γ(d)
gzq = Γ(d)

qgz = 0 , (155)

including terms of O(k2). Thus the damping of the heat mode decouples from
the sound mode.

The matrix Γ(d) can be written in the form:

Γ(d)
αβ (k, z) = −ik2γαδαβ , (156)

where γn = 0, γq = γq, and γgL
= γ, is summarized in Table 6.5.

Table 6.5 Matrix Γ(d)
αβ (k, z) in the small k and z limits

n q gL

n 0 0 0
q 0 −ik2γq 0
gL 0 0 −ik2γ
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We must then invert:

Γ(d)
αβ (k, z) = ∑

γ
K(d)

αγ Sγβ = −ik2γαδαβ (157)

to obtain the hydrodynamic limit for the dynamic part of the memory functi-
on:

K(d)
αβ (k, z) = ∑

γ
−ik2γαδαγ(S−1)γβ

= −ik2γα(S−1)αβ (158)

One can then easily work out the various nonzero matrix elements for K(d).
Clearly:

K(d)
nβ = 0 (159)

for all β. For α = gL,

K(d)
gLβ(k, z) = −ik2γδβgL(S−1)gLβ

= −ik2γδβgL

1
kBTmn

≡ −ik2 γ̃δβgL . (160)

For α = q, :

K(d)
qβ (k, z) = −ik2γq(S−1)qβ , (161)

which has only two nonzero elements.:

K(d)
qq = −ik2 γq

mnβ−1TCV
= −ik2γ̃q (162)

and:

K(d)
qn = −ik2γq

(
S−1
)

nq

= ik2 γq
(Cp − CV)

CV

1
Snq

. (163)

Then the dynamic part of the memory function is summarized in Table 6.6.

6.9
Fluctuation Spectrum Including Damping

We are now in a position to work out the hydrodynamic spectrum for the
longitudinal case where we include damping. In this case we must invert the
matrix:

zCαβ −∑
γ

(
K(s)

αγ + K(d)
αγ

)
Cγβ = Sαβ , (164)
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Table 6.6 Matrix K(d)
αβ (q, z) in the hydrodynamic regime

n q gL

n 0 0 0

q
ik2γq(Cp−CV)

CVSnq
−ik2γ̃q 0

gL 0 0 −ik2γ̃

where K(s) and K(d) are given in Tables 6.3 and 6.6. The determinant of the ma-
trix (z − K), summarized in Table 6.7, is easily worked out at the appropriate
order and is given by:

D(k, z) = (z + ik2 γ̃q)[z(z + ik2 γ̃)− c2k2]− k
m

K(s)
gz,qK(d)

qn . (165)

Since we have:

K(s)
gq K(d)

qn = −k
(

Cp − CV

CV

)
S−1

qn ik2 γq

TCV

Sqn

Snn

= −ik3
(

Cp − CV

CV

) γq

mTCV

1
Snn

, (166)

we can write:

D(k, z) = (z + ik2γ̃q)[z(z + ik2γ̃) − c2k2]

+ik4 (Cp − CV)
CV

γq

m2TCVSnn
. (167)

Table 6.7 Matrix (z − K)αβ

n q gβ

n z 0 −k/m
q −K(s)

qn z − K(d)
qq 0

gα −K(s)
gn −K(s)

gq z − K(d)
gg

The zeros of D(k, z) control the poles in the complex correlation functions.
So, if we look near the heat mode pole and write:

z = −iDTk2 +O(k3) , (168)

then Eq. (167) becomes:

D(k, iDTk2) = [−iDTk2 + ik2γ̃q][−iDTk2(−iDTk2 + ik2γ̃) − c2k2]

+ik4 (Cp − CV)
CV

γq

m2TCV Snn
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= −c2k2(−ik2)(DT − γ̃q) + ik4 (Cp − CV)γq

m2TC2
VSnn

, (169)

where we have kept terms of O(k4). The position of the pole corresponds to a
zero of D(k, iDTk2); this determines DT:

c2(DT − γ̃q) = −
(Cp − CV)γq

m2TC2
VSnn

or:

DT = γ̃q −
1

c2
(Cp − CV)

m2TC2
V

γq

Snn

=
γq

mnβ−1TCV
− CV

Cp
m (

∂n
∂p

)T
(Cp − CV)

m2TC2
V

γq

Snn

= γq

[
1

mnTβ−1TCV
−

(Cp − CV)
Cp

(
∂n
∂p

)
T

1
mTCVβ−1n

(
∂p
∂n

)
T

]

=
γq

mnTβ−1CV

[
1 −

(Cp − CV)
Cp

]

=
γq

mnTβ−1Cp
. (170)

The damping of the Rayleigh peak, corresponding to the heat mode, is given
by:

DT =
γq

mnTβ−1Cp
, (171)

where:

γq =
1

3V

∫ +∞

0
〈Jq

T · Jq
T(t)〉 . (172)

DT is related to the thermal conductivity by:

DT =
λ

mnCp
, (173)

So:

λ = mnCpDT =
γq

Tβ−1

λ =
1

3kBT2V

∫ +∞

0
dt〈Jq

T · Jq
T(t)〉 (174)



6.9 Fluctuation Spectrum Including Damping 199

is the usual Green–Kubo formula for the thermal conductivity.
The damping of the sound mode can be obtained by putting:

z = ± ck − i
2

k2Γ , (175)

in the determinant D(k, z) where the sound attenuation Γ is to be determined:

D(k,±ck − i
2

k2Γ) =
(
± ck − i

2
k2Γ + ik2γ̃q

)

×
[(

±ck − i
2

k2Γ
)

(±ck − i
2

k2Γ + ik2γ̃) − c2k2
]

+ik4 (Cp − CV)γq

m2TC2
VSnn

(176)

and we again work to O(k4). Looking first at the term:(
±ck − i

2
k2Γ
)

[±ck + ik2(γ̃ − Γ/2)]− c2k2

= c2k2 ± ick3(γ̃ − Γ/2) ∓ i
2

ck3Γ + O(k4) − c2k2

= ±ick3(γ̃− Γ/2 − Γ/2) (177)

so we can drop terms of O(k5) in Eq. (176) and obtain:

D(k,± ck − i
2

k2Γ) = ±ck(±ick3)(γ̃ − Γ)

+
ik4(Cp − CV)γq

m2TC2
VSnn

(178)

= ik4

[
c2(γ̃ − Γ) +

(Cp − CV)
m2TC2

V

γq

Snn

]
. (179)

The zeros of D(k,± ck − i
2 k2Γ) determine the sound attenuation coefficient:

Γ = γ̃ +
1
c2

(Cp − CV)
m2TC2

V

γq

Snn
. (180)

This expression can be reduced considerably by substituting for c2 (Eq. (88)),
Snn [Eq. (25)], γq [Eq. (171)] and γ̃q [Eq. (160)] with the results:

Γ =
βγ
mn

+
CV
Cp

m
(

∂n
∂p

)
T

(Cp − CV)
m2TC2

V

×
(

∂p
∂n

)
T

mn
kBTn

Tβ−1CpDT
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=
βγ
mn

+
(

Cp − CV

CV

)
DT . (181)

It is conventional to define the bulk viscosity ζ via:(
4
3

η + ζ
)

/mn =
βγ
mn

, (182)

and so we have the Green–Kubo formula:(
4
3

η + ζ
)

=
1

kBT

∫ +∞

0

dt
V 〈σzz

T σzz
T (t) 〉 . (183)

Thus we have characterized the pole structure for the longitudinal modes:
there is a diffusive heat mode at z = −iDTk2 and two damped traveling
modes at z = ±ck − ikΓ/2 where DT and Γ are identified with the basic
transport coefficients.

We must still determine the residues for the poles in each correlation functi-
on. This requires computing the numerator divided by the determinant D(k, z)
when inverting Eq. (164) for the correlation functions. We find for the density–
density fluctuation function:

Cnn(k, z) = β−1n
(

∂n
∂p

)
T

×
[CV

Cp

(z + ik2(Γ + DT(Cp/CV − 1))
z2 − c2k2 + izk2Γ

+(1 − CV
Cp

)
1

z + ik2DT

]
(184)

Cqq(k, z) =
β−1mnCpT
z + ik2DT

(185)

Cnq(k, z) = β−1T (∂n/∂T)p

[
ik2DT

z2 − c2k2 + izk2Γ
+

1
z + ik2DT

]
(186)

Ct(k, z) =
β−1mn

z + ik2ν/mn
. (187)

The longitudinal current correlations follow from:

zCnγ(k, z)− k · Cgγ(k, z) = Snγ(k) , (188)

where γ = n, gL or q. Since,

zCnn(k, z)− k · Cgn(k, z) = Snn(k) (189)

z2Cnn(k, z)− k · Cgg(k, z) · k = Snn(k) (190)
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CgL (k, z) =
1
k2 [z2Cnn(k, z)− Snn(k)] . (191)

The transport coefficients are:

DT =
λ

mnCp
, (192)

where DT is the thermal diffusivity,

Γ =
(

4
3

η + ζ
)

/mn +
(

Cp − CV

CV

)
DT (193)

is the sound attenuation,

η =
1

kBTV

∫ +∞

0
dt〈σzx

T σzx
T (t) 〉 (194)

is the shear viscosity,

λ =
1

3kBT2V

∫ +∞

0
dt〈Jq

T · Jq
T(t)〉 (195)

is the thermal conductivity, and:(
4
3

η + ζ
)

=
1

kBTV

∫ +∞

0
dt〈σzz

T σzz
T (t)〉 (196)

defines the bulk viscosity. These expressions for the transport coefficients were
first derived by Green [11] and Mori [12]. A schematic drawing, Fig. 6.1,
of the density–density correlation function shows the three-peak structure,
two sound peaks at ω = ±ck and a heat mode at the origin. The widths are
proportional to Γk2 and DTq2 and the area ratio is (CV/Cp)/(1 − CV/Cp) =

Fig. 6.1 Schematic of the three peak hydrodynamic spectrum for the
density–density correlation function.
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Fig. 6.2 Early light-scattering spectrum for liquid argon. Source: Ref.
[16].

Cp/CV − 1. Clearly, in a scattering experiment one can measure the position
and widths of all the lines and extract c, Γ, DT and Cp/CV − 1.

The full theoretical treatment of the density–density spectrum is due to
Landau and Placzek [8]. A detailed theoretical analysis was given by Frenkel
[13]. Experimentally the existence of the Brillouin doublet was established
using light scattering by Gross [14]. However the resolution was not good
enough to resolve the width of the Brillouin peaks. The first measurements
of the widths of the Brillouin lines in liquids is due to Mash, Starunov and
Fabelinskii [15]. For an example of an experimental light scattering spectrum,
see Fig. 6.2, which is for liquid argon from Ref. [16].
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6.11
Problems for Chapter 6

Problem 6.1: Show, for a simple fluid system, that we have the thermodyna-
mic identity: (

∂S
∂N

)
T,p

=
S
N

,

where S is the entropy, N the number of particles, T the temperature and p the
pressure.
Problem 6.2: In the absence of damping, use Eq. (99) to determine the correla-
tion functions Cgin(k, z) and Cgigj(k, z).
Problem 6.3: Show, in the contribution to the static part of the memory Func-
tion, that the matrix:

Γ(s)
αβ (x − y) = −〈ψβ(y)Lψα(x)〉

vanishes unless ψα and ψβ have different signatures under time reversal.
Problem 6.4: Show that the determinant:

ds = SnnSqq − SnqSqn

can be written in the form given by Eq. (86).
Problem 6.5: Show that: (

∂p
∂n

)
S

=
Cp

CV

(
∂p
∂n

)
T

.

Problem 6.6: Show using symmetry that:

γzz,z =
∫ +∞

0

dt
V 〈Jq

z σzz
T (t)〉 = 0 .

Problem 6.7: Show using Eq. (136) and Eq. (196) that the bulk viscosity is
positive.
Problem 6.8: If one works with the undamped continuity equations:

∂ρ
∂t

= −∇ · g

and

∂g
∂t

= −∇p ,

where ρ is the mass density, g the momentum density, and p = p(ρ) the
pressure, show that one is led to sound waves with the isothermal speed of
sound.
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7
Kinetic Theory

7.1
Introduction

Kinetic theory is the theoretical approach, which attempts to carry out a com-
plete dynamical treatment of large fluid systems starting at the atomistic le-
vel. This is to be contrasted with a hydrodynamical point of view where we
organize things in terms of the slow variables. The kinetic theory of gases
has an rich history. A brief description of the early history is given in ESM
[1] while a much more extensive discussion is given by Brush [2]. The his-
tory and controversy associated with kinetic theory are connected with the
establishment of the existence of atoms and the use of probability theory in
physics. Indeed much of the seminal work [3] in kinetic theory was carried out
in the mid-nineteenth century well before the size of atoms was established
[4] definitively, as discussed in Chapter 1, in the early part of the twentieth
century. In this chapter we first build up an understanding of traditional kine-
tic theory using elementary ideas of geometry and probability theory. This
discussion introduces the concepts of mean-free path and mean-free time.
This leads us naturally to a discussion of the Boltzmann equation and the
approach of dilute fluid systems to equilibrium. Analysis of the nonlinear
Boltzmann equation allows for a dynamical understanding of the Maxwell
velocity probability distribution function. Next, we restrict our discussion to
situations near equilibrium and the linearized Boltzmann equation. We study,
as a first approximation, the single relaxation time approximation and tradi-
tional transport in driven systems. In the second half of this chapter we show
how kinetic theory in the linear- response regime can be made systematic
via the use of phase-space time-correlation functions in the memory-function
approach.

Nonequilibrium Statistical Mechanics

c© 2006 W I LE Y-V C H Ver l ag G mbH & C o

Gene F. Mazenko
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7.2
Boltzmann Equation

7.2.1
Ideal Gas Law

In this section we give a derivation of the Boltzmann equation. We begin with
an elementary example that sets up some of the ideas we will use later. The
appropriate probability distribution for treating dilute-gas kinetics is related
to the phase-space density [5],

f̂ (x, p) =
N

∑
i=1

δ(x − ri)δ(p − pi) , (1)

for a system of N particles with phase-space coordinates {ri, pi}. Momentum
integrals of f̂ give back observables of interest. The particle number density is
given by:

n̂(x, t) =
∫

d3 p f̂ (x, p) =
N

∑
i=1

δ(x − ri) , (2)

the momentum density is given by:

ĝ(x, t) =
∫

d3 p p f̂ (x, p, t) (3)

and the kinetic energy current density is given by:

ĴK(x, t) =
∫

d3 p ε0(p)
p
m

f̂ (x, p, t) , (4)

where the particles have mass m and:

ε0(p) =
p2

2m
. (5)

We are interested in determining the nonequilibrium average [6] of f̂ (x, p, t),

f (x, p, t) = 〈 f̂ (x, p, t)〉NE . (6)

This quantity is a probability distribution function and is traditionally called
the singlet probability distribution function. The reason is that it monitors the
statistical properties of a typical single particle [7]. If we can determine the
singlet distribution function we can obtain the nonequilibrium averages:

n(x, t) = 〈n̂(x, t)〉NE =
∫

d3 p f (x, p, t) , (7)

g(x, t) =
∫

d3 p p f (x, p, t) (8)
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and:

JK(x, t) =
∫

d3 p ε0(p)
p
m

f (x, p, t) . (9)

What is the equilibrium form for f (x, p, t)? This is worked out in Appendix
C with the result that:

fEQ(x, p) = f0(p) = nΦ(p) , (10)

where n = N/V = 〈n̂(x)〉 is the average density and:

Φ(p) =
e−βp2/2m

(2πmkBT)3/2 (11)

is the normalized Maxwell velocity probability distribution for a system at
equilibrium with temperature T.

Let us investigate the usefulness of the singlet distribution function in the
simplest kinetic context. We want to use [8] geometry and elementary probabi-
lity theory to compute the pressure acting on a wall due to a dilute gas. Before
proceeding further it is useful to point out that, in certain circumstances, it is
more convenient to use velocity rather than momentum as labels on the singlet
distribution function. It is easy to see (Problem 7.1) that these two distributions
are simply related,

f (x, v) =

〈
N

∑
i=1

δ(x − ri)δ(v − vi)

〉
NE

= m3 f (x, p) , (12)

and we will freely move back and forth between the two as is convenient.
The singlet distribution function is normalized such that:∫

V
d3xd3v f (x, v, t) = N (13)

where N is the total number of molecules in the volume V . More locally
f (x, v, t)d3xd3v gives the number of molecules in the region of phase-space
between x + dx and x and v + dv and v.

Consider a very dilute gas colliding with a wall where the collisions are
assumed to be elastic. What is the pressure on the wall? Pressure is the mo-
mentum transferred by the molecules to a unit area of wall per unit of time.
Consider, as shown in Fig. 7.1, a small flat area of wall of area δA and look
at the momentum transferred in time δt. All the molecules with speed v that
make a collision with the area δA during time δt lie inside the cylinder shown
in Fig. 7.1. The cylinder with base δA has a side parallel to v with a length vδt.
The number of molecules nV with velocity v in the cylinder is given by:

nV =
∫

δV
d3x f (x, v, t) , (14)
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Fig. 7.1 Collision cylinder for particles with velocity v that collide with a
wall during a time δt.

where the volume of the cylinder is given by:

δV = δAδt v cos θ . (15)

The momentum exchange during a collision with the wall is:

Δpz = 2mv cos θ (16)

and if the molecules are to hit the wall, v⊥ = v cos θ > 0.
The total momentum PV transferred to the area δA of the wall by molecules

that move with velocity v in time δt is:

PV = 2mv cos θ nV

= 2mv cos θ
∫

δV
d3x f (x, v, t) . (17)

The total momentum P transferred to the wall by molecules of all possible
velocities is obtained by integration over v, θ and φ where φ is the azimuthal
angle:

P =
∫ ∞

0
dv v2

∫ π/2

0
dθ sin θ

∫ 2π

0
dφ 2mv cos θ

∫
δV

d3x f (x, v, t) . (18)

The integration extends over 0 ≤ θ ≤ π/2, since for θ > π/2 the molecules tra-
vel away from the wall. Let us assume that the gas is spatially homogeneous,
then:

f (x, v, t) = n f (v, t) , (19)

and Eq. (18) reduces to:

P =
∫ ∞

0
dv v2

∫ π/2

0
dθ sin θ

∫ 2π

0
dφ 2mv cos θ

∫
δV

d3x n f (v, t)
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=
∫ ∞

0
dv v2

∫ π/2

0
dθ sin θ

∫ 2π

0
dφ 2mv cos θ δVn f (v, t)

=
∫ ∞

0
dv v2

∫ π/2

0
dθ sin θ

∫ 2π

0
dφ 2mv cos θ δAδt v cos θ n f (v, t)

= nδAδt
∫ ∞

0
dv v4

∫ π/2

0
dθ sin θ cos2 θ 4πm f (v, t) . (20)

Letting u = cos θ, du = − sin θ dθ, and assuming the system is isotropic in
velocity space we have:

P = nδAδt4πm
∫ ∞

0
dv v4 f (v, t)

∫ 0

1
−duu2

= nδAδt4πm
∫ ∞

0
dv v4 f (v, t)

1
3

. (21)

The pressure is given by:

p =
P

δAδt
= n

4πm
3

∫ ∞

0
dv v4 f (v, t) . (22)

In equilibrium we have the Maxwell velocity distribution:

fEQ(v, t) = Φ(v) =
( m

2πkT

)3/2
e−

1
2 βmv2

. (23)

Letting v =
√

2kT
m x we obtain:

p = n
4πm

3

( m
2πkT

)3/2
(

2πkT
m

)5/2 ∫ ∞

0
dx x4e−x2

=
8
3

n√
π

kT
∫ ∞

0
dx x4e−x2

. (24)

From the standard tables we have:∫ ∞

0
dx x4e−x2

=
3
√

π
8

, (25)

which leads to the final result:

p = nkT , (26)

which is the ideal gas law.
We can use the same reasoning to compute the number of molecules that

strike the area δA in time δt. The first step is to compute the number of mo-
lecules with a given velocity v that collide with δA in time δt. This is given
by:

NV =
∫

δV
d3x f (x, v, t) . (27)
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The total number of molecules striking δA in time δt is given by:

Ñ =
∫ ∞

0
v2dv

∫ π/2

0
dθ sin θ

∫ 2π

0
dφ NV . (28)

Again, assuming the gas is homogeneous in space:

NV = δVn f (v, t) = δAδt v cos θ n f (v, t) (29)

and the total number is given by:

Ñ =
∫ ∞

0
v2dv

∫ π/2

0
dθ sin θ

∫ 2π

0
dφ δAδt v cos θ n f (v, t)

= δAδt n
∫ ∞

0
v3dv

∫ π/2

0
dθ sin θ cos θ

∫ 2π

0
dφ f (v, t) . (30)

If we further assume the system is in thermal equilibrium, then we can use
Eq. (23) and evaluate the remaining integrals (see Problem 7.2) to obtain:

Ñ = aδAδt , (31)

where a, the rate of effusion, is given by:

a = n
(

kT
2πm

)1/2
, (32)

and is the number of particles that escape from a hole in a wall enclosing a
sample per unit time per unit area.

7.2.2
Mean-Free Path

Having considered collisions between molecules and a wall we now move on
to consider binary collisions between molecules. The problem we address was
formulated by Clausius [9]. In looking at the kinetics of dilute gases, one finds
that disturbances are not communicated across a sample at thermal speeds. If
one had thermal ballistic motion, disturbances would travel across a sample
with speed v2

0 = kBT/m. Instead, thermal transport is much slower due to
collisions. Collisions lead to a type of random walk of particles across the
sample, with steps on the order of the mean-free path – the average distance
between collisions. Thus we have diffusion as opposed to ballistic motion. We
can estimate this mean-free path using elementary geometrical and probabili-
stic arguments.

Let us assume that the range of interactions between particles is r0 and
is short compared to the distance between molecules in the gas. To a first
approximation we can think of the molecules as spheres of diameter r0.
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Fig. 7.2 Collision cylinder for particles with velocities v and v1 that
collide during a time interval δt.

We carry out this determination of the mean-free path using the idea of a
collision cylinder. Suppose a molecule with velocity v collides with another
particle with velocity v1 at time t. We describe the collision by choosing a
coordinate system (see Fig. 7.2) with its origin at the center of the first mo-
lecule, and the z-axis is drawn in the direction of the relative velocity vector
v1 − v. The molecules collide with each other only if the distance between
their centers is smaller than r0. This means that the center of the molecule
with velocity v1 must at time t lie inside the cylinder if a collision is to take
place in the succeeding time interval δt. The height of this collision cylinder
(see Fig. 7.2) is:

h = |v1 − v|δt . (33)

The cross sectional area is simply πr2
0, so the volume of the collision cylinder

is:

Vc = πr2
0h = πr2

0|v1 − v|δt . (34)

We can use the collision cylinder to compute the number of binary collisions
that take place in a small column of gas in time δt between molecules with
velocity v and v1. In a small volume d3x in the gas, there are f (x, v, t)d3x d3v
molecules with velocity v located at position x. To each of these molecules the-
re is attached a collision cylinder appropriate for collisions with molecules of
velocity v1 within a time interval δt. The number of such collision cylinders is
therefore f (x, v, t)d3x d3v. The total volume occupied by the collision cylinder
is the number of cylinders times the volume per cylinder:

VT
c = f (x, v, t)d3x d3v Vc = f (x, v, t)d3x d3v πr2

0|v1 − v|δt . (35)

To compute the number of (v, v1) collisions, we must compute the number of
molecules with velocity v1 that are present in collision cylinders at the begin-
ning of the time interval. Going forward we assume that the gas is sufficiently
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dilute that collision cylinders contain at most one molecule with velocity v1
and these molecules lead to (v, v1) collisions.

The number of molecules with velocity v1 present in the (v, v1) collision
cylinders at the instant t, NT, is equal to the numbers of v1-molecules per unit
volume,

N(v1) = f (x, v1, t) d3v1 , (36)

multiplied by the total volume, VT
c , of (v, v1) cylinders:

NT = N(v1)VT
c . (37)

In summary the number of collisions occurring within time interval δt bet-
ween molecules in the velocity range v to v + dv and the molecules in the
range v1 to v1 + dv1 in volume d3x of gas centered about position x is given
by:

NT = f (x, v1, t) d3v1 f (x, v, t)d3x d3v πr2
0|v1 − v|δt

= f (x, v, t) f (x, v1, t)πr2
0 |v1 − v| d3v d3v1 d3x δt . (38)

Notice that this expression is symmetric in v and v1 [10].
The total number of collisions suffered by molecules of velocity v in spatial

volume d3x in time δt comes from integrating over the velocities of all their
collision partners:

N(x, v, t) d3v d3xδt

= f (x, v, t)πr2
0d3xδt d3v

∫
d3v1 f (x, v1, t)|v1 − v| . (39)

The total number of collisions suffered by molecules of all velocities in spatial
volume d3x and in time δt is given by:

N(x, t)d3xδt = d3xδt
∫

d3vπr2
0

∫
d3v1 f (x, v1, t)|v1 − v| . (40)

Assuming the gas is homogeneous in space, where Eq. (19) holds, we have:

N(v, t) = n2 f (v, t)πr2
0

∫
d3v1 f (v1, t)|v1 − v| (41)

and the number of collisions per unit volume per unit time is:

N(t) =
∫

d3vN(v, t)

= n2πr2
0

∫
d3v f (v, t)

∫
d3v1 f (v1, t)|v1 − v| . (42)
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The average collision rate ν(t) is the number of collisions per unit volume per
unit time divided by the number of molecules per unit volume,

ν(t) =
N(t)

n
= nπr2

0

∫
d3v f (v, t)

∫
d3v1 f (v1, t)|v1 − v| . (43)

The average time between collisions, the mean-free time, is:

τ = 1/ν . (44)

The mean-free path is then given by:

� = uτ , (45)

where u is the average speed:

u = 〈v〉 =
∫

d3v v f (v, t) . (46)

If we further restrict ourselves to thermal equilibrium then ν(t) is independent
of time and f (v) is the Maxwell velocity distribution. In Problem 7.3 we show
that the average speed is given by:

u =
(

8kT
πm

)1/2
. (47)

The collision rate in equilibrium can then be evaluated using:

ν = nπr2
0

( m
2πkT

)3 ∫
d3v
∫

d3v1 e−
1
2 βm(v2+v2

1)|v1 − v| . (48)

The remaining integrals are evaluated in Problem 7.4, with the result:

τ−1 = ν = 4nr2
0

√
πkBT

m
. (49)

The mean-free path is given by:

� =
u
ν

=
1√

2nπr2
0

. (50)

As expected the mean-free path is inversely proportional to density and mo-
lecular diameter.

7.2.3
Boltzmann Equation: Kinematics

The elementary ideas developed in the previous sections makes the assump-
tion that we know the singlet distribution function in equilibrium. Here, we
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develop some of the ideas we need to determine the singlet distribution under
a variety of nonequilibrium conditions. The first step is to look at the equation
of motion for the phase-space density. In Chapter 5 we established that:

∂

∂t
f̂ (x, p, t) = iL f̂ (x, p, t) , (51)

where L is the Liouville operator. Going further, we found that:

∂

∂t
f̂ (x, p, t) = −p · ∇x

m
f̂ (x, p) + f̂ I(x, p, t) (52)

where, for pair interactions, the nonlinear interaction contribution is given by:

f̂ I(x, p, t) = −
∫

d3x1d3 p1iLI(x − x1, p, p1) f̂ (x1, p1) f̂ (x, p) , (53)

where we define the interaction part of the two-body Liouville operator,

LI(x − x1, p, p1) = i∇xV(x − x1) ·
(
∇p −∇p1

)
. (54)

It is left to Problem 7.5 to show that if we have an external force FE that occurs
in Newton’s law in the form:

dpi(t)
dt

= FE(ri, pi, t)−
N

∑
j( �=i)=1

∇riV(ri − rj) , (55)

then the equation of motion for the phase-space density takes the form:

∂

∂t
f̂ (x, p, t) = −p · ∇x

m
f̂ (x, p, t)−∇p ·

(
FE(x, p, t) f̂ (x, p, t)

)
+ f̂ I(x, p, t) . (56)

If we have uniform applied electric and magnetic fields then:

FE = qE +
q
c
(v × B) (57)

and because:

∇p · (p × B) = 0 , (58)

then we have the equation of motion:[
∂

∂t
+

p · ∇x

m
+ FE(x, p, t) · ∇p

]
f̂ (x, p, t) = f̂ I(x, p, t) . (59)

After taking the average over a nonequilibrium ensemble we have:[
∂

∂t
+

p · ∇x

m
+ FE(x, p, t) · ∇p

]
f (x, p, t) = f I(x, p, t) . (60)
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7.2.4
Boltzmann Collision Integral

Let us turn next to the treatment of collisions in the Boltzmann kinetic equati-
on. The effect of intermolecular collisions is to modify the count of molecules
entering and leaving the region in phase space x to x + dx and v to v + dv
in time interval δt. The number of particles in this volume is effected by col-
lisions in two ways. Some streaming molecules are kicked out while others
are knocked into the volume of interest. We can write the contribution to the
kinetic equation in the form:

f I(x, p, t)d3xd3vδt = (J+ − J−)d3xd3vδt . (61)

This is the net change in the number of particles in d3xd3vδt due to collisions.
In this equation J+d3xd3vδt is the number of particles entering the region of
phase space in time δt via collisions, and J−d3xd3vδt the number of particles
leaving the region of phase space in time δt via collisions.

Before determining J+ and J− we need some background on two-body dy-
namics. We assume we have elastic collisions between two particles of equal
mass m as shown schematically in Fig. 7.3. We assume that well before the col-
lision at time t at position x, the particles have velocities v1 and v2. Well after
the collision, the particles have the final velocities v′

1 and v′
2. These asymptotic

velocities are connected by conservation of momentum and kinetic energy (for
short-ranged interactions):

v1 + v2 = v′
1 + v′

2 (62)

v2
1 + v2

2 = (v′
1)

2 + (v′
2)

2 . (63)

If we introduce center of mass (COM) variables:

V =
1
2
(v1 + v2) (64)

Fig. 7.3 Before and after collision kinematics for two particles with
velocities v1 and v2 before the collision and v′

1 and v′
2 after the collision.
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v = v1 − v2 , (65)

then clearly:

V = V′ . (66)

Since we have the inverse relations:

v1 = V +
v
2

(67)

v2 = V − v
2

, (68)

we have for conservation of kinetic energy:

v2
1 + v2

2 = 2V2 +
1
2

v2 = 2(V′)2 +
1
2
(v′)2 . (69)

Since V2 = (V′)2 we have that the relative speed is unchanged by the collisi-
on: v2 = (v′)2. The angle between v and v′ is defined by:

v · v′ = v2 cos θ . (70)

If we limit ourselves at first to the case of hard spheres, then we have the
collision diagram shown in Fig. 7.4. We can then connect the before and after
velocities in the COM using:

v′ = v − 2ρ̂(ρ̂ · v) , (71)

where ρ̂ is the unit vector connecting the centers of the two colliding particles
at contact. The scattering angle θ is related to the angle between ρ̂ and v,

Fig. 7.4 Scattering kinematics for particles with initial relative velocity
v, final velocity v′, impact parameter b, r0 is the hard-sphere diameter
and ρ̂ is the unit vector connecting the centers of the particles at
contact.
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Fig. 7.5 Kinematics for two-particle collisions in terms of a collision
cylinder.

cos χ = ρ̂ · v by 2χ + θ = π. We also have sin χ = b/r0 where b is the impact
parameter.

Let us determine J−, the number of molecules that leave the volume d3xd3v
in time δt via collisions. Consider collisions between molecules with velocity v
in volume d3x centered at position x and molecules that move with a different
velocity v1 such that the impact parameter of the (v, v1) collision falls in the
range of impact parameter b to b + db, as shown in Fig. 7.5. The azimuthal
angle of the collision is assumed to be confined to the range φ to φ + dφ about
a plane fixed in space and containing the relative velocity v1 − v. A collision
takes place if the centers of the two molecules are located inside the collision
cylinder shown in Fig. 7.5. Notice that the problem here is very similar to the
determination of the collision cylinder in determining the mean collision rate.
The difference is the base we use for the collision cylinder. In Fig. 7.5 the base
is the full collisional cross sectional area πr2

0. In the current case, for reasons
that become clear when we treat J+, the base is db b dφ as shown in Fig. 7.5.

The number of molecules moving with velocity v in the region d3x is
f (x, v, t)d3xd3v and the total volume of collision cylinders for the (v, v1) colli-
sion is:

f (x, v, t)d3xd3vbdbdφ |v1 − v|δt . (72)

The number of molecules with velocity v1 in the collision cylinder is:

f (x, v1, t)d3v1 (73)

so the number of collisions under consideration is:

N (v, v1) = f (x, v1, t)d3v1 f (x, v, t)d3xd3vbdbdφ |v1 − v|δt . (74)
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The molecular flux J− comes from integrating over all velocities v1, impact
parameters b and azimuthal angles φ:

J−d3xd3vδt =
[∫

d3v1

∫ r0

0
db
∫ 2π

0
bdφ |v1 − v| f (x, v, t) f (x, v1, t)

]
×d3xd3vδt , (75)

where r0 denotes the range of forces. In this case, in contrast with our treat-
ment of J+ below, we can do the integral over b and φ to find that J− =
N(x, v, t) where N(x, v, t) is given in the treatment of the mean collision rate
by Eq. (39).

Next we need to evaluate J+, the number of particles scattered into the
phase-space volume d3vd3x in time δt. This is the process where two par-
ticles with velocities v′ and v′

1 are scattered into v and v1. We easily have
that the number of particles going from (v′, v′

1) into (v, v1) in the volume
d3v′d3v′1d3xδt, is, in complete analogy with Eq. (74),

N (v′, v′
1) = f (x, v′

1, t)d3v′1 f (x, v′, t)d3xd3v′bdbdφ |v′
1 − v′|δt . (76)

We show in Problem 7.6 that:

d3v′d3v′1 = d3vd3v1 , (77)

and we know that:

|v′
1 − v′| = |v1 − v| , (78)

since the magnitude of the relative velocity is preserved in an elastic collision.
We have then:

N (v′, v′
1) = f (x, v′

1, t) f (x, v′, t)bdbdφ |v1 − v|d3vd3v1d3xδt . (79)

Then after integrating over v1, b and φ we arrive at the expression for J+:

J+d3xd3vδt =
[∫

d3v1

∫ r0

0
bdb
∫ 2π

0
dφ |v1 − v| f (x, v′, t) f (x, v′

1, t)
]

×d3xd3vδt . (80)

Since v′ and v′
1 depend on v, v1 and b we can not carry out the integral over

b. Putting together the results for J− and J+ in Eq. (61) we have the famous
expression for the Boltzmann collision integral:

f I(x, v, t) =
∫

d3v1

∫ r0

0
bdb
∫ 2π

0
dφ |v1 − v|

(
f ′ f ′1 − f f1

)
, (81)
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where we have used the convenient notation f = f (x, v, t), f1 = f (x, v1, t),
f ′ = f (x, v′, t) and f ′1 = f (x, v′

1, t). Putting Eq. (81) back into Eq. (60) the
Boltzmann equation [11] is then given by:

∂ f
∂t

+ v · �∇ f = f I , (82)

where, here, we assume there is zero external force acting.
It is conventional to write the collisional contribution to the Boltzmann

equation in term of the differential cross section σ. We show in Problem 7.7
that we can replace the integral over the impact parameter with a properly
weighted average over the scattering angles:

∫
bdb dφ . . . =

∫
dΩ σ(|v1 − v|, Ω) . . . , (83)

where:

dΩ = sin θ dθdφ (84)

is the usual differential for the solid angle in spherical coordinates. Then we
have for the Boltzmann collision integral:

f I(x, v, t) =
∫

d3v1

∫
dΩ σ(|v1 − v|, Ω) |v1 − v|

(
f ′ f ′1 − f f1

)
. (85)

7.2.5
Collisional Invariants

It is important to consider momentum integrals of the collision integral defi-
ned by:

Mχ(x, t) ≡
∫

d3v χ(v) f I(x, v, t)

=
∫

d3v χ(v)
∫

d3v1

∫
dΩ σ(|v1 − v|, Ω) |v1 − v|

(
f ′ f ′1 − f f1

)
. (86)

If we exchange v and v1 in the integral we have:

Mχ(x, t) =
∫

d3v1 χ(v1)
∫

d3v

×
∫

dΩ σ(|v − v1|, Ω)|v − v1|
(

f ′1 f ′ − f1 f
)

. (87)

We see that the integrand is the same as before the exchange except χ(v) →
χ(v1). Next we make the change of variables v → v′ and v1 → v′

1 in Eq. (86):

Mχ(x, t) =
∫

d3v′ χ(v′)
∫

d3v′1



220 7 Kinetic Theory

×
∫

dΩ σ(|v′
1 − v′|, Ω) |v′

1 − v′|
(

f f1 − f ′ f ′1
)

. (88)

Remembering that d3v′d3v′1 = d3vd3v1 and |v′
1 − v′| = |v1 − v| we have:

Mχ(x, t) = −
∫

d3v χ(v′)
∫

d3v1

×
∫

dΩ σ(|v1 − v|, Ω)|v1 − v|
(

f ′ f ′1 − f f1
)

. (89)

The final change of variables of interest is v → v′
1 and v1 → v′:

Mχ(x, t) =
∫

d3v′1 χ(v′
1)
∫

d3v′

×
∫

dΩ σ(|v′ − v′
1|, Ω) |v′ − v′

1|
(

f1 f − f ′1 f ′
)

. (90)

Using the same relations as used in the last transformation this reduces to:

Mχ(x, t) = −
∫

d3v χ(v′
1)
∫

d3v1

×
∫

dΩ σ(|v1 − v|, Ω)|v1 − v|
(

f ′ f ′1 − f f1
)

. (91)

We find a key result when we add the four equivalent results and divide by 4:

Mχ(x, t) =
1
4

∫
d3vd3v1

∫
dΩσ(|v1 − v|, Ω) |v1 − v|

×
[
χ + χ1 − χ′ − χ′

1
] (

f ′ f ′1 − f f1
)

. (92)

This tells us that if we have a function of velocity that satisfies

χ(v) + χ(v1) = χ(v′) + χ(v′
1) , (93)

then the matrix element vanishes:

Mχ(x, t) = 0 . (94)

Clearly such collisional invariants correspond to conservation laws:

χ(v) = 1 conservation of particle number (95)

χ(v) = v conservation of momentum (96)

χ(v) = v2 conservation of kinetic energy . (97)

Returning to the Boltzmann equation given by Eq. (82) we see that we obtain
the hydrodynamic equations if we multiply by χi(p) and integrate over all p.
For example with χ1(p) = 1, we have:

∂n
∂t

= −�∇ · g
m

, (98)
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which is just the continuity equation for particle number. Similarly, for conser-
vation of momentum:

∂gi
∂t

= −
∫

d3 ppi

3

∑
j=1

vj∇j f (x, p, t) (99)

= −
3

∑
j=1

∇jσij , (100)

where:

σij =
∫

d3 p
pipj

m
f (x, p, t) (101)

is the kinetic part of the stress tensor. Finally, choosing χ(v) = m
2 v2 and inte-

grating, we obtain:

∂εK
∂t

= −�∇ · JK , (102)

where the kinetic energy current is given by:

JK =
∫

d3 p ε0(p)
p
m

f (x, p, t) . (103)

As we shall see, in traditional kinetic theory we extract transport coefficients
using the currents σij and JK.

7.2.6
Approach to Equilibrium

Boltzmann developed an ingenious argument [11] to show that the Boltzmann
equation drives an arbitrary velocity distribution to the Maxwell velocity dis-
tribution. To begin, we introduce a function similar to the entropy function
defined in equilibrium. This is the Boltzmann H-function [12]:

H(t) =
∫

d3v f (v, t) ln f (v, t) , (104)

where for simplicity we assume the system is uniform in space and f is inde-
pendent of x. Now take the time derivative of H:

dH(t)
dt

=
∫

d3v
(

∂ f
∂t

(1 + ln f (v, t)
)

. (105)

Next use the Boltzmann equation, Eq. (82) absent the gradient term, to obtain:

dH(t)
dt

=
∫

d3v(1 + ln f (v, t)) f I(v, t) = MχH (t) (106)
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where we have a matrix element of the collision integral, using the notation
introduced in Eq. (86), with:

χH = 1 + ln f (v, t) . (107)

If we then use the result Eq. (92) with χ = χH we have:

dH(t)
dt

=
1
4

∫
d3vd3v1

∫
dΩ σ(|v1 − v|, Ω) |v1 − v|

(
f ′ f ′1 − f f1

)
×
[
1 + ln f + 1 + ln f1 − 1 − ln f ′ − 1 − ln f ′1

]
=

1
4

∫
d3vd3v1

∫
dΩ σ(|v1 − v|, Ω) |v1 − v|

×
(

f ′ f ′1 − f f1
)

ln
(

f f1

f ′ f ′1

)
. (108)

Consider the inequality (see Problem 7.8):

(x − y) ln
( y

x

)
≤ 0 , (109)

where the equality holds only for x = y. Let us choose x = f ′ f ′1 and y = f f1 in
Eq. (108). Then, since the rest of the integral in Eq. (108) is manifestly positive,
we have the inequality:

dH(t)
dt

≤ 0 . (110)

Thus H(t) decreases monotonically with time, and we can conclude, indepen-
dent of the initial distribution function, the system will be driven to a final
state where the distribution function satisfies:

f0(v) f0(v1) = f0(v′) f0(v′
1) ; (111)

we have added the subscript on f to indicate the distribution corresponds to
the stationary state. Taking the logarithm, we have:

ln f0(v) + ln f0(v1) = ln f0(v′) + ln f0(v′
1) , (112)

which is of the form of a conservation law like Eq. (93).
The general solution to Eq. (112) is a sum of all of the invariants:

ln f0(v) = a1χ1(v) + a2χ2(v) + a3χ3(v) + a4χ4(v) + a5χ5(v)

= a + b · v + cv2 , (113)

where we have the five constants a, b, and c to determine. These are determi-
ned by the conditions: ∫

d3v f0(v) = n (114)
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∫
d3v v f0(v) = nu (115)

∫
d3v

m
2

(v − u)2 f0(v) = nukT , (116)

where the density n, average velocity u and temperature T may be functions
of position. It is easy to show that the general solution in equilibrium is of the
form:

f0(v) = n
( m

2πkT

)3/2
e−β m

2 (v−u)2
. (117)

7.2.7
Linearized Boltzmann Collision Integral

In most situations where we can make progress, we must assume that we are
near equilibrium. Thus we make the assumption that the singlet distribution
function is close to its equilibrium value. Thus we write:

f (x, p, t) = f0(x, p) + g(x, p, t) , (118)

where g is treated as small. We can then expand the Boltzmann collision inte-
gral in powers of g:

f (x, v, t)I =
∫

d3v1

∫
dΩ σ(|v1 − v|, Ω) |v1 − v|

(
f ′ f ′1 − f f1

)
=
∫

d3v1

∫
dΩ σ(|v1 − v|, Ω) |v1 − v|

×
[
( f ′0 + g′)( f ′0,1 + g′1)− ( f0 + g)( f0,1 + g1)

]
(119)

=
∫

d3v1

∫
dΩ σ(|v1 − v|, Ω) |v1 − v|

×
[(

f ′0 f ′0,1 − f0 f0,1
)
+ g′ f ′0,1 + g′1 f ′0 − g f0,1 − g1 f0 + . . .

]
(120)

The zeroth-order term in g vanishes due to Eq. (111) and at linear order we
have:

f (x, v, t)I =
∫

d3v1

∫
dΩ σ(|v1 − v|, Ω) |v1 − v|

∫
d3v2

×
[

f ′0,1δ(v2 − v′) + f ′0δ(v2 − v′
1) − f0,1δ(v2 − v)

− f0δ(v2 − v1)] g(x, v2, t) (121)

≡
∫

d3v2KB(v, v2)g(x, v2, t) , (122)

where the linearized Boltzmann collision integral is given by:

KB(v, v2) =
∫

d3v1

∫
dΩ σ(|v1 − v|, Ω) |v1 − v|
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×
[

f ′0,1δ(v2 − v′) + f ′0δ(v2 − v′
1)− f0,1δ(v2 − v)

− f0δ(v2 − v1)] . (123)

It is useful to consider the quantity:

KB(v, v2) f0(v2) =
∫

d3v1

∫
dΩ σ(|v1 − v|, Ω) |v1 − v|

×
[

f ′0,1δ(v2 − v′) + f ′0δ(v2 − v′
1) − f0,1δ(v2 − v)

− f0δ(v2 − v1)] f0(v2) . (124)

Using f ′0 f ′0,1 = f0 f0,1 and the δ-functions we find:

KB(v, v2) f0(v2) =
∫

d3v1

∫
dΩ σ(|v1 − v|, Ω) |v1 − v|

× f0 f0,1
[
δ(v2 − v′) + δ(v2 − v′

1)− δ(v2 − v)

−δ(v2 − v1)] . (125)

It is useful to show that KB(v, v2) f0(v2) is symmetric under exchange v ↔
v2. We focus on the first of four contributions to KB in Eq. (125):

K(1)
B (v, v2) f0(v2) =

∫
d3v1

∫
dΩ σ(|v1 − v|, Ω)|v1 − v|

× f0(v) f0(v1)δ(v2 − v′) . (126)

Inserting the identity:
∫

d3v3δ(v3 − v′
1) = 1 , (127)

we have:

K(1)
B (v, v2) f0(v2) =

∫
d3v1

∫
d3v3

∫
dΩ σ(|v1 − v|, Ω) |v1 − v|

× f0(v) f0(v1)δ(v2 − v′)δ(v3 − v′
1)

=
∫

d3v1

∫
d3v3

∫
dΩ σ(|v′

1 − v′|, Ω) |v′
1 − v′| f0(v′)

× f0(v′
1)δ(v2 − v′)δ(v3 − v′

1)

=
∫

d3v1

∫
d3v3

∫
dΩ σ(|v3 − v2|, Ω)

×|v3 − v2| f0(v3) f0(v2)δ(v2 − v′)δ(v3 − v′
1) (128)

The key observation is that:

δ(v2 − v′)δ(v3 − v′
1) = δ(v′

2 − v)δ(v′
3 − v1) , (129)
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where we have introduced the collision pair (v2, v3) → (v′
2, v′

3). We then have:

K(1)
B (v, v2) f0(v2) =

∫
d3v1

∫
d3v3

∫
dΩ σ(|v3 − v2|, Ω) |v3 − v2|

× f0(v3) f0(v2)δ(v′
2 − v)δ(v′

3 − v1) . (130)

Next, do the integral over v1 with the result:

K(1)
B (v, v2) f0(v2) =

∫
d3v3

∫
dΩ σ(|v3 − v2|, Ω)

×|v3 − v2| f0(v3) f0(v2)δ(v′
2 − v) . (131)

Comparing this result with Eq. (126) we see that we have the symmetry:

K(1)
B (v, v2) f0(v2) = K(1)

B (v2, v) f0(v) . (132)

It is left to Problem 7.9, using similar manipulations, to show that the three
other contributions, and the full KB, also obey the symmetry.

7.2.8
Kinetic Models

It is very difficult to make progress solving the linearized Boltzmann equation.
Here we describe a practical method for both extracting the physics contai-
ned in the linearized Boltzmann equation and for establishing a systematic
accurate solution. We focus here on the collisional contribution to the kinetic
equation, which can be written in the general form:

f I(x, p, t) = −
∫

d3 p′KB(p, p′) f (x, p′, t) , (133)

where KB(p, p′) is the linearized Boltzmann collision operator. It is an integral
operator. For our purposes here, this operator has two sets of properties. It
satisfies the symmetry:

ΓB(p, p′) = KB(p, p′) f0(p′) = KB(p′, p) f0(p) (134)

and certain momentum integrals, related to the conservation laws, have zero
matrix elements: ∫

d3 p ψi(p)KB(p, p′) = 0 . (135)

If the particles of interest satisfy conservation of particles, momentum and
energy then Eq. (135) is true for the unnormalized set:

ψi = {1, p, ε0(p)} . (136)
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In the case of electrical transport there is positive charge in addition to the car-
riers and typically in solids there is scattering from the lattice. Thus, the only
conservation law for the charge carriers is conservation of particle number.

KB is a rather complicated [13] function of momenta and depends on the de-
tails of the interactions in the system. Here, we discuss a method for extracting
information from the associated kinetic equation that depends on the general
properties listed above. This is the method of kinetic modeling [14].

The first step in this approach is to construct a set of momentum polyno-
mials, ψi(p), that are complete and orthonormal with respect to the Maxwell
distribution,

Φ(p) =
e−βp2/2m

(2πmkT)3/2 , (137)

as a weight. Orthonormality means:∫
d3 p Φ(p)ψi(p)ψj(p) = δij , (138)

while completeness is assumed to take the form:

∞

∑
i=1

ψi(p)ψi(p′)Φ(p)Φ(p′) = δ(p − p′)Φ(p) . (139)

The polynomials are labeled by a set of integers and clearly can be constructed
[15] in terms of a product of Hermit polynomials. Ideally the ψi(p) would be
eigenfunctions of KB. Generally we do not know [16] these eigenfunctions.

It is shown in Problem 7.10 that we can choose as the first five such polyno-
mials the set:

ψ1 = 1 (140)

ψ2 = px/p0 (141)

ψ3 = py/p0 (142)

ψ4 = pz/p0 (143)

ψ5 =
√

2
3
(ε0(p)− ε̄0)/(kBT) , (144)

where:

p0 =
√

mkBT (145)
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and:

ε̄0 =
3
2

kBT (146)

Clearly one can continue on constructing higher-order polynomials.
In kinetic modeling one assumes that one can expand the collision integral

in terms of these polynomials:

KB(p, p′)Φ(p′) =
∞

∑
i,j=1

kijψi(p)ψj(p′)Φ(p)Φ(p′) , (147)

where we have used the symmetry given by Eq. (134). We assume for a given
problem (interaction potential) that we can evaluate the set of matrix elements:

kij =
∫

d3 pd3 p′ψi(p)KB(p, p′)Φ(p)ψj(p′) . (148)

This may be very difficult in practice.
The key assumption in the kinetic modeling approach is that Eq. (147) can

be divided up into a block with i, j ≤ N and the rest:

KB(p, p′)Φ(p) =
N

∑
i=1

N

∑
j=1

kijψi(p)ψj(p′)Φ(p)Φ(p′)

+

(
N

∑
i=1

∞

∑
j=N+1

+
∞

∑
i=N+1

N

∑
j=1

+
∞

∑
i=N+1

∞

∑
j=N+1

)

×kijψi(p)ψj(p′)Φ(p)Φ(p′) . (149)

We next make two rather bold assumptions or approximations:

• If either i or j or both are greater than N then we assume:

kij = kiδij . (150)

• For i > N then ki is independent of i:

ki = kN+1,N+1 . (151)

Applying these assumptions to the expansion, Eq. (149), for the collision inte-
gral we obtain:

KB(p, p′)Φ(p) =
N

∑
i=1

N

∑
j=1

kijψi(p)ψj(p′)Φ(p)Φ(p′)

+
∞

∑
i=N+1

∞

∑
j=N+1

δijkN+1,N+1ψi(p)ψj(p′)Φ(p)Φ(p′)
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=
N

∑
i=1

N

∑
j=1

kijψi(p)ψj(p′)Φ(p)Φ(p′)

+kN+1,N+1

∞

∑
i=N+1

ψi(p)ψi(p′)Φ(p)Φ(p′)

=
N

∑
i=1

N

∑
j=1

kijψi(p)ψj(p′)Φ(p)Φ(p′)

+kN+1,N+1

(
∞

∑
i=1

−
N

∑
i=1

)
ψi(p)ψi(p′)Φ(p)Φ(p′)

=
N

∑
i=1

N

∑
j=1

(
kij − kN+1,N+1δij

)
ψi(p)ψj(p′)Φ(p)Φ(p′)

+kN+1,N+1δ(p − p′)Φ(p) , (152)

where we have used the completeness relation Eq. (139). This defines the
collision integral for the Nth-order collision model. If we define:

γij = kij − kN+1,N+1δij (153)

then the Nth-order model is given by:

KB(p, p′)Φ(p′) =
N

∑
i=1

N

∑
j=1

γijψi(p)ψj(p′)Φ(p)Φ(p′)

+kN+1,N+1δ(p − p′)Φ(p) . (154)

7.2.9
Single-Relaxation-Time Approximation

The simplest model is given by N = 1 where the collision operator is given
by:

KB(p, p′)Φ(p′) = (k11 − k22)ψ1(p)ψ1(p′)Φ(p)Φ(p′)

+k22δ(p − p′)Φ(p) (155)

or:

KB(p, p′) = (k11 − k22)ψ1(p)Φ(p)ψ1(p′) + k22δ(p − p′) . (156)

The Boltzmann collision integral, Eq. (133), then takes the form:

f I(x, p, t) = −
∫

d3 p′KB(p, p′) f (x, p′, t)

= −(k11 − k22)ψ1(p)Φ(p)
∫

d3 p′ψ1(p′) f (x, p′, t)
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−k22 f (x, p, t) . (157)

Remember that ψ1(p) = 1. If we enforce conservation of particles, then k11 = 0
and, remembering the normalization:∫

d3 p′ψ1(p′) f (x, p′, t) = n(x, t) , (158)

we have for the collisional contribution:

f I(x, p, t) = −1
τ

[ f (x, p, t)− n(x, t)Φ(p)] , (159)

where we have identified the relaxation time τ−1 = k22. This approximation,
including driving forces, take the form of a kinetic equation:[

∂

∂t
+

p · ∇x

m
+ FE(x, p, t) · ∇p

]
f (x, p, t)

= −1
τ

[ f (x, p, t)− n(x)Φ(p)] . (160)

We will look at this equation from various different points of view. First we
look at initial-value problems.

Let us look at the simple example where we have a uniform, n(x) = n,
initial configuration that depends only on momentum:

f (x, p, t = 0) = fin(p) (161)

Assume the system is in zero external field, FE = 0. In this case, because the
initial distribution is uniform in space, f0(p) = nΦ(p), the kinetic equation
takes the form:

∂

∂t
f (p, t) = −1

τ
[ f (p, t)− f0(p)] . (162)

We can look for a solution of the form:

f (p, t) = e−t/τφ(p, t) , (163)

where:

φ(p, t = 0) = fin(p) . (164)

Inserting Eq. (163) into Eq. (162) we obtain:

−1
τ

f (x, p, t) + e−t/τ ∂

∂t
φ(p, t) = −1

τ
[ f (x, p, t)− f0(p)] . (165)

Canceling terms, this reduces to:

∂

∂t
φ(p, t) = et/τ 1

τ
f0(p) . (166)
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Integrating over time we obtain:

φ(p, t)− φ(p, t = 0) =
∫ t

0

dt′

τ
et′/τ f0(p) , (167)

which leads to:

φ(p, t) = fin(p) + (et/τ − 1) f0(p) . (168)

Putting this back into Eq. (163), we have the final solution:

f (p, t) = e−t/τ fin(p) + (1 − e−t/τ) f0(p) . (169)

As time evolves, the average phase-space density evolves from the initial va-
lue fin(p) to the final equilibrium form f0(p) on a time scale determined by
the relaxation time τ.

Let us next consider the initial-value problem where we must solve the
kinetic equation:[

∂

∂t
+

p · ∇x

m

]
f (x, p, t) = −1

τ
[ f (x, p, t)− n(x, t)Φ(p)] (170)

subject to the initial condition:

f (x, p, t = t0) = n0(x)Φ(p) , (171)

where n0(x) is given. We easily solve this problem using the Fourier–Laplace
transform:

f (k, p, z) = −i
∫ ∞

0
dteizt

∫
d3x e−ik·x f (x, p, t) . (172)

Taking the Fourier–Laplace transform of the kinetic equation, Eq. (170), we
find after some rearrangements:[

z − k · p
m

+ iτ−1
]

f (k, p, z) = n0(k)Φ(p) + iτ−1n(k, z)Φ(p)

=
(

n0(k) + iτ−1n(k, z)
)

Φ(p) . (173)

Dividing by z − k·p
m + iτ−1, we have:

f (k, p, z) =
(

n0(k) + iτ−1n(k, z)
) Φ(p)

z − k·p
m + iτ−1

. (174)

We obtain a trap for the unknown density by integrating over all momenta:

n(k, z) =
(

n0(k) + iτ−1n(k, z)
)

I(k, z) , (175)
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where:

I(k, z) =
∫

d3 p
Φ(p)

z − k·p
m + iτ−1

. (176)

Solving for the transformed density:

n(k, z) = n0(k)
I(k, z)

1 − iτ−1 I(k, z)
. (177)

We can not invert this transform analytically but we can look at the relaxation
of the density in the hydrodynamic limit. It is left as a problem, 7.11, to show
that an expansion in powers of the wavenumber gives the result at second
order:

I(k, z) =
1

z + iτ−1 +
kBT
m

k2

[z + iτ−1]3
+ . . . . (178)

Expanding the coefficient of n0(k) in Eq. (177) in powers of k we obtain:

n(k, z) =
n0(k)

z

(
1 +

kBT
m

k2

z[z + iτ−1]

)
+ . . . . (179)

To this order in k, we can rewrite this in the form:

n(k, z) =
n0(k)

z − kBT
m

k2

[z+iτ−1]

. (180)

We can write this in the form:

n(k, z) =
n0(k)

z + iD(z)k2 , (181)

where we have a frequency-dependent diffusion coefficient:

D(z) =
kBT
m

τ
1

1 − izτ
. (182)

In the low-frequency limit zτ 
 1, and we are in the diffusion limit where we
can replace D(z) with D = D(0) and invert the Laplace transform to obtain:

n(k, t) = n0(k)e−Dk2t , (183)

where the diffusion constant is given by D = kBT
m τ.

7.2.10
Steady-State Solutions

Let us look next at the case of a uniform applied force. If the system and the
associated average phase-space density is initially spatially uniform, then it
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will remain uniform and the kinetic equation takes the form:

∂

∂t
f (p, t) = −F(t) · ∇p f (p, t)− 1

τ
[ f (p, t)− nΦ(p)] . (184)

Let us assume that the force is initially zero and the system is in equilibrium:

f (p, t = 0) = f0(p) (185)

and we turn on the force in the fashion:

F(t) =
(

1 − e−t/t0
)

F . (186)

Let us write:

g(p, t) = f (x, p, t)− f0(p) (187)

with:

g(p, t = 0) = 0 . (188)

The kinetic equation, Eq. (184), takes the form:

∂

∂t
g(p, t) = −F(t) · ∇p [ f0(p) + g(p, t)]− 1

τ
g(p, t) . (189)

Introduce:

g(p, t) = e−t/τφ(p, t) , (190)

where:

φ(p, t = 0) = g(p, t = 0) = 0 , (191)

into the kinetic equation as before. Again we can cancel off the term propor-
tional to τ−1 and obtain:

∂

∂t
φ(p, t) = −F(t) · ∇p

[
et/τ f0(p) + φ(p, t)

]
. (192)

Let us first consider the case where the external force is weak and we can
determine φ as a power-series expansion in F. At first order in F we can drop
the second-order contribution, φ ≈ F, in the kinetic equation to obtain:

∂

∂t
φ(p, t) = −F(t) · ∇pet/τ f0(p) . (193)

Remembering the initial condition, φ(p, t = 0) = 0, we integrate Eq. (193) to
obtain:

φ(p, t) = −
∫ t

0
dt′et′/τF(t′) · ∇p f0(p) . (194)
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The average phase-space density is given by:

f (p, t) = f0(p)−F (t) · ∇p f0(p) , (195)

where:

F (t) = e−t/τ
∫ t

0
dt′et′/τF(t′) . (196)

It is left as a problem (Problem 7.12) to show that:

F (t) =
[
τ
(

1 − e−t/τ
)
−
(

τ−1 − t−1
0

) (
e−t/t0 − e−t/τ

)]
F . (197)

For short times we easily find:

F (t) =
1
2

t2

t0
F + . . . , (198)

while for long times t � τ, t0, there is exponential convergence to the constant
result:

lim
t→∞

F (t) = τF (199)

and the long-time solution at linear order is given by:

g(p) = f (p) − f0(p) = −τF · ∇p f0(p) . (200)

This agrees with the steady-state solution of Eq. (184) where we drop the time-
derivative and expand f = f0 + g + . . ..

7.3
Traditional Transport Theory

7.3.1
Steady-State Currents

A key application of kinetic theory is to transport theory: the nonequilibri-
um steady-state currents driven by external forces. Currents of interest can
be derived as momentum integrals of the singlet distribution function. The
momentum current, for example, is given by:

g(x, t) =
∫

d3 p p f (p, t) . (201)

In this section we assume the system is spatially homogeneous and in steady
state. In a charged system, where the momentum and energy of the electrons
alone are not conserved, the charge current is given by:

J = q
∫

d3 p
p
m

f (p) , (202)
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where the mobile particles carry charge q. For our model to make sense we
must maintain overall charge neutrality. Thus there must be an inert back-
ground of positive charge. This is known as a jellium model [17].

Another current of interest is the kinetic energy current:

JK =
∫

d3 p ε0(p)
p
m

f (p) , (203)

where:

ε0(p) =
p2

2m
. (204)

We will also be interested in the heat current defined by:

Jq =
∫

d3 p ε̃0(p)
p
m

f (p) , (205)

where:

ε̃0(p) = ε0(p)− 3
2

kBT . (206)

Note that we can write:

Jq = JK − 3
2

kBT
q

J . (207)

The relevance of the heat current will become clearer when we discuss systems
driven by temperature gradients.

Clearly, the average currents for a system in equilibrium, due to the sym-
metry Φ(p) = Φ(−p), are zero:

〈J〉EQ = 〈JK〉EQ = 〈Jq〉EQ = 0 . (208)

These results are useful if we are interested in transport, where the average
currents are driven by the applied force. Suppose some average current is
given by:

JX =
∫

d3 p X(p)
p
m

f (p) , (209)

where X(p) = X(−p). Then for long times and at linear order we find, using
Eq. (200),

JX(t) =
∫

d3 p X(p)
p
m
[

f0(p)− τF · ∇p f0(p)
]

.

The leading order contribution to the current vanishes by symmetry and the
first-order contribution is given by by:

Ji
X = −τ ∑

j
Fj

∫
d3 p X(p)

pi
m
∇j

p f0(p) . (210)
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Integrating by parts we have:

Ji
X = τ ∑

j
Fj

∫
d3 p f0(p)∇j

p

(
X(p)

pi
m

)
. (211)

For a case of particular interest we consider the application of an electric
field to a set of electrons, FE = −eE, and look at the average electric current,
X(p) = −e, then:

Ji = τ ∑
j
(−eEj)

∫
d3 p f0(p)∇j

p

(
(−e)

pi
m

)

=
τe2

m ∑
j

Ejδijn

= σEi , (212)

where we write things in the form of Ohm’s law with the electrical conducti-
vity given by:

σ =
τe2n

m
. (213)

This is the Drude formula found in Chapters 2 and 4. This equation can be
used to empirically determine the relaxation time τ. Using measured conduc-
tivities, one can estimate τ as in Section 2.1.5. τ is on the order of 10−14 s at
room temperatures for metallic systems in the solid state.

It is appropriate to consider here the contrast between this method of deter-
mining a transport coefficient with the Green–Kubo approach we developed
in detail in earlier chapters. Here we must solve the kinetic equation before we
can identify the expression for the transport coefficient and there are various
approximations we make along the way. In the last portion of this chapter we
show how we can organize kinetic theory to be compatible with the Green–
Kubo formulation.

We can also determine the average kinetic-energy current. With X(p) =
p2/2m we have in Eq. (211)

Ji
K = τ ∑

j
Fj

∫
d3 p f0(p)∇j

p

(
p2

2m
pi
m

)

= τ ∑
j

Fj

∫
d3 p f0(p)

(
p2

2m2 δij +
pi
m2 pj

)

= τ ∑
j

Fj

∫
d3 p f0(p)δij

(
p2

2m2 +
p2

3m2

)

=
τFi
m

5
3

∫
d3 p f0(p)

p2

2m
. (214)
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We have in the momentum average:

∫
d3 p f0(p)

p2

2m
= n

∫
d3 p

p2

2m
Φ(p) = n

3
2

kT , (215)

using the equipartition theorem in the last step. We have then:

Ji
K =

τFi
m

5
2

nkT . (216)

Assuming an electric field coupled to a set of conduction electrons we have
the energy current:

JK = −τeE
m

5
2

kT . (217)

This says that an applied electric field induces a flow of heat in a system of
conduction electrons. We will return to this later.

We can treat the nonlinear corrections to the linear response results just
discussed. Let us focus on the stationary solution where F is a constant and
one can drop the time derivative term in the kinetic equation to obtain the
steady-state result:

0 = −F · ∇p f (p)− 1
τ

[ f (p) − f0(p)] . (218)

Let p0 = τF so we can write:(
1 + p0 · ∇p

)
f (p) = f0(p) . (219)

With p0 = p0ẑ then: (
1 + p0

∂

∂pz

)
f (p) = f0(p) . (220)

Next, we can assume:

f (p) = e−pz/p0φ(p) , (221)

so that the kinetic equation, Eq. (220), is reduced to:

p0
∂

∂pz
φ(p) = epz/p0 f0(p) . (222)

Integrating this equation:

φ(p) =
1
p0

∫ pz

−∞
dz ez/p0 f0(px, py, z) (223)
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and putting this back into Eq. (221) we obtain:

f (p) =
1
p0

∫ pz

−∞
dz e(z−pz)/p0 f0(px, py, z) . (224)

Letting z = pz + p0y we obtain:

f (p) =
∫ 0

−∞
dy ey f0(px, py, pz + p0y) . (225)

Let y → −y in the integral to obtain the final result:

f (p) =
∫ ∞

0
dye−y f0(px, py, pz − τFy) . (226)

It is left to Problem 7.13 to check the normalization of f (p), recover the
linear response result for small F, and find the nonlinear contributions to the
electrical and heat currents.

7.3.2
Thermal Gradients

Besides the application of a direct mechanical force one can have thermal
perturbations corresponding to a weak thermal gradient in the system. This
is treated in the theory by using the idea of local equilibrium. This takes ad-
vantage of the fact that the steady-state solution of the nonlinear Boltzmann
equation are of the form given by Eq. (117) where n, and T and u may be slow-
ly varying functions of position. With a temperature that is slowly varying in
space, we replace f0 in the kinetic equation with:

f0[p, T(x)] =
n

[2πmkBT(x)]3/2 e−β(x)p2/2m . (227)

In the absence of applied external forces one has the kinetic equation:(
∂

∂t
+

p · ∇x

m

)
f (x, p, t) = −1

τ
[ f (x, p, t)− f0(p, T(x)] . (228)

Looking for a stationary solution, the kinetic equation reduces to:

p · ∇x

m
f (x, p) = −1

τ
[ f (x, p)− f0(p, T(x)] . (229)

If we write:

g(x, p) = f (x, p)− f0(p, T(x)) , (230)

then the kinetic equation takes the form:

g(x, p) = −τ
p · ∇x

m
f (x, p) (231)
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and for weak gradients we can treat g(x, p) as a perturbation. We have then,
to lowest order:

g(x, p) = −τ
p · ∇x

m
f0(x, p)

= −τ
(

p · ∇x

m
T(x)

)
∂

∂T(x)
f0(x, p) . (232)

We assume that the variation in temperature is small. In particular, the tem-
perature gradient is small. To linear order in the temperature gradient we can
replace the temperature by its average value, T(x) ≈ T, with corrections that
depend on the gradient. Then, to linear order, Eq. (232) reads:

g(x, p) = −τ
(

p · ∇x

m
T(x)

)
∂

∂T
f0(p)

= −τ
(

p · ∇x

m
T(x)

)
∂

∂T
n

e−βp2/2m

(2πmkBT)3/2

= −τ
(

p · ∇x

m
T(x)

)
f0(p)

(
− 3

2T
+

p2

2m
1

kBT2

)

= −τv · ∇xT(x)
f0(p)
kBT2

(
ε0(p)− 3

2
kT
)

= βτε̃0(p)v ·
(
−∇xT(x)

T

)
f0(p) . (233)

Remember Eq. (200), that gives the linear change in the average phase-space
density for an applied mechanical force. We see Eqs.(200) and (233) are of the
same form if we identify the effective driving forces:

Fe = E , (234)

Fq = −
�∇xT(x)

T
(235)

and the associated effective currents:

ve = −ev (236)

vq = ε̃0(p)v . (237)

Then both types of perturbations can be written in the same form:

gα = βτvα · Fα f0(p) , (238)

where α = e and q.
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Thus we can write the electric current:

J =
∫

d3 p vegα(p) , (239)

and the heat density current:

Jq =
∫

d3 p vqgα(p) . (240)

This more symmetric notation will be useful to us later.
The average heat-current density due to a temperature gradient is given

then by:

Jq =
∫

d3 p vqgq(p) , (241)

where, setting α = q in Eq. (238),

gq = βτvq · Fq f0(p) . (242)

Since Fq is proportional to the temperature gradient we can write average
heat-current density in the standard form:

Ji
q = −∑

j
λij∇

j
xT(x) ,

where the thermal conductivity is given by:

λij =
βτ
T

∫
d3 p ε̃2

0(p)vivj f0(p) . (243)

The remaining integral is evaluated in Problem 7.32 with the result:

λij = λδij , (244)

where:

λ =
7
2

τnk2
BT

m
. (245)

Thus we obtain Fourier’s law:

Jq = −λ�∇T(x) , (246)

with the thermal conductivity given by Eq. (245).
If we use the mean-free time, Eq. (49), to estimate τ, we find that the thermal

conductivity is given by:

λ =
7
8

kB√
π

v0

r2
0

, (247)
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where mv2
0 = kBT defines the thermal speed. This can be compared with the

lowest order result from the Boltzmann equation given by:

λ =
75
64

kB√
π

v0

r2
0

. (248)

See Chapter 12 in Ref. [18].
If we compare our expression for the electrical conductivity with that for the

thermal conductivity we see that both depend on the relaxation time τ. Thus
it is interesting to consider the ratio of the two where this dependence cancels.
This ratio is given in the single relaxation time approximation by:

λ
σ

=
7τk2

BTnm
2mτe2n

=
7
2

k2
BT
e2 , (249)

which is linear in temperature. If we plot the Lorentz number, λ
Tσ it should be

a constant. This is the old and famous Wiedemann-Franz (1853) result. If one
generalizes the results to include corrections due to quantum statistics one can
show [19]:

λ
Tσ

=
π2

3

(
kB

e

)2
, (250)

which agrees well with experiments.
It is interesting to consider the case where we have both an applied elec-

tric field and a temperature gradient. In this case the steady-state part of the
singlet distribution that contributes to the currents is:

g(p) = ∑
γ

gγ(p) = ∑
γ

βτvγ · Fγ f0(p) , (251)

where we have used Eq. (238). The steady-state currents are given by:

Ji
α =

∫
d3 pvi

αg(p)

=
∫

d3 pvi
α ∑

γ
βτvγ · Fγ f0(p)

= ∑
γ,j

Lij
αγFj

γ , (252)

where the response function is given by:

Lij
αγ = βτ

∫
d3 pvi

αvj
γ f0(p) . (253)

Assuming our system is isotropic we have:

Lij
αγ = δijLαγ , (254)
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Ji
α = ∑

γ
LαγFi

γ (255)

and:

Lαγ =
βτ
3

∫
d3 pvα · vγ f0(p) . (256)

We have already shown that:

Lee = σ (257)

Lqq = λT . (258)

For the off-diagonal components we have:

Leq = Lqe =
βτ
3

∫
d3 pve · vq f0(p) (259)

= − eτ
m

kBT (260)

and the momentum integral leading to the final result is worked out in Pro-
blem 7.33. The symmetry between off-diagonal elements of L was discovered
[20] by Lars Onsager in 1931. Clearly our analysis here is much less general
than that we gave in our discussion of linear response theory in Chapter 2.

For a given temperature gradient we can adjust the applied electric field
such that there is no net electric current. This is known as the Seebeck ef-
fect [21], and gives the relation between the applied electric field and the
temperature gradient:

E = Q�∇T . (261)

Setting Eq. (255), with α = e, to zero, allows one to compute the Seebeck
coefficient as:

Q = − eτnkB

mσ
= − eτnkBm

mne2τ
= − kB

e
. (262)

There are many variations one can play on this theme. One can for example
look for the form of the thermal conductivity for the case where the is no net
charge flow.

7.3.3
Shear Viscosity

We can also compute the shear viscosity within the single-relaxation time ap-
proximation. In this case an off-diagonal component of the momentum current
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(stress tensor) is driven by a gradient of the (small) local inhomogeneous flow
velocity u(x). Thus we assume, in analogy with the assumption of an inho-
mogeneous temperature in treating the thermal conductivity, that we have
inhomogeneous flow velocity, u(x). In this case, the local equilibrium solution
for the singlet distribution has the form f0[p −mu(x)]. The induced current in
this case are the off-diagonal components of the stress tensor with the consti-
tutive relation:

σxy = −η
(

∂ux

∂y
+

∂uy

∂x

)
(263)

defining the shear viscosity. We calculate the off-diagonal component of the
stress tensor using:

σxy =
∫

d3 p
px py

m
f (x, p) . (264)

In complete analogy to Eq. (229), we have in the steady-state limit for the
single-relaxation time approximation:

p · ∇
m

f (x, p) = −1
τ

[ f (x, p)− f0(p − mu(x))] . (265)

The solution for f can be expressed in the form:

f (x, p) = f0(p − mu(x)) + gs(x, p) , (266)

where gs is treated as a perturbation. To lowest order we have:

gs(x, p) = −τ
p · ∇

m
f0(p − mu(x)) . (267)

Using the chain rule for differentiation and expanding to lowest order in u:

gs(x, p) = −τ ∑
ij

pi
m
∇j

p [ f0(p − mu(x))]∇i
x
[
pj − muj(x)

]
= τ ∑

ij
pi∇

j
p f0(p)∇i

xuj(x) . (268)

gs can be written in the same basic form as for the electric and thermal gradient
forces:

gs(p) = −β
τ
m ∑

ij
pi pj f0(p)∇i

xuj

= −β
τ

2m ∑
ij

pi pj f0(p)
(
∇i

xuj +∇j
xui

)

= −βmτ ∑
ij

vivj

2
Fij , (269)
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where:

Fij =
(
∇i

xuj + ∇j
xui

)
. (270)

An off-diagonal component of the average stress tensor is given by:

σxy =
∫

d3 p
px py

m
( f0(p − mu(x)) + gs(x, p)) . (271)

It is left to Problem 7.21 to show that the local-equilibrium contribution, f0(p−
mu(x)), gives no contribution to the average stress tensor up to second order.
Therefore, to first order in the driving force, we have for the stress tensor:

σxy =
∫

d3 p
px py

m
gs(p)

=
∫

d3 p
px py

m
(−βmτ) ∑

ij

vivj

2
Fij f0(p)

= (−βτ)
∫

d3 ppx py
1
2
(vxvy + vyvx)Fxy f0(p)

= −ηFxy , (272)

where the shear viscosity is given by:

η =
βτ
m2

∫
d3 pp2

x p2
y f0(p)

=
βτ
m2 n〈p2

x〉〈p2
y〉 . (273)

Using the equipartition function 〈p2
x〉 = mkBT the shear viscosity is given by:

η = τnkBT . (274)

The mean-free time determined earlier can be used to estimate τ:

τ−1 = 4nr2
0

√
πkBT

m
. (275)

Using Eq. (275) back in Eq. (274), the shear viscosity is given by:

η =
1

4r2
0

√
mkBT

π
=

mv0

4
√

πr2
0

, (276)

where mv2
0 = kBT. Notice that the viscosity, like the thermal conductivity,

is independent of the density in the low-density limit. We will return to this
expression at the end of this chapter and compare with a more direct kinetic
theory calculation.
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It is shown in Problem 7.34 that the electric and thermal gradient diving
forces do not drive the off-diagonal components of the stress tensor at linear
order.

7.3.4
Hall Effect

Suppose we have applied steady electric and magnetic fields and have a steady-
state solution to the Boltzmann equation of the form:

f = f0 + g , (277)

where:

g = −τF · ∇p f (278)

and F is the electric plus Lorentz force:

F = −e
(

E +
v
c
× B
)

. (279)

Writing out Eq. (278) in terms of g we have:

g = eτ
(

E +
v
c
× B
)
· ∇p ( f0 + g)

= eτ(E +
v
c
× B) ·

[
−β

p
m

f0 + ∇pg
]

. (280)

Since:

(v × B) · v = 0 , (281)

we have the equation for g:

g = eτE · ∇p( f0 + g) + eτ
(v

c
× B
)
· ∇pg . (282)

The electric current is given then by multiplying by −evi and integrating over
all momenta:

Ji =
∫

d3 p(−evi)g(p)

= −e2τ ∑
j

Ej

∫
d3 p

pi
m
∇j

p f0(p)− e2τ ∑
j

Ej

∫
d3 p

pi
m

∇j
pg(p)

−e2τ
c

∫
d3 p vi(v × B) · �∇pg(p) . (283)

In the middle term we have:∫
d3 p pi ∇

j
pg(p) = −

∫
d3 pδijg(p) = −δij

∫
d3 p[ f (p)− f0(p)]
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= −δij(n − n) = 0 , (284)

and we have the electric current in the form:

Ji = σEi + J(1)
i , (285)

where σ = ne2τ
m is the Drude result, and:

J(1)
i = −e2τ

c

∫
d3 p vi ∑

jk�
εjk�vkB�∇

j
pg(p)

=
e2τ
cm2

∫
d3 p g(p) ∑

jk�
εjk�∇

j
p (pi pk) B�

=
e2τ
cm2

∫
d3 p g(p) ∑

jk�
εjk�B�

(
δij pk + piδjk

)

=
e2τ
cm2 ∑

k�
εik�B�

∫
d3 p pk g(p)

=
e2τ
cm ∑

k�
εik�B�

(
− Jk

e

)

= − eτ
cm ∑

k�
εik� JkB� . (286)

Putting this back into Eq. (285) we have the equation for the electric current:

J = σE − eτ
cm

J × B . (287)

Let us interpret this result in the context of the following system configu-
ration. Apply an electric field Ex along the x-direction. This drives a current
along the x-direction:

Jx = σEx . (288)

Now apply a magnetic field B in the z-direction. The Lorentz force will cause
the electrons to move in the y-direction. Thus B induces an electric field in
the y-direction that balances the Lorentz force in the the y-direction. This is
known as the Hall effect [22]. Thus we expect:

Ey = RH JxB , (289)

where the Hall coefficient RH is the constant of proportionality. Applying this
geometry to Eq. (287) we find:

Jxx̂ = σE − eτ
cm

J × B
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= σE − eτ
cm

JxB(x̂ × ẑ)

= σE +
eτ
cm

JxBŷ . (290)

The x-component reduces to Eq. (288) while the y component is given by:

σEy = − eτ
cm

JxB . (291)

This gives the Hall coefficient:

RH =
Ey

JxB
= − τe

mcσ
= − τem

mcne2τ
= − 1

nec
. (292)

Measurement of the Hall coefficient gives a method for determining [23] the
density of charge carried in the current.

If we introduce the cyclotron frequency:

ωc =
eB
mc

(293)

and the dimensionless magnetic field:

H =
τe
mc

B = τωcẑ , (294)

then Eq. (287) can be written in the simple form:

J = σE − J × H . (295)

It is left to Problem 7.15 to show that one can solve for J with the result:

J =
σ

1 + H2 [E + H × E + (E · H) H] . (296)

This can be written in the Ohm’s law form:

Ji = ∑
j

σijEj , (297)

where we have the conductivity matrix:

σij =
σ

1 + H2

[
δij + ∑

j
εi�jH� + HiHj

]
. (298)

7.4
Modern Kinetic Theory

Having established the traditional approach to kinetic theory, we now want
to discuss a more modern and systematic approach. We will use the memory
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function approach developed in Chapter 5 to develop this theory. The ap-
propriate dynamical variable in this case, ψ in Chapter 5, is the phase-space
density given by:

f̂ (1) = f̂ (x1, p1) =
N

∑
i=1

δ (x1 − ri) δ (p1 − pi) . (299)

The correlation function of interest in this case is the Laplace transform of the
phase-space correlation function:

C(12; z) = −i
∫ ∞

0
dteizt〈δ f̂ (2)δ f̂ (1; t)〉

= 〈δ f̂ (2)R(z)δ f̂ (1)〉 , (300)

where, as before, the resolvant operator is given by:

R(z) = (z + L)−1 . (301)

One of the motivations for computing C(12; z) is that we then determine
the dynamic structure factor that is measured in scattering experiments. The
connection to conventional transport kinetic theory developed in the first half
of this chapter is via linear response theory. Earlier we computed the nonequi-
librium average: f (1) = 〈 f̂ (1)〉NEQ. Suppose we have a disturbance generated
by a potential U(1) that couples linearly to the phase-space density in the
governing Hamiltonian,

HT = H0 −
∫

d1 f̂ (1)U(1, t1) , (302)

then classically we have in linear response theory:

f (1) =
∫ t1

−∞
dt2β

∫
d3x2

∫
d3 p2 C(12; t1 − t2)U(2; t2) . (303)

In our memory-function development in Chapter 5 we showed that C(12; z)
satisfies the kinetic equation:

zC(12; z)−
∫

d3 K(13; z)C(32; z) = S(12) , (304)

where
∫

d3 ≡
∫

d3x3d3 p3 and the equal-time correlation function is given by:

S(12) = 〈δ f̂ (2)δ f̂ (1)〉 . (305)

The memory function in Eq. (304) is given by:

K(13; z) = K(x1 − x3, p1, p3; z) = K(s)(13) + K(c)(13; z) , (306)
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where the static part of the memory function is given by:
∫

d3 K(s)(13)S(32) = −〈δ f̂ (2)Lδ f̂ (1)〉 (307)

while the collisional part of the memory function is given by:
∫

d3 K(c)(13; z)S(32) = −〈[Lδ f̂ (2)]R(z)Lδ f̂ (1)〉

+
∫

d3d4 〈[δ f̂ (3)]R(z)Lδ f̂ (1)〉

×C−1(34; z)〈[Lδ f̂ (2)]R(z)δ f̂ (4)〉 . (308)

The elements of Eq. (304) can be worked out more explicitly. First let us con-
centrate on the static properties. The first thing is to compute the equilibrium
average of the field itself. We have from our earlier work:

〈 f̂ (1)〉 = f0(1) = nΦ(p) , (309)

which is just the Maxwell result. Next we need the static correlation function.
We find:

S(12) = 〈δ f̂ (2)δ f̂ (1)〉 = 〈 f̂ (2) f̂ (1)〉 − 〈 f̂ (2)〉〈 f̂ (1)〉

=

〈
N

∑
i=1

δ (x1 − ri) δ (p1 − pi)
N

∑
j=1

δ
(
x2 − rj

)
δ
(
p2 − pj

)〉
− f0(1) f0(2)

=

〈
N

∑
i=1

δ (x1 − ri) δ (p1 − pi) δ (x2 − ri) δ (p2 − pi)

〉

+

〈
N

∑
i �=j=1

δ (x1 − ri) δ (p1 − pi) δ
(
x2 − rj

)
δ
(
p2 − pj

)〉
− f0(1) f0(2)

= δ (x1 − x2) δ (p1 − p2) f0(1)

+ f0(1) f0(2)g(x1 − x2) − f0(1) f0(2) , (310)

where we show in Problem 7.22 that:

f0(1) f0(2)g(x1 − x2)

=

〈
N

∑
i �=j=1

δ (x1 − ri) δ (p1 − pi) δ
(
x2 − rj

)
δ
(
p2 − pj

)〉
(311)

and the radial distribution function is defined by:

n2g(x1 − x2) = 〈
N

∑
i �=j=1

δ (x1 − ri) δ
(
x2 − rj

)
〉 . (312)
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We write finally:

S(12) = δ (x1 − x2) δ (p1 − p2) f0(1) + f0(1) f0(2)h(x1 − x2) , (313)

where:

h(x1 − x2) = g(x1 − x2)− 1 (314)

is the hole function, which vanishes for |x1 − x2| large. For a brief discussion
of the evaluation of h in a low-density expansion see p. 299 in ESM.

We turn next to the static part of the memory function given by:∫
d3 K(s)(13)S(32) = −〈δ f̂ (2)Lδ f̂ (1)〉 . (315)

Using the identity derived in Chapter 5 we have:∫
d3 K(s)(13)S(32) = −iβ−1〈{ f̂ (1), f̂ (2)}〉 , (316)

which requires us to work out the Poisson bracket between f̂ (1) and f̂ (2). This
is left to Problem 7.23, where we show:

{ f̂ (1), f̂ (2)} =
(
∇p1 · ∇x2 −∇p2 · ∇x1

) [
δ (x1 − x2) δ (p1 − p2) f̂ (1)

]
. (317)

We next need to take the equilibrium average of this result to obtain:

〈{ f̂ (1), f̂ (2)}〉 =
(
∇p1 · ∇x2 −∇p2 · ∇x1

)
[δ (x1 − x2) δ (p1 − p2) f0(1)]

= −∇x1 ·
(
∇p1 +∇p2

)
[δ (x1 − x2) δ (p1 − p2) f0(1)]

= −∇x1 ·
[
δ (x1 − x2) δ (p1 − p2)∇p1 f0(1)

]
= β

p1 · ∇x1

m
[δ (x1 − x2) δ (p1 − p2) f0(1)] . (318)

Our equation for the static part of the memory function is given by:∫
d3x3d3 p3 K(s)(x1 − x3; p1p3)S(x3 − x2; p3p2)

= −i
p1 · ∇x1

m
[δ (x1 − x2) δ (p1 − p2) f0(1)] . (319)

Because of the translational invariance it is useful to Fourier transform over
space and obtain:∫

d3 p3 K(s)(k; p1p3)S(k; p3p2) =
k · p1

m
δ (p1 − p2) f0(1) . (320)

This is still an integral equation for K(s). The Fourier transform of the static
correlation function is given by:

S(k; p1, p2) = δ (p1 − p2) f0(1) + f0(1) f0(2)h(k) , (321)
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where:

h(k) =
∫

d3x1 e−ik·(x1−x2)h(x1 − x2) . (322)

If we integrate S(k; p1, p2) over p1 and p2, we find that the static structure
factor is given by:

nS(k) =
∫

d3 p1d3 p2S(k; p1, p2) = n + n2h(k) . (323)

Using Eq. (321) in Eq. (320) gives:∫
d3 p3 K(s)(k; p1p3)S(k; p3p2) = K(s)(k; p1, p2) f0(2)

+
∫

d3 p3 K(s)(k; p1p3) f0(3) f0(2)h(k)

=
k · p1

m
δ (p1 − p2) f0(1) . (324)

Next we integrate this equation over p2 and use the fact that:∫
d3 p2 f0(2) = n , (325)

to obtain: ∫
d3 p3 K(s)(k; p1p3) f0(3)[1 + nh(k)] =

k · p1

m
f0(1) (326)

or: ∫
d3 p3 K(s)(k; p1p3) f0(3) =

k · p1

m
f0(1)

[1 + nh(k)]
. (327)

Putting this result back into Eq. (324) we obtain:

K(s)(k; p1p2) =
k · p1

m
δ (p1 − p2)−

k · p1

m
f0(1)

h(k)
[1 + nh(k)]

. (328)

It is conventional to introduce the direct correlation function [24]:

cD(k) =
h(k)

[1 + nh(k)]
, (329)

and obtain finally:

K(s)(k; p1p2) =
k · p1

m
δ (p1 − p2) −

k · p1

m
f0(1)cD(k) . (330)

7.4.1
Collisionless Theory

Let us suppose that the collision part of the memory function is zero, K(c) = 0,
and we can investigate the physics in the kinetic equation associated with
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the static part of the memory function alone. This development is relevant
during the short-time high-frequency regime or where the system is weakly
interacting. The kinetic equation in this case takes the form:(

z − k · p1

m

)
C(k, p1p2, z) +

∫
d3 p3

k · p1

m
f0(1)cD(k)C(k, p3p2, z)

= S(k, p1p2) . (331)

This is an integral equation in the momentum variables. Fortunately we can
solve this equation exactly because it is of separable form. To see this divide
Eq. (331) by z − k·p1

m and integrate over p1. This leads to the equation:
∫

d3 p3 C(k, p3p2, z) [1 + cD(k)I1(k, z)] = Is(k, p2, z) , (332)

where:

I1(k, z) =
∫

d3 p3
k · p3

m
f0(3)

z − k·p3
m

(333)

and:

Is(k; p2, z) =
∫

d3 p3
S(k, p3p2)

z − k·p3
m

. (334)

Putting the expression for the static correlation function, given by Eq. (321),
into Eq. (334) we obtain:

Is(k; p2, z) =
f0(2)

z − k·p2
m

+ f0(2)h(k)I0(k, z) , (335)

where:

I0(k, z) =
∫

d3 p3
f0(3)

z − k·p3
m

. (336)

Notice that:

I1(k, z) = −n + zI0(k, z) . (337)

Putting Eq. (335) back into Eq. (332) we find:
∫

d3 p3 C(k, p3p2, z)

=
1

1 + cD(k)I1(k, z)

(
f0(2)

z − k·p2
m

+ f0(2)h(k)I0(k, z)

)
. (338)



252 7 Kinetic Theory

Putting this back into Eq. (331), we have:

C(k, p1p2, z) =
S(k, p1p2)

z − k·p1
m

−k · p1

m
f0(1)cD(k)

1
1 + cD(k)I1(k, z)

×
(

f0(2)

z − k·p2
m

+ f0(2)h(k)I0(k, z)

)
. (339)

It is shown in Problem 7.24 that this can be written in a form symmetric in p1
and p2:

C(k, p1p2, z) =
f0(1)

z − k·p1
m

δ (p1 − p2)

+
f0(1) f0(2)cD(k)

(z − k·p1
m )(z − k·p2

m )

1
1 + cD(k)I1(k, z)

×
[
(z − k · (p1 + p2)

m
)[1 + zh(k)I0(k, z)]

× +
k · p1

m
k · p2

m
h(k)I0(k, z)

]
. (340)

The solution for the density–density correlation function is given by integra-
ting Eq. (338) over p2 to obtain:

Cnn(k, z) =
1

1 + cD(k)I1(k, z)
[I0(k, z) + nh(k)I0(k, z)]

= S(k)
I0(k, z)

1 + cD(k)I1(k, z)
, (341)

where the static structure factor, from Eq. (323), is S(k) = 1 + nh(k). We must
still evaluate the integrals I0 and I1.

7.4.2
Noninteracting Gas

Let us look first at the case of noninteracting particles where cD(k) = 0 and
the phase-space fluctuation function is given by:

C(0)(k, p1p2, z) =
f0(1)

z − k·p1
m

δ (p1 − p2) . (342)

Then in particular, the density–density fluctuation function is given by:
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C(0)
nn (k, z) =

∫
d3 p1d3 p2C(0)(k, p1p2, z)

=
∫

d3 p1
f0(1)

z − k·p1
m

= I0(k, z) . (343)

The correlation function (Fourier transform) is given by:

C(0)
nn (k, ω) = −2 Im C(0)

nn (k, ω + iη)

= −2 Im
∫

d3 p1
f0(1)

ω + iη − k·p1
m

= −2
∫

d3 p1 f0(1)(−π)δ
(

ω − k · p1

m

)

=
∫ ∞

−∞
dt
∫

d3 p1 f0(1)eit
(

ω− k·p1
m

)
. (344)

The integrals over momentum are separable. We need, for example,

∫
dpxe−βp2

x/2me−itkxpx/m =

√
2πm

β
e−t2k2

x/2mβ , (345)

which leads to:

C(0)
nn (k, ω) = n

(
β

2πm

)3/2 ∫ ∞

−∞
dteitω

(√
2πm

β

)3

e−t2(k2
x+k2

y+k2
z)/2mβ

= n
∫ ∞

−∞
dteitωe−t2k2v2

0/2

= n
√

2π
kv0

e
− ω2

2k2v2
0 , (346)

where kBT = mv2
0. We see that the density–density correlation function is a

Gaussian in frequency for a system of free particles. This is to be contrasted
with the hydrodynamical spectrum, which consists of three Lorentzians. The
hydrodynamical spectrum is valid in the regime where k� 
 1 where � is
the mean free path. The free particle spectrum is valid in the opposite limit
k� � 1. This corresponds to probing regions ≈ 1/k, sufficiently small that, on
average, the particles appear to be free.

7.4.3
Vlasov Approximation

Let us recall the collisionless solution for Cnn(k, z) given by Eq. (341):

Cnn(k, z) =
S(k)I0(k, z)

1 + cD(k)I1(k, z)
. (347)
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This approximation is related to the linearized Vlasov approximation [25],
which is useful in treating charged systems. In the case of neutral systems
it leads to a discussion of collisionless sound seen [26] at high frequencies. For
a discussion of charged systems from this point of view see Ref. [27].

In order to go further we need some understanding of the direct correlation
function. This quantity was discussed in Chapter 4 of ESM [28]. In the low-
density limit it is easy to show that the pair correlation function is given by:

g(r) = e−βV(r) , (348)

where V(r) is the pair potential acting between two particles. The hole functi-
on is given then by:

h(r) = e−βV(r) − 1 (349)

and the Fourier transform:

h(k) =
∫

d3r e−ik·rh(r) (350)

=
∫

d3r e−ik·r
(

e−βV(r) − 1
)

. (351)

We can evaluate this explicitly for a system of hard spheres where:

V(r) =
0 r > r0

∞ r < r0 ,
(352)

where r0 is a hard-sphere diameter. We find in Problem 7.25 that for this case:

h(k) = −4π
k3 [sin(kr0) − kr0 cos(kr0)] . (353)

We have from Eq. (329) that to lowest order in the density:

cD(k) = h(k) . (354)

We can also expand (see Problem 7.35) the direct correlation function as a
power series in the potential. To first order in V, independent of the density,

cD(k) = h(k) =
∫

d3r e−ik·r (−βV(r)) = −βV(k) . (355)

As a final example, we have that in the case of a Coulomb gas, due to the
long range nature [29] of the interactions, that:

cD(k) = lim
k→0

−βV(k) = −β4πe2/k2 . (356)
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Armed with this information, let us look at the denominator in Eq. (347) for
small wavenumbers. We have, expanding in powers of k,

I1(k, z) =
∫

d3 p
k · p

m
f0(p)

z − k·p
m

=
1
z2

∫
d3 p
(

k · p
m

)2
f0(p) +O(k4) . (357)

It is shown in Problem 7.26 that:
∫

d3 p
(

k · p
m

)2
f0(p) = k2 kBT

m
= (kv0)2 . (358)

To lowest order in k,

I0(k, z) =
∫

d3 p
f0(p)

z − k·p
m

=
n
z

. (359)

The density–density fluctuation function is then given by:

Cnn(k, z) =
S(k) n

z
1 + cD(k)n(kv0)2/z2

= nS(k)
z

z2 + cD(k)n(kv0)2 . (360)

Since we have assumed large z and small k, the poles at z = ±
√
−cD(k)n(kv0)2

are unphysical. Remember, however, that for a plasma, for small wavenum-
bers the direct correlation function is given by Eq. (356). Putting this into Eq.
(360) we have:

Cnn(k, z) = nS(k)
z

z2 − ω2
p

, (361)

where the plasma frequency is given by:

ω2
p =

4πe2n
m

. (362)

We can then write:

Cnn(k, z) = nS(k)
1
2

[
1

z − ωp
+

1
z + ωp

]
. (363)

The correlation function is given by:

Cnn(k, ω) = −2 Im Cnn(k, ω + iη)

= nS(k)π
[
δ(ω − ωp) + δ(ω + ωp)

]
. (364)
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In a plasma the dynamics are dominated by plasma modes or plasma oscilla-
tions:

Cnn(k, t) = nS(k) cos(ωpt) . (365)

7.4.4
Dynamic Part of Memory Function

Let us now move on to discuss the dynamic or collisional part of the memory
function. We have from Eq. (308):

∫
d3 K(c)(13; z)S(32) = −〈[Lδ f̂ (2)]R(z)Lδ f̂ (1)〉

+
∫

d3d4 〈[δ f̂ (3)]R(z)Lδ f̂ (1)〉C−1(34; z)〈[Lδ f̂ (2)]R(z)δ f̂ (4)〉. (366)

We have, from Eq. (5.101), the identity:

L f̂ (1) = −L0(1) f̂ (1)−
∫

d1′ LI(11′) f̂ (1) f̂ (1′) , (367)

where the kinetic part of the single-particle Liouville operator is:

L0(1) = −i
p1 · ∇x1

m
(368)

and:

LI(11′) = i∇x1V(x1 − x1′) · (∇p1 −∇p1′ ) . (369)

We recall from our general discussion of memory functions that the linear
term −L0(1) f̂ (1) will not contribute to the dynamic part of the memory func-
tion, so:∫

d3 K(c)(13; z)S(32) = −
∫

d1d1′LI(11′)LI(22′)

×
[
〈δ[ f̂ (2) f̂ (2′)]R(z)δ[ f̂ (1) f̂ (1′)]〉

−
∫

d3d4 〈[δ f̂ (3)]R(z)δ[ f̂ (1) f̂ (1′)]〉

×C−1(34; z)〈δ[ f̂ (2) f̂ (2′)]R(z)δ f̂ (4)〉
]

. (370)
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To simplify the notation we define the new correlation function:

G(11′, 22′; z) = 〈δ[ f̂ (2) f̂ (2′)]R(z)δ[ f̂ (1) f̂ (1′)]〉

−
∫

d3d4 〈[δ f̂ (3)]R(z)δ[ f̂ (1) f̂ (1′)]〉

×C−1(34; z)〈δ[ f̂ (2) f̂ (2′)]R(z)δ f̂ (4)〉 . (371)

The dynamic part of the memory function is written then in the form:
∫

d3 K(c)(13; z)S(32) = −
∫

d1′d2′LI(11′)LI(22′)G(11′, 22′; z) . (372)

There is still an integral equation to solve for K(c). Fortunately, we can easily
solve for K(c)(13; z). Inserting:

S(32) = δ(32) f0(2) + f0(3) f0(2)h(x3 − x2) (373)

on the left in Eq. (372) we have:
∫

d3 K(c)(13; z)S(32) = K(c)(12; z) f0(2)

+
∫

d3 K(c)(13; z) f0(3) f0(2)h(x3 − x2) . (374)

We see that we must treat the integral
∫

d3 p3K(c)(13; z) f0(3). This quantity
vanishes due to conservation of particle number reflected in the quantity:

∫
d3 p2

∫
d2′LI(22′)G(11′, 22′; z) = 0 . (375)

We have then:

K(c)(12; z) f0(2) = −
∫

d1′d2′LI(11′)LI(22′)G(11′, 22′; z) . (376)

We need to evaluate K(c) in some physically sensible approximation.

7.4.5
Approximations

One can evaluate the dynamic part of the memory function in perturbation
theory in the coupling and in the density. It is not difficult to show that in
these limits the correlation function G(11′, 22′; z) has nice [30, 31] properties.
In particular, to lowest order in the potential (see Problem 7.30),

G00(11′, 22′; z) = [z − L0(1)− L0(1′)]−1 [δ(12)δ(1′2′) + δ(12′)δ(1′2)
]

× f0(1) f0(1′) . (377)
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If we put this result back into Eq. (376), we obtain the dynamic part of the
memory function for a weakly interacting system studied in detail in Refs.
[32, 33]. Here we move on to the low-density case. It was shown by Mazenko
[30] that one can develop a general and systematic analysis of G(11′, 22′; z).
One finds to lowest order in the density (see Problem 7.31):

G0(11′, 22′; z) = [z − L(11′)]−1 [δ(12)δ(1′2′) + δ(12′)δ(1′2)
]

× f0(11′) , (378)

where:

L(11′) = L0(1) + L0(1′) + LI(11′) (379)

is the full two-body Liouville operator,

δ(12) = δ (x1 − x2) δ (p1 − p2) , (380)

and:

f0(11′) = n2
(

β
2πm

)3
e−βH2(11′) , (381)

where:

H2(11′) =
p2

1
2m

+
p2

1′

2m
+ V(x1 − x1′) (382)

is just the Hamiltonian for a two-particle system. We can rewrite this result for
G0, remembering:

L(11′) f0(11′) = 0 (383)

G0(11′, 22′; z) = f0(11′)[z + L(22′)]−1 [δ(12)δ(1′2′) + δ(12′)δ(1′2)
]

. (384)

If we take the inverse Laplace transform, we have in the time regime:

G0(11′, 22′; t) = f0(11′)eitL(22′)

×
[
δ(12)δ(1′2′) + δ(12′)δ(1′2)

]
. (385)

If we then use the property that eitL(22′) propagates particles 2 and 2′ forward
in time, then for any function of the phase-space coordinates of particles 2 and
2′ we have:

eitL(22′)g(2, 2′) = g[2(t), 2′(t)] (386)

and:

G0(11′, 22′; t) = f0(11′)
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×
[
δ(12(t))δ(1′2′(t)) + δ(12′(t))δ(1′2(t))

]
. (387)

G0(11′, 22′; t) has the physical interpretation as the probability of finding two
particles at the points 1 and 1′ at time t given that the two particles are at 2
and 2′ at time t = 0. This amounts to solving the two-body problem given
the initial phase- space coordinates x2, p2, x2′ , p2′ . The low-density memory
function is given then by:

K(c)
0 (12; z) f0(2) = −

∫
d1′d2′LI(11′)LI(22′)[z − L(11′)]−1

×
[
δ(12)δ(1′2′) + δ(12′)δ(1′2)

]
f0(11′) . (388)

This expression has been studied rather extensively. Here we point out two
particular special cases. It can be shown [34] that:

lim
z→i0+

lim
k→0

K(c)
0 (k, pp′; z) f0(p′) = iKB(pp′) f0(p′) , (389)

where KB is the linearized Boltzmann collision operator found earlier [Eq.
(125)].

A second interesting case, where we can investigate the low-density memo-
ry function, is the case of hard spheres. It has been shown [15] that for hard
spheres:

K(c)
0 (k, pp′; z) f0(p′) = K(c)

1 (k, pp′; z) f0(p′)

+K(c)
2 (k, pp′; z) f0(p′) , (390)

where:

K(c)
2 (k, pp′; z) f0(p′) =

k · p′

m
c(0)

D (k) f0(p) f0(p′) , (391)

where c(0)
D (k) is the low-density expression for the direct correlation function

for a system of hard spheres, and we also have:

K(c)
1 (k, pp′; z) f0(p′) = i

∫
d3 p1dΩrσ

r̂ · (p − p1)
m

θ[r̂ · (p1 − p)]

× f0(p) f0(p1)
[
δ(p′ − p∗) − δ(p′ − p)

+eik·r̂r0δ(p′ − p∗
1) − e−ik·r̂r0δ(p′ − p1)

]
, (392)

where the post-collision momentum is given by:

p∗ = p − 2r̂(r̂ · p) (393)

and satisfies (p∗)2 = p2. We see in this case that the dynamic part of the
memory function is explicitly frequency independent for hard spheres and
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low densities. This gives some justification for the use of the local time ap-
proximation in treating K(d) in fluids. If we include higher order terms in the
density expansion, the memory function will become frequency dependent
even for hard spheres.

Next we note that the low-density memory function differs from the Boltz-
mann result (where σ = πr2

0 for hard spheres) only through the term K(c)
2 and

the phase factors eik·r̂r0 in K(c)
1 . In the small k limit they coincide, as they must.

The small k corrections are due to the finite size of the particles: the collisions
occur when the centers of the particles are separated by a distance r0.

Once we have an approximation for K(c), we must still solve the associated
kinetic equation given by Eq. (304). For the approximation given by Eq. (390),
one can solve for the correlation functions using the method of kinetic models
introduced in Section 7.2.8. This calculation has been carried out by Mazenko,
Wei and Yip [15] and leads to results for Cnn(k, ω) valid over the whole k and
ω plane, but restricted to low-density systems. These calculations compare fa-
vorably with neutron-scattering experiments on dilute systems and show the
transition from the hydrodynamical (k� 
 1) to the kinetics of free particles
regime (k� � 1).

7.4.6
Transport Coefficients

Given a kinetic equation like Eq. (304), how do we calculate the transport
coefficients? This is discussed in detail by Forster and Martin [32]. We will give
a brief overview of the method. This analysis is facilitated by the introduction
of a linear vector space spanning momentum space. We assume there exist
orthonormal and complete momentum states:

〈p1|p2〉 = δ(p1 − p2) , (394)

where:

〈p1|L0(k)|p2〉 =
k · p1

m
〈p1|p2〉 (395)

K(s)(k, p1p2) = 〈p1|K(s)(k)|p2〉 (396)

K(c)(k, p1p2; z) = 〈p1|K(c)(k, z)|p2〉 (397)

S(k, p1p2) = 〈p1|S(k)|p2〉 (398)

C(k, p1p2; z) = 〈p1|C(k, z)|p2〉 , (399)
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where L0(k), K(s)(k), K(c)(k, z), S(k) and C(k, z) are now interpreted as ope-
rators. It is clear then that the kinetic equation can be written:∫

d3 p3〈p1|[z − K(k, z)]|p3〉〈p3|C(k, z)|p2〉

= 〈p1|S(k)|p2〉 . (400)

Since the momentum states are assumed to be complete,∫
d3 p3|p3〉〈p3| = 1 , (401)

Eq. (400) can be written as an operator equation:

[z − K(k, z)]C(k, z) = S(k) , (402)

which has the formal solution:

C(k, z) = [z − K(k, z)]−1S(k) . (403)

If we want to compute the shear viscosity, then we need to calculate the
transverse current fluctuation function:

Ct(k, z) =
∫

d3 p1

∫
d3 p2 px

1 px
2C(k, p1p2; z) , (404)

where we assume that k is in the z-direction. This can then be written as:

Ct(k, z) =
∫

d3 p1

∫
d3 p2px

1 px
2〈p1|[z − K(k, z)]−1S(k)|p2〉 . (405)

Looking at the quantity on the right-hand side,∫
d3 p2 px

2〈p3|S(k)|p2〉 =
∫

d3 p2 px
2 [δ(p2 − p3) f0(p2) + h(k) f0(p2) f0(p3)]

= px
3 f0(p3) (406)

and Eq. (405) reduces to:

Ct(k, z) =
∫

d3 p1

∫
d3 p2 px

1 px
2 f0(p2)〈p1|[z − K(k, z)]−1|p2〉 . (407)

We now need to compare this expression with the hydrodynamical result:

Ct(k, z) =
kBTmn

z + iηk2/mn
, (408)

valid for small k and z. The viscosity η can be extracted from the correlati-
on function using the limiting process we discussed in treating Green–Kubo
functions. As shown in detail in Problem 7.27 we have the identity:

η = lim
z→0

lim
k→0

iz
kBTk2 [zCt(k, z)− mnkBT] . (409)
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Inserting Eq. (407) into this expression we obtain:

η = lim
z→0

lim
k→0

iz
kBTk2

∫
d3 p1

∫
d3 p2

×px
1 px

2 f0(p2) < p1|z[z − K(k, z)]−1 − 1|p2 > , (410)

where we have used the result:∫
d3 p1

∫
d3 p2 px

1 px
2 f0(p2) < p1|p2 >= mnkBT . (411)

Next, if we use the operator identity:

z[z − K(k, z)]−1 = 1 + K(k, z)[z − K(k, z)]−1 , (412)

we find:

η = lim
z→0

lim
k→0

iz
kBTk2

∫
d3 p1

∫
d3 p2

×px
1 px

2 f0(p2)〈p1|K(k, z)[z − K(k, z)]−1|p2〉 . (413)

Using the operator identity, Eq. (412), one more time we obtain:

η = lim
z→0

lim
k→0

i
kBTk2

∫
d3 p1

∫
d3 p2 px

1 px
2 f0(p2)

×〈p1|K(k, z)
[
1 + [z − K(k, z)]−1K(k, z)

]
|p2〉 . (414)

We have then from the first term:

η1 = lim
z→0

lim
k→0

i
kBTk2

∫
d3 p1

∫
d3 p2 px

1 px
2 f0(p2)〈p1|K(k, z)|p2〉

= lim
z→0

lim
k→0

i
kBTk2

∫
d3 p1

∫
d3 p2 px

1 px
2 f0(p2)

×
[

k · p1

m
δp1 − p2) −

k · p1

m
cD(k) f0(p1) − K(d)(k, p1p2; z)

]

= lim
z→0

lim
k→0

−i
kBTk2

∫
d3 p1

∫
d3 p2 px

1 px
2K(d)(k, p1p2; z) f0(p2) . (415)

This contribution is clearly of second order in the density and can be dropped
consistently in an expansion in the density at lowest order.

The second contribution to the viscosity from Eq. (414) is given by:

η2 = lim
z→0

lim
k→0

i
kBTk2

∫
d3 p1

∫
d3 p2 px

1 px
2 f0(p2)

×〈p1|K(k, z)[z − K(k, z)]−1K(k, z)|p2〉 . (416)
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To lowest order in the density we can replace the K’s in the numerator by
L0(k). Since k is taken to be in the z-direction we have:

η2 = lim
z→0

lim
k→0

i
kBTm2

∫
d3 p1

∫
d3 p2 px

1 pz
1 px

2 pz
2 f0(p2)

×〈p1|[z − K(k, z)]−1|p2〉

=
i

kBTm2

∫
d3 p1

∫
d3 p2 px

1 pz
1 px

2 pz
2 f0(p2)

×〈p1|[K(0, i0+)]−1|p2〉 . (417)

From Eq. (389) we have that K(0, i0+) = iKB to lowest order in the density. We
then find:

η = η2

=
1

kBTm2

∫
d3 p1

∫
d3 p2 px

1 pz
1 px

2 pz
2 f0(p2)〈p1|(−KB)−1|p2〉 . (418)

To go further one must develop methods for handling the inverse of the
Boltzmann collision operator. Let us rewrite our expression for the shear vis-
cosity in the form:

η =
1

kBTm2 〈T|(KB)−1 f0|T〉 , (419)

where we have used the completeness of the momentum states |p > and
defined:

〈T|p〉 = px py (420)

and:

f0|p〉 = f0(p)|p〉 . (421)

It will turn out to be useful to deal with the symmetric operator:

ΓB = KB f0 . (422)

As a first step in this process, let us define the operator:

A = K−1
B f0 , (423)

which enters the equation for η. Multiply on the left by KB to obtain:

KB A = f0 . (424)

We then write this in the form:

KB f0 f−1
0 A = ΓB f−1

0 A = f0 . (425)
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Multiplying from the left by Γ−1
B , then f0 gives the symmetric form:

A = f0Γ−1
B f0 , (426)

and:

η =
1

kBTm2 〈T| f0Γ−1
B f0|T〉 (427)

=
1

kBTm2 〈T′|Γ−1
B |T′〉 , (428)

where 〈T′|p〉 = px py f0(p).
The next step is to construct the eigenvalues and and eigenfunctions of ΓB:

ΓB|λ〉 = Γλ|λ〉 . (429)

This has been accomplished for Maxwell molecules [16]. Assuming that this
set is complete and orthonormal we can write:

η =
1

kBTm2 ∑
λ
〈T′|λ〉 1

Γλ
〈λ|T′〉 . (430)

The simplest approximation, accurate to about 5%, is to assume that |T〉 is an
eigenvector of ΓB, and:

η =
1

kBTm2 〈T′|T〉 1
ΓT

〈T|T′〉 , (431)

where ΓT = 〈T|ΓB|T〉. The evaluation of the shear viscosity reduces to the
evaluation of momentum integrals:

〈T| f0|T〉 =
∫

d3 p1

∫
d3 p2 px

1 pz
1 px

2 pz
2 f0(p2)δ(p1 − p2) (432)

and:

〈T|KB f0|T〉 =
∫

d3 p1

∫
d3 p2 px

1 pz
1 px

2 pz
2KB(p1p2) f0(p2) . (433)

This evaluation of 〈T| f0|T〉 is not difficult and is evaluated in Problem 7.29.
The evaluation of the matrix element of the linearized Boltzmann collision
integral is involved and depends on the potential of interaction. If we restrict
ourselves to the case of hard spheres the analysis is discussed in detail in Ref.
[15]. The final result for the shear viscosity is given by:

η =
5mv0

16
√

πr2
0

. (434)

Clearly this result is within a numerical factor of the result given by Eq. (276).
One can then proceed to compute systematic corrections to Eq. (434). Clearly
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we can carry out a similar analysis for the thermal conductivity and bulk
viscosity. It should be clear that the key building blocks in carrying out a
detained analysis of kinetic theory is the set of matrices 〈i|K(c) f0|j〉. These can
be used to numerically solve the associated eigenvalue problem or one can
adopt the kinetic model approach discussed earlier in this chapter. We also
see that a given approximation for K(d) implies not just a contribution from
Eq. (417) but the full set of contributions given by Eq. (414).

These methods have been extended [30, 35] to higher order in the density
where one generates long-time tails in the correlation functions that enter the
Green–Kubo formulae. We will treat these long-time tails using less involved
methods in Chapter 9.
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7.6
Problems for Chapter 7

Problem 7.1: Show that the singlet distribution function f (x, p), defined by
Eqs.(1) and (6), is related to f (x, v), defined by Eq. (12), by f (x, v) = m3 f (x, p)
where m is the mass and we work in three dimensions.
Problem 7.2: Evaluate the integral:

a = n
∫ ∞

0
v3dv

∫ π/2

0
dθ sin θ cos θ

∫ 2π

0
dφ Φ(v) ,

giving the effusion rate for a dilute gas in thermal equilibrium. Φ(v) is the
Maxwell velocity distribution given by Eq. (23).
Problem 7.3: Evaluate the average speed u in a classical gas using:

u =
∫

d3vvΦ(v) ,

where Φ(v) is the Maxwell velocity distribution given by Eq. (23).
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Problem 7.4: Finish the calculation of the collision rate for a dilute gas in
thermal equilibrium by evaluating the velocity integrals:

I =
∫

d3v
∫

d3v1 e−
1
2 βm(v2+v2

1)|v1 − v| .

Problem 7.5: Starting with the phase-space density f̂ (x, p, t), defined by Eq.
(1), and assuming that the individual momenta satisfy the equation of motion
given by Eq. (55), show that the equation of motion satisfied by f̂ (x, p, t) is
given by Eq. (56).
Problem 7.6: Consider a collision process between two particles with initial
velocities v and v1 that scatter into final velocities v′ and v′

1. Show that:

d3vd3v1 = d3v′d3v′1 .

Problem 7.7: Show how the change of integration variables given by Eq. (83)
follow from the two-body kinematics.
Problem 7.8: Show that the inequality:

(x − y)ln
( y

x

)
≤ 0

holds.
Problem 7.9: Show that the linearized Boltzmann collision operator, defined
by Eq. (125), obeys the symmetry:

KB(p, p′) f0(p′) = KB(p′, p) f0(p) .

Problem 7.10: Consider the set of polynomials given by Eqs.(140)–(144). Show
that the constants Ni and ε̄0 can be chosen such that the polynomials are
orthonormal, as in Eq. (138).
Problem 7.11: Show that the expansion of I(k, z), defined by Eq. (176), in
powers of wavenumber leads to the result given by Eq. (178).
Problem 7.12: If we turn on a time-dependent force of the form given by Eq.
(186), then in linear response theory we need to evaluate the integral:

F (t) = e−t/τ
∫ t

0
dt′et′/τF(t′) .

Show that:

F (t) =
[
τ
(

1 − e−t/τ
)
−
(

τ−1 − t−1
0

) (
e−t/t0 − e−t/τ

)]
F .

Problem 7.13: Starting with f (p), given by Eq. (226), show that f (p) is proper-
ly normalized, leads to the correct linear response result for small F, and find
the nonlinear contributions to the electrical and heat currents.



268 7 Kinetic Theory

Problem 7.14: Evaluate the momentum integrals of the form:

ε̄n
0 =

∫
d3 p εn

0 (p) f0(p)

for n = 1, 2, 3.
Problem 7.15: Solve the transport equation:

J = σE − J × H

to obtain the current J as a function of E, H and σ.
Problem 7.16: Show that the expression for the rate of effusion given by Eq.
(32) has the correct units.
Problem 7.17: Estimate the mean-free path and time assuming a temperature
T ≈ 300 K, pressure p ≈ 1atm and hard-core diameter r0 ≈ 4 × 10−8 cm.
Problem 7.18: One can work out the general solution to the case where a set of
electrons is driven by a static inhomogeneous temperature. The appropriate
kinetic equation is given by:

p · ∇x

m
f (x, p, t) = −1

τ
[ f (x, p, t)]− f0[p, T(x)] .

Show that this equation has the general solution:

f (x, p) =
∫ ∞

0
dse−s f0[p, T(x − sτp

m
)] .

Show that the number of particles is conserved in this quantity. Investigate
the perturbation theory expansion in a weak temperature gradient. If T(x) =
T0 + x

L (TL − T0), then show that to linear order ∇xT = (TL−T0)
L , we recover

Eq. (246).
Problem 7.19: Given the solution :

f (x, p) =
∫ ∞

0
dse−s f0[p, T(x − sτp

m
)]

in the problem for a system driven in local equilibrium by a temperature
gradient. Assume:

T(x) = T0 +
x
L

(TL − T0)

in a system of length L in the x-direction. Write:

T(x) = T + δT(x) ,

where:

T =
1
L

∫ L

0
dx T(x)
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is the average temperature, and expand f (x, p) in a power series in δT(x).
Compute the averages:

n(x) =
∫

d3 p f (x, p)

g(x) =
∫

d3 pp f (x, p)

K(x) =
∫

d3 p
p2

2m
f (x, p)

JK(x) =
∫

d3 p
p
m

p2

2m
f (x, p) .

Problem 7.20: Starting with the single-relaxation approximation, Eq. (184), for
a system in an AC electric field find the frequency-dependent conductivity
σ(ω) relating the electrical current and the applied field.
Problem 7.21: In the case of a system with inhomogeneous flow, show that the
leading order contribution to the off-diagonal stress tensor,

σ(0)
ij =

∫
d3 p

pi pj

m
f0[p − mu(x)] ,

i �= j, is second order in the small flow velocity u(x) and does not contribute
to the shear viscosity.
Problem 7.22: Show that:

f0(1) f0(2)g(x1− x2) =

〈
N

∑
i �=j=1

δ (x1 − ri) δ (p1 − pi) δ
(
x2 − rj

)
δ
(
p2 − pj

)〉
,

where the radial distribution function is defined by:

n2g(x1 − x2) =

〈
N

∑
i �=j=1

δ (x1 − ri) δ
(
x2 − rj

)〉
.

Problem 7.23: Show that the Poisson bracket between phase-space densities is
given by:

{ f̂ (1), f̂ (2)} =
(
∇p1 · ∇x2 −∇p2 · ∇x1

) [
δ (x1 − x2) δ (p1 − p2) f̂ (1)

]
.

Problem 7.24: Show that Eq. (339) can be put into the form symmetric under
exchange of p1 and p2.
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Problem 7.25: Show that for a low-density fluid of hard spheres that the Fou-
rier transform of the hole function is given by:

h(k) = −4π
k3 [sin(kr0) − kr0 cos(kr0)] .

Problem 7.26: Show that:

∫
d3 p
(

k · p
m

)2
f0(p) = k2 kBT

m
n .

Problem 7.27: Given the hydrodynamical form for the transverse correlation
function, Eq. (408), show:

η = lim
z→0

lim
k→0

iz
kBTk2 [zCT(k, z)− mnkBT] .

Problem 7.28: Write down the N = 6 kinetic model for the collision integral
KB(p, p′) for the case where we preserve the five conservation laws. Put this
result into the kinetic equation and assume that the system is spatially uni-
form. Solve for f (p, t), assuming that initially f (p, t = 0) = fin(p).
Problem 7.29: Evaluate the momentum integral:

〈T′|T〉 = 〈T| f0|T〉 =
∫

d3 p1

∫
d3 p2px

1 pz
1px

2 pz
2 f0(p2)δ(p1 − p2) ,

which enters the determination of the shear viscosity.
Problem 7.30: Evaluate G(11′; 22′; z), defined by Eq. (371), for an ideal gas.
Note that terms cancel between the two pieces in Eq. (371).
Problem 7.31: Evaluate G(11′; 22′; z), defined by Eq. (371), in a density expan-
sion to first order in the density.
Problem 7.32: Evaluate the integral for the thermal conductivity given by Eq.
(243).
Problem 7.33: Evaluate the remaining integral for the off-diagonal response
functions given by Eq. (259).
Problem 7.34: Do the electric and thermal gradient forces induce a contributi-
on to the off-diagonal components of the average stress tensor? Explain.
Problem 7.35: Expand the direct correlation function to first order in a weak
interaction potential.
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8
Critical Phenomena and Broken Symmetry

8.1
Dynamic Critical Phenomena

8.1.1
Order Parameter as a Slow Variable

In our development in Chapters 5 and 6 we have established the typical or
conventional hydrodynamic picture. How do these ideas break down? One of
the most obvious places to look for a breakdown of conventional hydrodyna-
mics is near a second-order phase transition [1]. The key point in this case is
that there is a length in the problem, the correlation length ξ, which becomes
infinite as one goes to the transition. This length measures the correlations of
the order parameter associated with the phase transition. Since these corre-
lated regions can involve very many degrees of freedom we expect the time
evolution of the order parameter to be slow. Thus we potentially have a new
mechanism for introducing a slow variable into the dynamics of a macroscopic
system: the kinetics of the order parameter near a critical point. In this chapter
we analyze these kinetics using the linearized Langevin equation approach
developed earlier. This leads to a mean-field analysis of the problem. A more
sophisticated treatment of dynamic critical phenomena is given in Chapter 10
after we have discussed nonlinear Langevin methods in Chapter 9.

The first step in analyzing critical phenomena is to identify the associated
order parameter [2]. The order parameter field ψ(x) has the following proper-
ties [3]:

• The average of the order parameter vanishes at temperatures above so-
me transition temperature Tc. The zero average of the order parameter
is usually due to some symmetry principle [4]. Below the transition tem-
perature the average value of the order parameter is nonzero:

〈ψ(x)〉 =
0 T > Tc

M T < Tc ,
(1)
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where, near the critical point, M vanishes as (Tc − T)β where β is one of a
handful of critical exponents [5] that characterize the analytic properties
of a critical point.

• The order-parameter equal-time or static correlation function is defined
by:

S(x − y) = 〈δψ(x)δψ(y)〉 . (2)

We are interested in the Fourier transform, the order parameter structure
factor S(q, T). This quantity becomes large as one approaches the critical
point and additional critical indices, η and γ, are defined by:

S−1(q, Tc) ≈ q2−η (3)

and:

S(0, T) ≈ |T − Tc|−γ . (4)

These expressions indicate the singular nature of the critical point as probed
by order parameter fluctuations. An important quantity in measuring the gro-
wing correlations as one approaches the critical point is the correlation length,
which can be defined by:

ξ2 =
∫

ddxx2S(x, T)∫
ddxS(x, T)

(5)

and ξ grows as T → Tc as:

ξ ≈ |T − Tc|−ν . (6)

It turns out that in three dimensions the index η is typically small [6]. In the
approximation where we set η = 0, one is led to the Ornstein–Zernike result [7]:

S(q, T) =
c

q2 + ξ−2 (7)

for T near Tc. Inverting the Fourier transform in three dimensions gives the
order parameter correlation function:

S(x − y, T) = c
e−|x−y|/ξ

4π|x − y| (8)

for T ≥ Tc where c is a positive temperature-independent constant as T → Tc.
Notice that Eq. (7) implies that:

S(0, T) = cξ2 (9)
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and γ = 2ν.
Since S(q, Tc) diverges as q → 0, we see that one of our hydrodynamic

assumptions [8] breaks down. We note that ξ introduces a large length scale in
the problem and even if q is very small it is inappropriate to replace S(q) by
S(0) except if qξ 
 1.

8.1.2
Examples of Order Parameters

One can identify, for essentially all known second-order phase transitions, the
associated order parameter [9]. Here we will concentrate on the variety of
order parameters associated with the Heisenberg model for magnetic systems.
It will turn out that many physical systems have order parameters that are
similar in nature to one of the order parameters in this model.

Suppose we have a set of spins S(R) setting on a lattice at site R. We assume
that the dynamics of these spins is governed by the Hamiltonian of the form:

H = −1
2 ∑

R,R′
∑
k

J(k)(R − R′)Sk(R)Sk(R′) , (10)

where the exchange interaction, J, is assumed to depend on the distance bet-
ween the two spins. In the simplest models with short-range interactions it is
sufficient to consider only nearest-neighbor interactions and write:

H = − ∑
〈R,R′〉NN

∑
k

J(k)Sk(R)Sk(R′) . (11)

There are then three important cases. First we have the case where the system
is isotropic and the exchange interaction is the same in all directions: J(k) = J.
In this case one has the isotropic Heisenberg model with Hamiltonian:

H = − ∑
〈R,R′〉NN

JS(R) · S(R′) . (12)

When the system orders it will be equally likely along any of the directions in
three-dimensional space. For an isotropic ferromagnet the order parameter is
a three-dimensional vector. The second case is where there is an easy plane for
rotation:

J(x) = J(y) > J(z) . (13)

In this case it is energetically favorable for the spins to line up in the xy plane
and the ordering will be in this plane. The associated order parameter is a
two-component vector corresponding to ordering in the plane. This model is
called an XY or planar model.
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Finally one can have the situation where there is an easy axis:

J(z) > J(x), J(y) . (14)

In this case, the order parameter is a scalar, and there is ordering parallel or
antiparallel to the z-direction. This corresponds to an Ising model. Thus we
can have order parameters with differing numbers of ordering components
denoted by n. For n = 3 we have the isotropic Heisenberg model, for n = 2
we have an XY model and for n = 1 we have an Ising model. We know that
the critical phenomena of a given system depend [10] on the value of n.

There are other considerations that enter into the selection of an order pa-
rameter that are more important in the case of dynamic critical phenomena
compared to static critical phenomena. Consider the simple situation of just
two Ising spins in one dimension governed by the Hamiltonian:

H12 = −JS1S2 . (15)

Let us assume that J > 0. There are then two possible energetically distinct
configurations:

• If the spins are parallel ↑↑ or ↓↓, then:

Hp
12 = −JS1S2 < 0 . (16)

• If the spins are antiparallel ↓↑ or ↑↓ then:

HA
12 = −JS1S2 > 0 . (17)

Since a system, at low temperature, acts to lower its energy for J > 0 the
system wants to line up parallel. Clearly, if J < 0 then:

Hp
12 > 0 , (18)

HA
12 < 0 (19)

and the spins want to line up antiparallel.
The case J < 0 corresponds to a system that aligns antiferromagnetically

at low temperatures. A possible alignment at zero temperature is shown in
Fig. 8.1. We see that there is now no net magnetization:

〈MT〉 =

〈
∑
R

S(R)

〉
= 0 . (20)

We note, however, that there is order at low temperatures. Let us define a
quantity called the staggered magnetization:

N(x) = ∑
R

η(R)S(R)δ(x − R) . (21)
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Fig. 8.1 Zero-temperature ordering of an Ising antiferromagnet on a
square lattice.

For a square or cubic lattice, the η(R) are defined as follows. Divide the lattice
up into two interpenetrating sublattices. If a given spin is on one sublattice
then all of its nearest neighbors are on the other sublattice. Then arbitrarily
assign η(R) = +1 on one sublattice and η(R) = −1 on the other sublattice,
as shown [11] in Fig. 8.2. Finally we plot in Fig. 8.3 the value of η(R)S(R) at
the various lattice sites at low temperatures. The −1 values of η(R) flip the
orientation of the spin at that site and the staggered magnetization appears
ordered. It is then clear that there is a net total staggered magnetization:

〈NT〉 =

〈
∑
R

η(R)S(R)

〉
�= 0 . (22)

The staggered magnetization is the ordered or symmetry breaking field (order
parameter) for an antiferromagnet. Thus we have:

〈N(x)〉 =
0 T ≥ TN

Nẑ T < TN ,
(23)

where TN is the Néel transition temperature and near and below the transition
N ≈ (Tc −T)β. Note that ferro- and antiferromagnets may be in the same static
universality class and share the same values, for example, for β.

With respect to their equilibrium critical properties ferro and antiferroma-
gnets with the same symmetry of the order parameter (same value of n) fall
into the same universality classes. This need not be the case with respect to
dynamic critical phenomena. The reason has to do with conservation laws.
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Fig. 8.2 One choice for the phase factors η(R) for a two-dimensional
square lattice.

Fig. 8.3 Ordered configuration for η(R)S(R) for an antiferromagnet on
a square lattice.

We have seen previously that for the isotropic case the magnetization is con-
served. If there is an easy plane:

J(x) = J(y) �= J(z) , (24)

then only the magnetization in the z-direction is conserved. If there are three
unequal exchange couplings:

J(x) �= J(y) �= J(z) , (25)
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then the magnetization is not conserved. It is easy to see, even in the isotropic
case, that the staggered magnetization is not conserved:

{NT , H} = ∑
〈R,R′〉NN

J(R − R′)[η(R) − η(R′)][S(R)× S(R′)] . (26)

Whether the order parameter is conserved or not will clearly matter in treating
dynamic critical phenomena.

8.1.3
Critical Indices and Universality

We have introduced above a number of critical indices that characterize the
properties of the order parameter near the critical point. Equations(1), (6), (3)
and (4) define β, ν, η and γ. In the 1950s, 60s and 70s there was extensive
experimental, numerical and theoretical study [12] of the critical properties
(indices) of a wide variety of systems. One of the organizing ideas to come out
of this work is that there are similarities between systems with seemingly very
different microscopic interaction mechanisms. This idea can be summarized in
the hypothesis of universality [13]:

All phase transition problems can be divided into a small number of dif-
ferent classes depending upon the dimensionality d of the system and the
symmetries n of the ordered state. Within each class, all phase transitions have
identical behavior in the critical region; only the names of the variables are
changed.

As a first step one must find the appropriate values of d and n. The ap-
propriate spatial dimensionality is usually three, but some layered or surface
compounds are more appropriately [14] taken as two-dimensional. The n-
dependence tells one whether one has an order parameter that corresponds
to an Ising, XY or Heisenberg model. As an example, in superfluid helium
the order parameter is a complex creation operator that has two components
(n = 2). Therefore the critical properties of the λ-transition are the same as for
an XY magnet. The liquid–gas transition and Ising magnets are in the same
universality class. There are additional classes beyond the O(n) symmetric
models. One can have systems with cubic symmetry, others with uniaxial
symmetry, etc., or more exotic symmetries as for certain liquid crystals [15].

8.1.4
The Scaling Hypothesis

Closely related to the proposition of universality is the idea of scaling. Univer-
sality implies that the microscopic details of a system are unimportant near
the critical point. The critical indices cannot depend on the lattice separation
a in a ferromagnet or the hard-core separation distance r0 in a fluid. If these
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lengths are to be removed from the problem, then there must be one length
that is much longer and which dominates these microscopic lengths. This
length is clearly the correlation length ξ, and it dominates all other microscopic
lengths in the problem, a/ξ 
 1, near Tc. According to the scaling hypothesis,
due to Widom [16] and Kadanoff [17], the divergence of ξ is responsible for
the singular dependence on T − Tc of physical quantities, and, as far as the
singular dependence is concerned, ξ is the only relevant length. This scaling
assumption can help correlate a large amount of information.

Consider first the order-parameter correlation function. We note that this
quantity is a function, in general, of q , T and the temperature-independent
variables such as, for a magnet, the lattice spacing a and the nearest neighbor
interaction J. We can, in principle, eliminate the temperature in terms of the
correlation length and write:

S = S(q, ξ, a, J) . (27)

For simplicity, we assume that the field conjugate to the order parameter, like
an external magnetic field for a ferromagnet, is set to its critical value. Accor-
ding to the scaling hypothesis S(q, ξ, a, J) becomes a homogeneous function
in the critical or scaling region:

S(q, ξ) = ξx f (qξ) , (28)

where the index x is unknown. Scaling laws of this type are particularly useful
in analyzing experimental data. First one collects scattering data as a function
of q for a given temperature T1. Then collect another set of data as a function of
q for another temperature T2, and so on. According to our scaling assumption,
if we plot S(q)/ξx versus qξ then we can find a temperature-dependent length
ξ and an exponent x such that all of the data collapses on a single curve.

The scaling assumption has immediate consequences concerning the critical
indices. If we hold ξ fixed and set q = 0 in Eq. (28), we can use Eq. (4) to obtain:

S(0, ξ) = ξx f (0) ≈ |T − Tc|−γ . (29)

If we remember Eq. (6), we can write:

|T − Tc| ≈ ξ−1/ν , (30)

and, after inserting this in Eq. (29), identify:

x = γ/ν . (31)

Similarly if we set T = Tc, then, for small q, Eq. (28) reads:

S(q, Tc) = lim
ξ→∞

ξx f (qξ) . (32)
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Since S(q, Tc) is finite for q �= 0, the limit in Eq. (32) must exist and we require:

f (qξ, 0) → (qξ)−x (33)

as qξ → ∞. This means that Eq. (32) reduces to:

S(q, Tc) ≈ q−x . (34)

If we compare this with Eq. (3) we can identify:

x = 2 − η . (35)

Combining this result for x with Eq. (31) gives the relation:

γ = (2 − η)ν . (36)

Thus, the scaling hypothesis allows us to find relations among the various
critical indices. This suggests that the critical indices are not all independent.

There is a simple set of approximate theories one can use to check the scaling
hypothesis. Mean-field theory [18] is a collection of theories like the Landau
theory [19], Curie-Weiss theory [20], and van der Waals’ theory [21]. These
theories all assume a certain level of analyticity near the critical point and
give for all (n, d), γ = 1, ν = 1/2 and η = 0. It turns out that these results hold
in d = 4 dimensions for reasons that become apparent in a renormalization
group analysis, as discussed in Chapter 10. This set of indices do obey scaling.
Another important theory was Onsager’s solution [22] of the two-dimensional
Ising model where we know γ = 7/4, ν = 1, and η = 1/4. These values are
quite different from the mean-field theory values, but do also obey the scaling
relations.

While the scaling hypothesis played an important role in the development
of our modern theory of critical phenomena, it was still far from a complete
theory. It reduced the number of independent indices to two, but it did not
tell us anything about how to calculate them. More fundamentally, we did
not know how to establish the scaling hypothesis from first principles. The
renormalization group theory led to the solution of this problem.

8.1.5
Conventional Approximation

With this background on static critical phenomena we turn to the study of dy-
namic critical phenomena. Let us proceed with the assumption that the order
parameter ψ is the slow variable, which is not coupled to any other variable
and we can use our Langevin equation approach. We begin by assuming that
the order parameter is not conserved.

As usual in this approach, the first step after identifying the slow variables
is to determine their static correlations. We assume that in this case, the static
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order parameter structure factor S(q) is given approximately by the Ornstein–
Zernike form expressed by Eq. (7).

We turn next to the evaluation of the static part of the memory function.
If we have a single-component order parameter there is no nonzero Poisson
bracket we can form and:

K(s)(q) = 0 . (37)

Turning to the dynamic part of the memory function, assuming that the order
parameter is not conserved, the simplest assumption, known as the conventio-
nal [23] or van Hove approximation, is that for small frequencies and wavenum-
bers :

Γ(d)(q, z) = K(d)(q, z)S(q) = −iΓ , (38)

where Γ is assumed to be a constant. The dynamic part of the memory function
is given in this approximation by:

K(d)(q, z) = −iΓS−1(q) , (39)

and the simplest assumption is that the kinetic coefficient Γ shows a weak
temperature dependence near the critical point.

Inserting Eqs. (37) and (39) into Eq. (5.121), the equation of motion for the
order parameter fluctuation function is given by:

[z + iΓS−1(q)]C(q, z) = S(q) . (40)

Inverting the Laplace transform, we obtain the order parameter time-correlation
function:

C(q, t) = S(q)e−ΓS−1(q)t . (41)

If we are at the transition, where T = Tc and S(q) = c/q2, we have:

C(q, t) =
c

q2 e−
Γ
c q2t . (42)

We are now in a position to see why we must treat the order parameter as
a slow variable. The order parameter time-correlation function, at the critical
point, looks as though the order parameter is conserved since its decay time
is given by:

τ(q) =
c

Γq2 , (43)

which goes to infinity as q → 0.
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If we are near Tc, where the correlation length ξ is large, the static suscepti-
bility in Eq. (41) can be replaced by:

S(q) =
c

q2 + ξ−2 (44)

and the relaxation time is given by:

τ(q, ξ) =
c

Γ(q2 + ξ−2)
, (45)

and at zero wavenumber,

τ(0, ξ) =
cξ2

Γ
(46)

is large. The existence of this large time is known as critical slowing down [24].
More generally, in the critical regime, one has, using Eq. (35) in Eq. (28), the

scaling form:

S(q, ξ) = q−2+η f (qξ) . (47)

In the Ornstein–Zernike case, η = 0, the scaling function is given by:

f (x) = (1 + x−2)−1 . (48)

In the case of dynamic critical phenomena, one can generalize the static
scaling given by Eq. (47) by taking into account the existence of the large
dominant time τ given by Eq. (46). It is then conventional to introduce the
dynamic scaling form [25] for the order parameter fluctuation function:

C(q, z) =
S(q, ξ)

ωc(q, ξ)
F[z/ωc(q, ξ)] , (49)

where ωc is the characteristic frequency with the assumed scaling form:

ωc(q, ξ) = qz fD(qξ) , (50)

where z is the dynamic critical index and fD and F are scaling functions. In
our simple example, using Eq. (40), we have:

C(q, z) =
S(q)

z + iΓS−1(q)

=
S(q)

ωc(q, ξ)
1

[Ω + i]
, (51)

where the dimensionless frequency is given by Ω = z/ωc, and the characteri-
stic frequency can be identified as:

ωc = ΓS−1(q, ξ) (52)
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= q2 Γ
c
[1 + (qξ)−2] (53)

and the dynamic critical index is given [26] by:

z = 2 . (54)

The scaling function is given by:

f (x) =
Γ
c
(1 + x−2) . (55)

This is the simple behavior that one expects from a nonconserved Ising sys-
tem.

If the order parameter is conserved, as for certain isotropic ferromagnets,
then for small q and z, Eq. (38) is replaced by:

Γ(d)(q, z) = −iq2D , (56)

where D is a diffusion coefficient, and the dynamic part of the memory func-
tion is given by:

K(d)(q, z) = −iDq2S−1(q) . (57)

The order parameter fluctuation function, assuming again that the static part
of the memory function vanishes, then satisfies:

[z + iq2DS−1(q)]C(q, z) = S(q) . (58)

Inverting the Laplace transform,

C(q, t) = S(q)e−DS−1(q)q2t . (59)

The most interesting consequence of this result comes if we assume we are
precisely at the transition temperature T = Tc where S(q) = c/q2. In this
limit,

C(q, t) =
c
q2 e−Dq4t/c , (60)

and the Fourier transform becomes:

C(q, ω) =
2Dq2/c

ω2 + (Dq4/c)2 . (61)

Equation (58) can be written in the dynamic scaling form with characteristic
frequency:

ωc(q, ξ) = DS−1(q)q2
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= q4 D
c

(1 + (qξ)−2) , (62)

and we can identify the dynamic critical index:

z = 4 (63)

and the dynamic scaling function:

F(Ω) =
1

i + Ω
. (64)

is the same as before in the nonconserved case.
What about our assumption, Eq. (38), that Γ(q, z) is regular as q, z → 0?

This does not hold in general. There are strong nonlinear processes driven by
the large correlation length ξ near the critical point that lead to anomalous
behavior in Γ(q, z) as ξ → ∞, q, z → 0. Thus, for example, the shear viscosity
in a fluid near its liquid–gas critical point shows critical anomalies. We can not
understand these effects using our linearized Langevin approach. In general,
as we see in Chapter 10, we must treat nonlinear fluctuations in the order
parameter, as well as couplings to other slow degrees of freedom.

8.2
More on Slow Variables

In the previous section we assumed that the order parameter is a scalar va-
riable that does not couple to any other slow variables in the system. This is
most appropriate to the case of a nonconserved Ising system. More generally,
we must allow for coupling between the order parameter and other slow
modes in the system. In this way, the universality classes in dynamic critical
phenomena are more diverse than for static critical phenomena.

At this stage we understand that slow modes exist for two basic reasons:
conservation laws and critical slowing down. In the next section we find ano-
ther source of slow variables: Nambu–Goldstone modes in systems with a
broken continuous symmetry. These variables must also be included in our
list of slow variables.

A key point is not just that we identify the slow variables but that we must
also be able to decide how they couple to other slow modes. This is tied up
with the construction of the static part of the memory function for the system
where we include all of the slow modes in our set ψα. Slow modes ψ and
φ are coupled if the static part of the memory function Γ(s)

ψφ is nonzero. From
our theorem from Chapter 5 for the static part of the memory function Γ(s)

ψφ is
nonzero if the average of the Poisson brackets between ψ and φ is nonzero.
Thus generally we must construct the Poisson brackets among all of the slow
modes to see if they are coupled.
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To see how these Poisson brackets enter the discussion, let us look at a
magnetic system. Suppose our fields of interest are the magnetization density
M and the staggered magnetization density N. Notice that the definitions of
these quantities and their Poisson brackets are independent of the choice of
Hamiltonian and the explicit choice of an order parameter.

Starting with the fundamental Poisson brackets [27] for a set of classical
spins:

{Si(R), Sj(R′)} = δR,R′ ∑
k

εijkSk(R) , (65)

and defining the magnetization density:

M(x) = ∑
R

δ(x − R)S(R) (66)

and the staggered magnetization density:

N(x) = ∑
R

δ(x − R)η(R)S(R) , (67)

then it is shown in Appendix D that:

{Mi(x), Mj(y)} = δ(x − y) ∑
k

εijkMk(x) (68)

{Ni(x), Nj(y)} = δ(x − y) ∑
k

εijkMk(x) (69)

{Mi(x), Nj(y)} = δ(x − y) ∑
k

εijkNk(x) . (70)

We will need these Poisson bracket relations as we go along.
When we turn to the static part of the memory function we see that it

depends on the average of the Poisson bracket [28] between the slow variables.
If we focus on the magnetization densities then we have from Eq. (5.205):

Γ(s)
ij (x − y) = iβ−1〈{Mi(x), Mj(y)}〉

= iβ−1δ(x − y) ∑
k

εijk〈Mk(x)〉 . (71)

This vanishes unless the system has a nonzero average magnetization. Thus
we have new contributions to the static part of the memory function in the
ordered phase of a ferromagnetic or if we apply an ordering magnetic field. In
either case 〈Mk(x)〉 �= 0 and certain components of Γ(s) are nonzero.
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8.3
Spontaneous Symmetry Breaking and Nambu–Goldstone Modes

Let us now turn our attention to the ordered ferromagnetic state where T < Tc.
In this case, the dynamics are more complicated, but also extremely interes-
ting. We must first discuss the static properties of the ordered state that breaks
a continuous symmetry. Thus, we consider cases where the order parameter
has at least two components.

The first thing we note is that in the ordered state the average magnetization
is no longer zero in zero external field. There is a net magnetization that points,
we assume, in the z-direction:

〈M(x)〉 = Mẑ . (72)

Recall that, in an isotropic system, one has a system described by a Hamilto-
nian that is rotationally invariant - no direction is preferred. Nevertheless, at
some temperature (the critical temperature Tc) the system chooses to be in a
thermodynamic state that breaks the rotational symmetry. This phenomenon
is known as spontaneous symmetry breaking [29]

We next have to say something about the static correlation functions in the
ordered phase. We first realize, once there is a preferred direction, that fluctua-
tions along and perpendicular to the direction of ordering may be different.
We define the longitudinal correlation function:

SL(x − x′) = 〈δMz(x)δMz(x′)〉 , (73)

where we now subtract off the average value of Mz explicitly, and the trans-
verse correlation functions are defined by:

ST(x − x′) = 〈Mx(x)Mx(x′)〉 = 〈My(x)My(x′)〉 . (74)

The cross correlation functions are zero by symmetry. We are interested in the
behavior of SL and ST in the ordered phase. It turns our that the behavior of
ST is largely determined by the existence of Nambu–Goldstone (NG) modes
in the system. We give first a simple argument leading to the identification of
NG modes.

Consider the thermodynamic free-energy density of an isotropic magnet
f (B) as a function of an applied conjugate external magnetic field B. Also
suppose the system is symmetric and f depends only on the magnitude of B
(See Problem 8.3). For a paramagnet this leads to the usual result:

f (B) = f (0)− 1
2

χB2 + . . . , (75)

where χ is the magnetic susceptibility. More generally, the average magnetiza-
tion density is given by:

mα = − ∂ f
∂Bα

= − f ′ B̂α ≡ MB̂α . (76)
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In this case, the magnetic susceptibility is a matrix:

χαβ =
∂mα
∂Bβ

= − ∂

∂Bβ

(
f ′ B̂α
)

= − f ′′ B̂αB̂β −
f ′

B
(
δαβ − B̂αB̂β

)
. (77)

The longitudinal part of the free energy can be read off as:

χL = − f ′′ , (78)

while the transverse part has the form:

χT = − f ′

B
=

M
B

. (79)

In the ordered ferromagnetic regime, as B → 0 the average magnetization
density reduces to the spontaneous magnetization M → M0 and χT blows up.
Since:

β−1χT = lim
q→0

ST(q) (80)

in the classical limit, we have that the transverse component of the static
correlation function blows up as B and q go to zero in the ferromagnetic phase.
One can show [30] rigorously that if the interactions are short ranged then:

ST(q) ≥ A
q2 , (81)

where A is a constant as q → 0. For our purposes here, we assume that in the
long-wavelength limit we can write:

ST(q) =
1

ρ0q2 (82)

and to lowest order we can treat ρ0 as weakly temperature dependent near the
phase transition. This is the famous Nambu–Goldstone boson or mode. Let
us see how this physics influences the dynamics. We will use our linearized
Langevin description.

8.4
The Isotropic Ferromagnet

Let us determine the magnetization–magnetization time-correlation functions
in the ordered phase, T < Tc, in the conventional approximation for an iso-
tropic ferromagnet. We first summarize our results for the static correlation
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functions in the ordered phase T < Tc. Assuming the magnetization is ordered
in the z-direction we have:

Sij(q) = δijSi(q) (83)

and:

ST(q) = Sx(q) = Sy(q) =
1

ρ0q2 (84)

for small q. The simplest assumption is that the longitudinal component of
the order parameter correlation function, SL(q = 0) = Sz(q = 0) is a weakly
temperature-dependent constant [31]. We next look at the static part of the me-
mory function. Using the theorem given by Eq. (71) and the Poisson brackets
given by Eq. (68) we have:

Γ(s)
ij (q) = ∑

l
K(s)

il (q)Slj(q) = iβ−1 ∑
l

εijl〈Ml(x)〉 . (85)

In the ordered phase we have assumed:

〈M�(x)〉 = δ�,z M. (86)

We can then solve Eq. (85) for K(s),

K(s)
ij (q) = iβ−1εijzMS−1

j (q) . (87)

Turning to the dynamic part of the memory function, we assume, in the ab-
sence of any additional information, that we can use a form of the conven-
tional approximation, remembering that the order parameter in this case is
conserved,

Γ(d)
ij (q, z) = ∑

l
K(d)

il (q, z)Slk(q) = −iq2δijDi (88)

or, using Eq. (83),

K(d)
ij (q, z) = −iq2δijDiS−1

j (q) , (89)

where the diffusion coefficient Di may be different in the longitudinal and
transverse directions. Armed with these results the fluctuation function:

Cij(q, z) = −i
∫ +∞

0
dt e+izt

∫
ddx e+iq·(x−y)〈δMi(x, t)δMj(y, 0)〉 (90)

satisfies, as usual, the kinetic equation:

∑
l
[zδil − K(s)

il (q)− K(d)
il (q, z)]Clj(q, z) = Sij(q) . (91)
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Putting in the results for the memory functions, Eqs. (87) and (89), we have:

zCij(q, z)− iβ−1M ∑
l

εilzS−1
l (q)Clk(q, z) + iq2DiS−1

i (q)Cij(q, z) = Sij(q) .(92)

Let us look at this first for the case of longitudinal fluctuations, setting i = z =
L in Eq. (92) gives:

zCzj(q, z) + iq2DLS−1
L (q)Czj(q, z) = δjzSL(q) (93)

or:

Czj(q, z) =
SL(q)δjz

z + iq2DLS−1
L (q)

, (94)

and one has, for the longitudinal component, diffusive behavior just as in the
paramagnetic phase. In some sense this is the continuation of the paramagne-
tic behavior into the ordered region. Dynamical scaling near T = Tc gives
z = 4 as we found for T ≥ Tc.

Consider next the transverse case. Taking the xx matrix element of Eq. (92)
we find:

[z + iq2DTS−1
T (q)]Cxx(q, z)− iβ−1 MS−1

T (q)Cyx(q, z) = ST(q) , (95)

which couples Cxx to Cyx. Taking the y − x matrix element of Eq. (92) gives:

[z + iq2DTS−1
T (q)]Cyx(z) + iβ−1MS−1

T (q)Cxx(z) = 0 . (96)

Thus Eqs. (95) and (96) form a closed set of equations. The determinant of
coefficients for this coupled set of equations is given by:

D(q, z) = [z + iq2DTS−1
T (q)]2 − β−2M2S−2

T (q) . (97)

One therefore has poles at the complex frequencies:

z = ±β−1MS−1
T (q) − iq2DTS−1

T (q) . (98)

Since the transverse correlation functions support NG modes,

ST(q) =
1

ρ0q2 , (99)

we have the dispersion relation:

z = ±cq2 − iq4DTρ0 , (100)

where:

c = β−1 Mρ0 . (101)
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The fluctuation function is given then by solving Eqs. (95) and (96) to obtain:

Cxx(q, z) = CT(q, z)

=
ST(q)(z + iq4ρ0DT)

(z − cq2 + iq4ρ0DT)(z + cq2 + iq4ρ0DT)

=
ST(q)

2
[

1
z − cq2 + iq4ρ0DT

+
1

z + cq2 + iq4ρ0DT
] . (102)

The associated correlation function is just the imaginary part and given by:

CT(q, ω)

=
ST(q)

2

[
q4ρ0DT

(ω − cq2)2 + (ρ0DTq4)2 +
q4ρ0DT

(ω + cq2)2 + (ρ0DTq4)2

]
. (103)

We see that below the transition temperature the transverse correlation functi-
on is characterized by two spin-wave peaks. The spin-wave frequency is given
by:

ωs(q) = cq2 = Mβ−1ρ0q2 , (104)

while the spin-wave damping is given by:

W(q) = q2DTS−1
T (q)

= DTρ0q4 . (105)

If we use ωs as the characteristic frequency used in dynamical scaling, we
have:

ωs(q) ≈ Mq2 . (106)

If we assume M ≈ |T − Tc|β ≈ ξ−β/ν and use the reasonably accurate values
for ferromagnets of β = 1/3, ν = 2/3, then we have:

ωs(q) ≈ ξ−1/2q2 = qz/
√

(qξ) , (107)

and z = 5/2. This is a pretty good estimate of the measured [32] index for
a ferromagnet. The damping contribution to the characteristic frequency has,
as for the longitudinal component, a dynamic critical index z = 4. The dis-
crepancy in values of z calls into question the conventional approximation,
which assumes that DT and DL are regular in temperature as T → Tc. In
Problem 8.9 we discuss the temperature dependence required for DT if cq2

and q4DTρ0 have the same scaling index. Clearly these results require DT
(and DL) to show a strong temperature dependence. The source of this strong
temperature dependence is discussed in Chapter 10.
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The structure of the correlation function is changed qualitatively by the
broken symmetry. An important comment is that the spin-wave spectrum is a
property of the ordered phase, not just a property of the critical point.

8.5
Isotropic Antiferromagnet

We now want to turn to the dynamics of isotropic antiferromagnets. The order
parameter, the total staggered magnetization NT , is not conserved. Thus abo-
ve TN there is nothing particularly special about the staggered magnetization
autocorrelation function. In the conventional approximation we obtain (see
Problem 8.5):

CN(q, ω) =
2ΓN

ω2 + (ΓNS−1
N (q))2

(108)

where ΓN is a kinetic coefficient. It is left as an exercise to show that the
dynamic scaling analysis of Eq. (108) as T → T+

N leads to a dynamic scaling
index z = 2.

Let us move on to the interesting case of the ordered phase, T < TN . We will
concentrate on the possibility of NG modes.

Following the treatment for the ferromagnet (now the field HA conjugate to
N is unphysical) we again argue that for small q we have the NG mode:

NT(q) =
1

ρ0q2 , (109)

where ρ0 is assumed to be weakly temperature dependent near the transition.
Thus the transverse component of the staggered field shows the NG mode
behavior. The transverse correlation function for the magnetization does not
show a q−2 behavior below TN! It is regular for small wavenumbers:

lim
q→0

ST
M(q) =

1
ρM

. (110)

For simplicity we assume that (see Problem 8.6):

lim
q→0

Sij
MN(q) = 0 . (111)

Let us now turn to a discussion of the dynamics for T < TN . The first
order of business is the choice of slow variables ψi to be used in the Langevin
equation. We said previously that we should include in ψi all of the slow
variables. In our problem here, the magnetization is conserved and is certainly
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a slow variable. We also want to include the staggered magnetization in our
set. We therefore analyze our generalized Langevin equation in the case with:

ψi → ψi
α(x) , (112)

where i is a vector label and α = N or M. Remembering Eq. (111) we have for
the slow variable structure factor:

Sij
αβ(q) = δijδαβSi

α(q) . (113)

Next we need to evaluate the static part of the memory function. From our
general theorem we have:

∑
γ,k

∫
d3zK(s)ik

αγ (x − z)Skj
γβ(z − y) = −iβ−1〈

{
ψi

α(x), ψj
β(y)
}
〉 . (114)

The Poisson brackets among the various fields are worked out in Appendix
D:

{Mi(x), Nj(y)} = ∑
k

εijkNk(x)δ(x − y) (115)

{Ni(x), Nj(y)} = ∑
k

εijkMk(x)δ(x − y) (116)

{Mi(x), Mj(y)} = ∑
k

εijkMk(x)δ(x − y) . (117)

Since 〈M〉 = 0, we see that Γ(s) is zero unless α �= β and i and j are not equal
and in the set x, y. Therefore the only nonzero elements are:

K(s)xy
NM (q)Sy

M(q) = − iβ−1N (118)

K(s)yx
NM (q)Sx

M(q) = + iβ−1N (119)

K(s)xy
MN (q)Sy

N(q) = − iβ−1N (120)

K(s)yx
MN (q)Sx

N(q) = + iβ−1N , (121)

where N = 〈Nz 〉. We can rewrite these equations in the compact form:

Kij(s)
αβ (q) = − iβ−1 εijzN(1− δαβ)[Si

β(q)]−1 . (122)
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We assume the simplest forms for the dynamic parts of the memory function
compatible with the conservation law satisfied by the magnetization density:

Kij(d)
αβ (q) = − iδαβδi,jΓi

α(q)(Si
β(q))−1 (123)

Γi
M(q) = q2Di

M (124)

Γi
N(q) = Γi

N . (125)

Our kinetic equation takes the form:

zCij
αβ(q, z)− ∑

γk
Kik

αγ(q)Ckj
γβ(q, z) = Sij

αβ(q) . (126)

Let us focus here on the transverse components that we expect are influenced
by NG modes. Taking the xx matrix element of Eq. (126), we obtain:

zCxx
αβ(q, z) + iβ−1NST

−α(q)−1Cyx
−αβ(q, z) + iΓT

α(q)ST
α(q)−1Cxx

αβ(q, z)

= δαβST
α(q) , (127)

where −α means M if α = N or N if α = M. Taking the NN matrix element
of Eq. (127) gives:

zCxx
NN(q, z) + iβ−1NST

M(q)−1Cyx
MN(q, z) + iΓT

N(q)ST
N(q)−1Cxx

NN(q, z)

= ST
N(q)

or:

(z + iΓT
NST

N(q)−1)Cxx
NN(q, z) + iβ−1NST

M(q)−1Cyx
MN(q, z) = ST

N(q) . (128)

So Cxx
NN is coupled to Cyx

MN. An equation for this quantity is given by taking
the MN, yx matrix elements of Eq. (127) to obtain:

zCyx
MN(q, z)− iβ−1NST

N(q)−1Cxx
NN(q, z) + iΓT

M(q)ST
M(q)−1Cyx

MN(q, z) = 0

or:

−iβ−1NST
N(q)−1Cxx

NN(q, z) + (z + iDT
Mq2ST

M(q)−1)Cyx
MN(q, z) = 0 . (129)

Equations (128) and (129) form a simple 2 × 2 set of equations. The pole struc-
ture is determined by the zeros of the determinant:

D =
[
z + iΓT

NST
N(q)−1

] [
z + iDT

Mq2ST
M(q)−1

]
−β−2N2ST

N(q)−1ST
M(q)−1 (130)
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Setting this to zero gives:

z2 + iz
(

ΓT
NST

N(q)−1 + DT
Mq2ST

M(q)−1
)

−ΓT
N DT

Mq2ST
M(q)−1ST

N(q)−1 − β−2N2ST
N(q)−1ST

M(q)−1 = 0 . (131)

Substituting the small wavenumber forms for the structure factors gives the
result:

z2 + izq2
(

ΓT
Nρ0 + DT

MρM

)
− q4ΓT

N DT
Mρ0ρM − β−2N2ρ0ρMq2 = 0 . (132)

Let us define:

Γ = ΓT
Nρ0 + DT

MρM (133)

and:

c2(q) = β−2N2ρ0ρM + q2ΓT
N DT

Mρ0ρM , (134)

then Eq. (132) takes the form:

z2 + izΓq2 − c2(q)q2 = 0 . (135)

Solving this quadratic equation, we find that the poles are located at complex
frequencies:

z = −1
2

iΓq2 ± 1
2

[
−Γq2 + 4c2(q)q2

]1/2
. (136)

We can rewrite the argument of the square root as:

4c2(q)q2 − Γ2q4 = 4c2(0)q2 + 4q4ΓT
N DT

Mρ0ρM −
(

ΓT
Nρ0 + DT

MρM

)2
q4

= 4c2q2 −
(

ΓT
Nρ0 − DT

MρM

)2
q4 , (137)

where c = c(0). We can then evaluate the pole positions as q → 0:

z = − iΓq2

2
± 1

2

(
4c2q2 −

(
ΓT

Nρ0 − DT
MρM

)2
q4
)1/2

=
−iΓq2

2
± cq

(
1 − q2

4c2

(
ΓT

Nρ0 − DT
MρM

)2
)1/2

=
−iΓq2

2
± cq

(
1 − q2

8c2

(
ΓT

Nρ0 − DT
MρM

)2
+ . . .

)
. (138)

The spin-wave spectrum corresponds to poles at:

z = ±cq − iΓ
q2

2
+ O(q3) , (139)
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where the spin-wave speed is given by:

c = β−1N (ρ0ρM)1/2 , (140)

and the spin-wave damping by:

Γ = ΓT
Nρ0 + DT

MρM . (141)

Inverting the matrix equation given by Eqs. (128) and (129), we find after some
algebra the fluctuation function for the transverse staggered fields:

Cxx
NN(q, z) = ST

N(q)
(z + iDT

Mq2ρM)

(z − cq + iΓq2

2 )(z + cq + iΓq2

2 )
. (142)

Then, near each pole we can write:

CT
NN(q, z) = ST

N(q)
1
2

[
1

z − cq + iΓq2/2
+

1
z + cq + iΓq2/2

]
(143)

plus terms higher order in q. It is clear that the transverse magnetization cor-
relation functions also shows a spin-wave spectrum (the two correlation func-
tions CT

N and CT
M share the same denominator and therefore the same poles).

It is interesting to note that the spectrum of CT
N now looks very much like that

for the Brillouin peaks in the density–density correlation function in a fluid.
In the fluid one has a dispersion relation:

z = ±cq + iΓq2/2 , (144)

where c is the speed of sound and Γ the sound attenuation. In the spin-wave
case, things look identical. Remember, however, that the sound wave spec-
trum was generated by the conservation laws (the density and momentum
is conserved). The staggered magnetization is not conserved. We see then
that the Nambu–Goldstone mode associated with the spontaneous symmetry
breaking has the dynamical effect of simulating a conservation law.

If we look at dynamic scaling in the case where we are near the critical point,
we have, assuming Γ is regular in temperature near TN ,

CT
NN(q, z) =

ST
N(q)

ωc(q)
1
2

[
1

Ω − 1
+

1
Ω + 1

]
, (145)

where the characteristic frequency is given by:

ωc(q) = cq = β−1N
√

ρ0ρMq .

Using the result N ≈ ξ−1/2, which is the same as for the ferromagnetic case,
we have:

ωc(q) ≈ ξ−1/2q ≈ q3/2 1√
qξ

(146)
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and we can identify the dynamic critical index as z = 3/2. This result is in
good agreement with experiment [33] for isotropic antiferromagnets. Howe-
ver, it disagrees with the conventional theory, z = 2, found for T > TN and for
the longitudinal component CL

NN .
We must conclude, as for the case of the isotropic ferromagnet, that the

conventional theory is not a quantitative theory near the critical point. We
need a self-consistent theory for all the exponents, z, β, and ν. We know that β,
and ν require a nontrivial treatment of critical fluctuations, so also z requires
a renormalization group treatment of fluctuations. This is developed in Chap-
ter 10.

8.6
Summary

One can associate with every broken continuous symmetry, when there are
short-range interactions in the disordered state, a set of Nambu–Goldstone
modes (variables) that must be included in the set of thermodynamic state
variables and the set of hydrodynamic variables. Typically these variables
generate traveling modes like spin waves in magnets, second sound in he-
lium and transverse sound in solids. These modes also form the lowest lying
excitations [34] in the low-temperature quantum analysis of such systems.
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8.8
Problems for Chapter 8

Problem 8.1: Consider the anisotropic Heisenberg Hamiltonian given by Eq.
(10). If there is an easy plane:

J(x) = J(y) �= J(z) ,

show that only the magnetization in the z-direction is conserved. Show, in the
isotropic case, that the staggered magnetization is not conserved.
Problem 8.2: Take the inverse Fourier transform of the Ornstein–Zernike re-
sult for the order parameter static correlation function:

S(q) =
c

q2 + ξ−2
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to obtain S(x) in d dimensions.
Problem 8.3: After minimizing the Landau free energy density:

f =
r
2

m2 +
u
4

m4 − m · B ,

where r, u are positive, m is the fluctuating magnetization density and B the
applied external magnetic field, show that f = f (B). Expand f in powers of B
in the paramagnetic phase and identify the magnetic susceptibility.
Problem 8.4: Find the magnetization–magnetization correlation functions for
the case where the classical Hamiltonian is of the form:

H =
∫

ddx
[ r

2
M2(x)− M(x) · B

]
,

where r is a positive constant and B an applied constant magnetic field. Use
the Poisson bracket relations given by Eq. (68) to generate the dynamics.
Problem 8.5: Using the conventional approximation, find an approximate so-
lution for the staggered magnetization fluctuation function in the disordered
T > TN regime. From this, find the correlation function CN(q, ω). Write your
final result in dynamic scaling form and extract the dynamic critical index z.
Problem 8.6: Suppose an antiferromagnet can be described by the Landau free
energy density:

f =
rM
2

M2 +
r
2

N2 +
u
4

N4 +
v
2

N2M2 − M · H ,

where rM, u and v are positive. Compute within Landau theory the cross-
susceptibility:

χMN =
∂Ni
∂Hj

in zero external field.
Problem 8.7: Starting with Eq. (126) for an antiferromagnet, work out the lon-
gitudinal and transverse correlation functions for the magnetization density.
We expect the transverse components to share the spin-wave spectrum with
that for the staggered field.
Problem 8.8: Suppose one has an effective Hamiltonian governing the behavi-
or of an n-component vector order parameter, Mα, α = 1, 2 · · · , n, of the O(n)
symmetric form:

H =
∫

ddx

[
r
2

M2 +
u
4
(M2)2 +

c
2 ∑

iα
(∇i Mα)2

]
,

where r = r0(T − Tc) and r0, c and u are temperature independent. Determine
the average order parameter and the fluctuation spectra in the approximation:

δH
δMα(x)

|M=M̄ = 0
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C−1
αβ (x − y) =

δ2H
δMα(x)δMα(y)

|M=M̄ .

Work in the ordered regime where T < Tc and determine CT(q) = 1/ρ0q2 and
obtain an estimate for ρ0 in terms of the parameters of the model.
Problem 8.9: If the spin-wave speed and damping contributions to the isotro-
pic ferromagnet’s characteristic frequency scale in the same manner, what is
the dependence of the transverse diffusion coefficient DT on ξ. Assume ρ0 is a
constant.
Problem 8.10: One can also include the conjugate field B in the scaling relati-
ons and write the free energy in the form:

F ≈ ξx−2x1 f (Bξx1) ,

where x and x1 are constant exponents. Noting the definitions of the critical
indices for the magnetization:

M(B, Tc) ≈ B1/δ

and:

M(0, T) ≈ εβ ,

find expressions for x and x1 in terms of indices δ, β, γ and ν. Find a relation
connecting γ, β, and δ.
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9
Nonlinear Systems

9.1
Historical Background

From our work in the previous chapter we discovered that linearized hydro-
dynamics breaks down near a second-order phase transition or in the ordered
phase of a system with a broken continuous symmetry. In these systems there
are long-range correlations and the hydrodynamic assumption that there are
no large lengths in the problem breaks down. It turns out however that the
validity of linearized hydrodynamics can be questioned even in the case of
systems, like normal fluids, where there are no broken symmetries or large
correlation lengths. In the hydrodynamic description of fluid flow, one can
have large flows that take the system out of the linear regime. In this case
we know that there are convective nonlinearities that enter into a nonlinear
hydrodynamic description. Even when one is not externally driving such sys-
tems one can look at the nonlinear response to internal fluctuations. Let us
review some of the history in this area.

It was appreciated through the pioneering work [1] of the 1950s that a cohe-
rent theory for the dynamics of fluids can be conveniently organized through
the study of equilibrium-averaged time-correlation functions. In particular,
the Green–Kubo formula related transport coefficients, λ, to time integrals
over current–current correlation functions:

λ =
∫ ∞

0
dt〈Jλ(t)Jλ(0)〉 . (1)

For almost 100 years there was a single theory [2], developed around the Boltz-
mann equation, which described the dynamics of strongly interacting fluids.
The basic ingredient of this theory was, of course, short-ranged uncorrelated
two-body collisions. Such processes lead to correlation functions that decay
exponentially with time:

〈Jλ(t)Jλ(0)〉 = 〈J2
λ(0)〉e−t/τλ , (2)

and transport coefficients are simply related to the decay rate τλ through the
Green–Kubo formula. Putting Eq. (2) into Eq. (1) and doing the time integral

Nonequilibrium Statistical Mechanics
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we find:

λ = 〈J2
λ(0)〉τλ . (3)

During the 1960s, more careful studies of these time-correlation functions
went beyond the Boltzmann approximation and led to several surprises.

• One of the theoretical developments inspired by the newly discovered
Green–Kubo equations was to develop a low-density, n, expansion [3]:

λ = λB(1 + An + Bn2 + . . .) , (4)

where λB is the Boltzmann expression for the transport coefficient. It was
found via direct calculation [4] that the coefficient of the second-order
term, B, blows up. It was only after resuming higher-order terms [5] in
the expansion that it was understood that we should write:

B(n) = B0 + B1 ln(nσ3) , (5)

where σ is a hard-sphere diameter.

• The pioneering molecular dynamics simulations of Alder and Wainw-
right [6] found that the time correlation functions were not exponential-
ly decaying with time but showed power-law decays known as long-time
tails. A typical current–current time-correlation function was found to go
for long times as:

〈Jλ(t)Jλ(0)〉 ≈ Aλt−d/2 , (6)

where d is the spatial dimensionality of the system. Putting this result
back into the Green–Kubo formula for the transport coefficient λ in the
long-time regime where it is appropriate, one obtains:

λ(τ) = λ0 +
∫ τ

τ0

dtAλt−d/2

= λ0 +
2Aλ
d − 2

[
1

τ(d−2)/2
0

− 1
τ(d−2)/2

]
, (7)

where λ0 is the contribution to the transport coefficient from times less
than τ0. Then, for d > 2, as τ increases λ(τ) approaches the physical
transport coefficient:

λ = lim
τ→∞

λ(τ) . (8)

We then obtain the remarkable result that for d ≤ 2 that the transport
coefficient and conventional hydrodynamics do not exist. For d = 2,
λ(τ) ≈ ln (τ/τ0). Thus the effect producing the long-time tails grows
stronger as one lowers the spatial dimensionality.
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Remarkably, after careful study [7], it was found that the origins of both
effects, divergence of the coefficient B and long-time tails, is due to related
collective or hydrodynamic effects on a semimicroscopic level. Such effects
have since come to be called mode-coupling effects. We discuss the theoretical
origins of mode-coupling theory at the end of this chapter and see how long-
time tails come out of the theory.

9.2
Motivation

The basic assumption of linearized hydrodynamics, as indicated above and in
previous chapters, is that the dynamic part of the memory function is propor-
tional to q2 (in almost all cases for a conserved slow mode) with a coefficient
that is regular in the small q and ω limit. We have developed the important
idea that in this picture we have identified all of the slow variables [8] in our
set ψi. This picture held intact for nearly 100 years. Eventually, however, as
discussed in the previous section, in the mid 1960s it became recognized that
it is not always sufficient to identify the slow variables (in terms of conserved
variables, order parameters or Nambu–Goldstone modes) and write down
the linearized Langevin equation as we have discussed in detail previously.
What can go wrong with our picture? It has now been recognized in a number
of different contexts that nonlinear interactions can lead to a breakdown of
conventional linearized hydrodynamics. If ψ(x) is a slow variable, should not
ψ2(x) also be treated as a slow variable? If, roughly speaking, the slow mode
goes as:

ψ(q, t) = ψ(q)e−Dq2t , (9)

then the Fourier transform of ψ2(x, t) is:
∫

ddx e+iq·xψ2(x, t) =
∫ ddk

(2π)d ψ(k, t)ψ(q − k, t)

=
∫ ddk

(2π)d ψ(k)ψ(q − k)e−D[k2+(q−k)2]t . (10)

Let us look at the long distance behavior and let q → 0 to obtain:
∫

ddx ψ2(x, t) =
∫ ddk

(2π)d ψ2(k)e−2Dk2t . (11)

The point is that the contribution to the integral is dominated by the contribu-
tions at small wavenumbers k and we can write:∫

ddx ψ2(x, t) = K̃d ψ2(0)
∫ Λ

0
kd−1dke−2Dk2t , (12)
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where Λ bounds the low-wavenumber behavior from above, and:

K̃d =
∫ dΩd

(2π)d (13)

is proportional to the d-dimensional angular average. Making the change of
variables from k to x =

√
2Dtk we easily obtain:

∫
ddx ψ2(x, t) =

ψ2(0)
(2Dt)d/2 K̃d

∫ √
2DtΛ

0
xd−1dxe−x2

=
ψ2(0)

(2πDt)d/2 K̃d

∫ ∞

0
xd−1dxe−x2

=
ψ2(0)

(2πDt)d/2 K̃d
1
2 Γ(d/2) , (14)

where the last result holds in the long-time limit and we notice that it is
independent of the cutoff Λ. We see that the Fourier transform of ψ2(x) decays
algebraically with time, not exponentially as expected for variables that are
not part of the slow set. Thus it seems wise to treat all products of ψ(x) as
slow variables. These nonlinear quantities are slower in lower dimension. We
shall see that there are situations where these nonlinearities qualitatively affect
the long-time and distance behavior of our system.

9.3
Coarse-Grained Variables and Effective Hamiltonians

In order to develop a method for treating the nonlinear dynamics of a set of
fluctuating fields, we need to develop a bit of formal structure. We again con-
sider a set of variables ψi (ψi = {n, g, q} for a fluid, M for a ferromagnet and
M and N for antiferromagnets.) We want to derive Langevin-like equations as
before, but we want to allow for all possible nonlinear couplings among the
ψi’s. The end result of this development is a set of nonlinear field theories with
many of the same technical difficulties (renormalization, etc.) found in other
field theories. We shall avoid some of these problems by defining our f ields
on a lattice. This means that all of our fields can be labeled by a set of discrete
labels. Thus in the microscopic realization of our model, we assume there are
a set of slow variables ψi(t). A variable that keeps track of these variables
and their products is:

gφ(t) = ∏
i

δ[φi − ψi(t)] ≡ δ[φ − ψ(t)] . (15)

Here, gφ(t) maps the dynamical variables ψi(t) onto the set of functions φi. If
we take the thermal average of gφ(t) over the space that includes the variables
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ψi(t), then we have a quantity:

Wφ = 〈gφ(t)〉 , (16)

which gives the equilibrium probability distribution governing the variables
φi. It is useful, when doing multiple integrals over φ, to introduce the notation:

D(φ) =

(
∏

i
dφi

)
(17)

and: ∫
D(φ)gφ(t) = ∏

i

∫
dφiδ[φi − ψi(t)] = 1 . (18)

This result guarantees that Wφ is normalized:∫
D(φ)Wφ = 1 . (19)

Note that the variable gφ(t) can generate all nonlinear equal-time couplings
among the variables ψi. We see, for example, that:∫

D(φ)φiφjgφ(t) = ψi(t)ψj(t) . (20)

We shall also deal with the equal-time correlation functions:

Sφφ′ = 〈gφgφ′ 〉 = δ(φ − φ′)〈gφ〉
= δ(φ − φ′)Wφ . (21)

Clearly there is no new information in Sφφ′ .
In principle, we must carry out a detailed microscopic analysis to obtain Wφ.

Since we expect Wφ to be positive, we can write:

Wφ =
e−βHφ

Z
, (22)

where Hφ is a coarse-grained or effective Hamiltonian or free energy. In prac-
tice, in a variety of situations one can write down the effective Hamiltonian
from general considerations [9] without having to carry out a detailed micros-
copic calculation. Let us discuss a few examples.

In the case of a normal fluid or thermodynamic systems with no long-range
correlations, Landau and Lifshitz [10] have shown that the fluctuations are
governed by a Gaussian probability distribution or a quadratic effective Ha-
miltonian:

Hφ =
1
2

∫
ddx ∑

ij
φi(x)Mijφj(x) , (23)
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where the matrix Mij consists of thermodynamic derivatives. It is easy to see
that this matrix can be determined from the standard relation for Gaussian
integrals [11]:

Sij(k) = 〈φj(−k)φi(k)〉 = kBTM−1
ij . (24)

We explored this statement in detail in Chapter 6, where we showed that
Snn(0), Snq(0), and Sqq(0) could be written in terms of thermodynamic de-
rivatives. Thus we constructed (M−1)ij for the set of variables n and q. If
one chooses as fundamental variables the fluctuating temperature T(x) or the
particle density n(x) then the matrix M is diagonal and one has:

Hφ =
1
2

∫
ddx
[

CV
VT

[δT(x)]2 +
1

nκT
[δn(x)]2

]
, (25)

where CV is the specific heat at constant volume and κT is the isothermal
compressibility. One also has a diagonal form if one chooses pressure and
entropy density as the independent fluctuating fields:

Hφ =
1
2

∫
ddx
[(

∂n
∂p

)
s
(δp(x))2 +

TV
Cp

(δs(x))2
]

. (26)

Nonlinear models in the case of critical phenomena are well developed. In
Wilson’s original [12] renormalization group treatment of second-order pha-
se transitions he focused on the evolution of effective Hamiltonians as one
coarse-grained or integrated out short-distance information to obtain Hφ where
the order parameter φ was restricted to small wavenumbers. A key idea that
came out of this development was that the details of the effective Hamiltonian
were not crucial, but its general form could be determined from principles
of symmetry and analyticity, as in the original development of Landau [13].
Many critical systems could be understood in terms of the Landau–Ginzburg–
Wilson (LGW) effective Hamiltonian:

Hφ =
1
2

∫
ddx
[

c
2
(∇�φ)2 + V(�φ)

]
, (27)

where c is a positive constant and V is a potential of the general form:

V(�φ) =
r
2
�φ2

+
u
4
(�φ2

)2 , (28)

where u is positive but r is proportional to T − T(0)
c and changes sign at the

mean-field theory [14] transition temperature T(0)
c . It is crucial that u > 0. If

u = 0 then we have a Gaussian probability distribution and a quadratic ef-
fective Hamiltonian that leads to mean-field or linear critical properties. Terms
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cubic or higher order in the effective Hamiltonian are called nonlinear, since
they make nonlinear contributions to the conjugate force δH/δφ.

In the case of simple fluids, where one wants to include flow in the descrip-
tion, the slow variables are the mass density ρ, the momentum density g and
the energy density ε. In the simplest circumstances we can ignore the energy
density and work [15] with the effective Hamiltonian:

H[ρ, g] =
∫

ddx
[

1
2

g2(x
ρ(x)

+ f [ρ(x)]
]

, (29)

where the first term represents the kinetic energy.
In the case of more complex fluids, one introduces effective Hamiltonians

almost out of necessity, since a more microscopic treatment is very unwieldy
and probably unnecessary if one is interested in long-time, long-distance be-
havior. In the case of a nematic liquid crystal it is the director field n̂(x) that
corresponds to the Nambu–Goldstone (NG) mode in the ordered phase. It is
widely accepted [16] that the appropriate effective Hamiltonian is the Frank
effective Hamiltonian:

H[n̂] =
1
2

∫
ddx
[

K1(∇ · n̂)2 + K2(n̂ · (∇× n̂))2 + K3(n̂ × (∇× n̂))2
]

, (30)

where the Ki are elastic constants. In the case of smectic A liquid crystals
[17] the NG mode is the displacement field u(x) and the Landau effective
Hamiltonian in this case is given by:

Hu =
1
2

∫
ddx
[

BE[u] + K1(∇2u)2
]

, (31)

where B is a constant and:

E[u] =
∂u
∂z

+
1
2
(∇u)2 . (32)

In the case of solids one has the elastic contribution [18] to the effective Ha-
miltonian:

HU =
1
2

∫
ddxCαβγμUγαUμβ , (33)

where the matrix C is the set of elastic constants appropriate for the symmetry
of the lattice and the U are the strain fields:

Uγα =
1
2

(
∂uα
∂xγ

+
∂uγ

∂xα

)
. (34)

Finally we have the case of the Ginsburg–Landau free energy [19] for Su-
perconductors, where ψ(x) is the complex order parameter governed by the



306 9 Nonlinear Systems

effective Hamiltonian [20]:

H[ψ, A] =
1
2

∫
ddx
[

V[ψ(x)] +
h̄2

2m∗ |(∇− iqA(x)ψ(x)|2
]

+HEM[A, φ] , (35)

where q is the charge, A and φ are the electromagnetic potential and HEM is the
associated effective Hamiltonian that generates the macroscopic Maxwell‘s
equations in the static case. Neutral superfluids are described by H[ψ, A] with
q = 0.

9.4
Nonlinear Coarse-Grained Equations of Motion

9.4.1
Generalization of Langevin Equation

We want to work out the equation of motion satisfied by gφ(t). Our analysis
will follow the same procedure [21] used in Chapter 5 for the set of variables
ψi(t), except now we replace ψi(t) with gφ(t). Thus one again has a linear
theory, but now linear in gφ(t), which treats all equal-time products of ψi(t).
This is not the most general set of nonlinearities, but appears to be sufficient
for our purposes.

The first step in writing a generalized Langevin equation for gφ(t) is to
introduce the Laplace transform:

gφ(z) = −i
∫ +∞

0
dt e+iztgφ(t)

= R(z)gφ , (36)

where R(z) is again the resolvant operator,

R(z) = [z + L]−1 , (37)

with L the Liouville operator governing the system of interest. In complete
analogy with our work in Chapter 5, we can immediately write down the
generalized Langevin equation of the form:

zgφ(z) − Kφφ̄(z)gφ̄(z) = gφ + iNφ(z) , (38)

where we introduce the notation for repeated barred labels:

Kφφ̄(z)gφ̄ ≡
∫

D(φ̄)Kφφ̄(z)gφ̄(z) , (39)
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and Nφ(z) is the Laplace transform of the associated noise. Again we demand
that the noise satisfy:

〈gφ′ Nφ(z)〉 = 0 (40)

or:

〈gφ′ Nφ(t)〉 = 0 (41)

for t ≥ 0. The correlation function:

Gφφ′(z) = 〈 gφ′ R(z)gφ〉 (42)

then satisfies the kinetic equation:

zGφφ′(z) − Kφφ̄Gφ̄φ′(z) = Sφφ′ , (43)

where the memory function is, as before, a sum of two parts:

Kφφ′(z) = K(s)
φφ′ + K(d)

φφ′ (z) , (44)

where the static part of the memory function as usual is given by:

K(s)
φφ̄ Sφ̄φ′ = −〈gφ′ Lgφ 〉 (45)

and the dynamic part of the memory function is given by:

K(d)
φφ̄ (z)Sφ̄φ′ = −〈(Lgφ′)R(z)(Lgφ)〉

+〈(Lgφ′)R(z)gφ̄〉G−1
φ̄φ̄′

(z)〈gφ̄′ R(z)(Lgφ)〉 . (46)

All of this seems impressively complicated. Let us see how it can be simplified.

9.4.2
Streaming Velocity

We have the now familiar sequence of steps developed in Chapter 5. We have
chosen our set of slow variables, gφ(t), and its equilibrium average is given
by:

Wφ = 〈gφ(t)〉 = e−βHφ/Zφ , (47)

where this equation defines the effective Hamiltonian Hφ up to a normalizati-
on constant given by Zφ. Next, the static structure factor for these variables is
given by:

Sφφ′ = 〈gφgφ′ 〉 = δ(φ − φ′)Wφ′ . (48)
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Consider now the static part of the memory function given by Eq. (45). Since
L is a linear operator we have the very useful chain-rule identity:

Lgφ = −∑
i

∂

∂φi
gφLψi , (49)

which leads to the result:

K(s)
φφ′Wφ′ = ∑

i

∂

∂φi
〈gφ′gφLψi〉

= ∑
i

∂

∂φi
[δ(φ′ − φ)〈gφLψi〉] . (50)

We can use the result from Chapter 5, Eq. (5.205), that:

〈ψjLψi〉 = −iβ−1〈
{

ψi, ψj
}
〉 , (51)

to obtain:

〈gφLψi〉 = −iβ−1〈
{

ψi, gφ
}
〉 . (52)

Since in the Poisson bracket we have a linear operator acting on gφ, we again
use the chain-rule to obtain:

{
ψi, gφ

}
= −∑

j

∂

∂φj
gφ
{

ψi, ψj
}

(53)

and:

K(s)
φφ′Wφ′ = ∑

i

∂

∂φi

[
δ(φ′ − φ)(iβ−1) ∑

j

∂

∂φj

〈
gφ
{

ψi, ψj
}〉]

. (54)

Let us define:

Qij[φ] = 〈gφ
{

ψi, ψj
}
〉/Wφ . (55)

If we have the explicit result for the Poisson brackets expressed in terms of the
slow modes: {

ψi, ψj
}

= fij(ψ) , (56)

then:

Qij[φ] = 〈gφ fij(ψ)〉/Wφ

= fij(φ)〈gφ〉/Wφ

= fij(φ) . (57)



9.4 Nonlinear Coarse-Grained Equations of Motion 309

Putting Eq. (55) back into Eq. (54) we have:

K(s)
φφ′Wφ′ = i ∑

ij

∂

∂φi

[
δ(φ′ − φ)

∂

∂φj
β−1WφQij[φ]

]
(58)

= i ∑
ij

∂

∂φi

[
δ(φ′ − φ)

(
∂Wφ

∂φj

)
β−1Qij[φ] + δ(φ′ − φ)Wφβ−1 ∂

∂φj
Qij[φ]

]
.

Using the definition of the effective Hamiltonian:

β
∂Hφ

∂φj
= − 1

Wφ

∂

∂φj
Wφ , (59)

we can then cancel a common factor of Wφ′ to obtain:

K(s)
φφ′ = i ∑

ij

∂

∂φi

[
−δ(φ′ − φ)Qij[φ]

∂Hφ

∂φj
+ δ(φ′ − φ)

∂

∂φj
β−1Qij[φ]

]

= −i ∑
i

∂

∂φi

[
Vi[φ]δ(φ − φ′)

]
, (60)

where:

Vi[φ] = ∑
j

(
Qij[φ]

∂Hφ

∂φj
− β−1 ∂

∂φj
Qij[φ]

)
. (61)

Vi[φ] is a streaming velocity in function φ space. It satisfies the important diver-
gence property:

∑
i

∂

∂φi
[Vi(φ)Wφ] = 0 . (62)

Proof: if we insert Eq. (61) into Eq. (62) we find:

∑
i

∂

∂φi

[
∑

j

(
Qij[φ]

∂Hφ

∂φj
− β−1 ∂

∂φj
Qij[φ]

)
Wφ

]

= −∑
ij

∂

∂φi

[
Qij[φ]β−1 ∂

∂φj
Wφ + Wφ β−1 ∂

∂φj
Qij[φ]

]

= −∑
ij

∂

∂φi

∂

∂φj

[
β−1Qij[φ]Wφ

]
. (63)

Since Qij is antisymmetric,

Qij[φ] = −Qji[φ] , (64)
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the double sum vanishes and the theorem is proven. The usefulness of this
theorem will become apparent later. It is left to Problem 9.1 to show that the
average of the streaming velocity is zero:

〈Vi[φ]〉 = 0 . (65)

9.4.3
Damping Matrix

Let us turn next to the dynamic part of the memory function given by:

K(d)
φφ′ (z)Wφ′ = −〈(Lgφ′)R(z)(Lgφ)〉 + 〈(Lgφ′)R(z)gφ̄〉G−1

φ̄φ̄′
(z)〈gφ̄′ R(z)(Lgφ)〉 .

Using the identity given by Eq. (49), we see that this can be written in the form,

K(d)
φφ′ (z)Wφ′ = ∑

ij

∂

∂φi

∂

∂φ′j
Tij

φφ′(z) , (66)

where Tij
φφ′(z) is a symmetric but complicated functional of φ and φ′. We know

that any part of Lψi that can be expressed in terms of ψi , or products of ψi at
the same time t, will not contribute to K(d). The fundamental assumption at
this point is that only fast variables contribute to K(d)

φφ′ (z) and it can be replaced

by its Marko f f ian-type approximation for Tij
φφ′(z):

Tij
φφ′(z) = − iΓij

0 (φ)β−1δ(φ − φ′)Wφ , (67)

where Γij
0 (φ) is a set, in general, of field-dependent bare kinetic coefficients.

We discuss the consequences of this approximation in some detail. Putting
Eq. (67) back into Eq. (66) gives

K(d)
φφ′ (z) = − i

Wφ′
∑
ij

∂

∂φi

∂

∂φ′j
β−1Γij

0 (φ)δ(φ − φ′)Wφ

= −i ∑
ij

∂

∂φi
β−1Γij

0 (φ)

[
1

Wφ′

∂

∂φ′j
δ(φ − φ′)Wφ′

]

= −i ∑
ij

∂

∂φi
β−1Γij

0 (φ)
1

Wφ′

[
Wφ′

∂

∂φ′j
δ(φ − φ′) + δ(φ − φ′)

∂Wφ′

∂φ′j

]

= −i ∑
ij

∂

∂φi
β−1Γij

0 (φ)

[
− ∂

∂φj
δ(φ − φ′)− β

∂Hφ

∂φj
δ(φ − φ′)

]

K(d)
φφ′ (z) = i ∑

ij

∂

∂φi
β−1Γij

0 (φ)

[
∂

∂φj
+ β

∂Hφ

∂φj

]
δ(φ − φ′) . (68)
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9.4.4
Generalized Fokker–Planck Equation

Putting these results for K(s) and K(d) together we obtain, from Eq. (38), the
Langevin equation satisfied by gφ(t):

∂

∂t
gφ(t) + iK(s)

φφ̄ gφ̄(t) + i K(d)
φφ̄ gφ̄(t) = Nφ(t) . (69)

The contribution from the static part of the memory function takes the form:

iK(s)
φφ̄ gφ̄(t) = ∑

i

∂

∂φi

[
Vi[φ]δ(φ − φ̄)gφ̄(t)

]

= ∑
i

∂

∂φi

[
Vi[φ]gφ(t)

]
, (70)

while the contribution from the dynamic part of the memory function can be
written as:

iK(d)
φφ̄ gφ̄(t) = i ∑

ij

∂

∂φi
iβ−1Γij

o [φ]
[

∂

∂φj
+ β

∂Hφ

∂φj

]
δ(φ − φ̄)gφ̄(t)

= −∑
ij

∂

∂φi
β−1Γij

0 [φ]
[

∂

∂φj
+ β

∂Hφ

∂φj

]
gφ(t) . (71)

Combining the effects of K(s) and K(d) we can define the generalized Fokker–
Planck operator [22]:

Dφ = −∑
i

∂

∂φi

[
Vi[φ]− ∑

j
β−1Γij

0 [φ]

(
∂

∂φj
+ β

∂Hφ

∂φj

)]
, (72)

then we obtain our primary form for the generalized Fokker–Planck equation
(GFPE):

∂

∂t
gφ(t) = Dφgφ(t) + Nφ(t) . (73)

This is a fundamental and important equation. Let us check a few of its nice
properties. First we require, by integrating over all φ′ in Eq. (41), that:

〈Nφ(t)〉 = 0 . (74)

However we have not required 〈gφ(t)〉 = 0; instead we must satisfy:

∂

∂t
〈gφ(t)〉 = Dφ〈gφ(t)〉 . (75)
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Since the equilibrium probability distribution is time independent,

〈gφ(t)〉 = Wφ , (76)

we must have:

DφWφ = 0 . (77)

We can show this explicitly. We have:

DφWφ = −∑
i

∂

∂φi

[
Vi[φ]Wφ

]

+ ∑
ij

∂

∂φi
β−1Γij

0 [φ]
[

∂

∂φj
+ β

∂Hφ

∂φj

]
Wφ . (78)

The first term vanishes due to the divergence theorem, Eq. (62), proven earlier.
So:

DφWφ = ∑
ij

∂

∂φi
β−1Γij

0 [φ]
[

∂Wφ

∂φj
+ Wφβ

∂Hφ

∂φj

]
. (79)

Since:

1
Wφ

∂Wφ

∂φj
= −β

∂Hφ

∂φj
, (80)

Eq. (77) is satisfied. Therefore the equilibrium distribution is stationary un-
der the application of the Fokker–Planck operator. It is also found that when
treated as an initial-value problem, then the Fokker–Planck equation, Eq. (75),
drives a wide class of initial states, P0(φ) = 〈gφ(t0)〉 to equilibrium, e−βHφ /Z,
as time increases to infinity.

9.4.5
Nonlinear Langevin Equation

The GFPE:

∂

∂t
gφ(t) = Dφgφ(t) + Nφ(t) , (81)

can be used to generate an equation of motion for the field ψi(t). The asso-
ciated field ψi(t) must now be viewed as a coarse-grained field satisfying an
effective dynamics. If we multiply Eq. (81) by φi and integrate over all φ, we
immediately obtain the nonlinear Langevin equation:

∂ψi(t)
∂t

=
∫

D(φ)φiDφgφ(t) + ξi(t) , (82)
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where:

ψi(t) =
∫

D(φ)φigφ(t) (83)

and the moment of the noise Nφ(t) generates the nonlinear Langevin equation
noise:

ξi(t) =
∫

D(φ)φi Nφ(t) . (84)

If we look at the middle term in Eq. (8.109), we have:
∫

D(φ)φiDφgφ(t)

= −
∫

D(φ)φi ∑
j

∂

∂φj

[
Vj[φ]− ∑

k
β−1Γjk

0 [φ](
∂

∂φk
+ β

∂Hφ

∂φk
)
]

gφ(t) .(85)

After integrating by parts we obtain:

∫
D(φ)φiDφgφ(t) =

∫
D(φ)

[
Vi[φ] −∑

k
Γik

0 [φ](
∂

∂φk
+

∂Hφ

∂φk
)
]

gφ(t)

= Vi[ψ(t)] + ∑
k

∂

∂ψk(t)
β−1Γik

0 [ψ(t)]− ∑
k

Γik
0 [ψ]

∂Hψ

∂ψk(t)
, (86)

and the nonlinear Langevin equation takes the form:

∂ψi(t)
∂t

= Vi[ψ(t)] + ∑
k

∂

∂ψk(t)
β−1Γik

0 [ψ(t)]

−∑
k

Γik
0 [ψ(t)]

∂

∂ψk(t)
Hψ + ξi(t) . (87)

In a typical case where the bare kinetic coefficients are independent of the
fields, then we have:

∂ψi(t)
∂t

= Vi[ψ(t)]−∑
k

Γik
0

∂

∂ψk(t)
Hψ + ξi(t) . (88)

This is a key result and we will come back and discuss the various parts of
this equation after discussing the noise contributions ξi(t) and Nφ(t).



314 9 Nonlinear Systems

9.5
Discussion of the Noise

9.5.1
General Discussion

We derived the second fluctuation-dissipation theorem in Chapter 5 and in
the present context it takes the form:

〈Nφ(t)Nφ′(t′)〉 = K(d)
φφ̄ (t − t′)Sφ̄φ′

= K(d)
φφ′ (t − t′)Wφ′ t > t′ . (89)

We have, from our Markoffian approximation, Eqs. (66) and (67), that:

K(d)
φφ′ (t − t′)Wφ′ = ∑

ij

∂

∂φi

∂

∂φ′j
2β−1Γij

0 (φ)δ(φ − φ′)Wφδ(t − t′) , (90)

so, for self-consistency, we expect:

〈Nφ(t)Nφ′(t′)〉 = ∑
ij

∂

∂φi

∂

∂φ′j
2β−1Γij

0 (φ)δ(φ − φ′)Wφδ(t − t′) . (91)

We have immediately, using Eq. (84), that the autocorrelation function for the
noise ξi(t) in the nonlinear Langevin equation is given by:

〈ξi(t)ξj(t′)〉 =
∫

D(φ)
∫

D(φ′)φiφ
′
j〈Nφ(t)Nφ′(t′)〉

=
∫

D(φ)
∫

D(φ′)2β−1Γij
0 (φ)δ(φ − φ′)Wφδ(t − t′)

= 2β−1〈Γij
0 [φ]〉δ(t − t′) . (92)

We see, then, that the noise for the nonlinear Langevin equation has the same
autocorrelation as for the linear Langevin equation for the case where Γij

0 is
independent of φi.

9.5.2
Gaussian Noise

Let us suppose that the kinetic coefficients Γij
0 [φ] are independent of φ, which is

consistent with the assumption that the noise ξi(t) is Gaussianly distributed.
This means that in an average over the noise of the form:

〈A[ψ]〉 =
∫

D(ξ)P[ξ]A[ψ(ξ)] , (93)

the probability distribution governing the noise is given by:

P[ξ] =
1

Zξ
e−

1
4 ∑ij

∫ +∞
−∞ dt ξi(t)β(Γ−1

0 )ijξj(t) (94)
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and Zξ is chosen such that: ∫
D(ξ)P[ξ] = 1 . (95)

The first step in establishing this as a consistent choice is to show that the
variance is in agreement with Eq. (92):

〈ξi(t)ξj(t′)〉 = 2β−1Γij
0 δ(t − t′) . (96)

This follows from the functional identity:∫
D(ξ)

δ
δξi(t)

[P[ξ]A(ψ, ξ)] = 0 . (97)

Taking the derivative of the distribution given by Eq. (94),

δ
δξi(t)

P[ξ] = −β
2
(Γ−1

0 )ikξk(t)P[ξ] , (98)

Eq. (97) reduces to:

∑
k

β
2
(Γ−1

0 )ik〈ξk(t)A(ξ) 〉 =
〈

δA(ξ)
δξi(t)

〉
. (99)

If we matrix multiply on the left by 2β−1Γ0 we obtain:

〈ξi(t)A(ξ)〉 = 2β−1 ∑
k

Γik
0

〈
δA(ξ)
δξk(t)

〉
. (100)

Let:

A(ξ) = ξj(t′) , (101)

then:

〈ξi(t)ξj(t′)〉 = 2β−1 ∑
k

Γik
0

〈
δξj(t′)
δξk(t)

〉

= 2β−1Γij
0 δ(t − t′) , (102)

in agreement with the result derived directly from the second fluctuation-
dissipation theorem.

9.5.3
Second Fluctuation-Dissipation Theorem

It is shown in Appendix E that the noise Nφ is related to the nonlinear Lange-
vin noise, ξi, by:

Nφ(t) = −∑
ik

∂

∂φi

[
ξi(t)δik +

∂

∂φk
β−1Γik

0

]
gφ(t) . (103)
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It is further shown in Appendix E, by explicitly doing the average over the
Gaussian noise ξi, that indeed the second fluctuation-dissipation theorem holds
in the form:

〈 Nφ(t)Nφ′(t′)〉 = ∑
ij

∂

∂φi

∂

∂φj
2β−1Γij

0 δ(φ − φ′)Wφδ(t − t′) . (104)

9.6
Summary

We have constructed a new self-contained dynamics characterized by the set
of Poisson brackets, the bare kinetic coefficients Γij

0 and a driving effective
Hamiltonian. In terms of a generalized nonlinear Langevin equation this is
given by:

∂ψi(t)
∂t

= Vi[ψ(t)]−∑
k

Γik
0

∂

∂ψk(t)
Hψ + ξi(t) , (105)

where the streaming velocity is given by:

Vi[ψ] = ∑
j

[
Qij[ψ]

∂Hψ

∂ψj
− β−1 ∂

∂ψj
Qij[ψ]

]
, (106)

where Qij[ψ] is the set of Poisson brackets among the slow variables. In this
case the noise ξi(t) is Gaussian with variance:

〈ξi(t)ξj(t′)〉 = 2kBTΓij
0 δ(t − t′) . (107)

This description is equivalent to working with the Fokker–Planck equation:

∂

∂t
gφ(t) = Dφgφ(t) + Nφ(t) , (108)

where the Fokker–Planck operator is given by:

Dφ = −∑
i

∂

∂φi

[
Vi[φ]− ∑

j
β−1Γij

0

(
∂

∂φj
+ β

∂Hφ

∂φj

)]
. (109)

Let us move on to discuss the application of these results to various physical
systems.

It is key to understand that these models stand on their own as complete
dynamical systems. We gave a derivation starting with a microscopic sys-
tem that has dynamics governed by Liouville operator. If we work with less
isolated, more complex systems, it may be more accurate to start with these
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coarse-grained equations for the slow variables, accepting the crucial role of
the noise.

The procedures for specifying a model in a given physical situation are very
similar to our linearized Langevin approach. First choose the slow variables
ψi(t). Next address the equilibrium correlations. In linearized hydrodynamics
this involves constructing Sij = 〈ψiψj〉, while in fluctuating nonlinear hydro-
dynamics (FNH) one chooses the effective Hamiltonian Hψ, from which one
can determine [23] all equal-time equilibrium correlation functions. Next one
determines the Poisson brackets among the slow variables:

Qij[ψ] = {ψi, ψj} . (110)

In linearized hydrodynamics, the average of Qij gives, essentially, the static
part of the memory function, while in FNH they determine the streaming
velocity and the reversible part of the dynamics. It is clear that it is desirable
to choose the set ψi such that the Poisson bracket relation Eq. (110) is closed.
Finally one must specify the damping matrix Γij

0 in each case. In linearized
hydrodynamics, these are the physical transport coefficients, while in FNH
they have the same symmetry but are bare transport coefficients that are mo-
dified [24] by nonlinear interactions.

9.7
Examples of Nonlinear Models

9.7.1
TDGL Models

Let us turn now to the nonlinear Langevin equation,

∂ψi(t)
∂t

= Vi[ψ(t)]−∑
k

Γik
0

∂

∂ψk(t)
Hψ + ξi(t) , (111)

and discuss the various terms. The most straightforward case is where one has
a scalar field ψ(x, t) that does not couple to any other variables. In this example
the label i maps onto the continuous spatial label x. In this case we have a field
theory that must ultimately be regulated at short distances. One could think
in terms of an Ising-like magnetic system where the order parameter is the
z-component of the magnetization density or an antiferromagnetic where the
order parameter is the z-component of the staggered magnetization density.
Since the Poisson bracket of a scalar field with itself is zero, we find that the
streaming velocity vanishes. The resulting equation:

∂ψi(t)
∂t

= −∑
k

Γik
0

∂

∂ψk(t)
Hψ + ξi(t) (112)



318 9 Nonlinear Systems

is known as the time-dependent Ginzburg–Landau (TDGL) Model. This mo-
del [25] plays a central role in the treatment of dynamic critical phenomena
and growth kinetics for dissipative systems where the order parameter is not
coupled to other slow modes (like energy). This model also plays a central role
in a discussion of ordering systems as discussed in Chapter 11. Such models
allow one to treat, for example, temperature quenches and field flips.

The TDGL equations were actually first written down to describe the beha-
vior of superfluids [26] and superconductors [27] near their phase transitions.
In these cases, the order parameter ψ is complex and the TDGL equation of
motion takes the form:

∂ψ(x, t)
∂t

= −Γ0
δ

δψ∗(x, t)
H[ψ(t), ψ∗(x, t)] + ξ(x, t) , (113)

where the noise is complex.
In the area of dynamic critical phenomena these models where a field ψ(x, t)

is driven by purely dissipative terms are known, in the classification scheme of
Hohenberg and Halperin [28], as models A (nonconserved) and B (conserved)
and have been extensively investigated. Other models of this type can be
written down for the n-vector model and, for example, a nonconserved order
parameter (NCOP) coupled to a conserved field. The conserved-scalar order
parameter case is also known as the Cahn-Hilliard model [29] due to its use in
treating the ordering kinetics of alloys.

In treating critical phenomena, it is now conventional and reasonable to
assume that the effective free-energy or Hamiltonian can be written in the
form of the LGW free energy functional:

H[ψ] =
∫

ddx
[ r

2
ψ2 +

u
4

ψ4 +
c
2
(∇ψ)2

]
, (114)

where u and c are positive constants and a phase transition is characterized by
a change of sign in the coefficient r = a(T − T0

c ).
The final step in specifying the model is to choose the matrix of kinetic

coefficients that has the form, in this case, of Γ0[x, x′]. There are two important
cases. In the simplest case the order parameter is not conserved (NCOP case),

Γ0[x, x′] = Γ0δ(x − x′) (115)

and Γ0 is a bare kinetic coefficient. The second important case is where the
order parameter is conserved (COP case): we write:

Γ0[x, x′] = D0∇ ·∇′δ(x − x′)

= −D0∇2δ(x − x′) (116)

and D0 is a bare transport coefficient. We can treat both cases by writing:

Γ0[x, x′] = Γ̂0(x)δ(x − x′) , (117)
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where Γ̂0 is a constant for the NCOP case and −D0∇2 for the COP case. The
TDGL equation of motion then reads :

∂ψ(x, t)
∂t

= −Γ̂0(x)
δHψ

δψ(x, t)
+ ξ(x, t) . (118)

If we insert the usual LGW effective Hamiltonian into Eq. (118), we obtain the
nonlinear Langevin equation:

∂ψ(x, t)
∂t

= −Γ̂0

[
(r − c∇2)ψ(x, t) + uψ3(x, t)

]
+ ξ(x, t) . (119)

The only nonlinearity is the ψ3 term. If we set u = 0 we are back to our
linearized equation:

∂ψ(x, t)
∂t

= −Γ̂0

[
(r − c∇2)ψ(x, t)

]
+ ξ(x, t) . (120)

We review here the calculation of the associated correlation function. Equation
(120) is diagonalized by Fourier transforming over space and time to obtain:[

−iω + Γ0(q)χ−1
0 (q)

]
ψ(q, ω) = ξ(q, ω) , (121)

where χ−1
0 (q) = r + cq2, and Γ0(q) = Γ0 for a NCOP and D0q2 for a COP.

Equation (121) expresses ψ in terms of the noise. Since we know the statistics
of the noise, we easily find:

〈ψ(q, ω)ψ(q′, ω′)〉 = (2π)d+1δ(q + q′)δ(ω + ω′)C0(q, ω) , (122)

where the multiplicative δ-functions reflect translational invariance in space
and time and:

C0(q, ω) =
2kBTΓ0(q)

ω2 + [Γ0(q)χ−1
0 (q)]2

. (123)

Inverting the frequency Fourier transform we obtain in the time domain:

C0(q, t) = S0(q)e−Γ0(q)χ−1
0 (q)|t| . (124)

The equilibrium static structure factor is given by:

S0(q) =
∫ dω

2π
C0(q, ω) =

kBT
r + cq2 = β−1χ0(q) , (125)

which is just the expected Ornstein–Zernike result. Notice that the dynamics
is relaxational. One has exponential decay of fluctuations.
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Nonzero u leads to the corrections in critical phenomena associated with
moving from the mean-field universality class to the class associated with
physical systems with nontrivial critical indices. We discuss the nonlinear
corrections in detail in Chapter 10.

9.7.2
Isotropic Magnets

Let us next consider the case of an isotropic ferromagnet. In this case the
order parameter, or slow variable, is just the magnetization density M(x, t).
We again assume that the effective Hamiltonian or free energy can be written
in the LGW form:

H[M] =
∫

ddx

[
r
2

M2 +
u
4
(M2)2 +

c
2 ∑

iα
(∇i Mα)2

]
, (126)

where again c and u are positive and r changes sign at the mean-field transiti-
on temperature. In this case, the Poisson brackets close upon themselves,{

Mα(x), Mβ(x′)
}

= ∑
γ

εαβγMγ(x)δ(x − x′) (127)

and the streaming velocity can be written as:

Vα[x] = ∑
β

∫
ddx′

[
Qαβ[x, x′]

∂H
∂Mβ(x′)

− ∂

∂Mβ(x′)
β−1Qαβ[x, x′]

]
, (128)

where Q is defined by Eq. (55). Clearly the derivative acting on the Poisson
bracket term is zero due to the antisymmetry of εαβγ, so:

Vα[x] = ∑
βγ

εαβγMγ(x)
δ

δMβ(x)
H . (129)

If we define the e f f ective magnetic field:

H(x) = − δH
δM(x)

, (130)

then:

Vα(x) = −∑
βγ

εαβγMγ(x)Hβ(x) , (131)

or in vector notation:

�V = M × H (132)
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and our Langevin equation is of the form [30]:

∂M
∂t

= M × H − Γ0∇2H +�ζ , (133)

where we have assumed that the magnetization is conserved. In addition to
the dissipative terms there is a spin-precession term M × H,

If we insert the explicit form for the LGW effective Hamiltonian into this
equation we obtain:

H = − ∂H
∂M

= −rM − u(M2)M + c∇2M (134)

and:

M × H = cM ×∇2M , (135)

so:

∂M
∂t

= cM × ∇2M − Γ∇2H +�ζ . (136)

In this equation of motion we have reversible terms reflecting the underlying
microscopic equation of motion and dissipative terms reflecting the influence
of the fast variables in the problem. We discuss this model in detail in Chap-
ter 10. It is important to point out that the reversible terms are nonlinear and
are very important in treating the dynamic critical behavior of this model.

In the case of an antiferromagnet [31], where we keep the conserved ma-
gnetization M and the order parameter, the staggered magnetization, N, we
obtain the equations of motion:

∂N
∂t

= M × HN + N × HM − ΓNHN +�ζN (137)

∂M
∂t

= M × HM + N × HN + ΓM∇2HM +�ζM , (138)

which is written in term of the effective fields:

HN = −δH
δN

(139)

HM = − δH
δM

(140)

and the driving effective Hamiltonian is taken to be of the form:

H[M, N] =
∫

ddx
[ r

2
N2 +

u
4
(N2)2 +

c
2
(∇N)2 +

rM
2

M2
]

, (141)
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where rM > 0. The simple dependence of the effective Hamiltonian on M
reflects the fact that the magnetization is not the order parameter for an anti-
ferromagnet.

9.7.3
Fluids

Let us turn to the case of a coarse-grained description of fluid dynamics. This,
of course, is just the fluctuating nonlinear hydrodynamics. This is in some
ways more complicated than the magnetic examples. While we can treat the
coupled set of variables, the mass density ρ, the momentum density g and the
heat density q, it is a bit more involved to include the heat mode, so we will
not [32] include it for simplicity. Thus we have ψi → {ρ(x), g(x)}.

The first step in constructing our nonlinear model is to make some state-
ments about the effective Hamiltonian governing the equilibrium fluctuati-
ons. We want to determine:

e−βH[ρ,g] = 〈gφ〉 , (142)

where gφ maps the microscopic mass density:

ρ̂(x) =
N

∑
i=1

mδ(x − ri) (143)

and particle current:

ĝ(x) =
N

∑
i=1

piδ(x − ri) (144)

onto classical fields ρ(x) and g(x). In general this is a complicated procedu-
re because of the interactions in the system. However, with the microscopic
Hamiltonian of the form:

H =
N

∑
i=1

p2
i

2m
+ V , (145)

one can coarse grain [15] and obtain Eq. (29) quoted above:

H[ρ, g] =
∫

ddx
[

1
2

g2(x)
ρ(x)

+ f [ρ(x)]
]

, (146)

where f (ρ) is some functional of ρ(x). There should also, in general, be terms
depending on the gradient of ρ. The main point here is that the dependence
of H on g can be made explicit [15]. This term seems sensible physically if we
write:

g = ρV (147)
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and identify:

1
2

g2/ρ =
1
2

ρV2 (148)

as the kinetic energy density.
The Poisson brackets for the set ρ and g are worked out in Appendix B,

starting with the microscopic definitions of ρ(x) and g(x). They close on them-
selves and the nonzero brackets are given by:{

ρ(x), gi(x′)
}

= −∇i
x[δ(x − x′)ρ(x)] (149)

{
gi(x), gj(x′)

}
= −∇j

x [δ(x − x′)gi(x)] + ∇i
x′ [δ(x − x ′)gj(x)] . (150)

The streaming velocities in this case are given by:

Vρ(x) = ∑
i

∫ {
ρ(x), gi(x′)

} δH
δgi(x′)

ddx′ (151)

and:

Vgi (x) =
∫

d3x′
[{

gi(x), ρ(x′)
} δH

δρ(x′)
+ ∑

j

{
gi(x), gj(x′)

} δH
δgj(x′)

]
. (152)

Vρ and Vgi are worked out in Problem 9.7 using Eq. (146) with the results:

Vρ(x) = −∇x · g(x) (153)

V i
g(x) = −ρ∇i ∂ f

∂ρ
− ∑

j
∇j(gigj/ρ) . (154)

Vρ is consistent with conservation of mass. We can put the expression for V i
g

into a more convenient form. We can write:

∇i
[

ρ
δ f
δρ

− f
]

= (∇iρ)
∂ f
∂ρ

+ ρ∇i ∂ f
∂ρ

− ∂ f
∂ρ

∇iρ

= ρ∇i ∂ f
∂ρ

, (155)

so we have:

V i
g = −∇i

[
ρ

∂ f
∂ρ

− f
]
− ∑

j
∇j(gigj/ρ)

= −∑
j
∇jσR

ij (156)
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and we can identify:

σR
ij = δij

[
ρ

∂ f
∂ρ

− f
]

+ gigj/ρ (157)

as the reversible part of the stress tensor. Notice that it is symmetric. What is
the physical interpretation of the diagonal part? Remember that in thermody-
namics that the pressure can be written in the form [33]:

p = −
(

∂F
∂V

)
N,T

. (158)

If we express the free energy in terms of the free energy density, F = f V, then:

p = − f − V
(

∂ f
∂V

)
N,T

, (159)

where: (
∂ f
∂V

)
N,T

=
(

∂ f
∂ρ

)
N,T

(
∂ρ
∂V

)
N,T

= − ρ
V2

(
∂ f
∂ρ

)
N,T

, (160)

and:

p = − f + ρ
∂ f
∂ρ

. (161)

If we identify f as a fluctuating free-energy density, then p can be identified
with the fluctuating pressure. The reversible part of the stress tensor can then
be written as:

σR
ij = δij p + ρViVj . (162)

We turn next to the specification of the damping matrix Γij
0 where each index

can be associated with ρ or gi. Clearly, as in the case of normal fluids treated
earlier, there is no damping if either index equals ρ. Thus there is no noise or
dissipative term in the continuity equation:

∂ρ
∂t

= Vρ = −∇ · g . (163)

Thus we can label Γ0 with the vector index associated with g, Γ
gigj
0 = Γij

0 . Since
this matrix is symmetric we have:

Γij
0 = ∑

kj
∇k∇′

lηijklδ(x − x′) (164)
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and since the system is isotropic the viscosity tensor η must have the form:

ηijkl = η1δijδkl + η2δikδjl + η3δilδjk . (165)

Since Γij
0 is symmetric under exchange of i and j, and the gradient terms

should be invariant under exchange of k and l we see that η2 = η3 and:

ηijkl = η1δijδkl + η2[δikδjl + δilδjk] . (166)

Putting this result back into the expression for Γ0 we obtain:

Γij
0 =

[
η1δij∇ ·∇′ + η2(∇i∇′

j +∇j∇′
i)
]

δ(x − x′)

= −
[

η1δij∇2 + 2η2∇i∇j

]
δ(x − x′) . (167)

Inserting this result back into the dissipative contribution to the equation of
motion for the momentum density:

∑
j

Γij
0

∂H
∂gj

= −η0∇2Vi − (ζ0 + η0/3)∇i∇jVj , (168)

where we have introduced the useful notation for the local velocity:

Vi =
∂H
∂gi

= gi/ρ . (169)

η1 = η0 and 2η2 = η0/3 + ζ0 where η0 and ζ0 have the interpretation of
bare shear and bulk viscosities. Eq. (168) can be interpreted in terms of the
derivative of the dissipative part of the stress tensor :

∑
j

Γij
0

∂H
∂gj

= ∑
j
∇jσD

ij . (170)

We then find that dissipative part of the stress tensor (which should be sym-
metric) is given by:

σD
ij = −η0

[
∇iVj +∇jVi −

2
3

δij∇ · V
]
− ζ0δij∇ · V . (171)

The momentum equation can then be written:

∂gi
∂t

= −∇i p − ∑
j
∇j(gigj/ρ)

+(η0/3 + ζ0)∇i∇ · (g/ρ) + η0∇2(gi/ρ) + θi
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= −∇i p − ∑
j
∇j(ρViVj)

+(η0/3 + ζ0)∇i∇ · V + η0∇2Vi + θi , (172)

where the noise satisfies:

〈θi(x, t)θj(x ′, t′)〉 = 2kBT ∑
kl
∇k∇′

lδ(t − t′)δ(x − x ′)

×[η0δijδkl + (η0/3 + ζ0)δikδjl] . (173)

In the absence of noise, Eq. (172) is the usual Navier–Stokes equation supple-
mented with the identification of the fluctuating pressure:

p = ρ
∂ f
∂ρ

− f . (174)

The nonlinearities in this case come from the pressure term and the convective
term ρViVj.

Including the energy in the development is complicated by the need, as
explained in Ref. [34], to include multiplicative noise.

We now have several important examples of nonlinear hydrodynamical
equations. We could go on and describe more systems. In particular the fluc-
tuating nonlinear hydrodynamics of smectic A liquid crystals is of particular
interest [35] because of the strong fluctuations in the smectic A phase. Instead
we move on to ask the question: how do we go about analyzing these equa-
tions? We discuss here one approach that has been very useful and that gives
one some perspective on the structure of the general theory. Another method
is discussed in Chapter 10.

9.8
Determination of Correlation Functions

9.8.1
Formal Arrangements

Now, suppose we want to compute the time-correlation function:

Cij(t) = 〈ψjψi(t)〉 (175)

using our nonlinear models. There are several useful methods. We develop
here a method that is somewhat more direct and that builds on our previous
work.

Let us start with the generalized Fokker–Planck equation (GFPE):

∂

∂t
gφ(t) = Dφgφ(t) + Nφ(t) . (176)
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Let us multiply the GFPE by gφ′ = gφ′(t = 0) and average over the Gaussian
white noise ξi(t). Since, for t > 0, due to causality:

〈gφ′ Nφ(t)〉 = 0 , (177)

we obtain:

∂

∂t
Gφφ′(t) = DφGφφ′(t) , (178)

where:

Gφφ′(t) = 〈gφ′ gφ(t)〉 . (179)

We have the formal solution to this equation in terms of the GFPE operator
Dφ,

Gφφ′(t) = eDφtSφφ′

= eDφt (δ(φ − φ′)Wφ
)

. (180)

Remember, however, that the order parameter correlation function is given
by:

Cij(t) = 〈ψjψi(t)〉 =
∫

D(φ′)φ′j
∫

D(φ)φi〈gφ′ gφ(t)〉

=
∫

D(φ′)φ′j
∫

D(φ)φi eDφt[δ(φ − φ′)Wφ]

=
∫

D(φ)φi eDφt(φjWφ) . (181)

Let us define the adjoint operator D̃φ via,∫
D(φ)AφDφBφ =

∫
D(φ)(D̃φAφ)Bφ . (182)

We can identify D̃φ, after an integration by parts, as:

D̃φ = ∑
i

[
Vi[φ]−∑

j
β−1Γij

0

(
− ∂

∂φj
+ β

∂Hφ

∂φj

)]
∂

∂φi
. (183)

After a sufficient number of integrations by parts, we can rewrite Eq. (181) in
the form:

Cij(t) =
∫

D(φ)Wφφje
D̃φtφi . (184)

Looking at this, one should be reminded of the microscopic expression we had
for the time-correlation function:

Cij(t) = Tr
e−βH

Z
ψje

+iLtψi . (185)
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Indeed they are very similar with H playing the role of the Hamiltonian and
−iD̃φ the role of the Liouville operator. Clearly we can treat this problem using
the same memory function methods as used in treating the microscopic case.
Since all of this should be rather familiar we need only present the results.

The Laplace transform of Eq. (184) gives the fluctuation function:

Cij(z) = −i
∫ +∞

0
dt e+iztCij(t)

= 〈ψjR(z)ψi〉 , (186)

where the resolvant operator in this case is given by:

R(z) = (z − iD̃ψ)−1 . (187)

Again we have that Cij(z) satisfies the kinetic equation:

∑
k

(zδik − Kik(z))Ckj(z) = Sij , (188)

where Sij = 〈ψiψj〉 is the static structure factor and the memory function can
be defined by:

∑
k

KikSkj = Γij , (189)

with the static part given by (See Problem 9.9):

Γ(s)
ij = iβ−1〈Qij〉 − iβ−1Γij

0 , (190)

while the dynamic part can be expressed (See Problem 9.10) in terms of:

Γ(d)
ij (z) = −〈I+

j R(z)Ii〉 + ∑
kl
〈ψl R(z)Ii〉C−1(z)kl〈I+

j R(z)ψk〉 , (191)

where the vertices are defined by:

Ii(φ) = D̃φφi = Vi[φ]− ∑
k

Γik
0

∂Hφ

∂φk
(192)

and:

I+
i (φ) = −Vi[φ]−∑

k
Γik

0
∂Hφ

∂φk
. (193)

We can show, as we found previously, only the nonlinear contributions to Ii

and I+
i contribute to Γ(d)

ij (z).
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9.8.2
Linearized Theory

The conventional approximation in this approach corresponds to dropping
K(d)(z). The resulting theory is identical to linearized hydrodynamics in the
Markoffian approximation since, on inspection of Eq. (190), we obtain:

Γ(s)
NFH = Γ(s)

LH + Γ(d)
LH , (194)

where the subscript LH stands for linearized hydrodynamics and where the
physical transport coefficients are replaced by the bare transport coefficients.

9.8.3
Mode-Coupling Approximation

In general the analysis of K(d)
ij (z) is complicated and its evaluation requires the

introduction of sophisticated calculational techniques. In a number of interes-
ting cases the nonlinear interaction of interest is quadratic in the fluctuating
fields:

IN
i = ∑

jk
Vijkφjφk . (195)

Then, to lowest order in the nonlinear couplings, the dynamic part of the
memory function is proportional to:

Γ(d)
ij (z) = −i

∫ +∞

0
dt e+izt ∑

lm
∑
kn

VilmV+
jkn〈δ(φkφn)eD̃o

φtδ(φlφm)〉0 , (196)

where D̃0
φ is the Fokker–Planck operator in the absence of nonlinear interacti-

ons and 〈〉0 means an average over e−βH0 . This assumes that:

∑
kn

V+
jkn〈δ(φkφn)eD̃o

φtδ(φi〉0 = 0 (197)

at lowest order and we have:

〈δ(φkφn)eD̃o
φtδ(φlφm)〉0 = 〈ψk(0)ψn(0)ψl(t)ψm(t)〉0

−〈ψk(0)ψn(0)〉0〈ψl(t)ψm(t)〉0 .

In the decoupling approximation we factorize the four-point correlation func-
tion into a symmetric product of two-point correlation functions:

〈ψk(0)ψn(0)ψl(t)ψm(t)〉0 = C(0)
kn (0)C(0)

lm (0) + C(0)
k� (t)C(0)

nm(t)

+C(0)
km (t)C(0)

�n (t) . (198)
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This approximation is explored in Problem 9.19. Putting this result back into
Eq. (196) we find:

Γ(d)
ij (z) = −i

∫ +∞

0
dt e+izt ∑

lm
∑
kn

VilmV+
jkn

[
C0

kl(t)C0
nm(t)

+ C0
km(t)C0

nl(t)

]
(199)

The evaluation of Γ(d)
ij (z) involves the sums over the indices l, m, k, and n and

the time integral; this is a typical mode-coupling expression.

9.8.4
Long-Time Tails in Fluids

As an example of this development, let us consider a relatively simple but
important example: an incompressible fluid. An incompressible fluid is cha-
racterized by the condition that the density does not change; there is only flow.
Thus we require ρ = ρ0 be constant in time and space:

∂ρ0
∂t

= 0 and ∇iρ0 = 0 . (200)

These constraints are used to simplify Eqs. (163) and (172). The continuity
equation for the mass density reduces to the condition on the momentum
density:

∇ · g = 0 . (201)

Thus the longitudinal degrees of freedom are frozen out. The momentum
constraint simplifies the equation of motion given by Eq. (172). This equation
simplifies greatly in this case since we can drop all terms proportional to ∇i:

∂

∂t
gi = −∇i p −∑

j
∇j(gigj/ρ0)

+(ηo/3 + ζ0)∇i∇ · (g/ρ0) + η0∇2(gi/ρ0) + θi . (202)

The equation for the transverse part of gi, gT
i , is given by:

∂

∂t
gT

i =
η0
ρ0

∇2gT
i + θT

i −∑
jk

Tik∇j(gkgj/ρ0) , (203)

where Tij is a projection operator that picks out the transverse part of a vector
depending on the vector index j. Things are a bit more transparent if we
Fourier transform Eq. (203) over space:

∂

∂t
gT

i (k, t) = −η0
ρ0

k2gT
i (k, t) + θT

i (k, t)
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−∑
j,l

Til(k)
ikj

ρ0

∫ ddx
(2π)d e−ik·xgl(x)gj(x) , (204)

and:

Tij(k) = δij − k̂ik̂j (205)

is the Fourier transform of the transverse projector.
It is then clear that the zeroth-order solution to our problem is given by the

linear equation: (
∂

∂t
+ ν0k2

)
gT,0

i (k) = θT
i (k) , (206)

where ν0 = η0/ρ0 is the kinematic viscosity. Then, since:

〈gT,0
j (−k, 0)θT

i (k, t)〉 = 0 (207)

for t > 0, we have:

(
∂

∂t
+ ν0k2)CT,0

ij (k, t) = 0 t > 0 (208)

and this has the solution:

CT,0
ij (k, t) = β−1ρ0Tij(k)ie−ν0k2t = C0

T(k, t)Tij(k) , (209)

where the initial condition corresponds to the transverse structure factor:

Sij(k) = kBTρ0Tij(k) . (210)

Notice that Tij(k) insures that CT,0
ij is purely transverse. In this case the static

part of the memory function is proportional to ν0.
The nonlinearity that contributes to the nonlinear vertex IN

i and the dyna-
mic part of the memory function comes from the nonlinear vertex:

−∑
j,k

Tik(k)
ρ0

(ikj)
∫ ddx

(2π)d e−ik·xgk(x)gj(x)

= −∑
j,k

Tik(k)
ρ0

(ikj)
∫ ddq

(2π)d gk(q)gj(k − q) . (211)

This has the interpretation in terms of the mode-coupling vertex:

∑
jk

Vijkφjφk → ∑
jk

∫ ddk2

(2π)d
ddk3

(2π)d Vijk(k, k2, k3)gj(k2)gk(k3) , (212)
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where we can identify:

Vijk(k, k2, k3) = −Tik(k)
ikj

ρ0
(2π)dδ (k − k2 − k3) . (213)

It is shown in Problem 9.3 that the equilibrium average of the right-hand side
of Eq. (212) vanishes. The kinetic equation for the fluctuation function takes
the form in this case:(

z + iν0k2
)

Cij(k, z)−∑
l

K(d)
il (k, z)Clk(k, z) = Sij(k) (214)

and the static structure factor is given by Eq. (210) of Chapter 8. We can sim-
plify this equation by looking at the equation for the dynamic part of the
memory function:

∑
l

K(d)
il (k, z)Slj(k) = ∑

l
K(d)

il (k, z)ρ0kBTTlj(k)

= Γ(d)
ij (k, z) . (215)

Since ∑j k̂jTlj(k) = 0 we have from Eq. (215) of Chapter 8 that ∑j k̂jΓ
(d)
ij (k, z) =

0. Since Γ(d)
ij (k, z) is symmetric we can write:

Γ(d)
ij (k, z) = Γ(d)(k, z)Tij(k) . (216)

Putting this result back into Eq. (215) of Chapter 8 we obtain:

K(d)
ij (k, z) = Γ(d)(k, z)Tij(k)

β
ρ0

. (217)

This means that we can write the correlation function as the product:

Cij(k, z) = CT(k, z)Tij(k) (218)

and the kinetic equation can be written in the simplified form:(
z + iν0k2 − Γ(d)(k, z)

β
ρ0

)
= CT(k, z) = ρ0kBT . (219)

We can then define the renormalized viscosity:

νR(k, z) = ν0 + i
β

ρ0k2 Γ(d)(k, z) (220)

and we can rewrite the kinetic equation in the form:(
z + iνR(k, z)k2

)
CT(k, z) = ρ0kBT . (221)
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We now focus on the mode-coupling contribution to the dynamic part of
the memory function. From Eqs. (199), (212) and (213) we can read off:

Γ(d)
ij (k, z) = −i

∫ +∞

0
dt e+izt ∑

kslm
Tik(k)Tjs(k)klkm

×
∫ ddq

(2π)d [CT,0
ks (q, t)CT,0

lm (k − q, t)

+CT,0
km (q)CT,0

ls (k − q, t)]/ρ2
0 . (222)

Let us further focus on the long-wavelength regime where we can write:

Γ(d)
ij (k, z) = − i

ρ2
0

∑
lmks

klkmTik(k)Tjs(k) (223)

×
∫ +∞

0
dt e+izt

∫ ddq
(2π)d [CT,0

ks (q, t)CT,0
lm (−q, t)

+CT,0
km (q, t)CT,0

ks (−q, t)]

It is shown in Problem 9.13, using Eq. (218) and the isotropic nature of C(0)
T (q, t),

that Eq. (223) can be reduced to:

Γ(d)
ij (k, z) = −ik2Tij(k)

[
1 − 2

d
+

2
d(d + 2)

] ∫ +∞

0
dt

e+izt

ρ2
0

I(t) , (224)

where we have the remaining integral:

I(t) =
∫ ddq

(2π)d [C0
T(q, t)]2 . (225)

This is of the anticipated form and putting this back into Eq. (220) of Chapter 8
we obtain for the renormalized viscosity,

νR(z) = ν0 +
(

1 − 2
d

+
2

d(d + 2)

) ∫ +∞

0
dte+izt I(t)

β
ρ3

0
. (226)

Inserting Eq. (210) of Chapter 8 in Eq. (225) for I(t) we obtain explicitly that:

νR(z) = ν0 +
(d2 − 2)
d(d + 2)

∫ +∞

0
dt e+izt

∫ ddq
(2π)d

β−1

ρ0
e−2ν0q2t

= ν0 +
(d2 − 2)
d(d + 2)

β−1

ρ0

∫ ddq
(2π)d

1
−iz + 2ν0q2 . (227)

The angular integral can be carried out explicitly [36] with the result:

K̃d =
∫ dΩd

(2π)d =
21−d

πd/2Γ(d/2)
, (228)
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and we are left with:

νR(z) = ν0 +
(d2 − 2)
d(d + 2)

β−1

ρ0
K̃d Id(z) (229)

and the frequency-dependent integral:

Id(z) =
∫ Λ

0

qd−1dq
−iz + 2ν0q2 , (230)

where Λ is a large wavenumber cutoff. This result is most transparent in the
time regime where we can write:

νR(t) = 2ν0δ(t) +
(d2 − 2)
d(d + 2)

β−1

ρ0
K̃d Jd(t) , (231)

where:

Jd(t) =
∫ Λ

0
qd−1dqe−2ν0q2t . (232)

At short times:

Jd(0) =
Λd

d
, (233)

which depends on the cutoff. The interpretation of the form for νR(t) is clear.
The leading term, proportional to ν0, corresponds to the contribution to the
physical transport coefficient from the Boltzmann equation. The second term
is the mode-coupling contribution that dominates at long-times.

If we make the change of variables q =
√

x/2ν0t in the integral for Jd, then:

Jd(t) =
1

2(2ν0t)d/2

∫ 2ν0tΛ2

0
dxxd/2−1e−x . (234)

For long times, 2ν0tΛ2 → ∞, the integral reduces to a Γ-function and:

Jd(t) =
Γ(d/2)

2(2ν0t)d/2 (235)

independent of the cutoff. We have then that νR(t) ≈ t−d/2 at long times.
Thus, via the Green–Kubo relation, we have that current–current time-correlation
functions decay algebraically in time:

〈J(t) · J〉 ≈ t−d/2 . (236)

These are the long-time tails [37] discussed at the beginning of this chapter.
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Going back to the frequency regime we see that the physical transport coef-
ficient is given by:

νR(0) = ν0 +
(d2 − 2)
d(d + 2)

β−1

ρ0
K̃d Id(0) (237)

and Id is given at zero frequency by:

Id(0) =
∫ Λ

0

qd−1dq
2ν0q2

=
1

2ν0

Λd−2

d − 2
. (238)

This is well behaved only for d > 2. The physical transport coefficient does
not exist in two or fewer dimensions. It is left as a problem to show in three
dimensions for small frequencies that:

νR(z) = νR(0) + A
√

z + . . . , (239)

where the constant A is to be determined. In two dimensions for small z:

νR(z) = νR(0) [1 + b0 ln (b1/z)] , (240)

where the constants b0 and b1 are to be determined. Clearly the correction
term diverges as z → 0 logarithmically. Conventional hydrodynamics does
not exist in two dimensions.

9.9
Mode Coupling and the Glass Transition

The mode-coupling theory of the liquid–glass transition asserts that this is a
dynamic ergodic-nonergodic transition. This idea grew out of work in kinetic
theory on the divergence of transport coefficients and long-time tails. Building
on the work of Dorfmann and Cohen [38], Mazenko [39] showed, using kine-
tic theory, how one could connect up with the more phenomenological mode
coupling calculations of fluctuating nonlinear hydrodynamics. This microsco-
pic work was extended by Sjögren and Sjölander [40] and others. In a dramatic
leap, Leutheusser [41], motivated by the kinetic theory work proposed a
simple model for dense fluid kinetics that leads to an ergodic-nonergodic
as the system becomes more dense. The model describes many of the glassy
properties observed experimentally. Leutheussar’s model was followed by a
more realistic model from Bengtzelius, Götze and Sjölander [42]. Later Das
and Mazenko [43] showed that there is a mechanism that cuts off the ideal
glass transition implying that the glass transition is at lower temperatures and
higher densities. For reviews and simple introductions see [44–46].



336 9 Nonlinear Systems

9.10
Mode Coupling and Dynamic Critical Phenomena

Mode-coupling theory also made an important contribution to dynamic criti-
cal phenomena before the more rigorous renormalization group method was
developed. As reviewed by Hohenberg and Halperin [47], these methods were
successful in treating dynamical behavior near critical points of simple fluids
and binary fluid mixtures. In particular it explained the divergence of the
thermal conductivity near the critical point. The key original references are
[48–54].
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9.12
Problems for Chapter 9

Problem 9.1: Show that the equilibrium average of the streaming velocity,
given by Eq. (61), is zero.
Problem 9.2: If we have a system driven by Gaussian white noise with varian-
ce:

〈ξi(t)ξj(t′)〉 = 2kBTΓij
0 δ(t − t′) ,

evaluate the average over the noise 〈ξi(t)gφ(t)〉 directly for the case t > 0.
Problem 9.3: Show that the equilibrium average of the nonlinear interaction,

Vi = −∑
jk

Tik∇j(gkgj/ρ0) ,

is zero.
Problem 9.4: Derive the fluctuating nonlinear hydrodynamical equations for
isotropic antiferromagnets using as basic dynamical fields the magnetization
M and the staggered magnetization N. Assume one has the Poisson bracket
relations given by Eqs. (8.68), (8.69) and (8.70).
Problem 9.5: An effective Hamiltonian for fluids is of the form:

H[ρ, g] =
∫

d3x

[
χ−1

0
2

(ρ − ρ0)
2 +

u
4

ρ4 +
g2

2ρ

]
.

Assuming χ−1
0 is large and ρ ≈ ρ0 determine the static structure factors:

S(q) = 〈ρ(q)ρ(−q)〉

Sij(q) = 〈gi(q)gj(−q)〉 .

Problem 9.6 : Consider the GFPE for the case of zero spatial dimensions:

∂P
∂t

=
∂

∂φ
β−1Γ

(
∂

∂φ
+ β

∂Hφ

∂φ

)
P ,

where the effective Hamiltonian is given by:

Hφ =
r
2

φ2 .
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Assuming the initial probability distribution function is given by:

P0[φ] = Ne−aφ2
,

where N is a normalization constant and a is a constant, solve for P[φ, t]. Look
in particular at the long-time limit.
Problem 9.7: Starting with Eqs. (151) and (152) for the streaming velocities for
a fluid and assuming an effective Hamiltonian of the form given by Eq. (146),
show that they reduce to Eqs. (153) and (154).
Problem 9.8: Show that Eq. (168) can be written in the form of Eq. (170) and
extract the expression for the dissipative part of the stress tensor given by Eq.
(171).
Problem 9.9: Show that the static part of the memory function for the GFPE
system is given by:

∑
�

K(s)
i� S�j = Γ(s)

ij = 〈φjiD̃φφi〉 .

Given the GFPE operator, Eq. (183), show:

Γ(s)
ij = iβ−1〈Qij〉 − iβ−1Γij

0 ,

where the Qij is the Poisson bracket between ψi and ψj and the Γij
0 are the bare

kinetic/diffusion coefficients.
Problem 9.10: Show that the dynamic part of the memory function defined by
Eqs. (188) and (189) is given by Eq. (191).
Problem 9.11: Consider a zero-dimensional mode-coupling model for a time-
correlation function C(t). In terms of Laplace transforms it obeys the kinetic
equation:

(z + iΓ − Γ(d)(z))C(z) = 1 ,

where Γ is a bare kinetic coefficient and the memory function Γ(d) is given by
a mode coupling expression:

Γ(d)(z) = V2(−i)
∫ ∞

0
dteizt2C2(t)

Determine the physical kinetic coefficient Γ(d)
R (z) to second order in the nonli-

near coupling V.
Problem 9.12: Show in detail that Eq. (216) is true.
Problem 9.13: Show how to go from Eq. (223) to Eq. (224).
Problem 9.14: Starting with Eq. (227), show in three dimensions for small z
that the physical viscosity for a fluid is given by:

νR(z) = νR(0) + A
√

z + . . .
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Determine the constant A. In two dimensions for small z, the physical visco-
sity can be written in the form:

νR(z) = νR(0) [1 + b0 ln (b1/z)] .

Determine the constants b0 and b1.
Problem 9.15: Consider a dynamic model with two fluctuating scalar fields ψ
and φ. The system is described by an effective Hamiltonian:

H[ψ, φ] =
∫

ddx[
rψ

2
ψ2 +

rφ

2
φ2 +

cψ

2
(∇ψ)2 +

cφ

2
(∇φ)2 + λφψ] ,

where rψ, rφ, cψ, and cφ are positive. These fields satisfy the TDGL equations:

∂ψ
∂t

= −Γ
δH
δψ

+ ξ

∂φ
∂t

= D∇2 δH
δφ

+ η ,

where the noise is Gaussian and white with variance:

〈ξ(x, t)ξ(x′, t′〉 = 2kBTΓδ(x − x′)δ(t − t′)

〈η(x, t)η(x′, t′〉 = 2kBTD∇x · ∇x′δ(x − x′)δ(t − t′)

〈ξ(x, t)η(x′, t′〉 = 0 .

Γ is a kinetic coefficient and D a transport coefficient. Find the dynamic struc-
ture factors: Cψψ(q, ω), Cφφ(q, ω), and Cψφ(q, ω).
Problem 9.16: Assume we have a system with a complex order parameter
ψ(x, t) governed by an effective Hamiltonian:

H[ψ, ψ∗] =
∫

ddx[α|ψ|2 +
β
2
|ψ|4 + c∇ψ∗ · ∇ψ] ,

where α, β, and c are real. Assuming a NCOP relaxational dynamics, with
complex noise, write down the simplest TDGL equation of motion. Solve this
model for the order parameter dynamic structure factor for the case β = 0.
Problem 9.17: Consider the original Langevin equation for the velocity of a
tagged particle (for simplicity in one dimension) in a complex environment:

∂v(t)
∂t

= −γ
∂H

∂v(t)
+ η ,



9.12 Problems for Chapter 9 341

where the effective Hamiltonian is given by:

H =
M
2

v2

with M the particles mass and we have Gaussian white noise with variance:

〈η(t)η(t′)〉 = 2kBTγδ(t − t′) .

Derive the Fokker–Planck equation satisfied by the velocity probability dis-
tribution:

P(V, t) = 〈δ[V − v(t)]〉

and solve it to obtain the equilibrium velocity probability distribution.
Problem 9.18: Consider the coarse-grained equation of motion for a ferroma-
gnet given by Eq. (133):

∂M
∂t

= M × H − Γ0∇2H +�ζ .

Assume that we have an applied uniform external field h = hẑ and u = c = 0
in the effective Hamiltonian given by Eq. (126). Using Eq. (130) we have the
effective external field:

H = h − rM

and the equation of motion:

∂M
∂t

= M × h + Γ0r∇2M +�ζ .

Compute the time evolution of the average magnetization m(t) = 〈M(t)〉,
given m(t = 0) = M0.
Problem 9.19: In treating the mode-coupling approximation we assumed that
the four-point correlation function:

G�m,kn(t) = 〈δ(φkφn)eD̃0
φtδ(φlφm)〉0

is given in the decoupling approximation by:

G�m,kn(t) = C(0)
�k (t)C(0)

mn(t) + C(0)
�n (t)C(0)

mk (t) , (241)

where:

C(0)
�k (t) = 〈δφkeD̃0

φtδφl〉0 . (242)

More specifically, assume a model where:

H(0)
φ = ∑

i

ri
2

φ2
i ,
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Γij
0 = δijΓ0 ,

and the adjoint Fokker–Planck operator is given by:

D̃0
φ = ∑

i
Γ0β−1

(
∂

∂φi
− βriφi

)
∂

∂φi
.

1. Evaluate C(0)
�k (t) explicitly.

2. Evaluate G�m,kn(t) explicitly,
3. Show that Eq. (241) is satisfied.
4. Finally show that for this model:

〈δ(φkφn)eD̃0
φtδ(φi)〉0 = 0 .

Problem 9.20: Show in the case of an isotropic ferromagnet that the spin pre-
cession term in the equation of motion can be written in terms of a gradient of
a current:

H × M = −∑
i
∇iJi ,

where H is defined by Eq. (130). Identify the current Ji.
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10
Perturbation Theory and the Dynamic
Renormalization Group

10.1
Perturbation Theory

10.1.1
TDGL Model

In the previous chapter we introduced a set of nonlinear models relevant in
dynamic critical phenomena and nonlinear hydrodynamics. We gave one me-
thod for analyzing these models at the end of the chapter. Here we introduce
some simple perturbation theory methods that have been useful in treating
dynamic critical phenomena and hydrodynamical processes. We show that
the results for the order parameter time-correlation functions strongly depend
on the spatial dimensionality and are not directly useful in three dimensions
without interpretation coming from application of the renormalization group
method. These methods are developed in the final sections of the chapter.

There now exist a number of sophisticated methods Refs. [1–5] for carrying
out perturbation series expansions for nonlinear dynamical models. Some of
these methods are discussed in FTMCM. Here we discuss a direct brute-force
approach that is sufficient for many purposes. These methods [6] can serve as
an introduction to more sophisticated perturbation theory approaches.

We discuss two important model in this chapter: the scalar TDGL model [7]
and the isotropic ferromagnet [8]. The methods developed here have been
applied to essentially all of the models characterizing dynamic critical pheno-
mena universality classes.

Let us begin with the TDGL model for the scalar order parameter ψ(x, t):

∂ψ(x, t)
∂t

= −Γ0(x)
δ

δψ(x, t)
HE[ψ] + η(x, t) , (1)

where the Fourier transform of the bare transport coefficient Γ0(q) is a con-
stant, Γ0, for a NCOP and D0q2 for a COP. We choose the LGW form for the
effective Hamiltonian:

HE[ψ] =
∫

ddx
∫

ddy
1
2

ψ(x)χ−1
0 (x − y)ψ(y)

Nonequilibrium Statistical Mechanics

c© 2006 W I LE Y-V C H Ver l ag G mbH & C o

Gene F. Mazenko
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+
∫

ddx
u
4

ψ4(x)−
∫

ddxh(x, t)ψ(x) , (2)

where initially we need not specify the zeroth-order static susceptibility χ0
and h(x, t) is an external time- and space-dependent field. The noise η(x, t) in
Eq. (1) is assumed to be Gaussian with variance:

〈η(x, t)η(x′, t′)〉 = 2kBTΓ0(x)δ(x − x′)δ(t − t′) . (3)

After taking the functional derivative in Eq. (1) we have the equation of moti-
on:

∂ψ(x, t)
∂t

= −Γ0(x)
[∫

ddyχ−1
0 (x − y)ψ(y, t) + uψ3(x, t)− h(x, t)

]
+ η(x, t) . (4)

Taking the Fourier transform over space and time we obtain:

−iωψ(q, ω) = −Γ0(q)
[
χ−1

0 (q)ψ(q, ω) − uN(q, ω)− h(q, ω)
]

+η(q, ω) , (5)

where the nonlinear contribution can be written as:

N(q, ω) =
∫ ddq′

(2π)d
dω′

2π
ddq′′

(2π)d
dω′′

2π
ψ(q − q′ − q′′, ω − ω′ − ω′′)

×ψ(q′, ω′)ψ(q′′, ω′′) . (6)

If we define the zeroth-order response function:

G0(q, ω) =
[
− iω + Γ0(q)χ−1

0 (q)
]−1

Γ0(q) , (7)

we can write Eq. (1) as:

ψ(q, ω) = ψ0(q, ω) + G0(q, ω)h(q, ω) − G0(q, ω)uN(q, ω) , (8)

where:

ψ0(q, ω) =
G0(q, ω)

Γ0(q)
η(q, ω) . (9)

ψ0 is the zeroth expression for ψ in the absence of an externally applied field.

10.1.2
Zeroth-Order Theory

If we set u = 0 in Eq. (8), the equation of motion reduces to:

ψ0(q, ω) = ψ0(q, ω) + G0(q, ω)h(q, ω) . (10)
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If we average over the noise we obtain the linear response result:

〈ψ0(q, ω)〉 = G0(q, ω)h(q, ω) (11)

and we see that G0 is indeed the linear response function at zero order. If we
take the zero frequency limit in Eq. (7) we find:

G0(q, 0) = χ0(q) (12)

and G0(q, 0) is the static zeroth-order susceptibility.
In zero external field we can compute the zeroth-order correlation function

using Eq. (9) twice and the double Fourier transform of Eq. (3):

〈ψ0(q1, ω1)ψ0(q2, ω2)〉 = 〈ψ0(q1, ω1)ψ0(q2, ω2)〉

=
〈

G0(q1, ω1)
Γ0(q1)

η(q1, ω1)
G0(q2, ω2)

Γ0(q2)
η(q2, ω2)

〉

=
G0(q1, ω1)

Γ0(q1)
G0(q2, ω2)

Γ0(q2)
〈η(q1, ω1)η(q2, ω2)〉

=
G0(q1, ω1)

Γ0(q1)
G0(q2, ω2)

Γ0(q2)
2kBTΓ0(q1)(2π)d+1δ(q1 + q2)δ(ω1 + ω2)

= C0(q1, ω1)(2π)d+1δ(q1 + q2)δ(ω1 + ω2) , (13)

where:

C0(q, ω) =
2kBTΓ0(q)

ω2 + (Γ0(q)χ−1
0 (q))2

. (14)

It is left to Problem 10.1 to show that the zeroth-order response and correlation
functions are related by:

C0(q, ω) = kBT
2
ω

Im G0(q, ω) . (15)

10.1.3
Bare Perturbation Theory

It is clear that we can generate corrections to the u = 0 results by iterating Eq.
(8). It is convenient to carry out this iteration graphically. We represent Eq. (8)
as shown in Fig. 10.1 where a wavy line stands for ψ, a dashed line for ψ0; a
solid line with an arrow stands for G0, a line terminating at an external field
is represented by a directed line followed by an x, and a dot represents the
interaction vertex (−u). Note that at a vertex the wavenumber and frequency
are conserved. If we assign, for example, a frequency to each line entering a
vertex, then it is easy to see that the frequency entering the vertex via G0 must
equal the sum of the frequencies leaving via the wavy lines.
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Fig. 10.1 Graphical representation for the equation of motion Eq. (8).

A direct iteration of Eq. (8) (or Fig. 10.1) correct to second order in u and to
first order in h, as discussed in Problem 10.2, gives the graphs in Fig. 10.2. In
the fourth term on the right-hand side, for example, we get a factor of 3 since
the vertex is symmetric under interchange of the wavy lines. We eventually
need to carry out averages over the noise. In these averages one has products
of dashed lines each of which is proportional to a factor of the noise. We have
postulated, however, that the noise is a Gaussian random variable. This means
that the average of a product of noise terms is equal to the sum of all possible
pairwise averages. Since ψ0 is proportional to the noise, the average of a pro-
duct of ψ0’s factors into a sum of all possible pairwise averages. Algebraically
we write, with a general index i labeling each field, for a product of four
zeroth-order fields,

〈ψ0
i ψ0

j ψ0
kψ0

�〉 = 〈ψ0
i ψ0

j 〉〈ψ0
kψ0

�〉+ 〈ψ0
i ψ0

k〉〈ψ0
j ψ0

�〉 + 〈ψ0
i ψ0

�〉〈ψ0
j ψ0

k〉. (16)

Graphically we introduce the following convention. If before averaging we
have four zeroth-order parameter lines as shown in Fig. 10.3, then on avera-
ging we tie these lines together in all possible pairs and obtain the graphs in
Fig. 10.4. In these graphs correlation functions are given by:

〈ψ0(qi, ωi)ψ0(qj, ωj)〉 = C0(qi, ωi)(2π)d+1δ(qi + qj)δ(ωi + ωj) (17)

Fig. 10.2 Iterated graphical representation for the equation of motion
Eq. (8), keeping terms up to O(h2) and O(u3).
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Fig. 10.3 Lines representing ψ0 with labels i, j, k and �.

and are represented by lines with circles in the middle as shown in Fig. 10.5.
With these simple rules we can produce a perturbation theory expansion for
any correlation function to any order in the coupling u.

The response function G(q, ω) is defined in general as the averaged linear
response of the field ψ(x, t) to an external field h(x, t):

G(q, ω) ≡ lim
h→0

〈
ψ(q, ω, h)

〉
−
〈

ψ(q, ω, h = 0)
〉

h(q, ω)
. (18)

It is clear from Eq. (2) that G0 is the linear response function for u = 0.
The graphical expansion for G is relatively simple. We take the average over

the noise of the graphs in Fig. 10.2. All terms independent of h vanish since
they have an odd number of noise lines. We keep only those terms with one
external field, x. We therefore obtain (see Problem 10.3), to second order in u,
the graphs shown in Fig. 10.5. It is also left to Problem 10.3 to show that these
graphs lead to the analytic expressions for the response function given by:

G(q, ω) = G0(q, ω) + G0(q, ω)Σ1G0(q, ω) + G0(q, ω)Σ1G0(q, ω)Σ1G0(q, ω)

+G0(q, ω)Σ2G0(q, ω) + G0(q, ω)Σ3(q, ω)G0(q, ω) , (19)

where:

Σ1 = 3(−u)
∫ ddk

(2π)d
dΩ
2π

C0(k, Ω). (20)

Fig. 10.4 Three ways of tying the lines in Fig. 10.3 together after
averaging over the Gaussian noise. Lines with circles in the middle
represent zeroth-order correlation functions.
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Fig. 10.5 Graphical perturbation expansion for the response function
defined by Eq. (18) including terms of O(u2).

Fig. 10.6 Iterated graphical representation for the order parameter in
the absence of an external field up to O(u2).

Σ2 = 18(−u)
∫ ddk′

(2π)d
dΩ′

2π
C0(k′, Ω′)

×(−u)
∫ ddk

(2π)d
dΩ
2π

C0(k, Ω)G0(k, Ω) (21)

Σ3(q, ω) = 18(−u)2
∫ ddk

(2π)d
dΩ
2π

ddk′

(2π)d
dΩ′

2π
G0(q − k − k′, ω − Ω − Ω′)

×C0(k, Ω)C0(k′, Ω′) . (22)

Note that the contributions from Σ1 and Σ2 are independent of q and ω. It is
left to Problem 10.4 to show that both Σ1 and Σ2 are real.

Besides the response function, we can develop the bare perturbation theory
for the correlation function:

〈ψ(q, ω)ψ(q′, ω′)〉 = C(q, ω)(2π)d+1δ(q + q′)δ(ω + ω′) . (23)

We do this by setting h = 0 in Fig. 10.2 to obtain Fig. 10.6. Then multiply
the graphs for ψ times those for ψ′ and then average over the noise. It is left
to Problem 10.5 to show that one obtains the collection of graphs given in
Fig. 10.7. Note that one has many more graphs at second order for C than for
G.
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Fig. 10.7 Graphical representation for the perturbation expansion for
the correlation function including terms up to O(u2).

10.1.4
Fluctuation-Dissipation Theorem

We showed earlier that the zeroth-order correlation function and response
function are related by:

C0(q, ω) =
2
ω

kBT Im G0(q, ω) . (24)

It has been shown in Ref. [8] that this fluctuation-dissipation theorem (FDT)
holds for the class of nonlinear equations defined by Eq. (1) for the full corre-
lation function and response functions:

C(q, ω) =
2
ω

kBT Im G(q, ω). (25)

Thus, if we can calculate G(q, ω), we can obtain C(q, ω) via the FDT.
We will be satisfied here with showing that the FDT holds up to second

order in u in the bare perturbation theory analysis. Higher order terms are
discussed by Ma in Ref. [9]. Here we show how the contributions in Fig. 10.5
lead to those in Fig. 10.7. We have already shown the FDT at zeroth order,
which we represent graphically in Fig. 10.8. Next we consider the left-hand
side of Fig. 10.9. Since Σ1, the loop given by Eq. (20), is real, we need only
consider,

Im G2 = 2G′G′′ = (G + G∗)G′′ (26)
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Fig. 10.8 Graphical representation of the fluctuation-dissipation
theorem (FDT) at zeroth order.

and:

2kBT
ω

Im G2 = (G + G∗)C0 . (27)

Since G∗(ω) = G(−ω) we represent G∗ with a line with an arrow pointing to
the left. We then find the graphical identity shown in Fig. 10.9 and a matching
of contributions between Fig. 10.5 and Fig. 10.7.

Fig. 10.9 Graphical representation of the FDT at first order.

Let us turn to the left-hand side of Fig. 10.10. It is easy to show (see Pro-
blem 10.4) that the two-loop insertion given by Σ2 is real. Therefore we can
again use Eq. (27) to obtain the right-hand side of Fig. 10.10 and again map
one graph in Fig. 10.5 onto two graphs in Fig. 10.7.

The following identity:

Im ABC = ABC′′ + AB′′C∗ + A′′B∗C∗ (28)

is proven in Problem 10.6. In particular we have:

Im G3 = G2G′′ + GG′′G∗ + G′′G∗G∗ (29)

and:

2kBT
ω

Im G3 = GGC0 + GC0G∗ + C0G∗G∗ . (30)

This leads immediately to the results shown in Fig. 10.11 where one graph in
Fig. 10.5 is mapped onto three graphs in Fig. 10.7.

Fig. 10.10 One contribution to the graphical representation of the FDT
at second order.
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Fig. 10.11 Another graphical contribution to the FDT at second order.

Fig. 10.12 Another graphical contribution to the FDT at second order.

Finally, we turn to the left-hand side of Fig. 10.12. In this case we need Eq.
(28) expressed in the form, suppressing the wavenumber dependence,

Im [G(ω)Σ3(ω)G(ω)] = G(ω)Σ3(ω)G′′(ω) + G(ω)Σ′′
3 (ω)G∗(ω)

+G′′(ω)Σ∗
3(ω)G∗(ω) , (31)

where Σ3 is given by Eq. (22) and we use the fact that the correlation function
lines are real. We then obtain the right-hand side of Fig. 10.12. We still have to
look at the last term on the right in Fig. 10.12. We have that the imaginary part
of Σ3 is proportional to:

2kBT
ω

∫
S

C0(q1, ω1)C0(q2, ω2)G′′
0 (q3, ω3)

=
2kBT

ω

∫
S

C0(q1, ω1)C0(q2, ω2)C0(q3, ω3)
ω3

2kBT

=
1
ω

∫
S

C0(q1, ω1)C0(q2, ω2)C0(q3, ω3)
1
3
(ω3 + ω1 + ω2)

=
1
ω

∫
S

C0(q1, ω1)C0(q2, ω2)C0(q3, ω3)
1
3

ω

=
1
3

∫
S

C0(q1, ω1)C0(q2, ω2)C0(q3, ω3) ,

where we have used the shorthand notation for integrations:

∫
S

=
∫ ddq1

(2π)d
ddq2

(2π)d
ddq3

(2π)d
dω1

2π
dω2

2π
dω3

2π
(2π)d+1

×δ(q − q1 − q2 − q3)δ(ω − ω1 − ω2 − ω3) .

Clearly we are left with the mapping of the term on the left-hand side of
Fig. 10.13 onto the three graphs on the right-hand side of Fig. 10.13. Clearly
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Fig. 10.13 Refined final graphical contribution to the second-order
FDT.

this is a mapping of the final terms between Fig. 10.5 and Fig. 10.7 and to this
order the FDT is proven.

10.1.5
Static Limit

The linear response function has an interesting feature. If we note the spectral
representation [10] for the response function:

G(q, ω) =
∫ dω′

π
Im G(q, ω′)

(ω′ − ω − i0+)
, (32)

and use the FDT, we obtain:

kBTG(q, ω) =
∫ dω′

2π
C(q, ω′)ω′

(ω′ − ω − i0+)
. . . (33)

If we set ω = 0 we find:

kBTG(q, 0) =
∫ dω′

2π
C(q, ω′) = C(q) = kBTχ(q) . (34)

Therefore we can obtain the static susceptibility from the linear response func-
tion simply by setting ω = 0. We have, from Eq. (19), in the analytic expression
for the response function, the result at zero frequency:

χ(q) = χ0(q) + χ0(q)Σ1χ0(q) + χ0(q)Σ1χ0(q)Σ1χ0(q)

+χ0(q)Σ2χ0(q) + χ0(q)Σ3(q, ω = 0)χ0(q) . (35)

The Σ’s appearing here must be purely static quantities that are independent
of Γ.

It is clear that Σ1, defined by Eq. (20), is a purely static quantity given by:

Σ1 = 3(−u)
∫ ddk

(2π)d kBTχ0(k) . (36)

The quantity Σ2, defined by Eq. (21), can be written as the product:

Σ2 = 6Σ1 J , (37)
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where:

J = (−u)
∫ ddk

(2π)d
dΩ
2π

C0(k, Ω)G0(k, Ω) . (38)

One can perform the frequency integral rather easily. Let us consider the more
general frequency integral:

K(k, q, ω) =
∫ dΩ

2π
C0(k, Ω)G0(q, ω − Ω) . (39)

It is convenient to write Eq. (7) for the zeroth order response function as:

G0(q, ω) =
iΓ0(q)

ω + iγ(q)
, (40)

where:

γ(q) = Γ0(q)χ−1
0 (q) (41)

and rewrite Eq. (14) for the correlation function:

C0(q, ω) = ikBTχ0(q)
[

1
ω + iγ(q)

− 1
ω − iγ(q)

]
. (42)

Substituting these results into Eq. (39) gives:

K(k, q, ω) =
∫ dΩ

2π
ikBTχ0(k)

[
1

Ω + iγ(k)
− 1

Ω − iγ(k)

]
iΓ0(q)

ω − Ω + iγ(q)
(43)

=
∫ dΩ

2π
kBTχ0(k)Γ0(q)

[
1

Ω + iγ(k)
− 1

Ω − iγ(k)

]
1

Ω − ω − iγ(q)
.

One can then carry out the Ω integration using the calculus of residues and,
closing the contour in the lower half-plane where there is a single pole at Ω =
−iγ(k), we find:

K(k, q, ω) =
−2πi

2π
kBTχ0(k)Γ0(q)

1
−iγ(k)− ω − iγ(q)

=
ikBTχ0(k)Γ0(q)

ω + i[γ(k) + γ(q)]
. (44)

Note that if we let Ω → −Ω in Eq. (38) we obtain:

J = (−u)
∫ ddk

(2π)d K(k, k, 0)

= (−u)
∫ ddk

(2π)d
ikBTχ0(k)Γ0(k)

i2γ(k)
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= −u
2

kBT
∫ ddk

(2π)d χ2
0(k) , (45)

which is purely a static quantity.
We turn finally to Σ3, given by Eq. (22), evaluated at zero frequency. For

general frequency ω we can write:

Σ3(q, ω) = 18(−u)2
∫ ddk

(2π)d
dΩ
2π

ddk′

(2π)d
dΩ′

2π
G0(q − k − k′, ω − Ω − Ω′)

×C0(k, Ω)C0(k′, Ω′)

= 18(−u)2
∫ ddk

(2π)d
ddk′

(2π)d
dΩ′

2π
C0(k′, Ω′)K(k, q − k − k′, ω − Ω′) .

Using Eq. (44) this reduces to:

Σ3(q, ω) = 18u2
∫ ddk

(2π)d
ddk′

(2π)d
dΩ′

2π
C0(k′, Ω′)

× ikBTχ0(k)Γ0(q − k − k′)
ω − Ω′ + i[γ(k) + γ(q − k − k′)]

= 18u2(−i)
∫ ddk

(2π)d
ddk′

(2π)d Γ0(q − k − k′)kBTχ0(k)K1 , (46)

where:

K1 =
∫ dΩ′

2π
C0(k′, Ω′)

1
Ω′ − ω − iγ(k)− iγ(q − k − k′)

=
∫ dΩ′

2π
ikBTχ0(k′)

[
1

Ω′ + iγ(k′)
− 1

Ω′ − iγ(k′)

]

× 1
Ω′ − ω − iγ(k)− iγ(q − k − k′)

. (47)

Again, closing the integration contour in the lower half-plane we obtain:

K1 = −i(ikBT)χ0(k′)
1

−iγ(k′)− ω − iγ(k)− iγ(q − k − k′)

= −kBTχ0(k′)
1

ω + i[γ(k) + γ(k′) + γ(q − k − k′)]
. (48)

Putting this result back into Eq. (46), we find:

Σ3(q, ω) = 18u2(i)
∫ ddk

(2π)d
ddk′

(2π)d Γ0(q − k − k′)kBTχ0(k)kBTχ0(k′)

× 1
ω + i[γ(k) + γ(k′) + γ(q − k − k′)]
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= 18iu2(kBT)2
∫ ddk

(2π)d
ddk′

(2π)d χ0(k)χ0(k′)

× Γ0(q − k − k′)
ω + i[γ(k) + γ(k′) + γ(q − k − k′)]

= 18u2(kBT)2
∫ ddk

(2π)d
ddk′

(2π)d χ0(k)χ0(k′)

× Γ0(q − k − k′)
−iω + γ(k) + γ(k′) + γ(q − k − k′)

. (49)

Notice that this can be written in the more symmetric form:

Σ3(q, ω) = 18u2(kBT)2
∫

S
χ0(k1)χ0(k2)χ0(k3)

× γ(k3)
−iω + γ(k1) + γ(k2) + γ(k3)

, (50)

where:
∫

S
=
∫ ddk1

(2π)d
ddk2

(2π)d
ddk3

(2π)d (2π)dδ(q − k1 − k2 − k3) . (51)

We can then symmetrize with respect to the labels 1, 2 and 3 to obtain:

Σ3(q, ω) = 18u2(kBT)2
∫

S
χ0(k1)χ0(k2)χ0(k3)

×
1
3 [γ(k1) + γ(k2) + γ(k3)]

−iω + γ(k1) + γ(k2) + γ(k3)
. (52)

If we use the identity:

a
−iω + a

= 1 +
iω

−iω + a
, (53)

then we have:

Σ3(q, ω) = Σ3(q, ω = 0) + iω6u2(kBT)2 J3(q, ω) , (54)

where:

Σ3(q, ω = 0) = 6u2(kBT)2
∫

S
χ0(k1)χ0(k2)χ0(k3) , (55)

which is clearly a static quantity. We also have:

J3(q, ω) =
∫

S
χ0(k1)χ0(k2)χ0(k3)

1
−iω + γ(k1) + γ(k2) + γ(k3)

. (56)
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Fig. 10.14 Graphical perturbation theory expansion for the static order
parameter correlation function to second order in the quartic coupling.

Thus we have the perturbation theory result, Eq. (35), up to second order in
u for the static correlation function. We have the static results for the self-
energies:

Σ1 = −3u
∫ ddk

(2π)d kBTχ0(k) (57)

Σ2 = 6Σ1

(
−u

2
kBT
) ∫ ddk

(2π)d χ2
0(k) (58)

and Σ3(q, ω = 0) is given by Eq. (55).
This static result can be obtained directly from the function integral over

the effective Hamiltonian and is shown graphically in Fig. 10.14. This is an
expansion for:

C(q) = 〈|ψ(q)|2〉 = kBTχ(q) , (59)

where the thick line is the full correlation function, thin lines are bare corre-
lation functions, and the four-point vertex in this case (see Problem 10.7) is
−βu.

10.1.6
Temperature Renormalization

The method developed in this chapter will generate all of the terms in the
perturbation theory expansion for both the statics and dynamics. One must
be careful in interpreting the result of this expansion, however. It is always
essential to have some idea of the underlying physics governing the behavior
of some quantity before carrying out an expansion. We can demonstrate how
problems arise with a simple example in the static limit.

We believe that the static susceptibility at zero wavenumber is given appro-
ximately by:

χ(0) = C(T)(T − Tc)−γ (60)

for T ≥ Tc, where the constant C is regular as T → Tc. The zeroth-order
approximation for χ(q) is given by the Ornstein–Zernike form:

χ0(q) =
1

r0 + cq2 , (61)
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where:

χ−1
0 (0) = r0 = r1(T − T(0)

c ) , (62)

and γ = 1.
The expansion for χ(q), including terms up to first order in perturbation

theory, is given by:

χ(q) = χ0(q) + χ0(q)(−3u)
∫ ddk

(2π)d kBTχ0(k)χ0(q) . (63)

Let us introduce the integral:

Id =
∫ ddk

(2π)d χ0(k) (64)

and evaluate it first in three dimensions:

I3 =
∫ d3k

(2π)3
1

r0 + ck2 =
4π
8π3

∫ Λ

0
k2dk

1
r0 + ck2

=
1

2π2c

∫ Λ

0
dk
[

1 − r0

r0 + ck2

]

=
1

2π2c

[
Λ − r0√

r0c
tan−1

(√
c
r0

Λ
)]

, (65)

where we have introduced a large wavenumber cutoff, Λ. It is useful to write
I3 in terms of the bare correlation length:

ξ2
0 =

c
r0

. (66)

ξ0 blows up as r0 → 0. Writing I3 in terms of ξ0 we have:

I3 =
1

2π2cξ0

[
Λξ0 − tan−1(Λξ0)

]
. (67)

Then at zero wavenumber, from Eq. (63), the susceptibility is given by:

r−1 ≡ χ(q = 0) = r−1
0 + r−1

0
(−3ukBT)

2π2cξ0

[
Λξ0 − tan−1(Λξ0)

]
r−1

0 . (68)

Then as T → T(0)
c , r0 → 0, ξ0 → ∞ and our perturbation theory result goes

over to:

r−1 → −r−2
0

(3ukBT(0)
c Λ)

2π2c
. (69)

There are many problems with this result:
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• Clearly, in general,

C(q) = 〈|ψ(q)|2〉 = kBTχ(q) ≥ 0 , (70)

while our result from perturbation theory is negative.

• The first-order correction is larger (r−2
0 � r−1

0 ) than the leading order
contributions.

• It appears that χ(q = 0) is blowing up at the wrong temperature.

The resolution of this disaster is to realize that while a direct perturbation
theory expansion of a resonant quantity may be ill advised, the expansion of
its inverse may be well behaved [11]. Let us write:

χ−1(q) ≡ χ−1
0 (q) − Σ(q) , (71)

where the self-energy Σ(q) depends on the nonlinear interaction. We can iden-
tify the perturbation theory contributions to Σ(q) by assuming Σ(q) has a
leading term of order u and expanding:

χ(q) =
1

χ−1
0 (q)− Σ(q)

=
χ0(q)

1 − Σ(q)χ0(q)
= χ0(q) + χ0(q)Σ(q)χ0(q) + χ0(q)Σ(q)χ0(q)Σ(q)χ0(q) + . . . (72)

Comparing this result with the expansion in Fig. 10.14, it is easy to see
that the self-energy has the expansion shown in Fig. 10.15. The first-order
contribution to the self-energy has already been worked out in the case of
three dimensions and is given by:

Σ(1)(q) =
(−3ukBT)

2π2cξ0

[
Λξ0 − tan−1(Λξ0)

]
. (73)

In this case, if we set q = 0 in the inverse static susceptibility and use Eq. (71)
with Σ = Σ(1), we have:

χ(1)(q = 0) = r = r0 +
(3ukBT)
2π2cξ0

[
Λξ0 − tan−1(Λξ0)

]
. (74)

Fig. 10.15 Static self-energy graphs associated with the expansion
shown in Fig. 10.14.
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Fig. 10.16 Resummation of graphs contributing to the full (thick line)
static correlation function in the self-energy to first order in u.

Fig. 10.17 Static self-energy expansion in terms of the full static
correlation functions.

Suppose Λξ0 � 1, then we have:

r = r1(T − T(0)
c ) +

3ukBTΛ
2π2c

. (75)

If r vanishes as T → Tc this reduces to:(
r1 +

3ukBΛ
2π2c

)
Tc = r1T(0)

c

Tc =
r1T(0)

c

r1 + 3ukBΛ
2π2c

. (76)

The nonlinear interaction generally acts to reduce the transition temperature
from its zeroth-order value. Note that there is still a bit of an inconsistency
in our development. We assumed on the right-hand side of Eq. (74) that we
could take Λξ0 � 1. However ξ0 does not become infinite as T → Tc. Self-
consistently, it makes sense that the correlation functions appearing in the
expansion are the full correlation functions. Thus one would like to rearrange
the expansion such that it is χ and not χ0 that appears in Eq. (20). This invol-
ves an additional resummation of graphs. Thus it is shown in Problem 10.8
that the sum of first two graphs on the right-hand side in Fig. 10.15 can be
combined to give the single graph as shown in Fig. 10.16. Indeed at second
order in perturbation theory we have the expansion for the self-energy given
by Fig. 10.17 where all of the lines are full correlation function lines. It is shown
how to justify this expansion to all orders in FTMCM.
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10.1.7
Self-Consistent Hartree Approximation

After these sets of resummations we have, keeping the first-order contribution
to the self-energy, the self-consistent Hartree approximation [12] given by:

χ−1(q) = r0 + cq2 + 3ukBT
∫ ddk

(2π)d χ(k) . (77)

We want to solve self-consistently for χ(q). Since the first-order self-energy,
the Hartree contribution, is independent of wavenumber, it is pretty clear that
we have a solution of the form:

χ−1(q) = r + cq2 , (78)

where:

r = r0 + 3ukBT
∫ ddk

(2π)d
1

r + ck2 , (79)

which is a self-consistent equation for r.
The first step in determining the behavior of r as a function of T − Tc is to

self-consistently determine Tc as that temperature where r vanishes. At the
physical Tc, r = 0 and Eq. (79) becomes:

0 = r1(Tc − T(0)
c ) + 3ukBTc

∫ ddk
(2π)d

1
ck2 . (80)

We can carry out the d-dimensional integral:

∫ ddk
(2π)d

1
ck2 =

K̃d
c

Λd−2

d − 2
(81)

for d > 2 where K̃d is given by K̃−1
d = 2d−1πd/2Γ(d/2). We then obtain the

generalization of Eq. (76) to d dimensions:

Tc =
r1T(0)

c(
r1 + 3ukBK̃dΛd−2

(d−2)c

) . (82)

This result reduces to Eq. (76) for d = 3. We now subtract Eq. (80) from Eq.
(79) to obtain:

r = r1(T − Tc) + 3ukBT
∫ ddk

(2π)d
1

r + ck2 − 3ukBTc

∫ ddk
(2π)d

1
ck2

= r1(T − Tc) + 3ukB(T − Tc + Tc)
∫ ddk

(2π)d
1

r + ck2 − 3ukBTc

∫ ddk
(2π)d

1
ck2
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= r2(T − Tc)− 3ukBTcWd(r)r , (83)

where:

r2(T) = r1 + 3ukB

∫ ddk
(2π)d

1
r + ck2 (84)

and:

−Wd(r)r =
∫ ddk

(2π)d

[
1

r + ck2 − 1
ck2

]
. (85)

Wd(r) is given by:

Wd(r) =
∫ ddk

(2π)d
1

ck2
1

r + ck2 . (86)

Then Eq. (83) is of the form:

r [1 + 3ukBTcWd(r)] = r2(T − Tc) . (87)

It is left to Problem 10.9 to show that in the limit of large ξ2 = c/r, to leading
order in this quantity, we have:

Λd−4

d−4 d > 4

Wd =
K̃d
c2 ln(Λξ) d = 4 (88)

πξ4−d

2 cos[(d−3)π/2] d < 4

Thus we have for d > 4 and small u, Wd is a small perturbation that corrects
the value to the transition temperature and amplitudes. The zeroth-order re-
sult is essentially correct. For d = 4 W4 is growing logarithmically as r → 0 and
W can no longer be treated as a small perturbation. For smaller dimensionality,
W diverges faster and the perturbation theory breaks down badly. In order to
handle the regime d ≤ 4, we need an even more powerful technique beyond
perturbation theory. We need the renormalization group method, which will
be discussed later in this chapter.

10.1.8
Dynamic Renormalization

The same ideas used to reorganize the static perturbation theory can be ge-
neralized to the dynamic case where we can write a Dyson’s equation of the
form:

G−1(q, ω) = G−1
0 (q, ω) − Σ(q, ω) , (89)
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Fig. 10.18 First-order, Σ1, and second-order, Σ3, self-energy
contributions.

where the self-energy can be expressed, at this order, in terms of the full corre-
lation functions and response functions as shown in the graphs in Fig. 10.18.
These graphs, at the bare level, were treated previously in the static limit. In
the renormalized case we have:

Σ1(q, ω) = 3(−u)
∫ dqq′

(2π)d
dω′

2π
C(q′, ω′) (90)

and:

Σ3(q, ω) = 18(−u)2
∫ ddq′

(2π)d
dω′

2π
ddq′′

(2π)d
dω′′

2π
G(q − q′ − q′′, ω − ω′ − ω′′)

×C(q′, ω′)C(q′′, ω′′) . (91)

Note that the contribution at O(u) is independent of q and ω. In particular,
this term only serves to change the static q = 0 susceptibility. Suppose we
keep only the O(u) term, then:

G−1(q, ω) = G−1
0 (q, ω) − Σ1

=
−iω

Γ0(q)
+ χ−1(q) , (92)

where:

χ−1(q) = χ−1
0 (q)− Σ1 . (93)

Equation (93) can be rewritten as:

χ−1(q) = r(T) + cq2 , (94)

where:

r(T) = r0 − Σ1 (95)

was introduced above. The temperature where r(T) = 0 is the new transition
temperature, correct up to terms of O(u2). In this case, the response function
can be written in the dynamical scaling form:

G−1(q, ω) = χ−1(q)
[

1 − iω
Γ0(q)χ−1(q)

]
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= χ−1(q) [1 − iΩ] , (96)

where the dimensionless frequency is given by:

Ω =
ω

ωs(q)
(97)

and the characteristic frequency is given by:

ωs(q) = Γ0(q)χ−1(q) . (98)

The correlation function is given in this case by using the FDT, Eq. (25), and
Eq. (96) to obtain:

C(q, ω) = 2
kBT
ω

Im G(q, ω) = 2
kBT
ω

Im
(

χ(q)
1 − iΩ

)

= 2
kBT
ω

χ(q)Im
(

1 + iΩ
1 + Ω2

)
= 2

kBT
ω

χ(q)
Ω

1 + Ω2

= 2kBT
χ(q)

ωs(q)
F(Ω) , (99)

where the scaling function is given by:

F(Ω) =
1

1 + Ω2 . (100)

The dynamic scaling index z is determined by writing the characteristic fre-
quency in the form:

ωs(q) = Γ0(q)χ−1(q) = qz f (qξ) .

We easily find:

ωs(q) = Γ0(q)c(q2 + ξ2) (101)

and z = 2 for the NCOP case, z = 4 in the COP case and the scaling function
is given by:

f (x) = Γ0(q = 1)c(1 + x2) , (102)

as for the conventional theory.
Let us go back to the more general expression for G−1(q, ω):

G−1(q, ω) =
−iω

Γ0(q)
+ χ−1

0 (q) − Σ(q, ω) . (103)

It is convenient to write this in the form:

G−1(q, ω) =
−iω

Γ(q, ω)
+ χ−1(q) , (104)
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where χ(q) is the full static susceptibility and Γ(q, ω) is a frequency- and wave-
number-dependent kinetic coefficient. Since, in general,

χ−1(q) = χ−1
0 (q) − Σ(q, 0) (105)

we easily find, after some algebra, that:

Γ(q, ω) = Γ0(q)
[
1 + Γ0(q)

(
Σ(q, ω) − Σ(q, 0)

)
/iω
]−1

. (106)

In the TDGL model only Σ3 contributes to Γ(q, ω) to O(u3) and we find:

Γ(q, ω) = Γ0(q)
[
1 − Γ0(q)

iω
[Σ3(q, ω)− Σ3(q, 0)] +O(u3)

]
. (107)

We have from our previous work, Eq. (54), that if we replace the zeroth-order
propagators and response functions with those with temperature renormali-
zation r0 → r, then:

Σ3(q, ω) = Σ3(q, ω = 0) + iω6u2(kBT)2 J3(q, ω) , (108)

where:

Σ3(q, ω = 0) = 6u2(kBT)2
∫

S
χ(k1)χ(k2)χ(k3) , (109)

which is clearly a static quantity. We also have Eq. (56):

J3(q, ω) =
∫

S
χ(k1)χ(k2)χ(k3)

1
−iω + γ(k1) + γ(k2) + γ(k3)

, (110)

where χ−1(q) = cq2 + r.
Let us consider the case of a NCOP, Γ0(q) = Γ0. In this case we can look first

at the case of high dimensionality. If we set r = q = 0 we obtain:

J3(0, ω) =
∫

S

1
ck2

1

1
ck2

2

1
ck2

3

1
[−iω + Γ0c(k2

1 + k2
2 + k2

3)]
. (111)

If we use simple power counting, we see for d > 4 that J3(0, 0) is just some
well-defined number that depends on the large wavenumber cutoff. For d < 4
we find (see Problem 10.10) that J3(0, ω) blows up algebraically in the limit
as ω goes to zero. The dividing line is for d = 4. As a practical example of
perturbation theory calculations, we carry out the determination of J3(0, ω)
for d = 4 in some detail.

In evaluating Σ3(q, ω) it is easier to work from Eq. (49):
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Σ3(q, ω) = 18u2(kBT)2
∫

S
χ0(k1)χ0(k2)

× Γ0

−iω + γ(k1) + γ(k2) + γ(k3)
. (112)

The interesting case here is for q = r = 0 where we focus on the frequency
dependence and evaluate:

Σ3(0, ω) = 18
u2(kBTc)2

c3 S(Ω) , (113)

where:

S(Ω) =
∫ d4k1

(2π)4

∫ d4k2

(2π)4
1
k2

1

1
k2

2

1
(−iΩ + k2

1 + k2
2 + (k1 + k2)2)

, (114)

where Ω = ω/(cΓ0). Wilson [13] has discussed the extension of integrals of
this type to d dimensions. In four dimensions we have:

S(Ω) =
∫ d4k1

(2π)4
K̃3

2π

∫ Λ

0
k3

2dk2

∫ π

0
dθ sin2 θ

1
k2

1

1
k2

2

1
−iΩ + 2k2

1 + 2k2
2 + 2k1k2 cos θ

= K̃4
K̃3

2π

∫ Λ

0

k3
1

k2
1

dk1

∫ Λ

0

k3
2

k2
2

dk2 J(k1, k2, Ω) , (115)

where:

J =
∫ π

0
dθ

sin2 θ
−iΩ + 2k2

1 + 2k2
2 + 2k1k2 cos θ

. (116)

If we let a = −iΩ + 2k2
1 + 2k2

2 and b = 2k1k2 then [14]:

J =
∫ π

0
dθ

sin2 θ
a + b cos θ

=
π

a +
√

a2 − b2

= π
a −

√
a2 − b2

a2 − a2 + b2 =
π
b2

(
a −
√

a2 − b2
)

. (117)

We have then:

S(Ω) = K̃4
K̃3

2π

∫ Λ

0
k1dk1

∫ Λ

0
k2dk2

π
4k2

1k2
2

(
−iΩ + 2k2

1 + 2k2
2 − g(Ω)

)

=
K̃3K̃4

8

∫ Λ

0

dk1

k1

∫ Λ

0

dk2

k2

(
−iΩ + 2k2

1 + 2k2
2 − g(Ω)

)
, (118)

where we have defined:

g(Ω) =
√

(−iΩ + 2k2
1 + 2k2

2)2 − 4k2
1k2

2 . (119)
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Eventually we are interested in subtracting off the ω = 0 contribution and so
we consider:

ΔS(Ω) = S(Ω) − S(0)

=
K̃3K̃4

8

∫ Λ

0

dk1

k1

∫ Λ

0

dk2

k2
[−iΩ − g(Ω) + g(0)] . (120)

The next step is to let k1 =
√

Ωy1 and k2 =
√

Ωy2 to obtain:

ΔS(Ω) =
K̃3K̃4

8
Ω
∫ Λ/

√
Ω

0

dy1

y1

∫ Λ/
√

Ω

0

dy2

y2
(−i − g1 + g2) , (121)

where:

g1 =
√

(−i + 2y2
1 + 2y2

2)2 − 4y2
1y2

2 . (122)

and:

g2 =
√

(2y2
1 + 2y2

2)2 − 4y2
1y2

2 . (123)

The Ω dependence is confined to the overall factor of Ω and to the large y
cutoff. It is left as a problem (Problem 10.11) to show that the small y1 and y2
behavior is well defined and the leading behavior comes from large y1 and y2.
We can then write to leading order:

ΔS(Ω) =
K̃3K̃4

8
Ω
∫ Λ/

√
Ω

1

dy1

y1

∫ Λ/
√

Ω

1

dy2

y2
F(y1, y2) , (124)

where:

F(y1, y2) = −i − g1 + g2 . (125)

Since any anomalous behavior as a function of frequency is for large y1 and
y2, we can write:

F(y1, y2) = FL(y1, y2) + F(y1, y2) − FL(y1, y2) , (126)

where FL is the expression for F for large y1 and y2 given by:

FL(y1, y2) = −i

[
1 − (y2

1 + y2
2)

[(y2
1 + y2

2)2 − y2
1y2

2)]1/2

]
. (127)

We then write:

ΔS(Ω) =
K̃3K̃4

8
Ω
∫ Λ/

√
Ω

1

dy1

y1

∫ Λ/
√

Ω

1

dy2

y2
FL(y1, y2) , (128)
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and the remaining integral over F − FL is regular as Ω → 0. We have then at
leading order:

ΔS(Ω) =
K̃3K̃4

8
(−iΩ)

∫ Λ/
√

Ω

1

dy1

y1

∫ Λ/
√

Ω

1

dy2

y2

×
[

1 − (y2
1 + y2

2)
[(y2

1 + y2
2)2 − y2

1y2
2)]1/2

]
, (129)

plus terms that are linear in Ω as Ω → 0. Next let y2 = uy1 in Eq. (129) to
obtain:

ΔS(Ω) =
K̃3K̃4

8
(−iΩ)K(ν) , (130)

where:

K(ν) =
∫ 1/ν

1

dy1

y1

∫ 1/νy1

1/y1

du f (u) , (131)

ν =
√

Ω
Λ

, (132)

and:

f (u) =
1
u

[
1 − (1 + u2)

(1 + u2 + u4)1/2

]
. (133)

In going further it is useful to note the property:

f (1/u) = u2 f (u) . (134)

One integration in Eq. (131) can be carried out by writing:

K(ν) =
∫ 1/ν

1

dy1

y1

d
dy1

(ln(y1))
∫ 1/νy1

1/y1

du f (u) (135)

and doing an integration by parts. It is shown in Problem 10.12 that:

K(ν) = ln(ν−1)
∫ 1

ν
du f (u) +

∫ 1/ν

1
du ln(u) [ν f (νu) − f (u)] . (136)

Further manipulation (see Problem 10.12) gives:

K(ν) = 2 ln(ν−1)
∫ 1

0
du f (u) +

∫ 1

0
2du ln(u) f (u) (137)

plus terms that vanish as ν → 0. Only the first term proportional to ln(ν−1)
contributes to the anomalous behavior of K(ν). It is left to Problem 10.12 to
show that: ∫ 1

0
du f (u) =

1
2

ln
(

3
4

)
(138)
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and to leading order:

K(ν) = ln(ν−1) ln
(

3
4

)
(139)

and:

ΔS(Ω) =
K̃3K̃4

8
(−iΩ) ln(ν−1) ln

(
3
4

)
. (140)

Since K̃3 = 1/2π2 and K̃4 = 1/8π2 [15] we have:

ΔS(Ω) =
(−iΩ)
128π4 ln(ν−1) ln

(
3
4

)
. (141)

Putting this back into the appropriate self-energy, Eq. (113) and remembering
Eq. (120), gives:

ΔΣ3(0, ω) = 18c
(

ukBTc

c2

)2
ΔS(Ω) (142)

and the correction to the kinetic coefficient, Eq. (106), can be written in the
form:

Γ−1(0, ω) = Γ−1
0

[
1 +

Γ0ΔΣ3(0, ω)
iω

]
= Γ−1

0

[
1 +

ΔΣ3(0, ω)
icΩ

]

= Γ−1
0

[
1 + 18

(
ukBTc

c2

)2 ΔS(Ω)
iΩ

]

= Γ−1
0

[
1 + 18

(
ukBTc

c2

)2 (−1)
128π4 ln(ν−1) ln

(
3
4

)]

= Γ−1
0

[
1 − u2

0b0 ln
(

Ω
Λ2

)]
, (143)

where:

u0 =
ukBTc

4c2 (144)

and:

b0 =
9

8π4 ln
(

4
3

)
. (145)

If we compare with Eq. (10) in Ref. [7] we find agreement. Notice that our u0,
defined by Eq. (144), corresponds to their u0.

Again, as in the static case, we have that d = 4 serves as a crossover dimen-
sion between regimes where the conventional theory is appropriate (d > 4)
and where (d < 4) there are strong nonlinear corrections.
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As it stands we can not complete the analysis for d = 3 without further
input. The renormalized kinetic coefficient diverges algebraically for d < 4
and logarithmically in d = 4. To obtain a useful estimate in three dimensions
we need to appeal to renormalization group methods. These methods are
discussed in Section 10.3 (this chapter) and we return to this problem there.

10.2
Perturbation Theory for the Isotropic Ferromagnet

10.2.1
Equation of Motion

We next want to develop perturbation theory for a slightly more involved
system: the isotropic ferromagnet [8]. This case differs from the TDGL case,
since one has reversible terms, and, as we shall see, nontrivial corrections to
the conventional theory enter at lowest nontrivial order in the expansion. As
discussed in Chapter 9, for the isotropic ferromagnet the order parameter Mα
is a vector satisfying the Langevin equation:

∂Mα(x1, t1)
∂t1

= λ ∑
βγ

εαβγMβ(x1, t1)
δHE[M]

δMγ(x1, t1)
+ D0∇2

1
δHE[M]

δMα(x1, t1)

+ fα(x1, t1) , (146)

where HE[M] is the LGW effective Hamiltonian given by:

HE[M] =
∫

ddx1

∫
ddx2 ∑

α

1
2

Mα(x1, t1)χ−1
0 (x1 − x2)Mα(x2, t1)

+
∫

ddx1

[
u
4

M4(x1, t1) − ∑
α

hα(x1, t1)Mα(x1, t1)

]
, (147)

where M2 = ∑α M2
α, h is an external magnetic field and the bare susceptibility

is assumed to be of the standard Ornstein–Zernike form:

χ−1
0 (x1 − x2) = (r0 − c∇2

1)δ(x1 − x2) . (148)

The order parameter is conserved in this case and the noise is assumed to be
Gaussian with the variance:

〈 fα(x1, t1) fβ(x2, t2)〉 = 2D0kBT�∇1 · �∇2δαβδ(x1 − x2)δ(t1 − t2) . (149)

Finally λ is a nonlinear coupling constant and D0 a bare diffusion coefficient.
Putting the effective Hamiltonian into the Langevin equation gives the equa-

tion of motion:
∂Mα
∂t1

= λ ∑
βγ

εαβγMβ

[
(r0 − c∇2

1)Mγ + uM2 Mγ − hγ

]
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+D0∇2
1

[
(r0 − c∇2

1)Mα + uM2Mα − hα

]
+ fα (150)

or, in vector notation,

∂M
∂t1

= −λM ×
(

c∇2
1M + h

)
+D0∇2

1

[
(r0 − c∇2

1)M + uM2M − h
]
+ f . (151)

There are several comments to be made. First, there are two nonlinear terms:
a quadratic term proportional to λ and a cubic term proportional to u that ap-
peared in the TDGL model. The external field also appears in two places and
we must be careful to properly treat the −λM × h term. This term generates
nonlinear contributions in an expansion where we treat both λ and h as small.

10.2.2
Graphical Expansion

If we set λ and u equal to zero we obtain the same zeroth-order theory as for
the TDGL model with a conserved order parameter. The zeroth-order respon-
se function is given again by:

G−1
0 (q, ω) = − iω

Γ0(q)
+ χ−1

0 (q) , (152)

where Γ0(q) = D0q2. We know from our previous work that the conventional
theory in this case corresponds to a dynamic index z = 4.

Let us move on to treat the contributions of the nonlinear terms. The first
step is to set up the appropriate notation. This is quite important if one is to
develop an efficient diagrammatic method. Let us look first at the contribution
in the Langevin equation due to spin precession. We have the vertex:

V(1) = −λ ∑
βγ

εα1βγMβ(x1, t1)c∇2
1Mγ(x1, t1) . (153)

For reasons that become clear as we go along, we want to introduce the com-
pact notation where a single index includes all of the other indices labeling a
field. We write:

M(1) = Mα1(x1, t1) . (154)

With this in mind we rewrite V(1) in the form:

V(1) = −λc ∑
α2α3

εα1α2α3 Mα2(x1, t1)∇2
1 Mα3(x1, t1) . (155)

Going further, we can insert the identity:∫
ddx2dt2δ(x2 − x1)δ(t2 − t1) = 1 , (156)
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twice to obtain:

V(1) = −λc ∑
α2α3

εα1α2α3

∫
ddx2dt2δ(x2 − x1)δ(t2 − t1)

×
∫

ddx3dt3δ(x3 − x1)δ(t3 − t1)Mα2(x1, t1)∇2
1Mα3(x1, t1)

= ∑
α2α3

∫
ddx2dt2

∫
ddx3dt3V1(1; 23)M(2)M(3) (157)

≡ V1(1; 2̄3̄)M(2̄)M(3̄) , (158)

where:

V1(1; 23) = −λc εα1α2α3δ(x2 − x1)δ(t2 − t1)∇2
1δ(x3 − x1)δ(t3 − t1) . (159)

In this form we see that we can symmetrize the expression with respect to the
summed indices:

V(1) = Ṽ(1; 2̄3̄)M(2̄)M(3̄) , (160)

where:

Ṽ(1; 2̄3̄) =
1
2

[V1(1; 2̄3̄) + V1(1; 3̄2̄)]

= −λc
2

εα1α2α3 δ(t2 − t1)δ(t3 − t1)

×
[
δ(x2 − x1)∇2

1δ(x3 − x1) − δ(x3 − x1)∇2
1δ(x2 − x1)

]
= Ṽ(1; 3̄2̄) . (161)

It is left as an exercise (Problem 10.14), to show that the spatial Fourier trans-
form of this vertex is given by:

Ṽα1α2α3(k1; k2, k3, t1, t2, t3) = Ṽ(k1; k2, k3)εα1α2α3 δ(t2 − t1)δ(t3 − t1) (162)

with:

Ṽ(k1; k2, k3) = −λc
2

[
k2

2 − k2
3

]
(2π)dδ(k1 + k2 + k3) . (163)

We also have the vertex due to the external field:

Vh(1) = −λ ∑
jk

εα1 jkMj(x1, t1)hk(x1, t1) . (164)

This can be clearly written in the form:

Vh(1) = Ṽh(12̄3̄)M(2̄)h(3̄) , (165)
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where:

Ṽh(1; 23) = −λ εα1α2α3δ(x2 − x1)δ(t2 − t1)δ(x3 − x1)δ(t3 − t1) . (166)

The Fourier transform of this vertex is given by:

Ṽh
α1α2α3

(k1; k2, k3, t1, t2, t3)

= Ṽh(k1; k2, k3)εα1α2α3δ(t2 − t1)δ(t3 − t1) , (167)

where:

Ṽh(k1; k2, k3) = −λ(2π)dδ(k1 + k2 + k3) . (168)

We can, of course, include the four-point coupling in the analysis, but for
reasons that will become clear, we treat the problem u = 0 and focus on the
coupling λ. The Langevin equation can then be written in the form:

∂M(1)
∂t1

= Γ0(1)χ−1
0 (12̄)M(2̄) + Γ0(1)h(1) + f (1)

+Ṽ(1; 2̄3̄)M(2̄)M(3̄) + Ṽh(1; 2̄3̄)M(2̄)h(3̄) . (169)

If we multiply by Γ−1
0 (1) then we can write:

Γ−1
0 (1)

∂M(1)
∂t1

− χ−1
0 (12̄)M(2̄) = h(1) + f̃ (1)

+V(1; 2̄3̄)M(2̄)M(3̄) + Vh(1; 2̄3̄)M(2̄)h(3̄) , (170)

where:

f̃ (1) = Γ−1
0 (1) f (1) (171)

V(1; 2̄3̄) = Γ−1
0 (1)Ṽ(1; 2̄3̄) (172)

Vh(1; 2̄3̄) = Γ−1
0 (1)Ṽh(1; 2̄3̄) . (173)

Clearly, a generalization of the zeroth-order response function that carries
vector indices is given by:[

Γ−1
0 (1)

∂

∂t1
δ(12̄)− χ−1

0 (12̄)
]

G0(2̄2) = δ(12) , (174)

where:

δ(12) = δ(x1 − x2)δ(t1 − t2)δα1α2 (175)
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Fig. 10.19 Graphical representation for the oriented three-point
vertices: V(1; 23) and Vh(1; 23).

Fig. 10.20 Graphical representation for the order parameter given by
Eq. (177).

and:

χ−1
0 (12) = (r0 − c∇2

1)δ(12) . (176)

With these definitions the Langevin equation can be written in the form:

M(1) = G0(11̄)h(1̄) + M0(1) + G0(11̄)V(1̄; 2̄3̄)M(2̄)M(3̄)

+G0(11̄)Vh(1̄; 2̄3̄)M(2̄)h(3̄) , (177)

where:

M0(1) = G0(11̄) f̃ (1̄) . (178)

This is then the most convenient form to use to develop a graphical approach
to perturbation theory. In this case the three-point vertex V(1; 23) is repre-
sented by a dot as shown in Fig. 10.19. The part of the dot with an entering
response line is associated with the first index, and the other two indices
labeling the dot are symmetric under interchange. We can then iterate the
graph shown in Fig. 10.20 just as for the TDGL case. At first order in λ we
have the result for M(1) shown in Fig. 10.21. It is left to Problem 10.13 to show
that the graphs contributing to M(1) at second order in λ, and up to first order
in h, are given in Fig. 10.22. Next we average over the noise. The surviving
contributions up to first order in λ are shown in Fig. 10.23. Clearly the first-
order contribution is given by:

G(1)(12) = G0(11̄)V(1̄; 2̄3̄)C0(2̄3̄) . (179)

Fig. 10.21 Iterated solution to Fig. 10.20 to first order in the three-point
interaction.
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Fig. 10.22 Second-order iterated solution to Fig. 10.20.

Fig. 10.23 Graphical perturbation theory expansion for the average
order parameter to first order.

Since C0(2̄3̄) ∝ δα2̄α3̄
and V(1̄; 2̄3̄) ∝ εα1̄α2̄α3̄

we see that G(1)(12) = 0.

10.2.3
Second Order in Perturbation Theory

The contribution to the propagators to second order in λ is given by the gra-
phs in Fig. 10.24. The terms with contributions proportional to V(1̄; 2̄3̄)C0(2̄3̄)
vanish as in the first-order contribution. The remaining terms contributing to
the propagator are given explicitly by:

G(12) = G0(12) + 4G0(11̄)V(1̄; 2̄3̄)C0(2̄4̄)G0(3̄5̄)V(5̄; 4̄6̄)G0(6̄2)

+2G0(11̄)V(1̄; 2̄3̄)C0(2̄4̄)G0(3̄5̄)Vh(5̄; 4̄2) . (180)

As for the TDGL case, we introduce the self-energy. In this case it has contri-
butions:

Σ(i)(12) = 4V(1; 2̄3̄)C0(2̄4̄)G0(3̄5̄)V(5̄; 4̄2) (181)

and:

Σ(ii)(12) = 2V(1; 2̄3̄)C0(2̄4̄)G0(3̄5̄)Vh(5̄; 4̄6̄)G−1
0 (6̄, 2) . (182)

If we insert the zeroth-order expressions for the response and correlation func-
tions, we can evaluate these quantities explicitly. The first step in evaluating

Fig. 10.24 Graphical perturbation theory expansion for the response
function to second order.
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these quantities is to treat the internal vector sums. Since the response and
correlation functions are diagonal in the vector indices we see that we have
the vector sums in Σ(i) and Σ(ii):

∑
α2̄α3̄

εα1α2̄α3̄
εα3̄α2̄α2 = − ∑

α2̄α3̄

εα1α2̄α3̄
εα2α2̄α3̄

= −2δα1α2 . (183)

It is left to Problem 10.15 to write the remaining contributions in terms of
Fourier transforms with the result:

Σ(i)
α1α2(q, ω) = δα1α2 Σ(i)(q, ω) , (184)

where:

Σ(i)(q, ω) = −2
λ2c2

Γ0(q)

∫ ddk
(2π)d

∫ dΩ
2π

[
k2 − (q − k)2

]

×C0(k, Ω)G0(q − k, Ω − ω)
(k2 − q2)
Γ0(q − k)

, (185)

while:

Σ(ii)
α1α2(q, ω) = δα1α2 Σ(ii)(q, ω) , (186)

where:

Σ(ii)(q, ω) = −2
λ2c

Γ0(q)
G−1

0 (q, ω)
∫ ddk

(2π)d

∫ dΩ
2π

[
k2 − (q − k)2

]

×C0(k, Ω)G0(q − k, Ω − ω)
1

Γ0(q − k)
. (187)

We earlier considered the quantity:

K(k, q, ω) =
∫ dΩ

2π
C0(k, Ω)G0(q, ω − Ω)

=
kBTχ0(k)Γ0(q)

−iω + γ(k) + γ(q)
, (188)

where:

γ(q) = Γ0(q)χ−1
0 (q) . (189)

Equation (185) then takes the form:

Σ(i)(q, ω) = −2
λ2c2

Γ0(q)

∫ ddk
(2π)d

[
k2 − (q − k)2

]
K(k, q − k, ω)

(k2 − q2)
Γ0(q − k)

= −2
λ2c2

Γ0(q)

∫ ddk
(2π)d

[
k2 − (q − k)2

] kBTχ0(k)Γ0(q − k)
[−iω + γ(k) + γ(q − k)]

(k2 − q2)
Γ0(q − k)
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= −2
λ2c2

Γ0(q)

∫ ddk
(2π)d

[
k2 − (q − k)2

] kBTχ0(k)
−iω + γ(k) + γ(q − k)

(k2 − q2)(190)

and:

Σ(ii)(q, ω) = −2
λ2c

Γ0(q)
G−1

0 (q, ω)
∫ ddk

(2π)d

×
[
k2 − (q − k)2

]
K(k, q − k, ω)

1
Γ0(q − k)

= −2
λ2c

Γ0(q)
G−1

0 (q, ω)
∫ ddk

(2π)d

[
k2 − (q − k)2

]

× kBTχ0(k)Γ0(q − k)
[−iω + γ(k) + γ(q − k)]

1
Γ0(q − k)

= −2
λ2c

Γ0(q)
G−1

0 (q, ω)
∫ ddk

(2π)d

[
k2 − (q − k)2

]

× kBTχ0(k)
−iω + γ(k) + γ(q − k)

= G−1
0 (q, ω)Q(q, ω) , (191)

where we define:

Q(q, ω) = −2
λ2c

Γ0(q)

∫ ddk
(2π)d

[
k2 − (q − k)2

] kBTχ0(k)
−iω + γ(k) + γ(q − k)

. (192)

Σ(i)(q, ω) = −2
λ2c2

Γ0(q)

∫ ddk
(2π)d

[
k2 − (q − k)2

] kBTχ0(k)
−iω + γ(k) + γ(q − k)

(k2 − q2)

= −2
λ2c

Γ0(q)

∫ ddk
(2π)d

[
k2 − (q − k)2

] kBTχ0(k)
−iω + γ(k) + γ(q − k)

(χ−1
0 (k)− χ−1

0 (q))

= −2
λ2c

Γ0(q)

∫ ddk
(2π)d

[
k2 − (q − k)2

] kBTχ0(k)
−iω + γ(k) + γ(q − k)

χ−1
0 (k)

−χ−1
0 (q)Q(q, ω)

= −2
λ2c

Γ0(q)

∫ ddk
(2π)d

[
k2 − (q − k)2

] kBT
−iω + γ(k) + γ(q − k)

−χ−1
0 (q)Q(q, ω) . (193)

Notice that the first term changes sign on letting k → q − k and therefore
vanishes and:

Σ(i)(q, ω) = −χ−1
0 (q)Q(q, ω) . (194)

We can then conveniently combine the two contributions to the second-order
self-energy:

Σ(2)(q, ω) = Σ(i)(q, ω) + Σ(ii)(q, ω)
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=
[

G−1
0 (q, ω)− χ−1

0 (q)
]

Q(q, ω)

=
−iω

Γ0(q)
Q(q, ω) . (195)

This means that we have for the response function that:

G−1(q, ω) = G−1
0 (q, ω)− Σ(2)(q, ω)

= − iω
Γ0(q)

[1 − Q(q, ω)] + χ−1
0 (q)

= − iω
Γ(q, ω)

+ χ−1
0 (q) , (196)

where the physical damping coefficient is given by:

Γ(q, ω) = Γ0(q) [1 + Q(q, ω)] . (197)

Let us focus on the evaluation of Q(q, ω) given by Eq. (192). The integrand
can be put in a more symmetric form if we let k → k + q/2 to obtain:

Q(q, ω) = 2
λ2c

Γ0(q)

∫ ddk
(2π)d

[
(k − q/2)2 − (k + q/2)2

]

× kBTχ0(k + q/2)
−iω + γ(k + q/2) + γ(k − q/2)

. (198)

Letting k → −k in the integral, adding the result to the original contribution
and dividing by two, we easily find:

Q(q, ω) =
kBTλ2c
Γ0(q)

∫ ddk
(2π)d

[
(k − q/2)2 − (k + q/2)2

]

× [χ0(k + q/2)− χ0(k − q/2)]
−iω + γ(k + q/2) + γ(k − q/2)

. (199)

It is straightforward to see that this can be written as:

Q(q, ω) =
kBTλ2c2

Γ0(q)

∫ ddk
(2π)d

[
(k − q/2)2 − (k + q/2)2

]2

× χ0(k + q/2)χ0(k − q/2)
−iω + γ(k + q/2) + γ(k − q/2)

. (200)

In this form we see that the limit q → 0 is a well-behaved constant:

Q(0, ω) =
kBTλ2c2

D0

∫ ddk
(2π)d 4(k · q̂)2 χ2

0(k)
−iω + 2γ(k)

=
kBTλ2c2

D0

4
d

∫ ddk
(2π)d k2 χ2

0(k)
−iω + 2γ(k)

. (201)
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Starting with Eq. (197) we see that the temperature dependence of the diffusi-
on coefficient is given by the limits:

D = lim
q,ω→0

Γ(q, ω)
q2 = D0 [1 + Q(0, 0)] , (202)

where:

Q(0, 0) =
kBTλ2c2

D0

4
d

∫ ddk
(2π)d k2 χ2

0(k)
2γ(k)

=
2kBTλ2c2

dD2
0

∫ ddk
(2π)d χ3

0(k) . (203)

If we insert the Ornstein–Zernike form for χ0(k) we find in Problem 10.16, for
Λξ � 1, that:

Q(0, 0) =
2kBTcK̃dλ2

dD2
0c

{
1
4 ξ6−dΓ(d/2)Γ( 6−d

2 ) d < 6

{
�n(Λξ) − 3/4 d = 6

{
Λd−6

(d−6) +O
(
(Λξ)−1

)
d > 6 .

(204)

Then, in three dimensions, for example:

D = D0

[
1 +

kBTc

48πc

( λ
D0

)2
ξ3 + O(λ4)

]
. . . (205)

We can see immediately that the usefulness of perturbation theory is strongly
coupled to the dimensionality of the system. For dimensions d > 6 pertur-

bation theory works. For small f ≡
√

kBTc
c

λΛ
d−6

2
D0

(the dimensionless coupling
constant) we have that the expansion,

D = D0

(
1 +

2 f 2K̃d
d(d − 6)

+O( f 4)
)

(206)

makes sense. In six dimensions the correction is logarithmically divergent:

D = D0

(
1 +

K̃6

3
f 2[ln(Λξ)− 3/4]

)
(207)

and for dimensions fewer than six, the perturbation theory expansion,

D = D0

(
1 +

2 f 2K̃d
4d

Γ(d/2)Γ
(6 − d

2

)
(Λξ)6−d

)
+O( f 4) . . . (208)
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does not make sense as it stands, since no matter how small f is, eventually,
as T → Tc, (Λξ)6−d f 2 will become large. We see from out naive perturbation
theory expansion that:

• The reversible terms in the equation of motion are very important near
the critical point.

• Six dimensions is the cutoff dimension for a ferromagnet between con-
ventional and nonconventional behavior.

We also see that our direct perturbation theory approach (where the pertur-
bation is large compared to the zeroth-order term) is dubious. The situation is
formally identical to the case in treating statics where we carry out a direct
perturbation expansion of χ in Eq. (83). The resolution of the problem – a
well-defined method for interpreting perturbation theory – is offered by the
renormalization group.

10.3
The Dynamic Renormalization Group

10.3.1
Group Structure

Let us turn next to the dynamic renormalization group. This is a rather di-
rect generalization of the static renormalization group developed in Chap-
ters 3 and 4 of FOD. Here, we assume that the reader is familiar with this
static development where one determines recursion relations for the parame-
ters characterizing the effective Hamiltonian governing the order parameter.
In the TDGL case, one develops recursion relations for the parameters, μ =
{r0, c, u, Γ0}, characterizing the associated Langevin equation. Once one has
recursion relations one can use all of the renormalization group (RG) phe-
nomenology concerning fixed points, stability, crossover and scaling. We shall
return to this later. First we develop the steps in the RG for dynamic problems.
We shall see that in some senses the explicit implementation of the dynamic
RG is simpler than in the static case.

The implementation of the RG is again a two-step process.
1. Average over the large wavenumber components of the order parameter

ψ(q, t) in the wavenumber shell,

Λ/b < q < Λ , (209)

from the equation of motion.
2. In the resulting equation of motion for ψ(q, t) with q < Λ/b, replace

ψ(q, t) → b1−η/2ψ(qb, tb−z), rescale wavenumbers, q → q′ = bq, times t →
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t′ = tb−z. This is the same as step 2 in the static RG except that we rescale times
with a factor b−z. The new exponent z plays a role in scaling times similar to
that played by η in scaling distances. η and z must be adjusted so that we
reach a fixed point.

The new equations of motion are then written in the old form. The new
parameters are identified as entries in μ′ = Rbμ. We will discuss the imple-
mentation of these steps for both the TDGL and ferromagnet cases.

10.3.2
TDGL Case

It is not difficult to see how to carry out the average over the high-wavenumber
components of the order parameter. This is most easily done graphically. The
TDGL equation of motion can be represented as shown in Fig. 10.25 using the
same notation as in Fig. 10.1. The point is that we can then divide the das-
hed zeroth-order contribution into low- and high-wavenumber components
as shown in Fig. 10.26:

ψ0(q, ω) = ψ<
0 (q, ω) + ψ>

0 (q, ω) , (210)

where:

ψ<
0 (q, ω) = θ(Λ/b − q)ψ0(q, ω) (211)

and:

ψ>
0 (q, ω) = θ(q − Λ/b)ψ0(q, ω) . (212)

Next observe that an iteration of the equation of motion is shown graphically
in Fig. 10.27. This result is exact. If we work to second order in the nonlinear
coupling we have the result in Fig. 10.28. Now, in this figure replace ψ0 by
its high- and low-wavenumber components as in Fig. 10.26 and average over
the high-momentum components. This is easy to carry out since ψ0(q, ω) is a
Gaussian variable with independent Fourier components.

Let us take the high-wavenumber average of the three terms in Fig. 10.28
in turn. First we have the result in Fig. 10.29 showing that at zeroth order the
low-wavenumber result survives. For the first-order contribution we have the
result shown in Fig. 10.30.

Fig. 10.25 Graphical representation for the order parameter in the
time-dependent Ginzburg–Landau (TDGL) case in the absence of an
external field.
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Fig. 10.26 Graphical representation for the zeroth-order contribution
to the order parameter divided into high- and low-wavenumber
components.

Fig. 10.27 Graphical iteration of Fig. 10.25.

Fig. 10.28 Expansion of order parameter in terms of bare order
parameter lines to second order.

Turning to the average over the high-wavenumber components for the third
graph in Fig. 10.28, we see that this can be broken up into the averages over
the three contributions in Fig. 10.31. These can in turn each be broken up into
three contributions shown in Fig. 10.32. Taking the average over the high-
wavenumber components gives us the results shown in Fig. 10.33. Putting all
of these results together, we have for the coarse-grained average of the order
parameter the graphical representation given in Fig. 10.34. These terms can be
grouped together in terms of a new equation of motion shown in Fig. 10.35.
In this new equation of motion we find that the low-wavenumber zeroth-order
lines are now given by the sum of graphs shown in Fig. 10.36. The new four-
point coupling is shown in Fig. 10.37. A six-point interaction is generated as
shown in Fig. 10.38, and the propagator is renormalized as shown in Fig. 10.39.

Let us look at the analytic implications of our coarse-grained equation of
motion. Working to first order in the coupling we have for the low-wavenumber
order parameter the first two terms on the right-hand side of Fig. 10.36:

ψ(1)(q, ω) = G0(q, ω)
1

2Γ0
η(q, ω) + G0(q, ω)ΣL

HG0(q, ω)
1

2Γ0
η(q, ω) (213)

and the renormalization of the response function is given by Fig. 10.39:

G(1)
0 (q, ω) = G0(q, ω) + G0(q, ω)ΣL

HG0(q, ω) , (214)
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Fig. 10.29 Average over high-wavenumber components of the order
parameter at zeroth order.

Fig. 10.30 Average over high-wavenumber components of the order
parameter at first order.

Fig. 10.31 Setting up the average over high-wavenumber components
of the order parameter at second order.

Fig. 10.32 Continuation of the average over high-wavenumber
components of the order parameter at second order.

where, in both:

ΣL
H = −3u

∫ Λ

Λ/b

ddk
(2π)d

dΩ
2π

C0(k, Ω) . (215)

Inspection shows that since:

ψ(1)(q, ω) = G(1)
0 (q, ω)

1
2Γ0

(q, ω) , (216)

the noise is not directly coarse grained. We can then write Eq. (214), consistent
to first order in the coupling, as:(

G(1)
0

)−1
(q, ω) = G−1

0 (q, ω) − ΣL
H

= − iω
Γ0

+ χ−1
0 (q)− ΣL

H . (217)
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Fig. 10.33 Continuation of the average over the high-wavenumber
components of the order parameter at second order.

Fig. 10.34 Summary of terms contributing to the average over high-
wavenumber components of the order parameter up to second order.

Fig. 10.35 Graphical structure of new equation of motion after
averaging over high-wavenumber components.

Then at this order Γ0 is not renormalized:

Γ(1)
0 = Γ0 (218)

and: (
χ(1)
)−1

(q) = χ−1
0 (q) − ΣL

H . (219)
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Fig. 10.36 Graphical contributions to the zeroth-order contribution
to the equation of motion after averaging over high-wavenumber
components.

Fig. 10.37 Graphical contributions to the new four-point interaction
after averaging over high-wavenumber components.

Fig. 10.38 Graphical contributions to the new six-point interaction after
averaging over high-wavenumber components.

Fig. 10.39 Renormalization of propagator in new equation of motion to
first order.

We see that in the long wavelength limit we can still use the LGW paramete-
rization:

r(1) + c(1)q2 = r + cq2 − ΣL
H (220)

and, since ΣL
H is independent of wavenumber, we can identity:

c(1) = c (221)

and:

r(1) = r − ΣL
H

= r + 3u
∫ Λ

Λ/b

ddk
(2π)d χ0(k) . (222)
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Turning to the renormalization of the four-point coupling, shown in
Fig. 10.37, we have, taking the small q and ω components:

u(1) = u − 18u2
∫ Λ

Λ/b

ddk
(2π)d

dΩ
2π

C0(k, Ω)G0(k, Ω) . (223)

The frequency integral was worked out in Eqs. (38) and (45) with the result:

u(1) = u − 18u2
∫ Λ

Λ/b

ddk
(2π)d

1
2

χ2
0(k) . (224)

It turns out, as expected, that r(1) and u(1) depend only on static parameters.
Next we come to the rescaling step in the RG procedure. We carry this out

on the coarse-grained equation of motion given by:

∂ψ
∂t

= −Γ(1)
0

(
r(1)ψ − c(1)∇2ψ + u(1)ψ3

)
+ η , (225)

where:

ψ = ψ(1)(x, t) (226)

and:

η = η(1)(x, t) . (227)

The next step in the RG is to rescale space and time coordinates using:

x = bx′ (228)

and:

t = bzt′ . (229)

Defining:

ψ̃ = ψ(1)(bx′, bzt′) (230)

η̃ = η(1)(bx′, bzt′) , (231)

the equation of motion takes the form:

b−z ∂ψ̃
∂t′

= −Γ(1)
0

(
r(1)ψ̃ − c(1)b−2∇2ψ̃ + u(1)ψ̃3

)
+ η̃ . (232)

Next, let:

ψ′(x′, t′) = bαψ̃ , (233)
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then the equation of motion can be put into the form:

∂ψ′

∂t′
= −Γ(1)

0 bz
(

r(1)ψ̃ − c(1)b−2∇2ψ̃ + u(1)b−2αψ̃3
)

+ η′ , (234)

where:

η′(x′, t′) = bz+αη̃ . (235)

If we assume that:

Γ′
0 = bσΓ(1)

0 , (236)

then the equation of motion retains its form with the rescaled parameters:

r′ = bz−σr(1) (237)

c′ = bz−σ−2c(1) (238)

u′ = bz−σ−2αu(1) . (239)

We must still consider the renormalization of the noise. We have for its
determining variance:

〈η′(x′1, t′1)η′(x′2, t′2)〉 = 2kBT′Γ′
0δ
(
x′1 − x′2

)
δ
(
t′1 − t′2

)
= b2z+2α〈η(bx′1, bzt′1)η(bx′2, bzt′2)〉
= b2z+2α2kBTΓ(1)

0 b−d−zδ
(
x′1 − x′2

)
δ
(
t′1 − t′2

)
. (240)

From this we can identify:

T′Γ′
0 = b2z+2αb−d−zTΓ(1)

0 . (241)

If we choose T′ = T then:

Γ′
0 = bz+2α−dΓ(1)

0 . (242)

Comparing Eq. (242) with Eq. (236) we identify:

σ = z + 2α − d . (243)

It is conventional to choose:

α =
1
2
(d − 2 + η) , (244)

where the η will now turn out to be the usual standard static critical index.
With this new notation, we have:

σ = z − 2 + η . (245)
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In summary, the recursion relations are given by:

r′ = b2−ηr(1) (246)

c′ = b−ηc(1) (247)

u′ = b4−d−2ηu(1) (248)

Γ′
0 = bz−2+ηΓ(1)

0 , (249)

where r(1) is given by Eq. (222), c(1) by Eq. (221), u(1) by Eq. (224), and Γ(1)
0 by

Eq. (218). We then obtain the final form for the recursion relations:

r′ = b2−η

(
r + 3u

∫ Λ

Λ/b

ddk
(2π)d χ0(k)

)
(250)

c′ = b−ηc (251)

u′ = b4−d−2η

(
u − 18u2

∫ Λ

Λ/b

ddk
(2π)d

1
2

χ2
0(k)

)
. (252)

Γ′
0 = bz−2+ηΓ0 . (253)

Our goal, as discussed in detail in the next section, is now to find the stable
fixed-point solutions to these recursion relations. Clearly at this order, to find
a fixed point we need to choose,

η = 0 (254)

and:

z = 2 . (255)

Then the recursion relations reduce precisely to those governing the static
critical behavior at first order:

r′ = b2

(
r + 3u

∫ Λ

Λ/b

ddk
(2π)d χ0(k)

)
(256)

u′ = b4−d

(
u − 18u2

∫ Λ

Λ/b

ddk
(2π)d

1
2

χ2
0(k)

)
. (257)
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The analysis of the static recursion relations for r and u was treated in
Section 4.5.3 in FOD. One finds a Gaussian fixed point u∗ = r∗ = 0 for dimen-
sionality greater than four and a nontrivial fixed point for d < 4. Expanding
in ε = 4 − d we have to lowest order in ε:

r̃∗ =
( r

Λ2

)∗
= − ε

6
(258)

and:

ũ∗ =
(u

c

)∗
=

8π2

9
ε . (259)

The linear stability of this fixed point is given by:

δr̃′ = δr̃ by1 + δũ
3

16π2 b2 (260)

δũ′ = δũ by2 , (261)

where the stability exponents are given by:

y1 = 2 − ε
3

> 0 (262)

y2 = −ε < 0 . (263)

This says that r is the only relevant variable with y1 > 0.

10.3.3
Scaling Results

Next we discuss the scaling implications of the dynamic RG. We have the
relation between the original time-correlation function and the coarse-grained
version (in terms of the longer wavelength degrees of freedom):

C(x1 − x2, t1 − t2; μ) = 〈ψ(1)(x1, t1)ψ(1)(x2, t2)〉
= b−2α〈ψ′(x1/b, t1/bz)ψ′(x2/b, t2/bz)〉
= b−2αC

(
(x1 − x2)/b, (t1 − t2)/bz; μ′) , (264)

where μ represents the original set of parameters and μ′ the RG-transformed
parameters. Fourier transforming over space and using Eq. (245) gives:

C(q, t; μ) = b2−ηC(qb, tb−z; μ′). (265)

If we Fourier transform over time, we obviously obtain:

C(q, ω; μ) = b2−η+zC(q, b, ωbz; μ′). (266)
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Using the FDT given by Eq. (25), we easily obtain for the response function:

G(q, ω; μ) = b2−ηG(qb, ωbz; μ′) . (267)

Suppose we can find a fixed-point solution of our dynamic RG recursion
relations:

μ∗ = Rbμ∗ . (268)

We can then write, for situations where we are near the fixed point,

δμ′ = t1by1 e1 +O(by2) (269)

and y2 < 0. y2 need not be the same as in the static case. We find then, if we
are near the critical surface, that:

C (q, ω; μ(T)) = b2−η+zC

(
qb, ωbz; μ∗ +

(
b
ξ

)1/2
e1 +O(by2)

)
. (270)

If we set b = Λξ, then:

C (q, ω; μ(T)) = (Λξ)2−η+zC
(

q, ξ, ω(ξΛ)z; μ∗ + Λ1/2e1 +O(Λξ)y2
)

. (271)

If terms of O[(Λξ)y2 ] can be ignored, then we have:

C (q, ω; μ(T)) = ξ2−η+z f (qξ, ωξz) , (272)

which is a statement of dynamic scaling. We also have from Eq. (267) with
b = Λξ:

G(q, ω; μ) = ξ2−η fG(qξ, ωξz) . (273)

We see that while q is naturally scaled by ξ as T → Tc,, ω is scaled by ξz.
Alternatively if we let T = Tc we can write Eq. (270):

C (q, ω; μ(Tc)) = b2−η+zC[qb, ωbz; μ∗ + O(by2)]. (274)

If we then choose b = ( q
Λ )−1 we obtain the scaling result:

C (q, ω; μ(Tc)) =
(Λ

q

)2−η+z
C

(
Λ, ω
( q

Λ

)−z
; μ∗
)

. (275)

If we choose for b = ( ω
ωo

)
1
z , where ω0 is some frequency constructed from Γ0

and Λ, then:

C (q, ω; μ(Tc)) =
(

ω
ω0

)(2−η+z)/z
C

(
k
(

ω
ω0

) 1
z

, ω0; μ∗
)

(276)
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and:

C (0, ω; μ(Tc)) ∼ ω(2−η+z)/z. (277)

It is convenient to define, as we did in the van Hove theory, a characteristic
frequency. One convenient definition is:

ωc ≡ χ−1(q)
[ ∂

∂(−iω)
G−1(q, ω)

]−1

ω=0
. (278)

If we remember Eq. (7), we are led to identify:

ωc(q) = χ−1(q)Γ(q, 0) , (279)

and Γ(q, 0) has the interpretation of a wavenumber-dependent kinetic coeffi-
cient. Note that this definition for a characteristic frequency agrees with that
used in the conventional theory. Starting with Eq. (267), it is shown in Pro-
blem 10.17 that:

ωc(q; μ) = b−zωc(qb; μ′). (280)

Following now-familiar arguments, if we let b = Λξ and ignore terms of
O[(Λξ)y2 ] we obtain the scaling result:

ωc(q; μ) = ξ−z f (qξ) . (281)

Clearly one of the first orders of business in dynamic critical phenomena is to
determine the dynamic index z.

10.3.4
Wilson Matching

In his treatment of the static LGW n-vector model, Wilson [13] argued that
the scaling properties of the order parameter structure factor can be obtained
directly from the perturbation series in four dimensions, provided one chooses
the fixed-point value for the coupling,

u∗
0 =

2π2ε
(n + 8)

, (282)

where ε = 4 − d, and then exponentiates the logarithmic terms appearing in
the expansion. The authors of Ref. [7] assert that the same procedure will yield
the correct form for the dynamic correlation functions. Let us see how this
works for the scalar TDGL case. We have generally for the response function:

G−1(q, ω) = − iω
Γ(q, ω)

+ χ−1(q) . (283)
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With T = Tc and q = 0 this takes the form:

G−1(0, ω) = − iω
Γ(0, ω)

. (284)

We previously [Eq. (143)] determined, using perturbation theory in d = 4,
that:

Γ−1(0, ω) = Γ−1
0

[
1 − u2

0b0 ln
(

Ω
Λ2

)]
, (285)

where Ω = ω/cΓ0 and:

b0 =
9

8π4 ln
(

4
3

)
. (286)

Exponentiating the logarithm in Eq. (285) we obtain:

Γ−1(0, ω) = Γ−1
0

(
Ω
Λ2

)−u2
0b0

(287)

and:

G−1(0, ω) ≈ ω1−u2
0b0 . (288)

We can use this result to estimate the dynamic critical index by using scaling
arguments. From dynamical scaling we have from Eq. (273):

G(q, ω) = ξ2−η fG(qξ, ωξz) . (289)

Then as q → 0 and T → Tc we have:

G(0, ω) ≈ ξ2−η 1
(ωξz)(2−η)/z

≈ ω−(2−η)/z . (290)

Comparing this to Eq. (288) we identify for n = 1:

(2 − η)/z = 1 − u2
0b0 . (291)

Noting from the static calculation [13] η = ε2/54, we can write, using Eqs. (282)
and (286),

z = 2 + η[−1 + 6 ln(4/3)] (292)

in agreement with Ref. [7].

10.3.5
Isotropic Ferromagnet

To see how the RG works in the ferromagnetic case let us, for simplicity, set
u and ro equal to zero [16] and investigate how the parameters D0 and λ
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Fig. 10.40 Graphical assignments in ferromagnet case.

Fig. 10.41 Graphical assignment for three-point vertex.

Fig. 10.42 Graphical representation for the order parameter, Eq. (293).

Fig. 10.43 Graphical representation for high- and low-wavenumber
contributions to the order parameter equation of motion.

change under the group transformation. Our Fourier-transformed equation
of motion, Eq. (177), with h = 0, can then be written as:

M(q, ω) = M0(q, ω) + G0(q, ω)
∫ ddq′

(2π)d
dω′

2π
λ

2D0q2

×[(q′)2 − (q − q′)2]M(q′, ω′) × M(q − q′, ω − ω′) . (293)

It will again be useful to use a graphical technique. If we identify, as in Fig. 10.40,
the lines as before, and the three-legged vertex as in Fig. 10.41, then the equa-
tion of motion can be written as Fig. 10.42. In carrying out step 1 in the RG we
write:

M(q, ω) = Θ(| q |> Λ)M(q, ω) + Θ(| q |< Λ)M(q, ω)

≡ M>(q, ω) + M<(q, ω) . (294)

We can then break up wavy lines into the high- and low-wavenumber com-
ponents, (Fig. 10.43) and similarly for response functions (Fig. 10.44). We are
then led to the coupled set of equations (Figs.10.45 and 10.46). We need to solve
for a wavy line with an H in Fig. 10.45, put it into Fig. 10.46 and then average
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Fig. 10.44 Graphical representation for high- and low-wavenumber
contributions to the response function.

Fig. 10.45 Graphical representation for high-wavenumber contributions
to the order parameter.

over the noise associated with high wavenumbers. We will work this out to se-
cond order in λ. Note that on iteration, we obtain the graphs in Fig. 10.47. Put-
ting this result for a wavy line with an H in Fig. 10.46 we obtain Fig. 10.48. This
looks complicated. However, we must average over all the high-wavenumber
components.

All of the graphs with an odd number of M>
0 vanish. When we connect up

two M>
0 lines we obtain a factor shown in Fig. 10.49. It is also useful to note

that graphs with contributions like Fig. 10.50 vanish due to the symmetry of
the three-point interaction. We are then left with the result shown in Fig. 10.51.
The first two terms are those we would obtain by ignoring a wavy line with
an H altogether. It is shown in Problem 10.20 that the last term in Fig. 10.51
gives no contribution for small enough q due to a noncompatibility of step
functions. We are then left with the equation,

M<(q, ω) = G<
0 (q, ω)

1
D0q2 f<(q, ω) + G<

0 (q, ω)

×Σ̄(q, ω)M<(q, ω) + G<
0 (q, ω)

∫ ddk
(2π)d

dΩ
2π

λ
D0q2

×
[

k2 − (q − k)2
]

M<(k, Ω)× M<(q − k, ω − Ω) , (295)

where Σ̄(q, ω), defined graphically in Fig. 10.52, is the same as Σ(i)q, ω), given
by Eq. (185), except there are internal wavenumber restrictions. We can bring
the G<

0 Σ̄M< term to the left-hand side of Eq. (295) and then solve for M<:
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Fig. 10.46 Graphical representation for low-wavenumber contributions
to the order parameter.

Fig. 10.47 Iterated graphical representation for high-wavenumber
contributions to the order parameter.

Fig. 10.48 Iterated graphical representation for low-wavenumber
contributions to the order parameter.

Fig. 10.49 Graphical representation for high-wavenumber contributions
to the zeroth-order correlation function.

Fig. 10.50 Graphical representation for high-wavenumber contributions
to the first-order self-energy.
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Fig. 10.51 Iterated graphical representation for low-wavenumber
contributions to the order parameter to second order.

Fig. 10.52 Graphical representation for high-wavenumber contributions
to the second-order self-energy Σ̄(q, ω).

M<(q, ω) =
[
1 − G<

0 (q, ω)Σ̄(q, ω)
]−1

G<
0 (q, ω)

1
D0q2 f<(q, ω)

+
[
1 − G<

0 (q, ω)Σ̄(q, ω)
]−1

G<
0 (q, ω)

× λ
D0q2

∫ ddk
(2π)d

dΩ
2π

[
k2 − (q − k)2

]
×
(
(M<(k, Ω)× M<(q − k, ω − Ω

)
. (296)

We then note, using Eq. (217), that:

[
1 − G<

0 (q, ω)Σ̄(q, ω)
]−1

G<
0 (q, ω)

1
D0q2 =

1(
G<

0 (q, ω)
)−1

− Σ̄(q, ω)

1
D0q2

=
1

−iω + D0q2
(

χ−1
0 (q) − Σ̄(q, ω)

) . (297)

It is left to Problem 10.18 to show in the small q and ω limits that:

Σ̄(q, ω) = −χ−1
0 (q)kBTc2(

λ
D0

)2 Id , (298)

where:

Id ≡ 2
d

∫ ddk
(2π)d χ3

0(k)Θ(k − Λ
b

)Θ(Λ − k). (299)
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Our new equation of motion can then be written as:

M(1)(q, ω) = M(1)
0 (q, ω) + G(1)

0 (q, ω)
λ

D(1)
0 q2

∫ ddk
(2π)d

dΩ
2π

×[k2 − (q − k)2]M(1)(k, ω)× M(1)(q − k, ω − Ω) , (300)

where:

M(1)
0 (q, ω) =

G(1)
0 (q, ω)

D(1)
0 q2

f<(q, ω) =
f<(q, ω)

−iω + D(1)
0 q2χ−1

0 (q)
(301)

G(1)
0 (q, ω) =

[ −iω

D(1)
0 q2

+ χ−1
0 (q)

]−1
. (302)

Comparing Eqs. (296), (297), (298) and (301), we have:

−iω + D(1)
0 q2χ−1

0 (q) = −iω + D0q2
(

χ−1
0 (q) − Σ̄(q, ω)

)
. (303)

From this we can identify D(1)
0 as:

D(1)
0 ≡ D0

(
1 +

kBT
c

(
λ

D0

)2
c3 Id

)
. (304)

We see that the full effect of step 1 of the dynamic RG is to simply take D0 →
D(1)

0 and λ is unchanged for small q and ω. Higher-order corrections in powers
of q and ω are found to be irrelevant [8] in the sense discussed earlier. If we
carry out step 2 of the RG and rescale we obtain the recursion relations:

D′
0 = bz−4 D0

(
1 +

kBT
c

(
λ

D0

)2
c3 Id + · · ·

)
(305)

λ′ = b(z−1− d
2 )λ .

We can use these equations to write a recursion relation for the dimensionless
coupling:

f =

√
(kBT)

c
Λ(d−6)/2 λ

D0
, (306)

given by:

f ′ = b3−d/2 f
(

1 − f 2Λ6−dc3 Id + O( f 4)
)

. (307)
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Remembering that we have set r0 = 0, we can, as shown in Problem 10.19,
evaluate Id explicitly to obtain for d �= 6:

c3 Id =
2K̃d

d
1

(d − 6)
Λd−6

(
1 − b6−d

)
(308)

and for d = 6:

c3 I6 =
K̃6

3
ln b . (309)

For d > 6 the recursion relation (Eq. 307) can be written for large b as:

f ′ = b−(d−6)/2 f
(

1 − 2 f 2K̃d
d(d − 6)

+ . . .
)

(310)

and f scales to zero for large b. The conventional theory is correct. If d < 6
then:

f ′? = b6−d)/2 f
(

1 +
2K̃db6−d f 2

d(d − 6)
+ . . .

)
(311)

and we see that for large b the perturbation theory expansion breaks down.
If we compare the analysis here with that for the static case we see that we
obtain consistency with perturbation theory and a fixed point if we assume
that we are very near six dimensions and assume ( f ∗)2 ∼ (6 − d) ≡ ε. Then
we can evaluate Id in six dimensions and write our fixed-point equation, Eq.
(307) with f = f ∗, as:

f ∗ = b(6−d)/2 f ∗
(

1 − K̃6

3
( f ∗)2 ln b +O(ε2)

)
. (312)

Since ( f ∗)2 is very small by assumption, we have after exponentiation:

1 = b(6−d)/2b−K̃6( f ∗)2/3 (313)

or: (
f ∗
)2

=
3

K̃6

(6 − d)
2

+O
(

ε2
)

. (314)

Substituting K̃6 = (64π3)−1 [15], we obtain the fixed-point value [8]:

( f ∗)2 = 96(6 − d)π3 + · · · (315)

If we then go back to our recursion relation Eq. (305) for D0, we see that a
fixed-point solution requires:

D∗
0 = bz−4D∗

0

(
1 +

K̃6

3
( f ∗)2 ln b + · · ·

)
. (316)
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Exponentiating the logarithm we are led to:

z − 4 +
K̃6

3
( f ∗)2 = 0 (317)

Thus to first order in ε = 6 − d:

z = 4 − K̃6

3
( f ∗)2

= 4 − ε
2

+O(ε2)

= 1 +
d
2

+ O(ε2) . (318)

This is compatible with a fixed-point solution for Eq. (315). If we are bold and
let ε = 3 and d = 3, we find using Eq. (318) that z = 5/2, in agreement with
experiment. It has now been shown that this result for z holds to all orders in
ε due to certain symmetries of the equation of motion. This does not mean,
however, that ( f ∗)2 is unaffected by high-order terms in ε.

Combining these results with those we found previously for the static para-
meters, we see that we have found a dynamic fixed point. We could go further
and show Ref. [8] that this fixed point is stable. The analysis is along the same
lines as in the static case. Instead we note how, once we know the structure of
the fixed point, we can make our perturbation theory analysis useful. Let us
go back to the expression we had for the transport coefficient resulting from a
direct perturbation theory analysis given by Eq. (207). If we assume that our
expansion is in powers of f ∗ and we are near six dimensions, we can write Eq.
(207) as :

D(0, 0) = D0

(
1 +

( f ∗)2K̃6

3

[
�nΛξ − 3

4

]
+ O(ε2)

)
with ε = 6 − d. Since f ∗2 is small we can rewrite this as:

D(0, 0) = D0(Λξ)( f ∗)2K̃6/3
(

1 − f ∗2K̃6

4
+O(ε2)

)
. (319)

Remembering Eq. (314) we can rewrite Eq. 319 as:

D(0, 0) = D0(Λξ)
ε
2

(
1 − 3ε

8
+ O(ε2)

)
. (320)

This divergence of the transport coefficient as T → Tc is just the result we need
to reconcile the spin-wave definition of the characteristic frequency found in
Chapter 8 with the spin-wave damping contribution.

We could go further and calculate D(0, 0) to higher powers in ε or, in fact,
calculate the complete correlation function Ref. [17], C(q, ω) using ε as a small
parameter. This would take us far afield.
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While we can groan over the fact the small parameter for ferromagnets in
ε = 6− d, this is not the case for essentially all other models. It appears that for
the dynamics of helium [18], planar ferromagnets [19], isotropic antiferroma-
gnets [19, 20] and fluids [21], d = 4 is again the crossover dimension between
conventional and nonconventional behavior.

10.4
Final Remarks

In this chapter we have introduced the basic ideas behind the modern theory
of dynamic critical phenomena. These are, of course, the ideas of scaling,
universality and the nonlinear interaction of long wavelength degrees of free-
dom. These ideas lead to a renormalization group analysis of semimacroscopic
nonlinear equations of motion. There are by now a number of elegant methods
for carrying out perturbation theory calculations and these methods will be
discussed in FTMCM.

Substantial progress has been made in identifying all of the dynamic uni-
versality classes: models that share the same critical surface of a fixed point.
We seem to have established that dynamical fixed points are characterized by
the underlying static fixed point, the conservation laws governing a system
and the Poisson bracket algebra satisfied by the slow variables in the system.
Hohenberg and Halperin [22] give an excellent review of the various nonlinear
models.

In this chapter we have emphasized dynamical behavior above the pha-
se transition in the disordered state. Very interesting things happen in the
ordered state, as indicated at the end of Chapter 8. For example, one has
the breakdown in hydrodynamics in the ordered phase of isotropic antifer-
romagnets [23]. These methods can also be used to explore the breakdown of
hydrodynamics in fluid systems [24].
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10.6
Problems for Chapter 10

Problem 10.1: Show that the correlation function, Eq. (14), and the response
function, Eq. (7), are related by the FDT Eq. (15).
Problem 10.2: Starting with the graphical expression shown in Fig. 10.1, Eq.
(2), iterate in powers of the interaction u, keeping terms up to order u2 as
shown in Fig. 10.2.
Problem 10.3: Starting with the graphs shown in Fig. 10.2, average over the
noise and obtain the graphical expression for the response function shown in
Fig. 10.5. Show that these graphs lead to the analytic expressions given by
Eqs. (19)–(22).
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Problem 10.4: Show that the self-energy contributions given by Eqs. (20) and
(21) are real.
Problem 10.5: Starting with the graphical expression for ψ shown in Fig. 10.6,
find the expansion for 〈ψ(q, ω)ψ(q′, ω′)〉, shown in Fig. 10.7.
Problem 10.6: Prove the identity:

Im ABC = ABC′′ + AB′′C∗ + A′′B∗C∗ .

Problem 10.7: Starting with the effective Hamiltonian given by Eq. (2), show
that to second order in the quartic coupling u, that the static correlation func-
tion,

C(x − y) =
1
Z

∫
D(ψ)e−βHEψ(x)ψ(y) ,

where Z is the normalizing partition function, is given graphically by Fig. 10.14.
Problem 10.8: Show that the sum of the first two graphs on the right-hand side
of Fig. 10.15 can be combined to give the single graph shown in Fig. 10.16.
Problem 10.9: Evaluate the integral:

Wd(r) =
∫ ddk

(2π)d
1

ck2
1

r + ck2

as a function of d in the limit of large ξ2 = c/r.
Problem 10.10: Show that the integral:

J3(0, ω) =
∫

S

1
ck2

1

1
ck2

2

1
ck2

3

1
[−iω + Γ0c(k2

1 + k2
2 + k2

3)]

diverges as a power of ω and ω → 0 for d < 4. Find the exponent.
Problem 10.11: Show that the small y1 and y2 behavior in the integral Eq. (121)
is regular and the leading behavior for small Ω is governed by large y1 and y2
behavior. Show therefore that ΔS(Ω) is given by Eq. (124).
Problem 10.12: Show how one goes from Eq. (131) to Eq. (136) and Eq. (137).
Finally do the integral:

∫ 1

0
du

1
u

[
1 − (1 + u2)

(1 + u2 + u4)1/2

]
.

Problem 10.13: Show that the graphs contributing to M at second order in λ
and up to first order in h are given in Fig. 10.22.
Problem 10.14: Show that the spatial Fourier transform of the three-point
vertex defined by Eq. (161) is given by Eqs. (162) and (163).
Problem 10.15: Show that the ferromagnetic self-energies Σ(i) and Σ(ii), given
by Eqs. (181) and (182), reduce to the results given by Eqs. (185) and (187).
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Problem 10.16: Evaluate the integral:

Q(0, 0) =
2kBTλ2c2

dD2
0

∫ ddk
(2π)d χ3

0(k)

as a function of d using the Ornstein–Zernike form for χ0(k). Find the leading
behavior for Λξ � 1.
Problem 10.17: Starting with Eq. (267) and using Eq. (270), show that charac-
teristic frequency satisfies:

ωc(q; μ) = b−zωc(qb; μ′) .

Problem 10.18: Show that Eq. (298) for Σ̄(q, ω), defined by Fig. 10.52, holds
with Id defined by Eq. (299).
Problem 10.19: Evaluate:

Id ≡ 2
d

∫ ddk
(2π)d χ3

0(k)Θ
(

k − Λ
b

)
Θ(Λ − k)

explicitly for r0 = 0 as a function of d.
Problem 10.20: Show that the graph corresponding to the last term in Fig. 10.51
gives no contribution to the low-wavenumber M for small enough q due to a
noncompatibility of step functions.
Problem 10.21: Starting with Eq. (107), show if ΔΣ3(0, ω) exists, then Γ(q, ω) =
Γ0(q) to leading order in q in the conserved order parameter case. Therefore
there is no correction to the conventional theory result at this order.
Problem 10.22: Consider the anharmonic oscillator governed by the effective
Hamiltonian:

HE[ψ] =
r0

2
ψ2 +

v
6

ψ6 − ψh ,

where h is an external field that couples to the displacement field ψ. Assume
that the dynamics are governed by the Langevin equation:

∂ψ
∂t

= −Γ
∂HE [ψ]

∂ψ
+ η ,

where the Gaussian noise has variance:

〈η(t)η(t′)〉 = 2kBTΓδ(t − t′) .

Develop perturbation theory for the response function G(ω). Write down
the graphs contributing to G(ω) to second order in the coupling v. Find the
corresponding susceptibility χ = G(0) to first order in v.
Problem 10.23: Evaluate the zeroth-order response G0(q, ω), Eq. (7), and corre-
lation function C0(q, ω), Eq. (14), in the q, t domain. What form does the FDT,
Eq. (15), take in this regime.



Nonequilibrium Statistical Mechanics. Gene F. Mazenko
Copyright c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40648-4

403

11
Unstable Growth

11.1
Introduction

In this chapter we discuss the problem of the growth of order in unstable
thermodynamic systems. For general reviews, see Refs. [1, 2] . Let us begin
with the conceptually simplest situation. Consider the phase diagram shown
in Fig. 11.1 for a ferromagnetic system in the absence of an externally applied
magnetic field. At high temperatures, above the Curie temperature Tc, the
average magnetization, the order parameter for this system, is zero and the
system is in the paramagnetic phase. Below the Curie temperature, for the
simplest case of an Ising ferromagnet, one has a nonzero magnetization with
two possible orientations: the net magnetization can point in the up-direction
or the down-direction. There are two degenerate equilibrium states of the
system in the ferromagnetic phase. Now consider [3] the experiment where
we first prepare the system in an equilibrium high-temperature state where
the average magnetization is zero. We then very rapidly drop the temperature
of the thermal bath in contact with the magnet to a temperature well below the
Curie temperature. In this case, the magnetic system is rendered thermody-
namically unstable. It wants to equilibrate at the new low temperature, but it
must choose one of the two degenerate states. Let us look at this problem from
the point of view of the TDGL model. Let ψ be the continuous coarse-grained
magnetization density and V(ψ) the associated driving potential, shown [4]
schematically in Fig. 11.2 before and after the quench. Assume, initially in
the paramagnetic phase, ψ is nearly uniform and small in amplitude. Clearly,
after the quench, the potential and the associated effective Hamiltonian are
minimized by a uniform magnetization with values +ψ0 or −ψ0.

For a quench to zero temperature, [5] the system wants to change the square
of the average order parameter (〈ψ〉2) from 0 to ψ2

0. Right after the temperature
quench, the local value of the order parameter will be near zero [6] and the
system will be unstable with respect to the two degenerate states. In practice,
the system will respond to fluctuations that locally pick out one of the two
final states and generate a pattern of ordered domains. Locally, the system
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Fig. 11.1 The phase diagram of a ferromagnet. T is the temperature
and M = 〈ψ〉 is the average magnetization, the order parameter in
this system. The quench is from TI in the paramagnetic phase to TF in
the ferromagnetic phase where there are two coexisting degenerate
equilibrium states. We assume that the zero temperature value of
M(T = 0) is ψ0.

will take on the values ±ψ0 while the global average remains zero, 〈ψ〉 =
0. However, as time evolves, competing domains grow inexorably larger, so
locally it appears that one has long-range ordering: the longer the time the
longer the range.

In order to gain some feeling for the situation (see Problem 11.1) consider
the results of a numerical simulations shown in Fig. 11.3. One has a set of Ising
spins set on a two-dimensional 64× 64 lattice. Initially, panel a, at each site the
spin has been randomly chosen to have the values +1 or −1. The spins with
value +1 are represented by a + sign in the figure. The spins with value −1 are
left blank. It is then assumed that at time t = 0 the system is quenched to zero
temperature and then propagated forward in time. Using a standard Monte
Carlo algorithm [7, 8], one first selects a spin at random. Then it is flipped
if, on average, that flip pushes the system toward thermal equilibrium. After
carrying out this process a number of times equal to the number of spins in
the system, one has progressed in time one Monte Carlo step per spin (MCS).
This choice for a unit of time is sensible, since it is well defined as the number
of spins is increased. In Fig. 11.3c one has a typical configuration after 20 MCS
where the system is evolving toward the zero temperature state, where the
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Fig. 11.2 The potential governing the order parameter ψ. As the
system is quenched below Tc the potential goes from having a single
minimum at ψ = 0 to having two degenerate minima at ψ = ±ψ0. As a
result, locally, the system must choose one of these ground states.

spins will all have one or the other of the two possible values. Clearly, as
time evolves one can see segregation of like-signed spins into domains. The
domains are separated by walls and as time proceeds, the curvature of these
walls decreases and they tend to become straighter. There is a ramified domain
structure where compact objects disappear with time to reveal compact objects
on larger scales that, in time, dissolve. The key point is that the size of the
domains is growing with time.

There is a close correspondence [9] between the simplest models for Ising
magnets and binary alloys. A ferromagnetic transition in an Ising magnet
corresponds to phase separation in a binary alloy where like particles want
to be near one another. An antiferromagnetic transition in an Ising magnet
corresponds to an order–disorder transition in a binary alloy. In an antifer-
romagnet spins alternate signs in adjacent sites in the ordered phase. In a
binary alloy that undergoes an order–disorder transition, like Cu3Au, it is
energetically favorable for unlike particles to be close to one another. Time-
resolved ordering in alloys is experimentally more accessible than in pure
magnet systems because of the large difference in time scales. As indicated
below in Fig. 11.9, the phase ordering in alloys takes place on a time scale
of minutes. In the case of pure magnetic systems the ordering occurs over
microscopic times.
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Fig. 11.3a–c. Ising spins evolving under a Monte Carlo algorithm. a
The initial state with the spin value at each site randomly chosen. b The
system after 5 Monte Carlo steps (MCS). c 20 MCS. d 60 MCS.

There are many important physical examples of phase-ordering kinetics
beyond simple magnets and alloys. Phase separation in fluids is different from
that in solids, since it involves flow that complicates the process. There are a
variety of different fluid systems that undergo phase separation, called spino-
dal decomposition, which are of interest: liquid–gas, binary mixture, polymer
mixtures, block copolymers, soap froths, and modulated phases.

We have distinguished between the case of pure magnets and systems with
impurities because quenched magnetic impurities can strongly change the
ordering properties. It is well known that diluted antiferromagnets in a field
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and spin glasses [10] order over very long time scales. The discussion here is
limited to systems without quenched impurities.

In the examples above, we have emphasized the case of a scalar order para-
meter where the disordering agents are domain walls. For those cases, where
ordering consists of the breaking of a continuous symmetry, [11, 12] the dis-
ordering defects are vortices, strings, monopoles, dislocations, disclinations
or other more exotic objects. The simplest model for looking at these higher
order symmetries is the n-vector model [13]. Important examples include: XY
magnets (n = 2), superfluid He4 (n = 2), and Heisenberg magnets (n =
3) . More complicated systems involve superconductors, liquid crystals, the
growth of crystals and polymers.

One of the interesting aspects of phase-ordering kinetics is that the simple
model descriptions of the problem produce the growth patterns observed ex-
perimentally. In Fig. 11.4 we show the phase-ordering pattern from a binary
mixture as a function of time after quench. Note the time scale of hundreds of
seconds. The early time evolution in this case produces a ramified structure
similar to that seen in the simulation shown in Fig. 11.3. At later times, the
system phase separates into compact structures.

The ultimate phase-ordering system corresponds to the evolution of the
early universe. It seems clear that many of the ideas we have established in
a condensed-matter setting will be useful in understanding cosmology [15].

11.2
Langevin Equation Description

Early theoretical work on growth kinetics focused on spin-flip and spin-exchange
kinetic Ising models [7], similar to the model used to produce the data in
Fig. 11.3. These models were appealing because of the discrete Ising arithme-
tic, but the associated dynamics is not particularly physical and it is difficult to
generalize to more complicated systems like the n-vector model. Most work
has centered around the treatment of field theoretic Langevin models [16],
like the TDGL equation governing the dynamics of a nonconserved order
parameter (NCOP):

∂

∂t
ψ(x, t) = −Γ

δHE
δψ(x, t)

+ ξ(x, t) , (1)

where ψ(x, t) is the order parameter field and HE is the LGW effective Hamil-
tonian:

HE =
∫

ddx
[ c

2
(∇ψ)2 + V[ψ(x)]

]
. (2)



408 11 Unstable Growth

Fig. 11.4 Experimental realization [14] (via a polarizing optical
microscope) of phase separation in a polymer mixture. The time after
the quench is indicated at the bottom right of each picture.
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Here, c > 0 and V is the potential, typically of the form:

V =
r
2

ψ2 +
u
4

ψ4 (3)

with u > 0. The simplest nontrivial form for r is r = r0(T − T0
c ) < 0 for

unstable growth [17]. ξ(x, t) is Gaussian thermal noise with variance:

〈ξ(x, t)ξ(x′, t′)〉 = 2ΓkBTδ(x − x′)δ(t − t′) , (4)

where Γ is a bare kinetic coefficient and T is the final equilibrium temperature.
The physical situation of interest is a quench [18] from a disordered state

T > Tc at t = 0 where:

〈ψ(x, 0)〉 = 0 , (5)

〈ψ(x, 0)ψ(x′, 0)〉 = εIδ(x − x′) (6)

to a state T < Tc. Much of our attention will be focused on quenches to T = 0.
Quenches to nonzero T (< Tc) do not typically lead to qualitative change [19]
in the basic findings. If we quench to T = 0, we can set the thermal noise to
zero and Eq. (1) takes the form:

∂

∂t
ψ(x, t) = −Γ

[
rψ(x, t) + uψ3(x, t)− c∇2ψ(x, t)

]
, (7)

where the potential V is given by Eq. (3). The important ingredient is that this
nonlinear partial differential equation is supplemented with random initial
conditions given by Eqs. (5) and (6). Assuming r < 0, which is necessary for

unstable growth, we can rescale ψ →
√

|r|
u ψ, x →

√
c
|r|x, and t → t

Γ|r|
√

|r|
u

, to

obtain the dimensionless equation of motion:

∂

∂t
ψ = ψ − ψ3 + ∇2ψ . (8)

Notice that there are no parameters left in the problem.
The stationary uniform solutions of this equation of motion are given by:

ψ = 0 and ± 1 . (9)

Since V[±1] = − r2

4u while V[0] = 0, we see that the nonzero values of ψ are
the thermodynamically stable solutions.

The equation of motion given by Eq. (8) corresponds to a NCOP. In pro-
blems like phase separation one has a conserved order parameter (COP). One
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Fig. 11.5a–c. Numerical simulation [20] of the conserved order
parameter (COP) TDGL model. a t = 150 (time in dimensionless units).
b t = 600. c t = 2200.
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then has the dimensionless partial differential equation for quenches to zero
temperature given by:

∂

∂t
ψ = ∇2

[
−ψ + ψ3 −∇2ψ

]
, (10)

which is again supplemented with random initial conditions. An example of
the patterns generated by Eq. (10) is shown in Fig. 11.5.

The TDGL model includes only dissipative terms. There are many systems
where reversible terms [21] must also be included. In the case of fluids, for
example, one must include the coupling of the order parameter, the mass
density ρ, to the momentum density g. We will focus on the simpler systems
without flow here.

11.3
Off-Critical Quenches

In the quench shown in the phase diagram in Fig. 11.1, the average value
of the order parameter is zero along the entire path of the quench. One can
think of situations where this is difficult to implement in practice or where
one is interested in the case where at t = 0 〈ψ〉 = m > 0. In this case, it
makes a qualitative difference whether the order parameter is conserved or
not. If the order parameter is not conserved, then the initial condition breaks
the degeneracy between the final states and the system orders locally in the
biased +ψ0 orientation. This can be treated quantitatively, since the average
of the order parameter is nonzero and we can write:

ψ(x, t) = m(t) + φ(x, t) , (11)

where by assumption 〈φ(x, t)〉 = 0. The equation of motion for the uniform
part of the order parameter is given by substituting ψ(x, t) = m(t) into Eq. (8):

1
Γ

d
dt

m(t) = m(t)
[
1 − m2(t)

]
, (12)

where φ, treated as a perturbation, does not enter at lowest order. It is shown
in Problem 11.2 how to solve this equation as an initial-value problem. It is
not difficult to show that for long times this equation is satisfied by:

1 − m ≈ e−2Γt. (13)

This case is not a problem of degenerate competing states and the system
equilibrates over a rather short-time scale. The situation in the COP case is
quite different. The way of thinking about this is to imagine that one has a
mixture of A and B particles. For a critical (symmetric) quench the number
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Fig. 11.6.a–d Numerical simulation [22] of the COP TDGL model for
off-critical quenches. The system with m = 0 at t = 500 (a) and t = 5000
(b). The system with m = 0.4 at t = 500 (c) and t = 5000 (d). Shaded
regions correspond to ψ < 0.

of A is equal to the number of B particles. An off-critical quench corresponds
to having more, say, A particles than B particles. This breaks the symmetry,
but because of the conservation law one can not eat up the minority phase
of B particles. The system must again break up into domains. There is now
a minority and a majority phase and the minority phase may form compact
structures, as can be seen in Fig. 11.6, which is again a simulation using Eq.
(10) but now with 〈ψ〉 �= 0.
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Fig. 11.7 The potential governing the order parameter ψ in the case of
nucleation. For t < 0 the system is in the lower energy equilibrium state.
At t = 0 the field h is flipped and the system finds itself in a metastable
state. For t > 0 fluctuations cause the system to nucleate the state of
lower energy.

11.4
Nucleation

Nucleation theory [23] usually refers to a physical situation where one has
metastable rather than unstable growth, as shown schematically in Fig. 11.7.
One can prepare a magnetic system in a metastable phase by putting the
system in an ordered state in the presence of an applied field and then flipping
the field as shown in Fig. 11.7. Then the problem is to kinetically surmount a
free energy barrier to access the thermodynamically stable state.

The simplest example is where one has a potential:

V = −ψ2

2
+

ψ4

4
− hψ (14)

and prepares the system in the equilibrium state aligned with h. Then at time
t = 0, flip h → −h. The system is then in the wrong equilibrium state. How
does it grow or nucleate the new equilibrium state? This depends strongly on
initial or temperature fluctuations.

Examples of metastable systems include supercooled vapor and the ordered
magnetic systems in a reversed field mentioned above. With proper care, the
vapor can remain supercooled for a long time. Eventually the stable equili-
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brium liquid phase will show itself via nucleated bubbles of liquid that grow
to produce the final liquid phase. These systems are metastable because only
droplets larger than some critical size will grow. Droplets smaller than this
critical size shrink back into the gas. The question is: given a metastable state,
how long on average will it take to produce a growing droplet that leads to
the ordering of the system?

The nucleation rate can be written in the form [24]:

I = I0e−βΔF , (15)

where ΔF is the free energy barrier that must be overcome in order to nucleate
the stable state. This is the dominant factor in I. The prefactor I0, which is
associated with an attempt frequency, is both much less sensitive to the under-
cooling and much more difficult to compute with precision. The calculation of
ΔF is not difficult.

The free energy of a droplet is the sum of a surface term, proportional
to the surface tension of the droplet and a bulk term corresponding to the
condensation energy [25] of the droplet. These terms balance since the surface
term is positive while the bulk term is negative, reflecting the lower energy of
the minority phase in the metastable state.

Let us see how we can construct these two contributions to the free energy.
Droplets are just compact interfaces. In Section 12.2 of FOD we found the
interfacial solution for the Euler–Lagrange equation:

δHE
δψ(x)

= 0 , (16)

where HE is of LGW form with the potential given by Eq. (14). More explicitly,
Eq. (16) takes the form:

−∇2ψ − ψ + ψ3 − h = 0 , (17)

where, for h = 0, we have the interfacial solution:

ψ = ψ0 tanh
(

z − z0√
2

)
, (18)

where for our choice of parameters ψ0 = 1 and z0 is arbitrary. We need to
generalize this to the case of spherical interfaces (droplets) for the case of a
small applied field h. For small h, the radius of the droplet is large and the flat
approximation is accurate:

ψD(r) =
1
2
(
ψ+ + ψ−

)
+

1
2
(
ψ+ − ψ−

)
tanh

(
r − R0√

2

)
, (19)

where, to first order in h, the two competing solutions are:

ψ± = ±ψ0 +
h
2

(20)
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and R0 is the radius of the droplet. The droplet profile satisfies the boundary
conditions:

ψD(0) = ψ− (21)

ψD(∞) = ψ+ . (22)

The free energy of the droplet is given by:

FD = HE(ψD) −HE(ψ+)

= Fs + FB + O(h2) , (23)

where Fs is the contribution from the square gradient term in HE and FB is
from the potential term in HE. It is easy to show (Problem 11.4), that:

Fs = σΣd(R0) , (24)

where the surface tension is given by:

σ =
∫ ∞

−∞
dx
(

dψ(x)
dx

)2

(25)

and ψ(x) is the interfacial profile. The surface area of a droplet is given in d
dimensions by:

Σd(R0) =
2πd/2

Γ(d/2)
Rd−1

0 . (26)

The potential contribution can be evaluated analytically if one works to linear
order in h. As shown in in Problem 11.5 in the sharp-interface limit we have:

FB = −2ψ0Vd|h| , (27)

where h is negative if the down state is preferred and the volume of the droplet
is given in d dimensions by:

Vd =
2πd/2

dΓ(d/2)
Rd

0 . (28)

We have then, remembering that we have flipped the field and h = −|h|,

FD = −2ψ0Vd|h|+ σΣd . (29)

We find the maximum value for FD, which is the activation energy ΔF, by
taking the derivative with respect to R0 and setting the result to zero:

dFD

dR0
= 0 = −2ψ0Vd|h|

d
R0

+ σΣd
d − 1

R0
. (30)
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In Problem 11.6 we show that this leads to a maximum. The critical droplet
radius is given by:

R0,c =
σ(d − 1)
2ψ0|h|

(31)

and the associated free energy:

ΔF = FD(R0,c) = 2πd/2 (d − 1)d−1

dΓ(d/2)
σd

[2ψ0|h|]d−1 . (32)

thus we find that the activation energy is a very sensitive function of the
flipped field h.

To go further and compute the prefactor in the nucleation rate is much more
involved [23, 24].

11.5
Observables of Interest in Phase-Ordering Systems

What are the physical observables we should use in order to quantify our
analysis of the growth of order in unstable systems? For the case of critical
quenches in an infinite system we have:

〈ψ(x, t)〉 = 0 (33)

for all times. Therefore, the average of the order parameter carries little in-
formation except as a check in simulations that finite size effects are not im-
portant. Instead we must look at the equal-time order parameter correlation
function:

C(x, t) ≡ 〈ψ(x, t)ψ(0, t)〉 , (34)

where the average is over the noise and initial conditions. We are also interes-
ted in the Fourier transform:

C(q, t) = 〈|ψ(q, t)|2〉 , (35)

which is a time-dependent structure factor. C(q, t) is measured in neutron
and x-ray scattering from alloys and in light scattering from fluids. The si-
gnature of growth and ordering is the growth of a Bragg peak at ordering [26]
wavenumber(s) q0. The basic phenomenology for the case of a scalar order
parameter is that the structure factor is the sum of two pieces:

C(q, t) = Cpeak(q, t) +
kBT

q2 + ξ−2 . (36)



11.5 Observables of Interest in Phase-Ordering Systems 417

Fig. 11.8 A schematic picture of the structure factor for the
nonconserved order parameter (NCOP) case at a late time when
there are well-formed domains. There is a Bragg peak contribution
whose width is proportional to L−1 and an equilibrium Ornstein–Zernike
contribution with a width proportional to ξ−1.

Here Cpeak(q, t) is the Bragg peak contribution, which is evolving to the final
form:

Cpeak(q, t) = ψ2
0(2π)dδ(q − q0) . (37)

The equilibrated component on the right of Eq. (36) is approximately of the
Ornstein–Zernike form. The basic form of the structure factor is shown in
Fig. 11.8 for the case of an NCOP. The important point is that there are two
peaks characterized by two inverse lengths. The equilibrated piece is cha-
racterized by the equilibrium correlation length ξ, while the evolving Bragg
peak contribution has a width that is inversely proportional to a characteristic
domain size L(t). This can be seen in the x-ray scattering results shown in
Fig. 11.9.

In the COP case, Cpeak(q, t) → 0 as q → 0 because of the conservation
law. One expects, except for uninteresting terms that depend on the initial
conditions, that for small wavenumbers ψ(q, t) ∼ q2, so that:

C(q, t) ∼ (q2)2. (38)

Thus one has a structure factor as shown in Fig. 11.10 for a COP. In this case
the position of the maximum and the width of the peak in the structure factor
are proportional to L−1.
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Fig. 11.9 X-ray scattering data [27] for Cu3Au showing the equilibrium
Ornstein–Zernike form and the Bragg peak corresponding to the
growing domains. As time passes the Bragg peak becomes taller and
sharper.

Fig. 11.10 A schematic picture of the structure factor for the COP
case. The conservation law is responsible for the q4 behavior at small
q. One has Porod’s law q−(1+d) behavior at large q, (see text) a result
of scattering from sharp interfaces. The position of the maximum in the
structure factor is proportional to L−1. For L � ξ, the length scale L
dominates the problem and one finds that the width of the peak is also
proportional to L−1.

11.6
Consequences of Sharp Interfaces

As indicated above, it is important to realize that there are two characteristic
lengths in the growth kinetics problem, L and ξ. For long times, L � ξ and
one has sharp interfaces [28]. Let us consider a method for estimating the
contribution of sharp interfaces to the order parameter averages. We assume
that the order parameter profile of a domain wall at z = z0 of width ξ can be
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written in the form:

ψ(z) = ψ0tanh [(z − z0)/ξ] . (39)

Then, if there are no other walls around, one can estimate the contribution to
the correlation function by averaging over the position of the interface:

C(z, z′) =

∫ +L
−L dz0ψ(z)ψ(z′)∫ L

−L dz0
. (40)

While this average can be worked out explicitly, it is useful to realize that for
sharp interfaces with L � ξ and for separations |z − z′| � ξ, we can use the
approximation:

ψ = ψ0sgn(z − z0) . (41)

Inserting Eq. (41) into Eq. (40) we can do the integrations (see Problem 11.7)
and obtain:

C(z, z′) = ψ2
0

[
1 − |z − z′|

L
+ · · ·

]
. (42)

While this argument is crude and one-dimensional in nature, it can be ge-
neralized [29] to three dimensions and for a collection of sharp interfaces to
obtain:

C(x, t) = ψ2
0

[
1 − α

|x|
L

+ · · ·
]

, (43)

where ξ 
 x 
 L and L can be identified with a typical domain size and α
is a number that depends on the precise definition of L. Notice that the term
linear in x represents a nonanalytic correction to the leading term. In terms
of the structure factor one obtains (see Problem 11.8) for large wavenumbers
that:

C(q, t) ∼ q−(1+d) , (44)

which is known as Porod’s law [30]. An extension of the result Eq. (43) is that
only odd powers of x occur in the expansion of C(x, t) beyond the leading
term. The absence of a term of O(x2/L2) is known as the Tomita sum rule [29].

Another simple consequence of sharp interfaces is the estimate [31] one can
give for the order parameter autocorrelation function.:

S(t) = 〈ψ2(x, t)〉 .
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We know that for long enough times, the order parameter field is equal to
±ψ0 except where it is equal to zero at an interface. The volume over which
the order parameter is zero can be estimated to be proportional to:

A
Ld−1

Ld ξ , (45)

where A is some positive time-independent constant. We can then estimate
that S(t) is given by:

S(t) = ψ2
0

(
1 − Aξ

L
+ · · ·

)
, (46)

whatever the time dependence of L. This is a nontrivial result from a theoreti-
cal point of view that is easily checked numerically.

11.7
Interfacial motion

There is an interplay between the approach that emphasizes the behavior of
isolated defects [32] and the statistical approach where one thinks in terms
of averaging over many defects. Let us start by looking at the motion of an
individual interface. In this case, after specifying the shape of an interface, we
are interested in its subsequent motion: an initial value problem. Consider a
spherical drop with an interior with an order parameter with value −ψ0 em-
bedded in a sea where the order parameter has the value +ψ0. Let us consider
the dynamic evolution of this assumed initial state. It evolves according to the
TDGL equation of motion rewritten in the form:

∂

∂t
ψ(x, t) = −Γ̂(x)μ[ψ(x)] , (47)

where the chemical potential is given by:

μ(x, t) =
δHE

δψ(x, t)
= V′(ψ)−∇2ψ . (48)

Equation (47) is subject to the boundary condition at time t0 that there is a
sharp spherical drop with profile:

ψ(x, t0) = g[r − R0(t0)] , (49)

where g′(r) is peaked at r ≈ 0 and:

g[−R0(t0)] ≈ −ψ0 (50)
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and:

g(∞) ≈ +ψ0 . (51)

We are interested in how the radius of the droplet R0(t) evolves in time. Near
the interface, where the order parameter goes through zero as it changes sign,

V′(ψ) ≈ V′′(0)ψ ≡ −V0g[r − R0(t)] (52)

and:

∇2ψ =
(d − 1)

r
g′[r − R0(t)] + g′′[r − R0(t)] , (53)

so the chemical potential takes the form:

μ(r) = −V0g[r − R0(t)]− d − 1
r

g′[r − R0(t)]− g′′[r − R0(t)]. (54)

Multiplying this equation by g′[r − R0(t)] and integrating across the interface
we obtain:∫ +ε

−ε
μ(z)dzg′(z) = −V0

∫ +ε

−ε
dz

1
2

d
dz

g2(z) − (d − 1)
R0

∫ +ε

−ε
dz[g′(z)]2

−
∫ +ε

−ε
dz

1
2

d
dz

[g′(z)]2 , (55)

where R0(t) � ε � ξ. We can manipulate each of the four terms:
∫ +ε

−ε
μ(z)dzg′(z) = μ(0)

∫ +ε

−ε
dzg′(z)

= μ(0)[g(ε) − g(−ε)] = 2ψ0μ(0) (56)∫ +ε

−ε
dz

1
2

d
dz

g2(z) =
1
2
[g2(ε)− g2(−ε)] = 0 (57)

∫ +ε

−ε
dz[g′(z)]2 ≈

∫ +∞

−∞
dz[g′(z)]2 (58)

and finally we have:
∫ +ε

−ε
dz

1
2

d
dz

[g′(z)]2 =
1
2
[(g′(ε))2 − (g′(−ε))2] = 0. (59)

These results together reduce Eq. (55) to the Gibbs–Thomson relation [33]:

μ(0) = −KσS
2ψ0

, (60)

where K = (d − 1)/R0(t) is the curvature and:

σS =
∫ +∞

−∞
dz[g′(z)]2 (61)
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is the surface tension.
In the NCOP case the equation of motion, Eq. (47), takes the form:

∂

∂t
ψ(x, t) = g′[R − R0(t)]

(
− d

dt
R0(t)

)
= Γμ . (62)

Multiplying by g′, integrating across the interface, and using Eq. (60) we ob-
tain:

σS
d
dt

R0(t) = − (d − 1)Γ
R0(t)

σS . (63)

Canceling the common factor of σS, we can easily integrate to obtain:

R2(t) = R2(0)− 2(d − 1)Γt. (64)

Thus, if we have a spherical droplet it will shrink with a radius decreasing
with time as given by Eq. (64). This result was checked numerically in Ref. [34].

Let us turn to the COP case, which is more involved. The equation of motion
is given by:

∂

∂t
ψ(x, t) = ∇2μ[ψ(x, t)] (65)

and assumes that all of the time evolution of the order parameter occurs near
the interface. Therefore we assume we have a boundary value problem where,
away from the interface,

∇2μ = 0 (66)

and μ(R) is specified on the surface of the sphere by the Gibbs–Thomson
relation Eq. (60). The solution is shown in Problem 11.9. to be given by:

μ(R) = − 2σS
2ψ0R0(t)

Θ[R0(t)− R] − 2σS
2ψ0R

Θ[R − R0(t)]. (67)

This yields the result:

∇2μ =
2σS

2ψ0R2
0(t)

δ[R − R0(t)] , (68)

which can be substituted back into the equation of motion to obtain:

g′[R − R0(t)]
(
− d

dt
R0(t)

)
= D0

2σS

2ψ0R2
0(t)

δ[R − R0(t)]. (69)

Again, integrating this equation across the interface results in the equation for
the radius:

d
dt

R0(t) = − 2D0σS

(2ψ0)2R2
0(t)

, (70)
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which has the solution:

R3
0(t) = R3

0(0)− 6D0σSt
(2ψ0)2 . (71)

Thus the droplet radius decays as t1/3 for the conserved case.
Ideas of this type can be used to develop a theory [35–38] for the evolution

of a low-density set of minority phase droplets immersed in a sea of a majority
phase. One finds a scaling result and that the characteristic size of the minority
phase droplets increases as t1/3.

11.8
Scaling

Scaling is the most important statistical property of coarsening domain struc-
tures. Scaling was established by Marro, Lebowitz, and Kalos [39] in their
numerical simulations of evolving alloy systems and asserts for the ordering
contribution to the structure factor that:

C(q, t) = Ld(t)ψ2
0 F̃[qL(t)] (72)

C(x, t) = ψ2
0F[|x|/L(t)] (73)

where L(t) is the growing characteristic length or growth law. Experimentally,
confirmation of scaling in a phase-separating binary alloy is shown in the
neutron-scattering results of Hennion et al. [40] in Fig. 11.11.

This scaling is a manifestation of the self-similarity of the morphological
structure of the system under a spatial rescaling. This reflects the comment
above that compact structures appear at every length scale as time evolves.

As first emphasized by Furukawa [41], there is an interesting two-time sca-
ling:

C(x, t1, t2) = 〈ψ(x, t1)ψ(�0, t2)〉
= ψ2

0F[x/L(t1), L(t1)/L(t2)] , (74)

and one finds that the autocorrelation function is governed [42] by the none-
quilibrium exponent λ:

C(0, t1, t2) ∼
[√

t1t2

T

]λ
, (75)

where T = 1
2 (t1 + t2) and one of the times t1 or t2 is much larger than the

other.
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Fig. 11.11 Neutron-scattering data [40] from a binary alloy supports
scaling. Here the scaling function for the structure factor, F̃(x), is plotted
against scaled wavenumber x. See Eq. (72).

One of the consequences of scaling is that we can combine it with the droplet
calculation described above. In the NCOP case we typically do not have a
collection of droplets, but we can talk about the local curvature near an inter-
face with a characteristic inverse curvature R0, which we showed in Eq. (63)
satisfies:

Ṙ0 = −Γ(d − 1)
R0

= −ΓK. (76)

If there is a single characteristic length, L(t) then we argue, essentially by
dimensional analysis, that:

L̇(t) ∼ ΓK̄ ∼ Γ/L (77)

or:

LL̇ ∼ constant , (78)

which leads to the result for the growth law:

L ∼ t1/2 , (79)

which is known as the Lifshitz–Cahn–Allen growth law [43].
In the COP case, using similar arguments, we estimate:

Ṙ0 ∼ 1
(R0)2 , (80)
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which gives the Lifshitz–Slyozov–Wagner growth law [35]:

L ∼ t1/3. (81)

To summarize, for a given system undergoing phase order kinetics, the ques-
tions of importance include:

• What is the time dependence of the growth law L(t)?

• What is the nonequilibrium exponent λ?

• Is there universality? That is, do different physical systems share the
same L(t), λ, F(x), and F(x, y) ?

11.9
Theoretical Developments

11.9.1
Linear Theory

We now need to construct a theory to answer the questions posed at the end
of the previous section. Let us start with a brief review of the early work on
this problem, beginning with the Cahn–Hilliard–Cook theory [44]. We work
with the TDGL equation of motion:

∂ψ
∂t

= −Γ̂
[
−ψ + ψ3 −∇2ψ

]
+ η , (82)

where Γ̂ = 1 for an NCOP and Γ̂ = −∇2 for a COP. In this simplest theory the
nonlinear term in the equation of motion is dropped because it can be assumed
to be small at early times. The resulting equation of motion (including the
thermal noise) [45],

∂

∂t
ψ = −Γ̂

[
−ψ +∇2ψ

]
+ η , (83)

is linear and can be solved by first Fourier transforming over space:

∂

∂t
ψ(q, t) = −Γ(q)

[
−1 + q2

]
ψ(q, t) + η(q, t) . (84)

Next multiply by ψ(−q, t) and average, using the fact (see Problem 11.10) that
〈η(q, t)ψ(−q, t)〉 = Γ(q)kBT, to obtain:

1
2

∂

∂t
C(q, t) = −Γ(q)

[
−1 + q2

]
C(q, t) + Γ(q)kBT. (85)
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The solution to this equation is:

C(q, t) = e−Λ(q)tC(q, 0) +
2Γ(q)kBT

Λ(q)

[
1 − e−Λ(q)t

]
, (86)

where Λ(q) = 2Γ(q)[−1 + q2] and C(q, 0) is the initial value of the order
parameter structure factor. This treatment gives exponential growth for small
q, which is almost never seen except for very early times. This theory basically
allows one to see that the system is unstable on the longest length scales. One
must do better if one is to understand scaling, obtain sharp interfaces, and
physical ordering.

11.9.2
Mean-Field Theory

A more sophisticated approximation is mean-field theory [46]. In this theory
the nonlinear term in the equation of motion, Eq. (82), is linearized by making
a Gaussian approximation for ψ by writing:

ψ3 → 3〈ψ2〉ψ . (87)

The equation of motion, Eq. (82), then reads:

∂

∂t
ψ = −Γ̂

[
A(t)ψ −∇2ψ

]
+ η , (88)

where:

A(t) = −1 + 3〈ψ2〉. (89)

We must determine 〈ψ2〉 self-consistently. Let us focus first on the case of a
quench to T = 0 . Following the same steps used in the Cahn?Hilliard–Cook
case and integrating the resulting first-order differential equation in time we
obtain:

C(q, t) = C(q, 0)e−2
∫ t

0 dτΓ(q)[q2+A(τ)] . (90)

We then need to specify the initial condition. It is convenient to choose:

C(q, 0) = CIe−
1
2 αq2

. (91)

If we assume that the system has a NCOP so Γ(q) = Γ, then Eqs. (89) and (90)
lead to the self-consistent equation for 〈ψ2〉:

〈ψ2〉 =
∫ ddq

(2π)d C(q, t)
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= CIe−2Γ
∫ t

0 dτA(τ)
∫ ddq

(2π)d e−2Γq2te−
1
2 αq2

≡ B
(2Γ[t + t0)]d/2 e−2Γ

∫ t
0 dτA(τ). , (92)

where B = K̃dΓ(d/2)CI,

K̃d =
∫ ddq

(2π)d δ(q − 1) (93)

is proportional to the surface area of a unit sphere and t0 = α/4Γ. We then
have, after using Eq. (89) in Eq. (92), the self-consistent equation for A(t):

1
3
(A + 1) =

B
(2Γ[t + t0)]d/2 e−2Γ

∫ t
0 dτA(τ). (94)

Taking the derivative with respect to time, we find an equation for A as a
function of time:

1
3

Ȧ = − d
2(t + t0)

(A + 1)
3

− 2ΓA
1
3
(A + 1) , (95)

which reduces to:

Ȧ = −(A + 1)
(

d
2(t + t0)

+ 2ΓA
)

. (96)

It is shown in Problem 11.11 that for large times Eq. (96) has a solution of the
form:

A =
A1

(t + t0)
+

A2

(t + t0)2 + · · · , (97)

where:

A1 = − d
4Γ

(98)

A2 =
d(1 − d)

8Γ2 . (99)

We can solve Eq. (96) for A numerically for different initial conditions for A.
These initial values are constrained by Eq. (94), which reads:

1
3
(A0 + 1) =

B
(2Γt0)d/2 . (100)

One finds that each initial condition drives the system to the asymptotic state
given by Eq. (97). Using Eq. (97) in Eq. (89) gives:

〈ψ2〉 =
1
3
− d

12Γt
. (101)
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The structure factor given by Eq. (90) can then be written in the form:

C(q, t) = C(q, 0)κLd(t)e−[qL(t)]2 (102)

with L(t) = (2Γt)1/2 and (see Problem 11.12):

κ = lim
t→∞

e−2Γ
∫ t

0 dτA(τ)

(2Γ(t + t0)d/2)
(103)

is a constant. We see that the structure factor does obey scaling. However, the
prefactor depends on the initial conditions as does the constant factor κ.

At first sight this theory is appealing but, unfortunately there are many
problems with this approach:

• It gives the wrong ordering values:

〈ψ2〉 → 1
3

not 1 (104)

• It does not include sharp interfaces since one has:

〈ψ2〉 − 1
3
∼ O

(
1
L2

)
not O

(
1
L

.
)

(105)

as suggested by Eq. (46).

• One does not obtain Porod’s law, C(q) ≈ q−(d+1).

• The scaling function depends multiplicatively on the initial conditions.

• If we include the noise in the development we find the equation of mo-
tion takes the form:

∂

∂t
C(q, t) = −2Γ(q)

[
A(t) + q2

]
C(q, t) + 2Γ(q)kT . (106)

Looking for the long time stationary solution, A → 0, we find:

C(q, t)− Cpeak(q, t) =
kBT
q2 +O

(
1

2Γt

)
. (107)

This is not the correct Ornstein–Zernike form given by Eq. (36).

A theory that resolves these problems requires a rather different approach.

11.9.3
Auxiliary Field Methods

Significant theoretical progress has been made in the theory of phase-ordering
kinetics [2,47,48] using methods that introduce auxiliary fields. These theories
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well describe the qualitative scaling features of ordering in unstable systems.
We develop one such approach [49] here for the case of a scalar order parame-
ter. These ideas can be generalized [50] to the case of the n-vector model and
systems with continuous symmetry in the disordered state.

Our goal is to solve for the order parameter scaling properties for an unsta-
ble dynamics governed by the equation of motion in dimensionless units:

∂ψ
∂t

= −V′[ψ] + ∇2ψ , (108)

with initial conditions where ψ is Gaussian with 〈ψ〉 = 0 and:

〈ψ(r1, t0)ψ(r2, t0)〉 = g0(r1 − r2) . (109)

We can put Eq. (108) in the form:

Λ(1)ψ(1) = −V′[ψ(1)] , (110)

where the diffusion operator:

Λ(1) =
∂

∂t1
−∇2

1 (111)

is introduced along with the shorthand notation that 1 denotes (r1, t1).
Suppose we decompose the order parameter into a sum of two parts:

ψ = σ + u . (112)

The idea [51] is that σ represents the ordering degrees of freedom and give rise
to the Bragg peak in Fig. 11.8, while u is associated with the equilibrated de-
grees of freedom, and, in the presence of noise, leads to the Ornstein–Zernike
peak in Fig. 11.8.

We then need to construct equations of motion separately for σ and u. We
first show that we can consistently construct equations of motion for σ that
are ultimately compatible with Eq. (108). The first step [48] is to assume that
σ is a local function of an auxiliary field m and σ[m] is the solution to the
Euler–Lagrange equation for the associated stationary interface problem:

d2σ
dm2 = V′(σ[m]) . (113)

In this equation m is taken to be the coordinate. It will generally be useful to
introduce the notation:

σ� ≡
d�σ
dm�

. (114)

A key point in the introduction of the field m is that the zeros of m locate
the zeros of the order parameter and give the positions of interfaces in the
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system. Locally, the magnitude of m gives the distance to the nearest defect.
As a system coarsens and the distance between defects increases, the typical
value of m increases linearly with L(t). From a scaling point of view we can
estimate m ≈ L. For the usual double-well potential:

V(x) = −1
2

x2 +
1
4

x4 , (115)

we have an analytic solution to Eq. (113) given by:

σ = tanh
(

m√
2

)
. (116)

More generally σ, as a function of m, is defined by Eq. (113) with the boundary
condition associated with an interface. The field u is defined by Eq. (112). We
still must assign a dynamics to both σ and u, starting with Eq. (108)

Let us substitute Eq. (112) into the equation of motion, Eq. (108), for the
order parameter, use the chain-rule for differentiation, and find:

Λ(1)u(1) + σ1(1)Λ(1)m(1) = −V′[σ(1) + u(1)] + σ2(1)(∇m(1))2 . (117)

This can be regarded as an equation for the field u. We then have the freedom
to assume that m is driven by an equation of motion of the form:

Λ(1)m(1) = Ξ(m(1), t1) . (118)

Ξ is undetermined at this point except that it must be chosen such that the
auxiliary field equation of motion, Eq. (118) leads to scaling. The key idea is
that m should scale with L(t) for large t. We return to this point later.

Using Eq. (118) in Eq. (117) for u gives:

Λ(1)u(1) = −V′[σ(1) + u(1)] + σ2(1)[∇m(1)]2 − σ1(1)Ξ(1) . (119)

Consider the special case where we have the potential given by Eq. (115). The
equation for u is given then by:

Λu + (3σ2 − 1)u + 3σu2 + u3 = −σ2

[
1 − (∇m)2

]
− σ1Ξ . (120)

In the limit of large |m| the derivatives of σ go exponentially to zero and
the right-hand side of Eq. (120) is exponentially small in |m|. Clearly we can
construct a solution for u where it is small and we can linearize the left-hand
side of Eq. (120). Remembering that σ2 = ψ2

0 = 1 away from interfaces in the
bulk of the ordered material we have:

Λu + 2u = −σ2(1 − (∇m)2) − σ1Ξ . (121)
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In this regime we can use dimensional analysis to make the following esti-
mates: (∇m)2 ≈ O(1) , σ2 ≈ O(L−2) , Ξ ≈ O(L−1) , σ1Ξ ≈ O(L−2) , and
Λu ≈ O(L−4). Notice on the left-hand side of Eq. (121) that u has acquired
a mass (= 2) and in the long-time long-distance limit, the term where u is
multiplied by a constant dominates the derivative terms:

2u = −σ2[1 − (∇m)2]− σ1Ξ . (122)

That the u field picks up a mass in the scaling limit can easily be seen to be
a general feature of a wide class of potentials where q2

0 = V′′[σ = ±ψ0] > 0.
In the case of the potential given by Eq. (115), q2

0 = 2. We have then, on rather
general principles, that the field u must vanish rapidly as one moves into the
bulk away from interfaces. From a scaling analysis we see that u ≈ L−2.

The explicit construction of correlations involving the field u is rather in-
volved and depends on the details of the potential chosen. If we restrict our
analysis to investigating universal properties associated with bulk ordering,
we will not need to know the statistics of u explicitly. If we are interested in
determining interfacial properties then we need to know u in some detail.
Thus, for example, if we want to determine the correlation function:

Cψ2(12) = 〈[ψ2(1)− ψ2
0][ψ

2(2)− ψ2
0]〉 , (123)

we will need to know the statistics of the field u. However if we are interested
in quantities like:

C(12...n) = 〈ψ(1)ψ(2) · · ·ψ(n)〉 , (124)

where the points 12...n are not constrained to be close together, then we do not
need to know u in detail. Why is this? Consider, for example,

C(12) = 〈ψ(1)ψ(2)〉 = 〈[σ(1) + u(1)] [σ(2) + u(2)]〉.

Since u(1) vanishes exponentially for large |m(1)|, the averages over the u’s
are down by a factor of L−2 relative to the averages over the field σ(1). Thus
〈σ(1)σ(2)〉 ≈ O(1) as L(t) → ∞, while 〈σ(1)u(2)〉 and 〈u(1)σ(2)〉 are of
O(L−2) and 〈u(1)u(2)〉 of O(L−4). Henceforth we focus on the ordering cor-
relations where:

C(12) = 〈σ(1)σ(2)〉 . (125)

The ordering component of the order parameter correlation function is given
by Eq. (125) where σ(1) = σ[m(1)]. The strategy is to assume that the statistics
of the field m are simpler than for ψ and the equation of motion for m given
by Eq. (118) can be developed using simple assumptions. We show this in the
next section. For a fuller account see Ref. [49].
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11.9.4
Auxiliary Field Dynamics

The dynamics of the auxiliary field are governed by a nonlinear diffusion
equation of the general form given by Eq. (118). The simplest choice for Ξ
is that it is linear in m. This assumption leads to the equation of motion for the
auxiliary field:

Λ(1)m(1) = Ω(t1)m(1) , (126)

where Ω(t1) is to be determined. From dimensional analysis m ≈ L, Λ ≈ L−2,
so Ω(t1) ≈ L−2(t1). The auxiliary field correlation function,

C0(12) = 〈m(1)m(2)〉 , (127)

satisfies the equation of motion:(
∂

∂t1
−∇2

1

)
C0(12) = Ω(1)C0(12) . (128)

Fourier transforming over space we find, assuming Ω is a function only of
time, (

∂

∂t1
+ q2
)

C0(q, t1t2) = Ω(t1)C0(q, t1t2) . (129)

We can integrate this equation to obtain:

C0(q, t1t2) = exp
(∫ t1

t2

dτ(−q2 + Ω(τ))
)

C0(q, t2t2)

= R(t1, t2)e−q2(t1−t2)C0(q, t2t2) , (130)

where:

R(t1, t2) = exp
(∫ t2

t1

dτ Ω(τ)
)

. (131)

To go further we must evaluate the equal-time correlation function. One can
easily show, using Eq. (129), that this quantity satisfies the equation of motion:(

∂

∂t
+ 2q2

)
C0(q, tt) = 2Ω(t)C0(q, tt) . (132)

This can be integrated much as for Eq. (129) and we find:

C0(q, t2t2) = R2(t2, t0)e−2q2(t2−t0)C0(q, t0t0) , (133)

where we must then give the initial condition C0(q, t0t0) = g̃(q). Putting Eq.
(133) back into the two-time expression, Eq. (130), we obtain:

C0(q, t1t2) = R(t1, t2)e−q2(t1−t2)R2(t2, t0)e−2q2(t2−t0) g̃(q) . (134)
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Since R(t1, t2)R(t2, t1) = 1, this takes the form:

C0(q, t1t2) = R(t1, t0)R(t2, t0)e−q2(t1+t2−2t0) g̃(q) , (135)

which is properly symmetric. Inverting the Fourier transform we obtain:

C0(r, t1t2) = R(t1, t0)R(t2, t0)
∫ ddq

(2π)d ei�q·�r g̃(q)e−2q2T , (136)

where it is convenient to introduce:

T =
t1 + t2

2
− t0 . (137)

While we are primarily interested in the long-time scaling properties of our
system, we can retain some control over the influence of initial conditions and
still be able to carry out the analysis analytically if we introduce the initial
condition:

g̃(q) = g0e−
1
2 (q�)2

(138)

or:

g(r) = g0
e−

1
2 (r/�)2

(2π�2)d/2 . (139)

Inserting this form into Eq. (136) and doing the wavenumber integration we
obtain:

C0(r, t1t2) = R(t1, t0)R(t2, t0)
g0

[2π(�2 + 4T)]d/2 e−
1
2 r2/(�2+4T).

In the long-time limit this reduces to:

C0(r, t1t2) = R(t1, t0)R(t2, t0)g0
e−r2/8T

(8πT)d/2 . (140)

Let us turn now to the quantity R(t1, t2) defined by Eq. (131). For consisten-
cy, we must assume for long times:

Ω(t) =
ω

tc + t
, (141)

where ω is a constant we will determine and tc is a short-time cutoff that
depends on details of the earlier-time evolution. Evaluating the integral:

∫ t1

t2

dτΩ(τ) =
∫ t1

t2

dτ
ω

tc + τ
= ω ln

(
t1 + tc

t2 + tc

)
, (142)
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we obtain:

R(t1, t2) =
(

t1 + tc

t2 + tc

)ω
. (143)

Inserting this result back into Eq. (140) leads to the expression for the correla-
tion function:

C0(r, t1t2) = g0

(
t1 + tc

t0 + tc

)ω ( t2 + tc

t0 + tc

)ω e−r2/8T

(8πT)d/2 . (144)

If we are to have a self-consistent scaling equation then the autocorrelation
function (r = 0), at large equal times t1 = t2 = t, must show the behavior
〈m2(t)〉 = S0(t) ≈ L2 ≈ t. Thus Eq. (144) gives the result:

S0(t) = C0(0, t1, t1) = g0

(
t

t0 + tc

)2ω 1
(8πt)d/2

= t2ω−d/2 1
(t0 + tc)2ω

g0

(8π)d/2 = A0t , (145)

where A0 is a constant to be determined. For a solution to Eq. (145) we see the
exponent ω must be given by:

ω =
1
2

(
1 +

d
2

)
(146)

and the amplitude by:

A0 =
1

(t0 + tc)2ω
g0

(8π)d/2 . (147)

The general expression for the auxiliary correlation function, Eq. (144), can
be rewritten in the convenient form:

C0(r, t1t2) =
√

S0(t1)S0(t2)Φ0(t1t2)e−
1
2 r2/(�2+4T) (148)

where:

Φ0(t1t2) =

(√
(t1 + tc)(t2 + tc)

T + tc + t0

)d/2

. (149)

The nonequilibrium exponent is defined in the long-time limit by:

C0(0, t1t2)√
S0(t1)S0(t2)

=

(√
(t1 + tc)(t2 + tc)

T + t0 + tc

)λm

(150)
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and we obtain the result [2] for the exponent:

λm =
d
2

. (151)

We put the subscript m on λ to indicate the exponent associated with the m
field. In general C0(12) and the order parameter correlation function C(12)
need not share the same exponents.

Looking at equal times, Eq. (148) reduces to:

f0(x) =
C0(r, tt)

S0(t)
= e−x2/2 , (152)

where the scaled length is defined by x = r/2
√

t . This result for f0(x), the
scaled auxiliary correlation function, is originally due to Ohta, Jasnow and
Kawasaki [47].

11.9.5
The Order Parameter Correlation Function

We still must relate C(12) to C0(12). In the scaling regime the order parameter
correlation function is given by:

C(12) = 〈σ[m(1)]σ[m(2)]〉 . (153)

C(12) can be written in terms of the two-point probability distribution:

P0(x1, x2, 1, 2) = 〈δ[x1 − m(1)]δ[x2 − m(2)]〉 , (154)

C(12) =
∫

dx1

∫
dx2 σ(x1)σ(x2)P0(x1x2, 12) . (155)

We can evaluate P0 by using the integral representation for the δ function:

P0(x1, x2, 12) =
∫ dk1

2π

∫ dk2

2π
e−ik1x1e−ik2x2〈eH(12)〉 , (156)

where H(12) ≡ ik1m(1) + ik2m(2). Equation (126) is consistent with m being
a Gaussian variable. We can then show in Problem 11.13 that [52]:

〈eH(12)〉 = e
1
2 〈H2(12)〉 = e−

1
2 [k2

1S0(1)+k2
2S0(2)+2k1k2C0(12)] , (157)

where:

S0(1) = C(11) . (158)

Putting Eq. (157) back into Eq. (156), and doing (see Problem 11.14) the Gaus-
sian integrals over k1 and k2 we obtain:

P0(x1, x2, 12) =
γ

2π
√

S0(1)S0(2)
e

{
− γ2

2

[
x2

1
S0 (1) +

x2
2

S0 (2)−
2x1x2 f√

S0 (1)S0(2)

]}
, (159)
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where:

f (12) =
C0(12)√

S0(1)S0(2)
(160)

and:

γ =
1√

1 − f 2
. (161)

Putting Eq. (159) back into Eq. (155) and letting:

x1 =
√

S0(1)γ−1y1 (162)

x2 =
√

S0(2)γ−1y2 , (163)

the structure factor is then given by:

C(12) =
1

2πγ

∫
dy1dy2 σ

(√
S0(1)γ−1y1

)
σ
(√

S0(2)γ−1y2

)

×e−
1
2 [y2

1+y2
2−2y1y2 f ] . (164)

For late times, where S0 is arbitrarily large, we can replace:

σ
(√

S0(1)γ−1y1

)
→ ψ0sgn(y1) (165)

and obtain:

C(12) =
ψ2

0
2πγ

∫
dy1

∫
dy2 sgn(y1)sgn(y2)e−

γ2
2 [y2

1+y2
2−2y1y2 f ] . (166)

Evaluation of the remaining integrals is left as a problem (Problem 11.15). One
has the simple final result:

C(12) =
2
π

ψ2
0 sin−1 f (12) . (167)

Combining Eq. (148) with Eq. (167), we obtain the scaling result [47]:

F(x, t1/t2) =
2
π

sin−1
[
Φ0(t1, t2)e−

1
2 x2
]

, (168)

where:

Φ0(t1, t2) =
(√

t1t2

T

)λ0

(169)
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Fig. 11.12 Numerical test labeled MC, of the equal-time scaling
function given by Eq. (167), labeled OJK. See Fig. 12 in Ref. [2].

and λ0 = d/2. Note that the final result is independent of the initial conditi-
ons and of the form of the potential V. This result for the equal-time scaling
function has been checked against numerical results in Fig. 11.12.

Looking at these results for C(12) one can see that the autocorrelation func-
tion C(x1, x1, t1, t2), for t1 � t2 is proportional to C0(x1, x1, t1, t2) and gives the
nonequilibrium exponent λ = λ0 = d/2 in this simplest nontrivial approxima-
tion. Corrections to this Gaussian approximation are developed in Ref. [49].

11.9.6
Extension to n-Vector Model

Thus far in this chapter there has been an emphasis on systems with scalar or-
der parameters and order disrupting interfaces in two and three dimensions.
For the case of an n-vector order parameter, �ψ, as discussed in some detail
in Chapter 12 of FOD, one has different defect structures depending on the
value of n and the spatial dimension d. Thus for the case of n = d one has
point defects, for n = d − 1 one has line defects and for n = d − 2 wall defects.
Examples of point defects correspond to kinks for n = d = 1, point vortices
for n = d = 2, and point monopoles for n = d = 3. For line defects one has
line interfaces for d = 2 and n = 1 as in the two-dimensional Ising model, line
vortices for d = 3 and n = 2 in superfluids, and domain walls for d = 3 and
n = 1. In terms of examples, one has vortices disrupting the pathway to orde-
ring in superfluids [53–55], superconductors [56–59], and XY magnets [60–66].
Also of interest are dislocations in solids [67], disclinations and monopoles
in nematic liquid crystals [68–73], and vortices in Bose–Einstein condensed
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systems [74–76]. There has been considerable exchange of ideas between the
study of defects in phase-ordering kinetics and the role of defects as density
seeds [77–80] in galaxy formation in the evolution of the early universe [81].

The dynamics of this set of defects can be understood in terms of dynamics
generated by the n-vector nonconserved TDGL model driving the vector order
parameter �ψ:

∂

∂t
�ψ = ∇2�ψ +�ψ − (�ψ)2�ψ = −δHE

δ�ψ
. (170)

The TDGL model generates a dissipative dynamics. There is also interest in
reversible dynamics driven by the nonlinear Schroedinger equation (NLSE)
[82]:

−i
∂

∂t
ψ = ∇2ψ + ψ − |ψ|2ψ = −δHE

δψ∗ , (171)

where the order parameter ψ is complex. The NLSE generates a quite different
dynamics compared to the dissipative TDGL case, which drives a system to
equilibrium. Note that the quantity

∫
ddxψ∗(x)ψ(x) is conserved for the NLSE

(see Problem 11.16).
The theory for the order parameter correlation function given above for a

scalar order parameter can be generalized [83, 84] to the n-vector case. One
again has a mapping in terms of an auxiliary field:

�ψ = �σ(m) , (172)

where �ψ represents the ordering part of the order parameter. The mapping
�σ(m) satisfies the Euler–Lagrange equation determining the defect profile for
isolated defects:

n

∑
α=1

∂2

∂mα∂mα
σμ =

∂

∂σμ
V[�σ] , (173)

where V is the usual wine-bottle potential. Thus for the vortex case (see Secti-
on 12.6.1 in FOD) the single vortex profile has the form:

σμ = f (m)m̂μ , (174)

where f (∞) = 1 and for small m f is linear in m. Then, in close analogy with
the development in the scalar case, we have for the scaling contribution:

C(12) = 〈�ψ(1) ·�ψ(2)〉 (175)

= 〈�σ[m(1)] ·�σ[m(2)]〉 , (176)

which, as for Eq. (155), is a function of:

C0(12) = 〈m(1) · m(2)〉 . (177)



11.10 Defect Dynamics 439

Much as for the scalar case one can show [50] in the simplest approximation
that C0(12) has the form given by Eq. (152). In the limit where S0(1) = C0(11)
is large, where the auxiliary field is taken to be Gaussian, one again has sca-
ling:

C(r, t) = ψ2
0F[r/L(t)] , (178)

where the scaling function is given by [84]:

F(x) =
n f0

π
B
[

1
2

,
n + 1

2

] ∫ 1

0

(1 − z2)(n−1)/2

(1 − z2 f 2
0 )1/2

dz , (179)

where B(a, b) = Γ(a)Γ(b)/Γ(a + b), f0(x) is given by Eq. (152), and the growth
law obeys L(t) ≈ t1/2. An interesting result, due to Bray and Puri [84], is that
the generalization of Porod’s law to n > 1 is simply that the Fourier transform
of the order parameter scaling function for large Q = qL goes as:

f (Q) ≈ Q−(d+n) (180)

for general n.

11.10
Defect Dynamics

Theoretical descriptions of defect structures go back, at least, to Lord Kelvin
[85] and his theorems concerning conservation of vorticity in fluids. The invis-
cid and incompressible equations of hydrodynamics are the simplest model
for producing vortices. From a more modern point of view, our understanding
of defects is carried out in terms of an order parameter [11, 12] field. The
nature of the defect in a given system depends on the symmetry of the order
parameter (n) and the spatial dimensionality (d).

Our understanding of defect structures is developed at three different levels
of description. These levels are associated with three characteristic lengths:
(a). L is the typical distance between defects, (b) ξ is the length characteristic
of a vortex core or interfacial width, and (c) a is some microscopic length like
a lattice spacing. At the longest length scale L(� ξ � a), the hydrodynamic
length scale, one can formulate a coarse-grained continuum theory that is
largely independent of the model details and where defect cores are treated as
point or line singularities. Examples are the elastic theory of dislocations [86]
in solids and disclinations in nematic liquid crystals, the London theory [87]
applied to vortices in superconductors, the phase-field models for superfluids
[88] and the Landau–Lifshitz equations [89] for magnetic systems. In those
cases where one has topological defects there has been a prejudice [90] that
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the behavior at large distances from the core is independent of the details of
the core. We will refer to such descriptions as phase-field theories.

There is a vast literature on the equations of motion satisfied by defects.
Much of it, for obvious reasons, is devoted to the phase-field equation des-
cription, which holds very nicely for a system of well-separated defects. For
the case of classical fluids the inviscid and incompressible equations of hydro-
dynamics offer a good example. The nature of the dynamics of the vortices
described by these equations has been understood for some time. Consider
the comments of Sommerfeld [91] about the strangeness of vortex dynamics in
fluids: “The dynamics of vortices...is indeed a very peculiar one and deviates
decisively from the dynamics of mass points.” To begin with, Newton’s first
law is altered. “The isolated vortex... remains in a state of rest. A uniform
rectilinear motion can only be acquired by association with a second vortex
of equal strength but opposite sense of rotation or under the action of a wall
at rest.” The modification of the second law is even more remarkable. The
external action originating in a second vortex does not determine the accele-
ration but the velocity. The content of the law of motion of the mass center is
shifted accordingly: “not the acceleration, but the velocity of the mass center
vanishes.”

The conventional pathway from the more microscopic field equations to
the phase-field equations is well established. The first step is to work out the
stationary single-defect solutions for the field equations that give the classical
defect profile solutions for points, lines and walls as discussed above. These
solutions are parameterized by defect positions. In the phase-field approxima-
tion, working for example with a complex order parameter ψ = Reiθ, we can
establish [92] that the influence of the vortex at large distances is governed
by the associated Nambu–Goldstone mode, the phase θ. Thus the amplitude
R is assumed to be constant. The equations satisfied by θ in this regime are
typically linear and one can use superposition to look at the phase of a set
of N vortices in two dimensions at positions ri = xix̂ + yiŷ with charge or
circulation mi:

θ(r, t) =
N

∑
i=1

mi tan−1
(

y − yi
x − xi

)
. (181)

It is then not difficult to work out the associated equations of motion satisfied
by the ri(t) generated by the original equation of motion. For the case where
one has the inviscid equations of hydrodynamics one is led to the conclusions
of Sommerfeld discussed above. There is a substantial literature [35, 37, 43]
of work along these lines in the case of phase-ordering kinetics. As long as
the defects are well separated this description is sensible and one can look
at the motion of isolated vortices and the interactions among small sets of
vortices [38].
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There are several major drawbacks to this phase-field approach. The first
is that it does not allow one to follow the setting up of the evolving defect
structures and therefore the initial conditions are not known. This is nontrivial
because the correlations that are associated with properties like scaling may
already be present at the time when a well-defined defect structure has deve-
loped. Thus, one has a serious problem knowing how to take averages and
this could clearly affect the results at the longest length scales, which involves
many defects.

The phase-field method is not a complete description since it breaks down
when the cores of defects begin to overlap. Traditionally, the approach has
been to assume that one can introduce some short-distance cutoff into the
theory that can be handled phenomenologically. More recent work shows
that this approach can be misleading and miss some of the general physics
of the problem. As an example, consider the relationship between the vortex
velocity v and a constant driving phase gradient k =< ∇θ > in the case of
the TDGL model for n = d = 2. It is now understood [93–96] that to obtain the
mobility connecting these two quantities, one must match up the inner phase-
field solution with the outer core solution to the field equations. This leads to
the nontrivial result, for weak driving gradients, that:

kα =
m
2

ln
(v0

v

)
∑
β

εαβvβ , (182)

where εαα = 0 and εxy = −εyx = 1, and m is the charge of the vortex and for
|m| = 1, and v0 =≈ 3.29 . . . in dimensionless units.

In work on phase-ordering kinetics one [97] is interested in answering the
question: What is the probability of finding a vortex a distance r from an
antivortex? Or, what is the probability of a vortex having a velocity, v? A mo-
tivating factor in the development is the realization that in treating statistical
properties of the defects, we do not want to go over to an explicit treatment
in terms of the defect positions. That would lead back to the problem of spe-
cification of initial conditions. Instead, one can look for a way of implicitly
finding the positions of the defects using the field �ψ itself.

Let us consider the case of point defects where n = d. The basic idea is that
the positions of defects are located by the zeros [98–100] of the order parameter
field�ψ. Suppose, instead of the positions ri(t) we want to write our description
in terms of the zeros of �ψ(r, t). It is not difficult to see that we can write:

δ(�ψ) =
1

|D(r)|
N

∑
i=1

δ[r − ri(t)] , (183)
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where in the denominator on the right-hand side one has the Jacobian associa-
ted with the change of variables from the set of vortex positions to the field �ψ:

D =
1
n!

εμ1μ2...μn εν1ν2...νn∇μ1ψν1
∇μ2 ψν2

. . .∇μn ψνn , (184)

where εμ1μ2...μn is the n-dimensional fully antisymmetric tensor and summa-
tion over repeated indices is implied. The quantities on which we will focus
here are the signed or charge density:

ρ(r, t) = δ[�ψ(r, t)]D(r, t) =
N

∑
i=1

qiδ[r − ri(t)] , (185)

where qi = D(ri)/|D(ri)|, and the unsigned scalar density n(r, t) = |ρ(r, t)|.
In order to interpret the quantity qi, we can use a simple model for a vortex
with charge m near its core for the case n = d = 2. In this case, the order
parameter is given by:

ψx = ψ0r|m| cos (mφ + φ0) , ψy = ψ0r|m| sin (mφ + φ0) , (186)

where r and φ are the cylindrical coordinates relative to the core at the origin. It
is then a simple calculation (see Problem 11.17) to work out D = m|m|r2(|m|−1)

ψ2
0, and qi = sgn(mi). For systems where only unit charges are present mi =

±1, then ρ is the topological charge density. Notice that qi = sgn(mi) is well
defined even for system like classical fluids where mi corresponds to the cir-
culation associated with vortex i.

The dynamical implications of this approach are simple. If topological char-
ge is indeed conserved then we would expect the charge density, ρ, to obey a
continuity equation. It was shown in Ref.( [101]) that ρ satisfies a continuity
equation of the form:

∂tρ = −�∇ · (ρv) , (187)

where the vortex velocity field v is given explicitly by:

Dvα = − 1
(n − 1)!

εαμ2...μn εν1ν2...νn ψ̇ν1
∇μ2ψν2

. . .∇μn ψνn
, (188)

where D is defined by Eq. (184) and we must remember that v is multiplied
by the vortex core-locating δ function. Equation (188) gives one an explicit
expression for the defect velocity field expressed in terms of derivatives of
the order parameter. This expression for the defect velocity seems to be very
general. Notice that we have not specified the form of the equation of motion
for the order parameter only that the order parameter be a vector and n = d.
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Does the expression for the velocity agree with our expectations for known
cases? To answer this question we need to restrict the analysis to a particu-
lar set of field equations. A highly nontrivial test is to look at the complex
Ginzburg–Landau equation:

∂tψ = b∇2ψ + (1 − uψ∗ψ)ψ , (189)

where b and u are complex. Our expression for the velocity reduces in this
case, using complex notation (n = 2), to the result:

Dvα = − i
2 ∑

β
εαβ

(
b∇2ψ∇βψ∗ − b∗∇2ψ∗∇βψ

)
. (190)

Let us assume that we have a vortex of charge m at the origin of our two-
dimensional system and write the order parameter in the form: ψ = Reiθ, R =
r|m|ew and θ = mφ + θB, where again r and φ are the cylindrical coordinates
relative to the core at the origin. It is then a straightforward bit of calculus to
show that the velocity given by Eq. (190) reduces to:

vα = 2b′′
(
∇αθB +

m
|m| ∑

β
εαβ∇βw

)

−2b′
(
∇αw − m

|m| ∑
β

εαβ∇βθB

)
. (191)

If we ignore the contributions due to the variation in the amplitude, w, this
equation reduces to vα = 2b′′∇αθB + b′ m

|m| ∑β εαβ∇βθB. The first term is the
only contribution in the NLSE case and states that a vortex moves with the
local superfluid velocity [102]. The second term is the Peach-Koehler [103]
term first found in this context by Kawasaki [104]. These are the results from
the phase-field approach and lead, for example, to the interaction between
two vortices of the type discussed above by Sommerfeld [91]. If one looks at
the velocity of a single isolated vortex it is zero. For a set of two isolated vor-
tices one has the expected behavior for the TDGL and NLSE cases. Thus, the
velocity given by Eq. (191) reproduces the most sophisticated results obtained
using other methods [105].

The expression for the defect velocity, Eq. (188), reduces to conventional
forms in the case of a few defects and reproduces results for the phase-field
models in the appropriate limit. It can be used to determine the point-defect
velocity probability distribution function defined by:

〈n〉P(V, t) ≡ 〈nδ(V − v[�ψ])〉 , (192)

where n = |ρ| is the unsigned defect density. P(V, t) gives the probability that
a vortex has a velocity V at the time t after a quench.
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Fig. 11.13 The vortex speed distribution probability density VP(V)
from numerical simulation (solid line) versus scaled speed x = V/v̄.
The dashed lines are fits to the form VP(V) = 2ax/(1 + ax)2. The inset
shows the same data in the logarithmic scale. See Fig. 3 in Ref. [107].

While the analytic evaluation of P(V, t) looks improbable because of the
complicated dependence of v on ψ in Eq. (188), it turns out that there are
several factors working to help one in this calculation. If one makes a local
mapping from the order parameter �ψ onto some auxiliary field m, �ψ = �ψ(�m),
and the two fields share the same zeros, it is easy to see that one can evaluate
ρ using �ψ or m, similarly (see Problem 11.18) v[ψ] = v[m]. If we can make a
transformation to a field m, which can be treated as Gaussian, then the average
in Eq. (192) can be worked out explicitly [101] in the case of the TDGL model
with the result:

P(V, t) = Γ(
n + 1

2
)

(
1

πv̄2(t)

)n/2(
1 + V2/v̄2(t)

)−(n+2)/2

(193)

where the characteristic velocity v̄(t) is expressed in terms of derivatives of the
normalized auxiliary field correlation function f (r, t) ( f (0, t) = 1) evaluated
at r = 0. One way of determining this auxiliary field correlation function [106]
f (r, t) is to satisfy the continuity equation Eq. (187) on average. This leads to

the remarkably simple final result: f (r, t) = e−
x2
2 where x = r/L(t) is the

scaled length and L(t) ≈
√

t where t is the time. The characteristic velocity (in
dimensionless units) is given then by v̄2 = 2n/t. This result given by Eq. (193)
has been tested numerically in Ref. [107] for the case n = d = 2. The excellent
agreement between theory and simulation are shown in Fig. 11.13.

The result for P(V, t) given by Eq. (193), indicates that the probability of
finding a vortex with a large velocity decreases with time. However, since
this distribution falls off only as V−(n+2) for large V, only the first moment
beyond the normalization integral exists. This seems to imply the existence
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of a source of large velocities. Assuming the large velocities of defects can be
associated with the final collapse of a defect structure (vortex–antivortex pair
annihilation for point defects), Bray [108] used general scaling arguments to
obtain the same large velocity tail given by Eq. (193).

One can also look at the spatial correlations between defects [97] and the
analysis for point defects can be generalized [109] to the case of line defects
n = d − 1.

11.11
Pattern Forming Systems

In another class of equilibrating systems one has pattern formers. The equili-
brium structures of some such systems are discussed in Chapter 13 of FOD.
Examples of such systems are magnetic systems that form patterns of Bloch
walls [110], including arrays of magnetic bubbles [111, 112]. In superconduc-
tors we have the domain walls separating the normal and superconducting
phase in the intermediate phase [113, 114] and the flux lattice formed in type
II superconductors [56–58]. There is considerable current interest [115–119] in
the variety of structures formed by diblock copolymers.

The simplest Langevin model generating such patterns is the Swift–Hohen-
berg model [120]. This is a model describing the growth of stripes or layers in a
50/50 composition of a diblock copolymers in the weak segregation limit. The
equilibrium properties of this model were discussed in Chapter 13 in FOD. In
treating the dynamics we have the Langevin equation:

∂tψ = −Γ
δHE
δψ

+ η , (194)

where the effective Hamiltonian HE is given by Eq. (13.86) in FOD. Here we
use the standard notation for dimensionless variables:

HE =
∫

ddx
[

1
2
[(∇2 + 1)ψ]2 − ε

2
ψ2 +

1
4

ψ4
]

, (195)

where the wavelength of the generated stripes is λ = 2π and ε is a control
parameter. For quenches to zero temperature and in time units of Γ we have
the equation of motion:

∂tψ = εψ − ψ3 − (∇2 + 1)2ψ . (196)

Starting this system with random initial conditions one can look at the set of
defects generated as the system evolves toward an ordered striped system. As
shown in Fig. 11.14, in two dimensions one finds [121] a complicated defect
structure including disclinations, dislocations, and grain boundaries.



446 11 Unstable Growth

Fig. 11.14 Typical configuration for the Swift–Hohenberg model for a
quench to zero temperature. The black points correspond to ψ > 0. See
Fig. 5 in Ref. [121].

Experimentally there has been significant progress on this problem. In Ref.
[122] they have observed the ordering of diblock copolymers with a characte-
ristic growth law L(t) ≈ t1/4 and the eventual disordering agents, consistent
with this growth law, are annihilating quadruples of disclinations. The various
models studied numerically have not yet seen the annihilating quadrupoles.
Analytic theory is far from giving a satisfactory description of this system.
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119 D. Boyer, J. Viñals, Phys. Rev. E 64, 050101
(2001).

120 J. B. Swift, P. C. Hohenberg, Phys. Rev. A
15, 319 (1977).

121 H. Qian, G. F. Mazenko, Phys. Rev. 67,
036102 (2003).

122 C . Harrison, D. H. Adamson, Z. Cheng, J.
M. Sebastian, S. Sethuraman, D. A. Huse,
R. A. Register, P. M. Chaikin, Science 290,
1558 (2000); C. Harrison, Z. Cheng, S.
Sethuraman, D. A. Huse, P. M. Chaikin,
D. A. Vega, J. M. Sebastian, R. A. Register,
D. H. Adamson, Phys. Rev. E 66, 011706
(2002).



450 11 Unstable Growth

11.13
Problems for Chapter 11

Problem 11.1: Write a Monte Carlo program for evaluating the phase-ordering
kinetics of a one-dimensional nearest-neighbor Ising model. Assume the Ha-
miltonian for the system is given by:

H = −J
N

∑
i=1

σiσi+1

with periodic boundary conditions σN+1 = σ1 and J > 0.
Construct the kinetics in the following fashion: repeatedly carry out the

following steps.

1. Randomly select a site j.

2. If σj+1σj−1 = 1, set σj = σj+1 = σj−1

3. If σj+1σj−1 = −1, generate a random number w between 0 and 1. If
w < 0.5, flip σj, otherwise do not flip σj.

Starting with a random initial distribution (σi = ±1 at random) compute
the number of kinks (σiσi+1 = −1) in the system per site as a function of
Monte Carlo steps per spin. Average your results over 40 runs.
Problem 11.2: Solve as an initial-value problem the equation of motion:

1
Γ

d
dt

m(t) = m(t)
[
1 − m2(t)

]
governing the time evolution of the average magnetization after an off-critical
quench.
Problem 11.3: Assume a potential V(ψ) given by Eq. (14). Show, to first order
in the applied field h, that the minima:

V′(ψ±) = 0

are given by Eq. (20).
Problem 11.4: Show that the square gradient term in the effective Hamiltonian
in the nucleation problem leads to the surface energy given by Eq. (24).
Problem 11.5: Show that the coefficient of h in the activation energy, evaluated
in the sharp interface limit, is given by:

F(1)
B = −2ψ0Vd|h| ,

where the volume of the droplet is given by:

Vd =
2πd/2

dΓ(d/2)
Rd

0 .
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Problem 11.6: Show that the extremum as a function of droplet radius R0 of
the droplet free energy difference:

FD = −2ψ0Vd|h|+ σΣd

is a maximum.
Problem 11.7: Insert the interfacial ansatz:

ψ = ψ0sgn(z − z0)

into the correlation function:

C(z, z′) =

∫ L
−L dz0ψ(z)ψ(z′)∫ L

−L dz0

and do the integrations.
Problem 11.8: Show that the Fourier transform of the short-distance expansion
of the equal-time order parameter correlation function:

C(x, t) = ψ2
0

[
1 − α

|x|
L

+ · · ·
]

,

leads to Porod’s law, given by Eq. (44), for large wavenumbers.
Problem 11.9: Solve Laplace’s equation:

∇2μ = 0 ,

together with the condition that μ is given by the Gibbs–Thomson relation:

μ = −Kσs

2ψ0

on the surface of a sphere separating two phases as described in Section 11.7.
Problem 11.10: Show, for the TDGL model, remembering from Chapter 9 the
result:

δψ(x′, t)
δη(x, t)

=
1
2

δ(x − x′) ,

that:

〈η(q, t)ψ(−q, t)〉 = kBTΓ(q) ,

where η(x, t) is gaussianly distributed white noise.
Problem 11.11: Consider the equation:

Ȧ = −(A + 1)
(

d
2(t + t0)

+ 2ΓA
)

,
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which arises in the mean-field theory treatment of phase-ordering kinetics.
Show that for large times this has a solution of the form:

A =
A1

(t + t0)
+

A2

(t + t0)2 + · · · ,

where:

A1 = − d
4Γ

A2 =
d(1 − d)

8Γ2 .

Problem 11.12: As part of mean-field theory treatment of phase-ordering ki-
netics investigate numerically the dependence of the constant:

κ = lim
t→∞

e−2Γ
∫ t

0 dτA(τ)

(2Γ(t + t0)d/2

on the initial conditions.
Problem 11.13: Assuming m is a Gaussian field and:

H(12) = ik1m(1) + ik2im(2) ,

show that the average over m gives:

〈eH(12)〉 = e−
1
2 [k2

1S0(1)+k2
2S0(2)+2k1k2C0(12)] ,

where:

C0(12) = 〈m(1)m(2)〉

and:

S0(1) = C0(11) .

Problem 11.14: Carry out the integrations over k1 and k2 giving the joint pro-
bability distribution:

P0(x1, x2, 12) =
∫ dk1

2π

∫ dk2

2π
e−ik1x1e−ik2x2e−

1
2 [k2

1S0(1)+k2
2S0(2)+2k1k2C0(12)] .

Problem 11.15: Evaluate the integrals defined in Eq. (166) and verify Eq. (167).
Hint: Use the integral representation for the sgn function:

sgn y =
y
|y| = y

∫ ds√
2π

e−
1
2 s2y2

.
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Problem 11.16: Show that the quantity
∫

ddx ψ∗(x)ψ(x) is conserved in the
NLSE.
Problem 11.17: Show that the Jacobian defined by Eq. (184) is given by D =
m|m|r2(|m|−1)ψ2

0, and qi = sgn(mi) for an order parameter given by Eq. (188)
near a vortex core.
Problem 11.18: Consider the defect velocity defined by Eq. (188). If the order
parameter is a local function of an auxiliary field m, which shares the same
zeros, show that:

v[ψ] = v[m] .

Problem 11.19: Evaluate the ordered energy of the Swift–Hohenberg effective
Hamiltonian in the single mode approximation:

ψ = A cos q0z .

Choose the amplitude A such that this energy is a minimum.
Problem 11.20: Solve the self-consistent equations:

A(t) = −1 + 3〈ψ2〉.

C(q, t) = C(q, 0)e−2
∫ t

0 dτΓ(q)[q2+A(τ)]

with the initial condition:

C(q, 0) = CIe−
1
2 αq2

.

in the case of a COP. First determine 〈ψ2〉.
Problem 11.21: Evaluate the integral:

I =
∫ dz1dz2

2π
e−

1
2 [z2

1+z2
2−2z1z2 f̃ ] .
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Appendix A
Time-Reversal Symmetry

The reversal in time of a state |ψ〉 changes it into a state |ψ′〉 that develops in
accordance with the opposite sense of progression of time. For the new state
the signs of all linear and angular momenta are reversed but other quantities
are unchanged. Time reversal is effected by a time-independent operator T :

T|ψ〉 = |ψ′〉 .

Time-reversal invariance means that if |ψi〉 is an energy eigenstate:

H|ψi〉 = Ei|ψi〉 ,

so also |ψ′〉 is an eigenstate of H with eigenvalue Ei.
Consider now a pair of evolution operations that we can perform on |ψi〉

that are expected to lead to the same physical state. In case A we allow the
state to propagate to time t and then let t → −t. In case B we reverse time at
t = 0 and then allow the reversed state to propagate with the opposite sense
of progression of time, that is, to time −t.

In operation A we allow the state |ψi〉 to first evolve forward in time:

e−iHt/h̄|ψi〉 = e−iEit/h̄|ψi〉 (A.1)

and then we apply the time-reversal operator:

T e−iEit/h̄|ψi〉 = |ψi〉A . (A.2)

For operation B, we first apply T and then let the system evolve backward in
time:

eiEit/h̄T|ψi〉 = |ψi〉B . (A.3)

We require that these operations prepare the system in the same quantum
state:

|ψi〉A = |ψi〉B , (A.4)

so:

Te−iEit/h̄|ψi〉 = eiEit/h̄T|ψi〉 . (A.5)
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We see from this relation that T is not a linear operator. The time-reversal
operator is: antilinear

T(a1|ψ1〉+ a2|ψ2〉) = a∗1 T|ψ1〉 + a∗2T|ψ2〉 . (A.6)

Suppose we construct a complete and orthonormal set of energy eigenstates
|n〉,

H|n〉 = En|n〉 (A.7)

〈m|n〉 = δm,n (A.8)

∑
n
|n〉〈n| = 1 (A.9)

and we assume that these states remain orthonormal after time reversal:

|n′〉 = T|n〉 (A.10)

〈m′|n′〉 = δm,n . (A.11)

We can then expand two states |ψ〉 and |φ〉 as:

|ψ〉 = ∑
n
|n〉〈n|ψ〉 , (A.12)

and:

|φ〉 = ∑
n
|n〉〈n|φ〉 . (A.13)

When we apply T to Eq. (A.12) we obtain:

|ψ′〉 = T|ψ〉 = ∑
n
〈n|ψ〉∗ T|n〉

= ∑
n
〈ψ|n〉T|n〉 = ∑

n
〈ψ|n〉|n′〉 . (A.14)

Similarly:

|φ′〉 = T|φ〉 = ∑
m
〈φ|m〉|m′〉 . (A.15)

Taking the inner product:

〈φ′|ψ′〉 = ∑
m,n

〈m|φ〉〈m′|n′〉〈ψ|n〉
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= ∑
m,n

〈m|φ〉δm,n〈ψ|n〉

= ∑
n
〈ψ|n〉〈n|φ〉

〈φ′|ψ′〉 = 〈ψ|φ〉 . (A.16)

The two properties:

T(a1|ψ1〉 + a2|ψ2〉) = a∗1T|ψ1〉 + a∗2 T|ψ2〉 (A.17)

〈φ′|ψ′〉 = 〈ψ|φ〉 = 〈φ|ψ〉∗ , (A.18)

where |ψ′〉 = T|ψ〉, |φ′〉 = T|φ〉, specify that T is an antiunitary operator.
We can also derive the appropriate transformation law for matrix elements

of operators. Consider the states |α〉 and |β〉 = B̂|μ〉, where B̂ is some operator.
We have in general from Eq. (A.18) that:

〈α|β〉 = 〈β′|α′〉 , (A.19)

where:

|α′〉 = T|α〉 (A.20)

and:

|β′〉 = TB̂|μ〉
= TB̂T−1T|μ〉
= B̂′|μ′〉 , (A.21)

where we see that operators transform as B̂′ = TB̂T−1. We have then the
relationship between matrix elements:

〈α|β〉 = 〈α|B|μ〉
= 〈μ′|(B′)†|α′〉
= 〈μ′|(TBT−1)†|α′〉 . (A.22)

If we look at an average of an operator Â over some probability operator, ρ̂,

〈Â〉 = Trρ̂Â , (A.23)

then we can write:

〈Â〉 = ∑
i
〈i|ρ̂Â|i〉 . (A.24)
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Using Eq. (A.22) for the matrix element gives:

〈Â〉 = ∑
i
〈i′|(Tρ̂ÂT−1)†|i′〉 , (A.25)

where |i′〉 = T|i〉. Since the set |i′〉 is also complete,

〈Â〉 = Tr (Tρ̂T−1TÂT−1)† . (A.26)

If the probability operator is invariant under time reversal:

Tρ̂T−1 = ρ̂ , (A.27)

we have:

〈Â〉 = Tr (ρ̂TÂT−1)† . (A.28)

For two operators Â and B̂,
(

ÂB̂
)† = B̂† Â†, and:

〈Â〉 = Tr (TÂT−1)†ρ̂† . (A.29)

Since the probability operator is hermitian, ρ̂† = ρ̂, we can use the cyclic
invariance of the trace to obtain the invariance principle:

〈Â〉 =
〈(

TÂT−1
)†
〉

. (A.30)

We can build up the properties of various quantities under time reversal
using the fundamental relations: if p is a momentum operator,

Tp(t)T−1 = −p(−t) , (A.31)

while if x is a position operator:

Tx(t)T−1 = x(−t) . (A.32)

Clearly, from this one has, if L is an angular momentum operator:

TL(t)T−1 = −L(−t) (A.33)

We see then that Hamiltonians that depend on p2 and x are time-reversal
invariant:

THT−1 = H . (A.34)

Consider Maxwell’s equations, :

∇ · E = 4πρe (A.35)
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c∇× B =
∂E
∂t

+ J , (A.36)

where ρe is the electric charge density and J is the charge-current density. Since
ρe is even under time reversal and J is odd under time reversal, the electric and
magnetic fields transform as:

TE(x, t)T−1 = E(x,−t) (A.37)

while:

TB(x, t)T−1 = −B(x,−t) . (A.38)

Observables A(x, t) typically have a definite signature εA under time reversal:

A′(x, t) = TA(x, t)T−1 = εA A(x,−t) , (A.39)

where ε = +1 for positions, electric fields, and ε = −1 for momenta, magnetic
fields and angular momenta.
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Appendix B
Fluid Poisson Bracket Relations

We are interested in the Poisson brackets:

{A, B} = ∑
i

(
∂A
∂ri

· ∂B
∂pi

− ∂A
∂pi

· ∂B
∂ri

)
, (B.1)

where A and B are certain fluid densities. In particular A and B are taken to
be the particle density,

n(x) = ∑
i

δ(x − ri) , (B.2)

and the momentum density:

gα(x) = ∑
i

pα
i δ(x − ri) . (B.3)

Using the results:

∂

∂rβ
i

n(x) = −∇β
xδ(x − ri) (B.4)

∂

∂pβ
i

n(x) = 0 (B.5)

∂

∂rβ
i

gα(x) = − ∇β
x δ(x − ri)pα

i (B.6)

∂

∂pβ
i

gα(x) = δα,β δ(x − ri) , (B.7)

we easily evaluate the Poisson brackets among n and g:

{n(x), gα(y)} = ∑
i

∑
β

[−∇β
xδ(x − ri)δ(y − ri)δα,β]
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= −∇α
x [δ(x − y)n(x)] . (B.8)

{n(x), n(y)} = 0 (B.9)

{gα(x), gβ(y)} = ∑
i,γ

(
∂gα(x)

∂rγ
i

∂gβ(x′)
∂pγ

i
− ∂gα(x)

∂pγ
i

∂gβ(x′)
∂rγ

i

)

= ∑
i,γ

(
−∇γ

xδ(x − ri)pα
i δ(y − ri)δβ,γ +∇γ

yδ(y − ri)pβ
i δ(x − ri)δα,γ

)

= −
(
∇β

x[δ(x − y)gα(x)]
)

+∇α
y
(
δ(x − y)gβ(y)

)
. (B.10)

We can also explicitly work out the Poisson bracket between the energy den-
sity,

ε(x) = K(x) + V(x) (B.11)

K(x) = ∑
i

p2
i

2m
δ(x − ri) (B.12)

V(x) = 1
2 ∑

ij
V(ri − rj)δ(x − ri) , (B.13)

and the particle density:

{n(x), ε(y)} = {n(x), K(y)}

= ∑
i,β

(
∂n(x)

∂rβ
i

∂K(y)

∂pβ
i

− ∂n(x)

∂pβ
i

∂K(y)

∂rβ
i

)
(B.14)

= ∑
i,β

(
−∇β

xδ(x − rβ
i )
) pβ

i
m

δ(y − ri)

= −∇x · (δ(x − y)g(x)/m) . (B.15)

The other Poisson brackets between the energy density and the momentum
density are not very illuminating.
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Appendix C
Equilibrium Average of the Phase-Space Density

Here we compute the canonical ensemble average of the phase-space density
f (x, p):

f0(p) = 〈 f̂ (x, p)〉EQ

=

(
∏N

i=1
∫

d3rid3 pi

)
e−βH f̂ (x, p)(

∏N
i=1
∫

d3rid3 pi

)
e−βH

=
Num

Z
, (C.1)

where the Hamiltonian is assumed to be of the form:

H = K + V =
N

∑
i=1

p2
i

2m
+ V(r1, r2, . . . , rN) . (C.2)

Taking the partition function first:

Z =

(
N

∏
i=1

∫
d3rid3 pi

)
e−βH

= IN
∫

d3r1 . . . d3rNe−βV

≡ INQN , (C.3)

where:

I =
∫

d3 pi e−βp2
i /2m = (2πkBTm)3/2 . (C.4)

The numerator is then given by:

Num =
N

∑
j=1

(
N

∏
i=1

∫
d3 pi e−βp2

i /2m

) ∫
d3r1 . . . d3rNe−βVδ(x − rj)δ(p − pj)

=
N

∑
j=1

IN−1e−βp2/2m
∫

d3r1 . . . d3rNe−βVδ(x − rj)

= IN−1e−βp2/2mQN〈
N

∑
j=1

δ(x − rj)〉EQ
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= IN−1e−βp2/2mQN〈n(x)〉EQ = IN−1e−βp2/2mQNn (C.5)

and we have finally, dividing Eq. (C.5) by Eq. (C.3),

f0(p) = n
e−βp2/2m

I
= n

e−βp2/2m

(2πkBTm)3/2 , (C.6)

which is the Maxwell velocity distribution.
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Appendix D
Magnetic Poisson Bracket Relations

Let us consider the Poisson bracket relations for a magnetic system. Suppose
our fields of interest are the magnetization density:

M(x) = ∑
R

δ(x − R)S(R) (D.1)

and the staggered magnetization density.:

N(x) = ∑
R

δ(x − R)η(R)S(R) , (D.2)

where the S(R) are magnetic moments or spins that satisfy the fundamental
Poisson brackets for a set of classical spins:

{Si(R), Sj(R′)} = δR,R′ ∑
k

εijkSk(R) . (D.3)

We can then work out the Poisson brackets among the components of the
densities. For the magnetization density we find:

{Mi(x), Mj(y)} = ∑
R,R′

δ(x − R)δ(y − R′){Si(R), Sj(R′)}

= ∑
R,R′

δ(x − R)δ(y − R′)δR,R′ ∑
k

εijkSk(R) , (D.4)

or: {
Mi(x), Mj(y)

}
= δ(x − y) ∑

k
εijkMk(x) . (D.5)

The Poisson brackets among the components of the staggered magnetization
are given by:

{Ni(x), Nj(y)} = ∑
R,R′

δ(x − R)δ(y − R′)η(R)η(R′){Si(R), Sj(R′)}

= ∑
R,R′

δ(x − R)δ(y − R′)η(R)η(R′)δR,R′ ∑
k

εijkSk(R) . (D.6)
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Since η(R)2 = 1, this reduces to:

{Ni(x), Nj(y)} = δ(x − y) ∑
k

εijkMk(x) . (D.7)

Finally we have the cross Poisson bracket:

{Mi(x), Nj(y)} = ∑
R,R′

η(R′)δ(x − R)δ(y − R′){Si(R), Sj(R′)}

= ∑
R,R′

η(R′)δ(x − R)δ(y − R′)δR,R′ ∑
k

εijkSk(R)

= ∑
R

η(R)δ(x − R)δ(y − R) ∑
k

εijkSk(R)

= δ(x − y) ∑
k

εijkNk(x) . (D.8)
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Appendix E
Noise and the Nonlinear Langevin Equation

The nonlinear Langevin equation,

∂ψi(t)
∂t

= Vi[ψ(t)]−∑
k

Γik
0 [ψ(t)]

∂

∂ψk(t)
Hψ + ξi(t) , (E.1)

where ξi(t) is white Gaussian noise with variance given by Eq. (9.77), forms a
complete dynamical system. We show here, starting from Eq. (E.1), that we can
derive the GFPE, Eq. (9.81), with an expression for the noise Nφ(t) in terms of
ξi(t). We show that the noise Nφ(t) satisfies the usual properties, 〈gφ′ Nφ(t) = 0
and the second FDT Eq. (9.104)

We can regain the GFPE and a direct relationship between Nφ and ξi by
using the chain-rule for differentiation:

∂

∂t
gφ(t) = −∑

i

∂

∂φi
gφ(t)

∂ψi(t)
∂t

(E.2)

and the nonlinear Langevin equation, Eq. (E.1), for ψ̇i:

∂

∂t
gφ(t) = −∑

i

∂

∂φi
gφ(t)

[
Vi[ψ(t)]

+ ∑
k

∂

∂ψk(t)
β−1Γik

0 [ψ(t)]− ∑
k

Γik
0 [ψ]

∂H[ψ(t)]
∂ψk(t)

+ ξi(t)

]
(E.3)

= −∑
i

∂

∂φi

[
Vi[φ] + ∑

k
β−1 ∂

∂φk
Γik

0 [φ] −∑
k

Γik
0 [φ]

∂Hφ

∂φk
+ ξi(t)

]
gφ(t) .

Comparing this with the GFPE, Eq. (9.73), written out:

∂

∂t
gφ(t) = −∑

i

∂

∂φi

[
Vi[φ]

−∑
k

β−1Γik
0 [φ](

∂

∂φk
+ β

∂Hφ

∂φk
)

]
gφ(t) + Nφ(t) , (E.4)
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we find:

−∑
i

∂

∂φi
∑
k

[(
∂

∂φk
β−1Γik

0 [φ]
)

gφ(t) + ∑
i

∂

∂φi

(
ξi(t)gφ(t)

)]

= ∑
ik

∂

∂φi
β−1Γik

0 [φ]
∂

∂φk
gφ(t) + Nφ(t) (E.5)

Solving for Nφ(t), we obtain the basic relation between ξi and Nφ:

Nφ(t) = −∑
ik

∂

∂φi

[
ξi(t)δik + β−1(

∂Γik
0 [φ]

∂φk
) + β−1Γik

0 [φ]
∂

∂φk

]
gφ(t)

= −∑
ik

∂

∂φi

[
ξi(t)δik +

∂

∂φk
β−1Γik

0 [φ]

]
gφ(t) . (E.6)

Let us restrict ourselves to the simple Gaussian noise case where Γik
0 is

independent of φ. We can then check some of the statistical properties of the
noise Nφ(t).

We have first:

〈Nφ(t)〉 = −∑
ik

∂

∂φi

〈[
ξi(t)δik +

∂

∂φk
β−1Γik

0

]
gφ(t)

〉
. (E.7)

We need to evaluate:

〈ξi(t)gφ(t)〉 = 2β−1 ∑
k

Γik
0 〈

δ
δξk(t)

gφ(t)〉 . (E.8)

We have, using the chain-rule:

δ
δξk(t)

gφ(t) = −∑
�

∂

∂φ�
gφ(t)

δψ�(t)
δξk(t)

. (E.9)

It is self-consistent to assume:

δψ�(t)
δξk(t)

=
1
2

δ�k , (E.10)

then:

δ
δξk(t)

gφ(t) = −1
2

∂

∂φk
gφ(t) (E.11)

and:

〈ξi(t)gφ(t)〉 = 2β−1 ∑
k

Γik
0 〈−∑

�

∂

∂φ�
gφ(t)

1
2

δ�k〉
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= −β−1 ∑
k

Γik
0

∂

∂φk
〈gφ(t)〉 . (E.12)

Putting this back into Eq. (E.7), we find as required that:

〈Nφ(t)〉 = 0 . (E.13)

Next we consider:

〈gφ′ Nφ(t)〉 = −∑
ik

∂

∂φi
〈gφ′

[
ξi(t)δik +

∂

∂φk
β−1Γik

0

]
gφ(t)〉 . (E.14)

This requires that we evaluate the average over the noise:

〈ξi(t)gφ′ gφ(t)〉 = 2β−1 ∑
k

Γik
0 〈

δ
δξk(t)

[
gφ′ gφ(t)

]
〉 . (E.15)

Consider first:

δ
δξk(t)

gφ′ = − ∑
j

∂

∂φ′j
gφ′

δψj(0)
δξk(t)

, (E.16)

then clearly, because of causality,

δψj(0)
δξk(t)

= 0 (E.17)

if t > 0. Then δgφ′/δξk(t) vanishes for t > 0, and:

〈ξi(t)gφ′gφ(t)〉 = 2β−1 ∑
k

Γik
0 〈gφ′(−∑

j

∂

∂φj
gφ(t)

δψj(t)
δξk(t)

)〉

= −∑
jk

∂

∂φj
2β−1Γik

0 〈gφ′ gφ(t)
δψj(t)
δξk(t)

〉 . (E.18)

= −β−1 ∑
k

Γik
0

∂

∂φk
〈gφ′ gφ(t)〉 . (E.19)

Putting this back into Eq. (E.14) we find:

〈gφ′ Nφ(t)〉 = 0 for t > 0 (E.20)

Next we want to evaluate 〈Nφ(t)Nφ′(t′)〉 where the average is over the noise
ξi. Using Eq. (E.6) twice and assuming t ≥ t′, we have:

〈Nφ(t)Nφ′(t′)〉 = ∑
ijkl

∂

∂φi

∂

∂φ′k

〈[
ξi(t)δij
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+
∂

∂φj
β−1Γij

0

]
gφ(t)

[
ξk(t′)δkl +

∂

∂φ′l
β−1Γkl

0

]
gφ′(t′)

〉

= ∑
ik

∂

∂φi

∂

∂φ′k

[
〈 ξi(t)ξk(t′)gφ(t)gφ′(t′)〉

+〈ξi(t)gφ(t) ∑
l

∂

∂φ′l
β−1Γkl

0 gφ′(t′)〉

+〈ξk(t′)gφ′(t′) ∑
j

∂

∂φj
β−1Γij

0 gφ(t)〉

+ ∑
jl

∂

∂φ′l

∂

∂φj
β−2Γij

0 Γkl
0 〈gφ′(t′)gφ(t)〉

]
. (E.21)

Using Eq. (E.19) we see that the second and fourth terms in Eq. (E.21) cancel.
We note that the first term in Eq. (E.21) has a factor that can be written as:

〈ξi(t)ξk(t′)gφ(t)gφ′(t′)〉 = 2β−1 ∑
l

Γil
0 〈

δ
δξl(t)

ξk(t′)gφgφ′(t′)〉

= 2β−1 ∑
l

Γil
0

[
δlkδ(t − t′)〈gφ(t)gφ′(t′)〉+ 〈ξk(t′)gφ′(t′)

δgφ(t)
δξl(t)

〉
]

.

The derivative of gφ′(t′) with respect to ξl(t) vanishes unless t = t′, in which
case it is swamped by the term proportional to δ(t − t′) and can be dropped.
Next we can use Eq. (E.11) to obtain:

〈ξi(t)ξk(t′)gφ(t)gφ′(t′)〉 = 2β−1 ∑
l

Γil
0

[
δlkδ(t − t′)δ(φ − φ′)Wφ −

1
2

∂

∂φl
〈ξk(t′)gφ′(t′)gφ(t)〉

]
. (E.22)

Notice that the second term on the right in Eq. (E.22) cancels the third term on
the right hand side of Eq. (E.21) and we have the final result:

〈Nφ(t)Nφ′(t′)〉 = ∑
ik

∂

∂φi

∂

∂φ′k
2β−1Γikδ(t − t′)δ(φ − φ′)Wφ ,

which agrees with Eq. (104) of Chap. 9.
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