

RESIDUE NUMBER
SYSTEMS
Theory and Implementation

Advances in Computer Science and Engineering: Texts

Editor-in-Chief: Erol Gelenbe (Imperial College)
Advisory Editors: Manfred Broy (Technische Universitaet Muenchen)

Gérard Huet (INRIA)

Published

Vol. 1 Computer System Performance Modeling in Perspective:
A Tribute to the Work of Professor Kenneth C. Sevcik
edited by E. Gelenbe (Imperial College London, UK)

Vol. 2 Residue Number Systems: Theory and Implementation
by A. Omondi (Yonsei University, South Korea) and
B. Premkumar (Nanyang Technological University, Singapore)

Chelsea - Residue Number.pmd 8/31/2007, 8:57 AM2

RESIDUE NUMBER
SYSTEMS
Theory and Implementation

Amos Omondi
School of Electrical and Electronic Engineering

Yonsei Universik South Korea

Benjamin Premkumar
School of Computer Engineering

Nanyang Technological Universik Singapore

Imperial College Press

Advances in Computer Science and Engineering: Texts Vol. 2

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Published by

Imperial College Press
57 Shelton Street
Covent Garden
London WC2H 9HE

Distributed by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Printed in Singapore.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN-13 978-1-86094-866-4
ISBN-10 1-86094-866-9

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

Copyright © 2007 by Imperial College Press

Advances in Computer Science and Engineering: Texts – Vol. 2
RESIDUE NUMBER SYSTEMS
Theory and Implementation

Chelsea - Residue Number.pmd 8/31/2007, 8:57 AM1

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

To my parents-in-law,
Ellen and William Hayes,

for their unflagging support during some trying times.
(Amos Omondi)

To
my wife Manchala and our sons Josh and Brian

(Benjamin Premkumar)

v

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

This page intentionally left blankThis page intentionally left blank

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Preface

Residue number systems (RNS) were invented by the third-century Chinese
scholar Sun Tzu—a different Sun Tzu from the author of the famous Art
of War . In Problem 26 of his Suan Ching (Calculation Classic), our Sun
Tzu posed a mathematical riddle:

We have things of which we do not know the number

If we count them by threes, we have two left over

If we count them by fives, we have three left over

If we count them by sevens, we have two left over

How many things are there?

In other words, “What number yields the remainders 2, 3, and 2 when
divided by 3, 5, and 7, respectively?.” In modern terminology, 2, 3, and 2
are residues, and 3, 5, and 7, are moduli . Sun Tzu gave a rule, the Tai-
Yen (Great Generalization) for the solution of his puzzle. In 1247, another
Chinese mathematician, Qin Jiushao, generalized the Great Generalization
into what we now call the Chinese Remainder Theorem, a mathematical
jewel.

In the 1950s, RNS were rediscovered by computer scientists, who sought
to put them to use in the implementation of fast arithmetic and fault-
tolerant computing. Three properties of RNS make them well suited for
these. The first is absence of carry-propagation in addition and multipli-
cation, carry-propagation being the most significant speed-limiting factor
in these operations. The second is that because the residue representations
carry no weight-information, an error in any digit-position in a given repre-
sentation does not affect other digit-positions. And the third is that there
is no significance-ordering of digits in an RNS representation, which means
that faulty digit-positions may be discarded with no effect other than a

vii

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

viii Residue Number Systems: Theory and Implementation

reduction in dynamic range.
The new interest in RNS was not long-lived, for three main reasons:

One, a complete arithmetic unit should be capable of at least addition,
multiplication, division, square-root, and comparisons, but implementing
the last three in RNS is not easy; two, computer technology became more
reliable; and, three, converting from RNS notation to conventional nota-
tion, for “human consumption”, is difficult. Nevertheless, in recent years
there has been renewed interest in RNS. There are several reasons for this
new interest, including the following. A great deal of computing now takes
place in embedded processors, such as those found in mobile devices, and
for these high speed and low-power consumption are critical; the absence of
carry-propagation facilitates the realization of high-speed, low-power arith-
metic. Also, computer chips are now getting to be so dense that full testing
will no longer be possible; so fault-tolerance and the general area of com-
putational integrity have again become more important. Lastly, there has
been progress in the implementation of the difficult arithmetic operations.
True, that progress has not been of an order that would justify a deluge
of letters home; but progress is progress, and the proper attitude should
be gratitude for whatever we can get. In any case, RNS is extremely good
for many applications—such as digital signal processing, communications
engineering, computer security (cryptography), image processing, speech
processing, and transforms—in which the critical arithmetic operations are
addition and multiplication.

This book is targeted at advanced university students, researchers, and
professional engineers interested in RNS and their applications. Both the-
oretical and practical aspects of RNS are discussed. Other than a basic
knowledge of digital logic and some of that fuzzy quality known as “mathe-
matical maturity”, no other background is assumed of the reader; whatever
is required of conventional arithmetic has been included. It has not been
our intention to give the last word on RNS—he or she who must know
everything will find satisfaction in the many published papers that are re-
ferred to in the book—but, taken as a summary, the book takes the reader
all the way from square-one right to the state-of-the-art.

Chapter 1 is an introduction to the basic concepts of RNS, arithmetic
in RNS, and applications of RNS. Other conventional and unconventional
number systems are also discussed, as, ultimately, it is these that form the
basis of implementations of residue arithmetic.

Chapter 2 covers the mathematical fundamentals on which RNS are
founded. The main subjects are the congruence relationship (which relates

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Preface ix

numbers in modular arithmetic), the basic representation of numbers, an al-
gebra of residues, the Chinese Remainder Theorem (very briefly), complex-
number representation, and, also very briefly, the detection and correction
of errors. The Core Function, a useful tool in dealing with the problem-
atic (i.e. hard-to-implement) operations in residue number systems, is also
discussed.

Forward conversion, the process of converting from conventional repre-
sentations to RNS ones, is the main subject of Chapter 3. Algorithms and
hardware architectures are given. The chapter is divided into two parts: one
for arbitrary moduli-sets and one for “special” moduli-sets—those of the
form {2n − 1, 2n, 2n + 1}—and extensions of these. The latter moduli-sets
are of interest because with them implementations of almost all operations
are relatively quite straightforward.

Chapters 4, 5, and 6 deal with addition/subtraction, multiplication, and
division respectively. (Chapter 6 also includes a discussion of other opera-
tions that are closely related to division.) Each chapter has two main parts:
one on the conventional version of the operation and one that shows how
the conventional algorithms and hardware architectures can be modified to
implement the RNS operation. The RNS part is again divided into one
part for arbitrary moduli-sets and one part for special moduli-sets.

Reverse conversion, the process of converting back from RNS represen-
tations into conventional notations, is covered in Chapter 7. (The general
structure of that chapter is similar to that of Chapter 3.) The main topics
are the Chinese Remainder Theorem, Mixed-Radix Conversion (in which
one views a residue number system as corresponding to a conventional sys-
tem with multiple bases), and the Core Function.

The last chapter is a very brief introduction to some applications of
RNS—digital signal processing, fault-tolerant computing, and communica-
tions. Lack of space has prevented us from giving an in-depth treatment
of these topics. As there are more things in heaven and earth than are
dreamt of in our philosophy, we leave it to the imaginative reader to dream
up some more applications.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

x Residue Number Systems: Theory and Implementation

Acknowledgements

In all things, we thank and praise The Almighty. The love and joy
I get from my family—Anne, Miles, and Micah—sustain me always. My
contribution to this book has been made during my employment at Yonsei
Unversity, in a position funded by the Korean government’s Institute for
Information Technology Assessment. I am indebted to both organizations.

Amos Omondi

I gratefully acknowledge the support rendered by Dr. Omondi, during
the course of writing this book for his many insightful comments and sugges-
tions. I also owe my gratitude to my colleagues at the School of Computer
Engineering, Nanyang Technological University, Singapore. I am greatly
indebted to my wife Manchala, our sons Josh and Brian and to my mother
and my family for their love, endurance and patience. Finally, I would like
thank my Lord Jesus Christ for His enduring love.

Benjamin Premkumar

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Contents

Preface vii

1. Introduction 1

1.1 Conventional number systems 2
1.2 Redundant signed-digit number systems 5
1.3 Residue number systems and arithmetic 6

1.3.1 Choice of moduli 9
1.3.2 Negative numbers 10
1.3.3 Basic arithmetic 11
1.3.4 Conversion . 13
1.3.5 Base extension . 14
1.3.6 Alternative encodings 14

1.4 Using residue number systems 15
1.5 Summary . 17
References . 18

2. Mathematical fundamentals 21

2.1 Properties of congruences 22
2.2 Basic number representation 24
2.3 Algebra of residues . 27
2.4 Chinese Remainder Theorem 39
2.5 Complex residue-number systems 40
2.6 Redundant residue number systems 42
2.7 The Core Function . 44
2.8 Summary . 47
References . 47

xi

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

xii Residue Number Systems: Theory and Implementation

3. Forward conversion 49

3.1 Special moduli-sets . 50
3.1.1 {2n−1, 2n, 2n+1} moduli-sets 52
3.1.2 Extended special moduli-sets 56

3.2 Arbitrary moduli-sets: look-up tables 58
3.2.1 Serial/sequential conversion 59
3.2.2 Sequential/parallel conversion: arbitrary parti-

tioning . 62
3.2.3 Sequential/parallel conversion: periodic partitioning 65

3.3 Arbitrary moduli-sets: combinational logic 68
3.3.1 Modular exponentiation 68
3.3.2 Modular exponentiation with periodicity 78

3.4 Summary . 80
References . 80

4. Addition 83

4.1 Conventional adders . 84
4.1.1 Ripple adder . 85
4.1.2 Carry-skip adder 88
4.1.3 Carry-lookahead adders 91
4.1.4 Conditional-sum adder 97
4.1.5 Parallel-prefix adders 101
4.1.6 Carry-select adder 108

4.2 Residue addition: arbitrary modulus 111
4.3 Addition modulo 2n − 1 119

4.3.1 Ripple adder . 122
4.3.2 Carry-lookahead adder 123
4.3.3 Parallel-prefix adder 127

4.4 Addition modulo 2n + 1 130
4.4.1 Diminished-one addition 130
4.4.2 Direct addition . 131

4.5 Summary . 134
References . 134

5. Multiplication 137

5.1 Conventional multiplication 138
5.1.1 Basic binary multiplication 139
5.1.2 High-radix multiplication 142

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Contents xiii

5.2 Conventional division . 151
5.2.1 Subtractive division 151
5.2.2 Multiplicative division 160

5.3 Modular multiplication: arbitrary modulus 162
5.3.1 Table lookup . 162
5.3.2 Modular reduction of partial products 165
5.3.3 Product partitioning 169
5.3.4 Multiplication by reciprocal of modulus 173
5.3.5 Subtractive division 176

5.4 Modular multiplication: modulus 2n − 1 177
5.5 Modular multiplication: modulus 2n + 1 185
5.6 Summary . 191
References . 191

6. Comparison, overflow-detection, sign-determination,
scaling, and division 193

6.1 Comparison . 194
6.1.1 Sum-of-quotients technique 195
6.1.2 Core Function and parity 197

6.2 Scaling . 198
6.3 Division . 201

6.3.1 Subtractive division 201
6.3.2 Multiplicative division 207

6.4 Summary . 210
References . 210

7. Reverse conversion 213

7.1 Chinese Remainder Theorem 213
7.1.1 Pseudo-SRT implementation 220
7.1.2 Base-extension implementation 223

7.2 Mixed-radix number systems and conversion 227
7.3 The Core Function . 234
7.4 Reverse converters for {2n− 1, 2n, 2n + 1} moduli-sets . . 237
7.5 High-radix conversion . 248
7.6 Summary . 251
References . 251

8. Applications 255

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

xiv Residue Number Systems: Theory and Implementation

8.1 Digital signal processing 256
8.1.1 Digital filters . 257
8.1.2 Sum-of-products evaluation 264
8.1.3 Discrete Fourier Transform 272
8.1.4 RNS implementation of the DFT 275

8.2 Fault-tolerance . 278
8.3 Communications . 286
8.4 Summary . 288
References . 289

Index 293

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Chapter 1

Introduction

Our main aim in this chapter is to introduce the basic concepts under-
lying residue number systems (RNS), arithmetic, and applications and to
give a brief but almost complete summary. We shall, however, start with
a discussion of certain aspects of more commonly used number systems
and then review the main number systems used in conventional computer
arithmetic. We shall also briefly discuss one other unconventional number
system that has found some practical use in computer arithmetic; this is the
redundant1 signed-digit number system. We have two objectives in these
preliminary discussions. The first is to facilitate a contrast between RNS
and commonly used number systems. The second is to to recall a few basic
properties of the conventional number systems, as, ultimately, it is these
that form the basis of implementations of residue arithmetic. The subse-
quent introduction to RNS consists of some basic definitions, a discussion
of certain desirable features of a residue number system, and a discussion
of the basic arithmetic operations.

A basic number system consists of a correspondence between sequences
of digits and numbers. In a fixed-point number system, each sequence
corresponds to exactly one number2, and the radix-point —the “decimal
point” in the ordinary decimal number system— that is used to separate
the integral and fractional parts of a representation is in a fixed position.
In contrast, in a floating-point number system, a given sequence may cor-
respond to several numbers: the position of the radix-point is not fixed,
and each position in a digit-sequence indicates the particular number rep-
resented. Usually, floating-point systems are used for the representation

1In a redundant number system, a given number may have more than one representa-
tion.
2Notable exceptions occur in certain unconventional number systems.

1

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

2 Residue Number Systems: Theory and Implementation

of real numbers, and fixed-point systems are used to represent integers (in
which the radix point is implicitly assumed to be at the right-hand end) or
as parts of floating-point representations; but there are a few exceptions to
this general rule. Almost all applications of RNS are as fixed-point number
systems.

If we consider a number3 such as 271.834 in the ordinary decimal number
system, we can observe that each digit has a weight that corresponds to its
position: hundred for the 2, ten for the 7, . . ., thousandth for the 4. This
number system is therefore an example of a positional (or weighted) number
system; residue number systems, on the other hand, are non-positional. The
decimal number system is also a single-radix (or fixed-radix) system, as
it has only one base (i.e. ten). Although mixed-radix (i.e. multiple-radix)
systems are relatively rare, there are a few useful ones. Indeed, for the
purposes of conversion to and from other number systems, as well as for
certain operations, it is sometimes useful to associate a residue number
system with a weighted, mixed-radix number system.

1.1 Conventional number systems

In this section we shall review the three standard notations used for fixed-
point computer arithmetic and then later point out certain relationships
with residue arithmetic.

In general, numbers may be signed, and for binary digital arithmetic
there are three standard notations that have been traditionally used for the
binary representation of signed numbers. These are sign-and-magnitude,
one’s complement, and two’s complement. Of these three, the last is the
most popular, because of the relative ease and speed with which the basic
arithmetic operations can be implemented. Sign-and-magnitude notation
has the convenience of having a sign-representation that is similar to that
used in ordinary decimal arithmetic. And one’s complement, although a
notation in its own right, more often appears only as an intermediate step
in arithmetic involving the other two notations.

The sign-and-magnitude notation is derived from the conventional writ-
ten notation of representing a negative number by prepending a sign to a
magnitude that represents a positive number. For binary computer hard-
ware, a single bit suffices for the sign: a sign bit of 0 indicates a positive

3For clarity of expression, we shall not always distinguish between a number and its
representation.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Introduction 3

number, and a sign bit of 1 indicates a negative number. For example,
the representation of the number positive-five in six bits is 000101, and the
corresponding representation of negative-five is 100101. Note that the rep-
resentation of the sign is independent of that of the magnitude and takes
up exactly one bit; this is not the case both with one’s complement and
two’s complement notations.

Sign-and-magnitude notation has two representations, 000. . . 0 and
100. . . 0, for the number zero; it is therefore redundant. With one exception
(in the context of floating-point numbers) this existence of two represen-
tations for zero can be a nuisance in an implementation. Addition and
subtraction are harder to implement in this notation than in one’s comple-
ment and two’s complement notations; and as these are the most common
arithmetic operations, true sign-and-magnitude arithmetic is very rarely
implemented.4

In one’s complement notation, the representation of the negation of a
number is obtained by inverting the bits in its binary representation; that
is, the 0s are changed to 1s and the 1s are changed to 0s. For example, the
representation of the number positive-five in six bits is 000101 and negative-
five therefore has the representation 111010. The leading bit again indicates
the sign of the number, being 0 for a positive number and 1 for a negative
number. We shall therefore refer to the most significant digit as the sign
bit, although here the sign of a negative number is in fact represented
by an infinite string of 1s that in practice is truncated according to the
number of bits used in the representations and the magnitude of the number
represented. It is straightforward to show that the n-bit representation of
the negation of a number N is also, when interpreted as the representation
of an unsigned number, that of 2n − 1 − N . (This point will be useful in
subsequent discussions of basic residue arithmetic.) The one’s complement
system too has two representations for zero—00. . . 0 and 11. . . 1—which
can be a nuisance in implementations. We shall see that a similar problem
occurs with certain residue number systems. Addition and subtraction in
this notation are harder to implement than in two’s complement notation
(but easier than in sign-and-magnitude notation) and multiplication and
division are only slightly less so. For this reason, two’s complement is the
preferred notation for implementing most computer arithmetic.

4It is useful to note here that the notation of representation and the notation for the
actual arithmetic implementation need not be the same.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

4 Residue Number Systems: Theory and Implementation

Negation in two’s complement notation consists of a bit-inversion (that
is, a translation into the one’s complement) followed by the addition of a
1, with any carry from the addition being ignored. Thus, for example, the
result of negating 000101 is 111011. As with one’s complement notation, the
leftmost bit here too indicates the sign: it is 0 for a positive number and 1
for a negative number; but again, strictly, the sign is actually represented by
the truncation of an infinite string. For n-bit representations, representing
the negation of the number N may also be viewed as the representation of
the positive number 2n −N .

In contrast with the first two conventional notations, the two’s com-
plement has only one representation for zero, i.e. 00. . . 0. The two’s com-
plement notation is the most widely used of the three systems, as the al-
gorithms and hardware designs required for its implementation are quite
straightforward. Addition, subtraction, and multiplication are relatively
easy to implement with this notation, and division is only slightly less so.

All of the notations above can be readily extended to non-binary radices.
The extension of binary sign-and-magnitude to an arbitrary radix, r, in-
volves representing the magnitude in radix-r and using 0 in the sign digit
for positive numbers and r− 1 for negative numbers. An alternative repre-
sentation for the sign is to use half of the permissible values of the sign digit
(that is, 0 . . . r/2− 1, assuming r is even) for the positive numbers and the
other half (that is, r/2 . . . r−1, for an even radix) for the negative numbers.
The generalization of one’s complement to an arbitrary radix is known as
diminished-radix complement, the name being derived from the fact that to
negate a number in this notation, each digit is subtracted from the radix
diminished by one, i.e. from r − 1. Alternatively, the representation of the
negation may also be viewed as the result of subtracting the number from
rn − 1, where n is the number of digits used in the representations. Thus,
for example, the negation of 01432 in radix-8 is 76345, i.e. 77777− 01432.
The sign digit will be 0 for a positive number and r − 1 for a negative
number. The generalization of two’s complement to an arbitrary radix is
known as radix complement notation. In radix complement notation, the
radix-r negation of a number is obtained, essentially, by subtracting from
rn, where n is the number of digits used in the representations. Alterna-
tively, negation may also be taken as the formation of the diminished-radix
complement followed by the addition of a 1. Thus, for example, the radix-8
negation of 01432 is 76346, i.e. 100000− 01432 or 77777− 01432 + 1. The
determination of sign is similar to that for the radix-r diminished-radix
complement.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Introduction 5

Residue number systems are more complex than the three standard
notations reviewed above, and, consequently, cannot be implemented di-
rectly with the same efficiency as the conventional arithmetic. Therefore,
in practice, residue arithmetic is often realized in terms of lookup-tables (to
avoid the complex combinational-logic circuits) and conventional arithmetic
(i.e. arithmetic in some standard notation). For example, the sign-and-
magnitude approach may be convenient for representing signed numbers in
RNS, but actual arithmetic operations might be best realized in terms of
radix-complement (two’s complement) arithmetic. We shall also see that
certain choices of representational parameters in RNS naturally lead to
diminished-radix complement (one’s complement) arithmetic.

1.2 Redundant signed-digit number systems

Many unconventional number systems have been proposed, and some even
have been put to practical use. Nevertheless, very few have had widespread
or sustained application. Therefore, other than RNS, we shall restrict our-
selves here to just the redundant signed-digit (RSD) systems, which have
long been used for high-speed arithmetic. As far as practical unconven-
tional notations go, RSD systems are the only serious competitor to RNS.
RSD systems may also have some applications in the implementation of
residue arithmetic, just as the conventional notations do; this is a largely
unexplored area, although there has been some relevant work.

Two of the conventional systems discussed above have some redundancy ,
which means that in each there is at least one number with two or more
representations; but the redundancy there is hardly of a useful variety. In
contrast, redundant signed-digit number systems have much greater de-
grees of deliberate and useful redundancy. These systems are mainly used
for high-speed arithmetic, especially in multiplication (in which they are
used indirectly) and division (in which they are used more directly). They
are also used in some algorithms for the evaluation of elementary (i.e. tran-
scendental) functions.

In a typical RSD system, the number of values that any one digit may
assume exceeds the value of the radix, and the digits are individually signed.
If such a system employs a radix r, then the number of distinct values
that a digit may assume lies between r + 1 and 2r − 1. (In conventional
number systems, such as those above, the size of the digit-set does not
exceed r.) The digit-set in a redundant signed-digit number system is

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

6 Residue Number Systems: Theory and Implementation

{−a,−(a − 1), . . . ,−1, 0, 1, . . . , b − 1, b}, where d(r − 1)/2e ≤ a, b ≤ r − 1;
usually a = b. In contrast, for a conventional number system the digit-set
is usually {0, 1, . . . , r − 1}.

Given the above, it is evident that in an RSD system a given number
will have several distinct representations. For example, in the radix-2 RSD
system, which employs the digit-set {1, 0, 1} (where 1 stands for −1), three
five-bit representations of the number eleven are 01011 (that is, 8+2+1),
10101 (that is, 16−4+1), and 01101 (that is, 8+4−1). The representation of
the negation of a number represented in a redundant signed-digit notation is
obtained by changing the sign of every non-zero digit. For example, three
representations, obtained from the preceding example, of negative-eleven
are 01011 (that is, −8 − 2 − 1), 10101 (that is, −16 + 4 + 1), and 01101
(that is, −8− 4 + 1).

In high-speed multiplication, RSD systems appear implicitly in multi-
plier recoding [7]. For example, straightforward multiplication by the pos-
itive number 11111111 requires eight additions, but only two are required
if the multiplier is recoded (on-the-fly) into 100000001. For division, gen-
erating a quotient in RSD notation helps speed up the process by allowing
the individual quotient digits to be formed from only approximate com-
parisons of the partial dividend and the divisor. The redundancy permits
later correction of any errors in the choice of digits. For example, if two
successive quotient-digits should be 01, but the first digit is guessed to be
1, a correction can subsequently be made by selecting the next digit as 1,
since 01 and 11 represent the same number. The RSDs also find some use
in the evaluation of elementary functions, in a manner similar to that of
their use in division; the main algorithms here are the CORDIC ones [4].
As far as RNS goes, there has been a few proposals to use RSD to speed
up the implementations of RNS-arithmetic [3].

1.3 Residue number systems and arithmetic

Residue number systems are based on the congruence relation, which is
defined as follows. Two integers a and b are said to be congruent modulo
m if m divides exactly the difference of a and b; it is common, especially
in mathematics tests, to write a ≡ b (mod m) to denote this. Thus, for
example, 10 ≡ 7 (mod 3), 10 ≡ 4 (mod 3), 10 ≡ 1 (mod 3), and 10 ≡
−2 (mod 3). The number m is a modulus or base, and we shall assume
that its values exclude unity, which produces only trivial congruences.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Introduction 7

If q and r are the quotient and remainder, respectively, of the integer
division of a by m—that is, a = q.m + r—then, by definition, we have
a ≡ r (mod m). The number r is said to be the residue of a with respect
to m, and we shall usually denote this by r = |a|m. The set of m smallest
values, {0, 1, 2, . . . ,m − 1}, that the residue may assume is called the set
of least positive residues modulo m. Unless otherwise specified, we shall
assume that these are the only residues in use.

Suppose we have a set, {m1, m2, . . . ,mN}, of N positive and pairwise
relatively prime moduli5. Let M be the product of the moduli. Then every
number X < M has a unique representation in the residue number system,
which is the set of residues {|X|mi : 1 ≤ i ≤ N}. A partial proof of this
is as follows. Suppose X1 and X2 are two different numbers with the same
residue-set . Then |X1|mi

= |X2|mi
, and so |X1 −X2|mi

= 0. Therefore
X1 − X2 is the least common multiple (lcm) of mi. But if the mi are
relatively prime, then their lcm is M , and it must be that X1 − X2 is a
multiple of M . So it cannot be that X1 < M and X2 < M . Therefore, the
set {|X|mi : 1 ≤ i ≤ N} is unique and may be taken as the representation
of X. We shall write such a representation in the form 〈x1, x2, . . . , xN 〉,
where xi = |X|mi , and we shall indicate the relationship between X and
its residues by writing X ∼= 〈x1, x2, . . . , xN 〉. The number M is called the
dynamic range of the RNS, because the number of numbers that can be
represented is M . For unsigned numbers, that range is [0,M − 1].

Representations in a system in which the moduli are not pairwise rela-
tively prime will be not be unique: two or more numbers will have the same
representation. As an example, the residues of the integers zero through
fifteen relative to the moduli two, three, and five (which are pairwise rel-
atively prime) are given in the left half of Table 1.1. And the residues
of the same numbers relative to the moduli two, four, and six (which are
not pairwise relatively prime) are given in the right half of the same table.
Observe that no sequence of residues is repeated in the first half, whereas
there are repetitions in the second.

The preceding discussions (and the example in the left-half of Table 1.1)
define what may be considered standard residue number systems, and it
is with these that we shall primarily be concerned. Nevertheless, there are
useful examples of “non-standard” RNS, the most common of which are
the redundant residue number systems. Such a system is obtained by,
essentially, adding extra (redundant) moduli to a standard system. The
5That is, for every j and k, if j 6= k, then mj and mk have no common divisor larger

than unity.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

8 Residue Number Systems: Theory and Implementation

dynamic range then consists of a “legitimate” range, defined by the non-
redundant moduli and an “illegitimate” range; for arithmetic operations,
initial operands and results should be within legitimate range. Redundant
number systems of this type are especially useful in fault-tolerant comput-
ing. The redundant moduli mean that digit-positions with errors may be
excluded from computations while still retaining a sufficient part of the dy-
namic range. Furthermore, both the detection and correction of errors are
possible: with k redundant moduli, it is possible to detect up to k errors
and to correct up to bk/2c errors. A different form of redundancy can be
introduced by extending the size of the digit-set corresponding to a modu-
lus, in a manner similar to RSDs. For a modulus m, the normal digit set
is {0, 1, 2, . . . ,m − 1}; but if instead the digit-set used is {0, 1, 2, . . . , m̃},
where m̃ ≥ m, then some residues will have redundant representations.
Redundant residue number systems are discussed in slightly more detail in
Chapters 2 and 8.

Table 1.1: Residues for various moduli

Relatively prime moduli Relatively non-prime moduli
N m1 = 2 m2 = 3 m3 = 5 m1 = 2 m2 = 4 m3 = 6

0 0 0 0 0 0 0
1 1 1 1 1 1 1
2 0 2 2 0 2 2
3 1 0 3 1 3 3
4 0 1 4 0 0 4
5 1 2 0 1 1 5
6 0 0 1 0 2 0
7 1 1 2 1 3 1
8 0 2 3 0 0 2
9 1 0 4 1 1 3

10 0 1 0 0 2 4
11 1 2 1 1 3 5
12 0 0 2 0 0 0
13 1 1 3 1 1 1
14 0 2 4 0 2 2
15 1 0 0 1 3 3

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Introduction 9

1.3.1 Choice of moduli

Ignoring other, more “practical”, issues, the best moduli are probably prime
numbers—at least from a purely mathematical perspective. A particularly
useful property of such moduli is that of “generation”. If a modulus, m, is
prime, then there is at least one primitive root (or generator), p ≤ m − 1,
such that the set {

∣∣pi
∣∣
m

: i = 0, 1, 2, . . . ,m − 2} is the set of all the non-
zero residues with respect to m. As an example, if m = 7, then we may
take p = 3, since {∣∣30

∣∣
7

= 1,
∣∣31

∣∣
7

= 3,
∣∣32

∣∣
7

= 2,
∣∣33

∣∣
7

= 6,
∣∣34

∣∣
7

=
4,

∣∣35
∣∣
7

= 5} = {1, 2, 3, 4, 5, 6}; 5 is also a primitive root. Evidently, for
such moduli, multiplication and powering of residues may be carried out in
terms of simple operations on indices of the power of the primitive root, in
a manner similar to the use of logarithms and anti-logarithms in ordinary
multiplication. More on the subject will be found in Chapters 2 and 5.

For computer applications, it is important to have moduli-sets that fa-
cilitate both efficient representation and balance, where the latter means
that the differences between the moduli should be as small as possible.6

Take, for example, the choice of 13 and 17 for the moduli, these being ad-
jacent prime numbers; the dynamic range is 221. With a straightforward
binary encoding, four bits and five bits, respectively will be required to rep-
resent the corresponding residues. In the former case, the representational
efficiency is 13/16, and in the latter it is 17/32. If instead we chose 13 and
16, then the representational efficiency would be improved—to 16/16 in the
second case— but at the cost of reduction in the range (down to 208). On,
the other hand, with the better balanced pair, 15 and 16, we would have
both better efficiency and greater range: 15/16 and 16/16 for the former,
and 240 for the latter.

It is also useful to have moduli that simplify the implementation of the
arithmetic operations. This invariably means that arithmetic on residue
digits should not deviate too far from conventional arithmetic, which is
just arithmetic modulo a power of two. A common choice of prime modulus
that does not complicate arithmetic and which has good representational
efficiency is mi = 2i − 1. Not all pairs of numbers of the form 2i − 1
are relatively prime, but it can be shown that that 2j − 1 and 2k − 1 are
relatively prime if and only if j and k are relatively prime. Many moduli sets
are based on these choices, but there are other possibilities; for example,

6Unbalanced moduli-sets lead to uneven architectures, in which the role of the largest
moduli, with respect to both cost and performance, is excessively dominant. An example
of a moduli-set with good balance is {2n − 1, 2n, 2n + 1}.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

10 Residue Number Systems: Theory and Implementation

moduli-sets of the form {2n− 1, 2n, 2n + 1} are among the most popular in
use.

In general, then, there are at least four considerations that should be
taken into account in the selection of moduli. First, the selected moduli
must provide an adequate range whilst also ensuring that RNS representa-
tions are unique. The second is, as indicated above, the efficiency of binary
representations; in this regard, a balance between the different moduli in a
given moduli-set is also important. The third is that, ideally, the implemen-
tations of arithmetic units for RNS should to some extent be compatible
with those for conventional arithmetic, especially given the “legacy” that
exists for the latter. And the fourth is the size of individual moduli: Al-
though, as we shall see, certain RNS-arithmetic operations do not require
carries between digits, which is one of the primary advantages of RNS, this
is so only between digits. Since a digit is ultimately represented in binary,
there will be carries between bits, and therefore it is important to ensure
that digits (and, therefore, the moduli) are not too large. Low-precision
digits also make it possible to realize cost-effective table-lookup implemen-
tations of arithmetic operations. But, on the other hand, if the moduli
are small, then a large number of them may be required to ensure a suffi-
cient dynamic range. Of course, ultimately the choices made, and indeed
whether RNS is useful or not, depend on the particular applications and
technologies at hand.

1.3.2 Negative numbers

Some applications require that it be possible to represent negative numbers
as well as positive ones. As with the conventional number systems, any
one of the radix complement, diminished-radix complement, or sign-and-
magnitude notations may be used in RNS for such representation. The
merits and drawbacks of choosing one over the other are similar to those
for the conventional notations. In contrast with the conventional notations,
however, the determination of sign is much more difficult with the residue
notations, as is magnitude-comparison. This is the case even with sign-and-
magnitude notation, since determining the sign of the result of an arithmetic
operation such as addition or subtraction is not easy—even if the signs of
the operands are known. This problem, which is discussed in slightly more
detail below and in Chapter 6, imposes many limitations on the application
of RNS.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Introduction 11

The extension of sign-and-magnitude notation to RNS involves the use
of a single sign-digit or prepending to each residue in a representation an
extra bit or digit for the sign; we shall assume the former. For the comple-
ment notations, the range of representable numbers is usually partitioned
into two approximately equal parts, such that approximately half of the
numbers are positive and the rest are negative. Thus, if the moduli used
are m1,m2 . . . , mN , then there are M

4
=

∏N
i=1 mi representable numbers,

and every representable number, X, satisfies one of two relations:

−M − 1
2

≤ X ≤ M − 1
2

if M is odd

−M

2
≤ X ≤ M

2
− 1 if M is even

Then, for complement notation, if 〈x1, x2, . . . , xN 〉 is the representation of
X, where xi = |X|mi , then the representation of −X is 〈x1, x2, . . . , xN 〉,
where xi is the mi’s-complement, i.e. the radix complement, or the (mi −
1)’s-complement, i.e. the diminished-radix complement, of xi. For example,
with the moduli-set {2, 3, 5, 7}, the representation of seventeen is 〈1, 2, 2, 3〉
and the radix-complement representation of its negation is 〈1, 1, 3, 4〉, from
〈2 − 1, 3 − 2, 5 − 2, 7 − 3〉. The justification for taking the complement
(negation) of each residue digit is that |mi − xi|mi

= −xi.
If we again take [0,M − 1] as the nominal range of an RNS, then it

will be seen that in the last example 〈1, 1, 3, 4〉 is also the representation
of 193. That is, in splitting the range [0,M − 1], we take for positive
numbers the subrange [0,M/2 − 1] if M is even, or [0, (M − 1)/2] if M is
odd, and correspondingly, for the negative numbers we take [M/2,M − 1]
or [(M +1)/2,M −1]. This makes sense since |M −X|M = −X (in the last
example 210− 17 = 193) and fits in with the discussion in Section 1.1 as to
how we may also view diminished-radix complement and radix-complement
representations as the representations of positive numbers.

Unless otherwise stated, we shall generally assume that we are dealing
with just the positive numbers.

1.3.3 Basic arithmetic

The standard arithmetic operations of addition/subtraction and multiplica-
tion are easily implemented with residue notation, depending on the choice
of the moduli, but division is much more difficult. The latter is not surpris-

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

12 Residue Number Systems: Theory and Implementation

ing, in light of the statement above on the difficulties of sign-determination
and magnitude-comparison. Residue addition is carried out by individu-
ally adding corresponding digits, relative to the modulus for their position.
That is, a carry-out from one digit position is not propagated into the next
digit position.

If the given moduli are m1,m2, . . . , mN , X ∼= 〈x1, x2, . . . , xN 〉 and Y ∼=
〈y1, y2, . . . yN 〉, i.e. xi = |X|mi and yi = |Y |mi , then we may define the
addition X + Y = Z by

X + Y ∼= 〈x1, x2, . . . , xN 〉+ 〈y1, y2, . . . yN 〉
= 〈z1, z2, . . . , zN 〉 where zi = |xi + yi|mi

∼= Z

As an example, with the moduli-set {2, 3, 5, 7}, the representation of seven-
teen is 〈1, 2, 2, 3〉, that of nineteen is 〈1, 1, 4, 5〉, and adding the two residue
numbers yields 〈0, 0, 1, 1〉, which is the representation for thirty-six in that
system.

Subtraction may be carried out by negating (in whatever is the chosen
notation) the subtrahend and adding to the minuend. This is straightfor-
ward for numbers in diminished-radix complement or radix complement
notation. For numbers represented in residue sign-and-magnitude, a slight
modification of the algorithm for conventional sign-and-magnitude is nec-
essary: the sign digit is fanned out to all positions in the residue represen-
tation, and addition then proceeds as in the case for unsigned numbers but
with a conventional sign-and-magnitude algorithm.

Multiplication too can be performed simply by multiplying correspond-
ing residue digit-pairs, relative to the modulus for their position; that
is, multiply digits and ignore or adjust an appropriate part of the re-
sult. If the given moduli are m1,m2, . . . ,mN , X ∼= 〈x1, x2, . . . , xN 〉 and
Y ∼= 〈y1, y2, . . . yN 〉, i.e. xi = |X|mi and yi = |Y |mi , then we may define
the multiplication X × Y = Z by

X × Y ∼= 〈x1, x2, . . . , xN 〉 × 〈y1, y2, . . . yN 〉
= 〈z1, z2, . . . , zN 〉 where zi = |xi × yi|mi

∼= Z

As an example, with the moduli-set {2, 3, 5, 7}, the representation of seven-
teen is 〈1, 2, 2, 3〉, that of nineteen is 〈1, 1, 4, 5〉, and that of their product,
three hundred and twenty-three, is 〈1, 2, 3, 1〉. As with addition, obtaining
the modulus with respect to mi can be implemented without division, and
quite efficiently, if mi is of a suitable form.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Introduction 13

Basic fixed-point division consists, essentially, of a sequence of subtrac-
tions, magnitude-comparisons, and selections of the quotient-digits. But
comparison in RNS is a difficult operation, because RNS is not positional
or weighted. Consider, for example, the fact that with the moduli-set
{2, 3, 5, 7}, the number represented by 〈0, 0, 1, 1〉 is almost twice that rep-
resented by 〈1, 1, 4, 5〉, but this is far from apparent. It should therefore be
expected that division will be a difficult operation, and it is. One way in
which division could be readily implemented is to convert the operands to
a conventional notation, use a conventional division procedure, and then
convert the result back into residue notation. The conversions are, how-
ever, time consuming, and a direct algorithm should be used if possible.
The essence of a good RNS division algorithm will therefore be a relatively
efficient method of performing magnitude-comparisons. Such algorithms
are discussed in Chapter 6. In a sense, all of them require what are essen-
tially conversions out of the RNS, and, compared with conventional division
algorithms, all of them are rather unsatisfactory.

1.3.4 Conversion

The most direct way to convert from a conventional representation to a
residue one, a process known as forward conversion, is to divide by each of
the given moduli and then collect the remainders. This, however, is likely to
be a costly operation if the number is represented in an arbitrary radix and
the moduli are arbitrary. If, on the other hand, the number is represented
in radix-2 (or a radix that is a power of two) and the moduli are of a suitable
form (e.g. 2n−1), then there procedures that can be implemented with more
efficiency. The conversion from residue notation to a conventional notation,
a process known as reverse conversion, is more difficult (conceptually, if not
necessarily in the implementation) and so far has been one of the major
impediments to the adoption use of RNS. One way in which it can be done is
to assign weights to the digits of a residue representation and then produce
a “conventional” (i.e positional, weighted) mixed-radix representation from
this. This mixed-radix representation can then be converted into whatever
conventional form is desired. In practice, the use of a direct conversion
procedure for the latter can be avoided by carrying out the arithmetic of
the conversion in the notation for the result. Another approach involves
the use of the Chinese Remainder Theorem, which is the basis for many
algorithms for conversion from residue to conventional notation; this too
involves, in essence, the extraction of a mixed-radix representation.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

14 Residue Number Systems: Theory and Implementation

1.3.5 Base extension

We have so far assumed that once the moduli-set has been deter-
mined, then all operations are carried out with respect to only that
set. That is not always so. A frequently occurring computation is that
of base extension, which is defined as follows. Given a residue rep-
resentation 〈|X|m1 , |X|m2 , . . . , |X|mN

〉 and an additional set of moduli,
mN+1,mN+2, . . . ,mN+K , such that m1,m2, . . . mN ,mN+1, . . . , mN+K are
all pairwise relatively prime, we want to compute the residue representation
〈|X|m1 , |X|m2 , . . . , |X|mN

, |X|mN+1 , . . . , |X|mN+K
〉. Base extension is very

useful in dealing with the difficult operations of reverse conversion, divi-
sion, dynamic-range extension, magnitude-comparison, overflow-detection,
and sign-determination. The operation is discussed in more detail in Chap-
ters 2 and 7.

1.3.6 Alternative encodings

The basic encoding for values (residues, etc.) in almost all RNS implemen-
tations is conventional binary. That is, if the largest possible value is N ,
then each value is represented in dlog2 Ne bits, and the weighted sum of
the bits in a representation is the value represented. This is the encoding
we shall assume throughout the book. Nevertheless, alternative encodings
are possible, and one that is perhaps worthy of note is one-hot encoding
(OHE), which is a special case of n-of-m encoding7. In OHE, if the largest
possible value is N , then each data value is represented in N bits. Such
a representation for a value n has 0s in all bit positions, except the nth,
which is set to 1. Evidently OHE has less representational efficiency than
straightforward binary encoding. The basic idea of OHE is not new, but
its application is to RNS is. This is because OHE is not suitable for the
representation of large values; but in RNS the values generally tend to be
small, and so OHE is more practical.

The nominal advantages of OHE residue numbers are as follows [6].
First, a change in the value of the represented number requires changing
at most two bits; this is the smallest change possible and is beneficial for
power consumption, since, in current technology, that is related to the
number of transitional activities. Second, arithmetic operations are sim-
ply implemented by shifting: addition consists of rotating one operand by
an amount equal to the value of the other operand, and multiplication

7In n-hot (n-of-m) encoding, a value is represented by 1s on n out of m lines.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Introduction 15

(assuming moduli-sets with primitive roots) can be realized by rotations
and index (“log”) and reverse-index (“anti-log”) operations that are sim-
ple permutations of wires. (Multiplication where there is no primitive root
can be realized by using barrel shifters.) Other operations that are easily
realized are inverse-calculation (the analogues, discussed in Chapter 2, of
negation and reciprocation in conventional arithmetic), index computation,
and modulus conversion. Of course, whether the nominal advantages can
be turned into practical advantages is highly dependent on the technol-
ogy at hand—for example, on whether, for arithmetic operations, barrel
shifters can be realized with better efficiency than in conventional circuits.
Nevertheless, initial results appear promising.

All that said, OHE does have two significant limitations. First, the
sizes of basic arithmetic circuits, such as adders and multipliers, grow at a
rate O(m2), where m is the modulus, in contrast, with conventional binary
circuits, in which the rate of growth can be constrained to O(m log m).
Second, the poor representational efficiency means that the cost of inter-
connections will be much higher than with conventional circuits—at least,
O(m) growth versus O(log m); this may be critical in current technologies,
in which interconnections play an increasingly larger role.

1.4 Using residue number systems

We now give an example that demonstrates a typical application of residue
number systems: a multiply-accumulate operation over a sequence of
scalars. This is an operation that occurs very frequently in digital-signal-
processing applications, one of the areas for which RNS is suitable.

Example. Let the moduli-set be {mi} = {2, 3, 5, 7}. The dynamic range
of this moduli-set 210. Suppose we wish to evaluate the sum-of-products
7× 3 + 16× 5 + 47× 2. The residue-sets are

|2|mi
= {0, 2, 2, 2}

|3|mi
= {1, 0, 3, 3}

|5|mi
= {1, 2, 0, 5}

|7|mi
= {1, 1, 2, 0}

|16|mi
= {0, 1, 1, 2}

|47|mi
= {1, 2, 2, 5}

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

16 Residue Number Systems: Theory and Implementation

We proceed by first computing the products by multiplying the corre-
sponding residues:

|7× 3|mi
= {|1× 1|2 , |1× 0|3 , |2× 3|5 , |0× 3|7}
= {1, 0, 1, 0}

|16× 5|mi
= {|0× 1|2 , |1× 2|3 , |1× 0|5 , |2× 5|7}
= {0, 2, 0, 3}

|47× 2|mi
= {|1× 0|2 , |2× 2|3 , |2× 2|5 , |5× 2|7}
= {0, 1, 4, 3}

Now that we have computed the products, the sum of products can be
evaluated by adding the corresponding residues:

|7× 3 + 16× 5 + 47× 2|mi
= {|1 + 0 + 0|2 , |0 + 2 + 1|3 , |1 + 0 + 4|5 ,

|0 + 3 + 3|7}
= {1, 0, 0, 6}

end example

The residue representation 〈1, 0, 0, 6〉 corresponds to the decimal 195,
which is correct. Consider now the cost of the multipliers required if RNS
was not used. We need to multiply 7 and 3, and this requires a 5-bit
multiplier. Similarly, the multipliers required for the products of 16 and
5 and 47 and 2 are be 8-bit and 9-bit, respectively. But with the use of
RNS, 6-bit multipliers would suffice for all the multiplications. Thus the
use of RNS can result in considerable savings in operational-time, area,
and power. Moreover, all multiplications can be done in parallel in order
to increase the over all speed. This shows a primary advantage of RNS
relative to conventional notations. Although there is a final overhead in
conversion between the number systems, it may be considered as a one-off
overhead.

Whether RNS is useful or not crucially depends on the application.
For appropriate applications, there have been some clear evidence of the
advantages. As an example, [5] gives the design of a digital-signal processor
whose arithmetic units are fully in RNS. An evaluation of this processor
shows better performance at lower cost (chip area) than with a conventional
system.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Introduction 17

1.5 Summary

The main point of this chapter has been to introduce the essential aspects
of residue number systems and to give a brief, but essentially complete,
summary of what is to come in the rest of the book. We have also re-
viewed the three standard number systems and one other unconventional
number system used for arithmetic in computers; all of these have some
relationships with residue arithmetic, especially in implementation. Major
differences between residue arithmetic and standard computer arithmetic
are the absence of carry-propagation (in the former), in the two main op-
erations of addition and multiplication, and the relatively low precisions
required, which leads to practical table-lookup implementations. In prac-
tice, these may make residue arithmetic worthwhile, even though in terms
of asymptotic bounds such arithmetic has little advantage over conven-
tional arithmetic. A wealth of information on residue number systems, and
their applications, will be found in [1, 2], although these may currently be
difficult to obtain.

We have noted above that addition and multiplication are easy to re-
alize in a residue number system but that operations that require the de-
termination of magnitudes (e.g. magnitude-comparison, division, overflow,
and sign-determination) are difficult; reverse conversion is also difficult.8

Together, these suggest that the best applications for residue number sys-
tems are those with numerous additions and multiplications, but relatively
few conversions or magnitude operations, and in which the results of all
arithmetic operations lie within a known range. Such applications are typ-
ical of digital signal processing, in which, for example, the computation of
inner-products (essentially, sequences of multiply-add operations) is quite
common.

Residue number systems are also useful in error detection and correc-
tion. This is apparent, given the independence of digits in a residue-number
representation: an error in one digit does not corrupt any other digits. In
general, the use of redundant moduli, i.e. extra moduli that play no role in
determining the dynamic range, facilitates both error detection and correc-
tion. But even without redundant moduli, fault-tolerance is possible, since
computation can still continue after the isolation of faulty digit-positions,
provided that a smaller dynamic range is acceptable. Lastly, RNS can help
speed up complex-number arithmetic: for example, the multiplication of

8The essence of the problem with these operations is that they require interactions
between all the digits of an RNS representation.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

18 Residue Number Systems: Theory and Implementation

two complex numbers requires four multiplications and two additions when
done conventionally but only two multiplications and two additions with
the right sort of RNS. (See Chapter 2.)

Figure 1.1 shows the general structure of an RNS processor.

Forward

Conversion

...

Operands

Modulo m1

Modulo m2

Modulo mN

Reverse

Conversion

Results

Modulo

Channels

Figure 1.1: General structure of an RNS processor

References

(1) N. S. Szabo and R. I. Tanaka. 1967. Residue Arithmetic and Its Ap-
plications to Computer Technology. McGraw-Hill, New York.

(2) M. A. Soderstrand et. al. 1986. Residue Number System Arithmetic:
Modern Applications in Digital Signal Processing. IEEE Press, Cali-
fornia.

(3) A. Lindstrom, M. Nordseth, L. Bengtsson, and A. Omondi. 2003.
Arithmetic circuits combining residue and signed-digit representations.
In: A. R. Omondi and S. Sedhukin, Eds. Advances in Computer
Systems Architecture, Lecture Notes In Computer Science, vol. 2823
(Springer-Verlag, Heidelberg) pp 246–257.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Introduction 19

(4) J.-M. Muller. 1997. Elementary Functions: Algorithms and Implemen-
tations. Birkhauser, Boston.

(5) R. Charles and L. Sousa. 2003. “RDSP: A RISC DSP based on residue
number system.” In: Proceedings, Euromicro Symposium on Digital
System Design.

(6) W. A. Chren. 1998. One-hot residue encoding for low delay-power
product CMOS design. IEEE Transactions on Circuits and Systems –
II: Analog and Digital Signal Processing , 45(3):303–313.

(7) A. R. Omondi. 1994. Computer Arithmetic Systems. Prentice-Hall,
UK.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

This page intentionally left blankThis page intentionally left blank

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Chapter 2

Mathematical fundamentals

This chapter consists of several short sections that cover the mathematical
fundamentals on which residue number systems are founded; more advanced
results are discussed in subsequent chapters, as needed. As we have seen
in Chapter 1, the basic relationship between numbers in a residue num-
ber system is that of a congruence relative to a given modulus. The first
section of the chapter goes into some more detail on the properties of this
relation, especially as it pertains to the basic arithmetic operations. The
second section discusses the basic representation of numbers and also in-
cludes brief discussions of certain characteristics of residue representations.
In the third section, a basic algebra of residues is developed. The fourth
section briefly introduces one of the most important results in the theory of
residue numbers: the Chinese Remainder Theorem. The fifth section cov-
ers complex-number representation within residue number systems. The
sixth section is an introduction to one of the more promising application-
areas for reside number systems: fault detection and correction, through
the use of redundant number systems. The Core Function, a useful tool in
dealing with the problematic (i.e. hard-to-implement) operations in residue
number systems, is discussed in the seventh section. The last section is a
concluding summary.

The theorems and properties given of congruences also form an impor-
tant background in dealing with conversion between number systems; and,
as we shall see in subsequent chapters, these results are also important in
more practical ways, such as the design of efficient hardware for modular
arithmetic operations. Unless otherwise specified, a reference to residue-
set , with respect to a modulus m, will mean the smallest set of positive
residues. Nevertheless it will be evident that most of these properties ap-
ply to all residues. The reader need not go through the entire chapter at

21

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

22 Residue Number Systems: Theory and Implementation

one sitting but may later return to parts, according to the requirements in
subsequent chapters.

2.1 Properties of congruences

In this section, we shall introduce some more fundamental properties of
congruences, which properties apply regardless of the numbers and residue-
sets at hand. These properties are helpful in understanding residues and
the algebra of residues. The basic properties are as follows.

Addition and subtraction

Congruences with respect to the same modulus may be added or subtracted,
and the result will be a valid congruence. That is, if

X ≡ x (mod m)

Y ≡ y (mod m)

then

X ± Y ≡ x± y (mod m)

One implication of this property is that terms may be transferred from one
side of a congruence to the other by a simple sign-change, just as is the
case in the “normal” algebra of numbers.

Multiplication

Congruences with respect to the same modulus may be multiplied, and the
result is a valid congruence. That is, if

X ≡ x (mod m)

Y ≡ y (mod m)

then

X × Y ≡ x× y (mod m)

It follows from this that raising both sides of the congruence to the same
power (a positive integer), or multiplying the congruence by a constant,
results in a valid congruence.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Mathematical fundamentals 23

Extension of sum and product properties

The properties above for addition and multiplication have two direct exten-
sions. If {x1, x2,, xN} and {y1, y2,, yN} are, respectively, the residue-
sets (without any restrictions) of X and Y , obtained relative to the moduli
m1, m2, . . . ,mN , then the residue-set of X ± Y is

{x1 ± y1, x2 ± y2, . . . , xN ± yN}
and that for X × Y is

{x1 × y1, x2 × y2, , xn−1 × yn−1}
We can be more rigorous and insist that the sum, or difference, or product
lie within the permissible range, that is, [0,M −1], where M is the product
of the moduli m1,m2, . . . , mN . We may then rewrite the above extensions
as

X ± Y ∼= 〈|x1 ± y1|m0 , |x2 ± y2|m1 , . . . , |xn−1 ± yN |mN 〉
and

X × Y ∼= 〈|x1 × y1|m0 , |x2 × y2|m1 , . . . , |xN × yN |mN 〉

Example. Suppose X = 21, Y = 11 and the moduli-set is {2, 3, 5}. Then

X + Y ∼= 〈|x1 + y1|2 , |x2 + y2|3 , |x3 + y3|5〉
where, xi = |X|mi

and yi = |Y |mi
. And with X = 21 and Y = 11, we have

21 + 11 ∼= 〈|1 + 1|2 , |0 + 2|3 , |1 + 1|5〉
32 ∼= 〈0, 2, 2〉

Similarly, for multiplication, we have

X × Y ∼= 〈|x1 × y1|2 , |x2 × y2|3 , |x3 × y3|5〉
21× 11 ∼= 〈|1× 1|2 , |0× 2|3 , |x3 × y3|5〉

end example

Transitivity

Congruences are transitive. That is, if

X ≡ Y (mod m)

Y ≡ Z (mod m)

then

X ≡ Z (mod m)

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

24 Residue Number Systems: Theory and Implementation

Division

Dividing a number, its residue with respect to a given modulus, and the
modulus by a non-zero common factor results in a valid congruence. That
is, if we have a congruence

X ≡ x (mod m)

then
X

n
≡ x

n

(
mod

m

n

)

From this, it follows that dividing a number and its residue by a common
factor that is prime relative to the modulus also results in a valid congru-
ence. By the last equation, if

aX ≡ ax (mod m)

where a and m are relatively-prime, then we immediately have another
valid congruence:

X ≡ x (mod m)

The above properties show that in residue arithmetic the basic operations,
with the exception of division, are distributive over the moduli. This—
the potential for parallelism— is one of the aspects that makes residue
arithmetic particularly attractive.

2.2 Basic number representation

We now consider the representation of numbers in a residue number system.
A key point made here is that for most practical computational purposes,
several moduli are required and these moduli should be prime relative to one
another. If an insufficient number of moduli is used, or the moduli are not
all relatively-prime, then it it is possible to obtain incorect results because,
in the course of computation, it is possible to have two or more numbers
that are nominally different but which have the same representation in the
residue number system used. These points have already been touched on
in Chapter 1, but we shall now consider a detailed example.

Consider a multiply-and-accumulate operation with respect to the mod-
ulus 17. All the positive residues will be in the interval [0, 16]. Now, take
the multiply-and-accumulate operation

X = 7× 9 + 3× 4 + 19× 56 + 12× 14

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Mathematical fundamentals 25

Reduction, relative to the modulus, of both sides of this equation yields

|X|17 = |7× 9 + 3× 4 + 19× 56 + 12× 14|17
= |63 + 12 + 1064 + 168|17
= |1307|17
= 15

Using normal multiplication and addition, we have arrived at the result
X = 1307, and then computed |1307|17 = 15. But in a modular multiply-
and-accumulate operation, a set of equations such as these are insufficient to
uniquely identify the result, even though they do give us some information
about X—to wit, that |X|17 = 15.

In the example just given, there are seventy-six numbers between 0 and
1307 whose residue with respect to 17 is also 15; in other words, there are
other sets of operands for which the multiply-and-accumulate gives 15 as
the result. In order to narrow down the possibilities, we need to consider
evaluating the residue of X with respect to another modulus. Let us take
13 as one such modulus, since this is prime relative to 17. Taking modulus
of X with respect to 13 yields 7. The possibilities are now reduced to
b76/13c = 5. This, however, is still insufficient because there is still some
ambiguity about X. We need to further reduce the possibilities—to either
zero or one—and this can be achieved by using additional moduli whose
product is 7. Since 7 is prime, we may take that as the additional modulus.
We are then in a position to uniquely determine the representation of X

in the residue system. Our moduli-set is now {7, 13, 17}, in which all the
elements are pairwise relatively prime. We now compute |X|7, which is
the residue 5. So the residue-set of X with respect to this moduli-set is
{5, 7, 15}.

It can be shown that there is one and only one number between 0 and
7× 13× 17 = 1547 exists that has the residue-set {5, 7, 15}. Suppose there
was another number, say Y , with the same residue set. Then

|X|mi
= xi mi = 7, 13, 17

|Y |mi
= yi

and subtracting, we have

|X − Y |mi
= xi − yi

Since, by our assumptions (X and Y have the same residue set), xi−yi = 0,
and so

|X − Y |mi
= 0

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

26 Residue Number Systems: Theory and Implementation

If that is so, then X − Y should be divisible each of the mis. But mi

consists of a set of relatively-prime numbers. Therefore, if the difference,
X − Y is divisible by each of the mis, then that difference must be either
1547 or a multiple of 1547. This shows that in the interval [0, 1546] there
cannot be a number such as the postulated Y . Therefore, X is unique.

What we have shown is that in order to uniquely represent any number
in a residue number system, we need to have a set of relatively-prime moduli
and that the number to be represented should lie in an interval between
0 and the product of the moduli, which product happens to be the least
common multiple of the moduli.

We have noted above that residue number systems are particularly ad-
vantageous with respect to the arithmetic operations of addition and multi-
plication, because of the inherent parallelism. Such merits cannot, however,
be readily extended to other useful operations, and this limitation has usu-
ally constrained the widespread practical application of residue number sys-
tems. We have in mind here are operations such as magnitude-comparison,
which in a more conventional number system may be taken as a subtraction
(essentially an addition) followed by the determination of sign. Consider,
for example, the representations of the decimal numbers 34, 67, and 1300
in the RNS with the moduli-set used {7, 13, 17}. These representations are
〈6, 8, 0〉 for 34, 〈4, 2, 16〉 for 67, and 〈5, 0, 8〉 for 1300. Observe that each of
the residues of 1300 is smaller than some residue for 34 or 67, although 1300
is much larger than both 34 and 67. Unlike the situation in a positional,
weighted number system, here the positions of the digits give no helpful
information. What this example shows is that in the translation to residue
representation, all magnitude information is lost. Consequently, it is not
surprising that magnitude-comparison with residues numbers is a difficult
task. There exist several methods for magnitude-comparison, but most of
these are complex and cannot be easily implemented in hardware—at least
relative to addition, subtraction, and multiplication. We should therefore
expect that division, which in its most basic form consists of comparisons
of partial remainders with multiplies of the divisor and the determination
of the signs of the partial remainders, will also be similarly problematic.
This is indeed the case, and it is so for any operation that explicitly or
implicitly requires magnitude-comparison.

In most number systems, the representation of every number should, ide-
ally, be unique. This is evidently the case in a typical positional, weighted
number system, such as the ordinary decimal number system. On the other
hand, with residue number systems we observe that the residues relative

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Mathematical fundamentals 27

to a given modulus repeat after a definite period, as do the residue-sets
relative to a given moduli-set, once the upper limit of the dynamic range
has been exceeded. (See Table 1.1 for example.) Thus the number of states
that can uniquely be represented is limited in a residue number system.
With the moduli-set {3, 4, 5}, for example, the numbers 47 and 107 both
have the same representation, which is 〈2, 3, 2〉. The period of this RNS
is 3 × 4 × 5 = 60; so the residues repeat for integer multiples of 60. For
example, the residues are same for 47, 107, 167, 227, and so forth.

Given a particular RNS, the direct way to increase the number of per-
missible states (i.e. the dynamic range) is through the inclusion of more
moduli that are pairwise relatively prime to the other members in the given
moduli-set and to each other; this essentially yields another RNS. Other-
wise, we must restrict ourselves to the basic period (60 in the example
above), which corresponds to the dynamic range of the given residue num-
ber system.

2.3 Algebra of residues

In this section we introduce several important properties of residue num-
bers and arithmetic on the same. These properties are foundational for later
chapters on arithmetic, conversion and applications. Most of the properties
below are immediately obvious follow from the definition of residue num-
bers; they follow directly from the properties given above of congruences
and modular arithmetic.

Additive inverse

The additive inverse, x, of a residue, x, is defined by the equation

x + x = 0

The additive-inverse operation may be applied to individual residues, or
to a system as a whole, and its main role is in subtraction. The additive
inverse exists and is unique for any residue. It is obtained through a simple
operation:

x̄ = |m− x|m
(The reader will observe here a direct correspondence with the discussions
in Chapter 1 of the representation of negative numbers through comple-
mentation.)

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

28 Residue Number Systems: Theory and Implementation

Example. Consider the moduli-set {2, 3, 5}. The residue-set for 24 relative
to this set is {0, 0, 4}. So the additive inverse is computed as

|2− 0|2 = 0

|3− 0|3 = 0

|5− 4|5 = 1

That is, the additive inverse of 〈0, 0, 4〉 is 〈0, 0, 1〉.
end example

Subtraction in an RNS may be defined as the addition of the additive
inverse of the subtrahend.

Example. Consider the numbers 24 and 35 and the moduli-set {2, 3, 5}.
The residue-set and that of the corresponding inverse for 35 are {1, 2, 0}
and {1, 1, 0} respectively. And those for 24 are {0, 0, 4} and {0, 0, 1} The
subtraction 35− 24 may therefore be carried out as

35− 24 = 〈1, 2, 0〉+ 〈0̄, 0̄, 4̄〉
= 〈1, 2, 0〉+ 〈0, 0, 1〉
= 〈1, 2, 1〉

The set {1, 2, 1} corresponds to 11. And the subtraction 24 − 35 may be
carried out as

24− 35 = 〈0, 0, 4〉+ 〈1̄, 2̄, 0̄〉
= 〈0, 0, 4〉+ 〈1, 1, 0〉
= 〈1, 1, 4〉

The residue-set obtained is the additive inverse of the 〈1, 2, 1〉 and corre-
sponds to −11.
end example

If no additional information is given, then in the last case one could also
interpret 〈1, 1, 4〉 as the representation for 19. This difficulty associated
with the RNS can be partially removed by dividing the entire range into
two approximately equal subranges: one for X and one for its negation, X.
For example, the dynamic range of the moduli-set {2, 3, 5} is 30, and this
may be divided into two subranges, such that the residue representations
corresponding to numbers between 0 through 14 are considered positive and
those in the range 15 through 29 are considered negative. The ambiguity
in interpretation is then eliminated.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Mathematical fundamentals 29

Addition and subtraction

|X ± Y |m = | |X|m ± |Y |m |m (2.1)

The proof of this follows from the addition-property of Section 2.1: If x =
|X|m and y = |Y |m, then

X + Y ≡ |x + y|m
The congruence relation simply states that x + y is the residue |X + Y |m.
According to the definition of residue, x + y should lie within the interval
[0,m − 1]. Since the sum of individual residues can exceed the modulus,
m, a modular reduction is necessary to bring the sum back to within the
legitimate range. If y is greater than x, then x− y is negative and can be
converted to a positive residue by computing the additive inverse.

Example. Take the moduli-set {2, 3, 5, 7}. Let X = 27 and Y = 145; the
corresponding residue representations are 〈1, 0, 2, 6〉 and 〈1, 1, 0, 5〉 respec-
tively. Whence

27 + 145 ∼= 〈|1 + 1|2 , |0 + 1|3 , |2 + 0|5 , |6 + 5|7〉
= 〈0, 1, 2, 4〉

end example

The addition and subtraction operation in the case of residues is defined as

|x± y|m = | |x|m ± |y|m|m
where x and y are residues of X and Y with respect to modulus m. For
example, if X = 6 and Y = 5, then with respect to the modulus 7, we have

|6 + 5|7 = |11|7
= 4

Multiplication

|X × Y |m = | |X|m × |Y |m |m (2.2)

This property is similar to that of addition and subtraction. The proof
follows from the congruence relation that states that if x and y are the
residues of X and Y , with respect to m, then x × y is the residue of X ×

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

30 Residue Number Systems: Theory and Implementation

Y (mod m). The product of the individual residues may be greater than
m, hence the final (outer) modular reduction.

Example. Take X = 16 and Y = 9. Relative to the moduli-set {2, 3, 5, 7},
the residue representations of X and Y are 〈0, 1, 1, 2〉 and 〈1, 0, 4, 2〉, re-
spectively. So

|16× 9|7 = 〈|0× 1|2 , |1× 0|3 |1× 4|5 |2× 2|7〉
= 〈0, 0, 4, 4〉

end example

It is necessary to insure that the product is within the range of the residue
system. Therefore, for the multiplication of residues we have

|x× y|m = | |x|m × |y|m |m

Multiples of a modulus

|k ×m|m = 0 for any integer k

The definition of a congruence states that X is congruent to x modulo m

if and if only m divides exactly the difference between X − x or x is the
residue of X with respect to m. In this case, k ×m− 0 is exactly divisible
by m. So |k × m|m = 0 is true, and from the last equation we have an
immediate corollary:

|kx|km = k|x|m

Addition and subtraction of integer multiple of a modulus

The residue of a sum or a difference of a number and an integer multiple
of the modulus is the same as the residue of the number:

|X ± k ×m|m = |X|m
The proof of this follows from the multiplication property.

Example. Take X = 17 and the moduli-set {2, 3, 5}. Then

|17± (k × 5)|mi
= {|17|2 , |17|3 |17|5}
= {1, 2, 2}

where k is an integer.
end example

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Mathematical fundamentals 31

Multiplicative inverses

The multiplicative inverse is an analogue of the reciprocal in conventional
arithmetic and is defined as follows.

Definition. If x is a non-zero integer, then x−1 is the multiplicative inverse
of x, with respect to the modulus m if

∣∣x× x−1
∣∣
m

= 1

where x and m have no common factor (other than unity). We shall denote
this by writing

∣∣x−1
∣∣
m

for that inverse; that is
∣∣x×

∣∣x−1
∣∣
m

∣∣
m

In the published literature, the notation |1/x|m is also frequently used to
denote the multiplicative inverse1 :

∣∣∣∣x×
∣∣∣∣
1
x

∣∣∣∣
m

∣∣∣∣
m

= 1

So to determine the multiplicative inverse of x, it is sufficient to find a
number x−1 such that

∣∣x× x−1
∣∣
m

= 1 0 ≤ x, x−1 < m

Example. Let x = 7. To determine the multiplicative inverse of x with
respect to 11, we want to find x−1 such that

∣∣7× x−1
∣∣
11

= 1

That is, we want to find a number whose modular product with 7 is 1. We
can readily see that the product of 7 and 8 is 56, and |56|11 = 1. So the
multiplicative inverse of 7 with respect to 11 is 8.
end example

Whereas every residue has an additive inverse, with respect to any mod-
ulus, it is not the case that every residue has a multiplicative inverse. Evi-
dently, if the modulus is prime, then every residue, x, with respect to that
modulus has a multiplicative inverse. In general,

∣∣x−1
∣∣
m

exists only if x

and m are relatively prime. Table 2.1 shows examples.

1The reader will also frequently find x
∣∣1/y−1

∣∣
m

written as
∣∣x/y−1

∣∣
m

.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

32 Residue Number Systems: Theory and Implementation

Table 2.1: Multiplicative inverses

m = 7 m = 8
x x−1 x x−1

1 1 1 1
2 4 2 —
3 5 3 3
4 2 4 —
5 3 5 5
6 6 6 –

7 7

There is no general expression for determining the multiplicative inverse
of a number; a brute-force search is about the best one can do. Nevertheless,
for prime m, Fermat’s Theorem, which is stated next, may sometimes be
useful in determining multiplicative inverses.

Fermat’s Theorem. For a prime modulus m and a non-negative integer
a that is not a multiple of m

|am|m = |a|m
proof. The proof is by induction on a. The theorem is evidently true for
a = 0 and for a = 1. Consider now the integer a + 1. Expanding (a + 1)m,
we have

(a + 1)m = am + Cn
1 am−1 + Cn

1 am−2 + · · ·+ 1 where Cn
k =

n!
(n− k)!k!

Except for the first and the last terms, every other term in the expansion
has the coefficient m. Therefore, all these terms disappear when a modular
reduction is carried out with respect to m. The only terms that then remain
are the first and the last ones. So

|(a + 1)m|m = |am + 1|m

= | |am|m + 1|m (2.3)

But, by our hypothesis

|am|m = |a|m (2.4)

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Mathematical fundamentals 33

So substituting from Equation 2.4 into Equation 2.3, we get

| |am|m + 1|
m

= |a + 1|m
whence

|(a + 1)m|m = |a + 1|m
Since the theorem is true for a+1, by induction it is true for all non-negative
a.
end proof.

Fermat’s theorem is sometimes useful in directly finding the multiplicative
inverse. By the theorem

|am|m = |a|m
so

∣∣ama−1
∣∣ =

∣∣aa−1
∣∣

= 1

So
∣∣ama−1

∣∣
m

=
∣∣aam−2aa−1

∣∣
m

=
∣∣ ∣∣aa−1

∣∣ ∣∣am−2a
∣∣
m

∣∣
m

=
∣∣am−2a

∣∣
m

= 1

from which we may deduce that a and am−2 are multiplicative inverses of
each other, with respect to m.

The existence of multiplicative inverses facilitates the solutions, for x,
of equations of the form, |ax|m = |b|m, where a and b are given:

|ax|m = |b|m

∣∣axa−1
∣∣
m

=
∣∣bx−1

∣∣
m

|x|m =
∣∣ba−1

∣∣
m

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

34 Residue Number Systems: Theory and Implementation

Division

In conventional arithmetic, division is the most problematic of the basic
operations. In residue number systems, there is difficulty in even the seem-
ingly simple matter of defining precisely what division means. It might
appear possible to define division in a residue number system by proceed-
ing as we have done above for addition and multiplication—that is, define
the operation for residues and then extend that to tuples of residues—but
two complications immediately arise if we attempt to do that. The first
is that residue division and normal division are in concord only when the
quotient resulting from the division is an integer. And the second follows
from the fact that zero does not have a multiplicative inverse for zero.

Conventional division may be represented by the equation
x

y
= q

which implies that

x = y × q

In residue number systems, however, this last equation does not necessarily
hold, since in these systems the fundamental relationship is congruence
and not plain equality. Suppose for the RNS equivalent of the preceding
equation we take, for residues x and y, the congruence

y × q ≡ x (mod m) (2.5)

Multiplying both sides by the multiplicative inverse of y, we get

q ≡ x× y−1 (mod m) (2.6)

The proper interpretation of q in these equations is that x is modulo-m sum∑q
i y. Therefore, q corresponds to the quotient only when q has an integer

value. So, unlike the corresponding situation in conventional arithmetic,
in residue number systems multiplication by a multiplicative inverse is not
always equivalent to division. The following example shows this.

Example. Let us assume m = 5 and compute the following quotients
4
2

= q

2q ≡ 4 (mod 5)

q ≡ 4× 2−1 (mod 5)

≡ 4× 3 (mod 5)

≡ 2 (mod 5)

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Mathematical fundamentals 35

Now consider the cases when integer division is not possible:
4
3

= q

3q ≡ 4 (mod 5)

q ≡ 4× 3−1 (mod 5)

≡ 4× 2 (mod 5)

≡ 3 (mod 5)

and
3
4

= q

4q ≡ 3 (mod 5)

q ≡ 3× 4−1 (mod 5)

≡ 3× 4 (mod 5)

≡ 2 (mod 5)

end example

In all of the three cases in this example, the congruences q ≡ xy−1 (mod
m) are valid, but q is a correct quotient only in the first case.

The second complication mentioned above arises when we attempt to
carry out an extension from residues to tuples of residues, i.e. residue rep-
resentations of conventional numbers. Suppose that, relative to the mod-
uli m1,m2, . . . , mN , the representations of X and Y are 〈x1, x2, . . . , xN 〉
and 〈y1, y2, . . . , yN 〉. Then consider the problem of trying to compute the
quotient Q of X and Y . If Q ∼= 〈q1, q2, . . . , qN 〉, then, corresponding to
Equations 2.5 and 2.6, we have

yiqi ≡ x (mod mi)

qi ≡ xy−1
i (mod mi) (2.7)

For the residue-tuples, we have a modulo-M system, where M =
∏

mi; so
we seek solutions that satisfy

Y Q ≡ X (mod M)

Q ≡ XY −1 (mod M) (2.8)

Now, even if we accept as solutions for Equation 2.7 only those qi that
correspond to integral solutions (as in the last example), we will not neces-
sarily have solutions to Equation 2.8. The reason for this is that it may be

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

36 Residue Number Systems: Theory and Implementation

that yj = 0, for some j, and in that case y−1
j does not exist, and neither

does Y −1.
From the above, it appears that the sensible way to define division in

residue number systems is so that 〈q1, q2, . . . , qN 〉 is the representation of
the result of a conventional division of the conventional numbers X and
Y . We may conclude from this that computing the residue-quotient of
two residue-numbers (representations of conventional numbers) will require
some elements of all three of reverse conversion, conventional division, and
forward conversion—rather untidy business.

Scaling

Division in residue number systems is, as we have noted above, a rather
difficult operation. Nevertheless, if the divisor is one of the moduli or a
product of several moduli, but not a multiple of a power of a modulus,
then the division is much easier and is known as scaling. Scaling is similar
to division by a power of two in a conventional binary system, in which the
division is performed by shifting the dividend to the right. Although scaling
in residue number systems is not as simple as shifting, it is nevertheless
easier to implement than RNS-division by arbitrary numbers. Still, scaling
is not without difficulties when it comes to implementation.

Scaling is often useful in preventing overflow, since it reduces the dy-
namic range of RNS variables and thus keeps them within the permissible
bounds. (Recall that detecting overflow is a rather difficult operation in a
residue number system.)

Scaling with positive integers may be explained as follows. Consider the
division of a number X by a positive integer Y . We may express X as

X =
⌊

X

Y

⌋
× Y + x

The scaling process determines the quotient for certain values of Y . The
last equation may be rewritten into⌊

X

Y

⌋
=

X − x

Y
(2.9)

Since we are interested in the obtaining the residue-set of the division oper-
ation with respect to m1,m2,m3 . . .mN , we need to determine the residues
of Equation 2.9. For the residue with respect to m1, we have⌊

X

Y

⌋

m1

=
∣∣∣∣
X − x

Y

∣∣∣∣
m1

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Mathematical fundamentals 37

By Equation 2.9, these residues will all be integers. Therefore, if Y is a
modulus or a product of the first powers of some moduli, then all residues
can be determined. With these residues, it is now possible to determine
the residues of bX/Y cmi

:
⌊

X

Y

⌋

mi

=
∣∣∣∣
X − x

Y

∣∣∣∣
mi

The remaining residues can be computed through base extension, which is
briefly discussed in Chapter 1 and in more detail in Chapter 7.

Primitive roots and indices

The main concepts here are those of indices, which are similar to logarithms
in conventional arithmetic, and primitive roots, which are similar to bases
of logarithms. Several results are given here without proofs, for which the
reader should consult standard texts on elementary number theory (e.g. [8,
9]). We start by recalling of Euler’s phi-function:

Definition. For n ≥ 1, φ(n) is the number of positive integers less than
n and relatively prime to n.

For example, φ(3) = 2, φ(5) = 4, φ(6) = 2, and φ(30) = 8. If n is prime,
then evidently φ(n) = n− 1. The following theorems can help us compute
the values of φ without having to resort to brute-force.

Theorem. If p is a prime integer and j > 0, then

φ(pj) = pj − pj−1

= pj

(
1− 1

p

)

For example, φ(16) = φ(24) = 24 − 23 = 8. This result can be extended to
composite integers as follows.

Theorem. If m has prime factorization pj1
1 pj2

2 · · · pjk

k then

φ(n) =
k∏

i=1

(
pji − pji−1

)

= n

k∏

i=1

(
1− 1

pi

)

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

38 Residue Number Systems: Theory and Implementation

For example

φ(360) = φ(23 × 32 × 5)

= 360
(

1− 1
2

) (
1− 1

3

)(
1− 1

5

)

= 96.

The following are additional useful definitions and results.

Definition. Suppose n and m are relatively prime, and j is the smallest
integer such that nj ≡ 1 (modm). Then j is said to be the order of n
modulo m (or that n is of order j modulo m). For example, 3 is the order
of 2 modulo 7.

Definition. If n and m are relatively prime and n is order φ(n) modulo m,
then n is a primitive root of m. For example, φ(7) = 6, and 3 is a primitive
root of 7, because 31 ≡ 3 (mod 7), 32 ≡ 2 (mod 7), 33 ≡ 6 (mod 7), 34 ≡
4 (mod 7), 35 ≡ 5 (mod 7).

Theorem. Suppose n and m are relatively prime and x1, x2, . . . , xφ(m)

are positive integers less than m and relatively prime to m. If n is a
primitive root of m, then n, n2, . . . , nφ(m) are congruent (in some order) to
x1, x2, . . . , xφ(m).

Corollary. If m has a primitive root, then it has exactly φ(φ(m)) primi-
tive roots. For example, for m = 9, there are φ(φ(9)) = φ(6) = 2 primitive
roots, which are 2 and 5.

Theorem. The only integers with primitive roots are 2, 4 and integers of
the form me or 2me, where m is an odd prime and e is a positive integer.

Definition. If r is a primitive root of m and n and m are relatively prime,
then the smallest positive integer j such that rj ≡ n (modm) is called the
index of n relative to r. We will use I(n) to denote the index of n.

Theorem. Suppose m has a primitive root r. Then, for integers x and y

• I(xy) ≡ I(x) + I(y) (mod φ(m))
• I(xk) ≡ kI(x) (mod φ(m)) for integer k > 0
• I(1) ≡ 0 (mod φ(m))
• I(r) ≡ 1 (mod φ(m))

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Mathematical fundamentals 39

From which we may conclude that if m is chosen appropriately, then in
residue number systems operations multiplication and powering can be re-
duced to log-like addition and multiplication, respectively, followed by ap-
propriate inverse-index (anti-log) operations. This is discussed further in
Chapter 5.

2.4 Chinese Remainder Theorem

The Chinese Remainder Theorem (CRT) may rightly be viewed as one of
the most important fundamental results in the theory of residue number
systems. It is, for example, what assures us that if the moduli of a RNS are
chosen appropriately, then each number in the dynamic range will have a
unique representation in the RNS and that from such a representation we
can determine the number represented. The CRT is also useful in reverse
conversion as well as several other operations.

Theorem. Suppose m1,m2, . . . , mN are positive pairwise relatively prime
integers, that M =

∏N
i=1 mi, and that x1, x2, . . . , xN and k are integers.

Then there is exactly one integer, X, that satisfies the conditions

k ≤ X ≤ k + M

xi = |X|mi 1 ≤ i ≤ N

For several constructive and non-constructive proofs, see [5]. We shall give
an outline of one of the former in Chapter 7.

An alternative way of stating the same result, in a form we shall
later find more useful is as follows. Given a residue representation
〈x1, x2, . . . , xN 〉, where xi = |X|mi

, the integer represented, X, is given
by

X =

∣∣∣∣∣
N∑

i=1

wixi

∣∣∣∣∣
M

for certain weights, wi. So, we may expect that constructive proofs will
primarily consist of providing information on how to compute the weights.

An important aspect of the second formulation is that it tells us that,
if we view the weights as radices, then for a given residue number system,
there is a correspondence between RNS representations and representations
in some mixed-radix system. We shall return to this point in Chapter 7.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

40 Residue Number Systems: Theory and Implementation

2.5 Complex residue-number systems

We now consider the representation in residue number systems of complex
numbers. We cite, without proofs, several results from elementary number
theory; for the proofs, the reader should consult appropriate texts, such as
[8, 9].

An ordinary residue number system is constructed from a set of distinct
pairwise relatively prime integers, m1,m2, . . . ,mN , and modular arithmetic
operations. A direct approach to the representation of complex RNS-
numbers means representing the real and imaginary parts separately. So a
starting point in formulating a complex-number RNS (CRNS) is necessary
to consider the solutions of the congruence

x2 ≡ −1 (mod mi) (2.10)

If this congruence has a solution, j, then −1 is said to be a quadratic
residue2of mi, if j is an element of the residue-set of mi. Otherwise, j

is a quadratic non-residue. Evidently, j =
√−1 is a solution of Equation

2.10, but it is nnot necessarily congruent to an element in the residue-set of
mi and so is a quadratic non-residue. The basic properties of congruences
show that if j corresponds to a quadratic residue, then so does mi − j.

Example. Take mi = 5, then −1 is a quadratic residue of 5 because

22 = 4

≡ −1 (mod 5)

On the other hand, if mi = 7, then Equation 2.10 has no solution, as can
be ascertained by examining x = 1, 2, 3, 4, 5, 6. Therefore −1 is a non-
quadratic residue of 7. end example

To determine when Equation 2.10 has solutions and what type of so-
lutions they are, the following results from elementary number theory are
useful.

Theorem. −1 is a quadtratic residue if p is a prime of the form 4k +1 and
a quadratic non-residue if p is a prime of the form 4k + 3.

If mi is not prime, then we first decompose it into its prime factors.
A quadratic residue then exists if each prime factor is of the form 4k + 1.
2In general, we are looking for residues that are solutions to the quadratic congruence

axx + bx + c ≡ 0 (mod m).

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Mathematical fundamentals 41

Regardless of whether a solution, j, is a quadratic residue or a quadratic
non-residue, we can form a CRNS, by taking ordered pairs of residues,
(xR, xI), where xR and xI are in the residue-set of the given modulus:

(xR, xI) ⇔ xR + jxI

The primary difference between the two types of solution to Equation 2.10
is that for a quadratic residue, xR + jxI will be real, whereas for a non-
quadratic residue, it will have an imaginary component.

Addition/subtraction and multiplication in a CNRS are defined in a
manner similar to ordinary complex-number arithmetic. Thus, for addition
and subtraction we have

(xR, xI)± (yR, yI)
4
= (xR + jxI)± (yR + jyI)

= |xR + yR|mi
± j |xI + yI |mi

)

4
=

(|xR + yR|mi
, |xI + yI |mi

)

provided, (xR, xI , yR, and yI are in the residue-set of mi. Similarly, mul-
tiplication, which involves involves four cross-products, as in conventional
complex arithmetic, is defined as

(xR, xI)× (yR, yI)
4
= (xR + jxI)× (yR + jyI)

= |xRyR − xIyI |mi
+ j |xIyI + xRyI |mi

4
=

(|xRyR − xIyI |mi
, |xIyI + xRyI |mi

)

We have thus far assumed that mi is prime. If mi is not prime, the
above formulation of a CRNS still goes through, regardless of the solutions
of Equation 2.10.

It is possible to formulate a complex-number system — a quadratic RNS
(QRNS) — that is, in some ways, better than the one outlined above, if
Equation 2.10 has a solution that is a quadratic residue. To do so, map
between the tuples (xR, xI) and the tuples (X, X∗):

(xR, xI) ⇔ (X, X∗)
where

X = |xR + jxI |mi

X∗ = |xR − jxI |mi

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

42 Residue Number Systems: Theory and Implementation

and, therefore,

xR =
∣∣∣∣
|X + X∗|mi

2

∣∣∣∣
mi

xI =
∣∣∣∣
|X −X∗|mi

2j

∣∣∣∣
mi

These last two equations can be simplified by using multiplicative inverses:

xR =
∣∣∣
∣∣2−1

∣∣
mi
|X + X∗|mi

∣∣∣
mi

xI =
∣∣∣
∣∣2−1

∣∣
mi

∣∣j−1
∣∣
mi
|X + X∗|mi

∣∣∣
mi

where X and X∗ are real numbers and
∣∣j−1

∣∣
mi

are the multiplicative in-
verses of 2 and j with respect to mi.

The arithmetic operations in this system are similar to those in CRNS.
Addition and multiplication in the QRNS are defined as

|(X, X∗)± (Y, Y ∗)|mi
=

(|X ± Y |mi
, |X∗ ± Y ∗|mi

)

|(X, X∗)× (Y, Y ∗)|mi
=

(|X × Y |mi
, |X∗ × Y ∗|mi

)

From which we observe that in QRNS multiplication does not involve cross-
product terms as in ordinary complex multiplication or in CRNS. This
yields several advantages, relative to CRNS: hardware will be simpler and
more regular, higher hardware performance is possible, an error in some
digit has no effect on other digits or other results, and so forth. There is,
however, some overhead in the conversion between RNS and QRNS.

2.6 Redundant residue number systems

As we remarked in Chapter 1, one of the main advantages of residue number
systems is that they facilitate the detection and correction of errors. This
arises from the fact that in the residue representation of a number, all the
digits are independent; therefore, an error in one digit-position does not cor-
rupt any other digit-position. So if an error occurs in some digit-position,
computations may still proceed, through the exclusion of the faulty digit-
position (and corresponding modulus), provided that either the resulting
smaller dynamic range is acceptable, or that the original system had some

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Mathematical fundamentals 43

extra moduli that provided a larger range than that nominally required for
the computations to be carried out. Note, though, that while fail-soft capa-
bility exists for all operations, error-isolation is not possible with operations
that require interaction between all digits of an RNS representation; that is,
operations such as division, magnitude-comparison, and reverse conversion.

Suppose we have determined that the N moduli m1, m2, . . . ,mN are
sufficient to provide the dynamic range that we require. If we then add R

extra moduli, mN+1, mN+2, . . .,mN+R, then we have a redundant residue
number system, and these extra moduli are the redundant moduli. We
thus have two dynamic ranges: M

4
=

∏N
i=1 and MR

4
=

∏N+R
i=1 . M defines

the legitimate range of the computations, and the extra MR − M states
constitute the illegitimate range. An error is known to have occurred if a
result is within the latter range. If r ≥ 2, then an error in a single digit can
be corrected [6, 7]. In general, R redundant moduli pert the detection of
up to R errors and the correction of up to R/2 errors. Overflow can also be
detected by determining the range in which the result lies, although this is
by no means an easy operation.

If negative numbers are permitted, then the mapping given in Chapter
1 shows that positive numbers will be mapped onto [0, (M − 1)/2] if M is
odd, or to [0,M/2− 1] if M is even, and negative numbers will be mapped
onto [MR − (M − 2)/2, MR − 1] if M is odd, or to [MR −M/2,MR − 1] if
M is even. The negative numbers therefore fall into the illegitimate range
and need to be brought back into the proper dynamic range. This can be
achieved by applying a circular shift (also known here as a polarity shift)
that effectively adds, to every number, (M + 1)/2 if M is odd, or M/2 if
M is even.

Note that in a redundant RNS, numbers are still nominally represented
only within the underlying non-redundant system; however, in the com-
putations the redundant system must be used. An obvious question then
arises of how to compute the redundant residues given the non-redundant
ones. This can be done through base extension, which is discussed in detail
in Chapter 7.

A redundant RNS may be used as follows for error correction. The
redundant digits of a representation are used to access a look-up table
(LUT) that contains the corresponding correction; the contents of this LUT
can be constructed by using base-extension. Alternatively, the use of a LUT
may be replaced with extra computations.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

44 Residue Number Systems: Theory and Implementation

2.7 The Core Function

We noted in Chapter 1 that certain operations are fundamentally difficult
in RNS; these include magnitude-comparison, sign-determination, overflow-
determination, and division. The essence of the difficulties is that RNS
digits carry no weight information, and therefore it is not easy to determine
the magnitude of a given RNS number. The Core Function [2] provides
some means that can help deal with the difficult operations; briefly, one
may view it as a method for approximating the magnitude of an RNS
number. The underlying idea is to map an RNS number n ∈ [0,M − 1] to
a number C(n) ∈ [0, C(M)], where C(M) << M and M is the product of
the moduli m1,m2, . . . , mN in the RNS. Applications of the Core Function
are discussed in Chapters 6 and 7.

Let 〈x1, x2, · · · , xN 〉 be the residue representation of x, with respect to
the moduli m1, m2, · · · ,mN . Then the core, C(x), of x is defined by

C(n) =
N∑

i=1

⌊
x

mi

⌋

=
N∑

i=1

wi

mi
n−

N∑

i=1

wi

mi
|x|mi (2.11)

where wi are weights that are determined in a manner to be described. So

C(M) =
N∑

i=1

wi
M

mi
−

∑
wi

|M |mi

mi

The second term is evidently zero, since M (by definition) is exactly divis-
ible by mi, so

C(M) =
N∑

i=1

wi
M

mi
(2.12)

and

C(M)
M

=
N∑

i=1

wi

mi

Substituting for
∑

wi/mi in Equation 2.7, we get

C(x) =
C(M)

M
x

N∑

i=1

wi

mi
xi (2.13)

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Mathematical fundamentals 45

Equation 2.13 shows that we may view the Core Function as consisting
of a linear function (the first term) to which some noise (the second term)
has been added.3 Ideally, we should like the noisy part to be (relative to the
first part) as small as possible—the smaller the noise, the better the function
is in giving us an idea of the relative magnitude of given RNS numbers.
Thus, C(M) should be as large as possible, or the weights should be as
small as possible. There are, however, some constraints: To keep hardware
simple and balanced, C(M) should be of roughly the same magnitude as
the moduli, and these are likely to be rather small. Choices for the weights
are also restricted by the solutions to the equations above. One way in
which the noisy part can be readily reduced is by replacing the definition
above of the Core Function (Equation 2.11) with [3]

C(x) =
C(M)

M
x−

N∑

i=1

|wixi|mi

mi

but this version is not conducive to certain algebraic manipulations.
The core of a number can be obtained by using a Chinese Remainder

Theorem for Core Functions, but this sometimes produces values that have
some ambiguity. This ambiguity can be eliminated by the use of an extra
modulus, mE , that is greater than the difference between the smallest and
largest values assumed by the given core function. Reduction, with respect
to mE , of both sides of Equation 2.13 then yields

|C(x)|mE
=

∣∣∣∣∣
C(M)

M
x−

N∑

i=1

wi

mi
xi

∣∣∣∣∣
mE

=

∣∣∣∣∣
C(M)

M
|x|mE

−
N∑

i=1

wi

mi
xi

∣∣∣∣∣
mE

Ambiguities are then eliminated, because the core is evaluated relative a
modulus larger than its range. To avoid complex computations for |x|mE

,
[4] has instead proposed the use of a “parity” bit; this requires that M (and
therefore each moduli) be odd. Essentially, the use of a parity bit amounts
to taking mE to be as small as possible and without any constraints: mE =

3Another way to view the “noise” is that it captures the “fuzziness” in how finely we
can differentiate between two residue numbers.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

46 Residue Number Systems: Theory and Implementation

2. Thus the parity bit, p(x), of x is defined to be |x|2. So we now have

|C(x)|mE
=

∣∣∣∣∣
C(M)

M
x−

N∑

i=1

wi

mi
xi

∣∣∣∣∣
2

=

∣∣∣∣∣
C(M)

M
|x|2 −

N∑

i=1

wi

mi
xi

∣∣∣∣∣
2

=

∣∣∣∣∣p +
N∑

i=1

wixi

∣∣∣∣∣
2

since C(M) and mi are odd

The weights can be found as follows. Let Mi
4
= M/mi. Then from

Equation 2.12, we have

|C(M)|mi
=

∣∣∣∣∣
N∑

i=1

wiMi

∣∣∣∣∣
mi

= |wi|mi
(2.14)

since all but one of the terms in the sum is a multiple of mi. Therefore

|wi|mi
=

∣∣∣C(M)
∣∣M−1

i

∣∣
mi

∣∣∣
mi

where
∣∣M−1

i

∣∣
mi

is the multiplicative inverse of Mi with respect to mi. Thus
if C(M) is given, then the wi are obtainable.

Example. Take the moduli-set {3, 5, 7}, and let C(M) be 31. Then

M1 = 35
∣∣M−1

1

∣∣
3

= 2

M2 = 21
∣∣M−1

2

∣∣
5

= 1

M3 = 15
∣∣M−1

3

∣∣
7

= 1

from which we get, by Equation 2.14

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Mathematical fundamentals 47

w1 = |31× 2|3
= 2 or − 1

w2 = |31× 1|5
= 1 or − 4

w3 = |31× 1|7
= 3 or − 4

We want the “noise” in the core function to be as small as possible, so
we pick those values of weights that have the smallest magnitudes: w1 =
−1, w2 = 1, w3 = 3.
end example

2.8 Summary

This chapter has introduced the mathematical foundations of residue num-
ber systems. Most of the results introduced, even the rather elementary
ones, will be very useful for what is in subsequent chapters. The more
advanced results, such as the Chinese Remainder Theorem and the Core
Function, have very significant uses, especially with respect to difficult RNS
operations, e.g. division and conversion from residue to conventional nota-
tions. Redundant residue number systems have also been introduced; these,
and their applications, are are discussed in more detail in Chapter 8.

References

(1) N.S. Szabo and R. I. Tanaka. 1967. Residue Arithmetic and Its Appli-
cations to Computer Technology. McGraw-Hill, New York.

(2) D.D. Miller. 1986. Analysis of the residue class core function of Akush-
skii, Burcev, and Park. In: G. Jullien, Ed., RNS Arithmetic: Modern
Applications in Digital Signal Processing. IEEE Press.

(3) J. Gonnella. 1991. The application of the core function to residue
number systems. IEEE Transactions on Signal Processing , SP-39:69–
75.

(4) N. Burgess. 1997. “Scaled and unscaled residue to binary number
conversion techniques using the core function”. In: Proceedings, 13th
International Symposium on Computer Arithmetic, pp 250–257.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

48 Residue Number Systems: Theory and Implementation

(5) D. E. Knuth. 1969. The Art of Computer Programming, Vol. 2 .
Addison-Wesley, Reading, MA.

(6) H. Krishna and J.-D. Sun. 1993. On theory and fast algorithms for
error correction in residue number system product codes. IEEE Trans-
actions on Computers, 42(7):840–852.

(7) C.-G. Sun and H.-Y. Lo. 1990. An algorithm for scaling and single
error correction in residue number systems. IEEE Transactions on
Computers, 39(5):1053–1064.

(8) G. H. Hardy and E. M. Wright. 1979. An Introduction to the Theory
of Numbers. Oxford University Press, UK.

(9) D. M. Burton. 1980. Elementary Number Theory . Allyn and Bacon,
Boston, USA.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Chapter 3

Forward conversion

Numbers that are initial inputs to, or final outputs from, residue computa-
tions will usually be in some conventional notation. Forward conversion
is the process of translating from conventional notation, here binary or
decimal, into residue notation. This chapter covers algorithms and archi-
tectures for that process. We shall divide our discussion according to two
classes of moduli-sets: arbitrary sets and the special moduli-sets (i.e. those
of the form {2n−1, 2n, 2n +1} and extensions thereof). The basic principle
in the computation of residues is division, with the moduli as the divisors.
But division is an expensive operation in hardware and so is rarely used in
the computation of residues, whence the significance of the special moduli.
Division is avoidable in the case of other moduli as well, but the hardware
required will not be as simple as in the case of the special moduli.

Hardware implementations for forward conversion may be based on
look-up tables (the use of which is facilitated by the small sizes of typi-
cal moduli), combinational-logic circuits, or a mixture of both. Converters
for the special moduli-sets are almost always implemented in combinational
logic, whereas those for arbitrary sets will be of any of the three types. The
complexity of the conversion depends on the moduli-set chosen for a specific
application. Signal processing applications tend to require a large dynamic
range, and the moduli-sets used in these cases will consist of either a large
number of small relatively-prime numbers or of a small number of large
relatively-prime numbers; more often, it will be the latter. The amount
of memory used in these converters is generally proportional to both the
magnitude of the numbers involved as well as the number of moduli in the
set used. Although forward converters for the special moduli-sets are eas-
ily implemented, for large dynamic ranges, large moduli may be necessary,
which can necessitate the use of complex processing units and thus offset

49

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

50 Residue Number Systems: Theory and Implementation

the advantages of such moduli-sets in particular and of residue number
systems in general.

The chapter consists of three main sections. The first section deals with
converters for the special moduli-sets. The second deals with memory-based
converters for arbitrary moduli-sets. And the third covers combinational-
logic converters for arbitrary moduli-sets. In reading what follows, the
reader may find it useful to periodically refer back to Chapter 2.

3.1 Special moduli-sets

In this section we shall look at forward conversion for the special moduli,
2n−1, 2n, and 2n+1. Given that arithmetic modulo-2n is just conventional
arithmetic, what follows covers only the moduli 2n − 1 and 2n + 1. The
special moduli are usually referred to as low-cost moduli , since conversion
to and from their residues can be realized relatively easily and does not
require complex operations, such as evaluation of multiplicative inverses,
multiplication, and so forth [7].

Consider the computation of the residue of an arbitrary integer X with
respect to a modulus m. Since X may be represented as an n-bit binary
number, xn−1xn−2 · · ·x0, and its residue with respect to m may be ex-
pressed as

|X|m = |xn−1xn−2xn−3 · · ·x0|m
of which an equivalent expression is

|X|m =
∣∣2n−1xn−1 + 2n−1xn−2 + 2n−1xn−3.. . . . + 2n−1x0

∣∣
m

From the properties of residues given in Chapter 2, we have

|X|m =
∣∣ ∣∣2n−1xn−1

∣∣
m

+
∣∣2n−2xn−2

∣∣
m

+
∣∣2n−3xn−3

∣∣
m

+ . . . +
∣∣20x0

∣∣
m

∣∣
m

Since xi is either 0 or 1, in computing the residue of X, all that is required
is the evaluation of the values |2i|m, which are then added up, with a
reduction relative to the modulus.

Modulus 2n − 1

Conversion and arithmetic modulo 2n− 1 are quite easy to implement. For
example, relative to conventional (i.e. two’s complement) binary addition,
the only “complication” in modulo-(2n − 1) addition is the necessity to

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Forward conversion 51

sometimes also add an end-around-carry.1 So simple hardware circuits can
be realized with this category of modulus [2].

The residues with respect to 2n − 1 are determined as follows. Observe
that

|2n|2n−1 = |2n − 1 + 1|2n−1 (3.1)

= 1

and that this equation can be extended easily to a product in the exponent,
2nq, and, in general, to an arbitrary power of 2:

|2nq|2n−1 =

∣∣∣∣∣
q∏

i=1

|2n|2n−1

∣∣∣∣∣
2n−1

(3.2)

= 1 (by Equation 3.1)

So the residue of any number 2m, where m 6= n, can be determined by
using Equations 3.1 and 3.2:

|2m|2n−1 =
∣∣2nq+r

∣∣
2n−1

=
∣∣ |2nq|2n−1 × |2r|2n−1

∣∣
2n−1

= 1× |2r|2n−1 (3.3)

where q = bm/nc, and r is the remainder from the division. The following
example shows such an evaluation.

Example. Take X = 27 and m = 23 − 1 (i.e. n = 3 and m = 7). Then

|X|7 =
∣∣27

∣∣
7

=
∣∣ ∣∣22×3

∣∣
7
× |2|7

∣∣
7

In this example, q = 2 and r = 1. Therefore, by Equation 3.2,

|X|7 = |1× 2|7
= 2

end example

We next show that a similar approach can be used in the computation
of residues with respect to the other low-cost modulus, 2n + 1.
1Note that this is just one’s complement addition.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

52 Residue Number Systems: Theory and Implementation

Modulus 2n + 1

As in the preceding case, we begin by considering the residue of 2n with
respect to the modulus 2n + 1:

|2n|2n+1 = |2n + 1− 1|2n+1

= −1

We then extend this to an arbitrary power of two, 2m, where m 6= n and
m = nq + r:

|2m|2n+1 = |2nq|2n+1 × |2r|2n+1

=
{

2r if q is even
2n + 1− 2r otherwise

where q = dm/ne. When q is odd, |2nq|2n+1 is −1, and so 2n + 1 must be
added back to make the residue positive.

Example. Take X = 27 and m = 23 + 1; i.e. n = 3 and m = 9. Then q is
even, and so

∣∣27
∣∣
9

=
∣∣23×2

∣∣
9
× |2|9

= 2

Now, take X = 27 and m = 22 + 1; i.e. n = 2 and m = 5. Then q is odd,
and

∣∣27
∣∣
5

=
∣∣22×3

∣∣
5
× |2|5

= 22 + 1− 2

= 3

end example

3.1.1 {2n−1, 2n, 2n+1} moduli-sets

We have seen above how to obtain the residues relative to each of the
moduli 2n + 1 and 2n − 1. The only other modulus in the basic special
set is 2n. Residues with respect to this modulus are obtained easily by
dividing the given binary number by 2n, which “division” is just an n-bit
right-shift of the given binary number, X. So forward conversion in the
{2n − 1, 2n, 2n + 1} moduli-set is straightforward and simple logic circuits,
involving modular adders, will suffice for the implementation. If we define,

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Forward conversion 53

m1
4
= 2n + 1, m2

4
= 2n and m3

4
= 2n − 1, then any integer X within the

dynamic range, M
4
= [0, 23n − 2n − 1] (where the upper end of the range is

m3m2m1), is uniquely defined by a residue-set {r1, r2, r3}, where ri = |X|mi

and X is a 3n-bit:

X = x3n−1x3n−2...x2nx2n−1.......xnxn−1......x0

Residues are obtained by nominally dividing X by mi. The residue r2 is the
easiest to compute: The n least significant bits constitute the remainder
when X is divided by 2n. Hence r2 is the number represented by the least
significant n bits of X. These bits are obtained by nominally shifting to
the right by n bits; “nominally” because the shift may be hardwired.

In order to determine the residues, r1 and r3, we first partition X into
three n-bit blocks, B1,B2,B3 [12,13]:

B1
4
=

3n−1∑

j=2n

xj2j−2n

B2
4
=

2n−1∑

j=n

xj2j−n

B3
4
=

n−1∑

j=0

xj2j

Then

X = B122n + B22n + B3

The residue r1 is then obtained as

r1 = |X|2n+1

=
∣∣B122n + B22n + B3

∣∣
2n+1

=
∣∣∣

∣∣B122n
∣∣
2n+1

+ |B22n+|2n+1 |B3|2n+1

∣∣∣
2n+1

B3 is an n-bit number and therefore is always less than 2n+1; so its residue
is simply the binary equivalent of this term. The residues of the other two
sums are computed as

∣∣B122n
∣∣
2n+1

=
∣∣∣ |B1|2n+1

∣∣22n
∣∣
2n+1

∣∣∣
2n+1

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

54 Residue Number Systems: Theory and Implementation

and

|B22n|2n+1 =
∣∣ |B2|2n+1 |2n|2n+1

∣∣
2n+1

Each of B1 and B2 is represented in n bits and there must be less than
2n + 1. And the residue of 22n with respect to 2n + 1 is

∣∣22n
∣∣
2n−1

= |2n2n|2n+1

= |2n + 1− 1|2n+1|2n + 1− 1|2n+1

= −1×−1

= 1

It follows from this that the residue of 2n with respect to 2n + 1 is −1.
Therefore,

r1 = |B1 −B2 + B3|2n+1 (3.4)

Similarly, to compute r3, we first observe that
∣∣22n

∣∣
2n−1

= |2n − 1 + 1|2n−1 × |2n − 1 + 1|2n−1

= 1× 1

= 1

Also, |2n|2n−1 is 1. So

r3 = |B1 + B2 + B3|2n−1 (3.5)

From the above, we may surmise three modular adders will suffice for
the computation of the residues. If the magnitudes of the numbers involved
are small, as will be the case for small moduli, the complexity of the overall
conversion will not be high. We illustrate the conversion with the following
example.
Example. Consider the moduli-set {7, 8, 9}, and let X = 167. The binary
representation of X is 10100111. Since n = 3 in the given moduli-set, we
partition X into 3-bit blocks, starting from the right: B1

4
= 010 B2

4
=

100 B3
4
= 111. Applying Equation 3.4, we get (in decimal)

|167|23+1 = |167|9
= |2− 4 + 7|9
= 5

The residue with respect to 8, which 23, is obtained by shifting the binary
equivalent of 167 three bits to the right and taking the three bits shifted

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Forward conversion 55

out: 7 in decimal. Finally, for the residue with respect to 7, which is 23−1,
we have, by Equation 3.5

|167|23−1 = |167|7
= |2 + 4 + 7|7
= 6

Hence the residue representation of X is 〈5, 7, 6〉.
end example

Implementation

Figure 3.1 shows the organization of a basic unit for forward conversion
as described above. The modulo adders may be realized as all-ROM, all-
combinational-logic, or a combination of both; we shall here assume pure
combinational logic. The implementation of modular adders is discussed in
detail in Chapter 4.

Although the design of Figure 3.1 is straightforward, the modular adders
must be full carry-propagate adders2, and this may result in low perfor-
mance. There are several ways in which performance can be improved, but
all will require some extra logic.

There are two fundamental techniques that may be used here to attain
better performance: the first is the use of carry-save adders3; and the other
is the exploitation of more parallelism. Figure 3.2 shows a design based
on these techniques. A carry-save adder (CSA) takes three operands and
produces two outputs, a partial-sum (PS) and a partial-carry (PC), that
finally must be fed into a carry-propagate adder (CPA) so that the carries
are propagated to produce a result in conventional form. The computation
of r1 may require a corrective subtraction of the modulus m3, and that
of r3 may require the subtraction m1 or 2m1. All the different possible
results are computed in parallel and the correct one then selected through
a multiplexer. It should be noted that although separate adders are shown
in Figure 3.2, in practice the adder-logic can be shared; so the replication

2In a carry-propagate adder, carries are propagated between digits. The addition time
is therefore a function of the number of digits—for n digits, the operational time will be
between O(n) and O(log n).
3A carry-save adder consists of just a sequence of full adders. The addition time is

therefore constant and independent of the number of digits, but at some point carries
must still be propagated. The advantage comes from the fact that in a series of additions,
the carries may be saved for propagation at the last addition.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

56 Residue Number Systems: Theory and Implementation

will be less than appears at first glance. Also, for certain high-speed CPA-
designs, and depending on the precision of the moduli, the differences in
performance between Figure 3.1 and Figure 3.2 may not be substantial.

n

n

n

n

31 2

21 3

Figure 3.1: {2n − 1, 2n, 2n + 1} forward converter

3.1.2 Extended special moduli-sets

The method described above can be applied equally well to derivatives
of the 2n-moduli-sets. We shall here consider just two example moduli-
sets in this category: those of the form {2n − 1, 2n, 2n + 1, 2n+1 − 1}, for
odd n, and those of the form {2n − 1, 2n, 2n + 1, 2n+1 + 1} for even n.
These are frequently encountered in applications where a large dynamic
range is required. We shall adopt essentially the same procedure described
above; but in the computation of the residue corresponding to 2n+1, the
binary representation of X will now be partitioned into blocks of n+1 bits
each. The following example illustrates the procedures used to compute
the residues for each of the two sets [5].

Example. Take the moduli-set {3, 4, 5, 7}. The moduli in this set are rel-
atively prime, and the fourth modulus is of the form 2n+1 − 1, with n = 2.
Let X be 319. In order to obtain the residues with respect to 3,4, and 5,

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Forward conversion 57

we proceed exactly as in the last example above. We partition the binary
representation of 319, which is 0100111111, into 2-bit blocks, since n = 2:

|319|3 = |01 + 00 + 11 + 11 + 11|22−1

= |1 + 0 + 3 + 3 + 3|3
= 1

Similarly, the residue with respect to 5 is obtained as

|319|5 = |01 + 00 + 11 + 11 + 11|22+1

= |1− 0 + 3− 3 + 3|5
= 4

end example

C1 C0

C1

C0

PSPC

PS
PC

-m1
-m3

-2m3

B1 B3B2

1 3 2

Figure 3.2: Enhanced-performance {2n − 1, 2n, 2n + 1}
forward converter

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

58 Residue Number Systems: Theory and Implementation

The residue with respect to 4 is obtained by simply right-shifting the
binary equivalent by two bit-positions, with 3 as the value of the bits shifted
out. In order to determine the residue with respect to 7, we partition the
binary representation of 319 into 3-bit blocks because the binary represen-
tation of 7 is in three bits:

|319|7 = |100 111 111|23−1

= |4 + 7 + 7|7
= 4

end example

Let us now consider a similar case but with n odd.

Example. Let n = 3. In this case the moduli-set is the form {2n −
1, 2n, 2n + 1, 2n+1 + 1}; that is, it will be {7, 8, 9, 17}. And

|319|17 = |1 0011 1111|17
= |1− 3 + 15|17
= 13

The residues with respect to the other moduli can be determined as shown
in preceding examples. end example

Forward conversion in any extended moduli-set consisting of more than
four moduli can be accomplished equally easily by partitioning X appro-
priately for each modulus in the set. As the number of moduli in the set
increases, the circuit-complexity will increase linearly. The complexity can
be reduced if conversion is done sequentially—that is, if one residue is deter-
mined at a time—but doing so will result in a linear increase in conversion
time, with delays introduced in the converters adding to the overheads in
the overall system.

3.2 Arbitrary moduli-sets: look-up tables

Arbitrary moduli-sets are most often used in residue-number-system ap-
plications that require a large dynamic range but for which the special
moduli-sets impose some constraints. The selection of arbitrary numbers
of small magnitude for such a moduli-set can facilitate the realization of
simple processing elements in subsequent processing, but the forward con-
version will still not be as simple as in the special cases, since it cannot

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Forward conversion 59

be accomplished by a straightforward partitioning of the operand [9,10].
So forward conversions with arbitrary moduli-sets tend to be complex and
require elaborate hardware. The complexity of the conversion here will be
a function of both the number of moduli employed and the magnitude of
each modulus.

In principle, look-up tables (typically implemented as ROM) can be
employed directly by having tables that store all possible residues and which
are addressed by the numbers whose residues are required [6]. Evidently,
the amount of memory necessary can be quite large. Nevertheless, the
basic idea is of practical value when combined with techniques that reduce
the basic problem to a smaller one or which exploit certain properties of
residues.

The basic idea in the use of look-up tables is that finding the residue
of a number with respect to a given modulus essentially boils down to
computing the modular sum of certain powers of two. Suppose we have an
n-bit number, X, and that we wish to compute its residue with respect to
a modulus m:

X
4
= xn−1xn−2xn−3.........x0

=
n−1∑

j=0

xj2j

and

|X|m =

∣∣∣∣∣∣

n−1∑

j=0

xj2j

∣∣∣∣∣∣
m

=

∣∣∣∣∣∣

n−1∑

j=0

∣∣xj2j
∣∣
m

∣∣∣∣∣∣
m

(3.6)

There are many ways in which the partial sums and the total sum may
be computed—serially, sequentially, in parallel, or some other combination
of these—and these give rise to a variety of architectures.

3.2.1 Serial/sequential conversion

A simple and direct way to implement Equation 3.6 is to have a sequential
structure that consists of a look-up table that stores all the values

∣∣2j
∣∣
m

(note that xj is either 0 or 1), a modular adder that computes partial
sums, a counter, and an accumulator register. The basic structure is shown

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

60 Residue Number Systems: Theory and Implementation

in Figure 3.3 and operates as follows. The accumulator is initialized to zero.
Thereafter, on each cycle, a value is read from the look-up table and added
to the value in the accumulator. The process will take n cycles, but the
hardware requirements are low: a shift-register that in each cycle makes
available one bit of X, a counter whose contents (from 0 to n− 1) are used
in each cycle to address the look-up table, a memory of size about n log2 m

bits, and an m-bit modular adder. This, though, is not as low as one can
get down the cost: for a minimal-cost design, all the basic units in Figure
3.3 may be implemented to work bit-serially.

Look-up

Table

X
Xj

Mod-m

Adder

Accumulator

| X |m

Counter

0 n-1

| 2
j
|m

Figure 3.3: Sequential table-lookup converter

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Forward conversion 61

The primary drawback of the design in Figure 3.3 is the obviously low
performance. Depending on the relative costs and speed of memory and
adders, one could modify this slightly to the structure shown in Figure 3.4.
Here, the operand, X, is processed two bits at a time. That is, in each
cycle, two values,

∣∣xj2j
∣∣
m

and
∣∣xj+12j+1

∣∣
m

are added and the result then
added to that in the accumulator. Some performance-enhancing pipelining
is possible with this design.

Xj+1

Mod-m

Adder

Accumulator

| X |m

Counter

| 2
j+1
|m

Xj

| 2
j
|m

Look-up

Table

Look-up

Table

Mod-m

Adder

Figure 3.4: Modified sequential table-lookup converter

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

62 Residue Number Systems: Theory and Implementation

The move from Figure 3.3 to Figure 3.4 involves a fundamental tech-
nique often employed in the quest for high-speed arithmetic units—work
with more bits at a time. Thus instead of one or two bits of X, we may take
any number of bits and have a completely parallel structure or a sequential-
parallel one. Essentially, if we view the basic approach outlined above as
being a radix-2 computation, then we now seek to compute in a higher
radix—2R for R bits at a time. We next consider how this can be done.

3.2.2 Sequential/parallel conversion: arbitrary partitioning

Suppose that instead of taking the bits of X serially (i.e. one bit at a time)
we instead take p bits at a time [10]. In this case, X is now partitioned into

k
4
= n/p blocks of p bits each. (Without loss of generality, we assume that

n/p is integral.) Let the blocks be Bk−1,Bk−2, . . . , B0. Then

X =
k−1∑

j=0

2jpBj

whence

|X|m =

∣∣∣∣∣∣

k−1∑

j=0

2jpBj

∣∣∣∣∣∣
m

(3.7)

=

∣∣∣∣∣∣

k−1∑

j=0

∣∣2jpBj

∣∣
m

∣∣∣∣∣∣
m

Example. Consider the computation of the residue of the 16-bit number
32015 with respect to the modulus 17. The binary representation of 32015
is 0111110100001111. We partition this into four 4-bit blocks—0111 1101
0000 1111—and then compute the residue as

|32015|17 =
∣∣ ∣∣7× 212

∣∣
17

+
∣∣13× 28

∣∣
17

+
∣∣0× 24

∣∣
17

+
∣∣15× 20

∣∣
17

∣∣
17

= |10 + 13 + 0 + 15|17
= 4.

end example

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Forward conversion 63

m

Accumulator

Mod-m Adder

P
j m

Shift Register

Bj
p

p bit left-shift

Figure 3.5: Sequential-parallel table-lookup converter

The simplest structure for the summation of Equation 3.7 is just a
straightforward variant of that in Figure 3.3. Since that would give a purely
sequential implementation, there is no gain in storing all the possible values
of

∣∣2jpBj

∣∣
m

. The sets of values that the Bj blocks can take are the same
set of 2p values. Successive powers of two can be obtained by sequential
multiplication. And multiplication by 2p is just a p-bit hardwired left-shift.
So we need store only the values of |2pBj |m. Thus we have the structure
of Figure 3.5. The conversion will now take k cycles, and the amount of
memory required is about 2p log2 m bits.

The other extreme from the structure of Figure 3.5 is a highly-parallel
arrangement in which all the possible values of

∣∣2jpBj

∣∣
m

are stored in k

lookup-tables. To compute the residue for a given number, k values are
simultaneously read from all k tables and then added up in a tree of
adders, a multi-operand modular adder. The basic structure is shown in
Figure 3.6. Between the structure of Figure 3.5 and that of Figure 3.6, there
exist several sequential-parallel ones; we leave it to the reader to investigate

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

64 Residue Number Systems: Theory and Implementation

these.

m

Look-up

Table

| B0 |m

Look-up

Table
Look-up

Table

kkk

mmm

| 2
p
B1 |m| 2

(2k-2)p
Bk-1 |m

Figure 3.6: Parallel table-lookup converter

A straightforward way to implement a multi-operand modular adder
as a tree of two-input combinational-logic modular adders Chapter 5. An
alternative would be to use look-up tables to realize the modular adders;
such a look-up table would take the two operands as addresses and return
the result of the modular addition. The result would an all-table imple-
mentation, typically be implemented using ROMs. The choice between the
two depends on the trade-off between performance (delay) and cost (area);
power consumption may also be an issue. The ROMs will have a high reg-
ularity and density, which means low cost, but the performance will likely
not match that of the combinational logic. Further discussion on the design
of multi-operand modular adders will be found in [3].

The choice of block-size, p, above is seemingly arbitrary. So we may
refer to it as “physical partitioning”, in that depending on the technology
used for realization, the best choice can be determined by design-space
exploration. We next describe a technique that may be considered as a
“logical partitioning”, in that it is based on a property of residues. Both

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Forward conversion 65

techniques may be combined; we shall leave details to the diligent reader.

Table 3.1: Periodicity properties of residues

Modulus m Residue 2n mod m

3 1,2,1,2,1,...
5 1,2,4,3,1,2,4,3,..
6 1,2,4,2,4,2,4,...
7 1,2,4,1,2,4,...
9 1,2,4,8,7,5,1,2,4,8,7,...
10 1,2,4,8,6,2,4,8,6,...
11 1,2,4,8,5,10,9,7,3,6,1,2,4,5,8,10,9,7..
12 1,2,4,8,4,8,4,8,....
13 1,2,4,8,3,6,12,11,..
14 1,2,4,8,2,4,8,..
15 1,2,4,8,1,2,4,8,.....
17 1,2,4,8,16,15,13,9,..
18 1,2,4,8,16,14,10,2,4,8,...
19 ,2,4,8,16,13,7,14,9,18,...
20 1,2,4,8,16,12,4,8,16,....
21 1,2,4,8,16,11,1,2,4,8,....

3.2.3 Sequential/parallel conversion: periodic partitioning

The cyclic property of 2j mod m refers to the eventual repetition of residues
as the value of j increases [4]. For example, with m = 3, the values of
2j mod 3, for j = 0, 1, 2, . . ., repeat after the second residue: the residues
are 1, 2, 1, 2, From the above (Equation 3.6), we know that the
residues of X with respect to m are readily obtained if the residues

∣∣2j
∣∣ m

are available. But the approach outlined above is simplistic in that the basic
idea is to store all of the latter residues. The approach outlined next relates
the storage and the partitioning according to the inevitable repetition of
the residues as j increases.

Table 3.1 lists the residues of powers of two with respect to several
different moduli; no entry exists for m that is a power of two, as each
residue will then be zero. We can observe from this table that some rows
have only a few residues listed while other rows have longer lists of residues.
The number of residues in each row depends upon the cyclic property of

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

66 Residue Number Systems: Theory and Implementation

the residue with respect to that modulus. All residues are periodic, but the
length of a period depends on the specific modulus. Thus, some residues
have short period while others have a long period. Given a modulus, m,
we shall refer to m− 1 as the basic period and to any shorter period as a
short period .

Table 3.2: Period of repetition of residues

Odd m Even m

m l m l

3 2 6 3
5 4 10 5
7 3 12 4
9 6 14 4
11 10 16 7
13 12 18 7
15 4 22 11
17 8 24 5
19 18 26 13
21 6 28 5

We can also observe from Table 3.1 other important properties of
residues. For some moduli, the residues of 2j (up to the point where the
repetition starts) are distinct and therefore all m − 1 residues must be
stored. As an example, consider the modulus 11. The residues |2j |11 are
1, 2, 4, 8, 5, 10, 9, 7, 3, 6, for j = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The residues do not
repeat within the basic period determined by 11, but they do repeat from
j > 10. Therefore, the maximum number of residues that must be stored
is ten. For larger values of j, the same set of residues can be used because
of the repetitive nature of residues beyond j = 10. Table 3.1 also shows
that for some moduli, the residues repeat within the basic period deter-
mined by the modulus. For example, with the modulus 21, the residue-set
{1, 2, 4, 8, 16, 11} is obtained for j = 0, 1, 2, 3, 4, 5; for j > 5 the residues
repeat. The periodicity of the residues is six, which is smaller than the
basic period corresponding to 21. So in this case we need to store only six
residues; for higher indices corresponding to the same modulus, the same
set can be used; relative to the magnitude of the modulus, little memory

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Forward conversion 67

is required in this case. The residue-set for modulus 6 is slightly different.
The residue-set here is {1, 2, 4, 2, 4}, for n = 0, 1, 2, 3, 4. Observe that the
residue-set is periodic after an initial period of unity: the residues repeat
from 2, and this requires storing 1 in addition to 2 and 4.

Note that although Table 3.1 includes some special moduli (i.e. of the
{2n−1, 2n, 2n+1}moduli-sets), conversion in these sets can be implemented
quite easily using only combinational logic.

Table 3.2 lists the number, l, of residues that must be stored, for various
moduli up to 21. (In practice large moduli are rarely used because of the
imbalances they create in the implementation data-path.) As one would
expect from the theoretical results of Chapters 1 and 2, l is large for prime
m.

We now turn to the application of the cyclic nature of the residues to the
implementation of forward conversion. Observe that the complexity in the
computation of the residues of a given number depends on the periodicity of
the residues and not on the number of bits in the number’s representation.
So we proceed as follows. If the period is t, the binary number whose
residues are sought is partitioned into t-bit blocks. The sets of residues
for the different t-bit blocks will be the same because of the periodicity:
each block determines the same set of 2t different values. The t-bit blocks
are then added. The residue of any t-bit number and the result of the
final modular additions, are obtained from a look-up table in which the
residues of 2j mod m, j = 0, 1, 2, . . . , t, are stored. Thus the basic hardware
structures required are similar to those with arbitrary partitioning (Figures
3.6 and 3.7).

Example. Consider the computation of the residue of the 16-bit number
32015 with respect to the modulus 17. The binary representation of 32015
is 0111110100001111. From Table 3.2, we find that the periodicity of the
residues for 17 is 8. The 16-bit number is therefore partitioned into two
8-bit blocks that are then added:

01111101 + 00001111 = 10001100
The non-zero bits in the result correspond to 27, 23, and 22. The residues of
these, with respect to 17, are obtained from a lookup-table and then added
in a multi-operand modular adder.

|32015|17 =
∣∣ ∣∣27

∣∣
17

+
∣∣23

∣∣
17

+
∣∣22

∣∣
17

∣∣
17

= |9 + 8 + 4|17
= 4

end example

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

68 Residue Number Systems: Theory and Implementation

3.3 Arbitrary moduli-sets: combinational logic

Almost all forward-conversion architectures for arbitrary moduli-sets uti-
lize a combination of ROM and combinational logic [11]. Nevertheless, it
is possible to formulate forward conversion in terms of modular exponenti-
ation and addition. This facilitates the design of converters that use only
combinational logic. As in the preceding cases, the implementations can
be one of several configurations—bit-serial, digit-serial, bit-parallel, and so
forth —by a simple variation of the number of multiplexers used in the
design. Since no table-lookup is required, it is possible to significantly re-
duce the complexity of the implementation by sharing some of the circuitry
among forward converters for several moduli. We next explain the basic
idea of modular exponentiation and then show its application to forward
conversion.

3.3.1 Modular exponentiation

Modular exponentiation is based on the simple idea that the residue-set
for any binary number can be obtained from the residues of powers-of-two
representation of that binary number. Of course, this is essentially the same
idea already used above; but we shall now see how a different variation on
the theme can be used as a basis for the design a purely combinational-logic
converter [1].

If X is represented in p bits, as xp−1xp−2 · · ·x0, then

X =
p−1∑

j=0

2jxj

and

|X|m =

∣∣∣∣∣∣

p−1∑

j=0

2jxj

∣∣∣∣∣∣
m

=

∣∣∣∣∣∣

p−1∑

j=0

∣∣2jxj

∣∣
m

∣∣∣∣∣∣
m

Now consider the residue representation of
∣∣2N

∣∣
m

, where N is an n-bit
number, sn−1sn−2 · · · s0, and m is the modulus of interest:

∣∣2N
∣∣
m

= |2sn−1sn−2sn−3...s0 |m

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Forward conversion 69

By associating the s bits with their binary positional weights, this equation
may be rewritten into

∣∣2N
∣∣
m

=
∣∣2n−1sn−1 × 2n−2sn−2 × · · ·+ 2n−k+1sn−k+1

×2n−ksn−k × 2n−k−1sn−k−1 × · · · ×21s1 × 20s0

∣∣
m

Since si is 0 or 1, we may modify the first k terms in this equation thus
∣∣2N

∣∣
m

=
∣∣∣
[
(22n−1 − 1)sn−1 + 1

] [
(22n−2 − 1)sn−2 + 1

]
· · ·

· · ·
[
(22n−k+1 − 1)sn−k+1 + 1

]
· · ·

· · ·
[
(22n−k − 1)sn−k + 1

]
22n−k−1sn−k−1 . . . 221s12s0

∣∣∣
m

(3.8)

Now let rn−i be
∣∣∣22n−i − 1

∣∣∣
m

, for i = 1, 2, . . . k. Then substituting for the
first k terms in Equation 3.8, we have

∣∣2N
∣∣
m

= | |(rn−1sn−1 + 1)(rn−2sn−2 + 1) · · · (rn−k+1sn−k+1 + 1)

(rn−ksn−k + 1)|m 22n−k−1sn−k−1 . . . 221s12s0

∣∣∣
m

(3.9)

which is of the form

| |(an−1 + 1)(an−2 + 1) · · · (an−k+1 + 1)(an−k + 1)|m · · ·
· · · 22n−k−1sn−k−1 . . . 221s12s0

∣∣∣
m

where an−i + 1 = rn−isn−i + 1.
Expanding Equation 3.9, we have

∣∣2N
∣∣
m

=

∣∣∣∣∣∣

∣∣∣∣∣
n−1∏

i=n−k

risi +
pk−1∑
q=1

∏
q

Ck
k−1 . . . +

p1∑
q=1

∏
q

Ck
1 + 1

∣∣∣∣∣
m

(3.10)

×22n−k−1sn−k−1 + . . . 221s12s0

∣∣∣
m

where

pk−i = Ck
k−i

=
k!

(k − i)!i!

The term
∑pk−i

q=1

∏
q Ck

k−i represents the sum of pk−i products taken (k− i)
terms at a time, with each term being of the form rn−isn−i. In Equation

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

70 Residue Number Systems: Theory and Implementation

3.10, the expression within the inner modular reduction on the right-hand
side, is synthesized as a logic function g:

g(sn−1, ss−2, . . . sn−k)
4
=

∣∣∣∣∣
n−1∏

i=n−k

risi +
pk−1∑
q=1

∏
q

Ck
k−i . . . +

p1∑
q=1

∏
q=1

Ck
1 + 1

∣∣∣∣∣
m

The synthesis includes a modular reduction since this forms part of the
function synthesized, which is done by giving alternating assigning 0 and 1
to each of the bits si. Equation 3.9 may then be rewritten by substituting
the logic function for the product term:

∣∣2N
∣∣
m

=
∣∣∣g(sn−1, sn−2, . . . sn−k)22n−k−1sn−k−1 . . . 221s12s0

∣∣∣
m

The bits sn−k−1, sn−k−2 . . . , s0 appearing in the exponents are used to mul-
tiplex the function g. This requires that the function g be modified to obtain
2n−k other logic functions, gj , j = 0, . . . , 2n−k − 1. These functions are de-
signed to take into account the positional weights associated with the bits
sn−k−1, sn−k−1, . . . s0 that appear as exponents in the terms 22n−k−1sn−k−1 .
In determining the logic functions gj , simplifications involving the modular
reductions are taken into account, thus eliminating the need for additional
residue units when modular exponentiation is performed at lower levels. So

∣∣∣g(sn−1, . . . , sn−k)22n−k−1sn−k−1 . . . 221s12s0

∣∣∣
m

=




g0 (sn−1, . . . , sn−k) ¯sn−k−1 . . . , s̄0)
or
g1 (sn−1 . . . , sn−k) ¯sn−k−1 . . . s̄1s0)
or
...
or
gn−1 (sn−1 . . . sn−k)sn−k−1 . . . s0)

(3.11)

In practical designs, the number of bits used to represent a modulus is
usually quite small—very often just five or six bits—so the synthesis of the
logic functions need not be very complex. The next example illustrates the
procedure just described.

Detailed example

We now use a detailed example to illustrate modular-exponentiation for-
ward -conversion. The forward translation consists of synthesizing the logic

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Forward conversion 71

functions gi to generate partial residues corresponding to each power of two
that is required in the sum representing the given binary number. In com-
puting partial residues, the bits that comprise the residues are multiplexed
according to Equation 3.11.

Suppose we wish to evaluate |8448|13. 8448 may be represented in
powers-of-two form as 213 + 28. So

|8448|13 =
∣∣∣∣213

∣∣
13

+
∣∣28

∣∣
13

∣∣
13

and

|2s3s2s1s0 |13 =
∣∣28s3+4s2+2s1+s0

∣∣
13

= |(255s3 + 1)(15s2 + 1)4s12s0 |13
= |(3s3s2 + 8s3 + 2s2 + 1)4s12s0 |13 (3.12)

Other choices are available in how to split s3s2s1s0. Having made the
choice above, we next look at the values that Equation 3.12 yields: for each
of the four possibilities determined by s1s0, we will determine a function
gig, according to the values that s3s2 can take.

When s1s0 = 00, Equation 3.12 reduces to

|2s3s2s100|13 = |3s3s2 + 8s3 + 2s2 + 1|13
For s3s2 = 00, Equation 3.12 reduces to

|20000|13 = |3s3s2 + 8s3 + 2s2 + 1|13 = 1

= 1

For s3s2 = 01, s3s2 = 10 and s3s2 = 11, Equation 3.14 gives the results
3, 9, and 1 respectively. The various values are shown in Table 3.4. Mini-
mization produces the bit-sequence (s3s̄2, 0, s̄3s2, 1), which corresponds to
the weights 8,4,2,1. That is, the function g0 = s3s2 + 2s3s2 + 1.

Table 3.4: Truth table for g0

s3s2 8 4 2 1
00 0 0 0 1
01 0 0 1 1
10 1 0 0 1
11 0 0 0 1

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

72 Residue Number Systems: Theory and Implementation

Table 3.5: Truth table for g1

s3s2 8 4 2 1
00 0 0 1 0
01 0 1 1 0
10 0 1 0 1
11 0 0 1 0

When s1s0 = 01 Equation 3.12 reduces to

|2s3s201|13 = |(3s3s2 + 8s3 + 2s2 + 1)× 2|13
= |6s3s2 + 3s3 + 4s2 + 2|13

The four different combinations of s3s2 are shown in Table 3.5. Minimiza-
tion produces the logic function g1 = (0, s̄3s2 + s3s̄2, s̄3 + s2, s3s̄2).

Lastly, Tables 3.6 and 3.7 show the mappings for Equation 3.12 when
s1s0 = 10 and s1s0 = 11 respectively:

|2s3s210|13 = |(3s3s2 + 8s3 + 2s2 + 1)× 4|13
= |12s3s2 + 6s3 + 8s2 + 4|13

and

|2s3s211|13 = |(3s3s2 + 8s3 + 2s2 + 1)× 8|13
= |11s3s2 + 12s3 + 3s2 + 8|13

Table 3.6: Truth table for g2

s3s2 8 4 2 1
00 0 1 0 0
01 1 1 0 0
11 0 1 0 0
10 1 0 1 0

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Forward conversion 73

Table 3.7: Truth table for g3

s3s2 8 4 2 1
00 1 0 0 0
01 1 0 1 1
11 1 0 0 0
10 0 1 1 1

4-Bit

Modular

Adder

Logic-Function

Generator

1

0

44 4 4

23

Figure 3.7: Sequential implementation of the forward converter

Minimizing Tables 3.6 and 3.7 yields the functions g2 and g3 as
(s̄3s2 + s3s̄2, s̄3 + s2, s3s̄2, 0) and (s̄3 + s2, s3s̄2, s̄3s2 + s3s̄2, s̄3s2 + s3s̄2),
respectively. The conversion hardware consists of sixteen columns of four
1-bit multiplexers each. Strictly, four multiplexers are sufficient as there can
at most be four bits in a residue in this case. Since only s1 and s0 are used
for multiplexing-control, two to four multiplexers are needed. The most
significant bits of all four g functions are applied to the first multiplexer
and the least significant bits are applied to the last multiplexer.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

74 Residue Number Systems: Theory and Implementation

Figure 3.8: Sequential-parallel implementation of the forward converter

��������	
��

�
�����������	

�
�

���

����

�
�

����

�
�

����

�
�

���

����

���������
���������

���������
���������

���������
��������� ���������
���������

����� ��� ����� ��� ����� ��� ����� ��!

��"����
�������#��������
$%��
�
	���&

 �'��()�#���	
$�"���	&

�

�

� !� !

�
!'�'*'��

�
�'+','��

�
�'-'�!'���

�'.'��'�+

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Forward conversion 75

Consider, for example, 8448 mod 13. In terms of powers of two, we
have |8448|13 =

∣∣ ∣∣213
∣∣
13

+
∣∣28

∣∣
13

∣∣
13

. Here N = 13, s3s2s1s0 = 1101, and
s1s0 = 01 are used as multiplexer-inputs and for the function g1. Using
four one-bit multiplexers such that the most significant bits of g0 through
g3 are inputs to the first multiplexer and the least significant bits are inputs
to the fourth multiplexer, the output is obtained in one clock cycle. The
output corresponding to g1 is {0, (1 ⊕ 1), (1̄ or 1), 0}; so g1 = 0010 = 2.
Similarly, for N = 8, g0 is the output, and the residue corresponding to
this is 1001 = 9. So |8448|13 = |2 + 9|13 = 11.

In our specific example here, 213 and 28 are the only non-zero powers
of two present. The corresponding binary equivalents of 13 and 8 are 1101
and 1000. Two modular exponentiations are performed with s1s0 as 01
and 00, respectively, and the logic functions g1 and g0 are multiplexed.
Functions g1 and g0 when evaluated for s3s2 = 11 and s3s2 = 10 yield g1 =
(0, 0, 1, 0) = 2 and g0 = (1, 0, 0, 1) = 9, as can be seen from Tables 3.4 and
3.5, respectively. These results are then added in modular adders, and the
final residue is 11. Figures 3.7 and 3.8 show the sequential and sequential-
parallel implementations of the converter. The sequential-parallel design
uses four 4-bit, 4-to-1 multiplexers and requires 4 clock cycles to complete
the conversion. The sequential design uses only one 4-to-1 multiplexer but
requires 16 × 4 clock cycles, since there are four bits in each residue and
16-bit numbers are being considered.

Architectural realization

We have shown that in the forward conversion of a binary number to its RNS
equivalent, modular exponentiation is performed on each non-zero bit of the
binary number. For the corresponding hardware implementation, there are
three alternatives that exist for carrying out this translation: sequential,
parallel, or a combination of both parallel and sequential methods. In
this section, we shall briefly describe these three methods. This discussion
will include cost, complexity issues, and performance factors associated
with the conversion. Since a dynamic range of thirty-two bits has been
found to be sufficient for most digital-signal-processing applications, we
shall assume the moduli-set {3, 5, 7, 11, 13, 17, 19, 23, 29, 31}. So, five bits
will suffice to represent a modulus. The logic circuits that are used to
combine and generate the terms that make up gi can be shared among
different moduli, which will yield significant savings if the numbers to be
converted are fairly large.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

76 Residue Number Systems: Theory and Implementation

In sequential conversion, we perform modular exponentiation on each
non-zero bit. Therefore, in the conversion of a 32-bit number, the expo-
nentiation is repeated thirty-two times. We have a choice between using a
single 1-bit multiplexer or using five 1-bit multiplexers (i.e. one 5-bit mul-
tiplexer). In using a single 1-bit multiplexer, every bit in a 5-bit residue is
multiplexed; so the circuit requires five clock cycles for each modular expo-
nentiation. Since, there are thirty-two bits in the number to be converted,
the total number of clock cycles required is 160 (i.e. 32 × 5). Evidently,
the operational delay can be greatly reduced—by a factor of five—if five
1-bit multiplexers are used instead, as all five bits in a residue can then
be multiplexed at the same time. We also have a choice in the number
of bits used for multiplexer-control: we may use two bits for multiplexer-
control and leave the other three bits for logic synthesis, or use three bits
for multiplexer-control and the remaining two bits for logic synthesis, and
so forth. Using fewer bits for multiplexer-control greatly reduces the circuit
complexity. For the 32-bit case under consideration, we have determined
that using two bits for multiplexer-control resulted in the least costs (as
measured by the number of gates) in the implementation of the converter.
The partial residues obtained for each modular exponentiation are added
in a multi-operand modular adder.

In the parallel computation of residues, modular exponentiation is car-
ried out simultaneously on all bits of a given binary number. This requires
the use of thirty-two 1-bit multiplexers for a 32-bit number and five clock
cycles for 5-bit residues. The speed of residue computation can be further
increased by using five times as many multiplexers, as this enables all mod-
ular exponentiations to be performed in one clock cycle; partial residues
are then added using a tree of adders (a multi-operand modular adder).
This method has one drawback: if the converter is realized in current VLSI
technology, the routing complexity is likely to be high and will be directly
proportional to the number of bits in a residue.

Figure 3.9 shows an architecture for the parallel implementation of the
conversion algorithm. The combinational-logic circuit required to generate
the bits in the sequences is common to all the multiplexers. In fact, the same
circuit can be shared among converters for several moduli. The conversion
requires only one clock cycle because of the high parallelism inherent in the
implementation.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Forward conversion 77

Figure 3.9: Parallel modular-exponentiation forward converter

An alternative to either the purely sequential or purely parallel method
is a combination of a bit of both. In this case, speed is compromised to
somewhere between that of the sequential method and that of the parallel
method, but the hardware costs increase to just a little more than that of
the sequential approach. The sequential-parallel method is implemented by
partitioning the given binary number into several blocks and then concur-

�
�

���

����

�
�

����

�
�

����

�
�

���

����

���������
���������

���������
��������� ���������
�������

����� ���� ����� ���� ����� ��, ����� ��*

�

�

� !� !

��
*

��
,

��
���

��
��

� !

� ����
�� ���

����
�/
�

��

��

��

��

0�������
��
��	��
������	

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

78 Residue Number Systems: Theory and Implementation

rently carrying out modular exponentiation on all the partitions. In this
case, the the modular exponentiation and final additions can be pipelined.

3.3.2 Modular exponentiation with periodicity

We next show how modular exponentiation can be combined with period-
icity property of residues to design a forward converter of low hardware
complexity. We shall initially assume that the moduli are odd, as is often
the case in many practical implementations.

In applying the periodicity properties to compute residues, the given
binary number is partitioned according to the period, basic or short, as-
sociated with the corresponding modulus. Let p be that period. Then
2n, 2n+p, 2n+2p, . . . will all have the same residues. The partitioned blocks
are then added, with the sum reduced appropriately relative to the modu-
lus. The following example illustrates the procedure.

Example. Consider the 32-bit number

00011001 00011010 11000110 00111100

The decimal equivalent of this number is 421185084, and its residue with
respect to 23 is 22. From Table 3.2, the periodicity of the residues is found
to be 11. The number is therefore partitioned into 11-bit blocks that are
then added:

00001100100 + 01101011000 + 11000111100 = 100111111000

Forward conversion is then performed on the result, using modular expo-
nentiation on only eleven bits, as opposed to all thirty-two bits as would be
the case with a straightforward combinational-logic converter. This reduces
the number of adders required for the conversion.
end example

In many applications, the moduli are odd, except for those of the form
2n, which occur in the special moduli-sets; and reduction modulo 2n re-
quires no hardware. Nevertheless, there are cases in which even moduli
other than 2n do occur; for example, in the moduli-set {2m−1, 2m, 2m+1}.
So, contrary to what might initially appear to be the case, there is also a
need for forward conversion in the case of even moduli. Residue computa-
tion in this case is performed in a slightly different manner: Even moduli

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Forward conversion 79

are represented as a product of powers-of-two and an odd number. The fol-
lowing property is then applied in the evaluation of residues. The residue
of an integer X modulo m can be expressed as

|X|m =
∣∣∣∣
⌊

X

2p

⌋∣∣∣∣
y

2p + |X|2p (3.13)

where m, the even modulus, is expressed as 2py, with y an odd number.
|X|2p is just the least significant p bits of X. If X is represented in k bits,
then the first term in Equation 3.13 is just the k − p most significant bits
of the X. The evaluation of |bX/2pc|y is as above, for odd moduli, since y

is odd. The proof of Equation 3.13 is as follows.

X = QP + R

where Q is the quotient obtained by dividing X by P and R is the residue.
Suppose P is even, composite, and not in the 2n set. Let P denote the
value y2p. Then

|X|P = R

Now, X may also be expressed as

X = Q12p + R1

where Q1 is the quotient and R1 is the residue obtained from dividing X

by 2p. So 0 ≤ R1 < 2p, and R1 = |X|2p . And Q1 may be expressed as

Q1 = Q2y + R2

where Q2 is the quotient and R2 is the remainder obtained by dividing Q1

by y. So 0 ≤ R2 < y, and Q1 = bX/2pc from Equation 3.15. Since R2 is
the residue of Q1,

R2 = |Q1|y =
∣∣∣∣
⌊

X

2p

⌋∣∣∣∣
y

Therefore

X = QP + R

= Q12p + R1

From the preceding

QP + R = (Q2y + R2)2p + |X|2p

= Q2y2p + R22p + |X|2p

= Q2P +
∣∣∣∣
⌊

X

2p

⌋∣∣∣∣
y

2p + |X|2p (3.14)

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

80 Residue Number Systems: Theory and Implementation

Comparing X = QP + R with Equation 3.14, we deduce that

R =
∣∣∣∣
⌊

X

2p

⌋∣∣∣∣
y

2p + |X|2p

The following example illustrates the procedure.

Example. Let us determine the residue, with respect to 24, of the same
32-bit number as in the last example:

00011001 00011010 11000110 00111100

The decimal equivalent of this number is 421185084, and its residue with
respect to 24 is 12. The modulus is expressed as a composite number:
24 = 23 × 3. The partial residue |X|23 is simply the three least significant
bits of X, i.e. 100. The remaining 29 bits are partitioned into 2-bit blocks
since the periodicity of 3 is 2. The 2-bit blocks are then added modulo
3. The modular exponentiation is then performed and the partial residue
obtained is to be 1. Combining the two partial residues, we get 1100, which
in decimal is 12. end example

3.4 Summary

As is the case with all residue operations, implementations for forward
conversion may be classified according to the ease of design and realization;
that is, according to whether the moduli are of the special type, or whether
they are not. With the former moduli, the converters are almost always of
pure combinational-logic; and with the latter most involve the use of some
table-lookup, although modular exponentiation facilitates the use of just
combinational logic. The best converters for the arbitrary moduli invariably
exploit particular properties of residue, the most significant of which is the
fact that residues with respect to a given modulus repeat after some point.
Also, the various techniques described can be fruitfully combined to take
advantage of their different merits.

References

(1) B. Premkumar. 2002. A formal framework for conversion from binary
to residue numbers. IEEE Transactions on Circuits and System II ,
46(2):135–144.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Forward conversion 81

(2) N. S. Szabo and R. I. Tanaka. 1967. Residue Arithmetic and its Ap-
plications to Computer Technology , McGraw-Hill, New York.

(3) S. Piestrak. 1994. Design of residue generators and multioperand mod-
ular adders using carry save adders. IEEE Transactions on Computers,
42(1):68–77.

(4) A. Mohan. 1999. Efficient design of binary to RNS converters. Journal
of Circuits and Systems, 9(3/4): 145–154.

(5) A. Mohan. 2002. Residue Number Systems: Algorithms and Architec-
tures. Kluwer Academic Publishers, Dordrecht.

(6) B. Parhami and C. Y. Hung. 1994. “Optimal table lookup schemes for
VLSI implementation of input/output conversions and other residue
number operations”. In: VLSI Signal Processing VII , IEEE Press,
New York.

(7) F. Barsi. 1991. Mod m arithmetic in binary systems. Information
Processing Letters, 40:303–309.

(8) D. K. Banerji and J. A. Brzozowski. 1972. On translation algorithms
in RNS. IEEE Transaction on Computers, C-21:1281–1285.

(9) G. Alia and E. Martinelli. 1984. A VLSI Algorithm for direct and
reverse conversion from weighted binary number to residue number
system. IEEE Transaction on Circuits and Systems, 31(12):1425–1431.

(10) G. Alia and E. Martinelli. 1990. VLSI binary-residue converters for
pipelined processing. The Computer Journal , 33(5):473–475.

(11) R. M. Capocelli and R. Giancarlo. 1998. Efficient VLSI networks for
converting an integer from binary system to residue number system and
vice versa. IEEE Transactions on Circuits and System, 35(11):1425–
1431.

(12) G. Bi and E. V. Jones. 1988. Fast Conversion betweeen binary and
residue numbers. Electronic Letters, 24(9):1195–1997.

(13) B. Vinnakota and V. B. B. Rao. 1994. Fast conversion techniques
for binary-residue number systems. IEEE Transaction on Circuits and
Systems, 14(12):927–929.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

This page intentionally left blankThis page intentionally left blank

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Chapter 4

Addition

The main topics of this chapter are algorithms for addition in residue num-
ber systems and the hardware implementations of these algorithms. By
implication, this also includes subtraction, which is usually implemented
as the addition of the negation of the subtrahend. Hardware implemen-
tations for residue arithmetic may be based on look-up tables (realized as
ROMs), or pure combinational logic, or a combination of the two. The
combinational-logic units in such cases are exactly those for conventional
arithmetic or are derived from those, whence our remarks in Chapter 1 on
the relationships between residue notations, on the one hand, and arith-
metic and conventional notations and arithmetic, on the other. We shall
therefore start with a review of the major types of conventional adders and
then show how these may be used as the basis for residue adders. The
reader who is already familiar with this material may quickly skim the first
section of the chapter, primarily for notation and terminology.

The second section of the chapter deals with addition relative to an
arbitrary modulus. Such addition cannot be implemented as efficiently as
conventional addition, even though the same underlying units may be used
in both cases. The third and fourth sections are on addition relative to two
special moduli, 2n − 1 and 2n + 1. The importance of these moduli arises
from the fact that the moduli-set {2n−1, 2n, 2n+1} is an especially popular
one, as are its extensions, largely because of the relative ease with which
arithmetic operations with respect to these moduli can be implemented.
Addition modulo 2n is just conventional unsigned addition, and addition
modulo 2n−1 is very similar to 1s-complement addition. Addition modulo
2n + 1 is, however, less straightforward.

In discussing basic arithmetic operations in conventional number sys-
tems, it would be natural to include some remarks on overflow. We shall

83

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

84 Residue Number Systems: Theory and Implementation

not do so here, because determining overflow in a residue number system
is a rather difficult operation and is one that is best included with other
operations of the same fundamental nature (Chapter 6).

We conclude these introductory remarks with two notes on terminol-
ogy. First, because, digit-wise, the addition of two numbers represented
in residue notation can be performed concurrently, and independently, by
adding all corresponding digits, the following discussions on residue ad-
dition are limited to just operations on digit-pairs. That is, we shall be
discussing the design of digit-slices. Second, unqualified uses of the term
“adder” will be references to conventional adders; for residue arithmetic,
we shall use “residue adder”, sometimes with an indication of the modulus
in use.

4.1 Conventional adders

There are many basic designs for adders, and many more designs can be ob-
tained as “hybrids” of these basic designs. In what follows we shall briefly
describe the major basic designs. The choice of the particular adders cov-
ered has been determined by both the frequency of their usage in conven-
tional arithmetic and ease with which they can be applied to residue arith-
metic: certain types of adders, e.g. the conditional-sum and parallel-prefix
adders, are particularly important because they can easily be adapted for
addition with special moduli (such as 2n − 1 and 2n + 1). For more com-
prehensive discussions of adders, the reader is referred to [12, 13, 21].

The designs covered here are those of the carry-ripple, carry-skip, carry-
lookahead, carry-select, conditional-sum, and parallel-prefix adders. The
ripple adder is very cheap and effective for short word-lengths and may
therefore be useful in the many applications of residue arithmetic in which
small moduli are used. (The basic technique can also be combined with
the use of other techniques in order to implement large adders.) For word-
lengths for which the ripple adder may be too slow, the carry-skip adder is
one option for better performance at relatively low cost.1 All of the other
adder designs described here are “high-performance” but entail much higher
costs: The carry-lookahead adder is theoretically the fastest design, but in
its pure form it is practical only for short word-lengths. This is usually a

1For ASICs, a good measure of cost is chip area, of which gate-count and the number
of interconnections comprise a reasonable approximation. For FPGAs, the number of
configurable-logic blocks, or something similar, is a good measure.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 85

problem with conventional addition, but is not necessarily the case with
typical residue arithmetic, given the many applications for which small
moduli suffice. Carry-select addition can be used with other underlying
basic techniques and is also “naturally” suited to certain cases in residue
addition—those in which two intermediate results are generated and one
is then selected to be the final result. The conditional-sum adder may be
viewed as a particular instance of combining carry-lookahead and carry-
selection principles; it is suitable for a wide range of word-lengths. For
the realization of fast addition in current technology, the parallel-prefix
adder has the best performance-cost characteristics and, essentially, allows
carry-lookahead principles to be practically employed for a wide range of
word-lengths.

4.1.1 Ripple adder

Excluding a serial adder , which consists of just a full adder and 1-bit stor-
age, the simplest possible adder is the carry-ripple (or just ripple) adder.
Such an adder consists of a series of full adders in a chain, with the carry
output from one full adder connected to the carry input of the next full
adder. The design of an n-bit ripple adder that takes two operands,
A

4
= An−1An−2 . . . A0 and B

4
= Bn−1Bn−2 . . . B0, and produces a sum,

S
4
= An−1Sn−2 . . . S0 is shown in Figure 4.1. C−1 is the carry into the

adder and is usually 0 for unsigned arithmetic; Cn−1 is the carry out of the
adder. The logic equations for a full adder are

Si = (Ai ⊕Bi)⊕ Ci−1 (4.1)

Ci = AiBi + (Ai ⊕Bi)Ci−1 (4.2)

and a corresponding logic diagram is shown in Figure 4.2. Throughout
the text we shall assume that this is the implementation for a full adder,
although other variations are possible

If performance is measured in terms of logical date-delays, then the
serial adder appears to be rather slow, because the full adders cannot always
operate in parallel. In general, the full adder at stage i has to wait for a
possible carry from stage i−1, which in turn has to wait for a possible carry
from stage i − 2, and so forth. The operational time is therefore O(n), in
contrast with the O(log n) of the fastest adders. Nevertheless in current
technology it is possible to construct realizations of the ripple adder whose
operational times are quite small. The basic technique in such realizations

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

86 Residue Number Systems: Theory and Implementation

is a very fast carry-path, commonly known as a Manchester carry-chain;
the resulting adder is a Manchester adder .

C-1

B0A0B1A1Bn-1An-1

C0C1

Cn-2

Sn-1

Cn-1

S1 S0

Figure 4.1: Ripple adder

A
i

B
i

C
i

C
i+1

S
i

Figure 4.2: Full adder

The Manchester adder may be viewed as a carry-ripple adder in which
the carry-path consists of switches instead of the usual gates, with the
switches being considerably faster than the gates. Figure 4.3 depicts a

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 87

single bit-stage in a Manchester carry-chain. It consists of three switches2,
SG, SP , and SK , that operate in mutual exclusion. When both operand bits
are 1, the switch SG closes and the carry-out of the stage is 1, whatever the
carry-in is. When one of the operand bits is 0, the other is 1, and carry-in is
1, the switch SP closes and the carry-out of the stage is 1. And when both
operand bits are 0, the switch SK closes and the carry-out of the stage is 0,
whatever the carry-in is. Figure 4.4 shows one possible CMOS realization
of Figure 4.3; many other variants are possible. This is evidently a more
efficient structure than would be directly obtained from the corresponding
gates of Figure 4.3.

B
i

A
i

C
i−1

C
i

S
K

S
P

S
G

B
i

A
i

A
i

B
i

S
i

to form

0

1

Figure 4.3: Stage of Manchester carry-chain

C
i−1

C
i

B
i

A
i

S
G

S
P

B
i

A
i

S
K A

i
B

i

A
i

B
i

VDD

GND

Figure 4.4: CMOS realization of Manchester carry-chain stage

2The bit-pair of a stage are such that it can generate a carry, or propagate an incoming
carry, or kill an incoming carry.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

88 Residue Number Systems: Theory and Implementation

For small word-lengths, Manchester adders are very fast and cost very
little. Indeed, for such word-lengths the ripple adder is competitive with the
more complex designs that logically have much smaller operational times
(as measured by time-complexity). This is significant, given that many
applications of residue arithmetic involve small moduli. The Manchester
adder is, when combined with other techniques, also useful as a building
block in large adders.

4.1.2 Carry-skip adder

The carry-skip adder (also known as a carry-bypass adder) is, essentially,
the result of improving the (logical) carry-propagation times in the basic
ripple adder, by having carries skip stages that they would definitely ripple
through. Suppose the two numbers represented by the binary patterns
A12A11A10A9010101A2A1A0 and B12B11B10B9101010B2B1B0 are added,
any carry from the addition of bits 0 through 2 will ripple through the
middle 0s and 1s stages and into the stages that add bits 9 through 12.
Now, the patterns of 0s and 1s is such that any incoming carry from the
addition of A2 and B2 always ripples through that middle portion and into
the last four stages. Therefore, the addition in the latter stages may be
started immediately, with a carry-in of 1, as soon as there is a carry from
bit 2, while that carry is also rippled through, as usual, to form the sum
bits in positions 3 through 8. So one may view the carry C8 as being (a
copy of) the carry C2 that has skipped stages 3 through 8.

A carry-skip adder is therefore essentially a ripple adder (typically a
Manchester adder) that has been divided into several blocks, each of which
is equipped with carry-skip logic that determines when the carry into the
block can be passed directly to the next block. The carry-skip logic is quite
simple: A carry into stage i goes through the stage if either Ai = 1 and
Bi = 0 or Ai = 0 and Bi = 1. So an incoming carry, Cj−1, skips a block,
j, of size m if

[(Aj ⊕Bj)(Aj+1 ⊕Bj+1) · · · (Aj+m−1 ⊕Bj+m−1)]Cj−1 (4.3)
4
= (PjPj+1 . . . Pj+m−1)Cj−1

(Pi is called the carry-propagate signal for stage i.) Therefore, the carry
into block j +1 is either the carry, Cj−1, that skips block j, or is the carry,
C̃j+m−1, that comes out the last stage of block j, having been generated
somewhere in the block. The carry-skip logic for a block therefore nominally
consists of one AND gate for each P signal, one AND gate to combine the

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 89

P signals, and an OR gate to select either source of carry; these implement
the equation for the carry into the next block:

Cj+m−1 = PjPj+1 . . . Pj+m−1Cj−1 + C̃j+m−1

4
= P j+m−1

j Cj−1 + C̃j+m−1

(P j+m−1
j is called the block carry-propagate signal for block j.) Note that

the Pi signals are already required to form the sum bits and therefore do
not necessitate any extra logic.

It is common in realizations to replace the nominal OR gate with a
multiplexer, so that the carry-skip logic then corresponds to the equation

Cj+m−1 = P j+m−1
j Cj−1 + P

j+m−1

j C̃j+m−1

Figure 4.5 shows a 16-bit adder, of 4-bit blocks, designed on this basis. The
signal Ti is similar to Pi and is explained in Section 4.1.3.

What the carry-skip logic does is break up potentially long carry-
propagation paths through the full adders. Assuming blocks of the same
size, the longest chain will be one that starts in the second stage of the
first block, ripples through to the end of that block, runs along the carry-
skip path (of one OR gate and one AND gate per stage), and finally en-
ters the last block and ripples through to the penultimate stage of that
block. Speeding up such an adder requires two seemingly contradictory ap-
proaches. On the one hand, reducing the inter-block rippling requires that
blocks be small. But on the other hand, reducing the length of the carry-
skip path requires that the number of blocks be low, and, therefore, that
the blocks be large. The obvious compromise is to have blocks of different
sizes, arranged in such a way that the block sizes increase from either end
of the adder. For example, for a 16-bit adder, one good partitioning is the
set of block-sizes [1, 2, 3, 4, 3, 2, 1]. It should, however, be noted that for
a given adder, the block-sizes depend on the implementation of the adder,
as well as its realization in a given technology. The important factor is
the ratio between the time required for a carry to ripple through a bit-slice
and the time required to skip a block. The one-bit difference in the 16-bit
example above is optimal for a 1:1 ratio, but clearly other ratios (integer
and non-integer) are possible. Further discussions of carry-skip adders will
be found in [7, 8].

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

90 Residue Number Systems: Theory and Implementation

C
1

C
m
-
1

C
-
1

A
0

B
0

C
0

A
1

A
m
-
1

B
1

B
m
-
1

T
0

T
1

T
m
-
1

A
2
m
-
1

A
m

B
m

B
m
+
1
A
m
+
1

B
2
m
-
1

C
m

T
m

T
m
+
1

T
2
m
-
1C
m
+
1

C
2
m
-
1

A
3
m
-
1

A
2
m
+
1

A
2
m

B
2
m
+
1

B
2
m

C
2
m

T
2
m

T
2
m
+
1

T
3
m
-
1

B
3
m
-
1

Figure 4.5: Carry-skip adder

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 91

The operational time for an optimally partitioned3 n-bit carry-skip
adder is O(

√
n). For large values of n, this is well above the O(log n) op-

erational times of the fastest adders. When n is large better performance
can be achieved by again applying the same basic technique: the original
carry-skip chain is itself partitioned to yield another, second-level, carry-
skip chain. In theory, this can be extended arbitrarily, but two levels of
carry-skip logic appears to be the current practical limit. The operational
time for an L-level carry-skip adder is O(L

√
n).

4.1.3 Carry-lookahead adders

Carry-lookahead is arguably the most important technique in the design
of fast adders, especially large ones. In straightforward addition, e.g. in
a ripple adder, the operational time is limited by the (worst-case) time
allowed for the propagation of carries and is proportional to the number of
bits added. So faster adders can be obtained by devising a way to determine
carries before they are required to form the sum bits. Carry-lookahead does
just this, and, in certain cases the resulting adders have an operational time
that is independent of the operands’ word-length.

A carry, Ci, is produced at bit-stage i if either one is generated at
that stage or if one is propagated from the preceding stage. So a carry is
generated if both operand bits are 1, and an incoming carry is propagated
if one of the operand bits is 1 and the other is 0. Let Pi and Gi denote the
generation and propagation, respectively, of a carry at stage i, Ai and Bi

denote the two operands bits at that stage, and Ci−1 denote the carry into
the stage. Then we have

Gi = AiBi (4.4)

Pi = Ai ⊕Bi (4.5)

Ci = Gi + PiCi−1 (4.6)

The last of these is a reformulation of Equation 4.2, and Equation 4.1
may now be rewritten as Si = Pi ⊕ Ci−1, which allows the use of shared
logic to produce Si and Pi. In some cases it is convenient to replace the
propagation function4, Pi, by the transfer function, Ti, which combines

3For uniform-size blocks, the operational time is O(n), but with smaller constants than
for the ripple adder.
4In current CMOS technology, for example, XOR gates have a larger operational delay

than AND/OR/NAND/NOR gates

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

92 Residue Number Systems: Theory and Implementation

both propagation and generation, since

Ti = Gi + Pi

= Ai + Bi

Pi would still be needed to form the sum. and can be computed concurrently
with other signals, but if only Ti is formed initially. Then Pi may be
obtained as

Pi = Gi Ti

Another function that is frequently used, instead of Pi, to propagate
carries is the kill function, Ki. This function is implicit in the Manchester
carry-chain and is defined as

Ki = AiBi

Evidently, Ki = Ti and Pi = Gi + Ki. There are in fact several other
functions that may be used to propagate carries [4], but we shall stick to
just Pi.

If we unwind the recurrence (Equation 4.6) for Ci, for different values
of i, then we end up with

C0 = G0 + P0C−1

C1 = G1 + P1G0 + P1P0C−1

C2 = G2 + P2G1 + P2P1G0 + P2P1P0C−1

...

Ci = Gi + PiGi−1 + PiPi−1Gi−2 + · · ·+ PiPi−1Pi−2 · · ·P0C−1 (4.7)

where C−1 is the carry into the adder.
Equation 4.7 for Ci states that there is a carry from stage i if there is a

carry generated at stage i, or if there is a carry that is generated at stage
i−1 and propagated through stage i, or if . . ., or if the initial carry-in, C−1,
is propagated through stages 0, 1, . . . , i. The complete set of equations show
that, in theory at least, all the carries can be determined independently,
in parallel, and in a time (three gate delays) that is independent of the
number of bits to be added. The same is also therefore true for all the sum
bits, which require only one additional gate delay. Figure 4.6 shows the
complete logical design of four-bit carry-lookahead adder.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 93

A0

G0

S1S2
S3 S0

C-1

P3 G2 P2 G1 P1 P0

B0A1B1A2B2A3B3

C3

G3

C0C1C2

Figure 4.6: 4-bit carry-lookahead adder

Compared with a ripple adder, as well as some of the other adders
described above, a pure carry-lookahead adder has high logic costs. Fur-
thermore, high fan-in and fan-out requirements can be problematic: the
fan-out required of the Gi and Pi signals grows rapidly with n, as does the
fan-in required to form Ci. For sufficiently large values of n, the high fan-
in and fan-out requirements will result in low performance, high cost, or
designs that simply cannot be realized. In contrast with adders for conven-
tional arithmetic, however, the moduli used in many applications of residue
arithmetic are quite small (i.e. n is small), and carry-lookahead adders of
the type depicted in Figure 4.6 may not be impractical. For large values
of n, there are “hybrid” designs that combine carry-lookahead with other
techniques, such as carry-rippling; nevertheless all such designs result in
adders that are not as fast as pure carry-lookahead adders. Even when
practical, the irregular structure and lengthy interconnections, exhibited in
Figure 4.6 , are not ideal for VLSI implementation.

One straightforward way of dealing with the fan-in and fan-out difficul-
ties inherent in the pure carry-lookahead adder is to split an n-bit adder
into N (where 1 < N < n) blocks of m bits each, arranged in such a way
that carries within blocks are generated by carry-lookahead but carries be-
tween blocks are rippled. Such an arrangement is shown in Figure 4.7 ,

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

94 Residue Number Systems: Theory and Implementation

where CLA represents a complete lookahead adder of the type shown in
Figure 4.6. We shall refer to this adder as the Ripple Carry-Lookahead
Adder (RCLA).

Figure 4.7: Ripple carry-lookahead adder (RCLA)

A different design for a practical carry-lookahead adder can be obtained
by, essentially, reversing the basic design principle of the RCLA: carries
within blocks are now rippled, but those between blocks are produced by
lookahead. The implicit requirement here is that n be large enough and m

small enough that the gain in speed from using lookahead outweighs the
loss from rippling. Figure 4.8 shows the organization of such an adder,
which we shall refer to as the Block Carry-Lookahead Adder or just BCLA.
The carry-lookahead (CL) unit implements the lookahead equation for a
single block-carry and has the logical details shown in Figure 4.9.

FAFAFA

Carry-lookahead

FAFAFA

Carry-lookahead

C2k-1 Ck+1 Ck Ck-1 C1 C0 C-1

B0A0B1A1BKAKBK+1AK+1 BK-1AK-1B2K-1A2K-1

Figure 4.8: Block carry-lookahead adder (BCLA)

For large values of n, the performance of the RCLA will be limited
by the inter-block rippling time, and that of the BCLA will be limited by

�!

���1�� �!

�!�����1���1��

�1�%����%�����%�����%����

����1����1������

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 95

the rippling between the block-lookahead units. Fan-in and fan-out will
also be problematic with the BCLA. A “natural” way to get around these
difficulties is to again apply the same principles; that is, to use an additional
level of lookahead. There are many variations on that design-theme, but
we shall here consider just one; for others, the reader is referred to [12].

To obtain two-level BCLA, an n-bit adder is divided into N m-bit blocks
that are then grouped into M -block superblocks. The first level of lookahead
is largely as before, and the second level of lookahead is on the superblocks.
At the superblock level, the carry signals are produced through auxiliary
propagation and generation signals, P j

i and Gj
i , which are analogous to the

P and G signals:

P j
i = PjPj−1 · · ·Pi (4.8)

Gj
i = Gj + PjGj−1 + PjPj−1Gj−2 + · · ·+ PjPj−1 · · ·Pi+1Gi (4.9)

P j
i expresses the propagation of a carry through bits i through j, and

Gj
i expresses the generation of a carry in any one of bits i to j and the

subsequent propagation of that carry through the remaining bits in that
block. Carries within blocks are still rippled, as before, but all other carries
are now produced at the superblock level, using these composite signals.

For example, for a 32-bit adder of 4-bit blocks and 4-block superblocks,
the relevant logic equations are

P 3
0 = P3P2P1P0

P 7
4 = P7P6P5P4

P 11
8 = P11P10P9P8

P 15
12 = P15P14P13P12

P 19
16 = P19P18P17P16

P 23
20 = P23P22P21P20

P 27
24 = P27P26P25P24

P 31
28 = P31P30P29P28

G3
0 = G3 + P3G2 + P3P2G1 + P3P2P1G0

G7
4 = G7 + P7G6 + P7P6G5 + P7P6P5G4

G11
8 = G11 + P11G10 + P11P10G9 + P11P10P9G8

G15
12 = G15 + P15G14 + P15P14G13 + P15P14P13G12

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

96 Residue Number Systems: Theory and Implementation

G19
16 = G19 + P19G18 + P19P18G17 + P19P18P17G16

G23
20 = G23 + P23G22 + P23P22G21 + P23P22P21G20

G27
24 = G27 + P27G26 + P27P26G25 + P27P26P25G24

G31
28 = G31 + P31G30 + P31P30G29 + P31P30P29G28

C3 = G3
0 + P 3

0 C−1

C7 = G7
4 + P 7

4 G3
0 + P 7

4 P 3
0 C−1

C11 = G11
8 + P 11

8 G7
4 + P 11

8 P 7
4 G3

0 + P 11
8 P 7

4 P 3
0 C−1

C15 = G15
12 + P 15

12 G11
8 + P 15

12 P 11
8 P 7

4 G3
0 + P 15

12 P 11
8 P 7

4 P 3
0 C−1

C19 = G19
16 + P 19

16 C15

C23 = G23
20 + P 23

20 G19
16 + P 23

20 P 19
16 C15

C27 = G27
24 + P 27

24 G23
20 + P 27

24 P 23
20 G19

16 + P 27
24 P 23

20 P 19
16 C15

C31 = G31
28 + P 31

28 G27
24 + P 31

28 P 27
24 P 23

20 G19
16 + P 31

28 P 27
24 P 23

20 P 19
16 C15

Ci+3

Gi+3 Pi+3 Gi+2 Pi+2 Gi+1 Pi+1 Gi P

Ci-1

Figure 4.9: BCLA carry-lookahead

The high-level design of such an adder is shown in Figure 4.10. Similarly,
a second level of lookahead may be used to improve the performance of the

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 97

RCLA when n is large. In this case, the function of the extra level of
lookahead is to reduce the time required for the inter-block rippling. We
leave it to the reader to work out the details of the relevant logic equations.

The formulations above (and others of a similar nature) of carry-
lookahead adders are not entirely well-suited to current VLSI ASIC tech-
nology, although some may be for FPGA technology. For the former tech-
nology, there are better formulations, in the form of parallel-prefix adders,
in which the signals P j

i and Gj
i play a fundamental role. These adders are

discussed below and are especially important as high-performance adders.

Figure 4.10: 32-bit Superblock BCLA

4.1.4 Conditional-sum adder

The design of the conditional-sum adder is based on the observation that,
relative to the start of an addition, the carry bits (and, therefore, the sum
bits) at the high end of the adder take longer to form than those at the low
end. So fast addition can be achieved if at the high end of the adder two
sets of sum bits are formed, one under the assumption of 0 carries and the
other under the assumption of 1 carries, and the correct bits then quickly
selected as soon as the correct carries are known.

Suppose an n-bit addition is divided into two n/2-bit blocks and two
sets of sum bits formed for each block. When the carry out of the lower
block is known, the correct sum bits in the upper block can be immediately

����1����1�2���

�
/��3���1����1�2���

�!�!������������

��+
#�� #�� #�� #�!4�� 4�� 4�� 4�!

����1����1�2���

�
/��3���1����1�2���

#�. #�- #�+ #��4�. 4�- 4�+ 4�����

��-��-

���

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

98 Residue Number Systems: Theory and Implementation

determined. To form the sum and carry bits in the n/2-bit blocks, each is
divided into two n/4-bit blocks, and the process outlined above is repeated.
Proceeding in this manner, after log2 n steps, we end up with n 1-bit blocks.
At this point, assuming the carry into the adder is known, the selection
process can begin at the least significant bits and proceed in reverse order.
Thus the total number of sum bits determined at the various steps are
one, two, four, and so forth. A conditional-sum adder therefore consists
of 1 + log2 n levels (here numbered 0, 1, 2, ...) in which the block-sizes at
each level are double those in the preceding level, and at the end of each
level i, the number of final sum bits determined is 2i. We shall use jS

q
i and

jC
q
i denote the values at level j of bit i of the sum and bit i of the carry,

respectively, under the assumption that the carry-in to bit i is q.

Table 4.1: 8-bit conditional-sum addition

i 7 6 5 4 3 2 1 0

A 1 0 0 1 0 1 0 1
B 0 0 1 0 1 1 0 1

C S C S C S C S C S C S C S C S

C=0 0 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0
C=1 1 0 0 1 1 0 1 0 1 0 1 1 0 1

C=0 0 1 0 0 1 1 1 0 0 0 1 0
C=1 0 1 1 1 0 0 1 0 1

C=0 0 1 0 1 1 1 0 0 1 0
C=1 0 1 1 0 0

C=0 0 1 1 0 0 0 0 1 0

Table 4.1 shows an example of a conditional-sum addition. The bits
selected at each level are shown in bold font. At level 0, the prospective
sum and carry outputs are formed for each bit position. For the first bit-
position, the carry-in is known (to be 0)5 and, therefore, the correct sum
and carry bits (S0 and C0) can be computed right away. At level 1, C0 is
known, and S1 and C1 can be computed; so at the end of this level, S0 and
S1 are available. For all the other bit-positions at level 1, the correct (i.e.
final) incoming carries are not known. So the 1-bit blocks from level 0 are
combined into 2-bit blocks, with two sets of sum and carry outputs. The
2-bit blocks are formed as follows. Let i and i+1 be the bit-positions of the
pair that end up in a block. Since the carry into block (i.e. into position
5We are here assuming unsigned addition.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 99

i) is not known, S0
i and S1

i must be carried over from level 0. For position
i + 1, if 0C

0
i =0 C1

i , then Ci is definitely known, and the correct sum bit is
selected from level 0: if 0C

0
i =0 C1

i , then 1S
0
i+1 =1 S1

i+1 =0 S0
i+1 =0 S1

i+1.
On the other hand, if 0C

0
i 6=0 C1

i , then, again, both possibilities from level
0 must be carried over: 1S

q
i+1 =1 Sq

i+1 and 1C
q
i+1 =1 Cq

i+1, where q = 0, 1.
A similar procedure is carried out at level 2, with 4-bit blocks; at level 3,
with 8-bit blocks; and so on, until all the sum bits, Si, have been produced.

Figure 4.11 shows the high-level organization for an 8-bit conditional-
sum adder. The relevant logic equations are (for C−1 = 0)

C0 = A0B0

S0 = A0 ⊕B0

0C
0
i = AiBi i = 1, 2, . . . , n− 1

0C
1
i = Ai + Bi

0S
0
i = Ai ⊕Bi

0S
1
i = Ai ⊕Bi

for level 0. For each subsequent level, k, the sum and carry bits that are
completely determined are

Si = k−1S
0
i k−1Ci−1 + k−1S

1
i k−1Ci−1 i = 2k−1, 2k−1 + 1, . . . , 2k − 1

C2k−1 = k−1C
0
2k−1 k−1Ci−1 + k−1C

1
2k−1 k−1Ci−1

and for the sum bits that are unconditionally carried over (at the positions
where level k − 1 blocks coalesce)

kSq
q = k−1S

q
i i = 2k, 2k+1 + 1, 2k+3, . . . and q = 0, 1

For the remaining bit positions, i,

kSq
i = k−1S

q
i k−1Ci−1 + k−1S

q
i k−1C

q
i−1 q = 0, 1

kCq
i = k−1C

q
i k−1Ci−1 + k−1C

q
i k−1C

q
i−1

A logic circuit for level-1 modules is shown in Figure 4.12. Close exami-
nation of the equations above shows that they are just equations for 2-to-1
multiplexers; and, indeed, they are sometimes realized as exactly that. The
logic equations also reveal the main drawback of the conditional-sum adder:
the fan-out required of the Cis doubles with each level, and the distances
over with they must be transmitted also increase. Consequently, for large
n, the conditional-sum technique is almost always used in combination with
some other technique in which it is limited to small blocks.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

100 Residue Number Systems: Theory and Implementation

A
0

A
1

A
2

A
4

A
3

A
5

A
6

A
7

B
0

B
1

B
2

B
4

B
3

B
5

B
6

B
7

C
−
1

S
0

C
0

0
7

C
0

1
S
0

0
1

S
1

0
2

S
1

0
2

S
0

0
3

S
1

0
3

S
0

0
4

S
1

0
5

S
1

0
S

0
50

S
0

61
S

0
60

S
0

70
S

0
71

2
C
0

0
5

C
1

0
C
0

0
1

C
1

0
1

C
0

1 2
C
0

0
3

C
1

0
3

C
1

0
4

4
C

0

0
C
0

0
5

C
0

0
6

C
1

0
6

C
1

0
7

4
S
0

0

S
1

C
1

S
1

71
S

1
70

S
1

60
S

1
61

S
1

40
S

1
50

S
1

51
S

1
41

S
1

30
S

1
31

S
1

21
S

1
20

C
0

1
7

C
1

71
C

1
51

C
1

50
C

1
31

C
1

30

S
2

S
4

S
3

S
5

S
6

S
7

S
0

S
1

C
3

S
2

71
S

2
70

S
2

50
S

2
51

S
2

40
S

2
41

S
2

61
S

2
60

C
0

2
7

C
1

2
7

Figure 4.11: 8-bit conditional-sum adder

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 101

j+3
S 3

j+2
S 3

j+1
S 3

j+4
S 3

j+4
C 3

j+3
S 2

j+1
S 2

j+2
S 2

j+4
S 2

j+4
C 2

j
C 2

j+1
S 0

j
C 0

j+1
C 0

j+1
S 1

j+1
C 1

j+2
C 2

j+2
S 2

j+1
S 2

j+2
S 1

j+2
C 1

j
C 1

j+1
S 1

Bj Aj

j
S 0

j
C 0

Figure 4.12: Level-1 logic for conditional-sum adder

4.1.5 Parallel-prefix adders

Parallel-prefix adders allow more efficient implementations of the carry-
lookahead technique and are, essentially, variants of the two-level carry-
lookahead adders of Section 4.1.3. Indeed, in current technology, parallel-
prefix adders are among the best adders, with respect to area×time
(cost:performance ratio), and are particularly good for the high-speed addi-
tion of large numbers. For residue arithmetic, they also have the advantage,
as we shall see below, of being easily modifiable for addition with respect
to the special moduli 2n − 1 and 2n + 1. In what follows, we shall define
the prefix problem, show that the computation of carries can be reduced to
this, and then discuss the varieties of parallel-prefix adders.

Let S
4
= {an−1, an−2, . . . , a0} be a set that is closed under an associative

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

102 Residue Number Systems: Theory and Implementation

operator, •. For ai ∈ S the problem of computing the prefixes

xi = xi−1 • ai 1 ≤ i ≤ n− 1

x0 = a0

is called the prefix problem. Many important problems in computing can
be shown to be equivalent to that of computing prefixes [11]. In the case
of adders, the computation of carries is equivalent to the prefix problem,
as we next show. The most important aspect of the prefixes is that they,
and their subterms, can be computed in parallel. This follows from the
property of associativity.

Before we define the operator • for the computation of carries, first
observe that the block carry-generate signal Gj

i (Equation 4.9) may be
expressed as

Gj
i =





Gi if i = j

Gj
k+1 + P j

k+1G
k
i if i ≤ k < j

This expression indicates the different ways (and with varying degrees of
parallelism) in which the bit-level Pi and Gi signals may be combined to get
the corresponding block signals. For example, the basic expression for G3

0

is G3 +P3G2 +P3P2G1 +P3P2P1G0, and this may be evaluated in different
ways, such as

G3 + P3(G2 + P2G1 + P2P1G0) = G3
3 + P 3

3 G2
0

(G3 + P3G2) + P3P2(G1 + P1G0) = G3
2 + P 3

2 G1
0

(G3 + P3G2 + P3P2G1) + P3P2P1G0 = G3
1 + P 3

1 G0
0

Similarly, the block carry-propagate signal (Equation 4.9) may be expressed
as

P j
i =





Pi if i = j

P j
k+1P

k
i if i ≤ k < j

As in the preceding case, this allows for some variation in the order of
evaluation. For example, some of the ways in which P 3

0 may be evaluated

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 103

are
(P3P2P1)P0 = P 3

1 P 0
0

(P3P2)(P1P0) = P 3
2 P 1

0

P3(P2P1P0) = P 3
3 P 2

0

We now define the operator • as follows.[
Gj

k+1, P
j
k+1

]
• [

Gk
i , P k

i

] 4
=

[
Gj

k+1 + P j
k+1G

k
i , P j

k+1P
k
i

]

=
[
Gj

i , P
j
i

]

It is shown easily that • is associative. This means that the subterms that
form given block-generate and block-propagate signals can be computed in
parallel, with the degree of parallelism determined by the selection of the
subterms involved. The same remark applies to the computation of carries:
if the carry-in, C−1, to the adder is 0, then (by Equations 4.8 and 4.9)

Ci = Gi
0 0 ≤ i ≤ n

= Gi
j + P i

jG
j−1
0 1 ≤ j ≤ i− 1

Note that the operator • produces both block carry-propagate and carry-
generate signals; but at the last level, where carries are produced, the latter
are not necessary. We shall use ◦ to denote the prefix operators at that level.

We have seen above (Section 4.1.3) that a carry may also be propagated
by using kill signals instead of transfer or propagate signals. The formu-
lations above can therefore be replaced with ones based on Ki or Ti. For
example, for Ki, we have

K
j

i =





Ki if i = j

K
j

l+1K
j

i if i ≤ l < j

Gj
i =





Gi if i = j

Gj
l+1 + K

j

l+1G
k
i if i ≤ l < j

[
Gj

l+1, K
j

l+1

]
•

[
Gl

i, K
l

i

]

4
=

[
Gj

l+1 + K
j

l+1G
l
i + K

j

l+1K
l

i

]

=
[
Gj

i , K
j

i

]

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

104 Residue Number Systems: Theory and Implementation

This is common in many realizations of parallel-prefix adders. We shall,
however, continue to use just the P signals.

0 01 1n n

n-1

n-2n-1

1

01

0

-10

11 00n-1n-1

Figure 4.13: Generic parallel-prefix adder

In addition to associativity, • has another useful property: idempotency.
That is

[
Gj

l , P
j
l

]
• [

Gk
i , P k

i

]
=

[
Gj

i , P
j
i

]
i ≤ l ≤ k < j

For example, it is easy to show that
[
G7

3, P
7
3

] • [
G4

2, P
4
2

]
=

[
G7

2, P
7
2

]

What idempotency means is that the blocks need not be contiguous: there
may be some overlap. This is useful because it enhances the ways in which
parallelism can be exploited.

The generic structure of a parallel-prefix adder is shown in Figure 4.13.
A ¤ represents the logic that produces bit-level carry propagate and gener-
ate signals; and a ♦ represents sum-formation logic. Parallel-prefix adders
differ primarily in the details of the carry-prefix tree, in which the block-
generate and block-propagate signals, as well as the carries, are formed. By
varying the selection of sub-terms in the corresponding full expressions of

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 105

the block signals, and, therefore, varying the fan-in and fan-out require-
ments, as well as the length of the interconnections, different adders are
obtained that span the cost-performance design-space. One aspect that all
such adder-designs have in common is that the operational time of all the
highly parallel adders is O(log n), which is the number of levels in the prefix
tree, although the constants involved can vary substantially.

4 4

4

3 3

3

2 2

2

1 1

1

0 0

0

5 5

5

6 6

6

7 7

7

Figure 4.14: 8-bit Ladner-Fischer prefix tree

The best-known early parallel-prefix adder is the Ladner-Fischer adder,
whose prefix tree has the form shown in the example of Figure 4.14 [16].
The black and empty circles in the diagram correspond to the operators, •
and ◦, defined above. One drawback of this design is that the lateral fan-out
required of the prefix cells doubles at every level: one, two, four, eight, etc.
Thus in a realization, buffers might be required to provide additional drive
and these, as they will be on the adder’s critical path, can adversely affect
performance. The Ladner-Fischer adder makes use of the associativity of •

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

106 Residue Number Systems: Theory and Implementation

but not its idempotency.

4 4

4

3 3

3

2 2

2

1 1

1

0 0

0

5 5

5

6 6

6

7 7

7

Figure 4.15: Kogge-Stone prefix tree

The Kogge-Stone adder is a parallel-prefix adder in which the lateral
fan-out of the prefix cells is limited to unity [17]. Figure 4.15 shows a
Kogge-Stone prefix-tree, in which two things are evident. First, the num-
ber of interconnections is much higher than in the Ladner-Fischer adder,
and they are also longer. This is significant because in current technol-
ogy interconnections have a significant effect on area and operational time.
Second, more prefix cells are used. On the whole, however, Kogge-Stone
adders tend to be slightly faster than Ladner-Fischer adders, but at the
expense of requiring more area.

The Brent-Kung adder is another parallel-prefix adder in which all lat-
eral fan-out is limited to unity [2]. An example prefix-tree is shown in
Figure 4.16. The adder is, however, not the best for very fast addition: in
current VLSI technology, a substantial part of the operational delay will

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 107

be due to the lengths of the interconnections, and the critical path in this
adder is rather long.

4 4

4

3 3

3

2 2

2

1 1

1

0 0

0

5 5

5

6 6

6

7 7

7

Figure 4.16: Brent-Kung prefix tree

The most recent major advance in the design of parallel-prefix adders
has been the work of Knowles [18]. Essentially, this work has unified a wide
range of parallel-prefix adders and in the process revealed several previously
unknown ones. The basic idea is that different adders can be obtained by
varying fan-outs and the number/lengths of interconnections in the prefix
tree. If we represent adders by their lateral fan-outs, then the Ladner-
Fischer adder is a [1, 2, 4, 8, ...] adder, and the Kogge-Stone adder is a [1,
1, 1, 1, ...] adder. What the new work has shown is that there are several
other adders between these two endpoints in the design-space. For example,
for 8-bit addition, the Ladner-Fischer adder has a [1, 2, 4] prefix tree, that
of the Kogge-Stone adder is [1, 1, 1], but other possibilities include [1, 1,
2], [1, 1, 4], and [1, 2, 2]. The last of these is shown in Figure 4.17.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

108 Residue Number Systems: Theory and Implementation

So far, we have assumed that prefix cells have a fan-in of two. It is
natural to consider varying this fan-in, as a higher fan-in means a decrease
in the depth of the tree. An increase in fan-in is certainly possible, because
of the associativity of •. But in practice, the fan-in cannot be arbitrarily
increased, because there is a trade-off between the reduced depth of the tree
and the increased delay through a cell. Further discussion of these issues
will be found in [1].

4 4

4

3 3

3

2 2

2

1 1

1

0 0

0

5 5

5

6 6

6

7 7

7

Figure 4.17: [1, 2, 2] prefix adder tree

4.1.6 Carry-select adder

In the conditional-sum adder, we start with 1-bit blocks (adders), produce
both possible sum (and carry) bits at every bit-position, and then go though
a selection tree in which the correct sum bits are determined. At every level
of the tree, the block-sizes and the number of final sum-bits produced are
double those at the preceding level. In a sense, though, the sizes of both the

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 109

initial blocks and those of blocks at succeeding levels are arbitrary: there is
no reason why we should not choose different sizes at any level, even allow-
ing for the fact that uniformity implies regularity in the realization. This
is exactly what is done in the carry-select adder, of which the conditional-
sum adder may be viewed as just one instance. Indeed, the conditional-sum
adder is a “pure” carry-select adder, in contrast with the “hybrids” that we
next describe. The underlying motivation is the same—to take advantage
of the fact that high-order carry and sum bits take longer to form than
low-order ones.

The generic form of a carry-select adder with m-bit blocks is shown in
Figure 4.18. Each block at the initial level consists of two m-bit adders: one
that produces sum bits under the assumption of a 0-carry into the block
and another that produces sum bits under the assumption of a 1-carry.
When the carry-out of one block is known, it is used to select one set of
sum bits in the next block. We shall use Sq

i and Cq
i to denote the values

at bit-slice i of the sum and carry, respectively, under the assumption that
the carry into the block containing bit i is q. Note that if C−1 is known
—and we usually take it to be 0, for unsigned addition —then the least
significant m-bit adder takes C−1 as an additional input and produces the
least significant m bits of the final sum, as well as the carry out of the
block.

The general equations for an m-bit block, j (j = 0, 1, 2, . . .), with block
carry-in Cj−1 and block carry-out Cj+m are

Si = S0
i Cj−1 + S1

i Cj−1 i = jm, jm + 1, . . . j(m + 1)− 1

Cj+m = C0
j+mCj−1 + C1

j+mCj−1

which, again, are just the equations for 2-to-1 multiplexers. The m-bit
adders may be of any of the designs already discussed above: ripple, carry-
skip, carry-lookahead, and so forth. The carry-select technique therefore
leads to a whole family of “hybrid” adders, covering a range of perfor-
mance:cost ratios.

Although, we have implied that each block of a carry-select adder con-
sists of two separate adders, it should be noted that the actual logic required
need not be twice that of a single adder. Depending on the design of the
underlying adders, some sharing of logic is possible. For example, if carry-
lookahead is used, then the carry-propagate and carry-generate logic will
be the same for both adders. Tyagi has used this observation to design a
carry-select/parallel-prefix adder, in which the sharing reduces the cost by
about three gates per bit-slice [19].

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

110 Residue Number Systems: Theory and Implementation

B0 A0B1 A1

S1 S0

...
Bm-1 Am-1BmAmBm+1Am+1B2m-1A2m-1

...

Sm+1SmS2m-1 Sm-1

0-carry Adder

1-carry Adder

1

:2 1m mS −

0

:2 1m mS −

1

0: 1mS −

0

0: 1mS −

0

0: 1mC −

1

0: 1mC −

1

:2 1m mC −

0

:2 1m mC −

Figure 4.18: Generic carry-select adder

The formulations above for the parallel-prefix adders (Section 4.1.5) as-
sume the carry into the adder is 0. For a carry-select/parallel-prefix adder,
in principle, another prefix tree is needed for a carry-in of 1. If we define
P̃i

j
and G̃i

j
to be the block propagate and generate signals (Equations 4.8

and 4.9) under the assumption of a 1-carry, then it can be shown that all
of the formulations of Section 4.1.5 go through with these new signals in
place of P j

i and Gj
i . It can also be shown that

[G̃i

j
, P̃i

j
] = [Gj

i + P j
i , P j

i]

which allows us to easily obtain C1
i from C0

i :

C1
i = C0

i + P i
0

Another point to note is that although Figure 4.18 shows blocks of
the same size, block sizes may differ, with some advantage. Consider two
adjacent blocks j and j + 1. The prospective sum bits in block j + 1 will
become available some time before the carry into the block. Therefore,
block j + 1 may be made slightly larger than block j without any loss in
performance. Recursively carrying out this line of reasoning, from the low
end of the adder to the high end, we may conclude that block-sizes should

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 111

increase, disproportionately, from right to left, with the aim of making equal
the time required to generate the sum bits at a given bit-slice and the time
required to get the correct carry into that bit-slice. The adders in [19],
for example, use the block-sizes 1, 1, 2, 4, 8, . . . , n/2. (Of course, the best
sizes will depend on the design of the underlying adders and the realization-
technology used.) Tyagi’s design in fact yields, by varying the block-sizes, a
range of adders that span the entire space between the O(

√
n) operational

time of the carry-skip adders and the O(log n) time of the parallel-prefix
adders. A different deign for a hybrid carry-select adder is described in
[9]. This one combines carry-selection, carry-lookahead, and Manchester
carry-chains.

4.2 Residue addition: arbitrary modulus

In this section, we shall discuss addition relative to moduli other than the
special moduli 2n, 2n−1, and 2n +1; addition with the latter three moduli
is discussed in Sections 4.3 and 4.4. When the modulus is not constrained,
it is rather difficult to design an efficient residue adder; any residue adder
will be substantially slower or more costly than a conventional adder of the
same word-length.

We shall begin by discussing high-level designs for modulo-m adders,
and we shall initially assume that m may be varied. Subsequently, we shall
consider the optimization of the residue adders, according to which of the
underlying adders of Section 4.1 are used. The most worthwhile of such
optimizations rely on the fact that the modulus, even if it is not one of the
special ones, is usually fixed, i.e. known at design-time.

The result of adding, modulo-m, two numbers, A and B, (digits of a
residue representation), where 0 ≤ A, B < m, is defined as

|A + B|m =
{

A + B if A + B < m

A + B −m otherwise
(4.10)

The design of a modulo-m adder may be based, directly or with some
variation, on Equation 4.10. The most straightforward implementation is
one that operates as follows. A and B are added to yield an intermediate
sum, S

′
. S

′
is then compared with m. If S

′
is less than m, then S

′
is the

result; otherwise, m is subtracted from S
′
, to yield a new result, S

′′
, which

is then the correct result. (The subtraction may be implemented by adding
the two’s complement of m, which complement we shall denote by m.)

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

112 Residue Number Systems: Theory and Implementation

m

out

�
m

Figure 4.19: Basic modulo-m adder

Implementing this procedure in a simplistic way requires three (carry-
propagate) adders—one for the addition, one for the subtraction, and one
for the comparison. But closer examination shows that the comparison and
the second addition (i.e the subtraction) can be combined. First, A and B

are added. Next, the subtraction (i.e. the addition of m, The twos com-
plement of m) is immediately carried out. A carry-out6 from the second
addition then indicates whether or not S

′
is less than m: if there is a carry-

out, then the correct result is S
′′
; otherwise, it is S

′
.7 The corresponding

hardware organization is shown in Figure 4.19, in which the adders may be
of any of the designs of Section 4.1.

A less costly, but slower modulo-m adder, can be obtained by modifying
the adder of Figure 4.19 so that it uses one adder but instead operates in
two cycles. The resulting design is shown in Figure 4.20. During the first
cycle, A and B are added and the result, S

′
, latched. In the second cycle,

m is subtracted, to form S
′′
. Then, as before, one of these two intermediate

results is selected to be the final result. An example of this type of adder

6The sign bit could also be used instead.
7The justification for using the carry-out is as follows. When interpreted as an unsigned

number, the n-bit representation of m corresponds to the numerical value 2n −m (see
Chapter 1). So if A + B ≥ m, then A + B + m = (A + B −m) + 2n. A + B −m ≥ 0;
so the 2n is a carry out of the most significant bit-slice. But if, A + B < m, then
A + B + m < 2n, and there is no carry-out.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 113

is described in [22]. If, on the other hand, faster addition is required, then
a straightforward way to achieve this is to concurrently compute both S

′

and S
′′

and then select one. The computation of S
′′

requires that three
operands be reduced to one, which is easily done by using a combination
of a carry-save adder (CSA) and a carry-propagate adder (CPA). The final
modulo-m adder design is then as shown in Figure 4.21. Essentially, what
we have here is a carry-select adder that computes A+B/A+B−m instead
of the conventional A + B/A + B + 1. It should, however, be noted that
the speed advantages of this new adder are not as substantial as might
initially appear. This is because the two adders in Figure 4.19 can run in
parallel for most of the time: the critical path consists of the operational
time of the second adder plus the time through one bit-slice of the first
adder. Of course, the actual benefits depend on exactly how the adders are
implemented: if, for example, they are ripple adders, then the performance
improvement would be, relative to the extra cost, of dubious worth.

m

�m

out

Figure 4.20: Reduced-cost modulo-m adder

It should be noted that although in Figure 4.21 we have shown two
nominal CPAs, in practice, depending on the underlying design of a CPA,
some sharing of logic is possible. Therefore, the total cost need not be twice
that of a single adder.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

114 Residue Number Systems: Theory and Implementation

If the modulus m is of sufficiently small (i.e. of low precision), and,
therefore, the two operands also are, then the modulo-m addition can be
reasonably realized through a look-up table. Such a table would nominally
use the concatenation of the two operands, A and B, as an address, and
for the output it would return the result |A + B|m. Evidently, advantage
may be taken of symmetry to reduce the basic table-size by half. A less
direct variant of the table-lookup method involves storing just the first row
of the nominal addition table and making use of this together with some
combinational logic (a shifter and decoder). The basis of this design is the
observation that any other row, k, of the addition table can be obtained by
a k-place rotation (cyclic shift) of the elements in the first row; see Table
4.2 for example.8 Thus the addition of A and B, modulo m, may be carried
out by performing a rotation by A places and then decoding B to select an
element of the result of the rotation. This leads to the design of Figure 4.22.
The trade-off in such a design, relative to the above approaches, may be a
reduction in operational delay but at the price of an increase in logic, and
for large moduli the logic required for the shifter may render this approach
uncompetitive.

m

�
m

Figure 4.21: Enhanced-performance modulo-m adder

8The theoretical underpinnings for this will be found in Chapters 1 and 2.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 115

Table 4.2: Modulo-5 addition table

We now consider the optimization of the three high-level designs above
(Figures 4.19, 4.20, and 4.21). There is not much room for improvements
in the design of Figure 4.20. The only worthwhile one might be the use of
logic that combines both computational and storage functions but without
introducing additional operational delay. On the other hand, the other two
designs offer more opportunities for improvement, depending on what the
underlying adders are. We shall briefly examine the various possibilities,
according to each of the designs of Section 4.1. We shall assume that each
adder is of word-length n bits, where n = dlog2 me and m is the modulus.

m

Figure 4.22: Table-derived modulo-m adder

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

116 Residue Number Systems: Theory and Implementation

Regardless of the design of the underlying adder, the top adder in Figure
4.19 (which is functionally the same as the left adder in Figure 4.21) and
the CSA in Figure 4.21 will produce signals that are equivalent to the carry-
propagate (Pi) and carry-generate and (Gi) signals of Section 4.1.3. So in
the design of Figure 4.21, these signals may be shared. This will reduce the
cost by n full adders but without an increase in the operational time. One
can think of other optimizations of this nature, but it is doubtful that any
will be worthwhile if the modulus is not fixed (i.e. known at design-time).

If m is known at design-time, and it usually is, then there is an obvious
and fruitful way to optimize both the designs of Figures 4.19 and 4.21:
take each bit-slice, for bit mi, of m and optimize it according to whether
mi is 0 or 1. Generally, the bit-slices for mi = 0 will be simpler than those
for mi = 1. That might make a difference when cost and performance are
measured crudely, say by gate-count and gate delays, but for more accurate
measures (e.g. area and raw time), the difference might not be appreciable.
Still, trying to cope with the irregularity that arises from having different
bit-slices gives us additional insight (beyond those of Chapter 1) in how to
choose moduli: try to ensure that the representation of m has as many 0s
as possible; that is, that of m has as many 1s as possible.

Let us now consider the case when the underlying adders are ripple
adders. In this case a bit-slice will consists of two full adders (and a multi-
plexer), for which the equations are (see Equations 4.1 and 4.1)

S
′
i = (Ai ⊕Bi)⊕ Ci−1

Ci = AiBi + (Ai ⊕Bi)Ci−1

S
′
i = (mi ⊕ Si)⊕ Ci−1

C
′
i = miSi + (mi ⊕ Si) Ci−1

with Si then selected through a 1-bit multiplexer. If mi = 0, then the
second set of equations reduces to

S
′
i = Si ⊕ Ci−1

C
′
i = SiCi−1

And if mi = 1
S
′
i = ⊕Si ⊕ Ci−1

C
′
i = S

′
i + SiCi−1

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 117

For the residue adder in Figure 4.21, the changes are more interesting,
even for a ripple adder. For the case where the CPA is a ripple adder, the
original bit-slice is shown in Figure 4.23. If mi = 0, then

PC
′
i = Gi

PS
′
i = Pi

where PCi and PSi are the partial (i.e. unassimilated) carry and sum bits
from adding Ai and Bi. Relative to Figure 4.23, one full adder can be
omitted.

And if mi = 1, then

PC
′
i = Pi + Gi = Ti

PS
′
i = P i

By sharing the logic for Gi/Pi and introducing a new gate for Ti, we end up
with the new bit-slice shown in Figure 4.24. We shall assume these designs
in discussions with respect to the other adders in Section 4.1. The relevant
changes for the design of Figure 4.19 are largely similar and are left as an
exercise for the reader.

��
��

�
�

�
�

�
�

�
��

��
����

��
�
��

�
��������

Figure 4.23: Original bit-slice of modulo-m ripple adder

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

118 Residue Number Systems: Theory and Implementation

There is an additional “trick” that can be useful, depending on the
adder. In Figure 4.24 (and, in general, Figure 4.21), both left and right
adders have similar components. So the same hardware can be used for
both computations, if an appropriate choice is made between the inputs.
Thus, instead of choosing between sum bits, the multiplexer may be moved
up, to select the propagate and generate bits instead. C

′′
n−1, the carry out

of the second adder, now needs to be computed earlier; and the best way to
do this is to use carry-lookahead (for just that one carry bit), irrespective of
the design of the underlying adder. An example of this type of optimization
is given below, with a carry-lookahead adder as the underlying adder.

Figure 4.24: Optimized 1-bit-slice slices of modulo-m ripple adder

The design of a residue carry-skip adder based on Figure 4.23 is straight-
forward and involves the use two carry-skip chains. One carry-skip chain
is similar to that of Figure 4.5. The other consists of a combination
of optimized 0-slices and 1-slices, and in Equation 4.2, Pi is replaced
with Pi ⊕ Gi−1, if mi = 0, and with Pi ⊕ Ti−1, if mi = 1, where
Pi = Ai⊕Bi, Gi = AiBi, and Ti = Ai+Bi. Similarly, for a carry-lookahead

��
��

�
�

�
�

�
�

�
��

��
����

��
�
��

�
��������

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 119

adder we would have two carry networks, which collectively would replace
the bottom half-adder and OR gate in each side if Figure 4.26. The first
network is exactly as described by Equations 4.4 to 4.17. For the second
network, if mi = 0, then Pi and Gi in those equations are replaced with

P̂i
4
= Pi ⊕Gi−1

Ĝi
4
= PiGi−1

and mi = 1, then the replacements are

P̂i = Pi ⊕ Ti−1

Ĝi = PiTi−1

Let us now consider the design of a modulo-m adder, based on, say,
Figure 4.21. Two types of optimizations are possible. The first consists
of optimizing each bit-slice of the adder, according to the value of mi, as
above. The second type largely involves a reduction in costs. A straightfor-
ward design based on Figure 4.21 would involve the use of two lookahead
networks. Now, most of the logic in a carry-lookahead adder is taken up by
the carry-network. It would therefore be advantageous if only one carry-
network were used, and this can be done by moving up the multiplexer,
to select the propagate and generate bits instead of the sum bits. Cn−1,
the carry out of the adder, must now be produced outside the rest of the
carry-network. We leave it to the reader to work out the details for a spe-
cific modulus. (An adder of this type is described in [23].) The new adder
will cost much less than a straightforward carry-lookahead version of Figure
4.21, but it will also be slightly slower.

Modulo-m parallel-prefix adders are easy to obtain from the last design:
simply replace a carry network with a prefix-tree and optimize accordingly.

4.3 Addition modulo 2n − 1

The modulus 2n − 1 is an especially important one because modulo-2n − 1
arithmetic units can be designed to be almost as efficient as corresponding
ones for conventional arithmetic. We have seen, in Section 4.2, that to
simplify the straightforward design of a residue adder, it helps to have a
modulus whose complement-representation has as many 0s as possible; that
is, the representation of the modulus has as many 1s as possible. For signed
numbers, the representation (of a positive number) that has the greatest
number of 1s is 011...1 (which represents 2n − 1). The two’s complement

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

120 Residue Number Systems: Theory and Implementation

of this is 100 . . . 01; and the one’s complement is 100...0, which has more
0 than the former. It is therefore not surprising that excluding 2n, for
which residue arithmetic is just conventional arithmetic, 2n − 1 is the best
modulus in terms of implementation and that the most efficient modulo-
(2n − 1) adder is just a slightly modified one’s complement adder.

In designing a modulo-2n − 1 adder, it is useful to distinguish among
three cases, depending on the intermediate result of the addition of the two
operands, A and B, where 0 ≤ A,B < 2n − 1:

• 0 ≤ A + B < 2n − 1
• A + B = 2n − 1
• 2n − 1 < A + B < 2n+1 − 2

In the first case, the intermediate result is the correct modulo-(2n − 1)
result. In the second and third cases, we should subtract 2n− 1 in order to
get the correct result, which subtraction is equivalent to subtracting 2n and
adding 1. The third case is the more straightforward of the latter two, both
in determining whether or not the result is within the given range and in
carrying out the required correction. An intermediate result greater than
2n implies a carry out of the most significant bit-position of the adder; so
the “excess 2n−1” case is known to have occurred when there is a carry-out
from the addition. Ignoring this carry-out is equivalent to subtracting 2n;
and adding 1 then produces the desired result. Correction in the second
case too is easily dealt with by simply adding a 1. But detecting that the
intermediate result is equal to 2n− 1 is not as straightforward as detecting
when the modulus has been exceeded: there is no carry-out to indicate
when the addition of a corrective 1 should be carried out. Nevertheless, it
is not particularly difficult to realize, as we show below. Examples of all
three cases are given in Table 4.3.

The addition process just described is evidently similar to one’s com-
plement addition: If 2n−1 is accepted as another representation for zero—
recall that one’s complement has two representations for that number—then
the process is exactly one’s complement addition, and 2n − 1 is the other
representation for zero. On the other hand, if we proceed exactly as above,
and correct this “boundary” result, then addition modulo 2n − 1 is not
equivalent to one’s complement addition. Permitting two representations
for zero is sometimes useful, e.g. in fault-tolerance applications of residue
number systems, and it leads to a slightly better design for the residue
adder. Nevertheless, for normal residue arithmetic, having both represen-
tations is not desirable, and, unless otherwise specified, we shall assume

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 121

that there is to be only one representation for zero, i.e. 00 · · · 0.

Table 4.3: Examples of additions modulo 2n − 1

Modulo-(2n− 1) addition may be implemented in a variety of ways, de-
pending on the design of the underlying (conventional) adder and whether
or not the same adder is used twice (for the primary addition for the correc-
tive increment). Let us assume, for the moment, that two representations
for zero are acceptable. A straightforward implementation of the residue
adder would consist of a conventional adder and an incrementer, with the
sum outputs of the adder providing the inputs to the incrementer and the
carry-out of the adder providing the carry-in (or least-significant-bit input)
for the incrementer. It is, however, possible to design a residue adder that
has a smaller operational delay and requires less logic than such an ar-
rangement. If one were to use a conventional adder for residue addition in
two (nominal) cycles, as described in Section 4.2, then it may be observed
that, depending on the adder design, the actions required during the first
cycle and those required during the second cycle are mutually exclusive.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

122 Residue Number Systems: Theory and Implementation

The consequence of this observation is that with just the inclusion of just
a little more logic to the underlying adder, it is possible to obtain a residue
adder that operates in a single cycle. We shall show this, in a most direct
way, for the case of the carry-lookahead adder.

MUX MUX MUX MUX MUX MUX

n-1 n-1 1 1 0 0

out

n-1 1 0

n-1

0P

Figure 4.25: Modulo-2n − 1 ripple adder

4.3.1 Ripple adder

It might appear straightforward to convert a conventional ripple adder into
a modulo-(2n − 1) adder if two representations are allowed for zero: sim-
ply connect the carry-out line (from the most significant bit-slice) to the
carry-in line (into the least significant bit-slice). In practice, however, the
resulting feedback path can create a race condition between the two stable
states of the adder, and this may require the allowance of several cycles for
the outputs of the adder to stabilize. One way to get around this would be
to use latches, so that the outputs of the adder are effectively latched before
being fed back as inputs. If, on the other hand, only one representation for
zero is permitted, then the signal that is used to indicate an intermediate
result of 2n − 1 may also be used to eliminate the race condition [14, 15].
This signal is determined as follows. Cout = 1 indicates that the modulus
has been exceeded. And a result of 11 . . . 1 occurs only when for every
bit-slice, either Ai = 0 and Bi = 1 or Ai = 1 and Bi = 0; that is Pi = 1
for every i, and so Pn−1

0 = 1. (See Section 4.1.3 for the definition of these
signals.) Therefore, the required signal is Cout + Pn−1

0 . The corresponding
adder design is shown in Figure 4.25.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 123

The design of Figure 4.25 can be easily modified into a residue carry-
skip adder. In such a case the signal Pn−1

0 is readily obtained from the
block signals, P jm−1

j , that are already required for the carry-skip chain.

4.3.2 Carry-lookahead adder

As an example of the approach described at the end of the introduction
to this section, let us consider the case where the underlying adder is a
one-level carry-lookahead adder (CLA), such as that shown in Figure 4.6.
The logic equations for such an adder are

Gi = AiBi

Pi = AiBi + AiBi = Ai ⊕Bi

Ci = Gi + PiCi−1

Si = Pi ⊕ Ci−1

and unwinding the carry equation yields

C0 = G0 + P0C−1

C1 = G1 + P1G0 + P1P0C−1

C2 = G2 + P2G1 + P2P1G0 + P2P1P0C−1

...

Ci = Gi + PiGi−1 + PiPi−1Gi−2 + · · ·+ PiPi−1Pi−2 · · ·P0C−1

where C−1 is the carry-in to adder, i.e. into the least significant bit-position.
Suppose such an adder is used to perform residue addition in two cycles.

The first cycle would consist of the addition of A and B, with C−1 = 0.
And in the second cycle C−1 = Cout, where Cout is the carry-out from the
first addition. Consider now the least significant bit-slice. Let Cq

i denote
the carry from bit-slice i during the cycle q, let S

′
n−1S

′
n−2 . . . S

′
0 denote the

(intermediate) sum produced in that cycle, and let Gi and Pi be the carry
generate and propagate signals during the addition (in the first cycle) of A

and B. In the first cycle, since C1
−1 = 0, and there is a carry from bit-slice

0 only if one is generated there; that is, C1
0 = G0. In the second cycle,

the operands into that bit slice are S
′
0, an implicit 0, and C−1 (formerly

C1
n−1). In that cycle a carry cannot be generated from bit-slice 0, but C−1

may be propagated ; and the propagation signal in that case is S
′
0⊕0, which

is just S
′
0. Now, S

′
0 = P0 (since C1

−1 = 0; so C2
−1 = P0C

1
n−1. Note that

C1
0 and C2

0 are independent, and the expression for a carry in either cycle

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

124 Residue Number Systems: Theory and Implementation

is C1
0 + C2

0 = G0 + P0C
2
−1, which is exactly the normal expression for a

carry from that position (Equation 4.7). In general, for a given bit-slice, the
generation and propagation of carries are mutually exclusive and occur in
different cycles. That is, if in the first cycle a carry is generated at bit-slice
i, then that carry, if it propagates to the end of the adder and “wraps”
around, cannot propagate beyond bit-slice i. This mutual exclusivity of
Gi and Pi signals may be similarly applied to all the other bit-slices and
combining this with the elimination of C−1 (by substituting its definition)
leads to a residue adder that has the same delay (as measured in terms of
gates) as the adder of Figure 4.6 but which requires only a little more logic.
We next show this.

Still assuming the hypothetical two-cycle n-bit adder, the carry-in dur-
ing the second cycle is the same as the carry-out during the first cycle, and
for bit-slice 0, we may express this as

C2
0 = G0 + P0C2

−1

= G0 + P0C
1
n−1

= G0 + P0(Gn−1 + Pn−1Gn−2 + · · ·+ Pn−1Pn−2Pn−3 · · ·P1G0)

= G0 + Gn−1P0 + Pn−1Gn−2P0 + · · ·+ Pn−1Pn−2Pn−3 · · ·P2G1P0

In each of these expressions, we have split the defining expression for each
carry into two parts: the part in normal font corresponds to the usual
carry generate-propagate, and the part in bold font corresponds to a carry
that (in the first cycle) propagates to the end of the adder and eventually
becomes (in the second cycle) an end-around carry that propagates back
again. Proceeding as above, for bit-slice 1 we determine that there is a
carry if one is generated in that position (during the first cycle), or one
is generated in the preceding bit position and propagated through (also
during the first cycle), or the carry into the adder is propagated through
(during the second cycle).

Thus we have

C2
1 = G1 + P1G0 + P1P0C−1

= G1 + P1G0 + P1P0C1
n−1

= G1 + P1G0 + P1P0(Gn−1 + Pn−1Gn−2 + · · ·+ Pn−1Pn−2 · · ·P1G0)

= G1 + P1G0 +

Gn−1P1P0 + Pn−1Gn−2P1P0 + · · ·+ Pn−1Pn−2 · · ·P2G2P1P0

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 125

0

0

1

1

2

2

0

1

2

0

0

1

1

2

2

Figure 4.26: Modulo 2n − 1 carry-lookahead adder (n = 3)

Repeating this process for all the other carries, we arrive at a general
formulation for Ci, where 0 ≤ i ≤ n− 1:

C2
i = Gi + PiGi−1 + PiPi−1Gi−2 + · · ·PiPi−1 · · ·P1G0 + PiPi−1 · · ·P0C2

−1

= Gi + PiGi−1 + PiPi−1Gi−2 + · · ·PiPi−1 · · ·P1G0 + PiPi−1 · · ·P0C1
n−1

= Gi + PiGi−1 + PiPi−1Gi−2 + · · ·PiPi−1 · · ·P1G0PiPi−1 · · ·P0(Gn−1

+Pn−1Gn−2 + · · ·+ Pn−1Pn−2Pn−3 · · ·P1G0)

= Gi + PiGi−1 + PiPi−1Gi−2 + · · ·PiPi−1 · · ·P1G0Gn−1PiPi−1 · · ·P0

+Pn−1Gn−2PiPi−1 · · ·P0 + · · ·+ Gi+1PiPi−1 · · ·P0Pn−1 · · ·Pi+2

(The superscripts appear on only one side of each final equation, and, as
they have served their purpose, we will henceforth drop them.)

As an example the logic equations for a modulo-7 adder (n = 3) with
two representations for zero are

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

126 Residue Number Systems: Theory and Implementation

Gi = AiBi i = 0, 1, 2

Pi = Ai ⊕Bi

C−1 = C2

C0 = G0 + G2P0 + P2G1P0

C1 = G1 + P1G0 + G2P1P0

C2 = G2 + P2G1 + P2P1G0

Si = Pi ⊕ Ci−1

and the corresponding logic diagram is shown in Figure 4.26.
The modulo carry-lookahead adder as described so far allows two rep-

resentations for zero in the result: 00 · · · 0 and 11 · · · 1 (i.e. 2n − 1). To
modify it so that only one representation is permissible, it is necessary to
detect the latter and ensure that a sum of zero is instead produced: the
reader can verify that the correct output will be produced if the equation
above for the sum bits is changed from Si = Pi ⊕ Ci−1 to

Si = (Pi · Pn−1
0)⊕ Ci−1

If Pn−1
0 = 0, then this equation reduces to Si = Pi ⊕ Ci−1, which is the

correct formulation for an output other than 11 · · · 1. If Pn−1
0 = 1, an out-

put of 11 · · · 1 needs to be converted into 00 . . . 0. In this case the equation
reduces to Si = Ci−1. This is evidently correct, since Pi = 1, for all i,
means that no carry is generated anywhere; and, as then C−1 = 0, there
is also no carry to propagate anywhere. Therefore, for all i, Ci = 0 and so
Si = 0. The design of the modified residue adder that corresponds to that
of Figure 4.26 is shown in Figure 4.27.

The residue carry-lookahead adders just described are both one-level
adders, but the designs are readily extensible to other types of lookahead
adder, e.g. multilevel, block, etc [5]. Nevertheless, all such designs will
suffer from the standard problem of implementing normal carry-lookahead
adders in VLSI, namely they lack regularity. For regular, high-speed de-
signs, parallel-prefix adders are probably the best designs. Moreover, these
have a structure that is inherently suitable for the increment operation
required in modulo-(2n − 1) addition.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 127

0

0

1

1

2

2

0

1

2

0

0

1

1

2

2

Figure 4.27: Modified modulo 2n − 1 carry-lookahead adder (n = 3)

4.3.3 Parallel-prefix adder

A seemingly straightforward way to implement modulo-(2n − 1) adder is
to use the structure suggested by Figure 4.19; that is, have one adder that
computes A + B, one that computes A + B + 1, and a multiplexer that
selects of these two results. (Appropriate additional logic is required if only
one representation of zero is permitted.) In principle, this approach can
be used with any design of the underlying adder. But, detailed considera-
tion of the logic required for the two adders will reveal that there is much
similarity. Therefore, logic can be shared, and the implicit replication is in
fact not necessary in practice. In other words, the two nominal adders can
be realized at less than twice the cost of two normal adders. This possi-
bility already exists with certain adder designs, in which, essentially, two
intermediate sums that differ by 1 are computed using shared logic. Such
adders are therefore “naturally” suitable for modulo-(2n − 1) addition.

Consider, for example, the conditional-sum adder of Figure 4.11. At
each level, two partial sums are computed that differ by unity—one sum,

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

128 Residue Number Systems: Theory and Implementation

S0, under the assumption that there is no carry-in and one, S1, under
the assumption the assumption that there is a carry-in—and one of the
two is then selected, at the next level, according to the intermediate carry.
This process is repeated until at the last level only one sum, the result,
remains. Now, the example of Table 4.1 assumes that the carry into the
adder, C−1 is 0. If, however, C−1 is not known, then then there will be
an additional level, with two ”final” intermediate sums. (An example is
shown in Table 4.4.) One of these can then be selected to be the result
when C−1 is finally available. A modulo-(2n − 1) adder that allows two
representations for zero can be obtained from the basic conditional-sum
adder by using the C0

n−1, the carry-out corresponding to S0, to select one
of the two intermediate sums. Essentially, this sets C−1 = C0

n−1. And
an adder with one representation of zero is obtained by having C−1 =
C0

n−1 +Pn−1
0 . The latter requires some additional logic, but the composite

carry-propagation signal is already available anyway.

Table 4.4: Conditional-sum addition with unknown C−1

i 7 6 5 4 3 2 1 0

A 1 0 0 1 0 1 0 1
B 0 0 1 0 1 1 0 1

C S C S C S C S C S C S C S C S

C=0 0 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0
C=1 1 0 0 1 1 0 1 0 1 0 1 1 0 1

C=0 0 1 0 0 1 1 1 0 0 0 1 0
C=1 0 1 1 1 0 0 1 0 1

C=0 0 1 0 1 1 1 0 0 1 0
C=1 0 1 1 0 0

C=0 0 1 1 0 0 0 0 1 0
C=1 0 1 1 0 0 0 0 1 1

Since, the general structure of the conditional-sum adder sets it in the
class of parallel-prefix adders, it should be possible to easily modify these
adders too for modulo-(2n− 1) addition. This is indeed the case. Consider
a normal parallel-prefix adder that has been designed for C−1 = 0. If
we add another level of prefix operators and set C−1 = Cn−1, where the
latter carry is from the preceding level (i.e. the last level in a conventional
parallel-prefix adder), then we end up with a modulo 2n − 1 adder with
two permissible representations of zero. As before, a residue adder with

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 129

just one zero-representation is obtained with C−1 = Cn−1 +Pn
0 . See Figure

4.28; detailed will be found in [10].

0011n-1n-1

n-1

1 1 0 0n-1 n-1

n-2 1 0

out

in

Figure 4.28: Modulo-(2n − 1) parallel-prefix adder (2 zeros, n = 3)

Different parallel-prefix residue adders can be obtained by applying the
same basic ideas to any one of the adders in that general class, with the
usual tradeoffs between fan-out and delay (prefix-tree depth). There are,
however, at least two drawbacks of directly using this approach: the re-
quirement for extra logic (i.e. the extra level of prefix operators) and the
high fan-out that may be required of C−1, both of which increase area
and operational time. Solutions to these problems can be arrived at by re-
examining the design of the residue carry-lookahead adder of Figure 4.26.
In the modulo-(2n − 1) carry-lookahead adder, no extra level of logic is
required, because each carry is defined in terms of the carry-propagate
and carry-generate signals at all bit positions. If Gj

i and P j
i are similarly

defined—that is, in terms of the G and P bits at all positions—then carries
can be recirculated at every level of the prefix tree, and it is not necessary

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

130 Residue Number Systems: Theory and Implementation

to recirculate a single carry in an additional tree-level [6]. Thus, by defining

[G∗i , P
∗
i] =

[
Gi

0, P
i
0

] • [
Gn−1

i+1 , Pn−1
i+1

]

and Ci = G∗i , the extra prefix operators are eliminated. As an exercise,
the reader may wish to try his or her hand in applying this to Slansky and
Kogge-Stone adders.

4.4 Addition modulo 2n + 1

Addition modulo 2n +1 is considerably more difficult than addition modulo
2n − 1, in the sense that it cannot be realized with the same speed or
efficiency. The reason for this is apparent if one considers what is required
to obtain |A + B|m from A + B; that is, the detection of when A + B

exceeds or is equal to the modulus and the correction required to adjust
that intermediate result. With m = 2n − 1, both detection and correction
are easily implemented: A+B is known to have exceeded the modulus when
if there is a carry-out from the addition of A and B; and A + B is known
to be equal to the modulus if Ai ⊕Bi = 1 for all i. In the former case, the
required correction consists of subtracting 2n − 1, i.e. subtracting 2n and
adding 1, which is equivalent to ignoring the carry-out and adding a 1 or
simply adding the carry-out. And in latter case it consists of adding 1 and
ignoring any carry-out. In either case, the correction affects only the least
significant end of the adder, in that it consists of the addition of 00 · · · 01
or, equivalently, the addition of 00 · · · 0 with a carry-in of 1. On the other
hand, with m = 2n + 1, two problems arise. First, it is not as easy to
determine when the modulus has been exceeded. Second, it is not easy to
carry out the required correction. One way around these difficulties, which
also extend to multiplication, has been the use of an alternative notation to
represent residues modulo 2n + 1. Direct addition is then possible but not
with the same speed or efficiency as modulo-2n addition or modulo-(2n−1)
addition.

4.4.1 Diminished-one addition

Arithmetic operations modulo 2n + 1 has frequently been implemented
through the use of a different representation —the diminished-one rep-
resentation. In this notation, a number X, where X > 0, is represented by
the binary equivalent of X − 1, which we shall denote by X̂. Zero requires

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 131

special treatment, e.g. its use may be forbidden or an extra bit may be used
in the representations to distinguish between zero and non-zero numbers.
We shall assume the latter, and, as X + 0 = X, not consider it further in
what follows.

With the diminished-one representation, the addition of two numbers,
A and B, with diminished-one equivalents Â and B̂, is

A + B = (Â + 1) + (B̂ + 1) = (Â + B̂ + 1) + 1

If (Â + B̂ + 1) + 1 < 2n + 1, then the result is correct in diminished-one
form; otherwise 2n + 1 must be subtracted to get the correct result. The
former condition is equivalent to (Â+B̂+1) < 2n, which corresponds to the
absence of a carry-out, i.e. Cn−1 = 0; while the latter subtraction (which is
required when there is a carry-out) is the computation of (Â+ B̂ +1)− 2n,
which is equivalent to simply ignoring the carry-out. So the diminished-one
modulo 2n+1 addition can be implemented with, say, a parallel-prefix adder
in a manner similar to the modulo-(2n − 1) case but with the end-around
carry inverted; that is, with C−1 = Cn−1.

The main drawback of the diminished-one representation is that it re-
quires conversions, using adders and subtractors, of the operands and re-
sults. A different way in which modulo 2n + 1 adders could be designed
is to start with the arbitrary-modulus adders of Section 4.1 and then try
to optimize the logic for the modulus 2n + 1. We leave it to the reader to
investigate such designs, and we next describe an approach that is superior
in most respects.

4.4.2 Direct addition

With the modulus 2n − 1, it easy to determine if the intermediate sum,
A + B, of the two operands, A and B, is equal to or has exceeded the
modulus and needs to be corrected to get A + B mod 2n + 1. Required
correction is easily accomplished by ignoring any carry-out and adding a 1
into the least-significant position of the intermediate result. Since a parallel-
prefix adder is well-suited to the concurrent computation of both A+B and
A+B +1, the correction can easily be done just by including another level
of prefix operators [10]. Modulo-(2n + 1) addition is more difficult: It is
not possible to determine directly from the operand bits if A+B = 2n +1;
and there is no single signal (such as a carry-out) that can be used to easily
determine if A + B > 2n + 1. Also, directly modifying a parallel-prefix
adder, leads to an intermediate result that requires a further subtraction

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

132 Residue Number Systems: Theory and Implementation

of a 1. But it is not easy to design an adder that concurrently computes
A + B and A + B − 1 with the same efficiency as one that concurrently
computes A + B and A + B + 1. Nevertheless it is possible to come close.
The basic idea is that if 2n + 1 is subtracted to start with and added back
if the subtraction left a negative result, then the problem of later having
to subtract a 1 is converted into the easier one of having to add a 1. (Note
that adding or subtracting 2n is just setting the most significant bit to 1 or
0.) The details are as follows.

Let X denote the value A + B − (2n + 1). Then we can distinguish
among three cases:

(a) A + B ≥ (2n + 1); that is, X ≥ 0
(b) A + B = 2n; that is, X = −1
(c) A + B < (2n + 1) and A + B 6= 2n; that is, X < 0

In (a), X is evidently the correct result. In (b), the correct result is 2n,
and obtaining that requires the addition back of 2n +1. The addition of 2n

is achieved by setting, Sn, the most significant bit of the result to 1; and
the 1 is added as a carry-in, C−1, to an extra level of prefix operator, as in
the modulo-(2n − 1) parallel-prefix adder. And in (c), we nominally need
to add back 2n + 1, but in this case we observe that, since A + B < 2n,

|X + 2n + 1|2n+1 = |X + 2n + 1|2n

= |X + 1|2n

Therefore, it is sufficient to just add a 1. The result will be in n bits, and
Sn, the (n + 1)st bit of the sum is therefore set to 0. We may summarise
all this as

|A + B|2n+1 =





X if X ≥ 0
2n + |X + 1|2n if X = −1
|X + 1|2n otherwise

(4.11)

Equation 4.11 may be implemented as follows. A carry-save adder (CSA)
is used to reduce the three operands, A, B, and −(2n +1) to two: a partial-
carry, C̃, and a partial-sum, S̃. (We assume two’s-complement represen-
tation for negative numbers.) Ĉ and Ŝ are then assimilated in an n-bit
parallel-prefix adder with an extra level of prefix operators to absorb any
1 that needs to be added during the “correction” phase. All that remains,
then, is how to distinguish among the three cases above.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 133

001n-1n-1

n-1

1 1 0 0n-1 n-1

n-2 1 0

n

n-1n-1 n-1

1

11 1 00 0

n

n

0

Figure 4.29: Modulo 2n + 1 parallel-prefix adder

The bits An and Bn will be 0s, and bit n (the most significant bit) of the
representation of −(2n + 1) will be 1. Therefore, bit n of the result of the
assimilation will be 1—that is, the result would be negative— only if Cn−1,
and therefore Cn, is 0. Thus in case (c) detected, and the correction is by
adding the inverse of the end-around-carry; that is, C−1 = Cn, and Sn is set
to 0. And in case (b), the result of the assimilation would be 111 · · · 1. But

this result occurs only if all the propagate signals Pi
4
= C̃i⊕S̃i are 1s; that is

if Pn
0
4
= PnPn−1 · · ·P0 = 1. This suffices to detect case (b). The necessary

“correction” here is accomplished by adding Pn
o as an end-around-carry

and setting Sn = Pn
0 .

An appropriate architecture is shown in Figure 4.29. Note that whereas
a CSA would normally consists of a sequence of full adders, here some

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

134 Residue Number Systems: Theory and Implementation

simplification is possible, since m, the modulus, is known: its representation
is 1011 · · · 1. With a normal CSA, the logic equations for the full adder at
bit-slice i are S̃i = (Ai ⊕ Bi) ⊕ m and C̃i = AiBi + m(Ai ⊕ Bi). So for
the bit-slices where mi = 1, S̃i may be simplified to Ai ⊕Bi; and where
mi = 0, it may be simplified to Ai ⊕ Bi. Similarly C̃i may be simplified
to AiBi + (Ai ⊕ Bi), when mi = 1, or to AiBi, when mi = 0. A different
formulation of Equation 4.11 can be combined with a redefinition of • to
yield a modulo-(2n + 1) adder without an extra level of prefix operators;
the reader will find relevant details in [20].

4.5 Summary

Adders for residue arithmetic are derived from adders for conventional bi-
nary arithmetic, for the very simple reason that at the end of the day
residue digits are represented in conventional binary. Therefore, all of the
usual techniques used in the design of conventional adders are applicable
here. In essence, modulo-m addition (with operands 0 ≤ A, B < m) re-
quires the production of two intermediate results, A + B and A + B −m,
one of which is selected as the final result. Regardless of the addition tech-
nique used, two distinct adders are not strictly required: some logic may be
shared between the two nominal adders. In the case of the special moduli,
2n − 1 and 2n + 1, such sharing requires very little extra logic if certain
adders are used, those adders being ones that would “naturally” produce
the two intermediate results (or equivalents).

References

(1) A. Beaumont-Smith and C.-C. Lim, 2001. “Parallel prefix adder de-
sign”. In: Proceedings, 15th International Symposium on Computer
Arithmetic.

(2) R. P. Brent and H. T. Kung, 1982. A regular layout for parallel adders.
IEEE Transactions on Computers, C-31(3):260–264.

(3) M. A. Bayoumi, G. A. Jullien, and W. C. Miller, 1987. A VLSI
implementation of residue adders. IEEE Transactions on Circuits
and Systems, CAS-34(3):284–287.

(4) R. W. Doran, 1988. Variants on an improved carry-lookahead adder.
IEEE Transactions on Computers, 37(9):1110–1113.

(5) C. Efstathiou, D. Nikolos, and J. Kalamatianos, 1994. Area-efficient

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Addition 135

modulo 2n − 1 adder design. IEEE Transactions on Circuits and
Systems–II: Analog and Digital Signal Processing , 41(7):463–467.

(6) Kalampoukas, L., D. Nikolas, C. Efstathiou, H.T. Vergos, and J.
Kalamtianos. 2000. High-speed parallel-prefix modulo 2n − 1 adder.
IEEE Transactions on Computers, 49(7):673–679.

(7) V. Kantabutra, 1993. Designing optimum one-level carry-skip adders.
IEEE Transactions on Computers, 42(6):759–764.

(8) V. Kantabutra, 1993. Accelerated two-level carry-skip adders – a type
of very fast adders. IEEE Transactions on Computers, 42(11):1389–
1393.

(9) V. Kantabutra, 1993. A recursive carry-lookahead/carry-select hybrid
adder. IEEE Transactions on Computers, 42(12):1495–1499.

(10) R. Zimmerman. 1999 “Efficient VLSI implementation of modulo 2n±1
addition and multiplication”. In: Proceedings, 14th Symposium on
Computer Arithmetic, pp. 158–167.

(11) S. V. Lakshmivaran and S. K. Dhall, 1994. Parallel Computation
Using the Prefix Problem. Oxford University Press, UK.

(12) A. R. Omondi, 1994. Computer Arithmetic Systems. Prentice-Hall,
U.K.

(13) B. Parhami. 2000. Computer Arithmetic. Oxford University Press,
U.K.

(14) J. J. Shedletsky, 1977. Comment on the sequential and indetermi-
nate behaviour of an end-around-carry adder. IEEE Transactions on
Computers, C-26:271–272.

(15) J. F. Wakerly, 1976. One’s complement adder eliminates unwanted
zero. Electronics:103–105

(16) R. E. Ladner and M. J. Fischer. 1980. Parallel prefix computation.
Journal of the ACM , 27:831–838.

(17) P. M. Kogge and H. S. Stone. 1973. A parallel algorithm for the
efficient computation of a general class of recurrence relations. IEEE
Transactions on Computers, 22:786–793.

(18) S. Knowles. 1999. A family of adders. In: Proceedings, 14th Sympo-
sium on Computer Arithmetic, pp. 30–34.

(19) A. Tyagi. 1993. A reduced area scheme for carry-select adders. IEEE
Transactions on Computers, 42(10):1163–1170.

(20) C. Efstathiou, H. T. Vergos, and D. Nikolos. 2004. Fast parallel-prefix
modulo 2n +1 adders. IEEE Transactions on Computers, 53(9):1211–
1216.

(21) M. J. Flynn and S. F. Oberman. 2001. Advanced Computer Arith-

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

136 Residue Number Systems: Theory and Implementation

metic Design. Wiley, New York.
(22) M. Dugdale. 1992. VLSI implementation of residue adders based on

binary adders. IEEE Transactions on Circuits and Systems II: Analog
and Digital Signal Processing , 35(5):325329.

(23) A. A. Hiasat. 2002. High-speed and reduced-area modular adder
structures for RNS. IEEE Transactions on Computers, 51(1):8489.

(24) D. K. Banaji. 1974. A novel implementation method for addition
and subtraction in residue number systems. IEEE Transactions on
Computers, C-23(1):106108.

(25) S. Piestrak. 1994. Design of residue generators and multioperand
modular adders using carry save adders. IEEE Transactions on Com-
puters, 42(1):68–77.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Chapter 5

Multiplication

As with addition, multiplication relative to an arbitrary modulus is rather
difficult. Modular multiplication may be implemented in the form of table-
lookup, combinational logic, or a mixture of combinational logic and table-
lookup. Pure table-lookup is rarely implemented, except, perhaps, for very
small moduli; for large moduli, the tables required will be large and slow.
Table-lookup in conjunction with a small amount of combinational logic
also has few advantages when an arbitrary modulus is used, although it is
an improvement on pure table-lookup. More efficient combinational-logic
multiplier-designs are possible when the modulus is one of the special ones:
2n, 2n − 1 and 2n + 1.

With arbitrary moduli, there are two main ways to proceed. Let A and
B be the two operands whose modular product is to be computed. Then the
first method is to proceed directly from the definition of a residue—that is,
as the remainder from an integer division—and first compute the product
AB and then reduce that relative to the given modulus. And the second is
to compute AB but carry out the modular reduction during that multipli-
cation: multiplication is essentially a series of additions, and the idea is to
modular-reduce each operand and then add. We shall therefore start with
a review of algorithms for conventional multiplication and division.

With the first general approach above, a straightforward way to compute
the modular product, |AB|m, through division is to simply multiply A

and B, divide the result by m, and then take the remainder. The key
problem, then, is how to efficiently divide two numbers. The division here
is conventional division, for which there are two main classes of algorithms.
The first class consists of subtractive algorithms, which are variants of the
standard paper-and-pencil division algorithms. In these algorithms, two
sequences are computed such that one converges to the quotient and the

137

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

138 Residue Number Systems: Theory and Implementation

other converges to the remainder. The other class of division algorithms
consists of multiplicative algorithms, in which two sequences are computed
(as continued products) such that as the values of one sequence converge to
some constant (usually zero or unity), the values of the other converge to the
quotient. This latter class therefore requires that the remainder be obtained
through additional computations— typically, another multiplication and a
subtraction (which is just an addition)— since it is not readily available. In
practice, for modular multiplication actual division is usually not carried
out, but the essential aspects of division algorithms will still be employed.

This chapter has five main sections. The first two sections are a review
of the main algorithms used for multiplication and division in conventional
number systems; the reader who is familiar with these algorithms may
skip these sections. The third section shows how these algorithms may
be employed as the basis of algorithms for modular multiplication, with
respect to an arbitrary modulus, and also discusses implementations that
use pure table-loookup or a combination of that with some combinational
logic. The fourth and fifth sections deal with multiplication algorithms,
and corresponding implementations, for the special moduli, 2n − 1 and
2n + 1. (Multiplication modulo-2n is, of course, just conventional binary
multiplication.)

Throughout what follows, “multiplication” and “division” without the
qualifier “modular” (or “residue”) will mean conventional multiplication
and division. It should also be noted that because residue multiplication
is digit-wise parallel, in what follows, for operands, “multiplicand” and
“multiplier” will be residues.

5.1 Conventional multiplication

Almost all algorithms for the multiplication of unsigned binary numbers
are basically versions of the standard procedure for paper-and-pencil mul-
tiplication of decimal numbers. The latter process consists of the following
steps. Starting from the rightmost digit, each digit of the multiplier is mul-
tiplied by the multiplicand. The product of each such “sub-multiplication”
is shifted left by i places, where i is the position of the corresponding digit of
the multiplier (counting from right to left and starting at zero). The shifts
produce partial products that are then added up to obtain the complete
product.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 139

Figure 5.1: Sequential multiplication

5.1.1 Basic binary multiplication

In basic binary multiplication, the process is similar, but the formation
of a partial product is simplified by the fact that the only possible values
for a digit are 0 and 1; so each multiplicand-multiple is either just the
multiplicand shifted or zero. The simplest possible implementation of a
multiplier, a sequential multiplier , follows a roughly similar procedure but
with two main differences. First, the partial products are formed one at
a time and added to a running total that ends up as the final product.
Second, instead of shifting each multiplicand-multiple to the left, to form
a partial product, an equivalent effect is achieved by instead shifting the
accumulated value to the right, by one place for each partial product. (Note
that this means that a partial product now is just a multiplicand-multiple.)
An example is shown in Figure 5.1. If one views the sequential multiplier
as a starting point, then the speed of multiplication can be improved by

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

140 Residue Number Systems: Theory and Implementation

either performing the additions at a faster rate or by reducing the number
of partial products to be added.

Figure 5.2: Sequential carry-save multiplication

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 141

The addition of a partial product can be speeded up by observing that
carry-propagation, the dominant factor in addition, is not necessary with
every addition in a sequence of additions. Instead, carries from one addi-
tion may be saved and added, with appropriate significance shifts, to the
operand of the succeeding addition; only in the last addition do the carries
need to be propagated. Figure 5.2 demonstrates this, in an example that
corresponds to Figure 5.1. Except for the last addition, which requires an
adder of the types described in Section 4.1, all additions are carried out
in a carry-save adder (CSA), which consists of just a set of full adders.

In this context, a full adder is also known as a 3:2 counter1, as it re-
duces three inputs to two outputs. The outputs of a carry-save adder
are partial-sum and partial-carry bits that must be assimilated (i.e. added,
with the carry-bits shifted, in a carry-propagate adder) to yield a single
output in conventional form. The corresponding binary multiplier has the
form shown in Figure 5.3. (We assume an appropriate register to separate
the inputs of the CSA from the outputs.)

Partial

Multiplier

Product

MultiplierMultiplicand

. . .

. . .

. . .

. . .

Multiple- Select

MRiMD0MDn-2MDn-1

Figure 5.3: Sequential binary (radix-2) multiplier

1Specialized counters that are designed for regular layouts of tree topologies are also
known as compressors.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

142 Residue Number Systems: Theory and Implementation

MD = 5 = 00000101

MR = 114 = 01110010

00000000

00001010

00001010

00000001010
000000000

0000001010

0000000001010
00001111

000011111010

00000011111010
00000101

570 = 00002000111010

Initial PP
Add 1st multiple (2MD)

Shift PP
Add 2nd multiple (0MD)

Shift PP
Add 3rd multiple (3MD)

Shift PP
Add 3rd multiple (MD)

Final produce

Figure 5.4: Radix-4 multiplication

5.1.2 High-radix multiplication

The number of partial products can be reduced by, effectively, increasing
the radix of the multiplication—from two to, say, four or eight. A straight-
forward way to do this is form the partial products by taking several bits
of the multiplier at a time: two for radix-4 multiplication, three for radix-8
multiplication, and so forth. Let MD denote the multiplicand. Then, di-
rectly taking two multiplier-bits at a time requires the partial products 0,
MD , 2MD , and 3MD ; and taking three bits at a time requires the addi-
tional partial products 4MD , 5MD , 6MD and 7MD . The partial products
(or, alternatively, their accumulated value) must at each step now be shifted
by the number of multiplier-bits taken. Figure 5.4 shows an example.

The partial products that are a multiple of MD and a power of two can
easily be formed by shifts of MD ; but the others may require lengthy carry-
propagate additions. Nevertheless, the basic idea can be usefully extended
to larger radices, as follows. Both the multiplicand and the multiplier are
partitioned into several pieces, each piece being of one or more digits. Each
piece of the multiplicand is then multiplied by each piece of the multiplier,
and the results are then added up, with appropriate shifting for signifi-
cance. Figure 5.5 shows an example-the multiplication of 1234 and 5678.
Figures 5.6 shows a corresponding for a 16-bit×16-bit multiplier. In imple-
mentation, using just combinational logic for such a multiplier is not very

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 143

effective: a carry-propagate adder is required for each “small” multiplica-
tion, and all the adders in the tree are nominally carry-propagate adders;
this increases both cost and operational time. On the other hand, the full
use here of carry-save adders leads to a structure that is similar to others
discussed below but inferior in several aspects. A better approach is to use
look-up tables (ROMs) to form the partial products—that is, replace the
small multipliers of Figure 5.6 with ROMs—and then add them up in a
tree of carry-propagate adders or a tree of carry-save adders with an assim-
ilating carry-propagate adder. And one can readily envisage an all-ROM
implementation. Evidently there is a trade-off between the ROM sizes and
the depth of the tree. The main advantage of these multiplier designs is
that where it is preferable to use (mostly) table-lookup, they will result
in smaller ROMs than would be the case with direct ROM-multiplication.
Nevertheless, such multipliers have not been commonly implemented for
conventional multiplication—for the simple reason that there is a generally
better way (Booth’s Algorithm) to accomplish high-radix multiplication.
A partitioned-operand modular multiplier has been proposed for modulo-
(2n − 1) multiplication [2] and is briefly described in Section 5.4, but even
for that limited case it is of dubious worth.

1 2 3 4 1 2 3 4
× 5 6 × 5 6 × 7 8 × 7 8

7 2 2 0 4 9 6 2 7 2
6 0 1 7 0 8 4 2 3 8

6 7 2 1 9 0 4 9 3 6 2 6 5 2
@

@@R
¡

¡
¡ª

@
@@R

¡
¡

¡ª6 7 2 9 3 6
+ 1 9 0 4 + 2 6 5 2
6 9 1 0 4 9 6 2 5 2

PPPPPPq
³³³³³³)

6 9 1 0 4
+ 9 6 2 5 2

7 0 0 6 6 5 2

Figure 5.5: High-radix multiplication by operand-splitting

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

144 Residue Number Systems: Theory and Implementation

8:!58:15 8:!50:7 0:78:15 0:70:7

16
16 16

16

8

16

24

Figure 5.6: Split-operand multiplier

The problem of hard-to-form multiplicand-multiples in high-radix mul-
tiplication can be partially solved by taking advantage of the fact that the
addition of several multiples that correspond to a string of 0s in the mul-
tiplier may be replaced with a single addition of zero, and that of adding
multiples that correspond to a string of 1s may be replaced with a single ad-
dition and a single subtraction. To see the latter, consider a multiplication
of MD by a string of k 1s. Since MD×111 · · · 1 = MD(2k−1+2k−2+· · · 20) =
MD(2k−1), it follows that instead of k additions (one for each 1), it is suffi-
cient to have a single subtraction corresponding to the position of the least
significant 1 and an addition corresponding to the position immediately af-
ter the most significant 1. If the multiplier is partitioned into equal-length
pieces, then for a given piece, it will be necessary to determine whether it
is at the start of a string of 1s, the end of a string of 1s, the start and end
of a string of 1s, and so forth. For each partition, this may be accomplished
by examining the last bit of the preceding partition. Thus for radix-4 and
radix-8 multiplication the partial products are formed according to the

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 145

rules in Tables 5.1 and 5.2. Essentially, what these rules capture is an “on-
the-fly” recoding of the multiplier, from conventional binary representation
to the redundant-signed-digit notation of Chapter 1: the digit-set for the
radix-4 is {2, 1, 0, 1, 2}, and that for the radix-8 is {3, 2, 1, 0, 1, 2, 3}. A cor-
responding example multiplications are shown in Figure 5.7; it is evident
that the number of hard-to-form multiples has been reduced. The multipli-
cation algorithm based on these rules is known as Booth’s Algorithm, and
it is worth noting that it is useful even with radix-2, because it simplifies
the multiplication of signed numbers.

Table 5.1: Radix-4 Booth Algorithm

MRi+1,i MRi−1 Action
00 0 Shift PP 2 places
00 1 Add MD; shift PP 2 places
01 0 Add MD; shift PP 2 places
01 1 Add 2×MD; shift PP 2 places
10 0 Subtract 2×MD; shift PP 2 places
10 1 Subtract MD; shift PP 2 places
11 0 Subtract MD; shift PP 2 places
11 1 Shift PP 2 places

Given the relative decreases that have occurred in the costs of hard-
ware, most implementations of multipliers are no longer sequential (Figure
5.3). Instead of a single carry-save adder, the number and duration of
required addition cycles are reduced by “unrolling” the multiplier “loop”,
one or more times, so that two or more carry-save adders are used to add
several partial products in a single cycle. Typically, in current multipli-
ers, complete “unrolling” is done so that the final design consists of a set
of carry-save adders with a carry-propagate adder at the end. Figure 5.9
shows an example for a 5-bit×5-bit multiplication. Booth recoding may
also be used in such a multiplier to reduce the number of partial products
to be added.

In the multiplier of Figure 5.9, the (logical) delay through the tree of
carry-save adders is proportional to the number of partial products. This
may be improved upon by adding as many partial products as possible at
each level of the tree; that is, by using more than one carry-save adder at

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

146 Residue Number Systems: Theory and Implementation

each level.

Figure 5.8: Multiplication with radix-8 Booth Algorithm

Since a carry-save adder is a 3-input/2-output unit, partial products are
taken in as many groups of three as are possible, with a carry-save adder for
each group. Thus, for unrecoded n-bit×n-bit multiplication, the first level
of the addition tree consists of about n/3 carry-save adders. At the second
level, the outputs of these adders, plus any leftovers from the first level,
are again grouped into threes, with appropriate significance shifting. This
process is repeated until there are only one partial-sum and one partial-
carry left, and these are then assimilated in a carry-propagate adder. An
example is shown in Figure 5.10, for 5-bit×5-bit multiplication. This type
of multiplier is known as a Wallace-tree multiplier , and the logical delay
through its reduction tree is proportional to log3/2 n. Although the opera-
tional time here appears to be better than that of the simple parallel-array
multiplier, the Wallace-tree has a less regular structure, and a compact
layout is therefore more difficult. Therefore, in current VLSI technology,
the area, interconnection-delays, etc., from this design can be larger than
is apparent from Figure 5.10. Consequently, the actual operational time
may not be substantially different from that of the parallel-array. As with
the parallel-array multiplier, Booth recoding may be used here to reduce
the number of partial products and, therefore, the depth of the tree. In
addition to the simple parallel-array and Wallace-tree multipliers, there are
several other arrangements that are possible when the multiplier “loop” is
completely unrolled. For these, we leave it to the reader to refer to the

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 147

published literature [5, 6, 12].

Table 5.2: Radix-8 Booth Algorithm

MRi+2,i+1,i MRi−1 Action

000 0 Shift PP 3 places
000 1 Add MD; shift PP 3 places [0, 0, 1]
001 0 Add MD; shift PP 3 places [0, 2, –1]
001 1 Add 2×MD; shift PP 3 places [0, 2, 0]
010 0 Add 2×MD; shift PP 3 places [4, –2, 0]
010 1 Add 3×MD; shift PP 3 places [4, –2, 1]
011 0 Add 3×MD; shift PP 3 places [4, 0, –1]
011 1 Add 4×MD; shift PP 3 places [4, 0, 0]
100 0 Subtract 4×MD; shift PP 3 places [–4, 0, 0]
100 1 Subtract 3×MD; shift PP 3 places [–4, 0, 1]
101 0 Subtract 3×MD; shift PP 3 places [–4, 2, –1]
101 1 Subtract 2×MD; shift PP 3 places [–4, 2, 0]
110 0 Subtract 2×MD; shift PP 3 places [0, –2, 0]
110 1 Subtract MD; shift PP 3 places [0, –2, 1]
111 0 Subtract MD; shift PP 3 places [0, 0, –1]
111 1 Shift PP 3 places

FA

C s

FA

C s

FA

C s

FA

C s

HA

C s

2

3

1

4 0

5

MP

MP

MP

2

2

1

3 0

4

MP

MP

MP

2

1

1

2 0

3

MP

MP

MP

2

0

1

1 0

2

MP

MP

MP

1

0

0

1

MP

MP

FA

C s

FA

C s

FA

C s

FA

C s

FA

C s

HA

C s

P0P1P2P3P4P5P6P7P8P9

FA

C s

FA

C s

FA

C s

HA

C s

0

0
MP

2

4
MP

4

4
MP

4

3
MP

3

4
MP

3

3
MP

3

2
MP

3

1
MP

4

2
MP

4

1
MP

4

0
MP

3

0
MP

Figure 5.9: Parallel-array multiplier (n = 5)

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

148 Residue Number Systems: Theory and Implementation

CPA

P
0

P
1

P
2

P
4

P
3

P
5

P
6

P
7

P
8

P
9

HA

C S

HA

C S

FA

C S

FA

C S

FA

C S

FA

C S

4
MP

2

1
MP

0

0
MP

1

C S

HA

C S

2
MP

0

1
MP

1

0
MP

2

C S

3
MP

0

2
MP

1

1
MP

2

C S

4
MP

0

2
MP

2

3
MP

1

C S

3
MP

2

4
MP

1

C S

0
MP

0

C SC S C SC SC SC S

C SC S C SC SC SC S

P
11

P
10

0

0

HA HA

5
MP

0

5
MP

1

5
MP

2

5
MP

3

5
MP

4

1
MP

5

0
MP

5

2
MP

5

3
MP

5

4
MP

5

5
MP

5

1
MP

3

2
MP

3

0
MP

3

1
MP

4

0
MP

4

2
MP

4

3
MP

3

3
MP

4

4
MP

3

4
MP

4

Figure 5.10: Wallace-tree multiplier (n = 5)

4 : 2 compressors

C S

4 : 2 compressors

C S

4 : 2 compressors

C S

4 : 2 compressors

C S

4 : 2 compressors

C S

4 : 2 compressors

C S

4 : 2 compressors

C S

Figure 5.11: Multiplier of 4:2 compressors

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 149

So far, we have assumed that the basic element in a carry-save adder is
a 3:2 counter (i.e. a full adder). Up to a point, faster multipliers can be
obtained by increasing the degree of compression. Thus, for example, 5:3
and 7:3 counter have been used. As indicated above, for regular topologies,
it is common to use compressors, which are specialized forms of counters.
A (p, q) compressor has p inputs and q outputs; but the numbers reflect the
fact that the carry inputs and outputs are from and to adjacent compressors
(on the same level) rather than to compressors on the next level. So a 4:2
compressor is just an instance of a 5:3 counter. As an example, Figure 5.11
shows a 4:2 compressor-tree for the reduction of sixteen operands to two
. A straightforward design for a 4:2 compressor is to take two full-adders
(i.e. 3:2 compressors) in series. It is, however, possible to design a 4:2
compressor whose delay is less than that of two full adders [10].

Multiplier

CSA

Arrary

CSA

CSA

CPA

PC PS

PS

PS

PC

PC

Figure 5.12: Multiply-Accumulate unit

There are many scientific applications (e.g. digital signal processing)
in which the accumulation of products (as in the computation of an inner-
product) is a fundamental operation that, ideally, should be performed at

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

150 Residue Number Systems: Theory and Implementation

the highest possible speed. A simple design for an appropriate hardware
unit nominally consists of a multiplier and an adder (the accumulator)
arranged in series and used repetitively. Implementing this directly pro-
duces a structure with two carry-propagate adders, one being the assimila-
tion adder in the multiplier and the other being for the sum-accumulation.
Such an implementation can be improved upon by observing that since
assimilation is not really necessary until the last addition, the multiplier’s
carry-propagate adder may be replaced with two carry-save adders. A de-
sign for a multiply-accumulate unit is shown in Figure 5.12, of which several
slightly different organizations are possible.

4 0 3 0 2 0 1 0 0

4 1 3 1 2 1 1 1 0 1

4 2 3 2 2 2 1 2 0 2

4 3 3 3 2 3 1 3 0 3

4 4 3 4 2 4 1 4 0 4

(a)

3 4 2 4 1 4 0 4 0 3 0 2 0 1 0

2 3 1 3 1 2 14

23

(b)

Figure 5.13: Partial-product array in squaring

We conclude this section with a brief mention of a special case in multi-
plication —squaring. Where squaring is a crucial operation, it may be useful
to implement a dedicated hardware unit, rather than carry out the opera-
tion in a general-purpose multiplier. The advantage of doing so is that, since
the two operands are the same, a specialized unit can be made smaller and
faster [8]. Consider, for example, the computation of A2 by a full multiplica-
tion. The array of partial products has the form shown in Figure 5.13(a), for
a 5-bit×5-bit multiplication. Every other term in the anti-diagonal has the
form AiAi, which is equivalent to just Ai, since Ai is 0 or 1. There is also a
symmetry around the same diagonal, since AiAj = AjAi. So the two terms

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 151

(AiAj and AjAi) may be replaced with their sum, 2AiAj , which, since
multiplication by two is a 1-bit left-shift, is just AiAj moved into the next
column to the left. Therefore, the matrix of Figure 5.13(a) may be com-
pressed to the equivalent one in Figure 5.13(b). Lastly, consider the terms
Ai and AiAj occurring in the same column. If Ai = 0, then Ai +AiAj = 0;
if Ai = 1, and Aj = 0, then Ai + AiAj = Ai = AiAj ; and if Ai = 1 and
Aj = 1, then Ai + AiAj = 2 = 2AiAj . So Ai + AiAj = 2AiAj + AiAj ,
which corresponds to AiAj in the same column and 2AiAj moved into the
next column to the left. This may be used to further reduce the number of
terms in columns of large arrays; we leave it as an exercise for the reader
to try it with, for example, an 8-bit A.

5.2 Conventional division

Multiplication consists of the addition of partial products that are shifted
multiples of the multiplicand and each digit of the multiplier. Conversely,
direct division consists of subtractions (i.e. additions of negations) of the
shifted multiples of the divisor, from a partial remainder that is initially
equal to the dividend and finally less than the divisor. The multiple that is
subtracted at each step is the product of the divisor and the quotient-digit
determined at that step. This process is subtractive division. An alter-
native approach is multiplicative division, in which the basic operation is
multiplication rather than subtraction. One popular algorithm of the latter
type consists, essentially, of a computation of the reciprocal of the divisor,
which reciprocal is then multiplied by the dividend to obtain the quotient.
There are a variety of algorithms for both subtractive and multiplicative
division, but in what follows we shall discuss only three of these. For oth-
ers, the reader should consult texts devoted to general aspects of computer
arithmetic [5, 6, 12].

5.2.1 Subtractive division

Direct binary division may be realized as follows. Let N be the dividend, D

be the divisor, Q(i) be the (partial) quotient at the end of the i-th step, and
R(i) be the corresponding partial remainder. In general, N and R(i) will be
represented in twice as many bits as each of the other operands—2n versus n

bits. Initially, Q(0) = 0 and R(0) = N . At each step, i (i = 0, 1, 2, . . . , n−1),
R(i+1) is formed by the subtraction R(i) − D, if R(i) is positive, or the

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

152 Residue Number Systems: Theory and Implementation

addition R(i) + D, if R(i) is negative; Q(i+1) is incremented2 by 1 if in the
preceding step a subtraction took place; and the partial remainder and the
partial quotient are then shifted left by one bit (i.e. effectively multiplied
by two). After n steps, Q(n) will be the quotient and R(n), if it is positive,
will be the remainder; if R(n) is negative, then the remainder is R(n) + D.
This procedure is known as non-restoring division, and it is essentially a
derivation of paper-and-pencil division.3 We may represent the procedure
with the recurrences (i = 0, 1, 2, . . . , n− 1)

Q(0) = 0

R(0) = N

R(i+1) =

{
2R(i) −D if 2R(i) ≥ 0
2R(i) + D if 2R(i) < 0

qi =

{
1 if 2R(i) −D ≥ 0
0 if 2R(i) −D < 0

Q(i+1) = 2Q(i) + qi

R =
{

R(n) if R(n) ≥ 0
R(n) + D otherwise

A direct, implementation of this procedure would be rather slow be-
cause each step requires a complete carry-propagate addition. (This is
what makes division fundamentally a more difficult operation than multipli-
cation.) In multiplication, carry-propagations at each step can be avoided
by using carry-save adders and postponing all carry-propagation to the last
step. This is not entirely possible in division, because of the need to know
the sign of each partial remainder, but good use can still be made of the
basic carry-save idea.

Consider a modification of non-restoring division in which the additions
and subtractions are carried out in carry-save adders, with final assimi-
lation after the last step. The partial remainder will not be fully known
at each step, since it will be in partial-carry/partial-sum form, but an ap-
proximation of it can be obtained by assimilating a few of the leading
partial-carry/partial-sum bits. This approximation is then compared with
2This is not a real addition: either a 1 or a 0 is appended at the end of the partial

quotient.
3In restoring division, before the next step is started, the partial remainder is com-

pletely restored to its old value (by adding back the divisor) if a subtraction left it
negative. This is therefore a less efficient process, although it more closely mirrors
paper-and-pencil division, in which the restoration is done “on the side”.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 153

the divisor, and the next bit of the quotient is selected. Because only an ap-
proximation is used, the result will sometimes be incorrect. To handle this,
a redundant-signed-digit set (RSD) is now used for the quotient.4 Suppose,
for example, that the selected quotient digit is 1 when it should be 0 and
the next digit should be 1. In such a case, in the next step, the quotient
digit is then selected to be 1 instead of 1. The end result is then correct,
as both 11 and 01 represent the same number. In short, by using RSD
notation, errors made at some step can be corrected in subsequent steps.
The algorithm obtained by the modifications just described is known as
SRT division, and it is quite popular, because its implementations have
good cost:performance ratios. Based on the above, the basic binary SRT
algorithm may be represented by the recurrences

qi =





1 if 2R(i) > 0
0 if −D < 2R(i) < D

1 if 2R(i) < 0

R(i+1) =





2R(i) −D if 2R(i) > 0
2R(i) if −D < 2R(i) < D

2R(i) + D if 2R(i) < 0

In what follows, we shall assume that the operands are in the range [1/2, 1).
This is only for convenience and does not affect the actual range of the
operands: it is merely a matter of scaling and the assumed positions of the
radix-point. The main benefit of forcing operands to be in this range is
that the comparisons now change from full-length ones between 2R(i) and
D or −D to low-precisions ones between 2R(i) and a pair of constants.

The study of SRT algorithms usually involves the use of Robertson di-
agrams, which are plots of the next-partial-remainder against the shifted
current-partial-remainder. Essentially, such a plot is an expression of the
invariant for binary division: R(i+1) = 2R(i) − qiD, where qi is the quo-
tient digit at step i. Thus the Robertson diagram corresponding to the
radix-2 recurrences above is as shown in Figure 5.15. It will be seen that
for a given value of R(i), there are two choices for qi; this is a reflection
of the redundancy in the digit-set {1, 0, 1}. The most significant aspect of
the redundancy is that it allows some choice in the values against which
the partial remainder is compared; they need not be D and −D, as an
approximation will suffice. Two criteria have commonly been used in the
selection of these values: choosing values that increase the probability of qi

4See Chapter 1 for a review of such digit-sets.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

154 Residue Number Systems: Theory and Implementation

being 0, which allows for shifting without any arithmetic in that cycle, and
values that facilitate simple and efficient comparison. In current dividers,
the former is of little value, and it is the latter that is used.

q
i 1= q

i 0= q
i 1=

−2D −D D 2D

D

−D

R
(i+1)

2R
(i)

Figure 5.14: Robertson diagram for radix-2 SRT division

As indicated above, the redundancy in the digit-set also means that
in the comparisons, the partial remainder, R(i), may be replaced by an
approximation, R̃(i), that is the same as R(i) in only a few leading bits
(with the rest assumed to be 0s). For binary, i.e radix-2, division it can
be shown that an approximation that consists of the most significant three
bits is sufficient, and that for this suitable comparison constants are −1/2
and 1/2. Thus the core of the radix-2 SRT algorithm is

qi =





1 if 2R̃(i) ≥ 1
2

0 if − 1
2 ≤ 2R̃(i) < 1

2

1 if 2R̃(i) < − 1
2

R(i+1) = 2R(i) − qiD

In general, the best choice of comparison constants depends on the given
value of D. It can be shown that for D in the range [1/2, 1), the optimal

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 155

value has to be selected from five different ones, according to the sub-range
in which D lies. The SRT algorithm produces a quotient that is in RSD
form and which therefore requires a conversion. This can be done “on-
the-fly”, i.e. as the quotient digits are produced [7]. The remainder also
needs a conversion as it will be in partial-sum/partial carry form. As in
multiplication, this assimilation is done in a carry-propagate adder. An
example of a radix-2 SRT division is shown in Figure 5.15.

0.000110

0.001100

0.011000

0.110000

1.111100

1.111000

1.110000

1.100000

1.000000

1.110100

1.101000

1.010000

1.000100

dividend = 0.000110 = 3/32 divisor = 0.1101 = 13/16

1.0011

0.1101

partial remainder partial quotient

0 . 0 0 1 0 0 0 1 0 1 0

0 . 0 0 0 1 0 0 0 1 0 1

0 . - - 0 0 0 1 0 0 0 1 0

0 . - - - - 0 0 0 1 0 0 0 1

0 . - - - 0 0 0 1 0 0 0

0 . - - - - 0 0 0 1 0 0

0 . - - - - - 0 0 0 1 0

0 . - - - - - - 0 0 0 1

0 . - - - - - - - 0 0

0 . - - - - - - 0 0 0

0 . - - - - - - - - 0 shift

shift

shift

shift

shift

shift

shift

add

shift

shift

subtract

Quotient =
1 1 1 3

8 128 512 26
− − ≈

Figure 5.15: A radix-2 SRT division

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

156 Residue Number Systems: Theory and Implementation

In multiplication, the use of Booth recoding reduces the number of
difficult-to-form multiples of the multiplicand and so makes it easy to design
multipliers with radices larger than two. Now, what Booth’s Algorithm does
is, essentially, an “on-the-fly” recoding of the multiplier, from conventional
form to RSD form. If we view division as the inverse of multiplication—
the quotient corresponds to the multiplier, and the subtractions in division
correspond to the additions in multiplication —then we should expect that
recoding the quotient will have a similarly beneficial effect. This is indeed
the case, and on this basis may be developed a variety of high-radix SRT
algorithms. For example, the core of a radix-4 SRT algorithm with the
digit-set {2, 1, 0, 1, 2} is

qi =





2 if 3D
2 ≤ 4R(i)

1 if D
2 ≤ 4R(i) < 3D

2

0 if −D
2 < 4R(i) < D

2

1 if − 3D
2 < 4R(i) ≤ −D

2

2 if − 3D
2 ≤ 4R(i)

R(i+1) = 4R(i) − qiD

As in the radix-2 case, there exist several choices for the comparison con-
stants, according to the basic Robertson diagram, and both R and D

may be replaced with approximations R̂ and D̂. The precision required
for the comparisons depends on the degree of redundancy in the digit-set.
For the minimally-redundant radix-4 digit-set, i.e. {2, 1, 0, 1, 2}, it can be
shown that the four most significant bits each of the divisor and the par-
tial remainder are sufficient; and for the maximally-redundant digit-set, i.e.
{3, 2, 1, 0, 1, 2, 3}, two bits of the partial remainder and three of the divisor
are required. Extending SRT division to radices higher than four is difficult.
The minimally-redundant radix-8 is barely worthwhile, but the maximally-
redundant radix-8 is not. The reasons for such difficulties are the same
as those in high-radix multiplication: multiples become more difficult to
form as the radix increases. The minimally-redundant radix-8 requires the
multiple 3D, but the maximally-redundant radix-8 requires the multiples
3D, 5D, and 7D. It is, however, possible to easily implement what are es-
sentially very-high-radix dividers by overlapping two lower-radix dividers.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 157

Thus, for example, a radix-16 divider may be obtained by overlapping two
radix-4 dividers.

MUX

Dividend

Divisor-

Multiple

Formation

Divisor

MUX

DR

PC

Small

CPA

+QNT -QNT

Digit

Convector

Digit

Convector

QNT

CSA
Decoding

Logic

PS

REM

-2D -D 0 D 2D

Figure 5.16: Sequential SRT divider

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

158 Residue Number Systems: Theory and Implementation

Full Adder

Xi Ci-1
Yi

M

Si-1Ci Yi

Figure 5.17: Add/Subtract cell for parallel-array divider (radix-2)

Figure 5.16 shows the general organization of a sequential radix-2 SRT
divider. (This corresponds to the sequential multiplier of Figure 5.3.) The
carry-save adder (CSA) performs the main subtraction or addition required
to reduce the partial remainder. The Small CPA (carry-propagate adder)
assimilates a few leading bits of the partial-carry/partial-sum current re-
mainder, and the result is then compared, in the Quotient-Selection Logic,
with a few leading bits of the divisor.5 The output of the Decoding Logic
is the next quotient digit, in signed-digit form, and this is immediately
converted (using the “on-the-fly” conversion technique [7]) into conven-
tional notation. For higher-radix division, more multiples of the divisor
are required, and more bits of the partial remainder and divisor must be
compared.

5Typical implementations have replaced the Small CPA and Quotient-Selection Logic
with a PLA, or similar structure, in which the assimilation and comparison are combined
and “built-in”.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 159

Carry Look

ahead
ASC

Carry Look

ahead

N2

Carry Look

ahead
ASC

N1

Carry Look

ahead
ASC

N

q3

q2

q1

ASC

CPA

Cout

Cout

Cout

Cout

q0

Remainder

N3N4N5N6D3 D2 D1 D000 0

Figure 5.18: Parallel-array divider (radix-2)

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

160 Residue Number Systems: Theory and Implementation

“Unrolling” the loop in the multiplier of Figure 5.3 produced the array-
multiplier of Figure 5.10. Similarly, unrolling the loop in a sequential di-
vider produces the array-divider of the type shown in Figures 5.17 (basic
cell) and 5.18 (complete array), for 6-bit divisor and 3-bit dividend. High-
radix array dividers may be obtained by likewise unrolling high-radix se-
quential dividers. Array-dividers have very rarely been implemented for
conventional Arithmetic—the use of carry-lookahead is such that each row
of the divider is almost equivalent to a full carry-propagate adder—but
they may have some use in residue multiplication (relative to an arbitrary
modulus), for which just about any implementation will be costly in either
time or logic.

5.2.2 Multiplicative division

There are two main ways in which division by repeated multiplication is
usually carried out. The first is an algorithm that is similar to the SRT
algorithm but with multiplications instead of subtractions as the primary
means for reducing the partial remainder.6 The second consists of first
computing the reciprocal of the divisor and then multiplying that by the
dividend. We shall here briefly discuss the second method; for the first, the
reader should consult the relevant literature, such as [5, 6, 12].

The basic algorithm for division-by-reciprocal-multiplication is derived
from the Newton-Raphson procedure for computing the root of a non-linear
equation. The Newton-Raphson recurrence is

Xi+1 = Xi − f(Xi)
f ′(Xi)

where f is the non-linear function whose root is sought, f
′

is the first
derivative of f , Xi is an approximation to the root, and (if X0 has been
chosen properly) Xi+1 is a better approximation. When the sequence of
approximations converges, it does so at a quadratic rate; that is, each value
will have twice as many correct digits (of the root) as its predecessor.

In division, the Newton-Raphson procedure may be used to compute the
reciprocal, 1/D, of the divisor by taking f(X) = D − 1/X. Multiplication
of this reciprocal by the dividend then yields the quotient: Q = N× (1/D).
The recurrence for the computation of the reciprocal is and the required
6In practice, the parameters of the algorithm are chosen so that true multiplication is

not required.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 161

recurrence is:

Xi+1 = Xi − D − 1/Xi

1/X2
i

= 2Xi −DX2
i

= Xi(2−DXi) (5.1)

’

i

0 i

i

i

i +1

Figure 5.19: Newton-Raphson reciprocator

Where the subtraction from two is a twos complement operation if the
operand is assumed to be fractional. A popular version of this scheme
concurrently computes approximations to both the quotient and the recip-
rocal. This is known an Goldschmidt’s algorithm. Figure 5.19 shows the
organization of a Newton-Raphson reciprocator. We have shown two inde-
pendent multipliers, but, since the multiplications in the above recurrence
are independent, it is possible to have the multiplications pipelined through
a single multiplier.

Evidently, the number of iterations required to compute 1/D to a given
precision depends on how good X0, the starting approximation is, and, in
general, its value depends on that of D. If, for example, X0 is close enough
to the root, then only one or two iterations may be required. There are

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

162 Residue Number Systems: Theory and Implementation

a variety of ways to obtain X0— table-lookup, piecewise linear interpo-
lation, and so forth—but what they all have in common is that the best
approximations are relatively hardware-costly to compute. Nevertheless,
as we shall see below, this need not be a problem in residue multiplica-
tion, since the “divisor” (the modulus) is usually fixed. There is, however,
one problematic aspect of the algorithm: it does not leave a remainder,
and computing one is not always easy because the reciprocal value used
to obtain the quotient is not exact. The remainder, which is what we are
after in modular multiplication, may be computed through an additional
multiplication and subtraction: R = N −Q×D.

5.3 Modular multiplication: arbitrary modulus

For the arbitrary moduli, as opposed to the special ones (such as 2n − 1
and 2n + 1), multipliers based solely on combinational logic are likely to
be relatively complex. We shall therefore start with simple multipliers that
combine table-lookup with a small amount of combinational logic; such
multipliers are most suitable for multiplication relative to a small modulus.
Other types of modular multipliers fall into roughly three categories: those
that compute |AB|m by, essentially, computing AB and then reducing that
modulo m; those that perform the modular multiplication by a process
similar to conventional multiplication but in which each partial product
is reduced before being added to other partial products or to a running
modular sum; and those that are based on division algorithms, subtractive
and multiplicative. We shall discuss examples of all three types.

A key point to keep in mind in what follows is that although the mod-
ulus may be arbitrary, it is usually fixed for a given multiplier, since the
moduli are usually known at design-time; advantage can be taken of this
to make certain simplifications in the designs. We shall assume that the
modulus is not a power two; for powers of two, modular multiplication is
just conventional multiplication.

5.3.1 Table lookup

One of the first types of multipliers proposed for residue multiplication is
that based on squaring [13], as given by the equation

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 163

m

()2

m

A+B

4

()2

m

A-B

4

Figure 5.20: Quarter-square modulo-m multiplier

A×B =
(A + B)2

4
− (A−B)2

4
As shown in Figure 5.20, modular multiplication on this basis can be

implemented directly, using three adders (for the addition and the two sub-
tractions) and two ROMs as lookup tables that produce quarter-squares.
Although this type of multiplier is probably more suitable for lookup-table
implementation, it may also be implemented as combinational logic: recall
that although squaring is essentially a multiplication, it is a specialized one
that can be implemented using less logic than would required for a gener-
alized multiplier (Section 5.1). At the other extreme, all three adders may
be replaced with lookup tables, to give an all-ROM implementation. Thus,
depending on the tradeoffs, there are several possibilities for the implemen-
tation of such a modulo-m multiplier. It should nevertheless be noted such
“square-law” multiplication cannot be used with all possible values of mod-
uli. The two ROMS in the design above store the values

∣∣(A + B)2|4−1|m
∣∣
m

and
∣∣(A−B)2|4−1|m

∣∣
m

, where |4−1|m is the multiplicative inverse of |4|m;
that is, 4|4−1|m ≡ 1. But the results in Chapter 2 show that multiplica-

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

164 Residue Number Systems: Theory and Implementation

tive inverses exist only if modulus and divisor have no factor in common.
Therefore, m here may not have two as a factor.

m

Figure 5.21: Index-calculus modulo-m multiplier

Another design that is suitable for table-lookup implementation can
be obtained by using tables of “logarithms” and “anti-logarithms”, as one
might do in conventional multiplication. This relies on the result of Chap-
ter 1, to the effect that if the modulus m is prime, then every non-zero
element of the corresponding set of residues can be generated as a power of
some generator, g. Thus if,

∣∣A = gi
∣∣
m

and
∣∣B = gj

∣∣
m

, then their modular
product is

|AB|m =
∣∣∣g|i+j|m−1

∣∣∣
m

A design for the corresponding multiplier is shown in Figure 5.21. Three
ROMs are used here: one each to obtain i and j from A and B, and one to
obtain the final result, |AB|m, from i + j. Only one adder is used, for the
sum of i and j, and this too could be realized as a ROM. So, depending
on the exact-tradeoffs, this may be a more cost-effective design than the

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 165

preceding one, which nominally requires three adders. An additional point
worth noting is that the ROMs here will be smaller than for the basic
quarter-square multiplier, since each can be addressed with one bit less.
The size of the ROMs can be reduced by decomposing m into several prime
submoduli, mi, and employing a modular adder for each submoduli; this can
also increase performance, since the modular adders will then be smaller,
and all operate concurrently [20, 21].

This last modular multiplier has two obvious drawbacks. One is that m

must be prime. Of course, this is not a problem for commonly used moduli
sets—such as {2n − 1, 2n, 2n + 1}, of which 2n − 1 and 2n + 1 are prime,
and modulo-2n multiplication is just conventional multiplication—but, on
the other hand, for such moduli it is, in general, possible to design better
multipliers. The other drawback, a relatively minor one, is that additional
logic is required to detect if an operand is zero, so that a result of zero
result is produced accordingly.

The designs of Figures 5.20 and 5.21 each requires an addition followed
by address-decoding (for the table-lookup). Although, we have implied
that these are realized as separate operations, this need not be so. This is
one instance where a sum-addressed memory can be usefully employed. In
contrast with a conventional memory, which takes a single address-input, a
sum-addressed memory takes two inputs that it adds and then decodes for
use as an address [15]. A performance benefit exists because the addition
of the two address-operands does not involve any carry-propagation.

For low-precision moduli, the two multiplier designs just described
are probably quite reasonable. But given that the sizes of the required
ROMs increase exponentially, relative to an increase in the precisions of
the operands, such multipliers may not be suitable for large moduli. For
large moduli, combinational-logic multipliers, or multipliers that use largely
combinational logic (with, perhaps, a small amount of ROM), are probably
better. We discuss these next.

5.3.2 Modular reduction of partial products

A second class of modular multipliers consists of those in which each partial
product is reduced modulo m before being added to any other. The basis
of such implementations is the equality (Equation 2.1)

|X + Y |m = | |X|m + |Y |m |m

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

166 Residue Number Systems: Theory and Implementation

This equality may be implemented directly or indirectly. In the former case,
each level of the multiplier is a modulo-m carry-save adder [9]. Such an
adder is necessarily more complex than a normal carry-save adder, as it has
to include a correction term of 0, or −m, or −2m, according to the result
of the initial carry-save addition of two partial products. For example, in
the design proposed in [9], the modulo-m carry-save adder consists of five
levels of conventional carry-save adders, with intermediary multiplexers to
select the correction terms.

MUX

MUX

FA FA

FA FA

FAFA

FA

0

0

0

FA

0 2
n
-m

MUX
FAFA

0

0 2
n
-m

FAFA

Sn-1Cn-1
S1 C1 S0 C0

0

FA

Yn-1,c Yc,1 Yc,0
2
n
-m 2 (2

n
-m)0

Y1,s

X1,c

X1,s

Xn-1,s

Xn-1,c

Xn-1,s

Y0,s

X0,c

X0,s

FA

FA

Figure 5.22: Modulo-m carry-save adder

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 167

The design is shown in Figure 5.22, in which ∗s/c,i denotes bit i of the
partial-sum or partial-carry corresponding to operand ∗. It is evidently
at least five times as costly and eight times as slow as a corresponding
level in a conventional multiplier. Nevertheless, it is worth noting that
the timing factor can be slightly improved upon: the designers basically
implement a 4:2 compressor as a pair of 3:2 compressors in series, but a
4:2 compressor can be implemented in such a way that both the cost and
operational delay are less than those for two 3:2 compressors in series [10].
Using the modulo-m carry-save adders, the partial products are summed
up in a binary tree whose outputs are a partial-sum and a partial-carry
that are then assimilated in a carry-propagate adder. Note that the tree
here is much deeper than a Wallace tree in a conventional multiplier. In
the proposed design, Booth recoding is not used, although it can be, and
so for n-bit operands the partial-product generator simply consists of n2

AND gates that produce the n2 bits of the partial products.

5 = 0 0 1 0 1 (A)

11 = 0 1 0 1 1

0 0 1 0 1

0 0 1 0 1

0 0 0 0 0

0 0 1 0 1

0 0 0 0 0

55 = 0 0 0 1 1 0 1 1 1

20 ×A× 1

21 ×A× 1

22 ×A× 0

23 ×A× 1

24 ×A× 0

Figure 5.23: Paper-and-pencil binary multiplication

In the design just described, each partial product is taken individually
and reduced modulo m before being added to another partial product; that
is, there are n operands to be added. A different way to proceed is as
follows. Consider the paper-and-pencil example of binary multiplication
shown in Figure 5.23. If the bits to be added are taken column-wise, then
there are 2n operands to be added (corresponding to the 2n bits of the
final result), and these are of precisions 1, 2, 3, . . . n− 1, n, n− 1, . . . , 3, 2, 1
bits. Each of these 2n operands may be reduced modulo m and all reduced

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

168 Residue Number Systems: Theory and Implementation

column-sums then added up in a tree of carry-save adders and one carry-
propagate adder. A design that does exactly this is described in [14] and
shown in Figure 5.24.

The first stage of the multiplier, the partial-product generator, consists
of just an array of AND gates, but here too Booth recoding is readily
applicable. The next stage of the modular multiplier consists of encoders,
each of which takes the bits corresponding to a column and produces a count
of the number of 1s in the column, since it is only these that constitute the
column-sums. (Note the simplification in design relative to that of a similar
a conventional multiplier.) The third stage of the multiplier consists of a
series of ROMs, each of which takes a column-sum and reduces it modulo
m. An addition tree then completes the multiplication process; the tree
suggested by the designers is that in [11].

n

2

n

n

m

11

11 2

2

2

2

nn n nn n

[n-1]n-1 n

n
[logn][logn]

n

Figure 5.24: Modulo-m multiplier with combinational logic and ROM

One point worth noting about this last multiplier is that the direct
column-wise addition is only one of a variety of ways to add up partial
products. If one simply starts with the viewpoint that there are only so

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 169

many partial product bit, and that these may be added in any order, as
long as the relative significance of the bits is maintained, then several other
arrangements are possible. For conventional multipliers, this yields different
CSA-tree organizations [5, 6, 12], any one of which may be substituted for
that of Figure 5.24.

5.3.3 Product partitioning

Probably the most direct way to perform the modular multiplication |AB|m
consists, in principle, of a normal unsigned multiplication of A and B fol-
lowed by a modulo-m reduction of that product. For high performance,
the multiplier may be implemented as a tree of carry-save adders (e.g. a
Wallace tree or some other structure) and one carry-propagate adder. Ap-
propriate performance-enhancing techniques, such as Booth recoding, may
also be used. The high-level design of such a modular multiplier is shown
in Figure 5.25. Evidently, some savings in time and cost are possible if the
assimilation carry-propagate adder is incorporated into the final modular-
reduction logic.

m

n

2n

n n

Figure 5.25: Simple combinational modulo-m multiplier

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

170 Residue Number Systems: Theory and Implementation

The key issue in such a design is how to reduce the base-product, AB, to
the modulo-m product, |AB|m. This can be done by implementing, directly
or indirectly, the result in Chapter 2 which states that to compute |X|m,
given X, we may partition X into two or more (weighted) pieces and add
these in one or more modulo-m adders.

Suppose A,B and m are each represented in n bits and n is as small as
possible; that is, n = 1+blog2 mc. Then AB is 2n bits wide, and m = 2n−c,
where 1 ≤ c < 2n − 1. If we split AB into an upper half, U , and a lower
half, L, then

|AB|m = |2nU + L|m
= | |2nU |m + |L|m |m
= |cU + L|m since |2n|m = c and L < m

m

2n

n

n

n

cU
AB

Figure 5.26: Partitioned-operand modulo-m multiplier

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 171

Application of this last equation requires another multiplication, but,
given that c will generally be small, this operation need not be costly.7

Thus, corresponding to Figure 5.25, we now have Figure 5.26.
The partitioning above may be extended to even more pieces. A four-

piece design is given in [4]. There, AB is partitioned into fours parts: W ,
of k + 1 bits; Z, of n− (k + 1) bits; Y , of 1 bit; and X of n− 1 bits, such
that

P
4
= AB = 22n−(k+1)W + 2nZ + 2n−1Y + X

where k is the minimal number of bits required to represent c, and c =
2n −m; that is, k = 1 + blog2 cc. So

|AB|m =
∣∣∣
∣∣∣22n−(k+1)W + 2nZ + 2n−1Y + X

∣∣∣
∣∣∣
m

=
∣∣∣
∣∣∣22n−(k+1)W + 2n−1Y

∣∣∣
m

+ |2nZ|m + |X|m
∣∣∣
m

Since 2n = m+ c, we have |2n|m = c and |2nZ|m = cZ. And, since X < m,
because X is represented in n − 1 bits and m is represented in n bits,
|X|m = X. So

|AB|m =
∣∣∣
∣∣∣22n−(k+1)W + 2n−1Y

∣∣∣
m

+ cZ + X
∣∣∣
m

Example. Suppose A = 2005 = 0111110101012, B = 3212 =
1100100011002, and m = 4091. Then n = 12, c = 5, and k = 3. The
product AB = 011000100100010001111100, and

X = 100011111002 = 1148

Y = 0

Z = 36

cZ = 180

X + cZ = 1328∣∣∣22n−(k+1)W + 2n−1Y
∣∣∣
m

= 3589

|AB|m = |1328 + 3589|4091
= 826

7The choice of c is obviously important. For example, if c is a power of two, then the
multiplication is just a left-shift. The best cases are c = −1 and c = 1, which yield the
usual special moduli and reduce the entire operation to a single modular subtraction or
addition.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

172 Residue Number Systems: Theory and Implementation

end example.

The computation of
∣∣ ∣∣22n−(k+1)W + 2n−1Y

∣∣
m

+ cZ + X
∣∣
m

is carried
out as follows. Let e be the value of

∣∣22n−(k+1)W + 2n−1Y
∣∣
m

, and suppose
that this value is readily available. (The value of k will be small, so the
values of e may easily be computed by a small combinational circuit or
pre-computed and held in a ROM.)

A B

m

n n

m Cout

n - 1

n - 1n - 1

k

c

1k + 1

Z Y

n-1-k

Cout

W X

cZ
n e

Figure 5.27: Modulo-m product-partitioning multiplier with ROM

The value of e is then added to that of cZ +X. Now, cZ +X < m, since X

is represented in n− 1 bits and therefore has a maximum possible value of
2n−1−1, Z is represented in n−(k+1) bits and so has a maximum possible
value of 2n−(k+1)− 1, and c is represented in k bits and so has a maximum
possible value of 2k − 1. Since e < m (by definition), e + cZ + X < 2m.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 173

Therefore, after the addition of e to cZ+X, at most a single subtraction, of
m, will be required to correct the result. In the proposed implementation,
it is not convenient to first detect when the modulus has been exceeded
and then subtract. Instead, it works slightly better to initially subtract m

and then add it back if the resulting value of e + cZ + X −m is negative.
Thus the aforementioned ROM/combinational-circuit produces the values
of e−m instead of those of e.

A complete design of the modular multiplier just described is shown
in Figure 5.27. The values of e − m are negative and are stored in two’s
complement form. The first multiplier computes the product AB, and the
second one computes cZ; both may use any of the high-speed multiplication
techniques described in Section 5.1. A carry-save adder is used to reduce
the three operands e−m, cZ, and X to two; and a carry-propagate adder
then assimilates the resulting partial-sum and partial-carry. If the result
of this assimilation is negative—and this is indicated by the absence of a
carry out of the adder—them m is added back in another carry-propagate
adder. Both carry-propagate adders may be of any of the high-performance
designs described in Chapter 4. The designs can be modified for higher
performance, by having both possible results computed concurrently and
one then selected through a multiplexer.

5.3.4 Multiplication by reciprocal of modulus

In principle, modular multiplication can readily be performed by multiply-
ing the two operands, dividing the product by the modulus, and taking
as the result of the modular multiplication the remainder from that divi-
sion. For conventional division there are several algorithms in which the
operation is performed by multiplying the dividend by the reciprocal of the
divisor. The most well-known of these is based on the Newton-Raphson
procedure for finding the roots of non-linear equations (see Section 5.2.2).
In the application of this procedure to division, the non-linear function is
f(x) = D − 1/x, where D is the divisor. The process is generally iterative
and requires a starting approximation to the root. In other common vari-
ants, the division N/D consists of repeatedly multiplying N by Ri, where
Ri are progressively accurate approximations of 1/D. In either case, a
starting approximation, R0, to the root is required. For conventional divi-
sion, the divisor is variable and, therefore, so is its approximate reciprocal,
which is usually obtained through a combination of table look-up and com-
binational logic. Furthermore, the number of iterations ultimately required

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

174 Residue Number Systems: Theory and Implementation

depends on the accuracy of R0—if it is sufficiently accurate, then a single
multiplication is all that is needed—but high accuracy entails high cost.
In the case at hand, however, this is not problematic because the divisor,
which is the modulus, m, is constant and may therefore be held in a single
register or, if it is fixed, even hardwired into the rest of the logic. We next
describe modular multiplication based on this approach [3]. |AB|m is com-
puted by first computing the quotient Q = bAB/mc, forming the product
Qm, and then subtracting that from AB:

|AB|m = AB −mQ

Proceeding directly, it might appear that Q can be computed by first
computing the reciprocal 1/m, multiplying that by AB, and then truncating
the result. This would be straightforward, but one difficulty is immediately
apparent: in general, 1/m cannot be represented exactly (because of the
finite precision of the computer hardware), which implies that there will
be some error in the (supposed) computed value of 1/m and therefore in
AB/m as well. Thus, instead of Q being computed, the end result will
instead be an approximation, Qa. Nevertheless, if Qa is computed with
enough precision, then Qa and Q need not differ by more than unity, which
leads to two cases: if Qa = Q, then the computed result, AB − mQa

is |AB|m; otherwise, a correction, by an additional subtraction of m, is
necessary. We next show that if A and B are each represented in n bits
and 1/m is approximated with a precision of at least 2n bits, then either
Qa = Q or Qa = Q− 1.

Let r be a k-bit computed approximation to 1/m. Then for the bounds
for the absolute error in r are 8

0 ≤ 1
m
− r < 2−k

and the error in the division (i.e. multiplication by AB) has the bounds

0 ≤ AB

m
− rAB < 2−kAB

Since A and B are each represented in n bits, A < 2n, B < 2n, and AB <

22n. Therefore, 2−kAB < 22n−k. If the upper bound in the error, ε, is to
8The upper bound is the maximum absolute error in the last bit on the representation

of r: in the worst case, a representation 0·r1r2 · · · rk111 · · · 1 is truncated to 0·r1r2 · · · rk.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 175

be constrained so as not to exceed unity, then we must have 22n−k ≤ 1,
which implies that k ≥ 2n. We shall therefore take k = 2n.

We now show how to compute the desired value, Q = bAB/mc. Let
Qa denote the approximation brABc, ε denote the error value 2−kAB, and
F (x) denote the fractional part of x. From the above, we have

rAB ≤ AB

m
< rAB + 2−kAB

So

Q =
⌊

AB

m

⌋

= bQa + F (rAB) + εc
= Qa + bF (rAB) + εc
4
= Qa + εa

Given that ε ≤ 1 and F (rAB) < 1, it follows that 0 ≤ εa < 2; that is,
εa = 0 or εa = 1. We may therefore compute |AB|m as follows.

|AB|m = AB −mQ

= AB −m

⌊
AB

m

⌋

= AB −m(Qa + εa)

= AB −mQa + εam

The value of εa depends on whether Q = Qa or Q = Qa + 1, and this
can be determined from the value of AB − mQa. If the latter value is
negative, then Q = Qa and εa = 0; otherwise εa = 1. In the latter case,
m must be subtracted from the computed value, AB − mQa, to get the
correct result. In the implementation, this may be effected by concurrently
computing AB−mQa and (AB−mQa)−m and then selecting one of the
two, according to the sign of the latter.

Example. Suppose m = 13, A = 11 = 10112, and B = 12 = 11002. Then
AB = 100001002, and k = 8. 1/B truncated to eight fractional bits is
0 · 00010011. From which we get

Qa = 01001

εa = 1

|AB|m = 10000100− (1001× 1101)− (1× 1101)

= 0010

= 2

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

176 Residue Number Systems: Theory and Implementation

So |11× 12|13 = 2.
end example

The design of the modular multiplier is as shown in Figure 5.28. The
first multiplier computes AB. The second multiplier computes Qa, the
integer approximation to the quotient, as the product of AB and (the ap-
proximation to) 1/m. (This is the nominal “Newton-Raphson” phase.) And
the third multiplier computes mQa. All that remains then is the subtrac-
tion (which is also an addition) to get the reminder of the division; that is,
the computation of AB −mQa. Since the computation of Qa is not exact,
and AB−mQa can be too large by m, the two adders compute AB−mQa

and (AB−mQa)−m, one of which is then selected as the result, according
to the sign of the latter. In design of [3], all three multipliers are full multi-
pliers, which means that if they are high-speed ones, then each consists of
rows of carry-save adders and a carry-propagate adder, with the two adders
being full carry-propagate adders. Therefore, most of the operational delay
will be due to the carry-propagate adders. To speed up the process, all of
the carry-propagate adders in the multipliers can be eliminated, the inter-
mediate result left in carry-save form, and final assimilation of partial-carry
and partial-sum done in the last two adders. The extra cost is an increase
in the numbers of some of the interconnections and another level of carry-
save adders in each multiplier. We leave it to the diligent reader to work
out the details.

5.3.5 Subtractive division

Another straightforward design for a hardware unit to compute |AB|m from
A, B and m, would be one that consists of the use one of the multipliers
described in Section 5.1 to compute AB, use one of the dividers of Section
5.2 to divide AB by m, and then take the remainder from that division. But
there is an evident similarity between the multiplier of Figure 5.3 and the
divider of Figure 5.16, as well as between the multiplier of Figure 5.10 and
the divider of Figure 5.18. These similarities suggest that the multiplication
and the division can be carried out in a single unit.

In multiplication a partial product may be reduced, relative to the mod-
ulus, before being added to another (Equation 2.1). In the corresponding
step in subtractive division, a multiple of the divisor (which in this case
is the modulus) is subtracted. We may therefore have a combined unit in
which each cycle consists of the formation of a multiplicand-multiple fol-

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 177

lowed by the subtraction of a divisor-multiple. Thus each carry-save adder
in the corresponding multiplier or divider gets replaced With two carry-save
adders—one for the addition and one for the subtraction.

Adder

A B

| A B |m

MUX

Adder

Multiplier

Multiplier

Multiplier

n n

2n

n-1
n+1

n+1Qa = rAB n+1

- m

n+1

n+1
–mQa

AB – mQa

AB – mQa AB – mQ a– m

r

Figure 5.28: Modulo-m reciprocal multiplier

5.4 Modular multiplication: modulus 2n − 1

Multiplication modulo-(2n − 1) can be carried out easily by reducing each
partial product as it is generated and added. Since the additions of par-

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

178 Residue Number Systems: Theory and Implementation

tial products will normally be done in carry-save adders, and the final
partial-carry and partial-sum from these adders have to be assimilated in
a carry-propagate adder, the final reduction may be realized by making
the assimilating adder a modulo-(2n − 1) carry-propagate adder. We next
describe an algorithm for modulo-(2n − 1) multiplication and then discuss
various possible implementations. We shall initially assume straightfor-
ward multiplication; that is, that no speed-up techniques, such as Booth’s
Algorithm, are used.

The modular product |AB|2n−1 nominally consists of modulo-(2n − 1)
sum of n partial products, each of which is ABi shifted left by i bits (i.e.
multiplied by 2i), where Bi is the ith bit of B:

|AB|2n−1 =

∣∣∣∣∣
n−1∑

i=0

2iABi

∣∣∣∣∣
2n−1

4
=

n−1∑

i=0

P (i)

And the ith partial product, P (i), is

P (i) =

∣∣∣∣∣∣
2i

n−1∑

j=0

P
(i)
j 2j

∣∣∣∣∣∣
2n−1

=

∣∣∣∣∣∣
2i

n−1∑

j=0

AjBi2j

∣∣∣∣∣∣
2n−1

=
∣∣2iBi(An−12n−1 + An−22n−2 + · · ·A020)

∣∣
2n−1

=
∣∣2i−1An−1Bi2n + 2i−2An−2Bi2n + · · ·+ An−iBi2n + 2n−1An−i−1Bi

+2n−2An−i−2Bi + · · ·+ 2iA0Bi

∣∣
2n−1

=
∣∣∣
∣∣2i−1An−1Bi2n

∣∣
2n−1

+
∣∣2i−2An−2Bi2n

∣∣
2n−1

+ · · ·+ |An−iBi2n|2n−1

+
∣∣2n−1An−i−1Bi

∣∣
2n−1

+
∣∣2n−2An−i−2Bi

∣∣
2n−1

+ · · ·
+

∣∣2iA0Bi

∣∣
2n−1

∣∣∣
2n−1

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 179

Now |2n|2n−1 = 1. Also, for each term, 2kAj , above, we have
|2kAjBi|2n−1 = 2kAjBi, since AjBi is 0 or 1 and 2k < 2n − 1. So

P (i) =
∣∣2i−1An−1Bi + 2i−2An−2Bi + · · ·+ An−iBi+

2n−1An−i−1Bi + 2n−2An−i−2Bi + · · ·+ 2iA0Bi

∣∣
2n−1

=
∣∣2n−1An−i−1Bi + 2n−2An−i−2Bi + · · ·+ 2iA0Bi + 2i−1An−1Bi+

2i−2An−2Bi + · · ·+ An−iBi

∣∣
2n−1

=
∣∣(2n−1An−i−1 + 2n−2An−i−2 + · · ·+ 2iA0 + 2i−1An−1 + 2i−2An−2

+ · · ·+ An−i)Bi|2n−1

The expression by which Bi is multiplied is the numerical value represented
by the binary pattern An−i−1An−i−2 · · ·A0An−1An−2 · · ·An−i, which is
just the result of an i-bit cyclic shift of the representation of A. Since
A < 2n − 1, there must be some k for which Ak = 0. Therefore, the value
of the expression must also be less than 2n − 1 and so

P (i) = 2n−1An−i−1Bi + 2n−2An−i−2Bi + · · ·+ 2iA0Bi2i−1An−1Bi +

2i−1An−2Bi + · · ·+ An−iBi

(One may here view the formation of the partial products as a sequence of
cyclic convolutions [2], but, it is not a view that is particularly enlightening.)
Figure 5.29 shows an example of a modulo-(2n − 1) multiplication. Note
that adding the end-around-carries do not involve any extra additions: each
such carry is simply the carry-in to the adder at that level, as shown in
Figure 5.30. The most noteworthy aspect of this example is compaction
of the partial-product array—it is now of size n × n, in contrast with the
n× 2n of a conventional array. A corresponding multiplier-design is shown
in Figure 5.30.

The method just described for binary multiplication modulo-(2n − 1)
is easily extensible to higher radices, either by the use of Booth recoding
(Table 5.3) or by the use of high-radix digits. In the latter case, it is
convenient to select a radix that is a power of two; then the conversion
between binary and larger radices is simply a matter of grouping bits of the
operands.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

180 Residue Number Systems: Theory and Implementation

14 x 13 (mod 15) = 2

1110

1101

1110

0000

1110

1011

1001
1

1010

0111

0001

1

0010

(14)

(13)

P
(0)

P
(1)

P
(2)

End-Around-Carry

P
(3)

(2)

End-Around-Carry

Figure 5.29: Example multiplication modulo 2n − 1 (n = 5)

A high-radix modulo-(2n − 1) multiplier of the latter type has been
proposed in [2]. We briefly describe the basic principles involved in that
design. Suppose the chosen radix is 2k, where n = km for some m. Then
the n-bit operands A and B are each partitioned into m, k-bit, blocks,
Am−1,Am−2, . . . ,A0 and Bm−1,Bm−2, . . . ,B0, such that

A = A0 + A12k + A2k
2 + · · ·+ am−12(m−1)k

B = B0 + B12k + B2k
2 + · · ·+ bm−12(m−1)k

Then

|AB|2n−1 =

∣∣∣∣∣∣

m−1∑

i=0


2ikBi

m−1∑

j=0

2jkAj




∣∣∣∣∣∣
2n−1

4
=

m−1∑

i=0

P (i)

and a similar partial-product reduction process to that above for the radix-2
algorithm yields similar results here for radix 2k:

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 181

P0P1P2P3P4

FA
C S

FA
C S

FA
C S

FA
C S

FA FA FA FAFA

Modulo- (2
n
-1) Adder

FA FA FA FAFA

FA
C S

Figure 5.30: Parallel modulo-(2n − 1) multiplier

P (i) =
∣∣∣2ikBi

(
A0 + A12k + a222k + · · ·+ Am−i−12(m−i−1)k + Am−i2(m−i)k

+Am−i+12k + · · ·+ Am−22(m−2)k + Am−12(m−1)k
)∣∣∣

2n−1

=
∣∣∣Bi

(
A02ik + A12(i+1)k + a22(i+2)k + · · ·+ Am−i−12(m−1)k + Am−i2mk

+Am−i+12(m+1)k + · · ·+ Am−22(m+i−2)k + Am−12(m+i−1)k
)∣∣∣

2n−1

=
∣∣∣Bi

(
A02ik + A12(i+1)k + A22(i+2)k + · · ·+ Am−i−12(m−1)k

+Am−i + Am−i+12k + · · ·+ Am−22(i−2)k + Am−12(i−1)k
)∣∣∣

2n−1

=
∣∣∣Bi

(
Am−i−12(m−1)k + · · ·+ a12(i+1)k + A02ik + Am−12(i−1)k

+Am−22(i−2)k + · · ·+ Am−i

)∣∣∣
2n−1

Once again, we see that the ith partial product is formed by multiplying
the result of an i-digit (i.e a ki-bit) cyclic shift of the multiplicand—from
Am−1Am−2 · · ·Am−i · · ·A0 to Am−i−1 · · ·A1A0 Am−1am−2 · · ·Am−i—
with a digit of the multiplier.

Assuming a parallel multiplication structure, once the partial products
have been formed, a direct way to obtain the final product is through addi-

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

182 Residue Number Systems: Theory and Implementation

tions in a tree of modulo-(2n−1) adders. Of course, a tree of appropriately
connected carry-save adders, together with a final carry-propagate adder,
may be used instead. Either way, there is little advantage to be gained
over a Booth-recoded version of the binary multiplier of Figure 5.30. the
other extreme, all the multiplications and additions of Figure 5.32 may be
realized through ROMS, in which case there is the issue of ROM size to
consider, or as a mixture of combinational-logic and ROM. In [2], however,
the authors propose a rather different approach, based on the fact that
each column-sum in the partial-product array can be computed using only
squaring (rather than full multiplications) and additions/subtractions. We
show this through a small example.

Suppose each of the operands, A and B, has been split into two k-bit
digits— A1A0 and B1B0. Then the partial products are A1B02k +A0B0

and A0B12k + A1B1, and the column sums, Pi, are

P0 = A0B0 + A1B1

P1 = A1B0 + A0B1

(Note that the column sums must be added, with appropriate significance-
shifting, and then reduced modulo 2n−1 to get the final result; that is, the
final result is |P12k + P0|2n−1.) Now define

a = A0 + A1 + b0 + B1

b = A0 + A1 − b0 −B1

c = A0 −A1 + b0 −B1

d = A0 −A1 − b0 + B1

Then

P0 =
(
a2 − b2 + c2 − d2

)
/8

P1 = a2 − b2 − c2 + d2/8

(where the division by 8 is not a real division). The corresponding hardware
structure is shown in Figure 5.31. In [2], it is proposed that ROMs be used
for the squaring operations, but there is no indication of how the final result
is to be computed from the Pis. The best structure for the later is evidently
a carry-save tree, as we have assumed in Figure 5.30.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 183

ADD SUB

Mod 2
n
-1 CPA

A0 A1 B0 B1 A0 A1 B0 B1

ADD ADD SUB

ADD SUB ADD SUB

sub

a b c d

SQ

SUB SUB

a
2

b
2

SQ SQ - SQ

d
2c

2

P

3 bit right shift 3 bit right shift

P0 P1

Figure 5.31: High-radix modulo-2n − 1 multiplier

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

184 Residue Number Systems: Theory and Implementation

Table 5.3: Radix-4 Booth recoding table for modulo-(2n − 1) multiplier

B2i+1,2i B2i−1 Partial Product
00 0 +0 00 · · · 000 · · · 0
00 1 +B Bn−2i−1Bn−2i−1 · · ·B0Bn−1 · · ·Bn−2i

01 0 +B Bn−2i−1Bn−2i−1 · · ·B0Bn−1 · · ·Bn−2i

01 1 +2B Bn−2i−2Bn−2i−1 · · ·B0Bn−1 · · ·Bn−2i−1

10 0 −2B Bn−2i−2Bn−2i−1 · · ·B0Bn−1 · · ·Bn−2i−1

10 1 −B Bn−2i−1Bn−2i−1 · · ·B0Bn−1 · · ·Bn−2i

11 1 −B Bn−2i−1Bn−2i−1 · · ·B0Bn−1 · · ·Bn−2i

11 1 −0 00 · · · 000 · · · 0

It is straightforward, but quite tedious, to apply the procedure above
to partitions of more than two digits. In general, if a, b, c and d are defined
as

a = A0 + A1 + · · ·+ Am−1 + B0 + B1 + · · ·+ Bm−1

b = A0 + A1 + · · ·+ Am−1 −B0 + B1 − · · · −Bm−1

c = A0 −A1 + · · · −Am−1 + B0 −B1 + · · · −Bm−1

c = A0 −A1 + · · · −Am−1 −B0 + B1 − · · ·+ Bm−1

then

a2 − b2 + c2 − d2 = P0 + P2 + P4 + · · ·+ Pm−2

a2 − b2 − c2 + d2 = P1 + P3 + P5 + · · ·+ Pm−1

and from these last two equations and the basic definitions of the Pis, ex-
pressions can be obtained for each Pi as a sum of squares of terms involving
just the digits of A and B. The hardware structure for the computation
of the Pi is then similar to that of Figure 5.31, and a tree of carry-save
adders and an assimilating carry-propagate adder, is then appended to fi-
nally compute

∣∣2(m−1)kPm−1 + 2(m−2)kPm−2 + · · ·+ P0

∣∣
2n−1

.
Nevertheless, as indicated above, the performance of the resulting high-

radix structure is unlikely to be better than the more direct radix-2 ap-
proach combined with Booth recoding. In particular, it will be noted that
all the adders used in the computation of the P s will be carry-propagate
adders. Furthermore, there is little that can be done to improve this: parti-
tioning the operands into fewer digits results in wider and slower adders, and
more digits simply increases the depth of the computation tree. Some minor

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 185

improvements are possible though: for example, the adders just before the
ROMs can be eliminated by implementing the ROMs as sum-addressable
memories [15].

5.5 Modular multiplication: modulus 2n + 1

Multiplication modulo 2n + 1 is especially important, given its applica-
tion in cryptography and other areas, but it is considerably more difficult
than multiplication modulo (2n − 1). In what follows we shall discuss one
approach that is among the best of the existing ones.

Given two operands, A and B, the modulo-(2n + 1) product is given by

|AB|2n+1 =

∣∣∣∣∣
n−1∑

i=0

2iBiA

∣∣∣∣∣
2n+1

4
=

∣∣∣∣∣
n−1∑

i=0

P (i)

∣∣∣∣∣
2n+1

Each partial product, P (i) 4
= 2iABi, is nominally represented in 2n bits,

and we may therefore split (the representation of)9 2iA, which is
n−i 0s︷ ︸︸ ︷
00 · · · 0 An−1An−2 · · ·A0

i 0s︷ ︸︸ ︷
00 · · · 0

into two n-bit pieces U and L:

L = An−i−1An−i−2 · · ·A0

i 0s︷ ︸︸ ︷
00 · · · 0

U =

n−i 0s︷ ︸︸ ︷
00 · · · 0 An−1An−2 · · ·Ai

Then 2iA = 2nU + L, and so

P (i) = | |Bi2nU |2n+1 + |BiL|2n+1 |2n+1

= | |BiL|2n+1 − |BiU |2n+1 |2n+1

= |BiL−BiU |2n+1

since |2n|2n+1 = −1, L and U are each represented in n bits, and Bi is
0 or 1 (i.e BiL < 2n and BiU < 2n).
9We remind the reader that for ease of presentation, we do not always make a distinction

between a number and its representation.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

186 Residue Number Systems: Theory and Implementation

Now, from Section 1.1, the numeric value, U , of the 1s complement of
a number U is

U = 2n − 1− U (5.2)

so

|−U |2n+1 =
∣∣−2n + 1 + U

∣∣
2n+1

=
∣∣−(2n + 1) + 2 + U

∣∣
2n+1

=
∣∣2 + U

∣∣
2n+1

= U + 2

Therefore

P (i) = |Bi(L− U)|2n+1∣∣Bi(L + U + 2)
∣∣
2n+1

= |Bi(An−i−1An−i−2 · · ·A0

i 0s︷ ︸︸ ︷
00 · · · 0 +

n−i 1s︷ ︸︸ ︷
11 · · · 1 An−1An−2 · · ·An−i

+102)|2n+1

This expression can then be simplified through further algebraic manipula-
tion involving certain terms, of value zero, introduced for just that purpose
[16]:

P (i) = |Bi · (An−i−1An−i−2 · · ·A0

i 0s︷ ︸︸ ︷
00 · · · 0+

n−i 1︷ ︸︸ ︷
11 · · · 1 An−1An−2 · · ·An−i

102)Bi(−00 · · · 02)|2n+1

= |Bi(An−i−1An−i−2 · · ·A000 · · · 0 + 11 · · · 1An−1An−2 · · ·An−i + 102)

+Bi(11 · · · 1 + 102)|2n+1

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 187

= |Bi(An−i−1An−i−2 · · ·A000 · · · 0 + 11 · · · 1An−1An−2 · · ·An−i + 102)

+Bi(00 · · · 011 · · · 1 + 11 · · · 100 · · · 0 + 102)|2n+1

= |Bi(An−i−1An−i−2 · · ·A000 · · · 0 + 00 · · · 0An−1An−2 · · ·An−i)

+Bi(00 · · · 011 · · · 1) + (Bi + Bi)(11 · · · 100 · · · 0 + 1)|2n+1

= |Bi(An−i−1An−i−2 · · ·A0An−1An−2 · · ·An−i) +

Bi(00 · · · 011 · · · 1 + 1)(11 · · · 100 · · · 0 + 1)|2n+1

Now the numerical value represented by the binary

n−i 1s︷ ︸︸ ︷
11 · · · 1

i 0s︷ ︸︸ ︷
00 · · · 0+1 is

n−1∑

j=i

2i + 1 = 2n − 2i + 1

So ∣∣∣∣∣
n−1∑

i=1

(
2i + 1

)
∣∣∣∣∣
2n+1

=
∣∣(2n + 1)− 2i

∣∣
2n+1

= −2i

and over the n partial products

n−1∑

i=0




n−i 1s︷ ︸︸ ︷
11 · · · 1

i 0s︷ ︸︸ ︷
00 · · · 0+1


 =

∣∣∣∣∣
n−1∑

i=0

−2i

∣∣∣∣∣
2n+1

= |n(2n + 1)− (2n + 1) + 2|2n+1

= 2

Therefore it is sufficient to modify the partial products to

P (i) =
∣∣Bi · (An−i−1An−i−2 · · ·A0An−1An−2 · · ·An−i)

+Bi · (00 · · · 011 · · · 1 + 1)
∣∣
2n+1

with a 2 added in at the end. The design of the corresponding n-bit modulo-
(2n + 1) carry-save adder is obtained by taking a normal carry-save adder
and adding the inverse of the carry-out as a carry-in. This follows from
the following reasoning. From the last expression for P (i), each carry-save
adder needs to add in a 1. Also the two operands, X and Y , that are
input to the carry-save adder, and their sum, S, will satisfy the conditions
0 < X < 2n, 0 < Y < 2n, and 0 < S < 2n+1. (What we need to compute

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

188 Residue Number Systems: Theory and Implementation

is S + 1.) If 0 < S < 2n, then there is no carry-out, and the result is in
the right range. Otherwise, i.e. if S ≥ 2n, then there is a carry-out. In the
latter case, S = 2n + c, where 0 < c < 2n; so there is a carry-out and c is
represented by the remaining n bits. Here

|S + 1|2n+1 = |(2n + 1) + c|2n+1

= c

n

n

Figure 5.32: Parallel modulo 2n + 1 multiplier

So if there is a carry-out, Cout, then no further action is required: the
result is already S + 1. But if there is no carry-out then a 1 must be
added to obtain S + 1. Because the multiplier array has several levels, the
addition may be accomplished by adding Cout from one carry-save adder
as Cin to the carry-save adder at the next level. The 1 from the last level
of carry-save addition is added in the final, assimilating modulo-(2n + 1)
carry-propagate adder.

Lastly, the value 2n, which is represented by 00 · · · 0 requires special
handling. Suppose A is 2n but B is not. Then

|AB|2n+1 = |2nB|2n+1

= |−B|2n+1

=
∣∣B + 2

∣∣
2n+1

By Equation 5.1

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 189

Similarly, if B is 2n but A is not, then |AB|2n+1 = |A+2|2n+1. And if both
are equal to 2n, then |AB|2n+1 = 1. Since the assimilating carry-propagate
adder adds in a 1 (Cin above), in this case the inputs to the adder that are
required to get the correct results (i.e. B + 2, or A + 2, or 1) are B + 1, or
A + 1, or 0. In 〈partial-carry, partial-sum form〉 these are (B, 1), or (A, 1),
or (0, 0). The final design of the multiplier is therefore as shown in Figure
5.32.

Booth recoding can be used in the modulo-(2n + 1) multiplier, but its
application here is untidy in that a correction, T , that depends on the
multiplier-operand, must now be added and the constant 2 above replaced
with 1.

Table 5.4: Radix-4 Booth recoding table for modulo-(2n + 1) multiplier

B2i+1,2i B2i−1 Partial Product
00 0 +0 00 · · · 011 · · · 1
00 1 +B Bn−2i−1Bn−2i−1 · · ·B0Bn−1 · · ·Bn−2i

01 0 +B Bn−2i−1Bn−2i−1 · · ·B0Bn−1 · · ·Bn−2i

01 1 +2B Bn−2i−2Bn−2i−1 · · ·B0Bn−1 · · ·Bn−2i−1

10 0 −2B Bn−2i−2Bn−2i−1 · · ·B0Bn−1 · · ·Bn−2i−1

10 1 −B Bn−2i−1Bn−2i−1 · · ·B0Bn−1 · · ·Bn−2i

11 1 −B Bn−2i−1Bn−2i−1 · · ·B0Bn−1 · · ·Bn−2i

11 1 −0 11 · · · 100 · · · 0

For 2-bit recoding, the bits of T are

T0 = B1B0Bn−1 + B1B0Bn−1 + B0Bn−1

T1 = B1 + B0Bn−1

T2i = B2i+1B2i + B2i+1B2i + B2iB2i−1

T2i+1 = B2i+1

The recoding table is then as shown in Table 5.4.
As indicated in Chapter 4, modulo-(2n +1) arithmetic is also sometimes

done indirectly, via diminished-one representations; this simplifies hardware
designs. We next show this for multiplication.

Let Ã denote the diminished-one representation of A; that is, Ã = A−1.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

190 Residue Number Systems: Theory and Implementation

Then

2̃X = X̃ + X

= 2X̃ + 1

and adding X to itself 2i − 1 times yields

2̃iX = 2iX̃ + 2i1

= 2i(X̃ + 1)− 1

Now, the product ÃB is just A added to itself B − 1 times, so

|ÃB|2n+1 =
∣∣∣Ã(B̃ + 1) + B̃

∣∣∣
2n+1

=

∣∣∣∣∣
n−1∑

i=0

2̃iA(B̃i + 1) +
n−1∑

i=0

2iB̃i

∣∣∣∣∣
2n+1

=

∣∣∣∣∣
n−1∑

i=1

B̃i(2iÃ + 2i − 1) + Ã(B̃0 + 1) +
n−1∑

i=0

2iB̃i

∣∣∣∣∣
2n+1

=

∣∣∣∣∣
n−1∑

i=1

2iÃB̃i +
n−1∑

i=1

2iB̃i + Ã(B̃0 + 1) + B̃0

∣∣∣∣∣
2n+1

To progress further, we note that since multiplication by 2i is an i-bit left
shift, the representation of 2iÃ is

Ãn−1Ãn−2 · · · Ãn−kÃn−i−1Ãn−i−2 · · · Ã0

i 0s︷ ︸︸ ︷
00 · · · 0

If we split this into two parts U , consisting of the most significant n bits,
and L, consisting of the least significant n− i bits, then
∣∣∣2iÃ + 2i − 1

∣∣∣
2n+1

=
∣∣2nU + L + 2i − 1

∣∣
2n+1

=
∣∣L + (2i − 1− U)

∣∣
2n+1

since |2nU |2n+1 = −U

= L + U

Therefore, the representation of 2iÃ is Ãn−i−1Ãn−i−2 · · · Ã0Ãn−1 Ãn−2 · · ·
Ãn−i, and it is obtained simply by k-bit left rotation with a complementa-
tion of the bits rotated out and around.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Multiplication 191

5.6 Summary

Implementations of modular multiplication are generally of one of two
types: those in which the primary operation is viewed as multiplication,
and the main task is to perform modular reductions of partial products
and their sums, and those that proceed directly from the definition of a
residue, and the main task is the modular reduction of a base product. In
latter case, the reduction is by the pseudo-division of a product by a modu-
lus, with the remainder taken as the sought value; in such implementations,
it is the essence of division algorithms that is employed, and an actual di-
vider is not realized. The many varieties of multipliers and dividers give
rise to a large number of possible implementations, and, as the case with all
RNS operations, designs are simpler and more efficient when the modulus
is not arbitrary.

References

(1) V. Paliouras, K. Karagianni, and T. Stouraitis. 2001. A low complex-
ity combinatorial RNS multiplier. IEEE Transactions on Circuits and
Systems–II , 48(7):6675–683.

(2) A. Skavantzos and P.B. Rao. 1992. New multipliers modulo 2N − 1.
IEEE Transactions on Computers, 41(8):957–961.

(3) G. Alia and E. Martinelli. 1991. A VLSI modulo m multiplier. IEEE
Transactions on Computers, 40(7):873–877.

(4) A. Hiasat. 2000. New efficient structure for a modular multiplier for
RNS. IEEE Transactions on Computers, 49(2):170–173.

(5) A. R. Omondi. 1993. Computer Arithmetic Systems. Prentice-Hall,
UK.

(6) B. Parhami. 2000. Computer Arithmetic. Oxford University Press,
UK.

(7) M. D. Ercegovac and T. Lang. 1987. On-the-fly conversion of redun-
dant into conventional representations. IEEE Transactions on Com-
puters, 36(7):895–897.

(8) R.K. Kolagotla, W.R. Griesbach, and H.R. Srinivas. 1998. VLSI
implementation of 350 MHz 0.35 micron 8-bit merged squarer. Elec-
tronics Letters, 34(1):47–48.

(9) K. M. Elleithy and M.A. Bayoumi. 1995 A systolic architecture for
modulo multiplication. IEEE Transactions on Circuits and Systems

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

192 Residue Number Systems: Theory and Implementation

– II , 42(11):725–729.
(10) N. Ohkubo et al. 1994. A 3.nns 54×54b multiplier using pass transis-

tor multiplexer. IEEE Journal of Solid-State Circuits:251-257.
(11) S. J. Piestrak. 1993. Design of residue generators and multi-operand

modular adders using carry-save adders. IEEE Transactions on Com-
puters, 43(1):68–77.

(12) M. J. Flynn and S. F. Oberman. 2001. Advanced Computer Arith-
metic. Wiley, New York.

(13) M. A. Soderstrand. 1983. A new hardware implementation of modulo
adders for residue number systems. In: Proceedings, 26th Midwest
Symposium on Circuits and Systems, pp 412–415.

(14) W. H. Jenkins and B. J. Leon. 1977. The use of residue number
systems in the design of finite impulse response filters. IEEE Trans-
actions on Circuits and Systems, CAS-24(4):191–201.

(15) W. Lynch et al. 1998. “Low load latency through sum-addressed
memory”. In: Proceedings, 25th International Symposium on Com-
puter Architecture, pp 369–379.

(16) R. Zimmerman. 1999 “Efficient VLSI implementation of modulo 2n±1
addition and multiplication”. In: Proceedings, 14th Symposium on
Computer Arithmetic, pp. 158–167.

(17) A. H. Hiasat. 2000. RNS arithmetic for large and small moduli. IEEE
Transactions on Circuits and Systems–II , 47(9):937–940.

(18) M. Dugdale. 1994. Residue multipliers using factored decomposition.
IEEE Transactions on Circuits and Systems–II , 41:623–627.

(19) D. Radhakrishnan and Y.Yuan. 1992. Novel approaches to the design
of VLSI RNS multipliers. IEEE Transactions on Circuits and Systems
– II , 39:52–57.

(20) G. A. Jullien. 1980. Implementation of multiplication modulo a prime
number, with applications to number theoretic transforms. IEEE
Transactions on Computers, C-29:899–905.

(21) D. Radhakrishnan and Y. Yuan. 1991. Fast and highly compact RNS
multipliers. International Journal of Electronics, 70(2):281–293.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Chapter 6

Comparison, overflow-detection,
sign-determination, scaling, and

division

After the last long two chapters, the reader will probably be grateful for
the slightness of this chapter. That slightness come about because, the op-
erations discussed in this chapter being rather problematic ones, most work
in RNS has been on applications that do not require these operations. The
fundamental operation here is magnitude-comparison: overflow-detection
and sign-determination are easily reduced to comparison, division requires
comparisons together with additions/subtractions or multiplications, and
scaling is division by a constant.

It should be noted that even RNS are restricted to applications in which
the predominant operations are additions and multiplications, it may not
be possible to completely do away with the problematic operations. In
particular, scaling is especially important: In many of the algorithms for
which RNS are particularly good, the most significant operation is the
computation of inner products, which computation consists of sequences
of multiply-and-add operations. It is therefore inevitable that in such pro-
cessing the word-lengths required to accommodate intermediate results will
grow, and, unless proper action is taken, overflow can occur. Values there-
fore need to be scaled to ensure that all computed results lie within the
proper dynamic range; for normal RNS, this means ensuring that a com-
puted result is the true result and not that result modulo the upper value
of the dynamic range. Such scaling may be applied to inputs (e.g. in Num-
ber Theoretic Transforms) or to intermediate results (e.g. in Fast Fourier
Transforms, Finite Impulse Response filters, etc.)

The chapter consists of a section on comparison, both exact and ap-
proximate, scaling (by base extension and through the use of the Core
Function), and division (subtractive and multiplicative).

193

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

194 Residue Number Systems: Theory and Implementation

6.1 Comparison

A straightforward way to compare two residue numbers is to reverse-convert
to a weighted representation and then carry out a conventional comparison.
This, however, is costly. Three types of techniques are discussed in what
follows. The first is approximate comparison, which is adequate for certain
types of division algorithms and which is therefore discussed in more detail
in Section 6.2. The second is the use of base extension, the basis of many
methods that have been proposed for exact comparison. And the third is
the use of the Core and Parity functions. In either case, there is getting
around the fact that some magnitude-information must be extracted from
the residue representations.

The Chinese Remainder Theorem (CRT), which relates a num-
ber, X, and its RNS representation, 〈x1, x2, . . . , xN , relative to moduli
m1, m2, . . . ,mN—that is, xi = |X|mi—is

X =

∣∣∣∣∣
N∑

i=1

wixi

∣∣∣∣∣
M

where M =
∏N

i=i mi and wi = Mi

∣∣M−1
i

∣∣
mi

, with Mi = M/mi and∣∣M−1
i

∣∣
mi

being the multiplicative inverse of Mi with respect to mi. An
“approximate” CRT may be obtained by dividing through by a constant.
If we divide through by M , then we have

X

M
=

∣∣∣∣∣
N∑

i=1

∣∣M−1
i

∣∣
mi

mi
xi

∣∣∣∣∣
1

(6.1)

The values of each summand will be in the interval [0, 1), and the final
result after the addition is obtained by discarding the integer part and
retaining the fractional part of the sum. The exact computation of Equation
6.1 is equivalent to reverse conversion and is likely to be quite costly in this
context. But, provided enough accuracy is used, the results of such scaling
may be used for comparison in cases where an exact comparison is not
required.

Example. Let X = 〈0, 6, 3, 0〉, Y = 〈5, 3, 0, 0〉 in the moduli-set {8, 7, 5, 3}.
Then

X

M
≈ |0.0000 + 0.8571 + 0.2000 + 0.0000|1 ≈ 0.0571

Y

M
≈ |0.6250 + 0.4286 + 0.0000 + 0.0000|1 ≈ 0.0536

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Comparison, overflow-detection, sign-determination, scaling, and division 195

and we may conclude that X > Y if the difference between the two is below
the maximum possible difference-error. end example

8 6 4 2 0 9 7 5 3 1 1 0

8

6

4

2

m1 =11

m2 = 5

(a)

1 2 9 6 3 0 1 3 1 0 7 4 1 1 4

11

8

5

2

m1 =11

m2 = 5

(a)

Figure 6.1: Ordering of numbers for comparison

6.1.1 Sum-of-quotients technique

The following method for exact comparison is given in [16]. The underlying
idea is that in the finite N -dimensional space defined by the N moduli of
an RNS, the integers may be ordered along lines parallel to the diagonal. In

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

196 Residue Number Systems: Theory and Implementation

Mixed-Radix Conversion, each line corresponds to the leading mixed-radix
digit; an example is shown in Figure 6.1(a), for N = 2. The diagonals
may be labelled different by following the natural order of the integers.
So, corresponding to the example of Figure 6.1(a), we instead have Figure
6.1(b): 0, 1, 2, 3, and 5 label the first diagonal; 5, 6, 7, 8, and 9 label the
second diagonal, 10 labels the third diagonal; 11, 12, 13, and 14 label the
fourth diagonal; and so forth. (The new ordering is shown in Figure 6.1(b)).
Numbers can then be compared by considering the diagonals that they
belong to, which is essentially what is done when numbers are compared
via Mixed-Radix Conversion. The essence of the sum-of-quotients technique
is to devise a monotonicaly growing function that can be used to quickly
determine the diagonal to which a given number belongs.

In what follows, we shall assume that we have the RNS is based on a
set of pairwise relatively prime moduli, m1,m2, . . . , mN . M will denote the
product of the moduli, Mi will denote the value M/mi, and

∣∣x−1
∣∣
m

will
denote the multiplicative inverse of x with respect to the modulus m. We
will also assume residue representations X ∼= 〈x1, x2, . . . , xN

The sum-of-quotients, SQ, is defined by

SQ =
N∑

i=1

Mi

For the fundamental result, we also require the values si:

si =
∣∣∣−

∣∣m−1
i

∣∣
SQ

∣∣∣
SQ

and we then have

Theorem. The function

D(X) =

∣∣∣∣∣
N∑

i=1

sixi

∣∣∣∣∣
SQ

is a monotonically increasing function.

Given a number X, D(X) is the diagonal on which it lies. Furthermore,
we have this additional result

Theorem. If X < Y and D(X) = D(Y), then xi < yi.

An example [17]:

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Comparison, overflow-detection, sign-determination, scaling, and division 197

Example. Suppose we have m1 = 5,m2 = 11,m3 = 14,m4 = 17, and
m5 = 9. Then SQ = 62707. Now, let X = 30013 ∼= 〈3, 5, 11, 8, 7〉 and
Y = 11000 ∼= 〈0, 0, 10, 1, 2〉. Then s1 = 37624, s2 = 45605, s3 = 4479, s4 =
51641, s5 = 48772. From which we get D(X) = 15972 and D(Y) = 5854,
and D(X) > D(Y), as we would expect. end example

In summary, for comparison of two RNS numbers, X and Y m with the
sum-of-quotients technique, we first compute D(X) and D(Y). Then

• if D(X) < D(Y), conclude that X < Y ;
• if D(X) > D(Y), conclude that X > Y ;
• and if D(X) = D(Y), check the individual residue-pairs to determine

whether X < Y , X = Y , or X >.

6.1.2 Core Function and parity

The Core Function and concept of parity in RNS have been introduced
in Chapter 2. Briefly, in a system with moduli m1, m2, . . . mN , (i.e. the
dynamic range is [0,M), where M =

∏N
i=1 mi) the core, Cn, of a number

n is given by

Cn =
N∑

i=1

wi

⌊
n

mi

⌋

for certain weights fixed wi. And the parity of a number is its residue
with respect to the redundant modulus 2. Given 〈x1, x2, . . . , xN 〉 as the
RNS representation of a number X, |X|2 can be found by base extension
or computed during forward conversion and carried along. A parity of 0
indicates an even number , and 1 indicates an odd number [11].

Suppose that we are given two RNS numbers, X
4
= 〈x1, x2, . . . , xN 〉

and Y
4
= 〈y1, y2, . . . , yN 〉, with both corresponding represented numbers, X̃

and Ỹ , in the range [0,M), suppose that M is odd, and also suppose that
(see Chapter 1) the interval [0,M/2] represents positive numbers and the
interval (M/2,M) represents negative numbers. Then the following results
hold and may be used for overflow-detection and sign-determination.

Theorem. If CM is odd, then X + Y overflows if

• X + Y is odd and X̃ and Ỹ have the same parity; or
• X + Y is even and X̃ and Ỹ have different parities.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

198 Residue Number Systems: Theory and Implementation

Theorem. X̃ is positive if and only if 〈|2x1|m1 , |2x2|m2 , . . . , |2xN |mN
〉 is

even.
As an alternative to the use of the Core Function, [10] has proved the

following result, for odd M and assuming that the entire range is used for
positive numbers.

Theorem. If X and Y have same parity and Z = X − Y , then X ≥ Y iff
Z is an even number. And X < Y iff Z is an odd number.

Theorem. If X and Y have different parities and Z = X−Y , then X ≥ Y

iff Z is an odd number. And X < Y iff Z is an even number.

6.2 Scaling

A straightforward way to perform scaling is to proceeds as follows. Sup-
pose we have an RNS with moduli m1,m2, . . . ,mN , and that X ∼=
〈x1, x2, . . . , xN 〉 (where xi = |X|mi) is to scaled by K, to yield Y ∼=
〈y1, y2, . . . , yN 〉 (where yi = |Y |mi). Then, by definition

X = Y K + |X|K

and, therefore,

Y =
(X − |X|K)

K

If |K−1|mi , the multiplicative inverses of K with respect to the moduli mi,
exist then Y may be computed as

yi = |Y |mi

=
∣∣|X − |X|K |mi

× |K−1|mi

∣∣
mi

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Comparison, overflow-detection, sign-determination, scaling, and division 199

XN
XN-1

X1

LUT yN

...

LUT

LUT

...
... ...

Base

Extension

...

...
yN-1

yL + 1

yL

yL - 1

y1

...

...

Figure 6.2: Architecture for scaling by base extension

So the scaling boils down to a set of additions (i.e. subtractions) and
multiplications. We then need to compute |X − |X|K |mi

, and

|X − |X|K |mi
= |X|mi − ||X|K |mi |mi

= |xi − ||X|Kmi |mi

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

200 Residue Number Systems: Theory and Implementation

The ease with which this computation can be carried out depends on
how difficult it is to compute |X|K and, therefore, on the choice of K. If
K is the smallest modulus, mj , then

|xi − |X|K |mi
= |xi − xj |

If K is a product of a subset, m1, m1, . . . , mL, of the moduli, then |X|K
will be easy to compute; but then |K−1|mi will not exist. Nevertheless,
that need not signal the end of the world: Observe that Y will be in the
dynamic range, since 0 ≤ Y <

∏N
i=L+1 mi. Therefore, the result of the scal-

ing is completely defined by 〈y1, y2, . . . , yN 〉. And if we can compute this,
then we also can, by base extension, compute 〈y1, y2, . . . , yL〉. Further-
more, it is evident that 〈y1, y2, . . . , yN 〉 is completely determined by the
values of xL+1, xL+2, . . . , xN . So the scaling may be implemented as fol-
lows. xL+1, xL+2, . . . , xN are used to address lookup tables whose outputs
are y1, y2, . . . , yL. Base extension is then used to obtain yL+1, yL+2, . . . , yN .
The basic architecture is therefore as shown in Figure 6.1 [1].

The Core Function can also be used for scaling, as follows [12]. By
definition, the core, C(X), of a number, X, is

C(X) =
C(M)

M
X −

N∑

i=1

wi

mi
xi

where M is the product of the moduli, m1,m2, . . . , mN , employed, and
xi = |X|mi . Therefore, if we can compute cores within the RNS, then
we can approximately scale X. If the moduli-set is split into two subsets
such that MJ and MK are, respectively, the products of the moduli in the
subsets and MJ ≈ MK , then we can scale by either MJ or MK . This means
extracting C(X) with C(M) = MJ or with C(M) = MK and is done as
follows.

The Chinese Remainder Theorem for Core functions is (Chapter 7)

|C(X)|C(M) =

∣∣∣∣∣
N∑

i=1

xiC(Xi)

∣∣∣∣∣
C(M)

where

Xi =
M

mi

∣∣∣∣∣
(

M

mi

)−1
∣∣∣∣∣
mi

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Comparison, overflow-detection, sign-determination, scaling, and division 201

and (M/mi)−1|mi
is the multiplicative inverse of M/mi with respect to mi.

Extracting the core with respect to MJ , i.e. setting CJ(M) = MJ , we have

|CJ(X)|CJ (M) =

∣∣∣∣∣∣
∑

j=1

xjC(Xj)

∣∣∣∣∣∣
CJ (M)

Since mj is a factor of CJ(M), we have
∣∣∣|CJ(X)|CJ (M)

∣∣∣
mi

= |CJ(X)|mj

=

∣∣∣∣∣∣
∑

j=1

xiC(Xi)

∣∣∣∣∣∣
mj

This does not apply to the moduli that make up MK . Similarly for the
moduli, mk, that make up MK , but not those that make up MJ , we have

|CK(X)|mk
=

∣∣∣∣∣
∑

i=1

xiC(Xi)

∣∣∣∣∣
mk

So with the moduli that make up MJ , we can compute CJ(X) ≈ X/MK ,
and with the moduli that make up MK , we can compute CJ(X) ≈ X/MJ .

To obtain scaled residues across all moduli, we first compute ∆C(X)
4
=

CJ(X) − CK(X) and then add to or subtract that value from the values
from one subset. ∆C(X) is computed as

|∆C(X)|∆C(M) =

∣∣∣∣∣
∑

i

∆C(Xi)

∣∣∣∣∣
∆C(M)

6.3 Division

Conventional algorithms for division have been introduced in Chapter 5
and may be classified as either subtractive (i.e. the primary operation is
subtraction) or multiplicative (i.e. the primary operation is multiplication).
We shall consider how both types can be adapted for RNS division.

6.3.1 Subtractive division

6.3.1.1 Basic subtractive division

Basic mechanical division of two integers consists of a sequence of
magnitude-comparisons and shift-and-subtract operations, along with some

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

202 Residue Number Systems: Theory and Implementation

implicit or explicit magnitude-comparisons. For the division of X (2n bits)
by Y (n bits), where, without loss of generality, we shall assume that both
operands are positive, the basic binary algorithm is

(1) Set i to 0, X(i), the ith partial remainder, to X, and Q(i), the ith
partial quotient, to 0.

(2) Select a quotient digit, qi, and append it to the quotient as formed so
far: Q(i+1) = 2Q(i) + qi.

(3) Reduce the partial remainder: X(i+1) = 2X(i) − qiY .
(4) Increment i; if i 6= n, goto (2).

At the end of the process, Q(n) will be the quotient, and X(n) will be the
remainder. Note that here we are shifting the partial quotient to the left
and appending the new quotient digit. (And a similar remark applies to
the reduction of the remainder.) This is simply a matter of convenience: we
could equally well hold the remainder in place and at each step shift down
the quotient-digit, i.e. add qi scaled down by a power of two and reduce
the partial remainder by the product of the quotient-digit and the divisor.

The process just described is the basic subtractive-division algorithm, of
which there are a few variants. The most common of such variants are the
non-restoring and SRT algorithms, both of which have been described in
Section 5.2.1. There is also the restoring algorithm, which differs from the
non-restoring one in that an “unsuccessful” subtraction, i.e. one that, from
an incorrect guess, leaves the partial remainder negative, is immediately
followed by a subtraction to restore its value, and another guess is then
made. In general, subtractive-division algorithms differ in how a guess
is made for the next quotient-digit, qi, and in how a correction is made if
the guess turns out to have been wrong.

The SRT algorithms are generally the fastest subtractive-division algo-
rithms, because they rely on redundant signed-digit representations, and
these allow more tolerance in how wrong a guess may be. Nevertheless,
the basic restoring-division algorithm can be speeded up in a variety of
ways. One of those ways is to shift over 0s in the partial remainder without
performing any arithmetic [6]. The rationale for this is that if the divisor
has been “normalized” so that its most significant bit is not 0, then as long
as the leading bit of the partial remainder is 0, no successful subtraction
can take place; so the quotient digit corresponding to each leading 0 in the
partial remainder is immediately known to be 0. In non-restoring division,
since the partial remainder can be positive or negative, it is possible to
shift over both 0s and 1s. With current technology, shifting by arbitrary

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Comparison, overflow-detection, sign-determination, scaling, and division 203

distances over 0s or 1s is no longer an effective way to realize high-speed
division, and the SRT algorithm is preferred. Nevertheless, the basic idea
of restoring division with shifting-over-0s has been put to good use in RNS
division [7]. We next describe this.

The main problem with a restoring-division algorithm is that extra
arithmetic operations are sometimes required to restore the partial remain-
der. The non-restoring algorithm avoids this, but, evidently, if any way
could be found to ensure that the partial remainder is always positive, then
these extra operations can be eliminated. In the algorithm to be described
that is done by selecting qi in such a way that qiY is always smaller than
the partial remainder. Also note that instead of initially normalizing the
divisor and repeatedly shifting over 0s in partial remainder while entering
an equal number of 0s in the quotient, we could just as well determine the
number of 0s to entered in the quotient by repeatedly comparing the posi-
tion of the leading non-0 bit in the partial remainder with the leading non-0
bit in the divisor: if the former is j and the latter is k, then the number of
0s to be entered in the quotient is j−k. The algorithm below uses j−k−1
instead, thus ensuring that the partial remainder is always positive. That
is, in binary the multiple of the divisor that is subtracted in Step (3) of
the algorithm is either 0 or 2j−k−1Y . Based on these observations, the
corresponding algorithm for RNS division is as follows.

Let the two RNS operands be X
4
= 〈x1, x2, . . . , xN 〉 and Y

4
=

〈y1, y2, . . . , yN 〉, where X is the the dividend and Y is the divisor. (Without
loss of generality, we shall assume that both represent positive numbers.)
And suppose X represents the number X̃ and Y represents the number Ỹ ,
i.e. X ∼= X̃ and Y ∼= Ỹ . Then the RNS restoring-division algorithm, with
a “shifting over 0s”, is

(1) Set i to 0 and X(i), the ith partial remainder, to X, and Q(i), the ith
partial quotient, to 0.

(2) Find the position, k, of the most-significant non-0 bit of Ỹ . (This is
equivalent to normalizing Ỹ .)

(3) Find the position, j, of the most-significant non-0 bit of X̃. (This is
equivalent to normalizing X̃.)

(4) If j > k (i.e. a successful subtraction must occur), then

(a) set Q(i+1) = Q(i) + qi, where qi = 2j−k−1;
(b) set X(i+1) = X(i) − qiY ;
(c) increment i and goto (3) if i 6= n.

(5) If j = k (i.e. a subtraction may or may not be successful), then

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

204 Residue Number Systems: Theory and Implementation

(a) set X(i+1) = X(i) − Y ;
(b) find the position, l, of the leading non-0 bit of

∣∣X(i+1)
∣∣;

(c) if l < j, then set Q(i+1) = Q(i) + qi.

This algorithm is equally valid for both integer and fractional representa-
tions.

All of the arithmetic operations in the preceding algorithm are in the
RNS domain. Nevertheless, at Steps (2) and (3), we do not have X̃ and
Ỹ but must extract some magnitude-information, partial though it may
be. There are evidently a variety of ways in which this could be done.
[7] proposes the use of lookup tables that are addressed by residues and
whose outputs are the sought indices. That work proposes two architec-
tures. The first assumes integer representations, exactly as given in the
algorithm, and is suitable for a small or medium dynamic range. It has
the structure shown in Figure 6.3. The values j and k are obtained from a
lookup table and then used to address another lookup table that contains
the values of qi. A multiplier then computes qiY , the value of which is
subsequently subtracted from the current partial remainder, to form a new
partial remainder. Concurrently, the partial quotient is updated.

RNS

Subtractor

Y

Q
(i+1)

X
(i)

Y RNS

Multiplier

RNS

Adder

LUTLUT

j

k

qi

Figure 6.3: Architecture for subtractive division (small range)

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Comparison, overflow-detection, sign-determination, scaling, and division 205

For a large dynamic range, the lookup tables would be prohibitively
large if integer representations are assumed. Therefore, in this case
fractional representations are assumed. These representations are ob-
tained by scaling by M , as in the approximate Chinese Remainder The-
orem (Equation 6.1). The architecture is shown in Figure 6.4. The
residues of X are used to address lookup tables that hold the CRT-values
(
∣∣xi

∣∣M−1
i

∣∣∣∣
mi
|)/mi; these are then added, modulo 1, to obtain X/M . In-

stead of using another lookup table, as above, priority encoders are used to
obtain j and k. The rest of the architecture is similar to that in Figure 6.3.

RNS

Multiplier

Y

X
(i)

LUT

LUT

LUT

LUT

LUT

Priority

Encodes

RNS

Subtractor

RNS

Adder
Q

(i+1)

...

X1
(i)

X2
(i)

XN
(i)

Figure 6.4: Architecture for subtractive division (large range)

The algorithms and architectures above have been obtained by modi-
fying a conventional restoring algorithm, so that restoration of partial re-
mainders is not required, and then shifting over 0s in the partial remainder.
For conventional division, more sophisticated and faster algorithms—based
on both restoring and non-restoring algorithms, shifting over both 0s and
1s, using several multiples of the divisor, employing radices larger than
two—are described in [6]. It is conceivable that these too could be adapted
for RNS division.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

206 Residue Number Systems: Theory and Implementation

6.3.1.2 Pseudo-SRT division

We now describe an “SRT” division algorithm [3]; the real SRT algorithm
is described in Section 5.1. Let F (X) = X/M (Equation 6.1). Even for
unsigned operands, intermediate results in SRT will be signed. For normal
RNS, signed numbers are accommodated by dividing the dynamic range
into two halves (Chapter 1). Here, F (X) ∈ [0, 1); so the range [0, 1/2)
corresponds to the positive numbers, and [1/2, 1) corresponds to the neg-
ative numbers. In the former case, the magnitude of the number is F (X),
and in the latter case the magnitude is 1 − F (X). As noted above,
computing F (X) with sufficient accuracy for an exact comparison is too
costly. But for pseudo-SRT division, approximations are sufficient. Let
Fa(X) denote the computed approximation to F (X). Then, with regard
to sign-determination, we have three possible results: X is definitely posi-
tive, X is definitely negative, and X is of indeterminate sign. We shall use
Sa(X) to denote the approximate sign of X; that is, Sa(X) ∈ [+,−, +/−].
The indeterminate case means that, because of limited accuracy, there are
bands around 0, 1, and 1/2 such that numbers in the bands could be pos-
itive or negative, but we are unable to tell which. If we exclude the band
around 1/2, then an indeterminate sign means that X is near 0 or near 1,
i.e. it is of small magnitude. Such exclusion means that part of the dynamic
range cannot be used, but, by appropriate choice, that part can be made
negligibly small. The exclusion is done by ensuring that the input number
is the range [−(1/2 − 2−a)M, (1/2 − 2−a)M], for some positive integer a.
Then, if Sa(X) = +/1, X is guaranteed to be in the range [−2−aM, 2−aM].

Fa(X) is computed as follows. A lookup table is constructed for each
modulus mi. In each such table, the jth entry (j = 0, 2, . . . ,mi − 1) is the
value

Fa(i, j)
4
=

⌊∣∣∣∣
j

mi

∣∣M−1
i

∣∣
mi

∣∣∣∣
1

⌋

computed to b bits, where b = a+ log N and a is chosen for the constraints
above. Fa(X) is then computed as

Fa(X) =

∣∣∣∣∣
N∑

i=1

Fa(i, j)

∣∣∣∣∣
1

And Sa(X) is computed as

• + (and X ≥ 0) if 0 ≤ Fa(X) ≤ 1
2 ,

• − (and X < 0) if 1
2 ≤ Fa(X) < 1− 2−a,

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Comparison, overflow-detection, sign-determination, scaling, and division 207

• +/− otherwise.

On the basis of the above, given two positive numbers, N and D, the
following algorithm computes Q and R such that N = QD + R, with
0 ≤ R < D.

(1) Set j = 0 and Q = 0
(2) While Sa(bM/8c − 2D) 6= − do {D ⇐ 2×D, j ⇐ j + 1}
(3) While Sa(N −D) 6= − do {N ⇐ N − 2×D, Q ⇐ Q + 2}
(4) For i = 1, 2, 3, . . . , j do

• if Sa(N) = +, then {N ⇐ 2× (N −D), Q ⇐ 2× (Q + 1)}
• if Sa(N) = −, then {N ⇐ 2× (N + D), Q ⇐ 2× (Q− 1)}
• if Sa(N) = +/−, then {N ⇐ 2×N −D,Q ⇐ 2×}

(5) if Sa(N) = +, then {N ⇐ N −D, Q ⇐ Q + 1}
(6) if Sa(N) = +, then {N ⇐ N −D, Q ⇐ Q + 1}
(7) if Sa(N) = − or (Sa(N) = +/− and S(N) = −, then {N ⇐ N +

D, Q ⇐ Q− 1}
(8) R ⇐ 2−jN

The similarities between this algorithm and the conventional SRT al-
gorithm are evident. First, the dividend and the divisor are normalized.
Then, in the main loop, the quotient is repeatedly adjusted by -1, or 0,
or 1, and the partial remainder accordingly adjusted by −D, or 0, or +D;
this corresponds to the radix-2 SRT algorithm, i.e. the digit-set is {1, 0, 1}.
Lastly, a correction of −1 may be required of the quotient. And the final
remainder is produced by scaling down the partial remainder.

For this algorithm, a = 4; so 2−aM = M/16. The dividend can be in
the full range, i.e. [0,M/2), but the divisor must not be larger than 3M/16.
In line 7, exact sign-determination (i.e. comparison against 0) is required,
but it is the only such operation. The task of scaling by 2j can be simplified
by using only odd moduli; then all the residues of 2j can be precomputed
and stored. If one of moduli is even, then the scaling can be performed by
base extension. A faster modification of the above algorithm is given in [3].

6.3.2 Multiplicative division

Conventional multiplicative-division algorithms too can be adapted for
RNS, as has been done for the subtractive-division algorithms. The most
common algorithm for multiplicative division is that based on the Newton-
Raphson procedure (Section 5.2.2), in which one computes the reciprocal of

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

208 Residue Number Systems: Theory and Implementation

the divisor and then multiplies that with the dividend to get the quotient.
We next describe one such algorithm, from [9].

In order to be able to represent the large intermediate results that occur
from multiplications, the arithmetic is implemented in an “extended” RNS
whose range is approximately the square of the range of the “base” RNS.
If the base RNS has N moduli, then the extended RNS has 2N moduli,
m
′
1, m

′
2, . . . ,m

′
2N , where 1 < m

′
1 < m

′
2 < . . . < m

′
2N . These moduli are

partitioned into two sets: {m1 = m
′
1,m2 = m

′
3, . . . , mN = m

′
2N−1} and

{mN+1 = m
′
2,mN+2 = m

′
4, . . . , m2N = m

′
2N}

Let M be
∏N

i=1 mi and M̃ be
∏2N

i=N+1 mi. Then it is the case that
(a)

∣∣M−1
∣∣
M̃

, the multiplicative inverse of M , with respect to M̃ , exists,
since M and M̃ are relatively prime; (b) for large N and moduli of similar
magnitude, M̃ −M will be small; and (c) if X and Y are in the base range,
then, because M2 < MM̃ , the multiplication X × Y will never overflow.

Without initially considering how the arithmetic operations are to be
carried out in RNS, the quotient (Q) and the remainder (R) from the integer
division of X (where 0 ≤ X < M) by Y (where 1 ≤ Y < M) are obtained
by the algorithm

(1) Set Q to bX × bM/Y c/Mc.
(2) Set R to X −Q× Y .
(3) If R ≥ Y , then

(a) increment Q;
(b) subtract Y from R.

We therefore need to compute a reciprocal, bM/Y c/ and then scale that
by M . The first is carried out by an application of the Newton-Raphson
root-finding procedure:

Zi+1 = Zi − f(Zi)
f ′(Zi)

For the computation of M/Y , f(Zi) = M/Zi − Y , whence the recurrence

Zi+1 =
Zi(2M − Y Zi)

M
Since we require only integer values, this recurrence becomes

Zi+1 =
⌊

Zi(2M − Y Zi)
M

⌋

And the algorithm to compute the reciprocal bM/Y c is

(1) Set Z1 to 0 and Z2 to 2.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Comparison, overflow-detection, sign-determination, scaling, and division 209

(2) If Zi 6= Zi+1, then

(a) set Zi to Zi+1;
(b) set Zi+1 to bZi × (2M − Y Zi)/Mc.

(3) Goto (2).
(4) If M − Y × Zi+1 < Y , then the result is Zi+1; otherwise the result is

Zi+1.

The last step is a correction step that is required to deal with cases such as
M = 10, Y = 3, bM/Y c = 3, Zi = Zi+1 = 2.

In the algorithm as given above, the starting value Z2 has been arbitrar-
ily set to 2. Now, the number of iterations required of the Newton-Raphson
procedure depends on how accurate the starting value is; so the execution
of the algorithm can be speeded up by setting Z2 to a better approxima-
tion of bM/Y c. This may be done by, for example, using a lookup table
that stores the approximations and is addressed with some part of the rep-
resentation of Y . Many approximation techniques (for the conventional
Newton-Rapshon) are given in [6], and these can be adapted for the case
at hand. We next turn to the RNS implementation of the arithmetic oper-
ations. We shall assume that the original operands, X and Y , have been
base-extended into the extended RNS.

The additions, subtractions, multiplications, and test for equality are
easily implemented in the RNS domain: simply apply the operation to
residue pairs. (In the last case, X = Y , if and only if xi = yi, for all i, where
xi = |X|mi and yi = |Y |mi .) Scaling by M is required in both the main al-
gorithm and the Newton-Raphson algorithm. That scaling may be done in
one of two different ways. The first is as follows. Let U ∼= 〈u1, u2, . . . , u2N 〉
be the number to be scaled. Then 〈u1, u2, . . . , uN 〉 represents the remain-
der R = |U |M and 〈uN+1, uN+2, . . . , u2N 〉 represents MQ. The latter is
base-extended into the extended RNS and the result subtracted from M .
Multiplying the result of the subtraction by |M−1|

M̃
yields the quotient,

Q = 〈qN+1, qN+2, . . . , q2N 〉, which is then base-extended into the extended
RNS, i.e. into 〈q1, q2, . . . , qN , qN+1, qN+2, . . . , q2N 〉. The second way to do
the scaling is through Mixed-Radix Conversion. Suppose the mixed-radix
representation of U is (v1, v2, . . . , v2N). Then, by Equation 7.9,

U =
2N∑

i=1

vi

i−1∏

j=1

mi

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

210 Residue Number Systems: Theory and Implementation

=
N∑

i=1

vi

i−1∏

j=1

mi + M

2N∑

i=N+1

vi

i−1∏

j=N+1

mi

4
= R + MQ

with R = |U |M and Q = bU/Mc. Q is the sought result and is converted
back into the extended RNS by evaluating the summation for each modulus.
Lastly, we have the difficult operation of comparison. Two methods for RNS
implementation are given in [9], and we have discussed others above.

We leave it as an exercise for the reader to devise an architecture for
the implementation of the algorithm.

6.4 Summary

The arithmetic operations discussed here are the most problematic in RNS.
Many applications of RNS are in areas in which these operations are rarely
required, but even so they cannot be completely avoided; as an example,
scaling may be required to ensure that intermediate results from multipli-
cation stay in range. With regard to division, there appears to be a great
deal of scope for the development of new algorithms based on those for
conventional division. We have not discussed square-root, but given that
conventional algorithms for square-root are very similar to conventional
algorithms for division, it should not be too hard to devise square-root al-
gorithms. For example, an examination of the conventional “SRT”-type of
square-root algorithm show that the RNS “SRT” division-algorithm above
can easily be modified to obtain an algorithm for square-roots.

References

(1) A. Garcia. 1999. A lookup scheme for scaling in the RNS. IEEE
Transactions on Computers, 48(7):748–751.

(2) C. Y. Hung and B. Parhami. 1995. Error analysis of approximate Chi-
nese Remainder Theorem decoding. IEEE Transactions on Computers,
44(11):1344–1349.

(3) C. Y. Hung and B. Parhami. 1994. An approximate sign detection
method for residue numbers and its application to RNS division. Com-
puters and Mathematics with Applications, 27(4):23–35.

(4) T. V. Vu. 1985. Efficient implementation of the Chinese Remainder

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Comparison, overflow-detection, sign-determination, scaling, and division 211

Theorem for sign detection and residue decoding. IEEE Transactions
on Computers, 34:645–651.

(5) G. A. Jullien. 1978. Residue number scaling and other operations using
ROM arrays. IEEE Transactions on Computers, 27(4):325–337.

(6) A. R. Omondi. 1994. Computer Arithmetic Systems. Prentice-Hall,
UK.

(7) A. Hiasat and H. Abdel-Aty-Zohdy. 1999. Semicustom VLSI design
of a new efficient RNS division algorithm. The Computer Journal ,
42(3):232–240.

(8) E. Kinoshita, H. Kosako, and Y. Kojima. 1973. General division in the
symmetric residue number system. IEEE Transactions on Computers,
C-22:134–142.

(9) M. A. Hitz and E. Kaltofen. 1995. Integer division in residue number
systems. IEEE Transactions on Computers, 44(8):983–989.

(10) M. Lu and J.-S. Chiang. 1992. A novel division algorithm for the
residue number system. IEEE Transactions on Computers, 41(8):1026–
1032.

(11) D.D. Miller. 1986. Analysis of the residue class core function of Akush-
skii, Burcev, and Park. In: G. Jullien, Ed., RNS Arithmetic: Modern
Applications in Digital Signal Processing. IEEE Press.

(12) N. Burgess. 2003. Scaling an RNS number using the core function. In:
Proceedings, 16th IEEE Symposium on Computer Arithmetic.

(13) F. Barsi and M. C. Pinotti. 1995. Fast base extension and precise
scaling in RNS for look-up table implementations. IEEE Transactions
on Signal Processing , SP-43:2427–2430.

(14) A. Shenoy and R. Kumaresan. 1989. A fast and accurate RNS scal-
ing technique for high speed signal processing. IEEE Transactions on
Acoustics Speech and Signal Processing , ASSP-37:929–937.

(15) Z. D. Ulman and M. Czyak. 1988. Highly parallel, fast scaling of
numbers in nonredundant residue arithmetic. IEEE Transactions on
Signal Processing , SP-46:487–496.

(16) G. Dimauro, S. Impedovo, and G. Pirlo. 1993. A new technique for fast
number comparison in the residue number system. IEEE Transactions
on Computers, 42(5):608–612.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

This page intentionally left blankThis page intentionally left blank

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Chapter 7

Reverse conversion

Reverse conversion is the process, usually after some residue-arithmetic op-
erations, of translating from residue representations back to conventional
notations. It is one of the more difficult RNS operations and has been a
major, if not the major, limiting factor to a wider use of residue number
systems. The main methods for reverse conversion are based on the Chinese
Remainder Theorem (CRT) and the Mixed-Radix Conversion (MRC) tech-
nique. All other methods are just variations of these two, which variations
arise from either the type of moduli-set chosen or from certain properties
that can be easily adapted to suit the particular approach chosen.

The chapter consists of three main sections, one each for the CRT, MRC,
and the Core Function. Although the last of these is nominally different,
close examination will reveal that it is in fact just a variation on the CRT
theme; but the details of the formulation are such that they warrant a
separate section. In addition to discussions of the basic theoretical founda-
tions of the main methods, the chapter also includes some discussions on
architectural implementations.

7.1 Chinese Remainder Theorem

Conversion from residue numbers to conventional equivalents seems rel-
atively straightforward on the basis of the Chinese Remainder Theorem
(CRT), introduced in Chapter 1. Unfortunately, the direct realization of
an architectural implementation based on this theorem presents quite a few
problems, and, compared to forward conversion, a generalized realization
(i.e. for arbitrary moduli) is likely to be both complex and slow.

In what follows, we shall first derive (from first principles) the CRT and
in doing so also show how it applies in reverse conversion. We shall do that

213

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

214 Residue Number Systems: Theory and Implementation

with the aid of a small (5-moduli) example. Subsequently, we shall consider
hardware architectures for the implementation of the CRT.

Let the residue representation of X be 〈x1, x2, x3, x4, x5〉 relative to the
pair-wise relatively-prime moduli m1,m2, . . . , mN . That representation
may be written as

X ∼= 〈x1, x2, x3, x4, x5〉
= 〈x1, 0, 0, 0, 0〉+ 〈0, x2, 0, 0, 0〉+ 〈0, 0, x3, 0, 0〉+ 〈0, 0, 0, x4, 0〉

+〈0, 0, 0, 0, x5〉
4
= X1 + X2 + X3 + X4 + X5

where Xi is a conventional number. Finding each Xi is also a reverse-
conversion process, but it is one that is much easier process than that of
finding X. And once the Xis are available, the number X can be obtained
easily.

Consider now the problem of determining X1 from 〈x1, 0, 0, 0, 0〉. Ob-
serve that X1 is a multiple of m2, m3, m4 and m5, since the residue with
respect to each of those moduli is zero. So X1 may be expressed as

X1
∼= x1 × 〈1, 0, 0, 0, 0〉
4
= x1X̃1

where X̃1 is a conventional number. We therefore need to find a number
X̃1 such that

∣∣∣X̃1

∣∣∣
m1

= 1. Now, recall (from Chapter 2) that multiplicative

inverse, |x−1|m, of a number, x, with respect to a modulus m is defined by
∣∣∣∣x−1

∣∣
m

x
∣∣
m

= 1

Let M be the product m1m2m3m4m5, and define Mi as M/mi. Then, by
definition ∣∣∣

∣∣M−1
1

∣∣
m1

M1

∣∣∣
m1

= 1

This inverse exists since the mj are pair-wise relatively-prime. Therefore

X̃1 =
∣∣M−1

1

∣∣
m1

M1

and

X1 = x1X̃1

= x1

∣∣M−1
1

∣∣
m1

M1

The last equation can then be extended readily to the i-th modulus:

Xi = xi

∣∣M−1
i

∣∣
mi

Mi

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Reverse conversion 215

The number X that we seek is then just the sum of Xis:

X =
5∑

i=1

Xi

=
5∑

i=1

xi

∣∣M−1
i

∣∣
mi

Mi

Here X is any number whose residue representation is 〈x1, x2, x3, x4, x5〉. It
may be the number X that is so obtained is not within the dynamic range
of the given residue number system. In such a case, a reduction modulo M

will yield a number that is within the correct range; that is, what we will
compute instead is

|X|M =

∣∣∣∣∣
5∑

i=1

xi

∣∣M−1
i

∣∣
mi

Mi

∣∣∣∣∣
M

This last expression is essentially the CRT, and what we have done above
is derive it first principles. The theorem shows, in a single expression, how
a number may be obtained from its residues. The arithmetic requirements
include several multiply-add operations followed by a modular reduction.

In sum, then, here is the statement of the Chinese Remainder Theorem.
Given a set of pair-wise relatively-prime moduli, m1,m2, . . . , mN , and a
residue representation 〈x1, x2, . . . , xN 〉 in that system of some number X,
i.e. xi = |X|mi , that number and its residues are related by the equation

|X|M =

∣∣∣∣∣
N∑

i=1

xi

∣∣M−1
i

∣∣
mi

Mi

∣∣∣∣∣
M

(7.1)

where M is the product of the mis. If the values involved are constrained
so that the final value of X is within the dynamic range, then the modular
reduction on the left-hand side may be omitted.

Equation 7.1 shows clearly the primary difficulty in the application of
the CRT: the need for the modular reduction of a potentially very large
number relative to a large modulus (M).

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

216 Residue Number Systems: Theory and Implementation

Example. Consider the moduli-set {3, 5, 7}, and suppose we wish to find
the X whose residue representation is 〈1, 2, 3〉. To do so, we first determine
the Mis and their inverses:

M1 = M/m1

=
3× 5× 7

3
= 35

M2 = M/m2

=
3× 5× 7

5
= 21

M3 = M/m3

=
3× 5× 7

7
= 15

Whence

∣∣M1M
−1
1

∣∣
3

= 1∣∣35M−1
1

∣∣
3

= 1

M−1
1 = 2

Similarly

∣∣M2M
−1
2

∣∣
5

= 1∣∣21M−1
2

∣∣
5

= 1

M−1
2 = 1

and

∣∣M3M
−1
3

∣∣
7

= 1∣∣15M−1
3

∣∣
7

= 1

M−1
3 = 1

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Reverse conversion 217

Then, by the CRT, we have (M = 3× 5× 7 = 105)

X =

∣∣∣∣∣
3∑

i=1

xiXi

∣∣∣∣∣
105

= |1× 35× 2 + 2× 21× 1 + 3× 15× 1|105
= | |112|105 + 45|105
= |7 + 45|105
= 52

end example

A simpler way of looking at the conversion from residues is to consider
the integer that corresponds to the residue representation that has a 1 in
the ith residue position and 0s in all other residue positions. We shall
refer to this integer is as the weight of the ith residue. The ordering of
the residues, xi, is of no consequence, since there will be only one integer
whose residue representation has 0s in all positions not equal to i and a 1 in
the i-th position. The conventional equivalent can therefore be determined
by scaling the weighted sum of residues up to the integer representation
modulo M . With this construction of weights wi, we have

X =

∣∣∣∣∣∣
∑

j

xjwj

∣∣∣∣∣∣
M

This is so since wj is a multiple of all the mi (i 6= j), and |xjwj |mj
=

|X|mj , for all j. In order to recover the sought integer from its residue
representation, we need to sum the weighted residues modulo M . The
process is illustrated in the next example.

Example. Consider the moduli-set {2, 3, 5}. The range of numbers that
can be represented in this set is R = [0, 29]. Let us consider a number X

in this range, with the residue representation 〈1, 2, 4〉. The weights for set
can be obtained as follows.

w1 = y ×m2 ×m3

= y × 3× 5

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

218 Residue Number Systems: Theory and Implementation

In the above we need to determine w1 with y = 1:

w1 = 1× 3× 5

= 15

Similarly, we may determine w2 and w3 as follows.

w2 = m1 × y ×m3

= 2× 1× 5

= 10

and

w3 = m1 ×m2 × y

= 2× 3× 1

= 6

The integer that corresponds to the above residue representation 〈1, 2, 4〉 is
then

X =

∣∣∣∣∣∣
∑

j

xjwj

∣∣∣∣∣∣
30

= |1× 15 + 2× 10 + 4× 6|30
= 29

end example

A straightforward way to implement to implement Equation 7.1 is as
follows. The constants Xi

4
= Mi

∣∣M−1
i

∣∣
mi

are multiplied, in parallel, with
the residues, xi, and the results then added in a multi-operand modulo-M
adder. Evidently, for a large dynamic range, large or many multipliers will
be required, according to whether the range is obtained from a few, large
moduli or from many, small moduli, and this may be costly. It should,
however, be noted that the multipliers here need not be full multipliers:
because one of each pair of operands is a constant, each multiplier can be
optimized according to that particular operand. Depending on the actual
technology used for the realization, i.e. on the relative cost and performance
figures, an obvious way to avoid the use of multipliers is to replace them
with look-up tables (say ROMs). That is, for each value of Xi, have a ROM
that stores all the possible values of xXi, for x = 0, 1, 2, . . . ,mi − 1. Then

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Reverse conversion 219

ROM ROM ROM

Multi-operand Modular Adder

x1 x2 xN

|x1X1|M |x2X2|M |xNXN|M

X

...

Figure 7.1: ROM-based CRT reverse converter

for each tuple, 〈x1, x2, . . . , xN 〉, of residues the appropriate values are con-
currently read out and added in a multi-operand modulo-M adder. The
storage requirements or multipliers (in the case of combinational logic) can
be kept down by rewriting applying a reformulated version of Equation:

X =

∣∣∣∣∣
N∑

i=1

xi

∣∣M−1
i

∣∣
mi

Mi

∣∣∣∣∣
M

=

∣∣∣∣∣
N∑

i=1

|xi|mi

∣∣M−1
i

∣∣
mi

Mi

∣∣∣∣∣
M

=

∣∣∣∣∣
N∑

i=1

∣∣∣xi

∣∣M−1
i

∣∣
mi

∣∣∣
mi

Mi

∣∣∣∣∣
M

4
=

∣∣∣∣∣
N∑

i=1

xiXi

∣∣∣∣∣
M

The resulting high-level architecture is then as shown in Figure 7.1.
With either of the general approach outlined above, the multi-operand

modular adder may be realized as purely combinational-logic, or all-ROM
(e.g. [3, 11]), or a mixture of both. Almost all architectures that have
been proposed so far are of the type shown in Figure 7.1 and fall into
two main categories, according to how the multi-operand modular adder is
implemented—those that use a tree of two-input modulo-M adders, real-

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

220 Residue Number Systems: Theory and Implementation

ized as ROMs or in combinational logic, and those that use combinational
logic, with, perhaps, a tiny amount of ROM. In the first category the outer
modular reduction in Equation 7.2 is performed incrementally through the
tree, since each modulo-M adder produces a result that is less than M .
And in the second category that modular reduction is performed after the
intermediate sum has been computed. It should be nevertheless be noted
that there have been a few architectures that do not fit neatly into this
broad classification.

The use of two-input modular adders realized as ROMs or combina-
tional logic produces a structure whose performance can be rather low: the
combinational adders, for example, must be full carry-propagate adders
(CPA). For high performance, a better approach is to utilize a fundamen-
tal technique: in the implementation of high-performance multipliers: in a
sequence of additions, carries need not be propagated with each addition
but may be saved and assimilated after the last addition. Thus the multi-
operand modular adder may be implemented as a tree of carry-save adders
(CSAs) with a single final CPA to assimilate the partial-carry/partial-sum
output of the CSA-tree. The difficulty then is how to perform the final mod-
ular reduction. The CSA+CPA approach has been used in a few designs,
e.g. [1, 4, 6], some of which are described below.

7.1.1 Pseudo-SRT implementation

In the first of the two categories indicated above, Equation 7.2 is realized
rather directly. A different approach to the design of the required multi-
operand modular adder is to start with the basic definition of a residue;
that is, as the remainder from an integer division. So we want to obtain X

as

X =
N∑

i=1

|xiXi|M − qM for some integer q

4
= X̃ − qM (7.2)

subject to the condition

|X̃ − qM | < M (7.3)

As it stands, in order to apply Equation 7.3 directly, we have to know the
value of q, and this problem is not much different from that of determining
a quotient in division. There are many division algorithms that can be used
to determine q, but, given that we would like to avoid division (which is a

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Reverse conversion 221

complex operation), what we seek is an algorithm that (hopefully) tells us
exactly what multiple of M to subtract in Equation 7.3. Now, determining
the exact value of q requires a division; so it may be that the best we can
do easily is to find an approximation that is not too far off and which can
easily be adjusted to yield the correct result; for example, an approximation
that is off by at most unity. Such “reasonable guesswork” combined with
“small corrections” are inherent in the SRT-division algorithm (Chapter 5),
and the fundamental idea can be used here [4].

SRT division (Chapter 5) is an iterative process that may be partially
expressed By the recurrence

R(i+1) = rR(i) − qiD (7.4)

where R(i) is the ith partial remainder and R(0) is the dividend, qi is the
ith quotient digit, and r is the radix of computation (i.e. qi is of log2 r

bits). The digit-set from which qi is selected is a redundant-signed-digit
one, {−a,−(a − 1), . . . 1, 0, 1, a − 1, a}, where r/2 ≤ a ≤ r − 1; and the
degree of redundancy, ρ, is defined as a/(r − 1). The final quotient, Q, is
obtained as

Q =
n/ log2 r∑

i=1

qir
−i

although in implementation the addition is only implicit. The rationale
for the use of redundant-signed-digits is that if qi is incorrect (i.e. the
subtraction in Equation 7.3 leaves a negative result), then a correction is
achieved through an appropriate choice of qi+1. The speed in SRT di-
vision comes from the fact that the implicit borrow-propagate subtractor
(carry-propagate adder) may be replaced with a borrow-save subtractor
(carry-save adder), which is much faster. Of course, this means that qi

cannot be determined precisely, but a good enough approximation can be
obtained by propagating borrows (carries) in a few significant bits of the
partial remainder, which will now be in partial-borrow/partial-difference
(partial-carry/partial-sum) form. The result of this assimilation is then
used to select one of several pre-computed multiples to subtract. Careful
determination of the number of bits assimilated ensures that any incorrect
“guess” is not too far off and, therefore, that easy correction is possible.

In order to ensure that R(i) is within proper bounds and that qi will
not be “too wrong”, qi is chosen so that

∣∣∣R(i) − qiD
∣∣∣ < ρD

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

222 Residue Number Systems: Theory and Implementation

that is ∣∣∣R(i) − qiD
∣∣∣ <

a

r − 1
D (7.5)

Note that Equation 7.6 has the same general form as Equation 7.4; q cor-
responds to qi and M corresponds to D.

The general idea of SRT division may therefore be used as follows to re-
alize CRT-based reverse conversion. Given the similarities indicated above,
the CRT equation that corresponds to Equation 7.6 is

∣∣∣X̃ − qM
∣∣∣ <

ã

r − 1
M

where ã is determined by the largest multiple of M that may be subtracted
from X̃. Suppose we can ensure that the subtracted multiple of M will be
either qM or (q+1)M . Then we may proceed by simultaneously performing
both subtractions (which would require two subtractors, for speed) and then
selecting the result of one of the two: X̃ − (q + 1)M , if that is positive,
and X̃ − qM , if the former is negative. Alternatively, some means may be
used to ensure that the correct multiple is subtracted right away. We next
turn to how, in essence, the value q can be determined.

In SRT division, because the divisor is variable, a quotient-digit is se-
lected by comparing a few high-order bits of the partial remainder with a
few high-order bits of the divisor. In reverse conversion, on the other hand,
the “divisor” (M) is constant; so such a comparison is not necessary, but
some high-order bits of the “partial remainder” (X̃) must still be exam-
ined. For N moduli, number of high-order bits of X̃ that must be examined
is determined by r above and is

k + log2 N (7.6)

where k depends on the value of M .
Figure 7.2 shows an architecture for CRT reverse conversion based on

the pseudo-SRT approach. The values from the ROMs are then added in a
carry-save-adder tree, whose outputs are a partial-sum (PS) and a partial-
carry (PC). In order to select the appropriate multiple of M , several most
significant PC/PS bits are assimilated in a small carry-propagate adder
(the mini-CPA) and the result then used to address a ROM that contains a
pair of values corresponding to possible values of q and q + 1, one of which
is chosen. In order to know exactly which of these two is the correct one,
it is necessary to know whether X̃ is odd or even, and the same for X—
that is, whether the multiple to be subtracted should be odd or even. This
is done by examining the least significant bit of each, denoted by p(X̃) and

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Reverse conversion 223

p(X). For the latter, Figure 7.2 shows this explicitly (which is not done in
[4]). Similarly, in Figure 7.2, the three-input subtractor is shown explicitly
for what it actually is—a combination of a CSA and a CPA.

ROM ROM ROM

X1 X2 XN

|x1X1|M |x2X2|M |xNXN|M

mini

CPA

LSB

�X- PS

�X- PC

P

ROM

MSBs

�P(X)

P(X)

XOR

Figure 7.2: Pseudo-SRT reverse converter

7.1.2 Base-extension implementation

We now show how base-extension [2] can be used as the basis for an archi-
tecture that is cheaper (by gate count) and faster (by gate delay) than that
of the pseudo-SRT approach. Observe that in Equation 7.2, each |xjXj |M
is less than M ; therefore,

∑N
i=1 |xjXj |M < NM . And from Equation 7.3,

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

224 Residue Number Systems: Theory and Implementation

we have

X =
N∑

j=1

|xjXj |M − qM

< NM − qM

with X < M , according to the condition of Equation 7.4. It therefore
follows that q < N .

Suppose we now pick an extra, redundant1 modulus, mE , such that
mE ≥ N . Base-extension here then consists of the computation of xE

4
=

|X|mE
. We will assume that xE is readily available, even though during

reverse conversion we do not know what X is, nor do we wish to have
to compute xE at that stage. This assumption is reasonable because xE

is easily computed during the pre-arithmetic forward conversion used to
obtain xi = |X|mi , i = 1, 2, . . . , N . Indeed, in what follows, we shall
arrange matters so that in contrast with the xis, no actual computation
will be required to obtain xE .

Reducing both sides of Equation 7.3, with respect to the modulus mE ,
we have

|X|mE
=

∣∣∣∣∣∣

N∑

j=1

|xjXj |M − qM

∣∣∣∣∣∣
mE

4
=

∣∣∣X̃ − qM
∣∣∣
mE

whence

|qM |mE
=

∣∣∣X̃ − xE

∣∣∣
mE

and multiplying through by
∣∣M−1

∣∣
mE

yields

|q|mE
=

∣∣∣
∣∣M−1

∣∣
mE

(∣∣∣X̃
∣∣∣
M
− xE

)∣∣∣
mE

Now, q < N and mE ≥ N , so |q|mE
= q. Therefore the last equation

becomes

q =
∣∣∣∣
∣∣M−1

∣∣
mE

(∣∣∣X̃
∣∣∣
mE

− xE

)∣∣∣∣
mE

(7.7)

Once the value of q has been determined, a multiplication and a subtraction
yield the sought number X, by Equation 7.3. And if all the possible values
1That is, the modulus goes not extend the dynamic range determined by

m1, m2, . . . , mN ; nor does the extra modulus have any role in the residue arithmetic.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Reverse conversion 225

of qM have been pre-computed and stored, then it suffices to simply read
out the appropriate, correct value and perform a subtraction.

Equations 7.3 and 7.8 may be implemented as follows. In order to
simplify the reductions modulo mE , we impose the additional constraint
that mE be a power of two, say 2n; the smallest n such that 2n ≥ N

will suffice. Then a reduction of some operand modulo mE consists of
a simple right-shift by n bits; and this is just means “reading off” those
bits. So to compute

∣∣∣X̃
∣∣∣
mE

, we simply take the n least significant bits

of X̃ . (A similar, simple “reading” suffices to obtain xE from X.) Since
these bits of X̃ will be in partial-carry(PC)/partial-sum(PS) form, they are
assimilated in a small, n-bit carry-propagate adder (mini-CPA); we shall
use X̃L to refer to the result of this assimilation. We avoid the arithmetic
operations required to compute qM by storing all the possible values in
a ROM that is addressed by X̃L and xE . Since |M−1|mE

is a constant ,
no actual multiplication is necessary; instead, the value of that constant
is taken into account when the pre-computed values are mapped into the
ROM. The complete architecture is then as shown in Figure 7.3. As in
the architecture of Figure 7.2, the nominal three-input subtractor actually
consists of a CSA, to reduce three inputs to two, followed by a CPA.

A final note is in order regarding the choice of mE : since mE is a power
of two, in order for |M−1|mE to exist, M must be odd. This is, of course,
a trivial constraint that can be achieved simply by using only odd moduli
for m1,m2, . . . , mN .

Example. Take m1 = 5,m2 = 7, and m3 = 9. Then M1 = 63,M2 =
45,M3 = 35,

∣∣M−1
1

∣∣
m1

= 2,
∣∣M−1

2

∣∣
m2

= 5,
∣∣M−1

3

∣∣
m3

= 8, and M = 315.
Since there are three moduli, we take mE = 4 = 22; that is, n = 2. Then∣∣M−1

∣∣
mE

= 3. Now consider the representation in this system of X =
72. During forward conversion, we would have obtained 72 ∼= 〈2, 2, 0〉 and
|X|mE = 0. In reverse conversion we would then have2 X1 = 226, X2 = 225,
and X3 = 280. So

X̃ = |2× 126|315 + |2× 225|315 + |0× 380|315 = 252 + 135 = 387

Since n = 2, we compute
∣∣∣X̃

∣∣∣
mE

as the (assimilated values of the) two

2For convenience, X̃ and X̃L are given in assimilated form. We leave it to the reader
to work out the details of the unassimilated forms.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

226 Residue Number Systems: Theory and Implementation

least significant bits of the representation of X̃ and obtain X̃L = 3 . Thus

q =
∣∣∣∣
∣∣M−1

∣∣
mE

(∣∣∣X̃
∣∣∣
mE

− xE

)∣∣∣∣
mE

= |3× (3− 0)|4
= 1

and from the ROM we then obtain qM = 315. A final subtraction then
yields the sought value of X: X = 387 − 315 = 72. The reader is invited
to try his or her hand with different values of X and mE .
end example

ROM ROM ROM

X1 X2 XN

|x1X1|M |x2X2|M |xNXN|M

mini

CPA

nLSBs

�X- PS

�X- PC

XE

ROM

Figure 7.3: Base-extension reverse converter

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Reverse conversion 227

The architecture of Figure 7.3 is superficially similar to that of Figure
7.2, but that is as far as it goes. The major differences are as follows. First,
ROM required for the storage of the qM values is smaller in Figure 7.3. In
the architecture of Figure 7.2, if there are N moduli, then the ROM will
be of 2N entries (one entry for each possible value of p(X̃ ⊕ p(X)). On the
other hand, in Figure 7.3, exactly N entries will suffice. Second, in either
architecture, the mini-CPA has an effect on the critical path, but it will be
smaller in Figure 7.3—n-bits wide versus k + log2 N (Equation 7.7). For
example for 15 and 16 moduli, the mini-CPA in Figure 7.2 will be at least
8 bits wide, whereas the mini-CPA in Figure 7.3 will be 4-bit for 15 moduli
and 5-bit for 16 moduli. Third, the qM -ROM in Figure 7.2 is accessed
with the most significant bits (MSBs) of X̃, whereas the one in Figure 7.3
is accessed with the least significant bits (LSBs). The LSBs are available
earlier than the MSBs; therefore, in Figure 7.3, the operations of the mini-
CPA and the qM -ROM access can be overlapped with the computation of
the high-order bits of X̃. Lastly, suppose we change the dynamic range by
keeping the same number of moduli but using larger moduli. Then a wider
mini-CPA will be required in the architecture of Figure 7.2 (because the
component k in Equation 7.7 depends on M), whereas in the architecture
of Figure 3 no change is required, as the adder width is determined by N

only. In both architectures, the contents of all ROMs must be changed.

7.2 Mixed-radix number systems and conversion

We have already seen above that there is some relationship between repre-
sentations in a residue number system and those in some mixed-radix num-
ber system. The latter are therefore significant, since they are weighted
number systems and so facilitate the implementation of operations (such
as magnitude comparison) that are problematic in residue number systems.
In this section we shall formulate a mixed-radix numbers system and show
its application in reverse conversion.

Consider the example of a number system in which the digit-weights are
not fixed but vary according to the sequence 15, 13, 11, with the interpre-
tation that the weights of the digits are, from left to right, 15× 13× 11×
7, 13×11×7, 11×7, 7 and 1. Essentially, each of these weights determines a
distinct radix, whence the “mixed-radix”. To ensure unique representations
in such a system, it is necessary to impose the constraint that the maximum
weight contributed by the lower k digits must never exceed the positional

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

228 Residue Number Systems: Theory and Implementation

weight of the (k + 1)st digit. Then, if the radices are rN , rN−1,r1, any
number X can be uniquely expressed in mixed-radix form as [8],

X ∼= (zN , zN−1, zN−2,z1)

whose interpretation is that

X = zNrN−1rN−2 · · · r1 + · · ·+ z3r2r1 + z2r1 + z1 (7.8)

where 0 ≤ zi < ri. It is evident that this is a weighted, positional number
system. In what follows, “mixed-radix number system” will indicate this
particular formulation.

The bounds above on zi guarantee a unique representation. The con-
version from a residue number to a mixed-radix number may be regarded
as a reverse transform since the mixed-radix system is weighted. We next
show how to obtain the digits zi, and, therefore, how to reverse-convert to
the conventional equivalent, X.

Given the above, the association between a mixed-radix representation
(Equation 7.9) and a residue representation, 〈xN , xN−1, . . . , x1〉, with re-
spect to moduli m1,m2, . . . , mN , we make the ris in Equation 7.9 corre-
spond to the mis. That equation then becomes

X = zNmN−1mN−2 · · ·m1 + + z3m2m1 + z2m1 + z1 (7.9)

A modular reduction, with respect to m1, of both sides of this equation
yields

|X|m1 = z1

= x1

To find z2, we re-write Equation 7.10 as

X − z1 = zNmN−1mN−2 · · ·m1 + + z3m2m1 + z2m1

and a reduction modulo m2 then yields

|X − z1|m2 = |z2m1|m2

Multiplying through by
∣∣m−1

1

∣∣
m2

yields
∣∣∣
∣∣m−1

1

∣∣
m2

(X − z1)
∣∣∣
m2

= |z2|m2

= z2 since z2 < m2

And since

|X − z1|m2
=

∣∣|X|m2
− |z1|m2

∣∣
m2

= |x2 − z1|m2 since z1 < m2

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Reverse conversion 229

by Equation 2.2

z2 =
∣∣∣
∣∣m−1

1

∣∣
m2

(x2 − z1)
∣∣∣
m2

We apply a similar process to obtain z3:

|X − (z2m1 + z1)|m3
= |z2m2m1|m3

whence

z3 =
∣∣∣
∣∣(m2m1)−1

∣∣
m3

(X − (z2m1 + z1))
∣∣∣
m3

And from

|(X − (z2m1 + z1))|m3
=

∣∣|X|m3
− |+z1|m3

∣∣
m3

= |x3 − (z2m1 + z1)|m3

we have

z3 =
∣∣∣
∣∣(m2m1)−1

∣∣
m3

(x3 − (z2m1 + z1))
∣∣∣
m3

Continuing this process, the mixed-radix digits, zi, can be retrieved from
the residues as

z1 = x1 (7.10)

z2 =
∣∣∣
∣∣m−1

1

∣∣
m2

(x2 − z1)
∣∣∣
m2

z3 =
∣∣∣
∣∣(m1m2)−1

∣∣
m3

(x3 − (z2m1 + z1)
∣∣∣
m3

...

zN =
∣∣(m1m2 . . .mN−1)−1

∣∣
mN

|(xn − (xN−1mN−2 . . . z2m1 + z1))|mN

The N multiplicative inverses required in Equations 7.11 are constants
and so can be pre-computed and stored beforehand.

This last set of equations shows that the mixed-radix approach is in-
herently a sequential approach: it is necessary to determine z1 first, then
z2, then z3, and so on. On the other hand, with the CRT approach, as
outlined above, the partial sums Xjs (which roughly correspond to the zjs
here) can be computed in parallel. The use of the CRT requires a final
modular reduction, which can be done only at the end, when the all Xjs

have been computed; but this is the only serial aspect, and it is a relatively
minor one.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

230 Residue Number Systems: Theory and Implementation

Reformulations of Equations 7.11 can allow the exploitation of some
more parallelism. One such reformulation is as follows. From an application
of Equation 2.2, we have

∣∣∣
∣∣m−1

i

∣∣
mk

∣∣m−1
j

∣∣
mk

∣∣∣
mk

=
∣∣(mimj)−1)

∣∣
mk

We may therefore rewrite the equations above for z3 to zN—those for z2

and z1 are unchanged—into

z3 =
∣∣∣∣
∣∣∣
∣∣m−1

2

∣∣
m3

∣∣m−1
1

∣∣
m3

∣∣∣
m3

(x3 − (z2m1 + z1))
∣∣∣∣
m3

(7.11)

=
∣∣∣
∣∣m−1

2

∣∣
m3

(∣∣m−1
1

∣∣
m3

(x3 − z1)− z2)
)∣∣∣

m3

...

zN =
∣∣∣
∣∣m−1

N−1

∣∣
mN

(∣∣m−1
N−2

∣∣
mN

(
· · · ∣∣m−1

2

∣∣
mN

(∣∣m−1
1

∣∣
mN

(xN − z1)− z2

)

· · ·)− zN−1)|mN

Consider now the computation of z3, for example. With Equations 7.11
all sub-computations must be carried out in sequence (ignoring the obvi-
ous slight parallelism that comes from distribution of multiplication over
addition). On the other hand, with Equations 7.12, the computation of∣∣m−1

1

∣∣
m3

(x3 − z1) can be started as soon as z1 is available. Other than
the parallelism, the main difference between Equations 7.11 and 7.12 is
in the number of multiplicative inverses required —N for the former and
N(N−1)/2 for the latter. An example is given next. In this and other sim-
ilar examples, negative numbers are given as appropriate additive inverses
(see Section 2.3.1).

Example. Suppose we wish to find the number, X, whose residue rep-
resentation is 〈1, 0, 4, 0〉 relative to the moduli-set {2, 3, 5, 7}. Applying
Equations 7.12, we get

z1 = 1

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Reverse conversion 231

z2 =
∣∣∣∣2−1

∣∣
3
(0− 1)

∣∣
3

= |2×−1|3
= |2× 2|3 additive inverse of − 1 w.r.t 3 is 2

= 1

z3 =
∣∣∣∣3−1

∣∣
5

(∣∣2−1
∣∣
5
(4− 1)− 1

)∣∣
3

= |2× (3× 3− 1)|5
= 1

z4 =
∣∣∣∣5−1

∣∣
7

(∣∣3−1
∣∣
7

(∣∣2−1
∣∣
7
(0− 1)− 1

)− 1
)∣∣

7

= |27|7
= 6

Therefore

X ∼= (1, 1, 1, 6)

and for the conventional form, we translate this as

X = 6× 2× 3× 5 + 1× 2× 3 + 1× 2 + 1

= 189

end example

An architecture for the implementation of Equations 7.12 is shown in
Figure 7.4. Here, we assume the use of sum-addressable ROMs [15] to
produce the product of differences and multiplicative inverses and the use
of ordinary ROMs to produce of the products of moduli and the zs. A tree of
carry-save adders and one carry-propagate adder computes the summation
of Equation 7.10. We leave it to the reader to formulate a design of only
combinational logic.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

232 Residue Number Systems: Theory and Implementation

2

2 1

3 2 1

4 3 2 1

5 4 3 2 1

3

4

5

Figure 7.4: Mixed-radix reverse converter (N = 5)

If, as is most likely to be the case, the reverse conversion is required
for the results of RNS arithmetic units, then it is possible and convenient
to carry out the computations of Equation 7.12 in such units. That is,
the equations can be formulated to naturally suit arithmetic units that are
capable of multiplications of the form 〈x1, x2, . . . , xN 〉 × 〈y1, xy, . . . , yN 〉
and additions of the form 〈x1, x2, . . . , xN 〉 + 〈y1, xy, . . . , yN 〉. For this, we
proceed as follows.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Reverse conversion 233

Let U be the residue number for which we seek a mixed-radix represen-
tation (z1, z2, . . . , zN). And define the residue numbers Yi by

Y1 = U

Yi+1 =
〈∣∣m−1

i

∣∣
m1:mN

〉
(Yi − Zi) (7.12)

zi = |yi|mi

where Zi is the residue number 〈zi, zi, . . . , zi〉,
〈∣∣m−1

i

∣∣
m1:mN

〉
is the residue

number 〈∣∣m−1
i

∣∣
m1

,
∣∣m−1

i

∣∣
m2

, . . . ,
∣∣m−1

i

∣∣
mN
〉, and yi is digit i of Yi. Once zi

has been determined the corresponding residue digits in the other residue
numbers may be discarded; we shall use * to indicate this in the following
example. As in the preceding example, appropriate additive inverses are
used for negative numbers.

Example. Suppose we wish to find the number, X, whose representation
is 〈1, 0, 4, 0〉 relative to the moduli-set {2, 3, 5, 7}. Applying Equations 7.13,
we get

Y1 = 〈1, 0, 4, 0〉
z1 = 1〈∣∣m−1

1

∣∣
m1:m4

〉
= 〈∗, 2, 3, 4〉

Y2 = 〈∗, 2, 3, 4〉 × 〈∗,−1, 3,−1〉
= 〈∗, 2, 3, 4〉 × 〈∗, 2, 3, 6〉
= 〈∗, 1, 4, 3〉

z2 = 1〈∣∣m−1
2

∣∣
m1:m4

〉
= 〈∗, ∗, 2, 5〉

Y3 = 〈∗, ∗, 2, 5〉 × 〈∗, ∗, 3, 2〉
= 〈∗, ∗, 1, 4〉

z3 = 1〈∣∣m−1
3

∣∣
m1:m4

〉
= 〈∗, ∗, ∗, 3〉

Y4 = 〈∗, ∗, ∗, 3〉 × 〈∗, ∗, ∗, 2〉
= 〈∗, ∗, ∗, 6〉

z4 = 6

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

234 Residue Number Systems: Theory and Implementation

whence X ∼= (1, 1, 1, 6), and X = 189, as in the last example.
end example

Because the mixed-radix system is a weighted, positional number sys-
tem, and is, in that sense, similar to conventional number systems, op-
erations such as magnitude-comparison are much easier than in residue
number systems. For example, given the mixed-radix numbers X ∼=
(xN , xN−1, . . . , x1) and Y ∼= (yN , yN−1, . . . , y1), we may immediately de-
duce that X > Y if xN > yN .

Overflow-detection, which in fact is equivalent to magnitude-
comparison, is another of the more problematic operations in residue num-
ber systems. Mixed-radix conversion may be used to facilitate the imple-
mentation of this operation, as follows. Choose a redundant, extra mod-
ulus, mE , and base-extend the given residue representation of a number,
X, by computing xE

4
= |X|mE . Then overflow has occurred if xE 6= 0. To

compute xE , Equation 7.9 is replaced with

X = zEmNmN−1 · · ·m1 + zNmN−1mN−2 · · ·m1 + · · ·+ x2m1 + z1

and the zis are computed as above. Then xE is obtained as

xE = |zEmNmN−1 · · ·m1 + zNmN−1mN−2 · · ·m1 + · · ·+ x2m1 + z1|mE

7.3 The Core Function

The Core Function provides a method for reverse conversion that is rea-
sonably straightforward, although there are some minor complications [6].
Recall, from Chapter 2, that the core, C(X), of a number X represented
by the residues 〈x1, x2, . . . , xn〉, relative to the moduli m1,m2, . . . ,mN , i.e.
xi = |X|mi , is defined as

C(X) =
N∑

i=1

wi

mi
X −

N∑

i=1

wi

mi
xi for certain weights, wi

=
C(M)

M
X −

N∑

i=1

wi

mi
xi where M =

N∏

i=1

mi (7.13)

from which we have

X =
M

C(M)
C(X) +

N∑

i=1

Miwi
Mi

C(M)xi
where Mi = M/mi (7.14)

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Reverse conversion 235

This, therefore, provides a method for obtaining X from its residues,
which method does not have the drawbacks of the Chinese Remainder The-
orem or the Mixed-Radix Conversion. But the application of such a method
requires two things. The first is that there be an efficient method to com-
pute cores; the other other is some way to deal with the potentially difficult
operation of (the implied) divisions. The division can be eliminated by ei-
ther choosing C(M) to be a power of two, in which case all that is required
is right-shifting, or by choosing C(M) to be one of the moduli. In the latter
case, if C(M) = mj , then

X = MjC(X) + wj
Mj

mj
xj +

N∑

i=1,i 6=j

wi
Mi

mj
xj

And if ensure that wj = 0, then all division operations are eliminated:

X = MjC(X) +
N∑

i=1,i6=j

wi
Mi

mj
xj

Because each Mi is divisible by mj if i 6= j.
To compute the core, a CRT for Core Functions is employed. Recall that

the CRT relates a number X to its residues x1, x2, . . . , xN , with respect to
the moduli m1, m2, . . . ,mN , as follows

X =

∣∣∣∣∣
N∑

i=1

xiXi

∣∣∣∣∣
M

where Xi = Mi

∣∣M−1
i

∣∣
mi

=
N∑

i=1

xiXi − qM for some integer q

Substituting for X in the definition of the Core Function (Equation 7.14)

C(X) =
N∑

i=1

wi

mi




N∑

j=1

xjXj − qM


−

N∑

i=1

wi

mi
xi

=
N∑

i=1

wi

mi

N∑

j=1

xjXj −
N∑

i=1

wi

mi
xi −

N∑

i=1

q
wi

mi
M

=
N∑

i=1

wi

mi

N∑

j=1

xjXj −
N∑

i=1

wi

mi
xi − qC(M) by Equation 2.13

=
N∑

j=1

xjXj

N∑

i=1

wi

mi
−

N∑

j=1

wj

mj
xj −

N∑

i=1

qC(M) (7.15)

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

236 Residue Number Systems: Theory and Implementation

Now the core, C(Xj), of Mj

∣∣M−1
j

∣∣
mj

is, by definition,

C(Xj) =
N∑

i=1

wi

mi
Xj −

∣∣∣∣∣
N∑

i=1

wi

mi
Xj

∣∣∣∣∣
mi

Since

|Xj |mi

4
=

∣∣∣Mj

∣∣M−1
j

∣∣
mj

∣∣∣
mi

=
{

1 if i = j

0 otherwise

this core is

C(Xj) = Xj

N∑

i=1

wi

mi
− wj

mj

whence

N∑

j=1

xjC(Xj) =
N∑

j=1

xjXj

N∑

i=1

wi

mi
−

N∑

j=1

xj
wj

mj

and, finally, substitution into Equation 7.16 yields

C(X) =
N∑

j=1

xjC(Xj)− qC(M) (7.16)

which is the CRT for Core Functions. Since q depends on X, this equation
is not, of itself, particularly useful for the computation of cores. But if both
sides are reduced modulo C(M), then that dependence is removed:

|C(X)|C(M) =

∣∣∣∣∣∣

N∑

j=1

xjC(Xj)

∣∣∣∣∣∣
C(M)

The cores C(Xj) are constants that may be pre-computed and stored be-
forehand.

There are cases in which Equation 7.17 can be used to compute cores
without any complications. But in general, this is not so. Three possible
cases can arise in the application of the equation:

• C(X) is within the correct range;
• C(X) < 0, in which case |C(X)|C(M) = C(X) + C(M);
• C(X) > C(M), in which case |C(X)|C(M) = C(X)− C(M);

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Reverse conversion 237

That is, the value obtained may be an incorrect, out-of-range value, or a
correct, in-range value. Determining which of the two is the case is not an
easy task. This problem may be dealt with as follows.

Chapter 2 describes the use of a “parity bit”, which involves the com-
putation of |C(X)|2. And from this, we can obtain |C(X)|C(M) by adding
or subtracting C(M). But, deciding which to do is a difficult operation.
To get around this, we may proceed as follows. Compute the residues, of
bX/2c, i.e. |(xi − p)/2|mi

, where p is the parity of X. Then

∣∣∣∣C
(⌊

X

2

⌋)∣∣∣∣
C(M)

=

∣∣∣∣∣
N∑

i=1

∣∣∣∣
xi − p

2

∣∣∣∣
mi

C(Xi)

∣∣∣∣∣
C(M)

whence

C(X) = 2C

(⌊
X

2

⌋)
+

∣∣∣∣∣
N∑

i=1

wi (|xi|2 ⊕ p)

∣∣∣∣∣
C(M)

Architectures for the implementation of Equation 7.17 are described in
[4]. Equation 7.17 shows the main merits of the Core-Function approach: it
does not have the sequential aspects of MRC; nor does it require the large
modular reductions of the CRT. On that basis, it appears that it ought
to be easy to devise Core-Function architectures that are superior (with
respect to both cost and performance) to those for the MRC and the CRT.
Unfortunately, closer examination of that equation shows that not to be
necessarily so. The hardware costs, for example, are likely to be rather
high. and this is an area where further research is required.

7.4 Reverse converters for {2n − 1, 2n, 2n + 1} moduli-sets

Reverse converters for the {2n − 1, 2n, 2n + 1} moduli-sets, including the
special moduli 2m−1, 2m, and 2m +1, can be easily derived from the CRT;
but here simple closed-form solutions for multiplicative inverses are possi-
ble, and these are to be preferred [7]. These inverses can subsequently be
used to reduce the complexity of reverse conversions. In a {2n−1, 2n, 2n+1}
moduli-set, the weights in the equation X =

∑
i wixi (Section 3.1) can be

determined with little computational complexity. The weights correspond-
ing to the three moduli m3

4
= 2n − 1,m2

4
= 2n, and m1

4
= 2n + 1 may be

computed as

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

238 Residue Number Systems: Theory and Implementation

w1 =
(m1 + 1)m2m3

2

w2 = m1(m2 − 1)m3

w3 =
m1m2(m3 + 1)

2

We next show shown that w1, w2, w3 are indeed the correct weights.
Since each of w1, w2, and w3 involves m2,m3, m1m3, and m1m2 re-

spectively, we need only show that each of |w1|m1 , |w2|m2 and |w3|m3 is
1:

w1 =
(2n + 2)× 2n× (2n− 1)

2

|w1|m1 =
∣∣∣∣
(2n + 1 + 1)(2n + 1− 1)(2n + 1− 2)

2

∣∣∣∣
2n+1

=
∣∣∣∣
|(2n + 1 + 1)|2n+1|(2n + 1− 1)|2n+1|(2n + 1− 2)|2n+1

2

∣∣∣∣
2n+1

=
∣∣∣∣
(1)(−1)(−2)

2

∣∣∣∣
2n+1

= 1

which proves that w1 is the multiplicative inverse of m1. Similarly,

w2 = (2n + 1)× (2n− 1)× (2n− 1)

|w2|m2 = |(2n + 1)(2n− 1)(2n− 1)|2n

= ||(2n + 1)|2n|(2n− 1)|2n|(2n− 1)|2n|2n

= |(1)(−1)(−1)|2n

= 1

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Reverse conversion 239

Lastly,

w3 =
(2n + 1)× 2n× (2n)

2

|w3|m3 =
∣∣∣∣
(2n + 1)(2n)(2n)

2

∣∣∣∣
2n−1

=
∣∣∣∣
|(2n− 1 + 2)|2n−1|(2n− 1 + 1)|2n−1|(2n− 1 + 1)|2n−1

2

∣∣∣∣
2n−1

=
∣∣∣∣
(2)(1)(1)

2

∣∣∣∣
2n−1

= 1

Once the weights have been computed, the conventional equivalent, X, of
the residue number 〈x1, x2, x3〉, where xi = |X|mi , is obtained as

X =

∣∣∣∣∣
3∑

i=1

wixi

∣∣∣∣∣
m1m2m3

(7.17)

The conversion procedure just described can implemented directly by
computing the weights as w1 = (M + m2m3)/2, w2 = M − m1m3, and

w3 = (M + m1m2), which permits sharing of the common value M
4
=

m1m2m3. (Note that the division by 2 is just a one-bit right shift). But it
is evident that, because of the term M , such an implementation will require
large multipliers to finally obtain X. A few modifications are possible that
simplify the multipliers. These modifications, which we next describe, also
eliminate the final modular reduction.

Take the conventional equivalent X, given by Equation 7.18. Substitut-
ing for the weights, we have,

|X|M = |A + m1 (m2 − 1) m2x2 + C|M (7.18)

where

A =
(m1 + 1) m2m3

2
x1

C =
m1m2 (m3 + 1)

2
x3

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

240 Residue Number Systems: Theory and Implementation

Substituting M for m1m2m3 and simplifying Equation 7.19, we have

|X|M =
∣∣∣Â + (M −m1m3) x2 + Ĉ

∣∣∣
M

=
∣∣∣Â−m1m3x2 + Ĉ

∣∣∣
M

where

Â =
(

M

2
+

m2m3

2

)
x1

Ĉ =
(

M

2
+

m1m2

2

)
x3

Equation 7.19 can be simplified further to

|X|M =
∣∣∣∣
M

2
(x1 + x3) +

m2m3

2
x1 −m1m3x2 +

m1m2

2
x3

∣∣∣∣
M

(7.19)

The first term, x1 + x3, in this equation can be either even or odd. If it is
even then ∣∣∣∣

M

2
(x1 + x3)

∣∣∣∣
M

= 0

and it is odd, then
∣∣∣∣
M

2
(x1 + x3)

∣∣∣∣
M

=
M

2

So if (x1 + x3) is even, then Equation 7.20 may be rewritten into

|X|M =
∣∣∣m2m3

2
x1 −m1m3x2 +

m1m2

2
x3

∣∣∣
M

4
= |M1x1M2x2 + M3x3|M (7.20)

and if (x1 + x3) is odd, then we have

|X|M =
∣∣∣∣
M

2
+

m2m3

2
x1 −m1m3x2 +

m1m2

2
x3

∣∣∣∣
M

4
=

∣∣∣∣
M

2
+ M1x1M2x2 + M3x3

∣∣∣∣
M

(7.21)

Observe that the numbers involved in the multiplications of Equations 7.20
and 7.21 are smaller than those in the original equations. Therefore, in an
implementation, the corresponding multipliers will be accordingly smaller.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Reverse conversion 241

A basic architecture for the implementation of Equations 7.20 and 7.21
above is shown in Figure 7.5. The value x1 + x3 need not actually be
computed, since all that is required is the knowledge of whether it is odd
or even; therefore, a half-adder on the least significant bits is sufficient.
The sum-output bit of this half-adder is then used to select either 0 or
M/2, according to whether that bit is 0 or 1. The generic architecture of
Figure 7.5 may be refined in various ways, according to the different adder
and multiplier designs of Chapters 4 and 5. We consider just one such
refinement and leave it to the reader to work out others.

3 2 1 123

1 3

Figure 7.5: Generic reverse converter for
{2n− 1, 2n, 2n + 1} moduli-set

Suppose we wish to design a high-performance variant of Figure 7.5.
Each multiplier may be realized as a Wallace carry-save-adder (CSA) tree,
with the outputs left in unassimilated partial-carry/partial-sum. Two levels
of CSAs are then used to reduce the six unassimilated outputs to three. An
examination of Equations 7.21 and 7.22 shows that either a subtraction or
an addition of M may be required to obtain the final result. So the nominal
four-input adder of Figure 7.5 may be implemented as follows. Two CSAs
are used to reduce the three “multiplier” outputs and the “mux’ output to
two. A modulo-M adder, which will be a carry-propagate adder (CPA),
then assimilates the latter two outputs and produces the final result. The
modulo-M adder nominally consists of three CPAs and a multiplexer. The

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

242 Residue Number Systems: Theory and Implementation

CPAs, given inputs A and B, compute A+B, A+B−M , and A+B +M .
The MUX then selects which of the three is the correct one: if A + B is
negative, then A+B +M is selected; if A+B is positive and A+B−M is
negative, then A+B is selected; otherwise, A+B−M is selected. (Chapter
4 shows that much of the logic required for the three CPAs can be shared.)
The “mux” of Figure 7.5 is obviously no more than a set of AND gates.
The final design is then as shown in Figure 7.6.

3 2 11 3123

Figure 7.6: High-performance reverse converter
for {2n− 1, 2n, 2n + 1} moduli-set

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Reverse conversion 243

The multiplicative inverses obtained for the {2n−1, 2n, 2n+1} moduli-
sets may be used as multiplicative inverses for the {2m − 1, 2m, 2m + 1}
moduli-sets whenever n in the original set is even. For such moduli-sets,
the special properties of the moduli may be exploited to eliminate the
need for multipliers, and the approach described next will yield results
similar to what would be obtained if w1, w2, and w3 are taken as above and
appropriate simplifications then carried out [10, 13]. The values required
for the moduli-set {2m − 1, 2m, 2m + 1} are

m3 = 2m − 1 w3 = 2m(2m + 1)2m−1

m2 = 2m w2 = (2m − 1)(2m + 1)(2m − 1)
m1 = 2m + 1 w1 = 2m(2m − 1)(2m−1 + 1)
M = (2m − 1)2m(2m + 1)

whence, by Equation 7.1

X =
∣∣2m(2m + 1)2m−1x3 + (2m − 1)(2m + 1)(2m − 1)x2 + 2m(2m − 1)

(2m−1 + 1)x1

∣∣
M

and, by Equation 7.3,

X + q2m(22m − 1) = 2m(2m + 1)2m−1x3 + (2m − 1)(2m + 1)(2m − 1)x2

+2m(2m − 1)(2m−1 + 1)x1

Applying integer division by 2m and certain algebraic manipulations to this
equation yields

⌊
X

2m

⌋
+ q(22m − 1) = 22m−1x3 + 2m−1x3 + 22mx2 − 2mx2 − x2

+22m−1x1 + 2m−1x1 − x1

whence∣∣∣∣
⌊

X

2m

⌋∣∣∣∣
22m−1

=
∣∣22m−1x3 + 2m−1x3 + 22mx2 (7.22)

−2mx2 − x2 + 22m−1x1 + 2m−1x1 − x1

∣∣
22m−1

, |Y |2p−1

Note that bX/2mc is just the most significant 2m bits of X. Also, as
bX/2mc < 22m−1, we have |bX/2mc|2p−1 = bX/2mc. Once these bits have
been obtained, a concatenation to the least significant m bits of X yields
the desired result; and the latter bits are, of course, just x2.

For the implementation, some-bit manipulation is necessary to make
the conversion-hardware efficient. Equation 7.22 can be rewritten into

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

244 Residue Number Systems: Theory and Implementation

⌊
X

2m

⌋
= |A3 + A2 + A1 − x1|2p−1 (7.23)

where

A3 =
∣∣(22m−1 + 2m−1

)
x3

∣∣
2p−1

A2 =
∣∣(22m − 2m − 1

)
x2

∣∣
2p−1

A1 =
∣∣(22m−1 + 2m−1

)
x1

∣∣
2p−1

The constants A3, A2 and A1 can be evaluated the property that∣∣I × 2l
∣∣
2p−1

is equivalent to circular shifting the binary representation of
the integer I expressed in p bits, l positions to the left. As an example,
consider

∣∣7× 23
∣∣
15

. This is equivalent to 0111 shifted left circularly by 3
bits as 1011. (For more details on this, see Chapter 5, on multiplication
modulo 2n − 1.)

The constant A2 can be simplified as

A2 =
∣∣(2p − 1)− |2mx2|2p−1

∣∣
2p−1

where p = 2m. Expressing x3, x2 and x1 as p bit binary numbers and using
the above property, the constants can be evaluated with little complexity
as

A3 = b30b3(m−1) . . . b32b31︸ ︷︷ ︸ b30b3(m−1) . . . b32b31︸ ︷︷ ︸ (7.24)

m m

A2 = b̄2(m−1)b̄2(m−2) . . . b̄22b̄21b̄20︸ ︷︷ ︸ 111 . . . 111︸ ︷︷ ︸
m m

A1 = bxb1(m−1) . . . b12b11︸ ︷︷ ︸ bxb1(m−1) . . . b12b11︸ ︷︷ ︸
m m

where bx = b10 ⊕ b1m. Further, |−x1|2p−1 is

|−x1|2p−1 = 111 . . . 111︸ ︷︷ ︸ b̄1,m b̄1,(m−1) . . . b̄1,1b̄1,0︸ ︷︷ ︸ (7.25)

m− 1 m + 1

In the hardware implementation of the reverse converter, evaluation of
the three constants can be accomplished by reforming the bits of the three
residues. The hardware for this converter requires an adder to add A3 and
A2. The carry bit generated here has a binary weight of 2p and upon modulo

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Reverse conversion 245

2p−1 operation on it generates a carry bit C0. The second adder evaluates
A1 − x1 and this result will be less than 2p − 1. These two additions can
be done in parallel. The results of the two adders are summed with C0 in
the third adder. Based on the output of the third adder, a fourth adder is
necessary to sum the outputs of the third adder and the overflow carry of
the third adder. Such a circuit uses four 2m-bit carry-propagate adders.

Instead of using four 2m-bit carry-propagate adders in three stages and
an input stage for sensing the overflow, the sum in Equation 7.23 may
instead be computed more quickly by using two 2m-bit carry-save adders
(in series), with end-around carries for modulo-(2n + 1) addition, and an
assimilating 2m-bit modulo-(2m − 1) carry-propagate adder [1, 12]. In the
design of [1], for speed, the nominal assimilating carry-propagate adder is
implemented as two parallel carry-propagate adders, one for an end-around-
carry (carry-in) of 0, and the other for an end-around-carry (carry-in) of
1. A multiplexer then selects the correct input. The reverser converter
therefore has a cost of 6m+1 FAs, 2m−1 OR gates and a 2n bit-multiplexer
and a delay of 2tFA+tCPA2m +tMUX where tFA is the FA delay, tCPA is the
CPA delay, and tMUX is the multiplexer delay. Nevertheless, it should be
noted that (Section 4.3) that the assimilating carry-propagate adder can be
implemented as a single parallel-prefix adder, with no MUX, thus leading
to improvements in both cost and performance.

A side-effect of the approach just described is that it permits a redun-
dant representation of 0, which, unless action is taken, is normal in modulo
2p − 1 arithmetic. This leads to incorrect results when the residues are of
the form < k, k, k >. For these cases, the converter yields the decoded value
as X = 1111 . . . 11k where k represents the m bits of x2. The uppermost
2m bits are 1s instead of 0s. This can be corrected with little penalty when
a parallel-prefix adder is cost.

It is possible to further reduce the number of FA and the delay by
considering the constants in Equation 7.24 and the residue representation
in Equation 7.25. The key observation that leads to a reduction in FA
is that three of the four summands have identical lower and upper m − 1
fields. This is easily seen in constants A3 and A1. However, in the case
of A2 and −x1, the lower order m bits of A2 and the higher order m − 1
bits of −x1 are 1s. Reordering A3, A2,A1 and −x1 the similarities become
fairly obvious.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

246 Residue Number Systems: Theory and Implementation

A3 = b30b3(m−1) . . . b32b31︸ ︷︷ ︸ b30b3(m−1) . . . b32b31︸ ︷︷ ︸ (7.26)

A3(2m− 1 : m) A3(m− 1 : 0)

Ā2 = 111 1x̄1,m︸ ︷︷ ︸ 111 111︸ ︷︷ ︸
−x1(2m− 1 : m) A2(m− 1 : 0)

A1 = bxb1(m−1) . . . b12b11︸ ︷︷ ︸ bxb1(m−1) . . . b12b11︸ ︷︷ ︸
A1(2m− 1 : m) A1(m− 1 : 0)

−̄x1 = b̄2(m−1) . . . b̄22b̄21b̄20︸ ︷︷ ︸ b̄1,(m−1) . . . b̄1,1b̄1,0︸ ︷︷ ︸
A2(2m− 1 : m) − x1(m− 1 : 0)

FA FAFA FAFA

FA FAFA FA FAFA FAFA

Figure 7.7: CSAs for {2m − 1, 2m, 2m + 1} reverse converter

The savings in the number of FA is obtained as follows. Once the result
of addition of A3(m− 1 : 1) of A3, A2(m− 1 : 1) of Ā2 and A1(m− 1 : 1) of
A1 are obtained, the same result can be used for the additions of A3(2m−1 :
m + 1) of A3, −x1(2m − 1 : m + 1) of Ā2 and A1(2m − 1 : m + 1) of A1.
Therefore, by exploiting the symmetry in the upper and lower m bit fields,
a saving of only m−1 adders can be achieved. This is so because, only m−1

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Reverse conversion 247

and not m upper most bits of −x1 are 1s. Further, the m− 1 adders have
ones as constant input as in the case of MOMA converter and therefore,
these adders can be treated as OR gates. Hence this modification results
in a saving of m− 1 OR gates. The carry save adder structure is therefore
as shown in Figure 7.7, for m = 4.

The reverse converter outlined above, from [1], will have a carry-
propagation of 4m bits. However, the carry-propagation can be limited
to 2m bits by utilizing a 2m-bit wide carry propagation adder with a mul-
tiplexer. This is done as follows. The final stage of the reverse converter
has two 2m-bit carry-propagate adders in parallel. Consider each of these
2m-bit adders as a cascade of two m bit-adders, so that we nominally have
four carry-propagate adders: CPA0, CPA1, CPA2 and CPA3, where CPA0
and CPA1 form the upper 2m-bit adder, and CPA2 and CPA3 form the
lower 2m-bit adder. Since they work in parallel CPA0 and CPA2 will have
identical m bit inputs, namely the high-order partial-sum bits, PC2m−1:m,
and the high-order partial-carry bits PC2m−1:m. Similarly, CPA1 and CPA3
will be adding the low-order partial-sum and partial-carry bits. The partial-
carry bits into CPA0 and CPA2 will be different, and that is also the case
for CPA1 and CPA3. So, we may choose to set the carry into CPA0 to 0 and
that into CPA2 to 1. A similar arrangement is done with regard to CPA1
and CPA3 carry inputs. All that is left is to take the carries out of the
four m bit-adders and multiplex the correct result out. The multiplexing
functions are

f = c0 + c2c3

g = c1 + c2c3

where ci is the carry from m bit carry-propagate adder i. The total opera-
tional delay for this converter is therefore 2tFA+tCPA(m)+2tNAND+tMUX .
The carry-propagate part of the reverse converter is shown in Figure 7.8.
The final result of the conversion is obtained when the result of the addition
in Equation 7.23 is shifted m bits to the left and the residue x2 concate-
nated with it. Finally, as in the preceding design, that of Figure 7.8 can
be beneficially improved through the use of parallel-prefix adders instead
of generic adders, as has been assumed in both cases.

Another design for a fast reverse converter for the {2m − 1, 2m, 2m + 1}
moduli-set will be found in [13]. However, in that design, the speed is
obtained at the cost of rendering unusable part of the dynamic range.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

248 Residue Number Systems: Theory and Implementation

MUX

n-bit CPA0 n-bit CPA1 n-bit CPA2 n-bit CPA3

MUX

m

m m m

m m m m

m m m

m m m m

m

m

PS PC
2m 2m

m bit MUX m bit MUX

gf

X3m-1 :2m X2m-1 :m

c0 c1 c2 c3

0 1 10

m

Figure 7.8: CPAs for {2m − 1, 2m, 2m + 1} reverse converter

7.5 High-radix conversion

If we wish to directly speed-up an implementation of the architecture of
Figure 7.1, then it is evident that the depth of the modular addition tree
should be reduced. The obvious way to do this is to compute with higher
radices; that is, all input-operands should be in a large radix. High-radix
computation is especially advantageous with architectures that rely pri-
marily on look-up tables (e.g. ROMs), as there is then a minimization of
the number of table look-up operations as well as the number of modular
additions. Using a large radix also balances the size of the look-up tables,
which in turn results in a more regular structure that is suitable for VLSI
realization of the converter. Nevertheless, the selection of a large radix

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Reverse conversion 249

must be such that it reduces the complexity of both the initial and final
radix conversions.

High-radix computation is traditionally achieved by taking several bits
of an operand at a time: one for radix-2, two, for radix-4, three for radix-8,
and, in general, r for radix-2r. We next show how this may be combined
with base-extension to achieve high-radix reverse conversion. In the first
approach, the basic idea is to start by viewing the desired output in terms of
a large radix. The second approach more closely corresponds to the outline
in the introduction above.

Suppose the number X is represented by 〈x1, x2, . . . , xN 〉, relative to
the moduli m1,m2, . . . , mN , and that the representation of X requires m

bits. Then X may be expressed as

X =
m−1∑

i=0

bi2i

So, in order to determine X from its residues, we need to determine the bits
b0, b1, b2, . . . , bm−1. If the chosen radix is 2r—i.e. operand-bits are taken r

at a time—then, by grouping the bis into k blocks, bi, of n bits each, X

may be expressed as

X = bk2(k−1)r + bk−12(k−2)r + · · ·+ b22r + b1

where the coefficients bi are given by

bi =
n−1∑

i=0

2pbr(i−1)+p ı = 1, 2, ...k

Suppose r is chosen so that 2r is larger than each of the other moduli, mi,
and base-extension is then carried out with the extra modulus mE = 2r.
Then

xE
4
= |X|mE

=
∣∣∣bk2(k−1)r + bk−12(k−2)r + + b22r + b1

∣∣∣
2r

=
∣∣∣
∣∣∣bk2(k−1)r

∣∣∣
2r

+
∣∣∣bk−12(k−2)r

∣∣∣
2r

+ · · ·+ |b22r|2r + |b1|2r

∣∣∣
2r

= b1

Let us now define the integer Y1 as

Y1 =
X − xE

2r

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

250 Residue Number Systems: Theory and Implementation

Then

2rY1 = X − xE

=
k∑

i=2

bi2(i−1)r

The number 2rY1 may then be expressed in terms of its residues as

2rY1 = 〈|X − xE |m1 , |X − xE |m2 , ...|X − xE |mN
〉

The range of Y1 is [0, b(M−1)/2rc). So it possible to express Y1 uniquely,
by multiplying each of the residues in the last equation by the multiplicative
inverse of mE :

Y1
∼=

〈∣∣∣
∣∣m−1

E

∣∣
m1

(x1 − xE)
∣∣∣
m1

,
∣∣∣
∣∣m−1

E

∣∣
m2

(x2 − xE)
∣∣∣
m2

, . . . ,

∣∣∣
∣∣m−1

E

∣∣
mN

(xN − xE)
∣∣∣
mN

〉

Since we have chosen mE to be greater than each of the moduli mj , the
residues here may be dropped in the representation of Y .

If we now define Y2 by

Y2 =
Y1 − xE

2r

and a similar process of base-extension and scaling yields b2, 2rY2 =∑k
i=3 bi2(i−1)r, and Y2 is residue form. The scaling and base-extension

processes are then repeated until all the bis will have been determined.
X is then obtained by adding up the bis in a (shallow) tree of carry-save
adders and a final carry-propagate adder. The values, |X − xE |m1 , |X −
xE |m2 , ...|X−xE |mN are stored in a lookup-table and accessed as required.

In the preceding approach, the starting point was to imagine a high-
radix representation of the desired output, X. A different approach would
be to start “at the top” (of Figure 7.1). That is, instead of having ROMs
that are each accessed with a single residue, each ROM will now be accessed
with multiple residues [3]. Evidently, the trade-offs depend on the number,
sizes, and speeds of the ROMs used in the realization. The basic idea here
is as follows.

Let S
4
= {m1,m2, ...mN} be a set of moduli and P

4
= {s1, s2, ...sl} be a

partition over S such that si ⊆ S, si ∩ sj = φ for i 6= j and S = si ∪ sj .
All residues corresponding to the subset P are looked-up once to produce
a partial result X̃p (Equation 7.2):

X̃p =

∣∣∣∣∣
∑

mi∈S

|xiXi|mi

∣∣∣∣∣
M

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Reverse conversion 251

The sought result X is then obtained as

X =

∣∣∣∣∣
l∑

i=i1

X̃p

∣∣∣∣∣
M

Given that there are now fewer operands into the multi-operand modular
adder (Figure 7.1), the tree will be shallower and faster. The only difficult
part in applying this algorithm is how to determine an optimal partition;
this requires an extensive search. Even the best search may result in imbal-
ances in the residue channels. Fortunately, since combining does not have
to be applied to all or entire residues, the combination may be such as to
yield equal-sized blocks of bits of one or more residues, or it may be done
on some other basis.

7.6 Summary

The main methods for reverse conversion are the Mixed-Radix Conversion
(MRC) and application of the Chinese Remainder Theorem (CRT) . All
other methods may be viewed as variants of these. For example, the Core
Function, which at first glance appears to be a different approach, is in
fact a variant of the CRT approach. The main drawback of the CRT is
the requirement for modular reductions relative to large moduli. The MRC
does not have this drawback, but it is inherently a sequential approach,
unlike the CRT, for which non-trivial parallelism can be exploited. The
Core Function does not have either of these drawbacks, but in practice it
appears to be difficult to implement it with less hardware than in the CRT
or MRC or to realize faster implementations. (This is an area that requires
further research.) For the special moduli-sets and their extensions, reverse
converters of good performance and cost are relatively easy to design, which
explains the popularity of these moduli-sets.

References

(1) S. J. Piestrak. 1995. A high speed realization of a residue to bi-
nary number system converter. IEEE Transactions on Circuits and
Systems II, 42(10):661–663.

(2) A. P. Shenoy and R. Kumaresan. 1989. Fast base extension us-
ing a redundant modulus in RNS. IEEE Transactions on Computers,

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

252 Residue Number Systems: Theory and Implementation

38(2):292–296.
(3) B. Parhami and C. Y. Hung. 1997. “Optimal Table Lookup Schemes

for VLSI Implementation of Input/Output Conversions and other
Residue Number Operations”. In: VLSI Signal Processing VII, IEEE
Press, New York.

(4) N. Burgess. 1999. “Efficient RNS to binary conversion using high-
radix SRT division”. In: Proceedings, 14th International Symposium
on Computer Arithmetic.

(5) K. M. Elleithy and M. A. Bayoumi. 1992. Fast and flexible archi-
tecture for RNS arithmetic decoding. IEEE Transactions on Circuits
and Systems II, 39(4):226–235.

(6) N. Burgess. 1997. “Scaled and unscaled residue number system to
binary number conversion techniques using the core function”. In:
Proceedings, 13th International Symposium on Computer Arithmetic,
pp 250257.

(7) A. B. Premkumar. 1992. An RNS binary to residue converter in the
2n − 1, 2n, 2n + 1 moduli set. IEEE Transactions on Circuits and
Systems–II , 39(7):480–482.

(8) M. A. Soderstrand, W. K. Jenkins, G. A. Jullien and F. J. Taylor.
1986. Residue Number System Arithmetic: Modern Applications in
Digital Signal Processing , IEEE Press, New York.

(9) G. Bi and E. V. Jones. 1988. Fast conversion between binary and
residue numbers. IEE Letters, 24(19):1195–1196.

(10) S. Andraos and H. Ahmad. 1988. A new efficient memoryless residue
to binary converter. IEEE Transactions on Circuits and Systems,
35(11):1441–1444.

(11) S. Bandyopadhay, G. A. Jullien, and A. Sengupta. 1994. A fast
systolic array for large modulus residue addition. Journal of VLSI
Signal Processing , 8:305–318.

(12) S. J. Piestrak. 1994. Design of residue generators and multi-operand
modular adders using carry-save adders. IEEE Transactions on Com-
puters, (1):68–77.

(13) R. Conway. 1999. Fast converter for 3 moduli RNS using new property
of CRT. IEEE Transactions on Computers, 48(8):852–860.

(14) M. Bhardwaj, A.B. Premkumar, and T. Srikanthan. 1998. Breaking
the 2n-bit carry propagation barrier in reverse conversion for the {2n−
1, 2n, 2n+1} moduli-set. IEEE Transactions on Circuits and Systems,
I , 45:998–1002.

(15) W. Lynch et al. 1998. “Low load latency through sum-addressed

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Reverse conversion 253

memory”. In: Proceedings, 25th International Symposium on Com-
puter Architecture, pp 369–379.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

This page intentionally left blankThis page intentionally left blank

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Chapter 8

Applications

This chapter is a brief introduction to some applications of residue number
systems. The two most significant properties of residue number systems
are the absence of carry-propagation in addition and multiplication, and,
consequently, the ability to isolate individual digits, which may be erro-
neous. Therefore, the most fruitful uses of these systems are likely to be in
fault-tolerance and in applications in which addition and multiplication are
the predominant arithmetic operations. A leading candidate for the latter
is digital signal processing, which is covered in the first section of the chap-
ter. Additionally, the carry-free nature of arithmetic operations facilitates
the realization of low-power arithmetic, which is critical in many current
systems and especially in embedded processors. Fault-tolerance, which is
covered in the second section, is an area that was the subject of much re-
search in the early days of computing, but such work subsequently declined
when computer technology became more reliable. Now, with the advent of
extremely dense computer chips that cannot be fully tested, fault tolerance
and the general area of computational integrity have again become more
important [20]. Another area of applications, that of communications, is
also briefly considered, in the third section of the chapter.

In what follows, we shall briefly review the essentials of each of the
three areas mentioned above; but an exhaustive exposition would be outside
the scope of this book, and we shall therefore assume some relevant prior
knowledge on the reader’s part. As far as the use of residue number systems
goes, limitations of space mean that this chapter should be regarded as no
more than a very brief introduction.

255

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

256 Residue Number Systems: Theory and Implementation

8.1 Digital signal processing

Most “real-world signals are analog, and processing such signals to extract
useful information is rather tedious. Moreover, this is complicated by the
near-total absence of analog computers. Consequently, the digital process-
ing of signals is the primary vehicle for the extraction of information. In
digital signal processing (DSP), an input signal is converted into a sequence
of numbers that are the result of sampling and quantizing analog signals. In
the process of extracting useful information, the signals are usually trans-
formed from one type of representation into another type in which certain
characteristics of the signal become obvious. The main advantage that DSP
offers is in the flexibility associated with the generation and modification
of the algorithms used for these transformations. In addition, the digital
processing of signals offers other advantages, such as easy programmability,
stability, repeatability, and easy implementation of systems. By systems, we
mean circuits that implement application algorithms in engineering fields,
such as communication, image processing, encryption, data compression for
transmission, and so forth. Digital processing also makes it easy to correct
errors that occur during signal transmission or during data storage.

Signal analysis and application-algorithms in DSP are computationally
demanding. The demand arises from the fact that the most frequently used
arithmetic operation in almost all DSP algorithms is the sum-of-products,
which consists of sequences of multiplication and addition. Multiplication
can be an expensive operation, in terms of speed and chip-area, and can
therefore constitute a significant bottleneck in the implementation of DSP
algorithms. The multiply-accumulate operation should be very fast, and
this is especially so in applications that require real-time processing, in
which a particular concern is the amount of processing that can be done
before new data arrives. Since multiplication is more time consuming than
addition, if multiplication can be speeded up, then overall processing times
can be brought down. The multiplication of large numbers is inevitably
time-consuming, or costly in hardware, or both; so transforming data into
the residue domain can effectively reduce multiplication times and costs:
with a proper choice of moduli-sets, the multiplier and multiplicand can
be represented in the residue domain [1], which in turn results in smaller
and faster multipliers. In this chapter, we will discuss the implementa-
tion of DSP algorithms in this domain and consider the advantages and
disadvantages of using residue numbers.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Applications 257

8.1.1 Digital filters

Digital filters are especially important in DSP because they can be used
for a wide variety of applications: noise-reduction, band splitting, band
limiting, interpolation, decimation, pulse forming, echo suppression, equal-
ization, and so forth. An advantage of digital filters, in relation to their
analog counterparts, is that of repeatability. This is because analog filters
use components, such as resistors and capacitors, that have some associ-
ated tolerance. On the other hand, digital filters rely primarily on the
sum-of-products operation, and, for the same set of operands, this yields
the same result every time it is carried out. Also, a DSP system can, by
a simple change of system parameters, be easily adapted to changes in the
environments; this is not so with analog systems. Furthermore, DSP sys-
tems are reprogrammable, and so, for example, their characteristics from a
low-pass filter to a high-pass or a band-pass filter can be changed without
any physical changes.

Two basic types of filters are commonly implemented in DSP: Finite
Impulse Response (FIR) filters and Infinite Impulse Response (IIR) filters.
Before we proceed to discuss the implementation of these filters in the
residue domain, we shall briefly introduce the underlying basic concepts.

8.1.1.1 Finite Impulse Response filters

The input to a digital filter is usually a sequence of numbers obtained from
sampling an analog signal. The FIR filter may be represented by a block
diagram of the type shown in the example of Figure 8.1. The z−1 block
represents a unit delay. If the input is x(n), then the output of the delay
element is x(n− 1), which is the value of x(n) one time-period before now,
or, put simply, the previous input. Similarly, x(n − 2) simply means the
value of the input two sampling periods before now. The filter shown in
the Figure 8.1 may be represented by a difference equation:

y(n) = a0x(n) + a1x(n− 1) + a2x(n− 2)

The number of branches in the filter is known as the taps of the filter.
The filter can be described in terms of its impulse response, which is a series
of weighted impulses. With the impulse response, it is easy to compute the
output of the filter simply by multiplying the impulse response and the
input train of sampled pulses present at the desired time. We may use the
idea of delay elements to rewrite the difference equation and so obtain the

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

258 Residue Number Systems: Theory and Implementation

transfer function. Since z−1 stands for a delay element we have

y(n) = (a0 + a1z
−1 + a2z

−2)× x(n)

1 2

-1 -1

0

Figure 8.1: Three-tap FIR filter

The impulse response of the filter is

h(n) =
y(n)
x(n)

= a0 + a1z
−1 + a2z

−2

In the case of the FIR filter, the impulse response has only a numerator
polynomial, the roots of which are called zeros of the filter. The FIR filter
is inherently stable due to the absence of denominator polynomial in its
impulse response.

To see how easily an FIR filter can be implemented, consider an m-th
order filter:

y(n) =
m∑

r=0

arx(n− r)

To understand the implementation better, we look at the second-order filter
that we considered earlier. Here, m = 2, and the output at any time instant
is given by the equation

y(n) = a0x(n) + a1x(n− 1) + a2x(n− 2)

For this three-tap filter, we require three multiplications and two addi-
tions. As indicated above, multiplication can be an expensive operation in
terms of time, power, and area when realized on a VLSI chip. Neverthe-
less, if we can find a way to decompose large numbers into smaller numbers,
perform multiplication on these smaller numbers in parallel, and some how

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Applications 259

combine the partial result to produce the same result as that of multiplying
the two original numbers, then we can achieve significant saving in all of the
above requirements. Such a scheme is relatively easy to implement in the
residue domain: The operands are represented by their residues and mul-
tiplied together in parallel channels to obtain the residues of the product.
A reverse conversion then gives the conventional equivalent of the product.
In using RNS for FIR-filter implementation, it is advantageous to choose a
moduli-set that comprises of a large number of small numbers. Then the
residues and, hence, the width of the multipliers can be kept small. We will
now consider the RNS implementation of a general N -tap FIR.

y(n)

x(n)

a1 a2

Z
-1

Z
-1

a0 aN

Z
-1

x(n-1) x(n-2) x(n-N)

Figure 8.2: N -tap FIR filter

The output of an N -coefficient filter is given by the equation

y(n) =
N−1∑

i=0

aixn−i, n = 0, 1, . . . , N − 1

and the structure of the filter is shown in Figure 8.2
The general architecture for the RNS-based implementation is that

shown in Figure 1.1. The moduli-set consists, of L small, relatively prime
numbers, m1,m2, . . . ,mL, whose product is sufficient to give the desired dy-
namic range. The FIR-filter implementation includes of a binary-to-residue
converter at its input, to convert the input data into equivalent residues.
The filtering is mainly performed in the central block. Since there are L

residues in the residue set, L sub-filters are used to process corresponding
residues from the input. The adders and multipliers may be any of the types
described in Chapters 4 and 5, according to whatever trade-offs are sought.
For better efficiency, the subfilters may be implemented as bit-serial units
[2]; we discuss this next.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

260 Residue Number Systems: Theory and Implementation

The input-output relationship with respect to a modulus mj is given by
the equation

yn,j =

∣∣∣∣∣
N−1∑

i=0

ai,jxn−i,j

∣∣∣∣∣
mj

where ai,j = |ai|mj
, xn−i,j = |x(n − i)|mj

, yn,j = |y(n)|mj
, n = 0, 1, . . . ,

and j = 1, 2, . . . , L. If we assume that mj is represented in B bits, then

ai,j =
B−1∑

b=0

ab
i,j2

b

xn−i,j =
B−1∑

b=0

xb
n−i,j2

b

Here, ab
i,j and xb

n−i,j denote the b-th bits of the binary representation of
ai,j and xn−i,j respectively. Now define, Sb

n,j as

Sb
n,j =

∣∣∣∣∣
N−1∑

i=0

xb
n−i,jai,j

∣∣∣∣∣
mj

(8.1)

Then, the output, yn,j is given by the equation

yn,j =

∣∣∣∣∣
B−1∑

b=0

Sb
n,j2

b

∣∣∣∣∣
mj

The output, yn,j is obtained by modulo-shifting and adding the elements
of the sequence Sb

n,j . The FIR filter is realized once the outputs are de-
termined. The efficiency in using RNS in FIR application depends on the
computation of Sb

n,j . A simple algorithm to efficiently generate Sb
n,j is given

next.
The modular addition in the computation of Sb

n,j can be performed
quite simply as shown below. Let rj denote the value rj = 2B −mj , and
let αj and βj be the residues of α and β respectively with respect to mj ,
then the following theorem can be used in the computation of Sb

n,j .

Theorem.

|αj + x× βj |mj = |(αj + x(βj + rj) + x× c×mj)|2B

where c represents the complement of the carry bit generated during the
operation αj +x× (βj + rj) and x is the input data to the filter. The proof
is as follows [2].

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Applications 261

The theorem is evidently true when x is 0. When x is 1, we need to
consider two cases.

Case 1: αj + βj < mj . Then
αj + βj + rj < 2B (implying c = 1)

From the above equation, the carry generated from αj + x× (βj + rj) is 0.
Since we have defined c as the complement of the carry, c = 1. So

|αj + x(βj + rj) + x× c×mj |2B = |αj + βj + rj + mj |2B

= |αj + βj + 2B |2B

= αj + βj

= |αj + βj |mj

= |αj + x× βj |mj

Case 2: αj + βj ≥ mj . We have
2B ≤ αj + βj + rj < 2B+1 (implying c = 0)

The carry generated from αj + x× (βj + rj) is 1; so c = 0, and
|αj + x(βj + rj) + x× c×mj |2B = |αj + βj + rj |2B

= |αj + βj + 2B −mj |2B

= αj + βj −mj

= |αj + βj |mj

= |αj + x× βj |mj

end theorem

The result
|αj + x× βj |mj = |αj + x(βj + rj) + x× c×mj |2B

may be used in the computation of Sb
n,j in the following manner. Define

P b
n,j(k) =

∣∣∣∣∣
k∑

i=0

xb
n−1,jai,j

∣∣∣∣∣
mj

This value can be computed iteratively, as follows.
P b

n,j (−1) = 0

a
′
i,j = ai,j + rj

P b
n,j (0) =

∣∣P b
n,j (−1) + xb

n,ja0,j

∣∣
mj

=
∣∣∣P b

n,j (−1) + xb
n,ja

′
0,j + xb

n,jc
b
n,j (0) mj

∣∣∣
2B

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

262 Residue Number Systems: Theory and Implementation

where cb
n,j(0) is the complement of the carry bit generated in the addition

of

P b
n,j (−1) + xb

n,ja
′
0,j

Continuing the iterative process,

P b
n,j (1) =

∣∣P b
n,j (0) + xb

n−1,ja1,j

∣∣
mj

=
∣∣∣P b

n,j (0) + xb
n−1,ja

′
1,j + xb

n−1,jc
b
n,j (1) mj

∣∣∣
2B

where cb
n,j(1) is the complement of the carry bit generated in the addition

P b
n,j (0) + xb

n,ja
′
0,j

At the very last iteration, we obtain

P b
n,j (N − 1) =

∣∣P b
n,j (N − 2) + xb

n−N+1,jaN−1,j

∣∣
mj

=
∣∣∣P b

n,j (N − 2) + xb
n−N+1,ja

′
N−1,j + xb

n−N+1,jc
b
n,j (N − 1) mj

∣∣∣
2B

= Sb
n,j

which is the desired output of the RNS FIR filter. subfilter.
Studies comparing RNS filters with conventional filters have shown that

even with a fairly direct implementation, for the same performance, the
RNS implementations have better area and power dissipation [26, 27].

-1

-1

12

Figure 8.3: Structure of an IIR filter

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Applications 263

8.1.1.2 Infinite Impulse Response Filters

A simple IIR filter has a structure of the type shown in the Figure 8.3.
From this figure, we see that the output, y(n) is given by the equation

y(n) = x(n) + a1y(n− 1) + a2y(n− 2)

= x(n) +
[
a1z

−1 + a2z
−2

]
y(n)

= x(n)
1

1− a1z−1 − a2z−2

For this filter, we can determine the transfer function:

H(z) =
1

1− a1z−1 − a2z−2
(8.2)

Observe that the output is dependent on all past inputs and keeps growing
in length; that is, it is dependent on an infinite number of inputs, which is
why the filter is called infinite impulse response filter. The structure filter
has feedback loops that tend make it unstable. IIR filters have poor phase-
response that are non-linear at the edge of the bands. Nevertheless, a merit
of the IIR filter is that for the same stop-band attenuation, the number of
taps required is smaller than for an FIR filter. There are several different
forms for IIR filters, of which one of the common is the lattice structure.

In the implementation of digital filters, pipelining is often used to max-
imize throughput of the filter. Pipelining consists in placing delay units
after each processing unit so that data can be processed in parallel for suc-
cessive samples. This introduces a net delay, but that delay does not pose
a problem in the case of FIR. In the case of IIR, however, this delay can
cause problems, since the feedback units have to wait until the samples
have been processed by the entire filter. Normally, a simple equation of
the form shown in Equation 8.2 requires more than one delay. Using the Z

transform, Equation 8.2 can be written as:

Y (z) = X(z) + a1z
−1Y (z) + a2z

−2Y (z) (8.3)

where Y (z) is the Z transform of y(n) and X(z) is the Z transform of
x(n). So the filter requires that the hardware be able to add to the input,
x(n), the value of the output, y(n), delayed by two periods. If, however,
the pipelined architecture requires more than one delay, then Equation 8.3
cannot be realized. The equation can be modified to allow sufficient delay
in the output without changing the resulting filter:

z−1Y (z) = z−1X(z) + z−2(a1 + a2z
−1)Y (z) (8.4)

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

264 Residue Number Systems: Theory and Implementation

We simplify Equation 8.3 by using Equation 8.4:

Y (z) = X(z) + a1[z−1X(z) + z−2(a1 + a2z
−1)Y (z)] + a2z

−2Y (z)

= [1 + a1z
−1]X(z) + z−2[(a2

1 + a2) + a1a2z
−1]Y (z)

With this version, the hardware is allowed to delay Y by two periods before
adding it to X. Thus, by a simple substitution, the delay allowed in the
pipelined architecture is doubled. The delay can be further increased by
reapplying the simple substitution. Although the resulting hardware will be
of similar complexity, the new filter requires additional zeros and this must
be realized by the zero-producing section. By re-arrangement of terms, we
determine the new transfer function as

H(z) =
(z + a1)

(z2 − a1z − a2)(z + a1)

Introduction of additional poles is canceled by the zeros, and the existing
poles must still be within the unit circle to guarantee the stability of the
filter.

An RNS-based implementation of an IIR filter is quite straightforward,
along similar lines as for the FIR filter.

8.1.2 Sum-of-products evaluation

When the number of fixed coefficients is bounded, it is possible to devise
an efficient table-lookup implementation of a filter. The general techniques
used in that case are known as distributed arithmetic (DA) [28]. DA uses
block multiplies in arithmetic operations such as multiplications. Since DSP
extensively uses convolution sums (multiply-and-accumulate operations) in
many algorithms, DA is ideally suited for computing convolution sums that
can be implemented with a table look-up. DA, by nature, is computation-
ally efficient, and the advantages are evident in hardware implementations.
DA is essentially a bit-serial process for the computation of an inner prod-
uct, which means that the evaluation of the convolution sum is likely to be
slow. Nevertheless, the apparent slowness of DA is not a disadvantage if
the number of elements in each vector is nearly the same as the number
of bits in each element. Modifications, such as pairing and partitioning of
the input data are possible, and these make DA evaluation of convolution
sums faster.

It is possible to exploit the advantages of both RNS and DA in the
implementation of DSP algorithms. In this section, we describe a method
for the modular application of DA in the computation of inner products.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Applications 265

This method is ideally suited for generating convolution sums, without the
use of extensive memory whenever the number of coefficients is large, as is
the case in, for example, radar signal processing. We shall first briefly de-
scribe inner-product generation using bit-serial techniques and then develop
a theory for implementing the computation architecturally in the residue
domain.

The inner product is the dot-product between two column vectors. So
it requires multiplying numbers in pairs and adding the results. This can
be performed in a bit-serial manner using DA principles [3]:

Y =
N−1∑

i=0

CiXi

=
N−1∑

i=0

Ci

L−1∑

j=0

xi,j2j

where, Ci and Xi are the fixed coefficients and the input respectively and
X =

∑L−1
j=0 xj2j . Interchanging the order of summation,

Y =
L−1∑

j=0

2j
N−1∑

i=0

Cixi,j

Since xi,j ∈ [0, 1], it is easier to precompute the values
∑N−1

i=0 Cixi,j and
store them rather than compute them as and when xi,j arrive. This re-
sults in a memory requirement of 2N locations for storing

∑N−1
i=0 Cixi,j for

different combinations of xi,j . We can reduce memory requirements by re-
casting the input data as offset binary code instead of straight binary code,
but this requires shifting of data for alignment. This approach requires a
moderate amount of memory. In the case of integer data, partitioning the
input and applying it in a parallel form results in reduced memory. Still,
architectures that rely on data-partitioning in the memory require many
adders in order to achieve substantial reductions in memory requirements.
It is possible to modify the application of DA principles for computing the
inner products, in such a way that the end results are reduced memory and
simpler hardware that uses fewer adders.

The direct application of DA principles for the computation of the inner
products is memory-intensive. The increase in memory is an exponential
function of the number of coefficients, and data widths have a direct impact
on the size of the memory. Consider the computation of the inner product∑N−1

i=0 CiXi, where Ci are the N coefficients and Xi are the input data each

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

266 Residue Number Systems: Theory and Implementation

L bits wide. If M is an odd modulus, then the inner product in modular
arithmetic is given by

Y =

∣∣∣∣∣
N−1∑

i=0

CiXi

∣∣∣∣∣
M

Now define ζ(g) as

ζi(g) =
{

1 if |Ci|M = g, g = 0, 1, 2, . . . M − 1
0 otherwise

Using this definition, we may rewrite Y to combine Xis with same residues.
That is, |Ci|M as a sum of M or fewer terms:

Y =

∣∣∣∣∣
M−1∑
g=0

g

N−1∑

i=0

ζi(g)Xi

∣∣∣∣∣
M

=

∣∣∣∣∣
M−1∑
g=1

g

N−1∑

i=0

ζi(g)Xi

∣∣∣∣∣
M

Considering all |Ci|M to be unique, this results in a sum of at most M − 1
terms. Since Xi is L bits wide, this equation can be expanded into

Y =

∣∣∣∣∣∣

M−1∑
g=1

g

N−1∑

i=0

L−1∑

j=0

2jζi(g)xi,j

∣∣∣∣∣∣
M

where xi,j denotes the j-th bit of Xi. Interchanging the order of summation,
as is done in DA, we have

Y =

∣∣∣∣∣∣

L−1∑

j=0

2j
M−1∑
g=1

N−1∑

i=0

gζi(g)xi,j

∣∣∣∣∣∣
M

=

∣∣∣∣∣∣

L−1∑

j=0

2j
N−1∑

i=0




(M−1)/2∑
g=1

gζi(g)xi,j +
M−1∑

g=(M+1)/2

gζi(g)xi,j




∣∣∣∣∣∣
M

(8.5)

To proceed further, we will make use of the following result.

Theorem.

|βX|M = |β + (M − β)X|M , Xε(0, 1)

Applying this theorem to the second term in the last equation and rewriting,

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Applications 267

we have∣∣∣∣∣∣

M−1∑

g=(M+1)/2

gζi(g)xi,j

∣∣∣∣∣∣
M

=

∣∣∣∣∣∣

M−1∑

g=(M+1)/2

[g + (M − g)xi,j] ζi(g)

∣∣∣∣∣∣
M

=

∣∣∣∣∣∣

M−1∑

g=(M+1)/2

gζi(g) +
M−1∑

g=(M+1)/2

(M − g)xi,jζi(g)

∣∣∣∣∣∣
M

(8.6)
Now define αi as

αi =
M−1∑

g=(M+1)/2

gζi(g) (8.7)

In order to simplify the architecture that is used to evaluate the sum, the
second sum term in Equation 8.6 is rewritten by substituting g = M − u,
where u is a dummy variable:∣∣∣∣∣∣

M−1∑

g=(M+1)/2

(M − g)xi,jζi(g)

∣∣∣∣∣∣
M

=

∣∣∣∣∣∣

M−(M−1)∑

u=M−(M+1)/2

[M − (M − u)]xi,jζi(M − u)

∣∣∣∣∣∣
M

=

∣∣∣∣∣∣

1∑

u=(M−1)/2

uxi,jζi(M − u)

∣∣∣∣∣∣
M

=

∣∣∣∣∣∣

(M−1)/2∑
g=1

gxi,jζi(M − g)

∣∣∣∣∣∣
M

(8.8)
Using Equations 8.6, 8.7 and 8.8 in Equation 8.5, we have

Y =

∣∣∣∣∣∣

L−1∑

j=0

2j
N−1∑

i=0


αi +

(M−1)/2∑
g=1

gζi(g)xi,j +
(M−1)/2∑

g=1

gxi,jζi(M − g)




∣∣∣∣∣∣
M

=

∣∣∣∣∣∣

L−1∑

j=0

2j
N−1∑

i=0


αi +

(M−1)/2∑
g=1

g(ζi(g)xi,j + xi,jζi(M − g))




∣∣∣∣∣∣
M

(8.9)

Since modular multiplication principles are used in evaluating the sum of
products, we write Equation 8.9 in a form that is appropriate for this op-
eration:

Y =

∣∣∣∣∣∣

L−1∑

j=0

2jSj

∣∣∣∣∣∣
M

(8.10)

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

268 Residue Number Systems: Theory and Implementation

where

Sj =

∣∣∣∣∣∣

N−1∑

i=0


αi +

(M−1)/2∑
g=1

g(ζi(g)xi,j + xi,jζi(M − g))




∣∣∣∣∣∣
M

(8.11)

Equations 8.10 and 8.11 result in a low complexity and efficient hardware
architecture. In arriving at an efficient architecture, we make use of the
following theorem.

Theorem Define γ to be the multiplicative inverse of γ with respect to
M . Then γ exists if gcd(γ, M) = 1, where gcd(γ,M) denotes the greatest
common divisor of γ and M . Specifically, let γ = 2, then 2 exists, since M

is odd. And

|2S|M =





∣∣S+M
2

∣∣
M

if S is odd

∣∣S
2

∣∣
M

otherwise

This theorem is easily implemented in hardware using only two (B +1)-
bit adders, where B is the number of bits used to represent M .

Expanding Equation 8.10 using the theorem gives

Y =
∣∣20S0 + 21S1 + 22S2 + · · ·+ 2L−1SL−1

∣∣
M

=
∣∣∣2L2LS0 + 2L−12LS1 + 2L−22LS2 + · · ·+ 212LSL−1

∣∣∣
M

=
∣∣∣
[
2L−12LS0 + 2L−22LS1

]
2 + 2L−22LS2 + · · ·+ 212LSL−1

∣∣∣
M

=
∣∣∣
([

2L−22LS0 + 2L−32LS1

]
2 + 2L−32LS2

)
2 + · · ·+ 212LSL−1

∣∣∣
M

...

=
∣∣(· · · ([22LS0 + 2LS1

]
2 + 2LS2

)
2 + · · ·+ 2LSL−1

)
2
∣∣
M

(8.12)

Observe from this last equation that Y can be computed by applying the
theorem. To start, an input of |2LS0|M is applied, and the output |22LS0|M
is obtained. In the next cycle, this output is added to a new input |2LS1|M
and |2(22LS0 + 2LS1)|M is computed and so on. The equation can be
realized with the simple circuit shown in Figure 8.4.

Given the input |2LSj |M at the (j + 1)st clock cycle, the output∣∣∣∑L−1
j=0 2jSj

∣∣∣
M

, of the circuit is obtained after L clock cycles. This out-

put also corresponds to |∑ CiXi|M , which is the required inner product.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Applications 269

The output of the circuit is bounded by 2M − 1 after L clock cycles; so
it may be necessary to subtract M once, if the result is not within the
required range. Since the output is bounded by 2M − 1 and is always less
than 2B+1, we can use an OR gate to compute the most significant bit of
the output.

B+1

Z = | 2
L
Sj |M

(b+1)-bit register

(b+1)-bit

Adder

B

MLSB

MSB

LSB omitted

B+1

B+1

B

(b+1)-bit

Adder

Figure 8.4: Distributed-arithmetic multiplier

In Equation 8.12, the input |2LSj |M is required for computing Y, where
Sj is given by Equation 8.11 where Sj is given by Equation 8.11. The α term
in Sj is added to the second term and this requires an extra adder. This
addition and, therefore, the adder can be eliminated by simply absorbing
the αi term in the generation of |2LSj |M , as follows.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

270 Residue Number Systems: Theory and Implementation

∣∣2LSj

∣∣
M

=

∣∣∣∣∣∣
2L

N−1∑

i=0


αi +

(M−1)/2∑
g=1

g [ζi(g)xi,j + ζi(M − g)xi,j]




∣∣∣∣∣∣
M

=

∣∣∣∣∣∣
2L




N−1∑

i=0

αi +
N−1∑

i=0

(M−1)/2∑
g=1

g[ζi(g)xi,j + ζi(M − g)xi,j]




∣∣∣∣∣∣
M

=

∣∣∣∣∣2
L

(
N−1∑

i=0

αi +
N−1∑

i=0

h [ζi(h)xi,j + ζi(M − h)xi,j]

+
N−1∑

i=0

(M−1)/2∑

g=1,g 6=h

g[ζi(g)xi,j + ζi(M − g)xi,j]




∣∣∣∣∣∣
M

where h = 1, 2, . . . , (M − 2)/1) and |h|M exists.

|2LSj |M =

∣∣∣∣∣2
Lh

[
h

N−1∑

i=0

αi +
N−1∑

i=0

(ζi(h)xi,j + ζi(M − h)xi,j)

]

+2L

(M−1)/2∑

g=1,g 6=h

N−1∑

i=0

g[ζi(g)xi,j + ζi(M − g)xi,j]

∣∣∣∣∣∣
M

(8.13)

h

Bit serial Inputs, xij
With coefficients |Ci|M = h

Bit serial Inputs, xij
With coefficients |Ci|M = M - h

Figure 8.5: Circuit for Equation 8.14

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Applications 271

Let δ = h
∑N−1

i=0 αi. Since the coefficients are fixed, δ can be precom-
puted, Equation 8.13 is rewritten using δ into

∣∣2LSj

∣∣
M

=

∣∣∣∣∣2
Lh

[
δ +

N−1∑

i=0

(ζi(h)xi,j + ζi(M − h)xi,j)

]

+2L

(M−1)/2∑

g=1,g 6=h

N−1∑

i=0

g[ζi(g)xi,j + ζi(M − g)xi,j]

∣∣∣∣∣∣
M

(8.14)

The circuit in Figure 8.5 implements first summation term, |2Lh[δ +∑N−1
i=0 (ζi(h)xi,j + ζi(M − h)xi,j)]|M

Bit

addition ROM

Bit serial Inputs, xij
With coefficients |Ci|M = 1

Bit serial Inputs, xij
With coefficients |Ci|M = M - 1

Bit

addition ROM

Bit serial Inputs, xij
With coefficients |Ci|M = 2

Bit serial Inputs, xij
With coefficients |Ci|M = M - 2

Bit

addition ROM

Bit serial Inputs, xij
With coefficients |Ci|M =

Bit serial Inputs, xij
With coefficients |Ci|M =

M-1

2

M+1

2

M
u
lt
i-
o
p
e
re
a
n
d
 M
o
d
u
l a
r
A
d
d
e
r

| 2
L
Sj |M

...
...

...

...
...

...
...

...
...

Figure 8.6: Circuit for evaluating |2LSj |M

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

272 Residue Number Systems: Theory and Implementation

The contents of the ROM in the figure are the values |2Lh(Ih + δ)|M ,
Ih being

∑N−1
i=0 (ζi(h)xi,j + ζi(M − h)xi,j). The second term of Equation

8.14 is implemented as a similar circuit whose ROM contents are given
by |2Lg(Ig)|M , Ig being

∑N−1
i=0 g[ζi(g)xi,j + ζi(M − g)xi,j]. Ig and Ih are

obtained by using either half or full adders.
Figure 8.6 shows how |2jSj |M is obtained from Equation 8.14, and this

serves as the input to the modular multiplier shown in Figure 8.5. Observe
that computation of |2LSj |M , with the serial input xi,j , consists of at most
(M − 1)/2 modulo adders, at most 2N memory locations, and a small
number of 1-bit adders.

Extending RNS principles to the bit-serial mode of computation of inner
products yields several advantages. First, no initial conversion of the input
into residue domain is needed, although the computation is performed in
the residue domain. This has been achieved by storing the products of the
input bits and residues of the coefficients in memory. Second, the number of
modulo adders is at most (M −1)/2, and this results in savings in area and
power when the circuit is implemented in VLSI. Third, the proposed scheme
is moduli-independent, since it requires only precomputing and storing data
in ROM and additional adders. The memory required is a linear function
of the number of coefficients, in contrast to the exponential function when
direct DA principles are used. This results in reduced access times and
lowers latency in the output. A final conversion is required to obtain the
result in conventional form.

8.1.3 Discrete Fourier Transform

Before we proceed to the Discrete Fourier Transform (DFT), we will briefly
introduce the Fourier Series which forms the basis for signal representation
in the frequency domain.

8.1.3.1 Fourier Series

The basis functions that are used to represent any time-domain signal in the
frequency domain are the trigonometric sine and cosine functions. Consider
a rectangular pulse train in the time domain. This function consists of a
large number of sine and cosines functions with varying amplitudes and
frequencies. It is possible to describe any complex periodic signal as the sum
of many sine and cosine functions. Fourier Series constitute one method

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Applications 273

that is commonly used to describe these periodic waveforms.

x(t) =
N∑

k=−N

Ckej(kω0t)

where C is a constant, ω0 = 2πf0, and f0 is the fundamental frequency. This
equation can be used to represent any periodic waveform, provided there
are a large number of terms in the summation. The multiple frequency
terms appearing in the sum are called harmonics.

In discrete Fourier-Series representation, the continuous time equations
are transformed into the discrete domain. This is done by replacing all
functions involving the variable t by nTs, where Ts is the sampling period:

x(n) =
N∑

−N

Ckekω0nTs

In the above, we note that whenever

kω0Ts = 2πm

where m is an integer, the phase is indistinguishable. This means that the
frequency response of a discrete signal is periodic, with a period 1/Ts.

For non-periodic signals, we need to modify the Fourier Series. For a
periodic signal, all frequencies are related. In the case of a non-periodic
signal, we may say that ω0 → 0. This implies that the number of basis
functions tends towards infinity. In this case the summation tends to an
integral:

x(t) =
1
2π

∫ +∞

−∞
X(ω)ejωtdω

In this equation, we have assumed that the signal amplitude can be defined
as function of frequency. The inverse Fourier Transform for the non-periodic
signal then is

X(ω) =
∫ +∞

−∞
x(t)e−jωtdt

We now have a set of equations that is capable of representing the signal
in both the frequency and time domains, and this set is called the Fourier-
Transform pair. It is easy to see that the Fourier-Transform pairs are
continuous and therefore cannot be implemented on any DSP chip or a
digital computer. A discrete version of the transform is required if it is to
be implemented on either a DSP chip or a digital computer. The discrete
form can be obtained from the continuous version by simply replacing the

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

274 Residue Number Systems: Theory and Implementation

continuous time variable t by the discrete variable nTs. The discrete Fourier
transform repeats with a period π/Ts. Changing the variable of integration,
we get

x(n) =
1
2π

∫ π

π

X(ω)ejωnTsd(ωTs) (8.15)

The reverse transform is then

X(ω) =
+∞∑

n=−∞
x(n)e−jωnTs (8.16)

The inverse transform uses summation instead of integration. Equations
8.15 and 8.16 allow us to transform discrete signals between time and fre-
quency domains. We also observe that the frequency spectrum produced
by the DFT is periodic, with a period ωs. The DFT is important since it
allows us to design IIR and FIR filters. These transforms can be used in
many different ways, such as the computation of the frequency response of
speech, image, and biomedical signals.

Applications involving periodic signals are rarely encountered. In most
practical situations, we encounter aperiodic signals that are finite in length.
The DFT of such a signal can be defined as

X(k) =
N−1∑
n=0

x(n)e−j 2πkn
N

=
N−1∑
n=0

x(n)W kn
N (8.17)

where WN = e−j 2π
N , and the spectral coefficients are evaluated for 0 ≤ k ≤

N − 1. The Inverse DFT (IDFT) that allows us to recover the signal is
given by the equation

x(n) =
1
N

N−1∑

k=0

x(n)W−kn
N (8.18)

In Equation 8.17, x(n) is evaluated for 0 ≤ n ≤ (N − 1). X(k) is periodic
beyond N − 1, and so both the DFT and IDFT are finite-length sequences.
Also, we note that the only difference between the DFT and IDFT is the
scaling factor, N . So, if we have an algorithm for computing DFT, then
we can use the same algorithm to compute the IDFT. This is because of
the symmetry that exists between the time and frequency domains. The
only difference between Equations 8.16 and 8.17 is that we have labeled the
spectral coefficients as X(k) instead of X(ω).

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Applications 275

One of the major considerations in the computation of DFT is speed.
Although, both the equations that are used for computing DFT and IDFT
are straightforward, evaluating these equations takes time. Expressing the
complex exponential using trigonometric functions, the DFT and IDFT
equations become

X(k) =
N−1∑
n=1

[
cos(

2πkn

N
)− j sin(

2πkn

N
)
]

and

X(n) =
1
N

N−1∑
n=1

[
cos(

2πkn

N
) + j sin(

2πkn

N
)
]

respectively. Direct implementation of these equations would be costly
in terms of number of multiplications, since a total of 4N2 floating point
multiplications is necessary. There are many efficient algorithms, called
FFT algorithms, that use the symmetry of the transforms to reduce the
complexity in the evaluation of the both DFT and IDFT.

8.1.4 RNS implementation of the DFT

The DFT is a versatile transform that is used in all most all engineering
fields, for the analysis of complex waveforms, in which the DFT gives a clear
indication of the different spectral components that make up the waveforms.
In real-time application, requiring thousands of DFT transforms per sec-
ond, a fixed-point solution must often be used in the design. Fixed-point
arithmetic offers speed advantages, as long as the wordlength does not be-
come overly large and high-speed multipliers are used. For near real time
applications in signal analysis it is necessary to optimize the DFT to reduce
both computation time and the hardware complexity of the DFT proces-
sor. As a solution, many implementations have turned to the RNS for two
reasons: first, high precision can be achieved using several fast and simple
processors; second, real-time programming and control tasks are simplified.
The latter is an important strength of RNS. If arithmetic operations such
additions and multiplications are implemented by lookup tables, then all
these operations will be executed at the same speed. This eliminates the
need for assuming worst-case delays when real-time code is prepared for
executing DFT. The pipeline performance is then dependent on only the
cycle access time. Further pipelining an RNS machine is straightforward
because that data normally flows form one lookup table to its successor.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

276 Residue Number Systems: Theory and Implementation

An optimized algorithm that implements the DFT is the FFT algorithm.
The FFT algorithm exploits the symmetry that is present in the sample
points in the original sequence when the number of samples is a power
of two. Hardware realizations of the FFT range from the use of general
purpose computers to specialized ROM-based implementations. For digital
computers, in which finite register length is a constraint, the FFT cannot
be implemented exactly. In the case of an integer implementation of FFT,
there are two possible sources for errors: rounding or truncation of arith-
metic results and the quantization errors introduced by the analog to digital
converter. In applications where high precision has to be maintained, RNS
is a viable alternative for small-wordlength architectures. To achieve the
needed precision, one would only have to synthesize a large dynamic range
by having a highly parallel system with datapaths of small wordlength.
Nevertheless, RNS does present problems that are not normally found in
weighted number systems; these include magnitude comparison and round-
ing.

The forward transform for a DFT is given by Equation 8.16, where N

is a composite number. Therefore, the N -point DFT can be computed
as a collection of smaller DFTs in conjunction with additional coefficients,
sometimes called a twiddle factors. If the number of samples N = rm, then
the N is a composite number, with each factor equal to r. The algorithm
used for computing the DFT in this case is referred to as an radix-r algo-
rithm and may be implemented as a structure with m stages, where each
stage has N/r basic r-point transforms. The basic form of the resultant
r-point transform with a decimation-in-time (DIT) algorithm is given by
the equation

Xi+1 (k) =
r−1∑
n=0

xi (n) (WN)n
Wnk

r

where xi(n) denote the samples at the input of the i-th stage and (WN)n

are the corresponding twiddle factors.
In the RNS implementation of FFT, all non-integer coefficients, such as

the twiddle factors, and all non-trivial intermediate results must be normal-
ized to integers. All multiplication results are retained to full accuracy and
the magnitudes of the numbers increase rapidly because of the cascaded
multiplications. Since the range in RNS is the product of all moduli, the
numbers must be scaled appropriately to be within the range of the RNS
system to prevent overflows. Scaling operations are cumbersome in RNS;
so it is necessary to maximize the ratio of binary operations to the numbers

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Applications 277

of scaling operations. Since the magnitude of the numbers increase due to
successive multiplications, it is advisable to choose a suitable radix that
will keep the number of cascaded multiplications to a minimum. In using
an FFT algorithm to compute the DFT, since the number of samples N is
power of two, the FFT may be realized by using radices of 2k, where k is a
positive number. The number of cascaded multiplications for various r and
m are shown in Table 8.1. This table has been generated on the assumption
that there is only multiplication-level within the r-point DFT, for r = 8 and
r = 16. For radices 2 and 4, the numbers shown in the table represent the
cascaded twiddle factors only; for radices 8 and 16, the numbers represent
the sum of cascaded twiddle factors and cascaded internal multiplications
in the r-point DFTs.

Table 8.1: Cascaded multiplications for FFT

N

r 64 128 256 512 1024 2048
2 4 5 6 7 8 9
4 2 3 4
8 3 5

16 3

Table 8.2: Throughput vs. complexity of FFT implementation

Radix-4 CRNS Butterfly
Delay Maximum number of
∆ns Multipliers Adders Subtractors Levels
1 12 11 11 4
2 6 6 6 4
4 3 3 3 4
8 2 2 2 4

Table 8.1 shows that radices 4 and 16 have fewer cascaded multipli-
cations. This means that use of these radices will result in fewer scaling
operations. It has been established that radix-4 FFT is an optimal realiza-

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

278 Residue Number Systems: Theory and Implementation

tion of DFT using decimation in time. Figure 8.7 shows the architecture
for radix-4 complex implementation of the FFT algorithm. This consists
of several complex-RNS units, adders, and subtractors. (Complex-RNS
arithmetic is discussed in Chapter 2.)

It is possible to have a variety of throughput complexity tradeoffs in
the above architecture. The throughput delay can be minimized by having
concurrent hardware in the above architecture. If we consider ∆ to be
the worst case delay for an L moduli RNS design, the tradeoff between
throughput and complexity can be summarized as shown in Table 8.2.

Re[X(0)]

CRNS

UNIT

(MULTS,

ADD,SUB)

CRNS

UNIT

(MULTS,

ADD,SUB)

Im

Re

Re

Re

Im

Im

Im[X(0)]

Re[X(2)]

Im[X(2)]

Re[WN
2t
]

Im[WN
2t
]

Re[X(1)]

Im[X(1)]

Re[WN
t
]

Im[WN
t
]

Re[X(3)]

Im[X(3)]

Re[WN
3t
]

Im[WN3
t
]

Re[X(0)]

Im[X(0)]

Re[X(1)]

Im[X(3)]

Re[X(2)]

Im[X(2)]

Re[X(3)]

Im[X(1)]CRNS

UNIT

(MULTS,

ADD,SUB)

Figure 8.7: Architecture for radix-4 FFT

8.2 Fault-tolerance

As computer chips become increasingly dense, the probability that some
part may fail also increases; however, the large number of components
also means that exhaustive testing is not likely to be practical. Therefore,
computational integrity has again become critical [20]. In this section we
discuss issues relating to computer reliability and how to achieve fault-free

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Applications 279

functioning of computer systems [7,8,9]. Residue number systems can be
useful in that regard.

There are two possible ways in which computers can be made more
reliable. The first is to make sure that the computing system remains
free of faults, which simply means that any potential fault that could arise
during the operation of the computer is detected and eliminated before
reliability of the system is affected. This also requires that no new faults
develop; so the approach is usually referred to as fault-prevention. The
second, and more practical, way is to accept no system is perfect and to
include in the system measures for dealing with faults as they arise. This is
called fault-tolerance. Fault-prevention requires that we be able to foresee
all possible faults that may arise in the system—a formidable task, since it
is difficult to predict the age of the physical components that are used in
the design. We may, therefore, conclude that it is difficult to ensure high
reliability through fault-prevention and that fault-tolerance is preferable.

The subject of fault-tolerance is vast, and, therefore, we shall restrict
ourselves to one specific area in fault-tolerance: how prevent errors that
occur in a system. Here, it should be noted that there is a difference
between a fault and an error. Whenever there is a fault, the fault may
cause an error in the system. This error can subsequently result in the
failure of the system. Thus, the aim of the fault-tolerance is to prevent
errors that may lead to system failure.

There are different phases associated with fault-tolerance: error-
detection, error-recovery and fault-treatment. Error detection is necessary
in order to tolerate faults. Although faults arising in a system cannot be
detected directly, errors arising out of faults can be detected. The damage
from error may lead to an erroneous system state. Error-recovery tech-
niques transform an erroneous system state into a well-defined state that
allows treatment to be effected in the subsequent state. Fault-treatment
enables a system to continue providing service, by guaranteeing that the
fault in question does recur immediately. It should be noted that the de-
tection of an error is not indicative of the type of fault that has occurred.
For example, an error in parity does not necessarily mean a transmission
error. Therefore, the first step in fault-treatment is to identify the nature
of a fault and then repair the fault or reconfigure the system so as to avoid
the fault.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

280 Residue Number Systems: Theory and Implementation

A fundamental concept in fault-tolerance is that of namely redundancy
Redundancy implies replication, and fault-tolerance depends on the effec-
tive deployment and utilization of the redundant hardware. Redundancy
may be implemented in hardware or in software. Hardware redundancy can
be categorized as static or dynamic. The difference between the two types
of redundancy lies in how redundant components are used. In static redun-
dancy, the redundant components within the system function in such a way
that effects from failure are not perceived by the system, whereas dynamic
redundancy provides an error-detection capability within the system, and
redundancy must be provided elsewhere to insure fault-tolerance.

mod

m

mod

m

= ?

mod

m

X

Figure 8.8: Error-checking using RNS codes

Although the primary motivation in the study of residue number sys-
tems has more been the implementation of fast arithmetic operations, there

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Applications 281

are some interesting properties associated with these systems that make
them ideally suited for the detection and correction of errors. The relevant
number systems here are the redundant ones that (RRNS) have been in-
troduced in Chapter 2. Regardless of whether RRNS are used, RNS codes,
because of their relatively small size, can facilitate the implementation inex-
pensive error-checking through redundancy. For example, a simple means
to check the result of an arithmetic operation would be to duplicate the
arithmetic unit, concurrently carry out the operation in two processors, and
then compare the two results for equality. As an alternative, using RNS,
we may proceed as follows. Instead of full replication of the arithmetic
unit, an RNS unit is used, the advantage being that for a suitable mod-
ulus, the RNS processor will generally be smaller than the corresponding
conventional unit. Then, for the arithmetic operation, X ⊗ Y , we concur-
rently compute both Z = X ⊗ Y and ZRNS = |XRNS ⊗ YRNS |m, where
m is some modulus, XRNS = |X|m, and YRNS = |Y |m. And from Z, we
compute Z∗RNS = |Z|m. Evidently, if no error has occurred, then we should
have Z∗RNS = ZRNS . The corresponding hardware organization is there-
fore as shown in Figure 8.8. To ensure that the implemented hardware is
efficient as possible, some care is needed in the choice of m; from preceding
discussions, a modulus of the form 2n − 1 is a good choice.

The arrangement of Figure 8.8 has several obvious limitations. One is
that, as the results of Chapter 2 show, it is most useful only for opera-
tions such as addition, subtraction, and multiplication. The other is that
although we can determine whether or not an error has occurred, we have
no means for locating the error or of correcting it, both of which can be
accomplished if all operations are carried out in the RNS domain.

Residue number systems, through the use of redundant moduli allow
the detection and correction of errors. Here, there are two essential as-
pects of RNS. The first is that because the residue representations carry no
weight information, an error in any digit-position in a given representation
does not affect any other digit-positions. The second is that there is no
significant-ordering of digits in an RNS representation, which means that
faulty digit-positions may be discarded with no effect other than the reduc-
tion of dynamic range. So, provided computed values can be constrained
to the new dynamic range, obtained by omitting the faulty digit-position,
computation can continue. These two properties therefore provide a basis
for a sort of fail-soft capability. Furthermore, if enough redundant moduli
are employed, then errors can be located precisely and corrections made.
In what follows, we shall initially assume only single-digit errors. There

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

282 Residue Number Systems: Theory and Implementation

basic results for such cases are from [7, 8, 14, 17]. Before proceeding, the
reader may find it the discussion in Chapter 1 of RRNS.

An RRNS with a single redundant modulus is sufficient for the detection
of single-digit errors. In such a system, it can be shown that if such an
error has occurred, then the number represented by the erroneous residue
representation will lie in the illegitimate range of the RRNS.

Example. Take the RRNS with the non-redundant moduli 2,3, and 5 and
the redundant modulus 7. The legitimate range is [0, 30), and the total
range is [0, 210). In this system 23 ∼= 〈1, 2, 3, 2〉. Suppose a one-bit error
occurs in the third residue, thus changing it from 3 to 2; that is, we have
the erroneous value X̃ ∼= 〈1, 2, 2, 2〉. The value of X̃ is 127, which lies in
the illegitimate range. end example

Therefore, the detection of single-digit errors can be accomplished by the
application of the Chinese Remainder Theorem (CRT) or Mixed-Radix
Conversion (MRC), to convert from residue representations, followed by
a range-determining comparison. It should, however, be noted that here
full mixed-radix conversion is not required: If no error has occurred, then,
because the result will be in the legitimate range, the digits corresponding
to the redundant moduli must all be 0s [21]. Therefore, an error is known
to have occurred if at least one of those digits is non-zero. In other words,
it is sufficient to determine only the mixed-radix digits; the actual value
that they represent is not required.

In order to be able to both detect and correct single-digit errors, at
least two redundant moduli are required. Evidently, the critical issues here
are how to isolate a faulty digit and how to determine its correct value.
There are two general ways in which these can be done. The first relies on
base extension, via the CRT or MRC; the second is based on the concept
of projections and is a variant of the use of the MRC [7].

Base extension may be used as follows [17]. During forward conversion,
the values of the redundant residues are computed. An arithmetic operation
is then carried out on the result-residues and used to obtain the redundant
residues of the result. If the two sets of redundant residues do not match,
then an error has occurred. The corrections can be simply implemented
by using the differences between the two residue-sets to address a lookup
table that yields the correct residues; this arrangement is shown in Figure
8.9. Alternatively the lookup tables may be replaced with additional com-
putations. It should also be noted that if the moduli used are of the special

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Applications 283

types, then base extension can be realized easily.

Forward

Converter

Module m1

Module m2

Reverse

Converter

Base

Extension

Module mN

Module mN+1

Module mN+2

Error

Table

-e

Correct

Result

x

Modulo

Channels

Figure 8.9: Error correction using through base extension

In what follows, we shall assume that we have a redundant residue
number system (RRNS) in which m1, m2, . . . , mN are the non-redundant

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

284 Residue Number Systems: Theory and Implementation

moduli and mN+1, mN+2, . . . , mN+R are the redundant moduli. That is,
the total range, MT , is determined by

∏N+R
i=1 mi, the legitimate range, M ,

by
∏N

i=1 mi, and the illegitimate range by MT−M . We will also assume that
the smallest redundant modulus is larger than the largest non-redundant
modulus, an important condition.

We shall now proceed to define projections show how they are used in
error detection and correction.

Definition. Suppose we have a moduli-set {m1, m2, ...mK} and that in
this system 〈x1, x2, · · ·xK〉 is the representation of some number, X, in the

dynamic range; that is xi = |X|mi , for i = 1, 2, . . . ,K. Then, Xi
4
= |X|M/mi

is said to be the mi-projection of X.

Evidently, the essential aspect of a projection is that it leaves out a
residue digit from a given RNS-representation. What makes the concept
of projections useful is this [21]: Suppose the moduli of an RRNS (R = 2)
satisfy the magnitude-condition given above and that the representation
of a legitimate number, X, has been corrupted into that of an illegitimate
number, X̃. Also, suppose that X̃i is a legitimate projection of X̃. Then
all other projections, X̃j , j 6= i are illegitimate. Furthermore, X̃i will be
the correct value for X. Therefore, it must be the case that the error is in
the residue xi and that the correct value for that digit is

∣∣∣X̃i

∣∣∣
mi

.

Example. Take the RRNS with the moduli-set {2, 3, 5, 7, 11}, where 7
and 11 are redundant. The legitimate range is [0, 30), and the total range
is [0, 2310). Suppose the representation of the legitimate number 23 ∼=
〈1, 2, 3, 2, 1〉 has an error in the residue-digit corresponding to the modulus
3. Then the new number is X̃ ∼= 〈1, 1, 3, 2, 1〉. The value of X̃ is 793, and
the projections of 793 with respect to each modulus are

7932 = |793|1155 = 793

7933 = |793|770 = 23

7935 = |793|462 = 331

7937 = |793|330 = 133

79311 = |793|210 = 163

Observe that now there is only one legitimate projection—the one with
respect to the modulus 3. We therefore conclude that the erroneous digit

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Applications 285

is in the second residue and that the correct value for that digit is |23|3,
which is 2. end example

In general, at least two redundant moduli are necessary for correction
when exactly one residue is in error.

Example. Consider the last example but without the redundant modulus
11—that is, the total range is now [0, 210)—and suppose that 〈1, 2, 3, 2〉 (the
representation of 23) has been corrupted into 〈1, 1, 3, 2〉. The projections
are now

7932 = |793|105 = 58

7933 = |793|70 = 23

7935 = |793|42 = 37

7937 = |793|30 = 13

We now have two legitimate projections but cannot tell which corresponds
to the erroneous digit. end example

From the above, it would appear that in an RRNS with a total of
N + R moduli, N + R − 1 projections are required in order to isolate a
single faulty digit. Nevertheless, the results above are readily extendible to
the case where a projection is defined with respect to several moduli [15].
Thus the number of projections can be reduced by taking several moduli
at a time.

We may now generalize our observation as follows. Suppose we have an
RRNS with R redundant moduli, such that R ≥ 2 and the moduli satisfy
the magnitude-condition stated above. Then a single residue-error in the
i-th position in the representation of X, a number in the legitimate range,
can be unambiguously located. Furthermore, there will be only one mi-
projection of the resulting illegitimate number that lies in the legitimate
range, and this number is the correct, legitimate value.

In general, the above observation can be extended, to this: if there are
R redundant moduli, then it is possible to detect R − 1 errors and correct
R/2 errors.

The methods above that rely on MRC are inherently slow, because the
MRC is a sequential process. The CRT, which provides a faster (in theory)
method for reverse conversion and base extension, may be used instead. For

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

286 Residue Number Systems: Theory and Implementation

the detection of single-digit errors, it can be shown that approximate CRT
decoding, rather than full decoding, is sufficient [11]; such decoding is based
on the scaling of values by a power of two, as discussed in Chapters 2 and
6. Error-correction must still be carried out as above, e.g. via projections.

8.3 Communications

The multiple-access technique used in communication engineering is one
way of efficiently allocating a rare communication resource, namely, the
radio spectrum. This techniques becomes meaningful when a large number
of users seek to communicate with each other simultaneously. This sharing
of the frequency spectrum must be done in such a way that it does not
negatively affect the quality of performance of the system. It is also often
desirable to allow a user to send and receive information simultaneously.
This can be achieved by duplexing in the time domain or in the frequency
domain. Multiple-access techniques allow several users to communicate
simultaneously while providing each user with duplexing capability.

There are three major access techniques that are used to share available
bandwidth: frequency-division multiple access (FDMA), time-division
multiple access (TDMA), and code-division multiple access (CDMA) These
three techniques can be broadly categorized as narrowband and wideband .

In narrowband FDMA, the available radio spectrum is divided into a
large number of narrowband channels, and each user is allocated a frequency
band. Duplexing in this scheme is achieved by employing two frequencies
within each band. In order to minimize interference between the transmit-
ted and received messages for the same user, a large frequency-separation
is imposed between the two. In narrowband TDMA systems, the same fre-
quency is used for many users; but each user is allocated a unique time-slot
in a cyclic manner, and within that time-slot, the user is allowed to trans-
mit and receive information. Duplexing in TDMA is achieved by either
frequency-division or time-division.

CDMA is a form of spread-spectrum multiple-access in which the trans-
mission bandwidth is several orders of magnitude greater than the minimum
required RF bandwidth. In this scheme, a narrowband signal is translated
into a wideband noise-like signal before being transmitted. In general,
spread spectrum techniques are robust against interference. The spread-
spectrum technique is not spectrally efficient if the entire bandwidth is used
for a single user. Nevertheless, by allowing several users to access the same

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Applications 287

channel and separating each from the other, spread-spectrum techniques
can be made efficient. The most commonly used spread-spectrum tech-
niques are frequency hopped multiple access (FHMA) and CDMA. In FHMA
the carrier frequency of individual users is varied in a pseudo-random man-
ner. Multiple access is achieved by allowing each user to dwell at a specific
narrowband channel for a particular period of time. The duration and
the narrowband channel are determined by a pseudo-random code allo-
cated to that user. Information is divided into uniformly sized packets
that are transmitted on different channels. The difference between FDMA
and FHMA systems lies in the fact that in FHMA system, the frequency-
hopped signal from the user changes channels at a rapid rate, whereas in
the FDMA system the frequency allocated to a single user remains fixed
during the entire usage period.

In CDMA systems, the message is exclusively-ored with a very large
bandwidth signal called the spreading signal. The spreading signal is usually
a pseudo-random code sequence that consists of a large number pulses called
chips. In CDMA, several users access the same channel, and separation
between users is accomplished by assigning each user a unique spreading
code. In the receiver, the signals are time-correlated with the desired user
code [13].

CDMA techniques differ from FDMA and TDMA in several aspects:

• In a duplex environment, the transmission techniques used in both
directions are different, unlike in FDMA and TDMA;

• in CDMA, there are two stages of modulation;
• variable bit rate is used to achieve higher efficiency;
• and each radio channel is used only once whereas in FDMA and

TDMA each user is allocated a channel.

In order to minimize interference, the pseudorandom codes that are assigned
to different users have to be unique. Therefore, if there are a large number
of users, the number of such sequences to be generated is also large. The
use of RNS in generating the CDMA signals is explained next.

Consider a typical M-ary orthogonal CDMA system. In the physical
layer of the reverse channel, the input data is first coded using convolution
coding techniques. In order to maintain the required data rate, the coded
bits are repeated and then interleaved to prevent narrowband interference
from corrupting the data. The data bits are grouped into blocks of, say, 6
bits each. Each block of 6 input bits produces a sequence of 64 bits. These
64 bits correspond to a row in a 64 × 64 Walsh modulator. Each row in

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

288 Residue Number Systems: Theory and Implementation

a Walsh matrix is orthogonal to every other 63 rows. By encoding 6-bit
blocks of the Walsh matrix, the symbols are made orthogonal. The output
from the Walsh encoder is the modulated radio-frequency carrier.

In order to see how RNS can benefit the CDMA system, in terms of
the number of orthogonal sequences, consider a similar conventional sys-
tem. Let {7, 11, 13, 15, 16} be the moduli-set chosen for the RNS. The

dynamic range is given by
5∏

i=1

mi − 1 = 240239 The symbol length is then
⌊
log2

(
5∏

i=1

mi

)⌋
= 17. So, any symbol of 17 bits can be chosen within

the given dynamic range. For any number within the dynamic range, each
of the moduli, mi, 1 ≤ i ≤ 15, will at most produce mi residues. There-
fore, the total of all possible residues that a given number will produce is
5∑

i=1

mi = 62. In this RNS-based CDMA system, only 62 orthogonal signals

are required. So, to transmit a 17-bit symbol, only 5 residues are required,
and five orthogonal waveforms corresponding to these five residues can be
chosen from a set of 62 orthogonal signals. On the other hand, in the con-
ventional M-ary orthogonal CDMA systems, the number orthogonal signals
required will then be 217 = 240240, several orders of magnitude larger than
that of the RNS-based CDMA system.

In summary, there are two other primary advantages to using RNS in the
CDMA systems. First, with extra moduli, fault detection and correction
features can readily be incorporated into the system. Second, since the
number of bits per symbol is increased, the data rates can also be increased.
A description and performance analysis of an RNS CDMA system will be
found in [13].

8.4 Summary

Residue number systems are well suited for applications in which the pre-
dominant arithmetic operations are addition and multiplication. This in-
cludes many algorithms used in digital signal processing, and we have dis-
cussed the particular cases of digital filters and transforms. Residue number
systems can also be usefully applied in the implementations of communica-
tion systems; a very brief example has been given.

The detection and correction of errors will become increasingly impor-
tant as computer chips become larger and more dense. Residue number
systems have properties—the absence of carries in arithmetic operations

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Applications 289

and the lack of significance-ordering among digits of a representation—
that make them potentially very useful in this regard. We have given a
brief introduction of such matters. In that introduction, we have implic-
itly assumed that we are dealing with fixed-point arithmetic. Nevertheless,
residue number systems can also be useful for error detection and correc-
tion in floating-point arithmetic [16, 25]. Examples of other applications of
RNS will be found in [29, 30, 31, 32].

References

(1) W. K. Jenkins. 1980. Complex residue number arithmetic for high
speed signal processing. Electronic Letters, 16(17):282–283.

(2) C. L. Wang. 1994. New bit serial VLSI implementation of RNS FIR
digital filters. IEEE Transactions on Circuits and Systems–II , 41(11):
768–772

(3) K. P. Lim and A. B. Premkumar. 1999. A modular approach to
the computation of the convolution sum using distributed arithmetic
principles. IEEE Transactions on Circuits and Systems–II , 46(1):92–
96.

(4) F. J. Taylor. 1990. An RNS Discrete Fourier Transform implementa-
tion. IEEE Transactions on Acoustics, Speech and Signal Processing ,
38(8):1386–1394.

(5) B. Tseng, G. A. Jullien and W. C. Miller. 1992. Implementation of
FFT structures using the residue number systems. IEEE Transactions
on Computers, 28(11):1453–1979.

(6) F. J. Taylor. 1987. A residue arithmetic implementation of FFT.
Journal of Parallel and Distributed Computing , 4:191–208

(7) F. Barsi and P. Maestrini. 1973. Error correcting properties of re-
dundant residue number systems. IEEE Transactions on Computers,
22(2):307–315.

(8) Barsi and P. Maestrini. 1974. Error detection and correction by prod-
uct codes in residue number systems, IEEE Transactions on Comput-
ers, 23(9):915–923.

(9) V. Ramachandran. 1993. Single error correction in residue number
system. IEEE Transactions on Computers, 32(3): 504–507.

(10) R. J. Cosentino. 1988. Fault-tolerance in systolic residue arithmetic
processor array. IEEE Transactions on Computers, 37(7): 886–890.

(11) G. A. Orton, L. E. Peppard, and S. E. Tavares. 1992. New fault-

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

290 Residue Number Systems: Theory and Implementation

tolerant techniques for residue number systems. IEEE Transactions
on Computers, 41(11): 1453–1464.

(12) E. D. Di Claudio, G. Orlandi and F. Piazza. 1993. A systolic redun-
dant residue arithmetic error correction circuit. IEEE Transactions
on Computers, 42(4): 427–432.

(13) L. L. Yang and L. Hanzo. 1999. Residue number system based mul-
tiple code DS-CDMA systems. In: Proceedings, International Sympo-
sium on Circuits and Systems (ISCAS), pp: 1450–1453.

(14) D. Mandelbaum. 1972. Error correction in residue arithmetic. IEEE
Transactions on Computers, C-21:538–545.

(15) S.-S. Wang and M.-Y. Shen. 1995. Single error residue correction
based on k-term mj projection. IEEE Transactions on Computers,
44(1):129–131.

(16) J.-C. Lo. 1994. Reliable floating-point arithmetic algorithms for error-
coded operands. IEEE Transactions on Computers, 43(4):400–412.

(17) R. W. Watson and C. W. Hastings. 1966. Self-checked computation
using residue arithmetic. Proceedings of the IEEE , 54:1920–1931.

(18) S. S. Yau and Y. Liu. 1973. Error correction in redundant residue
number systems. IEEE Transactions on Computers, C-22:5–11.

(19) C.-C. Su and H.-Y. Lo. 1990. An algorithm for scaling and single
residue error correction in residue number systems. IEEE Transac-
tions on Computers, 39(8):1053–1063.

(20) M. J. Flynn and P. Huang. 2005. Microprocessor design: thoughts on
the road ahead. IEEE Micro, 25(3):16–31.

(21) M. H. Etzel and W.K .Jenkins. 1980. Residue number systems for er-
ror detection and correction. IEEE Transactions on Acoustics, Speech,
and Signal Processing , ASSP-28:538–544.

(22) F. Barsi and M. Maestrini. 1978. A class of multiple-error-correcting
arithmetic residue codes. Information and Control , 36:28–41.

(23) W. K. Jenkins and E. J. Altman. 1988. Self-checking properties or
residue number error checkers based on mixed radix conversion. IEEE
Transactions on Circuits and Systems, 35:159–167.

(24) W. K. Jenkins. 1983. Design of error checkers for self-checking residue
number arithmetic. IEEE Transactions on Computers, C-32:388–396.

(25) E. Kinoshita and K.-J. Lee. 1997. A residue unit for reliable scientific
computation. IEEE Transactions on Computers, 46(2):129–138.

(26) GC. Cardarilli, A. Nannarelli and M. Re. 2000. Reducing Power Dis-
sipation in FIR Filters using the Residue Number System, in: Pro-
ceedings, 43rd IEEE Midwest Symposium on Circuits and Systems.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Applications 291

(27) A. Nannarelli, M. Re and GC. Cardarilli. 2001. in: Proceedings,
International Symposium on Circuits and Systems (ISCAS), Vol. II,
pp. 305–308

(28) C. S. Burrus. 1977. Digital filter structures described by distributed
arithmetic. IEEE Transactions on Circuits and Systems,

(29) W. Wang, M. N. S. Swamy, and M. O. Ahmad. 2004. RNS applica-
tions for digital signal processing. In: Proceedings, 4th International
Workshop on System-on-Chip Real-Time Applications (IWSOC’04).

(30) S.-M. Yen, S. Kim, S. Lim, and S.-J. Moon. 2003. RSA speedup with
Chinese Remainder Theorem immune against hardware fault crypt-
analysis. IEEE Transactions on Computers, 52(4):461–472.

(31) Javier Ramrez 1, Antonio Garca 1, Pedro G. Fernndez 2 and Antonio
Lloris. 2000. An efficient RNS architecture for the computation of
dicrete wavelet transform on programmable devices. In: Proccedings,
X European Signal Processing Processing Conference, pp. 255–258.

(32) A. Drolshagen, C. Chandra Sekhar, and W. Anheier. 1997. A residue
number arithmetic based circuit for pipelined computation of autocor-
relation coefficients of speech signal. In: Proceedings, 11th Conference
on VLSI Design: VLSI for Signal Processing.

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

This page intentionally left blankThis page intentionally left blank

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Index

adder
carry-lookahead, 91
carry-ripple, 85
carry-save, 141
carry-select, 108
carry-skip, 88
conditional-sum, 97
multi-operand, 63
multi-operand modular, 63
parallel-prefix, 127
ripple, 85

addition
residues, 29

additive inverse, 27
arbitrary moduli-sets

conversion, 68
forward conversion, 58

assimilation, 141
base, 6
base extension, 14, 223
basic period, 66
Booth recoding, 144
carry

generation, 91
partial, 141
propagate, 88
propagation, 91
transfer, 91

carry-lookahead adder, 91
carry-ripple adder, 85
carry-save adder, 141
carry-select adder, 108

carry-skip adder, 88
CDMA, 286
Chinese Remainder Theorem, 39, 213

approximate, 194, 206
chips, 287
Code Division Multiple Access, 286
comparison, 194
complex-number arithmetic, 17
complex numbers, 40
compressor, 149
conditional-sum adder, 97
congruence, 6, 22
conventional multiplication, 138
conversion

forward, 13, 49
arbitrary moduli-sets, 58, 68
extended special moduli-sets,

56
modular exponentiation, 68
special moduli-sets, 50

mixed-radix, 213, 227
reverse, 13, 213

convolution sum, 264
core function, 213, 234
Core Function, 197, 200
CRT, 39, 213

approximate, 194, 206
cyclic property of residues, 65
DA, 264
delay element, 257
digital filter, 257
digital signal processing, 256

293

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

294 Residue Number Systems: Theory and Implementation

diminished-radix complement, 4
Discrete Fourier Transform, 272
distributed arithmetic, 264
division, 34, 201

multiplicative, 201, 207
non-restoring, 202
residue, 13
residue number systems, 34
restoring, 202–203
SRT, 202, 206, 221
subtractive, 201–202

DSP, 256
dynamic range, 7
dynamic redundancy, 280
error correction, 17
error detection, 17, 279
error recovery, 279
error treatment, 279
extended special moduli-sets

forward conversion, 56
fault prevention, 279
fault-tolerance, 17, 279
FDMA, 286
Fermat’s Theorem, 32
finite impulse response filter, 257
FIR filter, 257
fixed-point number system, 1
floating-point number system, 1
forward conversion, 13, 49

arbitrary moduli-sets, 58, 68
extended special moduli-sets, 56
modular exponentiation, 68
special moduli-sets, 50
special moduli-sets , 52

Fourier Series, 272
frequency-division Multiple Access,

286
harmonics, 273
high-radix multiplication, 142
high-radix reverse conversion, 248
IDFT, 274
IIR filter, 263
impulse response, 257
indices, 37
infinite impulse response filter, 257,

263

inner products, 264
interference, 286
inverse

additive, 27
multiplicative, 31

Inverse DFT, 274
MAC, 150
mixed-radix conversion, 213, 227
mixed-radix number system, 2, 13,

227
modular exponentiation, 68
modular multiplication, 137
modulus, 6

redundant, 224
multi-operand modular adder, 63
multiplication

conventional, 138
high-radix, 142
modular, 137
residue, 12, 137
residues, 29

multiplicative division, 201, 207
multiplicative inverse, 31
multiplier

parallel-array, 145
Wallace-tree, 146

multiplier recoding, 144
multiply-accumulate, 150
multiply-add, 150
narrowband, 286
negative numbers, 10

representation, 2
Newton-Raphson procedure, 208
non-residue

quadratic, 40
non-restoring division, 202
number representation

residue number system, 24
number system

fixed-point, 1
floating-point, 1
mixed-radix, 13, 227
mixed-radix , 2
positional, 2
redundant signed-digit number, 5
residue, 6

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

Applications 295

single-radix , 2
weighted, 2

one’s complement, 2
representation, 3

one-hot encoding, 14
overflow, 197
parallel-array multiplier, 145
parallel-prefix adder, 127
parity, 197
partial carry, 141
partial sum, 141
periodicity of residues, 66
period of residues, 66
pipelining, 263
polarity shift, 43
positional number system, 2
primitive root, 38
primitive roots, 37
projection, 284
quadratic non-residue, 40
quadratic residue, 40
radix, 6
radix complement, 4
radix point, 1
radix-r, 276
range

dynamic, 7
recoding, 144
redundancy, 280

dynamic, 280
static, 280

redundant modulus, 224
redundant residue number system, 7,

42
redundant residue number systems,

281
redundant signed-digit number

system, 5
redundant signed-digit set, 5
residue, 7

cyclic property, 65
period, 66
periodicity, 66
quadratic, 40

residue multiplication, 137
residue number system, 6

complex-number, 40
number representation, 24
redundant, 7, 42
standard, 7

residue number systems
redundant, 281

residues
addition, 29
subtraction, 29

residue-set, 7
restoring division, 202–203
reverse conversion, 13, 213, 259

high-radix, 248
special moduli-sets, 237

ripple adder, 85
RRNS, 42
scaling, 36, 198
short period, 66
sign-and-magnitude, 2

representation, 2
sign-determination, 197, 206

approximate, 206
sign digit, 3–4
single-radix number system, 2
special moduli-sets

conversion, 50
reverse conversion, 237

spreading signal, 287
spread spectrum, 286
squaring, 150
SRT division, 202, 206, 221
stability, 264
standard residue number system, 7
static redundancy, 280
subfilter, 262
subtraction

residue, 12
residues, 29

subtractive division, 201–202
sum

partial, 141
taps, 257
TDMA, 286
throughput, 263
time-division Multiple Access, 286
twiddle factor, 276

May 4, 2007 9:12 World Scientific Book - 9in x 6in book-main

296 Residue Number Systems: Theory and Implementation

two’s complement, 2
representation, 3

unit circle, 264
unit delay, 257
VLSI, 258
Wallace-tree multiplier, 146
weight, 217
wideband, 286
zero

fixed-point representation, 3–4
zeros of filter, 258

	Contents
	Preface
	Acknowledgements
	1. Introduction
	1.1 Conventional number systems
	1.2 Redundant signed-digit number systems
	1.3 Residue number systems and arithmetic
	1.3.1 Choice of moduli
	1.3.2 Negative numbers
	1.3.3 Basic arithmetic
	1.3.4 Conversion
	1.3.5 Base extension
	1.3.6 Alternative encodings

	1.4 Using residue number systems
	1.5 Summary
	References

	2. Mathematical fundamentals
	2.1 Properties of congruences
	2.2 Basic number representation
	2.3 Algebra of residues
	2.4 Chinese Remainder Theorem
	2.5 Complex residue-number systems
	2.6 Redundant residue number systems
	2.7 The Core Function
	2.8 Summary
	References

	3. Forward conversion
	3.1 Special moduli-sets
	3.1.1 {2n–1, 2n; 2n+1g} moduli-sets
	3.1.2 Extended special moduli-sets

	3.2 Arbitrary moduli-sets: look-up tables
	3.2.1 Serial/sequential conversion
	3.2.2 Sequential/parallel conversion: arbitrary partitioning
	3.2.3 Sequential/parallel conversion: periodic partitioning

	3.3 Arbitrary moduli-sets: combinational logic
	3.3.1 Modular exponentiation
	3.3.2 Modular exponentiation with periodicity

	3.4 Summary
	References

	4. Addition
	4.1 Conventional adders
	4.1.1 Ripple adder
	4.1.2 Carry-skip adder
	4.1.3 Carry-lookahead adders
	4.1.4 Conditional-sum adder
	4.1.5 Parallel-pre¯x adders
	4.1.6 Carry-select adder

	4.2 Residue addition: arbitrary modulus
	4.3 Addition modulo 2n–1
	4.3.1 Ripple adder
	4.3.2 Carry-lookahead adder
	4.3.3 Parallel-prefix adder

	4.4 Addition modulo 2n + 1
	4.4.1 Diminished-one addition
	4.4.2 Direct addition

	4.5 Summary
	References

	5. Multiplication
	5.1 Conventional multiplication
	5.1.1 Basic binary multiplication
	5.1.2 High-radix multiplication

	5.2 Conventional division
	5.2.1 Subtractive division
	5.2.2 Multiplicative division

	5.3 Modular multiplication: arbitrary modulus
	5.3.1 Table lookup
	5.3.2 Modular reduction of partial products
	5.3.3 Product partitioning
	5.3.4 Multiplication by reciprocal of modulus
	5.3.5 Subtractive division

	5.4 Modular multiplication: modulus 2n–1
	5.5 Modular multiplication: modulus 2n + 1
	5.6 Summary
	References

	6. Comparison, overflow-detection, sign-determination, scaling, and division
	6.1 Comparison
	6.1.1 Sum-of-quotients technique
	6.1.2 Core Function and parity

	6.2 Scaling
	6.3 Division
	6.3.1 Subtractive division
	6.3.1.1 Basic subtractive division
	6.3.1.2 Pseudo-SRT division

	6.3.2 Multiplicative division

	6.4 Summary
	References

	7. Reverse conversion
	7.1 Chinese Remainder Theorem
	7.1.1 Pseudo-SRT implementation
	7.1.2 Base-extension implementation

	7.2 Mixed-radix number systems and conversion
	7.3 The Core Function
	7.4 Reverse converters for f2n ¡ 1; 2n; 2n + 1g moduli-sets
	7.5 High-radix conversion
	7.6 Summary
	References

	8. Applications
	8.1 Digital signal processing
	8.1.1 Digital filters
	8.1.1.1 Finite Impulse Response ¯lters
	8.1.1.2 Infinite Impulse Response Filters

	8.1.2 Sum-of-products evaluation
	8.1.3 Discrete Fourier Transform
	8.1.3.1 Fourier Series

	8.1.4 RNS implementation of the DFT

	8.2 Fault-tolerance
	8.3 Communications
	8.4 Summary

	References
	Index

