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Series Introduction

The primary objectives of the Biostatistics Book Series are to provide
useful reference books for researchers and scientists in academia, indus-
try, and government, and also to o¤er textbooks for undergraduate and/or
graduate courses in the area of biostatistics. This book series will provide
comprehensive and uni�ed presentations of statistical designs and analyses
of important applications in biostatistics, such as those in biopharmaceu-
ticals. A well-balanced summary will be given of current and recently de-
veloped statistical methods and interpretations for both statisticians and
researchers/scientists with minimal statistical knowledge who are engaged
in the �eld of applied biostatistics. The series is committed to providing
easy-to-understand, state-of-the-art references and textbooks. In each vol-
ume, statistical concepts and methodologies will be illustrated through real
world examples.
In the past several decades, it is recognized that increasing spending

of biomedical research does not re�ect an increase of the success rate of
pharmaceutical (clinical) development. As a result, the United States Food
and Drug Administration (FDA) kicked o¤ a Critical Path Initiative to
assist the sponsors in identifying the scienti�c challenges underlying the
medical product pipeline problems. In 2006, the FDA released a Critical
Path Opportunities List that outlines 76 initial projects (six broad topic
areas) to bridge the gap between the quick pace of new biomedical discov-
eries and the slower pace at which those discoveries are currently developed
into therapies. Among the 76 initial projects, the FDA calls for advancing
innovative trial designs, especially for the use of prior experience or accu-
mulated information in trial design. Many researchers interpret it as the
encouragement for the use of adaptive design methods in clinical trials.
In clinical trials, it is not uncommon to modify trial and/or statistical

procedures during the conduct of clinical trials based on the review of in-
terim data. The purpose is not only to e¢ ciently identify clinical bene�ts
of the test treatment under investigation, but also to increase the probabil-
ity of success of clinical development. The use of adaptive design methods
for modifying the trial and/or statistical procedures of on-going clinical tri-
als based on accrued data has been practiced for years in clinical research.
However, it is a concern whether the p-value or con�dence interval regarding
the treatment e¤ect obtained after the modi�cation is reliable or correct.
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In addition, it is also a concern that the use of adaptive design methods in
a clinical trial may lead to a totally di¤erent trial that is unable to address
scienti�c/medical questions that the trial is intended to answer. In their
book, Chow and Chang (2006) provided a comprehensive summarization
of statistical methods for the use of adaptive design methods in clinical tri-
als. This volume provides useful approaches for implementation of adaptive
design methods in clinical trials through the application of statistical soft-
ware such as SAS and R. It covers statistical methods for various adaptive
designs such as adaptive group sequential design, adaptive dose-escalation
design, adaptive seamless phase II/III trial design (drop-the-losers design),
and biomarker-adaptive design. It would be bene�cial to practitioners such
as biostatisticians, clinical scientists, and reviewers in regulatory agencies
who are engaged in the areas of pharmaceutical research and development.

Shein-Chung Chow
Editor-in-Chief



Preface

This book is about adaptive clinical trial design and computer implemen-
tation. Compared to a classic trial design with static features, an adaptive
design allows for changing or modifying the characteristics of a trial based
on cumulative information. These modi�cations are often called adapta-
tions. The word �adaptation�is so familiar to us because we make adapta-
tions constantly in our daily lives according what we learn over time. Some
of the adaptations are necessary for survival, while others are made to im-
prove our quality of life. We should be equally smart in conducting clinical
trials by making adaptations based on what we learn as a trial progresses.
These adaptations are made because they can improve the e¢ ciency of the
trial design, provide earlier remedies, and reduce the time and cost of drug
development. An adaptive design is also ethically important. It allows for
stopping a trial earlier if the risk to subjects outweighs the bene�t, or when
there is early evidence of e¢ cacy for a safe drug. An adaptive design may
allow for randomizing more patients to the superior treatment arms and
reducing exposure to ine¢ cacious, but potentially toxic, doses. An adap-
tive design can also be used to identify better target populations through
early biomarker responses.
The aims of this book are to provide a uni�ed and concise presentation

of adaptive design theories; furnish the reader with computer programs
in SAS and R (also available at www.statisticians.org) for the design and
simulation of adaptive trials; and o¤er (hopefully) a quick way to master
the di¤erent adaptive designs through examples that are motivated by real
issues in clinical trials. The book covers broad ranges of adaptive methods
with an emphasis on the relationships among di¤erent methods. As Dr.
Simon Day pointed out, there are good and bad adaptive designs; a design
is not necessarily good just because it is adaptive. There are many rules
and issues that must be considered when implementing adaptive designs.
This book has included most current regulatory views as well as discussions

ix
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of challenges in planning, execution, analysis, and reporting for adaptive
designs.
From a "big picture" view, drug development is a sequence of decision

processes. To achieve ultimate success, we cannot consider each trial as
an isolated piece; instead, a drug�s development must be considered an
integrated process, using Bayesian decision theory to optimize the design
or program as explained in Chapter 16. It is important to point out that
every action we take at each stage of drug development is not with the
intent of minimizing the number of errors, but minimizing the impact of
errors. For this reason, the power of a hypothesis test is not the ultimate
criterion for evaluating a design. Instead, many other factors, such as time,
safety, and the magnitude of treatment di¤erence, have to be considered
in a utility function. From an even bigger-picture view, we are working
in a competitive corporate environment, and statistical game theory will
provide the ultimate tool for drug development. In the last chapter of
the book, I will pursue an extensive discussion of the controversial issues
about statistical theories and the fruitful avenues for future research and
application of adaptive designs.
Adaptive design creates a new landscape of drug development. The

statistical methodology of adaptive design has been greatly advanced by
literature in recent years, and there are an increasing number of trials
with adaptive features. The PhRMA and BIO adaptive design working
groups have made great contributions in promoting innovative approaches
to trial design. In preparing the manuscript of this book, I have bene�ted
from discussions with following colleagues: Shein-Chung Chow, Michael
Krams, Donald Berry, Jerry Schindler, Michael Chernick, Bruce Turnbull,
Barry Turnbull, Sue-Jane Wang (FDA), Vladimir Dragalin, Qing Liu, Si-
mon Day (MHRA), Susan Kenley, Stan Letovsky, Yuan-Yuan Chiu, Jonca
Bull, Gorden Lan, Song Yang, Gang Chen, Meiling Lee, Alex Whitmore,
Cyrus Mehta, Carl-Fredrik Burman, Richard Simon, George Chi, James
Hung (FDA), Aloka Chakravarty (FDA), Marc Walton (FDA), Robert
O�Neill (FDA), Paul Gallo, Christopher Jennison, Jun Shao, Keaven An-
derson, Martin Posch, Stuart Pocock, Wassmer Gernot, Andy Grieve,
Christy Chung, Je¤Maca, Alun Bedding, Robert Hemmings (MHRA), Jose
Pinheiro, Je¤ Maca, Katherine Sawyer, Sara Radcli¤e, Jessica Oldham,
Christian Sonesson, Inna Perevozskaya, Anastasia Ivanova, Brenda Gaydos,
Frank Bretz, Wenjin Wang, Suman Bhattacharya, and Judith Quinlan.
I would like to thank Hua Liu, PhD, Hugh Xiao, PhD, Andy Boral,

MD, MingXiu Hu, PhD, Alun Bedding, PhD, and Jing Xu, PhD, for their
careful review and many constructive comments. Thanks to Steve Lewitzky,
MS, Kate Rinard, MS, and Frank Chen, MS, Hongliang Shi, MS, Tracy
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Zhang, MS, and Rachel Neuwirth MS for support. I wish to express my
gratitude to the following individuals for sharing their clinical, scienti�c,
and regulatory insights about clinical trials: Andy Boral, MD, Iain Web,
MD, Irvin Fox, MD, Jim Gilbert, MD, Ian Walters, MD, Bill Trepicchio,
PhD, Mike Cooper, MD, Dixie-Lee Esseltine, MD, Jing Marantz, MD, Chris
Webster, and Robert Pietrusko, Pharm D.
Thanks to Jane Porter, MS, Nancy Simonian, MD, and Lisa Aldler, BA

for their support during the preparation of this book. Special thanks to Lori
Engelhardt, MA, ELS, for careful reviews and many editorial comments.
From Taylor and Francis, I would like to thank David Grubbs, Sunil

Nair, Jay Margolis, and Amber Donley for providing me the opportunity
to work on this book.

Mark Chang
Millennium Pharmaceuticals, Inc.,
Cambridge, Massachusetts, USA
Mark.Chang@statisticians.org
www.statisticians.org
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Chapter 1

Introduction

1.1 Motivation

Investment in pharmaceutical research and development has more than
doubled in the past decade; however, the increase in spending for biomed-
ical research does not re�ect an increased success rate of pharmaceutical
development. Figure 1.1 (Data source: PAREXEXL, 2003) illustrates the
increase in biomedical research spending and the decrease in NDA (new
drug application) submissions over the past ten years.
It is recognized that the increasing spending for biomedical research

does not re�ect an increased success rate of pharmaceutical development.
Reasons for this include (1) a diminished margin for improvement escalates
the level of di¢ culty in proving drug bene�ts; (2) genomics and other new
science have not yet reached their full potential; (3) mergers and other
business arrangements have decreased candidates; (4) easy targets are the
focus as chronic diseases are more di¢ cult to study; (5) failure rates have
not improved; and (6) rapidly escalating costs and complexity decrease will-
ingness/ability to bring many candidates forward into the clinic (Woodcock,
2004).
There are several critical areas for improvement in drug development.

One of the obvious areas for improvement is the design, conduct, and analy-
sis of clinical trials. Improvement of the clinical trials process includes (1)
the development and utilization of biomarkers or genomic markers, (2) the
establishment of quantitative disease models, and (3) the use of more infor-
mative designs such as adaptive and/or Bayesian designs. In practice, the
use of clinical trial simulation, the improvement of clinical trial monitoring,
and the adoption of new technologies for prediction of clinical outcome will
also help in increasing the probability of success in the clinical development
of promising candidates. Most importantly, we should not use the evalu-
ation tools and infrastructure of the last century to develop this century�s

1
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advances. Instead, an innovative approach using adaptive design methods
for clinical development must be implemented.

Figure 1.1: Trends in NDAs Submitted to FDA

In the next section, we will provide the de�nition of adaptive design
and brief descriptions of commonly used adaptive designs. In Section 1.3,
the importance of computer simulation is discussed. In Section 1.4, we will
provide the road map for this book.

1.2 Adaptive Design Methods in Clinical Trials

An adaptive design is a clinical trial design that allows adaptations or
modi�cations to aspects of the trial after its initiation without undermining
the validity and integrity of the trial (Chang, 2005; Chow, Chang, and Pong,
2005). The PhRMAWorking Group de�nes an adaptive design as a clinical
study design that uses accumulating data to decide how to modify aspects
of the study as it continues, without undermining the validity and integrity
of the trial (Gallo, et al., 2006; Dragalin, 2006).
The adaptations may include, but are not limited to, (1) a group sequen-

tial design, (2) an sample-size adjustable design, (3) a drop-losers design, (4)
an adaptive treatment allocation design, (5) an adaptive dose-escalation de-
sign, (6) a biomarker-adaptive design, (7) an adaptive treatment-switching
design, (8) an adaptive dose-�nding design, and (9) a combined adaptive
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design. An adaptive design usually consists of multiple stages. At each
stage, data analyses are conducted, and adaptations are taken based on
updated information to maximize the probability of success. An adaptive
design is also known as a �exible design (EMEA, 2002).
An adaptive design has to preserve the validity and integrity of the trial.

The validity includes internal and external validities. Internal validity is
the degree to which we are successful in eliminating confounding variables
and establishing a cause-e¤ect relationship (treatment e¤ect) within the
study itself. A study that readily allows its �ndings to generalize to the
population at large has high external validity. Integrity involves minimizing
operational bias; creating a scienti�cally sound protocol design; adhering
�rmly to the study protocol and standard operating procedures (SOPs);
executing the trial consistently over time and across sites or country; pro-
viding comprehensive analyses of trial data and unbiased interpretations of
the results; and maintaining the con�dentiality of the data.

1.2.1 Group Sequential Design

A group sequential design (GSD) is an adaptive design that allows for
premature termination of a trial due to e¢ cacy or futility, based on the
results of interim analyses. GSD was originally developed to obtain clinical
bene�ts under economic constraints. For a trial with a positive result,
early stopping ensures that a new drug product can be exploited sooner.
If a negative result is indicated, early stopping avoids wasting resources.
Sequential methods typically lead to savings in sample-size, time, and cost
when compared with the classic design with a �xed sample-size. Interim
analyses also enable management to make appropriate decisions regarding
the allocation of limited resources for continued development of a promising
treatment. GSD is probably one of the most commonly used adaptive
designs in clinical trials.
Basically, there are three di¤erent types of GSDs: early e¢ cacy stopping

design, early futility stopping design, and early e¢ cacy/futility stopping
design. If we believe (based on prior knowledge) that the test treatment
is very promising, then an early e¢ cacy stopping design should be used.
If we are very concerned that the test treatment may not work, an early
futility stopping design should be employed. If we are not certain about
the magnitude of the e¤ect size, a GSD permitting both early stopping
for e¢ cacy and futility should be considered. In practice, if we have a
good knowledge regarding the e¤ect size, then a classic design with a �xed
sample-size would be more e¢ cient.
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1.2.2 Sample-Size Re-estimation Design

A sample-size re-estimation (SSR) design refers to an adaptive design that
allows for sample-size adjustment or re-estimation based on the review of
interim analysis results (Figure 1.2). The sample-size requirement for a trial
is sensitive to the treatment e¤ect and its variability. An inaccurate esti-
mation of the e¤ect size and its variability could lead to an underpowered
or overpowered design, neither of which is desirable. If a trial is under-
powered, it will not be able to detect a clinically meaningful di¤erence, and
consequently could prevent a potentially e¤ective drug from being delivered
to patients. On the other hand, if a trial is overpowered, it could lead to
unnecessary exposure of many patients to a potentially harmful compound
when the drug, in fact, is not e¤ective. In practice, it is often di¢ cult to
estimate the e¤ect size and variability because of many uncertainties dur-
ing protocol development. Thus, it is desirable to have the �exibility to
re-estimate the sample-size in the middle of the trial.

Figure 1.2: Sample-Size Re-Estimation Design

There are two types of sample-size re-estimation procedures, namely,
sample-size re-estimation based on blinded data and sample-size re-
estimation based on unblinded data. In the �rst scenario, the sample ad-
justment is based on the (observed) pooled variance at the interim analysis
to recalculate the required sample-size, which does not require unblinding
the data. In this scenario, the type-I error adjustment is practically negligi-
ble. In the second scenario, the e¤ect size and its variability are re-assessed,
and sample-size is adjusted based on the updated information. The statis-
tical method for adjustment could be based on e¤ect size or the conditional
power.
Note that the �exibility in SSR is at the expense of a potential loss of

power. Therefore, it is suggested that an SSR be used when there are no
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good estimates of the e¤ect size and its variability. In the case where there
is some knowledge of the e¤ect size and its variability, a classic design would
be more e¢ cient.

Figure 1.3: Drop-Loser Design

1.2.3 Drop-Loser Design

A drop-loser design (DLD) is an adaptive design consisting of multiple
stages. At each stage, interim analyses are performed and the losers (i.e.,
inferior treatment groups) are dropped based on prespeci�ed criteria (Fig-
ure 1.3). Ultimately, the best arm(s) are retained. If there is a control
group, it is usually retained for the purpose of comparison. This type of
design can be used in phase-II/III combined trials. A phase-II clinical trial
is often a dose-response study, where the goal is to assess whether there is
treatment e¤ect. If there is treatment e¤ect, the goal becomes �nding the
appropriate dose level (or treatment groups) for the phase-III trials. This
type of traditional design is not e¢ cient with respect to time and resources
because the phase-II e¢ cacy data are not pooled with data from phase-III
trials, which are the pivotal trials for con�rming e¢ cacy. Therefore, it is
desirable to combine phases II and III so that the data can be used e¢ -
ciently, and the time required for drug development can be reduced. Bauer
and Kieser (1999) provided a two-stage method for this purpose, where in-
vestigators can terminate the trial entirely or drop a subset of treatment
groups for lack of e¢ cacy after the �rst stage. As pointed out by Sampson
and Sill (2005), the procedure of dropping the losers is highly �exible, and
the distributional assumptions are kept to a minimum. However, because of
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the generality of the method, it is di¢ cult to construct con�dence intervals.
Sampson and Sill (2005) derived a uniformly most powerful, conditionally
unbiased test for a normal endpoint.

1.2.4 Adaptive Randomization Design

An adaptive randomization/allocation design (ARD) is a design that allows
modi�cation of randomization schedules during the conduct of the trial. In
clinical trials, randomization is commonly used to ensure a balance with
respect to patient characteristics among treatment groups. However, there
is another type of ARD, called response-adaptive randomization (RAR), in
which the allocation probability is based on the response of the previous pa-
tients. RAR was initially proposed because of ethical considerations (i.e.,
to have a larger probability to allocate patients to a superior treatment
group); however, response randomization can be considered a drop-loser
design with a seamless allocation probability of shifting from an inferior
arm to a superior arm. The well-known response-adaptive models include
the randomized play-the-winner (RPW) model (see Figure 1.4), an opti-
mal model that minimizes the number of failures. Other response-adaptive
randomizations, such as utility-adaptive randomization, also have been pro-
posed, which are combinations of response-adaptive and treatment-adaptive
randomization (Chang and Chow, 2005).

Figure 1.4: Response Adaptive Randomization

1.2.5 Adaptive Dose-Finding Design

Dose-escalation is often considered in early phases of clinical development
for identifying maximum tolerated dose (MTD), which is often considered
the optimal dose for later phases of clinical development. An adaptive dose-
�nding (or dose-escalation) design is a design at which the dose level used to
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treat the next-entered patient is dependent on the toxicity of the previous
patients, based on some traditional escalation rules (Figure 1.5). Many
early dose-escalation rules are adaptive, but the adaptation algorithm is
somewhat ad hoc. Recently more advanced dose-escalation rules have been
developed using modeling approaches (frequentist or Bayesian framework)
such as the continual reassessment method (CRM) (O�Quigley, et al., 1990;
Chang and Chow, 2005) and other accelerated escalation algorithms. These
algorithms can reduce the sample-size and overall toxicity in a trial and
improve the accuracy and precision of the estimation of the MTD. Note
that CRM can be viewed as a special response-adaptive randomization.

Figure 1.5: Dose-Escalation for Maximum Tolerated Dose

1.2.6 Biomarker-Adaptive Design

Biomarker-adaptive design (BAD) refers to a design that allows for adapta-
tions using information obtained from biomarkers. A biomarker is a charac-
teristic that is objectively measured and evaluated as an indicator of normal
biologic or pathogenic processes or pharmacologic response to a therapeutic
intervention (Chakraverty, 2005). A biomarker can be a classi�er, prognos-
tic, or predictive marker.
A classi�er biomarker is a marker that usually does not change over the

course of the study, like DNA markers. Classi�er biomarkers can be used
to select the most appropriate target population, or even for personalized
treatment. Classi�er markers can also be used in other situations. For
example, it is often the case that a pharmaceutical company has to make
a decision whether to target a very selective population for whom the test
drug likely works well or to target a broader population for whom the test
drug is less likely to work well. However, the size of the selective population
may be too small to justify the overall bene�t to the patient population.
In this case, a BAD may be used, where the biomarker response at in-
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terim analysis can be used to determine which target populations should
be focused on (Figure 1.6).

Figure 1.6: Biomarker-Adaptive Design

A prognostic biomarker informs the clinical outcomes, independent of
treatment. They provide information about the natural course of the dis-
ease in individuals who have or have not received the treatment under study.
Prognostic markers can be used to separate good- and poor-prognosis pa-
tients at the time of diagnosis. If expression of the marker clearly separates
patients with an excellent prognosis from those with a poor prognosis, then
the marker can be used to aid the decision about how aggressive the therapy
needs to be.
A predictive biomarker informs the treatment e¤ect on the clinical end-

point. Compared to a gold-standard endpoint, such as survival, a biomarker
can often be measured earlier, easier, and more frequently. A biomarker is
less subject to competing risks and less a¤ected by other treatment modal-
ities, which may reduce sample-size due to a larger e¤ect size. A biomarker
could lead to faster decision-making. However, validating predictive bio-
markers is challenging. BAD simpli�es this challenge. In a BAD, �softly�
validated biomarkers are used at the interim analysis to assist in decision-
making, while the �nal decision can still be based on a gold-standard end-
point, such as survival, to preserve the type-I error (Chang, 2005).

1.2.7 Adaptive Treatment-Switching Design

An adaptive treatment-switching design (ATSD) is a design that allows the
investigator to switch a patient�s treatment from the initial assignment if
there is evidence of lack of e¢ cacy or a safety concern (Figure 1.7).
To evaluate the e¢ cacy and safety of a test treatment for progressive
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diseases, such as cancers and HIV, a parallel-group, active-control, ran-
domized clinical trial is often conducted. In this type of trial, quali�ed
patients are randomly assigned to receive either an active control (a stan-
dard therapy or a treatment currently available in the marketplace) or a
test treatment under investigation. Due to ethical considerations, patients
are allowed to switch from one treatment to another if there is evidence of
lack of e¢ cacy or disease progression. In practice, it is not uncommon that
up to 80% of patients may switch from one treatment to another. Som-
mer and Zeger (1991) referred to the treatment e¤ect among patients who
complied with treatment as �biological e¢ cacy.�Branson and Whitehead
(2002) widened the concept of biological e¢ cacy to encompass the treat-
ment e¤ect as if all patients adhered to their original randomized treatments
in clinical studies allowing treatment switching. Despite allowing a switch
in treatment, many clinical studies are designed to compare the test treat-
ment with the active control agent as if no patients had ever been switched.
This certainly has an impact on the evaluation of the e¢ cacy of the test
treatment, because the response-informative switching causes the treatment
e¤ect to be confounded. The power for the methods without considering
the switching is often lost dramatically because many patients from two
groups eventually took the same drugs (Shao, Chang, and Chow, 2005).
Currently, more approaches have been proposed, which include mixed ex-
ponential mode (Chang, 2006, Chow, and Chang, 2006) and a mixture of
the Wiener processes (Lee, Chang, and Whitmore, 2007).

Figure 1.7: Adaptive Treatment Switching

1.2.8 Clinical Trial Simulation

Clinical trial simulation (CTS) is a process that mimics clinical trials using
computer programs. CTS is particularly important in adaptive designs for
several reasons: (1) the statistical theory of adaptive design is complicated
with limited analytical solutions available under certain assumptions; (2)
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the concept of CTS is very intuitive and easy to implement; (3) CTS can
be used to model very complicated situations with minimum assumptions,
and type-I error can be strongly controlled; (4) using CTS, we can not
only calculate the power of an adaptive design, but we can also generate
many other important operating characteristics such as expected sample-
size, conditional power, and repeated con�dence interval - ultimately this
leads to the selection of an optimal trial design or clinical development plan;
(5) CTS can be used to study the validity and robustness of an adaptive de-
sign in di¤erent hypothetical clinical settings, or with protocol deviations;
(6) CTS can be used to monitor trials, project outcomes, anticipate prob-
lems, and suggest remedies before it is too late; (7) CTS can be used to
visualize the dynamic trial process from patient recruitment, drug distribu-
tion, treatment administration, and pharmacokinetic processes to biomark-
ers and clinical responses; and �nally, (8) CTS has minimal cost associated
with it and can be done in a short time.

Figure 1.8: Clinical Trial Simulation Model

CTS was started in the early 1970s and became popular in the mid
1990s due to increased computing power. CTS components include (1) a
Trial Design Mode, which includes design type (parallel, crossover, tradi-
tional, adaptive), dosing regimens or algorithms, subject selection criteria,
and time, �nancial, and other constraints; (2) a Response Model, which in-
cludes disease models that imitate the drug behavior (PK and PD models)
or intervention mechanism, and an infrastructure model (e.g., timing and
validity of the assessment, diagnosis tool); (3) an Execution Model, which
models the human behaviors that a¤ect trial execution (e.g., protocol com-
pliance, cooperation culture, decision cycle, regulatory authority, inference



Introduction 11

of opinion leaders); and (4) an Evaluation Model, which includes criteria
for evaluating design models, such as utility models and Bayesian decision
theory. The CTS model is illustrated in Figure 1.8.

1.2.9 Regulatory Aspects

The FDA�s Critical Path initiative is a serious attempt to bring atten-
tion and focus to the need for targeted scienti�c e¤orts to modernize the
techniques and methods used to evaluate the safety, e¢ cacy, and quality
of medical products as they move from product selection and design to
mass manufacture. Critical Path is NOT about the drug discovery process.
The FDA recognizes that improvement and new technology are needed.
The National Institutes of Health (NIH) is getting more involved via the
�roadmap� initiative. Critical Path is concerned with the work needed to
move a candidate all the way to a marketed product. It is clear that the
FDA supports and encourages innovative approaches in drug development.
The regulatory agents feel that some adaptive designs are encouraging, but
are cautious about others, specially for pivotal studies (Temple, 2006; Hung,
et el., 2006; Hung, Wang, and O�Neill, 2006; EMEA, 2006).
In the past �ve years FDA has received di¤erent adaptive design proto-

cols. The design adaptations FDA reviewers have encountered are: exten-
sion of sample-size, termination of a treatment arm, change of the primary
endpoint, change of statistical tests, and change of the study objective such
as from superiority to non-inferiority or vice versa, and selection of a sub-
group based upon externally available studies (Hung, O�Neill, Wang, and
Lawrence, 2006). Dr. O�Neill from FDA shared two primary motivations
that may explain why adaptive or �exible designs might be useful. One
is the goal of an adaptive/�exible design to allow some type of mid-study
changes that are prospectively planned in order to maximize the chance of
success of the trial while properly preserving the type-I error rate because
some planning parameters are imprecisely known. Another goal is to enrich
trials with subgroups of patients having genomic pro�les likely to respond
or less likely to experience toxicity (Hung, O�Neill, Wang, and Lawrence,
2006).
"Adaptive designs should be encouraged for Phases I and II trials for

better exploration of drug e¤ects, whether bene�cial or harmful, so that
such information can be more optimally used in latter stages of drug de-
velopment. Controlling false positive conclusions in exploratory phases is
also important so that the con�rmatory trials in latter stages achieve their
goals. The guidance from such trials properly controlling false positives
may be more informative to help better design con�rmatory trials." (Hung,
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O�Neill, Wang, and Lawrence, 2006). As pointed out by FDA statistician
Dr. Stella Machado, "The two major causes of delayed approval and nonap-
proval of phase III studies is poor dose selection in early studies and phase
III designs [that] don�t utilize information from early phase studies" ("The
Pink Sheet", Dec. 18, 2006, p.24). FDA is granting industry a great deal of
leeway in adaptive design in early learning phase, at the same time suggests
that emphasis be placed on dose-response and exposure risk. Dr. O�Neill
said that learning about the dose-response relationship lies at the heart
of adaptive designs ("The Pink Sheet", Dec. 18, 2006, p.24). Companies
should begin a dialogue about adaptive designs with FDA medical o¢ cers
and statisticians as early as a year before beginning a trial as suggested by
Dr.Robert Powell from FDA ("The Pink Sheet", Dec. 18, 2006, p.24).

Figure 1.9: Characteristics of Adaptive Designs

1.2.10 Characteristics of Adaptive Designs

Adaptive design is a sequential data-driven approach. It is a dynamic
process that allows for real-time learning. It is �exible and allows for modi-
�cations to the trial, which make the design cost-e¢ cient and robust against
the failure. Adaptive design is a systematic way to design di¤erent phases of
trials, thus streamlining and optimizing the drug development process. In
contrast, the traditional approach is composed of weakly connected phase-
wise processes. Adaptive design is a decision-oriented, sequential learning
process that requires up-front planning and a great deal of collaboration
among the di¤erent parties involved in the drug development process. To
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this end, Bayesian methodology and computer simulation play important
roles. Finally, the �exibility of adaptive design does not compromise the
validity and integrity of the trial or the development process (Figure 1.9).
Adaptive design methods represent a revolution in pharmaceutical re-

search and development. Using adaptive designs, we can increase the
chances for success of a trial with a reduced cost. Bayesian approaches
provide an ideal tool for optimizing trial designs and development plans.
Clinical trial simulations o¤er a powerful tool to design and monitor trials.
Adaptive design, the Bayesian approach, and trial simulation combine to
form an ultimate statistical instrument for the most successful drug devel-
opment programs.

1.3 FAQs about Adaptive Designs

In recent years, I was interviewed by several journalists from scienti�c and
technological journals including Nature Biotechnology, BioIT World, and
Contract Pharms among others. The following are some questions that
were commonly asked about adaptive designs.
1. What is the classi�cation of an adaptive clinical trial? Is there a

consensus in the industry regarding what adaptive trials entail?
After many conferences and discussions, there is more or less a consensus

on the de�nition of adaptive design. A typical de�nition is as follows:
An adaptive design is a design that allows modi�cations to aspects of

the trial after its initiation without undermining the validity and integrity
of the trial. All adaptive designs involve interim analyses and adaptations
or decision-making based on the interim results.
There are many ways to classify adaptive designs. The following are the

common examples of adaptive trials:
� Sample size re-estimation design to increase the probability of success
� Early stopping due to e¢ cacy or futility design to reduce cost and

time
� Response adaptive randomization design to give patients a better

chance of assigning to superior treatment
� Drop-loser design for adaptive dose �nding to reduce sample-size by

dropping the inferior treatments earlier
� Adaptive dose escalation design to minimize toxicity while at the same

time acquiring information on maximum tolerated dose
� Adaptive seamless design combining two traditional trials in di¤erent

phases into a single trial, reducing cost and time to market
� Biomarker-adaptive design to have earlier e¢ cacy or safety readout
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to select better target populations or subpopulation
2. What challenges does the adaptive trial model present?
Adaptive designs can reduce time and cost, minimize toxicity, and help

select the best dose for the patients and better target populations. With
adaptive design, we can develop better science for testing new drugs, and
in turn, better science for prescribing them.
There are challenges associated with adaptive design. Statistical meth-

ods are available for most common adaptive designs, but for more compli-
cated adaptive designs, the methodologies are still in development.
Operationally, an adaptive design often requires real-time or near real-

time data collection and analysis. In this regard, data standardizations,
such as CDISC and electronic data capture (EDC), are very helpful in data
cleaning and reconciliation. Note that not all adaptive designs require per-
fectly clean data at interim analysis, but the cleaner the data are, the more
e¢ cient the design is. Adaptive designs require the ability to rapidly inte-
grate knowledge and experiences from di¤erent disciplines into the decision-
making process and hence require a shift to a more collaborative working
environment among disciplines.
From a regulatory standpoint, there is no regulatory guidance for adap-

tive designs at the moment. Adaptive trials are reviewed on a case-by-case
basis. Naturally there are fears that a protocol using this innovative ap-
proach may be rejected, causing a delay.
The interim unblinding may potentially cause bias and put the integrity

of the trial at risk. Therefore, the unblinding procedure should be well es-
tablished before the trial starts, and frequent unblinding should be avoided.
Also, unblinding the premature results to the public could jeopardize the
trial.
3. How would adaptive trials a¤ect traditional phases of drug develop-

ment? How are safety and e¢ cacy measured in this type of trial?
Adaptive designs change the way we conduct clinical trials. Trials in

di¤erent phases can be combined to create a seamless study. The �nal safety
and e¢ cacy requirements are not reduced because of adaptive designs. In
fact, with adaptive designs, the e¢ cacy and safety signals are collected
and reviewed earlier and more often than in traditional designs. Therefore,
we have a better chance of avoiding unsafe drug exposure to large patient
populations. A phase-II and III combined seamless design, when the trial
is carried out to the �nal stage, has longer-term patient e¢ cacy and safety
data than traditional phase-II, phase-III trials; however, precautions should
be taken at the interim decision-making when data are not mature.
4. If adaptive trials become widely adopted, how would it impact clinical

trial materials and the companies that provide them?
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Depending on the type of adaptive design, there might be requirements
for packaging and shipping to be faster and more �exible. Quick and accu-
rate e¢ cacy and safety readouts may also be required. The electronic drug
packages with an advanced built-in recording system will be helpful.
If adaptive trials become widely adopted, the drug manufacturers who

can provide the materials adaptively will have a better chance of success.
5. What are some di¤erences between adaptive trials and the traditional

trial model with respect to the supply of clinical trial materials?
For a classic design, the amount of material required is �xed and can

be easily planned before the trial starts. However, for some adaptive trials,
the exact amount of required materials is not clear until later stages of the
trial. Also the next dosage for a site may not be fully determined until
the time of randomization; therefore, vendors may need to develop a better
drug distribution strategy.
6. What areas of clinical development would experience cost/time sav-

ings with the adaptive trial model?
Adaptive design can be used in any phase, even in the preclinical and

discovery phases. Drug discovery and development is a sequence of decision
processes. The traditional paradigm breaks this into weakly connected
fragments or phases. An adaptive approach will eventually be utilized for
the whole development process to get the right drug to the right patient at
the right time.
Adaptive design requires fewer patients, less trial material, sometimes

fewer lab tests, less work for data collection and fewer data queries to be
resolved. However, an adaptive trial requires much more time during up-
front planning and simulation studies.
7. What are some of the regulatory issues that need to be addressed for

this type of trial?
So far FDA is very positive about innovative adaptive designs. Guidance

is expected in the near future (see DFA Deputy Commissioner Dr. Scott
Gottlieb�s speech delivered at the Adaptive Design conference in July 2006).
If the adaptive design is submitted with solid scienti�c support and

strong ethical considerations and it is operationally feasible, there should
not be any fears of rejection of such a design. On the other hand, with a
signi�cant increase in adaptive trials in NDA submissions, regulatory bod-
ies may face a temporary shortage of resources for reviewing such designs.
Adaptive designs are relatively new to the industry and to regulatory bod-
ies; therefore, there is a lot to learn by doing them. For this reason, it is a
good idea to start with adaptive designs in earlier stages of drug develop-
ment.
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1.4 Roadmap

Chapter 2, Classic Design: This chapter will review the classic design and is-
sues raised from the traditional approaches. The statistical design methods
discussed include one- and two-group designs, multiple-group dose-response
designs, as well as equivalence and noninferiority designs.
Chapter 3, Theory of Adaptive Design: This chapter introduces uni�ed

theory for adaptive designs, which covers four key statistical elements in
adaptive designs: stopping boundary, adjusted p-value, point estimation,
and con�dence interval. We will discuss how di¤erent approaches can be
developed under this uni�ed theory and what the common adaptations are.
Chapter 4, Method with Direct Combination of P-values: Using the

uni�ed formulation discussed in Chapter 3, the method with an individual
stagewise p-value and the methods with the sum and product of the stage-
wise p-values are discussed in detail for two-stage adaptive designs. Trial
examples and step-by-step instructions are provided.
Chapter 5, Method with Inverse-Normal P-values: The Inverse-Normal

method generalizes the classic group sequential method. The method can
also be viewed as weighted stagewise statistics and includes several other
methods as special cases. Mathematical formulations are derived and ex-
amples are provided regarding how to use the method for designing a trial.
Chapter 6, Implementation of K-Stage Design: Chapters 4 and 5 are

mainly focused on two-stage adaptive designs because these designs are
simple and usually have a closed-form solution. In Chapter 6, we use simu-
lation approaches to generalize the methods in Chapters 4 and 5 to K-stage
designs using SAS macros and R functions; many examples are provided.
Chapter 7, Conditional Error Function Method: The conditional error

function method is a very general approach. We will discuss in particular
the Proschan-Hunsberger method and the Muller-Schafer method. We will
compare the conditional error functions for various other methods and study
the relationships between di¤erent adaptive design methods through the
conditional error functions and conditional power.
Chapter 8, Recursive Adaptive Design: The recursive two-stage adap-

tive design not only o¤ers a closed-form solution for K-stage designs, but
also allows for very broad adaptations. We �rst introduce two powerful
principles, the error-spending principle and the conditional error princi-
ple, from which we further derive the recursive approach. Examples are
provided to illustrate the di¤erent applications of this method.
Chapter 9, Sample-Size Re-Estimation Design: This chapter is de-

voted to the commonly used adaptation, sample-size re-estimation. Var-
ious sample-size re-estimation methods are evaluated and compared. The
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goal is to demonstrate a way to evaluate di¤erent methods under di¤erent
conditions and to optimize the trial design that �ts a particular situation.
Practical issues and concerns are also addressed.
Chapter 10, Multiple-Endpoint Adaptive Design: One of the most chal-

lenging issues is the multiple-endpoint analysis with adaptive design. This
is motivated by an actual adaptive design in an oncology trial. The sta-
tistical method is developed for analyzing the multiple-endpoint issues for
both coprimary and primary-secondary endpoints.
Chapter 11, Drop-Loser and Add-Arm Designs: Drop-loser and add-arm

design can be used in adaptive dose-�nding studies and combined phase-II
and III studies (seamless design). Di¤erent drop-loser/add-arm designs are
also shown with weak and strong alpha-control in the examples.
Chapter 12, Biomarker Adaptive Design: In this chapter, adaptive de-

sign methods are developed for classi�er, diagnosis, and predictive mark-
ers. SAS macros have been developed for biomarker-adaptive designs. The
improvement in e¢ ciency is assessed for di¤erence methods in di¤erent
scenarios.
Chapter 13, Response-Adaptive Treatment Switching and Crossover:

Response-adaptive treatment switching and crossover are statistically chal-
lenging. Treatment switching is not required for the statistical e¢ cacy of
a trial design; rather, it is motivated by an ethical consideration. Several
methods are discussed, including the time-dependent exponential, mixed
exponential, and a mixture of Wiener models.
Chapter 14, Response-Adaptive Allocation Design: Response-adaptive

randomizations/allocations have many di¤erent applications. They can
be used to reduce the overall sample-size and the number of patients ex-
posed to ine¤ective or even toxic regimens. We will discuss some commonly
used adaptive randomizations, such as randomized-play-the-winner. Use of
response-adaptive randomization for general adaptations is also discussed.
Chapter 15, Adaptive Dose Finding Design: The adaptive dose �nding

designs, or dose-escalation designs, are discussed in this chapter. The goal
is to reduce the overall sample-size and the number of patients exposed to
ine¤ective or even toxic regimens, and to increase the precision and accuracy
of MTD (maximum tolerated dose) assessment. We will discuss oncology
dose-escalation trials with traditional and Bayesian continual reassessment
methods
Chapter 16, Bayesian Adaptive Design: The philosophical di¤erences

between the Bayesian and frequentist approaches are discussed. Through
many examples, the two approaches are compared in terms of design, mon-
itoring, analysis, and interpretation of results. More importantly, how to
use Bayesian decision theory to further improve the e¢ ciency of adaptive
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designs is discussed with examples.
Chapter 17, Planning, Execution, Analysis, and Reporting: In this

chapter, we discuss the logistic issues with adaptive designs. The topics
cover planning, monitoring, analysis, and reporting for adaptive trials. It
also includes most concurrent regulatory views and recommendations.
Chapter 18, Debate and Perspectives: This chapter is a future perspec-

tive of adaptive designs. We will present very broad discussions of the
challenges and controversial presented by adaptive designs from philosoph-
ical and statistical perspectives.
Appendix A, Random number generation
Appendix B, R programs for adaptive designs
Computer Programs
Most adaptive design methods have been implemented and tested in

SAS 8.0 and 9.0 and major methods have also been implemented in R.
These computer programs are compact (often fewer than 50 lines of SAS
code) and ready to use. For convenience, electronic versions of the programs
have been made available at www.statisticians.org.
The SAS code is enclosed in ��SAS Macro x.x��and ��SAS��or in

��SAS��and ��SAS��. R programs are presented in Appendix B.



Chapter 2

Classic Design

2.1 Overview of Drug Development

Pharmaceutical medicine uses all the scienti�c, clinical, statistical, regula-
tory, and business knowledge available to provide a challenging and reward-
ing career. On average, it costs about $1.8 billion to take a new compound
to market and only one in 10,000 compounds ever reach the market. There
are three major phases of drug development: (1) preclinical research and
development, (2) clinical research and development, and (3) after the com-
pound is on the market, a possible �post-marketing�phase
The preclinical phase represents bench work (in vitro) followed by an-

imal testing, including kinetics, toxicity, and carcinogenicity. An inves-
tigational new drug application (IND) is submitted to the FDA seeking
permission to begin the heavily regulated process of clinical testing in hu-
man subjects. The clinical research and development phase, representing
the time from the beginning of human trials to the new drug application
(NDA) submission that seeks permission to market the drug, is by far the
longest portion of the drug development cycle and can last from 2 to 10
years (Tonkens, 2005).
Clinical trials are usually divided into three phases. The primary objec-

tives of phase I are to (1) determine the metabolism and pharmacological
activities of the drug, the side e¤ects associated with increasing dose, and
early evidence of e¤ectiveness, and (2) to obtain su¢ cient information re-
garding the drug�s pharmacokinetics and pharmacological e¤ects to permit
the design of well-controlled and scienti�cally valid phase-II clinical stud-
ies (21 CFR 312.21). Unless it is an oncology study, where the maximum
tolerated dose (MTD) is primarily determined by a phase-I dose-escalation
study, the dose-response or dose-�nding study is usually conducted in phase
II, and e¢ cacy is usually the main focus. The choice of study design and
study population in a dose-response trial will depend on the phase of de-
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velopment, therapeutic indication under investigation, and severity of the
disease in the patient population of interest (ICH Guideline E4, 1994).
Phase-III trials are considered con�rmative trials.
The FDA does not actually approve the drug itself for sale. It approves

the labeling, the package insert. United States law requires truth in label-
ing, and the FDA ensures that claims that a drug is safe and e¤ective for
treatment of a speci�ed disease or condition have, in fact, been proven. All
prescription drugs must have labels, and without proof of the truth of its
label, a drug may not be sold in the United States.
In addition to mandated conditional regulatory approval and post-

marketing surveillance trials, other reasons sponsors may conduct post-
marketing trials include comparing their drug with that of competitors,
widening the patient population, changing the formulation or dose regi-
men, or applying a label extension. A simpli�ed view of the NDA is shown
in Figure 2.1 (Tonkens, 2005).

Figure 2.1: A Simpli�ed View of the NDA

In classic trial designs, power and sample-size calculations are a major
task. The sample-size calculations for two-group designs have been studied
by many scholars, among them Julious (2004), Chow, et al.(2003), Machin,
et al. (1997), Campbell, et al. (1995), and Lachin and Foukes (1986).
In what follows, we will review a uni�ed formulation for sample-size

calculation in classic two-arm designs including superiority, noninferiority,
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and equivalence trials. We will also discuss some important concepts and
issues with the designs that are often misunderstood. We will �rst discuss
two-group superiority and noninferiority designs in Section 2.2. Equivalence
studies will be discussed in Section 2.3. Three di¤erent types of equivalence
studies (average, population, and individual equivalences) are reviewed. We
will discuss dose-response studies in Section 2.4. The sample-size calcula-
tions for various endpoints are provided based on the contrast test. Section
2.5 will discuss the maximum information design, in which the sample-size
changes automatically according the variance.

2.2 Two-Group Superiority and Noninferiority Designs

2.2.1 General Approach to Power Calculation

When testing a null hypothesis Ho : " � 0 against an alternative hypothesis
Ha : " > 0, where " is the treatment e¤ect (di¤erence in response), the
type-I error rate function is de�ned as

�(") = Pr freject Ho when Ho is trueg :

Note: alternatively, the type-I error rate can be de�ned as sup
"2Ho

f�(")g:

Similarly, the type-II error rate function � is de�ned as

�(") = Pr ffail to reject Ho when Ha is trueg :

For hypothesis testing, knowledge of the distribution of the test statistic
under Ho is required. For sample-size calculation, knowledge of the distrib-
ution of the test statistic under a particular Ha is also required: To control
the overall type-I error rate at level � under any point of theHo domain, the
condition �(") � �� for all " � 0 must be satis�ed, where �� is a threshold
that is usually larger than 0.025 unless it is a phase III trial. If �(") is a
monotonic function of ", then the maximum type-I error rate occurs when
" = 0, and the test statistic should be derived under this condition. For
example, for the null hypothesis Ho : �2��1 � 0; where �1 and �2 are the
means of the two treatment groups, the maximum type-I error rate occurs
on the boundary of Ho when �2 � �1 = 0: Let T =

�̂2��̂1
�̂ , where �̂i and �̂

are the sample mean and pooled sample standard deviation, respectively.
Further, let �o(T ) denote the cumulative distribution function (c.d.f) of the
test statistic on the boundary of the null hypothesis domain, and let �a(T )
denote the c.d.f under Ha. Given this information, under the large sample
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assumption, �o(T ) is the c.d.f of the standard normal distribution, N(0; 1),
and �a(T ) is the c.d.f. of N(

p
n"
2� ; 1); where n is the total sample-size and

� is the common standard deviation (Figure 2.2).

Figure 2.2: Power as a Function of � and n

The power of the test statistic T under a particular Ha can be expressed
as follows:

Power (") = Pr(T � ��1o (1� �;n)jHa) = 1� �a(��1o (1� �;n);n);

which is equivalent to

Power (") = �
�p

n"

2�
� z1��

�
; (2.1)

where � is the c.d.f of the standard normal distribution, " is treatment
di¤erence, and z1�� and z1�� are the percentiles of the standard normal
distribution. Figure 2.2 is an illustration of the power function of � and
the sample-size n. The total sample-size is given by
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n =
4(z1�a + z1��)

2�2

"2
: (2.2)

More generally, for an imbalanced design with sample-size ratio r =
n1=n2 and a margin � (� > 0 for superiority test and � < 0 for non-
inferiority test), the sample-size is given by

n2 =
(z1�� + z1��)

2
�2 (1 + 1=r)

("� �)2
: (2.3)

(2.3) is a general sample-size formulation for the two-group designs with
a normal, binary, or survival endpoint. When using the formulation, the
corresponding "standard deviation" � should be used, examples of which
have been listed in Table 2.1 for commonly used endpoints (Chang and
Chow, 2006a).
We now derive the standard deviation for the time-to-event endpoint.

Under an exponential survival model, the relationship between hazard (�),
median (Tmedian) and mean (Tmean) survival time is very simple:

TMedian =
ln 2

�
= (ln 2)Tmean:

Let �i be the population hazard rate for group i. The corresponding
variance �2i can be derived in several di¤erent ways. Here we use Lachin
and Foulkes�maximum likelihood approach (Lachin and Foulkes 1986 and
Chow, Shao, and Wang 2003).
Let T0 and Ts be the accrual time period and the total trial duration,

respectively. We then can prove that the variance for uniform patient entry
is given by

�2(�i) = �2i

�
1 +

e��iTs(1� e�iT0)
T0�i

��1
:

Let aij denote the uniform entry time of the jth patient of the ith

group, i.e., aij � 1
T0
; 0 � aij � T0. Let tij be the time-to-event starting

from the time of the patient�s entry for the jth patient in the ith group,
i = 1; :::k, j = 1; :::; ni. It is assumed that tij follows an exponential
distribution with a hazard rate of �i: The information observed is (xij ; �ij)
= (min(tij ; Ts � aij); I ftij � Ts � aijg) : For a �xed i, the joint likelihood
for xij ; j = 1; :::ni can be written as



24 Adaptive Design Theory and Implementation

L(�i) =
1

T0
�
Pni

j=1 �ij
i e��i

Pni
j=1 xij :

Taking the derivative with respect to �i and letting it equal zero, we
can obtain the maximum likelihood estimate (MLE) for �i; which is given

by �̂i =
Pni

j=1 �ijPni
j=1 xij

: According to the Central Limit Theorem, we have

p
ni(�̂i � �i) =

p
ni

Pni
j=1(�ij � �ixij)Pni

j=1 xij

=
1

p
niE(xij)

niX
j=1

(�ij � �ixij) + op(1)

d! N(0; �2(�i));

where

�2(�i) =
var(�ij � �ixij)

E2(xij)

and d! denotes convergence in distribution. Note that

E(�ij) = E(�2ij) = 1�
Z T0

0

1

T0
e��i(Ts�a)da = 1 +

e��iTs(1� e�iT0)
T0�i

E(xij) =
1

�i
E(�ij); and E(x2ij) =

2E(�ijxij)

�i
:

Hence,

�2(�i) =
var(�ij � �ixij)

E2(xij)
=

1

E2(xij)

�
E(�2ij)� 2�iE(�ijxij) + �2iE(x2ij)

�
=

E(�2ij)

E2(xij)
=

�2i
E(�ij)

= �2i

�
1 +

e��iTs(1� e�iT0)
T0�i

��1
:

Example 2.1 Arteriosclerotic Vascular Disease Trial
Cholesterol is the main lipid associated with arteriosclerotic vascular

disease. The purpose of cholesterol testing is to identify patients at risk
for arteriosclerotic heart disease. The liver metabolizes cholesterol to its
free form and transports it to the bloodstream via lipoproteins. Nearly
75% of the cholesterol is bound to low-density lipoproteins (LDLs) ��bad
cholesterol�and 25% is bound to high-density lipoproteins (HDLs) ��good
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cholesterol.�Therefore, cholesterol is the main component of LDLs and only
a minimal component of HDLs and very low density lipoproteins. LDL is
the substance most directly associated with increased risk of coronary heart
disease (CHD).

Table 2.1: Sample Sizes for Di¤erent Types of Endpoints

Endpoint Sample-Size Variance

One mean n =
(z1�a+z1��)

2�2

"2 ;

Two means n1=
(z1�a+z1��)

2�2

(1+1=r)�1"2
;

One proportion n =
(z1�a+z1��)

2�2

"2 ; �2= p(1� p)

Two proportions n1=
(z1�a+z1��)

2�2

(1+1=r)�1"2
;

�2= �p(1� �p);
�p =n1p1+n2p2

n1+n2
:

One survival curve n =
(z1�a+z1��)

2�2

"2 ; �2= �20

�
1� e�0T0�1

T0�0e�0Ts

��1

Two survival curves n1=
(z1�a+z1��)

2�2

(1+1=r)�1"2
;

�2=
r�21+�

2
2

1+r ;

�2i= �2i

�
1� e�iT0�1

T0�ie�iTs

��1
Note: r = n2

n1
: �0= expected hazard rate, T0= uniform patient accrual time and

Ts= trial duration. Logrank-test is used for comparison of the two survival curves.

Suppose we are interested in a trial for evaluating the e¤ect of a test drug
on cholesterol in patients with CHD. A two-group parallel design is chosen
for the trial with LDL as the primary endpoint. The treatment di¤erence
in LDL is estimated to be 5% with a standard deviation of 0.3. For power
= 90% and one-sided � = 0:025, the total sample can be calculated using
(2.2):

n =
4(1:96 + 1:28)2

�
0:32

�
0:052

= 1212:

For a non-inferiority test, with a margin � = �0:01 (the determination
of � is a complicated issue and will not be discussed here.), the total sample-
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size is given by

n =
4(1:96 + 1:28)2

�
0:32

�
(0:05 + 0:01)

2 = 1050:

We can see that the required sample-size is smaller for the non-inferiority
test than for a superiority test.

Figure 2.3: Sample-Size Calculation Based on �

2.2.2 Powering Trials Appropriately

During the design, " (�true) and � are unknowns, but they can be estimated.
Therefore, the power is just an estimation of the probability of achieving
statistical signi�cance and its precision is dependent on the precision of
the initial estimate of " and � (Figure 2.3): When lacking information, a
minimum clinically or commercially meaningful treatment di¤erence �min
is often used. However, this strategy is not as good as it appears to be
for the following reasons: (1) Power is not probability of success. The
common phrase "90% power to detect a di¤erence of �min" does not mean
that there is a 90% probability of proving statistically that the treatment
e¤ect is larger than �min:What it really means is that if the true treatment
di¤erence is �min, then there is a 90% probability of proving a treatment
di¤erence > 0 (zero) at � level (Figure 2.4). (2) If the trial is designed
based on �min, then as long as the observed treatment di¤erence �̂ > 0:61

�min, there is a statistical signi�cance (Figure 2.5). The trial is overpowered
if the statistical signi�cance is achieved even when there is no clinically or
commercially meaningful magnitude of treatment e¤ect. (3) If the true
treatment di¤erence is equal to �min, then there is 50% chance that the
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observed treatment di¤erence �̂ > �min regardless of the sample-size (Figure
2.5). (4) �min is di¢ cult to know. Using the following formulation for the
real superior design is too conservative:

n2 =
(z1�� + z1��)

2
�2 (1 + 1=r)

("� �min)2
: (2.4)

Figure 2.4: Power and Probability of E¢ cacy (Pe)

The selections of the type-I error rate � and the type-II error rate �
should be based on study objectives that may vary from phase to phase
in clinical trials. It depends on e¢ cacy, safety, and other aspects of the
trial. From a safety perspective, the number of patients should be gradually
increased from early phases to later phases due to the potential toxicity of
the test drug. From an e¢ cacy point-of-view, for early phases, there is
more concern about missing good drug candidates and less concern about
the false positive rate. In this case, a larger � is recommended. For later
phases, a smaller � should be considered to meet regulatory requirements.
In practice, it is suggested that the bene�t-risk ratio should be taken into
consideration when performing sample-size calculations. In such a case,
Bayesian decision theory is a useful tool.
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Figure 2.5: P-value Versus Observed E¤ect Size

2.3 Two-Group Equivalence Trial

2.3.1 Equivalence Test

The equivalence test for the two parallel groups can be stated as

H0 : j�T � �Rj � � versus Ha : j�T � �Rj < �, (2.5)

where the subscripts T and R refer to the test and reference groups, re-
spectively. If the null hypothesis is rejected, then we conclude that the test
drug and the reference drug are equivalent.
For a large sample-size, the null hypothesis is rejected if

T =
�x1 � �x2 � �
�
q

1
n1
+ 1

n2

< �z1�� and T =
�x1 � �x2 + �
�
q

1
n1
+ 1

n2

> z1��: (2.6)

The approximate sample-size is given by (Chow, Shao and Wang, 2003)
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n2 =

�
z1�� + z1��=2

�2
�2 (1 + 1=r)

(j"j � �)2
; (2.7)

where r = n1=n2.

Example 2.2 Equivalence LDL Trial
For the LDL trial in Example 2.1, assume the treatment di¤erence " =

0:01 and an equivalence margin of � = 0:05; the sample-size per group for
a balanced design (r = 1) can be calculated using (2.7) with 90% power at
� = 0:05 level:

n2 =
(1:6446 + 1:6446)

2 �
0:32

�
(1 + 1=1)

(0:01� 0:05)2
= 1217:

Note that (2.7) is just an approximation even with a large sample-size,
but an accurate calculation can be done using simulation. For a normal
endpoint, the SAS Macro 2.1 can be used for power and sample-size calcu-
lations for equivalence studies. Note that the con�dence interval method
and the two one-sided tests method are equivalent. The SAS variables
are de�ned as follows: nSims = number of simulation runs; nPerGrp =
sample-size per group; ux = mean in group x; uy = mean in group y; delta
= the equivalence margin; sigmax and sigmay = standard deviation for
groups x and y, respectively; alpha = type-I error rate control; xMean and
yMean = the simulated means in group x and y, respectively; powerCI =
power based on the con�dence interval method; and powerTest = power
based on the two one-sided tests method. powerCI should be the same as
powerTest.

��SAS Macro 2.1: Equivalence Trial with Normal Endpoint��
%Macro EquivCI(nSims=1000, nPerGrp=200, ux=0, uy=1, delta=1.2,

sigmax=1, sigmay=1.2, alpha=0.05);

Data TwoGVars;

Keep xMean yMean powerCI powerTest;

powerCI=0; powerTest=0;

Do iSim=1 To &nSims;

xMean=0; yMean=0; s2x=0; s2y=0;

Do iObs=1 To &nPerGrp;

xNOR=Rannor(7362); xMean=xMean+xNor; s2x=s2x+xNor**2;

yNOR=Rannor(2637); yMean=yMean+yNor; s2y=s2y+yNor**2;
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End;

xMean=xMean*&sigmax/&nPerGrp+&ux;

yMean=yMean*&sigmay/&nPerGrp+&uy;

sp=((s2x*&sigmax**2+s2y*&sigmay**2)/(2*&nPerGrp-2))**0.5;

se=sp/(&nPerGrp/2)**0.5;

* CI method;

ICW=Probit(1-&alpha)*se;

If Abs(yMean-xMean)+ICW < &delta Then

powerCI=powerCI+1/&nSims;

*Two one-sided test method;

T1=(xMean-yMean-&delta)/se;

T2=(xMean-yMean+&delta)/se;

If T1<-Probit(1-&alpha) & T2>Probit(1-&alpha) Then

powerTest=powerTest+1/&nSims;

End;

Output;

Run;

Proc Print Data=TwoGVars(obs=1); Run;

%Mend EquivCI;

��SAS��

The following SAS statements are examples of simulations under the
null and alternative hypotheses.
��SAS��
Title "Equivalence test with Normal response: alpha under Ho";

%EquivCI(nSims=10000, nPerGrp=1000, ux=0.2, uy=0, delta=0.2,

sigmax=1, sigmay=1, alpha=0.05);

Title "Equivalence test with Normal response: Power under Ha";

%EquivCI(nSims=10000, nPerGrp=198, ux=0, uy=1, delta=1.2,

sigmax=0.8, sigmay=0.8, alpha=0.05);

��SAS��

For a binary endpoint, the power and sample-size for an equivalence
test can be simulated using the SAS Macro 2.2. Note that the con�dence
interval method and the two one-sided tests method are equivalent. There
de�nition of the SAS variables are de�ned as follows: nSims = number of
simulation runs; nPerGrp = sample-size per group; px = response rate in
group x; py = response rate in group y; delta = the equivalence margin;
sigmax and sigmay = standard deviation for groups x and y, respectively;
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alpha = type-I error rate control; xMean and yMean = the simulated
means in group x and y, respectively; powerCI = power based on the
con�dence interval method; and powerTest = power based on the two
one-sided tests method.

��SAS Macro 2.2: Equivalence Trial with Binary Endpoint��
%Macro TwoSamZTest(nSims=100000, nPerGrp=100,

px=0.3, py=0.4, delta=0.3, alpha=0.05);

Data TwoGVars;

KEEP powerCI powerTest;

powerCI=0; powerTest=0;

Do iSim=1 To &nSims;

PxObs=Ranbin(733,&nPerGrp,&px)/&nPerGrp;

PyObs=Ranbin(236,&nPerGrp,&py)/&nPerGrp;

se=((PxObs*(1-PxObs)+PyObs*(1-PyObs))/&nPerGrp)**0.5;

*CI method;

ICW=Probit(1-&alpha)*se;

IF Abs(PxObs-PyObs)+ICW < &delta Then

powerCI=powerCI+1/&nSims;

*Two one-sided test method;

T1=(PyObs-PxObs-&delta)/se;

T2=(PyObs-PxObs+&delta)/se;

IF T1<-Probit(1-&alpha) & T2>Probit(1-&alpha) Then

powerTest=powerTest+1/&nSims;

End;

Output;

Run;

Proc Print; Run;

%Mend TwoSamZTest;

��SAS��

��SAS��
Title "Equivalence test with binary response: Alpha under Ho";

%TwoSamZTest(nPerGrp=100, px=0.1, py=0.2, delta=0.1, alpha=0.05);

Title "Equivalence test with binary response: Power under Ha";

%TwoSamZTest(nPerGrp=100, px=0.3, py=0.3, delta=0.2, alpha=0.05);

��SAS��
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2.3.2 Average Bioequivalence

Pharmacokinetics (PK) is the study of the body�s absorption, distribution,
metabolism, and elimination of a drug. An important outcome of a PK
study is the bioavailability of the drug. The bioavailability of a drug is
de�ned as the rate and extent to which the active drug ingredient or thera-
peutic moiety is absorbed and becomes available at the site of drug action.
As bioavailability cannot be easily measured directly, the concentration
of drug that reaches the circulating bloodstream is taken as a surrogate.
Therefore, bioavailability can be viewed as the concentration of drug that
is in the blood. Two drugs are bioequivalent if they have the same bioavail-
ability. There are a number of instances in which trials are conducted to
show that two drugs are bioequivalent (Jones and Kenward, 2003): (1)
when di¤erent formulations of the same drug are to be marketed, for in-
stance in solid-tablet or liquid-capsule form; (2) when a generic version of
an innovator drug is to be marketed, (3) when production of a drug is scaled
up, and the new production process needs to be shown to produce drugs of
equivalent strength and e¤ectiveness as the original process.
At the present time, average bioequivalence (ABE) serves as the cur-

rent international standard for bioequivalence (BE) testing using a 2 � 2
crossover design. The PK parameters used for assessing ABE are area un-
der the curve (AUC) and peak concentration (Cmax). The recommended
statistical method is the two one-sided tests procedure to determine if the
average values for the PK measures determined after administration of the
T (test) and R (reference) products were comparable. This approach is
termed average bioequivalence (ABE). It is equivalent to the so-called con-
�dence interval method, which involves the calculation of a 90% con�dence
interval for the ratio of the averages (population geometric means) of the
measures for the T and R products. To establish BE, the calculated con-
�dence interval should fall within a BE limit, usually 80% � 125% for the
ratio of the product averages. The 1992 guidance has also provided speci�c
recommendations for logarithmic transformation of PK data, methods to
evaluate sequence e¤ects, and methods to evaluate outlier data.
In practice, people also use parallel designs and the 90% con�dence in-

terval for nontransformed data. To establish BE, the calculated con�dence
interval should fall within a BE limit, usually 80%�120% for the di¤erence
of the product averages.
The hypothesis for ABE in a 2�2 crossover design with log-transformed

data can be written as
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H01 : �T � �R � � ln 1:25;
H02 : �T � �R � ln 1:25:

The asymptotic power is given by (Chow, Shao, and Wang, 2003)

n =

�
z1�� + z1��=2

�2
�21;1

2 (ln 1:25� j"j)2
;

where the variance for the intra-subject comparison is estimated using

�̂21;1 =
1

n1 + n2 � 2

2X
j=1

njX
i=1

(yi1j � yi2j � �y1j + �y2j)2 ;

yikj is the log-transformed PK measure from the ith subject in the jth

sequence at the kth dosing period, and �ykj is the sample mean of the ob-
servations in the jth sequence at the kth period.

Example 2.3 Average Bioequivalence Trial
Suppose we are interested in establishing ABE between an inhaled for-

mulation and a subcutaneously injected formulation of a test drug. The PK
parameter chosen for this bioequivalence test is a log-transformation of the
24-hour AUC (i.e., the raw data is log-normal). Assume that the di¤erence
between the two formulations in log(AUC) is " = 0:04 and the standard
deviation for the intra-subject comparison is �21;1 = 0:55 with � = 0:05 and
� = 0:2; the sample-size per sequence is given by

n =
(1:96 + 0:84)

2
(0:55)

2

2 (0:223� 0:04)2
= 36:

For a small sample, the bioequivalence test can be obtained using the
following SAS macro Power2By2ABE. The purpose of this macro is to
calculate sample-size for an average BE trial featuring a 2 � 2 crossover
design with a normal endpoint. The power formulation was derived by
Jones and Kenward (2003, p.336). The SAS variables are de�ned as follows:
sWithin=Within-subject standard deviation on log-scale; uRatio= ratio
of two treatment means; n = total sample-size; and power = power of the
test.

��SAS Macro 2.3: Crossover Bioequivalence Trial��
%Macro Power2By2ABE(totalN=24, sWithin=0.355, uRatio=1);
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Data ABE; Keep sWithin uRatio n power;

n=&totalN; sWithin=&sWithin; uRatio=&uRatio;

* Err df for AB/BA crossover design;

n2=n-2;

t1=tinv(1-0.05,n-2); t2=-t1;

nc1=Sqrt(n)*log(uRatio/0.8)/Sqrt(2)/sWithin;

nc2=Sqrt(n)*log(uRatio/1.25)/Sqrt(2)/sWithin;

df=Sqrt(n-2)*(nc1-nc2)/(2*t1);

Power=Probt(t2,df,nc2)-Probt(t1,df,nc1);

Run;

Proc Print; Run;

%Mend Power2By2ABE;

��SAS��

An example of how to use the macro is presend in the following:

��SAS��
%Power2By2ABE(totalN=58, sWithin=0.355, uRatio=1)

��SAS��

2.3.3 Population and Individual Bioequivalence

An FDA 2001 guidance describes two new approaches, termed population
bioequivalence and individual bioequivalence (PBE, IBE). PBE is con-
cerned with assessing if a patient who has not yet been treated with R
or T can be prescribed either formulation. IBE is a criterion for deciding if
a patient who is currently being treated with R can be switched to T. The
ABE method does not assess a subject-by-formulation interaction variance,
that is, the variation in the average T and R di¤erence among individuals.
In contrast, PBE and IBE approaches include comparisons of both averages
and variances of the measure. The PBE approach assesses total variability
of the measure in the population. The IBE approach assesses within-subject
variability for the T and R products, as well as the subject-by-formulation
interaction. For PBEs and IBEs, the 95% con�dence intervals are recom-
mended with the same BE limits as those for ABE.
Statistical analyses of PBE and IBE data typically require a higher-

order crossover design such as [RTR,TRT] or [RTRT,TRTR]. The statistical
model is often a mixed-e¤ects model. PBE and IBE approaches, but not the
ABE approach, allow two types of scaling: reference scaling and constant
scaling. Reference scaling means that the criterion used is scaled to the
variability of the R product, which e¤ectively widens the BE limit for more
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variable reference products. Although generally su¢ cient, use of reference
scaling alone could unnecessarily narrow the BE limit for drugs and/or
drug products that have low variability but a wide therapeutic range. This
guidance, therefore, recommends mixed scaling for the PBE and IBE ap-
proaches. With mixed scaling, the reference-scaled form of the criterion
should be used if the reference product is highly variable; otherwise, the
constant-scaled form should be used.
The hypothesis test for IBE is given by

H0 :

(
(�T � �R)

2
+ �2D + �

2
WT � 3:49�2WR � 0 if �2WR > 0:04;

(�T � �R)
2
+ �2D + �

2
WT � �2WR � 0:996 � 0 if �2WR � 0:04;

where �2WT and �
2
WR are the within-subject variances for T and R, respec-

tively, �2BT and �
2
BR are the between-subject variances for T and R, and

�2D = �2BT+ �2BR � 2��2BT�2BR is the subject-by-formulation interaction,
where � is the between-subject correlation of T and R. The mean of T and
R are denoted by �T and �R; respectively.
The hypothesis test for PBE is given by

H0 :

(
(�T � �R)

2
+ �2T � 3:49�2R � 0 if �2R > 0:04;

(�T � �R)
2
+ �2T � �2R � 0:996 � 0 if �2R � 0:04;

where �2T = �2WT + �
2
BT and �

2
R = �2WR + �

2
BR.

Further details can be found in (Jones and Kenward, 2003, and Chow
and Liu, 2003). SAS programs for IBE and PBE are available from Jones
and Kenward (2003).

2.4 Dose-Response Trials

Dose-response trials are also called dose-�nding trials. Four questions are
often of interest in a dose-response trial (Ruberg, 1995): (1) Is there any
evidence of drug e¤ect? (2) What doses exhibit a response di¤erent from
the control response? (3) What is the nature of the dose-response? and
(4) What is the optimal dose? A phase-II dose-response trial is typically
a multiple-arm parallel design with a control group. There are a variety
of approaches to statistical analysis for a dose response study; for exam-
ples, see Chuang and Agresti (1997) and Stewart and Ruberg (2000). A
commonly used and conservative approach is to compare each active dose
to the control using Dunnett�s test or a stepwise test. As pointed out by
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Steart and Ruberg (2000), the contrast will detect certain expected dose-
response features without forcing those expected features into the analysis
model. Commonly used contrast procedures include Dunnett�s test (Dun-
nett, 1955), the regression test of Tukey et al. (Tukey and Ciminera, 1885),
Ruberg�s basin contrast (Ruberg, 1989), Williams�s test (Williams, 1971,
1972), and the Cochran-Armitage test (Cochran, 1954; Amitage, 1955). For
multiple contrast tests, there are usually multiplicity adjustment require-
ments (Hsu and Berger, 1999). The sample-size formulation is available for
multi-arm dose-response trials for binary endpoints based on contrast tests
(Nam, 1987). For ordered categorical data, Whitehead (1993) derived a for-
mulation for sample-size calculation based on a proportional-odds model.
The objective of this section is to provide a uni�ed formulation and

a user-friendly SAS macro for calculating the power and sample-size for
multiple-arm superiority and noninferiority trials with continuous, binary,
or survival endpoints (Chang, 2006; Chang, and Chow, 2006a).

2.4.1 Uni�ed Formulation for Sample-Size

In multiple-arm trials, a general one-sided hypothesis testing problem can
be stated as a contrast test:

Ho : L(u) � 0; vs. Ha : L(u) = " > 0; (2.8)

where the operator or function L(�) is often linear, u = fuig, ui can be the
mean, proportion, or hazard rate for the ith group depending on the study
endpoint, and " is a constant.
A test statistic can be de�ned as

T =
L(û)p

var"=0(L(û))
; (2.9)

where û is an unbiased estimator of u.
A linear operator of L(�) is particularly interesting and will be used in

the rest of the chapter:

L(u) =
kX
i=1

ciui � �; (2.10)

where the contrast coe¢ cient ci satis�es the equation
Pk

i=1 ci = 0 (c1 = 1
for a single-arm trial):Without losing generality, assume that ciui > 0 indi-
cates e¢ cacy; then, for a superiority design, � � 0; and for a noninferiority
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design, � < 0: Note that if � = 0 and Ho de�ned by (2.8) is rejected for some
fcig satisfying

Pk
i=1 ci = 0, then there is a di¤erence among ui (i = 1; :::; k):

Let û be the mean for a continuous endpoint, proportion for a binary
endpoint, and maximum likelihood estimator (MLE) of the hazard rate for
a survival endpoint; then, the asymptotic distributions of the test statistic
can be obtained from the central limit theorem:
Under the null hypothesis, the test statistic is given by

T =
L"=0(û)

vo
� N(0; 1) (2.11)

and under the speci�c alternative hypothesis associated with ", the test
statistic is given by

T =
L(û)

vo
� N(

"

vo
;
v2a
v2o
); (2.12)

where

" = E(L(û); (2.13)

�
v2o = var"=0(L(û))

v2a = var(L(û))
: (2.14)

Because of (2.10), (2.14) can be written as

(
v2o =

Pk
i=1 c

2
i var"=0(ûi) = �2o

Pk
i=1

c2i
ni
=

�2o
n

v2a =
Pk

i=1 c
2
i var(ûi) =

Pk
i=1

c2i�
2
i

ni
=

�2a
n

; (2.15)

where

(
�2o = �2o

Pk
i=1

c2i
fi

�2a =
Pk

i=1
c2i�

2
i

fi

; (2.16)

where ni is the sample-size for the ith arm, fi = ni
n is the size fraction,

n =
Pk

i=0 ni; �
2
o is the variance of the response under Ho, and �2i is the

variance under Ha for the ith arm.
From (2.12) and (2.15), it is immediately obtained that under the spe-

ci�c alternative hypothesis, the test statistic T is normally distributed with
a mean of

p
n"
�o

and a variance of �
2
a

�2o
: Therefore, similar to (2.1), the power

considering heterogeneity of variances can be obtained:

power = �
�
"
p
n� �oz1��
�a

�
: (2.17)
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Similar to (2.2), the sample-size with the heterogeneous variances is given
by

n =
(z1�a�o + z1���a)

2

"2
: (2.18)

Note that " de�ned by (2.13) is the treatment di¤erence � - the non-
inferior/superiority margin �: When � = 0; " is simply the treatment dif-
ference.
Equations (2.16) through (2.18) are applicable to any k-arm design (k �

1). The asymptotic variance �2i can be estimated by

�̂2i = p̂i(1� p̂i) (2.19)

for a binary endpoint with an estimated response rate of p̂i; and

�̂2i = �̂
2

i

"
1 +

e��̂iTs(1� e�̂iT0)
T0�̂i

#�1
(2.20)

for an exponentially distributed survival endpoint with an estimated hazard
rate of �̂i: These two variances can be used to calculate �

2
o and �

2
a in (2.16)

when the sample-size is large. It can be seen that (2.17) and (2.18) have
included the common one-arm and two-arm superiority and noninferiority
designs as special cases: for a one-arm design, c1 = 1; and for a two-arm
design, c1 = �1 and c2 = 1:

2.4.2 Application Examples

Three examples (all modi�ed from the actual trials) will be used to demon-
strate the utility of the proposed method for clinical trial designs. The
�rst example is a multiple-arm trial with a continuous endpoint. In the
second example, both superiority and noninferiority designs are considered
for a multiple-arm trial with a binary endpoint. The third example is an
application of the proposed method for designing a multiple-arm trial with
a survival endpoint, where di¤erent sets of contrasts and balanced, as well
as unbalanced, designs are compared. For convenience, the SAS macro for
sample-size calculation is provided.

Example 2.4 Dose-Response Trial with Continuous Endpoint
In a phase II asthma study, a design with 4 dose groups (0 mg, 20 mg, 40

mg, and 60 mg) of the test drug is proposed. The primary e¢ cacy endpoint
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is the percent change from baseline in forced expiratory volume in the �rst
second (FEV1). From previous studies, it has been estimated that there
will be 5%, 12%, 13%, and 14% improvements over baseline for the control,
20 mg, 40 mg, and 60 mg groups, respectively, and a homogeneous standard
deviation of � = 22% for the FEV1 change from baseline. To be consistent
with the response shape, let the contrast ci = 100(�i� 1

4

P4
i=1 �i); i.e., c1 =

�6; c2 = 1; c3 = 2; c4 = 3, where �i is the estimated FEV1 improvement
in the ith group. It can be seen that any set of contrasts with multiples of
the above fcig will lead to the same sample-size. Thus it can be obtained
that " =

P4
i=1 ci�i = 50%. Using a balanced design (fi = 1=4) with a

one-sided � = 0:05, the sample-size required to detect a true di¤erence of
" = 0:5 with 80% power is given by

n =

�
(z1�� + z1��)�

"

�2 4X
i=1

c2i
fi

=

�
(1:645 + 0:842)(0:22)

0:50

�2
4((�6)2 + 12 + 22 + 32)

= 240:

Thus, a total sample-size of 240 is required for the trial.

Example 2.5 Dose-Response Trial with Binary Endpoint
A trial is to be designed for patients with acute ischemic stroke of recent

onset. The composite endpoint (death and miocardial infarction [MI]) is
the primary endpoint. There are four dose levels planned with event rates
of 14%, 13%, 12%, and 11%, respectively. The �rst group is the active
control group (14% event rate). It is interested in both superiority and
noninferiority tests comparing the test drug to the active control. Notice
that there is no need for multiplicity adjustment for the two tests because of
the closed-set test procedure. The comparisons are made between the active
control and the test groups; therefore, the contrast for the active control
should have a di¤erent sign than the contrasts for the test groups. Let
c1 = �6; c2 = 1; c3 = 2; and c4 = 3. It is assumed that the noninferiority
margin for the event rate is � = 0:5%, and the event rate is po = 0:14

under the null hypothesis. Because it is a noninferiority design and the
noninferiority margin is usually de�ned based on a two-arm design, to make
this noninferiority margin usable in the multiple-arm design, the contrasts
need to be rescaled to match the two-arm design, i.e., set the contrast for
the control group c1 = �1: The �nal contrasts used in the trial are given
by
�
c1 = �1; c2 = 1

6 ; c3 =
1
3 ; c4 =

1
2

	
. Based on this information, it can
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be obtained that " =
Pk

i=1 cipi� � = �0:02333� 0:005 = �0:02833, where
pi is the estimated event rate in the ith group. Using a balanced design
(fi = 1=4), the two key parameters, �

2
o and �

2
a; can be calculated as follows:(

�2o = po(1� po)
Pk

i=1
c2i
fi
= 0:6689

�2a =
Pk

i=1
c2i pi(1�pi)

fi
= 0:639

:

Using a one-sided � = 0:025 and a power of 90%, the sample-size re-
quired for the noninferiority test is given by

n =

�
(z1���o + z1���a)

"

�2
=

"
(1:96

p
0:6689 + 1:2815

p
0:639)

�0:02833

#2
= 8600:

Thus a total sample-size of 8600 patients is required for the noninferiority
test. With 8600 patients, the power for the superiority test (� = 0; " =

0:0233) is 76.5%, which is calculated as follows:

power = �o

�
"
p
n� �oz1��
�a

�
= �o

 
0:0233

p
8600� 1:96

p
0:6689p

0:639

!
= �o (0:6977) = 76%:

Note that di¤erent contrasts can be explored to minimize the sample-
size.
An interesting note is that the Cochran-Armitage linear trend test is a

special case of the contrast test in which the contrast ci = di � �d, where di
is the ith dose and �d is the average dose.

Example 2.6 Dose-Response Trial with Survival Endpoint
Let �i be the population hazard rate for group i. The contrast test for

multiple survival curves can be written as Ho :
Pk

i=0 ci�i � 0: This null
hypothesis is assumed in the following example.
In a four-arm (active control, lower dose of test drug, higher dose of

test drug, and combined therapy), phase II oncology trial, the objective
is to determine if there is treatment e¤ect with time-to-progression as the
primary endpoint. Patient enrollment duration is estimated to be T0 = 9
months and the total trial duration is Ts = 16 months. The estimated
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median times for the four groups are 14, 20, 22, and 24 months with the
corresponding hazard rates of 0.0459, 0.0347, 0.0315, and 0.0289/month,
respectively (under the exponential survival distribution, �TMedian = ln2).
The hazard rate under the null hypothesis is assumed to be 0.03525. A
power of 80% and a one-sided � of 0:025 are proposed for the trial. The
small � is used due to the consideration of potential accelerated approval
using this trial. In order to achieve the most e¢ cient design (i.e., minimum
sample-size), sample sizes from di¤erent contrasts and various designs (bal-
anced and unbalanced) are compared. The results are presented in Table
2.2, where the optimal design is the minimum variance design in which the
number of patients assigned to each group is proportional to the variance of
the group. It can be seen that the optimal design with sample-size fractions
(0.343, 0.244, 0.217, and 0.197) is generally the most powerful and requires
fewer patients regardless of the shape of the contrasts. The contrasts with
a linear trend also work well for the optimal design. Although the opti-
mal design with linear contrasts seems attractive with a total sample-size
of 646 subjects, in practice, more patients being assigned to the control
group presents an ethical concern, and it is desirable to obtain more infor-
mation on the test groups. Therefore, a balanced design with contrasts
(10.65, -0.55, -3.75, and -6.35) is recommended with a total sample-size of
742 subjects.

Table 2.2: Sample Sizes for Di¤erent Contrasts (Balanced Design)

Scenario Contrast Total n

Balance Optimal

Average dose e¤ect -3 1 1 1 838 690

Linear response trend -6 1 2 3 759 646

Median time trend -6 0 2 4 742 664

Hazard-rate trend 10.65 -0.55 -3.75 -6.35 742 651

Note: Sample-size fractions for the optimal design = 0.343, 0.244, 0.217, and 0.197.

2.4.3 Determination of Contrast Coe¢ cients

There are two criteria that need to be considered when selecting contrasts:
(1) The selected contrasts must lead to a clinically meaningful hypothesis
test, and (2) The selected contrasts should provide the most powerful test
statistic after criterion 1.
To use a contrast test, the selection of contrasts should be practically

meaningful. If one is interested in a treatment di¤erence among any groups,
then any contrasts can be applied. If one is only interested in the compar-
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ison between dose-level 1 and other dose levels, then one should make the
contrast for dose-level 1 have a di¤erent sign from that of the contrasts for
other dose groups. Otherwise, e¢ cacy may not be concluded even when
the null hypothesis Ho is rejected, because the rejection of Ho could be due
simply to the opposite e¤ects (some positive and some negative) of di¤erent
dose levels of the test drug.
To study how the di¤erent combinations of response shapes and con-

trasts may a¤ect the sample-size and power, the following �ve di¤erent
shapes (Table 2.3) are considered.

Table 2.3: Response and Contrast Shapes

Shape u1 u2 u3 u4 c1 c2 c3 c4
Linear 0.1 0.3 0.5 0.7 -3.00 -1.00 1.00 3.00

Step 0.1 0.4 0.4 0.7 -3.00 0.00 0.00 3.00

Umbrella 0.1 0.4 0.7 0.5 -3.25 -0.25 2.75 0.75

Convex 0.1 0.1 0.1 0.6 -1.25 -1.25 -1.25 3.75

Concave 0.1 0.6 0.6 0.6 -3.75 1.25 1.25 1.25

Note: ci = b
�
ui � 1

4�
4
i=1ui

�
; b = any constant.

Sample sizes required under a balanced design for di¤erent combinations
of responses and contrasts are presented in Table 2.4. It can be seen that
under a balanced design, when response and contrasts have the same shape,
a minimal sample-size is required. If an inappropriate contrast set is used,
the sample-size could be 30 times larger than the optimal design.

Table 2.4: Sample-Size Per Group for Various Contrasts

Contrast

Response Linear Step Umbrella Convex Concave

Linear 31 35 52 52 52

Step 39 35 81 52 52

Umbrella 55 74 33 825 44

Convex 55 50 825 33 297

Concave 55 50 44 297 33

Note: � = 1; one-sided � = 0:05

In fact, under a balanced design, homogenous variance under Ho and
Ha and � = 0; the minimum sample-size or maximum power is achieved
when the following equation is satis�ed (assume �u =

Pk
i=1 ui = 0):

@n

@ci
= 0: (2.21)
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Under the given conditions, (2.21) is equivalent to

@

@ci

 
�Mi=1c

2
i�

�Mi=1ciui
�2
!
= 0: (2.22)

It is obvious that the solution to (2.22) is ci = ui (i = 1; :::; k): If �u 6= 0;
we can make a linear transformation u�i = ui��u; hence ci = u�i or ci = ui��u
for minimum sample-size.

2.4.4 SAS Macro for Power and Sample-Size

For convenience, the sample-size calculation formulation (2.18) has been
implemented in SAS macro AsympN. This SAS macro can be used to cal-
culate the sample-size for multiple-arm superiority and noninferiority trial
designs with continuous, binary, or survival endpoints. The parameters are
de�ned as follows: endpoint = "normal", "binary", or "survival" ; al-
pha = one-sided signi�cance level; nArms = number of groups; delta (>
0) = superiority margin, and delta (<0) = in-inferiority margin; tAcr =
patient enrollment duration; tStd = study duration; u{i} are treatment
mean, proportions of response, or hazard rates for the ith group; s{i} =
standard deviations for a continuous endpoint; c{i} = the contrasts; and
f{i} = sample-size fractions among treatment groups. Note that tAcr and
tStd are for a survival endpoint only, and �c{i}=0. The standard de-
viation under the null hypothesis is assumed to be the average standard
deviation over all groups.

��SAS Macro 2.4: Sample-Size for Dose-Response Trial��
%Macro AsympN(endpoint="normal", alpha=0.025, power=0.8,

nArms=5, delta=0, tStd=12, tAcr=4);

Data contrastN; Set dInput;

Keep Endpoint nArms alpha power TotalSampleSize;

Array u{&nArms}; Array s{&nArms}; Array f{&nArms};

Array c{&nArms}; endpoint=&endpoint; delta=&delta;

alpha=&alpha; power=&power; nArms=&nArms;

epi = 0; s0 = 0;

Do i =1 To nArms; epi = epi + c{i}*u{i}- &delta; End;

If &endpoint = "normal" Then Do;

Do i =1 To nArms; s0 = s0 + s{i}/nArms; End;

End;

If &endpoint = "binary" Then Do;

Do i = 1 To nArms;
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s{i} = (u{i}*(1-u{i}))**0.5;

s0=s0 + s{i}/nArms;

End;

End;

If &endpoint = "survival" Then Do;

Do i = 1 To nArms;

s{i} = u{i}*(1+exp(-u{i}*&tStd)*(1-exp(u{i}*&tAcr))

/(&tAcr*u{i}))**(-0.5);

s0 = s0 + s{i}/nArms;

End;

End;

sumscf0 = 0; sumscf = 0;

Do i = 1 To nArms; sumscf0 = sumscf0 + s0**2*c{i}*c{i}/f{i}; End;

Do i = 1 To nArms; sumscf = sumscf + s{i}**2*c{i}*c{i}/f{i}; End;

n = ((PROBit(1-&alpha)*sumscf0**0.5

+ Probit(&power)*sumscf**0.5)/epi)**2;

TotalSampleSize = round(n);

run;

proc print;

run;

%Mend AsympN;

��SAS��

The following example shows how to call this SAS macro for sample-size
calculations with normal, binary, and survival endpoints.

��SAS��
Title " = s of How to Use the SAS Macros";

Data dInput;

Array u{4}(.46, .35, .32, .3); ** Responses;

Array s{4}(2, 2, 2, 2); ** Standard deviation for normal endpoint;

Array c{4}(-4, 1, 1, 2); ** Contrasts;

Array f{4} (.25, .25 ,.25, .25); ** Sample size fractions;

%AsympN(endpoint="normal", alpha=0.025, power=0.8, nArms=4);

%AsympN(endpoint="binary", alpha=0.025, power=0.8, nArms=4);

%AsympN(endpoint="survival", alpha=0.025, power=0.8, nArms=4,

delta=0, tStd=2, tAcr=.5);

run;

��SAS��
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2.5 Maximum Information Design

In clinical trials, the sample-size is determined by a clinically meaningful
di¤erence and information on the variability of the primary endpoint. Due
to lack of knowledge of the new treatment, estimates of the variability
for the primary endpoint are often not precise. As a result, the initially
planned sample-size may turn out to be inappropriate and needs to be
adjusted at interim analysis to ensure the power if the observed variability
of the accumulated response on the primary endpoint is very di¤erent from
that used at the planning stage. To maintain the integrity of the trial, it is
suggested that sample-size re-estimation be performed without unblinding
the treatment codes if the study is to be conducted in a double-blind fashion.
Procedures have been proposed for adjusting the sample-size during the
course of the trial without unblinding and altering the signi�cance level
(Gould, 1992; Gould and Shih, 1992). An alternative approach to dealing
with the noise of the pooled variance is to use the maximum information
design. The idea behind this approach is that recruitment continues until
the prespeci�ed information level (I = N=(2�̂2) = Imax) is reached. For
a given sample-size, the information level is reduced when the observed
variance increases. The total sample-size for the two-group parallel design
can be written in this familiar form:

N =
4

�2
(z1��=2 + z1��)

2�
2
0

�̂2
; (2.23)

where � is treatment di¤erence and �0 is the estimated standard deviation
at the time of designing the trial and �̂ is the observed standard deviation.
If �̂ is not related to �̂; then N is independent of �̂: Adjusting the N

based on �̂ will not in�ate the overall �:

2.6 Summary and Discussion

In this chapter, we reviewed commonly used classic trial design methods.
The methods derived from a contrast test can be used for power and sample-
size calculations for k-arm trials (k � 1). They can be used for superiority
or noninferiority designs with continuous, binary, or survival endpoints.
The selection of contrasts is critical. The selected contrasts must lead
to a clinically meaningful hypothesis test and should lead to a powerful
test statistic. The examples above provided details about the use of these
methods. Contrast testing can be used to detect treatment di¤erence. The
most (or least) responsive arm can be considered superior or noninferior to



46 Adaptive Design Theory and Implementation

the control and can be selected for studies in the next phase. As far as the
response shape is concerned, model approaches or multiple-contrast tests
can be used to establish the con�dence intervals or predictive intervals of
the response for each dose level under study. The optimal dose is more
complicated because the safety aspect has to be considered.
We have also discussed equivalence studies and the maximum informa-

tion design. The latter can be considered a quasi adaptive design because
the sample-size changes automatically based on the nuisance parameter �2.
It is important to remember that the power very much relies on the

assumption of the estimated e¤ect size at the time of study design. It is even
more critical to fully understand these three di¤erent concepts about e¤ect
size: true size, estimated size, and minimum meaningful e¤ect size, and
their impacts on trial design. Last but not least, trial design involves many
di¤erent aspects of medical/scienti�c, statistical, commercial, regulatory,
operational, data management functions. A statistician cannot view the
achievement of a design with the greatest power or smallest sample-size as
the ultimate goal. Further, a trial design cannot be viewed as an isolated
task. Instead, drug development should be viewed as an integrated process
in which a sequence of decisions are made. We will discuss more on this
throughout the book.
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Problems

2.1 A clinical design team is discussing the trial design for a phase-III
asthma study. Based on the results of a phase-II trial, the percent increase
from baseline in FEV is 6%, 11%, and 15% for placebo, 400 mg, and 800
mg dose groups, respectively. The common standard deviation is 18%. No
safety concerns have been raised based on the phase-II data. The medical
research and commercial groups in the company believe that the clinically
and commercially meaningful minimum treatment di¤erence is 7% between
active group and placebo because a commercial product with 7% mean
FVE1 improvement over placebo is available on the market with a good
safety pro�le.
Design this phase-III trial (type of design, number of groups and dose

levels, sample-size). Justify your design, determine the p-value if the ob-
served is 6.9%, 7%, and 7.1%, and discuss the implications of these p-values
to your design.

2.2 An Oncology Trial Design. Design the following trial and recom-
mend a sample-size.
Consider a two-arm oncology trial comparing a test treatment to an

active control with respect to the primary e¢ cacy endpoint, time to disease
progression (TTP). Based on data from previous studies, the median TTP
is estimated to be 10 months (hazard rate = 0.0693) for the control group,
and 13 months (hazard rate = 0.0533) for the test treatment group. Assume
that there is a uniform enrollment with an accrual period of 10 months and
that the total study duration is expected to be 24 months.

2.3 Some Commonly Used Formulas
(1) For PK/PD and Bioequivalence studies, log-transformation is often

used.
(a) Prove the following:

�lnX =
p
ln (1 + CVX) if lnX is Normal.

(b) Prove the following relationship under a general condition with a
small CV :

lnX ' ln�+ X � �
�

� N
�
ln�; CV 2

�
:
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(2) For a survival analysis, the power is often based on the number
of events instead of the number of patients. Therefore, we can use the
exponential model to predict the time when a certain number of events is
reached. This is very useful for operational planning. Prove the following
relationships under the assumption of exponential distribution:

D =

�
R
�
T � 1

� +
1
�e

��T � if T � T0;

R
�
T0 � 1

�

�
e�T0 � 1

�
e��T

�
if T > T0;

and

T =
- 1� ln

�
�D
R � �T + 1

�
if T � T0;

- 1� ln
h
�
�
T0 � D

R

� �
e�T0 � 1

��1
if T > T0

i
;

where T0 = enrollment duration, T = the time of interesting from random-
ization, D = number of deaths, R = uniform enrollment rate, � = hazard
rate.
Also prove the following under exponential distribution:

Tmedian =
ln 2

�
= Tmean ln 2

and the two-sided (1� �)% con�dence interval for the hazard �:

"
�̂

2D
�22D; 1��=2;

�̂

2D
�22D; �=2

#
;

where Tmedian = median time, Tmean = mean time, �̂ = MLE of �:

2.4 Power and Sample-Size Formulation for a Model-Based Approach
to Dose-Response Trials
Test-based approaches are �ne for detecting evidence against the null

hypothesis in the direction of a positive trend. However, they do not provide
much insight into the form of the relationship. A model-based perspective
is better for this purpose. A good-�tting model describes the nature of
the association, provides parameters for describing the strength of the re-
lationship, provides predicted probabilities for the response categories at
any dose, and helps us to determine the optimal dose. It also yields the
hypothesis of no treatment e¤ect if a frequentist approach is used for the
modeling. However, the results from model-based approaches are heavily
dependent on the accuracy of the model to the natural phenomenon.
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Whitehead (Whitehead, 1993, and Chuang and Agresti, 1997) developed
the sample-size formulation for an ordinal response based on the propor-
tional odds model (logistic model) for two groups. The total sample-size
for a one-sided test is given by

N =
2(r + 1)2(z1�� + z1��)

2

r(lnR)2(1�
P
�p3i )

;

where r is sample-size ratio, R is odd ratio which can be obtained from
logistic regression with or without covariates, and �pi is the anticipated
marginal proportion in the response category i.
The power is given by

power = �

 s
N r (lnR)2(1�

P
�p3i )

2(r + 1)2
� z1��

!
:

Generalize the formulations for sample-size and power for dose-response
models other than logistic model.

2.5 Reproduction
Consider a trial with two parallel arms comparing the mean di¤erence.

Assume that the known variance �2 = 1 and the true treatment di¤erence
is �: The estimated treatment di¤erence is �0. The trial was design at level
� with (1��) power and sample-size n. In other words, P�=�0 (p � �) = �,
P�=�0 (p � �) = 1� �: If the observed treatment di¤erence �̂ at the end of
the trial is less than, equal to, or larger than the true di¤erence �, what
is in each case the probability (reproductivity) that the next trial show
statistical signi�cance with sample-size n. Can we use the reproductivity
of 50% when � = �̂ to argue that � = 0:025% is too unconservative? Why?

2.6 Correlation between response di¤erence and common variance
Equation (2.23) is valid when �̂ is not related to �̂; Draw a function (or

graphically via simulation) to reveal the relationship between �̂ and �̂ for
Normal, binary and survival endpoint with �nite sample-size.
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Chapter 3

Theory of Adaptive Design

3.1 Introduction

As indicated early in Chapter 1, an adaptive design is a design that allows
adaptations or modi�cations to some aspects of a trial after its initiation
without undermining the validity and integrity of the trial. The adaptations
may include, but are not limited to, sample-size re-estimation, early stop-
ping for e¢ cacy or futility, response-adaptive randomization, and dropping
inferior treatment groups (Figure 3.1). Adaptive designs usually require
unblinding data and invoke a dependent sampling procedure. Therefore,
theory behind adaptive design is much more complicated than that behind
classic design. Validity and integrity have been strongly debated from sta-
tistical, operational, and regulatory perspectives during the past several
years. However, despite di¤erent views, most scholars and practitioners
believe that adaptive design could prove to be e¢ cient tools for drug de-
velopment if used properly. The issues of validity and integrity will be
discussed in depth in Chapter 18.
Many interesting methods for adaptive design have been developed. Vir-

tually all methods can be viewed as some combination of stagewise p-values.
The stagewise p-values are obtained based on the subsample from each
stage; therefore, they are mutually independent and uniformly distributed
over [0, 1] under the null hypothesis. The �rst method uses the same stop-
ping boundaries as a classic group sequential design (Pocock, 1977; O�Brien
and Fleming, 1979), and allows stopping for early e¢ cacy or futility. Lan
and DeMets (1983) proposed the error spending method (ESM), in which
the timing and number of analyses can be changed based on a prespeci-
�ed error-spending function. ESM is derived from Brownian motion. The
method has been extended to allow for sample-size re-estimation (SSR)
(Cui, Hung, and Wang, 1999). It can be viewed as a �xed-weight method
(i.e., using �xed weights for z-scores from the �rst and second stages re-
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gardless of sample-size change). Lehmacher and Wassmer (1999) further
degeneralized this weight method by using the inverse-normal method, in
which the z-score is not necessarily taken from a normal endpoint, but from
the inverse-normal function of stagewise p-values. Hence, the method can
be used for any type of endpoint.

Figure 3.1: Various Adaptations

The second method is based on a direct combination of stagewise p-
values. Bauer and Kohne (1994) use the Fisher combination (product)
of stagewise p-values to derive the stopping boundaries. Chang (2006)
used the sum of the stagewise p-values to construct a test statistic and
derived a closed form for determination of stopping boundaries and p-value
calculations as well as conditional power for trial monitoring.
The third method is based on the conditional error function. Proschan

and Hunsberger (1995) developed an adaptive design method based the
conditional error function for two-stage designs with Normal test statistics.
Müller and Schäfer (2001) developed the conditional error method where
the conditional error function is avoided and replaced with a conditional
error that is calculated on �y. Instead of a two-stage design, Müller and
Schäfer�s method can be applied to a k-stage design and allows for many
adaptations.
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The fourth method is based on recursive algorithms such as Brannath-
Posch-Bauer�s recursive combination tests (Brannath, Posch and Bauer,
2002); Müller-Schäfer�s decision-function method (Müller and Schäfer,
2004); and Chang�s (2006) recursive two-stage adaptive design (RTAD).
All four recursive methods are developed for k-stage designs allowing for
general adaptations. RTAD is the simplest and most powerful method and
the calculations of stopping boundary, conditional power, sample-size mod-
i�cation, p-values, and other operating characteristics can be performed
manually without any di¢ culties. The major methods of adaptive designs
in this book are presented in Figure 3.2

Figure 3.2: Selected Adaptive Design Methods from This Book

In the next several chapters we will cover these methods in detail, but
now let�s introduce the general framework for an adaptive design. Under
this general framework, we can easily study the di¤erent methods, perform
comparisons, and look into the relationships that exist among the di¤erent
methods. This chapter will focus on three major issues: type-I error control,
analysis including point and con�dence interval estimations, and design
evaluations.
This chapter might seem a bit too theoretical or abstract to readers who



54 Adaptive Design Theory and Implementation

are new to adaptive designs, but I hope you can read it adaptively, that
is, just pay attention to the logic, ignoring the mathematical details. You
should revisit this chapter from time to time after you read more in later
chapters.

3.2 General Theory

There are four major components of adaptive designs in the frequentis
paradigm: (1) type-I error rate or � - control: determination of stopping
boundaries, (2) type-II error rate �: calculation of power or sample-size, (3)
trial monitoring: calculation of conditional power or futility index, and (4)
analysis after the completion of a trial: calculations of adjusted p-values,
unbiased point estimates, and con�dence intervals.

3.2.1 Stopping Boundary

Consider a clinical trial with K stages and at each stage a hypothesis test
is performed followed by some actions that are dependent on the analysis
results. Such actions can be early futility or e¢ cacy stopping, sample-size
re-estimation, modi�cation of randomization, or other adaptations. The
objective of the trial (e.g., testing the e¢ cacy of the experimental drug)
can be formulated using a global hypothesis test, which is the intersection
of the individual hypothesis from the interim analyses.

Ho : Ho1 \ ::: \HoK ; (3.1)

where Hok (k = 1; :::;K) is the null hypothesis at the kth interim analysis.
Let�s denote the sample-size per group for the subsample at the kth stage
as nk. Note that the Hok have some restrictions, that is, rejection of any
Hok (k = 1; :::;K) will lead to the same clinical implication (e.g., drug is
e¢ cacious). Otherwise the global hypothesis can not be interpreted. In the
rest of the chapter, Hok testing will be based on subsamples from previous
stages with the corresponding test statistic denoted as Tk which will be a
combination of pi(i = 1; :::; k), where pi is the p-value from the subsample
obtained at the ith stage. A one-sided test is always used in this book unless
otherwise speci�ed.
The stopping rules are given by
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8<:
Stop for e¢ cacy if Tk � �k ;

Stop for futility if Tk > �k;

Continue with adaptations if �k < Tk � �k;

(3.2)

where �k < �k (k = 1; :::;K � 1), and �K = �K . For convenience, �k and
�k are called the e¢ cacy and futility boundaries, respectively.
To reach the kth stage, a trial has to pass the 1th to (k � 1)th stages.

Therefore the c.d.f. of Tk is given by

 k(t) = Pr(�1 < T1 < �1; :::; �k�1 < Tk�1 < �k�1; Tk < t)

=

Z �1

�1

:::

Z �k�1

�k�1

Z t

�1
fT1:::Tk dtk dtk�1:::dt1; (3.3)

where fT1:::Tk is the joint p.d.f. of T1; :::; and Tk.
Note that because the sequential adaptive designs control the overall

alpha under a global null hypothesis (3.1), it is very important to properly
form the hypothesis at each stage such that they are consistent and rejecting
any of them will lead to the same clinical implication. This is particularly
important when making hypothesis adaptations.

3.2.2 Formula for Power and Adjusted P-value

De�nition 3.1: The p-value associated with a test is the smallest sig-
ni�cance level � for which the null hypothesis is rejected (Robert, 1997,
p.196).
Let  k(t) denote the probability that the test statistic Tk is equal or

more extreme (smaller) than t. In other words, when H0 (or � = 0) is true,
 k(t) is the p-value if the trial stopped at the k

th stage. For convenience
we call this p-value the conditional p-value and denote it as

pc(t; k) =  k(tjH0): (3.4)

The conditional p-value alone is not very informative because it does not
measure the overall evidence against the null hypothesis. The conditional
error rate (� spent) at the kth stage is given by  k(�kjH0); that is, the
conditional error is

�k =  k(�kjH0): (3.5)

The conditional power of rejecting Ho at the kth stage is given by
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$k =  k(�kjHa): (3.6)

At the e¢ cacy stopping boundary, the conditional p-value pc(�k; k) =
 k(�kjH0), irrespective of the choices of type-I error rate �.
When e¢ cacy is claimed at a certain stage, the trial is stopped. There-

fore, the type-I errors at di¤erent stages are mutually exclusive. Hence the
experiment-wise type-I error rate can be written as

� =
KX
k=1

�k: (3.7)

Similarly, the power is given by

power =
KX
k=1

$k: (3.8)

Equation (3.5) is the key to determining the stopping boundaries adap-
tive designs as illustrated in the next several chapters. When �ki=1�i is
reviewed as a function of information time or stage k, it is the so-called
error-spending function.
There are several possible de�nitions of (adjusted) p-values. Here we are

most interested in the so-called stagewise-ordering p-values (Jennison and
Turnbull, 2000, p.180 and 356). Based on stagewise-ordering, extremeness
is de�ned as T1 > T2 > ::: > TK ; and within the same stage, extremeness is
de�ned by their values. Therefore, the stagewise-ordering adjusted p-value
is given by,

p(t; k) =
k�1X
i=1

�i + pc(t; k): (3.9)

An important characteristic of the adjusted p-value is that when the
test statistic t is on stopping boundary ak; pk must be equal to alpha spent
so far.
Note that the adjusted p-value is a measure of overall statistical strength

against Ho. The later the Ho is rejected, the larger the adjusted p-value
is, and the weaker the statistical evidence (against Ho) is. A late rejection
leading to a larger p-value is reasonable because the alpha at earlier stages
has been spent.
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3.2.3 Selection of Test Statistics

Without losing generality, assume Hok is a null hypothesis for the e¢ cacy
of the experimental drug, which can be written as

Hok : �k1 � �k2 vs. Hak : �k1 < �k2; (3.10)

where �k1 and �k2 are the treatment responses (mean, proportion, or sur-
vival) in the two comparison groups at the kth stage.
It is desirable to chose Tk such that fT1:::Tk has a simple form. Notice

that when �k1 = �k2, the p-value pk from the subsample at the kth stage
is uniformly distributed on [0,1] under Ho. This desirable property can be
used to construct test statistics for adaptive designs.
There are many possible combinations of the p-values such as (1) linear

combination (Chang, 2006)

Tk = �
k
i=1wkipi; k = 1; :::;K; (3.11)

(2) product of stagewise p-values (Fisher combination, Bauer and Kohne,
1994),

Tk =
kY
i=1

pi; k = 1; :::;K; (3.12)

and (3) linear combination of inverse-normal stagewise p-values (Lehmacher
and Wassmer, 1999, Cui, Hung, and Wang, 1999, Lan and DeMets, 1983)

Tk = �
k
i=1wki�

�1 (1� pi) ; k = 1; :::;K; (3.13)

where weight wki > 0 can be constant or a function (ESM) of data from
previous stages, and K is the number of analyses planned in the trial.
Note that pk is the naive p-value from the subsample at the kth stage,

while pc(t; k) and p(t; k) are conditional and adjusted p-values.

3.2.4 Polymorphism

After selecting the type of test statistic, we can determine the stopping
boundaries �k and �k by using (3.3), (3.5), and (3.7) under the global null
hypothesis (3.1). Once the stopping boundaries are determined, the power
and sample-size under a particular Ha can be numerically calculated using
(3.3), (3.6), and (3.8).
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The polymorphism refers to the fact that the stopping boundaries (and
other operating characteristics) can be constructed in many di¤erent ways,
all with type-I error control.
After selecting the test statistic, we can choose one of the following

approaches to fully determine the stopping boundaries:
(1) Choose certain types of functions for �k and �k. The advantage of

using a stopping boundary function is that there are only limited parame-
ters in the function to be determined. After the parameters are determined,
the stopping boundaries are then fully determined using (3.3), (3.5), and
(3.7), regardless of the number of stages. The commonly used boundaries
are OB-F (O�Brien and Fleming, 1979), Pocock�s (Pocock 1977), and Wang-
Tsiatis�boundaries (Wang and Tsiatis, 1987).
(2) Choose certain forms of functions for �k such that �Kk=1�k = �:

Traditionally, the cumulative quantity ��k = �ki=1 �i is called the error-
spending function, which can be either a function of stage k or the so-
called information time based on sample-size fraction. After determining
the function �k or equivalently ��k; the stopping boundaries �k;and �k
(k = 1; :::;K) can be determined using (3.3), (3.5), and (3.7).
The so-called error-spending approach, which uses a predetermined

error-spending function, allows for changing the number and timing of in-
terim analyses. It is interesting to know that there is usually an equiva-
lent stopping boundary function (at least implicitly) for any error-spending
function (Lan and DeMets, 1983).
(3) Choose non-parametric stopping boundaries, i.e., no function is as-

sumed, instead, use computer simulations to determine the stopping bound-
aries via a trial-error method. The non-parametric method does not allow
for the changes to the number and timing of the interim analyses.
(4) Conditional error function method: One can rewrite the stagewise

error rate for a two-stage design (see Chapter 8 for general multiple-stage
designs) as

�2 =  2(�2jHo) =

Z �1

�1

A(p1) dp1; (3.14)

where A(p1) is called the conditional error function. For a given �1 and
�1; by carefully selecting A(p1), the overall � control can be met (Proschan
and Hunsberger, 1995). However, �nding a good A(p1) isn�t always easy.
Therefore, the following method was developed.
(5) Conditional error method: similar to the conditional error function

method, but in this method, for a given �1 and �1; A(p1) is calculated
on-�y or in real-time, and only for the observed p̂1 under Ho: Adaptations
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can be made under the condition that keep A(p1jHo) unchanged.
Note that �k and �k are usually only functions of stage k or information

time, but they can be functions of response data from previous stages,
i.e., �k = �k (t1; :::; tk�1) and �k = �k (t1; :::; tk�1) : In fact using variable
transformation of the test statistic to another test statistic, the stopping
boundaries often change from response-independent to response-dependent.
Bauer and Kohne (1994) actually use a response-dependent boundary for
the second stage �2=p1:
(6) Recursive two-stage design (Chang 2006) is a simple and powerful

approach to a general N-stage design. It is considered an N-stage adaptive
design, and is a composite of many overlapped two-stage designs that use
the conditional error principal to derive the closed forms for the N-stage
design (see Chapter 8 for details).
If you feel you have had enough math, you can skip to the next chapter

and come back to this chapter after Chapter 7.

3.2.5 Adjusted Point Estimates

Estimation problems deserve a bit of philosophical discussion before we pro-
ceed to how to calculate them. We have focused our discussion within the
frequentist paradigm, which is constructed fundamentally on the concept
of repeated experiments. There are at least three types of unbiased point
estimates, corresponding to four di¤erent sample spaces: (1) Unconditional
point estimate (UE); the corresponding sample space consists of all possible
results from a repeated experiments with a given design. Usually only the
sponsor can see these results; (2) Conditional estimate (CE) that is based
on the positive or statistically signi�cant results; the corresponding sample
space consists of all results with statistical signi�cance. Regulatory author-
ities and patients usually only see this set of results; (3) Stagewise estimate
(SE), which is based on trial stopping at each stage; the corresponding
sample space is all possible results from repeated experiments when they
stop at a given stage k.
Theoretically, the sponsor (pharmaceutical company) can see all POS-

SIBLE results from a trial (equivalent to all results from repeated exper-
iments with a given design); sponsors usually only submit positive trial
results to regulatory agencies, and the agencies weigh the bene�t-risk ratio
and select a subset of the positive results for approval for marketing. For a
classic, single-stage design, what sponsors see is the unconditional estimate.
What the regulatory agencies and patients see are roughly the conditional
estimates.
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Conditional Estimate
Let�s take a hypothesis testing two group means as an example. Here we

will discuss CE (�c) and UE (�) for both classic and adaptive designs. For
a normal response, the CE is the mean under the condition that the null
hypothesis of no treatment e¤ect is rejected. It can be derived that the rel-
ative bias of the conditional mean for a classic design with two independent
groups is given by

� � �c
�

=
1

1� �
�

�
p
�n
exp

�
�1
2
z21��

�
; (3.15)

where � is the type-II error rate, � is the standard deviation, and n is the
sample-size per group. It is true that what we submit to the regulatory
reviewers is a conditional mean that is biased. For � = 0:2; there is about
a 12% bias for a classic design (see Table 3.1). Whether a conditional or
unconditional mean is submitted to regulatory authorities, the approval will
be based on the conditional mean. Therefore, what patients see is the most
biased mean. Statisticians are often faced with the question of whether to
report the conditional or unconditional mean. Should the conditional mean
be adjusted because it is reported to patients and is biased for both classic
and adaptive designs?

Table 3.1: Conditional and Unconditional Means

Design True mean Unconditional Conditional

di¤erence mean di¤erence mean di¤erence

Classic 1 1 1.12

Adaptive 1 1.05 1.25

Note: Standard deviation = 2.5. Nmax = Nfix = 100/group

Which mean should be used under which condition? If the conditional
mean is the most important because it is what sponsors show the FDA and
patients, then it should be adjusted regardless of classic or adaptive design
because it is biased in both designs. Because the conditional mean (CM)
is biased for both classic and adaptive designs, there is no reason to adjust
it for an adaptive design but not for a classic design.
Unconditional Estimate
If the unconditional mean is the most important, then it should be

adjusted for an adaptive design, but not for a classic design. A general
method for obtaining an unbiased point estimate is described as follows:
Let �B be a biased estimate for an adaptive design, and � be the true

value for the parameter of interest. The bias can be expressed as a function
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of �:

� (�) = � � ��B ; (3.16)

where ��B is the expectation of �B :

��B = � � � (�) : (3.17)

From (3.17) we obtain

� = ��1(��B); (3.18)

where ��1 (�) is the inverse function of � (�) = � � � (�) = (I � �) (�) ; I =

identity mapping. An unbiased estimate can be given by

�u = �B + � (�) = �B + �
�
(I � �)�1

�
��B
��
: (3.19)

The challenge is that we don�t know � and � (�). However, we can use
linear approximation to � (�) to solve the problem.
Assume

� (�) = c0 + c1�; (3.20)

where ci (i = 0; 1) are constants. Substituting (3.20) into (3.17) and solving
for �, we can obtain

� =
c0 + ��B
1� c1

: (3.21)

Because ci(i = 0; 1) is a constant, we can immediately obtain an unbi-
ased estimator from (3.21):

�u =
c0 + �B
1� c1

: (3.22)

The monotonic relationship � (�) = c0 + c1� usually holds at least in a
small range of � 2 (� � "; � + ") :

By trying several (at least 2) � =�m around �B , and using simulation
to calculate the bias � (�m) = �m � ��Bm for each �m; we get

� (�m) = c0 + c1�m. (3.23)

We can solve for (if only m = 2) or estimate c0 and c1 from (3.23).
The reasons to choose the values of �m near the best guessed value of

�B are obvious. If �B is near �; then (3.23) works well; if �B is far away
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from the true �; adjusting is not important anyway. If we name (3.23)
the �rst-order bias adjustment, then the zero-order bias adjustment is a
degeneralized case when letting c1 = 0 in (3.23).
Stagewise Estimates
The research papers on adjusted stagewise estimates are Lawrence and

Hung, 2003; Wassmer 2005; Posch et al., 2006; Brannath, Konig, and Bauer,
2006, among others. The sample space for the stagewise estimate at the
kth stage consists of all possible outcomes when the trial is stopped at the
kth stage.
Consider the following estimate:

�sw =
kX
i=1

wki�i; if trial stops at the kth stage, (3.24)

where �i is the stagewise unbiased estimate of treatment di¤erence � based
on the subsample from the ith stage; k is the stage where the trial stops; and
wki is a constant weight that usually, but not necessarily satis�es �ki=1wki =
1.
If the trial design does not allow for early stopping, e.g., an interim

analysis (IA) for sample-size adjustment only, then (3.24) is an unbiased
estimator of �. This is because

E (�sw) =
kX
i=1

wkiE (�i) =
kX
i=1

wki� = �
kX
i=1

wki = �: (3.25)

However, most adaptive clinical trials do allow for early stopping and
�sw from (3.24) is biased in general. A simple solution to get unconditionally
unbiased estimates is to add a few subjects (at least two) even if the trial
has been stopped early. These few subjects will not be used for p-value
calculation, only to get an unbiased estimation.

3.2.6 Derivation of Con�dence Intervals

Consider the null hypothesis:

H : � = �0: (3.26)

For �0 = 0; we use the test statistic T . In general, we use the test
statistic

~T = T � T0(�0); (3.27)
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where the function T0 (�0) is the expectation of T under H, and T0 (0) = 0:
A 100(1-�)% con�dence interval consists of all the �0 such that the null

hypothesis (3.26) would not be rejected, given the observed value T̂ of the
test statistic ~T . Therefore, the upper and lower bounds of this con�dence
interval are found by equating ~T = �k at the kth stage (Assume that ~T
under � = �0 and T under � = 0 have the same distribution; therefore the
same stopping boundary �k can be used.): This leads to

T � T0(�0) = ��k: (3.28)

Equation (3.28) can be solved for �0 to obtain the con�dence limits:

�0 = T�10

�
T̂ � �k

�
: (3.29)

If the stagewise-ordering adjusted p-value is used, then (3.29) is also nu-
merically equal to the (1��ki=1�i)% con�dence limits if the trial is stopped
at the kth stage.
For an adaptive design, if the test statistic at the kth stage is given by

T =

kX
i=1

wki
�i
�

r
ni
2
; (3.30)

where �Ki=1w
2
ki = 1; then we have

To (�0) =
kX
i=1

wki
�0
�

r
ni
2
: (3.31)

For symmetrical stopping boundaries (i.e., two-sided �; one e¢ cacy
boundary and one futility boundary, they are symmetrical), the lower and
upper limits of a (1 � �ki=1�i)% con�dence interval at the kth stage are
given by

�0 =

Pk
i=1 wki

�i
�

p
ni
2 � �kPk

i=1 wki
1
�

p
ni
2

: (3.32)

Also, because of symmetry, the point estimate is given by

�0 =

Pk
i=1 wki�i

p
ni
2Pk

i=1 wki
p

ni
2

: (3.33)
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For a one-sided con�dence limit, one of the limits is set at in�nity, and
(3.32) and (3.33) hold approximately. Note that in calculation, we can
replace � by �̂. (3.32) can be viewed as the (1 � �)% repeated con�dence
interval (RCI).

3.3 Design Evaluation - Operating Characteristics

3.3.1 Stopping Probabilities

The stopping probability at each stage is an important property of an adap-
tive design, because it provides the time-to-market and the associated prob-
ability of success. It also provides information on the cost (sample-size) of
the trial and the associated probability. In fact, the stopping probabilities
are used to calculate the expected samples that present the average cost or
e¢ ciency of the trial design and the duration of the trial.
There are two types of stopping probabilities: unconditional probability

of stopping to claim e¢ cacy (reject Ho) and unconditional probability of
futility (accept Ho). The former refers to the e¢ cacy stopping probability
(ESP), and the latter refers to the futility stopping probability (FSP). From
(3.3), it is obvious that the ESP at the kth stage is given by

ESPk =  k(�k) (3.34)

and the FSP at the kth stage is given by

FSPk = 1�  k(�k): (3.35)

3.3.2 Expected Duration of an Adaptive Trial

The stopping probabilities can be used to calculate the expected trial du-
ration, which is de�nitely an important feature of an adaptive design. The
conditionally (on the e¢ cacy claim) expected trial duration is given by

�te =
KX
k=1

ESPk tk; (3.36)

where tk is the time from the �rst-patient-in to the kth interim analysis.
The conditionally (on the futility claim) expected trial duration is given

by
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�tf =
KX
k=1

FSPk tk: (3.37)

The unconditionally expected trial duration is given by

�t =
KX
k=1

(ESPk + FSPk) tk: (3.38)

3.3.3 Expected Sample Sizes

The expected sample-size is a commonly used measure of the e¢ ciency
(cost and timing of the trial) of the design. The expected sample-size is a
function of the treatment di¤erence and its variability, which are unknowns.
Therefore, expected sample-size is really based on hypothetical values of
the parameters. For this reason, it is bene�cial and important to calculate
the expected sample-size under various critical or possible values of the
parameters. The total expected sample-size per group can be expressed as

Nexp =
KX
k=1

nk (ESPk + FSPk) =
KX
k=1

nk (1 +  k(�k)�  k(�k)) : (3.39)

It can also be written as

Nexp = Nmax �
KX
k=1

nk ( k(�k)�  k(�k)) ; (3.40)

where Nmax =
PK

k=1 nk is the maximum sample-size per group.

3.3.4 Conditional Power and Futility Index

The conditional power is the conditional probability of rejecting the null
hypothesis during the rest of the trial based on the observed interim data.
The conditional power is commonly used for monitoring an ongoing trial.
Similar to the ESP and FSP, conditional power is dependent on the pop-
ulation parameters or treatment e¤ect and its variability. The conditional
power at the kth stage is the sum of the probability of rejecting the null
hypothesis at stage k + 1 to K (K does not have to be predetermined),
given the observed data from stages 1 through k.
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cPk =
KX

j=k+1

Pr
�
\j�1i=k+1 (ai < Ti < �i) \ Tj � �j j \ki=1 Ti = ti

�
; (3.41)

where ti is the observed test statistic Ti at the ith stage. For a two-stage
design, the conditional power can be expressed as

cP1 = Pr (T2 � �2jt1) : (3.42)

The futility index is de�ned as the conditional probability of accepting
the null hypothesis:

FIk = 1� cPk: (3.43)

3.3.5 Utility and Decision Theory

It is important to realize that the choice of a design should not be based
on power only. In fact power may not be a good criterion for evaluating a
design, especially when it comes to adaptive designs. In many situations,
time is more important than power. Also, a design with high power to
detect a small and clinically irrelevant di¤erence is not desirable.
Decision theory is a body of knowledge that assists a decision maker in

choosing among a set of alternatives in light of their possible consequences.
Decision theory is based on the concept of utility or, equivalently, the loss
function. The decision maker�s preferences for the mutually exclusive con-
sequences of an alternative are described by a utility function that permits
calculation of the expected utility for each alternative using Bayesian the-
ory. The alternative with the highest expected utility is considered the
most preferable. The Bayesian decision theory can be illustrated in Figure
3.3.
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Figure 3.3: Bayesian Decision Approach

For an adaptive trial with sample-size re-estimation, the Bayesian deci-
sion theory can be brie�y stated as follows:

De�ne the utility U
�
�̂; n
�
, the prior distribution � (�). Denote the

posterior by �
�
�j�̂1

�
and the interim observed treatment di¤erence by �̂1:

The expected utility at the design stage is given by

EU (n) =

Z Z
U
�
�̂; n
�
� (�) Pr

�
�̂j�
�
d� d�̂

The expected utility at the interim analysis is given by

EU (n) =

Z Z
U
�
�̂; n
�
�
�
�j�̂1

�
Pr
�
�̂j�
�
d� d�̂

The Bayesian decision approach is to determine an action (i.e., sample-
size n) that maximizes the expected utility under certain constraints:

@EU (n)

@n
= 0:

Decision theory can be viewed as one-person game theory, involving a
game with a single player against nature. This refers to a situation where
the result of a decision depends on the action of another player (nature).
For example, if the decision is to carry an umbrella or not, the result (get
wet or not) depends on what action nature takes. An important feature of
this model is that the returns only a¤ect the decision maker, not nature.
However, in game theory, both players have an interest in the outcome.
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Note that we can treat our problems using utility theory because a decision
maker�s action does not materially a¤ect nature. In the modern drug devel-
opment age, pharmaceutical companies face many competitors. Therefore,
strictly speaking, game theory is more applicable than utility theory in this
competing-cooperative environment. Fortunately, utility theory can take
the competition into consideration by constructing a utility that includes
the result of the competitor�s action (if it is relatively static), although this
approach is not as good as game theory. We will discuss later in detail how
to generate optimal designs using Bayesian decision theory in Chapter 16.

3.4 Summary

In this chapter, we have provided a uniform formulation for adaptive designs
and the polymorphism, i.e., how the uniform formulation can be used to
develop various adaptive design methods. In the next several chapters, we
will illustrate this in detail, derive di¤erent methods, and apply them to
di¤erent trials. We have also discussed the estimation issues and the general
methods. In Chapter 8, we will discuss estimation again in great detail with
trial examples. Evaluation of trial designs is obviously important. We have
reviewed many operating characteristics of adaptive designs. Keep in mind
that we should not misunderstand power to be the sole criterion when
judging a trial design. Instead, think of drug development as an integrated
process �decision or game theory is the ultimate tool for trial evaluation.
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Problem

3.1 Prove that the bias of conditional estimate can be expressed by
(3.15) for classic design (assume E (�x) = �

�
p
n
, where � = standard devia-

tion for the mean di¤erence).
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Chapter 4

Method with Direct Combination of
P-values

In this chapter, we will use the theory developed in the previous chapter
with several di¤erent test statistics based on direct combination of stagewise
p-values, which includes: (1) method based on individual p-values (MIP),
(2) method based on the sum of p-values (MSP), and (3) method based
on the product of p-values (MPP). We will focus on two-stage designs and
derive the closed forms for determination of stopping boundaries and ad-
justed p-values. Many di¤erent examples are presented, in which power and
sample-size calculations are based on computer simulations. The methods
are very general, meaning that they can be applied to broad adaptations.
However, the examples provided will focus on classic group sequential de-
signs and sample-size re-estimation (SSR).

4.1 Method Based on Individual P-values

This method refers to MIP, in which the test statistic is de�ned as

Tk = pk; (4.1)

where pk is the stagewise p-value from the kth stage subsample.
Using (3.3), (3.5), and (3.7), a level-� test requires:

� =
KX
k=1

�k

k�1Y
i=1

(�i � �i) : (4.2)

When the upper bound exceeds the lower bound in (4.2), de�neQ0
i=1(�) = 1.
Using (4.2), the stopping boundary (�i; �i) can be determined. For a

two-stage design, (4.2) becomes

71
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� = �1 + �2(�1 � �1): (4.3)

For convenience, examples of stopping boundaries from (4.2) are tabu-
lated for a one-sided � = 0:025 (Table 4.1).

Table 4.1: Stopping Boundaries �2 with MIP

�1 0.000 0.0025 0.005 0.010 0.015 0.020

�1
0.15 0.1667 0.1525 0.1379 0.1071 0.0741 0.0385

0.20 0.1250 0.1139 0.1026 0.0789 0.0541 0.0278

0.25 0.1000 0.0909 0.0816 0.0625 0.0426 0.0217

0.30 �2 0.0833 0.0756 0.0678 0.0517 0.0351 0.0179

0.35 0.0714 0.0647 0.0580 0.0441 0.0299 0.0152

0.50 0.0500 0.0452 0.0404 0.0306 0.0206 0.0104

1.00 0.0250 0.0226 0.0201 0.0152 0.0102 0.0051

Note: One-sided � = 0:025:

The stagewise-ordering p-value de�ned by (3.9) is given by

p(t; k) =

�
t; k = 1;

�1 + t(�1 � �1) k = 2 .
(4.4)

MIP is useful in the sense that it is very simple and can serve as the
"baseline" for comparing di¤erent methods. MIP does not use combined
data from di¤erent stages, while most other adaptive designs do.
SAS Macro 4.1 has been implemented for simulating two-arm adaptive

trials with a binary endpoint and allowing for sample-size re-estimation.
The test statistic can be based on individual stagewise p-values, or the sum
or product of the stagewise p-values (details provided later in this chapter).
The SAS variables are de�ned as follows: Px and Py are true proportions
of response in the groups x and y, respectively; DuHa = the estimate for
the true treatment di¤erence under the alternative Ha; N = sample-size
per group; alpha1 = early e¢ cacy stopping boundary (one-sided); beta1
= early futility stopping boundary (one-sided); and alpha2 = �nal e¢ cacy
stopping boundary (one-sided). The null hypothesis test is Ho: �+NId
< 0, where � = Py - Px is the treatment di¤erence and NId = nonin-
feriority margin (NId � 0 for superiority and NId > 0 for noninferiority
test). nSims = the number of simulation runs, alpha = one-sided over-
all type-I error rate, and beta = type-II error rate. nAdj = "N" for the
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case without sample-size re-estimation and nAdj = "Y" for the case with
sample-size adjustment,Nmax = maximum sample-size allowed,N0 = the
initial sample-size at the �nal analysis, nInterim = sample-size for the in-
terim analysis, a = the parameter in (4.17) for the sample-size adjustment,
FSP = futility stopping probability, ESP = e¢ cacy stopping probability,
AveN = average sample-size, Power = power of the hypothesis testing,
nClassic = sample-size for the corresponding classic design, andModel =
"ind", "sum", or "prd" for the methods, MIP, MSP, and MPP, respectively.

��SAS Macro 4.1: Two-Stage Adaptive Design with Binary
Endpoint��

%Macro DCSPbinary(nSims=1000000, Model="sum", alpha=0.025,

beta=0.2, NId=0, Px=0.2, Py=0.4, DuHa=0.2,

nAdj="N", Nmax=100, N0=100, nInterim=50, a=2,

alpha1=0.01, beta1=0.15, alpha2=0.1871);

Data DCSPbinary; Keep Model FSP ESP AveN Power nClassic;

seedx=2534; seedy=6762; Model=&model; NId=&NId;

Nmax=&Nmax; N1=&nInterim; Px=&Px; Py=&Py;

eSize=abs((&DuHa+NId)/((Px*(1-Px)+Py*(1-Py))/2)**0.5);

nClassic=Round(2*((probit(1-&alpha)+probit(1-&beta))/eSize)**2);

FSP=0; ESP=0; AveN=0; Power=0;

Do isim=1 To &nSims;

nFinal=N1;

Px1=Ranbin(seedx,N1,px)/N1;

Py1=Ranbin(seedy,N1,py)/N1;

sigma=((Px1*(1-Px1)+Py1*(1-Py1))/2)**0.5;

T1 = (Py1-Px1+NId)*Sqrt(N1/2)/sigma;

p1=1-ProbNorm(T1);

If p1>&beta1 Then FSP=FSP+1/&nSims;

If p1<=&alpha1 Then Do;

Power=Power+1/&nSims; ESP=ESP+1/&nSims;

End;

If p1>&alpha1 and p1<=&beta1 Then Do;

eRatio=abs(&DuHa/(abs(Py1-Px1)+0.0000001));

nFinal=Min(&Nmax,Max(&N0,eRatio**&a*&N0));

If &nAdj="N" then nFinal=&Nmax;

If nFinal>N1 Then Do;

N2=nFinal-N1;

Px2=Ranbin(seedx,N2,px)/N2;

Py2=Ranbin(seedy,N2,py)/N2;

sigma=((Px2*(1-Px2)+Py2*(1-Py2))/2)**0.5;
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T2 = (Py2-Px2+NId)*Sqrt(N2/2)/sigma;

p2=1-ProbNorm(T2);

If Model="ind" Then TS2=p2;

If Model="sum" Then TS2=p1+p2;

If Model="prd" Then TS2=p1*p2;

If .<TS2<=&alpha2 then Power=Power+1/&nSims;

End;

End;

AveN=Aven+nFinal/&nSims;

End;

Output;

Run;

Proc Print Data=DCSPbinary; Run;

%Mend DCSPbinary;

��SAS��

Example 4.1 Adaptive Design for Acute Ischemic Stroke Trial
A phase-III trial is to be designed for patients with acute ischemic stroke

of recent onset. The composite endpoint (death and MI) is the primary
endpoint, and the event rate is 14% for the control group and 12% for
the test group. Based on a large sample assumption, the sample-size for
a classic design is 5937 per group, which has 90% power to detect the
di¤erence at the one-sided alpha = 0.025. Using MIP, an interim analysis
is planed based on a response assessment of 50% of the patients. We use
SAS macro 4.1 to design the trial as follows:
(1) Choose stopping boundaries at the �rst stage: �1 = 0:01, �1 = 0:25;

then from Table 4.1, we obtain �2 = 0:0625.
(2) Check the stopping boundary to make sure that the familywise error

is controlled. We run simulations under the null hypothesis (14% event rate
for both groups) using the following SAS code:

��SAS��
%DCSPbinary( Model="ind", alpha=0.025, beta=0.1, Px=0.14,
Py=0.14, DuHa=0.02, nAdj="N", Nmax=7000, nInterim=3500,

alpha1=0.01, beta1=0.25, alpha2=0.0625);

��SAS��

The simulated familywise error rate is � = 0:0252; therefore the stop-
ping boundaries are con�rmed.
(3) Calculate power or sample-size under the alternative hypothesis

(14% and 12% event rates for the control and the test groups, respectively)
using the following SAS code:
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��SAS��
%DCSPbinary(Model="ind", alpha=0.025, beta=0.1, Px=0.12, Py=0.14,
DuHa=0.02, nAdj="N", Nmax=7000, nInterim=3500, alpha1=0.01,

beta1=0.25, alpha2=0.0625);

��SAS��

(4) Perform sensitivity analyses (under condition Hs). Because the
treatment di¤erence is unknown, it is desirable to perform simulations un-
der di¤erent assumptions about treatment di¤erence, e.g., treatment di¤er-
ence = 0.015 (14% versus 12.5%). For the sensitivity analysis, we simply
use the following SAS macro call:

��SAS��
%DCSPbinary(Model="ind", alpha=0.025, beta=0.1, Px=0.125, Py=0.14,
DuHa=0.015, nAdj="N", Nmax=7000, nInterim=3500, alpha1=0.01,

beta1=0.25, alpha2=0.0625);

��SAS��

We now can summarize the simulation outputs of the three scenarios in
Table 4.2.

Table 4.2: Operating Characteristics of a GSD with MIP

Simulation condition FSP ESP N̄ Nmax Power (alpha)

Ho 0.750 0.010 4341 7000 (0.025)

Ha 0.035 0.564 4905 7000 0.897

Hs 0.121 0.317 5468 7000 0.668

From Table 4.2, we can see that the design has a smaller expected
sample-size ( �N) under Ho and Ha (4341, 4905) than the classic de-
sign (5937). However, the group sequential design has a larger maximum
sample-size (7000) than the classic design (5937). The early futility stop-
ping probability (FSP) and early e¢ cacy stopping probability (ESP) are
also shown in Table 4.2. The sensitivity analysis shows a large power loss
when treatment di¤erence is lower than expected, i.e., the group sequential
design does not protect the power when the initial e¤ect size is overesti-
mated. To protect power, we can use the sample-size re-estimation method,
which will be discussed later in this chapter.
Note that the MIP design is di¤erent from the sequence of two separate

trials because MIP can use the early futility boundary in constructing a
later stopping boundary. We will discuss this issue in great detail later.
Now let�s calculate adjusted p-values. Assume that the trial is �nished,

with the stagewise p-value p1 = 0:012 (which is larger than �1 =0.01 and
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not signi�cant; therefore the trial continues to the second stage) and p2
= 0:055 < �2 = 0:0625. Therefore, the null hypothesis is rejected, and the
test drug is signi�cantly better than the control.
The stagewise-ordering p-value can be calculated from (4.4) using t =

p2 :

p = �1 + p2(�1 � �1) = 0:01 + 0:055(0:25� 0:01) = 0:0232:

4.2 Method Based on the Sum of P-values

Chang (2006) proposed an adaptive design method, in which the test
statistic is de�ned as the sum of the stagewise p-values. This method is
referred to as MSP. The test statistic is de�ned as

Tk = �
k
i=1pi; k = 1; :::;K: (4.5)

For two-stage designs, the � spent at stage 1 and stage 2 is given by

�1 =

Z �1

0

dt1 = �1 (4.6)

and

�2 =

(R �1
�1

R �2
t1

dt2dt1 for �1 � �2;R �2
�1

R �2
t1

dt2dt1 for �1 > �2;
(4.7)

respectively.
Carrying out the integrations in (4.7) and substituting the results and

(4.6) into (3.7), we immediately obtain the following formulation for deter-
mining the stopping boundaries:

� =

�
�1 + �2(�1 � �1)� 1

2 (�
2
1 � �21) for �1 < �2;

�1 +
1
2 (�2 � �1)

2 for �1 � �2:
(4.8)

To calculate the stopping boundaries for given �; �1; and �1; solve (4.8)
for �2:Various stopping boundaries can be chosen from (4.8). See Table 4.3
for examples of the stopping boundaries.
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Table 4.3: Stopping Boundaries �2 with MSP

�1 0.000 0.0025 0.005 0.010 0.015 0.020

�1
0.05 0.5250 0.4999 0.4719 0.4050 0.3182 0.2017

0.10 0.3000 0.2820 0.2630 0.2217 0.1751 0.1225

0.15 �2 0.2417 0.2288 0.2154 0.187 1 0.1566 0.1200

0.20 0.2250 0.2152 0.2051 0.1832 0.1564 0.1200

>0.25 0.2236 0.2146 0.2050 0.1832 0.1564 0.1200

Note: One-sided � = 0:025:

The stagewise-ordering p-value can be obtained by replacing �1 with t
in (4.6) if the trial stops at stage 1 and by replacing �2 with t in (4.8) if
the trial stops at stage 2. That is

p(t; k) =

8<:
t; k = 1;

�1 + t(�1 � �1)� 1
2 (�

2
1 � �21); k = 2 and �1 < �2;

�1 +
1
2 (t� �1)

2; k = 2 and �1 � �2:

(4.9)

It is interesting to know that when p1 > �2, there is no point in contin-
uing the trial because p1 + p2 > p1 > �2; and futility should be claimed.
Therefore, statistically it is always good idea to choose �1 < �2. However,
because the non-binding futility rule is adopted currently by the regulatory
bodies, it is better to use the stopping boundaries with �1 = �2.
The SAS Macro 4.2 is implemented for simulating two-arm adaptive

designs with a Normal endpoint. The adaptive method can be based on
individual stagewise p-values, or the sum or product of the stagewise p-
values (see details later in this chapter). The SAS variables are de�ned
as follows: ux and uy are true treatment means in the x and y groups,
respectively. DuHa = the estimate for the true treatment di¤erence under
the alternativeHa, andN = sample-size per group. alpha1 = early e¢ cacy
stopping boundary (one-sided), beta1 = early futility stopping boundary
(one-sided), and alpha2 = �nal e¢ cacy stopping boundary (one-sided).
The null hypothesis test is Ho: �+NId < 0, where � = uy - ux is the
treatment di¤erence, and NId = noninferiority margin. nSims = the
number of simulation runs, alpha = one-sided overall type-I error rate, and
beta = type-II error rate. nAdj = "N" for the case without sample-size
re-estimation and nAdj = "Y" for the case with sample-size adjustment,
Nmax = maximum sample-size allowed; N0 = the initial sample-size at
the �nal analysis; nInterim = sample-size for the interim analysis; a = the
parameter in (4.17) for the sample-size adjustment; FSP = futility stopping
probability; ESP = e¢ cacy stopping probability; AveN = average sample-
size; Power = power of the hypothesis testing; nClassic = sample-size for
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the corresponding classic design; andModel = "ind", "sum", or "prd" for
the methods MIP, MSP, and MPP, respectively.

��SAS Macro 4.2: Two-Stage Adaptive Design with Normal
Endpoint��

%Macro DCSPnormal(nSims=1000000, Model="sum", alpha=0.025,

beta=0.2, sigma=2, NId=0, ux=0, uy=1, nInterim=50,

Nmax=100, N0=100, DuHa=1, nAdj="Y", a=2,

alpha1=0.01, beta1=0.15, alpha2=0.1871);

Data DCSPnormal; Keep Model FSP ESP AveN Power nClassic;

seedx=1736; seedy=6214; alpha=&alpha; NId=&NId; Nmax=&Nmax;

ux=&ux; uy=&uy; sigma=&sigma; model=&Model; N1=&nInterim;

eSize=abs(&DuHa+NId)/sigma;

nClassic=round(2*((probit(1-alpha)+probit(1-&beta))/eSize)**2);

FSP=0; ESP=0; AveN=0; Power=0;

Do isim=1 To &nSims;

nFinal=N1;

ux1 = Rannor(seedx)*sigma/Sqrt(N1)+ux;

uy1 = Rannor(seedy)*sigma/Sqrt(N1)+uy;

T1 = (uy1-ux1+NId)*Sqrt(N1)/2**0.5/sigma;

p1=1-ProbNorm(T1);

If p1>&beta1 then FSP=FSP+1/&nSims;

If p1<=&alpha1 then do;

Power=Power+1/&nSims; ESP=ESP+1/&nSims;

End;

If p1>&alpha1 and p1<=&beta1 Then Do;

eRatio = abs(&DuHa/(abs(uy1-ux1)+0.0000001));

nFinal = min(&Nmax,max(&N0,eRatio**&a*&N0));

If &DuHa*(uy1-ux1+NId) < 0 Then nFinal = N1;

If &nAdj = "N" then nFinal = &Nmax;

If nFinal > N1 Then Do;

ux2 = Rannor(seedx)*sigma/Sqrt(nFinal-N1)+ux ;

uy2 = Rannor(seedy)*sigma/Sqrt(nFinal-N1)+uy;

T2 = (uy2-ux2+NId)*Sqrt(nFinal-N1)/2**0.5/sigma;

p2=1-ProbNorm(T2);

If Model="ind" Then TS2=p2;

If Model="sum" Then TS2=p1+p2;

If Model="prd" Then TS2=p1*p2;

If .<TS2<=&alpha2 Then Power=Power+1/&nSims;

End;

End;
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AveN=AveN+nFinal/&nSims;

End;

Output;

run;

Proc Print Data=DCSPnormal; run;

%Mend DCSPnormal;

��SAS��

Example 4.2 Adaptive Design for Asthma Study
In a phase-III asthma study with 2 dose groups (control and active),

the primary e¢ cacy endpoint is the percent change from baseline in FEV1.
The estimated FEV1 improvement from baseline is 5% and 12% for the
control and active groups, respectively, with a common standard deviation
of � = 22%. Based on a large sample assumption, the sample-size for a
�xed design is 208 per group, which has 90% power to detect the di¤erence
at a one-sided alpha = 0.025. Using MSP, an interim analysis is planned
based on the response assessments of 50% of the patients. To design an
adaptive trial (GSD), we can use the SAS macro DCSPnormal, described
as follows:
(1) Choose stopping boundaries at the �rst stage: �1 = 0:01, �1 = 0:15;

then from Table 4.3, we can obtain �2 = 0:1871.
(2) Check the stopping boundary to make sure that the familywise error

is controlled by submitting the following SAS statement:

��SAS��
%DCSPnormal( Model="sum", alpha=0.025, beta=0.1, sigma=0.22,
ux=0.05, uy=0.05, nInterim=155, Nmax=310, DuHa=0.07, nAdj="N",

alpha1=0.01, beta1=0.15, alpha2=0.1871);

��SAS��

The simulated familywise error rate � = 0:0253: Therefore the stopping
boundaries are con�rmed.
(3) Calculate power or sample-size required using the following SAS

statement:

��SAS��
%DCSPnormal(Model="sum", alpha=0.025, beta=0.1, sigma=0.22,
ux=0.05, uy=0.12, nInterim=155, Nmax=310, DuHa=0.07, nAdj="N",

alpha1=0.01, beta1=0.15, alpha2=0.1871);

��SAS��
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(4) Perform the sensitivity analysis (under conditionHs) with treatment
means of 0.05 and 0.1 for the control and test groups, respectively, by
submiting the following SAS statement:

��SAS��
%DCSPnormal(Model="sum", alpha=0.025, beta=0.1, sigma=0.22,
ux=0.05, uy=0.10, nInterim=155, Nmax=310, DuHa=0.07, nAdj="N",

alpha1=0.01, beta1=0.15, alpha2=0.1871);

��SAS��

The simulation results are summarized in Table 4.4.

Table 4.4: Operating Characteristics of a GSD with MSP

Simulation condition FSP ESP N̄ Nmax Power (alpha)

Ho 0.849 0.010 177 310 (0.025)

Ha 0.039 0.682 198 310 0.949

Hs 0.167 0.373 226 310 0.743

From Table 4.4, we can see that the design has a smaller expected
sample-size ( �N) under Ho and Ha (177, 198) than the classic design (208).
If the trial stops early, only 155 patients per group are required. However,
the group sequential design has a larger maximum sample-size (310) than
the classic design (208). The early futility stopping probability (FSP) and
early e¢ cacy stopping probability (ESP) are also shown in Table 4.4. The
sensitivity analysis shows a large power loss when treatment di¤erence is
slightly lower than expected. To protect power, we can use the sample-size
re-estimation method.
Now let�s calculate stagewise-ordering adjusted p-values (see Chapter

3). Assume the trial is �nished with the stagewise p-value (unadjusted,
based on subsample from the stage) for the �rst stage of p1 = 0:012 (which
is larger than �1 = 0:01, therefore the trial continues to the second stage)
and the stagewise p-value for the second stage of p2 = 0:18: The test statistic
at stage 2 is t = p1 + p2 = 0:012 + 0:18 = 0:192 > �2 = 0:1871. Therefore,
we failed to reject the null hypothesis and cannot claim superior e¢ cacy of
the test drug.
The stagewise-ordering adjusted p-value can be calculated from (4.9):

p = �1 +
1

2
(t� �1)2 = 0:012 + 0:5 (0:1871� 0:01)2 = 0:02 77:

Because p = 0:02772 > � = 0:025, we reach the same conclusion: fail to
reject the null hypothesis.
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4.3 Method with Linear Combination of P-values

For a two-stage design and constant wi > 0, w1 = 1;(for w1 6= 1; we can
rescale wi such that w1 = 1); we have

�1 =

Z �1

0

dt = �1

and

�2 =
1

2w2

n
�21 � 2�1�2 + 2�2min (�2; �1)� [min(�2; �1)]

2
o
: (4.10)

For �2 = �1, (4.10) becomes �2 =
1
2w2

(�2 � �1)2 and the �-control
requires

�1 +
1

2w2
(�2 � �1)2 = �: (4.11)

For general line-combination of p-values with a K-stage design, the test
statistic is given by

Tk =
kX
i=1

wkipi:

The stopping boundary and adjusted p-values can be easily found using
computer simulation.

4.4 Method with Product of P-values

This method is referred to as MPP. The test statistic in this method is
based on the product of the stagewise p-values from the subsamples. For
two-stage designs, the test statistic is de�ned as

Tk = �
k
i=1pi; k = 1; 2: (4.12)

The � spent in the two stages is given by

�1 =

Z �1

0

dt1 = �1 (4.13)

and

�2 =

Z �1

�1

Z �2

0

1

t1
dt2dt1: (4.14)
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Carrying out the integrations in (4.14) and substituting the results into
(3.7), we can obtain the following formulation for determining stopping
boundaries:

� = �1 + �2 ln
�1
�1
; �1 < �1 � 1. (4.15)

Note that the stopping boundaries based on Fisher�s criterion are special
cases of (4.15), where �2 = exp

�
� 1
2�

2
4(1� �)

�
; i.e., �2 = 0:00380 for

� = 0:025: To calculate the stopping boundaries, one can predetermine �;
�1, and �1; then solve (4.15) for �2: See Table 4.5 for examples.

Table 4.5: Stopping Boundaries �2 with MPP

�1 0.001 0.0025 0.005 0.010 0.015 0.020

�1
0.15 0.0048 0.0055 0.0059 0.0055 0.0043 0.0025

0.20 0.0045 0.0051 0.0054 0.0050 0.0039 0.0022

0.25 0.0043 0.0049 0.0051 0.0047 0.0036 0.0020

0.30 �2 0.0042 0.0047 0.0049 0.0044 0.0033 0.0018

0.35 0.0041 0.0046 0.0047 0.0042 0.0032 0.0017

0.40 0.0040 0.0044 0.0046 0.0041 0.0030 0.0017

0.50 0.0039 0.0042 0.0043 0.0038 0.0029 0.0016

1.00 0.0035 0.0038 0.0038 0.0033 0.0024 0.0013

Note: One-sided � = 0:025:

The stagewise-ordering p-value can be obtained using

p(t; k) =

(
t; k = 1;

�1 + t ln
�1
�1
; k = 2 ;

(4.16)

where t = p1 if the trial stops at stage 1 (k = 1) and t = p1p2 if the trial
stops at stage 2 (k = 2).
It is interesting to know that when p1 < �2, there is no point in con-

tinuing the trial because p1p2 < p1 < �2 and e¢ cacy should be claimed.
Therefore it is suggested that we should choose �1 > �2 and �1 > �2.
The SAS Macro 4.3 has been implemented for simulating two-arm adap-

tive designs with survival endpoint. The adaptive method can be based on
individual stagewise p-values, or the sum or product of the stagewise p-
values. The SAS variables are de�ned as follows: ux and uy are true
hazard rates in the x and y groups, respectively. DuHa = the estimate for
the true treatment di¤erence under the alternative Ha, and N = sample-
size per group. Alpha1 = early e¢ cacy stopping boundary (one-sided),
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beta1 = early futility stopping boundary (one-sided), and alpha2 = �nal
e¢ cacy stopping boundary (one-sided). The null hypothesis test is Ho:
�+ NId < 0, where � = uy - ux is the treatment di¤erence and NId =
noninferiority margin. nSims = the number of simulation runs, alpha =
one-sided overall type-I error rate, and beta = type-II error rate. nAdj
= "N" for the case without sample-size re-estimation and nAdj = "Y"
for the case with sample-size adjustment, Nmax = maximum sample-size
allowed; N0 = the initial sample-size at the �nal analysis; nInterim =
sample-size for the interim analysis; a = the parameter in (4.17) for the
sample-size adjustment; FSP = futility stopping probability; ESP = e¢ -
cacy stopping probability; AveN = average sample-size; Power = power
of the hypothesis test; nClassic = sample-size for the corresponding classic
design;Model = "ind", "sum", or "prd" for the methods, MIP, MSP, and
MPP, respectively.

��SAS Macro 4.3: Two-Stage Adaptive Design with Survival
Endpoint��

%Macro DCSPSurv(nSims=1000000, model="sum", alpha=0.025,

beta=0.2, NId=0, tStd=12, tAcr=4, ux=0, uy=1, DuHa=1,

nAdj="Y", Nmax=100, N0=100, nInterim=50, a=2,

alpha1=0.01, beta1=0.15, alpha2=0.1871);

Data DCSPSurv; Keep Model FSP ESP AveN Power nClassic;

seedx=2534; seedy=6762; alpha=&alpha; NId=&NId;

Nmax=&Nmax; ux=&ux; uy=&uy; N1=&nInterim; model=&model;

Expuxd=exp(-ux*&tStd); Expuyd=exp(-uy*&tStd);

sigmax=ux*(1+Expuxd*(1-exp(ux*&tAcr))/(&tAcr*ux))**(-0.5);

sigmay=uy*(1+Expuyd*(1-exp(uy*&tAcr))/(&tAcr*uy))**(-0.5);

sigma=((sigmax**2+sigmay**2)/2)**0.5;

eSize=abs(&DuHa+NId)/sigma;

nClassic=Round(2*((probit(1-alpha)+Probit(1-&beta))/eSize)**2);

FSP=0; ESP=0; AveN=0; Power=0;

Do isim=1 To &nSims;

nFinal=N1;

ux1 = Rannor(seedx)*sigma/Sqrt(N1)+ux;

uy1 = Rannor(seedy)*sigma/Sqrt(N1)+uy;

T1 = (uy1-ux1+NId)*Sqrt(N1)/2**0.5/sigma;

p1=1-ProbNorm(T1);

If p1>&beta1 Then FSP=FSP+1/&nSims;

If p1<=&alpha1 Then do;

Power=Power+1/&nSims; ESP=ESP+1/&nSims;

End;
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If p1>&alpha1 and p1<=&beta1 Then Do;

eRatio=Abs(&DuHa/(Abs(uy1-ux1)+0.0000001));

nFinal=min(Nmax,max(&N0,eRatio**&a*&N0));

If &DuHa*(uy1-ux1+NId)<0 then nFinal=N1;

If &nAdj="N" then nFinal=Nmax;

If nFinal>N1 Then Do;

ux2 = Rannor(seedx)*sigma/Sqrt(nFinal-N1)+ux ;

uy2 = Rannor(seedy)*sigma/Sqrt(nFinal-N1)+uy;

T2 = (uy2-ux2+NId)*Sqrt(nFinal-N1)/2**0.5/sigma;

p2=1-ProbNorm(T2);

If Model="ind" Then TS2=p2;

If Model="sum" Then TS2=p1+p2;

If Model="prd" Then TS2=p1*p2;

If .<TS2<=&alpha2 Then Power=Power+1/&nSims;

End;

End;

AveN=AveN+nFinal/&nSims;

End;

Output;

Run;

Proc Print Data=DCSPSurv; Run;

%Mend DCSPSurv;

��SAS��

Example 4.3 Adaptive Design for Oncology Trial
In a two-arm comparative oncology trial, the primary e¢ cacy endpoint

is time-to-progression (TTP). The median TTP is estimated to be 8 months
(hazard rate = 0.08664) for the control group, and 10.5 months (hazard rate
= 0.06601) for the test group. Assume a uniform enrollment with an accrual
period of 9 months and a total study duration of 24 months. The log-rank
test will be used for the analysis. An exponential survival distribution
is assumed for the purpose of sample-size calculation. The classic design
requires a sample-size of 323 subjects per group.
We design the trial with one interim analysis when 40% of patients

have been enrolled. The interim analysis for e¢ cacy is planned based on
TTP, but it does not allow for futility stopping. Using MPP, we choose
the following boundaries: �1 = 0:005; �1 = 1 (�1 = 1 implies no futility
stopping), and �2 = 0:0038 from Table 4.5: Again, we follow the same steps
as for the two previous examples using the SAS macro DCSPSurv: Note
that in SAS Macro 4.3, we again assume that the stagewise p-values are
mutually independent. The steps for the simulations are:
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(1) Choose stopping boundaries at the �rst stage: �1 = 0:005, �1 = 1;
then from Table 4.5, we can obtain �2 = 0:0038.
(2) Check the stopping boundary to make sure that the familywise error

is controlled by submitting the following SAS statement:

��SAS��
%DCSPSurv(model="prd", alpha=0.025, beta=0.15, tStd=24, tAcr=9,
ux=0.08664, uy=0.08664, DuHa=0.02063, nAdj="N", Nmax=344,

N0=344, nInterim=138, alpha1=0.005, beta1=1, alpha2=0.0038);

��SAS��

The simulated familywise error rate � = 0:0252. Therefore the stopping
boundaries are con�rmed.
(3) Calculate power or sample-size required using the following SAS

macro calling:

��SAS��
%DCSPSurv(model="prd", alpha=0.025, beta=0.15, tStd=24, tAcr=9,
ux=0.06601, uy=0.08664, DuHa=0.02063, nAdj="N", Nmax=344,

N0=344, nInterim=138, alpha1=0.005, beta1=1, alpha2=0.0038);

��SAS��

We modi�ed the sample-size until it reached the desired power. It turns
out that the maximum sample-size is 344 and the sample-size for the interim
analysis is 138 per group.
(4) Perform a sensitivity analysis under the condition Hs. Because a

2.5-month di¤erence in median TTP is a conservative estimate, the obvious
question is what is the early stopping probability if the true treatment
di¤erence in median TTP is, for example, 3 months (8 months versus 11
months or hazard rate = 0.06301)? To answer this question, we issue the
following SAS statement with hazard rates of 0.08664 and 0.06301 for the
control and test groups, respectively.

��SAS��
%DCSPSurv(model="prd", alpha=0.025, beta=0.15, tStd=24, tAcr=9,
ux=0.06301, uy=0.08664, DuHa=0.02363, nAdj="N", Nmax=344,

N0=344, nInterim=138, alpha1=0.005, beta1=1, alpha2=0.0038);

��SAS��

We now summarize the simulation outputs for the three scenarios in
Table 4.6.
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Table 4.6: Operating Characteristics of a GSD with MPP

Simulation condition FSP ESP N̄ Nmax Power (alpha)

Ho 0 0.005 343 344 0.025

Ha 0 0.268 289 344 0.851

Hs 0 0.381 265 344 0.937

From Table 4.6, we can see that the design has a smaller expected
sample-size ( �N) under Ha (289/group) than the classic design (323/group).
If the trial stops early, only 238 patients per group are required. However,
the group sequential design has a larger maximum sample-size (344) than
the classic design (323). The early futility stopping probability (FSP) and
early e¢ cacy stopping probability (ESP) are also shown in Table 4.6. The
sensitivity analysis shows that the early stopping probability increases from
26.8% to 38.1% if the di¤erence in median TTP is 3 months instead of 2.5
months. This indicates a time savings, too. Also, the power will be 93.7%
if the di¤erence in median TTP is 3 months instead of 2.5 months. We
can see that the group sequential design is very advantageous when the
e¤ect size is larger than our initial estimate. We will discuss this in a later
chapter on choosing adaptive designs.
Now let�s calculate adjusted p-values. If the trial is stopped at the �rst

stage with p1 = 0:002; then the conditional and overall p-values are the
same and equal to 0.002. If the �rst stagewise p-value p1 = 0:05 (which
is larger than �1 = 0:002 and not signi�cant; therefore the trial continued
to the second stage) and p2 = 0:07, the test statistic at stage 2 is t =
p1p2 = (0:05) (0:07) = 0:0035 < �2 = 0:0038. Therefore, we reject the null
hypothesis and claim the e¢ cacy of the test drug. The stagewise-ordering
p-value can be calculated from (4.16):

p = �1 + t ln
�1
�1
= 0:005 + 0:0185 = 0:0235:

Example 4.4 Early Futility Stopping Design with Binary End-
point
We use an early example. A phase III trial is to be designed for patients

with acute ischemic stroke of recent onset. The composite endpoint (death
and MI) is the primary endpoint and event rate is 14% for the control
group and 12% for the test group. Based on a large sample assumption,
the sample-size for a �xed design is 5937 per group, which provides 90%
power to detect the di¤erence at one-sided alpha = 0.025. An interim
analysis for futility stopping is planed based on 50% patients�response as-
sessments. The interim look is for futility stopping. We can use both MIP
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and MSP, but we don�t recommend MPP in this case because MPP doesn�t
allow for futility early stopping only. Because the regulatory agency may
be concerned that in the current practice, the futility boundary may not
be followed, i.e., the trial did continue when in fact the futility boundary
is crossed, to protect type-I error, it was suggested that the futility bound-
ary should not be used for determining the stopping boundaries at later
stages. We know that MIP and MSP have used the futility boundary in
determination of the subsequent boundaries. However, we will propose a
better procedure in which the stopping boundaries are di¤erent depending
on whether the futility boundary is followed or not. Let�s illustrate this
with MSP for this trial.
(1) Choose futility stopping boundaries from Table 4.5: �1 = 0 (It im-

plies no early e¢ cacy stopping), �1 = 0:15; �2 = 0:2417: If the futility
boundary has not been followed, the �rst stage subsample will not be used
in the �nal analysis and �2 = 0:025 will be used. Alternatively, we can con-
servatively use �1 = 0, �1 = 0:15; �2 = 0:2236 (This �2 is corresponding
to �1 = 0 and �1 = 1):
(2) Run simulations to obtain the sample-size required and the operat-

ing characteristics under Ha with � = 0:025 and � = 0:1 (power = 0.9). By
trying di¤erent maximum sample-size (Nmax) in the following SAS state-
ment, we found that 7360 gives the desired power (the classic design requires
n = 5937 per group):

��SAS��
%DCSPbinary(Model="sum", alpha=0.025, beta=0.1, Px=0.12, Py=0.14,
DuHa=0.02, Nmax=7360, nInterim=3680, alpha1=0, beta1=0.15,

alpha2=0.2417);

��SAS��

(3) To obtain the operating characteristics under Ho; submit the follow-
ing SAS statement:

��SAS��
%DCSPbinary(Model="sum", alpha=0.025, beta=0.1, Px=0.14, Py=0.14,
DuHa=0.02, Nmax=7360, nInterim=3680, alpha1=0, beta1=0.15,

alpha2=0.2417);

��SAS��

The simulation results are presented in Table 4.7.
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Table 4.7: Operating Characteristics of a GSD with MPP

Simulation condition FSP ESP N̄ Nmax Power (alpha)

Ho 0.851 0 4232 7360 0.025

Ha 0.065 0 7124 7360 0.899

Note that the futility design is used because there is a great concern that
the drug may not have e¢ cacy. In such a case, the expected sample-size is
4229/group which is much smaller than the classic design (5937/group).
If the conservative stopping boundaries (�1 = 0, �1 = 0:15; and

�2 = 0:2236) are used, the simulated power is 89.4% with the same sample-
size (Nmax = 7360) by submitting the following SAS statement:

��SAS��
%DCSPbinary(Model="sum", alpha=0.025, beta=0.1, Px=0.12, Py=0.14,
DuHa=0.02, Nmax=7360, nInterim=3680, alpha1=0, beta1=0.15,

alpha2=0.2236);

��SAS��

Using the conservative boundaries, the � is actually controlled at a
0.0224 level. In this example, there is minimal di¤erence in power between
the two methods.

Example 4.5 Noninferiority Design with Binary Endpoint
Let�s consider a noninferiority/superiority design for the trial in Exam-

ple 4.4. If superiority is not achieved, we will perform a noninferiority test.
Because of the closed testing procedure, no alpha adjustment is required
for the two hypothesis tests. The noninferiority boundary is decided to be
0.5%. For the purpose of comparison, we use the same sample-size and
stopping boundaries as in Example 4.4.
(1) Choose futility stopping boundaries from Table 4.5: �1 = 0, �1 =

0:15; and �2 = 0:2417:
(2) Perform simulations by using the following SAS statement to obtain

the sample-size required and the operating characteristics under Ha with
� = 0:025 and Nmax = 7360 per group:

��SAS��
%DCSPbinary(Model="sum", alpha=0.025, beta=0.1, NId=0.005,
Px=0.12, Py=0.14, DuHa=0.02, Nmax=7360, nInterim=3680, alpha1=0,

beta1=0.15, alpha2=0.2417);

��SAS��
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(3) Obtain the operating characteristics under Ho by running simula-
tions under Ho:

��SAS��
%DCSPbinary(Model="sum", alpha=0.025, beta=0.1, NId=0.005,
Px=0.145, Py=0.14, DuHa=0.02, Nmax=7360, nInterim=3680, a=2,

alpha1=0, beta1=0.15, alpha2=0.2417);

��SAS��

Note that the futility design is used because there is great concern that
the drug may not have e¢ cacy. In such a case, the expected sample-size is
4923/group.
(4) Perform the sensitivity analysis under the condition that the event

rate is 12.5%. The power for the noninferiority test under this condition is
89.5%, which is obtained by submitting the following SAS statement.

��SAS��
%DCSPbinary(Model="sum", alpha=0.025, beta=0.1, NId=0.005,
Px=0.125, Py=0.14, DuHa=0.02, Nmax=7360, nInterim=3680, alpha1=0,

beta1=0.15, alpha2=0.2417);

��SAS��

The simulation results are presented in Table 4.8.

Table 4.8: Operating Characteristics of a GSD with MPP

Simulation condition FSP ESP N̄ Nmax Power (alpha)

Ho 0.850 0 4232 7360 0.025

Ha 0.010 0 7302 7360 0.977

Hs 0.068 0 7110 7360 0.895

Example 4.6 Sample-Size Re-estimation with Normal End-
point
In a phase-III asthma study with 2 dose groups (control and active),

the primary e¢ cacy endpoint is the percent change from baseline in FEV1.
The estimated FEV1 improvement from baseline is 5% and 12% for the
control and active groups, respectively, with a common standard deviation
of � = 22%. Based on a large sample assumption, the sample-size for a
�xed design is 208 per group with 95% power and a one-sided alpha =
0.025. Using MSP, an interim analysis is planned based on the response
assessments of 50% of the patients. The interim analysis is used for sample-
size re-estimation and also for futility stopping. We follow the steps below
to design the adaptive trial.
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(1) Choose stopping boundaries at the �rst stage: �1 = 0; �1 = 0:25,
then from Table 4.3, we obtain �2 = 0:2236:
(2) Determine the rule for sample-size re-estimation:

N =

�
E0
E

�a
N0; (4.17)

where N is the newly estimated sample-size, N0 = initial sample-size, a
is a constant and often chosen to be 2, and E0 and E are predetermined
and observed e¤ect sizes or treatment di¤erences, respectively. Choose
N0 = 242, which is suggested to be close to but larger than the sample-
size for the classic design. The choice of N0 should be dependent on the
operating characteristics of the design, therefore, several iterations may be
required before a satisfactory N0 is chosen.
(3) Perform simulations without SSR using the following SAS statement:

��SAS��
%DCSPnormal(Model="sum", alpha=0.025, beta=0.1, sigma=0.22,
ux=0.05, uy=0.12, nInterim=121, Nmax=242, N0=242, DuHa=0.07,

alpha1=0, beta1=0.25, alpha2=0.2236);

��SAS��

(4) Perform simulations with SSR using the following SAS statement:

��SAS��
%DCSPnormal(Model="sum", alpha=0.025, beta=0.1, sigma=0.22,
ux=0.05, uy=0.12, nInterim=121, Nmax=350, N0=242, DuHa=0.07,

nAdj="Y", alpha1=0, beta1=0.25, alpha2=0.2236);

��SAS��

(5) Perform simulations for sensitivity analysis without SSR using the
following SAS statement:

��SAS��
%DCSPnormal(Model="sum", alpha=0.025, beta=0.1, sigma=0.22,
ux=0.05, uy=0.105, nInterim=121, Nmax=242, N0=242, DuHa=0.07,

alpha1=0, beta1=0.25, alpha2=0.2236);

��SAS��

(6) Perform simulations for sensitivity analysis with SSR (note that
DuHa = 0.07 for sensitivity analysis):
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��SAS��
%DCSPnormal(Model="sum", alpha=0.025, beta=0.1, sigma=0.22,
ux=0.05, uy=0.105, nInterim=121, Nmax=350, N0=242, DuHa=0.07,

nAdj="Y", alpha1=0, beta1=0.25, alpha2=0.2236);

��SAS��

The simulation results are presented in Table 4.9. Note that we set the
futility boundary at �1 = 0:25 due to the consideration that if the treatment
e¤ect is very small (such that p1 > 0:25), the required sample-size to be
adjusted is very large and not feasible.

Table 4.9: Operating Characteristics of a GSD with MSP

Simulation condition Method FSP N̄ Nmax Power

classic 0 208 208 0.025

Ho without SSR 0.750 151 242 0.025

with SSR 0.750 177 350 0.025

classic 0 208 208 0.900

Ha without SSR 0.036 238 242 0.900

with SSR 0.036 278 350 0.928

classic 0 208 208 0.722

Hs without SSR 0.102 230 242 0.733

with SSR 0.102 285 350 0.804

From Table 4.9, we can see that the adaptive design has a smaller ex-
pected sample-size ( �N) under Ho than the classic design (208). When using
the n-re-estimation mechanism, the power is protected to a certain degree
(72.2% for the classic vs. 73.3% for adaptive design without SSR and 80.4%
with SSR). Of course, this power protection is at the cost of sample-size.
Note the average n = 285/group with sample-size adjustment when the
e¤ect is 5% versus 10.5%. If this sample-size is used in a classic design, the
power would be 84.7%. The sample-size re-estimation has lost its e¢ ciency
in this sense, though there is a saving in sample-size under Ho.

Example 4.7 Sample-Size Re-estimation with Survival End-
point
In this example we will compare MIP, MSP, and MPP and illustrate

how to calculate the adjusted p-values with these 3 di¤erent methods.
Suppose in a two-arm comparative oncology trial, the primary e¢ cacy

endpoint is time to progression (TTP). The median TTP is estimated to be
8 months (hazard rate = 0.08664) for the control group, and 10.5 months
(hazard rate = 0.06601) for the test group. Assume uniform enrollment
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with an accrual period of 9 months and a total study duration of 24 months.
The log-rank test will be used for the analysis. An exponential survival
distribution is assumed for the purpose of sample-size calculation.
To generate the operating characteristics using MIP, MSP, and MPP,

we use the following SAS macro calls, respectively:

��SAS��
%DCSPsurv(model="ind", alpha=0.025, beta=0.15, tStd=24, tAcr=9,
ux=0.06601, uy=0.08664, DuHa=0.02063, nAdj="Y", Nmax=400,

N0=350, nInterim=200, alpha1=0.01, beta1=0.25, alpha2=0.0625);

%DCSPsurv(model="sum", alpha=0.025, beta=0.15, NId=0, tStd=24,
tAcr=9, ux=0.06601, uy=0.08664, DuHa=0.02063, nAdj="Y", Nmax=400,

N0=350, nInterim=200, alpha1=0.01, beta1=0.25, alpha2=0.1832);

%DCSPsurv(model="prd", alpha=0.025, beta=0.15, tStd=24, tAcr=9,
ux=0.06601, uy=0.08664, DuHa=0.02063, nAdj="Y", Nmax=400, N0=350,

nInterim=200, a=2, alpha1=0.01, beta1=0.25, alpha2=0.00466);

��SAS��

When there is a 10.5-month median time for the test group, the classic
design requires a sample-size of 323 per group with 85% power at a level
of signi�cance (one-sided) � = 0.025. To increase e¢ ciency, an adaptive
design with an interim sample-size of 200 patients per group is used. The
interim analysis allows for early e¢ cacy or futility stopping with stopping
boundaries (from Tables 4.1, 4.3, and 4.5) �1 = 0:01; �1 = 0:25; and
�2 = 0:0625 for MIP, 0:1832 for MSP, and 0:00466 for MPP. The sample-
size adjustment is based on (4.17). The maximum sample-size allowed for
adjustment is Nmax = 400. The parameter for sample-size adjustment No
is 350 (No is usually chosen to be close to the sample-size from the classic
design so that the adaptive design will have similar power to the classic
design.). The simulation results are presented in Table 4.10, where the
abbreviations ESP and FSP stand for early e¢ cacy stopping probability
and early futility stopping probability, respectively.

Table 4.10: Operating Characteristics of Adaptive Methods

Median time Expected Power (%)

Test Control ESP FSP N MIP/MSP/MPP

8 8 0.010 0.750 248 2.5/2.5/2.5

10.5 8 0.512 0.046 288 86.3/87.3/88.8

Note: 1,000,000 simulation runs.
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Note that power is the probability of rejecting the null hypothesis.
Therefore when the null hypothesis is true, the power is the type-I error
rate �: From Table 4.10, it can be seen that the one-sided � is controlled
at a 0.025 level as expected for all three methods. The expected sample
sizes under both Ho and Ha are smaller than the sample-size for the classic
design (290/group). The power is 86.3%, 87.3%, and 88.8% for MIP, MSP,
and MPP, respectively. All three designs have the same expected sample-
size of 288/group which is smaller than the sample-size (323/group) for the
classic design with 85% power. In adaptive design, conditional power is
more important than power. We will discuss this in detail later.

4.5 Event-Based Adaptive Design

The methods discussed for survival analyses so far are based on the number
of patients at each stage, instead of number of events. The reason for this
is that the methods are based on the assumption of independent stagewise
statistics. Therefore, the �rst N1 patients enrolled will be used for the �rst
interim analysis regardless they have the event or not. Strictly speaking,
the commonly used log-rank test statistics based on number of events,

T
�
D̂k

�
=

s
D̂k

2
ln
�̂1

�̂2
� N

 r
Dk

2
ln
�1
�2
; 1

!
; (4.18)

are not independent, where Dk is the number of events at the kth stage.
However, Breslow and Haug (1977) and Canner (1997) showed that the in-
dependent normal approximation works well for small Dk. The relationship
between the number of deaths and number of patients is given in Problem
2.3 in Chapter 2. Using (4.18), we can implement adaptive design for sur-
vival based on the number of events as follows.
The SAS Macro 4.4 has been implemented for simulating two-arm group

sequential designs with survival endpoint. The adaptive method can be
based on individual stagewise p-values, or the sum or product of the stage-
wise p-values. The SAS variables are de�ned as follows: ux and uy are
true hazard rates in the x and y groups, respectively. N = sample-size
per group. Alpha1 = early e¢ cacy stopping boundary (one-sided), beta1
= early futility stopping boundary (one-sided), and alpha2 = �nal e¢ -
cacy stopping boundary (one-sided). nSims = the number of simulation
runs, alpha = one-sided overall type-I error rate, and beta = type-II er-
ror rate. InfoTime = sample-size ratio for the interim analysis; FSP =
futility stopping probability; ESP = e¢ cacy stopping probability; AveDs
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= average total number of events; Power = power of the hypothesis test;
Model = "ind", "sum", or "prd" for the methods, MIP, MSP, and MPP,
respectively.

��SAS Macro 4.4: Event-Based Adaptive Design��
%Macro DCSPSurv2(nSims=1000000, model="sum", alpha=0.025,

beta=0.2, tStd=12, tAcr=4, ux=0.08, uy=0.1, N=100,

InfoTime=0.5, alpha1=0.01, beta1=0.15, alpha2=0.1871);

Data DCSPSurv; Keep Model FSP ESP Power AveDs N;

seed1=2534; seed2=2534; alpha=&alpha; N=&N; ux=&ux;

uy=&uy; model=&model; infoTime=&infoTime; tAcr=&tAcr;

FSP=0; ESP=0; AveDs=0; Power=0; u=(ux+uy)/2;

Ds=2*N/&tAcr*(&tAcr-(exp(u*&tAcr)-1)/u*exp(-u*&tStd));

Ds1=Ds*infoTime;

nFinal=Ds1;

Do isim=1 To &nSims;

T1 = Rannor(seed1)+Sqrt(Ds1/2)*log(uy/ux);

p1=1-ProbNorm(T1);

If p1>&beta1 Then FSP=FSP+1/&nSims;

If p1<=&alpha1 Then do;

Power=Power+1/&nSims; ESP=ESP+1/&nSims;

End;

If p1>&alpha1 and p1<=&beta1 Then Do;

nFinal=Ds;

T2 = Rannor(seed2)+Sqrt((Ds-Ds1)/2)*log(uy/ux);

p2=1-ProbNorm(T2);

If Model="ind" Then TS2=p2;

If Model="sum" Then TS2=p1+p2;

If Model="prd" Then TS2=p1*p2;

If .<TS2<=&alpha2 Then Power=Power+1/&nSims;

End;

AveDs=AveDs+nFinal/&nSims;

End;

Output;

Run;

Proc Print Data=DCSPSurv; Run;

%Mend DCSPSurv2;

��SAS��

An example of using this SAS macro is presented as follows:

��SAS��
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%DCSPSurv2(nSims=100000, model="sum", alpha=0.025, beta=0.2,

tStd=24, tAcr=9, ux=0.06601, uy=0.08664, N=180,

InfoTime=0.5, alpha1=0.01, beta1=0.15, alpha2=0.1871);

��SAS��

Whether based on the number of events or patients, the results are
very similar. SAS Macro 4.4 can be extended to general adaptive design
with sample-size re-estimation (Problem 4.3). Other methods for adaptive
design with a survival endpoint can be found from work by Li, Shih, and
Wang (2005). Practically, the accrual has to continue in most cases when
collecting the data and performing the interim analysis; it is often the case
that at the time when interim analysis is done, most or all patients are
enrolled. What is the point to have the interim analysis? The answer is a
positive interim analysis would allow the drug to be on the market earlier.

4.6 Adaptive Design for Equivalence Trial

In Chapter 2, we have studied the equivalence test for the two parallel
groups:

H0 : j�T � �Rj � � versus Ha : j�T � �Rj < �: (4.19)

If the null hypothesis is rejected, then we conclude that the test drug
and the reference drug are equivalent.
For a large sample-size, the null hypothesis is rejected if

T1 =
�xR � �xT � �

�̂
q

2
n

< �z1�� and T2 =
�xR � �xT + �

�̂
q

2
n

> z1��: (4.20)

The approximate sample-size per group is given by (see Chapter 2)

n =
2
�
z1�� + z1��=2

�2
�2

(j"j � �)2
; (4.21)

(4.20) is equivalent to the following condition:

p = max fp01; p02g � � (4.22)

where p01 = �(T1) and p02 = �(�T2).
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We now discuss the two-stage adaptive design that allows for sample-
size adjustment based on information at the �rst stage. The key for the
adaptive equivalence trial is to de�ne an appropriate stagewise p-value,
Chang (2007) suggests using the p-value similar to (4.22) but based on
subsample from the kth stage, i.e.,

pk = max f� (Tk1) ;� (�Tk2)g ; (4.23)

where

Tk1 =
�xkR � �xkT � �

�̂k

q
2
nk

and Tk2 =
�xkR � �xkT + �

�̂k

q
2
nk

: (4.24)

Using the stagewise p-values de�ned in (4.23), we can use MIP, MSP,
and MPP to design adaptive equivalence trial without any di¢ culty. For
convenience, let�s implement the method in SAS.

The SAS Macro 4.5 has been implemented for simulating two-arm equiv-
alence trial with normal endpoint. The adaptive method can be based on
individual stagewise p-values, or the sum or product of the stagewise p-
values. The SAS variables are de�ned as follows: ux and uy are true
proportions of response in the x and y groups, respectively. DuHa = the
estimate for the true treatment di¤erence under the alternative Ha, and N
= sample-size per group. alpha1 = early e¢ cacy stopping boundary (one-
sided), beta1 = early futility stopping boundary (one-sided), and alpha2
= �nal e¢ cacy stopping boundary (one-sided). The null hypothesis test is
given by (4.19). NId = equivalence margin, nSims = the number of simu-
lation runs, alpha = one-sided overall type-I error rate, and beta = type-II
error rate. nAdj = "N" for the case without sample-size re-estimation and
nAdj = "Y" for the case with sample-size adjustment, Nmax = maximum
sample-size allowed; N0 = the initial sample-size at the �nal analysis; nIn-
terim = sample-size for the interim analysis; a = the parameter in (4.17)
for the sample-size adjustment; FSP = futility stopping probability; ESP
= e¢ cacy stopping probability; AveN = average sample-size; Power =
power of the hypothesis testing; and Model = "ind", "sum", or "prd" for
the methods MIP, MSP, and MPP, respectively.

��SAS Macro 4.5: Adaptive Equivalence Trial Design��
%Macro DCSPEqNormal(nSims=1000000, Model="sum", alpha=0.05,

beta=0.2, sigma=0.3, NId=0.2, ux=0, uy=0.1, nInterim=50, Nmax=100,

N0=100, DuHa=1, nAdj="Y", a= -2, alpha1=0, beta1=0.2, alpha2=0.3);
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Data DCSPEqNormal; Keep Model FSP ESP AveN Power;

seedx=1736; seedy=6214; alpha=&alpha; NId=&NId; Nmax=&Nmax;

ux=&ux; uy=&uy; sigma=&sigma; model=&Model; N1=&nInterim;

eSize=abs(&DuHa+NId)/sigma;

FSP=0; ESP=0; AveN=0; Power=0;

Do isim=1 To &nSims;

nFinal=N1;

ux1 = Rannor(seedx)*sigma/Sqrt(N1)+ux;

uy1 = Rannor(seedy)*sigma/Sqrt(N1)+uy;

T11 = (uy1-ux1-NId)*sqrt(N1/2)/sigma;

T12 = (uy1-ux1+NId)*sqrt(N1/2)/sigma;

p11=Probnorm(T11);

p12=Probnorm(-T12);

p1=max(p11,p12);

If p1>&beta1 then FSP=FSP+1/&nSims;

If p1<=&alpha1 then do;

Power=Power+1/&nSims; ESP=ESP+1/&nSims;

End;

If p1>&alpha1 and p1<=&beta1 Then Do;

eRatio = abs(&DuHa/(abs(uy1-ux1)+0.0000001));

nFinal = min(&Nmax,max(&N0,eRatio**&a*&N0));

If &DuHa*(uy1-ux1+NId) < 0 Then nFinal = N1;

If &nAdj = "N" then nFinal = &Nmax;

If nFinal > N1 Then Do;

ux2 = Rannor(seedx)*sigma/sqrt(nFinal-N1)+ux ;

uy2 = Rannor(seedy)*sigma/sqrt(nFinal-N1)+uy;

T21 = (uy2-ux2-NId)*sqrt(nFinal-N1)/2**0.5/sigma;

T22 = (uy2-ux2+NId)*sqrt(nFinal-N1)/2**0.5/sigma;

p21=Probnorm(T21);

p22=Probnorm(-T22);

p2=max(p21,p22);

If Model="ind" Then TS2=p2;

If Model="sum" Then TS2=p1+p2;

If Model="prd" Then TS2=p1*p2;

If .<TS2<=&alpha2 Then Power=Power+1/&nSims;

End;

End;

AveN=AveN+nFinal/&nSims;

End;

Output;
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run;

Proc Print Data=DCSPEqNormal; run;

%Mend DCSPEqNormal;

��SAS��

This SAS Macro can also be used for binary and survival endpoints as
long as one provides the corresponding "standard deviation" as shown in
Table 2.1.

Example 4.8 Adaptive Equivalence LDL Trial
We use the LDL trial in Example 2.2; the equivalence margin is assumed

to be � = 5%; the treatment di¤erence in LDL is 1% (70% versus 71%) with
a standard deviation of 30%. Suppose we decide to use � = 0:05 and initial
sample-size N0 = 1200 per group, the maximum sample-size Nmax = 2000
per group, and the interim analysis sample-size N1 = 600 per group. The
SSR algorithm is given by (4.17) with the parameter a = �2. Using MSP,
we choose �1 = 0 and �1 = 0:2, then �2 = 0:35 (from Eq.(4.8)).
To study the operating characteristics, we use the following SAS macro

calls for the design:

��SAS��
Title " Check alpha under Ho with alpha = 0.05";

%DCSPEqNormal(Model="sum", alpha=0.05, beta=0.2, sigma=.3,

NId=0.05, ux=0.70, uy=0.75, nInterim=600, Nmax=2000, N0=1200,

DuHa=0.01, nAdj="Y", a=-2, alpha1=0.0, beta1=.2, alpha2=0.35);

Title " Simulate the Power under Ha";

%DCSPEqNormal(Model="sum", alpha=0.05, beta=0.2, sigma=.3,

NId=0.05, ux=0.70, uy=0.71, nInterim=600, Nmax=2000, N0=1200,

DuHa=0.01, nAdj="Y", a=-2, alpha1=0.0, beta1=.2, alpha2=0.35);

Title " Sensitivity Analysis (without SSR)";

%DCSPEqNormal(Model="sum", alpha=0.05, beta=0.2, sigma=.3,

NId=0.05, ux=0.70, uy=0.72, nInterim=600, Nmax=1200, N0=1200,

DuHa=0.01, nAdj="N", a=-2, alpha1=0.0, beta1=.2, alpha2=0.35);

Title " Sensitivity Analysis (with SSR)";

%DCSPEqNormal(Model="sum", alpha=0.05, beta=0.2, sigma=.3,

NId=0.05, ux=0.70, uy=0.72, nInterim=600, Nmax=2000, N0=1200,

DuHa=0.01, nAdj="Y", a=-2, alpha1=0.0, beta1=.2, alpha2=0.35);

��SAS��
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The simulation results are summarized as follows: under the null con-
dition (ux = 0:70; uy = 0:75), the average sample-size is �N = 868/group
and � = 0.050; under the alternative condition (ux = 0:70; uy = 0:71),
�N = 1552 and power = 0.91; if the treatment di¤erence is bigger, e.g., 2%
(ux = 0:70; uy = 0:72), the average sample-size �N = 1088 and power =
0.72 for the design without SSR, and �N = 1515 and power = 0.78 for the
design with SSR. There is about 6% power increase by using SSR.

4.7 Summary

We have derived the closed forms for stopping boundaries using stagewise
p-values based on subsamples from each stage, in which we have assumed
the p-values are independent and uniformly distributed without proof or
precisely the p-values are p-clud (See Chapter 8). The test statistics cor-
responding to the three methods (MIP, MSP, and MPP) are individual
stagewise p-values without combining the data from di¤erent stages, the
sum of the stagewise p-values, and the product of the stagewise p-values.
Note that MIP is di¤erent from classic design because the early futility
boundaries are used to construct the stopping boundaries for later stages.
By comparing the results from MSP, MPP, or other methods with MIP,
we can study how much e¢ cacy is gained by combining data from di¤erent
stages. It is strongly suggested that su¢ cient simulations are performed
using SAS macros provided in this chapter or R programs in the appendix
before determining which method should be used (the electronic versions of
the simulation programs can be obtained at www.statisticians.org). There
are practical issues that need to be considered too, which will be addressed
in later chapters. Finally, although the examples of adaptive design in this
chapter mainly involve sample-size re-estimation, MIP, MSP, and MPP are
general adaptive design methods and can be used for a variety of adaptive
designs (see later chapters of this book).
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Problem

4.1 Suppose the median times for the two treatment groups in Example
4.7 are 9 months and 12 months. Design an adaptive trial and justify the
adaptive design method (MIP, MSP, or MPP) and the design you have
chosen.

4.2 Derive stopping boundaries and stagewise-ordering p-value for two-
stage adaptive design based on the following test statistics:

Tk =
1

k

kX
i=1

pi for k=1 and 2,

where pi is the stagewise p-value based on subsample from the ith stage.

4.3 Investigate the independence of the stagewise test statistics (4.18)
under exponential survival distribution and modify SAS Macro 4.4 to allow
for sample-size re-estimation.



Chapter 5

Method with Inverse-Normal P-values

In this chapter we will study the method based on inverse-normal p-values
(MINP), in which the test statistic at the kth stage Tk is a linear combina-
tion of the weighted inverse-normal of the stagewise p-values. The weight
can be �xed or a function of information time. MINP can be viewed as
a general method including the group sequential method, the Lan-DeMets
error-spending method, the Lehmacher-Wassmer method, the Fisher-Shen
self-design method, and the Cui-Hung-Wang SSR method as special cases.

5.1 Method with Linear Combination of Z-Scores

Let zk be the stagewise Normal test statistic at the kth stage. In a group
sequential design, the test statistic can be expressed as

T �k =
kX
i=1

wkizi; (5.1)

where the weights satisfy the equality
Pk

i=1 w
2
ki = 1 and the stagewise

Normal statistic zi is based on the subsample for the ith stage. The weights
wki can be functions of information time or sample-size fraction. Note that
for �xed weights, T �k in (5.1) has a Normal distribution. For weights that
are a function of information time, T �k in (5.1) forms a Brownian motion.
Utilization of (5.1) with constant weights allows for changes in the timing
(information time) of the interim analyses and the total sample-size, while
the incorporation of functional weights allows for changes in timing and in
the number of analyses. Their combination will allow broader adaptations.
Note that when wki is �xed, the standard multi-variate normal distrib-

ution of fT �1 ; :::; T �k g will not change regardless of adaptations as long as zi

101
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(i = 1; :::; k) has the standard normal distribution. To be consistent with
the uni�ed formations in Chapter 3, in which the test statistic is on p-scale,
we use the transformation Tk = 1� � (T �k ) such that

Tk = 1� �
 

kX
i=1

wkizi

!
; (5.2)

where � = c.d.f. of the standard normal distribution.
Unlike MIP, MSP, and MPP, the stopping boundary and power in MINP

can be calculated using only numerical integration or computer simula-
tion. Numerical integration is complicated (Jennison and Turnbull, 2000;
CTriSoft, 2002), but the determination of stopping boundaries through sim-
ulation is straight forward and precise. The stopping boundaries based on
the test statistic de�ned by (5.2) can be generated using SAS macro 5.1.
SAS Macro 5.1 is implemented for computing stopping boundaries with

MINP. The SAS variables are de�ned as follows: nSims = number of sim-
ulations, Model = ��xedW�for constant weights; otherwise, the weights
are dependent on information time. For the constant weights, values are
speci�ed by w1 and w2. alpha = familywise �; nInterim = sample-size
per group for the interim analysis; and Nmax = maximum sample-size
allowed for the trial. alpha1, beta1, and alpha2 are the stopping bound-
aries. Power is the probability of rejecting the null hypothesis. Therefore,
the boundaries should be adjusted during the simulation until the power is
equal to alpha.

��SAS Macro 5.1: Stopping Boundaries with Adaptive De-
signs��

%Macro SB2StgMINP(nSims=10000000, Model="�xedW", w1=0.5,

w2=0.5, alpha=0.025, nInterim=50, Nmax=100,

alpha1=0.01, beta1=0.15, alpha2=0.1871);

Data SB2StgMINP; Keep Model Power;

alpha=&alpha; Nmax=&Nmax; Model=&model;

w1=&w1; w2=&w2; n1=&nInterim; Power=0; seedx=231;

Do isim=1 To &nSims;

nFinal=N1;

T1 = Rannor(seedx);

p1=1-ProbNorm(T1);

If p1<=&alpha1 then do;

Power=Power+1/&nSims;

End;

if p1>&alpha1 and p1<=&beta1 then do;
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T2 = Rannor(seedx);

If Model^="�xedW" Then do

w1=Sqrt(n1/nFinal);

w2=Sqrt((1-n1/nFinal));

End;

Z2=(w1*T1+w2*T2)/Sqrt(w1*w1+w2*w2);

p2=1-ProbNorm(Z2);

If .<p2<=&alpha2 then Power=Power+1/&nSims;

End;

End;

Output;

Run;

Proc Print data=SB2StgMINP; Run;

%Mend SB2StgMINP;

��SAS��

To determine the stopping boundaries, pre�x alpha1 and beta1, and
try di¤erent alpha2 until Power from the SAS output is close enough to
alpha. An example of calling SAS Macro 5.1 is presented in the following:

��SAS��
Title "Stopping Boundaries by Simulations";

%SB2StgMINP(Model="�xedW", w1=0.5, w2=0.5, alpha=0.025,

nInterim=50, Nmax=100, alpha1=0, beta1=0.15, alpha2=0.0327);

��SAS��

Examples of stopping boundaries for a two-stage design with equal
weights are presented in Table 5.1.

Table 5.1: Stopping Boundaries �2 with Equal Weights

�1 0.000 0.0025 0.005 0.010 0.015 0.020

�1
0.15 0.0327 0.0315 0.0295 0.0244 0.0182 0.0105

0.20 0.0295 0.0284 0.0267 0.0221 0.0165 0.0097

0.25 0.0279 0.0267 0.0250 0.0209 0.0156 0.0092

0.30 0.0268 0.0257 0.0241 0.0202 0.0152 0.0090

0.35 �2 0.0262 0.0251 0.0236 0.0197 0.0148 0.0089

0.50 0.0253 0.0243 0.0228 0.0191 0.0144 0.0087

0.70 0.0250 0.0240 0.0226 0.0189 0.0143 0.0086

1.00 0.0250 0.0240 0.0225 0.0188 0.0143 0.0086

Note: One-sided � = 0:025 and 10,000,000 simulation runs
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5.2 Lehmacher and Wassmer Method

To extend the method with linear combination of z-scores, Lehmacher and
Wassmer (1999) proposed the test statistic at the kth stage that results
from the inverse-normal method of combining independent stagewise p-
values (Hedges and Olkin, 1985):

T �k =
kX
i=1

wki�
�1 (1� pi) ; (5.3)

where the weights satisfy the equality
Pk

i=1 w
2
ki = 1, and ��1 is the in-

verse function of �, the standard normal c.d.f. Under the null hypothesis,
the stagewise pi is usually uniformly distributed over [0,1]. The random
variables zi = ��1 (1� pi) and T �k have the standard normal distribu-
tion. Lehmacher and Wassmer (1999) suggested using equal weights, i.e.,
wik � 1p

k
.

Again, to be consistent with the uni�ed formulations proposed in Chap-
ter 3, transform the test statistic to the p-scale, i.e.,

Tk = 1� �
 

kX
i=1

wki�
�1(1� pi)

!
: (5.4)

With (5.4), the stopping boundary is on the p-scale and easy to compare
with other methods regarding operating characteristics. In this book, (5.4)
is implemented in SAS and R, instead of (5.3).
When the test statistic de�ned by (5.4) is used, the classical group

sequential boundaries are valid regardless of the timing and sample-size
adjustment that may be based on the observed data at the previous stages.
Note that under the null hypothesis, pi is usually uniformly distributed over
[0,1] and hence zi = ��1 (1� pi) has the standard normal distribution;
so does Tk. The Lehmacher-Wassmer method provides a broad method
for di¤erent endpoints as long as the p-value under the null hypothesis is
uniformly distributed over [0,1].
The Lehmacher-Wassmer Inverse-Normal method has been imple-

mented in SAS and R (SAS Macro 5.2). The SAS variables are de�ned
as follows: nSims = number of simulations, Model = ��xedW�for con-
stant weights, and Model = �InfoFun� for functional weights, alpha =
overall alpha level, sigma = the equivalent standard deviation, NId = the
noninferiority margin, and ux and uy = the responses in groups x and y,
respectively. nInterim = sample-size for the interim analysis, Nmax =
maximum sample-size, N0 = initial sample-size at the �nal analysis, and
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DuHa = the treatment di¤erence under alternative hypothesis. nAdj =
�Y�for sample-size adjustment; for no SSR, nAdj = �N.�a = the para-
meter in the sample-size adjustment algorithm (4.17) or (9.1), and alpha1,
beta1, and alpha2 = stopping boundaries as de�ned before. FSP = fu-
tility stopping probability, ESP = e¢ cacy stopping probability, AveN =
average sample-size, Power = power from simulations, and nClassic =
sample-size for the corresponding classic design.

��SAS Macro 5.2: Two-Stage Design with Inverse-Normal
Method��

%Macro MINP(nSims=1000000, Model="�xedW", w1=0.5,

w2=0.5, alpha=0.025, beta=0.2, sigma=2, NId=0, ux=0, uy=1,

nInterim=50, Nmax=100, N0=100, DuHa=1, nAdj="Y", a=2,

alpha1=0.01, beta1=0.15, alpha2=0.1871);

Data MINP; Keep Model FSP ESP AveN Power nClassic PAdj;

seedx=1736; seedy=6214; alpha=&alpha; NId=&NId;

Nmax=&Nmax; Model=&model; w1=&w1; w2=&w2; ux=&ux;

uy=&uy; sigma=&sigma; N1=&nInterim;

eSize=abs(&DuHa+NId)/sigma;

nClassic=Round(2*((Probit(1-alpha)+Probit(1-&beta))/eSize)**2);

FSP=0; ESP=0; AveN=0; Power=0;

Do isim=1 To &nSims;

nFinal=N1;

ux1 = Rannor(seedx)*sigma/Sqrt(N1)+ux;

uy1 = Rannor(seedy)*sigma/Sqrt(N1)+uy;

T1 = (uy1-ux1+NId)*Sqrt(N1)/2**0.5/sigma;

p1=1-ProbNorm(T1);

If p1>&beta1 Then FSP=FSP+1/&nSims;

If p1<=&alpha1 Then Do;

Power=Power+1/&nSims; ESP=ESP+1/&nSims;

End;

If p1>&alpha1 and p1<=&beta1 Then Do;

eRatio=Abs(&DuHa/(Abs(uy1-ux1)+0.0000001));

nFinal=min(&Nmax,max(&N0,eRatio**&a*&N0));

If &DuHa*(uy1-ux1+NId)<0 Then nFinal=N1;

If &nAdj="N" Then nFinal=&Nmax;

If nFinal>N1 Then Do;

ux2 = Rannor(seedx)*sigma/Sqrt(nFinal-N1)+ux ;

uy2 = Rannor(seedy)*sigma/Sqrt(nFinal-N1)+uy;

T2 = (uy2-ux2+NId)*Sqrt(nFinal-N1)/2**0.5/sigma;

If Model^="�xedW" Then Do
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w1=Sqrt(N1/nFinal);

w2=Sqrt((1-N1/nFinal));

End;

Z2=(w1*T1+w2*T2)/Sqrt(w1*w1+w2*w2);

p2=1-ProbNorm(Z2);

If .<p2<=&alpha2 Then Power=Power+1/&nSims;

End;

End;

AveN=AveN+nFinal/&nSims;

End;

PAdj=&alpha1+power-ESP; ** Stagewise ordering p-value;

Output;

Run;

Proc Print Data=MINP; Run;

%Mend MINP;

��SAS��

Example 5.1 Inverse-Normal Method with Normal Endpoint
Let�s use an earlier example of an asthma study. Suppose a phase-III

asthma study with 2 dose groups (control and active) with the percent
change from baseline in FEV1 as the primary e¢ cacy endpoint. The esti-
mated FEV1 improvement from baseline is 5% and 12% for the control and
active groups, respectively, with a common standard deviation of � = 22%.
Based on a large sample assumption, the sample-size for a �xed design is
208 per group with 90% power and a one-sided alpha = 0.025. Using MIP,
an interim analysis is planned based on the response assessment for 50% of
the patients. We now use SAS Macro 5.2 to assist in the adaptive design,
described as follows:
(1) Choose stopping boundaries at the �rst stage: �1 = 0.01, �1 = 1;

then from Table 5.1, we obtain the corresponding �2 = 0.019.
(2) Check the stopping boundary to make sure that the familywise error

is controlled by using the following SAS statement:

��SAS��
%MINP(Model="�xedW", w1=0.5, w2=0.5, alpha=0.025, beta=0.1,
sigma=0.22, ux=0.05, uy=0.05, nInterim=100, Nmax=200, DuHa=0.07,

nAdj="N", alpha1=0.01, beta1=1, alpha2=0.019);

��SAS��

The simulated familywise error rate � = 0:0253: Therefore the stopping
boundaries are con�rmed.
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(3) Calculate power or sample-size required using the following SAS
statement:

��SAS��
%MINP(Model="�xedW", w1=0.5, w2=0.5, alpha=0.025, beta=0.1,
sigma=0.22, ux=0.05, uy=0.12, nInterim=100, Nmax=200, DuHa=0.07,

nAdj="N", alpha1=0.01, beta1=1, alpha2=0.019);

��SAS��

(4) Perform the sensitivity analysis under the condition Hs: 0.05 versus
0.1 by submitting the following SAS code:

��SAS��
%MINP(Model="�xedW", w1=0.5, w2=0.5, alpha=0.025, beta=0.1,
sigma=0.22, ux=0.05, uy=0.10, nInterim=100, Nmax=200, DuHa=0.07,

nAdj="N", alpha1=0.01, beta1=1, alpha2=0.019);

��SAS��

We now summarize the simulation outputs of the three scenarios in
Table 5.2.

Table 5.2: Operating Characteristics of GSD with MSP

Simulation condition FSP ESP N̄ Nmax Power (alpha)

Ho 0 0.010 199 200 (0.025)

Ha 0 0.470 153 200 0.873

Hs 0 0.237 176 200 0.597

Note that OBF boundary is for early e¢ cacy stopping only and the
corresponding error spending for a one-sided test is �1 = 0:025, �1 = 1;

and �2 = 0:0240:
We now calculate stagewise-ordering adjusted p-values (See Chapter 3).

If the trial stopped at the �rst stage, then the p-value does not need any
adjustment. Suppose the trial is �nished, with a stagewise p-value for the
�rst stage of p1 = 0:012 (which is larger than �1 = 0:01 and not signi�cant;
therefore the trial continued to the second stage) and the stagewise p-
value for the second stage of p2 = 0:015 < �2 = 0:019: Therefore the null
hypothesis is rejected. However, p2 = 0:019 is the naive or unadjusted p-
value. The stagewise-ordering adjusted p-value at stage 2 can be obtained
through simulation, which is illustrated as follows:
The conditional (on trial stopping at stage 2) p-value is the probabil-

ity of the stagewise p-value at stage 2 being smaller than the observed
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stagewise p-value. Therefore, we can use the same SAS Macro 5.2 for the
power calculation to calculate the conditional p-value. To do this, we use
the observed stagewise p-value p2 to replace �2 in SAS Macro 5.2; then
stagewise-ordering p-value is padj = �1 + pc from the SAS output. The
following is the SAS call to generate (under Ho) the adjusted p-value:

��SAS��
%MINP(Model="�xedW", w1=0.5, w2=0.5, alpha=0.025, beta=0.1,
sigma=0.22, ux=0.05, uy=0.05, nInterim=155, Nmax=310, DuHa=0.07,

nAdj="N", alpha1=0.01, beta1=1, alpha2=0.015);

��SAS��

From the SAS outputs, the stagewise-ordering p-value is padj = 0.0215
< �.

Example 5.2 Inverse-Normal Method with SSR
Now suppose we want to do sample-size re-estimation (SSR) and the

interim analysis is planed for 100 patients/group. The SSR rule is given
by (4.17) with the parameter of a = 2. We present two designs with equal
weights: (1) The trial does not allow for early stopping and the interim
analysis is for sample-size re-estimation only. The stopping boundaries are
�1 = 0; �1 = 1; and �2 = 0:025; and (2) The interim analysis is for early
futility stopping and sample-size re-estimation. The stopping boundaries
are �1 = 0; �1 = 0:5; and �2 = 0:0253. For SSR, the maximum sample-
size is Nmax = 400/group, and the initial sample-size is No = 200/group.
We are going to assess the n-re-estimation mechanism when the treatment
di¤erence is small (5% versus 10%) using SAS Macro 5.2.
For design 1, the simulations can be performed using the following SAS

macro call:

��SAS��
%MINP(Model="�xedW", w1=1, w2=1, alpha=0.025, beta=0.1,
sigma=0.22, ux=0.05, uy=0.1, nInterim=100, Nmax=400, N0=200,

nAdj="Y", DuHa=0.07, alpha1=0, beta1=1, alpha2=0.025);

��SAS��

For design 2, the simulations can be performed using the following SAS
macro call:

��SAS��
%MINP(Model="�xedW", w1=1, w2=1, alpha=0.025, beta=0.1,
sigma=0.22, ux=0.05, uy=0.1, nInterim=100, Nmax=400, N0=200,
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nAdj="Y", DuHa=0.07, alpha1=0, beta1=0.5, alpha2=0.0253);

��SAS��

We now summarize the simulation results in Table 5.3.

Table 5.3: Operating Characteristics of a SSR with MSP

Design FSP ESP N̄ Nmax Power

Without SSR 0.167 0.237 176 200 0.597

SSR only 0 0 304 400 0.823

SSR. & futility stopping 0.054 0 304 400 0.825

Note that the results for the design without SSR (i.e., classic group
sequential design) are from the sensitivity analysis in Table 5.2. From Table
5.3, we can see that there are similar operating characteristics between the
two designs with SSR. Both designs increase the power from 59.7 for the
classic group sequential design to over 82%.

5.3 Classic Group Sequential Method

In classic group sequential design (GSD), the stopping boundaries are usu-
ally speci�ed by a function of stage k: The commonly used such functions
are Pocock and O�Brien-Fleming boundary functions. Wang and Tsiatis
(1987) proposed a family of two-sided tests with a shape parameter �,
which includes Pocock�s and O�Brien-Fleming�s boundary functions as spe-
cial cases. Because W-T boundary is based on z-scale, for consistent, we
can convert them to p-scale. The W-T boundary on p-scale is given by

ak > 1� �
�
�K I

��1=2
k

�
; (5.5)

where Ik = k
K or Ik = nk

nK
(information time), �K is the stopping boundary

at the �nal stage and a function of the number of stages K;�;and �:
Note that the Normal statistic Tk from the cumulative sample at the

kth stage in GSD can be written in the combination of stagewise Normal
z-statistics (zi; i = 1; :::; k):
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Tk =
1p
Nk

NkX
j=1

(yj � xj) =
1p
Nk

kX
i=1

niX
j=1

�
yij � xij

�
=

kX
i=1

1
p
ni

niX
j=1

�
yij � xij

�r ni
Nk

=
kX
i=1

zi
p
�ki;

where xi and yi are the ith observations in group x and y, respectively,
ni = stagewise sample-size at stage i, Nk = �kj=1nj is the cumulative
sample-size at stage k, and the information fraction (not information time!)
�ki =

ni
Nk

= w2ki, and zi =
1p
ni

Pni
j=1

�
yij � xij

�
: For simplicity, we have

assumed � = 1 in the derivation:
Therefore, in classic GSD method, we can write the test statistic at the

kth stage as

Tk =
kX
i=1

wkizi; (5.6)

where the weights

wki =
p
�ki: (5.7)

The method can be extended to other endpoint using the inverse-normal
transform, i.e.,

Tk =
kX
i=1

p
�ki�

�1 (1� pi) : (5.8)

For a two-stage design with two independent groups, (5.6) becomes

(
T1 = z1

T2 = z1
q

n1
n1+n2

+ z2
q

n2
n1+n2

: (5.9)

For a group sequential design without SSR the weights wki =
p
�ki is a

pre�xed constant, which is basically the same as the L-W method from the
previous section. However, it allows for SSR;

p
�ki(i > 1) is a function of

zj(j = 1; :::; i � 1): Therefore, Tk is not a linear combination of zi; hence,
it is usually not Normal. Consequently, the stopping boundaries for the
classic group sequential designs cannot be used in the case with sample-size
re-estimation. In other words, when the test statistic is de�ned by (5.6),
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a new set of stopping boundaries has to be determined using computer
simulation when the trial allows for SSR.
The following are the numerical examples of this method used with and

without SSR.
Example 5.3 Group Sequential Design
We will use the asthma trial example again. A phase III asthma study

with 2 dose groups (control and active) with the percent change from base-
line in FEV1 as the primary e¢ cacy endpoint. The estimated FEV1 im-
provement from baseline is 5% and 12% for the control and active groups,
respectively, with a common standard deviation of � = 22%: The interim
analysis is performed based on the �rst 100 patients in each group. A
futility design is used with �1 = 0; �1 = 0:5; and �2 = 0:0253:
In simulations with the SAS Macro 5.2, the model is speci�ed as "GSD"

(group sequential design). Again, we study the sensitivity by assuming 5%
versus 10% FEV1 change in the control and test groups, respectively. (Note
that DuHa = 0.07 not 0.05 should be used for the sensitivity analysis)
(1) Design without sample-size adjustment
Because this is not equal weights design and the interim analysis was not

performed for 50% of the patients, we cannot use the stopping boundaries
in Table 5.1. The stopping boundaries can be determined using simulations.
By �xing �1 = 0, �1 = 0.5, and trying di¤erent values for �2, we �nd that
�1 = 0, �1 = 0.5, and �2 = 0.0266 satisfy the requirement of overall alpha =
0.025. Here is the �nal SAS macro call to obtain the stopping boundaries:

��SAS��
%MINP(Model="GSD", alpha=0.025, beta=0.1, sigma=0.22,
ux=0.05, uy=0.05, nInterim=100, Nmax=310, DuHa=0.07,

nAdj="N", alpha1=0, beta1=0.5, alpha2=0.0266);

��SAS��

The power of the design can be obtained by using the following SAS
statement:

��SAS��
%MINP(Model="GSD", alpha=0.025, beta=0.1, sigma=0.22,
ux=0.05, uy=0.10, nInterim=100, Nmax=310, DuHa=0.07,

nAdj="N", alpha1=0, beta1=0.5, alpha2=0.0266);

��SAS��

(2) Design with sample-size adjustment
For the design with sample-size adjustment, we have to �rst determine

the stopping boundaries using simulations. By �xing �1 = 0, �1 = 0.5, and
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trying di¤erent �2, we �nd that �1 = 0, �1 = 0.5, and �2 = 0.0265 satisfy
the overall alpha = 0.025 requirement. We use the following SAS code to
determine the stopping boundaries and obtain the power, respectively.

��SAS��
%MINP(Model="GSD", alpha=0.025, beta=0.1, sigma=0.22, ux=0.05,
uy=0.05, nInterim=100, Nmax=400, N0=310, DuHa=0.07, alpha1=0,

nAdj="Y", beta1=0.5, alpha2=0.0265);

%MINP(Model="GSD", alpha=0.025, beta=0.1, sigma=0.22, ux=0.05,
uy=0.10, nInterim=100, Nmax=400, N0=310, DuHa=0.07,

nAdj="Y", alpha1=0, beta1=0.5, alpha2=0.0265);

��SAS��

The simulation results are presented in Table 5.4.

Table 5.4: Operating Characteristics of a GSD with MSP

Design FSP ESP N̄ Nmax Power

Group sequential 0.054 0 299 310 0.795

Adaptive SSR 0.054 0 356 400 0.861

5.4 Cui-Hung-Wang Method

Cui, Hung, and Wang (1999) developed a method for an adaptive design
allowing for sample-size re-estimation based on the unblinded results of the
interim analysis. Consider a group sequential trial with two groups and one
interim analysis.

T �2 = w1z1 + w2 z2; (5.10)

where the weights wi =
q

ni
n1+n2

, in which the sample-size n1 and n2 are

the original sample sizes. Because the original n2 can be arbitrarily chosen,
the weight wi > 0 can actually be any pre�xed positive value satisfying
w21 + w22 = 1: It is important to remember that the weights are dependent
on the originally planned sample-size not the modi�ed sample-size. When
there is actually no modi�cation of sample-size the test statistic is the same
as for the classic group sequential design.
There are many possible sample-size adjustment algorithms. Cui, et al.

(1999) suggest using the following formulation for new sample-size at the
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second stage:

n�2 =

�
�

�̂1

�2
(n1 + n2)� n1; (5.11)

where � and �̂ are the initial estimated treatment di¤erence and the ob-
served di¤erence at stage 1, respectively. The stopping boundaries for Ciu-
Hung-Wang�s method are the same as for a classic GSD.

5.5 Lan-DeMets Method

The Lan-DeMets method (Lan and DeMets, 1983) is an early and very
interesting adaptive design method, the error-spending approach, in which
they elegantly use the properties of Brownian (Wiener) motion.

5.5.1 Brownian Motion

Brownian motion (Figure 5.1) has been widely studied and the results are
ready to use for sequential designs in clinical trials.
De�nition 5.1: A stochastic process fX(t); t � 0g is said to be a

Brownian motion with a Drift � if
(1) X (0) = 0;
(2) fX(t); t � 0g has a stationary and independent increment;
(3) for every t > 0; X (t) is normally distributed with mean �t and

variance �2t; i.e.,

X (t) � 1p
2��2t

exp

 
� (x� �t)

2

2�2t

!
: (5.12)

:

The covariance of the Brownian motion is cov[X(t); X (s)] =

�2min fs; tg :
The standard Brownian motion B (t) is the Brownian motion with � = 0

and �2 = 1: The conditional probability density function of B (t) is given
by

p (x2; tjx1) =
1p
2�t

exp

�
� 1
2t
(x2 � x1)2

�
; (5.13)

where x1 = x1 (t1) ; x2 = x2 (t2) ; and t2 > t1:

The conditional probability of the position at time t+ s given the posi-
tion at time s can be written as
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Pr fB (t+ s) � yjB (s) = xg = �
�
y � xp

t

�
: (5.14)

Because of the independent increment, the joint probability distribution
of X (t1) :::X (tn) is given by

f (x1:::xn) =
nX
i=1

fti�ti�1 (xi � xi�1) =
exp

�
� 1
2�

n
i=1

(xi�xi�1)2
ti�ti�1

�
(2�)

n=2p
�ni=1 (ti � ti�1)

: (5.15)

The relationship between the standard Brownian motion and Brownian
motion with drift � can be expressed as

X (t) = �t+ �B (t) : (5.16)

The cumulative probability is given by

Pr fX (t) � yjX (0) = xg = �
�
y � x� �t

�
p
t

�
: (5.17)

Figure 5.1: Examples of Brownian Motion

The First Hitting of Standard Brownian Motion:
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Let C be a horizontal boundary (Figure 5.1) andM(t) be the maximum
of the standard Brownian motion with time t, i.e., M(t) = max

0�u�t
B(u). It

can be proved, using the re�ection principle (Taylor and Karlin, 1998, p.491-
493), that the probability of the �rst passing (the boundary) before time
t > 0 can be expressed as:

Pr fM (t) � Cg = 2
�
1� �

�
Cp
t

��
: (5.18)

Equation (5.18) can be used directly to control type-I error (see next
section).

Remarks: There are many examples of Brownian motion: Ein-
stein showed that the solution � for the di¤usion or permeability equation
@�
@t =

1
2�

2 @2�
@x2 is the Brownian motion (5.12) with a unit di¤usion coe¢ -

cient. Random-walk with a varied step length forms a Brownian motion.
Brownian motion is also known as a memoryless process. The indepen-
dence of the increment process also implies that we can predict the future
as long as we know the current status. However, in many cases, to predict
the future, we have to know not only the present, but also the past.

5.5.2 Lan-DeMets Error-Spending Method

Brownian motion was �rst introduced by Lan and DeMets (1983) to the
adaptive design with a pre�xed error spending function, which allows for
changing the timing and the number of analyses.
We know from (5.6) and (5.7) that the test statistic based on the cu-

mulative sample-size at the kth stage can be written as

Zk = �
k
i=1zi

p
�ki: (5.19)

When the maximum sample-size N is �xed, i.e., without SSR, the Brownian
motion can be constructed as follows:

Bk = Zk
p
Ik; (5.20)

where the information time Ik = Nk

N ; Nk = �
k
i=1ni.

From (5.20), the following properties can be obtained using simple cal-
culations:
(1) E [BN (I)] = �

p
N:

(2) var (BN (I)) = I;

(3) cov (BN (I1) ; BN (I2)) = min (I1; I2)



116 Adaptive Design Theory and Implementation

Note that Bk is a linear function of information time Ik 2 [0; 1]: Because
the Brownian motion is not observable between two interim analyses, we
can assign an accumulated crossing probability to the information time
point Ik:
Brownian motion is formed only if the trial continues without any early

stopping. However, if we are interested in the �rst pass (e¢ cacy or futility),
then Brownian motion results can be used for the trial with early stopping.
We can see that the Brownian motion can be viewed as weighted stage-

wise z-scores, where the weights are

wki =
p
Ik�ki: (5.21)

The Lan-DeMets method is similar to, but di¤erent from the L-W
method because the weights wki =

p
Ik�ki is not a pre�xed constant.

Instead, it is a pre�xed function of information time. Note that the Lan-
DeMets method uses the same stopping boundaries as a classic GSD, be-
cause for each �xed information time, the test statistic is the same as a
classic GSD. For the two-stage design, the stopping boundaries and power
can be obtained through simulation using SAS Macros 5.1 and 5.2.
We now use Brownian motion to illustrate the error-spending method

because Lan and DeMets (1983) originally proposed the error-spending ap-
proach using Brownian motion, although the error-spending can be used
with other test statistics (see Chapter 6).
If Ho is rejected whenever the position of the Brownian motion �rst

crosses the boundary C, then we can control overall � by letting the max-
imum crossing probability Pr fM (1) � Cg = �, and solving (5.18) for
C: In other words, from 2 [1� � (C)] = �, we can immediately obtain
C = z1��=2 = ��1 (1� �=2) : We now designate the error-spending func-
tion to be the �rst passing probability (5.18), i.e.,

��(Ik) =

(
2
h
1� �

�
z1��=2p

Ik

�i
; Ik > 0

0; Ik = 0
: (5.22)

Note that ��(t) is a increasing function in t or information time Ik and
��(1) = �; the one-sided signi�cance level:
As stated in Chapter 3, for the error-spending approach, the stopping

boundaries are determined by

Pr
�
\k�1j=1

�
�j < B (tj) < �j

�
\B (tk) � �k

	
= �� (Ik)��� (Ik�1) : (5.23)
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Using (5.15), (5.23) becomes

Z �1

�1

� � �
Z �k�1

�i�1

Z 1

�k

exp
�
� 1
2�

n
i=1

(xi�xi�1)2
ti�ti�1

�
(2�)

n=2p
�ni=1 (ti � ti�1)

dx1 � � � dxk�1dxk

= �� (Ik)� �� (Ik�1) : (5.24)

Lan and DeMets (1983) formulated the problem without early futility
stopping boundaries. Here it is generalized to the design allowing for futility
stopping. Determination of the stopping boundaries (�i; �i; i = 1; :::; :K)
requires either numerical integration (Armitage et al., 1969; Jennison and
Turnbull, 2000) or computer simulations (See Chapter 6).
The error-spending function can be any non-decreased error spending

function �� (t) with a range of [0,1]: When �� (Ik) = �� (Ik�1) ; the kth

stage interim analysis is used either for futility stopping or modifying the
design (such as its randomization), but not for e¢ cacy stopping. Note that
(5.22) is the error-spending function corresponding to the O�Brien-Fleming
stopping boundaries. Other commonly used error spending functions in-
clude Pocock�s ��(t) = � log[1 + (e � 1)t] (Kim and DeMets,1992), and
power family: ��(t) = �t�; � > 0:

When the error-spending function ��(t) is pre�xed, i.e., not dependent
on the observed data from the trial, then the overall type-I error rate is
�Kk=1�k = �Kk=1 [�

� (Ik)� �� (Ik�1)] = �� (1) � �� (0) = �: This is true
even when the number of analyses K and the timing of the analyses Ik are
not predetermined. This is the most attractive feature of the error-spending
function. We further illustrate the approach in the following example.

Example 5.4 Changes in Number and Timing of Interim Analy-
ses
An international, multi-center, randomized phase-III study to compare

the test drug with a combination of drugs in patients with newly diag-
nosed multiple myeloma was designed using the O�Brien-Fleming spending
function. The interim analysis was to be performed for 200 patients. The
�nal analysis will be performed using 400 patients. The primary study
objective is to assess the treatment di¤erence in overall complete response
rate (CR) obtained at the end of a 16-week induction phase. However,
due to the complexity of the international trial, the data collection and
validation became extremely challenging. It was decided that the investi-
gator�s assessment would be used because it is available much earlier than
the assessment by the independent review committee (IRC) � the gold
standard. However, the discrepancies between the two assessments are not
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known. The sponsor is concerned that if the trial is stopped based on
the IDMC�s recommendation, which is based on the investigator�s assess-
ment, it could be found later that the treatment di¤erence is not signi�cant
based on the IRC�s assessment. However, it is known that when the trial
is stopped at the �rst interim analysis (IA), there will be more patients
enrolled (about 300). Therefore, the sponsor decided to add a second in-
terim analysis. The second IA is very interesting to the sponsor because
if the results are signi�cant at the �rst interim analysis based on inves-
tigator�s assessment (� = 0.0025), then the p-value based on the IRC�s
assessment should be somewhat close to 0.0025. With 300 patients (the
exact number is based on the number of patients randomized at the �rst
IA) at the second IA and based on the OB-F spending function (5.22), the

error spent on the three analyses is �1 = 2
�
1� �

�
2:240p
200=400

��
= 0:0016,

�2 = 2

�
1� �

�
2:240p
300=400

��
� 0:0016 = 0:0096� 0:0016 = 0:008 , and �3 =

2 [1� � (2:240)]�0:0096 = 0:025�0:0096 = 0:015 4: The actual �2 should
be based on the actual number of patients at the second IA.

5.6 Fisher-Shen Method

Fisher and Shen (Fisher, 1998; Shen and Fisher, 1999) propose a self-
designing approach for k-stage designs. In this method, the test statistic is
de�ned similarly to Lehmacher-Wassmer�s method, i.e., it is the weighted
sums of the standardized di¤erence zi. However, the weights wi at each
stage may be determined based on data from previous stages, and the num-
ber of stages K does not have to be pre�xed, but the condition �Ki=1w

2
i = 1

must be met. Fisher (1998) does not consider early stopping in his method.
Shen and Fisher (1999) consider early futility stopping (�1 = 0), but do not
account for its impact on type-I error; hence, it is a conservative approach.

5.7 Summary

In this chapter we have studied broad methods that are based on weighted
inverse-normal stagewise p-values. The weights can be �xed such as in the
GSD, the L-W method, and the Cui-Hung-Wang method, or varied depend-
ing on observed data, like in the Fisher-Shen and Lan-DeMets methods.
The Cui-Hung-Wang method can be used for sample-size re-estimation for
a normal endpoint, and the L-W method can be used for SSR for vari-
ous endpoints. The Lan-DeMets method can be used for adaptive designs
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with changes in the number and the timing of analyses. Fisher-Shen is a
method that can be used for SSR, but it is conservative because the futility
boundaries at earlier stages are not used in the construction of later stop-
ping boundaries. Deciding which method and design are best for a trial is
heavily dependent on the practical setting. Simulations should be used to
assist in decision-making. The SAS macros in this chapter provide powerful
tools for accomplishing this goal. The electronic versions of the simulation
programs can be obtained at www.statisticians.org.
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Problem

5.1 Suppose the median times for the two treatment groups in Example
4.7 are 9 months and 12 months. Design an adaptive trial and justify the
adaptive design method (MIP, MSP, MPP, MINP) and the design you have
chosen.

5.2 Use the re�ection principle (Taylor and Karlin, 1998, p.497) to prove
that

Pr fM (t) � z; B (t) � yg = Pr fB (t) � 2z � xg = 1� �
�
2z � yp

t

�
:

5.3 The Gamler�s Ruin Problem (Taylor and Karlin,1998, p.509)
Theorem: For a Brownian motion with drift parameter � and variance

�2; and a < x < b;

u (x) = Pr fX (Tab) = bjX (0) = xg = e�2�x=�
2 � e�2�a=�2

e�2�b=�2 � e�2�a=�2 ; (5.25)

where Tab is a random time at which the process X (t) �rst assumes one of
the values a or b. The so-called hitting time is de�ned by

Tab = min ft � 0;X (t) = a or X (t) = bg : (5.26)

It can be seen that u (x) is the conditional probability of hitting thresh-
old b given the �rst hit occurs.
The expectation of u (x) is given by

E [TabjX (0) = x] =
1

�
[u (x) (b� a)� (x� a)] :

It is interesting to know that we cannot obtain the velocity of the Brown-
ian motion particle by taking the derivative of B (t) with respect to t be-
cause B (t) is continuous but not di¤erentiable at any single point (Taylor
and Karlin, 1998, p.509). This counter-intuitive fact is di¢ cult to compre-
hend.
For �� > 0; and �� > 1; (5.25) becomes

u (x) = Pr fB (Tab) = bjB (0) = xg = x� a
b� a :

Study the possibility of using these results in adaptive design.



Chapter 6

Implementation of K-Stage Adaptive
Designs

6.1 Introduction

We are going to present simulation approaches to the N-stage design using
nonparameteric stopping boundaries and the error spending approach in
this chapter. The latter allows for modifying the timing and number of
analyses. The two methods have been implemented in SAS with MIP,
MSP, MPP, and MINP. We will illustrate how to use these programs to
design adaptive trials.
In a nonparametric approach, stopping boundaries are determined by

the overall � level without speci�cation of any function for � fig or error-
spending function. Therefore this method may not be applicable to adap-
tive designs with changes in the number or timing of the analyses. To
allow for changes in the number and timing of interim analyses, we can
prespecify discretely when the possible times are and how much error is to
spend at each interim analysis. In general, the stopping boundaries and
power of an n-stage design can be determined using simulation or numeri-
cal integration regardless of the test statistic. Simulation is usually easier
and computationally faster. Numerical integration usually requires dimen-
sion reductions in order to be computationally feasible. For n-stage group
sequential designs, a numerical integration algorithm can be found in Jenni-
son and Turbull (2000) and CTriSoft (2002). For general adaptive designs,
numerical algorithms are not available.

6.2 Nonparametric Approach

6.2.1 Normal Endpoint

SAS macro 6.1 can be used for simulating two-arm N-stage adaptive designs
with Normal endpoint. The SAS variables are de�ned as follows: nSims =

121
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number of simulation runs, andModel = adaptive design method: �MIP,�
�MSP,�or �MPP.�nStgs = number of stages, ux, uy = means for groups
x and y, respectively, NId = noninferiority margin, and sigma = stan-
dard deviation. nAdj = �Y� to allow for sample-size adjustment; other-
wise, nAdj = �N.�N0 = initial cumulative sample-size for the �nal stage,P

iNs{i}, and Nmax = maximum sample-size allowed. DuHa = true
treatment mean di¤erence; for power calculation, DuHa = uy - ux, and
for sensitivity analysis, DuHa 6= uy �ux. Ns{i} = the ith stage sample-
size (not cumulative one), alpha{i} = the e¢ cacy stopping boundary at
the ith stage, and beta{i} = the futility stopping boundary at the ith stage.
ESP{i} = the e¢ cacy stopping probability at the ith stage, and FSP{i}
= the futility stopping probability at the ith stage. power = the simulated
power for the trial, Aveux = naive mean in group x, Aveuy = naive mean
in group y, and AveN = the average sample-size per group.

The key algorithms for SAS Macro 6.1 are speci�ed as follows:
(1) Take inputs: nSims,Model, nStags, Ns{i}, alpha{i}, beta {i},

ux, uy, NId, sigma, nAdj, DuHa, Nmax, N0.
(2) Generate stagewise means uxObs and uyObs for the two groups

(not individual patient response).
(3) Compute the test statistic TS for either MPI, MSP, or MPP.
(4) Check if TS crosses the stopping boundary.

If the boundary is crossed, update the power and the stopping
probability ESP{i} and/or FSP{i};

otherwise continue to the next stage of the trial.
(5) Loop back to step 2.

��SAS Macro 6.1: N-Stage Adaptive Designs with Normal
Endpoint��

%Macro NStgAdpDsgNor(nSims=1000000, Model="MIP", nStgs=3,

ux=0, uy=1, NId=0, sigma=2, nAdj="Y", DuHa=1,

Nmax=200, N0=150);

DATA NStgAdpDsg; Set dInput;

KEEP power Aveux Aveuy AveN FSP1-FSP&nStgs

ESP1-ESP&nStgs alpha1-alpha&nStgs beta1-beta&nStgs;

Array Ns{&nStgs}; Array alpha{&nStgs}; Array beta{&nStgs};

Array ESP{&nStgs}; Array FSP{&nStgs};

seedx=3637; seedy=1624; nStgs=&nStgs; sigma=&sigma;

power=0; AveN=0; Aveux=0; Aveuy=0; du=abs(&uy-&ux);

cumN=0; Do i=1 To nStgs-1; cumN=cumN+Ns{i}; End;

Do i=1 To nStgs; FSP{i}=0; ESP{i}=0; End;
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Do iSim=1 to &nSims;

ThisN=0; Thisux=0; Thisuy=0;

TS=0; If &Model="MPP" Then TS=1;

Do i=1 To nStgs;

uxObs=Rannor(seedx)*sigma/Sqrt(Ns{i})+&ux;

uyObs=Rannor(seedy)*sigma/Sqrt(Ns{i})+&uy;

Thisux=Thisux+uxObs*Ns{i};

Thisuy=Thisuy+uyObs*Ns{i};

ThisN=ThisN+Ns{i};

Z = (uyObs-uxObs+&NId)*Sqrt(Ns{i}/2)/sigma;

pi=1-ProbNorm(Z);

If &Model="MIP" Then TS=pi;

If &Model="MSP" Then TS=TS+pi;

If &Model="MPP" Then TS=TS*pi;

If TS>beta{i} Then Do; FSP{i}=FSP{i}+1/&nSims;

Goto Jump; End;

Else If TS<=alpha{i} then do;

Power=Power+1/&nSims; ESP{i}=ESP{i}+1/&nSims;

Goto Jump; End;

Else If i=1 & &Nadj="Y" Then Do;

eRatio=&DuHa/(abs(uyObs-uxObs)+0.0000001);

nFinal=min(&Nmax,max(&N0,eRatio*2*&N0));

If nStgs>1 Then Ns{nStgs}= nFinal-cumN; End;

End;

Jump:

Aveux=Aveux+Thisux/ThisN/&nSims;

Aveuy=Aveuy+Thisuy/ThisN/&nSims;

AveN=AveN+ThisN/&nSims;

End;

Output;

Run;

Proc Print; run;

%Mend NStgAdpDsgNor;

��SAS��

Example 6.1 Three-Stage Adaptive Design
In a phase-III asthma study with two dose groups (control and active),

the primary e¢ cacy endpoint is the percent change from baseline in FEV1.
The estimated FEV1 improvement from baseline is 5% and 12% for the
control and active groups, respectively, with a common standard deviation
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of � = 22%.
We will discuss three-stage, group sequential designs with and without

SSR using MSP. There are four simple steps to follow in order to design
the trial with SAS Macro 6.1: (1) determine the stopping boundaries; (2)
determine the power or sample-size; (3) perform sensitivity analysis; and
(4) perform estimation.
Let�s �rst illustrate the steps using the design without SSR.
(1) Determination of stopping boundary
Choose the number of analyses and the initial stagewise sample-size

and stopping boundaries alpha{i} and beta{i}. Set the null hypothesis
condition (e.g., ux = 0.05, uy = 0.05). Use the following SAS macro call
to calculate the power under this null condition; then adjust the value of
alpha{i} and beta{i} until the power = type-I error �.

��SAS��
Data dInput;

Array Ns{3} (100, 100, 100); Array alpha{3} (0.014,0.15,0.291);

Array beta{3} (1,1,1);

%NStgAdpDsgNor(Model="MSP", nStgs=3, ux=0.05, uy=0.05,

sigma=0.22, nAdj="N"); Run;

��SAS��

(2) Determination of the sample-size
Keep everything the same, but change the treatment e¤ect to the al-

ternative hypothesis. The following is the SAS macro call for the power
calculation:

��SAS��
Data dInput;

Array Ns{3} (100, 100, 100); Array alpha{3} (0.014,0.15,0.291);

Array beta{3} (1,1,1);

%NStgAdpDsgNor(Model="MSP", nStgs=3,ux=0.05, uy=0.12,

sigma=0.22, nAdj="N"); Run;

��SAS��

If the power is di¤erent from the desired power, change the sample-size
and redetermine the stopping boundaries and simulate the power again.
The iteration process continues until the desired power is reached.
(3) Sensitivity analysis
Because the treatment di¤erence and its variability are not exactly

known, it is necessary to run the simulation under other critical conditions,
which is referred to as sensitivity analysis or risk assessment.
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The example of sensitivity analysis with the control mean ux = 0:05

and the test mean uy = 0:11 is given by the following SAS statement:

��SAS��
Data dInput;

Array Ns{3} (100, 100, 100); Array alpha{3} (0.014,0.15,0.291);

Array beta{3} (1,1,1);

%NStgAdpDsgNor(Model="MSP", nStgs=3,ux=0.05, uy=0.11,

sigma=0.22, nAdj="N"); Run;

��SAS��

The simulation results or the operating characteristics of the design are
presented in Table 6.1.

Table 6.1: Operating Characteristics

Case ESP1 ESP2 ESP3 FSP1 FSP2 FSP3 Power N̄

Ho 0.014 0.009 0.002 0.000 0.500 0.326 0.025 246

Ha 0.520 0.294 0.078 0.000 0.001 0.002 0.892 166

Hs 0.394 0.293 0.094 0.000 0.003 0.008 0.780 192

The stopping probabilities can be used to calculate the expected dura-
tion of the trial. In the current case, the conditional (on the e¢ cacy claim)
expected trial duration is given by

�te =

3X
i=1

ESP fig ti;

where ti is the time from the �rst-patient-in to the ith interim analysis.
The conditional (on the futility claim) expected trial duration is given

by

�tf =
3X
i=1

FSP fig ti:

The unconditional expected trial duration for the trial is given by

�t =
3X
i=1

(ESP fig+ FSP fig) ti:

(4) Naive point estimations:
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The average naive point estimate can be obtained using the SAS macro.
Under the null hypothesis Ho : ux = uy = 0:05, the naive means are
ûx = 0:0510 and ûy = 0:0490 for the control and test groups, respectively.
We can see that the bias is negligible. Under the alternative Ha: ux = 0:05
and uy = 0:12: The naive mean estimates are ûx = 0:0462 and ûy = 0:1240.
Under Hs: ux = 0:05 and uy = 0:11; the naive means are ûx = 0:0460 and
ûy = 0:1141 for the two groups.
Similarly, for a three-stage design with SSR using MSP, the SAS macro

calls for the design are given as follows.
(1) Determine the stopping boundaries
Using the following SAS macro call to determine the stopping bound-

aries:

��SAS��
Data dInput;

Array Ns{3} (100, 100, 100); Array alpha{3} (0.014,0.15,0.291);

Array beta{3} (1,1,1);

%NStgAdpDsgNor( Model="MSP", nStgs=3,ux=0.05, uy=0.05,

sigma=0.22, nAdj="Y", Nmax=500, N0=300);

��SAS��

By trial-error method, we can �nd that the stopping boundaries are
virtually the same as those without SSR.
(2) Determine sample-size
Use the following SAS macro call to determine the sample-size required

for the desired power:

��SAS��
Data dInput;

Array Ns{3} (100, 100, 100); Array alpha{3} (0.014,0.15,0.291);

Array beta{3} (1,1,1);

%NStgAdpDsgNor(Model="MSP", nStgs=3,ux=0.05, uy=0.12,

sigma=0.22, nAdj="Y", Nmax=500, N0=300);

��SAS��

(3) Sensitivity assessment
Use the following SAS call for the sensitivity analysis:

��SAS��
Data dInput;

Array Ns{3} (100, 100, 100); Array alpha{3} (0.014,0.15,0.291);
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Array beta{3} (1,1,1);

%NStgAdpDsgNor(Model="MSP", nStgs=3,ux=0.05, uy=0.11,

sigma=0.22, nAdj="Y", Nmax=500, N0=300);

��SAS��

(4) Operating characteristics
The operating characteristics are summarized in Table 6.2.

Table 6.2: Operating Characteristics

Case ESP1 ESP2 ESP3 FSP1 FSP2 FSP3 Power N̄

Ho .014 .009 .002 .000 .500 .326 .025 342

Ha .520 .294 .100 .000 .001 .000 .914 204

Hs .394 .292 .137 .000 .003 .001 .823 254

Note that the operating characteristics are virtually the same under Ho,
with or without SSR (Nmax = 500). The sample adjustment is performed
at the �rst interim analysis. Under Hs (ux = 5% vs. uy = 11%), the power
increases by 4.3% (from 78% to 82.3%) with SSR compared to without
SSR.
Naive point estimations:
The naive mean estimates are (ûx = 0:0521; ûy = 0:0480) under Ho;

(ûx = 0:0455; ûy = 0:1247) under Ha; and (ûx = 0:0450; ûy = 0:1150) un-
der Hs. These numbers indicate the magnitude of the potential bias caused
by an adaptive design.

6.2.2 Binary Endpoint

SAS Macro 6.2 can be used for two-arm, N-stage adaptive designs with
binary endpoints. The SAS variables are de�ned as follows: nSims =
number of simulation runs, andModel = adaptive design method: �MIP,�
�MSP,�or �MPP.�nStgs = number of stages, Px, Py = response rates
for groups x and y, respectively, NId = non-inferiority margin, and sigma
= standard deviation. nAdj = �Y� to allow for sample-size adjustment;
otherwise, nAdj = �N.�N0 = initial sample-size for the �nal stage, and
Nmax=maximum sample-size allowed. DuHa= treatment di¤erence; for
power calculation, DuHa = Py - Px, and for sensitivity analysis, DuHa
6= Py - Px. Ns{i} = the ith stage sample-size (not cumulative one),
alpha{i} = the e¢ cacy stopping boundary at the ith stage, and beta{i}
= the futility stopping boundary at the ith stage. ESP{i} = the e¢ cacy
stopping probability at the ith stage, and FSP{i} = the futility stopping
probability at the ith stage. power = the simulated power for the trial,
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AvePx = naive average response rate in group x, AvePy = naive average
response rate in group y, and AveN = the average sample-size per group.

The key algorithms for SAS Macro 6.2 are speci�ed as follows:
(1) Take inputs: nSims,Model, nStags, Ns{i}, alpha{i}, beta {i},

px, py, NId, nAdj, DuHa, Nmax, N0.
(2) Generate stagewise response rates pxObs and pyObs for the two

groups.
(3) Compute the test statistic TS for MPI, MSP, or MPP.
(4) Check if TS crosses the stopping boundary.

If the boundary is crossed, update the power and the stopping
probability ESP{i} or FSP{i};

otherwise continue to the next stage of the trial.
(5) Loop back to step 2.

��SASMacro 6.2: N-Stage Adaptive Designs with Binary End-
point��

%Macro NStgAdpDsgBin(nSims=1000000, Model="MIP",nStgs=3,

Px=0, Py=1, NId=0, nAdj="Y", DuHa=1,Nmax=200, N0=150);

DATA NStgAdpDsg; Set dInput;

KEEP power AvePx AvePy AveN FSP1-FSP&nStgs

ESP1-ESP&nStgs alpha1-alpha&nStgs beta1-beta&nStgs;

Array Ns{&nStgs}; Array alpha{&nStgs}; Array beta{&nStgs};

Array ESP{&nStgs}; Array FSP{&nStgs};

seedx=3637; seedy=1624; nStgs=&nStgs; Px=&Px; Py=&Py;

power=0; AveN=0; AvePx=0; AvePy=0; cumN=0;

Do i=1 To nStgs-1; cumN=cumN+Ns{i}; End;

Do i=1 To nStgs; FSP{i}=0; ESP{i}=0; End;

Do iSim=1 to &nSims;

ThisN=0; ThisPx=0; ThisPy=0;

TS=0; If &Model="MPP" Then TS=1;

ThisN=0;

Do i=1 To nStgs;

PxObs=RanBin(seedx,Ns(i),Px)/Ns(i);

PyObs=RanBin(seedy,Ns(i),Py)/Ns(i);

ThisPx=ThisPx+PxObs*Ns(i);

ThisPy=ThisPy+PyObs*Ns(i);

ThisN=ThisN+Ns{i};

sigma=((PxObs*(1-PxObs)+PyObs*(1-PyObs))/2)**0.5;

Z = (PyObs-PxObs+&NId)*Sqrt(Ns{i}/2)/sigma;

pi=1-ProbNorm(Z);



K-Stage Adaptive Designs 129

If &Model="MIP" Then TS=pi;

If &Model="MSP" Then TS=TS+pi;

If &Model="MPP" Then TS=TS*pi;

If TS>beta{i} Then Do; FSP{i}=FSP{i}+1/&nSims;

Goto Jump; End;

Else If TS<=alpha{i} then do;

Power=Power+1/&nSims; ESP{i}=ESP{i}+1/&nSims;

Goto Jump; End;

Else If i=1 & &Nadj="Y" Then Do;

eRatio=&DuHa/(abs(PyObs-PxObs)+0.0000001);

nFinal=round(min(&Nmax,max(&N0,eRatio*2*&N0)));

If nStgs>1 Then Ns{nStgs}= nFinal-cumN; End;

End;

Jump:

AvePx=AvePx+ThisPx/ThisN/&nSims;

AvePy=AvePy+ThisPy/ThisN/&nSims;

AveN=AveN+ThisN/&nSims;

END;

output;

RUN;

proc print; run;

%Mend NStgAdpDsgBin;

��SAS��

Example 6.2 Four-Stage Adaptive Design
A phase III trial is to be designed for patients with acute ischemic stroke

of recent onset. The composite endpoint (death and MI) is the primary
endpoint and the event rate is 14% for the control group and 12% for the
test group. The sample-size for a classic design is 5937 per group, which
will provide 90% power at a one-sided alpha = 0.025.
For illustration purpose, we choose a four-stage design with and without

SSR using MSP. Again, there are four simple steps to follow in order to de-
sign the trial with this SAS macro: (1) determine the stopping boundaries,
(2) determine the power or sample-size, (3) perform sensitivity analysis,
and (4) perform estimation.

Let�s �rst discuss the design without SSR.
(1) Determination of stopping boundaries
Choose the number of analyses and the initial stagewise sample-size,

and stopping boundaries alpha{i} and beta{i}. Set the null hypothesis
condition (e.g., Px = 0.14, Py = 0.14) and repeat the simulation using the
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following SAS macro call with di¤erent values of alpha{i} and beta{i} until
the simulated power = type-I error �:

��SAS��
Data dInput;

Array Ns{4} (1500, 1500, 1500, 1500); Array beta{4} (1,1,1,1);

Array alpha{4} (0.002,0.0011,0.0003, 0.00011);

%NStgAdpDsgBin( Model="MPP", nStgs=4,Px=0.14, Py=0.14,

DuHa=0.02, Nmax=10000, N0=6000); Run;

��SAS��

(2) Determination of sample-size
Keep everything the same, but change the treatment e¤ect to the alter-

native hypothesis; then submit the following SAS statement to obtain the
power:

��SAS��
Data dInput;

Array Ns{4} (1500, 1500, 1500, 1500); Array beta{4} (1,1,1,1);

Array alpha{4} (0.002, 0.0011, 0.0003, 0.00011);

%NStgAdpDsgBin(Model = "MPP", nStgs=4, Px=0.12, Py=0.14,

DuHa=0.02, Nmax=10000, N0=6000); Run;

��SAS��

(3) Operating characteristics
The operating characteristics are summarized in Table 6.3.

Table 6.3: Operating Characteristics without SSR

Case ESP1 ESP2 ESP3 ESP4 Power N̄ ūx ūy
Ho .002 .007 .007 .009 .025 5959 .140 .140

Ha .105 .333 .249 .168 .855 4155 .119 .141

(4) Naive point estimations:
The naive point estimates ûx and ûy are also presented in Table 6.3.

We now follow the same steps to simulate the designs with sample-size
adjustment.
(1) Determination of stopping boundaries
Repeatedly submit the following SAS macro call with di¤erent values

of alpha{i} and beta{i} to determine the stopping boundaries:

��SAS��
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Data dInput;

Array Ns{4} (1500, 1500, 1500, 1500); Array beta{4} (1,1,1,1);

Array alpha{4} (0.002,0.0011,0.0003, 0.00011);

%NStgAdpDsgBin(Model="MPP", nStgs=4, Px=0.14, Py=0.14,

nAdj="Y", DuHa=0.02, Nmax=10000, N0=6000); Run;

��SAS��

(2) Determine sample-size
Use the following SAS macro call to determine the sample-size required

for the desired power:

��SAS��
Data dInput;

Array Ns{4} (1500, 1500, 1500, 1500); Array beta{4} (1,1,1,1);

Array alpha{4} (0.002,0.0011,0.0003, 0.00011);

%NStgAdpDsgBin( Model="MPP", nStgs=4, Px=0.12, Py=0.14,

nAdj="Y", DuHa=0.02, Nmax=10000, N0=6000); Run;

��SAS��

(3) Operating Characteristics
The operating characteristics are presented in Table 6.4. The power

increases from 85.5% to 97.1% due to SSR.

Table 6.4: Operating Characteristics with SSR

Case ESP1 ESP2 ESP3 ESP4 Power N̄ ūx ūy
Ho .002 .007 .007 .009 .025 9824 .140 .140

Ha .105 0.333 .249 .284 .971 5374 .118 .142

6.2.3 Survival Endpoint

The SAS Macro 6.3 can be used for two-arm N-stage adaptive designs with
binary, normal, or survival endpoints. The SAS variables are de�ned as
follows: nSims = number of simulation runs, nStgs = number of stages,
and ux, uy = means, response rates, or hazard rate for groups x and
y, respectively, depending on the endpoint; NId = noninferiority margin;
and sigma = standard deviation. nAdj = "Y" to allow for sample-size
adjustment, otherwise, nAdj = "N", N0 = initial cumulative sample-size
for the �nal stage, and Nmax = maximum sample-size allowed. DuHa =
treatment di¤erence; for power calculationDuHa = uy - ux; for sensitivity
analysis, DuHa 6= uy - ux. tAcr = uniform accrural duration, tStd =
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trial duration, and Ns{i} = the ith stage sample-size (not cumulative
one). alpha{i} = the e¢ cacy stopping boundary at the ith stage, beta{i}
= the futility stopping boundary at the ith stage. ESP{i} = the e¢ cacy
stopping probability at the ith stage, and FSP{i} = the futility stopping
probability at the ith stage. power = the simulated power for the trial,
AvePx = average response in group x, AvePy = average response in
group y, and AveN = the average sample-size per group. EP = "normal",
"binary", or "survival". Model is for the methods, which can be MIP, MSP,
MPP, WZ, or UWZ. WZ is for the inverse-normal method with constant
weights and UWZ is for the inverse-normal method with information time
as the weights.

The key algorithms for SAS Macro 6.3 are speci�ed as follows:
(1) Take inputs: nSims,Model, nStags, Ns{i}, alpha{i}, beta {i},

ux, uy, NId, sigma, nAdj, DuHa, Nmax, N0, tAcr, and tStd.
(2) Compute "standard deviation" sigma based on di¤erent endpoints.
(3) Generate stagewise response uxObs, and uyObs for the two groups.
(3) Compute the test statistic TS for MPI, MSP, MPP, WZ, and UWZ.
(4) Check if TS crosses the stopping boundary.

If the boundary is crossed, update the power and the stopping
probability ESP{i} or FSP{i};

otherwise continue to the next stage of the trial.
(5) Loop back to step 2.

��SAS Macro 6.3: N-Stage Adaptive Designs with Various
Endpoint��

%Macro TwoArmNStgAdpDsg(nSims=100000, nStgs=3,ux=0,

uy=1, NId=0, EP="normal", Model="MSP", Nadj="N",

DuHa=1, Nmax=300, N0=100, sigma=2, tAcr=10, tStd=24);

DATA NStgAdpDsg; Set dInput;

KEEP power Aveux Aveuy AveN FSP1-FSP&nStgs

ESP1-ESP&nStgs alpha1-alpha&nStgs beta1-beta&nStgs;

Array Ns{&nStgs}; Array alpha{&nStgs}; Array beta{&nStgs};

Array ESP{&nStgs}; Array FSP{&nStgs}; Array Ws{&nStgs};

Array sumWs{&nStgs}; Array TSc{&nStgs};

seedx=3637; seedy=1624; Model=&Model; nStgs=&nStgs;

sigma=&sigma; power=0; AveN=0; Aveux=0; Aveuy=0;

cumN=0; Do i=1 To nStgs-1; cumN=cumN+Ns{i}; End;

Do k=1 To nStgs;

sumWs{k}=0; Do i=1 To k;

sumWs{k}=sumWs{k}+Ws{i}**2; End;
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sumWs{k}=Sqrt(sumWs{k});

End;

* Calcate the standard deviation, sigma for di¤erent endpoints *;

u=(&ux+&uy)/2;

if &EP="normal" Then sigma=&sigma;

if &EP="binary" Then sigma=(u*(1-u))**0.5;

if &EP="survival" Then

expud=exp(-u*&tStd);

sigma=u*(1+expud*(1-exp(u*&tAcr))/(&tAcr*u))**(-0.5);

Do i=1 To nStgs; FSP{i}=0; ESP{i}=0; End;

Do iSim=1 to &nSims;

ThisN=0; Thisux=0; Thisuy=0;

Do i=1 To nStgs; TSc{i}=0; End;

TS=0; If &Model="MPP" Then TS=1;

Do i=1 To nStgs;

uxObs=Rannor(seedx)*sigma/Sqrt(Ns{i})+&ux;

uyObs=Rannor(seedy)*sigma/Sqrt(Ns{i})+&uy;

Thisux=Thisux+uxObs*Ns{i};

Thisuy=Thisuy+uyObs*Ns{i};

ThisN=ThisN+Ns{i};

TS0 = (uyObs-uxObs+&NId)*Sqrt(Ns{i}/2)/sigma;

If Model="MIP" Then TS=1-ProbNorm(TS0);

If Model="MSP" Then TS=TS+(1-ProbNorm(TS0));

If Model="MPP" Then TS=TS*(1-ProbNorm(TS0));

If Model="WZ" Then Do;

Do k=i to nStgs;

TSc{k}=TSc{k}+Ws{i}/sumWs{k}*TS0;

End;

TS=1-ProbNorm(TSc{i});

End;

If Model="UWZ" Then Do;

TS0=((Thisuy-Thisux)/ThisN+&NId)*Sqrt(ThisN/2)/sigma;

TS=1-ProbNorm(TS0);

End;

If TS>beta{i} Then Do; FSP{i}=FSP{i}+1/&nSims;

Goto Jump; End;

Else If TS<=alpha{i} then do;

Power=Power+1/&nSims; ESP{i}=ESP{i}+1/&nSims;

Goto Jump; End;

Else If i=1 & &Nadj="Y" Then Do;

eRatio=&DuHa/(abs(uyObs-uxObs)+0.0000001);
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nFinal=min(&Nmax,max(&N0,eRatio*2*&N0));

If nStgs>1 Then Ns{nStgs}= nFinal-cumN; End;

End;

Jump:

Aveux=Aveux+Thisux/ThisN/&nSims;

Aveuy=Aveuy+Thisuy/ThisN/&nSims;

AveN=AveN+ThisN/&nSims;

End;

Output;

Run;

Proc Print; Run;

%Mend TwoArmNStgAdpDsg;

��SAS��

Example 6.3 Adaptive Design with Survival Endpoint
Consider a two-arm comparative oncology trial comparing a test drug

to an active control with respect to the primary e¢ cacy endpoint, time to
disease progression (TTP). Based on data from previous studies, the median
TTP is estimated to be 10 months (hazard rate = 0.0693) for the control
group, and 13 months (hazard rate = 0.0533) for the test group. Assume
that there is a uniform enrollment with an accrual period of 10 months
and that the total study duration is expected to be 24 months. Sample-
size calculation will be performed under the assumption of an exponential
survival distribution.
To do the simulation, choose the number of analyses (K = 3) and the

initial stagewise sample-size, and stopping boundaries alpha{i} and beta{i}.
De�ne the null hypothesis condition (e.g., ux = 0.0693, Py = 0.0693).
Similar to the steps in the previous two examples with Normal and binary
endpoints, there are four simple steps to follow in order to design the trial
with this SAS macro: (1) determine the stopping boundaries, (2) determine
the power or sample-size, (3) perform sensitivity analysis, and (4) perform
estimation. The corresponding SAS macro calls are presented as follows:

(1) Determination of stopping boundary
Use the following SAS macro call as an example to determine the stop-

ping boundaries:

��SAS��
Data dInput;

Array Ns{3} (150, 150, 150); Array alpha{3} (0.002,0.01,0.02);

Array beta{3} (1,1,0.02); Array Ws{3} (1,1,1);
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%TwoArmNStgAdpDsg(nStgs=3,ux=0.0693, uy=0.0693, EP="survival",

Model="WZ", tAcr=10, tStd=24); Run;

��SAS��

(2) Determination of sample-size
Keep everything the same, but change the treatment e¤ect to the alter-

native hypothesis. Use the following SAS macro call to obtain the power:

��SAS��
Data dInput;

Array Ns{3} (150, 150, 150); Array alpha{3} (0.002,0.01,0.02);

Array beta{3} (1,1,0.02); Array Ws{3} (1,1,1);

%TwoArmNStgAdpDsg(nStgs=3,ux=0.0533, uy=0.0693, EP="survival",

Model="WZ", tAcr=10, tStd=24); Run;

��SAS��

(3) Sensitivity analysis
Use the following SAS macro call as an example for the sensitivity analy-

sis:

��SAS��
Data dInput;

Array Ns{3} (150, 150, 150); Array alpha{3} (0.002,0.01,0.02);

Array beta{3} (1,1,0.02); Array Ws{3} (1,1,1);

%TwoArmNStgAdpDsg(nStgs=3,ux=0.0533, uy=0.066, EP="survival",

Model="WZ", tAcr=10, tStd=24); Run;

��SAS��

(4) Operating characteristics
The operating characteristics are summarized in Table 6.5.

Table 6.5: Operating Characteristics without Adjustment

Case ESP1 ESP2 ESP3 Power N̄ ūx ūy
Ho .002 .009 .014 .025 448 .069 .069

Ha .155 .474 .259 .888 332 .052 .070

Hs .085 .345 .297 .727 373 .053 .067

Similarly, for the design with sample-size adjustment, the stopping
boundaries, the initial sample-size determination and the sensitivity analy-
sis can be carried out using the SAS macro calls as described below.
(1) Determination of Stopping Boundaries
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Use the following SAS macro call as an example to determine the stop-
ping boundaries:

��SAS��
Data dInput;

Array Ns{3} (150, 150, 150); Array alpha{3} (0.002,0.0075,0.02);

Array beta{3} (1,1,0.02); Array Ws{3} (1,1,1);

%TwoArmNStgAdpDsg(nStgs=3,ux=0.0693, uy=0.0693, EP="survival",

Model="UWZ", Nadj="Y", DuHa=0.016, Nmax=600, N0=450, tAcr=10,

tStd=24);

��SAS��

(2) Determination of sample-size
Keep everything the same, but change the treatment e¤ect to the alter-

native hypothesis. Use the following SAS macro call to obtain the power:
��SAS��
Data dInput;

Array Ns{3} (150, 150, 150); Array alpha{3} (0.002,0.0075,0.02);

Array beta{3} (1,1,0.02); Array Ws{3} (1,1,1);

%TwoArmNStgAdpDsg(nStgs=3,ux=0.0533, uy=0.0693, EP="survival",

Model="UWZ", Nadj="Y", DuHa=0.016, Nmax=600, N0=450, tAcr=10,

tStd=24);

��SAS��

(3) Sensitivity analysis
Use the following SAS macro call as an example for the sensitivity analy-

sis:

��SAS��
Data dInput;

Array Ns{3} (150, 150, 150); Array alpha{3} (0.002,0.0075,0.02);

Array beta{3} (1,1,0.02); Array Ws{3} (1,1,1);

%TwoArmNStgAdpDsg(nStgs=3,ux=0.0533, uy=0.066, EP="survival",

Model="UWZ", Nadj="Y", DuHa=0.016, Nmax=600, N0=450, tAcr=10,

tStd=24);

��SAS��

(4) Operating characteristics
The operating characteristics are summarized in Table 6.6.
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Table 6.6: Operating Characteristics with SSR

Case ESP1 ESP2 ESP3 Power N̄ ūx ūy
Ho .002 .007 .016 .025 597 .069 .069

Ha .155 .435 .366 .956 400 .052 .070

Hs .085 .306 .449 .840 470 .052 .067

6.3 Error-Spending Approach

The error-spending approach requires prespeci�cation of the error-spending
function (Chapter 3). The advantage of this approach is that it allows for
changes in the number and timing of analyses. To use the error-spending
approach, simulations are performed with di¤erent stopping boundaries
�k and �k until the e¢ cacy stopping probabilities are equal to the cor-
responding prespeci�ed value of the incremental error-spending function
�k = �� (k) � �� (k � 1). The commonly used error-spending func-

tions are (1) O�Brien-Fleming: ��(I) = 2
n
1� �( z1��=2p

I
)
o
, (2) Pocock:

��(I) = � log[1 + (e � 1)I]; and (3) power family: ��(I) = �I ;  > 0;

where information time Ik = nk
N and I0 = 0:

6.4 Summary

In this chapter we have demonstrated how to implement adaptive design
with more than two stages using simulations, and we provided the SAS
macros. We have shown you step by step how to use these macros to con-
duct trial designs. In determining the appropriate adaptive design, it is
important to conduct sensitivity analyses and compare operating charac-
teristics among di¤erent designs. In contrast to the simulation method, we
will introduce you to the recursive adaptive design methods in Chapter 8,
where you will �nd many closed forms for K-stage adaptive designs. How-
ever, before that we will discuss another interesting method used mainly
for two-stage designs: the conditional error function method.
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Problem

6.1 SAS Macro 6.1 is based on the randomly degenerated mean re-
sponses for individual groups. Please modify the Macro such that it is
based on the randomly generated individual patient response, instead of
mean responses; then compare the results from the two di¤erent approaches
for small sample-size trials.



Chapter 7

Conditional Error Function Method

In this Chapter, we are going to discuss the so-called conditional error func-
tion method (CEFM), used mainly for two-stage designs. Researchers of
this method include Proschan and Hunsberger (1995), Liu and Chi (2001),
Müller and Schäfer (2001), and Denne (2001), among others.

7.1 Proschan-Hunsberger Method

Proschan and Hunsberger (1995) proposed a conditional error function
method for two-stage design. Here we modify the Proschan-Hunsberger
method slightly to �t di¤erent types of endpoints by using inverse-normal
transformation zk = ��1 (1� pk) and pk = 1 � � (zk) ; where pk is the
stagewise p-value based on a subsample from stage k.
Let the test statistics for the �rst stage (sample-size n1) and second

stage (sample-size n2) be

T1 = p1 (7.1)

and

T2 = 1� �
�
w1�

�1 (1� p1) + w2 ��1 (1� p2)
�
; (7.2)

respectively.
The stopping rules are given by

8<:
If Tk � �k; (k = 1; 2); stop and reject Ho;

If Tk > �k; (k = 1; 2); stop and accept Ho

Otherwise, Continue,
(7.3)

where �2 = �2:

Assume that T1 has the standard normal distribution under the null
hypothesis. Let A (p1) be the conditional probability of making type-I error

139
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at the second stage given T1 = p1. Notice that p1 is uniformly distributed
over [0,1]; a level � test requires:

� = �1 +

Z �1

�1

A (p1) dp1; (7.4)

where A (p1) is called the conditional error function on a p-scale, which is
similar to the conditional error function on a z-scale given by Proschan and
Hunsberger (1995). The conditional error function can be any nondecreas-
ing function 0 � A (p1) � 1 as far as type-I error is concerned.
Proschan and Hunsberger (1995) suggested the circular conditional error

function:

A(p1) = 1� �(
q
[��1 (1� �1)]2 � [��1 (1� p1)]

2
); �1 < p1 � �1:

(7.5)
Let �1 = �2. For a given � and a predetermined �1, �1 can be calculated

numerically by substituting (7.5) into (7.4). For example, with a one-sided
� = 0:025; and �1 = 0:0147; �1 will be 0.174.
The stopping boundaries are derived for a classic group sequential de-

sign, i.e., no other adaptations like sample-size re-estimation. With sample-
size modi�cation, the stopping boundaries are still valid if the weight wk
(7.2) is pre�xed. However, if the sample-size at the second stage is depen-
dent on the data from the �rst stage and the weights in (7.2) are not a
constant, e.g., wi =

p
ni= (n1 + n2), (i = 1; 2), the stopping boundaries

determined using the above method are not valid anymore. In such cases,
Proschan and Hunsberger (1995) suggested modifying �2 but leaving the
conditional error function A(p1) unchanged, and consequently the test is
still a level � test.
To determine �2, let�s �rst derive the conditional power and conditional

error function.
Let cP�(n2; �2jp1) be the conditional power Pr (T2 � �2jp1; �), where �

is the e¤ect size or treatment: Assuming a large sample-size and known
variance �2, we can obtain conditional power (see Section 7.4):

cP�(n2; �2jp1) = 1��
�
��1 (1� �2)� w1��1 (1� p1)

w2
� �

�

r
n2
2

�
; (7.6)

where w21 +w
2
2 = 1: For a given �1 and �1; the conditional type-I error can

be obtained by letting � = 0 in (7.6):
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A(p1) = 1� �
�
��1 (1� �2)� w2��1 (1� p1)

w1

�
: (7.7)

Because A(p1) is the same with or without SSR, it can be obtained through
the procedure described for no SSR; then solve (7.7) for �2:

�2 =

p
n1�

�1 (1� p1) +
p
n2�

�1 (1�A (p1))p
n1 + n2

: (7.8)

Note that we have used the equation wi =
p
ni= (n1 + n2). From (7.6) and

(7.7), we can obtain the conditional power

cP�(n2; zcjp1) = 1� �
�
��1 (1�A (p1))�

�

�

r
n2
2

�
: (7.9)

To achieve a target conditional power cP , the sample-size required can
be obtained by solving (7.9) for n2:

n2 =
2�2

�2
�
��1 (1�A (p1))� ��1 (1� cP )

�2
. (7.10)

Note that for constant conditional error, A (p1) = c; where c is a con-
stant, (7.5) leads to � = �1 + c (�1 � �1) : Therefore the constant condi-
tional error approach is equivalent to MIP.

Example 7.1 Adaptive Design for Coronary Heart Disease Trial
Suppose we are interested in a clinical trial in patients with coro-

nary heart disease (CHD) that compares a cholesterol-reducing drug to
a placebo with respect to angiographic changes from baseline to end of
study (Proschan and Hunsberger, 1995, p.77). The coronary arteries are
�rst divided into segments; for each segment the di¤erence in minimum
lumen diameter from baseline to end of study is computed, and the average
di¤erence over all segments of a patient is the outcome measure. It is not
known what constitutes a minimum clinically relevant change, but another
similar study showed an e¤ect size of about one third of the observed stan-
dard deviation. The sample-size required for 90% power to detect a similar
e¤ect size is about 190 patients per group. It has been predetermined
that the circular conditional error function will be used with one interim
analysis based on evaluations of 95 patients in each arm. If z1 > 2:27
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(p1 < 0:0116), the trial will be stopped for e¢ cacy. If z1 < 0 (p1 > 0:5) at
the interim analysis, the trial will be stopped for futility. If 0 � z1 < 2:27

(0:0116 < p1 � 0:5), proceed to the second stage. Suppose after the interim
analysis, the z-score z1 = 1:5 (p1 = 0:0668). The corresponding e¤ect size
(�=�) is about 0.218. The conditional error is A(0.0668) = 0.0436 which
is obtained from (7.7) with w1 = w2 =

p
0:5 and �2 = 0:0116. To have

80% conditional power under the empirically estimated treatment e¤ect,
the newly estimated sample-size for the second stage is 274/group from
(7.10).

7.2 Denne Method

Denne (Denne, 2001) has developed a new procedure for SSR at an interim
analysis. Instead of keeping the conditional error (

R �1
�1
A (p1) dp1) constant

when making an adaptation, the Denne method ensures that the conditional
error function A (p1) remains unchanged.
Let w01, w02, and �02 be weights and the �nal stopping boundary be-

fore sample-size modi�cation; let w1, w2, and �2 be weights and the �nal
stopping boundary after sample-size modi�cation. To control overall �, the
stopping boundary �2 is adjusted such that A (p1) is unchanged:

��1 (1� �02)� w02��1 (1� p1)
w01

=
��1 (1� �2)� w2��1 (1� p1)

w1
;

(7.11)
where w0i =

p
n0i= (n01 + n02) and ~wi =

p
ni= (n1 + n2); n0i and ni are

the subsample size at the ith stage before and after sample-size modi�cation
(n01 = n1).
Equation (7.11) can be solved for �2:

�2 = 1� �
�
w1
w01

�
��1 (1� �02)� w02��1 (1� p1)

	
+ w2�

�1 (1� p1)
�
:

(7.12)
Denne also stated that we can �rst modify the sample-size based on the

estimated variance at the �rst stage before unblinding the data, without
modifying the stopping boundary. In such cases, the subsample size n2 is
the sample-size after modi�cation based on blinded data.
Note that Denne�s method is originally based on a z-scale; hence, the

stopping boundary is given by
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c2 =
w1
w01

fc02 � w02z1g+ w2z1; (7.13)

where c02 and c2 are the original and modi�ed �nal stopping boundaries.

7.3 Müller-Schäfer Method

The procedure developed by Müller and Schäfer (2001) is based on calcu-
lating conditional rejection error probabilities for classical group sequential
designs with any number of stages. The conditional rejection error proba-
bility is the probability that the null-hypothesis will be rejected at a future
stage of the design, given the value of the test statistic at an interim analy-
sis, if the null hypothesis is true. Thereby, every choice of n-stage group
sequential boundaries in the usual model of a Brownian motion process im-
plicitly de�nes a conditional error function from which the type-I error risk
for the rest of the trial after the interim analysis can be obtained (Müller
and Schäfer, 2004). The Müller-Schäfer procedure can be viewed as a spe-
cial case of the general concept developed by Müller and Schäfer (2004)
applied to conventional group sequential designs in the Brownian motion
model at the pre-determined time points of the interim analyses. Müller
and Schäfer (2001) showed, by combining the method with the product of
p-values and the method with Brownian motion, how one can make any
data dependent change in an on-going adaptive trial and still preserve the
overall type-I error. To achieve this, all one need do is preserve the con-
ditional type-I error of the remaining portion of the trial. The conditional
error usually can be calculated in real time for a given observed treatment
di¤erence.
We will discuss the trial examples of Müller-Schäfer in Chapter 8 as

special cases of recursive two-stage adaptive designs.
In the next section, we will compare di¤erent methods based on their

conditional error and conditional power functions.

7.4 Comparison of Conditional Power

Conditional power is a very useful operating characteristic for adaptive
designs. It can be used for interim decision-making, and to make compar-
isons among di¤erent designs and statistical methods. Because the stopping
boundaries for the most existing methods are either based on a z-scale or a
p-scale, for the purpose of comparisons later, we will convert them all to p-
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scale using the following simple transformation: pk = 1�� (zk). Inversely,
we have zk = ��1 (1� pk), where zk is the z-score from the subsample,

which has an asymptotically normal distribution with N(�=se
�
�̂2

�
; 1) un-

der the alternative hypothesis, where �̂2 is an estimation of treatment dif-

ference in the second stage and se
�
�̂2

�
=
q

2�̂2

n2
�
q

2�2

n2
. To derive the

conditional power, we express the criterion for rejecting Ho as

z2 � B (�2; p1) : (7.14)

From (7.14), we can immediately obtain the conditional probability at
the second stage:

cP� (p1) = 1� �
�
B (�2; p1)� �

�

p
n2
2

�
; �1 < p1 � �1: (7.15)

For Fisher�s combination method, the rejection criterion for the sec-

ond stage is p1p2 � �2; i.e., z2 � ��1
�
1� �2

p1

�
. Therefore, B (�2; p1) =

��1
�
1� �2

p1

�
: Similarly, for the method based on the sum of stagewise p-

values, the rejection criterion for the second stage is p1+p2 � �2; i.e., z2 =
B (�2; p1) = ��1 (1�max(0; �2 � p1)) : For the inverse-normal method,
the rejection criterion for the second stage is w1z1 +w2z2 � ��1 (1� �2) ;
i.e., z2 � ��1(1��2)�w1��1(1�p1)

w2
; where w1 and w2 are pre�xed weight sat-

isfying the condition: w21 + w22 = 1: Note that the group sequential design
and the CHW method (Cui, Hung, and Wang, 1999) are special cases of
the inverse-normal method.
The conditional error can be obtained by setting � = 0 in (7.15):

A (p1) = 1� � (B (�2; p1)) ; �1 < p1 � �1; (7.16)

where the functions B (�2; z1) are summarized in Table 7.1 for di¤erent
design methods.
Substituting (7.16) into (7.4), we can obtain the following formulation

for determining the stopping boundaries for various designs:

� = �1 +

Z �1

�1

1� � (B (�2; p1)) dp1: (7.17)

If the trial continues, i.e., �1 < p1 � �1, for given conditional power cP;
we can solve (7.15) for the adjusted sample-size for the second stage:

n2 =
2�2

�2
�
B (�2; z1)� ��1 (1� cP )

�2
: (7.18)
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Table 7.1: Function B (�2; p1) for Conditional Power

Design B (�2; p1)

Sequential Design
z1��2�

p
fo1�

�1(1�p1)p
fo2

MIP (Chang, 2006) ��1 (1� �2)
MSP (Chang, 2006) ��1 (1�max(0; �2 � p1))
MPP, Bauer, and Kohne (1994) ��1

�
1� �2

p1

�
Proschan-Hunsberger (1995)

q
z21��1 � z

2
1�p1

Fisher-Shen Method (1998, 1999) ��1(1��)�w1��1(1�p1)
w2

Lehmacher-Wassmer (1999) ��1(1��2)�w1��1(1�p1)
w2

Denne (2001) ��1(1��2)�w1��1(1�p1)
w2

Cui-Hung-Wang (1999)
z1��2�

p
fo1�

�1(1�p1)p
fo2

� = (�2 � �1) =�, n2 = n per group at stage 2. Assume known �.

foi = initial sample-size fraction and w21 + w
2
2 = 1:

For convenience, the conditional power (7.15) is implemented in SAS
Macro 7.1. The SAS variables are de�ned as follows: the endpoint, EP =
"normal" or "binary"; ux and uy = the responses (means or proportions)
for the two groups, respectively, sigma = standard deviation for the normal
endpoint;Model ="MIP", "MSP", "MPP", or "LW" for the four methods
in Table 7.1; alpha2 = the e¢ cacy boundary at the second stage; cPower
= the conditional power; p1 = the stagewise p-value at the �rst stage; w1
and w2 = weights for Lehmacher-Wassmer method; and n2 = sample-size
per group for the second stage.

��SAS Macro 7.1: Conditional Power��
%Macro ConPower(EP="normal", Model="MSP", alpha2=0.205,

ux=0.2, uy=0.4, sigma=1, n2=100, p1=0.8, w1=1, w2=1);

** cPower=Two stage conditional power. eSize=delta/sigma;

data cPower;

a2=&alpha2; Model=&Model;

u=(&ux+&uy)/2;

w1=&w1/sqrt(&w1**2+&w2**2);

w2=&w2/sqrt(&w1**2+&w2**2);

If &EP="normal" Then sigma=&sigma;

If &EP="binary" Then sigma=(u*(1-u))**0.5;

eSize=(&uy-&ux)/sigma;

If Model="MIP" Then BFun=Probit(1-a2);
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If Model="MSP" Then BFun=Probit(1-max(0.0000001,a2-&p1));

If Model="MPP" Then BFun=Probit(1-a2/&p1);

If Model="LW" Then BFun=(Probit(1-a2)- w1*Probit(1-&p1))/w2;

cPower=1-ProbNorm(BFun-eSize*sqrt(&n2/2));

Run;

Proc Print data=cPower; Run;

%Mend ConPower;

��SAS��

An example of determining the sample-size based on conditional power
using SAS Macro 7.1 is given below:
��SAS��
%ConPower(EP="binary", Model="MSP", alpha2=0.2050,

ux=0.2, uy=0.4, n2=100, p1=0.1);

%ConPower(EP="binary", Model="MIP", alpha2=0.0201,

ux=0.2, uy=0.4, n2=100, p1=0.1);

%ConPower(EP="binary", Model="MPP", alpha2=0.0043,

ux=0.2, uy=0.4, n2=100, p1=0.1);

%ConPower(EP="binary", Model="LW", alpha2=0.0226,

ux=0.2, uy=0.4, n2=100, p1=0.1, w1=1, w2=1);

%ConPower(EP="normal", Model="MSP", alpha2=0.2050,

ux=0.2, uy=0.4, sigma=1, n2=200, p1=0.1);

%ConPower(EP="normal", Model="MIP", alpha2=0.0201,

ux=0.2, uy=0.4, sigma=1, n2=200, p1=0.1);

%ConPower(EP="normal", Model="MPP", alpha2=0.0043,

ux=0.2, uy=0.4, sigma=1, n2=200, p1=0.1);

%ConPower(EP="normal", Model="LW", alpha2=0.0226,

ux=0.2, uy=0.4, sigma=1, n2=200, p1=0.1, w1=1, w2=1);

��SAS��

The results with a non-binding futility boundary are presented in Table
7.2. We can see that MSP produces the highest power. It is important
to know that in adaptive design, the conditional power is more important
than unconditional power.

Table 7.2: Comparisons of Conditional Powers cP

Endpoint MSP MIP MPP LM

�2 0.2050 0.0210 0.0043 0.0226

cP (n = 100) binary 0.967 0.850 0.915 0.938

cP (n = 200) normal 0.772 0.479 0.611 0.673

Note: �1 = 0:005; �1 = 0:25;and p1 = 0:01:
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The sample-size required at the second stage based on the conditional
power (7.15) is also implemented in SAS Macro 7.2. The SAS variables
are de�ned as follows: nAdjModel ="MIP", "MSP", "MPP", or "LW"
for the four methods in Table 7.1: alpha2 = the e¢ cacy boundary at
the second stage; eSize = standard e¤ect size; cPower = the conditional
power; p1 = the stagewise p-value at the �rst stage; w1 and w2 = weights
for Lehmacher-Wassmer method; and n2New = new sample-size required
for the second stage to achieve the desired conditional power.

��SAS Macro 7.2: Sample-Size Based on Conditional Power��
%Macro nByCPower(nAdjModel, alpha2, eSize,

cPower, p1, w1, w2, n2New);

a2=&alpha2;

If &nAdjModel="MIP" Then BFun=Probit(1-a2);

If &nAdjModel="MSP" Then BFun=Probit(1-max(0.0000001,a2-&p1));

If &nAdjModel="MPP" Then BFun=Probit(1-a2/&p1);

If &nAdjModel="LW" Then

BFun=(Probit(1-a2)- &w1*Probit(1-&p1))/&w2;

&n2New=2*((BFun-Probit(1-&cPower))/&eSize)**2; *n per group;

%Mend nByCPower;

��SAS��

An example of determining the sample-size based on conditional power
using SAS Macro 7.2 is given below:

��SAS��
Data cPow; keep n2New;

%nByCPower("MSP", 0.1840, 0.21, 0.8, 0.0311, 0.707, 0.707, n2New);

Run;

Proc Print; Run;

��SAS��

Based on the SAS output, the new sample-size required for the second
stage is 158 per group.
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Table 7.3: Conditional Error Functions

Method Test Statistic at Stage 2 Conditional Error Function Intersect

f(p1; p2) p2 (p1; �2) �0
MSP p1+p2 p2= �2�p1 p1= �2
MLP w1p1+w2p2 p2=

1
w2
(�2�w1p1) p1=

�2
w1

MPP p1p2 p2=
�2
p1

p1= +1
MCP

p
p21 + p

2
2 p2=

p
�22 � p21 p1= �2

MNP
q
(p1 � �1)

2
+ (p2 � �2)2; p2= �2 p1= �1

�1= �1+a2 +

q
�2 � (p1 � �1)

2

Table 7.4: Type-I Error Rate at Stage 2

Method Type-I Error Rate at Stage 2: �2
MSP �2min (�2; �1)��1�2+ 1

2�
2
1� 1

2 min
2 (�2; �1)

MLP 1
w2
[ 12w1�

2
1��1�2+�2min

�
1
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�2; �1

�
� 1
2w1min

2
�
1
w1
�2; �1
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4

�
�22: where �1 = �1 + a2

Table 7.5: Stopping Boundaries without Futility Binding

Test Statistic at Stage 2 Stopping Boundary Requirement

f(p1; p2) (no futility binding)

p1+p2 �1 +
1
2 (�2 � �1)

2
= �

w1p1+w2p2 �1+
1

2w1w2
[�2 � w1�1]2= �

p1p2 �1+�2 ln
1
�1
= �p

p21 + p
2
2 �1+

�22
2

�
�
2 � sin

�1 a1
�2

�
��1

2

p
�22 � �21= �q

(p1 � �1)
2
+ (p2 � �2)2 �1+

�
1� �

4

�
�22= �;�1= �1+�2 (binding)

We can easily develop more closed forms of stopping boundaries for two-
stage adaptive designs. Let�s denote the test statistic by f(p1; p2) for the
second stage and the rejection rule by f(p1; p2) � �2. From the equation
f(p1; p2) = �2; we can solve for p2, i.e., p2 = p2 (p1; �2) : Under the null
condition, p2 = p2 (p1; �2) is the conditional error function. Further more,
the Type-I error rate at stage 2 is given by

�2 =

Z min(�1;�0)

�1

p2 (p1; �2) dp1;
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where �0 is the intersect of the stopping boundary as indicated in Figure
7.1. Therefore, a �-level test requires

� = �1 + �2 = �1 +

Z min(�1;�0)

�1

p2 (p1; �2) dp1:

The e¢ cacy boundary �2 is usually a constant, but it can be a function
of p1. The stopping boundaries without futility binding can be obtained by
assigning �1 = 1. Tables 7.3 through 7.5 summarize the results for some
test statistics.

Figure 7.1: Conditional Error Functions

7.5 Adaptive Futility Design

7.5.1 Utilization of an Early Futility Boundary

In a trial with an early futility boundary, theoretically the �nal alpha for
claiming statistic signi�cance should increase. This may cause concern on
the part of regulatory bodies, as the current practice is that the futility
boundaries are not strictly followed by the sponsors, and therefore, the futil-
ity boundary should not be used to determine the later stopping boundaries.
However, this is not very reasonable in the sense that we punish someone
for others not following the rules. A more reasonable approach is that if
the futility boundaries were actually followed, then the stopping boundaries
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with futility boundaries considered can be used. If the futility boundaries
were not followed, i.e., the trial was continued even though it had crossed
the futilities boundaries, then the early futility boundary cannot be con-
sidered in constructing the later stopping boundaries. For example, in a
two-stage trial with MSP, the stopping boundaries in a two-stage design are
�1 = 0:0025; �1 = 0:15; �2 = 0:2288. Suppose the stagewise p-value from
the �rst stage was p1 = 0:1, and the trial was continued to the second stage.
Therefore, the futility boundary has been followed, and the �nal stopping
boundary should be �2 = 0:2288. On the other hand, if p1 = 0:2, and the
trial was continued, the futility boundary is violated. Therefore, the �nal
stopping boundary should be �2 = 0:2146 (corresponding to �1 = 0:0025;
�1 = 1), instead of 0.2288.
Note that MIP uses the early stopping boundary to construct the later

stopping boundaries; this is di¤erent from traditional separate trials.

7.5.2 Design with a Futility Index

During any interim analysis, we should always perform futility checking and
ask the question: Is it better to start a new trial than to continue the current
one? When the conditional power is less than the power of the new trial
with a sample-size equal to the adjusted sample-size for the current trial, it
is better to start a new trial, theoretically. In other words, if the conditional
power cP�1(n2) is less than the unconditional power p�1 (n2), where n2 is
the sample-size for the second stage, then statistically, it is better to start
a new trial. Alternatively, we can use a predetermined futility boundary to
prevent the trial from continuing to the second stage when the conditional
power is lower or the futility index is high.

7.6 Summary

Conditional error function methods (CEFM) allow for a broad selection of
conditional error functions A (p1), as long as they are monotonic in the
stagewise p-value p1 and bound by [0,1]. The selection of di¤erent A (p1)
implies using di¤erent weights for the data from the two stages. The CEFM
requires keeping the conditional error unchanged when we make adaptations
to the trial. The Muller-Schafer and Denne methods are special methods,
i.e., they keep the conditional function unchanged after adaptations. In
other words, we ensure the condition A� (p1) = A (p1) given the observed
stagewise p-value p1 regardless of an adaptation, where A (p1) and A� (p1)
are the conditional error functions before and after the adaptation. The dif-
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ference between the Müller-Schäfer and the Denne methods is that Denne
uses a particular A (p1) to obtain the closed form solution, while Müller
and Shäfer consider a more general situation and emphasize that the A (p1)
needs to be calculated only for the observed p1 through simulations, and de-
termination of the stopping boundaries afterwards is based on the condition
A� (p1) = A (p1). They also stressed that this concept can be recursively
used in a trial. We will discuss recursive approaches in the next chapter.
In this chapter, we have also discussed the conditional power for di¤erent

designs. The conditional power can be used to compare di¤erent methods,
and for the purpose of trial monitoring. When we force the treatment
e¤ect to zero, the conditional power function becomes the conditional error
function, which allows for comparisons between di¤erent methods from the
conditional error point of view.
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Problem

7.1 Construct a table that contains stopping boundaries for each of the
methods in Table 7.1 using (7.14).

7.2 Derive the conditional power for the two-stage adaptive design (see
Exercise 4.2) with the test statistic:

Tk =
1

k

kX
i=1

pi for k = 1 and 2,

where pi is the stagewise p-value based on subsample from the ith stage.



Chapter 8

Recursive Adaptive Design

In this chapter, we will study the so-called recursive two-stage adaptive
design (RTAD) (Chang, 2006). The recursive approach provides closed
forms for stopping boundaries and adjusted p-values for any K-stage design
and avoids any numerical integration; at the same time it allows for a
broad range of adaptations such as SSR, dropping losers, and changing the
number and timing of analyses without speci�cation of an error-spending
function. The key ideas of the RTAD are: (1) a K-stage design (K > 1) can
be constructed using recursive two-stage designs; (2) the conditional error
principle ensures that the recursive process will not in�ate type-I error;
and (3) the closed form solutions are obtained through recursively utilizing
the two-stage design solutions for stopping boundary, adjusted p-value, and
conditional power. In this approach, the trial is designed one step ahead at
every interim analysis.
We will �rst introduce the concept of p-clud in Section 8.1 and review

the two-stage approaches: MSP, MPP, and MINP in Section 8.2. In Sec-
tion 8.3, we introduce the error-spending principle, from which we derive
the conditional error principle. The later is a key element for deriving the
recursive formula for the RTAD in Section 8.4. A clinical trial application of
RTAD is also presented in Section 8.4. In Section 8.5 and 8.6, we will intro-
duce two other adaptive methods for K-stage adaptive designs proposed by
Müller and Shäfer (2004) and Brannath-Posch-Bauer (2002), respectively.
Section 8.7 is a summary and discussion.

8.1 P-clud Distribution

The methods discussed in this chapter will assume the condition of p-clud
(Brannath, Posch, and Bauer, 2002).

De�nition 8.1 p-clud: P-value p1 and p2 are p-clud if the distribution

153
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of p-value p1 and the conditional distribution of p2 given p1 are stochasti-
cally larger than or equal to the uniform distribution on [0,1], i.e.,

PrHo
(p1 � �) � � and PrHo

(p2 � �jp1) � �, 8� 2 [0; 1]: (8.1)

It is usually assumed that the p-values p1 and p2 are stochastically
independent under Ho. Although stochastically independent sample units
are recruited at the two stages, this is not necessarily the case. For an
example, assume that rank tests are used at the two stages. The discrete
distribution of p2 under the null hypothesis may depend on p1 via a sample-
size reassessment rule: The experimenter may choose n2 depending on the
value observed for p1. However, p2 is still p-clud (Brannath, et al., 2002).
However, when p1 and p2 are independent and uniformly distributed on
[0,1], the level � is exhausted in (8.1).
We now study the distribution of stagewise p-values under the null hy-

pothesis.
LetX be a continuous random variable with probability density function

fx (x) and FX (x) be the c.d.f and Y = g (X) : X = � (Y ) = g�1 (Y )

are monotonic increasing functions, where x is a realization of X, y is a
realization of Y .

The p.d.f. of Y is given by (Kokoska and Zwillinger, 2000, p.40)

fY (y) = fX (� (y)) �
0 (y) ; g0 (x) 6= 0: (8.2)

From (8.2), we have

FY (y) =

Z Y

�1
fY (x) dx =

Z Y

�1
fX (� (x)) �

0 (x) dx

=

Z �(y)

�1
fX (� (x)) d� (x) :

Therefore,

FY (y) = FX (� (y)) : (8.3)

Now let X be the test statistic for testing Ho : � = 0 against the
alternative Ha : � > 0. Let (�1; y) be the rejection region, and g (y) =
FY (yj�), i.e., the p-value (p-value is reviewed as a function of critical point
y), then � (y) = F�1Y (yj�). Substituting this into (8.3), we obtain:
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FY (y) = FX
�
F�1Y (yj�)

�
: (8.4)

Notice that under the null hypothesis, F�1Y (yj� = 0) = F�1X (y), (8.4)
becomes

FY (y) = FX
�
F�1X (y)

�
= y; (8.5)

which implies that Y is uniformly distributed on [0,1].

8.2 Two-Stage Design

Consider a two-stage clinical trial in which a hypothesis test is performed at
the interim analysis, followed by adaptations based on the interim results.
Such adaptations can be sample-size adjustment, a change of the treatment
allocation probabilities. The testing for e¢ cacy of the experimental drug
can be formulated using a global null hypothesis:

Ho : Ho1 \Ho2; (8.6)

where Hoi (i = 1; 2) is the null hypothesis test at the ith interim analysis.
The stagewise p-value pi is assumed to be uniformly distributed over [0,1]
or p-clud. The test statistic for the kth stage can be formulated using
combinations of stagewise pi, such as the product (Bauer and Kohne, 1994)
Tk = �

k
i=1pi; (k = 1; 2); the sum Tk = �

k
i=1pi; k = 1; 2 (Chang 2006) and

the inverse-normal transformation (Lehmacher and Wassmer,1999) Tk =
1��

�
�ki=1wki�

�1 (1� pi)
�
; (k = 1; 2), where �ki=1w

2
ki = 1: The stopping

rules can be written as

8<:
Stop for e¢ cacy if Tk � �k ;

Stop for futility if Tk > �k;

Continue, otherwise:
(8.7)

For convenience, �k and �k are called the e¢ cacy and futility boundaries,
respectively.
A level-� test requires that

� = �1 +

Z �1

�1

Z �2

�1
fT1T2 dt2dt1: (8.8)
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Because the p-value associated with a test is the smallest signi�cance
level � for which the null hypothesis is rejected (Robert, 1997, p.196),
the stagewise-ordering p-value corresponding t; the realization of the test
statistic (Jessinon and Turnbull, 2000, p.180 and 356, Chang 2006) is given
by

p(t) = �1 +

Z �1

�1

Z t

�1
fT1T2 dt2dt1: (8.9)

Note that the adjusted p-value is a measure of over statistical strength
for rejecting Ho. The later the Ho is rejected, the larger the adjusted p-
value is and the weaker the statistical evidence (against Ho) is. A late
rejection leading to a larger p-value is reasonable because a portion of the
alpha has been spent at the earlier stage. When the test statistic at the
kth stage Tk = t = �k (i.e., just on the e¢ cacy stopping boundary), the
p-value is equal to the alpha spent up to the kth stage:

8.2.1 Method Based on Product of P-values

For the method based on the product of the stagewise p-value (MPP), the
test statistic is de�ned as

Tk = �
k
i=1pi; k = 1; 2: (8.10)

The overall type-I error control requires that (Bauer and Kohne, 1994,
Chang, 2006)

� = �1 + �2 ln
�1
�1
: (8.11)

The stagewise-ordering p-value corresponding to a test statistic t can
be obtained by replacing �k with t in (8.11) when the trial stops at the kth

stage, that is

p(t; k) =

(
t for k = 1;
�1 + t ln

�1
�1
for k = 2 :

(8.12)

The conditional power is given by (Chapter 7)

Pc (p1; �) = 1� �
�
��1

�
1� �2

p1

�
� �

�

p
n2
2

�
; �1 < p1 � �1: (8.13)
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The sample-size required for the second stage can be obtained by solving
(8.13) for n2 :

n2 =

"p
2�

�

�
��1

�
1� �2

p1

�
� ��1 (1� Pc)

�#2
: (8.14)

The unconditional power is given by

Pw (�) =

Z +1

�1
Pc (p1; �) f� (p1) d�1; (8.15)

where f� (p1) is p.d.f. of stagewise p-value p1:

8.2.2 Method Based on Sum of P-values

For the method based on the sum of the stagewise p-values (MSP), the test
statistic is de�ned as

Tk = �
k
i=1pi; k = 1; 2: (8.16)

A level � test requires that

� = �1 + �2(�1 � �1)�
1

2
(�21 � �21), �2 � �1. (8.17)

By predetermining two of the three stopping boundaries �1; �1; and �2,
the third one can easily be obtained from (8.17). Note that for e¢ ciency, we
always choose �1 � �2. This is because if �1 > p1 > �2; then p1 + p2 > �2
and Ho will de�nitely not be rejected. Hence there is no reason to continue
the trial.
The adjusted p-value corresponding to a test statistic t can be obtained

by replacing �2 with t in (8.17), that is

p(t; k) =

�
t for k = 1;
�1 + t(�1 � �1)� 1

2 (�
2
1 � �21) for k = 2 :

(8.18)

The conditional power for MSP is given by

Pc (p1; �) = 1� �
�
��1 (1� �2 + p1)� �

�

p
n2
2

�
; �1 < p1 � �1: (8.19)

The sample-size can be obtained by solving (8.19) for n2 :
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n2 =

"p
2�

�

�
��1 (1� �2 + p1)� ��1 (1� Pc)

�#2
: (8.20)

The unconditional power is given by

Pw (�) =

Z +1

�1
Pc (p1; �) f� (p1) d�1; (8.21)

where f� (p1) is p.d.f. of stagewise p-value p1:

8.2.3 Method Based on Inverse-Normal P-values

For the inverse-normal method, the test statistic is given by�
T1 = p1
T2 = 1� � (w1z1�p1 + w2z1�p2)

; (8.22)

where w21 + w
2
2 = 1:

Determination of the stopping boundaries and adjusted p-value requires
numerical integrations or Monte Carlo simulations, which can be done by
using SAS Macro 5.1 provided in Chapter 5. For an equal information
design, the stopping boundaries are tabulated in Table 5.1.
The stagewise-ordering p-value corresponding to the observed Tk = t is

given by

p(t; k) =

�
t for k = 1;
�1 + pow (�2 = t) for k = 2 ,

(8.23)

where Pow(�2 = t) is the probability of rejecting Ho at the second stage.
The adjusted p-value can be obtained from SAS Macro 5.1 when set �2 = t.
The conditional power is given by

Pc (p1; �) = 1� �
�
z1��2�w1z1�p1

w2
� �

�

p
n2
2

�
; �1 < p1 � �1: (8.24)

The sample-size is given by

n2 =

"p
2�

�

�
z1��2 � w1z1�p1

w2
� z1�Pc

�#2
: (8.25)

To visualize the di¤erences of various methods (MIP, MSP, MPP, and
MINP), the stopping boundaries at the second stage are plotted for the
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same stopping boundaries (�1 = 0:005, �1 = 0:25) at the �rst stage (Figure
8.1). We can see that MPP and MINP are similar. MSP and MIP has some
constraints on the consistency of the results from the di¤erent stages. In
other words, when p1 and p2 are very di¤erent, the statistical signi�cance
can not be declared using MSP or MIP. On the other hand, if p1 = 0:006 and
p2 = 0:6 (100 times di¤erence! The fact of one-sided p2 = 0:6 indicates the
wrong direction of the treatment e¤ect!), the null Ho will still be rejected
using MPP.

Figure 8.1: Various Stopping Boundaries at Stage 2

8.2.4 Con�dence Interval and Unbiased Median

We now consider a general form of stagewise-ordering con�dence intervals.
Consider the null hypothesis

Ho : � = �0: (8.26)

In an adaptive design setting, (8.26) implies the global null hypothesis:Ho =

\Ki=1Hoi, where Hoi : � = �0:

In general, a 100(1��)% con�dence interval consists of all �0 such that
the null hypothesis (8.26) would not be rejected, given the observed value
for the test statistic T = t:
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It is obvious that the stagewise p-value for the kth stage can be expressed
as

~pk = 1� �
�
�k � �0

�̂

r
nk
2

�
, (8.27)

where �k = the observed mean di¤erence �k = �̂B � �̂A between the two
groups for normal endpoint at the kth stage, �k = response rate di¤erence
RB �RA between the two groups for binary variable at the kth stage, and
�k = �̂B � �̂A hazard rate di¤erence between the two groups for survival
endpoint at the kth stage. We have assumed a constant variance for large
sample-size trial, which is given by (see Chapter 2)

�̂2 =

8><>:
�̂2 for normal endpoint,
Ro(1�Ro) for binary endpoint,

�2o

h
1� e�oT0�1

T0�oe�oTs

i�1
for survival endpoint,

(8.28)

where R0 = response rate under Ho and �o is hazard rate under Ho: They
can be replaced with the observed pooled value.
Because �k

�̂

p
nk
2 = z1�pk , where pk is the stagewise p-value for the k

th

stage for the null hypothsis (8.26) with �0 = 0; (8.27) can be written as

~pk = 1� �
�
z1�pk �

�0
�̂

r
nk
2

�
, (8.29)

or

~pk = �

�
�0
�̂

r
nk
2
� z1�pk

�
. (8.30)

We now construct the test statistic for (8.26) using MPP, MSP, and
MINP as follows.
For MPP, MSP, and MINP, if the trial is stopped at the �rst stage, the

con�dence interval bound �01 is given by

�01 = �̂

r
2

n1

�
��1 (1� �1) + z1�p1

�
: (8.31)

When the trial is stopped at the second stage, the con�dence bound
calculations are di¤erent for MPP, MSP, and MINP as discussed below.
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(1) For MPP, the test statistic is given by

T2 =
2Y
i=1

�

�
�

�̂

r
ni
2
� z1�pi

�
:

To obtain the con�dence limit �02 for �, let T2 = �2 and we obtain:

2Y
i=1

�

�
�02
�̂

r
ni
2
� z1�pi

�
= �2: (8.32)

(8.32) can be solved numerically for �02.
(2) For MSP, the test statistic is given by

T2 =

2X
i=1

�

�
�

�̂

r
ni
2
� z1�pi

�
:

To obtain the con�dence limit �02 for �, let T2 = �2 and we obtain:

2X
i=1

�

�
�02
�̂

r
ni
2
� z1�pi

�
= �2: (8.33)

We can numerically solve (8.33) for �02.

(3) For MINP, the test statistic test is given

T2 =
2X
i=1

�

�
�

�̂

r
ni
2
� z1�pi

�
:

To obtain the con�dence limit �02 for �, let T2 = �2 and we obtain:

1� �
 

2X
i=1

wi

�
z1�pi �

�02
�̂

r
ni
2

�!
= �2: (8.34)

(8.34) can be solved analytically for �02, i.e.,

�02 = �̂
p
2
w1z1�p1 + w2z1�p2 � ��1 (1� �2)

w1
p
n1 + w2

p
n2

; (8.35)

which is consistent with the result given by (3.31) in Chapter 3 with k = 2.
We now can summarize the steps for calculating the con�dence intervals

as follows:
(1) Using (8.30) and (8.32), (8.33) or (8.35) to calculate �0k dependent

on MPP, MSP, or MINP, respectively.
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(2) The one-sided (1 � �)% overall con�dence bound is given by �c =
max f�01; �02g.
(3) The one-sided (1��ki=1�i)% stagewise-ordering con�dence interval

bound is given by

�c = max f�01; :::�0kg ;

where k is the stage at which the null was actually rejected.
(4) The 50% con�dence interval bound gives unbiased median estimate.

Note that we have assumed that we will not change the adaptive design
with regard to the number and timing of the analyses and the stopping
boundaries �k regardless of whether we believe � = �0 or � = 0.

If the method to calculate the stagewise p-values is di¤erent from the
above methods, the calculations of con�dence interval and point estimate
are similar and can be described as the following steps:
(1) Calculate the stagewise p-value for the kth stage as a function of a

selected value for �0k and the observed data X̂k, i.e., pk
�
X̂k; �ok

�
.

(2) Calculate the test statistic Tk based on (8.10), (8.16), or (8.22)
dependent on MPP, MSP, or MINP, respectively.
(3) If Tk > �k, then reduce �0k; if Tk < �k, then increase �0k. Go back

to step 1, using the new value for �0k.
(4)Continue the process until Tk = �k, or they are close enough.
(5) The �nal �0k; which is the one-sided (1 � �ki=1�i)% stagewise con-

�dence interval bound given the null is rejected at the stage k.
(6) The one-sided (1� �)% overall con�dence bound is given by

�c = max f�01; �02g :

(7) The one-sided (1��ki=1�i)% stagewise-ordering con�dence interval
bound is given by

�s = max f�i1; :::�ikg ;

where k is the stage at which the null was actually rejected.
(8) The 50% con�dence interval bound �k gives unbiased median esti-

mate.
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8.3 Error-Spending and Conditional Error Principles

We are going to formally introduce the so-called error-spending principle,
from which we derive the second useful principle: the conditional error prin-
ciple. The latter will be used to construct the recursive two-stage adaptive
designs in the next section. The error-spending principle has been implic-
itly used from time to time (Lan and DeMets, 1983). The conditional error
principle also appears informally in a di¤erent form ( Müller and Shäfer,
2001).
In an initial K-stage adaptive trial for testing the global null hypothesis

Ho : \Kj=1Hoj , where Hoj is the null hypothesis at jth stage, the type-I
error control requirement can be expressed as

� = �1 + :::+ �k + �k+1 + :::+ �K ; (8.36)

where �i is � spent at the ith stage in the initial design of an adaptive trial.
Now assume that after the kth interim analysis, adaptations are made

that result in changes to stagewise hypotheses and error spending after the
kth stage. We denote H�

oi and �
�
i (i = k + 1; :::;K�) as the new hypotheses

and the new error spending, respectively, where K� is the new total number
of analyses. The overall �-control becomes

� = �1 + :::+ �k + �
�
k+1 + :::+ �

�
K� : (8.37)

From (8.37), the unconditional error rate after the kth stage can be
expressed as

��
kX
j=1

�j =
KX

j=k+1

�j =

Z �k

�k

A (pk) dpk: (8.38)

Similarly, from (8.38), the unconditional error rate after the kth stage
can be expressed as

��
kX
j=1

�j =
K�X

j=k+1

��j =

Z �k

�k

A� (pk) dpk; (8.39)

where A (pk) and A� (pk) are called conditional error functions (under the
global null hypothesis). �k and �k are constants. Comparing (8.38) and
(8.39), we immediately have the following error-spending principle.
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Error-spending principle: In an adaptive trial, if an adaptation at
kth stage ensures the invariance of unconditional error, i.e.,

Z �k

�k

A (pk) dpk =

Z �k

�k

A� (pk) dpk; (8.40)

then the overall � is controlled under the global null hypothesis:

Ho :
�
\kj=1Hoj

�
\
�
\K

�

j=k+1H
�
oj

�
: (8.41)

The principle (8.40) is very general. The commonly used error-spending
approach (Lan-DeMets, 1983) is a special form of the error-spending princi-
ple, which requires prespeci�cation of the unconditional error as a function
of information time. The conditional error method (Proschan and Huns-
berger, 1995) is a special use of the error-spending principle for two-stage
designs. Importantly, if we let A (pk) = A� (pk) ; then (8.40) holds and the
overall � is controlled. Therefore we can formally introduce the following
principle.

Conditional error principle: In an adaptive trial, if an adaptation
at the kth stage ensures the invariance of conditional error, i.e.,

A� (pk) = A (pk) ; (8.42)

then the overall � is controlled under the global null hypothesis (8.41):
The conditional error principle allows changes in the total number of

analyses, the timing of analyses, randomization, hypothesis changes, etc.
in adaptive trials. The principle proposed by Müller and Shäfer (2001)
is the applied Brownian model at pre-de�ned time points of the interim
analyses (Müller and Shäfer, 2004). Müller and Shäfer (2004) extend their
principle and allow for changes in the timing of an interim analysis. They
did not explicitly specify the condition (8.41). The signi�cance of (8.42) is
that it provides a simple but very general way to control � by simulating the
conditional error on �ying; at same time, it allows for di¤erent adaptations.
(8.42) tells us that one can make any adaptation as long as the conditional
error is unchanged. (8.42) can be used repeatedly, meaning that one can
apply adaptations as many times as one wants as long as the conditional
error rate remains unchanged at each stage.
The conditional error function for MPP, MSP, and MINP can be ob-

tained by substituting � = 0 into the conditional power formula, i.e.,
(8.13), (8.19), and (8.24), respectively, and incorporating the corresponding
B(�2; p1):



Recursive Adaptive Design 165

A (p1) =
�2
p1
; �1 < p1 � �1 (8.43)

A (p1) = �2 � p1; �1 < p1 � �1; (8.44)

and

Pc (p1; �) = 1� �
�
z1��2�w1z1�p1

w2

�
; �1 < p1 � �1: (8.45)

8.4 Recursive Two-Stage Design

We can see that the conditional error principle allows for a broad range
of adaptations without in�ating the alpha, but the calculation of condi-
tional error usually requires computer simulations as indicated by Müller
and Shäfer (2001). In this section, we will derive a closed form solution
for a K-stage design that allows for a broad range of adaptations by recur-
sively using the conditional error principle and two-stage formula for the
conditional error, stopping boundary, adjusted p-value, and con�dence in-
terval. Naturally, this method is called recursive two-stage adaptive design
(RTAD).
First, let�s explain the concept and mechanics of the recursive two-stage

design. Suppose we want to design an adaptive trial, but we may not know
how many stages and what allowable adaptations will be best to meet the
trial objectives. We start with a two-stage design. At the interim look, we
can make adaptations including SSR, increasing the number of analyses,
etc., but we don�t want to fully specify the rules. To meet the requirement,
we can make the "short-term" plan by adding one more analysis into the
design. Now the trial became a 3-stage adaptive design. However, instead
of constructing a statistical method based on a 3-stage design, we view
this 3-stage design as a stagnation of 2, two-stage designs. In other words,
stages 1 and 2 are considered the �rst two-stage design, and stages 2 and 3
are viewed as the second two-stage design. In general, the kth and (k+1)th

stages are considered to be the kth two-stage design. Each new two-stage
design is tested at a di¤erent level of � that is equal to the newly calculated
conditional error rate (Figure 8.2).
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Figure 8.2: Recursive Two-stage Adaptive Design

In what follows, we will derive the formulation for recursive two-stage
adaptive design based on MSP and MPP. The reason we can derive the
closed form is that we have the explicit forms of the conditional error prob-
ability and stopping boundaries for two-stage designs.

8.4.1 Sum of Stagewise P-values

Suppose at a typical stage i, we decide to increase the number of stages
in addition to other adaptations. The test statistic for the ith two-stage
design is de�ned as

�
Ti1 = pi1 for stage 1,
Ti2 = pi1 + pi2 for stage 2,

(8.46)

where pi1 = pi and pi2 = pi+1, pi is the naive stagewise p-value based
on the subsample from the ith stage. Note that pi1 and pi2 are mutually
independent and uniformly distributed over [0, 1] under Ho.
If pi1 > �i1; stop the trial and accept Ho; if pi1 � �i1; stop the trial and

reject Ho;if �i1 < pi1 � �i1, the trial continues and we can either go with
the previous plan with the stopping boundary �i2 for the �nal stage with
or without sample-size adjustment, or plan the next "two-stage" design.
Based on the conditional error principle, the new two-stage design should
be tested at level A (pi1) ; where A (pi1) is the conditional error rate at the
ith stage. From (8.28), we can obtain the conditional error rate at the ith

IA (we always choose �i1 < �i2):
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A (pi1) = �i2 � pi1; �i1 < pi1 � �i1: (8.47)

The stopping boundaries are determined for the new two-stage design
by

A (pi1) = �i+1;1 + �i+1;2(�i+1;1 � �i+1;1)�
1

2
(�2i+1;1 � �2i+1;1); i = 0; 1; :::

(8.48)
where for convenience, we de�ne A (p01) = �: We can predetermine �i+1;1
and �i+1;1; then the third value is given by

�i+1;2 =
A (pi1) +

1
2 (�

2
i+1;1 � �2i+1;1)� �i+1;1

�i+1;1 � �i+1;1
: (8.49)

Conditional power is similar to (8.19), but replace �2 with �i2 and p1
with pi1; that is,

Pc (pi1; �) = 1� �
�
��1 (1� �i2 + pi1)� �

�

p
ni2
2

�
; �i1 < pi1 � �i1:

(8.50)
Similar to (8.20), the sample-size based on the target conditional power

Pc is given by

ni2 =

"p
2�

�

�
��1 (1� �i2 + pi1)� ��1 (1� Pc)

�#2
: (8.51)

We now consider stagewise-ordering adjusted p-values using the recur-
sive approach following Brannath, Posch, and Bauer�s idea. We review the
collection of the stages after the 1st stage of the ith two-stage design as
the second stage of the ith design for the purpose p-value calculations. Of
course this is just approximation. Similar to (8.18), we can de�ne the p-
value for the second stage of the (i�1)th two-stage design using backwards
recursion as

8<:pK0�1;2 =

�
t for k = 1;
�K01 + t(�K01 � �K01)� 1

2 (�
2
K01 � �

2
K01

) for k = 2 :
pi�1;2 = �i1 + (pi1 + pi;2) (�i1 � �i1)� 1

2 (�
2
i1 � �2i1); for i = 1; :::;K0 � 1 :

(8.52)
Then p0;2 is the stagewise-ordering p-value.
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8.4.2 Product of Stagewise P-values

For a test statistic based on the product of stagewise p-values,

�
Ti1 = pi1 for stage 1,
Ti2 = pi1pi2 for stage 2.

(8.53)

Similar to (8.13), the conditional error rate at the ith IA is given by

A (pi1) = 1� �i2
pi1
; �i1 < pi1 � �i1: (8.54)

If pi1 > �i1; stop the trial and accept Ho; if pi1 � �i1; stop the trial
and reject Ho; if �i1 < pi1 � �i1, the trial continues and we can either go
with the previous plan with the stopping boundary �i2 for the �nal stage
or plan the next "two-stage" design at level A (pi1) : For the next two-stage
design, we can predetermine �i+1;1 and �i+1;1; then the third value is given
by

�i+1;2 =
A (pi1)� �i+1;1

ln�i+1;1 � ln�i+1;1
: (8.55)

If the trial stops at the kth stage, the stagewise-ordering adjusted p-
value is approximately calculated using the backwards recursion:

8><>:pK0�1;2 =

(
t for k = 1;

�K01 + t ln
�K01

�K01
for k = 2 :

pi�1;2 = �i1 + (pi1 + pi;2) ln
�i1
�i1
; for i = 1; :::;K0 � 1 :

(8.56)

Then p0;2 is the stagewise-ordering p-value.

8.4.3 Inverse-Normal Stagewise P-values

For the method based on inverse-normal stagewise p-value (MINP),

�
Ti1 = 1� z1�pi1 for stage 1,
Ti2 = 1� � (w1z1�pi1 + w2z1�pi2) for stage 2.

(8.57)

Similar to (8.27), the conditional error rate at the ith IA is given by

A (pi1) = 1� �
�
z1��i2�w1z1�pi1

w2

�
; �i1 < pi1 � �i1: (8.58)
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If pi1 > �i1, stop the trial and accept Ho; if pi1 � �i1; stop the trial and
reject Ho;if �i1 < pi1 � �i1, the trial continues and we can either go with
the previous plan with the stopping boundary �i2 for the �nal stage or plan
the next "two-stage" design at level A (pi1). Again the stop boundaries can
be determined through simulations using SAS Macro 5.1.
If the trial stops at the kth stage, the stagewise-ordering adjusted p-

value is calculated using the backwards recursion:

8<:pK0�1;2 =

�
t for k = 1;
pow (�K0�1;2 = t) for k = 2 ,

pi�1;2 = pow (�i2 = (pi1 + pi;2)) for k = 2:
(8.59)

Again, SAS Macro 5.1 can be used to calculate pow (�).

8.4.4 Con�dence Interval and Unbiased Median

For MPP, MSP, and MINP, if the trial is stopped at the �rst stage of the
ith two-stage design, the con�dence interval bound �i1 is given by

�i1 = �̂

r
2

ni1

�
��1 (1� �i1) + z1�pi1

�
for i = 1; :::K0; (8.60)

where K0 is the total number of two-stage design.
When the trial is stopped at the second stage of theK0 two-stage design,

the con�dence bound calculations for the last stage are di¤erent for MPP,
MSP, and MINP as discussed below.
(1) For MPP, the con�dence limit �K02 can be obtained by solving (8.61)

numerically:

�

�
�K02

�̂

r
nK01

2
� z1�pK0;1

�
�

�
�K02

�̂

r
nK02

2
� z1�pK0;2

�
= �K02:

(8.61)
(2) For MSP, the con�dence limit �i2 can be obtained by solving (8.62)

numerically:

�

�
�K02

�̂

r
nK0 1

2
� z1�pK01

�
+�

�
�K02

�̂

r
nK02

2
� z1�pK0; 2

�
= �K02:

(8.62)
(3) For MINP, the con�dence limit is given by

�i2 = �̂
p
2
wK01z1�pK01

+ wK02z1�pK0; 2
� ��1 (1� �K02)

wK01
p
n1 + wK02

p
n2

: (8.63)
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The one-sided (1� �)% overall con�dence bound is given by

�c = max
1�i�K0�1

f�i1; �K0 kg ; (8.64)

where K0 is the total number of two-stage designs.
The one-sided (1 � �ki=1�i)% stagewise-ordering con�dence interval

bound is given by

�s = max
1�i�k

f�i1; :::�ikg ; (8.65)

where k is the stage at which the null was actually rejected.
The 50% con�dence interval bound �ks gives unbiased median estimate,

where k is the stage where the trial was actually stopped.

8.4.5 Application Example

Example 8.1 Recursive Two-Stage Adaptive Design
For an adaptive design, the conditional power is often more important

than the unconditional power because the sample-size can be adjusted to
reach the desired (conditional) power. In other words, we can design a trial
with low power, but allow for SSR later. A recursive two-stage design is
ideal for this kind of adaptive design.
Suppose we are planning an early acute coronary syndrome (ACS) trial

with a composite endpoint of death and myocardial infarction (MI) within
30 days of treatment. The event rate is 11% for the control group and 13%
for the test group. A classic two-group design requires 5546/group to have
90% power at a signi�cance level of 2.5% (one-sided test). However, the
estimation of 11% is an approximation. To reduce the risk, interim analyses
are considered. In case there is a very small treatment di¤erence, the trial
will allow for early stopping; if the e¤ect size is moderate we increase the
sample-size; if the e¤ect size is big, we want to have a chance to make
an earlier e¢ cacy claim. Consider the uncertainty of the recruitment rate
and in�exibility of the IDMC board�s schedule. The information times
for interim analyses may deviate from the plan. One way to deal with
this is to use the error-spending approach to adjust the stagewise alpha
according to the information time. However, the error spending approach
requires predetermination of the error-spending function, which may lead
to undesirable operating characteristics. Therefore, it is desirable to have
the �exibility to adjust both the timing and error-spending independently.
We are going to illustrate how to use the recursive two-stage design to
accomplish this.
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We think that 2 interim analyses and one �nal analysis will be a rea-
sonable way of reducing risk and potentially shorten the time to market.
Also, this plan is operationally feasible. Therefore, we start the �rst two-
stage design with 4000 patients per group; the �rst stage will have 2000
patients per group. The �rst interim analysis is used to adjust the sample-
size and assess futility stopping, but not e¢ cacy stopping. The algorithm
for SSR does not have to be speci�ed at this moment. We use MSP with
stopping boundaries: one-sided �11 = 0 and �11 = 0:2; then �12 = 0:2250
is calculated from (8.49). The power of rejecting the null hypothesis of no
treatment e¤ect at the interim analysis is zero and about 78% at the second
stage. This power is calculated approximately from a classic design with
4000/group. The exact power can be calculated using simulation, but we
don�t have to do that because the conditional power is more important and
can be easily calculated using (8.50) at the time of the interim analysis.
At the �rst IA, suppose we observe event rates r1 = 0:129 and

r2 = 0:114 for the control and test groups, respectively. We estimate
a treatment di¤erence �̂ = r1 � r2 = 0:015; and standard deviation
�̂ =

p
[r1(1� r1) + r2(1� r2)]=2 = 0:3266: The chi-square test statistic or

equivalently, the z-score is z1 = �
�̂

p
n1=2 = 1:452 and the corresponding

stagewise-ordering one-sided p-value p11 = 1 � � (1:452) = 0:0732 < �11:

Therefore the trial should continue. We assume that � = �̂; � = �̂. To
reach a conditional power of Pc = 90%, the sample-size is calculated from
(8.50), i.e.,

n12 =

"p
2�

�

�
��1 (1� �12 + p11)� ��1 (1� Pc)

�#2

=

"
0:3266

p
2

0:015

�
��1 (1� 0:225 + 0:0732)� ��1 (1� 0:9)

�#2
= [30: 792 (1:0287 + 1:2814)]

2

= 5060:

We don�t want to simply increase the sample-size and delay the analysis
because timing is so important in this trial. Therefore, we construct the
second two-stage design as speci�ed below:
(1) calculate the conditional error using (8.47): A (p11) = �12 � p11 =

0:225� 0:0732 = 0:151 8;
(2) choose �21 = 0:1 and �21 = 0:4; (8.48) can be written as

0:1518 = 0:1 + �22(0:4� 0:1)�
1

2

�
0:42 � 0:12

�
:
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Solving it for �22, we obtain �22 = 0:42267:
(3) select n21 = 2000=group and n22 = 3000=group for the second two-

stage design. Note that �21 and n21 are chosen such that the conditional
power (assume � = �̂ = 0:015) for rejecting Ho at the 2nd IA (i.e., the �rst
stage of the second two-stage design) is reasonably high, speci�cally,

Pc (p11; �) = 1� �
�
��1 (1� �12 + p11)�

�

�

r
n12
2

�
= 1� �

 
1:0287� 0:015

0:3266

r
2000

2

!
= 1� � (�0:423 67) = 66:41%:

The sample-size n22 is not important at all because we can either change
it later or add a new two-stage design. Suppose at the second IA, the
event rate is r1 = 0:129 and r2 = 0:116. The stagewise p-value p21 = p2

= 1 � �
�
0:013
0:3278

q
2000
2

�
= 0:1049 > �21 = 0:1 and Ho should not be

rejected.
We may be curious about the classic design with the same data. In

fact, if we pool 4000 subjects per group from stages 1 and 2 to calcu-
late the p-value, as classic design the one-sided p-value will be equal to

�

�
� (0:015+0:013)=2p

(0:32662+0:32782)=2

q
4000
2

�
= �(�1: 913 5) > 0:0278 > � = 0:025.

Therefore the classic design would fail to reject the null.
We now design the third two-stage design:
(1) calculate the conditional error using (8.47): A (p21) = �22 � p21 =

0:42267� 0:1049 = 0:317 77;
(2) choose �31 = 0:2 and �31 = 0:6;

0:31777 = 0:2 + �32(0:6� 0:2)�
1

2

�
0:62 � 0:22

�
:

Solve it, we have �32 = 0:694 43:
(3) select n21 = 2000=group and n22 = 2000=group for the sec-

ond two-stage design. Assuming the true parameters are the esti-
mates from the pooled data: � = (0:015 + 0:013) =2 = 0:014 and � =p
(0:32662 + 0:32782) =2 = 0:3272: The conditional power is calculated as
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Pc (p21; �) = 1� �
�
��1 (1� �22 + p21)�

�

�

r
n22
2

�
= 1� �

 
0:783 4� 0:014

0:3272

r
2000

2

!
= 71:55%:

Suppose at the �rst stage IA of the third two-stage design (i.e., the third
stage), the event rate gain is r1 = 0:129 and r2 = 0:116. The stagewise

p-value p31 = p3 = 1 � �
�
0:013
0:3278

q
2000
2

�
= 0:1049 < �21 = 0:2 and Ho is

rejected.
Note if we reestimate the sample-size for the second stage a little bit

higher conditional power, say, 58.19% instead of 56.78%, the required
sample-size is n21 = 2100, p21 = 0:0994 < �21 and the Ho would be rejected
at the second stage.
We can calculate the adjusted p-value and point and con�dence interval:
(1) The pooled standard deviation

� =
p
(0:32662 + 0:32782 + 0:32782) =3 = 0:327 4:

(2) Because the trial is actually stopped at the �rst stage of the third
two-stage (K0 = 3) design, The adjusted stagewise-ordering p-value can be
calculated using (8.52), i.e.,

8>>>>>>>>><>>>>>>>>>:

p2;2 = t = p31 = 0:1049

p1;2 = �21 + (p21 + p2;2) (�21 � �21)� 1
2 (�

2
21 � �221)

= 0:2 + (0:0994 + 0:1049)(0:4� 0:1)� 1
2

�
0:42 � 0:12

�
= 0:186 29

p0;2 = �11 + (p11 + p1;2) (�11 � �11)� 1
2 (�

2
11 � �211)

= 0 + (0:0732 + 0:186 29) (0:2� 0)� 1
2

�
0:22 � 02

�
= 0:0319:

We may be curious about the p-value from a three-stage MINP, which
is given by

p = 1� �
 

1p
K

KX
i=1

��1 (1� pi)
!

= 1� ��1(1:254 + 1:285 + 1:4522)=
p
3

= 0:0106:
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The summary of the recursive design are presented in Table 8.1.

Table 8.1: Summary of the Recursive Two-Stage Design

�11 �11 �12 �21 �21 �22 �31 �31 �32
0 0.200 0.225 0.100 0.400 0.423 0.200 0.600 0.694

r1 r2 � r1 r2 � r1 r2 �

0.129 0.114 0.327 0.129 0.116 0.328 0.129 0.116 0.328

z1�p11 p11 � z1�p21 p21 A(p11) z1�p31 p31 A(p21)

1.452 0.073 0.025 1.029 0.105 0.152 1.029 0.105 0.312

Note that pi;2 (i < K0) is not exactly calculated from the observed data
in the sample as calculating pi1: Therefore, p0;2 can not be used in com-
parison to the one-sided � for rejection.
(3) Con�dence limits of the rate di¤erence can be calculated using the

approximations (8.60) (we don�t need (8.62) because the trial is stopped at
the �rst stage of the 3rd two-stage design):

�11 = 0:3266

r
2

2000
(0:5 + 1:4522) = 0:02016;

�21 = 0:3278

r
2

2000
(�1:2814 + 1:0286) = �0:00262;

�31 = 0:3278

r
2

2000
(�0:8415 + 1:0286) = 0:001 92:

8.5 Recursive Combination Tests

In this section we will discuss the recursive combination tests proposed by
Brannath, Posch, and Bauer (2002). Assume p1 and p2 are independent
and uniformly distributed random variables on [0, 1] or p-clud.
For two stage-designs, if p1 < �1 , reject the null; if p1 � �1, accept the

null; if �1 < p1 � �1 the trial continues to the second stage. At second stage
if C (p1; p2) � c, reject the null; otherwise accept the null. The combination
C (p1; p2) can be many di¤erent forms. To exclude nonstochastic curtailing,
we assume c < �1; otherwise, for �1 < p1 � c, the null hypothesis could be
rejected without a second sample, although no formal stopping condition
applies.
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The level � test requires:

�1 +

Z �1

�1

Z 1

0

1[C(x;y)�c]dydx = �; (8.66)

where 1[C(x;y)�c] equals 1 if C (x; y) � c and 0 otherwise.
For multiple-stage adaptive design, Brannath, Posch, and Bauer (2002)

de�ne a p-value for the combination test by

q (p1; p2)

(
p1 if p1 � �1 or p1 > �1;

�1 +
R �1
�1

R 1
0
1[C(x;y)�c]dydx otherwise.

(8.67)
For Fisher combination, C (p1; p2) = p1p2, the level � test requirement

(8.66) becomes

c =
�� �1

ln�1 � ln�1
: (8.68)

Carry out the integration in (8.67), we obtain

q (p1; p2)

8<:
p1 if p1 � �1 or p1 > �1;

�1 + p1p2 (ln�1 � ln�1) if p1 2 (�1; �1] and p1p2 � �1;

p1p2 + p1p2 [ln�1 � ln (p1p2)] if p1 2 (�1; �1] and p1p2 > �1:
(8.69)

The trial design is extended two-stage by two-stage until we don�t want
to extend any more. Let�s denote the stopping boundaries by �i1, �i1 and
ci for the ith two-stage design, and the combination test p-value for the ith

two-stage design as qi (pi; pi+1) for i = 1; :::;K � 1, where K is the �nal
stage, then the overall p-value can be obtained through recursion:

p = q1 (p1; q2 (p2; q3 (:::qK�1 (pK�1; qK)))) : (8.70)

Brannath, Posch, and Bauer stated the decision roles as: we reject the
null Ho, if and only if p � �:

(Question for readers: Assume K = 5, how can we make a decision
based on (8.70) at the third stage before we know K = 5? (8.66) implies
that stopping will be based on the boundaries (�1 and �1), is it consistent
with the stopping rule based on (8.70) if we know K = 5?)
The critical value (8.47) is expressed for the ith two-stage design as
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ci =
ci�1 � �i1

ln�i1 � ln�i1
; (8.71)

where c0 = �:

To plan the next two-stage design, the conditional error has to be cal-
culated by

Ai+1 (pi) =
ci
pi
; (8.72)

where A1 (�) = �.

Example 8.2 Recursive Combination Method
Brannath et el. (2002) illustrate the recursive combination test method

for the hypothesis Ho:� � 0 against Ha : � > 0, where � is the mean of a
normally distributed random variable with known variance �2 = 1. For the
classic design, a sample-size 144 will provide 85% power to detect an e¤ect
size of 0.25 at a one-sided level of 0.025. To use the recursive approach,
the �rst interim is planned based on 48 patients with e¢ cacy boundary
�11 = 0:0102 and futility boundary �11 = 0:5. This leads to the critical
value c1 = 0:0038 from (8.71).
Assume we get the stagewise p-value p1 = p11 = 0:199 for the �rst stage,

which satis�es �11 > p1 > �11; thus the trial continues. The value of the
conditional error function A2 (p1) = c1

p1
= 0:0191. The sample-size required

for the second stage to achieve a conditional power of 0.8 is as large as 136.
We decide to perform a second interim analysis after the next 68 sample
units. Because the estimated mean, �̂1 = ��1 (1� p1) =

p
n1 = 0:122, is

not too promising, the option of stopping for futility is also taken for the
second interim analysis with a21 = 0:00955 and �21 = 0:5: The critical
value c2 = 0:00241 from (8.71). Suppose we obtain the stagewise value
p2 = p21 = 0:0284 and the trial continues based on the stopping boundaries
�21 and �21. The mean estimated from the pooled samples 1 and 2 is 0:186.
The conditional error is A3 (p2) = c2

p2
= 0:0850. The sample-size n3 = 68

will provide the conditional power for the third stage 0.075 given an e¤ect
size of 0.25. We now decide not to extend any further. Assume we now
observe the stagewise p-value p3 = 0:00781. The overall p-value can be
calculated using (8.69) as follows:

q2 (p2; p3) = 0:00955 + 0:0284 (0:00781) ln
0:5

0:00955
= 0:0104:
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p = q1 (p1; q2) = 0:0102 + 0:199 (0:0104) ln
0:5

0:0102
= 0:0183:

Because the overall p-value p < � = 0:025, we can reject the null hypothesis.

pi (�0) = 1� �
��
�Xi � �0

�p
ni
�
: (8.72)

The computation of the con�dence bounds can be pursued as follows:
(1) Based on observed data, calculate sample mean �Xi for the ith sub-

sample.
(2) Select a value for �0 to calculate stagewise pi using (8.72).
(3) Calculate overall p-value using (8.70).
(4) Go back to step 2 using a di¤erent �o until the overall p-value equals

�: This �0 is the CI bound.
For Example 8.2, Brannath et al. calculate the 97.5% CI to be 0.0135,

and the 95% CI bound 0.0446. The 50% CI is 0.1835 and gives a median
unbiased point estimate for the e¤ect size. As a comparison, the average of
all the observations obtained up to the third stage equals 0.2255.
Note that when adjusting �0, the rejection of Ho could occur earlier

than it was actually rejected. Brannath et al. (2002) didn�t discuss this
situation. For more details on estimations after adaptive designs, see, e.g.,
Posch, et al., 2005.

8.6 Decision Function Method

Müller and Schäfer (2004) generalize their early work (Müller and Schäfer,
2001; Chapter 7) to arbitrary decision function. Their early method is
based on conditional rejection probability (CRP) or more precisely based
on the conditional error principle, i.e., we can redesign the trial at any
interim analysis as long as we keep the conditional error unchanged. Their
derivation is based on the discretized Brownian motion and includes the
conventional group sequential designs in Brownian motion model at the
prespeci�ed time points of the interim analysis as a special case.
We now discuss the generalization of the method. Let X = (X1; :::; Xk)

denote the data collected during the experiment. De�ne a decision function
' (X) = ' (X1; :::; Xk) 2 [0; 1]; which can be a test statistic. At the end
of the experiment the null-hypothesis Ho will be maintained if ' (X) =
0 or rejected if ' (X) = 1 is realized. For other values of ' (X) ; the
decision is based on a random experiment, i.e., throwing a biased coin
with rejection probability given by the realized value of ' (X). Müller
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and Schäfer realize that in clinical trials that the decision based on the
result of throwing a coin is problematic and suggest in the �nal analysis
the non-randomized modi�cation of the decision function, in which Ho will
be accepted if ' (X) < 1 is realized.
We partition theX into two parts at the time of the jth interim analysis:

the observed dataset XL and the planned future data XU ; XL [XU = X

and XL \XU = �: De�ne the conditional expectation of decision function
as

"� (xL) = E� f' (XL; XU ) jXL = xLg for 8� 2 Ho: (8.73)

The generalized method can be simply described as follows: At any
interim analysis, the trial can be redesigned with any decision function at
an interim analysis as long as we keep the expected conditional decision
function unchanged. The redesign procedure can be recursively applied.

8.7 Summary and Discussion

Based on the conditional error principle and closed form solutions for two-
stage design, the recursive two-stage adaptive design (RTAD) approach
provides an integrated process of design, monitoring, and analysis. RTAD
allows trials to be designed stage by stage. At each stage, the conditional
power is calculated, which is typically for monitoring, and further design
can be based on this conditional power. During the redesign, information
within and outside of this trial can be used. To select an optimal design for
the remainder of the study at interim analysis, one can use the conditional
power or utility functions. The method is applicable for general K-stage
adaptive designs that allow for a very broad range of adaptations. The
stopping boundary determination and the adjusted p-value calculation are
straight forward with the closed forms, and no software is required.
One should be aware that every adaptive design method requires pre-

speci�cation of certain aspect(s). The classic group sequential method spec-
i�es the number and timing of the analyses. The error-spending method
allows for changes in the number and timing of the analyses but requires
prespeci�cation of the error-spending function. The conditional error func-
tion method prespeci�es the conditional error function. The RTAD requires
the prespeci�cation that the conditional error rate will be retained at each
stage based on the observed data. It is important to know that the �exi-
bility of this method does not mean that you can design the �rst interim
analysis arbitrarily. In fact, careful thinking and planning are required for
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the initial design. Spending too much alpha at the �rst stage means that
one has less alpha to spend at later stages, which could limit the design�s
ability to have good operating characteristics. Also, changing the hypoth-
esis during a trial should be done with great caution, because it could lead
to a very di¤erent clinical implication.
RTAD can also be useful in many situations. For example, it is usually

unrealistic to plan many interim analyses at design stage to deal with all
possible scenarios. Therefore, there are opportunities (e.g., safety concern,
unexpected slow enrollment) for adding new interim analyses, changing the
total number and the timing of the coming analyses after a trial is initiated,
and adjusting sample-size. In these situations, RTAD is very suitable.
In addition to RTAD, we also, brie�y introduce two other recursive

approaches, but the computations for those methods are not as simple as
RTAD.
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Problem

8.2 Design trials as presented in Examples 6.1, 6.2, and 6.3 using recur-
sive two-stage adaptive design.

8.2 Read the following publications on con�dence intervals for group
sequential design.
The conditional con�dence interval is often very wide and inconsistent

with the hypothesis testing, especially when early stopping occurs and the
test statistic does not exceed the boundary with a big margin (Fan and
DeMets, 2006).
The Fan-DeMets restricted conditional con�dence interval (RCCI, Fan

and DeMets, 2006) is narrower than ECCI but does not have the exact
coverage. The unconditional exact con�dence intervals are all constructed
by reversing unconditional exact tests (Fan and DeMets, 2006). In general,
the exact con�dence interval (ECI) can be de�ned as

ECI (� = n; S� = s) = f� : �=2 < Pr (g (�; S�) � g (n; s)) < 1� �=2g ;

where the link function is presented in Table 8.2.
There are three methods of sample space ordering: (1) Stagewise order-

ing by Siegmund (1978), (2) Sample mean ordering by Emerson (1988) and
Fleming (1990), and (3) Likelihood ratio ordering by Rosner and Tsiatis
(1988) and Chang (1989). See also Strickland-Casella (2003) for the exact
conditional con�dence interval.

Table 8.2: Type and Link Function of Exact Con�dence Intervals (ECI)

ECI type Ordering method Link function g

Siegmund Stagewise ordering � + 1= (1 + exp (�S�))
Emerson-Fleming Sample mean ordering S�=t�
Rosner-Tsiatis-Chang Likelihood ratio ordering

p
t� (S�=t� � �)

Sources: Fan and DeMets (2006)



Chapter 9

Sample-Size Re-Estimation Design

9.1 Opportunity

Despite a great e¤ort, we often face a high degree of uncertainty about
parameters when designing a trial or justifying the sample-size at the design
stage. This could involve the initial estimates of within- or between-patient
variation, a control group event rate for a binary outcome, the treatment
e¤ect desired to be detected, the recruiting pattern, or patient compliance,
all of which a¤ect the ability of the trial to address its primary objective
(Shih, 2001). This uncertainty can also include the correlation between the
measures (if a repeated measure model is used) or among di¤erent variables
(multiple endpoints, covariates). If a small uncertainty of prior information
exists, a classic design can be applied. However, when the uncertainty is
greater, a classic design with a �xed sample-size is inappropriate. Instead,
it is desirable to have a trial design that allows for re-estimation of sample-
size in the middle of the trial based on unblinded data. Several di¤erent
algorithms have been proposed for sample-size re-estimation, including the
conditional power approach and Cui-Hung-Wang�s approach based on the
ratio of observed e¤ect size versus the expected e¤ect size.
In this chapter, we will evaluate the performance of di¤erent sample-

size modi�cation methods. Operationally, it is a concern that sample-size
re-estimation will release the unblinded e¢ cacy data to the general public
prematurely. Using a discrete function for sample-size re-estimation is sug-
gested, such that the exact e¤ect size would not be revealed. We will study
the impact on e¢ ciency of this information-mask approach. The adjusted
p-value, the point estimate and con�dence interval calculation will also be
discussed.
It is important to di¤erentiate the two di¤erent properties: those prop-

erties at the design stage and those at the interim analyses. For example,
power is an interesting property at the design stage, but at the time of in-
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terim analysis, power has little value, and the conditional power is of great
concern. From a statistical point of view, most adaptive design methods
do not require a prespeci�cation of sample-size adjustment rules at design
stage. How to adjust the sample size can be determined right after the
interim analysis.
In later of the chapter, we�ll give two examples using SSR: a myocardial

infarction prevention trial and a non-inferior adaptive trial with Farrington-
Manning margin. Summaries and discussions will be presented in the last
section.

9.2 Adaptation Rules

There are many possible rules for sample-size adjustment. Here we will
discuss only two types of adjustments: (1) sample-size adjustment based on
the e¤ect-size ratio between the initial estimate and the observed estimate,
and (2) sample-size adjustment based on conditional power.

9.2.1 Adjustment Based on E¤ect Size Ratio

The formation for sample-size adjustment based on the ratio of the initial
estimate of e¤ect size (E0) to the observed e¤ect size (E) is given by

N =

����E0E
����aN0; (9.1)

where N is the newly estimated sample-size per group, N0 is the initial
sample-size per group which can be estimated from a classic design, and
a > 0 is a constant,

E =
�̂i2 � �̂i1

�̂i
: (9.2)

With a large sample assumption, the common variance for the two treat-
ment groups is given by (See Chapter 2)

�̂2i =

8><>:
�̂2i for normal endpoint,
��i(1� ��i) for binary endpoint,

��2i

h
1� e��iT0�1

T0��ie
��iTs

i�1
for survival endpoint,

(9.3)

where ��i =
�̂i1+�̂i2

2 and the logrank test is assumed to be used for the
survival analysis. Note that the standard deviations for proportion and
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survival have several versions. There are usually slight di¤erences in the
resulting sample-size or power among the di¤erent versions.
The sample-size adjustment in (9.1) should have additional constraints:

(1) It should be smaller than Nmax (due to �nancial and or other con-
straints) and greater than or equal to Nmin (the sample-size for the interim
analysis) and (2) If E and E0 have di¤erent signs at the interim analysis,
no adjustment will be made.
To avoid numerical over�ow when E = 0, the actual algorithm imple-

mented in SAS macros in this chapter is

N = min

�
Nmax, max

�
N0;

E0
abs(E) + 0:0000001

N0

��
. (9.4)

9.2.2 Adjustment Based on Conditional Power

For an SSR design, the conditional power is more important than the power.
The conditional power for a two-stage design is given by (Chapter 7)

cP = 1� �
�
B (�2; p1)� �

�

p
n2
2

�
; �1 < p1 � �1:

The formulation for the new sample-size for a two stage design is discussed
in Chapter 7 and given by

n2 =
2�2

�2
�
B (�2; p1)� ��1 (1� cP )

�2
; (9.5)

where cP is the target conditional power and function B (�2; p1) is given in
Table 9.1 for di¤erent design methods. The actual algorithm implemented
in SAS Macro 9.1 is:

n2 =

(
max

n
N2min;

2�2

�2

�
B (�2; p1)� ��1 (1� cP )

�2o
If �1 < p1 < �1

0; otherwise,
(9.6)

where � = (�2 � �1) =�, n2 is the sample-size per group at stage 2 with a
minimum of N2min. Assume a known �:
For a K-stage design, (9.5) is an approximation. Suppose we are in-

terested only in the case where SSR takes place only at the �rst interim
analysis, and the sample-size change a¤ects only the last stage sample-size.
Note that (9.4) allows only a sample-size increase from N0, but (9.6)

allows both an increase and decrease in sample-size. The futility boundary
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is suggested because (1) a certain small �1 will virtually never lead to statis-
tical signi�cance at the �nal analysis, and (2) a small �̂ at the �nal analysis
will be clinically unjusti�able; therefore, adding a futility boundary could
be cost-saving.

Table 9.1: Function B (�2; p1) for Conditional Power

Design Method B (�2; p1)

MIP ��1 (1� �2)
MSP ��1 (1�max(0; �2 � p1))
MLP ��1

�
1�max(0; �2w2 �

w1p1
w2
)
�

MPP ��1
�
1� �2

p1

�
MINP

p
w21+w

2
2�

�1(1��2)�w1��1(1�p1)
w2

9.3 SAS Macros for Sample-Size Re-estimation

SAS Macro 9.1 is developed to simulate a two-arm, K-stage adaptive design
with a normal, binary, or survival endpoint using �MIP�, �MSP�, �MPP�,
or �LW�. The sample-size adjustment is based on the conditional power
method (9.6) for a two-stage design or (9.4) for K-stage design (K>2) .
The sample-size adjustment is allowed only at the �rst interim analysis,
and the sample-size adjustment a¤ects only the �nal stagewise sample-size.
ux and uy = the means, response rates, or hazard rates for the two groups,
and Ns{k} = sample-size for group x at stage k. The random increment
in sample-size of nMinIcr is added for the information mask, nMinIcr
= minimum sample-size increment in group x for the conditional power
approach only, n2new = the re-estimated sample-size for group x at the
second stage, and eSize = the standardized e¤ect size. nSims = number
of simulation runs, nStgs = number of stages, alpha0 = overall �, and EP
= �normal�, �binary�, or �survival�. Model = �MIP�, �MSP�, �MPP�,
or �LW�; Nadj = �N� for the case without SSR; Nadj = �Y� for the
case with SSR. cPower = target conditional power, DuHa = estimated
treatment di¤erence, Nmax = the maximum sample-size allowed for group
x, N2min = minimum sample size (not cumulative) in group x for stage
2, sigma = standard deviation for normal endpoint, tAcr = accrual time,
tStd = study duration, and power = initial target power for the trial,
nRatio = the sample size ratio of group y to group x for an imbalanced
design. NIType = "FIXED" for non-inferiority design with a �xed NI
margin and NIType = "PCT" for non-inferiority design with Farrington-
Manning NI margin, NId = NI margin. Aveux, Aveuy, and AveN =
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average simulated responses (mean, proportion, or hazard rate) and sample
size, FSP{i} = futility stopping probability at the ith stage, ESP{i} =
e¢ cacy stopping probability at the ith stage, and alpha{i} and beta{i}
= e¢ cacy and futility stopping boundaries at the ith stage.

��SAS Macro 9.1: Adaptive Design with Sample-Size Re-
estimation��

%Macro nByCPowerUB(Model, a2, eSize, cPower, p1, w1, w2, n2New);

If &Model="MIP" Then BFun=Probit(1-&a2);

If &Model="MSP" Then BFun=Probit(1-max(0.0000001,&a2-&p1));

If &Model="MPP" Then BFun=Probit(1-&a2/&p1);

If &Model="LW" Then

BFun=(Probit(1-&a2)- &w1*Probit(1-&p1))/&w2;

&n2New=2*((BFun-Probit(1-&cPower))/&eSize)**2; *n for group x;

%Mend nByCPowerUB;

%Macro TwoArmNStgAdpDsg(nSims=1000000, nStgs=2,ux=0, uy=1,

NId=0, NItype="FIXED", EP="normal", Model="MSP",

Nadj="Y", cPower=0.9, DuHa=1, Nmax=300, N2min = 150,

nMinIcr=1, sigma=3, tAcr=10, tStd=24, nRatio=1);

DATA NStgAdpDsg; Set dInput;

KEEP Model power Aveux Aveuy AveTotalN FSP1-FSP&nStgs

ESP1-ESP&nStgs;

Array Ns{&nStgs}; Array alpha{&nStgs}; Array beta{&nStgs};

Array ESP{&nStgs}; Array FSP{&nStgs}; Array Ws{&nStgs};

Array sumWs{&nStgs}; Array TSc{&nStgs};

Model=&Model; cPower=&cPower; nRatio=&nRatio; NId=&NId;

NItype=&NItype; N2min=&N2min; nStgs=&nStgs; sigma=&sigma;

power=0; AveTotalN=0; Aveux=0; Aveuy=0; ux=&ux; uy=&uy;

cumN=0; Do i=1 To nStgs-1; cumN=cumN+Ns{i}; End;

N0=CumN+Ns{nStgs};

Do k=1 To nStgs;

sumWs{k}=0; Do i=1 To k; sumWs{k}=sumWs{k}+Ws{i}**2; End;

sumWs{k}=sqrt(sumWs{k});

End;

* Calcate the standard deviation, sigma for di¤erent endpoints *;

If &EP="normal" Then Do sigmax=&sigma; sigmay=&sigma; End;

If &EP="binary" Then Do

sigmax=Sqrt(&ux*(1-&ux)); sigmay=Sqrt(&uy*(1-&uy));

End;

If &EP="survival" Then Do
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sigmax=ux*sqrt(1+exp(-ux*&tStd)*(1-exp(ux*&tAcr))/(&tAcr*ux));

sigmay=uy*sqrt(1+exp(-uy*&tStd)*(1-exp(uy*&tAcr))/(&tAcr*uy));

End;

If NItype="PCT" Then sigmax=(1-NId)*sigmax;

Do i=1 To nStgs; FSP{i}=0; ESP{i}=0; End;

Do iSim=1 to &nSims;

ThisNx=0; ThisNy=0; Thisux=0; Thisuy=0;

Do i=1 To nStgs; TSc{i}=0; End;

TS=0; If &Model="MPP" Then TS=1;

Do i=1 To nStgs;

uxObs=Rannor(746)*sigmax/sqrt(Ns{i})+&ux;

uyObs=Rannor(874)*sigmay/sqrt(nRatio*Ns{i})+&uy;

Thisux=Thisux+uxObs*Ns{i};

Thisuy=Thisuy+uyObs*nRatio*Ns{i};

If NItype="PCT" Then NId=uxObs*&NId;

ThisNx=ThisNx+Ns{i};

ThisNy=ThisNy+Ns{i}*nRatio;

StdErr=(sigmax**2/Ns{i}+sigmay**2/(nRatio*Ns{i}))**0.5;

TS0 = (uyObs-uxObs+NId)/StdErr;

If Model="MIP" Then TS=1-ProbNorm(TS0);

If Model="MSP" Then TS=TS+(1-ProbNorm(TS0));

If Model="MPP" Then TS=TS*(1-ProbNorm(TS0));

If Model="LW" Then Do;

Do k=i to nStgs; TSc{k}=TSc{k}+Ws{i}/sumWs{k}*TS0; End;

TS=1-ProbNorm(TSc{i});

End;

If Model="UWZ" Then Do;

StdErr=(sigmax**2/ThisNx+sigmay**2/ThisNy)**0.5;

TS0=(Thisuy/ThisNy-Thisux/ThisNx+NId)/StdErr;

TS=1-ProbNorm(TS0);

End;

If TS>beta{i} Then Do; FSP{i}=FSP{i}+1/&nSims; Goto Jump; End;

Else If TS<=alpha{i} then do;

Power=Power+1/&nSims; ESP{i}=ESP{i}+1/&nSims;

Goto Jump; End;

Else If nStgs>1 & i=1 & &Nadj="Y" Then Do;

eSize=&DuHa/(abs(uyObs-uxObs)+0.0000001);
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nFinal=min(&Nmax, max(N0,eSize*Abs(eSize)*N0));

If nStgs=2 Then do;

eSize=(uyObs-uxObs+NId)/((sigmax+sigmay)*sqrt(0.5+0.5/nRatio));

%nByCPowerUB(Model, alpha{2}, eSize, cPower, TS,

ws{1}, ws{2}, n2New);

nFinal=Round(min(&Nmax,ns{1}+n2New+&nMinIcr/2), &nMinIcr);

nFinal=max(N2min+Ns{1},nFinal);

End;

If nStgs>1 Then Ns{nStgs}= max(1,nFinal-cumN);

End;

End;

Jump:

Aveux=Aveux+Thisux/ThisNx/&nSims;

Aveuy=Aveuy+Thisuy/ThisNy/&nSims;

AveTotalN=AveTotalN+(ThisNx+ThisNy)/&nSims;

End;

Output;

Run;

Proc Print; Run;

%Mend TwoArmNStgAdpDsg;

��SAS��

Note that SAS Macro 9.1 actually includes two macros: nByCPowerUB
and TwoArmNStgAdpDsg; the latter calls the former.

9.4 Comparison of Sample-Size Re-estimation Methods

We now use SAS Macro 9.1 to study the operating characteristics of various
sample-size re-estimation methods for two-stage adaptive designs. The non-
binding futility rule is currently adopted by the regulatory bodies, based
on which the futility boundaries don�t have to be followed. Therefore, the
earlier futility boundaries cannot be considered in constructing later stop-
ping boundaries. For this reason, it is important to study the performance
of di¤erent methods with non-binding futility boundaries. We will compare
the power and sample size among di¤erent methods. The scenarios consid-
ered are: (1) the trial is properly powered; (2) the trial is under-powered;
(3) the trial has a futility boundary, and (4) the sample-size increases dis-
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cretely for information mask. For each of the scenarios, we simulate the
classic and adaptive designs using the following three di¤erent methods:
MSP, MPP, and MINP. The simulations are performed for a Normal end-
point with a mean uA = 0 for the control group, uB = 1 for the test group,
and a common standard deviation of sigma = 3.
The results in Tables 9.2 are generated using the following three SAS

macro calls. The SAS macro calls for generating results in Tables 9.3
through 9.5 are similar and are not presented. �N is the average total
sample-size from the simulations, and ūA and ūB are the average means in
group A and group B from the simulations. Each scenario has 1,000,000
simulation runs. ESP1 is the early stopping probability at the �rst stage.

��SAS��
Title "High Initial Power with MSP, Ha - Table 9.2";

Data dInput;

Array Ns{2} (100,100); Array alpha{2} (0.0025,0.21463);

Array beta{2} (0.2146,0.2146); Array Ws{2} (1,1);

%TwoArmNStgAdpDsg(ux=0, uy=1, N2min=100, EP="normal",

Model="MSP", Nadj="Y", cPower=0.9, DuHa=1, sigma=3,

Nmax=300, nMinIcr=20);

Run;

Title "High Initial Power with MPP, Ha - Table 9.2";

Data dInput;

Array Ns{2} (100,100); Array alpha{2} (0.0025,0.00375);

Array beta{2} (0.2146,0.00375); Array Ws{2} (1,1);

%TwoArmNStgAdpDsg(ux=0, uy=1, N2min=100, EP="normal",

Model="MPP", Nadj="Y", cPower=0.9, DuHa=1, sigma=3,

Nmax=300, nMinIcr=20);

Run;

Title "High Initial Power with MINP, Ha - Table 9.2";

Data dInput;

Array Ns{2} (100,100); Array alpha{2} (0.0025,0.024);

Array beta{2} (0.2146,0.024); Array Ws{2} (1,1);

%TwoArmNStgAdpDsg(ux=0, uy=1, N2min=100, EP="normal",

Model="LW", Nadj="Y", cPower=0.9, DuHa=1, sigma=3,

Nmax=300, nMinIcr=20);

Run;

��SAS��

Scenario 1: High Initial Power
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A classic design with 400 subjects will provide 91.5% power to detect
an e¤ect size of 1/3 at a one-sided level � = 0:025. For the two-stage SSR
designs with a maximum of 600 subjects, the minimum sample-size for the
second stage, N2min = 100/group, and �1 = 0:0025. The simulation results
are presented in Tables 9.2.

Table 9.2: Comparison of Simulation Results Under Ha

Method �2 ESP1 FSP1 Power N̄ ūA ūB
MSP .21463 .326 .059 .933 446 -0.03 1.03

MPP .00375 .326 .059 .927 424 -0.03 1.03

LW .02400 .326 0.059 .926 388 -0.03 1.03

Note: Initial sample-size per group: n1=n2=200, nMinIcr=20.

From Table 9.2, we can see that the power and the expected sample size
are larger than those in the classic design. The bias of the naive is about
6%.

Scenario 2: Low Initial Power
We now study the characteristics of the adaptive designs with a low

initial power. In this scenario, the true mean di¤erence is 1 with a standard
deviation of 3, but the treatment di¤erence is over estimated as 1.25. A
classic design with 240 subjects per group will have 73.5% power to detect
an e¤ect size of 1/3 at a one-sided level � = 0:025. For the two-stage
adaptive designs with maximum 600 subjects (N2min = 60) simulation
results are presented in Table 9.3.
From Table 9.3, we can see that the power is protected (>80%) by all

methods. The bias of the naive is negligible.

Table 9.3: Comparison of Simulation Results Under Ha
Method �2 ESP1 FSP1 Power N̄ ūA ūB
MSP .21463 .163 .150 .843 428 -0.00 1.00

MPP .00375 .163 .150 .838 404 -0.01 1.01

LW .02400 .163 .150 .823 336 -0.01 1.01

Initial sample-size per group: n1=n2=120, nMinIcr=20.

Scenario 3: E¤ect of Early Stopping Boundary
Let�s use �1 = 0:005, �1 = �2 = 0:205; andN1 = 105 for MSP, and �1 =

0:005; �1 = 1; N1 = 60 for MPP and LW. Note that when p1 > �1 = 0:205,
there is no possibility of rejecting the null hypothesis at the second stage for
MSP. We choose a larger sample-size N1 at the �rst stage for MSP because
we want to have similar power for all methods. The maximum sample-size
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Nmax is 200 per group. Table 9.4 gives a quick comparison of di¤erent
methods, where N̄o is the expected sample-size under the null and N̄a is
the expected sample-size under the alternative. All designs have a 90%
target conditional power. Overall, MSP, MPP, and LW perform equally
well under the alternative hypothesis. However, MSP has much smaller
sample-size than others under the null.

Table 9.4: Comparisons of Adaptive Methods

Method �2 N̄o N̄a Power

MSP .2050 248 306 88.9%

MPP .0038 398 323 89.4%

LW .0226 398 323 89.6%

Note: �1= 0:005, e¤ect size =1/3.

Scenario 4: Discrete SSR for Information-Mask
To study the impact of the discrete SSR, we study the minimum sample-

size increment from 1, 20 to 50 per group. The simulation results are pre-
sented in Table 9.5. We can see that the discretization of sample-size in-
crement has minimal impact on the power and sample-size for the adaptive
designs.

Table 9.5: Summary of Comparisons with Lower Initial Power

�Nmin= 1 �Nmin= 20 �Nmin= 50

Method N̄ Power N Power N Power

MSP 424 0.842 428 0.843 435 0.843

MPP 401 0.838 404 0.838 408 0.839

LW 331 0.820 336 0.823 344 0.827

Note: �1= 0:05 and �1= 0:25; N0 = 120, Nmax = 300.

Note that comparison based on power is not the best way for adaptive
designs. The power depends on many di¤erent things: (1) the unknown
true treatment di¤erence �, (2) the sample size at stage 1, and (3) the rule
for SSR. Because � is an unknown, we may use Bayesian prior distribution
� (�) (Chapter 16). Note that there are two types of conditional power we
have considered: (1) conditioning on p1 and (2) conditioning on p1 and
� = �̂1. The former is what we are really interested, while the latter is just
an estimation of the former. Just like power, there are two types of power:
(1) the power depending on true � and (2) the power depending on �̂ that
is estimated at the initial design: Therefore, we should not make general
conclusions regarding which method is better just based on the power.
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Scenario 5: Comparison of Conditional Power
As stated earlier, for adaptive design, conditional power is a better

measure than power regarding the e¢ ciency. The di¤erence in conditional
power between di¤erent methods is dependent on the stagewise p-value
from the �rst stage. From Tables 9.6 and 9.7 and Figure 9.1, it can be
seen that conditional power for MSP is uniformly higher for p1 around 0.1
than the other two methods. Therefore, if you believe that p1 is somewhere
between (0.005, 0.18), then MSP is much e¢ cient than MPP and MINP or
LW; otherwise, MPP and LW are better.

Table 9.6: Conditional Power as Function of N2
N2 = 100 N2 = 200 N2 = 300 N2 = 400

Method �2 Power Power Power Power

MSP .21463 0.584 0.788 0.894 0.948

MPP .00375 0.357 0.567 0.748 0.853

LW .02400 0.460 0.686 0.825 0.906

Note: �1= 0:0025: p1= 0:1, e¤ect size = 0.2, no futility binding.

Examples of SAS macro calls for generating the results in Tables 9.6 are
presented in the following:

��SAS��
%ConPower(EP="normal", Model="MSP", alpha2=.21463,

ux=0.2, uy=0.4, sigma=1, n2=200, p1=0.1);

%ConPower(EP="normal", Model="MPP", alpha2=.00375,

ux=0.2, uy=0.4, sigma=1, n2=200, p1=0.1);

%ConPower(EP="normal", Model="LW", alpha2=.02400,

ux=0.2, uy=0.4, sigma=1, n2=200, p1=0.1, w1=1, w2=1);

��SAS��

Table 9.7: Conditional Powers as Function of P1
p1

Method 0.010 0.050 0.100 0.015 0.018 0.220

Power

MSP 0.880 0.847 0.788 0.685 0.572 0.000

MPP 0.954 0.712 0.567 0.516 0.485 0.453

LW 0.937 0.802 0.686 0.595 0.547 0.490

Note: �1= 0:0025: N2= 200; e¤ect size = 0.2, no futility binding.
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Figure 9.1: Conditional Power versus P-value from Stage 1

9.5 Analysis of Design with Sample-Size Adjustment

9.5.1 Adjusted P-value

We recommend the stagewise-ordering p-value that has been discussed in
Chapters 4 and 5. For MSP, we use (4.9), i.e.,

p(t; k) =

8<:
t; k = 1;

�1 + t(�1 � �1)� 1
2 (�

2
1 � �21); k = 2 and �1 < �2;

�1 +
1
2 (t� �1)

2; k = 2 and �1 � �2:

(9.7)

For MPP, we use (4.16), i.e.,

p(t; k) =

(
t; k = 1;

�1 + t ln
�1
�1
; k = 2 :

(9.8)

For MINP, we use simulations to determine the stagewise-ordering p-
value.
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9.5.2 Con�dence Interval

From the duality of the con�dence and hypothesis test, we know that a
100(1� �)% CI consists all �0 such that the null hypothesis Ho : � � �0 is
not rejected at any stage before stage Ks, where Ks is the stage at which
the trial was actually stopped.
The stagewise p-value at the ith stage for the one-sided null hypothesis

Ho : � � �0 is given by

pi = 1� �
 
�̂i � �0
�

r
ni
2

!
; (9.9)

where �̂i is the naive estimate based on the ith stage subsample.
Therefore, for MSP, the stagewise CI limits can be obtained by solving

(9.1) for ��k :

kX
i=1

"
1� �

 
�̂i � ��k

�

r
ni
2

!#
= �k; k = 1; :::;Ks; (9.10)

where stage Ks is the stage where the trial was actually stopped.
For MPP, the stagewise CI limits can be obtained by solving (9.11) for

��k :

kY
i=1

"
1� �

 
�̂i � ��k

�

r
ni
2

!#
= �k; k = 1; :::;Ks: (9.11)

For MINP, the stagewise CI limits can be obtained by solving (9.12) for
��k :

kX
i=1

wki

 
�̂i � ��k

�

r
ni
2

!
= �k; k = 1; :::;Ks; (9.12)

where wki are predetermined weights satisfying
Pk

i=1 w
2
ki = 1.

The 100(1� �)% con�dence limit �0min is given by

�0min = max
�
��1 ; :::; ��Ks

	
. (9.13)

(9.13) is also a stagewise-ordering 100(1�
PKs

i=1 �i)% CI (see Chapter 3).
Note that (9.12) reduces to the classic CI when K = 1. (9.12) can be

solved analytically. For example, for the second stage, we have
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��2 =
wk1

p
n1�̂1 + wk2

p
n2�̂2 �

p
2�z1��2

wk1
p
n1 + wk2

p
n2

: (9.14)

So far, we have not considered the futility boundaries in constructing
CI. To use futility boundaries in constructing CI, see Problem 9.7.

9.5.3 Adjusted Point Estimates

Design without Possible Early Stopping
When there is no early stopping, e.g., the interim analysis is for SSR

only, then the unbiased estimate can be easily found (Liu and Proschan,
2002; Proschan, 2003; Brannath, Konig, and Bauer, 2006). For example,
the following weighted stagewise estimate is unbiased:

�̂u =
KX
i=1

!i�̂i; (9.15)

where �̂i is the naive estimate based on the ith stage subsample, e.g., mean
di¤erence or response rate di¤erence between the two groups. Note that
E (�i) = � (i = 1; :::;K), hence for any predetermined constant weights
!i satisfying

PK
i=1 !i = 1 will provide a unbiased estimate. However, for

consistency with the CI, the weight should be carefully chosen. If the SSR
trial only allows for sample-size increase such that the �nal sample-size is
between the initial sample-size N0 and the maximum sample-size Nmax,
then the following weights might be a good choice for the two-stage SSR
design:

!1 =
2n1

N0 +Nmax
; !2 = 1� !1: (9.16)

Design with Possible Early Stopping
If symmetric stopping boundaries are used, an unbiased point estimate

is given by (3.36) in Chapter 3. For a two-stage design, we can use point
estimate:

�̂u =
w1
p
n1�̂1 + w2

p
n2�̂2

w1
p
n1 + w2

p
n2

, (9.17)

where wi are predetermined constants, which is suggested to be w1 =q
n1

n1+n02
and w2 =

q
n02

n1+n02
: Here n02 is the initial sample-size for the
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second stage (Lawrence and Hung, 2003).
For a general adaptive design, there is an absolute minimum sample-

size nmin required regardless of the adaptations. We can use the �rst nmin
patients per group to construct an unbiased point estimate:

�̂u =

nminX
i=1

xBi
ni

�
nminX
i=1

xAi
ni

; (9.18)

where xAi and xBi are the observed responses of the ith patient in groups
A and B, respectively.
Equation (9.18) is di¢ cult to justify: Why are only the �rst nmin pa-

tients�outcomes considered? If we believe bias is not the only issue in drug
development, we should balance the bias and interpretability of the results.
I�d suggest that readers go back to Chapter 3 for more discussions on this.
Also, there will be a more in-depth discussion in Chapter 18.
Using an estimate that has a median equal to � independently from the

adaptation (Brannath, Konig and Bauer, 2002; Lawrence and Hung, 2003;
Proschan, 2003; and Cheng and Shen, 2004) has also been suggested.
For a design featuring early stopping, (9.17) is an unbiased median, but

the mean bias and variance of �̂u depend on the adaptation rule.
The maximum bias for a two-stage adaptive design with early stopping

and SSR is bound by (See Problem 9.1)

0:4
�
p
n1

Nmax � n1
Nmax

=
0:4�
p
n1

rmax � 1
rmax

<
0:4�
p
n1
; (9.19)

where Nmax is the maximum sample-size per group and rmax = Nmax=n1:

An interesting method to obtain an unbiased estimate is to recruit at
least two more patients for each stage i > k when the trial is stopped at
the kth stage due to e¢ cacy or futility such that we use (9.15) and (9.16).
However, the extra patients enrolled will not be used for the hypothesis
test. However, when the trial stops at the �rst stage, there could be a
consistency issue between point estimation and hypothesis test.
Another method is to use the linear bias correction approach described

in Chapter 3 by means of computer simulation.

9.6 Trial Example: Prevention of Myocardial Infarction

Example 9.1 Myocardial Infarction Prevention Trial
This example is based on the case presented by Cui, Hung, and Wang
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(1999). In a phase-III, two-arm trial to evaluate the e¤ect of a new drug
on the prevention of myocardial infarction in patients undergoing coronary
artery bypass graft surgery, a sample-size of 300 patients per group will
provide 95% power to detect a 50% reduction in incidence from 22% to
11% at the one-sided signi�cance level � = 0:025. Although the sponsor is
con�dent about the incidence of 22% in the control group, the sponsor is
not that sure about the 11% incidence rate in the test group.
Because of the wide range of the estimated incidence rate in the test

group, the sponsor felt uncomfortable choosing a �xed sample-size. A �xed
sample-size can be either too small for a small e¤ect size or too large for the
large e¤ect size. Therefore, an adaptive design with SSR is used. Further,
assume a safety requirement for a minimum number of patients to be treated
that precludes interim e¢ cacy stopping. Therefore an adaptive trial with
futility stopping and SSR is chosen.
Suppose we decide to use MSP for a two-stage adaptive design featuring

sample-size re-estimation. The conditional power approach (9.5) will be
used for sample-size adjustment based on the interim analysis results, which
is scheduled when e¢ cacy assessments have been completed for 50% of
patients. The stopping rules are: at stage 1, stop for futility if the stagewise
p-value p1 > �1, and stop for e¢ cacy if p1 � �1; at the �nal stage, if
p1+ p2 � �2, claim e¢ cacy; otherwise claim futility. The designs with and
without SSR will be evaluated using stopping boundaries: �1 = 0; �1 = 0:2;
�2 = 0:225. The upper limit of the sample-size is Nmax = 500 per group.
The SAS macro calls for the simulations are shown as follows:

��SAS��
Title "Example 9.1";

Data dInput;

Array Ns{2} (150, 150); Array alpha{2} (0,0.225);

Array beta{2} (0.2,0.225); Array Ws{2} (1,1);

%TwoArmNStgAdpDsg(nStgs=2, ux=0.11, uy=0.22,

EP="binary", Model="MSP", Nadj="N");

%TwoArmNStgAdpDsg(nStgs=2, ux=0.11, uy=0.22,

EP="binary", Model="MSP", Nadj="Y", cPower=0.95,

DuHa=0.11, Nmax=500, N2min=150, nMinIcr=50);

%TwoArmNStgAdpDsg(nStgs=2, ux=0.14, uy=0.22,

EP="binary", Model="MSP", Nadj="N");

%TwoArmNStgAdpDsg(nStgs=2, ux=0.14, uy=0.22,
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EP="binary", Model="MSP", Nadj="Y", cPower=0.95,

DuHa=0.11, Nmax=500, N2min=150, nMinIcr=50);

%TwoArmNStgAdpDsg(nStgs=2, ux=0.22, uy=0.22,

EP="binary", Model="MSP", Nadj="N");

%TwoArmNStgAdpDsg(nStgs=2, ux=0.22, uy=0.22,

EP="binary", Model="MSP", Nadj="Y", cPower=0.95,

DuHa=0.11, Nmax=500, N2min=150, nMinIcr=50);

Run;

��SAS��

The simulation results are presented in Table 9.8. From the simulation
results, there are several noticeable features of adaptive designs:
(1) For the GSD with futility boundary �1 = 0:2 without SSR, there is

a reduction in sample-size under Ho as compared to the classic design, but
a decrease in power as compared to the classic design, as well.
(2) For the designs with SSR, the power and sample-size increase when

the treatment e¤ect is overestimated.

Table 9.8: Comparison of Adaptive Designs

Event Rate in the Test Group PT
Design 0.110 0.14 0.22

N̄a Power (%) N̄a Power (%) N̄o

Classic 600 94.2 600 72.3 600

GSD 588 92.0 550 67.0 360

SSR 928 95.8 874 80.0 440

Note: �1= 0; �1= 0:2; Nmax= 500/group, target cP = 0.95.

Based on the simulation results, we suggest using the adaptive design
with SSR: We promise that if the trial stops at the �rst stage, two more
patients will be enrolled for the estimation. Therefore we can use (9.15)
and (9.16).
Regardless of whether the trial is stopped at the �rst stage or the sec-

ond stage, we have two stagewise naive estimates, �̂1 and �̂2: Suppose an
interim analysis is performed with 150 patients per group. The observed
event rates are 0.22 and 0.165 for the control and test groups, respec-
tively. The p-value can be calculated using the Chisq test or equivalently

p1 = 1 � �
�
(0:22�0:165)

p
150p

0:31

�
= 1 � � (1: 211 1) = 0:1129 < �1 = 0:2:

Therefore, the trial proceeds to the second stage with a newly estimated
sample-size per group for the second stage n2 = Nmax�n1 = 650 for a target
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conditional power of 90% with e¤ect size of 0.14. This sample size is consid-
ered too big due to �nancial consideration. n2 = 400 is �nally used, which
provides about 78% conditional power. Suppose the observed event rates
for Stage 2 are 0.22 and 0.175 for the control and test groups, respectively;

the stagewise p-value is p2 = 1 � �
�
(0:22�0:175)

p
400p

0:316

�
= 1 � � (1: 601 1) =

0.0547. Therefore, the test statistic t = p1+ p2 = 0:1676 < �2 = 0:225 and
the null hypothesis is rejected.
The adjusted p-value (stagewise-ordering p-value) is calculated from

(9.7):

padj = �1 + t(�1 � �1)�
1

2
(�21 � �21)

= 0:1676(0:2)� 1
2
(0:22) = 0:013 5:

The con�dence limit is calculated using (9.10). It is obvious that ��1 =
�1. To obtain ��2 , we need to solve the following equation:

2� �
 
(0:055� ��2)

p
150p

0:31

!
� �

 
(0:045� ��2)

p
400p

0:316

!
= 0:225 (9.20)

Using the trial-error method in (9.20), we obtain ��2 = 0:007. Therefore
the con�dence limit is given by �0min = 0:007.
The adjusted estimate of treatment di¤erence in event rate can be ob-

tained from (9.18) with wi =
p
0:5:

�u =
0:055

p
0:5
p
150 + 0:045

p
0:5
p
400p

0:5
p
150 +

p
0:5
p
400

= 0:0488.

The unbiased estimate of treatment di¤erence in event rate can be ob-
tained from (9.15) with w1 =

2(150)
300+550 =

6
17 and w2 = 11=17 from (9.16):

�u =
6(0:055)

17
+
11(0:045)

17
= 0:0485.

The naive estimate is given by

�̂ =
150(0:055)

550
+
400(0:045)

550
= 0:0477

In summary, the test drug has about a 4.8% reduction in event rate
with a one-sided 97.5% con�dence limit of 0.7%. The adjusted p-value
(one-sided) is 0.0135.
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So far the binding futility boundaries are used. For the results with
non-binding futility rule, see Problem 9.6.
Note that the actual trial was designed without SSR. The sponsor asked

for SSR at interim analysis, and was rejected by the FDA. The trial even-
tually failed to demonstrate statistical signi�cance.

Example 9.2: Adaptive Design with Farrington-Manning NI
Margin
There are two ways to de�ne the non-inferiority margin: (1) a pre-

�xed non-inferiority (NI) margin and (2) a non-inferiority margin that
proportional to the e¤ect of the active control group, i.e., Farrington-
Manning non-inferiority margin. The former has been discussed in Chap-
ters 2 and 4. We now discuss the latter. The Farrington-Manning non-
inferiority test was proposed for a classic design with a binary endpoint (
Farrington and Manning, 1990), but can be extended to adaptive designs
with di¤erent endpoints, in which the null hypothesis can be de�ned as
Hok : utk� (1� �NI)uck � 0 for the kth stage, where 0 < �NI < 1, utk and
uck are the responses (mean, proportion, median survival time) for test and
control groups at the kth stage, respectively. The test statistic is de�ned as

Tk =
utk � (1� �NI)uckp
�2t + (1� �NI)�2c

; (9.21)

where �2t = var (utk) and �2c = var (uck) are given by Table 2.1 and (9.3)
for a large sample. It is important to know that there is a variance reduction
in comparison with the pre�xed NI margin approach, in which the variance
is �2t +�

2
c instead of �

2
t +(1� �NI)�2c . Therefore, Farrington-Manning test

is usually much more powerful than the �xed margin approach. The SAS
Macro 9.1 provides the capability for simulating both NI test methods with
either balanced or imbalanced designs (See Problem 9.4).

9.7 Summary and Discussion

In this chapter, we have studied the di¤erent SSR approaches, in which
we have combined the general adaptive design methods (MSP, MPP, and
MINP/LW) with two sample-size adjustment rules given in (9.4) and (9.6).
We have compared the performances of di¤erent approaches using the sim-
ulations. You can use the SAS Macro 9.1 or R program in the appendix
to conduct your own simulations. In fact, it is strongly suggested to do so
before selecting a design. Here is a summary of what we have studied in
this chapter:
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(1) Futility stopping can reduce the sample-size when the null is true.
The futility boundary is suggested because in the case of a very small e¤ect
size, to continue the trial will require an unrealistically large sample-size,
and an increased sample-size to Nmax still may not have enough power.
(2) From an �-control point of view, for the methods in this chapter

(MSP, MPP, and L-W), the algorithm for sample-size adjustment does not
have to be predetermined; instead, it can be determined after we observed
the results from the interim analysis.
(3) It might be a concern if the sample-size is based on a predetermined

algorithm, IDMC�s determination of the new sample-size will actually re-
quire the disclosure of the e¢ cacy information for the trial. There are at
least two approaches to handle this: (a) Use a discrete increment of sample-
size; or (2) Set a target conditional power, and let the IDMC choose the
new sample-size approximating to the conditional power with consideration
of other factors.
(4) Unbiased estimates (point and con�dence interval) can be obtained

by using the �xed weight method, but interpretation may be di¢ cult. In
addition to the unbiased estimate, report the unbiased estimate with a bias
assessment at the true mean = naive estimate.
(6) Power is an estimation, made at the initial design stage, of the

probability of rejecting the null hypothesis. Therefore, it is less important
when the sample-size can be adjusted at IA. In other words, the initial
total sample-size is irrelevant to the �nal sample-size (it is only relevant for
budgeting and operational planning), but the sample-size at the �rst stage
is relevant.
(7) For adaptive designs, the conditional power is more important than

the unconditional power. MSP often show superior over other methods.
Non-binding futility rule is currently adopted by regulatory bodies. With
non-binding futility boundaries, MSP is often superior over other methods.
It is interesting to know that increasing sample-size when the unblinded

interim result is promising will not in�ate the type-I error rate. The un-
blinded interim result is considered promising if the conditional power is
greater than 50% or, equivalently, the sample-size increment needed to
achieve a desired power does not exceed an upper bound (Chen, DeMets,
and Lan, 2004).
There are other practical issues, e.g., what if the stagewise p1 and p2 are

very di¤erent? Does this inconsistency cause any concern? If the answer is
"yes," then should we check this consistency for a classic design too? MSP
emphasizes the consistency, but MPP and MINP don�t. More discussions
on the controversial issues will be presented in Chapter 18.
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Finally, it is interesting to know that a group sequential design with
early stopping is a speci�c use of discrete functions of sample-size re-
estimation.
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Problems

9.1 Use the inverse-normal method to redesign the trial in Example 9.1.

9.2 Prove that the estimator given by Equation (9.19) is median unbi-
ased, but that the mean bias and variance of �̂u depend on the adaptation
rule.

9.3 Proof: The maximum bias for a two-stage adaptive design with
early stopping and SSR is bounded by

0:4
�
p
n1

Nmax � n1
Nmax

=
0:4�
p
n1

rmax � 1
rmax

<
0:4�
p
n1
;

where Nmax is the maximum sample-size per group and rmax = Nmax=n1:

9.4 Study non-inferiority adaptive designs with both pre�xed non-
inferiority margin and Farrington-Manning margin and compare the results
using both MSP and MLP with stopping boundaries in Table 7.5, where
w1 =

p
1=3 and w2 =

p
2=3.

9.5 Design adaptive trial in Example 9.1 using MPP and MINP.

9.6 Design adaptive trial in Example 9.1 using non-binding futility rule.

9.7 Discuss the con�dence interval de�ned by(
�0min = max

�
��1 ; :::; ��Ks
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Chapter 10

Multiple-Endpoint Adaptive Design

Multiple endpoints are common in clinical trials. In this chapter, we �rst
discuss the multiple endpoint issues and commonly used methods in clas-
sic designs. We will review the single-stage and stepwise methods. The
gatekeeper method is particularly interesting; we will extend this method
to multiple-endpoint adaptive trials to develop the �fractal gatekeeper�
method. A trial example will be used to illustrate step by step how to use
the fractal gatekeeper method for analyzing multiple-endpoint adaptive tri-
als.

10.1 Multiplicity Issues

It is well known that multiple analyses can in�ate the type-I error dra-
matically without proper adjustment for the p-values or signi�cance level.
This is referred to as a multiplicity issue. Multiple analyses are sometimes
necessary and the multiplicity can come from di¤erent sources: (1) multiple-
treatment comparison, (2) multiple time point, (3) multiple endpoints, (4)
multiple populations with same treatment, and (5) a combination of above
sources.
Multiple-treatment comparisons are often conducted in dose-�nding

studies. Multiple time point analyses are often conducted in longitudinal
studies with repeated measures or trials with group sequential or adap-
tive designs. We will focus on multiple-endpoint issues in this chapter; the
multiple population issues will be discussed in Chapter 12.
Why multiple endpoint analysis? Lemuel Moyé pointed out (2003, p.76):

There are three primary reason why we conduct a multiple endpoint study:
(1) Diseases of unknown aetiologies or for which no clinical consensus on
the single-most important clinical e¢ cacy endpoint exist, (2) Diseases that
manifest themselves in multi-dimensional ways, and (3) Therapeutic areas
for which the prevailing methods for assessment of treatment e¢ cacy dictate

203



204 Adaptive Design Theory and Implementation

a multi-faceted approach both for selection of the e¢ cacy endpoints and
their evaluations.
The statistical analyses of multiple endpoint problems can be catego-

rized as (1) single primary e¢ cacy endpoint with one or more secondary
endpoints, (2) coprimary endpoints (more than one primary endpoint) with
secondary endpoints, (3) composite primary e¢ cacy endpoint with interest
in each individual endpoint, (4) surrogate primary with supportive sec-
ondary endpoints. A surrogate endpoint is a biological or clinical marker
that can replace a gold standard endpoint such as survival.
In the case of diseases of unknown etiologies where no clinical consen-

sus has been reached on the single most important clinical e¢ cacy end-
point, coprimary endpoints may be used. When diseases manifest them-
selves in multi-dimensional ways, drug e¤ectiveness is often characterized
by the use of composite endpoint, or global disease scores, or the disease
activity index (DAI). When a composite primary e¢ cacy endpoint is used,
we are often interested in which particular aspect or endpoint the drug
has demonstrated bene�ts. ICH Guideline suggests: �If a single primary
variable cannot be selected from multiple measurements associated with
the primary objective, another useful strategy is to integrate or combine
the multiple measurements into a single or �composite� variable, using a
prede�ned algorithm. . . . This approach addresses the multiplicity problem
without requiring adjustment to the type-I error.� For some indications,
such as oncology, it is di¢ cult to use a gold standard endpoint, such as
survival, as the primary endpoint because it requires longer follow-up time
and because patients switch treatments after disease progression. Instead,
a surrogate endpoint, such as time-to-progression, might be chosen as the
primary with other supporting e¢ cacy evidences, such as infection rate or
time-to-skeleton event.

10.1.1 Statistical Approaches to the Multiplicity

Statistical approaches to multiplicity can be categorized as single-step and
stepwise procedures and gatekeeper procedures �very special stepwise pro-
cedures. However, �rst let�s discuss some basic concepts in the multiplicity
discipline.
Basic Concepts
Error In�ation: Suppose we have two primary endpoints in a two-arm,

active-controlled, randomized trial, and e¢ cacy of the drug will be claimed
as long as one of the endpoints is statistically signi�cant. In such scenario,
the familywise error (FWE), i.e., the probability of claiming e¢ cacy when in
fact there no e¢ cacy will be in�ated. The level of in�ation is dependent on
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the correlation between the two test statistics (Table 10.1). The maximum
error rate in�ation occurs when the endpoints are independent. If the
two endpoints are perfectly correlated, there is no alpha in�ation. For a
correlation as high as 0.75, the in�ation is still larger than 0.08 for a level
0.05 test. Hence, to control overall �, an alpha adjustment is required
for each test. Similarly, to study how the alpha-in�ation is related to the
number of analyses, simulations are conducted; results are presented in
Table 10.2. We can see that alpha is in�ated from 0.05 to 0.226 with 5
analyses and to 0.401 with 10 analyses.

Table 10.1: Error In�ation Due to Correlations Between Endpoints

Level �A Level �B Correlation RAB Level �AB
0 0.098

0.25 0.097

0.05 0.05 0.50 0.093

0.75 0.083

1.00 0.050

Note: �A = � for endpoint A, �A = � for endpoint B, and

�AB = � for endpoint A or B.

Table 10.2: Error In�ation Due to Di¤erent Number of Endpoints

Level �A Level �B Number of analyses Level �AB
1 0.050

2 0.098

0.05 0.05 3 0.143

5 0.226

10 0.401

Familywise error control : There are two type of familywise type-I error
controls: strong and weak. The strong control requires a �-level control for
all possible null con�gurations (negation of the alternative hypothesis). A
weak control requires a �-level control for the global null con�guration but
not necessarily all other null con�gurations.
Closed family: A closed family is one for which any subset intersection

hypothesis involving members of the family of tests is also a member of the
family. For example, a closed family of three hypotheses H1; H2; H3 has a
total of 7 members, listed as follows: H1; H2; H3, H1\ H2, H2\ H3, H1\
H3, H1 \H2\ H3.
Closure Principle: Developed by Peritz (1970) and Marcus, Peritz, and

Gabriel (1976). This principle asserts that one can ensure strong control of
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FWE, and coherence (see below) at same time, by conducting the following
procedure: Test every member of the closed family using a level � test (here,
� refers to the comparison-wise error rate, not the FWE rate). A hypothesis
can be rejected provided (1) its corresponding test was signi�cant at �-level,
and (2) every other hypothesis in the family that implies it has also been
rejected by its corresponding �-level test.
Closed Testing Procedure: A test procedure is said to be closed if and

only if the rejection of a particular univariate null hypothesis at a given
signi�cance �-level implies the rejection of all higher level (multivariate)
null hypotheses containing the univariate null hypothesis at the same �-
level. The procedure can be described as follows (Bretz, et al., 2006):
(1) De�ne a set of elementary hypotheses H1; :::;Hn of interest.
(2) Construct all possible m > n intersection hypotheses HI = \Hi;

I � f1; :::; ng :
(3) For each of the m hypotheses �nd a suitable local level-� test.
(4) Reject Hi at FWE rate �, if all hypotheses HI with i 2 I are

rejected, each at (local) level �.
This procedure speci�cally is not often used in practice. However, the

closure principle has been used to derive many useful test procedures such
as those of Holm (1979), Hochberg (1988), Hommel (1988), the multivariate
Hotelling�s T2 test and the family of direction-sensitive linear combination
test statistics of O�Brien types can be closed by direct application of the
closure principle.
Partition Principle: Similar to the closed testing procedure, strong con-

trol over the familywise �-level for the null hypotheses is formed by par-
titioning the parameter space into disjointed partitions with some logical
ordering. Tests of the hypotheses are carried out sequentially at di¤erent
partitioning steps. The process of testing stops upon failure to reject a
given null hypothesis for predetermined partitioning steps.
Coherence and consonance are two interesting concepts. Coherence: If

hypothesis H implies H�, then whenever H is retained, so must be H�.
Consonance: Whenever H is rejected, at least one of its components is
rejected too. Coherence is a necessary property of closed testing procedures;
consonance is desirable but not necessary. A procedure can be coherent but
not consonant because of asymmetry in the hypothesis testing paradigm.
When H is rejected, we conclude that it is false. However, when H is
retained, we do not conclude that it is true; rather, we say that there is no
su¢ cient evidence to reject it. Multiple comparison procedures that satisfy
the closure principle are always coherent but not necessarily consonant
(Westfall, et al., 1999).
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10.1.2 Single Step Procedures

The commonly used single-stage procedures include the Sidak method with
strong FWE control under independence (Sidak 1967), the simple Bon-
ferroni method with strong FWE control, the Simes-Bonferroni method
(Global test, Simes 1986), and Dunnett�s test for all active arms against
the control (Dunnett 1955). In the single-step procedure, to control the
FWE, the unadjusted p-values are compared against the adjusted alpha to
make the decision to reject or not reject the corresponding null hypothesis.
Alternatively, we can use adjusted p-value to compare against the original
� for the decision-making.

Sidak method
The Sidak method is derived based on the simple fact that the probabil-

ity rejecting at least one null hypothesis is equal to 1-Pr(all null hypotheses
are correct). To control FWE, the adjusted alpha �k for the null hypothesis
Hok can be found by solving the following equation:

� = 1� (1� �k)n : (10.1)

Therefore, the adjusted alpha is given by

�k = 1� (1� �)1=n ; k = 1; 2; :::; n: (10.2)

If p-value is less than or equal to �k, reject Hok. Alternatively we can
calculate the adjusted p-value:

~pk = 1� (1� pk)n : (10.3)

If the adjusted p-value ~pk is less than �; then reject Hok:

Simple Bonferroni method
Simple Bonferroni method is a simpli�cation of Sidak method by using

Bonferroni inequality:

P ([nk=1Hk) �
nX
k=1

P (Hk): (10.4)

Based on (10.4), we can conservatively use the adjusted alpha:

�k =
�

n
(10.5)



208 Adaptive Design Theory and Implementation

and the adjusted p-value:

~pk = npk: (10.6)

This is a very conservative approach without consideration of any cor-
relations.

Simes-Bonferroni method
This is a test for the global null hypothesis, i.e., the FWE is weakly con-

trolled. Using the Simes-Bonferroni method, we reject the null hypothesis
if

pk �
k�

n
: (10.7)

Therefore, the adjusted alpha is given by

�k =
k�

n
;

and the adjusted p-value is given by

~pk =
n

k
pk:

Dunnett�s method
Dunnett�s method is used for multiple comparisons of active groups

against a common control group, which is often seen in clinical trials with
multiple parallel groups. Let n0 and ni (i = 1; :::;m) be the sample-size for
the control and the ith group, the test statistic is given by (Westfall, et al.,
1999, p.77)

Tm = max
i

�yi � �y0
�
p
1=ni + 1=n0

; (10.8)

P (Tm � c) =

Z 1

0

Z 1

�1

mY
i=1

8<:�
24 �iz + cu�
1� �2i

�1=2
35� �

24 �iz � cu�
1� �2i

�1=2
359=; d� (z) dFdf (u) ;

(10.9)
where

d� (z)

dz
=

1p
2�
e�

z2

2 (10.10)



Multiple-Endpoint Adaptive Trials 209

is the standard normal density function and

dFv (u)

du
=

v
v
2

�
�
v
2

�
2
v
2�1

uv�1e�
vu2

2 (10.11)

is the density of
p
V=v; where V is Chi-squared random variable with v

degrees of freedom. The parameter �i is given by

�i =

�
ni

n0 + ni

�1=2
: (10.12)

The calculation of (3.9) requires numerical integrations (Hochberg and
Tamhane, 1987, p.141).

Fisher-Combination Test
To test the global null hypothesis Ho = \mi=1Hoi, we can use the so-

called Fisher combination statistic:

�2 = �2
mX
i=1

ln (pi) ; (10.13)

where pi is the p-value for testing Hoi. When Hoi is true, pi is uniformly
distributed over [0,1]. Further more if pi (i = 1; :::;m) are independent, the
test statistic �2 is distributed as a chi-square statistic with 2m degrees of
freedom, thus Ho is rejected if �2 � �22m;1��. Note that if pi is not inde-
pendent or Ho is not true (one of Hoi is not true), then �2 is not necessarily
a chi-square distribution. Therefore, Fisher combination method is weakly
controlled for �:

10.1.3 Stepwise Procedures

Stepwise procedures are di¤erent from single-step procedures, in the sense
that a stepwise procedure must follow a speci�c order to test each hypoth-
esis. In general, stepwise procedures are more powerful than single-step
procedures. There are three categories of stepwise procedures that are
dependent on how stepwise tests proceed: stepup, stepdown, and �xed se-
quence procedures. The commonly used the stepwise procedures include
Bonferroni-Holm stepdown method (Holm 1979), Sidak-Holm stepdown
method (Westfall, et al., 1999, p.31), Hommel�s procedure (Hommel 1988),
Hochberg�s stepup method (1990), Rom�s method (1990), and sequential
test with �xed sequences (Westfall, et al., 1999).
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Step-down Procedure (From the most signi�cance to the least
signi�cance):
In a stepdown procedure, the p-value is arranged in an ascending order,

i.e., from the smallest to the largest:

P(1) � P(2) � ::: � P(n) (10.14)

with the corresponding hypotheses

H(1);H(2); :::;H(n):

The test is proceed from H(1) to H(n): If, P(k) > Ck� (k = 1; :::; n),
retain all H(i) (i � k); otherwise, reject H(k) and continue to test H(k+1):

The critical values Ck are di¤erent for di¤erent procedures.
The adjusted p-values are

(
~P(1) = C1P(1)

~P(k) = max
�
~P(k�1); CkP(k)

�
; k > 1; :::; n:

(10.15)

Therefore an alternative test procedure is to compare the adjusted p-
values against the unadjusted �: After adjusting p-values, one can test the
hypotheses in any order.
For the Bonferroni-Holm stepdown procedure, Ck = n � k + 1: Hom-

mel procedure (Hommel, 1988; Westfall, et al., 1999) derived from Closure
Principle is speci�ed as follows: compute j = max k 2 f1; :::; ng subject
to Pn�k+i > i�

k ; i = 1; ::; k: If the maximum does not exist, reject all Hk,
k = 1; :::; n; otherwise reject Hi with pk � �=j:

Stepup Procedure (From the least signi�cance to the most
signi�cance)
The stepup procedure proceeds from H(n) to H(1): If, P(k) �

Ck� (k = 1; :::; n), reject all H(i) (i � k), otherwise, retain H(k) and con-
tinue to test H(k�1): The critical values Ck for Hochberg stepup procedure
is Ck = n� k + 1 (k = 1; ::; n).
The adjusted p-values are

(
~P(n) = CnP(n);

~Pk = min
�
~P(n�k+1); CkP(k)

�
; k > 1; ::n:

(10.16)
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Therefore, an alternative test procedure is to compare the adjusted p-
values against the unadjusted �.
Hochberg stepup method does not control FWE for all correlations,

but it is a little conservative when p-values are independent (Westfall, et
al. 1999, p.33). Rom (1990) method controls � exactly for independent
p-values. However, the calculation of Ck is complicated.

Sequential test with �xed sequences
This procedure is a stepdown procedure with the order of hypotheses

predetermined:

H1;H2; :::;Hn:

The test is proceed from H1 to Hn: If, Pk > � (k = 1; :::; n), retain all
Hi (i � k). Otherwise, reject Hk and continue to test Hk+1:

The adjusted p-values are

(
~P1 = P1

~Pk = max
�
~Pk�1; Pk

�
; k > 1; ::; n:

(10.17)

The sequence of the tests can be based on the importance of hypotheses
or the power of the tests. Note that if the previous test is not signi�cant,
the next test will not proceeds even if its p-value is extremely small.

Benjamini-Hochberg procedure for FPR
The Benjamini-Hochberg procedure is taken the stepup fashion with

Ck =
k�1
k �: The adjusted p-values are given by (10.15) with the new Ck;

where FPR (False positive rate) is de�ned as the expected proportion of
erroneously rejected null hypotheses among the rejected ones (Benjamini
and Hochberg, 1995; Westfall, et al., 1999, p.21).
Other methods such as Tukey and Sche¤e methods can be found in

many multiplicity literatures, we are not going to discuss here.

10.1.4 Gatekeeper Approach

Gatekeeper approach (Dmitrienko, et al., 2005, p.106-127) is an extension
of the �xed sequence method. The method is motivated by the follow-
ing hypothesis testing problems in clinical trials. (1) Bene�t of secondary
endpoints can be claimed in the drug label only if the primary endpoint
is statistically signi�cant. (2) If there are coprimary endpoints (multiple
primary endpoints), secondary endpoints can be claimed only if one of the
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primary endpoints are statistically signi�cant. (3) In multiple-endpoint
problems, the endpoints can be grouped based on their clinical importance.
Suppose there are n null hypotheses to test. We group them into m

families. Each family is a composition of hypotheses. The hypotheses in
the ith(i = 1; :::;mi) family are denoted by either serial gatekeeper

Fi = Hoi1 [Hoi2 [ ::: [Hoimi
(10.18)

or parallel gatekeeper

Fi = Hoi1 \Hoi2 \ ::: \Hoimi
(10.19)

or mixed type

Fi = (Hoi1 [ ::: [Hoimi) [ (Hoi1 \ ::: \Hoini) : (10.20)

The hypothesis testing proceeds from the �rst family F1 to the last
family Fm. To test Fi (i = 2; :::;m) ; the test procedure has to pass i � 1
previous gatekeepers, i.e., reject all Fk (k = 1; :::; i � 1) at predetermined
level of signi�cance �.
For parallel gatekeeper we can either weakly or strongly control family-

wise type-I error. For serial gatekeeper, we always strongly control the
family-wise error.
In the current regulatory settings, the primary endpoint provides the

basis for approval of an investigational drug, while a signi�cant improve-
ment in a secondary endpoint is not generally considered as substantial
evidence of therapeutic bene�t (O�Neill, 1997). The secondary endpoints
can be (CPMP, 2002): (1) variables that may potentially provide the basis
for a new regulatory claim, (2) variables that may become the basis for
additional claims, (3) variables yielding supportive evidence.

Example 10.1 Acute Respiratory Disease Syndrome Trial
Suppose a parallel, placebo-controlled trial in patients with acute res-

piratory disease syndrome (ARDS). In this 28-day study, the coprimary
endpoints are ventilation-free days (VFD) and 28-day mortality (Death);
the secondary endpoints are the number of ICU-free days (ICUFD, out of
the intensive care unit) and general quality of life (QOL). The secondary
endpoints are used for additional regulatory claim in the label.
Suppose the gatekeeper procedure is used. Speci�cally, VFD and Death

are tested separately at one-sided � = 0:0125: If either is signi�cant, the
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null will be rejected and drug e¢ cacy is claimed. Furthermore, the sec-
ondary endpoints, ICUFD and QOL will be tested separately at one-sided
� = 0:0125: If either or both endpoints are signi�cant, the bene�t on the
corresponding secondary endpoints will be claimed. On the other hand, if
one-sided p-values for both VFD and Death are larger than 0.0125, then
no e¢ cacy will be claimed and no further test on the secondary endpoints
will be pursued.

10.2 Multiple-Endpoint Adaptive Design

As we discussed earlier, a clinical trial usually involves multiple endpoints.
If there are more than two primary endpoints, they are called coprimary
endpoints. However, more often a trial has one primary and several sec-
ondary endpoints. In the coprimary case, as long as the treatment e¤ect
is statistically signi�cant on one of the primary endpoints, the e¢ cacy cri-
terion is met statistically. On the other hand, for the case of primary-
secondary endpoint, the statistical signi�cance must be achieved on the
primary endpoint before the signi�cance of any of the secondary endpoints
can be claimed on the drug label. In this section, we will discuss sequen-
tial adaptive designs for multiple-endpoint trials. Kieser (1999) proposed
a test procedure, in which he considered multiple-endpoint test at each
time-point and multiple-endpoint adjustments are made in the same way
as classic design based on � spent on each time point (e.g., �1 for the �rst
interim analysis). In contrast, Tang and Geller (1999) proposed a di¤erent
approach for classic group sequential design, in which, they view di¤erent
endpoints hierarchically and �xed sequence tests are constructed based on
the importance of the endpoints. The Tang-Geller�s method is more pow-
erful than Kieser�s method. Chang (2007) proposed a procedure to extend
the Tang-Geller�s method. The method can be used for adaptive designs
and is even more powerful than Tang-Geller�s method.

10.2.1 Fractals of Gatekeepers

Recall that the gatekeeper procedure can be described as follows: The hy-
pothesis testing proceeds from the �rst family F1 to the last family Fm, to
test Fi (i = 2; :::;m) ; the test procedure has to pass i�1 previous gatekeep-
ers, i.e., reject all Fk (k = 1; :::; i� 1) at predetermined level of signi�cance
�. We can extend the family structure to multiple hierarchical levels.
The fractals of gatekeepers refer to the nested gatekeepers (or family of
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hypotheses) at di¤erent levels. For example:

Fi = [mi
j=1Fij (10.21)

and Fij itself is a family of hypotheses, i.e., serial gatekeepers

Fij = \nijk=1Fijk (10.22)

or parallel gatekeepers

Fij = [nijk=1Fijk (10.23)

The hypothesis (family) Fijk can further be parallel or serial gatekeep-
ers, and this process can continue even further. For convenience, we call Fi;
Fij ; and Fijk the �rst level, second, and third level families, respectively,
dependent on their number of subscripts.
In general, the hypotheses from the same family or di¤erent families

are not independent The correlation between two hypotheses (or families)
are usually very complicated. Therefore, conservative approaches can be
used, in which no correlations are considered. For the hypothesis families
at each level, we either use the single-step Bonferroni approach or the �xed
sequence procedure such that the FWE is strongly controlled.
A general test procedure is described as follows: At the �rst level of the

hypothesis family with m1 subfamilies, the familywise �-level is �: If their
subfamilies are parallel-structured, we use parallel gatekeeper approach,
i.e., test each subfamily at the level of �F1 = �=m1. If these subfamilies are
serial-structured, we use serial gatekeeper approach, i.e., test each subfamily
at the level of �F1 = � with a �xed sequence. At the second family level
withm2 subfamilies, the familywise �-level is �F1 : Again if their subfamilies
are parallel-structured, we use the parallel gatekeeper approach, i.e., test
each subfamily at the level of �F2 = �F1=m2. If these subfamilies are serial-
structured, we use serial gatekeeper approach, i.e., test each subfamily at
the level of �F2 = � with a �xed sequence. This process continues until
the �-level for each individual hypothesis test (not hypothesis test family)
is determined. The actual test procedure proceeds from the lowest level
(i.e. individual hypothesis level) to the highest level of hypothesis family,
at which the �-level is �:
We illustrate this method with two di¤erent scenarios in an adaptive

design: (1) one primary and several secondary endpoints, (2) coprimary
and several endpoints.
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10.2.2 Single Primary with Secondary Endpoints

Example 10.2 Three-Stage Adaptive Design for NHL Trial
A phase-III two parallel group Non-Hodgkin�s Lymphoma trial was de-

signed with three analyses. The primary endpoint is progression-free sur-
vival (PFS), the secondary endpoints are (1) overall response rate (ORR)
including complete and partial response and (2) complete response rate
(CRR). The estimated median PFS is 7.8 months and 10 months for the
control and test groups, respectively. Assume a uniform enrollment with an
accrual period of 9 months and a total study duration of 23 months. The
estimated ORR is 16% for the control group and 45% for the test group.
The classic design with a �xed sample-size of 375 subjects per group will
allow for detecting a 3-month di¤erence in median PFS with 82% power
at a one-sided signi�cance level of � = 0:025: The �rst interim analysis
(IA) will be conducted on the �rst 125 patients/group (or total N1 = 250)
based on ORR. The objective of the �rst IA is to modify the randomiza-
tion. Speci�cally, if the di¤erence in ORR (test-control), �ORR > 0, the
enrollment will continue. If �ORR � 0, then the enrollment will stop. If the
enrollment is terminated prematurely, there will be one �nal analysis for
e¢ cacy based on PFS and possible e¢ cacy claimed on the secondary end-
points. If the enrollment continues, there will be an interim analysis based
on PFS and the �nal analysis of PFS. When the primary endpoint (PFS)
is signi�cant, the analyses for the secondary endpoints will be performed
for the potential claim on the secondary endpoints. During the interim
analyses, the patient enrollment will not stop. The number of patients at
each stage is approximately as shown in Figure 10.1.

Figure 10.1: Multiple-Endpoint Adaptive Design

We use two di¤erent adaptive methods for this designs: MINP and MSP
as illustrated below.
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I. Inverse-normal Method
The test statistic at the kth analysis is de�ned as:

zik =
kX
j=1

wkj�
�1(1� pij); (10.24)

where the subscript i represents the ith endpoint, i.e., 1 for PFS, 2 for ORR,
3 for CRR. pij is the stagewise p-value for the ith endpoint based on the
subsample from the jth stage.

wkj =

s
NkPk
j=1Nj

: (10.25)

The �rst IA is not intent to claim e¢ cacy or futility, but modify the en-
rollment (continue or not continue enrollment) based ORR. The stagewise
test statistic is given by

zi1 = (1� pi1): (10.26)

At the 2nd IA, the test statistic is given by

Zi2 = 0:8�
�1(1� pi1) + 0:6��1(1� pi2): (10.27)

If the trial continues after the 2nd IA, the test statistic at �nal analysis will
be

Zi3 = 0:58�
�1(1� pi1) + 0:45��1(1� pi2) + 0:68��1(1� pi3): (10.28)

The OB-F stopping boundaries on the z-scale are �1 = 3:490; �2 =

2:468; �3 = 2:015 for stage 1, 2, and 3, respectively (Table 10.3). For
simplicity, the same stopping boundaries are used for PFS, ORR, and CR.
Denote Hoij the null hypothesis for the ith endpoint at jth stage.

The gatekeeper test procedure is described as follows: Construct the �rst
hypothesis family as F1 = Ho11 \ Ho12 \ Ho13 for the PFS, similarly
F2 = Ho21 \ Ho22 \ Ho23 for the ORR, and F3 = Ho31 \ Ho32 \ Ho33:

F1 is tested at level �, if F1 is not rejected, no further test will be tested.
If F1 is rejected, we further test F2: If F2 is not rejected, no further test
will proceed. If F2 is rejected, F3 is tested. All tests will be conducted at
the same level � = 0:025: The (closed set) gatekeeper procedure ensures
the strong control of FWE. Note that due to the correlation between PFS
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and ORR, we can not just consider a two-stage weighting test statistic for
PFS, even if the hypothesis test for PFS is not performed at the �rst IA.
Suppose at the �rst IA, the stagewise p-value for the primary endpoint

(PFS) is p11 = 0:030 and the test statistic is z11 = ��1 (1� p11) = 1:881 <
�1; therefore the trial continues. At the second IA, the stagewise p-value
p12 = 0:034, and the test statistic z12 = 2:6 is calculated from (10.27).
Therefore the null hypothesis for PFS is rejected and trial stops. Because
the PFS is rejected, we can now test ORR. Suppose the stagewise p-value for
ORR is p21 = 0:002 and z21 = ��1 (1� p21) = 3:60 > 3:490; hence the null
hypothesis for ORR is rejected. Because ORR is rejected, we can proceed
with the test for CRR. Suppose that p31 = 0:1 and z31 = 1:281 < �1;

p32 = 0:12 and z32 = 1:73(< �2) from (10.27). Due to rejection of PFS
at the second IA, the trial was stopped. However, the enrollment was
not stopped during the interim analyses. At the time when the decision
was made to stop the trial, 640 patients (approximately 320 per group)
were enrolled. The gatekeeper procedure allows us to proceed to the third
analysis of CRR. However, the rejection boundary needs to be recalculated
through numerical integration or simulation based on the OB-F spending
function. Based on the information time

p
640=750 = 0:923 76, the new

rejection boundary is approximately ��33 = 2:10: Suppose that the observed
p33 = 0:065 and the test statistic z33 = 2:3 is calculated from (10.28).
Therefore CRR is also rejected. We can see that PFS, ORR, and CRR
were all rejected, but at di¤erent times!!! The closed test project allows
the rejections of di¤erent endpoints at di¤erent times (IAs) as illustrated
in this example. The calculation is summarized in Table 10.3.

Table 10.3: MINP Based on Hypothetical pik
PFS ORR CRR

IA (k) �k p1k z1k p2k z2k p3k z3k
1 3.490 0.030 1.881 0.0002 3.60 0.10 1.281

2 2.468 0.034 2.600 0.12 1.730

3 2.015 0.065 2.300

II. Recursive Two-stage Adaptive Design with MSP
We now use the recursive two-stage adaptive design (Chapter 8) as

described in the following steps.
(1) Calculate the sample-size based on the classic �xed sample-size de-

sign.
For median times of 7.8 months and 10 months for the two groups,

an enrollment duration of 9 months, and a trial duration of 23 months, a
sample-size of 350/group will allow for detecting a 2.2-month di¤erence in
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PFS with approximately 80% power at one-sided � = 0:025:
(2) Design the �rst two-stage trial.
The IA will be conducted based on a sample-size of n1 = 150 subjects

per group. Using MSP, we decide the stopping boundaries at IA: �1 = 0:01
and �1 = �2 = 0:1832 from (8.49) or (4.8), we obtain:

�2 =
p
2(�� �1) + �1

= (2(0:025� 0:01))0:5 + 0:01
= 0:1832

(3) Conduct the �rst interim analysis.
Assume p11 = 0:030 > �1 and the null hypothesis for PFS is not re-

jected. The trial should proceed to the next stage.
(4) Decide whether to redesign a new two-stage.
To determine if we need to redesign a new two-stage trial, the conditional

error is calculated (8.48) as �2 = �2 � p11 = 0:1832 � 0:03 = 0:153 2. To
have 90% conditional power, a total of 241 subjects/group are required
based on (8.51) or SAS Macro 7.2 (assumed the standard e¤ect size =
0.21). We decided to add a new two-stage design, n21 = 150 for second IA
(the �rst stage of the second two-stage design), which provides a conditional
reject probability of 79%. The stopping boundaries for the second two-stage
design are speci�ed as follows: �21 = 0:15, Let �21 = �22. From (8.49) or
(4.8), we obtain:

�22 =
p
2(�2 � �21) + �21

= (2(0:1532� 0:15))0:5 + 0:15
= 0:23

Note that we also need to determine the stopping boundaries for ORR
and CRR, but they don�t have to be the same, i.e., the stopping bound-
aries can be di¤erent for di¤erent endpoints. However, the new stopping
boundaries have to be determined for all endpoints at each interim analysis
regardless of the endpoint for which the IA was performed. For simplicity,
we use the same stopping boundaries for all three endpoints.
(5) Perform the 2nd interim analysis.
Assume p12 = 0:04. Therefore, the p-value for the PFS at the 2nd IA is

p11 + p12 = 0:03 + 0:04 = 0:07 < �21 = 0:15: Hence the null hypothesis for
the PFS is rejected.
(6) Because the null hypothesis family F1 for PFS is rejected, we proceed
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to the test for ORR. Assume p21 = 0:007 < �1 = 0:01. Hence the null
hypothesis ORR is rejected.
(7) Because ORR is rejected, we proceed to the test for CRR. Assume

p31 = 0:05 > �1 = 0:01 at the 1st IA. At the 2nd IA, the test statistic T2 =
p31 + p32 = 0:05 + 0:11 = 0:16 > �21 = 0:15: At the last analysis, the test
statistic for CRR is T2 = p31 + p32 + p33 = 0:05 +0:11 +0:05 = 0:21 < �22
= 0:23; therefore the null hypothesis for CRR is rejected.

Table 10.4: RTAD Based on Hypothetical pik
PFS ORR CRR

IA (k) �k p1k p2k p3k
1 0.01 0.03 0.007 0.05

2 0.15 0.04 0.11

3 0.23 0.05

10.2.3 Coprimary with Secondary Endpoints

When there is more than one primary endpoint, the test of the primary can
be either �xed sequence or parallel. If there are more than two primary
endpoints or more than two secondary endpoints, the fractal gatekeeper
method can be used.
Example 10.3 Design with Multiple Primary-Secondary End-

points
Suppose we are interested in two primary and three secondary end-

points. There are two family members at the �rst level, corresponding to
primary and secondary endpoints. We will call them primary and secondary
families. With the primary family there are two individual hypotheses for
the two primary endpoints. With the secondary family there are three
individual hypotheses for the three endpoints.
Strategy 1:
We will test the two families with the serial-gatekeeper procedure, there-

fore the familywise �-level for both the primary and secondary families is �:
Within the primary family, the two hypotheses will be tested sequentially
with a �xed sequence; each test is performed at level �: Similarly, within
the secondary family, the three hypotheses will be tested sequentially with
a �xed sequence; each test is performed at level �:
Strategy 2:
We will test the two families with the serial-gatekeeper procedure, there-

fore the familywise �-level for both the primary and secondary families is �:
Within the primary family, the two hypotheses will be tested sequentially
with a �xed sequence; each test is performed at level �: However, within the
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secondary, each of the three hypotheses will be tested at level �=3 without
speci�cation of any order.
Strategy 3:
We will test the two families with the serial-gatekeeper procedure, there-

fore the familywise �-level for both the primary and secondary families is
�: Within the primary family, each of the two hypotheses will be tested at
level �=2: However, within the secondary family, the three hypotheses will
be tested sequentially with a �xed sequence at the same level �:
Strategy 4:
We will test the two families with the serial-gatekeeper procedure, there-

fore the familywise �-level for both the primary and secondary families is �:
Within the primary family, each of the two hypotheses will be tested at level
�=2: Similarly, within the secondary family, each of the three hypothesis
will be tested at level �=3 without speci�cation of any order.
Strategy 5:
We will test the two families with the serial-gatekeeper procedure, there-

fore the familywise �-level for both the primary and secondary families is
�: Within the primary family, each of the two hypotheses will be tested at
level �=2:Within the secondary family, we further group the three hypothe-
ses into two families: The �rst one has a single hypothesis test for the �rst
secondary endpoint, and the second family consists of the hypotheses for
the other two secondary endpoints. We test the two families sequentially
with a �xed sequence, both at level �. However within the second family
for the secondary endpoints, the two individual hypotheses will be tested
in parallel. Therefore, the �rst secondary endpoint is tested at level � but
the 2nd and 3rd secondary endpoints are tested at level �=2: Note that due
to the fractal gatekeeping method, if one of the hypotheses in the precedent
family is not rejected, no hypothesis test will performed further.
There are even more possible strategies. See the general test procedure

for the fractal gatekeeping approach.

10.2.4 Tang-Geller Method

Tang and Geller (1999) proposed the following test procedures to group
sequential design with multiple endpoints. This method can be general-
ized to adaptive design, though their procedures are less powerful than the
method in the previous section.
Let M = f1; 2; :::;mg be the set of indices for the m endpoints. Let F

denote a non-empty subset of M and Ho;F the null hypothesis ui = 0 for
i 2 F . Let TF be a test statistic for Ho;F . Consider a group sequential
trial with K analyses. We use TF;t to indicate the dependence of TF on the
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analysis time t. Let f�F;t; t = 1; 2; :::;Kg be a one-sided stopping boundary
for testing Ho;F such that PHo;F fTF;t > �F;t for some t g � �. For a given
vector u, let Iu = fi; ui = 0g.
Tang and Geller proposed the following two procedures that preserve

strong control of type-I error.
Procedure 1:
Step 1. Conduct interim analyses to test Ho;M , based on the group

sequential boundary f�M;t; t = 1; 2; :::;Kg.
Step 2. When Ho;M is rejected, say at time t�, stop the trial and apply

the closed testing procedure to test all the other hypotheses Ho;F using
TF;t� with �F;t� as the critical value.
Step 3. If the trial continues to the last analysis without rejection of

Ho;M , then no hypotheses are rejected.
Proof: A type-I error occurs if, for some F � Iu, Ho;F is rejected,

where u denotes the underlying parameter vector (e.g., di¤erence in mean,
response rate, or median survival time). According to the closed testing pro-
cedure,Ho;F can be rejected only ifHo;Iu is rejected. Thus, {type-I error oc-
curs} = [Kt=1ftype-I error occurs at time t g � [Kt=1 freject Ho;Iu at time tg
� [Kt=1fTIu;t > �Iu;tg = fTIu;t > �Iu;t, for some t, 1 � t � Kg. Hence, the
probability of making at least one type-I error is at most P{TIu;t > �Iu;t,
for some t}� �:

Procedure 1 does not allow continuation of the trial once the global
test crosses its boundary. Tang and Geller further developed Procedure 2
below, which allows the trial to continue until all hypotheses are rejected
or the last analysis is conducted.
Procedure 2:
Step 1. Conduct interim analyses to test Ho;K , based on the stopping

boundary f�K;t; t = 1; 2; :::;Kg.
Step 2. When Ho;M is rejected, say at time t�, apply the closed testing

procedure to test all the other hypotheses Ho;F using TF;t� with �F;t� as
the critical value.
Step 3. If any hypothesis is not rejected, continue the trial to the next

stage, in which the closed testing procedure is repeated, with the previously
rejected hypotheses automatically rejected without retesting.
Step 4. Reiterate step 3 until all hypotheses are rejected or the last

stage is reached.

You may have noticed that the procedure we have used in Examples
10.2 and 10.3 can be described as follows.
Procedure 3 (Chang, 2007):
Step 1. Conduct interim analyses to test Ho;K , based on the group
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sequential boundary f�K;t; t = 1; 2; :::;Kg.
Step 2. When Ho;M is rejected, say at time t�, apply the closed testing

procedure to test all the other hypotheses Ho;F using TF;t�� with �F;t�� as
the critical value for any predetermined IA time t�� � t�.
Step 3. If any hypothesis is not rejected, continue the trial to the next

stage, in which the closed testing procedure is repeated, with the previously
rejected hypotheses automatically rejected without retesting.
Step 4. Reiterate step 3 until all hypotheses are rejected or the last

stage is reached.

10.2.5 Summary and Discussion

In this chapter, we have introduced several important concepts, principles,
and test procedures for multiplicity issues. The closure principle is very use-
ful, from which many test procedures are developed including the stepup,
stepdown, �xed sequence, and gatekeeper procedures. The fractal gate-
keeper procedure is very general and can be applied to very complicated
test scenarios. Following Tang and Geller�s idea, we construct an improved
closed test procedure for adaptive designs. There are other methods that
construct test-family based on the analysis time-point. Those methods are
less powerful.
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Problem

10.1 Prove the fractal gatekeeper method preserve strong ��control.

10.2 This is a case presented by FDA statisticians (Hung, O�Neill,
Wang, and Lawrence, 2006). In an oncology clinical trial, time-to-disease
progression (TTP) was a primary surrogate endpoint and overall survival
(OS) was the ultimate primary e¢ cacy endpoint. A group sequential de-
sign was employed with an alpha-spending function pre-speci�ed for the
TTP endpoint. After TTP was shown to be highly statistically signi�cant
at an interim analysis, the trial was stopped. An important question is
how to test the other endpoint, OS, given that perhaps only 20% of the
planned total number of deaths is available. One suggestion is to use the
same alpha-spending function as used for TTP or an alpha-spending func-
tion that has been pre-speci�ed for OS, and then use the critical value that
is read from the rejection boundary at the relevant information time. How-
ever, this suggestion may arguably be unfair when OS is analyzed only once
at the time of trial termination or at best no more frequently than TTP.
The question is what should be the best analysis for OS? Please use the
method discussed in this chapter to answer this question.

10.3 Study the following case presented by FDA statisticians (Hung,
O�Neill, Wang, and Lawrence, 2006): In a heart failure trial, the primary
endpoint is a new composite score endpoint of several clinical outcomes
(e.g., death, MI, hospitalization for worsening heart failure, change in qual-
ity of life status at some time after the patient is treated with a study
drug). The sample-size and the total number of composite endpoint events
are increased, based on a new projected e¤ect size for the composite end-
point calculated at an interim analysis time of the trial. An important
question is how to test each component of the composite endpoints and
other clinically important secondary endpoints after this adaptation.

10.4 An adaptive approach for bivariate-endpoint is studied by Todd
(2003). Discuss the di¤erences between Todd�s method and the method
provided in this Chapter.
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Chapter 11

Drop-Loser and Add-Arm Design

11.1 Opportunity

An adaptive seamless phase II/III design is one of the most attractive adap-
tive designs. A seamless adaptive design is a combination of traditional
phase II and phase III trials. In seamless design, there is usually a so-
called learning phase that serves the same purpose as a traditional phase
II trial, followed by a con�rmatory phase that serves the same objectives
as a traditional phase III trial (Figure 11.1). Compared to traditional de-
signs, a seamless design can reduce sample-size and time-to-market for a
positive drug candidate. The main feature of a seamless design is the drop-
loser mechanism. Sometimes it also allows for adding new treatment arms.
A seamless design usually starts with several arms or treatment groups.
At the end of the learning phase, inferior arms (losers) are identi�ed and
dropped from the con�rmatory phase.
Hung, Wang, O�Neill, and Lawrence from FDA (2006) articulate that

it may be advisable to redistribute the remaining planned sample-size of a
terminated arm to the remaining treatment arms for comparison so that
coupled with use of a proper valid adaptive test, one may enhance the
statistical power of the design to detect a dose that is e¤ective (Hung,
O�Neill, Wang, and Lawrence, 2006).
In this chapter, we will discuss di¤erent methods for seamless designs.

Examples are provided to illustrate how to design seamless adaptive trials
using the SAS macro.

11.1.1 Impact Overall Alpha Level and Power

A seamless design can enjoy the following advantages of potential savings by
early stopping for futility and e¢ cacy. A seamless design is e¢ cient because
there is no lead time between the learning and con�rmatory phases, and

225
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the data collected at the learning phase are combined for �nal analysis.
A noticeable feature of the seamless phase II/III design is that there are
di¤erences in controlling type-I error rate (alpha), and power between a
seamless design and the traditional design with separate phase II and phase
III trials. In traditional designs, if we view the two Phase II and III trials
as a super experiment, the actual � is equal to �II�III , where �II and �III
are the type-I error rates controlled at phase II and phase III, respectively.
If two phase III trials are required, then � = �II�III�III : In seamless phase
II/III design, actual � = �III ; if two phase III trials are required, then � =
�III�III : Thus, the � for a seamless design is actually 1=�II times larger
than the traditional design. Similarly, in the classic "super experiment", the
actual power is equal to PowerII PowerIII , while in a seamless phase II/III
design, actual power is equal to PowerIII , where PowerII and PowerIII are
the power for phase II and III trials, respectively. Therefore, the power for
a seamless design is 1=PowerII times larger than the traditional design.

Figure 11.1: Seamless Design

11.1.2 Reduction In Expected Trial Duration

As pointed out by Walton (2006), time between studies has multiple compo-
nents: (1) analysis of observed data, (2) interpretation of analyzed results,
(3) planning next study, (4) resource allocation, (5) selection of, agreements
with, investigators, (6) IRB submission and approval, and (7) other. In a
seamless design, we move the majority of the take "planning next study" to
up-front; perform analysis at real time; and combined traditional two IRB
submissions and approvals into one. Also, in seamless design there is one
set of "selection of, agreements with, investigators" instead of two. Adap-
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tive designs require adaptive or dynamic allocation of resources. At the end
of traditional phase-IIb design, the analysis and interpretations of results
are mainly performed by sponsor and the "go and no-go" decision-making
is fully made by sponsor unless there is major safety concern. In seamless
design, the traditional phase IIb becomes the �rst phase of the seamless
design and IDMC has a big inference on the decision. From that point of
view, seamless design is less biased.
There could be competing constraints among "faster," "cheaper," and

"better" as noted by Walton (Figure 11.2). It is challenging to satisfy all
goals simultaneously. Decision theory in conjunction with adaptive design
is a way to balance the limits to satisfying these goals.

Figure 11.2: Decision Theory for Competing Constraints

11.2 Method with Weak Alpha-Control

11.2.1 Contract Test Based Method

The weak ��control method for drop-loser design uses a contrast test at
the �rst stage (Chang, 2006). At the interim analysis, the arm with the
best observed response and the control will be carried on to the second
phase.
In Section 2.4, we have discussed the contrast test:

Ho :

mX
i=1

ciui � � � 0 vs. Ho :

mX
i=1

ciui � � > 0: (11.1)

The test statistic of a contrast test at the �rst stage is given by
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T1 =

Pm
i=1 ciûi � �

�
qPm

i=1
c2i
n1i

; (11.2)

where �2 = var (ûi) is considered �xed for large sample-size; n1i is the
sample-size for the ith arm at the �rst stage. ûi is an estimate of ui which is
the true response for the ith arm. We choose equal contrasts, i.e., c1 = m�1
and ci = �1 (i = 2; :::;m), where m = number of arms and the �rst arm is
the control arm.
The test statistic has a normal distribution:

T1 � N(
ui
Pm

i=1 ci � �

�
qPm

i=1
c2i
n1i

; 1): (11.3)

Under the global null hypothesis Ho, the test statistic T1 has the standard
normal distribution. Denote the corresponding p-value as

p1 = 1� � (T1) : (11.4)

Let

T1 = p1

and

T2 = p1 + p2;

where p2 is the stagewise p-value based on subsample at stage 2 for the
null hypothesis Ho2 : uR = u1: Here uR is the true response (parameter)
of the best response arm observed at stage 1, i.e., ûR = max fû1; :::; ûmg
at the �rst stage, and R is the best observed response arm at stage 1.
Without loss of generality, assume R = m. Under the global null hypothesis
Ho : ui = c; p1 and p2 are uniformly distributed over [0,1]. Therefore, the
method controls � under the global null hypothesis. If the global null is
rejected, we can conclude that there is a treatment di¤erence.

11.2.2 Sampson-Sill�s Method

Sampson and Sill (2005) proposed a drop-loser design, in which only one
winner and the control can be carried on to the second phase of the seam-
less design. They considered using a conditional distribution on a speci�c
event to construct conditionally unbiased estimators. Following a similar
idea, tests and con�dence intervals can be derived. The speci�c conditional
distribution used in the �nal analysis depends on the outcomes from the
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�rst stage. The conditional level � tests are also unconditional level � tests.
In other words, if all of the null hypotheses are true for all of the treat-
ments, the probability of rejecting a null hypothesis is never greater than
�, regardless of which treatment is selected (Sampson and Sill, 2005).

Sampson and Sill assume the following ordered outcome after the �rst
stage,

Q = fX : �X1 > �X2 > ::: > �Xmg

so that the �rst arm �1 continues into the second stage (other outcomes
would be equivalently handled by relabeling). Typically, at the end of the
trial, we want to make inferences on the mean �1 of treatment �1, and
compare it with the control (e.g., test H0 : �1 � �0 � �1 or construct a
con�dence interval about �1 � �0). Therefore, we can construct uniformly
most powerful (UMP) unbiased tests for hypotheses concerning �1 based
upon the conditional distribution of W . To see this, note that the test is
based on the conditional event Q. Lehmann (1983) gives a general proof
for this family, which shows that conditioning on su¢ cient statistics associ-
ated with nuisance parameters causes them to drop from the distribution.
In addition, the theorem states that the use of this conditional distribution
to draw inferences about a parameter of interest yields hypothesis testing
procedures which are uniformly most powerful unbiased unconditionally
(i.e., UMPU before conditioning on the su¢ cient statistics). The calcula-
tions to carry out the hypothesis and con�dence intervals require numerical
integration (Sampson and Sill, 2005).

11.2.3 Normal Approximation Method

Let�s consider a drop-loser design with three arms: A, B; and C (control).
At the �rst stage, we perform two pair-wise comparisons: A versus C and B
versus C. The corresponding p-values are denoted by p1A and p1B . If p1A <
p1B , arm B is dropped; otherwise, arm A is dropped. If we don�t drop any
arm, the p-value for the two comparisons at the �nal stage are denoted by
pA and pB . It is obvious that p1A, p1B , pA, and pB are uniformly distributed
under the global null that implies all three arms are equally e¤ective. For
the drop-loser design, we are interested in the statistic

Zw = IABZ
A + (1� IAB)ZB ;

where IAB = 1 if arm B is dropped; otherwise IAB = 0; ZA = �(1� pA)
and ZB = �(1� pB) :
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Shun, Soo, and Lan (2007) found that under the global null hypothesis,
Zw is approximately normal distributed with mean E (Zw) =

p
�
2� ; and

var (Zw) = 1� �
2� , where information time for the interim analysis � = n1

n

(the sample-size fraction at the interim analysis). Therefore they proposed
a test statistic as

Zws =
Zw �

p
�
2�p

1� �
2�

;

which has approximately the standard normal distribution.
The approximate p-value hence can be easily obtained: pA = 1 �

� (Zws) : The exact p-value is given by

p = pA + 0:0003130571 (4:444461
� )� 0:00033

Note that we have used the inverse-normal transformation to generalize
Shen-Soo-Lan method to binary and survival endpoints.

The advantage of this method is simplicity!

11.3 Method with Strong Alpha-Control

11.3.1 Bauer-Kieser Method

Since the weak controlled method cannot tell exactly which treatment is
e¤ective, Bauer-Kieser (1999) developed a strong control method by ad-
justing the p-value from the �rst stage p1 using single-step method such as
Dunnett or Bonferroni method. B-K method is conservative and is OK for
design with a larger early e¢ cacy stopping probability. However, for seam-
less design, the �rst stage is often for dose selection only. In such cases,
B-K method is ine¢ cient. The SAS macro later in this chapter will use
the Bonferroni adjusted p-value for the �rst stage p1, which is uniformly
larger than the p-value with the uniform distribution: In other words, we
conservatively choose the test statistic (M � 1)p1 for the �rst stage and
(M � 1)p1 + p2 for the second stage, where M is the maximum number of
arms in the trial.

11.3.2 MSP with Single-Step Multiplicity Adjustment

Assume there are m1 comparisons among M treatment groups at the �rst
stage. These comparisons can be expressed as m1 null hypotheses:
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Hoi; i = 1; :::;m1: (11.5)

The corresponding p-values are p1i; i = 1; :::m1: With Bonferroni adjust-
ment (if there is a common control group for all the comparisons, Dunnett
method is better), the Bonferroni adjusted p-value is ~p1i = m1 p1i:

Decision rules are described as follows:
At stage 1: (1) If m1 p1i � �1, then reject Hoi (i = 1; :::;m1);

(2) If m1 p1i > �1, then accept Hoi (i = 1; :::;m1); (3) If �1 �
m1 p1min > �1, then continue to the second stage and make adapta-
tions (e.g., adjust sample-size and add new arms) if necessary, where
p1min = min fp11; :::; p1m1

g :
At stage 2: (1) Choose a set of comparisons based on the corresponding

p-values ~p1i or other criteria such as safety, for the second stage. Assume
there arem2 comparisons at the second stage. (2) Based on the second stage
data, the naive stagewise p-values are calculated as pi and the Bonferroni
adjusted p-value is ~p2i = m2p2i.
Decision rules at stage 2: If ~p1i+ ~p2i = m1p1i+m2p2i � �2; then reject

Hoi (i = 1; :::;m2), otherwise don�t reject the null. The global null can be
rejected as long as m1p1min+m2p2min � �2, where p2min = fp21; :::; p2m2g.
Alternatively, we can use a �xed sequence test procedure for the second

stage. The sequence is determined by the order of the p-values at the �rst
stage (from the smallest p-value to the largest p-value). This procedure is
expected to have more power.

11.3.3 A More Powerful Method

In the weak control method based on contrast test, the test statistics are
T1 = p1and T2 = p1 + p2; respectively, for the �rst and second stage,
where p2 is the stagewise p-value based on subsample at stage 2 for the null
hypothesis Ho2 : uR = u1: Assume R = m.
To control the type-I error, we need to control � under the condition

that the best observed arm is in fact an ine¤ective arm with the same
response as the control arm, i.e.,

P (T2 � �2 \ �1 > T1 > �1ju1 = uR) � �: (11.6)

Controlling type-I error under all null confutations are di¢ cult. Let�s
�nd out the worst scenario, then we control type-I error under this condi-
tion. In other words, we want to �nd out the null condition that maximizes
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the conditional error p� = P (T2 � �2 \ �1 > T1 > �1ju1 = um). Note that
var(T1; T2) = var(T1; T1) = 1. Also, we have

@

@ui
P (min(�2 � p2; �1) > T1 > �1ju1 = uR) = 0; (11.7)

where p2 and T1 = p1 are conditionally independent under u1 = um; p2 � 1
and T1 � fu1=um (u1; :::; um).
There is no simple global maximum solution for (11.7). However, a local

maximum solution can be found.
If (11.7) has a unique solution for ui, then because of exchangeability of

u2; :::; um�1 in (11.6) (p�1 is a function of u1; :::; um), we know immediately
that an extreme value occurs when

u2 = u3 =; :::;= um�1: (11.8)

The other extreme values occur when some of uis approach in�nity. This
will give the minimum value 0 because Pr (�1 > p�1 > �1; u1 = uR) = 0:

We now can use simulation to determine the stopping boundaries under
condition

u1 = um; u2 = u3 =; :::;= um�1 (11.9)

with strong alpha-control.
For a given u1 = um = u0; �1 and �1, simulate under various values

for u2 = u3 =; :::;= um�1 to obtain worst value for u2 = u3 =; :::;= um�1;

say u�: Then change �2 until the percentage of signi�cance is equal to the
overall �:

11.4 Application of SAS Macro for Drop-Loser Design

SAS Macro 11.1, DrpLsrNRst, can be used to simulate the trial with drop-
loser design using either weak or strong alpha-control. The weak control
only controls � under the global null hypothesis. For the strong control,
� is controlled under all null con�gurations. At the �rst stage, Bonferroni
adjustment is used for the strong control by in�ating the p-value from p1
to (nArms-1)p1min, where p1min is the smallest p-value for all the compar-
isons from the �rst stage. For the weak control, the �rst stage p-value p1 is
from a contrast test (see Chapter 2) and no p-value adjustment is required.
The overall � control is controlled by using MSP. The SAS variables are
de�ned as follows. nArms = number of arms in the trial, usfig = the true
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response (mean, rate, and hazard rate) in the ith arm, sigma = common
standard deviation, NId = noninferiority margin, N = sample per group,
Nmax = maximum sample-size per group, cPower = the target condi-
tional power at the interim analysis, AveN = average total sample-size,
Alpha1 = early e¢ cacy stopping boundary (one-sided), beta1= early fu-
tility stopping boundary, Alpha2 = the �nal e¢ cacy stopping boundary.
For the strong control, CntlType = "strong"; otherwise, the weak control
is used. The �rst arm must be the control arm.

��SAS Macro 11.1: Two-Stage Drop-Loser Adaptive Design��
%Macro DrpLsrNRst(nSims=100000, CntlType="strong", nArms=5,

alpha=0.025, beta=0.2, NId=0, cPower=0.9, nInterim=50,

Nmax=150, nAdj="Y", alpha1=0.01, beta1=0.15,

alpha2=0.1871, EP="normal", sigma=1, tStd=24, tAcr=10);

Data DrpLsrNRst; Set dInput;

Keep FSP ESP AveN Power cPower Nmax;

Array us{&nArms}; Array u1{&nArms};

Array u2{&nArms}; Array cs{&nArms};

seedx=1736; seedy=6214; alpha=&alpha; NId=&NId;

Nmax=&Nmax; nArms=&nArms; n1=&nInterim; sigma=&sigma;

cPower=&cPower; FSP=0; ESP=0; AveN=0; Power=0;

If &EP="mean" Then sigma=&sigma;

If &EP="binary" Then sigma=(us1*(1-us{1}))**0.5;

If &EP="survival" Then

sigma=us{1}*(1+exp(-us{1}*&tStd)*(1-exp(us{1}*&tAcr))

/(&tAcr*us{1}))**(-0.5);

Do isim=1 to &nSims;

TotalN=nArms*n1; uMax=us{1}; Cntrst=0; SumSqc=0;

Do i=1 To nArms;

u1{i}=Rannor(seedx)*sigma/Sqrt(n1)+us{i};

If u1{i}>uMax Then Do uMax=u1{i}; iMax=i; End;

Cntrst=Cntrst+cs{i}*u1{i};

SumSqc=SumSqc+cs{i}*cs{i};

End;

Z1 = Cntrst*Sqrt(n1)/Sqrt(SumSqc)/sigma;

p1=1-ProbNorm(Z1);

* Bonferroni Adjustment;

If &CntlType="strong" Then

p1=(nArms-1)*(1-ProbNorm((uMax-us{1})/sigma*Sqrt(n1/2)));

If p1>&beta1 Then FSP=FSP+1/&nSims;
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If p1<=&alpha1 Then do;

Power=Power+1/&nSims; ESP=ESP+1/&nSims;

End;

If iMax=1 Then Goto myJump;

If p1>&alpha1 and p1<=&beta1 Then do;

BF=Probit(1-max(0,&alpha2-p1))-Probit(1-cPower);

n2=2*(sigma/(u1{iMax}-u1{1})*BF)**2;

nFinal=min(n1+n2, Nmax);

If &nAdj="N" Then nFinal=Nmax;

If nFinal>n1 Then do;

TotalN=2*(nFinal-n1)+nArms*n1;

u2{1}=Rannor(seedx)*sigma/Sqrt(nFinal-n1)+us{1};

u2{iMax}=Rannor(seedy)*sigma/Sqrt(nFinal-n1)+us{iMax};

T2=(u2{iMax}-u2{1}+NId)*Sqrt(nFinal-n1)/2**0.5/sigma;

p2=1-ProbNorm(T2); TS2=p1+p2;

If .<TS2<=&alpha2 Then Power=Power+1/&nSims;

End;

End;

myJump:

AveN=AveN+TotalN/&nSims;

End;

Output;

Run;

Proc Print Data=DrpLsrNRst (obs=1); Run;

%Mend DrpLsrNRst;

��SAS��

Example 11.1 Seamless Design of Asthma Trial
The objective of this trial in an asthma patient is to con�rm sustained

treatment e¤ect, measured as FEV1 change from baseline to the 1-year of
treatment. Initially, patients are equally randomized to four doses of the
new compound and a placebo. Based on early studies, the estimated FEV1
change at week 4 are 6%, 12%, 13%, 14%, and 15% (with pooled standard
deviation 18%) for the placebo (dose level 0), dose level 1, 2, 3, and 4,
respectively. One interim analysis is planned when 50% of patients have
the e¢ cacy assessments. The interim analysis will lead to either picking the
winner (arm with best observed response), or stopping trial for e¢ cacy or
futility. The winner and placebo will be used at stage 2. The �nal analysis
will be based on the sum of the stagewise p-values from both stages. The
stopping boundaries are �1 = 0:01; �1 = 0:15; �2 = 0:1871: The decision
rules are: if ~p1 � �1, stop the trial and claim e¢ cacy; if ~p1 > �1, stop the
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trial and claim futility; if �1 < ~p1 � �1, proceed to the second stage. At
the �nal analysis, if ~p1 + p2 � �2, claim e¢ cacy, otherwise claim futility.
For the weak control, ~p1 = p1; where p1 is the naive stagewise p-value from
a contrast test based on subsample from stage 1. For the strong control,
the ~p1 is the adjusted p-value, i.e., ~p1 = 4p1min.

Table 11.1: Response and Contracts in Seamless Design

Arms 0 1 2 3 4

FEV1 change 0.06 0.12 0.13 0.14 0.15

Contrasts -0.54 0.12 0.13 0.14 0.15

The mean changes in FEV1 from baseline and contrast coe¢ cients are
presented in Table 11.1. For both the weak-control and strong-control de-
signs, the interim analysis is performed based on 50 patients per group; the
maximum sample-size is Nmax = 100; the target conditional power is 90%
for sample-size adjustment using MSP.
The simulations are performed for both the null hypothesis (A mean

FEV1 change of 6% for all treatment groups) and the alternative hypoth-
esis, using the following SAS macro calls. The results are summarized in
Tables 11.2 and 11.3. We can see that the sample-size required for the weak
and strong � controls are similar. However, the futility stopping probabil-
ity is higher for the strong control than the weak control under the null
hypothesis; under the alternative, the futility stopping probability is lower
for the strong control than the weak control.

��SAS��
Title "Simulations of Drop-loser Design under Ho for Example 11.1";

Data dInput;

Array us{5} (.06, .06, .06, .06, .06); Array cs{5} (-0.54, .12, .13, .14, .15);

%DrpLsrNRst( CntlType="weak", nArms=5, alpha=0.025, beta=0.2,

NId=0, cPower=0.9, nInterim=50, Nmax=100, nAdj="Y",

alpha1=0.01, beta1=0.15, alpha2=0.1871, EP="normal", sigma=0.18);

%DrpLsrNRst(CntlType="strong", nArms=5, alpha=0.025, beta=0.2,

NId=0, cPower=0.9, nInterim=50, Nmax=100, nAdj="Y",

alpha1=0.01, beta1=0.15, alpha2=0.1871, EP="normal", sigma=0.18);

Run;

Title "Simulations of Drop-loser Design under Ha for Example 11.1";

Data dInput;

Array us{5} (.06, .12, .13, .14, .15); Array cs{5} (-0.54, .12, .13, .14, .15);

%DrpLsrNRst(CntlType="weak", nArms=5, alpha=0.025, beta=0.2,

NId=0, cPower=0.9, nInterim=50, Nmax=100, nAdj="Y",
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alpha1=0.01, beta1=0.15, alpha2=0.1871, EP="normal", sigma=0.18);

%DrpLsrNRst(CntlType="strong", nArms=5, alpha=0.025, beta=0.2,

NId=0, cPower=0.9, nInterim=50, Nmax=100, nAdj="Y",

alpha1=0.01, beta1=0.15, alpha2=0.1871, EP="normal", sigma=0.18);

Run;

��SAS��

Table 11.2: Results of Seamless Design under Global Ho

�-Control N1 Nmax FSP ESP AveN cPower Power

Weak 50 100 .85 .010 264 0.9 .025

Strong 50 100 .97 .002 252 0.9 .002

Table 11.3: Results of Seamless Design Under Ha

�-Control N1 Nmax FSP ESP AveN cPower Power

Weak 50 100 .053 .634 278 0.9 0.896

Strong 50 100 .009 .552 285 0.9 0.903

11.5 Summary and Discussion

We have studied the seamless designs that allow for dropping losers and/or
adding new arms, and early e¢ cacy or futility stopping. Note that the
e¢ ciency of a seamless design is sensitive to the sample-size fraction or
information time in the end of the learning phase. Therefore simulations
should be done to determine the best information time for the interim
analysis.
Practically, the seamless trials require early e¢ cacy readouts. This early

e¢ cacy assessment can be the primary endpoint for the trial or surrogate
endpoint (biomarker). Because data analysis and interpretation allow ex-
ploration of richness of clinical data, the interim analysis should also include
some variables other than the primary. Those analyses can be descriptive
or hypothesis testing kind. The inferastruct such CDISC, EDC, ExpDesign

Studio
R
, and East

R
, Clinical Data Workbench

R
can be helpful in this

regard. Seamless design can be also used for other situations such as a
combination of Phase I and Phase II trials. Regarding the logistic issues
in a seamless design, please see the papers by PhRMA adaptive working
group (Maca, et al., 2006; Quinlan, Gallo, Krams, 2006).
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Problem

11.1 Study the e¤ect of contrasts (Table 11.4) on the power and other
operating characteristics using a �ve-group drop-loser design with and with-
out sample-size adjustment.

Table 11.4: Response and Contrast Shapes

Shape u0 u1 u2 u3 u4 c0 c1 c2 c3 c4
Monotonic 1.0 2.0 3.5 4.0 4.5 -1.9 -0.9 0.1 1.1 1.6

Wave 1.0 1.0 4.0 1.0 3.0 -1.0 -1.0 2.0 -1.0 1.0

Step 1.0 3.4 3.4 3.4 3.4 -1.92 0.48 0.48 0.48 0.48

11.2 Study drop-loser designs with a binary endpoint.

11.3 Conduct a numerical study of the weak ��control method using
SAS Macro 11.1 under di¤erent null con�gurations:
(1) �i = c (2) �1 = �2 = c; �i > c: (3)....

11.4 Suppose in a classic m-group dose-�nding trial with a continuous
response (variance �2 = 1), the test statistics for pairwise comparisons are
de�ned as

Zi =
�xi � �x0p

n
;

where �xi is the mean of the ith group, i = 0 for the control group, and n
is the sample-size per group. Study the distributions of the following order
statistics:

Z(1) <; :::; < Z(m):

Are the distributions close to the distributions for the standard order
statistics (Kokoska and Zwillianer, 2000)?

11.5 Implement SAS macros or R functions for drop-loser designs with
MPP and MINP.
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Chapter 12

Biomarker-Adaptive Design

12.1 Opportunities

Biomarkers, as compared to a true endpoint such as survival, can often be
measured earlier, easier, and more frequently; are less subject to competing
risks, and less confounded. The utilization of biomarker will lead to a better
target population with a larger e¤ect size, a smaller sample-size required,
and faster decision-making. With the advancement of proteomic, genomic
and genetic technologies, personalized medicine with the right drug for the
right patient becomes possible.
Conley and Taube (2004) described the future of biomarker/genomic

markers in cancer therapy: "The elucidation of the human genome and
�fty years of biological studies have laid the groundwork for a more in-
formed method for treating cancer with the prospect of realizing improved
survival. Advanced in knowledge about the molecular abnormalities, sig-
naling pathways, in�uence the local tissue milieu and the relevance of ge-
netic polymorphism o¤er hope of designing e¤ective therapies tailored for
a given cancer in particular individual, as well as the possibility of avoiding
unnecessary toxicity."
Wang, Hung, and O�Neill (2006) from FDA have pointed out: "Gener-

ally, when the primary clinical e¢ cacy outcome in a phase III trial requires
much longer time to observe, a surrogate endpoint thought to be strongly
associated with the clinical endpoint may be chosen as the primary e¢ -
cacy variable in phase II trials. The results of the phase II studies then
provide an estimated e¤ect size on the surrogate endpoint, which is sup-
posedly able to help size the phase III trial for the primary clinical e¢ cacy
endpoint, where often it is thought to have a smaller e¤ect size."
What exactly is a biomarker? National Institutes of Health Workshop

(Gruttola, 2001) gave the following de�nitions. Biomarker is a character-
istic that is objectively measured and evaluated as an indicator of normal

239
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biologic processes, pathogenic processes, or pharmacological responses to a
therapeutic intervention. Clinical endpoint (or outcome) is a characteris-
tic or variable that re�ects how a patient feels or functions, or how long
a patient survives. Surrogate endpoint is a biomarker intended to substi-
tute for a clinical endpoint. Biomarkers can also be classi�ed as classi�er,
prognostic, and predictive biomarkers.
A classi�er biomarker is a marker, e.g., a DNA marker, that usually

does not change over the course of study. A classi�er biomarker can be
used to select the most appropriate target population or even for personal-
ized treatment. For example, a study drug is expected to have e¤ects on a
population with a biomarker, which is only 20% of the overall patient pop-
ulation. Because the sponsor suspects that the drug may not work for the
overall patient population, it may be e¢ cient and ethical to run a trial only
for the subpopulations with the biomarker rather than the general patient
population. On the other hand, some biomarkers such as RNA markers are
expected to change over the course of the study. This type of markers can
be either a prognostic or predictive marker.
A prognostic biomarker informs the clinical outcomes, independent

of treatment. It provides information about natural course of the disease
in individual with or without treatment under study. A prognostic marker
does not inform the e¤ect of the treatment. For example, NSCLC patients
receiving either EGFR inhibitors or chemotherapy have better outcomes
with a mutation than without a mutation. Prognostic markers can be
used to separate good and poor prognosis patients at the time of diagnosis.
If expression of the marker clearly separates patients with an excellent
prognosis from those with a poor prognosis, then the marker can be used
to aid the decision about how aggressive the therapy needs to be. The poor
prognosis patients might be considered for clinical trials of novel therapies
that will, hopefully, be more e¤ective (Conley and Taube, 2004). Prognostic
markers may also inform the possible mechanisms responsible for the poor
prognosis, thus leading to the identi�cation of new targets for treatment
and new e¤ective therapeutics.
A predictive biomarker informs the treatment e¤ect on the clinical

endpoint. A predictive marker can be population-speci�c: a marker can be
predictive for population A but not population B. A predictive biomarker,
as compared to true endpoints like survival, can often be measured earlier,
easier, and more frequently and is less subject to competing risks. For
example, in a trial of a cholesterol-lowering drug, the ideal endpoint may
be death or development of coronary artery disease (CAD). However, such
a study usually requires thousands of patients and many years to conduct.
Therefore, it is desirable to have a biomarker, such as a reduction in post-
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treatment cholesterol, if it predicts the reductions in the incidence of CAD.
Another example would be an oncology study where the ultimate endpoint
is death. However, when a patient has disease progression, the physician
will switch the patient�s initial treatment to an alternative treatment. Such
treatment modalities will jeopardize the assessment of treatment e¤ect on
survival because the treatment switching is response-adaptive rather than
random (See Chapters 13 and 14). If a marker, such as time-to-progression
(TTP) or response rate (RR), is used as the primary endpoint, then we will
have much cleaner e¢ cacy assessments because the biomarker assessment
is performed before the treatment switching occurs.
In this chapter, we will discuss adaptive designs using classi�er, progno-

sis, and predictive markers. The challenges in marker validations will also
be discussed.

12.2 Design with Classi�er Biomarker

12.2.1 Setting the Scene

As mentioned earlier, a drug might have di¤erent e¤ects in di¤erent patient
populations. A hypothetical case is presented in Table 12.1, where RR+ and
RR� are the response rates for biomarker-positive and biomarker-negative
populations, respectively. In the example, there is a treatment e¤ect of 25%
in the 10 million patient population with the biomarker, but only 9% in
the 50 million general patient population. The sponsor faces the dilemma
of whether to target the general patient population or use biomarkers to
select a smaller set of patients that are expected to have a bigger response
to the drug.

Table 12.1: Response Rate and Sample-Size Required

Population RR+ RR� Sample-size

Biomarker (+) 10M 50% 25% 160*

Biomarker (-) 40M 30% 25%

Total 50M 34% 25% 1800

Note: *800 subjects screened. Power = 80%.

There are several challenges: (1) The estimated e¤ect size for each
subpopulation at the design stage is often very inaccurate; (2) A cost is
associated with screening patients for the biomarker; (3) The test for de-
tecting the biomarker often requires a high sensitivity and speci�city, and
the screening tool may not be available at the time of the clinical trial;
(4) Screening patients for the biomarker may cause a burden and impact
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patient recruitment. These factors must be considered in the design.
Ideally, the utility function should be constructed �rst in order to decide

which population we should target for. There are many utility functions
to choose. For example, the utility can be de�ned as U = �(�iNi � Ci) ;
where �i is the e¤ect size of the ith subpopulation with the size of Ni and
Ci is the associated cost or loss.
Suppose we decide to run a trial on population with a biomarker. It is

interesting to study how the screening testing impact the expected utility.
The size of the target patient size N with biomarker (+) can be expressed
as

N = N+ Se +N�(1� Sp); (12.1)

where N+ and N� are the sizes of patient populations with and without the
biomarker, respectively; Se is the sensitivity of the screening test, i.e., the
probability of correctly identifying the biomarker among patients with the
biomarker, and Sp is the speci�city of the screening test, which is de�ned as
the probability of correctly identifying biomarker-negative among patients
without biomarker. The average treatment e¤ect for diagnostic biomarker
(+) patients:

� =
�+N+ Se +��N�(1� Sp)

N
: (12.2)

If the utility is de�ned as the overall bene�t for the patient population
screened as biomarker-positive, i.e., U = �N; then the expected utility is
given by

Ue = �N Power: (12.3)

Figure 12.1 shows how the speci�city will impact the target population
size, the average treatment e¤ect in the target population, and the expected
utility under di¤erent designs. When the speci�city increases, the target
population decreases, but the average treatment e¤ect in the target popu-
lation increases because misdiagnosis of biomarker-negative as positive will
reduce the average treatment e¤ect.
Using adaptive design, we can start with the overall patient population.

At the interim analysis, a decision can be made whether to go for the
subpopulation or the overall population based on the expected utilities:
(1) If we target for the subpopulation with the biomarker, the expected

utility at interim analysis is given by
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(conditional power of subpopulation) � (Impact of success)

- (1-conditional power of subpopulation) � (Impact of failure)

(2) If we target for the full patient population, the expected utility at
interim analysis is given by

(conditional power of full population) x (Impact of success)

- (1-conditional power of full population) x (Impact of failure)

Figure 12.1: E¤ect of Biomarker Misclassi�cation

12.2.2 Classic Design with Classi�er Biomarker

Denote treatment di¤erence between the test and control groups by �+;
��, and �, for biomarker-positive, biomarker-negative, and overall patient
populations, respectively. The null hypothesis for biomarker-positive sub-
population is

Ho1 : �+ = 0: (12.4)
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The null hypothesis for biomarker-negative subpopulation is

Ho2 : �� = 0: (12.5)

The null hypothesis for overall population is

Ho : � = 0: (12.6)

Without loss of generality, assume that the �rst n patients have the
biomarker among N patients and the test statistic for the subpopulation is
given by

Z+ =

Pn
i=1 xi �

Pn
i=1 yi

n�

r
n

2
� N(0; 1) under Ho; (12.7)

where xi, and yi (i = 1; :::; n) are the responses in treatment A and B.
Similarly, the test statistic for biomarker-negative group is de�ned as

Z� =

�PN
i=n+1 xi �

PN
i=n+1 yi

�
(N � n)�

r
N � n
2

� N(0; 1) under Ho: (12.8)

The test statistic for overall population is given by

Z =
�̂

�

r
N

2
= T+

r
n

N
+ T�

r
N � n
N

� N (0; 1) under Ho: (12.9)

We choose the test statistic for the trial as

T = max (Z;Z+) : (12.10)

It can be shown that the correlation coe¢ cient between Z and Z+ is

� =

r
n

N
: (12.11)

Therefore, the stopping boundary can be determined by

Pr (T � z2; 1��jHo) = �; (12.12)

where z2; 1�� is the bivariate normal 100(1��)-equipercentage point under
Ho.
The p-value corresponding to an observed test statistic t is given by
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p = Pr (T � tjHo) : (12.13)

The power can be calculated using

Pr (T � z2; 1��jHa) = �: (12.14)

The numerical integration or simulations can be performed to evaluate
z2; 1�� and the power.
Note that the test statistic for the overall population can be de�ned as

Z = w1Z+ + w2Z�;

where w1 and w2 are constants satisfying w21 + w22 = 1: In such case, the
correlation coe¢ cient between Z and Z+ is � = w1:

More generally, if there are m groups under consideration, we can de�ne
a statistic for the gth group as

Zg =
�̂g
�

r
ng
2

� N(0; 1) under Ho: (12.15)

The test statistic for the overall population is given by

T = max fZ1; :::; Zgg ; (12.16)

where fZ1; :::; Zmg is asymptotically m-variate standard normal distrib-
ution under Ho with expectation 0 = f0; :::; 0g and correlation matrix
R=

�
�ij
	
. It can be easily shown that the correlation between Zi and

Zj is given by

�ij =

r
nij
ninj

; (12.17)

where nij is the number of concordant pairs between the ith and jth groups.
The asymptotic formulation for power calculation with the multiple tests

is similar to that for multiple-contrast tests (Bretz and Hothorn, 2002):

Pr (T � zm; 1��jHa)

= 1� Pr(Z1 < zm; 1�� \ ::: \ Tm < zm; 1�� jHa

= 1� �m
�
(zm; 1�� � e) diag

�
1

v0
; :::;

1

vm

�
; 0; R

�
;
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where zm; 1�� = (zm; 1��; :::; zm; 1��) stands for the m-variate normal
100(1 � �)-equipercentage point under Ho; e = (Ea(T0); :::; Ea(Tm)) and

v = (v0; :::; vm) =
�p

V0 (T0);
p
V1 (T1); :::;

p
V1 (Tm)

�
are vectorially sum-

marized expectations and standard errors.
The power is given by

p = Pr (T � zm; 1�p) : (12.18)

For other types of endpoints, we can use inverse-normal method, i.e.,
Zg = �(1� pg) in (12.15), where pg is the p-value for the hypothesis test in
the gth population group, then (12.17) and (12.18) are still approximately
valid.

Simulation Algorithm
(1) Generate n+ responses for biomarker-positive population (BPP).
(2) Generate n� responses for biomarker-negative population (BNP).
(3) Compute test statistic T+ for BPP and To for overall population.
(4) Compute T = max fT+; Tog.
(5) Repeat (1)-(4) many times and compute the percentage of the out-

comes with T > Zc. This percentage is probability Pr (T > Zc).

To determine the critical point Zc for rejecting the null at � level, run
the simulations under the null condition for various Zc until Pr (T > Zc) �
�: To determine the power, run the simulations under the alternative
condition; the power is given by Pr (T > Zc) or the percentage of the out-
comes with T > Zc.

12.2.3 Adaptive Design with Classi�er Biomarker

Strong Alpha-Controlled Method
Let the hypothesis test for biomarker-positive subpopulation at the �rst

stage (size = n1/group) be

Ho1 : �+ � 0 (12.19)

and the hypothesis test for overall population (size = N1/group) be

Ho : � � 0 (12.20)

with the corresponding stagewise p-values, p1+ and p1; respectively. These
stagewise p-values should be adjusted. A conservative way is used Bon-
ferroni method or a method similar to Dunnett method that takes the
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correlation into consideration. For Bonferroni-adjusted p-value and MSP,
the test statistic is T1 = 2 min (p1+; p1) for the �rst stage. The popula-
tion with a smaller p-value will be chosen for the second stage and the test
statistic for the second stage is de�ned as T2 = T1 + p2, where p2 is the
stagewise p-value from the second stage. This method is implemented in
SAS Macro 12.1 as described below.
SAS Macro 12.1 is developed for simulating biomarker-adaptive trials

with two parallel groups. The key SAS variables are de�ned as follows:
Alpha1 = early e¢ cacy stopping boundary (one-sided), beta1 = early fu-
tility stopping boundary, Alpha2 = �nal e¢ cacy stopping boundary, u0p
= response di¤erence in biomarker-positive population, u0n = response in
biomarker-negative population, sigma = asymptotic standard deviation for
the response di¤erence, assuming homogeneous variance among groups. For
binary response, sigma =

p
r1(1� r1) + r2(1� r2); For Normal response,

sigma =
p
2�. np1, np2 = sample sizes per group for the �rst and second

stage for the biomarker-positive population. nn1, nn2 = sample sizes per
group for the �rst and second stage for the biomarker-negative population.
cntlType = "strong," for the strong type-I error control and cntlType =
"weak," for the weak type-I error control, AveN = average total sample-
size (all arms combined), pPower = the probability of signi�cance for
biomarker-positive population, oPower = the probability of signi�cance
for overall population.

��SAS Macro 12.1: Biomarker-Adaptive Design��
%Macro BMAD(nSims=100000, cntlType="strong", nStages=2,

u0p=0.2, u0n=0.1, sigma=1, np1=50, np2=50, nn1=100,

nn2=100, alpha1=0.01, beta1=0.15,alpha2=0.1871);

Data BMAD;

Keep FSP ESP Power AveN pPower oPower;

seedx=1736; seedy=6214; u0p=&u0p; u0n=&u0n; np1=&np1;

np2=&np2; nn1=&nn1; nn2=&nn2; sigma=&sigma;

FSP=0; ESP=0;Power=0; AveN=0; pPower=0; oPower=0;

Do isim=1 to &nSims;

up1=Rannor(seedx)*sigma/Sqrt(np1)+u0p;

un1=Rannor(seedy)*sigma/Sqrt(nn1)+u0n;

uo1=(up1*np1+un1*nn1)/(np1+nn1);

Tp1=up1*np1**0.5/sigma; To1=uo1*(np1+nn1)**0.5/sigma;

T1=Max(Tp1,To1); p1=1-ProbNorm(T1);

If &cntlType="strong" Then p1=2*p1; *Bonferroni;

If p1>&beta1 Then FSP=FSP+1/&nSims;

If p1<=&alpha1 Then Do;
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Power=Power+1/&nSims; ESP=ESP+1/&nSims;

If Tp1>To1 Then pPower=pPower+1/&nSims;

If Tp1<=To1 Then oPower=oPower+1/&nSims;

End;

AveN=AveN+2*(np1+nn1)/&nSims;

If &nStages=2 And p1>&alpha1 And p1<=&beta1 Then Do;

up2=Rannor(seedx)*sigma/Sqrt(np2)+u0p;

un2=Rannor(seedy)*sigma/Sqrt(nn2)+u0n;

uo2=(up2*np2+un2*nn2)/(np2+nn2);

Tp2=up2*np2**0.5/sigma; To2=uo2*(np2+nn2)**0.5/sigma;

If Tp1>To1 Then Do;

T2=Tp2; AveN=AveN+2*np2/&nSims;

End;

If Tp1<=To1 Then Do;

T2=To2; AveN=AveN+2*(np2+nn2)/&nSims;

End;

p2=1-ProbNorm(T2); Ts=p1+p2;

If .<TS<=&alpha2 Then Do;

Power=Power+1/&nSims;

If Tp1>To1 Then pPower=pPower+1/&nSims;

If Tp1<=To1 Then oPower=oPower+1/&nSims;

End;

End;

End;

Run;

Proc Print Data=BMAD (obs=1); Run;

%Mend BMAD;

��SAS��

Example 12.1 Biomarker-Adaptive Design
Suppose in an active-control trial, the estimated treatment di¤erence is

0.2 for the biomarker-positive population (BPP) and 0.1 for the biomarker-
negative population (BNP) with a common standard deviation of � = 1:

Using SAS Macro 12.1, we can generate the operating characteristics under
the global null hypothesis Ho (u0p = 0, u0n = 0), the null con�gurations
Ho1 (u0p = 0, u0n = 0.1) and Ho2 (u0p = 0.2, u0n = 0), and the alternative
hypothesis Ha (u0p = 0.2, u0n = 0.1) (See Table 12.2). Typical SAS macro
calls to simulate the global null and the alternative conditions are presented
in the following.
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��SAS��
Title "Simulation under global Ho, 2-stage design";

%BMAD(nSims=100000, CntlType="strong", nStages=2, u0p=0,

u0n=0, sigma=1.414, np1=260, np2=260, nn1=520, nn2=520,

alpha1=0.01, beta1=0.15,alpha2=0.1871);

Title "Simulations under Ha, 2-stage design";

%BMAD(nSims=100000, CntlType="strong", nStages=2, u0p=0.2,

u0n=0.1, sigma=1.414, np1=260, np2=260, nn1=520, nn2=520,

alpha1=0.01, beta1=0.15,alpha2=0.1871);

��SAS��

To generate the corresponding results for the classic single stage design
(See Table 12.3 for the simulation results), we can use the SAS calls as
follows:

��SAS��
Title "Simulations under global Ho, single-stage design";

%BMAD(nSims=100000, CntlType="strong", nStages=1, u0p=0,

u0n=0, sigma=1.414, np1=400, np2=0, nn1=800, nn2=0, alpha1=0.025);

Title "Simulations under Ha, single-stage design";

%BMAD(nSims=100000, CntlType="strong", nStages=1, u0p=0.2,

u0n=0.1, sigma=1.414, np1=400, np2=0, nn1=800, nn2=0, alpha1=0.025);

��SAS��

Table 12.2: Simulation Results of Two-Stage Design

Case FSP ESP Power AveN pPower oPower

Ho 0.876 0.009 0.022 1678 0.011 0.011

Ho1 0.538 0.105 0.295 2098 0.004 0.291

Ho2 0.171 0.406 0.754 1852 0.674 0.080

Ha 0.064 0.615 0.908 1934 0.311 0.598

Ho1 and Ho2 = no e¤ect for BPP and overall population.

Table 12.3: Simulation Results of Classic Single-Stage Design

Case FSP ESP Power AveN pPower oPower

Ho 0.878 0.022 0.022 2400 0.011 0.011

Ho1 0.416 0.274 0.274 2400 0.003 0.271

Ho2 0.070 0.741 0.741 2400 0.684 0.056

Ha 0.015 0.904 0.904 2400 0.281 0.623

Ho1 and Ho2 = no e¤ect for BPP and overall population.
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Trial monitoring is particularly important for these types of trials. As-
sume we have decided the sample sizes N2 per treatment group for overall
population at stage 2, of which n2 (can be modi�ed later) subjects per group
are biomarker-positive. Ideally, decision on whether the trial continues for
the biomarker-positive patients or overall patients should be dependent on
the expected utility at the interim analysis. The utility is the total gain
(usually as a function of observed treatment e¤ect) subtracted by the cost
due to continuing the trial using BPP or the overall patient population.
For simplicity, we de�ne the utility as the conditional power. The pop-
ulation group with larger conditional power will be used for the second
stage of the trial. Suppose we design a trial with n1+ = 260; n1� = 520;

p1+ = 0:1; p1 = 0:12; and stopping boundaries: �1 = 0:01; �1 = 0:15; and
�2 = 0:1871: For n2+ = 260; and n2� = 520; the conditional power based
on MSP is 82.17% for BPP and 99.39% for the overall population. The
calculations are presented as follows:

Pc (p1; �) = 1� �
�
��1 (1� �2 + p1)� �

�

p
n2
2

�
; �1 < p1 � �1:

For the biomarker-positive population,

��1 (1� 0:1871 + 0:1) = ��1(0:912 9) = 1:3588; 0:2
p
260=2 = 2: 280 4;

Pc = 1� � (1:3588� 2:2804) = 1� �(�0:921 6) = 1� 0:1783 = 0:821 7:

For the biomarker-negative population,

��1 (1� 0:1871 + 0:12) = ��1(0:932 9) = 1:4977;

0:2
p
(260 + 520)=2 = 3: 949 7;

Pc = 1� � (1:4977� 3: 949 7) = 1� �(�2: 452) = 1� 0:0071 = 0:992 9:

Therefore, we are interested in the overall population. Of course, dif-
ferent n2 and N2 can be chosen at the interim analyses, which may lead to
di¤erent decisions regarding the population for the second stage.
The following aspects should also be considered during design: power

versus utility, enrolled patients versus screened patients, screening cost, and
the prevalence of biomarker.
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12.3 Challenges in Biomarker Validation

12.3.1 Classic Design with Biomarker Primary-Endpoint

Given the characteristics of biomarkers, can we use a biomarker as the
primary endpoint for late-stage or con�rmatory trials? Let�s study the
outcome in three di¤erent scenarios. (1) The treatment has no e¤ect on
the true endpoint or the biomarker. (2) The treatment has no e¤ect on
the true endpoint but does a¤ect the biomarker. (3) The treatment has a
small e¤ect on the true endpoint but has a larger e¤ect on the biomarker.
Table 12.4 summarizes the type-I error rates (�) and powers for using the
true endpoint and biomarker under di¤erent scenarios. In the �rst scenario,
we can use either the true endpoint or biomarker as the primary endpoint
because both control the type-I error. In the second scenario, we cannot
use the biomarker as the primary endpoint because � will be in�ated to
81%. In the third scenario, it is better to use the biomarker as the primary
endpoint from a power perspective. However, before the biomarker is fully
validated, we don�t know which scenario is true; use of the biomarker as
the primary endpoint could lead to a dramatic in�ation of the type-I error.
It must be validated before a biomarker can be used as primary endpoint.

Table 12.4: Issues with Biomarker Primary Endpoint

E¤ect size ratio Endpoint Power (alpha)

0.0/0.0 True endpoint (0.025)

Biomarker (0.025)

0.0/0.4 True endpoint (0.025)

Biomarker (0.810)

0.2/0.4 True endpoint 0.300

Biomarker 0.810

Note: N = 100 per group. E¤ect size ratio = e¤ect size

of true endpoint to e¤ect size of biomarker.

12.3.2 Treatment-Biomarker-Endpoint Relationship

Validation of biomarker is not an easy task. Validation here refers to the
proof of a biomarker to be a predictive marker, i.e., a marker can be used
as a surrogate marker. Before we discuss biomarker validations, let�s take a
close look at the 3-way relationships among treatment, biomarker, and the
true endpoint. It is important to be aware that the correlations between
them are not transitive. In the following example, we will show that it
could be the case that there is a correlation (RTB) between treatment and
the biomarker and a correlation (RBE) between the biomarker and the true
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endpoint, but there is no correlation (RTE) between treatment and the true
endpoint (Figures 12.2 and 12.3).

Figure 12.2: Treatment-Biomarker-Endpoint Three-Way Relationship

The hypothetical example to be discussed is a trial with 14 patients,
7 in the control group and 7 in the test group. The biomarker and true
endpoint outcomes are displayed in Figure 12.3. The results show that
the Pearson�s correlation between the biomarker and the true endpoint is 1
(perfect correlation) in both treatment groups. If the data are pooled from
the two groups, the correlation between the biomarker and the true end-
point is still high, about 0.9. The average response with the true endpoint
is 4 for each group, which indicates that the drug is ine¤ective compared
with the control. On the other hand, the average biomarker response is
6 for the test group and 4 for the control group, which indicates that the
drug has e¤ects on the biomarker.
Facing the data, what we typically do is to �t a regression model with

the data, in which the dependent variable is the true endpoint (YT ) and the
independent variables (predictors) are the biomarker (YB) and the treat-
ment (X). After model �tting, we can obtain that

YT = YB � 2X: (12.21)

This model �ts the data well based on model-�tting p-value and R2.
Speci�cally, R2 is equal to 1, p-values for model and all parameters are equal
to 0, where the coe¢ cient 2 in model (12.21) is the separation between the
two lines. Based on (12.21), we would conclude that both biomarker and
treatment a¤ect the true endpoint. However, we know that the treatment
has no e¤ect on biomarker at all.
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In fact, the biomarker predicts the response in the true endpoint, but
it does not predict the treatment e¤ect on the true endpoint, i.e., it is a
prognostic marker.

Figure 12.3: Correlation Versus Prediction

12.3.3 Multiplicity and False Positive Rate

Let�s further discuss the challenges from a multiplicity point of view. In
earlier phases or the discovery phase, we often have a large number of bio-
markers to test. Running hypothesis testing on many markers can be done
either with a high false positive rate without multiplicity adjustment or a
low power with multiplicity adjustment. Also, if model selection procedures
are used without multiplicity adjustment as we commonly see in current
practice, the false positive rate could be in�ated dramatically. Another
source of false positive discovery rate is the so-called publication bias. The
last, but not least, source of false positive �nding is due to the multiple
testing conducted by di¤erent companies or research units. Imagine that
100 companies study the same biomarker, even if family-wise type-I error
rate is strictly controlled at a 5% level within each company, there will still
be, on average, 5 companies that have positive �ndings about the same
biomarker just by chance.

12.3.4 Validation of Biomarkers

We now realized the importance of biomarker validation and would like to
review some commonly used statistical methods for biomarker validation.
Prentice (1989) proposed four operational criteria: (1) treatment has a

signi�cant impact on the surrogate endpoint; (2) treatment has a signi�cant
impact on the true endpoint; (3) the surrogate has a signi�cant impact
on the true endpoint; and (4) the full e¤ect of treatment upon the true
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endpoint is captured by the surrogate endpoint. Note that this method is
for a binary surrogate (Molenberghs, et al., 2005).
Freedman, et, al. (1992) argued that the last Prentice criterion is di¢ -

cult statistically because it requires that the treatment e¤ect is not statis-
tically signi�cant after adjustment of the surrogate marker. They further
articulated that the criterion might be useful to reject a poor surrogate
marker, but it is inadequate to validate a good surrogate marker. Therefore
they proposed a di¤erent approach based on the proportion of treatment
e¤ect on true endpoint explained by biomarkers and a large proportion re-
quired for a good marker. However, as noticed by Freedman, this method
is practically infeasible due to the low precision of the estimation of the
proportion explained by the surrogate.
Buyse and Molenberghs (1998) proposed the internal validation ma-

trices, which include relative e¤ect (RE) and adjusted association (AA).
The former is a measure of association between the surrogate and the true
endpoint at an individual level, and the latter expresses the relationship
between the treatment e¤ects on the surrogate and the true endpoint at a
trial level. The practical use of the Buyse-Molenberghs method raises a few
concerns: (1) a wide con�dence interval of RE requires a large sample-size;
(2) treatment e¤ects on the surrogate and the true endpoint are multiplica-
tive, which cannot be checked using data from a single trial.
Other methods, such as external validation using meta-analysis and

two-stage validation for fast track programs, also face similar challenges in
practice. For further readings on biomarker evaluations, Weir and Walley
(2006) give an excellent review; Case and Qu (2006) proposed a method for
quantifying the indirect treatment e¤ect via surrogate markers and Alonso
et al. (2006) proposed a unifying approach for surrogate marker validation
based on Prentice�s criteria.

12.3.5 Biomarkers in Reality

In reality, there are many possible scenarios: (1) same e¤ective size for the
biomarker and true endpoint, but the biomarker response can be measured
earlier; (2) bigger e¤ective size for the biomarker and smaller for the true
endpoint; (3) no treatment e¤ect on the true endpoint, limited treatment
e¤ect on the biomarker; and (4) treatment e¤ect on the true endpoint
only occurs after the biomarker response reaches a threshold. Validation
of biomarkers is challenging, and the sample-size is often insu¢ cient for
the full validation. Therefore validations are often performed to a certain
degree and soft validation scienti�cally (e.g., pathway) is important.
What is the utility of partially validated biomarkers? In the next sec-
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tion, we will discuss how to use prognostic markers in adaptive designs.

12.4 Adaptive Design with Prognostic Biomarker

12.4.1 Optimal Design

A biomarker before it is proved predictive can only be considered as a
prognostic marker. In the following example, we discuss how to use a
prognostic biomarker (a marker may be predictive) in trial design. The
adaptive design proposed permits early stopping for futility based on the
interim analysis of the biomarker. At the �nal analysis, the true endpoint
will be used to preserve the type-I error. Assume there are three possible
scenarios: (1) Ho1: e¤ect size ratio ESR = 0/0, Ho2: e¤ect size ratio ESR
= 0/0.25, and (3) Ha : e¤ect size ratio ESR = 0.5/0.5, but biomarker
response earlier. ESR is the ratio of e¤ect size for true endpoint to the
e¤ect size for biomarker. We are going to compare three di¤erent designs:
classic design and two adaptive designs with di¤erent stopping boundaries
as shown in Table 12.5.

Table 12.5: Adaptive Design with Biomarker

Expected Futility

Design Condition Power N/arm boundary

Ho1 100

Classic Ho2 100

Ha 0.94 100

Ho1 75

Adaptive Ho2 95 �1= 0.5

Ha 0.94 100

Ho1 55

Adaptive Ho2 75 �1= 0.1056

Ha 0.85 95

Based on simulation results (Table 12.5), we can see that the two adap-
tive designs reduce sample-size required under the null hypothesis. How-
ever, this comparison is not good enough because it does not consider the
prior distribution of each scenario at the design stage.
We have noticed that there are many di¤erent scenarios with associated

probabilities (prior distribution) and many possible adaptive designs with
associated probabilistic outcomes (good and bad). Suppose we have also
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formed the utility function, the criteria for evaluating di¤erent designs.
Now let�s illustrate how we can use utility theory to select the best design
under �nancial, time, and other constraints.

Table 12.6: Prior Knowledge About E¤ect Size

E¤ect Size Prior

Scenario Ratio Probability

Ho1 0/0 0.2

Ho2 0/0.25 0.2

Ha 0.5/0.5 0.6

Let�s assume the prior probability for each of the scenarios mentioned
earlier as shown in Table 12.6. For each scenario, we conduct computer
simulations to calculate the probability of success and the expected utilities
for each design. The results are summarized in Table 12.7.

Table 12.7: Expected Utilities of Di¤erent Designs

Design Classic Biomarker-adaptive

�1 = 0.5 �1 = 0.1056

Expected

Utility 419 441 411

Based on the expected utility, the adaptive design with the stopping
boundary �1 = 0.5 is the best. Of course, we can also generate more designs
and calculate the expected utility for each design and select the best one.

12.4.2 Prognostic Biomarker in Designing Survival Trial

Insu¢ ciently validated biomarker such as tumor response rate (RR) can be
used in oncology trial for interim decision-making whether to continue to
enroll patients or not to reduce the cost. When the response rate in the test
group is lower, because of the correlation between RR and survival, it is
reasonable to believe the test drug will be unlikely to have survival bene�t.
However, even when the trial stopped earlier due to unfavorable results in
response rate, the survival bene�t can still be tested. We have discussed
this for a Non-Hodgkin�s Lymphoma (NHL) trial in Chapter 10.
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12.5 Adaptive Design with Predictive Marker

If a biomarker is proved to be predictive, then we can use it to replace the
true-endpoint from the hypothesis test point of view. In other words, a
proof of treatment e¤ect on predictive marker is a proof of treatment e¤ect
on the true endpoint. However, the correlation between the e¤ect sizes of
treatment in the predictive (surrogate) marker and the true endpoints is
desirable but unknown. This is one of the reasons that follow-up study
on the true endpoint is highly desirable in the NDA accelerated approval
program.
Changes in biomarker over time can be viewed as stochastic process

(marker process) and have been used in the so-called threshold regres-
sion (Chapter 13). A predictive marker process can be viewed an external
process that covariates with the parent process. It can be used in track-
ing progress of the parent process if the parent process is latent or is only
infrequently observed. In this way, the marker process forms a basis for
predictive inference about the status of the parent process of clinical end-
point. The basic analytical framework for a marker process conceives of a
bivariate stochastic process fX(t); Y (t)g where the parent process fX(t)g is
one component process and the marker process fY (t)g is the other. Whit-
more, Crowder, and Lawless (1998) investigated the failure inference based
on a bivariate. Wiener model has also been used in this aspect, in which
failure is governed by the �rst-hitting time of a latent degradation process.
Lee, DeGruttola, and Schoenfeld (2000) apply this bivariate marker model
to CD4 cell counts in the context of AIDS survival. Hommel, Lindig, and
Faldum (2005) studied a two-stage adaptive design with correlated data.

12.6 Summary and Discussion

We have discussed the adaptive designs with classi�er, prognostic, and pre-
dictive markers. These designs can be used to improve the e¢ ciency by
identifying the right population, making decisions earlier to reduce the im-
pact of failure and delivering the e¢ cacious and safer drugs to market ear-
lier. However, full validation of a biomarker is statistically challenging and
su¢ cient validation tools are not available. Fortunately, adaptive designs
with biomarkers can be bene�cial even when the biomarkers are not fully
validated. The Bayesian approach is an ideal solution for �nding an opti-
mal design, while computer simulation is a powerful tool for the utilization
of biomarkers in trial design.
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Problem

12.1 Develop SAS macros or R function for the method proposed in
Section 12.2.2 and conduct a simulation study of the method.



Chapter 13

Adaptive Treatment Switching and
Crossover

13.1 Treatment Switching and Crossover

To study the e¢ cacy of a test drug for progressive disease such as cancer
or HIV, a parallel-group active-control randomized clinical trial is often
used. Under the study design, quali�ed patients are randomly assigned to
receive either an active control or the test treatment under investigation.
Patients are allowed to switch from one treatment to another due to ethical
considerations such as lack of response or if there is evidence of disease
progression. In practice, it is not uncommon that up to 80% of patients
may switch from one treatment to another. This certainly has an impact on
the evaluation of the e¢ cacy of the test treatment. Despite the switching
between di¤erent treatments or interventions, many clinical studies are to
compare the test drug with the active control agent as if no patients had
ever switched.
The e¤ect of treatment switching will impact the survival curve. The

patterns of the curves before and after switching are expected to be dif-
ferent, for example, they may follow a mixed exponential distribution with
di¤erent hazard rates before and after switching.
Sommer and Zeger (1991) referred to the treatment e¤ect among pa-

tients who complied with treatment as biological e¢ cacy. The survival
time of a patient who switched from the active control to the test treat-
ment might be on the average longer than his/her survival time that would
have been if he/she had adhered to the original treatment, if switching is
based on prognosis to optimally assign patients�treatments over time. We
refer to the di¤erence caused by treatment switch as switching e¤ect.
The purpose of this chapter is to provide useful models for modeling

clinical trials with response-adaptive treatment switching. The remaining
of this chapter is organized as follows. A mixed exponential model is consid-
ered to assess the total survival time in Section 13.2. A mixture of Wiener

259
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processes is studied in Section 13.3. In Section 13.4, the concept of latent
hazard rate is considered by incorporating the switching e¤ect in the latent
hazard functions. Summary and discussions will be presented in Section
13.5.

13.2 Mixed Exponential Survival Model

In clinical trials, the target patient population often consists of two or more
subgroups based on heterogeneous baseline characteristics (e.g., the patients
could be a mixture of the second-line and the third-line oncology patients).
The median survival time of the third-line patients is usually shorter than
that of the second-line patients. If the survival times of the two subgroup
populations are modeled by exponential distributions with hazard rates �1
and �2; respectively, then the survival distribution of the total population
in the trial is a mixed exponential distribution with a probability density
function of

P1�1e
��1t + P2�2e

��2t(t > 0);

where t is the survival time and P1 and P2 (�xed or random) are the propor-
tions of the two sub-populations. Following the similar idea of Mendenhal
and Hader (1985), the maximum likelihood estimates of the parameters �i
and Pi can be obtained. Also, if time to each disease progression is exponen-
tial distribution, the total survival time is a mixed exponential distribution
(Chang, 2005; Chow and Chang, 2006). We will discuss this application in
detail.

13.2.1 Mixed Exponential Model

In cancer trials, there are often signs/symptoms (or more generally bio-
markers) that indicate the state of the disease and the ine¤ectiveness or
failure of a treatment. A cancer patient often experiences several episodes
of progressed diseases before death. Therefore, it is natural to construct a
survival model based on the disease mechanism. In what follows, we con-
sider a mixed exponential model, which is derived from the more general
mixed Gamma model.
Let � i be the time from the (i�1)th disease progression to the ith disease

progression, where i = 1; ::; n. � i is assumed to be mutually independent
with probability density function of fi(� i): The survival time t for a subject
can be written as follows
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t =
nX
i=1

� i: (13.1)

Note that the nth disease progression is death. The following lemma re-
garding the distribution of linear combination of two random variables is
useful.
Lemma The probability density function of z = ax + by is given

by

fz(z) =
1

a

Z 1

�1
f(
z � by
a

; y)dy; (13.2)

where x � fx(x) and y � fy(y):

Proof.

Fz(z) = P (Z � z) =

Z Z
ax+by�z

f(x; y)dxdy =

Z 1

�1

Z z�by
a

�1
f(x; y)dxdy:

Take the derivative with respect to z and exchange the order of the two
limit processes, (13.2) is immediately obtained. �

Corollary When x and y are independent, then

fz(z) =
1

a

Z 1

�1
fx(

z � by
a

)fY (y)dy: (13.3)

Theorem 13.1 If n independent random variables � i; i = 1; :::; n

are exponentially distributed with parameter �i; i.e.,

� i � fi(� i) = �ie
��i� i ; (� i � 0);

then the probability density function of random variable t =
Pn

i=1 � i is a
mixed Gamma distribution, given by

f(t;n) =

nX
i=1

�ie
��itQn

k=1
k 6=i
(1� �i

�k
)
; t > 0; (13.4)

where �i 6= �k if k 6= i for i; k 2 m0 � n and mi is the number of replicates
for �i with the same value.
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Proof. By mathematical induction, when n = 2, Lemma (13.2) gives
(�i 6= �k if i 6= k)

f(t; 2) = �1�2

Z t

0

exp(��1t� (�2 � �1)�2)d�2 =
�1e

��1t

1� �1
�2

+
�2e

��2t

1� �2
�1

:

Therefore, (13.4) is proved for n = 2.
Now assume (13.4) hold for any n � 2, and it will be proven that (13.4)

also hold for n+ 1. From (13.4) and corollary (13.3), we have

f(t;n+ 1) =

Z t

0

f(t� �n+1;n)fn+1(�n+1)d�n+1

=

Z t

0

nX
i=1

�ie
��i(t��n�1)Qn
k=1
k 6=i
(1� �i

�k
)
�n+1e

��n+1�n+1d�n+1

=
nX
i=1

1Qn
k=1
k 6=i
(1� �i

�k
)

"
�ie

��it

1� �i
�n+1

+
�n+1e

��n+1t

1� �n+1
�i

#

=
n+1X
i=1

�ie
��itQn+1

k=1
k 6=i
(1� �i

�k
)
:

�

For disease progression, it is usually true that �i > �k for i > k: Note,
however, that f(t;n) does not depend on the order of �i in the sequence,
and

f(t;n)�n!+1 = f(t;n� 1):

The survival function S(t) can be easily obtained from (13.4) by integration
and the survival function is given by

S(t;n) =

nX
i=1

wie
��it; t > 0; n � 1; (13.5)

where the weight is given by

wi =

24 nY
k=1;k 6=i

(1� �i
�k
)

35�1 : (13.6)

The mean survival time and its variance are given by

� =
nX
i=1

wi
�i

and �2 =
nX
i=1

wi

�2i
;
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respectively. When n = 1; w1 = 1; (13.4) reduces to the p.d.f. of the expo-
nential distribution. It can be shown that the weights have the properties
of
Pn

i=1 wi = 1 and
Pn

i=1 wi�i = 0:

13.2.2 E¤ect of Patient Enrollment Rate

We are going to examine the e¤ect of the accrual duration on the survival
distribution. Let N be the number of patients enrolled and let (0; t0) be the
patient enrollment period de�ned as the time elapsed from the �rst patient
enrolled to the last patient enrolled. Also, let t denote the time elapsed from
the beginning of the trial. Denote fd(t) and fe(�e); where �e�[0; T0]; the
probability density function of failure (death) and the patient enrollment
rate, respectively. The failure function (or the probability of death before
time t) can be expressed as

F (t) =

Z t

0

fd(�)d� =

Z t

0

Z min(�;t0)

0

f(� � �e)fe(�e)d�ed� : (13.7)

For a uniform enrollment rate,

fe(�e) =

� N
t0

if �e�[0; t0]
0; otherwise;

and probability density function (13.4), (13.7) becomes

F (t) =

Z t

0

Z min(�;t0)

0

nX
i=1

wi
�ie

��i(���e)

t0
d�ed�:

Carrying out the integration, we have

F (t) =

(
1
t0
ft+

Pn
i=1

wi
�i

�
e��it � 1

�
g if t � t0

1
t0
ft0 +

Pn
i=1

wi
�i

�
e��it � e��i(t�t0)

�
if t > t0

: (13.8)

The p.d.f. can be obtained by di¤erentiating F (t) with respect to t:

f(t) =

(
1
t0

�
1�

Pn
i=1 wie

��it
�

if t � t0
1
t0

Pn
i=1 wi

�
e��i(t�t0) � e��it

�
if t > t0

: (13.9)

The survival function is then given by

S(t) = 1� F (t) (13.10)
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and the number of deaths among N patients can be written as

D(t) = NF (t): (13.11)

Note that (13.8) is useful for sample-size calculation with a nonparamet-
ric method. For n = 1, (13.11) reduces to the number of deaths for the
exponential survival distribution, i.e.,

D =

�
R(t� 1

�e
��t) if t � t0

R
�
t0 � 1

� (e
�t0 � 1)e��t

�
if t > t0

; (13.12)

where the uniform enrollment rate R = N
t0
:

Parameter estimate
It is convenient to use the paired variable

�
t̂j ; �j

�
de�ned as

�
t̂j ; 1

�
for a

failure time t̂j and
�
t̂j ; 0

�
for a censored time t̂j . The likelihood then can

be expressed as

L =

NY
j=1

�
f(t̂j)

��j �
S(t̂j)

�1��j
; (13.13)

where the probability density function f(t) and survival function S(t) are
given by (13.4) and (13.5), respectively, for instantaneous enrollment, and
(13.9) and (13.10) for uniform enrollment. Note that for an individual
whose survival time is censored at t̂j ; the contribution to the likelihood is
given by the probability of surviving beyond that point in time, i.e., S(t̂j):
To reduce the number of parameters in the model, we can assume that the
hazard rates take the form of a geometric sequence, i.e., �i = a�i�1 or
�i = ai�0; i = 1; 2; :::; n: This leads to a two-parameter model regardless
of n, the number of progressions. The maximum likelihood estimates of �
and a can be easily obtained through numerical iterations.

Example 13.1 Adaptive Treatment Switching Trial
To illustrate the mixed exponential model for obtaining the maximum

likelihood estimates with two parameters of �1 and �2, independent x1j
and x2j ; j = 1; ::; N from two exponential distributions with �1 and �2;
respectively are simulated. Let � j = x1j + x2j : Then � j has a mixed expo-
nential distribution with parameters �1 and �2: Let t̂j = min(� j ; Ts); where
Ts is the duration of the study. Now, we have the paired variables

�
t̂j ; �j

�
,

j = 1; :::; N , which are used to obtain the maximum likelihood estimators
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�̂1 and �̂2. Using (13.13) and the invariance principle of maximum likeli-
hood estimators, the maximum likelihood estimate of mean survival time,
�̂; can be obtained as

�̂ =
2X
j=1

ŵj

�̂j
=
1

�̂1
+
1

�̂2
: (13.14)

For each of the three scenarios (i.e., �1 = 1; �2 = 1:5; �1 = 1; �2 = 2; �1 =
1; �2 = 5); 5; 000 simulation runs are performed. The resulting means
and coe¢ cients of variation of the estimated parameters are summarized
in Table 13.1. As it can be seen from Table 13.1, the mixed exponential
model performs well, which gives an excellent estimate of mean survival
time for all three cases with a less than 10% coe¢ cient of variation. The
maximum likelihood estimate of �1 is reasonably good with a bias less than
6%. However, there are about 5% to 15% over-estimates for �2 with large
coe¢ cients of variation ranging from 30% to 40%. The bias increases as
the percent of the censored observations increases. Thus, it is suggested
that the maximum likelihood estimate of mean survival time rather than
the maximum likelihood estimate of the hazard rate be used to assess the
e¤ect of a test treatment.

Table 13.1: Simulation Results with Mixed Exponential Model

�1 �2 � �1 �2 � �1 �2 �

True 1.00 1.50 1.67 1.00 2.00 1.50 1.00 5.00 1.20

Mean* 1.00 1.70 1.67 1.06 2.14 1.51 1.06 5.28 1.20

CV* 0.18 0.30 0.08 0.20 0.37 0.08 0.18 0.44 0.09

PDs 93% 96% 96%

Censors 12% 8% 5%

Note: Study duration T = 3:2, fast enrollment. Number of subjects =100.

*Mean and CV of the estimates from 5000 runs for each scenario

13.2.3 Hypothesis Test and Power Analysis

In a two-arm clinical trial comparing treatment di¤erence in survival, the
hypotheses can be written as

H0 : �1 � �2 (13.15)

Ha : �1 < �2:

Note that hazard rates for the two treatment groups may change over time.
The proportional hazard rates do not generally hold for a mixed exponen-
tial model. Nonparametric methods such as the log-rank test (Marubini
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and Valsecchi, 1995) are useful. Note that procedure for sample-size cal-
culation using the log-rank test under the assumption of an exponential
distribution is available in the literature (see, e.g., Marubini and Valsecchi,
1995; Chang and Chow, 2005). Here we will derive a formula for sample-
size calculation under the mixed exponential distribution based on log-rank
statistic. The total number of deaths required for a one-sided log-rank test
for the treatment di¤erence between two equal-sized independent groups is
given by

D =

"
z1�� + 2z1��

p
�

1 + �

#2�
1 + �

1� �

�2
; (13.16)

where the hazard ratio is

� =
lnF1(Ts)

lnF2(Ts)
: (13.17)

Ts is trial duration, and Fk(Ts) is the proportion of patients with the event
in the kth group. The relationship between Fk(Ts), t0, Ts, and hazard rates
�i is given by (13.8). From (13.8) and (13.16), the total number of patients
required for a uniform enrollment can be obtained as follows

N =

h
z1�� + 2z1��

p
�

1+�

i2 �
1+�
1��

�2
F1 + F2

; (13.18)

where N = sample-size per group and t0 is the duration of enrollment.

Example 13.2 Mixed Exponential Model
Assume a uniform enrollment with a duration of T0 = 10 months and

the trial duration Ts = 14 months. Further assume that at the end of the
study, the expected proportions of failures are F1 = 0:8 and F2 = 0:75 for
the control (group 1) and the active drug (group 2), respectively. Choose
a power of 90% and one-sided � = 0:025: The hazard ratio � = 1:29 is
calculated using (13.17). A total sample size of N = 714 is obtained from
(13.18). If hazard rates are given instead of the proportions of failures, we
may use (13.8) to calculate the proportion of failures �rst.
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13.3 Threshold Regression

In Chapter 5, we have discussed Lan-DeMets method with Brownian motion
or Wiener process. In this section, we will see a very di¤erent use of the
stochastic process.
Survival time often can be characterized by the �rst failure or �rst

hitting time (FHT) of a stochastic process. The individual experiences
a clinical endpoint such as death when the corresponding process reaches
an adverse threshold state for the �rst time. The time scale can be cal-
endar time or some other such as information time. The process can be
latent or unobservable such as in the case of competing risks. Threshold
regression refers to �rst hitting time models with regression structures that
accommodate covariate data (Lee and Whitmore, 2004). The parameters
of the process, threshold state, and time scale are usually depend on the
covariates.

13.3.1 First Hitting Time Model

FHT model has two essential components: (1) a parent stochastic process
fX(t); t 2 T ; x 2 Xg with initial value X(0) = x0, where T is the time
space and X is the state space of the process and (2) a boundary or thresh-
old B, where B � X. Note that B can be a function of time t or a stochastic
process.
Taking the initial value X(0) = x0 of the process to lie outside boundary

set B, the �rst hitting time of B is the random variable S de�ned as follows:
S = infft : X(t) 2 Bg. Thus, FHT is the time when the stochastic process
�rst reaches the boundary B. We can see that FHT is the stopping time
for the adaptive design using Wiener process in Chapter 5. Another exam-
ple is the Bernoulli process with negative binomial �rst-hitting-time. The
number of trials S required to reach the mth success in a Bernoulli process
fBt; t = 1; 2; :::g has a negative binomial distribution with parameters m
and p, where p is the success probability on each trial.
Most survival data are gathered under conditions of competing risks in

which two or more causes are competing to determine the observed duration
such as in the case of treatment switching. Also a death may be caused
by multiple medical conditions that compete to produce death (Kalb�eisch
and Prentice, 2002; and Crowder, 2001).
FHT models accommodate the competing risk aspect in a natural fash-

ion. The observed FHT time is the smallest latent FHT. The concept of
a latent FHT o¤ers an interesting vehicle for discussing competing risks.
Latent FHTs, other than the smallest, are generally unobservable.
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The parent process fX(t)g and boundary B of the FHT model will both
generally have parameters that depend on covariates. For example, the
Wiener process has mean parameter � and variance parameter �2 and the
boundary B has parameter x0, the initial position. In threshold regression,
these parameters will be connected to linear combinations of covariates
using suitable regression link functions:

g� (�i) = zi�; (13.19)

where g� (�) is the link function, parameter �i is the value of parameter
for the ith individual, zi = (1; zi1; :::; zik) is the covariate vector of the ith

individual (with a leading unit to include an intercept term) and � is the as-
sociated vector of regression coe¢ cients. Research work that has considered
regression structures for FHT models include Whitmore (1983), Whitmore,
Crowder, and Lawless (1998), and Lee, DeGruttola, and Schoenfeld (2000).

13.3.2 Mixture of Wiener Processes

Lee, Chang, and Whitmore (2007) propose mixture of Wiener process for
clinical trials with adaptive switching and applied to an oncology study,
which are outlined as follows.

Running Time
We have already noted that the actual or censored survival time is

composed of two intervals, representing the time on the primary therapy
and the time on the alternative therapy. In recognition of the fact that the
disease may progress at di¤erent rates in these two intervals (irrespective
of the treatment), we transform survival times from calendar time to the
so-called running time which has the following form:

r = a1�1 + �2; (13.20)

where �1 and �2 correspond to time-to-progression and progression-to-
death, respectively, and a1 is a scale parameter to be estimated.
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Figure 13.1: Di¤erent Paths of Mixed Wiener Process

First Hitting Model
As noted earlier, the �rst hitting time distribution of a boundary by a

Wiener di¤usion model, as illustrated in Figure 13.1 for the cancer trial,
follows an inverse Gaussian survival distribution. This distribution depends
on the initial health status level (x0) and the mean and variance parame-
ters (� and �2) of the underlying Wiener process. Let f(rj�; �2; x0) and
F (rj�; �2; x0) denote the probability density function (p.d.f.) and cumula-
tive distribution function (c.d.f.) of the FHT distribution, both de�ned in
terms of running time r. The p.d.f. for the �rst hitting time is given by

f
�
rj�; �2; x0

�
=

x0p
2��2r3

exp

"
� (x0 + �r)

2

2�2r

#
; for x0 > 0: (13.21)

If � > 0, then the FHT is not certain to occur and the p.d.f. is improper.
Speci�cally, in this case, P (S = 1) = 1 � exp(�2x0�=�2). The c.d.f.
corresponding to (13.21) is given by

F
�
rj�; �2; x0

�
= �

�
� (�r + x0)p

�2r

�
+exp

�
�2x0�

�2

�
�

�
�r � x0p

�2r

�
; for x0 > 0;

(13.22)
where � (�) is the c.d.f. of the standard normal distribution.

Mixture of Wiener Processes
The mixture model for survival time S therefore has the following form:
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Pr(S > r) = �G(r) = p �F1(r) + (1� p) �F2(r): (13.23)

The �Fj(r); j = 1; 2, are the respective component survival functions
of the mixture and are expressed in terms of running time as de�ned in
equation (13.20). When the parameter p is predetermined based on certain
population characteristics (e.g., patients with certain genetic marker), p is
the proportion of the patients with the characteristics. Otherwise, p doesn�t
have an easy interpretation.

Statistical Inference
Each component FHT distribution in mixture model (13.23) is an in-

verse Gaussian distribution. The three parameters of the FHT distribution
are not estimable from survival data because the health status process is
latent here. Hence, one parameter may be �xed in each component distri-
bution of the mixture. We set the variance parameter �2 to unity.
Each component survival function of the mixture model (13.23) has its

own p.d.f. fj(r) and c.d.f. Fj(r), as well as its own initial health status x0j
and mean parameter �j , for j = 1; 2. For compactness, we now denote the
vector of parameters of our mixture model by �. This vector includes all of
the regression coe¢ cients for parameters p, �1, x01, �2, x02, and a1, where
the last one is the rate parameter in the running time formula (13.20). We
let ri denote the running time for patient i. Time ri is the running time
at death for a dying patient and a right censored running time for death
for a surviving patient. Hence, each dying patient i contributes probability
density g(rij�) to the sample likelihood function, for i = 1; :::; n1, where
g(rj�) is the mixture p.d.f. corresponding to model (13.26) and n1 is the
number of patients who die before the end of the study. In addition, each
surviving patient i contributes survival probability �G(rij�) = 1 � G(rij�)
to the sample likelihood function, for i = n1+1; :::; n1+n0, where G(rj�) is
the mixture c.d.f. in (13.23) and n0 is the number of patients who survive to
the end of the study. We assume that this censoring is noninformative. The
sum n = n1+n0 is the total number of patients. The sample log-likelihood
function to be maximized therefore has the form:

lnL (�) =

n1X
i=1

ln g (rij�) +
n1+n0X
i=n1+1

ln �G (rij�) :

We can use a numerical gradient optimization routine in Stata R to �nd
the maximum likelihood estimate of the regression coe¢ cient vector �.
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13.4 Latent Event Time Model for Treatment Crossover

Suppose that patients are randomly assigned to two treatment groups: a
test treatment and an active control. Consider the case where there is
no treatment switch and the study objective is to compare the e¢ cacy
of the two treatments. Let T1; ::; Tn be independent non-negative survival
times and C1; :::; Cn be independent non-negative censoring times that are
independent of survival times. Thus, the observations are Yi = min(Ti; Ci),
i = 1 if Ti � Ci, and i = 0 if Ti > Ci. Assume that the test treatment
acts multiplicatively on a patient�s survival time, i.e. an accelerated failure
time model applies. Denote the magnitude of this multiplicative e¤ect by
e�� , where � is an unknown parameter.
Consider the situation where patients may switch their treatments and

the study objective is to compare the biological e¢ cacy. Let Si > 0 denote
the ith patient�s switching time. Branson and Whitehead (2002) introduced
the concept of latent event time in the simple case where only patients in
the control group may switch. Here we de�ne the latent event time in the
general case as follows. For a patient with no treatment switch, the latent
event time is the same as his/her survival time. For patient i who switches
at time Si, the latent event time ~Ti is an abstract quantity de�ned to be the
patient�s survival time that would have been if this patient had not switched
the treatment. For patients who switch from the active control group to
the test treatment group, Branson and Whitehead (2002) suggested the
following model conditional on Si:

~Ti
d
= Si + e

� (Ti � Si) ; (13.24)

where d denotes equality in distribution. That is, the survival time for a
patient who switched from the active control to the test treatment could be
back-transformed to the survival time that would have been if the patient
had not switched.
Branson and Whitehead (2002) proposed an iterative parameter estima-

tion (IPE) method for statistical analysis of data with treatment switch.
The idea of the method is to relate the distributions of the survival times of
the two treatments under a parametric model. Thus, under model (13.24),
IPE can be described as follows. First, an initial estimate �̂ of � is obtained.
Then, latent event times are estimated as

T̂i = Si + b
�̂ (Ti � Si) (13.25)

for patients who switched their treatments. Next, a new estimate of �
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is obtained by using the estimated latent event times as if they were the
observed data. Finally, the previously described procedure is iterated until
the estimate of � converges.
For the case where patients may switch from either group, model (13.24)

can be modi�ed as follows

~Ti
d
= Si + e

�(1�2ki) (Ti � Si) ; (13.26)

where ki is the indicator for the original treatment assignment, not for the
treatment after switching.
Model (13.24) or (13.25), however, does not take into account for the fact

that treatment switch is typically based on prognosis and/or investigator�s
judgment. For example, a patient in one group may switch to another
because he/she does not respond to the original assigned treatment. This
may result in a somewhat optimal treatment assignment for the patient and
a longer survival time than those patients who did not switch. Ignoring such
a switching e¤ect will lead to a biased assessment of the treatment e¤ect.
Shao, Chang, and Chow (2005) consider the following model conditional on
Si:

~Ti
d
= Si + e

�(1�2ki)wk;� (Si) (Ti � Si) ; (13.27)

where � is an unknown parameter vector and wk;� (S) are known functions
of the switching time S when � and k are given. Typically, wk;� (S) should
be close to 1 when S is near 0, i.e. the switching e¤ect is negligible if
switching occurs too early. Note that

lim
S#0

wk;� (S) = 1:

An example of the weight is given by

wk;� (S) = exp
�
�k;0S + �k;1S

2
�
; (13.28)

where �k;l are unknown parameters.
Note that although a similar IPE method can be applied under model

(13.27), it is not recommended for the following reason. If initial estimates
of model parameters are obtained by solving the likelihood equation given
in (13.28), then iteration does not increase the e¢ ciency of estimates and
hence adds unnecessary complexity for computation. On the other hand,
if initial estimates are not solutions of the likelihood equation given in
(13.28), then they are typically not e¢ cient and the estimates obtained
by IPE (if they converge) may not be as e¢ cient as the solutions of the
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likelihood equation (13.28). Thus, directly solving the likelihood equation
(13.28) produces estimates that are either more e¢ cient or computationally
simpler than the IPE estimates. See the paper by Chao, Chang, and Chow
(2005) for details.

13.5 Summary and discussions

We have introduced three di¤erent methods for modeling survival distrib-
ution with response-adaptive treatment switching: the mixed exponential
model, the mixture of Wiener process, and the latent event model. The
mixture of Wiener processes is very �exible and can model the covariates
too, while the mixed exponential method is very simple and can be further
developed to include baseline variates.
From an analysis point of view, the trial should be designed to allow

treatment switching, but not crossover. Treatment crossover implies that
patients in the control group will be allowed to switch to the test drug. In
this case, the treatment di¤erence is di¢ cult to de�ne. If a trial is designed
to allow treatment switching but not crossover, then the comparison of the
two groups (based on initial randomization) is easy to interpret. Suppose
that if progressive disease (PD) is observed for a patient (from either group),
the patient will switch to the best alternative treatment available on the
market. This way, the control group represents the situation without the
test drug, and the test group represents the situation with the test drug.
The di¤erence between these two is the patient�s net health improvement
by adding the test drug to the market. Of course, an oncology trial that
does not allow for treatment crossover may be challenging with regard to
patient enrollment and may also have some ethical issues.
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Problem

13.1 Implement the three models discussed in this chapter using SAS
or R and conduct a simulation study of the methods.



Chapter 14

Response-Adaptive Allocation Design

In this chapter, we will discuss the response-adaptive randomiza-
tion/allocation designs, including the play-the-winner model and random-
ized play-the-winner model for two-arm trials, and the generalized urn
model for multiple-arm trials with various endpoints. We will explore the
properties of these adaptive designs and illustrate the methods with trial
examples. Scholars including Zelen (1969), Wei and Durham (1978), Wei,
Smythe and Lin (1990), Stallard, and Rosenberger (2002) and many others
have contributed in this area.

14.1 Opportunities

Response-adaptive randomization or allocation is a randomization tech-
nique in which the allocation of patients to treatment groups is based on
the response (outcome) of the previous patients. The purpose is to pro-
vide a better chance of randomizing the patients to a superior treatment
group based on the knowledge about the treatment e¤ect at the time of
randomization. As a result, response-adaptive randomization takes ethical
concerns into consideration. The well-known response-adaptive models in-
clude the play-the-winner (PW) model and the randomized play-the-winner
(RPW) model.

14.1.1 Play-the-Winner Model

The play-the-winner (PW) model can be easily applied to clinical trials
comparing two treatments (e.g., treatment A and treatment B) with binary
outcomes (i.e., success or failure). For the PW model, it is assumed that
the previous subject�s outcome will be available before the next patient is
randomized. The treatment assignment is based on the treatment response
of the previous patient. If a patient responds to treatment A, then the next
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patient will be assigned to treatment A. Similarly, if a patient responds
to treatment B, then the next patient will be assigned to treatment B.
If the assessment of the previous patients is not available, the treatment
assignment can be based on the response assessment of the last available
patient. It is obvious that this model lacks randomness.

14.1.2 Randomized Play-the-Winner Model

The randomized play-the-winner (RPW) model is a simple probabilistic
model used to sequentially randomize subjects in a clinical trial (Wei and
Durham, 1978; Coad and Rosenberger, 1999). The RPWmodel is useful for
clinical trials comparing two treatments with binary outcomes. In the RPW
model, it is assumed that the previous subject�s outcome will be available
before the next patient is randomized. At the start of the clinical trial,
an urn contains a0 balls representing treatment A and b0 balls representing
treatment B, where a0 and b0 are positive integers. We denote these balls as
either type A or type B balls. When a subject is recruited, a ball is drawn
and replaced. If it is a type A ball, the subject receives treatment A; if it is
a type B ball, the subject receives treatment B. When a subject�s outcome
is available, the urn is updated as follows: A success on treatment A (B)
or a failure on treatment B (A) will generate an additional a1 (b1) type-B
balls in the urn. In this way, the urn builds up more balls representing the
more successful treatment (Figure 14.1).

Figure 14.1: Randomized Play-the-Winner

There are some interesting asymptotic properties with RPW. LetNa=N
be the proportion of subjects assigned to treatment A out of N subjects.
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Also, let qa = 1� pa and qb = 1� pb be the failure probabilities. Further,
let F be the total number of failures. Then, we have (Wei and Durham,
1978) 8>><>>:

lim
N!1

Na

Nb
= qb

qa
;

lim
N!1

Na

N = qb
qa+qb

;

lim
N!1

F
N = 2qaqb

qa+qb
:

(14.1)

Since treatment assignment is based on response of the previous patient
in RPW model, it is not optimized with respect to any clinical endpoint.
It is desirable to randomize treatment assignment based on some optimal
criteria such as minimizing the expected numbers treatment failures. This
leads to the so-called optimal RPW model.

14.1.3 Optimal RPW Model

The optimal randomized play-winner model (ORPW) is intent to minimize
the number of failures in the trial. There are three commonly used e¢ cacy
endpoints in clinic trials, namely, simple proportion di¤erence (pa � pb),
the relative risk (pa=pb) and the odds ratio (paqb=pbqa); where qa = 1� pa
and qb = 1 � pb are failure rates. These can be estimated consistently by
replacing pa by p̂a and pb by p̂b; where p̂a and p̂b are the proportions of
observed successes in treatment groups A and B, respectively. Suppose that
we wish to �nd the optimal allocation r = na=nb such that it minimizes the
expected number of treatment failures naqa+nbqb which is mathematically
given by (Rosenberger and Lachin, 2002):

r� = argmin
r
fnaqa + nbqbg (14.2)

= arg min
r
f r

1 + r
n qa +

1

1 + r
n qbg:

For simple proportion di¤erence, the asymptotic variance is given by

paqa
na

+
pbqb
nb

=
(1 + r)(pa qa + r pb qb)

n r
= K; (14.3)

where K is some constant. Solving (14.3) for n yields

n =
(1 + r)(pa qa + r pb qb)

rK
: (14.4)

Substituting (14.4) into (14.2), we obtain:
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r� = arg min
r

�
(r pa + qb)(paqa + r pbqb)

rK

�
: (14.5)

Taking the derivative of (14.5) with respect to r and equating to zero, we
have

r� =

�
pa
pb

� 1
2

:

Note that r� does not depend on K.

Table 14.1: Asymptotic Variance with RPW

Measure r� Asymptotic variance

Proportion di¤erence
�
pa
pb

� 1
2 pa qa

na
+pb qb

nb

Relative risk
�
pa
pb

� 1
2
�
qb
qa

�
pa q

2
b

naq3a
+ pb qb
nbq2a

Odds ratio
�
pb
pa

� 1
2
�
qb
qa

�
pa q

2
b

naq3a p
2
b
+ pbqb
nbq2ap

2
b

Source: Chow and Chang (2006, p.61).

Note that the limiting allocation for the RPW rule ( qbqa ) is not optimal
for any of the three measures and none of the optimal allocation rule yields
Neyman allocation given by (Mel� and Page, 1998)

r� =

�
pa
pb

qa
qb

� 1
2

; (14.6)

which minimizes the variance of the di¤erence in sample proportions (Table
14.1). Note that Neyman allocation would be unethical when pa > pb (i.e.,
more patients receive the inferior treatment).
Because the optimal allocation depends on the unknown binomial pa-

rameters, practically the unknown success probabilities in the optimal al-
location rule can be replaced by the current estimate of the proportion of
successes (i.e., p̂a;n and p̂b;n) observed in each treatment group thus far.

14.2 Adaptive Design with RPW

We will use SAS Macro 14.1 to study the adaptive design using the random-
ized play-the-winner. There are di¤erent ways to design trial using RPW.
We have seen that RPW can reduce the number of failures and increase the
number of responses within a trial with �xed sample-size. However, it may
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in�ate � using a classic test statistic in conjunction with an unadjusted re-
jection region. In other words, it may reduce the power and sample-size has
to be increased to retain the power. As a result, the increase in sample-size
may lead to an increase of number of failures. Here are some immediate
questions before we design a RPW trial. (1) How many analyses should be
used? Should a full or group sequential design be used? (2) How to de-
termine the four parameters in the randomization urn RPW(a0; b0; a1; b1)?
(3) What test statistic should be used? (4) How to control � and calculate
the power? (5) How to estimate the response rate in each group? We will
use the SAS Macro 14.1, RPW, for two arm trial with binary endpoint to
facilitate the discussion.
In SAS Macro 14.1, the initial numbers of balls in the urn are denoted by

a0 and b0. Next a1 or b1 balls added to the urn if a response is observed
in arm A or arm B. The SAS variables are de�ned as follows: RR1, RR2
= the response rates in group 1 and 2, respectively, nSbjs = total number
of subjects (two groups combined), nMin (>0) = the minimum sample-
size per group required to avoid an extreme imbalance situation, nAnlys
= number of analyses (approximately an equal information-time design).
All interim analyses are designed for randomization adjustment and only
the �nal analysis for hypothesis testing. aveP1 and aveP2 = the average
response rates in group 1 and 2, respectively. Power = probability of the
test statistic > Zc. Note: Zc = function of (nSbjs, nAnlys, a0, b0, a1,
b1, nMin).

��SAS Macro 14.1: Randomized Play-the-Winner Design��
%Macro RPW(nSims=100000, Zc=1.96, nSbjs=200, nAnlys=3,

RR1=0.2, RR2=0.3, a0=1, b0=1, a1=1, b1=1, nMin=1);

Data RPW; Keep nSbjs aveP1 aveP2 Zc Power;

seed1=364; seed2=894; Power=0; aveP1=0; aveP2=0;

Do isim=1 to &nSims;

nResp1=0; nResp2=0; a0=&a0; b0=&b0; Zc=&Zc; N1=0; N2=0;

nSbjs=&nSbjs; nAnlys=&nAnlys; nMax=nSbjs-&nMin;

a=a0; b=b0; r0=a/(a+b);

Do iSbj=1 To nSbjs;

If Mod(iSbj,Round(nSbjs/nAnlys))=0 Then r0=a/(a+b);

rnAss=Ranuni(seed1);

If (rnAss < r0 And N1<nMax) Or N2>=nMax Then

Do;

N1=N1+1; rnRep=Ranuni(seed2);

if rnRep <=&RR1 Then Do;

nResp1=nResp1+1; a=a+&a1;
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End;

End;

Else

Do;

N2=N2+1; rnRep=Ranuni(seed2);

If rnRep <=&RR2 Then Do;

nResp2=nResp2+1; b=b+&b1;

End;

End;

End;

p1=nResp1/N1; p2=nResp2/N2;

aveP1=aveP1+p1/&nSims; aveP2=aveP2+p2/&nSims;

sigma1=sqrt(p1*(1-p1)); sigma2=sqrt(p2*(1-p2));

Sumscf=sigma1**2/(N1/(N1+N2))+sigma2**2/(N2/(N1+N2));

TS = (p2-p1)*Sqrt((N1+N2)/sumscf);

If TS>Zc Then Power=Power+1/&nSims;

End;

Output;

Run;

Proc Print data=RPW; Run;

%Mend RPW;

��SAS��

Example 14.1 Randomized Played-the-Winner Design
Suppose we are designing an oncology clinical study with tumor response

as the primary endpoint. The response rate is estimated to be 0.3 in the
control group and 0.5 in the test group. The response rate is 0.4 in both
groups under the null condition. We want to design the trial with about
80% power at a one-sided � of 0:025:
We �rst check the type-I error of a classic two-group design with n =

200 (100/group) using the following SAS macro calls.

��SAS��
%RPW(Zc=1.96, nSbjs=200, nAnlys=200, RR1=0.4, RR2=0.4,

a0=1, b0=1,a1=0, b1=0, nMin=1);

��SAS��

Note that a1 = b1 = 0 represents the classic design. To calculate the
power, we run the following code.

��SAS��
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%RPW(Zc=1.96, nSbjs=200, nAnlys=200, RR1=0.3, RR2=0.5,

a0=1, b0=1,a1=0, b1=0, nMin=1);

��SAS��

The simulations indicate the power (or type-I error) is 83%. To
determine the reject region or the critical point Zc for a design with
RPW(1; 1; 1; 1) ; we �rst use Zc = 1:96; the critical point for the classic
design in the following SAS macro call:

��SAS��
%RPW(Zc=1.96, nSbjs=200, nAnlys=200, RR1=0.4, RR2=0.4,

a0=1, b0=1,a1=1, b1=1, nMin=1);

��SAS��

The simulations indicate that the one-sided � = 0:055; which is much
larger than the target level 0.025. Therefore, using the SAS Macro 14.1 and
trial-error method, we found that Zc = 2:7 will give the power or � = 0:025:

��SAS��
%RPW(Zc=2.7, nSbjs=200, nAnlys=200, RR1=0.4, RR2=0.4,

a0=1, b0=1,a1=1, b1=1, nMin=1);

��SAS��

Note the previous results are based on full sequential design, i.e., ran-
domization is modi�ed when each response assessment becomes available
(assume no delayed response). Practically it is much easier to carry out a
group sequential trial. For example, the trial can have �ve analyses and the
randomization is modi�ed at each of the four interim analyses. The �nal
analysis is used for testing the null hypothesis of no treatment e¤ect. We
use the following SAS statement to �nd out that Zc should be 2.05:

��SAS��
%RPW(Zc=2.05, nSbjs=200, nAnlys=5, RR1=0.4, RR2=0.4,

a0=1, b0=1,a1=1, b1=1, nMin=1);

��SAS��

Using the following SAS statement, we obtained the power that is 79%,
4% less than the classic design with the same sample-size:

��SAS��
%RPW(Zc=2.05, nSbjs=200, nAnlys=5, RR1=0.3, RR2=0.5,

a0=1, b0=1,a1=1, b1=1, nMin=1);
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��SAS��

The results from the above eight di¤erent scenarios are summarized in
Table 14.2.

Table 14.2: Simulation Results from RPW

Scenario nSbjs aveP1 aveP2 Zc Power

1 200 0.400 0.400 1.96 0.0258

2 200 0.300 0.500 1.96 0.8312

3 200 0.381 0.381 1.96 0.0553

4 200 0.381 0.381 2.70 0.0256

5 200 0.395 0.396 2.05 0.0252

6 200 0.292 0.498 2.05 0.7908

7 200 0.396 0.396 2.035 0.0257

8 200 0.294 0.498 2.035 0.7983

Note: 100,000 Simulation runs.

Similarly we can study the characteristics of di¤erent urns by, for ex-
ample, setting the parameters: a0 = 2, b0 = 2, a1 = 1, b1 = 1 for RPW
(2,2,1,1). I left this for readers to practice.

14.3 General Response-Adaptive Randomization (RAR)

For other types of endpoints, we suggest the following allocation probability
model:

Pr (trt = i) = f (û) ; (14.7)

where Pr (trt = i) is the probability of allocating the patient to the ith

group and the observed response vector û = fu1; :::; uMg :
We further suggest a speci�c function for f , i.e.,

Pr(trt = i) _ a0i + b û
m
i ; (14.8)

where ûi = the observed proportion, mean, number of events, or categorical
score, and a0i and b are constants.

14.3.1 SAS Macro for M-Arm RAR with Binary Endpoint

The response-adaptive randomization algorithm (14.8) has been imple-
mented for the binary response in SAS Macro 14.2. The de�nitions of the
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SAS variables are de�ned as follows: nPts = the total number of patients,
AveN{i} = the average number of patients in the ith arm, AveU{i} = the
average response in the ith arm, PowerMax = the power for testing the
response di¤erence between the arm with maximum response and the �rst
arm, nSims = number of simulation runs, nArms = number of treatment
arms, Zc = critical point for rejecting the null hypothesis. a0{i}, b and
m are the parameters in the model (14.8).

��SAS Macro 14.2: Binary Response-Adaptive Randomiza-
tion��

%Macro RARBin(nSims=1000, nPts=200, nArms=5, b=1, m=1, Zc=1.96);

Data RARBin; Set DataIn;

Keep nPts AveN1-AveN&nArms AveU1-AveU&nArms PowerMax;

Array Ns{&nArms}; Array uObs{&nArms}; Array rP{&nArms};

Array nRsps{&nArms}; Array a0{&nArms}; Array CrP{&nArms};

Array us{&nArms}; Array AveU{&nArms}; Array AveN{&nArms};

PowerMax=0; nArms=&nArms; nPts=&nPts;

Do i=1 To nArms; AveU{i}=0; AveN{i}=0; End;

Do isim=1 to &nSims;

Do i=1 To nArms; nRsps{i}=0; uObs{i}=0; Ns{i}=0; Crp{i}=0; End;

Do iSubject=1 to nPts;

Do i=1 To nArms; rP{i}=a0{i}+&b*uObs{i}**&m; End;

Suma=0; Do i=1 To nArms; Suma=Suma+rP{i}; End;

Do i=1 To nArms; rP{i}=rP{i}/Suma; End;

Do iArm=1 To nArms; CrP{iArm}=0;

Do i=1 To iArm; CrP{iArm}=CrP{iArm}+rP{i}; End;

End;

rn=ranuni(5236); cArm=1;

Do iArm=2 To nArms;

IF CrP{iArm-1}<rn<CrP{iArm} Then cArm=iArm;

End;

Ns(cArm)= Ns(cArm)+1;

* For Binary response;

If ranuni(8364)<us{cArm} Then nRsps{cArm}=nRsps{cArm}+1;

Do i=1 To nArms; uObs{i}=nRsps{i}/max(Ns{i},1); End;

End;

uMax=uObs{1};

Do i=1 to &nArms; If uObs{i}>=uMax Then iMax=i; End;

Se2=0;

Do i=1 to &nArms;

Se2=Se2+uObs{i}*(1-uObs{i})/max(Ns{i},1)*2/nArms;
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End;

TSmax=(uObs{iMax}-uObs{1})*(Ns(1)+Ns{iMax})/2

/(nPts/nArms)/Se2**0.5;

If TSmax>&Zc then PowerMax=PowerMax+1/&nSims;

Do i=1 To nArms;

AveU{i}=AveU{i}+uObs{i}/&nSims;

AveN{i}=AveN{i}+Ns{i}/&nSims;

End;

End;

Output;

Run;

Proc Print Data=RARBin; Run;

%Mend RARBin;

��SAS��

Examples of RAR designs using SAS Macro 14.2 are presented as fol-
lows:

��SAS��
Title "Checking Alpha for 2-Group with Classic Design";

Data DataIn;

Array a0{2} (1,1); Array us{2} (0.2,0.2);

%RARBin(nSims=10000, nPts=160, nArms=2, b=0, m=1, Zc=1.96); Run;

Title "Checking Alpha for 2-Group RAR Design";

Data DataIn;

Array a0{2} (1,1); Array us{2} (0.2,0.2);

%RARBin(nSims=100000, nPts=160, nArms=2, b=1, m=1, Zc=2.0); Run;

Title "Power with 2-Group RAR Design";

Data DataIn;

Array a0{2} (1,1); Array us{2} (0.2,0.4);

%RARBin(nSims=100000, nPts=160, nArms=2, b=1, m=1, Zc=2.0); Run;

Title "Checking Alpha for 3-Group RAR Design";

Data DataIn;

Array a0{3} (1,1,1); Array us{3} (0.2,0.2,0.2);

%RARBin(nSims=100000, nPts=160, nArms=3, b=1, m=1, Zc=2.08); Run;

Title "Power with 3-Group RAR Design";

Data DataIn;

Array a0{3} (1,1,1); Array us{3} (0.2,0.3,0.5);
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%RARBin(nSims=100000, nPts=160, nArms=3, b=1, m=1, Zc=2.08); Run;

��SAS��

14.3.2 SAS Macro for M-Arm RAR with Normal Endpoint

Algorithm (14.8) has also been implemented for normal response in SAS
Macro 14.3.

��SAS Macro 14.3: Normal Response-Adaptive Randomiza-
tion��

%Macro RARNor(nSims=100000, nPts=100, nArms=5, b=1, m=1,

CrtMax=1.96);

Data RARNor; Set DataIn;

Keep nPts AveN1-AveN&nArms AveU1-AveU&nArms PowerMax;

Array Ns{&nArms}; Array AveN{&nArms}; Array uObs{&nArms};

Array rP{&nArms}; Array AveU{&nArms}; Array cuObs{&nArms};

Array a0{&nArms}; Array CrP{&nArms};

Array us{&nArms}; Array s{&nArms};

PowerMax=0; nArms=&nArms; nPts=&nPts;

Do i=1 To nArms; AveU{i}=0; AveN{i}=0; End;

Do isim=1 to &nSims;

Do i=1 To nArms; cuObs{i}=0; uObs{i}=0; Ns{i}=0; Crp{i}=0; End;

Do iSubject=1 to nPts;

Do i=1 To nArms; rP{i}=a0{i}+&b*uObs{i}**&m; End;

Suma=0; Do i=1 To nArms; Suma=Suma+rP{i}; End;

Do i=1 To nArms; rP{i}=rP{i}/Suma; End;

Do iArm=1 To nArms; CrP{iArm}=0;

Do i=1 To iArm; CrP{iArm}=CrP{iArm}+rP{i}; End;

End;

rn=ranuni(5361); cArm=1;

Do iArm=2 To nArms;

IF CrP{iArm-1}<rn<CrP{iArm} Then cArm=iArm;

End;

Ns(cArm)= Ns(cArm)+1;

* For Normal response;

u=Rannor(361)*s{cArm}+us{cArm};

cuObs{cArm}=cuObs{cArm}+u;

Do i=1 To nArms; uObs{i}=cuObs{i}/max(Ns{i},1); End;

End;

se2=0;
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* Assume sigma unknown for simplicity;

Do i=1 To nArms; se2=se2+s{i}**2/max(Ns{i},1)*2/nArms; End;

uMax=uObs{1};

Do i=1 To &nArms; If uObs{i}>=uMax Then iMax=i; End;

TSmax=(uObs{iMax}-uObs{1})*(Ns(1)+Ns{iMax})/2

/(nPts/nArms)/se2**0.5;

If TSmax>&CrtMax then PowerMax=PowerMax+1/&nSims;

Do i=1 To nArms;

AveU{i}=AveU{i}+uObs{i}/&nSims;

AveN{i}=AveN{i}+Ns{i}/&nSims;

End;

End;

Output;

Run;

Proc Print data=RARNor; Run;

%Mend RARNor;

��SAS��

Example 14.2 Adaptive Randomization with Normal Endpoint
The objective of this trial in asthma patients is to con�rm sustained

treatment e¤ect, measured as FEV1 change from baseline to the 1-year of
treatment. Initially, patients are equally randomized to four doses of the
new compound and a placebo. Based on early studies, the estimated FEV1
change at week 4 are 6%, 12%, 13%, 14%, and 15% (with pooled standard
deviation 18%) for the placebo, dose level 1, 2, 3, and 4, respectively.
Using the following SAS macro calls, we can determine that the rejection

region is (0:848; +1). The power is 84% with a total of 375 subjects and
73% with 285 subjects, while the power is 90% for the drop-loser design
with an expected sample-size of 285 in Example 11.1 (Table 11.3).

��SAS��
Data DataIn;

Array a0{5} (1, 1, 1, 1, 1); Array us{5} (0.06, 0.06, 0.06, 0.06, 0.06);

Array s{5} (.18, .18, .18, .18, .18);

%RARNor(nPts=375, nArms=5, b=1, m=1, CrtMax=2.01);

Data DataIn;

Array a0{5} (1, 1, 1, 1, 1); Array us{5} (0.06, 0.12, 0.13, 0.14, 0.15);

Array s{5} (.18, .18, .18, .18, .18);

%RARNor(nPts=375, nArms=5, b=1, m=1, CrtMax=2.01);

��SAS��
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��SAS��
Data DataIn;

Array a0{5} (1, 1, 1, 1, 1); Array us{5} (0.06, 0.06, 0.06, 0.06, 0.06);

Array s{5} (.18, .18, .18, .18, .18);

%RARNor(nPts=285, nArms=5, b=1, m=1, CrtMax=1.995);

Data DataIn;

Array a0{5} (1, 1, 1, 1, 1); Array us{5} (0.06, 0.12, 0.13, 0.14, 0.15);

Array s{5} (.18, .18, .18, .18, .18);

%RARNor(nPts=285, nArms=5, b=1, m=1, CrtMax=1.995);

��SAS��

14.3.3 RAR for General Adaptive Designs

Many adaptive designs can be viewed as response-adaptive randomization
design. We are going to illustrate this with the classic group sequential
design and the drop-loser design.
For two-arm group sequential design, the treatment allocation proba-

bility to the ith arm at the kth stage is given by

Pr(trt = i; k) =
H(pk � �k) +H(�k � pk)

2
� 1
2
; (14.9)

where i = 1; 2, �k and �k are the stopping boundaries at the k
th stage and

the step-function is de�ned as

H (x) =

�
1, if x > 0
0 if x � 0 : (14.10)

For drop-loser designs, if the dropping-criterion is based on the maxi-
mum di¤erence among the observed treatment ûmax � ûmin at the interim
analysis, then the treatment allocation probability to the ith arm at interim
analysis is given by

Pr(trt = i) =
H(ûi � ûmax + �NI)PM
i=1H(ûi � ûmax + �NI)

; (14.11)

where ûi is the observed response in the ith arm, and �NI is the noninferi-
ority margin. M = the total number of arms in the study.
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14.4 Summary and Discussion

Response-adaptive randomization (RAR) was initially proposed to reduce
the number of failures in a trial; however, the overall gain is limited because
(1) power is lost as compared to the uniformly-most powerful design, and (2)
the reduction in number of failures can diminish due to signi�cantly delayed
responses. RAR may (although it is unlikely) delay patient enrollment
because of the fact that patients enrolled later will have a better chance
of being assigned to a better treatment group. If there is heterogeneity
in patient enrollment over time (e.g., sicker patients tend to enroll earlier
because they cannot wait for long), a bias will be introduced.
RAR may be useful in phase II/III combination studies, where at the

early stages, RAR is used to seamlessly select superior arms. In practice,
group (rather than full) sequential response-randomization may be used,
where the response data will be unblinded at several prescheduled times.
In summary, RAR is practically more useful in drop-loser designs than
two-group designs.
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Problem

14.1 Modify Macro 14.3 so that it can calculate and output the mean
response per person per trial.
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Chapter 15

Adaptive Dose Finding Design

In this chapter, we will introduce two commonly used approaches for on-
cology dose-escalation trials: (1) the algorithm-based escalation rules, and
(2) model-based approach. The second approach can be frequentist or
Bayesian-based response-adaptive method and can be used in any dose-
response trials.

15.1 Oncology Dose-Escalation Trial

For non-life-threatening diseases, since the expected drug toxicity is mild
and can be controlled without harm, phase I trials are usually conducted on
healthy or normal volunteers. In life-threatening diseases such as cancer and
AIDS, phase I studies are conducted with a limited number of patients due
to (1) the aggressiveness and possible harmfulness of cytotoxic treatments,
(2) possible systemic treatment e¤ects, and (3) the high interest in the new
drug�s e¢ cacy in those patients directly.
Drug toxicity is considered as tolerable if the toxicity is manageable and

reversible. The standardization of the level of drug toxicity is the Common
Toxicity Criteria (CTC) developed by the United States National Cancer
Institute (NCI). Any adverse event (AE) related to treatment of CTC
category of Grade 3 and higher is often considered a dose-limiting toxicity
(DLT). The maximum tolerated dose (MTD) is de�ned as the maximum
dose with a DLT rate that is no more frequent than a predetermined value.

15.1.1 Dose Level Selection

The initial dose given to the �rst patients in a phase I study should be
low enough to avoid severe toxicity. The commonly used starting dose
is the dose at which 10% mortality (LD10) occurs in mice. The subse-
quent dose levels are usually selected based on the following multiplicative

291



292 Adaptive Design Theory and Implementation

set, xi = fi�1xi�1 (i = 1; 2; :::k); where fi is called the dose escalation
factor. The highest dose level should be selected such that it covers the
biologically active dose, but remains lower than the toxic dose. A popular
dose-escalation factor is called the Fibonacci sequence (2, 1.5, 1.67, 1.60,
1.63, 1.62, 1.62, . . . ) and modi�ed Fibonacci sequence (2, 1.65, 1.52, 1.40,
1.33, 1.33, . . . ). Note that the latter is monotonic sequence, hence more
appropriate than the former.

15.1.2 Traditional Escalation Rules

There are usually 5 to 10 predetermined dose levels with modi�ed Fibonacci
sequence in a dose escalation study. Patients are treated with the lowest
dose �rst and then gradually escalated to higher doses if there is no ma-
jor safety concern. The rules for dose escalation are predetermined. The
commonly employed set of dose escalation rules is the traditional escalation
rules (TER), also known as the "3 + 3" rule. The "3 + 3" rule says to enter
three patients at a new dose level and enter another 3 patients when only
one DLT is observed. The assessment of the six patients will be performed
to determine whether the trial should be stopped at that level or to increase
the dose. Basically, there are two types of the "3 + 3" rules, namely, TER
and strict TER (or STER). TER does not allow dose de-escalation, but
STER does. The "3+3" TER and STER can be generalized to "A+B"
TER and STER.
To introduce the A+B escalation rule, let A;B;C;D, and E be integers.

The notation A=B indicates that there are A toxicity incidences out of B
subjects and >A=B means that there are more than A toxicity incidences
out of B subjects. We assume that there are K prede�ned doses and let pi
be the probability of observing a DLT at dose level i for 1 � i � K.
A + B Escalation without Dose De-escalation:
The general A+B designs without dose de-escalation can be described

as follows. Suppose that there are A patients at dose level i: If fewer than
C=A patients have DLTs, then the dose is escalated to the next dose level
i + 1. If more than D=A (where D � C) patients have DLTs, then the
previous dose i� 1 will be considered the MTD. If no fewer than C=A but
no more than D=A patients have DLTs, B more patients are treated at this
dose level i. If no more than E (where E � D) of the total of A+B patients
experience DLTs, then the dose is escalated. If more than E of the total of
A + B patients have DLT, then the previous dose i� 1 will be considered
the MTD. It can be seen that the traditional "3 + 3" design without dose
de-escalation is a special case of the general A+B design with A = B = 3

and C = D = E = 1. The closed forms of operating characteristics (Lin
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and Shih, 2001) are given below.

Under the general A + B design without de-escalation, the probability
of concluding that MTD has reached at dose i is given by

P �i = P (MTD = dose i) = P

�
escalation at dose � i and
stop escalation at dose i+ 1

�

= (1� P i+10 �Qi+10 )

0@ iY
j=1

(P j0 +Q
j
0)

1A ; 1 � i < K; (15.1)

where

P j0 =
C�1X
k=0

�
A

k

�
pkj (1� pj)A�k;

and

Qj0 =

DX
k=C

E�kX
m=0

�
A

k

�
pkj (1� pj)A�k

�
B

m

�
pmj (1� pj)B�m:

Here pj is the toxicity (DLT) rate at dose level j.
An overshoot is de�ned as an attempt to escalate to a dose level at the

highest level planned, while an undershoot is de�ned as an attempt to de-
escalate to a dose level at a lower dose than the starting dose level. Thus,
the probability of undershoot is given by

P �1 = P (MTD < dose 1) = (1� P 10 �Q10); (15.2)

and the probability of overshoot is given by

P �n = P (MTD � dose K) = �Kj=1(P
j
0 +Q

j
0): (15.3)

The expected number of patients at dose level j is given by

Nj =
K�1X
i=0

NjiP
�
i ; (15.4)
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where

Nji =

8>><>>:
AP j

0+(A+B)Q
j
0

P j
0+Q

j
0

if j < i+ 1

A(1�P j
0�P

j
1 )+(A+B)(P

j
1�Q

j
0)

1�P j
0�Q

j
0

if j = i+ 1

0 if j > i+ 1

:

Note that without consideration of undershoots and overshoots, the ex-
pected number of DLTs at dose i can be obtained as Nipi. As a result, the
total expected number of DLTs for the trial is given by

PK
i=1Nipi:

A + B Escalation with Dose De-escalation:
Basically, the general A+B design with dose de-escalation is similar to

the design without dose de-escalation. However, it permits more patients
to be treated at a lower dose (i.e. dose de-escalation) when excessive DLT
incidences occur at the current dose level. The dose de-escalation occurs
when more than D=A (where D � C) or more than E=(A + B) patients
have DLTs at dose level i. In this case, B more patients will be treated at
dose level i�1, provided that only A patients have been previously treated
at this prior dose. If more than A patients have already been treated
previously, then dose i � 1 is the MTD. The de-escalation may continue
to the next dose level i � 2 and so on if necessary. The closed forms of
operating characteristics are given by Lin and Shih (2001) as follows.

The probability of concluding that the MTD has been reached at dose
i is given by

P �i = P (MTD = dose i) = P

�
escalation at dose � i and
stop escalation at dose i+ 1

�

=
KX

k=i+1

pik; (15.5)

where

pik = (Q
i
0 +Q

i
1)(1� P k0 �Qk0)

0@i�1Y
j=1

(P j0 +Q
j
0)

1A k�1Y
j=i+1

Qj2; (15.6)

Qj1 =
C�1X
k=0

E�kX
m=0

�
A

k

�
pkj (1� pj)A�k

�
B

m

�
pmj (1� pj)B�m; (15.7)

and
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Qj2 =
C�1X
k=0

BX
m=E+1�k

�
A

k

�
pkj (1� pj)A�k

�
B

m

�
pmj (1� pj)B�m; (15.8)

Also, the probability of undershooting is given by

P �1 = P (MTD < dose 1) =
KX
k=1

f
�
�k�1j=1Q

j
2

�
(1� P k0 �Qk0)g; (15.9)

and the probability of overshooting is

P �K = P (MTD � dose K) = �Kj=1(P
j
0 +Q

j
0): (15.10)

The expected number of patients at dose level j is given by

Nj = NjKP
�
K +

K�1X
i=0

KX
k=i+1

Njikpik; (15.11)

where

Njn =
AP j0 + (A+B)Q

j
0

P j0 +Q
j
0

; (15.12)

Njik =

8>>>><>>>>:
AP j

0+(A+B)Q
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0

P j
0+Q

j
0
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A+B if i � j < k
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j
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j
1�Q

j
0)

1�P j
0�Q

j
0

if j = k

0 if j > k

; (15.13)

and

P j1 =
DX
i=C

�
A

k

�
pkj (1� pj)A�k: (15.14)

Consequently, the total number of expected DLTs is given by
PK

i=1Nipi:

15.1.3 Simulations Using SAS Macro

The objective of SAS Macro 15.1 is to simulate the 3+3 traditional es-
calation. The SAS variables are de�ned as follows: nSims = number of
simulation runs, nLevels = number of dose levels, DeEs = "true" means
that it allows for dose de-escalation, otherwise, it does not. AveMTD =
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average observed MTD, AveNPts = average number of patient per trial,
AveNRsps = average number of responses (DLTs) in a trial.

��SAS Macro 15.1: 3+3 Dose-Escalation Design��
%Macro TER3p3(nSims=10000, DeEs="true", nLevels=10);

Data TER; Set dInput; Keep AveMTD SdMTD AveNPts AveNRsps;

Array nPts{&nLevels}; Array nRsps{&nLevels}; Array RspRates{&nLevels};

AveMTD=0; VarMTD=0; AveNPts=0; AveNRsps=0; nLevels=&nLevels;

Do iSim=1 to &nSims;

Do i=1 To nLevels; nPts{i}=0; nRsps{i}=0; End;

seedn=Round((Ranuni(281)*100000000));

iLevel=1; TotPts=0; TotRsps=0;

Looper:

If iLevel>&nLevels j iLevel<1 Then Goto Finisher;
nPts{iLevel}=nPts{iLevel}+3;

rspRate=RspRates{iLevel};

Rsp=RANBIN(seedn,3,rspRate);

nRsps{iLevel}=nRsps{iLevel}+Rsp;

TotPts=TotPts+3; TotRsps=TotRsps+Rsp;

If nPts(iLevel)=3 & nRsps{iLevel}=0 Then Do;

iLevel=iLevel+1;

Goto Looper;

End;

If nPts(iLevel)=3 & nRsps{iLevel}=1 Then Goto Looper;

If nPts(iLevel)=3 & nRsps{iLevel}>1 Then Do;

If &DeEs="false" j iLevel=1 Then Goto Finisher;
iLevel=iLevel-1;

Goto Looper;

End;

If nPts(iLevel)=6 & nRsps{iLevel}<1 Then Do;

iLevel=iLevel+1;

Goto Looper;

End;

Finisher:

MTD=Min(iLevel, nLevels);

AveMTD=AveMTD+MTD/&nSims;

VarMTD=VarMTD+MTD**2/&nSims;

AveNPts=AveNPts+totPts/&nSims;

AveNRsps=AveNRsps+TotRsps/&nSims;

End;

SdMTD=(VarMTD-AveMTD**2)**0.5;
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Output;

Run;

Proc Print Data=TER; Run;

%Mend TER3p3;

��SAS��

We will show you later in Example 15.1 how to use this macro.

15.2 Continual Reassessment Method (CRM)

The continual reassessment method (CRM) is a model approach, in which
the parameters in the model for the response are continually updated based
on the observed response data. The method for updating the parameters
can be either frequentist or Bayesian approach.
CRM was initially proposed by O�Quigley (O�Quigley, et al., 1990;

O�Quigley and Shen, 1996; Babb and Rogatko, 2004) for oncology dose-
escalation trial. However, it can be extended to other types of trials (Chang
and Chow 2006). In CRM, the dose-response relationship is continually re-
assessed based on accumulative data collected from the trial. The next pa-
tient who enters the trial is then assigned to the currently estimated MTD
level. This approach is more e¢ cient than TER with respect to �nding the
MTD.
Let�s denote prior distribution by � (�) ; and the sample distribution by

f (xj�). In Bayesian approach for CRM, there are four basic elements:
(1) the joint distribution of (�; x) given by

' (�; x) = f (xj�)� (�) ; (15.15)

(2) the marginal distribution of x given by

m (x) =

Z
' (�; x) d� =

Z
f (xj�)� (�) d�; (15.16)

(3) the posterior distribution of � given by Bayes�formula

� (�jx) = f (xj�)� (�)
m (x)

; (15.17)

(4) the predictive probability distribution given by

P (yjx) =
Z
P (xjy; �)� (�jx) d�: (15.18)
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15.2.1 Probability Model for Dose-Response

Let x be the dose or dose level, and p (x) be the probability of response
or response rate. The commonly used model for dose-response is logistic
model (Figure 15.1).

p(x) = [1 + b exp(�ax)]�1 ; (15.19)

where b is usually a predetermined constant and a is a parameter to be
updated based on observed data.

Figure 15.1: Logistic Toxicity Model

15.2.2 Prior Distribution of Parameter

The Bayesian approach requires the speci�cation of prior probability dis-
tribution of the unknown parameter a.

a � g0(a); (15.20)

where g0(a) is the prior probability.
When there is very limited knowledge about the prior is available, non-

informative prior can be used.
Likelihood Function
The next step is to construct the likelihood function. Given n observa-

tions with yi (i = 1; :::; n) associated with dose xmi
, the likelihood function
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can be written as

fn(r ja) =
nY
i=1

[p(xmi)]
ri [1� p(xmi)]

1�ri ; (15.21)

where

ri =

�
1, if response observed for xmi

0, otherwise
: (15.22)

15.2.3 Reassessment of Parameter

The key is to estimate the parameter a in the response model (15.19). An
initial assumption or a prior about the parameter is necessary in order to
assign patients to the dose level based on the dose-toxicity relationship.
This estimation of a is continually updated based on the cumulative re-
sponse data observed from the trial thus far. The estimation method can
be a Bayesian or frequentist approach. For Bayesian approach, it leads
to the posterior distribution of a. For frequentist approaches, maximum
likelihood estimate or least square estimate can be used.
Bayesian approach
For Bayesian approach, the posterior probability of parameter a can be

obtained as follows

gn(ajr) =
fn(rja)g0 (a)R
fn(rja)g0(a) da

(15.23)

or

gn(ajr) =
[pn (a)]

rn [1� pn (a)]1�rn gn�1 (a)R
[pn (a)]

rn [1� pn (a)]1�rn gn�1(a) da
; (15.24)

where pn (a) = p(xmn
) is the response rate at the dose level, at which the

nth patient is treated.
After having obtained gn(ajr), we can update the predictive probability

using

p(x) =

Z
[1 + b exp(�ax)]�1 gn(ajr) da: (15.25)

Maximum likelihood approach
Note that Bayesian approach is computationally intensive. Alterna-

tively, we may consider a frequentist approach to simplify the calculation.
The maximum likelihood estimate of the parameters is given by
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â = argmax
a

ffn(r j a)g: (15.26)

Note that the MLE â is only available after both responders and non-
responders are observed.
After having obtained â, we can update the dose-response model or the

predictive probability using

p(x) = [1 + b exp(�âx)]�1 : (15.27)

15.2.4 Assignment of Next Patient

The updated dose-toxicity model is usually used to choose the dose level
for the next patient. In other words, the next patient enrolled in the trial
is assigned to the currently estimated MTD based on dose-response model
(15.25) or (15.27). Practically, this assignment is subject to safety con-
straints such as limited dose jump. Assignment of patient to the most up-
dated MTD is intuitive. This way, majority of the patients will be assigned
to the dose levels near MTD, which allows for a more precise estimation of
MTD with a minimal number of patients.

15.2.5 Simulations of CRM

SAS Macro 15.2, CRM, is developed for simulating the trial using CRM,
where the logistic response model (5.19) is used. The input SAS variables
are de�ned as follows: nSims = number of simulations, nPts = total
number of patients, nLevels = number of dose levels, b = model parameter
in (15.19), aMin and aMax = the upper and lower limits for prior on the
parameter a, MTRate = the rate de�ned for MTD, nIntPts = number
of intervals for numerical integration in calculating the posterior, g{i} =
prior distribution of the model parameter a,RRo{i} = true response rates,
and doses{i} = dose amount. These three arrays should be in the dataset
naming DInput. The key output variables are: AveMTD = average
MTD (simulated), SdMTD = standard deviation of MTDs (simulated).

��SAS Macro 15.2: Continual Reassessment Method��
%Macro CRM(nSims=100, nPts=30, nLevels=10, b=100,

aMin=0.1, aMax=0.3, MTRate=0.3, nIntPts=100);

Data CRM; Set DInput; Keep nPts nLevels AveMTD SdMTD DLTS;

Array nPtsAt{&nLevels}; Array nRsps{&nLevels}; Array g{&nIntPts};

Array Doses{&nLevels}; Array RRo{&nLevels}; Array RR{&nLevels};
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seed=2736; nLevels=&nLevels; nPts=&nPts; DLTs=0;

AveMTD=0;VarMTD=0; dx=(&aMax-&aMin)/&nIntPts;

Do iSim=1 to &nSims;

Do i=1 To nLevels; nPtsAt{i}=0; nRsps{i}=0; End;

iLevel=1;

Do iPtient=1 To nPts;

iLevel=min(iLevel, &nLevels); Rate=RRo{iLevel};

nPtsAt{iLevel}=nPtsAt{iLevel}+1;

r=Ranbin(seed,1,Rate); nRsps{iLevel}=nRsps{iLevel}+r;

** Posterior distribution of a;

c=0;

Do k=1 To &nIntPts;

ak=&aMin+k*dx;

Rate=1/(1+&b*Exp(-ak*doses{iLevel}));

If r>0 Then L=Rate; Else L=(1-Rate);

g{k}=L*g{k}; c=c+g{k}*dx;

End;

Do k=1 to &nIntPts; g{k}=g{k}/c; End;

** Predict response rate and current MTD;

MTD=iLevel; MinDR=1;

Do i=1 To nLevels;

RR{i}=0;

Do k=1 To &nIntPts;

ak=&aMin+k*dx;

RR{i}= RR{i}+1/(1+&b*Exp(-ak*doses{i}))*g{k}*dx;

End;

DR=Abs(&MTRate-RR{i});

If .<DR <MinDR Then

Do; MinDR = DR; iLevel=i; MTD=i; End;

End;

End;

Do i=1 To nLevels;

DLTs=DLTs+nRsps{i}/&nSims;

End;

AveMTD=AveMTD+MTD/&nSims;

VarMTD=VarMTD+MTD**2/&nSims;

End;

SdMTD=(VarMTD-AveMTD**2)**0.5;

Output;

Run;

Proc Print Data=CRM; run;
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%Mend CRM;

��SAS��

15.2.6 Evaluation of Dose-Escalation Design

There are advantages and disadvantages with di¤erent dose escalation
schemes. For example, the traditional 3+3 escalation is easy to apply but
the MTD estimation is usually biased, especially when there are many dose
levels. The criteria for evaluation of escalation schemes are listed as follows:
the number of DLTs, number of patients, number of patients dosed above
MTD, accuracy, and precision.
Before a phase I trial is initiated, the following design characteristics

should be checked and de�ned in the study protocol: (1) starting dose,
(2) dose levels, (3) prior information on the MTD, (4) toxicity model, (5)
escalation rule, (6) stopping rule, and (7) rules for completion of the sample-
size when stopping.

Example 15.1 Adaptive Dose-Finding for Prostate Cancer
Trial
A trial is designed to establish the dose-toxicity relationship and identify

MTD for a compound in patients with metastatic androgen independent
prostate cancer. Based on preclinical data, the estimated MTD is 230
mg/m2: The modi�ed Fibonacci sequence is chosen for the dose levels (in
Table 15.1). There are 8 dose levels anticipated, but more dose levels can
be added if necessary. The initial dose level is 30 mg/m2, which is 1/10 of
the minimal e¤ective dose level (mg/m2) for 10% deaths (MELD10) of the
mouse after veri�cation that no lethal and no life-threatening e¤ects were
seen in another species. The toxicity rate (DLT rate) at MTD is de�ned
for this indication as 17%.

Table 15.1: Dose Levels and DLT Rates

Dose level i 1 2 3 4 5 6 7 8

Dose x 30 45 68 101 152 228 342 513

DLT rate 0.01 0.02 0.03 0.05 0.12 0.17 0.22 0.4

The SAS macro calls for TER and STER designs are presented as fol-
lows:

��SAS��
Title "3 + 3 TER and SER Designs";

Data dInput;



Adaptive Dose Finding Trial 303

Array RspRates{8}(0.01,0.02,0.03,0.05,0.12,0.17,0.22,0.4);;

%TER3p3(nSims=100000, DeEs="true", nLevels=8);

%TER3p3(nSims=100000, DeEs="false", nLevels=8);

run;

��SAS��

The SAS macro calls for CRM design are presented as follows:

��SAS��
Title "Bayesian CRM Design";

Data DInput;

Array g{100}; Array RRo{8}(.01, .02, .03, .05, .12, .17, .22, .4);

Array Doses{8} (30, 45, 67, 100, 150, 230, 340, 510);

Do k=1 To 100; g{k}=1; End; * Flat prior;

Do i=1 To 8; doses(i)=i; End;

Run;

Proc Print Data=Dinput; Var Doses1-Doses8 RRo1-RRo8; Run;

%CRM(nSims=1000, nPts=8, nLevels=8, b=150, aMin=0, aMax=3,

MTRate=0.17);

%CRM(nSims=1000, nPts=16, nLevels=8, b=150, aMin=0, aMax=3,

MTRate=0.17);

Run;

��SAS��

Table 15.2: Adaptive Dose-Response Simulation Results

Method Mean N Mean DLTs Mean MDT SdMTD

TER 18.4 1.47 5.33 1.82

STER 19.2 1.60 5.27 1.77

CRM 8.0 1.24 6.01 0.07

CRM 16.0 2.65 6.00 0.06

In CRM, the following logistic model is used

p =
1

1 + 150 exp(�a i) ;

where i = dose level (we can also use actual dose) and the prior distribution
for parameter a is �at over [0, 3].
Note the true MTD is dose level 6 (228 mg=m2). The simulation results

are summarized in Table 15.2. The average predicted MTD (dose level)
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is 5.33 with TER and 5.27 with STER, which are underestimated. In
contrast, the average MTD for the two CRM with sample-size 8 and 16
patients accurately predict the true MTD. From precision point of view,
even with a smaller sample-size, the standard deviation of MTD (SdMTD)
is much smaller for CRM than both TER and STER. It can be seen that
increasing sample-size in CRM may not materially increase the precision,
but could increase the DLTs or responses, which is not desirable. In the
current scenario, the CRM design with 8 patients is the best among the
four designs. However, we should be aware that the performance of CRM
is dependent on the goodness of the model speci�cation.

15.3 Summary and Discussion

We have studied the traditional algorithm-based and model-based ap-
proaches for dose-response trials. The e¢ ciencies of the approaches are
dependent on several aspects, such as the situation in which the next pa-
tient is enrolled before we have the response data from the previous patient.
In this case, the e¢ cacy of the TER and CRM may be reduced. There may
also be a limit for dose escape, which may also reduce the e¢ ciency of the
CRM.
In addition to A+B escalation algorithms, many other algorithms have

been proposed (Chevret, 2006 and Ting, 2006). For example, Shih and Lin
(2006) modi�ed A + B and derived closed form solutions for the modi�ed
algorithms. They were motivated by the following: (1) in a traditional A+B
design, the previous dose level is always declared the maximum tolerated
dose (MTD), and the current dose has no chance at all of being declared
the MTD; (2) the starting dose cannot necessarily be the lowest dose; and
(3) the design may be a two-stage escalation design used to accelerate the
escalation in the early part of the trial with one or two patients per dose
level. However, the values from (1) and (2) are questionable because any
dose can be the current or previous dose level, and just like dose jump,
dosing the �rst patient at a higher dose level may put certain individuals
at risk, even though the overall toxicity (e.g., number of DLTs) may be
reduced.
CRM can be used with other monotonic or non-monotonic models and

can be combined with response-adaptive randomization or a drop-loser de-
sign (Chang, et al., 2005).
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Problem

15.1 Modify SAS Macro SAS 15.1 using m+ n dose-escalation rules.

15.2 Modify SAS Macro SAS 15.2 to include a control arm; then design
a two-arm study (control and active) using CRM.
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Chapter 16

Bayesian Adaptive Design

16.1 Introduction

The use of adaptive trial designs could greatly improve the e¢ ciency of
drug development; the incorporation of the Bayesian approach is one more
step further to this direction. Bayesian approaches provide a powerful tool
for streamlining sequential learning processes, predicting future results, and
synthesizing evidences across di¤erent resources. The resulting outcomes
using Bayesian approaches are easier to interpret and more informative for
decision making.
The Bayesian approach has been widely studied recently in drug devel-

opment in areas such as clinical trial design (Spiegelhalter, Abrams, and
Myles, 2004), pharmacovigilance(Hauben, et al., 2005; Hauben and Reich,
2004) and pharmacoeconomics (Ades, et al., 2006; Iglesias and Claxton,
2006). Goodman (2005), Louis (2005) and Berry (2005) give excellent in-
troductions to using Bayesian methods in clinical trials and discuss relevant
issues.
There are two di¤erent ways of using the Bayesian approach in clinical

trials: the frequentist-Bayesian hybrid approach and the pure Bayesian ap-
proach. In the frequentist-Bayesian hybrid approach, the frequentist statis-
tical criterion for e¢ cacy claim is used, i.e., p-value < �, but the Bayesian
approach is used to achieve better design or decision-making. The pure
Bayesian approach would suggest a change in the current signi�cance cri-
terion to use the so-called Bayesian signi�cance or other Bayesian criteria
(Section 16.3).
The Bayesian approach can be used to determine the best strategy avail-

able at the time. It can be used to monitor trials, predict outcomes, an-
ticipate problems, and suggest early remedies. The Bayesian approach in
combination with adaptive designs (Section 8) will allow for con�guring the
best strategy over time.

307
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In this chapter, a comparative study of frequentist and Bayesian ap-
proaches is pursued to objectively evaluate the two di¤erent approaches.
The di¤erences are identi�ed in various aspects such as learning mech-
anism, trial design, monitoring, data analysis, and result interpretation.
The regulatory aspects of Bayesian approaches are reviewed, challenges in
using Bayesian designs are addressed, and steps for planning a Bayesian
trial are outlined.

16.2 Bayesian Learning Mechanism

We acquire knowledge through a sequence of learning processes. We form
a perception about a certain thing based on prior experiences, i.e., prior
knowledge. This knowledge is updated when new facts are observed. This
learning mechanism is the central idea of the Bayesian approach. Bayes�
theorem, the foundation of the Bayesian approach, can be expressed as:
Posterior distribution = C(Likelihood� Prior distribution), where C is a
normalization constant that can be calculated. The posterior distribution
that is used to make inferences about the treatment e¤ect is a combination
of evidences from both prior (or historical information sources) and the
current trials. Note that prior refers to the knowledge before the current
trial and posterior distribution is the knowledge after the current trial.

Figure 16.1: Bayesian Learning Process
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Bayes�rule reveals the important relationships among prior knowledge,
new evidence, and updated knowledge (posterior probability). It re�ects
the human learning process. Whether you are a statistician, a physician,
or a regulatory agent, you are using the Bayesian approach constantly,
formally or informally, consciously or unconsciously.
The di¤erences between the frequentist and Bayesian approaches are re-

�ected in the learning process. Both frequentist and Bayesian approaches
use prior probabilities, but in quite di¤erent ways. The frequentist approach
uses prior information segmentally, while the Bayesian approach uses the
prior rigorously and intelligently. The frequentist approach considers a pop-
ulation parameter to be a �xed number; the Bayesian approach views the
population parameter as a random variable with a probability distribution,
which can be updated as more information is accumulated. The Bayesian
approach can be used to gain knowledge about treatment e¤ect over time;
this is illustrated in Figure 16.1. We can see that the uncertainty about
the treatment e¤ect is reduced over time.
Drug development is a process that switches between statistics and prob-

ability. Statistics is the study of (drawing a conclusion about) population
characteristics based on the observed sample; probability is the study of
the sample properties based on the characteristics of the population. For
example, to design a phase II trial, we estimate the treatment e¤ect from
prior information and use that to calculate the sample-size and the proba-
bility of success (power); at the end of the trial, we estimate the treatment
e¤ect again based on the phase II trial results, then use that to design
the next trial (phase III), and predict power. At the end of the phase III
trial, we estimate the treatment e¤ect again. However, the frequentist and
Bayesian approaches make the inference and calculate probability di¤er-
ently. The frequentist approach assumes a single known treatment e¤ect at
each phase in drug development and calculates sample-size based on that
single number; the Bayesian approach, on the other hand, realistically uses
the posterior distribution of the treatment e¤ect at the end of each phase for
sample-size calculation for the next phase. The Bayesian approach also al-
lows for knowledge to be updated when new information becomes available
and uses it during the drug development process.

16.3 Bayesian Basics

16.3.1 Bayes�Rule

Denote prior distribution � (�) ; and the sample distribution f (xj�) : As
mentioned in Chapter 15, the following are four basic Bayesian elements:
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(a) the joint distribution of (�; x) given by

' (�; x) = f (xj�)� (�) ; (16.1)

(b) the marginal distribution of x given by

m (x) =

Z
' (�; x) d� =

Z
f (xj�)� (�) d�; (16.2)

(c) the posterior distribution of � given by Bayes�formula

� (�jx) = f (xj�)� (�)
m (x)

; and (16.3)

(d) the predictive probability distribution given by

P (yjx) =
Z
P (xjy; �)� (�jx) d�: (16.4)

Example 16.1 Beta Posterior Distribution
Assume that X � Bin (n; p) and p � Beta (�; �) :

The sample distribution is given by

f (xjp) =
�
n

x

�
px (1� p)n�x ; x = 0; 1; :::; n: (16.5)

The prior about the parameter p is given by

� (p) =
1

B (�; �)
p��1 (1� p)��1 ; 0 � p � 1; (16.6)

where beta function B (�; �) = �(�)�(�)
�(�+�) :

The joint distribution then is given by

' (p; x) =

�
n
x

�
B (�; �)

p�+x�1 (1� p)n�x+��1 (16.7)

and the marginal distribution is

m (x) =

�
n
x

�
B (�; �)

B (�+ x; n� x+ �) : (16.8)

Therefore the posterior distribution is given by
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� (pjx) = p�+x�1 (1� p)n�x+��1

B (�+ x; � + n� x) = Beta (�+ x; � + n� x) : (16.9)

Example 16.2 Normal Posterior Distribution
Assume that X � N

�
�; �2=n

�
and � � N

�
�; �2=n0

�
:

The posterior distribution can be written as

� (�jX) _ f (Xj�)� (�) (16.10)

or

� (�jX) = Ce�
(X��)2n

2�2 e�
(���)2n0

2�2
; (16.11)

where C is a constant.
We immediately recognize that (16.11) is the normal distribution of

N
�
n0�+nX
n0+n

; �2

n0+n

�
:

We now wish to make predictions concerning future values of X, taking
into account our uncertainty about its mean �:Wemay writeX = (X � �)+
�; and so can consider X as being the sum of two independent quantities:
(X � �) � N

�
0; �2=n

�
; and � � N

�
�; �2=n0

�
. The predictive probability

distribution is given by (Spiegelhalter, et al., 2004),

X � N

�
�; �2

�
1

n
+
1

n0

��
: (16.12)

If we have already observed xn1 ; the mean of the �rst n1 observations,
the predictive distribution is given by

Xjxn1 � N

�
n0�+ n1xn1
n0 + n1

; �2
�

1

n0 + n1
+
1

n

��
: (16.13)

16.3.2 Conjugate Family of Distributions

A family z of probability distribution on � is said to be conjugate (or
closed under sampling) if, or every � 2 z; the posterior distribution � (�jx)
also belongs to z:
The main interest of conjugacy becomes more apparent when z is as

small as possible and parameterized. When z is parameterized, switching
from prior to posterior distribution is reduced to an updating of the cor-
responding parameters. This is a main reason why conjugate priors are so
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popular, as the posterior distributions are always computable, at least to a
certain extent.
The conjugate prior approach, which originated in Rai¤a and Schlaifer

(1961), can be partially justi�ed through an invariance reasoning. Updating
the model should not be radical, e.g., only the values of the parameters not
the model or function itself is updated. Commonly used conjugate families
are presented in Tables 16.1 and 16.2.

Table 16.1: Commonly Used Conjugate Families

Model f (xj�) Prior � (�) Posterior � (�jx)
Normal N

�
�; �2

�
N
�
�; �2

�
N
�
�2�+�2x
�2+�2 ; �2�2

�2+�2 ;
�

Poisson P (�) G (�; �) G (�+ x; � + 1)

Gamma G (�; �) G (�; �) G (�+ �; � + x)

Binomial Bin (n; �) Beta (�; �) Beta (�+ x; � + n� x)
Neg. Bin NB (m; �) Beta (�; �) Beta (�+m;� + x)

For conjugate family distributions, the estimations can easily be ob-
tained and are summarized in Table 16.2.

Table 16.2: Estimation of Conjugate Families

Distribution Conjugate distribution Posterior expectation

Normal N
�
�; �2

�
N
�
�; �2

�
��2+�2x
�2+�2

Poisson P (�) G (�; �) �+x
�+1

Gamma G (�; �) G (�; �) �+�
�+x

Binomial Bin (n; �) Beta (�; �) �+x
�+�+n

Neg. Bin NB (m; �) Beta (�; �) �+n
�+�+x+n

16.4 Trial Design

16.4.1 Bayesian for Classic Design

We are going to use an example to illustrate some di¤erences between
Bayesian and frequentist approaches in trial design.

Example 16.3 Prior E¤ect on Power
Consider a two-arm parallel design comparing a test treatment with a

control. Suppose that, based on published data from 3 clinical trials of
similar size, the prior probabilities for e¤ect size are 0.1, 0.25, and 0.4 with
1/3 probability for each.
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For the 2-arm trial, the power is a function of e¤ect size of "; i.e,

power (") = �
�p

n"

2
� z1��

�
; (16.14)

where � is c.d.f. of the standard normal distribution.

Considering the uncertainty of "; i.e., prior � (") ; the expected power

Pexp=
Z
�

�p
n"

2
� z1��

�
� (") d": (16.15)

A numerical integration is usually required for evaluation (16.15).
To illustrate the implication of (16.15), let�s assume one-sided � = 0:025;

z1�� = 1:96; the prior

� (") =

�
1/3, " = 0:1; 0:25; 0:4

0, otherwise.
(16.16)

Conventionally we use the mean (median) of the e¤ect size �" = 0:25 to
design the trial and calculate the sample-size. For the two-arm balanced
design with � = 0:2 or power = 80%; using classic approach, the total
sample is given by

n =
4(z1�a + z1��)

2

"2
=
4 (1:96 + 0:842)

2

0:252
= 502: (16.17)

However, if Bayesian approach is used, the expected power from (16.15)
is

Pexp

=
1

3

�
�

�
0:1
p
n

2
� z1��

�
+�

�
0:25

p
n

2
� z1��

�
+�

�
0:4
p
n

2
� z1��

��
=
1

3
[� (�0:839 73) + � (0:840 67) + � (2: 521 1)]

=
1

3
(0:2005 + 0:7997 + 0:9942) = 0:664 8 = 66%: (16.18)

We can see that the expected power is only 66%, therefore, we should
increase sample-size.
With the Bayesian approach that considers the uncertainty of the e¤ect

size, the expected power with a sample-size of 252 is the average of the
three powers calculated using the 3 di¤erent e¤ect sizes (0.1, 0.25, and
0.4), which turns out to be 66%, much lower than 80% as the frequentist
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approach claimed. Therefore, to reach the desired power, it is necessary to
increase the sample-size.
This is an example of a Bayesian-frequentist hybrid approach, i.e., the

Bayesian approach is used for the trial design to increase the probability of
success given the �nal statistical criterion being p-value � � = 0:025.

Example 16.4 Power with Normal Prior
If the prior � (") = N

�
�; �2=n0

�
; then the expected power can be ob-

tained using the predictive distribution (16.12) and evaluating the chance

of the critical event
�
X > 1p

n
z1���

�
occurring, which is given by

Pexp = �

�r
n0

n0 + n

�
�
p
n

�
� z1��

��
: (16.19)

Now let�s look at the expected total example size. The total sample-size
is function of the e¤ect size "; i.e.,

n (")=
4(z1�a + z1��)

2

"2
: (16.20)

Therefore, the expected total sample-size is given by

nexp =

Z
4(z1�a + z1��)

2

"2
� (") d": (16.21)

For �at prior � (") � 1
b�a ; [a � " � b] ;

nexp =

Z b

a

4(z1�a + z1��)
2

"2
1

b� ad"

=
4

ab
(z1�a + z1��)

2: (16.22)

The sample-size ratio Rn=
nexp
n = "2

ab : For example " = 0:25; � =

0:025; � = 0:8; n = 502; a = 0:1; b = 0:4 (note that (a + b)=2 = ");

Rn =
0:252

(0:1)(0:4) = 1: 56: It indicates again that the frequentist approach
could substantially underestimate the sample-size required for achieving
the target power.
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16.4.2 Bayesian Power

To test the null hypothesis � � 0 against an alternative hypothesis � > 0:
Bayesian signi�cance is de�ned as PB = P (� < 0jdata) < �B : Using the
posterior distribution, the Bayesian signi�cance can be easily found.

Example 16.5 Bayesian Power
For normal distribution prior and data, the posterior distribution is

given by

� (�jx) = N

�
n0�0 + n�x

n0 + n
;

�2

n0 + n

�
: (16.23)

Bayesian signi�cance is claimed if the parameter estimate �x satis�es

�x >

p
n0 + nz1��B� � n0�0

n
; (16.24)

p
n0 + nz1��B� � n0�0

n

p
n

�
+ �:

Therefore the Bayesian power is then given by

PB (n) = 1� �
�
z1��B

r
n0
n
+ 1� n0

p
n
�0
�
+ �

�
; (16.25)

where � is the true mean for the population.

Example 16.6 Trial Design Using Bayesian Power
Suppose in a phase II two-arm hypotension study with the SBP reduc-

tion as the primary endpoint, the estimated treatment e¤ect is normal dis-

tribution, i.e., � � N
�
�; 2�

2

n0

�
. The trial is designed with a Bayesian power

of (1��B) at the Bayesian signi�cance level �B = 0:2. For the sample-size,
the sample mean di¤erence can be expressed as �̂ � N

�
�; 2�

2

n

�
; where n =

sample-size per group. For a large sample-size, we can assume that �̂ is
constant. Therefore the sample-size n is the solution for the following

1� �
�
z1��B

r
n0
n
+ 1� n0

p
n
�0
�
+ �

�
= 1� �B : (16.26)

That is,
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z1��B

r
n0
n
+ 1� n0

p
n
�0
�
+ � = z�B : (16.27)

Equation (16.27) can be solved numerically for sample-size n.

16.4.3 Frequentist Optimization

Simon�s Two-Stage Design
Simon�s two-stage optimal design (Simon, 1989) is a commonly used

design for single-arm oncology trials. The hypothesis testing can be stated
as

Ho : R < R1 vs. Ha : R � R2;

where R is response rate.
The trial has one interim analysis (IA). At IA, if the observed R̂ < R0

or the number of response is less than a constant n1c, then stop the trial
for futility. Otherwise trial continues. At the �nal, if the total number of
responses is larger than or equal to nc, then reject Ho. Otherwise, accept
Ho. For a given � and power, di¤erent values of n1c, and nc will lead to
di¤erent maximum sample-size and expected sample sizes under Ho and
Ha. The optimal design minimizes the expected sample-size under Ho and
the MinMax design minimizes the maximum sample-size.
SAS Macro 16.1 can be used for a single-arm two-stage design with in-

terim futility stopping. For a given constant n, the macro will search the
best set of designs with sample-size ranging from 0:7n to 1:5n. The SAS
variables are de�ned as follows: Alpha0 = target one-sided signi�cance
level, Alpha = actural one-sided alpha, po and pa = response rates under
Ho and Ha, respectively, n = sample-size group, n1 = sample-size at in-
terim analysis for early futility stopping, n1c = critical value for futility: If
the number of responses at the �rst stage is less than n1c, stop for futility;
otherwise, continue to the second stage. If the total number of responses
from the two stages >= nc, claim e¢ cacy. PrEFSHo and PrEFSHa are
the probabilities of early stopping under Ho and Ha, respectively. ExpNo
and ExpNa are the expected sample sizes under Ho and Ha, respectively.

��SAS Macro 16.1: Simon Two-Stage Futility Design��
%Macro TwoStageDesign(n=50, po=0.15, pa=0.3, n1=20, n1c=2,

alpha0=0.1);

Data TwoStageBin;

retain alpha power;
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drop i p1o p2o p1a p2a n2;

n1=&n1; n1c=&n1c; po=&po; pa=&pa; * Remove "&".;

do n=round(0.7*&n) to round(1.5*&n);

n2=n-&n1;

do nc=n1c to n;

alpha=0;

power=0;

do i=max(n1c,nc-n2) to n1;

p1o=ProbBnml(po, n1,i)-ProbBnml(po, n1,i-1);

p2o=1;

if nc-i>0 then p2o=1-ProbBnml(po, n2,nc-i-1);

alpha=alpha+p1o*p2o;

p1a=ProbBnml(pa, n1,i)-ProbBnml(pa, n1,i-1);

p2a=1;

if nc-i>0 then p2a=1-ProbBnml(pa, n2,nc-i-1);

power=power+p1a*p2a;

end;

if alpha>0.8*&alpha0 && alpha<1.2*&alpha0 then do;

PrEFSHo=ProbBnml(po, n1,n1c-1);

ExpNo=PrEFSHo*n1+(1-PrEFSHo)*n;

PrEFSHa=ProbBnml(pa, n1,n1c-1);

ExpNa=PrEFSHa*n1+(1-PrEFSHa)*n;

output;

end;

end;

end;

run;

proc print; run;

run;

%Mend TwoStageDesign;

��SAS��

Example 16.7 Simon Two-Stage Optimal Design
Suppose we design a single-arm, phase-II oncology trial using Simon�s

two-stage optimal design. The response rates are assumed 0.05 and 0.25
under the null hypothesis and the alternative hypothesis, respectively. For
one-sided � = 0:05 and power = 80%; the sample-size at stage 1 is n1 = 9.
The cumulative sample-size at stage 2 is n = 17: The actual overall � =
0:047, the actual power = 0.812. The stopping rules are speci�ed as follows:
At stage 1, stop and accept the null hypothesis if the response rate is less
than 1=9. Otherwise, continue to stage 2. The probability of stopping for
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futility is 0.63 when Ho is true and 0.075 when Ha is true. At stage 2,
accept the null hypothesis if the response rate is less than or equal to 2=17.
Otherwise, reject the null hypothesis.

The results can be generated using ExpDesign Studio
R
, or the following

SAS macro call:

��SAS��
%TwoStageDesign(n=17, po=0.05, pa=0.25, n1=9, n1c=1, alpha0=0.05);

��SAS��

16.4.4 Bayesian Optimal Adaptive Designs

As discussed earlier in Section 12.4, Bayesian decision theory can be used
to optimize trial designs. The Bayesian approach is decision-oriented. A
Bayesian views statistical inference as a problem in belief dynamics, or
use of evidence about a phenomenon to revise our knowledge about it. In
distinguishing from a frequentist, for a Bayesian, statistical inference cannot
be treated entirely independently of the context of the decisions that will
be made on the basis of the inferences.
There are many di¤erent scenarios of reality with associated probabili-

ties (prior distribution) and many possible adaptive designs with associated
probabilistic outcomes (good and bad). Evaluation criterion can be the util-
ity index that can be the aggregation of overall patients�health outcomes.
Bayesian optimal design is to achieve the maximum expected utility under
�nancial, time, and other constraints. We will use two-arm designs to illus-
trate the approach. The three designs we are going to compare are: classic
approach with a two-arm phase II trial followed by a two-arm phase III
trial, and two di¤erent group sequential designs (seamless designs).
For each design, calculate the utility and weighted by its prior proba-

bility to obtain the expected utility for the design. The optimal design is
the one with maximum expected utility.

Example 16.8 Bayesian Optimal Design
Suppose prior knowledge about treatment e¤ect is determined as shown

in Table 16.3. We are going to compare the classic design and Bayesian
adaptive designs.
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Table 16.3: Prior Knowledge

Scenario E¤ect size Prior prob.

1 0 0.2

2 0.1 0.2

3 0.2 0.6

The Classic Design: Assume there is no dose selection issue. For
classic design, we use a phase-II and a phase-III trial (assume that just one
phase-III trial is required for approval). For the phase II trial, we assume
� = 0:2; one-sided � = 0:1 and power = 0.8, the total sample-size required
is n1 = 450. For the phase-III trial, assume � = 0:14 (calculated by 0.2(0)
+ 0.2(0.1) + 0.6(0.2) from Table 16.3), one-sided � = 0:025; power = 0.9,
the total sample-size required is n = 2144. If the phase II didn�t show
statistical signi�cance, we will not conduct the phase-III trial (In practice,
the rule is not always followed). The probability of continuing the trial at
phase-II is the weighted continual probability in Table 16.4, i.e.,

Pc = �
3
i=1Pc (i)� (i) = 0:2 (0:1) + 0:2 (0:4) + 0:6 (0:8) = 0:58:

Therefore, the expected sample-size for phase-II and III trials together is

�N = n1 + Pcn = 450 + 0:58 (2144) = 1780:

The expected overall power is given by

�P = �3i=1Pc (i)� (i)P3 (i)

= (0:2) (0:1) (0:025) + (0:2) (0:4) (0:639) + (0:6) (0:8) (0:996)

= 0:53:

Table 16.4: Characteristics of Classic Phase II and III Designs

Prob. of continue Phase III

Scenario, i E¤ect size Prior prob. � to Phase III, Pc Power, P3
1 0 0.2 0.1 0.025

2 0.1 0.2 0.4 0.639

3 0.2 0.6 0.8 0.996

In conclusion, the classic phase II trial followed by a phase III trial has
overall power = 53% with expected grand combined sample = 1780.

Seamless Design With OB-F Boundary: Use one-sided � = 0:025;
power =0.90, with O�Brien-Fleming e¢ cacy stopping boundary and sym-
metrical futility stopping boundary. One interim analysis will be conducted
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when 50% patients are enrolled. We can use the ExpDesign Studio
R
(Fig-

ure 16.2) or SAS Macro 6.1 to simulate the trial. The operating character-
istics of the design are summarized in Table 16.5.

Figure 16.2: ExpDesign Studio

Table 16.5: Characteristics of Seamless Design (OBF)

Scenario, i E¤ect size Prior prob. � Nexp Power

1 0 0.2 1600 0.025

2 0.1 0.2 1712 0.46

3 0.2 0.6 1186 0.98

Average example size can be calculated:

Nexp = �� (i)Nexp (i)

= 0:2(1600) + 0:2(1712) + 0:6(1186)

= 1374:

Average power can be calculated:
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Pexp = �� (i)Nexp (i)Power (i)

= 0:2(0:025) + 0:2(0:46) + 0:6(0:98)

= 0:69

Seamless Design with Pocock Boundary: We now use Pocock
boundary e¢ cacy stopping boundary and the symmetric futility stopping
boundary to design the trial. The operating characteristics are summarized
in Table 16.6.

Table 16.6: Characteristics of Seamless Design (Pocock)

Scenario, i E¤ect size Prior prob. � Nexp Power

1 0 0.2 1492 0.025

2 0.1 0.2 1856 0.64

3 0.2 0.6 1368 0.996

Average sample-size is given by

Nexp = �� (i)Nexp (i)

= 0:2(1492) + 0:2(1856) + 0:6(1368)

= 1490:

Average power is given by

Pexp = �� (i)Nexp (i)Power (i)

= 0:2(0:025) + 0:2(0:64) + 0:6(0:996)

= 0:73:

Let�s compare the di¤erent designs from a �nancial perspective. Assume
per-patient cost in the trial = $50k, dollar value of approval before deduct-
ing the trial cost = $1B. Time savings are not included in the calculation.
Therefore, the expected utility can be expressed as

Expected utility = (Average power)($80M)-(Nexp)($50K).

The resulting expected utility for the three designs are summarized in
Table 16.7. We can see that the Pocock design is the best among the three
designs based on both power and the expected utility.
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Table 16.7: Comparison of Classic and Seamless Designs

Design Nmax Average Nexp Average power Expected utility

Classic 1500 0.59 $0.515B
BOF 1374 0.69 $0.621B
Pocock 1490 0.73 $0.656B

16.5 Trial Monitoring

Conditional and Predictive Powers
The conditional and predictive power can be used to monitor adaptive

designs.
AssumeX has binomial distribution. Given x out of n1 patients have the

response at �rst stage, what is the probability (conditional power) of having
at least y additional responses out of n2 additional patients at second stage?
The conditional power can be obtained using the frequentist approach:

P (yjx; n1; n2) =
n2X
i=y

�
n2
i

��
x

n1

�i
(1� x

n1
)n2�i: (16.28)

Now let�s look at Bayesian point of view. For the nonformative prior
i.e., p is uniformly distributed in [0; 1], we have

P (X = xjp) =
�
n1
x

�
px(1� p)n1�x;

P (a < p < b \ X = x) =

Z b

a

�
n1
x

�
px(1� p)n1�xdp;

P (X = x) =

Z 1

0

�
n1
x

�
px(1� p)n1�xdp;

and

P (a < p < b j X = x) =

R b
a

�
n1
x

�
px(1� p)n1�xdpR 1

0

�
n1
x

�
px(1� p)n1�xdp

=

R b
a
px(1� p)n1�xdp

B(x+ 1; n1 � x+ 1)
;
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where Beta function

B(x+ 1; n1 � x+ 1) =
�(x+ 1)�(n1 � x+ 1)

�(n1 + 2)
:

Therefore the posterior distribution of p is a Beta distribution

�(pjx) = px(1� p)n1�x
B(x+ 1; n1 � x+ 1)

: (16.29)

The predictive power (to di¤erentiate from frequentist�s conditional
power) or the predictive probability of having at least y responders out
of additional n2 patients is given by

P (yjx; n1; n2) =
Z 1

0

P (X � yjp; n2)� (pjx) dp

=

Z 1

0

n2X
i=y

�
n2
i

�
pi(1� p)n2�i px(1� p)n1�x

B(x+ 1; n1 � x+ 1)
dp:

Carrying out the integration, we have

P (yjx; n1; n2) =
n2X
i=y

�
n2
i

�
B(x+ i+ 1; n2 + n1 � x� i+ 1)

B(x+ 1; n1 � x+ 1)
; (16.30)

where we have used the results:

Z 1

0

pa (1� p)b dp = B(a+ 1; b+ 1):

16.6 Analysis of Data

An important feature of the Bayesian approach is that it provides an ideal
methodology for synthesizing information. This is often accomplished under
the so-called exchangeability assumption. As pointed out by the Guidance
for the Use of Bayesian Statistics in Medical Device Clinical Trials (FDA,
2006), exchangeability is a key idea in statistical inference in general, but
it is particularly important in the Bayesian approach. If the patients in a
clinical trial are exchangeable with the target population, then the clinical
trial can be used to make inferences about the entire population. Data
from di¤erent trials are more or less correlated. Exchangeability is a way



324 Adaptive Design Theory and Implementation

to characterize the correlation. Suppose we are interested in making infer-
ences on many parameters �1, �2,...�k measured on K �units,�which may,
for example, be true treatment e¤ects in subpopulations, investigative cen-
ters, or a sequence of trials. The parameters �1, �2,...�k are exchangeable,
if the labels (subscripts) are not systematically associated with the values
of the parameters. In other words, �1, �2,...�k are samples from the same
distribution of some �super population.�It is important to know that two
trials may be exchangeable only after adjustments are made for other con-
founding factors with the appropriate statistical model (Corn�eld, 1976).
In the frequentist approach, the parameter � is considered a �xed value;

hence, a �xed e¤ect model is used for the analysis. However, in the Bayesian
paradigm, the parameter is considered a random variable (hence, �1, �2,...�k
above can be considered a random sample from a common super popula-
tion). Therefore, the random-e¤ect model with the exchangeability assump-
tion is used for the analysis. This relationship between subpopulations and
super populations can exist on multiple levels � a hierarchical model. Be-
cause of the similarity or exchangeability, data can be pooled across patient
and disease groups within the same trial, and across trials, using a hierar-
chical model to obtain more precise estimates.
An example of a hierarchical model is illustrated in the Guidance for

the Use of Bayesian Statistics in Medical Device Clinical Trials: (Corn�eld,
1976). Suppose you want to combine information from a treatment registry
of an approved device with results from a new study. A model of two
hierarchical levels (the patient level and the study level) is used. In the
�rst (patient) level of the hierarchy, exchangeability is assumed for each of
the studies. However, registry patients are not exchangeable with patients
in the current study, so patient data from the registry and the current study
cannot simply be pooled. The second (study) level of the hierarchy applies
a model that assumes that the success probabilities from the registry and
the current study are exchangeable after adjustment for covariates. Due to
the use of this hierarchical model, the registry provides some information
about the success probability for the current study, although not as much
information as if the patients in the two groups were pooled directly as in
a homogeneous case.
To give a real-life example of the Bayesian approach, in 2003, the FDA

approved a drug that combines pravastatin, a cholesterol-lowering agent,
with aspirin, based on the use of an exclusively Bayesian analysis of e¢ cacy.
The Bayesian approach was used to synthesize information through a meta-
analysis of data from �ve previous pravastatin secondary prevention trials.
Hierarchical modeling allowed for diverse sets of patients within the various
trials (Berry, 2005).
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In contrast, the frequentist approach does not allow for information
synergy from di¤erent sources (trials) in general, at least in the current
regulatory setting.
To illustrate the synergy of evidences, let�s consider a very simple ex-

ample. Suppose we have completed phase II and phase III asthma studies
that have similar patient populations, similar treatment regimens, etc. The
mean di¤erence in e¢ cacy was 7% improvement from baseline FEV1 with a
standard deviation of 22% (Standard error = 0.022, n = 200 per group) in
the phase II trial, and 9% improvement with a standard deviation of 20%
(Standard error = 0.0126, n = 500 per group) in the phase III trial. If we
use phase II as the prior for phase III, we will have the posterior Normal
distribution for the percent FEV1 improvement with a mean of 7.5% with
a standard deviation 1.1%. We have learned the treatment e¤ect from the
phase III data on top of the phase II data, rather than only from the phase
III data.
In practice, because of the heterogeneity of the trials, more complicated

hierarchical models have to be used to derive the posterior distribution of
treatment e¤ect as mentioned earlier for the combined drug approved by
FDA in 2003 (Berry, 2005).

16.7 Interpretation of Outcomes

In addition to p-value, con�dence interval (CI) is commonly reported as a
frequentist outcome of clinical trials. Ironically, frequentist CIs are often
misinterpreted as Bayesian credible intervals (BCI) because the concept of
CI is di¢ cult to understand and somewhat awkward to interpret. Fortu-
nately, the CI is numerically close to the BCI with a non-informative prior
distribution. For this reason, this misunderstanding does not lead to any
tragedy.
The concept of a CI is quite di¢ cult for non-statisticians. For example,

assume that our population parameter of interest is the population mean.
What is the meaning of a 95% CI in this situation? The correct interpreta-
tion is based on repeated sampling. If samples of the same size are drawn
repeatedly from a population, and a CI is calculated from each sample,
then 95% of these intervals should contain the population mean. We can
say that the probability of the true mean falling within this set of intervals
with various lower and upper bounds is 95% (Figure 16.3). However, we
can�t say that the probability of the true mean falling within a particularly
observed (i.e. �xed) CI is 95%.
The frequentist approach considers the treatment e¤ect to be a �xed
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constant and CI bound as random variables, while the Bayesian considers
the treatment e¤ect to be a random variable and BCIs as �xed constants
when data are given. Another way of saying this is that frequentist infer-
ences are based on the �sample space� (the set of possible outcomes of a
trial), while Bayesian inferences are based on the �parameter space� (the
posterior distribution). For this reason, BCI is easy to interpret (Figure
16.3). For example, if the 95% BCI of the treatment mean is (1, 3), we
can say that there is 95% probability that the true mean falls within (1,
3). However, for a CI of (1, 3), we cannot say anything about the location
of the true mean. Clearly, BCI is much more informative than frequentist
CI and can be used to design a better trial, as discussed in the following
example. Note that these posterior probabilities are completely di¤erent
from power for the hypothesis testing. Power is the probability of showing
statistically that the treatment e¤ect is larger than zero, under the assump-
tion of a certain treatment e¤ect, while Bayesian posterior probability is
telling us the probabilities associated with di¤erent magnitudes of treat-
ment e¤ect. Power is associated with alpha, while the posterior probability
is the updated knowledge about the treatment e¤ect, and is not associated
with alpha.

Figure 16.3: Interpretation of Con�dence Interval: Five out of 100
intervals do not cover the population mean (0) with � = 5%
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16.8 Regulatory Perspective

Bayesian approaches are accepted by the FDA medical device division,
CDRH, which recently issued a FDA draft guidance on the use of Bayesian
statistics in medical device clinical trials (FDA, 2006). In CDER FDA,
although the frequentist approach, i.e., alpha control, is used in the New
Drug Application (NDA) approval criteria, information from other sources
has never been ignored. In fact, the FDA uses �prior� information in its
decision making on clinical trials, which it refers to as informal use of the
Bayesian approach.
Janet Woodcock (acting deputy commissioner for operations, FDA)

commented at a workshop on Bayesian Clinical trials, �Bayesian approaches
to clinical trials are of great interest in the medical product development
community because they o¤er a way to gain valid information in a manner
that is potentially more parsimonious of time, resources and investigational
subjects than our current methods. The need to streamline the product
development process without sacri�cing important information has become
increasingly apparent.�(Woodcock, 2004)
Temple also articulated his view and pointed out that the FDA Evidence

Document describes, in qualitative ways, how and when the FDA will take
into account other data to reach an e¤ectiveness conclusion based on a single
study, and how other controlled trial data can contribute to the present case
(FDA, 2005).
The Bayesian philosophy is clearly re�ected in the Evidence Document

criteria for regulatory approval based on one study (FDA, 2005). The drug
carvediol for congestive heart failure can be used to illustrate how prior
information plays a role in drug evaluation (Temple, 2005). Carvedilol was
already approved for the treatment of congestive heart failure to improve
survival and decrease hospitalization. A new study called CAPRICORN
studied post-infarction patients with left ventricular dysfunction (ejection
fraction less than 40) (Dargie, 2001) to study carveldilol use after a heart
attack in people with decreased ejection fractions. The primary endpoint
was total mortality (TM). However, in the middle of the study, a new
endpoint, death plus cardiovascular hospitalization (DPCH), was added by
the data monitoring committee (DMC). TM and DPCH became coprimary
endpoints. The multiple adjustments were speci�ed, and the family-wise
alpha was split into two parts: 0.005 for TM and 0.045 for DPCH. This
meant that to claim e¢ cacy of the drug, either of the following conditions
must have been met: (1) p-value for TM less than or equal to 0.005 or
(2) p-value for DPCH less than or equal to 0.045. The trial results came
out as follows: p-value for DPCH was much larger than 0.045, but p-value
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for TM was about 0.03. Based on the modi�ed endpoints, e¢ cacy could
not be claimed. However, if the DMC had not changed the endpoint, the
e¢ cacy of the drug would obviously have been claimed. So, what to do?
After extensive discussions, the FDA agreed with the recommendation by
the Cardiorenal Advisory Committee to approve the drug. Temple stated
that the fairly explicit reasons were that there were very strong priors here.
Carvedilol was unequivocally e¤ective in congestive heart failure; pooled
early heart failure trials showed a survival e¤ect for carvedilol and a large
study in moderate to severe heart failure (COPERNICUS) showed a clear
survival e¤ect (Packer, et al., 2001).

16.9 Summary and Discussions

The Bayesian approach can be used in drug development in two di¤erent
ways: pure Bayesian and hybrid approaches. The pure Bayesian approach
is preferred for virtually all studies before phase III. This is because the
Bayesian approach can better incorporate uncertainties at di¤erent stages
and produce more informative output, such as posterior probability for
decision-making and streamlining the process of moving from one phase to
the next. For phase III trials, before regulatory agencies accept Bayesian
evidence, a Bayesian-frequentist hybrid approach can make better use of
the information from earlier phases in the design of phase III studies, as
illustrated in the examples above.
Operational challenges are usually similar for Bayesian trials and fre-

quentist trials. However, when Bayesian approaches are used in the clinical
development plan and portfolio optimization, they require the ability to
rapidly integrate knowledge and experiences from di¤erent disciplines into
the decision-making process and hence require a shift to a more collabora-
tive working environment.
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Problem

16.1 Discuss the frequentist and Bayesian approaches in drug develop-
ment.
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Chapter 17

Planning, Execution, Analysis, and
Reporting

17.1 Validity and Integrity

Both the PhRMA white papers (Gallo, et al., 2006) and the discussion
paper (Chang and Chow, 2006) emphasize the importance of validity and
integrity of adaptive trials. Although controlling the overall type-I error
rate at the nominal level (alpha) is essential, it does not imply validity and
integrity of the trial. The validity of a trial includes internal and external
validities. A study that readily allows its �ndings to be generalized to the
population at large has high external validity. Internal validity refers to the
degree to which we are successful in eliminating confounding variables and
establishing a cause-e¤ect relationship (treatment e¤ect) within the study
itself. There are many di¤erent ways in which the internal validity of a
study could be jeopardized. Threats to internal validity include instrumen-
tation (case report form, coding shift, evaluation criteria), selection bias
(failure in randomization at some level, e.g., a less-sick patient may pre-
fer to wait for enrollment in the con�rmatory stage instead of the learning
stage, but a sicker patient may not be able to wait), and experimental mor-
tality (informed dropouts). The threats to external validity are protocol
amendments, including changes in inclusion/exclusion criteria, which could
result in a shift in the target patient population (Chow, Chang, and Pong,
2005), and multiple-endpoints that do not support a common conclusion.
Ensuring integrity is also critical in a seamless design. Integrity means

a solid protocol design, excellent execution, unbiased analyses of trial data,
and correct interpretation of the results. Integrity means being ethical and
avoiding the out-weighting of the risk-bene�t ratio of individual patients,
trial patients as a whole, and future patients. Integrity also means that
regulatory agencies use appropriate approval criteria that balance risk and
bene�t. The use of a �xed type-I error rate criterion might, in fact, prevent
a low-risk and low-bene�t drug from being delivered to patients.

331
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17.2 Study Planning

Before the implementation of an adaptive design, it is recommended that
the following practical issues be considered. First, determine whether an
adaptive design is feasible for the intended trial. For example, will the
adaptive design require extraordinary e¤orts for implementation? Are the
level of di¢ culty and the associated cost justi�able for the gain from the
adaptive design? Will the implementation of the adaptive design delay
patient recruitment and prolong the duration of the study? Would de-
layed responses diminish the advantage of the adaptive design? How often
will the unblinded analyses be practical, and to whom should the data
be unblinded? How should the impact of a Data Monitoring Committee�s
(DMC�s) decisions regarding the trial (e.g., recommending early stopping
or other adaptations due to safety concerns) be considered at the design
stage? Second, we should ensure the validity of the adaptive design for
the intended trial. For example, will the unblinding cause potential bias
in treatment assessment? Will the implementation of the adaptive design
destroy the randomness? Third, we should have an expectation about the
degree of �exibility (sensitivity or robustness). For example, will protocol
deviations or violations invalidate the adaptive method? How might an
unexpected DMC action a¤ect the power and validity of the design? In
designing a trial, we should also consider how to prevent premature release
of the interim results to the general public using information masks because
releasing information it could a¤ect the rest of the trial and endanger the
integrity of the trial. Regarding study design, and we strongly suggest early
communication with the regulatory agency and DMC regarding the study
protocol and the DMC charter. For broader discussions of planning di¤er-
ent adaptive designs, please see the PhRMA full white papers on adaptive
design (Quinlan, Gallo, and Krams, 2006; Gallo, 2006, Gaydos, et al., 2006;
Maca, et al., 2006; Chuang, et al., 2006)

17.3 Working with Regulatory Agency

Dr. Robert Powell from FDA said that companies should begin a dia-
logue about adaptive designs with FDA medical o¢ cers and statisticians
as early as a year before beginning a trial. FDA�s O¢ ce of Biostatistics As-
sociate Director-Adaptive Design/Pharmacogenomics, Dr. Sue-Jane Wang
addressed some of the expectations for adaptive design submissions (Wang,
2006): (1) Is prospectively planned; (2) Has valid statistical approaches on
modi�cation of design elements that have alpha control and can be de�ned
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in terms of ICH E-9 standard; (3) Has valid point estimates and con�dence
interval estimates; (4) Builds on experience from external trials; (5) Takes
a "learn" and "con�rm" approach; (6) Has standard operating procedures
and infrastructure for adaptive process monitoring to avoid bias; (7) Has
SOPs on adaptive design decisions; and (8) Includes documentation of ac-
tual monitoring process, extent of compliance, and potential e¤ect on study
results.
It is important to assure the validity of the adaptive design. Dr. O�Neill

said (The Pink Sheet, Dec. 18, 2006, p.24), "We�re most concerned about
estimating what you think you are estimating," "Is the hypothesis testing
appropriate? Do you know what you are rejecting at end of day? Can you
say you are controlling the false positive?"
Another reason to communicate with the agency early is that FDA could

be of assistance in sharing the data or at least the disease information or
models as Dr. Robert Powell indicated. Building o¤ external data and
experience is sometimes a crucial element of adaptive design. Just as P�zer
SVP Dr. Declan Doogan pointed out: Drug development is a knowledge-
creating business, we have to increase access to data... the FDA is sitting
on a pile of wonderful data. How can we access that? We could learn much
from other people�s failures (The Pink Sheet, Dec. 18, 2006, p.24).

17.4 Trial Monitoring

In practice, it is recognized that there are often deviations from the study
protocol when conducting a clinical trial. It is ethical to monitor the trials
to ensure that individual subjects are not exposed, or have limited expo-
sure, to unsafe or ine¤ective treatment regimens. For this purpose, a Data
Monitoring Committee (DMC) is usually established. The DMC plays a
critical role in monitoring clinical trials. There are common issues that
a¤ect a DMC�s decision, such as short-term versus long-term treatment
e¤ects, early termination philosophies, response to early bene�cial trends,
response to early unfavorable trends, and response where there are no ap-
parent trends (Ellenberg, Fleming, and DeMets, 2002; Pocock, 2005). It
is recommended that a DMC be established to monitor the trial when an
adaptive design is employed in clinical trials, especially when many adap-
tations are considered for allowing greater �exibility.
The stopping rule chosen in the design phase serves as a guideline to

a DMC (Ellenberg, Fleming, and DeMets, 2002) as it makes a decision
to recommend continuing or stopping a clinical trial. If all aspects of the
conduct of the clinical trial adhered exactly to the conditions stipulated
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during the design phase, the stopping rule obtained during the design phase
could be used directly. However, there are usually complicating factors that
must be dealt with during the conduct of the trial.
Deviation of Analysis Schedule: DMC meetings are typically based on

the availability of its members, which may be di¤erent from the schedules
set at the design phase. The enrollment may be di¤erent from the assump-
tion made at the design phase. Deviation in the analysis schedule will a¤ect
the stopping boundaries; therefore, the boundaries should be recalculated
based on the actual schedules.
Deviation of E¢ cacy Variable Estimation: The true variability of the

response variable is never known, but the actual data collected at interim
analysis may show that the initial estimates in the design phase are inaccu-
rate. Deviation in the variability could a¤ect the stopping boundaries. In
this case, we may want to know the likelihood of success of the trial based
on current data, which is known as conditional and predictive power, and
repeated con�dence intervals. Similarly, the estimation of treatment di¤er-
ence in response could be di¤erent from the initial estimation in the design
phase. This could lead to an adaptive design or sample-size re-estimation
(Jennison and Turnbull, 2000).
Safety Factors: E¢ cacy is not the only factor that will a¤ect a DMC�s

decision. Safety factors are critical for the DMC to make an appropriate
recommendation to stop or continue the trial. The term �bene�t-risk ratio�
is a most commonly used composite criterion to assist in decision-making.
In this respect, it is desirable to know the likelihood of success of the trial
based on current data, i.e., the conditional power or predictive power.
The DMC may also weight the short-term and long-term treatment

e¤ects in its recommendations.
The commonly used tools for monitoring a group sequential design are

stopping boundaries, conditional and predictive powers, futility index, and
repeated con�dence interval. These tools can be used in other adaptive
designs. Bayesian monitoring tools are appreciated for di¤erent adaptive
designs. There are several good books on trial monitoring: Data Monitoring
Committees in Clinical Trials by Ellenberg, Fleming, and DeMets, 2002
and Statistical Monitoring of Clinical Trials by Proschan, Lan, and Wittes
2006, among others.

17.5 Analysis and Reporting

Data analyses of an adaptive design at interim analysis and at the �nal
stage remain very challenging to statisticians. While they bene�t from the
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�exibility of adaptations, it is a concern that the p-value may not be cor-
rect and the corresponding con�dence interval may not be reliable (EMEA,
2002). It is also a concern that major adaptations could lead to a totally
di¤erent trial that is unable to address the medical questions or hypotheses
that the original trial intended to answer. Although some unbiased esti-
mators of treatment e¤ect for some adaptive designs are available, many
issues in data analysis of general adaptive designs are still very debatable
from statistical and scienti�c points of view. It is suggested that both
unadjusted and adjusted values are reported, including the adjusted and
unadjusted point-estimates, the naive and adjusted con�dence intervals,
and the adjusted and unadjusted p-values. When an unbiased estimate is
not available, computer simulations should be performed to assess the mag-
nitude of the bias. It is suggested that in addition to the frequentist results,
pharmaceutical companies should make e¤orts to present Bayesian results
because these more-informative results could help the company itself and
the FDA to better measure the bene�t-risk ratio for a candidate drug.

17.6 Bayesian Approach

Bayesian methods o¤er a better sequential learning mechanism through
Bayes�theorem, improved predictive capabilities of future results by incor-
porating the uncertainties of priors, and an objective evidence measure by
synergizing the information resources. The Bayesian approach is informa-
tion driven and decision oriented, rather than hypothesis based. Therefore,
the Bayesian approach is a natural �t for adaptive designs. Bayesian ap-
proaches, in combination with adaptive methods and simulations, provide
a powerful tool to achieve better planning, better design, better monitor-
ing, and better execution of clinical trials. They can help to streamline the
drug development process, increase the probability of success, reduce the
cost and time-to-market for drug development, and ultimately bring the
best treatment to patients faster.

17.7 Clinical Trial Simulation

Traditional drug development is subjective to a large extent, and intuitive
decision-making processes are primarily based on individual experiences.
Therefore, optimal design is often not achieved. Clinical trial simulation
(CTS) is a powerful tool for providing an objective evaluation of develop-
ment plans and study designs for program optimization and for supporting
strategic decision-making. CTS is very intuitive and easy to implement
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with minimal cost and can be done in a short time. The utilities of CTS
include, but are not limited to (1) sensitivity analysis and risk assessment,
(2) estimation of probability of success (power), (3) design evaluation and
optimization, (4) cost, time, and risk reduction, (5) clinical development
program evaluation and prioritization, (6) trial monitoring and interim
prediction of future outcomes, (6) prediction of long-term bene�t using
short-term outcomes, (7) validation of trial design and statistical methods,
and (8) streamlining communication among di¤erent parties. Within regu-
latory bodies, CTS has been frequently used for assessing the robustness of
results, validating statistical methodology, and predicting long-term bene�t
in accelerated approvals. CTS plays an important role in adaptive design
for the following reasons: First, statistical theory for adaptive designs is
often complicated under some relatively strong assumptions, and CTS is
useful in modeling very complicated situations with minimum assumptions
not only to control type-I error, but also to calculate the power, and to gen-
erate many other important operating characteristics such as the expected
sample-size, conditional power, and unbiased estimates. Second, CTS can
be used to evaluate the robustness of the adaptive design against protocol
deviations. Moreover, CTS can be used as a tool to monitor trials, predict
outcomes, identify potential problems, and provide remedies for resolutions
during the conduct of the trials.
In summary, clinical trial simulation is a useful tool for adaptive designs

in clinical research. It can help investigators achieve better planning, better
designs, better monitoring, and generally better execution of clinical trials.
In addition, it can help to (1) streamline the drug development process,
(2) increase the probability of success, and (3) reduce the cost and time-to-
market in pharmaceutical research and development.
A simpli�ed CTS model is shown in Figure 17.1. The high-level algo-

rithms for the simulations are: (1) Simulate the trial under the null hypoth-
esis m times. For each simulation, calculate the test statistic and use the
m test statistic values to construct distribution numerically. (2) Similarly,
simulate the trial under the alternative hypothesis m times, calculate the
test statistic, and use the m test statistic values to construct a distribution
under Ha numerically. The two distributions can be used to determine the
critical region for a given �, the p-value for given data, and power for a
given critical region.
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Figure 17.1: Simpli�ed CTS Model: Gray-Box

17.8 Summary

Adaptive design methods represent new territory in drug development. Us-
ing adaptive design, we can increase the chances for the success of a trial
with reduced cost. Bayesian approaches provide new tools for optimizing
trial design and clinical development program planning by integrating all
the relevant knowledge and information available. Clinical trial simulations
o¤er a powerful tool to design and monitor trials. The combination of adap-
tive design, the Bayesian approach, and trial simulation forms an ultimate
statistical instrument for most successful drug development programs.
This innovative approach requires careful upfront planning and the abil-

ity to rapidly integrate knowledge and experiences from di¤erent disciplines
into the decision-making process. It requires integration of new data in real
time, where data standardization tools such as CDISC and EDC play crit-
ical roles. Last but not least, all of the above require a shift to a more
collaborative working environment among disciplines.
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Problem

17.1 Plan an adaptive trial including all the necessary steps from be-
ginning to the end.



Chapter 18

Paradox - Debates in Adaptive
Designs

In this last chapter, we will discuss most of the controversial issues sur-
rounding adaptive designs. We will review relevant statistical principles
and check against adaptive designs. The discussions will be from both sta-
tistical and philosophical perspectives. In many ways, this may re�ect the
future direction.

18.1 My Standing Point

"There is only one single history, but we view it as a random sample to
predict the future." � Mark Chang

"Because we cannot avoid errors, the goal is not to minimize the chance
of making errors, but to minimize the impact of the errors." � Mark Chang.

�We can�t solve problems by using the same kind of thinking we used
when we created them.�� Albert Einstein

"We insist on the fact that statistics should be considered an interpre-
tation of natural phenomena, rather than an explanation.� � Christian
Robert.

There are di¤erent paradigms of statistical theory. The di¤erent theo-
ries represent di¤erent philosophies and have provoked much controversy.
However, within each paradigm, consistency and completeness are expected
with an axiom system. These axioms are often called principles. When a
new inference procedure or experiment design violates a principle of an ex-
isting theory, there are several possible actions we can take: (1) Do not use
the new procedure; (2) Modify the existing theory or abandon the "princi-
ple" so we can explain a new "phenomena" or use a new procedure; or (3)
Develop a new theory or choose another existing theory.

339
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We cannot completely avoid making errors. Taking clinical trials as an
example, we can make a type-I (false positive) or type-II (false negative)
error. If one believes that protecting patients from ine¤ective drugs is of
absolute importance, one should use � = 0 for the hypothesis test so that
no drug (e¤ective or ine¤ective) will get to the market. On the other hand,
if one believes that preventing any e¤ective drug from being delivered to
patients is absolutely unacceptable, one should use � = 1 so that no drug
(e¤ective or ine¤ective) will be left out. In reality, we should balance the
e¤ects of making these two types of errors. In other words, what we really
care about is the impact of errors, not the errors themselves.
In statistics, there are many principles; any violation of these principles

can be considered an "error" and will have an impact. We all know that in
mathematics, statistics, and science, there are many theories that con�ict
with one another, even though each is internally consistent. In statistics,
for example, Bayesian and frequentist approaches have many fundamental
di¤erences. An adaptive design may violate principles of one theory, but
may be consistent with the principles of other theories. Our action taken,
e.g., choosing either classic or adaptive design, is dependent on the impact
of that decision.
Statistical analyses and predictions are usually motivated by objectives.

The outcome of the analyses and predictions will guide the decision-making.
When we propose a statistical method (e.g., adaptive design) under a cer-
tain condition, we believe the method is preferable to alternative methods
based on anticipated consequences or impacts.
The impact is characterized by a loss function in decision theory. This

loss function (implicit or explicit) always guides our decision whether we
realize it or not. The challenging and also interesting part is that di¤erent
people have di¤erent perspectives on loss, hence the di¤erent loss functions.
Loss functions are often vague and not explicitly de�ned, especially when
we make decisions in our daily lives. Decision theory make this loss explicit
and deals with it with mathematical rigor.

18.2 Decision Theory Basics

In decision theory, statistical models involve three spaces: the observation
space X, the parameter space �, the action space A. Actions are guided by
a decision rule � (x). An action � 2 A always has an associated consequence
characterized by the so-called loss function L (�; a). In hypothesis testing,
the action space is A = {accept; reject}.
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Because it is usually impossible to uniformly minimize the loss L (�; a) ;
in frequentist paradigm, the decision rule � is determined such that mini-
mize the following average loss:

R (�; �) = EXj� (L (�; � (x)))

=

Z
X

L (�; � (x)) f (xj�) dx: (18.1)

The rule a = � (x) is often called an estimator in estimation problems.
Common examples of loss function are squared error loss (SEL) L(�; a) =
(� � a)2, absolute loss, L(�; a) = j� � �j, the 0-1 loss, L(�; a) = 1(j�� �j),
etc.
The expected SEL associate variance and bias of an estimator through

following:

EXj� (� � � (X))2 = V ar (� (X)) + [bias (� (X))]2 ;

where bias(� (X)) = EXj� (� (X)).

De�nition 18.1 Bayesian expected loss is the expectation of the loss
function with respect to posterior measure, i.e,

� (� (x) ; �) = E�jXL (� (x) ; �) =

Z
�

L (�; � (x))� (�jx) d� (18.2)

An action a� = �� (x) that minimizes the posterior expected loss is
called Bayes action.
By averaging (18.1) over a range of � for a given prior � (�) ; we can

obtain:

r (�; �) = E� (R (�; �))

=

Z
�

Z
X

L (�; � (x)) f (xj�)� (�) dx d�: (18.3)

The two notions by (18.2) and (18.3) are equivalent in the sense that
they lead to the same decision.

Theorem 18.1 An estimator minimizing the integrated risk r (�; �) can
be obtained by selecting, for every x 2 X, the value � (x) which minimizes
the posterior expected loss, � (a; �), because

r (�; �) =

Z
X

� (a; � (x) jx)m (x) dx:
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18.3 Evidence Measure

Before we can assess the impact of an error, we have to understand it
profoundly. Remember, an error can be viewed as a negation of evidence.
Furthermore, drug development is a sequence of decision-making processes,
and decisions are made on the basis of evidence. Therefore, the way in
which evidence is measured is critical. The totality of evidence indicating
that a drug is bene�cial to the patient population is a very complex issue
and involves many aspects. However, for simplicity, we will focus on e¢ cacy
evidence. We are going to discuss four di¤erent measures of evidence: p-
value, likelihood, Bayes�factor, and the Bayesian p-value.

18.3.1 Frequentist P-Value

The p-value de�ned by the conditional probability Pr(datajHo) is the error
rate of claiming e¢ cacy, when in fact there is no treatment e¤ect (i.e., the
null hypothesis Ho is true). In drug development, the ultimate question is
the following: What is the treatment e¤ect given the observed data? That
is the exact question that the Bayesian method answers using posterior
probability Pr(Hajdata). However, the frequentist p-value for hypothesis
testing only tells us the probability of observing at least this treatment
di¤erence given that the null hypothesis is true. In other words, p-value
is a measure of evidence against the null. In this sense, the frequentist
approach doesn�t answer the question.
There have been extensive discussions on p-value (Fisher, 1999). For

example, it is believed that there is always a di¤erence between any two
treatments (though it might be very small). Therefore, as long as the
sample-size is large enough, statistical signi�cance will be demonstrated.
The p-value depends on the power. Furthermore, p-value does not provide
a consistent measure of evidence because identical p-values do not imply
identical evidence of treatment e¤ect. Suppose two trials have been con-
ducted. One trial shows a mean treatment di¤erence of 5 with a CI (0, 10)
and p-value of 0.05, and the other shows a mean treatment di¤erence of 50
with a CI (0,100) and p-value of 0.05. Clearly, the second trial has provided
stronger evidence supporting the e¤ectiveness of the test drug, even though
the p-values from the two trials are identical.

18.3.2 Maximum Likelihood Estimate

Likelihood is an important concept in both frequentist and Bayesian para-
digms, and can be illustrated as follows: Given the observed data y in the
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current trial, the joint probability distribution function p(y; �) can be con-
sidered a function of the treatment e¤ect � (e.g., median survival di¤erence
between two groups), and tells us how strongly the data support di¤erent
�s. When p(y; �) is viewed this way, it is known as the likelihood function.
The likelihood function measures the relative plausibility of di¤erent values
of �. The value of � corresponding to the maximum value of the likelihood
function is called the maximum likelihood estimate (MLE) of �.
Suppose in a single-group oncology trial, 12 responses were observed

out of 30 patients. The likelihood function can be obtained based on the
observed data (Figure 18.1). The maximum likelihood estimate for response
rate is 40%. The MLE is consistent with the naive estimate, i.e., 12/30 =
40%.
Maximum likelihood is commonly used to estimate the median survival

time when there are censored data. However, MLE is not a good single
measure of evidence because it does not take the other possible median
survival times into consideration.

Figure 18.1: Illustration of Likelihood Function

18.3.3 Bayes Factor

As discussed earlier, p-value and MLE alone do not provide a good measure
for evidence. For a hypothesis test of the null hypothesis Ho (no treatment
e¤ect �) versus the alternative hypothesis Ha (with treatment e¤ect �), if
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we consider both the evidence supporting the null hypothesis being true and
the evidence supporting the alternative hypothesis being true, an intuitive
way to compare them is to take the ratio of the two evidences, the so-called
Bayes�factor (BF).

De�nition 18.2 The Bayes factor is the ratio of the posterior prob-
abilities of the null and alternative hypotheses over the ratio of the prior
probabilities of the null and the alternative hypotheses, i.e.,

BF (x) =
P (� 2 �ojx)
P (� 2 �ajx)

�
� (� 2 �0)
� (� 2 �a)

; (18.4)

or

BF (x) =

R
�o
f (xj�o)�o (�) d�R

�a
f (xj�a)�a (�) d�

: (18.5)

From (18.4) we know when � (� 2 �0) = � (� 2 �a), BF = likelihood
ratio.

BF = (Likelihood for � in Ho)=(Likelihood for � in Ha)

Reject Ho if BF � k, where k is a small value, e.g., 0.1. A small value
of BF implies strong evidence in favor of Ha or against Ho. Note that there
are several slightly di¤erent de�nitions of Bayes�factor.
Because of the di¤erent methods of measuring the evidence, the same

data can lead to di¤erent conclusions, which has been stated in Lindley�s
paradox: When the information ratio (information from current trial versus
prior information) is high and p-value is just marginally signi�cant against
Ho, the BF can be greater than 1, and hence support Ho (Lindley, 1957;
Spiegelhalter et al., 2004)

18.3.4 Bayesian P-Value

Suppose we want to test the null hypothesis that Ho : � = 0 against an
alternative hypothesis that Ha : � > 0.
The frequentist p-value is the probability of having the observed treat-

ment di¤erence or larger assuming � = 0, i.e., Pr(data or more extremej� =
0). The Bayesian p-value, calculated from posterior distribution is the
probability of � � 0 (no treatment e¤ect) given the observed data, i.e.,
Pr(� � 0jdata).
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Isn�t the Bayesian p-value what we are desperately looking for, and not
the frequentist p-value? Bayesian signi�cance is claimed when the Bayesian
p-value is less than or equal to the so-called Bayesian signi�cance level �, a
predetermined constant that does not have to be the same as the frequentist
signi�cance level.

18.3.5 Repeated Looks

One of the di¢ culties in using the frequentist approach is the issue of mul-
tiple testing, or repeated looks. When multiple tests are performed, such as
in trials with multiple endpoints and in adaptive trials or pharmacogenomic
studies, the false positive rate will be in�ated when using naive methods.
Therefore, p-value adjustment or alpha penalty should be applied in such
cases. The problem is that as the number of analyses gets larger, the power
for detecting a di¤erence diminishes quickly due to the multiplicity adjust-
ment.
In fact, when the number of looks approaches in�nity, the probability

of making type-I error is 100%. However, the probability of the BF being
less than � is always less than �, regardless of the number of looks, i.e.,
Pr(BF < �jHo) � �. This theorem states that when the null hypothesis
is true, if we look repeatedly for a BF of less than 10%, strong evidence
against the null, this will not occur more than 10% of the time, no matter
how many times we look (Royall, 1997). This theorem thus reveals the
maximum probability of misleading evidence, but only if we measure the
evidence properly.
Because of the controversial issues surrounding multiplicity in classic

hypothesis testing based on the Neyman-Pearson theory, the frequentist
p-value has been strongly criticized from the Bayesian and Fisherian per-
spectives (Spiegelhalter, et al., 2004). Corn�eld questioned ironically: �Do
we want error control over a single trial, over all the independent trials on
the same agent, on the same disease, over the lifetime of an investigator,
etc.?�(Corn�eld, 1976). Each of these control methods can lead to di¤erent
adjusted p-values and hence contradictory statistical conclusions.

18.3.6 Role of Alpha in Drug Development

As we all know, the frequentist is fundamentally based on (in�nitely) re-
peated experiments. However, we virtually never repeat (many times) the
pivotal clinical trial for the same compound for the same indication. The
real replications are the clinical trials of di¤erent compounds for the same
or di¤erent indications. Therefore, we should take a close look at the im-
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plications caused by a �xed � enforced by regulatory body.
From a regulatory point of view, the statistical criterion of a p-value

<� can be viewed as a simple tool to control the proportion of ine¤ective
drugs on the market. However, that is just one side of the story. We also
have to consider the downside, which is preventing good drugs from being
delivered to patients because of this criterion. To balance the two sides, we
can use a bene�t-risk ratio or utility. Bayesian decision theory is a powerful
tool in this regard. Furthermore, using a �xed � of 5% does not necessarily
control the release of ine¤ective drugs onto the market. For example, if all
drug candidates in phase III are e¢ cacious, all drugs on the market will
be e¤ective regardless of �. Similarly, if all drug candidates in phase III
are ine¢ cacious, then all drugs on the market will be ine¤ective regardless
of �. The problem is that we don�t know the proportion of e¤ective drug
candidates in phase III trials unless the Bayesian approach is adopted.
The frequentist paradigm has played an important historical role in

drug development. The frequentist approach, with alpha control at the 5%
level, was appropriate because there were many compounds that had major
e¤ects. This high standard (error rate <5%) for drug approval has led to
the most e¤ective compounds being selected and approved, and at the same
time it has prevented a larger number of ine¤ective drugs from spreading
into the market. The frequentist criterion was probably consistent with
the bene�t-risk measure, had it been developed. However, the situation
has changed: given that there are so many drugs already on the market,
the margin for improvement is getting smaller, and an active controlled
study requires an extremely large sample-size that is often not feasible.
Even if there are a few remaining drugs with large e¤ects, they will be
hard to �nd using the traditional frequentist method. Given these reasons,
the statistical criterion of alpha = 5% could require an unreasonably large
bene�t-risk ratio. The Bayesian approach is a better alternative, despite
its challenges; after all, challenges are the force that drives science forward.
Personalized medicine is the future for the patients, however, to be able
to e¤ectively develop personalized medicine, advancement in science and
technology for drug development is critical.

18.4 Statistical Principles

A main purpose of statistical theory is to derive an inference about the
probability distribution from observations of a random phenomenon. The
distribution model is simple and often an e¢ cient way to describe a past
phenomenon and more importantly to predict a future event of a similar
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nature. David Cox (2006) gives an excellent review of important statistical
principles from both frequentist and Bayesian perspectives in his recent
book: Principles of Statistical Inference.

De�nition 18.3 A parametric statistical model consists of the observa-
tion of a random variable x, distributed according to f(xj�), where only the
parameter � is unknown and belongs to a vector space � of �nite dimension.
Once the statistical model is de�ned, a main task of the statistical

analysis is to lead to an inference (estimation or hypothesis testing) on
the parameter �. In contrast to the probabilistic modeling, the purpose of
a statistical analysis is fundamentally an inversion purpose, since it aims
at retrieving the "causes", i.e., parameters of the probabilistic generating
mechanism, from the "e¤ects" or observations. In early time, statistics is
also called "Inverse Probability."
The �ducial approach of Fisher (1956) also relies on this inversion. Let�s

denote C the cause and E the e¤ect. Considering the relation E = C+ "

where " is an error term. It is argued that, if C is known, E is distributed
according to the above relation. Conversely, if E is known, C = E � "

is distributed according to the symmetric distribution. However if E is a
random variable and C is a (constant) parameter, to write C = E � " does
not make that C a random variable. The �ducial approach was abandoned
after the exposure of fundamental paradoxes (Stein, 1959; Robert, 1997).

De�nition 18.4 A Bayesian statistical model is made of a parametric
statistical model, f(xj�), and a prior distribution on the parameters, � (�).

Theorem 18.2 (Bayes�Theorem) Bayes theorem can be expressed
as

� (�jx) = f (xj�)� (�)R
f (xj�)� (�) d� : (18.6)

Bayes�s Theorem places causes (observations) and e¤ects (parameters)
on the same conceptual level, since both of them have probability distri-
butions. It is considered as a major step from the notion of an unknown
parameter to the notion of a random parameter (Robert, 1997). However,
it is important to distinguish x and �; x is observable, but � is latent.

De�nition 18.5 When x � f (xj�) ; a function T of x (also called a
statistic) is said to be su¢ cient if the distribution of x conditionally on
T (x) does not depend on �.
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A su¢ cient statistic T (x) contains the whole information brought by x
about �.

Theorem 18.3 (Neymam) (Hogg, McKean, and Graig, p.376). Let
X1; :::; Xn denote a random sample from a distribution that has p.d.f. or
p.m.f. f(x; �); � 2 
: The statistic Y1 = T1 (X1; :::Xn) is a su¢ cient sta-
tistic for �, if and only if there exist two nonnegative functions, �1 and �2;
such that

f (x1; �) :::f (xn; �) = �1 [T1 (x1; :::; xn) ; �] �2 (x1; :::; xn) ; (18.7)

where �2 (x1; :::; xn) does not depend upon �:
When the model allows for a minimal su¢ cient statistic, i.e., for a suf-

�cient statistic which is a function of all the other su¢ cient statistics, we
only have to consider the procedures depending on this statistic.

Su¢ ciency Principle Two observations x and y factorizing through
the same value of a su¢ cient statistic T , i.e., such that T (x) = T (y), must
lead to the same inference on �.
Christian Robert (1997) pointed out: "The Su¢ ciency Principle is only

legitimate when the statistical model is actually the one underlying the
generation of the observations. Any uncertainty about the distribution
of the observations should be incorporated into the model, a modi�cation
which almost certainly leads to a change of su¢ cient statistics. A similar
cautionary remark applies to the Likelihood Principle."

Conditionality Principle If m experiments
�
�E1; :::; �Em;

�
on the pa-

rameter � are available with equal probability to be selected, the resulting
inference on � should only depend on the selected experiment.

Stopping Rule Principle If a sequence of experiments, �E1, �E2; :::; is
directed by a stopping rule, � , which indicates when the experiments should
stop, inference about � must depend on � only through the resulting sample.

The Bayesian decision is independent of the stopping criterion, therefore
is not in�uenced by the subjective motivations which led to the resulting
sample-size. For example, in a clinical trial, from sponsor perspective, the
trial can continue to recruit patients until p-value<�. The problem is that
the regulatory body, physicians and patients, have di¤erent loss functions.
If the regulatory body has the �nal say about the loss function, then we
unlikely have the stopping rule that allows a trial to continue recruiting
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patients until p-value < �: In such case, p-value < � can be viewed as a
constraint in the minimization using decision theory.

Likelihood Principle The information contained by an observation x
about � is entirely contained in the likelihood function l(�jx). Moreover, if
x1 and x2 are two observations depending on the same parameter �, such
that there exists a constant c satisfying

l1 (�jx) = cl2 (�jx2) (18.8)

for every �, they contain the same information about � and must lead to
identical inferences.
Note that the Likelihood Principle is only valid when (i) inference is

about the same parameter � and (ii) � includes every unknown factor of
the model.
Likelihood principle can be challenged, e.g., why should the likelihood

principle be in the multiplicity form of (18.8), instead of additivity form:

l1 (�jx) = l2 (�jx2) + c:

Example 18.1 Paradox: Binomial and Negative Binomial?
Suppose, we are interested in the hypothesis testing of a binary end-

point.

Ho : p = 0:5 vs: Ha : p > 0:5:

The experiment is �nished with 3 responses out of 12 patients. How-
ever this information is not su¢ cient for rejecting or accepting the null
hypothesis.
Scenario 1: If the total number of patients, N = 12 is predetermined, the

number of responsesX follows binomial distribution B(n; p), the frequentist
p-value of the test is given by

Pr (X � 9jHo) =

12X
x=9

�
12

x

�
0:5x0:512�x = 0:073:

The null cannot be rejected at a one�sided level � = 0:05. The likelihood
in this case is given by

l1 (xjp) =
�
12

9

�
p9 (1� p)3 = 220p9 (1� p)3 :
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Scenario 2: If the number of response, n = 3; is predetermined and
the experiment continues until 3 responses are observed, then X follows
negative binomial NB(3; 1 � p) and the frequentist p-value of the test is
given by

Pr (X � 9jHo) =
1X
x=9

�
3 + x� 1

2

�
0:5x0:53 = 0:0327;

because
P1

x=k

�
2+x
2

� �
1
2

�x
= 8+5m+m:2

2m : Therefore the null is rejected at a
one-sided level � = 0:05. The likelihood in this case is given by

l2 (xjp) =
�
3 + 9� 1

2

�
p9 (1� p)3 = 55p9 (1� p)3 :

According to Likelihood Principle, all relevant information is in the
likelihood l (p) = p9 (1� p)3 and therefore the two scenarios should not
lead to di¤erent conclusions (rejection or not rejection).

Theorem 18.4 The Likelihood Principle is equivalent to the conjunc-
tion of the Su¢ ciency and the Conditionality Principles.

Proof (Robert, 1997, p.18). We prove the case for m = 2. Let�s

denote the evidence associated with an experiment �E by Ev
�
�E; x
�
, as

the collection of the possible inferences on the parameter � directing this
experiment. Let �E� denote the mixed experiment starting with the choice
of �E with probability 0.5 (i = 1; 2), thus with result (i; xi). Under these
notations, the Conditionality Principle can be written as

Ev( �E�; (j; xj)) = Ev( �Ej ; xj): (18.9)

Consider x01 and x
0
2 with likelihood functions such that

l1
�
�jx01
�
= cl2

�
�jx02
�
: (18.10)

The Likelihood Principle then implies

Ev( �E1; x
0
1) = Ev( �E2; x

0
2): (18.11)
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Let�s assume that (18.10) is satis�ed. For the mixed experiment �E�

derived from the two initial experiments, consider the statistic

T (j; xj) =

� �
1; x01

�
if j = 2, x2 = x02

(j; xj) otherwise
;

which takes the same value for (1; x01) and for (2; x
0
2). Then, this statistic

is su¢ cient since, if t 6= (1; x01),

P� (X
� = (j; xj) jT = t) = IIt (j; xj)

and

P�
�
X� =

�
1; x01

�
jT =

�
1; x01

��
=

c

1 + c
;

due to the proportionality of the likelihood functions. The Su¢ ciency Prin-
ciple then implies that

Ev( �E�; (1; x1)) = Ev( �E�; (2; x2)); (18.12)

and, combined with (18.10), leads to (18.11).
The reciprocal of this theorem can be derived for the Conditionality

Principle from the fact that the likelihood functions of (j; xj) and xj are
proportional and for the Su¢ ciency Principle from the factorization theo-
rem.
The Likelihood Principle does not lead any operational procedure for

hypothesis testing. There are several ways to make it operational. For ex-
ample, maximum likelihood estimation method is an operational enhance-
ment of the Likelihood Principle. The Baye�s theorem can be viewed as an
operational enhancement of the Likelihood Principle.

Maximum Likelihood Estimator (MLE) When x � f (xj�) is ob-
served, the maximum likelihood estimator of � is de�ned as:

�̂ = Argmax l (�jx) ; (18.13)

where the notation Argmax means that the likelihood l (�jx) achieves its
maximum value at �̂.
Note that the maximization (18.13) can lead to several maxima. The

maximum likelihood estimator is found useful because (1) it�s intuitive mo-
tivation of maximizing the probability of occurrence; (2) it has strong as-
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ymptotic properties (consistency and e¢ ciency); (3) it is parametrization-
invariant.

Invariance Principle If �̂ is the maximum likelihood estimator, then

for any function h
�
�̂
�
, the maximum likelihood estimator of h(�) is h(�̂)

(even when h is not one-to-one).
This property is not enjoyed by most other statistical approaches. How-

ever, maximum likelihood estimates are often biased. Does it imply that
the world is operated biasely?

MAP estimator MAP (maximum aposteriori) estimator is also called
the generalized maximum likelihood estimator (GMLE). The GMLE is the
largest mode of the � (�jx). The MLE maximizes l (�), while the GLME
maximizes � (�) l (�) :

18.5 Behaviors of Statistical Principles in Adaptive Designs

18.5.1 Su¢ ciency Principle

Jennison and Turnbull (2003), Posch et al. (2003), and Burman and Sones-
son (2006) pointed out that the adaptive design using a weighted statistic
violates the su¢ ciency principle, because it weights the same amount of in-
formation from di¤erent stages di¤erently. Michael A. Proschan (Burman
and Sonesson, 2006, discussion) proved that no test based on the su¢ -
cient statistic can maintain level � irrespective of whether the prespeci�ed
sample-size rule is followed. Thach and Fisher (2002, p. 436) and Burman
and Sonesson (2006) highlighted the problem of very di¤erent weights. An
example (given by Marianne Frisen, in Burman and Sonesson, 2006, dis-
cussion) of a violation of the su¢ ciency principle is the use of the median
instead of the mean when estimating the expected value of a normal distri-
bution.
The "unweighted test" utilizes the distribution of N to choose a critical

level with the desired probability of rejecting the null hypothesis uncondi-
tional on N but disregards the observed value of N . Because N is part of
the minimal su¢ cient statistic, it is not in accordance with the su¢ ciency
principle and is ine¢ cient (Marianne Frisen, in Burman and Sonesson, 2006,
discussion).
Should information (or su¢ ciency of a statistic) regarding � be based on

data or data + procedure? We probably can argue that the su¢ ciency of
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a statistic should not only depend on the data, but also on the procedure
or experiment used to collect the data. The data can contain di¤erent
amounts of information if they are collected di¤erently. The conclusion
that each observation contains the same amount of information is valid in
a classic design, but not in an adaptive design, because a later observation
contains some information from previous observations due to the dependent
sampling procedure. Therefore, an insu¢ cient statistic in classic design
can become su¢ cient under an adaptive design. For example, suppose we
want to assess the quantity # = 1�RB

1�RA
, where RB and RA are the true

response rates in groups A and B, respectively. In a classic design with
balanced randomization NA

NB
is asymptotically approaching 1. However, in

the randomized-play-the-winner design, NA

NB
is asymptotically equal to #:

Therefore the same data NA

NB
could contain di¤erent amounts of information

in di¤erent designs.
It should be apparent that a statistic (e.g., �X ) can be a su¢ cient

statistic conditionally but not unconditionally for �:

18.5.2 Minimum Su¢ ciency Principle and E¢ ciency

Jennison and Turnbull (2006) raised the question as to when an adaptive
design using nonsu¢ cient statistics can be improved upon by a nonadaptive
group sequential design. Tsiatis and Mehta (2003) have proved that for
any SSR adaptive design, there exists a more powerful group sequential
design; however, the group sequential test has to allow analyses at every
cumulative information level that might arise in the adaptive design. On
the other hand, the weighted method (or MINP), provides great �exibility
and when the sample-size deos not change, it has the same power as the
classic group sequential design.
It is really analogous with a two-player game. Player A says if you tell

me the sample-size rule, I can �nd a group sequential design (with as many
analyses as I want to have) that is more e¢ cient than the adaptive design.
Player B says, if you tell me how many and when you plan the interim
analyses, I can produce an adaptive trial with the same number and timing
of the analyses that is more �exible, and in case the sample-size does not
change, it is identical to the group sequential design.
Interestingly, a group sequential design can also be viewed as a spe-

cial SSR adaptive design. The adjustment rule at interim analysis is that
sample-size will not be increased if futility or e¢ cacy is found; otherwise
add n2 subjects. Therefore, what Tsiatis and Mehta eventually proved is
that there is an SSR design with a discrete sample-size increment that is
more e¢ cient than a given SSR with continual sample-size increment.
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Uniformly a more powerful design has an important implication: If
design A is uniformly more e¢ cient or powerful than design B, then {�;Ho
is not rejected with design A} � {�;Ho is not rejected with design B}.
Because the con�dence interval consists of all values of � for which Ho is
not rejected, CIA � CIB .
Jennison and Turnbull (2006) stated, "A design is said to be inadmissi-

ble if another design has a lower expected information function and higher
power curve. A design that is not inadmissible is said to be admissible. The
fundamental theoretical result is a complete class theorem, which states
that all admissible designs are solutions of Bayes sequential decision prob-
lems. Because Bayes designs are functions of su¢ cient statistics, any adap-
tive design de�ned through nonsu¢ cient statistics is inadmissible and is
dominated by a design based on su¢ cient statistics. This conclusion con-
�rms that violation of the su¢ ciency principle has a negative impact on the
e¢ ciency of an adaptive design." The question is should the information
and consequently the su¢ ciency be procedure dependent?

18.5.3 Conditionality and Exchangeability Principles

Burman and Sonesson (2006) pointed out that SSR also violates the invari-
ance and conditionality principles because the weighted test depends on the
order of exchangeable observations. Marianne Frisen (Burman and Sones-
son, 2006, discussion) stated similarly: "The �weighted�test avoids this by
forcing a certain error spending. This is done at the cost of violating the
conditionality principle. The ordering of the observations is an ancillary
statistic for a conclusion about the hypothesis. Thus, by the conditionality
principle the test statistic should not depend on the ordering of the realized
observations." For a general distribution, not belonging to the exponential
family, the weighted test will violate the conditionality principle but not
the su¢ ciency principle (Burman and Sonesson, 2006).
If su¢ ciency and conditionality are important, then the combination of

the two is the likelihood principle, which also faces challenges (see examples
provided earlier in this chapter). The bottom line is that the world is
unpredictable by humans, but it is also deterministic. When it is viewed
as random, there will be many paradoxes.
When we talk about exchangeability, we should apply the same data

scope to both classic and adaptive designs. The same terminology,
"experiment-wise," can imply a di¤erent data scope for classic and adaptive
designs. For example, in a phase II and III combined seamless adaptive de-
sign, data from phases II (or the learning phase) and III (the con�rmatory
phase) are combined and viewed as experiment-wise data, while in a classic
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design, the data from the two phases are analyzed separately simply be-
cause we call them two di¤erent experiments. Fairly, if we compare the two
design approaches at the same data scope, i.e., phase II and III combined,
then we will see a very interesting result: the classic design is a special
case of an adaptive design using the weighted test, where the weight for the
"learning phase" is zero and the weight for the "con�rmatory phase" is 1.

Classic design = 0 (learning-phase data) + 1 (con�rmatory-phase data)

Adaptives design = w1 ((learning-phase data) + w2 (con�rmatory-phase data)

Humans are not memory-less creatures; we should not pretend that
we don�t have the learning-phase data when we analyze the con�rmatory-
phase data. Data from di¤erent phases of an adaptive trial is often not
exchangeable; data from two trials of di¤erent phases are not exchangeable
in a classic design. Is it just a terminological di¤erence: "phase" or "trial"?

18.5.4 Equal Weight Principle

Exchangeable observations should be weighted equally in the test statistic.
The equal weight principle views exchangeability from the weight perspec-
tive. However, the measurement of the information level is not unique. For
example observation xi can be counted as a unit of information, 1=xi can
be counted as a unit of information, or pi can be counted as unit of infor-
mation. The adaptive design method MSP equally weights the evidences
(pi) against Ho from the two stages.
From an ethical point of view, should there be equal weight for everyone,

one vote for one person? Should e¢ cacy be measured by the reduction in
number of deaths or by survival time gained? Should it be measured by
mean change or percent change from baseline? All these scenarios apply a
di¤erent "equal weight" system to the sample. Suppose you have a small
amount of a magic drug, enough to save only one person in a dying family:
the grandfather, the young man, or the little boy. What should you do?
If you believe life is equally important for everyone regardless of age, you
may randomly (with equal probability) select a person from the family
and give his/her the drug. If you believe the amount of survival time
saved is important (i.e., one year of prolonged survival is equally important
to everyone), then you may give the drug to the little boy because his
life expectancy would be the longest among the three family members. If
you believe that the impact of a death on society is most important, then
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you may want to save the young man, because his death would probably
have the most negative impact on society. If these di¤erent philosophies
or beliefs are applied to clinical trials, they will lead to di¤erent endpoints
and di¤erent test statistics with di¤erent weights.
Exchangeability may be only an approximation and never exist in re-

ality. In the real word, humans take in information in an order-dependent
way, because this is a better method of gaining knowledge. As a simple
example, you would learn addition before multiplication. In other words,
an order-dependent measure is a better measure of information level than
an order-independent measure. The same knowledge, e.g, 1 + 2 = 3, has
di¤erent a information level for a preschooler and a middle school stu-
dent. If the trial data are collected sequentially, why should we insist the
exchangeability and pretend the data were collected instantly? The state-
ment 1 + 2 6= 2 + 1 is true in many ways. For example "1 + 2" could
mean a 200% increment in our knowledge, while "2 + 1" may mean a 50%
increment.

18.5.5 Consistency of Trial Results

Compared to classic design, adaptive designs naturally allow for an interim
look to check the consistency of results from di¤erent stages. If p1 and
p2 are very di¤erent, we may have to look at the reasons, such as base-
line di¤erence, gene di¤erence, etc. The question is should we check this
consistency for a classic design too by splitting the data in di¤erent ways?
It is also controversial in adaptive designs (including group sequential

designs) that we often reject the null hypothesis with less-strong evidence,
but don�t reject the null with stronger evidence. For example, in a two-
stage GSD with the O�Brien-Fleming spending function (�1 = 0:0025 and
�2 = 0:0238), we will not reject the null when the p-value = 0:003 > �1 at
the interim look, but we do reject the null when the p-value = 0:022 < �2.
Why don�t we reject the null hypothesis when the evidence against the
null is stronger (p-value = 0.003) and reject Ho when the evidence is much
weaker (p-value = 0.022)?
Unless the test statistic is a monotonic function of the parameter esti-

mator regardless of how the data were collected, it is always possible to have
con�icting results. For example, median and mean have con�icting results,
i.e., a rank test statistic con�icts with that from a parametric approach.
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18.5.6 Bayesian Aspects

Two fundamental principles are naturally followed by the Bayesian para-
digm with no constraint on the procedures to be considered, namely the
Likelihood Principle and the Su¢ ciency Principle. On the other hand, the
Bayesian approach rejects other principles, like the notion of unbiasedness.
This notion was once a cornerstone of classical statistics and restricted the
choice of estimators to those that are, on average, correct (Lehmann, 1983).
Our objective is to minimize the impact of errors not the number of errors.
From the frequentist perspective, the most convincing argument in favor

of the Bayesian approach is that it intersects widely with the three notions
of classical optimality, namely, minimaxity, admissibility, and equivariance.
Most estimators that are optimal according to one of these criteria are Bayes
estimators or limits of Bayes estimators (the notion of limit depends on the
context). Thus, not only is it possible to produce Bayes estimators that
satisfy one, two, or three of the optimality criteria, but more importantly,
the Bayes estimators are essentially the only ones that achieve this aim
(Robert, 1997, Chapters 1 and 10).
The Bayes estimators use uniform representations under loss functions,

while the maximum likelihood method does not necessarily lead to an es-
timator. For example, this is the case for normal mixtures, where the
likelihood is not bounded.
An interesting question for a Bayesian approach is, should that which

we learn from incremental information many times be the same as that
which we learn from the cumulative information all at once? The answer is
that it is dependent on the model � the answer is yes for conjugate models,
but not for general models.

18.5.7 Type-I Error, P-value, Estimation

Type-I error control is not very challenging, and most adaptive designs con-
trol the family-wise error. However, because hypothesis testing is primarily
based on the concept of repeated experiments, in what scope the experi-
ment will potentially be repeated is critical. In clinical trials, we virtually
never test the same compound for the same indication in a phase III study
repeatedly for many times. For this reason, the implication of control of the
experimental error rate � may be totally di¤erent from what we initially
intended.
The de�nition, not the calculation, of p-value is challenging, because

there are so many options for an adaptive design. Remember that p-value
is the probability of the test statistic under the null hypothesis being more
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extreme than the critical point. The key lies in how the extreme should
be de�ned. Unlike in a classic design, de�nitions of extremeness of a test
statistic can be in many di¤erent ways in adaptive designs, e.g., stagewise-
ordering, sample mean ordering, and likelihood ratio ordering (see Exercise
8.1). None of these de�nitions satis�es simultaneously the concerns raised
from statistical, scienti�c, and ethical angles.
Another relevant question is: should the duality principle between hy-

pothesis testing and the con�dence interval be applied to adaptive designs,
i.e., the con�dence interval consists of all �0 that do not cause rejection of
the null hypothesis? If yes, there are many di¤erent de�nitions of con�dence
intervals, just like the p-values.
Regarding the issues in overall direction of estimation, a very narrow

continual band may cause issues. Example: for a group sequential design
with stopping boundaries �1 = 0, �1 = 0:025; �2 = 1, any data from
stage 2 will lead to rejection of Ho regardless of the overall direction of
the treatment e¤ect. There are also many other examples of contradictory
results between weighted and unweighted methods (one positive and the
other negative).
Regarding unbiased estimation, we have proven that the �xed weight

method will lead to an unbiased point estimate if the trial does not allow
for early stopping. If the trial allows for early stopping, the estimate is
biased. What if the trial is designed for no early stopping, but is actually
stopped for futility. In such a case, we don�t care because the test compound
wouldn�t be marketed. This implies that we can always design a trial with
no stopping and if it continues, we can calculate the naive estimate and
claim that it is unbiased.
These controversies encourage us to examine the classic principles more

carefully and adapt to the new phenomenon.

18.5.8 The 0-2-4 Paradox

Let�s study further the type-I error, point estimate, con�dence interval, and
p-value through an interesting paradox, called the 0-2-4 paradox.
The 0-2-4 paradox: An experiment is to be conducted to prove that

spring water is e¤ective compared to a placebo in certain disease population.
To carry out the trial, I need a coin and up to 4 patients. To control type-I
error, the coin is used, i.e., 0 patient is needed; To have a unbiased point
estimate, a sample-size of 2 patients is required; To obtain the con�dence
interval and p-value, 4 patients are su¢ cient. The trial is carried out as
follows:
(1) To control the type-I error at one-sided � = 0:05, I �ip the coin
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100 times. If the number of heads n(head) < 95, the trial will be stopped
without e¢ cacy claim. For this, I don�t even need either the water or
patients. If the number of heads n(head) � 95; the e¢ cacy will be claimed
and the trial proceeds to the next step.
(2) To obtain unbiased point estimate, only two patients are needed;

one takes the placebo and the other drinks water at random. The unbiased
estimate of treatment di¤erence is given by y � x, where x and y are the
responses from the placebo and water groups, respectively.
(3) To obtain the con�dence interval and p-value, 4 patients are re-

quired: 2 for each group. The con�dence interval is given by

CI = � � Z1���̂;

where � = y1+y2�x1�x2
2 and �̂2 = var (�) :

The p-value is given by

p = 1� �
�
�

�̂

�
Here is the problem. The rejection of the null may not be consistent

with the con�dence interval and p-value. To be consistent, I can use 4
patients from Steps 1 to 3.
(4) Spring water is presumably very safe.
(5) It is a cost-e¤ective approach. The water experiment may have a

low power, only about 5%, but the cost is very low. Furthermore, when
the water is "proved" to be e¢ cacious statistically, the observed treatment
di¤erence is often very big because of small sample-size. A big observed
treatment di¤erence implies a big market value. Here is the overall picture:
The experiment has an extremely low cost and low power, but it has po-
tentially a big market value if the null hypothesis of no treatment e¤ect is
rejected.
What if all pharmaceutical companies take spring water as the test

drug? If so, then 5% of them will claim e¢ cacy of the water for some
indications. What if the water is replaced by some relatively safe, but not
e¢ cacious compound? Does this discourage good science � just pick a safe
compound and run a small trial? Is doing good science not a cost-e¤ective
approach?
To make an analogy, the spring water experiment can be repeated again

and again until successful just as di¤erent companies can screen the same
compounds again and again for the same or di¤erent indications until they
�nd something. The water experiment is very easy to conduct and any
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operational bias can virtually be avoided. In conclusion, don�t overempha-
size the importance of the type-I error rate, unbiased estimate, adjusted
p-value, con�dence interval, and the operational bias.

18.6 Summary

Adaptive designs violate several commonly accepted statistical principles.
The violations on one hand remind us to adopt the new approaches with
extreme caution. On the other hand, the new approaches may suggest
that principles of inference only go so far and that new principles may be
desirable. Indeed, adaptive designs present great challenges to frequen-
tist statistics and conventional thinking in development. Group sequential
designs have been widely used in clinical trials; however, there are many
controversial issues with these designs that are only fully realized when we
widen the concept to a more general category of adaptive designs (GSD
can be viewed as an adaptive design with discrete values of sample-size
adjustment, i.e., 0 increase if futility or e¢ cacy, or add n2 subjects other-
wise). Those controversial issues include p-values and estimations. Should
p-values and estimations be unconditional or conditional? Should they be
conditional on statistical signi�cance or stagewise-conditional? Should a
test statistic be ordered by stage, by the mean, or by something else? The
concepts of p-value and unbiasedness are based on repeated experiments,
but what does this mean in clinical trials? The likelihood principle, which
is equivalent to the conjunction of the frequentist su¢ ciency and the con-
ditionality principles, denies the importance of hypothesis testing. All of
these considerations seem to suggest that we should use other approaches,
such as Bayesian approaches and decision theory. It is obvious that e¢ -
ciency in clinical trials is not identical to the power of hypothesis testing.
In clinical trials, the concept of e¢ ciency often includes the power, the time
to market, and the operationally �exibility. Over-emphasizing the power
can be very misleading when evaluating adaptive designs. This simple fact
is often overlooked.
One fundamental di¢ culty in using decision theory is that di¤erent ben-

e�cial bodies have di¤erent utilities; therefore, if a decision involves multiple
decision-making bodies, the decision becomes extremely challenging. For
example, if a regulatory body enforces the � criterion, we can use decision
theory and incorporate the condition p < � as a constraint. This is not an
ideal solution because p < � is not the best criterion, and the interactions
between sponsors and the FDA will alter opinions.
We describe the deterministic world as a random phenomenon because
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of our limited capabilities. Many controversial issues raised by the di¤erent
statistical theories about this virtual random world can be reduced to a
single, most important question: Should information level be dependent on
the (experimental) procedure?

"From where we stand, the rain seems random. If we could stand some-
where else, we would see the order in it." � T. Hilberman

"The world is deterministic, just like a sequence of virtual random num-
bers generated by computer and by studying the latter, we can understand
the statistical controversies." � Mark Chang
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Appendix A

Random Number Generation

A.1 Random Number

To perform clinical trial simulations, we need to take random samples.
Typically, random sampling is based on the computer-generated, uniformly
distributed random numbers over (0,1). The computer-generated "random"
number is not true random because the sequence of the numbers is deter-
mined by the so-called seed, an initial number. Other random variates from
a nonuniform distribution are usually obtained by applying a transforma-
tion to uniform variates. There are usually several algorithms available
to generate random numbers with a speci�c distribution. The algorithms
di¤er in speed, in accuracy, and the memory required.

A.2 Uniformly Distributed Random Number

One of the commonly used methods to generate pseudorandom numbers
starts with an initial value x0; called the seed, and then recursively com-
putes successive values xn; n � 1; by letting

xn = axn�1 module m; (A2.1)

where a and m are given positive integers. (A2.1) means that axn�1 is
divided by m and the remainder is taken as the value of xn: Thus, each
xn is either 0; 1; :::; or m� 1 and the quantity xn=m is called a pseudoran-
dom number, which is approximately uniformly distributed on (0; 1) : This
method is called linear congruential method. The positive integer a directly
impacts the quality of the random deviates. m is the period of the sequence
of the random numbers. the number a should be carefully chosen such that
lead to a large m. Park and Miller (1988) has suggested a=75 = 16807, or
m = 231 � 1 = 2147483647: Please be aware that not all built-in random
number generators from software products are good.

363
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A.3 Inverse CDF Method

It is well-known that if X is a scalar random variable with a continu-
ous cumulative distribution function (c.d.f.) F , then the random variable
U = F (X) has a U(0,1) distribution. Hence we have X = F�1(U). This
fact provides the so-called inverse c.d.f. technique for generating random
numbers with the distribution F by using the random numbers from the
uniform distribution. The inverse c.d.f. relationship exists between any two
continuous (nonsingular) random variables. If X is a continuous random
variable with c.d.f. F and Y is a continuous random variable with c.d.f. G,
then X = F�1(G(Y )) over the ranges of positive support. Using this kind
of relationship is actually to match percentile points, of one distribution
(F ) with those of another distribution (G). The advantages of the inverse
method is simple. However, the closed form of F�1 is not always available.
When F does not exist in closed form, the inverse c.d.f. method can be
applied by solving the equation F (x)� u = 0 numerically.
The inverse c.d.f. method also applies to discrete distributions. Suppose

the discrete random variableX has mass points ofm1 < m2 < m3 < :::with
probabilities of p1; p2; p3; :::;and the distribution function

F (x) =
X

i2mi�x
pi: (A2.2)

To use the inverse c.d.f. method for this distribution, we �rst generate
a realization u of the uniform random variable U . We then deliver the
realization of the target distribution as x, where x satis�es the relationship

F (x(�)) < u � F (x): (A2.3)

A.4 Acceptance-Rejection Methods

The acceptance-rejection method is another elegant method for random
number generation. For generating realizations of a random variableX with
a distribution f , the acceptance-rejection method makes use of realizations
of another random variable Y with a simpler distribution of g: Further, the
p.d.f. g can be scaled to majorize f , using some constant c, i.e, c g(x) >
f(x) for all x. To gain e¢ ciency, the di¤erence " = c g(x)� f(x) > 0 should
be small for all x. The density g is called the majorizing density and c g is
called the majorizing function.
AlgorithmA.1 The Acceptance-Rejection Method to Convert Uniform

Random Numbers
1. Generate y from the distribution with density function g.
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2. Generate u from a uniform (0,1) distribution.
3. If u < f(y)=cg(y); then take y as the desired realization;

otherwise, return to step 1.
Unlike the inverse CDF method, the acceptance-rejection can apply

immediately to multivariate random variables.

Most software packages have certain capabilities to generate di¤erent
random variables. We can use them to generate speci�c random variables.
SAS Macro A.1 is an example to use SAS random function for the expo-
nential distribution to generate the mixed exponential distribution. The
SAS variables are corresponding the formulation (13.4) with n = 2.

��SAS Macro A.1 Mixed Exponential Distribution��
%Macro RanVars(nObs=100, Lamda1=1, Lamda2=1.5, w1=0.6, w2=0.4);

Data RVars;

Drop iObs;

Do iObs=1 To &nObs;

xMixEXP=&w1/&Lamda1*Ranexp(782)+&w2/&Lamda2*Ranexp(323);

Output;

End;

Run;

Proc Print Data=RVars; Run;

%Mend RanVars;

��SAS��

The example of using this SAS macro is presented below.

��SAS��
TITLE "Random Variables";

%RanVars(nObs=10, Lamda1=1, Lamda2=1.5, w1=0.6, w2=0.4);

��SAS��

A.5 Multi-Variate Distribution

Many statistical software products such as SAS and ExpDesign Studio
R

provide built-in functions for generating variates of univariate random num-
bers. However, Some of them may not provide random number generator
for multi-variate random numbers. Here we provide the method to generate
random variables from multivariate normal distribution.
The multivariate normal distribution is given by
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f (x) =

�
1

2�

�n=2
jMj�1=2 exp

�
�x

TMx

2

�
; (A2.4)

where M = fmklg is the covariance matrix.
Let u = (u1; :::; un) be n independent variables from the standard nor-

mal distribution and A be the triangle matrix

A =

0BB@
a11 0 ::: 0

a21 a22 :: 0

::: ::: ::: :::

an1 an2 ::: ann

1CCA : (A2.5)

Let � = Au or8>><>>:
�1 = a11u1
�2 = a21u1 + a22u2
......
�n = an1u1 + an2u2 + :::+ annun:

(A2.6)

It is obvious that the expectation E(�k) = 0 (k = 1; :::; n) : Furthermore,
we have

E(ukul) = �kl =

�
1; k = l

0; k 6= l:
(A2.7)

Therefore it can be obtained that

E (�k�l) = E
��
�ki=1akiui

�
(�lj=1akjuj)

�
= �kj=1akjalj =

�
AAT

�
kl
:

(A2.8)
Comparing the corresponding elements in AAT=M; we can obtain:

akl =
mkl � �l�1j=1akjaljq
mll � �l�1j=1a

2
lj

; (1 � l � k � n) : (A2.9)

For convenience, we have de�ned �0j=1akjalj = 0:

Algorithm A.2 The Generation of Random Numbers �i from Multi-
variate Normal Distribution
1. Calculate akl using (A2.9) for 1 � l � k � n:
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2. Generate n independent random numbers ui (i = 1; :::; n) from the
standard normal distribution.
3. Generate �i using (A2.6).

Algorithm A.2 is implemented in SAS Macro A.2, which can be used to
generate the standard multivariate normal distribution. The SAS variables
are de�ned as follows: nVars = number of variables, sSize = square of
nVars, nObs = number of observations to be generated, ss{i} = covariate
matrix, x{i} = the outputs multivariates.

��SAS Macro A.2 Multi-Variate Normal Distribution��
%Macro RanVarMNor(sSize=4, nVars=2, nObs=10);

Data nVars; SET CorrMatrix; keep x1-x&nVars;

Array a{&sSize}; Array xNor{&nVars}; Array x{&nVars};

Array ss{&sSize}; * Correlation matrix;

* Checovsky decomposition;

Do k=1 To &nVars; Do L=1 To k;

Saa=0; Sa2=0;

Do j=1 to L-1;

Saa=Saa+a{&nVars*(k-1)+j}*a{&nVars*(L-1)+j};

Sa2=Sa2+a{&nVars*(L-1)+j}*a{&nVars*(L-1)+j};

End;

nkL=&nVars*(k-1)+L;

a{nkL}=(ss{nkL}-Saa)/Sqrt(ss{&nVars*(L-1)+L}-Sa2);

End; End;

Do iObs=1 to &nObs;

Do iVar=1 to &nVars; xNOR{iVar}=Rannor(762); End;

Do iVar=1 to &nVars;

x{iVar}=0;

Do i=1 To iVar;

x{iVar}=x{iVar}+a{&nVars*(iVar-1)+i}*xNor{i};

End;

End;

Output;

End;

Run;

Proc Print data=nVars(obs=100); Run;

Proc corr data=nVars; Run;

%Mend RanVarMNor;

��SAS��

An example of SAS macro call to generate the standard multivariate
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normal variables is given as follows:

��SAS��
TITLE "Standard Multivariate Normal Variables";

Data CorrMatrix;

Array ss{9} (1, .1, .5,

.1, 1, .5,

.5, .5, 1);

%RanVarMNor(sSize=9, nVars=3, nObs=10000);

Run;

��SAS��

Using the standard multivariate normal variables, we can transform
them into general multivariate normal variables as shown below.

��SAS��
Title "General Multivariate Normal Variables";

Data Final; Keep ys1-ys3;

Set nVars;

Array ys{3}; Array x{3};

Array sigma{3} (1, 2, 3);

Array means{3} (0, 1, 3);

Do iVar=1 To 3;

ys{iVar}=x{iVar}*sigma{iVar}+means{iVar};

End;

Title "Check the outputs";

Proc print data=Final; Run;

Proc means data=Final; Run;

Proc corr data=Final; Run;

��SAS��



Appendix B

Implementing Adaptive Designs in R

R is a language and environment for statistical computing and graphics.
It is a GNU project which is similar to the S language and environment
which was developed at Bell Laboratories (formerly AT&T, now Lucent
Technologies) by John Chambers and colleagues. R can be considered as
a di¤erent implementation of S. There are some important di¤erences, but
much code written for S runs unaltered under R. R compiler is available at
http://www.r-project.org/.
Sample-Size Based on Conditional Power in Chapter 7
The sample-size required at the second stage based on the conditional

power (7.15) is implemented in R Function B.1. The R variables are de�ned
as follows: nAdjModel ="MIP", "MSP", "MPP", or "LW" for the four
methods in Table 7.1: alpha0 = overall � level; alpha1 = e¢ cacy stopping
boundary at the �rst stage; eSize = standardized e¤ect size; cPower =
the conditional power; p1 = the stagewise p-value at the �rst stage; w1
and w2 = weights for Lehmacher-Wassmer method; and n2New = new
sample-size required for the second stage to achieve the desired conditional
power.

��R Function B.1: Sample-Size Based on Conditional Power���
nByCPower <- function(nAdjModel, a2, eSize, cPower, p1, w1, w2){

if (nAdjModel=="MIP") {BFun <- qnorm(1-a2)}

if (nAdjModel=="MSP") {

BFun <- qnorm(1-max(0.000001,a2-p1))

}

if (nAdjModel=="MPP") {BFun <-qnorm(1- a2/p1)}

if (nAdjModel=="LW") {

BFun <- (qnorm(1-a2)- w1*qnorm(1-p1))/w2

}

2*((BFun-qnorm(1-cPower))/eSize)^2

369
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}

��R��

��R Example��
pw1=nByCPower("MSP",.1,.3,.4,.05,.6,.4)

pw1

��R��

Sample-Size Re-Estimation in Chapter 9
R-function B.2 TwoArmNStgAdpDsg is developed to simulate a two-

arm n-stage adaptive design with a normal, binary, or survival endpoint
using "MIP", "MSP", "MPP", or "LW". The sample-size adjustment can
be "CHW" based on (9.4) or the conditional power method (9.6). The
sample-size adjustment is allowed only at the �rst interim analysis, and the
sample-size adjustment a¤ects only the �nal stagewise sample-size, ux and
uy = the means, response rates, or hazard rates for the two groups, Ns[k]
= sample-size per group at the stage k. nMinIcr = minimum sample-size
increment for the conditional power approach only (this info is blinded to
sponsor), n2new = the reestimated sample-size per group at the second
stage, and eSize = the standardized e¤ect size. nSims = number of sim-
ulation runs, nStgs = number of stages, alpha0 = overall �; and EP =
"normal", "binary", or "survival". Model = "MSP", "MSP", "MPP,"
or "LW", Nadj = "N" for the case without SSR, Nadj = "Y" for the
case with SSR; and nAdjModel = "MIP", "MSP", "MPP", or "CHW"
for SSR based on the conditional power. cPower = conditional power,
DuHa =1, Nmax = the maximum sample-size allowed, N0 = the initial
sample-size, sigma = standard deviation for normal endpoint, tAcr = ac-
crual time, tStd = study duration, power = initial target power for the
trial. Aveux, Aveuy, and AveN = average simulated responses (mean,
proportion, or hazard rate) and sample size, FSP[i] = futility stopping
probability at the ith stage, ESP[i] = e¢ cacy stopping probability at the
ith stage, alpha[i] and beta[i] = e¢ cacy and futility stopping boundaries
at the ith stage.

��R Function B.2: Sample-Size Re-Estimation��
TwoArmNStgAdpDsg <- function (nSims=1000000, nStgs=2, ux=0, uy=1,

NId=0, a2=0.025, EP="normal", Model="MSP", Nadj="Y",

nAdjModel="MSP", cPower=0.9, DuHa=1, Nmax=300, N0=200,

nMinIcr=1, sigma=3, tAcr=10, tStd=24, Ns, alpha, beta) {

power=0; AveN=0; Aveux=0; Aveuy=0; cumN=0

for (i in 1:nStgs-1) {cumN=cumN+Ns[i]}



Implementing Adaptive Designs in R 371

for (k in 1:nStgs) {

sumWs[k]=0

for (i in 1:k) {sumWs[k]=sumWs[k]+Ws[i]^2}

sumWs[k]=sqrt(sumWs[k])

}

u=(ux+uy)/2

if (EP=="normal") {sigma=sigma}

if (EP=="binary") {sigma=(u*(1-u))^0.5}

if (EP=="survival") {

expTerm=exp(-u*tStd)*(1-exp(u*tAcr))/(tAcr*u)

sigma=u*(1+expTerm)^(-0.5)

}

for (i in 1:nStgs) { FSP[i]=0; ESP[i]=0 }

for (iSim in 1:nSims) {

ThisN=0; Thisux=0; Thisuy=0

for (i in 1:nStgs) {TSc[i]=0}

TS=0

if (Model=="MPP") {TS=1}

EarlyStop=0

for (i in 1:nStgs) {

uxObs=rnorm(1)*sigma/sqrt(Ns[i])+ux

uyObs=rnorm(1)*sigma/sqrt(Ns[i])+uy

Thisux=Thisux+uxObs*Ns[i]

Thisuy=Thisuy+uyObs*Ns[i]

ThisN=ThisN+Ns[i]

TS0 = (uyObs-uxObs+NId)*sqrt(Ns[i]/2)/sigma

if (Model=="MIP") {TS=1-pnorm(TS0)}

if (Model=="MSP") {TS=TS+(1-pnorm(TS0))}

if (Model=="MPP") {TS=TS*(1-pnorm(TS0))}

if (Model=="LW") {

for (k in 1:nStgs) {

TSc[k]=TSc[k]+Ws[i]/sumWs[k]*TS0

}

TS=1-pnorm(TSc[i])

}

if (Model=="UWZ") {

nT=(Thisuy-Thisux)/ThisN+NId

TS0=nT*sqrt(ThisN/2)/sigma

TS=1-pnorm(TS0)

}
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if (TS>beta[i]) { FSP[i]=FSP[i]+1/nSims; EarlyStop=1 }

else if (TS<=alpha[i]) {

power=power+1/nSims

ESP[i]=ESP[i]+1/nSims

EarlyStop=1

}

else if (i==1 & Nadj=="Y") {

eSize=DuHa/(abs(uyObs-uxObs)+0.0000001)

nFinal=min(Nmax, max(N0,eSize*N0));

if (nAdjModel != "CHW") {

eSize=(uyObs-uxObs+NId)/sigma;

n2New=nByCPower(nAdjModel, a2, eSize,

cPower, TS, ws[1], ws[2]);

mT=min(Nmax,Ns[1]+n2New+nMinIcr/2)

nFinal=round(mT, nMinIcr)

}

if (nStgs>1) {Ns[nStgs]= max(1,nFinal-cumN)}

}

if (EarlyStop==1) i=nStgs+1

}

Aveux=Aveux+Thisux/ThisN/nSims

Aveuy=Aveuy+Thisuy/ThisN/nSims

AveN=AveN+ThisN/nSims

}

power=round(power,3); AveN=round(AveN)

Aveux=round(Aveux,4); Aveuy=round(Aveuy,4)

FSP=round(FSP,3); ESP=round(ESP,3)

return (cbind(Model, power, Aveux, Aveuy, AveN,

FSP, ESP, alpha, beta, cPower))

}

��R��

��R Example��
Ns <- c(100,100); alpha <- c(0.005, 0.205); beta <- c(0.25, 0.205)

Ws <- c(1,1); ESP <- c(0,0); FSP <- c(0,0); sumWs <- c(0,0);

TSc <- c(0,0)

AD1=TwoArmNStgAdpDsg(nSims=100000, nStgs=2,

ux=0, uy=0, NId=0, a2=0.025, EP="normal",

Model="MSP", Nadj="N", nAdjModel="MSP",
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cPower=0.9, DuHa=1, Nmax=300, N0=200,

nMinIcr=1, sigma=3, tAcr=10, tStd=24, Ns, alpha, beta)

AD2=TwoArmNStgAdpDsg(nSims=100000, nStgs=2,

ux=0, uy=1, NId=0, a2=0.025, EP="normal",

Model="MSP", Nadj="Y", nAdjModel="MSP",

cPower=0.9, DuHa=1, Nmax=300, N0=200,

nMinIcr=1, sigma=3, tAcr=10, tStd=24, Ns, alpha, beta)

AD1; AD2

��R��

Drop-Loser Design in Chapter 11
R-function B.3, DrpLsrNRst, can be used to simulate the trial with

drop-loser design using either weak or strong alpha-control. The weak con-
trol only controls � under the global null hypothesis. For the strong control,
� is controlled under all null confutations. At the �rst stage, Bonferroni
adjustment is used for the strong control by in�ating the p-value from p1
to (nArms-1)p1min, where p1min is the smallest p-value among all the com-
parisons at the �rst stage. For the weak control, the �rst stage p-value
p1 is from a contrast test (see Chapter 2) and no p-value adjustment is
required. The overall � is controlled by using MSP. The SAS variables are
de�ned as follows. nArms = number of arms in the trial, us[i] = the true
response (mean, rate, and hazard rate) in the ith arm, sigma = common
standard deviation, N = sample per group, cPower = the target condi-
tional power at the interim analysis, AveN = average total sample-size,
Alpha1= early e¢ cacy stopping boundary (one-sided), beta1= early fu-
tility stopping boundary, Alpha2 = the �nal e¢ cacy stopping boundary.
For the strong control, CntlType = "strong"; otherwise, the weak control
is used; NId = noninferiority margin. The �rst arm must be the control
arm.

��R Function B.3: Drop-Loser Design ��
DrpLsrNRst <- function(nSims=100000, CntlType="strong", nArms=5,

alpha=0.025, beta=0.2, NId=0, cPower=0.9, nInterim=50, Nmax=150,

nAdj="Y", alpha1=0.01, beta1=0.15, alpha2=0.1871, EP="normal",

sigma=1, tStd=24, tAcr=10, us, cs) {

u1 <- c(1); u2 <- c(1)

n1=nInterim; FSP=0; ESP=0; AveN=0; Power=0

if (EP=="binary") {sigma=(us[1]*(1-us[1]))^0.5}
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if (EP=="survival") {

expterm=exp(-us[1]*tStd)*(1-exp(us[1]*tAcr))

sigma=us[1]*(1+expterm/(tAcr*us[1]))^(-0.5)

}

for (isim in 1:nSims) {

TotalN=nArms*n1

uMax=us[1]; Cntrst=0; SumSqc=0

for (i in 1:nArms) {

u1[i]=rnorm(1)*sigma/sqrt(n1)+us[i]

if (u1[i]>uMax) { uMax=u1[i]; iMax=i }

Cntrst=Cntrst+cs[i]*u1[i]

SumSqc=SumSqc+cs[i]*cs[i]

}

Z1 = Cntrst*sqrt(n1)/sqrt(SumSqc)/sigma

p1=1-pnorm(Z1)

if (CntlType=="strong") {

pNaive=(1-pnorm((uMax-us[1])/sigma*sqrt(n1/2)))

p1=(nArms-1)*pNaive

}

if (p1>beta1) {FSP=FSP+1/nSims}

if (p1<=alpha1) { Power=Power+1/nSims; ESP=ESP+1/nSims }

if (iMax != 1 & p1>alpha1 & p1<=beta1) {

BF=qnorm(1-max(0,alpha2-p1))-qnorm(1-cPower)

n2=2*(sigma/(u1[iMax]-u1[1])*BF)^2

nFinal=min(n1+n2, Nmax)

if (nAdj=="N") {nFinal=Nmax}

if (nFinal>n1) {

TotalN=2*(nFinal-n1)+nArms*n1

u2[1]=rnorm(1)*sigma/sqrt(nFinal-n1)+us[1]

u2[iMax]=rnorm(1)*sigma/sqrt(nFinal-n1)+us[iMax]

T2=(u2[iMax]-u2[1]+NId)*sqrt(nFinal-n1)/2^0.5/sigma

p2=1-pnorm(T2); TS2=p1+p2

if (TS2<=alpha2) {Power=Power+1/nSims}

}

}

AveN=AveN+TotalN/nSims

}

return (cbind(FSP, ESP, AveN, Power, cPower, Nmax))

}
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��R��

��R Example��
us <- c(.06, .12, .13, .14, .15)

cs <- c(-0.54, .12, .13, .14, .15)

D1=DrpLsrNRst(nSims=100000, CntlType="strong",

nArms=5, alpha=0.025, beta=0.2, NId=0, cPower=0.9,

nInterim=50, Nmax=150, nAdj="Y", alpha1=0.01,

beta1=0.15, alpha2=0.1871, EP="normal", sigma=0.18,

tStd=24, tAcr=10, us, cs)

D2=DrpLsrNRst(nSims=100000, CntlType="strong",

nArms=5, alpha=0.025, beta=0.2, NId=0, cPower=0.9,

nInterim=50, Nmax=150, nAdj="Y", alpha1=0.01,

beta1=0.15, alpha2=0.1871, EP="binary", sigma=0.18,

tStd=24, tAcr=10, us, cs)

us <- c(.06, .08, .09, .095, .095)

D3=DrpLsrNRst(nSims=100000, CntlType="strong",

nArms=5, alpha=0.025, beta=0.2, NId=0, cPower=0.9,

nInterim=50, Nmax=150, nAdj="Y", alpha1=0.01,

beta1=0.15, alpha2=0.1871, EP="survival", sigma=0.18,

tStd=24, tAcr=10, us, cs)

D1; D2; D3

��R��

Biomarker-Adaptive Design in Chapter 12
R Function B.4 is developed for simulating biomarker-adaptive trials

with two parallel groups. The key R variables are de�ned as follows: Al-
pha1 = early e¢ cacy stopping boundary (one-sided), beta1 = early fu-
tility stopping boundary, Alpha2 = �nal e¢ cacy stopping boundary, u0p
= response di¤erence in biomarker-positive population, u0n = response in
biomarker-negative population, sigma = asymptotic standard deviation for
the response di¤erence, assuming homogeneous variance among groups. For
binary response, sigma =

p
r1(1� r1) + r2(1� r2); For Normal response,

sigma =
p
2�. np1, np2 = sample sizes per group for the �rst and second

stage for the biomarker-positive population. nn1, nn2 = sample sizes per
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group for the �rst and second stage for the biomarker-negative population.
cntlType = "strong", for the strong type-I error control and cntlType =
"weak", for the weak type-I error control, AveN = average total sample-
size (all arms combined), pPower = the probability of signi�cance for
biomarker-positive population, oPower = the probability of signi�cance
for overall population.

��R Function B.4: Biomarker-Adaptive Design��
BMAD <- function(nSims=10, cntlType="strong", nStages=2, u0p=0.2,

u0n=0.1, sigma=1, np1=50, np2=50, nn1=100, nn2=100, alpha1=0.01,

beta1=0.15,alpha2=0.1871) {

FSP=0; ESP=0; Power=0; AveN=0; pPower=0; oPower=0

for (isim in 1:nSims) {

up1=rnorm(1)*sigma/sqrt(np1)+u0p

un1=rnorm(1)*sigma/sqrt(nn1)+u0n

uo1=(up1*np1+un1*nn1)/(np1+nn1)

Tp1=up1*sqrt(np1)/sigma

To1=uo1*sqrt((np1+nn1))/sigma

T1=max(Tp1,To1)

p1=1-pnorm(T1)

if (cntlType=="strong") {p1=2*p1}

if (p1>beta1) {FSP=FSP+1/nSims}

if (p1<=alpha1) {

Power=Power+1/nSims; ESP=ESP+1/nSims

if (Tp1>To1) {pPower=pPower+1/nSims}

if (Tp1<=To1) {oPower=oPower+1/nSims}

}

AveN=AveN+2*(np1+nn1)/nSims

if (nStages==2 & p1>alpha1 & p1<=beta1) {

up2=rnorm(1)*sigma/sqrt(np2)+u0p

un2=rnorm(1)*sigma/sqrt(nn2)+u0n

uo2=(up2*np2+un2*nn2)/(np2+nn2)

Tp2=up2*sqrt(np2)/sigma

To2=uo2*sqrt(np2+nn2)/sigma

if (Tp1>To1) {

T2=Tp2

AveN=AveN+2*np2/nSims

}

if (Tp1<=To1) {

T2=To2

AveN=AveN+2*(np2+nn2)/nSims
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}

p2=1-pnorm(T2)

TS=p1+p2

if (TS<=alpha2) {

Power=Power+1/nSims

if (Tp1>To1) {pPower=pPower+1/nSims}

if (Tp1<=To1) {oPower=oPower+1/nSims}

}

}

}

return (cbind(FSP, ESP, Power, AveN, pPower, oPower))

}

��R��

��R Example��
# Simulation under global Ho, 2-stage design

bmad1=BMAD(nSims=100000, cntlType="strong", nStages=2, u0p=0,

u0n=0, sigma=1.414, np1=260, np2=260, nn1=520, nn2=520,

alpha1=0.01, beta1=0.15,alpha2=0.1871)

# Simulations under Ha, single-stage design

bmad2=BMAD(nSims=100000, cntlType="strong", nStages=1, u0p=0.2,

u0n=0.1, sigma=1.414, np1=400, np2=0, nn1=800, nn2=0, alpha1=0.025);

# Simulation under global Ho, 2-stage design

bmad3=BMAD(nSims=100000, cntlType="strong", nStages=2, u0p=0,

u0n=0, sigma=1.414, np1=260, np2=260, nn1=520, nn2=520,

alpha1=0.01, beta1=0.15,alpha2=0.1871)

# Simulations under Ha, 2-stage design

bmad4=BMAD(nSims=100000, cntlType="strong", nStages=2, u0p=0.2,

u0n=0.1, sigma=1.414, np1=260, np2=260, nn1=520, nn2=520,

alpha1=0.01, beta1=0.15,alpha2=0.1871)

bmad1; bmad2; bmad3; bmad4

��R��

Randomized Play-the-Winner Design in Chapter 14
R Function B.5 is developed to simulate RPW designs. The variables

are de�ned as follows: the initial numbers of balls in the urn are denoted by
a0 and b0. Next a1 or b1 balls added to the urn if a response is observed
in arm A or arm B. The SAS variables are de�ned as follows: RR1, RR2
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= the response rates in group 1 and 2, respectively, nSbjs = total number
of subjects (two groups combined), nMin (>0) = the minimum sample-
size per group required to avoid an extreme imbalance situation, nAnlys
= number of analyses (approximately an equal information-time design).
All interim analyses are designed for randomization adjustment and only
the �nal analysis for hypothesis testing. aveP1 and aveP2 = the average
response rates in group 1 and 2, respectively. Power = probability of the
test statistic > Zc. Note: Zc = function of (nSbjs, nAnlys, a0, b0, a1,
b1, nMin).

��R Function B.5: Randomized Play-the-Winner Design��
RPW <- function(nSims=1000, Zc=1.96, nSbjs=200, nAnlys=3,

RR1=0.2, RR2=0.3, a0=1, b0=1, a1=1, b1=1, nMin=1) {

set.seed(21823)

Power=0; aveP1=0; aveP2=0; aveN1=0; aveN2=0

for (isim in 1:nSims) {

nResp1=0; nResp2=0; N1=0; N2=0

nMax=nSbjs-nMin

a=a0; b=b0; r0=a/(a+b)

for (iSbj in 1:nSbjs) {

nIA=round(nSbjs/nAnlys)

if (iSbj/nIA==round(iSbj/nIA)) {r0=a/(a+b)}

if ((rbinom(1,1,r0)==1 & N1<nMax) j N2>=nMax) {
N1=N1+1

if (rbinom(1,1,RR1)==1) {nResp1=nResp1+1; a=a+a1}

}

else

{

N2=N2+1

if (rbinom(1,1,RR2)==1) { nResp2=nResp2+1; b=b+b1 }

}

}

aveN1=aveN1+N1/nSims; aveN2=aveN2+N2/nSims

p1=nResp1/N1; p2=nResp2/N2

aveP1=aveP1+p1/nSims; aveP2=aveP2+p2/nSims

sigma1=sqrt(p1*(1-p1)); sigma2=sqrt(p2*(1-p2))

sumscf=sigma1^2/(N1/(N1+N2))+sigma2^2/(N2/(N1+N2))

TS = (p2-p1)*sqrt((N1+N2)/sumscf)
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if (TS>Zc) {Power=Power+1/nSims}

}

return (cbind(nSbjs, aveN1, aveN2, aveP1, aveP2, Zc, Power))

}

��R��

��R Example��
rpw1=RPW(nSims=1000, Zc=1.96, nSbjs=200, nAnlys=200, RR1=0.4,

RR2=0.4, a0=1, b0=1,a1=0, b1=0, nMin=1)

rpw2=RPW(nSims=1000, Zc=1.96, nSbjs=200, nAnlys=200, RR1=0.3,

RR2=0.5, a0=1, b0=1,a1=0, b1=0, nMin=1)

rpw3=RPW(nSims=10000, Zc=2.035, nSbjs=200, nAnlys=5, RR1=0.4,

RR2=0.4, a0=2, b0=2,a1=1, b1=1, nMin=1)

rpw4=RPW(nSims=1000, Zc=2.035, nSbjs=200, nAnlys=5, RR1=0.3,

RR2=0.5, a0=2, b0=2,a1=1, b1=1, nMin=1)

rpw1; rpw2; rpw3; rpw4

��R��

Continual Reassessment Method in Chapter 15
R Function B.6 is developed to simulate the 3+3 traditional escalation.

The R variables are de�ned as follows: nSims = number of simulation
runs, nLevels = number of dose levels, DeEs = "true" means that it
allows for dose deescalation, otherwise, it does not. AveMTD = average
MTD, AveNPts = average number of patients per trial, AveNRsps =
average number of responses in a trial.

��R Function B.6: Continual Reassessment Method��
CRM <- function(nSims=100, nPts=30, nLevels=10, b=100, aMin=0.1,

aMax=0.3, MTRate=0.3, nIntPts=100) {

nPtsAt <- c(1); nRsps <- c(1); RR <- c(1)

DLTs=0; AveMTD=0; VarMTD=0

dx=(aMax-aMin)/nIntPts

for (iSim in 1:nSims) {

for (i in 1:nLevels) { nPtsAt[i]=0; nRsps[i]=0 }

iLevel=1

for (iPtient in 1:nPts) {

iLevel=min(iLevel, nLevels)

Rate=RRo[iLevel]

nPtsAt[iLevel]=nPtsAt[iLevel]+1

r= rbinom(1, 1, Rate)

nRsps[iLevel]=nRsps[iLevel]+r
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# Posterior distribution of a

c=0

for (k in 1:nIntPts) {

ak=aMin+k*dx; Rate=1/(1+b*exp(-ak*doses[iLevel]))

if (r>0) {L=Rate}

if (r <= 0) {L=1-Rate}

g[k]=L*g[k]; c=c+g[k]*dx

}

for (k in 1:nIntPts) {g[k]=g[k]/c}

# Predict response rate and current MTD

MTD=iLevel; MinDR=1

for (i in 1:nLevels) {

RR[i]=0

for (k in 1:nIntPts) {

ak=aMin+k*dx

RR[i]= RR[i]+1/(1+b*exp(-ak*doses[i]))*g[k]*dx

}

DR=abs(MTRate-RR[i])

if (DR <MinDR) { MinDR = DR; iLevel = i; MTD = i }

}

}

for (i in 1:nLevels) {DLTs=DLTs+nRsps[i]/nSims}

AveMTD=AveMTD+MTD/nSims

VarMTD=VarMTD+MTD^2/nSims

}

SdMTD=sqrt(VarMTD-AveMTD^2)

return (cbind(nPts, nLevels, AveMTD, SdMTD, DLTs))

}

��R��

��R Example��
g <- c(1); doses <- c(1)

RRo <- c(0.01,0.02,0.03,0.05,0.12,0.17,0.22,0.4)

for (k in 1:100) {g[k]=1}

for (i in 1:8) {doses[i]=i}

crm1=CRM(nSims=500, nPts=8, nLevels=8, b=150, aMin=0, aMax=3,

MTRate=0.17)

crm2=CRM(nSims=500, nPts=16, nLevels=8, b=150, aMin=0, aMax=3,

MTRate=0.17)

crm1; crm2

��R��
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Dose escalation, See Dose-�nding trial
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maximum likelihood approach,
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reassessment of parameter,
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contrast tests, 35, 36, 40
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drop-loser design, 5, 13
evaluation of, 302
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86

information-mask approach, 181, 187,
192

p-value versus, 28
recursive two-stage adaptive design,

170
sample size re-estimation and, See

Sample size re-estimation
trial power and, 4, 46, See also Power

E¤ect size ratio, sample-size
readjustment based on, 182�183

E¢ cacy boundary (�k), 54
E¢ cacy endpoints, 277
E¢ cacy stopping design, See Early
e¢ cacy stopping design

E¢ cacy stopping probability (ESP), 64,
75, 92

E¢ cacy variable estimation, deviation of,
334

Equal weight principle, 355�356
Equivalence trials, 28�35
average bioequivalence, 31�34
direct combination of p-values

methods, 95�98

population and individual
bioequivalence, 34�35

sample size formula, 28
SAS macros, 29�31, 33�34, 96�98
subject-by-formulation interaction

variance, 34
Error spending method (ESM), 51�52,
113�118, 354
error-spending function, 56, 58, 109,

137
Lan-DeMets method, 115�117
n-stage design simulation, 121, 137
recursive adaptive design, 163�165,

170�171
sample-size re-estimation, 51
stopping boundary determination, 58,

116�117
Event-based adaptive design, 93�95
Exact con�dence interval (ECI), 180
Exchangeability, 323�324, 354�355
Expected sample size, 65
adaptive designs and, 75, 80, 86, 88,

89, 91, 93, 189�192
Bayesian vs. classic design, 319
clinical trial simulation and, 10, 336
drop-loser design, 286
Simon�s two-stage futility design, 316

Expected trial duration, See Clinical
trial expected duration

External validity, 3, 331

F

False positive control, 11, 345
Benjamin-Hochberg procedure, 211

False positive discovery rate, 253
Familywise error (FWE) control, 74, 79,
84, 106, 205�206, 212, See also Type-I
error rate (�) control
gatekeeper approach, 212, 214, 216
single-step procedures, 207�209

Feasibility of adaptive design, 332
Fibonacci sequence, 292, 302
First hitting of standard Brownian
motion, 114�115

First hitting time (FHT) models, 257,
267�269

Fisher combination of p-values, 52, 57,
144, 175, 209

Fisher-Shen self-designing method, 118
Four-stage adaptive design, 129�131, See
also N-stage adaptive design
simulation approaches
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Fractal gatekeepers approach, 213�222,
See also Multiple-endpoint adaptive
design

Frequentist paradigm, 59
Bayesian approaches versus, 309, 346

con�dence intervals, 325�326
p-value, 342, 344�345

Bayesian hybrid approach, 307, 314
optimization, 316�318

Simon�s two-stage design,
316�318

repeated looks, 345, See also
Multiplicity issues

role of �xed alpha in drug
development, 345�346

Frequently asked questions (FAQs),
13�14

Futility boundary, 54, 184, 191�192, 198,
See also Early futility stopping design

Futility index, 66, 150
Futility stopping design, See Early
futility stopping design

Futility stopping probability (FSP), 64,
75, 92

G

Gambler�s ruin problem, 119
Game theory, 67�68
Gatekeeper approach, 213�222
Generalized maximum likelihood
estimator (GMLE), 352

Global disease scores, 204
GNU, 369
Group sequential design (GSD), 3
consistency of results, 356
controversial issues, 360
inverse-normal p-values method,

109�112
less powerful sample-size re-estimation

designs and, 353�354
n-stage numerical integration

algorithm, 121
response-adaptive randomization, 287
stopping boundary determination, 109
Tang-Geller�s method for

multiple-endpoint designs,
213, 220�222

H

Heart surgery, MI prevention trial,
196�199

Hochberg stepup procedure, 210�211
Hommel stepdown procedure, 210
Human genome, 239
Hypotension trial example, 315�316

I

Individual bioequivalence (IBE), 34�35
Individual stagewise p-value method
(MIP), 71�76
adjusted p-values, 76
comparison of methods, 91�93
conditional error function method

and, 141
sample-size re-estimation, 187
SAS macros, 73�74
stopping boundary determination,

71�72
Information-mask approach, 181, 187,
192

Integrity, 3, 51, 331
Internal validity, 3, 254, 331
Invariance principle, 351�352
Inverse cumulative distribution function
(CDF) method, 364

Inverse-normal p-value method (MINP),
16, 57, 101�118
adaptive futility design, 150
adjusted p-values, 107
changes in interim analyses example,

117�118
classic group sequential design,

109�112
conditional error function method,

139, 144, See also Conditional
error function method

conditional error rate, 164�165
error spending, 113�118
Fisher-Shen self-design, 118
Lehmacher-Wassmer method, 104�109
linear combination of z-scores,

101�103
multiple-endpoint trial, fractal

gatekeeper test, 216�217
power calculation, 102
recursive adaptive design, 158�159,

160�162, 168�170, 173
sample-size re-estimation, 108�109,

112, 187
SAS macros, 102�103, 105�106
stopping boundary determination,

102�103
Inverse probability, 347
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Investigational new drug application
(IND), 19

Iterative parameter estimation (IPE),
271�273

J

Joint distribution, 310

K

Kieser�s test for multiple-endpoint
designs, 213

K-stage designs, 16, See also N-stage
adaptive design simulation approaches
conditional error method, 52
Fisher-Shen self-designing method,

118
power-based sample-size adjustment,

183�184
recursive adaptive design, 153, 165,

175�177, See also Recursive
two-stage adaptive design

L

Labeling issues, 20
secondary endpoint bene�t claims,

211, 213
Lan-DeMets error-spending method,
113�118

Latent event time model, 271�273
Learning, 225, 308�309
Lehmacher-Wassmer method, 104�109
Likelihood function, 270�271, 298�299,
343, 349�351
maximum likelihood estimate, 23�24,

299�300, 342�343, 351�352
Likelihood principle, 349�351, 354
Linear combination of p-values, 81
Logistic model, 298, 303
Loss function, 66, 340�341, 348, 357
Low-density lipoprotein (LDL)
cholesterol trials, 24�25, 29, 98�99

M

MAP estimator, 352
Marginal distribution, 310
Marker process, 257
Maximum aposteriori (MAP) estimator,
352

Maximum likelihood estimation (MLE)

approach, 23�24, 299�300, 342�343,
351�352

Maximum tolerated dose (MTD), 6, 19,
291, 302, See also Dose-�nding trial
design

Measures of evidence, 342�345, See also
Statistical principles, problematic
issues in adaptive design; speci�c
measures
equal weight principle, 355�356

Memoryless process, 115
Method with inverse-normal p values
(MINP), See Inverse-normal p-value
method (MINP)

MIP, See Individual stagewise p-value
method

Mixed exponential survival model,
260�266

Mixture of Wiener processes, 268�273
MPP, See Product of stagewise p-value
method

MSP, See Sum of stagewise p-value
method

M§ller-Sch×fer conditional error function
method, 143

Multiple-endpoint adaptive design, 17,
203�204, 213, 215, 345, See also
Multiplicity issues
Chang�s extension of Tang-Geller�s

method, 213
composite endpoints, 39, 74, 86, 129,

170, 204
co-primary endpoints, 204, 213,

219�222, 327
fractals of gatekeepers, 213�222

co-primary endpoints, 219�222
inverse-normal p-values method,
216�217

one primary endpoint, 215�219
Kieser�s test, 213
non-Hodgkin�s lymphoma trial

example, 215�219
recursive two-stage design with MSP,

217�219
secondary endpoints, 211�213
surrogate endpoints, 204
Tang-Geller�s method for classic group

sequential design, 213,
220�222

Multiple-stage adaptive designs, See
K-stage designs; N-stage adaptive
design simulation approaches
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Multiplicity issues, 203�204, 345, See
also Multiple-endpoint adaptive design
biomarkers and, 253
closed family, 205
closed testing procedures, 206
closure principle, 205�206
coherence and consonance, 206
familywise error control, 205
gatekeeper approach, 211�213
partition principle, 206
single-step procedures, 206

Dunnett�s method, 208�209
Fisher combination method, 209
Sidak method, 207
Simes-Bonferroni method, 208
simple Bonferroni method,
207�208, 230�231

statistical approaches, 204
stepwise procedures, 209�211

Benjamin-Hochberg procedure
for false positive rate, 211

Bonferroni-Holm stepdown, 210
Hochberg stepup, 210�211
Hommel stepdown, 210
sequential test with �xed
sequences, 211

Type-I error in�ation, 203, 204�206
Myocardial infarction prevention trial,
196�199

N

N-adjustable design, See Sample size
re-estimation

National Institutes of Health (NIH), 11
New Drug Application (NDA), 327, See
also Regulatory issues

Non-Hodgkin�s lymphoma trial example,
215�219, 256

Noninferiority designs, See Superiority
and noninferiority designs

Nonparametric stopping boundaries
approach, 121�137

Normal posterior distribution, 311
N-stage adaptive design simulation
approaches, 121, 134�136, See also
K-stage designs
error spending, 121, 137
four-stage design, 129

with sample-size re-estimation,
131

without sample-size
re-estimation, 130

interim analyses changes, 121, 137
nonparametric stopping boundaries,

121�137
adaptive design with survival
endpoint, 134�136

four-stage adaptive design, 130
three-stage adaptive design with
normal endpoint, 124

numerical integration algorithms, 121
recursive adaptive design, 153, See

also Recursive two-stage
adaptive design

sample-size calculations, 124, 126, 130,
131, 135, 136

SAS macros
binary endpoint, 127�129
normal endpoint, 121�123
survival and various endpoints,
131�134

survival endpoint, 131, 134
with sample-size re-estimation,
136

without sample-size
re-estimation, 134�135

three-stage example with normal
endpoints, 123�127

with sample-size re-estimation,
126�127

without sample-size
re-estimation, 124�126

N-stage group sequential designs, 121

O

O�Brien and Fleming (OB-F) stopping
boundary, 58, 109, 117, 137, 319�321

Odds ratio e¢ cacy endpoints, 277
Oncology biomarkers, 239
partially-validated biomarker design,

256
Oncology dose-escalation trial
approaches, See Dose-�nding trial
design

Oncology trials examples, 84�86, 91�93,
136, 280�282, 302�304

Optimal adaptive design, Bayesian
approach, See under Bayesian
approaches

Optimal randomized play-the-winner
(ORPW) model, 277

Overall response rate (ORR), 215�219

P
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Parallel-group active-control trial,
treatment switching, 9, 259, See also
Treatment switching and crossover

Partition principle, 206
P-clud distribution, 153�155
Personalized medicine, 239, 346
Pharmaceutical development, See Drug
development

Pharmacokinetics (PK), 31
Phase-I clinical trial, 19
dose-escalation trial, See Dose-�nding

trial design
starting dose, 291�292

Phase-II clinical trial, 19�20
combined phase II/phase III

drop-loser design, 5�6
combined-phase seamless designs, See

Seamless designs
dose-�nding, See Dose-�nding trial

design
Phase-III clinical trials, 20
acute ischemic stroke, See Acute

ischemic stroke trial design
asthma trials, See Asthma study

examples
biomarker as primary endpoint, 251
individual p-value-based method, 74
myocardial infarction prevention,

196�199
non-Hodgkin�s lymphoma multiple

endpoints, 215�219
seamless designs, See Seamless designs
sum of p-value-based method, 79

Planning adaptive designs, 332
Play-the-winner (PW) model, 275�276
optimal RPW model, 277
randomized PW model, 276�282, See

also Randomized
play-the-winner (RPW) model

R code, 377�379
SAS macro, 279

Pocock�s stopping boundary, 58, 109,
137, 321

Polymorphism, 57�59
Population bioequivalence (PBE), 34�35
Population exchangeability assumptions,
323�324, 354�355

Posterior distribution, 308, 310�312, 325
Posterior probability, 299�300, 326, 328,
342

Post-marketing trials, 20
Power, 200
appropriate trial powering, 26�27

Bayesian, 315�316, 322�323
clinical trial simulation and, 10
comparing direct combination of

p-values methods, 93
conditional, See Conditional power
conditional error function method

and, 143�149
contrast shapes and, 42
e¤ect size estimate and, 4
formula for, 55�56
general approach to calculation, 21�26
inverse-normal p-values method, 102
normal prior and, 314
prior probabilities e¤ect on, 312�314
p-value and, 342, See also P-values
seamless design and, 225�226, See also

Seamless designs
three-stage adaptive design with

normal endpoint, 124
Power family error-spending functions,
137

Pravastatin, 324
Predictive biomarker, 8, 240�241
adaptive design, 257, See also

Biomarker-adaptive design
Predictive probability distribution, 310
Probability, drug development and, 309
Product of stagewise p-value method
(MPP), 57, 81�82
adjusted p-values, 86
comparison of methods, 91�93
conditional error function method

and, 148
conditional error rate, 164�165
recursive adaptive design, 156�157,

160�162, 166, 168
con�dence intervals, 169

sample-size re-estimation, 187
SAS macro, 82�84
stopping boundary determination,

81�82
Prognostic biomarker, 8, 240
adaptive design, 255�256

Progression-free survival (PFS), 215�218
Proportion di¤erence e¢ cacy endpoints,
277

Proschan-Hunsberger conditional error
function method (modi�ed), 139�142

Prostate cancer trial, 302�304
Publication bias, 253
P-values, 51
adjusted, 56, See also Adjusted

p-value
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Bayesian versus frequentist
approaches, 342, 344�345

conditional, 55�56, 86, 107
data analysis and reporting, 335
direct combination methods, 16, 52,

57, 71�99, See also Direct
combination of p-values
method; speci�c methods

drop-loser design, 229�230
Fisher combination method, 52, 57,

144, 175, 209
individual-based method, See

Individual stagewise p-value
method

inverse-normal method, See
Inverse-normal p-value
method

multiple analyses and, See
Multiplicity issues

observed e¤ect size versus, 28
p-clud distribution, 153�155
power and, 342, See also Power
problematic aspects for adaptive

designs, 357�359
product-based method, See Product of

stagewise p-value method
recursive combination tests, 174�177
sum-based method, See Sum of

stagewise p-value method
z-score transformation, 143�144

R

Randomization, adaptive designs, 6, 17,
275, See also Response-adaptive
randomization and allocation

Randomized play-the-winner (RPW)
model, 6, 276�280
oncology study example, 280�282
optimal RPW model, 277
R code, 377�379
SAS macro, 279�280

Random number generation, 363�368
acceptance-rejection, 364�365
inverse CDF, 364
mixed exponential distribution, 365
multi-variate distribution, 365�368
SAS macro, 365
uniformly distributed, 363�364

Random sampling, 363
Random-walk with varied step length,
115

Real-time data collection and analysis,
14

Recursive combination tests, 174�177
Recursive multiple-stage adaptive design,
175�177

Recursive two-stage adaptive design
(RTAD), 16, 53, 59, 153, 155�156,
165�174
adjusted p-values, 166, 169, 173
application examples, 170�174
comparing MSP, MPP, and MINP

designs, 159, 160�162, 169�170
conditional error principle, 153,

163�165, 177�178
conditional power and, 170, 171
con�dence intervals, 159�162, 169�170
decision function method, 177�178
error-spending approach, 163�165,

170�171
inverse-normal p-values method,

158�159, 168�169, 173
multiple-endpoints design, 217�219
p-clud distribution, 153�155
product of p-value-based method,

156�157, 166, 168
suitable situations, 179
sum of p-value-based method,

157�158, 166�167, 217�219
Regulatory issues, 11�12, 15, 332�333
Bayesian approaches and, 327�328
conditional estimates and, 59�60
�xed alpha and, 345�346
labeling, 20, 211, 213

Relative risk e¢ cacy endpoints, 277
Repeated looks, 345, See also
Multiplicity issues

Reporting, 335
Response-adaptive randomization and
allocation, 6, 13, 17, 275, 282
classic group sequential design, 287
general adaptive designs, 287
Neyman allocation, 278
oncology study example, 280�282
optimal randomized PW model, 277
play-the-winner (PW) model, 275�276
randomized PW model, 276�282,

377�379, See also Randomized
play-the-winner (RPW) model

SAS macros
M-arm with binary endpoint,
282�285

M-arm with normal endpoint,
285�287



414 Adaptive Design Theory and Implementation

randomized play-the-winner
model, 279�280

seamless design and, 288
suitable situations, 288

Response-adaptive treatment switching,
See Treatment switching and crossover

Restricted conditional con�dence interval
(RCCI), See also Con�dence intervals

RNA markers, 240
"Roadmap" initiative, 11
R programs, 18, 369
biomarker-adaptive design, 375�377
conditional power, 369�370
drop-loser design, 373�375
sample-size re-estimation, 370�372

Running time, 268

S

Safety, treatment switching for, See
Treatment switching and crossover

Safety factors, 334
Sample size, contrast shapes and, 42
Sample size, expected, See Expected
sample size

Sample-size calculation, classic trial
designs, 20�21, See also Classic clinical
trial design
for di¤erent endpoints (table), 25
dose-response trials, 36�38, 39

SAS macro, 43�44
equivalence test, 28
maximum information design, 45
two-group superiority and

noninferiority designs, 23
Sample size re-estimation (SSR), 4�5,
16�17, 181, 200�201
adjusting without unblinding, 45
analysis, no early stopping design,

193�195
analysis, possible early stopping,

195�196
based on conditional power, 147,

183�184, 197, 200�201
based on e¤ect size ratio, 182�183
comparison of methods, 187�188

discrete n-adjustment for
information mask, 192

high initial power scenario, 189
low initial power scenario,
190�192

Cui-Hung-Wang method, 112

Denne conditional error function
method, 142�143

direct combination of p-values
methods

method comparison, 187
normal endpoint, 89�91
survival endpoint, 91�93

error spending method, 51
futility boundary, See Futility

boundary
information-mask approach, 181, 187,

192
inverse-normal p-values method,

108�109, 112, 187
maximum information design, 45
MI prevention trial example, 196�199
more powerful group sequential

designs, 353�354
n-stage adaptive designs, 124, 126,

130, 131, 135, 136
R code, 370�372
SAS macros, 184�187, See also SAS

macros
sum of p-value-based method, 89�93,

187, 189�191
unbiased estimates, 193, 195, 200

Sampson-Sill�s drop-loser design method,
228�229

SAS macros, xx, 18
biomarker-adaptive design, 247�249
conditional power and, 145�147
crossover bioequivalence trial, 33�34
direct combination of p-values

methods, 72�74, 77�79, 82�84,
94�98

dose-escalation design, 295�297
continual reassessment method,
300�303

drop-loser design, 232�234
equivalence trial, 29�31, 96�98
event-based adaptive design, 93�95
inverse-normal p-values method,

102�103, 105�106
n-stage design simulation

binary endpoint, 127�129
normal endpoint, 121�123
survival and various endpoints,
131�134

product of p-value-based method,
82�84

random number mixed exponential
distribution, 365
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random number multi-variate
distribution, 367�368

response-adaptive randomization
M-arm with binary endpoint,
282�285

M-arm with normal endpoint,
285�287

randomized play-the-winner
model, 279�280

sample size for dose-response trial,
43�44

sample-size re-estimation, 184�187
sensitivity analyses, 75, 79�80, 85,

107, 124�125, 127, 135, 136
Simon�s two-stage futility design,

316�318
stopping boundary computation,

102�103
two-stage adaptive design with binary

endpoint, 73�74
two-stage adaptive design with normal

endpoint, 77�79
two-stage adaptive design with

survival endpoint, 82�84
Seamless designs, 14, 17, 225, 236, See
also Drop-loser designs
alpha level and power impact, 225�226
asthma trial example, 234�236
Bayesian optimal adaptive design,

319�321
early e¢ cacy readouts, 236
ensuring integrity, 331
learning phase, 225
response-adaptive randomization, 288
strong alpha-control method, 230�232
trial duration and, 226�227
weak alpha-control method, 227�230

Secondary endpoints, 211�213
Self-design method, 118
Sensitivity analyses, SAS macro calls, 75,
79�80, 85, 107, 124�125, 127, 135, 136

Sequential test with �xed sequences, 211
Sidak method, 207
Simes-Bonferroni method, 208
Simon�s two-stage optimal design,
316�318

Simple Bonferroni method, 207�208
Simulation, clinical trial, See Clinical
trial simulation; SAS macros

Single-step multiplicity adjustment, See
under Multiplicity issues

Spring water experiment, 358�359
Stagewise estimate (SE), 59, 62

Stagewise ordering adjusted p-value, 56,
76, 77, 80, 86, 107, 166, 169, See also
Adjusted p-value

Stagewise ordering con�dence intervals,
See Con�dence intervals

Stagewise p-values, See P-values
Statistical exchangeability, 323�324,
354�355

Statistical principles, problematic issues
in adaptive design, 339, 346�360, See
also Adaptive design, problematic
issues of; Bayesian approaches; Classic
clinical trial design; Frequentist
paradigm
0-2-4 paradox, 358
Bayesian aspects, 343�345, 356�357
binomial and negative binomial

paradox, 349�350
conditionality, 348, 354, See also

speci�c conditional methods
or parameters

consistency of results, 356
decision theory, See Decision theory
equal weight principle, 355
invariance principle, 351�352
likelihood principle, 349�351, 354, See

also Likelihood function
measures of evidence, 342

Bayes�factor, 343�344
Bayesian p-value, 344�345
equal weight principle, 355�356
frequentist p-value, 342
maximum likelihood estimate,
342�343

minimum su¢ ciency principle and
e¢ ciency, 353�354

parametric statistical model, 347
p-value, 342, 344�345, 357
spring water experiment, 358�359
stopping rule principle, 348
su¢ ciency principle, 348, 352�353
su¢ cient statistics, 347�348
Type-I error rate (�) control, 357�359
unbiased estimation, 358

Statistics, drug development and, 309
Stepdown procedures, 210
Stepup procedure, 210�211
Stopping boundary, 54�55, See also
speci�c applications, types
adaptive futility design, 149�150
Bayesian optimal adaptive design,

319�321
classic group sequential design, 109
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conditional power and, 144, 148�149
determination

general theory, 57�58
individual p-value-based method,
71�72

inverse-normal p-values method,
102�103

product of p-value-based
method, 81�82

sum of p-value-based method,
76�77, 218

four-stage adaptive design, 131
Lan-DeMets error-spending method,

116�117
nonparametric approach for n-stage

designs, 121�137
adaptive design with survival
endpoint, 134�136

four-stage adaptive design, 130
three-stage adaptive design with
normal endpoint, 124

OB-F, 58, 109, 117, 137, 319�321
Pocock, 58, 109, 137, 321
polymorphism, 57�58
Proschan-Hunsberger conditional

error function method, 140
regulatory issues, 333�334
three-stage adaptive design with

normal endpoint, 126
Stopping probabilities, 64
Stopping rule principle, 348
Su¢ ciency principle, 348
violations, 352�353

Su¢ cient statistics, 347�348
Sum of stagewise p-value method (MSP),
57, 76�80
adjusted p-values, 80, 166
comparison of methods, 91�93
conditional error function method

and, 148
conditional error rate, 164�165
conditional power, 146, 200
early futility stopping design with

binary endpoint, 86�89
multiple-endpoint trial, fractal

gatekeeper test, 217�219
recursive adaptive design, 157�158,

160�162, 166�167
con�dence intervals, 169

sample-size re-estimation, 200
method comparison, 187,
189�191

normal endpoint, 89�91

survival endpoint, 91�93
SAS macro, 77�79
seamless design and, 230�231
single-step multiplicity adjustment,

230�231, See also Multiplicity
issues

stopping boundary determination,
76�77

three-stage adaptive design with
normal endpoint, 124�127

Superiority and noninferiority designs
direct combination of p-values

methods, 88�89
dose-response trial example, 39�40
power calculation approach, 21�26
powering trials appropriately, 26�27
sample-size calculation, 24�25

arteriosclerotic vascular disease
trial example, 24�25

di¤erent endpoints (table), 25
Surgical procedures, MI prevention trial,
196�199

Surrogate endpoints, 204, 239, 240
Survival models
�rst hitting time models, 267�269
iterative parameter estimation,

271�273
latent event time model, 271�273
mixed exponential, 260�266
mixture of Wiener processes, 268�273
running time, 268
threshold regression, 267�268

Switching designs, See Treatment
switching and crossover

Switching e¤ect, 259
Synergy of evidences, 325

T

Tang-Geller�s method for
multiple-endpoint designs, 213,
220�222

Theory of adaptive design, See Adaptive
design theory

Three-stage adaptive design, See N-stage
adaptive design simulation approaches

Threshold regression, 257
Threshold regression survival model,
267�268

Time savings, 15
Time to progression (TTP), 84, 91, 136,
241

Tolerability of drug toxicity, 291
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Toxicity tolerability, 291
Treatment e¤ect
biological e¢ cacy, 9, 259
biomarkers and, See

Biomarker-adaptive design
e¤ect size, See E¤ect size
internal validity and, 331
powering trials appropriately, 26�27,

See also Power
p-value versus, 28

Treatment switching and crossover, 8�9,
17, 259�260
biological e¢ cacy, 9, 259
�rst hitting time models, 267�269
iterative parameter estimation,

271�273
latent event time model, 271�273
mixed exponential survival model,

260�266
mixture of Wiener processes, 268�273
running time, 268
switching e¤ect, 259
threshold regression survival model,

267�268
Trial monitoring, 333�334
Bayesian approaches and, 322�323
biomarker-adaptive design and, 250
conditional power and, 65, See also

Conditional power
Truth-in-labeling, 20
Tukey et al. regression test, 35
Two-group equivalence trials, See
Equivalence trials

Two-group superiority and noninferiority
designs, See Superiority and
noninferiority designs

Two-stage designs, conditional error
function method, See Conditional
error function method

Two-stage recursive adaptive design, See
Recursive two-stage adaptive design

Type-I error rate (�) control, 54, 56, 340,
See also Familywise error (FWE)
control
0-2-4 paradox, 358�359
biomarker as primary endpoint, 251
clinical trial simulation and, 10
conditional error function method

and, 143
drop-loser designs with strong alpha

control, 230�232
drop-loser designs with weak alpha

control, 227�230

function, 21
multiple analyses and in�ation of,

203�206, See also Multiplicity
issues

nonparametric stopping boundaries
approach, 121

polymorphism, 58
powering trials appropriately, 27
problematic aspects for adaptive

designs, 357�359
regulatory issues, 345�346
repeated looks and, 345, See also

Multiplicity issues
role of �xed alpha in drug

development, 345�346
seamless design and, 225�226, See also

Seamless designs
strong alpha-controlled

biomarker-adaptive design,
246�247

Tang-Geller�s method for
multiple-endpoint designs, 221

validity and integrity and, 331
Type-II error rate (�), 54
powering trials appropriately, 27

U

Unbiased estimate, 61�62, 200, 335, 358
drop-loser design, 228
no early stopping design, 193
possible early stopping design, 196
spring water experiment (0-2-4

paradox), 358, 359
Unblinded e¢ cacy data release, 181
Unblinding, 14, 332
sample-size adjustment without, 45

Uncertainty in trial design, 181
Unconditional point estimate (UE),
59�62

Unconditional stopping probability, 64
U.S. Food and Drug Administration
(FDA), 11, 15, 20, 327, 332�333, See
also Regulatory issues

Utility-adaptive randomization, 6
Utility function, biomarker-adaptive
design, 242

Utility theory, 66�68, 256, 346

V

Validation of biomarker, 251, 253�254
Validity, 51, 331
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regulatory issues, 333

W

Wang-Tsiatis�(W-T) stopping boundary,
58, 109

Weighted inverse-normal stagewise
p-values-based design, See
Inverse-normal p-value method
(MINP)

Wiener processes, 268�273

Z

Z-score conversion to p-scale, 143�144
Z-score linear combination method,
101�103
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