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Preface

"Die rationale Entscheidungstheorie hat ihre Berech-
tigung. Sie ist ein wunderschönes mathematisches
Modell einer vollkommenen Welt. Und sie erk-
lärt auch einen Teil der Realität, zum Beispiel in
der Biologie. Die Evolution erzeugt bei ganz und
gar unvernünftigen Tieren und Pflanzen in gewisser
Weise optimale Verhaltensprogramme, sie erzwingt
bei einfachen Organismen gnadenlos Rationalität.
Höhere Wesen wie wir, die viel stärker von der
Kultur geprägt sind als von der Evolution, haben
viel größeren Spielraum. Menschen verhalten sich

nun mal nicht streng rational. Die Spieltheorie ist bestenfalls eine erste An-
näherung an dieses Problem, eine Art idealer Maßstab. Das war mir schon
Ende der fünfziger Jahre klar, als ich als Experimentalökonom anfing, theo-
retische Annahmen im Labor zu überprüfen."

Reinhard Selten

Mathematical models in biology and medicine cannot be based on natural
laws as it is the case with physics and chemistry. This is due to the fact
that biological and medical processes are concerned with living organisms.
These processes, even under physical and chemical aspects, are too compli-
cated in order to be fully described by a mathematical model. In addition they
can contain features which in principle cannot be described mathematically.
Mathematical models, however, can be used as a language by which certain
aspects of biological or medical processes can be expressed.
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So, for instance, in a growth model for a population of men or animals the
assumption that the growth rate depends on the size of the population can
be quantified with the use of differential equations and it can be checked
with measured data to what extent the mathematical model gives a realistic
description of the reality. In general several mathematical models can be de-
signed in order to describe a biological or medical process and there is no
unique criterion which model gives the best description. Coincidence with
measured data is a necessary but by far not a sufficient condition.

This book consists of four chapters. The first is concerned with growth mod-
els for one or several populations. The focus is on conditions for stability or
asymptotic stability of equilibrium states. The second chapter deals with a
game-theoretic evolution model for one or two populations. It is mainly con-
cerned with the concept of evolutionarily stable equilibria. In the third chapter
four medical processes are described with the aid of optimal control theory
and the fourth chapter deals with a mathematical model for the process of
hemodialysis.

The book ends with an appendix in which some mathematical results are rep-
resented that are used in the text.

The authors want to thank Tino Krug, Dr. Jens Römer and Philipp Spee for
their help in preparing the manuscript and especially Stefan Siegelmann for
his outstanding skill.

April 2007 Werner Krabs

Stefan Pickl
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1

Growth Models

1.1 A Growth Model for one Population

Historically the first model to describe the growth of a population (of men)
was developed by Thomas Malthus in 1798. He assumes a constant birthrate
γ and a deathrate δ per capita of the population and time unit and describes
the change of the population size p(t) within a time period ∆t from t to t + ∆t

by the formula

p(t + ∆t) = p(t) + λp(t)∆t (1.1)

where λ = γ − δ.

Formula (1.1) can also be written in the form

p(t + ∆) − p(t)

∆t
= λp(t)

and passing to the limit ∆t → 0 leads to the differential equation

dp

dt
= λp(t)

with the unique solution

p(t) = p0e
λt (1.2)

if we prescribe p(0) = p0.

Up to this point one could object that the function p = p(t) can only as-
sume integer values and can therefore not be represented by a differentiable
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function. With respect to the individuals of the population the growth (or de-
crease) indeed occurs in steps. In relation to the entire population these steps
become smaller the larger the population becomes so that the size of the pop-
ulation can be approximated by a differentiable function, if the population
is sufficiently large. The quality of this approximation will have to be tested
experimentally from case to case. So according to [1] the development of the
world population from 1700 to 1961 can be described rather precisely by an
exponential law of the form (1.2), if λ is taken to be 0.02. For the period T

of doubling the size of the world population during the time period from t to
t + T one obtains

p(t + T ) = p0e
λ(t+T ) = 2p0e

λt

and hence

eλT = 2⇔ T =
ln 2

λ
(1.3)

For λ = 0.02 this leads to the value T = 34.66. This fits with the observation
that T = 35 years.

The relation (1.3) for the doubling time T can also be confirmed in a time-
discrete model. Here we have the relation

p(t + T ) = 2p(t)

or for t = 0

p(T ) = 2p(0)

from which with p0 = p(0) and tk = kT for k = 0, 1, 2, . . . we obtain

p(tk) = 2kp0 = p0e
k ln 2 = p0e

ln 2
T

tk . (1.4)

So the continuous growth law (1.2) is in accordance with (1.4), if we put
λ = ln 2

T
which also fits with (1.3).

The model we treated so far in order to describe the growth of the world pop-
ulation starts with simple assumptions that seem to be plausible and lead to
the growth law (1.2). This law can be accepted for sufficiently large popula-
tions and is also in accordance with the observation that between 1700 and
1961 the world population doubled every 35 years.
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An extrapolation of this law into the future, however, leads to an astronomic
growth of the world population which will be prevented by the limits of nat-
ural reserves.

So the question arises whether a growth law can be established which leads
to a limited growth of the population.

In the middle of the nineteenth century the Dutch biomathematician Paul Ver-
hulst proposed two models for a limited population growth (see [2]). In the
first model he assumes the birthrate and deathrate to be linearly decreasing
and increasing functions of the population size, respectively, being given in
the form

γ(t) = γ0 − γ1p(t) and δ(t) = δ0 + δ1p(t)

with γ0 > δ0 > 0, γ1 > 0, δ1 > 0. As differential equation for the growth the
equation

dp

dt
(t) = γ(t) − δ(t) = k(a − p(t)) (1.5)

is taken where k = γ1 + δ1 > 0 and a =
γ0−δ0
γ1+δ1

> 0.

With the initial condition p(0) = p0 the solution of (1.5) reads

p(t) = a + (p0 − a)e−kt

obviously we have that
lim
t→∞

p(t) = a

which guarantees that the function p = p(t)is bounded. Graphically we have
the following picture: Figure 1.1.

The second model is based on the differential equation

dp

dt
(t) = ap(t) − bp(t)2 = (a − bp(t))p(t) (1.6)

with certain constants a > 0, b > 0. This shows that for small population sizes
p(t) the term bp(t)2 is essentially smaller than ap(t), if b is essentially smaller
than a, and can be neglected so that the equation (1.6) describes exponential
growth. After p(t) has grown sufficiently the term −bp(t)2 enters the scene
and damps the exponential growth.

Of course, also in this case the growth law which can be derived from (1.6)
has to stand the test with empirical data.
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Fig. 1.1. First Verhulst Model

Under the initial condition p(t0) = p0 > 0 for some t0 ≥ 0 the method of
separation of variables leads to

p(t) =
ap0 exp[a(t − t0)]

a − bp0 + bp0 exp[a(t − t0)]

=
ap0

bp0 + (a − bp0) exp[−a(t − t0)]
. (1.7)

This representation shows that

lim
t→∞

p(t) =
a

b
.

It also shows that p = p(t) is a strictly increasing and decreasing function of
t ≥ t0, if p0 <

a
b

and p0 >
a
b
, respectively. For p0 =

a
b

it follows that

p(t) =
a

b
= p0

for all t ≥ t0.
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A point tS of inflection of p = p(t) results from p̈(tS ) = 0. From the differen-
tial equation (1.6) we derive

p̈(tS ) = aṗ(tS ) − 2bp(tS )ṗ(tS ) = (a − 2bp(ts))(a − bp(tS ))p(tS ) = 0.

This shows that in the case

p0 >
a

b
⇒ p(t) >

a

b

for all t ≥ t0 there is no point of inflection and in the case

p0 <
a

b
⇒ p(t) <

a

b

for all t ≥ t0 there is exactly one which solves the equation

p(tS ) =
a

2b
.

Graphically we have the following picture: Figure 1.2.

Fig. 1.2. Second Verhulst Model

If one chooses three points t1 < t2 < t3, t1 ≥ t0 with t2 − t1 = t3 − t2, then the
parameters of the growth law (1.7) can be determined from the three values
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p(t1), p(t2), p(t3). In the case of the population growth in the USA one obtains
from the empirical values p(1790), p(1850) and p(1910) the parameters

a = 0.03134 and b = 1.5888 · 10−10.

The growth law (1.7) with these values is in considerable coincidence with
empirical data (see [1]). The point tS of inflection falls into April 1913. The
equation (1.6) is not the only differential equation to describe S-shaped or
logistic growth. In trying to model the growth of tumor another differential
equation has been derived which is named after Gompertz. The starting point
is the observation made by several researchers that the rate of growth of the
tumor decreases with increasing time. This is described by a differential equa-
tion of the form

dp

dt
(t) = λ(t)p(t) (1.8)

where λ = λ(t) is a positive strictly decreasing function. With the initial con-
dition p(0) = p0 the solution of (1.8) is given by

p(t) = p0 exp

(∫ t

0
λ(s)ds

)

. (1.9)

For the function λ = λ(t) there are infinitely many choices. If one assume that
the growth rate of the tumor decreases exponentially, i.e.

λ(t) = λ0e
−γt (λ(0) = λ0 > 0) (1.10)

with a decreasing rate γ > 0, then one obtains

p(t) = p0 exp

[

λ0

γ
(1 − e−γt)

]

(1.11)

as growth law. Obviously it follows that

p0 ≤ p(t) ≤ p0e
λ0
γ and lim

t→∞
p(t) = p0e

λ0
γ .

The function p = p(t) is strictly growing from p0 to p0e
λ0
γ and has exactly

one point t̂ > 0 of inflection (with p̈(t̂) = 0 ), if one assumes that λ0 > γ. This
is then given by

t̂ =
1

γ
ln
λ0

γ
.

Graphically we have the following picture: Figure 1.3

By (1.11) we also have logistic growth under the assumption λ0 > γ. This
law is quite different from (1.7). Mathematically, a connection between these
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Fig. 1.3. Gompertz Model

two laws can be established. For this purpose we start with the observation
that the representation (1.10), of the growth rate is equivalent to

dλ

dt
(t) = −γλ(t) , λ(0) = λ0. (1.12)

From (1.8) one then obtains

γ
d

dt

[

ln p(t)
]

=
dλ

dt
(t)

and integration of both sides gives

γ ln

(

p(t)

p0

)

= −λ(t) + λ0

and hence

λ(t) = λ0 − γ ln

(

p(t)

p0

)

. (1.13)

If one compares (1.6) with (1.8) and λ(t) by (1.13), then one observes that
both differential equations are of the form

dp

dt
(t) = f (p(t))p(t) (1.14)

with
f (p(t)) = a − bp(t) (1.15)



8 1 Growth Models

and

f (p(t)) = λ0 − γ ln

(

p(t)

p0

)

, (1.16)

respectively. In both cases f = f (p), p ≥ 0 is a strictly decreasing continuous
function with f (0) ∈ (0,∞] which is a growth rate that decreases with increas-

ing population size. Further we have f (M) = 0 for M = a
b

and M = p0e
λ0
γ ,

respectively and

p0 ≤ p(t) ≤ M for all t ∈ [0,∞) and lim
t→∞

p(t) = M.

Now let us assume that the population growth is described by a differential
equation of the form (1.14) where f = f (p) for p ≥ 0 is a strictly decreasing
continuous function with f (M) = 0 for some M > 0. If we then prescribe, for
some given t0 ∈ R, an initial population size p0 ∈ (0,M), i.e.

p(t0) = p0, (1.17)

then (1.14) and (1.17) can also be written in the form

∫ p(t)

p0

dp

f (p)p
= t − t0, t ∈ R. (1.18)

Now let us define, for every q ∈ [p0,M),

F(q) =

∫ q

p0

dp

f (p)p

Then F = F(q) is a strictly increasing, continuously differentiable and posi-
tive function on [p0,M).

Assumption:
lim
q→M

F(q) = ∞.

This assumption is satisfied for f given by (1.15) or (1.16). It implies that for
every t ≥ t0 there exists exactly one p(t) ∈ [p0,M) such that

F(p(t)) =

∫ p(t)

p0

dp

f (p)p
= t − t0.



1.2 Interacting Growth of two Populations 9

Further p = p(t) = F−1(t − t0) is differentiable and it follows

d

dt
F(p(t)) =

ṗ(t)

f (p(t))p(t)
= 1 for all t > t0

and p(t0) = p0 as well as lim
t→∞

p(t) = M.

Finally, p(t) = M for all t ∈ R is a constant solution of (1.14).

Result: Under the above assumptions on f = f (p), p ≥ 0 there is, for every
t0 ∈ R and every p0 ∈ (0,M), exactly one strictly increasing solution p = p(t)
of (1.14) for t > t0 and (1.17) with

p(t) ∈ [p0,M) for all t ≥ t0 and lim
t→∞

p(t) = M.

If one prescribes, for some given t0 ∈ R, an initial population size p0 ∈
(M,∞), i.e., (1.17) is required, then again (1.14) and (1.17) can be written in
the form (1.18). Further the function

F(q) =

∫ q

p0

dp

f (p)p
= −

∫ p0

q

dp

f (p)p
, q ∈ (M, p0),

is continuously differentiable, positive, and strictly decreasing and it follows
under the above assumption that

lim
q→M

F(q) = ∞ and lim
q→p0

F(q) = 0.

Therefore, for every t ∈ [t0,∞), there is exactly one p(t) ∈ (M, p0) with

F(p(t)) = t − t0.

This implies (1.14) for all t > t0 and lim
t→∞

p(t) = M.

1.2 Interacting Growth of two Populations

We consider two populations of men, animals or plants whose sizes depend on
time and are described by the two non-negative real valued functions p = p(t)
and q = q(t), t ∈ R. We assume the temporal development of those population
sizes to be described by two differential equations of the form

ṗ(t) = f (p(t), q(t))p(t),
q̇(t) = g(p(t), q(t))q(t), t ∈ R, (1.19)
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with f and g being real valued functions on

R2
+ =

{

(p, q) ∈ R2|p ≥ 0, q ≥ 0
}

which can be considered as growth rates. We assume f and g to be con-
tinuously differentiable in both variables on R2

+. We further assume that the
system

f (p, q) = 0 and g(p, q) = 0 (1.20)

has a solution p = p̂ > 0 and q = q̂ > 0. Then obviously

p(t) = p̂, q(t) = q̂ for all t ∈ R (1.21)

is a solution of (1.19) which is called (for good reasons) an equilibrium state
of (1.19).

In the following we are concerned with the question how the solutions of
(1.19) behave in a neighbourhood of this equilibrium state. In particular we
are interested in the question under which conditions an equilibrium state

(1.21) with (p̂, q̂) ∈
◦
R

2

+ = interior of R2
+ is asymptotically stable, i.e.,

1. for every neighbourhood U(p̂, q̂) ⊆
◦
R

2

+ of (p̂, q̂) there is a neighbourhood
W(p̂, q̂) ⊆ U(p̂, q̂) such that for every (p0, q0) ∈ W(p̂, q̂) the corre-
sponding solution (p(t), q(t)) of (1.19) with p(0) = p0 and q(0) = q0

satisfies
(p(t), q(t)) ∈ U(p̂, q̂) for all t > 0 and

2. there is a neighbourhood U0(p̂, q̂) ⊆
◦
R

2

+ of (p̂, q̂) such that for every
(p0, q0) ∈ U0(p̂, q̂) the corresponding solution (p(t), q(t)) of (1.19) with
p(0) = p0 and q(0) = q0 satisfies

lim
t→∞

(p(t), q(t)) = (p̂, q̂).

If only condition 1) is satisfied, the equilibrium state (1.21) is called stable.
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It is well known (see, for instance, [4], Satz 1.12*) that (1.21) with (p̂, q̂) ⊆
◦
R

2

+

is asymptotically stable, if the Jacobi matrix of

F(p, q) =

(

f (p, q)p
g(p, q)q

)

, (p, q) ∈
◦
R

2

+

in (p̂, q̂) which is given by

JF(p̂, q̂) =

(

F1p(p̂, q̂) F1q(p̂, q̂)
F2p(p̂, q̂) F2q(p̂, q̂)

)

=

(

fp(p̂, q̂)p̂ fq(p̂, q̂)p̂
gp(p̂, q̂)q̂ gq(p̂, q̂)q̂

)

has only eigenvalues λ1, λ2 ∈ C with Re(λ1) < 0 and Re(λ2) < 0. These
eigenvalues are the solutions of the quadratic equation

λ2 − ( fP(p̂, q̂)p̂ + gq(p̂, q̂)q̂)λ + ( fp(p̂, q̂)gq(p̂, q̂) − fq(p̂, q̂)gp(p̂, q̂))p̂q̂ = 0

and are given by

λ1,2 =
1
2 ( fp(p̂, q̂)p̂ + gq(p̂, q̂)q̂)

±
√

1
4

(

fp(p̂, q̂)p̂ + gq(p̂, q̂)q̂
)2 −

(

fp(p̂, q̂)gq(p̂, q̂) − fq(p̂, q̂)gp(p̂, q̂)
)

p̂q̂.

(1.22)
Special cases:

1. Competition: We assume that both populations fight for the same living
space and that their growth rates decrease with increasing sizes of both
populations. In mathematical terms this means that

fp(p, q) < 0, fq(p, q) < 0, gp(p, q) < 0, gq(p, q) < 0 for all (p, q) ∈
◦
R

2

+.

(1.23)
From (1.22) it then follows that Re(λ1,2) < 0, if the condition

fp(p̂, q̂)gq(p̂, q̂) − fq(p̂, q̂)gp(p̂, q̂) > 0 (1.24)

is satisfied.

If one chooses in particular

f (p, q) = a + bp + cq,

g(p, q) = d + ep + f q,
(1.25)

then the assumption (1.23) is equivalent to

b < 0, c < 0, e < 0, f < 0 (1.26)
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and the condition (1.24) reads

b f − ce > 0. (1.27)

This implies that the system

f (p, q) = a + bp + cq = 0,
g(p, q) = d + ep + f q = 0

(1.28)

has exactly one solution p = p̂, q = q̂ which is given by

p̂ =
cd − a f

b f − ce
, q̂ =

ae − bd

b f − ce
. (1.29)

Further it follows that p̂ > 0 and q̂ > 0, if and only if

cd − a f > 0 and ae − bd > 0. (1.30)

Thus we have the following statement: The system (1.19) with f and g by
(1.25) and under the assumption (1.26) has exactly one equilibrium state
(1.21) with p̂ > 0 and q̂ > 0 given by (1.29), if the conditions (1.27) and
(1.30) are satisfied.

2. Predator-prey behavior: We assume that the p-population serves as prey
to the q-population. Then its growth rate decreases as its own size and the
size of the predator-(q)-population increases. In mathematical terms this
means that

fp(p, q) < 0 and fq(p, q) < 0 for all (p, q) ∈
◦
R

2

+. (1.31)

The growth rate of the q-population however only decreases, if its own
size increases and increases, if the size of die p-population increases.
Mathematically this leads to

gp(p, q) > 0 and gq(p, q) < 0 for all (p, q) ∈
◦
R

2

+. (1.32)

We again assume that there exists an equilibrium state (1.21) with (p̂, q̂) ∈
◦
R

2

+ being a solution of the system

f (p̂, q̂) = 0 and g(p̂, q̂) = 0. (1.33)

From (1.22) it then follows that Re(λ1,2) < 0 without any further condition
to be satisfied.
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Therefore the equilibrium state (1.21) with (p̂, q̂) ∈
◦
R

2

+ being a solution
of (1.33) is asymptotically stable.

If we assume the growth rates f and g in (1.19) to be of the form (1.25)
then the conditions (1.31) and (1.32) are equivalent to

b < 0, c < 0, e > 0, f < 0. (1.34)

Thus condition (1.27) is satisfied. If in addition the conditions (1.30),
(1.34) are satisfied then the system (1.19) with f and g by (1.25) and
under the assumption (1.34) has exactly one equilibrium state (1.21) with
p̂ > 0 and q̂ > 0 given by (1.29).

The same result can be obtained by Lyapunov’s method. For that purpose we
consider the mapping

u = ln
p

p̂
, v = ln

q

q̂
(p̂ > 0, q̂ > 0) of

◦
R

2

+ on R2.

If p = p(t), q = q(t), t ∈ R is a solution of the system

ṗ(t) = (a + bp(t) + cq(t))p(t),
q̇(t) = (d + ep(t) + f q(t))q(t), t ∈ R (1.35)

with p(t) > 0, q(t) > 0 for all t ∈ R and if for p̂ > 0 and q̂ > 0 we have

a + bp̂ + cq̂ = 0,
d + ep̂ + f q̂ = 0,

(1.36)

then the system (1.35) transforms itself to into the system

u̇(t) = bp̂(eu(t) − 1) + cq̂(ev(t) − 1),
v̇(t) = ep̂(eu(t) − 1) + f q̂(ev(t) − 1), t ∈ R. (1.37)

This system has
u(t) = v(t) = 0 for all t ∈ R (1.38)

as unique equilibrium state and this is asymptotically stable, if and only if the
equilibrium state

p(t) = p̂, q(t) = q̂ for all t ∈ R (1.39)

of (1.35) is asymptotically stable.
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In order to show the asymptotical stability of the equilibrium state (1.38) of
the system (1.37) we define a Lyapunov function V : R2 → R by

V(u, v) = ep̂(eu − u) − cq̂(ev − v) − ep̂ + cq̂, u, v ∈ R.

Then it follows that

V(0, 0) = 0 and V(u, v) > 0 for all (u, v) � (0, 0)

Furthermore it follows with

F(u, v) =

(

bp̂(eu − 1) + cq̂(ev − 1)
ep̂(eu − 1) + f q̂(ev − 1)

)

, u, v ∈ R. (1.40)

that

V̇(u, v) = grad V(u, v)T F(u, v)

= bep̂2(eu − 1)2 − c f q̂2(ev − 1)2 < 0

for all (u, v) � (0, 0) and V̇(0, 0) = 0.

By Satz 1.12 in [4] we therefore infer that the equilibrium state (1.38) of the
system (1.37) is asymptotically stable and hence the equilibrium state (1.39)
of the system (1.35) as well.

If one replaces the conditions (1.34) by

c < 0, e > 0 and b = f = 0 (1.41)

then one obtains the classical Volterra-Lotka-model in which it is assumed
that a > 0 and d < 0. This implies that in the absence of predators the prey
grows exponentially and in the absence of prey the predators decrease expo-
nentially. The conditions (1.27) and (1.30) are satisfied and the only equilib-
rium state of the system (1.35) is given by (1.39) with:

p̂ = −d

e
and q̂ = −a

c

Further it also follows that

V(0, 0) = 0 and V(u, v) > 0 for all (u, v) � (0, 0)

However, it follows that

V̇(u, v) = 0 for all (u, v) ∈ R2.
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Hence, by Satz 1.12 in [4] it only follows that the equilibrium state (1.38) of
the system (1.37) is stable and in turn also the equilibrium state (1.39) of the
system (1.35).

It is unrealistic to assume that the prey population grows exponentially in the
absence of predators. So it is reasonable to assume instead of (1.41) that

b < 0, c < 0, e > 0, f = 0

which ensures limited growth of the prey population in the absence of preda-
tors. But then we have

V̇(0, v) = 0 for all v ∈ R

so that asymptotical stability of the equilibrium state (1.38) of the system
(1.37) cannot be inferred by the above choice of a Lyapunov function.

However, the eigenvalues of the Jacobi matrix JF(0, 0) of F given by (1.40)
read

λ1,2 =
1

2
bp̂ ±

√

1

4
(bp̂)2 + ecp̂q̂

so that Re(λ1,2) < 0 which implies that the equilibrium state (1.38) of the
system (1.37) is asymptotically stable.

1.3 Interacting Growth of n ≥ 2 Populations

We consider n ≥ 2 populations whose sizes depend on time and are described
by non-negative real valued functions pi = pi(t), t ∈ R, i = 1, . . . , n. We
assume the temporal development of these population sizes to be described
by n differential equations of the form

ṗi(t) = fi(p(t))pi(t), t ∈ R, for i = 1, . . . , n (1.42)

and p(t) = (p1(t), . . . , pn(t)) where fi = fi(p) = fi(p1, . . . , pn), i = 1, . . . n,
are real valued functions on

Rn
+ =

{

p ∈ Rn | pi ≥ 0 for i = 1, . . . , n
}

which can be considered as growth rates.

We assume the fi, i = 1, . . . , n, to be continuously differentiable on Rn
+ with

respect to all variables.
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We further assume that the system

fi(p) = 0 for i = 1, . . . , n (1.43)

has a solution p = p̂ ∈
◦
R

n

+ = {p ∈ Rn|pi > 0 for i = 1, . . . , n}. Then obviously

p(t) = p̂, t ∈ R, (1.44)

is a solution of (1.42) which is called an equilibrium state of (1.42). In the fol-
lowing we are again concerned with the question how the solutions of (1.42)
behave in a neighbourhood of this equilibrium state. In particular we are in-
terested in the question under which conditions an equilibrium state (1.44)

with p̂ ∈
◦
R

n

+ is asymptotically stable, i.e.

1. for every neighbourhood U(p̂) ⊆
◦
R

n

+ of p̂ there is a neighbourhood
W(p̂) ⊆ U(p̂) so that for every p0 ∈ W(p̂) the corresponding solution
p = p(t) of (1.42) with p(0) = p0 satisfies

p(t) ∈ U(p̂), for all t > 0 and

2. there is a neighbourhoodU0(p̂) ⊆
◦
R

n

+ of p̂ such that for every p0 ∈ U0(p̂)
the corresponding solution p = p(t) of (1.42) satisfies

lim
t→∞

p(t) = p̂.

If only condition 1) is satisfied, the equilibrium state (1.44) with p̂ ∈
◦
R

n

+

is called stable. It is well known (see, for instance [4], Satz 1.12*) that the

equilibrium state (1.44) with p̂ ∈
◦
R

n

+ is asymptotically stable, if the Jacobi
matrix of

F(p) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1(p)p1
...

fn(p)pn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, p ∈
◦
R

n

+,

in p̂ which is given by

JF(p̂) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1p1(p̂)p̂1 · · · f1pn
(p̂)p̂1

...
...

fnp1(p̂)p̂n · · · fnpn
(p̂)p̂n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

has only eigenvalues with negative real parts.
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Let n = 3. If we then define, for F(p) = (F1(p), F2(p), F3(p)),

a1 = −F1p1(p̂) − F2p2 (p̂) − F3p3 (p̂),

a2 = F1p1(p̂)F2p1 (p̂) − F1p2 (p̂)F2p1 (p̂) + F1p1 (p̂)F3p3 (p̂) − F1p3 (p̂)F3p1 (p̂)

+F2p2(p̂)F3p3 (p̂) − F2p3(p̂)F3p2 (p̂),

a3 = − det JF(p̂)

by a Theorem of Hurwitz (see [3]), the Jacobi matrix JF(p̂) has only eigen-
values with negative real parts, if and only if

a1 > 0, a1a2 − a3 > 0, a3 > 0. (1.45)

Now let us assume in particular that in all three populations P1, P2, P3 the
growth rate fi(p), i = 1, 2, 3, decreases with growing population size Pi

which implies
Fpi

(p̂) = fipi
(p̂)p̂i < 0 for i = 1, 2, 3. (1.46)

We further assume that the populations P2 and P3 have the population P1 as
prey and are neutral to each other. Mathematically this leads to the following
conditions

F1p2 (p̂) < 0, F1p3 (p̂) < 0,
F2p1 (p̂) > 0, F3p1 (p̂) > 0,
F2p3 (p̂) = 0, F3p2 (p̂) = 0.

(1.47)

From (1.46) it follows immediately that a1 > 0 and (1.46), (1.47) imply that
a1a2 − a3 > 0 and a3 > 0. Hence, under the assumptions (1.46), (1.47) the
equilibrium state (1.44) of the system (1.42) is asymptotically stable. A spe-

cial case: We assume that the growth rates fi in (1.42) are of the form

fi(p) = ci +

n∑

j=1

ci jp j, p ∈ Rn
+, i = 1, . . . , n. (1.48)

The system (1.43) is then linear and reads for p = p̂ ∈
◦
R

n

+

n∑

j=1

ci j p̂ j = −ci, i = 1, . . . , n. (1.49)

The Jacobi matrix JF(p̂) is given by

JF(p̂) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 p̂1 · · · c1n p̂1
...

...

cn1 p̂n · · · cnn p̂n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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We assume that in all populations Pi, i = 1, . . . , n the growth rate fi(p) de-
creases with growing population size pi, i = 1, . . . , n, which implies

cii < 0 for i = 1, . . . , n. (1.50)

We further assume that the populations live in mutual predator-prey relations
or are neutral to each other. This leads to the conditions (i � j):

ci j > 0, if Pi = predator and P j = prey,
ci j < 0, if Pi = prey and P j = predator,

ci j = c ji = 0, if Pi and P j are neutral to each other.

We again consider the case n = 3 and again assume that the populations P2

and P3 have the population P1 as prey and are neutral to each other. Then we
have (1.50) for n = 3 and

c12 < 0, c13 < 0, c21 > 0, c31 > 0, c23 = c32 = 0. (1.51)

The system (1.49) reads

c11 p̂1 + c12 p̂2 + c13 p̂3 = −c1,

c21 p̂1 + c22 p̂2 = −c2,

c31 p̂1 + c33 p̂3 = −c3.

(1.52)

It has the unique solutions

p̂1 =
1
∆
(−c22c33c1 + c12c33c2 + c13c22c3)

p̂2 =
1
∆
(−c11c33c2 + c21c33c1 + c13(−c21c3 + c31c2))

p̂3 =
1
∆
(−c11c22c3 − c12(−c21c3 + c31c2) + c22c21c1)

(1.53)

where
∆ = c11c22c33 − c12c21c33 − c13c31c22 < 0. (1.54)

If we additionally assume that

c1 > 0, c2 < 0, c3 < 0 (1.55)

then p̂1 > 0 is implied and from the further conditions

c31c2 − c21c3 = 0, c21c1 − c11c2 > 0, c31c1 − c11c3 > 0 (1.56)

it follows that p̂2 > 0 and p̂3 > 0. This leads to the following
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Result: Under the conditions (1.50) for n = 3, (1.51), (1.55) and (1.56) the

system (1.52) has exactly one solution p̂ ∈
◦
R

3

+ which is given by (1.53), (1.54)
and

pi(t) = p̂i, i = 1, 2, 3, t ∈ R

is an asymptotically stable equilibrium state of the system

ṗi(t) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝
ci +

3∑

j=1

ci jp j(t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠
pi(t), i = 1, 2, 3, t ∈ R.

If n > 3, the method that has been applied so far in order to show the asymp-
totical stability of equilibrium states becomes rather complicated. Therefore
we will again apply Lyapunov’s method. For that purpose we assume that for

every p0 ∈
◦
R

n

+ there is exactly one solution p = p(t), t ∈ R, of the system
(1.42) with p(0) = p0 and pi(t) > 0 for all t ∈ R and i = 1, . . . , n,. For each
such we then define functions ui : R→ Rn, i = 1, . . . , n, by

ui(t) = ln

(

pi(t)

p̂i

)

⇔ pi(t) = p̂ie
ui(t), (1.57)

where
fi(p̂) = 0 for i = 1, . . . , n.

Then it follows that

u̇i(t) =
ṗi(t)

pi(t)
= fi(p(t)) = fi

(

p̂1e
u1(t), . . . , p̂ne

un(t)
)

, t ∈ R, for i = 1, . . . , n.

(1.58)
If we define

gi(u) = gi(u1, . . . , un) = fi(p̂1e
u1 , . . . , p̂ne

un), u ∈ Rn, for i = 1, . . . , n,

then the system (1.58) can be written in the form

u̇i(t) = gi(u(t)), t ∈ R, i = 1, . . . , n, (1.59)

which turns out to be equivalent to the system (1.42) via the transformation
(1.57). Further we have gi(Θn) = fi(p̂) for i = 1, . . . , n and hence

fi(p̂) = 0 ⇐⇒ gi(Θn) = 0.
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Finally it follows that
Jg(Θn) = JF(p̂)T

and
ui(t) = 0 for i = 1, . . . , n

is an asymptotically stable equilibrium state of the system (1.59), if and only
if (1.44) is an asymptotically stable equilibrium state of the system (1.42).

If the fi, i = 1, . . . , n are of the form (1.48), the system (1.59) reads

u̇i(t) =
n∑

j=1

ci j p̂ j(e
u j(t) − 1), i = 1, . . . , n, t ∈ R, (1.60)

and is equivalent to the system

ṗi(t) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝
ci +

n∑

j=1

ci jp j(t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠
pi(t), i = 1, . . . , n, t ∈ R, (1.61)

if p̂ ∈
◦
R

n

+ is a solution of the system (1.49).

Now we define a Lyapunov function V : Rn → R by

V(u1, . . . , un) =
n∑

j=1

(−ci j)p̂i(e
ui − ui − 1), ui ∈ R for i = 1, . . . , n.

Then it follows that

V(u1, . . . , un) ≥ 0 for all (u1, . . . , un) ∈ Rn

and
V(u1, . . . , un) = 0 ⇐⇒ (u1, . . . , un) = (0, . . . , 0).

Further we imply for g(u1, . . . , un) = (g1(u1, . . . , un), . . . , gn(u1, . . . , un)) and

gi(u1, . . . , un) =
n∑

j=1

ci j p̂ j(e
u j − 1) for i = 1, . . . , n

that

grad V(u1, . . . , un)
Tg(u1, . . . , un)

=

n∑

i=1

(−c2
i j)p̂

2
i (e

ui − 1)2 +
n∑

i, j=1
i< j

[

(−cii)ci j + (−c j jc ji)
]

p̂i p̂ j(e
ui − 1)(eu j − 1)
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Assumption:

ciici j + c j jc ji = 0 for all i, j = 1, . . . , n with i < j. (1.62)

From this assumption we infer

grad V(u1, . . . , un)
Tg(u1, . . . , un) ≤ 0 for all (u1, . . . , un) ∈ Rn

and

grad V(u1, . . . , un)
T g(u1, . . . , un) = 0 ⇐⇒ (u1, . . . , un) = (0, . . . , 0).

By Satz 1.12 in [4] it therefore follows that u(t) = Θn for t ∈ R is an asymptot-
ically stable equilibrium state of the system (1.60) and hence p(t) = p̂, t ∈ R
with p̂ ∈

◦
R

n

+ being a solution of the system (1.49) an asymptotically stable
equilibrium state of the system (1.61). For n = 3 under the conditions (1.50),
(1.51) the conditions (1.62) read

c11c12 + c22c21 = 0,
c11c13 + c33c31 = 0.

(1.63)

Under the assumptions (1.55), (1.56) the unique positive solutions of the sys-
tem (1.52) are then given by

p̂1 = −
c11c1 + c21c2 + c31c3

c2
11 + c2

21 + c2
31

,

p̂2 =
1

c22

c11(c21c1 − c11c2)

c2
11 + c2

21 + c2
31

,

p̂3 =
1

c33

c11(c31c1 − c11c3)

c2
11 + c2

21 + c2
31

.

In the case n = 2 under the conditions c12 < 0, c21 > 0 the conditions (1.62)
are equivalent with

c11c12 + c22c21 = 0.

In Section 1.2 we have seen that this condition can be dispensed with, if as
Lyapunov function V : R2 → R the function

V(u1, u2) = c21 p̂1(e
u1 − u1 − 1) − c12 p̂2(e

u2 − u2 − 1), u1, u2 ∈ R,

is chosen.
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A generalization to n ≥ 2 leads to the Lyapunov function V : Rn → R which
is given by

V(u1, . . . , un) =
n∑

j=1

|cn+1−i i|p̂i(e
ui − ui − 1) for (u1, . . . , un) ∈ Rn.

If we assume
cn+1−i i � 0 for all i = 1, . . . , n,

then it follows that

V(u1, . . . , un) ≥ 0 for all (u1, . . . , un) ∈ Rn

and
V(u1, . . . , un) = 0 ⇐⇒ (u1, . . . , un) = (0, . . . , 0).

Further it follows for

g(u1, . . . , un) = (g1(u1, . . . , un), . . . , gn(u1, . . . , un))

and

gi(u1, . . . , un) =
n∑

j=1

ci j p̂ j(e
u j − 1) for i = 1, . . . , n

that

grad V(u1, . . . , un)
Tgi(u1, . . . , un) =

n∑

i=1

|cn+1−i i|cii p̂2
i (e

ui − 1)2

+

n∑

i=1

∑

j>i

(|cn+1−i i|ci j + |cn+1− j j|c ji)p̂i p̂ j(e
ui − 1)(eu j − 1).

Assumption

|cn+1−i i|ci j + |cn+1− j j|c ji = 0 for all i, j = 1, . . . , n with i < j. (1.64)

This assumption implies

grad V(u1, . . . , un)
Tg(u1, . . . , un) ≤ 0 for all (u1, . . . , un) ∈ Rn

and

grad V(u1, . . . , un)
T g(u1, . . . , un) = 0 ⇐⇒ (u1, . . . , un) = (0, . . . , 0).

Again by Satz 1.12 in [4] u(t) = Θn for t ∈ R is an asymptotically stable

equilibrium state of the system (1.60) and in turn p(t) = p̂, t ∈ R, with p̂ ∈
◦
R

n

+
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being a solution of the system (1.49) an asymptotically stable equilibrium
state of the system (1.61).

For n = 2 and c12 < 0, c21 > 0 the assumption (1.64) is satisfied for it is

|c21|c12 + |c12|c21 = c21c12 − c12c21 = 0 (i = 1, j = 2).

For n = 3 the assumption (1.64) is equivalent with

|c31|c12 + |c22|c21 = 0, (i = 1, j = 2),

|c31|c13 + |c13|c31 = 0, (i = 1, j = 3),

|c22|c23 + |c13|c32 = 0, (i = 2, j = 3).

Under the assumptions (1.50) and (1.51) the assumption (1.64) turns out to
be equivalent to

c31c12 − c22c21 = 0.

In [5], [6] we have given further definitions of Lyapunov functions by which
stability or asymptotical stability of equilibrium states can be shown.

1.4 Discretization of the Time-Continuous Model

1.4.1 The n-Population Model

We start with the model (1.42) for the description of the temporal develop-
ment of the population sizes in an interacting growth model of n ≥ 2 popu-
lation where we assume that the functions fi, i = 1, . . . , n, are continuously
differentiable with respect to all variables on Rn. We discretize this model by
introducing a time step size h > 0 and replacing in (1.42) the derivates ṗi by
difference quotients

pi(t + h) − pi(t)

h
, i = 1, . . . , n

Thereby we obtain from (1.42) the following system of difference equations

pi(t + h) = (1 + h fi(p(t))pi(t), t ∈ R, for i = 1, . . . , n. (1.65)

If we define a vector function gh : Rn → Rn by

gh(p) = (1 + h fi(p))pi, i = 1, . . . , n, p ∈ Rn,
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then we obtain a continuous function and with the definition

Πh(p, k) = (gh)k(p) = gh · gh · · · gh

︸��������︷︷��������︸

k times

(p) for p ∈ Rn, k ∈ N, Πh(p, 0) = p, p ∈ Rn,

we obtain a time-discrete dynamical system (see [4]) which is called a dis-

cretization of (1.42) (with stepsize h). A point p̂ ∈
◦
R

n

+ is a solution of
f (p̂) = Θn (i.e., p(t) = p̂, t ∈ R, is an equilibrium state of the system (1.42)),
if and only if p̂ is a fixed point of gh, i.e., a solution of the equation gh(p̂) = p̂.

The Jacobi matrix of gh in p̂ ∈
◦
R

n

+ reads

Jgh(p̂) = (δi j + h fip j
(p̂)p̂i)i, j=1,...,n

where

δi j =

⎧
⎪⎪⎨

⎪⎪⎩

0, for i � j

1, for i = j
.

In matrix formulation we have

Jgh(p̂) = In + hJF(p̂), (1.66)

In = n × n-unit matrix.

Therefore λ ∈ C is an eigenvalue of JF(p̂), if and only if 1+hλ is an eigenvalue
of Jgh(p̂). Further we obtain

|1 + hλ|2 = (1 + Re(λ)h)2 + (Im(λ)h)2

= 1 + 2Re(λ)h + h2|λ|2

= 1 + h(2Re(λ) + h|λ|2).

From this equation it follows that |1+hλ| < 1, if and only if 2Re(λ)+h|λ|2 < 0
which is equivalent with

Re(λ) < 0 and h <
−2Re(λ)

|λ|2
. (1.67)

By Satz 1.19 in [4] p̂ ∈
◦
R

n

+ with gh(p̂) = p̂ is an attractor with respect to gh,

i.e., there is an open neighbourhood U(p̂) ⊆
◦
R

n

+ of p̂ with

lim
k→∞
||(gh)k(p) − p̂||2 = 0 for all p ∈ U(p̂),

if all the eigenvalues of gh are smaller than 1 in modulus or, equivalently, if
for every eigenvalue λ of JF(p̂) the condition (1.67) is satisfied.
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Summarizing we obtain the following

Conclusion: If, for some p̂ ∈
◦
R

n

+, the equation f (p̂) = Θn is satisfied and
if all the eigenvalues of JF(p̂) have a negative real part (which implies that
the equilibrium state (1.44) of the system (1.42) is asymptotically stable),
then Jgh(p̂) has only eigenvalues which are smaller than 1 in modulus (which
implies that p̂ is an attractor with respect to gh), if the step size h > 0 is
sufficiently small.

One can even prove that under the assumption of the conclusion the fixed
point p̂ of gh is stable. For that purpose we define a Lyapunov function V :
Rn → R with respect to gh by

V(p) = ||p − p̂||2, p ∈ Rn.

Then V is continuous and

V(p) ≥ 0 for all p � p̂

and
V(p) = 0 ⇐⇒ p = p̂.

We assume that the Jacobi matrix Jgh(p̂) has only eigenvalues which are
smaller than 1 in modulus. Then it follows from the proof of Satz 1.19 in [4]

the existence of an open neighbourhood U(p̂) ⊆
◦
R

n

+ and a constant γ ∈ (0, 1)
with

V(gh(p)) = ||gh(p) − p̂||2 ≤ γ||p − p̂||2 < ||p − p̂||2 = V(p),

for all p ∈ U(p̂) with p � p̂.

By Satz 5.8 in [7] (see also Section A.3) it follows that p̂ ∈
◦
R

n

+ (with gh(p̂) =
p̂) is an asymptotically stable fixed point of gh, i.e., an attractor and stable
with respect to gh which means that for every open neighbourhood U(p̂) of
p̂ there exists an open neighbourhoodW(p̂) ⊆ U(p̂) of p̂ with

(gh)k(p) ∈ U(p̂) for all p ∈ W(p̂) and all k ∈ N0.

An Example: We consider the case n = 2 and the system

ṗ1(t) = (c1 + c11p1(t) + c12p2(t))p1(t),

ṗ2(t) = (c2 + c21p1(t) + c22p2(t))p2(t), t ∈ R,
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where
c1 > 0, c2 < 0, c11 < 0, c12 < 0, c22 < 0, c21 > 0

(see (1.19) with f and g according to (1.25)). The system f (p̂) = Θ2 then has
the unique solutions

p̂1 =
−c22c1 + c12c2

c11c22 − c12c21
, p̂2 =

c11c2 − c21c1

c11c22 − c12c21
,

and we have p̂1 > 0 and p̂2 > 0, if and only if

c11c2 − c21c1 > 0

The Jacobi matrix JF(p̂) reads

JF(p̂) =

(

c11 p̂1 c12 p̂1

c21 p̂2 c22 p̂2

)

.

The eigenvalues are given by

λ1,2 =
1

2
(c11 p̂1 + c22 p̂2) ±

√√
1

4
(c11 p̂1 + c22 p̂2)2 − (c11c22 − c12c21)

︸���������������︷︷���������������︸

>0

p̂1 p̂2

This implies that Re(λ1) < 0 and Re(λ2) < 0.

Hence by the above conclusion the eigenvalues of Jgh(p̂) are smaller than 1
in absolute value, if

h < −2Re(λi)

|λi|2
, for i = 1, 2.

We distinguish three cases:

1.
1

4
(c11 p̂1 + c22 p̂2)

2 = (c11c22 − c12c21)p̂1 p̂2.

Then it follows that

λ1 = λ2 =
1

2
(c11 p̂1 + c22 p̂2) < 0

and we obtain

h <
−4

c11 p̂1 + c22 p̂2

as sufficient condition for the eigenvalues of Jgh(p̂) being smaller than 1
in absolute value.
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2.
1

4
(c11 p̂1 + c22 p̂2)

2 < (c11c22 − c12c21)p̂1 p̂2.

Then it follows that

Re(λ1) = Re(λ2) =
1

2
(c11 p̂1 + c22 p̂2) < 0

and
|λ1|2 = |λ2|2 = (c11c22 − c12c21)p̂1 p̂2.

This implies that

h <
−(c11 p̂1 + c22 p̂2)

(c11c22 − c12c21)p̂1 p̂2

is a sufficient condition for the eigenvalues of Jgh(p̂) being smaller than 1
in absolute value.

3.
1

4
(c11 p̂1 + c22 p̂2)

2 > (c11c22 − c12c21)p̂1 p̂2.

Then it follows that λ1, λ2 ∈ R, λ2 < λ1 < 0. Further it is

−2Re(λi)

|λi|2
=
−2λi
λ2

i

=
2

(−λi)
for i = 1, 2

and we obtain

h < − 2

λ2

as sufficient condition for the eigenvalues of Jgh(p̂) being smaller than 1
in absolute value.

In the case of stable equilibrium states one cannot guarantee that by dis-
cretization one obtains stable fixed points, if the time step size is small
enough. Let us demonstrate this by the classical Volterra-Lotka-model which
is given by

ṗ1(t) = (c1 + c12p2(t))p1(t),
ṗ2(t) = (c2 + c21p1(t))p2(t), t ∈ R, (1.68)

where
c1 > 0, c12 < 0, c2 < 0, c21 > 0.

Here
p1(t) = p̂1 = −

c2

c21
, p2(t) = p̂2 = −

c1

c12
, for all t ∈ R
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is the only equilibrium state of (1.68) with p̂1 > 0, p̂2 > 0. In Section 1.2 we
have shown that it is stable.

The discretization of (1.68) is given by

p1(t + h) = (1 + h(c1 + c12p2(t)))p1(t),
p2(t + h) = (1 + h(c2 + c21p1(t)))p2(t), t ∈ R. (1.69)

The Jacobi matrix of

gh(p) =

(

1 + h(c1 + c12p2)p1

1 + h(c2 + c21p1)p1

)

, p1 > 0, p2 > 0,

in p̂ = (p̂1, p̂2) is given by

Jgh(p̂) =

(

1 −hc12
c2
c21

−hc21
c1
c12

1

)

and has the eigenvalues

λ1,2 = 1 ± h
√

|c1| · |c2|i, i =
√
−1,

which implies |λ1,2| > 1 for all h > 0. By Satz 1.20 in [4] therefore (p̂1, p̂2)
is a repelling fixed point of gh and cannot be stable for sufficiently small step
size h > 0.

Now let us replace the system (1.69) by

p1(t + h) = (1 + h(c1 + c12p2(t)))p1(t),
p2(t + h) = (1 + h(c2 + c21p1(t + h)))p2(t), t ∈ R, (1.70)

and define a vector function g̃h :
◦
R

2

+ → R2 by

g̃h(p) =

(

(1 + h(c1 + c12p2))p1

(1 + h(c2 + c21(p1 + h(c1 + c12p2)p1))p2

)

, p1 > 0, p2 > 0.

Then (p̂1, p̂2) is also a fixed point of g̃h and the question arises whether it is
stable for sufficiently small h > 0.

In order to find an answer to this question we consider the Jacobi matrix of
g̃h in (p̂1, p̂2) which is given by

Jg̃h (p̂) =

(

1 −hc12
c2
c21

−hc21
c1
c12

1 + h2c1c2

)

. (1.71)
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It has the eigenvalues

λ1,2 = 1 +
h2

2
c1c2 ±

√
(

1 +
h2

2
c1c2

)2

− 1.

Now we distinguish three cases:

1.
(

1 +
h2

2
c1c2

)2

= 1 ⇐⇒ |c1c2| =
4

h2
.

Then it follows that

λ1 = λ2 = 1 +
h2

2
c1c2 = 1.

2.
(

1 +
h2

2
c1c2

)2

< 1 ⇐⇒ |c1c2| <
4

h2
.

Then it follows that

λ1,2 = 1 +
h2

2
c1c2 ± i

√

1 −
(

1 +
h2

2
c1c2

)2

, i =
√
−1,

which implies that

|λ1| = |λ2| = 1 and λ2 = λ̄1 � λ1.

3.
(

(1 +
h2

2
c1c2

)2

> 1 ⇐⇒ |c1c2| >
4

h2
.

Then it follows that

λ1,2 = 1 +
h2

2
c1c2 ±

√

h2c1c2 +
h4

4
c2
1c

2
2

= 1 +
h2

2
c1c2 ±

h2

2
|c1c2|

√

1 − 4

h2|c1c2|

and hence

λ2 < λ1 < 1 +
h2

2
c1c2 +

h2

2
|c1c2| = 1.
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Now let us assume that λ2 ≥ −1. Then it follows

|c1c2|
⎛

⎜⎜⎜⎜⎜⎜⎝
1 +

√

1 − 4

h2|c1c2|

⎞

⎟⎟⎟⎟⎟⎟⎠
≤ 4

h2

which contradicts |c1c2| > 4
h2 . Therefore we conclude that λ2 < −1. If we

linearize the system (1.70) around p̂ we obtain the system
(

u1(t + h)
u2(t + h)

)

= Jg̃h(p̂)

(

u1(t)
u2(t)

)

(1.72)

with Jg̃h (p̂) given by (1.71).

Now we assume |c1c2| < 4
h2 (which can be achieved, if h > 0 is chosen

sufficiently small). We have seen above that this implies

λ2 = λ̄1 � λ1 and |λ1| = |λ2| = 1.

By Theorem 1.7 in [8], (0, 0) is a stable fixed point solution of the system
(1.72). In this sense the fixed point p̂ of g̃h is stable for sufficiently small
h > 0. If c22 < 0 and c11 < 0 the discretization (1.69) of (1.68) has to be
replaced by

p1(t + h) = (1 + h(c1 + c11p1(t) + c12p2(t)))p1(t),

p2(t + h) = (1 + h(c2 + c21p1(t) + c22p2(t)))p2(t), t ∈ R.

We have shown above that the eigenvalues of Jg̃h (p̂) are smaller than 1 in
absolute value (which implies that the fixed point p̂ of the righthand side is
attractive), if

h <
|a|
b

in case
a2

4
< b

where
a = c11 p̂1 + c22 p̂2 and b = (c11c22 − c12c21)p̂1 p̂2

and

h <
4

|a| +
√

a2 − 4b
in case

a2

4
≥ b.

In analogy to (1.70) let us now replace the above discretization by

p1(t + h) = (1 + h(c1 + c11p1(t) + c12p2(t)))p1(t),

p2(t + h) = (1 + h(c2 + c21p1(t + h) + c22p2(t)))p2(t), t ∈ R.
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Then the righthand side g̃h has the same fixed point p̂ ∈ R2
+ as gh and the

Jacobi matrix Jg̃h(p̂) of g̃h in p̂ is given by

Jg̃h (p̂) =

(

1 + hc11 p̂1 hc12 p̂1

hc21 p̂2 h2c21c12 p̂1 p̂2 + 1 + hc22 p̂2

)

.

The eigenvalues of Jg̃h(p̂) are solutions of the quadratic equation

µ2 − (2 + ha + h2c)µ + 1 + ha + h2(b + c) = 0

where
c = c12c21 p̂1 p̂2 < 0.

They are given by

µ1,2 = 1 +
h

2
(a + hc) ±

√
(

1 +
h

2
(a + hc)

)2

− 1 − ha − h2(b + c)

= 1 +
h

2
(a + hc) ± h

2

√

(a + hc)2 − 4b.

We distinguish two cases:

1. (a + hc)2 < 4b, then it follows that

|µ1|2 = |µ2|2 = 1 + ha + h2(b + c)

and
|µ1|2 = |µ2|2 < 1

is equivalent to

h <
|a|

b + c
(b + c = c11c22 p̂1 p̂2 > 0).

Since (a + hc)2 = (|a| + h|c|)2 < 4b implies a2 < 4b in which case the
eigenvalues of Jgh(p̂) are smaller than 1 in absolute value, if

h <
|a|
b
.

Because of 0 < b + c < b therefore the attractivity of the fixed point p̂ of
g̃h is possible for a larger step size then for gh.
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2. (a + hc)2 ≥ 4b, then it follows that

µ2 < µ1 < 1 + h(a + hc) < 1

and

µ2 = 1 +
h

2
(a + hc) − h

2

√

(a + hc)2 − 4b > −1

is equivalent to

h ≤ 4

|a| + h|c| +
√

(a + hc)2 − 4b
.

Now a2 ≥ 4b implies (a + hc)2 ≥ 4b for every h > 0.

Because of

4

|a| +
√

a2 − 4b
>

4

|a| + h|c| +
√

(a + hc)2 − 4b

therefore the attractivity of the fixed point p̂ of gh is possible for a larger
size than for g̃h.

Finally let us consider the case c11 = 0 and c22 < 0. Then it follows that
b + c = 0 and therefore

µ1,2 = 1 +
h

2
(a + hc) ±

√

(1 +
h

2
(a + hc))2 − 1 − ha

= 1 +
h

2
(a + hc) ± h

2

√

(a + hc)2 + c.

Further we have

a = c22 p̂2 < 0, b = −c = −c12c21 p̂1 p̂2 > 0.

We again distinguish two cases:

1. (a + hc)2 < 4b, then it follows that 1 + ha > 0 and

|µ1|2 = |µ2|2 = 1 + ha < 1

which is equivalent to

h <
1

|a| .

Hence the fixed point p̂ of g̃h is attractive, if h < 1
|a| .
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We have shown above that the same fixed point p̂ of gh is attractive, if
h <

|a|
b
. So it follows that the attractivity of p̂ for g̃h is possible for larger

h then for gh, if
|a|
b
<

1

|a| ⇐⇒ a2 < b.

2. (a + hc)2 ≥ 4b, here we have the same conclusion as in the case a11 < 0
and a22 < 0.

1.4.2 The One-Population Model

For n = 1 we start with the equation (1.14) as model for the growth of one
population, i.e. with the equation

ṗ(t) = f (p(t))p(t), t ∈ R, (1.73)

where we assume f : R → R to be continuously differentiable. The dis-
cretization of this equation is then given by

p(t + h) = (1 + h f (p(t)))p(t), t ∈ R, (1.74)

where h > 0 is a time step size. If p̂ > 0 is a solution of the equation f (p̂) = 0
(i.e. p(t) = p̂, t ∈ R, is an equilibrium state of the equation (1.73)), then p̂ is a
fixed point of the function

gh(p) = (1 + h f (p))p, p ∈ R,

i.e., a solution of the equation gh(p̂) = p̂, and vice versa.

The derivative of gh in p̂ is given by

dgh

dp
(p̂) = h f ′(p̂)p̂ + 1

from which we infer that ∣
∣
∣
∣
∣
∣

dgh

dp
(p̂)

∣
∣
∣
∣
∣
∣
< 1,

if and only if

f ′(p̂) < 0 and h <
2

− f ′(p̂)p̂
. (1.75)
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This implies that p̂ > 0 is an attractive fixed point of gh, i.e., there exists a

neighbourhood U(p̂) ⊆
◦
R

n

of p̂ such that

lim
h→∞

(gh)k(p) = p̂ for all p ∈ U(p̂), (1.76)

if f ′(p̂) < 0 and h > 0 is sufficiently small. From (1.75) we even get an
estimate for h.

Let us demonstrate this by the second growth model of Verhulst in which f

is given by the linear function

f (p) = a − bp, p ∈ R,

with a > 0 and b > 0 being given constants.

In this case we have

f ′(p) = −b < 0 for all p ∈ R and p̂ =
a

b
.

Therefore p̂ is an attractive fixed point of

gh(p) = (1 + h(a − bp))p, p ∈ R,

if h < 2
a
. In this case we can give an explicit representation ofU(p̂) in (1.76).

For this purpose we define

r = ah and q = bh.

Then gh can be written in the form (with x := p)

g(x) = (1 + r)x − qx2 = (1 + r)x
(

1 − q

r + 1
x

)

, x ∈ R.

If we put X =
[

0, r+1
q

]

then it follows that

g(X) ⊆ X, if 0 ≤ r ≤ 3.

Further we obtain
g(x̂) = x̂ > 0 ⇐⇒ x̂ =

r

q
.

This fixed point of g (which is also a fixed point of gh) is attractive, if r ∈ (0, 2)
(⇐⇒ 0 < h < 2

a
).

Graphically we have the situation illustrated by Figure 1.4 and Figure 1.5.
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Fig. 1.4. Discrete Second Verhulst Model a)

Fig. 1.5. Discrete Second Verhulst Model b)

In case a) every sequence (xk+1 = g(xk))k∈N0 converges monotonically in-

creasing after x0 or x1 to x̂ = r
q
, if x0 is chosen in

(

0, r
q

)

∪
(
1
q
, r+1

q

)

, and

monotonically decreasing to x = r
q
, if x0 is chosen in

(
r
q
, 1

q

)

.

In case b) every sequence (xk+1 = g(xk))k∈N0 converges for every choice of

x0 ∈
(

0, r+1
q

)

either from the beginning or after finitely many steps alternat-

ingly to x̂ = r
q
.

Result: If r ∈ (0, 2), every sequence (xk+1 = g(xk))k∈N0 converges to x̂ = r
q
, if

x0 is chosen in
(

0, r+1
q

)

.

In other words: If 0 < h < 2
a
, then the neighbourhood U(p̂) in (1.76) can be

chosen as
(

0, r+1
q

)

.
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1.5 Determination of Model Parameters from Data

We start with the classical Volterra-Lotka-model which is described by the
differential equations (1.68).

Let us assume that we have given data (p1(i · h), p2(i · h)) for some h > 0 and
i = 0, . . . ,N. The question now is whether and how these data can be fitted
into the model (1.68). In order to give a reasonable answer to this question
we replace the system (1.68) by its modified discretization (1.70) and ask
whether the given data can be fitted into this model. For that purpose we
rewrite (1.70) in the form

p1(t+h)−p1(t)
h

= c1p1(t) + c12p1(t)p2(t),

p2(t+h)−p2(t)
h

= c2p2(t) + c21p1(t + h)p2(t)

The coefficients c1, c12, c2, c21 are then determined so that

N−1∑

i=0

(

p1((i + 1)h) − p1(i · h)

h
− c1p1(i · h) − c12p1(i · h)p2(i · h)

)2

(1.77)

and

N−1∑

i=0

(

p2((i + 1)h) − p2(i · h)

h
− c2p2(i · h) − c21p1((i + 1) · h)p2((i · h)

)2

(1.78)
become as small as possible.

If the result of this minimisation is given by

c1 > 0, c12 < 0, c2 < 0, c21 > 0 or c1 < 0, c12 > 0, c2 > 0, c21 < 0,

then we accept the data as being compatible with the model (1.68).

In the first case the population P1 is the prey and P2 the predator and in the
second case vice versa.

Let us demonstrate this by an example. The data of this example are taken
from [9]. We present them in the following table:

ti = i 0 1 2 3 4 5 6 7 8 h = 1
p1(ti) 0.300 0.148 0.144 0.248 0.171 0.284 0.243 0.191 0.166
p2(ti) 0.688 0.851 0.852 0.707 0.788 0.624 0.679 0.761 0.781
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By minimizing (1.77) and (1.78) we obtain

c1 = −2.34, c12 = 3.09, c2 = 0.42, c21 = −2.08

hence

p̂1 =
−c2

c21
= 0.202,

p̂2 = −
c1

c12
= 0.757.

Further we get

|c1 · c2| = 0.9828 <
4

h2
= 4.

Next we consider a modification of the Volterra-Lotka-model which is de-
scribed by the system

ṗ1(t) = (c1 + c12p2(t))p1(t),
ṗ2(t) = (c2 + c21p1(t) + c22p2(t))p2(t), t ∈ R, (1.79)

where
c1 < 0, c2 > 0, c12 > 0, c21 < 0, c22 < 0 (1.80)

(i.e. P1 is the predator and P2 is the prey population). If we define

p̂1 = −
1

c21

(

c2 − c22
c1

c12

)

,

p̂2 = −
c1

c12

then
p1(t) = p̂1, p2(t) = p̂2 for all t ∈ R

is an equilibrium state of (1.79) with p̂1 > 0 and p̂2 > 0, if the condition

c12c2 − c22c1 > 0

is satisfied. In [4] we have shown that this equilibrium state is asymptotically
stable.

For a given time step size h > 0 the discretization of the system (1.79) can be
written in the form

p1(t + h) − p1(t)

h
= c12(p2(t) − p̂2)p1(t)

p2(t + h) − p2(t)

h
= c2p2(t) + c21p1(t) + c22p2(t)

2.
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In order to determine c12 we choose some p̂2, say

p̂2 =
1

N + 1

N∑

i=0

p2(i · h),

if again (p1(i · h), p2(i · h)), i = 0, . . . ,N, are given data, and minimize

N−1∑

i=0

(

p1((i + 1)h) − p1(i · h)

h
− (p2(i · h) − p̂2) p1(i · h)c12

)2

. (1.81)

For the data given in the above table we chose p̂2 = 0.75 and obtain by
minimizing (1.81)

c12 = 3.23 and c1 = −2.42.

In order to determine c2, c21, c22 we minimize

N−1∑

i=0

(
p2((i + 1)h) − p2(i · h)

h

−p2(i · h)c2 − p1(i · h)p2(i · h)c21 + p2(i · h)2c22)
2. (1.82)

For the data given in the above table, however, we obtain the values

c2 = −1.62, c21 = 3.6, c22 = 1.16

which violate the condition (1.80).

If we, however, replace (1.82) by

N−1∑

i=0

(
p2((i + 1)h) − p2(i · h)

h

−p2(i · h)c2 − p1((i + 1)h)p2(i · h)c21 + p2(i · h)2c22)
2, (1.83)

then we obtain from the above data

c2 = 1.3, c21 = −1.92, c22 = −1.2
which leads to p̂1 = 0.21. Further we obtain with

a = c22 p̂2 = −0.9,
b = −c12c21 p̂1 p̂2 = 0.977,

a + c = −1.877

that
(a + c)2 = 3.522 < 4b = 3.908.

Because of 1
|a| = 1.1 . . . > 1 we conclude that p̂ = (0.21, 0.75) is an attractive

fixed point (see Section 1.4.1).
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2

A Game-Theoretic Evolution Model

2.1 Evolution-Matrix-Games for one Population

2.1.1 The Game and Evolutionarily Stable Equilibria

During the last thirty years, based on a paper of the biologist J. Maynard
Smith with the title "Game Theory and the Evolution of Fighting", a theory
of evolution games has been developed. This starts with a population of indi-
viduals who have a finite number I1, I2, . . . , In of strategies in order to survive
in the struggle of life. Let ui = [0, 1], for every i = 1, . . . , n be the probability
for the strategy Ii to be chosen in the population. Then the corresponding state

of the population is defined by the vector u = (u1, . . . , un) where
n∑

i=1
ui = 1.

The set of all population states is given by the simplex

∆ =

⎧
⎪⎪⎨

⎪⎪⎩
u = (u1, . . . , un)|0 ≤ ui ≤ 1, i = 1, . . . , n,

n∑

i=1

ui = 1

⎫
⎪⎪⎬

⎪⎪⎭
.

Every vector ei = (0, . . . , 0, 1i, 0, . . . , 0), i = 1, . . . , n, denotes a so called
pure population state where all the individuals choose the strategy Ii. All the
other states are called mixed states. If an individual that chooses strategy Ii
meets an individual that chooses strategy I j, we assume that the Ii-individual
is given a payoff ai j ∈ R by the I j-individual. All the payoffs then form a
matrix

A = (ai j)i, j=1,...,n

the so called payoff matrix which defines a matrix game. This, however, is in
general not a zero-sum game with A = −AT (see Section 2.1.7).
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The expected payoff of an Ii-individual in the population state u ∈ ∆ is defined
by

n∑

j=1

ai ju j = eiAuT .

If two populations states u, v ∈ ∆ are given, then the average payoff of u to v

is defined by
n∑

i, j=1

ai juiv j = vAuT .

Definition. A population state u∗ ∈ ∆ is called a Nash equilibrium if

uAu∗T ≤ u∗Au∗T , for all u ∈ ∆.

In words this means that a deviation from u∗ does not lead to a higher payoff.
For rational behavior this would suffice to maintain the population state u∗.
However, animals do not behave rationally so that the stability of a Nash equi-
librium is not guaranteed. This leads to the concept of evolutionarily stable
Nash equilibrium given by the

Definition. A Nash equilibrium u∗ ∈ ∆ is called evolutionarily stable, if

uAu∗T = u∗Au∗T for some u ∈ ∆ with u � u∗ implies that uAuT < u∗AuT . In

words this means that, if a change from u∗ to u leads to the same payoff, u

cannot be a Nash equilibrium.

Let us demonstrate these definitions by an example. We consider a population
with two strategies I1 and I2. Individuals that choose I1 are called pigeons and
those who choose I2 are called hawks. If a pigeon meets a pigeon they menace
each other without seriously fighting until one of them gives in. If a pigeon
meets a hawk, it runs away and is not hurt. If two hawks meet each other they
fight until one of them is seriously hurt and has to give up or is dead. Let us
assume that the winner is given V > 0 points and the loser in a fight of hawks
is given −D points where D > 0. This leads to the payoff matrix

A =

(
V
2 0
V V−D

2

)

.

Let us at first assume that V ≥ D.

Then we assert that the pure population state e2 = (0, 1) is an evolutionarily
stable Nash equilibrium.
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In order to show that we choose an arbitrary u ∈ ∆ and find that

e2AeT
2 − uAeT

2 =
V − D

2
(1 − u2) ≥ 0

which shows that e2 is a Nash equilibrium.

If uAeT
2 = e2AeT

2 , then it follows that V−D
2 (1 − u2) = 0.

If V > D, then it follows that u2 = 1 and u1 = 0, hence u = e2.

If V = D, then it follows that uAeT
2 = e2AeT

2 for all u ∈ ∆, and for all u ∈ ∆
with u � e2 it follows that

uAuT =
V

2
u1(1 − u2) < Vu1 = e2AuT

which implies that e2 is evolutionarily stable.

Result. If V ≥ D and if all individuals behave like hawks, then this state is

an evolutionarily stable Nash equilibrium.

On the other hand, if V < D, then e2 is not even a Nash equilibrium. On the
contrary we have

e2AeT
2 − uAeT

2 =
V − D

2
(1 − u2) < 0 for all u ∈ ∆ with u2 < 1.

But also the pure population state e1 = (1, 0) is not a Nash equilibrium for we
have

e1AeT
1 − uAeT

1 = −
V

2
(1 − u1) < 0 for all u ∈ ∆ with u1 < 1.

The case V ≥ D is a special case of the following situation:

Let for some k ∈ {1, . . . , n}

akk ≥ a jk for all j=1, . . . , n

and
akk = a jk =⇒ aki > a ji for all i � k.

Then it follows for every u ∈ ∆ that

uAeT
k =

n∑

j=1

u ja jk ≤
⎛

⎜⎜⎜⎜⎜⎜⎝

n∑

j=1

u j

⎞

⎟⎟⎟⎟⎟⎟⎠
akk = akk = ekAeT

k ,

i.e., ek is a Nash equilibrium.
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Now let u ∈ ∆ with u � ek and uAeT
k
= ekAeT

k
be given.

Then it follows that

a jk = akk for all j with u j > 0

and hence
aki > a ji for all j with u j > 0 and all i � k.

This implies

ekAuT − uAuT =

n∑

i=1

akiui −
n∑

j=1

n∑

i=1

a jiu jui

=

n∑

j=1

n∑

i=1

(aki − a ji)u jui

=
∑

u j>0

∑

i�k

(aki − a ji)u jui > 0

which shows that ek is evolutionarily stable.

Assertion. If V < D, the population state
(

1 − V
D
, V

D

)

is an evolutionarily

stable Nash equilibrium.

Proof. If we put u∗ =
(

1 − V
D
, V

D

)

, then u∗ ∈ ∆ and

u∗Au∗T =
V

2

(

1 − V

D

)2

− V2

2D

(

1 − V

D

)

=
V

2

(

1 − V

D

) (

1 − V

D
+

V

D

)

=
V

2

(

1 − V

D

)

Further it follows for every u ∈ ∆ that

uAu∗T = (u1, u2)

⎛

⎜⎜⎜⎜⎜⎝

V
2

(

1 − V
D

)

V
2

(

1 − V
D

)

⎞

⎟⎟⎟⎟⎟⎠ =
V

2

(

1 − V

D

)

= u∗Au∗T ,

i.e., u∗ is a Nash equilibrium. ⊓⊔
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Now we have, for every u ∈ ∆,

uAuT =
V

2
u2

1 + Vu1u2 +
V − D

2
u2

2

=
V

2
(u2

1 + 2u1u2 + u2
2)

︸����������������︷︷����������������︸

=(u1+u2)2=1

−D

2
u2

2 =
V

2

(

1 − D

V
u2

2

)

and

u∗AuT =

(

1 − V

D
,
V

D

) ( V
2 u2

Vu1 +
V−D

2 u2

)

=
V

2

(

1 − V

D

)

u1 +
V

D

(

Vu1 +
V − D

2
u2

)

=
V

2
u1 −

V2

2D
u1 +

V2

D
u1 +

V2

2D
u2 −

V

2
u2

=
V

2
u1 +

V2

2D
− V

2
u2

=
V

2
+

V2

2D
− Vu2.

Therefore it follows that, for every u ∈ ∆ with u � u∗,

uAuT − u∗AuT =
V

2
− D

2
u2

2 −
V

2
− V2

2D
+ Vu2

= −D

2

(

u2
2 −

2V

D
u2 +

V2

D2

)

= −D

2

(

u2 −
V

D

)2

< 0,

i.e., u∗ is evolutionarily stable.

2.1.2 Characterization of Evolutionarily Stable Equilibria

We begin with a necessary condition for a Nash equilibrium. For this purpose
we define for every u ∈ ∆ a support by

S (u) = {i ∈ {1, . . . , n}|ui > 0}.

Then we can prove

Lemma 1. If u∗ ∈ ∆ is a Nash equilibrium, then

eiAu∗T = u∗Au∗T for all i ∈ S (u∗). (2.1)
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Proof. At first we have

u∗Au∗T =
n∑

i=1

u∗i eiAu∗T =
∑

i∈S (u∗)

u∗i eiAu∗T ≤ max
i∈S (u∗)

eiAu∗T .

Since u∗ is a Nash equilibrium, it follows that

eiAu∗T ≤ u∗Au∗T for all i ∈ S (u∗),

hence
u∗Au∗T = max

i∈S (u∗)
eiAu∗T .

⊓⊔

Let
ei0Au∗T = max

i∈S (u∗)
eiAu∗T .

Then we obtain

0 = u∗Au∗T −
∑

i∈S (u∗)

u∗i eiAu∗T =
∑

i∈S (u∗)

u∗i (ei0Au∗T − eiAu∗T )

which implies

u∗Au∗T = ei0Au∗T = eiAu∗T for all i ∈ S (u∗).

As an immediate consequence we get the

Corollary 1. If u∗ ∈ ∆ is a Nash equilibrium, then

uAu∗T = u∗Au∗T for all u ∈ ∆ with S (u) ⊆ S (u∗). (2.2)

Proof. Now we have for every u ∈ ∆ with S (u) ⊆ S (u∗), because of (2.1),

uAu∗T =
∑

i∈S (u)

uieiAu∗T =
∑

i∈S (u)

ui(u
∗Au∗T ) = u∗Au∗T .

⊓⊔

From this we obtain immediately the

Corollary 2. If u∗ ∈ ∆ is a Nash equilibrium with

u∗i > 0 for all i ∈ {1, . . . , n} ⇐⇒ S (u∗) = {1, . . . , n}, (2.3)

then

uAu∗T = u∗Au∗T for all u ∈ ∆. (2.4)
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From Corollary 2 we deduce the

Theorem 2.1 If u∗ ∈ ∆ is an evolutionarily stable Nash equilibrium with

(2.3), then u∗ is the only Nash equilibrium.

Proof. Given an arbitrary u ∈ ∆ with u � u∗ it follows from Corollary 2 that
uAu∗T = u∗Au∗T . Since u∗ is evolutionarily stable, it follows that uAuT <

u∗AuT so that u cannot be a Nash equilibrium. Therefore u∗ is the only Nash
equilibrium. ⊓⊔

If the condition (2.3) is not satisfied, then one can show that an evolutionarily
stable Nash equilibrium u∗ ∈ ∆ is the only Nash equilibrium in a neighbour-
hood of u∗.

In order to show that we need some preparations: Let u, u∗ ∈ ∆ be given with
u � u∗ and let ǫ ∈ (0, 1]. Then we define wǫ = (1 − ǫ)u∗ + ǫu and conclude
that

wǫAwT
ǫ = (1 − ǫ)u∗AwT

ǫ + ǫuAwT
ǫ .

From this we obtain the equivalence

wǫAwT
ǫ < u∗AwT

ǫ ⇐⇒ uAwT
ǫ < u∗AwT

ǫ . (2.5)

Now let u∗ ∈ ∆ be an evolutionarily stable Nash equilibrium and let u ∈ ∆ be
chosen arbitrarily. Then we have

uAu∗T ≤ u∗Au∗T .

1. Assume that
uAu∗T < u∗Au∗T and u � u∗.

Then there is a relatively open set Vu ⊆ ∆ with u∗ ∈ Vu such that

uAvT < u∗AvT for all v ∈ Vu with v � u∗.

Now there exists some ǫu > 0, ǫu ≤ 1 such that

wǫ = (1 − ǫ)u∗ + ǫu ∈ Vu for all ǫ ∈ [0, ǫu].

This implies
uAwT

ǫ < u∗AwT
ǫ .

Using the above equivalence (2.5) we obtain

wǫAwT
ǫ < u∗AwT

ǫ for all ǫ ∈ (0, ǫu].
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2. Assume that
uAu∗T = u∗Au∗T and u � u∗.

Then it follows u∗AuT > uAuT which implies

uAwT
ǫ < u∗AwT

ǫ ⇐⇒ wǫAwT
ǫ < u∗AwT

ǫ .

Result 1. If u∗ ∈ ∆ is an evolutionarily stable Nash equilibrium, then, for

every u ∈ ∆ with u � u∗, there exists some ǫu ∈ (0, 1] such that

wǫAwT
ǫ < u∗AwT

ǫ for all ǫ ∈ (0, ǫu] (2.6)

where

wǫ = (1 − ǫ)u∗ + ǫu.

Conversely let u∗ ∈ ∆ be such that for every u ∈ ∆ with u � u∗ there exists
some ǫu ∈ (0, 1] such that (2.6) is satisfied. Then it follows from the equiva-
lence (2.5) that

u∗AwT
ǫ > uAwT

ǫ (2.7)

and in turn for ǫ → 0 that

u∗Au∗T ≥ uAu∗.

Now let u∗Au∗T = uAu∗T . Then it follows from (2.7) that

(1 − ǫ)u∗Au∗T + ǫu∗AuT > (1 − ǫ)uAu∗T + ǫuAuT

= (1 − ǫ)u∗Au∗T + ǫuAuT

which implies uAuT < u∗AuT , i.e. u∗ is an evolutionarily stable Nash equilib-
rium.

Result 2. A population state u∗ ∈ ∆ is an evolutionarily stable Nash equilib-

rium, if and only if for every u ∈ ∆ with u � u∗ there exists some ǫu ∈ (0, 1]
such that the condition (2.6) is satisfied.

From Corollary 1 it follows for an evolutionarily stable Nash equilibrium
u∗ ∈ ∆ that

uAuT < u∗AuT for all u ∈ ∆ with u � u∗ and S (u) ⊆ S (u∗).

Now let u ∈ ∆ be such that S (u) � S (u∗). Then there exists some i ∈ {1, . . . , n}
such that ui > 0 and u∗

i
= 0.
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If ui ≥ u∗
i
for all i = 1, . . . , n, then it follows from

n∑

i=1

ui =

n∑

i=1

u∗i = 1

that u = u∗ which is impossible.

Hence there exists some i ∈ {1, . . . , n} with ui < u∗
i
. If we define

λ = min

{
u∗

i

u∗
i
− ui

|ui < u∗i

}

and put
v = u∗ + λ(u − u∗),

then it follows that

v ∈ C =
{

u ∈ ∆|∃i1 with ui1 > 0 and u∗i1 = 0 and ∃i2 with ui2 = 0
}

.

Conversely, if v ∈ C is given and we define, for any λ ∈ (0, 1], u = u∗ + λ(v −
u∗), then u ∈ ∆ and S (u) � S (u∗).

By Result 1 we know that for every v ∈ C there is some ǫv ∈ (0, 1] such that

wǫAwT
ǫ < u∗AwT

ǫ for all ǫ ∈ (0, ǫv)

where
wǫ = (1 − ǫ)u∗ + ǫv = u∗ + ǫ(v − u∗).

Since C is compact and ǫv, v ∈ C, can be chosen continuously, there exists
some ǫ̂ > 0 with ǫ̂ = min

v∈C
ǫv and therefore

wǫAwT
ǫ < u∗Awǫ for all ǫ ∈ (0, ǫ̂].

If we define

ǫ∗ =
ǫ̂

min
v∈C
||v − u∗||2

,

then it follows that
uAuT < u∗AuT for all u ∈ ∆

with S (u) � S (u∗) and ||u − u∗||2 < ǫ∗. Summarising we obtain the
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Theorem 2.2 If u∗ ∈ ∆ is an evolutionarily stable Nash equilibrium, then

there exists some ǫ∗ > 0 such that

uAuT < u∗AuT for all u ∈ ∆ with u � u∗ and ||u − u∗||2 < ǫ∗ (2.8)

which shows that u∗ is the only Nash equilibrium in

V(u∗) =
{

u ∈ ∆| ||u − u∗||2 < ǫ
}

.

Conversely let u∗ ∈ ∆ and ǫ∗ > 0 be given such that the condition (2.8) is
satisfied.

If we take any u ∈ ∆ with u � u∗ and define, for ǫ ∈ (0, 1],

wǫ = (1 − ǫ)u∗ + ǫu,

then wǫ ∈ ∆, wǫ � u∗ and

||wǫ − u∗||2 = ǫ||u − u∗|| < ǫ∗

for ǫ < min
(

1, ǫ
||u−u∗ ||2

)

= ǫu ∈ (0, 1) which implies

wǫAwT
ǫ < u∗AwT

ǫ

and shows that (2.6) is satisfied which implies by Result 2 that u∗ is an evo-
lutionarily stable Nash equilibrium.

Result 3. A population state u∗ ∈ ∆ is an evolutionarily stable Nash equilib-

rium, if and only if there exists some ǫ∗ > 0 such that the condition (2.8) is

satisfied.

2.1.3 Evolutionarily Stable Equilibria for 2x2-Matrices

In this section we consider evolution-matrix-games with 2x2-payoff matrices:

A =

(

a11 a12

a21 a22

)

.

We assume that
(a11 − a21)

2 + (a22 − a12)
2 > 0.
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We distinguish three cases:

1. a11 < a21 and a22 < a12.

Then we define

u∗ =
(
a12 − a22

d
,
a21 − a11

d

)

(2.9)

where
d = (a12 − a22) + (a21 − a11) > 0.

Then u∗ ∈ ∆ and S (u∗) = {1, 2}.

Further it follows that

e1Au∗T = e2Au∗T =
a12a21 − a11a22

d
and

uAu∗T = u1e1Au∗T + u2e2Au∗T = u∗1e1Au∗T + u∗2e2Au∗T = u∗Au∗T

for all u∗ ∈ ∆, i.e., u∗ is a Nash equilibrium.

Finally it follows that

u∗AuT − uAuT = d(u∗1 − u1)
2 > 0 for all u � u∗(⇐⇒ u1 � u∗1),

i.e., u∗ is an evolutionarily stable Nash equilibrium.

By Theorem 2.1 u∗ is the only Nash equilibrium.

2. a11 > a21 and a22 > a12.

Then it follows that

uAeT
1 = a11u1 + a21u2 = a11 + (a21 − a11)

︸�������︷︷�������︸

<0

u2 < a11 = e1AeT
1 ,

for all u ∈ ∆ with u � e1 and

uAeT
2 = a12u1 + a22u2 = a12 + a22 + (a12 − a22)

︸�������︷︷�������︸

<0

u1 < a22 = e2AeT
2 ,

for all u ∈ ∆ with u � e2.
This implies that e1 and e2 are evolutionarily stable Nash equilibria.

3. (a11 − a21)(a22 − a12) < 0.

In this case either e1 (if a11 > a21 and a22 < a12) or e2 (if a11 < a21 and
a22 > a12) is an evolutionarily stable Nash equilibrium.
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Summarising we obtain the

Theorem 2.3 If a11 � a21 and a22 � a12, then there exists at least one evo-

lutionarily stable Nash equilibrium. In case 1) it is given by (2.9) and is the

only Nash equilibrium, in case 2) it is e1 or e2, and in case 3) it is either e1

or e2.

2.1.4 On the Detection of Evolutionarily Stable Equilibria

For n > 3 the existence of evolutionarily stable Nash equilibria cannot be
guaranteed in general. For instance for the matrix

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 2 0
0 1 2
2 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

there exist no evolutionarily stable Nash equilibria. In this case one can show
that

uAuT = 1 for all u ∈ ∆
and that

eiAuT ≤ uAuT = 1 is equivalent with u1 = u2 = u3 =
1

3

which implies that u∗ = (1
3 ,

1
3 ,

1
3 ) is a Nash equilibrium with

vAu∗T = u∗Au∗T for all v ∈ ∆.

But we also have
u∗AvT = 1 = vAvT for all v ∈ ∆

so that u∗ cannot be evolutionarily stable. Since u∗ is the only Nash equilib-
rium, no evolutionarily stable Nash equilibrium can exist.

We shall show later that the existence of Nash equilibria is ensured for every
n ≥ 2.

In the following we will present an algorithm developed in [1] by which all
evolutionarily stable Nash equilibria can be detected or confirmed that none
exists.

In order to describe this algorithm we need some preparations. So let NA be
the set of all Nash equilibria (which is non-empty) and for every u ∈ ∆ we
define the set

J(u) =
{

i ∈ {1, . . . , n} |eiAuT = uAuT
}

.
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Then Lemma 1 can be rephrased in the form

u∗ ∈ NA =⇒ S (u∗) ⊆ J(u∗). (2.10)

Let ESS denote the set of all evolutionarily stable Nash equilibria.

With these definitions we can prove the

Lemma 2. If u ∈ NA and u∗ ∈ ESS with S (u) ⊆ J(u∗), then u = u∗.

Proof. S (u) ⊆ J(u∗) is equivalent to

ui > 0 =⇒ eiAu∗T = u∗Au∗T

which implies uAu∗T = u∗Au∗T .

Now let u � u∗, then it follows u∗AuT > uAuT , since u∗ ∈ ESS.

On the other hand, however, we have u∗AuT ≤ uAuT , since u ∈NA. So u � u∗

is impossible. ⊓⊔

As a consequence of Lemma 2 and (2.10) we have the following statement: If
u∗ ∈ ESS, then there is no Nash equilibrium u ∈ ∆ with S (u) ⊆ S (u∗) which
is different from u∗. So the supports of evolutionarily stable Nash equilibria
do not form chains with respect to set inclusion in the power set of N =

{1, . . . , n}.

This is the statement on which is based the following

Algorithm: We start with the

Initialization Step: At first we check whether a pure state ei is a Nash equi-
librium, i.e. whether

aii = max
j∈N

a ji

holds true. Then we put

N′ = N \ {i ∈ N|ei is a Nash equilibrium }.

Now any mixed u ∈ ESS satisfies S (u) ⊆ J(u) ⊆ N′ due to Lemma 2. Next we
check whether a Nash equilibrium ei is evolutionarily stable. If the answer is
positive, we record ei, put

S = {S ⊆ N′|S has more than one element }

and proceed to the
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Main Step: We denote by Smax the system of all S ∈ S that are maximal with
respect to set inclusion in S. Then we check for any S ∈ Smax whether there
exists a Nash equilibrium u ∈ ∆ with S (u) = S . If the answer is positive, we
check whether u ∈ ESS. If this is the case, we record u. If there are not any
evolutionarily stable Nash equilibria with support in Smax, then we put

S′ = S \ Smax.

Otherwise we denote the evolutionarily stable Nash equilibria with support
in Smax by u1, . . . , us, determine J(ui), i = 1, . . . , s and put

S′ =
{

S ∈ S|S � J(ui) for i = 1, . . . , s
}

\ Smax.

If S′ is empty, we stop, and the list of recorded evolutionarily stable Nash
equilibria is complete.

Otherwise we denote by Smin the system of all S ∈ S′ which are minimal
with respect to set inclusion in S′. Then we check for any S ∈ Smin whether
there exists a Nash equilibrium u ∈ ∆ with S (u) = S . If there is none such,
then we put

S′′ = S′ \ Smin.

Otherwise we denote those Nash equilibria by v1, . . . , vr and check whether
they are evolutionarily stable. If the answer is positive, the corresponding
Nash equilibrium is recorded. Then we put

S′′ =
{

S ∈ S′|S (vi) � S for i = 1, . . . , r
}

\ Smin.

If S′′ is empty, we stop, and the list of recorded evolutionarily stable Nash
equilibria recorded so far is complete.

Otherwise we repeat the main step with S′′ instead of S.

The algorithm requires two subroutines: 1) For any non-empty subset S ⊆
N it has to be decided whether there exists a Nash equilibrium u ∈ ∆ with
S (u) ⊆ S or not.

2) For a given Nash equilibrium it has to be decided whether it is evolution-
arily stable or not.

Here we will not go into the details of these subroutines and refer to [1].
Instead we will demonstrate the algorithm by an example which we take from
[1].
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Let n = 5 and

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 2 2 2
0 1 2 2 2
2 2 1 0 0
2 2 0 1 0
2 2 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then we have N’=N because of

aii < max
j∈N

a ji for all i ∈ N.

Therefore
S = {S ⊆ N|S has at least two elements }

and
Smax = {N}.

By the Corollary 2 of Lemma 1 a population state u ∈ ∆ with S (u) =N is a
Nash equilibrium, if and only if J(u) =N, from which we infer that

u1 = u2 = a and u3 = u4 = u5 = b

where
2a + 3b = 1 and a + 6b = 4a + b,

hence a = 5
19 , b = 3

19 . Thus u =
(

5
19 ,

5
19 ,

3
19 ,

3
19 ,

3
19

)

is the only Nash equi-
librium with S (u) =N. It is, however, not evolutionarily stable, since for
v =

(
1
2 , 0, 0, 0,

1
2

)

it follows that

uT AvT =
23

19
<

3

2
= vAvT .

Therefore

S′ = S \ Smax = {S ⊆ N|S has at least two and at most four elements} .

Further we have

Smin =
{
S ⊆ N|S has exactly two elements

}
.

Now it is easy to see that no u ∈ ∆ with

S (u) ∈ {{1, 2}, {3, 4}, {3, 5}, {4, 5}} ⊆ Smin

can be a Nash equilibrium. The remaining six possible supports of Nash equi-
libria are therefore of the form {i, k} with 1 ≤ i ≤ 2 and 3 ≤ k ≤ 5.
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We denote them by S 1, . . . , S 6. Let us consider u1 ∈ ∆ with S (u1) = S 1 =

{1, 3}. Then u1 is of the form u1 = (t, 0, 1 − t, 0, 0) with 0 ≤ t ≤ 1 and we get

Au1T = (2 − t, 2(1 − t), t + 1, 2t, 2t)T .

From eiAu1T = u1Au1T for i = 1, 3, if u1 is a Nash equilibrium, we conclude
that this is the case, if and only if t = 1

2 , i.e.,

u1 =
1

2
e1 +

1

2
e2 =

(

1

2
, 0,

1

2
, 0, 0

)

and u1Au1T =
3

2
.

Now let u = (t, 0, 1 − t, 0, 0) with 0 ≤ t ≤ 1 and t � 1
2 , then it follows that

u1AuT =
1

2
(2 − t) +

1

2
(t + 1) =

3

2
and

uAuT = t(2 − t) + (1 − t)(t + 1) = 1 + 2t(1 − t) <
3

2

which shows that u1 is an evolutionarily stable Nash equilibrium. In a similar
way one can show that every u ∈ ∆ of the form u = 1

2ei +
1
2ek for 1 ≤ i ≤ 2

and 3 ≤ k ≤ 5 belongs to ESS. Further we obtain

S′′ = {S ⊆ N with more than two elements |S j � S for all j = 1, . . . , 6}
which implies S′′ = {{3, 4, 5}}.

Since S′′ � ∅, we have to repeat the main step with S′′ instead of S.

Because of S′′max = S′′ we have to check whether there exists a Nash
equilibrium u ∈ ∆ with S (u) = {3, 4, 5}. Every such u is of the form
u = (0, 0, u3, u4, u5) and from eiAuT = uAuT for i = 3, 4, 5 it follows that
u3 = u4 = u5 =

1
3 .

This implies uAuT = 1
3 < 2 = eiAuT for i = 1, 2. Hence u is not a Nash

equilibrium.

Thus S′′ = ∅ and the algorithm stops.

Result. There exist exactly 6 elements in ESS which are given by 1
2ei +

1
2ek,

for 1 ≤ i ≤ 2 and 3 ≤ k ≤ 5.
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2.1.5 A Dynamical Treatment of the Game

We start with an evolution-matrix-game as being introduced in Section 2.1.1.

We assume that
uAuT > 0 for all u ∈ ∆.

We further assume that this game is submitted to a time discrete dynamics
according to which the population states change as follows:

Let uk = (uk
1, . . . , u

k
n) ∈ ∆ be the population state in the k-th generation and let

rk
i

be the average number of offsprings of individuals in the k-th generation
that choose the strategy Ii. Then it follows for the next generation that

uk+1
i =

rk
i
uk

i
∑n

j=1 rk
j
uk

j

, i = 1, . . . , n.

Obviously, rk
i

depends on the average payoff to the Ii-individual which is

given by eiAukT
. We assume that

rk
i = ceiAukT

, i = 1, . . . , n,

where c is a positive constant. Then it follows that

uk+1
i =

ceiAukT

c
∑n

j=1 e jAukT
uk

j

uk
i =

eiAukT

ukAukT
uk

i , i = 1, . . . , n.

Obviously uk ∈ ∆ implies that uk+1 ∈ ∆. Therefore, if we define a mapping
fA : ∆→ ∆ by

fA(u)i =
eiAuT

uAuT
for i = 1, . . . , n and u ∈ ∆,

then u∗ ∈ ∆ is a fixed point of fA, i.e.,

fA(u∗) = u∗,

if and only if
eiAu∗T = u∗Au∗T for all i ∈ S (u∗). (2.11)

By Lemma 1 this condition is necessary for u∗ being a Nash equilibrium. This
implies that u∗ ∈ ∆ is a fixed point of fA, if u∗ is a Nash equilibrium.

Conversely the question arises under which condition every fixed point of fA
is a Nash equilibrium. A first answer to this question is the
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Lemma 3. If u∗ ∈ ∆ is a fixed point of fA and if

u∗i > 0 for all i = 1, . . . , n, (2.12)

then u∗ is a Nash equilibrium.

Proof. u∗ ∈ ∆ is a fixed point of fA, if and only if the condition (2.11) is
satisfied. Because of S (u∗) = {1, . . . , n} this implies

uAu∗T = u∗Au∗T for all u ∈ ∆

which shows that u∗ is a Nash equilibrium. ⊓⊔

A second answer to the above question is given by the

Theorem 2.4 If u∗ ∈ ∆ is an attractive fixed point of fA, i.e., a fixed point

which is an attractor, then u∗ is a Nash equilibrium.

Proof. If u∗ ∈ ∆ satisfies (2.12), then the assertion follows from Lemma 3. If
S (u∗) � {1, . . . , n}, then (2.11) holds true. If we then show that

eiAu∗T ≤ u∗Au∗T for all i ∈ {1, . . . , n} \ S (u∗),

it follows that u∗ is a Nash equilibrium. ⊓⊔

Let us assume that there is a k ∈ {1, . . . , n} \ S (u∗) such that

ekAu∗T > u∗Au∗T . (2.13)

Since g(u) = ekAuT − uAuT is continuous there is an ǫ1 > 0 such that

ekAuT > uAuT for all u ∈ ∆ with ||u − u∗||2 < ǫ1. (2.14)

Since u∗ is an attractor, there exists an ǫ2 > 0 such that

lim
t→∞

f t
A(u) = u∗ for all u ∈ ∆ with ||u − u∗||2 < ǫ2. (2.15)

This implies that for every v ∈ ∆ with ||v − u∗||2 < ǫ there exists some Tǫ ∈ N
such that

||v(t) − u∗||2 < ǫ for all t ≥ Tǫ

where ǫ = min(ǫ1, ǫ2) and v(t) = f t
A
(v).

From (2.13) we deduce that

vk(t + 1) > vk(t) for all t ≥ Tǫ . (2.16)
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On the other hand it follows from (2.15) that

lim
t→∞

vk(t) = u∗k = 0, since k � S (u∗)

which is a contradiction to (2.16). Therefore the assumption (2.13) is false
and Theorem 2.3 is proved.

Next we investigate the question under which conditions a Nash equilibrium
is an attractive fixed point of fA.

At first we consider a Nash equilibrium u∗ ∈ ∆ with S (u∗) = {1, . . . , n}. Then
it follows from Corollary 2 of Lemma 1 that u∗ is a fixed point of fA. In
general u∗ need not be an attractive fixed point (see [4]).
We can, however, prove the following

Theorem 2.5 Let u∗ ∈ ∆ be an evolutionarily stable Nash equilibrium with

S (u∗) = {1, . . . , n}. Further let K, L be two non-empty subsets of {1, . . . , n}
with K ∩ L = ∅ and K ∪ L = {1, . . . , n} such that

eiAuT > uAuT for all u ∈ ∆ with 0 < ui < u∗i and i ∈ K

and
eiAuT < uAuT for all u ∈ ∆ with u∗i < ui < 1 and i ∈ L.

Then for every

u◦ ∈ U = {u ∈ ∆|0 < ui < u∗i for all i ∈ K and u∗i < ui < 1 for all i ∈ L}

it follows that
lim
k→∞

f k
A(u◦) = u∗, if fA(U) ⊆ U.

Proof. At first we have

0 < ui < fA(u)i < u∗i for all u ∈ ∆ with 0 < ui < u∗i for i ∈ K

and

u∗i < fA(u)i < ui < 1 for all u ∈ ∆ with u∗i < ui < 1 for all i ∈ L.

If we choose u◦ ∈ U arbitrarily and define

uk = f k
A(u◦) for k ∈ N0,

then it follows that uk ∈ U for all k ∈ N0 and because of uk+1 = fA(uk), k ∈
N0, we infer that uk → û = Ū with S (û) = {1, . . . , n} and û = fA(û). By
Lemma 3 û is also a Nash equilibrium. According to Theorem 2.1 u∗ is the
only Nash equilibrium which implies that û = u∗.

This completes the proof. ⊓⊔
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Let us consider the case n = 2 where A =

(

a11 a12

a21 a22

)

.

We assume a11 < a21 and a22 < a12.

In Section 2.1.3 we have shown that

u∗ =
(
a12 − a22

d
,
a21 − a11

d

)

with

d = (a12 − a22) + (a21 − a11)

is an evolutionarily stable Nash equilibrium which by Theorem 2.1 is the only
Nash equilibrium.

Further one can show that, for all u ∈ ∆,

e1AuT − uAuT = d(u1 − 1)(u1 − u∗1)

and

e2AuT − uAuT = du1(u1 − u∗1) = d(1 − u2)(u
∗
2 − u2)

which implies

e1AuT − uAuT > 0 for all u ∈ ∆ with 0 < u1 < u∗1

and

e2AuT − uAuT < 0 for all u ∈ ∆ with u∗2 < u2 < 1.

If we define

U = {u ∈ ∆ | 0 < u1 < u∗1} = {u ∈ ∆ | u
∗
2 < u2 < 1}
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and assume that fA(U) ⊆ U, then all the assumptions of Theorem 2.5 are
satisfied with K = {1} and L = {2} which implies

lim
k→∞

f k
A(u◦) = u∗ for all u◦ ∈ U.

Example:

A =

(

0 2
1 1

)

; then a11 = 0 < a21 = 1 and a22 = 1 < a12 = 2.

Then u∗ = (1
2 ,

1
2 ) and for every u ∈ ∆ it follows that

fA(u)1 −
1

2
=

2u1

2u1 + 1
− 2u1 + 1

2(2u1 + 1)
=

2u1 − 1

2(2u1 + 1
< 0, if 0 < u1 <

1

2
,

hence,

fA(u)1 <
1

2
⇒ fA(U) ⊆ U.

For pure population states one can prove the following

Theorem 2.6 If, for some k ∈ {1, . . . , n}, ek is an evolutionarily stable Nash

equilibrium, then ek is an asymptotically stable fixed point of fA.

Proof. By Theorem 2.2 there exists some ǫ∗ > 0 such that

uAuT < ekAuT for all u ∈ ∆ with u � ek and ||u − ek ||2 < ǫ∗.

Let us define
U = {u ∈ ∆| ||u − ek ||2 < ǫ∗}.

Then it follows that

fA(u)k =
ekAuT

uAuT
uk ≥ uk for all u ∈ U.

If we define a continuous function V : ∆→ R by

V(u) = 1 − uk, u ∈ ∆,

then it follows

V( fA(u)) − V(u) = uk − fA(u)k ≤ 0 for all u ∈ U.

This shows that V is a Lyapunov function with respect to f and U.
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Further we infer that

V(u) ≥ 0 for all u ∈ U and (V(u) = 0 ⇐⇒ u = ek),

i.e., V is positive definite with respect to ek.

Finally we obtain

V( fA(u)) − V(u) < 0 for all u ∈ U with u � ek.

Thus all the assumptions of Satz 5.8 in [3] (see also Section A.3) are satisfied
which implies that ek is an asymptotically stable fixed point of fA. ⊓⊔

Corollary. Let, for some k ∈ {1, . . . , n},

akk ≥ a jk for all j = 1, . . . , n
and

akk = a jk =⇒ aki > a ji for all i � k.

(2.17)

Then ek is an asymptotically stable fixed point of fA.

Proof. In Section 2.1.1 we have shown that the conditions (2.17) imply that
ek is an evolutionarily stable Nash equilibrium. Thus the assertion follows
from Theorem 2.6. ⊓⊔

2.1.6 Existence and Iterative Calculation of Nash Equilibria

We start with a necessary and sufficient condition for a Nash equilibrium
u∗ ∈ ∆ which is given by

u∗Au∗T = max
i=1,...,n

eiAu∗T . (2.18)

Now we define, for every u ∈ ∆ and every i = 1, . . . , n ,

ϕi(u) = max(0, eiAuT − uAuT ). (2.19)

From (2.18) we then deduce that u∗ ∈ ∆ is a Nash equilibrium, if and only if

ϕi(u
∗) = 0 for i = 1, . . . , n. (2.20)
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With the aid of the functions (2.19) we now define a mapping f : ∆→ ∆ via

fi(u) =
1

1 +
n∑

j=1
ϕ j(u)

(ui + ϕi(u)), i = 1, . . . , n, u ∈ ∆.

This mapping is continuous and by Brouwer’s fixed point theorem it has a
fixed point u∗ ∈ ∆, i.e., f (u∗) = u∗.

Assertion. The condition (2.20) is satisfied, i.e., u∗ is a Nash equilibrium.

Proof. We choose i0 ∈ {1, . . . , n} such that ei0Au∗T = min
u∗

j
>0

e jAu∗T and infer

that

ei0Au∗T ≤ u∗Au∗T =
n∑

j=1

u∗je jAu∗T

which implies ϕi0 (u
∗) = 0.

This implies further that

u∗i0 =
u∗

i0

1 +
n∑

j=1
ϕ j(u∗)

, hence
n∑

j=1

ϕ j(u
∗) = 0 =⇒ (2.20).

⊓⊔

Result. Every fixed point of f is a Nash equilibrium.

Conversely, every Nash equilibrium is a fixed point of f , since (2.20) implies
f (u∗) = u∗. For the calculation of fixed points it is natural to perform an itera-
tion method which starts with an initial state u◦ ∈ ∆ and creates a sequence of
states uk ∈ ∆, k ∈ N0, according to the recursion uk+1 = f (uk), k ∈ N0. If this
sequence converges to some u∗ ∈ ∆, then u∗ is a fixed point of f and hence a
Nash equilibrium.

The question now arises under which conditions the sequence (uk+1 = f (uk))
with u◦ ∈ ∆ converges to some u∗ ∈ ∆. In order to give an answer to this
question we assume that there exists a subset U ⊆ ∆ such that

ϕ j(u) = 0 for all j ∈ J ⊆ {1, . . . , n}, |J| < n, and all u ∈ U.
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Then it follows, for every u ∈ U, that

fi(u) =
ui

1 +
∑

j∈J
ϕ j(u)

, for i ∈ J

and

fi(u) =
ui + ϕi(u)

1 +
∑

j∈J
ϕ(u j)

, for i � J.

This implies, for every u ∈ U, that

fi(u) ≤ ui for all i ∈ J. (2.21)

Assumption: f (U) ⊆ U.

If we define, starting with some u◦ ∈ U, a sequence (uk)k∈N0 in U by uk+1 =

f (uk), k ∈ N0, then it follows from (2.21) that for every i ∈ J there exists
some u∗

i
∈ [0, 1] with u∗

i
= lim

k→∞
uk

i
.

Let us assume that also for every i � J the sequence (uk
i
)k∈N0 converges to

some u∗
i
∈ [0, 1] so that the sequence (uk)k∈N0 converges to some u∗ ∈ Ū ⊆ ∆

which is a fixed point and hence a Nash equilibrium.

In the special case J = {1, . . . , n} \ {i0} for some i0 ∈ {1, . . . , n} we infer from
(2.21) that

fi0(u) = 1 −
∑

j∈J
fi(u) ≥ 1 −

∑

j∈J
ui = ui0

which implies that the sequence (uk
i0
)k∈N0 converges to some u∗

i0
∈ [0, 1].

Further we have

ei0Au∗T − u∗Au∗T =
n∑

j=1

ai0 , ju
∗
j −

n∑

i=1

u∗i

n∑

j=1

ai ju
∗
j

=

n∑

i=1
i�i0

u∗i

n∑

j=1

(ai0 j − ai j)u
∗
j ≤ 0.

Assumption:

ai0 j − ai j > 0 for all i � i0 and j = 1, . . . , n. (2.22)

Then it follows that

u∗
i
= 0 for all i � i0, hence, u∗

i0
= 1 and thus u∗ = ei0 .
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We will demonstrate this by an example: Let n = 3 and

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

9 6 3
8 5 2
7 4 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠
.

Then we obtain

e1AuT = 9u1 + 6u2 + 3u3,

e2AuT = 8u1 + 5u2 + 2u3,

e3AuT = 7u1 + 4u2 + u3,

uAuT = 9u1 + 6u2 + 3u3 − u2 − 2u3.

This implies

e1AuT − uAuT = u2 + 2u3 > 0

for all u ∈ ∆ with u2 + 2u3 > 0 ⇐⇒ u1 − u3 < 1,

e2AuT − uAuT = −1 + u2 + 2u3 < 0

for all u ∈ ∆ with u2 + 2u3 < 1 ⇐⇒ u3 < u1,

e3AuT − uAuT = −2 + u2 + 2u3 < 0

for all u ∈ ∆ with u2 + 2u3 < 2 ⇐⇒ 0 < u2 + 2u1,

and in turn

ϕ1(u) > 0 for all u ∈ ∆ = {u ∈ U |0 < u3 < u1 < 1}

and
ϕ2(u) = ϕ3(u) = 0 for all u ∈ U.

As a consequence we obtain

fi(u) < ui for i = 2, 3 and f1(u) > u1

for all u ∈ U which implies (2.21) with J = {2, 3}. We also obtain f (U) ⊆ U

and the assumption (2.22) is satisfied.

In the general case J ⊆ {1, . . . , n} \ {i0} it follows from the assumption (2.22)
that ei0 which we have shown to be a Nash equilibrium is evolutionarily sta-
ble.
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In particular it follows from (2.22) that

ai0i0 > aii0 for all i � i0

and hence

uAeT
i0
=

n∑

i=1

uiaii0 < ai0i0 = ei0AeT
i0

for all u ∈ ∆ with u � ei0 .

This implies that uAeT
i0
= ei0AeT

i0
is only possible for u = ei0 which shows that

ei0 is evolutionarily stable.

Now let ei0 be an evolutionarily stable Nash equilibrium. By Theorem 2.2
then there exists a relatively open subset U ⊆ ∆ with ei0 ∈ U and

uAuT < ei0AuT for all u ∈ U with u � ei0 .

This implies that

ϕi0(u) > 0 for all u ∈ U with u � ei0 .

Assumption:
ϕi(u) = 0 for all u ∈ U and i � i0.

Then it follows that

fi(u) < ui for all u ∈ U with i � i0

and
fi0 (u) > ui0 for all u ∈ U with u � ei0 .

If we define a Lyapunov function V : ∆→ R by

V(u) = 1 − ui0 , u ∈ ∆.

then it follows that

V(ei0 ) = 0 and V(u) > 0 for all u ∈ ∆ with u � ei0

and

V( f (u)) − V(u) = 1 − fi0(u) − 1 + ui0 < 0 for u ∈ ∆ with u � ei0 .

By Satz 5.8 in [3] (see also Section A.3) ei0 is an asymptotically stable fixed
point of f .

This is in particular the case, if the assumption (2.22) is satisfied and the
above assumption holds true.
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Next we investigate the question under which conditions a Nash equilibrium
u∗ ∈ ∆ is an asymptotically stable fixed point of f which in particular implies
that there is a relatively open neighbourhood W ⊆ ∆ of u∗ such that for every
u◦ ∈ W the sequence (uk+1 = f (uk))k∈N0 converges to u∗.

For this purpose we assume that there is a non-empty subset J of {1, . . . , n}
such that

eiAu∗T < u∗Au∗T for all i ∈ J.

By Lemma 1 it then follows that

u∗i = 0 for all i ∈ J.

Further there exists a relatively open subset U ⊆ ∆ with u∗ ∈ U such that

eiAuT < uAuT for all i ∈ J and all u ∈ U.

This implies
ϕi(u) = 0 for all i ∈ J and all u ∈ U

and hence

fi(u) =
ui

1 +
∑

j�J ϕ j(u)
for all i ∈ J and all u ∈ U.

Assumption: For every u ∈ U there is some i ∈ J with ui > 0 and for every
u ∈ U with u � u∗ there is some j � J with ϕ j(u) > 0.

Then it follows that

fi(u) ≤ ui for all i ∈ J and all u ∈ U with u � u∗

and
fi(u) < ui for some i = i(u) ∈ J.

If we define a Lyapunov function V : U → R by

V(u) =
∑

i∈J
ui, u ∈ U,

then it follows that

V(u∗) = 0 and V(u) > 0 for all u ∈ U with u � u∗

and

V( f (u)) =
∑

i∈J
fi(u) <

∑

i∈J
ui = V(u) for all u ∈ U with u � u∗.



68 2 A Game-Theoretic Evolution Model

Satz 5.8 in [3] (see also Section A.3) then implies that u∗ is an asymptotically
stable fixed point of f .

Finally we consider the case n = 2 with

A =

(

a11 a12

a21 a22

)

and a11 < a21, a22 < a12.

In Section 2.1.3 we have shown that

u∗ =
(
a12 − a22

d
,
a21 − a11

d

)

with

d = (a12 − a22) − (a21 − a11)

is an evolutionarily stable Nash equilibrium.

Further we get

e1AuT − uAuT = d(u1 − 1)(u1 − u∗1)

and

e2AuT − uAuT = du1(u1 − u∗1) = d(1 − u2)(u
∗
2 − u2)

for all u ∈ ∆.

If we put

U = {u ∈ ∆ | u∗1 < u1},

then it follows that

ϕ1(u) = 0 and ϕ2(u) > 0 for all u ∈ U

which implies

f1(u) =
u1

1 + ϕ2(u)
< u1 and f2(u) =

u2 + ϕ2(u)

1 + ϕ2(u)
= 1 − f1(u) > 1 − u1 = u2
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for all u ∈ U. Further we obtain

f1(u) − u∗1 =
(u1 − u∗1)(1 − du1u

∗
1)

1 + du1(u1 − u∗1)
>

(u1 − u∗1)(1 − du∗1)

1 + du1(u1 − u∗1)
≥ 0

for all u ∈ U, if 1 − du∗1 = 1 − a12 + a22 ≥ 0.
This implies f (U) ⊆ U, if 1 − a12 + a22 ≥ 0. If we choose u◦ ∈ U and
define a sequence (uk)k∈N0 in U by uk+1 = f (uk), k ∈ N0, then it follows that
lim
k→∞

uk = û ∈ Ū with f (û) = û. Since û is a Nash equilibrium, it follows by

Theorem 2.1 that û = u∗.
An example:

A =

(

0 1
1 0

)

. Then u∗ = (1
2 ,

1
2 ) and 1 − a12 + a22 = 0.

Let us end this section with a direct method for calculating Nash equilibria.
We start with the statement that û ∈ ∆ is a Nash equilibrium, if and only if

ûAûT = max
i=1,...,n

eiAûT (2.23)

Assertion. û ∈ ∆ is a Nash equilibrium, if and only if

ûk > 0⇒ ekAûT = max
i=1,...,n

eiAûT . (2.24)

Proof. 1. Let (2.23) hold true. Then it follows that

ûAûT =

n∑

k=1
ûk>0

ûk(AûT )k =
n∑

k=1
ûk>0

ûk(ekû
T )k = max

i=1,...,n
eiAûT

i.e., (2.24) is true which implies that û ∈ ∆ is a Nash equilibrium.

2. Conversely let û ∈ ∆ is a Nash equilibrium. Then (2.23) holds true which
implies

max
i=1,...,n

eiAûT = ûAûT =

n∑

k=1

ûk(ekAûT =

n∑

k=1
ûk>0

ûk(ekAûT ).

From this it follows that (2.24) must be true.
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From (2.23) and (2.24) we conclude that û ∈ ∆ is a Nash equilibrium, if and
only if

(ûAûT )e ≥ AûT

and
û(AûT − (ûAûT )eT ) = 0 where e = (1, . . . , 1).

If we put

v̂T = −AûT + (ûAûT )eT ,

then the last two conditions are equivalent to

v̂T ≤ ⊖n = zero vector of Rn and ûv̂T = 0.

These two conditions are therefore necessary and sufficient for û ∈ ∆ to be a
Nash equilibrium. ⊓⊔

Now let uT ∈ Rn
+ with uT

� ⊖n be given such that

vT = −AuT + eT ≥ ⊖n and uvT = 0. (2.25)

Then it follows that

uAuT = ueT > 0.

If we put

û =
1

ueT
u, (2.26)

then we obtain

û ∈ ∆ and ûAû =
1

(ueT )2
uAuT =

1

ueT
.

Further we get

−AûT = − 1

ueT
AuT ≥ − 1

ueT
eT = −(ûAûT )eT

which implies

v̂T = −AûT + (ûAûT )eT ≥ ⊖n



2.1 Evolution-Matrix-Games for one Population 71

and

ûv̂T =
1

ueT
u

(

− 1

ueT
AuT +

1

ueT
eT

)

=
1

(ueT )2
uvT = 0.

Therefore û is a Nash equilibrium.

In order to find a Nash equilibrium û ∈ ∆ we have to find a solution uT ∈ Rn
+

of (2.25) with uT
� ⊖n and to define û by (2.26).

Now let S ⊆ N = {1, . . . , n} be a non-empty subset.
Then we define

AS = (ai j)i, j∈S , eS = (1, . . . , 1)T ∈ R|S |, AN,S = (ai j)i∈N, j∈S .

We assume that AS is non-singular. Then it follows, for a solution uT ∈ Rn
+ of

(2.25) with

ui > 0 for i ∈ S and ui = 0 for i � S , (2.27)

that, for uS = (ui)i∈S ,

AS uS = eS and AN,S uS ≤ eN = (1, . . . , 1)T ∈ Rn

which implies

(uS =) A−1S eS > ⊖|S | and AN,S A−1S eS ≤ eN . (2.28)

If conversely the conditions (2.28) are satisfied, then uT ∈ Rn with

uS = A−1S es > ⊖|S | and uN\S = ⊖|N\S |

is a solution of (2.25) with uT
� ⊖n.

In particular for S = {i0} the conditions (2.28) read

ai0i0 > 0 and a ji0 ≤ ai0i0 for all j ∈ N. (2.29)
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Examples:

1. A =

(

2 4
1 3

)

= BT . Here (2.29) is satisfied for i0 = 1 and u = (1
2 , 0)T is a

solution of (2.25) with uT
� ⊖2.

2. A =

(

1 4
2 3

)

= BT . Here (2.29) is not satisfied for any i ∈ {1, 2}.

For S = {1, 2}, however, we have

A−1S eS =

(
1
5
1
5

)

> ⊖2

and
AN,S A−1S eS = ⊖2,

i.e., the conditions (2.28) are satisfied and u = (1
5 ,

1
5 ) is a solution of (2.25)

with uT
� ⊖2.

The inequality system in (2.25) can be represented by the following tableau:

−u1 −u2 . . . −un

v1 1 a11 a12 . . . a1n

v2 1 a21 a22 . . . a2n

...
...
...
...
. . .
...

vn 1 an1 an2 . . . ann

In order to obtain a solution of (2.25) with (2.27) one has to exchange with
the aid of a Jordan elimination step ui and vi for every i ∈ S . The positive
components of the solution are then in the first column of the tableau.
Let us demonstrate this by the following example: Let n = 3 and

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

7 5 3
8 4 2
9 5 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠
= BT .

Then the beginning tableau reads:

−u1 −u2 −u3

v1 1 7 5 3
v2 1 8 4 2
v3 1 9 5 1
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In order to obtain a solution of (2.25) with (2.27) for S = {1, 3} one has to
exchange u1 with v1 and u3 with v3. This leads to the tableau:

−v1 −u2 −v3

u1
1
10 −

1
20

1
2

3
20

v2 0 1
2 −1 1

2

u3
1
10 −

9
20

1
2 −

7
20

The solution therefore reads u = ( 1
10 , 0,

1
10 )T .

This procedure can also be used in order to find out, for a given non-empty
set S ⊆ N, whether there exists a solution of (2.25) with (2.27) for S or not.

We demonstrate this by the following example: Let n = 5 and

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 2 2 2

0 1 2 2 2

2 2 1 0 0

2 2 0 1 0

2 2 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= BT .

The beginning tableau reads:

−u1 −u2 −u3 −u4 −u5

v1 1 1 0 2 2 2

v2 1 0 1 2 2 2

v3 1 2 2 1 0 0

v4 1 2 2 0 1 0

v5 1 2 2 0 0 1

The condition (2.29) is for no i0 ∈ {1, 2, 3, 4, 5} satisfied. Therefore there is
no solution of (2.25) with (2.27) for S = {i}, i ∈ N.
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For S = {1, 2} one obtains by exchange of u1 with v1 and u2 with v2 the
tableau

−v1 −v2 −u3 −u4 −u5

u1 1 1 0 2 2 2

u2 1 0 1 2 2 2

v3 −3 −2 −2 −7 −8 −8
v4 −3 −2 −2 −8 −7 −8
v5 −3 −2 −2 −8 −8 −7

which shows that there is no solution of (2.25) with (2.27) for S = {1, 2}.
For S = {1, 3} one obtains by exchange of u1 with v1 and u3 with v3 the
tableau

−v1 −u2 −v3 −u4 −u5

u1
1
3 −

1
3

4
3

2
3

2
3

2
3

v2
1
3 −

4
3

7
3

2
3

2
3

2
3

u3
1
3

2
3 − 2

3 −
1
3

4
3

4
3

v4
1
3

2
3 − 2

3 −
4
3 −

7
3

4
3

v5
1
3

2
3 − 2

3 −
4
3

4
3

7
3

The solution of (2.25) therefore reads u = (1
3 , 0,

1
3 , 0, 0)T .

In the same way one obtains 5 further solutions of (2.25) with (2.27) for
S ⊆ N with |S | = 2 which are given by u = (1

3 , 0, 0,
1
3 , 0)T , (1

3 , 0, 0, 0,
1
3 )T ,

(0, 13 ,
1
3 , 0, 0)T , (0, 13 , 0,

1
3 , 0)T and (0, 13 , 0, 0,

1
3 )T .

2.1.7 Zero-Sum Evolution Matrix Games

In this section we consider evolution matrix games with an antisymmetric
payoff matrix A = (a jk), i.e., A = −AT which is equivalent to

ai j = −a ji, for i, j = 1, . . . , n with i � j,

aii = 0 for i = 1, . . . , n.

Such a game is called a zero-sum game.
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Lemma 4. If A is an antisymmetric matrix, then it follows that

uAuT = 0 for every u ∈ ∆.

Proof.

A = −AT implies

uAuT = (uAuT )T = uAT uT = −(uAuT ),

hence uAuT = 0.

⊓⊔

Lemma 5. Let A be antisymmetric. If u∗ ∈ ∆ is an evolutionarily stable Nash

equilibrium, then u∗ ∈ {e1, e2, . . . , en}.

Proof. Let us assume that u∗ � {e1, e2, . . . , en}. Then it follows that |S (u∗)| >
1, i.e., there exists a k ∈ S (u∗) such that ek � u∗. Lemma 1 implies that

ekAu∗T = u∗Au∗T = 0.

Since u∗ is evolutionarily stable, it follows that

u∗AeT
k > ekAeT

k = 0.

On the other hand we have

u∗AeT
k = (u∗AeT

k )T = ekA
Tu∗T = −ekAu∗T = 0

which is a contradiction. Hence the assumption is false. ⊓⊔

Theorem 2.7 Let A be antisymmetric. If el is an evolutionarily stable Nash

equilibrium, then el is the only one.

Proof. Let ek, k � l, be another evolutionarily stable Nash equilibrium. Then
we have

ekAeT
l ≤ elAeT

l = 0 (2.30)

and
elAeT

k ≤ ekAeT
k = 0. (2.31)
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From (2.31) we infer

elAeT
k = (elAeT

k )T = ekA
TeT

l = −ekAeT
l ≤ 0

which implies
ekAeT

l ≥ 0.

From (2.30) it therefore follows that

ekAeT
l = 0.

Since el ∈ ESS, this implies

elAeT
k > ekAeT

k = 0

which contradicts (2.31). ⊓⊔

Theorem 2.8 Let A be antisymmetric. Then ek is an evolutionarily stable

Nash equilibrium, if and only if

aik < 0 for all i = 1, . . . , n with i � k. (2.32)

Proof. 1. Let ek be an evolutionarily stable Nash equilibrium. Then it fol-
lows

aik ≤ akk = 0 for all i = 1, . . . , n

and, if
aik = 0 for some i � k, then aik > aii = 0.

Since aki > 0 implies aik < 0, aik = 0 for some i � k cannot occur. This
shows that (2.32) must hold.

2. Conversely, let (2.32) be true. Then, for every u ∈ ∆with u � ek, it follows
that

uAeT
k =

n∑

i=1

uiaik =
∑

i�k

uiaik < 0 = ekAeT
k

which implies that ek is an evolutionarily stable Nash equilibrium.

⊓⊔

In order to find out whether there exists an evolutionarily stable Nash equilib-
rium one has to check whether there exists a k ∈ {1, . . . , n} such that (2.32) is
satisfied. According to Theorem 2.7 there can only be one such k which can
be easily verified.
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Because of
uAuT = 0 for all u ∈ ∆

the dynamics introduced in Section 2.1.5 has to be modified for zero-sum
games. In [4] it has been proposed to base it on the following recursion:

uk+1
i =

eiAukT
+C

C
uk

i , i = 1, . . . , n, (2.33)

where C > 0 is a constant with

C + eiAuT ≥ 0 for all ei and u ∈ ∆,

which is interpreted as background fitness.

If we define

fA(u)i =
eiAuT +C

C
ui for i = 1, . . . , n and u ∈ ∆, (2.34)

then fA : ∆→ ∆ and the recursion (2.33) can be written in the form

uk+1 = fA(uk).

Further, every population state ei is a fixed point of fA.

Now we can prove the following

Theorem 2.9 Let A be antisymmetric. If u∗ ∈ ∆ is an evolutionarily stable

Nash equilibrium, then u∗ is an asymptotically stable fixed point of fA defined

by (2.34).

Proof. By Lemma 5 we infer that u∗ ∈ {e1, e2, . . . , en}. Hence there exists
k ∈ {1, . . . , n} such that u∗ = ek (by Theorem 2.7 ek is the only one) and from
Theorem 2.8 it follows that

aik < 0 for all i = 1, . . . , n with i � k.

This implies

ekAuT =

n∑

i=1

akiui = −
n∑

i=1

aikui > 0 for all u ∈ ∆ with u � ek

and in turn
fA(u)k > uk for all u ∈ ∆ with 0 < uk < 1.
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If we put G = {u ∈ ∆|uk > 0} and define a Lyapunov function V : Rn → R by
V(u) = 1 − uk, then it follows that, for all u ∈ G,

V(u) ≥ 0 and V(u) = 0 ⇐⇒ u = ek

and, for all u ∈ G with u � ek,

V( fA(u)) − V(u) = 1 − fA(u)k − (1 − uk) = uk − fA(u)k < 0.

This implies by Satz 5.8 in [3] (see also Section A.3) that u∗ = ek is an
asymptotically stable fixed point of fA. ⊓⊔

In addition it follows from fA(G) ⊆ G that

lim
l→∞

f l
A(u) = ek for all u ∈ G.

Conversely we can prove

Theorem 2.10 Let A be antisymmetric and let ek be an attractive fixed point

of fA. Then ek is an evolutionarily stable Nash equilibrium.

Proof. Since ek is an attractor with respect to fA, there exists a relatively open
neighbourhood U ⊆ ∆ of ek with

lim
t→∞

f t
A(u) = ek for all u ∈ U. (2.35)

Now let j ∈ {1, . . . , n} \ {k}. Then we choose u = (u1, . . . , un) ∈ U with
u j > 0, uk > 0, and ui = 0 for i = 1, . . . , n with i � j and i � k.

Then we obtain for every t ∈ N0

f t
A(u)i = 0 for i = 1, . . . , n with i � j and i � k,

f t+1
A (u)k =

ak j f
t
A
(u) j +C

C
f t
A(u)k,

f t+1
A (u) j =

a jk f t
A
(u)k +C

C
fA(u) j.

This implies

f t+1
A (u) j − f t

A(u) j =
f t
A
(u) j f

t
A
(u)k

C
a jk.

Let us assume a jk ≥ 0.
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Then it follows that

f t+1
A (u) j ≥ f t

A(u) j for all t ∈ N0

which implies
lim
t→∞

f t
A(u) j ≥ u j ≥ 0.

This, however, contradicts (2.35) which shows that a jk < 0. Since this holds
true for every j ∈ {1, . . . , n} \ {k}, it follows from Theorem 2.8 that ek is an
evolutionarily stable Nash equilibrium. ⊓⊔

2.2 Evolution-Bi-Matrix-Games for two Populations

2.2.1 The Game and Evolutionarily Stable Equilibria

We consider two populations that fight against each other in the struggle of
life. We assume that the first population applies the strategies I1, I2, . . . , Im
and the second the strategies J1, J2, . . . , Jn. If an individual of the first popu-
lation that applies Ii meets an individual of the second that applies J j the Ii-
individual is given a payoff ai j ∈ R by the J j-individual and the J j-individual
is given a payoff b ji ∈ R by the Ii-individual. All the payoffs then can be
represented by the two matrices

A = (ai j) i=1,...,m
j=1,...,n

and B = (b ji) i=1,...,m
j=1,...,n
.

These define a so called bi-matrix-game whose strategy sets are given by

S 1 =

⎧
⎪⎪⎨

⎪⎪⎩
u = (u1, . . . , um)|0 ≤ ui ≤ 1, i = 1, . . . ,m,

m∑

i=1

ui = 1

⎫
⎪⎪⎬

⎪⎪⎭

and

S 2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v = (v1, . . . , vn)|0 ≤ v j ≤ 1, j = 1, . . . , n,
n∑

j=1

v j = 1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

If two strategies u ∈ S 1 and v ∈ S 2 are given, then the average payoff of v to
u is defined by

uAvT =

m∑

i=1

n∑

j=1

ai juiv j

and the average payoff of u to v by

vBuT =

n∑

j=1

m∑

i=1

b jiuiv j.
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Definition. A pair (û, v̂) ∈ S 1 × S 2 of strategies is called a Nash equilibrium,

if

ûAv̂T ≥ uAv̂T for all u ∈ S 1

and

v̂BûT ≥ vBûT for all v ∈ S 2.

(2.36)

In words this means that a deviation from û or v̂ does not lead to a higher
average payoff.

Let us demonstrate this by an example which is taken from [2]. We consider
the "fight of sexes" in a population of animals. So the two populations we
consider are the males and the females. The males have the two strategies of
being faithful (I1) and of being unfaithful (I2) and the females have the two
strategies of being willing (J1) and of being resistant (J2).

Let us assume that for every successfully grown up child the parents get both
15 points. The costs for growing up a child are assumed to be -20 points and
the costs for a long time of "engagement" are assumed to be -3 points.

If a faithful male meets a resistant female, then the payoff for both is 2 points,
namely 15 (for the child) -10 (for the shared costs of growing up) -3 (for the
long time of "engagement"). If a faithful male meets a willing female, then
they save the long time of "engagement" and get both 5 points. If an unfaithful
male meets a willing female, then he gets 15 points and she 15 − 20 = −5
points. If an unfaithful male meets a resistant female, both get 0 points. This
leads to the two payoff matrices

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

5 2

15 0

⎞

⎟⎟⎟⎟⎟⎟⎠
and B =

⎛

⎜⎜⎜⎜⎜⎜⎝

5 −5
2 0

⎞

⎟⎟⎟⎟⎟⎟⎠

for the males and females, respectively.

The strategy sets are given by

S 1 = {u = (u1, u2)|0 ≤ u1, u2 ≤ 1 and u1 + u2 = 1}

and
S 2 = {v = (v1, v2)|0 ≤ v1, v2 ≤ 1 and v1 + v2 = 1} .

The first condition in (2.36) is equivalent with

ûAv̂T − uAv̂T = (2 − 12v̂1)(û1 − u1) ≥ 0 for all u ∈ S 1
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which is equivalent with

v̂1 =
1

6
, v̂2 =

5

6
which implies ûAv̂T = uAv̂T for all u ∈ S 1

and the second condition in (2.36) is equivalent with

v̂BûT − vBûT = (8û1 − 5)(v̂1 − v1) ≥ 0 for all v ∈ S 2

which is equivalent with

û1 =
5

8
, û2 =

3

8
which implies v̂BûT = vBûT for all v ∈ S 2.

The only Nash equilibrium is therefore given by (û, v̂) ∈ S 1 × S 2 with û =
(
5
8 ,

3
8

)

and v̂ =
(
1
6 ,

5
6

)

and the corresponding average payoffs are

ûAv̂T =
5

2
and v̂BûT =

5

4
.

In this example we have the special case of a Nash equilibrium (û, v̂) ∈ S 1×S 2

with

ûi > 0 for all i = 1, . . . ,m and v̂ j > 0 for all j = 1, . . . , n. (2.37)

In such a case it follows

eiAv̂T = ûAv̂T for all i = 1, . . . ,m

(

where ei = (0, . . . ,
i

1, . . . , 0)

)

and

e jBûT = v̂Bv̂T for all j = 1, . . . , n

(

where e j = (0, . . . ,
j

1, . . . , 0)

)

.

(2.38)
This is a consequence of the following

Theorem 2.11 If the pair (û, v̂) ∈ S 1 × S 2 is a Nash equilibrium, then it

follows that

eiAv̂T = ûAv̂T for all i = 1, . . . ,m with ûi > 0

and

e jBûT = v̂Bv̂T for all j = 1, . . . , n with v̂ j > 0.

(2.39)
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Proof. The first inequality of (2.36) is equivalent to

ûAv̂T = max
i=1,...,m

eiAv̂T . (2.40)

If we define
ei0Av̂T = max

i=1,...,m
eiAv̂T ,

then (2.40) implies
∑

ûi>0

ûi

(

eiAv̂T − ei0Av̂T
)

= 0

which is equivalent with the first equation in (2.39). The proof of the necessity
of the second equation in (2.39) for (û, v̂) to be a Nash equilibrium is the same.

⊓⊔

In the above example we have

Av̂T =

⎛

⎜⎜⎜⎜⎜⎜⎝

5v̂1 + 2v̂2

15v̂1

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

5
2
5
2

⎞

⎟⎟⎟⎟⎟⎟⎠
and BûT =

⎛

⎜⎜⎜⎜⎜⎜⎝

5û1 − 5û2

2û1

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

5
4
5
4

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Under rational behavior (2.36) would be a condition that ensures stability in
the sense that none of the two populations deviates from its strategy û and v̂,
respectively. However, without rational behavior stability has to be guaran-
teed by an additional condition. In analogy to the concept of evolutionarily
stability in the case of one population we make the following

Definition. A Nash equilibrium (û, v̂) ∈ S 1 × S 2 is called evolutionarily sta-

ble, if

ûAv̂T + v̂BûT = uAv̂T + vBûT for some (u, v) ∈ S 1 × S 2 with (u, v) � (û, v̂)

implies

ûAvT + v̂BuT > uAvT + vBuT .

The following theorem shows that evolutionarily stable Nash equilibria can
only be pairs of pure strategies.

Theorem 2.12 If (û, v̂) ∈ S 1 × S 2 is an evolutionarily stable Nash equilib-

rium, then

û ∈ {e1, . . . , em} and v̂ ∈ {e1, . . . , en} .
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Proof. If (û, v̂) ∈ S 1×S 2 is a Nash equilibrium, it follows from Theorem 2.11
that

ûAv̂T + v̂BûT = uAv̂T + vBûT

for all u ∈ S 1 with S (u) ⊆ S (û) and all v ∈ S 2 with S (v) ⊆ S (v̂).
Let us assume that û � {e1, . . . , em}.
Then we choose u ∈ S , with S (u) � S (û) and v = v̂ and conclude (u, v̂) �
(û, v̂) as well as

ûAv̂T + v̂BûT = uAv̂T + v̂BûT .

However, if (û, v̂) is evolutionarily stable, then the last equation implies

ûAv̂T + v̂BuT > uAv̂T + v̂BuT

which leads to a contradiction. Hence û ∈ {e1, . . . , em}. ⊓⊔

In a similar way one shows that v̂ ∈ {e1, . . . , en}.

The Nash equilibrium in the above example can therefore not be evolutionar-
ily stable.

2.2.2 A Dynamical Treatment of the Game

In the following we assume that

uAvT > 0 and vBuT > 0 for all u ∈ S 1 and v ∈ S 2.

Under this assumption we define a mapping f = ( f1, f2) : S 1 × S 2 → S 1 × S 2

by

f1(u, v)i =
eiAvT

uAvT
ui for i = 1, . . . ,m

and

f2(u, v) j =
e jBuT

vBuT
v j for j = 1, . . . , n.

This mapping is continuous and by Brouwer’s fixed point theorem it has a
fixed point. Now let (û, v̂) ∈ S 1×S 2 be a fixed point of f . Then it follows that

eiAv̂T = ûAv̂T for all i ∈ S (û) = {i|ûi > 0}
and

e jBûT = v̂BûT for all j ∈ S (v̂) = { j|v̂ j > 0}.
(2.41)

Conversely, if these two conditions are satisfied, then (û, v̂) ∈ S 1 × S 2 is a
fixed point of f .
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Since by Theorem 2.11 these two conditions are necessary for (û, v̂) to be a
Nash equilibrium, it follows that (û, v̂) is a fixed point of f , if (û, v̂) is a Nash
equilibrium.

Conversely we have the

Theorem 2.13 If (û, v̂) ∈ S 1 × S 2 is a fixed point of f with

S (û) = {1, . . . ,m} and S (v̂) = {1, . . . , n}, (2.42)

then (û, v̂) is a Nash equilibrium.

Proof. If (û, v̂) ∈ S 1 × S 2 is a fixed point of f with (2.42), then (2.41) implies
that (2.38) must be satisfied and in turn

uAv̂T = ûAv̂T for all u ∈ S 1

and
vBûT = v̂BûT for all v ∈ S 2

which shows that (û, v̂) is a Nash equilibrium. ⊓⊔

Next we prove the

Theorem 2.14 If (û, v̂) ∈ S 1 × S 2 is an attractive fixed point of f , i.e. a fixed

point which is an attractor, then (û, v̂) is a Nash equilibrium.

Proof. If (û, v̂) ∈ S 1 × S 2 satisfies the condition (2.42), then the assertion
follows from Theorem 2.13.

If S (û) � {1, . . . ,m} or S (v̂) � {1, . . . , n}, then (2.41) is satisfied. If we then
show

eiAv̂T ≤ ûAv̂T for all i � S (û)

and
e jBûT ≤ v̂BûT for all j � S (v̂),

it follows that (û, v̂) is a Nash equilibrium.

Let us assume that there is some k ∈ {1, . . . ,m} \ S (û) with

ekAv̂T > ûAv̂T . (2.43)
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Since the function g(u, v) = ekAvT − uAv̂T , (u, v) ∈ S 1 × S 2 is continuous,
there exists some ǫ1 > 0 such that

ekAvT > uAvT for all u ∈ S 1 and v ∈ S 2

with ||u − û||2 < ǫ1 and ||v − v̂||2 < ǫ1.
(2.44)

Since (û, v̂) is an attractor, there exists some ǫ2 > 0 such that

lim
t→∞

f t(u, v) = (û, v̂) for all u ∈ S 1 and v ∈ S 2

with ||u − û||2 < ǫ2 and ||v − v̂||2 < ǫ2.
(2.45)

This implies that for every pair

(u, v) ∈ W = {(u, v) ∈ S 1 × S 2| ||u − û||2 < ǫ and ||v − v̂||2 < ǫ}

with ǫ = min(ǫ1, ǫ2) there exists a Tǫ ∈ N such that

|| f t
1(u, v) − û||2 < ǫ for all t ≥ Tǫ .

From (2.44) we infer therefore

f t+1
1 (u, v)k > f t

1(u, v)k > 0 for all (u, v) ∈ W and all t ≥ Tǫ . (2.46)

On the other hand it follows from (2.45) that

lim
t→∞

f t
1(u, v)k = ûk = 0 for all (u, v) ∈ W

which contradicts (2.46). Therefore the assumption (2.43) is false and the
Theorem 2.14 is proved. ⊓⊔

In the following we concentrate on Nash equilibria which are pairs of pure
strategies, since in view of Theorem 2.12 they are the only Nash equilibria
which are evolutionarily stable.

For these we can prove the

Theorem 2.15 Let (ek, el) ∈ S 1 × S 2 be a Nash equilibrium such that there

exists a relatively open subset U ⊆ S 1 with ek ∈ U and a relatively open

subset V ⊆ S 2 with el ∈ V such that

ekAvT > uAvT and elBuT > vBuT

for all (u, v) ∈ U × V with u � ek and v � el.
(2.47)

Then (ek, el) is an asymptotically stable fixed point of f .
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Proof. From (2.47) it follows that

f1(u, v)k > uk and f2(u, v)l > vl

for all (u, v) ∈ U × V with u � ek and v � el.
(2.48)

If we now define a continuous function V : S 1 × S 2 → R by

V(u, v) = 2 − uk − vl for (u, v) ∈ S 1 × S 2,

then it follows that

V( f (u, v)) − V(u, v) = 2 − f1(u, v)k − f2(u, v)l − 2 + uk + vl < 0

for all (u, v) ∈ U × V with u � ek and v � el.

and
V(ek, el) = 0 and V(u, v) > 0, if (u, v) � (ek, el).

By Satz 5.8 in [3] (see also Section A.3) this implies that (ek, el) is an asymp-
totically stable fixed point of f . ⊓⊔

In addition we infer from the proof of Satz 5.8 in [3] the existence of a rela-
tively open subset W ⊆ U × V with (ek, el) ∈ W such that f (W) ⊆ W and

(ek, el) = lim
t→∞

f t(u, v) for all (u, v) ∈ W. (2.49)

Now let us choose arbitrarily some pair (e◦, v◦) ∈ W and define a sequence
((ut, vt))t∈N0 in W via

(ut+1, vt+1) = ( f1(u
t, vt), f2(u

t, vt)), t ∈ N0.

Then it follows from (2.48) that

f t+1
1 (u◦, v◦)k ≥ f t

1(u
◦, v◦)k

and for all t ∈ N0

f t+1
2 (u◦, v◦)l ≥ f t

2(u
◦, v◦)l

which implies

f t
1(u
◦, v◦)k ր 1 and f t

2(u
◦, v◦)l ր 1 for t →∞,

hence,
∑

i�k

f t
1(u
◦, v◦)i ց 0 and

∑

j�l

f t
2(u
◦, v◦) j ց 0 for t → ∞.
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As a result we obtain
lim
t→∞

f t(u◦, v◦) = (ek, el).

An example: Letm = 2, n = 3,

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

5 3 1

6 4 2

⎞

⎟⎟⎟⎟⎟⎟⎠
andB =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 3

5 2

6 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then (e2, e1) ∈ S 1 × S 2 is a Nash equilibrium where

S 1 =
{

u ∈ R2|u1 ≥ 0, u2 ≥ 0, u1 + u2 = 1
}

and
S 2 =

{

v ∈ R3|v1 ≥ 0, v2 ≥ 0, v3 ≥ 0, v1 + v2 + v3 = 1
}

.

Further we obtain

e2AvT
= (0, 1)

⎛

⎜⎜⎜⎜⎜⎜⎝

5v1 + 3v2 + v3

6v1 + 4v2 + 2v3

⎞

⎟⎟⎟⎟⎟⎟⎠
= 6v1 + 4v2 + 2v3

and

uAvT
= (u1, u2)

⎛

⎜⎜⎜⎜⎜⎜⎝

5v1 + 3v2 + v3

6v1 + 4v2 + 2v3

⎞

⎟⎟⎟⎟⎟⎟⎠

= u1(5v1 + 3v2 + v3) + u2(6v1 + 4v2 + 2v3) = 6v1 + 4v2 + 2v3 − u1,

hence,
e2AvT − uAvT

= u1 > 0, if u1 > 0.

Finally we obtain

e1BuT
= (1, 0, 0)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4u1 + 3u2

5u1 + 2u2

6u1 + u2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 4u1 + 3u2 = 3+ u1

and

vBuT
= (v1, v2, v3)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4u1 + 3u2

5u1 + 2u2

6u1 + u2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= v1(4u1 + 3u2) + v2(5u1 + 2u2) + v3(6u1 + u2)

= 3v1 + 2v2 + v3 + u1(v1 + 3v2 + 5v3),
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hence,

e1BuT − vBuT = 3 + u1 − 3v1 − 2v2 − v3 − u1(v1 + 3v2 + 5v3)

= 3 + u1(−2v2 − 4v4) − 3v1 − 2v2 − v3

> 3 − 3v1 − 3v2 − 3v3 = 0, if u1 <
1
2 .

This implies that the conditions (2.47) are satisfied for

U =

{

u ∈ S 1|0 ≤ u1 <
1

2

}

and V = S 2.

By Theorem 2.15 it follows that (e2, e1) is an asymptotically stable fixed point
of f . Further (2.49) holds true for k = 2, l = 1 and W = U × V .

2.2.3 Existence and Iterative Calculation of Nash Equilibria

For every pair (u, v) ∈ S 1 × S 2 we define

ϕ1 j(u, v) = max(0, e jAvT − uAvT ) for j = 1, . . . ,m

and
ϕ2k(u, v) = max(0, ekBuT − vBuT ) for k = 1, . . . , n

and with these functions we define a mapping f = ( f1, f2) : S 1×S 2 → S 1×S 2

by

f1(u, v) j =
1

1 +
m∑

i=1
ϕ1i(u, v)

(u j + ϕ1 j(u, v)) for j = 1, . . . ,m

and

f2(u, v)k =
1

1 +
n∑

l=1
ϕ2l(u, v)

(vk + ϕ2k(u, v)) for k = 1, . . . , n.

This mapping is continuous and by Brouwer’s fixed point theorem it has a
fixed point. For every fixed point of f we have the following

Theorem 2.16 (û, v̂) ∈ S 1 × S 2 is a fixed point of f , if and only if (û, v̂) is a

Nash equilibrium.
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Proof. 1. Let (û, v̂) ∈ S 1 × S 2 be a fixed point of f , i.e.,

f1(û, v̂) j = û j for j = 1, . . . ,m and f2(û, v̂)k = v̂k for k = 1, . . . , n.

Let û j > 0 for some j ∈ {1, . . . ,m} (at least one must exists).

Then we choose j1 ∈ {1, . . . ,m} such that

e j1Av̂T = min{e jAv̂T |û j > 0}

and conclude ϕ1 j1 (û, v̂) = 0 because of e j1Av̂T ≤ ûAv̂T =
∑

û j>0
û je jAv̂T .

This in turn implies

ϕ1i(û, v̂) = 0 for i = 1, . . . ,m.

Similarly one proves that

ϕ2l(û, v̂) = 0 for l = 1, . . . , n.

The last two conditions are equivalent to (û, v̂) being a Nash equilibrium.

2. Conversely, let (û, v̂) ∈ S 1 × S 2 be a Nash equilibrium. Then the last two
conditions hold true which implies that (û, v̂) is a fixed point of f .

⊓⊔

According to Theorem 2.16 the existence of Nash equilibria is ensured. But
it also gives rise to an iterative method for calculating Nash equilibria. Let us
demonstrate this by the following example (see Section 2.2.2):
Let m = 2, n = 3,

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

5 3 1

6 4 2

⎞

⎟⎟⎟⎟⎟⎟⎠
and B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 3

5 2

6 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then we obtain, for every (u, v) ∈ S 1 × S 2,

e1AvT = 5v1 + 3v2 + v3,

e2AvT = 6v1 + 4v2 + 2v3,

uAvT = 6v1 + 4v2 + 2v3 − u1

which implies

e1AvT − uAvT = −1 + u1 ≤ 0

and

e2AvT − uAvT = u1.
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Therefore we have

ϕ11(u, v) = 0 and ϕ12(u, v) = u1 > 0

for all (u, v) ∈ S 1 × S 2 with 0 < u1 ≤ 1

and further

f1(u, v)1 =
u1

1 + u1
, f1(u, v)2 =

1

1 + u1
= 1 − f1(u, v)1. (2.50)

Next we obtain, for every (u, v) ∈ S 1 × S 2,

e1BuT = 4u1 + 3u2 = 3 + u1,

e2BuT = 5u1 + 2u2 = 2 + 3u1,

e3BuT = 6u1 + u2 = 1 + 5u1,

vBuT = 3v1 + 2v2 + v3 + u1(v1 + 3v2 + 5v3)

which implies

e1BuT − vBuT = 3 − u1(2v2 + 4v3) − 3v1 − 2v2 − v3

= 3 − 3v1 − 2(u1 + 1)v2 − (4u1 + 1)v3 > 0, if u1 <
1

2
,

e2BuT − vBuT = 2 + u1(2v1 − 2v3) − 3v1 − 2v2 − v3

< 2 + v1 − v3 − 3v1 − 2v2 − v3 = 0, if v1 > v3 and u1 <
1

2
,

e3BuT − vBuT = 1 + u1(4v1 + 2v2) − 3v1 − 2v2 − v3

< 1 + 2v1 + v2 − 3v1 − 2v2 − v3 = 0, if u1 <
1

2
,

hence,

ϕ21(u, v) > 0, ϕ22(u, v) = ϕ23(u, v) = 0

for all (u, v) ∈ S 1 × S 2 with u1 <
1
2 and v1 > v3.

(2.51)

This implies

f2(u, v)1 =
v1 + ϕ21(u, v)

1 + ϕ21(u, v)
= 1 − f2(u, v)2 − f2(u, v)3,

f2(u, v)2 =
v2

1 + ϕ21(u, v)
, (2.52)

f2(u, v)3 =
v3

1 + ϕ21(u, v)

for all (u, v) ∈ S 1 × S 2 with u < 1
2 and v1 > v3.
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From (2.50), (2.51) and (2.52) it follows that

f1(u, v)1 < u1, f1(u, v)2 > u2,

f2(u, v)2 < v2, f2(u, v)3 < v3 ⇒ f2(u, v)1 > v1

for all (u, v) ∈ U = {(u, v) ∈ S 1 × S 2|0 < u1 <
1

2
, v1 > v3.}

Further it follows that f (U) ⊆ U.

If we now choose arbitrarily some (u◦, v◦) ∈ U and define a sequence
((ut, vt))t∈N0 in U via

(ut+1, vt+1) = f (ut, vt), t ∈ N0, (2.53)

then it follows that

ut
1 → 0, ut

2 → 1, vt
1 → 1, vt

2 → 0, vt
3 → 0 (Exercise)

hence (ut, vt) → (e2, e1) = f (e2, e1). By Theorem 2.16 (e2, e1) is a Nash
equilibrium.

This example is a special case of the following general situation:

Let U ⊆ S 1 × S 2 be such that there exists some j0 ∈ {1, . . . ,m} and some
k0 ∈ {1, . . . , n} with

ϕ1 j(u, v) = 0 for all j � j0, ϕ1 j0 > 0

and

ϕ2k(u, v) = 0 for all k � k0, ϕ2k0 (u, v) > 0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

for all (u, v) ∈ U.

Then it follows that

f1(u, v) j =
u j

1 + ϕ1 j0(u, v)
for j � j0,

f1(u, v) j0 =
u j0 + ϕ1 j0 (u, v)

1 + ϕ1 j0(u, v)
= 1 −

∑

j� j0

f1(u, v) j,

f2(u, v)k =
vk

1 + ϕ2k0(u, v)
for k � k0,

f2(u, v)k0 =
vk0 + ϕ2k0 (u, v)

1 + ϕ2k0(u, v)
= 1 −

∑

k�k0

f2(u, v)k



92 2 A Game-Theoretic Evolution Model

and in turn that

f1(u, v) j < u j for all j � j0 ⇒ f1(u, v) j0 > u j0 ,

f2(u, v)k < vk for all k � k0 ⇒ f2(u, v)k0 > vk0

for all (u, v) ∈ U.

Assumption: f (U) ⊆ U.

If we now choose some (u0, v0) ∈ U and define a sequence ((ut, vt))t∈N0 in U

via (2.53) then it follows that

(ut, vt)→ (û, v̂) = f (û, v̂) ∈ Ū and (û, v̂) is an Nash equilibrium.

This implies in particular that

e j0Av̂T − ûAv̂T =

n∑

k=1

a j0kv̂k −
m∑

j=1

û j

n∑

k=1

a jk v̂k

=

m∑

j=1

û j

⎛

⎜⎜⎜⎜⎜⎜⎝

n∑

k=1

a j0kv̂k −
n∑

k=1

a jk v̂k

⎞

⎟⎟⎟⎟⎟⎟⎠

=
∑

j� j0

û j

n∑

k=1

(a j0k − a jk)v̂k ≤ 0.

Assumption 1:

a j0k − a jk > 0 for all j � j0 and k = 1, . . . , n.

This implies

û j = 0 for all j � j0, hence û j0 = 1, and therefore û = e j0 .

This again implies

ek0 BeT
j0
− v̂BeT

j0
= bk0 j0 −

∑

k�k0

bk j0 v̂k

=
∑

k�k0

(

bk0 j0 − bk j0

)

v̂k ≤ 0.

Assumption 2:
bk0 j0 − bk j0 > 0 for all k � k0.

This implies v̂k = 0 for all k � k0, hence v̂k0 = 1, and therefore v̂ = ek0 . In
the above example the Assumption 1 holds for j0 = 2 and the Assumption 2
holds for j0 = 2 and k0 = 1.
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2.2.4 A Direct Method for the Calculation of Nash Equilibria

We start with the following necessary and sufficient condition for a Nash
equilibrium (û, v̂) ∈ S 1 × S 2 which is equivalent to the definition (2.36),
namely,

ûAv̂T = max
i=1,...,m

eiAv̂T

and

v̂BûT = max
j=1,...,n

e jBûT ⇔ ûBT v̂T = max
j=1,...,n

ûBTeT
j .

This condition again is equivalent to

ûk > 0⇒ ekAv̂T = max
i=1,...,m

eiAv̂T = ûAv̂T

and

v̂l > 0⇒ ûBTeT
l = max

j=1,...,n
ûBTeT

j = v̂BûT

and in turn to

(ûAv̂T )em ≥ Av̂T ,

û
(

Av̂T − (ûAv̂T )em
)

= 0 with em = (1, . . . , 1)T ∈ Rm

and
(v̂BûT )en ≥ BûT ,

v̂
(

BûT − (v̂BûT )en
)

= 0 with en = (1, . . . , 1)T ∈ Rn.

If one defines

χ̂ = −Av̂T + (ûAv̂T )em and ŷ = −BûT + (v̂BûT )en,
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then it follows that

⎛

⎜⎜⎜⎜⎜⎜⎝

χ̂

ŷ

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

0 −A

−B 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

ûT

v̂T

⎞

⎟⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎜⎜⎝

(ûAv̂T )em

(v̂BûT )en

⎞

⎟⎟⎟⎟⎟⎟⎠
≥
⎛

⎜⎜⎜⎜⎜⎜⎝

⊖m

⊖n

⎞

⎟⎟⎟⎟⎟⎟⎠

and χ̂T ûT + ŷT v̂T = 0⇔ χ̂T ûT = 0 and ŷT v̂T = 0.

(2.54)

These two conditions are then necessary and sufficient for (û, v̂) ∈ S 1 × S 2 to
be a Nash equilibrium.
Now let (uT , vT ) ∈ Rm

+ × Rn
+, uT

� ⊖m, vT
� ⊖n be a solution of

⎛

⎜⎜⎜⎜⎜⎜⎝

χ

y

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

0 −A

−B 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

uT

vT

⎞

⎟⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎜⎜⎝

em

en

⎞

⎟⎟⎟⎟⎟⎟⎠
≥
⎛

⎜⎜⎜⎜⎜⎜⎝

⊖m

⊖n

⎞

⎟⎟⎟⎟⎟⎟⎠
,

χT uT = 0 and yTvT = 0.

(2.55)

Then we have (em)TuT > 0 and (en)TvT > 0 and it follows that

(em)T uT = uAvT and (en)TvT = vBuT .

If we put

û =
1

(em)TuT
u and v̂ =

1

(en)TvT
v, (2.56)

then it follows that (û, v̂) ∈ S 1 × S 2 and

−Av̂T +
1

(en)TvT
em = −Av̂T + (ûAv̂T )em ≥ ⊖m,

û
(

−Av̂T + (ûAv̂T )em
)

︸�������������������︷︷�������������������︸

χ̂

=
1

(em)TuT
u

(

−A
1

(en)TvT
vT + (ûAv̂T )em

)

=
1

(em)TuT

1

(en)T vT
u
(

−AvT + em
)

︸���������︷︷���������︸

χ

= 0.



2.2 Evolution-Bi-Matrix-Games for two Populations 95

Similarly it follows that

−BûT + (v̂BûT )en ≥ ⊖n and v̂
(

−BûT + (ûBv̂T )en
)

︸������������������︷︷������������������︸

y

= 0.

The conditions (2.54) are therefore satisfied and (û, v̂) ∈ S 1 × S 2 is a Nash
equilibrium.

So in order to find a solution (û, v̂) ∈ S 1 × S 2 of (2.54) one has to find a
solution (uT , vT ) ∈ Rm

+ × Rn
+, uT

� ⊖m, vT
� ⊖n of (2.55) and to define (û, v̂)

by (2.56).
For this purpose we represent the inequality systems in (2.55) by the follow-
ing two tableaus:

−v1 −v2 . . . −vn

χ1 1 a11 a12 . . . a1n

χ2 1 a21 a22 . . . a2n

...
...
...
...
. . .
...

χm 1 am1 am2 . . . amn

−u1 −u2 . . . −um

y1 1 b11 b21 . . . bm1

y2 1 b12 b22 . . . bm2
...
...
...
...
. . .

...

yn 1 b1n b2n . . . bmn

At the beginning of the solution procedure in the left tableau some v j1 is ex-
changed with some χi1 (with the aid of a Jordan elimination step) such that in
the new tableau the first column only exists of non-negative elements. Then in
the right tableau the variable ui1 is exchanged with some y j2 such that the first
colum of the new tableau only consists of non-negative elements. If j2 = j1,
then the procedure stops and the positive components of the solution of (2.55)
can be found in the first column of the corresponding tableau.

If j2 � j1, then in the left tableau the variable v j2 is exchanged with some
χi2 (or vi2 ) such that the first column of the new tableau only exists of non-
negative elements. Then in the right tableau ui2 is exchanged with some y j3
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such that the first column of the new tableau only exists of non-negative el-
ements. If j3 = j1, then the procedure stops and the positive components of
the solution of (2.55) can be found in the first column of the corresponding
tableau.
If j3 � j1 then the procedure is continued in the same way as above.

We demonstrate the procedure by the following example: Let m = n = 3 and

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 0

0 3 0

3 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 2

0 3 2

0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then the initial tableaus read:

−v1 −v2 −v3

χ1 1 2 2 0

χ2 1 0 3 0

χ3 1 3 0 1

−u1 −u2 −u3

y1 1 3 0 0

y2 1 0 3 0

y3 1 2 2 1

If we exchange in the left tableau v1 with χ3 and in the right tableau u3 with
y3, then we obtain the tableaus

−χ3 −v2 −v3

χ1
1
3 -2

3 2 -2
3

χ2 1 0 3 0

v1
1
3

1
3 0 1

3

−u1 −u2 −y3

y1 1 3 0 0

y2 1 0 3 0

u3 1 2 2 1
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In this first step we have j1 = 1, i1 = 3 and j2 = 3 � j1. Therefore we
exchange in the left tableau v3 with v1 and obtain the tableau

−χ3 −v2 −v1

χ1 1 0 2 2

χ2 1 0 3 0

v3 1 1 0 3

Here the procedure can stop and we obtain uT = vT = (0, 0, 1)T as solution of
(2.55). One can also continue with an exchange of v2 with χ2 and u2 with y2.
This leads to the two tableaus

−χ3 −χ2 −v1

χ1
1
3 0 -2

3 2

v2
1
3 0 1

3 0

v3 1 1 0 3

−u1 −y2 −y3

y1 1 3 0 0

u2
1
3 0 1

3 0

u3
1
3 2 − 2

3 1

and delivers uT = (0, 13 ,
1
3 )T and vT = (0, 13 , 1)T as solution of (2.55).

The same solution is obtained, if one starts the procedure with j1 = 2 or
j1 = 3.
Starting with j1 = 2 one additionally obtains the solution uT = vT =

(0, 13 , 0)T .

The existence of a solution (uT , vT ) ∈ Rm
+ × Rn

+, u
T
� ⊖n, v

T
� ⊖m of (2.55)

necessarily required that

uAvT = ((em)TuT ) > 0 and vBuT = ((en)T vT ) > 0.

This is guaranteed, if A > 0m×n and B > 0n×m, i.e. all elements of A and B are
positive.
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This, however, can be assumed without loss of generality. In order to see that
we choose some k > 0 such that

kE + A > 0m×n and kET + B > 0n×m

where

E =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . 1
...
. . .
...

1 . . . 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Rm·n.

Now let (uT , vT ) ∈ Rm
+ × Rn

+, u
T
� ⊖m, v

T
� ⊖n be a solution of

χ = −(kE + A)vT + em ≥ ⊖m,

y = −(kET + B)uT + en ≥ ⊖n,

χTuT = 0 and yTvT = 0.

(2.57)

Then it follows that

k =
1

(en)TvT
− 1

((em)TuT )((en)TvT )
uAvT

=
1

(em)TuT
− 1

((em)TuT )((en)TvT )
vBuT .

If we put

û =
1

(em)TuT
u and v̂ =

1

(en)TvT
v, (2.58)

then it follows that

ûT ≥ ⊖m, (em)T ûT = 1, v̂T ≥ ⊖n, (en)TvT = 1
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and

Av̂T =
1

(en)TvT
AvT ≤ 1

(en)TvT
(em − kEvT ) = (

1

(en)TvT
− k)em = (ûAv̂T )em,

BûT =
1

(em)TuT
BuT ≤ 1

(em)T uT
(en − kEuT ) = (

1

(em)TuT
− k)en = (v̂bûT )en,

i.e., the inequations in (2.54) hold true.
The last condition of (2.54) is also satisfied.
So in order to find a solution (û, v̂) ∈ S 1 × S 2 one has to find a solution
(uT , vT ) ∈ Rm

+ × Rn
+ with uT

� ⊖n and vT
� ⊖m of (2.57) and to define û and

v̂ by (2.58).
Let us demonstrate this by the following example:
Let m = 3, n = 2 and

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 5

1 4

2 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 −1 3

−1 1 2

⎞

⎟⎟⎟⎟⎟⎟⎠
.

If we choose k = 2, then

A + kE =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 7

3 6

4 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B + kET =

⎛

⎜⎜⎜⎜⎜⎜⎝

2 1 5

1 3 4

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The initial tableaus read

−v1 −v2

χ1 1 1 7

χ2 1 3 6

χ3 1 4 4

( j1 = 2)

−u1 −u2 −u3

y1 1 2 1 5

y2 1 1 3 4

(i1 = 1)
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If we choose j1 = 2 and i1 = 1, i.e., we exchange in the left tableau v2 with
x1, we obtain the tableau

−v1 −χ1

v2
1
7

1
7

1
7

χ2
1
7

15
7 − 6

7

χ3
3
7

24
7 − 4

7

( j2 = 1)

and we obtain j2 = 1 and i2 = 2. If we exchange in the right tableau u1 with
y1, we get the tableau

−y1 −u2 −u3

u1
1
2

1
2

1
2

5
2

y2
1
2 −

1
2

5
2

3
2

(i2 = 2)

If we choose in the second left tableau j3 = 2 = j1 and i3 = 2 = i2, i.e. we
exchange v1 with χ2, we get the tableau

−χ2 −χ1

v2
2
15 −

1
15

1
5

v1
7
15

7
15 −

2
5

χ3
1
5 −

8
5

4
5

( j3 = 1 = j1)

If we exchange in the second right tableau u2 with y2, then we obtain the
tableau

−y1 −y2 −u3

u1
2
5

3
5 − 1

5
11
5

u2
1
5 −

1
5

2
5

3
5

(i3 = 2 = i2)

The procedure now ends with the solution

u = (
2

5
,
1

5
, 0), v = (

1

15
,

2

15
)

of (2.55).
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If we choose j1 = 1 and i3 = 3, i.e., we exchange in the left initial tableau v1

with χ3, we obtain the tableau

−χ3 −v2

χ1
3
4 −

1
4 6

χ2
1
4 −

3
4 3

v1
1
4

1
4 1

( j2 = 1 = j1)

and we obtain j2 = 1 = j1 and i2 = 3 = i1. If we exchange in the right initial
tableau u3 with y1, we get the tableau

−u1 −u2 −y1

u3
1
5

2
5

1
5

1
5

y2
1
5 −

3
5

11
5 −

4
5

(i2 = 3 = i1)

The procedure now ends with the solution

u = (0, 0,
1

5
), v = (

1

4
, 0)

of (2.55).
One can also start the procedure with the right initial tableau. In this case one
arrives at the two solutions

u = (0,
1

3
, 0), v = (0,

1

7
)

and

u = (0, 0,
1

5
), v = (

1

4
, 0)

of (2.55).
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3

Four Models of Optimal Control in Medicine

3.1 Controlled Growth of Cancer Cells

In chemotherapeutic treatment of cancer one normally applies medication in
periods of time with intermediate interruptions for recreation, since the stress
on the body of the patient during the treatment is very high so that a recreation
phase is required before the treatment is continued.

During the phases of recreation the healthy cells which are also damaged as
well as the cancer cells are renewed so that every time one has to restart on a
certain level of cancer cells that has to be brought to a lower level.

So the question arises whether by a permanent treatment without interruptions
it is possible to achieve a final success. But before deciding for such a radical
process one would like to estimate the chances of success: Since one cannot
rely on experimental findings, it seems to be reasonable to make a thought
experiment and to draw certain conclusions from it.

At first one needs an assumption on the uncontrolled growth of cancer. In
[3] George W. Swan assumed that without therapeutic interaction the number
p = p(t) grows according to Gompertz’s law (see Section 1.1)

ṗ(t) = λp(t)ln
θ

p(t)
(3.1)

with an initial condition
p(0) = p0 > 0.

This law is of the form (1.14) with f (p(t)) given by (1.16) where

λ0 = λ(lnθ − lnp0) and γ = λ. (3.2)
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In Section 1.1 we have shown that the law (3.1) describes S-shaped or logistic

growth between the limits p0 and θ = p0exp
(
λ0
λ

)

, if we assume that

λ0 > λ > 0. (3.3)

This will be done in the following.

In order to describe the effect of the medication to the growth of cancer cells
it is assumed in [3] that this effect can be described in a mathematical model
in the form g(v(t)) · p(t), where v(t) is the dose of the medicament at the time t

and g(v(t)) is the destruction rate per cancer cell and time unit. Instead of (3.1)
one then obtains for the controlled growth of cancer the differential equation

ṗ(t) =

[

λln
θ

p(t)
− g(v(t))

]

p(t). (3.4)

About the form of the function g = g(v) one can only make reasonable as-
sumptions. If one assumes that g(0) = 0 and that g approaches a limit by
strictly growing, then a reasonable choice can be

g(v) =
k1v

k2 + v
(3.5)

with positive constants k1 and k2. Inserting this into (3.4) leads to

ṗ(t) =

[

λln
θ

p(t)
− k1v(t)

k2 + v(t)

]

p(t). (3.6)

The next question is how to measure the effect of the medication on the body.

If one chooses a time interval [0, T ] for the treatment, then the value
∫ T

0
C(t)dt

with

C(t) = concentration of the medicament in the body at time t

could be a reasonable measure. But since C(t) is unknown, in [3] the value

I(v) =

∫ T

0
v(t)dt (3.7)

is proposed.

In order to estimate the success of the therapeutic treatment in the framework
of this mathematical model we now consider the following
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Problem of optimal control: For a given time T > 0 we prescribe a value

p(T ) = pT ∈ (0, θ). (3.8)

Then we look for a (continuous) control function v = v(t), t ∈ [0, T ] such that
the corresponding solution p = p(t) of the differential equation (3.6) with
p(0) = p0 > 0 satisfies the condition (3.8) and the effect I(v) on the body
given by (3.7) is as small as possible.

Without the end condition (3.8) the control problem obviously has the trivial
solution v ≡ 0 which means no treatment.

If, however, a treatment takes place, then in addition we have the condition
that

v(t) > 0 for all t ∈ [0, T ]. (3.9)

This control problem now is not solved but the existence of a solution is
assumed and with the aid of necessary conditions it is shown how such an
optimal solution looks like.

For this purpose we at first introduce new variables and functions by the fol-
lowing definitions

τ = λt, y(τ) = ln
p(t)

θ
, u(τ) =

v(t)

k2
. (3.10)

If we put δ = k1
λ
, then the differential equation (3.6) is transferred into

y′(τ) =
dy

dτ
(τ) = −y(τ) − δu(τ)

1 + u(τ)
. (3.11)

and the corresponding initial and end conditions read

y(0) = y0 = ln
p0

θ
, y(λT ) = yT = ln

pT

θ
. (3.12)

The control problem now consists of finding a function u ∈ C[0, λT ] with

u(τ) > 0 for all τ ∈ [0, λT ]. (3.13)
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such that (3.11) and (3.12) are satisfied and

J(u) =

∫ λT

0
u(τ)dτ

is minimal.

The necessary conditions for optimal controls (see, e.g. [1]) imply that a so-
lution of the problem is necessarily of the form

u(τ) = Ce
τ
2 − 1, τ ∈ [0, λT ], (3.14)

with C > 1. The corresponding solution y = y(τ) of (3.11) with y = y0 reads

y(τ) = y0e
−τ −

∫ τ

0

δu(s)

1 + u(s)
es−τds

= y0e
−τ − δ

C

∫ τ

0
(C − e−

s
2 )esdse−τ

= −δ + (y0 + δ)e
−τ +

2δ

C
(e−

τ
2 − e−τ).

Assumption:

y0 + δ > 0. (3.15)

This assumption seems to be reasonable because of

lim
τ→∞

y(τ) = −δ. (3.16)

From (3.15) and (3.16) it then follows that

−δ < y(λT ) < y0, (3.17)

if T > 0 is sufficiently large. In order to see this we also need that assumption
(3.15) implies

y(τ) > −δ + (y0 + δ)e
−τ > −δ for all τ ∈ [0, λT ]. (3.18)

In addition it follows that for every choice of yT ∈ (−δ, y0) the end condition
y(λT ) = yT can be satisfied for a suitable choice of C > 1.
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Result: Every optimal control has necessarily the form (3.14) and under the
assumption (3.15) there exists a solution of (3.11) and (3.12) for yT ∈ (−δ, y0)
and sufficiently large T > 0.

The inequalities (3.17) show that the value y(λT ) is always larger than −δ and
hence the value p(T ) = θey(λT ) larger than θe−δ.

So the permanent therapy with a minimal total dose of the medicament cannot
make the number of cancer cells arbitrarily small.

The question now comes up to what extent this result depends on the special
assumptions that were made in the mathematical model. In particular it is the
question what happens when one replaces the Gompertz’s law (3.1) by the
general growth law (1.14) which reads

ṗ(t) = f (p(t))p(t). (3.19)

Here we assume that the function f : R+ → R is continuously differentiable
with

f ′(p) =
d f

dp
(p) < 0 for all p ∈ R+

which implies that f is strictly decreasing. Further it is assumed that

f (0) ∈ (0,∞) and f (pm) = 0

for some pm > 0 and that for every p0 ∈ (0, pm) it is true that

lim
q→pm−0

∫ q

p0

dq

f (q)q
= ∞.

In Section 1.1 it is shown that the solution p = p(t) of (3.19) with

p(0) = p0 ∈ (0, pm) (3.20)

stays in (0, pm) and satisfies

lim
t→∞

p(t) = pm.
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We also replace the destruction rate (3.5) by a twice differentiable function
g : R+ → R+ which satisfies

g(0) = 0, g(v) ≤ k1 for all v ≥ 0 (3.21)

and
g′(v) > 0, g′′(v) < 0 for all v ≥ 0, (3.22)

where k1 > 0 is a given constant. The function (3.5) has all these properties.

Let us repeat now the

Problem of optimal control: Given the time T > 0 of therapy and the aim
pT > 0 with pT < p0. Find a control function v ∈ C[0, T ] with

v(t) > 0 for all t ∈ [0, T ]

such that the corresponding solution p = p(t) of

ṗ(t) =
[
f (p(t)) − g(v(t))

]
p(t) (3.23)

for t ∈ (0, T ) which satisfies the initial condition p(0) = p0 also satisfies the
end condition

p(T ) = pT (3.24)

and minimizes

J(v) =

∫ T

0
v(t) dt.

We again assume the existence of an optimal pair (p̂, v̂) ∈ C1[0, T ] × C[0, T ]
and try to find information about an optimal therapy by using necessary con-
ditions for an optimal pair. Here we use a multiplier rule as necessary condi-
tion for optimal pairs (see again [1] and Section A.1.2) from which we derive
the existence of a function λ̂ ∈ C1[0, T ] and a number λ̂0 > 0 such that

˙̂λ(t) = − [ f ′(p̂(t))p̂(t) + f (p̂(t)) − g(v̂(t))
]

λ̂(t) (3.25)

for all t ∈ (0, T ) and

−g′(v̂(t))p̂(t)λ̂(t) = λ̂0 (3.26)

for all t ∈ [0, T ].
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If we define
λ̃(t) = p̂(t)λ̂(t) for t ∈ [0, T ],

then we obtain from (3.25) (using (3.23))

˙̃λ(t) = − f ′(p̂(t))p̂(t)λ̃(t) for all t ∈ (0, T ) (3.27)

and (3.26) reads

−g′(v̂(t))λ̃(t) = λ̂0. (3.28)

From (3.27) we infer

λ̃(t) = λ̃(0)exp

(

−
∫ t

0
f ′(p̂(s))p̂(s) ds

)

, t ∈ [0, T ],

with

λ̃(0) = − λ̂0

g′(v̂(0))
< 0.

Further (3.28) implies

g′(v̂(t)) = − λ̂0
λ̃(t)
= − λ̂0
λ̃(0)

exp

(∫ t

0
f ′(p̂(s))p̂(s) ds

)

= D exp

(∫ t

0
f ′(p̂(s))p̂(s) ds

)

for all t ∈ [0, T ] where

D = − λ̂0
λ̃(0)

= g′(v̂(0)) > 0.

If h : g′(R+) → R+ is the inverse function of g′ : R+ → R+, then it follows
that

v̂(t) = h

(

D exp

(∫ t

0
f ′(p̂(s))p̂(s) ds

))

, t ∈ [0, T ]. (3.29)

In addition it follows from (3.22) that

D < g′(0). (3.30)

An optimal therapy v̂ = v̂(t) is therefore necessarily of the form (3.29).
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This leads to some implications:

1. In general an optimal therapy v̂ = v̂(t) is a feedback control which is
coupled with the size p̂(t) of the tumor at the time t unless the untreated
tumor growth were such that

f ′(p̂(s))p̂(s) = δ = constant for s ∈ [0, T ].

This is the case with Gompertz’s growth law (3.1) where we have

f ′(p)p = −λ for all p ∈ (0,∞)

which implies that

v̂(t) = h
(

De−λt
)

, t ∈ [0, T ].

2. Since g′(v̂(t)) strictly decreases with increasing t (because of f ′(p̂(s))p̂(s) <
0 for all s ∈ [0, T ]) and likewise h is a strictly decreasing function, v̂(t)
strictly increases with increasing t.

If we choose in particular the destruction rate g : R+ → R+ according to
(3.5), then we obtain:

g′(v) =
k1k2

(k2 + v)2
for v ≥ 0,

hence g′(0) = k1
k2

and

h(w) =

√

k1k2

w
− k2

for all w ∈ g′(R+) = (0, k1
k2

].

This implies in the case of Gompertz’s growth law that

v̂(t) =

√

k1k2

D
eλt − k2 for all t ∈ [0, T ]

and the condition (3.30) is equivalent to

v̂(t) > 0 for all t ∈ [0, T ].
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The question for which T > 0 and pT ∈ (0, p0) the end condition p̂(T ) = pT

can be satisfied cannot be answered for the general model in a similarly easy
way as in the case of the Gompertz growth law and the choice of g according
to (3.5). Yet for the general model it is possible to derive a necessary condition
for the choice of pT .

For that purpose we again start with the differential equation (3.23) and the
initial condition p(0) = p0 where v ∈ C[0, T ] with

v(t) > 0 for t ∈ [0, T ]

is chosen arbitrarily. We then look for some p ∈ C1[0, T ] with

p(t) ∈ (0, pm) for all t ∈ [0, T ]

which solves (3.23) and the initial condition p(0) = p0.

Because of g(v) ≤ k1 for all v ≥ 0 every such p ∈ C1[0, T ] necessarily
satisfies

ṗ(t) > −k1p(t) for all t ∈ [0, T ],

hence
p(t) > p0e

−k1t for all t ∈ [0, T ].

This implies for p(T ) = pT that

pT > p0e
−k1T .

3.2 Optimal Administration of Drugs

There are different ways by which drugs can be introduced into the body.
Drugs can be injected directly into a body tissue such as a muscle, a vein or
an artery. Drugs can also be given orally, then passing through the stomach
and being absorbed through the walls of the intestines. In the first case the
drug arrives directly at that part of the body where it is needed. This process
can be modeled by one-compartment model which is presented in Section
3.2.1. In the second case a drug does not immediately arrive at its destination.
This process can be modeled by a two-compartment model which is described
in Section 3.2.2
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3.2.1 A One-Compartment Model

We assume that the drug is given in dosages ui at different times ti, for i =

0, . . . ,N−1 with t0 = 0 < t1 < . . . < tN−1 < T . After the administration of the
dosage ui it is assumed that the amount χ(t) of the drug decays exponentially
within the time interval ti ≤ t ≤ ti+1 for i = 0, . . . ,N − 1 (where tN = T )
according to the law

χ(t) = χie
−a(t−ti) for ti ≤ t ≤ ti+1. (3.31)

It is desired that the whole time interval [0, T ] a certain drug level χd is main-
tained. This is of course not possible. Graphically we have the following sit-
uation: Figure 3.1.

Fig. 3.1. Temporal Development of Drug Amount

This leads to the problem how to choose the dosages ui in such a way that the
integral

∫ T

0
(χ(t) − χd)

2dt (3.32)

is minimized.
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Because of
∫ T

0
(χ(t) − χd)

2dt =

N−1∑

i=0

∫ ti+1

ti

(χ(t) − χd)
2dt

the minimization of the integral (3.32) is equivalent to
∫ ti+1

ti

(χ(t) − χd)
2dt → Min for i = 0, . . . ,N − 1 (3.33)

where χ(t) is given by (3.31). This in turn is equivalent to

2

∫ ti+1

ti

(

χie
−a(t−ti) − χd

)

e−a(t−ti)dt = 0 for i = 0, . . . ,N − 1

and leads to

χi =
2χd

1+exp(−a(ti+1−ti))

and

χ(t) = 2χd

1+exp(−a(ti+1−ti))e
−a(t−ti) for ti ≤ t ≤ ti+1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3.34)

and i = 0, . . . ,N.

From the above graphic we deduce then that

u0 = χ0 =
2χd

1 − exp(−at1)
,

u1 = χ1 − χ(t1) =
2χd

1 − exp(−a(t2 − t1))
− 2χd

1 + exp(−at1)
e−at1 ,

=
2χd(1 − exp(−at2))

(1 + exp(−a(t2 − t1)))(1 + exp(−at1))
.

In general we obtain

ui = χi − χ(ti) =
2χd(1 − exp(−a(ti+1 − ti−1)))

(1 + exp(−a(ti+1 − ti)))(1 + exp(−a(ti − ti−1)))

for i = 1, . . . ,N − 1.
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3.2.2 A Two-Compartment Model

Now we assume that the drug is administered into a first compartment in
dosages ai at times ti = iT for some T > 0 and i = 0, . . . ,N − 1. After
the administration of the dosage ai it is assumed that the amount χ(t) of the
drug decays exponentially within the time interval iT ≤ t < (i + 1)T for
i = 0, . . . ,N − 1 according to the law

χ1(t) = χ1ie
−k1(t−iT ) for iT ≤ t < (i + 1)T.

For i = 0 we then have

χ1(t) = a0e
−k1t for 0 ≤ t < T.

This gives
χ1(T ) = a0e

−k1T + a1.

This implies

χ1(t) =
(

a0e
−k1T + a1

)

e−k1(t−T ) for T ≤ t < 2T

and

χ1(2T ) =
(

a0e
−k1T + a1

)

e−k1T + a2 = χ1(T )e−kT + a2

=
(

a0 + a1e
k1T

)

e−k1(2T ) + a2.

In general one obtains

χ1(t) =
(

a0 + a1e
k1T + · · · + aie

k1(iT )
)

e−k1t

for iT ≤ t < (i + 1)T and i = 0, . . . ,N − 1.

After getting in the first compartment the drug is absorbed by the second com-
partment where it also decays exponentially. This process can be described
by the differential equation

χ̇2(t) = k1χ1(t) − k2χ2(t), t ∈ (0,NT ), (3.35)

with the initial condition
χ2(0) = 0 (3.36)

where χ2(t) denotes the amount of drug in the second compartment at the
time t. We assume that k2 > k1 > 0.
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The solution of (3.35), (3.36) can be given explicitly by

χ2(t) = k1

∫ t

0
e−k2(t−s)χ1(s) ds

= k1e
−k2t

∫ t

0
ek2 sχ1(s) ds

= k1e
−k2t

{

χ10

∫ T

0
e(k2−k1)sds + χ11

∫ 2T

T

e(k2−k1)s+k1Tds

+ · · · + χ1i

∫ t

iT

e(k2−k1)s+k1(iT )ds

}

=
k1

k2 − k1
e−k2t

{

χ10(e
(k2−k1)T − 1) + χ11(e

(k2−k1)(2T )+k1T − ek2T )

+ · · · + χ1i(e
(k2−k1)t+k1(iT ) − ek2(iT ))

}

for iT ≤ t < (i + 1)T, in particular

χ2(t) =
k1

k2 − k1
(e(k2−k1)T − 1)e−k2 tχ10 for 0 ≤ t < T,

χ2(t) =
k1

k2 − k1

[

(e(k2−k1)T − 1)e−k2 tχ10 + (e(k2−k1)(2T )+k1T − ek2T )e−k2tχ11

]

for T ≤ t < 2T.

Again it is desired that during the whole time interval [0,N · T ] in the sec-
ond compartment a certain drug level α > 0 is maintained. Of course this is
impossible. We therefore replace this requirement by the minimization of the
integral

∫ NT

0
(χ2(t) − α)2dt =

N−1∑

i=0

∫ (i+1)T

iT

(χ2(t) − α)2dt.

Let us consider the case N = 2 which is representative for a general N ∈ N.
In this case we have to minimise

f (χ10, χ11) =

∫ T

0

(

k1

k2 − k1
(e(k2−k1)T − 1)e−k2 tχ10 − α

)2

dt

+

∫ 2T

T

(
k1

k2 − k1
(e(k2−k1)T − 1)e−k2 tχ10

+
k1

k2 − k1
(e(k2−k1)(2T )+k1 − ek2T )e−k2tχ11 − α)2dt.



116 3 Four Models of Optimal Control in Medicine

If we put

A0 =
k1

k2 − k1
(e(k2−k1)T − 1) and A1 =

k1

k2 − k1
(e(k2−k1)(2T )+k1T − ek2T ),

then we obtain

f (χ10, χ11) =

∫ T

0

(

A0e
−k2 tχ10 − α

)2
dt+

∫ 2T

T

(

A0e
−k2tχ10 + A1e

−k2tχ11 − α
)2

dt.

Necessary and sufficient for a minimum point (χ̂10, χ̂11) is that

fχ10(χ̂10, χ̂11) = fχ11(χ̂10, χ̂11) = 0.

This leads to the linear system

∫ 2T

0
A2

0e
−2k2tdtχ̂10 +

∫ 2T

T

A1A0e
−2k2tdtχ̂11 = α

∫ 2T

0
A0e

−2k2 tdt,

∫ 2T

T

A0A1e
−2k2tdtχ̂10 +

∫ 2T

T

A2
1e
−2k2tdtχ̂11 = α

∫ 2T

T

A1e
−2k2 tdt.

From the unique solution (χ̂10, χ̂11) we then obtain the dosages a0 and a1 via

a0 = χ̂10 and a0e
−k1T + a1 = χ̂11 ⇒ a1 = χ̂11 − χ̂10e

−k1T .

The unique solution (χ̂10, χ̂11) of the above linear system can be easily calcu-
lated and reads

χ̂10 =
2α

A0(1 + e−k2T )
and χ̂11 =

2α

A1(1 + e−k2T )
(ek2T − 1).

χ̂10 is also a minimal point of

∫ T

0
(χ2(t) − α)2dt =

∫ T

0

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k1

k2 − k1
(e(k2−k1)T − 1)

︸���������������������︷︷���������������������︸

A0

e−k2tχ10 − α

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

dt
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and χ̂11 can be obtained by minimising

∫ 2T

T

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0e
−k2tχ̂10 +

k1

k2 − k1
(e(k2−k1)(2T )+k1T − ek2T )

︸���������������������������������︷︷���������������������������������︸

A1

e−k2tχ11 − α

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

dt.

If we put

Ai =
k1

k2 − k1
(e(k2−k1)(i+1)T+k1(iT ) − ek2(iT )), for i = 0, . . . ,N − 1,

then the minimisation of

∫ NT

0
(χ2(t) − α)2dt

turns out to be equivalent to solving the linear system

∫ NT

0

A2
0e
−2k2 tdtχ̂10 +

∫ NT

T

A1A0e
−2k2 tdtχ̂11 + · · · +

∫ NT

(N−1)T

AN−1A0e
−2k2 tdtχ̂1N−1 = α

∫ NT

0

A0e
−k2 tdt,

∫ NT

T

A0A1e
−2k2 tdtχ̂10 +

∫ NT

T

A2
1e
−2k2 tdtχ̂11 + · · · +

∫ NT

(N−1)T

AN−1A1e
−2k2 tdtχ̂1N−1 = α

∫ NT

T

A1e
−k2 tdt,

...
...

...
...

∫ NT

(N−1)T

A0AN−1e
−2k2 tdtχ̂10 +

∫ NT

(N−1)T

A1AN−1e
−2k2tdtχ̂11 + · · · +

∫ NT

(N−1)T

A2
N−1e

−2k2 tdtχ̂1N−1 = α

∫ NT

(N−1)T

AN−1e
−k2 tdt,

The unique solution χ̂10, . . . , χ̂1N−1 of this system can be obtained by succes-
sive elimination of χ̂1N−1, . . . , χ̂11 until one equation for χ̂10 is left. χ̂10 is than
inserted into the second equation which is solved to give χ̂11 and so forth. The
dosages a0, a1, . . . , aN−1 can be calculated recursively via

a0 = χ̂10, a0e
−k1T+a1 = χ̂11, . . . , a0e

−k1(N−1)T+a1e
−k1(N−2)T+· · ·+aN−1 = χ̂1N−1.
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Let us demonstrate this in the caseN = 3 where the linear system is given as
follows:
∫ 3T

0
A2

0e−2k2tdtχ̂10 +

∫ 3T

T
A1A0e−2k2tdtχ̂11 +

∫ 3T

2T
A2A0e−2k2tdtχ̂12 = α

∫ 3T

0
A0e−k2tdt,

∫ 3T

T
A1A0e−2k2tdtχ̂10 +

∫ 3T

T
A2

1e−2k2tdtχ̂11 +

∫ 3T

2T
A1A2e−2k2tdtχ̂12 = α

∫ 3T

T
A1e−k2tdt,

∫ 3T

2T
A2A0e−2k2tdtχ̂10 +

∫ 3T

2T
A2A1e−2k2tdtχ̂11 +

∫ 3T

2T
A2

2e−2k2tdtχ̂12 = α

∫ 3T

2T
A2e−k2tdt.

Elimination of χ̂12 leads to thesystem

∫ 2T

0
A0e−2k2tdtχ̂10 +

∫ 2T

T
A1e−2k2tdtχ̂11 = α

∫ 2T

0
e−k2tdt,

∫ 2T

T
A0e−2k2tdtχ̂10 +

∫ 2T

T
A1e−2k2tdtχ̂11 = α

∫ 2T

T
e−k2tdt,

∫ 3T

2T
A2A0e−2k2tdtχ̂10 +

∫ 3T

2T
A2A1e−2k2tdtχ̂11 +

∫ 3T

2T
A2

2e−2k2tdtχ̂12 = α

∫ 3T

2T
A2e−k2tdt.

Elimination of χ̂11 leads to thesystem
∫ T

0
A0e−2k2tdtχ̂10 = α

∫ T

0
e−2k2tdt,

∫ 2T

T
A0e−2k2tdtχ̂10 +

∫ 2T

T
A1e−2k2tdtχ̂11 = α

∫ 2T

T
e−2k2tdt,

∫ 3T

2T
A2A0e−2k2tdtχ̂10 +

∫ 3T

2T
A2A1e−2k2tdtχ̂11 +

∫ 3T

2T
A2

2e−2k2tdtχ̂12 = α

∫ 3T

2T
A2e−2k2tdt.

From the first we obtain

χ̂10 =
2α

A0(1+ e−k2T )
.

Insertion ofχ̂10 into the second equation and solving for ˆχ11 leads to

χ̂11 =
2α

A1(1+ e−k2T )
(ek2T − 1).



3.3 Optimal Control of Diabetes Mellitus 119

Insertion of χ̂10 and χ̂11 into the third equation and solving for χ̂12 leads to

χ̂12 =
2α

A2(1 + e−k2T )
(1 − ek2T + e2k2T ).

3.3 Optimal Control of Diabetes Mellitus

3.3.1 The Model

Diabetes mellitus is caused by the fact that the hormone insulin is produced in
an insufficient amount in the pancreas and thereby no more sufficiently takes
care of the process by which glucose is transported from the blood into the
body cells or is stored in the liver in the form of glycogen. This has the effect
that the glucose level in the blood gets too high which can cause a deadly
coma.

Let us denote the glucose concentration in the blood at time t by G(t) and the
hormone concentration by H(t). Then the temporal development of G(t) and
H(t) can be described by the following differential equations:

Ġ(t) = f1(G(t),H(t)) + p(t),

Ḣ(t) = f2(G(t),H(t))
(3.37)

where p = p(t) denotes the increase of glucose concentration by the intake of
sugar.

We assume that without the intake of sugar, i.e., p ≡ 0, two steady states
values G0 and H0 will turn up with

f1(G0,H0) = 0 and f2(G0,H0) = 0. (3.38)

We further assume that G and H do not deviate far from G0 and H0 and define
the difference functions

g(t) = G(t) −G0, h(t) = H(t) − H0. (3.39)
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By linearising (3.37) we obtain the differential equations

ġ(t) = −m1g(t) − m2h(t) + p(t),

ḣ(t) = −m3h(t) + m4g(t)
(3.40)

where

m1 = −
∂ f1

∂G
(G0,H0) > 0, m2 = −

∂ f1

∂H
(G0,H0) > 0,

m3 = −
∂ f2

∂H
(G0,H0) > 0, m4 = −

∂ f2

∂G
(G0,H0) > 0.

m1 is positive because in case h ≡ 0 and p ≡ 0 the glucose concentration
in the blood decreases by the transfer of glucose into the body cells and its
storage in the liver. m2 is positive because the presence of insulin promotes
the decrease of glucose in the blood. m3 is positive because in case g ≡ 0 the
insulin concentration decreases as a consequence of matter transformation.
m4 is positive because in case g > 0 the production of the hormone in the
pancreas increases with growing g.

In the case of diabetes mellitus it is assumed that no production of the hor-
mone insulin takes place which in the above model is only possible, if m4 = 0.
In this case the insulin concentration decreases exponentially according to

h(t) = h(0)em3t for t ≥ 0.

The influence of m2h(t) in the first equation (3.40) on the reduction of glucose
in the blood decreases rapidly and the influence of the external supply of
glucose described by p(t) becomes dominant. In order to prevent an excess of
glucose on the blood therefore an external supply of glucose is annihilated,
i.e., p ≡ 0, and the body is given an external supply of insulin in a time
dependent concentration u = u(t). On putting χ1 ≡ g, χ2 ≡ h we obtain then
instead of (3.40) the equations

χ̇1(t) = −m1χ1(t) − m2χ2(t),

χ̇2(t) = −m3χ2(t) + u(t), t > 0,
(3.41)

with the initial conditions

χ1(0) = g0, χ2(0) = h0 (3.42)
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where g0, h0 > 0 are prescribed values. The aim of the model now consists
of choosing the external supply of insulin in such a way that within a given
time interval [0, T ] a prescribed average level gd of glucose concentration in
the blood is nearly maintained and the injected amount of insulin is small.
This leads to the minimisation of the integral

J(u) =

∫ T

0
(χ1(t, u) − gd)

2 + ζu(t)2dt (3.43)

by a suitable choice of u ∈ C[0, T ] where χ1(·, u) denotes the corresponding
solution of (3.41), (3.42) and ζ > 0 is a suitable weight factor.

3.3.2 On the Approximate Solution of the Model Problem

For a given u ∈ C[0, T ] the unique solution of the second equation (3.41)
under the initial condition χ2(0) = h0 reads

χ2(t) = e−m3t

{

h0 +

∫ t

0
em3 su(s) ds

}

, t ∈ [0, T ].

Insertion into the first equation of (3.41) leads to

χ̇1(t) = −m1χ1(t) − m2e
−m3t

{

h0 +

∫ t

0
em3 su(s) ds

}

, t ∈ (0, T ].

This equation, together with the initial condition χ1(0) = g0 has the unique
solution

χ1(t) = e−m1t

{

g0 − m2

∫ t

0
e(m1−m3)s

{

h0 +

∫ s

0
em2τu(τ) dτ

}

ds

}

= e−m1t

{

g0 − m2h0

∫ t

0
e(m1−m3)sds

}

− e−m1tm2

∫ t

0
e(m1−m3)s

∫ s

0
em3τu(τ) dτds.

We assume that m1 � m3. If we then define

χ0
1(t) = e−m1t

{

g0 −
m2h0

m1 − m3
(e(m1−m3)t − 1)

}
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and
K(t − s) =

m2

m1 − m3
(e(m1−m3)(t−s) − 1)e−m1(t−s),

we obtain

χ1(t) = χ
0
1(t) −

∫ t

0
K(t − s)u(s) ds, t ∈ [0, T ].

We also assume that gd = 0. Then the above minimisation problem consists
of finding some u ∈ C[0, T ] which minimizes

J(u) =

∫ T

0

(

χ0
1(t) −

∫ t

0
K(t − s)u(s) ds

)2

+ ζu(t)2dt.

In order to solve this problem approximately we replace C[0, T ] by a suitable
n-dimensional subspace Un which is spanned by the functions u1, . . . , un ∈
C[0, T ] and consists of all linear combinations

u(t) =
n∑

j=1

α ju j(t), t ∈ [0, T ].

Insertion into J(u) gives

f (α1, . . . , αn) = J

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j=1

α ju j

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

∫ T

0

⎛

⎜⎜⎜⎜⎜⎜⎜⎝
χ0

1(t) −
n∑

j=1

w j(t)α j

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

2

+ ζ

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j=1

u j(t)α j

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

2

dt,

if one puts

w j(t) =

∫ t

0
K(t − s)u j(s) ds for t ∈ [0, T ] and j = 1, . . . n.

Instead of finding some û ∈ C[0, T ] with

J(û) ≤ J(u) for all u ∈ C[0, T ]

we now look for some vector α̂ = (α̂1, . . . , α̂n)T ∈ Rn such that

f (α̂) ≤ f (α) for all α ∈ Rn. (3.44)
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With this α̂ we then replace û by
n∑

j=1
α̂ ju j.

Necessary and sufficient for α̂ ∈ Rn to satisfy (3.44) are the conditions

fα j
(α̂) = 2

∫ T

0

⎛

⎜⎜⎜⎜⎜⎜⎝
χ0

1(t) −
n∑

k=1

wk(t)α̂k

⎞

⎟⎟⎟⎟⎟⎟⎠
(−w j(t)) + ζ

⎛

⎜⎜⎜⎜⎜⎜⎝

n∑

k=1

uk(t)α̂k

⎞

⎟⎟⎟⎟⎟⎟⎠
u j(t) dt = 0

for j = 1, . . . , n.

These are equivalent with the linear system

n∑

k=1

[∫ T

0
ζu j(t)uk(t) + w j(t)wk(t)dt

]

α̂k =

∫ T

0
χ0

1(t)w j(t)dt for j = 1, . . . , n.

Because of the positive definiteness of the matrix

B = (B jk) with B jk =

∫ T

0
ζu j(t)uk(t) + w j(t)wk(t)dt, j, k = 1, . . . n

this system has a unique solution (α̂1, . . . , α̂n) which gives

χ1(t) = χ
0
1(t) −

n∑

j=1

α̂ jw j(t) = χ
0
1(t) −

∫ T

0
K(t − s)û(s) ds

where û(t) =
n∑

j=1

α̂ ju j(t).

Further we obtain

∫ T

0

⎛

⎜⎜⎜⎜⎜⎜⎝
χ0

1(t) −
n∑

k=1

wk(t)α̂k

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝
−

n∑

j=1

w j(t)α̂ j

⎞

⎟⎟⎟⎟⎟⎟⎟⎠
+ ζ

⎛

⎜⎜⎜⎜⎜⎜⎝

n∑

k=1

uk(t)α̂k

⎞

⎟⎟⎟⎟⎟⎟⎠

2

dt = 0

which implies that

J(û) =

∫ T

0

⎛

⎜⎜⎜⎜⎜⎜⎝
χ0

1(t) −
n∑

k=1

wk(t)α̂k

⎞

⎟⎟⎟⎟⎟⎟⎠
χ0

1(t) dt.

An Example: Let n = 2, u1(t) = 1, u2(t) = t for t ∈ [0, T ]. We choose h0 = 0.
Then

χ0
1(t) = e−m1tg0 for t ∈ [0, T ].
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Further we have

w1(t) =
m2

m1 − m3

∫ t

0

(

e−m3(t−s) − e−m1(t−s)
)

ds

=
m2

m1 − m3

(

1

m3
− 1

m1
− 1

m3
e−m3t +

1

m1
e−m1t

)

and

w2(t) =
m2

m1 − m3

∫ t

0

(

e−m3(t−s) − e−m1(t−s)
)

s ds

=
m2

m1 − m3

⎛

⎜⎜⎜⎜⎜⎝

t

m3
− t

m1
− 1

m2
3

(1 − e−m3t) +
1

m2
1

(1 − e−m1t)

⎞

⎟⎟⎟⎟⎟⎠ .

if we put ζ = 1, then the linear system

(

T +

∫ T

0
w1(t)

2dt

)

α̂1 +

(

T 2

2
+

∫ T

0
w1(t)w2(t) dt

)

α̂2 =

∫ T

0
e−m1tg0w1(t) dt,

(

T

2
+

∫ T

0
w1(t)w2(t) dt

)

α̂1 +

(

T 3

3
+

∫ T

0
w2(t)

2dt

)

α̂2 =

∫ T

0
e−m1tg0w2(t)dt,

has to be solved in order to obtain the optimal control

û(t) = α̂1 + α̂2t, t ∈ [0, T ]

and the corresponding glucose concentration

χ1(t) = χ
0
1(t) + α̂1w1(t) + α̂2w2(t), t ∈ [0, T ].

3.3.3 A Time-Discrete Diabetes Model

In order to set up a time-discrete diabetes model we introduce a time stepsize
∆t > 0 such that, for a suitable N ∈ N, we have N · ∆t = T . Then we replace
in (3.41) the derivatives χ̇1(t) and χ̇2(t) by difference quotients

χ1(t + ∆t) − χ1(t)

∆t

and
χ2(t + ∆t) − χ2(t)

∆t
.
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If we define tk = k · ∆t, χk
1 = χ1(tk), χk

2 = χ2(tk), and uk = u(tk) for k =

0, . . . ,N, then instead of (3.41) we obtain the difference equations

χk+1
1 = (1 − m1∆t)χ

k
1 − m2∆tχ

k
2,

χk+1
2 = (1 − m3∆t)χ

k
2 + ∆tu

k

for k = 0, . . . ,N − 1.

(3.45)

In addition we have the initial conditions

χ0
1 = g0 and χ0

2 = h0. (3.46)

For a given vector (u0, . . . , uN−1), by (3.45), (3.46) we then can compute re-
cursively the two vectors (χ1

1, . . . , χ
N
1 ) and (χ1

2, . . . , χ
N
2 ). Finally we replace

the integral (3.43) by the finite sum

JN(χ1
1, . . . , χ

N
1 ; u0, . . . uN−1) =

N−1∑

k=0

[

(χk+1
1 − gk+1

d )2 + ζ(uk)2
]

(3.47)

where gd
k
= gd(tk) for k = 1, . . . ,N are the values for a desired average glucose

level at the times tk, k = 1, . . . ,N.

Now we are looking for a vector (u0, . . . , uN−1) of insulin concentrations
which are given to the body at the times t0, . . . , tN−1 such that for the val-
ues (χ1

1, . . . , χ
N
1 ) of glucose concentrations which result from (3.45), (3.46)

at the times t1, . . . , tN the value (3.47) becomes as small as possible. For the
solution of this problem we apply the Lagrangean multiplier rule.

For that purpose we rewrite the difference equation (3.45) in the form

g1(χ
k+1
1 , χ

k
1, χ

k
2) = χ

k+1
1 − (1 − m1∆t)χ

k
1 − m2∆tχ

k
2 = 0,

g2(χ
k+1
2 , χ

k
2, u

k) = χk+1
2 − (1 − m3∆t)χ

k
2 − ∆tu

k = 0

for k = 0, . . . ,N − 1.

(3.48)

and assume, for k = 0, the values χ0
1 = g0 and χ0

2 = h0 to be inserted.
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Then we define a Lagrange function by

L(χ1, χ2, u, λ1, λ2)

= L(χ1
1, . . . , χ

N
1 , χ

1
2, . . . , χ

N
2 , u

0, . . . , uN−1, λ11, . . . λ
N
1 , λ

1
2, . . . λ

N
2 )

= JN(χ1
1, . . . , χ

N
1 , u

0, . . . , uN−1, ) +
N−1∑

k=0

λk+11 g1(χ
k+1
1 , χ

k
1, χ

k
2)

+

N−1∑

k=0

λk+12 g2(χ
k+1
2 , χ

k
2, u

k)

where λk1, λ
k
2 for k = 1, . . .N are the so called Lagrangean multipliers.

The Lagrangean multiplier rule then reads as follows:

If, for χ̂k+1
1 , χ̂

k+1
2 , û

k, k = 0, . . . ,N − 1, the conditions (3.48) are satisfied, then

JN(χ̂1
1, . . . , χ̂

N
1 , û

0, . . . , ûN−1) is minimal, if there exist multipliers λ̂k+11 , λ̂
k+1
2 , k =

0, . . . ,N − 1, such that

∂L

∂χk+1
1

(χ̂1, χ̂2, û, λ̂1, λ̂2) = 0,

∂L

∂χk+2
2

(χ̂1, χ̂2, û, λ̂1, λ̂2) = 0,

∂L

∂uk
(χ̂1, χ̂2, û, λ̂1, λ̂2) = 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

for k = 0, . . . ,N − 1.

In explicit form these conditions read

2(χ̂k+1
1 − gk+1

d ) + λ̂k+11 − (1 − m1∆t)λ̂
k+2
1 = 0,

−m2∆tλ̂
k+2
1 + λ̂k+12 − (1 − m3∆t)λ̂

k+2
2 = 0,

2ζûk − ∆tλ̂k+12 = 0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

for k = 0, . . . ,N − 1.

(3.49)
where λ̂N+1

1 = λ̂N+1
2 = 0.

In addition we have the conditions

χ̂k+1
1 − (1 − m1∆t)χ̂

k
1 − m2∆tχ̂

k
2 = 0,

χ̂k+1
2 − (1 − m3∆t)χ̂

k
2 − ∆tu

k = 0

for k = 0, . . . ,N − 1.

(3.50)

where χ̂0
1 = g0 and χ̂0

2 = h0.
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If one eliminates ûk from the third equation in (3.49) via

ûk =
1

2ζ
∆tλ̂k+12 (3.51)

and inserts it into the second equation of (3.50), then one obtains form (3.49)
and (3.50) the linear system

2(χ̂k+1
1 − gk+1

d ) + λ̂k+11 − (1 − m1∆t)λ̂
k+2
1 = 0,

−m2∆tλ̂
k+2
1 + λ̂k+12 − (1 − m3∆t)λ̂

k+2
2 = 0,

χ̂k+1
1 − (1 − m1∆t)χ̂

k
1 − m2∆tχ̂

k
2 = 0,

χ̂k+1
2 − (1 − m3∆t)χ̂

k
2 +

(∆t)2

2ζ
λ̂k+12 = 0

for k = 0, . . . ,N − 1.

(3.52)

where χ̂0
1 = g0, χ̂

0
2 = h0 and λ̂N+1

1 = λ̂N+1
2 = 0.

In order to solve the above problem one then has to solve the linear system
(3.52) for χ̂k+1

1 , χ̂
k+1
2 , λ̂

k+1
1 , λ̂

k+1
1 , for k = 0, . . .N − 1 and define ûk for k =

0, . . .N − 1 by (3.51).

In [2] it is shown how the linear system (3.52) can be solved by a shooting
method.

3.3.4 An Exact Solution of the Model Problem

The minimization of J on C[0, T ] can be reduced to the solution of a Fred-
holm integral equation on C[0, T ] which is uniquely solvable with the aid of
successive approximation, if ζ is large enough. In order to show that we first
observe that J is Fréchet differentiable on C[0, T ] and the Fréchet derivative
J
′
u : C[0, T ]→ C[0, T ] is given by

J
′
u(h) = 2

∫ T

0

[

χ0
1(t) +

∫ t

0
K(t − s)u(s) ds

] ∫ t

0
K(t − s)h(s) ds + ζu(t)h(t) dt

for every h ∈ C[0, T ] and u ∈ C[0, T ].
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If we define

L(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

K(t − s) for 0 ≤ s ≤ t,

0 for t < s ≤ T

and put

v(t) = χ0
1(t) +

∫ t

0
K(t − s)u(s) ds

= χ0
1(t) +

∫ T

0
L(t, s)u(s) ds,

then it follows that

∫ T

0
v(t)

∫ t

0
K(t − s)h(s) ds =

∫ T

0
v(t)

∫ T

0
L(t, s)h(s) ds dt

=

∫ T

0
h(s)

∫ T

0
L(t, s)v(t) dt ds

and we obtain

J
′
u(h) = 2

∫ T

0
h(s)

[∫ T

0
L(t, s)

(

χ0
1(t) +

∫ T

0
L(t, s)u(s) ds

)

dt + ζu(s)

]

ds

= 2

∫ T

0
h(s)

[∫ T

0
L(t, s)

(

χ0
1(t) + L̃(u)(t)

)

dt + ζu(s)

]

ds,

if we put

L̃(u)(t) =

∫ T

0
L(t, s)u(s) ds, t ∈ [0, T ].

Since J is strictly convex on C[0, T ], û ∈ C[0, T ] satisfies

J(û) ≤ J(u) for all u ∈ C[0, T ],
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if and only if

J
′

û(h) = 0 for all h ∈ C[0, T ]

which is equivalent with

∫ T

0
L(t, s)

(

χ0
1 + L̃(û)(t)

)

dt + ζû(s) = 0 for all s ∈ [0, T ].

Now we have

∫ T

0
L(t, s)L̃(û)(t)dt =

∫ T

0
L(t, s)

∫ T

0
L(t, τ)u(τ)dτ dt

=

∫ T

0

∫ T

0
L(t, s)L(t, τ) dt u(τ) dτ

=

∫ T

0
K̃(s, τ)u(τ) dτ,

if we put

K̃(s, τ) =

∫ T

0
L(t, s)L(t, τ) dt, s, τ ∈ [0, T ].

With

f (s) = −
∫ T

0
L(t, s)χ0

1(t) dt, s ∈ [0, T ],

we then obtain the Fredholm integral equation

ζû(s) +

∫ T

0
K̃(s, τ)û(τ) dτ = f (s), s ∈ [0, T ]

as a necessary and sufficient condition for û ∈ C[0, T ] being a minimizer of
J on C[0, T ]. This equation has a unique solution, if

1

ζ
max
s∈[0,T ]

∫ T

0

∣
∣
∣K̃(s, τ)

∣
∣
∣ dτ < 1,

and this solution can be obtained by the method of successive approximation.
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3.4 Optimal Control Aspects of the Blood Circulation in the

Heart

3.4.1 Blood Circulation in the Heart

In this section we give a verbal description of the blood circulation in the
heart. Venous blood enters the right atrium and passes in the right ventricle.
During a contraction of the heart by which the valve that separates the right
atrium and the right ventricle is closed the blood is pushed into the pulmonary
artery. The pulmonary artery branches to the right and left lungs where the
blood is oxygenated and carbon dioxide is extracted. Then the blood returns
through the pulmonary veins into the left half of the heart and flows from the
left atrium into the left ventricle. Contraction of the heart pushes the blood
into the aorta and from there into the rest of the arterial and venous system.

The periodic contractions of the heart result in a pulsatic flow of blood into
the aorta. More specifically, as a consequence of the contraction of the left
ventricle there is a "pressure wave" and a "flow wave" through the vascular
system. The pressure climbs rapidly to its greatest (systolic) level of about
120mm Hg. During the relaxation phase of the left heart the pressure in the
left ventricle falls below the pressure in the aorta and so causes the left valve
between the left ventricle and the aorta to close. This results in a decrease in
the aortic pressure to its lowest (distolic) point of about 80mm Hg.

3.4.2 A Model of the Left-Ventricular Ejection Dynamics

The dynamic equations of the model are as follows:

V(t) = V0 −
∫ t

0
i(s) ds, (3.53)

P(t) = Pa(t) + ri(t) + L
di

dt
(t), (3.54)

i(t) =
1

R
Pa(t) +C

dPa

dt
(t) (3.55)

where P(t) and V(t), respectively, represent the instantaneous values of left-
ventricle pressure and volume, respectively, Pa(t) denotes the blood pressure
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in the aorta, i(t) the rate at which the blood flow is ejected out of the ventri-
cle, r the aortic valvular resistance, L the inertia of the blood, and R and C the
peripheral resistance and compliance of a lumped arterial Windkissel load.

The quantity V0 in (3.53) represents the ventricular volume at the beginning
of ejection, and the second term (3.53) is the blood volume ejected out of the
ventricle during the time duration from zero to t. The interpretation of (3.54)
is that the ventricular pressure is equal to the sum of aortic pressure, the pres-
sure drop across the aortic valve (which is proportional to the blood flow rate
i(t)), and the pressure accelerating the blood (which is proportional to di

dt
(t)).

Equation (3.55) is a mathematical statement of the fact that the blood flow
rate into the arterical system is equal to the blood flow rate leaking out of it
(which is proportional to Pa(t)) together with the rate of blood storage in the
system (which is proportional to dPa

dt
(t)).

The model described by the three equations (3.53), (3.54), (3.55) is the ana-
log of an electrical circuit (see [3]). Its purpose is to determine the so called
elastance function of the left ventricle which is defined by E(t) = P(t)

V(t) and can
be considered qualitatively as the time-varying stiffness of the ventricle. For
the determination of E(t) optimal control theory is to be applied. As control
variable P(t) is chosen and the following performance criterion is considered

J =

∫ t f

0

[

P(t)2 + αP(t)i(t)
]

dt (3.56)

where α has the dimension of mmHg

ml/sec
. By t f the duration of the ejection period

is denoted. In addition to the equations (3.53) - (3.55) boundary conditions at
t = 0 and t = t f are prescribed by the form

V(0) = V0, V(t f ) = V f , (3.57)

i(0) = i(t f ) = 0, (3.58)

Pa(0) + Pa(t f ) = 2P̄a. (3.59)
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In the second equation of (3.57) the quantity V f is given by V f = V0 − Vs

where the stroke volume Vs is obtained from the expression

Vs = b +
(

c − P̄ad
)

V0

with given constants b, c and d. The blood flow is assumed to be zero at
the beginning and at the end of the ejection which leads to the condition
(3.58). The quantitiy P̄a is the average aortic pressure during the ejection and

is approximated by the expression [Pa(0)+Pa(t f )]
2 .

3.4.3 An Optimal Control Problem

Let us rename the variables V , i, Pa and P by

χ1 = V, χ2 = i, χ3 = Pa and u = P.

Then the equations (3.53) - (3.55) can be rewritten in the form

χ̇1(t) = −χ2(t), (3.60)

χ̇2(t) =
u(t) − χ3(t) − rχ2(t)

L
, (3.61)

χ̇3(t) = −
1

RC
χ3(t) +

1

C
χ2(t). (3.62)

The performance criterion (3.56) reads

J(u) =

∫ t f

0

(

u(t)2 + αu(t)χ2(t)
)

dt (3.63)

with α > 0.
The boundary conditions (3.57) - (3.59) are reformulated as

χ1(0) = V0, χ1(t f ) = V f , (3.64)

χ2(0) = χ2(t f ) = 0, (3.65)

χ3(0) + χ3(t f ) = 2P̄a. (3.66)
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The problem to be solved now consists of finding a control function u ∈
C[0, t f ] such that unter the conditions (3.60) - (3.62) and (3.64) - (3.66) the
functional J = J(u) (3.63) is minimized.
In this form it is posed in [3] and solved with the aid of Pontryagin’s minimum
principle. Here we give a different solution. Since J(u) does not depend on
χ1, we minimize J(u), u ∈ [0, t f ], subject to (3.61), (3.62), (3.65) and

χ3(0) = Pa(0), χ3(t f ) = Pa(t f ) (3.67)

instead of (3.66). We rewrite the system (3.61), (3.62) in the form

⎛

⎜⎜⎜⎜⎜⎜⎝

χ̇2(t)

χ̇3(t)

⎞

⎟⎟⎟⎟⎟⎟⎠
= A

⎛

⎜⎜⎜⎜⎜⎜⎝

χ2(t)

χ3(t)

⎞

⎟⎟⎟⎟⎟⎟⎠
+ bu(t), t ∈ (0, t f ), (3.68)

where

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

− r
L
− 1

L
1
C
− 1

RC

⎞

⎟⎟⎟⎟⎟⎟⎠
and b =

⎛

⎜⎜⎜⎜⎜⎜⎝

1
L

0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

We assume that A has two different real eigenvalues λ1, λ2 which is the case
when

(

r

L
− 1

RC

)2

− 1

LC
> 0.

Then A has two real eigenvectors y1, y2 ∈ R2 which are linearly independent
(in fact infinitely many such pairs) and

Ȳ(t) =
(

y1e
λ1t|y2e

λ2t
)

is a fundamental matrix function of the corresponding homogenous system.

The solution of (3.68) and the initial conditions

χ2(0) = 0 and χ3(0) = Pa(0)

is therefore given by

⎛

⎜⎜⎜⎜⎜⎜⎝

χ2(t)

χ3(t)

⎞

⎟⎟⎟⎟⎟⎟⎠
= Ȳ(t)

⎛

⎜⎜⎜⎜⎜⎜⎝
Ȳ(0)−1

⎛

⎜⎜⎜⎜⎜⎜⎝

0

Pa(0)

⎞

⎟⎟⎟⎟⎟⎟⎠
+

∫ t

0
Ȳ(s)−1bu(s) ds

⎞

⎟⎟⎟⎟⎟⎟⎠
, t ∈ [0, t f ].
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The second equations in (3.65), (3.67) lead to the condition

∫ t f

0
Ȳ(t)−1bu(t)dt = Ȳ(t f )

−1
⎛

⎜⎜⎜⎜⎜⎜⎝

0

Pa(t f )

⎞

⎟⎟⎟⎟⎟⎟⎠
− Ȳ(0)−1

⎛

⎜⎜⎜⎜⎜⎜⎝

0

Pa(0)

⎞

⎟⎟⎟⎟⎟⎟⎠
.

If we put

B(t) = Ȳ(t)−1b and g = Ȳ(t f )
−1
⎛

⎜⎜⎜⎜⎜⎜⎝

0

Pa(t f )

⎞

⎟⎟⎟⎟⎟⎟⎠
− Ȳ(0)−1

⎛

⎜⎜⎜⎜⎜⎜⎝

0

Pa(0)

⎞

⎟⎟⎟⎟⎟⎟⎠
,

then this condition reads

∫ t f

0
B(t)u(t) dt = g. (3.69)

If we define

G(t) = Ȳ(t)Ȳ(0)−1
⎛

⎜⎜⎜⎜⎜⎜⎝

0

Pa(0)

⎞

⎟⎟⎟⎟⎟⎟⎠
and C(t, s) = Ȳ(t)B(s) for 0 ≤ s ≤ t ≤ t f ,

(3.70)

then we get

χ2(t) = G1(t) +

∫ t

0
C1(t, s)u(s) ds.

The problem we have to solve now consists of finding some u ∈ C[0, t f ]
which satisfies the condition (3.69) and minimizes

J(u) =

∫ t f

0
u(t)2 + α

(

G1(t) +

∫ t

0
C1(t, s)u(s) ds

)

u(t) dt. (3.71)

From (3.70) one can infer that C1(t, s) can be represented in the form

C1(t, s) = D1e
λ1(t−s) + D2e

λ2(t−s). (3.72)

Now let û ∈ C[0, t f ] be a solution of the problem.
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Then one can show with the aid of a multiplier rule (see [1]) that there exist
multipliers l1, l2 ∈ R such that

û(t)−α
2

∫ t f

0
K(t, s)û(s) ds = −α

2
G1(t)−l1B1(t)−l2B2(t), t ∈ [0, t f ], (3.73)

where

K(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−C1(t, s) for 0 ≤ s ≤ t,

−C1(s, t) for t ≤ s ≤ t f

.

From (3.72) we induce that

K(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−D1e
λ1te−λ1 s − D2e

λ2te−λ2 s for 0 ≤ s ≤ t,

−D1e
λ1se−λ1t − D2e

λ2 se−λ2t for t ≤ s ≤ t f

.

If we define

ai(t) = −Die
λit and bi(s) = eλis for 0 ≤ s ≤ t,

ai(t) = −Die
λi s and bi(s) = eλit for t ≤ s ≤ t f , i = 1, 2,

then we can write

K(t, s) = a1(t)b1(s) + a2(t)b2(s) for 0 ≤ s, t ≤ t f .

On defining

Ak =

∫ t f

0
bk(s)û(s) ds and h(t) = −α

2
G1(t) − l1B1(t) − l2B2(t), t ∈ [0, t f ],

one can rewrite (3.73) in the form

û(t) = h(t) +
α

2
(A1a1(t) + A2a2(t)) , t ∈ [0, t f ]. (3.74)
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In order to determine A1 and A2 we define

∫ t f

0
am(s)bk(s) ds = αkm, k,m = 1, 2,

∫ t f

0
h(s)bk(s) ds = hk, k = 1, 2.

Inserting (3.74) into (3.73) then leads to the linear system

Ak −
α

2

2∑

m=1

αkmAm = hk, k = 1, 2. (3.75)

This has a unique solution (A1, A2), if α > 0 is chosen small enough. In order
to determine l1 and l2 we insert (3.73) into (3.69) and obtain the linear system

∫ t f

0
B1(t)

2dt l1 +

∫ t f

0
B1(t)B2(t) dt l2

= g1 + α

∫ t f

0
B1(t)

(

G1(t) +
1

2
(A1a1(t) + A2a2(t))

)

dt,

∫ t f

0
B2(t)B1(t) dt l1 +

∫ t f

0
B2(t)

2dt l2

= g2 + α

∫ t f

0
B2(t)

(
G1(t) +

1

2
(A1a1(t) + A2a2(t))

)
dt.

(3.76)

Result: In order to solve the above optimization problem one has to solve the
linear system (3.75) and then the linear system (3.76) and to define û = û(t)
by (3.74).

The left-ventricle pressure and volume, respectively, are then given by

P(t) = û(t)

and

V(t) = V0 −
∫ t

0
χ2(s) ds, t ∈ [0, t f ].
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3.4.4 Another Model of the Left-Ventricular Ejection Dynamics

This model is also an optimal control model (see [3]) which is given as fol-
lows:
Under the condition

χ̇(t) +
1

τ
χ(t) = u(t), t ∈ [0, ts], (3.77)

χ(0) = χ0, (3.78)
∫ ts

0
u(t) dt = Vs (u ∈ C[0, ts]) (3.79)

the functional

J(u) =

∫ ts

0

(

RCu(t)2 + RP χ(u, t)
2
)

dt (3.80)

is to be minimized

Here χ = χ(t) is the peripheral flow, u = u(t) is the aortic flow (which is
the control variable), τ = RPCA where RP is the peripheral resistance, CA the
arterial compliance, [0, ts] is the time interval from the beginning of ejection
to the highest pressure (systolic), VS is the (constant) stroke volume, and RC

the valvular resistance.
This model has also an electric analog (see [3]).
The unique solution χ = χ(t), t ∈ [0, ts], of (3.77), (3.78) can be represented
in the form

χ(t) = e−λt
(

χ0 +

∫ t

0
eλsu(s) ds

)

= e−λtχ0 +

∫ t

0
eλ(s−t)u(s) ds

for t ∈ [0, ts] where λ = 1
τ
.

So we have to solve the following problem:
Find some u ∈ C[0, ts] which satisfies (3.79) and minimizes the functional

J(u) =

∫ ts

0

⎛

⎜⎜⎜⎜⎜⎝RCu(t)2 + RP

(

e−λtχ0 +

∫ t

0
eλ(s−t)u(s) ds

)2⎞
⎟⎟⎟⎟⎟⎠ dt.

Let û ∈ C[0, ts] be a solution of this problem.
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Then one can show with the aid of a multiplier rule (see [1]) that there exists
a multiplier l ∈ R such that

∫ ts

0

(

2RC û(t) + 2RP

[

(ts − t)eλtχ0 +

∫ ts

0
e−2λs

∫ s

0
eλτû(τ)dτdseλt

]

+l

)

h(t)dt

= 0 for all h ∈ C[0, ts].

This can be shown to be equivalent to the integral equation

û(t) +
1

2λ

RP

RC

∫ ts

0
K(t, τ)û(τ) dτeλt = − l

2RC

− RP

RC

χ0(ts − t)eλt, t ∈ [0, ts],

where

K(t, τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(e−2λt − e−2λts )eλτ for 0 ≤ τ ≤ t,

(e−2λτ − e−2λts )eλτ for t ≤ τ ≤ ts.

If we put

ρ =
1

2λ

RP

RC

and define f (t) = − l

2RC

− RP

RC

χ0(ts − t)eλt, t ∈ [0, ts],

(3.81)

then the integral equation takes the form

û(t) + ρ

∫ ts

0
K(t, τ)û(τ)dτeλt = f (t), t ∈ [0, ts]. (3.82)

If we put

A =

∫ ts

0
K(t, τ)û(τ)dτ,

then we obtain

û = f (t) − ρAeλt, t ∈ [0, ts].
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Insertion into (3.82) and solving for A leads to

A =

∫ ts

0
K(t, τ) f (τ)dτ

eλt + ρ
∫ ts

0
K(t, τ)eλτdτ

,

hence,

û(t) = f (t) − ρ

∫ ts

0
K(t, τ) f (τ)dτ

eλt + ρ
∫ ts

0
K(t, τ)eλτdτ

, t ∈ [0, ts],

where ρ and f (t) are given by (3.81).
The multiplier l ∈ R can then be determinded by the condition (3.79).
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4

A Mathematical Model of Hemodialysis

4.1 A One-Compartment Model

4.1.1 The Mass Transport in the Dialyzer

In most of the common dialyzers (called artificial kidneys) the removal of
toxical substances from the blood is achieved by extracting it from the body
and introducing it into the interior of a kidney machine where it floats along
one side of a membrane as being schematically shown in Figure 4.1.

Fig. 4.1. Blood and Dialysate Flow in the Dialyzer.

At the same time a dialysate fluid floats along the other side of the membrane
in the opposite direction. In the course of this process a mass transport of
the toxical substance across the membrane takes place which is based on two
mechanisms. The first is diffusion by which the molecules of the substance
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are pressed through the pores of the membrane under the influence of the
difference CB − CD of the concentration CB [mg/ml] and CD [mg/ml] of the
toxical substance in the blood and the dialysate fluid, respectively. The flux
FD [mg/min] of the substance across the membrane from the blood into the
dialysate fluid caused by diffusion is given, according to Fick’s law, by

FD = DM(CB −CD) (4.1)

where DM [ml/min] is the diffusive clearance of the membrane which can be
expressed by

DM = KM · A

where A[cm2] is the area of the membrane and KM[cm/min] is the mass trans-
fer coefficient (this law holds for thin membranes).

The second mechanism of mass transport across the membrane is called ul-
trafiltration and is caused by a pressure difference between the blood water
and the dialysate fluid. This pressure difference gives rise to a blood water
flow through the membrane by which dissolved parts of the toxical substance
are transported.

Let QF [ml/min] and QB [ml/min] and QD [ml/min] be the flow rate of the
blood water through the membrane and the flow rate of the blood and the
flow rate of the dialysate fluid (the latter two through the dialyzer), respec-
tively. Further let CBi

= CB [mg/ml] and CB0 [mg/ml] be the concentra-
tion of the toxical substance in the blood entering the dialyzer and leaving it
or passing the membrane (in the blood water), respectively. The overall flux
FM [mg/min] of the toxical substance through the membrane from the blood
to the dialysate fluid is given by

FM = QB(CBi
−CB0) + QFCB0 (4.2)

where QB(CBi
− CB0) = QB(CB − CB0) is the diffusion part which is equal to

FD given by (4.1), hence

QB(CB −CB0) = DM(CB −CD) (4.3)

and QFCB0 is the part caused by ultrafiltration.

Solving (4.3) for CB0 leads to

CB0 = CB −
DM

QB

(CB −CD) (4.4)
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and inserting into
FM = DM(CB −CD) + QFCB0

yields

FM = DM(CB −CD) + QF

(

CB −
DM

QB

(CB −CD)

)

=

(

DM + QF

(

1 − DM

QB

))

CB − DM

(

1 − QF

QB

)

CD.

(4.5)

Realistic values for urea (as toxical substance) are (see [5], p. 50)

DM = 150 [ml/min] and QF = 10 [ml/min].

The flow rate of blood through the dialyzer can be assumed to be QB =

200 [ml/min] as a reasonable average value. From these values we obtain

QF

(

1 − DM

QB

)

= 2.5

and
QF

QB

= 0.05.

In view of (4.5) we see that in the case of urea ultrafiltration can be practically
neglected which amounts to putting QF = 0 and leads to

FM = FD = DM(CB −CD). (4.6)

In the case of the so called middle molecules, however, like vitamin B12 ul-
trafiltration cannot be neglected. In this case diffusion is limited and ultra-
filtration can be a comparable part of mass transport through the membrane
augmenting the diffusive clearance by as much as 45% (see [5], p. 45).

4.1.2 The Temporal Development of the Toxin Concentration in the

Blood without Ultrafiltration

Let VB(t) [ml] be the total blood volume of the patient at the time t. Then
the total amount of the toxical substance in the blood at the time t is given
by VB(t) ·CB(t) where CB(t) [mg/ml] denotes the concentration of the toxical
substance at the time t. We assume that some rest clearance Dr [ml/min]
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of the kidneys of the patient is present such that there is a permanent flux
Fr [mg/min] of the toxical substance out of the blood across the kidneys into
the urine which is of the form

Fr(t) = DrCB(t). (4.7)

We further assume that, within a given time interval [0, T ] the patient is at-
tached to a dialyzer during the time interval [0, td] where td < T . Then the
total flux of the toxical substance out of the blood during the time period
[0, T ] is given by (see (4.5))

F(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(

DM + QF

(

1 − DM

QB

)

+ Dr

)

CB(t) − DM

(

1 − QF

QB

)

CD(t) for t ∈ [0, td),

DrCB(t) for t ∈ [td, T )
(4.8)

where CD(t) [mg/ml] denotes the concentration of the toxical substance in
the dialysate fluid at the time t.

The temporal change of the concentration of the toxical substance is governed
by the differential equation

d

dt
(VB(t)CB(t)) = −F(t) +G (4.9)

where F(t) is given by (4.8) and G [mg/min] is the average generation rate of
the toxical substance.

If we assume CD(t) to be known for t ∈ [0, T ], then the two unknown func-
tions in (4.9) are VB(t) and CB(t).

In the sequel we will be mainly interested in the hemodialysis of urea.
Therefore we will assume henceforth that ultrafiltration can be neglected, i.e.
QF = 0 (as being shown in Section 4.1.1). This implies that the blood volume
VB(t) does no more depend on the time t and can be assumed to be a constant
VB [ml]. Therefore (4.9) takes the form

VBĊB(t) =

⎧
⎪⎪⎨

⎪⎪⎩

−(DM + Dr)CB(t) + DMCD(t) +G for 0 ≤ t < td,

−DrCB(t) +G for td ≤ t < T,

⎫
⎪⎪⎬

⎪⎪⎭
(4.10)

where ĊB denotes the derivative with respect to t.
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In [5], p. 43 it is stated that in most single pass dialyzers and for normal
catabolites the concentration CD(t) of the toxical substance in the dialysate
fluid is small compared to CB(t) and can therefore be neglected. Consequently
we assume

CD(t) = 0 for t ∈ [0, td].

The solution of (4.10) for Dr > 0 is then given by

CB(t) = CB(0)e
−DM+Dr

VB
t
+

G

DM + Dr

(

1 − e
−DM+Dr

VB
t
)

(4.11)

for t ∈ [0, td] and by

CB(t) = CB(td)e
− Dr

VB
(t−td )
+

G

Dr

(

1 − e
− Dr

VB
(t−td )

)

(4.12)

for t ∈ (td, T ].

If Dr = 0, then the solution of (4.10) is given by

CB(t) = CB(0)e
−DM

VB
t
+

G

DM

(

1 − e
−DM

VB
t
)

(4.13)

for t ∈ [0, td] and by

CB(t) =
G

VB

(t − td) +CB(td) (4.14)

for t ∈ (td, T ].

For given values of G,DM,Dr, td and T the temporal development of CB(t)
will finally approach a stable state which is expressed by the fact that CB(t)
is a T-periodical function of the time t. For this to be the case it is necessary
and sufficient that

CB(T ) = CB(0) (4.15)

holds true.

For the following we assume Dr = 0 in order to facilitate the mathematical
considerations.
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Then we have, by (4.13) and (4.14)

CB(T ) =
G

VB

(T − td) +CB(0)e−
DM
VB

td +
G

DM

(

1 − e
−DM

VB
td
)

and the requirement (4.15) turns out to be equivalent to

CB(0) =

⎡

⎢⎢⎢⎢⎢⎣

1

DM

+
1

VB

T − td

1 − e
−DM

VB
td

⎤

⎥⎥⎥⎥⎥⎦G. (4.16)

For DM we again choose the value 150 [mg/min] and for VB the value
13600 [ml] (which will also be used later).
Then we obtain

CB(0) =
[

0.0067 + 0.0000735
T − td

1 − e−0.011td

]

G.

If we assume, that dialysis is performed every second day, i.e., if we put
T = 48h = 2880min, then for

α(td) = 0.0067 + 0.0000735
2880 − td

1 − e−0.011td

the following values are obtained

td 4h 5h 6h 7h 8h

α(td) 0.216 0.204 0.196 0.189 0.184

From (4.16) and (4.13) we deduce

CB(td) = β(td) ·G (4.17)

where

β(td) =
1

DM

+
1

VB

T − td

e
+

DM
VB

td − 1
(4.18)
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For the above values of DM,VB and T we get

β(td) = 0.0067 + 0.0000735
2880 − td

e+0.011td − 1

which leads to the table

td 4h 5h 6h 7h 8h

β(td) 0.022 0.014 0.010 0.008 0.007

If we define the dialysis effect by

E(td) =
CB(td)

CB(0)
=
β(td)

α(td)
, (4.19)

then we obtain the following table

td 4h 5h 6h 7h 8h

E(td) 0.102 0.069 0.051 0.042 0.038

The numerical values in the above tables are not realistic for which reason the
one-compartment model will be given up in the following. But they already
indicate a tendency (to be confirmed in the refined model lateron), namely,
that by extending the durance of dialysis to large times td (beyond 7h) the
dialysis effect is only slightly improved.

On using (4.16), (4.17), and (4.18) the dialysis effect (4.19) can also ex-
pressed in the form

E(td) = 1 −
⎛

⎜⎜⎜⎜⎜⎜⎝

1
VB

DM(T−td) +
1

1−e−DM /VBtd

⎞

⎟⎟⎟⎟⎟⎟⎠
. (4.20)

This formula shows immediately that, for fixed values of VB, T , and td, the
value of E(td) decreases, if DM increases. This is to be expected in the same
way as a decrease of E(td), if td is increased where VB, T , and DM are kept
fixed.

This, however, cannot be derived from (4.20) in an obvious way. But one can
verify that

∂E

∂td
(td, T,VB,DM) < 0.
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4.1.3 The Temporal Development of the Toxin Concentration in the

Blood with Ultrafiltration

If ultrafiltration is present, the total flux of the toxical substance out of the
blood into the dialyzer is given by (4.8) with QF � 0 and we can no more
assume that the total blood volume VB(t) is independent of the time t. We
will, however, assume that VB(t) is a T-periodic function which is to be ex-
pected, if the whole process of hemodialysis becomes T-periodic. In order to
obtain a simple model we assume that the body generates blood water at a
constant rate of GW [ml/min] within the whole time interval [0, T ] in order to
compensate for the loss of blood water during the period [0, td] of dialysis. If
VB(0) = V0

B
, then the temporal development of VB(t) is given by

VB(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

V0
B
+ (GW − QF)t for t ∈ [0, td),

VB(td) +GW(t − td) for t ∈ [td, T ].
(4.21)

The assumption VB(T ) = VB(0) = V0
B

now leads to the relation

GW =
td

T
QF (4.22)

which connects the ultrafiltration rate with the blood water generation rate,
if VB(t) is T-periodic. This relation which can also be written in the form
GWT = QFtd simply expresses the fact that the amount of blood water gener-
ated in the time interval [0, T ] is the same as the amount of blood water lost
by ultrafiltration during [0, td]. Insertion of GW from (4.22) into (4.21) yields

VB(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V0
B
+
(
td
T
− 1

)

tQF for t ∈ [0, td),

VB(td) +
td
T
(t − td)QF for t ∈ [td, T ]

(4.23)

and we obtain

d

dt
(VB(t)CB(t)) =

(
td

T
− 1

)

QFCB(t) +
(

V0
B +

(
td

T
− 1

)

tQF

)

ĊB(t) for t ∈ (0, td)
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and

d

dt
(VB(t)CB(t)) =

td

T
QFCB(t) +

(

VB(td) +
td

T
(t − td)QF

)

ĊB(t) for t ∈ (td, T ).

We again assume that

CD(t) = 0 for t ∈ [0, td].

Then (4.9) can be rewritten in the form

(

V0
B +

(
td

T
− 1

)

tQF

)

ĊB(t) =

[

−DM

(

1 − QF

QB

)

− td

T
QF − Dr

]

CB(t) +G

(4.24)
for t ∈ (0, td) and

(

VB(td) +
td

T
(t − td)QF

)

ĊB(t) = −
(

Dr +
td

T
QF

)

CB(t) +G (4.25)

for t ∈ (td, T ).

With

α = DM

(

1 − QF

QB

)

+
td

T
QF + Dr (4.26)

and
β = Dr +

td

T
QF (4.27)

the general solution of (4.24) and (4.25) is given by

CB(t) = CB(0)

⎛

⎜⎜⎜⎜⎝

VB(t)

V0
B

⎞

⎟⎟⎟⎟⎠

αT
QF (T−td)

+
G

α

⎛

⎜⎜⎜⎜⎜⎜⎝
1 −

⎛

⎜⎜⎜⎜⎝

VB(t)

V0
B

⎞

⎟⎟⎟⎟⎠

αT
QF (T−td)

⎞

⎟⎟⎟⎟⎟⎟⎠
(4.28)

for t ∈ [0, td] and by

CB(t) = CB(td)

(

VB(t)

VB(td)

)− βT

QF td

+
G

β

⎛

⎜⎜⎜⎜⎜⎜⎝
1 −

(

VB(t)

VB(td)

)− βT

QF td

⎞

⎟⎟⎟⎟⎟⎟⎠
(4.29)

for t ∈ [td, T ], respectively.
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From the requirement CB(T ) = CB(0) we therefore deduce

CB(td)

⎛

⎜⎜⎜⎜⎝

V0
B

VB(td)

⎞

⎟⎟⎟⎟⎠

− βT

QF td

+
G

β

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −

⎛

⎜⎜⎜⎜⎝

V0
B

VB(td)

⎞

⎟⎟⎟⎟⎠

− βT

QF td

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠
= CB(0)

where

CB(td) = CB(0)

⎛

⎜⎜⎜⎜⎝

VB(td)

V0
B

⎞

⎟⎟⎟⎟⎠

αT
QF (T−td)

+
G

α

⎛

⎜⎜⎜⎜⎜⎜⎝
1 −

⎛

⎜⎜⎜⎜⎝

VB(td)

V0
B

⎞

⎟⎟⎟⎟⎠

αT
QF (T−td)

⎞

⎟⎟⎟⎟⎟⎟⎠

whence

CB(0) =
P

Q
·G (4.30)

with

P =
1

β

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −

⎛

⎜⎜⎜⎜⎝

V0
B

VB(td)

⎞

⎟⎟⎟⎟⎠

− βT

QF td

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

1

α

⎛

⎜⎜⎜⎜⎜⎜⎝
1 −

⎛

⎜⎜⎜⎜⎝

VB(td)

V0
B

⎞

⎟⎟⎟⎟⎠

αT
QF (T−td)

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

V0
B

VB(td)

⎞

⎟⎟⎟⎟⎠

− βT

QF td

(4.31)

Q = 1 −
⎛

⎜⎜⎜⎜⎝

VB(td)

V0
B

⎞

⎟⎟⎟⎟⎠

(

α
T−td
+
β

td

)

TQ−1
F

(4.32)

We demonstrate (4.30) by a numerical example which shows that the values
obtained for CB(0) and CB(td) for urea are as unrealistic as in the case without
ultrafiltration. We choose DM = 150 [mg/min], QF = 10 [ml/min], QB =

200 [ml/min] (as in Section 4.1.1), and V0
B
= 13600 [ml] (as in Section 4.1.2).

We further choose T = 2880 and td = 360 [min]. Then we obtain from (4.23)

VB(td) = 13600 +

(

360

2880
− 1

)

· 360 · 10

= 13600 − 3150 = 10450 [ml].

On choosing Dr = 0 we get from (4.26), (4.27)

α = 150

(

1 − 10

200

)

+
360

2880
· 10 = 142.5 + 1.25 = 143.75,

β =
360

2880
· 10 = 1.25
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which leads to
αT

QF(T − td)
= 16.43

and

βT

QFtd
= 1

and

⎛

⎜⎜⎜⎜⎝

VB(td)

V0
B

⎞

⎟⎟⎟⎟⎠

αT
QF (T−td)

= 0.0132185

and

⎛

⎜⎜⎜⎜⎝

V0
B

VB(td)

⎞

⎟⎟⎟⎟⎠

− βT
QF td

= 0.7683824.

Therefore

P =
1

1.25
(1 − 0.7683824) +

1

143.45
(1 − 0.0132185) · 0.7683824

= 0.1852941 + 0.0052856

= 0.1905797

Q = 1 − 0.768382417.43

= 0.9898661

hence
CB(0) = 0.19253079 ·G.

From (4.28) we then obtain

CB(td) = 0.19253079 · 0.0132185 ·G + G

143.75
(1 − 0.0132185)

= 0.0094096 ·G
and by (4.29) we indeed get

CB(T ) = [0.0094096 · 0.7683824 +
1

1.25
(1 − 0.7683824)] G

= 0.1925242 ·G.
Without ultrafiltration we have obtained

CB(T ) = CB(0) = 0.196 ·G
which again shows that ultrafiltration can be neglected.
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4.2 A Two-Compartment Model

4.2.1 Derivation of the Model Equations

We already mentioned in Section 4.1 that the numerical values for the dialysis
effect given by (4.19) in the one-compartment model are unrealistic. But also
the linear increase of the toxin concentration during the dialysis-free interval
[td, T ] given by (4.14) cannot be confirmed experimentally. Instead a steep
increase of the concentration immediately after turning off the dialyzer can
be observed which then goes over into a linear increase.

The steep increase right after the dialysis can be explained by the fact that
the toxin (urea or creatinine) in the cellular part of the body has a concen-
tration that is different from its concentration in the blood and that its value
at the end of the dialysis is higher than the one in the blood. Consequently,
diffusion through the cell membranes takes place from the cellular part into
the blood which leads to the initially steep increase of the toxin concentration
there.

If one assumes that the toxin after its generation gets immediately into the
blood (as with urea, for instance, which is mainly created in the liver), then
the toxin concentration in the blood after the dialysis will not only increase
by virtue of the diffusion out of the cellular part of the body but also by the
generation of toxin in the blood and will exceed the toxin concentration in
the cellular part some time later so that at the beginning of the next dialysis
a smaller value will appear there. This process will be given a more precise
quantitative description later.

Uremic toxins are essentially contained in the body liquid which can be sub-
divided into the intercellular, the interstitial and the intravasal part. The latter
two (at least for urea and creatinine) can be considered as one compartment,
since they are closely connected by capillars. We call it the extracellular part
and denote it by the subscript E. Consequently we subdivide the whole body
liquid volume into the cellular part (denoted by the subscript C) and the ex-
tracellular part which are separated by the cell membranes. Through these
diffusion takes place in both directions.

If one denotes the toxin concentration in the cellular and extracellular part
by CC = CC(t) and CE = CE(t), respectively, and the clearance of the cell
membranes (measured by [ml/min]) by DC, then, by Fick’s law, the flux
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of the toxical substance from the cellular into the extracellular part and vice
versa is given by

FC(t) = DC(CC(t) −CE(t)). (4.33)

The flux of the toxical substance from the extracellular part into the dialyzer
across the membrane of the dialyzer is based on the formula (see Section
4.1.2)

FE(t) = −D(t)CE(t) (4.34)

where

D(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

DM(t) + Dr for 0 ≤ t < td,

Dr for td ≤ t < T.

(4.35)

By DM(t) and Dr we denote the clearance of the artificial and the natural kid-
neys, respectively (measured by [ml/min]). The period of dialysis is given by
the time interval [0, td] and T is the time after which dialysis is repeated. Let
us denote by VC and VE the volume of the cellular and the extracellular liquid
of the body (measured by [ml]), respectively. Then the temporal changes of
the toxin concentration CC(t) and CE(t) in the cellular and extracellular part
of the body, respectively, are governed by the two differential equations

VCĊC(t) = DC(CE(t) −CC(t)), (4.36)

VEĊE(t) = DC(CC(t) −CE(t)) − D(t)CE(t) +G (4.37)

where G denotes the generation rate of the toxin (measured by [mg/min])
and is assumed to be constant and to be generated in the extracellular part of
the body.

The right hand side of (4.37) can also be written in the form FC(t)+FE(t)+G

with FC(t) and FE(t) given by (4.33) and (4.34), respectively.

The equations (4.36), (4.37) have also been presented in [5] together with
their solutions CC(t) and CE(t) on [0, td] in the case of a constant clearance
DM(t) = DM, t ∈ [0, td], of the dialyzer membrane when CC(0) and CE(0)
are prescribed.
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The existence of T-periodic solutions in the case of a time-dependent clear-
ance can be shown (see [2]).

In Section 4.3.1 we will describe a general method to calculate such solu-
tions. In Section 4.3 it will be shown how they can be computed numerically
by discretizing the differential equations (4.36), (4.37). For this purpose a re-
alistic value of the unknown clearance DC of the cell membranes has to be
found. This will happen in Section 4.2.2.

4.2.2 Determination of the Clearance of the Cell Membranes for Urea

In the differential equations (4.36), (4.37) the quantities VC ,VE,DM,Dr, and
G are accessible to measurement or experimental determination. The times
td and T can also be measured. This is, however, not possible for the initial
value CC(0). One can prove (see [2]) that, for every choice of the parameters
VC,VE ,DC,DM,Dr,G, T, and td, the system (4.36), (4.37) has exactly one
pair (CC(t),CE(t)) of solutions with

CC(t) > 0, CE(t) > 0, for all t ∈ [0, T ]

and
CC(T ) = CC(0), CE(T ) = CE(0). (4.38)

We will use this fact in order to determine the unknown clearance DC for urea
within realistic limits. For this purpose we assume that no rest clearance of the
kidneys is present, i.e. Dr = 0. We at first consider the system (4.36), (4.37)
in the time interval [td, T ]. It is easy to show that the difference function

y(t) = CE(t) −CC(t)

satisfies the differential equation

ẏ(t) = −ηy(t) + γ (4.39)

where

η = DC

(

1

VE

+
1

VC

)

and γ =
G

VE

.
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For a given initial value y(td) the solution of (4.39) on [td, T ] reads

y(t) = y(td)e
−η(t−td ) +

γ

η

(

1 + e−η(t−td )
)

.

Realistic values for VC and VE are VC = 13600 [ml] and VE = 27200 [ml],
respectively. We choose (as before) T = 2880 and td = 360 [min].
By [5], p. 60 it is generally held that DC , for urea, ranges between 700 and
900 [ml/min]. If we put DC = 700, then we obtain η ≈ 0.077 and e−η(T−td) ≈
e−194.6 ≈ 3.10−85 ≈ 0. This implies y(T ) = γ

η
and, in connection with the

condition (4.38) of T-periodicity, the relation

CE(0) −CC(0) ≈ G

DC

VC

VC + VE

. (4.40)

This can also be considered to be valid for other values of T and td whenever
td is relatively small with respect to T (which is practically always the case).

The same holds also true for smaller values of DC . For instance, for DC =

300 [ml/min] we obtain η ≈ 0.033 and

e−η(T−td ) ≈ e−83.4 ≈ 6.02 · 10−37 ≈ 0

which also leads to (4.40).

In order to determine DC one chooses a realistic value for CE(0), say CE(0) =
1.5 [mg/ml]. Then one tentatively chooses a value for DC and determines
the rate G of toxin generation such that the given value of CE(0) and the
corresponding value of CC(0) calculated from (4.40) turn out to be initial
values of the T-periodic solution of (4.36), (4.37).

If we assume the clearance of the dialyzer to be given as the function

DM(t) = C0e
−0.001t for t ∈ [0, td] (4.41)

where C0 = 132 [ml/min], then we obtain the following table by this proce-
dure:

DC 400 450 500 550 600 [ml/min]

G 12.87 12.97 13.05 13.12 13.18 [mg/min]

CC(0) 1.4786 1.4808 1.4826 1.4841 1.4854 [mg/ml]
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Therefore, if we choose DC within the range between 400 and 600 [ml/min],
then, for CE(0) = 1.5 [mg/min] the corresponding initial value CC(0) of the
T-periodic solution of (4.36), (4.37), for G chosen such that (4.40) holds,
turns out to be approximately equal to 1.48 [mg/min]. This does not deter-
mine the value of DC very precisely.

However, if conversely G and DC are prescribed, then the initial value CE(0)
of the corresponding T-period solution of (4.36), (4.37) for a fixed choice
of G does not depend very strongly on DC. So for G = 10 [mg/min] and
DC = 500 ± 100 [ml/min] we get

CE(0) = 1.15

⎧
⎪⎪⎨

⎪⎪⎩

+0.016

−0.012

⎫
⎪⎪⎬

⎪⎪⎭
[mg/ml]

as being shown by the following table:

DC 400 450 500 550 600 [ml/min]

CE(0) 1.1654 1.1564 1.1491 1.1431 1.1382 [mg/ml]

In the following we will therefore uniformly choose DC = 500 [ml/min].

The initial value CE(0) of the CE-part of a T-periodic solution of (4.36), (4.37)
also not changes strongly, if not only DC (within the range between 400 and
600 [ml/min]) but also G slightly changes.

We demonstrate this by the following table:

DC 400 450 500 550 600 [ml/min]

G 9.90 9.94 10.00 10.03 10.06 [mg/min]

CE(0) 1.154 1.149 1.149 1.147 1.145 [mg/ml]

Similar results are obtained for the case of a time-independent clearance of
the dialyzer. Instead of (4.41) we choose

DM(t) = DM = 132 [ml/min] for t ∈ [0, td].
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Again we choose VC,VE, T, and td as above. Then, for G = 10 [mg/min], we
obtain, by the method of calculating T-periodic solutions of (4.36), (4.37) in
Section 4.3.1, the following results

DC 400 500 600 [ml/min]

CE(0) 1.0484 1.0341 1.0213 [mg/ml]

CC(0) 1.0318 1.0207 1.0102 [mg/ml]

Since, by the results of Section 4.3.3, the T-periodic solutions of (4.36), (4.37)
depend linearly on the toxin generation rate G, we obtain CE(0) = 1.5 as
initial value of the CE-part of the T-periodic solution of (4.36), (4.37), if we
replace G = 10 by

G =
1.5

1.0484
· 10 = 14.31 for DC = 400,

G =
1.5

1.0341
· 10 = 14.51 for DC = 500, and

G =
1.5

1.0213
· 10 = 14.69 for DC = 600,

which leads to the following table

DC 400 500 600 [ml/min]

G 14.31 14.51 14.69 [mg/min]

CC(0) 1.476 1.481 1.484 [mg/ml]
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4.3 Computation of Periodic Toxin Concentrations

4.3.1 The General Method

If we define a vector function y(t) = (CC(t),CE(t))T , its time derivative ẏ(t) =
(ĊC(t), ĊE(t))T and

A(t) =

⎛

⎜⎜⎜⎜⎜⎜⎝

−DC/VC DC/VC

DC/VE −(DC + D(t))/VE

⎞

⎟⎟⎟⎟⎟⎟⎠
, b =

⎛

⎜⎜⎜⎜⎜⎜⎝

0

G/VE

⎞

⎟⎟⎟⎟⎟⎟⎠
, (4.42)

then the differential equations (4.36), (4.37) can be written in the form

ẏ(t) = A(t)y(t) + b. (4.43)

For every initial vector y0 = (C0
C
,C0

E
)T there is exactly one absolutely con-

tinuous vector function y = y(t) with y(0) = y0 which satisfies (4.43) for all
t ∈ (0, T )\ {td} and which is given by the formula of variation of the constants

y(t) = Y(t)

{

y0 +

∫ t

0
Y(s)−1b ds

}

, t ∈ [0, T ], (4.44)

where Y = Y(t) is a 2 × 2 matrix function (the so called fundamental matrix
function) which satisfies the matrix differential equation

Ẏ(t) = A(t)Ȳ(t) for all t ∈ (0, T ) \ {td} (4.45)

and the initial condition

Ẏ(0) = E2 = 2 × 2 − unit matrix. (4.46)

From the representation (4.44) it follows that y = y(t) is T-periodic, if and
only if

(E2 − Y(T )) y0 = Y(T )

∫ T

0
Y(s)−1b ds. (4.47)

If one defines a vector function

ỹ(t) = Y(t)

∫ t

0
Y(s)−1b ds, t ∈ [0, T ],
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then ỹ = ỹ(t) is the unique absolutely continuous vector function which satis-
fies

˙̃y(t) = A(t)ỹ(t) + b for all t ∈ (0, T ) \ {td} (4.48)

and
ỹ(0) = Θ2 = zero vector of R2. (4.49)

The calculation of the unique absolutely continuous T-periodic solution y =

y(t) of (4.43) for t ∈ (0, T ) \ {td} can be performed in four steps:

1. Determine the absolutely continuous solution ỹ = ỹ(t) of (4.48), (4.49).

2. For e1 = (1, 0)T and e2 = (0, 1)T determine the absolutely continuous
solution yi = yi(t) of

ẏi(t) = A(t)yi(t) for all t ∈ (0, T ) \ {td} (4.50)

and
yi(0) = ei for i = 1, 2. (4.51)

Then the solution of (4.45), (4.46) is given by

Y(t) =
(

y1(t), y2(t)
)

, t ∈ [0, T ].

3. Solve the linear system

(E2 − Y(T )) y0 = ỹ(T ) (4.52)

for y0 ∈ R2.

4. Determine the unique absolutely continuous solution y = y(t) of (4.43)
for all t ∈ (0, T ) \ {td} with y(0) = y0.

Based on physical reflections it is possible in step 2) to determine the matrix
Y(T ) directly with the aid of the matrix Y(td), if T is large compared with td
(which practically is always the case) and if the clearance Dr of the natural
kidneys is zero. For this purpose we define

γi = VCyi
1(td) + VEyi

2(td) (4.53)

where yi(t) =
(

yi
1(t), y

i
2(t)

)T
for i = 1, 2.
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Then γi is the total amount of the poison in C and E at the end of the process
of dialysis with initial concentration

yi
j =

⎧
⎪⎪⎨

⎪⎪⎩

0 for i � j,

1 for i = j,
i, j = 1, 2.

The temporal development y1(t) and y2(t) for t ∈ [td, T ] means physically that
with increasing t the initial, i.e., for t = td, amount γ1 and γ2, respectively, of
the poison distribute uniformly in C and E so that we have

lim
T→∞

y1
j (T ) =

γ1

V

and

lim
T→∞

y2
j (T ) =

γ2

V

for j = 1, 2 where V = VC + VE . Therefore we can assume, for sufficiently
large T > td, that

Y(T ) ≈ 1

V

⎛

⎜⎜⎜⎜⎜⎜⎝

γ1 γ2

γ1 γ2

⎞

⎟⎟⎟⎟⎟⎟⎠
. (4.54)

Further we have
γ1 < VC and γ2 < VE, (4.55)

since VC and VE is the amount of poison at the time t = 0 for i = 1 and i = 2,
respectively, and is diminished in the time interval [td, T ] by the process of
dialysis.

In a similar way ỹ(T ) =
(

C̃C(T ), C̃E(T )
)T

can also be derived from ỹ(td) =
(

C̃C(td), C̃E(td)
)T

. At first we obtain from considerations in Section 4.2.2 that

C̃E(T ) − C̃C(T ) ≈ G

DC

VC

VE + VC

(4.56)

(see (4.40)).
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Multiplying the first equation of (4.48) with VC and the second with VE and
then adding both equation leads to

VC
˙̃CC(t) + VE

˙̃CE(t) = G for t ∈ (td, T ).

This implies

VC C̃C(t) + VE C̃E(t) = G(t − td) + VC C̃C(td) + VE C̃E(td), t ∈ [td, T ],

hence

VC C̃C(T ) + VE C̃E(T ) = G(T − td) + VC C̃C(td) + VE C̃E(td). (4.57)

If we put
Md = VC C̃C(td) + VE C̃E(td),

then we obtain from (4.56) and (4.57)

C̃C(T ) ≈ 1

VC + VE

[

G(T − td) + Md −
G

DC

VEVC

VC + VE

]

,

C̃E(T ) ≈ 1

VC + VE

⎡

⎢⎢⎢⎢⎣G(T − td) + Md +
G

DC

V2
C

VC + VE

⎤

⎥⎥⎥⎥⎦ .

(4.58)

The linear system (4.52) now reads explicitly
(

1 − γ1
V

)

C0
C −
γ2

V
C0

E = C̃C(T ),

−γ1
V

C0
C +

(

1 − γ2
V

)

C0
E = C̃E(T ).

(4.59)

Subtracting the first equation from the second gives (as to be expected)

C0
E − C0

C = C̃E(T ) − C̃C(T ) ≈ G

DC

VC

VE + VC

,

hence

C0
E ≈ C0

C +
G

DC

VC

VE + VC

. (4.60)

Insertion into the first equation of (4.59) and solving for C0
C

leads to

C0
C ≈

1

V − γ1 − γ2

[

−γ2GVC

DC(VE + VC)
+ VC̃C(T )

]

. (4.61)
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4.3.2 The Case of Constant Clearance of the Dialyzer

We assume the clearance of the dialyzer to be constant, i.e.,

DM(t) = DM for all t ∈ [0, td).

We further assume that Dr = 0, i.e., there is no rest clearance of the kidneys.
As unique solutions of the differential equations (4.36), (4.37) (⇔ (4.43)) on
(0, td) and the initial conditions

CC(0) = C0
C and CE(0) = C0

E (4.62)

we then obtain

CC(t) =C0
Ce−δt +

C1δ

δ + λ1

(

eλ1t − e−δt
)

+
C2δ

δ + λ2

(

eλ2t − e−δt
)

− γ

α + β

(

1 − e−δt
)

,

CE(t) =C1e
λ1t +C2e

λ2t − γ

α + β
, t ∈ [0, td],

(4.63)

where

α = −DM + DC

VE

, β =
DC

VE

, γ =
G

VE

, δ =
DC

VC

,

λ1,2 = −
A

2
±
√

A2

4
− B,

A = δ − α, B = −δ(α + β),

C1 =
1

λ2 − λ1

[

(λ2 − α)C0
E − βC

0
C +
γ(λ2 − λ1)
α + β

− γ
(

1 − λ1

α + β

)]

,

C2 =
1

λ2 − λ1

[

(α − λ1)C0
E + βC

0
C + γ

(

1 − λ1

α + β

)]

.

This implies in particular for the solution ỹ(t) = (C̃C(t), C̃E(t))T of (4.48) and
(4.49)

C̃C(t) =
C̃1δ

δ + λ1

(

eλ1t − e−δt
)

+
C̃2δ

δ + λ2

(

eλ2t − e−δt
)

− γ

α + β

(

1 − e−δt
)

,

C̃E(t) = C̃1e
λ1t + C̃2e

λ2t − γ

α + β
, t ∈ [0, td],
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where

C̃1 =
γ(λ2 − α − β)

(λ2 − λ1)(α + β)
,

and

C̃2 =
γ(α + β + λ1)

(λ2 − λ1)(α + β)
.

Herewith one can calculate

Md = VCC̃C(td) + VEC̃E(td)

and C̃C(T ), C̃E(T ) according to (4.58). For the calculation of C0
C

and C0
E

ac-
cording to (4.60) and (4.61), respectively, we need the quantities γ1 and γ2
given by (4.53).
This requires the calculation of y1

1(td) = C1
C
(td), y1

2(td) = C1
E
(td) and

y2
1(td) = C2

C
(td), y2

2(td) = C2
E
(td) where Ci

C
= Ci

C
(t), Ci

E
= Ci

E
(t) for i = 1, 2

are the solutions of (4.36), (4.37) on (0, td) with G = 0 under the initial con-
ditions

C1
C(0) = 1, C1

E(0) = 0 and C2
C(0) = 0, C2

2(0) = 1.

These can be obtained from (4.63).

4.3.3 Discretization of the Model Equations

If the clearance of the dialyzer is time dependent, then the model equations
(4.36) and (4.37) cannot be solved explicitly on the interval [0, td] and have
to be solved numerically. The simplest way of doing this is to discretize the
model equations by replacing the time derivatives ĊC(t) and ĊE(t) on the left-
hand sides of (4.36) and (4.37) by difference quotients. For this purpose we
choose a time stepsize ∆t > 0 such that

td = K · ∆t and T = N · ∆t (4.64)

for K, N ∈ N with 2 ≤ K < N.

The discretized model equations then read

VC(CC(t + ∆t) −CC(t)) = −DC∆t(CC(t) −CE(t)),

VE(CE(t + ∆t) −CE(t)) = DC∆t(CC(t) −CE(t)) − D(t)∆(t)CE(t) +G∆t

(4.65)

for t ∈ {k · ∆t : k = 0, . . .N − 1} and D(t) given by (4.35).
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If we define

x(t) =

⎛

⎜⎜⎜⎜⎜⎜⎝

CC(t)

CE(t)

⎞

⎟⎟⎟⎟⎟⎟⎠
b =

⎛

⎜⎜⎜⎜⎜⎜⎝

0

G∆t/VE

⎞

⎟⎟⎟⎟⎟⎟⎠
B(t) =

⎛

⎜⎜⎜⎜⎜⎜⎝

b11 b12

b21 b22

⎞

⎟⎟⎟⎟⎟⎟⎠
(4.66)

where

b11 = 1 − DC∆t/VC , b12 = DC∆t/VC,

b21 = DC∆t/VE , b22 = 1 − (D(t) + DC)∆t/VE ,
(4.67)

then the difference equations (4.65) can also be written in the form

x(t + ∆t) = B(t)x(t) + b. (4.68)

We have shown in [4] that, under the assumption

DM(t) ≤ DM for all t ∈ [0, td)

and

∆t < min(VC/DC ,VE/(DM + Dr + DC)),

(4.69)

the system (4.68) ⇔ (4.65) has exactly one solution x(t) = (CC(t),CE(t))T

such that

CC(t) > 0, CE(t) > 0

and

x(t + T ) = x(t) for all t = k∆t, k = 0, 1, 2, . . .

(4.70)

For sufficiently small ∆t in comparison to T this solution can be taken as a
substitute of the corresponding T-periodic solution of (4.36), (4.37). In order
to determine the T-periodic solution of (4.68) we at first define

tk = k∆t and Bk = B(tk) for k = 0, . . . ,N.

Then we obtain from (4.65)

x(t1) = B0x(t0) + b0, b0 = b,

x(t2) = B1B0x(t0) + b1, b1 = B1b0 + b0,
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and, in general,

x(tk) = Bk−1Bk−2 . . . B0x(t0) + bk−1

bk−1 = Bk−1Bk−2 + bk−2,
(4.71)

and, finally,

x(tN) = BN−1BN−2 . . . B0x(t0) + bN−1,

bN−1 = BN−1BN−2 + bN−2.

For the T-periodic solution of the system (4.68) x(t0) ∈ R2 has to be chosen
such that it is a solution of the linear system

(I − YN)x(t0) = bN−1 (4.72)

where

I =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0

0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
, YN = BN−1BN−2 . . . B0. (4.73)

If x(t0) has been calculated as solution of (4.72), then x(t1), . . . , x(tN) = x(t0)
are obtained from (4.71) for k = 1, . . . ,N.

The matrix YN in (4.72) given by (4.73) can be determined as follows:

1. One puts e1 = (1, 0)T and computes

(y1
1, y

1
2)

T = BN−1BN−2 . . . B0e
1. (4.74)

2. One puts e2 = (0, 1)T and computes

(y2
1, y

2
2)

T = BN−1BN−2 . . . B0e
2. (4.75)

Then

YN =

⎛

⎜⎜⎜⎜⎜⎜⎝

y1
1 y2

1

y1
2 y2

2

⎞

⎟⎟⎟⎟⎟⎟⎠
. (4.76)

As a consequence of the definition of b0 = b in (4.66) and bk−1 for k =

2, . . . ,N in (4.71) it follows that the solution x(t0) of (4.69) depends linearly
on G. This can be used for the determination of the clearance DC of the cell
membranes as being described in Section 4.2.2. The procedure proposed there
consisted of choosing a realistic value of CE(0) and a tentative value of DC

and then to determine G such that the initial values CE(t0) and CC(t0) of the
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T-periodic solution of (4.65) corresponding to DC and G coincide with CE(0)
and CC(0), respectively, where CC(0) is such that (4.40) is satisfied.

In order to achieve this we choose DC as above and put G = 10. Then we
compute the corresponding T-periodic solution of (4.65) whose initial values
we denote by CC(t0, 10) and CD(t0, 10). Then the value of G to be determined
is given by

G =
CE(0)

CE(t0, 10)
· 10 (4.77)

since, due to the linear dependence of x(t0) on G, we know that

CE(0) =
G

10
CE(t0, 10).

Since also

CC(0) =
G

10
CC(t0, 10),

the condition (4.40) is automatically satisfied.

Let us demonstrate this procedure by a numerical example. For VC,VE, T, td
and DM(t) we make the same choice as in Section 4.2.2. As time stepsize we
take ∆t = 1 [min].

Then for G = 10 [mg/min] and DC = 400, 450, 500, 550, 600 [ml/min] we
obtain the following table:

DC 400 450 500 550 600

CC(t0, 10) 1.1487 1.1416 1.1358 1.1310 1.1271

CE(t0, 10) 1.1654 1.1564 1.1491 1.1431 1.1382

If we choose CE(0) = 1.5 [mg/ml], then, for G given by (4.77) we get the
following table

DC 400 450 500 550 600

G 12.87 12.97 13.05 13.12 13.18

CC(0) 1.4786 1.4808 1.4826 1.4841 1.4854

This table has also been presented in Section 4.2.2 already.
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4.3.4 Numerical Results for Urea

In this section we will present the (positive) T-periodic solutions of the system
(4.36), (4.37) computed numerically by discretization (as in Section 4.3.3)
and discuss their dependence on the parameters of the system.

As period T for the rhythm of dialysis we choose T = 2880 [min] (i.e., 48
hours). We assume the clearance of the dialyzer to be time dependent of the
form (4.35) with DM(t) given by (4.41) where we choose, for C0, the values
132, 160, and 180 [ml/min].

Further we put (as in Section 4.2.2) VE = 13600,VC = 27200 [ml]. For the
clearance DC of the cell membranes we take the value 500 [ml/min] which
is justified by the considerations in Section 4.2.2. This value refers to urea
whose generation rate G we assume to be 10 [mg/min]. For the beginning we
assume that there is no rest clearance of the natural kidneys and put Dr = 0.

The discretization of the system (4.36), (4.37) was performed by the Runge-
Kutta method (and not by Euler’s polygon method as being described in Sec-
tion 4.3.3) with stepsize ∆t = 1 [min].

In the following we only present the values of CE(t) for these can also be mea-
sured. In Table 4.1 we present some values of CE(t) during the time interval
of dialysis and in dependence of C0 and td.

C0 132 132 132 160 160 160 181 181 181

td 300 360 420 300 360 420 300 360 420

CE(0) 1.284 1.149 1.052 1.144 1.032 0.950 1.069 0.969 0.896

CE (60) 0.981 0.879 0.806 0.828 0.748 0.690 0.744 0.675 0.625

CE (120) 0.851 0.764 0.702 0.700 0.633 0.585 0.617 0.651 0.520

CE (180) 0.749 0.673 0.619 0.601 0.545 0.505 0.521 0.475 0.441

CE (240) 0.665 0.600 0.553 0.523 0.475 0.441 0.446 0.408 0.380

CE (300) 0.597 0.539 0.498 0.460 0.420 0.390 0.388 0.355 0.332

CE (360) 0.489 0.453 0.375 0.349 0.314 0.294

CE (420) 0.425 0.316 0.264
CE (td )
CE (0) 0.465 0.426 0.404 0.402 0.363 0.333 0.363 0.324 0.295

Table 4.1.
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In the last row we have listed the values of the dialysis effect

E(C0, td) =
CE(td)

CE(0)
(4.78)

which renders to be monotonically decreasing with respect to C0 (for td being
fixed) and with respect to td (for C0 being fixed). This has also been observed
in Section 4.1.2 for the one-compartment model (the values there, however,
are too small).

If C0 is fixed, then the improvement of the dialysis effect is higher in passing
from 5 to 6 hours than from 6 to 7 hours as period of the process of dialysis.
This shows that one should rather increase the value of C0 in order to achieve
an improvement of the dialysis effect.

Table 4.2 shows the influence of the rest clearance Dr of the natural kidneys
to the CE-part of the T-periodic solution of (4.36), (4.37). We choose in par-
ticular td = 360 [min] and C0 = 132 [ml/min].

Dr 1 2 3 4 5 6

CE(0) 1.061 0.985 0.918 0.860 0.808 0.761

CE(60) 0.812 0.753 0.702 0.658 0.618 0.582

CE(120) 0.706 0.665 0.611 0.572 0.538 0.507

CE(180) 0.622 0.578 0.539 0.505 0.475 0.448

CE(240) 0.554 0.515 0.481 0.450 0.424 0.400

CE(300) 0.499 0.464 0.433 0.406 0.382 0.361

CE(360) 0.453 0.422 0.394 0.370 0.349 0.329
CE (td)
CE(0) 0.427 0.428 0.429 0.430 0.432 0.432

Table 4.2.

Then we obtain Table 4.2 which shows that in comparison with Dr = 0 the
dialysis effect does not improve (it even deteriorates) and gets worse with
increasing values of Dr. But the maximum values CE(0) of CE(t) become
significantly smaller with growing values of Dr. This is understandable, since
the natural kidneys are permanently active (i.e., 48 hours within a dialysis
period of 48 hours) whereas the artificial kidney only acts for 6 hours.
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If the rest clearance of the natural kidneys is large enough, then dialysis can
be renounced, i.e. we can put DM(t) = 0 for t ∈ [0, td) such that

D(t) = Dr for all t ∈ [0, T ].

The model equations (4.36), (4.37) then possess unique T-periodic solutions
which are constant, i.e., CC(t) = CC ,CE(t) = CE for all t ∈ [0, T ] where CC

and CE are the unique solutions of the linear system

DC(CE −CC) = 0,

DC(CC −CE) − DrCE +G = 0

and are given by

CC = CE =
G

Dr

.

The presence of some rest clearance of the natural kidneys can also be used in
order to enlarge the time T between subsequent periods of dialysis. The Table
4.3 gives some values of the CE-part of the T-periodic solution of (4.36),
(4.37) for T = 4320 [min] (3 days), td = 360 [min], and for several values of
C0 and Dr.

C0 132 132 160 160 181 181

Dr 0 1.3 0 0.5 0 0.5

CE(0) 1.748 1.502 1.572 1.492 1.478 1.409

CE(60) 1.331 1.143 1.133 1.075 1.023 0.975

CE(120) 1.150 0.989 0.954 0.905 0.845 0.805

CE(180) 1.008 0.866 0.815 0.774 0.709 0.676

CE(240) 0.891 0.766 0.705 0.669 0.603 0.576

CE(300) 0.795 0.685 0.616 0.585 0.520 0.496

CE(360) 0.716 0.617 0.544 0.517 0.454 0.433

Table 4.3.

If CE(0) = 1.5 [mg/min] can be tolerated as maximum value of CE(t), then
for C0 = 132 [ml/min] a rest clearance Dr = 1.3 [ml/min] would suffice
whereas for C0 = 160 [ml/min] the value Dr = 0.5 [ml/min] would be
sufficient and for C0 = 181 [ml/min] the rest clearance Dr of the kidneys
could be zero.
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4.3.5 The Influence of the Urea Generation Rate

If we define (see Section 4.3.1)

A(t) =

⎛

⎜⎜⎜⎜⎜⎜⎝

−DC/VC DC/VC

DC/VE − (DC + D(t)) /VE

⎞

⎟⎟⎟⎟⎟⎟⎠
,

b =

⎛

⎜⎜⎜⎜⎜⎜⎝

0

G/VE

⎞

⎟⎟⎟⎟⎟⎟⎠
, x(t) =

⎛

⎜⎜⎜⎜⎜⎜⎝

CC(t)

CE(t)

⎞

⎟⎟⎟⎟⎟⎟⎠
, and ẋ(t) =

⎛

⎜⎜⎜⎜⎜⎜⎝

ĊC(t)

Ċe(t)

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(4.79)

then the system (4.36), (4.37) can also be written in the form

ẋ(t) = A(t)x(t) + b (4.80)

and has, for every given x(0) = x0 = (C0
C
,C0

E
)T , exactly one (absolutely

continuous) solution which can be represented by the formula of variation of
the constants as

x(t) = Y(t)

{

x0 +

∫ t

0
Y(s)b ds

}

, t ∈ [0, T ], (4.81)

where Y = Y(t) is the so called fundamental matrix function which satisfies

Ẏ(t) = A(t)Y(t) for all t ∈ (0, T ) \ {td} (4.82)

and
Y(0) = I2 = 2 × 2 − unit matrix.

If x = x(t) is T-periodic, i.e., x(T ) = x0, then it follows that

x0 = (I2 − Y(T ))−1Y(T )

∫ T

0
Y(s)−1b ds (4.83)

(The existence of (I2 − Y(T ))−1 is guaranteed by virtue of the investigations
in [2]). By inserting x0 from (4.83) into (4.81) one recognizes that every T-
periodic solution (CC(t),CE(t))T of the system (4.36), (4.37) depends linearly
on G.

The same holds true for the T-periodic solutions of the discretized model
equations (4.65) which are taken as approximate solutions of (4.36), (4.37).
This is shown in Section 4.3.2. The existence of T-periodic solutions of (4.65)
is proved in [4] under the assumption (4.69).
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If we denote the dependence of CE(t) on G by CE(t,G), then we have

CE(t,G) = G ·CE(t, 1) (4.84)

which is equivalent to

CE(t,G1)

CE(t,G2)
=

G1

G2
. (4.85)

It therefore suffices, to compute the CE-part of a T-periodic solution of (4.36),
(4.37) for some value of G, say G = 10 (as in Section 4.3.4). The correspond-
ing CE-part for any value G can then be determined by virtue of formula
(4.85).

4.3.6 Determination of the Urea Generation Rate and the Rest

Clearance of the Kidneys

We assume that for some patient who is dialysed for 6 hours every two
days a periodic development of CE(t) has established with the period of
T = 2880 [min]. If the rest clearance Dr of his kidneys is known (for in-
stance, Dr = 0), then the urea generation rate G can be determined experi-
mentally with the aid of the relation (4.85) as follows: At the beginning of
the dialysis period the value CE(0,G) is measured and the T-periodic solution
(CC(t, G̃),CC(t, G̃))T of (4.36), (4.37) is calculated for some G̃, say G̃ = 10.
The unknown rate G is then given, by virtue of (4.85), as

G = 10
CE(0,G)

CE(0, 10)
. (4.86)

If the rest clearance Dr of the kidneys is unknown, then one can proceed as
follows: At the beginning of the period of dialysis CE(0) = CE0 is measured.
Then, at least two hours after the end of the dialysis, urine of the patient
is collected within some time interval [ta, te] (where, for instance te − ta =

1440 [min]) and the amount Hg of urea contained in the urine is determined.
From this the amount of urea excreted per minute within the interval [ta, te] is
obtained as H = Hg/(te − ta).
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If Dr and G are the quantities to be determined, then for the CE-part of the cor-
responding T-periodic solution (CC(t,G,Dr),CE(t,G,Dr))T of (4.36), (4.37)
we must require that

H =
1

te − ta

∫ te

ta

DrCE(t,G,Dr) dt. (4.87)

and

CE(0,G,Dr) = CE0.

For G = 10 [mg/min] let

CE(Dr) =
1

te − ta

∫ te

ta

CE(t, 10,Dr) dt

≈ 1

6

{

CE(ta, 10,Dr) + 4CE

(
ta + te

2
, 10,Dr

)

+CE(te, 10,Dr)
}

.

(4.88)

From (4.84) we deduce

CE(t, 10,Dr)

CE(0, 10,Dr)
=

CE(t,G,Dr)

CE(0,G,Dr)
=

CE(t,G,Dr)

CE0

such that from (4.87) and (4.88) we obtain the relation

CE(Dr)

CE(0, 10,Dr)
=

1

Dr

· H

CE0
. (4.89)

If we choose C0 = 132 [ml/min], td = 360 [min], ta = 660, and te =

2100 [min], then for

g(Dr) =
CE(Dr)

CE(0, 10,Dr)

we obtain the following table:

Dr 0 1 2 3 4 5

g(Dr) 0.6801 0.6843 0.6885 0.6927 0.6970 0.7012
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From this table we derive the linear relation g(Dr) = aDr + b with a =

0.0042, b = 0.6801 which, in connection with (4.89), leads to the quadratic
equation

aD2
r + bDr −

H

CE0
= 0

whose positive solution is given by

Dr = −
b

2a
+

√

b2

4a2
+

H

CE0
. (4.90)

Having determined Dr from this formula we get G, in analogy to (4.86), from

G = 10 · CE0

CE(0, 10,Dr)
.

4.4 A Three-Compartment Model

4.4.1 Motivation and Derivation of the Model Equations

Headaches that occur at the beginning of the period after the process of dial-
ysis with numerous patients give rise to the assumption that the cell mem-
branes of the brain have a smaller clearance than the other cell membranes of
the body. This implies that the concentration of the toxin in the brain during
the final part of the process of dialysis and also shortly afterwards is con-
siderably higher than in the extracellular part of the body in which the toxin
concentration is reduced by the dialyzer. This surplus of toxin concentration
in the brain may be the reason for the observed headache.

Therefore we will treat the brain as a separate part of the cellular part of the
body. Then besides the diffusion between the latter and the extracellular part
we have also to regard a diffusion between the brain and the extracellular part
of the body. The two differential equations (4.36), (4.37)) therefore have to
be replaced by the following three differential equations:

VCĊC(t) = DC(CE(t) −CC(t)), (4.91)

VBĊB(t) = DB(CE(t) −CB(t)), (4.92)

VEĊE(t) = DC(CC(t) −CE(t)) +

DB(CB(t) −CE(t)) − D(t)CE(t) +G. (4.93)
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In addition to the quantities that have been introduced already in Section 4.2.1
we have the following: VB = volume of the brain (in ml), DB = clearance of
the brain cells (in ml/min), CB(t) = toxin concentration in the brain at the
time t (in mg/ml) and ĊB(t) = time derivative of CB(t) at the time t. We also
assume Dr = 0.

The equation (4.91) and (4.92) describes the temporal change of CC and CB

under the influence of diffusion between C and E and B and E, respectively.
Equation (4.93) describes the temporal change of CE under the influence of
diffusion between C, B and E, under the influence of intermittent dialysis and
caused by the generation of the toxin.

This three-compartment model reduces to the two-compartment model (of
Section 4.2.1), if we require that CB(t) = CC(t) = C(t) which must be the
case, if the brain is no more separated from the cellular part of the body.
From (4.91) and (4.92) we then necessarily derive the relation

DC

VC

=
DB

VB

(4.94)

which implies

DB + DC =
VC + VB

VC

DC (4.95)

and further (by addition of (4.91) and (4.92))

(VC + VB)Ċ(t) = D(CE(t) −C(t)) (4.96)

with
D = DB + DC . (4.97)

This is exactly the equation (4.36) with VC + VB instead of VC and D instead
of DC and C(t) instead of CC(t), respectively. Equation (4.93) can be rewritten
in the form

VEĊE(t) = D(C(t) −CE(t)) − D(t)CE(t) +G (4.98)

which is exactly the equation (4.37) with D instead of DC and C(t) instead of
CC(t).

By [3] there exist T-periodic solutions

CC(t) > 0, CB(t) > 0, CE(t) > 0, for 0 ≤ t ≤ T

of the system (4.94) the calculation of which will be discussed in Section
4.4.3. Before, however, we have to determine realistic values for the clearance
DB of the brain cells. This will happen in Section 4.4.2.
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4.4.2 Determination of the Clearance of the Cell Membranes of the

Brain

As in Section 4.3.4 we again choose T = 2880 and td = 360 [min],

CM(t) = 132e−0.001t , t ∈ [0, td],

G = 10 [mg/min],VE = 13600 [ml]. As volume of the brain we choose
VB = 1375 and for the rest of the cellular part of the body the volume VC =

25825 [ml] so that on the whole we again obtain VC + VB = 27200 [ml].

A first hint to the order of size of DB can be derived from the two-compartment
model (4.96), (4.98). By the investigations of Section 4.2.2 it is reasonable to
assume that D = 500 [ml/min] (which corresponds to DC = 500 [ml/min]).
Then (4.95) and (4.97) imply

DC =
VCD

VC + VB

=
25825 · 500

27200
= 474.72

and further
DB = D − DC = 25.28 [ml/min].

In general, (4.94) implies

DB =
VB

VC

DC.

If T − td is sufficiently large, then one can show the two relations

CE(T ) −CC(T ) ≈ GVC

(VC + VB + VE)DC

(4.99)

and

CE(T ) −CB(T ) ≈ GVB

(VC + VB + VE)DB

. (4.100)

By (4.94), these two equations reduce to one equation in the case of a two-
compartment model (where CC(T ) = CB(T ) = C(T ) and DC = DB = D),
namely,

CE(T ) −C(T ) ≈ G

D

VC

VC + VB + VE

, (4.101)

which, for T-periodic solutions (i.e. in the case CE(T ) = CE(0) and C(T ) =
C(0)) is exactly the equation (4.40) with D instead of DC and VC +VB instead
of VC .
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Based on the reasonable assumption that

CB(T ) ≤ CC(T ) ≤ CE(T ) (4.102)

one then derives from (4.99) and (4.100) that

DB ≤
VB

VC

DC = 25.28 (4.103)

where equality occurs in the case of the two-compartment model as been
shown above.

4.4.3 Computation of Periodic Urea Concentration Curves

If we define

A(t) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−DC/VC 0 0

0 −DB/VB 0

DC/VE DB/VE −(DC + DB + D(t))/VE

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

b =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

G/VE

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CC(t)

CB(t)

CE(t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ẏ(t) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ĊC(t)

ĊB(t)

ĊE(t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

then the system (4.91), (4.92), (4.93) can be rewritten in the form

ẏ(t) = A(t)y(t) + b. (4.104)

For each initial vector y0 ∈ R3 it is known (see, for instance, [3]) that there is
exactly one absolutely continuous solution y = y(t) ∈ R3 for t ∈ [0, T ] such
that y(0) = y0 which satisfies (4.104) for all t ∈ (0, T ) \ {td}. This is given by
the formula of variation of the constants

y(t) = Y(t){y0 +

∫ t

0
Y(s)−1b ds} (4.105)

for t ∈ [0, T ] where Y = Y(t) is the so called fundamental matrix function on
[0, T ] with

Ẏ(t) = A(t)Y(t) for t ∈ (0, T ) \ {td} (4.106)
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and

Y(0) = E3 = 3 × 3 − unit matrix. (4.107)

For the T -periodic solution y = y(t) of (4.104) (which exists by [3] and is
unique) then necessarily

y0 = Y(t){y0 +

∫ T

0
Y(t)−1bdt}

holds true which leads to the linear system

(E3 − Y(T ))y0 = ỹ(T ) (4.108)

for y0 ∈ R3 where

ỹ(t) = Y(t)

∫ t

0
Y(s)−1b ds for t ∈ [0, T ]. (4.109)

The computation of the T-periodic solution y = y(t), t ∈ [0, T ], of (4.104)
now happens in 4 steps.

Step 1: At first ỹ = ỹ(t) given by (4.109) is determined as the unique abso-
lutely continuous solution of the initial value problem

˙̃y(t) = A(t)ỹ(t) + b, t ∈ (0, T ),

ỹ(0) = Θ3 = zero vector in R3 (4.110)

Step 2: Next Y = Y(t) = (y1(t), y2(t), y3(t)), yi(t) ∈ R3 for i = 1, 2, 3 and
t ∈ [0, T ] which satisfies (4.106) and (4.107) is determined by solving
the following three initial value problems:

ẏi(t) = A(t)yi(t), t ∈ (0, T ),

yi = ei, i = 1, 2, 3,
(4.111)

where ei denotes the i-th coordinate unit vector in R3 (i.e., ei
j
= δi j =

Kronecker’s symbol for i, j = 1, 2, 3).

Step 3: Third the unique solution y0 ∈ R3 of (4.108) is calculated.
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Step 4: Finally, the (componentwise) positive, absolutely continuous, T-periodic

solution of (4.104) (if y0 ∈
◦
R

3

+) is determined by solving the initial
value problem

ẏ(t) = A(t)y(t) + b,

y(0) = y0 (4.112)

with y0 ∈ R3 taken from step 3.

The initial value problems in steps 1, 2, and 4 can be solved numerically as in
Section 4.3.3 by discretization and Euler’s polygon method. In this way the
numerical results presented in Section 4.4.4 were obtained (by choosing as
step length ∆t = 1 [min]).

For T and DB being sufficiently large the computation of ỹ(T ) in step 1 and of
Y(T ) in step 2 can be performed more economically than by solving (4.110),
(4.111) and (4.112), respectively, by means of Euler’s polygon method.

We begin with the determination of ỹ(T ) in step 1. At first we determine, by
Euler’s polygon method, ỹ(td) = (ỹ1(td), ỹ2(td), ỹ(td))T and calculate

γ̃ = VC ỹ1(td) + VBỹ2(td) + VE ỹ3(td). (4.113)

Similar to (4.58) it is possible to derive, for ỹ(T ) = (C̃C(T ), C̃B(T ), C̃E(T ))T

the relations

C̃C(T ) ≈ C̃E(T ) − GVC

(VC + VB + VE)DC

, (4.114)

C̃B(T ) ≈ C̃E(T ) − GVB

(VC + VB + VE)DB

, (4.115)

C̃E(T ) ≈ 1

VC + VB + VE

⎡

⎢⎢⎢⎢⎣G(T − td) + γ̃ +

⎛

⎜⎜⎜⎜⎝

V2
C

DC

+
V2

B

DB

⎞

⎟⎟⎟⎟⎠

G

VC + VB + VE

⎤

⎥⎥⎥⎥⎦ .

(4.116)

Next we consider the determination of Y(T ). In analogy to (4.113) we define

γi = VCyi
1(td) + VByi

2(td) + VEyi
3(td) (4.117)

for i = 1, 2, 3. Then γi is the total amount of urea at the end of dialysis
corresponding to the initial urea concentration yi

j
(0) = δi j for j = 1, 2, 3.
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The relations (4.117) can also be written in the form

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1

γ2

γ3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

Y(td)
T

︷�������������������︸︸�������������������︷
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1
1(td) y1

2(td) y1
3(td)

y2
1(td) y2

2(td) y2
3(td)

y3
1(td) y3

2(td) y3
3(td)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

VC

VB

VE

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Since the computation of Y(t) for t ∈ [td, T ] is done under the assumption that
G = 0 and

D(t) = 0 for t ∈ [td, T ]

(see (4.35) and observe that we assume Dr = 0), the total amount γi of urea
for i = 1, 2, 3 at t = td will be uniformly distributed over the extracellular part
of the body, the brain, and the rest of the cellular part as t tends to infinity. So,
for t → ∞ in all three parts there will be the same urea concentration γi/V
with V = VC + VB + VE . This means that

lim
t→∞

Y(t) =
1

V

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1 γ2 γ3

γ1 γ2 γ3

γ1 γ2 γ3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.118)

Further it is clear that

γ1 < VC , γ2 < VB, γ3 < VE , (4.119)

VC and VB and VE being the total amount of urea at t = 0 for i = 1 and i = 2
and i = 3, respectively which is diminished in the course of dialysis. From
(4.118) and (4.119) it follows that

lim
t→∞

Y(t)T

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

VC

VB

VE

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1

γ2

γ3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

<

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

VC

VB

VE

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

On using a so called Quotient-Theorem for the spectral radius ρ(Y(T )) of
Y(T ) (see, for instance, [1]) it follows, for sufficiently large T , that ρ(Y(T )) <
1 which proves the unique solvability of (4.108), if T is sufficiently large.
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If we assume T so large that

Y(T ) ≈ lim
t→∞

Y(t) =
1

V

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1 γ2 γ3

γ1 γ2 γ3

γ1 γ2 γ3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.120)

then (4.108) can be explicitly solved for y0 = (C0
C
,C0

B
,C0

E
)T . In order to see

this we rewrite (4.108) in the form

(V − γ1)C0
C − γ2C

0
B − γ3C

0
E = VC̃C(T )

−γ1C0
C + (V − γ2)C0

B − γ3C
0
E = VC̃B(T ) (4.121)

−γ1C0
C − γ2C

0
B + (V − γ3)C0

E = VC̃E(T )

On subtracting the third equation from the first and the second we obtain

V(C0
C −C0

E) = V(C̃C(T ) − C̃E(T ))

V(C0
B −C0

E) = V(C̃B(t) − C̃E(T ))

which leads to (see (4.114) and (4.115))

C0
C = C0

E −
GVC

(VC + VB + VE)DC

, (4.122)

C0
B = C0

E −
GVC

(VC + VB + VE)DB

. (4.123)

Insertion of

C0
C = C0

E + (C̃C(T ) − C̃E(T )) and C0
B = C0

E + (C̃B(T ) − C̃E(T ))

into the first equation of (4.121) yields

(V − γ1 − γ2 − γ3)C0
E

= VC̃(T ) − (V − γ1)(C̃C(T ) − C̃E(T )) + γ2(C̃B(T ) − C̃E(T ))

= VC̃E(T ) + γ1(C̃C(T ) − C̃E(T )) + γ2(C̃B(T ) − C̃E(T ))
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and leads to

C0
E

=
1

V − γ1 − γ2 − γ3

[

VC̃E(T ) − γ1GVC

(VC + VB + VE)DC

− γ2GVB

(VC + VB + VE)DB

]

(4.124)

Result: If T is so large that (4.120) can be assumed to hold, the solution
y0 = (C0

C
,C0

B
,C0

E
)T of (4.108) in step 3 is given by (4.122), (4.123), (4.124)

where C̃E(T ) is to be taken from (4.116). Finally, we will find out numerically
how large DB (≤ 25.28, see (4.103)) has to be chosen in order to guarantee
(4.120) for T = 2880 and td = 360 [min] (which were used for the two-
compartment model already). We again choose VC,VB,VE as in Section 4.4.2.
The question then is how DC and DB with DC + DB = 500 [ml/min] and
DB ≤ 25.28 have to be chosen in order to make sure that (4.120) holds. For
DB = 0.1,DC = 499.9 and DB = 1,DC = 499, respectively, we calculate by
step 2 of the above procedure (using Euler’s polygon method) the matrices

Y(2880) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.271658 0.006182 0.121257

0.053541 0.811637 0.024839

0.271629 0.006288 0.121244

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Y(2880) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.266416 0.026670 0.119065

0.238152 0.141718 0.107808

0.266378 0.026823 0.119041

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

respectively, which have not yet the form of the right-hand side of (4.120).
But if we choose DB = 10,DC = 490, then we obtain the matrix

Y(2880) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.270708 0.018321 0.121187

0.270708 0.018321 0.121187

0.270708 0.018321 0.121187

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.125)

which is of the form of the right-hand side of (4.120). We also obtain

Y(360) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.280790 0.016226 0.125332

0.296510 0.087008 0.141592

0.248955 0.015355 0.111251

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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which, by virtue of (4.117), leads to

γ1/V = 0.2707081,

γ2/V = 0.0183211,

γ3/V = 0.1211863

and shows good coincidence with (4.125). Therefore, for DB ≥ 10 [ml/min]
one can assume with sufficient accuracy that Y(2880) (for td = 360 [min])
can be computed by calculating Y(td) by step 2 of the above method and by
putting

Y(2880) =
1

V

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1 γ2 γ3

γ1 γ2 γ3

γ1 γ2 γ3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where γ1, γ2, γ3 are obtained from (4.117). This has the advantage that Euler’s
polygon method has only to be applied to the essentially smaller time interval
[0, td].

4.4.4 Numerical Results

We choose the same data as at the beginning of Section 4.4.2 and discuss the
results for the values

DB = 0.1, DB = 1, DB = 10, DB = 20,

DC = 499.9, DC = 499, DC = 490, DC = 480.

⎫
⎪⎪⎬

⎪⎪⎭
[ml/min]

As steplength for Euler’s polygon method we have chosen ∆t = 1 [min] which
guarantees a sufficiently high accuracy. For the initial values of the positive,
absolutely continuous, and T -periodic solutions of (4.1) we obtain the fol-
lowing table:

DB CC(0) = CC(T ) CB(0) = CB(T ) CE(0) = CE(T )

0.1 1.14482 0.831434 1.15788

1 1.14421 0.923036 1.15770

10 1.13551 1.114731 1.14843

20 1.13309 1.129427 1.14628
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This table shows that CB(0) = CB(T ) grows monotonically with growing DB

and gets closer to the corresponding value of CC(0) = CC(T ) which together
with CE(0) = CE(T ) slightly decreases.
For DB = 25.28,DC = 474.72 (i.e., in the two-compartment model) one
obtains the values

CC(0) = CB(0) = 1.13278, CE = 1.14611.

At the end of the dialysis (i.e., for t = td = 360 [min]) the following table for
CC ,CB, and CE is obtained:

DB CC(td) CB(td) CE(td)

0.1 0.527813 0.828088 0.480161

1 0.528787 0.869595 0.481363

10 0.534848 0.639948 0.487396

20 0.536505 0.553766 0.487695
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A

Appendix

A.1 A Problem of Optimal Control

A.1.1 The Problem

We consider a function f0 : G → R and a vector function f : G → Rn, f =

( f1, . . . , fn)T , on an open and connected domain G ⊆ R × Rn × Rr.
Further we consider two vector functions H0,H1 : V → Rn on an open and
connected domain V ⊆ Rn such that

G ∩ R × V × Rr
� ∅ (= empty set).

We assume that f0 and f as well as H0 and H1 are partially continuously
differentiable with respect to all variables on G and V , respectively.
Finally, let [t0, t1] with t0 < t1 a given time interval.
Then we consider the following

Problem of optimal control. Find two functions u ∈ C ([t0, t1],Rr) and y ∈
C1 ([t0, t1],Rn) such that

(t, y(t), u(t)) ∈ G for all t ∈ [t0, t1], y(ti) ∈ V for i = 0, 1, (A.1)

ẏ(t) = f (t, y(t), u(t)) for all t ∈ [t0, t1], (A.2)

H0(y(t0)) = H1(y(t1)) = ⊖n (= zero vector in Rn) (A.3)

and

J(y, u) =

∫ t1

t0

f0(t, y(t), u(t)) dt (A.4)

is minimized.
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The function u ∈ C ([t0, t1],Rr) is interpreted as a control(function) and
the function y ∈ C1 ([t0, t1],Rn) as a state (function) of a process which
develops according to (A.2) submitted to initial and end conditions (A.3).
J : C1 ([t0, t1],Rn) × C ([t0, t1],Rr) → R is a cost functional in a general
sense.

As an example let us consider the second problem of optimal control in Sec-
tion 3.1. Here we have G = R × R̊+ × R̊+ where

R̊+ = {u ∈ R | u > 0} (n = r = 1).

Further we have V = R̊+ and H0,H1 : V → R are defined by

H0(p) = p − p0 and H1(p) = p − pT .

The functions f0 : G → R and f1 : G → R are defined by

f0(t, p, v) = v

and
f1(t, p, v) =

[

f (p) − g(v)
]

p,

respectively.
The time interval [t0, t1] is given by [0, T ] and the cost functional J :
C1 ([0, T ],R) ×C ([0, T ],R) reads

J(p, v) =

∫ T

0
v(t) dt.

All the assumptions made above are satisfied.

A.1.2 A Multiplier Rule

We start with defining a Lagrange function L : G × Rn × R+ × Rn → R by

L(t, y, u, ẏ, λ, p) = λ f0(t, y, u) + pT (ẏ − f (t, y, u)). (A.5)

Then we have the following
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Theorem A.1 Let (ŷ, û) ∈ C1 ([t0, t1],Rn)×C ([t0, t1],Rr) be a solution of the

problem of optimal control. Then there exist multipliers λ̂ ∈ R+ and l̂0, l̂1 ∈ Rn

which are not all vanishing and a function p̂ ∈ C1 ([t0, t1],Rn) such that

a) the Euler equation with respect to y given by

− d

dt
Lẏ

(

t, ŷ(t), û(t), ˙̂y(t), λ̂, p̂(t)
)

+ Ly

(

t, ŷ(t), û(t), ˙̂y(t), λ̂, p̂(t)
)

= ⊖n

for all t ∈ (t0, t1).
(A.6)

holds true together with the boundary conditions

Lẏ

(

t0, ŷ(t0), û(t0), ˙̂y(t0), λ̂, p̂(t0)
)

= H0y(ŷ(t0))
T l̂0,

Lẏ

(

t1, ŷ(t1), û(t1), ˙̂y(t1), λ̂, p̂(t1)
)

= −H1y(ŷ(t1))
T l̂1

(A.7)

where Ly and Lẏ is the gradient of L with respect to y and ẏ, respectively, and

Hiy(ŷ(ti)) is the Jacobi matrix of Hi at ŷ(ti), i = 0, 1, and

b) the Euler equation with respect to u given by

Lu

(

t, ŷ(t), û(t), ˙̂y(t), λ̂, p̂(t)
)

= ⊖r for all t ∈ (t0, t1) (A.8)

holds true where Lu is the gradient of L with respect to u.

On using the definition (A.5) the Euler equation (A.6) turns out to be equiv-

alent to the so called adjoint equation

˙̂p(t) = − fy (t, ŷ(t), û(t))T p(t) + λ̂ f0y (t, ŷ(t), û(t))T for all t ∈ (t0, t1) (A.9)

where fy(t, ŷ(t), û(t)) denotes the Jacobi matrix of f with respect to y and

f0y(t, ŷ(t), û(t))T is the gradient of f0 with respect to y at (t, ŷ(t), û(t)), and the

boundary conditions (A.7) are equivalent with the so called transversality

conditions

p̂(t0) = H0y (ŷ(t0)) l̂0,

p̂(t1) = −H1y (ŷ(t1)) l̂1.
(A.10)
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Finally, the Euler equation (A.8) reads

fu(t, ŷ(t), û(t))T p̂(t) = λ̂ f0u(t, ŷ(t), û(t))T for all t ∈ (t0, t1) (A.11)

where fu(t, ŷ(t), û(t)) is the Jacobi matrix of f with respect to u and

f0u(t, ŷ(t), û(t))T is the gradient of f0 with respect to u at (t, ŷ(t), û(t)).

Proof. For the proof of Theorem A.1 we refer to [1] in Chapter 3. ⊓⊔

An application of Theorem A.1 to the second problem of optimal control in
Section 3.1 leads to the following statement: Let (p̂, v̂) ∈ C1[0, T ]×C[0, T ] an
optimal pair. Then there exist multipliers λ̂0 ≥ 0, l0, l1 ∈ R with (λ̂0, l̂0, l̂1)T �
⊖3 (= zero vector in R3) and a function λ̂ ∈ C1[0, T ] such that

˙̂y(t) = − [ f ′(p̂(t)) + f (p̂(t)) − g(v̂(t)
] ˆλ(t) for all t ∈ (0, T ), (A.12)

λ̂(0) = l̂0, λ̂(T ) = l̂1 (A.13)

and

−g′(v̂(t))p̂(t)λ̂(t) = λ̂0 for all t ∈ (0, T ). (A.14)

If λ̂0 = 0 then it follows from (A.14) because of

g′(v̂(t))p̂(t) > 0 for all t ∈ (0, T )

that

λ̂(t) = 0 for all t ∈ (0, T )

which implies l̂0 = l̂1 = 0, a contradiction to (λ̂0, l̂0, l̂1) � ⊖3. Therefore it
follows that λ̂0 > 0.
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A.2 Existence of Positive Periodic Solutions in a General

Diffusion Model

A.2.1 The Model

The two- and three-compartment models for the process of hemodialysis
which are considered in Section 4 are special cases of a general diffusion
model. This consists of n compartments which are pairwise separated from
each other by porous or impermeable walls. In these compartments there
is a substance in different, time-dependent concentrations χi = χi(t), i =
1, . . . , n, t ∈ R. In each compartment the substance is generated with a time-
dependent generation rate ei = ei(t) per time unit in the i-th compartment.
From each compartment the substance is also extracted with a time-dependent
extraction rate ci = ci(t) per time unit. If Vi is the volume of the i-th compart-
ment and

ci j = c ji ≥ 0 for i � j

the time-independent diffusion coefficient per time unit between the compart-
ment i and j.

Then the temporal change of the i-th concentration χi for i = 1, . . . , n is
described by the differential equation

Vi χ̇i(t) = −

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j=1
j�i

ci j + ci(t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

χi(t) +
n∑

j=1
j�i

ci jχi(t) + ei(t). (A.15)

With the definitions

ai j =
ci j

Vi

for i, j = 1, . . . , n, i � j

di(t) =
ci(t)

Vi

, bi(t) =
ei(t)

Vi

for i = 1, . . . , n
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we can rewrite (A.15) in the form

χ̇(t) = −

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j=1
j�i

ai j + di(t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

χi(t) +
n∑

j=1
j=i

ai jχ j(t) + bi(t)

for i = 1, . . . , n.

(A.16)

We assume that the functions di = di(t) and bi = bi(t) are periodic with period
p, non-negative, piecewise continuous and continuous, respectively.

Now we put the question whether the system (A.16) has p-periodic solutions

χi = χt(t) for i = 1, . . . , n and t ∈ R.

which are positive and absolutely continuous. A positive answer to this ques-
tion will be given in the next subsection under the natural assumptions

n∑

i=1

di � 0 and
n∑

i=1

bi � 0 (A.17)

and a condition of non-decomposition which prevents the existence of iso-
lated compartments so that the whole system is not divided into independent
subsystems.

A.2.2 An Existence and Unicity Theorem

In vector and matrix form the system (A.16) for i = 1, . . . , n reads

χ̇(t) = A(t)χ(t) + b(t), t ∈ R, (A.18)

where

aii(t) = −

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j=1
j�i

ai j + di(t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, i = 1, . . . , n.
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For every choice of t0 ∈ R and χ(t0) ∈ Rn the unique absolutely continuous
solution of (A.18) is given by

χ(t) = Ȳ(t){χ(t0) +
∫ t

t0

Ȳ(s)−1b(s) ds}, t ∈ R, (A.19)

with the unique n × n-fundamental matrix function Ȳ = Ȳ(t) which satisfies

˙̄Y = A(t)Ȳ , t ∈ R,
Ȳ(t0) = n × n -unit matrix

In addition to the assumption (A.17) we require the following non-decompo-
sition condition: For every pair (i, j) with i � j there exists a chain i1, i2, . . . , ik
of indices with

ai1i > 0, ai2i1 > 0, . . . , a jik > 0.

Then we can prove the

Theorem A.2 Let t0 ∈ R be given. Then for the solution (A.19) of (A.18) it

is true that

χ(t0) > ⊖n ⇒ χ(t) > ⊖n for all t > t0, (A.20)

χ(t0) ≥ ⊖n ⇒ χ(t) ≥ ⊖n for all t > t0, (A.21)

χ(t0) ≥ ⊖n, χ(t0) � ⊖n ⇒ χ(t) > ⊖n for all t > t0. (A.22)

Proof. At first we have

χi(t) = exp

(∫ t

t0

aii(s) ds

)

·
{

χi(t0) +

∫ t

t0

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j=1
j�i

ai jx j(s) + bi(s)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

exp

(

−
∫ t

t0

aii(τ)dτ

)

ds

}

(A.23)

for all t ∈ R and i = 1, . . . , n.
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If (A.20) were false, then there exists a minimal t > t0 with χi(t) ≤ 0 for some
i ∈ {1, . . . , n}. Because of χi(t0) > 0 there exists some t̂ ∈ [t0.t] with

n∑

j=1
j�i

ai jχ j(t̂) + bi(t̂) < 0

Because of ai j ≥ 0 for all j � i and bi(t̂) ≥ 0 this inequality can only hold
true, if for at least one j � i the inequality ai jχ j(t̂) < 0 holds true which is
only true, if ai j > 0 and χ j(t̂) < 0. This contradicts the minimality of t. Hence
(A.20) must be true.

The implication (A.21) follows from (A.20), since the solution (A.19) of
(A.18) depends continuously on χ(t0).
For the proof of (A.22) we choose some i ∈ {1, . . . , n} with χi(t0) > 0. Be-
cause of the continuity of χi = χi(t) it follows that there exists some δ > 0
such that

χi(t) > 0 for all t ∈ [t0, t0 + δ].

From (A.23), (A.21) and the non-decomposition condition it follows for every
j ∈ {1, . . . , n}

χi1 (t) ≥ exp

(∫ t

t0

aii(s) ds

)

×
∫ t

t0

ai1ixs(s) × exp

(

−
∫ t

t0

aii(τ)dτ

)

ds > 0

for all t ∈ [t0, t0 + δ] and by induction

χ j(t) > 0 for all t ∈ [t0, t0 + δ].

The rest of the implication (A.22) follows from (A.20) and χ(t0+δ) > ⊖n. ⊓⊔

Conclusion. The fundamental matrix function Ȳ = Ȳ(t) consists for all t > t0
of positive elements.

A further conclusion of the non-decomposition condition is
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Theorem A.3 If for some t > t0

n∑

i=1

di � 0 on [t0, t].

then for the spectral radius ρ(Ȳ(t)) of Ȳ(t) it follows that

ρ(Ȳ(t) < 1.

Proof. The matrix A(t) in (A.18) has, for every t ∈ R, the representation
A(t) = A − D(t) with a constant matrix A such that for y = (1, . . . , 1)T ∈ Rn

we have Ay = ⊖n and the diagonal matrix

D(t) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dii(t) . . . 0
...
. . .

...

0 . . . dnn(t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

From Ay = ⊖n it also follows that AT ỹ = ⊖n for some ỹ ∈ Rn with ỹ � ⊖n and
therefore

˙̄Y(t)T ỹ = Ȳ(t)T
(

AT − D(t)
)

ỹ = −Ȳ(t)T D(t)ỹ. (A.24)

We assert that ỹ can be choosen such that ỹ ≥ ⊖n. If this were not the case,
we can assume without loss of generality that there are indices k1, k2 with
1 ≤ k1 ≤ k2 ≤ n such that

ỹ1 < 0, . . . , ỹk1 < 0, ỹk1+1 = . . . = ỹk2−1 = 0, ỹk2 > 0, . . . , ỹn > 0.

This implies because of AT ỹ = ⊖n that

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑

j=1
j�i

ai j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(−ỹi) +
n∑

j=k2

a jiỹ j =

k1∑

j=1

a ji(−ỹ j) for i = 1, . . . , k1.
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Adding all these equations leads to the equation

k1∑

i=1

n∑

j=k2

[

ai j(−ỹi) + a jiỹ j

]

= 0

with −ỹi > 0 for i = 1, . . . , k1 and −ỹ j > 0 for j = k2, . . . , n. This implies
ai j = a ji = 0 for i = 1, . . . , k1 and j = k2, . . . , n which contradicts the non-
decomposition condition.
Therefore ỹ ≤ ⊖n, ỹ � ⊖n and it follows from (A.24) that

ȲT ỹ = ỹ −
∫ t

t0

Ȳ(s)D(s)ỹ ds < ỹ

which implies

ρ(Ȳ(t)) = ρ(Ȳ(t)T ) ≤ max
i=1,...,n

(Ȳ(t)T ỹ)i
ỹi

< 1

(see [1] in Chapter 4). ⊓⊔

Now we can formulate the existence and unicity statement as

Theorem A.4 If
∑n

i=1 di � 0 on R, then there exists exactly one absolutely

continuous and p-periodic solution of (A.18). This is of the form (A.19) for

some t0 ∈ R where

χ(t0) =
(

En − Ȳ(t0 + p)
)−1
χ̃(t0 + p) (A.25)

with En = n × n-unit matrix and

χ̃(t) = Ȳ(t)

∫ t

t0

Ȳ(s)−1b(s) ds. (A.26)

If in addition
∑n

i=1 bi � 0 on R, then

χ(t) > ⊖n for all t ∈ R. (A.27)
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Proof. An absolutely continuous solutionχ = χ(t) of (A.18) is p-periodic, if
and only if

(

En − Ȳ(t0 + p)
)

χ(t0) = Ȳ(t0 + p)
∫ t0+p

t0
Ȳ(t)−1b(t) dt.

Theorem A.3 implies the invertability ofEn− Ȳ(t0+ p) which implies the first
assertion of Theorem A.4.

Because of ˜χ(t0) = ⊖n it follows from the implication (A.21) that

χ̃(t) ≥ ⊖0 for all t > t0.

If χ̃i(t0+ p) = 0 for somei ∈ {1, . . . , n}, then because of (A.22) it follows that

χ̃(t) = ⊖n for all t ∈ [t0, t0 + p]

which implies

b ≡ ⊖n on [t0, t0 + p]

and contradicts
∑n

i=1 bi � 0 on R. Therefore ˜χ(t0 + p) > ⊖n and since
(

En − Ȳ(t0 + p)
)−1

consists of positive elements (which can be derived from
its representation as Neumann series), it follows from (A.25) thatχ(t0) > ⊖n

and from (A.20) thatχ(t) > ⊖n for all t > t0. p-periodicity ofχ = χ(t) finally
implies (A.27).
This concludes the proof of Theorem A.4. ⊓⊔

A.3 Asymptotic Stability of Fixed Points

We consider a continuous mappingf : X → X whereX is a nonempty subset
of Rn. This mapping defines a time-discrete dynamical system which is given
by the sequence( f n) n ∈ N0 where

f 0(x) = x and f n(x) = f ◦ f ◦ . . . ◦ f
︸�����������︷︷�����������︸

n−times

(x) for all x ∈ X.
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A point x∗ ∈ X is called a fixed point of f , if f (x∗) = x∗. A point x∗ ∈ X is
called an attractor with respect to f , if there is a relatively open subset U ⊆ X

with x∗ ∈ X and

lim
n→∞

f n(x) = x∗ for all x ∈ U.

A point x∗ ∈ X is called stable with respect to f , if for every relatively com-
pact and relatively open subset U ⊆ X with x∗ ∈ U there exists a relatively
open subset W ⊆ U with x∗ ∈ W and

f n(x) ∈ U for all x ∈ W and all n ∈ N0.

A point x∗ ∈ X is called asymptotically stable with respect to f , if x∗ is an
attractor and stable with respect to f .
Now let G ⊆ X be a nonempty subset.

Definition: A function V : X → R is called a Lyapunov function with respect
to f and G, if
(1) V is continuous on X,
(2) V ( f (x)) − V(x) ≤ 0 for all x ∈ G.

With these definitions we formulate the following

Theorem A.5 Let x∗ ∈ X be a fixed point of f . Further let there be a rela-

tively open subset G ⊆ X with x∗ ∈ G and a Lyapunov function V with respect

to f and G which is positive definite, i.e.,

V(x) ≥ 0 for all x ∈ G and
(
V(x) = 0⇔ x = x∗

)

Then x∗ is stable with respect to f .

If in addition

V ( f (x)) < V(x) for all x ∈ G with x � x∗,

then x∗ is asymptotically stable with respect to f .
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Proof. Let U ⊆ X be a relatively compact and relatively open subset of X

with x∗\U. If we put U∗ = U ∩ G, then U∗ is also a relatively compact and
relatively open subset of X with x∗ ∈ U∗. Therefore there exists some r > 0
such that

Br(x∗) =
{

x ∈ X|
∥
∥
∥x − x∗

∥
∥
∥
2
≤ r

}

⊆ U∗.

Since f is continuous in x∗, there exists some s ∈ (0, r) with f (Bs(x∗)) ⊆
Br(x∗). If we put BU∗ = Bs(x∗), then it follows that f (BU∗) ⊆ U∗, BU∗ is open
in X and x∗ ∈ BU∗.

Let us put

m = min
{

V(x)|x ∈ U∗\BU∗
}

.

Because of x∗ � U∗\BU∗ it follows that m > 0. Now we define

W =
{

x ∈ U∗|V(x) < m
}

.

Then W is open in X and x∗ ∈ W ⊆ BU∗.

Now let x ∈ W be chosen arbitrarily. Then it follows that x ∈ BU∗ and hence
f (x) ∈ U∗.

Further it follows that

V ( f (x)) ≤ V(x) < m, hence f (x) ∈ W ⊆ BU∗.

This implies f 2(x) = f ( f (x)) ∈ U∗ and hence

V
(

f 2(x)
)

≤ V ( f (x)) < m, hence f 2(x) ∈ W.

By iteration we obtain

f n(x) ∈ W ⊆ U∗ ⊆ U for all n ∈ N0.
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This shows that x∗ is stable with respect to f . From the construction of W we
infer that W is relatively compact and open in X. Further we have f (W) ⊆ W ,
x∗ ∈ W and W ⊆ G.

Now let x ∈ W be chosen arbitrarily. We assume that f n(x)� x∗. Then there
exists a subsequence ( f nk (x))k∈N0

and some x ∈ W with x � x∗ and

lim
k→∞

f nk (x) = x. (A.28)

From f nk (x) ∈ W for all k ∈ N0 it follows that f ( f nk (x)) ∈ W for all k ∈ N0

and hence

f
(
f nk (x)

)→ f (x) ∈ W ⊆ G.

Therefore there exists a neighbourhood B = {z ∈ W | ‖z − x‖2 ≤ ǫ} of x with
x∗ � B and f (B) ⊆ G. For every z ∈ B we therefore have V ( f (z)) < V(z) and

q = sup
z∈B

V ( f (z))

V(z)
< 1, i.e., V ( f (z)) ≤ qV(z) for all z ∈ B.

Because of (A.28) there is some k0 ∈ N0 with f nk(x) ∈ B for all k ≥ k0. This
implies for all k ≥ k0 because of f n ( f nk (x)) ∈ W ⊆ G for all n ∈ N

V
(

f nk+1(x)
)

= V
(

f nk+1−nk−1
(

f nk+1(x)
))

≤ V
(

f nk+1(x)
)

≤ qV
(

f nk (x)
)

and by iteration

V
(
f nk0+l(x)

) ≤ qlV
(
f nk0 (x)

)
for all l ∈ N.

This implies

lim
l→∞

V
(

f nk0+l(x)
)

= 0

and hence

V(x) = 0,
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which is impossible because of x � x∗. Therefore the above assumption
f n(x)� x∗ is false and it follows that

f n(x)→ x∗ for all x ∈ W

which shows that x∗ is an attractor with respect to f .
This concludes the proof of Theorem A.5. ⊓⊔
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