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Foreword

This important book presents nineteen chapters of econometric time series
analysis of crude oil, natural gas, and electricity markets. The economic
structure of the energy markets is rapidly evolving, with the electric markets
in many countries being deregulated. In Canada the prices and quantity
supplied of electricity in the provinces of Ontario and Alberta are deter-
mined by a spot market; the electricity market in the United Kingdom
has been deregulated for a number of years. Thus it is possible to create
empirical studies of the evolution of these electricity markets.

The electricity markets chapters in this book concentrate on the North
American market. The lessons learned from the empirical studies presented
in this book can serve as a guide for planning electricity deregulation in the
United States, the European Union, and Australia.

The electricity markets are related to the oil and gas markets, since
electricity can be generated by burning gas or oil or coal depending on
the technology of each power plant in the grid. There are several chapters
in the book that present empirical results about the interrelations of the
electricity, natural gas, and oil markets in North America.

The unique and important methodological contribution in several of
these chapters is the use of nonlinear time series methods to study the
nonlinear nature of the energy spot and futures markets. Although it is now
well known that the economic system is nonlinear, the standard approach
to studying markets is to employ linear time series methods. Linear models
are adequate for aliased monthly and quarterly time series, but they are
too crude for high frequency data.

Serletis and his coauthors employ more sophisticated nonlinear methods
to the study of market volatility than the popular ARCH and GARCH
models, which are known to have poor forecasting properties.

xi



xii Foreword

I consider this book to be a template for future econometric studies of
the evolution of the dynamics of the energy market. What is now needed
is a synthesis of the engineering, economics, political and legal aspects of a
deregulated global energy market.

Melvin J. Hinich

Mike Hogg Professor, Department of Government,
Professor of Economics,
and
Research Professor, Applied Research Laboratories,
The University of Texas at Austin,
Austin TX 78713-8029
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Overview of Part 1
Apostolos Serletis

The following table contains a brief summary of the contents of each
chapter in Part 1 of the book. This part of the book consists of five chap-
ters dealing with recent state-of-the-art advances in the field of applied
econometrics and their application to petroleum prices.

Crude Oil Markets

Chapter
Number Chapter Title Contents

1 Unit Root Behavior in This chapter tests for random walk
Energy Futures Prices behavior in crude oil, heating oil,

and unleaded gas futures prices
and shows that the random walk
hypothesis can be rejected if
allowance is made for the possibility
of a one-time break in the
intercept and the slope of the
trend function.

2 Rational Expectations, Chapter 2 uses Fama’s (1984)
Risk and Efficiency in regression approach to measure
Energy Futures Markets the information in crude oil, heating

oil, and unleaded gas futures
prices about future spot prices
and time varying premiums.

3 Maturity Effects in It examines the effects of maturity
Energy Futures on future price volatility and trading

volume. It provides support for
the maturity effect hypothesis.

4 Business Cycles and the It tests the theory of storage in
Behavior of Energy Prices crude oil, heating oil, and unleaded

gas markets, using the Fama and
French (1988) indirect test. It shows
that the theory of storage holds for
energy markets.

3



4 Overview of Part 1

Chapter
Number Chapter Title Contents

5 A Cointegration Analysis It uses Johansen’s (1988) maximum
of Petroleum Futures Prices likelihood approach to estimating

long-run relations in multivariate
vector autoregressive models and
tests for the number of common
stochastic trends in a system of
crude oil, heating oil, and unleaded
gas futures prices.

Chapter 1:
This chapter examines the empirical evidence for random walk type be-
havior in energy futures prices. In doing so, tests for unit roots in the
univariate time-series representation of the daily crude oil, heating oil, and
unleaded gasoline series are performed using recent state-of-the-art method-
ology. The results show that the unit root hypothesis can be rejected if
allowance is made for the possibility of a one-time break in the intercept
and the slope of the trend function at an unknown point in time.

Chapter 2:
Conditional on the hypothesis that energy markets are efficient or rational,
this chapter uses Fama’s (1984) regression approach to measure the infor-
mation in energy futures prices about future spot prices and time varying
premiums. It finds that the premium and expected future spot price com-
ponents of energy futures prices are negatively correlated and that most of
the variation in futures prices is variation in expected premiums.

Chapter 3:
This chapter examines the effects of maturity on future price volatility
and trading volume for 129 energy futures contracts recently traded in the
NYMEX. The results provide support for the maturity effect hypothesis —
that is, energy futures prices do become more volatile and trading volume
increases as futures contracts approach maturity.

Chapter 4:
Chapter 4 tests the theory of storage — the hypothesis that the marginal
convenience yield on inventory falls at a decreasing rate as inventory in-
creases — in energy markets (crude oil, heating oil, and unleaded gas mar-
kets). It uses the Fama and French (1988) indirect test, based on the
relative variation in spot and futures prices. The results suggest that the
theory holds for the energy markets.
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Chapter 5:
This chapter presents evidence concerning the number of common stochas-
tic trends in a system of three petroleum futures prices (crude oil, heating
oil, and unleaded gasoline) using daily data from December 3, 1984 to April
30, 1993. Johansen’s (1988) maximum likelihood approach for estimating
long-run relations in multivariate vector autoregressive models is used. The
results indicate the presence of only one common trend.
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Chapter 1

Unit Root Behavior in
Energy Futures Prices

Apostolos Serletis∗

1.1 Introduction

Recently the efficient markets hypothesis and the notions connected with it
have provided the basis for a great deal of research in financial economics.
A voluminous literature has developed supporting this hypothesis. Briefly
stated, the hypothesis claims that asset prices are rationally related to
economic realities and always incorporate all the information available to
the market. This implies that price changes should be serially random, and
hence the absence of exploitable excess profit opportunities.

Despite the widespread allegiance to the notion of market efficiency, a
number of studies have suggested that certain asset prices are not ratio-
nally related to economic realities. For example, Summers (1986) argues
that market valuations differ substantially and persistently from rational
valuations and that existing evidence (based on common techniques) does
not establish that financial markets are efficient.

Market efficiency requires that price changes are uncorrelated and im-
plies a unit root in the level of the price or logarithm of the price series.
This is consistent with the empirical work of Nelson and Plosser (1982)
who argue that most macroeconomic time series have a unit root (a sto-
chastic trend). Nelson and Plosser described this property as one of being

∗Originally published in The Energy Journal 13 (1992), 119-128. Reprinted with
permission.
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8 Chapter 1. Unit Roots in Energy Prices

“difference stationary” (DS) so that the first difference of a time series is
stationary. An alternative “trend stationary” (TS) model, where a station-
ary component is added to a deterministic trend term, has generally been
found to be less appropriate.

Perron (1989), however, challenged this view and argued that most
macroeconomic time series (and in particular those used by Nelson and
Plosser) are TS if one allows for structural changes in the trend function.
In particular, Perron’s argument is that only certain “big shocks” have had
permanent effects on the various macroeconomic time series and that these
shocks were exogenous — that is, not a realization of the underlying data
generation mechanism of the various series. Modelling such shocks as ex-
ogenous removes the influence of these shocks from the noise function and,
in general, leads to a rejection of the null hypothesis of a unit root.

Given the serious implications of unit roots for both empirical and the-
oretical work as well as the stakes in this line of research, this chapter
examines the empirical evidence for random walk type behavior in energy
futures prices. The remainder of the chapter consists of three sections. Sec-
tion 1.1 briefly describes the data. Section 1.2 considers alternative tests
of the unit root null hypothesis and presents the results. The final section
summarizes the chapter.

1.2 Data

To examine the empirical evidence for random walk type behavior in en-
ergy futures prices, I use daily observations from the New York Mercantile
Exchange (NYMEX) on spot-month futures prices for crude oil, heating oil
and unleaded gasoline. The sample period is 83/07/01 to 90/07/03 for all
commodities except unleaded gasoline, which begins in 85/03/14. Figures
1.1 to 1.3 graph the (logarithm of the) price series.

1.3 Empirical Evidence

1.3.1 Autocorrelation Based Tests

Since market efficiency requires serial independence of returns, serial corre-
lation coefficients of orders one to ten have been computed for each contract
series and are presented in Table 1.1. Panel A of Table 1.1 contains auto-
correlations of the log contract prices. These autocorrelations suggest that
(log) contract prices are highly autocorrelated. In particular, the first-order
autocorrelations are greater than .993 for every series and the smallest of
the autocorrelation coefficients is .920.
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Figure 1.1: Crude Oil Daily 1-Month Log Futures Prices:
01/07/83-03/07/90

Figure 1.2: Heating Oil Daily 1-Month Log Futures Prices:
01/07/83-03/07/90
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Figure 1.3: Unleaded Gas Daily 1-Month Log Futures Prices:
01/07/83-03/07/90

TABLE 1.1
Sample Autocorrelations of Daily Data

Series r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

A. Logarithms of Daily Contract Prices

Crude oil .996 .993 .989 .986 .982 .980 .977 .973 .970 .968

Heating oil .996 .992 .987 .984 .980 .976 .973 .970 .967 .964

Unleaded gas .993 .985 .976 .968 .960 .952 .943 .935 .927 .920

B. First Differences of Logarithms of Daily Contract Prices

Crude oil -.024 -.049 -.010 .061 -.125 .026 .041 -.058 -.035 .033

Heating oil .004 -.008 -.025 -.037 -.006 -.087 .069 -.097 -.004 -.004

Unleaded gas .062 .023 -.029 .033 -.045 .013 .040 -.098 -.018 .084

Note: The sample period is 83/07/01 to 90/07/03 for all commodities except

for unleaded gasoline, which begins in 85/03/14.
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Panel B of Table 1.1 reports results in the same fashion as panel A,
except that now the first differences of the log contract prices (which mea-
sure contract returns) are being considered. Clearly, contract returns are
not autocorrelated, suggesting that the hypothesis of (weak form) efficiency
cannot be rejected — that is, the past history of returns offers no opportu-
nities for extraordinary profits.

1.3.2 Univariate Tests for Unit Roots

It was argued earlier that market efficiency implies a unit root in the level
of the price or logarithm of the price series. Here, using the Philips and
Perron (1988) procedure, I test whether the univariate processes of the
(natural) logarithms of spot-month energy futures prices contain unit roots.
This is a general approach and exploits recent developments in functional
central limit theory in order to obtain nonparametric corrections for infinite-
dimensional nuisance parameters. The basic idea is to estimate one of two
non-augmented Dickey-Fuller regressions defined from

yt = µ∗ + α∗yt−1 + u∗
t (1.1)

yt = µ̃ + β̃(t − T/2) + α̃yt−1 + ũt (1.2)

where T denotes the sample size.

Given equation (1.1), the null hypotheses of a unit root, with or without
a drift, i.e. H1

0 : α∗ = 1 and H2
0 : µ∗ = 0, α∗ = 1, are tested against the

stationary alternatives by means of the adjusted t- and F -statistics Z(t∗α)
and Z(φ1). In equation (1.2), which allows for a deterministic trend, the
null hypotheses H3

0 : α̃ = 1, H4
0 : β̃ = 0, α̃ = 1, and H5

0 : µ̃ = 0, β̃ = 0,
α̃ = 1 can be tested by means of the test statistics Z(tα̃), Z(φ3), and Z(φ2),
respectively. The formulae for the Z statistics are not presented here. They
are derived in Perron (1990) and discussed and applied in Perron (1988).

The results of applying the Z statistics are presented in Table 1.2. The
simple unit root test of the t-statistic type, Z(t∗α), as well as the Z(φ1)
statistic, are insignificant (at the 1% level) for all the series. The inclusion
of a time trend as in (1.2) and the use of the Z(tα̃), Z(φ3), and Z(φ2)
statistics do not change the qualitative results. The overall conclusion is
that the evidence is (reasonably) supportive of the unit root hypothesis.
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TABLE 1.2
Tests for Unit Roots in the Logarithms of Daily Data

Commodity Z(t∗α) Z(φ1) Z(tα̃) Z(φ3) Z(φ2)

Crude oil -1.786 2.204 -1.949 2.274 1.517
Heating oil -1.817 2.269 -2.194 2.484 1.658
Unleaded gas -2.412 3.362 -2.059 3.386 2.258

Note: (i) Significant at the **1%, *5%, and +10% level. See Fuller (1976,

Table 8.5.2) and Dickey and Fuller (1981), Table IV) for the critical values.

Perron (1989), however, argues that most macroeconomic time series
(and in particular those used by Nelson and Plosser, 1982) are trend sta-
tionary if one allows for a one-time change in the intercept or in the slope
(or both) of the trend function. The postulate is that certain shocks (such
as, in the present case, the November 1985 regime shift in OPEC pricing
policy as well as the precipitous decline of crude oil prices from $31 per bar-
rel to the $9 level, beginning in late 1985) do not represent a realization of
the underlying data-generating mechanism of the series under consideration
and that the null should be tested against the trend-stationary alternative
by allowing, under both the null and alternative hypotheses, for the pres-
ence of a one-time break (at a known point in time) in the intercept or in
the slope (or both) of the trend function.

Perron’s (1989) assumption that the break point is uncorrelated with
the data has been criticized, most notably by Christiano (1988) who ar-
gues that problems associated with “pre-testing” are applicable to Perron’s
methodology and that the structural break should instead be treated as
being correlated with the data. More recently, Zivot and Andrews (1992),
in the spirit of Christiano (1988), treat the selection of the break point
as the outcome of an estimation procedure and transform Perron’s (1989)
conditional (on structural change at a known point in time) unit root test
into an unconditional unit root test.

Following Zivot and Andrews (1992), I test the null hypothesis of an
integrated process with drift against the alternative hypothesis of trend
stationarity with a eon-time break in the intercept and slope of the trend
function at an unknown point in time, using the following augmented re-
gression equation (see Zivot and Andrews for more details):

yt = µ̂ + θ̂DUt(λ̂) + β̂t + γ̂DTt(λ̂) + α̂yt−1 +
k∑

i=1

ĉi∆yt−i + êi. (1.3)
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In equation (1.3), testing the null hypothesis of a unit root amounts to
choosing the break fraction λ — the ratio of pre-break sample size to total
sample size — in order to minimize the one-sided t-statistic for testing
α = 1. In particular, I reject the null hypothesis of a unit root if tα̂(λ̂) < t(λ̂)
where t(λ̂) denotes the “estimated break point” critical value reported in
Zivot and Andrews.

Table 1.3 presents the results using regression (1.3) with λ chosen so
as to minimize the one-sided t-statistic for testing α = 1 over all T − 2
regressions (where T is the number of observations). For each tentative
choice of λ, I chose the truncation lag parameter, k, to be correlated with
the data. In particular, working backwards from k = 15, I chose k such
that the t-statistic on the last included lag in the autoregression was greater

TABLE 1.3
Tests for a Unit Root Using Zivot and Andrews’ Procedure

Regression: yt = µ̂ + θ̂(DUt(λ̂) + β̂t + γ̂DTt(λ̂) + α̂yt−1 +
k∑

i=1

ĉi∆yt−i + êt

Series T T̂B k µ̂ θ̂ β̂ γ̂ α̂ S(ê)

Crude oil 1604 626 12 .087 -.016 -.000 .000 .974* .022

(5.0) (-4.5) (-1.0) (2.6) (-5.1)

Heating oil 1587 616 12 -.005 -.017 -.000 .000 .972* .022

(-2.7) (-4.9) (-0.5) (2.0) (-5.3)

Unleaded gas 1225 211 11 -.004 -.014 -.000 .000 .967* .022

(-1.2) (-3.1) (-1.4) (1.8) (-5.1)

Note: t-statistics are in parentheses. The t-statistic for α̂ is the minimum

t-statistic over all T − 2 regressions for testing α = 1. It was determined

by estimating equation (3) with the break point, TB, ranging from t = 2 to

t = T − 1. The t-statistic for α̂ is significant at the **1%, *5%, and +10%

level. The asymptotic critical values for t(α̂) at the 1%, 5%, and 10%

significance levelare — -5.57, -5.08, and -4.82, respectively — see Zivot

and Andrews (1990, Table 4A).
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than 1.6 in absolute value and that the t-statistic on the last lag in higher
order autoregressions was less than 1.6. The t-statistics on the parameters
for the following respective hypotheses are also presented (in parentheses):
µ = 0, θ = 0, β = 0, γ = 0, and α = 1.

To evaluate the significance of tα̂(λ̂), the asymptotic “estimated break
point” critical values reported in Zivot and Andrews (1992, Table 4A) are
used. Clearly, the null hypothesis of a unit root can be rejected at the 5%
significance level. Also, the estimated coefficients on the constant (µ̂) , the
post-break constant dummy

(
θ̂
)
, and the post-break slope dummy (γ̂)

are highly significant. These results imply that the failure of the Phillips-
Perron Z statistics to reject the null hypothesis that energy futures prices
have a unit root reflects not the presence of the unit root, but instead that
the data are trend-stationary about a broken trend.

1.4 Conclusions

This chapter tests for unit roots in the univariate time-series representation
of the daily crude oil, heating oil, and unleaded gasoline spot-month futures
prices. The results show that the random walk hypothesis for daily energy
futures prices can be rejected if allowance is made for the possibility of a
one-time break in the intercept and the slope of the trend function at an
unknown point in time.

The rejection of the random walk model does not necessarily imply that
energy futures markets are inefficient or that energy futures prices are not
rational assessments of fundamental values. However, the results highlight
the important role that certain big trend breaks could play in tests for unit
roots and raise the important question of whether such trend breaks should
be treated like any other, or differently, before we classify energy futures
prices as either TS or DS.

In addition to its economic importance, the issue of whether energy
futures prices are TS or DS has implications for both estimation and hy-
pothesis testing, both of which rely on asymptotic distribution theory. It
has been recognized, for example, that inappropriate de-trending of inte-
grated process produces spurious variation in the de-trended series at low
frequencies, while inappropriate differencing of trending processes produces
spurious variation in the differenced series at high frequencies.



Chapter 2

Rational Expectations,
Risk, and Efficiency in
Energy Futures Markets

Apostolos Serletis∗

2.1 Introduction

It is often argued that there are two important social functions of com-
modity futures markets. First, the transfer of commodity price risk, and,
second, the provision of unbiased forecasting by the futures price of the
future spot price. Although there is a general consensus that futures mar-
kets transfer price risk, there is some debate about the market’s forecasting
ability. In particular, forecasts based on current spot prices are often as
reliable as those based on futures prices.

Serletis and Banack (1990), using recent developments in the theory of
cointegration by Engle and Granger (1987), apply efficiency tests to futures
and spot energy prices dealing explicitly with the non-stationary nature
of those variables. In particular, they test the hypothesis that the futures
price is an unbiased predictor of the future spot price and they find evidence
consistent with market efficiency. Moreover, they show that the current
spot price dominates the current futures price in explaining movements in
the future spot price.

∗Originally published in Energy Economics (1991), 111-115. Reprinted with permis-
sion.
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This chapter, conditional on the hypothesis that energy futures markets
are efficient or rational, uses Fama’s (1984) interesting variance decomposi-
tion approach to test a model for joint measurement of variation in the pre-
mium and expected future spot price components of energy futures prices.
The evidence suggests the presence of a time varying premium. Of course,
variation in the premium worsens the performance of the futures price as a
predictor of future spot prices.

2.2 Theoretical Foundations

Let F (t, T ) be the futures price at time t for delivery of a commodity at T.
Let S(t) be the spot price at t. Assuming that the futures price, F (t, T ), is
the market determined certainty equivalent of the future spot price, S(T ),
we can split this certainty equivalent into a premium and an expected future
spot price (specified in natural logarithms) as

F (t, T ) = P (t) + E {S(T )} (2.1)

where E{S(T )} is the rational forecast, conditional on all information avail-
able at t, and P (t) is the bias of the futures price, F (t, T ), as a forecast of
the future spot price, S(T ).

Subtracting from both sides of equation (2.1) the current spot price,
S(t), we obtain

F (t, T ) − S(t)P (t) + E {S(T ) − S(t)} (2.2)

where F (t, T ) − S(t), the current futures spot differential, is called the
basis. Equation (2.2) implies that the basis can be split into a premium
component, P (t), and an expected change in the spot price component.
E {S(T ) − S(t)} .

In order to investigate the variability of risk premiums and expected
spot price changes as well as their covariability, we use Fama’s (1984) sim-
ple model for these measurements. In particular, we consider the two com-
plementary regressions of F (t, T ) − S(T ) and S(T ) − S(t) (both observed
at T ) on F (t, T ) − S(t) (observed at t),

F (t, T ) − S(T ) = α1 + β1 [F (t, T ) − S(t)] + u(t, T ) (2.3)
S(T ) − S(t) = α2 + β2 [F (t, T ) − S(t)] + ε(t, T ). (2.4)

Since F (t, T )− S(T ) is the premium P (t) plus the random error of the ra-
tional forecast, E {S(T )}−S(T ), estimates of equation (2.3) tell us whether
the premium component of the basis has variation that shows up reliably
in F (t, T )−S(T ). In particular, evidence that β1 is reliably non-zero means
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that the basis observed at t, F (t, T )−S(t), contains information about the
premium to be realized at T, F (t, T ) − S(T ). Similarly, estimates of equa-
tion (2.4) tell us whether the basis observed at t, has power to predict the
future change in the spot price, S(T ) − S(t). In fact, evidence that β2 is
reliably non-zero means that the futures price observed at t, F (t, T ), has
power to forecast the future spot price S(T ). Furthermore, the deviation
of β2 from one is a direct measure of the variation of the premium in the
futures price.

Equations (2.3) and (2.4) are clearly dependent since the stochastic
regressor is the same in both equations and the sum of the dependent
variables is the stochastic regressor. The complete complementarity of re-
gressions (2.3) and (2.4) implies that α̂1 = −α̂2, that β̂1 = 1− β̂2, and that
ût, T ) = −ε̂(t, T ). In other words, regressions (2.3) and (2.4) contain iden-
tical information about the variation of the premium and expected change
in the spot price components of the basis, and in principle there is no need
to estimate both regressions.

Although regressions (2.3) and (2.4) allocate all basis variation to pre-
miums, expected spot-price changes, or some mix of the two, the allocation
may be statistically unreliable when the premium and the expected change
in the spot price components of the basis are correlated. We can get a good
idea about why the regressions may fail to identify the source of variation in
the basis by examining the variance of the basis relative to the variance of
the premium and expected change in the spot price as well as the covariance
between premium and expected change in the spot price.

Following Fama (1984), under appropriate regularity conditions, the
probability limits of β̂1 and β̂2 are given by

β1 =
COV [F (t, T ) − S(T ), F (t, T )− S(t)]

V AR[F (t, T ) − S(t)]
(2.5)

β2 =
COV [S(T ) − S(t), F (t, T ) − S(t)]

V AR[F (t, T ) − S(t)]
(2.6)

where COV (., .) and V AR(.) denote the unconditional covariance and vari-
ance, respectively. Combining the rational expectations assumption with
the decomposition in equation (2.2) implies that

β1 =
V AR[P (t)] + COV [P (t), E {S(T ) − S(t)}]

V AR[P (t) + V AR[E{S(T )− S(t)}] + 2COV [P (t), E{S(T ) − S(t)}]
(2.7)

and

β2 =
V AR[E{S(T ) − S(t)}] + COV [P (t), E{S(T ) − S(t)}]

V AR[P (t)] + V AR[E{S(T )− S(t)}] + 2COV [P (t), E{S(T )− S(t)}] .
(2.8)
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The importance of equations (2.7) and (2.8) is that when P (t) is constant
over time (not necessarily zero), β1 and β2 must be identically equal to zero
and unity respectively. Hence, the coefficients of β1 and β2 describe roughly
the degree of variability in the components of the basis. However, only if the
premium, P (t), and the expected change in the spot price, E{S(T )−S(t)},
are uncorrelated would β1 be equal to the proportion of the variance of
the basis due to variance of the risk premium, and under this condition
β2 would be equal to the proportion of the variance of the basis due to
variance of the expected change in the spot price. Since it is unlikely that
the two components of the basis are uncorrelated, the covariance terms in
equations (2.7) and (2.8) must be taken into account. Hence, the simple
interpretation of β1 and β2 obtained when P (t) and E{S(T ) − S(t)} are
uncorrelated is lost.

2.3 Data

The data include daily observations from the New York Mercantile Ex-
change (NYMEX) on spot-month and second-month futures prices for heat-
ing oil, unleaded gasoline and crude oil. In other words, the spot-month
futures prices are used as a proxy for current cash prices, and the second-
month futures prices as the current futures prices. The sample period is 1
July 1983 to 31 August 1988 for all commodities except unleaded gasoline,
which begins on 14 March 1985.

Under the assumption that the futures price converges to (and therefore
predicts) the spot price on the date of the settlement of the futures contract,
each current spot and futures price was matched exactly with the spot price
on the settlement date of the futures contract. This procedure generated
62 observations for each of heating oil and crude oil and 42 observations for
unleaded gasoline.

Table 2.1 shows the standard deviations for the basis, F (t, T )−S(t), the
premium, F (t, T )−S(T ), and the change in the spot price, S(T )−S(t), for
each commodity. For all three commodities, basis variation is low relative
to the variation of premiums and spot-price changes, indicating that it is
unlikely that regressions (2.3) and (2.4) will reliably assign basis variation
to premiums and expected spot price changes.
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TABLE 2.1
Means and Standard Deviations of

F (t, T ) − S(t), F (t, T ) − S(T ) and S(T ) − S(t)

Commodity Observations Mean Standard Deviation

Heating Oil 62
F (t, T ) − S(t) -.006 .029
F (t, T ) − S(T ) -.014 .089
S(T ) − S(t) .007 .086

Unleaded Gas 42
F (t, T ) − S(t) -.011 .024
F (t, T ) − S(T ) -.015 .113
S(T ) − S(t) .003 .109

Crude Oil 62
F (t, T ) − S(t) -.007 .012
F (t, T ) − S(T ) -.001 .098
S(T ) − S(t) -.005 .096

Note: S(t), F (t, T ) and S(T ) are specified in natural logarithms.

My maintained hypothesis is that F (t, T ) − S(t), F (t, T ) − S(T ) and
S(T ) − S(t) are stationary processes. In fact the hypothesis of univariate
stochastic trends is tested following Dickey and Fuller (1979). The null hy-
pothesis for their test (generally called the augmented Dickey-Fuller (ADF)
test), is that a series zt has a unit autoregressive root (i.e. has a stochastic
trend). The test is obtained as the t statistic for ρ in the following OLS
regression [∆ = (1 − L)] :

∆zt = ρzt−1 +
r∑

i=1

βi∆zt−i + εt (2.9)

where zt is the series under consideration and r is selected to be large enough
to ensure that εt is a white-noise series. The null hypothesis of stochastically
trending zt is rejected if ρ is negative and significantly different from zero.

In practice, the appropriate order of the autoregression, r, is rarely
known. One approach would be to use a model selection procedure based
on some information criterion. However, Said and Dickey (1984) showed
that the ADF test is valid asymptotically if r is increased with sample size
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(N) at a controlled rate, N1/3. For my sample sizes, this translates into
r = 4. It is to be noted that for r = 0 the ADF reduces to the simple Dickey-
Fuller (DF) test. Also, the distribution of the t test for ρ in equation (2.9)
is not standard; rather, it is that given by Fuller (1976).

The DF and ADF tests for stationarity are reported in Table 2.2 for
all three commodities. The statistics suggest that all the variables appear
to be stationary, i.e. integrated of order one, or I(1) in the terminology
of Engle and Granger (1987). Hence standard inference procedures will be
applied in the following section.

TABLE 2.2
Tests for Unit Roots in

F (t, T ) − S(t), F (t, T ) − S(T ) and S(T ) − S(t)

Commodity DF ADF

Heating Oil
F (t, T ) − S(t) -3.976 -4.073
F (t, T ) − S(T ) -6.903 -3.970
S(T ) − S(t) -8.392 -4.232

Unleaded Gas
F (t, T ) − S(t) -1.820 -1.859
F (t, T ) − S(T ) -5.581 -3.316
S(T ) − S(t) -6.782 -3.399

Crude Oil
F (t, T ) − S(t) -2.870 -1.938
F (t, T ) − S(T ) -6.920 -3.600
S(T ) − S(t) -7.013 -3.325

Note: The asymptotic critical values of DF and ADF at the

1%, 5% and 10% levels are [for 50 observations] -2.62, -1.95,

and -1.61, respectively — see Fuller (1976, Table 8.5.2).

2.4 Regression and Cointegration Tests

Table 2.3 shows the estimated regressions of F (t, T )−S(T ) and S(T )−S(t)
on F (t, T ) − S(t). Because of the complementarity of the premium and
change regressions, only one set of coefficient standard errors is shown,
although the intercepts of α1 and α2 and the slopes of β1 and β2 for both
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equation (2.3) and (2.4) are reported. Note that the sum of the intercepts is
zero and the sum of the slopes is one. Also, the coefficients of determination
R2

1 and R2
2 — for the premium and change regressions, respectively — are

small since the regressor F (t, T ) − S(t) has low variation relative to both
F (t, T ) − S(T ) and S(T ) − S(t), as it was also documented in Table 2.1.
Moreover, the hypothesis that β2 = 1 (or equivalently that β1 = 0) is
rejected — thus suggesting the presence of a time varying premium.

Turning to the coefficient estimates, the strange numbers in Table 2.3
are the estimates of the regression slope coefficients, β̂1 and β̂2 for unleaded
gas and crude oil. As it was explained earlier, β1 contains the proportion of
the variance of the basis due to variation in its premium component while
β2 contains the proportion of the variance of the basis due to variation in its
expected change in the spot price component. These coefficients, however,
cannot be interpreted along these lines since the slope coefficients in the
premium regressions are almost always greater than one so that those in
the change regressions are negative.

For heating oil, however, the evidence that β1 and β2 are both positive
and less than 1.0 implies reliably positive variances for the premium and
the expected change in the spot price. In other words, the futures price has
reliable power to forecast spot prices and the futures price contains a time
varying premium that shows up reliably in F (t, T ) − S(T ).

We can get an explanation for the strange estimates of β1 and β2 for un-
leaded gas and crude oil by considering the explicit interpretation of the re-
gression slope coefficients provided by equations (2.7) and (2.8). Inspection
of equations (2.7) and (2.8) indicates that since V AR[F (t, T )−S(t)] must be
non-negative, a negative estimate of β2 implies that
COV [P (t), E{S(T )− S(t)}] is negative and larger in magnitude than
V AR[E{S(T ) − S(t)}]. The complementary estimate of β1 > 1 then im-
plies that COV [P (t), E{S(T )−S(t)}] is smaller in absolute magnitude than
V AR[P (t)]. Hence, we can conclude that both the premium, P (t), and the
expected change in the spot price E{S(t) − S(t)} vary through time, and
that V AR[E{S(T )− S(t)}] is smaller than V AR[P (t)].

In short, except for crude oil, the negative covariation between P (t)
and E{S(T ) − S(t)} prevents us from using the regression coefficients to
estimate the levels of V AR[P (t)] and V AR[E{S(T ) − S(t)}]. We can esti-
mate, however, the difference between the two variances as a proportion of
V AR[F (t, T ) − S(t)]

β1 − β2 =
V AR[P (t)] − V AR[E{S(T )− S(t)}]

V AR[F (t, T ) − S(t)]
. (2.10)

The differences between β̂1 and β̂2 in Table 2.3 range from 1.160 (unleaded
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gas) to 1.608 (crude oil) suggesting that, except for heating oil, the differ-
ence between the variance of the premium and the variance of the expected
change in the spot price is more than the variance of the basis.

TABLE 2.3
Regressions of the Premium F (t, T )− S(T ), and the Change
in the Spot Price, S(T ) − S(t), on the Basis, F (t, T ) − S(t) :

F (t, T ) − S(T ) = α̂1 + β̂1 {F (t, T )− S(t)} + û(t, T ),

S(T ) − S(t) = α̂2 + β̂2 {F (t, T ) − S(t)} + ε̂(t, T )

Commodity α̂1 β̂1 α̂2 β̂2 S(α̂) S(β̂) R2
1 R2

2 DW

Heating Oil -.009 .785 .009 .215 .011 .383 .065 .005 2.135
Unleaded Gas -.002 1.080 .002 -.080 .018 .701 .055 .001 2.167
Crude Oil .008 1.304 -.008 -.304 .014 .995 .027 .001 1.827

Note: R2
1 and R2

2 are the coefficients of determination (regression R2) for the

premium and change regressions, respectively. The complete complementarity of the

premium and change regressions for each commodity means that the standard errors

S(α̂) and S(β̂) of the estimated regression coefficients are the same for the two

regressions.

2.5 Conclusion

Regressions of F (t, T ) − S(T ) on F (t, T ) − S(t) are used to test for infor-
mation in energy futures prices about variation in premiums. Similarly,
regressions of S(T )−S(t) on F (t, T )−S(t) are used to test for information
in futures prices about future spot prices. The evidence shows that there
is variation in both P (t) and E{S(T )−S(t)} components of F (t, T )−S(t)
and that the variance of the premium component of F (t, T )−S(t) is larger
relative to the variance of the expected change in the spot price. Variation
in the premium worsens the performance of the futures price as a predictor
of future spot prices.



Chapter 3

Maturity Effects in
Energy Futures

Apostolos Serletis∗

3.1 Introduction

The price variability of futures contracts has attracted a great deal of atten-
tion and has been explored extensively in the literature during the past two
decades, ever since Samuelson (1965) advanced the hypothesis that (under
the assumption that spot prices follow a stationary first-order autoregres-
sive process, and futures prices are unbiased estimates of the settlement
spot price) the variance of futures prices increases as the futures contract
approaches maturity. It has been argued that there is strong empirical
support for a maturity effect in volatility although there appear to be dif-
ferences regarding the importance of the maturity effect.

Knowledge of futures price variability is, in general, essential to the
margin-setting authority. In particular, the minimum margins (this is,
down-payments) that futures brokers require of futures traders depend upon
the price variability of futures contracts. Indeed, the higher the futures
price variability, the higher the minimum margins (presumably to reduce
speculation and volatility).

As mentioned previously, many researchers have studied the relationship
between maturity and the volatility of futures prices over the life of a large

∗Originally published in Energy Economics (1992), 150-157. Reprinted with permis-
sion.
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number of agricultural and financial contracts. A quick survey of the litera-
ture reveals a certain consensus. It is only regarding the importance of the
maturity effect (relative to other factors driving price volatility) that there
appear to be differences of opinion. For example, Fama and French (1988)
along with the earlier evidence by Anderson (1985) and Milonas (1986) all
suggest that the maturity effect exists in commodity prices. Other stud-
ies test for the persistence of a maturity effect after the volume of trade
is introduced as additional explanatory variable. Thus Grammatikos and
Saunders (1986) fail to find a maturity effect when controlling for the vol-
ume of trade on volatility. Nevertheless, it is still interesting to examine
the maturity effect on recent data, or different commodities and/or using
new methodologies.

Motivated by these considerations, this chapter examines the effect of
maturity on energy futures price variability and trading volume using a
method for measuring the variability of futures prices proposed by Parkin-
son (1980) and Garman and Klass (1980). In doing so, this chapter utilizes
daily high and low prices and daily trading volume for 129 energy futures
contracts recently traded in the New York Mercantile Exchange (NYMEX).
The empirical evidence supports the hypothesis that energy futures prices
become more volatile and trading volume increases as futures contracts near
maturity.

3.2 Data and the Measurement of Futures

Price Variability

The data consist of daily high and low prices and daily trading volume for
43 futures contracts in three different energy futures (i.e., 129 contracts
in all) traded in the New York Mercantile Exchange (NYMEX): crude oil,
heating oil and unleaded gas. For each contract, the daily high and how
price and volume were traced from the inception of the contact to its expiry.
The maturity dates range from January 1987 to July 1990.

The method of measuring price variability, following Parkinson (1980)
and Garman and Klass (1980), takes advantage of all readily available infor-
mation in contrast to the classical approach which employs only the variance
of the daily logarithmic price changes — that is V AR[lnP (t)− lnP (t−1)],
where P (t) is the closing price on day t. Specifically, assuming that prices
follow a random walk with zero drift then a metric of price variability on
day t is given by:

V AR(t) =
[lnH(t) − lnL(t)]2

4 ln 2
(3.1)

where H(t) and L(t) are, respectively, the high and low prices on day t.
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In order to examine the effect of maturity on price variability, the fol-
lowing regression equations were estimated using ordinary least squares
(OLS):

V AR(t) = α0 + α1 ln t + ε(t) (3.2)

V AR(t) = β0 + β1 ln t + β2 lnV OL(t) + u(t) (3.3)

where V AR(t) is given by equation (3.1), t is the number of days remaining
until the futures contract expires, V OL(t) is the number of futures contracts
traded on day t, and the error terms, ε(t) and u(t) are each assumed to be
independently and identically distributed.

The constant term α0 measures the price variability at maturity and
should be positive under the assumption that it equals the variability of the
spot price on that day. The slope coefficient α1 measures the sensitivity
of the variability of the futures price to changes in time to maturity. If
futures prices do become more volatile (the Samuelson hypothesis), then α1

in equation (3.2) will be negative and significantly different from zero. The
additional regression of price variability on time to maturity and volume
[equation (3.3)] is used to check for the presence of a maturity effect in
price volatility caused by other factors than those affecting the volume of
trade — see, for example, Grammatikos and Saunders (1986).

3.3 Empirical Results

Before proceeding to estimate the models outlined above, there is one fur-
ther issue that needs to be addressed, and that is the time series properties
of the variables involved. Following the analysis of Engle and Granger
(1989) and the recent growth in the theory of integrated variables, if the
variables are integrated of order one [or I(1)] in their terminology], but
do not cointegrate, ordinary least squares (OLS) yields misleading results.
In fact, Phillips (1987) formally proves that a regression involving inte-
grated variables is spurious in the absence of cointegration. Under these
circumstances it becomes important to evaluate empirically the time series
properties of the variables involved.

In the first two columns of Tables 3.1-3.3, I report the Dickey-Fuller
(DF) test for stationarity of the price volatility and log trading volume for
43 futures contracts in three different energy futures: crude oil, heating oil
and unleaded gasoline. The results give a rather unambiguous picture. The
DF statistic suggests that price volatility and trading volume are stationary
quantities and that traditional distribution theory is applicable.

The estimation results of equations (3.2) and (3.3) are reported in
columns 3-7 and 8-14, respectively, of Tables 3.1-3.3. The results in columns
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3-7 suggest that almost all the contracts exhibit an α0 significantly posi-
tive and that over 70% of the contracts have an α1 significantly (at the
10% level) negative. These results appear to support the maturity effect
hypothesis. Note, however, that the R2 statistics seem to indicate that, in
general, time to maturity explains very little of price variability.

Once the volume of trade is introduced as additional explanatory vari-
able [as in equation (3.3)], the results in columns 8-14 of Tables 3.1-3.3
clearly suggest that only 35 of the contracts have a β1 significantly (at the
10% level) negative. What this means is that it is probably not matu-
rity per se which affects volatility, but rather one or more factors which
simultaneously affect the volume of trade and volatility.

Figures 3.1 to 3.12 graph price variability and trading volume against
time to maturity for some representative energy futures contracts. Clearly,
trading volume increases initially and then falls off as the contract ap-
proaches maturity. Price variability also appears to exhibit such behaviour,
however, the “peak” tends to occur closer to maturity than for trading vol-
ume. This could be due to the last month of trade “expiration effects” in
volatility and trading volume which are primarily caused by hedgers and
speculators switching to the next available contract during this month.

So far I have analyzed contemporaneous relations between price volatil-
ity and trading volume ignoring any potential lead (lag) relations between
these variables. In this section, I test the direction of possible causality be-
tween price volatility and trading volume, in the sense of Granger (1969).
In particular, I investigate whether knowledge of past trading volume im-
proves the prediction of futures price volatility beyond predictions that are
based on past futures price volatility alone. This is the empirical definition
of Granger causality.

To test the direction of causality between futures price volatility and
trading volume it must be assumed that the relevant information is entirely
contained in the present and past values of these variables. A specification
that suggests itself is

V ARt = ϕ0 +
r∑

i=1

ϕiV ARt−i +
s∑

j=1

θj ln(V OL)t−j + ut (3.4)

where ut is a disturbance term. To test if trading volume causes futures
price variability in the Granger sense, we first estimate (3.4) by ordinary
least squares to obtain the unrestricted sum of squared residuals, SSRu.
Then, by running another regression under the restriction that all θj ’s are
zero, the restricted sum of squared residuals, SSRr, is obtained. If ut is
white noise, then the statistic computed as the ratio of (SSRr − SSRu)/s
to SSRu/(n−r−s−1) has an asymptotic F -distribution with the numerator
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TABLE 3.1
The Maturity Effect on Price Variability for Crude Oil

System
DF V AR = α0+α1 ln t V AR = β0+β1 ln t+β2 ln(V OL)

Contract V AR ln (V OL) α̂0 t(α̂0) α̂1 t(α̂1) R2 β̂0 t(β̂0) β̂1 t(β̂1) β̂2 t(β̂2) R2 F1 F2

87/1 -12.7 -3.3 -0.9E-02 0.6 0.3E-02 0.9 0.005 0.8E-02 0.2 0.1E-02 0.2 -0.1E-02 0.5 0.007 0.698 0.691
87/2 -8.5 -2.7 0.4E-04 0.3 0.5E-04 1.5 0.014 -07E-03 2.0 0.1E-03 2.8 0.5E-04 2.4 0.050 0.209 0.083
87/3 -9.6 -3.0 -0.9E-04 0.8 0.7E-04 2.9 0.051 -0.4E-03 1.5 0.1E-03 2.8 0.2E-04 1.3 0.044 0.022* 0.064
87/4 -12.2 -2.8 0.9E-04 1.3 0.1E-04 0.5 0.002 0.1E-04 0.0 0.2E-04 0.7 0.5E-05 0.4 0.003 0.980 0.483
87/5 -11.8 -2.7 0.9E-04 1.3 0.7E-05 0.4 0.001 -0.1E-03 0.7 0.3E-04 1.4 0.1E-04 1.4 0.013 0.248 0.116
87/6 -11.4 -2.8 0.6E-04 1.6 0.3E-05 0.3 0.001 -0.1E-03 1.2 0.2E-04 1.9 0.1E-04 2.2 0.033 0.815 0.363
87/7 -11.8 -2.4 0.1E-03 2.5 -0.1E-04 1.2 0.009 0.1E-03 1.2 -0.1E-04 0.8 -0.1E-06 0.1 0.009 0.887 0.549
87/8 -10.9 -3.0 0.2E-03 4.3 -0.4E-04 3.2 0.063 0.2E-03 2.0 -0.5E-04 2.2 -0.2E-05 0.2 0.063 0.292 0.566
87/9 -11.1 -2.6 0.2E-03 6.3 -0.3E-04 4.4 0.113 0.5E-04 0.7 -0.1E-04 1.3 0.9E-05 0.1 0.135 0.013* 0.913
87/10 -12.8 -2.5 0.1E-02 2.2 -0.2E-03 1.9 0.022 0.1E-02 0.9 -0.2E-03 1.2 -0.9E-06 0.1 0.022 0.203 0.951
87/11 -10.0 -2.7 0.2E-03 6.5 -0.3E-04 4.7 0.121 0.2E-04 0.3 -0.1E-04 1.0 0.1E-04 2.7 0.159 0.004* 0.913
87/12 -2.5 -3.0 0.9E-03 5.3 -0.2E-03 4.8 0.121 0.2E-02 4.8 -0.3E-03 5.5 -0.1E-03 3.0 0.168 0.416 0.370

88/1 -3.2 -2.4 0.7E-03 11.7 -0.1E-03 10.4 0.398 0.1E-02 8.8 -0.2E03 10.4 -0.3E-04 4.2 0.457 0.306 0.852
88/2 -5.9 -2.9 0.6E-03 7.3 -0.1E-03 6.0 0.183 0.3E-05 0.0 -0.4E-04 1.6 0.4E-04 3.2 0.234 0.005* 0.306
88/3 -5.8 -2.9 0.3E-03 4.3 -0.5E-04 2.9 0.049 -0.7E-03 4.1 0.7E-04 2.9 0.7E-04 6.5 0.246 0.032* 0.860
88/4 -6.9 -2.8 0.7E-03 6.9 -0.1E-03 5.7 0.165 0.7E-03 2.6 -0.1E-03 3.6 0.2E-05 0.1 0.165 0.024* 0.852
88/5 -7.0 -3.1 0.2E-03 2.7 -0.2E-04 1.2 0.009 -0.4E-03 2.4 0.5E-04 2.2 0.4E-04 4.2 0.109 0.420 0.794
88/6 -6.4 -3.8 0.1E-03 1.7 -0.6E-06 0.1 0.000 -0.3E-03 2.8 0.5E-04 2.9 0.3E-04 4.2 0.101 0.613 0.370
88/7 -7.1 -4.2 0.1E-03 2.1 -0.1E-05 0.1 0.000 -0.1E-03 1.4 0.3E-04 1.8 0.1E-04 2.6 0.042 0.827 0.001*
88/8 -7.6 -2.9 0.5E-03 8.2 -0.9E-04 6.5 0.208 0.7E-03 4.9 -0.1E-03 5.4 -0.1E-04 1.5 0.219 0.085 0.335
88/9 -10.1 -2.9 0.3E-03 4.9 -0.5E-04 3.4 0.068 -0.2E-03 1.4 0.1E-04 0.6 0.3E-04 4.5 0.176 0.001* 0.887
88/10 -11.4 -2.8 0.5E-03 5.1 -0.9E-04 3.8 0.085 0.1E-04 0.0 -0.2E-04 0.8 0.3E-04 2.5 0.121 0.003* 0.895
88/11 -6.7 -4.4 0.8E-03 12.4 -0.1E-03 10.5 0.430 0.8E-03 5.5 -0.1E-03 7.1 -0.1E-05 4.1 0.403 0.016* 0.550
88/12 -8.0 -2.7 0.6E-03 8.9 -0.1E-03 6.5 0.208 0.1E-04 0.0 -0.3E-04 1.6 0.4E-04 4.1 0.283 0.001* 0.818
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TABLE 3.1 cont’d

System
DF V AR = α0+α1 ln t V AR = β0+β1 ln t+β2 ln(V OL)

Contract V AR ln(V OL) α̂0 t(α̂0) α̂1 t(α̂1) R2 β̂0 t(β̂0) β̂1 t(β̂1) β̂2 t(β̂2) R2 F1 F2

89/1 -12.4 -3.2 0.2E-02 4.0 -0.6E-03 3.5 0.071 0.2E-02 1.4 -0.5E-03 2.1 0.1E-04 0.1 0.071 0.019* 0.523

89/2 -8.3 -2.8 0.5E-03 4.7 -0.7E-04 2.9 0.051 -0.8E-04 0.3 -0.2E-05 0.1 0.3E-04 2.4 0.086 0.077 0.355

89/3 -10.9 -3.7 0.4E-03 5.2 -0.6E-04 3.3 0.064 -0.2E-03 1.0 0.1E-04 0.5 0.4E-04 3.6 0.135 0.006* 0.818
89/4 -8.8 -3.7 0.3E-03 6.0 -0.5E-04 3.5 0.072 0.2E-05 0.0 -0.5E-05 0.2 0.2E-04 2.6 0.111 0.009* 0.601

89/5 -5.2 -2.5 0.8E-03 7.6 -0.1E-03 6.0 0.183 0.1E-02 4.8 -0.2E-03 5.4 -0.4E-04 2.2 0.208 0.052 0.698

89/6 -9.3 -3.3 0.4E-03 6.7 -0.5E-04 4.0 0.091 -0.5E-05 0.0 -0.1E-04 0.4 0.2E-04 2.6 0.127 0.003* 0.012*
89/7 -8.1 -3.3 0.1E-02 8.7 -0.2E-03 7.2 0.247 0.1E-02 6.0 -0.2E-03 6.9 -0.4E-04 2.6 0.278 0.763 0.370

89/8 -11.2 -2.7 0.4E-03 4.5 -0.7E-04 2.9 0.501 0.1E-05 0.0 -0.2E-04 0.5 0.3E-04 1.7 0.068 0.012* 0.869

89/9 -11.7 -4.2 0.1E-03 3.1 -0.9E-05 0.6 0.002 -0.4E-03 3.0 0.5E-04 2.9 0.4E-04 4.6 0.117 0.226 0.103
89/10 -11.1 -2.9 0.7E-04 1.7 0.9E-05 0.9 0.005 -0.3E-03 2.6 0.5E-04 3.2 0.3E-04 3.4 0.071 0.756 0.677

89/11 -11.5 -3.9 0.8E-04 1.9 0.3E-05 0.3 0.000 -0.1E-03 1.1 0.2E-04 1.6 0.1E-04 1.8 0.021 0.818 0.205

89/12 -11.5 -2.9 0.8E-05 0.1 0.2E-04 1.9 0.021 -0.1E-03 0.5 0.3E-04 1.6 0.9E-05 0.6 0.024 0.230 0.818

90/1 -2.8 -2.7 0.3E-03 7.9 -0.5E-04 6.0 0.181 0.6E-03 5.1 -0.9E-04 5.9 -0.2E-04 2.8 0.218 0.446 0.990
90/2 -3.7 -4.2 0.8E-03 11.1 -0.1E-03 9.6 0.362 0.1E-02 6.1 -0.2E-03 7.9 -0.3E-04 2.4 0.306 0.070 0.677

90/3 -7.6 -10.7 0.3E-03 9.2 -0.7E-04 7.0 0.230 -0.2E-03 2.2 -0.9E-06 0.1 0.4E-04 5.4 0.347 0.000* 0.503

90/4 -8.1 -3.1 -0.2E-03 7.7 -0.4E-04 5.6 0.159 -0.1E-03 1.6 -0.8E-06 0.1 0.3E-04 4.7 0.261 0.009* 0.249
90/5 -9.0 -3.6 0.1E-02 6.7 -0.2E-03 5.8 0.174 0.1E-02 3.7 -0.2E-03 4.8 -0.3E-04 1.4 0.184 0.077 0.990

90/6 -8.7 -3.2 0.6E-03 7.8 -0.1E-03 6.3 0.195 0.1E-03 0.7 -0.7E-04 2.4 0.3E-04 2.0 0.215 0.002* 0.827

90/7 -11.4 -2.7 0.1E-02 5.4 -0.2E-03 4.5 0.113 0.4E-03 0.6 -0.1E-03 1.8 0.4E-04 0.8 0.117 0.001* 0.860

Notes: DF refers to the Dickey-Fuller (1979) t-statistic for a unit root. Under the null hypothesis of a unit root the 1%, 5% and

10% critical values of the DF statistic are -2.58, -1.95 and -1.62, respectively — see Fuller (1976, Table 8.5.2). t-ratios are all in

absolute terms. An asterisk (in the last two columns) indicates significance (i.e. the null hypothesis of no causality would be rejected

at the 5% level).
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TABLE 3.2
The Maturity Effect on Price Variability for Heating Oil

System
DF V AR = α0+α1 ln t V AR = β0+β1 ln t + β2 ln(V OL)

Contract V AR ln(V OL) α̂0 t(α̂0) α̂1 t(α̂1) R2 β̂0 t(β̂0) β̂1 t(β̂1) β̂2 t(β̂2) R2 F1 F2

87/1 -7.2 -3.2 0.2E-03 2.6 -0.1E-04 0.4 0.000 -0.5E-03 2.4 0.1E-03 2.8 0.6E-04 4.1 0.086 0.670 0.433
87/2 -8.3 -2.9 0.2E-03 2.9 -0.9E-05 0.4 0.001 -0.2E-03 1.4 0.6E-04 2.0 0.3E-04 3.2 0.056 0.303 0.328
87/3 -12.4 -3.8 0.1E-03 2.3 0.6E-05 0.3 0.000 -0.5E-04 0.3 0.3E-04 1.3 0.1E-04 1.3 0.011 0.771 0.705
87/4 -12.0 -3.3 0.2E-03 3.5 -0.1E-04 1.2 0.008 -0.1E-04 0.1 0.1E-04 0.5 0.1E-04 1.8 0.027 0.185 0.748
87/5 -12.8 -3.9 0.1E-03 2.6 -0.6E-05 0.4 0.000 -0.4E-04 0.2 0.2E-04 0.9 0.1E-04 1.6 0.015 0.125 0.057

87/6 -12.3 -3.3 0.1E-03 3.0 -0.1E-04 0.8 0.004 -0.2E-03 2.1 0.4E-04 2.5 0.2E-04 4.3 0.110 0.046* 0.047*
87/7 -12.2 -2.9 0.11260 2.0 -0.2E-01 1.8 0.022 0.18043 1.6 -0.3E-01 1.7 -0.5E-02 0.6 0.025 0.691 0.990
87/8 -10.1 -3.1 0.1E-03 5.8 -0.2E-04 3.5 0.085 0.7E-04 1.1 -0.1E-04 1.1 0.9E-05 2.1 0.117 0.027* 0.335
87/9 -8.3 -3.4 0.2E-03 9.7 -0.5E-04 7.3 0.272 0.2E-03 4.0 -0.4E-04 4.6 0.4E-05 1.0 0.278 0.077 0.818
87/10 -8.2 -3.8 0.1E-03 7.5 -0.3E-04 5.1 0.147 -0.2E-04 0.5 -0.2E-05 0.2 0.1E-04 5.0 0.270 0.007* 0.664
87/11 -7.4 -3.2 0.2E-03 5.7 -0.3E-04 4.2 0.100 0.4E-06 0.0 -0.5E-05 0.4 0.1E-04 3.7 0.173 0.004* 0.528
87/12 -8.4 -3.2 0.1E-03 5.0 -0.2E-04 2.9 0.045 0.1E-03 1.8 0.1E-04 1.3 0.2E-04 4.8 0.156 0.013* 0.651

88/1 -6.1 -3.3 0.5E-03 8.0 -0.9E-04 6.5 0.209 0.3E-03 2.8 -0.8E-04 3.7 0.8E-05 1.0 0.214 0.032* 0.561
88/2 -7.3 -3.1 0.4E-03 8.3 -0.8E-04 6.5 0.202 0.9E-04 0.7 -0.3E-04 1.7 0.2E-04 3.5 0.257 0.000* 0.941
88/3 -6.6 -2.7 0.3E-03 7.1 -0.6E-04 5.1 0.131 -0.5E-04 0.4 -0.2E-05 0.1 0.2E-04 4.1 0.208 0.001* 0.613
88/4 -6.5 -3.1 0.3E-03 5.2 -0.5E-04 3.5 0.067 -0.1E-03 0.8 0.1E-04 0.6 0.3E-04 4.2 0.155 0.016* 0.980
88/5 -5.8 -3.5 0.2E-03 4.1 -0.3E-04 2.4 0.032 -0.1E-03 0.9 0.2E-04 0.9 0.2E-04 3.5 0.096 0.077 0.664
88/6 -6.6 -3.3 0.1E-03 1.9 -0.4E-05 0.2 0.000 -0.2E-03 1.8 0.4E-04 2.1 0.2E-04 3.1 0.055 0.539 0.886
88/7 -6.8 -4.0 0.1E-03 3.2 -0.1E-04 1.5 0.012 -0.9E-04 0.8 0.1E-04 0.9 0.2E-04 2.7 0.053 0.523 0.895
88/8 -8.7 -2.8 0.4E-03 8.5 -0.8E-04 6.7 0.238 0.3E-03 3.5 -0.7E-04 4.1 0.3E-05 0.5 0.240 0.052 0.951
88/9 -7.6 -3.8 0.2E-03 6.2 -0.4E-04 4.3 0.112 -0.8E-04 1.1 0.4E-05 0.3 0.2E-04 5.5 0.262 0.008* 0.455
88/10 -6.6 -3.5 0.4E-03 9.3 -0.8E-04 7.3 0.259 0.1E-03 1.8 -0.4E-04 3.0 0.1E-04 3.3 0.311 0.002* 0.990
88/11 -7.2 -3.2 0.6E-03 11.3 -0.1E-03 9.1 0.334 0.3E-03 3.2 -0.7E-04 4.1 0.1E-04 3.0 0.371 0.001* 0.498
88/12 -8.2 -2.5 0.6E-03 11.7 -0.1E-03 9.2 0.323 0.3E-03 2.7 -0.7E-04 4.2 0.2E-04 3.4 0.366 0.002* 0.589
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TABLE 3.2 cont’d

System

DF V AR = α0+α1 ln t V AR = β0+β1 ln t + β2 ln(V OL)

Contract V AR ln(V OL) α̂0 t(α̂0) α̂1 t(α̂1) R2 β̂0 t(β̂0) β̂1 t(β̂1) β̂2 t(β̂2) R2 F1 F2

89/1 -8.8 -4.0 0.3E-03 5.8 -0.4E-04 3.3 0.065 -0.2E-03 2.4 0.2E-04 1.5 0.4E-04 6.7 0.268 0.004* 0.523

89/2 -10.3 -3.6 0.4E-03 7.9 -0.7E-04 5.6 0.146 0.1E-03 0.7 -0.3E-04 1.5 0.2E-04 2.8 0.182 0.003* 0.303

89/3 -9.9 -2.8 0.4E-03 9.2 -0.6E-04 6.1 0.172 0.6E-05 0.1 -0.8E-05 0.4 0.2E-04 4.1 0.242 0.000* 0.951

89/4 -12.4 -3.0 0.7E-03 5.9 -0.1E-03 4.5 0.105 0.5E-03 2.0 -0.1E-03 2.4 0.1E-04 0.6 0.107 0.013* 0.843

89/5 -10.9 -3.7 0.5E-03 8.2 -0.7E-04 5.4 0.138 0.1E-03 1.1 -0.3E-04 1.6 0.2E-04 2.8 0.174 0.001* 0.726

89/6 -13.3 -4.9 0.7E-03 3.1 -0.1E-03 2.1 0.024 0.2E-03 0.4 -0.7E-04 0.8 0.4E-04 0.9 0.029 0.047 0.818

89/7 -10.6 -4.4 0.5E-03 7.4 -0.8E-04 5.0 0.126 0.2E-04 0.2 -0.2E-04 0.9 0.3E-04 4.0 0.202 0.000* 0.670

89/8 -8.6 -3.7 0.4E-03 7.4 -0.6E-04 4.9 0.130 -0.1E-03 0.9 0.4E-05 0.2 0.3E-04 5.6 0.274 0.000* 0.625

89/9 -9.2 -3.0 0.2E-03 4.2 -0.2E-04 1.8 0.019 -0.3E-03 4.1 0.5E-04 3.8 0.4E-04 7.7 0.280 0.001* 0.852

89/10 -10.9 -4.0 0.2E-03 5.0 -0.2E-04 2.4 0.036 -0.1E-03 1.1 0.1E-04 1.1 0.2E-04 3.9 0.122 0.026* 0.852

89/11 -11.9 -4.8 0.1E-03 4.5 -0.1E-04 1.9 0.020 -0.6E-04 0.7 0.1E-04 0.8 0.1E-04 2.8 0.067 0.057 0.923

89/12 -12.6 -4.4 0.1E-03 4.6 -0.1E-04 1.7 0.016 -0.4E-04 0.6 0.1E-04 0.9 0.1E-04 3.1 0.066 0.093 0.047

90/1 -9.1 -3.5 0.2E-02 9.7 -0.6E-03 9.1 0.339 0.6E-02 10.4 -0.1E-02 11.5 -0.2E-03 6.4 0.474 0.748 0.990

90/2 -11.9 -3.4 0.1E-02 4.8 -0.3E-03 4.2 0.093 0.1E-02 2.2 -0.3E-03 2.8 -0.7E-06 0.1 0.093 0.039* 0.932

90/3 -8.4 -3.7 0.4E-03 7.9 -0.8E-04 5.9 0.166 -0.2E-04 0.2 -0.1E-04 0.8 0.3E-04 4.8 0.266 0.001* 0.533

90/4 -9.5 -3.9 0.4E-03 7.9 -0.6E-04 5.6 0.154 -0.5E-04 0.5 -0.1E-04 0.7 0.3E-04 4.9 0.259 0.001* 0.249

90/5 -9.7 -4.1 0.5E-03 8.5 -0.9E-04 6.5 0.188 0.2E-03 1.7 -0.5E-04 2.7 0.2E-04 2.3 0.214 0.001* 0.589

90/6 -8.8 -4.2 0.3E-03 6.4 -0.5E-04 4.2 0.092 -0.1E-03 1.3 0.1E-04 0.6 0.3E-04 5.1 0.209 0.005* 0.225

90/7 -9.5 -3.4 0.3E-03 6.2 -0.4E-04 3.9 0.076 -0.1E-03 1.4 0.1E-04 0.6 0.3E-04 4.4 0.167 0.000* 0.712

Notes: See notes to Table 3.1.
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TABLE 3.3
The Maturity Effect on Price Variability for Unleaded Gasoline

System
DF V AR = α0+α1 ln t V AR = β0+β1 ln t+β2 ln(V OL)

Contract V AR ln(V OL) α̂0 t(α̂0) α̂1 t(α̂1) R2 β̂0 t(β̂0) β̂1 t(β̂1) β̂2 t(β̂2) R2 F1 F2

87/1 -9.4 -2.4 0.2E-03 2.3 -0.1E-04 0.7 0.005 0.6E-04 0.3 0.6E-05 0.1 0.1E-04 1.0 0.018 0.188 0.802
87/2 -8.6 -3.4 0.2E-03 4.1 -0.3E-04 1.9 0.039 -0.7E-04 0.6 0.8E-05 0.4 0.3E-04 3.6 0.157 0.009* 0.567
87/3 -8.7 -2.7 0.2E-03 4.6 -0.3E-04 2.4 0.060 0.2E-04 0.2 -0.7E-05 0.4 0.1E-04 2.4 0.114 0.026* 0.980
87/4 -8.1 -2.4 0.1E-03 2.9 -0.9E-05 0.7 0.005 -0.1E-03 1.5 0.2E-04 1.3 0.2E-04 3.3 0.109 0.096 0.475
87/5 -9.5 -3.1 0.1E-03 4.4 -0.2E-04 2.1 0.040 0.7E-06 0.0 -0.8E-06 0.0 0.1E-04 2.3 0.088 0.049* 0.932
87/6 -7.0 -2.6 0.9E-04 3.9 -0.6E-05 1.1 0.011 -0.1E-03 2.7 0.1E-04 2.4 0.1E-04 5.2 0.214 0.087 0.607
87/7 -10.5 -3.4 0.4E-03 2.7 -0.8E-04 2.2 0.042 0.5E-03 1.6 -0.9E-04 1.9 -0.9E-05 0.3 0.043 0.518 0.624
87/8 -8.4 -3.2 0.1E-03 7.3 -0.3E-04 5.0 0.174 0.1E-03 2.6 -0.2E-04 3.0 0.4E-05 1.1 0.184 0.154 0.304
87/9 -8.5 -3.3 0.2E-03 8.2 -0.4E-04 5.9 0.223 0.1E-03 2.7 -0.3E-04 3.6 0.4E-05 0.8 0.227 0.015* 0.913
87/10 -10.9 -3.8 0.6E-03 1.5 -0.1E-03 1.1 0.011 -0.1E-03 0.1 -0.3E-04 1.2 0.6E-04 0.9 0.018 0.304 0.960
87/11 -8.0 -3.3 0.2E-03 6.0 -0.4E-04 4.3 0.134 0.1E-03 1.3 -0.2E-04 1.9 0.1E-04 1.7 0.156 0.008* 0.460
87/12 -11.1 -3.1 0.1E-01 1.9 -0.2E-02 1.6 0.022 0.2E-01 1.5 -0.3E-02 1.8 -0.9E-03 0.8 0.028 0.741 0.550

88/1 -4.9 -2.9 0.4E-03 6.3 -0.8E-04 4.9 0.172 0.2E-03 1.7 -0.6E-04 2.8 0.1E-04 1.3 0.184 0.206 0.787
88/2 -6.7 -3.6 0.4E-03 5.5 -0.7E-04 4.0 0.121 -0.3E-04 0.2 -0.2E-04 0.9 0.3E-04 3.5 0.208 0.036* 0.904
88/3 -5.4 -3.6 0.1E-03 2.7 -0.2E-04 1.2 0.012 -0.4E-03 3.0 0.4E-04 2.2 0.5E-04 4.9 0.183 0.154 0.734
88/4 -6.5 -3.2 0.1E-03 2.3 -0.1E-04 0.7 0.005 -0.1E-03 0.7 0.1E-04 0.6 0.2E-04 2.1 0.041 0.771 0.913
88/5 -7.0 -3.4 0.1E-03 2.4 -0.9E-05 0.6 0.003 -0.5E-04 0.4 0.1E-04 0.5 0.1E-04 1.7 0.029 0.835 0.651
88/6 -8.5 -3.5 0.6E-04 1.5 0.1E-05 0.1 0.000 -0.4E-04 0.5 0.1E-04 1.0 0.9E-05 1.4 0.017 0.932 0.154
88/7 -7.8 -4.3 0.1E-03 6.2 -0.2E-04 3.8 0.107 0.2E-03 2.5 -0.3E-04 2.7 –0.1E-05 0.2 0.108 0.250 0.534
88/8 -11.0 -2.2 0.1E-01 1.4 -0.4E-02 1.2 0.012 0.5E-02 0.1 -0.2E-02 0.4 0.9E-03 0.4 0.014 0.336 0.913
88/9 -5.3 -2.9 0.4E-03 6.6 -0.8E-04 4.9 0.172 -0.4E-04 0.3 -0.2E-04 1.0 0.3E-04 4.5 0.297 0.009* 0.960
88/10 -3.2 -3.2 0.7E-03 10.0 -0.1E-03 8.0 0.349 0.4E-03 2.7 -0.1E-03 4.8 0.2E-04 1.6 0.365 0.127 0.951
88/11 -9.4 -3.4 0.1E-02 6.7 -0.4E-03 5.8 0.216 0.2E-02 3.8 -0.4E-03 4.9 -0.5E-04 1.0 0.223 0.044* 0.658
88/12 -6.6 -3.1 0.9E-03 8.9 -0.1E-03 6.5 0.256 0.1E-03 0.4 -0.9E-04 2.6 0.6E-04 3.0 0.309 0.005* 0.734



32
C

h
a
p
ter

3
.
M

a
tu

rity
E

ff
ects

in
E

n
erg

y
F
u
tu

res

TABLE 3.3 cont’d

System

DF V AR = α0+α1 ln t V AR = β0+β1 ln t + β2 ln(V OL)

Contract V AR ln(V OL) α̂0 t(α̂0) α̂1 t(α̂1) R2 β̂0 t(β̂0) β̂1 t(β̂1) β̂2 t(β̂2) R2 F1 F2

89/1 -9.0 -4.6 0.2E-03 2.6 -0.2E-04 0.7 0.005 -0.8E-03 3.4 0.8E-04 2.6 0.1E-03 4.9 0.174 0.044* 0.479

89/2 -9.6 -3.7 0.3E-03 3.5 -0.3E-04 1.5 0.019 -0.1E-03 0.6 0.1E-04 0.4 0.3E-04 2.6 0.073 0.104 0.677

89/3 -10.0 -3.5 0.2E-03 3.9 -0.2E-04 1.5 0.020 -0.2E-03 1.4 0.2E-04 0.9 0.4E-04 3.3 0.108 0.059 0.584

89/4 -4.6 -3.6 0.5E-03 8.1 -0.1E-03 5.9 0.226 0.5E-03 3.0 -0.1E-03 4.5 -0.1E-05 0.0 0.226 0.187 0.561

89/5 -6.9 -3.5 0.7E-03 8.3 -0.1E-03 6.1 0.240 0.1E-03 0.4 -0.8E-04 2.8 0.5E-04 2.7 0.286 0.071 0.719

89/6 -7.7 -3.9 0.4E-03 5.9 -0.6E-04 3.5 0.091 -0.1E-03 1.0 -0.6E-05 0.2 0.5E-04 4.1 0.204 0.002* 0.691

89/7 -11.1 -2.8 0.2E-01 1.7 -0.5E-02 1.5 0.019 0.2E-01 0.5 -0.5E-02 1.0 0.2E-03 0.0 0.019 0.442 0.887

89/8 -9.9 -2.6 0.5E-03 5.1 -0.9E-04 3.4 0.090 0.1E-03 0.4 -0.5E-04 1.61 0.3E-04 1.6 0.109 0.187 0.508

89/9 -10.3 -2.8 0.1E-03 1.2 0.1E-04 0.6 0.003 -0.4E-03 1.9 0.6E-04 2.1 0.4E-04 2.5 0.053 0.932 0.904

89/10 -9.4 -2.9 0.2E-03 5.8 -0.3E-04 2.7 0.059 0.4E-03 2.9 -0.5E-04 2.7 -0.1E-04 1.1 0.069 0.474 0.190

89/11 -11.0 -3.7 0.1E-03 4.3 -0.1E-04 1.2 0.013 0.3E-04 0.2 0.1E-05 0.0 0.1E-04 1.3 0.026 0.835 0.316

89/12 -11.7 -2.7 0.1E-03 3.2 -0.1E-04 0.9 0.007 0.4E-05 0.0 0.2E-05 0.1 0.1E-04 1.2 0.019 0.802 0.125

90/1 -9.9 -3.4 0.1E-02 4.7 -0.3E-03 4.2 0.129 0.2E-02 2.8 -0.4E-03 3.8 -0.5E-04 0.8 0.135 0.474 0.994

90/2 -4.6 -3.9 0.7E-03 7.7 -0.1E-03 6.0 0.235 -0.5E-04 0.2 -0.6E-04 1.9 0.6E-04 3.7 0.317 0.145 0.852

90/3 -7.3 -3.5 0.5E-03 7.0 -0.9E-04 4.9 0.175 -0.1E-03 0.7 -0.2E-04 1.0 0.5E-04 4.2 0.285 0.010* 0.336

90/4 -7.1 -2.9 0.5E-03 6.1 -0.8E-04 4.0 0.116 -0.3E-03 1.7 -0.2E-04 0.9 0.8E-04 4.7 0.256 0.027* 0.719

90/5 -10.7 -3.1 0.1E-02 3.8 -0.3E-03 3.2 0.078 0.2E-02 1.7 -0.3E-03 2.7 -0.5E-04 0.5 0.080 0.250 0.869

90/6 -8.1 -2.4 0.3E-03 4.2 -0.4E-04 2.2 0.038 -0.3E-03 1.4 0.2E-04 0.7 0.6E-04 2.9 0.102 0.107 0.317

90/7 -7.1 -2.8 0.4E-03 5.7 -0.7E-04 3.6 0.095 0.3E-04 0.1 -0.3E-04 1.1 0.3E-04 1.7 0.117 0.044* 0.284

Notes: See notes to Table 3.1.
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Figure 3.1: The maturity effect on crude oil 1987/11.

Figure 3.2: The maturity effect on crude oil 1988/11.

Figure 3.3: The maturity effect on crude oil 1989/5.
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Figure 3.4: The maturity effect on crude oil 1990/2.

Figure 3.5: The maturity effect on heating oil 1987/.9.

Figure 3.6: The maturity effect on heating oil 1988/12.



3.3. Empirical Results 35

Figure 3.7: The maturity effect on heating oil 1989/4.

Figure 3.8: The maturity effect on heating oil 1990/1.

Figure 3.9: The maturity effect on unleaded gasoline 1987/9.
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Figure 3.10: The maturity effect on unleaded gasoline 1988/10.

Figure 3.11: The maturity effect on unleaded gasoline 1989/4.

Figure 3.12: The maturity effect on unleaded gasoline 1990/5.
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having degrees of freedom s and the denominator of n−r−s−1. The roles
of V AR and ln(V OL) are reversed in another F test to see whether there
is a feedback relationship among these variables.

The results of the causality tests are displayed in the last two columns
of Tables 3.1-3.3, for regressions that were run with two lag coefficients [i.e.,
r = s = 2 in equation (4)]. Tail areas (p-values) for the following asymptotic
F -tests are provided in Tables 3.1-3.3. The statistic F1 is the asymptotic F -
test statistic for the null hypothesis that trading volume does not Granger
cause futures price volatility. The statistic F2 is the test statistic for the
null hypothesis that futures price volatility does not Granger-cause trading
volume.

Turning to the causality results, it is clear that futures price volatility
does not Granger-cause trading volume (see statistic F2), while trading
volume Granger-causes futures price volatility (see statistic F1) in 44%
of the crude oil contracts, 67% of the heating oil contracts and 32% of
the unleaded gasoline contracts. Clearly, these results indicate that, for
a number of contracts, knowledge of past trading volume improves the
prediction of futures price volatility beyond predictions that are based on
past futures price volatility alone.

3.4 Conclusion

This chapter has examined the effect of maturity on the price variability
of energy futures contracts. I do detect the expected negative relationship
between maturity and futures price variability, but I also find that the ma-
turity effect weakens when controlling for the effect of the volume of trade
on volatility. This means that probably one or more factors simultaneously
affect the volume of trade and volatility. Consequently, shedding some light
on what these factors might be (that is, to investigate whether they are liq-
uidity factors or information factors) could be the subject of particularly
constructive future empirical work.



Chapter 4

Business Cycles and the
Behavior of Energy Prices

Apostolos Serletis and Vaughn W. Hulleman∗

4.1 Introduction

The theory of storage, which postulates that the marginal convenience yield
on inventory falls at a decreasing rate as aggregate inventory increases [see,
for example, Brennan (1958), Telser (1958), and Working (1949)], is the
dominant model of commodity futures prices. This hypothesis can be tested
either directly by relating the convenience yield to inventory levels utilizing
a simple statistical model [as in Brennan (1958) and Telser (1958)], or
indirectly by testing its implication about the relative variation of spot and
futures prices [as in Fama and French (1988)].

In this chapter we test the theory of storage in energy markets — crude
oil, heating oil, and unleaded gas. Although the theory of storage was
advanced mainly for commodities subject to seasonal variation in supply
(i.e., harvest), an examination of the theory is also warranted for energy
products which, although do not exhibit seasonal supply variations due to
a harvest, are subject to other supply and demand seasonal fluctuations.
For example, although the supply of crude oil and other refined products
is not inherently seasonal, heating oil has demand peaks during the winter
and gasoline has demand peaks during the summer.

∗Originally published in The Energy Journal 15 (1994), 125-134. Reprinted with
permission.
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Early attempts at testing the theory of storage and the convenience
yield hypothesis utilized industry inventory data and market prices. How-
ever, because of the difficulty in defining and measuring the relevant inven-
tory, rather than test the theory by examining the inventory-convenience
yield relation directly, we follow Fama and French (1988) and test the the-
ory’s implications about the relative variation of spot and futures prices.
These implications can be viewed as refinements of Samuelson’s (1965) hy-
pothesis that [under the assumption that spot prices follow a stationary
(mean-reverting) process, and futures prices are unbiased estimates for the
settlement cash prices] futures prices vary less than spot prices and that
the variation of futures prices is a decreasing function of maturity — see
also Serletis (1992).

The remainder of the chapter consists of four sections. Section 4.1
briefly discusses the theory of storage. Section 4.2 describes the data and
Section 4.3 presents the empirical results. The final section summarizes the
chapter.

4.2 Theoretical Foundations

Let F (t, T ) be the futures price at time t for delivery of a commodity at T .
Let S(t) be the spot price at t and let R(t, T ) denote the interest rate at
which market participants can borrow or lend over a period starting at date
t and ending at date T . The theory of storage says [see Fama and French
(1988)] that the basis — the current futures spot differential, F (t, T ) −
S(t) — equals the interest foregone during storage, S(t)R(t, T ), plus the
marginal warehousing cost, W (t, T ), minus the marginal convenience yield,
C(t, T ). That is

F (t, T ) − S(t) = S(t)R(t, T ) + W (t, T ) − C(t, T ) (4.1)

The storage equation (4.1) is also known as the cost of carry pricing
relationship and equates basis with the cost of carry, so that arbitrage is
not profitable. Clearly, positive carrying costs result in a positive basis
— that is, a futures price above the spot market price. In such cases the
buyer of a futures contract pays a premium for deferred delivery, known
as contango. Negative carrying costs imply a negative basis — that is, a
futures price below the spot market price. This type of price relationship is
known as backwardation. Dividing both sides of the storage equation (4.1)
by S(t) and rearranging, we obtain

F (t, T ) − S(t)
S(t)

− R(t, T ) =
W (t, T ) − C(t, T )|

S(t)
(4.2)
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According to equation (4.2), the observed quantity on the left-hand side
— the interest adjusted basis, [F (t, T ) − S(t)]/S(t) − R(t, T ) — is the
difference between the relative warehousing cost, W (t, T )/S(t), and the
relative convenience yield, C(t, T )/S(t).

Assuming that the marginal warehousing cost is roughly constant, that
the marginal convenience yield declines at a decreasing rate with increases
in inventory [see, for example, Brennan (1958) and Telser (1958)], and
that variation in the marginal convenience yield dominates variation in the
marginal warehousing cost, we can use the interest-adjusted-basis equation
(4.2) to develop testable hypotheses about the convenience yield. For ex-
ample, when inventory is low, the relative convenience yield is high and
larger than the relative warehousing cost, and the interest-adjusted basis
becomes negative. On the other hand, when inventory is high, the relative
convenience yield falls toward zero, and the interest-adjusted basis becomes
positive and increases toward the relative warehousing cost.

Moreover, the theory of storage and the concept of declining marginal
convenience yield on inventory allow us to make predictions about the im-
pact of demand and supply shocks on the relative variation of spot and
futures prices. For example, when inventory is high (the convenience yield
is low and the interest-adjusted basis is positive) a permanent demand
shock causes a large inventory response but a small change in the conve-
nience yield or the interest-adjusted basis. In this case spot and futures
prices have roughly the same variability, suggesting that changes in spot
prices are largely permanent — they show up one-for-one in futures prices.
However, when inventory is low (the convenience yield is high and the
interest-adjusted basis is negative) demand shocks produce small changes
in inventories but large changes in the convenience yield and the interest-
adjusted basis. In this case, shocks cause spot prices to change more than
futures prices and the basis is more variable than when inventories are high.

In what follows, we test the theory of storage in energy markets. Because
of the difficulty, however, in defining and measuring the relevant inventory,
rather than using direct tests by relating the convenience yield to inventory
levels [see, for example, Brennan (1958) and Telser (1958)], we use the Fama
and French (1988) indirect tests based on the relative variation in spot and
futures prices. In particular, using the sign of the interest adjusted basis
as a proxy for high (+) and low (-) inventory, the prediction of the theory
of storage that shocks produce more independent variation in spot and
futures prices when inventory is low implies that the interest-adjusted basis
is more variable when it is negative — see French (1986) for a derivation
and detailed discussion.
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4.3 Data

To test the theory of storage we use daily observations from the New York
Mercantile Exchange (NYMEX) on one-month, two-month, four-month,
and seven-month futures prices for crude oil, heating oil and unleaded gaso-
line. In fact, we use the spot-month futures prices as a proxy for current
cash prices, the second-month futures prices as a proxy for the current
futures prices, and similarly the fourth-month and seventh-month futures
prices as proxies for the three-month and six-month futures prices, respec-
tively.

The sample period is June 1, 1983 to April 27, 1992 for crude oil, August
7, 1983 to April 27, 1992 for heating oil, and December 3, 1984 to April 27,
1992 for unleaded gas. Because of daily price limits, as well as technical
trading adjustments [such as, for example, abrupt movements in the price
of the spot-month futures contracts on their last trading day, as traders
adjust themselves out of positions], daily prices have been converted to
weekly average price series. Such averaging tends to smooth these erratic
price movements.

4.4 Test Results

To investigate the theory of storage prediction that the interest-adjusted
basis is more variable when it is negative (because shocks produce more
independent variation in spot and futures prices when inventory is low),
Tables 4.1-4.3 report the standard deviations of weekly as well as daily
changes in the interest-adjusted basis for one, three and six month crude
oil, heating oil and unleaded gas futures contracts. Clearly, the standard
deviation for crude oil is only slightly more variable when it is positive than
when it is negative, but the standard deviations for heating oil and to a
lesser extent for unleaded gas are larger when the interest-adjusted basis
is negative. Moreover, F -tests reject (in general) the null hypothesis of
equal variances. Hence, we conclude that the heating oil and unleaded gas
markets pass this Fama-French (indirect) test.

As it was argued earlier, the theory of storage also implies that shocks
produce roughly equal changes in spot and futures prices when inventory is
high and the interest-adjusted basis is positive, but more variation in spot
prices than in futures prices when inventory is low and the interest-adjusted
basis is negative. To investigate this prediction of the theory of storage, we
report in Table 4.4 the ratios of the standard deviation of percent futures
price changes to the standard deviation of percent spot price changes for
the weekly as well as the daily data. Clearly, the ratios are lower when
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the interest-adjusted basis is negative for all three commodities, thereby
confirming the theory of storage prediction about the response of spot and
futures prices to demand and supply shocks.

The theory of storage also predicts that shocks produce larger changes
on shorter maturity futures prices than on longer maturity futures prices
because the shocks are progressively offset by demand and supply responses.
Thus, the ratios of the standard deviation of futures price changes to the
standard deviation of spot price changes in Table 4.4 should decrease with
increasing maturities. Clearly, the ratios are consistent with this prediction.
For example, in the case of crude oil, the ratios for weekly positive interest-
adjusted bases fall from 0.90 at one month to 0.85 at three months and 0.75
at six months. The ratios for negative interest-adjusted bases are 0.88, 0.78,
and 0.71. This evidence is consistent with Samuelson’s (1965) hypothesis
about the relative variation of spot and futures prices.

TABLE 4.1
Standard Deviations of Changes in the

Crude Oil Interest-Adjusted Basis

Daily Data Weekly Data
Contract Positive Negative All Positive Negative All

A. Standard Deviations of Changes in the Interest-Adjusted Basis

1-Month 0.20 0.16** 0.17 0.22 0.16** 0.17
3-Month 0.06 0.06 0.06 0.08 0.08 0.08
6-Month 0.04 0.03** 0.03 0.06 0.05+ 0.05

B. Number of Observations

1-Month 400 1630 2030 84 380 464
3-Month 281 1749 2030 56 407 464
6-Month 182 1848 2030 35 428 464

Notes: Statistics are for observations when the interest-adjusted basis is positive

(Positive), observations when the interest-adjusted basis is negative (Negative),

and for all observations (All). Interest rates in the interest-adjusted basis are

yields on U.S. Treasury bills, from the Bank of Canada. Significant (rejection

of the null hypothesis of equal variances) at the **one percent,*five percent,

and +ten percent level.
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TABLE 4.2
Standard Deviations of Changes

in the Heating Oil Interest-Adjusted Basis

Daily Data Weekly Data
Contract Positive Negative All Positive Negative All

A. Standard Deviations of Changes in the Interest-Adjusted Basis

1-Month 0.14 0.21** 0.18 0.12 0.26** 0.22
3-Month 0.05 0.09** 0.08 0.06 0.14** 0.12
6-Month 0.04 0.04 0.04 0.04 0.07** 0.07

B. Number of Observations

1-Month 888 1179 2067 189 271 460
3-Month 716 1351 2067 152 308 460
6-Month 521 1546 2067 116 344 460

Notes: Statistics are for observations when the interest-adjusted basis is positive

(Positive), observations when the interest-adjusted basis is negative (Negative),

and for all observations (All). Interest rates in the interest-adjusted basis are

yields on U.S.Treasury bills, from the Bank of Canada. Significant (rejection

of the null hypothesis of equal variances) at the **one percent,*five percent,

and +ten percent level.

4.5 Conclusion

This chapter using the sign of the interest-adjusted basis as a proxy for
high (+) and low (-) inventory, tests the prediction of the theory of storage
that, when inventory is high, large inventory responses to shocks imply
roughly equal changes in spot and futures prices while when inventory is
low, smaller inventory responses to shocks imply larger changes in spot
prices than in futures prices. Tests on spot and futures crude oil, heating
oil, and unleaded gas prices confirm these predictions.

Our empirical validation of the theory of storage supports the theory’s
wide acceptance by market participants. In fact, as Cho and McDougall
(1990, p. 611) put it
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TABLE 4.3
Standard Deviations of Changes in the
Unleaded Gas Interest-Adjusted Basis

Daily Data Weekly Data
Contract Positive Negative All Positive Negative All

A. Standard Deviations of Changes in the Interest-Adjusted Basis

1-Month 0.21 0.20+ 0.20 0.21 0.21 0.21
3-Month 0.07 0.08** 0.08 0.09 0.11** 0.10
6-Month 0.03 0.04** 0.04 0.04 0.07** 0.06

B. Number of Observations

1-Month 523 1222 1745 105 267 372
3-Month 471 1274 1745 101 271 372
6-Month 311 1434 1745 65 307 372

Notes: Statistics are for observations when the interest-adjusted basis is positive

(Positive), observations when the interest-adjusted basis is negative (Negative),

and for all observations (All). Interest rates in the interest-adjusted basis are

yields on U.S. Treasury bills, from the Bank of Canada. Significant (rejection

of the null hypothesis of equal variances) at the **one percent,*five percent,

and +ten percent level.

“...the theory of storage is widely accepted by participants
of energy futures markets. Market participants, for example,
interpret a large negative time basis (i.e., the futures price is
significantly lower than the spot price) as a signal to draw energy
products out of storage and a small negative basis or positive
basis as a signal to store commodities. Refiners frequently rely
on basis in timing their crude oil purchases and in scheduling
production and delivery of refined products.”

Confirmation of the theory of storage is also important in modelling
futures prices. Since the theory suggests that futures prices are largely de-
termined by demand and supply conditions in spot markets, the issue is
whether futures markets are backward or forward looking. In this regard,
Serletis and Banack (1990), using recent developments in the theory of non-
stationary regressors, test (in the context of energy markets) the hypothesis
that futures prices are unbiased predictors of future spot prices. They find
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support for the hypothesis. Also, Serletis (1991) uses Fama’s (1984) vari-
ance decomposition approach to measure the information in energy futures
prices about future spot prices and time varying premiums. He finds that
the premium and expected future spot price components of energy futures
are negatively correlated and that most of the variation in futures prices is
variation in expected premiums. Clearly, whether energy futures markets
are backward or forward looking is an area for potentially productive future
research.

TABLE 4.4
Ratios of the Standard Deviation of

Percent Futures Price Changes

Daily Data Weekly Data
Contract Positive Negative Positive Negative

A. Crude Oil

1-Month 0.85+ 0.84** 0.90 0.88
3-Month 0.79* 0.71** 0.85 0.78**
6-Month 0.69** 0.69** 0.75 0.71**

B. Heating Oil

1-Month 0.87* 0.80** 0.93 0.83*
3-Month 0.80** 0.70** 0.83 0.75**
6-Month 0.70** 0.64** 0.73* 0.66**

C. Unleaded Gas

1-Month 0.91 0.83** 0.93 0.90
3-Month 0.82* 0.75** 0.89 0.79*
6-Month 0.88 0.70** 0.88 0.73*

Notes: Statistics are for observations when the interest-adjusted basis is positive

(Positive), observations when the interest-adjusted basis is negative (Negative),

and for all observations (All). Interest rates in the interest-adjusted basis are

yields on U.S. Treasury bills, from the Bank of Canada. Significant (rejection of

the null hypothesis of equal variances) at the **one percent,*five percent, and
+ten percent level.



Chapter 5

A Cointegration Analysis
of Petroleum Futures
Prices

Apostolos Serletis∗

5.1 Introduction

One characteristic of commodity prices is the presence of a unit root in
their univariate time series representation, implying that price movements
are better characterized as being the sum of permanent and transitory
components where the permanent component is a random walk. Although
this is not a settled issue — see Perron (1989) and Serletis (1992) — and the
economic significance of this distinction is a subject of continuing debate
— see Cochrane (1991) and Christiano and Eichenbaum (1989) — there
is also evidence that these random walk components are not different but
perhaps arise from the response to the same set of fundamentals — see, for
example, Baillie and Bollerslev (1989).

This chapter (partly) replicates the Baillie and Bollerslev (1989) study
for spot month crude oil, heating oil and unleaded gasoline futures prices.
In doing so, tests for unit roots in the univariate time series representation
of daily futures prices are performed. The methodology used to study
common trends in these series is based on Johansen’s (1988) cointegration

∗Originally published in Energy Economics 16 (1994), 93-97. Reprinted with permis-
sion.
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framework. This is a maximum likelihood approach for estimating long-run
relations in multivariate vector autoregressive models. This approach, by
allowing the analysis of the data in a full system of equations model, is
sufficiently flexible to account for long-run properties as well as short-run
dynamics.

Cointegration is designed to deal explicitly with the analysis of the re-
lationship between non-stationary time series. In particular, it allows indi-
vidual time series to be non-stationary but requires a linear combination of
the series to be stationary. Therefore, the basic idea behind cointegration is
to search for linear combinations of individually non-stationary time series
that are themselves stationary. Evidence to the contrary provides support
for the hypothesis that the non-stationary variables have no tendency to
move together over time.

The remainder of the chapter is organized as follows. Section 5.2 de-
scribes the data and analyses the univariate properties of the time series
to confirm that they are not integrated of order two — a prerequisite for
the analysis of cointegration. Section 5.3 outlines Johansen’s (1988) multi-
variate approach to estimating equilibrium relationships and presents the
empirical results. The chapter closes with a brief summary and conclusions.

5.2 The Data and Stochastic Trends

We study three petroleum futures markets in this chapter, those of crude
oil, heating oil and unleaded gasoline. The time period of the analysis ex-
tends from 3 December 1984 to 30 April 1993, involving 2111 observations.
Table 5.1 reports some summary statistics for daily returns. The skewness
numbers are consistent with symmetry but the kurtosis numbers point to
significant deviations from normality for all three series — there are too
many large changes to be consistent with normality. The column marked
S(0) provides estimates of the standardized spectral density function at the
zero frequency based on the Bartlett window with the window size taken
to be twice the square root of the number of observations.1 This gives

1The estimates of the standardized spectrum are comuted using the formula

Ŝ(wj) =
1

π

{
λ0R0 + 2

m∑
k=1

λkRk cos(wjk)

}

where wj = jπ/m, j = 0, 1, . . . , m. m is the ‘window size,’ Rk is the autocorrelation

coefficient of order k and λk is the ‘lag window.’ Here, I use a window size of 2
√

T
, where T is the number of observations, and Barlett’s lag window, λk = 1 − k/m,
0 ≤ k ≤ m. In addition, the standard errors reported for the standardized spectrum,
which are valid asymptotically, are calculated as Ŝ(0)

√
4m/3T .
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TABLE 5.1
Summary Statistics for Daily Percentage Changes in Petroleum Futures Prices

Standard
Series Mean Deviation Minimum Maximum Skewness Kurtosis-3 S(0)

Crude Oil -.00013 .027 -.400 .140 -1.863 28.056 .920 (.221)

Heating Oil -.00015 .027 -.390 .139 -2.540 31.782 .818 (.197)

Unleaded Gas -.00008 .024 -.309 .123 -1.304 17.160 .724 (.174)

Notes: Sample period, daily data, 3 December 1984 to 30 April 1993 (2111 observations). S(0) is a Bartlett

estimate of the spectral density at zero frequency using a window size of 2
√

T , where T is the number of observations.

Numbers in parentheses are standard errors.



5.2. The Data and Stochastic Trends 49

consistent estimates of Cochrane’s (1988) measure of persistence — see,
for example, Cogley (1990) — providing a useful diagnostic on the relative
importance of permanent and transitory components. The point estimates
suggest that all three series (and to a greater extent crude oil) contain large
permanent (or random walk) components.

In Table 5.2 we also test for stochastic trends in the autoregressive
representation of each individual time series. In particular, Dickey-Fuller
(DF) and Augmented Dickey-Fuller (ADF) tests of the null hypothesis that
a single unit root exists in the logarithm of each series are conducted using
the following ADF regression:

∆ log zt = α0 + α1t + α2 log zt−1 +
m∑

i=1

βi∆ log zt−i + et (5.1)

where zt is the series under consideration and m is selected to be large
enough to ensure that et is white noise. The null hypothesis of a single unit
root is rejected if α2 is negative and significantly different from zero.

TABLE 5.2
DF and ADF Tests for a Unit Root in

Petroleum Futures Prices

Regression: ∆ log zt = α0 + α1t + α2 log zt−1 +
m∑

i=1

βi∆ log zt−i + et

Without trend With trend
Series DF ADF DF ADF

Logarithms of the series
Crude Oil -2.955* -2.605 -2.983 -2.640
Heating Oil -3.132* -2.704 -3.162 -2.740
Unleaded Gas -2.796 -2.737 -2.860 -2.793

First logged differences of the series
Crude Oil -46.486* -12.431* -46.480* -12.437*
Heating Oil -46.482* -12.680* -46.475* -12.684*
Unleaded Gas -43.797* -12.053* -43.790* -12.054*

Notes: Results are reported for a ADF statistic of order 12. The 95% critical value

for the DF and ADF test statistics is -2.864 for the “without trend” version of the test

and -3.414 for the “with trend” version of the test. An asterisk indicates significance

at the 5% level.
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In practice, the appropriate order of the autoregression in the ADF
test is rarely known. One approach would be to use a model selection
procedure based on some information criterion. However, Said and Dickey
(1984) showed that the ADF test is valid asymptotically if the order of the
autoregression is increased with sample size T at a controlled rate T 1/3.
For the sample used, this translates into an order of 12. It is to be noted
that for an order of zero the ADF reduces to the simple DF test. Also, the
distribution of the t-test for α2 in equation (5.1) is not standard; rather it
is that given by Fuller (1976).

Table 5.2 contains DF and ADF tests of the null hypothesis that a
single unit root exists in the logarithm of each series as well as in the first
(logged) differences of the series. Clearly, the null hypothesis of a unit root
in log levels cannot be rejected, while the null hypothesis of a second unit
root is rejected. Hence, we conclude that these series are characterized as
I(1), i.e., having a stochastic trend. This evidence is consistent with the
prevalent view that most time series are characterized by a stochastic rather
than deterministic non-stationarity — see, for example, Nelson and Plosser
(1982).

It is to be noted that Serletis (1992) in examining the univariate unit
root properties of daily crude oil, heating oil and unleaded gasoline series
(over a different sample period) using Zivot and Andrews’ (1992) varia-
tion of Perron’s (1989) test, shows that the unit root hypothesis can be
rejected if allowance is made for the possibility of a one-time break in the
intercept and the slope of the trend function at an unknown point in time.
Although this has implications for both estimation and hypothesis testing,
both of which rely on asymptotic distribution theory, it has no implica-
tions for the cointegration analysis that follows, since the assumption for
Johansen’s multivariate approach is that the series are not I(2) processes
— see Johansen and Juselius (1991) — which is definitely the case here.

5.3 Econometric Methodology and Empirical
Results

Several methods have been proposed in the literature to estimate cointegrat-
ing vectors (long-run equilibrium relationships): see Engle and Yoo (1987)
and Gonzalo (1994) for a survey and comparison. The most frequently used
Engle-Granger (1987) approach is to select arbitrarily a normalization and
regress one variable on the others to obtain the (OLS) regression residuals
ê. A test of the null hypothesis of no cointegration (against the alternative
of cointegration) is then based on testing for a unit root in the regression
residuals ê using the ADF test and the simulated critical values reported in
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Engle and Yoo (1987, Table 2), which correctly take into account the num-
ber of variables in the cointegrating regression. This approach, however,
does not distinguish between the existence of one or more cointegrating vec-
tors and the OLS parameter estimates of the cointegrating vector depend
on the arbitrary normalization implicit in the selection of the dependent
variable in the regression equation. As a consequence, the Engle-Granger
approach is well suited for the bivariate case which can have at most one
cointegrating vector.

We test for the number of common stochastic trends using the multi-
variate approach due to Johansen (1988). This approach derives the sta-
tistical properties of the cointegration vectors by relating these vectors to
the canonical correlations between the levels and first differences of the
process (corrected for any short-run dynamics). Moreover, Johansen’s ML
approach provides relatively powerful tests — see Johansen and Juselius
(1992) for a complete discussion.

In particular, following Johansen and Juselius (1992), we consider the
following p (= 3) dimensional vector autoregressive model:

Xt =
k∑

i=1

ΠiXt−i + µ + εt (t = 1, . . . , T ) (5.2)

where Xt is a p-dimensional vector of petroleum futures prices and εt is an
independently and identically distributed p-dimensional vector of innova-
tions with zero mean and covariance matrix Q̂. Letting Π = −(I − Π1 −
. . . − Πk) be the p × p total impact matrix, we consider the hypothesis of
the existence of at most r(< p) cointegrating relations formulated as:

H1(r) : Π = αβ′ (5.3)

where α and β are p×r matrices of full rank. The β matrix is interpreted as
a matrix of cointegrating vectors, that is, the vectors in β have the property
that β′Xt is stationary even though Xt itself is non-stationary — see Engle
and Granger (1987). The α matrix is interpreted as a matrix of error
correction parameters.

The maximum likelihood estimation and likelihood ratio test of this
model has been investigated by Johansen (1988), and can be described as
follows. First, letting ∆ = 1 − L, where L is the lag operator, Johansen
and Juselius (1992) suggest writing equation (5.2) as

∆Xt =
k−1∑
i=1

Γi∆Xt−i + αβ′Xt−k + εt (t = 1, . . . , T ) (5.4)

where
Γi = −(I− Π1 − . . . − Πi) (i = 1, . . . , k − 1) (5.5)



52 Chapter 5. A Cointegration Analysis of Energy Markets

In (5.4) the matrix Π is restricted as Π = αβ′, but the parameters vary
independently. Hence the parameters Γ1, . . . ,Γk−1 can be eliminated by
regressing ∆Xt and Xt−k on lagged differences, ∆Xt−1, . . . ,∆Xt−k+1. This
gives residuals Rot and Rkt and residual product moment matrices

Sij = T−1
T∑

t=1

RitR′
jt (i, j = o, k). (5.6)

The estimate of β is found by solving the eigenvalue problem (Johansen
(1988)) ∣∣λSkk − SkoS

−1
oo S′

ko

∣∣ = 0 (5.7)

for eigenvalues λ̂1 > . . . > λ̂p > 0, eigenvectors V = (v̂1, . . . , v̂p) normalized
by V̂′SkkV̂ = I. The maximum likelihood estimators are given by

β̂ = (v̂1, . . . , v̂r) α̂ = Sokβ̂ Q̂ = Soo − α̂α̂′. (5.8)

Finally, the maximized likelihood function is found from

L−2T
max =

∣∣∣Q̂∣∣∣ = |Soo|
r∏

i=1

(
1 − λ̂i

)
(5.9)

and the likelihood ratio test of the hypothesis H1(r) is given by the trace
test statistic

−2 logQ[H1(r) | Ho] = −T

p∑
i=r+1

log(1 − λ̂i). (5.10)

An alternative test (called the maximum eigenvalue test, λmax) is based on
the comparison of H1(r − 1) against H1(r):

−2 logQ[H1(r − 1) | H1(r)] = −T log(1 − λ̂r+1). (5.11)

Table 5.3 reports the results of the cointegration tests based on daily VARs
of various lag lengths. The results for intermediate lag lengths are similar.
Two test statistics are used to test for the number of cointegrating vectors:
the trace and maximum eigenvalue (λmax) test statistics. In the trace test
the null hypothesis that there are at most r cointegrating vectors where r =
0, 1 and 2 is tested against a general alternative whereas in the maximum
eigenvalue test the alternative is explicit. That is, the null hypothesis r = 0
is tested against the alternative r = 1, r = 1 against the alternative r = 2,
etc. The 95% critical values of the trace and maximum eigenvalue test
statistics are taken from Johansen and Juselius (1990, Table A2).
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TABLE 5.3
Johansen Tests for Cointegration among Petroleum Futures Prices

Critical values
k = 2 k = 4 k = 6 Trace λmax

H0 Trace λmax Trace λmax Trace λmax 95% 90% 95% 90%

r = 0 86.936* 56.820* 84.305* 56.153* 73.564* 45.369* 31.256 28.436 21.279 18.959
r ≤ 1 30.116* 22.298* 28.152* 21.767* 28.195* 21.935* 17.844 15.583 14.595 12.783
r ≤ 2 7.818 7.818 6.384 6.384 6.259 6.259 8.083 6.691 8.083 6.691

Notes: Critical values are from Johansen and Juselius (1988, Table A2); k refers to the number of lags in the VAR.

Drift maintained. Eigenvalues for k = 3, (0.026 0.010 0.003). Eigenvalues for k = 4, (0.026 0.010 0.003). Eigenvalues

for k = 6, (0.021 0.010 0.002). An asterisk indicates significance at the 5% level.
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Clearly, the two test statistics give similar results. In particular, the
hypothesis of one or less cointegrating relations has to be rejected. Thus,
our three variables form two cointegrating relationships, or alternatively
they are driven by only one common trend. Under the common trends
interpretation — see, for example, Stock and Watson (1988) — this result is
not too surprising. The same underlying stochastic components presumably
affect all petroleum futures markets.

5.4 Conclusion

The maximum likelihood cointegration analysis of daily spot-month crude
oil, heating oil and unleaded gasoline futures prices covering the period 3
December 1984 to 30 April 1993 led to the conclusion that all three spot-
month futures prices are driven by only one common trend, suggesting
that it is appropriate to model energy futures prices as a cointegrated sys-
tem. Further research may suggest a useful way of identifying the common
non-stationary factor so that it can be estimated and studied. This will
undoubtedly improve our understanding of how petroleum futures prices
change over time.
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Overview of Part 2
Apostolos Serletis

The following table contains a brief summary of the contents of the
chapters in Part 2 of the book. This part of the book consists of three
chapters addressing a number of issues regarding natural gas markets.

Natural Gas Markets
Chapter
Number Chapter Title Contents

6 Is There an East-West It uses the Engle and Granger (1987)
Split in North American approach for estimating bivariate
Natural Gas Markets? cointegrating relationships as well

as Johansen’s (1988) maximum
likelihood approach to present evidence
that an east-west split in North American
natural gas markets does not exist.

7 Business Cycles and This chapter investigates the basic stylized
Natural Gas Prices facts on natural gas price movements,

using the methodology suggested by
Kydland and Prescott (1990) as well as
Granger (1969) causality tests. It shows
that natural gas prices are procyclical and
lag the cycle of industrial production in
the United States.

8 Futures Trading and the Chapter 8 tests the theory of storage in
Storage of North American North American natural gas markets using
Natural Gas the Fama and French (1988) indirect test.

It confirms the predictions of the theory of
storage.

Chapter 6:

This chapter presents evidence concerning shared stochastic trends in North
American natural gas (spot) markets, using monthly data for the period
that natural gas has been traded on organized exchanges (from June, 1990
to January, 1996). In doing so, it uses the Engle and Granger (1987)
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approach for estimating bivariate cointegrating relationships as well as Jo-
hansen’s (1988) maximum likelihood approach for estimating cointegrating
relationships in multivariate vector autoregressive models. The results in-
dicate that the east-west split does not exist.

Chapter 7:
This chapter investigates the basic stylized facts of natural gas price move-
ments using the methodology suggested by Kydland and Prescott (1990).
The results indicate that natural gas prices are procyclical and lag the cycle
of industrial production. Moreover, natural gas prices are positively con-
temporaneously correlated with U.S. consumer prices and lead the cycle
of consumer prices, raising the possibility that natural gas prices might be
a useful guide for U.S. monetary policy, like crude oil prices are, possibly
serving as an important indicator variable.

Chapter 8:
This Chapter tests the theory of storage in North American natural gas
markets, using the Fama and French (1988) indirect test. In particular,
it tests the prediction of the theory that, when inventory is high, large
inventory responses to shocks imply roughly equal changes in spot and
futures prices, whereas when inventory is low, smaller inventory responses
to shocks imply larger changes in spot prices than in futures prices. The
tests on spot and futures North American natural gas prices confirm these
predictions of the theory of storage.



Chapter 6

Is There an East-West
Split in North American
Natural Gas Markets?

Apostolos Serletis∗

6.1 Introduction

In the last decade, the North American natural gas industry has seen a
dramatic transformation from a highly regulated industry to one which
is more market-driven. The transition to a less regulated, more market-
oriented environment has led to the emergence of different spot markets
throughout North America. In particular, producing area spot markets
have emerged in Alberta, British Columbia, Rocky Mountain, Anadarko,
San Juan, Permian, South Texas, and Louisiana basins. Moreover, produc-
tion sites, pipelines and storage services are more accessible today, thereby
ensuring that changes in market demand and supply are reflected in prices
on spot, futures, and swaps markets.

In a perfectly competitive industry the law of one price suggests that the
difference in prices between any two markets should reflect the difference
in transportation costs between the two markets. Because the natural gas
molecule is identical when measured in terms of heating values, whether it
comes from a well in Alberta or in the Gulf Coast, there is no reason that

∗Originally published in The Energy Journal 18 (1997), 47-62. Reprinted with per-
mission.
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the law of one price should not apply to the natural gas industry. How-
ever, capacity constraints seem to be distorting North American natural
gas markets in such a way that varying differentials emerge between spot
prices, reflecting not only transportation costs but also supply and demand
conditions in different areas.

Recently, King and Cuc (1996), in investigating the degree of natural
gas spot price integration in North America, report evidence of an east-
west split in North American natural gas markets. In particular, they
argue that western prices tend to move together and similarly eastern prices
tend to move together, but there seems to be a divergence between eastern
and western prices. In other words, according to King and Cuc (1996)
eastern and western prices seem to be determined by different fundamentals.
King and Cuc (1996) use integration and (bivariate) cointegration analysis
to measure natural gas price convergence, but mainly rely on a method
of measuring convergence recently proposed by Haldane and Hall (1991).
This method is based on the use of time-varying parameter (Kalman filter)
analysis and is typically used to estimate regression type-models where the
coefficients follow a random process over time.

In this chapter we investigate the robustness of the King and Cuc (1996)
findings to alternative testing methodologies. In doing so, we test for shared
stochastic price trends using current, state-of-the-art econometric method-
ology. In particular, we pay explicit attention to the time series properties
of the variables and test for cointegration, using both the Engle and Granger
(1987) approach as well as Johansen’s (1988) (multivariate) maximum like-
lihood extension of the Engle and Granger approach. Looking ahead to the
results, the tests indicate that the King and Cuc (1996) east-west split does
not exist.

The chapter is organized as follows. Section 6.2 provides some back-
ground regarding North American natural gas spot markets. Section 6.3
discusses the data and investigates the univariate time series properties of
the variables, since meaningful cointegration tests critically depend on such
properties. Section 6.4 tests for cointegration and presents the results. The
last section concludes the chapter.

6.2 The North American Natural Gas Spot
Markets

The Alberta and British Columbia producing regions are part of the West-
ern Canadian Sedimentary basin. In the case of Alberta, natural gas is
transported from the field along the Nova Gas Transmission system for sale
within Alberta as well as exported to eastern Canada and the United States.
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The British Columbia natural gas producing region is located mainly in
northeastern British Columbia and natural gas is transported from the
field along the Westcoast Gas Services system for sale in British Columbia
and for export to the United States. Whereas gas exported from Alberta is
resold in eastern markets in Canada and in the northeastern and midwest-
ern United States, as well as in the western United States (specifically in
California and the Pacific Northwest), British Columbia exports generally
serve only markets in the Pacific Northwest and California.

The Rocky Mountain basin is a cluster of producing regions in the states
of Wyoming, Utah, and Colorado. Pipelines in this area can transport
production either east or west, although the eastward capacity has been
constrained and thus, the majority of Rocky Mountain supplies are sold in
the western markets in California and the Pacific Northwest. The San Juan
basin is located in southwestern Colorado and northwestern New Mexico.
Like the Rocky Mountain basin, eastward capacity is constrained which
means that the majority of gas produced in this region is sold in western
markets. The Rocky Mountain, San Juan, and Western Canadian Sedi-
mentary basins comprise the western portion of the King and Cuc’s (1996)
east-west split (see Figure 6.1).

In the next two sections, we investigate whether the price behavior of
natural gas in different areas is similar. In particular, we use recent ad-
vances in the theory of nonstationary regressors to determine what trends in
natural gas prices, if any, are common to Alberta, British Columbia, Rocky
Mountain, San Juan, Anardarko, Louisiana, Permian and South Texas?
Our definition of trend follows the cointegration literature. In particular,
according to Beveridge and Nelson (1981) any time series characterized by
a unit root can be decomposed into a random-walk and a stationary compo-
nent, with the random-walk component being interpreted as the stochastic
trend. Two series are said to share a trend if their stochastic trend com-
ponents are proportional to each other. Clearly, a better understanding of
the extent to which natural gas prices share trends might shed some light
on the economic processes that determine natural gas prices.

6.3 The Data and Stochastic Trends

The data we use to test for shared stochastic natural gas price trends (from
June 1990 to January 1996) are monthly bid-week prices reported by Brent
Friedenberg Associates in the Canadian Natural Gas Focus. Bid week refers
to the week during which pipeline nominations to transport gas take place.
This is generally five days before the end of the month. Figure 6.2 shows the
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Figure 6.1: The North American Natural Gas Industry — An East-West
Split?
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plots of natural gas prices in the western producing region of the King and
Cuc (1996) east-west split — Alberta, British Columbia, Rocky Mountain,
and San Juan basins. Figure 6.3 shows prices in the eastern producing re-
gion of the split — Anadarko, Louisiana, Permian, and South Texas basins.

The first step in testing for shared stochastic trends is to test for stochas-
tic trends (unit roots) in the autoregressive representation of each individual
time series. Nelson and Plosser (1982) argue that most macroeconomic and
financial time series have a unit root (a stochastic trend), and describe this
property as one of being “difference stationary” so that the first difference
of a time series is stationary. An alternative “trend stationary” model has
been found to be less appropriate. In what follows we test for unit roots
using three alternative unit root testing procedures to deal with anomalies
that arise when the data are not very informative about whether or not
there is a unit root. In doing so, we choose to include only a constant (but
not a time trend), since the series are not trending (see Figures 6.2 and
6.3).

The first three columns of panel A of Table 6.1 report p-values for the
augmented Weighted Symmetric (WS) unit root test [see Pantula et al.
(1994)], the augmented Dickey-Fuller (ADF) test [see Dickey and Fuller
(1981)], and the Z(tα̂) nonparametric test of Phillips (1987) and Phillips
and Perron (1988). These p-values are based on the response surface esti-
mates given by MacKinnon (1994). For the WS and ADF tests, the optimal
lag length was taken to be the order selected by the Akaike information cri-
terion (AIC) plus 2 — see Pantula et al. (1994) for details regarding the
advantages of this rule for choosing the number of augmenting lags. The
Z(tα̂) test is done with the same Dickey-Fuller regression variables, using
no augmenting lags. Based on the p-values for the WS, ADF, and Z(tα̂)
test statistics reported in panel A of Table 6.1, the null hypothesis of a unit
root in log levels cannot be rejected, except perhaps for the Permian price
series.

To test the null hypothesis of a second unit root, in panel B of Table 6.1
we test the null hypothesis of a unit root [using the WS, ADF, and Z(tα̂)
tests] in the first (logged) differences of the series. Clearly, all the series
appear to be stationary in growth rates, since the null hypothesis of a unit
root in the first (logged) differences of the series is rejected. We conclude
that all the series are integrated of order one [or I(1) in the terminology of
Engle and Granger (1987)].
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Figure 6.2: Western Prices
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Figure 6.3: Eastern Prices
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TABLE 6.1
Marginal Significance Levels of Unit Root Tests

in North American Natural Gas Spot Prices

A. Log Levels B. First differences of log levels
Market WS ADF Z(tα̂) WS ADF Z(tα̂)

Rocky Mountain .l107 .218 .110 .000 .000 .000

San Juan .030 .127 .065 .000 .002 .000

Permian .010 .044 .020 .000 .001 .000

Anadarko .063 .139 .074 .000 .000 .000

South Texas .078 .055 .031 .000 .000 .000

Louisiana .127 .219 .060 .000 .000 .000

British Columbia .113 .232 .099 .000 .000 .000

Alberta .092 .274 .158 .000 .000 .000

Notes: Tests use a constant (but not a time trend). Numbers are tail areas of unit root

tests. The number of augmenting lags is determined using the AIC+2 rule. p-values

less than 0.05 reject the null hypothesis of a unit root at the 0.05 level of significance.

6.4 Test Methods (and Capabilities) and

Results

Since a stochastic trend has been confirmed for each price series, we now
explore for shared stochastic price trends among these series by testing
for cointegration (i.e., long-run equilibrium relationships). Cointegration
is a relatively new statistical concept designed to deal explicitly with the
analysis of the relationship between nonstationary time series. In partic-
ular, it allows individual time series to be nonstationary, but requires a
linear combination of the series to be stationary. Therefore, the basic idea
behind cointegration is to search for a linear combination of individually
nonstationary time series that is itself stationary. Evidence to the contrary
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provides strong empirical support for the hypothesis that the integrated
variables have no inherent tendency to move together over time.

Several methods have been proposed in the literature to estimate cointe-
grating vectors — see Engle and Yoo (1987) and Gonzalo (1994) for a survey
and comparison. The most frequently used Engle-Granger (1987) approach
is to select arbitrarily a normalization and regress one variable on the others
to obtain the ordinary least squares (OLS) regression residuals ê. A test
of the null hypothesis of no cointegration (against the alternative of cointe-
gration) is then based on testing for a unit root in the regression residuals ê
using the ADF test and simulated critical values which correctly take into
account the number of variables in the cointegrating regression. This ap-
proach, however, does not distinguish between the existence of one or more
cointegrating vectors and the OLS parameter estimates of the cointegrat-
ing vector depend on the arbitrary normalization implicit in the selection
of the dependent variable in the regression equation. As a consequence, the
Engle-Granger approach is well suited for the bivariate case which can have
at most one cointegrating vector.

Table 6.2 reports asymptotic p-values [computed using the coefficient
estimates in MacKinnon (1994)] of bivariate cointegration tests (in log lev-
els). The entries across each row are the p-values for testing the null of
no cointegration between the variable indicated in the row heading and the
variable indicated in the column heading, with the variable indicated in the
row heading being the dependent variable. In other words, the cointegra-
tion tests are first done with one series as the dependent variable in the
cointegrating regression and then with the other series as the dependent
variable — we should be wary of a result indicating cointegration using one
series as the dependent variable, but no cointegration when the other series
is used as the dependent variable. This possible ambiguity is a weakness
of the Engle Granger cointegration test. The tests are a constant (but not
a trend variable) and the number of augmenting lags is chosen using the
AIC+2 rule mentioned earlier.

The results suggest that the null hypothesis of no cointegration cannot
be rejected (at the 5 percent level), except for the pairs Rocky Mountain-
San Juan, Permian-Anadarko, Anadarko-Alberta, Alberta-South Texas,
and Alberta-British Columbia. That is, only five out of the twenty-eight
price pairs cointegrate (at the 5 percent level and none at the 1 percent
level). These results are very different from those reported in King and
Cuc (1996) — there is much less cointegration across series indicating any-
thing but an east-west split. The difference is due to the different time
period than that considered in King and Cuc (1996) and possibly due to
the inclusion of a trend variable in their cointegrating regressions, which re-
duced degrees of freedom and the power of the test — reduced power means
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that they conclude that the series cointegrate when in fact they don’t. No-
tice that the King and Cuc (1996) study is not clear on how deterministic
components in the time series were treated.

To investigate the robustness of these results to alternative testing
methodologies, (under the assumption that North American natural gas
prices are determined simultaneously) we consider the joint modelling of
these prices and test for shared stochastic trends using Johansen’s (1988)
maximum likelihood extension of the Engle and Granger approach. Jo-
hansen’s maximum likelihood approach to the estimation of the number of
linearly independent cointegrating vectors for a vector autoregressive pro-
cess, Xt, of order p involved (i) regression ∆Xi on ∆Xt−1, . . . ,∆Xt−p+1,
(ii) regressing ∆Xt−p on the same set of regressors, and (iii) performing a
canonical correlation analysis on the residuals of these two regressions —
see Johansen (1988) for more details or Serletis (1994) for an application.

We search for shared stochastic price trends among prices within two
price groups — eastern and western. If any shared trends are found in
the eastern (western) price group [as King and Cuc (1996) suggest], then
they might sensibly be thought of as the eastern (western) natural gas price
trends. In fact, according to King and Cuc (1996), prices within each price
group tend to move together, responding to the same set of fundamentals,
meaning that there is one shared stochastic price trend within each price
group. Using the Engle and Granger (1987) terminology, we say that in an
n-variable system with m cointegrating vectors there are n − m common
trends.

Tables 6.3 and 6.4 report the results of the cointegration tests based
on monthly VARs of various lag lengths for the eastern and western price
groups, respectively. The results for intermediate lag length are similar.
Two test statistics are used to test for the number of cointegrating vectors:
the trace and maximum eigenvalue (λmax) test statistics. In the trace test
the null hypothesis that there are at most r cointegrating vectors where r =
0, 1, 2, and 3 is tested against a general alternative whereas in the maximum
eigenvalue test the alternative is explicit. That is, the null hypothesis r = 0
is tested against the alternative r = 1, r = 1 against the alternative r = 2,
etc. The 95 percent critical values of the trace and maximum eigenvalue
test statistics are taken from Osterwald-Lenum (1992).

Clearly, the two test statistics give similar results in both Tables 6.3 and
6.4. In particular, the trace and λmax statistics reject [at conventional sig-
nificance levels, based on the critical values reported by Osterwald-Lenum
(1992)] the null hypothesis of no cointegrating vectors (r = 0) and accept
the alternative of one or more cointegrating vectors. However, the null of
r ≤ 1 cannot be rejected, indicating no more than one cointegrating vec-
tor within each natural gas price group. Hence, confirming the impression
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TABLE 6.2
Marginal Significance Levels of Bivariate Engle-Granger (1987)

Cointegration Tests between North American Natural Gas Spot Prices

Rocky British
Mountain San Juan Permian Anadarko South Texas Louisiana Columbia Alberta

Rocky Mountain — .032 .641 .434 .720 .978 .215 .008

San Juan .017 — .930 .122 .752 .968 .112 .156

Permian .185 .627 — .003 .364 .684 .151 .048

Anadarko .142 .048 .018 — .637 .958 .097 .043

South Texas .590 .476 .517 .726 — .936 .067 .023

Louisiana .973 .972 .894 .983 .971 — .283 .170

British Columbia .225 .211 .292 .246 .286 .572 — .002

Alberta .226 .259 .443 .048 .045 .234 .008 —

Notes: All tests use a constant (but not a trend variable). The number of lags is determined using the AIC+2 rule. Asymptotic

p-values are computed using the coefficients in MacKinnon (1994). Low p-values imply strong evidence against the null of no

cointegration.
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TABLE 6.3
Johansen Tests for Cointegration among Eastern

(Anadarko, Louisiana, Permian, & South Texas) Natural Gas Prices

Critical Values
k = 2 k = 4 k = 6 Trace λmax

H0 Trace λmax Trace λmax Trace λmax 95% 90% 95% 90%

r = 0 68.068* 45.368* 46.285 32.386* 49.066 31.216* 53.116 49.648 28.138 25.559
r ≤ 1 22.699 11.007 13.898 7.528 17.850 9.235 34.910 32.003 22.002 19.766
r ≤ 2 11.692 9.727 6.370 4.651 8.615 5.774 19.964 17.852 15.672 13.752
r ≤ 3 1.964 1.964 1.718 1.718 2.840 2.840 9.243 7.525 9.243 7.525

Notes: Critical values are from Osterwald-Lenum (1992). k refers to the number of lags in the VAR. Drift maintained.

An asterisk indicates significance at the 5% level.
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TABLE 6.4
Johansen Tests for Cointegration among Western

(Alberta, British Columbia, Rocky Mountain, and San Juan) Natural Gas Prices

Critical Values
k = 2 k = 4 k = 6 Trace λmax

H0 Trace λmax Trace λmax Trace λmax 95% 90% 95% 90%

r = 0 63.323* 29.779* 64.252* 30.921* 68.283* 29.667* 53.116 49.648 28.138 25.559
r ≤ 1 33.526 15.315 33.331 15.252 13.616* 22.814 34.910 32.003 22.002 19.766
r ≤ 2 18.211 13.252 17.805 13.185 15.801 12.632 19.964 17.852 15.672 13.752
r ≤ 3 4.959 4.959 4.620 4.620 3.169 3.169 9.243 7.525 9.243 7.525

Notes: Critical values are from Osterwald-Lenum (1992). k refers to the number of lags in the VAR. Drift maintained.

An asterisk indicates significance at the 5% level.
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from Table 6.2, natural gas spot prices within each price group respond to
different underlying stochastic components.

When interpreting the results in terms of convergence, it should be
noted that cointegration analysis cannot in principle detect convergence,
because it fails to take account of the fact that convergence is a gradual
and on-going process, which implies that statistical tests should lead to
reject the null hypothesis of no cointegration only when convergence has
already taken place — see, for example, Bernard (1992). In other words,
the tests conducted here are tests for convergence over the whole period
under consideration, but these tests are not tests of a move from non-
convergence to convergence — the latter being the issue that King and Cuc
(1996) mainly investigate.

6.5 Conclusion
This chapter explored the behavior of North American natural gas price
trends and their interrelations. The degree of shared trends among natural
gas prices is of considerable importance. For example, if natural gas prices
share trends, in the sense that their stochastic trend components are pro-
portional to each other, then natural gas markets have an error-correction
mechanism — that is, every permanent shock in one market is ultimately
transmitted to the other markets.

We applied the Engle and Granger (1987) two-step procedure to bivari-
ate natural gas price relationships and we also tested for the number of
common stochastic trends among prices within eastern and western mar-
kets using the powerful multivariate approach due to Johansen (1988). The
results led to the conclusion that natural gas prices do not cointegrate and
that, in particular, natural gas prices within each area (eastern and west-
ern) are driven by different stochastic trends, meaning that the east-west
split does not exist.

One way to interpret these results is in terms of the absence or presence
of unexploited profit opportunities. In the case of integrated price series
that cointegrate, the price differential is stationary, implying price conver-
gence, a high degree of price competition, and the absence of unexploited
profit opportunities. In this case, every permanent shock in the trend of
one series is ultimately transmitted to the trend of the other series. In the
case, however, of integrated price series that do not cointegrate (which is
the case of North American natural gas spot prices), the difference between
the respective prices fluctuates stochastically, in excess of transmission and
transaction costs, indicating the failure of potential arbitrage to discipline
prices. In this case, the marginal value of the commodity across locations
differs by more than transmission and transaction costs suggesting unex-
ploited profit opportunities.



Chapter 7

Business Cycles and
Natural Gas Prices

Apostolos Serletis and Asghar Shahmoradi∗

7.1 Introduction

In recent years, the North American energy industry has undergone major
structural changes that have significantly affected the environment in which
producers, transmission companies, utilities and industrial customers oper-
ate and make decisions. For example, major policy changes are the U.S.
Natural Gas Policy Act of 1978, Natural Gas Decontrol Act of 1989, and
FERC Orders 486 and 636. In Canada, deregulation in the mid-1980s has
also broken the explicit link between the delivered prices of natural gas
and crude oil (that was in place prior to 1985), and has fundamentally
changed the environment in which the Canadian oil and gas industry op-
erates. Moreover, the Free Trade Agreement (FTA) signed in 1988 by the
United States and Canada, and its successor, the North American Free
Trade Agreement (NAFTA) signed in 1993 by the United States, Canada,
and Mexico, have underpinned the process of deregulation and attempted
to increase the efficiency of the North American energy industry.

In this chapter we systematically investigate the cyclical behavior of nat-
ural gas price movements for the period that natural gas has been traded on
an organized exchange. The cyclical behavior of energy prices, in general,
is important and has been the subject of a large number of studies, exem-
plified by Hamilton (1983). These studies have, almost without exception,

∗Originally published in OPEC Review (2005), 75-84. Reprinted with permission.
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concentrated on the apparently adverse business-cycle effects of oil price
shocks. For example, Hamilton (1983) working on pre-1972 data and based
on vector autoregression (VAR) analysis, concluded that energy prices are
countercyclical and lead the cycle. More recently, however, Serletis and
Kemp (1998) show, using data over the period for which energy has been
traded on organized exchanges and the methodology suggested by Kydland
and Prescott (1990), that energy prices are in general procyclical.

The chapter is organized as follows. Section 7.2 uses the Hodrick and
Prescott (1980) and Baxter and King (1999) filtering procedures for decom-
posing time series into long-run and business cycle components and presents
empirical correlations of natural gas prices with U.S. industrial production
and consumer prices, as well as with West Texas Intermediate (WTI) crude
oil, heating oil, and propane prices. Section 7.3 tests for Granger causality,
explicitly taking into account the univariate and bivariate properties of the
variables. The final section summarizes the chapter.

7.2 The Stylized Facts

In this section we investigate the basic stylized facts of natural gas price
movements, using stationary cyclical deviations based on the Hodrick and
Prescott (1980) and the Baxter and King (1999) filters; see Hodrick and
Prescott (1980) and Baxter and King (1999) for more details regarding
these filters. In doing so, we use monthly data from January 1990 to March
2002 (a total of 147 monthly observations) and define natural gas cycle reg-
ularities as the dynamic comovements of the cyclical component of natural
gas prices and the cycle. In particular, the business cycle regularities that
we consider are autocorrelations and dynamic cross-correlations between
the cyclical component of natural gas prices, on the one hand, and the
cyclical component of U.S. industrial production on the other.

We measure the degree of comovement of natural gas prices with the cy-
cle by the magnitude of the correlation coefficient ρ(j), j ∈ {0,±1,±2, . . .}.
The contemporaneous correlation coefficient — ρ(0) — gives information
on the degree of contemporaneous comovement. In particular, if ρ(0) is
positive, zero, or negative, we say that the series is procyclical, acyclical,
or countercyclical, respectively. In fact, following Fiorito and Kollintzas
(1994), for 0.23 ≤ |ρ(0)| < 1, 0.10 ≤ |ρ(0)| < 0.23, and 0 ≤ |ρ(0)| < 0.10,
we say that the series is strongly contemporaneously correlated, weakly con-
temporaneously correlated, and contemporaneously uncorrelated with the
cycle, respectively.1 The cross correlation coefficient, ρ(j), j ∈ {±1,±2, . . .},

1The cutoff point of 0.1 is close to the value of 0.097 that is required to reject
the null hypothesis H0 : ρ(0) = 0 at the 5% level. Also, the cutoff point of 0.23
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gives information on the phase shift of natural gas relative to the cycle. If
|ρ(j)| is maximum for a positive, zero, or negative j, we say that the cycle
of natural gas prices is leading the cycle by j periods, is synchronous, or is
lagging the cycle by j periods, respectively.

Table 7.1 reports the contemporaneous correlations as well as the cross
correlations based on the Hodrick-Prescott (Panel A) and Baxter-King
(Panel B) filters, at lags and leads of 1, 2, 3, 6, 9, and 12 months, between
the cyclical component of spot Henry Hub natural gas prices and the cycli-
cal component of each of U.S. industrial production, U.S. consumer prices,
West Texas Intermediate crude oil prices, heating oil prices, and propane
prices. The industrial production and consumer price indexes were obtained
from the Federal Reserve Economic Database (FRED), maintained by the
Federal Reserve Bank of St. Louis (http://research.stlouisfed.org/fred/index.html).
The spot crude oil and natural gas prices were obtained from the Oil & Gas
Journal’s database (http://orc.pennnet.com/home.cfm). Finally, the spot heat-
ing oil and propane prices were obtained from the U.S. Energy Information
Administration (http://www.eia.doe.gov).

Clearly, irrespective of the filter used, natural gas prices are procyclical
and lag the cycle (of industrial production). This is consistent with the
evidence reported by Serletis and Kemp (1998) using spot-month NYMEX
natural gas futures prices (as a proxy for the spot price) over a much shorter
sample period (with only 37 monthly observations). Moreover, (regardless
of which filter is used) natural gas prices are positively contemporaneously
correlated with U.S. consumer prices and the cycle of natural gas leads
the cycle of consumer prices, suggesting that changes in natural gas prices
might be good predictors of future aggregate price changes. Finally, the
contemporaneous correlation of natural gas prices is strikingly strong with
crude oil, heating oil, and to a larger extent with propane, suggesting that
these markets are perhaps driven by one common trend — see Serletis
(1994) for work along these lines.

In the next section we investigate whether the apparent phase-shift be-
tween natural gas prices and each of the other variables justifies a causal
relationship between these variables. In doing so, we interpret causality in
terms of predictability and not as suggesting the existence of underlying
structural relationships between the variables.

is close to the value of 0.229 that is required to reject the null H0 : |ρ(0)| ≤ 0.5
at the 5% level.
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TABLE 7.1
Cyclical Correlations of Natural Gas Prices with Industrial Production,

Consumer Prices, crude oil, heating oil, and propane

ρ(xt, yt+j), j = −12,−9,−6,−3,−2,−1, 0, 1, 2, 3, 6, 9, 12
j = −12 j = −9 j = −6 j = −3 j = −2 j = −1 j = 0 j = 1 j = 2 j = 3 j = 6 j = 9 j = 12

Panel A. Hodrick and Prescott Filter

Industrial production -.033 .150 .354 .419 .403 .376 .338 .271 .212 .131 -.128 -.324 -.329
Consumer prices -.182 .043 .138 .282 .369 .473 .578 .667 .670 .640 .429 .181 -.099

Crude oil .160 .353 .365 .457 .488 .508 .514 .487 .428 .350 .106 -.110 -.283
Heating oil .118 .307 .344 .539 .585 .610 .612 .553 .476 .386 .115 -.110 -.308
Propane -.012 .134 .242 .467 .562 .675 .734 .631 .485 .390 .171 .018 -.283

Panel B. Baxter and King Band-Pass Filter

Industrial production .102 .328 .478 .478 .444 .393 .322 .240 .159 .083 -.081 -.137 -.142
Consumer prices -.035 .120 .205 .332 .406 .492 .582 .599 .589 .558 .369 .170 .017

Crude oil .430 .458 .381 .349 .360 .375 .384 .365 .332 .287 .110 -.057 -.182
Heating oil .337 .455 .482 .507 .517 .525 .523 .483 .427 .359 .120 -.090 -.234
Propane .251 .265 .289 .442 .510 .572 .615 .590 .537 .467 .220 .027 -.113

Note: Results are reported using monthly data for the period January 1990 to March 2002. xt =Natural gas,
yt =(Industrial production,Consumer prices, Crude oil, Heating oil, Propane).
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7.3 Granger Causality Tests

The first step in testing for causality is to test for the presence of a stochastic
trend in the autoregressive representation of each (logged) individual time
series. In the first three columns of Table 7.2 we report p-values [based on
the response surface estimates given by MacKinnon (1994)] for the weighted
symmetric (WS) unit root test [see Pantula, Gonzalez-Farias, and Fuller
(1994)], the augmented Dickey-Fuller (ADF) test [see Dickey and Fuller
(1981) for more details], and the nonparametric Z(tα̂) test of Phillips and
Perron (1987). As discussed in Pantula et al. (1994), the WS test dominates
the ADF test in terms of power. Also the Z(tα̂) test is robust to a wide
variety of serial correlation and time-dependent heteroskedasticity. For the
WS and ADF tests, the optimal lag length is taken to be the order selected
by the Akaike Information Criterion (AIC) plus 2 — see Pantula et al.
(1994) for details regarding the advantages of this rule for choosing the
number of augmenting lags. The Z(tα̂) test is done with the same Dickey-
Fuller regression variables, using no augmenting lags. According to these
p-values, the null hypothesis of a unit root in log levels cannot be rejected
except for heating oil, suggesting that these series are integrated of order 1
[or I(1) in the terminology of Engle and Granger (1987)].2

Next we explore for shared stochastic trends between natural gas prices
and each of the other I(1) variables using methods recommended by En-
gle and Granger (1987). That is, we test for cointegration (i.e., long-run
equilibrium relationships). If the variables are I(1) and cointegrate, then
there is a long-run equilibrium relationship between them. Moreover, the
dynamics of the cointegrated variables can be described by an error correc-
tion model, in which the short-run dynamics are influenced by the deviation
from the long-run equilibrium. If, however, the variables are I(1) but do
not cointegrate, ordinary least squares yields misleading results. In that
case, the only valid relationship that can exist between the variables is in
terms of their first differences.

We test the null hypothesis of no cointegration (against the alternative
of cointegration) between natural gas prices and each of the other I(1) vari-
ables using the Engle and Granger (1987) two-step procedure. The tests
are first done with natural gas as the dependent variable in the cointegrat-
ing regression and then repeated with each of the other I(1) variables as the

2This is consistent with the evidence recently reported by Serletis and Andreadis
(2004). In particular, they use daily observations on WTI crude oil prices at Chicago and
Henry Hub natural gas prices at Louisiana (over the deregulated period of the 1990s)
and various tests from statistics and dynamical systems theory to support a random
fractal structure for North American energy markets.
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TABLE 7.2
p-Values of Unit Root, Cointegration, and Granger Causality Tests

Unit root Cointegration Granger causality

Variable WS ADF Z(tα̂) xt yt xt → yt yt → xt

Natural gas .247 .263 .178

Industrial production .998 .947 .999 .433 .866 (3,1) .340 (3,3) .352

Consumer prices .791 .371 .667 .161 .715 (5,5) .000 (4,12) .011

Crude oil .284 .445 .603 .171 .463 (1,1) .205 (3,1) .270

Heating oil .008 .026 .475 .171 .608 (11,2) .455 (1,1) .941

Propane .370 .533 .447 .021 .334 (2,1) .767 (2,1) .084

Note: Results are reported using monthly data for the period January 1990 to March 2002.

xt =Natural gas, yt =(Industrial production,Consumer prices, Crude oil, Heating oil, Propane).
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dependent variable. The results, under the ‘Cointegration’ columns of Table
7.2, suggest that the null hypothesis of no cointegration between natural
gas prices and each of the other I(1) variables cannot be rejected (at the
5% level) in all cases.

Since we are not able to find evidence of cointegration, to avoid the
spurious regression problem we test for Granger causality in the context of
the following system

∆yt = α1 +
r∑

j=1

α11(j)∆yt−j +
s∑

j=1

α12(j)∆xt−j + εyt, (7.1)

∆xt = α2 +
r∑

j=1

α21(j)∆yt−j +
s∑

j=1

α22(j)∆xt−j + εxt, (7.2)

where α1, α2, α11(j), α12(j), α21(j), and α22(j) are all parameters and εyt

and εxt are white noise disturbances. As in the previous section, we use xt

to denote logged natural gas prices and yt to denote the logarithm of each
of the other variables; since heating oil is a stationary series, its logged level
is used in (7.1) and (7.2) instead of its logarithmic first difference.

In the context of (7.1) and (7.2) the causal relationship between yt

and xt can be determined by first fitting equation (7.1) by ordinary least
squares and obtaining the unrestricted sum of squared residuals, SSRu.
Then by running another regression equation under the null hypothesis
that all the coefficients of the lagged values of ∆xt are zero, the restricted
sum of squared residuals, SSRr, is obtained. The statistic

(SSRr − SSRu)/s

SSRu/(T − 1 − r − s)
,

has an asymptotic F -distribution with numerator degrees of freedom s and
denominator degrees of freedom (T −1−r−s). T is the number of observa-
tions, r represents the number of lags of ∆yt in equation (7.1), s represents
the number of lags for ∆xt, and 1 is subtracted out to account for the
constant term in equation (7.1).

If the null hypothesis cannot be rejected, then the conclusion is that
the data do not show causality. If the null hypothesis is rejected, then the
conclusion is that the data do show causality. The roles of yt and xt are
reversed in another F -test [as in equation (7.2)] to see whether there is a
feedback relationship among these series.

We used the AIC with a maximum value of 12 for each of r and s in (7.1)
and (7.2) and by running 144 regressions for each bivariate relationship we
chose the one that produced the smallest value for the AIC. We present
these optimal lag length specifications in the last two columns of Table 7.2
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together with p-values for Granger causality F -tests based on the optimal
specifications. Clearly, there is evidence of a feedback relationship between
natural gas prices and consumer prices (at about the 1% level). There is
no evidence of industrial production causing natural gas prices, although in
the previous section we established that natural gas prices are procyclical
and lagging the cycle.

Finally, there is no evidence of a causal relationship between crude oil
prices and natural gas prices. This is perhaps due to the fact that the Henry
Hub natural gas market is much more segmented than the WTI crude oil
market. For example, when crude oil prices change, they tend to change
world-wide whereas the price of natural gas can easily change in North
America without any changes in natural gas prices in other continents. This
follows because transportation of natural gas by pipeline is far cheaper than
transportation by ship (liquefied natural gas).

7.4 Conclusion

We have investigated the cyclical behavior of natural gas prices, using
monthly data for the period that natural gas has been traded on orga-
nized exchanges and the methodology suggested by Kydland and Prescott
(1990). Based on stationary Hodrick and Prescott (1980) and Baxter and
King (1999) cyclical deviations, our results indicate that natural gas prices
are procyclical and lag the cycle of industrial production. Moreover, natural
gas prices are positively contemporaneously correlated with U.S. consumer
prices and lead the cycle of consumer prices, raising the possibility that
natural gas prices might be a useful guide for U.S. monetary policy, like
crude oil prices are, possibly serving as an important indicator variable.

However, using lead-lag relationships to justify causality is tenuous. For
this reason we also investigated the causality relationship between natural
gas prices and U.S. industrial production and consumer prices, as well as
between natural gas prices and each of crude oil, heating oil, and propane
prices. This examination utilized state-of-the-art econometric methodology,
using the single-equation approach. Our results indicate that industrial
production does not Granger cause natural gas prices (although natural
gas prices are procyclical and lag the cycle) and that there is a feedback
relationship between natural gas prices and consumer prices.

Our results regarding the absence of a causal relationship between nat-
ural gas prices and crude oil prices are consistent with the evidence recently
reported by Serletis and Rangel-Ruiz (2004) who investigate the strength
of shared trends and shared cycles between WTI crude oil prices and Henry
Hub natural gas prices using daily data from January, 1990 to April, 2001.
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Based on recently suggested testing procedures they reject the null hy-
potheses of common and codependent cycles, suggesting that there has
been ‘de-coupling’ of the prices of these two energy sources as a result of
oil and gas deregulation in the United States.



Chapter 8

Futures Trading and the
Storage of North
American Natural Gas

Apostolos Serletis and Asghar Shahmoradi∗

8.1 Introduction

This chapter extends the work in Serletis and Shahmoradi (2005) by testing
the theory of storage in the North American natural gas market. The theory
of storage is the dominant model of commodity futures prices — see, for
example, Brennan (1958), Telser (1958), and Working (1949). It postulates
that the marginal convenience yield on inventory falls at a decreasing rate
as aggregate inventory increases.

The hypothesis of the theory of storage can be tested in one of two
ways — directly, by relating the convenience yield to inventory levels, or
indirectly, as in Fama and French (1988), by testing its implications about
the relative variation of spot and futures prices. Given the difficultly of
defining and measuring the relevant inventory, we use the Fama and French
(1988) indirect tests, based on the relative variation of spot and futures
prices — see also Serletis and Hulleman (1994) for a similar approach.

The chapter is organized as follows. Section 8.2 discusses the theory of
storage, Section 8.3 the data, and Section 8.4 presents the empirical results.

∗Originally published in OPEC Review (2006), 19-26. Reprinted with permission.
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Section 8.5 investigates the robustness of our results and the final section
summarizes the chapter.

8.2 Testing the Theory of Storage

We use the Fama and French (1988) indirect test, based on the relative
variation of spot and futures prices, to test the theory of storage in the
natural gas market — see Serletis and Hulleman (1994) for similar tests in
the crude oil, heating oil, and unleaded gas markets. The theory postulates
that the marginal convenience yield on inventory falls at a decreasing rate
as average inventory increases. This hypothesis can be tested either directly
by relating the convenience yield to inventory levels, or indirectly by using
the Fama and French (1988) test.

Following Fama and French (1988) and Serletis and Hulleman (1994),
we consider the interest-adjusted-basis equation

F (t, T ) − S(t)
S(t)

− R(t, T ) =
W (t, T ) − C(t, T )

S(t)
(8.1)

where F (t, T ) is the futures price at time t for delivery of the commodity
at T , S(t) is the spot price at t, R(t, T ) is the interest rate at which mar-
ket participants can borrow or lend over a period starting at date t and
ending at date T , W (t, T ) is the marginal warehousing cost, and C(t, T ) is
the marginal convenience yield. According to this equation, the observed
quantity on the left-hand side — the interest-adjusted basis — is the differ-
ence between the relative warehousing cost, W (t, T )/S(t), and the relative
convenience yield C(t, T )/S(t).

Assuming that the marginal warehousing cost is roughly constant, that
the marginal convenience yield declines at a decreasing rate with increases
in inventory [see, for example, Brennan (1958) and Telser (1958)], and
that variation in the marginal convenience yield dominates variation in the
marginal warehousing cost, we can use the interest-adjusted-basis equation
to develop testable hypotheses about the convenience yield. For example,
when inventory is low the relative convenience yield is high, and larger than
the relative warehousing cost, so the interest-adjusted basis becomes neg-
ative. On the other hand, when inventory is high the relative convenience
yield falls toward zero, and the interest-adjusted basis becomes positive.

To test the theory of storage in the natural gas market, we use the
Fama and French (1988) indirect test. In particular, using the sign of the
interest-adjusted basis as a proxy for high (+) and low (−) inventory, the
prediction of the theory that shocks produce more independent variation
in spot and futures prices when inventory is low implies that the interest-
adjusted basis is more variable when it is negative — see French (1986)
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for a derivation and detailed discussion. The indirect test of the theory
of storage is the preferred approach over a direct test, due to the lack of
available data for the convenience yield. As such, the investigation of the
relationship between the marginal convenience yield and the price of the
underlying asset, as established by the interest adjusted basis equation, is
not explored empirically here.

8.3 The Data

We use daily data over the period from May 1, 1990 to July 12, 2002. In
particular, we use 3-month, 6-month, and 1-year New York Mercantile Ex-
change (NYMEX) natural gas futures prices from Norman’s Historical Data
(http://www.normanshistoricaldata.com). We use the Henry Hub spot natural
gas price, obtained from the Alberta Department of Energy. Moreover, we
use daily 3-month, 6-month, and 1-year (U.S.) Treasury constant matu-
rity interest rates (from http://www.federalreserve.gov/releases/h15/data.htm) to
construct the corresponding interest-adjusted bases as an annualized rate
of return.

8.4 Empirical Results

To test the prediction that the interest-adjusted basis is more variable when
it is negative, we report in Panel A of Table 8.1 the number of positive,
negative, and total observations of the interest-adjusted basis for 3-month,
6-month, and 1-year futures contracts. Panel B shows the average values of
these interest-adjusted bases, and Panel C reports the standard deviations
of changes in the interest-adjusted bases. Clearly, the standard deviation is
larger when the interest-adjusted basis is negative than when it is positive
for all three futures contracts, thereby providing evidence that the natural
gas market passes the Fama and French indirect test.

The theory of storage also predicts that supply and demand shocks cause
approximately equal changes in spot and futures prices when inventory
levels are high (positive interest-adjusted basis), but cause spot prices to
change more than futures prices when inventory levels are low (negative
interest-adjusted basis). In order to test this, we report in Table 8.2 the
ratio of the standard deviations of percent futures price changes to the
standard deviations of percent spot price changes and compare these ratios
across the positive and negative interest-adjusted bases samples. Clearly,
the ratios are lower when the interest-adjusted basis is negative than when
it is positive, thereby confirming the theory of storage prediction about the
response of spot and futures prices to shocks.
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TABLE 8.1
Summary Statistics for Daily 3-Month, 6-Month,
and 1-Year Natural Gas Interest-Adjusted Bases

Basis Positive Negative All

A. Number of Observations

3-Month 1482 1533 3015
6-Month 1512 1503 3015
1-Year 1198 1817 3015

B. Average Values

3-Month 0.505 -0.644 -0.079
6-Month 0.344 -0.435 -0.044
1-Year 0.172 -0.206 -0.056

C. Standard Deviations of Changes

3-Month 0.621 0.675∗ 0.867
6-Month 0.287 0.350∗ 0.504
1-Year 0.163 0.171∗ 0.250

Notes: Sample period, daily observations: May 1, 1990 to July 12, 2002

(3015 daily obervations). Numbers are for observations when the interest-

adjusted basis is positive (Positive), observations when it is negative

(Negative), and for all observations (All). An asterisk indicates rejection

of the null hypothesis of equal variances at the 5% level.

The final prediction of the theory of storage is that supply and demand
shocks cause larger changes in near term futures as opposed to longer term
futures. To test this, we once again look at the ratios in Table 8.2. For
this prediction to hold, these ratios must fall as maturity dates increase. In
this case, we do not wish to divide the sample based on inventory levels,
and we therefore focus on the third column. We see that this prediction
holds, and that shocks do cause greater variation in near-term futures than
in long-term futures.
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TABLE 8.2
Ratios of the Standard Deviation of Percent

Futures Price Changes to the Standard
Deviation of Percent Spot-Price Changes

Basis Positive Negative All

3-Month .653 .764∗ .719
6-Month .544 .452∗ .496
1-Year .466 .399∗ .428

Note: Results are reported using daily data for the period May 1, 1990 to

July 12, 2002. An asterisk indicates rejection of the null hypothesis of equal

ratios at the 5% level.

8.5 Robustness

Although the T-bill rate is routinely used for calculations of the interest-
adjusted basis, here we also investigate the robustness of our results to the
use of alternative interest rate measures. In particular, we use 3- and 6-
month Eurodollar rates (from http://www.federalreserve.gov/releases/h15/data.htm)
to calculate the 3- month and 6-month interest-adjusted bases and report
summary statistics in Tables 8.3 and 8.4 in the same way as those in Ta-
bles 8.1 and 8.2 based on the T-bill rates; 1-year Eurodollar rates are not
available and this is why we do not report results for the 1-year Eurodollar-
adjusted basis. The evidence in Tables 8.3 and 8.4 is consistent with the
evidence in Tables 8.1 and 8.2, suggesting that our results regarding the
predictions of the theory of storage are robust to the use of different interest
rates in calculating the interest-adjusted basis for natural gas.

8.6 Conclusion

We tested the theory of storage in North American natural gas markets,
using the Fama and French (1988) indirect test. This test of the theory
of storage is the preferred approach over a direct test, due to the lack of
available data for the convenience yield. We tested the prediction of the
theory that, when inventory is high, large inventory responses to shocks
imply roughly equal changes in spot and futures prices, whereas when in-
ventory is low, smaller inventory responses to shocks imply larger changes
in spot prices than in futures prices.

Our tests on spot and futures North American natural gas prices confirm
these predictions of the theory of storage.
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TABLE 8.3
Summary Statistics for Daily 3-Month and

6-Month Natural Gas Eurodollar-Adjusted Bases

Basis Positive Negative All

A. Number of Observations

3-Month 1475 1540 3015
6-Month 1504 1511 3015

B. Average Values

3-Month 0.505 -0.644 -0.082
6-Month 0.344 -0.436 -0.047

C. Standard Deviations of Changes

3-Month 0.622 0.676∗ 0.867
6-Month 0.287 0.351∗ 0.505

Notes: Sample period, daily observations: May 1, 1990 to July 12, 2002

(3015 daily obervations). Numbers are for observations when the interest-

adjusted basis is positive (Positive), observations when it is negative

(Negative), and for all observations (All). An asterisk indicates rejection

of the null hypothesis of equal variances at the 5% level.

TABLE 8.4
Ratios of the Standard Deviation of Percent

Futures Price Changes to the Standard
Deviation of Percent Spot-Price Changes

Basis Positive Negative All

3-Month .664 .759∗ .719
6-Month .542 .454∗ .496

Notes: Results are reported using daily data for the period May 1, 1990 to

July 12, 2002. An asterisk indicates rejection of the null hypothesis of equal

ratios at the 5% level.
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Overview of Part 3
Apostolos Serletis

The following table contains a brief summary of the contents of the
chapters in Part 3 of the book. This part of the book consists of three
chapters (two of which have not been previously published) devoted to
electricity issues in Alberta’s deregulated electricity market.

Electricity Markets

Chapter
Number Chapter Title Contents

9 Power Trade on the Chapter 9 assesses the amount of power
Alberta-BC Interconnection trade across the Alberta-BC interconnection

and focuses on the fundamental role played
by cross-border trade of electricity in
restructured wholesale power markets.

10 Imports, Exports, and Prices It provides a study of the relationship
in Alberta’s Deregulated between electricity prices and imports and
Power Market exports for peak hours, off-peak hours, and

all hours, using data over the period from
January 1, 2000 to July 31, 2005 from
Alberta’s (deregulated) spot power market.

11 Cointegration Analysis of This chapter empirically investigates the
Power Prices in the Western extent of integration in the main Western
North American Markets North American power markets and to

what extent deregulation and open
access to transmission policies have
removed barriers to trade among them.

Chapter 9:
In this (previously unpublished) chapter we focus on the fundamental role
played by cross-border trade of electricity in restructured wholesale power
markets. First, we describe the economic and physical implications of en-
gaging in an inter-systemic exchange of energy. Then, we assess the amount
of power trade across the Alberta-BC interconnection and we find that the
creation of a single regional transmission organization that operates the
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transmission grids in the Western region would increase trading opportu-
nities and increase the efficiency in the utilization of interconnectors.

Chapter 10:
This chapter investigates whether Alberta’s power interconnection lines can
become a tool of market power abuse. In doing so, it tests for Granger
causality from imports and exports to pool prices, using data on prices,
load, imports, and exports for peak hours, off-peak hours, and all hours
(over the period from January 1, 2000 to July 31, 2005). Interpreting
causality in terms of predictability, it rejects the null of no causality from
imports and exports to the pool price, thereby providing evidence for po-
tential market power abuse in Alberta’s power market.

Chapter 11:
This (previously unpublished) chapter aims to determine the extent of mar-
ket integration in the main Western North American power markets and
to what extent deregulation and open access to transmission policies have
removed barriers to trade among them. In doing so, it tests for cointegra-
tion between power prices; it develops an error correction model; and then
looks for causal relationships between the price dynamics in the Alberta,
Mid Columbia, California Oregon Border, California NP15, and California
SP15 power markets.



Chapter 9

Power Trade on the
Alberta-BC
Interconnection

Mattia Bianchi and Apostolos Serletis

9.1 Introduction

The functioning of an electric system is subject to specific physical laws that
apply to electricity. Differently from other commodities, electricity cannot
be stored and power supply and demand must be continuously balanced.
Its instantaneous nature creates complexities which have to be managed
through engineering operating practices. As a consequence, a very tight
interaction interdependence exists between technical characteristics of elec-
tricity and market structures. The laws of physics dictate certain essential
attributes of market operations, while market design distortions may be-
come sources of technical constraints and dysfunctions.

Physical characteristics of power have significant consequences on the
organization of the electric industry, which has traditionally been regulated.
Recently, a general trend toward deregulation of electric industry has been
under way in several countries around the world. The process of restruc-
turing the North American electricity industry began in the early 1990s
and promoted the development of electricity spot markets. The Federal
Energy Regulatory Commission (FERC) deregulated wholesale electricity
markets in the United States under the 1992 Energy Policy Act, obliging
transmission-owning utilities to open their transmission systems to market
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participants. FERC was given authority to guarantee openness and fairness
in regional power markets and transmission systems. Order 888 and Order
889, issued by FERC in 1996, aimed to provide all market participants an
equal transmission service and direct access to real-time information on tar-
iffs and available transfer capacity. The availability of unbundled transmis-
sion service has enhanced the exploitation of the Western Interconnection
grid, resulting in increased opportunities for power trade among different
regions.

Restructured wholesale markets are intended to achieve economic ef-
ficiency by capturing the gains from the trade of electricity among many
market players. Successful competitive markets work through the interac-
tion of private, decentralized trading and investment decisions to minimize
the total cost of electricity. Competition puts a downward pressure on
the profit margins of generators and suppliers and provides an incentive
to reduce costs. Independent System Operators (ISOs) play a key role in
coordinating the dispatch of electricity supply to meet the demand, so that
power is supplied at the lowest cost possible. Better investment decisions
and innovations can be expected from competitive market participants since
they assume the risks of their investments.

In this chapter we focus on the fundamental role played by cross-border
trade of electricity in restructured wholesale power markets. First, we
describe the economic and physical implications of engaging in a inter-
systemic exchange of energy. Then, we assess the amount of power trade
across the Alberta-BC Interconnection and we find that the creation of
a single regional transmission organization that operates the transmission
grids in the Western region would increase trading opportunities and in-
crease the efficiency in the utilization of interconnectors.

9.2 Wholesale Trade of Electricity: Economic

and Physical Implications

The necessary condition for separate electric systems to exchange power is
the existence and operation of interconnectors — transmission lines con-
necting different control areas.1 Inter-ties are an essential part of a fair,
open and competitive market since they consent to import and export
energy whenever profit opportunities arise or security problems exist. If
properly operated, tie-lines contribute to minimizing the costs of supplying
energy and maximizing the total surplus, both to consumers and to produc-
ers, by ensuring a better allocation of resources. Interconnectors can act

1The words “interconnector,” “inter-tie,” and “tie-line” are used interchangeably.
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as both substitute for and a complement to generation. They represent a
tool to ensure security and solve emergency conditions by sharing reserves
in case of failures. In addition, they provide access to external low-priced
markets thus diversifying the mix of power sources on which a system re-
lies. Inter-ties improve the efficient operation of power systems by allowing
the economic trade of electricity between neighbouring regions; according
to existing market conditions, traders buy and sell energy arbitraging price
differentials.

Interconnectors allow two separate electric systems to exchange and
trade power. Cross-border trade of electricity results in importing and ex-
porting activities by market participants. Such interchange transactions
involve the purchase of power in, say, market A; the purchase of transmis-
sion service on the grids that are crossed; the sale of power in, say, market
B. Since traders are opportunistic and attempt to arbitrage the difference
between the prices in the two markets, electricity generally will flow from
low priced areas to high priced areas. Generators and marketers export
power profiting by selling it at prices above their marginal costs, while util-
ities import power from cheaper sources thus reducing the cost of supply.
Transactions take place until the gains from trade are eliminated.

Trade activity tends to reduce the price difference between markets. In
the case of an interconnector whose capacity does not limit the exchange
of power, the price difference between the interconnected markets would be
equal to the transportation and transaction costs. However, this is hardly
ever true in the real electricity industry. Generally, physical and reliability
constraints limit cross-border exchanges and transmission congestion keeps
energy prices different.

In order to wheel energy across separate areas, market participants de-
mand transmission services. Since the transfer capacity of an interconnector
is a scarce resource, a transmission rate is charged by the system operator
to any MWh of power flowing. Such charges represent the transportation
cost to move electricity over a network of copper or aluminium wires from
the injection to the withdrawal node. The rates are generally fixed in ad-
vance in order to influence participants’ behaviour appropriately. Charges,
which are paid by traders who engaged in the transaction, limit the demand
for transmission services as they reduce the profitability of a cross-border
trade.

Similarly, power losses lower the potential gains from a trade of electric-
ity. Losses occur during transmission and arise from the specific physical
nature of electricity. Energy transferred over transmission wires is lost as
heat, proportionally to the square of electricity flows (Joule Effect). A
loss factor, which is usually expressed as a percentage, is computed by the
system operator. The value of the lost power depends on the value of elec-
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tricity. Therefore, power traders undertaking an inter-systemic transaction
have to consider the impact of transmission charges and power losses which
lower the profit from the trade. In order for the transaction to be profitable,
price differential must exceed losses and wheeling charges.

9.3 The Alberta-British Columbia Intercon-
nection

We now consider a scenario involving trade of electricity between the Al-
berta’s electric system and the Mid-Columbia power market, which is the
trading hub most commonly referenced in the Pacific North West. In order
to be transferred across these areas, power must flow on the Alberta-British
Columbia Interconnection. Currently, transmission constraints and com-
plications in market procedures and rules used to manage the Alberta-BC
Interconnection limit cross-border trade of electricity.

Physical transmission capacity acts as a bottleneck. Alberta is a pe-
ripheral market, scarcely interconnected to the Pacific power markets. The
interconnection capacity (about 800 MW) as a percentage of peak load is
lower in Alberta than in any other province in Canada: approximately 12%
in Alberta compared to 40% in British Columbia. Also, Alberta has the
lowest import/export capacity among the major systems in North America.

Furthermore, market imperfections render arrangements for power ex-
changes outside Alberta very complicated. First, Alberta and the neigh-
bouring regions have very different tariff regimes and this constitutes a
significant obstacle to marketers. For instance, while in British Columbia
transfer capacity can be reserved from hours ahead to years ahead of the
actual energy flow, on the Alberta portion of the interconnector it has to be
acquired on a day-by-day basis. Also, the transfer capacity is allocated on
a first-come-first-served principal. This method, used to avoid congestion,
generates inefficient solutions since the interconnector is not used by the
transactions that have the higher economic value, but by those transactions
that were quicker in submitting the reservation.

However, the main market barrier that limits the efficient use of the
Interconnector is the aggregation of transmission charges. Currently, elec-
tricity crossing states and regions may pass over grids controlled by sev-
eral utilities in order to be delivered to customers. For each transmission
system crossed, a rate is charged by each utility, independent of the dis-
tance between the injection and the withdrawal node. The accumulation
of multiple rates is called “rate pancaking”. This condition discourages
long-distance transactions and renders trade uneconomic. Rate pancaking
applies to cross-border exchanges between Alberta and Mid-C markets. A
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market participant wishing to sell into Alberta power purchased in Mid-C
has to pay transmission charges to the Bonneville Power Administration
(BPA), which controls over 75% of the grid in the Pacific Area, to British
Columbia Transmission Corporation (BCTC) and to the Alberta Electric
System Operator (AESO). This reduces the profitability of trades and the
efficient use of the interconnector.

9.4 Empirical Analysis

Now we want to analyze cross-border trading activity between the Alberta
and Mid Columbia power markets. For the purpose of our analysis, we use
data on power prices in Alberta and Mid Columbia; on the actual power
flows across the Alberta-BC Interconnection and on the available transfer
capacity (ATC) on the Interconnection; on transmission charges and on loss
factors existing in BPA, BCTC, and AESO electric systems. These data
consist of two daily observations: peak and off-peak. The sample period is
from January 1st, 2000 to September 30th, 2005.

We assume that tie line users are motivated to export or import in order
to arbitrage the two markets. When price differentials between Alberta and
Mid-Columbia markets exceed transmission charges and losses, a trading
opportunity exists. To the extent that the available transfer capacity (ATC)
on the Alberta-BC Inter-tie is exploited by exchanging power under such
price differentials, the opportunity is seized and profit from the trade is
equal to

Πgained = (Ps − Pp−adj) × Q

where Ps represents the sale price of power, Pp−adj the purchase price (ad-
justed for losses and transmission charges), and Q is the power flow ex-
changed across the interconnector.

To the extent that the available transfer capacity (ATC) is not utilized,
no profit arises and the opportunity is missed. The total opportunity is the
sum of the seized opportunity and the missed opportunity and is equal to:

Πtotal = (Ps − Pp−adj) × ATC

= Πgained + Πmissed

The efficiency indicator (EI) measures the gained opportunity as a per-
centage of the total opportunity:

EI =
Πgained

Πtotal
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According to our analysis for peak hours, for 53% of the period, price
differentials (adjusted for losses and transmission charges) were not large
enough to offer a trading opportunity. For the remaining 47% of the period,
trading opportunities exist to be seized. An import transaction of electricity
from Mid-C to Alberta was profitable for the 28% of the period, while an
export from Alberta to Mid-C was profitable for 19% of the period.

With regard to off-peak hours, for 61% of the period of analysis, price
differentials (adjusted for losses and transmission charges) were not large
enough to offer a trading opportunity. For the remaining 39% of the period,
trading opportunities exist to be seized. An import transaction of electricity
from Mid-C to Alberta was profitable for 20% of the period, while an export
from Alberta to Mid-C was profitable for 19% of the period.

Now we focus on the observations when trading opportunities occurred.
Together with the price differentials, we consider the actual volumes of
imports and exports exchanged across the interconnector and the available
transfer capacity. In doing so, we estimate the gained and total opportunity
from trade and we get a value for the efficiency indicator on a day by day
basis. Over the period from January 2000 to September 2005, under the
assumptions made, the total profit earned by power traders by using the
Alberta-BC Interconnection is about $188 million. The majority of this
comes from export transactions (96%) from Alberta to Mid-C. The reason
for that are the extremely high gains realized in 2000 and in 2001, primarily
through exporting low priced energy from Alberta and selling it into Pacific
U.S. markets, which were experiencing soaring price spikes. The total profit
that could have been potentially earned is about $341 million.

Over the whole period of analysis, the overall efficiency indicator for
peak hours, calculated as average of all the daily efficiency indicators, shows
an efficiency of 39% for imports and of 70% for exports. The same indicator
for off-peak hours shows an efficiency of 11% for imports and of 85% for
exports. Thus, the efficiency indicator for imports is significantly lower
than the same indicator for exports. This causes the profits gained from
importing activities (4% of the total) to be extremely little if compared to
ones from exports. In fact, if we set an identical efficiency indicator for
imports and exports by considering aggregate total opportunities by trades
over the period 2000-2005 (thus we take an EI equal to 100%), we see that
the potential profits arising from power imports to Alberta would be about
43% of the total $341 million, much higher than the previous 4%.

Therefore, a first conclusion is that export and import transactions
roughly present the same potential profitability. Nevertheless, in the last
five years, the earned profits from power trade came almost entirely from
exporting activity in 2000 and 2001. Two are the main reasons for that.
The first is that the available transfer capacity for imports is much less
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exploited than the corresponding for exports. This can be due to the fact
that the transfer capacity made available for flows of imported energy in-
cludes the capacity reserved for Remedial Action Scheme (RAS), which is
reserved for reliability purposes and cannot be utilized for trades of elec-
tricity. As a consequence, the unused capacity is larger. Moreover, market
mechanisms and procedures between Alberta and British Columbia may
render the arrangement of importing transactions more difficult than of ex-
porting transactions. Finally, the average ATC for exports (209MW during
peak hours and 479MW during off-peak hours) is lower than the ATC for
imports (581MW during peak hours and 552MW during off-peak hours).
As a consequence, the Alberta-BC Interconnection is more often congested
in the East-West direction and this pushes the exports’ efficiency indicator
up.

The second main reason for the extremely low gained profits from import
transactions comes from price differentials. Over the period from January
2000 to September 2005, the average price differential faced by exporters
was three times larger than the average price differential accruing to im-
porters, both for peak and off-peak hours. Again, the extraordinary market
conditions in 2000 and 2001, following the major electricity crisis in Cali-
fornia, are responsible for this result. Exceptionally high prices in Pacific
U.S. markets cause exports of electricity from Alberta to be very profitable.
In 2000 and 2001, power traders managed to earn large profits, which did
not occur the following years. In fact, if we limit the analysis over the time
horizon 2002-2005, we observe that the gain from an import trade is larger
than the gain from an export, meaning that importing one MWh of elec-
tricity to Alberta is on average more profitable than exporting it. However,
the price differences are close to each other and are far lower than the ones
experienced in 2000 and 2001.

In conclusion, results from the analysis shows that for more than half of
the period, market conditions did not support trade of electricity. There-
fore, there is room for improvements in the utilization of the Alberta-BC
Inter-tie for trading purposes. Different tariff regimes constitute a signifi-
cant obstacle to marketers. In fact, in the next section, we find evidence
that the introduction of a regional transmission organization in the Pa-
cific area increases trading opportunities between markets and fosters the
efficient utilization of the Interconnection.

9.5 An RTO Scenario in the Western Region

The Regional Transmission Operator (RTO) initiative represents the biggest
step by FERC to create seamless and non-discriminatory open access to
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transmission lines that were previously controlled in terms of access and
pricing by vertically integrated utilities. According to FERC, open access
transmission is the foundation to competitive wholesale power markets in
North America. This vision entails the creation of a single system operator
and the development of a single seamless market, as opposed to the current
independent transmission systems with numerous control areas, transmis-
sion owners and business practices. Following the introduction of RTOs,
the existing transmission systems that are generally designed to move power
within local utility systems, would increasingly be used to enable power
sales across large geographic areas.

FERC has always considered the West as one “natural market” for
electricity. Moreover, FERC has stated in different orders that it wel-
comes Canadian participation in RTOs since electricity markets are North
American in nature. In the light of this, we consider a scenario where the
Alberta, British Columbia and Mid-C power markets are operated as a sin-
gle regional market. In this case, the interconnectors are treated as normal
transmission lines and cross-border flows of electricity are scheduled by a
single system operator. Since an RTO is regional, it assures the efficient
delivery of power over long distance within its region by removing pancaked
rates and providing harmonized market mechanisms and procedures.

Using the data from the previous analysis, we model the existence of an
RTO by removing the pancaked rates from the BPA, BCTC, and AESO
transmission systems. Thus we assume no fixed charges by setting the
three transmission charges equal to $0/MWh. In this case an opportunity
of profit would exist if the price differentials simply exceeded the costs of
power losses. Then we evaluate the trading opportunities arising from the
exchange of electricity across the Alberta-BC Interconnection. We find that
the removal of fixed charges in a RTO scenario would appear to encourage
additional trade 24% of the time during peak periods and 28% of time
during off-peak periods.

Then, we focus on the observations when trading opportunities would
occur. Together with the price differentials, we consider the available trans-
fer capacity on the Interconnector. We do not consider the data about im-
ports and exports that occurred over the period 2000-2005. The reason for
it is that the actual flows of electricity moving across the Interconnector
largely depend on price differentials between markets. Since in an RTO
scenario price differentials have changed due to the removal of transmission
charges, the volumes of imports and exports are not meaningful under these
price differentials and thus they are not included in this scenario.

Nevertheless, we can correctly assume that in an RTO scenario, they
would be equal to the available transfer capacity. In fact, if Alberta, BC,
and Mid-C were operated as a single regional market and we assume loca-



9.6. Conclusion 101

tional marginal pricing as a method for congestion management, the price
differentials between them would not exceed the transmission loss differ-
entials as long as Inter-tie capacity is available and not being fully used.
Therefore, when the price differentials exceed transmission loss differen-
tials, that is when a trading opportunity exists, the Inter-tie is congested,
the actual flows of electricity on it equalling the available transfer capacity.
Thus, in an RTO scenario, the efficiency indicator, when trading oppor-
tunities exist, is equal to 100% because the interconnector is fully utilized
and the gained opportunity is equal to the total opportunity.

According to the results, the average gain from trading activity, that
is the profit that could be gained by the sale of 1 MWh of electricity, is
lower in an RTO scenario, compared to the real situation of Alberta, BC,
and Mid-C being separate control areas. This is true both for imports and
exports during peak and off-peak hours. Such a result is due to the higher
number of trading opportunities when price differentials are very small,
resulting from the removal of transmission charges. Similarly, the average
total opportunity is smaller, since the ATC is almost unchanged in the two
scenarios. However, due to the huge increase in the number of profitable
trading opportunities and the 100% efficiency indicator in an RTO scenario,
the aggregate gained opportunity, which represents the amount of profits
that would arise from trading activities over the period 2000-2005, is much
larger, $430 million compared to $188 million. Following the introduction
of a regional transmission organization in Western North America, there
would be additional $242 million worth of profits arising from augmented
trade of electricity. This corresponds to a 129% increase from the real
situation.

9.6 Conclusion

Cross-border trade of electricity plays a fundamental role in restructured
wholesale markets. The existence and exploitation of interconnectors con-
sent power markets to act as open systems. Inter-systemic exchange of
power represents a potential source of efficiency and reliability. However,
transmission constraints and market imperfections limit the optimal use of
inter-ties.

Importing and exporting activities by market participants are already
a reasonably big business but need to grow in order for the benefits to be
larger and more fairly distributed. In fact, the profits from interregional
power trade, instead of adding up to power traders, can be considered as
gains in consumer and producer surpluses. They can be thought as savings
in production costs accruing to consumers of electricity, due to access to
cheaper resources.
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A viable solution to foster cross-border exchange of electricity is the
creation of regional transmission organizations. RTOs reap the gains from
energy trade over large regions by removing pancaked transmission rates
applied by each system operator, by promoting more efficient dispatching
schedule and supporting the reliability of the grid. The existence of RTOs
guarantees the optimal dispatch of generation and the efficient utilization
of interconnector, which minimize the total cost of energy. Due to the
particular physical characteristics of electricity, coordination and openness
ensure the efficient and reliable operation of power systems.



Chapter 10

Imports, Exports, and
Prices in Alberta’s
Deregulated Power
Market

Apostolos Serletis and Paul Dormaar∗

10.1 Introduction

Recent leading-edge research has applied various innovative methods for
modeling spot wholesale electricity prices — see, for example, Bunn (2004),
Deng and Jiang (2004), León and Rubia (2004), Serletis and Andreadis
(2004), Czamanski et al. (2006), and Hinich and Serletis (2006). These
works are interesting and attractive, but have taken a univariate time series
approach to the analysis of electricity prices. From an economic perspective,
however, the interest in the price of electricity is in its relationship with the
prices of various underlying primary fuel commodities [see, for example,
Serletis and Shahmoradi (2006)] as well as in its relationship with import
and export activity.

As the Market Surveillance Administrator (2005) of the Alberta electric
system recently put it

∗Originally published In W. David Walls (ed.) Quantitative Analysis of the Alberta
Power Market. Van Horne Institute (2006). Reprinted with permission.
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“the role and influence of imports and exports into/out of Al-
berta via the BC interconnection has long been a contentious
issue amongst industry stakeholders. A recent issue that has
been expressed by some participants concerns the occurrence of
imports that appeared to be unprofitable based on economics
using the appropriate market index prices. The concern was
not so much that the observed imports were unprofitable, but
rather that the motivation behind the import behaviour was
a desire to influence Pool prices — in this case, to push Pool
prices down.”

Investigating the relationship between power prices and power imports
and exports in the Alberta spot power market is our primary objective in
this paper. In doing so, we use data on prices, load, imports, and exports for
peak hours, off-peak hours, and all hours (over the period from January 1,
2000 to July 31, 2005) and test for causal relationships from power imports
and power exports to power prices.

The paper is organized as follows. Section 10.2 discusses the role of
imports and exports and their potential effect on power prices. Section
10.3 is devoted to data issues, Section 10.4 presents the causality model,
and Section 10.5 the results of our empirical analysis. The final section
briefly concludes the paper.

10.2 The Role of Imports and Exports

In deregulated power marketplaces, competitive market forces — the laws of
supply and demand — guide electricity price formation. Factors affecting
demand, like temperature and time of day, and factors affecting supply,
like natural gas prices and unit outages, determine the pool price. Imports
and exports of electricity contribute to narrow the price arbitrage between
different markets and help diversify the mix of electric power sources. For
example, a region relying entirely on thermal conversion of fossil fuels, may
import hydro-powered electricity, thus becoming less dependent on natural
gas price volatility.

Imports and exports, however, being components of supply and de-
mand, can potentially influence power prices in deregulated markets. In
particular, exports act as additional demand. As demand increases, more
expensive generation must be dispatched to serve load causing electricity
prices to rise. Thus, all the factors that influence load in the importing
region (temperature, lighting, etc.) influence power prices in the exporting
market. On the other hand, imports act as additional supply. If cheap
imports are available, more expensive generating units can be dispatched
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off causing electricity prices to fall. Of course, import capability depends
on the available transmission capacity and on the situation in the export-
ing market. For example, if transmission congestion happens, importers
who could supply at lower prices may not be able to move their power.
Also, plant failures, maintenance outages, and weather conditions in the
exporting market may reduce electricity supply — as, for example, little
precipitation can make low priced hydro generation unavailable.

The power markets in Alberta and British Columbia are connected
through an 800 MW tie line — see Table 10.1. This available transmis-
sion capacity (including the 150 MW tie line into Saskatchewan) represents
about 11% of the Alberta peak demand. With regard to electricity power
sources, British Columbia relies almost entirely on their rich hydro power
resources (94%) whereas Alberta relies more on conventional thermal and
combustion turbines, given its large coal and natural gas reserves. Also
the electricity market design is very different between the two provinces.
Alberta is the first Canadian wholesale and retail competitive marketplace
whereas British Columbia is a single buyer market, where the single buyer
purchases a planned amount of power from competing independent power
companies.

The tie-line between Alberta and British Columbia works as a very large
generating unit, supplying power energy to Alberta. In fact, being larger
than any generating plant in Alberta, it has the potential to strongly affect
the pool price in Alberta. On the demand side, players in British Columbia
import power at low price times (evenings), thus sustaining off-peak prices.
Then they spill water for export at the high priced times. Having excess
capacity, British Columbia companies are able to export electricity not
only into Alberta but also into California. For example, when the Alberta
market is depressed, exporters in British Columbia can sell power into the
California market and vice versa. These are common sales tactics pursued
by power traders in British Columbia, suggesting that prices in one region
will reflect the opportunity cost of selling into the other region.

On the regulatory side, AESO (Alberta electric system operator) im-
plemented in late 2000 the Pool Price Deficiency regulation that disallowed
exports and imports from setting the pool price. However, imports re-
ceived an uplift payment if they were accepted at a price higher than the
pool price. Late in 2001, the rules were changed such that imports and
exports were price takers. However, importers and exporters implement
strategies to manage their portfolios in response to market circumstances
aiming to maximize their profit, and uneconomic imports by traders, poten-
tially abusing their market power, have generated complaints from several
stakeholders in Alberta. It has been argued that pool prices are no longer
a function of market drivers, but depend on the opportunistic behaviour of
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a few market players whose intentional and repeated actions affect the pool
price and weaken market confidence.

TABLE 10.1
Alberta Generating Capacity (MW)

Local generation

Coal 5,840
Natural gas 4,903
Hydro 900
Wind 270
Biomass 178
Fuel oil 8

Subtotal 12,099

Interconnections

British Columbia 800
Saskatchewan 150

Subtotal 950

Grand total 13,049

Source: Alberta Department of Energy.

In what follows we provide a preliminary investigation of whether power
interconnection lines can become a tool of market power abuse, in which
case they will have devastating effects on the competition and fairness of
deregulated electricity markets. In doing so, we test for Granger causality
from imports and exports to pool prices, interpeting causality merely in
terms of predictability.

10.3 Data

We use hourly data on power (volume weighted) prices, load, imports, and
exports, over the period from January 1, 2000 to July 31, 2005, from the
AESO web site, at http://www.aeso.ca. In doing so, we make a distinction
between peak hours, off-peak hours, and all hours. For the purposes of this
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study, peak hours includes weekday hours from 7:00 a.m. to 11:00 p.m.
inclusive while off-peak hours includes weekday hours from 11:00 p.m. to
7:00 a.m. inclusive as well as all day Sunday. All hours include all hours
throughout each day of the week. It is to be noted that the price series
are volume weighted to give the price of hours with greater volume more
weight than hours with less volume.

Figures 10.1 to 10.6 show the price, load, and net imports for all hours,
peak hours, and off-peak hours and Table 10.2 provides some summary
statistics for each series. Figures 10.7-10.8 show average hourly prices, load,
and net imports for each day of the week. As can be seen from Figure 10.7
and Table 10.2, during peak hours Alberta is a net importer of electricity
while during off-peak hours is a net exporter of electricity.

TABLE 10.2
Summary Statistics

Statistic Price Load Imports Exports

All hours (48,936 observations)

Mean 70.51 6,824 143 138
Standard error 90.40 779 156 182
Skewness 4.16 0.02 1.60 1.20
Kurtosis 22.22 -0.30 2.41 0.29

Peak hours (27,952 observations)

Mean 87.87 7,159 188 58
Standard error 106.42 679 171 108
Skeweness 3.53 -0.03 1.22 2.30
Kurtosis 15.07 -0.73 0.99 5.04

Off Peak hours (20, 984 observations)

Mean 47.39 6,379 83 244
Standard error 55.11 672 106 205
Skewness 5.54 0.04 2.37 0.33
Kurtosis 50.77 -0.45 7.68 -1.10
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10.4 Granger Causality Tests

We test for Granger causality from imports and exports to power prices
using the levels of the variables (since according to Figures 10.1-10.6 they
appear to be stationary) in the context of the following model

Pricet = a0 + a1t +
r∑

j=1

αjPricet−j +
s∑

j=1

βjImportst−j

+
q∑

j=1

γjExportst−j +
p∑

j=1

δjLoadt−j + εt (10.1)

where a0, a1, αj , βj , γj , and δj are all parameters, t is a time trend, and
εt is a white noise disturbance. Note that in doing so, we control for the
effects that are due to movements in load (defined to exclude imports and
exports).

In the context of (10.1), causality from (say) Imports to Price can be
determined by first fitting equation (10.1) by ordinary least squares and
obtaining the unrestricted sum of squared residuals, SSRu. Then by run-
ning another regression equation under the null hypothesis that all the
coefficients of the lagged values of Importst are zero, the restricted sum of
squared residuals, SSRr, is obtained. The statistic

(SSRr − SSRu)/s

SSRu/(T − r − s − q − p − 2)
,

has an asymptotic F -distribution with numerator degrees of freedom s and
denominator degrees of freedom (T − r− s− q− p− 2). T is the number of
observations, r represents the number of lags of Pricet in equation (10.1), s
represents the number of lags for Importst, q the number of lags of Exportst,
p the number of lags of Loadt, and 2 is subtracted out to account for the
constant term and the trend in equation (10.1).

If the null hypothesis cannot be rejected, than the conclusion is that
the data do not show causality. If the null hypothesis is rejected, then the
conclusion is that the data do show causality.
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Figure 10.1: Alberta Power Prices: All Hours
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Figure 10.2: Alberta Power Load and Net Imports: All Hours
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Figure 10.3: Alberta Power Prices: Peak Hours
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Figure 10.4: Alberta Power Load and Net Imports: Peak Hours
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Figure 10.5: Alberta Power Prices: Off Peak Hours
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Figure 10.6: Alberta Power Load and Net Imports: Off Peak Hours
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Figure 10.7: Alberta Power, Average Net Imports
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Figure 10.8: Alberta Power, Average Hourly Price
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Figure 10.9: Alberta Power, Average Hourly Load
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10.5 Empirical Evidence

A matter that has to be dealt with before we could proceed to perform
Granger causality tests concerns the lengths of lags r, s, and q in equation
(10.1). In the literature r, s, and q are frequently chosen to have the same
value and lag lengths of 4, 6, or 8 are used, for example, most often with
quarterly data. Given the hourly frequency of our data, we report p-values
for Granger causality tests in Tables 10.3 (for all hours), 10.4 (for peak
hours), and 10.5 (for off peak hours) for five different lag lengths — 50,
100, 150, 200, and 250. p-values less than .001 indicate rejection of the null
hypothesis of no causality at the 1% level.

The results with the following test statistics are provided in Tables
10.3-10.5. The statistic η1 is the asymptotic F -test statistics for the null
hypothesis that Imports do not cause power prices, when the coefficients of
Exports are not restricted to equal zero. The statistic η2 is the asymptotic
F -test statistics for the null hypothesis that Exports do not cause power
prices, when the coefficients of Imports are not restricted to equal zero.
The statistic η3 is the asymptotic F -test statistics for the null hypothesis
that Imports and Exports jointly do not cause power prices.

TABLE 10.3
Marginal Significance Levels of Granger

Causality Tests: All Hours

Pricet = a0 + a1t +
∑r

j=1 αjPricet−j +
∑s

j=1 βjImportst−j+

+
∑q

j=1 γjExportst−j +
∑p

j=1 δjLoadt−j + εt

Test statistics
η1 η2 η3

Lag (βj = 0 for all j) (γj = 0 for all j) (βj = γj = 0 for all j)

50 <.001 0.075 <.001
100 <.001 <.001 <.001
150 <.001 <.001 <.001
200 0.338 <.001 <.001
250 <.001 <.001 <.001
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TABLE 10.4
Marginal Significance Levels of Granger

Causality Tests: Peak Hours

Pricet = a0 + a1t +
∑r

j=1 αjPricet−j +
∑s

j=1 βjImportst−j+

+
∑q

j=1 γjExportst−j +
∑p

j=1 δjLoadt−j + εt

Test statistics
η1 η2 η3

Lag (βj = 0 for all j) (γj = 0 for all j) (βj = γj = 0 for all j)

50 <.001 <.001 <.001
100 0.022 0.016 0.014
150 <.001 <.001 <.001
200 <.001 0.506 <.001
250 <.001 0.045 <.001

TABLE 10.5
Marginal Significance Levels of Granger

Causality Tests: Off Peak Hours

Pricet = a0 + a1t +
∑r

j=1 αjPricet−j +
∑s

j=1 βjImportst−j+

+
∑q

j=1 γjExportst−j +
∑p

j=1 δjLoadt−j + εt

Test statistics
η1 η2 η3

Lag (βj = 0 for all j) (γj = 0 for all j) (βj = γj = 0 for all j)

50 <.001 <.001 <.001
100 0.403 <.001 <.001
150 <.001 <.001 <.001
200 <.001 <.001 <.001
250 0.094 <.001 <.001
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It appears that the null hypotheses of no causality are in general rejected
for all three data sets (that is, all hours, peak hours, and off peak hours).
Hence, we arrive at the stylized fact that with our data (that is, hourly
prices, load, imports, and exports from January 1, 2000 to July 31, 2005)
there is causality from imports and exports to power prices.

10.6 Conclusions

This paper provides a study of the relationship between electricity prices
and imports and exports for peak hours, off-peak hours, and all hours,
using data over the period from January 1, 2000 to July 31, 2005 from
Alberta’s (deregulated) spot power market. We find that there are causal
relationships from imports and exports to power prices.

In this paper we tested for Granger causality from power imports and
power exports to power prices, using a linear model. A logical next step
would, therefore, be to investigate causal relationships between these vari-
ables in the context of nonlinear models. This is an area for potential
productive future research and we are currently investigating such causal re-
lationships using the nonlinear causality test of Baek and Brock (1992) and
Hiemstra and Jones (1994), as recently modified by Diks and Panchenko
(2005a,b).



Chapter 11

Cointegration Analysis of
Power Prices in the
Western North American
Markets

Mattia Bianchi and Apostolos Serletis

11.1 Introduction

This chapter empirically investigates the extent of integration among the
Alberta, Mid Columbia, California Oregon Border, California NP15, and
California SP15 power markets. These markets are members of the Western
Electricity Coordinating Council (WECC), which is the largest and most
diverse of the ten reliability councils that form the North American Electric-
ity Reliability Council (NERC). The WECC is responsible for coordinating
and promoting electric system reliability and for facilitating the formation
of Regional Transmission Organizations in various parts of the West. Re-
cently, Serletis and Dormaar (2006) have found that inter-tie trade of power
among Alberta and British Columbia heavily influences the Alberta’s pool
price and market dynamics. Price in one market is jointly determined by
local market conditions and the conditions of the markets with which it
is integrated. Trade is the essential “instrument” that determines market
integration; the development of power exchange between different indepen-
dent markets ideally leads to their integration into a single entity. Hence,
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the removal of barriers to commercial exchange positively affects the level
of integration.

In an ideal economic context, two markets are integrated when a single
price exists for the product that is traded on the market (also referred to
as the law of one price). However, market imperfections may introduce
differences in prices that exceed the arbitrage costs (transportation and
transaction costs) that would be included in the law of one price. Thus
while testing for market integration, we are not testing for equality among
different power price series, but for a long-run equilibrium relationship that
links these series together. In the long run prices do not drift apart with-
out limit but a certain relation exists between their time paths. Also, their
dynamics in the short run reflect any divergence from the long run rela-
tionship.

In the context of power markets, deregulation and open access policies
are deemed to lead to market integration. In Alberta, the process of dereg-
ulation began in 1996 while the California electric industry was liberalized
after April 1998. The open access policies, such as the Energy Policy Act
of 1992 and FERC’s Orders 888 and 889, obliged transmission-owning util-
ities to open their transmission systems to market participants, not only
generators but also power marketers.

This chapter aims to determine the extent of market integration in the
main Western North American power markets and to what extent deregula-
tion and open access to transmission policies have removed barriers to trade
among them. In doing so, we test for cointegration between power prices;
we develop an error correction model; and then look for causal relationships
between the price dynamics in the Alberta, Mid Columbia, California Ore-
gon Border, California NP15, and California SP15 power markets. Evidence
of no integration among these interconnected markets would be suggestive
of severe transmission constraints or market imperfections.

The chapter is organized as follows. Section 11.2 provides a literature
review on the subject of market integration. In Section 11.3 we present the
data used in the analysis. Sections 11.4 and 11.5 present the results of the
unit root tests and the cointegration tests, respectively. In Section 11.6 we
apply the error correction model to the time series and we test for Granger
causality. Finally, in Section 11.7 we report the conclusions of the chapter.

11.2 Literature Review

Several research works have analyzed the extent of market integration
among natural gas markets — see, for example, De Vany and Walls (1993),
King and Cuc (1996), and Serletis (1997), among others. A general finding
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is that the process of deregulation that begun in the mid 1980’s has led to
market integration.

There are, however, very few studies of power markets integration. Mc-
Collough (1996) finds high price correlations between power markets in
WSCC, but not with the Alberta power market and the B.C.-U.S. border.
However, the results in this study are misleading, since price correlation is
not the appropriate technique to delineate markets. Woo, Lloyd-Zanetti,
and Horowitz (1997) test for market integration and for price competition
in the Pacific Northwest region of WECC. They use daily peak prices for
1996 from the Mid-Columbia (Mid-C), California Oregon Border (COB),
B.C.-U.S. Border, and Alberta markets and report that all four price series
are cointegrated.

The results, however, reported by Woo et al. (1997) are spurious, since
their price series are found to be stationary and testing for cointegration
among stationary series makes no sense, since cointegration is a property of
integrated variables. Moreover, the relevance of the Woo et al. (1997) study
is low due to data limitations (their sample size consists of only 252 obser-
vations). Finally, as already noted, testing for market integration implies
testing for a long-run equilibrium relationship. Since the data are relative
to 1996 only, the time horizon is too short to be considered representative
of a long-run relationship.

Finally, Bailey (1998) finds that in most of the Western United States
the wholesale electricity markets are integrated and thus they constitute a
wider market. However, the supply and demand conditions which create
congestion along transmission lines, such as transmission line outages and
de-ratings, and high demand and high hydroelectric flows from the Pacific
Northwest, cause the expanse of the geographic market to narrow at cer-
tain times, since transmission congestion prevents economical trade from
occurring. Hence, she concludes that the geographic expanse of the power
market in Western North America is dynamic and changes in response to
shocks to supply and demand. For the majority of the time (80%) from
June 1995 to December 1996, arbitrage constraints bind prices in the Pacific
Northwest and California electricity markets, while transmission congestion
causes prices separation in 19% of the observations and autarky prevails in
the remaining 1%.

De Vany and Walls (1999a,b) have modelled the dynamic behaviour of
prices in a network of interconnected electric power markets. They found
market integration and price convergence in five U.S. electricity spot mar-
kets. Although their research strongly contributes to the knowledge about
this topic, it focuses only on decentralized bilateral markets (very different
from the centralized power pools) and uses data from 1994 to 1996. Their
results show evidence of an efficient and stable wholesale power market in
the western area of United States.
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Market conditions in the electricity industry have changed significantly
since the time that the research works mentioned above were performed.
In particular, restructuring of the Alberta and California power markets
has potentially modified the market and price dynamics in the Pacific
Northwest area. It is our objective in this chapter to assess whether the
findings of the earlier literature (reviewed above) are valid and to provide
new evidence, using recent state-of-the-art advances in the field of applied
econometrics, regarding market and power price dynamics in the Pacific
Northwest.

11.3 The Data

The data used in this chapter consist of daily peak and off-peak power
prices for the Alberta, Mid Columbia, California Oregon Border, California
North Path 15, and California South Path 15 markets. The sample period
is from April 1st 1998 to October 31st 2005. Prices in the three centralized
power exchanges (run by an Independent System Operator) — Alberta,
California NP15, and California SP15 — are hourly. With regard to the
Alberta’s power market, we used the hourly real time pool price posted by
the Alberta Electric System Operator (AESO). This price is the average of
sixty minute-by-minute system marginal prices that are based on the price
of the highest bid that must be dispatched to meet pool demand in Alberta.
Alberta’s pool prices are converted from Canadian dollars to U.S. dollars
in order to compare the values with those of the other U.S. markets.

Regarding the California NP15 and SP15 power markets, for the period
from April 1st 1998 to September 30th 2004 we used the ISO Hourly Ex
Post Price; according to the California ISO (CAISO), the Hourly Ex Post
Prices are the “hourly market clearing price.” They are the zone-specific
averages of the six 10-minute market clearing prices in an hour, weighted by
the amount of Instructed Imbalance Energy during each 10-minute interval.
For the period from October 1st 2004 to October 31st 2005, we use the ISO
Hourly Average Energy Prices, which now represent the market clearing
prices, since CAISO overhauled the Real Time Market and dispatching
system in October 2004. It is to be noticed that the ISO Hourly Average
Energy Prices are energy weighted averages of the zonal market clearing
prices over all twelve 5-minute intervals for each zone.

On the other hand, the Mid Columbia and California Oregon Border
markets are not centralized power exchanges, but they are trading hubs
where power is bilaterally traded among utilities and marketers. Hence,
in these markets power prices refer to volume weighted averages of actual
transaction prices obtained through daily surveys. Thus the data consist
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of daily spot market prices for pre-scheduled energy transactions spanning
the period from April 1st 1998 to October 31st 2005. Pre-scheduled trans-
actions are energy transactions that are scheduled a day-ahead of actual
physical production. These data, which is provided by Platts, consist of
two daily observations: peak and off-peak prices. Since Mid-C and COB
only have daily peak and off-peak prices, we calculated the daily peak and
off-peak prices for Alberta, NP15, and SP15 as equally-weighted averages
of the peak and off-peak hourly prices.

For Alberta, we adopt the official WECC definition for peak and off-
peak periods. The official WECC definition for peak is the hour ending
(HE) 8:00 to the HE 23:00 Monday through Saturday inclusive. The official
definition of the off-peak is the remaining hours Monday through Saturday,
Sundays, and statutory holidays. For California NP15 and SP15, we adopt
the CAISO definition; that is, from HE 7:00 to the HE 22:00. The definition
of peak hours in Mid-Columbia and California Oregon Border is from HE
7:00 to HE 22:00, Monday through Saturday, prevailing Pacific Time. Note
that by taking into account the time difference, the definition of peak hours
in Alberta (Mountain Time) and the U.S. Pacific markets (Pacific Time)
perfectly matches. Thus Alberta, NP15, and SP15 peak price is defined
as the average of the hourly prices during the peak period of the day (i.e.
16 hours); the corresponding off-peak price is defined as the average of
the hourly prices during the off-peak period of the day (i.e. 8 hours from
Mondays to Saturdays, 24 hours on Sundays).

Thus, we obtain two data sets. Peak prices for Alberta, Mid-C, COB,
NP15, and SP15 constitute the peak data set, consisting of 2,375 price
observations. Off-peak prices for Alberta, Mid-C, COB, NP15, and SP15
constitute the off-peak data set, consisting of 2,491 price observations. Due
to missing values in the Mid-C and COB price series, off-peak prices on
Sundays from April 1st 1998 to December 31st 2001 are excluded, while
prices on Sundays from 2002 to 2005 are included in the data set.

Figures 11.1 and 11.2 show the daily peak and off-peak prices in the
Alberta, Mid-C, COB, NP15, and SP15 power markets. As can be seen in
Figure 11.1, wholesale power peak prices move more or less together from
April 1998 until the beginning of 2001. During 2001, the price series seem
to drift apart: prices in California NP15 and SP15 decrease due to the
imposition of low price caps (US$250 first, US$150 later). Alberta prices
decrease as well, while Mid-C and COB prices remain very high, mainly due
to low precipitation and water supplies and the absence of price caps. From
the second half of 2001, prices return to move together, rather constantly
around the mean. Alberta’s market shows the most frequent price spikes,
due to a higher price cap (Can$1,000) than California’s one.
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Figure 11.1: Peak Prices
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Figure 11.2: Off-Peak Prices
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With regard to off-peak prices, Alberta has significantly the lowest
prices, also due to the different off-peak definition that better reflects the
pattern of power consumption. SP15 has the lowest price among the U.S.
markets. The Mid-C bilateral market, however, seems to be performing
very badly, with the highest average price, standard deviation, and coeffi-
cient of variation. Figure 11.2, basically, shows similar patterns to those
of Figure 11.1. Again, prices move more or less together from April 1998
until the end of 2000, when NP15 presents the highest values. Then, at
the beginning of 2001, prices in California are capped by regulators, while
prices in Mid-C and COB spike up to $1,000 until October 2001. Since
then, prices in all markets have decreased and so has the volatility.

TABLE 11.1
Data Summary

Alberta Mid-C COB NP15 SP15

A. Peak Prices

Observations 2375 2375 2375 2375 2375
Mean 56.06 64.36 66.31 54.38 53.17
Standard deviation 52.42 119.65 101.38 54.92 50.72
Coefficient of variation 0.94 1.86 1.53 1.01 0.95

B. Off-peak Prices

Observations 2491 2491 2491 2491 2491
Mean 27.18 47.02 41.05 41.71 34.86
Standard deviation 21.06 71.22 49.01 42.45 33.38
Coefficient of variation 0.77 1.51 1.19 1.02 0.96

Panel A of Table 11.1 reports the mean, standard deviation, and coef-
ficient of variation of the peak price series, while Panel B reports the same
statistics for off-peak prices. On average, the peak price for one megawatt-
hour of electricity in the five markets over the period from April 1st 1998
to October 31st 2005 is around US$60. Power in Southern California is the
cheapest while power peak prices at COB are the highest. These results
are quite surprising: not only the ISO centralized markets of Alberta and
California, which are deemed to have more frequent price spikes, have the
lowest power prices but also the lowest volatility. The reason for that is the
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existence of price caps in the California and Alberta centralized markets.
Being decentralized bilateral markets, COB and Mid-C do not have price
caps, thus allowing price excursions up to $4,000. The coefficient of vari-
ation for Alberta and California is around one, while the same coefficient
for Mid-C and COB is much higher, 1.86 and 1.53, respectively.

11.4 Testing for Stochastic Trends

We start by testing for the presence of a stochastic trend (a unit root) in the
autoregressive representation of each individual time series. A time series
that has a stochastic trend is said to be non-stationary. Most economic and
financial variables that exhibit strong trends, like GDP and price levels, are
non-stationary and thus have a unit root. In many cases, the first difference
of a non-stationary time series is stationary. When this is true, the time
series is said to be integrated of order one [or I(1) in the terminology of
Engle and Granger (1987)]. More generally, a non-stationary time series is
integrated of order n, or I(n), if it turns out to be stationary after being
differenced n times. Conversely, a stationary time series is integrated of
order zero, or I(0).

In order to test for the existence of a stochastic trend, we use the aug-
mented Dickey-Fuller (ADF) test — see Dickey and Fuller (1981). Thus,
we test the null hypothesis of a stochastic trend by estimating the following
ADF regression equation

∆xt = α0 + α1t + γxt−1 +
k∑

j=1

β∆xt−j + εj

where x represents a price variable, ∆ is the difference operator, and k
is the optimal lag length, determined using the AIC+2 rule suggested by
Pantula, Gonzalez-Farias, and Fuller (1994).

Tables 11.2 and 11.3 present the results of the ADF unit root tests for
the peak and off-peak prices, respectively. In panel A of each table the
test is applied to the levels of the series and in panel B to the differences
of the series. Each row corresponds to one market. The second column
of each table reports the optimal lag length, the third the t-statistic for
the null hypothesis γ = 0, and fourth column shows the p-value for the
null hypothesis of a unit root. Finally, the fifth column summarizes the
outcome of the test for each market, that is whether the price series has a
unit root or not.
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TABLE 11.2
ADF Unit Root Test Results for Peak Hour Prices

Series Number of lags t-statistic p-value Decision

A. Levels of the Series

Alberta 27 -2.663 0.252 I(1)
Mid-C 14 -5.473 <0.001 I(0)
COB 14 -4.749 <0.001 I(0)
NP15 27 -2.335 0.415 I(1)
SP15 27 -3.011 0.129 I(1)

B. Differences of the Series

Alberta 27 -14.448 <0.001 I(0)
Mid-C
COB
NP15 27 -15.183 <0.001 I(0)
SP15 27 -14.409 <0.001 I(0)

TABLE 11.3
ADF Unit Root Test Results for Off-Peak Hour Prices

Series Number of lags t-statistic p-value Decision

A. Levels of the Series

Alberta 26 -3.302 0.066 I(1)
Mid-C 17 -4.083 0.007 I(0)
COB 27 -2.726 0.225 I(1)
NP15 19 -2.737 0.221 I(1)
SP15 27 -3.373 0.055 I(1)

B. Differences of the Series

Alberta 27 -11.505 <0.001 I(0)
Mid-C
COB 27 -13.888 <0.001 I(0)
NP15 18 -14.806 <0.001 I(0)
SP15 27 -11.338 <0.001 I(0)
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First, we look at the results for the levels of the series. At the 5%
significance level, the null hypothesis of a unit root is rejected if the p-value
is less than 0.05. The null hypothesis cannot be rejected for the Alberta
and California NP15 and SP15 peak price series. We conclude that these
variables have a stochastic trend. Conversely, the null hypothesis is rejected
for the Mid-C and COB peak prices series. These variables appear to be
stationary. These results are interesting: basically, the price series of the
centralized power markets have a stochastic trend, while the price series
of Mid-C and COB are stationary. We attribute this difference in results
to the different price formation processes: in Alberta and California, the
spot price is formed real time by the market forces and the pool price is
not known until after the fact. On the other hand, Mid-C and COB are
bilateral power markets where prices are known prior to delivery of the
energy and most trades are transacted day ahead over on- and off-peak
strips.

In our view, different price formation processes cause the prices to have
a deterministic or stochastic behavior in these markets. While in Alberta
and California, deviations of power prices from their underlying trend ap-
pear to be permanent, in Mid-C and COB, the fluctuations in power prices
are viewed as temporary since prices are expected to return to their trend
growth rate in the long run. Subsequently, in order to determine the order
of integration for the Alberta, NP15, and SP15 power price series, which
turned out to be non-stationary, we apply the ADF test to the first differ-
ences of the series. Since all the p-values are less than 0.05, we reject the
null hypothesis and we conclude that the differenced series are stationary.

With regard to off-peak price series, the null hypothesis of a unit root
is rejected only for the Mid-C off-peak prices. Alberta, COB, NP15, and
SP15 off-peak prices appear to have a unit root and, after running the same
test to the differenced series, we conclude that these series are integrated
of order 1, or I(1).

11.5 Testing for Cointegration

Since cointegration is a property of non-stationary series, in this section
we test for cointegration in the Alberta, NP15, and SP15 markets, using
peak prices as well as off-peak prices. The concept of cointegration, first
introduced by Engle and Granger (1987), refers to a linear combination of
non-stationary variables that is itself stationary. In particular, two non-
stationary series x and y are said to be cointegrated if there exists a linear
combination

εt = yt − α − βxt
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that is stationary. We test for cointegration between Alberta, NP15, and
SP15 power prices using the Engle and Granger (1987) method. That is,
we test for a unit root in the regression residuals, using the ADF test
and appropriate critical values in order to take into account the number of
variables in the regression — see, for example, Serletis and Herbert (1999).

If the null hypothesis of no cointegration (or equivalently of stationarity
of ε̂t) is rejected, the price series cointegrate and thus there is a long run
relationship between these series. Since cointegration test results can be
sensitive to the roles of each market as dependent and independent vari-
ables, we reverse the roles in the regression. In addition to that, we run six
trivariate regressions in which each price series is treated as the dependent
variable and the remaining two as independent variables, in the context of
the following model

xit = α + βxjt + γxkt + εt

TABLE 11.4
Engle-Granger Bivariate Cointegration Test

Results for Peak Hour Prices

Model: xit = α + βxjt + εt

Dependent Number
Series pair Variable of lags t-statistic p-value Decision

Alberta, NP15 NP15 27 -4.226 0.003 Cointegration
Alberta 19 -7.034 <0.001 Cointegration

Alberta, SP15 SP15 27 -4.702 <0.001 Cointegration
Alberta 22 -5.387 <0.001 Cointegration

NP15, SP15 SP15 27 -5.477 <0.001 Cointegration
NP15 27 -4.353 0.002 Cointegration

Table 11.4 presents the results for the Engle-Granger bivariate cointegration
tests applied to peak hour prices. Each series is tested against the other
series, both as dependent variable and as independent variable. Clearly,
we get no contradiction: the null hypothesis of no cointegration is rejected



11.5. Testing for Cointegration 133

at the 1% level for all pairs of series. Thus, peak hour power prices in
Alberta and California NP15 and SP15 are cointegrated, meaning that
they share stochastic trends and that a long-run equilibrium relationship
exists among these prices. Table 11.5 confirms these results using trivariate
regression tests; that is, we find strong evidence of cointegration among
Alberta, NP15, and SP15 peak hour power prices. Using off-peak prices,
we get essentially the same results (see Tables 11.6 and 11.7) and thus
we conclude that there is strong evidence of market integration among
Alberta, NP15, and SP15 power markets — that is, we interpret rejections
of the null hypothesis of no power price cointegration as evidence of market
integration.

One first interpretation of the results is that these three power markets
are linked together, since the same underlying stochastic growth compo-
nents are apparently affecting their price dynamics. Moreover, transmission
capacity does not appear to prevent power trade from occurring between
these markets. Not only there is a high degree of market integration dur-
ing off-peak periods, when congestion is unlikely to occur, but also during
peak periods. Also, these results show that unexploited profit opportunities
from trade among these power markets are not likely to exist. Arbitrage
seems to work even though the distances between the regions are large and
traverse several utility service areas, where they normally incur transmis-
sion tariffs. In other words, since the integrated price series cointegrate,
the price differentials are stationary. Thus, there is price convergence and
arbitrage mechanisms and price competition disciplines prices. Every per-
manent shock in the trend of one price series is ultimately transmitted to
the trend of the other price series.

TABLE 11.5
Engle-Granger Trivariate Cointegration Test

Results for Peak Hour Prices

Model: xit = α + βxjt + γxkt + εt

Dependent Number
Variable of lags t-statistic p-value Decision

Alberta 19 -7.149 <0.001 Cointegration

NP15 27 -4.945 <0.001 Cointegration

SP15 27 -5.535 <0.001 Cointegration
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TABLE 11.6
Engle-Granger Bivariate Cointegration Test

Results for Off-Peak Hour Prices

Model: xit = α + βxjt + εt

Dependent Number
Series pair Variable of lags t-statistic p-value Decision

Alberta, NP15 NP15 24 -4.554 0.001 Cointegration
Alberta 24 -6.99 <0.001 Cointegration

Alberta, SP15 SP15 27 -5.590 <0.001 Cointegration
Alberta 25 -6.607 <0.001 Cointegration

NP15, SP15 SP15 27 -6.146 <0.001 Cointegration
NP15 28 -4.746 <0.001 Cointegration

TABLE 11.7
Engle-Granger Trivariate Cointegration Test

Results for Off-Peak Hour Prices

Model: xit = α + βxjt + γxkt + εt

Dependent Number
Variable of lags t-statistic p-value Decision

Alberta 24 -7.128 <0.001 Cointegration

NP15 28 -4.779 0.002 Cointegration

SP15 27 -6.279 <0.001 Cointegration

Given the results of the cointegration analysis, we can proceed to test
for strong market integration. Strong market integration implies that price
changes in separate markets track one another with unitary responses, so
that prices contain and reflect the same information. In the case of strong
market integration, price shocks at one region are proportionally reflected
in all other market prices. Note that price levels may differ across re-
gions reflecting the shadow value of transmission capacity, though relative
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changes between prices across market pairs being equal. Now for the price
pairs that cointegrate, we proceed on estimating β in the cointegrating re-
gression, which represents the factor of proportionality between the shared
stochastic trends. Estimates of β significantly equal to 1 would suggest
evidence of strong market integration.

TABLE 11.8
Estimates of Factors of Proportionality β

For Shared Stochastic Trends

Dependent Variable
Alberta NP15 SP15

β t(β) β t(β) β t(β)

A. Peak hours

Alberta 0.647 4.226 0.535 4.702
NP15 0.587 7.034 0.864 5.477
SP15 0.571 5.387 1.013 4.353

B. Off-peak hours

Alberta 1.169 4.554 0.812 5.590
NP15 0.304 6.999 0.663 6.146
SPS15 0.347 6.607 1.090 4.746

As can be seen in Table 11.8, the estimates of β for the California
NP15 and SP15 markets during peak and off-peak periods are close to
unity (1.013 and 1.090, respectively), suggesting the existence of strong
market integration — since estimates of β depend on the choice of the
dependent variable, for each market pair we discuss the β with the higher
value. However, market integration between the California markets and
Alberta is weaker. During peak periods (see panel A of Table 11.8), the
factors of proportionality are estimated to be equal to 0.647 and 0.571 for
NP15 and SP15, respectively. Such results are reasonable given the longer
distance, the different market structures and rules, and the existence of
other power markets between Alberta and California. However, during off-
peak hours (see panel B of Table 11.8), the extent of market integration
increases; that is, the estimates of β are closer to unity (1.169 and 0.812
for Alberta-NP15 and for Alberta-SP15, respectively). Also, in both peak
and off-peak periods, Alberta shows a stronger integration with NP15 than
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with SP15. This makes sense, due to the shorter distance from NP15 and
to the stronger influence that power prices in the U.S. southwest markets
(i.e. Palo Verde and Four Corners) have on SP15 power prices.

In addition to the factors of proportionality, β, the constants, α, can also
be estimated for the market-pairs that we have established cointegration.
α represents the average transmission and transactions costs and the line
losses. If two markets are integrated, the difference in mean prices would
reflect, at most, the average transmission and transaction costs —- see, for
example, Woo et al. (1997). Two markets are perfectly integrated if the
corresponding prices are perfect predictors of one another in expectation.
Formally, there is perfect integration if in the cointegrating relation β = 1
(condition for strong market integration) and α = 0. Table 11.9 reports the
estimates of α, together with the t-statistics, for Alberta, NP15, and SP15
peak (see panel A) and off-peak (see panel B) power prices — again, since
the estimates of α depend on the choice of the dependent variable, for each
market pair we discuss the α with the lower value.

TABLE 11.9
Estimates of Constant α

In the Cointegrating Regression

Dependent Variable
Alberta NP15 SP15

β t(β) β t(β) β t(β)

A. Peak hours

Alberta 18.121 13.956 23.182 18.249
NP15 24.011 20.158 6.190 11.937
SP15 25.688 19.776 0.544 0.941

B. Off-peak hours

Alberta 10.135 9.569 12.776 14.656
NP15 14.652 30.974 7.081 14.915
SPS15 15.316 29.734 4.022 6.403

First, we do not find evidence of perfect market integration between
the California NP15 and SP15 markets, since the estimates of the arbi-
trage costs are not equal to zero. During peak hours, the transmission and
transaction costs are about $0.54, while during off-peak hours these costs
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increase quite surprisingly. That might be explained by the fact there is
less substitution across markets during peak periods and thus more power
trades and flows occur during off-peak periods. Since the cost of transmis-
sion is proportional to the amount of energy flowing on the transmission
line, the estimates of α are higher during off-peak hours. On the other
hand, the arbitrage costs between Alberta and California are fairly high,
ranging from around $10 to $23. They reflect greater line losses, which
are proportional to the distance. In fact, α is higher in the Alberta-SP15
regression than in the Alberta-NP15 regression, since southern California is
further from Alberta than northern California. Also, the transaction costs
are higher since the tie-lines that connect the Alberta and California re-
gions are owned and managed by several utilities. Generally, we find that
the average transmission costs between Alberta and California are higher
during peak periods.

11.6 Error Correction Modeling and Causal-
ity Testing

Since the power price series in the Alberta and California NP15 and SP15
markets are cointegrated, a long run equilibrium relationship exists between
these series. The time paths of these cointegrated variables in the short run
are affected by any deviation from the long-run equilibrium. In order to
return to the long run equilibrium, the movements of the variables in the
short run depend on the extent and the direction of the divergence. For
instance, if the gap between two time series is small relative to the long run
relationship, adjustments of one or both of the variables will re-establish
the equilibrium by widening the gap. According to the Engle and Granger
representation theorem, the short run dynamics can be described by an
error correction model, relating current and lagged first differences of yt

and xt and at least one lagged value of ε̂t.

11.6.1 Bivariate Granger Causality Tests

According to Engle and Granger (1987), the error-correction model is of
the following form

∆yt = α1 + αy ε̂t−1 +
r∑

j=1

α11(j)∆yt−j +
s∑

j=1

α12(j)∆xt−j + εyt (11.1)

∆xt = α2 + αxε̂t−1 +
r∑

j=1

α21(j)∆yt−j +
s∑

j=1

α22(j)∆xt−j + εxt (11.2)
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where α1, α2, αy, αx, α11(j), α12(j), α21(j), and α22(j) are all parameters,
εyt and εxt are white noise disturbances and ε̂t−1 is the error correction term
and estimates the deviation from long run equilibrium in period t− 1. The
error correction model focuses on the short run dynamics while making
them consistent with the long run equilibrium. It shows how yt and xt

change in response to stochastic shocks (represented by εyt and εxt) and to
the previous period’s deviation from the long-run equilibrium (represented
by ε̂t−1).

To test for Granger causality from xt to yt, we first fit equation (11.1) by
OLS to obtain the unrestricted sum of squared residuals, SSRu. Then we
run another regression equation under the null hypothesis that αy and all
the coefficients of the lagged values of ∆xt are zero, to obtain the restricted
sum of squared residuals, SSRr. The statistic

(SSRr − SSRu)/(s + 1)
SSRu/(T − r − s − 2)

has an asymptotic F -distribution with numerator degrees of freedom (s+1)
and denominator degrees of freedom (T − r− s−2). T represents the num-
ber of observations, s is the number of lags for ∆xt in equation (11.1), and
the number 2 is subtracted in order to take in account for the constant term
and the error correction term. If the null hypothesis cannot be rejected,
then we conclude that the data do not show causality. If the null hypothesis
is rejected, then we conclude that the data do show causality. The same
procedure is reversed in another F -test to assess whether a feedback rela-
tionship exists between these series, as in the context of equation (11.2). In
determining the optimal values of r and s in each of equations (11.1) and
(11.2), we allow a maximum value of 60 for each r and s and by running
3,600 regressions for each bivariate relationship we choose the lag length
that produces the smallest value of the AIC.

Panels A and B of Table 11.10 report the results of the bivariate Granger
causality tests applied to peak and off-peak series, respectively. The null
hypothesis of no causality is rejected in all cases. Hence, for all market
pairs, we find evidence of significant bidirectional causality during peak and
off-peak periods. In other words, knowledge of past (say) Alberta power
prices improves the prediction of future (say) NP15 power prices beyond
predictions that are based on past NP15 power prices alone.
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TABLE 11.10
Marginal Significance Levels for Granger Causality Tests

In the Context of Bivariate Error Correction Models

∆yt = α1 + αy ε̂t−1 +
r∑

j=1

α11(j)∆yt−j +
s∑

j=1

α12(j)∆xt−j + εyt (11.1)

∆xt = α2 + αxε̂t−1 +
r∑

j=1

α21(j)∆yt−j +
s∑

j=1

α22(j)∆xt−j + εxt (11.2)

Dependent Variable
Alberta NP15 SP15

Series Optimal lag F -statistic p-value Optimal lag F -statistic p-value Optimal lag F -statistic p-value

A. Peak hours

Alberta (35,41) 2.471 <0.001 (60,57) 2.753 <0.001
NP15 (54,59) 4.036 <0.001 (53,58) 7.660 <0.001
SP15 (57,60) 4.480 <0.001 (55,55) 6.715 <0.001

B. Off-peak hours

Alberta (37,47) 2.327 <0.001 (56,60) 2.278 <0.001
NP15 (55,16) 2.170 0.005 (55,60) 3.923 <0.001
SPS15 (55,16) 2.189 0.004 (55,57) 3.292 <0.001
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11.6.2 Trivariate Granger Causality Tests

We also tested for Granger causality, in the context of the following trivari-
ate models

∆yt = α1 + αy ε̂t−1 +
r∑

j=1

α11(j)∆yt−j

+
s∑

j=1

α12(j)∆xt−j +
q∑

j=1

α13(j)∆zt−j + εyt (11.3)

∆xt = α2 + αxε̂t−1 +
r∑

j=1

α21(j)∆yt−j

+
s∑

j=1

α22(j)∆xt−j +
q∑

j=1

α23(j)∆zt−j + εxt (11.4)

∆zt = α3 + αz ε̂t−1 +
r∑

j=1

α31(j)∆yt−j

+
s∑

j=1

α32(j)∆xt−j +
q∑

j=1

α33(j)∆zt−j + εzt (11.5)

In equations (11.3)-(11.5), the coefficients are defined as those in equa-
tions (11.1)-(11.2) and the optimal lag lengths have been determined as
those in equations (11.1) and (11.2). However, due to the more computa-
tional power needed, in equations (11.3), (11.4), and (11.5) we allowed a
maximum value of 24 for each of r, s, and q, thereby running 13,824 re-
gressions for each bivariate relationship in order to determine the optimal
lag length.

The results from the trivariate error correction models, reported in Ta-
ble 11.11, confirm the evidence of joint bidirectional causality. Essentially,
knowledge of past (say) Alberta and SP15 power prices improves the pre-
diction of future (say) NP15 prices beyond predictions that are based on
past NP15 prices alone. Note that Granger causality refers merely to pre-
dictability and has no implications for the strength of conclusions which re-
fer to underlying structural factors — see, for example, Serletis and Herbert
(1999). Moreover, according to Woo et al. (1997), causality tests determine
whether price behaviour within the individual submarkets that results in
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TABLE 11.11
Marginal Significance Level for Granger Causality Tests
In the Context of Trivariate Error Correction Models

∆yt = α1 + αy ε̂t−1 +
r∑

j=1

α11(j)∆yt−j +
s∑

j=1

α12(j)∆xt−j +
q∑

j=1

α13(j)∆zt−j + εyt (11.3)

∆xt = α2 + αxε̂t−1 +
r∑

j=1

α21(j)∆yt−j +
s∑

j=1

α22(j)∆xt−j +
q∑

j=1

α23(j)∆zt−j + εxt (11.4)

∆zt = α3 + αz ε̂t−1 +
r∑

j=1

α31(j)∆yt−j +
s∑

j=1

α32(j)∆xt−j +
q∑

j=1

α33(j)∆zt−j + εzt (11.5)

Dependent Number of lags
Variable (r, s, q)) η1 p-value η2 p-value

A. Peak hours

Alberta (20,16,20) 3.367 <0.001 5.362 <0.001
NP15 (1,18,22) 5.283 0.005 5.865 <0.001
SP15 (24,20,22) 6.713 <0.001 11.542 <0.001

B. Off-peak hours

Alberta (20,18,22) 3.154 <0.001 2.644 0.001
NP15 (19,20,21) 2.800 <0.001 3.953 <0.001
SPS15 (18,24,13) 3.291 <0.001 3.514 <0.001
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harmonious overall price movements is suggestive of price leadership. Since
each pair of integrated markets is linked together by a bidirectional feedback
relationship, the price change in one market instantaneously affects prices
in the other market and vice versa. Thus we conclude that there is no price
leadership, suggesting the existence of price competition in the Western
Electricity Coordinating Council.

11.7 Conclusions

We have found that different market structures heavily affect price for-
mation processes. In particular, by testing for unit roots, we found the
presence of a stochastic trend only in the price series that refer to central-
ized power pools; that is, Alberta and California NP15 and SP15. In these
markets, power is exchanged real time in an auction mechanism by match-
ing actual supply and demand. Such a pool price is known only after-the
fact. Conversely, prices in the Mid-C and COB decentralized markets refer
to transactions that take place day-ahead of actual physical production.
Also, power is not exchanged through pools and auction mechanisms but
through bilateral contracts between generators, utilities, and marketers. As
a consequence of the different price formation, we found strong evidence of
stationarity in the Mid-C and COB peak power price series. Hence, shocks
to power prices in Alberta and California are permanent while shocks to
power prices in Mid-C and COB appear to be temporary. However, sto-
chastic trend behaviour does not appear to infer high volatility and higher
prices and price spikes, since the Alberta and California deregulated mar-
kets enjoy lower prices and volatility than the Mid-C and COB markets
do.

We have also investigated the extent of market integration in the Pa-
cific electricity markets in the WECC. The outcome of this analysis is that
Alberta and California power markets are significantly integrated, since
a long-run equilibrium relationship exists among their prices. This means
that there are empirically effective arbitrage mechanisms that bind the price
movements across these markets, although transfer capacities are limited
in some parts of the WECC grid. Path 15 and the Alberta-BC inter-
connection are generally considered as transmission bottlenecks that limit
unconstrained power trade. This fact, together with differences in market
structures and regulatory regimes, reduce the extent of market integration.

Indeed, the cointegration analysis suggests that market integration is
stronger between the adjacent NP15 and SP15 power markets, which share
the same market structure and regulatory regimes. Higher transaction and
transmission costs due to longer distance and more complex trading agree-
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ments characterize the long run equilibrium between Alberta and the Cal-
ifornia markets. However, the extent of market integration is significant.
The estimation of error-correcting causality models for the integrated and
cointegrated price series also revealed causality and a feedback relationship
between any two market pairs. These findings seem to suggest the absence
of price leadership from any of the markets.

In conclusion, according to our analysis, the deregulated western elec-
tricity industry appears to perform well with regard to power and transmis-
sion pricing. Unexploited arbitrage opportunities and monopoly pricing of
transmission do not seem to exist. Competition apparently works; that is,
transmission rates rise during peak hours due to higher load and energy re-
quirements. Under normal conditions, wholesale power customers can turn
to generators and utilities dispersed over a wide geographic area in order to
buy or sell electricity either within their jurisdictions, in directly connected
regions, or in more remote control areas. Finally, we can conclude that an
aggregate integrated market for wholesale electricity exists in the Western
North America, spanning from Alberta to the U.S. Pacific area.
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Overview of Part 4
Apostolos Serletis

The following table contains a brief summary of the contents of the
chapters in Part 4 of the book. This part of the book consists of three
chapters addressing a number of issues regarding crude oil, natural gas,
and electricity markets.

Crude Oil, Natural Gas, and Electricity Markets

Chapter
Number Chapter Title Contents

12 The Cyclical Behavior of This chapter investigates the basic
Monthly NYMEX Energy stylized facts of crude oil, heating oil,
Prices unleaded gasoline, and natural gas

price movements, using the methodology
suggested by Kydland and Prescott (1990).
It shows that energy prices are in general
procyclical.

13 The Message in North Chapter 13 explores the degree of
American Energy Prices shared trends in natural gas, fuel oil,

and power prices in the mid-Atlantic
area of eastern Pennsylvania, New
Jersey, Maryland, and Delaware.

14 Testing for Common This chapter uses the testing procedures
Features in North recently suggested by Engle and
American Energy Kozicki (1993) and Vahid and Engle
Markets (1993) and investigates the strength

of shared trends and shared cycles
between West Texas Intermediate oil
prices and Henry Hub natural gas prices.

Chapter 12:

This chapter systematically investigates the basic stylized facts of energy
price movements using monthly data for the period that energy has been
traded on organized exchanges and the methodology suggetsed by Kyd-
land and Prescott (1990). The results indicate that energy prices are in

147
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general procyclical, in contrast to the accepted fact that energy prices are
countercyclical and leading the cycle.

Chapter 13:
How similar is the price behavior of North American natural gas, fuel oil,
and power prices? Using current state-of-the-art econometric methodology,
this chapter explores the degree of shared trends across North American
energy markets. Across these markets, there appear to be effective arbitrage
mechanisms for the price of natural gas and fuel oil, but not for the price
of electricity.

Chapter 14:

Using recent advances in the field of applied econometrics, this chapter
explores the strength of shared trends and shared cycles between North
American natural gas and crude oil markets. In doing so, it uses daily
data from January 1991 to April 2001 on spot U.S. Henry Hub natural
gas and WTI crude oil prices. The results show that there has been ‘de-
coupling’ of the prices of these two sources of energy as a result of oil
and gas deregulation in the United States. It also investigates the inter-
connectedness of North American natural gas markets and finds that North
American natural gas prices are largely defined by the U.S. Henry Hub price
trends.



Chapter 12

The Cyclical Behavior of
Monthly NYMEX Energy
Prices

Apostolos Serletis and Todd Kemp∗

12.1 Introduction

The cyclical behavior of energy prices is important and has been the sub-
ject of a large number of studies, exemplified by Hamilton (1983). These
studies have, almost without exception, concentrated on the apparently
adverse business-cycle effects of oil price shocks. For example, Hamilton
(1983) working on pre-1972 data and based on vector autoregression (VAR)
analysis, concluded that energy prices are countercyclical and lead the cy-
cle. However, as Mork (1988, p. 74) put it

“... his study pertained to a period in which all the large oil price
movements were upward, and thus it left unanswered the ques-
tion whether the correlation persists in periods of price decline.”

In fact, as shown by Mork (1988), there is an asymmetry in the responses in
that the correlation between oil price decreases and gross national product
(GNP) growth is significantly different than the correlation between oil
price increases and GNP growth, with the former being perhaps zero.

∗Originally published in Energy Economics 20 (1998), 265-271. Reprinted with per-
mission.
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The objective of this chapter is to examine the cyclical behavior of
energy prices using monthly data for crude oil, heating oil, unleaded gasoline
and natural gas for the period that each of these commodities has been
traded on organized exchanges. In doing so, we follow Lucas (1977) and
define the growth and cycle components of a variable as its smoothed trend
and the deviation of the smoothed trend from the actual values of the
variable, respectively. Moreover, we define energy cycle regularities as the
dynamic comovements of the cyclical components of energy prices and the
cycle. In particular, the type of business cycle regularities that we consider
are autocorrelations and dynamic cross-correlations between the cyclical
components of energy prices, on the one hand, and the cycle, on the other.
The robustness of the results to alternative measures of the cycle is also
investigated.

The chapter is organized as follows. Section 12.2 briefly discusses the
Hodrick-Prescott (HP) filtering procedure for decomposing time series into
long-run and business cycle components. Section 12.3 discusses the data
and presents HP empirical correlations of energy prices with U.S. output,
prices and the unemployment rate. Section 12.4 summarizes and concludes
the chapter.

12.2 Methodology

For a description of the stylized facts, we follow the current practice of
detrending the data with the Hodrick-Prescott (HP) filter — see Prescott
(1986). For the logarithm of a time series Xt, for t = 1, 2, . . . , T, this proce-
dure defines the trend or growth component, denoted τt, for t = 1, 2, . . . , T,
as the solution to the following optimization problem

min
τt

T∑
t=1

(Xt − τt)
2 + λ

T−1∑
t=2

[(τt+1 + τt) − (τt − τt−1)]
2

so that Xt − τt is the HP filtered series. For λ = 0 the growth component
is the series and as λ → ∞, the growth component approaches a linear
trend. In our computations, we set λ = 14, 400, as it has been suggested
for monthly data.

We measure the degree of comovement of a series with the pertinent
cyclical variable by the magnitude of the correlation coefficient ρ(j), j ∈
{0,±1,±2, . . .} . The contemporaneous correlation coefficient ρ(0) gives in-
formation on the degree of contemporaneous comovement between the series
and the pertinent cyclical variable. In particular, if ρ(0) is positive, zero, or
negative, we say that the series is procyclical, acyclical, or countercyclical,
respectively. In fact, for data samples of our size it has been suggested
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[see, for example, Fiorito and Kollintzas (1994)] that for 0.5 ≤ |ρ(0)| < 1,
0.2 ≤ |ρ(0)| < 0.5 and 0 ≤ |ρ(0)| < 0.2, we say that the series is strongly
contemporaneously correlated, weakly contemporaneously correlated and
contemporaneously uncorrelated with the cycle, respectively. Also, ρ(j),
j ∈ {±1,±2, . . .} , the cross correlation coefficient, gives information on the
phase-shift of the series relative to the cycle. If |ρ(j)| is maximum for a
negative, zero or positive j, we say that the cycle of the series is leading
by j periods the cycle, is synchronous, or is lagging by j periods the cycle,
respectively.

The Hodrick-Prescott filter is almost universally used in the real busi-
ness cycle research program and extracts a long-run component from the
data, rendering stationary series that are integrated up to fourth order. HP
filtering, however, has been questioned as a unique method of trend elimi-
nation — see, for example, King and Rebelo (1993) and Cogley and Nason
(1995). More recently, however, Baxter and King (1995) argue that HP
filtering can produce reasonable approximations to an ideal business cycle
filter. We therefore believe that the results reported in the next section are
reasonably robust across business cycle filters.

12.3 Data and Results

We study monthly data (from Tick Data) on spot-month futures prices
for crude oil, heating oil, unleaded gasoline and natural gas — spot-month
futures prices are used as a proxy for current cash prices. Since these
commodities began trading at different times on the New York Mercantile
Exchange (NYMEX), we have a different sample size for each of these
commodities. In particular, crude oil began trading in March 1983, heating
oil in March 1979, unleaded gasoline in December 1984 and natural gas in
April 1990. To investigate the cyclical behavior of energy prices, we match
them with the U.S. industrial production index, consumer price level and
unemployment rate, using data on these variables up to April 1993. This
match produces 122 monthly observations for crude oil, 157 for heating oil,
94 for unleaded gasoline and 37 for natural gas.

Table 12.1 reports the contemporaneous and the cross correlations (at
lags and leads of 1-6 months) between the cyclical components of energy
prices and the cyclical component of U.S. industrial production (in panel
A), the unemployment rate (in panel B) and consumer prices (in panel
C). A number near 1 in the xt column of panel A indicates strong pro-
cyclical movements and a number near −1 indicates strong countercyclical
movements. The numbers in the remaining columns indicate the phase shift
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TABLE 12.1
HP Cyclical Correlations of Spot-Month Energy Futures Prices

With U.S. Output, Prices and the Unemployment Rate

Correlation coefficients
Commodity xt−6 xt−5 xt−4 xt−3 xt−2 xt−1 xt xt+1 xt+2 xt+3 xt+4 xt+5 xt+6

A. Cross Correlations with U.S. Industrial Production

Crude oil -0.02 0.01 0.07 0.16 0.23 0.29 0.31 0.28 0.24 0.22 0.19 0.14 0.10
Heating oil -0.05 0.01 0.06 0.11 0.17 0.24 0.29 0.29 0.29 0.27 0.20 0.15 0.11
Unleaded gasoline -0.19 -0.13 -0.07 0.04 0.15 0.24 0.30 0.32 0.32 0.35 0.27 0.17 0.12
Natural gas 0.04 -0.02 -0.06 -0.02 0.06 0.19 0.34 0.46 0.53 0.51 0.43 0.25 0.01

B. Cross Correlations with the U.S. Unemployment Rate

Crude oil 0.00 -0.04 -0.10 -0.16 -0.20 -0.23 -0.26 -0.26 -0.24 -0.26 -0.25 -0.22 -0.21
Heating oil 0.01 -0.05 -0.11 -0.16 -0.21 -0.25 -0.28 -0.28 -0.25 -0.25 -0.21 -0.17 -0.14
Unleaded gasoline 0.15 0.08 0.02 -0.04 -0.10 -0.17 -0.26 -0.29 -0.30 -0.35 -0.34 -0.30 -0.26
Natural gas -0.22 -0.25 -0.19 -0.12 -0.17 -0.21 -0.29 –0.28 -0.28 -0.31 -0.37 -0.29 -0.11

C. Cross Correlations with U.S. Consumer Prices

Crude oil 0.33 0.44 0.54 0.62 0.68 0.66 0.51 0.32 0.17 0.06 -0.02 -0.05 -0.05
Heating oil 0.17 0.22 0.30 0.36 0.39 0.37 0.28 0.18 0.10 0.08 0.04 0.02 0.04
Unleaded gasoline 0.29 0.39 0.53 0.64 0.72 0.69 0.55 0.40 0.34 0.26 0.15 0.05 -0.02
Natural gas 0.23 0.24 0.24 0.22 0.18 0.10 0.04 -0.04 -0.17 -0.36 -0.51 -0.58 -0.48

Note: Results are reported using monthly data for the following sample periods: crude oil, 1983:3-1993:4; heating oil,

1979:3-1993:4; unleaded gasoline, 1979:12-1993:4; and natural gas, 1990:4-1993:4.
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TABLE 12.2
HP Cyclical Correlations of Spot-Month Heating Oil, Unleaded Gasoline

and Natural Gas Futures Prices with Spot-Month Crude Oil Futures Prices

Correlation coefficients
Commodity xt−6 xt−5 xt−4 xt−3 xt−2 xt−1 xt xt+1 xt+2 xt+3 xt+4 xt+5 xt+6

Heating oil -0.14 -0.14 -0.06 0.09 0.37 0.66 0.88 0.76 0.60 0.42 0.27 0.09 0.01
Unleaded gasoline -0.10 0.00 0.13 0.23 0.47 0.72 0.86 0.66 0.42 0.29 0.25 0.16 0.09
Natural gas -0.18 -0.28 -0.38 -0.35 -0.18 0.09 0.33 0.38 0.27 0.03 -0.22 -0.33 -0.37

Note: Results are reported using monthly data for the following sample periods: heating oil, 1979:3-1993:4; unleaded

gasoline, 1979:3-1993:4; and natural gas, 1990:4-1993:4.
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relative to industrial production. For example, a series that leads (lags) the
cycle by 3 months will have its maximum value in the xt−3 (xt+3) column.

As panel A of Table 12.1 shows, energy prices are weakly procyclical,
with natural gas prices being more so. Moreover, the cycles of crude oil and
heating oil prices coincide with the industrial production cycle, while those
of unleaded gasoline and natural gas lag the cycle of industrial production.
This has important implications for hedgers and speculators. If speculators,
for example, expect an increase in real output, they may wish to buy futures
since the price of energy commodities is likely to rise.

To investigate the robustness of these results to changes in the cycli-
cal indicator, we report in panel B of Table 12.1 correlations (in the same
fashion as in panel A) using the unemployment rate as the cyclical indica-
tor. Of course, since the cyclical component of industrial production and
the unemployment rate are negatively correlated, a negative correlation in
panel B indicates procyclical variation and a positive correlation indicates
countercyclical variation. Clearly, the results of panel B in general con-
firm those in panel A. Hence, we conclude that irrespective of the cyclical
indicator, energy prices are procyclical.

Panel C of Table 12.1 shows cyclical energy prices-U.S. consumer prices
correlations. Clearly, crude oil and unleaded gasoline prices are strongly
contemporaneously correlated with U.S. consumer prices, while heating oil
prices are weakly correlated and natural gas prices are independent. More-
over, the cycles of crude oil, heating oil and unleaded gas prices lead the cy-
cle of U.S. consumer prices, suggesting that changes in energy prices might
be good predictors of future aggregate price changes. This also raises the
possibility that energy prices might be a useful guide for monetary policy,
possibly serving as an important indicator variable.

Finally, in Table 12.2 we show HP cyclical correlations of heating oil,
unleaded gasoline and natural gas prices with crude oil prices. The results
indicate that the contemporaneous correlations are strikingly strong in the
case of heating oil and unleaded gasoline but not as strong in the case
of natural gas. This is consistent with the conclusion reached by Serletis
(1994) that crude oil, heating oil and unleaded gasoline prices are driven by
one common trend, suggesting that it is appropriate to model these prices
as a cointegrated system. Natural gas prices, however, seem to react to a
separate set of fundamentals.

12.4 Conclusion

In this chapter we investigated the cyclical behavior of energy prices using
monthly data and the methodology suggested by Kydland and Prescott
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(1990). Based on stationary HP cyclical deviations, our results are robust
to alternative measures of the cycle and indicate that crude oil and heating
oil prices are synchronous and procyclical whereas unleaded gasoline and
natural gas prices are lagging procyclically. Moreover, energy prices are
positively contemporaneously correlated with consumer prices and their
cycles lead the cycle of consumer prices, suggesting a possible role for energy
prices in the conduct of monetary policy.

However, the apparent phase-shift between energy prices and consumer
prices should not be interpreted as supporting an effect from energy prices
to consumer prices since using lead-lag relationships to justify causality is
tenuous. Clearly, the investigation of the empirical relationship between
energy prices and consumer prices, by looking at the performance of energy
prices as indicators of inflation, is an area for potentially productive future
research. Such an examination could utilize current state-of-the-art econo-
metric methodology, such as, for example, integration and cointegration
theory as well as error-correction modeling (if applicable), using either the
single-equation approach of a multi-equation (VAR) framework.

We also presented evidence regarding cyclical correlations of heating oil,
unleaded gasoline and natural gas prices with crude oil prices. We show that
the contemporaneous crude oil-heating oil and crude oil-unleaded gasoline
correlations are very strong, providing future support to the conclusion of
Serletis (1994) that these prices are driven by only one common trend which
means, according to the interpretation of Stock and Watson (1988), that
the same underlying stochastic components presumably affect the crude
oil, heating oil and unleaded gasoline markets. The natural gas market,
however, doesn’t seem to be linked to the crude oil market.

The results presented in this chapter pertain to the United States. Of
course, the cyclical behavior of energy prices in countries with different
industrial structures and/or levels of oil dependency would be expected to
be different. Therefore the international generalizability of this work is also
an area for future research.



Chapter 13

The Message in North
American Energy Prices

Apostolos Serletis and John Herbert∗

13.1 Introduction

In the last decade, the natural gas industry has seen a dramatic transforma-
tion from a highly regulated industry to one which is more market-oriented.
The transition to a less regulated, more market-driven environment has
significantly affected business operations. In particular, production sites,
pipelines, and transmission and storage services are more accessible today,
thereby ensuring that changes in market demand and supply are reflected in
prices on spot, futures, and swaps markets. There is also a dynamic power
industry in North America, the dynamics of which cannot be captured by
any given relationship to crude oil or natural gas. They seem to be driven
by the variety and seasonality of applications.

In this chapter, we investigate the dynamics of natural gas, fuel oil, and
power prices in the mid-Atlantic area of eastern Pennsylvania, New Jersey,
Maryland, and Delaware (an area in which as much oil, natural gas, and
power is used as in all of Britain). These prices are expected to be related
for several reasons. Fuel oil and natural gas, for example, are used as
substitutes in industrial boiler, and oil and natural gas are used as peaking
sources of supply for power generation for cooling loads in the summer and
for heating loads in the winter. Moreover, all these types of energy directly

∗Originally published in Energy Economics 21 (1999), 471-483. Reprinted with per-
mission.
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serve space heating demands during the winter. Thus, wholesale prices for
these sources of energy are expected to respond similarly to different types
of shocks.

In investigating whether such key North American natural gas, power,
and fuel oil markets are linked together, we test for shared price trends.
In doing so, following King and Cuc (1996) and Serletis (1997), we use
current state-of-the-art econometric methodology. In particular, we pay
explicit attention to whether or not the variables are stationary. It is an
empirical fact that many important macroeconomic and financial variables
appear to be integrated. If the series are integrated, but not cointegrated,
ordinary least squares yields misleading results. Under these circumstances
it becomes important to evaluate empirically the time series properties of
the variables and to test for cointegration.

The chapter is organized along the following lines. Section 13.2 discusses
the data and provides some graphical representations. Sections 13.3 and
13.4 investigate the integration and cointegration properties of the price
series and interpret the results in terms of convergence and the existence of
unexploited profit opportunities. Section 13.5 tests for Granger causality,
explicitly taking into account the univariate and bivariate time series prop-
erties of the variables. The last section concludes with some suggestions
for potentially productive future empirical research.

13.2 Some Basic Facts

We use daily data from 25/10/96 to 21/11/97 on the Henry Hub and
Transco-Zone 6 natural gas prices - the Henry Hub natural gas price is
strongly correlated with the New York Mercantile Exchange (NYMEX)
Henry Hub spot month futures price, while Transco Zone 6 is an impor-
tant segment of the Transco pipeline extending from Northern Virginia to
New York City, serving the eastern seaboard. We also use the Pennsylva-
nia, New Jersey, Maryland (PJM) power market for electricity prices, over
the same time period and frequency. This power market serves the same
general area as Transco-Zone 6 and has regularly been considered as a de-
livery point for a power futures contract. Finally, we use fuel oil prices for
New York Harbor which is the delivery point for the NYMEX heating oil
contract - it is also a standard reference price for oil in the Northeast.

One interesting feature of the data is the contemporaneous correlation
between the different price series. These correlations are reported in Table
13.1 for log levels (in panel A) and for first differences of log levels (in panel
B). To determine whether these correlations are statistically significant,
Pindyck and Rotemberg (1990) is followed and a likelihood ratio test of the
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TABLE 13.1
Contemporaneous Correlations between Prices

A. Log Levels B. First differences of log levels
Henry Transco Power Fuel Henry Transco Power Fuel
hub zone 6 oil hub zone 6 oil

Henry hub 1 1
Transco zone 6 0.962 1 0.528 1
PJM power 0.196 0.207 1 0.081 0.173 1
Fuel oil 0.611 0.716 0.013 1 0.068 0.038 0.060 1

χ2(6) = 984.21 χ2(6) = 99.11

Note: Daily data, 25 October 1996 to 21 November 1997.



13.3. The Integration Properties of the Variables 159

hypotheses that the correlation matrices are equal to the identity matrix is
performed. The test statistic is

−2 ln(|R|N/2)

where |R| is the determinant of the correlation matrix and N is the number
of observations. This test statistic is distributed as χ2 with 0.5q(q − 1)
degrees of freedom, where q is the number of series.

The test statistic is 984.21 with a p-value of 0.000 for the logged prices
and 99.11 with a p-value of 0.000 for the first-differenced logged prices.
Clearly, the hypothesis that these price are uncorrelated is rejected. Notice,
however, that the correlations indicate a lack of a relationship between
power and the other series. The correlation patterns documented in Table
13.1 manifest in the graphical representation of the series in Figure 13.1,
for logged levels.

13.3 The Integration Properties of the Vari-

ables

The first step in examining trends in a set of variables is to test for the
presence of a stochastic trend (a unit root) in the autoregressive repre-
sentation of each individual series. Nelson and Plosser (1982) argue that
most macroeconomic and financial time series have a unit root (a stochas-
tic trend), and describe this property as one of being ‘difference stationary’
(DS) so that the first difference of a time series is stationary. An alternative
‘trend stationary’ model (TS) has been found to be less appropriate.

In what follows we test the null hypothesis of a stochastic trend against
the trend-stationary alternative by estimating by ordinary least-squares
(OLS) the following augmented Dickey-Fuller (ADF) type regression [see
Dickey and Fuller (1981)]

∆zt = a0 + a2t + γzt−1 +
k∑

j=1

bj∆zt−j + εt (13.1)

where ∆ is the difference operator such that ∆zt = zt − zt−1. The k ex-
tra regressors in (13.1) are added to eliminate possible nuisance parameter
dependencies in the limit distributions of the test statistics caused by tem-
poral dependencies in the disturbances. The optimal lag length (that is, k)
is taken to be the one selected by the Akaike information criterion (AIC)
plus 2 — see Pantula et al. (1994) for details regarding the advantages of
this rule for choosing the number of augmenting lags in equation (13.1).
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Table 13.2 presents the results. The first column of Table 13.2 gives the
optimal value of k in equation (13.1), based on the AIC plus 2 rule, for
each price series. This identifies k to be 4 for the Henry Hub natural gas
price series, 2 for the Transco Zone 6 natural gas price series and the fuel
oil price series, and 3 for the power price series.

The t-statistics for the null hypothesis γ = 0 in equation (13.1) are
given under ττ in Table 13.2. Under the null hypothesis that γ = 0, the
appropriate critical value of ττ at the 5% level (with 200 observations) is
−3.45 — see Fuller (1976, Table 8.5.2). Hence, the null hypothesis of a
unit root is rejected only in the case of the power price. For this series,
we conclude at this stage that it does not contain a unit root [or in the
terminology of Engle and Granger (1987) that it is I(0)].

For the remaining series, for which the null hypothesis of a unit root
has not been rejected, there is a question concerning the test’s power in
the presence of the deterministic part of the regression (i.e., a0 + a2t).
In particular, one problem is that the presence of the additional estimated
parameters reduces degrees of freedom and the power of the test — reduced
power means that we will conclude that the process contains a unit root
when, in fact, none is present. Another problem is that the appropriate
statistic for testing γ = 0 depends on which regressors are included in the
model.

Although we can never be sure of the actual data-generating process,
here we follow the procedure suggested by Dolado et al. (1990) for testing
for a unit root when the form of the data-generating process is unknown.
In particular, since the null hypothesis of a unit root is not rejected, it
is necessary to determine whether too many deterministic regressors are
included in equation (13.1).We therefore test for the significance of the
trend term in equation (13.1) under the null of a unit root, using the t(a2)
statistic in Table 13.2. Under the null that a2 = 0 given the presence of
a unit root, the appropriate critical value of t(a2) at the 5% significance
level is 2.79 — see Dickey and Fuller (1981). Clearly, the null cannot be
rejected, suggesting that the trend is not significant. The φ3 statistic which
tests the joint null hypothesis a2 = γ = 0 reconfirms this result.

This means that we should estimate the model without the trend, i.e.,
in the following form

∆zt = a0 + γzt−1 +
k∑

j=1

bj∆zt−j + εt (13.2)

and test for the presence of a unit root using the τµ statistic. The results,
reported in Table 13.2, indicate that the null hypothesis of a unit root
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Figure 13.1: Logged North American energy prices
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TABLE 13.2
Unit Root Test Results

Test statistics
Series k ττ t(a2) φ3 τµ Decision

Henry hub 4 -2.03 -0.14 2.12 -2.03 I(1)
Transco zone 6 2 -1.45 0.04 1.17 -1.51 I(1)
PJM power 3 4.61* 0.73 10.94* -4.56* I(0)
Fuel oil 2 -1.81 -1.15 1.73 -1.43 I(1)

Notes: Daily data, 25 October 1996 - 21 November 1997. All the series are in logs.

An asterisk indicates rejection of the null hypothesis at the 5% significance level.

ττ is the t-statistic for the null hypothesis γ = 0 in Eq. (13.1). Under

the null hypothesis, the appropriate critical value of ττ at the 5% significance level

(with 100 observations) is -3.45 — see Fuller (1976, Table 8.5.2). t(a2) is the

t-statistic for the presence of the time trend (i.e. the null hypothesis a2 = 0) in

Eq. (13.1), given the presence of a unit root. The appropriate 95% critical

value for t(a2), given by Dickey and Fuller (1981), is 2.79. The φ3 statistic tests

the joint null a2 = γ = 0 in Eq. (13.1). The 95% critical value, given by

Dickey and Fuller (1981) is 6.49. Finally, τµ is the t-statistic for the null γ = 0
in Eq. (13.2). The appropriate 95% critical value of τµ is -2.89 — see

Fuller (1976, Table 8.5.2).

cannot be rejected for the Henry Hub and Transco Zone 6 natural gas price
series as well as for the fuel oil price series. Our decision regarding the
univariate time series properties of these series is summarized in the last
column of Table 13.2. Intuitively, fluctuations in a stationary series are
viewed as temporary deviations from its underlying trend and are expected
to return to its (more or less constant) trend growth rate in the long run.
In the case, however, of integrated series, such deviations should be treated
as permanent — that is, there is no tendency for the series to revert to its
deterministic path.

Our results regarding the univariate time series properties of the vari-
ables are also useful in regard to the decision of whether to specify univariate
models [such as, for example, moving-average (MA) models, autoregressive
(AR) models, and autoregressive moving-average (ARMA) models] in levels
or first differences. If the series are stationary (i.e., there is no unit root),
then it is desirable to work in levels, and if the series are integrated (i.e.,
there is a unit root), then differencing is appropriate.

In a regression analysis context, however, the appropriate way to treat
integrated variables is not so straightforward. It is possible, for example,
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that the integrated variables ‘cointegrate’ — in the sense that a linear
relationship among the variables is stationary. Differencing such an already
stationary relationship entails a misspecification error, which we should
avoid. It is to this issue that the next section is devoted.

13.4 Shared Price Trends

Since a stochastic trend has been confirmed for the natural gas and fuel
price series, we now explore for shared stochastic trends among these series
using methods recommended by Engle and Granger (1987). In doing so,
we test for cointegration (i.e., long-run equilibrium relationships). Coin-
tegration is a relatively new statistical concept designed to deal explicitly
with the analysis of the relationship between nonstationary time series. In
particular, it allows individual time series to be nonstationary, but requires
a linear combination of the series to be stationary. Therefore, the basic idea
behind cointegration is to search for a linear combination of individually
nonstationary time series that is itself stationary. Evidence to the contrary
provides strong empirical support for the hypothesis that the integrated
variables have no inherent tendency to move together over time.

Consider, for example, the null hypothesis that there is no cointegration
between two price series yt and xt [or equivalently, there are no shared
stochastic trends (i.e., there are two distinct trends) between these series,
in the terminology of Stock and Watson (1988)]. The alternative hypothesis
is that there is cointegration (or equivalently, they share a stochastic trend).
Following Engle and Granger (1987), we estimate the so-called cointegrating
regression (selecting arbitrarily a normalization)

yt = α + βxt + εt (13.3)

where εt denotes the OLS regression residuals. A test of the null hypothesis
of no cointegration (against the alternative of cointegration) is based on
testing for a unit root in the regression residuals εt using the ADF test and
simulated critical values which correctly take into account the number of
variables in the cointegrating regression.

Table 13.3 shows marginal significance levels for Engle-Granger coin-
tegration tests between the integrated price series. Clearly, the null hy-
pothesis of no cointegration (i.e., absence of shared stochastic trends) is
rejected (at the 1% significance level). It is to be noted that these results
are robust to the selected normalization. Under the common trends in-
terpretation [see, for example, Stock and Watson (1988)] these results are
not too surprising. The same underlying stochastic growth components
presumably affect all three markets, implying that these three markets are
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linked together, with the power market, of course, being segmented. Notice
that since the power price series is I(0) and each of the other price series
is I(1), inferences regarding the strength of the relationship between the
power price series and each of the other price series will be spurious.

One way to interpret these results is in terms of the absence or presence
of unexploited profit opportunities. In the case, for example, of integrated
price series that do not cointegrate, the difference between the respective
prices fluctuates stochastically, in excess of transmission and transaction
costs, indicating the failure of potential arbitrage to discipline prices. In
this case, the marginal value of the commodity across locations would differ
by more than transmission and transaction costs suggesting unexploited
profit opportunities. In the case, however, of integrated price series that
cointegrate, the price differential is stationary, implying price convergence,
a high degree of price competition, and the absence of unexploited profit
opportunities. In this case, every permanent shock in the trend of one series
is ultimately transmitted to the trend of the other series.

TABLE 13.3
Marginal Significance Levels of

Engle and Granger (1987) Cointegration Tests
for Those Price Series That are Integrated

Transco zone 6 Fuel oil
k p-value k p-value

Henry hub 8 0.001 3 0.006
Transco zone 6 2 0.001

Notes: Daily data, 25 October 1996-21 November 1997. The null hypothesisis the

absence of cointegration. Low p-values imply strong evidence against the null.

The dependent variable in the cointegrating regression is the one indicated in the

row heading — the results are robust to this normalization.

In fact, for the price pairs that we have established that they share a
stochastic trend, the factors of proportionality for shared stochastic trends
[the β’s in equation (13.3)] can be consistently estimated using ordinary
least squares [see, for example, Stock (1987)]. These are reported in Table
13.4. Let us consider the relationship between the Henry Hub-Transco
Zone 6 natural gas price pair, reported in Table 13.4. Clearly, this is a
statistically significant relationship and, in particular, a 1% increase in the
Transco Zone 6 natural gas price is associated with a 0.915 percentage point
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increase in the Henry Hub natural gas price. The remaining numbers in
Table 13.4 should be interpreted along these lines.

TABLE 13.4
Estimates of Factors of Proportionatlity
for Shared Stochastic Trends for Those

Price Pairs that Cointegrate

Transco zone 6 Fuel oil
β t(β) R2 β t(β) R2

Henry hub 0.915 58.5 09.26 1.179 12.7 0.374
Transco zone 6 1.452 16.8 0.513

Notes: Daily data, 25 October 1996-21 November 1997. Estimates of factors

of proportionatliy for shared stochastic trends (based on logarithmically transformed

price series) are reported for only those price pairs that cointegrate.

What is key for any firm is whether differences between prices at differ-
ent locations, such as Hennry Hub and Transco-Zone 6, exceed the cost of
making trading arrangements between these locations which may or may
not involve the actual movement of gas between these locations. Such ar-
rangements may, for example, involve the movement of gas out of storage
in the Northeast and later replacement of this gas with gas from Louisiana.
Thus, methods of trading gas ‘between locations’ vary greatly between com-
panies because of differences in asset and contract mix. Moreover, superior
knowledge of trading conditions at a large number of locations will allow
firms with operationally flexible assets to exploit differences between prices
at different locations.

Of course, the combination of inflexible transportation contracts, reg-
ulation, and poor information on available transportation and storage ca-
pacity preclude many firms from exploiting profit opportunities, whenever
they arise. However, unregulated firms with superior knowledge of capac-
ity availability and flexible, active contracting programs regularly exploit
such opportunities. A still significant number of regulated firms in an in-
creasingly deregulated industry allows the less regulated firms to exploit
opportunities created by the relatively inflexible business and operating
practices of the regulated part.
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13.5 Error Correction Estimates and Causal-
ity Tests

If two series cointegrate, there is a long-run relationship between them.
Moreover, according to the Granger representation theorem, the short-run
dynamics can be described by the error correction model (ECM). In an error
correction model, the short-term dynamics of the variables in the system
are influenced by the deviation from long-run equilibrium. In other words,
if the system is to return to the long-run equilibrium, the movements of
at least some of the variables must be influenced by the magnitude of the
deviation from the long-run relationship. If, for example, the gap between
two cointegrating natural gas price series, yt and xt, is large relative to the
long-run relationship, the gap must ultimately close by adjustments in yt,
xt, or both.

If the yt and xt series are cointegrated, the residual εt in equation (13.3)
estimates the deviation from long-run equilibrium in period t − 1, and can
be used to estimate the error-correction model, which Engle and Granger
(1987) argue will have the following form

∆yt = α1 + αy ε̂t−1 +
r∑

j=1

α11(j)∆yt−j +
s∑

j=1

α12(j)∆xt−j + εyt (13.4)

∆xt = α2 + αxε̂t−1 +
r∑

j=1

α21(j)∆yt−j +
s∑

j=1

α22(j)∆xt−j + εxt (13.5)

This is a bivariate vector autoregression (VAR) in first differences, aug-
mented by the error-correction term, εt. The error-correction model clearly
shows how yt and xt change in response to stochastic shocks (represented
by εyt and εxt) and to the previous period’s deviation from long-run equi-
librium (represented by εt−1).

If, for example, εt−1 is positive (so that yt−1 − α − βxt−1 > 0), xt

would rise and yt would fall until long-run equilibrium is attained, when
yt = α + βxt. Notice that αy and αx can be interpreted as speed of
adjustment parameters. For example, the larger is αy, the greater the
response of yt to the previous period’s deviation from long-run equilibrium.
On the other hand, very small values of αy imply that yt is unresponsive to
last period’s equilibrium error. In fact, for ∆yt to be unaffected by xt, yt

and all the α12(j) coefficients in (13.4) must be equal to zero. This is the
empirical definition of Granger causality in cointegrated systems. In other
words, the absence of Granger causality for cointegrated variables requires
the additional condition that the speed of adjustment coefficient be equal
to zero.
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Thus, one could determine the causal relationship between yt and xt

by first fitting equation (13.4) by ordinary least squares and obtaining the
unrestricted sum of squared residuals, SSRu. Then by running another
regression equation under the null hypothesis that αy and all the coefficients
of the lagged values of ∆xt are zero, the restricted sum of squared residuals,
SSRr, is obtained. The statistic

(SSRr − SSRu)/(s + 1)
SSRu/(T − r − s − 2)

has an asymptotic F -distribution with numerator degrees of freedom (s+1)
and denominator degrees of freedom (T−r−s−2), where T is the number of
observations, s represents the number of lags for ∆xt in equation (13.4), and
2 is subtracted out to account for the constant term and the error correction
term in equation (13.4). If the null hypothesis cannot be rejected, than the
conclusion is that the data do not show causality. If the null hypothesis is
rejected, then the conclusion is that the data do show causality. The roles
of yt and xt are reversed in another F test [as in equation (13.5)] to see
whether there is a feedback relationship among these series.

One preliminary matter also had to be dealt with before we could pro-
ceed to estimate the error-correction model and perform Granger-causality
tests. It concerns the lengths of lags r and s in equations (13.4) and (13.5).
In the literature r and s are frequently chosen to have the same value, and
lag lengths of 4, 6, or 8 are used most often. Such arbitrary lag specifi-
cations can produce misleading results, however, because they may imply
misspecification of the order of the autoregressive process. For example,
if either r or s (or both) is too large, the estimates will be unbiased but
inefficient. If either r or s (or both) is too small, the estimates will be biased
but have a smaller variance.

Here, we used the data to determine the ‘optimum’ lag structure. In
particular, the optimal r and s in each of equations (13.4) and (13.5) was
determined using Akaike’s information criterion (AIC). The AIC was cal-
culated as

AIC(r, s) = log
(

SSR

T

)
+ 2

(
r + s + 1

T

)
where T is the number of observations and SSR is the sum of squared
residuals. Note that the AIC balances the degrees of freedom used (as
implied by the second term in the expression) and the fit of the equation
(as implied by SSR).

We used the AIC with a maximum value of 12 for each of r and s
in equations (13.4) and (13.5) and by running 144 regressions for each
bivariate relationship we chose the one that produced the smallest value
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for the AIC. Based on these optimal specifications, in Tables 13.5 and 13.6
we present estimates of the speed of adjustment parameters (along with
t-ratios) as well as p-values for Granger causality F -tests (for those price
series that cointegrate). The signs of the speed of adjustment coefficients
are in accord with convergence toward the long-run equilibrium — that is,
the absolute values of the speed of adjustment coefficients are not too large.
The numbers apply to an error-correction model in which the left-hand-side
variable is the one indicated in the row heading.

Consider the Henry Hub - Transco Zone 6 natural gas price relationship.
With the Henry Hub natural gas price as the dependent variable in equation
(13.4), the estimated speed of adjustment coefficient (αy) is 0.026 with a
t-ratio of 0.35, indicating that it is not significant. When, however, the
Transco Zone 6 price is used as the dependent variable in equation (13.5),
the results in Table 13.6 indicate that the estimated speed of adjustment
coefficient αx is −0.161 and significant (the t-ratio is −2.36). This means
that the Transco Zone 6 natural gas price tends to decrease significantly
in response to a positive discrepancy between the Henry Hub price and
the Transco Zone 6 price in the previous period. Clearly, this is useful
information for a trading company regarding the design of a successful
trading strategy.

Finally, the p-value of 0.001 in Table 13.5 indicates that the null hy-
pothesis that αy = α12(1) = α12(11) = 0 in equation (13.4) is rejected,
implying that Transco Zone 6 natural gas prices do Granger cause Henry
Hub prices. Also, the p-value of .001 in Table 13.6 indicates that the null
αx = α22(1) = · · · = α22(12) = 0 in equation (13.5) is rejected, implying
that Henry Hub prices Granger cause Transco Zone 6 prices. In other
words, knowledge of past Henry Hub prices improves the prediction of
future Transco Zone 6 prices beyond predictions that are based on past
Transco Zone 6 prices alone. It should be noted that Granger causality
refers merely to predictability and has no implications for the strength of
conclusions which refer to underlying structural factors.

13.6 Conclusion

The chapter tested for unit roots in the univariate time-series representa-
tion of daily Henry Hub and Transco Zone 6 natural gas prices, as well as
of power and fuel prices. Based on augmented Dickey-Fuller (ADF) unit
root testing procedures, the results show that the random-walk hypothesis
cannot be rejected for the natural gas and fuel oil prices. The power price
series, however, appears to be stationary. The implications of these findings
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TABLE 13.5
Estimated Speed of Adjustment Parameters and

Marginal Significance Levels for Granger Causality Tests
for Those Price Pairs that Cointegrate

∆yt = α1 + αy ε̂t−1 +
∑r

j=1 α11(j)∆yt−j +
∑s

j=1 α12(j) ∆xt−j + ε̂yt

Transco zone 6 Fuel oil
(r, s) αy t(αy) p-value (r, s) αy t(αy) p-value

Henry hub (12,11) 0.026 0.35 0.001 (1,1) -0.042 -2.50 0.223
Transco zone 6 (1,3) -0.047 -2.28 0.097

Notes: Daily data, 25 October 1996-21 November 1997. The dependent variable is the one indicated in the row

heading. Numbers in parenthesis indicate the optimal (in the minimum AIC sense) lag specification. p-values less

than 0.05 reject the null hypothesis of no causality at the 0.05 level of significance.
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TABLE 13.6
Estimated Speed of Adjustment Parameters and

Marginal Significance Levels for Reverse Granger
Causality Tests for Those Price Pairs that Cointegrate

∆xt = α2 + αxε̂t−1 +
∑r

j=1 α21(j)∆xt−j +
∑s

j=1 α22(j) ∆yt−j + ε̂xt

Transco zone 6 Fuel oil
(r, s) αx t(αx) p-value (r, s) αx t(αx) p-value

Transco zone 6 (11,12) -0.161 -2.36 0.001
Fuel oil (1,1) -0.029 -2.21 0.331 (1,1) -0.035 -2.36 0.294

Notes: Daily data, 25 October 1996-21 November 1997. The dependent variable is the one indicated in the row

heading. Numbers within parenthesis indicate the optimal (in the minimum AIC sense) lag specification. p-values less

than 0.05 reject the null hypothesis of no causality at the 0.05 level of significance.
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regarding the long-run effect (or persistence) of a shock on the level of these
series were also discussed. It was argued, for example, that shocks to an
integrated series are permanent and to a stationary series temporary.

Moreover, the application of Engle and Granger (1987) cointegration
methods to explore the degree of shared trends (for those series for which a
stochastic trend has been confirmed), revealed that there are shared trends
among the Henry Hub and Transco Zone 6 natural gas prices and the
fuel oil price. This means that there are empirically effective arbitrag-
ing mechanisms for these prices across these markets. The estimation of
error-correcting causality models for the integrated price series also revealed
causality and a feedback relationship between any two price pairs.

We have used univariate, and bivariate models to draw valid inferences
about the time series relations between energy prices. Alternative and per-
haps more general and more robust specifications could be estimated. A
particularly constructive approach would be based on the use of higher-
dimensional VARs. Impulse response functions and variance decomposi-
tions are the hallmark of VAR analysis focusing on higher-order VARs is
an area for potentially productive future research.



Chapter 14

Testing for Common
Features in North
American Energy Markets

Apostolos Serletis and Ricardo Rangel-Ruiz ∗

14.1 Introduction

In recent years, the North American energy industry has undergone major
structural changes that have significantly affected the environment in which
producers, transmission companies, utilities and industrial customers oper-
ate and make decisions. For example, major policy changes are the U.S.
Natural Gas Policy Act of 1978, Natural Gas Decontrol Act of 1989, and
FERC Orders 486 and 636. In Canada, deregulation in the mid-1980s has
also broken the explicit link between the delivered prices of natural gas
and crude oil (that was in place prior to 1985), and has fundamentally
changed the environment in which the Canadian oil and gas industry op-
erates. Moreover, the Free Trade Agreement (FTA) signed in 1988 by the
United States and Canada, and its successor, the North American Free
Trade Agreement (NAFTA) signed in 1993 by the United States, Canada,
and Mexico, have underpinned the process of deregulation and attempted
to increase the efficiency of the North American energy industry.

The main objective of this chapter is to assess the strength of shared dy-

∗Originally published in Energy Economics 26 (2004), 401-414. Reprinted with per-
mission.
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namics between North American energy markets in the period after deregu-
lation. In doing so, we provide a first look at shared trends and shared cycles
between the West Texas Intermediate (WTI) crude oil and Henry Hub nat-
ural gas markets, drawing on recent developments on cointegration theory.
We are interested in whether the link between these two markets weakened
in the deregulated period, as competition and market forces played a greater
role in determining prices. Moreover, we explore the inter-connectedness of
North American energy markets by investigating the strength of shared fea-
tures between the U.S. Henry Hub and AECO Alberta natural gas prices.
We are interested in whether Canadian export prices to the United States
are simply linear transformations of the U.S. Henry Hub price.

Shared stochastic trends between different energy markets have been
investigated in a number of recent studies — see, example, Serletis (1994),
Serletis and Herbert (1999), and Plourde and Watkins (2000). These stud-
ies, however, typically require the researcher to take a stance on a common
order of integration for the individual price series. As a result, most of the
literature ignores a recent important contribution to this topic by Ng and
Perron (1997) who show that we should be wary of estimation and inference
in nearly unbalanced nearly cointegrated systems. In this chapter we use
the recent Pesaran et al. (2001) bounds testing approach to the investiga-
tion of long run relationships. This is a particularly relevant methodology
as it does not require that we take a stand on the time series properties of
the data. Therefore we are able to test for the existence of a long-run re-
lationship without having to assume that the series are integrated of order
zero [or I(0) in the terminology of Engle and Granger (1987)] or I(1).

Our principal concern, however, is with the dynamics of North Amer-
ican natural gas and crude oil markets. The distinctive feature of our
contribution is that we test for shared cycles (and when appropriate for
codependent cycles) using the recently developed testing procedures by
Engle and Kozicki (1993) and Vahid and Engle (1993). Our main objective
is to determine the strength of the dynamic relationship between natural
gas and crude oil markets, judged according to whether they respond in
a similar manner to cycle generating innovations. The Engle and Koz-
icki (1993) and Vahid and Engle (1993) approach provides a stronger and
more informative test of cyclical comovements than the previously used [by
Serletis and Kemp (1998)] Hodrick-Prescott (HP) contemporaneous and
cross-correlation analysis.

The chapter is organized along the following lines. Section 14.2 reviews
some basic theoretical results and relates them to the sharing of trends
and cycles. Section 14.3 discusses the data and tests for common trends,
cycles, and (where appropriate) codependent cycles in U.S. natural gas
and crude oil markets. Section 14.4 investigates the inter-connectedness of
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North American energy markets, and the last section briefly summarizes
and concludes.

14.2 Common Trends and Common Cycles

Consider two variables yt and xt for which there may be possible long-run
and/or short-run relationships. Following Stock and Watson (1988), we
can decompose each variable into a trend, cyclical, and stationary (but not
necessarily white-noise) irregular component as follows

yt = τyt + cyt + εyt (14.1)

xt = τxt + cxt + εxt, (14.2)

where τjt is the trend component of variable j at time t, cjt is the cyclical
component, and εjt is the noise (or irregular) component. In what follows
we highlight some important differences between the traditional analysis of
comovement and the more recent common cycles analysis.

14.2.1 Common Trends

If the individual series have a stochastic trend, we can explore for shared
stochastic trends between the series. In particular, if the stochastic trend
of xt is shared with the yt series (i.e., τxt is linearly related to τyt), then we
have the following structure

yt = τyt + cyt + εyt (14.3)

xt = ατyt + cxt + εxt (14.4)

where α is the factor of proportionality between the two trends. In this case
there is a unique coefficient λ, such that the following linear combination
of yt and xt

zt = yt − λxt

is a stationary series — see Engle and Granger (1987). In fact, if there is a
shared stochastic trend, the linear combination zt can be written as

zt = τyt + cyt + εyt − λ
(
ατyt + cxt + εxt

)
= τyt − λατyt + cyt − λcxt + εyt − λεxt,
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which for λ = 1/α reduces to

zt = cyt − λcxt + εyt − λεxt.

Of course, λ may not be known a priori. Stock (1987) shows that λ
can be consistently estimated using Ordinary Least Squares (OLS) in the
following regression

yt = λxt + zt

The test for a common stochastic trend is therefore a cointegration test.
That is, we test whether there is a cointegrating vector [1, λ] such that zt

is stationary — see Engle and Granger (1987) for more details.

14.2.2 Common Cycles

Regarding common cycles, the approach adopted in the business cycle lit-
erature is a modern counterpart of the methods developed by Burns and
Mitchell (1946). It involves the measurement of the degree of comovement
between two series by the magnitude of the correlation coefficient, ρ(j),
j ∈ {0,±1,±2, . . .}, between (stationary) cyclical deviations from trends.
In particular, the contemporaneous correlation coefficient — ρ(0) — gives
information on the degree of contemporaneous comovement whereas the
cross-correlation coefficient — ρ(j) j ∈ {±1,±2, . . .} — gives informa-
tion on the phase shift of one series relative to another — see Kydland
and Prescott (1990) for details regarding the methodology and Serletis and
Kemp (1998) for an application to energy markets.

An alternative more informative test for common cycles has recently
been suggested by Engle and Kozicki (1993) and Vahid and Engle (1993)
and is based on an extension of the common trends (cointegration) analysis
in a stationary setting. They show that the presence of a cyclical com-
ponent in the first difference of an integrated of order one [or I(1) in the
terminology of Engle and Granger (1987)] variable implies the existence of
some feature and that the test for common cycles in a set of I(1) variables is
essentially a test for the existence of common features — features are data
properties such as seasonality, heteroscedasticity, autoregressive conditional
heteroscedasticity, and serial correlation.

In this chapter, we follow Engle and Kozicki (1993) and consider testing
for a common feature of serial correlation. Therefore, the basic idea behind
such a serial correlation (co)feature test is to determine whether a serial
correlation feature is present in the first differences of a set of cointegrated
I(1) variables and then to examine whether there exists a linear combina-
tion of the stationary variables that does not have the serial correlation
feature. If the linear combination of the stationary variables eliminates the
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feature, it means that the feature is common across the stationary variables
and that they were generated by similar (stationary) stochastic processes.
Evidence to the contrary provides strong empirical support that the series
are generated by significantly different (stationary) stochastic processes.

Suppose, for example, that in our bivariate setting the yt and xt series
are I(1) variables and that each series has been rendered stationary by
removing the stochastic trend. We can write equations (14.1) and (14.2) as

∆yt = cyt + εyt

∆xt = cxt + εxt.

Assuming that the cyclical component is common across the two series,
cxt = βcyt where β is the factor of proportionality between the cyclical
components, a linear combination between ∆yt and ∆xt can be written as

∆zt = cyt + εyt − µ
(
βcyt + εxt

)
= cyt − µβcyt + εyt − µεxt,

which for µ = 1/β reduces to a series made up of the noise components.
The test for a common serial correlation feature is thus a test of whether
there is some ‘cofeature vector’ [1, µ] for which ∆zt does not have the serial
correlation feature.

14.2.3 Codependent Cycles

In introducing the notion of common features, Engle and Kozicki (1993)
expand on the work by Engle and Granger (1987) on common trends and
cointegration and provide a test for the existence of common cycles. How-
ever, as Ericsson (1993, p. 380) argues, in an early critique of the Engle and
Kozicki (1993) methodology, common feature tests have some shortcomings
and that

“... detecting the presence of a cofeature depends on the dating
of the series. If the relative lag between the series is not correct,
a test for a cofeature may fail to find a cofeature when there is
one, even asymptotically.”
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To illustrate, suppose that the ∆yt and ∆xt series have exactly the same
serial correlation cofeature but at different lags, as follows

∆yt = cyt + εyt

∆xt = βcyt−k + εxt.

In this case, a linear combination of ∆yt and ∆xt at time t will not remove
the feature even though each of the ∆yt and ∆xt series individually has
the same feature. If, however, ∆yt enters the linear combination at lag k,
as follows,

∆zt = cyt−k + εyt−k − µ
(
βcyt−k + εxt

)
= cyt−k − µβcyt−k + εyt−k − µεxt,

then for µ = 1/β the serial correlation common feature is eliminated from
the ∆zt series. Vahid and Engle (1997) refer to the presence of a lagged
serial correlation cofeature of this kind as a ‘codependent cycle.’

A codependent cycle is not as strong a form of comovement as a com-
mon cycle. It provides, however, a stronger and more informative test
of underlying comovements between a group of variables than traditional
(lagged) cross-correlation analysis does. In what follows, we test for com-
mon trends, common cycles, and (where appropriate) codependent cycles
in North American natural gas and crude oil markets.

14.3 The Evidence

We use daily data from January 1991 to April 2001 on spot Henry Hub
natural gas and WTI crude oil prices — see Figure 14.1 for a graphical
presentation of the series. The first step in examining trends between crude
oil and natural gas prices is to test for the presence of a stochastic trend (a
unit root) in the autoregressive representation of each individual series. In
doing so, we use two alternative unit root testing procedures to deal with
anomalies that arise when the data are not very informative about whether
or not there is a unit root.

In the first two columns of Table 14.1 we report p-values for the aug-
mented Dickey-Fuller (ADF) tests [see Dickey and Fuller (1981)] and the
nonparametric, Z(tα̂), test of Phillips (1987) and Phillips and Perron (1988).
These p-values (calculated using TSP 4.5) are based on the response sur-
face estimates given by MacKinnon (1994). For the ADF test, the optimal
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lag length was taken to be the order selected by the Akaike information
criterion (AIC) plus 2; see Pantula et al. (1994) for details regarding the
advantages of this rule for choosing the number of augmenting lags. The
Z(tα̂) test is done with the same Dickey-Fuller regression variables, using
no augmenting lags.

TABLE 14.1
Marginal Significance Levels of
ADF and Z(tα̂) Unit Root Tests

Log levels Logged differences
Series ADF Z(tα̂) ADF Z(tα̂)

WTI oil .517 .310 .000 .000
Henry Hub gas .074 .019 .000 .000

Notes: Sample period, daily data: 01/01/1991-26/04/2001.

Numbers are tail areas of tests.

Based on the p-values for the ADF and Z(tα̂) test statistics reported
in Table 14.1, the null hypothesis of a unit root in log levels cannot be
rejected. However, the null hypothesis of a unit root in the first logged
differences is rejected, in the last two columns of Table 14.1, suggesting
that the series are difference stationary. This is consistent with the Nelson
and Plosser (1982) argument that most macroeconomic and financial time
series have a stochastic trend.

Next we use the Pesaran et al. (2001) autoregressive distributed lag,
bounds test approach to the problem of testing for the existence of a long-
run relationship between Henry Hub natural gas and WTI crude oil prices.1

As already noted, this approach has the advantage of testing for long-run
relations without requiring that the underlying variables are stationary or
integrated. To briefly describe the methodology, consider a vector error
correction model

∆Yt = µ + ψt+λYt−1 +
p−1∑
j=1

γj∆Yt−j + εt, (14.5)

where Yt = [yt xt]
′, where (as before) yt is the logged natural gas price and

xt the logged crude oil price. µ = [µy µx]′ is a vector of constant terms,
∆ = 1 − L, and

1Coe and Serletis (2001) have also used the Pesaran et al. (2001) methodology in the
context of absolute and relative purchasing power parity tests.
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Figure 14.1: WT1 oil and Henry Hub natural gas prices, 1991-2001.
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γj =
[

γyy,j γyx,j

γxy,j γxx,j

]
= −

p∑
k=j+1

φk.

Here λ is the long-run multiplier matrix and is given by

λ =
[

λyy λyx

λxy λxx

]
= −

I−
p∑

j=1

φj

 ,

where I is a 2×2 identity matrix. The diagonal elements of this matrix are
left unrestricted. This allows for the possibility that the series can be either
I(0) or I(1) — for example, λyy = 0 implies that yt is I(1) and λyy < 0
implies that it is I(0).

Under the assumption that λxy = 0, the equation for natural gas from
equation (14.5) can be written as

∆yt = α0 + α1t+ϕyt−1 + δxt−1 + ω∆xt

+
p−1∑
j=1

βyj∆yt−j +
q−1∑
j=1

βxj∆xt−j + ut, (14.6)

where α0 = µy − ωµx, α1 = ψy − ωψx, ϕ = λyy, δ = λyx − ωλxx, βyj =
γyy,j − ωγxy,j and βxj = γyx,j − ωγxx,j. This can also be interpreted as an
autoregressive distributed lag (ARDL) model. We estimate equation (14.6)
by ordinary least squares (OLS) and test the absence of a long-run (levels)
relationship between yt and xt, by calculating the F statistic for the null
hypothesis of ϕ = δ = 0 (against the alternative that ϕ �= 0 and δ �= 0).
The distribution of this test statistic under the null depends on the order
of integration of yt and xt. If both yt and xt are I(0), the asymptotic 5%
critical value is 6.56 — see Pesaran et al. (2001, Table C1.v). If both yt

and xt are I(1), the 5% critical value is 7.30. For cases in which one series
is I(0) and one is I(1), the critical value falls in the interval [6.56, 7.30].

In practice, there is no reason why p and q in equation (14.6) should
have the same value, and we allow for this possibility. In particular, we
consider values from 1 to 15 (given the high-frequency nature of the data)
for each of p and q in equation (14.6), and by running 225 regressions we
choose the specifications that minimize the AIC value. The AIC selects
the ARDL (14, 1) specification and the F -statistic for the joint significance
of ϕ and δ is 9.49. Since this F -statistic exceeds the upper bound of the
critical value band, we can reject the null hypothesis of no long-run rela-
tionship between natural gas and crude oil prices, irrespective of the order
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of their integration. Under the common trends interpretation [see, for ex-
ample, Stock and Watson (1988)] this result is not too surprising. The same
underlying stochastic growth components presumably affect both markets,
implying that the WTI crude oil and Henry Hub natural gas markets are
linked together.

Next we test the null hypothesis of a common cycle to see whether the
series are driven by a common serial correlation process. Before conducting
such a test, however, it is important in the first step to establish that the
serial correlation feature is present in both series, as it doesn’t make sense
to test for commonality if the feature is present in only one of the series. In
doing so, we follow Engle and Kozicki (1993) and Vahid and Engle (1993)
and conduct the serial correlation test in the context of the following VAR
framework, in which the natural gas price is treated as jointly determined
with the crude oil price,

∆yt = α1 + α11∆yt−1 + α12∆xt−1 + α13ε̂t−1 + ζyt (14.7)

∆xt = α2 + α21∆yt−1 + α22∆xt−1 + α23ε̂t−1 + ζxt, (14.8)

where ε̂t−1 is the lagged equilibrium error from the cointegrating regression.
The test for a serial correlation feature is a test of whether lagged price
changes are significant (i.e., useful in forecasting future price changes). In
the LM version of the test, the LM test statistic for the null hypothesis of
‘no serial correlation feature’ is computed as the coefficient of determination
multiplied by the sample size, T ×R2, and is distributed as a χ2 with three
degrees of freedom. The LM feature test statistic is 33.168 for the ∆yt

equation and 16.339 for the ∆xt equation, with the 5% critical value being
7.81. Since the test statistic values are greater than the critical value of
7.81, we conclude that there is evidence of a serial correlation feature in
each of the Henry Hub natural gas and WTI crude oil prices.

Since we have identified a serial correlation feature in each of the natural
gas and crude oil prices, we follow Engle and Kozicki (1993) and Vahid and
Engle (1993) and implement the second step of the common cycles test,
by estimating by 2SLS and LIML (which are asymptotically equivalent
procedures) the following regression equation

∆yt = φ0 + φ1∆xt + ut,

taking ∆yt−1, ∆xt−1, and ε̂t−1 as instruments. It turns out [see Engle and
Kozicki (1993) and Vahid and Engle (1993) for more details] that the test
statistic for a serial correlation common feature is asymptotically equivalent
to the test statistic for the legitimacy of the instruments. In fact, the
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overidentifying test statistic is the T × R2 from regressing the error term
ût on the instruments

ût = ϑ0 + ϑ1∆yt−1 + ϑ2∆xt−1 + ϑ3ε̂t−1 + ξt,

with the test statistic being distributed as a χ2 with two degrees of freedom.
Table 14.2 contains three entries for each of the asymptotically equiv-

alent test procedures. It shows the estimated coefficient φ̂1 (for different
dependent variables), its t-statistic, and the LM tests statistic for legitimacy
of the instruments.

TABLE 14.2
Common Cycle Tests between WTI Oil and Henry Hub Gas

IV test
Dependent variable LIML test
∆yt ∆xt ∆xt

φ̂1 −.083 −.010 −.032
t-statistic −.166 −.116 −.272
LM statistic 33.008 16.300 16.264

The LM test statistics exceed the 5% critical value of 5.99, thereby
rejecting the null hypothesis of a common cycle.

Although the null hypothesis of a common synchronized cycle has been
rejected, it is possible that the Henry Hub natural gas and WTI crude oil
markets may face the same cycle but at different speeds, perhaps because of
different adjustment costs or different institutional arrangements. We con-
sider therefore whether codependent cycles can be identified for the Henry
Hub natural gas and WTI crude oil prices by performing the codependent
cycles test discussed in Section 14.2. In doing so, we perform the second
step in the test for common features allowing ∆yt to lead and lag ∆xt by
up to 48 business days (which is roughly one month).

The results of the codependent cycles test are summarized in Figure 14.2
which plots the values of the LM test statistic (based on LIML estimation)
against lags and leads of Henry Hub natural gas price changes. At the 5%
level we generally reject the null hypothesis of a codependent cycle for the
WTI crude oil and Henry Hub natural gas markets. Thus, to the extent
that we reject the null hypotheses of common and codependent cycles, we
conclude that deregulation and the increased role of market forces have
weakened the relationship between U.S. crude oil and natural gas prices.
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14.4 Common Features in Natural Gas
Markets

To this point we have omitted any discussion of Canada or Mexico, implic-
itly assuming that energy prices are the same throughout North America.
This is a safe assumption in the case of crude oil, since the WTI crude oil
price at Chicago is a North American oil price (or even a world oil price).
North American natural gas markets, however, are not as integrated as the
oil markets are, because natural gas resources are often located far from de-
mand centers, natural gas is more difficult to transport, and transportation
costs are major price-setting concerns.

To provide some evidence on the inter-connectedness of North American
natural gas markets, in this section we explore the strength of shared trends
and shared cycles between the U.S. Henry Hub and AECO Alberta natural
gas markets, using daily data from January 2, 1996 to April 26, 2001 (a
total of 1332 observations). The exclusion of Mexico from our analysis and
the chosen sample period are based strictly on data availability. Of course,
the short length (in calendar time) of these series should be kept in mind
in interpreting the results.

Figure 14.3 shows the plots of U.S. Henry Hub and AECO Alberta
natural gas prices over the January 1996 to April 2001 period, and Table
14.3 reports unit root test results in the same fashion as those in Table
14.1. Clearly, the Henry Hub natural gas price series has a unit root but
the AECO series is not very informative about its unit root properties;
the ADF test cannot reject the unit root null at the 5% level whereas the
Z(tα̂) test rejects it. Also, using the Pesaran et al. (2001) bounds testing
approach, we reject the null hypothesis of a lack of a long-run relationship
between Henry Hub and AECO natural gas prices — the F -statistic is
10.05.

To explore the strength of common features between the U.S. Henry Hub
and AECO Alberta natural markets, we first test for a serial correlation
feature in each of the Henry Hub and AECO natural gas prices, in the
context of the VAR framework of equations (14.7) and (14.8). The LM
feature test statistic is 11.003 for the ∆(Henry Hub price) equation and
57.984 for the ∆(AECO price) equation, with the 5% critical value being
7.81. Thus, we conclude that there is evidence of a serial correlation feature
in each of the Henry Hub and AECO natural gas prices.
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TABLE 14.3
Marginal Significance Levels of
ADF and Z(tα̂) Unit Root Tests

Log levels Logged differences
Series ADF Z(tα̂) ADF Z(tα̂)

Henry Hub gas .410 .166 .000 .000
AECO gas .076 .002 .000 .000

Notes: Sample period, daily data: 02/01/1996-26/04/2001.

Numbers are tail areas of tests.

Finally, in Table 14.4 we test for a common cycle between the U.S.
Henry Hub and AECO Alberta natural markets. The results are reported
in the same fashion as those in Table 14.2. We find that we cannot reject
the null hypothesis of a common synchronized cycle, suggesting that North
Americn gas markets are driven by a common serial correlation feature.
This is consistnt with the observation (in Figure 14.3) that there is a strong
correlation between the U.S. Henry Hub and AECO Alberta natural gas
prices. Moreover, it suggests that Henry Hub natural gas prices could be
characterized as North American natural gas prices, in the same way that
the WTI crud oil prices at Chicago are characterized as North American
crude oil prices.

TABLE 14.4
Common Cycle Tests between Henry Hub and AECO Gas

IV test
Dependent variable LIML test

∆ (AECO gas) ∆ (HH gas) ∆ (HH gas)

φ̂1 −2.474 −.254 −.279
t-statistic −2.646 −2.319 2.438
LM statistic 4.106 3.153 3.106
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Figure 14.2: Common and codependent cycle tests between WTI oil and
Henry Hub natural gas.
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Figure 14.3: U.S. Henry Hub and AECO Alberta natural gas prices,
1996-2001.
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14.5 Conclusion

We have investigated the strength of shared trends and shared cycles be-
tween WTI crude oil prices and Henry Hub natural gas prices using daily
data from January, 1990 to April, 2001. Based on the testing procedures re-
cently suggested by Engle and Kozicki (1993) and Vahid and Engle (1993),
we have rejected the null hypotheses of common and codependent cycles,
suggesting that there has been ‘de-coupling’ of the prices of these two en-
ergy sources as a result of oil and gas deregulation in the United States.

We also tested for a common cycle between the U.S. Henry Hub and
AECO Alberta natural gas markets, in an attempt to investigate the inter-
connectedness of North American natural gas markets. We could not reject
the null hypothesis of a common synchronized cycle, implying a high degree
of similarity in the impulse responses of U.S. Henry Hub and AECO Alberta
natural gas prices to cycle generating innovations. This result also confirms
the hypothesis that in the deregulated period North American natural gas
prices are largely defined by the U.S. Henry Hub price trends.
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Overview of Part 5
Apostolos Serletis

The following table contains a brief summary of the contents of the
chapters in Part 5 of the book. This part of the book consists of two
chapters that use recent advances in the financial econometrics literature.

Volatility Modelling in Energy Markets

Chapter
Number Chapter Title Contents

15 Returns and Volatility in the This chapter provides a study of the
NYMEX Henry Hub Natural determinants of daily returns and
Gas Futures Market volatility in the NYMEX natural gas

market, using recent advances in
the financial econometrics literature.

16 Measuring and Testing Chapter 16 builds on recent contributions
Natural Gas and Electricity by Grier et al. (2004) and Shields et al.
Markets Volatility: Evidence (2005) and specifies and estimates a
from Alberta’s Deregulated multivariate GARCH-M model of natural

Markets gas and electricity price changes, and
tests for causal relationships between
natural gas and electricity price changes
and their volatilities.

Chapter 15:

This chapter uses autoregressive conditional heteroscedasticity (ARCH)-
type models to investigate the determinants of returns and volatility in the
NYMEX Henry Hub natural gas futures contract market. Using daily data,
for the period that natural gas has been traded on the exchange, it finds
significant evidence of seasonal and open interest effects in both returns
and volatility.

Chapter 16:

This chapter specifies and estimates a multivariate GARCH-M model of
natural gas and electricity price changes, and tests for causal relationships

191



192 Overview of Part 5

between natural gas and electricity price changes and their volatilities, using
data over the deregulated period from January 1, 1996 to November 9,
2004 from Alberta’s (deregulated) spot power and natural gas markets.
The model allows for the possibilities of spillovers and asymmetries in the
variance-covariance structure for natural gas and electricity price changes,
and also for the separate examination of the linear and nonlinear effects of
changes in natural gas and electricity prices.



Chapter 15

Returns and Volatility in
the NYMEX Henry Hub
Natural Gas Futures
Market

Apostolos Serletis and Asghar Shahmoradi∗

15.1 Introduction

Recently economists have been creating new models and tools that can
capture important nonlinearities in economic and financial data. There
have been, for example, exciting advances in dynamical systems theory,
nonlinear time-series analysis, and stochastic volatility models. One reason
for the interest in nonlinear methods is what one might call the ‘forecasting
paradox’ — the fact that linear models produce invariably good in-sample
fits, but usually fail miserably at out-of-sample prediction. One is therefore
tempted to explore means by which apparent dependencies in the residuals
of linear models (that are inconsistent with a linear data generator) can be
exploited to produce better forecasts.

In this chapter we use recent advances in the financial econometrics
literature and conduct a thorough investigation to properly identify the
type of heteroscedasticity in the data generation process of natural gas

∗Originally published in OPEC Review (2006), 171–186. Reprinted with permission.
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futures prices. In particular, we use Engle’s (1982) autoregressive condi-
tional heteroscedasticity (ARCH) model and Bollerslev’s (1986) extension
to a generalized ARCH (GARCH) model to model time varying returns
and volatility in the NYMEX Henry Hub natural gas futures contract mar-
ket. Moreover, we follow contributions by Milonas (1986, 1991), Gay and
Kim (1987), Malick and Ward (1987), Kenyon et al. (1987), and Liew
and Brooks (1998) and investigate the determinants of daily returns and
volatility in this market.

Several recent studies have applied models from the ARCH/GARCH
family of models in modeling time varying volatility in high frequency fi-
nancial data — for example, Bollerslev, Chou, and Kroner (1992) probably
list well over 100 papers employing ARCH-type techniques to fit financial
time series. Although there have been some applications in the context of
energy prices, as for example in Deaves and Krinsky (1992) and Day and
Lewis (1993, 1997), there is no study that explicitly studies any aspects
of the NYMEX Henry Hub natural gas futures market. In this chapter,
we characterize NYMEX Henry Hub natural gas futures prices as North
American natural gas futures prices and test for seasonal, volume, and
open interest effects in daily returns and volatility over the period that
natural gas has been traded on NYMEX.

The remainder of the chapter is organized as follows. The next section
describes the data and presents some descriptive statistics for the returns
series. Sections 15.3 and 15.4 provide the necessary theoretical background
and model the returns and volatility of NYMEX natural gas futures prices,
by specifying parametric ARCH/GARCH-type models for volatility. Sec-
tion 15.5 summarizes the chapter.

15.2 The Data

We use daily NYMEX Henry Hub natural gas futures contract data, from
Norman’s Historical Data (http://www.normanshistoricaldata.com), and
construct a continuous series of one month natural gas futures prices by
using the rollover approach at the delivery date of the nearest to maturity
futures contract. We do not model the one month natural gas futures
price, zt, directly but instead we model returns by taking the logarithmic
first difference of that price, ∆ log zt. We use daily data from April 30, 1990
to June 27, 2002 — a total of 2755 observations.

In Tables 15.1, 15.2, and 15.3 we report summary statistics for daily,
monthly, and annual returns, respectively. The descriptive statistics in
Table 15.1 show a day of the week effect, with returns being positive only
on Friday, perhaps due to the release of weekly storage information. In fact,
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the lowest return is observed on Tuesday and the highest on Friday. The
monthly results in Table 15.2 are broadly consistent with the winter cycle
in natural gas that runs from November through March. In these months,
where there is the greatest uncertainty about supply and demand, average
returns are negative and the variance of returns is relatively high.

The behavior of annual returns (see Table 15.3) reflects primarily de-
velopments in North American natural gas markets, given that the bulk of
natural gas is consumed in North America. It is to be noted that natural gas

TABLE 15.1
Descriptive Statistics for Daily Returns

Mean Variance

Mon -.00034 .00042
Tue -.00087 .00024
Wed -.00052 .00023
Thu -.00008 .00020
Fri .00114 .00020

TABLE 15.2
Descriptive Statistics for Monthly Returns

Mean Variance

Jan -.00253 .00045
Feb -.00067 .00028
Mar .00199 .00017
Apr .00067 .00013
May -.00003 .00010
Jun -.00001 .00017
Jul -.00081 .00016
Aug .00063 .00019
Sep .00253 .00037
Oct .00186 .00028
Nov -.00057 .00023
Dec -.00189 .00064
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TABLE 15.3
Descriptive Statistics for Yearly Returns

Mean Variance

1990 .00074 .00019
1991 -.00080 .00013
1992 .00058 .00022
1993 .00027 .00019
1994 -.00023 .00021
1995 .00084 .00025
1996 .00019 .00060
1997 -.00042 .00024
1998 -.00027 .00022
1999 .00032 .00017
2000 .00255 .00023
2001 -.00253 .00043
2002 .00108 .00026

markets are more segmented than crude oil markets in the sense that when
North American crude oil prices change, they tend to change world-wide,
whereas the price of natural gas can easily change in North America without
any change in natural gas prices on other continents. This follows because
transportation of natural gas by pipeline is cheaper than transportation by
ship (liquefied natural gas).

15.3 Modeling Returns

Having determined the presence of seasonal effects in returns, we use the
following general autoregressive (AR) model to model the mean of returns

∆ log zt = ϕ0 +
r∑

i=1

ϕi∆ log zt−i

+
∑
j=1

djDjt +
∑
j=1

mjMjt +
∑
j=1

yjYjt

+ δ1CVOLt + δ2MVOLt + δ3OPINt + εt, (15.1)
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where Djt are day of the week dummy variables, Mjt are month of the
year dummy variables, and Yjt are yearly dummy variables. CVOLt is the
volume of the nearest to maturity futures contract, MVOLt is the market
volume (that is, the volume in all traded contracts), and OPINt is the open
interest of all contracts traded at the different maturities. r is the order of
the autoregression, (ϕ, d, m, y, δ) are unknown parameters to be estimated,
and εt is a random shock, assumed to be IN(0, σ2

ε). The optimal lag length
of the autoregression, r, was selected using the Akaike Information Criterion
(AIC) and was set equal to 3 — that is, r = 3 in (15.1).

The results of estimating equation (15.1) using ordinary least squares
(OLS) are presented in Table 15.4. We see that the lagged returns are
statistically significant and that there are significant seasonal effects. In
particular, at conventional significance levels, there are day of the week
effects, month of the year effects (in that five months, March, April, August,
September, and October are statistically significant), and year effects in
1990, 1991, 1992, 1993, 1995, and 2000. Moreover, there are significant
open interest effects, but the volume effects are found to be statistically
insignificant.

Regarding the year effects in 1990, 1991, 1992, 1993, 1995, and 2000,
those from 1990 to 1995 potentially reflect the reduced investments in ex-
ploration and production in the early 1990s compared with investments in
the 1980s and the effects of the Persian Gulf war. Due in part to mild
weather, there was no growth in gas consumption from 1996 and 1999. The
year effect in 2000 is consistent with higher wellhead prices, California’s en-
vironmental regulations on electricity generators that added to gas demand,
and to higher overall natural gas demand — in fact, that demand was met
by a large net drawdown of gas in storage and an increase in imports.

In order to achieve a more parsimonious model for the mean of returns,
we test the joint significance of various effects by performing F tests of
whether a subset of the included variables in (15.1) all have zero coefficients.
The results of these tests are presented in Table 15.5. They are generally
consistent with the individual parameter results and indicate that in a
joint test only the day of the week and volume effects are not statistically
significant. As a result, in what follows we use equation (15.1) with dj =
δ1 = δ2 = 0 as a more parsimonious model for the mean of returns; the
results of estimating this model are presented in Table 15.6. Notice that
the fit of equation (15.1) in Tables 15.4 and 15.6 is bad, as indicated by the
R2. This bad fit is to be expected, however, since ∆ log zt is a ‘noisy’ time
series.
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TABLE 15.4

OLS Parameter Estimates of Equation (15.1)

Variable Coefficient t-statistic
ϕ0 -.00884 -2.144
∆ log zt−1 -.04213 -2.181
∆ log zt−2 -.05760 -2.992
∆ log zt−3 -.03963 -2.059
Mon -.00195 -1.958
Tue -.00163 -1.676
Wed -.00213 -2.194
Thu -.00183 -1.857
Jan -.00028 -.180
Feb .00205 1.272
Mar .00519 3.283
Apr .00354 2.259
May .00240 1.578
Jun .00240 1.583
Jul .00172 1.113
Aug .00296 1.958
Sep .00465 3.005
Oct .00449 2.950
Nov .00136 .859
1990 .00853 2.079
1991 .00668 1.723
1992 .00756 2.054
1993 .00593 1.775
1994 .00449 1.435
1995 .00508 1.727
1996 .00384 1.364
1997 .00199 .773
1998 .00120 .518
1999 .00031 .162
2000 .00353 1.742
2001 -.00181 -.860
CVOL 5.55E-08 .501
MVOL 4.03E-09 .047
OPIN 1.05E-07 2.853
R2 = 0.023, DW = 1.995.
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TABLE 15.5
F-Tests of Various Combinations of
Parameter Estimates in Eq. (15.1)

Variables F -statistic p-value

∆ log zt−i 2.209 .085
Day effect 1.784 .129
Month effect 2.065 .019
Year effect 1.848 .036
CVOL, MVOL .940 .390

15.4 Modeling Volatility

So far, we have assumed that the natural gas price series has a constant
variance (that is, it is homoscedastic, as opposed to heteroscedastic) and
determined a model for the mean of returns. Many macroeconomic and
financial variables, however, exhibit clusters of volatility and tranguility
(i.e., serial dependence in the higher conditional moments), and in such
circumstances the homoscedasticity assumption is inappropriate.

To illustrate the unsatisfactory nature of standard econometric models
for modeling risk and uncertainty, consider the following first order autore-
gressive model

yt = φ0 + φ1yt−1 + εt, εt ∼ N(0, σ2),

assuming that |φ1| < 1 for stationarity, and suppose that we want to fore-
cast yt+1. The unconditional forecast of yt+1 (always being the long-run
mean of the sequence) is simply φ0/(1−φ1) and the unconditional forecast
error variance (i.e., the long-run forecast of the variance) is σ2/(1 − φ1).

Instead, if conditional forecasts are used, the conditional forecast of yt+1

is φ0 + φ1yt and the conditional forecast error variance is σ2. Clearly, the
unconditional and conditional forecast error variances are different, unless
φ1 = 0, but they are both constants — they do not depend on the avail-
able information set and hence do not change over time. In fact, since
1/(1 − φ1) > 1, the unconditional forecast has a greater variance than
the conditional forecast, meaning that conditional forecasts are preferable
(since they take into account the known current and past realizations of
series).
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TABLE 15.6
Restricted OLS Parameter Estimates of Equation (15.1)

Variable Coefficient t-statistic
ϕ0 -.00566 -1.849
∆ log zt−1 -.03890 -1.575
∆ log zt−2 -.05587 -2.135
∆ log zt−3 -.03876 -1.498
Jan -.00062 -.279
Feb .00168 .806
Mar .00473 2.423
Apr .00313 1.654
May .00216 1.182
Jun .00215 1.139
Jul .00145 .765
Aug .00279 1.454
Sep .00465 2.156
Oct .00442 2.149
Nov .00148 .734
1990 .00401 1.479
1991 .00229 .934
1992 .00340 1.391
1993 .00235 1.037
1994 .00128 .589
1995 .00223 1.047
1996 .00125 .524
1997 -.00011 -.058
1998 -.00033 -.182
1999 -.00056 -.328
2000 .00235 1.310
2001 -.00329 -1.626
OPIN 8.14E-08 2.497

R2 = 0.020, DW = 1.998.

Since the vast improvement in forecasts due to time series models, stems
from the use of the conditional mean, one might expect better forecasts with
a model in which the unconditional variance is constant but the conditional
variance, like the conditional mean, is also a random variable depending
on current and past information. A model which allows the conditional
variance to depend on the past realization of the series is the autoregressive
conditional heteroscedasticity (ARCH) model introduced by Engle (1982),



15.4. Modeling Volatility 201

according to which the conditional variance is assumed to depend on lagged
values of squared residuals, as follows

σ2
t = w0 +

p∑
i=1

αiε
2
t−i, (15.2)

with p ≥ 0 (for p = 0, εt is simply white noise) and ut and εt−i, i =
1, ..., p independent. Note that the disturbances in the ARCH(p) model
are serially uncorrelated but not independent, as they are related through
second moments.

An extension of the ARCH model is the generalized ARCH, or GARCH,
model proposed by Bollerslev (1986). In the generalized ARCH (p, q) model
— called GARCH(p, q) — we have

σ2
t = w0 +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j , (15.3)

where w0 > 0, αi ≥ 0 , i = 1, ..., p, and βj ≥ 0, j = 1, ..., q. In (16.2)
the conditional variance is assumed to depend on lagged values of squared
residuals and also on lagged values of itself — an autoregressive component
is introduced.

Having selected an optimal model for the mean of returns, equation
(15.1) with dj = δ1 = δ2 = 0, we now proceed to formally test the residuals
of that model for the presence of an ARCH-type process, before we can use
the class of ARCH/GARCH models to model volatility. We do so, using
Engle’s (1982) Lagrange multiplier test for ARCH-type disturbances. This
involves regressing the squared residuals from the autoregression (15.1),
with dj = δ1 = δ2 = 0, against a constant and q lagged values of the
squared residuals, as follows

ε̂2
t = w0 +

p∑
i=1

αiε̂
2
t−i + ut (15.4)

If there are no ARCH-type effects, the estimated coefficients α1 through
αp would be equal to zero, meaning that this regression will have little
explanatory power and the coefficient of determination, R2, will be very
low. If the sample size is T , under the null hypothesis of no ARCH-type
errors, the test statistic T ×R2 converges to a χ2

p distribution. If T ×R2 is
sufficiently large, rejection of the null hypothesis that the coefficients of the
lagged squared residuals are all equal to zero is equivalent to rejecting the
null hypothesis of no ARCH-type errors. In fact, as shown by Lee (1991)
this test is also the Lagrange multiplier test for GARCH-type disturbances,
where the null hypothesis is α1 = · · · = αp = β1 = · · · = βq = 0.
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Using 1, 2, 5 and 10 lags in equation (15.4), the Lagrange multiplier test
rejects the null hypothesis that the coefficients of the lagged squared residu-
als are all equal to zero, suggesting the existence of an ARCH/GARCH-type
process in the residuals.

Of course, any number of ARCH or GARCH models are likely to be suit-
able for modeling these effects. To optimally select a particular model from
the ARCH/GARCH family of models, we proceed as follows. We use max-
imum likelihood estimation techniques to estimate ARCH models ranging
from ARCH (1) to ARCH (15) and GARCH models ranging from GARCH
(1,1) to GARCH (3,3). We rule out those models where the parameter esti-
mates fail to converge as well as those models where a particular parameter
failed to estimate because of singularity problems. Finally, we apply the
AIC to the remaining models in order to choose the preferred model. Fol-
lowing these steps, we choose an ARCH(4) as the preferred ARCH model
and a GARCH (2,1) as the preferred GARCH model.

Next, we use conditional volatility estimates, ĥt, generated from each of
the ARCH(4) and GARCH(2,1) models to estimate the following equation,
using ordinary least squares,

ĥt = ϕ0 +
∑
j=1

djDjt +
∑
j=1

mjMjt +
∑
j=1

yjYjt

+ δ1CVOLt + δ2MVOLt + δ3OPINt + εt, (15.5)

where υt ∼IN(0, σ2
ε) and the other variables are defined as in equation

(15.1). We present the results of estimating (15.5) in Table 15.7 and report
F -tests of the joint significance of the various effects in Table 15.8, in the
same fashion as we did in Table 15.5 for equation (15.2). We find that
all the effects are statistically significant at conventional significance levels,
except for the volume effects in the ARCH(4) model and the daily and
volume effects in the GARCH(2,1) model.

15.5 Conclusion

This chapter provides a study of the determinants of daily returns and
volatility in the NYMEX natural gas market over the period from April 30,
1990 to June 5, 2002, using recent advances in the financial econometrics
literature. The contribution of the chapter is its use of models of changing
volatility to properly identify the type of heteroscedasticity in the data-
generation processes. Our results strongly support the presence of seasonal
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TABLE 15.7

OLS Parameter Estimates of Equation (15.5)

ARCH(4) GARCH(2,1)
Variable Coefficient t-statistic Coefficient t-statistic
ϕ0 .00033 10.720 .00057 13.107
Mon -1.15E-05 -1.542 -1.12E-05 -1.061
Tue 9.74E-06 1.332 9.69E-06 .938
Wed -4.35E-06 -.595 6.31E-06 .611
Thu -1.66E-06 -.223 8.11E-06 .774
Jan 3.51E-05 2.931 -1.91E-06 -.113
Feb -.00012 -10.606 -.00024 -14.356
Mar -.00019 -16.396 -.00032 -19.141
Apr -.00022 -19.107 -.00032 -19.756
May -.00027 -23.841 -.00037 -23.294
Jun -.00019 -17.117 -.00031 -19.370
Jul -.00018 -15.910 -.00029 -17.853
Aug -.00017 -15.788 -.00029 -18.241
Sep -3.63E-05 -3.116 -.00011 -6.873
Oct -2.65E-05 -2.317 -.00012 -7.480
Nov -.00012 -10.400 -.00024 -14.428
1990 -1.11E-06 -.035 -3.41E-05 -.785
1991 -6.34E-05 -2.180 -.00020 -4.967
1992 2.37E-05 .858 -.00010 -2.770
1993 1.90E-05 .759 -.00011 -3.168
1994 -1.32E-05 -.563 -.00012 -3.750
1995 -3.50E-05 -1.587 -.00015 -5.068
1996 .00012 5.989 .00014 4.882
1997 1.20E-05 .621 -9.74E-05 -3.563
1998 -3.08E-05 -1.757 -.00018 -7.262
1999 -7.70E-05 -5.303 -.00021 -10.513
2000 -1.88E-05 -1.235 -.00016 -7.433
2001 .00010 6.463 1.43E-05 .639
CVOL -4.02E-10 -.483 -6.93E-10 -.590
MVOL 5.58E-10 .877 6.36E-10 .709
OPIN 8.00E-10 2.883 1.01E-09 2.572

R2 = .467, DW = 1.06. R2 = .466, DW = .542.
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TABLE 15.8
F-Tests of Various Combinations of
Parameter Estimates in Eq. (15.5)

ARCH(4) GARCH(2,1)
Variables F -statistc p-value F -statistc p-value

Day effect 2.158 .071 1.285 .273
Month effect 147.57 .000 126.186 .000
Year effect 50.311 .000 74.937 .000
CVOL, MVOL 1.021 .360 .269 .750

and open interest effects in both returns and volatility, consistent with
evidence of previous research on other futures markets — see, for example,
Najand and Yung (1991), Foster (1995), and Liew and Brooks (1998).

Although some critics of futures markets suggest that the low cost of
trading in these markets induces excessive speculation, causing higher mar-
ket volatility, we believe that the large capital requirements and significant
lead times associated with the production and delivery of energy make these
markets very sensitive to the imbalances between demand and supply ca-
pability, thereby resulting in price volatility. Moreover, weather conditons
and capacity constraints are affecting the natural gas market in such a way
that we observe high market volatility — see, for example, Serletis (1997)
and Serletis and Shahmoradi (2005, 2006).

We have carried out univariate analysis on NYMEX natural gas prices
without exploiting the covariance between natural gas and other energy
markets. This suggests that a particularly constructive approach would po-
tentially be based on the use of a higher dimensional system that exploits
the covariance among different energy markets such as crude oil markets,
electricity markets, coal markets, and perhaps renewable markets. Focus-
ing on higher dimensional ARCH/GARCH-type modeling in the context
of energy markets and updating our analysis to capture the recent high
volatility in the natural gas market is an area for potentially productive
future research.



Chapter 16

Measuring and Testing
Natural Gas and
Electricity Markets
Volatility: Evidence from
Alberta’s Deregulated
Markets

Apostolos Serletis and Akbar Shahmoradi∗

16.1 Introduction

Recent leading-edge research has applied various innovative methods for
modeling spot wholesale electricity prices — see, for example, Deng and
Jiang (2004), León and Rubia (2004), Serletis and Andreadis (2004), and
Hinich and Serletis (2006). These works are interesting and attractive, but
have taken a univariate time series approach to the analysis of electricity
prices. From an economic perspective, however, the interest in the price of
electricity is in its relationship with the prices of various underlying primary
fuel commodities. As Bunn (2004, p. 2) recently put it

∗Originally published in Studies in Nonlinear Dynamics and Econometrics 10(3)
(2006), Article 10. Reprinted with permission.
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“ · · · take the case of gas, for example. This is now becoming the
fuel of choice for electricity generation. The investment costs
are lower than coal, or oil plant; it is cleaner and, depending
upon location, the fuel costs are comparable. But with more
and more of the gas resources being used for power generation,
in some markets the issue of whether gas drives power prices,
or vice versa, is not easily answered.”

Investigating the relationship between electricity and natural gas prices
(and their volatilities) is our primary objective in this chapter. Since natu-
ral gas is an input in electricity generation, it is expected natural gas price
changes to be (at least partly) reflected in electricity price changes. The
same argument applies to the relationship between natural gas price uncer-
tainty and electricity price uncertainty. Therefore, the investigation of the
behavior of electricity prices requires that we take into account the behavior
of natural gas prices, which rules out the possibility of relying on a single
equation approach. Moreover, to investigate the effects of uncertainty on
realizations of natural gas and electricity prices, we jointly model the con-
ditional variance-covariance process underlying natural gas and electricity
price changes.

In doing so, we build on recent contributions by Grier et al. (2004)
and Shields et al. (2005) and specify and estimate a multivariate GARCH-
M model of natural gas and electricity price changes, and test for causal
relationships between natural gas and electricity price changes and their
volatilities, using data over the deregulated period from January 1, 1996
to November 9, 2004 from Alberta’s (deregulated) spot power and nat-
ural gas markets. The model allows for the possibilities of spillovers and
asymmetries in the variance-covariance structure for natural gas and elec-
tricity price changes, and also for the separate examination of the linear
and nonlinear effects of changes in natural gas and electricity prices.

The chapter is organized as follows. Section 16.2 describes the data and
Section 16.3 provides a description of the multivariate GARCH-M model
that we use to test for causality between natural gas and electricity price
changes and their volatilities. Section 16.4 presents and discusses the em-
pirical results. The final section briefly concludes the chapter.

16.2 The Data

We use hourly electricity prices (sourced from the Alberta Power Pool),
denominated in megawatt-hours (MWh) and concentrate on Alberta’s peak
power market (in order to capture the relationship between natural gas and
power), which is a 6 day per week and 16 hours per day market — Monday
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through Saturday from 8:00 a.m. to 11:00 p.m. Because the Alberta natural
gas data is only available for weekdays and non-holidays, we aggregated the
power data for weekdays and non-holidays only. For natural gas, AECO is
the most liquid intra-provincial index and daily spot prices were obtained
from Bloomberg. The sample period is from January 1, 1996 to November
9, 2004.

Table 16.1 presents summary statistics for the levels and changes of
natural gas and electricity prices and Figures 16.1 and 16.2 plot electricity
and natural gas prices, respectively. As can be seen in the first panel of
Table 16.1, electricity prices are more volatile than natural gas prices, and
there is significant evidence of skewness and excess kurtosis in both series
and their changes, with all series failing to satisfy the null hypothesis of
the Bera-Jarque (1980) test for normality. The lower panel of Table 16.1
presents Ljung–Box (1979) tests for serial correlation indicating that there
is a significant amount of serial dependence in both levels and changes
of natural gas and electricity prices. Similarly a Ljung–Box test for se-
rial correlation in the squared data provides strong evidence of conditional
heteroscedasticity in the data.

Finally, Engle and Granger (1987) cointegration tests (not reported
here) suggest that the null hypothesis of no cointegration between elec-
tricity and natural gas prices is rejected at conventional significance levels,
suggesting an error correction representation between these series.

16.3 The Model

We use a general asymmetric GARCH-in Mean model of natural gas and
electricity price changes that allows for the possibilities of spillovers and
asymmetries in the variance-covariance structure of natural gas and elec-
tricity prices. In particular, we use an extended version of a VARMA
(vector autoregressive moving average) GARCH in mean model, in natural
gas price changes (gt) and electricity price changes(et), as follows

yt = a + b ε̂t−1 +
p∑

i=1

Γiyt−i

+
q∑

j=0

Ψjht−j +
r∑

k=1

Φkzt−k +
s∑

l=1

Θlut−l + ut (16.1)
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TABLE 16.1
Summary Statistics of Daily Natural Gas and

Electricity Prices

Series Stand. Dev. Skewness Excess Kurtosis Jarque-Bera

Pg 2.277 1.041 [0.000] 1.476 [0.000] 599.10 [0.000]
Pe 79.354 3.271 [0.000] 12.721 [0.000] 18810. [0.000]

∆Pg 0.074 1.243 [.000] 41.319 [.000] 157500 [.000]
∆Pe 0.441 -0.023 [.000] 3.824 [.000] 1344.59 [.000]

Ljung-Box tests of unconditional correlations

Q(4) Q2(4) Q(12) Q2(12)
Pg 8504.11 [.000] 7812.02 [.000] 24411.1 [.000] 21126.1 [.000]
Pe 4202.79 [.000] 2929.17 [.000] 10585.3 [.000] 7038.91 [.000]

∆Pg 158.63 [.000] 215.17 [.000] 175.25 [.000] 221.58 [.000]
∆Pe 281.02 [.000] 431.22 [.000] 294.26 [.000] 628.43 [.000]

Note: Numbers in parentheses are p-values. Q(4) and Q2(4) are Q-statistics for

testing serial correlation in the residuals and the squared residuals, respectively.

with

ut|Ωt−1 ∼ (0, Ht) , Ht =

[
hgt hget

hget het

]
,

where Ωt−1 denotes the available information set in period t − 1 and
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Notice that ht−j and zt−k have been introduced to take anticipated and
unanticipated volatilities into account and ε̂t−1 is the error correction term
from the long run cointegrating regression.

As in Grier et al. (2004) and Shields et al. (2005), we introduce an
asymmetry into the conditional variance-covariance process in order to deal
with good and bad news about natural gas and electricity price changes. In
particular, if natural gas price changes are higher than expected, we take
that to be bad news. We therefore capture bad news about natural gas price
changes by a positive natural gas price change residual, by defining εgt =
max {ugt , 0}. We also capture bad news about electricity price changes by
defining εet = max {uet , 0}.

It is to be noted that because natural gas is an input in electricity
generation, εgt = max {ugt , 0} might be bad news for electricity producers
and then partly for consumers, but it should be good news for natural gas
producers. In this regard, we also estimated the model for the case where
εgt = min {ugt , 0}, and we got the same test results, although the estimated
coefficients were quantitatively and sometimes qualitatively different.

Following Grier et al. (2004), we allow for asymmetric responses as
follows

Ht = C ′C +
f∑

j=1

B′
jHt−jBj

+
κ∑

k=1

A′
kut−ku′

t−kAk + D′εt−1ε
′
t−1D (16.2)

where C, Bj, Ak, and D are n×n matrices (for all values of j and k), with
C being a triangular matrix to ensure positive definiteness of H . There
are n2 (p + q + r + s + 1)+n(n+1)/2+n2(f +κ+1) parameters in (16.1)-
(16.2) and in order to deal with estimation problems in the large parameter
space we assume that f = κ = 1 in equation (16.2), consistent with recent
empirical evidence regarding the superiority of GARCH(1,1) models — see,
for example, Hansen and Lunde (2005).
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16.4 Empirical Results

We select the optimal values of p, q, r, and s in (16.1) in such a way
that there is no serial correlation and ARCH effects in the standardized
residuals of the model. In doing so, we choose p = 4, s = 3, r = 2, and
q = 1 in equation (16.1) and f = κ = 1 in equation (16.2). The inclusion
of ht in (16.1) is consistent with the predictions of finance theory that an
asset with a higher perceived risk should pay a higher return on average.
The term ht−1 is included in (16.1), because it helps, among other lags, to
eliminate serial correlation and ARCH effects in the standardized residuals.

In Table 16.2 we report quasi-maximum likelihood (QML) estimates of
the parameters (with p-values in parantheses) and diagnostic test statistics,
based on the standardized residuals,

ẑjt =
ujt√
ĥjt

, for j = e, g.

As shown in Table 16.2, the Ljung-Box (1979) Q-statistic for testing serial
correlation cannot reject the null of no autocorrelation (at conventional sig-
nificance levels) for the values and the squared values of the standardized
residuals, suggesting that there is no evidence of conditional heteroscedas-
ticity. In addition, the failure of the data to reject the null hypotheses of
E(z) = 0 and E(z2) = 1, implicitly indicates that the multivariate asym-
metric GARCH-M model does not bear significant misspecification error —
see, for example, Kroner and Ng (1998).

Figures 16.3-16.5 show the conditional variances for natural gas and
electricity price changes as well as the conditional covariance, implied by
the estimates of the model. The estimated conditional standard deviations,
being the one-period ahead forecasts conditional on past information, are
more likely to be a correct representation of future uncertainty than uncon-
ditional standard deviations. As can be seen in Figures 16.3 and 16.4, the
conditional variance of the electricity price seems to be higher on average
than that of the natural gas price. Moreover, for natural gas, volatility
appears highest (on average) in 1997 whereas for electricity the period
of greatest volatility appears between 1999 and 2001 — a period of in-
creased demand, no excess capacity, and considerable uncertainty about
future prices.

Next we examine the model’s ability in dealing with potential biases
resulting from good and bad news in the natural gas and electricity mar-
kets. In doing so, we rely on diagnostic test statistics based on the ‘gen-
eralized residuals’ of Kroner and Ng (1998), defined as εijt = uitujt − hijt

for i, j = e, g. If our model is specified correctly, it should be able to capture
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TABLE 16.2
The Multivariate Asymmetric Garch-M Model

Model: Equations (1) and (2) with p = 4, s = 3, r = 2, q = 1 and f = κ = 1

Conditional mean equation

a =


−.0009
(.0002)

.003
(.002)

 ; b =


−.0003
(.0001)

−.0008
(.0005)

 ; Γ1 =


−.103 −.041
(.043) (.001)

.255 −.950
(.143) (.006)

 ; Γ2 =


.115 −.023

(.076) (.004)

.308 −.073
(.038) (.007)



Γ3 =


.262 .027

(.027) (.001)

.197 .409
(.080) (.016)

 ; Γ4 =


.029 .004

(.019) (.001)

.054 .057
(.029) (.010)

 ; Ψ0 =


1.610 −.117
(.169) (.014)

−.049 −.346
(.179) (.025)



Ψ1 =


−1.365 .125
(.115) (.015)

−.136 .343
(.219) (.025)

 ; Φ1 =


.042 −.009

(.000) (.006)

.003 .253
(.006) (.007)

 ; Φ2 =


−.037 .006
(.000) (.000)

−.015 −.199
(.005) (.007)



Θ1 =


.002 .053

(.063) (.000)

.141 .315
(.144) (.018)

 ; Θ2 =


−.254 −.0001
(.083) (.003)

.117 −.604
(.083) (.011)

 ; Θ3 =


−.256 −.050
(.037) (.005)

.129 −.704
(.099) (.010)


Residual diagnostics

Mean Variance Q(4) Q2(4) Q(12) Q2(12)

ugt -.009 [.651] 1.005 [.998] 12.71 [.012] 1.090 [.895] 20.71 [.064] 4.329 [.976]

uet -.010 [.633] .992 [.997] 1.526 [.821] 5.629 [.228] 4.351 [.976] 9.501 [.659]

Conditional variance-covariance structure

C =


.009 .006

(.000) (.005)

.028
(.001)

 ; B =


.860 −.012

(.002) (.008)

.0003 .975
(.0004) (.008)

 ;

A =


.524 .061

(.022) (.032)

−.007 .150
(.001) (.032)

 ;D =


.197 .088

(.058) (.030)

−.006 −.195
(.003) (.006)
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the effect of any kind of good and bad news in the natural gas and electricity
markets, resulting in no sign bias. In fact, in all symmetric GARCH models,
the news impact curve — see Engle and Ng (1993) — is symmetric and
centered at εit−1 = 0. A generalized residual can be thought of as the
distance between a point on the scatter plot of uitujt from a corresponding
point on the news impact curve. If the conditional heteroscedasticity part
of the model is correct, then Et−1(uitujt −hijt) = 0 for all values of i and j.
In other words, hijt is the conditional expectation of uitujt . For example,
if the model (16.1)-(16.2) gives a covariance news impact surface — a three
dimensional graph of hegt against uet and ugt — which is too low whenever
the shock to the natural gas price changes is negative (ugt < 0), then the
vertical distance between hegt and uetugt will tend to be positive.

The Engle and Ng (1993) and Kroner and Ng (1998) misspecification
indicators test whether we can predict the generalized residuals by some
variables observed in the past, but which are not included in the model —
this is exactly the intuition behind Et−1(uitujt − hijt) = 0. In this regard,
we follow Kroner and Ng (1998) and Shields et al. (2005) and define two
sets of misspecification indicators. In a two dimensional space, we first
partition (uet−1 , ugt−1) into four quadrants in terms of the possible sign of
two residuals. Then to shed light on any possible sign bias of the model,
we define the first set of indicator functions as I(uet−1 < 0), I(ugt−1 < 0),
I(uet−1 < 0; ugt−1 < 0), I(uet−1 > 0; ugt−1 < 0), I(uet−1 < 0; ugt−1 > 0) and
I(uet−1 > 0; ugt−1 > 0), where I(·) equals one if the argument is true, and
zero otherwise. Significance of any of these indicator functions indicates
that the model (16.1)-(16.2) is incapable of predicting the effects of some
shocks to either et or gt. Moreover, due to the fact that the possible effect
of a shock could be a function of both the size and the sign of the shock,
we define u2

et−1
I(uet−1 < 0), u2

et−1
I(ugt−1 < 0), u2

gt−1
I(uet−1 < 0), and

u2
gt−1

I(ugt−1 < 0). These indicators are technically scaled versions of the
former ones, with the magnitude of the shocks as a scale measure.

We conducted 33 misspecification indicator tests. As can be seen in
Table 16.3, all indicators (except those in 7 cases) fail to reject (at the 5%
level) the null of no misspecification — all test statistics in Table 16.3 are
distributed as χ2(1). Hence, our model (16.1)-(16.2) captures the effects of
all sign bias and sign-size scale depended shocks in predicting volatility and
there is (in general) no significant misspecification error. This means that
the exclusion of some other variable, in either yt or ht, is not expected to
lead to significant misspecification problems.

As can be seen in Table 16.4, the diagonality restriction, γ
(i)
12 = γ

(i)
21 =

θ
(l)
12 = θ

(l)
21 = 0 for all i, l is rejected, meaning that the data provide strong

evidence of the existence of dynamic interactions between et and gt. The



218 Chapter 16. Volatility in Natural Gas and Power Markets

null hypothesis of homoscedastic disturbances requires the A, B, and D
matrices to be jointly insignificant (that is, αij = βij = δij = 0 for all
i, j) and is rejected at the 1% level or better, suggesting that there is sig-
nificant conditional heteroscedasticity in the data. The null hypothesis of
symmetric conditional variance-covariances, which requires all elements of
the D matrix to be jointly insignificant (that is, δij = 0 for all i, j), is
rejected at the 1% level or better, implying the existence of some asym-
metries in the data which the model is capable of capturing. Also, the
null hypothesis of a diagonal covariance process requires the off-diagonal
elements of the A, B, and D matrices to be jointly insignificant (that is,
α12 = α21 = β12 = β21 = δ12 = δ21 = 0), but these estimated coefficients
are jointly significant at the 1% level or better.

TABLE 16.3
Diagnostic Tests Based on the News Impact Curve

uetuet − het uetugt − hegt ugtugt − hgt

E(·) .129 .922 .445
I(uet−1 < 0) .245 .040 .067
I(ugt−1 < 0) .680 .399 .031
I(uet−1 < 0; ugt−1 < 0) .000 .024 .752
I(uet−1 > 0; ugt−1 < 0) .067 .690 .033
I(uet−1 < 0; ugt−1 > 0) .233 .401 .791
I(uet−1 > 0; ugt−1 > 0) .844 .247 .382
u2

et−1
I(uet−1 < 0) .682 .278 .323

u2
et−1

I(ugt−1 < 0) .387 .870 .000
u2

gt−1
I(uet−1 < 0) .171 .185 .246

u2
gt−1

I(ugt−1 < 0) .403 .022 .151

Note: Numbers are tail areas of tests.

Finally, in order to establish the causal relationship between electricity
and natural gas prices, in the second half of Table 16.4 (under Granger
causality tests) we test a number of null hypotheses. In particular, we test
the null hypothesis that electricity price changes do not linearly cause nat-
ural gas price changes, γ

(i)
12 = θ

(l)
12 = 0 for i = 1, 2, 3 and l = 1, 2, the null

hypothesis that electricity price changes do not nonlinearly cause natural
gas price changes, ψ

(1)
12 = ψ

(2)
12 = φ

(1)
12 = φ

(2)
12 = α12 = β12 = δ12 = 0, and

finally the joint null that electricity price changes do not cause natural gas
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TABLE 16.4
Hypotheses Testing And Granger Causality Tests

Model: Equations (1) and (2) with p = 4, s = 3, r = 2, q = 1 and f = κ = 1

Hypotheses testing

Diagonal VARMA H0 : γ
(i)
12 = γ

(i)
21 = θ

(l)
12 = θ

(l)
21 = 0, for all i and l .000

No GARCH H0 : αij = βij = δij = 0, for all i, j .000
No GARCH-M H0 : ψk

ij = φk
ij = 0, for all i, j, k .000

No asymmetry H0 : δij = 0, for i, j = 1, 2 .000
Diagonal GARCH H0 : α12 = α21 = β12 = β21 = δ12 = δ21 = 0 .000

Granger causality tests

Causality from electricity to natural gas
No linear causality: H1

0 : γ
(i)
12 = θ

(l)
12 = 0, for all i and l .000

No nonlinear causality: H2
0 : ψ

(j)
12 = φ

(k)
12 = α12 = β12 = δ12 = 0, for all j and k .000

No causality: H0 : H1
0 + H2

0 .000

Causality from natural gas to electricity
No linear causality: H1

0 : γ
(i)
21 = θ

(l)
21 = 0, for all i and l .000

No nonlinear causality: H2
0 : ψ

(j)
21 = φ

(k)
21 = α21 = β21 = δ21 = 0, for all j and k .000

No causality: H3
0 : H1

0 + H2
0 .000

Note: Numbers (in the last column) are tail areas of tests.
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price changes (which is the joint application of both the linear and nonlinear
restrictions). The roles of electricity and natural gas are reversed in another
set of tests to see whether there is a feedback relationship among these
variables. All the causality tests are carried out in terms of the Lagrange
multiplier principle.

The results in Table 16.4 indicate that there is bidirectional (linear and
nonlinear) causality between natural gas and electricity price changes.

16.5 Conclusions

This chapter provides a study of the relationship between natural gas and
electricity price changes and their volatilities, using recent advances in the
financial econometrics literature. In the context of a VARMA GARCH-in
mean model, we jointly model the conditional variance-covariance process
underlying natural gas and electricity price changes. Our model provides a
good statistical description of the conditional mean and conditional
variance-covariance processes characterizing natural gas and electricity price
changes.

The model indicates that there is bidirectional (linear and nonlinear)
causality between natural gas and electricity prices. It is to be noted that
we interpet causality in terms of predictability and not as implying an
underlying structural economic relationship between natural gas and elec-
tricity prices and their volatilities. Thus, the existence of bidirectional
causality between natural gas and electricity prices means that there are
empirically effective arbitraging mechanisms in Alberta’s natural gas and
power markets, raising questions about the efficient markets hypothesis.

This chapter has allowed study of the joint determination of electricity
and natural gas prices and focused on relationships between uncertainty
about natural gas and electricity prices and their average outcomes. It
rules out alternative volatility models that dot not allow for the possibil-
ities of spillovers and asymmetries in the variance-covariance matrix for
natural gas and electricity price changes. This is important in volatility
measurement — one of the most important issues in the whole of finance
— with significant implications for policy and risk management.
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Overview of Part 6
Apostolos Serletis

The following table contains a brief summary of the contents of the
chapters in Part 6 of the book. Part 6 of the book consists of three chapters
that apply tests from statistics and dynamical systems theory to examine
the behaviour of energy prices.

Chaos, Fractals, and Random
Modulations in Energy Markets

Chapter
Number Chapter Title Contents

17 The North American Natural It tests for deterministic chaos in seven
Gas Liquids Markets are Mont Belview, Texas hydrocarbon
Chaotic markets, using the Lyapunov exponent

estimator of Nychka et al. (1992).

18 Random Fractal Structures in It uses various tests from statistics and
North American Energy Markets dynamical systems theory to support a

random fractal structure for North
American energy markets.

19 Randomly Modulated Periodic This chapter uses hourly electricity
Signals in Alberta’s Electricity prices and MW hour demand for
Market Alberta to test for randomly

modulated periodicity. It detects
relatively steady weekly and daily
cycles in demand, but very unstable
cycles in prices.

Chapter 17:

This chapter tests for deterministic chaos (i.e., nonlinear deterministic
processes which look random) in seven Mont Belview, Texas hydrocarbon
markets, using monthly data drom 1985:1 to 1996:12 — the markets are
those of ethane, propane, normal butane, iso-butane, naptha, crudel oil,
and natural gas. In doing so, it uses the Lyapunov exponent estimator of
Nychka, Ellner, Gallant, and McCaffrey (1992). It concludes that there is
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evidence consistent with a chaotic nonlinear generation process in all five
natural gas liquids markets.

Chapter 18:
This chapter uses daily observations on West Texas Intermediate (WTI)
crude oil prices at Chicago and Henry Hub natural gas prices at Louisiana
(over the deregulated period of the 1990s) and various tests from statis-
tics and dynamical systems theory to support a random fractal structure
for North American energy markets. In particular, this evidence is sup-
ported by the Vassilicos et al. (1994) multifractal structure test and the
Ghashghaie et al. (1996) turbulent behavior test.

Chapter 19:

This last chapter uses hourly electricity prices and MW hour demand for
Alberta, Canada over the deregulated period after 1996 to test for randomly
modulated periodicity. In doing so, it applies the signal coherence spectral
analysis to the time series of hourly spot prices and megawatt-hours (MWh)
demand from 1/1/1996 to 12/7/2003 using the FORTRAN 95 program
developed by Hinich (2000). It detects relatively steady weekly and daily
cycles in demand but very unstable cycles in prices.



Chapter 17

The North American
Natural Gas Liquids
Markets are Chaotic

Apostolos Serletis and Periklis Gogas∗

17.1 Introduction

In the recent years, interest in deterministic chaos (i.e., nonlinear deter-
ministic processes which look random) has increased tremendously and the
literature is still growing. Besides its obvious intellectual appeal, chaos
represents a radical change of perspective in the explanation of fluctuations
observed in economic and financial time series. In this view, the fluctua-
tions and irregularities observed in such series receive an endogenous expla-
nation and are traced back to the strong nonlinear deterministic structure
that can pervade the economic system. Moreover, if chaos can be shown
to exist, the implication would be that (nonlinearity-based) prediction is
possible (at least in the short run and provided the actual generating mech-
anism is known exactly). Prediction, however, over long periods is all but
impossible, due to the ‘sensitive dependence on initial conditions’ property
of chaos

Until recently chaotic dynamics had been studied almost exclusively
by theoreticians. However, theorizing might be viewed (by economists) as

∗Originally published in The Energy Journal 20 (1999), 83-103. Reprinted with
permission.
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empty if there is no evidence of chaos in macroeconomic and financial time
series.

Therefore, a number of researchers have recently focused on testing for
nonlinearity in general and chaos in particular in economic and financial
time series, with encouraging results, especially in the case of financial
time series. For example, Scheinkman and LeBaron (1989) studied United
States weekly returns on the Center for Research in Security Prices (CRSP)
value-weighted index, and found rather strong evidence of nonlinearity and
some evidence of chaos. Similar results have been obtained by Frank and
Stengos (1989), investigating daily prices for gold and silver. More recently,
Serletis and Gogas (1997) test for chaos in seven East European black-
market exchange rates and find evidence consistent with a chaotic nonlinear
generation process in two out of the seven series — the Russian ruble and
East German mark. Barnett and Serletis (1999) provide a state-of -the -art
review of this literature.

In this chapter we test for deterministic chaos in North American hydro-
carbon markets. In doing so, we use monthly data, from 1985:1 to 1996:12,
on Mont Belview, Texas ethane (C2), propane (C3), normal butane (nC4),
iso-butane (iC4), naptha (C5), crude oil, and natural gas prices. In the
last decade, the North American hydrocarbon industry has seen a dra-
matic transformation from a highly regulated environment to one which is
more market-driven, and this transition has led to the emergence of differ-
ent markets (especially for natural gas and natural gas liquids) throughout
North America — see Serletis (1997), for example, for more details. How-
ever, capacity constraints seem to be distorting these markets raising the
possibility of chaotic price behavior, arising from within the structure of
these markets.

The chapter is organized along the following lines. Section 17.2 pro-
vides some background regarding North American hydrocarbon markets.
Section 17.3 discusses some basic data facts and investigates the univariate
time series properties of Belview hydrocarbon prices, interpreting the re-
sults in terms of the permanent/temporary nature of shocks. Section 17.4
provides a description of the key features of the Nychka et al. (1992) Lya-
punov exponent estimator, focusing explicit attention on the test’s ability
to detect chaos. Section 17.5 presents the results of the chaos tests and the
final section concludes with some suggestions for potentially useful future
empirical research.
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17.2 Background

The raw natural gas that comes from wells consists mainly of methane
(C1) . However, it also contains various quantities of other heavier hydro-
carbons such as ethane (C2) , propane (C3) , butane (C4), and pentane plus(
C+

5

)
— the subscripts correspond to the number of carbon atoms that the

respective gas molecule contains. Moreover, butane can take one of two
forms (isomers), normal butane (nC4) and isobutane (iC4). These heavier
products (with respect to methane) are collectively known as natural gas
liquids (NGLs), with C3 and C4 often referred to as liquified petroleum
gases (LPGs).

NGLs are extracted from raw natural gas in mixed streams. For exam-
ple, a C+

2 stream contains C2, C3, C4, and C5 while a C+
3 stream contains

all of the above except C2. In fact, some liquids extraction from raw natural
gas is necessary in order to meet minimum (gas) pipeline quality specifi-
cations. Also, the majority of the C+

3 is removed from raw natural gas
to prevent condensation of these liquids in gas pipelines. Of course, the
amount of processing depends on how ‘wet’ or ‘dry’ the raw gas is — gas
that is rich in NGLs is referred to as ‘wet,’ whereas gas with a lower than
average NGL content is referred to as ‘dry’ or ‘lean.’

Liquids production depends on raw natural gas production, which de-
pends on geographic distribution across basins. In the last decade, the
North American natural gas industry has seen a dramatic transformation
from a highly regulated industry to one which is more market-driven. The
transition to a less regulated, more market-oriented environment has led
to the emergence of different spot markets throughout North America. In
particular, producing area spot markets have emerged in Alberta, British
Columbia, Rocky Mountain, Anadarko, San Juan, Permian, South Texas,
and Louisiana basins. Moreover, production sites, pipelines and storage
services are more accessible today, thereby ensuring that changes in mar-
ket demand and supply are reflected in prices on spot, futures, and swaps
markets.

Liquids markets, however, have their own dynamics. For example, the
fuels do not compete at any of the major burnertips and what has been
done to restructure the North American natural gas business has little to
do with liquids markets. Capacity constraints, however, that distort North
American natural gas markets impact production of natural gas and thus
processed liquids. For example, the development of spot markets for natural
gas and of storage facilities has had an effect on propane markets, especially
the use of propane for peaking and enriching of lean gas streams. Also, on
the demand side, there is not a large consumer market for liquids in the
United States and Canada, in the sense that liquids are not a primary
domestic or commercial fuel, like they are in other countries.



228 Chapter 17. Chaos in Natural Gas Liquids Markets

Our objective in this study is not to examine how the North American
hydrocarbon markets are linked together, but to test for deterministic chaos
in North American hydrocarbon markets, using Mont Belview, Texas spot
prices. One of the most interesting aspects of Belview prices is that they
are ‘marker’ prices for traders from many countries. For example, liquids
traders at Petrobras, Brazil’s national oil company, use Belview in all of
their trading formulas. Moreover, international trading activity is impor-
tant in the formation of liquids prices at Belview. Brazil, for example, is a
huge importer of liquids from the United States (and elsewhere), and liq-
uids constitute almost 80% of domestic fuel use in Brazil (and about 90%
in Mexico), suggesting that liquids prices at Belview have more to do with
trading factors overseas than with North America.

In what follows, we turn to a discussion of some basic facts and to an in-
vestigation of the univariate time series properties of Belview hydrocarbon
prices. In Section 17.4, we consider univariate statistical tests for nonlin-
earity and chaos that have been recently motivated by the mathematics of
deterministic nonlinear dynamical systems.

17.3 Basic Facts and Integration Tests

One interesting feature of Belview hydrocarbon prices is the contempora-
neous correlation between these prices. These correlations are reported in
Table 17.1 for log levels and in Table 17.2 for first differences of log lev-
els. To determine whether these correlations are statistically significant,
Pindyck and Rotemberg (1990) is followed and a likelihood ratio test of the
hypotheses that the correlation matrices are equal to the identity matrix is
performed. The test statistic is

−2 ln
(
|R|N/2

)

where |R| is the determinant of the correlation matrix and N is the number
of observations. This test statistic is distributed as χ2 with 0.5q(q − 1)
degrees of freedom, where q is the number of series.
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TABLE 17.1
Contemporaneous Correlations Between Logged Prices

Crude Natural
C2 C3 nC4 iC4 C5 oil gas

C2 1.000
C3 0.767 1.000
nC4 0.686 0.906 1.000
iC4 0.588 0.821 0.923 1.000
C5 0.611 0.766 0.869 0.928 1.000

Crude oil 0.547 0.701 0.823 0.890 0.956 1.000
Natural gas 0.431 0.437 0.396 0.278 0.289 0.266 1.000

χ2(21) = 1353.50

Note: Monthly data: 1985:1-1996:12.

The test statistic is 1353.50 with a p-value of 0.000 for the logged hy-
drocarbon prices in Table 17.1, suggesting that the hypothesis that Belview
hydrocarbon prices are uncorrelated in log levels is rejected. Turning now
to Table 17.2, we see that the test statistic is 849.57 with a p-value of 0.000
for the first differences of the logged prices. Clearly, the null hypothesis
that these prices are uncorrelated in first differences of log levels is also
rejected.

The first step in testing for nonlinearity and chaos is to test for the
presence of a stochastic trend (a unit root) in the autoregressive repre-
sentation of each individual series. Nelson and Plosser (1982) argue that
most macroeconomic and financial time series have a unit root (a stochas-
tic trend), and describe this property as one of being ‘difference stationary’
(DS) so that the first difference of a time series is stationary. An alternative
‘trend stationary’ model (TS) has been found to be less appropriate.

In what follows we test the null hypothesis of a stochastic trend against
the trend-stationary alternative by estimating by ordinary least-squares
(OLS) the following augmented Dickey-Fuller (ADF) type regression (see
Dickey and Fuller, 1981)

∆ log yt = a0 + a2t + γ log yt−1 +
k∑

j=1

bj∆ log yt−j + εt (17.1)



230 Chapter 17. Chaos in Natural Gas Liquids Markets

TABLE 17.2
Contemporaneous Correlations Between

Differenced (Logged) Prices

Crude Natural
C2 C3 nC4 iC4 C5 oil gas

C2 1.000
C3 0.785 1.000
nC4 0.702 0.811 1.000
iC4 0.617 0.725 0.828 1.000
C5 0.646 0.708 0.777 0.803 1.000

Crude oil 0.582 0.621 0.701 0.703 0.862 1.000
Natural gas 0.222 0.172 0.121 0.011 0.005 0.035 1.000

χ2(21) = 849.57

Note: Monthly data: 1985:2-1996:12.

where ∆ is the difference operator. The k extra regressors in (17.1) are
added to eliminate possible nuisance parameter dependencies in the limit
distributions of the test statistics caused by temporal dependencies in the
disturbances. The optimal lag length (that is, k) is taken to be the one
selected by the Akaike information criterion (AIC) plus 2 — see Pantula et
al. (1994) for details regarding the advantages of this rule for choosing the
number of augmenting lags in equation (17.1).

Table 17.3 presents the results. The first column of Table 17.3 gives the
optimal value of k in equation (17.1), based on the AIC plus 2 rule, for each
price series. This identifies k to be 3 for C2, nC4, iC4, and C5, 4 for C3, 5
for crude oil, and 10 for natural gas. The t-statistics for the null hypothesis
γ = 0 in equation (17.1) are given under ττ , in Table 17.3. Under the null
hypothesis that γ = 0, the appropriate critical value of ττ at the 5% level
(with 100 observations) is -3.45 — see Fuller (1976, Table 8.5.2). Hence,
the null hypothesis of a unit root cannot be rejected for all series.

Since the null hypothesis of a unit root hasn’t been rejected, there is
a question concerning the test’s power in the presence of the deterministic
part of the regression (i.e., a0 + a2t). In particular, one problem is that the
presence of the additional estimated parameters reduces degrees of freedom
and the power of the test — reduced power means that we will conclude
that the process contains a unit root when, in fact, none is present. Another
problem is that the appropriate statistic for testing γ = 0 depends on which
regressors are included in the model.
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TABLE 17.3
Unit Root Test Results

Test statistics
Series k ττ t(a2) φ3 τµ Decision

C2 3 -3.09 1.66 5.48 -2.75 I(1)
C3 4 -2.59 2.43 4.64 -1.67 I(1)
nC4 3 -3.33 1.53 6.42 -3.13* I(0)
iC4 3 -2.83 1.11 4.83 -2.82 I(1)
C5 3 -3.26 0.95 6.22 -3.32* I(0)

Crude oil 5 -3.20 0.94 6.03 -3.23* I(0)
Natural gas 10 -1.80 2.74 4.94 -1.16 I(1)

Note: Monthly data: 1985:1-1996:12. All the series are in logs. An

asterisk indicates rejection of the null hypothesis at the 5% significance

level. ττ is the t-statistic for the null hypothesis γ = 0 in equation (17.1).

Under the null hypothesis, the appropriate critical value of ττ at the 5%

significance level (with 100 observations) is -3.45 — see Fuller (1976,

Table 8.5.2). t(a2) is the t-statistic for the presence of the time trend

(i.e., the null hypothesis a2 = 0) in equation (17.1), given the presence of

a unit root. The appropriate 95% critical value for t(a2), given by

Dickey and Fuller (1981), is 2.79. The φ3 statistic tests the joint null

a2 = γ = 0 in equation (17.1). The 95% critical value, given by Dickey

and Fuller (1981) is 6.49. Finally, τµ is the t-statistic for the null γ = 0
in equation (17.2). The appropriate 95% critical value of τµ is -2.89 — see

Dickey and Fuller (1976, Table 8.5.2).

Although we can never be sure of the actual data-generating process,
here we follow the procedure suggested by Doldado et al. (1990) for testing
for a unit root when the form of the data-generating process is unknown.
In particular, since the null hypothesis of a unit root is not rejected, it
is necessary to determine whether too many deterministic regressors are
included in equation (17.1). We therefore test for the significance of the
trend term in equation (17.1) under the null of a unit root, using the t(a2)
statistic in Table 17.3. Under the null that a2 = 0 given the presence of
a unit root, the appropriate critical value of t(a2) at the 5% significance
level is 2.79 — see Dickey and Fuller (1981). Clearly, the null cannot be
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rejected, suggesting that the trend is not significant. The φ3 statistic which
tests the joint null hypothesis a2 = γ = 0 reconfirms this result.

This means that we should estimate the model without the trend, i.e.,
in the following form

∆ log yt = a0 + γyt−1 +
k∑

j=1

bj∆ log yt−j + εt (17.2)

and test for the presence of a unit root using the τµ statistic. The results,
reported in Table 17.3, indicate that the null hypothesis of a unit root is
now rejected for nC4, C5, and crude oil. The remaining series do contain a
unit root, based on this unit root testing procedure. Our decision regarding
the univariate time series properties of these series is summarized in the last
column of Table 17.3.

17.4 Tests for Chaos

Recently, five highly regarded tests for nonlinearity or chaos (against vari-
ous alternatives) have been introduced — see Barnett et al. (1995, 1997) for
a detailed discussion. All five of the tests are purported to be useful with
noisy data of moderate sample sizes. The tests are the Hinich (1982) bis-
pectrum test, the BDS (Brock, Dechert, Scheinkman, and LeBaron, 1996)
test, White’s (1989) neural network test, Kaplan’s (1994) test, and the Ny-
chka, Ellner, Gallant, and McCaffrey (1992) dominant Lyapunov exponent
estimator. Another very promising test [that is, similar in some respects to
the Nychka, et al. (1992) test] has also been recently proposed by Gencay
and Dechert (1992).

It is to be noted, however, that the Hinich bispectrum test, the BDS test,
White’s test, and Kaplan’s test are currently in use for testing nonlinear
dependence [whether chaotic (i.e., nonlinear deterministic) or stochastic],
which is necessary but not sufficient for chaos. Only the Nychka et al. (1992)
and the Gencay and Dechert (1992) tests are specifically focused on chaos as
the null hypothesis. In what follows, we only apply the Lyapunov exponent
estimator of Nychka et al. (1992). This is a Jacobian-based method involving
the use of a neural net to estimate a map function by nonlinear least squares,
and subsequently the use of the estimated map and the data to produce an
estimate of the dominant Lyapunov exponent. We first describe this test,
following Serletis and Gogas (1997).

We assume that the data {xt} are real-valued and are generated by a
nonlinear autoregressive model of the form

xt = f(xt−L, xt−2L, . . . , xt−mL) + et (17.3)
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where L is the time-delay parameter, m is the length of the autoregression,
and et is a sequence of zero mean (and unknown constant variance) inde-
pendent random variables. A state-space representation of (17.3) can be
written as follows

xt

xt−L

...
xt−mL+L

 =


f(xt−L, . . . , xt−mL)

xt−L

...
xt−mL+L

+


et

0
...
0


or equivalently,

Xt = F (Xt−L) + Et (17.4)

where

Xt = (xt, xt−L, . . . , xt−mL+L)T ,

F (Xt−L) = f((xt−L, . . . , xt−mL) , xt−L, . . . , xt−mL+L)T ,

and Et = (et, 0, . . . , 0)T
.

The definition of the dominant Lyapunov exponent, λ, can be formu-
lated more precisely as follows. Let X0, X ′

0 ∈ Rm denote two ‘nearby’
initial state vectors. After M iterations of model (17.4) with the same
random shock we have (using a truncated Taylor approximation)

‖XM − X ′
M‖ =

∥∥FM (X0) − FM (X ′
0)
∥∥ 


∥∥∥(DFM
)
X0

(X0 − X ′
0)
∥∥∥

where FM is the Mth iterate of F and
(
DFM

)
X0

is the Jacobian matrix
of F evaluated at X0. By application of the chain rule for differentiation,
it is possible to show that

‖XM − X ′
M‖ 
 ‖TM (X0 − X ′

0)‖

where TM = JMJM−1 . . . J1 and J
(
DFM

)
Xt

. Letting ν1(M) denote the
largest eigenvalue of T T

MTM the formal definition of the dominant Lyapunov
exponent, λ, is

λ = lim
M→∞

1
2M

ln |ν1(M)| .

In this setting, λ gives the long-term rate of divergence or convergence
between trajectories. A positive λ measures exponential divergence of two
nearby trajectories [and is often used as a definition of chaos — see, for
example, Denecker and Pelikan (1986)], whereas a negative λ measures
exponential convergence of two nearby trajectories.
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In the next section we use the Nychka et al. (1992) Jacobian-based
method and the LENNS program [see Ellner et al. (1992)] to estimate the
dominant Lyapunov exponent. In particular we use a neural network model
to estimate f by nonlinear least squares, and use the estimated map f̂ and
the data {xt} to produce an estimate of the dominant Lyapunov exponent.
In doing so, we follow the protocol described in Nychka et al. (1992).

The predominant model in statistical research on neural nets is the
single (hidden) layer feedforward network with a single output. In the
present context it can be written as

f̂ (Xt, θ) = α +
k∑

j=1

βjψ(ωj − γT
j Xt)

where X ∈ Rm is the input, ψ is a known (hidden) univariate nonlin-
ear ‘activation function’ [usually the logistic distribution function ψ(u) =
1/(1 + exp(−u)) — see, for example, Nychka et al. (1992) and Gencay
and Dechert (1992)], θ = (α, β, ω, γ) is the parameter vector, and γj =
(γ1j , γ2j , . . . , γmj)

T . β ∈ Rk represents hidden unit weights and ω ∈ Rk,
γ ∈ Rk×m represent input weights to the hidden units. k is the num-
ber of units in the hidden layer in the neural net. Notice that there are
[k (m + 2) + 1] free parameters in this model.

Given a data set of inputs and their associated outputs, the network
parameter vector, θ, is fit by nonlinear least squares to formulate accurate
map estimates. As appropriate values of L, m, and k, are unknown, LENNS
selects the value of the triple (L, m, k) that minimizes the Bayesian Infor-
mation Criterion (BIC) — see Schwartz (1978). Gallant and White (1992)
have shown that we can then use Ĵt, the estimate of the Jacobian matrix
Jt obtained from the approximate map f̂ , as a nonparametric estimator of
Jt. The estimate of the dominant Lyapunov exponent then is

λ̂ =
1

2N
ln |ν̂1(N)|

where ν̂1(N) is the largest eigenvalue of T T
NTN and where T̂N =

ĴN ĴN−1 . . . Ĵ1.

17.5 Empirical Results

Before conducting nonlinear dynamical analysis the data must be rendered
stationary, delinearized (by replacing the stationary data with residuals
from an autoregression of the data) and transformed (if necessary). Since a
stochastic trend has been confirmed for each of C2, C3, iC4, and natural gas,
these series are rendered stationary by taking first differences of logarithms.
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In the case of C4, C5, and crude oil we use the logged series, since these are
I(0). Also, since we are interested in nonlinear dependence, we remove any
linear dependence in the stationary data by fitting the best possible linear
model. In particular, we prefilter the stationary series by the following
autoregression

zt = b0 +
q∑

j=1

bjzt−j + εt, εt | It−1 ∼ N(0, w0) (17.5)

using for each series the number of lags, q, for which the Ljung-Box (1978)
Q (36) statistic is not significant at the 5% level. This identifies q to be 1
for C2 and nC4, 2 for C3, iC4, C5, and crude oil, and 3 for natural gas —
see Table 17.4.

TABLE 17.4
Diagnostics of AR Models Under the
Ljung-Box (1978) Q(36) Test Statistic

zt = b0 +
q∑

j=1

bjzt−j + εt, εt | It−1 ∼ N(0, w0)

AR Error Term Diagnostics (p-values)
Series AR Lag, q Q-statistic ARCH J-B

C2 1 0.532 0.025 0.000
C3 2 0.054 0.802 0.000
nC4 1 0.095 0.057 0.000
iC4 2 0.124 0.097 0.002
C5 2 0.840 0.030 0.000

Crude oil 2 0.639 0.049 0.000
Natural gas 3 0.098 0.035 0.000

Note: The Q-statistic is distributed as a χ2(36) on the null of no autocorrelation.

ARCH is Engle’s (1982) Autoregressive Condidtional Heteroskedasticity (ARCH)

test distributed as a χ2(1) on the null of no ARCH. The Jarque-Bera test statistic

is distributed as a χ2(2) under the null hypothesis of normality.

Although the autocorrelation diagnostics in Table 17.4 indicate that
the chosen AR models adequately remove linear dependence in the station-
ary data, the ARCH test suggests the presence of a time-varying variance
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(except in the case of C3). Since variance-nonlinearity could be generated
by either a (stochastic) ARCH process or a deterministic process, in what
follows we follow Serletis and Gogas (1997) and model the conditional vari-
ance (or predictable volatility) using Bollerslev’s (1986) generalized autore-
gressive conditional heterskedasticity (GARCH) model and Nelson’s (1991)
exponential GARCH (EGARCH) model. One important feature of what
we are doing, however, is to present the results of a diagnostic test for
checking the adequacy of these models and choose among the estimated
GARCH and EGARCH models.

The GARCH model is a generalization of the pure ARCH model, orig-
inally due to Engle (1982) and is useful in detecting nonlinear patterns in
variance while not destroying any signs of deterministic structural shifts in
a model — see, for example, Lamoureux and Lastrapes (1990). Using the
same AR structure as before we estimate the following GARCH(1,1) model

zt = b0 +
q∑

j=1

bjzt−j + εt, εt | It−1 − N(0, σ2
t ) (17.6)

σ2
t = w0 + α1ε

2
t−1 + β1σ

2
t−1

where N(0, σ2
t ) represents the normal distribution with mean zero and

variance σ2
t . Parameter estimates and diagnostic tests are given in Table

17.5. First, estimated coefficients of the ARCH term, α1, and the GARCH
term, β1, are positive and (in general) significant at the 5% level. Also,
the Q-test finds no linear dependence and the ARCH test finds no ARCH
effects, suggesting that the lag structure of the conditional variance is cor-
rectly identified. However, the null hypothesis that α1 + β1 = 1 cannot be
rejected, suggesting the presence of integrated variances.

GARCH models assume that the conditional variance in equation (17.6)
is a function only of the magnitude of the lagged residuals and not their
signs — i.e., only the size, not the sign, of lagged residuals determines
conditional variance. This assumption imposes important limitations on
GARCH models. For example, these models are not well suited to capture
the so-called ‘leverage effect.’ To meet these objections, we use Nelson’s
(1991) exponential GARCH(1,1), or EGARCH(1,1), also inspired by En-
gle’s (1982) ARCH model, in which the conditional variance σ2

t depends on
both the size and the sign of lagged residuals as follows

log σ2
t = w0 + β log(σ2

t−1) + α

∣∣∣∣ εt−1

σt−1

∣∣∣∣ + γ
εt−1

σt−1
.

The log transformation ensures that σ2
t remains non-negative for all t.

Clearly, the impact of the most recent residual is now exponential rather
than quadratic.
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TABLE 17.5
GARCH (1,1) Parameter Estimates and Error Term Diagnostics

zt = b0 +
q∑

j=1
bjzt−j + εt, εt | It−1 ∼ N(0, σ2

t ), σ2
t = w0 + α1ε2

t−1 + β1σ2
t−1

GARCH (1,1) Parameter Estimates GARCH (1,1) Error Term Diagnostics (p-values)
Series AR Lag, q w0 α1 β1 Q-statistic Q(ε2) ARCH J-B Log L α1 + β1 = 1

C2 1 0.000 (1.3) 0.151 (2.4) 0.759 (7.2) 0.877 0.994 0.985 0.000 283.978 0.234
C3 2 0.000 (1.1) 0.053 (0.6) 0.815 (4.5) 0.142 0.999 0.800 0.000 298.829 0.231
nC4 1 0.001 (1.2) 0.132 (1.2) 0.765 (4.2) 0.098 0.964 0.961 0.000 130.292 0.297
iC4 2 0.000 (0.9) 0.091 (0.9) 0.816 (4.2) 0.104 0.769 0.495 0.000 336.847 0.402
C5 2 0.001 (1.3) 0.098 (1.0) 0.676 (3.3) 0.733 0.998 0.928 0.000 159.809 0.147

Crude oil 2 0.001 (2.3) 0.467 (1.4) 0.449 (2.5) 0.064 0.992 0.588 0.013 177.956 0.680
Natural gas 3 0.000 (0.7) 0.920 (3.0) 0.547 (9.1) 0.000 0.997 0.982 0.000 -4.294 0.081

Notes: Numbers in parentheses next to the GARCH (1,1) parameter estimates are absolute t-ratios. The Q-statistic is

distributed as a χ2(36) on the null of no autocorrelation. The ARCH statistic is distributed as a χ2(1) on the null of no

ARCH. The Jarque-Bera test statistic is distributed as a χ2(2) under the null hypothesis of normality.
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Parameter estimates and diagnostic tests for the EGARCH(1,1) model
are presented in Table 17.6. In general, the log likelihood for the
EGARCH(1,1) model is higher than that for the GARCH(1,1) model, sug-
gesting that the EGARCH model is superior to the GARCH model for these
series. To investigate this further, and in order to choose between GARCH
and EGARCH models, we present in Table 17.7 the results of a diagnostic
test suggested by Kearns and Pagan (1993) for checking the adequacy of
these models. The test involves the regression of ε̂2

t against a constant and
the estimated conditional variance σ̂2

t . The intercept of such a regression
should be zero and the slope coefficient unity.

The insignificant Q(36) statistic in Table 17.7 indicates that each of
these models captures much of the persistence in actual volatility and the
coefficient of determination indicates how well the estimated conditional
variance predicts the actual variance and is used to compare the GARCH
and EGARCH models. On the basis of these results, and a comparison
between the log likelihood values in Tables 17.6 and 17.7, in what follows
we test for chaos using the standardized EGARCH(1,1) residuals — the
standardized residuals are defined as εt/σ̂t, where εt is the residual of the
mean equation and σ̂2

t its estimated (time-varying) variance.
We now apply the Nychka et al. (1992) Lyapunov exponent test to the

standardized residuals. The Bayesian Information Criterion (BIC) point
estimates of the dominant Lyapunov exponent for each parameter triple
(L, m, k) are displayed in Table 17.8 along with the respective optimized
value of the BIC criterion. Clearly, all but two Lyapunov exponent point
estimates are positive, supporting the conclusion that all Belview natural
gas liquids prices have a chaotic nonlinear generating process.

Of course, the standard errors of the estimated dominant Lyapunov
exponents are not known [there has not yet been any published research on
the computation of a standard error for the Nychka et al. (1992) Lyapunov
exponent estimate]. It is possible, however, to produce sensitivity plots that
are informative about precision, as the ones in Figure 17.1. Figure 17.1
indicates the sensitivity of the dominant Lyapunov exponent estimate to
variations in the parameters, by plotting the estimated dominant Lyapunov
exponent for each setting of (L, m, k) , where L = 1, 2, 3, m = 1, . . . , 10, and
k = 1, 2, 3.
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TABLE 17.6
EGARCH (1,1) Parameter Estimates and Error Term Diagnostics

zt = b0 +
q∑

j=1
bjzt−j + εt, εt | It−1 ∼ N(0, σ2

t ), log σ2
t = w0 + β log(σ2

t−1) + α

∣∣∣∣ εt−1

σt−1

∣∣∣∣ + γ
εt−1

σt−1

EGARCH (1,1) Parameter Estimates EGARCH (1,1) Error Term Diagnostics (p-values)
Series AR Lag, q w0 α γ β Q-statistic Q(ε2) ARCH J-B Log L β = 1

C2 1 -1.068 (1.8) 0.347 (3.0) -0.014 (0.1) 0.881 (10.9) 0.859 0.971 0.918 0.000 284.824 0.153
C3 2 -13.513 (22.9) -0.004 (0.0) -0.239 (2.1) -0.900 (18.5) 0.106 0.983 0.975 0.000 299.714 0.000
nC4 1 -1.083 (1.6) 0.290 (1.5) 0.085 (1.1) 0.809 (6.3) 0.096 0.947 0.937 0.000 130.201 0.139
iC4 2 -6.566 (2.3) 0.475 (2.7) -0.119 (0.9) 0.185 (0.5) 0.036 0.339 0.799 0.000 337.415 0.030
C5 2 -1.225 (1.4) 0.265 (1.4) -0.102 (1.1) 0.797 (5.2) 0.609 0.998 0.818 0.000 160.842 0.192

Crude oil 2 -1.220 (2.6) 0.589 (2.0) -0.063 (0.5) 0.858 (12.9) 0.105 0.999 0.764 0.001 178.376 0.035
Natural gas 3 -1.543 (5.8) 1.271 (4.6) -0.391 (2.5) 0.812 (26.1) 0.000 0.397 0.288 0.000 10.855 0.000

Notes: Numbers in parentheses next to the EGARCH (1,1) parameter estimates are absolute t-ratios. The Q-statistic is distributed

as a χ2(36) on the null of no autocorrelation. The ARCH statistic is distributed as a χ2(1) on the null of no ARCH. The Jarque-Bera

test statistic is distributed as a χ2(2) under the null hypothesis of normality.
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TABLE 17.7
Comparison of Predictive Power for the Conditional Variance of Belview Energy Prices

ε̂2
t = b0 + b1σ̂

2
t−1 + ζt

GARCH (1,1) Results EGARCH (1,1) Results
Series b0 b1 R2 Q-statistic b0 b1 R2 Q-statistic

C2 0.000 (0.6) 0.803 (0.8) 0.064 0.512 0.000 (0.5) 0.823 (0.7) 0.064 0.558
C3 0.000 (0.1) 1.119 (0.2) 0.016 0.923 -0.000 (0.5) 1.302 (0.6) 0.046 0.877
nC4 0.002 (0.5) 0.796 (0.7) 0.045 0.977 0.002 (0.5) 0.818 (0.6) 0.045 0.960
iC4 0.000 (0.6) 0.692 (0.7) 0.019 0.631 0.000 (1.1) 0.590 (1.3) 0.026 0.670
C5 -0.001 (0.2) 1.126 (0.2) 0.031 0.998 -0.001 (0.3) 1.173 (0.4) 0.045 0.999

Crude oil 0.004 (2.2) 0.349 (4.5) 0.041 0.999 0.003 (1.5) 0.528 (2.5) 0.053 0.999
Natural gas 0.118 (0.8) 0.302 (13.3) 0.195 0.392 0.150 (1.5) 0.363 (48.3) 0.846 0.969

Notes: Absolute t-statistics for b0 = 0 and b1 = 1 are in parentheses. R2 is the coefficient of determination. Q(36) is the

Ljung-Box statistic for 36 lags of the residual autocorrelation.
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TABLE 17.8
The Nychka et al. (1992) BIC Selection of the

Parameter Triple (L, m, k), the Value of the Minimized BIC,
and the Dominant Lyapunov Exponent Point Estimate

(L, m, k) Triple that Value of the Dominant Lyapunov
Series Minimizes the BIC Minimized BIC Exponent Point Estimate

C2 (3,3,2) 1.447 0.056
C3 (2,6,2) 1.292 0.211
nC4 (1,7,2) 1.366 0.081
iC4 (2,6,2) 1.386 0.100
C5 (1,4,2) 1.362 0.068

Crude oil (1,2,1) 1.427 -1.835
Natural gas (2,8,1) 1.391 -0.063

Note: Numbers in parentheses represent the BIC selection of the parameter triple, (L, m, k), where

L is the time delay parameter, m is the number of lags in the autoregression and k is the number of

units in the hidden layer of the neural net.
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Figure 17.1: NEGM Sensitivity Plots
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Figure 17.1: (Continued)
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Figure 17.1: (Continued)

17.6 Conclusion

We have provided results of nonlinear dynamical analysis of North Amer-
ican hydrocarbon prices using the Nychka et al. (1992) test for positivity
of the dominant Lyapunov exponent. Before conducting such a nonlinear
analysis, the data were rendered stationary and appropriately filtered, in
order to remove any linear as well as nonlinear stochastic dependence.

We have found evidence of nonlinear chaotic dynamics in all five (C2,
C3, nC4, iC4, and C5) Belview natural gas liquids markets. In principle, it
should be possible to model (by means of differential/difference equations)
the nonlinear chaos-generating mechanism and build a predictive model of
North American natural gas liquids prices. This is an area for potentially
productive future research that will undoubtedly improve our understand-
ing of how North American NGLs prices change over time. See Barnett
and Serletis (1999) for more insights regarding this line of research.



Chapter 18

Random Fractal
Structures in North
American Energy Markets

Apostolos Serletis and Ioannis Andreadis∗

18.1 Introduction

In recent years, the North American energy industry has undergone major
structural changes that have significantly affected the environment in which
producers, transmission companies, utilities and industrial customers oper-
ate and make decisions. For example, major policy changes are the U.S.
Natural Gas Policy Act of 1978, Natural Gas Decontrol Act of 1989, and
FERC Orders 486 and 636. In Canada, deregulation in the mid-1980s has
also broken the explicit link between the delivered prices of natural gas
and crude oil (that was in place prior to 1985), and has fundamentally
changed the environment in which the Canadian oil and gas industry op-
erates. Moreover, the Free Trade Agreement (FTA) signed in 1988 by the
United States and Canada, and its successor, the North American Free
Trade Agreement (NAFTA) signed in 1993 by the United States, Canada,
and Mexico, have underpinned the process of deregulation and attempted
to increase the efficiency of the North American energy industry.

The main objective of this chapter is to follow Serletis and Andreadis

∗Originally published in Energy Economics 26 (2004), 389-399. Reprinted with per-
mission.
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(2004) and use tools from dynamical systems theory to explain the price
fluctuations in North American crude oil and natural gas markets, using
daily data over the deregulated period from the early 1990s to 2001. In
this regard, a voluminous literature has developed supporting the efficient
markets hypothesis — see, for example, Fama (1970). Briefly stated, the
hypothesis claims that asset prices are rationally related to economic re-
alities and always incorporate all the available information, implying the
absence of exploitable excess profit opportunities. However, despite the
widespread allegiance to the notion of market efficiency, a number of recent
studies have suggested that certain asset prices are not rationally related
to economic realities — see, for example, Summers (1986) and Serletis and
Gogas (1999).

Our principal concern is to distinguish between deterministic and stochas-
tic origin for West Texas Intermediate (WTI) crude oil prices and Henry
Hub natural gas prices. In doing so, we implicitly assume that the WTI
crude oil price at Chicago is a North American crude oil price (or even a
world price) and that the Henry Hub natural gas price at Louisiana is a
North American natural gas price — see Serletis and Rangel-Ruiz (2004)
for more details. We provide evidence that both WTI crude oil prices and
Henry Hub natural gas prices can be explained in the framework of a ran-
dom fractal time series.

The chapter is organized as follows. Section 18.2 describes the data
and investigates their statistical properties. In Sections 18.3 and 18.4 we
test for a random multifractal structure, and in Section 18.5 for turbulent
behavior. The final section provides a brief conclusion.

18.2 Data and Statistical Analysis

The data consist of daily observations on West Texas Intermediate (WTI)
crude oil prices over the period from January 2, 1990 to February 28, 2001 (a
total of 2809 observations) and Henry Hub natural gas prices over the period
from January 24, 1991 to February 28, 2001 (a total of 2521 observations).
Figures 18.1 and 18.2 provide a graphical representation of these series.

18.2.1 The Above and Below Test for Randomness

To investigate the time series properties of these variable, we use the above
and below test for randomness — see Spiegel (1988). Let’s denote by T (i),
i = 1, ...N , a time series. The median of the elements of the time series,
T (i), i = 1, ...N is denoted by M . We construct a sequence of three symbols,
denoted by −1, 0, and +1, depending on whether an element of the time
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Figure 18.1: Daily WTI crude oil prices.

Figure 18.2: Daily Henry Hub natural gas prices.

series is less than, equal to, or greater than M . We denote by N1 the
cardinality of the set of elements {+1} and by N2 that of the set of elements
{−1}. With V we denote the total sign changes from {−1} to {+1} .
Then we test whether the sequences of elements N1, N2 satisfy a Gaussian
distribution.

In doing so, we calculate the mean value and the variance of a binomial
distribution for N1 and N2 using
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mV =
2N1N2

N1 + N2
, s2

V =
2N1N2(2N1N2 − N1 − N2)
(N1 + N2) (N1 + N2 − 1)

,

and construct a variable z following a Gaussian distribution with mean
value mV and variance s2

V

z =
V − mV

sV
.

In the case where −1.96 ≤ z ≤ 1.96 there is a randomness behavior for the
time series T with a confidence interval of 95%. Applying this test, we find
z = −0.93 for the WTI oil series and z = −0.94 for the Henry Hub natural
gas price series.

18.2.2 The Hurst Test

Here we apply the Rescale Range analysis, or Hurst test — see Mandelbrot
(1982) and Papaioannou and Karytinos (1995) — which can be described as
follows. First, we briefly recall the test. Consider the time series T (i), i =
1, ..., N and for every n, 2 ≤ n ≤ N , denote by Mn the mean value of
the truncated first n elements. Then we define a new time series X(j)
representing the cumulative deviation over the n periods, with elements

X(j) =
n∑

j=1

[T (j) − Mn] , j = 1, 2, · · ·, N

The range of the cumulative deviation from the average level, Rn, is the
difference between the maximum and minimum cumulative deviations over
n periods

Rn = max
1≤j≤n

X(j) − min
1≤j≤n

X(j)

The function Rn increases with n. Finally, we denote with Sn the standard
deviation of the first n elements of the time series T . According to the Hurst
law, in the case of a fractional Brownian motion, the following should hold,
in the limit of large n

Rn

Sn
∝
(n

2

)H

,

with 0 ≤ H ≤ 1 being the Hurst exponent. Hence, we can plot Rn/Sn

against log(n/2) and find a value of the Hurst exponent.
Applying this test in Figures 18.3 and 18.4, we find H = 0.85 for crude

oil and H = 0.86 for natural gas, supporting for both time series a persistent
(H > 0.5) fractal structure with a long memory.
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Figure 18.3: The Hurst test for the WTI crude oil price series.

Figure 18.4: The Hurst Test for the Henry Hub natural gas price series.

18.3 A Fractal Noise Model

In recent years, a significant volume of research supports the existence of
nonlinear dynamics in most economic and financial time series. Nonlinear-
ity, however, could be either deterministic or stochastic — see, for example,
Barnett and Serletis (2000). In this section, we provide evidence that the
nonlinearity in the WTI crude oil and Henry Hub natural gas price series
has a noise origin.
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18.3.1 The Power Spectrum

As we have time series with a finite number of data points, we follow Li
(1991) and calculate its power spectrum P (f), using the following discrete
Fourier transform

P (f) = N‖A(f)‖2, (18.1)

where ‖A(f)‖ is the module of the complex number

A(f) =
1
N

N∑
j=1

xje
i2πfj

N . (18.2)

We present the power spectrum of the crude oil and natural gas time
series in Figures 18.5 and 18.6, respectively. We find behavior of the type
1/fα, where α = 2.03 for crude oil and α = 1.78 for natural gas. This
behavior is strictly related to the self-critical phenomena reported by Bak
and Chen (1991), and is consistent with the evidence reported in Andreadis
(2000) for the S&P 500.

18.3.2 The Structure Function Test

Next we apply the structure function test, developed by Provenzale et al.
(1992), in order to support and extend the results obtained so far indicating
a fractal noise model. The structure function test was originally developed
as a tool for distinguishing between a deterministic and a stochastic origin
of time series whose power spectrum displays a scaling behavior.

We consider a time series T with a finite length equal to N . For every
n, 1 ≤ n ≤ N , the structure function associated with T is defined as follows

Σ(n) =
N−n∑
i=1

[
T ((i + n)∆t) − T (i∆t)

]2
, (18.3)

where ∆t denotes the sampling rate of T . According to Mandelbrot (1982),
for a time series T with a power-law spectrum P (f) ∝ f−α, where α is
positive real, one expects a scaling behavior of the form Σ(n) ∝ n2H at
small values of n, where H is called the scaling exponent. In the case of a
fractional Brownian motion, it holds [see Provenzale et al. (1992)] that

α = 2H + 1. (18.4)
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Figure 18.5: The power spectrum of the WTI crude oil series.

Figure 18.6: The power spectrum of the Henry Hub natural gas series.

When the signal is a fractal noise, the graph of log(Σ(n)) versus log(n)
displays an extended scaling regime and it is closely approximated by a
straight line. On the other hand, if the time series corresponds to the
motion of a strange attractor whose fractal structure is due to close returns
in phase space, the graph of log(Σ(n)) versus log(n) is closely approximated
at small values of n, by a straight line with slope 2H = 1. At intermediate
n, Σ(n) has an oscillatory behavior, due to orbit occurrence in phase space.
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Finally, for high values of n, Σ(n) approaches a constant, due to the limited
phase space visited by the system.

In Figures 18.7 and 18.8, we show the graph of log(Σ(n)) versus log(n)
for the WTI crude oil and Henry Hub natural gas price series. We find
that H = 0.69 for crude oil and H = 0.56 for natural gas. In both cases,
α > 2, rejecting a fractional Brownian motion and supporting behavior like
a fractal noise.

Figure 18.7: The structure function test for the WTI crude oil series.

Figure 18.8: The structure function test for the Henry Hub natural
gas series.
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18.4 A Multifractal Data Analysis

Let us consider the time series T (i), i = 1, 2, ..., N . Vassilicos et al. (1993)
addressed the question of whether the set of points T (i), i = 1, 2, ..., N, is
a fractal set on the time axis, in the sense of the presence of a scaling. If
the answer is yes, then the next interesting question is whether this fractal
distribution is homogeneous or whether it is a multifractal, in the sense
that the different fractal scalings may apply to different times.

To answer this question in the context of the WTI crude oil and Henry
Hub natural gas price series, we calculate the generalized dimensions Dq of
the graph of the time series T (i). Let us briefly recall this algorithm. The
time axis is covered by a grid of points separated with a fixed distance ε
from each other. We label each interval between grid points with an integer
j and calculate the total number of announcements, µj , that lie within the
interval j. Then we compute the quantity

Nq (ε) =
∑

j

µq
j .

and for various integers we use q = 0, 2, 3, 4.

When the distribution of the points is fractal in the sense of Vassilicos
and Hunt (1991), then

Nq (ε) = ε−D0

for ε small enough and 0 < D0 < 1. D0 is called the fractal dimension and
characterizes the fractal structure of the set. If there exists a D0 then there
also exist powers τq such that

Nq (ε) = ε−τq

for ε small enough and for integer values of q. Note that τ1 = 0 and the
generalized dimension Dq are defined by

Dq =
τq

1 − q

and 1 ≥ D0 ≥ D1 ≥ D2 ≥ ... ≥ 0.

We present the numerical results obtained by applying the previous
algorithm in Table 18.1.
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TABLE 18.1
Tests for Multifractal Structure

WTI crude oil Henry Hub natural gas

q τq Dq τq Dq

q = 0 0.85 0.85 0.85 0.85
q = 2 −0.93 0.93 −0.82 0.82
q = 3 −1.89 0.94 −1.72 0.86
q = 4 −2.83 0.94 −2.55 0.85

Clearly, these results do not support a multifractal structure for the
Henry Hub natural gas price series but they do for the WTI crude oil price
series. In particular, in the case of WTI oil the values of the multifractal
dimension approach 1.

18.5 On Turbulent Behavior

Recently, Ghashghaie et al. (1996) have advanced the hypothesis of tur-
bulent behavior in financial markets. Their hypothesis, however, has been
criticized by Mantegna and Stanley (1996). To provide some evidence on
this issue, we report a scaling behavior for the WTI crude oil and Henry
Hub natural gas price series which agrees with the Ghashghaie et al. (1996)
hypothesis of turbulent behavior.

Let us define the return over n time steps as Zn(t) = |X(t + ∆t) − X(t)|,
where X(t) is an entry of the time series and ∆t = 1 is the sampling time.
We have found that the moments of the distribution Zn(t) possessing a
scaling behavior as a function of n, can be expressed as

〈| Zn(t) |q〉t ∝ nξ(q)

where ξ(q) is the self-affinity exponent. In Table 18.2, we indicate the values
obtained for q = 1, 2, 3 for the WTI crude oil and Henry Hub natural gas
price series and compare them with the values ξ(q) = q/3 for turbulent
flows.
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TABLE 18.2
Tests for Turbulence

q Turbulent flows WTI crude oil Henry Hub gas

q = 1 0.33 0.42 0.35
q = 2 0.66 0.79 0.62
q = 3 1.00 1.01 0.83

Clearly, the behavior of the WTI crude oil price is consistent with the
Ghashghaie et al. (1996) hypothesis of turbulent behavior. The Henry Hub
natural gas price series, however, is not.

18.6 Conclusion

We have used daily observations on WTI crude oil and Henry Hub natural
gas prices and applied tests from dynamical systems theory to distinguish
between deterministic and stochastic origin for the series. We provide ev-
idence for a random multifractal turbulent structure for WTI crude oil
prices, consistent with the evidence reported (for other markets) by Vas-
silicos et al. (1993), Ghashghaie et al. (1996) and Ivanova and Ausloos
(1999). Henry Hub natural gas prices, however, are only consistent with a
random fractal model.

Our results are also consistent with those reported by Serletis and Gogas
(1999). Using the Lyapunov exponent estimator of Nychka, Ellner, Gallant,
and McCaffrey (1992), they find evidence of nonlinear chaotic dynamics
in North American natural gas liquids markets (those of ethane, propane,
normal butane, iso-butane, and naptha) but not in the crude oil and natural
gas markets.



Chapter 19

Randomly Modulated
Periodic Signals in
Alberta’s Electricity
Market

Melvin Hinich and Apostolos Serletis∗

19.1 Introduction

As Bunn (2004, p. 2) recently put it “the crucial feature of price formation
in electricity spot markets is the instantaneous nature of the product. The
physical laws that determine the delivery of power across a transmission
grid require a synchronised energy balance between the injection of power
at generating points and the offtake at demand points (plus some allowance
for transmission losses). Across the grid, production and consumption are
perfectly synchronised, without any capability for storage. If the two get
out of balance, even for a moment, the frequency and voltage of the power
fluctuates. Furthermore, end-users treat this product as a service at their
convenience. When we go to switch on a light, we do not re-contract with
a supplier for the extra energy before doing so. We just do it, and there
is a tendency for millions of other people to do likewise whenever they feel
like. Electricity may be produced as a commodidity, but it is consumed

∗Originally published in Studies in Nonlinear Dynamics and Econometrics 10(3)
(2006), Article 5. Reprinted with permission.
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as a service. The task of the grid operator, therefore, is to be continously
monitoring the demand process and to call on those generators who have the
technical capability and the capacity to respond quickly to the fluctuations
in demand.”

Recent leading-edge research has applied various innovative methods
for modeling spot wholesale electricity prices — see, for example, Deng
and Jiang (2004), León and Rubia (2004), and Serletis and Andreadis
(2004). The main objective of this chapter is to use a parametric sta-
tistical model, called Randomly Modulated Periodicity (RMP), recently
proposed by Hinich (2000) and Hinich and Wild (2001), to study Alberta’s
spot wholesale power market, defined on hourly intervals (like most spot
markets for electricity are). In doing so, we use hourly electricity prices,
denominated in megawatt-hours (MWh), and MWh demand over the re-
cent deregulated period from 1/1/1996 to 12/7/2003 (a total of over 65000
observations, since there are 8760 hours in a normal year). Our principal
concern is to test for periodic signals in electricity prices and electricity
load — that is, signals that can be perfectly predicted far into the future
since they perfectly repeat every period. In doing so, we take a univariate
approach, although from an economic perspective the interest in the price
of electricity is in its relationship with the electricity load and perhaps with
the prices of other primary fuel commodities.

The chapter is organized as follows. In Sections 19.2 and 19.3 we briefly
discuss the RMP model, proposed by Hinich (2000) and Hinich and Wild
(2001), for the study of varying periodic signals. In Section 19.4 we briefly
discuss Alberta’s power market and in Section 19.5 we test for randomly
modulated periodicity in hourly electricity prices and MWh demand over
the deregulated period after 1996. The final section provides a brief con-
clusion.

19.2 Randomly Modulated Periodicity

All signals that appear to be periodic have some sort of variability from
period to period regardless of how stable they appear to be in a data
plot. A true sinusoidal time series is a deterministic function of time that
never changes and thus has zero bandwidth around the sinusoid’s frequency.
Bandwidth, a term from Fourier analysis, is the number of frequency com-
ponents that are needed to have an accurate Fourier sum expansion of a
function of time. A single sinusoid has no such expansion. A zero band-
width is impossible in nature since all signals have some intrinsic variability
over time.



258 Chapter 19. Randomly Modulated Periodicity in Power Markets

Deterministic sinusoids are used to model cycles as a mathematical con-
venience. It is time to break away from this simplification in order to model
the various periodic signals that are observed in fields ranging from biology,
communications, acoustics, astronomy, and the various sciences.

Hinich (2000) introduced a parametric statistical model, called Ran-
domly Modulated Periodicity (RMP), that allows one to capture the in-
trinsic variability of a cycle. A discrete-time random process x(tn) is an
RMP with period T = Nτ if it is of the form

x(tn) = s0 +
2
N

N/2∑
k=1

[(s1k +u1k(tn)) cos(2πfktn)+ (s2k +u2k(t)) sin(2πfktn)]

where tn = nτ , τ is the sampling interval, fk = k/T is the k-th Fourier fre-
quency, and where for each period the

{
u11(t1), . . . , u1,N/2(tn),

u21(tn), . . . , u2,N/2(tn)
}

are random variables with zero means and a joint
distribution that has the following finite dependence property:
{ujr(s1), . . . , ujr(sm)} and {uks(t1), . . . , uks(tn)} are independent if sm +
D < t1 for some D > 0 and all j, k = 1, 2 and r, s = 1, . . . , N/2 and all
times s1 < · · · < sm and t1 < · · · < tn. Finite dependence is a strong
mixing condition — see Billingsley (1979).

These time series, uk1(t) and uk2(t), are called ‘modulations’ in the
signal processing literature. If D << N then the modulations are approx-
imately stationary within each period. The process x(tn) can be written
as

x(tn) = s(tn) + u(tn),

where

s(tn) = E[x(tn)] = s0 +
2
N

N/2∑
k=1

[s1k cos(2πfktn) + s2k sin(2πfktn)]

and

u(tn) =
2
N

N/2∑
k=1

[u1k cos(2πfktn) + u2k sin(2πfktn)]

Thus s(tn), the expected value of the signal x(tn), is a periodic function.
The fixed coefficients s1k and s2k determine the shape of s(tn). If s11 �= 0
or s21 �= 0 then s(tn) is periodic with period T = Nτ . If s11 = 0 and
s21 = 0, but s12 �= 0 or s22 �= 0, then s(tn) is periodic with period T/2. If
the first k0−1 s1k and s2k are zero, but not the next, then s(tn) is periodic
with period T/k0.
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19.3 Signal Coherence Spectrum

To provide a measure of the modulation relative to the underlying periodic-
ity, Hinich (2000) introduced a concept called the signal coherence spectrum
(SIGCOH). For each Fourier frequency fk = k/T the value of SIGCOH is

γx(k) =

√
|sk|2

|sk|2 + σ2
u(k)

where sk = s1k+is2k is the amplitude of the kth sinusoid written in complex
variable form, i =

√−1, σ2
u(k) = E|U(k)|2 and

U(k) =
N−1∑
n=0

uk(tn) exp(−i2πfktn)

is the discrete Fourier transform (DFT) of the modulation process uk(tn) =
u1k(tn) + iu2k(tn) written in complex variable form.

Each γx(k) is in the (0, 1) interval. If sk = 0 then γx(k) = 0. If U(k) = 0
then γx(k) = 1. The SIGCOH measures the amount of ‘wobble’ in each
frequency component of the signal x(tn) about its amplitude when sk > 0.
The amplitude-to-modulation standard deviation (AMS) is

ρx(k) =
|sk|

σu(k)

for frequency fk. Thus,

γ2
x(k) =

ρ2
x(k)

ρ2
x(k) + 1

is a monotonically increasing function of this signal-to-noise ratio. Inverting
this relationship, it follows that

ρ2
x(k) =

γ2
x(k)

1 − γ2
x(k)

An AMS of 1.0 equals a signal coherence of 0.71 and an AMS of 0.5 equals
a signal coherence of 0.45.

To estimate the SIGCOH, γx(k), suppose that we know the fundamental
period and we observe the signal over M such periods. The mth period is
{x((m− 1)T + tn), n = 0, . . . , N − 1}. The estimator of γ(k) introduced by
Hinich (2000) is

γ̂(k) =

√
|X̄(k)|2

|X̄(k)|2 + σ̂2
u(k)

,
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where

X̄(k) =
1
M

M∑
m=1

Xm(k)

is the sample mean of the DFT,

Xm(k) =
N−1∑
n=0

x((m − 1)T + tn) exp(−i2πfmtn),

and

σ̂2
u(k) =

1
M

M∑
m=1

|Xm(k) − X̄(k)|2

is the sample variance of the residual discrete Fourier transform, Xm(k) −
X̄(k). This estimator is consistent as M → ∞ and if the modulations have
a finite dependence of span D then the distribution of

Z(k) =
M

N

|X̄(k)|2
σ2

u(k)

is asymptotically chi-squared with two degrees-of-freedom and a noncen-
trality parameter λk = (M/N) ρ2

x(k) as M → ∞ — see Hinich and Wild
(2001). These χ2

2(λk) variates are approximately independently distributed
over the frequency band when D << N .

If the null hypothesis for frequency fk is that γx(k) = 0 and thus its
AMS is zero, then Z(k) is approximately a central chi-squared statistic.
Thus Z(k) can be used to falsify the null hypothesis that γx(k) = 0.
The tests across the frequency band are approximately independently dis-
tributed tests. The use of the transformation to the Z(k)’s is the only
straightforward way to put statistical confidence on the signal coherence
point estimates.

19.4 Alberta’s Power Market

Electricity demand in Alberta is comprised of four primary groups: resi-
dential, farm, commercial, and industrial. Alberta has unique load require-
ments compared with other North American power markets. In particular,
the industrial load is over 50% of all electric sales while the residential load
is only 15%. This provides a very stable load curve all over the year, which
helps reduce the frequency of price spikes. The main contributors to the
fluctuations of demand are residential and small commercial customers.

Electricity demand is also cyclical in nature, with demand being lower in
the spring and fall than in summer and winter. In fact, Alberta has higher
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winter consumption, due to lower temperatures that cause increased heating
and shorter daylight hours. Moreover, winter hourly load in Alberta has
two distinct peaks. Demand is low in the early morning hours and begins to
increase through the morning hours, with a first peak around nine o’clock.
During this interval, load can increase by 1500 MW. The other peak is
around dinnertime, six-seven o’clock. The peaks in the day tend to float
depending on the number of daylight hours. Demand also follows a weekly
cycle and tends to be higher on weekdays than during the weekends.

Finally, demand for power is relatively inelastic in Alberta. There is
no requirement for load to bid in the price they are willing to pay for the
energy. Hence, un-bid load is treated as a price taker into the merit order
of the Alberta’s power market and must pay the hourly pool price for the
energy consumed during that hour. Only a small percentage (around 4%)
of the load is bid into the market. According to AESO Operations group,
there is around 300 MW of price responsive demand: some large industrial
customers agree to be curtailed at high pool prices, introducing some price
sensitivity at higher price levels.

Being a deregulated market, the pool price in Alberta’s power market is
determined by competitive market forces; that is, the laws of supply and de-
mand. Being components of supply and demand, imports and exports also
influence electricity prices. Import and export volumes play an important
role in ensuring system reliability and security in Alberta. In conditions
of scarcity of supply and/or excess of demand, power must be imported
via the inter tie-lines that connect the Alberta electric grid system with
the neighbouring jurisdictions. In fact, the Alberta Interconnected Electric
System (AIES) is connected, on the west side, to the British Columbia (BC)
grid by the 800 MW Alberta-BC inter-tie, while it is linked on the east side
to the Saskatchewan power system by a 150 MW DC interconnection.

Since the total available capacity of the inter-ties represents about 11%
of the Alberta maximum peak load, the tie lines work as very large generat-
ing units, and thus may have a considerable impact on the pool price. This
fact, in combination with Alberta’s steep supply curve and inelastic demand
even at high prices, has given importers and exporters significant market
power, which has raised concerns among market participants. In conditions
of tight supply-demand balance, the pool price is strongly impacted by the
discretionary sales tactics implemented by importers. While these strate-
gies of adjusting the volume of imports and exports in response to mar-
ket outcomes are normal profit-maximizing behaviours, on the other hand,
practices like abuse of market power or electricity dumping are deemed to
manipulate the pool price. These undesirable practices have been the issues
of a controversy among stakeholders in the Alberta’s electricity market —
see Bianchi and Serletis (2006) for more details.
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19.5 RMP in Alberta’s Power Market

We use the time series of Alberta hourly spot prices and megawatt-hours
(MWh) demand from 1/1/1996 to 12/7/2003. Figure 19.1 shows a section
of the demand time series (the load curve) and Figure 19.2 shows a section
of the spot prices time series, over the same period. Electricity demand has
a daily and weekly cycle but it is clear from Figure 19.1 that these cycles
in the demand are wobbly. However, it is hard to see a daily or weekly
cycle in the spot electricity prices in Figure 19.2. The prices time series in
Figure 19.2 is much more spiky, shows higher volatility, and also a stronger
mean-reverting pattern than the load time series in Figure 19.1.

We applied the signal coherence spectral analysis to the time series of
spot prices and demand, using the FORTRAN 95 ‘Spectrum.for’ program
developed by Hinich and available at his web page, www.la.utexas.edu/˜hinich.
In doing so, we first detrended the hourly electricity demand and the hourly
spot electricity price data by fitting an AR(12) model to each series — the
AR(12) filter is used to make the data have a flat spectrum; it is a lin-
ear transformation and thus it does not create nor destroy coherence. The
residuals of the fitted model are then analyzed for the presence of a ran-
domly modulated periodicity with a fundamental period of one week (168
hours). An AR fit is a linear operation that cannot create signal coher-
ence. Indeed signal coherence can only be reduced by a improperly applied
detrended method.

The adjusted R square for the demand data is 0.74. The characteristic
polynomial of the estimated AR(12) model has a 4th order complex root
pair whose amplitudes are 0.96 and a complex root pair whose amplitudes
are 0.96. The amplitude of the other root pair is 0.71. The adjusted R
square for the spot price data is 0.666. The largest root magnitude is 0.81.

The SIGCOH spectrum of the demand time series is shown in Figure
19.3. All the long period harmonics up to the period of 8.4 hours have
coherence greater than 0.5 except for the 9.99 hour harmonic. Only the
fundamental and the harmonics 28 and 24 hours have coherences greater
than 0.9. The shorter period components are either not very coherent
or incoherent. Figure 19.3 also shows the conventional power spectrum
(log spectrum in decibels). The harmonic peaks in the spectrum indicate
that the weekly and daily cycles are not simple sinusoids but their lack of
amplitude and phase stability indicated in the SIGCOH spectrum implies
that the shorter period components are of little use for forecasting.

The SIGCOH spectrum of the spot prices is shown in Figure 19.4. Only
the 24 hour harmonic has a coherence barely greater than 0.75. The rest
have coherences less than 0.5, including the fundamental. The plot of the
power spectrum in Figure 19.4 shows the standard methods for fitting a
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Fourier expansion of the weekly and daily cycles will not contribute much
to a forecast of the spot prices.
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Figure 19.3: Power & Signal Coherence Spectra of the Residuals from an
AR(12) Fit of the Alberta Electricity Hourly Spot Demand
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Figure 19.4: Power & Signal Coherence Spectra of the Residuals from an
AR(12) Fit of the Alberta Electricity Hourly Spot Prices
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19.6 Conclusion

We have applied the signal coherence spectral analysis to the time series
of hourly spot prices and megawatt-hours (MWh) demand for Alberta and
found that electricity prices have low coherence in the daily and weekly cy-
cles, meaning that forecast errors will have a high error variance. However,
electricity demand has lot of high coherence with the daily and weekly cy-
cles being stable with some variation. The mean values at each half hour of
the daily demand and the weekend demand should yield good forecasts for
a day and the weekend for the next week after the end of the data series.
Yet we expect that a statistical forecasting based on the historical demand
and cofactors such as the average hourly temperature per day and patterns
of industrial usage should yield better short term forecasts. Clearly, the
development of a statistical technology for forecasting electricity demand
is an exciting and challenging area of research — see, for example, Li and
Hinich (2002).

In this chapter, we have taken a univariate time series approach to the
analysis of electricity prices. From an economic perspective, however, the
interest in the price of electricity is in its relationship with the prices of
various underlying primary fuel commodities such as, for example, natural
gas, oil, or coal. As Bunn (2004, p. 2) recently put it

“ · · · take the case of gas, for example. This is now becoming the
fuel of choice for electricity generation. The investment costs
are lower than coal, or oil plant; it is cleaner and, depending
upon location, the fuel costs are comparable. But with more
and more of the gas resources being used for power generation,
in some markets the issue of whether gas drives power prices,
or vice versa, is not easily answered.”

Because the properties of univariate series need not be at all like the prop-
erties of their multivariate relationships, investigating the relationship be-
tween electricity prices and the prices of other primary fuel commodities is
an area for potentially productive future research.
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