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Hervé Moulin

The MIT Press
Cambridge, Massachusetts
London, England

iii



moulin-79027 moul79027˙fm October 22, 2002 16:16

c© 2003 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means
(including photocopying, recording, or information storage and retrieval) without permission in writing from the
publisher.

This book was set in Times Roman by Interactive Composition Corporation and was printed and bound in United
States of America.

Library of Congress Cataloging-in-Publication Data

Moulin, Hervé.
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1 Microeconomic Foundations

1.1 Fairness: Equal and Unequal Treatment

Justice is blind, and fairness requires anonymous rules of arbitration. “Equals should be
treated equally, and unequals unequally, in proportion to relevant similarities and differ-
ences” (Nicomachean Ethics). Aristotle’s celebrated maxim, in its modern rendition, is the
first step toward the formal definition of distributive fairness.

Equal treatment of equals is a clear-cut principle, an axiom in the terminology of this
book, and the minimal test of fairness throughout the book: if two persons have identical
characteristics in all dimensions relevant to the allocation problem at hand, they should
receive the same treatment—the same share of goods, of decision power, or of whatever is
being distributed. Unequal treatment of unequals, on the contrary, is a vague principle open
to many interpretations.

Four elementary ideas are at the heart of most nontechnical discussions of distributive
justice. They organize neatly our thinking about conflictual interpretations of fairness. The
four ideas are exogenous rights, compensation, reward, and fitness; I discuss them briefly
below in that order. A more detailed discussion is the subject of section 2.1.

Equal treatment of equals is the archetypal example of an exogeneous right. Consider the
democratic principle “one person, one vote,” expressing the basic requirement that voting
procedures must not be biased in favor of particular electors, and implemented by the simple
device of anonymous ballots (I can’t tell who casts which ballot; hence I can’t give more
weight to the vote of a particular citizen).

One could argue that certain differences among voters are entirely relevant to the way
that we should evaluate their votes. At one extreme, we find conscientious citizens who col-
lect information about the issues at hand and discuss them with other citizens; at the other
extreme, the whimsical citizens use their voting right arbitrarily, for spurious reasons or
no reason at all, and refuse to make any effort toward gaining some understanding of the
issues. Surely the difference between conscientious and whimsical voters affect the nor-
mative “value” of their respective ballots, a fact that the “one person, one vote” principle
refuses to acknowledge. The exogeneous right to an equal vote is a normative postulate
that suffers very few exceptions (insanity, certain criminal records). Other times saw other
postulates: medieval religious assemblies typically gave more weight to the vote of their
more senior members, and voting rights were commonly linked to wealth throughout the
nineteenth century.

When differences in individual characteristics are deemed relevant to fairness, the two
ideas of compensation and reward come into play. In order to meet their needs of some
essential commodities, such as the regular intake of some vitamins, adequate shelter and
clothing—some of us need more resources than others—and the compensation principle
justifies this inequality in order to restore equality (or at least, diminish inequality) of the

1
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shares of the essential commodity in question. Those of us who cannot metabolize a key
vitamin from their food deserve a free supply in pills, those who lost their home to a natural
disaster deserve assistance, those who did not receive adequate basic education deserve
a tuition waiver, and so on. The common feature in these instances of compensation is
to justify unequal shares of certain resources for the sake of equalizing the shares of a
higher-order commodity.

We reward an employee for her contribution to the profit of the firm, an athlete for his
contribution to the success of the team, an investor for the risk he took in financing the
project. In each case a larger share of the pie is justified by a larger responsibility in making
the pie. Symmetrically I must bear a share of joint costs commensurate to my own impact
on these costs: businesses sharing a parking lot find it fair to split its maintenance cost in
proportion to the traffic that each business generates.

To illustrate the tensions among the three principles above, consider the division of the
parent’s estate between siblings. Compensation suggests to give more to the poorest sibling,
who needs more the extra cash. The devoted child who took care of the parents’ business
deserves to be rewarded by a bigger share. Finally, strict equality of the shares, no matter
what, is a popular and haggle-free division method according to exogeneous rights.1

The last commonsense principle of distributive justice, fitness, is the most subtle of
the four, and the most fertile ground for microeconomic analysis. Fitness says to give the
resources to whomever makes the best use of it: the flute to the flutist, the books to the avid
reader, the voting right to the wiser among us, and so on. The difficulty is the interpretation
of the “best” usage. If Ann can play popular melodies on the flute that most everybody en-
joys, whereas Bob can play esoteric atonal music that a small minority loves intensely,
who should get the instrument? The interpretation of the “wise” voters, or the “best”
reader is equally fuzzy. In microeconomic language the problem is to make intercom-
parison of individual welfares, and deal with trade-offs such as the mild pleasure of many
when Ann is playing versus the intense aesthetic emotions of a few when Bob does.

The subject of this book is the contribution of modern microeconomic thinking to dis-
tributive justice. I submit that this approach is the only conceptual framework to date in
which not only fitness (as just described) but also compensation and reward can be analyzed
with mathematical rigor.

The main building block is the concept of individual welfare, modeled first with the
help of a utility function transforming physical resources into utility, and more generally,
some resources devoid of ethical content into a higher-order resource, which is the object

1. Giving more to the more loving child who took care of his parents’ needs is also an exogeneous right, inasmuch
as the loving care is unrelated to the value of the estate.
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of our normative judgment. Thus compensation amounts to the equalization of individual
utilities and the maximization of their sum is the interpretation of fitness known as classical
utilitarianism: chapters 2 and 3.

A more versatile modeling of welfare is as an ordinal preference relation, describing indi-
vidual choices but pointedly avoiding the cardinal statement conveyed by the measurement
of utility: chapters 4, 6, and 7.

The collective welfare approach remains the most influential application of economic
analysis to distributive justice. It offers the first entirely rigorous definition of fitness as
Pareto optimality, and operational definitions of fairness by means of collective utility
functions—in the cardinal version—and of social welfare orderings—in the ordinal version.
It is the subject of chapters 2, 3, and 4, and its methodological premises are reviewed in the
next two sections.

If the collective welfare approach yields a systematic interpretation of the fitness and
compensation principles, it gives no basis to discuss either reward or exogeneous rights
such as private or common ownership of resources. In the last fifty years microeconomic
theory has made significant progress toward understanding these two pervasive principles.
The two most important discoveries are the formula called the Shapley value (chapters 5
and 6) and the test of no envy (chapters 6 and 7): they offer, respectively, an interpretation
of the reward principle in the context of production, and of fair division of resources under
common ownership.

In sections 1.4 and 1.5, I introduce the microeconomic background in which these two
concepts are born, namely the management of externalities by private agreements (free
trade under private ownership) or public contracts (normative principles of equity). Then in
section 1.6, I describe the organization of the book and review the contents of its successive
chapters. Section 1.7 concludes with an introduction to the literature.

1.2 Collective Welfare: Cardinal

The postulate of rational choice for individual decision-making is the central assumption
of microeconomic analysis. It posits that individual choices consist in maximizing a given
preference relation (a complete and transitive binary relation over the feasible choices)
representing the welfare of the agent in question. Outside economics, this postulate is not
universally accepted, and neither is its prerequisite of methodological individualism.

Methodological individualism is the intellectual construction on which the political phi-
losophy known as liberalism is founded. The central postulate is that we can draw a clear
line between the self and the world: on the one hand, the human subjects, each one endowed
with values, preferences, experiences, beliefs, and so on, and on the other hand, the material
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resources of the world, natural and technological. Each individual person is an irreducible
atom of the social body, and the public authority can no more alter individual values than
the chemist can alter the inner structure of the atoms. Individuals act on the world by con-
suming or transforming its resources, and by interacting with other individuals (to influence
their values and beliefs as well as their actions). The collective authority merely affects the
appropriation of the resources of the world (how and by whom are these resources trans-
formed, consumed?) and the interpersonal interactions (who can do what to whom?); it has
no tools to influence individual values.

The most sophisticated model of methodological individualism is microeconomic analy-
sis. The physical description of the world is captured by a set of feasible states of the world
(each state specifies who consumes what resources, who works and for how long, etc.).
The values of an individual agent (or citizen) are described by her welfare, measuring the
degree to which a certain state of the world fulfills her values. And finally, the rights of an
agent specify which actions are open to her (physically feasible and legally permitted), how
these actions influence the state of the world, and in particular, how they interact with other
agent’s actions. Examples include private ownership (under which all voluntary trades are
feasible) and political rights (specifying how each citizen can influence public policy).

Given the feasible states of the world and each citizen endowed with her welfare and her
rights, the liberal social order results from the interaction of free wills. Each citizen pursues
her own good by her own means; in other words, she chooses her actions (within the limits
of her rights) in order to maximize her own welfare. When every citizen acts in this way,
the eventual state of the world results from the balance of these individual powers and is
called the equilibrium outcome. The only role of the collective authority is to enforce the
free exercise of individual rights without influencing in any way the individual choices or
the resulting state of the world.

There are two sides to distributive justice in the microeconomic world: Is the distribution
of rights fair? Is the outcome of the game fair? Procedural justice addresses the former
question, endstate justice addresses the latter.

The collective welfare approach focuses on endstate justice exclusively, by assuming
that the decision power lies entirely in the hands of a judge, a benevolent dictator, who
must propose a fair and principled compromise taking into account the conflicting interests
and unequal characteristics of the participants. This is a convenient stylized description of
the public authority, or of the decision-making process of an ad hoc committee. A full-
fledged analysis encompassing the procedural and endstate aspects of distributive justice
is currently out of our analytical reach, even for a question as basic as the design of a
simple voting rule. In this book the discussion of procedural justice within the collective
welfare model reduces to a few remarks about the incentives consequences of various col-
lective utility functions in chapter 3, and the brief discussion of strategic voting in chapter 4
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(see section 4.3). Procedural justice in fair division receives more attention; see chapter 6,
in particular, section 6.4, and chapter 7, sections 7.1 to 7.3.

Thanks to the elimination of individual rights, the welfarist approach to distributive justice
provides systematic methods to resolve the conflict between individual welfares. It does
not endow the feasible states of the world with any normative content, regards them merely
as means toward the satisfaction of individual values. This point of view distinguishes the
welfarist methodology from the fair division problems of chapters 5, 6, and 7. There the
production and allocation of physical resources play a key role in the definition of fairness.2

The concept of individual welfare can be modeled in two ways: as a cardinal utility
function or an ordinal preference relation. These two models partition the welfarist approach
in two branches of comparable importance.

Cardinal welfare is measured by a number, called the utility level, and the utility levels of
different agents are comparable. The following statement is meaningful: “eating this cookie
makes my utility increase (or decrease!) more than your utility would increase if you eat the
cookie in question.” In this context the interpretation of the sum of individual utilities as an
index of collective fitness makes good sense. Imagine that we must allocate scarce medical
resources among a given set of critically ill patients (e.g., that blood for transfusion is in
short supply and must be rationed). If we can estimate, for each patient, the probability of
recovery as a function of the amount of blood he receives, a sensible rule is to distribute the
blood so as to maximize the sum of these probabilities, namely the expected total number of
recoveries.3 In other words, we take the probability of recovery as a proxy for utility, follow
Bentham’s classical utilitarian imperative, and so we maximize the sum total of individual
utilities.

The more general tool of a collective utility function aggregates (by means of a mechanical
formula) a profile of individual cardinal utilities into an index of collective utility. This
operation is naively anthropomorphic if we try to interpret collective utility as a measure of
the “welfare” of the group, or that of its benevolent dictator. However, as a mere technique
for selecting a reasonable compromise, it is strikingly effective and easily applicable.

Collective utility functions are well suited to explore the trade-offs between the principles
of compensation and fitness. Maximizing the classical utilitarian sum of individual utilities
often results in “sacrificing” some individuals: if a majority of the roommates want to
watch only sports on the only TV set, the minority who wishes to catch the news will
never have its way under the utilitarian rule. Thus this particular collective utility function
is orthogonal to the concern for compensation: in the TV example, the latter would require
the roommates to tune in the news some of the time.

2. For instance, the Shapley value is computed directly from the cost or production function.

3. This is indeed a common approach to deal with the medical triage problem. See section 2.2.
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By contrast, the egalitarian utility function is the embodiment of compensation in the
welfarist model. This function is computed as the smallest individual utility; hence its
maximization leads the benevolent dictator to implement a tiny utility increase for the worst-
off member of the group, even if this implies a huge loss for many well-to-do agents. In the
TV example the egalitarian judge awards equal time shares to the sport and news channels
regardless of the relative support of the two programs, which is surely an unreasonable
solution when the minority is small enough.

Chapter 3 describes a rich family of collective utility functions, ranging continuously
from the classical utilitarian to the egalitarian one. The Nash collective utility function
stands out as a remarkable member of this family: it computes the collective utility as the
product of individual utilities. It strikes an appealing compromise between the two polar
methods: in the TV example, it splits viewing time between the two channels in proportion
to the number of their supporters.4

1.3 Collective Welfare: Ordinal

The core of the cardinal welfarist model is the feasibility of objective interpersonal com-
parisons of utility. This is not plausible when choices are governed by subjective tastes and
values instead of an objective index related to health, nutrition, or any other primary human
need. In the TV example, individual tastes for sports versus news are taken as given and
radical: those who like sports never show any interest in news (and vice versa); any amount
of time spent watching sports, however small, is better than any amount spent on news.
Moreover taking “viewing time” as a proxy for utility amounts to ignore the variations in
the intensity of feelings among the roommates, from the sports fanatic to the nearly indif-
ferent. Measuring subjective feelings as an outside observer is, for all practical purposes,
impossible. If we ask the agents themselves to help us in this assessment (by asking them
to fill out a questionnaire), we can expect gross strategic manipulations, which is especially
difficult in the TV example.

The objective measurement of utility is not only practically hard to impossible, it is
also a logical contradiction of methodological individualism. A fully “objective” notion of
welfare is alienated from the “subject” individual; hence it denies the pluralism of individual
values, and defeats the purpose of methodological individualism. Paraphrasing Sen, classical
utilitarianism views the individuals as petrol tanks among whom we must distribute the
gasoline of the world.

4. See example 3.6.
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There is a private, inviolable sphere around each of us that cannot be captured by an
objective measurement, that cannot even be apprehended by an outside observer, where
the self is defined independently of any social construction. In this sphere are produced
some components of our personality of great relevance to social interactions—some of our
value systems, such as our philosophical and political convictions, our religious beliefs, as
well as our body, our psychological disposition to happiness—see next point—and much
more. The point is that the public authority should not be allowed to control, or even monitor,
these components of our own welfare: even the staunchest welfarist must concede this kernel
of inviolable rights. The hope of an objective measurement of welfare is as unrealistic as
that of comparing by a common index two different value systems, two outlooks on life.
Bentham’s sum of pleasures and pains is nonsensical (on stilts!) because my pain and your
pain are incommensurable.

The last objection to the interpersonal comparison of welfares is a moral one. It is the
strongest of the three.

An important element of personal responsibility is our ability to transform resources into
welfare (our good or bad nature, our optimism or pessimism, etc.). Ignoring this important
factor, the welfarist allocating resources in order to equalize welfare penalizes those agents
who scale down their expectations to their lot.

The story of Tiny Tim, physically challenged and poor, yet fiercely happy is a case
in point. Tim will be denied a larger share of resources on account of his good nature,
of his ability to generate much welfare from an objectively poor endowment of personal
characteristics. The blasé John, on the other hand, is a wealthy spoiled brat with natural
talents that he does not enjoy using, and expensive tastes; he gets thoroughly depressed
if he cannot drink champagne. Because his depression is real, does John deserve extra
cash to buy an adequate supply of Dom Perignon? Similarly, in a political election, paying
attention to the intensity of feelings over the various candidates would amount to giving more
weight to the opinion of a fanatic than a cool-headed citizen.

Is there a future for welfarism in a world where many—most—factors relevant to welfare
escape the eye of, or should not be assessed by, the benevolent dictator? The answer is yes,
provided that we replace utilities by choice. The ordinal welfare of an agent is defined as the
set of his choices. If we extract from individual welfares only the choice component (i.e.,
the underlying ordinal preferences), then we will be unable, by construction, to make any
interpersonal comparisons of the levels of welfare; our social decisions will reflect equitable
compromises between conflicting preferences/opinions, without any invasion of the private
spheres where actual welfare (enjoyment, happiness) is produced.

Under the rational choice postulate, the choices of an agent maximize a certain preference
relation over the potential outcomes (states of the world). In other words, this relation is
a ranking of all outcomes from best to worst (indifferences are permitted) and from any
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feasible set of outcomes (the actual choice set); our agent picks the highest ones according
to the ranking. An increase in his ordinal welfare means a switch to an outcome higher up
on this relation, no more, no less. In particular, unlike a utility level, the notion of ordinal
welfare is not logically separable from the physical states of the world under consideration.

All models of fair division in chapters 5, 6, and 7 are built upon ordinal preference
relations. The common denominator of collective welfare in these models is the central
notion of Pareto optimality, also called efficiency. An outcome x is Pareto inferior to another
outcome y if every concerned agent views y as at least as desirable as x , and at least one
of them views y as strictly more desirable than x . In other words, y stands at least as high
as x in every agent’s ranking (preference relation) and strictly higher for at least one agent.
An outcome is Pareto optimal if it is Pareto inferior to no feasible outcome.

Pareto optimality is the single most important tool of normative economic analysis.
Its desirability is undisputed. In the endstate version of distributive justice, it is the one
requirement that cannot be dispensed with. Not so under procedural justice, where the
informational context of the “procedure” may push the equilibrium outcome away from
the Pareto frontier (the set of efficient outcomes).

Under ordinal preferences the welfarist program of anthropomorphic aggregation is alive
and kicking. The tool is the aggregation of a profile of preference relations into a collective
preference relation—just as in the cardinal world we aggregate a profile of individual utilities
into a collective utility. The aggregation operator is called a social welfare function, and
this concept is the object of chapter 4.

Because preference relations can only be defined within an explicit set of feasible out-
comes, the aggregation method amounts to a decision process very much like voting,
where the input (the ballot box) consists of a list of preference relations over the outcomes
(candidates), and the output is to elect one particular outcome. The two objects, voting rules
and social welfare functions, are so closely related that the two most important aggregation
methods are directly adapted from two voting rules introduced more than two centuries ago
by Condorcet and Borda.

Borda’s proposal is to elicit from each voter a complete ranking of all candidates, and to
record a score of 0 for the last ranked candidate, 1 for the next to last candidate, 2 for the
next lowest one, and so forth. The total score awarded by all voters determines the winner.
Condorcet’s proposal elicits the same information but uses it to compute the majority
relation: for any two candidates a, b it only records who wins the largest support when only
these two are competing. The Condorcet winner is the candidate (if any) who wins all such
pairwise contests.

The two rules above offer quite different interpretations of collective welfare. The major-
ity relation compares any two candidates without taking into account their relative rankings
with other candidates (a property known as independence of irrelevant alternatives). This
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ensures that the procedure is immune to strategic misreporting of one’s preferences when-
ever the majority relation has no cycle. However, cyclical majorities do appear for some
configurations of individual preferences, and this pattern is unavoidable for any minimally
fair aggregation method under independence of irrelevant alternatives (Arrow’s theorem).

Borda’s scoring rule, on the other hand, is robust to the decentralization of the decision
process among subsets of voters. It delivers a social ranking of the candidate that is not
plagued by any cycle.

1.4 Externalities and Fair Division

In the welfarist world, the physical resources of the world are fuel for welfare and are
pointedly devoid of any ethical content. The allocation of vitamins among medical patients
is methodologically identical to that of good wines or subsidies for college education among
siblings, or cocaine among drug dealers. Voting to choose the president for millions of
citizens is conceptually identical to the choice of the wallpaper among a handful of office
mates.

In real life, the physical characteristics of the resources we consume strongly influence our
definition of the “fair” production and distribution of these resources. The economic concept
of externalities, and the related notions of private and public goods, provide important
insights into this complicated interaction.

Risky choices are an example of externalities: if I am hurt in an accident because I do
not wear my seat belt, my welfare loss is the greatest, but part of the cost of treating me
is ultimately borne by my fellow citizens. Therefore my decision to buckle up or not affects
more than my own welfare. Polluting activities, the exploitation of exhaustible resources
(fish in the sea), create externalities too: the more I fish, the more costly it is for others to
capture a certain amount of fish.

A commodity is a private good if its consumption by one agent generates no externalities
on other agents. Thus a fruit is a private good, whereas a cigarette consumed in a public
place is not. A commodity is a (pure) public good if it must be consumed identically by all
agents in a given community (the economic terminology speaks of consumption without
exclusion and without rivalry). Thus the legal system, the police, as well as a radio broadcast
(when everybody owns a receiver) are pure public goods. On the other hand, a road system
entails partial rivalry (congestion occurs when the number of users is large enough) and
possibly exclusion (if only cars with odd plate numbers are allowed to move on a certain
day). Fishing in the sea involves a private good as input (fishing effort) and a private good
as output (the catch) but partial rivalry—as well as no exclusion—on the return of output
to input.
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A central tenet of economic analysis is that competitive markets work well for the ex-
change and production of private commodities but do not work well when the consumption
or production of these goods entails externalities (e.g., when some of them are public
goods). “Working well” means to achieve an efficient (Pareto optimal) utilization of the
resources, through the decentralized selfish behavior of the agents, as captured by Adam
Smith’s invisible hand paradigm.

The microeconomic models developed in chapters 5, 6, and 7 illustrate these two dual
propositions of economic wisdom, and show their relevance to the fair division problems.
Chapters 5 and 6 focus on the management of a commons, the oldest and simplest story
where production externalities hinder efficiency if access to the commons is not regulated.
Chapter 7 considers the efficient distribution of pure private goods by the invisible hand. I
review the latter first.

Start from a distribution of the property rights over the private goods where every market
participant is “small,” in the sense that nobody owns a large fraction of the total endowment
in the economy; the distribution of property rights is otherwise arbitrary. Then the strategic
equilibrium of voluntary, mutually advantageous trades is Pareto optimal and decentralized
by a competitive price signal, namely a price for every traded commodity. Each agent
receives the price list and requests the net trade (i.e., what quantity of each good he wants
to buy or to sell), maximizing his preference ordering given the budget constraint imposed
by the prices. The sum of all net trades cancels out; hence it is feasible to meet the demand
of every participant in the market.

The price list is the same for every agent, and all competitive net trades are worth zero at
these prices. Every agent can afford everyone else’s net trade, and the net trade one chooses
is the best for her preferences. Therefore she prefers her net trade to everyone else’s, and
this is the sense in which competitive trade is fair. Whether or not we agree that the initial
distribution of property rights is fair, the move from this inefficient initial allocation to the
competitive one is fair in the sense just described.

Now consider the problem of dividing a common property, namely a pile of private goods
on which all agents have identical rights (think of siblings splitting an estate). Transforming
common property into equal shares of private property is unquestionably fair. On the other
hand, the allocation of equal shares of all goods to all participants is inefficient, if differ-
ences in individual preferences allow for mutually advantageous trades. But the competitive
allocation resulting from the initial distribution of equal shares is surely efficient. Moreover
it is fair in the sense of the no-envy test: no agent i would prefer to receive agents j ′’s
competitive lot rather than her own competitive lot. This follows, as above, from the fact
that everyone chooses optimally from a common budget set (equivalently they can choose
the same net trades and the initial lot is the same).
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Chapter 7 examines the fair division method just described called the competitive equi-
librium with equal incomes. The endstate of this solution is just because of no envy. The
solution is also the strategic equilibrium of a just procedure, namely the trading game from
equal endowments.

We observe in chapter 7 the deep technical link between the competitive equilibrium with
equal incomes and the optimum of the Nash collective utility function. We further compare
it with another solution of straightforward egalitarian inspiration, called the egalitarian
equivalent solution.

We turn to the complex issue of fair division under production externalities, where we
encounter a fundamental contribution of normative microeconomics originating in cooper-
ative game theory. In the very simple models of the commons in chapters 5 and 6, a given
technology is the common property of a set of users, and the problem is to exploit the tech-
nology fairly and efficiently. The first difficulty comes from the fact that individual actions
(input contributions or output demands) are not aggregated additively by the technology: the
marginal return of input or the marginal cost of output is not constant. Therefore we cannot
easily separate the impact of a particular user’s actions. This issue is at the heart of the re-
ward principle (section 1.1) and is the subject of chapter 5, where efficiency considerations
are mostly absent.

The Shapley value is a systematic formula used to divide a joint cost or a jointly produced
output. It offers a reasonable definition and computation of the share of cost or surplus for
which a user of the commons is deemed responsible. A simple example shows why this
question requires a genuinely new interpretation of the reward principle.

This four-story building has one apartment on each of the second, third, and fourth floors;
the three apartments are otherwise identical. The manager of the building wishes to split
fairly the cost of running an elevator to the three apartments. The cost of an elevator serving
only the second floor is $5,000. That of an elevator serving the second and third floors is
$10,000. An elevator serving all floors would cost $40,000 because reaching the fourth floor
requires structural changes to the building that could be avoided if the elevator shaft ends
at the third floor. It has been decided to have the elevator serve all four floors.

The point of this example is that simple cost shares based on equality or proportionality
contradict our intuition about individual responsibilities in total cost, as required by the
reward principle.

Clearly apartment 4 (on the fourth floor) should be charged more than apartments 2 and
3, but how much more? Charging each apartment in proportion to the service (= number
of floors transported) would give shares 1/6, 2/6, and 3/6 respectively to apartments 2, 3,
and 4: apartment 2 ends up paying $6,667 and apartment 3 pays $13,333, which is grossly
unfair because each one of apartments 2 and 3 pays more than the full cost of an elevator
stopping at its own floor.
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A more reasonable set of shares would be based on the stand-alone costs. Here 5K,
10K, and 40K are the respective stand-alone costs of the three apartments. Dividing 40K in
proportion to these costs yields:

apartment 2:
5

5 + 10 + 40
40,000 = $6,636

apartment 3:
10

5 + 10 + 40
40,000 = $7,273

apartment 4:
40

5 + 10 + 40
40,000 = $29,091

Apartments 2 and 3 are still subsidizing unfairly apartment 4 because their joint share is
$909 higher than the cost of an elevator stopping at the third floor!

The Shapley value in this example simply splits the cost of each segment of the elevator
(from floor 1 to 2, 2 to 3, and 3 to 4) among the users of that segment. Thus the first segment
is split three ways, the second is split equally between apartments 3 and 4, the third is
charged to apartment 4 alone:

apartment 2:
1

3
5,000 = $1,667

apartment 3:
1

3
5,000 + 1

2
5,000 = $4,167

apartment 4:
1

3
5,000 + 1

2
5,000 + 30,000 = $34,167

In general, the Shapley value assigned to each agent is her expected marginal cost (or
surplus) when agents are randomly ordered with uniform probability on all orderings. This
formula has strong normative foundations, expressed in a handful of different axiomatiza-
tions discovered after Shapley’s initial characterization half a century ago. Two of these
axiomatizations are discussed in chapter 5.

The applications of the Shapley value are remarkably versatile, as the examples in chap-
ters 5 and 6 demonstrate abundantly. It is the most important contribution of game theory
to distributive justice.

In chapter 6 the fairness (reward) and efficiency issues are addressed jointly in a simple
model of the commons with variable returns, where all agents may consume at most one
indivisible unit of identical output (service), and they only differ with respect to their
willingness to pay for the service. Free access to the commons means that each agent
decides to “buy” service or not and total cost is equally divided between all buyers. The
strategic equilibrium of this natural procedure may, however, be severely inefficient: this
difficulty is known as the tragedy of the commons.
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Because individual preferences (willingness to pay) vary, efficient use of the commons
commands to serve the agents with the largest willingness to pay, up to the “marginal” agent
whose willingness to pay barely exceeds the marginal cost of production. Other agents are
not served, and must be fairly compensated. We compare three competing interpretations
of fairness.

The first one is the no-envy test, whereby the “efficient” agents pay the marginal cost of
service and the balance (revenue collected at that price minus total cost of production) is
divided equally among all agents, efficient and inefficient alike. The corresponding solution
is the competitive equilibrium with equal incomes discussed above.

The second solution is defined by the property that any agent’s share of surplus (for an
efficient agent: willingness to pay for service minus his payment; for an inefficient agent:
a positive or negative cash transfer) is the same as if everyone was offered the service at a
common virtual price.

The third solution considers the joint surplus generated by any subset (coalition) of agents
standing alone to use the technology, and applies the Shapley value of this cooperative game.

Each one of these three solutions is subtle in its own way, and proposes a different inter-
pretation of what common property of a technology could mean when there are production
externalities (variable returns). We also study the implementation of the three solutions by
appropriate procedures.

1.5 Private versus Public Contracts

Libertarian political philosophy offers a simple solution to deal with the externalities just
discussed. Assume that the property rights over the existing resources—consumption goods
as well as means of production—are clearly defined and entirely distributed among the
economic agents. The libertarian postulate (formulated most clearly by Coase) predicts that
the interested parties will spontaneously enter private contracts to reallocate the property
rights to their mutual advantage.

Say that Ann lives upstream and has the right to pollute the river, thus harming Bob who
lives downstream. The opportunity for private recontracting hinges upon the comparison
of the cost x to Bob of Ann’s polluting activities and the cost y to Ann of refraining from
polluting. If x is larger than y, then an offer by Bob to buy Ann’s pollution rights at a price
between y and x is attractive to both parties, and the postulate says that they will somehow
agree on a price—that is, reach an agreement on the division of the surplus (x − y). If,
on the other hand, y is larger than x , then it is efficient that Ann continues to pollute, and
the status quo will prevail because Bob cannot make an offer that would appeal to both
parties. Therefore an efficient utilization of the resources will result regardless of the initial
distribution of property rights.



moulin-79027 book October 22, 2002 16:7

Microeconomic Foundations 14

A private contract is a mutually advantageous deal: every party is better off when
the contract is implemented, therefore signing the contract is the consequence of rational
behavior. The contract is explained from no other principle than the pursuit of one’s own
selfish welfare by all the parties: no social value judgment enters the description of this
transaction, and no coercive device is needed to enforce compliance with the terms of the
agreement. In other words, the contract is free of value: either party can revoke it if it is
advantageous to do so, and the price they agree upon, for instance, is not grounded on any
fairness principle: it is simply the equilibrium result of selfish bargaining.

Public contracts are designed by a party of disinterested rational actors, under the veil
of ignorance, in the name of compelling arguments of justice—in practice, by a small
number of experts, judges, or “founding fathers” who agree on the best organization of a
certain institution of concern to all members of society. As explained below, the allocation
methods and collective decision rules studied in this book are all examples of public contracts
expressed in the microeconomic language and yet broadly applicable. They are miniature
social contracts.

Public contracts require a normative justification, must be explained from first principles
of rationality and justice, and administered by a central agency, whereas private contracts
have no ethical content. Private contracts result from the balance of power between the
agents qua players, and from a decentralized, spontaneous process of interaction that requires
no social evaluation.

The libertarian credo dismisses public contracts as unwarranted and detrimental to effi-
ciency, as they place constraints on private initiatives to invent beneficial private contracts.
In the libertarian world the only interference of the public authority in the lives of private
citizens is to enforce their private property rights, which is a “minimal” definition of the
role of the state.

Thus the kind of principled discussion of distributive justice that is the object of this
book has no place in the libertarian world. The normative/axiomatic approach is built upon
a more balanced interpretation of the liberal political philosophy that recognizes the need
for public contracts alongside private ones.

The Achilles heel of the libertarian view is to ignore the huge costs, practical and psycho-
logical, of direct, value-free bargaining. Exclusive reliance on private contracting to resolve
countless externalities and conflicts of opinion—generated by the apparently limitless di-
vision of labor in industrialized societies—is plainly utopian.

The transaction cost of reaching an agreement rises more than linearly with the number of
parties involved, in any measure of the amount of interpersonal communications implied by
collective negotiation. Think of the unanimous consent required in jury decisions: a single
stubborn juror can “block” the entire process. The European union will grow soon to more
than two dozen members, and must consequently drop its rule of unanimous consent on most
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issues. When we choose a rule of universal concern (a bill), we must rely on voting rules to
achieve a compromise between conflicting opinions. Passing bills by majority voting is a
prima facie liberal institution, yet it is not equivalent, by any stretch of the imagination, to a
private contract signed by all citizens: it forces coercively an outcome that certain citizens
find detestable.

Thus a contract binding a large community requires coercive intervention of the public
authority. The latter is acceptable to all (most) members of the community only if it is justi-
fied by a “reason,” a general anonymous principle. This is precisely what public contracts
are about.

Even transactions on a very small scale are often resolved more effectively by public
contracts than by private ones. Consider the division of assets during a divorce. Many
couples find it emotionally difficult to reach a reasonable settlement without the help of some
guidelines on the division process, such as, provision for child support. These guidelines
(whether or not enforceable in a court of law) embody the impersonal principles of fairness
of a public contract. The situation is similar in most fair division issues involving a specific
type of transaction: sharecropping, profit sharing between an artist and her agent, a publisher
and its authors, bankruptcy settlements. A customary division rule is a focal principle of
justice that all parties can easily adopt; whether or not this principle is legally enforceable
influences how often the parties comply with its recommendation, but the principle remains
an instance of a public contract between a very small number of parties.

1.6 Organization and Overview of the Book

In this book I propose a handful of fundamental public contracts, formulated in microeco-
nomic language, as methods for allocating certain resources or rules for reaching a com-
promise between conflicting opinions. These rules and methods include the equal sacrifice
taxation schemes (chapter 2), collective utility functions (chapter 3), voting by majority à la
Condorcet or by scoring à la Borda (chapter 4), the Shapley value (chapters 5 and 6), the
competitive equilibrium with equal incomes (chapters 6 and 7). They are simple tools for
social engineering, and their normative justification is provided by a series of axioms.

A full-fledged discussion of the axiomatizations relevant to the rules and methods just
listed is beyond the scope of this introductory text. However, the book describes informally
some of the main axioms and the corresponding key axiomatic characterization results or im-
possibility theorems. Specifically, section 3.2 states the central result of cardinal welfarism,
namely the characterization of additively separable collective utility functions. Section 4.6
describes Arrow’s impossibility theorem, the seminal result of ordinal welfarism, and its key
axiom of independence of irrelevant alternatives. The two most important axiomatizations
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of the Shapley value are the subject of section 5.5. An axiomatic comparison of the three
efficient methods for managing the commons is provided in section 6.6. Section 7.6 com-
pares similarly our two methods for the fair division of heterogeneous commodities, the
competitive equilibrium with equal incomes and the egalitarian equivalent solution.

Only two axioms qualify as universal within the confines of this book: they are the basic
symmetry property equal treatment of equals, and efficiency/Pareto optimality. All other
axioms are used to inform the differences among competing allocation methods. Exam-
ples include choices among utilitarian, egalitarian, and Nash collective utility functions in
chapter 3, between Condorcet and Borda voting methods in chapter 4, or between the com-
petitive equilibrium with equal incomes and the egalitarian equivalent solution in chapters 6
and 7.

The book is self-contained, yet a familiarity with microeconomic thinking and/or math-
ematics modeling will make the reader’s task easier. It is best suited for advanced under-
graduates, in particular, those who have been exposed to intermediate microeconomics, or
first-year master or graduate students.

Each chapter, starting with chapter 2, is organized as a sequence of intuitive examples,
intertwined with more general discussions in which the mathematical arguments, if any, are
elementary. It contains one technically challenging section evoking the relevant axiomatic
results (as explained above). Each chapter offers about a dozen detailed exercises, some
of them simple numerical examples, others developing some formal properties alluded to
earlier in the chapter. It ends with a short introduction to the relevant literature.

The sequence of chapters corresponds to a partly subjective list of the most influential
normative models of resource allocation.

In chapter 2 the resources in question are just a sum of money or of any other desirable
homogeneous commodity, and the relevant individual characteristics are a single number.
Examples of application include rationing an overdemanded commodity, designing a tax
schedule, or sharing the benefit from a joint investment. The three basic division methods
are simple proportionality of shares to claims, equalization of shares, and equalization of
losses (= claims − shares). Depending on the normative interpretation of the resources
and of individual characteristics, these methods translate the compensation or the reward
principle into an operational formula, exactly as Aristotle had suggested in the first place.

The cardinal welfarist model is the subject of chapter 3. The physical resources gener-
ate individual welfare measured by a cardinal index of utility, but the physical allocation
process is devoid of normative content. Consequently all relevant information is contained
in the utility profiles (specifying the cardinal utility of each concerned agent) achievable
by a feasible allocation of the underlying (unspecified) resources. A collective utility func-
tion provides an interpretation of the compensation principle compatible with efficiency
fitness (Pareto optimality; see section 1.3). Three such functions stand out of the axiomatic
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discussion, namely the classical utilitarian sum of individual utilities, the egalitarian
minimum of individual utilities, and the Nash product of individual utilities.

Chapter 4 is devoted to the ordinal welfarist model, in which individual welfare is de-
scribed by a preference relation and collective welfare is computed by an aggregation
method called a social welfare function. As explained in section 1.3, the two leading aggre-
gation methods are the majority relation proposed by Condorcet, and the scoring method
advocated by Borda. The celebrated impossibility result due to Arrow states that no social
welfare function can yield rational collective preferences at every profile of individual pref-
erences (as Borda’s method does but Condorcet’s does not) and base the collective opinion
between two outcomes solely on the profile of individual opinions between these two out-
comes (as Condorcet’s, but not Borda’s, method does). The two general principles at play
in chapter 4 are fitness and (equal) exogeneous rights.

The microeconomic problems of fair division discussed in chapters 5, 6, and 7 have been
already presented in section 1.4. Recall that the Shapley value, defined in chapter 5, is a
mathematical formula cutting the Gordian knot of widespread production externalities, and
that it is applicable to a wide array of fair division problems. Its focus is on the reward
principle, when a given production process intertwines the inputs of different agents in
a complex interaction from which each individual contribution cannot be easily separated
(e.g., the impact of the various inputs is not additive). The question is to give every participant
in the production effort his or her fair share of the resulting output; alternatively each
participant demands a different output share, and we seek to divide fairly the total cost of
production.

In chapter 5 we also introduce the stand-alone test, another equity property for the allo-
cation of joint costs or joint surplus. When the test is applied to individual participants, it
is never violated by the Shapley value, but in its stronger form, known as the stand-alone
core property, it may rule out the Shapley value altogether.

The model of chapter 6 is a simple and familiar example of production externalities often
called the problem of the commons. The three solutions defined and compared there are
reviewed at the end of section 1.4. They are three different interpretations of the reward
principle when a common property technology is used efficiently. Note that chapter 6 stands
out in this book for its more demanding technical level, as well as for the originality of the
material discussed there. The less technical reader may choose to skip it.

Chapter 7 starts with a brief review of competitive trade under private ownership, and of
its relation with the core of the cooperative game of free trade. We show, in particular, that
the competitive trade may break down when production exhibits nondecreasing returns to
scale, and the same applies to the core stability of free trade.

The second half of chapter 7 deals with the fair and efficient division of a “pie” in
the common ownership regime, where a pie means a list of divisible private commodities.
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Common ownership, here as in the production model of chapter 6, is no more and no less than
the vague principle of equal property rights. An envy-free division of the pie is a resting point
of the interpersonal comparison of individual shares (as opposed to individual welfares) in
the following sense: no one strictly prefers the share received by another participant to her
own share. The combination of no envy and of efficiency-fitness (Pareto optimality) leads
to the fair division method called competitive equilibrium with equal incomes (section 1.4).
To find this solution, we must discover a list of prices, one for each commodity, such that
when each participant spends a fair share of the total worth of the pie at those prices, the
aggregate demand equals precisely the contents of the pie.

An alternative solution is the egalitarian-equivalent division method, whereby each par-
ticipant receives a share that he/she views as equivalent to a common fraction of the pie.
The numerous examples and the axiomatic discussion in section 7.6 reveal that our two
methods (competitive with equal incomes and egalitarian equivalent) are two versatile and
plausible normative interpretations of fair division.

The brief chapter 8 provides, for each of chapters 2 to 7, a formal, mathematical definition
of the relevant concepts and a precise statement (without proof) of the results alluded to in
the course of the successive chapters. Thus chapters 8 serves as a glossary of the technical
material underpinning the less formal discussion in the successive examples and exercises.

1.7 Introduction to the Literature

The material covered in this book has deep roots in the economic and political philosophy
literature.

The central concept of collective welfare, in its cardinal or ordinal form, is a famously
general and far-reaching intellectual construction more than two centuries old. In its cardinal
form, it provides the backbone of the political philosophy known as utilitarianism, starting
with Bentham and John Stuart Mill; it also delivers practical tools for conflict resolution
such as the Nash solution to the bargaining problem. In the ordinal form, the aggregation of
individual preferences is an abstract model of democratic elections formalizing the political
concept of the “will of the majority.”

The systematic discussion of collective welfare, and the contrast between the cardinal and
ordinal models (sections 1.2 and 1.3), was the central theme of the “new welfare economics,”
summarized in the classic Samuelson (1948) book. The seminal axiomatic contribution bear
on classical utilitarianism (Harsanyi 1955) and on the aggregation of ordinal preferences
(Arrow 1951). The analysis of cardinal collective utilities and ordinal social choice func-
tions was developed mainly throughout the 1960s and 1970s. The organizing principle is
the informational content of welfare, and the related axioms of measurement invariance,
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discussed in sections 3.2 to 3.4. The classic reference is Sen (1971); more recent surveys
include Moulin (1988, chs 1 and 2) and Bossert and Weymark (1996).

The theme of externalities is as old as economic analysis, but the modern concepts
discussed in section 1.4 are approximately fifty years old: Shapley invented the “value” in
1953 and the concept of no envy is generally credited to Foley (1967). Further references
are given at the end of chapters 5, 6, and 7.

The concepts of private and public contracts sketched in section 1.5 allude to the central
debate of contemporary political philosophy, pitting the liberalism against the social contract
traditions. The libertarian position is spelled out most clearly by Hayek (1976), Buchanan
and Tullock (1962), and Nozick (1974). In my view, this position inspires the extremely
influential formal work on repeated games (Aumann 1987) and the spontaneous evolution
of cooperation (Axelrod 1984; Binmore 1994). This view is developed in Moulin (2001b).

Rawls’s 1971 book, A Theory of Justice, inspired a striking revival of the social contract
tradition, and in particular of its egalitarian variant. Kolm’s 1972 book, Justice et equité,
offers the first formal presentation of the egalitarian collective utility. The egalitarian position
was subsequently articulated both as a philosophical statement, Dworkin (1981), Sen (1985),
and Cohen (1995), and as an axiomatic model of economic theory: Roemer (1996, 1999)
and Fleurbaey (1996).
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2 Fair Distribution

2.1 Four Principles of Distributive Justice

In this chapter and the next, a benevolent dictator representing the public authority seeks a
reasonable compromise between the conflicting interests of the parties involved in a given
problem of distribution. Reasonable means “for a reason,” and the axioms are the formal
expression of such reasons. The manager of a firm, the parents in a family, and the judge in
a litigation are all acting as benevolent dictators.1

Recall Aristotle’s maxim, sometime called the formal principle of distributive justice:
“Equals should be treated equally, and unequals unequally, in proportion to the relevant
similarities and differences.” The term “proportion” should not be taken too literally here;
the interesting point is to draw our attention to the “relevant” similarities and differences.

Four principles guide the definition of “relevance,” and are not exclusive of one another.
They are compensation, reward, exogenous rights, and fitness. The canonical story2 is that
of a flute that must be given to one of four children. The first child has much fewer toys
than the other three, hence should get the flute by the compensation principle. The second
child worked hard at cleaning and fixing it, so he should get it as a reward. The third child’s
father owns the flute (although the father does not care for it), so he has the right to claim it.
The fourth child is a flutist, so the flute must go to him because all enjoy the music (fitness
argument).

Compensation, reward, and exogenous rights belong squarely to the principles of fairness.
As explained below, fitness is related to fairness as well as to welfare.

Compensation and Ex post Equality

Certain differences in individual characteristics are involuntary, morally unjustified, and
affect the distribution of a higher-order characteristic that we deem to equalize. This justifies
unequal shares of resources in order to compensate for the involuntary difference in the
primary characteristic and achieve equality of the higher-order characteristic.

Nutritional needs differ for infants, pregnant women, and adult males, and hence call for
different shares of food. The ill needs medical care to become as healthy as a “normal”
person. The handicapped needs more resources to enjoy certain “primary” goods, such as
transportation or access to public facilities. A socioeconomic disadvantage calls for more
educational resources to restore equal access to the job market. Economic needs are the
central justification of the macroeconomic redistributive policies, taking the form of tax
breaks, welfare support, and medical aid programs.

1. The discussion of cost- and surplus-sharing in chapter 5 takes place in the benevolent dictator context.

2. The story goes back to Plato.

21
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Formally, the compensation principle is implemented by defining an index vi representing
the level of the higher-order characteristic enjoyed by agent i , and a function ui transforming
her share of resources yi into her index vi = ui (yi ). For instance, vi is the level of satisfaction
of i ′s nutritional needs (with vi = 1 and vi = 0 representing full satisfaction and starvation,
respectively) and yi is the amount of food she eats (where for simplicity food is measured
along a unidimensional scale, e.g., calories). Thus a pregnant woman i and an elderly
male j who eat the same amount of food y are not nourished equally, ui (y) < u j (y),
or equivalently, it takes more food to bring i at the same level of nourishment than j ,
ui (yi ) = u j (y j ) ⇒ yi > y j . The other examples are similar: if vi is the level of health, and
yi the amount of medical care devoted to agent i , a healthy person i needs no care at all
ui (0) = 1, and the amount of care y j it takes to restore j ′s health measures the seriousness
of his condition. The definition of the function ui is “objective,” and agent i bears no
responsibility in its shape. This feature is essential to the benevolent dictator interpretation.

Equality ex post can be applied to many other indexes than the satisfaction of basic needs.
Handicaps in a horse race restore equal chances of winning by an unequal distribution of
weight, tax breaks to certain businesses restore their compensation, travel subsidies for
conference participants restore equality of the cost of attending, and so on.

Reward

Differences in individual characteristics are morally relevant when they are viewed as
voluntary and agents are held responsible for them. They justify unequal treatment.

Past sacrifices justify a larger share of resources today (veterans). Past wrongdoings
justify a lesser share: reckless drivers should pay more for insurance, no free healthcare for
the substance abuser, no organ transplant for the criminal. Past hardships to my ancestors
justify, vicariously, a compensation transfer today: affirmative action.

Merit by extraordinary achievement calls for reward: prizes to a creator, an athlete, a
peacemaker, and other outstanding individuals.

A central question of political philosophy is the fair reward of individual productive
contributions: the familiar Lockean argument entitles me to the fruit of my own labor, but
this hardly leads to a precise division rule except when the production of output from the
labor input unambiguously separates the contributions of the various workers. Separating
the fruit of my labor from that of your labor is easy only when your labor creates no
externality on mine, and vice versa. If we are fishing in the same lake, cutting wood from
the same forest, or sharing any other kind of exhaustible resources, this separation is no
longer possible hence the fair reward of one’s labor is not a straightforward concept. The
same difficulty arises when sharing joint costs or the surplus generated by the cooperation
of actors with different input contributions: some bring capital, some bring technical skills,
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and so on. This question is the subject of chapter 5; it is also discussed in this chapter (e.g.,
example 2.4).

Exogenous Rights

Certain principles guiding the allocation of resources are entirely exogenous to the con-
sumption of these resources and to the responsibility of the consumers in their production.
Such is the right of private property in the flute story: the point is that ownership is inde-
pendent from the consumption of the flute (and the related questions who needs it?, who
deserves it?, who will make the best use of it?).

A paramount instance of exogenous rights is the fairness principle of equality in the
allocation of certain basic rights such as political rights, the freedom of speech and of
religion, or access to education. My right to vote and to be eligible for office equals yours,
despite the fact that I don’t care to vote or to run for office, or that I will use my vote
irrationally or wastefully, such as by voting according to the phases of the moon. My right
to education is not related to my IQ, nor to the admirable deeds I perform when I am not in
school.

Equal exogenous rights correspond to equality ex ante, in the sense that we have an equal
claim to the resources (be they the ability to vote and the weight of one’s vote, the duty to
be drafted, the right to police protection, the access to a public beach, etc.) regardless of the
way they affect our welfare and that of others. This stands in sharp contrast with equality
ex post suggested by the compensation principle.

Examples of unequal exogenous rights are numerous and important as well. Beside private
ownership (see above), there is also the difference in status brought about by social stand-
ing or by seniority. When the beneficiaries of the distribution are institutions or represent
groups of agents, the inequality in their exogenous rights is commonplace: shareholders in
a publicly traded firm, or political parties with different size of representation in the parlia-
ment, should have unequal shares of decision power; creditors in the American bankruptcy
law are prioritized, with the federal government coming first followed by the trustees, and
the shareholders come last; and so on.

Fitness

Resources must go to whomever makes the best use of them, flutes to the best flutist, the
child to his true mother (Solomon), the book in Japanese to whomever can read Japanese,
the cake to the glutton, and so on.

Thus fitness justifies unequal allocation of the resources independently of needs, merit,
or rights. Formally, fitness can be expressed in two conceptually different ways, sum-fitness
and efficiency-fitness.
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The concept of sum-fitness relies on the notion of utility, namely the measurement of the
higher-order characteristic that is relevant to the particular distributive justice problem at
hand. Going back to the discussion of the compensation principle above, the central object
is the function transforming resources into utility. If we distribute medical care among a
group of patients, the index vi represents the health level of patient i and vi = ui (yi ) is the
function telling us what health level is achieved by what level of care. If we distribute food,
vi is i’s level of nourishment (satisfaction of nutritional needs) and yi her share of food. If
we divide a cake, vi is the degree of “pleasure” accruing to i when he eats the share yi .

Sum-fitness allocates resources so as to maximize total utility of the concerned agents.
Sum-fitness is a fairness principle, however unsettling and radical its recommendations
may be at times. The critical comparison of sum-fitness—maximizing the sum

∑
i ui of

individual utilities—and of compensation—equalizing ui across all agents—accounts for
a familiar trade-off of distributive justice.

Consider the flute example. The only use of the flute is to play music and music can be
heard by everyone. Say that the utility of child i has two components: the objective quality
ai of the music being played, and the pleasure b he derives from playing the instrument (the
same for every child). With n being the number of children, total utility when the flute is
given to child i is n · ai + b, where ai measures how well i plays the flute. Here sum-fitness
unambiguously recommends giving the flute to the most talented flutist. The compensation
principle, on the other hand, would sometime time-share, allowing the children to take turn
playing the flute.3

In section 2.5 we compare sum-fitness and compensation in a simple model of fair
division: often their recommendations differ sharply, yet at a deeper level of analysis the
two principles can be viewed as two faces of the same coin.

The more general concept of efficiency-fitness (or simply efficiency, or Pareto optimality)
is the central normative requirement of collective rationality; section 1.3. Efficiency-fitness
is developed in chapter 3, and it plays a leading role in the subsequent chapters.

Efficiency-fitness typically imposes much looser constraints than sum-fitness on the allo-
cation of resources. For instance, in the simple models of this chapter,4 efficiency-fitness is
automatically satisfied. In the general welfarist approach of chapter 3, efficiency-fitness is
compatible with sum-fitness—also called classical utilitarianism—with compensation—in
the form of the egalitarian collective utility function—and with many other compromises
between these two extremes.

3. If each child plays 1/nth of the time, each will enjoy the utility b/n + Ea, where Ea is the average skill of the
children. For some values of b and ai , b/n + Ea > maxi ai so that time-sharing improves upon the utility of all
agents but one (the best flutist) and yields a more egalitarian distribution of net utilities.

4. Here the resources are “one-dimensional,” meaning that, a given amount of a single divisible commodity is
distributed.
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We now discuss some examples, contrasting the four principles of distributive justice.

Example 2.1 Lifeboat Consider the allocation of a single indivisible “good”: each agent
can either have it or not. The benevolent dictator must choose, under some constraints,
who will get it and who will not. The paradigmatic example is access to the lifeboat when
the ship is sinking: the lifeboat is too small to accommodate everyone. Other dramatic
examples include medical triage—who will receive medical attention, in a war or a natural
disaster—the allocation of organs for transplant, and immigration policies.

We start by the genuine lifeboat story, where seats in the boat must be rationed. The
simplest version of exogenous rights is strict equality: we draw lots to pick who should be
sacrificed. Alternatively, exogenous rights amount to an exogenous priority ranking: keep
the good citizen (respected scientist, politician, or whatever, provided that his skills are not
useful in these circumstances) and throw out the bad one (criminal). Compensation suggests
letting the “strong” men take their chance by swimming, whereas the “weak” women and
children stay on the boat, thus equalizing ex post chances of survival. The reward viewpoint
would dispose of the one who causes the ship to sink. Finally fitness commands to keep
on board the crew (for their navigation skills) or the women and children (for the sake of
future humankind: the child has more potential for welfare than the old; the women can
bear children).

Another example is food rationing in a besieged town. Compensation says to give more
food to the sick and the children; fitness favors those who fight in defense of the town,
whereas reward favors those who risked their lives to get the supplies; finally exogenous
rights enforces either strict equality of rations or make the size of one’s ration depend on
social status.

In medical triage, compensation gives priority to the most severely wounded, reward gives
priority to the bravest soldiers, exogenous rights enforces strict equality or priority according
to rank in the hierarchy, and fitness maximizes the expected number or recoveries (where
recovery refers to the ability to fight) implying that one badly wounded soldier who needs
intensive care is sacrificed in favor of several soldiers to whom recovery can be guaranteed
with few medical resources.5 An alternative interpretation is priority according to rank
(a general is more important to victory than a private). A variant is medical triage where,
after an earthquake, fitness gives priority to doctors and engineers who produce the most
social value under the circumstances; reward is not relevant, unless we want to punish looters.

In the allocation of organs for transplant, compensation gives priority to whose who can
survive the shortest time or whose life is most difficult without a new organ; reward gives

5. Later in example 2.7 we have a model of medical triage where the decision is not simply “in” or “out” but the
quantity of medical resources allocated to each wounded soldier.
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priority according to seniority on the waiting list (first come, first served); exogenous rights
enforces strict equality of chances (lottery) or priority according to social status, or wealth
(if the donation of the wealthy patient does not increase the availability or organs); fitness
maximizes medical fitness, namely chances of success of transplant.

In the next three examples, the decision does not bring life or death. But the problem is
formally equivalent in the sense that we must decide who is “in” and who is “out.”

In immigration policy, compensation admits political or economic refugees; exogenous
rights is blind equality (lottery) or priority based on an ethnic, religious, or racial charac-
teristic (e.g., Germany, Israel); reward gives priority to those with a record of “good deeds”
for the country in question (even if they will retire after immigration, and be a net burden
to their host) such as investments and political support; fitness gives priority to those with
an expectation of good deeds, with useful skills, with a commitment to invest, and the like,
or priority to those whose relatives have already immigrated.

In admission to colleges, compensation gives priority to applicants with disadvantageous
socioeconomic background; exogenous rights give equal right to admission (often the rule
in European universities—France, Netherlands—where rationing can take the form of a
lottery); unequal exogenous rights include quotas favoring minority students (regardless of
their own circumstances), children of alumni, or citizens of foreign countries; reward gives
priority to the student’s academic record as it reflects past efforts and achievements; fitness
also uses the academic record but as a signal correlated to future success in the college itself
(note the analogy with the previous example).

In tickets for an overdemanded musical performance or sporting event, compensation
gives priority to out-of-town residents or to applicants who have not been attending any of
the previous events; for exogenous rights a lottery is faultlessly egalitarian, or alternatively,
priority to politicians, honor students in the local high school, or to any group whose
distinctive characteristic bears no relation to the event; reward gives priority to sponsors of
the orchestra or team; fitness favors musicians or music teachers, or athletes.

Example 2.2 Queuing and Auction Two common methods used to ration seats in concert
halls but also in planes and in private clubs are queuing and auction. Queuing (with a real
waiting cost) rewards effort and effort is correlated to benefit from the good in question;
therefore it meets the sum-fitness criterion better than a lottery because seats will go to their
most eager consumers. On the other hand, queuing is an inefficient use of time. Auction-
ing the goods is in one sense the best system from the fitness angle because the goods go to
those who value them most without any waste of resources; hence total utility is maximized.
This argument is rigorous only if all agents are of comparable wealth: the most eager opera
fan will be denied access if she is short of cash. Thus auctioning is unpalatable because it
favors the rich (think of the right to buy off conscription), a criterion orthogonal to merit
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(reward) and to fitness. Only if agents have comparable wealth, will auctioning maximize
sum-fitness and efficiency-fitness. Yet the common practice of bumping passengers off a
plane by auction shows that wealth differences are not always viewed as an ethical obstacle
to the fairness of the auctioning method. The choice to be bumped is voluntary, which makes
the method more acceptable than if the airline was auctioning the right to stay on the plane
(with the proceeds being redistributed to passengers who are bumped).

Example 2.3 Political Rights Plato (in the Republic) invoked the fitness argument when
proposing to place philosophers at the reins of government. As recently as one hundred
years ago, inequalities in voting rights (or eligibility to a political office) based on wealth,
land ownership, or literacy were more common than the universal suffrage (and eligibility
to office) that has become the modern norm. The moral basis of these unequal voting rights
was a combination of fitness (uneducated and/or poor citizens cannot form a reasonable
opinion) and reward (the wealthier I am, the higher my contribution to the commonwealth,
hence the higher my stake in the decisions being taken). Both arguments have been swept
aside to leave room for the strict exogenous equality of individual political rights, an inalien-
able component of membership in the political community. The age limit and the denial
of voting rights to the insane are two fitness arguments still in place. Denial of rights to
criminals is a reward argument.

In many voting bodies, equality of voting rights is not warranted: members of the
European union, and shareholders in a board meeting, are given unequal voting weights
because they represent unequal population sizes or capital investment. An interesting and
important question is the just distribution of weights. Simple proportionality does not work
because a small agent may end up with no influence whatsoever on the decision process,
and we must rely on other normative principles.6

2.2 A Simple Model of Fair Distribution

The model discussed in this and the next two sections is the simplest formal model of
distributive justice. There is a given amount t of a commodity to be divided among a given
set of agents, and each agent i is endowed with a claim xi . The commodity can be a “good”
(valuable resource) or a “bad” (a cost to be shared, e.g., a tax burden): if the former, we call
xi the demand of agent i ; if the latter, we speak of his liability.

The problem is that t , the available resource, differs from the total sum x of claims:
t �= xN = ∑

i xi . If there is equality, we simply meet each agent’s demand, or assign his
liability to each agent.

6. The most popular method is an application of the Shapley value.
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We distinguish the cases where t is smaller or larger than xN : we speak of a deficit, of a
rationing situation, in the former case, of excess in the latter case. The most frequent case is
when the commodity is a good and the resource t falls short of xN . One example is rationing
an overdemanded good, as in rationing prescription drugs: xi is the quantity prescribed to
agent i and t is the pharmacist’s supply. Two other examples are bankruptcy (xi is the
bankrupt firm’s debt to creditor i , t is its liquidation value; see below) and inheritance (xi is
agent i ′s deed and t the value of the estate).

The case with a “good” commodity and resources in excess of the claim is illustrated in
example 2.4 about a joint venture: xi is agent i ′s opportunity cost of joining the venture (in
our story, we speak of stand-alone salaries) and t its total revenue. Of course, both cases
t > xN (excess) and t < xN (deficit) are possible here.

The case where the commodity is a bad is no less interesting. The design of a taxation
schedule (section 2.4) is a key example: xi is agent i ′s taxable income and t total tax to be
levied.7 Other examples discussed below include a fund-raising story and the distribution of
chores. In the fund-raising story, xi is agent i ′s pledge and t is the amount that must be raised;
thus both cases of an excess t > xN or a deficit t < xN are plausible. In the distribution of
chores, xi is the amount for which i is responsible and t is the actual workload.

Throughout the rest of chapter 2 we assume equal exogenous rights, namely the differ-
ences in their claims is the only reason to give different shares to the agents. In particular,
two agents with identical claims must receive the same share. Also fitness plays no role, with
the exception of the model in section 2.5.8 As either every agent wants more of the good
or every agent wants less of the bad, efficiency-fitness is automatically satisfied. Moreover
we identify an agent’s share with her welfare; therefore sum-fitness has no bite either. Thus
our discussion bears on the principles of compensation and reward.

Example 2.4a Joint Venture: Excess Teresa is a pianist and David is a violinist. They
work as a full-time duo. Before the duo was formed, Teresa was earning $50K a year as
a teacher and solo artist, and David $100K as the first violinist of a symphony orchestra.
After one year of performing together, the net revenue of their duo is $210,000. What is a
fair split of this revenue?

The key to the example is the interpretation of the cooperation technology.
One viewpoint is that the stand-alone salaries are relevant to the cooperative process, and

agents are held responsible for them. The presumption is that the input of each instrument is
to some extent separable in the final product; it makes sense to take stand-alone salaries as a

7. In section 2.4 we consider a dual interpretation where xN − t is the tax and t is the net salary mass; the taxation
problem becomes an instance of dividing an overdemanded good.

8. Here we model explicitely a utility function transforming a share of resources into welfare. This gives the
sum-fitness property some bite.
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proxy for the value of their respective contributions, and to divide profit in the corresponding
proportions. To make this interpretation more plausible, consider the case of a famous singer
and her unknown accompanying pianist, so their ex ante earnings are very different.

This first solution is called the proportional solution, and its mathematical formulation
is transparent. Teresa and David in our example receive 70K and 140K respectively. More
generally, if xi is agent’s stand-alone salary and t total revenue of the joint venture, agent
i ′s share is

yi = xi∑
N x j

t (1)

Here is another plausible solution: taking their stand-alone salaries as the “status quo ante”
outcome, the agents divide equally the surplus (in excess of the status quo) generated by
their cooperative venture: in this view the difference in the voluntary characteristics (stand-
alone salaries) is preserved (at 50K). Teresa and David get 80K and 130K respectively, and
more generally,

yi = xi + 1

n

(
t −

∑
N

x j

)
(2)

This is the equal surplus solution that is always more (resp. less) advantageous to the agent
with the smallest (resp. largest) value xi than the proportional solution above.9

The third solution of interest pushes the egalitarian criterion one step further. The stand-
alone salary sets a floor on an agent’s share because no one should be penalized for joining
the cooperative venture. Except for this constraint, the revenue is shared equally among all
agents. This solution regards the individual contributions as no more separable than that of
the left and right hands clapping, hence stand-alone salaries as irrelevant to the production
process—if not to the division of the proceeds. In our example Teresa and David get 105K
each. With a total revenue of 190K, they would get 90K and 100K respectively: as long as
total revenue is below 200K, David’s share stays put at 100K and Teresa gets all the surplus.
When revenue is above 200K, it is split equally.

The mathematical expression of this third solution is slightly more involved. Agent i
receives a common share λ or his stand-alone salary, whichever is largest: yi = max{λ, xi }.
The common share λ is computed by solving the equation

∑
N

max{λ, xi } = t (3)

9. This mathematical fact is easy to check using the two formulas above; see exercise 2.5.
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This solution is called the uniform gains solution. It is more (resp. less) advantageous to the
agent with the smallest (resp. largest) value than the equal surplus solution (exercise 2.5).

Example 2.4b Joint Venture: Deficit Now suppose that total revenue falls short of 150K,
the sum of the stand-alone salaries. We must divide a deficit instead of a surplus. Her stand-
alone salary is an upperbound on an agent’s share because everyone must bear a share of
the deficit.

The three solutions are easily adapted to the deficit case. The proportional solution is
given by the same formula (1).

The uniform gain solution pursues the same egalitarian goal, but this time the share
yi must not exceed xi . Each agent receives a common share λ or xi , whichever is less:
yi = min{λ, xi }. The common share λ is the solution of the equation:

∑
N

min{λ, xi } = t (4)

Finally the equal surplus solution becomes the uniform losses solution, which aims at
subtracting the same amount from every stand-alone salary. Say that total revenue is 90K:
the deficit 60K is shared equally between Teresa and David who end up with 20K and 70K.
But if total revenue is very low, say 40K, the deficit 110K cannot be split equally lest Teresa
ends up paying David from her own pocket! In other words, equalization of the losses must
be adjusted to take into account the constraint yi ≥ 0. In the example Teresa ends up with
nothing at all, and David keeps the 40K. This contradicts even the mildest version of the
reward principle, as Teresa gets nothing for her work!

If the uniform losses solution is implausible in the joint venture problem, for the reasons
given above, it is very convincing in other contexts, examples of which are provided below.
Its mathematical expression is as follows: if the common loss is µ, agent’s share yi is
yi = max{xi − µ, 0}; in other words, i ′s loss is the smallest of the two numbers µ and xi .
The common loss µ is the solution of the equation

∑
N

max{xi − µ, 0} = t (5)

Figure 2.1 illustrates our three solutions, proportional, uniform gains and equal surplus/
uniform losses in the case of two agents with claims x1, x2. The vector x = (x1, x2) is fixed
and the total t to be divided varies from 0 to infinity, generating a path for the vector of
shares y = (y1, y2).

The figure illustrates the three solutions in a deficit case (with total resources t, solu-
tions a, b, and c) and in an excess case (t ′, a′, b′, c′). In the deficit case, agent 2 with the
smallest claim of the two prefers his share under the uniform gains solution (point c) to his
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Figure 2.1
Three basic rationing/surplus-sharing methods

proportional share (point b), and the latter to his uniform losses share (point a). In the excess
case, his first choice is uniform gains (c′), and his last is proportional (b′). Exercise 2.5
generalizes to an arbitrary number of agents these preferences of the agent with the largest
or smallest claim.

We now discuss three examples where the three solutions appeal differently to our
intuition.

First, consider bankruptcy: creditor i has a claim $xi and the total liquidation value t of
the firm is smaller than the sum of the debts. If our creditor have equal exogenous rights,
the proportional solution is compelling. It is the legal solution as well.

An important—indeed a characteristic—feature of this solution is its robustness to the
transfer of claims. If creditors i, j with claims xi , x j reallocate the entire claim to agent
i—effectively merging the two claims in one—their total share yi + y j is unaffected. The
same is true if a creditor i splits into two creditors i1 + i2, and divides his claim xi as
xi = xi1 + xi2 in arbitrary shares for i1 and i2: the splitting operation leaves the total share of
{i1, i2} identical to that of i . Contrast this with the uniform gains solution, where the merging
of two claims xi , x j in one of size xi + x j results in either a smaller or the same share for
the “merged” agent; symmetrically the splitting of one claim xi into two subclaims xi1, xi2
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can only increase the total share (yi1 + yi2 ≥ yi ). The reverse statements (i.e., merging is
advantageous and splitting is disadvantageous) hold for the uniform losses solution in the
case of a deficit. See exercise 2.2.

It is not too difficult to show that the proportional solution is the only solution in the
deficit problem robust with respect to the transfer of claims (exercise 2.2). Hence it is
compelling in any situation where claims are akin to anonymous bonds, as is nearly the
case in a bankruptcy situation (e.g., stocks are transferable), except for some creditors with
special status such as the federal government.

Next, consider rationing medical supplies. The pharmacist has t units of a certain drug—
say insulin—in stock and patient i shows a prescription for xi units; t falls short of xN . The
uniform losses solution is appealing here: xi represents an objective “need,” and it seems
fair to equalize net losses, assuming that a loss of k units of insulin below the optimal level
is equally harmful to every patient. On the other hand, if the demand for the drug is not
based on an objective need, say sleeping pills or diet pills, uniform gains seems most fair: it
corresponds to the familiar rationing by individual coupons—the same number of coupons
per person. In both cases—insulin and diet pills—the proportional solution is not especially
appealing.

Third, consider a fund-raising situation. Donor i offers to contribute $xi to the project
in need of funding. If the actual cost t exceeds the sum of xi , and it must be raised among
these same donors, the proportional solution will unfairly penalize the most generous donor,
unless we can view xi as a proxy of his ability to pay. Equal surpluses is not appealing even
if all donors are viewed as equally able—if unequally willing—to pay for the project. In
this case the uniform gains solution is the most plausible of the three, charging the extra
cost to the most timid donors first.

Symmetrically, suppose that the actual cost t falls short of the sum of the pledges xi :
How should we allocate rebates? Here the uniform gains is quite appealing. If the pledges
are ranked as x1 ≥ x2 ≥ x3 ≥ . . . , this solution gives the first (x1 − x2) dollars of rebate to
donor 1, splits equally the next 2(x2 − x3) dollars of rebate between donors 1 and 2, and so
on.10 If the donors have similar ability to pay, uniform gains rewards first the most generous
agents, meaning the highest contributors. On the other hand, uniform losses is not palatable
for symmetric reasons as it gives an equal rebate irrespective of the size of xi . If all agents
have the same ability to pay, this rewards bad behavior; if, on the contrary, xi is a proxy of
their ability to pay, a proportional rebate is the most natural compromise.

Example 2.5 We illustrate the three solutions by a numerical example with five agents with
respective claims and 20, 16, 10, 8, and 6, so the total claim is 60. The table gives the shares
for five values of total resource t : t = 20, 40, 50 yield a deficit and t = 80, 120 an excess.

10. This algorithm is described in exercise 2.6.
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Claims 20 16 10 8 6

t = 20 PRO shares 6.7 5.3 3.3 2.7 2
UG shares 4 4 4 4 4
UL shares 11.3 7.3 1.3 0 0

t = 40 PRO shares 13.3 10.7 6.7 5.3 4
UG shares 8.7 8.7 8.7 8 6
UL shares 16 12 6 4 2

t = 50 PRO shares 16.7 13.3 8.3 6.7 5
UG shares 13 13 10 8 6
UL shares 18 14 8 6 4

t = 80 PRO shares 26.7 21.3 13.3 10.7 8
UG shares 20 16 14.7 14.7 14.7
ES shares 24 20 14 12 10

t = 120 PRO shares 40 32 20 16 12
UG shares 24 24 24 24 24
ES shares 32 28 22 20 18

We turn to the issue of computing two of our three solutions, the uniform gains and
uniform losses solution, of which the mathematical definitions (3), (4), and (5) are not
entirely transparent. A simple algorithm to compute the uniform gains solution works as
follows. Divide t in equal shares and identify agents whose claims are on the “wrong”
side of t/n. If we have a deficit, this means those agents with xi ≤ t/n; if we have an
excess, it means those with xi ≥ t/n. Give their claim xi to those agents, decrease the
resources accordingly, and repeat the same computation among the remaining agents, with
the remaining resources.

A similar algorithm delivers the uniform losses solution in the deficit case: apply formula
(2) and identify all agents who receive yi ≤ 0, give zero to these agents. Repeat the algorithm
among the remaining agents.

In the deficit case the algorithm computing the uniform gains solution reveals that agent
i’s share must be at least t/n or xi , whichever is smaller: yi ≥ min{xi , t/n}. Indeed, an
agent who is on the wrong side of t ′/n′, at any stage of the algorithm where t ′ units remain
to be shared among n′ agents, receives yi = xi . Moreover the sequence of per capita shares
t/n, t ′/n′, t ′′/n′′, is nondecreasing because at each step the claims of the agents who are
dropped are below the per capita share. Therefore an agent who is always on the right side of
t ′/n′ receives no less than t/n. Exercise 2.8 elaborates on such lower bound for the uniform
gains shares, and stresses that neither uniform losses nor proportional meets any nontrivial
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lower bound. Exercise 2.6 offers two more algorithms for computing the uniform gains and
uniform losses solutions.

Our final example shows the versatility of the three basic solutions, which can be adapted
to a distribution problem with indivisible units and lotteries.

*Example 2.6 Scheduling A server processes one job per unit of time. User i demands
xi jobs. For every user, the earlier a job is done, the better. The server must schedule
total demand xN = ∑

i xi , namely decide in what order the xN jobs will be processed. A
scheduling sequence is a list {i1, i2, . . . , it , . . . , ixN }, where for all t, it is one of the users
and where user i appears exactly xi times in the sequence. For the sake of fairness, the
server randomizes the choice of the sequence {i1, . . . , ixN }.

The link between this scheduling problem and the rationing of an overdemanded com-
modity is apparent if we fix a date t and consider the number yi of user i ′s jobs processed
up to date t . The vector (yi ) is a division of t units among users with demand profile (xi ); it
is a solution to a rationing problem where the resources come in indivisible units and their
allocation is random.

The proportional solution works by filling an urn with xN balls, where xi balls are labeled i ,
then drawing balls from the urn successively and without replacement: in other words, all
sequences {i1, . . . , ixN }, where each i appears xi times are equiprobable. An alternative
definition of proportional scheduling goes as follows: if at time t user i has zi jobs still
unserved, the (t + 1)th job will be given to user i with probability zi/zN . To see why this
method corresponds to the proportional solution of the rationing problem, observe that the
expected number of i ′s jobs served in the first t periods is (xi/xN ) · t.

Proportional scheduling has been deemed an unfair solution because a small demand xi

is swamped by a much larger demand x j . If x j becomes arbitrarily large, the expected share
of agent i up to a fixed date t dwindles to zero (his expected waiting time until completion of
all his jobs becomes arbitrarily large). The simple method known as “fair queuing” avoids
this problem by giving an equal chance of receiving the first (most preferred) unit of service,
irrespective of the sizes of their demands.

Specifically, fair queuing serves first one job of each user i such that xi ≥ 1, using an
ordering of these agents selected at random, with uniform probability on all orderings; next
all users i such that xi ≥ 2 are served a second unit in random order, and so on. In other
words, the method empties a series of urns where each agent is allowed to throw at most
one ball in each urn.

Figure 2.2 illustrates the method in the two agents’ case, and suggests its relation to
the uniform gains solution. In the first t periods, the expected number of i ′s jobs served is
precisely given by the uniform gains shares.
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Figure 2.2
Fair queuing in example 2.6

Under fair queuing a small demand is not swamped by a large demand, as with propor-
tional scheduling. In fact an agent’s delay is unaffected when another agent with a larger
demand raises his demand even further.

A related observation is the following incentive property of fair queuing. Suppose that
agent i needs xi jobs. By inflating his demand to x ′

i jobs, x ′
i > xi , she will not affect in

any way the (random) scheduling of her xi first jobs: hence this move is not profitable
(and neither is a symmetric reduction of her demand, obviously). By contrast, artificially
inflating one’s demand is always profitable if the proportional scheduling method is used,
in the sense that the first xi jobs (the true demand) will be served earlier.

Our third scheduling method works by simply reversing the scheduling sequence of fair
queuing and for this reason is called its dual method11 and denoted fair queuing*. This
means that fair queuing* selects the sequence {i1, i2, . . . , ixN } with the same probability as
fair queuing selects the sequence {ixN , ixN −1, . . . , i2, i1}; see figure 2.3.

This definition is not very intuitive, but fortunately a more direct one is available: fair
queuing* gives the first job to one of the agents with largest demand xi (with equal prob-
ability among these agents if they are two or more); the (t + 1)th job goes (with equal

11. More on duality appears in the next section.
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Figure 2.3
Fair queuing* in example 2.6

probability) to one of the agents with the largest remaining demand zi after the first t peri-
ods. This algorithm is entirely similar to the algorithm provided in exercise 2.6 to compute
the uniform losses solution. Hence, in particular, the expected distribution of jobs served
after t periods is given by the uniform losses formula (5).

The scheduling example uncovers several properties of great relevance for the general
deficit-sharing problem when the resources are divisible and shares are deterministic—
formulas (1), (4), and (5). First of all it suggests a dynamic interpretation of the three basic
methods, proportional, uniform gains and uniform losses in the case t < xN . Think of the
resources t as being distributed progressively, at a rate of 1 unit per unit of time. Uniform
gains shares the incremental resources dt equally among all agents whose demand xi is
not yet met at date t . Uniform losses shares dt equally among all agents with the largest
remaining demand at date t . Proportional simply shares dt in proportion to xi at all time.

Next we check that the two properties of fair queuing discussed above apply to the uniform
gains solution as well. First, consider the effect on agent 1 of raising the claim/demand of
another agent, say agent 2, whose demand was larger than agent 1’s in the first place. That
is, we start from claim x1, x2, x3, . . . with x1 ≤ x2, and raise x2 to x ′

2, x ′
2 > x2, leaving

all other claims and the resources t unchanged. Under the uniform gains solution, agent
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1′s share does not change either. To see this, consider equation (4), with solution λ before
and λ′ after the raise of agent 2’s claim. If λ ≤ x2, then λ′ = λ solves (4) in both cases;
hence agent 1’s share min{λ, x1} does not change. If λ > x2, λ

′ is smaller than λ but cannot
fall below x2 : λ′ ≥ x2 (exercise: Why?). The assumption x1 ≤ x2 now implies that agent
1’s share is x1 before and after the raise. Exercise 2.3 shows that this property (known as
independence of higher claims) is in fact characteristic of the uniform gains solution.

The second idea emerging from the discussion of example 2.5 is the immunity to a
strategic misreport of one’s characteristics, in this case the report of an inflated demand:
under the proportional method such a report is profitable, under fair queuing/uniform gains
it is not. The immunity in question is called strategy-proofness in microeconomic jargon; it
plays a central role in chapters 4 and 6. It turns out that uniform gains is the only equitable
and strategyproof division method. Exercise 2.4 explains this remarkable property.

*2.3 Contested Garment Method

Consider an inheritance or bankruptcy problem where agent i’s claim xi is the debt he holds
on the bankrupt firm or a legitimate deed he received from the deceased. The liquidation
value of the firm—or the actual value of the estate—is t and t < xN .

Suppose that agent i holds a claim xi and xi ≥ t . This means that this agent claims the entire
estate. In this case the uniform gains solution does not pay attention to the unfeasible claim
xi − t . For instance, two agents i, j such that xi ≥ t and x j ≥ t must receive the same
share under uniform gains, though xi and x j may be very different. Formally, the uniform
gains solution is unchanged when we replace claim xi by x ′

i = min{xi , t}. This follows at
once from the fact that the solution λ of equation (4) cannot exceed t (exercise: Why?).
Therefore min{λ, xi } = min{λ, min{xi , t}}, and λ is still the solution of (4) in the problem
with claims x ′

i .

We call the truncation property the fact that we can truncate any claim larger than t at the
level t without affecting the distribution. Obviously neither the proportional solution nor
the uniform losses have the truncation property, but we have seen that the uniform gains
solution does.

A property related to truncation (the link will become clear only after we define the
duality operation below) rests on the idea of concession. In the problem x, t , the quantity
t − xN\i represents what is left of the resources after all agents but i have received their full
claim. Naturally this number may be negative or zero, but if it is positive, it is a share of the
resources that agent i will necessarily receive.12 We write ci = max{t − xN\i , 0} and call
this quantity the concession by N\i to agent i.

12. This is because y j ≤ x j for all j and t − xNi < xi .
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In the example 2.5 nobody gets a concession if t = 20 or t = 40. However, if t = 50,

we have c1 = 10, c2 = 6, ci = 0, for i = 3, 4, 5. We take away these concessions from
the initial claims and distribute the 50 − 10 − 6 = 34 remaining units given the profile of
reduced claims (10, 10, 10, 8, 6). Under the uniform losses solution we can simply compute
the shares for this reduced problem, namely (8, 8, 8, 6, 4) where everyone loses two units.
The solution to the initial problem obtains by adding the profile of concessions, namely
(10, 6, 0, 0, 0).

The decomposition above does not work for the uniform gains (or proportional) solution
because the uniform gains shares of the reduced problem are (7, 7, 7, 7, 6), and

(7, 7, 7, 7, 6) + (10, 6, 0, 0, 0) �= (13, 13, 10, 8, 6)

We call the concession property the fact that the distribution of t units can be done in
two steps, first giving concession ci to each agent i, next sharing t − cN units according to
the profile of reduced claims xi − ci . We note that the uniform losses solution satisfies the
concession property,13 but neither uniform gains nor proportional does.

The contested garment solution to the deficit problem t, x1, x2 takes its name from the
following passage in the Talmud: “Two people cling to a garment; the decision is that one
takes as much as his grasp reaches, the other takes as much as his grasp reaches, and the rest
is divided equally among them.”

We interpret agent i’s concession ci as his “grasp,” namely the part of the garment that
the other agent is not claiming. In a two-person problem the definition of ci is

ci = max{t − x j , 0} = t − min{x j , t}, where {i, j} = {1, 2}
The contested garment (CG) solution gives concession ci to agent i for i = 1, 2, and it

divides the remaining resources t −(c1 + c2) equally: agent i receives ci + (t − c1 − c2)/2.
Rearranging this expression with the help of the formula for ci above, we get the contested
garment shares:

y1 = 1
2 (t + min{x1, t} − min{x2, t})

y2 = 1
2 (t − min{x1, t} + min{x2, t})

(6)

Recall that in example 2.4b, we had xT = 50K, xD = 100K, and t = 90K. Here cT = 0,

cD = 40, and (6) gives yT = 25, yD = 65.

Unlike any of our three earlier solutions, the contested garment solution meets both the
concession property and the truncation property. This is clear for the truncation property,

13. To prove this fact, observe that a solution r meets the concession property if and only if its dual r∗ (defined
below) meets truncation.
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x1

x

x/2

(x1 – y1, x2 – y2)

(y1, y2)

Figure 2.4
Contested garment method

since formula (6) depends only on min{xi , t}, i = 1, 2. It takes some work to check the
concession property. Moreover the the contested garment solution is the only two-person
solution for which both concession and truncation hold: exercise 2.9 explains this axioma-
tization of the contested garment.

Figure 2.4 depicts the path among which the vector of shares (y1, y2) given in (6) varies
as the resources t vary from zero to x1 + x2. It reveals that our new solution coincides with
uniform gains for small t (i.e., when t ≤ min{x1, x2}) and with uniform losses for large t
(when t ≥ max{x1, x2}). These two observations follow respectively from the truncation
and concession properties (exercise: Why?).

In figure 2.4 we see that the path between 0 and x is symmetric around the midpoint
x/2. If (y1, y2) is on this path, so is (x1 − y1, x2 − y2). In words, if the contested garment
solution divides t as (y1, y2), it divides x1 + x2 − t as (x1 − y1, x2 − y2), meaning it also
divides a deficit of t as (y1, y2)—receiving x1 − y1 is the same for agent 1 as incurring a
deficit y1.

This property is called self-duality: the method divides a deficit exactly as it divides a
gain (so a bottle half full is really the same as a bottle half empty). The relevant concept
here is the duality operation. Given a solution y = r(t, x), where x stands for the vector
(xi ) of claims, and y for the vector (yi ) of shares, the dual solution r∗ is defined as follows:

r∗
i (t, x) = xi − ri (xN − t, x)
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Thus r∗ divides t units of “gain” exactly as r divides t units of deficit. For instance, the
proportional solution is self-dual because it divides gains and deficits alike in proportion to
claims.

The dual of the uniform gains method is the uniform losses method, and vice versa.
Taking example 2.5, let us compare uniform gains and uniform losses at t = 20 and t = 40,
meaning 20 units of gains and 20 units of deficit. Agent 1 with claim 20 has a uniform
losses share 11.3 at t = 20 and a uniform gains share 8.7 = 20 − 11.3 at t = 40. Similarly
he has a uniform gains share 4 at t = 20 and uniform losses share 16 = 20 − 4 at t = 40.

The same comparison applies to all agents.
The normative appeal of a self-dual method (r = r∗) is to eliminate the difference

between a gain and a loss with respect to the individual claims. The choice of the reference
point (at the full or null satisfaction of one’s claim) does not matter.

In particular, if the bottle is exactly half full, t = xN /2, a self-dual method gives half
of his claim to every agent, yi = xi/2. The method requires one to be oblivious to the
orientation of the units to be divided as gains or losses.

How can we generalize the two-person contested garment solution to an arbitrary number
of agents? There are two natural ways to do so. They both preserve the truncation and
concession properties, as well as self-duality. In view of truncation, whenever every agent
claims the entire resources (t ≤ xi for all i), the resources t are split equally just like uniform
gains does. By concession, whenever the deficit can be covered by any agent (xN − t ≤ xi

for all i), this deficit is split equally, as under uniform losses.14

The first idea to generalize contested garment is random priority. Taking a two-agent
problem, let us suppose that the two agents toss a fair coin to decide whose claim has
absolute priority over the other claim. If agent 1 wins, the shares are y1 = min{x1, t},
y2 = t − min{x1, t}; if agent 2 wins, the shares are y′

1 = t − min{x2, t}; y′
2 = min{x2, t}.

The average of these two vectors is precisely the vector of shares (6). Exercise 2.10 describes
the application of the random priority idea with an arbitrary number of agents.

The second generalization of the contested garment solution to any number of agents is a
clever hybrid between a uniform gains solution whenever the bottle is more than half empty
−t ≤ xN /2, and a uniform losses solution when it is more than half full −t ≥ xN /2. It is
the subject of exercise 2.11.

14. Indeed, ci = t − xN\i ≥ 0; hence after distribution of cN , agent i ′s remaining claim is xi − ci = xN − t. In
the reduced problem each agent has the same claim, so each gets 1/n of t − cN = (n − 1)(xN − t). This in turn
yields the UL shares.
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Progressive and regressive methods

*2.4 Equal Sacrifice in Taxation

In the taxation problem, xi represents agent i ′s taxable income, and a given amount of tax
must be divided among the n agents. We choose to write t for the total aftertax income so
that xN − t is the total tax to be levied, and the share yi is agent i ′s aftertax income.15

The simple property called fair ranking places some minimal equity constraints on tax
shares:

xi ≤ x j �⇒ yi ≤ y j and xi − yi ≤ x j − y j (7)

A higher taxable income warrants a higher after-tax income as well as a higher tax burden.
In particular, equal incomes are equally taxed. In figure 2.5 the shaded area represents, in
the case n = 2, the vectors (y1, y2) circumscribed by inequalities (7). Notice that the path
of the uniform gains solution forms the northeastern boundary of this region, while that of
the uniform losses solution forms the southwestern boundary.

15. The dual representation where t is total tax and yi is i ′s tax share can be used just as easily.
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Next consider the familiar ideas of progressivity and regressivity:

progressivity: xi ≤ x j ⇒ xi − yi

xi
≤ x j − y j

x j

regressivity: xi ≤ x j ⇒ xi − yi

xi
≥ x j − y j

x j

(8)

Under a progressive tax scheme, the higher the (taxable) income, the higher will be the tax
rate, namely the fraction taxed away. The opposite statement holds true under a regressive
scheme. Observe that the proportional solution (flat tax) is both progressive and regressive.

In figure 2.5 progressivity means that the vector (y1, y2) must be above the straight line
from 0 to (x1, x2), and regressivity means that it must be below this line. Thus the uniform
gains solution is progressive, whereas uniform losses is a regressive solution.

Uniform gains (resp. uniform losses) is in fact the most progressive (resp. the most
regressive) solution among those meeting fair ranking. This is intuitively clear in figure 2.5,
and exercise 2.7 gives a precise statement of these facts for an arbitrary number of agents.

The idea of equal sacrifice yields a rich family of taxation schemes that contains our three
basic solutions, proportional, uniform gains, uniform losses, and much more. J. S. Mill
introduced this idea first in the context of taxation: “Equality of taxation means equality
of sacrifice. It means apportioning the contribution of each person towards the expenses of
government, so that he shall feel neither more nor less inconvenience from his share of the
payment than every other person experiences from his.”

We pick an arbitrary increasing (continuous) function z → u(z) representing the con-
ventional “utility” associated with the income z. Then the u-equal sacrifice method chooses
aftertax incomes yi so as to satisfy

u(xi ) − u(yi ) = u(x j ) − u(y j ) for all i, j (9)

For a given vector of taxable incomes (xi ) and total after-tax income t , we may or may
not be able to find a vector (yi ) satisfying the system above and

∑
i yi = t. For instance,

with the function u(z) = log z it reads xi/yi = x j/y j and yields the proportional solution.
On the other hand, if we set u(z) = z , the u-equal sacrifice method resembles the uniform
losses solution but the system (9) may yield some negative shares yi . In order to guarantee
a solution meeting the constraint yi ≥ 0 for all i , we modify the system as follows:

for all i : yi > 0 ⇒ u(xi ) − u(yi ) = max
j

{u(x j ) − u(y j )} (10)

Only those agents who get a positive after-tax income incur the largest sacrifice. The
system (10), together with

∑
i yi = t , always has a unique solution (exercise: prove this

claim). With u(z) = z this solution is uniform losses.
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An equal sacrifice method always meets half of the fair ranking property (7), namely
xi ≤ x j ⇒ yi ≤ y j . The other half, xi ≤ x j ⇒ xi − yi ≤ x j − y j , is satisfied if and only if
u is a concave function (u′(z) nonincreasing in z).

The u-equal sacrifice method is progressive if and only if z · u′(z) is nonincreasing in z,
namely u is more concave than the log function;16 it is regressive if and only if z · u′(z) is
nondecreasing in z, meaning that u is less concave than the log function.17

The simplest family of equal sacrifice methods comes from taking for u a power function.
This allows the u-equal sacrifice method to be scale invariant: if we multiply all taxable
incomes as well as the aftertax total income by a common factor, the corresponding aftertax
incomes are also multiplied by the same factor. Thus only the relative incomes xi/x j and
total tax ratio (xN − t)/xN matter. Two subfamilies arise.

First consider the utility function u(z) = −1/z p, where p is a positive parameter. This
function is increasing, concave, and more concave than the log function. Therefore it defines
a progressive taxation method. Notice that this method never gives yi = 0 whenever xi > 0,
and guarantees equal sacrifice for all: 1/y p

i − 1/x p
i = 1/y p

j −1/x p
j for all i, j ; together with

yN = t , the system (9) has a unique solution with yi > 0 for all i .
In the case n = 2, the path t → (y1, y2) is depicted in figure 2.5 for p = 1 and p = 3.

Two important facts: the p-method approaches the proportional one when p goes to zero;
it approaches uniform gains when p goes to infinity. Thus the positive parameter p ad-
justs the degree of progressivity of our methods, and the u-methods connect smoothly the
proportional to the uniform gains method.

Next we consider the utility function u(z) = zq , where q is a positive parameter,
0 ≤ q ≤ 1. This function is increasing and concave, and less concave than the log func-
tion; therefore it defines a regressive taxation method. Note that the system (10) must be
used, because for small values of t some agents end up with yi = 0. The corresponding
path t → (y1, y2) is depicted in figure 2.5 for q = 1

2 . When q goes to zero, the u-method
approaches the proportional one, and it shows uniform losses when q = 1.

When q > 1, the function u(z) = zq is convex instead of concave, so the u-equal sacrifice
method violates fair ranking. Indeed, (9) implies that the smaller the income xi , the higher
is the tax xi − yi . For instance, when q goes to infinity, the u-method approaches the
hyperregressive method, taxing exclusively the poor: the tax burden xN − t is allocated first
to the agent(s) with the smallest xi ; if xi < xN − t (i.e., taxing away all of agent i ′s income
is not enough), the method taxes the next smallest x j , and so on. See exercises 2.7 and 2.14.

16. This means that we can write u as u(z) = a(log z) for all z, where a is concave and increasing.

17. In other words, we can write u(z) = b(log z), where b is convex and increasing.
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2.5 Sum-Fitness and Equality

The principles of compensation and of sum-fitness come into play with interesting dif-
ferences in the simple utilitarian model of resource allocation that is our subject in this
section. This model is a prelude to the more general welfarist approach in the next chapter
(in particular, section 3.4). It is different from but related to the model of sections 2.2 to 2.4.
The benevolent dictator must share t units of resources between n agents, and each agent
has his own utility function ui to “produce” utility from resources: ui (yi ) is agent i ′s utility
when consuming the share yi .

The function ui is a personalized measurement of the benefitness derived by this agent
from any possible share of resources. Depending on the context, this measure may be
subjective or objective. In one instance, t may be the size of a cake and ui (yi ) the subjective
pleasure derived by child i from a piece of size yi . In another, t measures some medical
resource (e.g., blood or a certain drug) and ui (yi ) is patient i ′s objective chance of recovery
(measured before treatment) if he receives the quantity yi .

The two principles of compensation and sum-fitness (section 2.1) correspond to, respec-
tively, the solution that equalizes individual utilities and the solution that maximizes the
sum of individual utilities:

egalitarian solution: find yi ≥ 0 such that ui (yi ) = u j (y j ) and yN = t

(classical) utilitarian: find yi ≥ 0 maximizing
∑

i
ui (yi ) under yN = t

(11)

If the utilitarian solution is always well-defined mathematically (provided that each func-
tion ui is increasing and continuous), the egalitarian one is not. For instance, the ranges of
the functions u1 and u2 may not overlap. The proper formulation is that some agents may
receive zero, yi = 0, but only if they enjoy the largest utility level:

egalitarian∗ solution: find yi ≥ 0 such that yN = t and for all i

yi > 0 ⇒ ui (yi ) = min j u j (y j )
(12)

Whenever each function ui is continuous and nondecreasing, this definition is unambiguous.
See exercise 2.15 for the mathematical discussion of this fact.

A crucial factor influencing the comparison of the egalitarian* and (classical) utilitarian
solutions is whether or not the marginal utility functions decrease, namely whether or not
the functions ui are concave. They are if consuming one more unit of resources always
increases an agent’s utility less than did the previous unit.

This fundamental property of utility functions plays a central role in chapters 5 and 6, as
in most of economic analysis. It is quite plausible in the cake-tasting example: the first bite is
always the most enjoyable! Much less so in the case of medical drugs (one pill of antibiotics
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won’t do any good but 20 may cure you) and other commodities whose consumption must
reach a certain threshold in order to have an impact.

We will discuss the utilitarian model of resources allocation first in the case where all
utility functions are concave. We emphasize that the classical utilitarian and egalitarian*
solutions are different and yet that at a deeper level they are identical. We will show that the
three solutions discussed earlier—proportional, uniform gains, uniform losses—are simple
special cases of this model.

However, if utility functions are not concave, the egalitarian* and classical utilitarian
solutions are irreconcilable, and they lead to radically different conceptions of distributive
justice.

Example 2.7 Common Utility and Unequal Endowments The base utility function is u
and agent i is initially endowed with xi units of the resources. Upon receiving the share yi

of the resources, her final utility is ui (yi ) = u(xi + yi ). One interpretation is redistribution
of income: xi is the income before the division of the subsidy t .

Assume that u is increasing and concave. A simple observation, due to Mill, is that the
egalitarian* and classical utilitarian programs coincide in this case. Their recommendation
is to equalize the net income xi + yi , taking into account the nonnegativity constraint on
yi . We compute the egalitarian* solution first. The system (12) gives

for all i : yi > 0 ⇒ xi + yi = min
j

{x j + y j } (13)

Upon writing zi = xi + yi for the net income, we recognize here the uniform gains solution
which allocates the resources s = xN + t (the surplus t) given the claims xi .

The classical utilitarian solution maximizes
∑

i u(xi + yi ) under the constraints yi ≥ 0,

yN = t. Because u is a concave function, the first-order optimality conditions capture the
optimal solution:

yi > 0 ⇒ u′(xi + yi ) = max
j

u′(x j + y j )

which is the same system as (13) because u′ is decreasing.
Next we consider the case of an increasing and strictly convex utility function u (strictly

increasing marginal utility). The egalitarian* solution is still computed as the uniform gains
solution of the problem with claims xi and resources xN + t. It is entirely independent of
the choice of the increasing utility function u. The classical utilitarian solution, on the other
hand, allocates the entire subsidy to one agent with the largest initial endowment. In other
words, the richest agent takes all!

To check this claim, consider two agents i, j such that xi ≥ x j , and assume that they
receive positive shares yi , y j . Convexity of u implies that

u(xi + yi ) + u(x j + y j ) < u(xi + yi + y j ) + u(x j )
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Hence transferring y j to the “richer” agent i increases the sum of individual utilities, as
required by classical utilitarianism. It is now a simple matter to deduce that an allocation
is optimal for the classical utilitarian criterion if and only if it gives all the resources to an
agent i with the largest initial endowment xi (if there is exactly one such agent, the optimal
allocation is unique).

In the context of redistribution of income, a convex utility function makes little sense. It
does in the medical triage problem: if we have barely enough medicine to save two patients,
it is ethically sensible to concentrate on the two most promising patients and ignore the
others altogether. Another example is the distribution of subsidies among ailing firms in a
regulated economy.

A difficulty of the “richest takes all” solution is its discontinuity with respect to individual
characteristics. A small increase in the initial endowment xi may result in a dramatic shift
of the share yi : it may give agent i the largest initial endowment, thus shifting all the
resources onto his plate. This unpalatable feature never occurs with the classical utilitarian
solution if utilities are concave, or with the egalitarian* solution for any utility functions;
see exercises 2.15 and 2.16.

Example 2.8 Constant Utility Ratios The base utility function u is strictly concave, and
agent i ′s utility from taking a bite of cake piece yi is ui (yi ) = ai u(yi ). The constant factor ai

measures agent i ′s productivity in generating utility. Here the compensation and sum-fitness
principles make two opposite recommendations.

Assume for simplicity that u(0) = 0. The egalitarian* solution simply equalizes net
utilities

ai u(yi ) = a j u(y j ) for all i, j

Therefore ai > a j ⇒ y j > yi : a larger share compensates the agents with low productivity.
By contrast, the classical utilitarian solution rewards productivity and gives a larger share
to the agents with a larger coefficient ai . To see this, we write the first-order optimality
condition of the maximization problem:18

ai u
′(yi ) = a j u

′(y j )

and the conclusion ai > a j ⇒ yi > y j follows because u′ is decreasing.

The link between the classical utilitarian and egalitarian solutions when individual utility
functions are concave is apparent when we write the first-order optimality conditions of the

18. In order to avoid boundary solutions, let us assume, for instance, that u′(0) = +∞. Then the first unit of the
good is infinitely more valuable than the next one.
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classical utilitarian program (11). Because each ui is concave, these conditions completely
characterize the optimal solution. They are written as follows:

for all i : yi > 0 ⇒ u′
i (yi ) = max

j
u′

j (y j )

Hence the utilitarian solution with utilities ui equals the egalitarian solution with utilities
−u′

i . Symmetrically the egalitarian solution with utilities ui equals the classical utilitarian
one with utilities Ui = ∫

(A−ui ), where the constant A is large enough to ensure ui (yi ) ≤ A
for all yi .

An important property shared by the classical utilitarian solution when utilities are con-
cave and the egalitarian* solution for any individual utilities is resource monotonicity: when t
increases, every individual share yi increases. The proof is the subject of exercises 2.15
and 2.16.

Given resource monotonicity, we can think of the allocation process with given utility
functions ui and varying t , as one of pouring water into individual vessels of arbitrary shapes.
In figure 2.6 are depicted three such vessels connected to a common reservoir. If the height
reached by the quantity yi of water in vessel i equals ui (yi )—the width at this level being
1/u′

i (yi )—the law of gravity delivers the egalitarian* solution for these utility functions.
A property related to resource monotonicity is population monotonicity: when an agent

absconds and the resources to be divided remain the same, this is good news for all remaining

agent 1 agent 2 agent 3

Water

Figure 2.6
Hydraulic method
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agents. This property is clear in the hydraulic representation: when agent i ′s vessel is shut
down or destroyed, “his” water share is redistributed to all other vessels, so the level of
water does not fall.

We check now that our three basic solutions, proportional, uniform gains, and uni-
form losses, admit a hydraulic representation. The corresponding vessels are depicted in
figures 2.7 to 2.9.

In figure 2.7 the width of agent i ′s vessel is proportional to her claim, resulting in the
proportional solution. In figures 2.8 and 2.9 the vessels are of equal width, or reduce to a
tube of insignificant width. In figure 2.8 agent 4 with the largest claim x4 receives the first
(x4 − x3) units of water; the next 2(x3 − x2) units are split equally between agents 3 and 4;
the next 3(x2 − x1) units are split equally among 2, 3, and 4; all additional units are split
equally among all four agents. This algorithm delivers precisely the uniform losses solution
in the deficit case (see exercise 2.6), and the equal surplus solution is the excess case. We
see similarly (again with the help of exercise 2.6) that the hydraulic method in figure 2.9
illustrates the uniform gains method in the deficit as well as excess cases.

Water

agent 1 agent 2 agent 3 agent 4

x1 x2 x3 x4

Figure 2.7
Proportional method
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agent 1 agent 2 agent 3 agent 4

Water

x1

x3

x2

x4

Figure 2.8
Uniform losses/equal surplus

In the hydraulic representation of the proportional solution, the height of agent i ′s vessel
when it contains yi units of water is ui (yi ) = yi/xi , up to the normalization at one when the
vessel contains exactly xi units. For this choice of utilities, this solution is egalitarian* as in
system (12). If we choose instead the utility functions ui (yi ) = Ayi − (y2

i /2xi ), where A
is larger than the ratio t/xN , the proportional solution becomes classical utilitarianism as
in (11).

Computing similarly the “volume to height” function in figures 2.8 and 2.9 yields a
representation of uniform losses/equal surplus and of uniform gains as egalitarian* methods
in the sense of (12),19 or classical utilitarian in the sense of (11). For instance, the uniform
losses solution is classical utilitarian for ui (yi ) = xi yi − (y2

i /2).

We conclude this chapter with an example where individual utilities are not concave, and
the classical utilitarian solution is neither resource nor population monotonic.

19. The utility functions are, however, discontinuous, and this creates a minor technical difficulty.
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a = x4  – x1

Water

agent 1 agent 2 agent 3 agent 4

a
a

a
a

x1
x2

x3
x4

Figure 2.9
Uniform gains

Example 2.9 Failure of Resource and Population Monotonicity Two agents have the
following utility functions:

u1(y1) = 2y1, all y1 ≥ 0

u2(y2) = y2 for 0 ≤ y2 ≤ 10

= 4y2 − 30 for y2 ≥ 10

Agent 1’s marginal utility is constant and equal to 2; agent 2’s is 1 up to ten units and rises
to 4 afterward.

The classical utilitarian solution gives all the resources t to agent 1 or all to agent 2:

t < 15 ⇒ u1(t) > u2(t) ⇒ y1 = t, y2 = 0

t > 15 ⇒ u2(t) > u1(t) ⇒ y1 = 0, y2 = t

Notice that for t = 15, the solution can give t to either agent, with no possibility of
compromise.
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Thus an increase of the resources from t = 10 to t = 20 wipes out agent 1’s share, and
resource monotonicity is violated. Compare this with the egalitarian solution:

t ≤ 15 ⇒ y1 = 1
3 t, y2 = 2

3 t

t ≥ 15 ⇒ y1 = 2
3 t − 5, y2 = 1

3 t + 5

To check that the classical utilitarian solution is not population monotonic, fix t = 18
and consider a third agent with a marginal utility of 4 up to five units and zero afterward:

u3(y3) = 4y3 for 0 ≤ y3 ≤ 5

u3(y3) = 20 for 5 ≤ y3

The classical utilitarian distribution of 18 units is y1 = 13, y2 = 0, y3 = 5. Upon dropping
agent 3, the distribution becomes y1 = 0, y2 = 18. So that agent 1’s share vanishes, in
violation of population monotonicity.

2.6 Introduction to the Literature

The four principles of section 2.1 are inspired by similar taxonomies in the social psychology
literature: see Deutsch (1975), Rescher (1966), and Cook and Hegtvedt (1983).

The lifeboat stories in example 2.1 are discussed by the literature on medical triage, in
particular, Winslow (1982). Elster (1992) provides many examples of rationing problems,
inspiring some of your examples in section 2.2 as well as in exercise 2.1. The indexes of
voting power alluded to in example 2.3 are discussed extensively in two introductory books,
Straffin (1980) and Felsenthal and Machover (1998).

The model of fair division developed in sections 2.2 to 2.4 appeared first in the papers by
Banker (1981) and O’Neill (1982), and inspired a sizable body of axiomatic research. Recent
surveys include Moulin (1988, ch. 6), Herrero and Villar (2001), and Moulin (2001a).

Aumann and Maschler (1985) focused on the contested garment method (section 2.3) and
its generalization to an arbitrary number of agents (exercise 2.11). This article, together with
O’Neill (1982), stresses the origin of the problem in the Talmudic literature; Rabinovitch
(1973) is the historical source from which the contested garment quote is borrowed. See
also exercises 2.10.

The entire section 2.4 is inspired by Young’s (1988, 1990) work on equal sacrifice meth-
ods. He provides axiomatic characterizations of these methods based on the separability
property known as consistency, already used by Aumann and Maschler (1985). The general
characterization of consistent methods in Young (1987) is related to the hydraulic repre-
sentation of deficit and surplus-sharing methods in section 2.5. Kaminski (2000) introduces
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this intuitive representation and explains its link with consistency. Finally the scheduling
story in example 2.6 is inspired by the work on fair queuing due to Shenker (1995) and
Demers et al. (1990).

Exercise 2.2 borrows ideas from Moulin (1987), and exercises 2.3 and 2.9 from Herrero
and Villar (2001). Exercise 2.4 is generalized by Sprumont (1991) into a characterization
of the uniform gains solution.

Exercises to Chapter 2

Exercise 2.1

In the following examples, identify the principle or principles in section 2.1 of which a given
policy is an example. Find more policies and connect them similarly to the four principles.

a. For the education of which child should we spend more resources?

• The hardworking but not very gifted
• The good tempered and parent loving
• The least academically gifted
• The most academically gifted
• Equally, irrespective of gift or work

b. How to allocate scarce legal resources, namely public defenders?

• Favor defendants with the cleanest criminal record
• Favor defendants accused of the lesser crimes
• Favor defendants accused of the worst crimes
• Equalize the lawyer x hours expense on all defendants
• Minimize the total number of jail years awarded to the group of defendants
• Minimize the maximal number of jail years awarded to any one defendant

c. How to prioritize the restoration of electric power after a storm?

• Easy customers first (near to source)
• Hospitals, fire station first
• Elderly residential customers first
• Big industrial users first
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• Small residential users first
• Important citizens first

Exercise 2.2 Merging and Splitting

We start with the resources t and a vector of claims (xi ), i = 1, . . . , n. Both cases t ≤ xN

and t ≥ xN are possible. We say that agents i and j merge their claims if j transfers his
claim x j to i so that the new problem has (n − 1) agents and agent i’s claim is xi + x j .
Symmetrically we say that agent i splits his claim xi if i is replaced by two agents i1, i2

with claims xi1 , xi2 such that xi1 + xi2 = xi , so the new problem has (n + 1) agents.

a. Under the proportional solution in both cases, deficit or excess, show that merging or
splitting is a matter of indifference.

b. Show that under the uniform gains solution in both cases, merging is bad and splitting
is good:

• After-merging share y′
i ≤ before-merging shares yi + y j

• After-splitting shares y′
i1

+ y′
i2

≥ before-splitting share yi

c. Show that under the equal surplus solution, merging is bad and splitting is good. Show
that under the uniform losses solution, merging is good and splitting is bad.

*d. For the deficit case, t ≤ xN , the proportional solution is characterized by the indiffer-
ence to merging/splitting property.

*Exercise 2.3 Independence of Higher Claims

For a distribution problem with deficit, t, xi , t ≤ xN , the property independence of higher
claims (IHC) is discussed at the end of section 2.2:

for all i, j : xi ≤ x j ≤ x ′
j ⇒ yi = y′

i

where yi and y′
i are respectively agent i’s share for the initial profile of claims xi and for

the profile where x ′
j replaces x j , everything else equal.

The goal of the exercise is to show that there is only one solution satisfying equal
treatment of equals and independence of higher claims, and it is uniform gains. Fix a
profile of claims xi , and label the agents in such a way that x1 ≤ x2 ≤ · · · ≤ xn. Define
for k = 1, 2, . . . , n, zk = ∑k−1

j=1 x j + (n − k + 1)xk so that z1 = nx1 ≤ z2 ≤ z3 ≤ · · · ≤
zn = xN .

a. Choose t such that 0 ≤ t ≤ z1. By ETE, at the profile x ′
i , x ′

i = x1 for all i, each agent
gets t/n. Show that by ETE and IHC, the same is true at the profile x ′′

i where x ′′
1 = x1,
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x ′′
i = x2 for i = 2, . . . , n. Repeat the argument to show that equal shares still prevail at

profile x ′′′
i where x ′′′

1 = x1, x ′′′
2 = x2, x ′′′

i = x3, for i = 3, . . . , n. Conclude that a method
meeting ETE and IHC coincides with uniform gains whenever t ≤ z1.

b. Choose t such that z1 ≤ t ≤ z2 and consider first the profile of claims x∗
i , x∗

1 = x1, x∗
i =

t−x1
n−1 for i = 2, . . . , n. Show by a similar argument that ETE and IHC force the uniform
gains solution for the interval [z1, z2]. Generalize to any t, 0 ≤ t ≤ zn.

Exercise 2.4 Strategy-Proofness of the Uniform Gains Solution

a. Consider a problem with deficit, t, xi , t ≤ xN , and denote the uniform gains shares
by (yi ). Show that an agent’s share yi is nondecreasing in his claim: if xi increases to
x ′

i , everything else (t and x j , for all j �= i) equal, agent i ′s new share y′
i is not smaller

than yi.

Show that if yi is strictly smaller than xi , and xi increases to x ′
i , everything else equal,

agent i ′s share does not change: y′
i = yi .

Deduce that if agent i prefers a larger share to a smaller one—provided they are both
below xi —he cannot benefit from altering (increasing or decreasing) his claim xi .

b. Consider now a problem with excess, t ≥ xN . Show similarly that yi is nondecreasing
in xi and show the following:

{yi > xi and x ′
i < xi } ⇒ yi = y′

i

Deduce that if among two shares not smaller than xi , agent i prefers the smaller one, he
cannot benefit from altering his claim xi .

c. Under the proportional method, check that increasing one’s claim is profitable in the
deficit case, and that decreasing it is profitable in the excess case (preferences over shares
are as in questions a and b respectively).

d. Under the uniform losses/equal surplus solution, which distortion of one’s claim is
profitable?

*Exercise 2.5

a. We fix a profile of claims xi , ranking increasingly as x1 ≤ x2 ≤ · · · ≤ xn. Prove that
agent 1 and agent n have unambiguous preferences over the three basic methods, in the
sense that the three corresponding shares are always ranked in the same way.

Denoting by yi (X) agent i’s share under the method X, prove the following inequalities:

Deficit

y1(UL) ≤ y1(PRO) ≤ y1(UG)

yn(UG) ≤ yn(PRO) ≤ yn(UL)
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Excess

y1(PRO) ≤ y1(ES) ≤ y1(UG)

yn(UG) ≤ yn(ES) ≤ yn(PRO)

b. Find an example of a three person deficit problem, x1 < x2 < x3, t < x1 + x2 + x3,

such that the proportional method is the worst for agent 2:

y2(PRO) < y2(UG) and y2(PRO) < y2(UL)

c. For an arbitrary excess problem with an arbitrary number of agents, show that the equal
surplus method cannot be the worst of the three for anyone, namely that the two inequalities

yi (ES) < yi (PRO) and yi (ES) < yi (UL)

are incompatible for i.

Exercise 2.6 Other Algorithms to Compute the Uniform Gains and Uniform Losses
Solutions

a. Given is a problem with excess, t, xi , xN ≤ t, where the claims are ordered increasingly,
x1 ≤ x2 ≤ · · · ≤ xn. Consider the following algorithm:

Step 1. Increase agent 1’s claims by up to (x2 − x1) units

Step 2. Increase agent 1, 2’s claims by up to (x3 − x2) units each

Step 3. Increase agent 1, 2, 3’s claims by up to (x4 − x3) units each
...

The algorithm stops when (t − xN ) units have been distributed.

Show that the outcome is the uniform gains solution.

b. Given is a problem with deficit t ≤ xN , and with the claims increasingly ordered
x1 ≤ x2 ≤ · · · ≤ xn. The following algorithm reduces the individual claims, starting from
the highest claims:

Step 1. Decrease n’s claim by up to (xn − xn−1) units

Step 2. Decrease n and (n − 1)’s claim by up to (xn−1 − xn−2) units each

Step 3. Decrease n, (n − 1) and (n − 2)’s claim by up to (xn−2 − xn−3) units each
...

We stop whenever total reduction in claims reaches (xN − t) units. At this point, each agent
receives his reduced claim
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Show that this algorithm delivers the uniform gains solution.

c. Given a deficit problem as in question b, consider the following algorithm:

Step 1. Give the first (xn − xn−1) units to agent n

Step 2. Split up to 2(xn−1 − xn−2) units equally between agents n, n − 1

Step 3. Split up to 3(xn−2 − xn−3) units equally between agents n, n − 1, n − 2
...

The algorithm stops when t units have been distributed.

Show that the outcome is the uniform losses solution.

*Exercise 2.7

We are in the deficit case, t ≤ xN .

a. The goal is to show formally that uniform gains is the most progressive among all methods
meeting fair ranking, which is property (7) in section 2.4. We fix a list of increasing claims
x1 ≤ x2 ≤ · · · ≤ xn . Let y∗

i be agent i’s share under uniform gains and yi be his share under
an arbitrary method satisfying fair ranking. Prove that

y1 ≤ y∗
1 ⇔ x1 − y∗

1

x1
≤ x1 − y1

x1

If y1 = y∗
1 , prove similarly that y2 ≤ y∗

2 ; if y1 = y∗
1 and y2 ≤ y∗

2 , prove that y3 ≤ y∗
3 ; and so

on. State and prove an analogue sequence of properties establishing that the uniform losses
method is the most regressive among those meeting fair ranking.

b. Consider the hyperregressive solution r alluded to at the end of section 2.4; the profile
of shares y = r(t, x) is defined by the following property:

{xi < x j and y j < x j } ⇒ yi = 0 for all i, j

and by equal treatment of equals. Show that this corresponds to the definition given at the
end of section 2.4. Show that this solution violates fair ranking, property (7). Show that
among all solutions r of the deficit problem where 0 ≤ yi ≤ xi for all i, the solution above
is the most regressive one.

c. Define similarly the hyperprogressive method, the dual of the hyperregressive one, and
show that it is the most progressive of all solutions r of the deficit problem.
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*Exercise 2.8 Lower Bounds, Upper Bounds

We are in the deficit case, t < xN .

a. We fix t the resources, n the number of agents and xi the claim of a certain agent i . Show
that under uniform gains, agent i’s share is bounded below as follows:

yi ≥ min

{
xi ,

t

n

}

The inequality above holds true for any choice of the variables x j , j �= i, provided t ≤ xN .

b. Show that under uniform losses or proportional, agent i’s share can only be bounded
below by zero if we do not know the variables x j , j �= i (we only know that they satisfy
xi + ∑

j x j ≥ t).

c. Now we fix n, xi and the deficit t∗ (i.e., t∗ = xN − t); we do not know the variables
x j , j �= i (except that we must have t∗ ≤ xN ). Show that under uniform losses agent i’s
share is bounded above as follows:

yi ≤ max

{
xi − 1

n
t∗, 0

}

What is the corresponding upper bound under proportional or uniform gains?

Exercise 2.9 Truncation and Concession

a. Fix a two-person solution for the deficit problems of section 2.3, satisfying equal treat-
ment of equals, truncation, and concession. Fix a profile of claims x1, x2 with x1 ≤ x2. For t
such that 0 ≤ t ≤ x1, use T and ETE to show that t is split equally. For x2 ≤ t ≤ x1 + x2

use similarly C and ETE to compute the shares. Finally compute the shares for x1 ≤ t ≤ x2

and conclude that our method is the contested garment solution.

b. Show that a solution satisfies truncation if and only if its dual (section 2.3) satisfies
concession.

Exercise 2.10 Run to the Bank

We are in the deficit case, t ≤ xN . Given a rationing problem, we let the agents run to the
bank, and we suppose that the ordering of their arrival is random and without bias: each
ordering is equally plausible. The bank then serves the agents in the order of their arrival;
the first agent receives his full claim or the entire resources, whichever is less; if there is
something left after the first agent, the second one gets his full claim or all the remaining
resources, whichever is less; and so on.
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a. Show that for a two-person problem, “run to the bank” coincides with the contested
garment method.

b. Consider the following inheritance problem, due to the Talmudic scholar Ibn Ezra:

Jacob died and his son Reuben produced a deed duly witnessed that Jacob willed to him his entire
estate on his death, his son Simeon also produced a deed that his father willed to him half of the estate,
Levi produced a deed giving him one-third and Judah brought forth a deed giving him one-quarter.
All of them bear the same date.

Compute the division of the estate under “run to the bank.”
Compare it to the divisions under proportional, uniform gains, and uniform losses.

c. In example 2.5 compute the “run to the bank” solution for the values, t = 20, 40, and 50.

*d. Show that run to the bank is self-dual. Show it satisfies truncation and concession (recall
from exercise 2.9 that T and C are dual properties).

*e. To a problem with deficit t, xi , we associate the following cooperative game (see
chapter 5):

v(S) = min

{
t,

∑
i∈S

xi

}

Show that the Shapley value of this cooperative game is precisely the “run to the bank”
solution.

*Exercise 2.11 The Talmudic Solution

We are in the deficit case t ≤ xN . The Talmudic solution is a hybrid of the uniform gains
and uniform losses solutions. The method divides t∗ = xN /2 in proportions to the claims xi :

at t∗ = xN

2
we have y∗

i = xi

2
for all i

Then the method follows uniform gains with respect to the halved claims for t, between 0
and t∗. It follows uniform losses with respect to the halved claims for t, between t∗ and xN :

yi = UG

(
t; xi

2
, i ∈ N

)
if 0 ≤ t ≤ t∗

yi = UL

(
t − t∗; xi

2
, i ∈ N

)
+ xi

2
if t∗ ≤ t ≤ xN

a. Check that this method is the contested garment solution when n = 2.
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Water

agent 1 agent 2 agent 3 agent 4

x1/2
x2/2

x3/2

x4

x3/2
x2/2

x1/2

Figure 2.10
Talmudic method

b. Check its hydraulic representation on figure 2.10.

c. Compute the Talmudic solution in the numerical example of question b of the previous
exercise.

d. Compute the Talmudic solution in example 2.5 for the three values t = 20, 40, and 50.

*e. Show that the Talmudic solution is self-dual. Show it satisfies truncation and concession.

Exercise 2.12

Consider a society N = {1, 2, 3, 4, 5, 6, 7} and the method that

• Gives absolute priority to any agent in {1, 2} over any agent in {3, 4, 5} and absolute
priority to any agent in {3, 4, 5} over any agent in {6, 7}
• Between agents 1 and 2 is the proportional method
• Between agents 3, 4, and 5, is the uniform gains method
• Between agents 6 and 7 is the uniform losses method
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Claims: x1=10,  x2=20,  x3=40,  x4=50

x1 x2 x3 x4

Water

agent 1 agent 2 agent 3 agent 4

Figure 2.11
Method of exercise 2.13

a. Compute the solution it recommends in the following examples:

Agent 1 2 3 4 5 6 7 Resources
Claim 10 0 0 10 15 0 15 12 or 40
Claim 5 10 80 70 10 5 0 50 or 120
Claim 100 50 10 10 20 15 25 130 or 180 or 200

b. Give, as in section 2.5, a “hydraulic” representation of this method.

Exercise 2.13

Consider the rationing method of which the hydraulic representation is given on
figure 2.11.

a. Compute the allocation it recommends for t = 20, t = 50, t = 80, and t = 90.

b. Is this method progressive? Regressive?
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*c. Generalize the method to an arbitrary number of agents and give a formula to compute
the shares it recommends. Hint: Compare it to the Talmudic method in exercise 2.11.

Exercise 2.14

We consider the equal sacrifice methods of section 2.4.

a. Show that the method where u(z) = zq for all z, converges to the proportional solution
when q is positive and approaches zero. To this end, fix a problem t, xi , with t < xN and
write y(q) its solution under this method. Show that the limit y of y(q) as q approaches
zero is the proportional solution. Show that as q goes to infinity, the limit of y(q) is the
hyperregressive solution defined in exercise 2.7.

b. Consider the method where u(z) = −1/z p for all z. Show that it converges to the
proportional solution when p is positive and approaches zero, and to uniform gains when p
becomes arbitrarily large.

c. Show that the u-method meets fair ranking (7) if and only if u is concave.

d. Show that the u-method is progressive (resp. regressive)—see (8)—if and only if z.u′(z)
is nonincreasing (resp. nondecreasing) in z.

*Exercise 2.15

We consider the egalitarian∗ solution to the problem t , ui , defined by the system (12) in
section 2.5.

a. Show that if ui is continuous and strictly increasing, system (12) always has a unique
solution. Show that if ui is continuous and nondecreasing, the system (12) may have several
solutions, but they all yield the same utilities ui (yi ).

b. Assume that ui is strictly increasing and continuous. Show that the egalitarian* solution
is strictly resource monotonic: t < t ′ ⇒ yi < y′

i for all i .

c. Show that the egalitarian* solution is robust to a small change in the utility functions. To
this end, assume that ui takes the form ui (ai , xi ) where ai is a real parameter and that ui is
continuous in the pair (ai , xi ), as well as strictly increasing in xi . Show that the egalitarian*
solution depends continuously on ai .

Exercise 2.16

Consider the classical utilitarian solution (11) to the allocation problem t, ui of
section 2.5.
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a. Assume that each function ui is strictly increasing and strictly convex (marginal utility
u′

i is strictly increasing). Show that the utilitarian solution gives all the resources to a single
agent (this generalizes the argument given in example 2.7).

b. Assume that each function ui is strictly increasing and strictly concave. Recall from
section 2.5 that the utilitarian solution coincides with the egalitarian∗ solution for the utilities
−u′

i . Deduce that it is strictly resource monotonic. Show that it is robust to a small change
in the utility function ui , as in question c of exercise 2.15.



moulin-79027 book October 22, 2002 16:8

3 Cardinal Welfarism

3.1 Welfarism

The welfarist postulate states that the distribution of individual welfare across the agents/
citizens is the only legitimate yardstick along which the states of the world can be compared.
In the cardinal version of welfarism,1 individual welfare is measured by an index of utility,
and comparisons of the utilities of two different agents are meaningful.

Welfarism is a reductionist model of distributive justice. It views an agent as a machine
producing welfare/utility at a given state of the world, and compares two feasible states
by means of the two utility profiles they generate. Welfarism is endstate justice at its best;
that is to say, the process by which a particular utility profile is reached (e.g., the physical
allocation of the resources of the world) is devoid of ethical content: it is the means toward
achieving a particular profile of utilities. For instance, the criterion “no envy” discussed in
chapters 6 and 7 is irrelevant to welfarism because it relies on interpersonal comparisons
of individual allocations of resources.

The most basic concept of welfarism2 is efficiency-fitness (Pareto optimality) of which
we repeat the definition already given in section 1.3. Consider two feasible states of the
world x and y, resulting for agent i in the utility ui (x) and ui (y) respectively. State y is
Pareto superior to state x if no agent j strictly prefers state x to state y, that is to say,
u j (x) ≤ u j (y) for all j , and moreover at least one agent i strictly prefers state y, ui (x) <

ui (y). Thus y is Pareto superior to x if the move from x to y is by unanimous consent (in the
sense that everyone agrees to a change that does not decrease his or her own utility level). A
state x is Pareto optimal (efficient) if there is no feasible state y Pareto superior to x . Thus,
if the current state is x , we cannot generate a consensus to move to another state y (except
in the case where everyone enjoys the same utility level in both states).

The task of cardinal welfarism is to pick, among the feasible utility profiles (lists of one
utility level per agent), one of the Pareto optimal ones. In many specific allocation problems,
the Pareto optimality property has much bite, in the sense that it eliminates many if not most
feasible allocations of the resources. Examples 3.2, 3.3, 3.8, and 3.9. On the other hand, in
the fair division problems of section 2.5, all feasible allocations are Pareto optimal because
there is a single commodity and everyone prefers a bigger share to a smaller one. The only
way to increase agents i’s utility is to give him more resources, which in turn decreases
the utility of another agent. The same property (all feasible allocations are Pareto optimal)
holds true in examples 3.1, 3.4, 3.5, and 3.6.

1. The ordinal version of welfarism is called social choice; it is the subject of chapter 4.

2. Be it in its cardinal or ordinal version.

63
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A general fact is that the property of efficiency/Pareto optimality is orthogonal to distribu-
tive concerns. Typically the allocation where all of the available resources are used to the
benefit of a single agent meets the criterion, although it is the most unfair of all distributive
systems.

The task of the welfarist benevolent dictator is to compare normatively any two utility
profiles (ui ), (u′

i ) and decide which one is best. The key idea is to insist that this comparison
should follow the rationality principles of individual decision-making, namely completeness
and transitivity.3 Completeness says that any two profiles can always be compared: either
(ui ) is preferred to (u′

i ), denoted (ui ) � (u′
i ), or the reverse preference (u′

i ) � (ui ) holds, or
they are declared indifferent (ui ) ∼ (u′

i ). Transitivity means that (ui ) � (u′
i )—that profile

(ui ) is preferred or indifferent to profile (u′
i )—and (u′

i ) � (u′′
i ) imply (ui ) � (u′′

i ).
The preference relation is called a social welfare ordering, and the definition and com-

parison of various social welfare orderings is the object of cardinal welfarism. The two
most prominent instances of social welfare orderings are the classical utilitarian, namely
(ui ) � (u′

i ), if and only if
∑

i ui ≥ ∑
i u′

i , and the egalitarian one, namely (ui ) � (u′
i ) if and

only if, upon reordering the profile by increasing coordinates as (u∗
i ) and (u∗′

i ), the former
is lexicographically superior to the latter. The former expresses the sumfitness principle in
the welfarist world, whereas the latter conveys the compensation principle. A variety of
social welfare orderings in between those two are introduced in the subsequent sections.

Before we start the general discussion of social welfare orderings in section 3.2, it is
important to recall that we focus exclusively on the “micro” version of welfarism, and pay
only lip service to its “macro” interpretation still an influential idea in contemporary political
philosophy. We look at microallocation problems, involving a small number of commodities
and where utility is tailored to the problem at hand. For instance, in the problem of locating
a facility (examples 3.4 and 3.8), utility measures the (negative of the) distance between
the agent in question and the facility. In example 3.11 the issue is to distribute fruits from
which our agents metabolize vitamins, and utility is measured by the quantity of such
vitamins. And so it goes on. Thus the context dictates the interpretation of utility and,
in turn, influences the choice of the social welfare ordering (see the distinction between
tastes and needs in the examples just mentioned). The central assumption that individual
utilities can be objectively measured and compared across different agents can be more or
less convincing. The distance from an agents’ home to the facility (examples 3.4, 3.5, and
3.8) is an objective fact, as is, to a large extent, the amount of a certain vitamin or drug he
needs to be healthy. But his taste for a certain piece of cake, or for art, cannot be measured
along a common scale.

3. A general discussion of the rationality of choice for a single decision-maker is in section 4.1.
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The microwelfarist viewpoint separates the allocation problem at stake from the rest of
our agent’s characteristics. It assumes that the level of my utility from the allocation I receive
in the microproblem can be measured independently from the rest of my characteristics.
Moreover the utility of those agents not concerned by the microallocation problem should
not matter either. This crucial property of separability is expressed axiomatically in the next
section and is the basis of the additive representation discussed there.

From this axiomatic analysis, three paramount social welfare orderings emerge. In addi-
tion to the classical utilitarian collective utility function and the egalitarian social welfare
ordering already mentioned, the Nash collective utility function is simply the product of
individual utilities. From the theoretical discussion of section 3.2, as well as the examples
of sections 3.4 and 3.5, the Nash collective utility function emerges as a sensible compro-
mise between the egalitarian and classical utilitarian ones. The nontechnical reader is urged
to skip section 3.2 and go directly to the examples listed from section 3.3 on.

In contrast to microwelfarism, macrowelfarism is an encompassing approach to social
justice, where utilities measure the overall level of happiness of a given agent/citizen (the
sum of his pleasures and pains, in Bentham’s words), so that the choice of a social welfare
ordering amounts to an entire program of social justice.

Recall from section 1.3 the two main objections to macrowelfarism. An objective grasp
of individual welfare defeats the purpose of methodological individualism. And ignoring
individual responsibility in the formation of one’s own welfare is morally untenable.

A popular macrowelfarist method to take into account agent’s responsibility in the forma-
tion of their own welfare is to use proxy commodities (called primary goods by Rawls) as
surrogate measurement of individual welfare. The idea is that our ability or inability to lead
full and satisfying lives, to achieve high or low levels of welfare, is determined by our share
of certain fundamental goods: food, shelter, health, self-respect, love, education, wealth,
job, and so on. The catalog of these goods is the common denominator of human nature. The
actual distribution of these primary goods tells us all that we can hope to learn about actual
welfares; hence it can be used as a surrogate measurement of the distribution of welfare. If
the trick of primary goods, due to Rawls, succeeds in maintaining a private sphere around
each person, while offering an objective index of (access to) welfare, it pushes the difficulty
back without eliminating it. The choice of a method to aggregate my holdings of primary
goods into a summary “index” is tantamount (although in a less obvious way) to imposing
a common value system upon all individual citizens: it imposes the same trade-offs among
primary goods on all citizens. Yet an important component of my value system is my own
trade-off between health and wealth (e.g., I may choose a physically dangerous, well-paid
job) or between education and leisure, and so on.
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*3.2 Additive Collective Utility Functions

In this section we describe the most important axiomatic results of the cardinal theory of
welfarism. We state a handful of axiomatic requirements pertaining to collective rationality
or fairness. Then we deduce the small family of collective utility functions (and social
welfare orderings) satisfying these requirements. In this family three key social welfare
orderings stand out: the classical utilitarian and Nash collective utility functions and the
leximin social welfare ordering.

Two basic requirements of a social welfare ordering �, beside the property of complete-
ness and transitivity already mentioned, are monotonicity and symmetry. The social welfare
ordering � is monotonic in utility ui if an increase in agent i’s utility, ceteris paribus, in-
creases social welfare. That is, if two utility profiles u = (u j ) and u′ = (u′

j ) are such that
u j = u′

j for all j, j 
= i , and ui > u′
i , then u � u′; that is, the social welfare ordering prefers

the former profile to the latter. Monotonicity has much to do with Pareto optimality: a
monotonic social welfare ordering is compatible with the Pareto relation4 in the sense that
if u is Pareto superior to v, then u � v. In particular, the maximal elements of a monotonic
social welfare ordering, over any feasible set of utility profiles, are Pareto optimal.

The social welfare ordering � is symmetric if it does not pay attention to the identity
of the agents, only to their utility level. If the utility profile u obtains from v simply by
permuting the index of the agents in arbitrary fashion, as (7, 2, 8, 2, 4, 4, 2) obtains from (4,
8, 4, 2, 7, 2, 2), the social welfare ordering views these two profiles as equivalent: u ∼ v.
Symmetry is equal treatment of equals, namely the basic fairness axiom discussed in sec-
tion 1.1: agents can only be discriminated on the basis of their utilities, not of any other
exogenous factors.

Most social welfare orderings of importance5 are represented by a collective utility func-
tion, namely a real-valued function W (u1, u2, . . . , un) with the utility profile for argument
and the level of collective utility for value. The function W represents the social welfare
ordering � if u � u′ is logically equivalent to W (u) ≥ W (u′). The monotonicity and sym-
metry properties of � translate into the properties with the same name, for W : W is strictly
monotonic in each of the variables ui and a symmetric function of the profile.

The next property is the key argument of welfarist rationality. It says that we can ignore
the unconcerned agents when choosing between two particular utility profiles u and u′.
That is, if agent j receives the same utility in both profiles, u j = u′

j , his utility level has no
influence on the comparison of u and u′. Formally, we denote by (ui | j a) the utility vector
identical to (ui ) except that the j th coordinate has been replaced by a. Then the property

4. This relation is transitive but not complete; therefore it is not a social welfare ordering.

5. The leximin social welfare ordering is a notable exception, discussed in the next section.
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independence of unconcerned agents reads as follows:

(ui | j a) � (u′
i | j a) ⇔ (ui | j b) � (u′

i | j b) for all u, u′, j, a, and b (1)

This means that an agent who has no vested interest in the choice between u and u′—because
his utility is the same in both profiles—can be ignored.

If property (1) fails, the choice between two particular states of the world will depend
on the utility of some agents who are truly indifferent between these two states. This
runs counter to the intuition of endstate justice. Absent the property, the set of agents whose
utilities can influence the social welfare ordering (whether or not they are personally affected
by the subsequent decisions) must be defined precisely for any microproblem of distributive
justice. By contrast, under independence of unconcerned agents, microjustice works very
well with a loose, encompassing set of potentially concerned agents. The property guarantees
that the social welfare ordering (and the associated collective utility function) focuses
exclusively on those agents whose utility is affected by the decisions to be made.

The collective utility function W is called additive if there is an increasing function g of
one real variable such that

W (u) =
∑

i

g(ui ) for all u (2)

It should be clear that the social welfare ordering represented by an additive collective utility
function meets property (1). If we restrict attention to continuous6 social welfare orderings,
the following converse property holds. If the continuous ordering � is independent of
unconcerned agents, then it is represented by an additive collective utility (2). This important
theorem gives a convenient representation of a rich family of social welfare orderings.

We introduce two additional properties of the collective utility (2), that limit the choice
of the function g. The first property is one of fairness, and expresses an aversion for “pure”
inequality. It is called the Pigou-Dalton transfer principle. Say that u1 < u2 at profile u
and consider a transfer of utility from agent 2 to agent 1 where u′

1 and u′
2, the utilities after

the transfer, are such that

u1 < u′
1, u′

2 < u2 and u′
1 + u′

2 = u1 + u2

Thus total utility to agents 1 and 2 is preserved, and the inequality gap is reduced (note
that it could be reversed: u′

2 < u′
1 is possible). We say that the move from u to u′ (where

u j = u′
j for j ≥ 3) reduces the inequality between agents 1 and 2. The Pigou-Dalton transfer

6. The social welfare ordering � is continuous for all u, the sets {v | v � u} and {v | u � v}, called respectively
the upper and lower contour sets of u, are topologically closed.
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principle requires that the social welfare ordering increases (or at least, does not decrease)
in a move reducing the inequality between any two agents.

Applying this principle to the additive collective utility (2) we find that

{u1 < u′
1, u′

2 < u2 and u1 + u2 = u′
1 + u′

2} ⇒ {g(u1) + g(u2) ≤ g(u′
1) + g(u′

2)}
which is equivalent to the concavity of the function g, namely its derivative is nonincreasing.

The next property is one of invariance. It is called independence of common scale (ICS).
The property requires us to restrict attention to positive utilities, a feature that is automati-
cally satisfied in most of our examples where the zero of utilities corresponds to the minimal
feasible level; see examples 3.1, 3.2, and 3.5. The ICS property states that a simultaneous
rescaling of every individual utility function does not affect the underlying social welfare
ordering; it yields the same binary comparisons of utility profiles:

u � u′ ⇔ λu � λu′ (3)

where the two profiles u, u′ as well as the scaling constant λ are positive and otherwise
arbitrary. For instance, if utilities represent money = willingness to pay (as in chapter 5), it
does not matter if we compare cents, dozens of dollars, or thousands of dollars: the order
of magnitude of the utility levels under comparison does not matter.

For an additive collective utility taking the form (2), the ICS property holds true only for a
very specific family of power functions. To see this, apply (3) to the function (2), which yields

∑
i

(g(ui ) − g(u′
i )) ≥ 0 ⇔

∑
i

(g(λui ) − g(λu′
i )) ≥ 0

It can further be shown that the only (increasing, continuous) functions g satisfying this
property are (up to a multiplicative constant) of exactly three types:

g(z) = z p for a positive p

g(z) = log(z)

g(z) = −z−q for a positive q

The corresponding collective utility W take the form

Wp(u) =
∑

i

u p
i , with p > 0 and fixed

W0(u) =
∑

i

log ui

W q(u) = −
∑

i

1

uq
i

with q > 0 and fixed

(4)
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The family (4) has many interesting features. First, the particular collective utility func-
tion

∑
i log ui is the limit of the other two families when p or q, respectively, approach

zero.7 It is called the Nash collective utility function, and is usually written in the equivalent
multiplicative form WN (u) = 
i ui . Of course, the function WN is not additively decom-
posed as in (2), but it represents the same social welfare ordering � as the additive collective
utility W0.

Another collective utility function of interest within the family (4) is the classical utili-
tarian W1(u) = ∑

i ui , corresponding to p = 1. It embodies the idea of sum-fitness, and
its implications are discussed in a variety of examples in the subsequent sections.

Finally we examine the impact of the Pigou-Dalton transfer principle on the family of
utility functions (4). Consider the quadratic W2(u) = ∑

i u2
i . Far from seeking to reduce

inequality, this collective utility function is actively promoting it. For instance, the following
mathematical fact

u2
1 + u2

2 < (u1 + u2)
2 + (0)2

implies that under W2, transferring all the utility to one agent is desirable. Such a preference
runs counter to the basic distributive fairness conveyed by the Pigou-Dalton principle.

As noted earlier, an additive collective utility (2) meets the Pigou-Dalton principle if
and only if g is a concave function. Within the family (4), this eliminates all the functions
Wp with 1 < p < +∞ and only those.

We are ready to sum up the results of our axiomatic discussion. Starting with a continuous
collective utility function W representing the social welfare ordering � , we imposed suc-
cessively three requirements: independence of unconcerned individuals (1), independence
of common scale (3), and the Pigou-Dalton transfer principle. Together, these properties
leave us with a one-dimensional family of collective utility functions, namely

Wp(u) =
∑

u p
i , 0 < p ≤ 1

W0(u) =
∑

i

log ui (5)

W q(u) = −
∑

i

u−q
i , 0 < q < +∞

Notice the striking similarity of the formula above with the family of equal sacrifice methods
presented in section 2.4.

7. To see this, use the approximation z p = ep log z � 1 + p log z, valid when p is close to zero.
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Although it is defined in three pieces, the family (5) is actually continuous in the sense
that W0 is the limit of Wp and of W q as p or q goes to zero. Two outstanding elements
are the classical utilitarian W1 and the Nash utility function W0 (often written in multiplica-
tive form as WN ). The third remarkable point of the family is the limit of (the social welfare
ordering represented by) W qas q goes to infinity: this is the important leximin social welfare
ordering, defined and illustrated in the next section.

The three social orderings, classical utilitarian, Nash, and leximin are the three most
important objects of cardinal welfarism. They are systematically compared in sections 3.4
and 3.5.

3.3 Egalitarianism and the Leximin Social Welfare Ordering

We focus in this section on the welfarist formulation of the compensation principle as the
equalization of individual utilities. Full equalization is often impossible within the set of
feasible outcomes—as in examples 3.1, 3.2, 3.4, and 3.5; in other cases it is feasible but
incompatible with Pareto optimality—see example 3.3. The leximin social welfare ordering
then selects the most egalitarian among the Pareto optimal utility distributions.

Example 3.1 Pure Lifeboat Problem As in example 2.1, some but not all agents can be
allowed on the boat, and the arbitrator must choose which subset will be saved. She can
pick from a given list of subsets. Suppose that five agents are labeled {1, 2, 3, 4, 5} and that
the feasible subsets are

{1, 2}{1, 3}{1, 4}{2, 3, 5}{3, 4, 5}{2, 4, 5}
Thus agents 1 and 5 cannot both be in the lifeboat; we can have one of agents 2, 3, or 4
along with 1, or two of these three along with 5.

A less dramatic story is the purchase of a software program that will be available to our
five agents: there are six programs to choose from, and each program is only compatible
with the machines of a certain subset of agents. Or we must choose the musical background
in the office space occupied by our five agents; they are six programs to choose from and
a given agent likes certain programs and dislikes others: only agents 1 and 2 like the first
program, and so on.8 Note that each one of the six feasible outcomes is Pareto optimal:
there is no unanimous agreement to dismiss any one of the six outcomes.

Suppose first that for each agent the utility of staying on the boat is 10 and that of
swimming is 1. Then the classical utilitarian utility recommends choosing one (any one) of

8. In example 3.1 the arbitrator must choose one of the six subsets, with no possibility of compromise by
randomization or timesharing. The latter is the subject of example 3.6b. See also exercise 3.6b, question c.
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the three largest subsets (each one with three agents). The egalitarian arbitrator makes the
same choice, based on comparing the increasing profile of utilities from lowest to highest.
If a two-person subset stays on the boat, this profile is (1, 1, 1, 10, 10) and if a three-person
subset stays, it is (1, 1, 10, 10, 10) which is lexicographically superior because the third
ranked utility level is higher in the latter profile.

The point of the example is much sharper when we assume that the individual util-
ity for being among the chosen ones varies across agents—such as in the radio program
interpretation, some agents are more partial to “good” versus “bad” music than others:

Agent 1 2 3 4 5
Utility for good outcome 10 6 6 5 3
For bad outcome 0 1 1 1 0

Now the classical utilitarian arbitrator prefers to choose {1, 2} or {1, 3}, for a total utility
of 16, over any other subset; the second best is {2, 4, 5} yielding total utility 15. His ranking
of the six outcomes is as follows:

{1, 2} ∼ {1, 3} � {1, 4} ∼ {2, 3, 5} � {2, 4, 5} ∼ {3, 4, 5}
The egalitarian arbitrator, by contrast, prefers any three-person subset over any two-

person one; his ranking is as follows:

{2, 3, 5} with utility profile (0, 1, 3, 6, 6)
{2, 4, 5} ∼ {3, 4, 5} with utility profile (0, 1, 3, 5, 6)
{1, 2} ∼ {1, 3} with utility profile (0, 1, 1, 6, 10)

{1, 4} with utility profile (0, 1, 1, 5, 10)

Exercise 3.1 contrasts the classical utilitarian and egalitarian choices in example 3.1 for
arbitrary utility functions.

Example 3.2 Fair Division with Identical Preference We must divide six indivisible
objects among three agents, and each lot must contain two objects. Individual preferences
over the different lots are identical: given any two lots, everyone agrees on which one is the
better lot, or everyone is indifferent between the two lots.

The leximin social welfare ordering compares all feasible allocations, and does not require
one to attach a common cardinal utility to each lot. For instance, assume that the common
ordering of the fifteen lots from the objects a, b, c, d, e, and f is as follows:

{a, b} > {b, f } ∼ {b, e} > {c, d} > {a, c} > {d, e} ∼ {b, c} > {c, f } > {a, d} > {a, e}
∼ {c, e} ∼ {e, f } > {b, d} ∼ {a, f } ∼ {d, f }
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There are fifteen ways to split the six objects in three lots of two objects, and the leximin
ordering allows us to compare all fifteen. For instance, {a, b}{c, d}{e, f} is ranked above
{a, f}{d, e}{b, c}, because in the latter, one lot yields the worst welfare, whereas all lots
yield a higher welfare in the former. Next compare {a, e}{b, f}{c, d} and {a, d}{b, f}{c, e}:
both yield the same lowest welfare level (at {a, e} and {a, d} respectively); the latter gives
this level to two agents and the former to only one agent: therefore the former division is
better. Here the leximin social welfare ordering picks {a, c}{b, f}{d, e} as the unambiguous
best split, followed by {a, b}{c, f}{d, e}: both guarantee the same lowest welfare level (for
whomever gets {d, e}), but the latter gives that level to two of the three agents, against only
one in the former. The fact that one agent gets the absolute best lot {a, b} in the latter split
is unimportant.

We give now the general definition of the leximin social welfare ordering, also called
the egalitarian social welfare ordering, and sometimes “practical egalitarianism.” Given
two feasible utility profiles u and u′, we rearrange them first in increasing order, from the
lowest to the highest utility, and denote the new profiles u∗ and u′∗ : u∗

1 ≤ u∗
2 ≤ · · · ≤

u∗
n and u′∗

1 ≤ u′∗
2 ≤ · · · ≤ u′∗

n . The leximin social welfare ordering compares u∗ and u′∗

lexicographically. Thus u � u′ holds if u∗
1 � u′∗

1 (u′∗
1 � u∗

1 implies similarly that u′ � u):
if the lowest utility is higher in one profile than in the other, this is enough to declare it
a better profile. If u∗

1 = u′∗
1 , the leximin ordering compares the second lowest utilities u∗

2

and u′∗
2 ; if they differ, the profile with the higher one is preferred. Thus {u∗

1 = u′∗
1 and

u∗
2 > u′∗

2 } implies that u � u′. And so on: if the k lowest utility levels coincide in both
profiles (u∗

1 = u′∗
1 for i = 1, . . . , k) and the (k + 1) lowest differ, the latter determines the

preferred profile.
The mathematical definition of the leximin ordering is slightly more involved than that of

any additive collective utility in the family (5). In fact this ordering cannot be represented by
any collective utility function. On the other hand, leximin belongs to the family (5) in a limit
sense: as q goes to infinity, the social welfare ordering represented by the collective utility
function W q converges to the leximin one. Moreover the leximin ordering is independent
of unconcerned individuals, independent of the common scale of utility and satisfies the
Pigou-Dalton transfer principle.9

In many examples, such as examples 3.3 and 3.4, finding the maximum of the leximin
ordering reduces to maximizing the first component u∗

1 = mini ui of the utility profile
rearranged in increasing order. In such cases we are simply maximizing the egalitarian
collective utility function We(u) = mini ui , meaning that we maximize the utility of the

9. Exercise 3.12 states formally the limit property and discusses these properties of the leximin.
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u2

u1

45°

β

α

Figure 3.1
No equality/efficiency trade-off

worst-off individual. Of course We is not a proper representation of the leximin ordering,
because u � u′ implies that We(u) ≥ We(u′), but the converse implication does not hold.

Example 3.3 The Equality/Efficiency Trade-off with Two Agents Consider the feasible
utility sets in figures 3.1 and 3.2. We do not specify from what allocation problem these
utility profiles come from. Under the welfarist postulate (section 3.1) this does not matter.

In figure 3.1 there is a fully egalitarian and efficient utility profile α. This profile is the
unique maximizer of the egalitarian collective utility We, hence the leximin optimum as
well. There is no conflict between equality and efficiency.

In figure 3.2, by contrast, the profile α is the highest feasible equal utility one, but it is not
efficient: both agents enjoy a higher utility at profile α∗ that maximizes the egalitarian utility
We (and the leximin ordering). Here we have a trade-off between equality and efficiency.
The egalitarian collective utility function justifies the inequality at α∗ to augment the utility
of the worst off agent.

The configurations in figures 3.3 and 3.4 are similar with an equality/efficiency trade-off
in the latter (successfully resolved by the maximum of We) but not in the former.

We conclude this section with a crucial—indeed a characteristic—property of the leximin
ordering. Recall that in example 3.2 all we need to define the egalitarian division in lots
is the ability to rank any two lots. More generally, consider two utility profiles u and u′.
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u2

u1

45°

β

α∗

α

Figure 3.2
Equality/efficiency trade-off

u2

u1

45° 45°

α

β

Figure 3.3
No equality/efficiency trade-off
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u2

u1

α α∗ β

45° 45°

Figure 3.4
Equality/efficiency trade-off

Suppose that for any one of the n2 pairs ui , u′
j , i, j = 1, . . . , n, we know their relative

ranking, meaning that we know which one of ui > u′
j , ui < u′

j , or ui = u′
j holds. This

is enough to deduce the ranking of u versus u′ in the leximin ordering. For instance, let us
take four agents and the following pattern:

u′
1 u′

2 u′
3 u′

4

u1 > < > <

u2 < < = <

u3 > > > >

u4 = < > <

where an entry > reads: the row ui is greater than the column u′
j .

From this pattern we deduce the rankings of ui , u′
j :

u2 = u′
3 < u4 = u′

1 < u1 < u′
4 < u′

2 < u3

Hence

u∗
1 = u′∗

1 , u∗
2 = u′∗

2 and u∗
3 = u1 < u′∗

3 = u4

We conclude that u′ is preferred to u by the leximin ordering.
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The invariance property underlying the example above is that the leximin ordering is
preserved under a common arbitrary (in particular, nonlinear) rescaling of the utilities.
Thus the comparison of u versus u′ is the same as that of v = (u2

i ) versus v′ = (u′2
i ), or of

(eui +√
ui ) versus (eu′

i +
√

u′
i ), and so on. This property is called independence of the common

utility pace.
Leximin is not the only social welfare ordering independent of the common utility pace.

But it is the only one that also respects the Pigou-Dalton transfer principle.10 This remarkable
characterization result explains why this social welfare ordering occupies such a central
place in cardinal welfarism.

In the next two sections, we compare systematically the three basic social orderings—
leximin, classical utilitarian, and Nash—and explain along the way the axiomatic charac-
terizations of the latter two.

3.4 Comparing Classical Utilitarianism, Nash, and Leximin

In section 3.2 we identified three outstanding welfarist solutions as the classical utilitarian
and Nash collective utility functions, and the leximin social welfare ordering. We now
compare them in a series of examples, where we stress their relation to the compensation
and sum-fitness principles. Thus this section and the next pursue a discussion initiated in
section 2.5, by testing our three welfarist solutions in more general problems of resource
allocations.

The central tension between the classical utilitarian and egalitarian welfarist objectives
was already uncovered in section 2.5. They are advocating different kinds of sacrifices.
Under the former, the welfare of a single agent may be sacrificed for the sake of improving
total welfare (the slavery of the talented—example 3.9—is a striking case in point). Under
the latter, large amounts of joint welfare may be forfeited in order to improve the lot of the
worst off individual (e.g., examples 3.4 and 3.6).

Example 3.4. Location of a Facility A desirable facility (examples are given below) must
be located somewhere in the interval [0, 1], representing a “linear” city. Each agent i lives at
a specific location xi in [0, 1]; if the facility is located at y, agent i’s disutility is the distance
|y − xi |. The agents are spread arbitrarily along the interval [0, 1], and the problem is to
find a fair compromise location.

The egalitarian solution is the easiest to compute. Suppose that there are some agents
living at 0 and some living at 1. Then the egalitarian collective disutility function We equals

10. Exercise 3.12 offers more discussion of these two facts.
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1
2 when the facility is located at ye = 1

2 . For any other location y, the distance from y to 0
or to 1 is larger than 1

2 . Thus the unique egalitarian optimum is the midpoint of the range of
our agents.

Classical utilitarianism chooses the median of the distribution of agents, namely the point
yu such that at most half of the agents live strictly to the left of yu and at most half of them
live strictly to its right. To see why this is so, observe that a move of ε to the right of yu

increases by ε the disutility of at least one-half of the agents (i.e., those located at yu or to
its left) while reducing by ε that of at most one-half. A similar argument shows that a move
to the left cannot reduce the sum total of individual disutilities.11

The interpretation of the facility has much to do with the choice between the two solutions.
If the facility is a swimming pool, or an information booth, then the utilitarian choice is
more appealing because it minimizes overall transportation costs, and we accept to sacrifice
the isolated rural resident: disutility is interpreted as distaste and the isolated agents have
chosen freely to be so. On the other hand, if the facility meets a basic need, such as a post
office or a police station, the egalitarian compromise has more appeal, because equal access
to the facility is tantamount to meeting this need equally. Some cases are more ambiguous:
if we are locating a fire station, the goals of equal access and of maximizing the expected
return (i.e., the expected reduction of property losses) are both valid, but they pull us toward
the midpoint and the median respectively.

The Nash collective utility function is not easy to use in this example because the natural
zero of individual utilities is when the facility is located precisely where the agent in question
lives, say xi : then we set ui (y) = − |y − xi | if the facility is located at y. The Nash utility
is not defined when some utilities are negative; therefore we must adjust the zero of each
agent so as to ensure she gets nonnegative utility for any choice of y. One way to do so
is to set the zero of an agent’s utility where the distance from his location to the facility
is 1:

u1
i (y) = 1 − |y − xi |
Another way is to set agent i’s zero where y is as far as can be from his location, namely

at y = 0 if xi ≥ 1
2 and at y = 1 if xi ≤ 1

2 . This yields the following utility:

u2
i (y) = xi − |y − xi | if i is such that xi ≥ 1

2

u2
j (y) = 1 − x j − |y − x j | if j is such that x j ≤ 1

2

11. In section 4.3 we give an alternative interpretation of the median location y as the Condorcet winner outcome:
for any other location y, more than half of the citizens prefer yu to y.
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Clearly, the choice of one or the other of the two normalizations is of great consequence on
the optimal location for the Nash collective utility.12

The great advantage of the classical utilitarian utility is to be independent of individual
zeros of utilities. If we replace utility ui = − |y − xi | by u1

i or u2
i above for any number

of agents, the optimal utilitarian location remains the median of the distribution and the
preference ranking between any two locations does not change. This independence property
uniquely characterizes the classical utilitarian among all collective utility functions.13

Notice that the egalitarian location remains at ye = 1
2 with all utility functions normalized

as u1
i , or all as u2

i (exercise: Why?), but this is not a general feature. For instance, if no
one lives near the location 0, the optimal egalitarian location under u1

i moves above 1
2 but

remains at 1
2 under u2

i .

*Example 3.5 Location of a Noxious Facility Now the facility is a toxic waste disposal,
a jail, or any other operation from which everyone wants to live as far away as possible.
The distance from xi , where agent i lives, to the facility at y measures her utility, instead
of her disutility in the previous example.

If the agents are spread all over the interval [0, 1], the egalitarian collective utility is zero
everywhere: We(y) = 0 for all y because there is always someone living at y. The leximin
social welfare ordering, on the other hand, wants to locate the noxious facility at a point
where the density of agents is lowest. If there are several such points, it breaks ties in favor
of a location where the second derivative of the density is lowest (exercise: Why?).

The utilitarian collective utility W1(y) is now minimal at the median yu and maximal at
one of the two endpoints 0 or 1.14 Thus it is enough to compare W1(0) and W1(1). Denoting
by f (x) dx the population density at x, we compute

W1(0) < W1(1) ⇔
∫ 1

0
x f (x) dx <

∫ 1

0
(1 − x) f (x) dx

⇔ Ex =
∫ 1

0
x f (x) dx < 1

2

We conclude that the utilitarian location is the endpoint farthest away from the mean
location E f.

12. And in each case this optimum is neither easy to compute nor to interpret.

13. Even those that are not independent of unconcerned agents (see section 3.2).

14. Each utility function is convex in the variable y. Therefore so is W1; a convex function reaches its maximum
over an interval at one of the endpoints.



moulin-79027 book October 22, 2002 16:8

79 3.4 Comparing Classical Utilitarianism, Nash, Leximin

We turn to a simple, yet important model where the problem is to pick a fair compromise
between several pure public goods. The model brings to the fore the contrasting distributive
policies of our three basic collective utility functions.

Example 3.6a Time-Sharing The n agents work in a common space (e.g., fitness room)
where the radio must be turned on one of five available stations (one of them may be the
“off” station). As their tastes differ greatly, they ask the manager to share the time fairly
between the five stations.

Each agent likes some stations, and dislike some; if we set her utility at 0 or 1 for a station
she dislikes or likes, respectively, we have a pure lifeboat problem as in example 3.1. The
difference is that we allow mixing between the five decisions: the manager chooses a list
of timeshares xk, k = 1, . . . , 5 such that xk ≥ 0 and x1 + x2 + · · · + x5 = 1.

In this example we assume a simple preference pattern that makes it easy to compute
and contrast the solution chosen by our three basic collective utility functions. Each agent
likes exactly one station and dislikes the other four, with corresponding utilities at 1 and 0.
There are nk fans of station k, with n1 + · · · + n5 = n.

The classical utilitarian manager chooses the “tyranny of the majority”: the station with
the largest support is on all the time (and if there are several such stations, any mixing
between them is optimal as well). The egalitarian manager does exactly the opposite, namely
it pays not attention to the size of support and plays each station 1

5 th of the time (provided
that each station has at least one fan) so that everyone is happy 20 percent of the time.

The Nash collective utility picks an appealing compromise between the two extremist
solutions above. The relative sizes of nk matter and everyone is guaranteed some share of
her favorite station. The optimal times shares xk for the Nash utility maximize

∑
k nk log xk

under the constraint
∑

k xk = 1; therefore x∗
k = nk/n, namely the time share of each station

is proportional to the number of its fans. This can be interpreted as random dictatorship:
each agent gets to choose the station he likes for 1/nth of the time.

The proportional time shares make good sense in the radio-sharing story, because we
interpret utilities as subjective tastes for one type of music or the other. Alternative inter-
pretations of utilities yield a very different intuition.

Consider a pure lifeboat decision, where we must choose, literally, whom to save: say
five boats are about to sink, and we can only help one of them. Who would hesitate to give
all his help to the most populated boat, as utilitarianism recommends? Flipping a fair coin
to decide which boat to help allows the rescuer to give an equal chance of survival to every
person, but our claim is that he won’t and that utilitarianism is compelling here.

In some other contexts utilities may measure the satisfaction of a need: our agents are
away from home, and the radio broadcasts news from their hometown station. They come
from five different towns and station k gives news from town k only. Now the egalitarian
solution makes a lot of sense!
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Example 3.6b Time-Sharing Five agents share a radio as in example 3.6a, and the pref-
erences of three of them (agents 3, 4, and 5) are somewhat flexible, in the sense that they
like two of the five stations according to the following pattern:

Agent

Station
a b c d e

1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 1 0
4 0 0 0 1 1
5 0 0 1 0 1

The utilitarian manager shares the time between the three stations c, d, and e but never
plays stations a or b. The egalitarian manager selects xa = xb = 2

7 , xc = xd = xe = 1
7 , so

that everyone listens to a program he or she likes 28.6 percent of the time. The utilitarian
solution is too harsh on agents 1, 2, while the egalitarian solution appears too soft on
these two agents: agents 3, 4, 5 should be somewhat rewarded for the flexibility of their
preferences.

The Nash collective utility function recommends a sensible compromise between utilitar-
ianism and egalitarianism: it plays each station with equal probability 1

5 . To check this, we
note that outcomes a, b play a symmetrical role, hence are allocated the same time share x;
similarly each one of c, d , and e receives the same time share y. The Nash maximization
problem is now

maximize x2(2y)3 under x, y ≥ 0, 2x + 3y = 1

A straightforward computation gives the optimal solution x∗ = y∗ = 1
5 .

To conclude this section, we illustrate the great advantage of the Nash collective utility
function in the variant of example 3.6a where individual utilities for listening to the “right”
kind of music differ across agents: a supporter i of station k enjoys utility ui if k is on and
0 otherwise. Both the classical utilitarian and egalitarian collective utility functions pay a
great deal of attention to the relative intensities of these utilities. For instance, the egalitarian
arbitrator computes for each k the smallest individual utility ak among the fans of station k
and allocates to k a time share proportional 1/ak (exercise: prove this claim). And classical
utilitarianism may end up broadcasting exclusively a station with a handful of very vocal
supporters.

The Nash utility function, by contrast, is independent of individual scale of utilities. In
our example, this means that the intensity ui of agent i’s musical pleasure is irrelevant to the
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choice of a fair time-sharing. Indeed, for a profile of time shares (x1, . . . , x5) the collective
utility WN is computed as follows:

WN =
5∑

k=1

∑
i∈Nk

log(ui .xk)

=
(∑

i

log ui

)
+

5∑
k=1

nk log xk

where Nk is the set of k fans. The maximization of this collective utility is independent of
the numbers ui ; hence the Nash arbitrator still recommends giving station k a time share
proportional to nk .

Independence of individual scales of utilities eliminates the possibility of influencing
the arbitrator’s choice by distorting the intensity of one’s utility for good music. If the
arbitrator is classical utilitarian, it is clearly to agent’s i advantage to increase ui (which
may make his favorite station look best); if he is egalitarian, it is advantageous to decrease
ui (exercise: prove these claims). The Nash collective utility function is immune to both
kinds of distortions, which is a considerable advantage in a context where utility measures
subjective tastes. Notice that the profitability of increasing one’s utility scale under classical
utilitarianism (resp. to decrease it under egalitarianism) is fully general (not limited to
our simple example): exercise 3.14 explains this important property. Similarly, under an
egalitarian or a Nash arbitrator, it is always profitable to increase one’s zero of utility.

The Nash collective utility function is uniquely characterized among all collective utility
functions,15 by the property independence of individual scales. Thus each of the three
basic social welfare orderings is characterized by a specific independence property: the
independence of common utility pace picks the leximin social welfare ordering,16 and
the independence of individual zeros captures the classical utilitarian collective utility.17

3.5 Failures of Monotonicity

Some paradoxical features of welfarism affect our three basic collective utility functions.
The main issue is how the optimal solution reacts when the resources of the economy
change and was already discussed in section 2.5. There we noticed that the property may
fail under classical utilitarianism if some individual utility functions are not concave in the

15. Even those that fail independence of unconcerned agents.

16. See the discussion at the end of section 3.3.

17. As discussed after example 3.4.
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amount of resources. Below we give examples displaying the same failure with concave
utility functions both for the classical utilitarian and Nash arbitrators.

For the egalitarian solution, resource monotonicity is always satisfied if the optimal allo-
cation gives equal utilities to all agents—namely if there is no equality/efficiency trade-off
(example 3.3). This important fact is obvious: if my utility and yours remain equal whenever
an arbitrary parameter affecting the allocation of resources changes, we will both benefit
or we will both suffer from the change, or we will both be unaffected. Shocks do not break
the egalitarian harmony.

However, practical egalitarianism (i.e., maximization of the leximin ordering) may lead
to the paradoxical feature. An elementary example involves indivisible goods.

Ann, Bob, and Chris want to play tennis, but they do not have enough racquets (balls
and courts are not scarce). Ann enjoys playing against the wall as much as against Bob or
Chris. Bob and Chris hate to play the wall and only enjoy playing against each other or
against Ann. If only one racquet is available, the leximin ordering tells us to give it to Ann
(indeed, this is the only efficient allocation of the resources). If two racquets are available,
the egalitarian solution is an equitable time-sharing arrangement where the three pairs take
turns on the court and everyone plays 2

3 of the time: thus Ann is worse off after the resource
increase.

Our next fair division example has divisible goods and concave utility functions, therefore
no equality/efficiency trade-off. Thus the egalitarian optimum has equal utilities for both
agents, and resource monotonicity is automatically verified. On the other hand, maximizing
the Nash or classical utilitarian collective utility leads to monotonicity failures.

Example 3.7 Dividing Complementary Goods Jones and Smith both use a different mix
of two goods labeled A and B. To produce one unit of utility, Jones needs one unit of A for
two of B while Smith needs two units of A for one of B.

Jones: u1(a1, b1) = min{2a1, b1}
Smith: u2(a2, b2) = min{a2, 2b2}

A “serious” example is the mix of labor and capital to produce a certain service: good A
is labor and good B a certain machine, both measured in hours; Jones’s technology is less
labor intensive than Smith’s. A “frivolous” one involves a cocktail of two liquors that they
mix in different proportions.

Suppose first that 12 units of each good are available. The set of feasible utility profiles
is depicted on figure 3.5a. Any collective utility function that does not like inequality (i.e.,
meeting the Pigou-Dalton transfer principle in section 3.2) chooses the equal utility profile
(u1, u2) = (8, 8) coming from the allocation (a1, b1) = (4, 8), (a2, b2) = (8, 4).
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u2

u112

12

KS

8

8

Figure 3.5a
Feasible utility profiles in example 3.7

u2

u124

12

KS

8

8

Figure 3.5b
Modified feasible utility set
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Next suppose that 12 more units of good B are available, for a total of 12 units of A
and 24 units of B. The new feasible set of utility profiles is depicted on figure 3.5b: it
has increased to the triangle of all pairs (u1, u2) such that u1 + 2u2 = 24 and ui ≥ 0:
for any x, 0 ≤ x ≤ 12, the utility profile (u1, u2) = (24 − 2x, x) comes from (a1, b1) =
(12− x, 24−2x), (a2, b2) = (x, 2x). The egalitarian arbitrator still picks the utility profile
(8, 8): the additional resources are simply discarded. The classical utilitarian solution gives
all the resources to agent 1 so that (u1, u2) = (24, 0). Agent 2’s utility loss is less severe
under the Nash solution: the corresponding optimal utility profile is (u1, u2) = (12, 6),
namely the solution of the following problem:

max log u1 + log u2 under constraint u1 + 2u2 = 24, ui ≥ 0,

i = 1, 2

The failure of resource monotonicity in the example above is generalized in example 7.12
to many more solutions than the two above.

We give now a pure public good example where both the egalitarian and utilitarian
solutions fail resource monotonicity.

Example 3.8 Location of a Facility (continued) In this variant of example 3.4, the road
network is depicted on figure 3.6. The agents live on the roads AB, BC, CD, and DE where

A E

DB

C

X

6 6

 3

5 4 5

 3

Figure 3.6
Road network in example 3.8
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their density is constant and equal to one. Nobody lives on BX, XC, and XD. As before, the
distance of the facility to one’s location is the disutility (negative of utility).

Suppose first that the facility can only be located wherever the agents live (thus the inner
roads BX, XC, and XD are not feasible locations). Then by the symmetry of our problem,
the egalitarian and the classical utilitarian collective utilities are maximized at C . Actually
C is the optimal location for any collective utility function, by virtue of symmetry and
monotonicity (exercise: prove this claim).

Now suppose every point of the road network is a feasible location of the facility. This is
unambiguously an increase of the available resources. The optimal location for the egali-
tarian collective utility is now at X , from where the distance to any agent is at most 9 miles,
whereas with the facility at C , agents living at A or F are 11 miles away. Thus the agents
living at C and near C see their utility decrease as the resources improve.18

The optimal location for the classical utilitarian is also X (exercise: Why?). Therefore
resource monotonicity fails for this solution as well.

Our last paradoxical example is a famous one. It shows the utilitarian and Nash solutions
penalizing the more productive agent in a distinctly unpalatable fashion.

Example 3.9 Slavery of the Talented In this simple production economy, two agents can
use their labor to produce corn, at a constant productivity si , i = 1, 2: one unit of agent i’s
labor produces si units of corn. Agents consume corn and leisure, and these two goods are
perfect complements: if agent i consumes zi units of corn and yi of leisure, her final utility
is min{zi , yi }. Finally each agent can split 20 hours of time between xi units of labor and
yi of leisure: xi + yi = 20.

Consider first the benchmark case where both agents are equally productive at s1 =
s2 = 1. The efficient production plan treating the two agents equally (i.e., respecting the
symmetry of the problem) is the “decentralized” outcome where each agent keeps the corn
he produces; hence xi = yi = zi = 10, i = 1, 2, and each agent gets 10 utils, ui = 10. The
egalitarian, Nash, or any collective utility function that is strictly averse to inequality19

picks this allocation uniquely. The utilitarian function is an exception, as it is indifferent to
inequality.20

Next suppose that agent 1’s productivity raises to s ′
1 = 2, while agent 2’s productivity

remains s2 = 1. Efficiency commands to give agent i exactly the same amount of leisure

18. Those living no more than 4 miles away from C .

19. That is to say, a collective utility that increases from a Pigou-Dalton transfer (section 3.2).

20. Here all efficient allocations maximize the utilitarian function. These allocations are parametrized by the
amount of labor x1 = λ supplied by agent 1, an arbitrary number between 0 and 20. Then u1 = y1 = z1 = 20−λ,

x2 = 20 − λ, u2 = y2 = z2 = λ.
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and of corn, i.e., zi = 20 − xi . The feasibility constraint is now

20 − x1 + 20 − x2 = 2x1 + x2 ⇔ 3x1 + 2x2 = 40, x1, x2 ≥ 0

Under the egalitarian collective utility, the increase in agent 1’s talent benefits both
agents equally, who end up with u1 = u2 = 12 utils. The corresponding allocation is xi = 8,

ui = zi = yi = 12, i = 1, 2: both agents work less hard and 4 units of the corn produced by
agent 1 are transferred to agent 2.

Under the classical utilitarian and the Nash solutions, the fate of agent 1 is less enviable.
Say that agent i works xi hours, i = 1, 2, so that total output is z = 2x1 + x2. Efficiency
commands to give exactly zi = 20− xi units of corn to agent i . Thus the classical utilitarian
solution maximizes (20 − x1) + (20 − x2) under the above feasibility constraint.

The optimal solution is x∗
1 = 13.3, x∗

2 = 0, resulting in the allocation u1 = z1 = y1 =
6.7, u2 = z2 = y2 = 20. This is slavery because the talented agent 1 works 33 percent
harder and consumes 33 percent less than before acquiring his special talent. He is also
frustrated to see agent 2 reap all the benefits and get a “free ride,” whereas he (agent 1)
experiences a sharp decrease in his utility!

The utilitarian argument is that one more unit of leisure for agent 2 has a lower opportunity
cost, in terms of lost production, than one unit for agent 1, and this argument holds until
agent 2 is totally exonerated from work.

The Nash collective utility function yields a milder slavery of the talented, but slavery
nevertheless. The Nash arbitrator solves the program

max log(20 − x1) + log(20 − x2) under 3x1 + 2x2 = 40

The solution is x0
1 = 10, x0

2 = 5 hence the allocation u1 = z1 = y1 = 10, u2 = z2 =
y2 = 15. Here agent 1 does not suffer anymore from his productivity boost, but he does not
benefit either; all the benefit goes to the untalented agent who ends up working less hard
and consuming more corn (and leisure) than the talented one.

In section 6.2 we propose a different solution of the above production problem based
on the Lockean theory of entitlements rather than welfarism. This solution rules out any
externality in productivity; hence it eliminates slavery entirely.

3.6 Bargaining Compromise

The bargaining compromise places bounds on individual utilities that depend on the physical
outcomes of the allocation problem; thus it moves a step away from the strict postulate of
welfarism (section 3.1).
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Example 3.10 Priorities Ann, Bob, and Charles work in the same company. Each needs
a computer repair job, and their respective repair jobs are not equally long: Ann’s repair
can be done in 1 hour; Bob’s takes 4 hours, and Charles’s takes 5 hours.

There is a single repairman in the company. Since an agent must stay idle until the
completion of his or her repair, the total waiting time until the repair is completed measures
his or her disutility.

The classical utilitarian solution minimizes total waiting time, and this is achieved by
serving the shortest repair job first. So the respective disutilities are

Ann: 1, Bob: 5, Charles: 10

Total disutility is 16, and it is a simple matter to check that any other ordering of the jobs
yields a larger total waiting time. This is hard on Charles, especially so if we reduce the
difference between Bob’s and Charles’ repair jobs. If Charles’s job is one minute longer,
he still has to wait 4 hours more.

If the only available choices are the six deterministic orderings of Ann, Bob, and Charles,
the leximin ordering selects the same ordering Ann < Bob < Charles, as the reader can
easily verify. However, in this example we allow randomization over the six orderings in
order to achieve equitable compromises where two agents with nearly identical character-
istics (job length) have nearly identical expected waiting times.

Classical utilitarianism refuses to compromise, because the ordering above uniquely
minimizes total waiting time. The contrast with the egalitarian solution could not be sharper,
as the latter gives to each participant precisely the same expected disutility. Note that
the smallest waiting time u that can be guaranteed to all three participants is u = 7.1,21

which obtains for instance by randomizing as follows over three different schedulings of
the three jobs:

Scheduling u A uB uC Probability
B, A, C 5 4 10 0.4
A, C, B 1 10 6 0.1
C, B, A 10 9 5 0.5

7.1 7.1 7.1 Expected utility

Now we see that Ann, whose job is shortest by far, is served first only 10 percent of the
time, whereas Bob is first 40 percent of the time and Charles 50 percent.22 The solution
ignores the differences between the delay externalities caused by jobs of different length.

21. To check this, observe that for any scheduling of the three jobs, the utility of the three agents satisfy u A +
4u B + 5uC = 71. This observation is generalized in exercise 3.10.

22. Note that the probability of agent i being served first is proportional to the length of her job. This is a general
property: see exercise 3.10.
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The bargaining compromise here equalizes “priorities” instead of utilities: each agent
has an equal right to be served first, or second, or third. If we randomize over all six
orderings, with equal probability to each ordering, the expected waiting time of our three
agents are

u A = 1

3
1 + 1

6
5 + 1

6
6 + 1

3
10 = 5.5

uB = 1

3
4 + 1

6
5 + 1

6
9 + 1

3
10 = 7

uC = 1

3
5 + 1

6
6 + 1

6
9 + 1

3
10 = 7.5

This outcome is an egalitarian compromise in the following relative sense: everyone ends
up half-way between his or her worst wait (i.e., 10) and his or her best wait (i.e., 1 for Ann,
4 for Bob, 5 for Charles). These two bounds of the best and worst wait are very natural,
but their meaning goes beyond the mere description of welfare: they depend on the set of
feasible outcomes in the particular allocation problem.

The choice of the zero and/or the scale of individual utilities is crucial whenever a
social welfare ordering picks the solution: with the exception of the classical utilitarian
(independent of individual zeros but not scales) and the Nash collective utility function
(independent of individual scales but not zero), all other social welfare orderings depend
on both the individual zeros and scales.

The bargaining version of welfarism incorporates an objective definition of the zero of
individual utilities, which corresponds to the worst outcome deemed acceptable from the
point of view of a certain agent. In some cases this outcome is interpreted as the disagreement
outcome because each agent has the strategic option to “walk away” from the arbitration
table, so the arbitrator must take the corresponding utility as a hard lower bound. In other
cases, like examples 3.10 and 3.11, zero utility simply comes from the worst feasible
outcome in the allocation problem; hence we call it the minimal utility.

The bargaining approach then applies a scale invariant solution to the zero normalized
problem, which in turns ensures that the solution is independent of both individual zeros
and scales of utilities.

The two prominent bargaining methods are the Nash bargaining and Kalai-Smorodinsky
solutions introduced in our next example.

Example 3.11 Ann and Bob represent two companies selling related yet different products,
and share a retail outlet. They can set up the outlet in three different modes denoted a, b,
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and c that bring the following volumes of sales (in thousands of dollars):

a b c
Ann 60 50 30
Bob 80 110 150

(6)

Both managers are only interested in maximizing the volume of their own sales (which
may not be the same thing as maximizing profit) and accounting rules prohibit any cash
transfers. Thus the only tool for compromises is time-sharing among the three modes: over
a yearly season, they can mix them in arbitrary proportions such that x, y, z such that
x + y + z = 1.

Applying any one of our three basic welfarist solutions to the raw utilities given in (6)
make little sense. For instance, the egalitarian collective utility picks outcome a where Ann’s
utility is highest. But the fact that Ann’s business always yields a smaller volume of sales
should not matter: the issue is to find a compromise between three feasible outcomes over
which the agents have opposite preferences; the relative size of Ann’s business to Bob’s
business is irrelevant.

Total utility in classical utilitarian fashion—maximal at c—is similarly irrelevant. We
wish to define a fair compromise that depends neither on the scale nor on the zero of both
individual utilities.

For minimal utility of either player, we pick the lowest feasible volume of sales: 30K for
Ann and 80K for Bob. Indeed, this level is guaranteed even by conceding to the other agent
his or her favorite outcome. This yields the new utility table:

a b c
Ann 30 20 0
Bob 0 30 70

(7)

The idea of a random ordering, successful in example 3.10, suggests letting Ann and Bob
each have their way 50 percent of the time: this means that x = z = 1

2 , outcomes a and c
each with a timeshare 1

2 . But the resulting normalized utilized vector is (15, 35), whereas
the outcome y′ = 0.8, z′ = 0.2 (b or c with respective timeshares 0.8 and 0.2) yields the
utilities (16, 38), and hence is Pareto superior.

It turns out that any combination of a and c is Pareto inferior to some combination of a
and b, or of b and c: this is apparent on figure 3.7, where compromises of a and c produce
the utility vectors in the segment AC .

There are now two simple ways to select the shares x, y, z without taking into account
the scales of individual utilities. The first one is to maximize the Nash collective utility
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function:

max log(30x + 20y) + log(30y + 70z)

under x + y + z = 1, x, y, z ≥ 0
(8)

The second way is the Kalai-Smorodinsky solution, equalizing the relative utility gains,
namely the ratio of the actual gain to the maximum feasible gain. In this example the
maximal feasible gains are 30 and 70 for Ann and Bob respectively. Therefore the KS
solution selects the shares x, y, z so as to

maximize
30x + 20y

30
= 30y + 70z

70

under x + y + z = 1, x, y, z ≥ 0

(9)

The resolution of programs (8) and (9) is greatly simplified by taking a look at the feasible
utility set of the normalized utilities (7). Figure 3.7 reveals that the efficient compromises
among a, b, and c involve either a and b only (z = 0 : interval AB) or b and c only (x = 0 :
interval BC). On each one of these two intervals, there is only one degree of freedom, so
the resolution of programs (8) and (9) becomes easy.

70

30

20 30

KS
N

A

B

C

u2

u1

Figure 3.7
Bargaining solutions in example 3.11
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Consider first the interval AB, corresponding to z = 0 and to the utility vectors (10x +
20, 30 − 30x) for 0 ≤ x ≤ 1. We see that equation (9) is impossible, namely

10x + 20

30
= 30 − 30x

70
⇒ x = − 5

16

Therefore the KS solution lies on BC, corresponding to x = 0, z = 1 − y:

20y

30
= 70 − 40y

70
⇒ y = 21

26
, z = 5

26

We turn to the resolution of program (8). We know that its optimal solution lies either
on AB or on BC . We check that B is the solution of (8) on AB, but on BC we can do
better, namely maximize log(20y) + log(30y + 70(1 − y)) under 0 ≤ y ≤ 1 ⇒ y = 7

8 ,

hence

Nash solution: y = 7

8
, z = 1

8
⇒ u1 = 17.5, u2 = 35

KS solution: y = 21

26
, z = 5

26
⇒ u1 = 16.1, u2 = 37.7

where the utilities are normalized as in (7).
Note that both solutions are Pareto superior to the random dictator outcome a/2 + c/2,

with associated utilities (15, 35). This is a general property, discussed below, of our two
bargaining solutions.

We give now the general definition of the Nash and Kalai-Smorodinsky bargaining
solutions. The data are a set U of feasible utility profiles and a distinguished minimal utility
profile u0. See figure 3.8 where an important feature is the fact that the set U is convex.23

We set the zero of agent i’s utility at u0
i : figure 3.9.

The Nash bargaining solution maximizes the Nash utility under this normalization of
individual zeros, namely 
i (ui − u0

i ). Of course the maximization bears exclusively on
those utility profiles in U such that ui ≥ u0

i for all i .
Next we compute the maximal utility level umax

i that agent i can achieve whenever other
agents receive at least their minimal disagreement utility: that is to say, umax

i solves the
program max ui over all u ∈ U such that u ≥ u0. The quantity δi = umax

i − u0
i is the

maximal feasible gain of agent i above and beyond his minimal utility. The KS solution
equalizes the relative gains (fraction of maximal feasible gains) of all agents. It is the unique

23. It contains the segment joining any two of its points.
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N

KS

u2

u2

u0

u1

u1

a1

a2

δ1

δ2

δ/2
45°

Figures 3.8 and 3.9
Nash and KS solutions

utility profile u such that

u is efficient and
ui − u0

i

δi
= u j − u0

j

δ j
for all i, j.

Figure 3.9 shows the geometry of this construction in a two-agent example: draw first the
utopian utility profile δ where each agent gets δi ; the KS solution is at the intersection of
the efficiency frontier of U with the line from the zero profile to the utopian profile.

The geometric characterization of the Nash solution is an interesting first-order condition,
namely a property of the line tangent to the efficiency frontier of U at the Nash point N .
Writing ai for the intersection of this line with the ui axis, N is simply the midpoint of a1a2,
as shown on figure 3.9.24

24. Note that this property implies that the tangent line is orthogonal to the vector (u2, u1): hence if (du1, du2)

is a small variation of u at N along the efficiency frontier, we have u2du1 + u1du2 = 0, which is the first-order
condition for the maximization of u1u2.
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Both the Nash and the KS solutions are independent of the individual scales of utilities.
We know this to be true for the Nash utility function, hence for the outcome maximizing this
function over U . As for the KS solution, we note that the ratios (ui − u0

i )/δi are invariant
under a rescaling of utility ui (because both numerator and denominator are multiplied by
the same rescaling factor), which proves the point.

Another appealing feature shared by the Nash and KS solutions is to guarantee for agent i
his minimal utility plus 1/nth of his maximal feasible gain δi :

ui ≥ u0
i + 1

n

(
umax

i − u0
i

)
(10)

In other words, we draw an agent at random (with uniform probability) and give him
the entire feasible surplus while other agents merely get their minimal utility. The resulting
expected utility is a lower bound of what every agent receives under the Nash or the KS
solution. The proof of this claim in the two-agent case is clear on figure 3.9.25

Our last example emphasizes a property of the KS solution that sets it apart from the
Nash bargaining solution, and from any solution maximizing a collective utility function
after normalizing individual zeros in some objective fashion. The KS solution depends on
the entire shape of the feasible set U : the solution is not independent of irrelevant utility
profiles, meaning utility profiles that are “far” from the equitable compromise.

Example 3.12 Vitamins A bottle containing 10 grams of vitamin X and 10 grams of
vitamin Y must be shared by Ann and Bob, who both need to increase their level of zygum,
a certain compound that can only be metabolized from vitamin X or vitamin Y . The zero
utility outcome is that no one gets any vitamin: the agents hold no claim on any of the
resources, which are entirely under the control of the benevolent dictator.

We learn first that both Ann and Bob metabolize 1 unit of zygum from 1 gram of vitamin
X or Y . Thus the utility (quantity of zygum) they derive from the allocation (xi , yi ) is
ui = xi + yi . By the symmetry of the problem, the only fair utility profile is (u1, u2) =
(10, 10) (10 grams of vitamins per agent).

Now further testing reveals that Bob’s metabolism is only half as efficient at producing
zygum from vitamin Y than originally thought. From the allocation (x2, y2), Bob derives
u2 = x2 + (y2/2). Ann’s metabolism, on the other hand, still gives her u1 = x1 + y1. The
efficient allocation of vitamins now precludes giving positive amounts of vitamin Y to Bob
and of vitamin X to Ann (for they would be able to find a mutually advantageous swap).

25. Note that U contains both points (0, δ2) and (δ1, 0). Therefore, because U is convex, it contains their midpoint
δ/2. The KS solution lies on the segment [0, δ] beyond δ/2, which proves (10). Next we check ai ≥ δi , again by
the convexity of U : therefore the Nash solution (a1/2, a2/2) in Pareto superior to (δ1/2, δ2/2), establishing (10).
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20
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10
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Bob

Ann

c

a

b

Figure 3.10
Feasible utility set in example 3.12

The efficiency frontier depicted on figure 3.10 comes from either giving all 10 grams of
vitamin Y to Ann (segment ab) or giving all 10 grams of vitamin X to Bob (segment ac).

The point is that the utility profile (10, 10) is still feasible (all the vitamin X to Bob,
all the vitamin Y to Ann), and that Bob’s decrease in productivity only eliminates certain
utility profiles such as (0, 20) that were unfair in the first place. Any social welfare ordering
called (10, 10) optimal in the former problem still calls it optimal in the latter problem.
This includes the Nash collective utility, the leximin social ordering, and any social welfare
ordering that strictly improves under a Pigou-Dalton transfer.

The KS solution takes a different viewpoint. In the first problem it picks u = (10, 10)

but in the second it recommends u′ = (11.4, 8.6). To see this, check that the maximal
feasible utilities are δ′

1 = 20, δ′
2 = 15; therefore equality of relative benefits means u′

1/20 =
u′

2/15. An efficient allocation with associated utility vector on ab (figure 3.10) takes the form

Ann: x1 = z, y1 = 10 ⇒ u′
1 = 10 + z

Bob: x2 = 10 − z, y2 = 0 ⇒ u′
2 = 10 − z

thus equality of relative benefits yields z = 1.43, and the announced utility vector.
The decrease of Bob’s maximal utility weakens his position, even though it relates to the

“irrelevant” allocations where he would get a higher utility than Ann does. The KS solution
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is even less a welfarist solution than the Nash solution because it takes into account not
only an exogenous notion of minimal utility, but also the corresponding maximal feasible
surplus of each participant.

In the “vitamin” interpretation of our example, the KS solution is not very appealing.
It is, however, plausible if utility represents subjective tastes instead of needs. Think of
the division of ten free meals in restaurant X and ten free meals in restaurant Y . Say that
restaurant Y is strictly nonsmoking, whereas restaurant X has a smoking section. Bob is a
smoker who enjoys one meal where he can smoke as much as two where he can’t. Is it unfair
to give Ann ten meals at Y and one meal at X , whereas Bob gets nine meals at X? After
all, meals at Y are to Bob a low-quality commodity, so he cannot object to Ann getting a
larger number of such meals than he gets of “good” meals. This kind of argument takes us
directly into the discussion of fair division with respect to heterogeneous preferences and
to the no-envy property, the subject of chapter 7.

In chapter 7 we stress the systematic connection between the two bargaining solutions,
Nash and KS, and the two central fair division methods, known respectively as the competi-
tive allocation with equal incomes and the egalitarian-equivalent solution. See, in particular,
examples 7.12 and 7.10, which are related to examples 3.7 and 3.12.

3.7 Introduction to the Literature

Rawls (1971, 1988) introduced the notion of primary goods; its critique as briefly discussed
in section 3.1 is well articulated by Roemer (1996); see also Sen (1985).

The central result for section 3.2 is the representation of a separable social welfare order-
ings by additive collective utilities, also known as the Debreu-Gorman theorem; see Debreu
(1960) and Gorman (1968). A systematic treatment is in Blackorby et al. (1978). The further
role of invariance axioms and of the Pigou-Dalton transfer principle was developed through
the seventies and is nicely summarized by Sen (1977) and Roberts (1980a, b).

The egalitarian collective utility appeared first in Kolm (1972), and the leximin preorder-
ing was axiomatized by d’Aspremont and Gevers (1977); see section 3.3. The problem of
example 3.2 is the subject of Brams and Fishburn (2000).

The informal comparison of the leximin, Nash, and classical utilitarian solutions in
section 3.4 is inspired by chapters 1, 2, and 3 in Moulin (1988), which provides a systematic
formal presentation of the material in sections 3.2 to 3.6.

Example 3.4 on the location of a facility is related to the central model of party
competition—Black (1958), whereby the “facility” is the political platform submitted to
the voters whose ideal platforms are spread over the left-right spectrum represented by an
interval. See the discussion of voting over single-peaked preferences in section 4.3.
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Resource monotonicity plays an important role in this book; in addition to section 3.5,
the concept is discussed in sections 2.5, 6.6, and 7.6. The idea appeared first in axiomatic
bargaining, where it yields a simple characterization of the egalitarian solution; see Kalai
(1977). A more systematic discussion of this idea in axiomatic bargaining is in Thomson
(1999). Its application to resource allocation problems are reviewed in Roemer (1996) and
Moulin (1995).

The two classic bargaining solutions of section 3.6 were first axiomatized by Nash (1953)
and Kalai and Smorodinsky (1975). Several surveys on axiomatic bargaining are now
available: Roth (1979), Peters (1992), and Thomson (1999).

Example 3.12 is inspired by Yaari and Bar-Hillel (1984), who conducted stimulating
experiments on fairness in resource allocation. The slavery of the talented—example 3.8—
is due to Mirrlees (1974).

Exercises to Chapter 3

Exercise 3.1 Variant of Example 3.1

We have five agents and the six feasible subsets are the same as in example 3.1.

a. Assume that the utility of agent i being saved is ui , and zero otherwise, with ui > 0.
Show that the leximin ordering always picks one of the three subsets with three agents.

b. Assume from now on that the utility of being saved is ui , and vi otherwise, with ui >

vi > 0. Show that ui , vi , i = 1, . . . , 5 can be chosen so that {1, 2} is the unique optimal
choice of the leximin ordering.

c. Find some values of ui , vi such that the arbitrator ranks all three subsets of size two
above those of size three, whereas the classical utilitarian arbitrator does just the opposite.

Exercise 3.2 Fair Division with Identical Preferences

We have 3 gold coins, 5 silver coins, and 8 bronze ones. As in example 3.1, all agents have
identical preferences over lots. We assume that a gold coin is worth two silver ones, or three
bronze ones. Thus we measure the common utility for a lot by adding 6 utils for a gold
coin, 3 utils for a silver one, and 2 utils for a bronze one. In particular, total utility is 49,
irrespective of the number n of agents among whom the sixteen coins must be divided.

Given n, call “n-equal division” a division of p into n integers ai such that any two
integers ai , a j differ by at most 1. For instance, with n = 5, an equal division of 49 is
(10, 9, 10, 10, 10) but (10, 9, 9, 11, 10) is not.

Clearly, an n-equal division of p exists for all n and all p, and is unique up to permuting
the ai .
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a. Suppose that the 16 coins can be divided in n lots such that the corresponding profile of
utilities is a n-equal division of 49. Show that these allocations, and only these, maximize
the leximin social welfare ordering.

b. Show that for n = 2, 3, 4, 5, 6, 8, 9, the 16 coins can be divided in lots in such a way that
the corresponding utility profile is a n-equal division of 49. Show that this is not possible
for any other choice of n.

c. Find the division of the 16 coins selected by the egalitarian arbitrator for n = 7 and for
n = 10.

Exercise 3.3 Cake Division with Altruism

One unit of cake is to be distributed between Ann and Bob. The utility of each agent has
two components:

The “selfish” utility increase derived from one’s own consumption and measured by a
function u(xi ) where xi is one’s own share.

The “selfish” utility of the other agent.

These two components are combined in some proportion, and the proportion measures
the degree of altruism of each agent. Specifically, we denote by a and b the shares of Ann
and Bob, and we write their utility for a division (a, b) of the cake as follows:

Ann: u(a) + λAu(b)

Bob: u(b) + λBu(a)

Here λA is Ann’s “degree of altruism,” 0 ≤ λA ≤ 1, and the interpretation of λB is similar.
We assume that the common function u (measuring utility increase from own consumption)
is increasing and concave.

The goal of the exercise is to assume that Ann is more altruistic than Bob, namely λA > λB ,
and to find out if she receives a bigger share, smaller share, or equal share of the cake:

• If the utilitarian collective utility is maximized
• If the egalitarian collective utility is maximized
• If the Nash collective utility is maximized

Answer first in the two following examples, then with maximal generality, namely without
specifying u, λA, or λB :

Example 1: λA = 1
3 , λB = 1

4 , u(x) = x

Example 2: λA = 1
3 , λB = 1

4 , u(x) = √
x
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Figure 3.11
Road network for exercise 3.4a

Exercise 3.4 Location of a Facility on a Network with Loops

a. Consider the road network of figure 3.11, where each dot represents an agent (five
agents in total), and numbers represent distances in miles. As in example 3.8, the distance
between two points is that of the shortest path on the network connecting them. Disutility
is the distance between one’s location and that of the facility. The facility can be located
anywhere on the road network.

Where will the classical utilitarian arbitrator locate a desirable facility? Hint: Check
first that the utilitarian optimum must be at one of the five points where an agent
resides.

What about the egalitarian arbitrator?

b. Consider the road network of figure 3.12. Two agents live at B, three live at C , and
four at D (9 agents in total). There is no direct road between B and C . Find the optimum
locations for the egalitarian and the classical utilitarian arbitrators.

c. Suppose now that the dotted line between B and C in figure 3.12 is a new road of length 8.
Answer the same questions as in b. Which agents benefit and which are hurt by the increase
in the resources?
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2010 A

16 8

C (3)

B (2)D (4)

Figure 3.12
Road network for exercise 3.4b

*Exercise 3.5 Location of a Noxious Facility

a. Consider a variant of example 3.5 where the densities of the agents over the interval
[0, 1] are as follows:

Density 2 on
[
0, 1

3

]
Density 1 on

[
1
2 , 2

3

]
and on

[
3
4 , 1

]
Density 0 on

]
1
3 , 1

2

[
and on

]
2
3 , 3

4

[
Show that the location selected by the classical utilitarian is yu = 1. Show that the egalitarian
arbitrator selects ye = 5/12.

b. Next consider the following densities:

Density 2 on
[
0, 1

3

]
Density 1 on

[
1
2 , 2

3

]
Density 3 on

[
5
6 , 1

]
Density 0 on

]
1
3 , 1

2

[
and on

]
2
3 , 5

6

[
Find the locations selected by the classical utilitarian, egalitarian (leximin), and Nash
arbitrators.

c. Consider the road network of question a in exercise 3.4 depicted in figure 3.11. Show
that the classical utilitarian locates the noxious facility on the road CD, one mile away from
C . Show that the egalitarian selects the midpoint between B and C .

d. Consider the road network of questions b and c in exercise 3.4 depicted on figure 3.12.
Show that the egalitarian arbitrator picks the same location for both networks (with or
without the direct road BC). Show that the utilitarian arbitrator selects B in the network of
questions b, and the location 2 miles away from B on BC in the network of question c.
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dk

d1

d2

Figure 3.13
Road network for exercise 3.6

*Exercise 3.6 Location on a Star-Tree

The road network depicted on figure 3.13 is a “star-tree.” The outer node Ak is connected
to the center O by a direct route of length dk, and there is no other road going through Ak .

For concreteness, assume ten nodes A1, . . . , A10. There are nk agents living at Ak, and no
one lives anywhere else. So n = n1 + · · · + n10 is the total number of agents.

a. In this question the facility is a “good” one, as in example 3.4 and exercise 3.4. Show
that the optimal egalitarian location is the midpoint between the two outer nodes Ai , A j

farthest away from the center (i.e., di and d j are the two largest distances). Check that this
location is unambiguous, even if there are several possible choices for Ai , A j .

Show that the unique classical utilitarian optimum is at the center if no outer location
contains more than one-half of the agents: nk < n/2 for k = 1, . . . , 10. What happens in
the remaining case?

b. Now the facility is noxious, as in example 3.5 and exercise 3.5. Show that the egalitarian
optimum is the midpoint between the outernode farthest away from the center and the
one closest to the center. That is, if di∗ = maxi di and d j∗ = mini di , the midpoint of
Ai∗ A j∗ maximizes the egalitarian collective utility. Can we use the leximin ordering to
break ties?
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Show that the optimal locations for the classical utilitarian are all the nodes Ak∗ maximiz-
ing the product (n − nk)dk . Comment on the trade-off leading the choice of the utilitarian
arbitrator.

Exercise 3.7 Time-Sharing The exercise proposes variants of examples 3.6a and 3.6b.

a. Consider example 3.6a. Compute the optimal time-sharing for the collective utility func-
tions Wp, 0 < p ≤ 1 and W q , 0 < q, as is defined by (5) in section 3.2. Check that when
p or q go to zero (resp. q goes to infinity), the solution converges toward the Nash (resp.
the egalitarian) optimum.

b. In the following four examples we have one agent per row and three decisions. The
arbitrator can mix between the three decisions. Find the classical utilitarian, egalitarian, and
Nash solutions:

a b c a b c
Ann 1 1 0 Ann 1 0 0
Bob 0 0 1 Bob 0 1 0
Chris 0 1 0 Chris 0 1 1
Dave 1 0 0 Dave 1 1 0

a b c
Ann 1 0 1
Bob 0 1 0
Chris 1 0 0
Dave 0 1 1

a b c
Ann 1 0 0
Bob 1 1 0
Chris 1 0 1
Dave 0 1 1

Hint: For the first and fourth example, use the symmetry between two of the three decisions;
for the fourth example, the egalitarian collective utility is not enough, and you must invoke
the leximin ordering.

c. Now we have four types of agents and three decisions a, b, c. The total number of agents
is n = 2m + 2p.

a b c
m 1 0 0
m 0 1 0
p 1 0 1
p 0 1 1

Find the three usual solutions, distinguishing the cases p ≥ m and p < m.
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d. We have here four decisions and four agents:

a b c d
Ann 1 0 1 1
Bob 1 1 0 0
Chris 0 0 1 0
Dave 0 1 0 1

Compute the egalitarian and Nash solutions.

e. Consider example 3.1 where we have six deterministic choices and five agents. Each
choice corresponds to a subset of agents who receive a utility of one, so that the six choices
are

a = {1, 2}, b = {1, 3}, c = {1, 4}, d = {2, 4, 5}, e = {2, 3, 5}, f = {3, 4, 5}
Find the time-sharing recommended by the three usual solutions.

Exercise 3.8 Slavery of the Talented

This is a variant of example 3.9 where the only difference is the common utility function
of the two agents: ui (zi , yi ) = √

zi yi .

a. Assume that s1 = 2, s2 = 1. Show that if an allocation is efficient and zi , yi , xi are all
positive, we must have

z1 = 2y1, z2 = y2, 2y1 + y2 = 30, 5 ≤ y1 ≤ 15, 0 ≤ y2 ≤ 20

b. Show that the utilitarian solution is full slavery of the talented: when productivities are
s1 = 2, s2 = 1, agent 1 works full time and consumes no corn.

c. Show that there is no failure of monotonicity under the Nash solution: both agents benefit
when agent 1’s productivity increases from 1 to 2; yet agent 1’s gain is smaller than agent 2’s.

d. Compare the two solutions above with the egalitarian solution.

Exercise 3.9 Bargaining Compromises

We consider three variants of example 3.11. Compute in each case the Nash and KS
bargaining solutions

a.

a b c
Ann 70 50 20
Bob 80 90 110
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As in example 3.11 we normalize utilities at the worst utility between a, b, and c:

a b c
Ann 40 20 10
Bob 20 30 70

b. Two agents and four outcomes. Minimal utility is at outcome a (thus the data are
“pre-normalized”):

a b c d
Ann 0 1 5 6
Bob 0 11 6 3

c. Variant of question b: with have two agents with utility identical to Ann’s, and three with
utility identical to Bob’s.

Exercise 3.10 Generalization of Example 3.10

The job of agent i requires ai units of time, and we assume that a1 < a2 < · · · < an .
Disutility is total waiting time until completion of one’s job.

a. Assume that the server must choose a deterministic priority ordering. Show that it chooses
the ordering {1, 2, . . . , n} under any social welfare ordering (monotonic and symmetric).

b. Now the server can mix over all n! orderings σ of {1, 2, . . . , n}, with arbitrary probability
πσ ≥ 0,

∑
σ
πσ = 1. Show that the utilitarian server chooses the ordering {1, 2, . . . , n} with

probability 1, as in question a.

c. Show that for the profile of utilities uσ resulting from an ordering σ of {1, 2, . . . , n}, the
sum

∑
ai uσ

i is independent of σ . Deduce that any convex combination of the profiles πσ

is a Pareto optimal and feasible utility profile.

d. Compute the expected utility profile when the priority ordering σ is selected at random
with uniform probability on all orderings σ. Check that it is the Kalai-Smorodinsky solution
if the maximal disutility (minimal utility) is aN = ∑

j a j for every agent, and agent i ′s
minimal disutility is ai .

e. Consider the n orderings σ k, k = 1, . . . , n, obtained by successive applications of the
circular permutation i → i + 1.

σ 1 = {1, 2, . . . , n}; σ 2 = {2, 3, . . . , n − 1, 1}; . . . ; σ k = {k, k + 1, . . . , k − 1}; . . .

Check that if we choose the priority ordering σ k with probability ak/aN , for k = 1, . . . , n,

the resulting utility profile is egalitarian.
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Exercise 3.11 Sharing One Commodity

a. We must divide $100 between two agents with the following utilities for money:

u1(x) = √
x, u2(x) = 2

√
x

Compute the classical utilitarian, egalitarian, Nash, and KS solutions (for the latter two,
take the minimal utility to be zero).

b. Answer the same questions with the utility functions:

u1(x) = x2/3; u2(x) = x1/3

c. Answer the same questions with the utility functions:

u1(x) = x; u2(x) = 100x

100 + x

d. What happens in the problems of questions a, b, and c when the cash prize increases?
Which agent gets a bigger share of the increment according to what solution?

*Exercise 3.12 Leximin and Leximax

Given a utility profile u = (ui ) in Rn , we denote by u∗ (resp. ∗u) the vector obtained by
rearranging the coordinates of u increasingly (resp. decreasingly). The leximin ordering
compares two profiles u, v by comparing u∗ and v∗ for the lexicographic ordering:

u � v
def⇐⇒ {u∗

1 > v∗
1} or {u∗

1 = v∗
1 and u∗

2 > v∗
2}

or {u∗
1 = v∗

1 , u∗
2 = v∗

2 and u∗
3 > v∗

3} . . .

or {u∗ = v∗}.
The leximax ordering compares u and v as the lexicographic ordering compares ∗u and ∗v.

a. Show that both orderings, leximin and leximax, are independent of unconcerned agents
(property 1).

b. Show that they are both independent of the common utility pace (discussed at the end
of section 3.3).

c. Show that leximin meets, but leximax fails—the Pigou-Dalton transfer principle.

d. Show that leximin is the limit as q goes to infinity of the social welfare ordering W q

defined in (4). Show that leximax is the limit of Wp (also defined in 4) as p goes to infinity.
The convergence statement is defined as follows. Suppose that the two profiles u, v in Rn

are such that W q(u) ≥ W q(v) for all q large enough. Then u � v for the leximin ordering.



moulin-79027 book October 22, 2002 16:8

105 Exercises to Chapter 3

The other convergence is defined similarly.

*Exercise 3.13 Independence of Common Zero of Utilities

Consider the family of collective utility functions:

Vp(u) =
∑

i

e pui for some fixed p, p > 0

V q(u) = −
∑

i

e−qui for some fixed q, q > 0

a. Show that each collective utility function Vp and V q is independent of unconcerned
agents. Show that it is independent of the common zero of utilities, a property similar to (3)
bearing on a simultaneous shift of all individual zeros of utilities.

b. What is the limit of the social welfare ordering Vp (resp. V q ) as p (resp. q) goes to
infinity? As p (resp. q) goes to zero?

*Exercise 3.14 Distortion of Individual Zeros and Scales

a. Consider the binary choice between the two four-person utility profiles

u(a) = (1, 4, 4, 0), u(b) = (0, 4, 4, 2)

The arbitrator uses the leximin ordering to select a or b with no possibility of mixing. Now
agent 1 inflates the scale of his utility by a factor of 3, so his new utility is u′

1(a) = 3;
u′

1(b) = 0. Show that this distortion is profitable even if it is a lie (agent 1’s true utility
remains u1).

Next suppose that the arbitrator can mix a and b, and still is an ardent egalitarian. Show
that the (untrue) distortion by agent 1 ends up hurting him.

b. From now on we restrict attention to strictly positive individual utilities. We fix a social
welfare ordering � and define the property: “increasing strategically the scale of one’s
utility can’t hurt.” For all profile u, all agent i , and all λ, λ > 1, we write u′ = (u |i λui ) for
the profile u′

j = u j if j 
= i and u′
i = λui .

The property above is now defined:

for all i, λ > 1, u and v: {v � u and u′ � v′} ⇒ {ui > vi }
Interpret this definition and explain its name. We say “increasing one’s scale is profitable”
if, in addition to the property above, we have

for all i, and all u, v: {v � u and ui > vi } ⇒ ∃λ > 1 : (u |i λui ) � (v |i λvi )
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Consider the collective utility Wp, p > 0 defined in (4). Show that increasing one’s scale
is profitable for Wp, hence for its limit as well, the leximax social ordering (defined in
exercise 3.12). What about W0, namely the Nash collective utility?

Define similarly the properties “decreasing one’s scale cannot hurt” and “decreasing one’s
scale is profitable.” Show that for the collective utility W q , q > 0, in (4), decreasing one’s
scale is profitable. Therefore the same holds true for its limit, the leximin social welfare
ordering.

c. We still assume strictly positive utilities only. We define “increasing the zero of one’s
utility can’t hurt”:

for all i, λ > 0, u and v: {v � u} and (u |i ui − λ) � (v |i vi − λ) ⇒ {ui > vi }
Consider an additive collective utility W as in (2). Show that its ordering meets the above
property if and only if g is concave. Show that decreasing one’s zero cannot hurt if and only
if g is convex.

Deduce that increasing one’s zero can’t hurt if we are using the collective utility W q in (4)
or Wp for 0 ≤ p ≤ 1. In particular, this holds true for the leximin social welfare ordering.
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4 Voting and Social Choice

4.1 Ordinal Welfarism

As discussed in section 1.3, ordinal welfarism pursues the welfarist program in those situa-
tions where the cardinal measurement of individual welfares is either unfeasible, unreliable,
or ethically untenable.

Consider voting among several candidates competing for a certain political office. Who
would think of measuring the relative impact of electing Jones or Smith on the individual
welfare of each and every citizen? Say that Ann favors Jones and Bob favors Smith. It
is typically impossible to decide whether Ann’s utility gain from having Jones in office
rather than Smith is larger than Bob’s gain from having Smith rather than Jones. Such an
evaluation would require that each voter forms expectations about all decisions influenced
by the election of Jones or Smith and computes his or her expected utility. The complex-
ity of these computations destroys the plausibility of the cardinal utility model: electors
simply do not perform elaborate computations of cardinal welfare, and even the task of
ranking all candidates from best to worst is challenging, given limited information about
the consequences of the election.

In most real life elections, in the large or in the small, voters are not asked to express
more than an “ordinal” opinion, namely a preference ordering (which may or may not
allow for indifferences) of the names on the ballot. There is more to this restriction than the
practicality and simplicity of an ordinal message.

Recall from section 3.1 the strong ethical objections to the interpersonal comparison
of cardinal welfares. If the outcome of the election depends on the intensity of the voters’
feelings and emotions about the candidates, a minority of fanatics will influence the outcome
more than the quiet majority; worse yet, a subset of voters faking fanaticism are more
influential than the honest, truth-telling voters.

The central postulate of ordinal welfarism is that individual welfare is entirely captured
by a preference ordering of the possible outcomes, also called states of the world. This
ordering is a binary relation R of the set A of possible outcomes (A is often called the
choice set). The relation x Ry reads “x is at least as good as y,” or “welfare at x is not below
welfare at y.” The relation R is assumed to be complete and transitive. Completeness of R
means that all pairs x, y in A can be compared: at least one of x Ry and y Rx holds. If x Ry
but not y Rx, we say that x is strictly preferred to y and write x Py; if x Ry and y Rx , we
say that the choice between x and y is a matter of indifference (or, abusing language, that
x and y are “indifferent”) and we write x I y. Transitivity of R means that x Ry and y Rz
imply x Rz. In particular, strict preferences are transitive (x Py and y Pz imply x Pz), and
so are indifferences (x I y and y I z imply x I z).

The preference relation R expresses the opinion, tastes, or values of a certain agent
over the outcomes in A, and it pointedly avoids any statement about the intensity of these

107
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preferences. The empirical basis of R is the choice between outcomes: if an agent with
preferences R is presented with a choice between two states of the world x and y, she
will choose x if x Py and y if y Px . If presented with a choice over a subset {x, y, z, . . .}
of outcomes, she will pick one of the outcomes ranked highest in R, namely a∗ such that
a∗ Rx, a∗ Ry, a∗ Rz, and so on.

The choices made by a given agent over the various subsets of outcomes that she may
be presented with, are entirely determined by her preference relation R. Conversely, if
we observe a series of choices, we may or may not be able to identify an underlying
preference relation rationalizing these choices, in the sense that the observed choices are
the highest ranked for R among the feasible choices. For instance, imagine that Ann has
been presented with three successive pairs {x, y}, {y, z}, and her choices are as follows:
choose x from {x, y}, choose y from {y, z}, or choose z from {x, z}. If the preference relation
R rationalizes these choices, it must have x Py because x was unambiguously chosen from
x, y (Ann could say “both choices are okay” but not choose to do so), and similarly we
must have y Pz and z Px, in contradiction of the transitivity of R. Another configuration
ruling out the existence of R is

choose x from {x, y}
choose y from {x, y, z}

(1)

Here the first choice reveals x Py, but the second implies y Px, y Pz, in contradiction of
the definitions of P.

In the configuration (1) the peculiarity of the observed choices is illustrated by the
following classic air travel story. The flight attendant asks this passenger if he will have fish
or chicken for his meal, and his answer is “fish.” A minute later he comes back announcing
that the pasta meal is still available, and would he like to change his mind? Yes, says the
passenger, in that case I will have chicken.

The choices over all conceivable feasible subsets of outcomes are said to be rational (or
rationalizable) if there exists a preference relation R such that for any feasible subset B
of outcomes, the outcomes (or outcomes) S(B) selected from B are precisely the highest
ranked outcomes in B according to R : x Py if x is in S(B) and y is not in S(B); x I x ′ if x
and x ′ are both in S(B). The formal theory of rational choice explores in great detail what
restrictions on the various choices over the various subsets guarantee that these choices can
be rationalized by a preference relation.

The identification of welfare with preferences, and of preferences with choice, is an
intellectual construction at the center of modern economic thinking. We will refer to this
construction as the ordinal approach. It eschews heroic assumptions about cardinal mea-
surement of utility, and offers a testable empirical basis for the construction of individual
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preferences, namely the actual choices made by the agents. Social choice theory adapts
the welfarist program—namely the definition of just compromises between the conflicting
goals of maximizing different individual welfares—to the ordinal approach.

The concept of Pareto optimality, already central in chapter 3, is clearly an ordinal
concept. Outcome y is Pareto superior to outcome x if y R j x for all agent j and y Pi x for at
least one agent i : everyone is at least as satisfied with y as with x and at least one agent is
strictly better off with y.

The main new feature of the ordinal context is that individual welfare can no longer be
separated from the set A of outcomes to which it applies: the binary relation R bears on A
and cannot be defined in a vacuum. Contrast this with the cardinal approach, where we can
compare utility levels u1, u′

1, u2, u′
2, . . . without specifying the outcomes from which these

utilities are derived. Therefore, in the ordinal world, collective decision-making can only be
defined if we specify the set A of feasible outcomes (states of the world), and for each agent
i a preference relation Ri on A. The focus is on the distribution of decision power, namely
how the configuration of these relations Ri —called the profile of preferences—affects the
choice of an outcome in A, or affects the collective preference relation on A—in the cases
of voting and preference aggregation, respectively—as explained below.

We define now the two central models of social choice theory. A voting problem specifies
the set A of outcomes, the set N of agents, and a profile of preferences; the problem is to
“elect” an outcome a in A from these data. A systematic solution of this problem (a rule
for selecting an outcome from any profile of preferences) is a pure example of a public
contract in the sense of section 1.5. Key to the discussion starting in the next section is the
knowledge of which subsets T of N “control” the choice of a in the sense that if all voters
in T have a as their first choice, a will be elected. For instance, under majority voting, any
coalition T containing strictly more agents than N /T controls the outcome of the election.

The voting model has two complementary interpretations, normative and strategic. In the
normative one, the benevolent dictator discovers the profile of preferences Ri and enforces
the compromise outcome deemed just by the voting method. Alternatively, the preference
relation Ri is private information to agent i and a voting rule is a decentralized decision
process enforced by the public authority. Every voter reports a preference relation R̃i to the
central agency, who takes these messages on face value to compute the winning outcome.
As the agency has no way to determine whether the reported preference relation R̃i is indeed
the true relation Ri , each agent is free to report a nontruthful relation if this serves his or
her interest better than reporting the truth. Thus, in the second interpretation of the voting
model, the issue is strategic voting, and how the central agency can avoid misreporting.

The second model of social choice theory is the preference aggregation problem. Here
we associate to a preference profile a collective preference. Much as in chapter 3 a collective
utility function associates a cardinal index to any profile of cardinal utilities; the aggregation
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method computes an ordinal preference relation from any profile of preference relations.
The anthropomorphic bias is the same in both cases, but the new ordinal model is technically
more involved.

We are given, as in the voting model, the outcome set A, agent set N , and a profile of
preferences, but we are now looking for a collective preference R on A, one that will order
all outcomes instead of selecting just one “best” outcome. The two problems are closely
related, and under the axiom independence of irrelevant alternatives (section 4.6), they are
formally equivalent.

The voting and preference aggregation problems are truly the most general microeco-
nomic models of collective decision-making because they make no restrictive assumption,
neither on the set A of outcomes or on the admissible preference profiles of the agents.
Therefore these models encompass, in principle, all resource allocation problems from
chapter 5 onward. On the other hand, the extreme generality of the model leads to two
severe impossibility results, namely Arrow’s theorem about preference aggregation
(section 4.6), and Gibbard-Satterthwaite’s theorem about strategic voting (briefly discussed
at the end of section 4.4). More palatable results obtain when the domain of individual pref-
erences is suitably restricted, and two important examples of such restrictions are discussed
in sections 4.4 and 4.5.

4.2 Condorcet versus Borda

The two most important ideas of voting theory originated more than 200 years ago, in
the work of two French philosophers and mathematicians, Jean-Antoine the marquis de
Condorcet and Jean-Charles de Borda. Both articulated a critique of plurality voting and
proposed a (different) remedy. Their two methods are defined and illustrated in the examples
below.

Plurality voting is, then as today, the most widely used voting method, of unrivaled
simplicity. Each voter chooses one of the competing candidates, and the candidate with
the largest support wins. Thus a voter only needs to designate his or her most preferred
candidate.1 Electors do not need to spell out a complete preference relation ordering all
candidates, and the rule is at once transparent and easy to implement. German tribes elected
their new chief by raising contenders on a shield, around which their supporters gathered:
a simple head count and a couple of strong shields, is all the hardware they needed.

Condorcet and Borda agreed that plurality voting is seriously flawed, because it re-
flects only the distribution of the “top” candidates and fails to take into account the entire
preference relation of the voters. It I vote for an extremist candidate who stands no chance of

1. Barring strategic manipulations, which cannot be ignored among “sophisticated” voters.
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being elected, my ballot will play no role in the “real” contest between the two centrist can-
didates. Both the Condorcet and the Borda voting rule offer a (different) remedy to this
difficulty.

The next three examples are borrowed from Borda’s and Condorcet’s essays on voting.

Example 4.1. Where Condorcet and Borda Agree Borda proposes the following example
with 21 voters and three candidates (or outcomes) a, b, c. The voters are split in three groups
of respective sizes 6, 7, and 8, and all voters within a given group have identical preferences:

Number of voters: 6 7 8
Top: b c a

: c b b
Bottom: a a c

(2)

In the table above a preference relation is represented as a column, with the top candidate
outcome ranked first and the bottom one ranked last. Note that a voter is never indifferent
between two outcomes.

Plurality voting elects a in this profile, yet b is a more convincing compromise. Borda’s
and Condorcet’s argument is that b is just below a in 8 ballots, but a is either just below or
two positions below b in 13 ballots.

Borda proposes to tally the score of a candidate x by counting 2 points for each voter for
whom x is the best candidate, 1 point for each voter who ranks x as second and 0 point for
each voter ranking x last. Thus the Borda scores in example (2) are

score (a) = 8 × 2 = 16

score (b) = 6 × 2 + 15 × 1 = 27

score (c) = 7 × 2 + 6 × 1 = 20

Now b has the highest Borda score hence is elected, whereas the plurality winner a has the
lowest Borda score.

Condorcet’s argument in support of the election of b is different. Suppose that the vote
reduces to a duel between a and b (ignoring c altogether): then b wins by 13 votes against
8; similarly a duel between b and c has b winning 14 to 7, and finally c wins the a versus c
duel by 13 to 8. Thus the majority relation Rm that records the winner of each duel x, y as
“x is preferred to y by a majority of voters,” is as follows:

bPmc bPma cPma

We call b, the top outcome of the majority relation, the Condorcet winner, whereas a is
the Condorcet loser, namely the bottom outcome of the majority relation.
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In the second preference profile, 60 voters must decide among four candidates:

Number of voters: 23 19 18
Top: a b c

d d d
b a a

Bottom: c c b

The plurality winner is a but d is a more equitable compromise when the entire profile is
taken into account.

Borda scores are computed by giving 3 points for each first place, 2 points for each second
place, 1 point for each third place, and no point for each fourth place:

score (d) = 120 > score (a) = 106 > score (b) = 80 > score (c) = 54

As in example (2), the majority relation yields the same ordering of the candidates as the
Borda scores:

d Pma (37/23); d Pmb (41/19); d Pmc (42/18)

a Pmb (41/19); a Pmc (42/18)

bPmc (42/18)

In our next example, the majority relation and the Borda scores make different recommen-
dations, and this divergence reveals some important structural features of these two methods.

Example 4.2 Where Condorcet and Borda Disagree The profile has 26 voters and three
candidates:

Number of voters: 15 11
a b
b c
c a

(3)

The plurality winner is a, and it is the Condorcet winner as well: a wins by 15 to 11 both
duels against b and c. Borda’s objection is that the eleven “minority” voters (supporters
of b) dislike a more than the fifteen majority voters (supporters of a) dislike b. Indeed, a
is the worst outcome for 42 percent of the voters, whereas b is always the first or second
choice. This is reflected in their respective Borda scores:

score (b) = 15 + 2 × 11 = 37 > score (a) = 2 × 15 = 30 > score (c) = 11
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Notice that Borda’s argument relies on the conventional choice of points for first, second,
and third place, which plays the role of a cardinal utility, albeit a mechanical one, unrelated
to the real intensity of feelings of our voters for these three candidates (the voting rule
prevents them from reporting any such intensity). Plurality voting is the voting method
where first place gives one point and any other ranking gives no point.

The general family of scoring methods include Borda’s and the plurality methods as
special cases. Say that p candidates are competing. A scoring method is defined by the choice
of a sequence of scores s1, s2, . . . , sp: a candidate x scores sk points for each voter who ranks
x in the kth place; the candidate or candidates with the highest total score wins. Naturally
the scores decrease with respect to ranks, s1 ≥ s2 ≥ · · · ≥ sp and moreover s1 > sp, lest all
candidates receive the same score irrespective of rank. Plurality corresponds to the scores
s1 = 1, sk = 0 for k = 2, . . . , p and Borda to the scores sk = p − k for k = 1, . . . , p.

Another method of interest is antiplurality, for which sk = 1 for k = 1, . . . , p−1 and sp = 0.
In other words the antiplurality winner is the candidate who is least often regarded as the
worst.

In example 4.2, depending on the choice of the scores, either a or b is elected2—but
never c, whose score is always smaller than that of b, irrespective of the choice of s1, s2, s3.

This flexibility contrasts with the inflexible message of the Condorcet approach: a must
be elected because the “will of the majority” is to prefer a to b and a to c. The fact that
a is ranked last by the minority voters, whereas b is second best for all majority voters,
is irrelevant to the majority relation. This is precisely the reason why the Borda method
prefers b to a. Here Borda’s method takes into account the entire preference profile but
Condorcet’s does not. We abstain at this point to make a normative judgment about this
difference, which is at the heart of the axiom independence of irrelevant alternatives (IIA)
discussed in section 4.6.

In our third example, slightly adapted from one of Condorcet’s examples, the contrast
between the Condorcet approach and the scoring approach (irrespective of the choice of
scores) is especially clear.

Example 4.3 Condorcet against Scoring Methods There are 81 voters and three candi-
dates, with the following preferences:

Number of voters: 30 3 25 14 9
a a b b c
b c a c a
c b c a b

(4)

2. For instance, s1 = 4, s2 = 1, s3 = 0, makes a the winner with a score of 60 against 59 for b.
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Candidate b is the plurality and the Borda winner in this profile. In fact, b wins for any
choice of scores for first, second, and third place. To check this, we assume without loss
of generality that these scores are 1, s, and 0, respectively, with 0 ≤ s ≤ 1 (thus s = 0 is
plurality and s = 1

2 is the Borda method). Compute

score (b) = 39 + 30s > score (a) = 33 + 34s > score (c) = 9 + 17s

By contrast, the Condorcet winner is a because a Pmb by 42/39 and a Pmc by 58/23.

Notice that outcome c fares badly in both approaches. However, for the scoring methods
the relative position of c with respect to b and a matters enormously: b wins essentially
because c is much more often between b and a when b is first choice (this happens for
14 voters) than between a and b when a is first choice (happening only for 3 voters). On
the other hand, a is a Condorcet winner, whether or not we take into account the irrelevant
outcome c, or any other sure loser. This is, again, the IIA property alluded to above. It is
a very strong argument in favor of the election of a in this example, and in support of the
majority relation in general.

The most serious critique of the Condorcet approach is the observation, due to Condorcet
himself, that the majority relation may cycle, meaning that it may fail the transitivity property
(section 4.1). If the cycle involves the best outcomes of the majority relation, no Condorcet
winner exists.

The simplest profiles of preferences exhibiting such cycles involve three outcomes a, b, c
and only three different preference relations:

Number of voters: n1 n2 n3

a c b
b a c
c b a

(5)

If the sum of any two among the three numbers ni , i = 1, 2, 3, is greater than the third,
the majority relation has the following cycle:

n1 + n2 > n3 ⇒ a Pmb

n1 + n3 > n2 ⇒ bPmc

n2 + n3 > n1 ⇒ cPma

and there is no Condorcet winner. Condorcet was keenly aware of this problem and proposed
to break the cycle at his weakest link, namely to ignore the majority preference supported
by the smallest majority.
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For instance, suppose that n1 = 18, n2 = 20, and n3 = 10. Then the link bPmc is the
weakest because b versus c yields a 28/20 split versus 38/10 for a Pmb and 30/18 for
cPma. Thus Condorcet suggests to elect c at this profile. Compare with the Borda method,
electing a because score (a) = 56 > score (c) = 50 > score (b) = 38. In this example the
election of either a or b is plausible.

Our last example uncovers a serious defect of any voting method electing the Condorcet
winner whenever there is one, no matter how this method chooses to break the cycles of the
majority relation when there is no Condorcet winner. To fix ideas, we assume as above that a
cycle is broken at its weakest link, but the example can be adapted to any cycle-breaking rule.

Example 4.4 The Reunion Paradox We consider two disjoint groups of voters, with
respectively 34 and 35 members, who vote over the same three candidates a, b, c. The first
group contains left-handed voters, and the second one right-handed voters:

Number of left-handed voters: 10 6 6 12
a b b c
b a c a
c c a b

Number of right-handed voters: 18 17
a c
c a
b b

Candidate a is the majority winner among right-handed voters. Among left-handed voters,
the majority relation has a cycle, a PmbPmcPma, of which the weakest link is cPma (by
18/16 versus 22/12 for the other two links); therefore we remove this link and elect a.

As a wins both among left-handed and among right-handed voters, we would expect—
even request—that a be still declared the winner among the overall population of 69 voters.
Yet c is the Condorcet winner there: cPma by 35/34 and cPmb by 47/22!

The example above reveals a troubling paradoxical feature of the Condorcet approach.
The paradox does not occur if a is a “real” Condorcet winner among left-handed and among
right-handed electors, namely if for any other candidate x , a majority of lefties prefer a to x
and a majority of righties do too: the union of these two majorities makes a majority in the
grand population. Thus the paradox is a direct consequence of cycles in the majority relation.

Notice that any scoring method is immune to the reunion paradox. In the example a is the
Borda winner in each subgroup and in the grand population. It is a simple exercise to check
that for any system of scores, if two disjoint subsets of voters elect the same candidate a
from the same pool of candidates, then a is still elected by the reunion of all the voters.
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A related problem is the no-show paradox: at certain profiles of preferences, certain agents
are better off staying home rather than participating in the election and casting a truthful
ballot. This paradox affects all voting methods choosing the Condorcet winner when there
is one, and none of the scoring methods.

4.3 Voting over Resource Allocation

In the discussion of the Condorcet and Borda voting methods, the set A of candidates/
outcomes is typically small, and voters may be endowed with arbitrary preferences over
A. This is the correct modeling assumption when we speak about a political election,
where the ability to report any ranking of the candidates is a basic individual right. How-
ever, when the issue on the ballot concerns the allocation of resources, some important
restrictions on individual preferences come into play. The examples discussed below in-
clude voting time shares (example 4.5), over the location of a facility (example 4.6) and over
tax- or surplus-sharing methods (examples 4.7 and 4.8). We find that majority voting works
brilliantly in several of these problems (sections 4.4 and 4.5) but produces systematic cycling
in others (example 4.5).

On the other hand, scoring methods are hopelessly impractical in all of these models
because the set A of outcomes is large, and typically modeled as an infinite set, such as an
interval of real numbers (example 4.6) or the simplex of an euclidean space (example 4.5).
For instance, assume A = [0, 1]: a scoring method associates to an ordinal preference
relation on A a scoring function representing the relation in question like a utility function.
There are many different ways to define this representation,3 and no natural way to select
any of the scoring methods.

Another serious difficulty limiting the application of scoring methods in resource allo-
cation problems comes from the IIA property: it is explained in the discussion following
example 4.6.

In our next example, the issue is to divide a homogeneous private good when each voter
cares only about his or her share. The commodity is a time share in example 4.5; it could
be interpreted as money when the voters decide on a distribution of tax shares, or on the
allocation of a surplus. The central feature is the pervasive cycling of the majority relation.

Example 4.5 Voting over Time Shares: Example 3.6a Continued We can choose any
mixture (x1, . . . , x5) of the five radio stations, where xi represents the time share of

3. One way is to pick a positive measure m on [0, 1] and define the score s(x) = m(P(x)), where P(x) is the set
of outcomes y in A such that x � y.



moulin-79027 book October 22, 2002 16:9

117 4.3 Voting over Resource Allocation

station i, and
∑5

1 xi = 1. The agents use majority voting to decide on the distribution of
time shares.

The set of agents N is partitioned into five disjoint groups of one-minded fans: the
agents in Ni like station i and no other station. We write ni for the cardinality of Ni so
that

∑5
1 ni = n. If one of the five subgroups Ni contains a majority of voters—ni > n/2—

then playing their station all the time—meaning xi = 1—is the Condorcet winner (and the
plurality winner as well). On the other hand, if none of the five coalitions forms an absolute
majority, ni < n/2 for i = 1, . . . , 5, then the majority relation is strongly cyclic and there is
no Condorcet winner.

Consider an arbitrary distribution of time shares x1, . . . , x5. Suppose that station 1
receives a positive share x1 > 0. The coalition of all agents who do not like station 1 can
“gang up” on the n1 supporters of this station and give a positive piece of the spoil to each
one of the four other stations. In other words, consider the following vector of timeshares
y1, . . . , y5:

y1 = 0, yi = xi + 1
4 x1, for i = 2, 3, 4, 5

Every supporter of station i, i = 2, . . . , 5, strictly prefers the distribution y over x . Our
assumption n1 < n/2 means that

∑5
2 ni > n/2; that is to say, a majority of voters prefer y

over x so that x can’t be a Condorcet winner. But, for any distribution x of time shares,
some station i receives a positive share, and the argument above shows that taking away the
share xi to distribute it among all other stations is a move from which a majority of voters
benefit. Hence there is no Condorcet winner.

The example illustrates a strategic situation known as “destructive competition,” that
often emerges when relatively small coalitions can inflict severe negative externalities upon
the complementary coalition. Examples of destructive competition involving production
and exchange of private goods are discussed in section 7.3. There as here, the issue is a
failure of the logic of private contracting. Every distribution of time shares among the five
coalitions is threatened by a private contract of at most four coalitions joining to deprive the
remaining coalition of any benefit whatsoever. The cycles of the majority relation correspond
to the never ending process of these majority “coups.” Instability and unpredictability of the
eventual outcome is a consequence of the excessive power awarded to any majority of the
voters. A solution to destructive competition in the voting context is to reduce the power
of coalitions, for instance, by requiring a qualified majority (a larger support) to overturn a
given outcome.

In example 4.5, to fix ideas, assume that n = 100 and n1 = 40, n2 = 25, n3 = 15,

n4 = 12, n5 = 8. We require a qualified majority of Q or more to overturn any given
allocation. If 51 ≤ Q ≤ 60, destructive competition reigns, exactly as before, because any
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reunion of four out of the five homogeneous subgroups reaches the quota Q. If 61≤ Q ≤ 75,

the coalition N2 ∪ N3 ∪ N4 ∪ N5 no longer passes the quota Q, so these agents can’t get to-
gether to “steal” the time share x1. On the other hand, the four other coalitions made of four of
the five subgroups reaches Q; therefore the argument in example 4.5 shows that a distribution
x where xi > 0 for one of i = 2, 3, 4, 5 will be outvoted when the union of N j , for all j �= i,
forms. In turn this establishes that the only stable allocation of time shares is x1 = 1, xi = 0
for i = 2, 3, 4, 5! The homogeneous group N1 holds veto power and uses it to extract the
entire surplus. The strategic logic here is core stability (as in sections 7.1 through 7.3).

Next consider the case 76 ≤ Q ≤ 85. Now we need some voters in N1 and some
voters in N2 to form a coalition of size Q or more; therefore both N1 and N2 have veto
power. As a result the corestable outcomes are all distributions x of time shares such that
x1 + x2 = 1, xi = 0 for i = 3, 4, 5. A similar argument shows that all distributions x
such that x1 + x2 + x3 = 1, and only those, are corestable when 86 ≤ Q ≤ 88. Finally
when the quota reaches 93, the core stability property loses all bite, and any distribution
x,

∑5
1 xi = 1, is stable.

4.4 Single-Peaked Preferences

The domain of preferences discussed in this section guarantees the transitivity of the majority
relation, in turn making the Condorcet approach to voting unambiguously successful.

Example 4.6 Location of a Facility (Example 3.4 Continued) As in example 3.4 the
voters live in a linear city represented as the interval [0, 1]. A voter living at x , 0 ≤ x ≤ 1,

wishes that the facility be located as close as possible to x, and her utility when the facility
is at y is the negative of the distance between x and y, ui (y) = −|y − xi |. The distribution
of our voters along [0, 1] is represented by a cumulative function F, where F(z) is the
proportion of voters living on [0, x], and 1− F(z) is the proportion of those living on [z, 1].

We assume, for simplicity, that there is a large number of voters spread continuously
between 0 and 1 so that the function F increases continuously from F(0) = 0 to F(1) = 1.

In other words, the proportion of agents living at a given point z is always zero.4

The median of the distribution F is this point y∗ such that F(y∗) = 1
2 , meaning that half

of the population lives to the left of y∗ and half to its right. Recall from example 3.4 that
y∗ is the classical utilitarian solution. In fact, y∗ is the Condorcet winner as well.

If we compare y∗ to y on its left, 0 ≤ y < y∗, all voters in [y∗, 1] prefer y∗ to y, and so
do those in [(y + y∗)/2, y∗] because they are closer to y∗ than to y. Thus the supporters of

4. All results are preserved if we deal with a small finite set of voters or if a positive fraction of the voters are
piled up at certain locations.
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y∗ versus y form the proportion 1 − F((y + y∗)/2) of the population, and this constitutes
a majority:

y < y∗ ⇒ F

(
y + y∗

2

)
< F(y∗) = 1

2
⇒ 1 − F

(
y + y∗

2

)
>

1

2

A symmetrical argument applies when we compare y∗ to y in ]y∗, 1]: all voters living in
[0, (y + y∗)/2] prefer y∗ to y and they form a majority because F((y + y∗)/2) > F(y∗) = 1

2 .

This proves our claim that y∗ is the majority winner. By similar arguments it is easy to
show that the majority relation coincides with the preferences of an agent living at y∗.
Location y is preferred by a majority to location y′ if and only if y is closer to y′, namely
|y − y∗| < |y′ − y∗| (see exercise 4.6).

The remarkable coincidence of the Condorcet winner and the utilitarian optimum in
example 4.6 depends on the particular assumption that the distance from the facility to
one’s home is the disutility function of each agent. An important observation is that the
median of the distribution is still the Condorcet winner (if not the utilitarian optimum) for
a much larger domain of individual preferences, called the single-peaked preferences.

Given an ordering of the set A from left to right (from 0 to 1 if outcomes in A are
represented by real numbers as in the example above), we write x < y when x is to the left
of y and we say that z is “between” x and y if either x ≤ z ≤ y or y ≤ z ≤ x . The preference
relation Ri is single peaked (in the ordering of A) with peak xi if xi is the top outcome of
Ri in A, and moreover for all outcome x, x �= xi , Ri prefers any outcome between xi and
x to x itself.

The simple geometric intuition for single-peaked preferences is shown on figure 4.1,
where A is represented by an interval [a, b]. The preferences are increasing when x increases
(moves right) from a to the peak xi of Ri ; they are decreasing when x increases from xi

to b. The important point is that the comparison of outcomes across the peak—say x to its
left versus y to its right—are not restricted: see figure 4.1.

The assumption that all individual preferences are single-peaked is plausible in many
problems where the outcomes are naturally arranged along a line. This is especially clear if
we vote over the drinking age, or the tax rate, or the length of a patent. Another important
example is the Downsian model of political competition, where A models the size of the
defense budget, the funding of public education, and so on. Of course, a real assembly
is rarely so simple as to be lined up from leftist to rightist on all issues, but on specific
issues the assumption makes sense. A final example is product differentiation: the group of
agents N must pick a software or a copier, or any item whose cost is equally split among all.
There is a single dimension of “quality,” ordered by price. The assumption that each user
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Figure 4.1
Single-peaked preferences

has single-peaked preferences over the different levels of quality amounts to the familiar
convexity property.5

In example 4.6 the central argument is that the median y∗ of the distribution of individual
peaks xi (where agent i lives) is the Condorcet winner. This argument is valid for any profile
of single-peaked preferences. Consider an outcome x to the left of y∗ (x < y∗) : all agents
whose peak xi is to the right of y∗ or at y∗ prefer y∗ to x because y∗ is between x and xi .

These agents form a majority by definition of the median; therefore y∗ defeats x for the
majority relation. A symmetrical argument shows that y∗ defeats all outcomes to its right.

Another property of example 4.6 is preserved under any profile of single-peaked prefer-
ences: the majority relation is transitive, and is single peaked as well. Its peak is the median
peak, and so is the Condorcet winner. Exercise 4.6 explains these facts.

The Condorcet winner is particularly easy to implement when preferences are single-
peaked because each agent only needs to report her peak. The way she compares outcomes
on the left of her peak to outcomes on its right, does not affect the Condorcet winner
(although it does affect the majority relation over outcomes below the winner).

Moreover the definition of the feasible set A far away from the Condorcet winner does not
matter either. If we extend A to the right or to the left by adding a few outcomes that stand
no chance of being elected, the Condorcet winner does not change, another illustration of
the property Independence of Irrelevant alternatives. Here is a simple example with seven
agents with single-peaked preferences on [0, 100] and the following peaks:

x1 = 35 x2 = 10 x3 = 22 x4 = 78 x5 = 92 x6 = 18 x7 = 50

5. If level x is preferred to level y, and x ′ is also preferred to y, then all levels in [x, x ′] are preferred to y.
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On A = [0, 100] the median of these peaks is at y∗ = 35, and this is true on the following
smaller intervals:

B = [20, 75]: peaks x1 = 35, x̃2 = x̃6 = 20, x3 = 22, x̃4 = x̃5 = 75, x7 = 50

C = [20, 40]: peaks x1 = 35, x̃2 = x̃6 = 20, x3 = 22, x̃4 = x̃5 = x̃7 = 40

and on any interval containing 35.
By contrast, if one wishes to apply a scoring method in a problem like example 4.6, the

entire preference relation of every voter matters, and so do the precise end points of the
set A.

The last but not least desirable feature of the Condorcet method is strategy-proofness: a
voter has no incentive to lie strategically when reporting the peak of his preferences. Even
when a group of voters attempt to jointly misreport their peaks, they cannot find a move
from which they all benefit.

We check this claim in example 4.6, where y∗ is the median of the distribution of individual
peaks xi . In the argument below, it does not matter whether the set of agents is large (infinite,
as in example 4.6) or small, finite, as in the numerical example three paragraphs above.

Denote by N− the set of agents whose peak is (strictly) to the left of y∗ on A (xi < y∗),
by N+ the set of those whose peak is to its right (y∗ < xi ), and by N0 those with xi = y∗.
Suppose that the coalition T of voters agree to alter their reported peaks, from the true peak
xi to a fake x̃ i , while the rest of the agents report their peak truthfully as before. Denote by
z∗ the new median of the reported peaks: we show that either z∗ = y∗ or at least one agent
in T strictly prefers y∗ to z∗. In the former case, the joint misreport is inconsequential; in
the latter, it is not plausible because participation has to be voluntary.

The proof is by contradiction. Suppose that z∗ �= y∗ and that no i in T strictly prefers
y∗ to z∗. Say that z∗ is to the right of y∗ in A (y∗ < z∗). Because preferences are single
peaked, everyone in N− and in N0 strictly prefers y∗ to z∗; therefore T is contained in N+. By
definition of the median, N− ∪N0 forms a strict majority, and we just proved that they all still
report their true peak; therefore a majority prefers y∗ to z∗, and z∗ cannot be chosen when
T misreports, contradiction. A symmetrical argument applies when z∗ is to the left of y∗.

Strategy-proofness is the ultimate test of incentive-compatibility in mechanism design. In
a strategy-proof allocation or voting mechanism, no participant has any incentive to report
his own characteristics (preferences, endowment) strategically: the simple truth is always my
best move, whether I have no information about other agents’ messages, or full information,
or anything in between. Two very important examples of strategy-proof mechanisms are
majority voting over single-peaked preferences, and the competitive equilibrium when
each market participant is negligible with respect to the total endowment of the economy
(sections 6.3 and 7.1).
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Note that all scoring rules fail to be strategy-proof, even when individual preferences are
single peaked. An example with three outcomes a, b, c and nine voters illustrate the point.
We have five voters with preferences a � b � c, and four voters with b � a � c; these
preferences are single peaked for the ordering a < b < c. The Borda winner is a, but if the
four “losing” voters report b � c � a, the winner is b and the misreport is thus profitable.

Majority voting à la Condorcet is thus a compelling voting method when the outcomes
are arranged along a line and individual preferences are single-peaked. The assumption that
the outcome set is a one-dimensional interval can be weakened to a tree pattern, but not to
a one-dimensional “loop”; see exercises 4.8 and 4.9.

Real life voting rules, however, do not impose any restriction on the shape of individual
preferences, and in this case incentive-compatibility becomes a thorny issue. A disappoint-
ing impossibility result, discovered in the early 1970s, eliminates any hope of a simple
answer.

Any voting method defined for all rational preferences over a set A of three or more
outcomes must fail the strategyproofness property: at some preference profile, some agent
will be able to “rig” the election to his or her advantage (i.e., bring about the election of
a better outcome) by reporting untruthfully his or her preferences. This important fact,
known as the Gibbard-Satterthwaite theorem, is technically equivalent to Arrow’s theorem
discussed in section 4.6. It is formally stated in chapter 8.

4.5 Intermediate Preferences

We turn to the second configuration of preferences guaranteeing that the majority relation
is transitive, hence a Condorcet winner exists. The property of intermediate preferences
relies on an ordering of the agents, instead of an ordering of the outcomes in the case of
single-peaked preferences. In example 4.8 below, the agents choose a taxation method and
differ only by their pre-tax income (they are selfish, only interested in maximizing aftertax
income): they are naturally ordered along the income scale.

We say that the profile has the intermediate preferences property if whenever two agents
i, j agree to prefer outcome a to b, so do all agents “between” i and j . Say that the 100 agents
are ordered as N = {1, 2, . . . , 100}. Intermediate preferences imply that the set N (a, b) of
agents preferring a over b is an interval [i1, i2], namely N (a, b) consists of all agents i such
that i1 ≤ i ≤ i2. The same observation applies to the set N (b, a) of agents preferring b to
a. Barring indifferences for simplicity, we see that N (a, b) and N (b, a) partition [1, 100]
in two disjoint intervals: thus N (a, b) must be an interval of the type [1, i∗] or [ j∗, 100].

We check that the majority relation is transitive. Pick three outcomes a, b, c such that
N (a, b) and N (b, c) each contain 51 agents or more, so that the majority relation prefers a to
b and b to c. If N (a, b) = [1, i∗] and N (b, c) = [1, j∗], with i∗, j∗ ≥ 51, then all agents in
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[1, 51] prefer a to b and b to c, hence a to c, and the majority relation prefers a to c as claimed.

A symmetrical argument applies if N (a, b) = [i∗, 100] and N (b, c) = [ j∗, 100], with
i∗, j∗ ≤ 50. Suppose next that N (a, b) = [1, i∗] and N (b, c) = [ j∗, 100], with i∗ ≥ 51
and j∗ ≤ 50. Then agents 50 and 51 both belong to N (a, b) and N (b, c), hence to N (a, c)
as well. If N (a, c) takes the form [1, i], this implies i ≥ 51 and if N (a, c) = [ j, 100], this
implies j ≤ 50: in both cases N (a, c) is a strict majority and the claim is proved.

Example 4.7 Voting over Three Surplus-Sharing Methods We consider first the three
surplus-sharing methods in section 2.2, namely the proportional (PRO), equal surplus (ES),
and uniform gains (UG) methods.

Given a particular profile of claims and amount of resources t to be divided, our agents
vote to choose which method will be implemented. Agents are ranked by the size of their
initial claims/investments. They compare the three methods exclusively by the size of their
own share of total surplus, and the larger the better. Here is an example with 11 voters, total
resources t = 745, and initial claims ranging from 10 to 120 and totalling 580. We compute
the shares allocated by our three methods:

Agent 1 2 3 4 5 6 7 8 9 10 11

Claim 10 10 20 25 40 40 60 70 85 100 120

PRO 12.8 12.8 25.7 32.11 51.4 51.4 77.1 89.9 109.2 128.4 154.1

ES 25 25 35 40 55 55 75 85 100 115 135

UG 51.7 51.7 51.7 51.7 51.7 51.7 60 70 85 100 120

The four agents with the smallest claims rank the uniform method above equal surplus
and the latter above proportional. The five agents with the largest claims have the exactly
opposite preferences.6 For the two middle agents with claim 40, the best method is equal
surplus. Thus all preferences are single peaked with respect to the ordering {uniform, equal
surplus, proportional} of the three outcomes. The median peak is 40 and “equal surplus” is
the Condorcet winner at this profile.

Next we check the intermediate preferences property. It suffices to check that the sets
N (a, b) are intervals of the form [1, i] or [ j, 11] for all a, b:

N (UG, PRO) = N (ES, PRO) = [1, 6]; N (ES, UG) = [5, 11]

Assume that the commodity being distributed is a “bad,” and that individual claims represent
a liability. Now an agent prefers method m to another method m ′ if and only if his share
under m is smaller than under m ′. Observe that the new preferences are not single peaked

6. Recall from exercise 2.5 that the smallest claim and largest claim agents have these preferences for all surplus-
sharing problems.
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anymore, because each method is the worst outcome for some agents: PRO for agents
[7, 11], ES for 5, 6, and UG for [1, 4]. On the other hand, the intermediate preferences
property is preserved because the intervals N (a, b) and N (b, a) are simply exchanged:

N ′(UG, PRO) = N ′(ES, PRO) = [7, 11]; N ′(ES, UG) = [1, 4]

The proportional solution is the Condorcet winner; indeed, it is the best method for the six
agents 1, 2, . . . , 6.

Exercise 4.13 shows that for all surplus-sharing problems of any size, the preferences
over the three methods PRO, ES and UG have the intermediate preference property. Our
next example shows that the same holds true when agents choose a rationing method within
the one-parameter family uncovered in section 2.4.

Example 4.8 Voting over Tax Schedules The agents choose one of the equal sacrifice
methods described at the end of section 2.4, namely they choose a common utility function
u to measure sacrifice, and this function takes one of the following forms:

u p(z) = − 1

z p
for some positive parameter p

u0(z) = v0(z) = log z

vq(z) = zq for some positive parameter q

(6)

Once their vote has elected one such utility function, taxes are computed by solving sys-
tem (10) in chapter 2. Recall that the function u0 = v0 corresponds to the proportional
method (flat tax), the function v1 to uniform losses (head tax), and u∞ to uniform gains
(full redistribution).

Remarkably, the intermediate preferences property holds true for any number of taxpayers
and any profile of taxable incomes, so that majority voting always delivers a Condorcet
winner. Before explaining this result, we note that the pattern of preferences over this
family of tax schedules is not in general single peaked for any ordering of the family.

Consider the profile of taxable incomes x1 = 20, x2 = 80, x3 = 100, and total aftertax
income t = 120 (i.e., total tax levied is 80). The three basic methods give the following
aftertax incomes:

Agent 1 2 3

PRO 12 48 60

UG 20 50 50

UL 0 50 70
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so that PRO is the worst method for agent 2, UG is the worst for agent 3, and UL is
the worst for agent 1, which rules out single-peakedness for any ordering of the three
methods.

We check now the intermediate preference property for the two methods u1 and u2.
7

Recall that the u p methods are computed by solving the simpler system (9) in chapter 2.
Fix the profile of taxable incomes xi , the total aftertax income t, and denote by yi , zi the
aftertax incomes under u1 and u2 respectively. System (9) tells us that there are two positive
numbers λ, µ such that

1

yi
− 1

xi
= λ and

1

z2
i

− 1

x2
i

= µ for all i

⇔ yi = xi

1 + λxi
and zi = xi(

1 + µx2
i

)1/2 for all i

Compare the two concave functions f (x) = x/(1 + λx) and δ(x) = x/(1 + µx2)1/2

for x ≥ 0 : they coincide at x = 0, where they both have a slope of 1, then they cross
once at x = 2λ/(µ − λ2) if µ > λ2, or not at all if µ ≤ λ2. Figure 4.2 illustrate these two
cases.

Therefore for any λ and µ, the set of agents i for whom f (xi ) > g(xi ) is made either of
all agents whose taxable income is below a certain level, or of all those with income above
some level. This is exactly the intermediate preferences property when we order the agents
according to their taxable incomes.

4.6 Preference Aggregation and Arrow’s Theorem

As indicated in section 4.1, a social choice problem is made of three ingredients. The
set A contains all the outcomes (states of the world) among which the set N of concerned
agents—the “society”—must choose one. The choice of an outcome a in A affects the
ordinal welfare of each concerned agent i : this is captured by a preference relation Ri on
A, namely a complete and transitive binary relation.

The differences between individual preferences are resolved by the aggregation method
F, associating to each profile of preferences R̃ = (Ri , i ∈ N ), a collective—or social—
preference relation R∗ = F(R̃), interpreted as the ordinal collective welfare. The aggre-
gation method plays exactly the same role, in the ordinal context, as the collective utility
function in the cardinal context of the previous chapter.

7. The general argument is the subject of exercise 4.16.
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Collective welfare is identified with a preference relation R∗, guiding the collective choice
over any subset B of feasible outcomes: welfare is identical to choice. This construction is
anthropomorphic, in the sense that the collective body is treated exactly like an individual
agent. The mechanical computation of the collective relation R∗ from the profile R̃ is
social engineering at its best, or its worst, namely a controversial normative construction.
It suggests one way of thinking about democratic institutions, but competing models offer
alternative answers to this central question of political philosophy.

Recall from section 1.5 the basic tenet of the minimal state (libertarian) doctrine: collec-
tive decisions merely result from the interaction of free citizens exercising their political
rights. This decision process may indeed yield a pattern of choices that can in no way be
deciphered as rational, as maximizing some underlying collective preference. But this fea-
ture is by no means a subject of concern: collective choice is devoid of normative content,
and any outcome of the free interplay of individual rights is as good as any other.

Social choice theory takes the diametrically opposed view that the process to reach a
democratic compromise should rest on sound axiomatic foundations and allow positive
predictions. For instance, cycles of the majority relation are deemed undesirable because
they lead to the chronic formation of unstable coalitions and arbitrariness of the final decision
which, ultimately, threatens the political legitimacy of the institutions for collective decision.
The model of preference aggregation is the most general—the most ambitious—project
of mechanism design in the microeconomic tradition. Its limited success, underlined by
Arrow’s impossibility theorem, can just as easily be viewed as a vindication of the minimal
state doctrine—the search for rationality of collective choice is hopeless—or as the first
step in a larger project of social engineering poised to discover specific allocation problems
for which rational collective choice is within our reach.

The two voting methods proposed by Condorcet and Borda suggest two simple aggrega-
tion methods. Condorcet’s argument is that for a given profile R̃ the majority relation is the
correct expression of the general will (volonté générale). Formally this relation Rm = F(R̃)

is defined as follows, for any pair of outcomes x, y:

x Rm y ⇔ |{i ∈ N | x Pi y}| ≥ |{i ∈ N | y Pi x}| (7)

namely the supporters of x against y are not outnumbered by their opponents.
We saw in the previous section that for some preference profiles R̃, the relation Rm is

cyclic, hence violates the transitivity requirement for rational choice. In many collective
decision problems, we can exclude a priori no preference relation on A. Voting over candi-
dates to a political office is an obvious example, because of freedom of opinions. In this case
the majority relation is not a valid aggregation method. On the other hand, the Borda scoring
method provides an aggregation method for all preference profiles on any finite set A.



moulin-79027 book October 22, 2002 16:9

Voting and Social Choice 128

If p is the number of outcomes in A and Ri an arbitrary preference relation on A, we
define the Borda scores s(a, Ri ) awarded by Ri . If Ri expresses strict preferences between
any two outcomes (agent i is never indifferent between a and b), we set, as in section 4.2,

s(a, Ri ) = p − k for the outcome ranked kth in A

(hence the top outcome gets p − 1 points and the bottom one gets 0 point). When Ri is
indifferent between say a, b and c, these outcomes split equally the total scores they would
fetch if preferences were strict and a, b, c were adjacent. To illustrate this straightforward
construction, consider p = 8 and the following preference Ri :

{a, b}Pi cPi {d, e, f }Pi g Pi h

where the brackets denote an indifference class; for example, Ri is indifferent toward d, e,
and f. Outcomes a and b split the total score 7 + 6, so they get 6.5 each; c gets 5; d, e, and
f each get 3; g gets 1, and h gets 0.

The Borda aggregation method yields Rb = F(R̃) as follows for any pair of outcomes
x, y:

x Rb y ⇔
∑
i∈N

s(x, Ri ) ≥
∑
i∈N

s(y, Ri ) (8)

The transitivity of the relation Rb follows at once from that of the inequality relation between
scores.

Consider the profile (4) in example 4.3. We noted there that b, the Borda winner, owes
its success over a to the relative position of c vis-à-vis b and a. By contrast, the majority
relation (transitive in this example) puts a above b: if the issue is to choose between a and
b, it compares the numbers of supporters of a versus b and b versus a, without paying any
attention to c at all.

The property independence of irrelevant alternatives (IIA) requires that the collective
preference R∗ between any two outcomes x and y only depend upon individual preferences
between any two outcomes. That is, if R̃ and R̃′ are two profiles of preferences that produce
exactly the same sets of supporters of x versus y and y versus x :

for all i : x Pi y ⇔ x P ′
i y, y Pi x ⇔ y P ′

i x, x Ii y ⇔ x I ′
i y

then the collective preferences R = F(R̃) and R′ = F(R̃′) compare x and y in precisely the
same way:

x Py ⇔ x P ′y, y Px ⇔ y P ′x, x I y ⇔ x I ′y

The majority aggregation method (7) meets the IIA property but does not always produce
a rational collective preference. When it cycles, say a Pmb, bPmc, and cPma, it is helpless
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to guide the choice among a, b, and c. Any method to break the cycle, for instance, at its
weakest link (see example 4.4 and the discussion preceding it), leads to a violation of IIA: if
we declare a the winner among a, b, c because the statement cPma is the “weakest” (has the
smallest number of supporters), then “a wins over b” depends on the individual preferences
over a, b, and c, not just over a and b. Similarly, if the collective preference declares a, b,
and c to be indifferent, then the mere knowledge of the supporters of a versus b and b versus a
is not enough to determine the collective preference between a and b: it also matters whether
a, b are part of some cycle of the majority relation (involving other outcomes) or not.

The Borda aggregation method (8) produces a rational collective preference for any profile
R̃ but fails the IIA property. This means that the choice of the set A of outcomes/candidates
on the ballot is of critical importance to the eventual outcome. Adding to A = {a, b} a
candidate c who stands no chance to win against either a or b (and will be ranked last by the
collective preference) may turn around the choice between a and b, as in examples 4.2 and
4.3. Control of the “agenda,” namely the set A of eligible candidates, is often tantamount
to control of the election and of the collective preference. Thus the definition of A is
controversial and may be the subject of a preliminary round of collective decision-making,
the agenda of which is itself a matter of dispute, and so on ad infinitum.

Arrow’s impossibility theorem explores the sharp trade-offs between the IAA property
and the rationality of collective preferences, in the formal context of aggregation functions.
In a nutshell, the theorem says that any aggregation function producing a rational collective
preference and meeting IIA must be highly undesirable on account of its lack of efficiency
or of fairness. A formal statement is given in chapter 8.

For instance, suppose that we want an efficient aggregation method, namely we insist
that the collective preference R∗ respects the unanimous preferences of the citizens. For
any two outcomes x, y,

{x Pi y for all i ∈ N } ⇒ x P∗y

Then the only rational aggregation methods meeting IIA are the dictatorial methods,
where the collective preference relation R∗ coincides with R∗

i , the preference relation
of the dictator i∗. The point is that the dictator’s preferences prevail irrespective of those of
the rest of the agents, a state of affairs that we may call maximally unfair.

Suppose next that we restrict our attention to aggregation functions that are fair in the sense
that all voters have equal influence a priori on the collective preference.8 Some unpalatable
rational aggregation methods meeting IIA are the “imposed” methods, always selecting
the same collective preference Ro, irrespective of the preferences of our citizens. Such a
method is fair, but it is pathetically inefficient: even when the citizens share a common

8. Formally, this means that the function F is symmetrical in its n variables Ri .
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preference Ri = Ro for all i, the collective preference ignores this fact entirely. It turns out
that the only fair rational aggregation methods meeting IIA are imposed, except for at most
two fixed outcomes a, b that can be compared, for instance, by the majority relation.

The proof of Arrow’s theorem is beyond the scope of this book. The two “ways out” of the
impossibility have been discussed earlier in this chapter. One way is to restrict the domain
of admissible preference profiles, as with the single peaked (section 4.3) or intermediate
(section 4.4) preferences. Another way is to weaken the rationality properties of the collec-
tive preference, by only requiring that its strict preferences do not cycle. This is the idea
of qualified majorities briefly discussed at the end of section 4.3. The approach leads to
indecisive collective preferences, however, with too many different outcomes declared
winners.

4.7 Introduction to the Literature

The theory of rational choice and ordinal preferences, discussed in section 4.1, is the very
foundation of microeconomic analysis. Textbook presentations are easy to find; a particu-
larly good one is in Mas-Colell, Whinston, and Green (1995, ch. 1).

The original discussion of the optimal design of voting rules by Condorcet (dating back
to 1785), is still extremely useful and accessible in the excellent English translation of
McLean and Urken (1995). Our examples 4.1 to 4.3 are adapted from Condorcet’s original
examples.

The reunion paradox (example 4.4) is the basis of an important result due to Smith (1973)
and Young (1974): the scoring methods are the only voting methods avoiding the reunion
paradox and treating symmetrically both voters and candidates. Two excellent surveys on
voting rules are Brams (1994) and Brams and Fishburn (2002); see also Ordershook (1986).

The central result underlying section 4.4 is due to Black (1948) and is formally described
in exercise 4.6: the majority relation is a rational preference when individual preferences
are single-peaked. The related property of strategyproofness has been studied extensively:
Moulin (1980) uncovers the full family of strategy-proof voting rules on the single-peaked
domain, a result later extended to multidimensional versions of this domain; see Sprumont
(1995) and Barbera (2001) for a survey of this literature.

The seminal impossibility result on strategy-proof voting with unrestricted preferences
is due to Gibbard (1973) and Satterthwaite (1975): it is briefly discussed at the end of
section 4.4. Textbook presentations can be found in Moulin (1988, ch. 10) and Mas-Colell,
Whinston, and Green (1995).

Grandmont (1978) introduced the notion of intermediate preferences, section 4.5, and
Roberts (1977) noticed that preferences over tax schedules can be expected to fit this pattern.
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Arrow’s 1951 book, with the original proof of his theorem, is the unambiguous starting
point of mathematical welfare economics, and in this sense its influence pervades the entire
book. The formal statement and proof of the theorem is available in many books, among
them Sen (1970), Kelly (1978), Moulin (1988), and Mas-Colell, Whinston, and Green
(1995).

Peremans and Storcken (1996) introduce the concept of single-dipped preferences
discussed in exercise 4.7.

Exercises to Chapter 4

Exercise 4.1 Two More Examples of Condorcet

a. In the following profile with 60 voters shows that the majority relation and the Borda
scores yield the same ranking of the three outcomes. Compare it with the ranking of plurality
voting.

Number of voters: 18 5 16 3 13 5
a a b b c c
c b c a b a
b c a c a b

b. In the next profile the majority relation has a cycle. What outcome wins if we use
Condorcet’s idea to break the cycle at its weakest link? What outcome (outcomes) is (are)
elected by some scoring method?

Number of voters: 23 2 17 10 8
a b b c c
b a c a b
c c a b a

Exercise 4.2 An Example due to Joe Malkovitch

We have 55 voters and five outcomes. The profile of preferences is as follows:

Number of voters: 18 12 10 9 4 2
a b c d e e
e e b c b c
d d e e d d
c c d b c b
b a a a a a
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Check that the majority relation is transitive and orders the candidates exactly like the Borda
scores. Compare with plurality voting.

Exercise 4.3 More on Profile (5)

Consider the preference profile (5) where the majority relation has a cycle: ni < n/2 for
i = 1, 2, 3. Check that the Borda winner corresponds to the index i maximizing ni − ni+1,

where we set n3+1 = n1. Check that the Condorcet solution (break the cycle at its weakest
link) corresponds to i maximizing ni .

Give an example where these two solutions are unique and different.

Exercise 4.4

Consider the profile with seven voters and four candidates:

Number of voters: 3 2 2
c b a
b a d
a d c
d c b

a. Compute the majority relation and show that it has several cycles. By “breaking” the
two weakest majority preferences, check that the ordering cPbPaPd obtains.

b. Compute the Borda ranking of our four candidates. Find an outcome x such that, upon
removing x , the ranking of the other three candidates is completely reversed! The violation
of which axiom does this illustrate?

Exercise 4.5 Location of a Noxious Facility (Example 3.5)

The public facility that must be located somewhere in [0, 1] is undesirable (prison, waste
disposal) and the distance from agent i ′s home xi to the site y of the facility measures her
utility ui (y) = |xi − y|. See example 3.5.

a. Show that the endpoint (0 or 1) farthest away from the median y∗ of the distribution
F of agents (see example 4.6) is the Condorcet winner. Recall from example 3.5 that the
utilitarian optimum is the endpoint farthest away from the mean of F (the barycenter of all
homes).

b. Show that the majority relation coincides with the preferences of the median agent living
at y∗. Exercise 4.7 generalizes this property.
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*Exercise 4.6 Majority Relation under Single-Peaked Preferences

a. In example 4.6, show that the majority relation strictly prefers y to y′ if and only if
|y − y∗| < |y′ − y∗|.
b. In the rest of the exercise, we only assume that individual preferences are single-peaked
on [0, 1], as in the discussion following example 4.6. We denote by y∗ the Condorcet winner.

Show that if y < y′ ≤ y∗, of y∗ ≤ y′ < y, the majority relation Rm strictly prefers y′

over y.

c. Check now that the majority relation is transitive across its peak y∗. Pick a, b, c such
that a < y∗ < b < c, and assume a Pmb. We know from question b that bPmc. Show a
Pmc. (Hint: An agent preferring a to b must have its peak to the left of b). Show similarly
a Rmb ⇒ a Rmc.

Next pick a, b, c such that b < a < y∗ < c, and assume bPmc. Show a Pmc. (Hint: An
agent preferring b to c must prefer a to c.) Conclude that the majority relation is single
peaked, as claimed in section 4.4.

*Exercise 4.7 Majority Relation under Single-Dipped Preferences

We say that the preference relation Ri on [0, 1] is single dipped if there is an outcome xi ,

the dip, such that Ri decreases on [0, xi ] and increases on [xi , 1]. In other words, xi is the
worst outcome for Ri and for all x, x �= xi , Ri prefers x to any outcome between x and xi .

We fix a profile of single-dipped preferences on [0, 1], and we denote by y∗ the median
dip.

a. Show that the majority relation Rm is decreasing on [0, y∗] and increasing on [y∗, 1]:

{y < y′ ≤ y∗ or y∗ ≤ y′ < y} ⇒ y Pm y′

b. Show that Rm is transitive across its dip y∗ (the argument is similar to that in question c
of exercise 4.6.).

Exercise 4.8 Location of a Facility on a Network with a Loop

When the set of feasible locations of the facility is a one-dimensional network with a loop,
the Condorcet winner often does not exist.

a. Consider the road network of example 3.8, depicted as figure 3.6. There are five agents
living at A, B, C, D, and E respectively. If the “inner roads” to X are not feasible locations,
it follows from example 4.6 that location C , the utilitarian optimum, is also the Condorcet
winner. Assume now that the entire network on figure 3.6 is feasible to locate the facility.
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Show that X, the utilitarian optimum is not a Condorcet winner, and neither is any other
location.

b. Consider the road network of exercise 3.4, question a, depicted as figure 3.11. There
are five agents living at A, B, C, D, and E respectively. Show similarly that no location of
the facility is a Condorcet winner.

c. Consider the road network of exercise 3.4, question b, depicted as figure 3.12. There are
nine agents, of whom two live at B, three at C , and four at D. Assume first that the direct
road between C and B is closed. Show that A, the utilitarian optimum, is also the Condorcet
winner.

Next show that when the road CB is open, the problem has no Condorcet winner.

*Exercise 4.9 Location of a Facility on a Star-Tree

The road network is a “star” as in exercise 3.6. Each outer location Ak is connected to the
center O by a road of length dk, and nk agents live at Ak . See figure 3.13.

a. Assume that the facility is desirable, so an agent wants to minimize his travel cost to the
facility. Show that the Condorcet winner coincides with the utilitarian optimum: it is the
center O of the tree if none of the nodes Ak contains a strict majority of the total population;
otherwise, it is this most populated location.

b. Now the facility is noxious and agents want it to be as far away as possible from where
they live. Show that the Condorcet winner is Ak∗ , the location farthest away from the center
among those hosting a minority of the total population:

nk∗ <
n

2
and

{
for all k, nk <

n

2
⇒ dk∗ ≥ dk

}

(Note that the borderline case n1 = n2 = n/2 leads, as usual, to an “indecisive” majority
relation.) Compare with the utilitarian optimum described in exercise 3.6.

Exercise 4.10 An Example with Intermediate Preferences

There are nine voters and three outcomes. Preferences are as follows:

Number of voters: 1 4 3 1
b a b a
a b c c
c c a b

a. Check that the Condorcet winner and Borda winners are different.
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b. Show an ordering of the nine agents for which the profile has the intermediate preferences
property.

Exercise 4.11 Voting over Surplus-Sharing and Taxation Methods

Using notations as in examples 4.7 and 4.8,

a. Give two examples of three person surplus-sharing problems with increasing claims
x1 < x2 < x3 and resources t, t > x1 + x2 + x3, such that agent 2′s shares are ordered
respectively as follows:

y2(ES) > y2(PRO) > y2(UG)

y2(ES) > y2(UG) > y2(PRO)

b. Give two examples of three-person taxation problems with increasing taxable incomes
x1 < x2 < x3 and total aftertax income t, t < x1 + x2 + x3, such that agent 2’s aftertax
incomes are ordered respectively as follows:

y2(PRO) > y2(UG) > y2(UL)

y2(PRO) > y2(UL) > y2(UG)

Note that example 4.8 contains a three-person example where y2(PRO) is the smallest
among these three shares.

Exercise 4.12 Voting over Taxation Methods

a. Consider the five voters profile of taxable incomes 10, 20, 50, 70, 80, and total aftertax
income t = 100. Compute the aftertax distribution of incomes under the three basic methods
PRO, UG, and UL and the majority relation.

b. Compute next the shares awarded by the Talmudic (T) and random priority (RP) methods
defined in exercises 2.11 and 2.10 respectively. Check that the Talmudic method is the
Condorcet winner and that RP is ranked third by the majority relation. Check that the Borda
scores order the five methods in precisely the same way.

c. Consider the profile of taxable incomes 10, 15, 30, 40, 55, and aftertax income t = 100.

Show that the Talmudic method is now the Condorcet loser as well as the Borda loser, with
random priority ranked next to last in the majority and Borda relations.

*Exercise 4.13 Generalizing Example 4.7

We consider an arbitrary surplus-sharing problem with profile of claims xi , x1 ≤ x2 ≤
· · · ≤ xn and resources t, t ≥ ∑n

1 xi .
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a. Show that the profile of preferences over the three methods PRO, ES, and UG has the
intermediate preferences property.

b. Show that the preferences of any agent over PRO, ES, UG are single-peaked when the
three methods are so ordered.

Hint: By the inequalities proved in question a of exercise 2.5, it suffices to show that for
any i, the inequalities yi (ES) < yi (PRO), yi (ES) < yi (UG), cannot both be true. Proceed
by contradiction. The UG shares are y j (UG) = max{x j , λ}; show that λ ≤ t/n and that
agent i for whom both inequalities hold has xi ≤ λ.

Exercise 4.14 Voting over the Commons

In the model of the commons of chapter 6, three solutions are compared: CEEI (competitive
equilibrium with equal incomes), VP (virtual price), and RP (random priority). The users
of the commons are identified by their willingness to pay, providing a natural ordering
of N . Using the formulas of section 6.6, show that the preferences of the users over the
three methods have the intermediate preference property. Show that in general, there is no
ordering of CEEI, VP, and RP in which these preferences are single peaked.

Exercise 4.15 Counting Preference Relations

a. Given an ordering of the choice set A with cardinality p, show that there are 2p−1

different preference relations that are single peaked in this ordering.

b. Given a preference profile with the intermediate preferences property (with respect to
some ordering of N ), show that there are at most [p(p − 1)/2] + 1 different preference
relations in this profile.

Exercise 4.16 Proving the Claim in Example 4.8

Consider an arbitrary profile xi , x1 ≤ x2 ≤ · · · ≤ xn, of taxable incomes and total aftertax
income t, t ≤ ∑n

1 xi .

a. Show that the profile of preferences over the three methods PRO, UG, UL has the
intermediate preferences property. Hint: Check successively the property for any two of the
three methods, and for both orderings of the two methods in each case.

b. Show that the IP property is maintained if we add the Talmudic (T) and random priority
(RP) methods defined in exercises 2.11 and 2.10.

c. The goal of this question is to prove the IP property when the choice set contains all equal
sacrifice methods listed in formula (6). We prove a slightly more general result. Consider two
increasing utility functions u, v and the associated equal sacrifice after tax incomes yi , zi .
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For simplicity, we assume first that all yi , zi are positive—system (9) in chapter 2—so that
there are two positive numbers λ, µ such that

u(xi ) − u(yi ) = λ, v(xi ) − v(zi ) = µ for all i

⇔ yi = u−1(u(xi ) − λ), z = v−1(v(xi ) − µ) for all i

The desired IP property amounts to the fact that the two increasing functions, f (x) = u−1

(u(x) − λ) and g(x) = v−1(v(x) − µ), have the single-crossing property over positive
numbers x : the graphs of these two functions cross at most once.

We assume now that the function v is more concave than u, namely v(x) = w(u(x)),

all x ≥ 0, for some increasing and concave function w. Check that this implies the single-
crossing property. Check that if v is more concave than u, the IP property over u, v holds
even if some agents receive a zero share—system (10) instead of (9) in chapter 2. Check
finally that for any two utility functions in the family (6), one of them is more concave than
the other.
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5 The Shapley Value

5.1 The Problem of the Commons and Two Examples

A commons is a technology used jointly by a given set of agents; the problem of the commons
is to organize fairly and efficiently the exploitation of this technology. The microeconomic
approach to distributive justice puts this problem at the top of its agenda: the Shapley
value is an axiomatic solution to a simple model of the commons. Indeed, no systematic
discussion of the commons problem was possible until the tools of (cooperative as well as
noncooperative) game theory became available fifty years or so ago.

Joint ventures requiring coordinated action of partners with heterogeneous expertise are
typical commons. The partners contribute their labor input and share the output (profit)
generated by the enterprise. Examples include musical ensembles (example 2.4), law firms,
and fishing or farming cooperatives.

The interesting question of distributive justice is to assess fairly the productive contribu-
tions from the various partners: recall the musical duo, example 2.4, where the two musicians
are not equally famous. Similarly the fishermen may use various fishing techniques, with
different impact on the future stock of fish; the partners in a law firm bring different kinds
of expertise that are unequally scarce, and so on.

The sharing of joint costs falls squarely within the scope of the commons problem.
In a cost-sharing model the agents demand certain services that are jointly produced by
the technology (the commons), and they must share fairly the total cost of meeting these
demands. A typical example (see example 5.6) is access to a network; each agent wants
to be hooked to the central server but the connection cost is not uniform: some agents live
near the server and need only a short cable, some agents are close to one another, another
source of savings, and so on. This chapter and the next one are entirely devoted to cost-
sharing problems like this one, and to the “dual” surplus-sharing problems where each agent
contributes some productive input and the question is to share the resulting total output.

In terms of the general principles stated in section 2.1, the focus of this chapter is almost
exclusively on the interpretation of reward: What is a fair assessment of individual respon-
sibilities in the formation of total cost (or surplus)? Compensation is entirely absent from
the discussion, and we always assume equal exogenous rights.1 Fitness is not an issue in
most of the chapter, where we assume inelastic demand of output or supply of input. That
is to say, willingness to pay for the output or reservation values for providing the input play
no role. The only exception is section 5.4, a prelude to the models of chapters 6 and 7. In
the next chapter, by contrast, fitness is a paramount concern and the simultaneous pursuit
of fitness and reward is the heart of the discussion.

1. Nevertheless, the axiomatic discussion of section 5.5 can be extended to accommodate asymmetric rights.

139
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Example 5.1 Joint Venture: Example 2.4 Revisited The formal model is identical to that
of example 2.4, namely two agents must share a given amount of some divisible commodity,
and the division takes only into account two individual characteristics. The interpretation is
quite different: the goal is to share the cost of providing a certain service to our two agents,
and the individual parameters are the stand-alone costs, namely the cost of providing service
to one agent alone.

Teresa and David share an office space and need to connect their computer to the network.
Teresa needs a small capacity link for which the company charges c1, whereas David needs
a larger one that costs c2, c1 < c2. There is a single cable outlet in the office, and in order
to connect both of them, the company must install an additional outlet at cost δ. Thus the
total bill to equip both Teresa and David is c12 = c1 + c2 + δ. We call ci , i = 1, 2, the
stand-alone costs of our two agents: if David is out of the picture, no extra outlet is needed
and Teresa will pay c1.

Formally we have a distribution problem as in section 2.2 where a bad (cost c12) must be
shared and total burden exceeds the sum of individual liabilities. Which one of our three
basic solutions—proportional, equal benefits, and uniform gains—if any, should we use?

Suppose that the company is running a promotional campaign for the small capacity link
that Teresa needs, so that her stand-alone cost is c1 = 0. In this configuration the proportional
solution is highly unappealing because it charges the entire cost c2 +δ to David, when surely
Teresa should bear a share of the mutual externality δ.

The uniform gains solution—which should be called uniform costs in the context of our
example—is even worse in that it seeks to equalize cost shares irrespective of the difference
in stand-alone costs. For instance, if c1 = 0 as above, the solution charges y1 = δ to Teresa
and y2 = c2 to David as long as δ ≤ c2; it charges 1

2 (δ + c2) to both whenever δ ≥ c2.

The former is unpalatable because David contributes nothing to the cost δ of the mutual
externality. The latter is too, because Teresa becomes responsible for half of David’s stand-
alone cost c2.

The equal surplus solution is the only sensible way to share costs in this context, since
ci is clearly a separable cost. It simply splits equally the nonseparable cost δ, and charges
y1 = c1 + (δ/2), y2 = c2 + (δ/2).

Now we change the story to one where the cost of connecting Teresa and David is
smaller than the sum of their two stand-alone costs. This is called a deficit configuration
in section 2.2, and a subadditive cost function in this chapter: c12 < c1 + c2. In the previous
story the cost function is superadditive: c12 > c1 + c2; see section 5.3.

The company charges a fee δi to set up a link, and this fee increases with the capacity of
the link. Here δ1 < δ2 as Teresa needs less capacity than David.

In addition the consumer must pay a flat fee δ for the technician’s visit: this fee is the
same no matter how many links the technician sets up in his visit. By joining their orders,
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Teresa and David save one fixed fee. The stand-alone costs are ci = δi + δ for i = 1, 2, and
the total cost is c12 = δ1 + δ2 + δ < c1 + c2.

The uniform costs solution is as unappealing as above, for it ignores the difference
between δ1 and δ2.2 The proportional solution splits the cost-saving δ in proportion to the
stand-alone costs δi + δ, which is an unpalatable compromise for exactly the same reasons
as above. For instance, if δ1 and δ are comparable, but δ2 is much larger than both, Teresa
gets essentially no rebate from her stand-alone costs.3

The uniform savings solution (i.e., the uniform losses solution of section 2.2) is the only
sensible solution in the subadditive cost case. It splits the cost-savings δ equally between
David and Teresa: y1 = δ1 + (δ/2), y2 = δ2 + (δ/2).

The discussion of example 5.1 suggests a general cost-sharing method, based on the
computation of n + 1 numbers if the number of agents sharing the commons is n. Let ci

be agent i’s stand-alone cost and cN be the total cost of serving the whole population N .

We compute individual cost shares by the equal surplus/uniform cost-saving methods of
section 2.2. Thus, if the costs are superadditive, cN >

∑
j c j , each agent i pays her stand-

alone cost ci plus a surcharge equal to her fair share of the cost externality cN − ∑
j c j . If

costs are subadditive, cN <
∑

j c j , everyone pays her stand-alone costs minus a common
rebate, or pays nothing at all if this difference is negative:

cN ≥
∑

j

c j ⇒ yi = ci + 1

n


cN −

∑
j

c j


 for i = 1, 2, . . . , n

cN ≤
∑

j

c j ⇒ yi = (ci − µ)+ where
∑

j

(c j − µ)+ = cN for i = 1, . . . , n

(1)

These cost shares are simple and intuitive, and in example 5.1 they deliver the correct
solution. In the case of a two-person problem, the cost shares (1) take the simple form of
an equal rebate for both users, provided that we make the reasonable assumption ci ≤ c12

for i = 1, 2; namely serving both agents cannot be cheaper than serving only one. In the
subadditive case, this assumption implies that the common rebate µ is below ci for i = 1, 2.

Therefore, in both cases—superadditive and subadditive—the cost shares are simply

y1 = 1
2 (c12 + c1 − c2), y2 = 1

2 (c12 + c2 − c1) (2)

2. This is provided that δ ≥ δ2 − δ1. When δ ≤ δ2 − δ1, the solution is even worse: it charges her stand-alone
cost δ1 + δ to Teresa, and David gets the full saving of one fix fee—he pays δ2.

3. Splitting the cost saving δ in proportion to the capacity costs δi would give essentially all the rebate to Teresa
under the same premises, which is an equally unjustified outcome.



moulin-79027 book October 22, 2002 16:10

The Shapley Value 142
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Figure 5.1
Mail distribution: Example 5.2

Our next example shows that things are not as simple when the cost must be shared
among three or more users of the commons; in fact the cost shares (1) may be altogether
unacceptable.

Example 5.2 Mail Distribution Five villages share the cost of a daily mail distribution.
The mail is dropped daily by an outside carrier in a certain location �. The villagers jointly
hire a local distributor who picks the mail from �, delivers it to the five villages, where
he picks the outgoing mail, and goes back to �. We neglect all sorting costs (the mail is
dropped at � in five presorted packages). The local distributor’s charge is proportional to
the distance he must travel daily, and the price is $1 per kilometer.

The five villages are located along the single road starting at � and passing successively
through A, B, D, E, and F. Distances, in kilometers, are indicated on figure 5.1. Thus the
daily tour from � to F and back costs $110. The problem is to divide it fairly among our
five customers.

The stand-alone costs—costs of delivering mail to agent i only—are as follows:

cA = 20, cB = 30, cD = 90, cE = 100, cF = 110

Therefore the formula (1) gives µ = 63.3 and the following cost shares:

xA = xB = 0, xD = 26.7, xE = 36.7, xF = 46.7

This is obviously too soft on agents A and B who should bear a positive share of total cost!
We note that a division of the total cost 110 in proportion to the stand-alone costs above is

plausible in this numerical example. However, in section 5.3 we show that the proportional
solution may give unreasonable cost shares in a similar example with different distances;
see example 5.4.

A simple separation argument leads to a genuine division of costs, which the Shapley
value also recommends (as shown in the next section). The idea is to consider each interval
such as B D separately and to split the corresponding fraction of total cost only among
those agents who are responsible for it. For instance, the cost of covering the interval
[E, F] should be imputed to F alone. By the same token, the cost of [D, E] should be split
equally between E and F for this cost must be covered as soon as any of them receives
mail, that of [B, D] should be split three ways among D, E , and F , and so on. Hence we
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have the following cost shares:

xA = 1
5 20 = 4, xB = xA + 1

4 10 = 6.5, xD = xB + 1
3 60 = 26.5

xE = xD + 1
2 10 = 31.5, xF = xE + 10 = 41.5

The cost structure of example 5.2 appears in many contexts. The line may represent
an irrigation ditch from the source O (river) to its end point E , and we must share the
maintenance cost of the canal (taken to be proportional to its length) among the different
farms, A, B, . . . located along the canal.

More generally, consider the cost of building the capacity of a common facility. The
length of a runway increases in the size of the planes that use it, the depth of a harbor
increases in the size of ships, or the cost of a network increases with the bandwidth of a
link. In each case agent i requires a capacity that costs ci to build, and the stand-alone cost
of building the capacity required by the set of agents S is

C(S) = max
i∈S

ci (3)

For the technology (3) the separation argument of example 5.2 is easily adapted. Order
the agents by increasing capacities, say c1 ≤ c2 ≤ · · · ≤ cn. Note that the cost of serving S
never exceeds cn−1 if S does not contain agent N , and always surpasses cn−1 by cn − cn−1

if S does contain this agent. Therefore assign the cost of increasing capacity from the level
required by agent n − 1 to that required by agent n, to agent n only. Split similarly the cost
cn−1 − cn−2 of increasing capacity from level n − 2 to level n − 1, equally among agents
(n − 1) and n, and so on. The final cost shares are as follows:

x1 = 1

n
c1, x2 = x1 + 1

n − 1
(c2 − c1), x3 = x2 + 1

n − 2
(c3 − c2)

xn = cn −
(

1

2
cn−1 + 1

6
cn−2 + · · · + 1

n(n − 1)
c1

) (4)

5.2 The Shapley Value: Definition

The basic model of the commons that is the subject of the current chapter was introduced
more than fifty years ago in von Neumann and Morgenstern’s Theory of Games, and is
known in the jargon of that theory as the model of cooperative games with transferable
utility. In the cost-sharing interpretation, the model specifies the set N = {1, 2, . . . , n} of
agents who each want one unit of “service,” and for each nonempty subset S of N (also called
the coalition S of agents) a stand-alone cost C(S) of serving the (agents in) coalition S.
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For instance, in example 5.2, “service” is mail delivery and C(S) is the cost of the smallest
tour passing all i in S (ignoring the agents in N\S altogether). Thus the cost function C
itself is the commons, the technology shared by all agents. The problem is to divide fairly
the cost C(N ) of serving everyone when fairness is meant to reward the responsibility
of the various agents in the total cost. Unlike formula (1), the Shapley value takes into
account the stand-alone costs of all coalitions S containing more than one but fewer than n
agents.

In the surplus-sharing interpretation, the number C(S), often denoted v(S), represents the
efficient revenue (measured in money, or in some other numéraire) that the agents in S can
generate by some unspecified manner of cooperation. The problem is to divide total revenue
v(N ) by taking fairly into account the revenues v(S) that various coalitions generate when
standing alone. Two fundamental examples are the commons model of chapter 6, where
v(S) takes into account both the benefits and costs of production when the agents in S
use the commons efficiently, and the exchange economy in chapter 7 where the agents are
buyers or sellers and v(S) is the total trading surplus of coalition S, meaning the net total
benefit when the buyers and sellers in S trade optimally their own resources.

All examples in sections 5.1, 5.2, and 5.3 are cast in the cost-sharing framework. The
examples in section 5.4 illustrate the (more subtle and more general) surplus-sharing model,
as a prelude to its systematic application in chapters 6 and 7.

The Shapley value translates the Reward principle into an explicit division of C(N )

based on the 2n − 1 numbers C(S), for all nonempty coalitions S. Formally this resembles
the deficit or excess sharing problem of sections 2.2 through 2.4, where the division of t
units of resources is based on the n numbers xi (the claims, or demands). Yet the jump in
mathematical complexity from n + 1 to 2n − 1 numbers is considerable, and the simple
principles of proportionality, equal gains or losses cannot be generalized.

Example 5.3 Two Simple Three-Person Problems Each of three agents Ann, Bob, and
Dave want a “service,” and we have determined the following seven stand-alone costs:

C(A, B, D) = 120, C(i) = 60 for i = A, B, D (5)

C(AB) = C(AD) = 120, C(B D) = 60 (6)

Notice that we write C(i) for the stand-alone cost of agent i, whereas the notation ci was used
in examples 5.1 and 5.2. The new notation is heavier but more transparent once all stand-
alone costs play a role. The cost-saving 3C(i) − C(AB D) = 60 should not be divided
evenly because the cost of serving each of the three pairs i j reveals more externalities
between Bob and Dave than between Ann and either Bob or Dave.
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Imagine that service consists of a cable connection to the source O. Ann lives 60 kilo-
meters to the west of O, while Bob and Dave live in the same location, 60 kilometers to
the east of O. Thus Bob and Dave can share the same cable. If the cost of cable is $1
per kilometer, the pattern of stand-alone costs is precisely (5). The separation argument in
example 5.2 makes clear that Ann should pay her full stand-alone cost, whereas Bob and
Dave split the cost-saving (they each pay 30).

The point of the Shapley value is that we can deduce exactly the same cost shares from
the seven numbers, (5) and (6), without invoking a specific representation of the problem,
geographic or otherwise. The argument is that the marginal cost of serving Ann is 60, no
matter who among Bob and Dave is or is not served:

C(A) = C(AB) − C(B) = C(AD) − C(D) = C(AB D) − C(B D) = 60

From these equalities the Shapley value assigns the cost share 60 to Ann. Since they play
symmetric roles in (5) and (6), Bob and Dave split equally the remaining cost of 60.

Now we introduce what seems like a small modification of the stand-alone costs of a
two-person coalitions (other costs being unchanged):

C(AB) = 120, C(AD) = C(B D) = 60 (7)

The coalitions {A, D} and {B, D} achieve a cost-saving of $60, whereas the coalition
{A, B} gets no saving whatsoever. Therefore Dave bears a larger share of responsibility for
the overall saving $60. Should all this saving be passed to him, who would then pay nothing
at all while Ann and Bob pay $60 each? That would be going too far, since Dave cannot
get service for free when he stands alone. He needs Ann or Bob to bring about the saving,
whence Ann and Bob must get some shares of it as well.

It is easy to represent the cost pattern (5) and (7) by a cable connection story. The three
agents live in the same location, connected to the source O by a red cable and a blue cable.
It costs $60 to rent either cable. Ann’s machine (resp. Bob’s) can only be connected via the
blue cable (resp. the red cable). Dave’s machine can use either cable, and two machines can
use the same cable.

Yet the story of the red and blue cables does not help because Dave’s responsibility in
the cost of the red cable depends in some way of his cost share of the blue cable, and vice
versa. There is no simple separation argument.

The Shapley value orders randomly Ann, Bob, and Dave, with equal probability on all
six orderings, and assigns to an agent his expected marginal cost. For instance, the ordering
B, A, D, yields the marginal costs

xB = C(B) = 60, xA = C(AB) − C(B) = 60, xD = C(AB D) − C(AB) = 0
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The six orderings and corresponding marginal costs are depicted in the following table:

Marginal Cost shares

Ordering Ann Bob Dave

A, B, D 60 60 0

A, D, B 60 60 0

D, A, B 0 60 60

D, B, A 60 0 60

B, D, A 60 60 0

B, A, D 60 60 0

Shapley value 50 50 20

where the last row of cost shares is the arithmetic average of the six rows above. Thus Dave
keeps 2

3 of cost savings 60, while Bob and Ann gets 1
6 each.

In general, for a given ordering of N , the marginal cost of serving agent i is xi =
C(S ∪ {i}) − C(S), where S is the set of agents preceding i in this ordering. The Shapley
value imputes to agent i the (arithmetic) average of her marginal costs over all orderings
of N . This share is her expected marginal cost when one of the n! orderings of N is chosen
at random (and with uniform probability over all orderings).

To write a precise formula for the Shapley value requires some combinatorial notations.
Given N = {1, 2, . . . , n}, we write Ai for the set of coalitions not containing agent i , and
Ai (s) for the subset of Ai containing the coalitions of size s (where s is a number between
0 and n − 1); thus for s = 0, Ai is the empty set, and for s = n − 1 it contains the single
coalition N\{i}. The Shapley value charges the following cost share to agent i :

xi =
n−1∑
s=0

∑
S∈Ai (s)

s!(n − s − 1)!

n!
{C(S ∪ {i}) − C(S)} (8)

In this summation the coefficient s!(n − s − 1)!/n! is the probability that the coalition S
(of cardinality s) contains precisely all the agents preceding i in a random ordering of N .

For instance, this probability equals 1/n if S is empty (the probability that agent i comes
first in the ordering), equals 1/n if S = N\{i} (the probability that i comes last), equals
1/n(n − 1) if S = { j} (the probability that j comes first and i comes second), and so on.

The Shapley value formula is the single most influential contribution of the axiomatic
approach to distributive justice. Its applications are diverse and numerous, as the examples
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in the next two sections and the discussion of chapters 6 and 7 demonstrate. Its normative
justifications are very solid, as explained in section 5.5.

In a two-person problem, the Shapley value assigns the cost shares (2), as one sees at
once by averaging marginal costs over the two orderings 1, 2 and 2, 1.

In a problem with three agents 1, 2, 3, formula (8) gives the following cost share for
agent 1:

x1 = 1
3 C(1) + 1

6 (C(12) − C(2)) + 1
6 (C(13) − C(3)) + 1

3 (C(123) − C(23))

= 1
3 C(123) + 1

6 (C(12) + C(13) − 2C(23)) + 1
6 (2C(1) − C(2) − C(3))

(9)

Formula (9) also obtains by writing a table of marginal costs for the six ordering of 1, 2, 3
as we did in example 5.3, and averaging over the six rows.

We conclude this section by checking that in example 5.2, the Shapley value selects the
very cost shares derived from the separation argument.

The cost function takes the form

C(S) = max
i∈S

ci

and cA = 20, cB = 30, cD = 90, cE = 100, cF = 110

Observe that in any ordering of {A, B, D, E, F}, the marginal cost of Ann is $20 if she
comes up first, and zero otherwise; that of Bob is decomposed in two parts: $20 if he comes
up first, plus $10 if he is first among B, D, E, F (his marginal cost can be 30 or 10 or zero);
that of Dave is $20 if he is first in N plus $10 if he is first among B, D, E, F , plus $60 if
he is first among D, E, F ; and so on. Therefore the $20 corresponding to the cost cA are
shared equally among all five agents; the next $10 = cB − cA are shared equally among
B, D, E, F ; the next $60 = cD − cB are shared equally among D, E, F , and so on, as in
example 5.2. This argument generalizes to any cost function C taking the form (3), and
gives the cost shares (4).

5.3 The Stand-alone Test and Stand-alone Core

A commons has subadditive costs if the production of the output (service to different agents)
is cheaper for a group of agents than it is for each agent separately: the joint production
brings positive externalities, cost savings that we must allocate among the participants. In
the formal model S → C(S) introduced in the previous section, the subadditivity property
says that for any two disjoint coalitions S, T, the stand-alone cost of S ∪ T is not higher
than the sum of stand-alone costs of S and of T :

subadditivity: C(S ∪ T ) ≤ C(S) + C(T ) when S and T are disjoint
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Applying this property repeatedly yields an inequality that has already been discussed in
examples 5.1 and 5.3: total cost is not larger than the sum of stand-alone costs:

C(N ) ≤
∑
i∈N

C(i)

Most examples discussed in this chapter involve subadditive costs (e.g., examples 5.2
through 5.8). However, the symmetric property of superadditive costs is also plausible.
There the production of output involves negative externalities so that the stand alone cost
of S ∪ T is greater (at least, not smaller) than the sum of the stand-alone costs of S and T :

superaddivity: C(S ∪ T ) ≥ C(S) + C(T ) when S and T are disjoint

⇒ C(N ) ≥
∑
i∈N

C(i)

Under superadditive costs, serving a group of agents is more expensive than serving each
one separately.

Examples 5.1 offers a simple superadditive cost function. Many of the commons discussed
in chapter 6 have superadditive costs. The typical example is a commons involving conges-
tion, such as a pasture (example 6.2), a mine (example 6.6), or a queue (example 7.7). The
entire discussion of chapter 6 is articulated around the two polar cases of increasing marginal
costs (hence the superadditive cost function) and of decreasing marginal costs (hence the
subadditive cost function): the two cases are important and interestingly different.

The stand-alone test is a simple fairness property directly inspired by the properties of
sub- or superadditivity. It requires that everyone gets a share of the positive (resp. negative)
externality created by a sub- (resp. super-) additive cost function.

Stand-alone Test

C subadditive ⇒ xi ≤ C(i)

C superadditive ⇒ xi ≥ C(i)

The test says that when the externality from joint production is of a constant sign, it should
affect all the participating agents in the same direction.

Remarkably, the Shapley value meets the stand-alone test. To see this, recall the compu-
tation of the cost share xi as the expected marginal cost C(S ∪ {i})− C(S) of agent i, when
S is the random set of agents preceding i in formula (8). Sub- (resp. super-) additivity of C
gives

C(S ∪ {i}) − C(S) ≤ C(i), resp. ≥ C(i)

hence the claim.
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Figure 5.2
Mail distribution: Example 5.4

The stand-alone test is both compelling and easy to meet. Its generalization as the stand-
alone core property is natural, but much more demanding.

Example 5.4 A Variant of Example 5.2 The five villages of example 5.2 are now four,
and they are located along the single road starting at the source � and passing successively
through A, B, D, and E . Distances a/2, b/2, d/2, e/2 correspond respectively to the in-
tervals �A, AB, B D, and DE; see figure 5.2. The cost function S → C(S) is computed
exactly as in example 5.2: the stand-alone cost C(S) is the length of the shortest roundtrip
starting at � and passing through all the locations in S. The Shapley division of total cost
C(N ) = a + b + d + e is deduced from the separation argument leading to formula (4):

xA = a

4
, xB = a

4
+ b

3
, xD = a

4
+ b

3
+ d

2
, xE = a

4
+ b

3
+ d

2
+ e

Assigning cost shares in proportion to stand-alone costs is prima facie a reasonable solution:

xA = a + b + d + e

4a + 3b + 2d + e
a, xB = a + b + d + e

4a + 3b + 2d + e
(a + b)

xD = a + b + d + e

4a + 3b + 2d + e
(a + b + d), xE = (a + b + d + e)2

4a + 3b + 2d + e

The cost function is subadditive,4 and the proportional solution obviously passes the
stand-alone test because every cost share is but a fraction of one’s stand-alone cost. On
the other hand, some coalition of agents may end up paying more than stand-alone cost.
For instance, if we choose a = 10, b = d = 5, e = 50, the proportional cost shares are
computed as

xA = 6.09, xB = 9.13, xD = 12.17, xE = 42.61

Thus S = {A, B, D} end up paying 27.39 or 37 percent more than their stand-alone cost
of 20. They are effectively subsidizing village E, which pays even less than the cost of the

4. The shortest trip stopping at every point of S ∪ T is shorter than any two round-trips serving all points in S and
T respectively.
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tour from D to E and back, for which E is solely responsible. Note that a similar argument
applies to S′ = {A, B}, which end up paying 15.22, or about 1.5 percent more than their
stand-alone cost of 15.

The Shapley cost shares, on the other hand, never charge to a coalition S more than its
stand-alone cost. This is clear from the formula above, because the agents in a coalition S
pay only toward the cost of these segments that enter in the stand-alone cost of S.

The stand-alone core generalizes the stand-alone test to all coalitions of agents. Under
subadditive costs, it views the stand-alone cost C(S) as an upperbound on the total cost
share of S; under superadditive costs, it takes this number as a lower bound on the cost
imputed to S

Stand-alone Core

C subadditive ⇒
∑
i∈S

xi ≤ C(S) for all S ⊆ N

C superadditive ⇒
∑
i∈S

xi ≥ C(S) for all S ⊆ N

The stand-alone core property is often interpreted as a bargaining argument (private
contract) when the cost is subadditive. Suppose that any coalition S can form and use freely
the technology C as it pleases (in particular, agents in N\S cannot object to, or block in any
way, S’s production plan). Because the cost function C is subadditive, it is always efficient
to use a single copy of the technology C to serve everyone. However, coalition S can use its
stand-alone options as a disagreement outcome (as in section 3.6), rejecting accordingly any
profile of cost shares (xi ) where it is charged more than C(S). This argument only applies
to a subadditive cost function. Even then, it must be taken with a grain of salt because the
core property may prove altogether impossible to meet (see example 5.8).

In the rest of this section we show that the bite of the stand-alone core property varies
wildly from one specification of the cost function to the next. In examples 5.4 and 5.5
the property cuts a large set of acceptable cost shares, among which the Shapley value is
normally to be found; in another case (example 5.6) the core property cuts a very small set
(even a singleton, example 5.7) of cost shares, and in this case the Shapley value is typically
not in the core. Finally the stand-alone core property may be altogether too demanding,
despite the sub- or superadditivity of the cost function (example 5.8).

Example 5.5 Another Mail Distribution Problem The road network depicted on fig-
ure 5.3 shows the source (post office) at � and the three customers Ann, Bob, and Dave.
The network is more complicated than in examples 5.2 and 5.4, but the problem is the same:
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Figure 5.3
Mail distribution: Example 5.5

How should we divide the total cost of the daily tour between the three customers? The
separability argument used in examples 5.2 and 5.4 does not apply here: we cannot allocate
separately the cost of the various intervals of the network.

The shortest tour visiting A, B, and D goes from � successively to A, D, B, and back
to � for a total cost

C(A, B, D) = 10 + 8 + 8 + 10 = 36

The stand-alone cost of A is 20 (going from � to A and back) as is that of B, whereas it
takes a full $36 to visit D:

C(A) = C(B) = 20, C(D) = 36

Similar computations yield the stand-alone costs of two agents coalitions. For instance,
the shortest tour passing through A and B costs 10 + 9 + 10 = 29:

C(AB) = 29, C(AD) = C(B D) = 36

The cost function C is subadditive as C(i j) ≤ C(i) + C( j) and C(ABC) ≤ C(i) + C( jk)

for all combinations of {i, j, k} = {A, B, D}. The stand-alone core property places the
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following bounds on the cost shares xA, xB, xC :

xA, xB ≤ 20; xD ≤ 36

xA + xB ≤ 29; xA + xD, xB + xD ≤ 36

In view of the equality xA + xB + xD = 36, these six inequalities can be written in a
more compact way:

0 ≤ xA ≤ 20, 0 ≤ xB ≤ 20, 7 ≤ xD ≤ 30

This system cuts a large subset of acceptable cost shares x, and falls very short of recom-
mending a precise compromise between the share imputed to D, on one hand, and A, B,
on the other hand.

If we respect the symmetry between A and B, we may at one extreme favor A, B against
D as far as xA = xB = 0, xD = 36; at the other extreme, xA = xB = 14.5, xD = 7 is still in
the stand-alone core. And we may also break the symmetry between A and B, for instance,
xA = 0, xB = 20, xD = 16.

Given the loose constraints imposed by the stand-alone core property, if is not surprising
that the Shapley value passes this test. This solution is computed with the help of (9) as

x∗
A = x∗

B = 8.17, x∗
D = 19.67

The next example starts from the same set of users on the same road network as exam-
ple 5.5 but modifies the technology for providing service to these users. Instead of running
a daily tour of all users, it is now necessary to run along the existing roads the shortest cable
that will connect them to the source.

For the road network of example 5.2, depicted on figure 5.1, the length of the shortest
cable joining the source � to the five locations A, B, D, E, F is exactly half that of a
tour visiting them all; the same applies to any subset of locations. Thus the cost-sharing
games “mail distribution” and “access to a network” are isomorphic (up to a factor of 2) for
this road network.5 By contrast in the case of the network of figure 5.3, the two technologies
yield very different patterns of stand-alone costs; in the access problem, the stand-alone
core shrinks to a small set.

Example 5.6 Access to a Network The three customers Ann, Bob, and Dave need to be
connected to a network with its source at �. In order to connect � to A, B, D—or to any
subset of these three—the shortest feasible cable will be used along the links of the network
of figure 5.3. The cost of a connection is the total length of the cable.

5. Exercise 5.7 generalizes this observation to all “tree” networks, meaning all networks without cycles.
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Thus, in order to connect Ann alone, we need a cable between � and A for a stand-alone
cost C(A) = 10. In order to connect Ann and Bob, we run a cable from � to A and from A
to B (or from � to B and B to A) for a total cost C(AB) = 19. The shortest cable connecting
A, B, and D uses three links �A, AD, and DB (or �B, B D, and D A), and so on. Hence
we have the cost function

C(A) = C(B) = 10, C(D) = 18

C(AB) = 19, C(AD) = C(B D) = 18, C(AB D) = 26

As in the previous example this cost function is subadditive. But unlike in that example, the
stand-alone core property cuts a very small subset of cost shares:

xA ≤ 10 and {xB + xD ≤ 18 ⇒ xA ≥ 8}
where the implication follows from the budget balance condition xA + xB + xD = 26. Thus
xA and, by symmetry, xB are between 8 and 10. Similarly

xA + xB ≤ 19 ⇒ xD ≥ 7, xA, xB ≥ 8 ⇒ xD ≤ 10

To sum up, a triple of cost shares xA, xB, xD is in the stand-alone core if (and only if) it
meets the following system:

8 ≤ xA, xB ≤ 10, 7 ≤ xD ≤ 10, xA + xB + xD = 26

The cost-sharing most advantageous to Ann and Bob (and treating them equally) is xA =
xB = 8, xD = 10; the least advantageous is xA = xB = 9.5, xD = 7. A good compromise
is xA = xB = 9, xD = 8.

The logic of the Shapley value solution is very different, and indeed the cost shares it
recommends do not meet the stand-alone core property:

x∗
A = x∗

B = 7.5, x∗
D = 11

In our next example the stand-alone core contains a single set of cost shares, yet this
unique allocation is not convincing.

Example 5.7 Example 5.3 Continued Consider the three-person cost-sharing example
given by (5) and (7), which we repeat for convenience:

C(AB D) = 120, C(i) = 60 for i = A, B, D

C(AB) = 120, C(AD) = C(B D) = 60

These costs are subadditive. The Shapley value was computed as xA = xB = 50, xD = 20. It
fails the stand-alone core property by virtue of an objection of S = {A, D} (or {B, D}): they
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can ignore Bob and split their own stand-alone cost of 60 as x ′
A = 45, x ′

D = 15, from which
they both benefit. Now Bob can offer an even better deal to Dave, say x ′′

B = 50, x ′′
D = 10: this

deal is feasible to Bob and Dave standing alone, and better for Bob than being left in the cold.
The bidding for Dave’s cooperation does not stop here: Ann can offer an even better deal

to Dave (e.g., x ′′′
A = 55, x ′′′

D = 5), and so on. The only resting point of the bidding war is
when Dave has extracted the entire surplus: indeed, the unique vector of cost shares in the
stand-alone core is xA = xB = 60, xD = 0. This allocation may be plausible if Dave plays
Ann against Bob, who never think of colluding against Dave. But it is not a plausibly fair
division of the cooperative surplus, of which all the credit cannot go to Dave.

The next example is a subadditive cost function where the stand-alone core property is
logically impossible.

Example 5.8 Buying a Software Ann, Bob, and Dave want to purchase software to meet
certain word-processing needs. There is no shortage of software on the market, but not all
are compatible with either of their computers, nor do they fill all their needs.

After carefully studying the market, our partners have located four software products:

Software product Satisfactory for Cost

X Ann, Dave $800

Y Bob, Dave $900

Z Ann, Bob $1,000

E Ann, Bob, Dave $1,700

Every other software product is dominated by one of these four products. Software S is
dominated by S′ if S′ is not more expensive than S, if it satisfies at least the same needs, and
if at least one of these two comparisons is strict. The cheapest software meeting Ann’s needs
costs $800, which is Ann’s stand-alone cost. Similarly C(B) = 900 and C(D) = 800.

Computing the Shapley value with the help of (9), we find that

x∗
A = 550, x∗

B = 650, x∗
D = 500

On the other hand, the stand-alone core property yields a logically impossible system of
three inequalities and one equality:

xA + xB ≤ 1,000, xA + xD ≤ 800, xB + xD ≤ 900

and

xA + xB + xD = 1,700

Adding the three inequalities yields xA + xB + xD ≤ 1,350, a contradiction.



moulin-79027 book October 22, 2002 16:10

155 5.3 Stand-alone Test and Stand-alone Core

A natural solution in the spirit of these (out of reach) inequalities is this profile of cost
shares where each inequality is violated by the same amount, namely

xA + xB − 1,000 = xA + xD − 800 = xB + xD − 900

This system—together with the constraint that total cost is $1,700—yields the cost shares:

xA = 567, xB = 667, xD = 467

which are not too different from the Shapley value, although the spread xB−xD has increased
to $200.

In cooperative game theory the two ideas of the Shapley value and the stand-alone core
have been studied for general cost or surplus functions S → C(S) (cooperative games with
transferable utility). The feasibility of the stand-alone core property and the relation between
the Shapley value and the stand-alone core have been investigated with full mathematical
generality.

Finally, a couple of solutions selecting, for any cost function, a central point within the
stand-alone core (or in the spirit of the stand-alone inequalities if the core is empty) have
been constructed: example 5.8 provides an illustration.

Our last example is meant to remind us of one great advantage of the Shapley value,
namely that it applies equally well to a cost function that is neither sub- nor superadditive.
For such a cost function, even the stand-alone test ceases to make sense.

Example 5.9 Location of a Post Office We modify example 5.2 by allowing the five agents
to choose the location of the post office anywhere on the road network (as in examples 3.4
and 3.8) and the cost to be shared is that of the daily delivery tour starting from the post
office and passing through all relevant customers.

Thus in the network of example 5.2 (figure 5.1) any location between A and F is efficient:
the corresponding tour costs C(AB DE F) = 90. Similarly C(AB DE) = 80, C(B E) = 70,
and so on. This cost function is neither sub- nor superadditive because

C(AB DE) = 80 > 10 + 10 = C(AB) + C(DE)

C(AB DE) = 80 < 70 + 70 = C(AD) + C(B E)

Thus the logic of the stand-alone core does not apply.
The Shapley value, on the other hand, suggests a judicious way to cut through the thorny

pattern of externalities. Direct computation of this solution as the expected marginal cost is
tedious—there are 120 orderings of five agents—but an argument based on the additivity
property of the value (section 5.5) delivers the answer almost at once.
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Consider the cost 60 of the interval B D (each interval is traveled on twice). In a random
ordering of the five agents if will be imputed to one of A, B if (and only if) one of D, E, F
is drawn first, and to one of D, E, F if (and only if) one of A, B is drawn first. As the agents
A, B are equal in this subproblem (i.e., the costsharing of the interval B D), they receive
an equal expected share, and D, E, F are treated equally as well. Thus the cost of interval
B D is divided as

A, B each pay
1

2
· 3

5
· 60 = $18

D, E, F each pay
1

3
· 2

5
· 60 = $8

Similar computations for each of the four intervals give

Intervals A B D E F Total cost

AB 8 0.5 0.5 0.5 0.5 10

B D 18 18 8 8 8 60

DE 1.33 1.33 1.33 3 3 10

E F 0.5 0.5 0.5 0.5 8 10

Shapley value 27.83 20.33 10.33 12 19.5 90

Exercise 5.7 generalizes this decomposition argument.

5.4 Stand-alone Surplus

We illustrate the versatility of the surplus-sharing model, defined by a pair (N , v) where
the function v associates to every coalition S in N a “surplus” v(S). To interpret v(S), we
go through the Gedank experiment where the agents in S cooperate, and use efficiently
the resources they control. This results in a net benefit v(S), the stand-alone surplus of
coalition S that can be distributed as easily as money among the members of S. An important
assumption is that individual utilities are measured in a common numéraire (e.g., cash) that
is freely transferable across agents, and moreover the marginal utility of the numéraire is
constant (utility is linear in money).

The key to the construction above is to define what resources the agents in S control when
they stand alone. Depending on the context this control is derived from “real” property rights
or from “virtual” ones. The exchange of private goods under private ownership (discussed
in sections 7.1 and 7.2) is a case where the property rights are real: agents in S are free to
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trade among themselves; the corresponding stand-alone core property is thus interpreted
as a positive statement about the stability of private contracts. On the other hand, in most
instances of the commons problems (chapter 6), the stand-alone surplus represents a virtual
appropriation of the technology by a certain coalition: this surplus is nevertheless relevant to
the normative discussion, and the application of a general solution like the Shapley value is
vindicated. In the “mail distribution” stories (examples 5.2, 5.5, and 5.9) a coalition of agents
is not legally able to dismiss the agents outside the coalition, but doing so as a thought experi-
ment is a good way to untangle the web of mutual externalities. The public contract concerns
all agents in N without dropping anyone, but it is fair by reference to what would happen
if some agents were dropped. This interpretation pervades this chapter and the next one.

Example 5.10 Example 5.5 Revisited As in example 5.5 the problem is to share the cost
of mail delivery on the road network of figure 5.3. The difference is that we now take into
account how much each agent is willing to pay for to receive mail everyday. Specifically
we assume that

u A = $18, uB = $11, uD = $16

We compute the surplus function S → v(S) for each one of the seven coalitions in
{A, B, D}. A single agent is not willing to pay for his own stand-alone cost (u A = 18 <

20 = C(A), etc.); therefore v(i) = 0 for i = A, B, D. Similarly any two agents’ coalition
is unable to achieve a positive surplus

u A + uB = 29 ≤ 29 = C(AB)

u A + uD = 34 < 36 = C(AD)

uB + uD = 27 < 36 = C(B D)

therefore v(i j) = 0 for all two-person coalitions. Now efficiency commands to serve all
three agents as C(AB D) = 36 < 45 = u A + uB + uD; therefore v(AB D) = 9.

The surplus function is thus very simple: all three agents are equal hence the Shapley
value (or any solution treating equals equally; see section 5.5) declares that each one should
receive $3 of surplus, which amounts to the following cost shares:

xA = 15, xB = 8, xD = 13

Compare these with the cost shares in example 5.5: now Ann is paying the biggest share,
whereas Bob gets a rebate. Consideration of the net benefits turns the analysis on its head.

Notice that for some other choices of the willingness to pay, the surplus-sharing ap-
proach leads to virtually the same recommendation as in example 5.5: exercises 5.2 gives
an example.
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Our next example illustrates an important features of the stand-alone surplus compu-
tations: a coalition S standing alone may maximize its surplus by serving only a subset
of S.

Example 5.11 Example 5.6 Revisited The problem is to share the cost of a cable con-
necting A, B, and D to the source and following the links of the network of figure 5.3. We
now assume the following willingness to pay for connection to the network:

u A = $12, uB = $8, uD = $12

Ann would pay for a connection if she was standing alone, and her net surplus would be
v(A) = 2. Neither Bob nor Dave would buy a connection on their own: v(B) = v(D) = 0.

Efficiency allows to connect only Ann and Dave, for a net surplus 12 + 12 − 18 = 6 or all
three agents for the same net surplus. Therefore

v(AD) = v(AB D) = 6

The coalition AB standing alone would not include Bob:

u A + uB − C(AB) = 1 < 2 = u A − C(A)

hence

v(A) = v(AB) = 2

On the other hand, the coalition B D would gladly pay to connect both agents, for a surplus
v(B D) = 8 + 12 − 18 = 2.

The surplus function v just computed is superadditive, as the reader can easily verify.
The stand-alone property requires to deny any positive share of surplus to Bob:

{yA + yD ≥ 6 = yA + yB + yD and yB ≥ 0} imply yB = 0

Ann and Dave share the surplus along the following guidelines:

2 ≤ yA ≤ 4, 2 ≤ yD ≤ 4, yA + yD = 6

The Shapley value takes a sharply different view point to distribute the six units of surplus.
Bob is entitled to a positive share of surplus because he contributes a positive amount while
working with Dave: v(B D) > v(D). Therefore his marginal contribution is 2 whenever the
ordering drawn is D, B, A. Compute the Shapley surplus shares with the help of formula (9),
where cost is replaced by surplus

yA = 3.33, yB = 0.33, yD = 2.33
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If all three agents are connected, the cost shares are

xA = 8.67, xB = 7.67, xD = 9.67

If only Ann and Dave are connected, Bob deserves a small cash compensation of 33cts for
stepping aside and the other two agents pay:

x ′
A = 8.67, x ′

D = 9.67

which covers the cost of connecting them, plus 33cts for Bob.

*5.5 Axiomatizations of the Shapley Value

The Shapley value has been axiomatically characterized in a number of ways, of which four
are presented below.

A cost (or surplus) sharing problem is a pair (N , C) where N is a finite set of agents and
C associates to each nonempty coalition S a real number C(S). A solution associates to any
such problem (N , C) a profile x = γ (N , C) such that

x = (xi )i∈N and
∑
i∈N

xi = C(N )

The original characterization (due to Shapley) uses three axioms: equal treatment of
equals, dummy, and additivity.

Equal treatment is the translation of equal exogenous rights (section 2.1) in the cost-
sharing problem. We say that agents i and j are equal with respect to (N , C) if C(S ∪ {i}) =
C(S ∪ { j}) for any set S in N containing neither i nor j (including the empty set).

Equal Treatment of Equals If i, j are equal w.r.t. (N , C), then γi (N , C) = γ j (N , C).

The dummy axiom is normatively the most important of the three because no other axiom
conveys the reward principle. Dummy does so in a fairly convincing way, by considering
an agent for which the marginal cost of joining any coalition S is zero. Say that agent i is a
dummy in problem (N , C) if we have

∂i C(S) = C(S ∪ {i}) − C(S) = 0 for all S ⊆ N

Note that for a coalition S already containing agent i, the marginal cost ∂i C(S) is zero by
definition; therefore the property above has bite only for the coalitions S in Ai (i.e., not
containing i).

The dummy axiom requires that a dummy agent pays nothing:

{∂i C(S) = 0 for all S} ⇒ γi (N , C) = 0
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The third axiom, additivity, is the most mathematically demanding, and is motivated as a
decentralization property. Consider a cost function C made up of two independent costs
Ci , i = 1, 2 : C(S) = C1(S) + C2(S) for all S. For instance, if the service provided to the
agent is cable TV, C1 may represent the (one-time) cost of installing the cable connection
and C2 the variable costs of the cable company (e.g., maintenance cost of the line). The
additivity axiom requires the cost shares to depend additively on the cost function:

γ (N , C1 + C2) = γ (N , C1) + γ (N , C2)

Shapley’s original characterization result says that the Shapley value is the only solution
meeting the three axioms equal treatment of equals, dummy, and additivity. We provide the
main idea of the proof by looking, once again, at example 5.2.

We define five subproblems, the sum of which is the initial cost-sharing problem:

C A(S) = 20 for all S �= ∅
C B(S) = 10 for all S s.t. S ∩ {B, D, E, F} �= ∅; zero otherwise

C D(S) = 60 for all S s.t. S ∩ {D, E, F} �= ∅; zero otherwise

C E (S) = 10 for all S s.t. S ∩ {E, F} �= ∅; zero otherwise

C F (S) = 10 for all S containing F ; zero otherwise

Check first that the cost function C given by (3) is precisely C = C A +C B +C D +C E +
C F . Next consider one of the subproblems, say C D. Here agents A and B are dummies,
and moreover D, E , and F are equal with respect to C D. Therefore equal treatment and
dummy imply that A and B pay nothing and D, E, F share equally the cost C D(N ) = 60.

Repeating this argument, we find that the cost of C A is shared equally among all agents, that
of C B among B, D, E, F , and so on. In turn the additivity property yields the cost shares
computed in examples 5.2.

The next characterization of the Shapley value replaces the dummy and additivity axiom
by a single property called

Marginalism For any two games (N , C 1
), (N , C 2

) and any agent i ,

{∂i C
1(S) = ∂i C

2(S) for all S} ⇒ {γi (N , C 1
) = γi (N , C 2

)}
This says that agent i’s cost share γi (N , C) depends only on the list ∂i C(S) of his marginal
contributions to all coalitions S.

It is easy to check that the only marginalist and symmetric solution for two-person
problems is the Shapley value (8). Indeed, such a solution takes the form

y1 = f (C(1), C(12) − C(2)), y2 = f (C(2), C(12) − C(1))
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for some function f . The budget balance gives the following equation, upon using the letter
variables x, y, z for C(1), C(2), C(12):

f (x, z − y) + f (y, z − x) = z for all x, y, z

It is a simple mathematical exercise to deduce that f (x, x ′) = 1
2 (x + x ′) and the announced

result for two-person problems.
To sum up, the Shapley value is the only solution for cooperative games satisfying

{dummy, additivity, and equal treatment} or {marginalism and equal treatment}. All of the
results discussed so far involve a fixed set N of agents, also called a fixed population. By
contrast, the next two characterizations rely on variable population axioms. Given a game
(N , C) we denote by (N\i, C−i ) the restriction of this game to the subset N\i, namely
C−i (S) = C(S) for all S contained in N\i .

Equal Impact The impact of removing agent j on agent i’s share is the same as that of
removing agent i on agent j’s share:

γi (N , C) − γi (N\ j, C− j ) = γ j (N , C) − γ j (N\i, C−i )

Equal impact, unlike additivity, is a fairness statement. Additivity is a structural invariance
property. Marginalism is somewhere in between.

Related to Equal Impact, we have the following axiom:

Potential There exists a real-valued function P(N , C), defined for all cooperative games
(N , C), such that

γi (N , C) = P(N , C) − P(N\i, C−i ) for all N , i, C

The Shapley value is the only solution satisfying potential; it is the only solution satisfying
equal impact. Both results follow an easy induction argument on the size n of N : the
statements are obvious for n = 2 once we note that γi ({i}, C) = C(i) and posit P(∅, C) = 0.

Thus the latter two results are closer to providing a constructive algorithm for deriv-
ing the Shapley value than a genuine axiomatization from first principles, like the two
characterizations described earlier.

We note finally that the cost-sharing methodology leading to the Shapley value can take
into account unequal exogeneous rights.

If we remove the equal treatment requirement, the interesting class of random order
values emerges. For each ordering σ of N , the σ marginal contribution solution γ σ charges
agent their marginal cost γ σ

i (N , C) = ∂i C(S) where S is the set of agents preced-
ing i in σ . For instance, if σ = {2, 4, 5, 1, 3}, we have γ σ

4 (N , C) = C(42) − C(2);
γ σ

1 (N , C) = C(1245) − C(245); and so on. Each solution γ σ meets dummy, additivity, and
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marginalism. The same holds true for any convex combination of these solutions provided
that the coefficients of the combination are constant: these solutions are the random order
values.

Each random order value computes cost shares by (1) drawing at random an ordering σ in
a lottery over orderings that does not depend on the particular function C and (2) charging
σ marginal contributions. The family of all the random order values is characterized by
either dummy + additivity or, essentially, marginalism.

5.6 Introduction to the Literature

The normative analysis of a “value,” which is a fair compromise in the kind of cost- or
surplus-sharing problems discussed in this chapter, is one-half of the theory of cooperative
games with transferable utility. The other half is the strategic analysis of coalition formation,
and is not relevant to this book.

A number of textbook presentations of value theory are available: Owen (1982, chs. 10,
11), Moulin (1988, ch. 5), and Young (1994, ch. 5). The common theme, as in this chapter,
is to contrast the additivity axiom leading to the Shapley value, with the stand-alone core
requirement (interpreted as a normative principle of no subsidization). The latter leads to a
value called the nucleolus (Schmeidler 1969), which is technically more complicated and
normatively less compelling than the Shapley value; we only allude to the nucleolus, a
central point in the stand-alone core, in example 5.8.

On the other hand, our choice of examples emphasizes the versatility of the cooperative
game model, and in this respect it takes inspiration from an important methodological paper
by Shubik (1962), and from a variety of applications to specific problems of joint costs, for
instance, Thomas (1980). Example 5.2 originates in Littlechild and Owen (1973), who were
the first to compute the Shapley value of the capacity cost function (3), in the problem of
allocating airport landing fees. The subsequent literature on minimal cost spanning trees in
networks can be viewed as a generalization of the airport game: it inspires our examples 5.5,
5.6, 5.9, and 5.11. Sharkey (1995) is an excellent survey of the relevant literature.

Many authors have contributed to the multiple axiomatic characterizations of the
Shapley value reviewed in section 5.5. The seminal paper is Shapley (1953). The marginal-
ist characterization is due to Loehman and Whinston (1974) and Young (1985); see also
Chun (1989). The equal impact characterization is due to Myerson (1977), and that by the
potential function to Hart and Mas-Colell (1989). The original characterization of random
order values is due to Weber (1988), and the one based on marginalism to Khmelnitskaya
(1999). The special relation between the Shapley value and the stand-alone core in concave
cost-sharing games is due to Shapley (1971): see exercise 5.9.
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Finally, a collection of essays is devoted exclusively to the Shapley value. Roth (1988)
is still a useful introduction to the many applications and variants of this concept.

Exercises to Chapter 5

Exercise 5.1 Traveling Lecturer

A lecturer will visit Chicago, New York, and Washington from his home base in Boston.
The cost of the round-trip of all six partial trips to a single city or a pair of cities is as
follows:

Chicago 400 Chicago and New York 450

New York 300 Chicago and Washington 500

Washington 300 New York and Washington 300

Chicago, New York, and Washington 600

a. Check that the cost function is subadditive.

b. How should the three sponsors of the trip, based in the three cities he will visit, split the
total cost according to the Shapley value?

c. Show that the stand-alone core property is feasible in this example, and that the Shapley
value does not meet this property.

d. We modify the cost function as follows:

Chicago and New York 400
Chicago and Washington 450
New York and Washington 300

Other stand-alone costs are unchanged. Check subadditivity, and show that now the stand-
alone core is empty. Compute the Shapley value.

Exercise 5.2 Variant of Example 5.10

Assume a common willingness to pay of $18 for all three agents. Compute the stand-alone
surplus function S → v(S) as in example 5.10. Check that v is superadditive and compute
the division of v(AB D) recommended by the Shapley value. Compare the corresponding
cost shares with those found in example 5.5. Does the Shapley value surplus division meet
the stand alone core property (for the superadditive function v)?
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Exercise 5.3 Variant of Example 5.11

Assume a common willingness to pay $10. Answer the same questions as in the previous
exercise (where the comparison is with the cost shares found in example 5.6).

Exercise 5.4 Surplus-Sharing Variant of Example 5.8

Each agent is willing to pay $700 for an adequate software.
Compute the superadditive surplus function S → v(S). Check, in particular, that the

efficient production plan leaves Bob with no software.
Compute the Shapley value and show that it awards a cash transfer to Bob, as a com-

pensation for stepping aside (as in example 5.11). Is the stand-alone core property (for the
superadditive function v) feasible or not?

Exercise 5.5 Variant of Example 5.8

Four softwares a, b, c, d are available on the market, at a price of $100 each. Four agents
want to combine their purchase of a couple of these softwares, so as to meet their specific
needs.

Software a meets the needs of Ann and Bob; software b, that of Bob and Emily; software
c, that of Ann and Dave; software d , that of Ann and Emily. Thus the cheapest way to meet
all individual needs is to buy b and c for $200. The issue is to divide fairly this cost between
the four agents.

a. Compute the stand-alone costs of all 14 coalitions and check the subadditivity property.

b. Compute the cost shares recommended by the Shapley value. Are they in the stand-alone
core?

Exercise 5.6

Ann, Bob, and Dave share the cost of hooking up to a network. Their willingness to pay for
this service is

Ann Bob Dave
60 50 40

The (stand-alone) costs of hooking the various subsets of agents are

C(A) = C(B) = 50, C(D) = 60

C(AB) = C(AD) = 70, C(B D) = 60

C(AB D) = 100
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a. Ignoring first the willingness to pay, compute the cost shares recommended by Shapley
value. Check that it is not in the stand-alone core. Show that the stand-alone core contains
a unique set of cost shares and compute it.

b. From now on we take the willingness to pay into account. Compute the surplus function
and show that efficiency requires serving all three agents.

c. Compute the Shapley value of the surplus function and compute the, again unique,
allocation in the stand-alone core. Compare the cost shares proposed by these two solutions
with the two found in question a by ignoring the willingness to pay.

Exercise 5.7 Tree Networks

A tree is a graph where all nodes are connected and there are no cycles. The agents live
on certain nodes of the tree and to each edge (a link between two nodes) is attached a
cost, building or maintenance cost. The tree on figure 5.4 has five agents living in different
nodes and the source marked �. Example 5.2 is another example where the tree is a simple
line.

a. Consider the mail distribution problem (as in examples 5.2 and 5.5) for the tree of
figure 5.4. Check that the total cost of a tour serving all agents is twice the sum of the costs
of all edges. Compute the cost shares recommended by the Shapley value, by mimicking
the separability argument used in example 5.2.
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10 30
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D

F

10

Ω

Figure 5.4
Network for exercise 5.7
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b. Consider the problem “access to the network” as in example 5.6: the cost of serving a
given coalition S is the total cost of the smallest subtree connecting the source to all agents
in S. Check that the cost function to this problem is exactly one half of the cost function
for the mail distribution problem so that the two problems are identical.

c. Suppose, as in example 5.9, that there is no assigned source and each coalition standing
alone will locate the source so as to minimize the cost of a tour (or, equivalently, the cost
of a subtree connecting everyone in the coalition to the source). Total cost is the same as in
question a but some of the stand-alone costs are different. Compute the Shapley value, by
mimicking the separability argument used in example 5.9.

*d. Generalize the computation of the Shapley value in questions a and c to an arbitrary
tree where one or several agents can live on any one of the nodes.

Exercise 5.8

Consider the network depicted in figure 5.5, showing the three agents A, B, D, the source
� and the cost of each edge.

a. Compute the subadditive cost function of the “mail distribution” problem with source �

as in examples 5.2 and 5.5. Compute the Shapley value profile of cost shares. Does it meet
the stand-alone core property?

b. Compute the subadditive cost function of the “access to the network” problem with
source � as in example 5.6. Show that the stand-alone core is empty.

c. Now, as in example 5.9 and question c of exercise 5.7, the agents can locate a post office
anywhere on the network of figure 5.5 so as to minimize the cost of delivering mail to all
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Figure 5.5
Network for exercise 5.8
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Network for exercise 5.9

of them. Note that the point � has no longer any special meaning, yet the inner network
through � can be used to locate the post office. Compute the stand-alone cost function and
check it is neither super- nor subadditive. Compute the Shapley value.

Exercise 5.9

Consider the four agents network depicted in figure 5.6.

a. Compute the cost function of the mail distribution problem when each coalition can
choose freely the location of the source (as in example 5.9). Note that agents A, B play
symmetric roles, as do D, E . Therefore one only needs to compute eight costs, correspond-
ing to coalitions A, D, AB, DE, AD, AB D, ADE , and AB DE .

b. Compute the cost shares recommended by the Shapley value. (Hint: Use the symmetries
of the problem.)

c. Consider the “access to a network” problem without a fixed source (as in example 5.9).
Thus the cost of a given coalition S is that of the cheapest set of edges connecting all agents
in S. Check that the cost function is neither super- nor subadditive. Compute the Shapley
value.

d. Now the source � is fixed midway on the edge joining Ann and Bob. Compute the cost
functions in the “mail distribution” (example 5.5) and “access to a network” (example 5.6)
versions. Compare with the functions computed in questions a and c above. Finally compute
in both cases the Shapley value.

*Exercise 5.10 Concave Cost Functions

A cost function C is called concave if the marginal cost C(S ∪ i) − C(S) decreases as the
coalition S enlarges. For all coalitions S, T,

S ⊆ T ⇒ C(S ∪ i) − C(S) ≥ C(T ∪ i) − C(T )
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a. For a three-person subadditive cost function, check that concavity is equivalent to three
inequalities:

C(12) + C(23) ≥ C(123) + C(2)

and two other inequalities by exchanging the role of the agents. Deduce that the cost function
in example 5.5 is concave, but that in example 5.6 is not.

b. Show that the cost function in example 5.2 is concave. More generally, a cost function
taking the form (3) is concave.

*c. Fix an arbitrary concave cost function C and an ordering of N , say 1, 2, . . . , n. Show
that the corresponding profile of marginal costs

x1 = C(1), x2 = C(12) − C(1), x3 = C(123) − C(12), . . . , xn = C(N ) − C(N\n)

meets the stand-alone core property. Deduce that the Shapley value meets this property as
well.

The property above explains why the stand-alone core of a concave cost function is
“large.” It can be shown that the stand-alone core equals the set of all convex combinations
of the marginal cost vectors.
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6.1 The Tragedy of the Commons

This chapter focuses like the previous one, on the problem of the commons. Unlike in
chapter 5, we focus on the efficiency-fitness consequences of the variable returns to scale
of the production process. The tragedy of the commons, going back to Aristotle (Politics)1

concerns the free access regime, where every agent uses independently and freely the
common technology. This choice may be about driving one’s own car in the morning traffic
or riding the metro (example 6.3), waiting in line at the post office or walking (exercise
6.3), or sending one’s cow to the village commons pasture (examples 6.2 and 6.5). Or it
may be about buying a service of which the price depends on the number of buyers, as in
the cost-sharing problems of chapter 4; also see examples 6.6 to 6.8.

The “tragedy” occurs when the result of uncoordinated selfish decisions by all agents
(all potential users) is an inefficient (Pareto inferior; see section 3.1) outcome: the wasted
welfare is the consequence of the distribution of property rights, namely the freedom to
choose whether or not to participate in the production process and at what level.

The tragedy of the commons is illustrated in examples 6.1 to 6.3 below. The method-
ological importance of the tragedy is twofold. On the one hand, it embodies the simplest
and most pervasive conflict between collective rationality (Pareto optimality) and strategic
rationality (the free exercise of individual rights): the celebrated Prisoners’ Dilemma be-
longs here; see example 6.1. The second interesting aspect of the tragedy is the question of
fair compensation, a direct consequence of efficiency.

In the free access regime, the equilibrium outcome inefficiently overproduces (case of
decreasing returns to scale; sections 6.3 and 6.4) or underproduces (case of increasing returns
to scale; section 6.5). In the former case efficiency commands to reduce the production level
by barring from the commons certain agents who wanted to use it under free access. It is
fair to compensate these excluded agents: But who exactly should be compensated and by
how much?

In the increasing returns case, efficiency requires to enroll in use of the commons new
agents who wanted to stay out in the first place. These agents must be bribed to join, by a
more advantageous deal: once again the issue is to define fair compensation.

We stress that the issue of fair compensation is logically independent from that of fair
reward discussed in chapter 5. The central question of chapter 5 is the fair division of a joint
cost when the various users are not equally responsible for the formation of these costs:
for instance, connecting the users to a source when the users live at different distances
from the source (examples 5.6 and 5.11). In this chapter, by contrast, the agents consume a

1. “What is common to the greater number has the least care bestowed upon it. Everyone thinks chiefly of his
own, hardly at all of the common interest” (Politics, ii, 285).
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homogeneous good (unlike the heterogeneous “connections” just mentioned); thus they are
equally responsible for the total cost. On the other hand, they have different willingness to
pay for service; hence efficiency requires one to serve certain agents and not some others
(who could be among the efficient users in another configuration of users’ willingness to
pay). Compare this with most of chapter 5, where all users are always served and individual
willingness to pay for service play no role2 (they are taken to be very large—inelastic
demand—and differences in these large numbers are irrelevant to the equity issue). The
management of a technology in the common property regime is a very rich source of
questions about distributive justice!

In the subsequent sections we propose three different answers to the question of fair
compensation; we also address the implementation issue: what system of property rights
over the commons delivers each one of these three solutions in equilibrium? The solutions
are introduced and discussed in a series of examples, first with decreasing returns to scale
(sections 6.3, 6.4), then with increasing returns (section 6.5). A general definition and
systematic axiomatic discussion is the subject of section 6.6.

Example 6.1 Trash and Public Bad Each agent chooses to leave his trash in the common
area (cigarette butts in the street, oil refuse in the ocean) or to dispose of it in a proper
dumping site. It costs $a, a > 0, to use the dumping site: each trash bag left in the common
area brings a net disutility of b, b > 0, to each agent and these losses add up linearly. We
have n agents and we assume that

1

n
a < b < a

If q among the other agents leave their trash in the common area, my net utility is
−bq − a if I use the dumping site, and −b(q + 1) if I do not; therefore in the decentralized
equilibrium, I do not as b < a.

This is an n-person example of the celebrated Prisoners’ Dilemma. The selfish incentive
to litter puts the entire trash in the street, and brings a disutility −nb to every participant.
But this outcome is Pareto inferior to the cooperative outcome where everyone picks her
own trash, thus incurring a disutility −a (no externality from other agents’ trash); recall our
assumption −nb < −a.

Example 6.1 is an example of a public good being produced by voluntary contribution: the
cleanliness of the street is the public good (it is consumed by all agents without exception); a
is the cost of providing one unit of public good and b is the corresponding per capita benefit.

2. With the exception of section 5.4.
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Example 6.2 A Rural Commons The commons is a pasture open to all villagers, covered
with 25,000 pounds of “grass.” A cow can eat up to 250 pounds of grass, and transforms
grass into money at a one-to-one rate: 1 pound of grass gives 1 unit of meat with market price
$1. Each villager owns one cow and must choose between keeping it at home, where it will
get 100 pounds of grass (hence the revenue $100) or sending it to graze on the commons,
where it will eat its fair share of grass (25,000/q, where q is the number of cows on the
commons) or 250 pounds, whichever is less.

The efficient utilization of the commons is to send exactly 100 cows there, which will
each eat 250 units of grass, and keep all other cows at home. Each cow sent to the commons
brings a profit of 250−100 = 150 above the home grazing option, and the efficient surplus
of $15,000 is thus extracted from the commons.

In the free access regime, however, we expect that the commons will be overgrazed
up to the point where the surplus is entirely dissipated. Note that with 100 cows on the
pasture, a farmer still benefits from sending an extra cow to the commons, where it will eat
25,000/101, much more than 100 pounds at home. When q cows are on the commons, there
is no incentive to send an extra cow if and only if 25,000/(q + 1) ≤ 100, and no incentive
to withdraw one cow if and only if 25,000/q ≥ 100. Thus in equilibrium we find 250 or
249 cows on the commons and the surplus is entirely dissipated! If q = 250, no villager is
better off than if the commons did not exist. If q = 249, the net surplus from the commons
is 100 units, or 40 cents per cow on the commons!

A simple solution to the tragedy is to limit access to 100 cows and select randomly
100 lucky villagers who are allowed to use the pasture. Ex ante each villager gets a fair
share $15,000/n of the efficient surplus. We will say more about random prioritizing in
section 6.4.

Example 6.2 exhibits a “full” tragedy of the commons, in the sense that at the free access
equilibrium outcome, the agents are no better off than if the commons did not exist. The
full tragedy always occur when the returns to scale decrease and the demand is perfectly
homogeneous: all agents have the same willingness to pay for “service” (case of a cost-
sharing problem) or the same opportunity cost for supplying one unit of input. When the
demand is heterogeneous, the free access outcome collects in general a substantial fraction
of the efficient surplus, as discussed in section 6.4.

In the last example about the tragedy, the agents choose between two technologies, each
one with variable returns. Depending on the nature of the returns (increasing or decreasing)
the tragedy does not occur or it takes a fairly mild form.

Example 6.3 Congestion Externalities All players must use one of two technologies to
receive a certain service—getting no service is not an option: their willingness to pay is large
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Figure 6.1
Surplus loss at bad equilibrium

enough to ensure this. There are n agents and the congestion cost from using technology i
is aci (qi ),where qi is the number of users of technology i (so q1 + q2 = n). Note that ac
stands for average cost.

For instance, all players must travel from A to B, and there are exactly two possible routes
(technologies). Cost is travel time, and we assume that the common travel time aci (qi )

of the players choosing route i, i = 1, 2, is strictly increasing in qi : negative congestion
externality. The equilibrium travel pattern is when both routes are (nearly) equally congested
ac1(q1) � ac2(q2),3 making every agent indifferent between the two possible choices. This
outcome is clearly Pareto optimal because any situation q ′

1, q ′
2 with say ac1(q ′

1) > ac2(q ′
2)

has ac1(q ′
1) > ac1(q1) (exercise: Why?) so that users of route 1 are worse off than in

equilibrium. Thus under negative congestion externalities there is no tragedy: free access
to the commons yields an efficient outcome.

Suppose next that the congestion externalities are positive: aci (qi ) decreases in qi . Ex-
amples include the choice of a dress style among conformists, of a disco (the more crowded
the merrier), of a PC versus a Mac (a machine compatible with a larger number of other
users is more valuable). Now in the situation depicted in figure 6.1, technology 1 is cheaper
(better) than technology 2 at every level: ac1(q) < ac2(q) for all q, and yet there is a

3. More precisely aci (qi ) ≥ ac j (q j + 1) for i, j = {1, 2}.



moulin-79027 book October 22, 2002 16:11

173 6.2 Constant Returns to Scale

noncooperative equilibrium where everybody is stuck with the inferior technology 2, namely
q1 = 0, q2 = n.

Notice in figure 6.1 that ac1(1) > ac2(n), so no one has an incentive to use the technology
alone. The bad equilibrium q2 = n involves a loss of surplus n · (ac2(n) − ac1(n)) which
is the shaded area on figure 6.1. The tragedy is mitigated by the fact that we have another
equilibrium where everyone uses the good technology 1, and this outcome is Pareto superior
to the bad equilibrium outcome. Thus the solution of the tragedy in this example is a
coordination device that the benevolent dictator provides (e.g., by encouraging the agents
to use the good equilibrium). Once the equilibrium is reached, we do not need to restrict
the agents’s freedom of choice between the two technologies.

Exercise 6.2 proposes a variant of the traffic example (negative externalities from conges-
tion) with a more complicated road network, where a tragedy occurs; namely the equilibrium
outcome is inefficient.

6.2 Constant Returns to Scale

We consider the important benchmark case where the returns of the technology are constant
(constant marginal cost). The free access equilibrium outcome is then efficient (no tragedy);
we argue that this outcome is also fair in the sense of the Lockean theory of entitlements.

We use a cost-sharing model in the discussion, where each agent wants at most one unit
of a certain good or service, and has a certain valuation/willingness to pay for this good.
These valuations vary across agents.4

In classic microeconomic fashion the profile of these valuations is represented by a
downward-sloping demand function d, where for every “price” p, d(p) is the number of
agents willing to pay p or more for service. We draw d as a continuous function, a convenient
approximation of the real demand function with integer values. Naturally the value of d(p)

has to be large to vindicate the approximation.
We assume in this section that the marginal cost of producing one unit of service is

constant and equal to γ, γ > 0. Thus C(q) = γ q is the cost of producing q units for any
level q.

There are no externalities in production: the cost of producing the unit I consume is not
affected by how many other agents consume at the same time. Therefore free access to

4. The argument is identical in the output-sharing model where each agent may contribute at most one unit of
productive input (e.g., labor) and has a certain opportunity cost/disutility for doing so. See examples 6.2 and 6.5,
and exercise 6.9. In that model constant returns means that any unit of input increases the output by the same
amount.
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Constant returns to scale

the technology entails no inefficiency, no tragedy: every agent can buy service at price γ ;
those with valuation greater than γ do buy, and the others do not. An agent with valuation
p ends up with a net surplus (p − γ )+ = max{p − γ, 0}. And d(γ ) units of the good are
produced, which is the efficient production level. The efficient surplus σe is the shaded area
on figure 6.2:

qe = d(γ ), σe =
∫ P

γ

d(x) dx =
∫ qe

0
(d−1(y) − γ ) dy

where P is the largest valuation in the demand profile, namely the lowest price at which
the demand vanishes. The free access equilibrium is the compelling fair outcome of the
constant returns economy. This is an important postulate on which rests Locke’s argument
of natural rights:

Though the earth and all inferior creatures be common to all men, yet every man has a property in
his own person; this nobody has any right to but himself. The labour of his body and the work of his
hands, we may say, are properly his. Whatsoever then he removes out of the state that nature hath
provided and left it in, he hath mixed his labour with, and joined to it something that is his own, and
thereby makes it his property. It being by him removed from the common state nature hath placed it
in, it hath by this labour something annexed to it that excludes the common right of other men. For
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this labour being the unquestionable property of the labourer, no man but he can have a right to what
that is once joined to, at least where there is enough and as good left in common for others.

Because returns are constant, after an agent uses the technology, he leaves “enough and
as good in common for others”; therefore it is fair to let the agent “mix his labour” with the
technology and “annex what he removes” from this usage. Put in different words, the cost
function is additive; hence the cost share that should be imputed to one who receives q units
of output is exactly γ · q. Each agent is allowed to stand alone with the technology and
derive whatever surplus he can by paying for his own demand; the resulting surplus shares
exhaust the efficient surplus. We call this canonical outcome the stand-alone solution of the
constant returns problem.

The stand-alone solution offers a convincing resolution of the “slavery of the talented”
in example 3.9, once we normalize the input provided by agent i as x̃i = si xi , namely the
product of his labor by his productivity. The technology is then f (x̃1, x̃2) = x̃1 + x̃2, and
agent i’s utility is ui = min{zi , 20 − x̃i/si }. The stand-alone solution eliminates the “talent
externality” entirely.

The subject of this chapter is the management of a commons of which the marginal cost
function is not constant. Then the Lockean argument collapses because an agent standing
alone does not leave “enough and as good” for the other users.

All examples discussed below have returns to scale either decreasing at every level or
increasing at every level. The three same solutions are discussed in both cases.

6.3 Fair Compensation: Three Interpretations

In our first example, the technology has increasing marginal costs of a very simple type:
the marginal cost of the first 40 units is zero and that of any additional unit is infinite. In
other words, we have 40 free goods and a demand for more than 40 goods. We provide
three different answers to the question: What monetary compensation is fair for those who
do not get a good?

Example 6.4 Free Goods There are 100 agents each of whom wants at most one object,
and their willingness to pay is uniformly spread between $0 and $100. So there are d(p) =
100 − p agents who value the object at p or above.5

We must share 40 “free” objects among our 100 agents. The technology has zero
marginal cost for the first 40 units and infinite (or at least greater than 100) marginal cost
for any additional units.

5. The discrete version of the model has 100 agents with valuations 1, 2, . . . , 100, and a demand function shaped
like a staircase; the continuous approximation makes all computations simpler without any loss of substance.
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A simple example is the allocation of tickets for a popular sports event: 40 free tickets
must be allocated among the 100 members of a club. Instead of distributing them randomly,
one wishes to give them to the 40 agents with the highest valuation (those willing to pay
$60 or more), provided that the other members are fairly compensated. Many other examples
of rationing come to mind: seats in overbooked planes, license to broadcast in congested
airwaves, repair services in limited supply, and so on.

Thus the problem is formally similar to the fair distribution question of section 2.2,
where one has to divide resources in limited supply among agents with different “claims”
over the resources. Here, however, the willingness to pay for an object is not interpreted
as a claim: it is a measure of the surplus generated by giving an object to the agent in
question. Efficiency alone says that if Ann’s valuation/willingness to pay is higher than
Bob’s, she should receive an object before Bob gets one. Yet the claims of Ann and Bob
over the resources are identical, which is why it is fair to compensate Bob when he gets no
object.6

The first solution relies on the important test called no envy. Once objects are allocated
and cash transfers are performed, the “lot” of an agent is either made of an object and a
cash payment t or no object and a cash transfer t ′. “No envy” says that no agent strictly
prefers any other agent’s lot to his own. The combination of efficiency and the no envy test
determines the entire allocation. Indeed, all efficient agents above 60 must pay the same
amount t (lest some of them be envious) and similarly all agents below 60 receive the same
check for $t ′. Applying no envy between an efficient agent i just above 60 and an inefficient
one j just below 60 gives7

i does not envy j ⇒ 60 − t ≥ t ′

j does not envy i ⇒ t ′ ≥ 60 − t

hence t + t ′ = 60. Combined with budget balance, 40t = 60t ′, this gives t ′ = 24 and t = 36.

To interpret this solution, consider the competitive price pe = 60 which must be charged
for the demand to be equal to the supply (at 40 units). The competitive profit is r = pe ·qe =
2,400, and our solution divides r equally among all participants. Thus an agent below 60
gets a check for $r/100, whereas one above 60 pays the competitive price pe minus a rebate
r/100, or 60 − 2,400/100 = 36.

6. Despite the difference in interpretations, it is perfectly reasonable to apply formally the three basic solutions
of chapter 2—the proportional, uniform gains, or uniform losses. It turns out that the first two solutions must be
dismissed on normative grounds (explained in exercise 6.17), but the third, under the name of the virtual price
solution, plays a central role below.

7. Here the continuous approximation is helpful to bring a unique solution. See exercise 6.4 for some examples
with a finite set of agents.
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The solution is called the competitive equilibrium with equal incomes (in short, CEEI).
Its various generalizations, discussed below and in the next chapter, play a central role in the
microeconomic analysis of fair division. Their common salient property is the no-envy test:
once the lots are formed, no one can complain against her own lot because, according to
her own preferences, she gets the best lot.

The CEEI solution treats the commons (the 40 objects) as a competitive firm and the agents
as its stockholders, receiving equal shares of the profits when firm behaves competitively.
An agent who has no interest in the goods being allocated (his valuation is zero) receives
nevertheless a “rent,” a positive share of the surplus created by the other agents. Thus a
critical requirement to implement the CEEI is to monitor carefully who is entitled to the
rent, as this entitlement is unrelated to the ability to derive some surplus from using the
resources. The herb story in the next paragraph makes this point clear. We will see that
the other two solutions, on the contrary, link the amount of my compensation to my own
stand-alone benefit from the resources. Unlike CEEI, these solutions are compatible with
an open membership policy.

Think of a rare herb growing only in the public land of a certain community and from
which an effective drug against insomnia can be concocted. There is a limited supply of
the herb so that we can only produce enough drug to treat 40 percent of the population.
Everyone suffers from insomnia but to various degrees: agent p spends currently $p on
alternative drugs with the same effect as one unit of the herb (assume there are 40 indivisible
stems of herb). The CEEI solution gives the same $24 dividend to all agents below 60, not
distinguishing between those near 60 to whom it is barely inefficient to give the scarce drug
and those near zero who have almost no use for the drug. To drive the point home, imagine
that 40 agents do not suffer from insomnia while the 60 others have valuation uniformly
spread between 40 and 100, so the demand function d is truncated below p = 40 as shown
on figure 6.3b. The CEEI solution is not affected by the change, and the 40 agents who do
not care for the herb at all get a “rent” that many would find objectionable, say if the herb
cannot be sold for profit (it cannot be transported and must be consumed on the spot). On
the other hand, if the explanation for a higher willingness to pay is the fact that agent p is a
pharmacist who makes $p from selling one unit of herb, then the stockholder interpretation
of the CEEI solution makes good sense. For comparison, citizens of an oil-rich country get
a rent from the fact that some of them exploit the oil, and citizenship is an exogenous right
independent of oil consumption. In section 6.6 we discuss two other undesirable features
of the CEEI solution, namely failures of monotonicity when either the resources or the set
of participants change.

The virtual price solution is defined by the property that every agent enjoys the same net
surplus as if she was offered to buy an object at the common virtual price pv . Thus agent p
ends with the net surplus (p − pv)+ = max{p − pv, 0}. This price is p = 20 in our example
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Virtual price solution with truncated demand
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(see below); hence only the agents willing to pay $20 or more get a positive benefit from
the commons: the others are excluded entirely.

In order to compute pv , we rely on the efficiency constraint, implying that the integral of
(p − pv)+ over all agents equals the efficient surplus in the economy:

∫ 100

0
(y − pv)+ dy =

∫ 100

pv

(y − pv) dx = 3,200

⇔ (100 − pv)
2

2
= 3,200 ⇔ pv = 20

See figure 6.3a. Notice the formal similarity with the uniform losses solution of section 2.2:
everyone suffers the same loss from the utility level where the object is offered for free,
except for the fact that no one suffers a net loss.

Thus the 40 efficient agents pay $20 each for their object (a 44 percent price cut from the
CEEI solution), whereas the 40 agents between 20 and 60 are compensated by a personalized
check for $(p − 20), ranging between $40 and zero. Agents below 20 receive nothing.

The VP solution interprets fairness as the option to either buy the object at the common
price pv or receive a check equivalent to this option. The virtual price is computed by a
budget balance argument: the money collected by charging pv to the 40 efficient agents
pays exactly for compensating the inefficient agents above pv . Thus pv = 20 in our initial
example, but with the truncated demand of figure 6.3b there are fewer inefficient agents
above the virtual price. As a result the latter is smaller at p′

v = 16.7 (exercise: check this
number).

Denying any share of the surplus to a low agent (one in [0, 20]) runs counter to the Lockean
postulate that common ownership of the resources implies an equal right to consume them.
Think of the default option where the 40 objects are randomly allocated among the 100
agents so each agent has a 40 percent chance of receiving an object. The surplus share
(0.4) · p is agent p’s “fair share” at the default option. To guarantee this share of surplus to
every agent is to allow everyone to enforce the default option if he is not satisfied with the
proposed solution.

The CEEI solution clearly guarantees his or her fair share to every agent, but the VP
solution does not:

CEEI: p ≥ 60 ⇒ p − 36 ≥ (0.4)p, p ≤ 60 ⇒ 24 ≥ (0.4)p

VP: p ≥ 33.3 ⇒ p − 20 ≥ (0.4)p but 33.3 > p > 0 ⇒ (p − 20)+ < (0.4)p

Our third solution is the Shapley value of the stand-alone game (section 5.4) associated
with our production economy. This solution strikes a neat compromise between CEEI and
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VP, a fact that remains true for all commons with decreasing returns.8 The Shapley solution
allocates a positive share of surplus to any agent with a positive valuation p, which is at
least his fair share (0.4) p. However, this share goes to zero as p does, and an agent with
zero valuation gets nothing.

Recall from chapter 5 that agent p’s surplus share is her expected marginal surplus
v(S ∪ {p})− v(S), where v denotes the stand-alone surplus and S is the (random) coalition
of agents preceding p, when each one of the 100! orderings of our agents is drawn with
equal probability 1/100! Thanks to the law of large numbers, the computation of the Shapley
shares is not difficult. We note first that v(S ∪ {p}) − v(S) = p whenever S contains less
than 40 agents, which occurs with probability 40 percent. Therefore the Shapley solution
guarantees her fair share (0.4)p to agent p for all p. If S contains 100 · λ agents, with
λ ≥ 0.4, its 40th highest agent has valuation 100 − (40/λ), because the agents in S are
uniformly distributed between 0 and 100. Therefore the contribution of agent p to v(S) is
(p − (100 − (40/λ))+. The fraction λ is uniformly distributed over [0, 1], so agent p’s
expected surplus share is

σs(p) =


(0.4)p +
∫ 1

0.4

(
p − 100 + 40

λ

)
dλ = p − 23.35 if 60 ≤ p ≤ 100

(0.4)p +
∫ 40/(100−p)

0.4

(
p − 100 + 40

λ

)
dλ = 40 log

(
100

100 − p

)
if 0 ≤ p ≤ 60

Now the Shapley solution charges $23.35 to an efficient agent (who gets a good) and
gives a check (and no object) to an inefficient agent p. The check value increases with p,

from 0 at p = 0 to $36.65 at p = 60. Note that if p is close to zero, the check value is
approximately (0.4)p, the fair share of surplus.

Figure 6.4 depicts the surplus function σ(p) for the three solutions just discussed. It
makes the general point that the Shapley solution is a compromise between CEEI and VP,
both for low valuation and high valuation agents and for most agent in between.

Example 6.5 Example 6.2 Revisited In example 6.2 the demand is homogeneous, mean-
ing that all agents have the same valuation: hence fairness reduces to equal treatment of
equals, and the $15,000 of surplus should be split equally among all villagers (one hundred
of them send their cow to the pasture for a fee, all others receiving an equal cash payment).

We consider now a heterogeneous population of 300 villagers, with different opportunity
cost for sending their cows to the commons. An opportunity cost ρ means that a cow left at

8. See section 6.6.
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Figure 6.4
Surplus distribution of the three solutions

home would get ρ units of grass. We assume that ρ is uniformly spread between 0 and 300:
there are s(ρ) = ρ agents with opportunity cost at or below ρ for all ρ, 0 ≤ ρ ≤ 300. Note
that s is the familiar microeconomic supply function of the cow input. Figure 6.5 depicts the
supply function along with the marginal return function, equal to 250 for the first 100 units
and zero afterward.

Efficiency requires the villagers to send the 100 cows with the lowest opportunity cost to
the commons while leaving the others at home, for a total surplus σe = $20,000 (the area
Oabc on figure 6.5).

The CEEI solution hinges upon the “competitive” price ρe = 150, namely the price that
must be charged in order to bring about the efficient supply of 100 cows: the return of each
cow is ρe = 250 − ρe = 100, and there are exactly 100 villagers with opportunity cost at
or below $100. The competitive profit re = pe · qe = $15,000 is split equally among the
300 stockholders, who receive $50 each: this is a rebate for the 100 efficient villagers, who
end up paying $100 each for using the commons and enjoying a return 250 − 100 = 150;
the remaining 200 inefficient users receive a check for $50. Note that the 50 agents for
whom the commons is useless no matter with whom they share it (those with opportunity
cost between 250 and 300) get a rent from their share of ownership: applying the CEEI
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Cost and demand in example 6.5

solution requires the villagers to monitor membership carefully lest any number of illegal
agents show up.

One strong point in favor of CEEI is its easy implementation when information about the
supply (or demand) function is dispersed. Say that each villager knows his own valuation
ρ but not (or not precisely) that of other villagers. The social planner ignores everything
about the demand but knows the technology of the commons: she knows that 100 cows are
enough to eat all the grass. To achieve the CEEI solution, she simply asks each agent to
report/bid how much he is willing to pay for using the commons. The 100 highest bidders
are allowed on the commons, and the 100th highest bid is denoted b̄ : the 100 winners
pay 2b/3 each and the 200 losers receive a check for $(b̄/3) each. A remarkable strategic
property of this bidding game is in first approximation that the simple truthful bid is an
equilibrium: an agent with opportunity cost ρ bids b = 250 − ρ.9 We say that the CEEI
solution is strategy-proof.

Before computing the virtual price solution, we compute the free access equilibrium.
When q cows are grazing on the commons, each cow has a return of 250 if q ≤ 100, and

9. Once each agent bids truthfully, the winning bid is b̄ = 150, and the first losing bid is 149. Thus a winner
can only gain 67cts by bidding just above 149, which in first approximation is negligible. Alternatively, we may
charge to each one of the 100 highest bidders only the 101th highest bid, which would eliminate completely their
incentive to misreport, and preserve the profile of cash transfers of the CEEI in first-order approximation.
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25,000/q if q ≥ 100. For a return x, the supply (number of villagers willing to use the
commons for this return) is x . Thus the free access equilibrium supply q f a solves

25,000

q
= q ⇐⇒ q f a = 158

Here the commons is overcrowded by 58 percent, and the first 158 villagers get a return of
158 and a net surplus of 158−ρ. Others get nothing. Total surplus collected in the FA equili-
brium is σ f a = q2

f a/2 = 12,500 or 61.25 percent of the efficient surplus σe = 20,000.

In the virtual price solution, each agent ends up as if the commons had a constant return
equal to 250 − ρv, where ρv is the virtual price. Thus the surplus share of agent ρ is
(250 − pv − ρ)+ and the virtual price pv is chosen so that these shares exhaust the efficient
surplus σe = 20,000:

∫ 300

0
(250 − pv − x)+ dx = σe ⇐⇒ (250 − pv)

2

2
= 20,000 ⇐⇒ pv = 50

An efficient agent ρ, 0 ≤ ρ ≤ 100, gets a return of 200 for sending his cow to the
commons; an agent ρ, 100 ≤ ρ ≤ 200, gets a check for 200 − ρ. Any agent above 200
gets no benefit at all from the commons.

The important and general fact is that at the VP solution and FA equilibrium the surplus
distribution is as if the returns were constant and equal to, respectively, 200 for VP and 158
for FA. The VP solution is thus a straight Pareto improvement of the FA outcome: every
agent active in the free access regime (every ρ below 158) gets a boost of $42.

The VP solution gives no surplus whatsoever to an agent above 200, even though those
between 200 and 250 can claim some share of surplus if their equal right to consume the
resources is recognized. This Lockean argument was already introduced in example 6.4.
Here the default option is to allow only 100 cows randomly selected on the commons, and
a fair share of access is a 33.3 percent probability of getting a return of 250. The fair share
of surplus for agent ρ is (250 − ρ)+/3. The VP solution does not give that much to many
inefficient agents:

(200 − ρ)+ <

(
250 − ρ

3

)
+

⇔ 175 < ρ < 250

As in example 6.4, the Shapley solution strikes an appealing compromise between VP
and CEEI. Recall that the surplus share of agent ρ is his expected marginal contribution to
the stand-alone surplus of the set of agents preceding him. The trick to compute it is, again,
the law of large numbers. Fix an agent ρ and let λ, 0 ≤ λ ≤ 1, be the fraction of the total
population of 300 villagers preceding this agent in the random order. By the law of large
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numbers, the distribution of opportunity costs within these 300 · λ (random) villagers is a
homothetic reduction of the initial distribution. Thus there are sλ(x) = λx of them with
opportunity cost below x .

Distinguish two cases. If λ < 0.4, fewer than 100 of the agents before ρ are using the
commons, as sλ(250) < 100. Therefore agent ρ’s contribution to surplus is (250 − ρ)+. If
λ ≥ 0.4, the commons are fully utilized before ρ and the highest opportunity cost of an
active agent is 100/λ, as sλ(100/λ) = 100. In this case, agent ρ’s contribution is therefore
((100/λ)−ρ)+. Our agent dislodges the marginally efficient agent 100/λ if his opportunity
cost ρ is lower.

We compute agent ρ’s surplus share, using the fact that λ is uniformly distributed on [0, 1]:

σs(ρ)

=




∫ 0.4

0
(250 − ρ) dλ +

∫ 1

0.4

(
100

λ
− ρ

)
= 191.6 − ρ if 0 ≤ ρ ≤ 100

∫ 0.4

0
(250 − ρ) dλ +

∫ 100/ρ

0.4

(
100

λ
− ρ

)
dλ = 100 log

(
250

ρ

)
if 100 ≤ ρ ≤ 250

0 if 250 ≤ ρ.

All inefficient agents who would use the commons if standing alone—meaning that
100 ≤ ρ ≤ 250—receive a check that decreases from 91.6 to 0 as ρ raises from 100 to 250.
This check is always bigger than their fair share (250 − ρ)/3.

All efficient agents get a return of 191.6—or equivalently they each pay $58.4 to use the
commons, slightly higher than $50 at the VP solution but much lower than $100 at the CEEI
one. These comparisons are reversed for the completely inefficient agents 250 ≤ ρ ≤ 300,
who get a check of $50 under CEEI, and nothing at VP or Shapley. Moreover one checks
easily that all agents ρ, 152 ≤ ρ ≤ 250, strictly prefer the CEEI check for $50 to the
Shapley check of $100 log(250/ρ) and the latter to VP check of (200 − ρ)+.

*6.4 Free Access versus Random Priority: Decreasing Returns

We noted in example 6.5 that the CEEI solution is strategy-proof. The bidding game de-
scribed there is called the revelation game where everyone reports his or her willingness to
pay for using the common and the allocation is the CEEI solution at the reported demand
function. This game is incentive compatible; that is to say, no one is tempted to misreport his
valuation or opportunity cost. This is true as a first-order approximation when the number of
participants is large. It holds true for any technology, with increasing or decreasing returns,
and for any demand function.
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On the other hand, neither the revelation game of the VP solution nor that of the Shapley
solution are incentive compatible. Consider example 6.5. Under VP, an inefficient agent ρ

receives a check 200 − ρ, or no check if ρ ≥ 200. Clearly, it pays to underreport one’s
opportunity cost. An agent above 200 can report an opportunity cost just above 100 and get
a check for almost $100 instead of no check. All inefficient agents have the same incentive,
so the reported demand function ends up with all inefficient agents lumped just above 100
and the virtual price climbs to p̄v = 100, namely the solution of

∫ 100

0
(250 − p̄ − x) dx + 200(250 − p̄ − 100) = σe = 20,000

The VP outcome after strategic manipulation is exactly the CEEI outcome for the true
demand function: each efficient agent pays $100 to use the commons and all others receive
a check of 250 − pv − ρ̃ = $50 as an inefficient agent reports ρ̃ = 100!

The direct revelation game of the Shapley solution brings about precisely the same
incentives: every inefficient agent pretends to be barely inefficient; others can’t manipulate
further. The resulting outcome is, again, the CEEI solution of the true demand game.

If the VP solution can’t be implemented as a direct revelation game, it is nevertheless
“subimplemented” by the free access game. The surplus of agent ρ in the equilibrium of
the FA game is (158 − ρ)+,versus (200 − ρ)+ in the virtual price solution. Thus the VP
solution is a straight Pareto improvement above the FA equilibrium. In this example the FA
equilibrium allocation implies a surplus loss of 38.75 percent, but we give other examples
below where the surplus loss is much smaller: examples 6.6 and 6.8.

The free access game is simple to play and its equilibrium easy to predict. It automatically
eliminates the agents who have little or no use for the commons: participation in the FA game
can be “open,” because only the agents most interested in using the commons will show
up. Compared with the CEEI bidding/revelation game, where being allowed to participate
implies a rent (case of decreasing returns) or a tax (case of increasing returns: section 6.5),
irrespective of one’s willingness to use the commons, it is either a windfall or a burden. In
both cases the set of legal participants must be set exogenously and carefully monitored.

The random priority game is another simple mechanism to manage the commons. The
agents are ordered randomly (with uniform probability on all orderings) and offered suc-
cessively to use the commons at the current marginal cost (or return). The lucky agents
(those who are drawn early) face a low marginal cost (or a high marginal return), but the
deal offered to successive agents becomes less and less attractive as more and more agents
accept the offer.

We observed earlier that in the pasture story of example 6.2 with homogeneous demand
(all agents have the same valuation) the free access equilibrium dissipates the entire surplus,
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whereas the random priority equilibrium is first best efficient: 100 villagers chosen at random
are offered a return of 250, which they all accept, and no further access is allowed (i.e.,
the next agents are offered a marginal return of zero). This obervation generalizes to any
decreasing returns commons where all agents are identical (same willingness to pay or same
opportunity cost). The FA equilibrium brings zero surplus, whereas the RP equilibrium
captures the efficient surplus.

As a strategic game, random priority is as simple to play as the free access game: an
agent can’t affect the price he is offered (that price is determined by how many other agents
accepted their offer earlier), and he accepts it if and only if this deal is advantageous for him.
Hence the equilibrium prediction of RP as compelling as that of FA, or of the CEEI bidding
game. From the welfare point of view, the key property of the RP game is to subimplement
the Shapley solution in the same sense as we speak of the FA game subimplementing the
VP solution.

We compute the equilibrium outcome of the random priority game in example 6.5. The
300 agents are randomly ordered, and the first ones are offered a return 250 for their cow
until 100 agents accept, after which the return falls to zero. Obviously the 50 agents between
250 and 300 always refuse and the others always accept. In this way the efficient quantity
100 is produced. Moreover agent ρ, 0 ≤ ρ ≤ 250, gets the surplus 250−ρ with probability
100/250 = 40 percent, so his expected share is 100 − (0.4)ρ. Total surplus collected is:

σr p =
∫ 250

0
(100 − (0.4)x) dx = 12,500

Although this surplus is the same as that collected at the FA equilibrium,10 its distribution
is much different. As in the Shapley solution, all “active” agents who benefit from the
commons when standing alone (all ρ, 0 ≤ ρ ≤ 250) receive a positive share of surplus.

In order to prove our claim that the Shapley solution is Pareto superior to the random
priority outcome, we can check directly the inequalities:

100 − (0.4)ρ ≤ 191.6 − ρ for 0 ≤ ρ ≤ 100

100 − (0.4)ρ ≤ 100 · log
250

ρ
for 100 ≤ ρ ≤ 250

Alternatively, we can fix an arbitrary ordering where S is the set of agents preceding
agent ρ, and check that ρ’s marginal contribution v(S ∪ {ρ}) − v(S) is not smaller than his
net surplus when all agents in S have been offered a slot before him.

10. The property is preserved when we retain the asssumptions of a linear supply function and a constant return
up to the capacity; see exercise 6.9.
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Our next example is a canonical cost-sharing problem with linearly increasing marginal
cost and linearly decreasing demand. We compute and compare the two pairs FA equilib-
rium/VP solution, and RP equilibrium/Shapley solution.

Example 6.6 Mining Nuggets We have 100 agents, each of whom wants at most one
nugget of gold. The number of agents willing to pay p or more is d(p) = 100 − p. So the
demand is the same as in example 6.4; that is, the individual valuations are spread uniformly
between 0 and 100.

The marginal cost increases linearly with the quantity produced: mc(q) = 2q/3. For
example, the 30th unit costs $20. Thus total cost of producing q units is q2/3, and the
average cost is ac(q) = q/3.

The mineral nuggets are buried at various depths. The cost of digging a nugget at depth q
increases linearly with q , and we assume that the number of nuggets at depth q is independent
of q. Hence we have the cost function above.

The efficient amount of digging is qe = 60, since at the price p = mc(60) = 40, the de-
mand is d(p) = 60. The efficient surplus is σe = $3,000: this is the area OAB on figure 6.6.

Our two mechanisms FA and RP correspond to two natural regimes of property rights.
In the free access regime the mine is exploited by a central (not for profit) agency that takes
the orders of its members (each member can only order one nugget or nothing at all) and
splits the cost equally among all buyers.

7560

100

mc

ac

p

q

B

D

A

C

O 100

pe = 40

pfa = 25

Figure 6.6
Cost and demand in example 6.6
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The random priority regime allocates the property rights on a “first come first serve” basis:
the first agent to “discover” the mine can dig the easiest and obtain a nugget at marginal
cost mc(1), the next agent can get a nugget with the next cheapest effort at mc(2), or mc(1)

if the first agent decided not to dig, and so on. The exploitation of the commons under RP
requires a lighter monitoring structure than under FA: the agency simply draws a random
ordering and enforces the corresponding priority.11 No collection of costs are involved for
the active participants.

In the free access equilibrium an agent seeking one nugget pays the average cost ac(q),
where q is the total demand. Thus the equilibrium quantity is found at the intersection of the
demand and average cost functions: the quantity produced is q f a = 75, since ac(75) = 25
and d(25) = 75. Relative overproduction in the free access regime is 25 percent. The surplus
collected in the FA outcome is the area BCD on figure 6.6:

σ f a =
∫ 75

0
((100 − y) − 25) dy = 2,812

or a modest 6.25 percent relative surplus loss.
We compute next the VP solution. The virtual price pv is defined by the property that

giving (p − pv)+ units of surplus to agent p, for all p, exhausts the efficient surplus:

∫ 100

pv

(p − pv) dp = 3,000 ⇐⇒ (100 − pv)
2

2
= 3,000 ⇐⇒ pv = 22.5

At the VP outcome, all efficient agents (above 40) get an object and pay 22.5. An agent p,

22.5 ≤ p ≤ 40, receives a check for $(p − 22.5), and agents below 22.5 get not surplus
at all. Thus the gain from the FA outcome to the VP solution is $2.5 for all agents active at
the FA equilibrium.

Given that the relative surplus loss by the FA outcome is only 6.25 percent, we conclude
that the FA mechanism implements the VP solution at a small and uniform cost for every
agent.

We turn to the RP equilibrium where the agents are randomly ordered and agent p is of-
fered to buy a nugget at a price mc(q), with q being the number of agents ranked before p who
accepted their (better) offer. The computation relies, as usual, on the law of large numbers.

Consider the first 100 · λ agents randomly drawn. Their valuations are uniformly spread
between 0 and 100. In other words, their demand function is dλ(p) = λ.d(p) = λ.(100 − p).

Let q(λ) be the expected number of agents who have accepted their offer among the 100λ

11. In addition to this normative interpretation, the RP mechanism can also be viewed as a stylized rendering of
the race for preferential access to the commons where success in the race bears no statistical relation to willingness
to pay. If it did, this would make the outcome closer to efficiency.
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first agents. The next 100 · ε agents drawn get an offer mc(q(λ)) = 2q(λ)/3 (as ε is very
small, we can neglect the small increase of q(λ)). The fraction of those who accept is
d(2q(λ)/3)/100, since the demand of the remaining 100 · (1 − λ) agents is just (1 − λ)d.

Therefore the variation of q(λ) is governed by the equation

dq(λ) = (
100 − 2

3 q(λ)
)

dλ and q(0) = 0

The solution of this differential equation is

q(λ) = 150.(1 − e−2λ/3) for 0 ≤ λ ≤ 1

so that the RP equilibrium output is qr p = q(1) = 73.0.

Thus in the RP regime, the relative overproduction is only 21.6 percent over the efficient
level. On the other hand, the computations below show that the surplus collected at the RP
equilibrium is σr p = 2,761 or 8 percent of relative surplus loss, slightly bigger than in the
FA regime.

We compute the surplus σr p(p) accruing to agent p. If agent p is drawn after a fraction λ

of the initial population, she will buy the good if p ≥ mc(q(λ)) and decline otherwise, so
that her expected surplus is

σr p(p) =
∫ 1

0
(p − mc(q(λ)))+ dλ =

∫ 1

0
(p − 100(1 − e−2λ/3))+ dλ

⇐⇒ σr p(p) = p − 27.0 if
2

3
qr p = 48.7 ≤ p ≤ 100

σr p(p) = 3

2
p + 3

2
(p − 100) log

100

100 − p
if 0 ≤ p ≤ 48.7

(1)

Finally we compute the Shapley solution and compare it to the RP equilibrium outcome.
In the Shapley solution, agent p receives his expected marginal contribution to the stand-
alone surplus of the agents preceding him in a random ordering of the initial population of
100 agents. Suppose that a fraction λ of the population precedes agent p. By the law of
large numbers, the demand of these 100 · λ agents is dλ(p) = λ · (100 − p); hence their
efficient output level (when standing alone) qλ is as follows:

λ

(
100 − 2

3
qλ

)
= qλ ⇐⇒ qλ = 100

λ

1 + 2λ/3

Agent p’s contribution to this coalition is (p − 2qλ/3)+ : he replaces a marginally effi-
cient agent if his valuation is above 2qλ/3; otherwise, he adds no extra surplus. Because
the fraction λ is uniformly distributed over [0, 1], we deduce agent p’s surplus σs(p) under
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the Shapley solution:

σs(p) =
∫ 1

0

(
p − 100

2λ/3

1 + 2λ/3

)
+

dλ

⇐⇒ σs(p) = p − 23.4 if 40 ≤ p ≤ 100 (p is efficient)

σs(p) = 150 log
100

100 − p
− 3

2
p if 0 ≤ p ≤ 40

(2)

Comparing formulas (1) and (2), one can check directly that the Shapley solution is Pareto
superior to the RP equilibrium. A general argument is sketched in section 6.6.

The third solution, CEEI, is much easier to compute. Recall that it is defined by the
property of no envy combined with efficiency. All efficient agents pay the same price p̄ and
all inefficient agents receive the same cash compensation t̄ .

We start by charging the efficient price pe = 40 to all efficient agents and giving no
money to the inefficient agents. There is no envy because everybody who wants the good at
that price gets it and no one else does. The money collected exceeds the cost of producing
qe units; the difference is the competitive profit:

r = peqe − C(qe) = 40 · 60 − 1,200 = $1,200

It is split equally among all agents. Therefore p̄ = 28 and t̄ = 12. The surplus function σce

is

σce(p) = p − 28 if 40 ≤ p ≤ 100

σce(p) = 12 if 0 ≤ p ≤ 40
(3)

Upon comparing formulas (2), (3) and pv = 22.5, we can check a general feature of
commons with decreasing returns: CEEI is best for low, inefficient agents and worst for
efficient agents; VP is best for efficient agents and worst for low inefficient ones; and the
Shapley solution strikes a compromise between VP and CEEI at both ends of the demand
function. See section 6.6 for a general statement. In example 6.6, as in example 6.5 above,
efficient agents even prefer either one of the FA or RP equilibrium outcome to the CEEI
solution. This is not a general property as discussed in exercise 6.15.

6.5 Increasing Returns

When marginal costs decrease (or marginal returns increase) the problem of the commons
runs into new difficulties. One aspect, discussed in the next paragraphs, is the relative
fragility of the random priority mechanism relative to the free access mechanism. Another
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Figure 6.7
Increasing returns and homogeneous demand

aspect is the new interpretation of our three efficient solutions, illustrated in examples 6.7
and 6.8.

Consider the simple case of a homogeneous demand of output (or supply of input). This
cost-sharing problem has, for instance, each one of the 100 agents willing to pay the same
amount $20 for service. In figure 6.7 are drawn a decreasing marginal cost function, and
the associated average cost function. The important facts are ac(100) < 20 and mc(0) =
ac(0) > 20. Because of the former inequality, it is efficient to serve all agents (with total
surplus 2,000 − C(100)). Because of the latter inequality, the random priority mechanism
never takes off, as no one accepts to buy the first unit at the initial marginal cost.

The free access game, on the other hand, has two equilibrium outcomes. In the bad equi-
librium noone demands the good; if an agent changes his mind, he must pay ac(1), greater
than his valuation. In the good equilibrium, everyone gets the good and pays ac(100): this is
both efficient and fair. The good equilibrium is uniformly preferred to the bad equilibrium,
and will occur if the agents are able to coordinate their actions: the suggestion “do buy
because everyone is doing so” will be followed if one believes that others are following it;
hence the good outcome is self-enforcing.

Recall that in the case of increasing marginal costs, if the demand is homogeneous (as
in example 6.2), the RP equilibrium is the fair and efficient outcome, whereas the FA
equilibrium overproduces to the point of dissipating the whole surplus. Now the picture is
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completely reversed, and the random priority regime is totally ineffective because no agent
is willing to pay the high marginal cost mc(0). The same problem arises in our next example
where no agent alone can afford to pay the initial fixed cost.

However, if the high valuation agent is ready to pay for the highest marginal cost, the
efficiency losses of our two mechanisms are not too different: for instance, with a homo-
geneous demand, both RP and FA yield the fair and efficient outcome. Another instance is
example 6.8 below, where both equilibrium outcomes lose only 4 to 5 percentage points of
the efficient surplus.

Example 6.7 Fixed Cost Commons with decreasing marginal costs are often called nat-
ural monopolies because efficiency commands to operate only one production process, in
contrast with the case of increasing marginal costs where one should use as many copies
of the technologies as are available. Every technology requiring to pay a large fixed cost
before it can be operated is of the decreasing marginal cost type—at least for low levels
of output. An example is the production of most technologically advanced commodities:
software, new drugs, and a bus system require a large development cost followed by low
variable costs of usage.

Our numerical example is a technology with a fixed cost of $1,800. This cost must be
paid before any production takes place, and a marginal cost of $10 per unit:

C(q) = 1,800 + 10q for any q > 0

As in examples 6.4 and 6.6 there is one hundred potential users, and their willingness to
pay is uniformly spread between 0 and 100. So the demand function is d(p) = 100 − p.

Efficiency commands them to serve the 90 agents above 10 (as usual we identify an agent and
his willingness to pay), because the surplus from the constant returns exceeds the fixed cost:

∫ 100

10
(100 − x) dx = 4,050 > 1,800 ⇐⇒ σe = 2,250

The CEEI solution is especially simple in this example. It charges $10 for service, hence
collecting $900 from the 90 efficient agents; then the fixed cost is equally split among all
potential users, efficient or not. Thus each agent above 10 ends up paying $28 for service,
and the 10 agents below 10 pay a tax of $18 and receive no service.

The CEEI is strategy-proof precisely because the tax is blind. An efficient agent who
pretends that he is inefficient (i.e., below 10) still pays $18 and gets no service; an inefficient
agent p pretending he is efficient does not reduce his own tax. As in the decreasing returns
case, the CEEI solution is characterized by the no-envy property plus efficiency: ignoring
the $18 tax, which does not create envy because it is uniform, everyone faces the same offer
to buy service for $10.
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The CEEI solution forces the inefficient agents to pay a tax for which they get nothing
in return. Therefore an open membership policy would kill it: all agents below 28 would
quietly disappear, forcing the solution to charge $35 to each one of the 72 agents above 28
(total cost being 1,800 + 720), which in turns drives away 7 more agents and raises the
price to $37.7, and so on, until the free access equilibrium is reached with the 60 agents
above 40 paying $40 each (more below on the FA equilibrium).

Monitoring the membership of the commons is as crucial for the CEEI solution under
increasing returns as it was under decreasing returns, but for symmetric reasons. The po-
tential users must be forced to stay and pay their share of tax in the former case, and to keep
outsiders from showing up to get a piece of subsidy in the latter case.

Financing the fixed cost of a bus or subway system from the general tax budget, while
asking its users to pay marginal cost, is routinely taken to be the correct fiscal policy. It is
fully efficient and arguably fair as a tool for macroeconomic redistribution, since obviously
a public transportation system creates positive externalities on all residents, whether or
not they use it. The argument is weaker for subsidies to an opera house or a sports arena;
hence the CEEI solution is much less compelling in that case. A solution offering a net
welfare loss to some of the participants is outright unacceptable for the microproblems
of distributive justice that are the focus of this book. Voluntary participation is the most
important feature of the contractarian approach (sections 1.5), whether we view it as a
positive property (no one will sign a private contract that amounts to a surplus loss) or a
normative one (no public contract should exploit a citizen to the advantage of others).

The free access and random priority games guarantee voluntary participation because
everyone has the option to “stay out.” In the presence of a fixed cost, the RP mechanism is
utterly ineffective, as no single agent is willing to pay the entire fixed cost (one order of mag-
nitude above any individual valuation), so nothing is every produced. The FA mechanism,
on the other hand, has a bad (Pareto inferior) equilibrium where no one buys service, and a
good equilibrium where the 60 highest agents buy service at the average cost ac(60) = 40.

Figure 6.8 depicts the two intersections of the demand and average cost curves (the graphs
of d and of ac) at q = 30 or q = 60. Notice that q = 30 is not a FA equilibrium because a
small deviation, by a single agent or a few agents, precipitates an irreversible shift away from
the initial allocation. By contrast, q = 60 or q = 0 is robust to small deviations increasing
or decreasing the number of buyers.12

12. Starting from the allocation where the 30 highest agents buy and pay ac(30) = 70, suppose that agent 30—
who is indifferent between buying or not—drops out. Now ac(29) > 71, so the agent 71 wishes to drop out too,
and so on. Symmetrically, if we add agent 31 to the buyers, the new price is ac(31) = 68, and buyer 32 wishes
to join as ac(32) = 66.25 < 68, and so on. By contrast, it is easy to check that a small deviation away from the
q = 60 equilibrium is not destabilizing.
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Figure 6.8
Cost and demand in example 6.7

The good FA equilibrium underproduces by 33 percent, as q f a = 60 and qe = 90. Under-
production is a general feature of the FA mechanism under increasing returns.13 For effi-
ciency we would like more users to join, but by voluntary participation, we cannot charge
the same price ac(90) = 30 to all 90 efficient users. The FA surplus is σ f a = ∫ 100

40 (100 − x)

dx = 1,800, hence a relative efficiency loss of 20 percent.
In any efficient allocation where participation is voluntary, the inefficient agents don’t

pay anything, nor do they deserve to be paid since their contribution to the total surplus, and
to the stand-alone surplus of any coalition, is nil. On the other hand, the barely efficient
agents, between 10 and 30, can’t pay their share ac(90) of total cost, so they must get service
at a discount rate.

The virtual price solution does this, but it denies any share of surplus to the agents who
get a discount rate. Compute the virtual price pv in the usual fashion: agent p gets a surplus
share (p − pv)+, as if she were offered to buy service at price pv. Efficiency of the surplus
distribution gives pv as the solution of

∫ 100

pv

(100 − x) dx = σe ⇔ (100 − pv)
2

2
= 2,250 ⇔ pv = 32.9

13. The same is true of the RP equilibrium whenever this game entails positive production, as in our next example.
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Thus pv is smaller than the FA equilibrium price ac(q f a) = 40, and as usual, the VP
solution is a Pareto improvement of the FA equilibrium. Among the 30 agents (between
10 and 40) that become active when we go from the FA to the VP outcome, more than
three-quarters (between 10 and 32.9) do not get any positive share of surplus: these agents
pay their full willingness to pay for service. In the VP solution, getting service at a discount
rate is no reason to rejoice!

The VP solution is hard on the barely efficient agents. One could argue normatively that
it is hard to deny them any share of the surplus, since they pay more than the marginal cost
of $10 by which other agents benefit from their presence (they pay a fraction of the fixed
cost). In a positive vein, we predict that securing the participation of a marginally efficient
agent is difficult: he can bring a loss of surplus upon others at no cost to himself, a credible
threat that he may use to his advantage.

The Shapley solution is, once again, the more reasonable of the three, as it gives a positive
share of surplus to every efficient agent, and none to every inefficient one.

An inefficient agent gets no surplus because, as noted earlier, he is a dummy: the stand-
alone surplus of any coalition is the same with or without our inefficient agent.14 It turns
out that an efficient agent p gets a share of surplus proportional to p − 10. To check this,
let λ, 0 ≤ λ ≤ 1, be the fraction of the population preceding agent p in a random ordering.
As usual, the law of large numbers says that the demand function of these 100 λ agents is
λd. The stand-alone surplus of these agents is zero if and only if

∫ 100

10
λ(100 − x) dx < 1,800 ⇔ λ <

4

9

In this case the single agent p cannot reverse the sign of the inequality, because his own
contribution (10 − p) to the fixed cost is negligible with respect to the remaining deficit.
So the stand-alone surplus remains zero after he joins.

For λ ≥ 4/9, the agents preceding p have already paid for the fixed cost; hence p’s
marginal contribution is p − 10. We conclude that the Shapley share of surplus is σs(p) =
(5/9)(p − 10).

Figure 6.9 illustrates the distributions of surplus proposed by our three solutions. Notice
that the Shapley solution is no longer a compromise between VP and CEEI for the extreme
values of p. For any p above 74, the Shapley solution is the least favorable of the three,
and for 10 ≤ p ≤ 63 it is the most favorable. The bias of the Shapley solution is toward a
more egalitarian distribution of surplus. See section 6.6 for a general statement.

14. This property always holds under increasing returns.
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Figure 6.9
Surplus distribution in example 6.7

The random priority mechanism fails to collect any surplus in this example, whereas the
free access equilibrium subimplements the virtual price solution with a 33 percent efficiency
loss.

In fact a fairly modest increase of the fixed cost, from $1,800 to $2,100, makes the FA
mechanism as ineffective as that of the RP. To illustrate, an FA equilibrium with a positive
output level q is found at the intersection of the graphs of the demand and average cost
functions:

d(ac(q)) = q ⇔ 100 −
(

2,100

q
+ 10

)
= q

but the right-hand side equation has no solution. Clearly, the only FA equilibrium is q = 0,

where no one buys anything.

The key advantage of the RP and FA mechanisms is decentralized strategic behavior of
the participants: every potential user chooses to buy service or not without any knowledge
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of the particular valuations of their fellow agents. In the FA game, all I need to know to
make my decision is the current average cost of production (or average return), namely a
one-parameter index of the profile of individual valuations (the demand function). In the
RP game, I do not need to know even that, because the price I am offered when my turn
comes is a one-time offer that I can’t influence. Therefore I can instruct a machine (or a
central agency overseeing the game) to accept an offer below p and reject one above p; my
best choice is to set p equal to my valuation (my best strategy is to reveal truthfully my
preferences) regardless of the rest of the demand function.

When truly decentralized games such as FA or RP fail, the only recourse of the mechanism
designer is to set up a game in which the agents have a strong incentive to discover the
particular demand profile in which they are living, and use this information strategically.
Such mechanisms can be constructed to implement practically any efficient solution one
can think of. They are realistic only among a small number of potential users who know
each other well, much less so in problems involving dozens of agents or more. Exercise 6.16
proposes one such game to implement the virtual price solution. An even more complicated
mechanism is required to implement the Shapley solution.

Our last example is the counterpart of the “linear” example 6.6 for the increasing returns
economy: here the marginal and demand functions cost decrease linearly. It turns out that
both the FA and RP equilibrium outcomes perform very well in this problem.

Example 6.8 Airwave Interferences In a residence with 100 apartments, each resident
may or may not buy a device to eliminate the interferences on his wireless phone. Once a
unit is equipped with the device, its own emissions cease to affect the other residents, thus
reducing the cost of the device they need to buy. If q residents have already bought the
device, the cost of the device meeting the needs of the next one is

mc(q) = 40 − q

3
for all q, 0 ≤ q ≤ 100

thus decreasing linearly from $40 for the first customer to $7 for the last one.
The demand function, as in examples 6.4, 6.6, and 6.7, is d(p) = 100 − p : for every

p = 1, . . . , 100 there is exactly one agent willing to pay $p for a line free of interferences;
see figure 6.10.

The implementation of the free access mechanism is the same as in example 6.6: the
agency collects orders and splits the cost among the subscribers. That of the random prior-
ity mechanism requires an agency endowed with more coercive power than under increas-
ing returns. In addition to drawing a random ordering of the potential users, the agency
must also prevent the agents from declining to buy in the first rounds but reentering later
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Figure 6.10
Cost and demand in example 6.8

when the marginal cost has dropped. The offer made to any one agent must be credibly
final.

The free access equilibrium is computed at the intersection of the demand and average
cost functions:

d(ac(q) = q, where ac(q) = 40 − q

6
⇒ q f a = 72

Here the FA equilibrium is unique: the zero output is not an equilibrium because a number
of agents want to buy at the highest price of $40.

The welfare performance of the FA equilibrium is visualized by figure 6.10, showing the
efficient output level qe = 90 (point A) and the efficient surplus σe = $2,700 (area ABC).
The FA equilibrium produces 20 percent under the efficient level, but collects σ f a = $2,592
(area BDE), an efficiency loss of only 4 percent.

In order to compute the RP equilibrium, we proceed as in example 6.6. The key is the
number q(λ) of agents who have accepted their offer among the first 100λ agents. The agents
drawn immediately after these are offered the price mc(q(λ)); hence they will accept with
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probability d(mc(q(λ)))/100, and the equation governing q(λ) is

dq (λ) =
(

60 + q(λ)

3

)
dλ and q(0) = 0

⇒ q(λ) = 180(1 − eλ/3), 0 ≤ λ ≤ 1 ⇒ q(1) = qrp = 71.2

The output level under RP is within 1 percent of that under FA.
The RP surplus is computed as follows: if y units have been sold so far (thus 100 q−1(y)

agents have been drawn), the next unit is allocated with uniform probability among all
agents above mc(y). Thus the average surplus generated by this unit is

∫ d(mc(y))

0
(d−1(z) − mc(y)) dz =

∫ 100
mc(y)

d(x) dx

d(mc(y))
= 1

2

(
60 + y

3

)

⇒ σr p =
∫ qr p

0

1

2

(
60 + y

3

)
dy = 2,559

The RP surplus is lower than that of the FA, but by less than 1.5 percent, and its loss, rela-
tive to the efficient surplus, is only 5.2 percent. We conclude that the welfare performances
of our two mechanisms are excellent and practically identical.

Exercise 6.11 computes the surplus distribution of these two equilibrium outcomes, and
of the three canonical solutions, VP, Shapley, and CEEI.

*6.6 Axiomatic Comparison of the Three Solutions

In this final section we compare the CEEI, VP, and Shapley solutions by means of three
simple axioms of equity. The fair share axiom imposes a bound of individual surplus;
the population and resource monotonicity15 properties speak about two simple changes in
the parameters of the problem.

We derive first the general formulas for the surplus distribution recommended by our
three solutions.

Computing and Comparing the Solutions

We start with a general commons with an increasing marginal cost function mc and a
decreasing demand function d as in figure 6.11a, where the competitive profit r = peqe −
C(qe) is the shaded area. All three solutions charge the competitive price pe to each efficient

15. Resource monotonicity was discussed earlier in example 2.9 and section 3.5.
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Figure 6.11c
Computing the Shapley solution

user, then use the budget surplus r to give a rebate to efficient users and a cash compensation
to some inefficient users.

The CEEI solution divides r equally among all d(0) legal beneficiaries of the commons,
including those below mc(0). The rebate of an efficient user equals the check received by
all inefficient ones.

The VP solution cuts through r as shown on figure 6.11b so as to give an actual rebate
pe − pv to each efficient user, and a smaller check p − pv to the inefficient users above pv.

The virtual price pv is the solution of

∫ pe

pv

d(x) dx = r

Denoting by p f a the average cost at the FA equilibrium—at the intersection of the demand
and average cost—the following inequalities bound the virtual price pv:

ac(qe) < pv < p f a < pe

The proof is left as an exercise for the reader.
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Computing the Shapley solution

The Shapley solution divides the “slice” of r at level p equally among all agents above p;
see figure 6.11c. Thus the rebate of agent p is as follows:

efficient agent, p ≥ pe: rebate
∫ pe

mc(0)

mc−1

d
(x) dx

inefficient agent, pe ≥ p ≥ mc(0): cash
∫ p

mc(0)

mc−1

d
(x) dx

(4)

The rebates awarded to the efficient agents are ranked as follows:

r

d(0)
<

∫ pe

mc(0)

mc−1

d
(x) < pe − pv (5)

so that an efficient agent always prefers VP over Shapley and the latter over CEEI; see
exercise 6.14 for a proof of (4) and (5). On the other hand, it is easy to see that an agent just
above mc(0) prefers CEEI over Shapley over VP.

The case of decreasing marginal costs depicted on figure 6.12 yields similar computations.
The competitive deficit r = C(qe) − peqe is depicted on figure 6.12a.
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The CEEI solution splits r equally among the d(0) participants: the surcharge r/d(0)

paid by every efficient agent equals the tax on every inefficient one.
The virtual price pv cuts through r as shown on figure 6.12b:

∫ pv

pe

d(x) dx = r

An efficient agent above pv pays a surcharge pv − pe above pe, efficient agents between
pv and pe pay exactly their valuation for the good, and inefficient agents get no transfer.
As in the decreasing returns case, the virtual price is bounded between the efficient average
cost and the FA equilibrium price:

pe < ac(qe) < pv < p f a

Finally the Shapley solution divides the p−slice of r equally among all agents above p;
see figure 6.12c. Thus the price paid by an efficient agent between pe and mc(0) increases
with p. Their surcharge above pe is computed as follows:

p ≥ mc(0): surcharge
∫ mc(0)

pe

mc−1

d
(x) dx

mc(0) ≥ p ≥ pe: surcharge
∫ p

pe

mc−1

d
(x) dx

(6)

Inefficient agents get no transfer whatsoever.
The comparison of the surcharges to the efficient agents yields only two systematic

comparisons:

r

d(0)
< pv − pe,

r

d(0)
<

∫ mc(0)

pe

mc−1

d
(x) dx (7)

Efficient agents prefer CEEI to both VP and Shapley but their preferences over the latter
two can go either way. On the other hand, barely efficient agents (just above pe) always
prefer Shapley over VP and the latter over CEEI; see exercise 6.14.

Fair Share

The concept of fair share for a potential user of the commons was introduced in examples 6.4
and 6.5. Its general formulation is as follows: say an agent p is one among n potential users
of the commons. Imagine a homogeneous demand where all n agents have valuation p, and
compute the corresponding surplus σ : agent p’s fair share is precisely σ/n.
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The fair share is what an agent receives in a hypothetical profile where everyone else
shares this agent’s preference. In a commons with decreasing returns (e.g., examples 6.4, 6.5,
and 6.6) it is feasible and normatively appealing to use agent p’s fair share as a lower bound
on her actual share of surplus. The argument is as follows: if every other person entitled to
the commons were identical to me (i.e., had the same preferences), I would receive my fair
share of surplus (by equal treatment of equals and by efficiency). The difference between my
actual share and my fair share is therefore caused by the heterogeneity of our preferences.
If this heterogeneity affects me negatively and someone else positively—in the sense that
I get less than my fair share whereas he gets more than his fair share—the situation is
discriminating against my preferences, which is unfair.

The requirement that his fair share of surplus be guaranteed to each potential user of a
decreasing returns commons is the main critique of the virtual price solution. On the other
hand, both the CEEI and Shapley solutions guarantee every agent’s fair share. This point
was already made in examples 6.4 and 6.5; exercise 6.13 provides a general argument.

We turn to an increasing returns common, where the fair share of agent p is similarly
defined as the per capita surplus in the hypothetical economy made up of n clones of agent p.

Consider example 6.7. With 100 agents willing to pay p for their good, the efficient
outcome consists of producing 100 units if the benefit 100(p − 10) exceeds the fixed cost
1,800, namely if p ≥ 28, and of not producing at all otherwise. Hence agent p’s fair share
of surplus is fs(p) = (p − 28)+. But this time it is not feasible to guarantee the surplus
share fs(p) to every agent p. To see this, we compare the surplus σvp in the VP solution to
the fair share:

σvp(p) = (p − 32.9)+ < (p − 28)+ = fs(p) if 28 < p ≤ 100

σvp(p) = 0 = fs(p) if 0 < p ≤ 28.

The VP solution is efficient; hence our claim that guaranteeing fs(p) to every agent p
is not feasible. This computation reveals an important and systematic difference between
the cases of increasing and decreasing returns to scale: in the latter the heterogeneity of
individual preferences is a source of mutual benefits; in the former it forces a loss of surplus.
Formally, the surplus distribution fs(p) is feasible under decreasing returns and unfeasible
under increasing returns. In the latter case a sensible normative requirement is to use the fair
share fs(p) as an upper bound on agent p’s net surplus: every agent must bear a share of
the negative externality created by the heterogeneity of preferences.

In example 6.7 this upper bound rules out a positive surplus share for all agents below
28, a property met by the VP and CEEI solutions but not by Shapley. When we combine
the fair share upper bound with voluntary participation, ruling out a negative surplus share
for any agent, we find that inefficient agents must get no cash transfer, and that all efficient
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agents between 10 and 28 must pay their full valuation p: thus these two axioms point very
clearly toward the VP solution.

The fact that VP and CEEI meet the fair share upperbound and Shapley does not, holds
true for any d and any decreasing mc: exercise 6.13.

Population and Resource Monotonicity

The property of population monotonicity is closely related to the stand-alone test of
section 4.4. Consider, to fix ideas, a commons in the costsharing format (as in exam-
ples 6.4, 6.6 to 6.8). The stand-alone surplus is a subadditive function when marginal costs
increase, and a superadditive function when marginal costs decrease. This follows easily
from the fact that the cost function is superadditive in the former case, and subadditive in
the latter.16 Therefore the stand-alone test applied to any coalition S requires that the total
surplus allocated to S be no larger (resp. no smaller) than its stand-alone surplus when
marginal costs increase (resp. decrease).

Our first observation is that the CEEI solution violates the stand-alone test in both cases.
In the superadditive case, it gives a rent to some agents with low valuation who are unable
to extract any surplus when standing alone to use the commons. See the discussion of
examples 6.4 and 6.5.

Symmetrically, in the subadditive case, the CEEI solution levies a tax on all inefficient
agents, of whom the stand-alone surplus is zero. This violates the stand-alone test which is
equivalent to voluntary participation for these agents; see example 6.7.

The VP and Shapley solution, on the other hand, meet the stand-alone test. They even
satisfy a more demanding property called population monotonicity. In the superadditive
case, one more agent to share the commons is bad news: by consuming the good, she raises
the average cost of serving the others. Symmetrically one more agent is good news in the
subadditive case because she will lower the average cost (e.g., in example 6.4 she can bear
a share of the fixed cost). This suggests the following normative requirement, where we
denote by σ(p, N ) the surplus share of agent p under a certain solution σ when N is the
set of potential users of the commons:
superadditive cost/increasing marginal cost case:

N ⊆ N ′ ⇒ σ(p, N ) ≥ σ(p, N ′)

subadditive cost/decreasing marginal cost case:

N ⊆ N ′ ⇒ σ(p, N ) ≤ σ(p, N ′)

16. Superadditivity is the property C(q1 + q2) ≥ C(q1) + C(q2) and subadditivity is the opposite inequality.
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It is clear that population monotonicity implies the stand-alone test (in both cases). Fix
a coalition S in N and sum up the inequalities σ(p, N ) ≥ σ(p, S) over all p in S. By
efficiency of σ, the right-hand sum is the stand-alone surplus of S.

The virtual price and Shapley solutions are both population monotonic. This is easy to
check for the VP solution, for any demand and marginal cost function.

In the superadditive case, the virtual price pv is smaller than the efficient price pe =
mc(qe).17 Moreover the contribution of a new agent p to the efficient surplus is approxi-
mately (p − pe)+, where pe is the efficient price of the initial population N . If the virtual
price remains the same or decreases as a result of the new entry, the surplus distributed by
the VP solution will increase by at least (p − pv)+, contradiction. The argument is similar
in the subadditive case. The proof that the Shapley solution is population monotonic is more
involved.18

Finally we discuss resource monotonicity. It requires every agent to benefit (or at least
not to suffer) where the commons improve in the sense that the marginal cost function
decreases or stays put (at every level of output). Technological progress that reduces some
marginal costs can only increase the efficient surplus, and resource monotonicity says that
every individual agent gets a share of this bounty.

Somewhat surprisingly, the CEEI solution is not resource monotonic. In example 6.4 we
distribute 40 free goods among 100 agents and every inefficient agent receives a check for
$24, or one-hundredth of the competitive profit pe · qe = 60 · 40. When the number of free
goods doubles to 80, the competitive surplus decreases to 20 · 80 = $1,600, and so does
the check of the 20 agents below 20.

The violation of resource monotonicity is equally easy to demonstrate in the increasing
returns case. Consider example 6.7 where the CEEI solution imposes a tax of $18 on every
inefficient agent (below 10). When the fixed cost increases above $4,050 (or when the
marginal cost increases above 40), it becomes inefficient to produce anything, and no one
is taxed anymore, which is good news for these 10 agents.

The VP solution is resource monotonic. When the resources increase, the efficient surplus
increases as well. Hence the virtual price must decrease, and the surplus (p − pv)+ of any
given agent p increases or stays put.

The Shapley value is resource monotonic as well. Let S be the coalition of agents pre-
ceding a certain agent p in a random ordering of N , and let p0 be the efficient price for
coalition S standing alone. Then agent p’s marginal contribution to S is (p − p0)+. When

17. Exercise: Why?

18. It is a consequence of the property of super- or submodularity of the stand-alone surplus game; see chapter 7
in Moulin (1995).
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the marginal cost function decreases, the efficient price of S standing alone decreases (or
stay put). Hence agent p’s marginal contribution to S can only go up or remain constant.

The following table summarizes the axiomatic discussion:

CEII Virtual price Shapley

Decreasing returns

Fair share guarantee Yes No Yes

Population monotonicity No Yes Yes

Resource monotonicity No Yes Yes

Strategy-proofness Yes No No

Open membership No Yes Yes

Increasing returns

Fair share upper bound Yes Yes No

Population monotonicity No Yes Yes

Resource monotonicity No Yes Yes

Strategy-proofness Yes No No

Open membership No Yes Yes

6.7 Introduction to the Literature

The tragedy of the commons goes back to Aristotle and Adam Smith. Its modern formula-
tion—and its name—is due to Hardin (1968).

The literature is split by the distinction between decreasing and increasing returns. On the
former, the discussion centers on the overexploitation of exhaustible resources—Dasgupta
and Heal (1979) and Ostrom (1991)—and on the management of congestion externalities.
On the latter, the central notion is that of a natural monopoly. The efficient organization
of production requires to run a single copy of the technology, and the issue is to distribute
the cooperative surplus efficiently and fairly. Two basic references are Baumol, Panzar, and
Willig (1982) and Sharkey (1982).

The Locke quote at the end of section 6.2 is in Locke (1690).
Sections 6.4 and 6.5 offer a brief discussion of the main themes of mechanism design in

the context of our problem. A general reference on implementation theory is Moore (1993).
Three recent papers address the implementation of the Shapley value, hence are potentially
relevant to the discussion preceding example 6.8: Gul (1989), Hart and Mas-Colell (1996),
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and Perez-Castillo and Wettstein (2001). The random priority mechanism is introduced by
Crès and Moulin (1998).

The axiomatic discussion of section 6.6 is developed with more details in Moulin (2001c).

Exercises to Chapter 6

Exercise 6.1 Restaurant Bill

This restaurant offers three dinner combinations: economy for $10, standard for $15, and
deluxe for $25. Everyone orders individually, but the total bill of the party is equally divided
among all patrons. The goal of the exercise is to determine whether splitting the bill equally
generates a tragedy of the commons. If it does, one wishes to compute the relative efficiency
loss. The answer depends on individual preferences = willingness to pay for the different
meals, and the number of patrons in the party.

a. A party of 3 identical patrons with the following willingness to pay: economy 16, standard
20, deluxe 29

b. A party of 3 identical patrons with the following preferences: economy 15, standard 20,
deluxe 32

c. A party of 4, with preferences as in question a (two patrons) or as in question b (two
patrons).

Exercise 6.2 The Traffic Paradox

a. There are two routes between A and B, one through C and one through D; see fig-
ure 6.13a. Travel time on the four segments increases with congestion. Let xk be the number
of users of segment k. The corresponding travel time is

10xk if k is AD or C B

50 + xk if k is AC or DB

Six commuters must go from A to B and can choose either one of the two roads. A
player’s only concern is to minimize total travel time. Show that the equilibrium outcome
has three agents on each road, and that this outcome is efficient (no tragedy). Hint: You can
use example 6.3.

b. A road between C and D is now open on which travel time is 10 + xk ; see figure 6.13b.
Show that in the new (unique) equilibrium outcome, two agents follow ADB, two agents
follow ACB, and two follow ADCB. Show that travel time has strictly increased for everyone!
What is the efficiency loss of this “tragedy”?
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c. A direct road between A and B is opened on which travel time is 30xk ; see figure 6.13c.
Compute the new unique equilibrium outcome. Do we have a “tragedy”?

*Exercise 6.3 Queuing

A server processes one agent per unit of time (think of queuing at the post office). Each
potential user wants one unit of service but dislikes waiting. If he waits for t periods before
being served his net utility is p − t . Thus he loses one “util” per unit of time in the queue
and is willing to wait at most p periods. Agents must choose at time t = 0 whether to stay
in the queue or not.

a. If q agents choose to stay, the server at each period picks one of the remaining agents at
random, and without bias, until the queue is empty. Assume that each agent maximizes
her expected utility. Show that the strategic situation is the free access game to a commons
with marginal cost mc(q) = q for all q ≥ 0. Show, in particular, that if an agent’s optimal
decision is to stay for one period, then she will stay until she gets service: staying in the
queue for a few periods and “balking” before receiving service can’t be optimal.

b. Now the server draws a random priority ordering of all agents at time t = 0 (with uni-
form probability on all orderings) and serves agents in that order. Each participant decides
to stay or balk at time t = 0. Show that the strategic situation is the random priority game
of section 6.4.

c. Suppose that a large number of agents are willing to wait at most 20 periods for service:
each individual valuation p is between 20 and 21. Show that in the free access regime
(queuing protocol of question a), the surplus (measured in time savings) is at most 39,
whereas the efficient surplus is at least 190.

Give a general formula for a large number of users, each willing to wait the same number
of k of periods.

Exercise 6.4 Discrete Variant of Example 6.4

We have five agents with the following willingness to pay for one object:

Ann and Bob: $80

Chris and Dave: $60

Erwin: $30

a. Suppose that three free objects are available. Efficiency commands to give them to Ann,
Bob, and either Chris or Dave—say, Chris to fix ideas. Compute the pattern of monetary
compensations recommended by our three solutions CEEI, VP, and Shapley.
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b. Drop Ann and compute the new set of transfers; check that the CEEI solution is not
population monotonic.

c. Go back to the five agents population of question a, and compute the three solutions when
there is exactly one object and when there are five objects; check that the CEEI solution is
not resource monotonic.

*Exercise 6.5 Generalizing Example 6.4

Consider first the model of example 6.4 with a continuum of agents. The n agents’ will-
ingness to pay are uniformly spread between p̄ and 0, so the demand function is d(p) =
n(1 − (p/ p̄)). There are k free objects, k ≤ n, and we set k = λn, so λ is the proportion
of agents who can get an object.

a. Show that the efficient agents are those above (1 − λ) p̄ and that the CEEI solution

charges for an object $(1 − λ)2 p̄ to agent p if p ≥ (1 − λ) p̄

gives $λ(1 − λ) p̄ to agent p if p ≤ (1 − λ) p̄

Check that this solution fails to be either resource or population monotonic; check that it
gives his fair share to every agent.

b. Show that the virtual price pv is equal to

pv = (1 − λ)2

1 + √
2λ − λ2

p̄

Check that the VP solution gives his fair share to every efficient agent but fails to do so for
some inefficient ones.

c. Show that the Shapley solution

charges for an object $(1 − (1 − log λ)λ) p̄ to agent p if p ≥ (1 − λ) p̄

gives $ − λ p̄ log(1 − p
p̄ ) to agent p if p ≤ (1 − λ) p̄

d. Draw the surplus functions of all three solutions and comment on their distributive
consequences.

Exercise 6.6 A Discrete Example with Quadratic Cost

The technology has quadratic costs namely mc(q) = q and total cost C(q) = 1+2+· · ·+
q = q(q + 1)/2. The queuing model of exercise 6.3 is an example.
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We have 25 agents with the following willingness to pay ui for service:

ui = 1.5 for i = 1, . . . , 10

ui = 2.5 for i = 11, . . . , 20

ui = 5.5 for i = 21, . . . , 25

a. Show that the efficient output is q = 5 and that the free access equilibrium is the efficient
outcome.

b. By contrast, the random priority equilibrium inefficiently serves some of the 20 inefficient
agents with positive probability. To compute exactly the expected quantity produced by, and
surplus collected at, the RP equilibrium is not easy. General formulas show that the expected
output is qr p = 7.7 and that the relative surplus loss is 38 percent.

Show by simple computations that the relative surplus loss under RP is at least 25 percent
and the expected output is at least 7.

c. Compute the allocations selected by the CEEI solution. By question a, the VP solution
charges $3 for an object to each efficient agent and ignores the inefficient agents. Show that
the Shapley solution is the following allocation:

pay 2 cts to agent i, i = 1, . . . , 10

pay 12 cts to agents i, i = 11, . . . , 20

charge for an object $3.28 to agents i = 21, . . . , 25

Hint: An agent p = 1.5 gets 50 cts of surplus if he is drawn first; otherwise, he gets nothing.
An agent p = 2.5 gets $1.00 if he is first among all 25 agents, and an additional 50 cts if
he is first among the 15 agents not smaller than 2.5.

Exercise 6.7 Another Discrete Example with Quadratic Cost Marginal cost is mc(q) =
q as in the previous exercise. We have 12 agents and the following profile of valuations for
an object:

10, 8, 8, 6, 6, 6, 5, 5, 4, 4, 2, 1

a. Find the efficient output quantity qe and the efficient surplus σe. Note that there are two
efficient output levels.

b. Define the CEEI Solution by the properties of efficiency and no envy. Show that there
is a range of allocations meeting these two properties. Find the one most advantageous to
the efficient agents, and the one least advantageous to them.

c. Show that the virtual price pv is $3.9.
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d. Show that the Shapley solution distributes the surplus as follows:

Valuation 10 8 6 5 4 2 1

Surplus $5.92 $3.92 $1.92 $1.09 49 cts 9 cts 0

Hint: An agent with valuation 4 gets $1 if he is first among the eleven highest agents plus
$1 if he is first or second among the ten highest agents, plus $1 if he is first, second or third
among the same ten agents.

Compare this distribution of surplus to the two distributions under CEEI and VP, and to
the profile of fair shares.

Exercise 6.8 A Discrete Example with Decreasing Marginal Costs In each one of the
following problems, you must compute the efficient output and surplus, the free access,
and random priority equilibrium allocations, as well as the three solutions CEEI, VP, and
Shapley.

a. Four agents with valuations 60, 50, 30, and 10. The first k units of the good cost $40,
the next units are free. Answer for k = 1, 2, or 3. Discuss resource monotonicity.

b. The same technology as in question a, but the valuations of the four agents are now
90, 30, 30, and 10.

c. Eleven agents with valuations u1 = 10 and ui = 2 for 2 ≤ i ≤ 11. The first unit of the
good costs $a, and the rest are free. Discuss according to a.

d. This is a surplus-sharing model where ten agents may or may not supply an output and
have the following opportunity cost of doing so:

ui = 3 for i = 1, 2, 3, 4

ui = 6 for i = 5, 6, 7, 8, 9, 10

The marginal returns are

mr(q) = 0 for q = 1, . . . , k

mr(q) = 10 for q = k + 1, . . . , 10

where k is a fixed parameter. Discuss for k = 1, k = 3, or k = 5. Hint for Shapley: Use
the slicing technique alluded to in exercises 6.6 and 6.7 and captured by formula (6) when
the number of agents is large. Observe that if an interval of prices [p, p + δ] contains no
valuation ui and no marginal cost mc(q), the slice of surplus δ(d(p)− mc−1(p)) is equally
divided among all agents in d(p). Then divide the range of prices relevant to the efficient
surplus σe in a sequence of such intervals.
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Exercise 6.9 Generalization of Example 6.5 The marginal return of the technology is
constant and equal to r for the first q̄ units of input, and drops to zero afterward.

Each agent can supply one or zero unit of input. There are s(ρ) = aρ agents with
opportunity cost at or below ρ: these agents are glad to work if they are paid more than ρ.

Notice that if ar ≤ q̄, the problem is essentially one with constant returns as in section 6.2,
so that the canonical stand-alone solution is optimal. From now on, assume q̄ < ar.

a. Compute the free access and random priority equilibrium outcomes. Show that the sur-
pluses σ f a and σr p are equal and independent of a, and that the relative surplus is at least
50 percent.

b. Compute the three solutions CEEI, VP, and Shapley and draw the corresponding surplus
functions.

Exercise 6.10 Generalizing Example 6.7 The cost function C(q) = γ +cq, for all q > 0,

has a fixed cost γ and constant marginal cost c. The n agents are uniformly spread between
0 and p̄. Hence the demand function d(p) = n(1 − (p/ p̄)). We assume p̄ ≥ c.

a. Show that the efficient surplus in the absence of any fixed cost (γ = 0, i.e., constant
returns technology) is

σ0 = 1

2
n
( p̄ − c)2

p̄

b. Assume σ0/2 < γ < σ0. Show that the only free access equilibrium is the “zero” outcome,
whereas the efficient output is qe = d(c).

c. Assume 0 ≤ γ ≤ σ0/2. Show that the Pareto superior free access equilibrium under-
produces by 50 percent and loses no more than 50 percent of the efficient surplus:

q f a = 1

2
qe, σ f a ≥ 1

2
σe

Exercise 6.11 Computations for Example 6.8

a. Show that the CEEI solution makes every efficient agent pay $23.50; it also levies a tax
of $13.50 on an inefficient agent.

b. Show that the virtual price is pv = $26.50.

c. Show that the Shapley solution charges $27.00 to every agent above 40. Compute the
price it charges to an agent p, 10 ≤ p ≤ 40.

Hint: Apply the formulas in section 6.6.
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*Exercise 6.12 Improving upon the FA Equilibrium

Consider an arbitrary commons (d, mc) with increasing marginal cost as in section 6.6,
depicted in figure 6.11.

The free access equilibrium is p f a, q f a at the intersection of the demand and average
cost curves (e.g., point C in figure 6.6). The goal of the exercise is to show a simple Pareto
improving move from the FA equilibrium to an efficient outcome.

Starting from the FA outcome, the agents in [pe, pa] are bribed out of the commons by
a payment of $(pe − p f a) each. This payment is financed equally by all efficient agents,
who end up paying

p = ac(qe) + (pe − p f a)
q f a − qe

qe

Show that p < p f a so that every agent active at the FA equilibrium prefers the new outcome
(and others see no change). Note that the proposed outcome is easy to implement if we can
discriminate between efficient and inefficient agents. However, an agent just below pe has
an incentive to pretend being efficient (just above pe).

Hint: Show that the above inequality is equivalent to pe(q f a − qe) < C(q f a) − C(qe),
and use figure 6.6 to conclude.

*Exercise 6.13 Fair Share Guarantee and Fair Share Upperbound

Fix an arbitrary commons (d, mc) with increasing marginal cost as in section 6.6. Agent
p’s fair share is the per capita surplus in an economy made of d(0) = n identical clones
of agent p:

f s(p) = 1

n
max

0≤q≤n
{pq − C(q)} = 1

n
{pmc−1(p) − C(mc−1(p)}

a. With the data of example 6.6 compute the fair share function f s(p) and check that it is
a lowerbound of the surplus awarded by the CEEI and Shapley solutions. Check that this is
not true of the VP solution.

b. Using the formulas in section 6.6, show that the CEEI and Shapley solutions guarantee
a fair share of surplus to every agent.

In the decreasing marginal cost case, the definition of the fair share is identical but its
computation is different:

f s(p) = 1

n
max

0≤q≤n
{pq − C(q)} = (p − ac(n))+
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c. With the data of example 6.8, compute the fair share function, and check that it is an
upperbound of the surplus awarded under VP and CEEI. This is not true of the Shapley
solution.

d. Using the formulas in section 6.6, show that the VP and CEEI solution never give more
than a fair share to any agent.

*Exercise 6.14 Proof of Properties (4), (5), (6), and (7)

a. To prove formula (4) for an arbitrary problem (d, mc) where mc increases, we define an
auxiliary function g and its inverse f :

g(x) = mc−1(x)

d(x)
= λ ⇔ x = f (λ)

When the fraction λ, 0 ≤ λ ≤ 1, of the potential users is drawn, the resulting demand is
λd, by the law of large numbers, and x = f (λ) is the corresponding efficient price. Therefore
the surplus distribution of the Shapley value is

σs(p) =
∫ 1

0
(p − f (λ))+ dλ =

∫ min{g(p),1}

0
(p − f (λ)) dλ for p ≥ mc(0)

= 0 for p ≤ mc(0)

Use the change of variable λ → x = f (λ) to derive formula (4).

b. To prove inequalities (5), the only difficult part is the right-hand side inequality. Prove
first the following inequality and equality:

∫ pv

0

mc−1

d
(x) dx ≤ 1

d(pv)

∫ pv

0
mc−1(x) dx = 1

d(pv)

∫ pe

pv

(d − mc−1)(x) dx

c. Prove (6) and (7) by similar arguments.

*Exercise 6.15 Comparing the CEEI and FA Outcomes

In an arbitrary commons (d, mc) with increasing marginal cost (section 6.6), prove the
following inequality:

pe − r

q f a
< p f a

Deduce that, depending on the number of inactive agents at the FA equilibrium (i.e., agents
below p f a), the efficient agents may prefer their CEEI allocation to their FA allocation, and
vice versa.
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Next assume that our commons has decreasing marginal costs and prove the inequality

pe + r

qe
< p f a .

Deduce that all efficient agents prefer the CEEI solution to the FA allocation.

Exercise 6.16 Implementing the VP Solution

Consider a commons (d, mc), as in section 6.6. It does not matter whether marginal costs
increase, decrease, or are arbitrary.

The following mechanism is played in two successive rounds. In the first round each
agent independently bids, that is, announces a price �. One of the lowest bidders is declared
winner (it does not matter how the winner is selected in case of ties; for instance one can
use a lottery).

In the second round, each nonwinner agent must choose one of two possible allocations:
buy one unit of service at price �∗(where �∗ was the lowest bid in round 1) or get no service
and pay nothing. It does not matter in what order the nonwinners make their decisions.

Finally, the winner settles all accounts; namely he chooses whether or not to get one
unit of service and pays the (positive or negative) balance generated by his and the other
players’ decisions. If q nonwinners choose to buy, he must pay C(q)−�q or C(q +1)−�q
depending on whether or not he himself gets service.

Show that in the equilibrium of this game among agents who know the demand function,
every agent bids pv in the first round and the VP solution is implemented.

*Exercise 6.17 Uniform Gain and Proportional Solutions

In a general cost-sharing problem (d, mc), the proportional solution divides the efficient
surplus σe in proportion to individual willingness to pay. The uniform gain solution gives
a common share of surplus λ or his own valuation for the good, whichever is less, to every
agent. These solutions are defined in section 2.2.

a. Show that the surplus functions σpr and σug of these two solutions are as follows:

σpr (p) = µ · p

where µ = σe/D(0) and D(0) = ∫ P
0 d(x) dx ,

σug(p) = min {λ, p}
where

∫ λ

0 d(x) dx = σe.
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b. Show that neither of these two solutions equals the canonical stand-alone solution in the
benchmark case with constant marginal cost.

c. Compute these two solutions in examples 6.4 and 6.6, and compare them to our three
main solutions. Check that in example 6.6, the uniform gains solution does not guarantee the
fair share of every efficient agent. Construct an example (d, mc) with increasing marginal
cost, where the proportional solution also fails to guarantee the fair share of some efficient
agents.

d. Under decreasing marginal costs, show that neither the proportional solution nor the
uniform gains solution gives his stand-alone surplus to all agents. Use example 6.8.

e. Show that both solutions are resource monotonic.
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7 Fair Trade and Fair Division

7.1 Private Ownership and Competitive Trade

The subject of this final chapter is the exchange and distribution of heterogeneous private
goods. Some of the solutions discussed below (e.g., the competitive equilibrium with equal
incomes) were introduced in chapter 6. There we had a technology producing homogeneous
private goods, here there is no production but several heterogeneous commodities. The
differences in individual preferences over these private goods create opportunities to trade
when the goods are privately owned, and this compels us to distribute unequal individual
shares in the fair division problem.

We address successively two central microeconomic questions: Will private ownership
of the resources result in a fair and efficient trade? When the resources are the common
property of a given community, what does it mean to allocate them fairly and efficiently?

The two questions are clearly related. Indeed, the economist’s pet fair division method
(answering the latter question in the previous paragraph) simply transforms common owner-
ship into equal privately owned shares, and turns the fair division issue into a special case
of the former question.

The central concept is competitive trade, namely the decentralized organization of
exchange by means of a common signal called the competitive price vector. Remarkably
the competitive equilibrium allocation is, at the same time, the positive prediction of the
outcome of strategic trading under private ownership, and a normative definition of fairness
for the allocation resulting from exchange. The positive statement relies on the analysis of
the core-stability, to which the sections 7.1 to 7.3 are devoted. The normative interpretation
of fairness is the no-envy property introduced in chapter 6, and systematically discussed in
sections 7.4 to 7.6.

We take an ordinal viewpoint throughout the chapter. As in chapter 4 the relevant de-
scription of individual welfare is an ordinal preference relation comparing bundles of com-
modities. Any cardinal measurement of utility (chapter 3) is deemed irrelevant and hence
omitted from the model. However, the model is not a welfarist one as in chapter 4, because
the physical description of individual shares is crucial to the definition of competitive trade,
as well as to the normative tests of no envy and egalitarian equivalence.

In terms of the four principles of justice of section 2.1, compensation is entirely ab-
sent, since every agent is deemed responsible for his or her preference ordering over the
commodities and no one can ask for a larger share on account of a disadvantageous wel-
fare. Reward is similarly irrelevant because the commodities to be exchanged or divided
are given as manna form heaven, and individual participants in the trade or division prob-
lem are not related to the production of these resources. The two principles at work are
thus fitness (in the sense of efficiency) and exogeneous rights, the latter taking the form

221
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of the private property rights when we discuss trade in the first three sections, or of the
less precise notion of common property when the problem is fair division in the last three
sections.

We turn to competitive trade. Our first two examples explain the positive and normative
interpretations of the competitive exchange allocation: it is a resting point of private con-
tracting given the property rights (core-stability property); competitive trade is fair because
no one prefers someone else’s net trade to her own (no-envy property).

Example 7.1 Swapping Time Slots One of the n physicians in this community must be
“on call” for each one of the next n weekends. Each doctor will be on call exactly one
weekend. Until last year the slots were centrally allocated by the hospital on which they all
depend, with doctor i allocated to slot i, i = 1, 2, . . . , n. Swapping was not allowed. This
year the hospital manager, after taking a microeconomics class, has decided to allow mu-
tually beneficial swaps; each doctor is entitled to his previous slot but voluntary exchanges
involving any number of physicians are now possible.

Consider the following example:

Agent 1 2 3 4 5 6

Top choice 1 1 5 6 3 4
(1)

Note that agents 3, 5 have a perfect trade, as each owns the slot that the other covets.
Similarly agents 4, 6 have a perfect trade. Finally agent 1 does not want to exchange his slot
for any other slot; so agent 2 is unable to improve upon his initial situation and the unique
core allocation is

Slot 1 2 3 4 5 6

Agent 1 2 5 6 3 4

Consider the price of $10 for each one of the slots 1, 3, 4, 5, 6 and $5 for slot 2. Agent 3
can “buy” slot 5 after selling his own slot (because these two slots have the same price):
this is called a competitive trade, because it is of zero net value at the competitive price.
Clearly, it is the best competitive trade for agent 3. Conversely, agent 5’s optimal trade is
to buy slot 3 in exchange of slot 5. Therefore the swap between 3 and 5 is a competitive
one. The optimal trades by agents 4 and 6 has them similarly swapping. Agent 1’s best
competitive trade is to keep his slot. Finally agent 2 cannot exchange her cheap slot for any
of the five expensive slots; hence her only competitive trade is no trade.

The money in which we measure prices $10 and $5 is what economists call fiat money,
namely a coupon that can be redeemed for a slot of equal or lower value but is otherwise
useless (i.e., this coupon cannot be used to buy any other valuable commodity). The only
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role of prices in this example is to block agent 2 from buying another slot than her own.
Any price vector pi , i = 1, . . . , 6 such that

p3 = p5, p4 = p6, p2 < pi , i = 1, 3, 4, 5, 6

leads to the same competitive trade.
Consider next the following pattern of preferences by our six agents over the six slots:

Agent 1 2 3 4 5 6

1st choice 3 3 3 2 1 2

2nd 2 5 1 5 3 4

3rd 4 6 . . . 6 2 5

4th 1 . . . 4 . . . 6

. . . . . . . . . . . . . . . . . . . . . . . . .

(2)

where at most the top four choices of each individual preference matters.
The top trading cycle algorithm identifying the unique core-stable allocation works as

follows in this example. Draw an arrow from each agent i to the agent denoted τ(i) who
owns agent i ′s first choice slot:

τ(1) = τ(2) = τ(3) = 3, τ (4) = τ(6) = 2, τ (5) = 1

Look for a cycle of the mapping τ , namely a subset of agents S such that τ permutes1

the elements of S. Core-stability requires that the agents in such a cycle swap their slots
according to τ. They all end up with their first choice, and the corresponding private contract
relies exclusively on their own property rights. In example (2) the only cycle is {3}, which
means that 3 keeps his slot. In example (1), the mapping τ had three cycles, {3, 5}, {4, 6},
and {1}.

Back to example (2), we put aside agent 3 and his slot, and construct the mapping τ anew
on the reduced problem (with five agents and five slots):

τ ′(1) = τ ′(4) = τ ′(6) = 2, τ ′(2) = 5, τ ′(5) = 1

Now the unique cycle is {1, 2, 5}. Therefore these three agents swap their slots according
to τ ′. This is, again, a consequence or core-stability. The swapping contract relies on their
property rights only, and gives them their best slot, given that slot 3 is not available.

We are left with two agents 4, 6 and their two slots. Both prefer to swap rather than
keep their initial slot: τ ′′(4) = 6 and τ ′′(6) = 4. This is the third and final cycle, and the

1. Namely τ is a bijection of S into itself.
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corestable assignment is now entirely determined:

Agent 1 2 3 4 5 6

Slot 2 5 3 6 1 4

To interpret this trade as competitive, we can use any price vector where slot 3 is the most
expensive, slots {1, 2, 5} share a middle price, and slots {4, 6} are the cheapest:

p3 > p1 = p2 = p5 > p4 = p6

Agent 1 cannot afford to buy slot 3 after selling her own at p1; her best buy is slot 2.
Similarly agent 2’s competitive trade is to sell his slot to buy slot 5. And so on it goes.

Exercise 7.2 discusses two more examples of the slot-swapping problem and computes
its unique competitive trade by the top trading cycle algorithm.

Our second example is closely related to the model of the commons under increasing
marginal costs (chapter 6). The key feature is that the market consists of a large number of
small participants, where an agent is small if he or she owns an insignificant fraction of total
resources in the market. Under this negligibility assumption, the competitive trade enjoys
no less than three additional equivalent definitions: it is the unique corestable allocation;
the unique efficient allocation passing the no-envy test; it is also the Shapley value of the
stand-alone surplus game (section 5.4).

Example 7.2 Market for a Homogeneous Good We have 40 “sellers” who each own
one unit of a homogeneous “service” and 100 “buyers” who each want at most one unit of
service. Each seller can provide the service at no cost: think of a piece of software that can
easily be copied. The buyers differ in their willingness to pay for the service: one of them
wants to pay, up to $100, the next one $99, and so on. Thus, as in examples 6.4 and 6.6, there
are d(p) = 100 − p agents who would make a positive profit by paying $p for the service.
As in example 6.4, there are 40 “free” units of the commodity, yet they are not the common
property of the buyers as in chapter 6. Each seller owns a specific piece of the technology,
and expects to make some profit. The efficient surplus $3,200 is achieved when the 40 most
eager buyers—those willing to pay more than $60—are served: How should we divide this
surplus between buyers and sellers?

The competitive price pe = 60 is the compelling answer: this is the price at which the
supply of 40 units equals the demand. By trading at this price, the 40 sellers receive the
surplus share $2,400, whereas the remaining $800 are split unevenly between the 40 buyers
with buyer p getting $(p − 60).

The most important difference between this competitive outcome and the three solutions
discussed in chapter 6 is that the inefficient buyers (those willing to pay less than $60)
receive no share of the surplus. We justify this from three different angles. The simplest
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explanation is that the competitive allocation treats everyone fairly because it offers the
same deal to everyone, buyer or seller: one unit of service can be bought or sold for $60.
Thus p = 60 plays the role of the virtual price of the last chapter except that it is now a
very real price. We say that the overall transaction generates no envy either among buyers
or among sellers.

A second, and quite subtle, justification of the competitive allocation relies on the Shapley
value of the cooperative game involving now 140 players. As in section 5.4 and chapter 6,
the stand-alone surplus of a given coalition of sellers and buyers measures the gains from
trade within this coalition. For instance, a coalition with no sellers or with no buyers has a
zero stand-alone surplus.

We compute the Shapley value of the stand-alone game. If a certain inefficient buyer,
say p = 20, is drawn second, and the first draw is a seller, our buyer receives his marginal
contribution to surplus, $20. The probability of this or any other ordering of the 140 agents
where our inefficient buyer receives $20 is, however, very small. By applying the law of
large numbers (e.g., as in examples 6.4 and 6.6), we check that the marginal contribution
of an inefficient agent is vanishingly small.

When agent p is drawn after a fraction λ of the 140 participants, the 140λ agents preceding
him contain, with probability of almost one, 40λ sellers and 100λ buyers, the latter with a
demand d(p) = λ(100− p). Therefore in the λ-reduced economy the efficient price is $60,

irrespective of λ. Now agent p′s contribution to the surplus is (p−60)+ = max{p−60, 0},
and we conclude that inefficient agents are not contributing any surplus.

The two arguments above in support of the competitive allocation are normative. The
third argument, core-stability, is positive: it relies on the availability of private contracts
among any subset of sellers and buyers. An allocation is stable in the sense of the core if no
subset (coalition) of players has a private contract, involving only the resources owned by
the agents in the coalition, that all members of the coalition prefer to the proposed allocation.
Among the coalitions considered in the definition above is the grand coalition comprising
all agents, therefore core-stability requires Pareto optimality. The appeal of the concept is
that the threat of partial contracts singles out a small subset of efficient outcomes, in some
cases a unique allocation as in the current example.

Consider an efficient and core-stable allocation. By efficiency, the 40 top buyers, and
only these buyers, are served. We check that all buyers pay the same price p for their object.
If this was not the case, let buyer 1 pay the largest price p1: total revenue of the sellers is
strictly less than 40p1. Thus there exists a seller who receives strictly less than p1, say q.

This seller and buyer 1 have a better deal, namely trade at a price below p1 and above q;
hence the allocation in question is not core-stable. A symmetrical argument establishes that
all sellers are paid the same amount p for their object.

We show now that the common price p must be 60. As the trade is voluntary, the price
cannot exceed 60—or one of the buyers would prefer not to trade. If p was below 60, say



moulin-79027 book October 22, 2002 16:12

Fair Trade and Fair Division 226

55, then one of the inefficient buyers, say p′ = 58, could offer a better deal to one of the
sellers. For instance, he would offer to buy an object for $57, which violates core-stability.

Having shown that a corestable outcome must be the competitive outcome, it is now easy
to check that this outcome is indeed core-stable. If a coalition finds a better private contract
involving the exchange of k objects, it must contain k sellers who each receive more than
$60. Hence one of the buyers pays more than $60 for his object and cannot be better off in
the new contract.

The discussion of example 7.2 generalizes to any market for a homogeneous good where
each agent wants at most one unit of the indivisible good and owns at most one unit. The
agents who initially own a unit (sellers) are arranged by increasing reservation price so as
to construct the supply function s(p): s(p) is the number of agents who are willing to sell
their object at price p (equivalently, who are willing to pay less than p for an object). The
supply function is increasing in p; see figure 7.1. The agents who initially own only cash
(buyers) are arranged by decreasing willingness to pay so that the demand function d(p)

is the number of buyers willing to buy when the price is p. The competitive price is at the
intersection of the demand and supply functions; see figure 7.1.

Formally, the model is identical to the commons problem in chapter 6 when we iden-
tify the supply function with an increasing marginal cost function; see section 6.3. The

p

q

s(p)

d(p)

Competitive price

Shaded area:
Competitive profit

•

Figure 7.1
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main difference is that we split the efficient surplus between buyers and sellers. The three
normative solutions in chapter 6—CEEI, virtual price, and Shapley—differ in the way they
distribute the competitive profit r = peqe − C(qe). This is the area below the competitive
price and above the supply function in figure 7.1. Here the competitive profit goes unam-
biguously to the sellers, and the competitive allocation is the uniquely compelling solution.

As in example 7.2, the latter claim rests on three arguments. The competitive allocation
is the unique core-stable trade, it is the Shapley value of the stand-alone cooperative game,
and it is the only efficient allocation without envy on net trades. Finally, the mechanism
eliciting their willingness to pay (resp. reservation price) from every buyer (resp. seller) is
strategy-proof, for exactly the same reasons making the CEEI solution strategy-proof in the
commons problem; see the discussion at the beginning of section 6.4.

The proof of the first two claims is given above in the case of example 7.2. Its straight-
forward generalization to the general demand and supply functions of figure 7.1 is left as
an exercise to the reader. We prove the third claim of no envy. In an efficient allocation, an
efficient buyer (resp. seller) acquires one object and pays some money (resp. gives up an
object and receives some money). By no envy on net trades, all efficient buyers pay the
same amount p and all efficient sellers receive the same amount p′. Similarly all inefficient
agents (potential buyers or sellers) get the same (positive or negative) cash transfer t.

Consider an efficient buyer Ann just above pe and an inefficient buyer Bob just below pe.

No envy on net trades between these two yields

Ann not envious: pe − p ≥ t

Bob not envious: t ≥ pe − p

so that pe − p = t. A similar argument involving a barely efficient and a barely inefficient
sellers gives p′ − pe = t. Finally, budget balance requires qe p = qe p′ + kt, where k is
the number of inefficient agents. The first two equalities imply 2t = p′ − p, and the latter
becomes qe(p − p′) = k(p′ − p)/2, from which t = 0, p = p′ = pe immediately follow.

An important special case of the bilateral market for homogeneous indivisible goods is
often called the gloves market (this terminology is explained below). There are n iden-
tical buyers willing to pay p1, for the good, and m identical sellers with the reser-
vation value p2 for their unit. Moreover p1 > p2, so the efficient trade yields a surplus
σ = min{n, m}(p1 − p2).

Assume n > m, meaning that the sellers are the short side of the market. Then the com-
petitive price is p1: at any lower price, the demand n exceeds the supply (at most m); at any
higher price the demand vanishes but the supply is n; at price p, each buyer is indifferent
between buying or not buying. Thus any demand between 0 and n is competitive, whereas
the competitive supply is m.
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A symmetrical argument shows that the competitive price is p2 when m > n, that is, when
the buyers are the short side of the market. Thus the short side of the market captures the
entire surplus: each agent on the short side nets (p1 − p2), whereas each agent on the long
side breaks even (does not benefit from trade, or does not trade).

A familiar interpretation of this market is that one side of the market is made of agents
who each own a right-hand glove, whereas each agent on the other side owns a left-hand
glove. A pair (one right-hand and one left-hand glove) is worth $1, but a single glove is
worthless. Call, arbitrarily, the right-hand glove owners the “buyers,” and the left-hand
glove owners the “sellers,” and we get the economy described in the previous paragraph
with p1 = 1 and p2 = 0.

The point of the gloves market example is that competitive trade leaves no room for
compromise: its interpretation of fairness is questionable because the long side of the market,
as a whole, ought to be rewarded for its contribution to the efficient surplus. Moreover the
competitive surplus distribution changes discontinually with the parameters of the economy,
as a tiny change of n, m resulting in a switch from n < m to m > n implies a massive transfer
of the entire surplus from one side of the market to the other.

7.2 Imperfect Competition

In the economy of example 7.2, each agent owns, sells, and buys at most one unit. Hence
each participant has a negligible fraction of market power. Removing any one agent does
not affect noticeably the competitive equilibrium allocation. For instance, we can use the
law of large numbers to compute the Shapley value because each agent has a negligible
impact on the overall demand and supply.

One reason the negligibility assumption fails is increasing returns in the production
of the good (or goods) traded in a given market. When the cost function is subadditive
(positive externalities in production), efficiency commands the agents to run only one pro-
duction process, even if many potential sellers/firms own a copy of the technology. The
presence of these potential firms cancels the profit of the chosen firm, a clear manifes-
tation of competition in the sense of core-stability. But the notion of competitive price
collapses.

Our next example illustrates this important fact in the simplest case of a subadditive cost
function, namely one with a fixed cost to start production and constant marginal cost once
the fixed cost is paid.

Example 7.3 Competition under Decreasing Average Costs The economy is as in ex-
ample 6.7 with, as usual, a demand function d(p) = 100 − p, and a technology involving
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a fixed cost $1,800 and a marginal cost $10 for each unit produced:

C(q) = 1,800 + 10q for q = 1, 2, . . . , C(0) = 0

The difference from example 6.7 is that two or more firms own a copy of the technology.

1. We start with the benchmark case with no fixed cost so that the good is produced at
constant unit cost $10. An efficient allocation serves the 90 agents willing to pay 10 or
more, and the efficient surplus is σ0 = ∫ 100

10 (100 − p) dp = 4,050. The competitive price
is pe = 10. In the competitive allocation each efficient buyer pays $10 for his unit; the two
firms split arbitrarily the production of the 90 units and break even by selling at unit cost,
thus making no profit whatsoever.

As in example 7.2, this competitive allocation is characterized by the property of core-
stability. To check this claim, note that the total surplus is not diminished if one of the firms
goes away, since one copy of the technology is enough to bring about the entire surplus
σ0. Therefore the surplus share of each firm is zero, and σ0 is shared among the buyers.
Furthermore, a two-agent coalition made of one firm and buyer p, brings the stand-alone
surplus (p − 10)+, so every efficient buyer p receives at least p − 10. By definition of σ0,

these inequalities must all be equalities, and the claim is proved.
In exercise 7.3 we observe that the competitive allocation can also be characterized by

no envy and efficiency, provided that we add voluntary participation (no one suffers a net
loss of welfare from the initial situation before any production takes place) to these two
requirements. We also note there that the Shapley value is different from the competitive
trade if there is only a small number of potential firms. The two concepts lead to the same
allocation only when the number of potential firms is large.

2. Now we take into account the fixed cost of $1,800. It is efficient to produce 90 units
to serve the 90 agents willing to pay 10 or more, but the corresponding surplus drops to
σ = 4,050 − 1,800 = 2,250. Efficiency requires to run a single copy of the technology so
as to pay the fixed cost only once. Because we have two or more firms, it is still possible
to generate the whole surplus when we drop any one firm. Therefore in any corestable
allocation, each firm receives zero surplus! The same applies to any inefficient buyer,
whose departure does not affect the available surplus σ.

To sum up, one firm produces 90 units and breaks even (its revenue is $2,700), and
all other firms shut down. Every inefficient buyer (p ≤ 10) is inactive, and every efficient
buyer (p ≥ 10) is active. We cannot implement such an allocation by quoting a single price
p̄ to which every agent will react competitively. At price p̄ = 10 the correct (efficient)
agents buy, but the revenue does not cover the fixed cost. When the price signal is set at the
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monopoly level2 p̄ = 55, the firm sells 45 units and makes a profit of $225, but the efficient
buyers between 10 and 55 are not served. The resulting inefficiency is the loss of surplus:

∫ 90

45
(100 − q − 10) dq = 1,012.5

Upon dropping the competitive approach, we have no alternative “positive” approach to
select a particular allocation in the core: there is no simple strategic equilibrium story involv-
ing the firms and buyers (active as well as inactive) to do so. On the other hand, the normative
concepts of chapter 6 apply if we simply ignore the firm (who gets no surplus share) and view
the model as a commons problem, as we did in example 6.7. Recall from that example that the
Shapley value distributes the $2,250 of surplus in proportion to (p −10) among all efficient
buyers, whereas the virtual price solution charges $32.9 for service to all agents p, p ≥ 32.9,

and charges p to each agent p, 10 ≤ p ≤ 32.9. It is easy to check that both allocations are
in the core. On the other hand, the CEEI solution levies an $18 tax from every inefficient
buyer. Hence it fails the test of voluntary participation and, a fortiori, core-stability.

An alternative normative route to distribute the surplus between the buyers and the po-
tential firms relies on the familiar stand alone cooperative game involving 100 buyers and k
firms. We simply use the Shapley value of this game. This solution gives a positive share of
surplus to the firms. Therefore it is not core-stable when k ≥ 2. The total share of the k firms
decreases to zero as k grows large, and in the limit the solution coincides with the Shapley
value of the commons problem. Exercise 7.3 gives more details.

The critical negligibility assumption fails when one of the market participants controls
one side of the market, either because she owns all of the tradable commodities, or the
unique copy of the technology required to produce them, or because she is the sole buyer
of these commodities. We speak of a monopoly or a monopsony situation respectively.

In our next example a monopoly owns a technology with increasing marginal costs and
the following general facts are illustrated. The competitive equilibrium is well-defined,
and it is core-stable as well. There are, however, many other distributions of the surplus
compatible with core-stability, including the one where the monopolist keeps the entire
surplus, but excluding the Shapley value distribution.

Example 7.4 Monopoly in the Market for Homogeneous Goods We modify the economy
of example 7.2, by assuming that Ann, the monopolist, owns all 40 units of the homogeneous
good, which she can produce at no cost.

2. The firms’s profit when potential buyers react competitively to the price p is (100 − p)(p − 10) − 1,800. This
profit is maximal when p̄ = 55.
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In the competitive allocation the monopolist sells them to the top 40 buyers at $60 per
unit, and her profit is $2,400. This allocation is corestable, and it is, in fact, the best core
allocation from the buyer’s point of view. To check these claims, we use the important fact
that in any core allocation, agent i ′s share of total surplus v(N ) cannot exceed his marginal
contribution to surplus, namely v(N )−v(N \i)(in the notation of section 5.5). This follows,
as usual, from the fact that the coalition N\i gets at least v(N\i) by core-stability.

For buyer i willing to pay (at most) p for the good, the marginal contribution is v(N ) −
v(N\i) = (p − 60)+ = max{p − 60, 0}, which is his share of surplus at the competitive
allocation. Conversely, we check that the competitive allocation is core-stable. A coalition
not containing Ann is powerless; one not containing Ann must offer her more than $2,400 to
induce her participation, and change an average price below 60 to induce the participation
of the buyers. This is clearly impossible.

Thus the seller’s competitive surplus depicted on figure 7.1 is the lowest possible surplus
share in the core for Ann, the monopolist. Her highest possible share is $3,200, which is the
full surplus. Indeed, a coalition of buyers is powerless, and a coalition including Ann cannot
generate more than $3,200. To garner her largest profit, the monopolist must charge a differ-
ent price to each one of the 40 efficient buyer, just below p to buyer p. To collect the smallest
profit compatible with core-stability, she charges uniformly the competitive price $60.

We turn to the Shapley value of the stand-alone game involving Ann and 100 potential
buyers. Unlike in example 7.2, this solutions moves away not only from the competitive
allocation but also from core-stability. In fact the Shapley value gives a positive share of
surplus to all buyers, even the inefficient ones. If an agent willing to pay $30 is drawn
among the first 40 buyers and after Ann, his marginal contribution to surplus is $30; this
event has positive probability (i.e., 0.08), hence the claim.

We compute Ann’s surplus share. In a random ordering of the 100 buyers plus Ann, we
let λ to be the fraction of buyers preceding her. Thus λ is uniformly distributed over [0, 1].
By the law of large numbers, the λ buyers are uniformly spread between 0 and 100 and
generate the demand dλ(p) = λ(100 − p). The total surplus available to be shared by λ

buyers and Ann is her marginal contribution, and this is computed as follows:

yi0 = 5,000 λ if 0 ≤ λ ≤ 2

5

yi0 = 20 ·
(

200 − 40

λ

)
if

2

5
≤ λ ≤ 1

Ann’s Shapley share is the expected value of this quantity or

xi0 = Eyi0 = 2,800 − 800 log

(
5

2

)
= 2,067 < 2,400
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She gets less than her competitive share of surplus. Similar computations (explained in
exercise 7.4) give the shares of the various buyers:

σ(p) = 8p

100 − p
if 0 ≤ p ≤ 60

σ(p) = 1

2
p − 18 if 60 ≤ p ≤ 100

The highest buyers, or 84 ≤ p ≤ 100, actually get a better surplus share at the competi-
tive allocation. All others prefer their Shapley share to the competitive one.

Comparing examples 7.2 and 7.4, we see that the Shapley value penalizes the sellers
for merging into a monopoly, a counterintuitive feature from the positive standpoint, and
a fairly puzzling one from the normative standpoint. In what interpretation of fair trade do
we want to reduce the surplus share of sellers (or buyers) upon consolidation? The core
concept, on the other hand, conveys the right intuition about merging, despite the fact that
core-stability cuts a fairly large set of surplus distributions. That is, the monopolist (the
merged sellers) secure at least the surplus share assigned to the sellers before merging (their
competitive surplus share).

In between the configurations of examples 7.2 and 7.4, with forty small sellers and one
monopolist (forty merged into one) respectively, we find the oligopoly situation where a few
sellers each own a significant fraction of the resources: we say that each seller has “market
power.”

In the market of example 7.4, suppose that the sellers are arranged in two “firms,” owning
respectively 30 units and 10 units. Then the competitive allocation is, once again, the only
core-stable allocation! In other words, two is enough for perfect competition. It makes no
difference whether we have a large number of small sellers or a handful of large oligopolists:
in both cases the core-stability and competitive equilibrium analysis offer exactly the same
distribution of surplus between the buyers and the sellers. This remarkable property is
independent of the size of our two firms, or of their numbers, provided that there are at
least two of them: the crucial feature is the homogeneity of the goods provided by the
oligopolists. Its proof is the subject of exercise 7.5. The property holds true as well when
costs are subadditive, as demonstrated in example 7.3 above.

7.3 Destructive Competition

In some allocation problems a core-stable outcome cannot be found because the distribution
of property rights is too generous to coalitions excluding some agents. The emptiness of
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the core means that the logic of private contracting finds no resting point. In turn, this raises
two types of problems:

• Instability. The never-ending formation and dissolution of alliances is a source of
unbounded transaction costs. Moreover it eliminates our ability to predict which private
contracts will be signed and between which players. The resulting indeterminacy is not
necessarily destroying any cooperative surplus, but it does make the outcome of the game
arbitrary in a deeper sense than when we say that the selection of one among many corestable
outcomes is arbitrary. Under core-instability it is vain to bring normative properties of
fairness—or any other axiomatic property—to the negotiation table in the hope of reducing
the set of admissible agreements: a “rational” agreement cannot be reached.
• Inefficiency. In the process of forming and dissolving private contracts, that the transient
outcomes resulting from these temporary agreements may well be inefficient.

Our first example of an empty core does not involve trade; it is a “pure externality”
game, and a striking illustration of the difficulties generated by the individual right to freely
dispose of one’s trash.

Example 7.5 The Garbage Game Every player holds one bag of trash and lives on a
different lot. Each player can choose to drop his bag in any lot (dumping is free and
unrestricted). The returns to scale of the garbage externality increase: if k bags are on
player i’s lot, his disutility is k2, and this number is interpreted as his willingness to pay to
have the trash removed. A player does not suffer any loss from trash not sitting on his lot.
All participants have symmetric roles—equal preferences, endowment of trash, and choice
of possible actions—therefore equal treatment of equals requires that they end up with the
same disutility.

Because the externality caused by garbage has increasing returns, efficiency commands
to keep one bag of trash per lot (no dumping), for a disutility of −1 per agent. This is the
only fair and efficient outcome. However, (n − 1) players can sign a private contract to
dump all their trash on an outcast player, and to share the cost of the trash that this player
will no doubt dump in retaliation. Hence the (n − 1) players in the coalition end up with a
small cost of 1/(n −1), whereas the outcast’s disutility is (n −1)2. The net efficiency loss is

(n − 1)2 + 1 − n = n2 − 3n + 1

Note that a coalition of size (n − 1) is the most likely to form because it minimizes
the net cost to each of its members. On the other hand, the outcome above is not core-stable
because the outcast can offer to (n − 2) other players an alternative coalition where he (the
former outcast) would bear all the cost of the new outcast’s trash. This kind of deal is always
profitable to all parties; hence the core is empty.



moulin-79027 book October 22, 2002 16:12

Fair Trade and Fair Division 234

Our next example is a trade game that has received much attention by economists: it
shows that the competition between firms with U -shaped averages costs can easily result
in an empty core.

Example 7.6 Taxis Three taxis compete for seven customers. All customers want to do
the same trip (airport to downtown) and each is willing to pay $7 for it.

Each taxi holds up to three passengers and the cost of a trip is $6, irrespective of the
number of passengers transported. Thus the marginal cost of successive units of service for
one given taxi are (6, 0, 0, +∞).

Efficiency requires that three taxis transport all seven passengers for a total surplus
σ = 7.7 − 3.6 = $31. Note that one taxi may be running with a single passenger, which is
still a cost-effective trip.

The three taxi drivers may wish to charge each customer a uniform price p and to split
equally the revenue: in this way the taxi that ends up with a single customer is not penalized.
They could charge p = 5, say, and distribute a profit of 7.5 − 3.6 = 17, hence obtain $5.7
per taxi. However, one taxi would make a bigger profit by charging $4.50 and luring away
three customers, as 3 · (4.5) − 6 = $7.50. It can be shown that any three-way split of the
total surplus of $31 among the three taxis—even an unequal split—is similarly vulnerable to
“cream-skimming” as above.

The simplest way to check that no allocation is core-stable is to compute the upperbound
v(N ) − v(N\i) for each one of the ten agents. Upon removing one customer or one taxi,
efficiency consists of running two taxis with three passengers each, for a total surplus
6.7 − 2.6 = $30. Therefore v(N ) − v(N\i) = 1 for any one of the ten agents. Thus a core
allocation cannot distribute more than $10 of surplus, in contradiction of efficiency.

There is no competitive price either, as the supply is 9 whenever the price exceeds 2 but
the demand is only 7 for any price smaller than 7.

When the core is empty, no competitive equilibrium exists either: this general fact admits
no exception. The only remedy to an empty core configuration is to limit the contracting
opportunities of some coalitions, which effectively alters the distribution of individual rights.
In the taxi example, destructive competition is avoided by preventing scouting and enforcing
a uniform pricing policy, a common practice in airports. In industries with fixed costs and
excess capacities (shipping, oil exploration), the instability resulting from an empty core is to
be expected and its remedy is the formation of a tight cartel limiting cut-throat competition.

Core-instability uncovers a fundamental difficulty of private contracting under certain
distributions of individual property rights. It forces one to alter the right of free association
and to find other routes to define what constitutes a fair trade: this could take the form of a
mechanical formula like the Shapley value or be derived as the equilibrium of a new set of
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individual rights. This is a critique of libertarian ideology, which is poised to rely exclusively
on private contracts (section 1.5): the choice of the mechanical formula in question, or of
new individual rights, is the object of a public contract requiring a normative justification
and enforced by the public authority.

7.4 No Envy and the Assignment Problem

The rest of this chapter is devoted to fair division, namely the equitable distribution of
commodities that are the common property of a given set of microeconomic agents. Each
agent evaluates his share of free goods by means of ordinal preferences for which he or
she is fully responsible. No consideration of needs or desire should influence the final
distribution. In the terminology of chapter 2, compensation and reward are irrelevant, we
are only interested in efficiency and exogeneous rights: that is, we wish to distribute the
resources efficiently while at the same time respecting the equality of the participants rights.

Think of dividing a cake in which various flavors are unevenly distributed. One child
would like a slice with a cherry, another is partial to chocolate, and so on. Or consider
two countries dividing a geographically diverse piece of land, over which their interests are
different: one who wishes an access to the sea very badly will be ready to concede a larger
area to the other, and so on. These two examples show that fair division problems range
from the most trivial contracts to the most dramatic ones—recall the division of the Indian
subcontinent between India and Pakistan. Splitting an estate in a bankruptcy, inheritance,
or divorce situation provides other examples.

Achieving efficiency while respecting the equality of the agents’ rights is not difficult
when all agents have identical preferences over the objects. As discussed in section 3.3.,
the compelling fair division of the resources aims at awarding “equal” shares—shares that
all participants find equivalent with respect to the common preference ordering—and there
is generally a unique way to do so efficiently. For instance, if the goods are divisible (as
in the examples of the next section), simply giving 1/nth of the total resources to each
participant is generally efficient.3 With indivisible goods, we look for a division of the
resources maximizing the leximin ordering; see section 3.3.

With heterogeneous individual preferences, efficiency typically rules out giving identical
shares to everyone, thus the interpretation of “equal rights” is not straightforward. The test
of no envy, introduced in chapter 6, offers an extremely appealing answer. This concept is a
major contribution of microeconomic theory to the modern thinking of distributive justice,
one nearly as important as the Shapley value.

3. The only exception is when some individual preferences fail the convexity property.
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A distribution of the resources is nonenvious, or it passes the no-envy test, if every agent
prefers (weakly) his or her share to that of any other agent: I cannot complain about my share
because no one else has a share that I would exchange for mine. A nonenvious distribution
that is also efficient is one coherent answer to the fair division puzzle.

The no-envy test is especially successful in an assignment problem. There are n agents,
n indivisible objects, and cash transfers are feasible. Each agent wants at most one object,
and his preferences are represented by his willingness to pay for the different objects.
An allocation consists of n lots (n is the number of agents), where a lot is made of one
object and a (positive or negative) price tag. The sum of all price tags is zero. A nonenvious
assignment is one where each agent gets his favorite lot. It can be shown that no matter
how the n2 willingness to pay of each agent for each object are chosen, we can always
find price tags achieving a nonenvious assignment. Moreover a nonenvious assignment is
automatically efficient! See exercise 7.10 for a proof.

Some of the commons problems in chapter 6 can be interpreted as assignment problems.
In example 6.4 we have 100 agents with willingness to pay uniformly spread between 0
and 100, and 40 free objects to be assigned. Add 60 null objects, corresponding to no object,
to have an assignment problem where agent p is willing to pay $p for a (real) object and 0 for
a null object. The CEEI solution is reinterpreted as the following nonenvious assignment.
Each real object bears the price $36 and each null object has a negative price –$24 (a net
payment). The top 40 agents (with valuation between 60 and 100) pick a real object, and
the other 60 agents pick a null object (as usual, we neglect to specify on which side falls
the agent willing to pay exactly $60).

In our next assignment problem, each object is different. Once again the no-envy criterion
points to the efficient assignment of objects and to a unique system of cash transfers. Note
that the uniqueness property follows from the fact that we have a continuum (a large number)
of agents. In a general assignment problem with a finite number of participants, the no-envy
test does not capture a unique set of cash transfers; see exercise 7.9 for examples.

Example 7.7 Scheduling One hundred agents need one unit of service each. The server
processes one agent per hour. All agents dislike waiting, but their disutilities per hour of
wait vary. Agent p suffers a net loss of $p per unit of time he has to wait; his disutility for
being scheduled at time t (i.e., waiting for t hours) is p · t. The disutility is measured in
dollars, and represents the cost to this agent of waiting t hours.

The parameters p are spread uniformly between 1 and 100, so we have exactly p agents
with a marginal disutility not larger than p. The random scheduling solution is a useful
benchmark: it orders the agents randomly, with uniform probability on all orderings. Thus
the expected wait of any agent is 50, and the expected total waiting cost is

∫ 100
0 50pdp =

250,000.
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Random scheduling pays no attention to the differences in waiting costs across agents,
and is therefore inefficient. To minimize total disutility of waiting, the scheduling order must
be by decreasing marginal disutility; if agents p, p′ with p < p′ wait, respectively, t and t ′

hours, with t < t ′, total waiting cost decreases when they swap slots: p′t + pt ′ < pt + p′t ′.
Thus the efficient scheduling assigns agent p to slot 100 − p, and the total waiting cost

is
∫ 100

0 p · (100 − p) dp = 166,667, which is a 33 percent gain over the random scheduling
benchmark.

We compute now the profile of monetary compensations dictated by the no-envy test. A
price π(p) is attached to the slot 100 − p, and this price can be positive or negative. The
test requires that agent p prefer her lot (100 − p, π(p)) to any other lot (100 − p′, π(p′)):

p(100 − p) + π(p) ≤ p(100 − p′) + π(p′)

⇔ p2 − π(p) ≥ pp′ − π(p′) for p, p′, 0 ≤ p, p′ ≤ 100 (3)

The system of inequalities (3) determines the function π(p) entirely provided that we
regard as usual 100 as a large number, and use calculus. Fix p, and note that the function
p′ → pp′ −π(p′) reaches its maximum at p′ = p. Thus its derivative is zero at p, namely
p = π̇(p) where π̇ denotes the derivative of the π function. The only function π such that
π̇(p) = p and

∫ 100
0 π(p) dp = 0 is π(p) = p2/2 − 1,667.

Therefore the “patient” agents from 0 to 58 are compensated for being served last (π(p)

is positive iff p ≤ 58.4), whereas the impatient agents from 59 to 100 must pay for early
service (the largest out of pocket payment is 3,333, twice the largest compensation). The
net disutility of agent p is always smaller than his benchmark disutility under random
scheduling, with a net gain of at least $417:

p(100 − p) + π(p) = − p2

2
+ 100p − 1,667 ≤ 50p − 417 for all p

An important property of the nonenvious assignment is strategyproofness: in the direct
revelation game where agents report their marginal waiting cost, after which the allo-
cation just described is implemented, it is a dominant strategy for each agent to report
truthfully his or her type p. This follows at once from system (3) and the negligibil-
ity assumption: when a single agent reports p′ instead of p, the function π is not al-
tered; therefore the right-hand term of the first inequality in (3) is agent p′s disutility after
misreporting.

The CEEI solution in the commons problems of chapter 6 is also characterized by the
no-envy test and efficiency (under the negligibility assumption), and it is also strategy-
proof (see sections 6.3 and 6.5, in particular example 6.5). This is not a coincidence: in the
assignment problem the efficient and nonenvious assignments can always be interpreted as
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competitive equilibria with equal incomes. This property does not require the negligibility
assumption; see exercise 7.10.

When cash is not available, another way to achieve equity in assignment is a lottery.
Consider the assignment of time slots in example 7.1. We start from an arbitrary initial
assignment, the initial distribution of property rights. From there the equilibrium of pri-
vate contracting—the unique corestable assignment computed by the top trading cycles
algorithm—leads us to a new assignment where all opportunities to trade have been ex-
hausted. The point of example 7.1 is that this assignment is unique, for any distribution of
property rights and any profile of preferences. The corresponding trade is unambiguously
fair, given the property rights.

Now suppose that we allocate property rights randomly and without bias (every assign-
ment of property rights is equally probable) and perform the corresponding fair trade. The
resulting (random) assignment is intuitively fair, because, ex ante, all agents get equal
random property rights.

*Example 7.8 Time-Sharing Three fitness addicts are sharing three treadmills during a
one hour period. The three machines have different features, and our three agents have the
following preferences:

agent 1: a � b � c

agent 2: a � c � b

agent 3: b � c � a

They decide to time-share the machines in a fair and efficient way. Note the analogy with
example 3.6 where the problem was to time-share a public good (music), whereas here the
three objects are consumed privately over a certain period of time.

Time-sharing is formally equivalent to a random assignment of the machines to our three
customers: to give machine a to agent 2 with probability 1/3 is to let her use this machine for
20 minutes out of an hour. Thus we may randomly assign property rights to the machines, and
use the top trading cycles algorithm of example 7.1 to compute the resulting core allocation.

There are six possible assignments of property rights and the corresponding corestable
outcomes are as follows

1 : a, 2 : b, 3 : c → 1 : a, 2 : c, 3 : b

1 : a, 2 : c, 3 : b → 1 : a, 2 : c, 3 : b no trade

1 : b, 2 : a, 3 : c → 1 : b, 2 : a, 3 : c no trade

1 : b, 2 : c, 3 : a → 1 : a, 2 : c, 3 : b
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1 : c, 2 : a, 3 : b → 1 : c, 2 : a, 3 : b no trade

1 : c, 2 : b, 3 : a → 1 : c, 2 : a, 3 : b

The resulting random allocations of our three agents are summarized in the following matrix,
where the entry (i, x) tells us the probability that agent i receives object x :

a b c

1 1
2

1
6

1
3

2 1
2 0 1

2

3 0 5
6

1
6

Thus agent 1 gets his favorite machine for 30 seconds, his second best choice for 10 and
his worst one for 20 seconds, and so on. This is the fair compromise obtained by an unbiased
randomization of the property rights and by implementing the corresponding optimal trade.
It is a solution in the spirit of the competitive equilibrium with equal incomes discussed in
chapter 6 and in the next section.

In the example above the solution is an efficient compromise. However there are some
configurations of individual preferences for which the idea of randomizing property rights
yields a serious inefficiency. Here is an example with four agents and four objects:

1 a � b � c � d
2 a � b � c � d
3 b � a � d � c
4 b � a � d � c

All agents agree that a, b are better than c, d, but 1, 2 and 3, 4 have opposite preferences
on a versus b and on c versus d. Consider agent 1. If he receives object a (in the random
assignment of property rights), he will not exchange it. If he receives object b, he will
exchange it with either agents 3 or 4 if a goes to one of them, yet he will keep object b if
a goes to agent 2. If he receives c or d, he will not be able to trade it for a or b. Thus the
probability that agent 1 ends up with a is 1

4 + 1
4 · 2

3 = 5
12 and the probability that he ends

up with b is 1
4 · 1

3 = 1
12 . Similar computations yield the overall assignment matrix:

a b c d

1 5
12

1
12

5
12

1
12

2 5
12

1
12

5
12

1
12

3 1
12

5
12

1
12

5
12

4 1
12

5
12

1
12

5
12
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This random assignment is surely fair, but it is plainly inefficient. The following matrix
makes everyone better off while preserving fairness:

a b c d

1 1
2 0 1

2 0

2 1
2 0 1

2 0

3 0 1
2 0 1

2

4 0 1
2 0 1

2

This assignment obtains by drawing with equal probability one of the two priority orderings
1, 3, 2, 4 and 4, 2, 3, 1.

7.5 The CEEI and Egalitarian Equivalent Solutions

The fair division problems discussed in this and the next section involve several divisible
commodities, none of which is singled out as the numéraire (money) with respect to which
we measure (as willingness to pay) the allocation of other commodities.

The no-envy test no longer implies efficiency as it did in the assignment problem of the
last section. For instance, a division of the resources in equal shares for all participants is
certainly nonenvious, yet it is generally inefficient. Even the combination of no envy and
efficiency may allow very different allocations, as illustrated in our next example.

The competitive equilibrium with equal incomes (CEEI) systematically selects a spe-
cific efficient and nonenvious distribution of the resources. As discussed in chapter 6, the
CEEI interpretation of common property is to give equal shares of private property to all
participants, by spliting the resources equally among all, and to reach efficiency from there
by fair competitive trade.

Example 7.9 Sharing Capacity A network (roads, cable connections, etc.) consists of
two links, one from A to B and one from B to C . There is no direct link from A to C . Each
one of the two links has a capacity of 100.

There are three types of users. Some users of the network pass some traffic between A
and B, and only on this link; their set is denoted N AB. The users in the set N BC use similarly
only the link BC. Finally there is a set N 0 of agents passing traffic from A to C , via B: these
users create congestion on both links.

If zAB
i and zBC

i are the shares of capacity on the two links allocated to an agent i in N 0,
his net utility is the amount of traffic he can carry, which is ui = min{zAB

i , zBC
i }. The utility
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of an agent i in N AB is simply ui = zAB
i , namely his share of capacity on link AB; similarly

ui = zBC
i for i in N BC.

We assume in this example a total population of 100 users, 40 of them in N AB, 30 in N BC,
and 30 in N 0. All agents have identical exogeneous rights on the network, and we wish to
divide capacity fairly between them. Cash transfers are ruled out. The users in N 0 are more
demanding than the other users, and this suggests that they should receive a lower share of
capacity. The question is to attach a specific number to this intuition.

Efficiency and the basic equal treatment of equals go a long way toward determining the
allocation of the 100 units of capacity to each type. It would be inefficient to give to an
agent in N 0 different amounts of the two goods. By equal treatment, two agents of the same
type receive identical allocations:

All i in N 0 get z units of capacity on each link

All i in N AB get x units of capacity on AB

All i in N BC get y units of capacity on BC

x = 100 − 30z

40
, y = 100 − 30z

30
(4)

The no-envy property implies equal treatment of equals (exercise: Why?) and not much
more. Under efficiency (4), no envy amounts to x ≥ z and y ≥ z, meaning that a type AB
agent does not envy an agent of type O and neither does a type BC agent. There is no envy
between a type AB and a type BC, or from a type O toward a type AB or BC. In view of (4)
this amounts to z ≤ 10/7.

Another simple test of equity is the fair share guarantee, introduced in chapter 6 (ex-
amples 6.4 and 6.5; see the systematic discussion in section 6.6). Here each agent can
claim a 1/100th share of both capacities, or one unit of each, so that x, y, z ≥ 1. We can
easily check that the two inequalities x, y ≥ 1 follow from z ≤ 10/7, given (4). Thus the
combination of no envy, fair share, and efficiency leaves us with the bounds:

1 ≤ z ≤ 10

7
(5)

The CEEI solution selects relative prices of the two capacities and endows each agent
with 100/n units of each good: the prices are chosen in such a way that the demand and
supply of each good are exactly balanced. AB-agents exchange their share of BC-capacity
for more AB-capacity and vice versa. On the other hand, agents in N 0 cannot buy more of
each commodity, so they do not take part in the exchange. The relative prices equilibrating
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demand and supply are pAB = 4
7 , pBC = 3

7 . The resulting competitive demands are

All i in N AB sell 1 unit of BC, buy 3/4 unit of AB ⇒ x = 1.75

All i in N BC sell 1 unit of AB, buy 4/3 unit of BC ⇒ y = 2.33

All i in N 0 do not trade ⇒ z = 1

The N 0 agents get exactly their fair share utility (i.e., the utility from consuming one unit
of each good), whereas the other agents get, respectively, a 75 and 133 percent increase
over their fair share utility.

The second general fair division method is directly inspired by the relative egalitarian
(KS) solution of section 3.6. The egalitarian equivalent solution (EE for short) equalizes
across agents the utilities measured along the “numéraire” of the commodity bundle to
be divided. In other words, this solution gives to each participant an allocation that he or
she views as equivalent (with his or her own preferences) to the same share of the pie, where
the “pie” stands for the resources to be divided and a share is a homothetic reduction of the
pie—this is the same fraction of the total available amount of each commodity.

In our example the utility functions used above are already calibrated in this fashion; that
is to say, the utility from the bundle (z, z) is precisely z (for each type of agent). Therefore
the EE solution simply equalizes these utilities. However, system (4) is incompatible with
the equality x = y = z. Hence we must invoke the leximin ordering of section 3.3 to
combine the egalitarian objective with efficiency. This yields the following allocation:

x = z = 10

7
= 1.43, y = 40

21
= 1.90 (6)

Agents in N AB and N 0 get a 43 percent increase over their fair share utility, and those
in N BC get a 90 percent increase. The EE solution gives to N 0 agents their best envy-free
allocation—see (5)—whereas the CEEI solution merely gives them their fair shares.

A remarkable and surprising property links the CEEI solution and the Nash bargaining
solution of sections 3.4 and 3.6. This property helps us in the next two examples and many
more to compute the CEEI solution and the competitive prices.

We say that the utility function ui (zi ) defined for the vector of commodities zi is ho-
mogeneous if for every positive number λ, we have ui (λ · zi ) = λ · ui (zi ). Examples
include the additive utility functions in the next two examples, as well as the utility function
ui (z1

i , z2
i ) = min{z1

i , z2
i } in example 7.9.4

4. Not every preference ordering can be represented by a homogeneous utility function. A necessary condition
is that its indifference curves must be homothetic, meaning that they can all be deduced from one of them by the
transformation z → λz.
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When all agents have homogeneous utility functions, the CEEI solution picks precisely
the same allocation of resources as the Nash solution. This is the allocation maximizing the
product of these utility functions. In example 7.9 the Nash collective utility at an efficient
allocation given in (4) is x40 · y30 · z30, and the claim is easily checked.

The EE solution, on the other hand, is nothing other than the KS solution. In other words,
the efficient allocation of the resources equalizing across all agents the relative increase
over their fair share utility, namely the ratios ui (zi )/ui (ω). It uses the leximin ordering to
resolve any efficiency/equality trade-off, as in example 7.9.

Example 7.10 Sharing Capacity Revisited Now the network consists of two different
links (A-link and B-link) between the same two points. The A users can only use the
A-link, the B users can only use the B-link, and the O users can use either link. The number
of these three types of users are 40, 30, and 30 respectively. We have 100 units of capacity
on each link.

Using the same notation as in example 7.9, our three utility functions are ui = z A
i , ui = zB

i ,
and ui = z A

i + zB
i , respectively, for users of types A, B, and O . Efficiency and equal treat-

ment of equals together mean that each A agent gets the same amount x of A capacity (and
none of B capacity), each B agent gets y units of B capacity, and the O agents each get the
1/30 share of what is left:

z A = 100 − 40x

30
, zB = 100 − 30y

30
(7)

Observe that (7) leaves two degrees of freedom, as opposed to only one in the case of
system (4) in example 7.9. The CEEI solution obtains by maximizing the Nash collective
utility function over these allocations:

maximize x40 y30

(
100 − 40x

30
+ 100 − 30y

30

)30

over x, y: 0 ≤ x ≤ 100

40
= 2.5, 0 ≤ y ≤ 100

30
= 3.33

Compute the first-order optimality conditions for an interior solution, namely a solution
where none of the inequality constraints is an equality:

40

x
= 30.40

δ
,

30

y
= 30.30

δ
, where δ = 200 − 40x − 30y

⇔ x = y = 2 and z A = 2

3
, zB = 4

3
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Thus all agents receive the same total share of capacity, x = y = z A + zB = 2. For an
O agent, this is precisely her fair share of total resources, but for an A agent or a B agent,
this is twice as much: one unit of both goods is worth no more than one unit of the good
they like. The competitive prices are simply pA = pB so that each A agent (resp. B agent)
can trade one-for-one his fair share of B capacity (resp. A agent). The O agents absorb the
imbalance, as for them the two goods are identical.

In example 7.9 it made sense that the O types should get no more than their fair share,
as they were unable to trade any of it with the other users. But in the current example, an O
agent has “flexible” preferences allowing to trade both with A agents and B agents. Yet in
the CEEI outcome the O agents do trade, but they get no benefit from the trade. The CEEI
allocation ends up equalizing the utilities ui (zi ) across all agents of all types, which seems
to be harsh on the O agents.

Contrast this with the EE solution equalizing across all agents ui (zi )/ui (100, 100). If i
is an A agent or a B agent, ui (100, 100) = 100, whereas ui (100, 100) = 200 for an O
agent. Therefore, if i, j, k are an A, B, and O agent, respectively,

ui (zi ) = u j (z j ) = 1
2 uk(zk)

We can restrict attention to efficient allocations treating equals equally, and described by
formula (7):

x = y = 1

2

(
100 − 40x

30
+ 100 − 30y

30

)
⇒ x = y = 20

13
= 1.54

z A
i = 1.28, zB

i = 1.79

As in example 7.9, the EE solution is much more generous than CEEI to the O agents.
Unlike in example 7.9, it goes beyond the bounds of the no-envy test: an O agent ends
up with more B capacity than a B agent, hence is envied by this agent. This is going too
far in rewarding the accommodating preferences of the O types. Each user has identical
exogeneous rights to the resources, which do not appear to be respected by a solution
allocating to this agent a strictly larger share of every commodity than to that agent. Recall
that the differences in individual preferences reflects different tastes not different needs;
these differences call for unequal shares (if we want efficiency) but can hardly justify
a systematic advantage in every commodity. We must dismiss the egalitarian equivalent
solution in example 7.10.

Exercise 7.11 and 7.12 generalize examples 7.9 and 7.10, respectively, to arbitrary sizes of
the three types of users. The comparison of the two solutions remains qualitatively identical.

Our next example involves two agents between whom we must divide a handful of
commodities. Because we have only two agents, the EE solution does not exhibit the
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damning inequity uncovered in example 7.10. It provides a legitimate interpretation of
fairness that we contrast with the competitive interpretation of the CEEI solution.

Example 7.11a Sharing Five Studios An estate consists of five studios located in the
same city, and it must be divided between the two heirs, Joan and Peter. The apartments
cannot be sold: our two heirs can only time-share the five units, for instance, a share of 2/3
in one unit means access during 8 months of the year. A possible story is that the heirs inherit
the right to use the studios (they both have many children) at a low, controlled rent, not the
ownership of the studios. John and Peter are both short of cash, so monetary transactions
between them are ruled out.

The five studios are different, and the two heirs have different preferences. A simple and
practical method to share these five divisible goods consists of giving 100 points to Joan
and 100 points to Peter, asking them to distribute these points among the five studios, with
the understanding that the score of a studio reflects one’s utility for this particular item.
Suppose that Joan and Peter have distributed their points as follows:

Studio A B C D E

Joan 20 10 15 35 20

Peter 10 25 20 10 35

(8)

We view these numbers as defining a separably additive utility function over the five items.
For instance, if Joan gets studios A, C in full, a 30 percent share of B and 50 percent of E ,
her utility is taken to be 20 + 15 + (0.3) · 5 + (0.5) · 20. What matters in allocating the
points are the relative scores of the different items. The total number of points allotted to
each participant is irrelevant.

Under the assumption of separably additive utilities, the description of efficient allocations
is very simple. Consider the two items A and B. Joan would not trade one unit of A for less
than 4 units of B, but Peter would give away one unit of A for 0.4 units of B. Therefore an
allocation where Joan receives a positive share of B, while Peter gets a positive share of A
cannot be efficient: they would easily find a Pareto-improving trade, such as at the rate 1 : 1
between A and B. The same principle applies to any pair of items. For instance, consider
items C, E : as 15/20 > 20/35, efficiency rules out giving a positive share of E to Joan
and a positive share of C to Peter.

Now we reorder the items in (8) by means of the ratio of their scores from Joan versus
Peter:

Studio D A C E B

Joan 35 20 15 20 10

Peter 10 10 20 35 25
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In this new setup, whenever item X is to the left of item Y, we have

score(X , Joan)

score(X , Peter)
>

score(Y , Joan)

score(Y , Peter)
⇔ score(X , Joan)

score(Y , Joan)
>

score(X , Peter)

score(Y , Peter)
(9)

In an efficient allocation of the five items, if Joan gets a positive share of item Y, she must
receive any item X to the left of Y in full: if Peter gets a positive share of X, we derive
a contradiction via (9). Thus we see that the set of efficient allocations is made of five
successive “segments,” where k is one of 0, 1, 2, 3, 4, Joan gets the k left items, Peter gets
the 4 − k right items, and they split the item left in the middle.

The fair share of an agent is worth 50 points (i.e., the utility for a 50 percent share in
each item) therefore in an efficient allocation where Joan and Peter get their fair share, Joan
gets 100 percent of D (and at least 50 percent of A), whereas Peter gets B (and at least 5/7
of E). This leaves only three types of allocations:

D A C E B
J 1 x 0 0 0

P 0 1 − x 1 1 1
with 1

2 ≤ x ≤ 1

J 1 1 x 0 0

P 0 0 1 − x 1 1 with 0 ≤ x ≤ 1

J 1 1 1 x 0

P 0 0 0 1 − x 1
with 0 ≤ x ≤ 2

7

Note that the no-envy test is equivalent in this example to the fair share test: this follows
easily from the fact that utilities are linear with respect to the vector of shares allocated to
an agent, and we have only two agents.5

We are now ready to compute the CEEI and EE solutions. For the former, we maximize
the Nash product over the three efficient segments just described, keeping in mind that the
maximum is achieved at a unique allocation.

On the middle segment where Joan gets D, A and Peter gets E, B, the Nash product is

(35 + 20 + 15x)(20(1 − x) + 35 + 25)

of which the maximum obtains at x = 1
6 . Because this is an interior solution, we need to

look no further: the maximum of the Nash product in the top segment is at x = 1, and it is
at x = 0 in the bottom segment. Note that if we started in the top segment, the maximum
of the Nash product would be at x = 1; in the bottom segment it would be at x = 0.

5. As an exercise, prove this claim.
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The price system supporting the Nash optimum allocation as a competitive price with
equal incomes is easy to compute. An agent maximizing his linear utility over a given budget
constraint will choose to buy positive amounts of several goods only if the relative prices
of these goods coincide with the ratio of his own marginal utilities. Therefore, setting for
convenience pC = 1, we find the competitive price as follows:

pD

1
= 35

15
; pA

1
= 20

15
from Joan’s competitive demand

pE

1
= 35

20
; pB

1
= 25

20
from Peter’s competitive demand

At those prices, the value of Joan’s allocation equals that of Peter’s allocation: pD + pA +
1
6 pC = 5

6 pC + pE + pB .

The EE solution is simply the equal utility efficient allocation, because the utility of any
agent for the entire “pie” is conventionally taken to be 100. In general, the EE allocation
could occur on a different segment than that of Nash (exercise 7.13 gives an example), but
in this particular example it doesn’t.

35 + 20 + 15x = 20(1 − x) + 35 + 25 ⇒ x = 5

7

An important feature of the CEEI solution in example 7.11a is that it often picks a
corner solution, namely an allocation between two consecutive efficient segments where
no item is shared (each item goes 100 percent to Joan or to Peter). This property, which
the EE solution does not share, is helpful in practice where division of an item entails
some additional monitoring costs, as in our story where a commodity is access to a
studio.

Example 7.11b Numerical Variant By fair share, Joan gets at least D and Peter gets at
least E, B:

D A C E B
Joan 40 25 20 10 5

Peter 10 20 25 20 25

Maximizing the Nash product over the interval where Joan gets D and a fraction x of A
amounts to

maximize (40 + 25x)(20(1 − x) + 25 + 20 + 25) over 0 ≤ x ≤ 1
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with solution x = 1. When Joan gets D, A, and x of C, we get

maximize (40 + 25 + 20x)(25(1 − x) + 20 + 25) over 0 ≤ x ≤ 1

with solution x = 0.

We conclude that the Nash optimum is to give D, A to Joan and C, E, B to Peter. This
is supported as a competitive equilibrium by prices such that

pA = 8

5
pB, pB ≤ 5

4
pC from Joan’s competitive demand

pD = 4

5
pC , pE = pC , pC ≤ 5

4
pB from Peter’s competitive demand

pA + pB = pC + pD + pE equal incomes of Joan and Peter

Hence the price system takes the form

A B C D E
Price 112 70 65 52 65

Compute finally the EE solution, that gives a positive piece x of item C to Joan:

40 + 25 + 20x = 25(1 − x) + 20 + 25 ⇒ x = 1

9

*7.6 Axiomatics of Fair Division

The two equity tests fair share guarantee and no envy lead the preceding discussion.6

The fair share of a certain agent when dividing a certain bundle of commodities among
n agents is computed from the hypothetical profile where all n agents have precisely the
same preferences as the agent in question. In examples 7.9 to 7.11, the “pie” consists of a
bundle ω = (ω1, . . . , ωK ) of divisible commodities, and when all participants have identical
preferences, the unambiguously fair division is to give an equal share ω/n to each person.
Similarly in the time-sharing example 7.8, the fair share is an equal probability 1/3 to be
assigned to each machine. The fair share guarantee axiom states that in the actual profile of
(different) individual preferences, an agent should not strictly prefer the fair share ω/n to
his actual allocation zi .

6. Both properties are important in the commons problem (chapter 6), where no envy pinpoints to the CEEI
solution and fair share brings a critique of the virtual price and Shapley solution under decreasing and increasing
returns respectively (section 6.6).
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The no-envy property is the second key equity test. It states that agent i ′s share zi of the
resources cannot be inferior, in this agent’s preferences, to the share z j of another agent.
The no-envy test applies ex post to the actual distribution of shares, just like fair share
guarantee is an ex ante lower bound on individual welfares, in the sense that fair share does
not depend on the preferences of agents other than j. No envy has an appealing interpretation
in terms of incentive compatibility: once the arbitrator has laid out on the table the n shares
zi , i = 1, . . . , n, the assignment of these particular shares to the n participants (one share
per participant) is entirely nonconflictual. The share earmarked for j is precisely the one
agent j likes best. Hence, if the n agents queue to help themselves to this “buffet,” the correct
assignment will emerge irrespective of the ordering in the queue.

The fair share guarantee and no-envy tests are logically unrelated, that is to say neither
property implies the other.7 The normative appeal of the CEEI solution rests on the fact
that it is an efficient allocation of the resources meeting both equity tests. In the assignment
problems of example 7.7, as well as in the economies of chapter 6, the CEEI solution is
the only efficient allocation passing the no-envy test. In the case of the assignment problem
(example 7.7 and exercise 7.9) the no-envy test even implies efficiency (exercise 7.10). On
the other hand, in the fair division problems of the previous section, the CEEI solution is a
single-valued selection among a multitude of efficient and nonenvious allocations.

Recall from example 7.10 that the EE solution violates the no-envy test in the especially
strong sense that an agent may end up with a strictly larger amount of every good than
another agent. Similar configurations occur in exercises 7.12 and 7.14.

We conclude with a discussion of the two monotonicity properties already prominent in
the commons problem.

Resource monotonicity states that an increase of the “pie,” that is, the resources to be
divided, should never result in a loss of welfare for any participant: agent i does not strictly
prefer his initial share to his share after the resources have increased.

Population monotonicity considers similarly the departure of one of the agents among
whom the resources must be shared; the same resources feed now a smaller number of
mouths. The axiom rules out a loss of welfare for any of the remaining participants.

The interpretation of these two properties in section 6.6 applies identically in the present
context (see also sections 2.5 and 3.5). Now population monotonicity provides a counter
argument in support of the EE solution against the CEEI one.

As already noted in exercise 6.4, the CEEI solution violates population monotonicity.
The same holds true when the resources consist of divisible commodities as in this chapter.
However, the EE solution always is population monotonic. This is because it equalizes the

7. An exception is when all utility functions are linear, as in examples 7.10 and 7.11, as well as exercises 7.12
through 7.15. Then fair share guarantee is a consequence of no envy, but the converse implication does not hold.
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utility functions (normalized by taking the vector of resources as the numéraire) so the
arguments of section 2.5 apply here.

Turning finally to resource monotonicity, we note first that neither the CEEI nor the EE
solution is resource monotonic. An example for CEEI was already offered in exercise 6.4.
As for EE, observe that when the resources change, the scale of individual utilities change as
well; hence the general fact that an egalitarian solution is resource monotonic (section 2.5)
does not apply. A three-person example where the EE solution fails resource monotonicity
is the subject of exercise 7.15.

The following table summarizes the axiomatic discussion:

Fair share Population Resource
guarantee No envy monotonicity monotonicity

CEEI Yes Yes No No

EE Yes No Yes No

Our last example uncovers a puzzling incompatibility between fair share guarantee and
resource monotonicity, and casts serious doubts on the usefulness of the latter axiom in the
fair division of heterogeneous commodities.

Example 7.12 Example 3.7 Continued Suppose that we know a solution ϕ for selecting
in the two-person economy of example 3.7 an efficient allocation of resources between
Jones and Smith for every amount of resources in goods A and B. Assume that this solution
is resource monotonic and always guarantees a fair share to both Jones and Smith. Here we
derive a logical contradiction.

Consider the resources to be ω = (24, 12), meaning 24 units of A and 12 units of B. The
fair share ω/2 yields the utility u2(12, 6) = 12 to Smith. In any allocation where Smith
gets at least 12 utils, he must receive at least 12 units of A and 6 of B. Thus, because our
solution meets the fair share test, Jones’s utility when the resources are (12, 12) is at most
u1(12, 6) = 6.

Invoke now resource monotonicity to deduce that when the resources are ω0 = (12, 12),

Jones’s utility is at most 6. By considering the resources ω′ = (12, 24) and exchanging the
roles of Smith and Jones, we deduce similarly that Smith’s utility is at most 6 when we
divide ω0 = (12, 12). But notice that Jones and Smith can get 8 utils each by dividing ω0 as
(a1, b1) = (4, 8) (Jones) and (a2, b2) = (8, 4) (Smith), and we have reached a contradiction
of efficiency.

An easy way to construct an efficient and resource monotonic fair division method is
to select one commodity, say good A, and to equalize all utilities measured along this
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numéraire. That is, agent i’s utility for the allocation zi is the amount ui of good A that
makes her indifferent between zi and ui units of A. Because this calibration is independent
of the pie ω, resource monotonicity follows. But this solution unjustifiably penalizes an
agent who dislikes good A, relative to the other goods. In other words, this solution has a
strong normative bias in favor of good A. Consider Mary and Paul with the following linear
utilities over goods A and B:

uM(a1, b1) = a1 + 4b1, u P(a2, b2) = 4a2 + b2

The resources are 100 units of A and the same amount of B. Using good A as numéraire,
the following allocation brings equal utilities to Mary and Paul:

zM = (a∗
1 , b∗

1) = (0, 29.4), zP = (a∗
2 , b∗

2) = (100, 70.6)

Indeed, Mary is indifferent between zM and 117.6 units of good A, and so is Paul!8 The
overwhelming advantage of Paul follows from the asymmetric treatment of the goods.

7.7 Introduction to the Literature

We start with the material of sections 7.1 to 7.3.
The equivalence of the competitive equilibrium and the core of an exchange econ-

omy was first proved by Debreu and Scarf (1963) in a model involving replication of a
given exchange economy, and subsequently generalized to economies with a continuum of
agents. Textbook presentations are provided in Hildenbrand and Kirman (1974) as well as
Mas-Colell, Whinston, and Green (1995).

When goods are indivisible and agents consume at most one unit, the equivalence is much
easier to prove, as noted by Shapley and Scarf (1974), and discussed in example 7.1.

The model with indivisible goods is especially well suited for examining the limits of
core-stability and competitive analysis under nonconvex preferences and nonmonotonic
returns to scale. See the detailed treatment in Telser (1988), which inspired the discussion
of section 7.3, and in particular, example 7.6.

The variant of the Debreu-Scarf theorem for the assignment problem (exercise 7.10) is
discussed in chapter 3 of Moulin (1995).

Two general references for sections 7.4 and 7.5 are Young (1994) and Moulin (1995).
The latter also covers the axiomatic discussion of section 7.6.

The article by Alkan, Demange, and Gale (1991) inspired the recent literature on assign-
ment, and in particular, the discussion in section 7.4. Example 7.8 and the (unnumbered)

8. The exact values are b∗
1 = 500/17, b∗

2 = 1,200/17.
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example concluding section 7.5 are adapted from Abdulkadiroglu and Sönmez (1998) and
Bogomolnaia and Moulin (2000).

Of the two solutions discussed in section 7.5, the CEEI is the oldest one, going back
to Kolm (1972) and Varian (1974). The egalitarian equivalent solution was proposed by
Pazner and Schmeidler (1978). Brams and Taylor (1999) discuss several applications of the
egalitarian equivalent solution to conflict resolution, much in the spirit of example 7.11.
The equality of the CEEI and Nash solutions when utility functions are homogeneous
follows from a general result on aggregation of competitive demands attributed to Eisenberg,
Chipman, and Moore (1976). See, for example, theorem 3 in chapter 14 of Arrow and
Intriligator (1982).

More details on the axiomatic discussion in section 7.6 can be found in Thomson and
Varian (1985) and in chapter 4 in Moulin (1995). Finally, two recent books on cake-cutting
methods propose simple algorithms to achieve fair division when utilities are linear over
the “cake”: Brams and Taylor (1996), Robertson and Webb (1998).

Exercises to Chapter 7

Exercise 7.1 The Three Arabs (from the sixteenth-century story by Chevalier de Meriziac
in Problèmes plaisants et délectables)

Two arabs were about to have dinner. One had five dishes, the other had three, and all
dishes were of equal value. A third arab showed up and proposed to share these dishes with
them. He promised to pay his share of the meal, which he did by giving 8 deniers. How
must the other two arabs share those 8 deniers?

Model this problem as one of fair trade and find the correct solution, which is not 5
deniers for the first and 3 deniers for the second.

Exercise 7.2 Variants of Example 7.1

a. We have seven physicians. Initially each physician i owns slot i. Their preferences over
slots are described in the table below, except for the irrelevant information about slots that
a physician sees as inferior to his own:

Agent 1 2 3 4 5 6 7

Top slot x3 x3 x4 x5 x4 x1 x1

x2 x1 x5 x4 x1 x7 x2

x1 x2 x2 x2 x3 x5

x3 x5 x2 x6

x6 x7
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Perform the top trading cycle algorithm and find the corestable assignment of slots. Find
a set of competitive prices—as in (2)—for which supply and demand coincide.

b. We have three slots and three agents, with the following preferences:

Agent 1 2 3

Top x3 x1 x1

x1 x3 x2

x2 x2 x3

Compute the unique corestable outcome and a set of competitive prices.

Next assume that agents 1 and 2 exchange their slots prior to the opening of the barter
algorithm. Check that agent 2 is made better off while 1 receives the same slot as before.

*Can you find an example with four players and houses where a reallocation prior to
barter within a coalition of three agents is strictly profitable to two of them and leaves the
third one with the same slot?

Exercise 7.3 More on Example 7.3

a. In this question and the next, the cost function is C(q) = 10q (no fixed cost) and the
demand function is the usual d(p) = 100 − p. We have one or more firms, each owning a
copy of the technology. Show that the competitive allocation is the unique efficient allocation
meeting no envy (applied only between firms or between buyers) and voluntary participation
(nonnegative surplus share for everyone).

b. Compute the Shapley value of the stand-alone surplus game in the case of a monopoly
(thus with 100 + 1 agents) and in the case with two potential firms (duopoly; 102 agents in
total).

c. Now there is an $1,800 fixed cost to produce any positive amount of output. In the
monopoly case, show that the Shapley value of the stand-alone surplus game with 101
agents awards $625 to the firm, and compute the surplus shares of the efficient buyers.
Compute similarly the Shapley value with two potential firms (102 agents in the game).
Show that as the number of firms grows, the total surplus share awarded by the Shapley
value to the firms goes down. With an arbitrary large number of firms, we find the Shapley
value of the commons problem, as in example 6.7.

Exercise 7.4 Shapley Value in Example 7.4

Notation as in example 7.4. Consider first a buyer p, 0 ≤ p ≤ 60, and let λ be the fraction
of buyers preceding him in the random ordering. Conditional on this, the probability that
the monopolist precedes our buyer is λ.
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Distinguish two cases. If 0 ≤ λ ≤ 2/5, check that our buyer receives the surplus share
p if the monopolist precedes him. If 2/5 ≤ λ ≤ 40/(100 − p), check that this share is
p − 100 + 40/λ. Finally, if 40/(100 − p) ≤ λ ≤ 1, this share is zero.

Combine the three cases above to derive the expected surplus share of our buyer p, 0 ≤
p ≤ 60. Describe similar computations for the case of a buyer p, 60 ≤ p ≤ 100. Note that
the only critical value of λ is 2/5 in this case.

Exercise 7.5 Two Is Enough for Competition

Notation as in example 7.4. Seller 1 owns 30 units, and seller 2 owns 10 units. Demand is
d(p) = 100 − p; hence total surplus is 3,200.

We consider distributions of surplus where seller i’s share is xi , i = 1, 2, and buyer
p’s share is yp. The goal is to show that the unique corestable distribution is the competitive
one.

a. Show that x1 = 1,200, x2 = 400, and yp = max{p − 40, 0} is the unique competitive
allocation, and that it is corestable as well.

b. Show that core-stability implies that yp = 0 for any inefficient buyer, namely p < 60.

c. For any coalition S of buyers, core-stability implies that

|S| ≤ 30 ⇒ x1 +
∑
p∈S

yp ≥
∑
p∈S

p

|S| ≤ 10 ⇒ x2 +
∑
p∈S

yp ≥
∑
p∈S

p

Show that if S is made of efficient buyers only, these inequalities are equalities.

d. Deduce from question c:

x1

30
= x2

10
= p − yp for all p, 60 ≤ p ≤ 100

Conclude that (x1, x2, yp) is the surplus distribution of the competitive allocation.

Exercise 7.6 Variants of Example 7.6

a. Suppose that there are only two taxis instead of three in example 7.6. With seven cus-
tomers, each willing to pay $7, it is no longer feasible to transport all customers. Show that
there is a unique corestable allocation of surplus in which the two taxis share the efficient
surplus equally and customers get nothing.
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b. Suppose that we have two taxis and only four customers (with the same cost or willingness
to pay as above). Show that the core is empty. Hint: If the core is nonempty, it contains a
symmetric surplus distribution where the two taxis (and the four customers) get identical
shares.

c. With two taxis and five customers, show the core is nonempty and contains only sym-
metric surplus distributions.

d. Now we have two taxis and a limo. The limo seats up to six passengers and it costs $14
to run, irrespective of the number of passengers (at most six). Show that the core is empty
if we have eight customers.

Hint: If the core is nonempty, it contains a surplus distribution where all customers get
the same share x, each taxi gets y, and the limo gets z. Write the core constraints for the
coalitions containing one taxi and three customers, or the limo and six customers.

Is or is not the core empty if we have ten customers? six customers?

Exercise 7.7 A Variant of Example 6.4

a. We have 40 objects of high quality (A-objects) and 60 objects of low quality (B-objects).
There are 100 agents, and agent p, 0 ≤ p ≤ 100, is willing to pay p for an A-object and
p/2 for a B-object.

Show that efficiency requires to give an A-object to each one of the top 40 agents.
Agent p gets a (positive or negative) cash transfer x(p), and the sum of all transfers

is zero. Show that the unique set of transfers, ensuring that no agent is envious, is as
follows:

x(p) = −18 for 60 ≤ p ≤ 100

x(p) = +12 for 0 ≤ p ≤ 60

b. Suppose now we have 30 A-objects and 40 B-objects. Thus in any assignment, 30 agents
end up with no objects. Compute the efficient allocation of objects and the unique set of
cash transfers satisfying the no-envy test.

Exercise 7.8 Another Solution in Example 7.7

This solution splits equally the cost savings from (expected waiting cost under) random
scheduling. Check that agent p’s waiting cost (disutility) is then v(p) = 50p − 833, and
compute the price tag attached with the slot p, 0 ≤ p ≤ 100.

Show that this solution is not strategy-proof, specifically which agents p want to report
a higher marginal cost and which ones want to report a lower marginal cost?
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*Exercise 7.9 Job Assignment

Three partners, Ann, Bob, and Charles, have been awarded three jobs. Each partner can
only do one job, and each job can be done by any partner. They are free to assign the three
jobs as they please.

a. Each job pays $1,000, but the costs to each agent of performing each job vary as
follows:

Ann Bob Charles
Job 1 800 500 400

Job 2 900 700 400

Job 3 1100 700 500

Check that we have two efficient (cost-minimizing) assignments of the jobs to the three
partners. Compute the unique set of cash transfers achieving the no-envy test.

b. Consider the following cost structure:

Ann Bob Charles
Job 1 800 500 700

Job 2 900 700 800

Job 3 600 400 500

Check that we have two efficient assignments. Yet there is a range of cash transfers
achieving the no-envy test. Show that this range is a one-dimensional interval, in the sense
that the transfer to Bob, say, can be chosen in an interval, and this determines the other two
transfers to Ann and Charles. Compute the interval in question.

c. Now the cost structure is as follows:

Ann Bob Charles
Job 1 800 500 700

Job 2 900 700 800

Job 3 700 400 500

Here there is a unique efficient assignment. Show that the set of cash transfers achieving
no envy is now a two-dimensional triangle. Describe the corresponding set of transfer
profiles to a given pair of agents, say, Ann and Bob.
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*Exercise 7.10 No Envy and the CEEI in the Assignment Problem

a. In this question we show that no envy implies efficiency.
The n agents are labeled 1, 2, . . . , n, and we have n objects a, b, c, . . .. Consider an

assignment where agent i gets object ai , and a cash transfer ti (so that
∑

i ti = 0). We
assume that this assignment meets no envy and show that there is no other assignment of
objects to agents producing a higher surplus than i → ai .

If i → bi is another assignment of objects to our agents, let j (i) be the agent such that
a j (i) = bi . No envy implies for all agent i that

ui (ai ) + ti ≥ ui (bi ) + t j (i)

Show that these inequalities imply
∑

i ui (ai ) ≥ ∑
i ui (bi ) as desired.

b. Given the nonenvious and efficient assignment of question a, we choose a number r large
enough so that r ≥ ti for all i and define a profile of prices p by pai = r −ti for i = 1, . . . , n.

Show that our assignment is the competitive equilibrium allocation corresponding to prices
p and the income r for each agent.

Exercise 7.11 Generalization of Example 7.9

There are now n1 agents in N AB, n2 agents in N BC , and n0 agents in N 0. All others
assumptions in example 7.9 are preserved.

a. Generalize the formula (4) describing the efficient allocations treating equals equally.
Show that an allocation guarantees fair shares and is nonenvious if and only if

100

n
≤ z ≤ 100

n0 + max{n1, n2}
where n = n0 + n1 + n2.

b. Show that the CEEI solution is given by

z = 100

n
, x = n1 + n2

n1

100

n
, y = n1 + n2

n2

100

n

c. Assume n1 ≥ n2, without loss of generality, and compute the EE solution:

z = x = 100

n0 + n1
, y = n1

n2

100

n0 + n1
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*Exercise 7.12 Generalization of Example 7.10

Using the same notations and assumptions as in the example 7.10, we have n1 A agents, n2

B agents, and n0 zero agents who use two links.

a. Generalize the description of the efficient allocations treating equals equally, in particular
formula (7).

b. Compute the CEEI solution by distinguishing two cases. If |n1 − n2| ≤ n0, show that

x = y = z A + zB = 200

n

z A =
(

1 + n2 − n1

n0

)
100

n
, zB =

(
1 + n1 − n2

n0

)
100

n

where n = n1 + n2 + n0 is the total number of users. If n1 > n2 + n0, show that

x = 100

n1

y = zB = 100

n0 + n2
, z A = 0

Check that a O agent gets strictly more than his fair share in the latter case.

c. Compute the EE solution by distinguishing two cases |n1 − n2| ≤ 2n0 and |n1 − n2| >

2n0. Show, in particular, that

|n1 − n2| ≤ 2n0 ⇒ x = y = 200

n + n0

z A + zB = 400

n + n0

Give the exact values of z A, zB , and check that if n1 > n2 (resp. n2 > n1) an O agent
receives more of good B (resp. A) than a B agent (resp. A agent).

Exercise 7.13 Variants of Example 7.11

a. Consider the following distribution of points among four items:

A B C D
Joan 25 40 10 25

Peter 30 20 30 20
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Show that the CEEI solution gives items B, D to Joan and items A, C to Peter. Show
that the EE solution gives object B and 8

9 th of D to Joan and the rest to Peter.

b. Compute similarly our two solutions for the following distribution of points among six
objects:

A B C D E F
Joan 50 10 10 10 10 10

Peter 15 15 15 15 20 20

Exercise 7.14 Linear Utilities

We assume throughout that individual preferences are represented by linear utilities over
two goods A and B. If agent i gets ai units of good A and bi of good B, his utility is
ui = αai + βbi for some fixed parameters α, β. Naturally only the ratio α/β matters.

a. In this chocolate-vanilla cake the chocolate part amounts to 1
3 and vanilla to 2

3 . Ann likes
vanilla twice as much as chocolate, and Bob likes vanilla just as much as chocolate. What
division of the cake is recommended by the egalitarian equivalent solution? by the CEEI
solution?

b. Answer the same questions when Charles shows up to share the cake with Ann and Bob,
and Charles likes chocolate twice as much as vanilla.

c. In this question we must share 100 units of good A and 100 units of good B among three
agents. The profile of parameters α, β is as follows:

A B
John 8 1

Mary 8 3

Paul 3 2

Show that the CEEI solution gives to John and Mary 50 units of good A each, and all
100 units of good B to Paul. What is the competitive price vector? Show that the EE solution
gives only 45 units of good A to John, and 55 units to Mary, while Paul keeps all of good
B. Comment on the difference between these two solutions.

b. We now have 90 units of each good, and 10 agents with the following preferences:

u1(a1, b1) = a1 + 9b1

ui (ai , bi ) = 9ai + bi , i = 2, . . . , 10
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Show that the efficient allocations treating equals equally are of the following form:

A B
Agent 1 x ′ 90

Agents 2, . . . , 10 x 0

A B
Agent 1 0 x ′

Agents 2, . . . , 10 10 x

where x ′ = 90 − 9x .
Compute the CEEI solution. Check that the “mainstream” agents get a little less than a

9 percent increase above their fair share utility, whereas the eccentric agent gets an 80 percent
increase.

Show that in the EE solution all agents get about 9.75 percent increase above the fair
share utility. Compare agent 1’s share in the two solutions.

*Exercise 7.15 Resource Monotonicity and the EE Solution

We have four goods A, B, C , and D. Three agents have the following linear preferences
over the four goods, where the table indicates the marginal utility of each agent i for each
good X :

A B C D
John 12 3 3 1

Mary 3 12 3 27

Paul 3 3 12 27

a. Assume first that the pie consists of one unit of goods A, B, C and no good D. Show
that the EE solution (and the CEEI solution as well) give all of good A to John, all of B to
Mary, and all of C to Paul.

b. Assume now that the pie grows by the addition of one unit of good D. Show that the EE
solution is now

John: 0.90 units of good A

Mary: 0.05 of good A, 1 unit of B, 0.5 unit of D

Paul: 0.05 of good A, 1 unit of C , 0.5 unit of D

Deduce a violation of resource monotonicity.

c. What is the CEEI solution in the situation of question b?
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Chapter 2

1. (Section 2.2) A deficit-sharing (also called rationing) problem consists of a set N of
agents, a claim xi , xi ≥ 0 for each agent i ∈ N , and the amount t, t ≥ 0, of (homogeneous)
resource such that t < xN = ∑

i xi .

An excess-sharing (also called surplus-sharing) problem consists of N , xi , t as above,
such that xN < t. A solution (also called method) associates to each deficit (resp. excess)
problem (N , x, t) a share yi for each i ∈ N , such that

yN = t and for all i, 0 ≤ yi ≤ xi (deficit); or xi ≤ yi (excess)

2. The proportional solution is given by the same formula in the deficit and excess cases:

yi = xi∑
N x j

t

It is invariant to the merging, splitting, or transfer of claims among the participants. The
former two properties are explained immediately after example 2.4. The latter properties
consider two profiles of claims x and x ′ that only differ in their i and j coordinates:

{xk = x ′
k if k 	= i, j; xi + x j = x ′

i + x ′
j } ⇒ yi + y j = y′

i + y′
j

where y and y′ are, respectively, the solutions for (N , x, t) and (N , x ′, t).
In rationing problems the proportional method is characterized by either one of the three

properties above (invariance to merging of claims; to splitting of claims; to transfer of
claims).

3. The uniform gains solution is defined as follows, respectively for the deficit and the
excess case:

deficit:
∑

N

min{λ, xi } = t ⇒ yi = min{λ, xi }

excess:
∑

N

max{λ, xi } = t ⇒ yi = max{λ, xi }

Two different sets of algorithms to compute the solution in both cases are proposed
immediately after example 2.5 and in exercise 2.6. The uniform gains solution guarantees
to agent i a share yi not smaller than min{xi , t/n}; exercise 2.8.

In the deficit case, the uniform gains solution meets independence of higher claims:

for all i, j : xi ≤ x j < x ′
j ⇒ yi = y′

i

261
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where x and x ′ only differ in their j th coordinate, and y, y′ are the corresponding solutions.
See example 2.6, and the discussion following it. In combination with equal treatment of
equals (for all i, j : xi = x j ⇒ yi = y j ), the independence of higher claims property
characterizes the uniform gains solution. See exercise 2.3.

In the excess case, the uniform gains solution meets independence of lower claims:

for all i, j : x ′
j < x j ≤ xi ⇒ yi = y′

i

In combination with equal treatment of equals, this property characterizes the uniform gains
solution.

4. The uniform losses solution for deficit problems is defined as follows:∑
N

max{xi − µ, 0} = t ⇒ yi = max{xi − µ, 0}

The equal surplus solution for surplus (excess) sharing problems is

yi = xi + 1

n

(
t −

∑
N

x j

)

Two sets of algorithms to compute these two solutions are proposed immediately after
example 2.5 and in exercise 2.6. The uniform losses solution (deficit case) places the cap
max{xi − (xN − t)/n, 0} on agent i ′s share; exercise 2.8.

5. (Section 2.3) The contested garment method is defined for deficit problems involving
only two agents.

Contested garment shares

y1 = 1

2
(t + min{x1, t} − min{x2, t})

y2 = 1

2
(t − min{x1, t} + min{x2, t})

It satisfies the two properties of truncation and concession:

Truncation. Given the profile of claims x and resources t, define x ′ by x ′
i = min{xi , t} for

all i; then y = y′, which means that the profile of shares is the same under x or x ′.

Concession. Given x, t and i, set ci = max{t − xN\i , 0}, t ′ = t − ci and define x ′ by x ′
i =

xi − ci and x ′
j = x j for all j, j 	= i. Then the solution y′ of the problem (x ′, t ′) is y′

i = yi −ci

and y′
j = y j for all j, j 	= i.
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The contested garment solution is characterized by the combination of equal treatment
of equals, truncation, and concession.

There are two generalizations of the contested garment method to any number of agents.
The run to the bank presented in exercise 2.10 is an application of the Shapley value. The
Talmudic solution in exercise 2.11 combines the uniform gains and uniform losses solution.
Both methods meet truncation and concession.

6. Duality. To a solution (N , t, x) → r(N , t, x) = y of all deficit problems, we associate
its dual solution r∗ which is defined as follows:

r∗(N , t, x) = x − r(N , xN − t, x)

The dual r∗ of the solution r divides the deficit xN − t exactly as r divides the resources t.
The uniform gains and uniform losses solutions are dual solutions; the proportional and
contested garment solutions (as well as both generalizations of the latter) are self-dual.

7. (Section 2.4) A deficit problem (N , t, x) can always be interpreted as a taxation problem,
where xi is agent i ′s taxable income, yi his income net of tax, and xN − t is the total tax to
be levied. Thus a solution (N , t, x) → r(N , t, x) is interpreted as a tax schedule.

The fair ranking property is compelling in this interpretation:

xi ≤ x j �⇒ yi ≤ y j and xi − yi ≤ x j − y j

Tax schedules can be progressive or regressive:

progressivity: xi ≤ x j ⇒ xi − yi

xi
≤ x j − y j

x j

regressivity: xi ≤ x j ⇒ xi − yi

xi
≥ x j − y j

x j

Uniform gains is the most progressive tax schedule meeting fair ranking; uniform losses is
similarly the most regressive tax schedule; exercise 2.7.

An equal sacrifice method is defined by fixing a concave reference utility function u,

which is increasing and continuous. The corresponding taxation method is defined by

for all i : yi > 0 ⇒ u(xi ) − u(yi ) = max
j

{u(x j ) − u(y j )}
It is progressive if and only if u is more concave than the log function u(z) = a(log z),
where a is concave and increasing. If u(z) = b(log z), where b is convex and increasing,
the equal sacrifice method is regressive.

A solution (N , t, x) → r(N , t, x) is scale invariant if r(N , λt, λx) = λr(N , t, x) for
any problem (N , t, x) and positive factor λ. The scale-invariant equal sacrifice methods
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correspond to the following two families of reference utility functions:

u p(z) = −1/z p for some p, 0 < p < +∞; all corresponding methods are progressive

uq(z) = zq for some q, 0 < q < 1; all corresponding methods are regressive

The u p method converges to uniform gains as p becomes arbitrarily large; it converges
to the proportional method as p goes to zero. The uq method converges to the proportional
one as q goes to zero, and to uniform losses as q goes to one. See exercise 2.14.

8. (Section 2.5) The utilitarian model of resource allocation specifies for each agent i, i ∈ N ,

a utility function ui that is increasing and continuous. The problem is to divide t units of
resources when the share yi produces the utility ui (yi ) for agent i.

Two simple solutions are compared:

Utilitarian (classical). Find yi ≥ 0 maximizing
∑

i ui (yi ) under yN = t .

Egalitarian*. Find yi ≥ 0 such that yN = t and for all i , yi > 0 ⇒ ui (yi ) = min j u j (y j ).

Three axiomatic properties are examined:

Resource monotonicity. For N and ui , i ∈ N , fixed, the share yi is nondecreasing in t for
all i.

Population monotonicity. For N , ui , i ∈ N , and t fixed, and all j ∈ N ,

ri (N , t, u) ≤ ri (N\ j, t, u− j ) for all i, i 	= j

where u− j stands for the profile of utility functions of N\ j.

Continuity in the utility functions. A small change in one utility function ui , ceteris paribus,
results in a small change of the profile of shares y j , j ∈ N .

The egalitarian solution always meets all three properties, for any choice of the increasing
and continuous functions ui ; exercise 2.15.

The utilitarian solution may fail all three properties; example 2.9. However, if each utility
function ui is concave, the utilitarian solution coincides with the egalitarian solution for
the utility functions vi = −u′

i . Therefore in this case the utilitarian solution meets all three
properties as well.

Chapter 3

1. An individual utility function ũi associates to every outcome (“state of the world”) x a
number ũi (x) measuring agent i ′s welfare at x .
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Given a profile of utility functions ũi , i ∈ N , the Pareto relation is the following transitive
(but typically not complete) relation among outcomes: y is Pareto superior to x iff ũi (y) ≥
ũi (x) for all i ∈ N , and ũi (y) > ũi (x) for at least one i ∈ N . The outcome x is called Pareto
optimal, or efficient, if no outcome y is Pareto superior to x .

2. A social welfare ordering is a binary relation � over utility profiles u = (ui )i∈N ,

meaning over vectors in R
N . The SWO is, by definition, complete and transitive (it is a

rational preference over R
N ). Moreover it is monotonic (i.e., compatible with the Pareto

relation) and symmetric:

Monotonicity. {ui ≥ vi for all i ∈ N and ui > vi for some i} ⇒ u � v.

Symmetry. If u obtains from v by permuting the coordinates, then u ∼ v where � is the
strict component of �, and ∼ its indifference relation.

A collective utility function W (u) is defined over utility profiles, is strictly increasing
in each coordinate, and is a symmetric function of its coordinates ui . A CUF W defines a
SWO as follows: u � v ⇔ W (u) ≥ W (v), but not all SWOs obtain in this way. A prominent
example is the leximin SWO defined below.

3. (Section 3.2) The SWO � is independent of unconcerned agents if the comparison
between any two profiles u, v does not depend on the welfare of those agents i such that
ui = vi . Formally, for all utility profiles u, v, u′, v′, we have

{ui = vi ⇒ u′
i = v′

i ; ui 	= vi ⇒ u′
i = ui , v′

i = vi for all i} ⇒ {u � v ⇔ u′ � v′}
(this is the same statement as property (1) in section 3.2).

The SWO � is continuous if for all u, the sets {v | v � u} and {v | u � v}, called, respec-
tively, the upper and lower contour sets of u, are topologically closed.

An important theorem. The SWO � is continuous and independent of unconcerned agents
if and only if it is represented by an additive CUF, namely W (u) = ∑

i g(ui ), where g is
an increasing and continuous function.

Given a utility profile u and two agents i, j such that ui 	= u j , a shift from (ui , u j ) to
(u′

i , u′
j ) such that ui + u j = u′

i + u′
j and |u′

i − u′
j | < |ui − u j | is called a Pigou-Dalton

transfer. The SWO � meets the Pigou-Dalton transfer principle if it does not decrease
through such transfers: u′ � u, where u′

k = uk for all k 	= i, j. In this case we also say that
� is averse to inequality.

The (SWO represented by an) additive CUF W (u) = ∑
i g(ui ) is averse to inequality if

and only if g is concave.

4. In this subsection we restrict attention to positive utility profiles: ui > 0 for all i. The
SWO � is independent of the common utility scale if we have

u � u′ ⇔ λu � λu′ for all u, u′ and all λ > 0
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The additive CUF W represents a SWO independent of the common utility scale if and
only if it takes one of the following three forms:

Wp(u) =
∑

i

u p
i , with p > 0 and fixed

Wo(u) =
∑

i

log ui

W q(u) = −
∑

i

1

uq
i

with q > 0 and fixed

Thus the family above describes all continuous SWOs independent of unconcerned agents
and of the common utility scale. They are all averse to inequality, except for Wp when
p > 1.

The SWO represented by W1 is called classical utilitarianism, that represented by Wo,

or equivalently by the Nash CUF WN (u) = �i ui , is called the Nash SWO. It is the limit of
the SWO represented by Wp as p goes to zero, or by W q as q goes to zero.

5. (Section 3.3) When q becomes arbitrarily large, the SWO represented by W q converges
to the leximin SWO defined as follows. Denote by Lex the lexicographic ordering of R

n:

(a1, . . . , an)Lex(b1, . . . , bn)

⇔ {for some k, 0 ≤ k ≤ n, ai = bi , for i ≤ k and ak+1 > bk+1}
For any utility profile u ∈ R

n, write u∗ for the vector in R
n obtained by rearranging

increasingly the coordinates of u. The leximin ordering is defined by u � v ⇔ u∗ Lex v∗.
This SWO is independent of unconcerned agents and is the most averse to inequality
among all SWOs described in the previous section. It is not continuous, however. It is
only partially represented by the egalitarian CUF We, We(u) = mini ui , in the sense that
We(u) > We(v) ⇒ u � v but the converse statement does not hold.

The leximin SWO meets the following Independent of the common utility pace property.
For any increasing bijection f from R into itself, and any utility profile u ∈ R

N , write f (u)

for the profile ( f (ui ))i∈N . Then we have

u � v ⇔ f (u) � f (v) for all u, v

The leximin SWO is characterized by the combination of inequality aversion and the
above independence property.

6. (Section 3.4) The classical utilitarian SWO is independent of individual zeros of utilities:
the comparison of u and v does not change if agent i’s utility ui , vi is replaced by ui + δ,
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vi + δ respectively, ceteris paribus. Formally, this amounts to the property

u � v ⇔ u + w � v + w for all u, v, w ∈ R
N

This property single-handedly characterizes the classical utilitarian SWO.
The Nash SWO, defined only over positive utility profiles, is independent of individual

scales of utilities: the comparison of u and v does not change if agent i ′s utility ui , vi is
replaced by λui , λvi respectively, ceteris paribus. Formally,

u � v ⇔ w · u � w · v for all u, v, w ∈ R
N
+

where we use the notation a · b = (ai bi )i∈N . The Nash SWO is single-handedly character-
ized by this property.

7. (Section 3.6) A bargaining problem among the agents of N is a pair (B, ud), where B is
the set of feasible utility profiles (a subset of R

N ) and ud is a particular point in R
N called

the disagreement utility profile. A bargaining solution selects for each problem (B, ud) a
utility profile in B that is Pareto optimal and bounded below by ud . Of course, we must
chose B and ud in such a way that the set of such profiles is nonempty.

Define the maximal feasible utility for a given agent, compatible with guaranteeing the
disagreement utility to every other agent:

umax
i = max ui over all u s.t. u ∈ B and u ≥ ud

The Nash solution of the bargaining problem (B, ud) is the utility profile u maximizing
�i (ui − ud

i ) over the feasible set B. This solution is uniquely defined if B is convex and
topologically closed, and if ud feasible in B. The Kalai-Smorodinsky solution is the Pareto
optimal utility profile in B equalizing the relative gains from ud to umax :

ui − ud
i

umax
i − ud

i

= u j − ud
j

umax
j − ud

j

for all i, j

If the set B is convex and topologically closed, and ud is feasible in B the KS solution
is typically well defined. If it is not, we can refine the definition as follows: use the leximin
SWO to compare the profiles (ui − ud

i )/(u
max
i − ud

i ). The unique maximum gives the KS
solution.

Both the Nash and KS solution are independent of individual utility scales. Both guarantee
to each participant his or her disagreement utility plus 1/nth of the maximal feasible gain
above that level:

ui ≥ ud
i + 1

n

(
umax

i − ud
i

)
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One property drawing a wedge between the two solutions is related to the rationality of
choices discussed in chapter 4 (section 4.1). Suppose that a bargaining solution picks u in
the bargaining problem (B, ud), and consider a problem (B ′, ud) such that B ′ ⊆ B and
u ∈ B ′. In B ′ we have fewer options, but the “optimal” profile u is still available. Then the
solution should select u in the bargaining problem (B ′, ud).

The property above is satisfied by the Nash bargaining solution. In combination with the
independence of individual utility scales, it characterizes this solution. By contrast, the KS
solution violates the rationality property; example 3.12.

Chapter 4

1. (Section 4.1) The set of outcomes (states of the world) is denoted A. Agent i’s preference
ordering Ri is a binary relation on A, that is,

Complete. For all x, y ∈ A, at least one of x Ri y or y Ri x holds.

Transitive. For all x, y, z ∈ A, {x Ry and y Rz} ⇒ x Rz.

A collective choice problem is a triple (A, N , R̃), where R̃ = (Ri )i∈N is a preference
profile specifying a preference ordering for each agent i ∈ N . A voting rule associates to
every problem (A, N , R̃) an outcome x = f (A, N , R̃) called the winner, or a subset of tied
winners.

A preference aggregation method associates to every problem (A, N , R̃) a preference
ordering R = F(R̃) interpreted as the collective preference over A. It is an ordinal ana-
logue of the collective utility function of chapter 3, associating a collective utility to every
profile of cardinal individual utilities.

2. (Section 4.2) Given the set A of p outcomes, a set of scores is a sequence of numbers
sk, k = 1, . . . , p such that sk ≥ sk+1 for k = 1, . . . , p − 1, and s1 > sp. If Ri is a strict pref-
erence relation on A (i.e., two distinct outcomes are never equivalent), the score of outcome
a under Ri is s(a, Ri ) = sk, where k is the rank of a in Ri (the top outcome gets the
score s1, the next one gets s2, etc.). If Ri allows indifferences, the score of outcome a is
s(a, Ri ) = (sk + sk+1 + · · · + sk+m)/(m + 1) if (k − 1) outcomes are strictly preferred to
a and m other outcomes are equivalent to a.

Given a collective choice problem (A, N , R), each outcome receives a score s(a, R̃) =∑
i s(a, Ri ). The scoring voting rule elects the set of outcomes with the highest score. The

scoring aggregation method compares the outcomes by means of their scores; Rb = F(R̃)

is defined as follows:

x Rb y ⇔ s(x; R̃) ≥ s(y; R̃)
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The plurality voting (or aggregation) rule corresponds to the choices of scores s = 1,

sk = 0 for k = 2, . . . , p. Borda proposed instead the scores sk = p − k, for k = 1, . . . , p
and argued that his method selects a more accurate compromise between individual opinions.

A property shared by all scoring methods is “reunion consistency” (example 4.4). Con-
sider two choice problems (A, N1, R̃1) and (A, N2, R̃2) with the same set of outcomes and
disjoint set of voters N1 and N2. We set Bi = f (A, Ni , R̃i ) for i = 1, 2, and we require
that

B1 ∩ B2 	= ∅ ⇒ f (A, N1 ∪ N2, R̃1 ∪ R̃2) = B1 ∩ B2

The reunion consistency property is the basis of a characterization of scoring methods.
Given a collective choice problem (A, N , R̃), the majority relation Rm = F(R̃) is defined

on each pair x, y by giving the advantage to this outcome preferred by a majority of voters:

x Rm y ⇔ |{i ∈ N | x Ri y}| ≥ |{i ∈ N | y Ri x}|
The majority relation Rm is complete, but it may not be transitive, as shown on the canonical
profile of preferences over three outcomes discussed after example 4.3. If the majority
relation happens to be transitive, it defines a bona fide aggregation method. A maximal
element of the majority relation is called a Condorcet winner, after the mathematician
contemporary of Borda who proposed it first. This is simply an outcome a such that a Rmb
for all b ∈ A. The set of Condorcet winners may be empty, as shown by the canonical profile
just mentioned.

A voting rule is called Condorcet consistent if it selects the set of Condorcet winners
whenever this set is nonempty. Any Condorcet consistent voting rule is vulnerable to the
reunion paradox of example 4.4.

3. (Section 4.3) When A is the set of allocations of a certain bundle of private goods, and
each voter cares only about his or her own share, the majority relation normally fails to be
transitive, and its cycles are pervasive; example 4.5.

4. (Section 4.4) When the (finite or infinite) set A of outcomes is arranged along the real
line, we can speak of an outcomes x being to the left—or to the right—of another outcome y,

of x being between y and z and, so on.
Let Ri be an individual preference relation on A with strict component denoted Pi : x Pi y

means x Ri y and not y Ri x . We call Ri single peaked on A if the following two properties
hold:

Ri has a unique maximal element xi called its “peak”: xi Pi x for all x 	= xi .

For all x, y and all z between x and y, x Pi y ⇒ z Pi y.
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When all individual preferences are single peaked, the majority relation is transitive. It is
also single peaked and its peak—the Condorcet winner—is the median of individual peaks;
exercise 4.6.

5. (Section 4.5) When the set of voters is arranged along the real line, we can speak of agent i
being between agents j and k. We say that the preference profile R̃ has the intermediate
preference property if for any three agents i, j, k, and any two outcomes x, y we have

{i is between j and k; x R j y; x Rk y} ⇒ {x Ri y}
When this property holds, the majority relation is transitive; hence there exists a Condorcet
winner.

6. (Section 4.6) Arrow’s theorem. For an aggregation method F, the independence of
irrelevant alternatives property is defined precisely in section 4.6, so we do not repeat this
definition here. No scoring aggregation method meets the IIA property, whereas the majority
aggregation method satisfies this property.

Fix N , A and assume that A contains three or more outcomes. Let F be an aggregation
method defining a rational collective preference R = F(R̃) for every collective choice prob-
lem (A, N , R̃). Suppose that F meets the IIA property, and also respects the unanimous
preferences of the voters, in the following sense:

{x Pi y for all i ∈ N } ⇒ {x Py} for all x, y and R̃

where Pi , P are the strict component of Ri , R. Then F must be a dictatorial aggregation
method, namely there is an agent i∗, the dictator, such that the collective strict preference
always agree with the dictator’s strict preferences:

{x Pi∗ y ⇒ x Py} for all x, y and R̃

In the statement of Arrow’s theorem, it is crucial to allow for any set of rational preferences
over A. If all individual preferences are restricted to be single-peaked as in section 4.4., or
if the preference profile meets the intermediate preference property of section 4.5, then the
majority relation is a fair aggregation method meeting the IIA and unanimity properties just
described.

7. (Section 4.4) Strategy-proofness.
Fix A and N and consider a single-valued voting rule f : for each problem (A, N , R̃),

it selects a unique outcome x = f (A, N , R̃). Suppose that agent i , instead of reporting
his true preferences Ri , reports R′

i instead, and denote the new profile R̃′ = (R̃ |i R′
i ) and

y = f (A, N , R̃′) the new outcome of the election. We say that the misreport R′
i by agent i is

a successful manipulation at R̃, if this agent strictly prefers the new outcome: y Pi x, where
Pi is the strict component of his true preference.
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We call the voting rule strategy-proof if for all problems (A, N , R̃), no agent has a
successful manipulation at R̃. If all individual preferences are restricted to be single-peaked
as in section 4.5, and if a misreport must be single-peaked as well, then the Condorcet winner
defines a strategy-proof voting rule; see Black (1948). However, if all rational preferences
over A are permitted, and A contains three or more outcomes, a strategy-proof voting
rule must be dictatorial, in the sense that the best outcome for the dictator i∗ is always
elected:

x Pi∗ y for all y 	= x ⇒ f (N , A, R̃) = x, for all x and R̃

The Gibbard-Satterthwaite theorem is technically equivalent to Arrow’s theorem.

Chapter 5

1. (Sections 5.1, 5.2) A cost-sharing game—also called a cooperative game with transfer-
able utility—is a pair (N , C), where N is the set of agents and the cost function C specifies
for each coalition (subset of N , including N itself) its stand-alone cost C(S). The interpre-
tation is that C(S) is the cheapest cost incurred in order to provide “service” to all agents
in S, independently of the set N\S of agents outside coalition S.

The question is to divide C(N ) among the agents in N , in a way that rewards fairly
their respective contributions to total cost. The problem is that the cost function C does not
provide a clear separation of individual contributions.

The Shapley value charges to each agent his expected marginal cost, when the agents
are randomly ordered and each agent pays the increment of the stand-alone cost after he is
added to the agents preceding him. The mathematical formula is

xi =
n−1∑
s=0

∑
S∈Ai (s)

s!(n − s − 1)!

n!
{C(S ∪ {i}) − C(S)}

where Ai (s) denotes the set of coalitions of size s not containing i.
In a two-person game N = {1, 2}, this gives the following share:

x1 = 1
2 (C(12) + C(1) − C(2))

In a three-person game, this gives similarly

x1 = 1
3 C(1) + 1

6 (C(12) − C(2)) + 1
6 (C(13) − C(3)) + 1

3 (C(123) − C(23))

= 1
3 C(123) + 1

6 (C(12) + C(13) − 2C(23)) + 1
6 (2C(1) − C(2) − C(3))
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In the capacity game where each agent has a capacity ci and the cost function is C(S) =
maxi∈S ci , the Shapley shares are

x1 = 1

n
c1, x2 = x1 + 1

n − 1
(c2 − c1), x3 = x2 + 1

n − 2
(c3 − c2)

xn = cn −
(

1

2
cn−1 + 1

6
cn−2 + · · · + 1

n(n − 1)
c1

)

(where we assume c1 ≤ c2 ≤ . . . ≤ cn).

2. (Section 5.3) The cost function C is subadditive if for any two disjoint coalitions S, T,

we have C(S ∪ T ) ≤ C(S) + C(T ). It is superadditive if, under the same premises, the
opposite inequality holds true.

Some natural stand-alone cost functions are neither sub- nor superadditive; see exam-
ple 5.9. For these cost functions the stand-alone test is not defined.

The stand-alone test requires xi ≤ C(i) when C is subadditive (no one pays more than
her own stand-alone cost), and xi ≥ C(i) when C is superadditive. The Shapley value meets
the stand-alone test.

The stand-alone core strengthens the stand-alone test by requiring that the cost share∑
s xi of any coalition S be not larger (resp. not smaller) than the stand-alone cost C(S)

when C is subadditive (resp. superadditive).
For a subadditive (or superadditive) cost-sharing game, the stand-alone core may well be

empty. Example 5.8 and exercise 5.8 illustrate this important fact.
When the stand-alone core is non empty, it may not contain the Shapley value:

examples 5.6, 5.7, as well as exercises 5.5, 5.6, illustrate this fact.
On the other hand, in two important classes of cost-sharing games, the Shapley value

occupies a central position in the stand-alone core. These are the concave and the convex
cost functions.

For a concave cost function,

for all S, T : S ⊆ T ⇒ C(S ∪ {i}) − C(S) ≥ C(T ∪ {i}) − C(T )

the inequality is reversed for a convex cost function. The cost function C is concave in
example 5.2, and more generally, in the capacity game C(S) = maxS ci . The cost function
is concave in examples 5.5 and 5.6, and more generally, in the games constructed from a
tree network and described in exercise 5.7.

Exercise 5.10 explains why the Shapley value lies squarely in the stand alone core when
the cost function is concave. The argument for a convex function is identical.

3. (Section 5.4) When we take into account, in addition to the stand-alone costs of all
coalitions, the willingness to pay for service of each potential user, the question of how to



moulin-79027 book October 22, 2002 16:13

273 Glossary of Definitions and Results

divide the cooperative surplus between the the participants can be answered with the same
methodology. Once must compute the stand-alone surplus v(S) of each coalition:

v(S) = max
T ⊆S

(∑
i∈T

ui

)
− C(T )

This definition reflects the fact that it may not be efficient to serve all users in S, given
the pattern of costs and willingness to pay. The entire discussion of the Shapley value and
the stand-alone core can now be revisited.

4. (Section 5.5) Among all the conceivable methods to share total cost C(N ) among N
while taking into account the entire list of stand-alone costs C(S), the Shapley value stands
out for the large number and diversity of its axiomatic characterizations. The four main
characterizations are presented in section 5.5 with full mathematical precision; therefore
this discussion is not repeated here.

Chapter 7

1. (Sections 7.1 through 7.3) In an exchange economy among N , each agent i ∈ N is
endowed with rational preferences �i over the consumption of private commodities, and
owns a bundle of commodities ωi . The model also specifies the feasible trades, namely
the feasible reallocation of the resources among the participants resulting in an allocation
z = (zi )i∈N , where zi is agent i’s after-trade consumption.

An allocation z is blocked by coalition S, S ⊆ N , if the agents in S can trade among
themselves their initial endowments, and reach an allocation z′ such that z′

i � zi for all i ∈ S
and z′

i � zi for at least one i ∈ S. An allocation z is in the core of the exchange economy if it
is not blocked by any coalition. Note that a core allocation is, in particular, Pareto optimal.

A feasible allocation z is a competitive equilibrium if there exists a price vector p (one
price for each tradable commodity) such that for all i ∈ N , zi is agent i ′s competitive demand
at price p: zi �i yi for all yi such that p · yi ≤ p · ωi .

The link between the core allocation and competitive allocations is an important discovery
of modern mathematical economics. The central result, known as the Debreu-Scarf theorem,
says that if each market participant has negligible market power—in the sense that her initial
endowment is a negligible fraction of total resources in the economy—the two concepts are
equivalent: an allocation is competitive if and only if it is in the core of the economy. See
Mas-Colell, Whinston, and Green (1995, ch. 18) or Moulin (1995) for a textbook exposition
of this result.
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Examples 7.1 and 7.2 in section 7.1 are two exchange economies with a unique compet-
itive allocation that is also the unique core allocation. In example 7.2 monetary transfers
are feasible and the competitive allocation is also the Shapley value of the stand-alone
cooperative game.

In example 7.4 (section 7.2) one market participant is a monopoly (he owns the entire
supply of a commodity on which all opportunities to trade depend); hence the negligibility
assumption fails. The competitive allocation is only one among many core allocations: it is
the core allocation least advantageous to the monopolist.

In example 7.3 the firms have decreasing average costs; hence efficiency of trade requires
that only one firm operate. As a result the competitive analysis breaks down: there is no
price vector at which the market clears. The core analysis gives useful guidelines on the
distribution of surplus among the market participants.

Finally in example 7.6 (section 7.3) both approaches break down, as a result of the
U-shaped average costs of the firms (sellers). There are no competitive equilibrium and no
core allocation. This means that private contracting under private ownership cannot deliver
a convincing distribution of surplus; hence normative solutions, such as the Shapley value
of the stand-alone game, are called for.

2. (Sections 7.4 and 7.5) The no-envy test is an equity property defined for a broad range of
fair division problems. Say that the bundle of resources ω is divided among N as z = (zi )i∈N .

The no-envy test requires that zi �i z j for all i, j : no agent would prefer to exchange his
share for the share of another participant.

A competitive equilibrium with equal incomes specifies an allocation z and a price vector
such that for all i, zi is agent i’s competitive demand at price p when his endowment is
ω/n, or equivalently his income is 1/nth of the worth p ·ω of the resources. A competitive
equilibrium with equal incomes meets the no-envy test, and it is also Pareto optimal.

In the assignment problem of example 7.7, as well as in the general assignment model
of exercise 7.10, every Pareto optimal allocation meeting no envy is also a CEEI solution
for an appropriate set of prices. In general, the CEEI solution is only one among a large set
of Pareto optimal allocations meeting no envy; see examples 7.9, 7.10, and 7.11.

An egalitarian equivalent allocation is a Pareto optimal allocation z such that there exists
a positive number λ for which zi ∼i λ · ω for all i : everyone is indifferent between receiving
zi or a fraction λ of total resources. Note that λ is necessarily between 1/n and 1.

For an important class of fair division problems, the two solutions CEEI and EE corre-
spond precisely to the two bargaining solutions of chapter 3 (section 3.6). This is when each
preference relation �i can be represented by a homogeneous utility function ũi : ũi (λzi ) =
λũi (zi ) for all zi , and all λ > 0.
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For such utility functions we define a bargaining problem as follows:

B = {u = (ui ) | ui = ũi (zi ) for all i, for some feasible allocation z of ω}
ud

i = ũi (0) = 0

Then every CEEI allocation z yields the same utility profile u = ũi (zi ), and u is the Nash
solution of the bargaining problem (B, ud). Furthermore every EE allocation yields the
same utility profile, namely the Kalai-Smorodinsky solution of the bargaining problem
(B, ud).

Note that the result holds true only when the commodities are divisible and utility func-
tions are monotonic and continuous. Examples 7.10 and 7.11, where all utilities are linear,
and example 7.9 illustrate this result.

3. Section 7.6 pursues the critical comparison of the two fair division methods CEEI and
EE at the axiomatic level. The two properties of resource monotonicity and population
monotonicity are discussed in section 2.5 for the problem of dividing fairly a single divisible
commodity. Here resource monotonicity turns out to be overly demanding; example 7.12.
Population monotonicity, on the other hand, drives a wedge between our two solutions: the
EE solution meets this property, but the CEEI solution does not; exercise 6.4.
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Index

Access to a network (example), 152–53, 158–59
exercise on, 166

Additive collective utility function, 66–70
Additivity axiom, 160
Affirmative action, and reward principle, 22
Agenda, control of, 129
Aggregation method, 8, 126–29.

See also Preference aggregation
problem or method

Air travel story, 108
Airwaves interferences example, 197–99

exercise on, 215
Altruism, cake division with (example), 97
Antiplurality method, 113
Aristotle, 1, 16, 21, 169, 208
Arrow’s impossibility theorem, 9, 17, 110, 127,

129–30, 131, 270
and Gibbard-Satterthwaite theorem, 122, 271

Assignment problems, 236–40
exercise on, 255–57

Auctioning, 26–27
Axiomatics, of fair division, 248–51
Axiomatizations, of Shapley value, 159–62
Axioms, 15, 21

Bankruptcy, 28, 31–32, 235
Bargaining problem, 18, 86–95, 267–68

exercise on, 101–103
Bentham, Jeremy, 5, 7, 18, 65
Borda, Jean-Charles de, 110
Borda voting method, 8, 9, 110–14, 115, 116, 127

as aggregation method, 127–29
Buchanan, J., 19

Cable connection story, 145
Cake division, with altruism (example), 97
Cardinal collective utilities, and literature, 18
Cardinal collective welfare, and collective utility

functions, 3
Cardinal utility

in Borda’s voting method, 113
vs. ordinal, 108–109

Cardinal welfarism, 5, 6–9, 63
and additive collective utility functions, 66–70
and bargaining compromise, 86–95
and comparison of classical utilitarianism, Nash

collective utility function and leximin social
welfare ordering, 76–81

exercises on, 96–106
and leximin social welfare ordering, 70–76
literature on, 95–96
and monotonicity failures, 81–86

CEEI. See Competitive equilibrium with equal
incomes

Choices
ordinal welfare as, 7
and preferences, 108

Classical utilitarian collective utility function, 69, 80,
81, 82, 84, 85, 86

Classical utilitarianism. See Utilitarianism, classical
Classical utilitarian social welfare ordering, 64, 88,

266–67
Coalition formation, strategic analysis of, 162
Coase, Ronald, 13
Cohen, G. A., 19
Collective choice problem, 268–69
Collective utility function, 3, 5–6, 66, 265

additive, 66–70
and aggregation method, 126
Nash, 6, 11, 65, 69, 70, 266 (see also Nash collective

utility function)
Collective welfare, 18

cardinal, 3–6
ordinal, 6–9, 126–27

Collective welfare approach, 3
as endstate justice, 4

College admission, 26
Commons, 139

and decreasing returns, 186
literature on, 208–209
problem of, 139

axiomatic comparison of three solutions for,
199–208

and constant returns to scale, 173–75
examples of, 140–43
exercises on, 209–19
and fair compensation, 175–84
and free access vs. random priority, 184–90
and increasing returns, 190–99, 208
and market for homogeneous good, 226–27

and production externalities, 10–13
rural (example), 171, 180–84

exercise on, 215
subadditive costs for, 147–48
superadditive costs for, 148
in Theory of Games, 143
tragedy of, 12–13, 169–70

examples of, 170–73
in literature, 208

voting over (exercise), 136
Common utility, 45
Common utility pace, independence of, 76
Common zero of utilities, independence

of (exercise), 105
Compensation principle, 1–2, 21–22, 76

and collective utility functions, 5
in the commons problem, 175–80
and competitive trade, 221

281
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Compensation principle (cont.)
and efficiency-fitness, 24
and egalitarian utility function, 6
as equalization of individual utilities, 3, 70
in examples, 25–27
in simple utilitarian model, 44, 46
and sum-fitness, 24

Competition
destructive, 117, 232–35
imperfect, 228–32 (see also Monopoly)
perfect, 232

Competitive allocations and core allocation, 273–74
Competitive equilibrium, 273

and empty core, 234
as strategy-proof, 121

Competitive equilibrium with equal incomes (CEEI),
11, 13, 18, 177, 190, 221, 237, 274–75

in assignment problem (exercise), 257
axiomatic comparison of, 199–204, 208

fair share in, 204–206, 208
population resource monotonicity in, 206–208

and fair division, 240–47
FA outcome compared with (exercise), 217–18
in free goods example, 179
and increasing returns, 192–93, 195
in literature, 252
and mining example, 190
and Nash bargaining, 242–43, 252
normative appeal of, 249
and population monotonicity, 249
and resource monotonicity, 250

exercise on, 258–60
and revelation game, 184
in rural commons example, 181–82
as strategy-proof, 182, 184, 192, 208, 237

Competitive price vector, 221
examples of, 242, 247

Competitive trade, 221–28
and destructive competition, 232–35
exercises on, 252–55
and imperfect competition, 228–32
literature on, 251–52

Complementary goods, dividing of (examples),
82–84. See also Gloves market

exercise on, 250–51
Completeness principle or property, 64, 66, 268

in ordinal welfarism, 107
Concave cost functions, exercise on, 167–68
Concession property, 37–38, 262

exercises on, 57
Condorcet, Jean-Antoine the marquis de, 110
Condorcet voting method, 8, 110–17, 127, 269, 270

examples of, 131
and intermediate preferences, 122–24

literature on, 130
and single-peaked preferences, 118–21
as strategy-proof, 121

Congestion externalities
example of, 171–73

Constant returns to scale, and commons, 173–75
Constant utility ratios, 46–49
Contested garment (CG) method, 37–40, 262–63.

See also Talmudic solution
two generalizations, 57–59
literature on, 51

Continuity in the utility functions, 264
Contracts

private, 13, 14, 15, 117, 193
public, 14–15, 193, 235

Convexity property, 120, 120n
Cooperation, spontaneous evolution of, 19
Cooperation technology, in joint venture example, 28
Cooperative games with transferable utility, 143,

162, 271
Cooperative game theory, 155
Core allocation, 273

and competitive allocations, 273–74
Core-instability, in competitive trade, 232–33, 234–35
Core property, stand-alone, 149, 150–56, 272
Core-stability, 221, 225–26

absence of, 232–33
in imperfect-competition example, 229
and indivisible goods, 251
and trading cycle, 223

Corner solution, and CEEI, 247
Cost functions, concave (exercise), 167–68
Cost-sharing, and commons, 143
Cost-sharing method, 141, 271
Cost-sharing model or game, 139
Cyclical majorities, 9, 114, 117, 127

Debreu-Gorman theorem, 95
Debreu-Scarf theorem, 251, 273
Decreasing returns, and commons, 186, 190,

205, 208
Deficit, 28
Deficit-sharing problem, 28, 261

example of, 30–32, 140
and scheduling example, 36
as taxation problem, 263

Demand function, 226
Destructive competition, 117, 232–35
Dictatorial methods, 129, 270
Dictatorship, random, 79
Direct revelation game, 185
Disagreement outcome, 88
Distortion of individual zeros and scales

(exercise), 105–106
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Distributive fairness, 1
Distributive justice. See also Fair distribution;

Fair division
Aristotle on, 1, 21
collective welfare approach to, 3
and joint ventures, 139
and management of technology in common property

regime, 170
Pareto optimality in, 8 (see also Pareto optimality)
principles of, 1–2, 21 (see also specific principles)

compensation, 1–2, 21–22
in examples, 25–27
exogenous rights, 1, 23
fitness, 2, 23–24
reward, 1, 22–23

procedural and endstate, 4 (see also Endstate justice)
and Shapley value, 146–47
welfarism as, 63

Downsian model of political competition, 119
Dual solution (duality), 39–40, 263
Dummy axiom, 159
Dworkin, Ronald, 19

EE. See Egalitarian equivalent solution
Efficiency, Pareto optimality as, 8, 265 (see also

Pareto optimality)
Efficiency-fitness, 23, 24, 63, 64
Egalitarian collective disutility function, 76–77
Egalitarian collective utility function, 24, 95

and intensity of utility functions, 80
and monotonicity failures, 85, 86

Egalitarian equivalent (EE) solution, 11, 18, 274–75
and fair division, 242–48
in literature, 252
and no-envy test, 244, 249
and population monotonicity, 249–50
and resource monotonicity, 250

exercise on, 258–60
Egalitarianism, and leximin social welfare

ordering, 70–76
Egalitarian ordering, 64
Egalitarian solution, 44–51, 264

and bargaining compromise, 88
and classical utilitarianism, 45
examples in comparison of, 76–77
and monotonicity failures, 82, 84, 85
and resource monotonicity, 82

Egalitarian utility function, 6
Egalitarian welfarist objectives, vs. classical

utilitarianism, 76
Elevator example, 11–12
Endstate justice, 4

and Pareto optimality, 8
welfarism as, 63

Envy-free division, 18. See also No-envy test
Equal impact property, 161
Equality/efficiency trade-off, with two

agents, 73–76
Equality ex ante, 23
Equality ex post, 21–22
Equal property rights, common ownership as, 18
Equal rights

equal exogenous rights, 23
and heterogeneous individual preferences, 235

Equal sacrifice methods in taxation, 28, 41–43, 263
literature on, 51
scale-invariant, 263–64
in taxation, 28, 41–43

Equal surplus solution, 29, 30. See also Uniform
losses solution

in joint-venture example, 140
voting over, 123

Equal treatment of equals axiom or principle, 1, 159
Equilibrium, competitive. See

Competitive equilibrium
Equilibrium outcome, 4
European union

and equality of voting rights, 27
and unanimous consent, 14–15

Ex ante equality, 23
Excess-sharing problem, 28, 261

example of, 28–29
Exhaustible resources, externalities from, 9
Exogenous rights, 1, 3, 21, 23

and competitive trade, 221–22
and cost-sharing, 161–62
in examples, 25–27

Expected marginal cost, 145–46
Ex post equality, 21–22
Externalities, 9–10, 19

congestion
example of, 9, 171–73

contract solution for, 3, 13–15
and fair division, 11–13
in problem of the commons, 10–13, 17, 140

and public transportation system, 193
and productive contributions, 22

FA. See Free access game
Fair compensation, 175–80

competitive equilibrium with equal incomes as, 177
(see also Competitive equilibrium with
equal incomes)

in rural commons example, 180–84
Shapley value as, 179–80 (see also Shapley value)
and tragedy of the commons, 169
virtual price solution as, 177–79 (see also Virtual

price solution)
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Fair distribution
contested-garment method for, 37–40
equal sacrifice in taxation, 41–43
exercises on, 52–62
and four principles of distributive justice, 21–22
literature on, 51–52
simple model of, 27–37
in simple utilitarian model of resource

allocation, 44–51
Fair division, 10–11, 235

axiomatics of, 248–51
competitive equilibrium with equal income (CEEI)

method of, 18, 240–47, 249, 250 (see also
Competitive equilibrium with equal income)

egalitarian equivalent (EE) method of, 18, 242–48,
249, 250 (see also Egalitarian equivalent solution)

and fair trade, 221 (see also Competitive trade)
with identical preference, 71–73

exercise on, 96–97
literature on, 51, 251–52

and no-envy test, 18 (see also No-envy test)
in assignment problems, 235–40
and divisible-commodities examples, 240
and fair share test (studios example), 246

under production externalities, 11–13
and public contracts, 15
and Shapley value, 11, 17 (see also Shapley value)
vs. welfarist methodology, 5

Fairness
anonymous rules for, 1
and common property with production

externalities, 13
and compensation, 21
and exogenous rights, 21
and reward, 21

Fair queuing, 34–37
literature on, 52

Fair ranking axiom, 41, 263
Fair share axiom (or test), 199, 216, 241, 248, 249

and fair share upperbound of (exercise), 216–17
in studios example, 246

Fair trade, 221. See also Competitive trade
Fitness principle, 1, 2, 3, 21, 23–24

and collective utility functions, 5
and competitive trade, 221
in examples, 25–27

Fixed cost, and commons (example), 192–97
exercise on, 215

Fixed population, 161
Fleurbaey, Marc, 19
Flute example, 21, 24
Free access (FA) game

CEEI outcome compared with (exercise), 217–18
and decreasing returns, 185–86

improving upon equilibrium of (exercise), 216
and increasing returns, 191–92, 193–94, 196–98
and mining example, 187
and rural-commons example, 186

Free goods example, 175–80
exercises on, 211–12, 255

Fund-raising situation, 32

Game theory
and commons problem, 139, 143
and Shapley value, 12

Garbage game example, 233–34
General will, 127. See also Majority will
Gibbard-Satterthwaite theorem, 110, 122, 271
Gloves market, 227–28
Grand coalition, 225

Hayek, Friedrich A., 19
Herb story, 177
Heterogeneous preferences, 95

and equal rights, 235
Higher claims, independence of, 37

exercise on, 53–54
Higher-order characteristics, and compensation,

21, 22
Homogeneous good, market for (example), 224–28

monopoly in (example), 230–32
exercise on, 253–54

Hydraulic representation of basic solutions, 48–49

Identical preference, fair division with, 71–73
IIA (independence of irrelevant alternatives), 8, 113,

116, 120, 128–30
Immigration policy, 26
Imperfect competition, 228–32
Impossibility theorem of Arrow. See Arrow’s

impossibility theorem
Increasing returns, and commons, 190–99, 200,

205, 208
Independence of common scale (ICS)

property, 68, 69
Independence of the common utility pace, 76, 81
Independence of common zero of utilities,

exercise on, 105
Independence of higher claims, 37

exercise on, 53–54
Independence of individual scale of utilities, 80–81
Independence of individual zeros of utilities, 78, 81
Independence of irrelevant alternatives (IIA), 8, 113,

116, 120, 128–30
Independence of unconcerned agents, 66–67, 69
Individual scale of utilities, independence of, 80–81
Individualism, methodological, 3–4, 6, 65
Individual utilities, zero of, 88
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Individual utility function, 264
Individual zeros and scales, distortion of

(exercise), 105–106
Inefficiency, in competitive trade, 233
Instability, in competitive trade, 233
Intermediate preferences, 122–26

exercise on, 134–35
in literature, 130

Job assignment (exercise), 256
Joint cost, sharing of, 139
Joint ventures

as commons, 139
examples on, 28–32, 140–42

Justice. See also Distributive justice
endstate, 4
procedural, 4

Kalai-Smorodinsky (KS) solution, 90–95,
267–68, 275

and EE solution, 242, 243
in literature, 96

Kolm, Serge Christophe, 19

Leximin and leximax (exercise), 104–105
Leximin social welfare ordering, 70–76, 95, 266

and bargaining compromise, 94
and independence of common utility pace, 81
with indivisible goods, 235
in noxious facility example, 78
and resource monotonicity, 82

Liberalism, and methodological individualism, 3–4
Libertarian political philosophy, 127

and core-instability, 235
and externalities, 13, 14
in literature, 19

Lifeboat example, 25, 70–71, 79
literature on, 51

Linear utilities exercise, 259–60
Location of a facility (examples), 76–78, 84–85

on network with loops (exercises), 98–99,
133–34

and voting, 118–21
Location of a noxious facility (example), 78–79

exercises on, 99–100, 132
Location of post office (example), 155–56
Location on star-tree, (exercises), 100–101, 134
Locke, John

and natural right to property, 173, 174–75, 208
and right to consume, 179

and productive contributions, 22
Lottery

for exogenous rights, 26
in scheduling problem, 238

Lower bounds, exercise on, 57

Macrowelfarism, 64, 65
Mail distribution examples, 142–43, 150–52, 157–58

exercises on, 163–64, 165–66, 167
Majority

qualified, 130
tyranny of, 79

Majority cycling, 9, 114, 117, 127
Majority relation, 8–9, 111, 269

under single-dipped preferences (exercise), 133
under single-peaked preferences (exercise), 133

Majority voting, 15
Majority will, 18. See also General will
Malkovitch, Joe, 131–32
Marginal cost, expected, 145–46
Marginalism property, 160

in literature, 162
Marginal utility, 44–45
Market for a homogeneous good (example), 224–28

monopoly in (example), 230–32
exercise on, 253–54

Market power, 228, 232
Mathematical welfare economics, and Arrow, 131
Medical supplies, rationing of, 32
Medical triage, 5n, 25–26, 46

literature on, 51
Menu choices, in air travel story, 108
Merging, in exercises, 53
Meriziac, Chevalier de, 252
Methodological individualism, 3–4, 6, 65
Microeconomic analysis

and distributive justice, 2
and methodological individualism, 4
theory of rational choice and ordinal

preferences in, 130
Microeconomic approach to distributive justice, and

problem of commons, 139
Microwelfarism, 64, 65
Mill, John Stuart, 18, 42, 45
Minimal state doctrine, 127. See also Libertarian

political philosophy
Minimal utility, 88
Mining nuggets (example), 187–90
Monopoly(ies), 230

natural, 192, 208
Monopoly in market for homogeneous goods

(example), 230–32
exercise on, 253–54

Monotonicity, 66, 265
failures of, 81–86
population, 47–48, 50–51, 199, 206–207, 208,

249–50, 264, 275
resource, 47, 50–51, 96, 199, 207–208, 249, 250–51,

260, 264, 275
failures of, 82–85

Morgenstern, Oskar, 143
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Nash collective utility function, 6, 11, 65, 69, 70, 266
for bargaining problem, 18, 89–90, 91–93, 94,

96, 267–68
and CEEI solution, 242–43, 252
examples in comparison of, 77–78, 79, 80–81
and independence of individual scales, 81
and individual zeros or scales, 88
and monotonicity failures, 82, 84, 85, 86

Nash social welfare ordering, 267
Natural monopolies, 192, 208
Natural rights, Locke’s argument on, 174–75, 208
Negligibility assumption, 228, 230, 273
Network, access to (example), 152–53, 158–59

exercise on, 166
Network with loops, location of facility on

(exercise), 98–99
Neumann, John von, 143
New welfare economics, 18
No-envy test, 3, 235–36, 249, 274

in assignment problems, 236–40
exercise on, 257

in CEEI, 177
for divisible commodities, 240
and fair division, 10, 13, 18, 95
and fair share test (studios example), 246
in free-goods example, 176
in literature, 19
and welfarism, 63

Normative economic analysis, Pareto optimality in, 8
No-show paradox, 116
Nozick, Robert, 19
Nucleolus, 162

Oligopoly, 232
Open membership, for CEEI vs. VP vs. Shapley, 208
Ordinal approach, 108

and competitive trade, 221
Ordinal collective welfare (also ordinal welfarism),

6–9, 107–10, 126–27
and social welfare orderings, 3

Ordinal preferences, in literature, 130
Ordinal social choice functions, and literature, 18

Paradox
no-show, 116
reunion, 115, 130

Pareto optimality (efficiency), 8, 24, 63, 64, 265
and monotonicity of social welfare ordering, 66
as ordinal concept, 109

Party competition, model of, 95
Perfect competition, 232
Pigou-Dalton transfer principle, 67, 69, 265

and bargaining compromise, 94
and leximin ordering, 72
in literature, 95

Plato, 27
Plurality voting, 110

Condorcet and Borda on, 110–11
Political competition, Downsian model

of, 119
Political rights, 27
Polluting activities, externalities from, 9, 13
Population

fixed, 161
variable, 161

Population monotonicity, 47–48, 199, 208, 249–50,
264, 275

and commons, 206–207
in example, 50–51

Post office, location of (example), 155–56
Potential axiom, 161
Practical egalitarianism, 72. See also Leximin social

welfare ordering
Preference aggregation problem or method,

18, 109–10, 126–29, 268. See also
Aggregation method

Preference relation, 7–8, 64, 107–108
counting of (exercise), 136

Preferences
intermediate, 122–26, 130

exercise on, 134–35
profile of, 109
single-dipped ( exercise on majority

relation under), 133
single-peaked, 118–22, 269–70

majority relation under (exercise), 133
Price vector, competitive, 221
Primary goods, 65, 95

and handicapped, 21
Priorities example, 87–88

generalization of (exercise), 103
Prisoners’ Dilemma, 169, 170
Private contracts, 13, 14, 15, 117, 193
Private good, 9
Private ownership of heterogeneous goods, 221.

See also Competitive trade
Procedural justice, 4

and Pareto frontier, 8
Progressivity, in taxation, 42, 263
Proportional solution, 29, 45, 261

exercise on, 218–19
and fair-compensation example, 176n
hydraulic representation of, 48
in joint-venture example, 140
voting over, 123

Public bad (example), 170
Public contracts, 14–15, 193, 235
Public goods, 9

in examples, 79
Public transportation system, 193
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Quadratic cost, discrete example with (exercises),
212–14

Qualified majorities, 130
Queuing, 26

exercise on, 211
fair, 34–37

Random dictatorship, 79
Random order values, 161–62
Random priority in fair distribution, 40. See also Run

to the Bank
Random priority (RP) game, 185–86

and increasing returns, 191–92, 193, 196–97, 198–99
and mining example, 188–89
and rural-commons example, 186

Random scheduling solution, 236–37
Ranking, fair, 41, 263
Rational choice assumption or postulate, 3, 7
Rational choice theory, in literature, 130
Rationing problem, 28, 261. See also

Deficit-sharing problem
in free goods example, 176
literature on, 51
of medical supplies, 32
and scheduling problem, 34

Rawls, John, 19, 65, 95
Regressivity, in taxation, 42, 263
Relative egalitarian solution. See

Kalai-Smorodinsky solution
Repeated games, 19
Resource allocation, voting over, 116–18
Resource monotonicity, 47, 96, 199, 249, 250–51,

264, 275
and commons, 207–208
and EE solutions (exercise), 260
in example, 50–51
failures of, 82–85

Resources, nature of, and fair division, 9
Restaurant bill (exercise), 209
Returns to scale

constant, 173–75
decreasing, 186, 190, 205, 208
increasing, 190–99, 200, 205, 208

Reunion consistency, 269
Reunion paradox, 115, 130
Revelation game, 184–85
Reward principle, 1, 2, 21, 22–23

and collective welfare approach, 3
and commons, 139
and competitive trade, 221
in examples, 25–27
and Shapley value, 11, 17, 144

Rights
exogenous, 1
and microeconomic analysis, 4

Roemer, John, 19
RP. See Random priority game
Run to the bank (exercise), 57–58, 263
Rural commons example, 171, 180–84

exercise on, 215

Samuelson, Paul, 18
Scale invariance, 43, 263–64
Scheduling examples, 34–37, 236–38

exercise on, 255
literature on, 52

Scoring methods, 113
of Borda, 111–14, 115
plurality, 110–11, 113
in resource allocation problems, 116
and strategy-proofness, 122

Self-duality, 39–40
Sen, Amartya K., 6, 19
Separability property, 65
Shapley value, 3, 11–12, 13, 19, 143–44, 179–80,

190, 271–73
axiomatic comparison of, 199–204, 208

fair share in, 204–205, 208
population and resource monotonicity
of, 206–208

axiomatizations of, 159–62
and commons, 139
and competitive trade, 225
and distributive justice, 146–47
examples of, 144–47
exercises on, 163–68
and fair division, 17
and imperfect competition, 228, 229, 231, 232
and increasing returns, 195
literature on, 162–63
and mail-distribution example, 142–43
and mining example, 189–90
in monopoly market for homogeneous

goods (exercise), 253–54
and random priority game, 186
and revelation game, 185
in rural commons example, 183–84, 186
and stand-alone core, 150–56
and stand-alone surplus, 156–59
and stand-alone test, 148–50

Sharing capacity examples, 240–43,
243–45

exercises on, 257–58
Sharing five studios example, 245–48

exercise on, 258–59
Sharing one commodity (exercise), 104
Single-dipped preferences, majority relation

under (exercise), 133
Single-peaked preferences, 118–22, 269–70

majority relation under (exercise), 133
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Slavery of the talented (examples), 76, 85–86, 96
exercise on, 102
and stand-alone solution, 175

Smith, Adam, 10, 208
Social choice functions, ordinal, 18
Social choice theory or problem, 109, 126, 127

and preference aggregation problem, 109–10,
126–29, 268

and voting problem, 109, 110 (see also Voting)
Social welfare ordering, or function, 3, 8, 64, 265–66

classical utilitarian, 266–67 (see also
Utilitarianism, classical)

and individual zeros or scales, 88
Nash, 267

Software, buying of (example), 154–55
exercises on, 164

Splitting, in exercises, 53
Stability, core, 221, 225–26

absence of, 232–33
in imperfect-competition example, 229
and indivisible goods, 251
and trading cycle, 223

Stand-alone core property, 149, 150–56, 272
Stand-alone costs, 12, 13, 140–41, 147–48
Stand-alone solution or game

and competitive trade, 225
and constant returns problem, 175

Stand-alone surplus, 156–59
Stand-alone test, 148–50, 272

and population monotonicity, 206
State, on libertarian view, 14
Stockholder interpretation, of CEEI solution, 177
Strategic voting, Gibbard-Satterthwaite’s

theorem about, 110, 122
Strategy-proofness, 37, 121, 122, 270–71

of CEEI, 182, 184, 192, 208, 237
vs. VP vs. Shapley, 208

in exercises, 54
literature on, 130
of nonenvious assignment, 237

Subadditive cost function, 140
Subadditive costs, for commons, 147–48
Sum-fitness principle, 23–24, 69, 76

in simple utilitarian model, 44, 46
Superadditive costs, for commons, 148
Supply function, 226
Surplus-sharing, and commons, 144

exercises on, 164
Surplus-sharing methods, voting over, 123–24

exercises on, 135, 135–36
Surplus-sharing problem, 271

as dual of cost-sharing problems, 139
Swapping time slots (example), 222–24

exercise on, 252–53
Symmetry, 66, 265

Talmudic solution, 58–59, 263
literature on, 51

Taxation problem, 28, 41–43, 263
Taxis example, 234

exercise on, 254–55
Tax schedules, voting over, 124–26

exercises on, 135, 136–37
Technologically advanced commodities, decreasing

marginal cost for, 192
Theory of Games (von Neumann and

Morgenstern), 143
Three Arabs exercise, 252
Time-sharing examples, 79–81, 238–40

exercise on, 101–102
and voting, 116–17

Time slots, swapping of (example), 222–24
exercise on, 252–53

Top trading cycle algorithm, 223
Trading game from equal endowments, 11
Traffic paradox exercise, 210–11
Tragedy of the commons, 12–13, 169–70

examples of, 170–73
in literature, 208

Transitivity principle or property, 64, 66, 268
cyclic majorities as violating, 127
in ordinal welfarism, 107

Trash example, 170
Traveling lecturer exercise, 163
Tree networks, exercise on, 165–66
Triage, medical, 5n, 25–26, 46

literature on, 51
Truncation property, 37, 262

in examples, 57
Tullock, Gordon, 19
Two is enough for competition (exercise), 254
Tyranny of the majority, 79

Unequal treatment of equals principle, 1
Uniform costs solution, in joint venture example, 141
Uniform gains (UG) solution, 30, 33–34, 45, 261–62

algorithms to compute, 55–56
in exercises, 54, 218–19
and fair-compensation example, 176n
and fair queuing, 36–37
hydraulic representation of, 48, 49
in joint-venture example, 140
and rationing of medical supplies, 32
uniform losses method as dual of, 40
voting over, 123

Uniform losses (UL) solution, 30, 33–34,
45, 262

algorithms to compute, 55–56
and fair-compensation example, 176n
and free goods example, 179
hydraulic representation of, 48, 49
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and rationing of medical supplies, 32
uniform gains method as dual of, 40

Upper bounds, exercise on, 57
Utilitarianism, classical, 18, 44–51, 264

and bargaining compromise, 87
as cardinal welfare, 5
classical utilitarian collective utility function, 69, 80,

81, 82, 84, 85, 86
classical utilitarian social welfare ordering, 64, 88,

266–67
and concavity of individual utility functions, 81–82
and egalitarian program, 45
examples in comparison of, 76–81
and lifeboat problem, 71
and objective measurement of utility, 6
and sacrifice of individual, 76
as sum-fitness, 24

Utility(ies), 5, 63
interpretation of, 79

as subjective tastes vs. needs, 95
minimal, 88
objective measurement of, 6–7, 64

Utility functions
collective, 3, 5–6, 66, 265

additive, 66–70
and aggregation method, 126
Nash, 6, 11, 65, 69, 70, 266 (see also Nash
collective utility function)

continuity in, 264
individual, 264
marginal, 44–45

Utility ratios, constant, 46–49

Value system, and primary-goods index, 65
Value theory, textbook presentations of, 162
Variable population, 161
Virtual price solution, 13, 176n, 177–79, 190

axiomatic comparison of, 199–204, 208
fair share in, 204–206, 208
population and resource monotonicity of, 206–208

implementation of (exercise), 218
and increasing returns, 194–95, 195
and mining example, 188
and revelation game, 185

Vitamins example, 93–95
Voting, 109–10

Condorcet vs. Borda on, 110–16 (see also Borda
voting method; Condorcet voting method)

and equal treatment, 1
exercises on, 131–37
and intermediate preferences, 122–26
literature on, 51, 130–31
and ordinal welfarism, 107
plurality, 110–11

over resource allocation, 116–18
and single-peaked preferences, 118–22

Voting rights, 27
Voting rules, of Condorcet and Borda, 8–9

Welfare
cardinal, 5 (see also Cardinal welfarism)
collective, 3–9, 18, 126–27
and fitness, 21
individual, 2–3

as cardinal utility, 5–6
and microeconomic analysis, 4
as ordinal preference relation, 3, 5

interpersonal comparison of, 6–7
ordinal, 7–9

Welfarism, 5, 63–65. See also Social welfare ordering,
or function

cardinal, 5, 6–9, 63, 66–96 (see also Cardinal
welfarism)

exercises on, 96–106
macro version of, 64, 65
micro version of, 64, 65
ordinal, 107–10
and primary goods, 65

Will, general, 127
Will of majority, 18. See also General will

Zero utility, 88
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